
 

File FloTrik                                                  Floating-Point Tricks …               version dated   September 10, 2013 6:21 pm

Prof. W. Kahan’s  notes for  Math. 128B                                                                                                Page  1/28

 

Floating-Point Tricks to Solve Boundary-Value Problems Faster

 

Prof. W. Kahan
Math. and Computer Sci. Depts.

Univ. of Calif. @ Berkeley

 

§0.  Abstract:

 

  Old tricks are exhumed to accelerate the numerical solution of certain discretized 
boundary-value problems.  Without the tricks,  half the digits carried by the arithmetic can be lost 
to roundoff when the discretization’s grid-gaps get very small.  The tricks can procure adequate 
accuracy from arithmetic with  

 

float

 

  variables  4-bytes wide  instead of  

 

double

 

  variables  8-
bytes wide that move slower through the computer’s memory system and pipelines.  The tricks are 
tricky for programs written in  M

 

ATLAB™

 

 7+,  J

 

AVA

 

,  F

 

ORTRAN

 

  and post-1985  A

 

NSI

 

 

 

C

 

.  For the 
original  Kernighan-Ritchie 

 

C

 

  of the  1970s,  and for the few implementations of  

 

C

 

99  that fully 
support  IEEE Standard 754 for Binary Floating-Point,  most of the tricks are easy or unnecessary.  
Their efficacy is illustrated here by examples.
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§1.  Introduction:

 

  Computations,  formerly carried out in  8-byte-wide  

 

double

 

  floating-point,  
could afford to lose over half the arithmetic’s  16 sig.dec.  and yet retain accuracy adequate for 
almost every requirement by scientists and engineers.  Now they are tempted to replace  

 

double

 

  
by  4-byte-wide  

 

float

 

  variables that will move twice as fast through computers’ pipelines and 
vast memories,  dissipate half the energy,  and take advantage of inexpensive hardware mass-
produced for entertainment and communications.  But this replacement exacerbates the threat to 
accuracy from roundoff that was formerly ignored.  Only if unnoticed can the loss of about half 
the  7 sig.dec.  of  

 

float

 

  arithmetic be ignored.

There are tricks that defend discretized differential equations against excessive loss to roundoff.

A few of us used these tricks in the  1970s  during the brief reign of small computers with  

 

float

 

  
arithmetic hardware but not  

 

double

 

.  The tricks ran faster than  

 

double

 

  simulated in software.  
The tricks relied upon a property of floating-point subtractive cancellation:

If  p  and  q  are floating-point numbers of the same precision,
and if  1/2 

 

≤

 

 p

 

/

 

q 

 

≤

 

 2 ,
then  p

 

 

 

–

 

 

 

q  is computed exactly,  unsullied by a rounding error.
A proof appeared on  p. 138  of  

 

Floating-Point Computation

 

  by  P.H. Sterbenz (1974, Prentice-
Hall, NJ).  Rare exceptions occurred on perverse hardware lacking a  g

 

uard digit

 

,  and for abrupt 
instead of  

 

gradual

 

  underflow of  p

 

 

 

–

 

 

 

q

 

 

 

;  these exceptions do not happen nowadays on hardware 
conforming fully to  IEEE Standard 754.  

The tricks entail complexities that bloat a computer program’s capture-cross-section for mistakes.

No endorsement of these tricks is implied by their lengthy discussions and analyses below.  Quite 
the contrary.  Their complexities are a penalty imposed by programming languages and compilers 
lacking convenient support for arithmetic operations more precise than their operands.  A major 
exception was  

 

C

 

  designed by  B.W. Kernighan and D.M. Ritchie  for an early  DEC PDP-11.  Its 
floating-point board required a call upon the operating system to select one of  

 

float

 

  or  

 

double

 

  
precision.  For speed’s sake,  the board was left in  

 

double

 

;  consequently every floating-point 
expression was evaluated in  

 

double

 

  regardless of whether operands were 

 

float

 

s.  This practice 
was numerically advantageous.  It rendered unnecessary almost all the tricks exhibited below,  and 
greatly enhanced the accuracy and reliability of many a  F

 

ORTRAN

 

  program transliterated into  

 

C

 

 

 

,  
especially  3-dimensional geometrical computations like those described on my web page’s  

 

www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf

 

 .   But in the mid  1980s,  before 
those advantages were appreciated widely,  ANSI committee X3J11  let  

 

C

 

  compilers revert to  

 

Fortranish

 

  expression-evaluation.  Most did.  Now tricks are necessary for most  

 

C

 

  compilers.

The simplest trick is  

 

Compensated Summation

 

  used to suppress the worst rounding errors in the 
numerical solution of initial-value problems to which one-dimensional boundary-value problems 
are converted when solved by  

 

Shooting

 

  methods.  These deliver better accuracy as a  

 

stepsize

 

  

 

θ

 

  
is diminished,  though at the cost of greater work proportional to  1/

 

θ

 

 

 

.  Without that trick or else 
extra-precise arithmetic,  the enhanced accuracy is vitiated by rounding errors that accumulate 
proportional to  1/

 

θ

 

  in worst cases,  though these happen only rarely.  An example of damaging 
accumulation is provided by an initial-value problem in  §§2-3.
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The solution  

 

u

 

(

 

x

 

)  of a boundary-value problem  div

 

(

 

p

 

·

 

grad

 

 

 

u

 

)

 

 + 

 

q

 

·

 

u

 

 = 

 

r

 

   is often a potential 
computed only to permit the subsequent computation of a vector force-field  

 

grad

 

 

 

u

 

  from finite-
difference formulas.  Because these formulas amplify errors in  

 

u

 

  it must be computed accurately 
enough that subsequent subtractive cancellations will not leave too few correct digits to determine  

 

grad

 

 

 

u

 

  as accurately as it is needed.  This accuracy is gained by computing  

 

u

 

  over a sufficiently 
refined grid of mesh-points.  As happens in  §9,  mesh refinement can worsen the contamination of  

 

u

 

  by roundoff unless the program acts to abate that contamination.  The simplest abatement by far 
resorts to extra-precise arithmetic.  When this is unavailable or too slow,  the abatement must use 
a tricky trick presented in these notes in  §7.  An example in  §8  will test in  §10  how well the 
trick works to compute the regular solution of a singular boundary-value problem.

After it is explained for a second-order  ordinary  differential equation   (P·U')'  + Q·U = R  with 
boundary conditions at the ends of some interval,  the trick will be applied to an elliptic  partial  
differential equation on a squaare in  §??.  Further elaborating the trick to work for parabolic and 
hyperbolic partial differential equations that characterize propagation may incur so much extra 
memory traffic as to vitiate the trick;  but that’s a story for another day.

§2. Discretized Initial-Value Problem:  A numerical solution  Y(τ)  of the differential equation
  dy/dτ = f(y)   over a given interval   0 ≤ τ ≤ T  with a given  y(0) := y°  

is to be computed either as the terminal  Y(T)  or as  Y(τ)  to be plotted over that interval.  Most 
numerical methods resemble the conversion of the differential equation into an integral equation

  y(τ+θ) = y(τ) + ∫0θ f(y(τ+σ))·dσ , 

because an approximation  Y(τ) ≈ y(τ)  is updated repeatedly,  for  τ = 0, θ, 2θ, 3θ, …, T–θ ,  to 
  Y(τ+θ) := Y(τ) + F(Y(…), θ)·θ 

wherein  F(Y(…), θ)  extracts samples of  f(Y(…))  to estimate the average   ∫0θ f(y(τ+σ))·dσ/θ .  
(The stepsize  θ  may vary with  τ  but has been kept constant here to simplify the exposition.)

Absent roundoff,  the error  Y(T) – y(T) → o  like  θOrder ;  the exponent  Order  depends upon the 
details of  F(…)  and always exceeds  1 ,  often exceeds  3 .  When adequate accuracy can be 
achieved only by choosing a very tiny  θ ,  rounding errors interfere.  The worst of them occur at 
the additions of  Y + F·θ .  Here is how roundoff loses digits:

YYYYYYY = Y(τ)  
+  FFFF FFF· θ + F·θ   as if ffff fff   
––––––– lost 
YYYYYYY = Y(τ+θ) 

Thus rounding errors appear to inject uncertainty proportional to  ε/θ  into  F  (and hence into  f ) ;   

ε  is the arithmetic’s roundoff threshold;  float ’s  ε = 2–23 ≈ 1e-7 ;  double ’s  ε = 2–52 ≈ 2e-16 .  
That injection limits the accuracy achievable in  Y ,  as if roundoff and discretization conspired to 
lose at least some fraction like  1/(1 + Order)  of the arithmetic’s digits of  f .  That loss might 
often have gone unnoticed when the arithmetic was  double .  Not so likely if  float .
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A palliative is the choice of a higher  Order  formula for  F .  It works only if the solution  y(τ)  is 
smooth enough,  and the needed accuracy high enough,  that the higher  Order  formula allows a 
substantially bigger stepsize  θ ,  whence substantially fewer updating steps and fewer lost digits.

A remedy is the use of extra-precise arithmetic,  storing  Y  to at least several more sig.bits  than 
are trusted in  f  or desired in  y .  When this remedy is too slow or unavailable,  the only remedy is  
Compensated Summation:

Y := y° ;  cY := o ; … Initialize  Y  and its compensatory  cY 
For  τ = 0  to  T–θ  in steps of  θ {  

Yo := Y ;
∆Y := cY + F(Y(…), θ)·θ ;
Y := Yo + ∆Y ; … rounded,  losing digits  FFF· θ  
cY := (Yo – Y) + ∆Y ; }   … recovers them.  (HONOR PARENTHESES! ) 

This trick is inefficient when the differential equation is so stable that it forgets its earlier errors,  
or so unstable that the propagated growth of the earliest few errors overwhelms all later errors.

§3.  An Example:   The chosen differential equation  dy/dτ = f(y)  has terminal  T := 65/32  and 

    y :=  ,    f(y) :=     and     y(0) =  y° :=  .

This singular differential equation has a regular solution  v(τ) = 229 ,  w(τ) = –2τ2·v(τ) .  The 
singularity was removed numerically by substituting  “ w/(τ+η) ”  for  “  w/τ ”  in  f ,  where  η  
barely exceeds the underflow threshold,  thus replacing an invalid  0/0  operation by  0 with no 
other effect upon the computation of  f ,  because  “ w/(τ+η) ”  rounds to  “ w/τ ”  if  τ ≠ 0 .

The chosen numerical method is a classical  4th-order  Runge-Kutta  formula whose  F·θ  is …
  F(Y(…), θ)·θ = ( 2·(hF1 + hF3) + 4·hF2 + hF4 )/6  wherein

  hF1 := ·f(Y) ;   hF2 := ·f(Y + hF1) ;   hF3 := θ·f(Y + hF2) ;   hF4 := θ·f(Y + hF3) ;   

The chosen number  n := 2560  of steps produced a stepsize  θ = T/n  exactly.  All arithmetic and 
variables were  24-sig.bit  float .  Computed results for  Y(T)’s  first component were …

  V(T) = 8670448 computed without Compensated Summation
  V(T) = 8669241 computed with Compensated Summation
  v(T) ≈ 8669240 the true  v(T)  rounded to  24 sig,bits.

