File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

Floating-Point Tricks to Solve Boundary-Value Problems Faster

Prof. W. Kahan
Math. and Computer Sci. Depts.
Univ. of Calif. @ Berkeley

80. Abstract: Old tricks are exhumed to accelerate the numerical solution of certain discretized
boundary-value problems. Without the tricks, half the digits carried by the arithmetic can be lost
to roundoff when the discretization’s grid-gaps get very small. The tricks can procure adequate
accuracy from arithmetic withioat variables 4-bytes wide instead @fuble variables 8-

bytes wide that move slower through the computer's memory system and pipelines. The tricks are
tricky for programs written in MrLAB™ 7+, AvA, FORTRAN and post-1985 WsIC. For the

original Kernighan-Ritchi€ of the 1970s, and for the few implementation<C80 that fully

support IEEE Standard 754 for Binary Floating-Point, most of the tricks are easy or unnecessary.
Their efficacy is illustrated here by examples.

Contents:
81. Introduction: page 2
§2: Discretized Initial-Value Problem y/dit = f(y) : 3
83: An Example 4
84. Discretized Boundary-Value ProblemP-l{')' + Q-U =R 5
85. How Roundoff Corrupts the Discretization: 6
86. Accurate Residuals: 8
87. A Trickier Trick: 9
88. Example: ou) + 4x-(1—>?)-u =0 10
First Program’s Computed Graphs wpfu' andv, and their errors 12-13
89. The 2nd Program: preserves symmetry 14
2nd Program’s Results 15
810. Iterative Refinement: recovers accuracy if done right 16
4th Program’s Results 17 - 18
811. Discretization of an Elliptic Boundary-Va;ue Problem: Laplace’s Equation 19
Graphs of® and ||Gra®|| 20
Computed Results fo® 21
812. Computing Grad 22
§13. Conclusions: Hardly any programmers will ever know the tricks. 25
814. Appendix 1: accuracy despite cancellation 26
815. Appendix 2: tridiagonal and 2nd order despite variable gaps 27

Posted atwww.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf

Prof. W. Kahan's notes for Math. 128B Page 1/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

81. Introduction: Computations, formerly carried out in 8-byte-widgible floating-point,

could afford to lose over half the arithmetic's 16 sig.dec. and yet retain accuracy adequate for
almost every requirement by scientists and engineers. Now they are tempted todepi&ce

by 4-byte-widefloat variables that will move twice as fast through computers’ pipelines and
vast memories, dissipate half the energy, and take advantage of inexpensive hardware mass-
produced for entertainment and communications. But this replacement exacerbates the threat to
accuracy from roundoff that was formerly ignored. Only if unnoticed can the loss of about half
the 7 sig.dec. ofloat arithmetic be ignored.

There are tricks that defend discretized differential equations against excessive loss to roundoff.

A few of us used these tricks in the 1970s during the brief reign of small computefsavith
arithmetic hardware but natouble . The tricks ran faster thasbuble simulated in software.
The tricks relied upon a property of floating-point subtractive cancellation:

If p and g are floating-point numbers of the same precision,

and if 1/2<plg< 2,

then p-q is computed exactly, unsullied by a rounding error.
A proof appeared on p. 138 &loating-Point Computatiorby P.H. Sterbenz (1974, Prentice-
Hall, NJ). Rare exceptions occurred on perverse hardware lackingrd digit, and for abrupt
instead ofgradual underflow of p-q; these exceptions do not happen nowadays on hardware
conforming fully to IEEE Standard 754.

The tricks entail complexities that bloat a computer program’s capture-cross-section for mistakes.

No endorsement of these tricks is implied by their lengthy discussions and analyses below. Quite
the contrary. Their complexities are a penalty imposed by programming languages and compilers
lacking convenient support for arithmetic operations more precise than their operands. A major
exception wasC designed by B.W. Kernighan and D.M. Ritchie for an early DEC PDP-11. Its
floating-point board required a call upon the operating system to select ose of or double

precision. For speed’s sake, the board was lefbuble ; consequently every floating-point
expression was evaluated double regardless of whether operands wieke s. This practice

was numerically advantageous. It rendered unnecessary almost all the tricks exhibited below, and
greatly enhanced the accuracy and reliability of man@arRAN program transliterated intG ,
especially 3-dimensional geometrical computations like those described on my web page’s
www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf . Butin the mid 1980s, before

those advantages were appreciated widely, ANSI committee X3JX1 deimpilers revert to
Fortranish expression-evaluation. Most did. Now tricks are necessary for Gasimpilers.

The simplest trick isSCompensated Summatiarsed to suppress the worst rounding errors in the
numerical solution of initial-value problems to which one-dimensional boundary-value problems
are converted when solved I8hooting methods. These deliver better accuracy atepsized

is diminished, though at the cost of greater work proportional@o Without that trick or else
extra-precise arithmetic, the enhanced accuracy is vitiated by rounding errors that accumulate
proportional to 1 in worst cases, though these happen only rarely. An example of damaging
accumulation is provided by an initial-value problem in §8§2-3.

Prof. W. Kahan's notes for Math. 128B Page 2/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

The solutionu(x) of a boundary-value problem {vgrad u) +g-u=r is often a potential

computed only to permit the subsequent computation of a vector forcegfemiidu from finite-
difference formulas. Because these formulas amplify errousitrmust be computed accurately
enough that subsequent subtractive cancellations will not leave too few correct digits to determine
grad u as accurately as it is needed. This accuracy is gained by compubtmgr a sufficiently

refined grid of mesh-points. As happensin 89, mesh refinement can worsen the contamination of
u by roundoff unless the program acts to abate that contamination. The simplest abatement by far
resorts to extra-precise arithmetic. When this is unavailable or too slow, the abatement must use
a tricky trick presented in these notes in 87. An example in 88 will testin 810 how well the
trick works to compute the regular solution of a singular boundary-value problem.

After it is explained for a second-orderdinary differential equation R-U')" + Q-:U =R with
boundary conditions at the ends of some interval, the trick will be applied to an eibptial
differential equation on a squaare in 8??. Further elaborating the trick to work for parabolic and
hyperbolic partial differential equations that characterize propagation may incur so much extra
memory traffic as to vitiate the trick; but that’s a story for another day.

§2. Discretized Initial-Value Problem: A numerical solutionY (t) of the differential equation

dy/dt =f(y) over a given interval t<T with a giveny(0) :=y°
is to be computed either as the termivgll) or asY (1) to be plotted over that interval. Most
numerical methods resemble the conversion of the differential equation into an integral equation

y(t+6) =y(1) + [o° f(y(r+0))-do,
because an approximation(t) = y(t) is updated repeatedly, far=0,6, 26, 36, ..., T-9, to
Y(1+6) :=Y (1) + F(Y(...),0)6
wherein F(Y(...), 8) extracts samples d{Y(...)) to estimate the averagj’abe f(y(t+0))-do/8.
(The stepsized may vary witht but has been kept constant here to simplify the exposition.)

Absent roundoff, the error (T) —y(T) — o like 6°7€"; the exponenOrder depends upon the
details of F(...) and always exceeds, bften exceeds .3When adequate accuracy can be
achieved only by choosing a very til, rounding errors interfere. The worst of them occur at
the additions ofY + F-8. Here is how roundoff loses digits:

YYYYYYY =Y(1)

+ FFFF FFF- 0 +FO asif ffff fif
- lost
YYYYYYY =Y(1+6)

Thus rounding errors appear to inject uncertainty proportiongbtonto F (and hence intd) ;

¢ is the arithmetic’s roundoff thresholdipat 's € = 223= 1e-7; double 's € = 2°2= 2e-16.
That injection limits the accuracy achievable¥Yin as if roundoff and discretization conspired to
lose at least some fraction like(1L+ Order) of the arithmetic’s digits of . That loss might
often have gone unnoticed when the arithmetic dasle . Not so likely if float

Prof. W. Kahan's notes for Math. 128B Page 3/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

A palliative is the choice of a highé&rder formula for F. It works only if the solutiony(t) is
smooth enough, and the needed accuracy high enough, that the®@rgkerformula allows a
substantially bigger stepsiz&, whence substantially fewer updating steps and fewer lost digits.

A remedy is the use of extra-precise arithmetic, stovingp at least several more sig.bits than
are trusted irf or desired iny. When this remedy is too slow or unavailable, the only remedy is
Compensated Summation

Y :=y°; cY =0, ... Initialize Y and itscompensatory t
For t=0 to T8 in steps off {

Yo =Y ;

AY :=cY +F(Y(...),0)0;

Y :=Yo+AY ; ... rounded, losing digits=FF 0

cY :=(Yo-Y) +AY ;} ... recovers them(HONOR PARENTHESER

This trick is inefficient when the differential equation is so stable that it forgets its earlier errors,
or so unstable that the propagated growth of the earliest few errors overwhelms all later errors.

83. An Example: The chosen differential equatiory/dt =f(y) has terminal T :=65/32 and

v w/t 29
y=lwl » fY) =larqi-nym+yom| and y(0)=y°:= 0
T 1 0
2

This singular differential equation has a regular solutio) ¥ 2% © , w(t) = -2r2-\(1) . The
singularity was removed numerically by substituting/(t+n)” for “w/t” in f, wheren

barely exceeds the underflow threshold, thus replacing an invalid 0/0 operation by 0 with no
other effect upon the computation bf because W/(t+n)” roundsto ‘w/t” if T#0.

