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ABSTRACT
Mangroves are tropical ecosystems with strategic importance for climate change
mitigation on local and global scales. They are also under considerable threat due to
fragmentation degradation and urbanization. However, a complete understanding of
how anthropogenic actions can affect microbial biodiversity and functional adaptations
is still lacking. In this study, we carried out 16S rRNA gene sequencing analysis using
sediment samples from two distinct mangrove areas located within the Serinhaém
Estuary, Brazil. The first sampling areawas located around the urban area of Ituberá, im-
pacted by domestic sewage and urban runoff, while the second was an environmentally
conserved site. Our results show significant changes in the structure of the communities
between impacted and conserved sites. Biodiversity, alongwith functional potentials for
the cycling of carbon, nitrogen, phosphorus and sulfur, were significantly increased in
the urban area.We found that the environmental factors of organicmatter, temperature
and copper were significantly correlated with the observed shifts in the communities.
Contributions of specific taxa to the functional potentials were negatively correlated
with biodiversity, such that fewer numbers of taxa in the conserved area contributed
to the majority of the metabolic potential. The results suggest that the contamination
by urban runoff may have generated a different environment that led to the extinction
of some taxa observed at the conserved site. In their place we found that the impacted
site is enriched in prokaryotic families that are known human and animal pathogens,
a clear negative effect of the urbanization process.

Subjects Marine Biology, Microbiology, Biogeochemistry, Environmental Impacts
Keywords Mangrove, Urbanization, Sediment microbiome, Environmental impact, Tropical
estuary

INTRODUCTION
Mangrove forests are coastal ecosystems in tropical and subtropical areas, accounting for
more than 137,760 km2 of the world’s coastline, with one of the largest areas being the
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Brazilian coast (Spalding, Kainuma & Collins, 2010; Giri et al., 2011). These ecosystems are
recognized to be of strategic importance for climate change mitigation, due to their large
capacity for carbon sequestration and storage, as well as for protecting the coast from
erosion and rising sea levels (Howard et al., 2017; Macreadie et al., 2019). Many aspects of
mangrove health and function are tied to microbial metabolic activities that play essential
roles in large-scale biogeochemical nutrient cycling and as such have been the subject of
many genomic studies (Yun, Deng & Zhang, 2017; Zhou et al., 2017; Imchen et al., 2017;
Imchen et al., 2018;Marcos et al., 2018; Lin et al., 2019; Allard et al., 2020).

Globally, mangrove ecosystems are threatened by habitat degradation and loss due to
anthropogenic disturbances such as urbanization, industrial development and increasing
population densities in coastal areas (Fernandes et al., 2014; Imchen et al., 2018; Gong et
al., 2019; Trevathan-Tackett et al., 2019). In Brazil, where a large number of mangrove
studies have been performed, numerous studies have been conducted in disturbed
mangroves (Andreote et al., 2012; Sanders et al., 2014; Cabral et al., 2016), mostly without
direct comparison to undisturbed sites. Undisturbed mangrove sites have been conserved
within Brazil’s Permanent Protection Areas, as defined by the National Council on the
Environment (CONAMA) through the resolution No. 303 of 2002 (CONAMA, 2002).
Critically, this resolution was revoked in September of 2020, thus increasing the risks of
degradation of such areas in the future.

One important Permanent Protection Area in Brazil, located in Bahia State, is the Pratigi
area which is characterized by the presence of small urban areas interspersed within dense
Atlantic Rainforest vegetation. Notably, when the Pratigi Protection Area was created in
1998, several small urban locations were already present, and were integrated in the efforts
for the sustainable use of the natural resources (MMA, 2004). Despite the presence of these
urban assemblages, the area has continuously received high environmental quality indices
(Lopes, 2011; Ditt et al., 2013; Mascarenhas et al., 2019; Carneiro et al., 2021). Nevertheless,
even with this high level of environmental quality across the entire area, some local
anthropogenic disturbance is still present, such as construction in what was a mangrove
forest around the city of Ituberá (Fig. 1). In this location, it is possible to observe clear signs
of anthropogenic impact, such as raw sewage and urban runoff, as well as the withdrawal
of the native vegetation from the immediate vicinity.

The existence of a small locus of disturbance within a largely conserved estuarine system
provides for an opportunity to study how human activities impact microbial populations.
In this study, we aimed to assess the impacts of urbanization on the surrounding mangrove
area by examining the prokaryotic communities of sediments and their potential functional
roles in the context of the local disturbance around Ituberá city, in comparison to the results
of a distant and conserved spot in the same estuarine system. Considering the increased
risks of environmental disruption now that the protection legislation has been revoked,
this study provides important elements for the understanding of the consequences of even
light urbanization and minor human interference in a mangrove area.