Compensated Summation  has reduced this example’s loss of accuracy in  Y(T)  
from  over  10  sig.bits  to less than  2  of the arithmetic’s  24.

This example also reminds us that no simple foolproof way exists to infer  Y(T)’s  error from the 
accuracy of the compensated updating formula  Y(τ+θ) := (cY + F(Y(…), θ)·θ) + Y(τ) .  A simple 
way repeats the computation of  Y(T)  with a sequence of diminishing stepsizes  θ  until as many 
digits of  Y(T)  converge to presumed digits of  y(T)  as roundoff  (in  f  ,  θ  and  T  too)  allows.
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§4.  Discretized Boundary-Value Problem:  Suppose  P,  Q  and  R  are scalar-valued functions 
of the scalar independent variable  x ,  and  Q  and  R  may depend also upon the scalar solution  
U(x)  of the differential equation   (P·U')'  + Q·U = R .  We assume that  P,  Q  and  R  are smooth 
functions to preclude distracting complications.  Choose a sequence  x0 < x1 < x2 < … < xN  of 
mesh-points to span the interval over which the solution  U(x)  is to be computed;  they can be 
spaced non-uniformly so long as every gap  hj := xj+1 – xj  is small.  Let  uj ≈ U(xj)  numerically 
and then set,  say,  pj+1/2 := P((xj+xj+1)/2),  qj := Q(xj, uj)  and  r j := R(xj, uj) .  One of several 
discretized approximations to the derivative  (P·U')'   at  x = xj  is the difference-quotient  

   2·( pj+1/2·(uj+1 – uj)/hj – pj–1/2·(uj – uj–1)/hj–1 )/(hj + hj–1) = (P·U')'  + O(|hj – hj–1| + (hj + hj–1)
2) .

(Eliminating the term  |hj – hj–1|  complicates the exposition without affecting the trick;  see  Appendix 2  below.)

Substituting this approximation into the differential equation  (P·U')'  + Q·U = R  at every mesh-
point produces an  (almost)  linear system   (TT + Diag(q))·u = r    of equations in which  u  is a 
column of unknowns  uj ,  Diag(q)  is a diagonal matrix computed from the elements  qj  and gaps  
hj,  column  r   is computed from the elements  r j  and gaps  hj ,  and  TT  is a tridiagonal matrix 
computed from the elements  pj+1/2  and gaps  hj .  The bottom and topmost entries in  TT + Diag(q)  
and  r   include contributions from the boundary-value problem’s boundary conditions.

Sometimes  Diag(q)  is supplanted by a tridiagonal matrix to help approximate the differential 
equation better.  For the same reason  TT  may become five-diagonal;  but we shall disregard these 
possibilities in what follows since they can be accommodated by a straightforward elaboration of 
a trick whose description we still hope to keep simple.

The equation   (TT + Diag(q))·u = r   has to be solved for the desired  u = (TT + Diag(q))–1·r  .  Even 
if  q  and  r   are independent of  u ,  the solution process will usually require iteration if only to 
attenuate obscuration by roundoff during the solution process.  One process,  akin to  Gaussian  
elimination,  factorizes  TT + Diag(q) ≈ E·B  wherein  B  is bidiagonal and upper-triangular,  and  E  
is a bidiagonal lower-triangular matrix or else one whose rows have been permuted by pivoting 

during the factorization process.  These factors serve to compute  u ≈ B–1·(E–1·r )  by first forward 

substitution  (perhaps permuted)  to compute  E–1·r   and then back-substitution to get  u .

If  q  and  r   depend upon  u  they will have been estimated from a guess at  u  and must now be 
recomputed from the latest estimate of  u ,  after which their changes must be taken into account 
during the computation of an improved estimate  u + ∆u  to supplant the one just computed.  How 
this is done depends upon how strongly  q  and  r   depend upon  u :

•  If  q  and  r   depend very weakly upon  u  then  ∆u ≈ B–1·(E–1·(r  – (TT + Diag(q))·u))   using 
the latest values for  u,  q  and  r   but the same factors  E  and  B  as before.

•  If  q  and  r   depend weakly but not very upon  u  then  ∆u ≈ B–1·(E–1·(r  – (TT + Diag(q))·u)) 
using the latest values  u,  q  and  r   and a recomputed factorization   TT + Diag(q) ≈ E·B .

•  If  q  and  r   depend strongly upon  u  then  ∆u ≈ B–1·(E–1·(r  – (TT + Diag(q))·u))  using the 
latest values for  u,  q  and  r   and recomputed factors  E  and  B  that take the columns
∂q/∂u  and  ∂r /∂u  into account.  This complicates the process but does not affect the trick.
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The foregoing process has been called  “Iterative Refinement”  among other things.  Ideally,  at 
most a few iterations  u → u + ∆u  should suffice to solve the equation   (TT + Diag(q))·u = r   for  u  
as accurately as the data  TT,  q  and  r   deserve.  No matter how the equation’s solution  u  is 
computed,  its accuracy turns out to be limited mostly by the accuracies of successive residuals  
s := r  – (TT + Diag(q))·u .  The trick is to compute each  s  accurately enough,  as we shall see.

Usually scalar factors dependent only upon the gaps  hj  have been incorporated into the rows of 
the expression  “ r  – (TT + Diag(q))·u ”  so that it can be computed repeatedly for different columns  
u  without incurring repeated divisions by expressions dependent only upon the gaps.  Sometimes 

these scalar factors fail to keep  TT = TTT  symmetrical.  Sometimes  P  and consequently  TT  too 
depend upon  u ,  contrary to our assumptions.  None of these possibilities affect the trick.

Finally,  the  jth  row  (TT·u)j  of  TT·u  always has the form   aj–1·uj–1 – bj·uj + cj+1·uj+1  in which the 
coefficients  aj–1,  bj  and  cj+1  have these three properties:

0) bj = aj–1 + cj+1  for every  j  except possibly  j = 0  and/or  j = N .

1) Both  |qj|/(|aj–1| + |bj| + |cj+1|) → 0  and  |r j|/(|aj–1| + |bj| + |cj+1|) → 0  
 roughly like  (hj–1 + hj)·max{hj–1, hj} → 0 .

2) aj–1/cj+1 = (pj–1/2/hj–1)/(pj+1/2/hj)  is near  1  for every  j  except  j = 0  and  j = N .

Sins lurk in the words  “roughly like”  and  “near”.  First,  N → ∞  when  max{hj–1, hj} → 0 ,  
changing the meanings of the indices  j .  Second,  gaps  hj  get shrunk in order to enhance the 
accuracy with which  uj  approximates  U(xj) ;  but when shrinkage occurs adaptively some gaps 
shrink while others don’t.  Usually adjacent gaps differ by relatively little,  as do adjacent values  
pj±1/2  of the smooth function  P ;  but occasional exceptions may violate property  2).  None of 
these possibilities affect the trick.

§5.  How Roundoff Corrupts the Discretization:  It contributes uncertainty to almost every step 
of the solution process.  Let  ε  denote the roundoff threshold for rational floating-point arithmetic 

operations.  When every operation rounds to the  24  sig. bits of  float ,  ε = 1/224
 ;  …  to  53  sig. 

bit  double ,  ε = 1/253
 .  Then rounded values computed from expressions like  “ v·w ”,  “  v/w ”,  

“  v+w ”  and  “ v–w ”  lie in the respective ranges   (v·w)·(1±ε) ,   (v/w)·(1±ε) ,   (v+w)/(1±ε)  and  
(v–w)/(1±ε) .  The smaller is  ε ,  the higher is the arithmetic’s precision,  and then the smaller is 
the perturbation by roundoff of a finally computed result and thus the higher is its accuracy.

The discretization’s first rounding errors corrupt at least the diagonal of  TT + Diag(q) ,  and then 
more of them turn its factorization into  E·B = TT + Diag(q) ± ε·(|E|·|B| + |TT| + Diag(|q|))  roughly;  
the uncertainty here is dominated by the contributions from  ±ε·(|E|·|B| + |TT|) ,  the more so as the 
gaps  hj  shrink.  If they shrink too far they can become so small that this uncertainty becomes 
comparable with or bigger than the separation between  TT + Diag(q)  and its nearest singular  (i.e. 
non-invertible)  matrix,  thus rendering the solution process unpredictable.  Though this extremity 
is rarely approached in practice it will be illustrated by the example in  §10.  Additional rounding 
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errors incurred during the forward and backward substitutions that solve  E·B·u = r   for  u  will be 
ignored since they merely augment somewhat the uncertainties taken into account already.  The 
bottom line:  The first  u  computed satisfies  (TT + Diag(q) ± ε·(|E|·|B| + |TT| + Diag(|q|)))·u = r  ,  
not  (TT + Diag(q))·u = r   as desired.  We can ignore the difference if  TT + Diag(q)  is far enough 
from singular and if  ε  is small enough,  as is usually the case when the data’s and arithmetic’s 
precision extravagantly exceeds the accuracy desired in  u .  I wish this were always the case.  Life 
is so much simpler when roundoff can be ignored.

If roundoff’s effect upon the first  u  computed cannot be ignored its accuracy must be improved 
by iterative refinement:  Compute residual  s := r  – (TT + Diag(q))·u  and then solve  E·B·∆u = s  
for the correction that updates  u  to  u+∆u .  Other reasons for iterative refinement have been 
listed above.  Other iterative methods solve for  u  without ever computing factors  E  and  B .

Every iterative method computes successive residuals  s := r  – (TT + Diag(q))·u  for updated values 
of  u  whose ultimate accuracy turns out to be limited mainly by how accurately  s  is computed.  
Its accuracy will be appraised next:

To match the magnitudes of the elements  r j  and  Diag(qj)  in the equation  TT·u + Diag(q)·u = r   

that has to be solved for  u ,  the  jth  element   (TT·u)j :=  aj–1·uj–1 – bj·uj + cj+1·uj+1   has to suffer 
massive subtractive cancellation,  the more so as gaps  hj–1  and  hj  shrink to help approximate  
U(xj)  better by  uj .  Normally,  when all the gaps are small,  the computed value of this   (TT·u)j   
must cancel down to something small,  roughly of the order of 
      (hj–1 + hj)·max{hj–1, hj}·( |aj–1·uj–1| + |bj·uj| + |cj+1·uj+1| ) = (hj–1 + hj)·max{hj–1, hj}·(|TT|·|u|)j 
wherein the last two pairs of absolute value bars  |…|  are to be applied elementwise to  TT  and  u .

