

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 1/28

Floating-Point Tricks to Solve Boundary-Value Problems Faster

Prof. W. Kahan
Math. and Computer Sci. Depts.

Univ. of Calif. @ Berkeley

§0. Abstract:

 Old tricks are exhumed to accelerate the numerical solution of certain discretized
boundary-value problems. Without the tricks, half the digits carried by the arithmetic can be lost
to roundoff when the discretization’s grid-gaps get very small. The tricks can procure adequate
accuracy from arithmetic with

float

 variables 4-bytes wide instead of

double

 variables 8-
bytes wide that move slower through the computer’s memory system and pipelines. The tricks are
tricky for programs written in M

ATLAB™

 7+, J

AVA

, F

ORTRAN

 and post-1985 A

NSI

C

. For the
original Kernighan-Ritchie

C

 of the 1970s, and for the few implementations of

C

99 that fully
support IEEE Standard 754 for Binary Floating-Point, most of the tricks are easy or unnecessary.
Their efficacy is illustrated here by examples.

Contents:

§1. Introduction: page 2
§2: Discretized Initial-Value Problem d

y

/d

τ

 =

f

(

y

)

 : 3
§3: An Example 4
§4. Discretized Boundary-Value Problem (

P

·

U

'

)

'

 +

Q

·

U

 =

R

 5
§5. How Roundoff Corrupts the Discretization: 6
§6. Accurate Residuals: 8
§7. A Trickier Trick: 9

§8. Example: (x·

u'

)

'

+

4x·(1–x

2

)·

u

=

0 10
 First Program’s Computed Graphs of

u

,

u

'

 and

v

 , and their errors 12 - 13
§9. The 2nd Program: preserves symmetry 14
 2nd Program’s Results 15
§10. Iterative Refinement: recovers accuracy if done right 16
 4th Program’s Results 17 - 18
§11. Discretization of an Elliptic Boundary-Va;ue Problem: Laplace’s Equation 19

Graphs of

Φ

 and ||Grad

Φ

|| 20
Computed Results for

Φ

 21
§12. Computing Grad

Φ

 22
§13. Conclusions: Hardly any programmers will ever know the tricks. 25
§14. Appendix 1: accuracy despite cancellation 26
§15. Appendix 2: tridiagonal and 2nd order despite variable gaps 27

Posted at

www.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 2/28

§1. Introduction:

 Computations, formerly carried out in 8-byte-wide

double

 floating-point,
could afford to lose over half the arithmetic’s 16 sig.dec. and yet retain accuracy adequate for
almost every requirement by scientists and engineers. Now they are tempted to replace

double

by 4-byte-wide

float

 variables that will move twice as fast through computers’ pipelines and
vast memories, dissipate half the energy, and take advantage of inexpensive hardware mass-
produced for entertainment and communications. But this replacement exacerbates the threat to
accuracy from roundoff that was formerly ignored. Only if unnoticed can the loss of about half
the 7 sig.dec. of

float

 arithmetic be ignored.

There are tricks that defend discretized differential equations against excessive loss to roundoff.

A few of us used these tricks in the 1970s during the brief reign of small computers with

float

arithmetic hardware but not

double

. The tricks ran faster than

double

 simulated in software.
The tricks relied upon a property of floating-point subtractive cancellation:

If p and q are floating-point numbers of the same precision,
and if 1/2

≤

 p

/

q

≤

 2 ,
then p

–

q is computed exactly, unsullied by a rounding error.
A proof appeared on p. 138 of

Floating-Point Computation

 by P.H. Sterbenz (1974, Prentice-
Hall, NJ). Rare exceptions occurred on perverse hardware lacking a g

uard digit

, and for abrupt
instead of

gradual

 underflow of p

–

q

; these exceptions do not happen nowadays on hardware
conforming fully to IEEE Standard 754.

The tricks entail complexities that bloat a computer program’s capture-cross-section for mistakes.

No endorsement of these tricks is implied by their lengthy discussions and analyses below. Quite
the contrary. Their complexities are a penalty imposed by programming languages and compilers
lacking convenient support for arithmetic operations more precise than their operands. A major
exception was

C

 designed by B.W. Kernighan and D.M. Ritchie for an early DEC PDP-11. Its
floating-point board required a call upon the operating system to select one of

float

 or

double

precision. For speed’s sake, the board was left in

double

; consequently every floating-point
expression was evaluated in

double

 regardless of whether operands were

float

s. This practice
was numerically advantageous. It rendered unnecessary almost all the tricks exhibited below, and
greatly enhanced the accuracy and reliability of many a F

ORTRAN

 program transliterated into

C

,
especially 3-dimensional geometrical computations like those described on my web page’s

www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf

 . But in the mid 1980s, before
those advantages were appreciated widely, ANSI committee X3J11 let

C

 compilers revert to

Fortranish

 expression-evaluation. Most did. Now tricks are necessary for most

C

 compilers.

The simplest trick is

Compensated Summation

 used to suppress the worst rounding errors in the
numerical solution of initial-value problems to which one-dimensional boundary-value problems
are converted when solved by

Shooting

 methods. These deliver better accuracy as a

stepsize

θ

is diminished, though at the cost of greater work proportional to 1/

θ

. Without that trick or else
extra-precise arithmetic, the enhanced accuracy is vitiated by rounding errors that accumulate
proportional to 1/

θ

 in worst cases, though these happen only rarely. An example of damaging
accumulation is provided by an initial-value problem in §§2-3.

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 3/28

The solution

u

(

x

) of a boundary-value problem div

(

p

·

grad

u

)

 +

q

·

u

 =

r

 is often a potential
computed only to permit the subsequent computation of a vector force-field

grad

u

 from finite-
difference formulas. Because these formulas amplify errors in

u

 it must be computed accurately
enough that subsequent subtractive cancellations will not leave too few correct digits to determine

grad

u

 as accurately as it is needed. This accuracy is gained by computing

u

 over a sufficiently
refined grid of mesh-points. As happens in §9, mesh refinement can worsen the contamination of

u

 by roundoff unless the program acts to abate that contamination. The simplest abatement by far
resorts to extra-precise arithmetic. When this is unavailable or too slow, the abatement must use
a tricky trick presented in these notes in §7. An example in §8 will test in §10 how well the
trick works to compute the regular solution of a singular boundary-value problem.

After it is explained for a second-order ordinary differential equation (P·U')' + Q·U = R with
boundary conditions at the ends of some interval, the trick will be applied to an elliptic partial
differential equation on a squaare in §??. Further elaborating the trick to work for parabolic and
hyperbolic partial differential equations that characterize propagation may incur so much extra
memory traffic as to vitiate the trick; but that’s a story for another day.

§2. Discretized Initial-Value Problem: A numerical solution Y(τ) of the differential equation
 dy/dτ = f(y) over a given interval 0 ≤ τ ≤ T with a given y(0) := y°

is to be computed either as the terminal Y(T) or as Y(τ) to be plotted over that interval. Most
numerical methods resemble the conversion of the differential equation into an integral equation

 y(τ+θ) = y(τ) + ∫0θ f(y(τ+σ))·dσ ,

because an approximation Y(τ) ≈ y(τ) is updated repeatedly, for τ = 0, θ, 2θ, 3θ, …, T–θ , to
 Y(τ+θ) := Y(τ) + F(Y(…), θ)·θ

wherein F(Y(…), θ) extracts samples of f(Y(…)) to estimate the average ∫0θ f(y(τ+σ))·dσ/θ .
(The stepsize θ may vary with τ but has been kept constant here to simplify the exposition.)

Absent roundoff, the error Y(T) – y(T) → o like θOrder ; the exponent Order depends upon the
details of F(…) and always exceeds 1 , often exceeds 3 . When adequate accuracy can be
achieved only by choosing a very tiny θ , rounding errors interfere. The worst of them occur at
the additions of Y + F·θ . Here is how roundoff loses digits:

YYYYYYY = Y(τ)
+ FFFF FFF· θ + F·θ as if ffff fff
––––––– lost
YYYYYYY = Y(τ+θ)

Thus rounding errors appear to inject uncertainty proportional to ε/θ into F (and hence into f) ;

ε is the arithmetic’s roundoff threshold; float ’s ε = 2–23 ≈ 1e-7 ; double ’s ε = 2–52 ≈ 2e-16 .
That injection limits the accuracy achievable in Y , as if roundoff and discretization conspired to
lose at least some fraction like 1/(1 + Order) of the arithmetic’s digits of f . That loss might
often have gone unnoticed when the arithmetic was double . Not so likely if float .

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 4/28

A palliative is the choice of a higher Order formula for F . It works only if the solution y(τ) is
smooth enough, and the needed accuracy high enough, that the higher Order formula allows a
substantially bigger stepsize θ , whence substantially fewer updating steps and fewer lost digits.

A remedy is the use of extra-precise arithmetic, storing Y to at least several more sig.bits than
are trusted in f or desired in y . When this remedy is too slow or unavailable, the only remedy is
Compensated Summation:

Y := y° ; cY := o ; … Initialize Y and its compensatory cY
For τ = 0 to T–θ in steps of θ {

Yo := Y ;
∆Y := cY + F(Y(…), θ)·θ ;
Y := Yo + ∆Y ; … rounded, losing digits FFF· θ
cY := (Yo – Y) + ∆Y ; } … recovers them. (HONOR PARENTHESES!)

This trick is inefficient when the differential equation is so stable that it forgets its earlier errors,
or so unstable that the propagated growth of the earliest few errors overwhelms all later errors.

§3. An Example: The chosen differential equation dy/dτ = f(y) has terminal T := 65/32 and

 y := , f(y) := and y(0) = y° := .

This singular differential equation has a regular solution v(τ) = 229 , w(τ) = –2τ2·v(τ) . The
singularity was removed numerically by substituting “ w/(τ+η) ” for “ w/τ ” in f , where η
barely exceeds the underflow threshold, thus replacing an invalid 0/0 operation by 0 with no
other effect upon the computation of f , because “ w/(τ+η) ” rounds to “ w/τ ” if τ ≠ 0 .