Prokaryotes, specifically bacteria, comprise a majority of the sediment microbiomes
of mangrove ecosystems in Brazil and worldwide, accounting for 94.8 to 99.2% of the
microbial diversity (Andreote et al., 2012; Imchen et al., 2018). Previous research conducted
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Figure 1 Locationmap of the collection sites of the pristine and impacted mangrove areas.
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in Goa, India (Fernandes et al., 2014) and the Red Sea region (Ullah et al., 2017) found
higher diversity in anthropogenically impacted mangroves in comparison to conserved
areas, possibly due to the higher availability of a wide variety of organic and inorganic
compounds, which favors the colonization of exogenous opportunistic prokaryotes;
ultimately creating significantly distinct communities. In this study, we hypothesized that
proximity to urban environments and sources of constant input of domestic runoff leads to
large-scale changes in prokaryotic composition and functional profiles in the microbiome
of mangrove sediments. Considering the importance of prokaryotes in such areas, we
conducted 16S rRNA gene sequencing analysis in both conserved and impacted mangrove
areas within the Serinhaém estuary, andmeasured the correlations between the prokaryotic
communities and environmental factors for each site. Using the taxonomic abundances
obtained with the analysis of the 16S rRNA, we estimated the general patterns of functional
potentials in these microbiomes.

MATERIALS & METHODS
Study area
The Serinhaém estuary (Fig. 1) is located within the limits of the Environmental Protection
Area of Pratigi in the state of Bahia, Brazil. The Pratigi Protection Area is defined as an
area of sustainable use aiming for the protection of remnants of the Brazilian Atlantic
Forest and associated ecosystems, such as restingas and mangroves, in which extractive
and agricultural activities are still allowed but regulated (MMA, 2004; Ribeiro et al., 2019).
This estuarine region covers approximately 32 km of the Juliana River basin, a riverine
system that is completely inside the limits of the protected area, and flows into Camamu
Bay, a tropical oligotrophic estuarine system, where it meets the Atlantic Ocean. Ituberá
is a relatively small urban area of approximately 28,000 people (IBGE, 2020) within the
Protection Area, with a strong economic focus on tourism. For the selection of collection
sites we coordinated with the Organização de Conservação da Terra (OCT) which manages
conservation actions within the protection area of Pratigi.
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Sampling
The two collection sites were located 9.5 kilometers distant from each other. The mangrove
trees at both collection sites are composed of the species Rhizophora mangle, Avicennia
schaueriana and Laguncularia racemosa (MDMA, 2010). Collections were performed at
morning low tide. For both sites, cores consisting of the top 10 cm of the surface layer were
collected using a stainless-steel cylindrical sediment core sampler with a diameter of 10
cm, always avoiding mangrove trees and rhizosphere associated sediments (De Santana et
al., 2021).

At the conserved mangrove site (13◦44′34.6′′S, 39◦03′30.6′′W), collection points withing
each tidal zone (supralittoral, intertidal and sublittoral) were 15 m distant from each other.
Within each tidal zone we collected three sediment samples, each sample consisting of
three combined sediment cores taken within an immediate vicinity (50–60 cm), resulting
in nine samples at this site (De Santana et al., 2021). Collections were made in July 2018.
The conserved collection site exhibited no visible signs of anthropogenic disturbance
or pollution. For this study, we recombined the FASTQ files of these nine samples into
three composite replicates, where each replicate included one sample from each tidal zone
(Text S1).

The samples from the impacted site (13◦44′11.1′′S, 39◦08′46.0′′W) located just outside
the city of Ituberá, were collected in triplicate, each sample was located 5 m from the
other two in a triangle covering the sublittoral zone. As with the conserved samples,
each impacted sample was composed of three sediment cores, taken within an immediate
vicinity of 50–60 cm. Collections were made in February 2020. The definition of mangrove
associated tidal zones in this area was complicated by the advance of the city’s construction,
resulting in a smaller and partially deforested area. The emerged sediments at the time
of collection showed pollution by domestic runoff and construction leftovers. Because of
the absence of waste management infrastructure, numerous developments along the shore
where the sediments were taken exhibited sewage waste pipes directly releasing into the
environment (Fig. S1). In both collection sites the sediments from the submerged zone
present a silt/mud constitution (Santos & Nolasco, 2017) and were collected within the tree
line.

Sediments were transported in plastic bags inside thermic boxes filled with ice to the
laboratory of Petroleum Studies in the Federal University of Bahia. Samples from both
sites had plants and other macroscopic organic materials removed before subsequent
procedures.

For each sediment sampling site we measured physical-chemical parameters such as
dissolved oxygen, conductivity, pH and temperature in the water column directly above
the sampling spot of submerged sediments, using a multiparameter monitoring system
(YSI model 85, Columbus). For each sediment core an aliquot was separated for the
measurement of organic matter content using the ‘loss-on-ignition’ method (Nelson &
Sommers, 1996) and the other part was kept in the −20 ◦C freezer for DNA extraction.

For heavy metal analysis we relied on previously performed work (Pereira, 2016) which
identified the background metal concentrations in the sediments of the entire estuarine
channel. The analysis of heavy metals was carried out as described in Pereira (2016). Briefly,
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0.5 g of the clay fraction of the air-dried samples were transferred to test tubes (25 × 25
mm) added with a solution of hydrochloric acid (HCl) and nitric acid (HNO 3) at the
ratio 3:1 (three mL HCl and one mL HNO3) and placed in a 100 ◦C digester block for
24 h along with analytical blanks. After digestion, samples were filtered and placed in 50
ml volumetric flasks, added with ultrapure water to the extent of 25 ml and subsequently
analyzed to determine the concentrations of the metals Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn,
Ni, Pb, Sn, V, and Zn by inductively coupled plasma optical emission spectrometry (ICP
/ OES) (Agilent Technologies 700 series). Data from those downstream sites closest to the
sediment sampling sites (Text S1), had an average distance of 1.64 km for the impacted
site and 6.98 km for the conserved site. The Kruskal-Wallis test was performed to identify
significant differences in values between the two sites (Text S1).

