
111110001001110010010110100000101100100000011011000101000101100011111110110111101010001100101111000000010001001000011101000010
011000100111000101110000101100100010010100001110101110001010111100010111011001111001101001011010111000100011000011010111110000
000011001100010101001010010011010011010000110110100100111011011001011110001111001010011101001000101001010011101111001110010001
111001001110000110001101111101101101101111100000001100010000001001001010100111010111000010110100110001000011000100110111100101
100111101111010110101111101101010101110011111111100110101101101000000110101110101100100010101010111111101111010111100000110001
101000011011001101001000000010011000001101011010100000010010001111110111110001010110111010011100101000111111101111010111111111
001011000011100010001001110101110000100011111110000100011010101011001000001110110110001100001101101001110110011110000000011001
001000011000001001101011110100110001100000100100011011011100001011100000010011110000010001000010000100000100001001000000111101
000101100101111010101011010000101101110011010110111001010010011010011010111111101000111010001010110100111110110111111000011101
001100001010011111011100111110101001010111001110001001100000000001111101100001000101010111110100111101110010100101000100000100
100011101011001101000101101100100110100001110010101110110101011110110100010110001011000000000100100111000011100011101011111111
110100011010110111001000101000101111001010111100111100111100011011110101100100110100010101010110011111010001000011110100111110
111100111100111101000000010010100111001100101011000110101001010001010001111001110000010010001110010000000110110011000011000101
001111111111100011000101100011011100110110000111010000110101010100001111101101101100010110110110111001110000101001100111001001
011111011101011101110110010101000101111101011011000101110111010001100110001001011001001000000011110001110010110011110100100001

George M. Georgiou and Brian Strader
California State University, San Bernardino

August 2005

CONTENTS

Contents ii

List of Code Listings v

List of Figures vi

Programming in LC-3 vii

LC-3 Quick Reference Guide x

1 ALU Operations 1–1
1.1 Problem Statement . 1–1

1.1.1 Inputs . 1–1
1.1.2 Outputs . 1–1

1.2 Instructions in LC-3 . 1–2
1.2.1 Addition . 1–2
1.2.2 Bitwise AND . 1–2
1.2.3 Bitwise NOT . 1–2
1.2.4 Bitwise OR . 1–3
1.2.5 Loading and storing with LDR and STR 1–3

1.3 How to determine whether an integer is even or odd 1–3
1.4 Testing . 1–3
1.5 What to turn in . 1–4

2 Arithmetic functions 2–1
2.1 Problem Statement . 2–1

2.1.1 Inputs . 2–1
2.1.2 Outputs . 2–1

2.2 Operations in LC-3 . 2–2
2.2.1 Loading and storing with LDI and STI . 2–2
2.2.2 Subtraction . 2–2
2.2.3 Branches . 2–3
2.2.4 Absolute value . 2–3

2.3 Example . 2–4
2.4 Testing . 2–4
2.5 What to turn in . 2–4

Revision: 1.17, January 20, 2007 ii

CONTENTS CONTENTS

3 Days of the week 3–1
3.1 Problem Statement . 3–1

3.1.1 Inputs . 3–1
3.1.2 Outputs . 3–1

3.2 The lab . 3–1
3.2.1 Strings in LC-3 . 3–1
3.2.2 How to output a string on the display . 3–2
3.2.3 How to read an input value . 3–2
3.2.4 Defining the days of the week . 3–3

3.3 Testing . 3–4
3.4 What to turn in . 3–4

4 Fibonacci Numbers 4–1
4.1 Problem Statement . 4–1

4.1.1 Inputs . 4–1
4.1.2 Outputs . 4–1

4.2 Example . 4–1
4.3 Fibonacci Numbers . 4–1
4.4 Pseudo-code . 4–2
4.5 Notes . 4–2
4.6 Testing . 4–3
4.7 What to turn in . 4–3

5 Subroutines: multiplication, division, modulus 5–1
5.1 Problem Statement . 5–1

5.1.1 Inputs . 5–1
5.1.2 Outputs . 5–1

5.2 The program . 5–1
5.2.1 Subroutines . 5–1
5.2.2 Saving and restoring registers . 5–2
5.2.3 Structure of the assembly program . 5–2
5.2.4 Multiplication . 5–3
5.2.5 Division and modulus . 5–3

5.3 Testing . 5–5
5.4 What to turn in . 5–5

6 Faster Multiplication 6–1
6.1 Problem Statement . 6–1

6.1.1 Inputs . 6–1
6.1.2 Outputs . 6–1

6.2 The program . 6–1
6.2.1 The shift-and-add algorithm . 6–1
6.2.2 Examining a single bit in LC-3 . 6–2
6.2.3 The MULT1 subroutine . 6–2

6.3 Testing . 6–2
6.4 What to turn in . 6–2

7 Compute Day of the Week 7–1
7.1 Problem Statement . 7–1

7.1.1 Inputs . 7–1
7.1.2 Outputs . 7–1
7.1.3 Example . 7–1

7.2 Zeller’s formula . 7–2
7.3 Subroutines . 7–2

7.3.1 Structure of program . 7–2

iii

CONTENTS CONTENTS

7.4 Testing: some example dates . 7–3
7.5 What to turn in . 7–3

8 Random Number Generator 8–1
8.1 Problem Statement . 8–1

8.1.1 Inputs and Outputs . 8–1
8.2 Linear Congruential Random Number Generators 8–1
8.3 How to output numbers in decimal . 8–2

8.3.1 A rudimentary stack . 8–3
8.4 Testing . 8–3
8.5 What to turn in . 8–3

9 Recursive subroutines 9–1
9.1 Problem Statement . 9–1

9.1.1 Inputs . 9–1
9.1.2 Output . 9–1

9.2 Recursive Subroutines . 9–1
9.2.1 The Fibonacci numbers . 9–1
9.2.2 Factorial . 9–1
9.2.3 Catalan numbers . 9–2
9.2.4 The recursive square function. 9–2

9.3 Stack Frames . 9–3
9.4 The McCarthy 91 function: an example in LC-3 9–5

9.4.1 Definition . 9–5
9.4.2 Some facts about the McCarthy 91 function 9–5
9.4.3 Implementation of McCarthy 91 in LC-3 9–5

9.5 Testing . 9–7
9.6 What to turn in . 9–7

iv

LIST OF CODE LISTINGS

1 “Hello World!” in LC-3. vii
1.1 The ADD instruction. 1–2
1.2 The AND instruction. 1–3
1.3 The NOT instruction. 1–3
1.4 Implementing the OR operation. 1–3
1.5 Loading and storing examples. 1–4
1.6 Determining whether a number is even or odd. 1–4
2.1 Loading into a register. 2–2
2.2 Storing a register. 2–2
2.3 Subtraction: 5−3 = 2. 2–2
2.4 Condition bits are set. 2–3
2.5 Branch if result was zero. 2–3
2.6 Absolute value. 2–4
3.1 Days of the week data. 3–3
3.2 Display the day. 3–3
4.1 Pseudo-code for computing the Fibonacci number Fn iteratively 4–2
4.2 Pseudo-code for computing the largest n = N such that FN can be held in 16 bits . . 4–3
5.1 A subroutine for the function f (n) = 2n+3. 5–2
5.2 Saving and restoring registers R5 and R6. 5–3
5.3 General structure of assembly program. 5–3
5.4 Pseudo-code for multiplication. 5–4
5.5 Pseudo-code for integer division and modulus. 5–4
6.1 The shift-and-add multiplication. 6–2
7.1 Structure of the program. 7–3
8.1 Generating 20 random numbers using Schrage’s method. 8–2
8.2 Displaying a digit. 8–2
8.3 Output a decimal number. 8–3
8.4 The code for the stack. 8–4
9.1 The pseudo-code for the recursive version of the Fibonacci numbers function. . . . 9–2
9.2 The pseudo-code for the algorithm that implements recursive subroutines. 9–4
9.3 The pseudo-code for the recursive McCarthy 91 function. 9–5
9.4 The pseudo-code for the McCarthy 91 recursive subroutine. 9–7
9.5 The program that calls the McCarthy 91 subroutine. 9–8
9.6 The stack subroutines PUSH and POP. 9–9
9.7 The McCarthy 91 subroutine . 9–9

Revision: 1.17, January 20, 2007 v

LIST OF FIGURES

1 LC-3 memory map: the various regions. ix

1.1 Example run. 1–4
1.2 The steps taken during the execution of the instruction LEA R2, xFF. 1–5

2.1 The versions of the BR instruction. 2–3
2.2 The steps taken during the execution of the instruction LDI R1, X. 2–5
2.3 The steps taken during the execution of the instruction STI R2, Y. 2–5
2.4 Decimal numbers with their corresponding 2’s complement representation 2–6

3.1 The string ”Sunday” in assembly and its corresponding binary representation . . . 3–2

4.1 Contents of memory . 4–2
4.2 Fibonacci numbers table . 4–4

5.1 The steps taken during execution of JSR. 5–2
5.2 Input parameters and returned results for DIV. 5–4

6.1 Shift-and-add multiplication . 6–1

8.1 Sequences of random numbers generated for various seeds x0. 8–4

9.1 The first few values of f (n) = n!. 9–2
9.2 The first few Catalan numbers Cn. 9–2
9.3 Some values of square(n). 9–3
9.4 The structure of the stack. 9–3
9.5 A typical frame . 9–4
9.6 Stack size in frames during execution. 9–6
9.7 Table that shows how many times the function M(n) is executed before it returns the

value for various n. 9–6
9.8 Maximum size of stack in terms of frames for n. 9–8

Revision: 1.17, January 20, 2007 vi

Programming in LC-3

Parts of an LC-3 Program

1 ; LC−3 Program t h a t d i s p l a y s
2 ; ” H e l l o World ! ” t o t h e c o n s o l e
3 .ORIG x3000
4 LEA R0 , HW ; l o a d a d d r e s s o f s t r i n g
5 PUTS ; o u t p u t s t r i n g t o c o n s o l e
6 HALT ; end program
7 HW .STRINGZ ” H e l l o World ! ”
8 .END

Listing 1: “Hello World!” in LC-3.

The above listing is a typical hello world program written in LC-3 assembly language. The program
outputs “Hello World!” to the console and quits. We will now look at the composition of this
program.

Lines 1 and 2 of the program are comments. LC-3 uses the semi-colon to denote the beginning
of a comment, the same way C++ uses “//” to start a comment on a line. As you probably already
know, comments are very helpful in programming in high-level languages such as C++ or Java. You
will find that they are even more necessary when writing assembly programs. For example in C++,
the subtraction of two numbers would only take one statement, while in LC-3 subtraction usually
takes three instructions, creating a need for further clarity through commenting.

Line 3 contains the .ORIG pseudo-op. A pseudo-op is an instruction that you can use when
writing LC-3 assembly programs, but there is no corresponding instruction in LC-3’s instruction
set. All pseudo-ops start with a period. The best way to think of pseudo-ops are the same way you
would think of preprocessing directives in C++. In C++, the #include statement is really not a C++
statement, but it is a directive that helps a C++ complier do its job. The .ORIG pseudo-op, with its
numeric parameter, tells the assembler where to place the code in memory.

Memory in LC-3 can be thought of as one large 16-bit array. This array can hold LC-3 instruc-
tions or it can hold data values that those instructions will manipulate. The standard place for code
to begin at is memory location x3000. Note that the “x” in front of the number indicates it is in
hexadecimal. This means that the “.ORIG x3000” statement will put “LEA R0, HW” in memory
location x3000, “PUTS” will go into memory location x3001, “HALT” into memory location x3002,
and so on until the entire program has been placed into memory. All LC-3 programs begin with the
.ORIG pseudo-op.

Lines 4 and 5 are LC-3 instructions. The first instruction, loads the address of the “Hello World!”

Revision: 1.17, January 20, 2007 vii

Programming in LC-3

string and the next instruction prints the string to the console. It is not important to know how these
instructions actually work right now, as they will be covered in the labs.

Line 6 is the HALT instruction. This instruction tells the LC-3 simulator to stop running the
program. You should put this in the spot where you want to end your program.

Line 7 is another pseudo-op .STRINGZ. After the main program code section, that was ended
by HALT, you can use the pseudo-ops, .STRINGZ, .FILL, and .BLKW to save space for data that
you would like to manipulate in the program. This is a similar idea to declaring variables in C++.
The .STRINGZ pseudo-op in this program saves space in memory for the “Hello World!” string.

Line 8 contains the .END pseudo-op. This tells the assembler that there is no more code to as-
semble. This should be the very last instruction in your assembly code file. .END can be sometimes
confused with the HALT instruction. HALT tells the simulator to stop a program that is running.
.END indicates where the assembler should stop assembling your code into a program.

Syntax of an LC-3 Instruction
Each LC-3 instruction appears on line of its own and can have up to four parts. These parts in order
are the label, the opcode, the operands, and the comment.