The chosen numerical method is a classical 4th-order Runge-Kutta formula whose F·θ is …
 F(Y(…), θ)·θ = (2·(hF1 + hF3) + 4·hF2 + hF4)/6 wherein

 hF1 := ·f(Y) ; hF2 := ·f(Y + hF1) ; hF3 := θ·f(Y + hF2) ; hF4 := θ·f(Y + hF3) ;

The chosen number n := 2560 of steps produced a stepsize θ = T/n exactly. All arithmetic and
variables were 24-sig.bit float . Computed results for Y(T)’s first component were …

 V(T) = 8670448 computed without Compensated Summation
 V(T) = 8669241 computed with Compensated Summation
 v(T) ≈ 8669240 the true v(T) rounded to 24 sig,bits.

Compensated Summation has reduced this example’s loss of accuracy in Y(T)
from over 10 sig.bits to less than 2 of the arithmetic’s 24.

This example also reminds us that no simple foolproof way exists to infer Y(T)’s error from the
accuracy of the compensated updating formula Y(τ+θ) := (cY + F(Y(…), θ)·θ) + Y(τ) . A simple
way repeats the computation of Y(T) with a sequence of diminishing stepsizes θ until as many
digits of Y(T) converge to presumed digits of y(T) as roundoff (in f , θ and T too) allows.

v

w

τ

w τ⁄
4τ– 1 τ–() 1 τ+() v⋅ ⋅ ⋅

1

2
29

0

0

e
τ2

–

θ
2
--- θ

2

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 5/28

§4. Discretized Boundary-Value Problem: Suppose P, Q and R are scalar-valued functions
of the scalar independent variable x , and Q and R may depend also upon the scalar solution
U(x) of the differential equation (P·U')' + Q·U = R . We assume that P, Q and R are smooth
functions to preclude distracting complications. Choose a sequence x0 < x1 < x2 < … < xN of
mesh-points to span the interval over which the solution U(x) is to be computed; they can be
spaced non-uniformly so long as every gap hj := xj+1 – xj is small. Let uj ≈ U(xj) numerically
and then set, say, pj+1/2 := P((xj+xj+1)/2), qj := Q(xj, uj) and r j := R(xj, uj) . One of several
discretized approximations to the derivative (P·U')' at x = xj is the difference-quotient

 2·(pj+1/2·(uj+1 – uj)/hj – pj–1/2·(uj – uj–1)/hj–1)/(hj + hj–1) = (P·U')' + O(|hj – hj–1| + (hj + hj–1)
2) .

(Eliminating the term |hj – hj–1| complicates the exposition without affecting the trick; see Appendix 2 below.)

Substituting this approximation into the differential equation (P·U')' + Q·U = R at every mesh-
point produces an (almost) linear system (TT + Diag(q))·u = r of equations in which u is a
column of unknowns uj , Diag(q) is a diagonal matrix computed from the elements qj and gaps
hj, column r is computed from the elements r j and gaps hj , and TT is a tridiagonal matrix
computed from the elements pj+1/2 and gaps hj . The bottom and topmost entries in TT + Diag(q)
and r include contributions from the boundary-value problem’s boundary conditions.

Sometimes Diag(q) is supplanted by a tridiagonal matrix to help approximate the differential
equation better. For the same reason TT may become five-diagonal; but we shall disregard these
possibilities in what follows since they can be accommodated by a straightforward elaboration of
a trick whose description we still hope to keep simple.

The equation (TT + Diag(q))·u = r has to be solved for the desired u = (TT + Diag(q))–1·r . Even
if q and r are independent of u , the solution process will usually require iteration if only to
attenuate obscuration by roundoff during the solution process. One process, akin to Gaussian
elimination, factorizes TT + Diag(q) ≈ E·B wherein B is bidiagonal and upper-triangular, and E
is a bidiagonal lower-triangular matrix or else one whose rows have been permuted by pivoting

during the factorization process. These factors serve to compute u ≈ B–1·(E–1·r) by first forward

substitution (perhaps permuted) to compute E–1·r and then back-substitution to get u .

If q and r depend upon u they will have been estimated from a guess at u and must now be
recomputed from the latest estimate of u , after which their changes must be taken into account
during the computation of an improved estimate u + ∆u to supplant the one just computed. How
this is done depends upon how strongly q and r depend upon u :

• If q and r depend very weakly upon u then ∆u ≈ B–1·(E–1·(r – (TT + Diag(q))·u)) using
the latest values for u, q and r but the same factors E and B as before.

• If q and r depend weakly but not very upon u then ∆u ≈ B–1·(E–1·(r – (TT + Diag(q))·u))
using the latest values u, q and r and a recomputed factorization TT + Diag(q) ≈ E·B .

• If q and r depend strongly upon u then ∆u ≈ B–1·(E–1·(r – (TT + Diag(q))·u)) using the
latest values for u, q and r and recomputed factors E and B that take the columns
∂q/∂u and ∂r /∂u into account. This complicates the process but does not affect the trick.

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 6/28

The foregoing process has been called “Iterative Refinement” among other things. Ideally, at
most a few iterations u → u + ∆u should suffice to solve the equation (TT + Diag(q))·u = r for u
as accurately as the data TT, q and r deserve. No matter how the equation’s solution u is
computed, its accuracy turns out to be limited mostly by the accuracies of successive residuals
s := r – (TT + Diag(q))·u . The trick is to compute each s accurately enough, as we shall see.

Usually scalar factors dependent only upon the gaps hj have been incorporated into the rows of
the expression “ r – (TT + Diag(q))·u ” so that it can be computed repeatedly for different columns
u without incurring repeated divisions by expressions dependent only upon the gaps. Sometimes

these scalar factors fail to keep TT = TTT symmetrical. Sometimes P and consequently TT too
depend upon u , contrary to our assumptions. None of these possibilities affect the trick.

Finally, the jth row (TT·u)j of TT·u always has the form aj–1·uj–1 – bj·uj + cj+1·uj+1 in which the
coefficients aj–1, bj and cj+1 have these three properties:

0) bj = aj–1 + cj+1 for every j except possibly j = 0 and/or j = N .

1) Both |qj|/(|aj–1| + |bj| + |cj+1|) → 0 and |r j|/(|aj–1| + |bj| + |cj+1|) → 0
 roughly like (hj–1 + hj)·max{hj–1, hj} → 0 .

2) aj–1/cj+1 = (pj–1/2/hj–1)/(pj+1/2/hj) is near 1 for every j except j = 0 and j = N .

Sins lurk in the words “roughly like” and “near”. First, N → ∞ when max{hj–1, hj} → 0 ,
changing the meanings of the indices j . Second, gaps hj get shrunk in order to enhance the
accuracy with which uj approximates U(xj) ; but when shrinkage occurs adaptively some gaps
shrink while others don’t. Usually adjacent gaps differ by relatively little, as do adjacent values
pj±1/2 of the smooth function P ; but occasional exceptions may violate property 2). None of
these possibilities affect the trick.

§5. How Roundoff Corrupts the Discretization: It contributes uncertainty to almost every step
of the solution process. Let ε denote the roundoff threshold for rational floating-point arithmetic

operations. When every operation rounds to the 24 sig. bits of float , ε = 1/224
 ; … to 53 sig.

bit double , ε = 1/253
 . Then rounded values computed from expressions like “ v·w ”, “ v/w ”,

“ v+w ” and “ v–w ” lie in the respective ranges (v·w)·(1±ε) , (v/w)·(1±ε) , (v+w)/(1±ε) and
(v–w)/(1±ε) . The smaller is ε , the higher is the arithmetic’s precision, and then the smaller is
the perturbation by roundoff of a finally computed result and thus the higher is its accuracy.

The discretization’s first rounding errors corrupt at least the diagonal of TT + Diag(q) , and then
more of them turn its factorization into E·B = TT + Diag(q) ± ε·(|E|·|B| + |TT| + Diag(|q|)) roughly;
the uncertainty here is dominated by the contributions from ±ε·(|E|·|B| + |TT|) , the more so as the
gaps hj shrink. If they shrink too far they can become so small that this uncertainty becomes
comparable with or bigger than the separation between TT + Diag(q) and its nearest singular (i.e.
non-invertible) matrix, thus rendering the solution process unpredictable. Though this extremity
is rarely approached in practice it will be illustrated by the example in §10. Additional rounding

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 7/28

errors incurred during the forward and backward substitutions that solve E·B·u = r for u will be
ignored since they merely augment somewhat the uncertainties taken into account already. The
bottom line: The first u computed satisfies (TT + Diag(q) ± ε·(|E|·|B| + |TT| + Diag(|q|)))·u = r ,
not (TT + Diag(q))·u = r as desired. We can ignore the difference if TT + Diag(q) is far enough
from singular and if ε is small enough, as is usually the case when the data’s and arithmetic’s
precision extravagantly exceeds the accuracy desired in u . I wish this were always the case. Life
is so much simpler when roundoff can be ignored.

If roundoff’s effect upon the first u computed cannot be ignored its accuracy must be improved
by iterative refinement: Compute residual s := r – (TT + Diag(q))·u and then solve E·B·∆u = s
for the correction that updates u to u+∆u . Other reasons for iterative refinement have been
listed above. Other iterative methods solve for u without ever computing factors E and B .

Every iterative method computes successive residuals s := r – (TT + Diag(q))·u for updated values
of u whose ultimate accuracy turns out to be limited mainly by how accurately s is computed.
Its accuracy will be appraised next:

To match the magnitudes of the elements r j and Diag(qj) in the equation TT·u + Diag(q)·u = r

that has to be solved for u , the jth element (TT·u)j := aj–1·uj–1 – bj·uj + cj+1·uj+1 has to suffer
massive subtractive cancellation, the more so as gaps hj–1 and hj shrink to help approximate
U(xj) better by uj . Normally, when all the gaps are small, the computed value of this (TT·u)j
must cancel down to something small, roughly of the order of
 (hj–1 + hj)·max{hj–1, hj}·(|aj–1·uj–1| + |bj·uj| + |cj+1·uj+1|) = (hj–1 + hj)·max{hj–1, hj}·(|TT|·|u|)j
wherein the last two pairs of absolute value bars |…| are to be applied elementwise to TT and u .