DNA extraction, amplicon library generation, and sequencing
Total genomic DNA was extracted using PowerSoil DNA Isolation Kit (Qiagen, Carlsbad,
CA, USA) from 0.25 g of each composite sample and stored at−80 ◦C before amplification,
resulting in 9 DNA samples for the conserved site and 3 DNA samples for the impacted
site. For amplification of the V4 region of the prokaryotic 16S rRNA gene we performed
PCR using the following primer pairs. For the conserved site we used 515F-Y (Parada,
Needham & Fuhrman, 2016) and 806R-XT (Caporaso et al., 2011), while 515F and 806R
(Kozich et al., 2013) were used for the impacted samples. Each sample required a minimum
of 12.5 ng before PCR as quantified using Qubit (Thermo Scientific, Waltham, MA USA).
For PCR we used the following protocol: for 2.5 µl of each sample (minimum 5 ng/L),
5 µl of the forward and reverse primers and 12.5 µl of the 2 × KAPA HiFi HotStart
ReadyMix were added, to the total volume of 25 µl. The samples were then subjected to
following cycles: 1× 95 ◦C for 3 min, 25× 95 ◦C for 30 s, 1× 55 ◦C for 30 s and 1× 72 ◦C
for 30 s and 1 × 72 ◦C for 5 min. Negative controls were also used in parallel and ran on
an agarose gel, as no band resolved these were not sequenced. PCR cleanup was performed
using Ampure XP beads. Amplicon libraries were prepared using the Nextera XT according
to manufacturer’s directions (Illumina, San Diego, CA, USA). Final quantification and
pooling were performed using KAPA HiFi. For the conserved site we loaded ∼6 pM of
each sample for paired-end sequencing (2 × 150) (Caporaso et al., 2012) performed using
the Illumina MiSeq platform (Illumina, San Diego, CA, USA), V2 kit (300 cycles), while
the impacted site we used ∼48 pM of each sample for paired-end sequencing (2 × 250)
using the Illumina NovaSeq XP (Illumina, San Diego, CA, USA). It is possible that these
methodological differences in library preparation and sequencing may produce artifactual
differences in the two data sets.

Data analysis
Read preprocessing
Demultiplexed sequences were filtered and trimmed with Trimmomatic (Bolger, Lohse
& Usadel, 2014) (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:100) with the requirement of a minimum average
read quality score of 15 for inclusion. For each read, the sliding window cuts any read at
the point where the median quality score over a 4nt window is less than 15.
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Paired-end merge, denoise, and chimera removal using DADA2
Paired reads from the conserved site were combined as described previously (De Santana
et al., 2021), briefly, paired reads were combined using QIIME2 for reads with an overlap
greater than 9 while paired reads with an overlap greater than 6 were combined using a
custom script (Article S1) before denoising using DADA2 (denoise-single, –p-trim-left 3,
–p-trunc-len 0, –p-max-ee 2.0, –p-trunc-q 2). The reads from the impacted site were also
denoised usingDADA2 (denoise-paired, –p-trim-left-f 13, –p-trim-left-r 13, –p-trunc-len-f
150, –p-trunc-len-r 150). These were then merged with the denoised sequences from the
conserved site for further analysis. Reads were resolved and clustered into amplicon
sequence variants (ASVs) using QIIME2 (Bolyen et al., 2019). All ASVs were retained in the
data set. Filtering was performed only on taxa and only for differential abundance analysis.

Taxonomic assignment was performed using QIIME2’S naive Bayes scikit-learn classifier
(Bokulich et al., 2018) trained using the 16S rRNA gene sequences in SILVA database (Silva
SSU 132), (McDonald et al., 2012), (Text S1). Taxonomic counts were also used for
hierarchical correlation clustering (Text S1) tests using gneiss in QIIME2.

Unnormalized ASV (Table S1) and taxonomic abundances (Table S2) as well as overlap
(Text S1) between sites are reported in Supplemental Information.

ASV analysis using QIIME2
Alpha-rarefaction curves were generated using QIIME2 (Text S1). We performed a variety
of alpha-diversity (Kruskal–Wallis statistic, Fig. S2) and beta-diversity tests (PERMANOVA
statistic, Fig. S3). As both Kruskal–Wallis and PERMANOVA are non-parametric tests
we did not test for normality. However, both are sensitive to homoscedasticity. For
Kruskal–Wallis we used Levene’s test (Df = 1, F-value = 0.2275, p-value = 0.6334) and
betadisper (Anderson, 2006) for PERMANOVA (Df =1, Sum_Sq = 0.002209, Mean_Sq =
0.002209, F-value = 0.8045, p-value = 0.4205).