Coincidentally,  when  (TT·u)j  is computed by evaluating  “ aj–1·uj–1 – bj·uj + cj+1·uj+1 ”  literally,  
roundoff contributes uncertainty of the order of  ±ε·(|TT|·|u|)j  to  (TT·u)j .  This term dominates the 
computed residual’s uncertainty due to roundoff:  s – r  + (TT + Diag(q))·u = ±ε·(|TT| + Diag(|q|))·|u|  
roughly within a factor of  2  or  3  regardless of whether  (TT + Diag(q))·u  is computed after  
TT + Diag(q)  is,  or computed separately as  TT·u + Diag(q)·u .  Even if the computed residual 
vanishes the current estimate  u  must satisfy   (TT + Diag(q))·u = r  ± ε·(|TT| + Diag(|q|))·|u| ,   an 
equation perturbed by uncertainty dominated by the term  ±ε·|TT|·|u| .  This is almost as bad as the 
uncertainty  ±ε·(|E|·|B| + |TT| + Diag(|q|)))·u  that afflicted  Gaussian  elimination and triangular 
factorization unless an unfortunate choice of pivots bloated the triangular factors  E  and  B .  This 
dominant term  |TT|·|u|  is bigger than all the other terms  r,  Diag(|q|)·|u|  and even  |TT·u|  by factors 
like  1/( (hj–1 + hj)·max{hj–1, hj} )  that increase when gaps get shrunk to reduce the difference 
between  u  and  U  due to discretization.  Then the equation  u  satisfies gets more perturbed.

The uncertainty in  u  due to roundoff is inconsequential when the precision of arithmetic and  all  
intermediate variables exceeds extravagantly the precision  (presumed the same)  of the data  TT,  q  
and  r   and the accuracy desired from  u .  A little more than twice as precise is usually extravagant 
enough.  This is so because the uncertainty due to roundoff usually grows by a factor roughly the 
reciprocal of the factor by which the discretization error shrinks when all gaps  hj  are shrunk,  and 
then the number of correct digits in the elements of  u  cannot much exceed half the digits carried 
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by the arithmetic.  There are exceptions;  cruder discretizations can lose a larger fraction of the 
digits carried;  defter will lose a smaller fraction.  Any such lost fraction of extravagantly too 
many digits will leave enough of them to produce adequately accurate results.

What is to be done when the available arithmetic’s precision at most barely exceeds the data’s 
precision and the desired accuracy?  Our next objective is to trick the arithmetic into losing not 
some fraction like half the digits carried but at most a few of them so as to compute  u  about as 
accurately as the given data determine it.  The trick is to compute residuals  s  well enough.

§6.  Accurate Residuals:  The trick is to compute residuals  s := r  – (TT + Diag(q))·u  obscured by 
small rounding errors of the order of  ε·(|TT·u| + Diag(|q|)·|u| + |r |)  instead of huge rounding errors 
of the order of  ε·(|TT|·|u| + Diag(|q|)·|u| + |r |) .  It’s about small  |TT·u|  versus huge  |TT|·|u| .

For definiteness let us assume all the given data,  namely  {xj}  and columns  q  and  r   and arrays  
{aj}  and  {cj}  of off-diagonal elements of  TT ,  and the columns  u  of a putative solution and its 
residual  s ,  to be stored in the computer’s memory as seven arrays of  4-byte-wide  float s.  If we 
use triangular factors to solve the equations for  u  and  ∆u  then we store also the two arrays of 
subdiagonal elements of  E  and diagonal elements of  B  as  float s  and write  float  ∆u  over  s .

The array  g := diag(TT + Diag(q))  can be treated in any of several ways:  One is to compute each 
element  gj := qj – aj–1 – cj+1  at the moment of need using array elements  aj–1  and  cj+1  that will 
be needed at the same moment.  Another way is to compute in advance and and store the array  g  
as an array of  8-byte double s.  Trickier ways to cope with  g  will be passed over for the sake of 
a simpler exposition.

In a benign computing environment,  as was provided by the original  Kernighan-Ritchie  C  and 
is now available from some implementations of  C99,  every arithmetic operation is rounded to at 
least  double   regardless of whether its operands are  float s  or  double s.  In this environment 
the  float   residual  s  can be computed amply accurately from any one of the three assignments

 “ sj := r j – aj–1·uj–1 – gj·uj – cj+1·uj+1 ”     or 
 “ sj := r j – aj–1·uj–1 – (qj – aj–1 – cj+1)·uj – cj+1·uj+1 ”     or 
 “ sj := r j – aj–1·(uj–1 – uj) – cj+1·(uj+1 – uj) – qj·uj ”  

each of whose right-hand side’s every arithmetic operation is rounded to  double   before being 
stored as a  float   in  sj .  Thus is adequate accuracy achieved with no extra effort nor thought.

In a  FORTRANnish  environment like  JAVA   or  ANSII C (1987),  the foregoing assignments must 
be encumbered by  casts  (conversions to  double )  to achieve amply adequate accuracy thus:

       “ sj := r j – aj–1·(double )uj–1 – gj·(double )uj – cj+1·(double )uj+1 ”      or 
       “ sj := r j – aj–1·(double )uj–1 – (((double )qj – aj–1) – aj)·uj – cj+1·(double )uj+1 ”     or 
      “ sj := r j – aj–1·((double )uj–1 – uj) – cj+1·((double )uj+1 – uj) – qj·(double )uj ” .  

(HONOR PARENTHESES!)  
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§7.  A Trickier Trick:   In a benighted environment where  double   is too slow or inconvenient,  or 
unavailable,  barely adequate accuracy may be achieved at the cost of two extra subtractions:

 “ sj := r j – aj–1·((uj+1 – uj) – (uj – uj–1)) – (cj+1 – aj–1)·(uj+1 – uj) – qj·uj ” .
Why does this tricky trick work when it works?

It doesn’t work unless  cj+1  and  aj–1  are close enough,  and this requires typically that the gaps  
hj  and  hj–1  be equal or almost equal according to property  2)  above.  In such cases we expect all 

but a few of the quotients  aj–1/cj+1  and  uj–1/uj  to stay close to  1 ,  and to come closer as all the 
gaps  hj  shrink.  Then each subtraction  cj+1 – aj–1,  uj+1 – uj,  and usually  (uj+1 – uj) – (uj – uj–1)  
incurs substantial cancellation  but no new rounding error.  For a more quantitative appraisal of 
the extra subtractions’ attenuation of roundoff see  Appendix 1  below.

If the grid’s gaps  hj  vary more than minimally,  a different and far trickier trick will be needed to 
compute the residual  s  accurately enough.  This trickier trick requires that all gaps  hj  be powers 

of  1/2  to ensure that multiplications and divisions by gaps incur no new rounding errors.  This 
requirement is less onerous than first appears:  It requires first that the independent variable  x  be 
scaled  (multiplied or divided)  to turn the domain of  U(x)  into an interval whose width  xN – x0  

is an integer multiple of a power of  1/2 .  Secondly,  after the initial distribution of grid points 
ensures that every gap  hj := xj+1 – xj  is a power of  1/2 ,  subsequent grid refinements will plant 
new mesh-points only halfway between adjacent previously planted mesh-points.

Now we shall appraise roundoff’s intrusion into the discretization of  (P·U')'   in  §4,  namely
  2·( pj+1/2·(uj+1 – uj)/hj – pj–1/2·(uj – uj–1)/hj–1 )/(hj + hj–1) ≈ (P·U')'  .

To simplify its appraisal we suppose that  P(x),  U(x)  and their first two derivatives’ magnitudes 
are all of order  1 ,  huge compared with the roundoff threshold  ε  and the gaps  hj  all of order  h ,  

say.  Then  (uj+1 – uj)/hj  is of order  1  because it approximates  U'(xj)  roughly;  the quotient 

introduces no  new  roundoff.  The multiplication in  pj+1/2·(uj+1 – uj)/hj  suffers a new rounding 
error of order  ε ,  as does the other multiplication,  so the foregoing discretization of  (P·U')'   
differs from it by the formula’s discretization error,  at most  O(h) ,  plus a contribution of order  
ε/h  from roundoff.

Reducing the last contribution from order  ε/h  to order  ε  is the trickier trick’s goal.  It changes 
the discretization’s formula to an algebraically equivalent but more complicated new formula
      2·( pj+1/2·( (uj+1 – uj)/hj – (uj – uj–1)/hj–1 ) + ( pj+1/2 – pj–1/2 )·(uj – uj–1)/hj–1 )/(hj + hj–1) 
that costs two extra subtractions neither of which introduces a new rounding error.  The first extra 
subtraction  (uj+1 – uj)/hj – (uj – uj–1)/hj–1  ≈  U'(xj + hj/2) – U'(xj – hj–1/2) ≈ U" (xj)·(hj + hj–1)/2  
very roughly,  so it is of order  h  and the subsequent multiplication suffers a rounding error of 
order  h·ε .  Similarly the second extra subtraction   pj+1/2 – pj–1/2 ≈ P'(xj)·(hj + hj–1)/2   and its 
subsequent multiplication inject another rounding error of order  ε·h .  The subsequent addition 
and then division by  (hj + hj–1)/2  make the new formula’s total contribution from roundoff of 
order  ε ,  not  ε/h .
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Thus are computed residuals  s := r  – (TT + Diag(q))·u  contaminated by tiny practically irreducible 
rounding errors of the order of  ε·(|TT·u| + Diag(|q|)·|u| + |r |) ≈ O(ε)  instead of huge rounding 

errors of the order of  ε·(|TT|·|u| + Diag(|q|)·|u| + |r |) ≈ O(ε/h2)  as all gaps shrink towards zero.  
This attenuation of roundoff’s contamination of the residuals  s  is rewarded by a consequent 
attenuation of roundoff’s contamination of the computed solution  u  of the discretized problem.

Similar tricks enhance the accuracy of  u  when divided-difference formulas of higher order in the 
gaps  h…  are used to approximate the differential equation;  see  Appendix 2  below.  Similar 
tricks enhance the accuracy of computed solutions of elliptic partial differential equations like    
div(p•grad u) + q·u = r .  Similar tricks are applicable to some  Finite-Element  discretizations.

Tricky tricks admit innumerable opportunistic variations.  We will not attempt to patent them all.  
More important is the realization that they would be rendered unnecessary by a simple expedient:

Routinely  (by default)  perform  all  arithmetic and carry  all  intermediate variables 
extravagantly more precisely than the data and the accuracy desired in computed results.

§8.  Example:  The singular differential equation   (x·u'  )'  + 4x·(1–x2)·u = 0   has regular solutions 
all with  u'(0) = 0  and so  u(–x) ≡ u(x) .  We wish to compute the regular solution satisfying the 

boundary conditions  u(±1) = 1  as if we did not know that   u(x) = exp(1–x2) .  The numerical 
estimation of  u(x)  is complicated by the differential equation’s singular solutions

       v(x) := C·exp(–x2)·∫ exp(2x2)·dx/x  =  C·exp(–x2)·( ln(|x|) – ∫|x|
1 (exp(2ξ2) – 1)·dξ/ξ ) .

