€S252
Graduate Computer Architecture
Lecture 8

Instruction Level Parallelism 2:
Getting the CPI < 1

September 22, 1999
Prof. John Kubiatowicz

9/22/99 €S252/Kubiatowicz
Lec 8.1

Review:
Hardware unrolling, in-order commit,
and explicit register renaming

* Machines that use hardware techniques with register
renaming (such as tomasulo) can unroll loops
automatically in hardware

* In-Order-Commit is important because:

- Allows the generation of precise exceptions
- Allows speculation across branches
* Use of reorder buffer
- Commits user-visible state in instruction order

- Explicit register renaming uses a rename table and
large bank of physical registers

€S252/Kubiatowicz
9/22/99 Lec 8.2

Tomasulo With Reorder buffer:

Done?
(F::QP Op Newest
ueue

Reorder Buffer

Oldest

LD FO, 10(R2)

Register‘s To
Memory
Dest Dest from
Memory
)esf*
Reservation 1 [10+R2
Stations

i - .
9/22/99 €S252/Kubiatowicz
Lec 8.3

Tomasulo With Reorder buffer:

Done?
(F::QP Op Newest
ueue

Reorder Buffer

F2 DI VD F2, F10, F6
10 ADDD F10, F4, FO
LD FO, 10(R2) N [roB1

Oldest

Register‘s To

DesT
ADDD[R T4 TOBT Des’ from
R

eservation 1 [10+R2]
Stations

€S5252/Kubiatowi
ubiatowicz
9/22/99 Lec 8.4

Tomasulo With Reorder buffer:

Tomasulo With Reorder buffer:

Done? Done?
FP Op ROB7 Newest FP Op --] ROBS |ST O(R3).F4 N [IROB7 Newest
Queue FO ADDD FO, F4, F6 | N |ROB6 Queue FO ADDD FO, F4, F6 | N|RrRoB6
F4 LD F4, 0(R3) N F4 LD F4, 0(R3) N
- BNE F2,<...> N - BNE F2,<..> N
Reorder Buffer F2 DIVD F2,F10,F6 [N Reorder Buffer F2 DIVD F2,F10,F6 [N
ADDD F10,F4,FO | N Oldest ADDD F10,F4,FO | N Oldest
LD F0,10(R2) N | rog1 LD F0,10(R2) N | roe1
Registers To Registers To
Memory Memory
Dest Dest
2 JODDIRCEA) , ROB1 Dest A{Q%'Sry 7 TADDDIR(F4) _ROB1 Dest A{g,‘:"{,‘ry
ROB5,_R(F6) ROB5,_R(F6)
)es‘r*)esf*
Reservation 1310+R2 Reservation 1 J0+R2
Stations 6 0+R3 Stations
9/22/99 CSZ_SilcliuI;if:sTowicz 9/22/99 CSZ_SilcliuI;izfowicz
Tomasulo With Reorder buffer: Tomasulo With Reorder buffer:
Done? Done?
FP Op --| M10] [ST O(R3), F4 Y JJROB7 Newest FP Op --| M10] |ST O(R3),F4 Y JIROB7 Newest
Queue FO|<val 2>| ADDD FO, F4, F6 |Ex |ROB6 Queue FO| <val 2> | ADDD FO, F4, F6 |Ex |ROB6
F4] M 10] | LD F4, 0(R3) % 4| LD F4, 0(R3) %
- BNE F2,<..> N -- INE F2,<...> N
Reorder Buffer F2 DIVD F2,F10,F6 [N Reorder Buffér F2 DIVR F2,F10,F6 [N
ADDD F10,F4,FO | N Oldest ADDD¥:10,F4,F0 | N Oldest
LD F0,10(R2) N Jiros1 What about memory N
hazards???
Registers To Registers
Memory
Dest Dest
7 TADDDIR(FA ROEL Dest A{;,‘:.’;‘ry RFar RoETh Dest
)esf*
Reservation 1]0+R2 Reservation

Stations

i
9/22/99 €S252/Kubiatowicz

Lec 8.7

Stations

i
9/22/99 €S252/Kubiatowicz

Lec 8.8

Memory Disambiguation:
Sorting out RAW Hazards in memory

* Question: Given a load that follows a store in
program order, are the two related?

- (Alternatively: is there a RAW hazard between the store
and the load)?