Environmental variable correlations using Vegan
Correlations between taxonomic community structure and environmental variables
associated with the sample sites were tested using the Vegan package (version 2.5-6)
(Dixon, 2003) in R (R Core Team, 2019). Distance matrices were calculated using vegfit
(default settings) on taxa abundance identified by QIIME2 for each site. We performed
constrained ordination of the distance matrices (PCoA) using envfit (default settings).

Potential functional analysis using PICRUSt2
We used PICRUSt2 (version 2.3.0-b) (Ye & Doak, 2009; Louca & Doebeli, 2018; Douglas
et al., 2019; Barbera et al., 2019; Czech, Barbera & Stamatakis, 2020) with default settings
for functional analysis using the observed ASV abundances generated by QIIME2. It is
important to note that functional predictions generated by PICRUSt2 using 16S rRNA
sequences alone will not be as accurate as a metagenome including the functional sequences
themselves would be (Sun, Jones & Fodor, 2020). Because we are reliant on 16S rRNA gene
all KEGG ortholog (KO) abundances are derived from the closest reference taxa that
matches the supplied taxa. As such there may be significant differences between the KO of
the actual organism and the reference we rely on.
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To address this, we use PICRUSt2’s nearest sequenced taxon index (NSTI) as a heuristic
cutoff in the evaluation of taxon level functional analysis (Table S3). Although we are using
taxonomic families in this study, we will continue to use the NSTI cutoff of 0.15, despite
it being derived for species level comparisons. Where relevant, families with median NSTI
scores within 1 standard deviation of 0.15 are labeled with an asterisk (*). Only one family,
Pirellucae, was both significantly enriched in metabolic KOs while also having an NSTI
outside of this range; this family was not included in the analysis.

KEGG Orthologs (KOs) were subsequently analyzed for significant (p-value ≤ 0.05)
differential abundances after centered log-ratio transformation (aldex.clr) using the
general-linear model method (aldex.kw) of the ALDEx2 package (ver 1.18.0). These were
then used for the construction of the heatmaps of KOs with differential abundance between
the conserved and impactedmangrove. Pathway analysis of these KOs was performed using
KEGG Mapper (Kanehisa & Sato, 2020). For a pathway to be considered we required that
the entire pathway needed to be significantly enriched at a single site (i.e., ‘complete’).

Differential abundance analysis
In order to identify which taxa were significantly different in abundance in each sampling
area we carried out a taxa enrichment analysis. ASV abundances were normalized by total
sum scaling (TSS) wherein each ASV read abundance is reduced by a fraction so that
the total sample is downsampled to match the least abundant sample in the experiment
(Weiss et al., 2017). ASVs were combined into assigned taxa using the taxonomic results
of QIIME2. To be defined as significantly different, several criteria must be met: there
must be at least 100 unnormalized counts of the taxa in at least one site, the sets of
observations between sites must be statistically significant (p-val ≤ 0.05) as calculated
using the Kruskal–Wallis H test and finally, the effect size must be in excess of a 20%
difference in abundance between sites.

Since TSS normalization can confound interpretation, we also applied the same
method to data that had been normalized using cumulative sum scaling (CSS). CSS is
a normalization approach that weights the normalization factor based on the relative
abundance of ASVs against the total abundance (Paulson et al., 2013). However, as we
observed that this approach resulted in the loss of several common taxa and the gain of
many more marginal taxa (Text S1) we chose to use the TSS normalization method.

A further extension of differential abundance is to identify taxa which are exclusive to a
single site. In order to determine taxa exclusive to a single site with a high degree of certainty
we required a taxon to have been observed 0 times (using unnormalized abundances) at
one site and at least 100 counts at the other, with a minimum of 10 counts per replicate.

Gneiss hierarchical clustering is an alternative approach that uses balance calculations
to extend differential abundance analysis beyond species and instead identify niche specific
subcommunities (Morton et al., 2017). Using this approach hundreds of taxa were found
to be differentially abundant between the two sites (Text S1) with all but 3 of our predicted
differentially abundant taxa being present in the appropriate enriched cluster.

De Santana et al. (2021), PeerJ, DOI 10.7717/peerj.12229 7/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.12229#supp-5
http://dx.doi.org/10.7717/peerj.12229#supp-2
http://dx.doi.org/10.7717/peerj.12229#supp-2
http://dx.doi.org/10.7717/peerj.12229


Taxa specific predicted contribution to metabolic pathway functional
abundances
We calculated metabolic pathway enrichment specific to a given taxa at a given taxonomic
level. For this we relied on the predicted relative functional abundance results of PICRUSt2.
First, for each taxon, at each level, we combined all predicted relative functional abundances
of KOs belonging to certain metabolic pathways: methane (ko00680), nitrogen (ko00910),
sulfur (ko00920), and pentose phosphate (ko00030) metabolism - as well as, carbon
fixation pathways in prokaryote (ko00720), carbon fixation pathways in photosynthetic
organisms (ko00710), and photosynthesis (ko00195). We then applied Kruskal–Wallis
H test to identify taxa that had significantly different taxa-specific pathway abundances.
Furthermore, we required that a taxon at a single site must be significantly enriched relative
to the other sites and that the taxa contributes at least 5% of the total relative functional
abundance in at least one site.