Their constants  C  can be different for  x > 0  than for  x < 0 .  All have a logarithmic pole at  
x = 0 .  The pole can amplify tiny perturbations of the differential equation into a narrow spike at  
x = 0 .  Worse,  this singular solution  v  satisfies  v(–x) ≡ v(x)  and  v(±1) = 0  and the differential 
equation except at  x = 0 ,  so a discretized analog of this  v(x)  can contaminate the numerical 
approximation of the regular solution  u(x)  unless filtered out.

Filtering won’t affect the trick.  Then why choose to illustrate it applied to a singular differential 
equation instead of something simpler?  Because of spikes.  They are often misdiagnosed,  blamed 
upon the differential equation’s singularity instead of roundoff,  or  vice-versa.  Spikes of both 
kinds will afflict this example,  and our analysis will distinguish them and then eliminate them. 

Choose a large integer  N >> 2  and set  xj := j/N – 1  for  j := 0, 1, 2, …, 2N–1, 2N .  Now every  

hj := 1/N ,   qj := 4xj·(1–xj)·(1+xj) = 4j·(N–j)·(j – 2N)/N3 = –q2N–j  and   pj+1/2 := (j+1/2)/N – 1 .  
The numerical estimates  uj  of  u(xj)  satisfy discretized equations   aj–1·uj–1 + gj·uj  + cj+1·uj+1 = 0  

in which   cj := aj–1 := N2·pj–1/2 = –N·(N–j + 1/2) = –a2N–j  and  gj := qj – aj–1 – cj+1 = –g2N–j .  

The discretization error is    aj–1·u(xj–1) + gj·u(xj) + cj+1·u(xj+1) ≈ (2u'" (xj) + xj·u"" (xj))/(12N2) .   
We seek solutions  uj  of these discretized equations satisfying boundary conditions  u0 = u2N = 1 .

A first attempt constructs a symmetric tridiagonal matrix  TT + Diag(q)  with  [g1, g2, …, g2N–1]  on 
its main diagonal and  [c2, c3, …, c2N–1] = [a1, a2, …, a2N–2]  on its first superdiagonal and first 
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subdiagonal.  Every element of column  r   is zero except for its first element  r1 := –a0·u0 = –a0  
and its last  r2N–1 = –c2N·u2N = –a2N–1 = a0  that convey the boundary conditions  u(±1) := 1 .

Elements  [u1; u2; …; u2N–1]  of column  u  should be computed by solving  (TT + Diag(q))·u = r  .  
The first attempt factorizes  TT + Diag(q) = E·B  wherein  B  is bidiagonal with  [ß1, ß2, …, ß2N–1]  
on its diagonal and  [a1, a2, …, a2N–2]  on its first superdiagonal,  and  E  is bidiagonal with  1  
everywhere on its diagonal and  [e1, e2, …, e2N–2]  on its first subdiagonal.  A recurrence produces  

ej–1 := aj–1/ßj–1  and   ßj := gj – aj–1·ej–1  for  j = 2, 3, …, 2N–1  in turn starting with  ß1 := g1 .  
This amounts to  Gaussian  elimination without pivotal exchanges.  Its simplicity of programming 
could be offset by the appearance of a tiny  ßj–1  followed by a huge  ßj  that greatly amplifies 
roundoff.  Numerical degradation like that has yet to occur during the foregoing computation.  
However the last  ß2N–1 = 0  except for roundoff because  TT + Diag(q)  is singular  (not invertible),  
which complicates the first attempt to compute  u .

To see why  TT + Diag(q)  is singular let  Ξ = ΞT  be the matrix obtained from the  2N–1 -by- 2N–1  identity by 
reversing the order of its rows  (or columns)  and observe that  Ξ·(TT + Diag(q))·Ξ = –(TT + Diag(q)) ,  whereupon  

det(Ξ)2·det(TT + Diag(q)) = (–1)2N–1·det(TT + Diag(q)) = 0 .  Then  det(B) = det(E)·det(B) = det(TT + Diag(q)) = 0  too,  
which explains why  ß2N–1 = 0 .  Despite that  TT + Diag(q)  is singular,  the equation  (TT + Diag(q))·u = r   turns out to 
be consistent.  All its solutions are symmetric,  u = Ξ·u ,  though all of them but one are contaminated by some scalar 
multiples of a singular solution  v = Ξ·v ≠ o  of  (TT + Diag(q))·v = o  with a sharp spike in the middle of it.

Any first attempt to solve  (TT + Diag(q))·u = r   naively gets  u  contaminated by the addition of 
some arbitrary or infinite multiple of the spiked singular solution  v  of  (TT + Diag(q))·v = o ≠ v .  
If that multiple is small enough,  the spike is narrow enough to go unnoticed until too late.  How 
can the smooth regular solution  u(x)  be separated numerically from spiked singular solutions  
v(x)  that satisfy the same boundary conditions and even the symmetry condition  v(–x) ≡ v(x) ?

There is one way:  A regular solution’s  u'(0) = 0  differs from a singular solution’s  v'(0) = ±∞  
utterly,  whence  l’Hôpital’s Rule  implies  u'(x)/x → u" (0)  as  x → 0 ;  and then substitution into 
the differential equation implies  u" (0) = –2u(0) .  This  internal boundary condition  upon  u(x)  
further distinguishes it from all singular solutions.  Discretized,  this internal boundary condition 

turns into  N2·(uN+1 – 2uN + uN–1) = –2uN  which,  if not satisfied by a computed solution  û  of  
(TT + Diag(q))·û = r  ,  can be imposed upon a revised solution  u := û – λ·v  by choosing  λ  aptly 
after computing a singular solution  v ≠ o  of  (TT + Diag(q))·v = o .  Our first program does this.

1st Program’s Details:  The computed solution of  B·û = E–1·r   is  û ;  its last component is set to  û2N–1 := 1 + 2/N  

to filter out most of the singular solution  v .  This is the solution of  B·v = o ;  its last component  v2N–1 := 1/(2N–1)   
is set to keep the spike  vN  roughly between  1  and  4 .  Then  λ  comes close to  –2/N  when computed to make  
u := û – λ·v  satisfy the discretized internal boundary condition.  Apparently  u  loses little to cancellation in the last 

subtraction.  Then the gradient  u'(xj)  is approximated within  O(1/N2)  by  u‡
j := (uj+1 – uj–1)·N/2  except at the 

boundarys where  u'(–1) ≈ u‡
0 := (4u1 – 3u0 – u2)·N/2 .  The errors  maxj |uj – u(xj)|  in  u  and  maxj |u

‡
j – u'(xj)|  in  

u‡  would roughly approximate  2.4/N2  and  3.7/N2  respectively for large  N  if they were due to discretization alone,  
but something else happens when roundoff contaminates the whole process.
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Computed Graphs of  u ≈ u(x),   u‡ ≈ u'(x)   and  v ≈ v(x)   carrying  24  sig. bits

Results from the First Program carrying  24 sig. bits  ( ε ≈ 6/108 )

  N = #gaps,   err(u) := maxj |uj – u(xj)| ,    err(u‡) := maxj |u
‡
j – u'(xj)| .

The foregoing program loses accuracy to roundoff about as badly as the preceding analysis had 

predicted,  almost as badly as if the roundoff threshold  ε  had been magnified to  ε·N2
 .  The error 

in  u  due to discretization alone,  roughly  2.4/N2 ,  decreases as  N  increases but the total error in  

N err(u) err(u)·N2 err(u‡) err(u‡)·N2

 16 0.009324 2.39 0.01529 3.9

 24 0.004144 2.39 0.00666 3.8

 32 0.002326 2.38 0.00366 3.7

 48 0.001040 2.40 0.00162 3.7

 64 0.000568 2.33 0.00089 3.6

 96 0.000398 3.67 0.00461 42.5

 128 0.000128 2.10 0.00230 37.6

 192 0.000527 19.43 0.01331 490.8

 256 0.000093 6.11 0.03575 2343.0

 384 0.000453 66.87 0.03584 5284.1

 512 0.000472 123.72 0.36157 94784.0

 768 0.002734 1612.64 0.69930 412461.0
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u  never gets much below about  √ε ,  and making  N  too big actually worsens the total error by 
amplifying roundoff.  Usually.  Roundoff contributes raggedly  (not randomly)  to the total error.

The gradient’s estimate  u‡  is damaged worst by the destruction of the symmetry  u(–x) ≡ u(x)  by 
roundoff,  which tends to pile up towards the end at  u2N–1 ,  generating a huge spike in the error  

u‡
2N – u'(1)  overwhelmingly bigger than every other error  u‡

j – u'(xj)  for  0 ≤ j < 2N .

Error in the First Program’s  u ≈ u(x)  carrying  24 sig. bits,   N = 512

Error in the First Program’s  u‡ ≈ u'(x)  carrying  24 sig. bits,   N = 512

This spike at  x = 1  is  not  caused by the differential equation’s singularity at  x = 0 .   Instead the 
spike is caused by the hypersensitivity to roundoff of our first program’s numerical method,  as is 
confirmed when the same program is rerun carrying everywhere  53  sig. bits instead of  24.
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By far  the simplest remedy for the program’s loss of about half the sig. digits carried is to declare 
all variables to be  8-byte  double s  and round all arithmetic to  double ’s  53  sig. bits or more.  

Then the error in  u  can be reduced below  10–9  and the error in  u‡  below  10–6  if  N  exceeds 

roughly  215
 .  Increasing  N  too far beyond this loses to roundoff at least about half the  53 sig. 

bits carried by  double ’s  arithmetic.

To achieve accuracy more nearly commensurate with the precision of all variables and arithmetic,  
the program must incorporate iterative refinement using residuals computed accurately enough.  
“Accurately enough”  requires the trick.  To expose its benefits fairly,  the program must first be 

simplified by the use of symmetry to eradicate singular solutions  v  and the spike in  u‡’s  error.

§9.  The 2nd Program:  After the symmetry condition  uN+j = uN–j  is applied,  the internal 

boundary condition derived above becomes   N2·uN–1 – (N2
 – 1)·uN = 0 .  That symmetry halves 

the work needed to compute the desired solution  u(x) ≡ u(–x) ;  it need be computed only for  
–1 < x ≤ 0 ,  whence  uj ≈ u(xj)  need be computed only for  1 ≤ j ≤ N .