Eg: st 0(R2), RS
Id R6, O(R3)

+ Can we go ahead and start the load early?

- Store address could be delayed for a long time by some
calculation that leads to R2 (divide?).

- We might want to issue/begin execution of both
operations in same cycle.

- Today: Answer is that we are not allowed to start load
until we know that address O(R2) # O(R3)

- Next Week: We might guess at whether or not they are
dependent (called “dependence speculation”) and use
reorder buffer to fixup if we are wrong.

€S252/Kubiatowicz
9/22/99 Lec 8.9

Hardware Support for Memory

Disambiguation
Need buffer to keep track of all outstanding stores to
memory, in program order.

- Keep track of address (when becomes available) and value (when
becomes available)

- FIFO ordering: will retire stores from this buffer in program order

* When issuing a load, record current head of store
queue (know which stores are ahead of you).

* When have address for load, check store queue:
- If any store prior to load is waiting for its address, stall load.

- If load address matches earlier store address (associative lookup),
then we have a memory-induced RAW hazard:

» store value available [0 return value
» store value not available O return ROB number of source
- Otherwise, send out request to memory

* Actual stores commit in order, so no worry about
WAR/WAW hazards through memory.

€S252/Kubiatowicz
9/22/99 Lec 8.10

.

Memory Disambiguation:

Done?
FP Op Newest
Queue
. LD F4, 10(R3) [N
Reor‘der BUffer F2| RIF5] | ST 10(R3), F5 N
FO LD FO, 32(R2) N Oldest
-lcval 15[ST O(R3), F4 Y Jros1

Regisfer's To

Dest Des'r from

Reservation 2 [32+R2
Stations 4 |ROB3

€S252/Kubiatowi
ubiatowicz
9/22/99 Lec 8.11

Explicit register renaming:

Hardware equivalent of static,
single-assignment (SSA) compiler form

| PO | P2 | P4 | F6 | F8 |P10|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?
/ > Newest

|P32|P34|P36|P38I- -« |P60O|P62

Freelist Oldest

* Physical register file larger than ISA register file

* On issue, each instruction that modifies a register is
allocated new physical register from freelist

* Used on: R10000, Alpha 21264, HP PA8S00O

€S252/Kubiatowicz
9/22/99 Lec 8.12

Explicit register renaming:
Hardware equivalent of static,
single-assignment (SSA) compiler form

|P32| P2 | P4 | F6 | F8 |P10|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

|P34|P36|P38|P40I- ..

Freelist

Newest

LD P32, 10(R2) Oldest

* Note that physical register PO is "dead” (or not "live")
past the point of this load.

- When we go to commit the load, we free up

€S252/Kubiatowicz
9/22/99 Lec 8.13

Explicit register renaming:
Hardware equivalent of static,
single-assignment (SSA) compiler form

|P32| P2 | P4 | F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

/ Newest
|P36|P38|P40|P42I- .
. ADDD P34, P4, P32
Freelist Ul
LD P32, 10(R2) Oldest

€S252/Kubiatowicz
9/22/99 Lec 8.14

Explicit register renaming:
Hardware equivalent of static,
single-assignment (SSA) compiler form

|P32|P36| P4 | F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

|P38|P40|P44|P48I- .

Freelist

Newest

- - BNE,P36,<...>
F2| P2 | DIVIp P36,P34,P6
ADIID P34,P4,P32
LD P32,10(R2)

- Checkpoint at BNE instruction
9/2; CSg52/Kubiatowicz
Lec 8.15

zZ|Z|Z|2

Oldest

Explicit register renaming:
Hardware equivalent of static,
single-assignment (SSA) compiler form

|P40|P36|P38| F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?
— ST O(R3), P40 Y I Newest

F0[P32| ADDD P40, P38, Pq Y

F4| P4 | LD P38, 0(R3) Y

P42|P44|P48|P50} - . . | PO |P10 - - BNE P36,<...> N

F2| P2 DIVD P36,P34,P6 [N

Freelist £2.8710[ADDD P34,P4,P32 [y
LD P32,10(R2) y || Oldest

- Checkpoint at BNE instruction
9/2; Cs; Eg/l(u;i;;owicz

Explicit register renaming:
Hardware equivalent of static,
single-assignment (SSA) compiler form

|P32|P36| P4 | F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

Newest

DI VD P36, P34, P4 N

Freelist ADDD P34, P4, P32 y
LD P32, 10(R2) |y | Oldest

Speculation error\fixed by restoring map table and freelist

- Checkpoint at BNE instruction
9/2; CSg52/Kubiatowicz
Lec 8.17

9/22/99

Instruction Level Parallelism

* High speed execution based on instruction
level parallelism (ilp): potential of short
instruction sequences to execute in parallel