The chosen numerical method is a classid&orter Runge-Kutta formula whoge® is ...
F(Y(...),8)0 =(2-0F1 + hF3) + 4nF, + hF,)/6 wherein
WFy = SH(Y) 5 WFpi= S H(Y +hFD) s HFa=06(Y +hFp); HFy = B4(Y + FFy) ;
The chosen number n := 2560 of steps produced a stepsiZén exactly All arithmetic and
variables were 24-sig.bftoat . Computed results foy (T)’'s first component were ...

V(T) = 867448 computed without Compensated Summation
V(T) = 866924 computed with Compensated Summation
v(T) = 8669240 the true v(T) rounded to 24 sig,bits.

Compensated Summation has reduced this example’s loss of accukgdy) in
from over 10 sig.bits to less than 2 of the arithmetic's 24.

This example also reminds us that no simple foolproof way exists toYiffers error from the
accuracy of the compensated updating formfat+0) := (cY + F(Y(...), 8)-6) +Y(1). A simple
way repeats the computation ¥{T) with a sequence of diminishing stepsiZeauntil as many
digits of Y(T) converge to presumed digits 9fT) as roundoff (inf, 6 and T too) allows.

Prof. W. Kahan's notes for Math. 128B Page 4/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

84. Discretized Boundary-Value Problem:SupposeP, Q and R are scalar-valued functions
of the scalar independent variable and Q and R may depend also upon the scalar solution
U(x) of the differential equation P(U')' + Q-U =R. We assume tha®, Q and R are smooth
functions to preclude distracting complications. Choose a sequgnté; X X, < ... <Xy of
mesh-points to span the interval over which the solutigx) is to be computed; they can be
spaced non-uniformly so long as every gap=h,1—X; is small. Letu; = U(x;) numerically
and then set, say,.p = P((Xj+Xj+1)/2), q; == Q(X;, 4) andr; :=R(x;, uj) . One of several
discretized approximations to the derivative()' at x = x is the difference-quotient

2{ P72 Uer — /N — Beayor Uy —ui_)lhy_ I (hy +hy_g) = P-U') + O(Iy—hy_g| + (+hy_1)?) .

(Eliminating the term |-h;_4| complicates the exposition without affecting the trick; see Appendix 2 below.)

Substituting this approximation into the differential equati®J{()’ + Q-U =R at every mesh-
point produces an (almost) linear systerh +Diag(q))-u =r of equations in whichu is a
column of unknownsy; , Diagf) is a diagonal matrix computed from the elemegtaind gaps
h;, columnr is computed from the elements and gaps h and T is a tridiagonal matrix
computed from the elements, f, and gaps jh The bottom and topmost entriesTn+ Diag(q)
and r include contributions from the boundary-value problem’s boundary conditions.

Sometimes Diag)) is supplanted by a tridiagonal matrix to help approximate the differential
equation better. For the same reaslormay become five-diagonal; but we shall disregard these
possibilities in what follows since they can be accommodated by a straightforward elaboration of
a trick whose description we still hope to keep simple.

The equation T +Diag())-u =r has to be solved for the desired= (T + Diag(q))‘l-r . Even

if g andr are independent afi, the solution process will usually require iteration if only to
attenuate obscuration by roundoff during the solution process. One process, akin to Gaussian
elimination, factorizesl +Diag(q) = E-B wherein B is bidiagonal and upper-triangular, and E

is a bidiagonal lower-triangular matrix or else one whose rows have been permuted by pivoting
during the factorization process. These factors serve to compufé‘l-(E‘l-r) by first forward

substitution (perhaps permuted) to computé-rEand then back-substitution to get

If g andr depend uporu they will have been estimated from a guesa aand must now be
recomputed from the latest estimatewf after which their changes must be taken into account
during the computation of an improved estimate Au to supplant the one just computed. How
this is done depends upon how stronglyand r depend uporu:

* If g andr depend very weakly upoa then Au = B‘l-(E‘l-(r — (T +Diag(@))-u)) using
the latest values fou, g andr but the same factors E and B as before.

* If g andr depend weakly but not very upan then Au = B‘l-(E‘l-(r — (T + Diag())-u))
using the latest values, g andr and a recomputed factorizatiolh + Diag(q) = E-B.

e If g andr depend strongly upon then Au = B‘l-(E‘l-(r — (T +Diag(q@))-u)) using the
latest values fou, g andr and recomputed factors E and B that take the columns
dg/du and dr/du into account. This complicates the process but does not affect the trick.

Prof. W. Kahan's notes for Math. 128B Page 5/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

The foregoing process has been called “lterative Refinement” among other things. Ideally, at
most a few iterationsi —» u+Au should suffice to solve the equatioil H{Diag(q))-u =r for u

as accurately as the dala g andr deserve. No matter how the equation’s solutioiis

computed, its accuracy turns out to be limited mostly by the accuracies of successive residuals
s:=r — (T +Diag(g))-u . The trick is to compute each accurately enough, as we shall see.

Usually scalar factors dependent only upon the gapisate been incorporated into the rows of
the expression r‘— (T + Diag(@))-u” so that it can be computed repeatedly for different columns
u without incurring repeated divisions by expressions dependent only upon the gaps. Sometimes

these scalar factors fail to keélp= TT symmetrical. SometimeB and consequently too
depend uporu, contrary to our assumptions. None of these possibilities affect the trick.

Finally, the 1jh row (T-u); of T-u always has the form; au;_; — B-U; + G4+1'Uj+1 in which the
coefficients g1, j and ¢, have these three properties:
0) b, =31+ G+ forevery j exceptpossibly j=0 and/or j=N.
1) Both fil/(Ig-al + 191 + IG:l) - O and djl/(1g_1| + I§| + Ig:+1]) » O
roughly like (hq +h)-max{h_s, h} - 0.
2) a_1/Ci+1 = (B-1/2/hi-D/(pj+1/2/hy) is near 1 for every j except j=0 and j=N

Sins lurk in the words “roughly like” and “near”. First, Neo when max{h 4, h} - O,
changing the meanings of the indices econd, gaps; fget shrunk in order to enhance the
accuracy with whichu; approximatesJ(x;) ; but when shrinkage occurs adaptively some gaps

shrink while others don’t. Usually adjacent gaps differ by relatively little, as do adjacent values
p+1/2 Of the smooth function Pbut occasional exceptions may violate propetty None of

these possibilities affect the trick.

85. How Roundoff Corrupts the Discretization: It contributes uncertainty to almost every step
of the solution process. L&t denote the roundoff threshold for rational floating-point arithmetic

operations. When every operation rounds to the 24 sig. bitsof , € = 1/2%4; ... to 53 sig.

bit double , € = 1/23. Then rounded values computed from expressions likev™ “viw”,
“v+w” and “v—w” lie in the respective ranges (v-wk€), (Vw)-(1+£), (v+w)(1+£) and
(v—w)/(1+€). The smaller iss, the higher is the arithmetic’s precision, and then the smaller is
the perturbation by roundoff of a finally computed result and thus the higher is its accuracy.

The discretization’s first rounding errors corrupt at least the diagonBkddiag(g) , and then

more of them turn its factorization into E-Bl'= Diag(q) + £-(|E|-|B| +T|+ Diag(jg])) roughly;

the uncertainty here is dominated by the contributions ft@n(|E|-|B| +T[), the more so as the
gaps h shrink. If they shrink too far they can become so small that this uncertainty becomes
comparable with or bigger than the separation betwEeriag(q) and its nearest singular.e(
non-invertible) matrix, thus rendering the solution process unpredictable. Though this extremity
is rarely approached in practice it will be illustrated by the example in 810. Additional rounding

Prof. W. Kahan's notes for Math. 128B Page 6/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

errors incurred during the forward and backward substitutions that solve #Bfor u will be
ignored since they merely augment somewhat the uncertainties taken into account already. The
bottom line: The firstu computed satisfie§T + Diag(q) * -(|E|-|B| +T|+ Diag(g|)))-u =r,

not (T +Diag())-u=r as desired. We can ignore the differenc& if Diag(q) is far enough

from singular and ife is small enough, as is usually the case when the data’s and arithmetic’s
precision extravagantly exceeds the accuracy desirad ihwish this were always the case. Life

is so much simpler when roundoff can be ignored.

If roundoff’s effect upon the firsti computed cannot be ignored its accuracy must be improved
by iterative refinement: Compute residsakEr — (T + Diag(g))-u and then solve E-Bu=s

for the correction that updates to u+Au. Other reasons for iterative refinement have been
listed above. Other iterative methods solve domwithout ever computing factors E and. B

Every iterative method computes successive residuals — (T + Diag(q))-u for updated values
of u whose ultimate accuracy turns out to be limited mainly by how accuratelycomputed.
Its accuracy will be appraised next:

To match the magnitudes of the elementsand Diagg;) in the equationT-u + Diag@)-u =r

that has to be solved far, the |" element T-u); = 9-1°Uj_1 — Quj + G41°Uj41 has to suffer
massive subtractive cancellation, the more so as gapsafid h shrink to help approximate
U(x;) better byu;. Normally, when all the gaps are small, the computed value of Ths); (
must cancel down to something small, roughly of the order of

(-1 + 1y)-max{h_, K} (lg-p U1l + [§ujl + 1Gs1Ujeal) = (g + h)-max{hy_g, B}-(IT]-pil)

wherein the last two pairs of absolute value bars |...| are to be applied elemenfivismdou .