The entire computational workflow is available as a repository in GitHub: https:
//github.com/pspealman/Project_Impact.

The impacted mangrove sediment sequencing data is available from NCBI BioProject
PRJNA650560, while the pristine mangrove sediment data is available from NCBI
BioProject as accession number PRJNA608697.

RESULTS
Structural aspects of prokaryotic communities of mangrove sediments
Taxonomic assignment of the prokaryotes in the mangrove samples resulted in a total
of 7,278 ASVs (Table S1), belonging to 1,369 taxa (Table S2), 861 of which had at least
20 unnormalized reads in at least one site (Text S1). These resolved to 184 taxa at the
family level or higher, with 124 having at least 20 unnormalized reads at a single site. 60
(48%) of these were present at both sites, while 13 (11%) were unique to the conserved
site, and 51 (41%) were unique to the impacted site (Text S1). Bacteria accounted for
nearly 91% of all reads while archaeal taxa accounted for 7.9% and unassigned groups
only 1.6%. The two mangrove areas presented considerable differences at the phylum
level for the 12 most abundant phyla. Figure 2 displays all the classes belonging to the top
12 phyla with more than 1% abundance in the analysis. Some phyla such as Firmicutes
and Planctomycetes presented a large decrease in abundance in the impacted site when
compared to the conserved site, while the presence of the entire phylum Euryarchaeota was
only detected in the urbanizedmangrove (Fig. 2). Some phyla were represented by different
classes in each site, as is the case of Chloroflexi, with Dehalococcoidia only prevailing in the
impacted mangrove site. Below the family level we observed a dominance of unassigned
groups (Text S1).

The analysis revealed significantly higher richness (Total ASVs, Kruskal–Wallis
H = 3.857, df = 1,p-value = 0.050) and diversity (Shannon’s diversity, Kruskal–Wallis
H = 3.857, df = 1,p-value= 0.050) in the impactedmangrove sediments (Figs. 3A and 3B),
relative to the conserved sediments. Additional alpha-diversity test results are available in
Text S1. Prokaryotic community composition differed between the two sites with marginal
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Figure 2 Taxonomic abundances of prokaryotes in eachmangrove site. Summed normalized read
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mangrove site.
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significance (PERMANOVA, permutations = 999, pseudo-F = 3.285, p-value = 0.096),
(see Text S1 for additional beta-diversity tests) (Fig. 3C). Samples of each mangrove site
form separate clusters as can be seen in the PCoA plot (Fig. 3D). The PCoA plot also shows
that the samples from the conserved mangrove site present higher variability than the
samples collected at the impacted site. The results showed a significant (p-value ≤ 0.05)
correlation between the structure of prokaryotic communities and some environmental
variables (Text S1). These include organic matter (conserved site mean: 3.8%, impacted
site mean: 9.9%), temperature (27.7 ◦C, 29.3 ◦C), and Cu (0 mg Kg−1, 0.16 mg Kg−1).
While dissolved oxygen (5.54 mg L−1, 8.21 mg L−1), pH (7.62, 7.46), Ba (0.66 mg Kg−1,
0.44 mg Kg−1), and salinity (15.1 ppt, 13.3 ppt) were only marginally significant (p-value
≤ 0.1) (Fig. 3D).

The majority of families with significant (p-value ≤ 0.05) differences in abundances
between sites were found in the sediments of the impacted mangrove. Figure 4
shows the 64 families with significant and large effect size differences between the
sites (>20%) and those that are absent in one of the areas. We found 35 families
that had significantly higher abundance in the impacted mangrove site, including
human pathogen associated families Burkholderiaceae (Coenye, 2014), Pasteurellaceae,
Spirochaetaceae, Ruminococcaceae, Veillonellaceae, and Rikenellaceae. Also more prevalent
in the impacted sediment were known archaeal methanogens Methanomicrobia and Ther-
moplasmata (Whitman, Bowen & Boone, 2014), Fe and Mn metabolizing Geobacteraceae
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(Röling, 2014), and members of Gammaproteobacteria associated with sulfur metabolism
Syntrophobacteraceae (Liu & Conrad, 2017), Thioalkalispiraceae (Mori & Suzuki, 2014),
Saccharospirillaceae (Vavourakis et al., 2019), Thiomicrospiraceae (Eberhard, Wirsen &
Jannasch, 1995); methanogen Methylomonaceae and nitrogen metabolising Nitrincolaceae.
We also found Lachnospiraceae and Anaerolineae members, which were found to be
of greater abundance in PVC contaminated environments (Seeley et al., 2020). We also
found 9 families with higher abundance in the conserved sediments. These include
Thermoanaerobaculaceae, recently shown to have a high metabolic diversity in wastewater
treatment plants (Kristensen et al., 2021), which along with Pirellulaceae, was recently
found to be sensitive to microplastic pollution (Seeley et al., 2020). All enriched members
of Planctomycetes, some of which are capable of anaerobic ammonia oxidation (anammox)
have greater abundance at the conserved site, except MSBL9 SG8-4, potentially because of
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its freshwater preference (Andrei et al., 2019). We also observed the pathogen associated
Vibrionaceae (Farmer, 2006) in the area.

