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F.J. M. FRANKORT

Vibration Patterns and Radiation Behavior of
Loudspeaker Cones*

F.J. M. FRANKORT+}

Hogere Technische School, Heerlen, The Netherlands

Many treatments of loudspeakers begin with the comment that the loudspeaker is the
weakest link in the audio reproduction chain. The complex vibrational behavior of the conical
loudspeaker diaphragm. which noticeably affects the frequency response of the loudspeaker,
has been a frequent challenge to mathematical analysis. Only recently. however, with the
availability of the computer to carry out extensive numerical computations, has it been
possible to obtain any detailed picture ol the behavior of the loudspeaker cone. The picture
gives a satisfactory explanation of the irregularities in the behavior of the cone as a radiator,
which had long been known from acoustic measurements. At the same time it has now
become possible to indicate the dimensions and material properties that will produce the

desired frequency response.

INTRODUCTION: The behavior of the conical dia-
phragm. a shape that was intuitively chosen for
loudspeakers right from the beginning. is rather complex.
The audible sound spectrum contains widely different
frequencies (about 16 Hz to 20 000 Hz): when alternating
currents of these frequencies are fed to a single
loudspeaker. the diaphragm will be caused to vibrate in
different modes of lower and higher order. It is only at low
frequencies that the cone vibrates as a rigid body. It is not
stift enough to withstand the inertial forces that occur at
higher frequencies: it starts to vibrate in parts and the cone
is said to *"break up.’" The higher order modes of vibration
that now appear enable the loudspeaker to fulfill its
function at higher frequencies and set the air in motion.

The amount of the air displacement depends to a great
extent on whether the cone is caused to vibrate at its
resonant frequencies; hence the marked variation of the
sound radiation as a function of frequency. As can be seen
in Fig. 1. measurement of the pressure response with a

* Reprinted with permission from the Philips Technical
Review., vol. 36. no. 1. pp. 1-15(1976).

tFormerly with Philips Research Laboratories, Eindhoven,
The Netherlands.

' An extensive treatment is given in [1].

microphone at some distance from the loudspeaker pro-
duces a rather irregular curve.

In the ideal case the sound radiation would- have the
same amplitude at all frequencies, and the frequency
response would be linear. Loudspeaker cones that approx-
imate to this requirement have hitherto been designed
mainly on empirical lines. An efficient design procedure
requires detailed knowledge of the radiation behavior and
its effect on the properties of the cone material. The
necessary detailed information can be obtained by setting
up the differential equations that describe the cone vibra-
tions and then. in the absence of an analytical solution,
solving them numerically for a large number of frequen-
cies. This is now possible with the computer.

In this way frequency and directivity characteristics can
be calculated. We have made such calculations and found
that the general shape of the curves agrees well with the
measured curves.' This agreement largely depends on the
correct prediction of the various natural frequencies of the
cone. Once these are known, together with various other
characteristic frequencies, the shape of the frequency
response can be broadly predicted. Conversely, in design-
ing a loudspeaker cone, it is possible to derive the
locations of the characteristic frequencies from the shape
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of the desired characteristic.

To obtain a good understanding of the numerical results
it is necessary to take into account the behavior of the
longitudinal and transverse waves on an elastic cone.
Before presenting the results of the calculations, we shall
therefore give a general picture of this behavior when
certain simplifications are introduced. The complexities in
the vibrational behavior of an elastic conical diaphragm
are of course not encountered in the hypothetical case of a
diaphragm in which every point describes the same
movement, so that it moves to and fro like a rigid piston.
This hypothetical case will serve to introduce some impor-
tant concepts and define some characteristic frequencies.

1. RIGID CONE

Fig. 2 shows a cross section of a typical loudspeaker
construction. The conical diaphragm D is flexibly
mounted by means of an outer suspension or rim OS and
an inner suspension IS. This method of suspension only
allows an axial motion. The drive force is supplied by the
voice coil VC, which moves in the air gap of a permanent

magnet M. The mass of the cone and voice coil and the -

stiffness of the suspension form the elements of a spring-
mass system whose resonant frequency is fj.

Above this frequency the alternating drive force mainly
serves to overcome the inertia of cone and voice coil. If
the force is the same at all frequencies, the amplitude of
the acceleration will also be the same at all frequencies;

110dB
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Fig. 1. Example of the frequency characteristic of a loud-
speaker. The sound-pressure level L, is measured as a function

of the frequency f at a distance of 10 meters. The loudspeaker
was mounted in a baffle.

0s 0s

Fig. 2. Cross section of a loudspeaker. D—diaphragm; OS —
outer suspension; IS—inner suspension; VC— voice coil; M—
permanent magnet.
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the velocity decreases with increasing frequency.

What consequences does this have for the sound radia-
tion? To answer this question we calculate the sound
pressure that the movements of the diaphragm produce at a
point some distance away from the loudspeaker. We treat~
the vibrating diaphragm here as a collection of point
sources unifornily distributed over the surface, and we add
together the contributions from all these point sources. For
simplicity we first consider the diaphragm as a flat piston
and assume that it vibrates in an infinite baffle. Assuming
that the amplitude of the piston velocity is fixed, we then
find that the sound pressure at the point of observation
increases linearly with the frequency. This increase
exactly compensates for the velocity decrease due to
inertia, and the result for a fixed drive force is thus a fixed
frequency-independent sound pressure.

This is valid above fy, but only for low frequencies. The
pathlength to the point of observation is not the same for
all the individual point sources on the piston, and therefore
their contributions to the total sound pressure do hot arrive
exactly in phase. In the case of very long waves the
difference in pathlength is not significant, but at shorter
wavelengths, that is. higher frequencies, it leads to phase
differences that cannot be neglected. These are greater for
radiation to the sides, so that the piston does not radiate the
same power in all directions; at higher frequencies the
piston exhibits a directional effect. The forward radiation
is the strongest, and therefore sound-pressure measure-
ments are nearly always made with the microphone on the
axis of symmetry of the loudspeaker.

When a frequency characteristic is recorded with a
microphone on the axis of the piston, nothing is noticed of
the directivity at higher frequencies (see the frequency
characteristic in Fig. 3a, dashed curve). However, when
the total sound power radiated in all directions is measured
(for example, by using several microphones) a decrease is

10°Hz

072 s 0 2 s wof 2 s

Fig. 3.a. Frequency characteristic of sound-pressure level L,
with a rigid piston (dashed curve) and with a rigid cone (solid
curve). b. Frequency characteristic of the total sound power
radiated inside a conical region of apex angle 100°. f, —
frequency above which a rigid piston gives a directional effect;
f.—frequency above which pathlength differences due to the
depth of the cone reduce the sound radiation.
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observed when the directivity starts to appear (Fig. 3b,
dashed curve). The transition is gradual, but for practical
reasons we define a transition frequency f,. When the
horizontal and sloping parts of the dashed curve in Fig. 3b
are extended, they intersect at this frequency. The sound
wavelength at this frequency is found to be approximately
equal to the circumference of the piston.

We shall now go a step further and assume that the rigid
piston has the shape of a loudspeaker cone. The calcula-
tion of the sound radiation now becomes more compli-
cated. At higher frequencies, where the depth of the cone
is no longer negligible compared with the wavelength, or
may even be greater than the wavelength, the radiation
deviates from that of the flat piston. The radiation from
different parts of the cone then amives at the point of
observation with appreciably different phases, even when
the point is on the axis of the loudspeaker. This results in a
lower sound pressure at this point (see Fig. 3a, solid
curve). For the beginning of this decrease a cut-off
frequency f. is defined, at which the sound wavelength is
about three times the cone depth. Cones with a conven-
tional apex angle have anf. greater thanf,.

2. FLEXIBLE CONE

In reality a loudspeaker cone is by no means a rigid
body. Above certain frequencies both transverse and
longitudinal waves appear in the conical shell. These
waves are coupled and together determine the vibration
pattern, which considerably affects the air displacement. If
we compare the measured frequency characteristic in Fig.
1 with the calculated solid curve in Fig. 3a, we see from
the actual characteristic that the loudspeaker will function
up to much higher frequencies.

In the discussion that now follows of the coupling
between transverse and longitudinal waves we shall en-
counter a rather interesting resonant mode, which does not
occur in a flat plate, and has an important bearing on the
behavior of the cone as a radiator.

2.1 Two Types of Waves

In a flat plate the transverse and longitudinal waves do
not affect one another. Both types of wave propagate faster
the stiffer the medium. Since the plate is much stiffer for
longitudinal compression and expansion than for bending,
the longitudinal waves are much longer than the bending
waves.

In a cone the situation is more complicated. In general
the two wave motions cannot exist independently. A
displacement nomal to the cone surface leads to a
displacement along the surface of the cone, and vice versa.
This may be illustrated for a conical ring, on the inner
edge of which a uniformly distributed longitudinal force F,
is exerted (Fig. 4a), giving a longitudinal displacement u.
An increase in the diameter of the ring is therefore
implied; as a result of the extension a tension appears in
the ring, directed at all points along the tangent to the
circumference. Considering a segment of the ring (Fig.
4b) we see that the tensile forces at the two ends of the
segment result in a force F, directed toward the center of
the ring. This force lies in the plane of the ring (Fig. 4c)

VIBRATION PATTERNS AND RADIATION BEHAVIOR OF LOUDSPEAKER CONES

and can be resolved into a transverse component F, and a
longitudinal component F". In the equilibrium position F,’
is equal and opposite to F|. The applied longitudinal force
F) thus gives rise to a transverse force F,. whose magnitude
depends on the apex angle of the cone. -

Both types of wave propagate from the apex of the cone
to the edge and back as well as in circular paths parallel to
the circumference of the cone. The outward-traveling
waves are reflected at the edge and also at the point where
the drive is applied. At certain frequencies standing waves
occur (Fig. Sa), and the nodal lines then appear as
concentric circles. These standing waves occur only at
higher frequencies and greatly affect the sound radiation.

In the case of wave propagation in circular paths,
standing waves occur at frequencies where a circular path
is exactly two or more wavelengths long (Fig. 5b). Nodal
lines then appear along generatrices of the cone. Since the
bending stiffness of the cone is relatively small for
circulating waves, the propagation velocity is low and
these standing waves appear even at low frequencies. for
example, at about 100 Hz for a typical 20-cm (8-inch)
loudspeaker. They have very little effect on the sound
radiation since the parts of the cone moving in antiphase
are so close together that at these low frequencies their
effects are practically canceled out, an effect known as
‘*acoustical short-circuiting.”” This mode of vibration will
therefore not be considered here.

Fig. 4. Longitudinal diplacements in a cone set up transverse
forces, and vice versa. a. Side view of a conical ring (semiapex
angle x) on which a distributed force F, acts in the longitudinal
direction. u— Longitudinal displacement. b. Longitudinal dis-
placement sets up a tension in the ring. The tensile forces at the
ends of a part of the ring result in a force F . directed toward the
center. c¢. Cross section. F has a transverse component F, and a
longitudinal component F,.
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2.2 An Interesting Resonance Effect

If the loudspeaker diaphragm is a truncated cone, it has
both an inner and an outer edge: the drive force is applied
to the inner edge. When the waves propagated from the
inner edge return to it in phase after reflection from the
outer edge. they increase the amplitude of the displace-
ment there: this is referred to as a resonance. There will
also be frequencies. however, for which the waves return
to the inner edge in antiphase and oppose the displace-
ment: here we have an antiresonance. This holds both for
longitudinal and for bending waves, and it applies not only
for a cone but also for a flat ring.

In the case of a cone the coupling between longitudinal
waves and bending waves gives rise to an antiresonance
that is not encountered in a flat ring. The frequency at
which this antiresonance occurs is a characteristic fre-
quency of the cone: bending waves only occur above this
frequency.

To explain this special mode of vibration we first
consider a.narrow conical ring to which, as in Fig. 4, a
longitudinal force F, is applied (see Fig. 6). We now
assume, however, that F| is a sinusoidally alternating
force, which implies that inertia will come into the picture.

To begin with we can consider that the ring has a
characteristic mode of vibration in which it alternately
contracts and expands while retaining its shape; the ring
vibrates in a plane perpendicular to the axis, and its center
of gravity remains at rest (Fig. 6a). The elasticity of the
ring provides the spring component of the spring-mass
system. The mode occurs at the ring resonant frequency
frr- If the drive force F; alternates at this frequency, then
the longitudinal displacements « and the transverse dis-
placements w would both become infinitely large in the
absence of damping, and so would the amplitude of the
velocity in both directions. The mechanical impedance,
defined as force divided by velocity. would then be zero at
this frequency.

This mode of vibration is not specific to a conical ring; it
also occurs in rings of other cross sections. However, in
the case of the antiresonance mentioned above, which is
confined to a conical ring and occurs only at a frequency
fia<fw, a vibration is found at which, in spite of the
longitudinal drive. the longitudinal amplitude is small (in

a b

Fig. 5. Cone with standing-wave pattern. a. Outgoing and
reflected waves. b. Circulating waves. The vibrational modes in
b radiate little sound.
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the theoretical case with no damping it is in fact zero; Fig.
6b). We call frequency f,, the ring antiresonant frequency.
At this frequency the force F; encounters a high mechani-
cal impedance (infinitely high with no damping).
Nevertheless. this antiresonance is essentially longitudi-
nal. since the circumference of the ring becomes alter-
nately larger and smaller. This longitudinal antiresonance
can also be considered as a transverse resonance of the
ring mass and the transverse component of the spring
formed by the elasticity of the ring. In this form of motion,
however. the center of gravity of the ring is nor at rest. In
other words. instead of a free vibrational mode of the ring
we have aforced vibration. which can only occur when the
drive is longitudinal as described above. The axial compo-
nent of the drive produces the movement of the center of
gravity, in accordance with Newton's laws of motion.
The resonance effects described related to a ring. We
shall now. by way of approximation, consider the
loudspeaker cone as a set of coupled conical rings. Each
ring can be considered as a concentrated mass and a
spring. so that the complete cone can be much more
simply represented by a svstem of masses and springs
(Fig. 7). Each ring can be ecxcited at its antiresonant

i
N

v

'I \€" ;

F Fi

b

Fig. 6. Mode of vibration ot a conical ring. a. Resonance. b.
Anuresonance. «— longitudinal displacement: w — transverse
displacement. At the antiresonance the longitudinal displacement
1s zero even though the drive is provided by a longitudinal force
Fl.

Fig. 7. Representation of a cone as a system of masses m
and springs with stiffnesses s, in the longitudinal direction and s,
in the azimuthal direction. The values of m increase the further
they are from the center, and the values of s, decrease.
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frequency f.,. The transverse amplitude then becomes
large.

The frequency f., is lowest for the outer ring. since this

s the largest mass and the weakest spring. As the

2quency increases. the resonance effect gradually travels
inwards. and eventually arrives at the inner edge. The ring
in resonance marks a transition circle. On the stiffer part of
the cone. inside this circle. the waves that occur are
mainly longitudinal: on the part outside it. which is less
rigid, they are mainly bending waves. On the transition
circle itself there is an exchange of energy between
longitudinal and bending waves.

The frequency at which the resonance at the outer edge
begins is called f,,. The resonance reaches the inner edge
at the frequency f;: the entire cone is then covered with
bending waves.

In the vibrational behavior of a cone the longitudinal
displacement «; at the inner edge is of considerable
importance. If the cone consisted of only one ring. this
displacement would be zero at the ring antiresonant
frequency f,,. An actual cone can be approximated by a
ring of radius equal to the outer radius R, of the cone.
which is connected by a relatively stiff part to the inner
edge of the cone. The stiff part transmits the force to the
outer ring but adds mass to the system. For the cone as a
whole. therefore, the frequency f,, at which u; is zero is
lower than the antiresonant frequency f,, of the outer ring
itself. -‘The difference., however, is not very great, and
instead of f,, it may often be more convenient to use f,.

vhose value is much easier to calculate. The value of f,,
can only be calculated numerically from the equations of
motion of the complete cone.

3.CALCULATION OF THE CONE VIBRATIONS

The representation given in Fig. 7 is of course a
considerable simplification. In reality, there are not only
tensile stresses acting on an element of the conical shell.
but bending moments as well. There is also damping,
caused by the radiation of acoustical energy and also by
internal losses in the material and suspension of the cone.
If we wish to take all these factors into account, the simple
models used so far are inadequate. We then have to resort
to a complete mathematical treatment. A description that
.takes all the forces and moments into account, but not the
damping, has eight simultaneous first-order differential
equations with eight unknowns.

Disregarding the vibrational modes with diametric
nodal lines (Fig. 5b) since they make no contribution to
the sound radiation, we can reduce this set to six simul-
taneous differential equations. The six unknowns are all
expressed as a function of the coordinate x along a
generatrix of the cone (at the apex of the cone x is zero, at
the inner edge a, at the outer edge b). For the solution of
the six equations three boundary conditions are imposed at
each edge of the cone. The equations are solved by direct
numerical integration,? carried out for a large number of
different frequencies. If the damping is included, all the

* First applied to these problems by Goldberg er al. (2], and
refined by Kalnins [3].
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fundamental variables become complex numbers. in
which case we have twelve differential equations and
twelve boundary conditions. In some of the results we
shall later present the damping is taken into account.

The boundary conditions follow directly from the
loudspeaker construction. The connection between the
inner edge of the cone and the voice coil consists of a stiff
rim strengthened by adhesive. and the inner suspension
ensures that only axial motion is possible. We therefore
assume in the calculations that the inner edge of the cone is
clamped to an infinitely stitt ring of zero mass and that the
movements of the ring are purely axial. The purely axial
movement implies a fixed ratio between transverse and
longitudinal amplitudes at the inner edge: this is one of the
boundary conditions. Another boundary condition relates
to the clamping of the inner edge (dw/ax = 0): the third
boundary condition is that the forces at the inner edge are
in equilibrium. The boundary conditions for the outer edge
are that it has freedom of movement. implying that all
forces and moments there are zero.

It can be shown that the mechanical impedance to the
axial drive force is given by

Z,=2Z sinfa + Z, cos*a.

In this expression Z, is the transverse and Z, the longitudi-
nal impedance that would be present at the inner edge of
the cone in the absence of the stiff ring. The transverse
impedance. which is connected with the bending stiffness
of the cone. is generally much smaller than the longitudi-
nal impedance. which is determined by expansion and
compression in the plane of the conical shell. It is
primarily Z,. therefore. that determines the amplitude of
the displacements of the inner edge.

A diagram of the situation is shown in Fig. 8. where the
impedances Z, and Z, are represented by springs with the
stiffnesses s, and s,. It can be seen that if the stiffness s, is
much smaller than s, the axial motion depends mainly on ;.

The outer suspension is not included in the calculations.
The damping it normally introduces is accounted for by
using a higher internal damping in the calculations than the
actual value for the cone material.

3.1 Vibration Patterns in Different Frequency Re-
gions

We have calculated the transverse and longitudinal
displacements of a cone with characteristics like those
encountered in practice. We shall refer to this as cone
50.1; the number 50 indicates the semiapex angle in
degrees (the geometry and material parameters are given
in Table 1). For simplicity the internal damping is as-
sumed to be zero (D = 0).

From the transverse amplitude w(x) and the longitudinal
amplitude u(x) we have plotted the magnitude and direc-
tion of the resultant motion for a number of points on the
cone. The vibration patterns of a cone cross section
obtained in this way are shown in Fig. 9a-i. Three
frequency regions can be distinguished. The first (region
I) contains the frequencies up to the appearance of the
transition circle at the outer edge of the cone, that is, up to
frequency fi,. In this region there are as yet no bending
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waves on the cone. These first appear in region II, in
which the ring antiresonance gradually progresses from
the outer to the inner edge. In the innermost part the cone
motion is still almost uniform. At the frequency f; the ring
antiresonance has reached the inner edge; this is the upper
limit of region II. In region III the ring antiresonance has
disappeared from the cone, and the entire surface of the
cone is covered with bending waves. .
Displacement patterns for frequency region I are given
in Fig. 9a, b, and c. Fig. 9a shows the vibration behavior
at 1000 Hz. At this relatively low frequency the cone may
be considered as a first approximation to vibrate as a rigid

Fig. 8. Mechanical impedance to an axial force F, on the
inner edge of a cone. The impedance is represented by the
simultaneous action of two springs. s;— impedance to transverse
displacements; s;,—impedance to longitudinal displacements.
The inner edge is capable of axial motion only. In practice the
longitudinal impedance predominates and mainly determines the
displacements.
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body. When the frequency is raised. the amplitudes at the
inner edge decrease whereas they increase at the outer
edge. At the ring antiresonant frequency f,, = 1870 Hz the
longitudinal amplitude becomes zero at the inner edge; a
node appears. Because of the assumed rigidity of the inner
edge, this node also appears in the transverse amplitude
(Fig. 9b). When the frequency is raised further, the node
moves to the outer edge. as shown in Fig. 9¢ (2200 Hz).
The upper limit of region I lies at f,, = 2250 Hz.