Coincidentally, whenT{-u); is computed by evaluatingg”;-U;_ — B-Uj + G+1-Uj+q " literally,
roundoff contributes uncertainty of the orderf-([T|-p[); to (T-u);. This term dominates the
computed residual’s uncertainty due to roundsfr + (T + Diag(q))-u = xe&-([T| + Diag(§1]))- |
roughly within a factor of 2 or 3 regardless of whethEr Diag(q))-u is computed after

T +Diag(q) is, or computed separately dsu + Diag(@)-u. Even if the computed residual
vanishes the current estimatie must satisfy T+ Diag(q))-u =r £ &-([T| + Diag(f1]))-b|, an
equation perturbed by uncertainty dominated by the tegrT|-u|. This is almost as bad as the
uncertainty +-(|E|-|B| +T|+ Diag(f])))-u that afflicted Gaussian elimination and triangular
factorization unless an unfortunate choice of pivots bloated the triangular factors E. ardsB
dominant termT|-u| is bigger than all the other terms Diag(fi|)- | and evenT]-u| by factors
like 1/((h_y+Hh)-max{h_y, h}) thatincrease when gaps get shrunk to reduce the difference
betweenu and U due to discretization. Then the equatwrsatisfies gets more perturbed.

The uncertainty inru due to roundoff is inconsequential when the precision of arithmetiathnd
intermediate variables exceeds extravagantly the precision (presumed the same) offthg data
andr and the accuracy desired fram A little more than twice as precise is usually extravagant
enough. This is so because the uncertainty due to roundoff usually grows by a factor roughly the
reciprocal of the factor by which the discretization error shrinks when all gage bhrunk, and

then the number of correct digits in the elements acdannot much exceed half the digits carried

Prof. W. Kahan's notes for Math. 128B Page 7/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

by the arithmetic. There are exceptions; cruder discretizations can lose a larger fraction of the
digits carried; defter will lose a smaller fraction. Any such lost fraction of extravagantly too
many digits will leave enough of them to produce adequately accurate results.

What is to be done when the available arithmetic’s precision at most barely exceeds the data’s
precision and the desired accuracy? Our next objective is to trick the arithmetic into losing not
some fraction like half the digits carried but at most a few of them so as to compmlieut as
accurately as the given data determine it. The trick is to compute ressgdua$ enough.

86. Accurate Residuals:The trick is to compute residuats=r — (T + Diag(q))-u obscured by
small rounding errors of the order ef([T-u| + Diag(§|)-u| + f|) instead of huge rounding errors
of the order ofe-([T|-p| + Diag(i])-u| + f|) . It's about smallT-u| versus hugeT|-y|.

For definiteness let us assume all the given data, namglyaf columnsg andr and arrays
{a;} and {g} of off-diagonal elements ofl', and the columnsi of a putative solution and its
residuals, to be stored in the computer’s memory as seven arrays of 4-byteteides. If we

use triangular factors to solve the equationsdfoand Au then we store also the two arrays of
subdiagonal elements of E and diagonal elements of fbaass and writefloat Au overs.

The arrayg := diag(l + Diag(g)) can be treated in any of several ways: One is to compute each
elementg; :=g; — 3-1 — G+1 at the moment of need using array elemepts and ¢, that will

be needed at the same moment. Another way is to compute in advance and and storeghe array
as an array of 8-bywuble s. Trickier ways to cope witly will be passed over for the sake of
a simpler exposition.

In a benign computing environment, as was provided by the original Kernighan-Ritchrel

is now available from some implementations@39, every arithmetic operation is rounded to at
least double regardless of whether its operands #g&t S or double S. In this environment

the float residuals can be computed amply accurately from any one of the three assignments

TS N3t~ G~ Gerljpg T OF

“§:=rj—g Ui — @ - 81— Gi)Uj — GerUjrr " OF

©§ =0 =81 U —Up) — Ger Ujrr — 1) — gy "
each of whose right-hand side’s every arithmetic operation is roundedte before being
stored as dloat in 5. Thus is adequate accuracy achieved with no extra effort nor thought.

In a FORTRANNiIsh environment likeAJA or ANSIIC (1987), the foregoing assignments must
be encumbered bygasts (conversions talouble) to achieve amply adequate accuracy thus:
“§ i=rj—g_1-(double)uj_y —gj-(double)U; — G41-(double)uj,; " oOf
“§ i=rj— g_1-(double)uj_1 — (((double)g; — g_1) —)-U; — G4+1-(double)uj,1 " oOf
“§ = rj — g-1'([double)uj_1 —U;j) — G4+1-((double)uj41 —U;) —0j-(double)u; ™.
(HONORPARENTHESES)

Prof. W. Kahan's notes for Math. 128B Page 8/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

87. A Trickier Trick: In a benighted environment wheteuble is too slow or inconvenient, or
unavailable, barely adequate accuracy may be achieved at the cost of two extra subtractions:

“§ =1 = o (U1 — 1) — U= Uj_0) — (Gra — 1) Ujra —) =04 " .
Why does this tricky trick work when it works?

It doesn't work unless;g and @, are close enough, and this requires typically that the gaps

h, and h, be equal or almost equal according to property 2) above. In such cases we expect all
but a few of the quotientsj_glcjﬂ and uj_lluj to stay close to ;1 and to come closer as all the

gaps h shrink. Then each subtractiof1¢-§_4, Uj+1 —U;, and usually W1 —Uu;) — (U; —Uj_1)

incurs substantial cancellatidout no new rounding errorFor a more quantitative appraisal of

the extra subtractions’ attenuation of roundoff see Appendix 1 below.

If the grid’s gaps jvary more than minimally, a different and far trickier trick will be needed to
compute the residua accurately enough. This trickier trick requires that all ggpbetpowers

of 1/2 to ensure that multiplications and divisions by gaps incur no new rounding errors. This
requirement is less onerous than first appears: It requires first that the independent variable x be
scaled (multiplied or divided) to turn the domainlfx) into an interval whose widthy X

is an integer multiple of a power of2L Secondly, after the initial distribution of grid points

ensures that every gag :h X1 —X; is a power of 2, subsequent grid refinements will plant

new mesh-points only halfway between adjacent previously planted mesh-points.

Now we shall appraise roundoff’s intrusion into the discretizatioPdd'f’ in 84, namely

2 P72 U1 =up/hy = gy (U —uj-D)/hig) (hy +hi_p) = (PU)"
To simplify its appraisal we suppose tHafx), U(x) and their first two derivatives’ magnitudes
are all of order 1, huge compared with the roundoff threshadd the gaps; fall of order h
say. Then L(J-+1—Uj)/hj is of order 1 because it approximatdgx;) roughly; the quotient
introduces nonew roundoff. The multiplication in jpllz-(ujﬂ—uj)/hj suffers a new rounding
error of ordere, as does the other multiplication, so the foregoing discretizatioR-of)'(
differs from it by the formula’s discretization error, at mé&3h), plus a contribution of order
e/h from roundoff.

Reducing the last contribution from ordeth to ordere is the trickier trick’s goal. It changes
the discretization’s formula to an algebraically equivalent but more complicated new formula

2(pjra/2-((Ujr1 —up)/hy = U —ui-)/hi_1) + (P22 —Pi-a/2) - U —ui—)/hi_g)/ (hj + hi_a)
that costs two extra subtractions neither of which introduces a new rounding error. The first extra
subtraction LQ]+1—UJ)/h] - (UJ _uj—l)/hj—l = U'(Xj + hJ/Z) —U'(Xj _hj—l/2) =U" (Xj)(h] + h]_l)/2
very roughly, soitis of order h and the subsequent multiplication suffers a rounding error of
order he. Similarly the second extra subtraction,1p—pj_1/2 = P'(x;)-(h + hj_1)/2 and its
subsequent multiplication inject another rounding error of oedier The subsequent addition
and then division by (k hj_1)/2 make the new formula’s total contribution from roundoff of
order €, not ¢/h.

Prof. W. Kahan's notes for Math. 128B Page 9/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

Thus are computed residuas=r — (T + Diag(q))-u contaminated by tiny practically irreducible
rounding errors of the order &f([T-u| + Diag(f)])-u| + |) = O(¢) instead of huge rounding
errors of the order o-([T|-p| + Diag(fi])- 1| + [|) = O(e/h?) as all gaps shrink towards zero.

This attenuation of roundoff’s contamination of the residugais rewarded by a consequent
attenuation of roundoff’s contamination of the computed solutioof the discretized problem.

Similar tricks enhance the accuracywfwhen divided-difference formulas of higher order in the
gaps h are used to approximate the differential equation; see Appendix 2 below. Similar

tricks enhance the accuracy of computed solutions of elliptic partial differential equations like
div(pegrad u) + g-u=r . Similar tricks are applicable to sonfénite-Elementdiscretizations.

Tricky tricks admit innumerable opportunistic variations. We will not attempt to patent them all.
More important is the realization that they would be rendered unnecessary by a simple expedient:

Routinely (by default) perfornall arithmetic and carnall intermediate variables
extravagantly more precisely than the data and the accuracy desired in computed results.

88. Example: The singular differential equation k)’ + 4x-(1—>?)-u =0 has regular solutions
all with u'(0) =0 and sau(—x) = u(x) . We wish to compute the regular solution satisfying the

boundary conditionsi(+1) = 1 as if we did not know thati(x) = exp(1—X) . The numerical
estimation ofu(x) is complicated by the differential equation’s singular solutions

V(x) := C-exp(-X)f exp(2¥)-dxix = C-exp(-R)-(In(|x|) " (exp(Z?) - 1)-&/%) .
Their constants C can be different for x > 0 than for x 4l have a logarithmic pole at
x = 0. The pole can amplify tiny perturbations of the differential equation into a narrow spike at
x = 0. Worse, this singular solutiom satisfiesv(—x) =v(x) and v(x1) = 0 and the differential
equation except at x =,0s0 a discretized analog of thi$x) can contaminate the numerical
approximation of the regular solutian(x) unless filtered out.