Functional aspects of prokaryotic communities of mangrove sediment
Functional profiles of the prokaryotic communities generated with PICRUSt2 based on the
taxonomic abundances allowed us to identify statistically different potentials for carbon,
nitrogen, phosphorus and sulfur metabolic pathways between the conserved and impacted
mangrove sites (Figs. 5 and 6).

The carbon metabolism heatmaps are subdivided in: carbon fixation for photosynthetic
organisms (ko00710), prokaryotes (ko00720) and methane (ko00680) metabolism, in
order to allow a better visualization (Fig. 5). Generally, the methane and carbon fixation
pathways presented higher functional abundance in the impacted site than that of the
conserved mangrove. We found that the impacted site is enriched in the formaldehyde
assimilation pathway (M00345),methanemetabolismmodules, (M00563)methanogenesis,
2-oxocarboxylic acid chain extension (M00608), light Crassulacean acidmetabolism carbon
fixation (M00169), and serine biosynthesis (M00020).

The nitrogen metabolism heatmap (Fig. 6) presents enrichment of metabolic pathways
in the impacted mangrove site, with a significant enrichment in the nitrogen to ammonia
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Figure 5 Carbonmetabolism pathways and different abundances between sites. Abundance heatmaps
of carbon metabolic pathways in each site. (A) Carbon fixation for photosynthetic organisms. (B) carbon
fixation for not photosynthetic organisms. (C) methane metabolism. (D) photosynthesis.

Full-size DOI: 10.7717/peerj.12229/fig-5

fixation module (M00175). The functional profile of pentose phosphate metabolism also
shows a tendency for enrichment of KOs in the impacted mangrove area. This enrichment
includes the pentose phosphate pathway (M00004), PRPP biosynthesis (M00005), both
oxidative (M00006) and non-oxidative phases (M00007), the Entner-Doudoroff pathway
(M00008), as well as the archaeal pathway (M00580). For sulfur metabolism, we found
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Figure 6 Abundances of metabolic pathways of different elements at each site.Heatmaps of metabolic
pathways abundances for nitrogen (A), sulfur (B), pentose phosphate (C), photosynthesis (D).

Full-size DOI: 10.7717/peerj.12229/fig-6

that some KOs are absent or nearly absent in the conserved sediments while generally
present in the impacted area. In the conserved area, we found significant enrichment
only in the cysteine biosynthesis (M00021) pathway. While photosynthesis associated
KOs were relatively low, we did find significant enrichment in the conserved sediment
for both photosystems I (M00163) and II (M00161), we also found that the impacted
site is significantly enriched in F-type ATPase ATP synthesis (M00157). Taken together,
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these findings suggest that the high abundance and diversity in the impacted area leads
to enrichment in several metabolic pathways, including several wholly absent from the
conserved area.

We also analyzed the contribution each family makes to the metabolism of the elements
C, N, P and S. Families that contribute 5% or more to a given nutrient cycle in at least
one site are represented in Fig. 7. We found the majority of the families with large
contributions to the metabolic pathways in the conserved mangrove sediments, which
display the lower biodiversity. The families Bacillaceae and Stappiaceae were greatly
important for nutrient metabolism in the conserved mangrove sediments but not in
the impacted sediments. Conversely, only Syntrophaceae, and Desulfarculaceae presented
large functional contributions for the impacted mangrove area. Anaerolineaceae and
Desulfobacteraceae showed important contributions for the functional potentials in both
studied areas. This is consistent with a lower biodiversity leading to a higher number of
taxa making larger contributions to the total functional potential.

DISCUSSION
Anthropogenic impacts are known to cause important changes both in structure and
function of sediment microbiomes in mangroves (Ottoni et al., 2017; Imchen et al., 2018;
Allard et al., 2020). In our study, we observed biodiversity to be higher in the impacted
mangrove sediments than at the conserved site. Similar observations have been made
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previously in the comparison between conserved and anthropized mangrove areas in
India (Fernandes et al., 2014) and the Red Sea region (Ullah et al., 2017). Here we find that
organic matter is one of the most significant drivers of prokaryotic structuring between
the measured environmental variables (Fig. 3). The large differences in organic matter
contents could be the product of the urban runoff at the impacted site, which presented
higher levels (median OM 9.9%) in comparison with the conserved area (median OM
3.8%). This suggests that this environment may have become more eutrophic due to the
constant exposure to urban tailings, as observed in locu, which results in greater biomass
production and biodiversity (Fernandes et al., 2014; Glibert, 2017). While some studies that
use incubation or microcosm approaches have observed decreasing microbial diversity as
a result of nutrient addition, in experiments with coastal soils (Aoyagi et al., 2015; Wang,
Huang & Zheng, 2016; Bulseco et al., 2019; Craig et al., 2021), our study relied on field
sediments which are continually exposed to anthropogenic presence, as such, would be
expected to differ from controlled microcosms.

Besides organic matter, the structure of the prokaryotic communities in these mangrove
sediments was greatly influenced by other environmental factors, such as temperature,
copper content, pH, salinity and barium concentrations (Fig. 3D). Some of these, such
as salinity and pH are the result of naturally driven biogeochemical processes in the area,
while others, such as metal content, were observed to reflect the natural lithology of the
estuary area (Pereira, 2016) or tidal deposition, as is the case with Ba (Carneiro et al., 2021).