Above [, standing bending waves appear on the cone at
certain frequencies; these can be divided into bending
resonant frequencies, for which w(a) and w(a) go to
infinity, and bending antiresonunt frequencies, at which
u(a) and w(a) become zero.

At the first bending resonant frequency f,,; = 2360 Hz
(Fig. 9d), w and « become very large. At the first bending
antiresonant frequency f},,, = 2418 Hz a new nodal circle
appears in w(x) at the inner edge (Fig. 9e): this moves
relatively quickly to the outer edge when the frequency is
further increased.

The vibration patterns at the second and third bending
resonant and antiresonant frequencies are given in Fig. 9
f-i. The figures all show the same general picture: inside
the transition circle the wavelength on the cone is long and
the motion is approximately axial, because «(x) and w(x)
have the same order of magnitude: outside it the vibration
amplitude is mainly determined by the much shorter
bending waves, which have a much greater amplitude than
the longitudinal waves. In frequency region 1II the coup-
ling between bending and longitudinal waves becomes
weak. The wavelength of the bending waves, which now
cover the entire cone, is approximately equal to the
bending wavelength on an infinite plate. In Fig. 9j the
transverse and longitudinal displacement patterns at
f = 13000 Hz are of necessity shown separately, since in
this case a combined picture would no longer give a clear
picture of the vibration pattern.

4. HOLOGRAPHIC DISPLAY OF VIBRATION
PATTERNS

Minute displacements or deformations of an object can
be made visible by means of holography [4]. We have
used the time-averaged holography technique to render
visible the vibration patterns of a loudspeaker cone to

Table I. Dimensions and material constants of loudspeaker cones.

Geometry Material
a R; R, h E p v D
Cone (10° (kg
Number ) (mm) (mm) (mm) N/m?2) /m?)
50.1 50 17 83 0.23 2 600 0.3 0.1
50.2¢ 50 17 83 23 2.4 1200 0.35 0.014 PC
50.3 S0 17 83 0.23 2.2 1160 0.3 0.1
50.3e 50 17 83 0.27 2.2 1160 0.34 0.06 CAB
60.1 60 17 83 0.1 2 600 0.3 0.1
60.2 60 17 83 0.26 22 1160 0.3 0.1
60.2e 60 17 83 0.26 252 1160 0.34 0.06 CAB

The letter e after a number indicates an experimental cone; the others are calculated examples. a —semiapex angle; Rj— inner edge
radius; R,— outer edge radius; h — thickness of cone material; E— Young's modulus; p—density; v— Poisson’s ratio; D — internal
loss factor; PC— polycarbonate; CAB—cellulose acetobutyrate.
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Fig. 9. Vibration patterns, composed of the calculated trans-
verse and longitudinal displacements w and « on cone 50.1 (see
Table I). The figures are not to the same scale.

a. 1000 Hz.

b. Ring antiresonance, f,, = 1840 Hz.

c. 2200 Hz.

d. First bending resonance, f;,., = 2360 Hz.

verify the results of the calculations qualitatively. We
chose for the purpose a plastic cone (made of polycar-
bonate, cone 50.2e), since this material is more
homogeneous than that of the more usual paper cone; the
vibration patterns are consequently more regular and give
a clearer picture. The geometry was the same as that of
cone 50.1, but the constants of the material were of course
different (see Table I). The recordings were made with the
cone vibrating in air with a free outer edge.

The results are shown in Fig. 10. In the lighter parts the
transverse amplitude is small (nodal lines), in the grey and
black parts it is large. The calculated curve of the
transverse amplitude w(x) is shown beneath each photo-
graph; damping was taken into account in the calculations.

Fig. 10a was recorded at the frequency f,,. Besides the

VIBRATION PATTERNS AND RADIATION BEHAVIOR OF LOUDSPEAKER CONES

e. First bending antiresonance, f,,,; = 2418 Hz.

f. Second bending resonance, f;,., = 2668 Hz.

g. Second bending antiresonance, f,,,, = 2750 Hz.

h. Third bending resonance. fi,;3 = 2993 Hz.

i. Third bending antiresonance, f;,,3 = 3083 Hz.

j 13 000 Hz; the curves of w and « along the cone are plotted
separately.

large amplitude at the outer edge, the picture shows a
standing-wave pattern of circulating waves with ten nodal
diameters. The grey ring near the edge is not anode but
originates from the high local amplitudes. The patterns in
Fig. 10b, ¢, and d were recorded at bending resonant and
antiresonant frequencies; the transition circle is indicated
in the graphs by a point. In Fig. 10e (6432 Hz) the
transition circle has almost reached the inner edge; in Fig.
10f (8956 Hz, that is, just above f; = 8520 Hz) it has
disappeared from the cone, which is now completely
covered by bending waves. The holographic pictures
provide a complete confirmation of the calculated
transverse-amplitude patterns.

The inhomogeneities on a paper cone are usually greater
and cause a more distorted pattern. Additional distortions
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of the symmetry may be caused by the outer suspension.
This is illustrated in Fig. 11. which shows a holographic
presentation of the vibration pattern of a commercial
loudspeaker with a paper rim. These irregularities do not
adversely affect the sound reproduction from a paper cone,
but make such a cone less suitable for demonstrating the
vibration patterns.

PAPERS

5. SOUND RADIATION FROM A FLEXIBLE CONE

The sound radiation from a flexible cone may be
calculated in essentially the same way as that from a rigid
piston and rigid cone. Each element of the cone surface is
regarded as a point source. and the contributions of all the
point sources are added together. It is again assumed that
the loudspeaker is enclosed in an infinite baffle. A compli-

— X

|wl

Fig. 10. Vibration patterns of a plastic cone (cone 50.2e), made visible by holography. White—low transverse amplitude
(nodal lines); grey or black—high amplitude. The calculated amplitude curve is shown below each photograph (x = 0 at the
inner edge of the cone). a. Ring antiresonance, f., = 1646 Hz. b. Second bending resonance, f,» = 2063 Hz. c. Second bending
antiresonance, fpaz = 2170 Hz. d. Third bending resonance, f,;3 = 2337 Hz.
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cation here is that each surface clement has its own
transverse vibration amplitude. which must first be calcu-
lated and then included in the acoustic summation as a
weighting factor.

Another complication is that. because of the succession
of resonances and antiresonances in the flexible cone. the
mechanical impedance to the motion of the voice coil
varies considerably with frequency. With a constant drive
force this means that there is great variation in velocity

I

0 x

Fig. 10 continued. e. 6432 Hz. f. 8956 Hz (upper limit of

region 11 f; = 8520 Hz.
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amplitudes at the inner edge of the cone. This variation is
of course also reflected in the frequency response: for a
given drive force the sound power radiated at a given
frequency is inversely proportional to the mechanical
impedance presented to the voice coil, or. in other words.
directly proportional to the mechanical admittance. This
quantity therefore deserves to be looked at more closely.

5.1 Mechanical Admittance

Like the vibration pattern. the mechanical admittance at
the inner edge can also be calculated for any frequency
from the set of differential equations mentioned in the
previous section. As an example Fig. 12 shows the
calculated curve of the axial admittance Y, as a function of
frequency for cones 50.1 and 60.1 (see Table I). At low
frequencies, where the cone vibrates as a single mass.
inertia is the decisive factor and the admittance decreases
with increasing frequency. A minimum is reached at f,,;
just above it is the frequency f,, (indicated by a point).
where the bending resonances and antiresonances begin.
In cone 50.1 these give a ripple in the admittance curve.
Above f}; (the second point) the bending resonances and
antiresonances are no longer perceptible in the admittance
curve. The marked oscillations of the curve are connected
with the longitudinal resonances and antiresonances.

Cone 60.1 differs from cone 50.1 in its larger apex
angle and thinner paper. Because of the larger apex angle
the characteristic frequencies f,. fi,, and f; are lower. The
thinner paper makes the cone lighter, so that the curve
starts higher and the admittance variations associated with
the bending waves are less pronounced: in Fig. 12 they can

G L

-X

Fig. 11. Vibration pattern of a loudspeaker with paper cone
(Philips 9710). made visible by holography. Frequency 5929 Hz.
The pattern is less regular than that in Fig. 10 because a paper
cone is less homogeneous than a plastic cone.
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no longer be seen.

The mass of the voice coil is not taken into account in
Fig 12. In practice its effect is considerable and can even
be dominant at high frequencies; the admittance oscilla-
tions due to the longitudinal resonance effects cause no
more than a ripple on the curve determined by the
voice-coil mass (see Fig. 13).

5.2 Calculated Frequency Characteristics

To draw the frequency characteristic of a loudspeaker in
sufficient detail it is necessary to perform calculations at
some fifty well chosen frequencies. The calculation of
localized vibration amplitudes takes a considerable
amount of computer time (about 2 minutes for each
frequency with an IBM 370/168: the acoustic variables
take somewhat less). Our initial calculations were made
with the mass of the voice coil taken as zero. This gives a
basic curve, and very little extra computing time is
required in correcting for the effect of the voice-coil mass,
which is of a simple nature. This allows different values
for this important parameter to be introduced at a later
stage for a rapid determination of its effect on the curve.

Fig. 14 shows the result of calculations on cone 50.1.
First of all we calculated the level L , of the sound pressure
at an axial distance of 10 meters from the loudspeaker
(Fig. 14a). A drive force with an amplitude of 1 N is
assumed. We also calculated the level L 4, of the acoustic
power radiated in a conical region of apex angle 100° (Fig.
14b). Calculation of the sound pressure is unrealistic for

eld points lying outside this conical region, which is
bounded by the loudspeaker cone itself with its apex angle
of 100°.

The results may be compared with the solid curves in
Fig. 3, relating to a rigid cone of the same dimensions.
Below f,, (1840 Hz) the sound radiation from both the
flexible and the rigid cones is almost identical with that

=2

10

-3
102 0° 104

__._._’f

10
10°Hz

Fig. 12. Calculation of the axial mechanical admittance Y, at
the inner edge of cones 50.1 and 60.1 as a function of frequency.
The *‘points’* indicate the locations of frequencies f,, and f};. At
low frequencies the cone mass predominates. At f, a minimum
occurs; f, lies just above it. Between f,,, and f}; the bending reso-
nances and antiresonances in cone 50.1 give rise to a fine struc-
ture. Above f;; the curve is determined by the longitudinal reso-
nances and antiresonances.
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from a rigid piston. Since the mechanical admittance has a
minimum at f,. we also expect a minimum there in the
sound-pressure response: this is not found because of the
compensation provided by the high transverse amplitude at
the outer edge (see Fig. 10a). The decrease in the sound
pressure expected for a cone above f. (here 1580 Hz)
cannot be seen because f, and fra are relatively close
together. The power response shows a slight decrease
abovef, (920 Hz); see Fig. 14b.

In frequéncy region II (fy, <f < f;) the sound radiation
is predominantly controlled by the relatively uniformly
vibrating inner part of the cone; the short bending waves
on the outer part of the cone are ‘‘acoustically short-
circuited’” and radiate little sound. The characteristics in
this region have a broad maximum with a superimposed

o | |

10

|
10° 107 04 10°Hz

—_—f

Fig. 13. Calculation of the total axial mechanical admittance
Y1 as a function of frequency atter the addition of the voice-coil
mass to conc S50.1. Curve Y, from Fig. 12 has been added for
comparison.
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Fig. 14. a. Sound-pressure level L, on the axis of cone 50.1
(calculated curve neglecting voice-coil mass; distance 10 m,
drive force 1 N). The level is expressed in decibels relative to a
reference level of 20 wPa. b. Acoustic power level Ly, radiated
within a conical region of apex angle 100°. The level Ly is
expressed in decibels relative to 107! W. Some characteristic
frequencies and the frequency regions I, 11, and 111 are given.
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fine structure of bending resonances and antiresonances,
followed by a deep minimum at the first longitudinal
antiresonant frequency f.; (7513 Hz). where there is a
minimum in the mechanical admittance (Fig. 12, curve
50:1): In the high-frequency region- (region III, f-> f)
the pressure response shows the same oscillating char-
acter as the mechanical admittance; peaks and dips al-
ternate at longitudinal resonant and antiresonant frequen-
cies.

If we now take the voice-coil mass into account, the
characteristics change shape at the high frequencies. We
have already noted that the mechanical admittance at high
frequencies is entirely determined by the voice-coil mass;
in the acoustic response curves this appears in a steep drop
in frequency region III (see Fig. 15). If this drop begins
above the sharp minimum at the first longitudinal antireso-
nant frequency f},;, this frequency will then in practice be
the upper limit of the frequency range of the loudspeaker.
The decrease due to the voice-coil mass, however, may
begin in region II.

5.3 Comparison of Measured and Calculated
Characteristics

To test the theory against practical experience, the
sound radiation was both measured and calculated for
cones of various apex angles. Here again, plastic cones
were used, but this time of different compositon (cellulose
acetobutyrate). The cones were provided with a rubber
outer rim. The internal damping or loss factor of the
material was 0.06, which is considerably more than that of
the polycarbonate used for the holographic recordings. In

. ' _
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Fig. 15. a. Sound-pressure level L,. b. Power level L.
Both calculated for cone 50.1, with the voice-coil mass assumed
equal to half the cone mass.

—_
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those experiments it was important to make the bending
waves visible, but in the acoustic measurements it was
important to damp the bending resonances. A loss factor
of 0.1 was assumed to allow for the damping at the rim
and the radiation damping. The assumed infinite baffle was
approximated by a closed acoustic box (volume 100 dm?)
attached to the middle of a square baffle (1.5 X 1.5 m?).

In Fig. 16a the solid curve is the measured soundpres-
sure response of a cone with a semiapex angle of 50° (cone
50.3e, Table I); the dashed curve is the calculated re-
sponse for the same cone. The calculated values of the
various characteristic frequencies are indicated. The main
features of the measured curve can all be explained from
these values. The maximum in frequency region Il does
indeed lie between f,, and fy;, and the characteristic does
start to fall off at f},,.

The dip in the measured curve at 300 Hz is related to the
dimensions of the baffle. At low frequencies the rest of the
measured curve lies above the calculated one, because of
radiation from the outer suspension. Above f,, this sus-
pension contributes little to the sound radiation.

Measurements were also made of the total sound power
radiated within a conical region of apex angle 100°, with
ten microphones arranged in an arc around the
loudspeaker. Because the ten signals had to be summed,
measurements could only be made at a number of discrete
frequencies, yiclding the values indicated by the points in
Fig. 16b. In Fig. 16¢ the measured and calculated directiv-
ity diagrams are compared.

The characteristics relating to a cone with a semiapex
angle of 60° (cone 60.2e, Table I) are given in Fig. 17.
They give a lower maximum in region II. Although they
do not differ fundamentally from Fig. 16, most of the
characteristic frequencies are lower.

It may be concluded from the good agreement between
the calculated and measured characteristics that the calcu-
lation procedure gives a good approximation to the actual
behavior of the cone.

6. DESIGN OF A LOUDSPEAKER CONE

The primary consideration in the design of a
loudspeaker cone is to ensure that the characteristic
frequencies are properly located.

All the requirements cannot be satisfied simultaneously.
A flat pressure and power response, a large bandwidth,
and a high efficiency cannot all be achieved at the same
time. Every design must therefore be a compromise.

If the flattest possible characteristics are required, then
to avoid the dip at f,,, in the power response, f,, should not
lie too far above f,. This has consequences for the apex
angle. If, for example, we take f,, smaller than 2f, the
semiapex angle a of a paper cone, in which the propaga-
tion velocity ¢ for longitudinal waves is 2700 m/s, must be
greater than 70°. Such a large value of a implies a low
maximum in region II, which will help to give a flat
response. In this region, however, a distinct fine structure
may easily arise, because with a large apex angle the
frequencies of the bending resonances and antiresonances
lie further apart; a should therefore not be made larger
than is absolutely necessary.
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100dB
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Fig. 16. Comparison of measured and calculated characteris-
tics of cones 50.3e and 50.3; the dashed curve relates to cone
50.3. The calculated characteristic frequencies are given. a.
Sound-pressure level. b. Level of total acoustic power radiated
within a conical region of apex angle 100°. c. Directivity
tharacteristics. The sound-pressure level is plotted as a function
of the direction of radiation.
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The steep decrease at high frequencies. caused by the
voice-coil mass. generally determines the upper limit of
the frequency range of the loudspeaker. To achieve a high
cut-off frequency the ratio m .m 4 between the masses of
voice coil and diaphragm must be chosen as small as
possible. This can never be higher. however. than f\,, or

fu. whichever of the two is lower. since the cone behavior

sets an upper limit here to the frequency response. The
frequencies f,,, and f,; depend on the radius of the inner
edge: if the radius is smaller. f; is higher but f,, lower.

The cone thickness /i can be determined experimentally
after the other geometrical parameters have been deter-
mined. A thin cone helps to suppress the fine structure of
the bending waves but makes the ratio m./m, worse. It
also increases the danger of nonlinear distortion because
the amplitudes of vibration become too large. One means
of eliminating fine structure is to use a damping outer rim.

If the primary requirement is a large bandwidth. then as
noted above. the ratio m./my must be given the smallest
possible value. This implies a heavy cone and low
efficiency. It dips in the response at f., and f,, are
acceptable, a small value of « should be taken and ¢ made
as high as possible:f .. f1.,. and f;; then become higher. A
semiapex angle of 50°. for example. can then be used.
which makes the maximum in region II relatively high.
The thickness is again chosen in such a way as to eliminate
the fine structure.

If high efficiency is most important. the cone should be
made as light as possible. The ratio m ./m then becomes
higher. however, and the bandwidth will consequently be
small. A high maximum in region Il can be obtained by

50 -
10008
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I
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40;0 2 s 02 2 5 ;0 2
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b

Fig. 17. Comparison of measured and calculated frequency
characteristics of cones 60.2e and 60.2.
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choosing a small apex angle. If a dip in the pressure re-
sponse at f, is not allowed, Young's modulus of the cone
material should be chosen such that f;,, is lower than 2 f,..

6.1 Computer-Aided Design with Visual Display

It would be ideal if the designer could feed a sketch of
the desired frequency characteristic into a computer and
get back a little while later the corresponding dimensions
and material constants for the cone. This is not feasible,
however, since not all the curves can be realized in
practice. Computer-aided design of a loudspeaker cone
still has to be done the other way round: the designer types
in some data and the computer calculates the resultant
frequency characteristic. If it differs from the required
curve, the designer then changes one or more parameters
and the computer presents another result. An iterative
procedure of this type is best carried out at a computer
terminal with a visual display (Fig. 18).

Such a procedure requires a great deal of computer time:
it can take an IBM 370/168 computer as long as an hour to
calculate a single characteristic. If the procedure is to be
used frequently, costs can be reduced by storing a number
of standard characteristics in the computer memory and
using these as the starting point for each new design.
These characteristics can be adequately characterized by
four parameters: the outer radius R . the inner radius R;.
the semiapex angle «. and the velocity ¢ of longitudinal
wave propagation in the cone material.

Poisson’s ratio (of lateral to longitudinal strain) has little
influence, and is set at %53 in all cases. The loss factor
giving the internal damping of the cone material is taken at
the relatively high value of 0.1, and the cone thickness is
given the empirical value R,/800; both values reflect the
practical measures that need to be taken to avoid a fine
structure.

Fig. 18. Computer-aided design of a loudspeaker cone using
a visual display.

VIBRATION PATTERNS AND RADIATION BEHAVIOR OF LOUDSPEAKER CONES

For R,,. for example. seven values can be taken [corres-
ponding to the commercial diameters of 3, 4, 5. 6%. 8,
10. and 12 inches, (76.2.101.6. 127, 153.7. 203.2. 254,
and 304.8 mm)]. for R; three values (for example. 18. 35,
and 50 mm). for « five values (50° to 70° in steps of 5°),
and for ¢ a single value (2500 m/s). The vibration patterns
and frequency characteristics of 105 cones now have to be
calculated and stored. From the stored vibration patterns
the vibration patterns and frequency characteristics for
other materials can be computed fairly quickly. If we take,
for example. ¢ = 1500 m/s and ¢ = 3500 m/s, we can
calculate the data for 315 cones and store them in the
computer memory.

The designer can call up the characteristics of any one
of these cones on his visual display. Having done this he
types in a value for the ratio m./my of voice-coil mass to
cone mass. The computer immediately calculates the
effect of this ratio on the characteristics, which takes very
little computer time.

If the desired characteristic is not sufficiently approxi-
mated. the designer can request calculations for inter-
mediate values of the four basic variables: the programs
for this are stored in the computer. The results are stored in
the memory. so that the range of choices available is
gradually widened.