Filtering won't affect the trick. Then why choose to illustrate it applied to a singular differential
equation instead of something simpler? Because of spikes. They are often misdiagnosed, blamed
upon the differential equation’s singularity instead of roundoffyioe-versa Spikes of both

kinds will afflict this example, and our analysis will distinguish them and then eliminate them.

Choose a large integer N >>2 and sJe1:>j/N -1 for j:=0,1, 2, ..., 2N-1, 2NNow every
hj == 1N, q:=4%-(1-%)-(1+%) = 4j-(N=j)- (- 2N)Y/IN3 = —pn-j and P = ((+12YN-1.
The numerical estimateag of u(x;) satisfy discretized equations_sa;_q + gj-Uj + Cj+1°Uj4+1 = 0
inwhich ¢:=31:= Nz-g_llz =-N:(N-j+ 1/2) =5 and @:=¢ — 31— G+1 = —bNj-
The discretization error is j_gu(Xj_1) + g-U(X)) + G+1-U(Xj+1) = (2u™ (%)) + x-u™ (xj))/(12N2) :
We seek solutions); of these discretized equations satisfying boundary conditigrsuyy = 1.

A first attempt constructs a symmetric tridiagonal mairix Diag(q) with [gy, 0o, ..., Gon—1] ON
its main diagonal and {ccs, ..., Gnogl = [84, &, ..., &g On its first superdiagonal and first

Prof. W. Kahan's notes for Math. 128B Page 10/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

subdiagonal. Every element of columnis zero except for its first element ¥ —gyug = —g
and its lastron_1 = —GNUon = —8n-1 = & that convey the boundary conditiongtl) := 1.

Elements {i1; U,; ...; Uon_q] Of columnu should be computed by solving € Diag(@))-u =r .

The first attempt factorize$ + Diag(q) = E-B wherein B is bidiagonal with ({8, ..., Hn_1]

on its diagonal and [a&, ..., &n_g on its first superdiagonal, and E is bidiagonal with 1
everywhere on its diagonal and;,[e,, ..., &n_g onits first subdiagonal. A recurrence produces
€_1:= a}_llrz,-_l and B:=g -9, for j=2,3,...,2N-1 in turn starting with; &= g; .

This amounts to Gaussian elimination without pivotal exchanges. Its simplicity of programming
could be offset by the appearance of a tiny, followed by a huge ;Bthat greatly amplifies
roundoff. Numerical degradation like that has yet to occur during the foregoing computation.
However the last 4/3_; = 0 except for roundoff becaude+ Diag(q) is singular (not invertible),
which complicates the first attempt to compute

To see whyT +Diag(q) is singular let= = =T be the matrix obtained from the 2Nby-2N-1 identity by
reversing the order of its rows (or columns) and observexi@t+ Diag(q))-= = —(T + Diag(g)) , whereupon
detE)? det{l + Diag(@)) = (-1¥N-L.det{l + Diag(qg)) = 0. Then det(B) = det(E)-det(B) = dEt Diag(q)) = 0 too,
which explains why #,_; = 0. Despite thafT +Diag(q) is singular, the equationT ¢ Diag(q))-u =r turns out to

be consistent. All its solutions are symmetrics: =-u , though all of them but one are contaminated by some scalar
multiples of a singular solution ==v # 0 of (T +Diag(qg))-v =0 with a sharp spike in the middle of it.

Any first attempt to solveT(+ Diag(q))-u =r naively getsu contaminated by the addition of
some arbitrary or infinite multiple of the spiked singular solutwwf (T +Diag(@))v=0#V.

If that multiple is small enough, the spike is narrow enough to go unnoticed until too late. How
can the smooth regular solutiarfx) be separated numerically from spiked singular solutions
v(X) that satisfy the same boundary conditions and even the symmetry comitigrE v(x) ?

There is one way: A regular solutionts(0) = 0 differs from a singular solutionig(0) =+

utterly, whencel’Hopital’s Rule implies u'(x)/x — u"(0) as x— 0; and then substitution into

the differential equation implies” (0) = —21(0). This internal boundary conditiorupon u(x)

further distinguishes it from all singular solutions. Discretized, this internal boundary condition
turns into N-(Un+1 — 2y + Un_g) = =2y Which, if not satisfied by a computed solutiénof

(T +Diag())-G =r, can be imposed upon a revised solutiorr 0 —A-v by choosingA aptly

after computing a singular solution# o of (T +Diag(q))-v =0. Our first program does this.

1st Program’s Details: The computed solution of 8= E™Lr is 0 its last component is set fipp_1 := 1+2/N

to filter out most of the singular solution. This is the solution of B-=0; its last component,y_; := 1/(2N-1)

is set to keep the spikey roughly between 1 and.4ThenA comes close to —2/N when computed to make
u:=0—Av satisfy the discretized internal boundary condition. Apparantlgses little to cancellation in the last
subtraction. Then the gradient(x;) is approximated withirO(l/Nz) by uﬂ- = (Uj+1 —Uj—1)-N/2 except at the
boundarys wherer' (-1) = u*; := (4u; — g —up)-N/2 . The errors maky; —u(x;)| in u and magu®; —u'(x)| in

u¥ would roughly approximate.zﬂN2 and 37/N2 respectively for large N if they were due to discretization alone,
but something else happens when roundoff contaminates the whole process.

Prof. W. Kahan's notes for Math. 128B Page 11/28

File FloTrik

Floating-Point Tricks ...

version dated SeprabéBB:21 pm

Computed Graphs ofl = u(x), uF=u (x) andv=v(x) carrying 24 sig. bits

First Program:

2N+1 = 1025 points

24 sig. bits

3

=
T

V(X)

o
T

u(x), U(X),

'
[y
T

Results from the First Program carrying 24 sig. bit¢s= 6/108)

N | erru) |erru)-N2|erru¥) |erru)-N2
16| 0.009324 239| 001529 39
24|0.004144 239| 000666 38
32/ 0.002326 238| 000366 37
48] 0.001040 240| 000162 37
64| 0.000568 233| 0.00089 36
96/ 0.000398 67| 000461 425
128| 0.000128 210| 000230 376
192| 0.000527 19%43| 001331 498
256/ 0.000093 611| 003575 2343
384 0.000453 6637| 003584 52841
512/ 0.000472 12372| 0.36157 94784
768 0.002734 1612584| 069930 412460

N = #gaps, em := max [u;—u(x)l , err(ﬁ) = max |u¢j—u'(xj)| :

The foregoing program loses accuracy to roundoff about as badly as the preceding analysis had
predicted, almost as badly as if the roundoff thresleoltad been magnified to N?. The error
in u due to discretization alone, roughI)A/P_\IZ, decreases as N increases but the total error in

Prof. W. Kahan’s notes for Math.

128B

Page 12/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

u never gets much below abou€, and making N too big actually worsens the total error by
amplifying roundoff. Usually. Roundoff contributes raggedipt(randomly to the total error.

The gradient’s estimata* is damaged worst by the destruction of the symmatrx) = u(x) by
roundoff, which tends to pile up towards the endig{_;, generating a huge spike in the error

uiZN—u'(l) overwhelmingly bigger than every other er[&j—u'(xj) for 0<j<2N.

Error in the First Program’si = u(x) carrying 24 sig. bits, N =512

x 107 First Program: 2N+1 = 1025 points 24 sig. bits

oF | T T T T T T T T T]

-0.5 - T

-1+ -
3

=-15 A
(5]
=
=

.2 T
g
>

- -2.5 A
Q
=
£

S -3 *
(&)
s

4o -3.5 =

-4 -

4.5 - T

_5 1 1 1 1 1 1 1 1 1 1 1
1 0.8 0.6 0.4 0.2 (o] 0.2 0.4 0.6 0.8 1
X

Error in the First Program’sxsl1E = Uu'(x) carrying 24 sig. bits, N =512

First Program: 2N+1 = 1025 points 24 sig. bits
0.4 T T T T T

- True U'(X)
o
N
a
T
|

Error: Computed U'(X)

-0.05 I I I I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1

This spike at x =1 isot caused by the differential equation’s singularity at x =l@stead the
spike is caused by the hypersensitivity to roundoff of our first program’s numerical method, as is
confirmed when the same program is rerun carrying everywhere 53 sig. bits instead of 24.

Prof. W. Kahan's notes for Math. 128B Page 13/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

By far the simplest remedy for the program’s loss of about half the sig. digits carried is to declare
all variables to be 8-byteouble s and round all arithmetic taouble 's 53 sig. bits or more.

Then the error inu can be reduced below f0oand the error iru™ below 10° if N exceeds

roughly 2°. Increasing N too far beyond this loses to roundoff at least about half the 53 sig.
bits carried bydouble s arithmetic.

To achieve accuracy more nearly commensurate with the precision of all variables and arithmetic,
the program must incorporate iterative refinement using residuals computed accurately enough.
“Accurately enough” requires the trick. To expose its benefits fairly, the program must first be

simplified by the use of symmetry to eradicate singular solutom@sd the spike iru*'s error.

§9. The 2nd Program: After the symmetry conditioniy,; = Uy is applied, the internal

boundary condition derived above becomeg-uhl_l— (N2—1)-uN = 0. That symmetry halves

the work needed to compute the desired solutipf) = u(—x) ; it need be computed only for
—1 <x<0, whenceu; = u(x;) need be computed only for<j <N.