Each instruction can start with a label, which can be used for a variety of reasons. One reason
is that it makes it easier to reference a data variable. In the hello world example, line 7 contains
the label “HW.” The program uses this label to reference the “Hello World!” string. Labels are also
used for branching, which are similar to labels and goto’s in C++. Labels are optional and if an
instruction does not have a label, usually empty space is left where one would be.

The second part of an instruction is the opcode. This indicates to the assembler what kind of
instruction it will be. For example in line 4, LEA indicates that the instruction is a load effective
address instruction. Another example would be ADD, to indicate that the instruction is an addition
instruction. The opcode is mandatory for any instruction.

Operands are required by most instructions. These operands indicate what data the instruction
will be manipulating. The operands are usually registers, labels, or immediate values. Some instruc-
tions like HALT do not require operands. If an instruction uses more than one operand like LEA in
the example program, then they are separated by commas.

Lastly an instruction can also have a comment attached to it, which is optional. The operand
section of an instruction is separated from the comment section by a semicolon.

LC-3 Memory
LC-3 memory consists of 216 locations, each being 16 bits wide. Each location is identified with an
address, a positive integer in the range 0 through 216− 1. More often we use 4-digit hexadecimal
numbers for the addresses. Hence, addresses range from x0000 to xFFFF.

The LC-3 memory with its various regions is shown in figure 1 on page ix.

viii

Programming in LC-3

xE000

x0000 − x00FF Trap Vector Table

x0100 − x01FF Interrupt Vector Table

x0200 − x2FFF OS and Supervisor Stack

x3000 − xFDFF User Program Area

xFE00 − xFFFF Device Register Addresses

Key
x0000

x1000

x2000

x3000

x4000

x5000

x6000

x7000

x8000

x9000

xA000

xB000

xC000

xD000

xFFFF

xF000

Figure 1: LC-3 memory map: the various regions.

ix

LC3 Quick Reference Guide

Instruction Set

Op Format Description Example
ADD ADD DR, SR1, SR2

ADD DR, SR1, imm5
Adds the values in SR1 and
SR2/imm5 and sets DR to that
value.

ADD R1, R2, #5
The value 5 is added to the value in
R2 and stored in R1.

AND AND DR, SR1, SR2
AND DR, SR1, imm5

Performs a bitwise and on the
values in SR1 and SR2/imm5
and sets DR to the result.

AND R0, R1, R2
A bitwise and is preformed on the
values in R1 and R2 and the result
stored in R0.

BR BR(n/z/p) LABEL
Note: (n/z/p) means
any combination of
those letters can appear
there, but must be in
that order.

Branch to the code section
indicated by LABEL, if the bit
indicated by (n/z/p) has been set
by a previous instruction. n:
negative bit, z: zero bit, p:
positive bit. Note that some
instructions do not set condition
codes bits.

BRz LPBODY
Branch to LPBODY if the last
instruction that modified the
condition codes resulted in zero.
BRnp ALT1
Branch to ALT1 if last instruction
that modified the condition codes
resulted in a positive or negative
(non-zero) number.

JMP JMP SR1 Unconditionally jump to the
instruction based upon the
address in SR1.

JMP R1
Jump to the code indicated by the
address in R1.

JSR JSR LABEL Put the address of the next
instruction after the JSR
instruction into R7 and jump to
the subroutine indicated by
LABEL.

JSR POP
Store the address of the next
instruction into R7 and jump to the
subroutine POP.

JSRR JSSR SR1 Similar to JSR except the
address stored in SR1 is used
instead of using a LABEL.

JSSR R3
Store the address of the next
instruction into R7 and jump to the
subroutine indicated by R3’s value.

LD LD DR, LABEL Load the value indicated by
LABEL into the DR register.

LD R2, VAR1
Load the value at VAR1 into R2.

LDI LDI DR, LABEL Load the value indicated by the
address at LABEL’s memory
location into the DR register.

LDI R3, ADDR1
Suppose ADDR1 points to a
memory location with the value
x3100. Suppose also that memory
location x3100 has the value 8. 8
then would be loaded into R3.

LDR LDR DR, SR1, offset6 Load the value from the memory
location found by adding the
value of SR1 to offset6 into DR.

LDR R3, R4, #-2
Load the value found at the address
(R4 –2) into R3.

LEA LEA DR, LABEL Load the address of LABEL into
DR.

LEA R1, DATA1
Load the address of DATA1 into
R1.

NOT NOT DR, SR1 Performs a bitwise not on SR1
and stores the result in DR.

NOT R0, R1
A bitwise not is preformed on R1
and the result is stored in R0.

RET RET Return from a subroutine using
the value in R7 as the base
address.

RET
Equivalent to JMP R7.

LC-3 Quick Reference Guide

x

RTI RTI Return from an interrupt to the
code that was interrupted. The
address to return to is obtained
by popping it off the supervisor
stack, which is automatically
done by RTI.

RTI

Note: RTI can only be used if the
processor is in supervisor mode.

ST ST SR1, LABEL Store the value in SR1 into the
memory location indicated by
LABEL.

ST R1, VAR3
Store R1’s value into the memory
location of VAR3.

STI STI SR1, LABEL Store the value in SR1 into the
memory location indicated by
the value that LABEL’s memory
location contains.

STI R2, ADDR2
Suppose ADDR2’s memory
location contains the value x3101.
R2’s value would then be stored
into memory location x3101.

STR STR SR1, SR2, offset6 The value in SR1 is stored in the
memory location found by
adding SR2 and offest6 together.

STR R2, R1, #4
The value of R2 is stored in
memory location (R1 + 4).

TRAP TRAP trapvector8 Performs the trap service
specified by trapvector8. Each
trapvector8 service has its own
assembly instruction that can
replace the trap instruction.

TRAP x25
Calls a trap service to end the
program. The assembly instruction
HALT can also be used to replace
TRAP x25.

Symbol Legend

Symbol Description Symbol Description
SR1, SR2 Source registers used by instruction. LABEL Label used by instruction.
DR Destination register that will hold

the instruction’s result.
trapvector8 8 bit value that specifies trap service

routine.
imm5 Immediate value with the size of 5

bits.
offset6 Offset value with the size of 6 bits.

TRAP Routines

Trap Vector Equivalent Assembly
Instruction

Description

x20 GETC Read one input character from the keyboard and store it into R0
without echoing the character to the console.

x21 OUT Output character in R0 to the console.
x22 PUTS Output null terminating string to the console starting at address

contained in R0.
x23 IN Read one input character from the keyboard and store it into R0 and

echo the character to the console.
x24 PUTSP Same as PUTS except that it outputs null terminated strings with

two ASCII characters packed into a single memory location, with
the low 8 bits outputted first then the high 8 bits.

x25 HALT Ends a user’s program.

Pseudo-ops
Pseudo-op Format Description
.ORIG .ORIG # Tells the LC-3 simulator where it should place the segment of

code starting at address #.
.FILL .FILL # Place value # at that code line.
.BLKW .BLKW # Reserve # memory locations for data at that line of code.
.STRINGZ .STRINGZ “<String>” Place a null terminating string <String> starting at that location.
.END .END Tells the LC-3 assembler to stop assembling your code.

LC-3 Quick Reference Guide

xi

LC-3 Quick Reference Guide

xii

LAB 1

ALU Operations

1.1 Problem Statement

The numbers X and Y are found at locations x3100 and x3101, respectively. Write an LC-3 assembly
language program that does the following.

• Compute the sum X +Y and place it at location x3102.

• Compute X AND Y and place it at location x3103.

• Compute X OR Y and place it at location x3104.

• Compute NOT(X) and place it at location x3105.

• Compute NOT(Y) and place it at location x3106.

• Compute X +3 and place it at location x3107.

• Compute Y −3 and place it at location x3108.

• If the X is even, place 0 at location x3109. If the number is odd, place 1 at the same location.

The operations AND, OR, and NOT are bitwise. The operation signified by + is the usual
arithmetic addition.

1.1.1 Inputs

The numbers X and Y are in locations x3100 and x3101, respectively:

x3100 X
x3101 Y

1.1.2 Outputs

The outputs at their corresponding locations are as follows:

Revision: 1.12, January 20, 2007 1–1

LAB 1 1.2. INSTRUCTIONS IN LC-3

x3102 X +Y
x3103 X AND Y
x3104 X OR Y
x3105 NOT(X)
x3106 NOT(Y)
x3107 X +3
x3108 Y −3
x3109 Z

where Z is defined as

Z =

{
0 if X is even
1 if X is odd.

(1.1)

1.2 Instructions in LC-3

LC-3 has available these ALU instructions: ADD (arithmetic addition), AND (bitwise and), NOT
(bitwise not).

1.2.1 Addition

Adding two integers is done using the ADD instruction. In listing 1.1, the contents of registers R1
and R2 and added and the result is placed in R3. Note the values of integers can be negative as well,
since they are in two’s complement format. ADD also comes in immediate version, where the second
operand can be a constant integer. For example, we can use it to add 4 to register R1 and place the
result in register R3. See listing 1.1. The constant is limited to 5 bits two’s complement format.
Note, as with all other ALU instructions, the same register can serve both as a source operand and
the destination register.

1 ; Adding two r e g i s t e r s
2 ADD R3 , R1 , R2 ; R3 ← R1 + R2
3 ; Adding a r e g i s t e r and a c o n s t a n t
4 ADD R3 , R1 , #4 ; R3 ← R1 + 4
5 ; Adding a r e g i s t e r and a n e g a t i v e c o n s t a n t
6 ADD R3 , R1 , #−4 ; R3 ← R1 − 4
7 ; Adding a r e g i s t e r t o i t s e l f
8 ADD R1 , R1 , R1 ; R1 ← R1 + R1

Listing 1.1: The ADD instruction.

1.2.2 Bitwise AND

Two registers can be bitwise ANDed using the AND instruction, as in listing 1.2 on page 1–3. AND
also comes in the immediate version. Note that an immediate operand can be given in hexadecimal
form using x followed by the number.

1.2.3 Bitwise NOT

The bits of a register can be inverted (flipped) using the bitwise NOT instruction, as in listing 1.3 on
page 1–3.

1–2

LAB 1 1.3. HOW TO DETERMINE WHETHER AN INTEGER IS EVEN OR ODD

1 ; Anding two r e g i s t e r s
2 AND R3 , R1 , R2 ; R3 ← R1 AND R2
3 ; Anding a r e g i s t e r and a c o n s t a n t
4 ADD R3 , R1 , xA ; R3 ← R1 AND 0000000000001010

Listing 1.2: The AND instruction.

1 ; I n v e r t i n g t h e b i t s o f r e g i s t e r R1
2 NOT R2 , R1 ; R2 ← NOT(R1)

Listing 1.3: The NOT instruction.

1.2.4 Bitwise OR
LC-3 does not provide the bitwise OR instruction. We can use, however, AND and NOT to built it.
For this purpose, we make use of De Morgan’s rule: X OR Y = NOT(NOT(X) AND NOT(Y)). See
listing 1.4.

1 ; ORing two r e g i s t e r s
2 NOT R1 , R1 ; R1 ← NOT(R1)
3 NOT R2 , R2 ; R2 ← NOT(R2)
4 AND R3 , R1 , R2 ; R3 ← NOT(R1) AND NOT(R2)
5 NOT R3 , R3 ; R3 ← R1 OR R2

Listing 1.4: Implementing the OR operation.

1.2.5 Loading and storing with LDR and STR
The instruction LDR can be used to load the contents of a memory location into a register. Knowing
that X and Y are at locations x3100 and x3101, respectively, we can use the code in listing 1.5 on
page 1–4 to load them in registers R1 and R3, respectively. In the same figure one can see how
the instruction STR is used store the contents of a register to a memory location. The instruction
LEA R2, Offset loads register R2 with the address (PC + 1 + Offset), where PC is the address

of the instruction LEA and Offset is a numerical value, i.e. the immediate operand. Figure 1.2 on
page 1–5 shows the steps it takes to execute the LEA R2, xFF instruction.

If instead of a numerical value, a label is given, such as in instruction LEA R2, LABEL , then
the value of the immediate operand, i.e. the offset, is automatically computed so that R2 is loaded
with the address of the instruction with label LABEL.

1.3 How to determine whether an integer is even or odd
In binary, when a number is even it ends with a 0, and when it is odd, it ends with a 1. We can obtain
0 or 1, correspondingly, by using the AND instruction as in listing 1.6 on page 1–4. This method is
valid for numbers in two’s complement format, which includes negative numbers.

1.4 Testing
Test your program for several input pairs of X and Y . In figure 1.1 on page 1–4 an example is shown
of how memory should look after the program is run. The contents of memory are shown in decimal,

1–3

LAB 1 1.5. WHAT TO TURN IN

1 ; Va lues X and Y a r e l o a d e d i n t o r e g i s t e r s R1 and R3.
2 .ORIG x3000 ; Address where program code b e g i n s
3 ; R2 i s l o a d e d wi th t h e b e g i n n i n g a d d r e s s o f t h e d a t a
4 LEA R2 , xFF ; R2 ← x3000 + x1 + xFF (= x3100)
5 ; X, which i s l o c a t e d a t x3100 , i s l o a d e d i n t o R1
6 LDR R1 , R2 , x0 ; R1 ←MEM[x3100]
7 ; Y, which i s l o c a t e d a t x3101 , i s l o a d e d i n t o R3
8 LDR R3 , R2 , x1 ; R3 ←MEM[x3100 + x1]
9 . . .