Coincidentally, when (TT·u)j is computed by evaluating “ aj–1·uj–1 – bj·uj + cj+1·uj+1 ” literally,
roundoff contributes uncertainty of the order of ±ε·(|TT|·|u|)j to (TT·u)j . This term dominates the
computed residual’s uncertainty due to roundoff: s – r + (TT + Diag(q))·u = ±ε·(|TT| + Diag(|q|))·|u|
roughly within a factor of 2 or 3 regardless of whether (TT + Diag(q))·u is computed after
TT + Diag(q) is, or computed separately as TT·u + Diag(q)·u . Even if the computed residual
vanishes the current estimate u must satisfy (TT + Diag(q))·u = r ± ε·(|TT| + Diag(|q|))·|u| , an
equation perturbed by uncertainty dominated by the term ±ε·|TT|·|u| . This is almost as bad as the
uncertainty ±ε·(|E|·|B| + |TT| + Diag(|q|)))·u that afflicted Gaussian elimination and triangular
factorization unless an unfortunate choice of pivots bloated the triangular factors E and B . This
dominant term |TT|·|u| is bigger than all the other terms r, Diag(|q|)·|u| and even |TT·u| by factors
like 1/((hj–1 + hj)·max{hj–1, hj}) that increase when gaps get shrunk to reduce the difference
between u and U due to discretization. Then the equation u satisfies gets more perturbed.

The uncertainty in u due to roundoff is inconsequential when the precision of arithmetic and all
intermediate variables exceeds extravagantly the precision (presumed the same) of the data TT, q
and r and the accuracy desired from u . A little more than twice as precise is usually extravagant
enough. This is so because the uncertainty due to roundoff usually grows by a factor roughly the
reciprocal of the factor by which the discretization error shrinks when all gaps hj are shrunk, and
then the number of correct digits in the elements of u cannot much exceed half the digits carried

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 8/28

by the arithmetic. There are exceptions; cruder discretizations can lose a larger fraction of the
digits carried; defter will lose a smaller fraction. Any such lost fraction of extravagantly too
many digits will leave enough of them to produce adequately accurate results.

What is to be done when the available arithmetic’s precision at most barely exceeds the data’s
precision and the desired accuracy? Our next objective is to trick the arithmetic into losing not
some fraction like half the digits carried but at most a few of them so as to compute u about as
accurately as the given data determine it. The trick is to compute residuals s well enough.

§6. Accurate Residuals: The trick is to compute residuals s := r – (TT + Diag(q))·u obscured by
small rounding errors of the order of ε·(|TT·u| + Diag(|q|)·|u| + |r |) instead of huge rounding errors
of the order of ε·(|TT|·|u| + Diag(|q|)·|u| + |r |) . It’s about small |TT·u| versus huge |TT|·|u| .

For definiteness let us assume all the given data, namely {xj} and columns q and r and arrays
{aj} and {cj} of off-diagonal elements of TT , and the columns u of a putative solution and its
residual s , to be stored in the computer’s memory as seven arrays of 4-byte-wide float s. If we
use triangular factors to solve the equations for u and ∆u then we store also the two arrays of
subdiagonal elements of E and diagonal elements of B as float s and write float ∆u over s .

The array g := diag(TT + Diag(q)) can be treated in any of several ways: One is to compute each
element gj := qj – aj–1 – cj+1 at the moment of need using array elements aj–1 and cj+1 that will
be needed at the same moment. Another way is to compute in advance and and store the array g
as an array of 8-byte double s. Trickier ways to cope with g will be passed over for the sake of
a simpler exposition.

In a benign computing environment, as was provided by the original Kernighan-Ritchie C and
is now available from some implementations of C99, every arithmetic operation is rounded to at
least double regardless of whether its operands are float s or double s. In this environment
the float residual s can be computed amply accurately from any one of the three assignments

 “ sj := r j – aj–1·uj–1 – gj·uj – cj+1·uj+1 ” or
 “ sj := r j – aj–1·uj–1 – (qj – aj–1 – cj+1)·uj – cj+1·uj+1 ” or
 “ sj := r j – aj–1·(uj–1 – uj) – cj+1·(uj+1 – uj) – qj·uj ”

each of whose right-hand side’s every arithmetic operation is rounded to double before being
stored as a float in sj . Thus is adequate accuracy achieved with no extra effort nor thought.

In a FORTRANnish environment like JAVA or ANSII C (1987), the foregoing assignments must
be encumbered by casts (conversions to double) to achieve amply adequate accuracy thus:

 “ sj := r j – aj–1·(double)uj–1 – gj·(double)uj – cj+1·(double)uj+1 ” or
 “ sj := r j – aj–1·(double)uj–1 – (((double)qj – aj–1) – aj)·uj – cj+1·(double)uj+1 ” or
 “ sj := r j – aj–1·((double)uj–1 – uj) – cj+1·((double)uj+1 – uj) – qj·(double)uj ” .

(HONOR PARENTHESES!)

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 9/28

§7. A Trickier Trick: In a benighted environment where double is too slow or inconvenient, or
unavailable, barely adequate accuracy may be achieved at the cost of two extra subtractions:

 “ sj := r j – aj–1·((uj+1 – uj) – (uj – uj–1)) – (cj+1 – aj–1)·(uj+1 – uj) – qj·uj ” .
Why does this tricky trick work when it works?

It doesn’t work unless cj+1 and aj–1 are close enough, and this requires typically that the gaps
hj and hj–1 be equal or almost equal according to property 2) above. In such cases we expect all

but a few of the quotients aj–1/cj+1 and uj–1/uj to stay close to 1 , and to come closer as all the
gaps hj shrink. Then each subtraction cj+1 – aj–1, uj+1 – uj, and usually (uj+1 – uj) – (uj – uj–1)
incurs substantial cancellation but no new rounding error. For a more quantitative appraisal of
the extra subtractions’ attenuation of roundoff see Appendix 1 below.

If the grid’s gaps hj vary more than minimally, a different and far trickier trick will be needed to
compute the residual s accurately enough. This trickier trick requires that all gaps hj be powers

of 1/2 to ensure that multiplications and divisions by gaps incur no new rounding errors. This
requirement is less onerous than first appears: It requires first that the independent variable x be
scaled (multiplied or divided) to turn the domain of U(x) into an interval whose width xN – x0

is an integer multiple of a power of 1/2 . Secondly, after the initial distribution of grid points
ensures that every gap hj := xj+1 – xj is a power of 1/2 , subsequent grid refinements will plant
new mesh-points only halfway between adjacent previously planted mesh-points.

Now we shall appraise roundoff’s intrusion into the discretization of (P·U')' in §4, namely
 2·(pj+1/2·(uj+1 – uj)/hj – pj–1/2·(uj – uj–1)/hj–1)/(hj + hj–1) ≈ (P·U')' .

To simplify its appraisal we suppose that P(x), U(x) and their first two derivatives’ magnitudes
are all of order 1 , huge compared with the roundoff threshold ε and the gaps hj all of order h ,

say. Then (uj+1 – uj)/hj is of order 1 because it approximates U'(xj) roughly; the quotient

introduces no new roundoff. The multiplication in pj+1/2·(uj+1 – uj)/hj suffers a new rounding
error of order ε , as does the other multiplication, so the foregoing discretization of (P·U')'
differs from it by the formula’s discretization error, at most O(h) , plus a contribution of order
ε/h from roundoff.

Reducing the last contribution from order ε/h to order ε is the trickier trick’s goal. It changes
the discretization’s formula to an algebraically equivalent but more complicated new formula
 2·(pj+1/2·((uj+1 – uj)/hj – (uj – uj–1)/hj–1) + (pj+1/2 – pj–1/2)·(uj – uj–1)/hj–1)/(hj + hj–1)
that costs two extra subtractions neither of which introduces a new rounding error. The first extra
subtraction (uj+1 – uj)/hj – (uj – uj–1)/hj–1 ≈ U'(xj + hj/2) – U'(xj – hj–1/2) ≈ U" (xj)·(hj + hj–1)/2
very roughly, so it is of order h and the subsequent multiplication suffers a rounding error of
order h·ε . Similarly the second extra subtraction pj+1/2 – pj–1/2 ≈ P'(xj)·(hj + hj–1)/2 and its
subsequent multiplication inject another rounding error of order ε·h . The subsequent addition
and then division by (hj + hj–1)/2 make the new formula’s total contribution from roundoff of
order ε , not ε/h .

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 10/28

Thus are computed residuals s := r – (TT + Diag(q))·u contaminated by tiny practically irreducible
rounding errors of the order of ε·(|TT·u| + Diag(|q|)·|u| + |r |) ≈ O(ε) instead of huge rounding

errors of the order of ε·(|TT|·|u| + Diag(|q|)·|u| + |r |) ≈ O(ε/h2) as all gaps shrink towards zero.
This attenuation of roundoff’s contamination of the residuals s is rewarded by a consequent
attenuation of roundoff’s contamination of the computed solution u of the discretized problem.

Similar tricks enhance the accuracy of u when divided-difference formulas of higher order in the
gaps h… are used to approximate the differential equation; see Appendix 2 below. Similar
tricks enhance the accuracy of computed solutions of elliptic partial differential equations like
div(p•grad u) + q·u = r . Similar tricks are applicable to some Finite-Element discretizations.

Tricky tricks admit innumerable opportunistic variations. We will not attempt to patent them all.
More important is the realization that they would be rendered unnecessary by a simple expedient:

Routinely (by default) perform all arithmetic and carry all intermediate variables
extravagantly more precisely than the data and the accuracy desired in computed results.

§8. Example: The singular differential equation (x·u')' + 4x·(1–x2)·u = 0 has regular solutions
all with u'(0) = 0 and so u(–x) ≡ u(x) . We wish to compute the regular solution satisfying the

boundary conditions u(±1) = 1 as if we did not know that u(x) = exp(1–x2) . The numerical
estimation of u(x) is complicated by the differential equation’s singular solutions

 v(x) := C·exp(–x2)·∫ exp(2x2)·dx/x = C·exp(–x2)·(ln(|x|) – ∫|x|
1 (exp(2ξ2) – 1)·dξ/ξ) .

Their constants C can be different for x > 0 than for x < 0 . All have a logarithmic pole at
x = 0 . The pole can amplify tiny perturbations of the differential equation into a narrow spike at
x = 0 . Worse, this singular solution v satisfies v(–x) ≡ v(x) and v(±1) = 0 and the differential
equation except at x = 0 , so a discretized analog of this v(x) can contaminate the numerical
approximation of the regular solution u(x) unless filtered out.