How do we know thakevery regular solutionu possesses the symmetrfx) = u(x) ? There are two ways to prove
it: One way computes the power series expansion(f= Y > gl X/n! starting with an arbitraryiy = u(0) # 0
though p; =u'(0) = 0; the other coefficientgl, are obtained by recurrence after the series is substituted into the
differential equation. Doing so establishes that eyesy.; = 0, whence followsu(—x) = u(x) . A less laborious but

more devious proof starts from the observation thatiXj is a regular solution of)" + 4x-(1—>@)-u =0 then so
are u(=x) andw(x) = u(x) —u(-x) = -w(—x); moreoverw(0) =w'(0) = 0. Suppose, for the sake of an argument
by contradiction, thatv(x) # 0 somewhere. Where might (x) vanish in the open interval 0 <x1 ? If nowhere

then set{ := 1; otherwise let x £ be the least zero off(x) in that interval. Them(x) = [¢*w'(§)dé would have
the same sign, say positive, @x) has for 0 <x < < 1. And then we would find that
0 <Job 4x-(1-8) w(x)dx = ¢ (x-W (x))'dx = L-w' () < 0. This is impossible.
Consequentlyw(x) =0 atleastfor & x< 1; beyond x =1 the differential equation is regular and determines its

solution w(x) = 0 uniquely for all > 0 from w(1) =w'(1) = 0. Therefore regular solutions are symmetrical,
u(x) = u(-x) is determined uniquely by'(0) = 0 at its internal boundary and l+1) = 1 at an external boundary.

This uniqueness has important numerical consequences. It implies that the system of linear equations, obtained by
adjoining the internal boundary condition’s discretization to the differential equation’s, defines its solution uniquely;
so its new matrixT + Diag(g) must be invertible and far enough from singular that the consequences of roundoff will
become negligible if it is kept small enough.

Here is the scheme simplified by symmetry: Choose a big integer N > 2 arj1d=sjéN>e 1 for
j:=0,1,2,...,N-1, N Again every = 1/N, g = 4x-(1-%)-(1+%) = 4j-(N-j)-(—2N)/N°
and Ry = (j+1/2YN—-1. The numerical estimatag of u(x;) satisfy discretized equations
g-1Uj-1 + §Uj + G4+1°Uj+1 = 0 inwhich ¢:=3g_; = Nz-g_llz = —N-(N—j + 1/2) again but now
for 1<j<N, and g:=q;— g1 - G+1 again but now for ¥j<N-1. The discretized internal

boundary condition ?«luN_l = (N2—1)-uN is effected by setting \g:= N/2 — ¥(2N) and then
discarding g+1-Uy+1 - The external boundary conditionug := 1.

Prof. W. Kahan's notes for Math. 128B Page 14/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

Our second attempt to compute the elemeunisup; ...; uy] of column u constructs a new
symmetric tridiagonal matrixl + Diag(@) with [g;, G, ..., Gy—1, Gy] On its main diagonal and

[Co, C3, ...,] = [&4, &, ..., 8y_1] Onits first superdiagonal and first subdiagonal. Every element
of columnr is zero except for its first element :¥ —g-ug = —g that conveys the boundary
condition u(x1) := 1.

To solve T +Diag(q))-u =r we first factorizeT + Diag(q) = E-B wherein B is bidiagonal with
R, B, ...,] onits diagonal and {a&, ..., 8y_1] on its first superdiagonal, and E is
bidiagonal with 1 everywhere on its diagonal angd ¢ ..., y_1] with § := a}/f% on its first
subdiagonal. The numbers &e computed from a recurrence :#3g — g 1-§_1 for j=2, 3,

..., N in turn starting with {3:= g; . This amounts to the same Gaussian elimination without

pivotal exchanges as before; however, since thethewiag(q) turns out to be positive definite
there is no risk now that some tiny pivot Bwill be followed by an enormous; .3

Forward substitution computes := E™r : w; :=r, and Wj 1= —_1Wj_1 . Subsequent back-
substitution computesi ;= B™Lw Up = Wp/Ry and uj = (w; - q-ujﬂ)/r% . Finally, gradient
u'(x) is approximated byﬁ: as before.

Results from the Second Program carrying 24 sig. kats (1/108)

N | err) |erru)-N?| err¥) |erru¥)-N?
16| 0.009324 239| 001530 39
24| 0.004146 239| 000662 38
32| 0.002326 238| 000365 37
48] 0.001028 237| 000158 36
64| 0.000663 273| 0.00099 40
96/ 0.000118 109| 000022 20
128 0.000073 119| 000027 45
192| 0.000531 1%6| 000102 377
256| 0.000095 624| 000037 244
384| 0.000394 589| 000107 1573
512| 0.000338 8%9| 000202 528
768 0.006888 40621| 001578 931@

N = #gaps, ert) := max |u;—u(x;)| , err(ﬁ) 1= max |u¢j—u'(xj)| .

Different rounding errors cause this second program’s computea differ insignificantly from
the first’s; again, discretization contributes error abodtNZ, and roundoff is still amplified by

a factor of the order of N so errors inu never get much belowe . Less roundoff occurs
when N is a power of 2 because then divisions by N are exact. The second program computes

the approximate gradieru* so much more accurately than the first did as to be adequate ...

“... to give artistic versimilitude to an otherwise bald and unconvincing narrative”
from The Mikadoby W.S. Gilbert and A.S. Sullivan

Prof. W. Kahan's notes for Math. 128B Page 15/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

in a computerized game. For reliable scientific and engineering computation the uncertainty in

u¥, atleast roughly .3/N2 + 2N3/10'1, seems excessive. (Thmcertainty is not theerror
but instead our least estimate of how big the error isn’t; uncertainty is an error-bound.)

Like the first program, this second program loses at least about half the sig. bits carried by the
arithmetic. A fourth program below will attenuate roundoff’'s amplification by appending suitably
programmed iterative refinement to this second program.

810. Iterative Refinement: Each iteration will replace the currently computedoy u+Au

wherein Au is the computed (and therefore approximate) solution ofAEBs in which the

residual s approximates — (T + Diag(g))-u to reveal the extent to which dissatisfies the

equation we wish to solve. The third program assigas=t — (T + Diag(g))-u” computed just

as it is written here in arithmetic rounded to the same precision as was used to compute E and B

But this program’s iterative refinement never improves accuracies much and often worsens them
when the second program’s accuracies most need improvement. Such disappointing performance
cannot come as a surprise when we recall that roundoff contaminates both the residual computed
from the expression r“— (T + Diag(g))-u” and the triangular factorizatioil + Diag(q) = E-B

about equally badly. Iterative refinement cannot be expected to improve the accuragglets

the residuals is computed more accurately than the factorization.

The fourth program differs from the third only by computing the residualore accurately and,
in benign computing environments, effortlessly. We assume all atr,ayl%, q, r, {a} {B;}
and {g} to be stored as arrays of 4-byiteat s. The elements;g=q; —3_1 — g are assumed

to be computed at the moments of need or else stored as an array ofd@#yts; trickier
ways to cope with {g will be passed over for the sake of a simpler exposition.

In a benign computing environment, as was provided by the original Kernighan-Ritchrel
is now available fom some implementations@49, thefloat residuals can be computed
amply accurately from any one of the three assignments
T§ gt~ GU - gl T or
I R Rk SR Sl Tk Rl VU R
"§ =g U~ W) - g U —U) — gy
each of whose right-hand side’s every arithmetic operation is roundidtie before being
stored as dloat in 5. Adequate accuracy is achieved thus with no extra effort nor thought.

or

In a FORTRANNiIsh environment like AJA or ANSIIC (1987), the foregoing assignments must
be encumbered bygasts (conversions talouble) to achieve amply adequate accuracy thus:

§ :=rj— g-1-(double)u_1 —g-U — g-(double)uj+q " OF
“§ 1=rj — §-1-(double)ui_1 — (((double)g; —§_1) —)y — g-(double)uj.1 " Of

“§ :=rj—g-1-([double)u_1 —Y) — g-([double)Uj+1 —Y) — g-(double)u; " .

In a benighted environment whegeuble is unavailable or too inconvenient or too slow, barely
adequate accuracy can be achieved at the cost of two extra subtractions via a tricky expedient:

Prof. W. Kahan's notes for Math. 128B Page 16/28

File FloTrik Floating-Point Tricks ... version dated SeprabéBB:21 pm

“§ =1 = g (U —U) = Ujra =) = (=81 U1 — 1) =g 7
HONOR PARENTHESES
This formula for residuals produced the results tabulated below, all computed usirigaanly
variables and precision throughout the fourth program. This formula should workTinasA7.
This formula is not preferable to the formulas above for benignoOmTRANNish environments,
using double arithmetic uponfloat variables; those formulas produce slightly better results
(not tabulated below) with no need for the analysis in 87 nor Appendix 1.