How do we know that  every  regular solution  u  possesses the symmetry  u(–x) ≡ u(x) ?  There are two ways to prove 

it:  One way computes the power series expansion of  u(x) = ∑n ≥ 0 µn·x
n/n!  starting with an arbitrary  µ0 = u(0) ≠ 0 

though  µ1 = u'(0) = 0 ;  the other coefficients  µn  are obtained by recurrence after the series is substituted into the 
differential equation.  Doing so establishes that every  µ2n+1 = 0 ,  whence follows  u(–x) ≡ u(x) .  A less laborious but 

more devious proof starts from the observation that,  if  u(x)  is a regular solution of  (x·u')'  + 4x·(1–x2)·u = 0  then so 
are  u(–x)  and  w(x) := u(x) – u(–x) ≡ –w(–x) ;  moreover  w(0) = w'(0) = 0 .  Suppose,  for the sake of an argument 
by contradiction,  that  w(x) ≠ 0  somewhere.  Where might  w'(x)  vanish in the open interval  0 < x < 1 ?  If nowhere 

then set  ζ := 1 ;  otherwise let  x = ζ  be the least zero of  w'(x)  in that interval.  Then  w(x) = ∫0x w'(ξ)dξ  would have 
the same sign,  say positive,  as  w'(x)  has for  0 < x < ζ ≤ 1 .  And then we would find that 

 0 < ∫0ζ 4x·(1–x2)·w(x)dx = –∫0ζ (x·w'(x))'dx = –ζ·w'(ζ) ≤ 0 .  This is impossible.
Consequently  w(x) = 0  at least for  0 ≤ x ≤ 1 ;  beyond  x = 1  the differential equation is regular and determines its 
solution  w(x) = 0  uniquely for all  x ≥ 0  from  w(1) = w'(1) = 0 .  Therefore regular solutions  u  are symmetrical;  
u(x) ≡ u(–x)  is determined uniquely by  u'(0) = 0  at its internal boundary and by  u(±1) = 1  at an external boundary.

This uniqueness has important numerical consequences.  It implies that the system of linear equations,  obtained by 
adjoining the internal boundary condition’s discretization to the differential equation’s,  defines its solution uniquely;  
so its new matrix  TT + Diag(q)  must be invertible and far enough from singular that the consequences of roundoff will 
become negligible if it is kept small enough.

Here is the scheme simplified by symmetry:  Choose a big integer  N > 2  and set  xj := j/N – 1  for  

j := 0, 1, 2, …, N–1, N .  Again every  hj := 1/N ,   qj := 4xj·(1–xj)·(1+xj) = 4j·(N–j)·(j – 2N)/N3  

and   pj+1/2 := (j+1/2)/N – 1 .  The numerical estimates  uj  of  u(xj)  satisfy discretized equations   

aj–1·uj–1 + gj·uj + cj+1·uj+1 = 0  in which  cj := aj–1 := N2·pj–1/2 = –N·(N–j + 1/2)  again but now 
for  1 ≤ j ≤ N ,  and  gj := qj – aj–1 – cj+1  again but now for  1 ≤ j ≤ N–1 .  The discretized internal 

boundary condition  N2·uN–1 = (N2
 – 1)·uN  is effected by setting  gN := N/2 – 1/(2N)  and then 

discarding  cN+1·uN+1 .  The external boundary condition is  u0 := 1 .
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Our second attempt to compute the elements  [u1; u2; …; uN]  of column  u  constructs a new 
symmetric tridiagonal matrix  TT + Diag(q)  with  [g1, g2, …, gN–1, gN]  on its main diagonal and  
[c2, c3, …, cN] = [a1, a2, …, aN–1]  on its first superdiagonal and first subdiagonal.  Every element 
of column  r   is zero except for its first element  r1 := –a0·u0 = –a0  that conveys the boundary 
condition  u(±1) := 1 .

To solve  (TT + Diag(q))·u = r   we first factorize  TT + Diag(q) = E·B  wherein  B  is bidiagonal with  
[ß1, ß2, …, ßN]  on its diagonal and  [a1, a2, …, aN–1]  on its first superdiagonal,  and  E  is 

bidiagonal with  1  everywhere on its diagonal and  [e1, e2, …, eN–1]  with  ej := aj/ßj  on its first 
subdiagonal.  The numbers  ßj  are computed from a recurrence   ßj := gj – aj–1·ej–1  for  j = 2, 3, 
…, N  in turn starting with  ß1 := g1 .  This amounts to the same  Gaussian  elimination without 
pivotal exchanges as before;  however,  since the new  TT + Diag(q)  turns out to be positive definite 
there is no risk now that some tiny pivot  ßj–1  will be followed by an enormous  ßj .

Forward substitution computes  w := E–1·r  :   w1 := r1  and  wj := –ej–1·wj–1 .  Subsequent back-

substitution computes  u := B–1·w :   uN := wN/ßN  and  uj := (wj – aj·uj+1)/ßj .  Finally,  gradient  

u'(x)  is approximated by  u‡  as before.  

Results from the Second Program carrying  24 sig. bits  ( ε ≈ 6/108 )

  N = #gaps,  err(u) := maxj |uj – u(xj)| ,    err(u‡) := maxj |u
‡
j – u'(xj)| .

Different rounding errors cause this second program’s computed  u  to differ insignificantly from 

the first’s;  again, discretization contributes error about  2.4/N2 ,  and roundoff is still amplified by 

a factor of the order of  N2 ,  so errors in  u  never get much below  √ε .  Less roundoff occurs 
when  N  is a power of  2  because then divisions by  N  are exact.  The second program computes 

the approximate gradient  u‡  so much more accurately than the first did as to be adequate …
“… to give artistic versimilitude to an otherwise bald and unconvincing narrative”

from  The Mikado  by  W.S. Gilbert and A.S. Sullivan

N err(u) err(u)·N2 err(u‡) err(u‡)·N2

 16 0.009324 2.39 0.01530 3.9

 24 0.004146 2.39 0.00662 3.8

 32 0.002326 2.38 0.00365 3.7

 48 0.001028 2.37 0.00158 3.6

 64 0.000663 2.73 0.00099 4.0

 96 0.000118 1.09 0.00022 2.0

 128 0.000073 1.19 0.00027 4.5

 192 0.000531 19.56 0.00102 37.7

 256 0.000095 6.24 0.00037 24.4

 384 0.000394 58.09 0.00107 157.3

 512 0.000338 88.59 0.00202 528.3

 768 0.006888 4062.71 0.01578 9310.2
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in a computerized game.  For reliable scientific and engineering computation the uncertainty in  

u‡ ,  at least roughly  3.7/N2 + 2N3/1011
 ,  seems excessive.  (The  uncertainty  is not the  error  

but instead our least estimate of how big the error isn’t;  uncertainty is an error-bound.)

Like the first program,  this second program loses at least about half the sig. bits carried by the 
arithmetic.  A fourth program below will attenuate roundoff’s amplification by appending suitably 
programmed iterative refinement to this second program.

§10.  Iterative Refinement:  Each iteration will replace the currently computed  u  by  u + ∆u  
wherein  ∆u  is the computed  (and therefore approximate)  solution of  E·B·∆u = s  in which the 
residual  s  approximates  r  – (TT + Diag(q))·u  to reveal the extent to which  u  dissatisfies the 
equation we wish to solve.  The third program assigns  “ s := r  – (TT + Diag(q))·u ”  computed just 
as it is written here in arithmetic rounded to the same precision as was used to compute  E  and  B .

But this program’s iterative refinement never improves accuracies much and often worsens them 
when the second program’s accuracies most need improvement.  Such disappointing performance 
cannot come as a surprise when we recall that roundoff contaminates both the residual computed 
from the expression  “ r  – (TT + Diag(q))·u ”  and the triangular factorization  TT + Diag(q) = E·B  
about equally badly.  Iterative refinement cannot be expected to improve the accuracy of  u  unless 
the residual  s  is computed more accurately than the factorization.

The fourth program differs from the third only by computing the residual  s  more accurately and,  

in benign computing environments,  effortlessly.  We assume all arrays  u,  u‡,  q,  r,  {aj},  {ß j}  
and  {ej}  to be stored as arrays of  4-byte float s.  The elements  gj := qj – aj–1 – aj  are assumed 
to be computed at the moments of need or else stored as an array of  8-byte double s;  trickier 
ways to cope with  {gj}  will be passed over for the sake of a simpler exposition.

In a benign computing environment,  as was provided by the original  Kernighan-Ritchie  C  and 
is now available fom some implementations of  C99,  the  float   residual  s  can be computed 
amply accurately from any one of the three assignments

 “ sj := r j – aj–1·uj–1 – gj·uj – aj·uj+1 ”  or 
 “ sj := r j – aj–1·uj–1 – (qj – aj–1 – aj)·uj – aj·uj+1 ”  or 
 “ sj := r j – aj–1·(uj–1 – uj) – aj·(uj+1 – uj) – qj·uj ”  

each of whose right-hand side’s every arithmetic operation is rounded to  double   before being 
stored as a  float   in  sj .  Adequate accuracy is achieved thus with no extra effort nor thought.

In a  FORTRANnish  environment like  JAVA   or  ANSII C (1987),  the foregoing assignments must 
be encumbered by  casts  (conversions to  double )  to achieve amply adequate accuracy thus:

 “ sj := r j – aj–1·(double )uj–1 – gj·uj – aj·(double )uj+1 ”  or 
 “ sj := r j – aj–1·(double )uj–1 – (((double )qj – aj–1) – aj)·uj – aj·(double )uj+1 ”  or 
 “ sj := r j – aj–1·((double )uj–1 – uj) – aj·((double )uj+1 – uj) – qj·(double )uj ” .  

In a benighted environment where  double   is unavailable or too inconvenient or too slow,  barely 
adequate accuracy can be achieved at the cost of two extra subtractions via a tricky expedient:
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 “ sj := r j – aj–1·((uj–1 – uj) – (uj+1 – uj)) – (aj – aj–1)·(uj+1 – uj) – qj·uj ” .  
  HONOR PARENTHESES ! 
This formula for residuals produced the results tabulated below,  all computed using only  float   
variables and precision throughout the fourth program.  This formula should work in  MATLAB  7.  
This formula is not preferable to the formulas above for benign or  FORTRANnish  environments,  
using  double   arithmetic upon  float   variables;  those formulas produce slightly better results  
(not tabulated below)  with no need for the analysis in  §7  nor  Appendix 1.

Results from the Fourth Program carrying  24 sig. bits  ( ε ≈ 6/108 )

  N = #gaps,  M = #refinements,   err(u) := maxj |uj – u(xj)| ,    err(u‡) := maxj |u
‡
j – u'(xj)| .