Filtering won’t affect the trick. Then why choose to illustrate it applied to a singular differential
equation instead of something simpler? Because of spikes. They are often misdiagnosed, blamed
upon the differential equation’s singularity instead of roundoff, or vice-versa. Spikes of both
kinds will afflict this example, and our analysis will distinguish them and then eliminate them.

Choose a large integer N >> 2 and set xj := j/N – 1 for j := 0, 1, 2, …, 2N–1, 2N . Now every

hj := 1/N , qj := 4xj·(1–xj)·(1+xj) = 4j·(N–j)·(j – 2N)/N3 = –q2N–j and pj+1/2 := (j+1/2)/N – 1 .
The numerical estimates uj of u(xj) satisfy discretized equations aj–1·uj–1 + gj·uj + cj+1·uj+1 = 0

in which cj := aj–1 := N2·pj–1/2 = –N·(N–j + 1/2) = –a2N–j and gj := qj – aj–1 – cj+1 = –g2N–j .

The discretization error is aj–1·u(xj–1) + gj·u(xj) + cj+1·u(xj+1) ≈ (2u'" (xj) + xj·u"" (xj))/(12N2) .
We seek solutions uj of these discretized equations satisfying boundary conditions u0 = u2N = 1 .

A first attempt constructs a symmetric tridiagonal matrix TT + Diag(q) with [g1, g2, …, g2N–1] on
its main diagonal and [c2, c3, …, c2N–1] = [a1, a2, …, a2N–2] on its first superdiagonal and first

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 11/28

subdiagonal. Every element of column r is zero except for its first element r1 := –a0·u0 = –a0
and its last r2N–1 = –c2N·u2N = –a2N–1 = a0 that convey the boundary conditions u(±1) := 1 .

Elements [u1; u2; …; u2N–1] of column u should be computed by solving (TT + Diag(q))·u = r .
The first attempt factorizes TT + Diag(q) = E·B wherein B is bidiagonal with [ß1, ß2, …, ß2N–1]
on its diagonal and [a1, a2, …, a2N–2] on its first superdiagonal, and E is bidiagonal with 1
everywhere on its diagonal and [e1, e2, …, e2N–2] on its first subdiagonal. A recurrence produces

ej–1 := aj–1/ßj–1 and ßj := gj – aj–1·ej–1 for j = 2, 3, …, 2N–1 in turn starting with ß1 := g1 .
This amounts to Gaussian elimination without pivotal exchanges. Its simplicity of programming
could be offset by the appearance of a tiny ßj–1 followed by a huge ßj that greatly amplifies
roundoff. Numerical degradation like that has yet to occur during the foregoing computation.
However the last ß2N–1 = 0 except for roundoff because TT + Diag(q) is singular (not invertible),
which complicates the first attempt to compute u .

To see why TT + Diag(q) is singular let Ξ = ΞT be the matrix obtained from the 2N–1 -by- 2N–1 identity by
reversing the order of its rows (or columns) and observe that Ξ·(TT + Diag(q))·Ξ = –(TT + Diag(q)) , whereupon

det(Ξ)2·det(TT + Diag(q)) = (–1)2N–1·det(TT + Diag(q)) = 0 . Then det(B) = det(E)·det(B) = det(TT + Diag(q)) = 0 too,
which explains why ß2N–1 = 0 . Despite that TT + Diag(q) is singular, the equation (TT + Diag(q))·u = r turns out to
be consistent. All its solutions are symmetric, u = Ξ·u , though all of them but one are contaminated by some scalar
multiples of a singular solution v = Ξ·v ≠ o of (TT + Diag(q))·v = o with a sharp spike in the middle of it.

Any first attempt to solve (TT + Diag(q))·u = r naively gets u contaminated by the addition of
some arbitrary or infinite multiple of the spiked singular solution v of (TT + Diag(q))·v = o ≠ v .
If that multiple is small enough, the spike is narrow enough to go unnoticed until too late. How
can the smooth regular solution u(x) be separated numerically from spiked singular solutions
v(x) that satisfy the same boundary conditions and even the symmetry condition v(–x) ≡ v(x) ?

There is one way: A regular solution’s u'(0) = 0 differs from a singular solution’s v'(0) = ±∞
utterly, whence l’Hôpital’s Rule implies u'(x)/x → u" (0) as x → 0 ; and then substitution into
the differential equation implies u" (0) = –2u(0) . This internal boundary condition upon u(x)
further distinguishes it from all singular solutions. Discretized, this internal boundary condition

turns into N2·(uN+1 – 2uN + uN–1) = –2uN which, if not satisfied by a computed solution û of
(TT + Diag(q))·û = r , can be imposed upon a revised solution u := û – λ·v by choosing λ aptly
after computing a singular solution v ≠ o of (TT + Diag(q))·v = o . Our first program does this.

1st Program’s Details: The computed solution of B·û = E–1·r is û ; its last component is set to û2N–1 := 1 + 2/N

to filter out most of the singular solution v . This is the solution of B·v = o ; its last component v2N–1 := 1/(2N–1)
is set to keep the spike vN roughly between 1 and 4 . Then λ comes close to –2/N when computed to make
u := û – λ·v satisfy the discretized internal boundary condition. Apparently u loses little to cancellation in the last

subtraction. Then the gradient u'(xj) is approximated within O(1/N2) by u‡
j := (uj+1 – uj–1)·N/2 except at the

boundarys where u'(–1) ≈ u‡
0 := (4u1 – 3u0 – u2)·N/2 . The errors maxj |uj – u(xj)| in u and maxj |u

‡
j – u'(xj)| in

u‡ would roughly approximate 2.4/N2 and 3.7/N2 respectively for large N if they were due to discretization alone,
but something else happens when roundoff contaminates the whole process.

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 12/28

Computed Graphs of u ≈ u(x), u‡ ≈ u'(x) and v ≈ v(x) carrying 24 sig. bits

Results from the First Program carrying 24 sig. bits (ε ≈ 6/108)

 N = #gaps, err(u) := maxj |uj – u(xj)| , err(u‡) := maxj |u
‡
j – u'(xj)| .

The foregoing program loses accuracy to roundoff about as badly as the preceding analysis had

predicted, almost as badly as if the roundoff threshold ε had been magnified to ε·N2
 . The error

in u due to discretization alone, roughly 2.4/N2 , decreases as N increases but the total error in

N err(u) err(u)·N2 err(u‡) err(u‡)·N2

 16 0.009324 2.39 0.01529 3.9

 24 0.004144 2.39 0.00666 3.8

 32 0.002326 2.38 0.00366 3.7

 48 0.001040 2.40 0.00162 3.7

 64 0.000568 2.33 0.00089 3.6

 96 0.000398 3.67 0.00461 42.5

 128 0.000128 2.10 0.00230 37.6

 192 0.000527 19.43 0.01331 490.8

 256 0.000093 6.11 0.03575 2343.0

 384 0.000453 66.87 0.03584 5284.1

 512 0.000472 123.72 0.36157 94784.0

 768 0.002734 1612.64 0.69930 412461.0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

X

U
(

X
)

,
 U

'(
X

)
,

 V
(X

)

First Program: 2N+1 = 1025 points 24 sig. bits

U
U1
V

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 13/28

u never gets much below about √ε , and making N too big actually worsens the total error by
amplifying roundoff. Usually. Roundoff contributes raggedly (not randomly) to the total error.

The gradient’s estimate u‡ is damaged worst by the destruction of the symmetry u(–x) ≡ u(x) by
roundoff, which tends to pile up towards the end at u2N–1 , generating a huge spike in the error

u‡
2N – u'(1) overwhelmingly bigger than every other error u‡

j – u'(xj) for 0 ≤ j < 2N .

Error in the First Program’s u ≈ u(x) carrying 24 sig. bits, N = 512

Error in the First Program’s u‡ ≈ u'(x) carrying 24 sig. bits, N = 512

This spike at x = 1 is not caused by the differential equation’s singularity at x = 0 . Instead the
spike is caused by the hypersensitivity to roundoff of our first program’s numerical method, as is
confirmed when the same program is rerun carrying everywhere 53 sig. bits instead of 24.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
-4 First Program: 2N+1 = 1025 points 24 sig. bits

X

Er
ro

r:
 C

om
pu

te
d

U
(X

)
-

Tr
ue

 U
(X

)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
First Program: 2N+1 = 1025 points 24 sig. bits

X

Er
ro

r:
 C

om
pu

te
d

U'
(X

)
-

Tr
ue

 U
'(X

)

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 14/28

By far the simplest remedy for the program’s loss of about half the sig. digits carried is to declare
all variables to be 8-byte double s and round all arithmetic to double ’s 53 sig. bits or more.

Then the error in u can be reduced below 10–9 and the error in u‡ below 10–6 if N exceeds

roughly 215
 . Increasing N too far beyond this loses to roundoff at least about half the 53 sig.

bits carried by double ’s arithmetic.

To achieve accuracy more nearly commensurate with the precision of all variables and arithmetic,
the program must incorporate iterative refinement using residuals computed accurately enough.
“Accurately enough” requires the trick. To expose its benefits fairly, the program must first be

simplified by the use of symmetry to eradicate singular solutions v and the spike in u‡’s error.

§9. The 2nd Program: After the symmetry condition uN+j = uN–j is applied, the internal

boundary condition derived above becomes N2·uN–1 – (N2
 – 1)·uN = 0 . That symmetry halves

the work needed to compute the desired solution u(x) ≡ u(–x) ; it need be computed only for
–1 < x ≤ 0 , whence uj ≈ u(xj) need be computed only for 1 ≤ j ≤ N .