After a trial model has been made in this way, it may be
found that the characteristics have an undesired fine
structure. The damping must then be increased or the cone
thickness reduced: neither of these measures has much
effect on the general shape of the frequency characteris-
tics. provided the ratio m./my and the fundamental reson-
ant frequency f, are kept constant.

The spring constant of the cone suspension and the
characteristics of the electrodynamic drive can be included
in the model with very little extra complication. Their
influence can be immediately calculated by the computer
from relatively simple formulas. In this way a very
comprehensive loudspeaker design can be produced.

SUMMARY

A loudspeaker cone gives complex and highly
frequency-dependent vibration patterns. With a computer
numerical solutions can be found for the set of simultane-
ous differential equations that describe the vibration be-
havior of a flexible conical shell. Three frequency regions
are distinquished: I—low frequencies, the cone vibrates
as a rigid body; II—a ring on the cone gives a special
resonance, bending waves occur outside this ring; III—
high frequencies, the entire cone is covered with bending
waves. For the frequency characteristics of the pressure
response and total sound-power response of the cone to
have the desired shape, it is necessary for the boundaries
between the regions to be correctly located; this deter-
mines the choice of the radii of the outer edge and the
voice coil, the apex angle, and the material constants of
the cone. The bending resonances are less pronounced for
a thinner cone or material with greater damping. For a
high cut-off frequency the mass of the voice coil must be
low compared with that of the cone. Computer-aided
design is possible by calling up a visual display of
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previously stored calculated characteristics and modifying
the parameters.
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Abstract

This thesis is concerned with the vibration and the sound radiation of
loudspeaker cones. The forced vibrational cone behaviour is studied
theoretically with and without neglection of the cone bending stiffness
for a great number of frequencies. The frequency characteristics of the
radiated sound pressure and power as well as directivity diagrams are
calculated. The influence of the geometrical and material parameters of
the cone on the mechanical behaviour and the sound radiation is dis-
cussed. To verify the above calculations mechanical and acoustical
measurements are carried out. Design rules are given.
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1. INTRODUCTION

The loudspeaker is generally known as the weakest link in the sound-repro-
duction chain. It should create a sound pressure proportional to the electric
signal of the amplifier. In general, the common loudspeaker may be split into
two parts: an electromechanical and a mechanical-acoustical part*). The latter
mostly consists of a diaphragm, the vibration of which actually creates the
sound pressure. This vibration is provided by the electromechanical driving
systeni, the working principle of which classifies the loudspeaker as being of
the electrodynamic (moving coil), electromagnetic (moving iron), electrostatic
or piezoelectric type.

One of the greatest difficulties in the conversion of electrical into acoustical
energy is the realisation of a prescribed (mostly flat) frequency response in a
certain (mostly large) frequency range. The influence of the driving mechanism
on the response being generally known, the basic theme of this paper is the
vibration of the diaphragm and its influence on the sound radiation. The electro-
mechanical driving system is of secondary importance here. We will fix our
attention exclusively on the conical diaphragm which is commonly applied in
to-day’s mostly used loudspeaker: the electrodynamic type. This diaphragm
shape is also very often used in the seldomly encountered electromagnetic and
piezoelectric loudspeakers. The reason for the present study is the almost com-
plete lack of any theoretical work on the sound-radiating properties of the
conical diaphragm.

After the invention of the loudspeaker about a century ago it was undoubtedly
McLachlan ) who (in the thirties) studied experimentally the electrodynamic
loudspeaker most profoundly. There was however no thought of calculating the
sound radiation; the radiative properties could only be approximated by assum-
ing the cone to be a flat rigid piston, a model only valid for low frequencies
where indeed the cone oscillates more or less rigidly. Later on, in 1951, Nimura
et al. 2:3) attacked the problem of theoretically describing the cone mechanical
behaviour, but their attempts were little successful owing to the impossibility of
solving analytically the differential equations for the cone vibration. It was not
until the sixties that numerical methods were applied for the solution of these
equations with high-speed computers 14).

Ross #:5) in 1966 analytically studied the axisymmetric vibrational behaviour
of a shell of revolution in an asymptotic approximation, but his work is of
limited value here because the region of validity of his results falls mostly
outside the bandwidth of the loudspeaker. _

Even until now, the above-mentioned rigid-piston approximation forms the

*) This does not hold for the seldomly used ionophonic loudspeaker.
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basis for all calculations of the radiated sound pressure and sound power. New
loudspeakers are practically developed by trial and error and quasi-technical
philosophies alternate with almost fashion-determined “improvements”.
Patents describing “the ideal loudspeaker” are numerous. All this has been
the instigation for the underlying study which, we hope, will contribute to a
better understanding and hence to better design of the electrodynamic loud-
speaker.

1.1. Plan of thesis

It is characteristic of the calculation of the sound radiation by loudspeaker
cones that, even to obtain numerical results for one typical loudspeaker cone,
large computation times are required. It is therefore impractical, especially
from the economic point of view, to make sound-radiation calculations for all
types of loudspeaker cones. A feature of this study is that a great deal of the
conclusions are based on the calculation of the sound radiation of a few typical
cones, although some basic phenomena are studied more thoroughly. Therefore
no extensive general characteristics must be expected with the aid of which the
frequency response can be predicted exactly for any loudspeaker cone. Only
typical phenomena such as characteristic peaks and dips, upper limit of the
frequency response and the like can be calculated relatively easily for any cone
geometry.

The plan of this thesis is the following. In chapter 2 the generation of sound
by loudspeaker cones is qualitatively described without goinginto mathematical
details or proofs; the accent is laid on making plausible all phenomena that
influence the sound radiation. Mathematical details, numerical results and
extensive discussions are given in the chapters 3 to 6, of which only the last
chapter describes the sound radiation explicitly; in the others the mechanical
cone behaviour is discussed. In these chapters one may find the basis of the
explanations and conclusions stated in chapter 2. Further, typical properties
concerning the cone mechanical behaviour and sound radiation, as well as
their dependence on the cone geometrical and material parameters are discussed
extensively on a theoretical basis and verified by measurements. Design rules
are given.

The description of the sound radiation will be made in three steps. First, the
well-known characteristics of the rigid piston will be summarized; the latter is a
good approximation to the cone at low frequencies. Next, the radiation of a
rigid cone will be discussed and compared with that of therigid piston. Finally,
the sound radiation of a flexible cone will be considered and compared with
the other radiators. The discussion will be illustrated by typical examples of a
rigid piston, a rigid cone and a flexible cone all having the same mass and outer
radius; this allows easy comparison of the characteristics.
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2. QUALITATIVE DESCRIPTION OF THE VIBRATION AND THE
SOUND RADIATION OF LOUDSPEAKER CONES

2.1. Introduction

In this chapter the sound radiation of conical loudspeaker diaphragms will
be briefly described. Details, especially mathematical ones, will be omitted;
they can be found in subsequent chapters.

a)

Permanent magnet Outer cone suspension (rim)

Voice coil

Cone

Inner  cone suspension

Dust cap

b)

Fig. 2.1. «) Photograph and b) cross-section of an electrodynamic loudspeaker. The photo-
graph shows cone 50.2e used for the holographical visualization of vibration patterns (see
sec. 5.12.2) and the driving mechanism used in all measurements.
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A photograph and a cross-section of an electrodynamic loudspeaker is shown
in figs 2.1a and 4. The conical diaphragm, usually made of paper, is sus-
pended by an outer suspension or rim and an inner suspension or spider. The
latter limit the maximum excursion of the cone at low frequencies so that the
voice coil remains inside the air gap of the permanent magnet. The voice coil is
attached to the voice-coil cylinder, generally made of paper, which is glued to
the inner edge of the cone. In most cases the spider is also attached to this edge.
The voice coil is placed in the radial magnetic field of a permanent magnet and
* is fed with the signal current of the amplifier. In accordance with Lorentz’s law
this coil exerts an axial force on the cone; the latter is displaced and creates an
air flux giving rise to a small disturbance of the atmospheric pressure. The
amplitude of these pressure fluctuations is called the sound pressure.

2.2 Basic assumptions

In order to eliminate the (well-known) influence of the driving system it will
be assumed that all radiators are driven by a sinusoidal axial force with a fre-
quency-independent amplitude. For an electrodynamic driving system this
means that the voice coil is supplied with an alternating current of constant
amplitude, which can be assumed without loss of generality, since afterwards
all characteristics may be easily multiplied by a possible frequency dependence
of the current amplitude.

The influence of the fundamental resonance caused by the radiator mass and
suspension is well known; below the fundamental resonant frequency f,, the
vibration is controlled by the stiffness of the suspensions, the inertia of the
moving mass being relatively small (stiffness control). If the radiator vibrates
in an infinite baffle, which in the following will always be assumed, the axial
sound pressure and radiated sound power increase with 12 dB per octave 1).
Hence we only need to consider the frequency region above f, for which the
inertia of the moving mass dominates over the stiffness of the suspension (mass
control).

Further, the influence of the radiation impedance on the radiator vibration
will be neglected. This neglection is based on Lax’s proof 37) that the influence
of the radiation impedance on the lowest four vibration modes of a flat circular
diaphragm can be neglected (cf. sec. 6.5.2). Finally, the sound pressure is only
considered at a large distance from the radiator (far field or Fraunhofer region).

2.3. The rigid-piston approximation

The simplest model for the calculation of the sound radiation of a loud-
speaker cone is the rigid piston. Then the driving force creates a uniform velocity
of the radiating surface which is inversely proportional to the frequency, accord-
ing to Newton’s law. The axial sound pressure is frequency-independent
(fig. 6.6a), its magnitude is proportional to the driving force and inversely pro-
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portional to the piston mass and the distance.

The radiated sound power is frequency-independent up to the transition fre-
quency f;. The latter frequency, at which the sound wavelength 4, in air be-
comes about equal to the piston circumference, marks the transition from the
more or less uniform radiation in all directions to a pronounced radiation in the
axial direction, where the beam becomes narrower with increasing frequency.
The latter is explained by a sound power decreasing inversely proportionally
to the frequency (fig. 6.6a).

When we compare the results of the rigid-piston approximation with meas-
urements on a real current-driven electrodynamic loudspeaker in a baffle
(figs 6.19a and b), we can see that for low frequencies the agreement is quite
satisfactory but in the high-frequency region the approximation deviates sub-
stantially: the measured sound pressure is all but constant and sound power is
radiated over a wider frequency interval (about one decade wider). There are
two obvious reasons for this deviation, directly inherent to the rigid-piston
approximation. First the conical shape of the diaphragm and secondly the
flexibility of the real loudspeaker cone considerably influence the sound radia-
tion in the high-frequency region. They both cause their own typical deviation
from the rigid-piston approximation; these deviations show up above certain
typical (different) frequencies. In the following sections these influences will be
discussed.

2.4. The rigid-cone approximation

Suppose a rigid loudspeaker cone, placed in an infinite baffle, to be driven by
a force with a frequency-independent amplitude. At low frequencies, where the
sound wavelength 4, is much greater than the cone dimensions, the radiation
of cone and piston do not differ from each other. In that case the cone, like the
piston, can be conceived as an acoustic point source.

However, above a certain frequency f;, at which 4, becomes of the order of
magnitude of the cone depth, concentric cone parts radiate waves that may
arrive in antiphase at the field point. With increasing frequency the axial sound
pressure then decreases (rigid-cone roll-off), since the distance between these
concentric parts and hence their difference in area decreases, thus enhancing the
mutual cancellation of the waves radiated by these parts (fig. 6.6a). The fre-
quency f, increases with decreasing cone depth and becomes infinite for a flat
piston, in accordance with the rigid-piston approximation. The radiated sound
power starts to decrease at the transition frequency f; just as for the rigid piston
(fig. 6.6a).

2.5. The flexible cone

In practice, the loudspeaker cone is far from rigid. Above a certain frequency
fra (the subscripts will be explained later on) (axi-)symmetric bending and
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longitudinal waves appear on the cone (the so-called cone break-up). The sur-
face velocity is then far from uniform. Only symmetric wave motion is of
interest here; asymmetric (i.e. not rotationally symmetric) waves already ap-
pear at a much lower frequency but they do not influence the sound radiation,
as will be explained in sec. 2.5.1.1.

Below f;, the measured sound radiation agrees very well with the calculated
rigid-cone radiation. If f, is greater than f;,, even the rigid-piston approximation
gives excellent results for f < f,,. When we compare the calculated rigid-
cone radiation with the measured non-rigid response it appears that the band-
width of the loudspeaker is increased by cone break-up. Hence, to attain a large
bandwidth, the cone should not be made as rigid as possible. In sec. 6.7 we will
see that there are still other reasons for avoiding an extremely rigid cone.

In the following the mechanical behaviour and the sound radiation of the
flexible cone will be discussed successively. '

2.5.1. Mechanical behaviour

2.5.1.1. Wave types

We may distinguish between two wave types, which will be called bending
and longitudinal (or extensional) waves. On a paper plate, the two wave types
may exist independently; they do not influence each other. In that case the dis-
tinction is very clear. Bending waves have displacements normal to the plate
surface, the wave velocity depends on the frequency and the bending stiffness.
Longitudinal waves create displacements in the plane of the plate and the longi-
tudinal wave velocity is much higher than the velocity of bending waves because
of the relatively low bending stiffness of the plate. Therefore the longitudinal
wavelength is much longer thanthe bending wavelength. Apartfrom that, it is in-
dependent of the thickness, at least for longitudinal wavelengths much greater
than the thickness, which is always assumed.

For a cone, the situation is somewhat more complicated. In general the two
wave motions cannot exist independently. A transverse displacement (normal
to the cone surface) automatically leads to a longitudinal displacement (in the
plane of the cone) and vice versa. This may be illustrated on the basis of fig. 2.2
which shows a conical ring, on the inner edge of which a longitudinal force F;
acts uniformly (upper figure). Statically we may explain the coupling mechanism
by first allowing a longitudinal displacement », which then instantaneously
evokes an azimuthal stress because of the diameter increase. This azimuthal
stress leads to a force F, directed towards the ring centre (middle figure), which
can be decomposed into a transverse force F, giving a transverse displacement
and a longitudinal force F," opposing F,; (lower figure). Equilibrium is reached
when the azimuthal stress has become so high that F," equals F,. In the dynamic
case the situation is essentially the same, but then inertia forces must be taken
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Fig. 2.2. Illustration of the coup’ling between a longitudinal and a transverse displacement.
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into account. Hence, in general, longitudinal and transverse waves are coupled
via the cone angle and we cannot speak of pure bending or pure extensional
waves. We will make a distinction between the two wave types on the basis of
the deformation energy of the cone surface. This energy is the sum of the de-
formation energy of bending and the deformation energy of stretching of the
cone surface. If, for a certain wave, the former part is greater than the latter, we
will call it a bending wave; otherwise the wave will be called longitudinal.
Both wave types may travel in azimuthal as well as in meridional direction.
Let usfirstdiscuss the former. The travelling waves in both azimuthal directions
may cause standing waves with nodal and antinodal lines in meridional direc-
tion (fig. 2.3). The standing-wave pattern is then called asymmetric (i.e. has no
rotational symmetry). Since the bending stiffness of the cone in the azimuthal
direction is relatively low, the wave velocity of these asymmetric waves will also
be low. Therefore resonant frequencies, at which an integral number of half
wavelengths fits on the cone circumference, are low (for a typical 8" loud-
speaker the standing-wave motion of fig. 2.3 already appears at about 100 Hz).
Because of the small bending wavelength as compared to the sound wavelength

these waves are in general acoustically short-circuited. This means that the air
is merely pumped to and fro between neighbouring cone parts, which vibrate



Fig. 2.3. Asymmetric vibration with Fig. 2.4. Symmetric vibration with
two nodal diameters. two nodal circles.

in antiphase; very little sound is radiated. Apart from that, these waves are
exclusively excited by inhomogeneities: if the cone were perfectly homogeneous
and driven purely axially and uniformly along the inner edge circumference, no
asymmetric wave motion would appear at all. Of course the latter is not the
case in practice, but the inhomogeneities will be small and consequently the
same holds for the “driving force” of the asymmetric waves. Therefore the
sound radiation of the asymmetric waves will be neglected.

In the following we will fix our attention exclusively on the symmetric waves,
directly excited by the axial driving force and in fact providing the sound radia-
tion. Here too, standing waves may occur, because the waves generated at the
inner edge travel to the outer edge and are partly reflected there (part is absorbed
by the outer suspension). The standing-wave pattern is symmetric with con-
centric nodal circles (fig. 2.4). In the presence of internal losses travelling waves
appear on the cone as well, which blur the standing-wave pattern: at the nodal
circles the amplitude becomes minimum but not quite zero.

In figs 5.30 and 5.32 holographic recordings of the standing-wave patterns of
a polycarbonate and a paper cone are shown. Note that the paper cone is less
homogeneous.

2.5.1.2. Resonant and antiresonant frequencies

At certain frequencies the displacements at the inner edge caused by the out-
going and the reflected waves are exactly 180 degrees out of phase. A node then
appears at this place; the frequencies at which this occurs are called antiresonant
frequencies. In general, at these frequencies an odd number of quarter wave-
lengths fits on the cone meridian (in the following for simplicity the outer edge
is supposed to be free). At the so-called resonant frequencies the displacements
caused by the outgoing and the reflected waves are in phase at the inner edge;
an antinode then appears at this place. In general this occurs when an integral
number of half wavelengths fits on the cone meridian.
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The above holds for both bending as well as longitudinal waves. The spacing
between the bending resonant and antiresonant frequencies is much smaller
than that between the longitudinal ones because of the relatively low bending-
wave velocity. All phenomena described until now are also encountered on a
flat ring driven at the inner edge by an oblique force; the only difference lies
in the coupling of longitudinal and transverse displacements in the case of a
cone. This coupling leads to a typical phenomenon not encountered on a flat
plate, viz. cone bending waves appear exclusively above a certain characteristic
frequency f;, which is practically independent of the cone thickness.

The typical vibration of the cone at f;, can be explained with the aid of a
conical ring in free vibration (fig. 2.5a): at the ring resonant frequency f£,,, it
vibrates in a plane perpendicular to the axis (the centre of gravity remains at
rest). If a longitudinal force F, is applied at the inner edge (fig. 2.5b) an anti-
resonance occurs at a frequency below f;,. The ring circumference then also
contracts and expands (hence the longitudinal nature of the resonance), the
motion is however purely transverse. This frequency is called the ring anti-
resonant frequency f;,. The transverse amplitude w attains such a magnitude
that the inertia force evoked by the displacement of the centre of gravity com-
pensates the axial component of the applied force (sec. 4.4).

!
\I\'
|
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Fig. 2.5. Motion of a conical ring;
a) at the ring resonant frequency f;,,
b) at the ring antiresonant frequency frq.

A similar effect is observed if the conical ring has a greater meridional length.
Then f;, of the cone lies close to the ring antiresonant frequency of the outer
edge. The typical motion of the cone at that frequency is illustrated in fig. 4.8.

The frequency f;, marks the beginning of cone break-up. Below f;, the cone
motion is more or less uniform, whereas above f;, bending and longitudinal
waves appear on the cone, giving rise to bending and longitudinal resonant and
antiresonant frequencies. It should be noted that the ring antiresonant frequency
fra and the ring resonant frequency f,, originate from extensional motion in the
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azimuthal direction, i.e. to a first approximation they are independent of the
meridional length of the cone. On the other hand, bending and longitudinal -
resonant and antiresonant frequencies originate from wave motion in the
meridional direction and therefore depend strongly on the meridional length.

2.5.1.3. Mechanical impedance

Since we have a forced vibration, we will have to discuss the reaction of the
cone to a driving force. An adequate quantity to express this reaction is the
mechanical impedance, defined as the force per unit velocity at the inner edge.
In the transverse direction, a much lower force is needed to attain a unit velocity
than in the longitudinal direction, because of the small bending stiffness. There-
fore the transverse impedance Z, will be much lower than the longitudinal
impedance Z,. This has important consequences, as will be shown in the fol-
lowing.

The voice coil delivers an axial driving force at the inner cone edge. The inner
suspension restrains the latter from moving in other directions than parallel to
the cone axis; besides that, the attached inner suspension and voice coil make
the inner edge relatively stiff. Now when an axial driving force F, is exerted,
the motion is opposed by the impedances in longitudinal and transverse direc-
tions, represented by the two springs in fig. 5.3b (it should be noted that in
general the impedances Z; and Z, cannot be represented by springs). Because
the inner edge has to move axially, the longitudinal impedance Z, will determine
the ultimate axial displacement (Z, > Z,). Hence, the axial impedance Z, will
mainly be determined by Z,. Of course this also depends on the cone angle; if
the cone were a flat ring, Z, would not influence Z, at all. Therefore, the typical
frequency dependence of Z, (peaks at the longitudinal antiresonant frequencies
where a node appears at the inner edge and dips at the longitudinal resonant
frequencies where an antinode appears at that place) will also be visible in the
frequency characteristic of Z,.