N M err(u) err(u)·N2 err(u‡) err(u‡)·N2 M N 

 16 0 & 1 0.00932 2.39 0.0153  3.9 0 & 1  16
 24 0 & 1 0.00414 2.39 0.0066 3.8 0 & 1  24
 32 0 & 1 0.002326 2.38 0.00365 3.7 0 & 1  32
 48 0 0.001028 2.37 0.00158 3.6 0

481 & 2 0.0010349 2.38 0.001612 3.71 1 & 2

 64 0 0.000663 2.73 0.00099 4.0 0
641 & 2 0.0005821 2.38 0.000904 3.70 1 & 2

 96 0 0.000118 1.09 0.00022 2.0 0
961 & 2 0.0002586 2.38 0.000393 3.62 1 & 2

 128 0 0.000073 1.19 0.00027 4.5 0
1281 & 2 0.0001456 2.39 0.000206 3.38 1 & 2

 192 0 0.000531 19.56 0.00102 37.7 0
1921 & 2 0.0000646 2.38 0.000107 3.94 1 & 2

 256 0 0.000095 6.24 0.00037 24.4 0
2561 & 2 0.0000364 2.39 0.000061 4.00 1 & 2

 384 0 0.000394 58.09 0.00107 157.3 0

384
1 0.0000162 2.39 0.000049 7.27 1

2 & 3 0.0000162 2.39 0.000053 7.81 2 & 3

 512 0 0.000338 88.59 0.00202 528.3 0

512
1 0.0000091 2.38 0.000061 16.11 1

2 & 3 0.0000092 2.41 0.000065 16.92 2 & 3

 768 0 0.006888 4062.71 0.01578 9310.2 0

768
1 0.0000156 9.20 0.000089 52.50 1

2 & 3 0.0000041 2.41 0.000088 51.75 2 & 3

1024 0 0.0037995 3984.06 0.012934 13561.9 0

1024
1 0.0000062 6.45 0.000119 124.27 1

2 & 3 0.0000024 2.49 0.000114 119.36 2 & 3

1536 0 0.0091051 21481.52 0.021961 531.6 0

1536
1 0.0000313 73.85 0.000225 531.61 1

2 & 3 0.0000012 2.90 0.000174 411.38 2 & 3

2048 0 0.0381667 160082.62 0.076282 319949.1 0

2048

1 0.0004934 2069.63 0.001069 4483.10 1
2 0.0000057 23.79 0.000240 1006.40 2
3 0.0000006 2.56 0.000243 1019.33 3

4 & 5 0.0000007 2.86 0.000236 988.87 3 & 4
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The dwindling accuracy of the estimated gradient  u‡  as  N  increases beyond about  500  evinces 
a  Law of Diminishing Returns  enforced by roundoff.  How?  The graphs below explain it all:

Error in the Fourth Program’s  u ≈ u(x)  computed carrying  24 sig. bits,   N = 1024,  M = 3

Error in the Fourth Program’s  u‡ ≈ u'(x)  computed carrying  24 sig. bits,   N = 1024,  M = 3
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The dwindling accuracy of the estimated gradient  u‡  as  N  increases beyond about  500  comes 
mostly from the act of rounding arrays  {xj},  {a j}  and  q  and computed solution  u  to  float ’s  
24  sig. bits.  Roundoff adds raggedness to an otherwise smooth graph of  u ’s  discretization error 

which grows to about  2.36/N2
 .  Much of  u ’s  raggedness comes from rounding  u  and doubles 

from about  ε  to  2ε = 2–23 ≈ 1.2/107   as  x  increases past  –0.553943  and  u(x)  increases past  

2 .  Then computing  u‡  from the divided differences of  u  amplifies its raggedness by a factor 
often almost as big as  N .  The graphs corroborate these estimates;  and the the tabulated results 

corroborate error-analyses that predict  u‡’s  loss of at least roughly a third of the arithmetic’s sig. 
digits if the gradient is computed from the divided-difference quotients used in our four programs.  

Two thirds of  float ’s  24  sig. bits is accuracy adequate for most engineering applications of  u‡,  
and this much accuracy is achieved by using the tricks presented in these notes.

The fourth program’s tabulated results reveal another way for an excessively big  N  to exacerbate 
the effect of roundoff:  It slows the convergence of iterative refinement.  This happens because the 

condition number  κ(TT + Diag(q)) := ||TT + Diag(q)||·||(TT + Diag(q))–1||  tcomes to roughly  4N2  for 
any plausible norm  ||…|| .  Iterative refinement converges quickly only if roundoff disturbs the 
triangular factorization of  TT + Diag(q)  by rather less than its distance from the nearest singular 
matrix,  and this happens only if   ε·κ(TT + Diag(q)) << 1 .  This implies that convergence is too 
likely to go slow unless  N << 1/√4ε = 2048 .   The bound is corroborated by the tabulated results,  
which exhibit accuracy adequate for most practical purposes achieved by one refinement at gap-
counts  N  roughly between  100  and  500 ,  and more refinements needed when  N ≥ 1536 .

There are better ways to solve the foregoing example’s boundary-value problem.  Shooting methods  that recast the 
boundary-value problem as a sequence of initial-value problems work well with this example,  if shooting starts at the 
differential equation’s singularity,  because the recast differential equation is stable;  u(x) = v(x)/v(1)  from  §3 .  But 
no such methods work upon the partial differential equations for which this note’s trick is intended.  Another method 
that works well upon the example is  Collocation of Splines;  this method is implemented as  bvp4c   in recent  
MATLAB   versions.  Analogous methods for partial differential equations are too complicated to get used much.

§11: Discretization of an Elliptic Boundary-Value Problem:  Given  Φ(x,y)  on the boundary  
∂Ω  of the unit square  [0, 0] ≤ [x, y] ≤ [1, 1] ,  we seek the solution  Φ(x,y)  inside  Ω  of

     Laplace’s Equation:  Div Grad Φ(x,y) = ∇ 2Φ(x,y) := ∂2Φ(x,y)/∂2x + ∂2Φ(x,y)/∂2y = 0 .

Numerical solutions  F(x,y)  will be compared with  Φ(x,y) := log((x+ )2 + y2)  whose boundary 

values on  ∂Ω  have been chosen for this example.  F  will approximate  Φ  inside  Ω  at the  

(N–1)2  intersections of a mesh that covers  Ω  by small squares each  θ := 1/N  on a side.  On this 

mesh the differential operator  ∇ 2  is approximated by a difference operator  ♠   defined thus:

 ♠Φ (x,y) := ( Φ(x–θ,y) + Φ(x,y–θ) –4·Φ(x,y) + Φ(x+θ,y) + Φ(x,y+θ) )/θ2  

    =  ∇ 2Φ(x,y) + O(θ2)  as  θ → 0 .
Discretization approximates  Φ  by the solution  F  of  ♠ F = 0  on the mesh inside  Ω .  This last 
equation turns into a system  A·ƒ = b  of linear equations in which column  ƒ  contains the values 
of  F  inside  Ω ,  and column  b  is determined by  4·(N–1)  values on  ∂Ω .  These columns and 

matrix  A  have huge dimension  (N–1)2  but  A  is sparse with bandwidth  2N–1 .

1
8
---
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  –4.16 < Φ(x, y) = log( (x+1/8)2 + y2 ) < 0.82  

   1.3 < || Grad Φ(x, y) || ≤ 16  

  The coordinates’ origin is behind and under this surface.

Grad Φ(x, y)  is the transpose of  Φ'(x, y) = 2·[x+ ,  y]/((x+ )2 + y2) ,  to be approximated by 

  Φ‡(x,y) := [Φ(x+θ,y) – Φ(x–θ,y),  Φ(x,y+θ) – Φ(x,y–θ)]/(2θ)  =  Φ'(x,y) + O(θ2) .
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Equation  “ A·ƒ = b ”  was solved by Successive Over-Relaxation  to get a first approximation  f  to 
the column  ƒ  of values of  F .  This iteration’s stopping criterion was chosen to avoid  dithering;  
see my web pages’  …/Math128/SlowIter.pdf  . Then one iterative refinement computed residual  
r  := A·f – b  and solved  “ A·∆f = r  ”  to approximate  ƒ  better,  presumably,  by  f – ∆f .

The foregoing process was performed thrice,  first using an ordinary matrix multiply to compute  
A·f  and  A·∆f ,  and second computing them with a trick that replaced the crude formula 

 ♠ F(x,y) := ( F(x–θ,y) + F(x,y–θ) –4·F(x,y) + F(x+θ,y) + F(x,y+θ) )/θ2 
by the algebraically equivalent but numerically more accurate  2nd-order ♠   formula

 ♠ F(x,y) := ( ((F(x+θ,y) – F(x,y)) – (F(x,y) – F(x–θ,y))) +
  + ((F(x,y+θ) – F(x,y)) – (F(x,y) – F(x,y–θ))) )/θ2 

to take advantage of exact subtractive cancellations.  These two computations were performed 
entirely in  4-byte float   arithmetic carrying  24 sig.bits.  The third computation of  F  was 
performed in  8-byte double   carrying  53 sig.bits  to nearly nullify roundoff.  Thus,  six sets of 
values  F  and their errors  E := maxx,y|F(x,y) – Φ(x,y)|  were generated to be compared:

 Etrue2 E  computed from the tricky formula for  ♠ F  carrying  53  sig.bits.
 Etrick2 E  computed from the tricky formula for  ♠ F  carrying  24  sig.bits.
 Ecrude2 E  computed from the crude formula for  ♠ F  carrying  24  sig.bits.

Each  E  was recorded both before and after iterative refinement.

Everything above was repeated for each of a sequence of diminishing mesh-gaps  θ = 1/N .  Since  

♠Φ  =  ∇ 2Φ + O(θ2)  we expected  E·N2  to approach a constant as  N → ∞  except for roundoff.

Tabulated below are computed results with  E  before iterative refinement shown above  E  after:

      Worse!  
The crude formula for  ♠   lost almost two  sig.dec.  more than the tricky formula,  which allowed  
iterative refinement to render the final error  E  almost as small as if  F  matched  Φ  to  23 sig.bits.  
The crude formula’s residual was not accurate enough to ensure that iterative refinement would 
always diminish the error  E .

N Etrue2 …·N2 Etrick2 …·N2 Ecrude2 …·N2

 128
 7.481e-5 1.226

2.030e-4 3.326 2.025e-4 3.318

7.472e-5 1.224 7.816e-5 1.281

 256
 1.872e-5 1.227

7.440e-5 4.876 7.766e-5 5.089

1.879e-5 1.231 5.081e-5 3.33

 512
 4.681e-6 1.227

1.878e-5 4.924 5.076e-5 13.31

4.787e-6 1.255 4.434e-5 11.62

1024
1.170e-6 1.227

4.912e-6 5.151 4.440e-5 46.56

1.285e-6 1.348 3.363e-5 35.27

2048
2.926e-7 1.227

1.488e-6 6.240 3.386e-5 142

4.085e-7 1.713 3.394e-5 142.4
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§12. Computing  Grad Φ :  When derivative  Φ'  ,  approximated by the

     Central Divided Difference   Φ‡(x,y) := [Φ(x+θ,y) – Φ(x–θ,y),  Φ(x,y+θ) – Φ(x,y–θ)]/(2θ) 

     =  Φ'(x,y) + O(θ2) ,

is further approximated by the computed  F‡(x, y) ,  sources of error accrue to include …

•    O(θ2)  inherited from  Φ‡
 ,   and 

•    error  F‡ – Φ‡  =  (F – Φ)‡   due to the differential equation’s discretization,   and  
•    at least  O(ε·F/θ)  due to roundoff’s contamination of  F .  