How do we know that every regular solution u possesses the symmetry u(–x) ≡ u(x) ? There are two ways to prove

it: One way computes the power series expansion of u(x) = ∑n ≥ 0 µn·x
n/n! starting with an arbitrary µ0 = u(0) ≠ 0

though µ1 = u'(0) = 0 ; the other coefficients µn are obtained by recurrence after the series is substituted into the
differential equation. Doing so establishes that every µ2n+1 = 0 , whence follows u(–x) ≡ u(x) . A less laborious but

more devious proof starts from the observation that, if u(x) is a regular solution of (x·u')' + 4x·(1–x2)·u = 0 then so
are u(–x) and w(x) := u(x) – u(–x) ≡ –w(–x) ; moreover w(0) = w'(0) = 0 . Suppose, for the sake of an argument
by contradiction, that w(x) ≠ 0 somewhere. Where might w'(x) vanish in the open interval 0 < x < 1 ? If nowhere

then set ζ := 1 ; otherwise let x = ζ be the least zero of w'(x) in that interval. Then w(x) = ∫0x w'(ξ)dξ would have
the same sign, say positive, as w'(x) has for 0 < x < ζ ≤ 1 . And then we would find that

 0 < ∫0ζ 4x·(1–x2)·w(x)dx = –∫0ζ (x·w'(x))'dx = –ζ·w'(ζ) ≤ 0 . This is impossible.
Consequently w(x) = 0 at least for 0 ≤ x ≤ 1 ; beyond x = 1 the differential equation is regular and determines its
solution w(x) = 0 uniquely for all x ≥ 0 from w(1) = w'(1) = 0 . Therefore regular solutions u are symmetrical;
u(x) ≡ u(–x) is determined uniquely by u'(0) = 0 at its internal boundary and by u(±1) = 1 at an external boundary.

This uniqueness has important numerical consequences. It implies that the system of linear equations, obtained by
adjoining the internal boundary condition’s discretization to the differential equation’s, defines its solution uniquely;
so its new matrix TT + Diag(q) must be invertible and far enough from singular that the consequences of roundoff will
become negligible if it is kept small enough.

Here is the scheme simplified by symmetry: Choose a big integer N > 2 and set xj := j/N – 1 for

j := 0, 1, 2, …, N–1, N . Again every hj := 1/N , qj := 4xj·(1–xj)·(1+xj) = 4j·(N–j)·(j – 2N)/N3

and pj+1/2 := (j+1/2)/N – 1 . The numerical estimates uj of u(xj) satisfy discretized equations

aj–1·uj–1 + gj·uj + cj+1·uj+1 = 0 in which cj := aj–1 := N2·pj–1/2 = –N·(N–j + 1/2) again but now
for 1 ≤ j ≤ N , and gj := qj – aj–1 – cj+1 again but now for 1 ≤ j ≤ N–1 . The discretized internal

boundary condition N2·uN–1 = (N2
 – 1)·uN is effected by setting gN := N/2 – 1/(2N) and then

discarding cN+1·uN+1 . The external boundary condition is u0 := 1 .

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 15/28

Our second attempt to compute the elements [u1; u2; …; uN] of column u constructs a new
symmetric tridiagonal matrix TT + Diag(q) with [g1, g2, …, gN–1, gN] on its main diagonal and
[c2, c3, …, cN] = [a1, a2, …, aN–1] on its first superdiagonal and first subdiagonal. Every element
of column r is zero except for its first element r1 := –a0·u0 = –a0 that conveys the boundary
condition u(±1) := 1 .

To solve (TT + Diag(q))·u = r we first factorize TT + Diag(q) = E·B wherein B is bidiagonal with
[ß1, ß2, …, ßN] on its diagonal and [a1, a2, …, aN–1] on its first superdiagonal, and E is

bidiagonal with 1 everywhere on its diagonal and [e1, e2, …, eN–1] with ej := aj/ßj on its first
subdiagonal. The numbers ßj are computed from a recurrence ßj := gj – aj–1·ej–1 for j = 2, 3,
…, N in turn starting with ß1 := g1 . This amounts to the same Gaussian elimination without
pivotal exchanges as before; however, since the new TT + Diag(q) turns out to be positive definite
there is no risk now that some tiny pivot ßj–1 will be followed by an enormous ßj .

Forward substitution computes w := E–1·r : w1 := r1 and wj := –ej–1·wj–1 . Subsequent back-

substitution computes u := B–1·w : uN := wN/ßN and uj := (wj – aj·uj+1)/ßj . Finally, gradient

u'(x) is approximated by u‡ as before.

Results from the Second Program carrying 24 sig. bits (ε ≈ 6/108)

 N = #gaps, err(u) := maxj |uj – u(xj)| , err(u‡) := maxj |u
‡
j – u'(xj)| .

Different rounding errors cause this second program’s computed u to differ insignificantly from

the first’s; again, discretization contributes error about 2.4/N2 , and roundoff is still amplified by

a factor of the order of N2 , so errors in u never get much below √ε . Less roundoff occurs
when N is a power of 2 because then divisions by N are exact. The second program computes

the approximate gradient u‡ so much more accurately than the first did as to be adequate …
“… to give artistic versimilitude to an otherwise bald and unconvincing narrative”

from The Mikado by W.S. Gilbert and A.S. Sullivan

N err(u) err(u)·N2 err(u‡) err(u‡)·N2

 16 0.009324 2.39 0.01530 3.9

 24 0.004146 2.39 0.00662 3.8

 32 0.002326 2.38 0.00365 3.7

 48 0.001028 2.37 0.00158 3.6

 64 0.000663 2.73 0.00099 4.0

 96 0.000118 1.09 0.00022 2.0

 128 0.000073 1.19 0.00027 4.5

 192 0.000531 19.56 0.00102 37.7

 256 0.000095 6.24 0.00037 24.4

 384 0.000394 58.09 0.00107 157.3

 512 0.000338 88.59 0.00202 528.3

 768 0.006888 4062.71 0.01578 9310.2

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 16/28

in a computerized game. For reliable scientific and engineering computation the uncertainty in

u‡ , at least roughly 3.7/N2 + 2N3/1011
 , seems excessive. (The uncertainty is not the error

but instead our least estimate of how big the error isn’t; uncertainty is an error-bound.)

Like the first program, this second program loses at least about half the sig. bits carried by the
arithmetic. A fourth program below will attenuate roundoff’s amplification by appending suitably
programmed iterative refinement to this second program.

§10. Iterative Refinement: Each iteration will replace the currently computed u by u + ∆u
wherein ∆u is the computed (and therefore approximate) solution of E·B·∆u = s in which the
residual s approximates r – (TT + Diag(q))·u to reveal the extent to which u dissatisfies the
equation we wish to solve. The third program assigns “ s := r – (TT + Diag(q))·u ” computed just
as it is written here in arithmetic rounded to the same precision as was used to compute E and B .

But this program’s iterative refinement never improves accuracies much and often worsens them
when the second program’s accuracies most need improvement. Such disappointing performance
cannot come as a surprise when we recall that roundoff contaminates both the residual computed
from the expression “ r – (TT + Diag(q))·u ” and the triangular factorization TT + Diag(q) = E·B
about equally badly. Iterative refinement cannot be expected to improve the accuracy of u unless
the residual s is computed more accurately than the factorization.

The fourth program differs from the third only by computing the residual s more accurately and,

in benign computing environments, effortlessly. We assume all arrays u, u‡, q, r, {aj}, {ß j}
and {ej} to be stored as arrays of 4-byte float s. The elements gj := qj – aj–1 – aj are assumed
to be computed at the moments of need or else stored as an array of 8-byte double s; trickier
ways to cope with {gj} will be passed over for the sake of a simpler exposition.

In a benign computing environment, as was provided by the original Kernighan-Ritchie C and
is now available fom some implementations of C99, the float residual s can be computed
amply accurately from any one of the three assignments

 “ sj := r j – aj–1·uj–1 – gj·uj – aj·uj+1 ” or
 “ sj := r j – aj–1·uj–1 – (qj – aj–1 – aj)·uj – aj·uj+1 ” or
 “ sj := r j – aj–1·(uj–1 – uj) – aj·(uj+1 – uj) – qj·uj ”

each of whose right-hand side’s every arithmetic operation is rounded to double before being
stored as a float in sj . Adequate accuracy is achieved thus with no extra effort nor thought.

In a FORTRANnish environment like JAVA or ANSII C (1987), the foregoing assignments must
be encumbered by casts (conversions to double) to achieve amply adequate accuracy thus:

 “ sj := r j – aj–1·(double)uj–1 – gj·uj – aj·(double)uj+1 ” or
 “ sj := r j – aj–1·(double)uj–1 – (((double)qj – aj–1) – aj)·uj – aj·(double)uj+1 ” or
 “ sj := r j – aj–1·((double)uj–1 – uj) – aj·((double)uj+1 – uj) – qj·(double)uj ” .

In a benighted environment where double is unavailable or too inconvenient or too slow, barely
adequate accuracy can be achieved at the cost of two extra subtractions via a tricky expedient:

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 17/28

 “ sj := r j – aj–1·((uj–1 – uj) – (uj+1 – uj)) – (aj – aj–1)·(uj+1 – uj) – qj·uj ” .
 HONOR PARENTHESES !
This formula for residuals produced the results tabulated below, all computed using only float
variables and precision throughout the fourth program. This formula should work in MATLAB 7.
This formula is not preferable to the formulas above for benign or FORTRANnish environments,
using double arithmetic upon float variables; those formulas produce slightly better results
(not tabulated below) with no need for the analysis in §7 nor Appendix 1.

Results from the Fourth Program carrying 24 sig. bits (ε ≈ 6/108)

 N = #gaps, M = #refinements, err(u) := maxj |uj – u(xj)| , err(u‡) := maxj |u
‡
j – u'(xj)| .