The foregoing is illustrated in fig. 5.23, which shows the modulus of the axial
impedance Z, at the inner edge of a typical cone *) with internal damping cal-
culated as a function of frequency (drawn curve). This figure is obtained by
solving numerically a system of simultaneous first-order differential equations
describing the axisymmetric mechanical cone behaviour for a large number of
frequencies. In the low-frequency region |Za| increases proportionally to the
frequency according to Newton’s law; in that region the whole cone oscillates
more or less uniformly in the axial direction. At the ring antiresonant frequency
fra a relatively high peak occurs, because Z, becomes maximum.

Above f,,, small closely spaced peaks and dips are visible in |Z,| (fig. 5.23).
These are caused by bending antiresonances, which is explained as follows. It

*) Material and geometrical parameters, see sec. 5.11.
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has been remarked before that in general Z, < Z;; the mean value of |Z,,| is
determined by |Z,|. However, at the bending resonant and antiresonant fre-
quencies, Z; becomes minimum and maximum respectively, which causes small
dips and peaks (fine structure), which are superposed on a mean curve deter-
mined by Z,. The spacing between the peaks (or dips) depends on the bending
stiffness; their height depends on the damping of the bending waves on the
cone, the bending wavelength and the meridional length of the cone. When the
damping increases, the reflected wave becomes small and hardly interferes
with the outgoing at the inner edge; this results in less-pronounced anti-
resonances and resonances. It may occur that the reflected wave has become
negligibly small at the inner edge; in that case bending resonances or anti-
resonances do not show up at all and the axial velocity varies smoothly with
frequency.

Bending resonances and antiresonances only appear above the cone break-up
frequency f,.; they gradually disappear with increasing frequency because the
bending waves have to travel an increasing number of bending wavelengths
before they arrive at the inner edge again. This means that in the high-frequency
region only travelling bending waves show up.

For sufficiently high frequencies (above 10 kHz, fig. 5.23) the wavelength of
the longitudinal waves becomes shorter than the cone meridional length and the
waves “do not notice” the cone angle anymore: they behave as if they were
travelling on a flat plate with the same meridional length as the cone. The axial
impedance shows the typical behaviour of a longitudinally driven plate: |Za|
oscillates about a frequency-independent mean value (the characteristic lon-
gitudinal impedance of a plate is frequency-independent).

The frequency dependence of the axial impedance |Z,,| shown in fig. 5.23 is
characteristic of all loudspeaker cones. The longitudinal antiresonant frequen-
cies, at which |Z,,| becomes maximum are determined by longitudinal wave
motion in the meridional direction. The heights and depths of the maxima and
minima are determined by the internal loss factor; this holds for both lon-
gitudinal as well as bending resonances and antiresonances.

In the foregoing the mechanical behaviour of a cone has been considered
without taking into account the voice-coil mass (and other additional masses at
the inner edge, e.g. that of the dust cap). The reactance of this additional mass
M_ must be added to Z,, giving a total impedance Z,,.

In the low-frequency region where the cone oscillates more or less rigidly,
M_ only causes a upward shift of the Z, curve (fig. 5.24). For high frequencies
however, the reactance of M, becomes higher than |Za| (fig. 5.23) and Z,,, is
practically entirely determined by M,: it increases proportionally to the fre-
quency. Then the maxima and minima at the longitudinal antiresonant and
resonant frequencies appear only as small disturbances in the frequency charac-
teristic of Z,,, (fig. 5.24). :
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2.5.14. Displacement patterns

The transverse-displacement pattern on the cone ultimately determines the
sound radiation. We find characteristic displacement patterns in the various
frequency regions.

For low frequencies (f < f;.), the cone oscillates more or less rigidly in the
axial direction. In the middle-frequency region (region II, fig. 5.23), two wave
types appear simultaneously on the cone. Between the inner edge and a certain
point x, (transition point) on the cone the transverse displacement w is deter-
mined by a longitudinal wave with a relatively long wavelength. Between x, and
the outeredge, w is determined by a bending wave with a relatively short wave-
length (see e.g. the transverse and longitudinal displacement patterns of fig. 5.4A,
where x, is indicated by a dot). This transition point shifts from the outer to the
" inner edge with increasing frequency in region I1: at a frequency f;, it lies at the

outer edge, whereas it reaches the inner edge at a frequency f;,.

" In the high-frequency region (region III, fig. 5.23), bending waves cover the
entire cone.

2.5.2. Sound radiation

Two important factors influencing the sound radiation are the conical shape
of the radiating surface and the transverse velocity distribution on it. The trans-
verse velocity distribution is determined by mechanical wave motion on the
cone surface, created by the axial driving force. Because the latter is symmetric,
we shall consider only the sound radiation by symmetric waves; the radiation
of asymmetric waves is neglected as discussed above.

We may characterize the transverse velocity distribution by the wavelength
and the wave amplitude, which both depend on the meridional coordinate. The
sound radiation depends on the volume velocity *) created by the waves on the
cone surface. The volume velocity is proportional to the wave amplitude and
the latter depends on the amplitude of the inner edge where the driving force
keeps everything in motion. The amplitude of the inner edge is determined by
the axial impedance Z, which is well approximated by the longitudinal imped-
ance Z;,, Hence we may expect a high influence of Z, on the sound-pressure
response.

In this paper the sound radiation is calculated supposing the cone to be
covered by simple point sources with strengths equal to the local volume veloc-
ity on the cone. The sound-pressure response is found by first calculating this
volume velocity for a number of frequencies and then simply integrating these
sources over the cone surface. This method is not realistic for directions outside
the cone apex angle, because it does not allow for the screening-off effect.
Therefore, we calculate the radiated sound-power level Ly, Within a space

*) The volume velocity is the integral of the transverse velocity over the cone surface.



— 13 —

sector having an apex angle of 100 degrees (this is the smallest apex angle
considered in this thesis).

For the same reason, the directivity index DI, ¢, is defined as the difference in
Ly 00 of a point source in an infinite baffle creating the same intensity on the
cone axis as the cone itself and Ly, of that cone. The beam width f is defined
as the angle at which the sound-pressure level has decreased by 3 dB as com-
pared with the axial value.

The radiation of a flexible cone will be explained on the basis of a numerically
calculated example. The radiation characteristics with voice-coil mass M, = 0
are shown in fig. 6.7a. The cone dimensions are given in table S5-I, the fre-
quency characteristic of |Za| is shown by fig. 5.23. First, we will discuss the fre-
quency characteristic of the axial sound-pressure level L, (upper graph of
fig. 6.7a). As before, we may divide the frequency spectrum into three regions.

In the low-frequency region (f < f;.), the cone behaves as a rigid piston:
L, is frequency-independent. The peak in |Za| at the ring antiresonant fre-
quency f;, does not show up as a dip in the sound pressure because, although
the amplitude at the inner edge is relatively small, the rest of the cone vi-
brates vigorously in a mode which is not acoustically short-circuited (fig. 4.8).
If the characteristic cone frequency f, were sufficiently smaller than f,,
L, would decrease between f, and f;, (sec. 2.4). In the middle-frequency region
(fto < f < fia) L, shows a broad maximum on which small oscillations (fine
structure caused by bending resonances and antiresonances) are superimposed.
This maximum is found as a relative minimum in the frequency characteristic
of Z, (fig. 5.23). It shows up in the frequency response of L,, because the
wavelength on the inner part of the cone is longer than the sound wavelength
in air. The acoustically short-circuited bending waves on the outer cone part
are of minor importance (see e.g. fig. 5.44). In this frequency region the cone
effectively radiates as a rigid piston whose radius decreases with increasing
frequency (sec. 2.5.1.4).

A minimum occurs at the first longitudinal antiresonant frequency fi,,
(7500 Hz), where |Za| becomes maximum. In most cases this frequency forms
the upper limit of the frequency response *).

In the high-frequency region, the sound pressure oscillates about a mean
value, showing peaks at the longitudinal resonant (14 and 23 kHz) and dips at
the longitudinal antiresonant frequencies (18 and 28 kHz). This mean value
decreases with increasing frequency, because acoustically short-circuited
bending waves now cover the entire cone.

The frequency response of the radiated sound power Ly o has roughly the
same shape as the axial sound-pressure response (fig. 6.7a, middle graph). A
difference may appear in the low-frequency region; if the transition frequency

*) The upper frequency limit of a response is chosen more or less arbitrarily as the frequency
at which the response has decreased by 8 dB relative to the low-frequency value.
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for the rigid piston f; were much smaller than f,, Ly ;00 Would show a roll-off
at f; with a minimum at f,,.

The lowest graph of fig. 6.7a shows the frequency characteristic of the direc-
tivity index DI, ;0 and the beam width 8. On the average, DI, of the flexible
‘cone is higher than that of the rigid cone, because the latter radiates much
energy normal to its surface, but lower than that of the rigid piston (cf. figs 6.6b
and 6.7a).

In a discussion of the sound radiation, the directivity diagram of the radiator
cannot be left out. The characteristics of this diagram are well known for the
rigid piston: below f; the radiation is practically uniform in all directions,
above £, the sound is mostly radiated in a central beam normal to the piston
surface, which becomes narrower with increasing frequency. This is illustrated
in figs 6.6c, d and e, in which the calculated directivity diagrams for the piston
of fig. 6.6a are shown at 1, 5, 10 and 20 kHz (f, = 900 Hz).

For the rigid cone the radiation below the characteristic cone frequency f,
(1600 Hz) is as uniform as that of the piston (fig. 6.6¢c). Above f, the sound
radiation in the direction normal to the cone surface increases at the expense
of the radiation in axial direction (figs 6.6d and e). The cause of this sidelobe is
clear: in the direction normal to the cone surface a relatively large part of the
cone radiates waves which arrive in phase at the field point. In figs 6.6¢, d and e
the latter direction is indicated by an arrow.

The directivity diagrams of the flexible cone are in general smoother than that
of the rigid cone or piston because of phase differences in the displacement
patterns.

The voice-coil mass considerably influences the frequency characteristic of
the axial impedance Z, as discussed in sec. 2.5.1.3. In that section it was shown
that above a certain frequency, |Za| increases with frequency. The axial velocity
and consequently the sound pressure and power will decrease with frequency.
This is shown in fig. 6.17a for the present cone with a voice-coil mass equal to
one fourth of the cone mass. The steep roll-off at the first longitudinal anti-
resonant frequency f;,; is typical; for greater ratios of voice-coil mass to cone
mass this roll-off starts at lower frequencies. In practice the upper limit of the
pressure and power responses is determined by the voice-coil mass.

Finally we will compare calculated and measured curves of a (plastic) cone
whose geometrical and material parameters are shown in tables 5-VIto 5-IX. The
frequency characteristics are measured for the loudspeaker placed in an acoustic
box of 0-1 m3; the front of the latter is formed by a 1-5 . 1-5 m? baffle. Figure
6.20a (lower graph) shows the calculated and measured sound-pressure re-
sponses of this cone. In the measured curve a baffle dip appears at about
300 Hz. Figure 6.20b shows the calculated and measured sound-power responses.
Both characteristics show a general agreement between calculations and
measurements. In the low-frequency region the measured curves run somewhat



higher due to the radiation by the outer suspension. In the high-frequency
region the measured responses are higher than those calculated because the
inner edge is not completely rigid, as assumed in the calculations.

The measured and calculated frequency characteristics of the directivity index
DI,00 and beam width B are shown in fig. 6.20c. On the average there is a
satisfactory agreement. The same holds for calculated and measured directivity
diagrams (fig. 6.204).

2.6. Conclusion

In the preceding sections the mechanical behaviour and the sound radiation
of a flexible loudspeaker cone were discussed and compared with that of the
rigid piston and the rigid cone. We can summarize our conclusions as follows.

The mechanical cone behaviour is mainly determined by the longitudinal
impedance Z, at the inner edge. The frequency characteristic of the latter shows
large peaks and dips at longitudinal resonant and antiresonant frequencies re-
spectively. Bending waves appear on the cone above the ring antiresonant fre-
quency f;, (cone break-up); they cause bending resonances and antiresonances
which show up as a fine structure in the frequency characteristic of the axial
impedance Z,. Above a certain frequency the voice-coil mass determines the
vibration amplitude; this frequency increases with decreasing ratio M./M, of
the voice-coil mass to the cone mass.

As for the sound radiation, at low frequencies the cone behaves as a rigid
piston; the response is frequency-independent. Above the break-up frequency
f+a @ more or less broad maximum appears on which the above fine structure is
superposed. Above a frequency determined by M /M, the response decreases
with increasing frequency. In practice this frequency usually lies below the first
longitudinal antiresonant frequency f;,; where a deep minimum appears.

It has been shown that the pressure and power responses as well as the
directivity diagrams of a loudspeaker cone can be calculated with acceptable
accuracy. The upper frequency limit of the power response of an appropriately
designed flexible cone is higher than that of a rigid cone or a rigid piston. From
this point of view the cone should not be made as rigid as possible, as is some-
times proposed in literature. A high upper limit of the responses is obtained by
a small ratio MM, of the voice-coil mass to the cone mass; however, this
limit lies at most at the first longitudinal antiresonant frequency f;,,. Means to
avoid the fine structure in the responses and the broad maximum above cone
break-up will be discussed in sec. 6.7.

In the preceding sections the most important phenomena concerning the cone
mechanical behaviour and sound radiation have been discussed briefly. These
matters and other phenomena will be discussed extensively in the following
chapters, where the dependence of the sound radiation on the geometrical and
material properties of the cone will be treated as well.
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3. THE ELECTRODYNAMIC LOUDSPEAKER

3.1. Introduction

In this chapter the working principle and characteristic properties of the
electrodynamic loudspeaker will be discussed on the basis of an electro-
mechanical equivalent circuit. Further, a measuring method for the voice-coil
velocity is explained.

3.2. Electromechanical equivalent circuit

An electromechanical equivalent circuit for the electrodynamic loudspeaker
is shown in the diagram of fig. 3.1a; the circuit is of the so-called mobility
type 1). It consists of a primary and a secondary circuit, coupled by a trans-
former. The primary circuit stands for the electrical side of the loudspeaker.
It contains the voice-coil resistance R, and inductance L. The electromechanical
conversion is represented by the transformer, which delivers a current with
amplitude F,, standing for the force on the voice-coil cylinder. The trans-
formation ratio B/ : 1 follows from Lorentz’s law

F,= Bli,

where B is the magnetic induction in the air gap and / the total length of the
voice-coil windings; i is the amplitude of the voice-coil current. The amplitude
of the voice-coil velocity is v, (represented by a voltage in fig. 3.1a). The mass
of the voice coil and voice-coil cylinder (in the following abbreviated to voice-’
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Fig. 3.1. (a) Equivalent circuit of the electrodynamic loudspeaker,
(b) equivalent circuit of the cone below cone break-up,
(¢) equivalent circuit of the loudspeaker below cone break-up.
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coil mass) is M., the total compliance of the inner suspension is C;; and the
mechanical resistance of the latter is R;,. The total axial admittance (velocity
per unit force) of the cone plus outer suspension isY,. In the latter the mechanical
radiation impedance can be accounted for; this will however not be done for
reasons discussed in sec. 2.2.

We find for the total electrical impedance Z, of the electrodynamic loud-
speaker (fig. 3.1a):

Z, = R +ijc T+ Zmots (31)

where the impedance between the points A and B is called the motional imped-
ance Z,., because it originates from the electromotive force induced by the
motion of the voice coil in a magnetic field. It will be further discussed in
sec. 3.3.

We may write in general

Zmot = (B 1)2 'Ua/Fa (323)
or
BI?
Ris +jch + I/jwcls + Za ’

where the axial impedance Z, of the cone is the inverse of Y.

For frequencies below cone break-up the cone oscillates more or less rigidly
in the axial direction and may be represented by the equivalent circuit of fig. 3.15.
In that case the axial admittance Y, becomes

Zmot =

(3.2b)

1
Y, = - - R (3.3)
Ros + ]de + I/chos

Rc Lc A

o YY" o
Zs Zmot

a o o

B

RC Lc A

o——{ 1 Y Y —p

z
b) o o

Fig. 3.2. Abridged equivalent circuit of
(a) the test loudspeaker,
(b) the reference loudspeaker with blocked voice coil.
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where M, is the cone mass, C,; the compliance of the outer suspension and
R, the mechanical resistance of the latter. In this frequency region the influence
of the radiation impedance could easily be accounted for, as only the mass of
the vibrating air on both sides of the cone must be added to M ,. This influence
is discussed extensively in the textbooks 19:25) and will further be left out of
consideration.

Combination of figs 3.1a and b leads to the equivalent circuit of fig. 3.1c,
valid for low frequencies. In the latter figure the total moving mass is

M= M.+ M,

and C,, is the total compliance of the inner and outer suspension, determined
by 1/Cios = 1/Cis + 1/C,s; Riot = Ris + R, is the total mechanical resistance.
The total mass M,,, and compliance C,, constitute a simple mass-spring
system and create a resonance at the so-called fundamental resonant frequency
fo, determined by
1

fo= .
° 27 (Mtot Ctot)llz

(3.4)

This frequency is mostly chosen as low as possible since it determines the lower
limit of the frequency response of the loudspeaker (in a sufficiently large baffle
pressure and power responses decrease with 24 dB per octave with decreasing
frequency below fo). '

For frequencies below cone break-up it follows that

(B1)?
Zmot = . . . (35)
Rio + joM, + 1/jwCy

This equation may be further simplified for frequencies well below the fun-
damental resonant frequency f,, since then

1
IRtot —|~jme[ <
tot
and hence
|Zmot| = (B1)? 0Cyq (3.6a)
or
v, &~ F, 0C,,. (3.6b)

- Hence, for low frequencies the motion of the cone and voice coil is stiffness-
controlled; if F, is kept constant by driving the voice coil with a sinusoidal
current with a frequency-independent amplitude i (which is always done to
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eliminate the influence of R, and L,) the voice-coil velocity is proportional to
the frequency.
Above f, (but still below cone break-up), where

®Myg > |Riot + 1/jCo,

the voice coil as well as the cone have a velocity determined by the total moving
mass M,,, (mass control); we then can write

|Zmot lN (B 1) oM, (3.72)
or
v, ~ FloM,. (3.7b)

Hence v, decreases inversely proportionally to the frequency. This has important
consequences for the sound radiation, as will be shown in chapter 6.

Equation (3.3), giving the axial admittance Y, of the cone itself, can be sim-
plified for frequencies far above the resonance of the diaphragm mass M, and
the outer suspension C:

1
JoM, .

Y, ~

(3.8)

Equation (3.8) too is only valid below cone break-up.
For frequencies above cone break-up, eq. (3.2b) is very well approximated by

(BI)?

A Y ————————,
T joM, + Z,

(39)

where R;; and 1/jwC;s have been neglected, since then

< |joM, + Z| .

Ris +

is

3.3. Measurement of the voice-coil velocity

It has been stated in the foregoing section that the motional impedance given
by eq. (3.2) originates from the electromotive force, generated in the voice coil
moving with a velocity v, in a magnetic field. Therefore v, can be determined
on the basis of the measurement of Z_,,. This will be described in the following,.

The general equivalent circuit of fig. 3.1a is redrawn in fig. 3.2a where the
impedance between the points A and B is represented by Z_,,. This leads to the
total impedance Z, as given by eq. (3.1). Now a second (reference) loudspeaker
is used of exactly the same type as the test loudspeaker of which the motional
impedance should be measured. The voice coil of this reference loudspeaker is
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blocked by casting it into e.g. epoxy resin. Further the permanent-magnet part
of the driving system is not magnetized. Although the latter introduces a dif-
ference in self-inductance L, of test and reference loudspeakers, it appeared
necessary to use a non-magnetized magnet, since even the very small vibrations
of a blocked voice coil with a normal magnet excite resonances, which cause
unwanted high peaks and dips in the motional-impedance curve. These meas-
ures completely prevent all voice-coil motion of the reference loudspeaker. Its
motional impedance is therefore zero. The equivalent circuit of the reference
loudspeaker is shown in fig. 3.2b. Its impedance is

Z. = R, + joL,. . (3.10)
With eq. (3.1) it follows that
Zoor = Zo— Z,. (3.11)

The motional impedance is measured as a function of frequency by supplying
the test and reference loudspeakers with the same frequency-independent current
and then subtracting the voltage drops across the terminals of both loudspeakers.
In this way the absolute value of the motional impedance can be measured,
which gives enough information to detect peaks and dips caused by resonances
and antiresonances.