10 ; S t o r i n g 5 i n memory l o c a t i o n x3101
11 AND R4 , R4 , x0 ; C l e a r R4
12 ADD R4 , R4 , x5 ; R4 ← 5
13 STR R4 , R2 , x1 ; MEM[x3100 + x1] ← R4

Listing 1.5: Loading and storing examples.

1 AND R2 , R1 , x0001 ; R2 has t h e v a l u e o f t h e l e a s t
2 ; s i g n i f i c a n t b i t o f R1.

Listing 1.6: Determining whether a number is even or odd.

hexadecimal, and binary format.

Address Decimal Hex Binary Contents
x3100 9 0009 0000 0000 0000 1001 X
x3101 -13 FFF3 1111 1111 1111 0011 Y
x3102 -4 FFFC 1111 1111 1111 1100 X +Y
x3103 1 0001 0000 0000 0000 0001 X AND Y
x3104 -5 FFFB 1111 1111 1111 1011 X OR Y
x3105 65526 FFF6 1111 1111 1111 0110 NOT(X)
x3106 12 000C 0000 0000 0000 1100 NOT(Y)
x3107 12 000C 0000 0000 0000 1100 X +3
x3108 -16 FFF0 1111 1111 1111 0000 Y −3
x3108 1 0001 0000 0000 0000 0001 z

Figure 1.1: Example run.

1.5 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of the (X ,Y) pairs (10,20),(−11,15),(11,−15),(9,12), screenshots that show the
contents of location x3100 through x3108.

1–4

LAB 1 1.5. WHAT TO TURN IN

 and storing the result into R2.

Step 1

R2

PC

IR

Memory
x3000

. . .

x3001

x3002

LEA R2, xFF

0

Initial State of LC3 Simulator

0

0

LEA R2, xFF

LEA R2, xFF

x3002

x3001

. . .

x3000

Memory

IR

PC

R2

R2

PC

IR

Memory
x3000

. . .

x3001

x3002

LEA R2, xFF

LEA R2, xFF

0

LEA R2, xFF

LEA R2, xFF

x3002

x3001

. . .

x3000

Memory

IR

PC

R2

Step 2

Step 3 Step 4

3000 3000

3001 3001

Use PC to get instruction at x3000
 and load it into IR.

Increment PC for the next instruction.

3100

Execute LEA in IR by adding PC and the offset

Figure 1.2: The steps taken during the execution of the instruction LEA R2, xFF.

1–5

LAB 2

Arithmetic functions

2.1 Problem Statement

The numbers X and Y are found at locations x3120 and x3121, respectively. Write a program in
LC-3 assembly language that does the following:

• Compute the difference X−Y and place it at location x3122.

• Place the absolute values |X | and |Y | at locations x3123 and x3124, respectively.

• Determine which of |X | and |Y | is larger. Place 1 at location x3125 if |X | is, a 2 if |Y | is, or a
0 if they are equal.

2.1.1 Inputs

The integers X and Y are in locations x3120 and x3121, respectively:

x3120 X
x3121 Y

2.1.2 Outputs

The outputs at their corresponding locations are as follows:

x3122 X−Y
x3123 |X |
x3124 |Y |
x3125 Z

where Z is defined as

Z =


1 if |X |− |Y |> 0
2 if |X |− |Y |< 0
0 if |X |− |Y |= 0

(2.1)

Revision: 1.11, January 26, 2007 2–1

LAB 2 2.2. OPERATIONS IN LC-3

2.2 Operations in LC-3

2.2.1 Loading and storing with LDI and STI
In the previous lab, loading and storing was done using the LDR and STR instructions. In this lab,
the similar but distinct instructions LDI and STI will be used. Number X already stored at location
x3120 can be loaded into a register, say, R1 as in listing 2.1. The Load Indirect instruction, LDI, is
used. The steps taken to execute LDI R1, X are shown in figure 2.2 on page 2–5.

1 LDI R1 , X
2 . . .
3 . . .
4 HALT
5 . . .
6 X .FILL x3120

Listing 2.1: Loading into a register.

In listing 2.2, the contents of register R2 are stored at location x3121. The instruction Store
Indirect, STI, is used. The steps taken to execute STI R2, Y instruction are shown in figure 2.3 on
page 2–5.

1 STI R2 , Y
2 . . .
3 . . .
4 HALT
5 . . .
6 Y .FILL x3121

Listing 2.2: Storing a register.

2.2.2 Subtraction
LC-3 does not provide a subtraction instruction. However, we can build one using existing instruc-
tions. The idea here is to negate the subtrahend1, which is done by taking its two complement, and
then adding it to the minuend.

As an example, in listing 2.3 the result of the subtraction 5−3 = 5+(−3) = 2 is placed in
register R3. It is assumed that 5 and 3 are already in registers R1 and R2, respectively.

1 ; R e g i s t e r R1 has 5 and r e g i s t e r R2 has 3
2 ; R4 i s used as a t e m p o r a r y r e g i s t e r . R2 c o u l d have been used
3 ; i n t h e p l a c e o f R4 , b u t t h e o r i g i n a l c o n t e n t s o f R2 would
4 ; have been l o s t . The r e s u l t o f 5−3=2 goes i n t o R3.
5 NOT R4 , R2
6 ADD R4 , R4 , #1 ; R4 ← −R2
7 ADD R3 , R1 , R4 ; R3 ← R1 − R2

Listing 2.3: Subtraction: 5−3 = 2.

1Subtrahend is a quantity which is subtracted from another, the minuend.

2–2

LAB 2 2.2. OPERATIONS IN LC-3

2.2.3 Branches
The usual linear flow of executing instructions can be altered by using branches. This enables us
to choose code fragments to execute and code fragments to ignore. Many branch instructions are
conditional which means that the branch is taken only if a certain condition is satisfied. For example
the instruction BRz TARGET means the following: if the result of a previous instruction was zero,
the next instruction to be executed is the one with label TARGET. If the result was not zero, the
instruction that follows BRz TARGET is executed and execution continues as normal.

The exact condition for a branch instructions depends on three Condition Bits: N (negative), Z
(zero), and P (positive). The value (0 or 1) of each condition bit is determined by the nature of the
result that was placed in a destination register of an earlier instruction. For example, in listing 2.4
we note that at the execution of the instruction BRz LABEL N is 0, and therefore the branch is not
taken.

1 . . .
2 AND R1 , R1 , x0 ; S i n c e R1 ← 0 , N = 0 , Z = 1 , P = 0
3 ADD R2 , R1 , x1 ; S i n c e R2 ← 1 , N = 0 , Z = 0 , P = 1
4 BRz LABEL
5 . . .
6 LABEL . . .

Listing 2.4: Condition bits are set.

Table figure 2.1 shows a list of the available versions of the branch instruction. As an example

BR branch unconditionally BRnz branch if result was negative or zero
BRz branch if result was zero BRnp branch if result was negative or positive
BRn branch if result was negative BRzp branch if result was zero or positive
BRp branch is result was positive BRnzp branch unconditionally

Figure 2.1: The versions of the BR instruction.

consider the code fragment in listing 2.5. The next instruction after the branch instruction to be
executed will be the ADD instruction, since the result placed in R2 was 0, and thus bit Z was set.
The NOT instruction, and the ones that follow it up to the instruction before the ADD will never be
executed.

1 AND R2 , R5 , x0 ; r e s u l t p l a c e d i n R2 i s z e r o
2 BRz TARGET ; Branch i f r e s u l t was z e r o (i t was)
3 NOT R1 , R3
4 . . .
5 . . .
6 TARGET ADD R5 , R1 , R2
7 . . .

Listing 2.5: Branch if result was zero.

2.2.4 Absolute value
The absolute value of an integer X is defined as follows:

|X |=

{
X if X ≥ 0
−X if X < 0.

(2.2)

2–3

LAB 2 2.3. EXAMPLE

One way to implement absolute value is seen in listing 2.6.

1 ; I n p u t : R1 has v a l u e X.
2 ; Ou tpu t : R2 has v a l u e |X | .
3 ADD R2 , R1 , #0 ; R2 ← R1 , can now use c o n d i t i o n codes
4 BRzp ZP ; I f z e r o o r p o s i t i v e , do n o t n e g a t e
5 NOT R2 , R2
6 ADD R2 , R2 , #1 ; R2 = −R1
7 ZP . . . ; At t h i s p o i n t R2 = |R1 |
8 . . .

Listing 2.6: Absolute value.

2.3 Example
At the end of a run, the memory locations of interest might look like this:

x3120 9
x3121 -13
x3122 22
x3123 9
x3124 13
x3125 2

2.4 Testing
Test your program for these X and Y pairs:

X Y
10 12
13 10
-10 12
10 -12
-12 -12

Figure 2.4 on page 2–6 is table that shows the binary representations the integers -32 to 32, that can
helpful in testing.

2.5 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of the (X ,Y) pairs (10,20),(−11,15),(11,−15),(12,12), screenshots that show the
contents of location x3120 through x3125.

2–4

LAB 2 2.5. WHAT TO TURN IN

17

Instruction loads MAR with X’s Address.

Use MAR to access memory.
Value 3120 is loaded from memory and copied to MDR.

Copy MDR to MAR.

Use MAR to access memory.

Value 17 is loaded into MDR from memory.

Copy MDR to R1.

Addr X

17

3120

x3121

x311F

. . .

Addr X

x3120

MDR

MAR

R1

Memory
Step 2Step 1

Memory

R1

MAR

MDR

x3120

Addr X

. . .
x311F

x3121

3120

17

Addr X

Addr X

17

3120

x3121

x311F

. . .

Addr X

x3120

MDR

MAR

R1

Memory Memory

R1

MAR

MDR

x3120

Addr X

. . .
x311F

x3121

3120

17

Addr X

Step 3 Step 4

0

0

0

0

X Addr X Addr

3120

3120

3120

3120

17

Figure 2.2: The steps taken during the execution of the instruction LDI R1, X.

Value 3121 is loaded from memory and copied to MDR.

x3121

x3122 x3122

x3121

x3120

x3120

x3121

x3122 x3122

x3121

x3120

R2R2

R2R2

Copy value 82 from R2 to MDR.

Use MAR to access memory.

Store MDR’s value into memory.

82

MDR

82

8282

8282

Use MAR to access memory.

Copy MDR to MAR.

. . .
MDR

MAR
Memory

Step 2Step 1
Memory

MAR

MDR
. . .

. . .

MAR
Memory Memory

MAR

MDR
. . .

Step 3 Step 4

0

3121 3121

3121 3121

Y Addr Y Addr

Addr Y Addr Y

Addr YAddr Y

3121

3121

3121

3121

Instruction loads MAR with Addr Y’s Address.

x3120

Figure 2.3: The steps taken during the execution of the instruction STI R2, Y.

2–5

LAB 2 2.5. WHAT TO TURN IN

Decimal 2’s Complement Decimal 2’s Complement
0 0000000000000000 -0 0000000000000000
1 0000000000000001 -1 1111111111111111
2 0000000000000010 -2 1111111111111110
3 0000000000000011 -3 1111111111111101
4 0000000000000100 -4 1111111111111100
5 0000000000000101 -5 1111111111111011
6 0000000000000110 -6 1111111111111010
7 0000000000000111 -7 1111111111111001
8 0000000000001000 -8 1111111111111000
9 0000000000001001 -9 1111111111110111

10 0000000000001010 -10 1111111111110110
11 0000000000001011 -11 1111111111110101
12 0000000000001100 -12 1111111111110100
13 0000000000001101 -13 1111111111110011
14 0000000000001110 -14 1111111111110010
15 0000000000001111 -15 1111111111110001
16 0000000000010000 -16 1111111111110000
17 0000000000010001 -17 1111111111101111
18 0000000000010010 -18 1111111111101110
19 0000000000010011 -19 1111111111101101
20 0000000000010100 -20 1111111111101100
21 0000000000010101 -21 1111111111101011
22 0000000000010110 -22 1111111111101010
23 0000000000010111 -23 1111111111101001
24 0000000000011000 -24 1111111111101000
25 0000000000011001 -25 1111111111100111
26 0000000000011010 -26 1111111111100110
27 0000000000011011 -27 1111111111100101
28 0000000000011100 -28 1111111111100100
29 0000000000011101 -29 1111111111100011
30 0000000000011110 -30 1111111111100010
31 0000000000011111 -31 1111111111100001
32 0000000000100000 -32 1111111111100000

Figure 2.4: Decimal numbers with their corresponding 2’s complement representation

2–6

LAB 3

Days of the week

3.1 Problem Statement
• Write a program in LC-3 assembly language that keeps prompting for an integer in the range

0-6, and each time it outputs the corresponding name of the day. If a key other than ’0’ through
’6’ is pressed, the program exits.