Results from the Fourth Program carrying 24 sig. bis 6/108)

N | M | erru) |erru)N2| errt¥) |erru®)N2| M | N
16/ 0 & 1] 0.00932 239 00153 39 0&1 16
2410& 1|0.00414 239 0.0066 38 0&1 24
32| 0&1|0.002326 238 000365 37 0&1 32
48| 0 |0.001028 237 000158 36 0

1&2]0.0010349 238 0001612 371 1&2 48
64| 0 |0.000663 273 000099 40 0
1& 2| 0.0005821 238 0000904 370 1&2 64
9| O 0.000118 109 000022 20 0
1 & 2| 0.0002586 238 0000393 362 1&2 96
128 O 0.000073 119 000027 45 0
1&2]0.0001456 239 0.000206 338 1&2| 128
192 0 |0.000531 1%6 000102 377 0
1 & 2| 0.0000646 238 0000107 04 1&2| 192
256 0 | 0.000095 624 000037 244 0
1& 2| 0.0000364 239 0000061 400 1&2| 256
384 O 0.000394 5809 000107 1573 0
1 0.0000162 239 0.000049 27 1
2 & 3|0.0000162 239 0.000053 31 2&3| 384
512 O 0.000338 889 000202 5283 0
1 | 0.0000091 238 0000061 1611 1
2 & 3| 0.0000092 241 0.000065 1802 2&3| 512
768, O 0.006888 406Z1 | 001578 931 0
1 |0.0000156 X0 0.000089 550 1
2 & 3| 0.0000041 241 0.000088 5175 2&3| 768
1024| O 0.0037995 39846 | 0012934 1356P 0
1 |0.0000062 45 0000119 1287 1
2 & 3| 0.0000024 249 0000114 1186 2&3|1024
1536 O 0.0091051] 2148562 | 0021961 5316 0
1 |0.0000313 7385 0000225 53161 1
2 & 3| 0.0000012 20 0000174 41138 2&3|1536
2048 O 0.0381667] 1600882 | 0076282 319949 0
1 |00004934 206%3 | 0001069 44830 1
2 | 0.0000057 2379 0000240, 100610 2
3 0.0000006 56 0000243| 10183 3
4 & 5| 0.0000007 286 0000236 9887 3&4|2048

N = #gaps, M = #refinements, ejr(= max |u;—u(x;)| , erroi) = max |u¢j—u'(xj)| .

Prof. W. Kahan’s notes for Math. 128B

Page 17/28

File FloTrik Floating-Point Tricks ... version dated SeprabéBB:21 pm

The dwindling accuracy of the estimated gradi&ﬁtas N increases beyond about 500 evinces
a Law of Diminishing Returnenforced by roundoff. How? The graphs below explain it all:

Error in the Fourth Program’a = u(x) computed carrying 24 sig. bits, N =1024, M =3

x 10° 4th program: 24 Sig. Bits, N+1 = 1025 Points, M = 3 Refinements
T T T T T T T T
25 B
e Computed U - U(X)
e Rounded U(x) - U(x)

ol I
=
g
=

B Ll5F 1
=]
c
>
(=]
4
©
c

s 4L |
x
S
5
w

205 B
i}

ol b |

| | | | | | | | | | |
1 0.9 0.8 0.7 0.6 -0.5 0.4 0.3 0.2 0.1 0
X

Error in the Fourth Program’s:c = u'(x) computed carrying 24 sig. bits, N =1024, M =3

is x 107 4th program: 24 Sig. Bits, N+1 = 1025 Points, M = 3 Refinements
. T T T T T T T T

0.5

Error: ul - U'(x)
o
T

Prof. W. Kahan's notes for Math. 128B Page 18/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

The dwindling accuracy of the estimated gradiaitltas N increases beyond about 500 comes
mostly from the act of rounding arrays;fx{a;} and q and computed solution to float 's

24 sig. bits. Roundoff adds raggedness to an otherwise smooth grajsh discretization error
which grows to about .26/N?. Much of u’s raggedness comes from roundingand doubles
from aboute to 2 =223=1.2/10" as x increases past.583943 andu(x) increases past

2. Then computingfIE from the divided differences ai amplifies its raggedness by a factor
often almost as big as .NThe graphs corroborate these estimates; and the the tabulated results
corroborate error-analyses that predjas loss of at least roughly a third of the arithmetic’s sig.
digits if the gradient is computed from the divided-difference quotients used in our four programs.

Two thirds offloat ’'s 24 sig. bits is accuracy adequate for most engineering applicatiuﬁs of
and this much accuracy is achieved by using the tricks presented in these notes.

The fourth program’s tabulated results reveal another way for an excessively big N to exacerbate
the effect of roundoff: It slows the convergence of iterative refinement. This happens because the
condition numbek(T + Diag(q)) := |[T + Diag(@)||-||T + Diag(q))™Y| tcomes to roughly 4Nfor

any plausible norm ||...||Iterative refinement converges quickly only if roundoff disturbs the
triangular factorization ofT + Diag(g) by rather less than its distance from the nearest singular
matrix, and this happens only &-k(T + Diag(q)) << 1. This implies that convergence is too

likely to go slow unless N <</{4g = 2048 . The bound is corroborated by the tabulated results,
which exhibit accuracy adequate for most practical purposes achieved by one refinement at gap-
counts N roughly between 100 and 50fhd more refinements needed whee 1Nb36 .

There are better ways to solve the foregoing example’s boundary-value pr&enting methodshat recast the
boundary-value problem as a sequence of initial-value problems work well with this example, if shooting starts at the
differential equation’s singularity, because the recast differential equation is stable; u(x) = v(x)/v(1) from 83 . But
no such methods work upon the partial differential equations for which this note’s trick is intended. Another method
that works well upon the example @ollocation of Splinesthis method is implemented asp4c in recent

MATLAB versions. Analogous methods for partial differential equations are too complicated to get used much.

811: Discretization of an Elliptic Boundary-Value Problem: Given ®(x,y) on the boundary
0Q of the unit square [0, &[x, y] <[1, 1], we seek the solutio®(x,y) inside Q of

Laplace’s Equation Div Grad®(x,y) = 0?®(x,y) := °®(x,y)/0%x + 8°D(x,y)/0%y = 0 .
Numerical solutions (x,y) will be compared withd(x,y) := Iog((x+%)2 + y2) whose boundary

values ondQ have been chosen for this example. F will approxindatenside Q at the
(N—l)2 intersections of a mesh that cov€2sby small squares eadh:= 1/N on a side. On this
mesh the differential operat2 is approximated by a difference operatordefined thus:
a® (x,y) 1= (D(x-8.y) + D(x,y—B) —4D(X,y) + D(x+8,y) + D(x,y+6))/6?
= D%d(x,y) +O(0?) as6 - 0.
Discretization approximate® by the solution F o# F =0 on the mesh insid@ . This last

equation turns into a system fA=b of linear equations in which columfi contains the values
of F insideQ, and columnb is determined by 4:(N-1) values 6 . These columns and

matrix A have huge dimension (Nglb)ut A is sparse with bandwidth 2N-1 .

Prof. W. Kahan's notes for Math. 128B Page 19/28

File FloTrik Floating-Point Tricks ... version dated SeprabéBB:21 pm

—4.16 <®(x, y) = log((x+1/8F + y?) < 0.82

Phi (X, Y)

=104

|| Grad Phi (X, Y

—————

SoS—os s
S s —s _—s S s
e
——————————————
=

==
=

0.8

X Y
The coordinates’ origin is behind and under this surface.

Grad®(x, y) is the transpose ob'(x, y) = 2{x+%, y]/((x+513)2 +y?), to be approximated by
D (x,y) = [D(x+0,y) —D(x-0.y), P(x,y+6)—D(x,y-0)]/(26) = ®'(x,y) + O(6?).

Prof. W. Kahan's notes for Math. 128B Page 20/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

Equation ‘A-f =b” was solved bysuccessiv®ver-Relaxationto get a first approximatioh to

the columnf of values of F This iteration’s stopping criterion was chosen to awdittiering

see my web pages’./Math128/Slowlter.pdf . Then one iterative refinement computed residual
r :=Af—b and solved A-Af =r” to approximatef better, presumably, bl—Af.

The foregoing process was performed thrice, first using an ordinary matrix multiply to compute
A-f and AAf, and second computing them with a trick that replaced the crude formula

& F(xy) = (F(x-8)y) + F(x,y-8) —4-Rx,y) + F(x+8,y) + F(x,y+6))/6°
by the algebraically equivalent but numerically more accurate 2ndwrdermula

& F(xy) = (((F(x+8,y) — Ax.y)) — (Fxy) — Fx-0.y))) +
+((F(x,y+6) — Fx.y)) — (Fx.y) — Ax,y-9))))/6?

to take advantage of exact subtractive cancellations. These two computations were performed
entirely in 4-byteloat arithmetic carrying 24 sig.bits. The third computation of F was
performed in 8-bytdouble carrying 53 sig.bits to nearly nullify roundoff. Thus, six sets of

values F and their errors E := mg}F(x,y) —®(x,y)| were generated to be compared:

Etrue2 E computed from the tricky formula fas F carrying 53 sig.bits.
Etrick2 E computed from the tricky formula fa¥ F carrying 24 sig.bits.
Ecrude2 E computed from the crude formula ferF carrying 24 sig.bits.

Each E was recorded both before and after iterative refinement.

Everything above was repeated for each of a sequence of diminishing medh=gaf¢. Since
2® = %0 + O(8?) we expected EANto approach a constant as—Neo except for roundoff.

Tabulated below are computed results with E before iterative refinement shown above E after:

N Etrue2N? Etrick2 ...N? | Ecrude2 | ...-N?
128 2.030e-4| 3326 | 2025e-4| 3318
7.48le-5| 1226 | 7472e-5| 1224 | 7816e-5| 1281
256 7.440e-5] 4876 7.766e-5] 5089
1.872e-5| 1227 [1879e-5| 1231 | 5081e-5] 333
512 1.878e-5| 4924 5076e-5] 1331
4.681e-6| 1227 | 4787e-6| 1255 | 4434e-5| 1162
1024 4.912e-6| 5151 | 4440e-5] 466
1.170e-6| 1227 [1285e-6| 1348 | 3363e-5| 337
2048 1.488e-6] 6240 | 3386e-5| 142
2.926e-7| 1227 [4085e-7| 1713 | 3.394e-5| 1424
Worsé

The crude formula fom lost almost two sig.dec. more than the tricky formula, which allowed
iterative refinement to render the final error E almost as small as if F mache®3 sig.bits.

The crude formula’s residual was not accurate enough to ensure that iterative refinement would
always diminish the erroE .