+ High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) Out-of-order execution (commit in-order)

3) Multiple issue: issue and execute multiple
instructions per clock cycle

4) Vector instructions: many independent ops specified
with a single instruction
* Memory accesses for high-speed
microprocessor?
- Data Cache possibly multiported, multiple levels

€S252/Kubiatowicz
Lec 8.18

CS 252 Administrivia

Wednesday 10/13
Location: TBA
TIME: 5:30 - 8:30

* This info is on the Lecture page (has been)
* Meet at LaVal's afterwards for Pizza and Beverages

+ Exam:

* Assignment next time

+ Computers in the News: Intel IXP 2000 initiative

€S252/Kubiatowicz
9/22/99 Lec 8.19

9/22/99

Getting CPT < 1: Issuing
Multiple Instructions/Cycle

+ Two variations
* Superscalar: varying no. instructions/cycle (1 to

8), scheduled by compiler or by HW (Tomasulo)
- IBM PowerPC, Sun UltraSparc, DEC Alpha, HP 8000

+ (Very) Long Instruction Words (V)LIW:

fixed number of instructions (4-16) scheduled
by the compiler; put ops into wide templates
- Joint HP/Intel agreement in 1999/2000?
- Intel Architecture-64 (IA-64) 64-bit address
- Style: “"Explicitly Parallel Instruction Computer (EPIC)"

* Anticipated success lead to use of

Instructions Per Clock cycle (IPC) vs. CPI

€S252/Kubiatowicz
Lec 8.20

Getting CPT < 1: Issuing
Multiple Instructions/Cycle

+ Superscalar DLX: 2 instructions, 1 FP & 1 anything
else
- Fetch 64-bits/clock cycle: Int on left, FP on right
- Can only issue 2nd instruction if 1st instruction issues
- More ports for FP registers to do FP load & FP op in a pair
Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

+ 1 cycle load delay expands to 3 instructions in SS

- instruction in right half can't use it, nor instructions in next slo¥, ..iouice

9/22/99 Lec 8.21

9/22/99

Review: Unrolled Loop that
Minimizes Stalls for Scalar

1Lloop: LD FO, O(R1) LD to ADDD: 1 Cycle
2 LD F6, - 8(R1) ADDD to SD: 2 Cycles
3 LD F10, - 16(R1)

4 LD F14, - 24(R1)

5 ADDD F4, FO, F2

6 ADDD F8, F6, F2

7 ADDD F12, F10, F2

8 ADDD F16, F14, F2

9 SD O(RL), F4

10 Sh) -8(R1), F8

11 SD -16(R1), F12

12 SuBl RI,R1, #32

13 BNEZ RIL, LOOP

14 Sh) 8(R1), F16 © 8-32 = -24

14 clock cycles, or 3.5 per iteration

€S252/Kubiatowicz
Lec 8.22

Loop Unrolling in Superscalar

Integer instruction FP instruction Clock cycle
Loop: LD 1
LD F6,-8(R1) 2
LD F10,-16(R1))F2 3
LD F14,-24(R1) F8,F6,F2 4
LD F18,-32(R ADDD F12,F10,F2 5
SD O(R1), ADDD F16,F14,F2 6
sD -8(R1),F8 ADDD F20,F18,F2 7
sD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
sD -32(R1),F20 12

* Unrolled 5 times to avoid delays (+1 due to SS)

+ 12 clocks, or 2.4 clocks per iteration (1.5X)

9/22/99

9/22/99

Dynamic Scheduling in Superscalar

How to issue two instructions and keep in-order
instruction issue for Tomasulo?