3.1.1 Inputs
At the prompt “Please enter number: ,” a key is pressed.

3.1.2 Outputs
If the key pressed is ’0’ through ’6’, the corresponding name of the day of the week appears on the
screen. Precisely, the correspondence is according to this table:

Code Day
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

When the day is displayed, the prompt “Please enter number: ” appears again and the program
expects another input. If any key other that ’0’ through ’6’ is pressed, the program exits.

3.2 The lab

3.2.1 Strings in LC-3
It will be necessary to define the prompt “Please enter number: ” and the days of the week as
strings in memory. All strings should terminate with the NUL character (ASCII 0). In LC-3 one
character per memory location is stored. Each location is 16 bits wide. The 8 most significant bits
are 0, while the 8 least significant bits hold the ASCII value of the character. Strings terminated with
the NUL character can be conveniently defined using the directive .STRINGZ ”ABC” , where

Revision: 1.6, August 4, 2005 3–1

LAB 3 3.2. THE LAB

“ABC” is any alphanumeric string. It automatically appends the NUL character to the string. As
an example, a string defined in assembly language and the corresponding contents of memory are
shown in figure 3.1.

1 .ORIG x3100
2 .STRINGZ ” Sunday ”

x3100 0053 ; S
x3101 0075 ; u
x3102 006 e ; n
x3103 0064 ; d
x3104 0061 ; a
x3105 0079 ; y
x3106 0000 ; NUL

Figure 3.1: The string ”Sunday” in assembly and its corresponding binary representation

3.2.2 How to output a string on the display

To output is a string on the screen, one needs to place the beginning address of the string in reg-
ister R0, and then call the PUTS assembly command, which is another name for the instruction
TRAP x22 . For example, to output “ABC”, one can do the following:

1 LEA R0 , ABCLBL ; Loads a d d r e s s o f ABC s t r i n g i n t o R0
2 PUTS
3 . . .
4 HALT
5 . . .
6 ABCLBL .STRINGZ ”ABC”
7 . . .

The PUTS command calls a system trap routine which outputs the NUL terminated string the
address of its first character is found in register R0.

3.2.3 How to read an input value

The assembly command GETC , which is another name for TRAP x20 , reads a single character
from the keyboard and places its ASCII value in register R0. The 8 most significant bits of R0 are
cleared. There is no echo of the read character. For example, one may use the following code to
read a single numerical character, 0 through 9, and place its value in register R3:

1 GETC ; P l a c e ASCII v a l u e o f i n p u t c h a r a c t e r i n t o R0
2 ADD R3 , R0 , x0 ; Copy R0 i n t o R3
3 ADD R3 , R3 , #−16 ; S u b t r a c t 48 , t h e ASCII v a l u e o f 0
4 ADD R3 , R3 , #−16
5 ADD R3 , R3 , #−16 ; R3 now c o n t a i n s t h e a c t u a l v a l u e

Notice that it was necessary to use three instructions to subtract 48, since the maximum possible
value of the immediate operand of ADD is 5 bits, in two’s complement format. Thus, -16 is the
most we can subtract with the immediate version of the ADD instruction. As an example, if the
pressed key was “5”, its ASCII value 53 will be placed in R0. Subtracting 48 from 53, the value 5
results, as expected, and is placed in register R3.

3–2

LAB 3 3.2. THE LAB

3.2.4 Defining the days of the week

For ease of programming one may define the days of the week so the they have the same length. We
note that “Wednesday” has the largest string length: 9. As a NUL terminated string, it occupies 10
locations in memory. In listing 3.1 define all days so that they have the same length.

1 . . .
2 HALT
3 . . .
4 DAYS .STRINGZ ” Sunday ”
5 .STRINGZ ”Monday ”
6 .STRINGZ ” Tuesday ”
7 .STRINGZ ” Wednesday ”
8 .STRINGZ ” Thursday ”
9 .STRINGZ ” F r i d a y ”

10 .STRINGZ ” S a t u r d a y ”

Listing 3.1: Days of the week data.

If the numerical code for a day is i (a value in the range 0 through 6, see section 7.1.2 on page 7–
1), the address of the corresponding day is found by this formula:

Address of(DAYS)+ i∗10 (3.1)

Address of(DAYS) is the address of label DAYS, which is the beginning address of the string “Sun-
day.” Since LC-3 does not provide multiplication, one has to implement it. One can display the
day that corresponds to i by means of the code in listing 3.2, which includes the code of listing 3.1.
Register R3 is assumed to contain i.

1 . . .
2 ; R3 a l r e a d y c o n t a i n s t h e n u m e r i c a l code o f t h e day i
3 LEA R0 , DAYS ; Address o f ” Sunday ” i n R0
4 ADD R3 , R3 , x0 ; To be a b l e t o use c o n d i t i o n codes
5 ; The loop (4 i n s t r u c t i o n s) imp lemen t s R0 ← R0 + 10 ∗ i
6 LOOP BRz DISPLAY
7 ADD R0 , R0 , #10 ; Go t o n e x t day
8 ADD R3 , R3 , #−1 ; Decrement loop v a r i a b l e
9 BR LOOP

10 DISPLAY PUTS
11 . . .
12 HALT
13 . . .
14 DAYS .STRINGZ ” Sunday ”
15 .STRINGZ ”Monday ”
16 .STRINGZ ” Tuesday ”
17 .STRINGZ ” Wednesday ”
18 .STRINGZ ” Thursday ”
19 .STRINGZ ” F r i d a y ”
20 .STRINGZ ” S a t u r d a y ”

Listing 3.2: Display the day.

3–3

LAB 3 3.3. TESTING

3.3 Testing
Test the program with all input keys ’0’ through ’6’ to make sure the correct day is displayed, and
with several keys outside that range, to ascertain that the program terminates.

3.4 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of the input i = 0,1,4,6, screenshots that show the output.

3–4

LAB 4

Fibonacci Numbers

4.1 Problem Statement
1. Write a program in LC-3 assembly language that computes Fn, the n−th Fibonacci number.

2. Find the largest Fn such that no overflow occurs, i.e. find n = N such that FN is the largest
Fibonacci number to be correctly represented with 16 bits in two’s complement format.

4.1.1 Inputs
The integer n is in memory location x3100:

x3100 n

4.1.2 Outputs
x3101 Fn
x3102 N
x3103 FN

4.2 Example
x3100 6
x3101 8
x3102 N
x3103 FN

Starting with 6 in location x3100 means that we intend to compute F6 and place that result in location
x3101. Indeed, F6 = 8. (See below.) The actual values of N and FN should be found by your
program, and be placed in their corresponding locations.

4.3 Fibonacci Numbers
The Fibonacci Fi numbers are the members of the Fibonacci sequence: 1,1,2,3,5,8, The first
two are explicitly defined: F1 = F2 = 1. The rest are defined according to this recursive formula:
Fn = Fn−1 + Fn−2. In words, each Fibonacci number is the sum of the two previous ones in the
Fibonacci sequence. From the sequence above we see that F6 = 8.

Revision: 1.8, August 14, 2005 4–1

LAB 4 4.4. PSEUDO-CODE

4.4 Pseudo-code
Quite often algorithms are described using pseudo-code. Pseudo-code is not real computer language
code in the sense that it is not intended to be compiled or run. Instead, it is intended to describe
the steps of algorithms at a high level so that they are easily understood. Following the steps in the
pseudo-code, an algorithm can be implemented to programs in a straight forward way. We will use
pseudo-code1 in some of the labs that is reminiscent of high level languages such as C/C++, Java,
and Pascal. As opposed to C/C++, where group of statements are enclosed the curly brackets “{”
and “}” to make up a compound statement, in the pseudo-code the same is indicated via the use of
indentation. Consecutive statements that begin at the same level of indentation are understood to
make up a compound statement.

4.5 Notes
• Figure 4.1 is a schematic of the contents of memory.

Inputs and Outputs

3000

3100

LC3 Code

Figure 4.1: Contents of memory

• The problem should be solved by iteration using loops as opposed to using recursion.

• The pseudo-code for the algorithm to compute Fn is in listing 4.1. It is assumed that n > 0.

1 i f n ≤ 2 t h e n
2 F ← 1
3 e l s e
4 a ← 1 / / Fn−2
5 b ← 1 / / Fn−1
6 f o r i ← 3 t o n do
7 F ← b + a / / Fn = Fn−1 +Fn−2
8 a ← b
9 b ← F

Listing 4.1: Pseudo-code for computing the Fibonacci number Fn iteratively

1The pseudo-code is close to the one used in Fundamentals of Algorithmics by G. Brassard and P. Bratley, Prentice Hall,
1996.

4–2

LAB 4 4.6. TESTING

• The way to detect overflow is to use a similar for-loop to the one in listing 4.1 on page 4–2
which checks when F first becomes negative, i.e. bit 16 becomes 1. See listing 4.2.
Caution: upon exit from the loop, F does not have the value of FN . To obtain FN you have to
slightly modify the algorithm in listing 4.2.

1 a ← 1 / / Fn−2
2 b ← 1 / / Fn−1
3 i ← 2 / / l oop i n d e x
4 r e p e a t
5 F ← b + a / / Fn = Fn−1 +Fn−2
6 i f F < 0 t h e n
7 N = i
8 e x i t
9 a ← b

10 b ← F
11 i ← i + 1

Listing 4.2: Pseudo-code for computing the largest n = N such that FN can be held in 16 bits

4.6 Testing
The table in figure 4.2 on page 4–4 will help you in testing your program.

4.7 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of n = 15 and n = 19, screen shots that show the contents of locations x3100, x3101,
x3102 and x3103, which show the values for F15 and F19, respectively, and the values of N
and FN .

4–3

LAB 4 4.7. WHAT TO TURN IN

n Fn Fn in binary
1 1 0000000000000001
2 1 0000000000000001
3 2 0000000000000010
4 3 0000000000000011
5 5 0000000000000101
6 8 0000000000001000
7 13 0000000000001101
8 21 0000000000010101
9 34 0000000000100010

10 55 0000000000110111
11 89 0000000001011001
12 144 0000000010010000
13 233 0000000011101001
14 377 0000000101111001
15 610 0000001001100010
16 987 0000001111011011
17 1597 0000011000111101
18 2584 0000101000011000
19 4181 0001000001010101
20 6765 0001101001101101
21 10946 0010101011000010
22 17711 0100010100101111
23 28657 0110111111110001
24 46368 1011010100100000
25 75025 0010010100010001

Figure 4.2: Fibonacci numbers table

4–4

LAB 5

Subroutines: multiplication, division,
modulus

5.1 Problem Statement
• Given two integers X and Y compute the product XY (multiplication), the quotient X/Y (inte-

ger division), and the modulus X (mod Y) (remainder).

5.1.1 Inputs
The integers X and Y are stored at locations 3100 and 3101, respectively.

5.1.2 Outputs
The product XY , the quotient X/Y , and modulus X (mod Y) are stored at locations 3102, 3103, and
3104, respectively. If X ,Y inputs are invalid for X/Y and X (mod Y) (see section 5.2.5 on page 5–3)
place 0 in both locations 3103 and 3104.

5.2 The program

5.2.1 Subroutines
Subroutines in assembly language correspond to functions in C/C++ and other computer languages:
they form a group of code that is intended to be used multiple times. They perform a logical task
by operating on parameters passed to them, and at the end they return one or more results. As an
example consider the simple subroutine in listing 5.1 on page 5–2 which implements the function
f n = 2n+3. The integer n is located at 3120, and the result Fn is stored at location 3121. Register
R0 is used to pass parameter n to the subroutine, and R1 is used to pass the return value f n from the
subroutine to the calling program.

Execution is transfered to the subroutine using the JSR (“jump to subroutine”) instruction. This
instruction also saves the return address, that is the address of the instruction that follows JSR, in
register R7. See figure 5.1 on page 5–2 for the steps taken during execution of JSR. The subroutine
terminates execution via the RET “return from subroutine” instruction. It simply assigns the return
value in R7 to the PC.

The program will have two subroutines: MULT for the multiplication and DIV for division and
modulus.

Revision: 1.8, August 14, 2005 5–1

LAB 5 5.2. THE PROGRAM

1 LDI R0 , N ; Argument N i s now i n R0
2 JSR F ; Jump t o s u b r o u t i n e F .
3 STI R1 , FN
4 HALT
5 N .FILL 3120 ; Address where n i s l o c a t e d
6 FN .FILL 3121 ; Address where fn w i l l be s t o r e d .
7 ; S u b r o u t i n e F b e g i n s
8 F AND R1 , R1 , x0 ; C l e a r R1
9 ADD R1 , R0 , x0 ; R1 ← R0

10 ADD R1 , R1 , R1 ; R1 ← R1 + R1
11 ADD R1 , R1 , x3 ; R1 ← R1 + 3 . R e s u l t i s i n R1
12 RET ; Re tu rn from s u b r o u t i n e
13 END

Listing 5.1: A subroutine for the function f (n) = 2n+3.

will proceed from there.

execution of JSR.