N M err(u) err(u)·N2 err(u‡) err(u‡)·N2 M N

 16 0 & 1 0.00932 2.39 0.0153 3.9 0 & 1 16
 24 0 & 1 0.00414 2.39 0.0066 3.8 0 & 1 24
 32 0 & 1 0.002326 2.38 0.00365 3.7 0 & 1 32
 48 0 0.001028 2.37 0.00158 3.6 0

481 & 2 0.0010349 2.38 0.001612 3.71 1 & 2

 64 0 0.000663 2.73 0.00099 4.0 0
641 & 2 0.0005821 2.38 0.000904 3.70 1 & 2

 96 0 0.000118 1.09 0.00022 2.0 0
961 & 2 0.0002586 2.38 0.000393 3.62 1 & 2

 128 0 0.000073 1.19 0.00027 4.5 0
1281 & 2 0.0001456 2.39 0.000206 3.38 1 & 2

 192 0 0.000531 19.56 0.00102 37.7 0
1921 & 2 0.0000646 2.38 0.000107 3.94 1 & 2

 256 0 0.000095 6.24 0.00037 24.4 0
2561 & 2 0.0000364 2.39 0.000061 4.00 1 & 2

 384 0 0.000394 58.09 0.00107 157.3 0

384
1 0.0000162 2.39 0.000049 7.27 1

2 & 3 0.0000162 2.39 0.000053 7.81 2 & 3

 512 0 0.000338 88.59 0.00202 528.3 0

512
1 0.0000091 2.38 0.000061 16.11 1

2 & 3 0.0000092 2.41 0.000065 16.92 2 & 3

 768 0 0.006888 4062.71 0.01578 9310.2 0

768
1 0.0000156 9.20 0.000089 52.50 1

2 & 3 0.0000041 2.41 0.000088 51.75 2 & 3

1024 0 0.0037995 3984.06 0.012934 13561.9 0

1024
1 0.0000062 6.45 0.000119 124.27 1

2 & 3 0.0000024 2.49 0.000114 119.36 2 & 3

1536 0 0.0091051 21481.52 0.021961 531.6 0

1536
1 0.0000313 73.85 0.000225 531.61 1

2 & 3 0.0000012 2.90 0.000174 411.38 2 & 3

2048 0 0.0381667 160082.62 0.076282 319949.1 0

2048

1 0.0004934 2069.63 0.001069 4483.10 1
2 0.0000057 23.79 0.000240 1006.40 2
3 0.0000006 2.56 0.000243 1019.33 3

4 & 5 0.0000007 2.86 0.000236 988.87 3 & 4

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 18/28

The dwindling accuracy of the estimated gradient u‡ as N increases beyond about 500 evinces
a Law of Diminishing Returns enforced by roundoff. How? The graphs below explain it all:

Error in the Fourth Program’s u ≈ u(x) computed carrying 24 sig. bits, N = 1024, M = 3

Error in the Fourth Program’s u‡ ≈ u'(x) computed carrying 24 sig. bits, N = 1024, M = 3

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0

0.5

1

1.5

2

2.5

x 10
-6

X

E
rr

or
s:

 u
 -

 U
(x

)
 a

nd
 R

ou
nd

ed
(U

(x
))

 -
 U

(x
)

4th program: 24 Sig. Bits, N+1 = 1025 Points, M = 3 Refinements

Computed U - U(x)
Rounded U(x) - U(x)

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-1

-0.5

0

0.5

1

1.5
x 10

-4

X

4th program: 24 Sig. Bits, N+1 = 1025 Points, M = 3 Refinements

Er
ro

r:
 u

1
- U

'(x
)

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 19/28

The dwindling accuracy of the estimated gradient u‡ as N increases beyond about 500 comes
mostly from the act of rounding arrays {xj}, {a j} and q and computed solution u to float ’s
24 sig. bits. Roundoff adds raggedness to an otherwise smooth graph of u ’s discretization error

which grows to about 2.36/N2
 . Much of u ’s raggedness comes from rounding u and doubles

from about ε to 2ε = 2–23 ≈ 1.2/107 as x increases past –0.553943 and u(x) increases past

2 . Then computing u‡ from the divided differences of u amplifies its raggedness by a factor
often almost as big as N . The graphs corroborate these estimates; and the the tabulated results

corroborate error-analyses that predict u‡’s loss of at least roughly a third of the arithmetic’s sig.
digits if the gradient is computed from the divided-difference quotients used in our four programs.

Two thirds of float ’s 24 sig. bits is accuracy adequate for most engineering applications of u‡,
and this much accuracy is achieved by using the tricks presented in these notes.

The fourth program’s tabulated results reveal another way for an excessively big N to exacerbate
the effect of roundoff: It slows the convergence of iterative refinement. This happens because the

condition number κ(TT + Diag(q)) := ||TT + Diag(q)||·||(TT + Diag(q))–1|| tcomes to roughly 4N2 for
any plausible norm ||…|| . Iterative refinement converges quickly only if roundoff disturbs the
triangular factorization of TT + Diag(q) by rather less than its distance from the nearest singular
matrix, and this happens only if ε·κ(TT + Diag(q)) << 1 . This implies that convergence is too
likely to go slow unless N << 1/√4ε = 2048 . The bound is corroborated by the tabulated results,
which exhibit accuracy adequate for most practical purposes achieved by one refinement at gap-
counts N roughly between 100 and 500 , and more refinements needed when N ≥ 1536 .

There are better ways to solve the foregoing example’s boundary-value problem. Shooting methods that recast the
boundary-value problem as a sequence of initial-value problems work well with this example, if shooting starts at the
differential equation’s singularity, because the recast differential equation is stable; u(x) = v(x)/v(1) from §3 . But
no such methods work upon the partial differential equations for which this note’s trick is intended. Another method
that works well upon the example is Collocation of Splines; this method is implemented as bvp4c in recent
MATLAB versions. Analogous methods for partial differential equations are too complicated to get used much.

§11: Discretization of an Elliptic Boundary-Value Problem: Given Φ(x,y) on the boundary
∂Ω of the unit square [0, 0] ≤ [x, y] ≤ [1, 1] , we seek the solution Φ(x,y) inside Ω of

 Laplace’s Equation: Div Grad Φ(x,y) = ∇ 2Φ(x,y) := ∂2Φ(x,y)/∂2x + ∂2Φ(x,y)/∂2y = 0 .

Numerical solutions F(x,y) will be compared with Φ(x,y) := log((x+)2 + y2) whose boundary

values on ∂Ω have been chosen for this example. F will approximate Φ inside Ω at the

(N–1)2 intersections of a mesh that covers Ω by small squares each θ := 1/N on a side. On this

mesh the differential operator ∇ 2 is approximated by a difference operator ♠ defined thus:

 ♠Φ (x,y) := (Φ(x–θ,y) + Φ(x,y–θ) –4·Φ(x,y) + Φ(x+θ,y) + Φ(x,y+θ))/θ2

 = ∇ 2Φ(x,y) + O(θ2) as θ → 0 .
Discretization approximates Φ by the solution F of ♠ F = 0 on the mesh inside Ω . This last
equation turns into a system A·ƒ = b of linear equations in which column ƒ contains the values
of F inside Ω , and column b is determined by 4·(N–1) values on ∂Ω . These columns and

matrix A have huge dimension (N–1)2 but A is sparse with bandwidth 2N–1 .

1
8

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 20/28

 –4.16 < Φ(x, y) = log((x+1/8)2 + y2) < 0.82

 1.3 < || Grad Φ(x, y) || ≤ 16

 The coordinates’ origin is behind and under this surface.

Grad Φ(x, y) is the transpose of Φ'(x, y) = 2·[x+ , y]/((x+)2 + y2) , to be approximated by

 Φ‡(x,y) := [Φ(x+θ,y) – Φ(x–θ,y), Φ(x,y+θ) – Φ(x,y–θ)]/(2θ) = Φ'(x,y) + O(θ2) .

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

-5

-4

-3

-2

-1

0

1

 X
 Y

 P
hi

 (
 X

, Y
)

0

0.5

1

00.20.40.60.81

0

2

4

6

8

10

12

14

16

 Y X

 ||
 G

ra
d

P
hi

 (
 X

, Y
)

 ||

1
8
--- 1

8

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 21/28

Equation “ A·ƒ = b ” was solved by Successive Over-Relaxation to get a first approximation f to
the column ƒ of values of F . This iteration’s stopping criterion was chosen to avoid dithering;
see my web pages’ …/Math128/SlowIter.pdf . Then one iterative refinement computed residual
r := A·f – b and solved “ A·∆f = r ” to approximate ƒ better, presumably, by f – ∆f .

The foregoing process was performed thrice, first using an ordinary matrix multiply to compute
A·f and A·∆f , and second computing them with a trick that replaced the crude formula

 ♠ F(x,y) := (F(x–θ,y) + F(x,y–θ) –4·F(x,y) + F(x+θ,y) + F(x,y+θ))/θ2
by the algebraically equivalent but numerically more accurate 2nd-order ♠ formula

 ♠ F(x,y) := (((F(x+θ,y) – F(x,y)) – (F(x,y) – F(x–θ,y))) +
 + ((F(x,y+θ) – F(x,y)) – (F(x,y) – F(x,y–θ))))/θ2

to take advantage of exact subtractive cancellations. These two computations were performed
entirely in 4-byte float arithmetic carrying 24 sig.bits. The third computation of F was
performed in 8-byte double carrying 53 sig.bits to nearly nullify roundoff. Thus, six sets of
values F and their errors E := maxx,y|F(x,y) – Φ(x,y)| were generated to be compared:

 Etrue2 E computed from the tricky formula for ♠ F carrying 53 sig.bits.
 Etrick2 E computed from the tricky formula for ♠ F carrying 24 sig.bits.
 Ecrude2 E computed from the crude formula for ♠ F carrying 24 sig.bits.

Each E was recorded both before and after iterative refinement.

Everything above was repeated for each of a sequence of diminishing mesh-gaps θ = 1/N . Since

♠Φ = ∇ 2Φ + O(θ2) we expected E·N2 to approach a constant as N → ∞ except for roundoff.

Tabulated below are computed results with E before iterative refinement shown above E after:

 Worse!
The crude formula for ♠ lost almost two sig.dec. more than the tricky formula, which allowed
iterative refinement to render the final error E almost as small as if F matched Φ to 23 sig.bits.
The crude formula’s residual was not accurate enough to ensure that iterative refinement would
always diminish the error E .

N Etrue2 …·N2 Etrick2 …·N2 Ecrude2 …·N2

 128
 7.481e-5 1.226

2.030e-4 3.326 2.025e-4 3.318

7.472e-5 1.224 7.816e-5 1.281

 256
 1.872e-5 1.227

7.440e-5 4.876 7.766e-5 5.089

1.879e-5 1.231 5.081e-5 3.33

 512
 4.681e-6 1.227

1.878e-5 4.924 5.076e-5 13.31

4.787e-6 1.255 4.434e-5 11.62

1024
1.170e-6 1.227

4.912e-6 5.151 4.440e-5 46.56

1.285e-6 1.348 3.363e-5 35.27

2048
2.926e-7 1.227

1.488e-6 6.240 3.386e-5 142

4.085e-7 1.713 3.394e-5 142.4

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 22/28

§12. Computing Grad Φ : When derivative Φ' , approximated by the

 Central Divided Difference Φ‡(x,y) := [Φ(x+θ,y) – Φ(x–θ,y), Φ(x,y+θ) – Φ(x,y–θ)]/(2θ)

 = Φ'(x,y) + O(θ2) ,

is further approximated by the computed F‡(x, y) , sources of error accrue to include …

• O(θ2) inherited from Φ‡
 , and

• error F‡ – Φ‡ = (F – Φ)‡ due to the differential equation’s discretization, and
• at least O(ε·F/θ) due to roundoff’s contamination of F .