Prof. W. Kahan's notes for Math. 128B Page 21/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

812. Computing Grad® : When derivatived' , approximated by the
Central Divided DifferenceCD*(x,y) = [P(x+0,y) —D(x-8,y), P(X,y+8)—d(x,y-0)]/(20)
= '(xy) + O(89),
is further approximated by the compute&xl,:y) , sources of error accrue to include ...

« O(®) inherited from®*, and
« error E—oF = (F —<1>)It due to the differential equation’s discretization, and
« atleastO(e-FB) due to roundoff's contamination of. F
The relative magnitudes of these sources are not often knowable in advance. For instance, the

second source ¥~ &% is usually much smaller than (FP}/0 because the discretization’s error
F —® is usually smoothlyPillow-Shaped as was the error (Compuied-u) plotted on p.18
(after its raggedness due to roundoff is smoothed away). The third source’s rounding errors
depend upon the numerical method in detail including any trick intended to attenuate them.

The first source’sO(ez) turned out to be the preponderant contributor to our example’s error

Fr—o at gap size® whose F -9 was about as small as roundoff allowed after tricks. This
became evident when F was is recomputed using a higher-order (6th) discretization that reduced

F-o from OB to O for 6 small enough though perhaps not so small as before. The
higher-order discretization replaced the discretized Laplasfafx,y) everywhere above by ...
&D(x,y) ;= (D(x-0,y+0) + 4D(x,y+0) + D(x+0,y+0) +
4P(x-0,y) — 20P(x,y) + 4-D(x+0,y) +
PD(x—0,y-0) + 4D(x,y-0) + D(x+6,y-0))/(66?)
= O2d(x,y) + O%D(x,y)-0%12 + ((O0d(x,y) + 20%T2D(x,y)/dx%0y?)-84360 + O(6°)
= 0@ if DPw=0.

The trick that attenuated most of the roundof#f computed it from ...

#F(xy) = (4-0% F(xy)) + ((F(x-8,y+6) — Fx.y)) + (F(x+6,y-8) — Fx,y))) +
((Rx-8,y-6) — Fx,y)) + (F(x+8,y+8) — Fx,)))))/(66) .

As before, six sets of values F and their errors E :aygiiéél(,y) —®(x,y)| were generated,
but now from the equation #F(x,y) := 0", to be compared:

Erues E computed from the tricky formula fosF carrying 53 sig.bits.
Etricke E computed from the tricky formula fesF carrying 24 sig.bits.
Ecrudes E computed from the crude formula fé&F carrying 24 sig.bits.

Each E is tabulated below both before (above) and after iterative refinement (under). Also
tabulated is [, to facilitate a comparison of accuracies from ideal 2nd-erdand 6th-order

& formulas unobscured by roundoff, though it crept istoat the bottom of the table.

The crude# lost about one sig.dec. more than the trigky whose iterative refinement for
N =64 produced F matching to about 23 sig.bits. The crude formula’s residual was not
accurate enough to ensure that iterative refinement would always diminish th& error

Prof. W. Kahan's notes for Math. 128B Page 22/28

File FloTrik Floating-Point Tricks ... version dated SeprabéBB:21 pm

Errors E := may,|F(x,y) —P(x,y)|

N Etrues N Etricks Ecrudes Etrue2
16 9.681e-5| 970565
9.677e-5| 16e3 [9.681le-5| 9%58e-5| 4.387e-3
32 2.039e-6| 2039e-6
2.084e-6 | 22e3 [2.039-6] 2039%e-6| 1.179%e-3
64 6.928e-7| 9.254e-¢
3.225e-8 | 2e3 [1.708e-7| 1635e-6| 2.979%-4
128 1.859e-6| 2/60e-6

5.126e-10| 2Be3 | 2.845e-7| 2290e-6| 7.481e-5
256 | 8103e-12| 2e3 | 5a3b2e-7| 2366e-6
8.104e-12| 23e3 | 2283e-7| 2720e-6| 1.872e-5
512 | 1121e-13| 2e3 | 3665e-7| 2685e-6
1.266e-13| 23e3 | 2900e-7| 8.151e-6 | 4.681e-6

An adequately accurate approximation to the gradient required gapesiz&8\ rather smaller

than sufficed for adequate accuracy in Fhe error D := ma;gs,llF*(x,y) —®'(x,y)|| was found

for both crude and tricky versions of bo#h and & , for arithmetics carrying both 24 and 53
sig.bits, and before and after iterative refinement though it made little difference. The following

versions of D are tabulated below:

Dtrues D computed from the tricky formula fosF carrying 53 sig.bits.
Dtricks D computed from the tricky formula foeF carrying 24 sig.bits.
Dcrudes D computed from the crude formula f&F carrying 24 sig.bits.
Drrick2 D computed from the tricky formula fog F carrying 24 sig.bits.
D := max | [F(x,y) - @' (x.)]|
N | Duues | ...-N° | Duicks | Dcrudes | Drrick2
16 0.3207 03207 02948
0.3207 8209 0.3207 03207 02948
32 0.161 Q161 Q1537
0.161 1648 0.161 Q161 Q1537
64 0.05772 | 005767 | 005467 |
0.05773 236 0.05773 005772 005458
128 0.01/32 | 00174 | 001593 |
0.01731 283% 0.01731 001732 00161
256 0.004778| 0004847| 0004456
0.004745 311 | 0.004727| 0004847| 0004415
512 0.001297| 0001398 0001328
0.001243| 323 | 0.001297| 0001398| 0001231
1024 0.000526 |
0.000318| 333 0.0004997
2048 0.0008799
8.043e-5| 334 — -—-- 0.0006271

Prof. W. Kahan's notes for Math. 128B Page 23/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

The tabulated magnitudes of the errofs—@' reflect a contribution roughly 3%3- due mostly

to either a mesh-gap too big, or a 2nd-order formula® Boo crude, rather than Fb- too
inaccurate. This could hardly have been known in advance. 4th-order formulas more refined than

F¥ come from the calculus of divided differences as follows:

Given a sufficiently differentiable (X), its derivative f(x) is approximated by
f1(x,8) = (f(x+8) — f(x))/6 = f(x) +O(®) ;
fF(x8) := (f'(x+8) + f{(x-6))/2 = f(x) + O(6?) ;

(4-F(x8) - f(x,28))/3 = f(x) +O(6% ;
4-f1(x,0) — 6-f(x,20) + 4-f/(x,30) — f1(x,48) = f(x) +O(6% ;
FTx,~0)14 + 3-f(x,0)/2 — f1(x,20) + f1(x,30)/4 = f(x) +O(6% .
The last three formulas would take better advantage of the accuracy of F computed, flmrh

at the cost of complication: One formula works better than the others deep inside the(sgquare
and the last two are needed near its boundary. The complication does not alter our tricks.

Prof. W. Kahan's notes for Math. 128B Page 24/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

813. Conclusions:These notes’ thesis, supported by analysis and examples, is that boundary-
value problems d{p-gradu) +g-.u=r can be discretized by divided differences and solved
faster and accurately enough for most practical purposes (including gradients) when all arrays
are stored as 4-byt#at s instead ofdouble s 8 bytes wide, and all arithmetic is rounded to

float S’ 24 sig. bits, as many current graphics processors do. Residuals must be computed
accurately enough via a trick effortless only if cancelling residuals are computed using arithmetic
rounded to higher precision, say the 53 sig. bitsloable precision, which computers used to

do automatically when programmed in Kernighan-Ritd8ieas it was before the mid-1980s.

The examples were chosen to illustrate three additional observations:
» Without tricks, float s are now too inaccurate for reliable scientific and engineering work.

* Rounding errors can corrupt severely a regular solution of a singular differential equation unless
the discretization is designed to filter out singular solutions and also to preserve vital symmetries.

* If residuals are computed well enough, the accuracy of a computed solution tends to improve
with iterative refinement after the discretization is refined by an increase in the density of mesh-
points. But the rate of improvement declines as a solution’s accuracy approaches the arithmetic’s
precision; and further mesh refinement incurs retardation of iterative refinement’s convergence.

The tricks presented in these notes are palliatives, not cures for ailments that afflict scientific and
engineering computation in an era when floating-point arithmetic is employed overwhelmingly
more often for games and entertainment. Two of the ailments are, first, a lack of programming
tools to help diagnose failure modes peculiar to floating-point computation and, second, wide-
spread misunderstandings of roundoff among scientists, engineers and even numerical analysts.
Because almost all of them view cancellation as an enemy rather than an ally to combat roundoff,
they are predisposed to overlook the trickier tricks in these notes. Education will not cure their
misunderstandings since a study of roundoff is so unlikely to be added to an already overloaded
college undergraduate’s syllabus. Besides, students forget tricks taught but not soon exercised.

Incurable ailments are best prevented by prophylaxis like vaccination, healthy diet and exercise,
and seat-belts and air-bags. The analogous prophylaxis for numerical computation is arithmetic
extravagantly more precise than the data and the accuracy desired in results. ldeally programming
languages should supply this much precismyndefault without requiring an explicit request

from programmers naive about floating-point roundoff though clever at things they care about. If
a daredevil programmer chooses to trade accuracy away for speed, lethigideeision, not

decided by the designers and implementors of programming languages and program development
environments, nor a decision forced upon them by obeisance to benchmarks that rate only speed
regardless of reliability. Languages for typical programmers should presupposeatitist

Routinely (by default) perfornall arithmetic and carnall intermediate variables
extravagantly more precisely than the data and the accuracy desired in computed results.