Beyond the presence of an urban complex, other differences exist between the two sites
as they are located along a gradient from river source to ocean. Notably, the increasing
salinity due to proximity to the sea can impair the bioavailability of organic matter in these
sediments, consequently affecting the availability of nutrients (Filippino et al., 2011). The
different sources of dissolved and particulate OM in aquatic environments also have large
effects on the contents, species, and availability of nutrients such as N, P, and heavy metals
(Dong et al., 2020). Although mangrove species show an optimal growth over a large range
of salinity (Krauss et al., 2008), and the differences observed in this study are small, all
these factors may interact synergistically with the observed anthropogenic impacts, such as
deforestation and construction byproducts, as well as urban tailings, to create a completely
different sediment environment.

We sought to identify differences in the metabolic systems of the two sites using
functional profiling. However, the functional profiles were not obtained by metagenomic
sequencing, but based on the abundances of identified taxa compared to a reference
holotype. To highlight this important limitation, we refer to these functional profiles as
potential metabolic abundances. Although the use of metagenomic sequencing can provide
better resolution to functional profiling (Zhang et al., 2021), it is possible to recover the
general patterns of the microbiome functions through the taxonomic abundances of the
16S rRNA genes (Jovel et al., 2016). The diversity of taxa contributing to the metabolic
pathways of the studied nutrient cycles is in accordance with the premise that soil and
sediment microbial communities present elevated functional versatility (Barnes, Carter &
Lewis, 2020), where many taxonomic groups can play considerable roles in a variety of
functions.
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We observed that the potential functional abundance for the metabolism of specific
elements were spread across taxa as a function of biodiversity. Specifically, the impacted
site, with a higher number of taxonomic groups, had fewer taxa making large contributions
(>5%) to the metabolic potentials, while the conserved site with low diversity showed a
higher number of families contributing greatly to such metabolisms. Some taxa, such as
Desulfobacterales, an important sulfate-reducing bacteria, have been previously shown to
contribute greatly with important nutrient metabolisms in mangrove sediments (Ullah et
al., 2017;Nie et al., 2021). This is in accordance with our results where theDesulfobacterales
taxa was also an important contributor to carbon and nitrogen metabolisms in both
mangrove areas (Fig. 7). Taken together the results support the conclusion that, the lower
the biodiversity, the higher the importance of particular groups to the nutrient cycles.

Considering that the conserved site shows that a large portion of the ecosystem function
is dependent on a small number of taxa and that large differences exist between the taxa
of the two sites, it may be expected that the urbanization process and the subsequent
disturbance in the microbiome population would lead to an imbalance in nutrient cycling,
potentially impairing some important metabolisms. The analysis of functional profiles
suggests, however, the opposite trend where the functional potentials for these metabolisms
are higher in the impacted mangrove site. Despite this increased metabolic activity at the
impacted site, the ultimate effect these changes have on metabolic output, such as carbon
sequestration or methane production, is difficult to predict. Previous work has shown that
the increased consumption of carbon may not lead to increased sequestration as increased
decomposition may lead to lower carbon burial rates (Bulseco et al., 2019).

Furthermore, the potential maintenance of the KOs and modules that make up nutrient
cycles is not a guarantee of a healthy ecosystem. Changes in nutrient availability caused by
human interference have previously been shown to affect the diversity of sulfate-reducing
(SRB) and sulfur-oxidizing bacteria (SOB) (Meyer et al., 2016), thus interfering in the
cycling of this element. Indeed, we see numerous prokaryotic species negatively affected
by human impacts and there is great potential for eukaryotic species to be impacted as
well. The alteration in microbiome nutrient cycling driven by urbanization is potentially
hazardous as it can increase primary production, leading to a higher spatial and temporal
hypoxia in the aquatic environment (Houser & Richardson, 2010), resulting in a cascading
effect in the system. Although Camamu Bay is a well conserved coastal system, it does
contain low abundances of toxic cyanobacteria, such asMicrocystis, that have the potential
to form blooms in eutrophic waters, which, in turn, is consistent with habitat degradation
trends reported in estuaries worldwide (Affe et al., 2018).

In this work we found widespread variance in taxa abundance between sites up to and
including the possible extinction of families at the impacted site (Fig. 4). Although the
majority of taxa observed at the conserved site persisted in the impacted site, some families
could be identified only in the conserved sediments. Here, we consider the absence of
groups in the impacted site as indicative of a possible local extinction caused by human
interference. The absences of some families are consistent with local extinction driven
by anthropogenic change, such as subgroup 9 of Acidobacteria, which despite having a
relatively high abundance at the conserved site is entirely absent from the impacted site.
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Notably many members of this taxa are known to be oligotrophic with a strong negative
correlation with the organic carbon in the environment (Kielak et al., 2016). Conversely,
for some families, such as Caldilineaceae and Rubritaleaceae, whose ecological aspects are
still not well documented, their absence in the impacted mangrove suggests that these
groups could also be oligotrophic or sensitive to some components of urban pollution,
warranting further study.