LC3 state right before

F Addr

JSR Addr + 1

Copy PC to R7

for the RET instruction.

JSR Addr + 1

IR to PC so execution

Copy F’s address from

Step 3Step 2

PC

R7

JSR F

IRIR
JSR F

R7

PC
JSR Addr + 1

0

JSR Addr + 1

PC

R7

JSR F

IR

Step 1

Figure 5.1: The steps taken during execution of JSR.

5.2.2 Saving and restoring registers

Make sure that at the beginning of your subroutines you save all registers that will be destroyed in
the course of the subroutine. Before returning to the calling program, restore saved registers. As an
example, listing 5.2 on page 5–3 shows how to save and restore registers R5 and R6 in a subroutine.

5.2.3 Structure of the assembly program

The general structure of the assembly program for this problem can be seen in listing 5.3 on page 5–
3.

5–2

LAB 5 5.2. THE PROGRAM

1 SUB . . . ; S u b r o u t i n e i s e n t e r e d
2 ST R5 , SaveReg5 ; Save R5
3 ST R6 , SaveReg6 ; Save R6
4 . . . ; u se R5 and R6
5 . . .
6
7 LD R5 , SaveReg5 ; R e s t o r e R5
8 LD R6 , SaveReg6 ; R e s t o r e R6
9 RET ; Back t o t h e c a l l i n g program

10 SaveReg5 .FILL x0
11 SaveReg6 .FILL x0

Listing 5.2: Saving and restoring registers R5 and R6.

1 . . .
2 JSR MULT; Jump t o t h e m u l t i p l i c a t i o n s u b r o u t i n e
3 . . . ; Here p r o d u c t XY i s i n R2
4 JSR DIV ; Jump t o t h e d i v i s i o n and mod s u b r o u t i n e
5
6 HALT
7 . . .
8 . . . ; M u l t i p l i c a t i o n s u b r o u t i n e b e g i n s
9 MULT . . . ; Save r e g i s t e r s t h a t w i l l be o v e r w r i t t e n

10 . . . ; M u l t i p l i c a t i o n Algo r i t hm
11 . . . ; R e s t o r e saved r e g i s t e r s
12 . . . ; R2 has t h e p r o d u c t .
13 RET ; Re tu rn from s u b r o u t i n e
14 ; D i v i s i o n and mod s u b r o u t i n e b e g i n s
15 DIV . . .
16 . . .
17 RET
18 END

Listing 5.3: General structure of assembly program.

5.2.4 Multiplication
Multiplication is achieved via addition:

XY = X +X + . . .+X︸ ︷︷ ︸
Y times

(5.1)

Listing 5.4 on page 5–4 shows the pseudo-code for the multiplication algorithm. Parameters X and
Y are passed to the multiplication subroutine MULT via registers R0 and R1. The result is in R2.

5.2.5 Division and modulus
Integer division X/Y and modulus X (mod Y) satisfy this formula:

X = X/Y ∗Y +X (mod Y) (5.2)

Where X/Y is the quotient and X (mod Y) is the remainder. For example, if X = 41 and Y = 7, the
equation becomes

41 = 5∗7+6 (5.3)

5–3

LAB 5 5.2. THE PROGRAM

1 / / M u l t i p l y i n g XY. P r o d u c t i s i n v a r i a b l e prod .
2 s i g n ← 1 / / The s i g n of t h e p r o d u c t
3 i f X < 0 t h e n
4 X = −X / / Conve r t X t o p o s i t i v e
5 s i g n = −s i g n
6 i f Y < 0 t h e n
7 Y = −Y / / Conve r t Y t o p o s i t i v e
8 s i g n = −s i g n
9 prod ← 0 / / I n i t i a l i z e p r o d u c t

10 w h i l e Y 6= 0 do
11 prod ← prod + X
12 Y ← Y − 1
13 i f s i g n < 0 t h e n
14 prod ← −prod / / A d j u s t s i g n o f p r o d u c t

Listing 5.4: Pseudo-code for multiplication.

Subroutine DIV will compute both the quotient and remainder. Parameter X is passed to DIV
through R0 and Y through R1. For simplicity division and modulus are defined only for X ≥ 0 and
Y > 0. Subroutine DIV should check if these conditions are satisfied. If, not it should return with
R2 = 0, indicating that the results are not valid. If they are satisfied, R2 = 1, to indicate that the
results are valid. Overflow conditions need not be checked at this time. Figure 5.2 summarizes the
input arguments and results that should be returned.

Register Input parameter Result
R0 X X/Y or 0 if invalid
R1 Y X (mod Y) or 0 if invalid
R2 1 if results valid, 0 otherwise

Figure 5.2: Input parameters and returned results for DIV.

Listing 5.5 shows the pseudo-code for the algorithm that performs integer division and modulus
functions. The quotient is computed by successively subtracting Y from X . The leftover quantity is
the remainder.

1 / / F i n d i n g t h e q u o t i e n t X/Y and r e m a i n d e r X mod Y.
2 q u o t i e n t ← 0 / / I n i t i a l i z e q u o t i e n t
3 r e m a i n d e r ← 0 / / I n i t i a l i z e r e m a i n d e r (i n c a s e i n p u t i n v a l i d)
4 v a l i d ← 0 / / I n i t i a l i z e v a l i d
5 i f X < 0 or Y ≤ 0 t h e n
6 e x i t
7 v a l i d = 1
8 temp ← X / / Holds q u a n t i t y l e f t
9 w h i l e temp ≥ Y do

10 temp = temp − Y
11 q u o t i e n t ← q u o t i e n t + 1
12 r e m a i n d e r ← temp

Listing 5.5: Pseudo-code for integer division and modulus.

5–4

LAB 5 5.3. TESTING

5.3 Testing
You should first write the MULT subroutine, thoroughly test it, and then proceed to implement the
DIV subroutine. Thoroughly test DIV. Finally, test the program as a whole for various inputs.

5.4 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of the (X ,Y) pairs (100,17),(211,4),(11,−15),(12,0), screenshots that show the
contents of locations 3100 through 3104.

5–5

LAB 6

Faster Multiplication

6.1 Problem Statement
Write a faster multiplication subroutine using the shift-and-add method.

6.1.1 Inputs
The integers X and Y are stored at locations 3100 and 3101, respectively.

6.1.2 Outputs
The product XY is stored at location x3102.

6.2 The program
The program should perform multiplication by subroutine MULT1, which is an implementation of
the so-called shift-and-add algorithm. Overflow is not checked.

6.2.1 The shift-and-add algorithm
Before giving the algorithm, we consider an example multiplication. We would like to multiply
X = 1101 and Y = 101011. This can be done with the shift-and-add method which resembles
multiplication by hand. Figure 6.1 shows the steps. The bold bits are the bits of the multiplier
scanned right-to-left. The result is initialized to zero, and then we consider the bits of the multiplier
from right to left: if the bit is 1 the multiplicand is added to the product and then shifted to the left
by one position. If the bit is 0, the multiplicand is shifted to the left, but no addition is performed.

101011 ←Multiplicand
1101 ←Multiplier

101011 1: Add and shift
1010110 0: Shift (not added)

10101100 1: Add and shift
101011000 1: Add and shift

1000101111 ← Result

Figure 6.1: Shift-and-add multiplication

Revision: 1.8, August 14, 2005 6–1

LAB 6 6.3. TESTING

Let X = x15x14x13 . . .x1x0 and Y = y15y14y13 . . .y1y0 be the bit representations of multiplier X
and multiplicand Y . We would like to compute the product P = XY . For the time, we assume that
both X and Y are positive, i.e. x15 = y15 = 0. The multiplication algorithm is described in listing 6.1.
Recall that in binary, multiplication by 2 is equivalent to a left shift.

1 / / Compute p r o d u c t P ← XY
2 / / Y i s t h e m u l t i p l i c a n d
3 / / X = x15x14x13 . . .x1x0 i s t h e m u l t i p l i e r
4 P ← 0 / / I n i t i a l i z e p r o d u c t
5 f o r i =0 t o 14 do / / Exc lude t h e s i g n b i t
6 i f xi = 1 t h e n
7 P ← P + Y / / Add
8 Y ← Y + Y / / S h i f t l e f t

Listing 6.1: The shift-and-add multiplication.

6.2.2 Examining a single bit in LC-3
Suppose we would like to check whether the least significant bit (LSB) of R1 is 0 or 1. We can do
that with these instructions:

1 AND R2 , R2 , x0 ;
2 ADD R2 , R2 , x1 ; I n i t i a l i z e R2 t o 1
3 AND R0 , R1 , R2 ;
4 BRz ISZERO ; Branch i f LSB of R1 i s 0
5 . . .
6 ISZERO . . .
7 . . .

To test the next bit of R1, we shift to the left the 1 in R2 with ADD R2, R2, R2 , and then again
we do:

1 AND R0 , R1 , R2 ;
2 BRz ISZERO ; Branch i f n e x t b i t o f R1 i s 0

We notice that by adding R2 to itself, the only bit in R2 that is 1 shifts to the left by one position.

6.2.3 The MULT1 subroutine
Subroutine MULT1 to be written should be used to perform the multiplication. Parameters X and
Y are passed to MULT1 via registers R0 and R1. The result is in R2. The multiplication should
work even if the parameters are negative numbers. To achieve this, use the same technique of the
algorithm in listing 5.4 on page 5–4 to handle the signs.

Registers that are used in the subroutine should be saved and then restored.

6.3 Testing
Test the MULT1 subroutine for various inputs, positive and negative.

6.4 What to turn in
• A hardcopy of the assembly source code.

6–2

LAB 6 6.4. WHAT TO TURN IN

• Electronic version of the assembly code.

• For each of the (X ,Y) pairs (100,17),(−211,−4),(11,−15),(12,0), screenshots that show
the contents of locations 3100 through 3102.

6–3

LAB 7

Compute Day of the Week

7.1 Problem Statement

Write an LC-3 program that given the day, month and year will return the day of the week.

7.1.1 Inputs

Before execution begins, it is assumed that locations x31F0, 31F1, and x31F2 contain the following
inputs:

x31F0 The usual number of the month
x31F1 The day of the month
x31F2 The year

For the example we have been using, June 1, 2005, we could use this code fragment in a different
module:

.ORIG x31F0

.FILL #6

.FILL #1

.FILL #2005

7.1.2 Outputs

The outputs are:

• A number between 0 and 6 that corresponds to the days of the week, starting with Sunday,
should be stored in location x31F3.

• The corresponding name of the day is displayed on the screen.

7.1.3 Example

The program to be written answers this question: what was the day of the week on January 1, 1900?
Answer: Monday

Revision: 1.6, August 26, 2005 7–1

LAB 7 7.2. ZELLER’S FORMULA

7.2 Zeller’s formula
The day of the week can be found by using Zeller’s formula1:

f = k +(13m−1)/5+D+D/4+C/4−2C, (7.1)

where the symbol “/” represents integer division. For example 9/2 = 4. Using as example the date
June 1, 2005, the symbols in the formula have the following meaning:

• k is the day of the month. In the example, k = 1.

• m is the month number designated in a special way: March is 1, April is 2, . . . , December is
10; January is 11, and February is 12. If x is the usual month number, i.e. for January x is 1, for
February x is 2, and so on; then m can be computed with this formula: m = (x+21)%12+1,
where % is the usual modulus (i.e. remainder) function. Alternatively, m can be computed in
this way:

m =

{
x+10, if x≤ 2
x−2, otherwise.

(7.2)

In our example, m = 4.

• D is the last two digits of the year, but if it is January or February those of the previous year
are used. In our example, D = 05.

• C is for century, and it is the first two digits of year. In our example, C = 20.

• From the result f we can obtain the day of the week based on this code:

f %7 Day
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

For example, if f = 123, then f %7 = 4, and thus the day was Thursday. Again, % is the
modulus function.

7.3 Subroutines
To compute the modulus (%), integer division (/), and multiplication, subroutines MULT and DIV,
which were written for a previous lab, should be used.

Make sure that MULT and DIV subroutines save and restore all registers they use, except those
that are used to return results. Use R0 and R1 to pass parameters, and R0, R1 and R2 to return the
results.

7.3.1 Structure of program
The general structure of the program appears in listing 7.1 on page 7–3. The problem of displaying
the name of the day on the screen was solved in Lab 3.

1 “Kalender-Formeln” von Rektor Chr. Zeller in Markgröningen, Mathematisch-naturwissenschaftliche Mitteilungen des
mathematisch-naturwissenschaftlichen Vereins in Wrttemberg, ser. 1, 1 (1885), pp.54-58 – in German.