The relative magnitudes of these sources are not often knowable in advance.  For instance,  the 

second source  F‡ – Φ‡  is usually much smaller than  (F – Φ)/θ  because the discretization’s error  
F – Φ  is usually smoothly  Pillow-Shaped,  as was the error  (Computed u – u)  plotted on  p.18  
(after its raggedness due to roundoff is smoothed away).  The third source’s  rounding errors 
depend upon the numerical method in detail including any trick intended to attenuate them.

The first source’s  O(θ2)  turned out to be the preponderant contributor to our example’s error  

F‡ – Φ'   at gap sizes  θ  whose  F – Φ  was about as small as roundoff allowed after tricks.  This 
became evident when  F was is recomputed using a higher-order  (6th)  discretization that reduced  

F – Φ  from  O(θ2)  to  O(θ6)  for  θ  small enough though perhaps not so small as before.  The 
higher-order discretization replaced the discretized  Laplacian  ♠Φ (x,y)  everywhere above by … 

     ♣Φ(x,y) := (  Φ(x–θ,y+θ) + 4·Φ(x,y+θ) + Φ(x+θ,y+θ)  + 
 4·Φ(x–θ,y)  –  20·Φ(x,y)  +  4· Φ(x+θ,y) + 

  Φ(x–θ,y–θ) + 4·Φ(x,y–θ) + Φ(x+θ,y–θ)   )/(6·θ2) 

       =   ∇ 2Φ(x,y) + ∇ 4Φ(x,y)·θ2/12 +  ( ∇ 6Φ(x,y) + 2∂4∇ 2Φ(x,y)/∂x2∂y2 )·θ4/360  +  O(θ6) 
      =   O(θ6)   if   ∇ 2Φ = 0 .

The trick that attenuated most of the roundoff in  ♣F  computed it from … 

    ♣F(x,y) :=  ( 4·(θ2·♠ F(x,y)) + (((F(x–θ,y+θ) – F(x,y)) + (F(x+θ,y–θ) – F(x,y)))  + 

      ((F(x–θ,y–θ) – F(x,y)) + (F(x+θ,y+θ) – F(x,y)))) )/(6·θ2) .

As before,  six sets of values  F  and their errors  E := maxx,y|F(x,y) – Φ(x,y)|  were generated,  
but now from the equation  “ ♣F(x,y) := 0 ”,  to be compared:

 Etrue6 E  computed from the tricky formula for  ♣F  carrying  53  sig.bits.
 Etrick6 E  computed from the tricky formula for  ♣F  carrying  24  sig.bits.
 Ecrude6 E  computed from the crude formula for  ♣F  carrying  24  sig.bits.

Each  E  is tabulated below both before  (above)  and after iterative refinement (under).  Also 
tabulated is  Etrue2  to facilitate a comparison of accuracies from ideal  2nd-order ♠   and  6th-order 
♣   formulas unobscured by roundoff,  though it crept into  ♣   at the bottom of the table.

The crude  ♣   lost about one  sig.dec.  more than the tricky  ♣  ,  whose iterative refinement for  
N ≥ 64  produced  F  matching  Φ  to about  23 sig.bits.  The crude formula’s residual was not 
accurate enough to ensure that iterative refinement would always diminish the error  E .
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 Errors  E := maxx,y|F(x,y) – Φ(x,y)| 

An adequately accurate approximation to the gradient required gap-sizes  θ = 1/N  rather smaller 

than sufficed for adequate accuracy in  F .  The error  D := maxx,y||F‡(x,y) – Φ'(x,y)||  was found 
for both crude and tricky versions of both  ♠   and  ♣  ,  for arithmetics carrying both  24  and  53 
sig.bits,  and before and after iterative refinement though it made little difference.  The following 
versions of  D  are tabulated below:

 Dtrue6 D  computed from the tricky formula for  ♣F  carrying  53  sig.bits.
 Dtrick6 D  computed from the tricky formula for  ♣F  carrying  24  sig.bits.
 Dcrude6 D  computed from the crude formula for  ♣F  carrying  24  sig.bits.
 Dtrick2 D  computed from the tricky formula for  ♠ F  carrying  24  sig.bits.

 D := maxx,y||F‡(x,y) – Φ'(x,y)|| 

N Etrue6 …·N6 Etrick6 Ecrude6 Etrue2 

16
9.677e-5 1.6e3

9.681e-5 9.705e-5
4.387e-39.681e-5 9.658e-5

32
2.084e-6 2.2e3

2.039e-6 2.039e-6
1.179e-32.039e-6 2.039e-6

64
3.225e-8 2.2e3

6.928e-7 9.254e-6
2.979e-41.708e-7 1.635e-6

128
5.126e-10 2.3e3

1.859e-6 2.760e-6
7.481e-52.845e-7 2.290e-6

256 8.103e-12 2.3e3 5.362e-7 2.366e-6
1.872e-58.104e-12 2.3e3 2.283e-7 2.720e-6

512 1.121e-13 2.0e3 3.665e-7 2.685e-6
4.681e-61.266e-13 2.3e3 2.900e-7 8.151e-6

N Dtrue6 …·N2 Dtrick6 Dcrude6 Dtrick2 

16
0.3207 82.09

0.3207 0.3207 0.2948
0.3207 0.3207 0.2948

32
0.161 164.8

0.161 0.161 0.1537
0.161 0.161 0.1537

64
0.05773 236.5

0.05772 0.05767 0.05467
0.05773 0.05772 0.05458

128
0.01731 283.6

0.01732 0.0174 0.01593
0.01731 0.01732 0.0161

256
0.004745 311

0.004778 0.004847 0.004456
0.004727 0.004847 0.004415

512
0.001243 325.8

0.001297 0.001398 0.001328
0.001297 0.001398 0.001231

1024
0.000318 333.4

---- ---- 0.000526
---- ---- 0.0004997

2048
8.043e-5 337.4

---- ---- 0.0008799
---- ---- 0.0006271



File FloTrik                                                  Floating-Point Tricks …               version dated   September 10, 2013 6:21 pm

Prof. W. Kahan’s  notes for  Math. 128B                                                                                                Page  24/28

The tabulated magnitudes of the errors  F‡ – Φ'   reflect a contribution roughly  333·θ2  due mostly 

to either a mesh-gap  θ  too big,  or a  2nd-order  formula  F‡  too crude,  rather than  F – Φ  too 
inaccurate.  This could hardly have been known in advance.  4th-order formulas more refined than  

F‡  come from the calculus of divided differences as follows: 

Given a sufficiently differentiable  ƒ(x) ,  its derivative  ƒ'(x)  is approximated by 

 ƒ†(x,θ) := ( ƒ(x+θ) – ƒ(x) )/θ  =  ƒ'(x) + O(θ) ;

 ƒ‡(x,θ) := ( ƒ†(x+θ) + ƒ†(x–θ) )/2  =  ƒ'(x) + O(θ2) ;

 ( 4·ƒ‡(x,θ) – ƒ‡(x,2θ) )/3  =  ƒ'(x) + O(θ4) ;

 4·ƒ†(x,θ) – 6·ƒ†(x,2θ) + 4·ƒ†(x,3θ) – ƒ†(x,4θ)  =  ƒ'(x) + O(θ4) ;

 ƒ†(x,–θ)/4 + 3·ƒ†(x,θ)/2 – ƒ†(x,2θ) + ƒ†(x,3θ)/4  =  ƒ'(x) + O(θ4) .
The last three formulas would take better advantage of the accuracy of  F  computed from  ♣  ,  but 
at the cost of complication:  One formula works better than the others deep inside the square  Ω ,  
and the last two are needed near its boundary.  The complication does not alter our tricks.
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§13.  Conclusions:  These notes’ thesis,  supported by analysis and examples,  is that boundary-
value problems   div(p·grad u) + q·u = r   can be discretized by divided differences and solved 
faster and accurately enough for most practical purposes  (including gradients)  when all arrays 
are stored as  4-byte  float s  instead of  double s  8 bytes wide,  and all arithmetic is rounded to  
float s’  24 sig. bits,  as many current graphics processors do.  Residuals must be computed 
accurately enough via a trick effortless only if cancelling residuals are computed using arithmetic 
rounded to higher precision,  say the  53 sig. bits  of  double   precision,  which computers used to 
do automatically when programmed in  Kernighan-Ritchie  C  as it was before the mid-1980s.

The examples were chosen to illustrate three additional observations: 

•  Without tricks,  float s  are now too inaccurate for reliable scientific and engineering work.

•  Rounding errors can corrupt severely a regular solution of a singular differential equation unless 
the discretization is designed to filter out singular solutions and also to preserve vital symmetries.

•  If residuals are computed well enough,  the accuracy of a computed solution tends to improve 
with iterative refinement after the discretization is refined by an increase in the density of mesh-
points.  But the rate of improvement declines as a solution’s accuracy approaches the arithmetic’s 
precision;  and further mesh refinement incurs retardation of iterative refinement’s convergence.

The tricks presented in these notes are palliatives,  not cures for ailments that afflict scientific and 
engineering computation in an era when floating-point arithmetic is employed overwhelmingly 
more often for games and entertainment.  Two of the ailments are,  first,  a lack of programming 
tools to help diagnose failure modes peculiar to floating-point computation and,  second,  wide-
spread misunderstandings of roundoff among scientists,  engineers and even numerical analysts.  
Because almost all of them view cancellation as an enemy rather than an ally to combat roundoff,  
they are predisposed to overlook the trickier tricks in these notes.  Education will not cure their 
misunderstandings since a study of roundoff is so unlikely to be added to an already overloaded 
college undergraduate’s syllabus.  Besides,  students forget tricks taught but not soon exercised.

Incurable ailments are best prevented by prophylaxis like vaccination,  healthy diet and exercise,  
and seat-belts and air-bags.  The analogous prophylaxis for numerical computation is arithmetic 
extravagantly more precise than the data and the accuracy desired in results.  Ideally programming 
languages should supply this much precision  by default,  without requiring an explicit request 
from programmers naive about floating-point roundoff though clever at things they care about.  If 
a daredevil programmer chooses to trade accuracy away for speed,  let that be  his  decision,  not 
decided by the designers and implementors of programming languages and program development 
environments,  nor a decision forced upon them by obeisance to benchmarks that rate only speed 
regardless of reliability.  Languages for typical programmers should presuppose this  mantra:

Routinely  (by default)  perform  all  arithmetic and carry  all  intermediate variables 
extravagantly more precisely than the data and the accuracy desired in computed results.

It’s just a matter of time until every one of us has occasion to depend upon software promulgated 
perhaps over the  Internet  and produced by some programmer numerically naive but otherwise 
clever,  maybe ourself.  The interests of all of us are served better if programming environments 
are designed first to help get things right and after that,  if need be,  to help speed them up.