The measuring accuracy of this method is not very high, because Z, and Z,
are almost equal. Small differences in the voice coils of the loudspeakers may
thus cause considerable deviations, which may even become greater than Z_,,.
This occurs especially in the high-frequency region where the difference in
permeability of the two magnetic circuits (one magnetized, the other not) leads
to great differences in L. This is however not important, since in general the
method is not intended to assess the value of the motional impedance, but
merely to detect peaks and dips in its frequency characteristic. These peaks and
dips are caused by resonances and antiresonances of the cone (sec. 5.12). The
frequencies at which they appear can be measured accurately by the above

method.
D+ L |
Uz Yo
Ze Z 2

Fig. 3.3. Measuring circuit for the motional impedance.

A block diagram of the measuring circuit is shown in fig. 3.3. A current
source drives a current with a frequency-independent amplitude i through the
test and reference loudspeakers, represented by the impedances Z, and Z,
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respectively. This current flows back to earth via the output terminal of the
operational amplifier B, which has a very low output impedance (the input
impedances of B and the summation network A are very high, so that the
input currents of A and B can be neglected). Calling x the gain of the operational
amplifier B, the following equations hold:

i Z, = u, — us, (3.12)
17, = us — u, (3.13)
Uy = —U Us. (3.14)

The output voltage u, of the summation network A (of gain unity) is
Uy = Uy + U,. (3.15

After elimination of u,, v, and u; we find:

pw—1
Ug = i(Ze— Z, ———), ' (3.16)
p+1

which, owing to the high value of x (10° or more), can be written as

Uy ~Y i(Ze - Zr)a
or
Zmot ] uO/i. (3.17)

A detailed diagram of the measuring circuit is shown in appendix E.



4. MEMBRANE APPROXIMATION OF THE
MECHANICAL CONE BEHAVIOUR

4.1. Introduction

An electrodynamic loudspeaker radiates sound because of mechanical dis-
placements of the cone. The basis of a description of the sound radiation by
a conical loudspeaker diaphragm must therefore inevitably be a description of
its mechanical behaviour. The main difficulty is the solution of the system of
differential equations which describes this mechanical behaviour. For normal
loudspeaker cones this system can only be solved numerically (see chapter 5).
It needs no further comment thatit is difficult to understand the cone behaviour
on the basis of numerical computations. For a better understanding it may
therefore be advantageous to first explain the cone behaviour by means of an
approximate theory of which the mathematical description is simpler.

The extensional or membrane theory is such a simplification. In this approx-
imation the cone is supposed to have a negligible bending stiffness. This means
that all bending moments are neglected and the cone motion is essentially con-
trolled by in-plane stresses; the cone is then called a conical membrane. As a
consequence the influence of the cone thickness is ruled out; the latter remains
in the mechanical equations only as a proportionality factor in the mass per unit
area. But even with this drastic simplification numerical calculations cannot be
dispensed with, although analytical solutions can be given at very low and very
high frequencies.

The usefulness of membrane theory will become clear in chapter 5 where its
results are compared with those obtained with the exact theory including
bendingeffects. There it will be shown, among other things, that the longitudinal
resonant and antiresonant frequencies are very well predicted by membrane
theory and that in the presence of internal material damping the frequency
characteristic of the longitudinal admittance calculated with the membrane
theory is a good approximation of the frequency characteristic of the axial
admittance calculated with the exact equations.

In the past, the membrane theory has been used more than once to describe
the vibrations of conical surfaces. In 1951, Nimura et al.2) gave approximate
analytical expressions for the vibrational modes of the conical membrane with
very small and very large apex angles, the cone being almost a cylinder and a
flat membrane respectively. For common apex angles theyresorted to a graph-
ical determination of the lower eigenfrequencies in special frequency regions.

It was not until 1966 that Ross #-°) in an asymptotic approximation con-
structed analytical solutions for the membrane as well as for the bending
behaviour of a shell of revolution. Although his work contributed much to
the understanding of the general cone behaviour (see sec. 5.3), his results can-



not be applied in the essential part of the loudspeaker frequency range. Later
on, in 1967 ©), he also gave approximate analytical solutions for this part, but
these are mainly intended to give insight into a special phenomenon (transition
point) generally encountered in the vibration of conical shells (discussed in
chapters 4 and 5). In order to obtain more-accurate results he suggests numerical
solution of the differential equations.

In this chapter the forced vibration of the conical membrane will be described
mainly on the basis of numerical computations. For very low and very high
frequencies, relatively simple analytic expressions can be derived, which con-
tribute considerably to the understanding of the cone behaviour. Only axi-
symmetric vibrations will be considered. Asymmetric vibrations, caused by
inhomogeneities and the like, will be discussed briefly in the following chapter.
Although neglecting the cone bending stiffness may seem at first sight a very
crude approximation we shall see that very useful results can be obtained on
the basis of membrane theory. '

4.2. Cone geometry

We will simplify the configuration of the electrodynamic loudspeaker shown
in fig. 2.1b by “stripping” inessential parts from the cone. It was shown in
chapter 3 that the outer suspension does not fundamentally change the
mechanical behaviour of the cone, though in the low-frequency region the outer
suspension and the cone may vibrate in antiphase, which causes a dip in the
frequency response (the so-called rim dip). This dip is usually easily recognized
(see sec. 6.6.2) and will be left out of consideration.

In the following we will assume the outer edge to be free; the damping
influence of the outer suspension will be accounted for by taking the internal
loss factor of the cone material somewhat higher than the practical value.
This procedure of distributing the edge damping over the vibrator surface is
justified if the damping is not too high; it considerably simplifies the mathe-
matical description.

Further, the influence of the driving mechanism (voice coil and inner sus-
pension) will be left out of consideration. Later onits influence may be account-
ed for on the basis of the equivalent circuit of fig. 3.1a. These simplifications
leave us with the configuration of the truncated conical shell, showninfig. 4.1a,
which will be the basic model for all computations. There are four geometrical
parameters, viz. the inner and outer radii R, and R, respectively, the semi-apex
angle o and the shell thickness 4. The four material parameters are: Young’s
modulus E, the mass per unit volume g, Poisson’s ratio » and the internal loss
factor é.

4.3. Membrane differential equations

The coordinates of a basic cone element are depicted in fig. 4.1a. The merid-
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ional coordinate of this element is called x, the azimuthal coordinate 6. A
quantity often encountered in the theory of the vibrations of shells is the prin-
cipal radius of curvature r, in the f-direction (also called second radius of
curvature).

Fig. 4.1a. Cone geometry and coordinates of a cone element.

Cone axis

A
Fig. 4.1b. Cone element with the positive directions of the membrane stress resultants and
displacements.

Figure 4.1b shows the positive directions of the membrane stress resultants *)
and displacements. Since only axisymmetric vibration is considered, the dis-
placement in the azimuthal direction is assumed to be zero. The displacements

*) A stress resultant is defined as the force acting on one side of a shell element per unit
length of that side.
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in transverse and meridional directions are w and u respectively. Further, the
stress resultants N, and N, in meridional and azimuthal direction are inde-
pendent of 6. The internal loss factor is initially supposed to be zero; it will
be introduced in sec. 4.7.4.

PN

X

~

-

Fig. 4.2a. Elementary conical ring.
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Fig. 4.2b. Illustration of the transverse force opposing a transverse displacement w.

Application of Newton’s law to the cone element of fig. 4.2b in the merid-
ional direction leads to

0%u

0
b—(erdB)dx—Ngsinocdxd0=ghrdde (4.1a)
x

o2’

where the second term on the left-hand side is recognized as the meridional
component of the azimuthal stress N, Newton’s law in the transverse direction

reads
02w

Nycosadxdf =—p hrdfdx (4.1b)

212

In these equations r is the distance of the cone element from the axis.
For sinusoidal vibration, eqs (4.1) may be written as
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dN,

+ N, — Ny =—w?*x0hu, (4.2a)
dx

X

Ny = w?x o hwtan a, (4.2b)

where the symbols for the stress resultants and the displacements now repre-
sent the amplitudes of the sinusoidal variation in time; the time factor
exp (jwt) has been left out. Further, we have the stress—strain relations (Hooke’s
law):

N, =K (& + v &), (4.3a)

No = K(ao + v ax), (43b)
where K is the extensional stiffness, defined by

Eh

Finally, the following strain-displacement relations hold:

du (4.42)
& = —, 4a
dx
usin o + wcos o
89 = s (4.4b)

r

which can be easily derived by considering the elongation per unit length in the
meridional and the azimuthal directions. All these equations can be found in
any textbook on vibrations of shells 8).

The above six equations form the basis of the membrane theory applied to
a conical surface. Elimination of the strains ¢, and ¢, leads to two simultaneous
first-order differential equations:

dN, vg—1 Eh
= N,+ —(@Eg—k*x»)u, (4.52)
dx x x?
du v2g—1 p
A Sl VL. (4.5b)
dx Eh b

In eqs (4.5) the wavenumber k is defined as
k = w/c (4.6)

where ¢ = (E/p)/? is the longitudinal wave velocity in a bar; the factor g is
given by
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1

- 1 — 1/(k x tan «)? ; “7

g

g = 1 for a flat membrane.

The so-called membrane equations (4.5) express a relationship between the
fundamental variables NV, and ». All other variables can be expressed in terms
of these fundamental variables with the aid of eqs (4.2) to (44). Thus we find
for instance for the transverse displacement

P X
w=(@g—1{u+—N, tan x 4.8
(g—1) ( 0 ) (4.8)
and for the meridional stress resultant
Eh
No=¢g (— u-t v Nx). (4.9)
X

The membrane equations are singular at x = 0. In the solution this sin-
gularity is avoided by considering only truncated cones. A second singularity
appears when k x tan o = 1; the factor g then becomes infinite. For a given
frequency this singularity occurs at a specific point on the cone meridian. The
meridional coordinate of this so-called transition point is

1

ktan o

X = (4.10)

If a < x, < b, where a and b are the meridional coordinates of the inner and
outer edges respectively, this singularity corresponds to a circle on the cone
surface. With increasing frequency this circle moves from the outer to the inner
edge. It lies at the outer edge at a frequency f;,, given by

- ccosa @1
th = 7R, .
and it reaches the inner edge at a frequency f;,, where
ccos o @.12)
ta — 27[ Ra . .

4.4, A typical resonance

The nature of the above singularity may be explained as follows. Let the cone
be divided into rings of small meridional length (fig. 4.2a). A small part of such
a conical ring is shown in fig. 4.2¢.
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Fig. 4.2¢. Reaction of a conical ring to a longitudinal force.

The element is driven by a longitudinal force F,. The stress and the dis-
placements are uniform throughout the element. Applying Newton’s law in
the &-direction we find:

Fi;sina— F 60 =—w?mé&,

where F is the hoop force and m = ¢ hr 6x 60 is the element mass. If the
hoop stress is denoted by T, we have:

EE
F=Thodx =—hox.
r

From these equations it follows for the radial displacement that

r F;sin o

§=— .
(k2 r2—1)Ehbx 60

The axial displacement follows directly from Newton’s law:

F,cos a
w2ohréxéd

n=-—

The displacements # and w in longitudinal and transverse directions are linear
combinations of £ and » (fig. 4.2¢):

u=§ sin a 4 7 cos a,

w=§Ecos a — 7 sin a.
We find:
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F, k? r? — cos? a

Ehroxod k*(k2ri—1)"

F;sin accos a 1
Ehroxdd k2(k2r2—1)

The displacements u and w become infinite at the frequency where k r = 1 *).
At this so-called ring resonant frequency f;,, given by

(4

f;'r = ’ (413) |
2 r

any ring, whether conical or not, will show a resonant motion. Further, at f;,

u
— = tan a.
w

This means that the motion is purely in a plane perpendicular to the axis: the
centre of gravity remains at rest. Hence, f;, is a natural frequency.
It follows that the longitudinal displacement # becomes zero at a frequency
where
kr=cos o
or
kxtano = 1. (4.14)

This frequency is called the ring antiresonant **) frequency f;,; from the latter
equation we find
c

Jra=——". (4.15)
27 x tan «
The transverse displacement at this frequency is
F,cota
(4.16)

w= .
k? Ehr 6x 60

The centre of gravity is displaced in accordance with Newton’s law.

We may conceive the motion at f;, as being caused by a simple mass-spring
system formed by the element mass m and the stiffness s, in the transverse
direction. This can be shown as follows. The stiffness s, is easily found from
the transverse force F; per unit transverse displacement for u = O:

*) The same occurs for the static case (k = 0).
**) In membrane theory “antiresonant” refers to u = 0 at the driving point, in bending
the’ory (chapter 5) to # = w = 0 at that point.
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F, Fcosadd EEhcosadxdd Ehcos?a
Sy = — = = = ox 60.
w w wr r

The resonant frequency f;., of this mass-spring system is

7 1 <s,)1’2 c
res_27z m _27zxtana'

Hence

kxtanoa =1

for this frequency, in accordance with eq. (4.14). Thus, at the ring antiresonant
frequency f;,, the ring in fact exhibits a transverse resonance.

The above may be summarized as follows. The ring resonant frequency f,.
is a natural frequency of the ring; for a forced vibration both the longitudinal
displacement u and the transverse displacement w become infinite: the ring
vibrates in a plane normal to the axis. At the ring antiresonant frequency f,,
the motion is purely transverse, the longitudinal displacement is zero. Because
the centre of gravity is displaced, this motion can only be carried out in forced
vibration. It should be noted that the motions at f;, and f;, are not a result of a
wave equation and are therefore not a wave motion; they are developed from
an equation of motion with a unique solution.

A complete cone may be considered to consist of interconnected conical rings.
It may occur that k xtan « = 1 for one of these rings. At this place the
membrane equations show a singularity (the transverse displacement w becomes
infinite as dx — 0 in eq. (4.16)); the meridional coordinate of this ring coin-
cides with the transition point x, (cf. eqs (4.10), (4.14)). Therefore, the nature
of the singularity at x, in the membrane equations is in fact a simple mass-
spring resonance in the transverse direction; the transverse resonance lies at
the inner and outer edges at the frequencies f;, and f;, respectively (eqs (4.11),
(4.12)).

For the description of the forced vibration, the longitudinal displacement u(a)
at the inner edge is important. If the meridional cone length is infinitesimally
small, (@) becomes zero at the ring antiresonant frequency f,,. A finite cone
may be conceived as a conical ring with radius R,, which is extended into the
direction of the apex by a relatively stiff inner part. This part passes on the
applied force to the cone base but introduces additional inertia. Therefore,
for a finite cone, u(a) becomes zero at a frequency f,, lying below the ring
antiresonant frequency of the outer ring:

j;'a <f;b-

In sec. 5.6.3 it is shown that in practice f,, (which has to be calculated numer-



ically by solving the membrane equations) can be approximated by f;, (which
follows directly from eq. (4.11)). )
A lumped-element representation of the conical membrane is given infig. 4.3.
The elementary masses m increase with increasing x; they are interconnected
by longitudinal springs s,. The hoop stresses are represented by the springs s,,
of which the stiffness decreases with increasing x. At the transition point the
mass m; and the transverse component of the spring s,; cause a resonance.

Cone axis

Fig. 4.3. Mechanical lumped-element representation of the conical membrane.

4.5. Boundary conditions

The conical membrane cannot be submitted to arbitrary boundary condi-
tions, since it offers no resistance against transverse forces or moments. This
means that the practical boundary condition of an axially driven inner edge
cannot be applied to the membrane. The condition that the inner edge is free
to move axially but restrained in other directions cannot be used either, as it
inevitably leads to a transverse force. We can, however, study the forced
vibration of a conical membrane by assuming a longitudinal driving force F,
at the inner edge. This leads to the following boundary condition: ‘

Fy
29’&Ra,

N, = X =a. 4.17)

This is the only condition imposed on the inner edge, we assume that it is free
to move in the transverse and meridional directions. It has already been stated
in sec. 4.2 that the outer edge is always assumed to be free. Hence,

N,=0, x=b. (4.18)

With these two boundary conditions, illustrated in fig. 4.4, the system of dif-
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ferential equations is solved analytically for low and high frequencies (sec. 4.6)
and numerically for the entire audio region (sec. 4.7).

Cone axis

b e e e e 0 e

x=a,Ny==F /2R,
Applied force Fz

Fig. 4.4. Boundary conditions in membrane theory.

4.6. Approximate analytical solutions

It is found that approximate analytical solutions can be derived for certain
frequency regions. These are in general the regions lying far from the frequency
where a singularity appears on the cone. This mieans that we will consider fre-
quency regions f < f;, (low-frequency approximation) and f > f;, (high-fre-
quency approximation).

4.6.1. Low-frequency approximation
At low frequencies, where
(kbtana)? < 1, (4.19)

(i.e. f < fb), the factor g in eqs (4.5) approaches zero and the membrane
equations simplify to

dN, N, Ehk?
= — — u, (4.202)
dx x cos? a
du_ X + v k2 x u tan? (4.20D)
— = —+vk?xutan?a. .
dx Eh

By eliminating N,, the Bessel differential equation results:

d?u  1du ,

where
k,2 = k2 [1 + (1 — 2v) tan? a. (4.22)
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The solutions are
u=A Jo(kz x) -+ B No(kz x), : (4.23)

Nx = _Eh {A [k2 Jl(kz x) + V4 k2 xjo(kz x) tan2 Ot] +
+ B [k, Ny(ks x) + v k? x No(k, x) tan? al}, (4.24)

where the latter equation is obtained with the aid of eq. (4.20b).
By applying the boundary conditions of fig. 4.4 to the solutions, the con-
stants A and B are expressed in the applied force F,, and the ratio u/N, is

determined. In this way the longitudinal admittance Y, for sinusoidal motion,
defined by

jw u(a
S A LC) (4.25)
F,
or
. wua)
== ————/——
27t R, N(a)
1s calculated.
If : k, bkl (4.26)

we may introduce the following approximations for Bessel functions with small
argument 1°0):

2 2
Jo(2) ~ 1, No(z) ~——1In (—),

A vz
z 2

Ji(2) ~ -, N(@2) ~——,
2 Tz

I <1, y = 1-781072.

This leads to a simple expression for the longitudinal admittance at low fre-
quencies: :

cos? o
Y, = YR (4.27)
where the cone mass M, is
M, = o hm(b*— a?) sin (4.28)

Condition (4.26) follows automatically from (4.19) when
o > arctan (2v)~1/2

or o > 52° for v = 0-3, a condition fulfilled by many loudspeaker cones.
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Equation (4.27) is simply interpreted as follows. The force F, can be de-
composed in an axial force F, and a radial force F, (fig. 4.5). At low frequen-
cies, F, has to work against the cone inertia, F, against the elastic forces op-
posing a variation of the inner-edge radius. Because the cone inertia is low,
the displacement caused by F, will be much larger than that caused by F,. The
cone then oscillates freely with a displacement d practically in the axial direc-
tion (fig. 4.5). Neglecting the radial displacement and applying Newton’s law

F,=—w?dM,; (4.29)
and the geometric relations
u = d cos o, (4.30)
F, = F, cos a, (4.31)
we find
cos? a
I Jde ’

in accordance with eq. (4.27).

Cone axis

Fig. 4.5. Illustration of the displacement at the inner edge for low frequencies.

4.6.2. High-frequency approximation

At high frequencies, where

(katan a)®> > 1, (4.32)

(i.e. £>> fia), the factor g approaches 1 and the membrane equations become

dN, 1—9 Eh
= — Ny,——#*?*x2—1Du, (4.33a)
dx x x2
du N, v
_— — U (4'33b)

dx K x
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Note that the cone angle o has disappeared from the equations. Elimination
of N, leads to the equation '

1
ke, — —2) u=0, (434)

where .
kl == wlcl (4.35)

and ¢, is the velocity of longitudinal waves in a plate:

i P | (4.36)
(4 = . .
Y )

Equation (4.34) is the common Bessel equation for longitudinal wave propaga-
tion in a plate. This result could be expected since the condition k£ @ tan « > 1
means that either for a normal cone the wavenumber k is so high that the
waves “do not notice” the cone angle or the angle « is so large (and tan «
as well) that the cone is nearly a flat plate. Of course in the latter case eq.
(4.34) also holds for small wavenumbers.

The solution of eq. (4.34) is

u=AJ,(z) + BN,(2), (4.37)
where z = k, x. The meridional stress resultant N, is found with eq. (4.33b): -

11—

N, =k, K[A (Jo(z) — Jl(z)) +B (No(z) i N,(z))]. (4.38)
z

The transverse amplitude w can be found by substituting the expressions for
u and N, in eq. (4.8).

The above equations describe longitudinal wave motion in the meridional
direction. The motion is not purely longitudinal, as is the case for a plate;
longitudinal and transverse displacements are coupled via the azimuthal stress
N, which has a transverse component (fig. 4.2b). The wave, after being generated
at the inner edge by the longitudinal force, travels in meridional direction and
is reflected at the outer cone edge. The reflected wave interferes with the out-
going one in such a way that nodes and antinodes are created. Thus, at each
frequency a standing-wave pattern is built up (zero losses are supposed).