- Assume 1 integer + 1 floating point

- 1 Tomasulo control for integer, 1 for floating point

Issue 2X Clock Rate, so that issue remains in order

Only FP loads might cause dependency between
integer and FP issue:

- Replace load reservation station with a load queue;
operands must be read in the order they are fetched

- Load checks addresses in Store Queue to avoid RAW violation
- Store checks addresses in Load Queue to avoid WAR,WAW
- Called “decoupled architecture”

€S252/Kubiatowicz
Lec 8.24

Multiple Issue Challenges

* While Integer/FP split is simple for the HW, get CPI
of 0.5 only for programs with:
- Exactly 50% FP operations
- No hazards

* If more instructions issue at same time, greater
difficulty of decode and issue:

- Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
if 1 or 2 instructions can issue

- Multiported rename logic: must be able to rename same register
multiple times in one cycle!
*+ VLIW: tradeoff instruction space for simple decoding
- The long instruction word has room for many operations

- By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

- E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits
wide
02200 = Need compiling technique that schedules across several branchesiifu;i;;owicz

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD Fo, LD F6,-8(R1)

LD FM

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,FO,F2 ADDD F8,F6,F2

LD F26,-48(R1) D F12,F10,F2 ADDD F16,F14,F2
ADDD F20,F18,F2 ADDD F24,F22,F2

SDO(RL),F4~ SD-8(R1)F8 ADDD F28,F26,F2

SD -16(R1),F12 SD -24(R1),F16

SD -32(R1),F20 SD -40(R1),F24
SD -0(R1),F28

9/22/99

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

SUBI R1,R1,#48
BNEZ R1,LOOP

© 00N U WN B

"5252/Kubiatowicz

Lec 8.26

Software Pipelining

* Observation: if iterations from loops are independent,
then can get more ILP by taking instructions from
different iterations

+ Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from
different iterations of the original loop (- Tomasulo in
SwW)

Iteration
0

Iteration X
1 Iteration
2 Iteration
3 Iteration
4

Software-
pipelined
iteration

€S252/Kubiatowicz

9/22/99 Lec 8.27

9/22/99

Software Pipelining Example

Before: Unrolled 3 times After: Software Pipelined

LD FO, O(R1) 1 SD O(R1l),F4 ; Stores Mi]
ADDD F4, FO, F2 2 ADDD F4,F0,F2 ; Adds to Mi

SD -8(Rl),F8
LD F10, - 16(RL)
ADDD F12, F10, F2
SD -16(R1), F12
10 SUBI R, R, #24
11 BNEZ RI1, LOOP

Symbolic Loop Unrolling

Maximize result-use distance

>

3

SW Pipeline

VOONCOIDwWMN =

Time
h Loop Unrolled

overlapped ops

_1]

SD O(R1),F4 3 LD FO,-16(R1); Loads Mi -2]
LD F6,-8(R1) 4 SUBI RI,R1,#8
ADDD F8, F6, F2 5 BNEZ R1, LOOP

BREER

»
>

Less code space than unrolling]
Fill & drain pipe only once per loop Time
vs. once per each unrolled iteration in loop unrolling

€S252/Kubiatowicz

Lec 8.28

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op.2 branch

LD F0,-48(R1) ST O(R1),F4 ADDD F4,F0,F2

LD F6,-56(R1) ST -8(R1),F8 ADDD F8,F6,F2 SUBIR1,R1#24 2

LD F10,-40(R1) ST 8(R1),F12 ADDD F12,F10,F2 BNEZ R1,LOOP 3
» Software pipelined across 9 iterations of original loop
— In each iteration of above loop, we:
» Store to m,m-8,m-16 (iterations 1-3,1-2,I-1)
» Compute for m-24,m-32,m-40 (iterations I,I+1,1+2)

» Load from m-48,m-56,m-64 (iterations 1+3,1+4,1+5)
e 9results in 9 cycles, or 1 clock per iteration
* Average: 3.3 ops per clock, 66% efficiency

Note: Need less registers for software pipelining
9122199 (only using 7 registers here, was using 15) cs#/kbiatouicz

9/22/99

Trace Scheduling

Parallelism across IF branches vs. LOOP branches

Two steps:
- Trace Selection

» Find likely sequence of basic blocks (frace)
of (statically predicted or profile predicted)
long sequence of straight-line code

- Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong

Compiler undoes bad guess
(discards values in registers)

Subtle compiler bugs mean wrong answer
vs. pooer performance; no hardware interlocks

€S252/Kubiatowicz
Lec 8.30

Advantages of HW (Tomasulo)
vs. SW (VLIW) Speculation

* HW determines address conflicts

* HW better branch prediction

* HW maintains precise exception model

* HW does not execute bookkeeping instructions
+ Works across multiple implementations

* SW speculation is much easier for HW design

€S252/Kubiatowicz

9/22/99 Lec 8.31

9/22/99

Superscalar v. VLIW

+ Smaller code size - Simplified Hardware

- Binary compatability ~ for decoding, issuing
across generations instructions
of hardware * No Interlock

Hardware (compiler
checks?)