File FloTrik                                                  Floating-Point Tricks …               version dated   September 10, 2013 6:21 pm

Prof. W. Kahan’s  notes for  Math. 128B                                                                                                Page  26/28

§14.  Appendix 1:  This concerns a trick to compute scalar  z := A·x – B·y  more accurately when 
it cancels severely enough that  |z| << Z := |A·x| + |B·y|  because both  A/B  and  x/y  are so near  
1 .  If  z  is computed naively from the expression  “ A·x – B·y ”  literally,  its uncertainty due to the 
two multiplications’ roundoff will be of the order of  ±ε·Z ,  where  ε  is the roundoff threshold.  

But whenever both  1/2 ≤ e–2θ ≤ A/B ≤ e2θ ≤ 2  and  1/2 ≤ e–2φ ≤ x/y ≤ e2φ ≤ 2 ,  the trick reduces 
the uncertainty  in  z  to something of the order of  ±ε·(|z| + Z·tanh(θ+φ)) .  This is substantially 
smaller than  ±ε·Z  when  θ  and  φ  are both tiny of order  h… ,  as is the case when the trick is used 
to compute  aj–1·(uj–1 – uj ) – cj+1·(uj – uj+1)  more accurately for tiny gaps  hj–1  and  hj .

Before the trick is explained it will be liberated from a spurious argument that would render the 
trick superfluous.  The argument presumes that at least some of the data has inherited uncertainty 
from previous computation;  say  A = a·(1 ± ε)  and  B = b·(1 ± ε)  because roundoff has altered 
their computed values away from their ideal but now unknown values  a  and  b  resp.  Then even 
if no further rounding error occurred the computed value of  z = a·x – b·y ± ε·(|a·x| + | b·y|)  would 
inherit uncertainty  ±ε·(|a·x| + | b·y|)  almost the same as the uncertainty  ±ε·(|A·x| + |B·y|)  that the 
trick is designed to attenuate.  Thus the trick could get rid of at most about half the uncertainty 
that roundoff adds to  z .  If this argument were correct,  the trick would not be worthwhile.

The argument would be correct if  z  were the only thing computed from the data  A,  B,  x  and  y .  
The argument’s logic falls short when some of this data appears in other expressions like  z  and 
destined to combine with it.  The argument overlooks the fact that uncertainties due to roundoff 
are not uncorrelated,  much less random.  To succeed,  error-analysis must take correlations into 
account lest its excessive pessimism generate misconceived advice and bad decisions.

The trick computes  z  not from the expression  “ A·x – B·y ”  but from either of two formulas
 “ z := (A–B)·x + B·(x–y) ”    and      “ z := A·(x–y) + (A–B)·y ” 

suggested by the  Calculus of Divided Differences;  see the product rule on  p. 2  of my posting
<www.cs.berkeley.edu/~wkahan/Math185/Derivatives.pdf>  .

The hypothesis that both  1/2 ≤ A/B ≤ 2  and  1/2 ≤ x/y ≤ 2  ensures that  “ x–y ”  and  “ A–B ”  are 
computed  exactly  despite cancellation,  at least if the arithmetic conforms to  IEEE Standard 754 
for Binary Floating-Point Arithmetic,  and also for practically all current hardware arithmetics.

There were hardware arithmetics designed in the  1960s,  some lingering into the early  1990s,  whose subtractions 
lacked a  Guard Digit  and consequently could not guarantee substantial cancellation free from new roundoff.  Such 
arithmetics died after hardware designers learned that lack of a guard digit conferred no performance advantage.  
Young designers of new fast graphics processors may not yet have learned that lesson.  A guard digit is usually 
omitted from software-simulated floating-point whose precision exceeds what is built into the hardware,  but such 
arithmetic is unlikely to figure in the circumstances pertinent here.

Let’s choose the first of the two formulas above.  Its value actually computed for  z  is
      z ± ε·(ζ + |z|)  :=  A·x – B·y ± ε·( |A–B|·|x| + |B|·|x–y| + |z| ) 

when rounding errors in the two multiplications and the addition are taken into account.  Thus,  to 
compare the trick’s  z ± ε·(ζ + |z|)  with the naively computed  z ± ε·Z  we must compare the 
magnitudes of …

      z := A·x – B·y ,      Z := |A·x| + |B·y|     and      ζ := |A–B|·|x| + |B|·|x–y|  

when   e–2θ ≤ A/B ≤ e2θ   and   e–2φ ≤ x/y ≤ e2φ ,   and   θ  and  φ  are both tiny.
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To simplify the comparisons without loss of generality we assume first that   0 < B ≤ A ≤ e2θ·B ;  
otherwise we first reverse the signs of  z,  A  and  B  and/or swap  A  with  B  and  x  with  y .  The 
second simplification reverses the signs of  x,  y  and  z  if necessary to reduce the comparisons to 

two cases:  either   0 < y ≤ x ≤ e2φ·y   or else   0 < x ≤ y ≤ e2φ·x .  In both cases we find that
      |z|/Z ≤ tanh(θ+φ) ,   ζ/Z ≤ tanh(θ+φ) ,  and    (ζ + |z|)/Z ≤ 2·tanh(θ+φ) .

The verification of these inequalities is left to the very diligent reader.

Consequently,  as  θ → 0  and  φ → 0  independently,  the ratio  (ζ + |z|)/Z  of the trick’s to the 
naive evaluation’s uncertainties tends to zero at least as fast as  2(θ+φ)  does.

Whether this tricky attenuation of uncertainty due to roundoff is worth its cost in extra arithmetic 
depends first upon how many digits of accuracy you can afford to lose,  and second upon your 
programming skill at overlapping and pipelining the two extra arithmetic operations.  No such 
trick nor other artifice is needed for programs in languages that,  on computers most widespread 
atop laps and under desks,  can evaluate every arithmetic expression extra-precisely by default.

§15.  Appendix 2:  A divided-difference discretization that converges at higher order  (faster)  as 
all gaps approach zero need not necessarily entail higher order divided differences which increase 
the bandwidth or otherwise degrade the sparsity of the discretized equations that must be solved.

The discretization of the boundary-value problem  (P·U')'  + Q·U = R  poses a dilemma when the 
solution  U(x)  fluctuates so much faster over some of its domain than over the rest as to call for a 
grid with varying gaps  hj  smaller where  U(x)  fluctuates faster.  Which of the following three 
strategies should be tried first?

•  Keep all the gaps  hj := h  the same and use a simple finite-difference formula whose 

   discretization error is of order  h2  or smaller though the density of mesh-points will be 
   excessive wherever the solution fluctuates languidly.

•  Vary the gaps  hj  Adaptively  (making them smaller wherever  U(x)  fluctuates faster) 
   and use a divided-difference formula like that in  §4  whose discretization error of low

   order  |hj – hj–1| + (hj + hj–1)
2  requires grid points of higher density wherever it varies.

•  Vary the gaps  hj  adaptively using a complicated divided-difference formula like  ££U 

   below whose discretization error of order  hj
2

 + hj–1
2  allows a lower mesh-point density

   while preserving the tridiagonal form of the discretized equations to be solved for  u .

To exhibit that complicated formula  ££U  is the purpose of this appendix.  ££U  approximates not 
the differential operator   LLU(x) := P(x)·U" (x) + P'(x)·U'(x) = (P(x)·U'(x))'    but a composite

   LLU(x) + (1/3)(h–k)·(  LLU(x+h) –  LLU(x–k) )/(h+k)  
wherein  h = hj  and  k = hj–1  are the small gaps immediately astride  x = xj .  The approximation 
is intended to be substituted not into the given differential equation   LLU(x) + Q(x)·U(x) = R(x)   
but into its algebraically equivalent reformulation …
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   LLU(x) + (1/3)(h–k)·(  LLU(x+h) –  LLU(x–k) )/(h+k) 
     + Q(x)·U(x) + (1/3)(h–k)·( Q(x+h)·U(x+h) – Q(x–k)·U(x–k) )/(h+k) 

=  R(x) + (1/3)(h–k)·( R(x+h) – R(x–k) )/(h+k) 
at each internal mesh-point  x = xj .

The complicated discrete approximation  ££U(x, h, k)  to the composite differential/difference 
operator above is built out of several difference operators thus:

 U†(x, h) := ( U(x+h) – U(x) )/h ;       P†(x, h) := ( P(x+h) – P(x) )/h ;

  ¥¥U(x, h) := ( P(x+h) + P(x) )·U†(x, h) ;

   $$U(x, h, k) := ( U†(x, h) – U†(x, –k) )·P†(x–k, h+k) – ( P†(x, h) – P†(x, –k) )·U†(x–k, h+k) ;
  ££U(x, h, k) := ( ( ¥¥U(x, h) – ¥¥U(x, –k) ) + (1/3)·(h–k)·$$U(x, h, k) )/(h+k) .

The following substitutions discretize the reformulated differential equation:  Replace it by 
     ££U(x, h, k) + Q(x)·U(x) + (1/3)(h–k)·( Q(x+h)·U(x+h) – Q(x–k)·U(x–k) )/(h+k) 

=  R(x) + (1/3)(h–k)·( R(x+h) – R(x–k) )/(h+k) 
and then substitute  xj  for  x ,  hj  for  h ,  hj–1  for  k ,  and  uj  for  U(xj)  at every internal mesh-
point xj  to produce a tridiagonal system of linear equations to be solved for the column  u .  Its 
discretization error turns out to be of second-order in the gap sizes because 

 LLU(x) + (1/3)(h–k)·(  LLU(x+h) –  LLU(x–k) )/(h+k)  –  ££U(x, h, k)  =  O(h2 + k2) .

If  U'(x)  appears in a boundary condition its discretization can be obtained from the formula

 ( k·U†(x, h) – h·U†(x, k) )/(k–h) = U'(x) + O(h·k) .

If tricky suppression of roundoff in  ££U(x, h, k)  is needed,  restrict gaps  hj  to powers of  1/2  as 
explained in  §7,  and change the expression  “ ¥¥U(x, h) – ¥¥U(x, –k) ”  in the definition above of   

££U(x, h, k)  to   “ ( P(x+h) – P(x–k) )·U†(x, h) + ( P(x–k) + P(x) )·( U†(x, h) – U†(x, –k) ) ”   when 
computing residuals.  Another small improvement replaces  “ Q(x+h)·U(x+h) – Q(x–k)·U(x–k) ”  
by  “ Q(x+h)·(U(x+h) – U(x–k)) + (Q(x+h) – Q(x–k))·U(x–k) ”  .

The complicated second-order divided-difference discretization exhibited above does not so much 
resolve the dilemma presented at the beginning of this appendix as it relieves us of the necessity to 
employ the crude first-order divided-difference discretization of  §4  when gaps  hj  vary.  The 
dilemma persists because,  when all gaps have the same tiny width  h ,  more accurate fourth-order 
tridiagonal discretizations can be constructed from at most second-order finite differences.  These 
are a story for another day.