Frequencies at which the longitudinal displacement pattern shows a node at
theinneredge are called longitudinal antiresonant frequencies. At a longitudinal
resonant frequency the longitudinal displacement pattern has an antinode at the



inner edge. According to eq. (4.25) the longitudinal admittance IY,I becomes
zero at a longitudinal antiresonant frequency and infinite at a longitudinal
resonant frequency.

In view of the high-frequency condition eq. (4.32) we may use the following
approximations for the Bessel functions:

7.(2) (2)1/2 ( r_Ir (4.39)
(2 ~ | — cos|z————|}, .
g TZ 4 2 )
2 \1/2 T nm
Niu(2) ~ (—) sin (z— —— ——), (4.40)
Tz 4 2

which are valid for |z| > 1 withn= 0 or 1. This means that they may be used
in the expressions for # and N, if

kia> 1. (4.41)

In fact, the condition (4.41) automatically follows from eq. (4.32) if o > 44°
which is nearly always the case in practice *).

On the basis of eq. (4.41) the expiessions for # and N, may be simplified.
After substitution of the approximations for the Bessel functions, we find

u= ) (Csinz— D cos z), (442)
TZ
ki K )
N, = T (C cos z + D sin z), (4.43)
Tz

where C and D are constants. Applying the boundary conditions (4.17) and
(4.18) (inner edge longitudinally driven, outer edge free), the following ex-
pressions result:

a\’? cos [k, (b — x)]
Uu=— Fl ch (—) - 3 (4.44)
x ki ¢y sin (k, L)
F, (a\*?sin [k, (b— x
__& (_) s (6= ) wss)
2 R, \x sin (k, L)

where Y. is the characteristic admittance for longitudinal waves in a flat annular
plate with inner radius R,: '

*) Poisson’s ratio » is taken 0-3.



— 37 —

1

Y=
2 R,0hcy

(4.46)

and L = b — a is the meridional cone length. With eq. (4.8) we find for the
transverse displacement:

(4.47)

v
w = —F, Yzc"'_'“—<

a\Y? sin [k, (b — x)]
ky xtan o )

x) kyeysin(ky L)’

provided

ki x> 1.
1— 92
It follows from eq. (4.47) that w goes to zero when o approaches sz/2, which
confirms the well-known fact that in a plate longitudinal and transverse wave
motions are uncoupled. The same occurs for increasing k; x.
The longitudinal admittance is found with eq. (4.25):

Yl = _j ch cot (k]_ L). (4.48)

The longitudinal resonant frequencies, at which Y, = oo, follow directly
from this equation:

fiom = (4.49)
Irn — 2L ’ .

where # is a positive integer which, in view of eq. (4.41), must satisfy the con-
dition
L

n>-—. (4.50)
Jsa

For these resonant frequencies, #» half wavelengths fit the cone, with antinodes
at inner and outer edges. The transverse and longitudinal displacemenfs at the
first and the second longitudinal resonant frequencies of a typical cone (param-
eters in table 4-I) are shown in figs 4.12a and b.

The longitudinal antiresonant frequencies, at which Y, = 0, are

2n—1)c¢, _
Jian = L’ (4.51)

where in view of eq. (4.41) » must satisfy the condition

L
n>—-+1%. (4.52)
na
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An odd number (2n— 1) of quarter wavelengths now fits a cone meridian
with a node at the inner and an antinode at the outer edge. Typical examples
of the modes at the second and the third longitudinal antiresonant frequencies
are shown in figs 4.11a and b. ‘

At the antiresonant frequencies the longitudinal driving force F, maintains
a standing-wave pattern, although the driving point itself has a zero longitudinal
displacement. This at first sight strange situation is explained by the fact that the
vibration pattern is the stationary result of the driving force F;, which began
to work an infinite time ago. At that time there was no node, because there was
no reflected wave. As a function of time the reflected wave gradually decreased
the amplitude at the inner edge, thereby doubling the amplitude at the free outer
edge. The result after an infinite time lapse is the typical standing-wave shape
of which figs 4.11a and b are examples.

In sec. 4.7 the longitudinal resonant and antiresonant frequencies will be
calculated numerically for various cones. It will be shown for a typical example
that the numerically calculated resonant and antiresonant frequencies agree well
with those calculated from the high-frequency approximations, even for k; a
of the order 1.

In fig. 4.6 the numerically calculated relative value of the longitudinal ad-
mittance defined by

=YY (4.53)

is shown for a certain cone *). In the low-frequency region, Y, decreases
inversely proportionally to the frequency, according to eq. (4.27); in the high-
frequency region the typical plate behaviour is visible, y, varying according to

yi = —j cot(k; L). (4.54)

Figure 4.6 will be further discussed in the next section.

4.7. Numerical solution of the membrane differential equations

4.7.1. Introduction

The high-frequency approximation is mostly valid for frequencies lying above
the frequency region for which the loudspeaker is designed and is therefore of
limited value. In general it appears that for normal loudspeaker cones only the
simple low-frequency approximation can be used successfully. For frequencies
belonging neither to the low- nor to the high-frequency regions, the solution of
the membrane differential equations must be obtained numerically. In the fol-
lowing these equations will be solved numerically for the whole frequency range
of a specific loudspeaker. This allows the results of the low- and high-frequency
approximations to be compared with the numerical solution.

*) Cone parameters in table 4-1
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The numerical-solution method of direct integration (appendix B) is chosen.
This method yields the displacement patterns at a specified frequency for speci-
fied boundary conditions. This is in contrast with the eigenvalue approach,
where first a great number of eigenfrequencies and modes must be calculated
with a relatively high accuracy, before the solution at a specific frequency can
be obtained by applying the boundary conditions to the combination of these
modes. An additional advantage of the method of direct integration is that the
number of simultaneous differential equations to be solved is unimportant; the
same computer program can be used for any number of equations. This is very
convenient, since the introduction of internal material damping will double the
number of differential equations (sec. 4.7.4). Further, the same computer pro-
gram can be used for the numerical solution of the general differential equations,
in which bending is accounted for (chapter 5).

In the following section the frequency dependence of the numerically cal-
culated vibration patterns and longitudinal admittance of a typical loudspeaker
cone will be described. In sec. 4.7.3 the influence of a boundary condition at
the inner edge, usually encountered in practice, viz. the radially supported inner
edge, will be discussed. In sec. 4.7.4 the influence of internal material losses
on the frequency characteristic of the longitudinal admittance is illustrated;
the dependence of the latter on the apex angle will be discussed in sec. 4.7.5.
Finally, in sec. 4.7.6, the longitudinal antiresonant frequencies, which strongly
influence the sound radiation, will be shown as a function of the cone dimen-
sions.

4.7.2. Frequency dependence of the vibration patterns and the longitudinal ad-
mittance of a typical cone

The membrane differential equations (4.5) are solved numerically for a typical

loudspeaker cone with the geometry and material parameters as given in
table 4-1 *).

TABLE 4-1
Cone 50.1 **)
geometry material
semi-apex angle a= 50° Young’s modulus E=2.10° N/m?
inner-edge radius R, = 17 mm | mass density o = 600 kg/m?
outer-edge radius R, = 83 mm | Poisson’s ratio »=03
thickness h = 0-1 mm | lossfactor d: specified locally
(if unspecified: 6 = 0-1)

*) A list of cones used in this thesis can be found in appendix G.
**) The cones are numbered according to their value of «; the last digit is an ordinal number.
The letter e is added for the experimental cones.
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The cone thickness /4 is chosen more or less arbitrarily, since it is unimportant
in membrane theory. It remains only as a proportionality factor in the mass
per unit area of the conical membrane, hence all vibration amplitudes are
inversely proportional to it. The discussion of the vibration patterns will be
based on the frequency dependence of the reduced longitudinal admittance at
the inner edge y,, defined by eq. (4.53) and shown as a function of frequency
in fig. 4.6. The frequency axis will be divided into three regions on the basis
of the presence or absence of the singularity on the cone. As already indicated
in sec. 4.4 this singularity or transition point appears on the cone within the
frequency region f;, < f < f:., Where f;, and f;,, according to eqs (4.11) and
(4.12), are the frequencies at which the transition point lies at the outer and
inner edge respectively. This frequency region will be called region II. The
frequency regions lying below and above region II are called regions I and III
respectively. Since no energy is dissipated, all motion is of the standing-wave
type and the longitudinal admittance is purely imaginary.

We will now start with the discussion of the membrane behaviour in the suc-

— kRq
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Fig. 4.6. Reduced longitudinal admittance |y,| versus frequency for cone 50.1 without damping
(membrane solution); the natural frequencies when the inner edge is radially supported (mem-
brane resonant frequencies) are indicated by O.
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cessive regions for cone 50.1, which may be considered as typical for the
general cone.

Region I is defined by
f<Ji (4.55)

where f,, is the frequency at which the transition point lies at the outer edge.
This is the region on the low-frequency side of the spectrum, where no singular-
ity lies on the cone. For the cone with the parameters indicated above, region I
extends up to 2250 Hz (fig. 4.6).

For very low frequencies (f < f5)s |y,| decreases linearly with frequency in
accordance with the result of the low-frequency approximation eq. (4.27). The
cone then oscillates practically as a rigid body with an axial displacement d

determined by

F,cos a
d=— —, (4.56)
szd

The longitudinal and transverse displacements # and w are geometrically related
to d:
u= dcosa, (4.57)

= —d sin o.

When the frequency is raised the longitudinal and transverse displacements
at the inner edge decrease relative to those at the outer edge. This is shown in

w___,___...—-—""T u

Wr

r

a)

|
I
|
!
|
l
|

b)

Fig. 4.7. Cone 50.1 at 1000 Hz (membrane solution);
(a) transverse and longitudinal displacement, () cone motion.
The displacements of a corresponding rigid cone are indicated by w, and «,.
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fig. 4.7a for f = 1000 Hz. The origin of the decrease in u lies in the time that
it takes a wave generated at the inner edge to travel to the outer edge and back
again to the inner edge where it partly opposes the momentary motion.

The cone motion at 1000 Hz is drawn in fig. 4.75. The dashed lines indicate
the extreme vibrational positions of the cone surface. Points on the cone sur-
face move between these extremes along straight lines, as indicated in fig. 4.75.
At 1000 Hz, the whole cone moves nearly uniformly in the axial direction (the
displacements are greatly exaggerated). The cone surface shows very little ex-
tension or contraction.

When the frequency is raised the reflected longitudinal wave may arrive in
antiphase with the outgoing one. A node in the » pattern arises at the inner
edge at a frequency of about 1840 Hz (fig. 4.8a). The reduced longitudinal
admittance y, becomes zero there; there is only a small transverse motion at
the inner edge. This is the ring antiresonant frequency f;,. The cone motion
is illustrated in fig. 4.85. The vibration resembles a varying apex angle. This
typical motion at f;, was discussed in sec. 4.4. It was also shown there that for
very short cones (i.e. with small meridional length L) f;, is equal to the fre-
quency where the cone mass and the transverse compliance come into reso--
nance; the motion is purely transverse then. For longer cones f,, lies just below
the lowest frequency where a transition point appears on the cone.

The admittance y, is a negative imaginary number up to f;. the cone reacts
as a mass to the driving force. Above f;, the admittance changes sign, the cone
reacts as a spring. Inner and outer edges now vibrate in antiphase. When the
frequency is raised further, the node in the longitudinal displacement shifts in

w u
/[W,- — X

—_— X lu,

a)

b)

Fig. 4.8. Cone 50.1 at the ring antiresonant frequency f;, = 1840 Hz (membrane solution);
(a) mode shapes, () cone motion.
The displacements of a corresponding rigid cone are indicated by w, and «,.
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the direction of the outer edge. The displacements # and w and the total cone
motion atf = 2200 Hz are shown in fig. 4.9. This is just below the frequency
at which the transition point appears at the outer edge: hence the relatively
high value of w at that place. The upper limit or region I is 2250 Hz where
k b tan a becomes equal to 1.

w IJ u
g TWw, 0

a)

|
|
|
!
|
|
|

b)

Fig. 4.9. Cone 50.1 at 2200 Hz (membrane solution);
(a) transverse and longitudinal displacement, () cone motion.
The displacements of a corresponding rigid cone are indicated by w, and «,.

Figures 4.7a, 4.8a and 4.9a are not drawn to the same scale; for comparison,
the amplitudes of », and w, of a rigid cone with the same total mass and driven
by the same force F, are indicated.

Region II is the frequency region where a transition point lies on the cone,
the so-called transition region. It comprises the frequencies

Jio S fea (4.58)

At 2250 Hz the transition point lies at the outer edge; it shifts to the inner edge
with increasing frequency. At the transition point the transverse displacement
changes from + oo to —oo. This of course is physically impossible. In practice
the bending stiffness will limit w. Neglect of the bending stiffness obviously is
unjustifiable; the present solution for region II may thus be expected to be
unrealistic (although the longitudinal antiresonant frequency is fairly well pre-
dicted, see below). For this reason | y,l is dashed in this region (fig. 4.6).
The maximum at about 5500 Hz is due to a perturbed ring resonance. It
corresponds to the extensional resonance of a ring (conical or not) with small
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meridional length L, vibrating in its own plane (fig. 2.5a); the resonant fre-
quency is determined by (see sec. 4.4, eq. (4.13))

kr=1, (4.59)

where r is the ring radius. This frequency is called the ring resonant frequency f,,.
For a cone with finite length, l y,| shows a maximum which increases with
increasing o; for'a plate |y,| becomes infinite at f,,. This frequency is well
approximated by eq. (4.59) if instead of r the mean radius (R, + R,)/2 is
substituted; for the present cone we then find f;, ~ 5800 Hz. Remember that
both the ring resonance at f,, and the ring antiresonance at f;, are simple
mass-spring vibrations controlled by the azimuthal (hoop) stress, in contrast
with the longitudinal resonances and antiresonances, which are caused by wave
motion in the meridional direction.
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Fig. 4.10. Cone 50.1 at the first longitudinal antiresonant frequency fj,; = 6963 Hz (mem-
brane solution);
(a) mode shapes, (b) cone motion.

At 6963 Hz a perturbed longitudinal antiresonance occurs; the transverse
and longitudinal displacements at this first longitudinal antiresonant frequency
fia1 are shown in fig. 4.10a. The quarter-wave shape of the longitudinal dis-
placement pattern is clearly visible, although it is distorted by the singularity at
the transition point x,. The cone motion is illustrated in fig. 4.10b. The longi-
tudinal resonances and antiresonances are also found on a longitudinally driven
plate with the same meridional length L as the cone (see secs 4.7.5, 4.7.6).

The upper limit of region II lies at f;, = 10987 Hz, where the transition
point has reached the inner edge.
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Region III is defined by

f > fa

(4.60)

With increasing frequency longitudinal resonances (| y,| = oo) and antireso-
nances (| y,| = 0) appear in successive order at frequencies which are increasing-
ly well predicted by the high-frequency approximations (eqs (4.49) and (4.51)).
For the present cone an illustration of this agreement can be found in table 4-I1.

TABLE 4-11
Cone 50.1

resonant frequencies antiresonant frequencies
numerically high-frequency numerically high-frequency
computed approximation computed approximation

14210 11100 6963 *) 5550 *)

23439 22200 17480 16650

34074 33300 28261 27750

44976 44400 39228 38850

*) Belong to region II.

According to eq. (4.41) the high-frequency approximations are valid for
f > 14000 Hz but the table shows that also for lower frequencies the agree-

ment is rather good.

The wave propagation is determined by the wavenumber k; of longitudinal

w

a)

b)

u

0 /
—_— X

u
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Fig. 4.11. Mode shapes of cone 50.1 at longitudinal antiresonant frequencies (membrane

solution);

(@) fia2 = 17480 Hz, (b) fi,3 = 28261 Hz.
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waves in a plate. In this region transverse effects are almost completely ruled
out. The transverse and longitudinal modes at two antiresonant frequencies
(17480 and 28261 Hz) and two resonant frequencies (14210 and 23439 Hz) are
shown in figs 4.11 and 4.12. These modes (and the higher ones) are well predicted
by the high-frequency solutions eqs (4.49) and (4.51). Note the decreasing ratio
w/u, which was already discussed in sec. 4.6.2 (see also sec. 5.3).

\-

a).

:\ ,,\ e

b)
Fig. 4.12. Mode shapes of cone 50.1 at longitudinal resonant frequencies (membrane solution);
(@ fir1 = 14210 Hz, () fir, = 23439 Hz.

4.7.3. Radially supported inner edge

It has been remarked in sec. 3.1 that in practice the inner edge is stiff; this
means that no motion is allowed in the radial direction *). Hence, at the
inner edge

usinoa 4+ wcos ¢ = 0. (4.61)

It was discussed in sec. 4.5 that this boundary condition cannot be applied to
the conical membrane (it cannot withstand the transverse stresses accompanying
such a support); the membrane was therefore driven longitudinally.

However, at certain frequencies eq. (4.61) is satisfied by the longitudinally
driven conical membrane. Then, without disturbing the displacement pattern
or introducing transverse forces, the inner edge may indeed be radially sup-
ported. These frequencies, which will be called natural frequencies of the
conical membrane with a radially supported inner edge, or briefly membrane
resonant frequencies f,.,, can be obtained as follows.

*) This is of course only the case below the lowest symmetrical resonant frequency of the

~ structure formed by the inner edge of the cone, the voice-coil cylinder and the inner

suspension; in practice this frequency lies well above the frequency region for which the
loudspeaker is designed.



— 47 —

Using eqs (4.8) and (4.25), the boundary condition (4.61) can be written as
a condition on the reduced longitudinal admittance y,:

v
= f—_— 4.62
=y k, atan? o (4.62)

In fig. 4.6 this condition is represented by the dash-dotted line. Obviously,
it is in general not satisfied, except at the intersections of this line with the
yr-curve, which determine the membrane resonant fequencies. For the present
cone, the lowest four lie at 7854, 17923, 28588 and 39475 Hz. Figure 4.6 also
shows that the membrane resonant frequencies lie just above the longitudinal
antiresonant frequencies; the spacing between the former and the latter decreases
with increasing frequency. This can also be shown by substituting condition
(4.62) into the high-frequency approximation eq. (4.54); we find that the fol-
lowing equation is satisfied at the membrane resonant frequencies:

. 14
cot (k1 L) =— m . (463)
1

In the high-frequency region (k atan « > 1) the right-hand side of eq. (4.63)
approaches zero, which means that this equation is satisfied at frequencies just
above the longitudinal antiresonant frequencies at which cot (k, L) = 0. In
this frequency region the mode shapes at the membrane resonant frequencies
Jfurs may therefore be approximated by those at the longitudinal antiresonant
frequencies fj,,. This is illustrated in fig. 4.13 which shows the mode shapes
at fr1, fur2 and f,,.3 for the present cone (cf. figs 4.115, 4.13¢). Note that f;,,,
lies in region II, which causes a singularity in the transverse pattern. It will be
shown in chapter 6 that the membrane resonances may considerably influence
the sound radiation.

4.7.4. Longitudinal admittance in the presence of internal material damping

Internal material damping considerably influences the cone mechanical
behaviour. In practice, additional losses are introduced by the outer suspension.
From the computational point of view it is expedient to distribute this rim
damping over the whole cone and then further neglect the rim influence. This
means introducing into the computations an internal damping higher than that
encountered in practice *).

In this section we deal with the influence of internal material losses on the
longitudinal admittance of a conical membrane with a free outer edge. The
internal damping is introduced via a complex Young’s modulus £ °)

*) At the same time the radiation damping is approximatively accounted for (see sec. 6.5.2).
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Fig. 4.13. Mode shapes of cone 50.1 at membrane resonant frequencies (natural frequencies
for a radially supported inner edge, membrane solution);
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E=E(Q +jo) (4.64)

where the loss factor & is the ratio of the imaginary to the real part of E.
Poisson’s ratio » is taken real, which is a fair approximation for many mate-
rials 7). The fundamental variables # and N, now become complex:

U=1u + juy
and

Nx = le +ij2-
The number of differential equations doubles; after some manipulation we find

dN,,
dx

1
=J—c[(7’g1‘“ )Ny —vga Neol +

Eh
t e =g =k u—Ga +g)ml,  (“65)
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dN,, 1
=- ['ng le + ('pgl— 1) Nxz] +
dx x .
Eh
+ ?2‘ [(0g: + g2) uy + (g2 - 0 g, — k?* x?) u,], (4.65b)
du,

o sra T A e P e O N+ = g0+ v o) Neal o+

v
- ; (81 u1— g2 uy), (4.65c)

du,
dx  Eh(l+ 6%

[~ (0—v*g, 04+ v2g) Noy + (1 —*g—v2 g, 0) Nyo+

v
L (82 Uy + g1 u). (4.65d)

The factors g, and g, are the real and imaginary parts of g:

q?(q*—1)
e (4.662)
. q*é
g, = (4.66b)

@ =17+ 8

where ¢ = k x tan a. The above system of differential equations is solved
numerically by the method of direct integration (appendix B) applying the
boundary conditions (4.17) and (4.18).