The relative magnitudes of these sources are not often knowable in advance. For instance, the

second source F‡ – Φ‡ is usually much smaller than (F – Φ)/θ because the discretization’s error
F – Φ is usually smoothly Pillow-Shaped, as was the error (Computed u – u) plotted on p.18
(after its raggedness due to roundoff is smoothed away). The third source’s rounding errors
depend upon the numerical method in detail including any trick intended to attenuate them.

The first source’s O(θ2) turned out to be the preponderant contributor to our example’s error

F‡ – Φ' at gap sizes θ whose F – Φ was about as small as roundoff allowed after tricks. This
became evident when F was is recomputed using a higher-order (6th) discretization that reduced

F – Φ from O(θ2) to O(θ6) for θ small enough though perhaps not so small as before. The
higher-order discretization replaced the discretized Laplacian ♠Φ (x,y) everywhere above by …

 ♣Φ(x,y) := (Φ(x–θ,y+θ) + 4·Φ(x,y+θ) + Φ(x+θ,y+θ) +
 4·Φ(x–θ,y) – 20·Φ(x,y) + 4· Φ(x+θ,y) +

 Φ(x–θ,y–θ) + 4·Φ(x,y–θ) + Φ(x+θ,y–θ))/(6·θ2)

 = ∇ 2Φ(x,y) + ∇ 4Φ(x,y)·θ2/12 + (∇ 6Φ(x,y) + 2∂4∇ 2Φ(x,y)/∂x2∂y2)·θ4/360 + O(θ6)
 = O(θ6) if ∇ 2Φ = 0 .

The trick that attenuated most of the roundoff in ♣F computed it from …

 ♣F(x,y) := (4·(θ2·♠ F(x,y)) + (((F(x–θ,y+θ) – F(x,y)) + (F(x+θ,y–θ) – F(x,y))) +

 ((F(x–θ,y–θ) – F(x,y)) + (F(x+θ,y+θ) – F(x,y)))))/(6·θ2) .

As before, six sets of values F and their errors E := maxx,y|F(x,y) – Φ(x,y)| were generated,
but now from the equation “ ♣F(x,y) := 0 ”, to be compared:

 Etrue6 E computed from the tricky formula for ♣F carrying 53 sig.bits.
 Etrick6 E computed from the tricky formula for ♣F carrying 24 sig.bits.
 Ecrude6 E computed from the crude formula for ♣F carrying 24 sig.bits.

Each E is tabulated below both before (above) and after iterative refinement (under). Also
tabulated is Etrue2 to facilitate a comparison of accuracies from ideal 2nd-order ♠ and 6th-order
♣ formulas unobscured by roundoff, though it crept into ♣ at the bottom of the table.

The crude ♣ lost about one sig.dec. more than the tricky ♣ , whose iterative refinement for
N ≥ 64 produced F matching Φ to about 23 sig.bits. The crude formula’s residual was not
accurate enough to ensure that iterative refinement would always diminish the error E .

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 23/28

 Errors E := maxx,y|F(x,y) – Φ(x,y)|

An adequately accurate approximation to the gradient required gap-sizes θ = 1/N rather smaller

than sufficed for adequate accuracy in F . The error D := maxx,y||F‡(x,y) – Φ'(x,y)|| was found
for both crude and tricky versions of both ♠ and ♣ , for arithmetics carrying both 24 and 53
sig.bits, and before and after iterative refinement though it made little difference. The following
versions of D are tabulated below:

 Dtrue6 D computed from the tricky formula for ♣F carrying 53 sig.bits.
 Dtrick6 D computed from the tricky formula for ♣F carrying 24 sig.bits.
 Dcrude6 D computed from the crude formula for ♣F carrying 24 sig.bits.
 Dtrick2 D computed from the tricky formula for ♠ F carrying 24 sig.bits.

 D := maxx,y||F‡(x,y) – Φ'(x,y)||

N Etrue6 …·N6 Etrick6 Ecrude6 Etrue2

16
9.677e-5 1.6e3

9.681e-5 9.705e-5
4.387e-39.681e-5 9.658e-5

32
2.084e-6 2.2e3

2.039e-6 2.039e-6
1.179e-32.039e-6 2.039e-6

64
3.225e-8 2.2e3

6.928e-7 9.254e-6
2.979e-41.708e-7 1.635e-6

128
5.126e-10 2.3e3

1.859e-6 2.760e-6
7.481e-52.845e-7 2.290e-6

256 8.103e-12 2.3e3 5.362e-7 2.366e-6
1.872e-58.104e-12 2.3e3 2.283e-7 2.720e-6

512 1.121e-13 2.0e3 3.665e-7 2.685e-6
4.681e-61.266e-13 2.3e3 2.900e-7 8.151e-6

N Dtrue6 …·N2 Dtrick6 Dcrude6 Dtrick2

16
0.3207 82.09

0.3207 0.3207 0.2948
0.3207 0.3207 0.2948

32
0.161 164.8

0.161 0.161 0.1537
0.161 0.161 0.1537

64
0.05773 236.5

0.05772 0.05767 0.05467
0.05773 0.05772 0.05458

128
0.01731 283.6

0.01732 0.0174 0.01593
0.01731 0.01732 0.0161

256
0.004745 311

0.004778 0.004847 0.004456
0.004727 0.004847 0.004415

512
0.001243 325.8

0.001297 0.001398 0.001328
0.001297 0.001398 0.001231

1024
0.000318 333.4

---- ---- 0.000526
---- ---- 0.0004997

2048
8.043e-5 337.4

---- ---- 0.0008799
---- ---- 0.0006271

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 24/28

The tabulated magnitudes of the errors F‡ – Φ' reflect a contribution roughly 333·θ2 due mostly

to either a mesh-gap θ too big, or a 2nd-order formula F‡ too crude, rather than F – Φ too
inaccurate. This could hardly have been known in advance. 4th-order formulas more refined than

F‡ come from the calculus of divided differences as follows:

Given a sufficiently differentiable ƒ(x) , its derivative ƒ'(x) is approximated by

 ƒ†(x,θ) := (ƒ(x+θ) – ƒ(x))/θ = ƒ'(x) + O(θ) ;

 ƒ‡(x,θ) := (ƒ†(x+θ) + ƒ†(x–θ))/2 = ƒ'(x) + O(θ2) ;

 (4·ƒ‡(x,θ) – ƒ‡(x,2θ))/3 = ƒ'(x) + O(θ4) ;

 4·ƒ†(x,θ) – 6·ƒ†(x,2θ) + 4·ƒ†(x,3θ) – ƒ†(x,4θ) = ƒ'(x) + O(θ4) ;

 ƒ†(x,–θ)/4 + 3·ƒ†(x,θ)/2 – ƒ†(x,2θ) + ƒ†(x,3θ)/4 = ƒ'(x) + O(θ4) .
The last three formulas would take better advantage of the accuracy of F computed from ♣ , but
at the cost of complication: One formula works better than the others deep inside the square Ω ,
and the last two are needed near its boundary. The complication does not alter our tricks.

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 25/28

§13. Conclusions: These notes’ thesis, supported by analysis and examples, is that boundary-
value problems div(p·grad u) + q·u = r can be discretized by divided differences and solved
faster and accurately enough for most practical purposes (including gradients) when all arrays
are stored as 4-byte float s instead of double s 8 bytes wide, and all arithmetic is rounded to
float s’ 24 sig. bits, as many current graphics processors do. Residuals must be computed
accurately enough via a trick effortless only if cancelling residuals are computed using arithmetic
rounded to higher precision, say the 53 sig. bits of double precision, which computers used to
do automatically when programmed in Kernighan-Ritchie C as it was before the mid-1980s.

The examples were chosen to illustrate three additional observations:

• Without tricks, float s are now too inaccurate for reliable scientific and engineering work.

• Rounding errors can corrupt severely a regular solution of a singular differential equation unless
the discretization is designed to filter out singular solutions and also to preserve vital symmetries.

• If residuals are computed well enough, the accuracy of a computed solution tends to improve
with iterative refinement after the discretization is refined by an increase in the density of mesh-
points. But the rate of improvement declines as a solution’s accuracy approaches the arithmetic’s
precision; and further mesh refinement incurs retardation of iterative refinement’s convergence.

The tricks presented in these notes are palliatives, not cures for ailments that afflict scientific and
engineering computation in an era when floating-point arithmetic is employed overwhelmingly
more often for games and entertainment. Two of the ailments are, first, a lack of programming
tools to help diagnose failure modes peculiar to floating-point computation and, second, wide-
spread misunderstandings of roundoff among scientists, engineers and even numerical analysts.
Because almost all of them view cancellation as an enemy rather than an ally to combat roundoff,
they are predisposed to overlook the trickier tricks in these notes. Education will not cure their
misunderstandings since a study of roundoff is so unlikely to be added to an already overloaded
college undergraduate’s syllabus. Besides, students forget tricks taught but not soon exercised.

Incurable ailments are best prevented by prophylaxis like vaccination, healthy diet and exercise,
and seat-belts and air-bags. The analogous prophylaxis for numerical computation is arithmetic
extravagantly more precise than the data and the accuracy desired in results. Ideally programming
languages should supply this much precision by default, without requiring an explicit request
from programmers naive about floating-point roundoff though clever at things they care about. If
a daredevil programmer chooses to trade accuracy away for speed, let that be his decision, not
decided by the designers and implementors of programming languages and program development
environments, nor a decision forced upon them by obeisance to benchmarks that rate only speed
regardless of reliability. Languages for typical programmers should presuppose this mantra:

Routinely (by default) perform all arithmetic and carry all intermediate variables
extravagantly more precisely than the data and the accuracy desired in computed results.