It's just a matter of time until every one of us has occasion to depend upon software promulgated
perhaps over the Internet and produced by some programmer numerically naive but otherwise
clever, maybe ourself. The interests of all of us are served better if programming environments
are designed first to help get things right and after that, if need be, to help speed them up.

Prof. W. Kahan's notes for Math. 128B Page 25/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

814. Appendix 1: This concerns a trick to compute scalar z :=ABxy more accurately when
it cancels severely enough that |z| << Z := |A-x| + |B-y| because dtlandl ¥y are so near
1. If z is computed naively from the expressio-X—B-y” literally, its uncertainty due to the
two multiplications’ roundoff will be of the order afe-Z, wheree¢ is the roundoff threshold.

But whenever both 126 P <A/B<e® <2 and 1/xe X< xly <e®®< 2, the trick reduces
the uncertainty in z to something of the ordeeef(|z| + Z-tant§+@)) . This is substantially
smaller thante-Z when® and @ are both tiny of order h, as is the case when the trick is used
to compute @;-(Uj_1 —U;j) — G+1-(Uj —Uj+1) more accurately for tiny gaps_p and k.

Before the trick is explained it will be liberated from a spurious argument that would render the
trick superfluous. The argument presumes that at least some of the data has inherited uncertainty
from previous computation; say Aa1+¢) and B =b-(1+¢€) because roundoff has altered

their computed values away from their ideal but now unknown vaduasd b resp. Then even

if no further rounding error occurred the computed value olax=b-y + €-(|a-x| + | b-y|) would

inherit uncertaintyte-(ja-x| + [b-y|) almost the same as the uncertaitdy(|A-x| + |B-y|) that the

trick is designed to attenuate. Thus the trick could get rid of at most about half the uncertainty
that roundoff adds to .zIf this argument were correct, the trick would not be worthwhile.

The argument would be correct if z were the only thing computed from the data A, B, x and y
The argument’s logic falls short when some of this data appears in other expressions like z and
destined to combine with it. The argument overlooks the fact that uncertainties due to roundoff
are not uncorrelated, much less random. To succeed, error-analysis must take correlations into
account lest its excessive pessimism generate misconceived advice and bad decisions.

The trick computes z not from the expressioh-X—B-y” but from either of two formulas
“z:=(A-B)x+B:(x~y)” and “z:=A-(x~y)+ (A-B)y”

suggested by th€alculus of Divided Differencessee the product rule on p. 2 of my posting
<www.cs.berkeley.edu/~wkahan/Math185/Derivatives.pdf>

The hypothesis that both 1#2A/B <2 and 1/X x/y <2 ensures that X-y” and “A-B” are

computedexactly despite cancellation, at least if the arithmetic conforms to IEEE Standard 754

for Binary Floating-Point Arithmetic, and also for practically all current hardware arithmetics.

There were hardware arithmetics designed in the 1960s, some lingering into the early 1990s, whose subtractions
lacked aGuard Digit and consequently could not guarantee substantial cancellation free from new roundoff. Such
arithmetics died after hardware designers learned that lack of a guard digit conferred no performance advantage.
Young designers of new fast graphics processors may not yet have learned that lesson. A guard digit is usually
omitted from software-simulated floating-point whose precision exceeds what is built into the hardware, but such
arithmetic is unlikely to figure in the circumstances pertinent here.

Let's choose the first of the two formulas above. Its value actually computed for z is
zt e +]z]) = Ax-Bryxe(|A-B|[x| + [B]-[x-y| + [¥|
when rounding errors in the two multiplications and the addition are taken into account. Thus, to
compare the trick's # ¢-({ +|z|) with the naively computed+z-Z we must compare the
magnitudes of ...
z:=AxBy, Z:=|Ax +|By] and C:=]|A-B|:|x| + |B||x-y|
when e®<A/B<e® and eX<xly<e?®, and 8 and ¢ are both tiny.

Prof. W. Kahan's notes for Math. 128B Page 26/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

To simplify the comparisons without loss of generality we assume first that OABe®.B;
otherwise we first reverse the signs of z, A and B and/or swap A with B and x .withey
second simplification reverses the signs of x, y and z if necessary to reduce the comparisons to
two cases: either 0 <gx< ez‘p-y orelse 0<xy< e?®.x . In both cases we find that

|Z{Z < tanh@+¢), /Z < tanh@+q@), and {+|z|)Z < 2-tanh@+q) .

The verification of these inequalities is left to the very diligent reader.

Consequently, a® — 0 and@ - 0 independently, the ratid € |z|YZ of the trick’s to the
naive evaluation’s uncertainties tends to zero at least as fash-ap) 2{oes.

Whether this tricky attenuation of uncertainty due to roundoff is worth its cost in extra arithmetic
depends first upon how many digits of accuracy you can afford to lose, and second upon your
programming skill at overlapping and pipelining the two extra arithmetic operations. No such
trick nor other artifice is needed for programs in languages that, on computers most widespread
atop laps and under desks, can evaluate every arithmetic expression extra-precisely by default.

815. Appendix 2: A divided-difference discretization that converges at higher order (faster) as
all gaps approach zero need not necessarily entail higher order divided differences which increase
the bandwidth or otherwise degrade the sparsity of the discretized equations that must be solved.

The discretization of the boundary-value proble®U()' + Q-U =R poses a dilemma when the
solution U(x) fluctuates so much faster over some of its domain than over the rest as to call for a
grid with varying gaps jhsmaller whereU(x) fluctuates faster. Which of the following three

strategies should be tried first?

* Keep all the gaps; b= h the same and use a simple finite-difference formula whose

discretization error is of order? for smaller though the density of mesh-points will be
excessive wherever the solution fluctuates languidly.

* Vary the gaps jhAdaptively (making them smaller wherevef(x) fluctuates faster)
and use a divided-difference formula like that in 84 whose discretization error of low
order |p—hi_q| + (h+ hj_l)2 requires grid points of higher density wherever it varies.

* Vary the gaps jhadaptively using a complicated divided-difference formula ke

below whose discretization error of ordq? #hj_lz allows a lower mesh-point density
while preserving the tridiagonal form of the discretized equations to be solvad for

To exhibit that complicated formulBU is the purpose of this appendi&J approximates not

the differential operatorL U(x) := P(x)-U" (x) + P'(x)-U'(x) = (P(x)-U'(x))' but a composite
LU(X) + (1/3)(h—k)(LU(x+h) — LU(x=k))/(h+k)

wherein h =]1 and k= ill are the small gaps immediately astride X= khe approximation

is intended to be substituted not into the given differential equaltibtix) + Q(x)-U(X) = R(x)
but into its algebraically equivalent reformulation ...

Prof. W. Kahan's notes for Math. 128B Page 27/28

File FloTrik Floating-Point Tricks ... version dated SeptrabéBb:21 pm

LU(X) + (1/3)(h—k){ LU(x+h) — LU(x—k))/(h+k)
+Q(X) U(x) + (1/3)(h—k){ Q(x+h) U(x+h) —Q(x—k) U(x—k))/(h+K)
= R(X) + (1/3)(h—k){ R(x+h) —R(x—k))/(h+k)
at each internal mesh-point x F.x

The complicated discrete approximati&t(x, h, k) to the composite differential/difference
operator above is built out of several difference operators thus:

UT(x, h) :=(Ux+h) =Ux))/h; PT(x, h) :=(P(x+h) =P(x))/h ;
¥U(x, h) :=(P(x+h)+P(x))-UT(x, h) ;
BU(X, h, k) =(UT(x, h)=UT(x, =k))-PT(x—k, h+k) —(PT(x, h)=PT(x, —k))-UT(x—k, h+k) :
EU(X, h, k) :=((2U(x, h)=¥U(x, —k)) + (1/3)-(h=K)}BU(X, h, K))/(h+k) .

The following substitutions discretize the reformulated differential equation: Replace it by
EU(X, h, K) +Q(X)-U(x) + (1/3)(h—k){ Q(x+h)-U(x+h) —Q(x—k)-U(x—k))/(h+k)
= R(X) + (1/3)(h—k){ R(x+h) —R(x—k))/(h+k)
and then substitute; Xor x, h for h, 4 for k, andu; for U(x;) at every internal mesh-
point x to produce a tridiagonal system of linear equations to be solved for the calurita
discretization error turns out to be of second-order in the gap sizes because

LU(X) + (1/3)(h=K){ LUx+h) — LU(x=K))/(h+k) — EU(x, h, k) = O(h? + K?) .

If U'(X) appears in a boundary condition its discretization can be obtained from the formula
(k-UT(x, hy—=hUT(x, k))/(k=h) =U' (x) + O(h-k) .

If tricky suppression of roundoff ilEU(x, h, k) is needed, restrict gaps tb powers of 1/2 as
explained in 87, and change the expressief(k, h)—%U(x, —k)” in the definition above of
EU(X, h, k) to “(P(x+h)—P(x=k))-UT(x, h) +(P(x=k) + P(x))-(UT(x, h)=UT(x, =k)) * when
computing residuals. Another small improvement replac®gx+h)-U(x+h) —Q(x—k)-U(x—k)”
by “Q(x+h)(U(x+h) —U(x=K)) + (Q(x+h) —Q(x—k))-U(x—k)" .

The complicated second-order divided-difference discretization exhibited above does not so much
resolve the dilemma presented at the beginning of this appendix as it relieves us of the necessity to
employ the crude first-order divided-difference discretization of §4 when gapanh The

dilemma persists because, when all gaps have the same tiny widtiorl accurate fourth-order
tridiagonal discretizations can be constructed from at most second-order finite differences. These
are a story for another day.

Prof. W. Kahan's notes for Math. 128B Page 28/28