7–2

LAB 7 7.4. TESTING: SOME EXAMPLE DATES

1 .ORIG x3000
2 . . .
3 . . . ; MULT and DIV a r e c a l l e d a number o f t i m e s
4 . . .
5 . . .
6 PUTS ; D i s p l a y day of t h e week on s c r e e n
7 HALT
8 DAYS .STRINGZ ” Sunday ”
9 .STRINGZ ”Monday ”

10 .STRINGZ ” Tuesday ”
11 .STRINGZ ” Wednesday ”
12 .STRINGZ ” Thursday ”
13 .STRINGZ ” F r i d a y ”
14 .STRINGZ ” S a t u r d a y ”
15 . . .
16
17 MULT . . . ; Beg inn ing of MULT s u b r o u t i n e
18
19 . . .
20 RET
21 DIV . . . ; Beg inn ing of DIV s u b r o u t i n e
22
23 . . .
24 RET
25 .END

Listing 7.1: Structure of the program.

7.4 Testing: some example dates
Test your program using these dates:

September 11, 2001 Tuesday
June 6, 1944 Tuesday

September 1, 1939 Friday
November 22, 1963 Friday

August 8, 1974 Thursday

7.5 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of the random dates in the table below, screenshots that show the contents of memory
locations x31F0 through x31F3.

Date Day of the week
January 3, 1905

June 6, 1938
June 23, 1941
May 7, 1961

Date this lab is due

7–3

LAB 8

Random Number Generator

8.1 Problem Statement
• Generate random numbers using a Linear Congruential Random Number Generator (LCRNG).

8.1.1 Inputs and Outputs
The seed, which is an integer in the range 1 to 32766, is found at location x3100. When the program
is executed, 20 random numbers in the interval 1 to 215−2 are generated and displayed.

8.2 Linear Congruential Random Number Generators
A LCRNG is defined by the this recurrence equation:

xn← a xn−1 + c mod m (8.1)

The multiplicative constant a, the constant c, and modulus m are integers that are chosen and fixed.
Given the seed x0, a random number sequence is generated: x1,x2,x3, . . . , with the xi’s being in the
range 0 to m− 1. Eventually the sequence will repeat itself. In most cases, it is desirable that the
period of repetition is as long as possible.

Using the subroutines MULT and DIV, used in earlier labs, one can write a program in LC-
3 to generate random numbers based on equation (8.1). There is, however, the possibility that
intermediate operations, such as a xn−1, cause an overflow. In the case where c = 0, to avoid overflow
we use Schrage’s method1. In this method, the recurrence is

xn← a xn−1 mod m, (8.2)

and multiplication a x is performed in the following fashion:

a x mod m =

{
a (x mod q)− r (x/q) if ≥ 0
a (x mod q)− r (x/q)+m otherwise,

(8.3)

where
q = m/a, r = m mod a. (8.4)

As always, “/” denotes integer division. To ensure no overflow while performing the computations
in equation (8.3), multiplier a and modulus m must be chosen so that 0 ≤ r < q. Listing 8.1 on
page 8–2 has the algorithm to generate 20 random numbers.

1Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132–138.

Revision: 1.6, August 4, 2005 8–1

LAB 8 8.3. HOW TO OUTPUT NUMBERS IN DECIMAL

1 / / A lgo r i t hm f o r t h e i t e r a t i o n x ← a x mod m
2 / / u s i n g Schrage ’ s method
3 a ← 7 / / a , t h e m u l t i p l i c a t i v e c o n s t a n t i s g i v e n
4 m ← 32767 / / m = 2ˆ15 −1, t h e modulus i s g i v e n
5 x ← 10 / / x , t h e seed i s g i v e n
6 q = m/ a
7 r = m mod a
8 f o r 1 t o 20 do
9 x ← a ∗ (x mod q) − r ∗ (x / q)

10 i f x < 0 t h e n
11 x ← x + m
12 o u t p u t x

Listing 8.1: Generating 20 random numbers using Schrage’s method.

For two’s complement 16-bit arithmetic, which is the LC-3 case, the largest possible m is 215−1.
Using this value for m, to produce a maximal non-repeating sequence2 of random numbers one can
choose a = 7. The seed x0 should never be 0; it should be any number from 1 to 215−2 = 32766.

Your program should implement equation (8.2) on page 8–1 with the algorithm found in
listing 8.1.

8.3 How to output numbers in decimal

The assembly command OUT, which is shorthand for TRAP x21, outputs the single ASCII char-

acter found in the 8 least significant bits of R0. (See listing 8.2 for an example.) We can use OUT,

1 ; We would l i k e t o d i s p l a y i n d e c i m a l t h e d i g i t i n r e g i s t e r R3
2 ; which happens t o be n e g a t i v e
3 . . .
4 NOT R3 , R3 ; Negate R3 t o o b t a i n p o s i t i v e v e r s i o n
5 ADD R3 , R3 , #1
6 LD R0 , MINUS ; Outpu t ’− ’
7 OUT
8 LD R0 , OFFSET ; Outpu t d i g i t
9 ADD R0 , R0 , R3

10 OUT
11 . . .
12 HALT
13 MINUS .FILL x2D ; Minus s i g n i n ASCII
14 OFFSET .FILL x30 ; 0 i n ASCII

Listing 8.2: Displaying a digit.

therefore, to output the decimal digits of a number one by one. We can obtain the digits by suc-
cessively applying the mod 10 on the number and truncating, until we obtain 0. This produces
the digits from right to left. For example if the number we would like to output is x219 = 537, by
applying the above procedure we obtain the digits in this order: 7,3,5. Thus, we have to output them
in reverse order of their generation. For this purpose we can use a stack, with operations PUSH and
POP.

2I.e., all integers in the range 1 to 215−2, will be generated before the sequence will repeat itself.

8–2

LAB 8 8.4. TESTING

1 / / We would l i k e t o o u t p u t n as a d e c i m a l
2 l e f t ← n / / r e m a i n i n g v a l u e
3 s i g n ← 1 / / s i g n o f n
4 i f n < 0 t h e n
5 s i g n = −s i g n / / n i s n e g a t i v e
6 l e f t ← −n
7 i f l e f t = 0 t h e n
8 d i g i t ← 0 / / i n c a s e n = 0
9 push d i g i t

10 w h i l e l e f t 6= 0 do
11 d i g i t ← l e f t mod 10 / / g e n e r a t e a d i g i t
12 push d i g i t / / push d i g i t on s t a c k
13 l e f t ← l e f t / 1 0
14 i f s i g n < 0 t h e n
15 o u t p u t ’− ’ / / number i s n e g a t i v e
16 w h i l e n o t (s t a c k e m p t y) do
17 pop d i g i t
18 o u t p u t d i g i t

Listing 8.3: Output a decimal number.

8.3.1 A rudimentary stack
The stack that is described here is a rudimentary one3. It is intended for this problem only. There
are three operations, i.e. subroutines, that involve the stack: PUSH, POP, and ISEMPTY. PUSH
pushes the contents of register R0 on the stack, POP pops the top of the stack in register R0, and
ISEMPTY returns 1 in R0 if the stack is empty and 0 if the stack is non-empty. Register R6 points
to the top of the stack. The following have to be borne in mind when writing your program:

• R6 should be initialized to x4000, the base of the stack, and not be overwritten while manip-
ulating the stack.

• R7 will be used (implicitly) to store the return address when calling a subroutine.

• Always ISEMPTY should be called before proceeding to call POP, to check whether the
stack is empty. If empty, POP should not be called.

Listing 8.4 on page 8–4 shows the implementation of the stack subroutines.

8.4 Testing
Using a = 7, m = 32767 in equation (8.2) on page 8–1, and starting with various seeds x0, the first
10 random numbers generated in each case are listed in figure 8.1 on page 8–4.

8.5 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For a = 7, m = 32767 and seed x0 = 10010, a screenshot showing the first 20 random numbers
generated.

3For a more sophisticated implementation of a stack see Chapter 10 of the textbook Introduction to Computing Systems
by Patt and Patel

8–3

LAB 8 8.5. WHAT TO TURN IN

1 .ORIG x3000
2 ; Your program goes h e r e
3 . . .
4 . . .
5 LD R6 , BASE ; Top of s t a c k p o i n t s t o base
6 . . .
7 JSR PUSH ; Jump t o PUSH s u b r o u t i n e
8 . . .
9 HALT ; Your program ends h e r e

10 BASE .FILL x4000
11 . . . ; More program d a t a h e r e
12 . . .
13 . . . ; S u b r o u t i n e s f o r s t a c k b e g i n
14 PUSH ADD R6 , R6 , #−1 ; Move t o p of t h e s t a c k up
15 STR R0 , R6 , #0 ; S t o r e R0 t h e r e
16 RET
17 POP LDR R0 , R6 , #0 ; Load R0 wi th t o p of s t a c k
18 ADD R6 , R6 , #1 ; Move t o p of s t a c k down
19 RET
20 ISEMPTY LD R0 , EMPTY
21 ADD R0 , R6 , R0
22 BRz IS ; Branch i f a t ba se o f s t a c k
23 ADD R0 , R0 , #0 ; R0 ← 0 , s t a c k i s n o t empty
24 RET
25 IS AND R0 , R0 , #0
26 ADD R0 , R0 , #1 ; R0 ← 1 , s t a c k i s empty
27 RET
28 EMPTY .FILL xC000 ; −x4000
29 END

Listing 8.4: The code for the stack.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Decimal 1 7 49 343 2401 16807 19348 4368 30576 17430 23709
Hex 0001 0007 0031 0157 0961 41A7 4B94 1110 7770 4416 5C9D
Decimal 6 42 294 2058 14406 2541 17787 26208 19621 6279 11186
Hex 0006 002A 0126 080A 3846 09ED 457B 6660 4CA5 1887 2BB2
Decimal 9 63 441 3087 21609 20195 10297 6545 13048 25802 16779
Hex 0009 003F 01B9 0C0F 5469 4EE3 2839 1991 32F8 64CA 418B
Decimal 10 70 490 3430 24010 4235 29645 10913 10857 10465 7721
Hex 000A 0046 01EA 0D66 5DCA 108B 73CD 2AA1 2A69 28E1 1E29
Decimal 178 1246 8722 28287 1407 9849 3409 23863 3206 22442 26026
Hex 00B2 04DE 2212 6E7F 057F 2679 0D51 5D37 0C86 57AA 65AA
Decimal 1000 7000 16233 15330 9009 30296 15470 9989 4389 30723 18459
Hex 03E8 1B58 3F69 3BE2 2331 7658 3C6E 2705 1125 7803 481B

Figure 8.1: Sequences of random numbers generated for various seeds x0.

8–4

LAB 9

Recursive subroutines

9.1 Problem Statement
Implement the recursive square function in LC-3 as it is described in section 9.2.4 on page 9–2.

9.1.1 Inputs

The value n is found at location x3100.

9.1.2 Output

The value f (n) = n2 is saved at location x3101.

9.2 Recursive Subroutines
A subroutine, or function, is recursive when it calls itself. Mathematically, a recursive function is
one that is being used in its own definition. In what follows we will give the mathematical definitions
of some well-known recursive functions.

9.2.1 The Fibonacci numbers

The Fibonacci numbers Fn, which were encountered in an earlier lab, are defined as follows:

F(n) =

{
n, if n≤ 2
F(n−1)+F(n−2) otherwise.

(9.1)

Using pseudo-code, the algorithm for Fn is shown in listing 9.1 on page 9–2.

9.2.2 Factorial

The factorial function f (n) = n!,n≥ 0, is defined as follows:

f (n) =

{
1, if n = 0
n∗ f (n−1) if n > 0.

(9.2)

Revision: 1.3, August 14, 2005 9–1

LAB 9 9.2. RECURSIVE SUBROUTINES

1 / / Compute t h e F i b o n a c c i number F (n) , n ≥ 1
2 f u n c t i o n F (n)
3 i f n ≤ 2
4 r e t u r n 1
5 e l s e
6 r e t u r n F (n−1) + F (n−2)

Listing 9.1: The pseudo-code for the recursive version of the Fibonacci numbers function.

Non-recursively, the factorial function is defined as follows:

f (n) =

{
1, if n = 0
n∗ (n−1)∗ . . .∗1, if n > 0.

(9.3)

The first few values of f (n) = n! are shown in figure 9.1.

n 0 1 2 3 4 5 6 7 8 9 10
n! 1 1 2 6 24 120 720 5040 40320 362880 3628800

Figure 9.1: The first few values of f (n) = n!.

9.2.3 Catalan numbers
Catalan numbers Cn,n≥ 0, are defined as follows:

Cn ≡
1

n+1

(
n

2n

)
=

(2n)!
(n+1)!n!

. (9.4)

Recursively, the Catalan numbers can be defined as

Cn+1 =
2(2n+1)

n+2
Cn, (9.5)

with C0 = 1. An alternative recursive definition is

Cn =


1, if n = 0
n−1

∑
i=0

Ci Cn−1−i, if n > 0.
(9.6)

The first few values of Cn are shown in figure 9.2.

n 0 1 2 3 4 5 6 7 8 9 10
Cn 1 1 2 5 14 42 132 429 1430 4862 16796

Figure 9.2: The first few Catalan numbers Cn.