* More registers, but
simplified Hardware
for Register Ports
(multiple independent
register files?)

€S252/Kubiatowicz
Lec 8.32

Intel/HP “Explicitly Parallel
Instruction Computer (EPIC)”

+ 3 Instructions in 128 bit “groups”; field determines if
instructions dependent or independent
- Smaller code size than old VLIW, larger than x86/RISC
- Groups can be linked to show independence > 3 instr
* 64 integer registers + 64 floating point registers
- Not separate filesper funcitonal unit as in old VLIW
* Hardware checks dependencies
(interlocks => binary compatibility over time)

* Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

- IA-64 : instruction set architecture; EPIC is type

* Merced is name of first implementation (1999/2000?)

- LIW = EPIC?

9/22/99 €S252/Kubiatowicz

Lec 8.33

9/22/99

Limits to Multi-Issue Machines

* Inherent limitations of ILP
- 1 branch in 5: How to keep a 5-way VLIW busy?
- Latencies of units: many operations must be scheduled

- Need about Pipeline Depth x No. Functional Units of independent
operations to keep all pipelines busy.

- Difficulties in building HW

- Easy: More instruction bandwidth

- Easy: Duplicate FUs to get parallel execution

- Hard: Increase ports to Register File (bandwidth)

» VLIW example needs 7 read and 3 write for Int. Reg.
& 5 read and 3 write for FP reg

- Harder: Increase ports to memory (bandwidth)
- Decoding Superscalar and impact on clock rate, pipeline depth?

€S252/Kubiatowicz
Lec 8.34

Limits to Multi-Issue Machines

- Limitations specific to either Superscalar or VLIW
implementation
- Decode issue in Superscalar: how wide practical?
- VLIW code size: unroll loops + wasted fields in VLIW
» IA-64 compresses dependent instructions, but still larger
- VLIW lock step => 1 hazard & all instructions stall
» IA-64 not lock step? Dynamic pipeline?
- VLIW & binary compatibilityIA-64 promises binary compatibility

€S252/Kubiatowicz

9/22/99 Lec 8.35

9/22/99

Limits to ILP

+ Conflicting studies of amount
- Benchmarks (vectorized Fortran FP vs. integer C programs)
- Hardware sophistication
- Compiler sophistication
+ How much ILP is available using existing
mechanims with increasing HW budgets?

+ Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?
- Intel MMX
- Motorola AltaVec
- Supersparc Multimedia ops, etc.

€S252/Kubiatowicz
Lec 8.36

9/22/99

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming-infinite virtual registers and
all WAW & WAR hazards are avoided

2. Branch prediction-perfect. no mispredictions

3. Jump prediction-all jumps perfectly predicted =>
machine with perfect speculation & an unbounded
buffer of instructions available

4. Memory-address alias analysis-addresses are
known & a store can be moved before a load
provided addresses not equal

1 cycle latency for all instructions; unlimited number
of instructions issued per clock cycle

€S252/Kubiatowicz
Lec 8.37

Upper Limit to ILP: Ideal

Machine
(Figure 4.38, page 319)
160 —+ 150.1
FP: 75 - 150
140 T
w0 L Integer: 18 - 60 1187

100 T

75.2

IPC

17.9

gce espresso li fpppp doducd tomcatv

Programs

€S252/Kubiatowicz
9/22/99 Lec 8.38

IPC

9/22/99

More Realistic HW: Branch Impact
Figure 4.40, Page 323
Change from Infinite
_window to examine to *
2000 and maximum
lissue of 64
instructions per clock
o cycle g