It’s just a matter of time until every one of us has occasion to depend upon software promulgated
perhaps over the Internet and produced by some programmer numerically naive but otherwise
clever, maybe ourself. The interests of all of us are served better if programming environments
are designed first to help get things right and after that, if need be, to help speed them up.

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 26/28

§14. Appendix 1: This concerns a trick to compute scalar z := A·x – B·y more accurately when
it cancels severely enough that |z| << Z := |A·x| + |B·y| because both A/B and x/y are so near
1 . If z is computed naively from the expression “ A·x – B·y ” literally, its uncertainty due to the
two multiplications’ roundoff will be of the order of ±ε·Z , where ε is the roundoff threshold.

But whenever both 1/2 ≤ e–2θ ≤ A/B ≤ e2θ ≤ 2 and 1/2 ≤ e–2φ ≤ x/y ≤ e2φ ≤ 2 , the trick reduces
the uncertainty in z to something of the order of ±ε·(|z| + Z·tanh(θ+φ)) . This is substantially
smaller than ±ε·Z when θ and φ are both tiny of order h… , as is the case when the trick is used
to compute aj–1·(uj–1 – uj) – cj+1·(uj – uj+1) more accurately for tiny gaps hj–1 and hj .

Before the trick is explained it will be liberated from a spurious argument that would render the
trick superfluous. The argument presumes that at least some of the data has inherited uncertainty
from previous computation; say A = a·(1 ± ε) and B = b·(1 ± ε) because roundoff has altered
their computed values away from their ideal but now unknown values a and b resp. Then even
if no further rounding error occurred the computed value of z = a·x – b·y ± ε·(|a·x| + | b·y|) would
inherit uncertainty ±ε·(|a·x| + | b·y|) almost the same as the uncertainty ±ε·(|A·x| + |B·y|) that the
trick is designed to attenuate. Thus the trick could get rid of at most about half the uncertainty
that roundoff adds to z . If this argument were correct, the trick would not be worthwhile.

The argument would be correct if z were the only thing computed from the data A, B, x and y .
The argument’s logic falls short when some of this data appears in other expressions like z and
destined to combine with it. The argument overlooks the fact that uncertainties due to roundoff
are not uncorrelated, much less random. To succeed, error-analysis must take correlations into
account lest its excessive pessimism generate misconceived advice and bad decisions.

The trick computes z not from the expression “ A·x – B·y ” but from either of two formulas
 “ z := (A–B)·x + B·(x–y) ” and “ z := A·(x–y) + (A–B)·y ”

suggested by the Calculus of Divided Differences; see the product rule on p. 2 of my posting
<www.cs.berkeley.edu/~wkahan/Math185/Derivatives.pdf> .

The hypothesis that both 1/2 ≤ A/B ≤ 2 and 1/2 ≤ x/y ≤ 2 ensures that “ x–y ” and “ A–B ” are
computed exactly despite cancellation, at least if the arithmetic conforms to IEEE Standard 754
for Binary Floating-Point Arithmetic, and also for practically all current hardware arithmetics.

There were hardware arithmetics designed in the 1960s, some lingering into the early 1990s, whose subtractions
lacked a Guard Digit and consequently could not guarantee substantial cancellation free from new roundoff. Such
arithmetics died after hardware designers learned that lack of a guard digit conferred no performance advantage.
Young designers of new fast graphics processors may not yet have learned that lesson. A guard digit is usually
omitted from software-simulated floating-point whose precision exceeds what is built into the hardware, but such
arithmetic is unlikely to figure in the circumstances pertinent here.

Let’s choose the first of the two formulas above. Its value actually computed for z is
 z ± ε·(ζ + |z|) := A·x – B·y ± ε·(|A–B|·|x| + |B|·|x–y| + |z|)

when rounding errors in the two multiplications and the addition are taken into account. Thus, to
compare the trick’s z ± ε·(ζ + |z|) with the naively computed z ± ε·Z we must compare the
magnitudes of …

 z := A·x – B·y , Z := |A·x| + |B·y| and ζ := |A–B|·|x| + |B|·|x–y|

when e–2θ ≤ A/B ≤ e2θ and e–2φ ≤ x/y ≤ e2φ , and θ and φ are both tiny.

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 27/28

To simplify the comparisons without loss of generality we assume first that 0 < B ≤ A ≤ e2θ·B ;
otherwise we first reverse the signs of z, A and B and/or swap A with B and x with y . The
second simplification reverses the signs of x, y and z if necessary to reduce the comparisons to

two cases: either 0 < y ≤ x ≤ e2φ·y or else 0 < x ≤ y ≤ e2φ·x . In both cases we find that
 |z|/Z ≤ tanh(θ+φ) , ζ/Z ≤ tanh(θ+φ) , and (ζ + |z|)/Z ≤ 2·tanh(θ+φ) .

The verification of these inequalities is left to the very diligent reader.

Consequently, as θ → 0 and φ → 0 independently, the ratio (ζ + |z|)/Z of the trick’s to the
naive evaluation’s uncertainties tends to zero at least as fast as 2(θ+φ) does.

Whether this tricky attenuation of uncertainty due to roundoff is worth its cost in extra arithmetic
depends first upon how many digits of accuracy you can afford to lose, and second upon your
programming skill at overlapping and pipelining the two extra arithmetic operations. No such
trick nor other artifice is needed for programs in languages that, on computers most widespread
atop laps and under desks, can evaluate every arithmetic expression extra-precisely by default.

§15. Appendix 2: A divided-difference discretization that converges at higher order (faster) as
all gaps approach zero need not necessarily entail higher order divided differences which increase
the bandwidth or otherwise degrade the sparsity of the discretized equations that must be solved.

The discretization of the boundary-value problem (P·U')' + Q·U = R poses a dilemma when the
solution U(x) fluctuates so much faster over some of its domain than over the rest as to call for a
grid with varying gaps hj smaller where U(x) fluctuates faster. Which of the following three
strategies should be tried first?

• Keep all the gaps hj := h the same and use a simple finite-difference formula whose

 discretization error is of order h2 or smaller though the density of mesh-points will be
 excessive wherever the solution fluctuates languidly.

• Vary the gaps hj Adaptively (making them smaller wherever U(x) fluctuates faster)
 and use a divided-difference formula like that in §4 whose discretization error of low

 order |hj – hj–1| + (hj + hj–1)
2 requires grid points of higher density wherever it varies.

• Vary the gaps hj adaptively using a complicated divided-difference formula like ££U

 below whose discretization error of order hj
2

 + hj–1
2 allows a lower mesh-point density

 while preserving the tridiagonal form of the discretized equations to be solved for u .

To exhibit that complicated formula ££U is the purpose of this appendix. ££U approximates not
the differential operator LLU(x) := P(x)·U" (x) + P'(x)·U'(x) = (P(x)·U'(x))' but a composite

 LLU(x) + (1/3)(h–k)·(LLU(x+h) – LLU(x–k))/(h+k)
wherein h = hj and k = hj–1 are the small gaps immediately astride x = xj . The approximation
is intended to be substituted not into the given differential equation LLU(x) + Q(x)·U(x) = R(x)
but into its algebraically equivalent reformulation …

File FloTrik Floating-Point Tricks … version dated September 10, 2013 6:21 pm

Prof. W. Kahan’s notes for Math. 128B Page 28/28

 LLU(x) + (1/3)(h–k)·(LLU(x+h) – LLU(x–k))/(h+k)
 + Q(x)·U(x) + (1/3)(h–k)·(Q(x+h)·U(x+h) – Q(x–k)·U(x–k))/(h+k)

= R(x) + (1/3)(h–k)·(R(x+h) – R(x–k))/(h+k)
at each internal mesh-point x = xj .

The complicated discrete approximation ££U(x, h, k) to the composite differential/difference
operator above is built out of several difference operators thus:

 U†(x, h) := (U(x+h) – U(x))/h ; P†(x, h) := (P(x+h) – P(x))/h ;

 ¥¥U(x, h) := (P(x+h) + P(x))·U†(x, h) ;

 $$U(x, h, k) := (U†(x, h) – U†(x, –k))·P†(x–k, h+k) – (P†(x, h) – P†(x, –k))·U†(x–k, h+k) ;
 ££U(x, h, k) := ((¥¥U(x, h) – ¥¥U(x, –k)) + (1/3)·(h–k)·$$U(x, h, k))/(h+k) .

The following substitutions discretize the reformulated differential equation: Replace it by
 ££U(x, h, k) + Q(x)·U(x) + (1/3)(h–k)·(Q(x+h)·U(x+h) – Q(x–k)·U(x–k))/(h+k)

= R(x) + (1/3)(h–k)·(R(x+h) – R(x–k))/(h+k)
and then substitute xj for x , hj for h , hj–1 for k , and uj for U(xj) at every internal mesh-
point xj to produce a tridiagonal system of linear equations to be solved for the column u . Its
discretization error turns out to be of second-order in the gap sizes because

 LLU(x) + (1/3)(h–k)·(LLU(x+h) – LLU(x–k))/(h+k) – ££U(x, h, k) = O(h2 + k2) .

If U'(x) appears in a boundary condition its discretization can be obtained from the formula

 (k·U†(x, h) – h·U†(x, k))/(k–h) = U'(x) + O(h·k) .

If tricky suppression of roundoff in ££U(x, h, k) is needed, restrict gaps hj to powers of 1/2 as
explained in §7, and change the expression “ ¥¥U(x, h) – ¥¥U(x, –k) ” in the definition above of

££U(x, h, k) to “ (P(x+h) – P(x–k))·U†(x, h) + (P(x–k) + P(x))·(U†(x, h) – U†(x, –k)) ” when
computing residuals. Another small improvement replaces “ Q(x+h)·U(x+h) – Q(x–k)·U(x–k) ”
by “ Q(x+h)·(U(x+h) – U(x–k)) + (Q(x+h) – Q(x–k))·U(x–k) ” .

The complicated second-order divided-difference discretization exhibited above does not so much
resolve the dilemma presented at the beginning of this appendix as it relieves us of the necessity to
employ the crude first-order divided-difference discretization of §4 when gaps hj vary. The
dilemma persists because, when all gaps have the same tiny width h , more accurate fourth-order
tridiagonal discretizations can be constructed from at most second-order finite differences. These
are a story for another day.