9.2.4 The recursive square function.
The familiar square function square(n) = n2 can be defined recursively as well:

square(n) =

{
0, if n = 0
square(n−1)+2n−1, if n > 0.

(9.7)

9–2

LAB 9 9.3. STACK FRAMES

n 0 1 2 3 4 5 6 7 8 9 10
square(n) 0 1 4 9 16 25 36 49 64 81 100

Figure 9.3: Some values of square(n).

The first few values of square(n) are shown in figure 9.3.
In this lab, you asked to implement the recursive square function as a subroutine, and call it from

the main program. Your program should work for negative numbers as well, however the square(n)
subroutine should never be called with a negative argument: there will be a stack overflow, which is
explained in the section that follows. In that and the other sections that follow you will find details
that will help you in the implementation of the square(n) subroutine.

9.3 Stack Frames
When a program (or subroutine) A calls a subroutine B with one of either instruction JSR and JSRR,
automatically the return address to A is saved in register R7. While executing, if subroutine B calls
another subroutine C, then the return address to B will again be saved in R7, which would overwrite
the previous value. When it is time to return to A, there will be no record of the proper return address.
This situation shows the need to have a bookkeeping method that will save return addresses. This
need is further demonstrated when having a subroutine that calls itself, i.e. a recursive subroutine.
In this case, beyond the return address other information, such as parameters and return value, needs
to be allocated for each invocation of the subroutine. The efficient solution to this problem is to have
that information saved on a stack.

The space on the stack associated with the invocation of a subroutine is called frame. The stack
consists of many frames, stacked in the order by which they are called from their corresponding
subroutines. If subroutine A calls subroutine, B calls subroutine C, and C calls itself two times, the
stack will have the structure of figure 9.4. When a subroutine returns, its corresponding frame is
removed from the stack.

Frame C
Frame C
Frame C
Frame B
Frame A

Figure 9.4: The structure of the stack.

A typical frame has the structure in figure 9.5 on page 9–4. The frame pointer, also known
known as dynamic link, points to the first parameter and is used to refer to items within the frame
via offsets. Register R5 is used hold the value of the current frame pointer. The frame pointer of
the calling subroutine is saved on the frame of the called subroutine. When the called subroutine
returns, the frame pointer is restored in R5, and is ready to be used in referring to items within the
current frame.

During the execution of a program, while subroutines are called and return, the stack grows and
shrinks accordingly. Every time a subroutine is entered, a frame is created; by the time a subroutine
returns, all the elements of the frame will have been popped from the stack, and the frame will
not exist anymore. If the size of the stack grows too large, i.e. there are too many outstanding
subroutines, there is the danger of not having sufficient space to accommodate it, and it will cause
an error, which is commonly referred to as stack overflow.

The pseudo-code algorithm to implement recursive subroutines is shown in listing 9.2 on page 9–
4. It demonstrates how subroutine frames are created on the run-time stack, and destroyed. It is a

9–3

LAB 9 9.3. STACK FRAMES

Local Variable 2
Local Variable 1
Frame Pointer

Return Address
Return Value
Parameter 2
Parameter 1


Frame

Figure 9.5: A typical frame

summary of the description in the textbook1.

1 / / The c a l l i n g program
2 . . .
3 PUSH P a r a m e t e r 1 / / r e p e a t a s needed f o r a d d i t i o n a l

// p a r a m e t e r s
4 CALL F () / / jump t o F ’ s code
5 Retu rnVa lue ← POP / / pop t h e r e t u r n v a l u e o f f t h e s t a c k
6 POP / / pop t h e p a r a m e t e r s o f f t h e s t a c k ,

// r e p e a t a s needed
7 . . .
8 / / The f u n c t i o n (s u b r o u t i n e) F
9

10 F () / / b e g i n n i n g of f u n c t i o n F
11 PUSH Retu rnVa lue / / c r e a t e a p l a c e on t h e s t a c k f o r t h e

// r e t u r n v a l u e
12 PUSH R e t u r n A d d r e s s / / push t h e r e t u r n a d d r e s s on to t h e s t a c k
13 PUSH F r a m e P o i n t e r / / push t h e F r a m e P o i n t e r f o r p r e v i o u s

// f u n c t i o n
14 F r a m e P o i n t e r ← S t a c k P o i n t e r −1 / / s e t t h e new frame p o i n t e r t o

// t h e
15 / / l o c a t i o n o f t h e f i r s t l o c a l

// v a r i a b l e
//

16 PUSH Loca lVar1 / / push l o c a l f u n c t i o n v a r i a b l e s , r e p e a t
// a s needed

17 . . . / / f u n c t i o n body
18 Loca lVar1 ← POP / / pop l o c a l v a r i a b l e s o f f t h e s t a c k , r e p e a t a s

//needed
19 F r a m e P o i n t e r ← POP / / r e s t o r e t h e o l d f rame p o i n t e r
20 R e t u r n A d d r e s s ← POP / / r e s t o r e R e t u r n A d d r e s s so t h e c a l l e r can

// be
21 / / r e t u r n e d t o
22 r e t u r n / / r e t u r n t o t h e c a l l e r , end of F ()

Listing 9.2: The pseudo-code for the algorithm that implements recursive subroutines.

Register R6 is used as the stack pointer, which points to the top of the stack. When referring to a
variable on the stack, one should access it through reference to the Frame Pointer, which is Register
R5. For example, suppose the function is nearly complete and the return value is in R0 and it is

1Introduction to Computing System, by Yale N. Patt and Sanjay J. Patel, pages 385–393

9–4

LAB 9 9.4. THE MCCARTHY 91 FUNCTION: AN EXAMPLE IN LC-3

desired to store it at the Return Value location on the stack. Assuming only one parameter and only
one register saved on the stack, the offset will be 3, as seen by the figure below:

Offset Ptr Location Stack
0 Current FramePointer −→ Register1
1 FramePointer (for last function)
2 ReturnAddress
3 ReturnValue
4 Parameter1

To store R0 at the ReturnValue location, following instruction is used:

1 STR R0 , R5 , #3 ; s t o r e t h e r e t u r n v a l u e on t h e s t a c k

9.4 The McCarthy 91 function: an example in LC-3

9.4.1 Definition
The McCarthy 91 function M(n) has been invented by John McCarthy, the inventor of the Lisp
programming language (late 1950’s). It is defined for n = 1,2,3, . . . , as follows:

M(n) =

{
M(M(n+11)), if 1≤ n≤ 100
n−10, if n > 100.

(9.8)

Remarkably, M(n) takes the value 91 for 1≤ n≤ 101. For values n≥ 102 it takes the value n−10.
In listing 9.3 the algorithm of M(n) is specified in pseudo-code.

1 / / Compute t h e McCarthy 91 f u n c t i o n M(n) , n i s a p o s i t i v e i n t e g e r
2 f u n c t i o n M(n)
3 / / n i s ≥ 1
4 i f n ≤ 100
5 r e t u r n M(M(n +11))
6 e l s e
7 r e t u r n n − 10

Listing 9.3: The pseudo-code for the recursive McCarthy 91 function.

9.4.2 Some facts about the McCarthy 91 function
The McCarthy 91 M(n) function for some numbers, 1 ≤ n ≤ 100, while executing calls itself a
number of times, while for n > 100 M(n) is called once. Figure 9.6 on page 9–6 shows the growth
and shrinkage of the stack during execution for n = 1,20,50,80, and 99. A unit of time corresponds
to either creation or destruction of a frame on the stack.

For n = 1, since the curve becomes 0 at time = 402, M(n) is executed 201 times. Figure 9.7 on
page 9–6 shows the number of times M(n) is executed for various n.

The size of the stack measured as the number of frames on it for each n in the range 1..123 is
shown in figure 9.8 on page 9–8.

9.4.3 Implementation of McCarthy 91 in LC-3
As an example, in this section we give the implementation of the McCarthy 91 function in LC-3.
The general algorithm of listing 9.2 on page 9–4 is (slightly) modified in two ways:

9–5

LAB 9 9.4. THE MCCARTHY 91 FUNCTION: AN EXAMPLE IN LC-3

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

S
ta

ck
 S

iz
e

(F
ra

m
es

)

Time

n = 1
n = 20
n = 50
n = 80
n = 99

Figure 9.6: Stack size in frames during execution.

n Number of times M(n) called
1 201
20 163
50 103
80 43
99 5
100 3
101 1
102 1

Figure 9.7: Table that shows how many times the function M(n) is executed before it returns the
value for various n.

• The Return Address register R7 is saved to a temporary location (R0) immediately after the
function F() is called because PUSH and POP will overwrite R7.

• The second change is that registers will be used for temporary storage, as opposed to using
local variables, and thus registers used will be saved and then restored.

The modified algorithm with these changes is shown in listing 9.4 on page 9–7.
The source code for the program that calls the McCarthy 91 subroutine appears in listing 9.5 on

page 9–8, the push and pop subroutines in listing 9.6 on page 9–9, and the McCarthy 91 subroutine
itself on listing 9.7 on page 9–9. The complete program, which is a concatenation of the code in
the three aforementioned figures, can be saved on your disk, if your pdf browser supports it, by
right-clicking here→ .

9–6

; this program uses McCarthy91

; it takes the input from x3100

; it stores the output at x3101

; and outputs the ASCII character of the value to the console

	.ORIG	x3000

	LD	R6, STKBASE		; set the initial stack pointer

	; Push(Parameter1)

	LDI	R0, INPUT		; load function input into R0

	JSR	PUSH			; push INPUT on stack as parameter1

	; call McCarthy91

	JSR	MC91

	; ReturnValue <- Pop()

	JSR	POP			;

	OUT				; print ASCII value of return value

					; note: ASCII(91) = [

	STI	R0, OUTPUT		; store the value at x3101

	; Pop()

	JSR 	POP			; pop off parameter

	HALT

STKBASE	.FILL	x4000			; stack base address

INPUT	.FILL	x3100			; McCarthy91 input

OUTPUT	.FILL	x3101			; McCarthy91 output

;push and pop subs

PUSH 	ADD 	R6, R6, #-1 		; Move top of the stack up

	STR 	R0, R6, #0 		; Store R0 there

	RET

POP 	LDR 	R0, R6, #0 		; Load R0 with top of stack

	ADD 	R6, R6, #1 		; Move top of stack down

	RET

;McCarthy91 function

	;TempVar <- ReturnAddress

MC91	ADD R0, R7, #0			; save R7 to R0 so it can be pushed on the stack later

	; Push(ReturnValue)

	JSR	PUSH			; any value will do for ReturnValue space

	; Push(TempVar)

	JSR	PUSH			; ReturnAddress is already in R0 because we saved it there

	; Push(FramePointer)

	ADD	R0, R5, #0		; transfer frame pointer to R0

	JSR	PUSH			; save frame pointer

	; FramePointer <- StackPointer-1

	ADD	R5, R6, #-1		; create a new frame pointer based on R6

	; Push(Register1)

	ADD	R0, R1, #0		; save R1 by pushing it on the stack

	JSR	PUSH			; save frame pointer

	

	; load Parameter1 into R0

	LD	R1, PARAM1		; load offset

	ADD	R1, R5, R1		; get address of Parameter1

	LDR	R0, R1, #0		; load Parameter1 into R0

	; test to see if Parameter1 <= 100

	LD	R1, NEG100		; load -100

	ADD	R1, R0, R1		; R1 <- Parameter1 - 100

	BRnz	LESS100			; if it is <= 100 jump to that code

	; since Parameter1 > 100, add -10 to R0 and cleanup

OVER100 ADD	R0, R0, #-10		; R0 will be stored in the ReturnValue space at cleanup

	BRnzp	CLEANUP			

	; since Parameter1 <= 100, call recursively MC91(MC91(Parameter1+11))

LESS100	ADD	R0, R0, #11		; add 11 to parameter1 and pass it to MC91

	

	; call MC91(Parameter1+11)

	; Push(Parameter1)

	JSR	PUSH			; push R0 on stack as Parameter1

	; call McCarthy91

	JSR	MC91

	; ReturnValue <- Pop()

	JSR	POP			; the return value is now in R0

	ADD	R1, R0, #0		; save the return value into R1

	; Pop()

	JSR 	POP			; pop off Parameter1

	

	; now call MC(MC91(Parameter1+11)) = MC(R1)

	; Push(Parameter1)

	ADD	R0, R1, #0		; move the return value of MC91(Parameter1+11) back to R0

	JSR	PUSH			; push R0 on stack as Parameter1

	; call McCarthy91

	JSR	MC91

	; ReturnValue <- Pop()

	JSR	POP			; the return value is now in R0

	ADD	R1, R0, #0		; save the return value into R1

	; Pop()

	JSR 	POP			; pop off Parameter1

	ADD	R0, R1, #0		; move the return value of MC91(Parameter1+11) back to R0

					; for cleanup

	;store what is in R0 into the ReturnAddress space on the stack

CLEANUP	LD	R1, RETVAL		; load offset

	ADD	R1, R5, R1		; get address of ReturnAddress

	STR	R0, R1, #0		; store R0 at ReturnAddress

	; Register1 <-Pop()