Similarly, some of the taxa that were enriched or unique for the impacted mangrove
area could be directly correlated with the discharge of domestic sewage in the area. The
prevalence of the familyPasteurellaceae is an example, sincemost of its subgroups are known
pathogens of vertebrates and are not usually found outside hosts (Christensen et al., 2014).
Additionally, many genera belonging to the family Spirochaetaceae are known for causing
a variety of human diseases such as syphilis, Lyme disease, leptospirosis, and periodontal
disease, among others (Karami et al., 2014). Furthermore,members of theRuminococcaceae
are among the most abundant groups found in the mammalian gut environment (Biddle et
al., 2013).Veillonellaceae is a diverse family with varying degrees of antimicrobial resistance
and is associated with disease in both animals and humans (Marchandin & Jumas-Bilak,
2014). Finally, the enrichment in the Rikenellaceae family could be further evidence of
fecal contamination, as the presence of subgroups of Bacteroidales has been proposed as a
predictor of the risk of waterborne diseases (Schriewer et al., 2010).

In addition to the concerns about the prevalence of knownhuman and animal pathogenic
groups, recent studies have also shown the dissemination of antibiotic resistance genes in
diverse mangrove compartments, including the sediment-root continuum, with antibiotic
resistance sorting independently of the associate microbiota (Wang et al., 2021; Imchen
& Kumavath, 2021). Antibiotic resistance itself is highly correlated with anthropogenic
interference in mangroves, which is, in turn, strongly determined by local socioeconomic
factors (Imchen & Kumavath, 2021). In this sense, the anthropogenic impacts in mangrove
ecosystems can lead to consequences beyond the ecosystem threats and health risks for the
local human population, as it can potentially increase global health threats with the spread
of antibiotic resistance in pathogenic microbes.

We also observed that the variance in communities between replicates was greater
in the conserved samples. While this could represent higher diversity in conserved
microbiomes, other factors could potentially play a role. Importantly, sample collection
at the conserved site spanned a larger distance with 15 m instead of 5 m separating the
sample sites, and there was a more pronounced separation of tidal zones as well. The
small number of samples is also a relevant limitation, especially for matters of statistical
analysis. Additionally, the two sites, although sharing the same watershed and estuary,
were ∼10 Km apart, and as such, numerous environmental differences may contribute to
the variance as well. Nevertheless, the largest difference observed in physical parameters
was the presence/absence of urbanization at the site. Considering that the samples from
the impacted area were collected near domestic runoff sources, while the conserved site
presented no signs of anthropogenic impact, and that some of the taxa uniquely found in
the impacted sediments are recognized as pathogenic and gut microbiome colonizers, we
consider that these important differences are correlated with the observed human impacts.
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Our results show that the microbial communities of sediments can be largely affected
by land use in mangrove adjacent areas, and that the observation of some particular
prokaryotic groups are potential bioindicators of such human impacts, as well as posing
risks to the surrounding populations. Notably, Brazilian mangroves are currently under
elevated risk due to recent changes in the environmental legislation in the nation. Therefore,
decision making organizations should be aware of the sensitivity of the microbiomes in
this ecosystem, which play such important roles in the larger biogeochemical cycles, thus
affecting global nutrient cycling, and act towards the conservation of the mangroves.

CONCLUSIONS
Our study looked at the effects of urbanization on the prokaryotic communities of
mangrove sediments, through a comparison of samples taken from both impacted and
conserved areas of the same estuarine system. The analysis found a statistically relevant
change in the structure of the communities and an elevation of prokaryotic biodiversity in
the sediments of the urbanized mangrove area. The predicted functional analysis showed
that the general patterns of nutrient metabolisms could be maintained and that the
metabolic potentials in the impacted mangrove were higher than in conserved mangroves,
likely due to the higher biodiversity present in the impacted area. The observation of diverse
groups contributing to metabolic pathways suggests higher versatility in the impacted
mangrove sediments, where the functions are carried out by a greater number of groups,
while fewer groups are responsible for large functional contributions in the conserved site.
Beyond the differing nature of the sources of organic compounds and clear physical impacts
between the areas, other environmental factors also played a significant role in the structure
of the microbial communities. Notably, some of these may act synergistically to create the
different patterns observed. Despite increasing biodiversity on themangrove ecosystem, the
presence of an urban settlement showed some clear negative effects, such as the extinction of
some prokaryotic groups, as well as the colonization by human and animal pathogens in the
microbiome of the impacted area. In this sense, the relative stability observed in functional
terms does not imply the absence of a negative impact and recent studies confirm that
human interference can lead to the spread of antibiotic resistance in mangrove sediments,
which can cause serious health issues globally. This study provides evidence that the impacts
of urbanization are reflected also in microbiological scales inducing important changes in
ecosystem functions that could, in turn, impact the biogeochemical cycles in larger scales if
not monitored and controlled. Future microbiome studies should be expanded to include
eukaryotes, fungi, and viruses for a more complete profile of the microbial populations in
these areas. Direct measurements of carbon, contaminants, and nutrient cycling rates in
the field would also be valuable to verify the functional profiling results obtained in this
work.
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