FP: 15-45

Integer: 6 - 12

gec espresso li fpppp doducd tomcatv

Program

M Perfect B sdective predictor M standard 2-bit O static M None |

S252/Kubiatowicz

Perfect Pick Cor.or BHT BHT (512) Profile No pre(‘jmu@mg

More Realistic HW: Register Impact

Figure 4.44, Page 328
w FP: 11 - 45

Change 2000 instr
» + window, 64 instr
issue, 8K 2 level

©» t Prediction

Integer: 5-15

IPC

gee espresso li fpppp doducd tomcatv

Program

M infinie 256 M s Oes (=K I None

o122199 Infinite 256 128 64 32 None cszs/Kubigtowicz

More Realistic HW: Alias

window, 64 instr

Realistic HW for '9X: Window Impact

(Figure 4.48, Page 332)
| Perfect disambiguation,,
» + (HW), 1K Selective

« 1 Change 2000 instr

Prediction, 16 entry
« + return, 64 registers,

(Fortran,
no heap)

1 issue, 8K 2 level
» . Prediction, 256

s L renaming registers issue as many as
30 + H
2 Integer: 4 -9 window
O . b O
o a * 1511r13teger: 6-12
— 10 4
5 - 10
0
gee espresso li fpppp doducd tomcatv 0
Program gee expresso li fpppp doducd tomcatv
W Perfect W Global/stack Perfect B inspection [None regen
W infiniee W 256 W s Oes =7 [NET s (mp)
Perfect Global/Stack perf; Inspec. None —
9/22/99 heap conflicts Assem. Co2o2 Kubiatowicz 9/22/99 Infinite 256 128 64 32 16 8 4 cszs2/Kubiatouicz

Braniac vs. Speed

. 8-scalar TBM E,s:p_oz"élg%%),_,z (5 stage Problems with scalar approach to

pipe) ILP extraction
wV$...2-scalar. Alpha @..200-MHz.(7..stage - pipe) --------

800 1

+ Limits to conventional exploitation of ILP:

1) pipelined clock rate: at some point, each
increase in clock rate has corresponding CPT
increase (branches, other hazards)

2) instruction fetch and decode: at some
point, its hard to fetch and decode more
instructions per clock cycle

3) cache hit rate: some long-running
(scientific) programs have very large data
oy sets accessed with poor locality:;

8 others have continuous data streams
(multimedia) and hence poor locality

700 4

eqntott
spice
doduc
mdljdp2
waves
tomcatv
ora
avinn
ear
mdljsp2
swm256
su2cor
hydro2d
fpppp

compress

€S252/Kubiatowicz
Lec 8.43

€S252/Kubiatowicz

9/22/99 Lec 8.44

9/22/99

Preview: Alternative Model:
Vector Processing

* Vector processors have high-level operations that
work on linear arrays of numbers: "vectors"

SCALAR
(1 operation)

p

- ﬂeclor

length

VECTOR
(N operations)

add r3, r1, r2 add.vv v3, vl, v2

€5252/Kubiatowing

9/22/99 Lec 8.45

9/22/99

Properties of Vector Processors

Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate

Vector instructions access memory with known pattern
=> highly interleaved memory

=> amortize memory latency of over - 64 elements
=> no (data) caches required! (Do use instruction
cache)

Reduces branches and branch problems in pipelines

Single vector instruction implies lots of work (- loop)
=> fewer instruction fetches

€S252/Kubiatowicz
Lec 8.46

Vector Advantages

* Easy to get high performance: N operations:
- are independent
- use same functional unit
- access disjoint registers
- access registers in same order as previous instructions
- access contiguous memory words or known pattern
- can exploit large memory bandwidth
- hide memory latency (and any other latency)
+ Scalable (get higher performance as more HW resources
available)
. CoLr{\pa)cT: Describe N operations with 1 short instruction (v.
VLIW

* Predictable (real-time) performance vs. statistical performance
(cache)

+ Multimedia ready: choose N * 64b, 2N * 32b, 4N * 16b, 8N *
8b

* Mature, developed compiler technology

o220s Vector Disadvantage: Out of Fashion?

€S252/Kubiatowicz
Lec 8.47

9/22/99

Summary

Dynamic hardware schemes can unroll loops
dynamically in hardware

Explicit Renaming: more physical registers than
needed by ISA. Uses a translation table

Precise exceptions/Speculation: Out-of-order
execution, In-order commit (reorder buffer)

Superscalar and VLIW: CPI < 1 (IPC > 1)
- Dynamic issue vs. Static issue
- More instructions issue at same time => larger hazard penalty

- Limitation is often number of instructions that you can successfully
fetch and decode per cycle O “Flynn barrier”

SW Pipelining

- Symbolic Loop Unrolling to get most from pipeline with little code
expansion, little overhead

€S252/Kubiatowicz
Lec 8.48