The influence of the internal loss factor is illustrated by solving numerically
the membrane equations for cone 50.1 with 6 = 0-01 and 0-1 and then cal-
culating the longitudinal admittance as a function of frequency. The complex
longitudinal admittance Y, is written as

Y, = G, + jB, (46D

where G, is the longitudinal conductance and B, the longitudinal susceptance.
In fig. 4.14 the modulus of the reduced longitudinal admittance y, is shown
as a function of frequency for the same cone parameters as used in fig. 4.6
(cone 50.1), but now with an internal loss factor 6 = 0-01. In general, dips
become less deep and peaks are lowered to finite values. The internal damping
is however more effective in region II than in the other regions. This is caused
by the singularity at the transition point, where much energy is dissipated be-
cause of the high strains. Because of this relatively high damping in region II
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the dip at 2800 Hz has completely disappeared, whereas the antiresonance at
6963 Hz is only visible as a small disturbance. In region III, |y,| oscillates
about the value | y,| = 1, the maximum deviations from this mean value being
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Fig. 4.14. Calculated reduced longitudinal admittance |y,| of cone 50.1 versus frequency
with internal loss factor 6 = 0-01 (membrane solution).
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Fig. 4.16. Calculated reduced longitudinal admittance |y, versus frequency of cone 70.1
(membrane solution).
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Fig. 4.17. Calculated reduced longitudinal admittance |y,| versus frequency of a flat ring with
0 = 01 and the same R,, L, 1 and material parameters as the cones 50.1 and 70.1 (membrane
solution).

inversely proportional to the frequency. This result is well known from the
plate theory °).

In fig. 4.15 | y,l is shown for = 0-1. This relatively high value of & signif-
icantly smooths the curve of | y,|. In the high-frequency region the peaks are
reduced in height by a factor of 10, all dips are raised by the same factor as
compared with fig. 4.14. At the top of figs 4.6, 4.14, 4.15 (and 4.16, 4.17) the
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value of the dimensionless frequency parameter kR, is indicated, which
allows the characteristics to be used independently of the absolute cone dimen-
sions and the cone material.

4.7.5. Influence of the apex angle on the longitudinal admittance

In order to demonstrate the influence of the apex angle on the frequency
characteristic of the longitudinal admittance, the latter was calculated for a
cone with & = 70° and for a flat ring. In all cases the meridional cone length
L = b — a, the inner cone radius R, and the cone material is the same as that
of cone 50.1, which means that in the high-frequency region the characteristics
of | y,| are exactly equal for all three cases.

Figure 4.16 shows | y,| as a function of frequency for cone 70.1, whose geo-
metrical and material parameters are given in table 4-III.

TABLE 4-111
Cone 70.1
geometry material
semi-apex angle o = 70° Young’s modulus E= 2. 10° N/m?
inner-edge radius R,=17 mm mass density o = 600 kg/m?3
outer-edge radius R, =98 mm Poisson’s ratio v =0-3
cone thickness h=01mm loss factor 6=0-1

Comparing the frequency characteristic of | y,| of cone 70.1 with that of cone
50.1 (fig. 4.15), we notice the following differences. Firstly, the frequency f,,,
at which the transition point lies at the inner edge, has decreased (eq. (4.12)).
The frequency f;, has decreased as well; however, an additional decrease is
caused by the fact that R, of cone 70.1 is taken larger than that of cone 50.1
to obtain equal values of L for the two cones. The ring antiresonant frequency f,,
has decreased by about the same factor as f;; and still lies just below this
frequency, as discussed in sec. 4.4. Just above f;, in fig. 4.16 the ring resonant
frequency f;,, now falling in region III, causes a distinct peak.

Finally, in fig. 4.17 the frequency characteristic of | y,| of a flat ring is shown,
of which the inner radius R,, the meridional length L and the material are equal
to that for the cones 50.1 and 70.1 (this means that the outer radius R, has
increased to 103 mm). The stiffness against transverse displacements has become
zero, which means that f;, has also been shifted to zero. The same has happened
to the frequencies f;, and f;,.

The disappearance of regions I and II for the flat membrane (plate) may also
be explained on the basis of the well-known uncoupling of transverse and
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longitudinal motions; because the plate is longitudinally driven, only pure
longitudinal wave motion occurs. Therefore in the l1ow-frequency region (now
extending up to f7.), |y,| is controlled by the stiffness of the plate against longi-
tudinal displacements and consequently increases with frequency, in contrast
with the cone admittance in region I, which is controlled by the total cone mass
and therefore decreases with frequency. In the high-frequency region the longi-
tudinal resonant and antiresonant frequencies, caused by wave motioninmerid-
ional direction, remain equal to those of cones 50.1 and 70.1.

4.7.6. Longitudinal antiresonant frequencies versus cone geometry

It will be shown in chapter 6 that the longitudinal antiresonant frequencies
have considerable influence on the sound radiation of the cone. Therefore the
lowest four antiresonant frequencies were calculated for various cone dimen-
sions on the basis of the membrane equations for semi-apex angles o of 50, 60,
70 and 80 degrees. These values cover the range of cone angles used in practice.

Let us first consider the dependence of the regions I, IT and III defined by
eqs (4.55), (4.58) and (4.60) on the cone geometry. The boundaries of these
regions are shown in fig. 4.18a, in which the dimensionless frequency param-
eter kR, is plotted as a function of the reduced meridional cone length L/R,;
R, represents the value of the second radius of curvature r, (see fig. 4.1a) at
the inner edge:

R, = ry(a) = R,/cos a. (4.68)

If o and L/R, are kept constant and kR} is increased, we pass from region I
(in which the transition point lies outside the outer edge on an imaginary ex-
tension of the cone surface) to region II (in which the transition point lies on

the cone). The transition from region I to region II occurs at the frequency f;,
or at the value of kR, determined by the function

1
1+ (I/R,) tan o

(kR2)., = (4.69)

which follows from eqs (4.11) and (4.68). Therefore, this lower boundary of
region II is lower for larger apex angles. _

When kR, is increased still further the transition point moves from the
outer to the inner edge; it reaches the latter at kR, = 1 (eqs (4.12) and (4.68)).
This value of kR, forms the upper boundary line of region II for all apex
angles. If kR, is still further increased, the transition point moves from the
cone to an imaginary extension of the cone surface inside the inner edge
(region III).

Figure 4.18a illustrates that, with increasing «, region II increases at the
cost of region 1. It also follows from the function (4.69) that region II increases
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for constant & and increasing cone length L, which is not difficult to explain
as, with increasing L, part of the imaginary extension of the cone surface be-
comes real. When L/R, — 0 (cone element with infinitesimal length Ax, see
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Fig. 4.18a. Regions in the kR, versus L/R, plane for four semi-apex angles a.
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Fig. 4.18b. Ring antiresonant frequencies f,, and lowest four longitudinal antiresonunt fre-
quencies f;, versus reduced meridional cone length L/R, for four values of the semi-apex
angle . Measured values are indicated by O for various cones with & = 50°, X for a cone
with &« = 60° A for a cone with o = 70°.
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fig. 4.2a), region II shrinks to a point at a frequency determined by kR, = 1.

In fig. 4.18b the value of kR, at the antiresonant frequencies is plotted as
. a function of L/R, for the above-mentioned cone angles. The lowest four
curves represent the ring antiresonant frequency f;, for o == 50, 60, 70 and
80 degrees. These curves stay just below the lower boundary of region II
(fig. 4.18a), as discussed in sec. 4.4. It was also shown in that section that the
curves for f,, approach asymptotically the horizontal line kR, =1 (ie.
k x tan o = 1, cf. eq. (4.14)) as L/R, approaches zero.

As a consequence of the representation of kR, as a function of L/R,, the
longitudinal antiresonant frequencies of the same ordinal number coincide for
all apex angles (fig. 4.18b). This follows directly from the high-frequency ap-
proximation eq. (4.51), which may be written as

kR)in = (21— 1 " K 4.70
( 21an_(n_ )2(1—1)2)1/214- (° )

Though it was shown in sec. 4.6.2 that this approximation is only valid in
region III well above the horizontal line kR, = tan o/(1 — v?)/2 (eq. (4.41)),
it can be seen that the characteristic dependence on L/R, holds even in region II
(we found that the longitudinal antiresonant frequencies could be calculated
with sufficient accuracy in region II with the membrane equations up to a cer-
tain maximum value of L/R, which increased with o).

The high-frequency approximation eq. (4.70) shows that the longitudinal
antiresonant frequencies depend slightly on Poisson’s ratio »; fig. 4.18b is
calculated for » = 0-3.

A representation which may be more useful in practice is illustrated in
figs 4.19a and b. In these figures the dimensionless frequency parameter kR,
is shown as a function of the ratio of outer to inner radius R,/R,. Figure 4.19a
shows the regions I, IT and III (cf. fig. 4.18a) for four semi-apex angles.

In fig. 4.19b the value of kR, for certain antiresonant frequencies is plotted
versus R,/R, as follows. The lowest four lines represent the ring antiresonant
frequency f,, for a = 80, 70, 60 and 50 degrees; these lines closely follow the
boundary line of region I, running lower with increasing o (fig. 4.192) and
approaching the origin as a approaches 90°. The upper two drawn curves
indicate the first and second longitudinal antiresonant frequencies for « = 50°;
when the apex angle is increased, these curves move upwards and approach
asymptotically the dotted curves that represent the first and second longitudinal
antiresonant frequencies for a flat ring.

4.8. Measurements

In order to verify the foregoing calculations of the ring and longitudinal anti-
resonant frequencies, measurements were carried out on a few polycarbonate
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cones with different geometries, driven by the same electrodynamic driving
system. The antiresonant frequencies were measured as follows.
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Fig. 4.19a. Regions in the kR, versus R,/R, plane for four semi-apex angles a.
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At the antiresonant frequencies the inner-edge velocity in the meridional
direction becomes minimum. Because in practice the inner edge is relatively
stiff, its axial velocity becomes minimum as well. Hence the axial impedance Z,
becomes maximum and according to eq. (3.9) the motional impedance |me|
becomes minimum. The latter is recorded as a function of frequency by the
method described in sec. 3.3.

A typical example of such a recordingis shown in fig. 4.20 for a polycarbonate
cone with geometrical and material parameters as given in table 4-IV. Apart

— kR,
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Fig. 4.20. Measured motional impedance of the polycarbonate cone 50.2e.

TABLE 4-1V
Cone 50.2e
geometry material (polycarbonate)
semi-apex angle o= 50° Young’s modulus E = 2-4 . 10° N/m?
inner-edge radius R, =17 mm | mass density == 1200 kg/m3
outer-edge radius R, =83 mm | Poisson’s ratio » = 035
thickness h = 023 mm | loss factor 6 = 0-014

from the thickness (which practically has no influence on the antiresonant fre-
quencies) this cone has the same geometry as cone 50.1; the material parameters
of interest (E and p) are different but this is of no importance as long as only
the dimensionless frequency parameter kR, is considered (see top of fig. 4.20).
The electrodynamic driving system used to measure |Zm,,,| has an electro-
mechanical conversion factor (B/)> =20 Wb2?/m? and a voice-coil mass
M, =2g.
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The fundamental resonant frequency f, (sec. 3.2) of the total system lies
at about 50 Hz. Below the ring antiresonant frequency f,, (fig. 4.20), Z_. is
inversely proportional to the frequency, according to eq. (3.7a). At f,, a dip
occurs because Z, attains a high value there. Just above £, a number of closely
spaced peaks and dips appear, caused by bending resonances and antireso-
nances; these are obviously absent in the frequency characteristic of the longi-
tudinal admittance |y,| calculated with the membrane equations. They will be
discussed in the following chapter. The higher longitudinal antiresonant fre-
quencies are indicated.

In fact the motional impedance should decrease with frequency in the high-
frequency region f > f;,, because there the term jwM_ starts to dominate the
value of Z, in eq. (3.9). This is not the case in fig. 4.20, which may be imputed
to the difference between the driving mechanisms of test and reference loud-
speakers (sec. 3.3). Measured frequency characteristics of the motional imped-
ance are further discussed in sec. 5.12.1. The antiresonant frequencies were
measured for cone 50.2e of which the meridional cone length L was gradually
decreased. The results are plotted in fig. 4.18b; in this figure the measured
values of f,, are also shown for polycarbonate cones with « = 60 and 70 de-
grees. There is good agreement between the calculated and the measured values.

4.9. Conclusion

The conical membrane may be considered as the simplest model for the
description of some basic phenomena, characteristic for the cone behaviour in
general. The forced vibration of a typical conical membrane at characteristic
frequencies has been discussed on the basis of displacement patterns and longi-
tudinal admittance at the inner edge. It has been shown that an antiresonance
occurs at a relatively low frequency. In a certain frequency region (region II),
the membrane differential equations have an unrealistic solution. Below this
region these equations have almost trivial solutions which show that the conical
membrane oscillates as if it were completely rigid; above this region the solu-
tions show that the cone maybe considered as a flat plate with the same merid-
ional length as the cone.

The frequency dependence of the longitudinal admittance has been discussed
for several apex angles. It has further been shown that a cone with a radially
supported inner edge has natural frequencies lying close to the longitudinal
antiresonant frequencies of a longitudinally driven cone. The dependence of
these longitudinal antiresonant frequencies, which influence considerably the
sound radiation (chapter 6), on the geometrical and material parameters of
the cone has been illustrated.
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5. EXACT SOLUTION OF THE MECHANICAL CONE BEHAVIOUR

5.1. Introduction

In the foregoing chapter the membrane behaviour of the cone was discussed.
All bending moments and transverse forces were put equal to zero. This resulted
in a longitudinal wave motion, coupled with transverse displacements. However,
in practice bending moments and transverse forces do exist. They generate
bending waves with transverse amplitudes in general much greater than those
generated by longitudinal waves, because of the small bending stiffness of the
cone. Further, this small bending stiffness results in a short bending wavelength;
the bending waves are therefore acoustically short-ciicuited and radiate little:
sound (chapter 6). Nevertheless, the introduction of a bending stiffness is neces-
sary to calculate the exact *) mechanical behaviour in region II (which is a
crucial frequency interval for the loudspeaker); in this region the membrane
equations yield an unrealistic solution.

The analytical description of the general *) behaviour of a shell .of revolution
is rather complicated. In literature, many approximations can be found which
lead to a range of models for the description of the vibration of shells 7). The
simplest model for the axisymmetric vibration is obtained when the bending
stiffness of the shell is neglected. A less approximative model is the shallow-
shell theory in which the shell depth is assumed to be much smaller than its
diameter; the effect of longitudinal inertia on the transverse modes can then
be neglected (the shell is regarded as a slightly curved plate). For non-shallow
shells, however, the neglect of the longitudinal inertia is unjustifiable %) and
leads to considerable errors in the bending modes.

To describe the bending behaviour of loudspeaker cones we therefore resort
to the classical bending theory of shells !7). This theory accounts for longitu-
dinal and rotatory inertia but neglects the effects of thickness shear. This leads
to accurate results for frequencies well below the lowest natural antisymmetric
thickness-shear frequency, which lies at about 1 MHz for an infinite paper plate
with a thickness of 1 mm. Details of the assumptions on which this theory is
based can be found in ref. 17.

The resulting differential equations are discussed in sec. 5.2. Ross #:3:6) gives
an asymptotic approximation of these equations; his results, which may con-
tribute to the general understanding of the cone behaviour, are reviewed in
sec. 5.3. We introduce boundary conditions in sec. 5.4 and solve numerically
the governing differential equations for a number of cone types; this forms the
basis for a discussion of the dependence of the displacement patterns on fre-
quency (sec. 5.5). Further, the dependence of bending resonant and antiresonant

*) In this context the adjectives “exact” and “general” refer to the accounting for bending
effects.
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frequencies and mode shapes on cone geometry and material are discussed in
sec. 5.6. The frequency characteristic of the axial admittance is illustrated on
the basis of numerically calculated examples in sec. 5.7. General and membrane
solutions are compared with each other in secs 5.8 and 5.9, followed by a dis-
cussion of the very important influence of the voice-coil mass on the frequency
characteristic of the axial admittance. Although sound radiation by asymmetric
vibrations will be neglected these vibrations are briefly discussed in sec. 5.11.
Finallyin sec. 5.12 measurements on a few cones arereported, which are mainly
intended to verify the calculations.

5.2. Basic differential equations

The cone geometry and coordinates are shown in fig. 4.1a. Figure 5.1 gives

the positive directions of the stress resultants and displacements of a cone
element.

The differential equations, which completely describe the stress and deforma-
tion conditions of a shell of revolution in asymmetric vibration, are based on

Cone axis

Fig. 5.1. Cone element showing positive directions of stress and moment resultants and dis-
placements.
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a derivation by Reissner !2) and include the effects of translatory and rotatory
inertia. They comprise 14 variables, which are assumed to be separable in the
form (see List of symbols for the meaning of the variables):

w W,
u Uy
ﬂx ‘ :an
Q (O
Ox | =| Oxn |cos (n0), (5.1a)
Nx an '
N, 0 N, On
Mx Mxn
_M 0_ _MOn A
v | e
N N,
Nox | = | Noxn |sin(n 6), (5.1b)
Qo Qon
Mox MOxn

where the effective shear r;sult;nts Q- and_N are introduced because of their
appearance in the boundary conditions of the cone in asymmetric vibration
(see sec. 5.11, eq. (5.46)); they are defined by (see ref. 18, p. 58)

0=g,+— Mo
O xsina 08
M, cot o
N=DNep+ ———.
x

The definition of the other stress and moment resultants can be found in ref. 12.
The time factor exp (jwt) has been omitted.

The 14 first-order differential equations which describe the mechanical
behaviour of the cone are not independent; after reduction a system of 8 inde-
pendent differential equations with 8 independent variables remains. The fun-
damental variables taken are those quantities that apf:ear in the boundary con-
ditions at the cone edges. Following Kalnins !4:16) we represent these fun-
damental variables as the elements of a vector y(x):

wn(x) )
Un(x)
V()
Ben() *
y(x) =| Qu(x) (5.2)
Nen(X)
N,(x)
LMxn(x)_
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where x is the independent variable, i.e. the distance along the cone meridian.
The variables Ny, Ngx, Qs, Ox, My and M,, may be expressed in the others.
The remaining 8 simultaneous differential equations can be written as

DB _ 495 (53)
dx '

where A(x) is an (8, 8) coefficient matrix, whose elements are given in appen-
dix A. As sound radiation by asymmetric vibrations will prove to be unimpor-
tant (see sec. 6.2), special attention will be paid to the case of axisymmetric
. vibrations (# = 0). Then the number of fundamental variables reduces to the
following six:

() "
u(x)
y(x) =| Bulx) |- (5.4
Q(x)
N(x)
M (x)_

The number of differential equations likewise reduces to six. The (6, 6) matrix
A(x) is given in appendix A. ‘

The solution y(x) is obtained numerically by subjecting eq. (5.3) to three
boundary conditions at each edge. The method of solution is that of direct
integration, introduced by Goldberg et al.!3®) and refined by Kalnins 14:16),
With this method, which is briefly discussed in appendix B, the system (5.3)
is solved for a number of frequencies. The same method was used for solving
the membrane differential equations in the preceding chapter.

The introduction of an internal loss factor makes all fundamental variables
complex and consequently doubles the number of differential equations and
boundary conditions. The matrix A(x) of eq. (5.3) for the complex axisymmetric
case is given in appendix A.

Before illustrating the cone behaviour on the basis of typical examples, we
will first 1eview Ross’s asymptotic solutions of the basic system of differential
equations. These analytic approximations may contribute to the understanding
of the vibrational behaviour of the cone.

5.3. Results of Ross’s asymptotic approximation

The above system of six differential equations for six unknowns has six
linearly independent solutions. In an asymptotic analysis of this system,
Ross #5:6) finds first approximations to these solutions which divide into two
classes.