	JSR	POP

	ADD	R1, R0, #0		; restore R1 from stack

	; FramePointer <- Pop()

	JSR	POP

	ADD	R5, R0, #0		; restore R5 from stack

	; ReturnAddress <- Pop()

	JSR	POP

	ADD	R7, R0, #0		; restore ReturnAddress from stack

	RET		

;refer to variables by offsets from the frame pointer

RETVAL	.FILL	#3

PARAM1	.FILL	#4

NEG100	.FILL	#-100

	.END

LAB 9 9.5. TESTING

1 / / The c a l l i n g program
2 . . .
3 PUSH P a r a m e t e r 1 / / r e p e a t a s needed f o r a d d i t i o n a l

// p a r a m e t e r s
4 CALL F () / / jump t o F ’ s code
5 Retu rnVa lue ← POP / / pop t h e r e t u r n v a l u e o f f t h e s t a c k
6 POP / / pop t h e p a r a m e t e r s o f f t h e s t a c k ,

// r e p e a t a s needed
7
8 . . .
9

10 / / The f u n c t i o n (s u b r o u t i n e) F
11
12 F () / / b e g i n n i n g of f u n c t i o n F
13 TempVar ←R e t u r n A d d r e s s / / s ave R e t u r n A d d r e s s (R7) t o a temp

// v a r i a b l e (R0)
14 PUSH Retu rnVa lue / / c r e a t e a p l a c e on t h e s t a c k f o r t h e

// r e t u r n v a l u e
15 PUSH TempVar / / push t h e R e t u r n A d d r e s s on to t h e s t a c k
16 PUSH F r a m e P o i n t e r / / push t h e F r a m e P o i n t e r f o r p r e v i o u s

// f u n c t i o n
17 F r a m e P o i n t e r ← S t a c k P o i n t e r −1 / / s e t t h e new frame p o i n t e r t o

// t h e l o c a t i o n o f t h e
18 / / f i r s t r e g i s t e r v a l u e
19 PUSH R e g i s t e r 1 / / push r e g i s t e r s f o r sav ing , r e p e a t a s

//needed
20 . . . / / f u n c t i o n body
21 R e g i s t e r 1 ← POP / / pop r e g i s t e r v a l u e s o f f t h e s t a c k , r e p e a t a s

//needed
22 F r a m e P o i n t e r ← POP / / r e s t o r e t h e o l d f rame p o i n t e r
23 R e t u r n A d d r e s s ← POP / / r e s t o r e R e t u r n A d d r e s s so t h e c a l l e r can

// be
24 / / r e t u r n e d t o
25 r e t u r n / / r e t u r n t o t h e c a l l e r , end of F ()

Listing 9.4: The pseudo-code for the McCarthy 91 recursive subroutine.

9.5 Testing
Test the square(n) subroutine for various inputs, positive and negative. Reminder: You should
never pass a negative parameter to square(n). First convert it to positive.

9.6 What to turn in
• A hardcopy of the assembly source code.

• Electronic version of the assembly code.

• For each of the inputs 0,1,7,−35, screenshots that show the contents of locations x3100
through x3101.

• Answer of this question: for each input above what is the maximum size of the stack in terms
of frames?

9–7

LAB 9 9.6. WHAT TO TURN IN

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

S
ta

ck
 S

iz
e

(F
ra

m
es

)

n

maximum

Figure 9.8: Maximum size of stack in terms of frames for n.

1 ; Program t h a t u s e s McCarthy 91 s u b r o u t i n e MC91
2 ; I t t a k e s t h e i n p u t from x3100
3 ; I t s t o r e s t h e o u t p u t a t x3101
4 ; and o u t p u t s t h e ASCII c h a r a c t e r o f t h e v a l u e t o t h e c o n s o l e
5 .ORIG x3000
6 LD R6 , STKBASE ; s e t t h e i n i t i a l s t a c k p o i n t e r
7
8 ; Push (P a r a m e t e r 1)
9 LDI R0 , INPUT ; l o a d f u n c t i o n i n p u t i n t o R0

10 JSR PUSH ; push INPUT on s t a c k as p a r a m e t e r 1
11 ; c a l l McCarthy91
12 JSR MC91
13 ; Re tu rnVa lue <− Pop ()
14 JSR POP ;
15 OUT ; p r i n t ASCII v a l u e o f r e t u r n v a l u e
16 ; n o t e : ASCII (9 1) = [
17 STI R0 , OUTPUT ; s t o r e t h e v a l u e a t x3101
18
19 ; Pop ()
20 JSR POP ; pop o f f p a r a m e t e r
21 HALT
22 STKBASE .FILL x4000 ; s t a c k base a d d r e s s
23 INPUT .FILL x3100 ; McCarthy91 i n p u t
24 OUTPUT .FILL x3101 ; McCarthy91 o u t p u t

Listing 9.5: The program that calls the McCarthy 91 subroutine.

9–8

LAB 9 9.6. WHAT TO TURN IN

1 ; push and pop subs
2 PUSH ADD R6 , R6 , #−1 ; Move t o p of t h e s t a c k up
3 STR R0 , R6 , #0 ; S t o r e R0 t h e r e
4 RET
5 POP LDR R0 , R6 , #0 ; Load R0 wi th t o p of s t a c k
6 ADD R6 , R6 , #1 ; Move t o p of s t a c k down
7 RET

Listing 9.6: The stack subroutines PUSH and POP.

1 ; McCarthy91 f u n c t i o n
2 ; TempVar <− R e t u r n A d d r e s s
3 MC91 ADD R0 , R7 , #0 ; s ave R7 t o R0 so i t can be pushed

; on t h e s t a c k l a t e r
4 ; Push (Re tu rnVa lue)
5 JSR PUSH ; any v a l u e w i l l do f o r Re tu rnVa lue

; s p a c e
6 ; Push (TempVar)
7 JSR PUSH ; R e t u r n A d d r e s s i s a l r e a d y i n R0
8 ; Push (F r a m e P o i n t e r)
9 ADD R0 , R5 , #0 ; t r a n s f e r f rame p o i n t e r t o R0

10 JSR PUSH ; save f rame p o i n t e r
11 ; F r a m e P o i n t e r <− S t a c k P o i n t e r −1
12 ADD R5 , R6 , #−1 ; c r e a t e a new frame p o i n t e r based

;on R6
13 ; Push (R e g i s t e r 1)
14 ADD R0 , R1 , #0 ; s ave R1 by p u s h i n g i t on t h e

; s t a c k
15 JSR PUSH ; save f rame p o i n t e r
16
17 ; l o a d P a r a m e t e r 1 i n t o R0
18 LD R1 , PARAM1 ; l o a d o f f s e t
19 ADD R1 , R5 , R1 ; g e t a d d r e s s o f P a r a m e t e r 1
20 LDR R0 , R1 , #0 ; l o a d P a r a m e t e r 1 i n t o R0
21
22 ; t e s t t o s e e i f P a r a m e t e r 1 ≤ 100
23 LD R1 , NEG100 ; l o a d −100
24 ADD R1 , R0 , R1 ; R1 <− P a r a m e t e r 1 − 100
25 BRnz LESS100 ; i f i t i s ≤ 100 jump t o t h a t code
26
27 ; s i n c e P a r a m e t e r 1 > 100 , add −10 t o R0 and c l e a n u p
28 OVER100 ADD R0 , R0 , #−10 ; R0 w i l l be s t o r e d i n t h e

;Re tu rnVa lue s p a c e
29 ; a t c l e a n u p
30 BRnzp CLEANUP
31
32 ; s i n c e P a r a m e t e r 1 ≤ 100 , c a l l r e c u r s i v e l y MC91(MC91(

; P a r a m e t e r 1 +11))
33 LESS100 ADD R0 , R0 , #11 ; add 11 t o p a r a m e t e r 1 and p a s s i t

; t o MC91
34
35 ; c a l l MC91(P a r a m e t e r 1 +11)

9–9

LAB 9 9.6. WHAT TO TURN IN

36 ; Push (P a r a m e t e r 1)
37 JSR PUSH ; push R0 on s t a c k as P a r a m e t e r 1
38 ; c a l l McCarthy91
39 JSR MC91
40 ; Re tu rnVa lue <− Pop ()
41 JSR POP ; t h e r e t u r n v a l u e i s now i n R0
42 ADD R1 , R0 , #0 ; s ave t h e r e t u r n v a l u e i n t o R1
43 ; Pop ()
44 JSR POP ; pop o f f P a r a m e t e r 1
45
46 ; now c a l l MC(MC91(P a r a m e t e r 1 +11)) = MC(R1)
47 ; Push (P a r a m e t e r 1)
48 ADD R0 , R1 , #0 ; move t h e r e t u r n v a l u e o f MC91(

; P a r a m e t e r 1 +11) back t o R0
49 JSR PUSH ; push R0 on s t a c k as P a r a m e t e r 1
50 ; c a l l McCarthy91
51 JSR MC91
52 ; Re tu rnVa lue <− Pop ()
53 JSR POP ; t h e r e t u r n v a l u e i s now i n R0
54 ADD R1 , R0 , #0 ; s ave t h e r e t u r n v a l u e i n t o R1
55 ; Pop ()
56 JSR POP ; pop o f f P a r a m e t e r 1
57 ADD R0 , R1 , #0 ; move t h e r e t u r n v a l u e o f MC91(

; P a r a m e t e r 1 +11) back t o R0
58 ; f o r c l e a n u p
59
60 ; s t o r e what i s i n R0 i n t o t h e R e t u r n A d d r e s s s p a c e on t h e s t a c k
61 CLEANUP LD R1 , RETVAL ; l o a d o f f s e t
62 ADD R1 , R5 , R1 ; g e t a d d r e s s o f R e t u r n A d d r e s s
63 STR R0 , R1 , #0 ; s t o r e R0 a t R e t u r n A d d r e s s
64
65 ; R e g i s t e r 1 <−Pop ()
66 JSR POP
67 ADD R1 , R0 , #0 ; r e s t o r e R1 from s t a c k
68 ; F r a m e P o i n t e r <− Pop ()
69 JSR POP
70 ADD R5 , R0 , #0 ; r e s t o r e R5 from s t a c k
71 ; R e t u r n A d d r e s s <− Pop ()
72 JSR POP
73 ADD R7 , R0 , #0 ; r e s t o r e R e t u r n A d d r e s s from s t a c k
74 RET
75 ; r e f e r t o v a r i a b l e s by o f f s e t s from t h e f rame p o i n t e r
76 RETVAL .FILL #3
77 PARAM1 .FILL #4
78 NEG100 .FILL #−100
79
80 .END

Listing 9.7: The McCarthy 91 subroutine

9–10

	Contents
	List of Code Listings
	List of Figures
	Programming in LC-3
	LC-3 Quick Reference Guide
	ALU Operations
	Problem Statement
	Inputs
	Outputs

	Instructions in LC-3
	Addition
	Bitwise AND
	Bitwise NOT
	Bitwise OR
	Loading and storing with LDR and STR

	How to determine whether an integer is even or odd
	Testing
	What to turn in

	Arithmetic functions
	Problem Statement
	Inputs
	Outputs

	Operations in LC-3
	Loading and storing with LDI and STI
	Subtraction
	Branches
	Absolute value

	Example
	Testing
	What to turn in

	Days of the week
	Problem Statement
	Inputs
	Outputs

	The lab
	Strings in LC-3
	How to output a string on the display
	How to read an input value
	Defining the days of the week

	Testing
	What to turn in

	Fibonacci Numbers
	Problem Statement
	Inputs
	Outputs

	Example
	Fibonacci Numbers
	Pseudo-code
	Notes
	Testing
	What to turn in

	Subroutines: multiplication, division, modulus
	Problem Statement
	Inputs
	Outputs

	The program
	Subroutines
	Saving and restoring registers
	Structure of the assembly program
	Multiplication
	Division and modulus

	Testing
	What to turn in

	Faster Multiplication
	Problem Statement
	Inputs
	Outputs

	The program
	The shift-and-add algorithm
	Examining a single bit in LC-3
	The MULT1 subroutine

	Testing
	What to turn in

	Compute Day of the Week
	Problem Statement
	Inputs
	Outputs
	Example

	Zeller's formula
	Subroutines
	Structure of program

	Testing: some example dates
	What to turn in

	Random Number Generator
	Problem Statement
	Inputs and Outputs

	Linear Congruential Random Number Generators
	How to output numbers in decimal
	A rudimentary stack

	Testing
	What to turn in

	Recursive subroutines
	Problem Statement
	Inputs
	Output

	Recursive Subroutines
	The Fibonacci numbers
	Factorial
	Catalan numbers
	The recursive square function.

	Stack Frames
	The McCarthy 91 function: an example in LC-3
	Definition
	Some facts about the McCarthy 91 function
	Implementation of McCarthy 91 in LC-3

	Testing
	What to turn in