Four solutions show rapid spatial variation, and bending action is the pre-
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dominant mechanism. The influence of stretching on these solutions is slight
but not entirely negligible (otherwise we would be reduced to inextensional
theory ®), which has only rigid-body solutions for the axisymmetric case). The
transverse displacements of these $o-called bending solutions are much greater
than the longitudinal displacements:

w
—=0(s")>1 (5.5)
u

where

h
e = <1 ~ (5.6)
all2(1—+?)]"?*tan «

Two of these bending solutions are non-propagating edge disturbances; they
rapidly decrease with increasing distance from the inner or outer edge. The
other two bending solutions are waves; for k x tan o« > 1 (i.e. for meridional
coordinates x greater than the coordinate x, of the transition point) their
wavenumber approaches the bending wavenumber kp in an infinite plate:

Ve

kp = — (5.7)
Y
where
y? = ¢, hf}/12. (5.8)
The plate bending-wave velocity is
=1y Jw (5.9)
and the bending wavelength
1 2n ( o AN k)”z (5.10)
B = = . < .
kg V3 f

The remaining two asymptotic solutions of the general system of differential
equations are rather slowly varying functions of position: their wavelength is
approximately equal to the longitudinal wavelength 4; in an infinite plate. The
effect of bending in these solutions is negligible. Because the strain energy is
almost entirely of the stretching type, these solutions are called membrane solu-
tions. They are well approximated by the solutions of the membrane system of
differential equations (chapter 4). The relation

y .
— = 0O(k atan a) (5.11)
W
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shows that transverse and longitudinal displacements have equal order of
magnitude for k atan « = O(1) (i.e. for frequencies in the vicinity of f;,).
Membrane and bending solutions are nearly independent except at the tran-
sition point. At this point both the membrane theory and the asymptotic
bending theory fail. This indicates that the classification of solutions into mem-
brane and bending types is impossible near such points. Therefore, transition
points can be interpreted as the sites of localized interaction between bending
and stretching effects.

Applying boundary conditions to the asymptotic solutions leads to two sets
of natural frequencies, called membrane and bending frequencies. Ross shows
that the membrane frequencies can be obtained by applying a membrane edge
condition to the solution of the membrane system of differential equations. He
also shows that for a free outer edge the modes associated with the membrane
frequencies are of the membrane type and the modes associated with the bending
frequencies are wholly of the bending type (within a first approximation).
Further he proves that in region I (f < f;») natural frequencies associated
with modes of the bending type cannot occur; however this need not be true
for f ~ f;p, where transitional effects may play a part.

We may summarize Ross’s results as follows. Bending resonances and anti-
resonances only appear for f > f;,. For f>> f,, bending and longitudinal
waves exist almost independently. First approximations show that the waves
behave as if they were propagating on an infinite plate. For loudspeaker cones,
however, this frequency region lies too high to be of practical value; this will
be discussed in chapter 6. At the transition point considerable interaction occurs
between bending and stretching effects.

Although Ross’s analytic expressions will not be used in this thesis, his results
and conclusions may contribute to the understanding of the numerically ob-
tained solutions of the general differential equations, discussed in the follow-
ing sections.

5.4. Boundary conditions

The boundary conditions applied for numerically solving the general system
of differential equations (eq. (5.3)) are directly derived from the situation in
practice. As discussed in chapter 3, the inner edge, to which the voice coil and
inner suspension are attached, is relatively stiff so that it can move in an axial
direction only. Further, the cone is usually rather stiffly glued to the voice coil
and inner suspension. We therefore assume in the calculations that the cone is
clamped to an infinitely stiff massless ring at the inner edge, which can only
vibrate axially. This means that the displaceﬁaent normal to the cone axis must
be zero at x = a (fig. 5.2):

u(a) sin & + w(a) cos a = 0. (5.12a)
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Cone axis

Fig. 5.2. Illustration of the boundary conditions at the inner cone edge.

From the clamping condition it follows that the transverse displacement must
have a zero derivative at x = a:

dw(x)
dx |;=

Finally, the axial components of the transverse and longitudinal stress resul-
tants O and N, must be balanced by the applied axial force F, (fig. 5.2):

= Bua) = O. (5.12b)

2T R,

The outer edge is again assumed to be free (the damping influence of the
outer suspension is accounted for by taking a higher internal loss factor in the
calculations than the real value, as discussed in chapter 4). This means that at
x = b all stress and moment resultants must be zero:

Q(b) = Nx(b) = M(b) = 0. (5.13)

Q(a) sin o — N,(a) cos ¢ = (5.12¢)

The above boundary conditions will be used in all following computations.

In the following an important approximate relation will be derived between
the axial impedance Z, and the longitudinal impedance Z, at the inner edge.
The former is defined by

F, a
v4(a) ’

where v,(a) *) is the axial velocity at the inner edge (fig. 5.3@); Z, shows up
in the four-pole equations for the unconstrained inner edge:

a

(5.14)

*) Note that in the context of asymmetric vibrations the letter v is used for the azimuthal
displacement. However, confusion is hardly possible since v stands for velocity only in sym-
metric vibrations and is then always provided by one of the subscripts a (axial), / (longitudinal)
or t (transverse).
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Cone axis

Fig. 5.3a. Definition of forces and velocities at the inner edge.

Fi,=2Z, v(a) + Zu v(a),

5.15
F,=Z,v/(a) + Z, v(a), ( )

where F,, and v, ,(a) are the forces and velocities at the inner edge in the
longitudinal and transverse directions. To simplify the present discussion the
positive directions of the forcesand velocitiesaredefined as shownin fig. 5.3a *).
The latter equations account for the coupling between the longitudinal and the
transverse forces and velocities. For f > f,,, however, the longitudinal and
transverse (i.e. bending) waves gradually uncouple with increasing frequency
(see sec. 5.3). Then, the cross-terms may be neglected; hence

F,~ Z,v/(a),

(5.16)
F, ~ Z, v(a).

The boundary conditions at the inner edge are rewritten in terms of forces and
velocities. The condition that the inner edge can only move in axial direction
(eq. (5.12a)) is expressed by
v(@) = v,(a) sin a,
' (5.17)
vi(@) = v,(a) cos a.

The axial components of the transverse and longitudinal forces F, and F; must
be equal to the axial force F,, exerted by the voice coil:

F,sina + F, cosoc=F,,.- (5.18)

The components of F, and F, in a direction normal to the cone axis are neutral-

*) Note that the longitudinal force F; and the transverse velocity v, are defined oppositely
to the longitudinal stress resultant N, and the transverse displacement w respectively. If
follows that F; = —2n R; N, and v, = —jw w (cf. figs 5.2, 5.3a).
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ized by the infinitely stiff ring. On the basis of the latter three equations, we
now easily arrive at the following expression:

Z, = Z,sin?* « + Z, cos? «. (5.19)

Of course, eq. (5.19) only holds for the present boundary conditions at the inner
edge. For a cylinder Z, is equal to Z,; for a flat plate Z, = Z,. The transverse
impedance Z, is mainly controlled by the cone bending stiffness, which is rela-
tively small in practice. The longitudinal impedance Z, is mainly' determined by
the extensional stiffness of the cone surface and is usually much higher than Z,.
We write eq. (5.19) as

Z
Z,=2Z, (1 + — tan? a) cos? o (5.20)

[}

and estimate the frequency average of |Z,/Z,| tan? « as follows.

At high frequencies ( f > f;,), the frequency characteristic of the longitudinal
impedance Z, oscillates about the characteristic longitudinal impedance Z,. of
a semi-infinite plate (see eq. (4.46)), given by

Zie==2mw R hoc. - (5.2))

The transverse impedance Z, oscillates about the characteristic bending imped-
ance Z,, of a semi-infinite plate “°), where

Z, =27 R, ho cg. (5.22)

The amplitude of the oscillations of Z, and Z, about their characteristic values
in the frequency domain are proportional to 1/ k; L and 1/d kgL respectively.
Since in practice in the audio region

b < wh )m<<1 (5.23)
k_B N Cy V12 .

we may neglect the amplitude of the oscillations of Z, as compared with those
of Z,. Therefore, the frequency average of |Z,/Z,| tan? « may be written as

t

{Z

Zrc kl
tan? oc> A tan? o = — tan? «, (5.24)

1 Zlc kB

which in practice is much smaller than 1. For instance, if we substitute the
following practical values in the latter equation: a = 60° 4= 03 mm and
¢ = 2700 m/s we find at f = 10 kHz:

&
Z

tan? oc> ~ 0-1.



— 68 —

Hence, it follows from eq. (5.20) that
Z, ~ Z,cos? a. (5.25)

Equation (5.25) means that in the high-frequency region (region III) the axial
impedance Z, is determined by the longitudinal impedance Z,. In the transition
region (region II) Z, is higher than Z,. (see fig. 4.15) at all frequencies. Then
the frequency average of |Z,/Z,| tan? o will certainly be negligible with re-
spect to unity and eq. (5.25) also holds in region II. This approximation for Z,
will not be used in the numerical computations, it only serves to illustrate the
high influence of Z; on Z, and the relationship between the frequency charac-
teristics of the axial impedance calculated with the exact equations and the
longitudinal impedance calculated with the membrane equations.

Equation (5.25) may be illustrated on the basis of fig. 5.3, which is a sim-
plified representation of the situation at the inner edge. The latter can only
move along the vertical axis; the transverse and longitudinal impedances are
represented by two springs with stiffnesses s, and s, respectively *). It is clear
that, if s, < s, then s; will determine the ultimate axial displacement.

Equation (5.25) also holds at low frequencies (region I), which can be shown
as follows. Then the cone oscillates practically as a rigid body with a mass M ,.
The motion is determined by Newton’s law:

F, ~ jo M;v,a) (5.26)

and F, and F, cannot be described by (independent) four-pole equations. On
the contrary, they can be considered as components of F, (fig. 5.3¢c):

F,= F, sin «a,
(5.27)
F,= F,cos a,

and are consequently directly proportional to F,. The inner-edge constraint
which only allows motion in the axial direction is completely superfluous, be-
cause the axially driven rigid cone will move axially; eq. (5.18) turns into an
identity. With eqs (5.17), (5.26) and (5.27) we arrive at

Z, ~ joM,, (5.28)
Z, ~ Z,/cos? a, (5.29a)
Z, ~s Z,[sin? a. (5.29p)

Equation (5.29a) agrees with eq. (4.27) which was found from the low-frequency
solutions of the membrane equations for a longitudinally driven unconstrained
edge. This shows indeed that the inner-edge constraint does not affect the motion
in the low-frequency region.
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Rigid axis

St
Rigid inner edge

b)

Rigid axis

Cone mass My

c)

Fig. 5.3. (b) Simplified illustration of the infiuence of the transverse impedance Z, (represented
by the spring s,) and the longitudinal impedance Z, (represented by the spring s;).

The inner edge is forced to move along the rigid vertical axis.

(c) Simplified illustration of the forces and cone velocity at a very low frequency.

We conclude that the mean frequency characteristic of Z, is determined by
Z,; the latter can be calculated with the membrane equations. Oscillations about
the mean value are caused by bending resonances and antiresonances at which
Z, becomes minimum and maximum; their amplitude decreases with increasing
frequency and increasing loss factor. This will be explicitly illustrated in the
next sections.

5.5. Typical frequency dependence of the displacement patterns

In this section the axisymmetric transverse and longitudinal displacement
patterns w(x) and u(x) are calculated for cone 50.3 (see table 5-I) by solving
numerically the general system of differential equations at a number of fre-

*) Of course this representation of the cone reaction by stiffnesses serves an illustrative pur-
pose; at certain frequency intervals the conereacts as a mass.
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TABLE 5-1
Cone 50.3
geometry material
semi-apex angle o = 50° Young’s modulus E = 2. 10° N/m?
inner-edge radius R, = 17 mm mass density ¢ = 600 kg/m?
outer-edge radius R, = 83 mm Poisson’s ratio » =073
thickness h =0-23 mm loss factor: specified locally
(if unspecified: 6 = 0-1)

quencies. Except for the greater thickness this cone has the same geometry and
material parameters as cone 50.1 whose longitudinal behaviour was discussed in
chapter 4. Therefore, the frequency regions are equal and the longitudinal
resonant and antiresonant frequencies are practically equal to those of cone
50.1. The greater thickness of cone 50.3 serves to illustrate more clearly the
effects of bending on the frequency characteristic of the axial admittance (see
sec. 5.7.1). For simplicity the internal loss factor is assumed to be zero. This
means that the displacement patterns are of the standing-wave type.

Transverse and longitudinal displacement patterns calculated with the general
equations at typical frequencies in the three frequency regions are shown in
figs 5.4a through 5.4h which are not drawn to the same scale.

Region I (f < fiv)

Figure 5.4a shows w(x) and u(x) at f= 1000 Hz. At this relatively low
frequency the cone motion is almost uniform; in a first approximation the
cone may be considered to be rigid. When the frequency is raised the ampli-
tudes at the inner edge decrease whereas they increase at the outer edge, as
discussed in chapter 4. At the ring antiresonant frequency f;, = 1840 Hz the
longitudinal displacement #(x) becomes zero at the inner edge: a node appears.
Because of the assumed rigidness of the inner edge, this node also appears in w
(fig. 5.4b). When the frequency is raised further, the node shifts to the outer
edge, as shown by fig. 5.4c (2200 Hz). The upper limit of region I lies at
Jfi» = 2250 Hz.

Region IT (fuo <f < fea)
Above f;, the cone shows natural frequencies associated with bending modes.
Because a forced vibration is considered here, it is expedient to divide these

natural frequencies into so-called bending resonant frequencies at which u(a)
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and w(a) become infinite, and bending antiresonant frequencies at which u(a)
and w(a) become zero.

These bending resonant and antiresonant frequencies are easily distinguished
from longitudinal resonant and antiresonant frequencies, since the spacings
between the latter are relatively large for normal loudspeaker cones. Moreover,
each time a bending antiresonant frequency is passed, the number of nodes in
w(x) increases by 1, whereas that in #(x) remains unaltered. While passing a
longitudinal antiresonant frequency, both w(x) and u(x) show another node.
For instance, at the first bending resonance f,,; = 2360 Hz (fig. 5.4d), u and w
become very large and a phase change of 180 degrees occurs. At the first bending
antiresonant frequency f,,;, = 2418 Hz another node arises in w(x) at the inner
edge (fig. 5.4¢), which shifts relatively quickly to the outer edge when the fre-
quency is further increased.

The mode shapes at the second and third bending resonant and antiresonant
frequencies are shown in figs 5.4f through 5.4i. The above figures show the
typical amplitude distribution encountered in region II. In this region, a tran-
sition point lies on the cone at x = x,, which is indicated by a dot in figs 5.4d
through 5.4i. On the inner cone part a < x < x,, the vibration is predém-
inantly of the membrane type. The wavelength is rather long. The motion
on this part is practically axial, because ¥ and w have the same order of magni-
tude (eq. (5.11)). At the transition point considerable interaction occurs be-
tween membrane and bending waves (sec. 5.3). On the outer cone part
x; < x < b, the vibration amplitude is predominantly determined by bending
waves with a wavenumber approximately equal to the bending wavenumber kg
in an infinite plate and with transverse amplitudes much higher than the longi-
tudinal ones (figs 5.4g through 5.4i). These figuies illustrate that in region II
the general vibration patterns completely deviate from the membrane patterns;
the latter show a singularity at x, and no bending waves.

The different nature of the motion on the two sides of the transition point
can be further demonstrated on the basis of the strain-energy coefficient #. This
coefficient indicates the fraction of the total strain energy that is due to
bending:

Vs

- (5.30)
Vs + Vs

n

where Vp is the strain energy due to bending and Vg the strain energy due to
stretching of the middle surface of the cone. This coefficient was originally
introduced by Kalnins 1%) for the classification of modes. Expressions for Vg
and Vjp are given in appendix C. The value of %, calculated numerically at
regular intervals along a cone meridian is plotted as a function of x in fig. 5.5.
This figure shows that # becomes small for x < x,, which indicates the mem-
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Fig. 5.4. Calculated transverse and longitudinal displacement patterns of cone 50.3 (exact
solution) at

(a) 1000 Hz,

(b) the ring antiresonant frequency f,, = 1840 Hz,

(c) 2200 Hz,

(d) the first bending resonant frequency fpr; = 2360 Hz,

(e) the first bending antiresonant frequency fp,; = 2418 Hz.

brane character of the motion, whereas for x > x,, n approaches 1, indicating
that the wave motion is of the bending type.

The relatively long wavelength for x < x, and short wavelength for x > x,
is characteristic of all cones vibrating with frequencies in region II. This has
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Fig. 5.4 (continued):

(f) the second bending resonant frequency f;,2 = 2668 Hz,
(g) the second bending antiresonant frequency f,,2 = 2750 Hz,
(h) the third bending resonant frequency f;,3 = 2993 Hz,

(i) the third bending antiresonant frequency fp,3 = 3083 Hz.
The dot indicates the position of the transition point.

considerable influence on the sound radiation, as will be shown in chapter 6.
A comparison of the displacement patterns obtained with the membrane and
the general equations at the first longitudinal antiresonant frequency f;,; and
the first membrane resonant frequency f,.,;, both lying in region II, will be
made in sec. 5.9.

Region III ( f > f;, = 11000 Hz)

In region III the coupling between bending and membrane waves becomes
weak. The transition point has disappeared from the cone. The transverse dis-
placement pattern is well approximated by that on a transversely driven semi-
infinite plate, except at certain discrete frequencies, viz. at the natural frequen-
cies for a radially supported inner edge (membrane resonant frequencies); these
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Fig. 5.5. Strain-energy coefficient # versus meridional coordinate x for cone 50.3 atthe third
bending antiresonant frequency f,3 = 3083 Hz.
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28,

Fig. 5.6. Calculated transverse and longitudinal displacement patterns of cone 50.3 at
f=13000 Hz (exact solution).

will be discussed in sec. 5.8. In the present frequency region the cone is entirely
covered by bending waves; the wavelength is approximately equal to the bending
wavelength 1z in an infinite plate. This is illustrated in fig. 5.6, which shows the
transverse and longitudinal displacement patterns at /= 13000 Hz; the value
of g calculated with eq. (5.10) is indicated.

5.6. Dependence of bending resonant and antiresonant frequencies and displace-
ment patterns on the cone geometry and material

In region III the bending resonant and antiresonant frequencies can easily
be approximated since the cone is entirely covered by bending waves with a
wavelength about equal to A5. As the outer edge is free, an antinode will appear
there. At bending resonant frequencies f,,, an antinode also appears at the
inner edge. At these frequencies an integral number of half wavelengths fits on
the meridional length L of the cone; hence we find with eq. (5.10):

w n*he,
4y3 I?

(5.31)

fbm ~
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Since at bending antiresonant frequencies f,,, a node appears at the inner edge,
an odd number of quarter wavelengths must fit on L, so that

n (@n+ D?*he,

abn B . 5.32
on ™ e (532)

These equations can be written as functions of the reduced geometry variables
h/R, and R,/R, as follows:

72 n? h -Rb/-Ra .
e R sin? o, (5.33)
230 —1)]Y2 R, (Ry/R,— 1)?

a

w2 (2n4+1)2  h R,/R,
A ( ) olRe  int o, (5.34)
8 [3(1—»3)]V* Ry (Ry/R,— 1)?

a

where kR,|,, and kR,|,, are the values of the dimensionless frequency
parameter kR, at the nth bending resonant and antiresonant frequencies
respectively.

In region II bending waves only appear on the outer cone part and the above
frequencies must be numerically calculated with the general differential equa-
tions. This is carried out as follows. At the resonant frequencies the axial ad-
mittance |Ya| becomes infinite if § =0; at the antiresonant frequencies
|Ya| = 0. This admittance is numerically calculated for a sufficient number of
frequencies (usually about 5 points between adjacent resonant frequencies).
Inverse Newton interpolation of |Y,| and 1/|Y,| then yields the resonant and
antiresonant frequencies. In this way the dependence of the lowest five bending
antiresonant frequencies on the cone geometrical parameters is determined.
The bending resonant frequencies lie between the bending antiresonant fre-
quencies (though in general not halfway between them); they will not be shown.

The above-mentioned dependence will be discussed in the next subsections
on the basis of figs 5.7 through 5.9 in which the longitudinal and bending anti-
resonant frequencies are represented by drawn and dashed curves respectively.
The longitudinal antiresonant frequencies are calculated with the membrane
equations. The points labelled alphabetically on the curve f,,; in these figures
correspond to the modes labelled similarly in fig. 5.10. In these modes the tran-
sition point is again indicated by a dot. The dependence on the material param-
eters E and g follows implicitly from the dimensionless variable kR,

5.6.1. Influence of the thickness

Figure 5.7 shows the dimensionless frequency kR, at the lowest five bend-
ing antiresonant frequencies as a function of the reduced cone thickness 4/R,
for o« = 60° and R,/R, = 5. The spacing between the bending antiresonant
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Fig. 5.7. Calculated dependence of the ring antiresonant frequency f;,, the first longitudinal
antiresonant frequency f;,; (drawn lines) and the lowest five bending antiresonant frequencies

(dashed) on the reduced cone thickness h/R, for & = 60° and R,/R, = 5.

frequencies decreases with decreasing A/R,. In the limit, as 4/R,— 0, all
bending resonant and antiresonant frequencies coincide at kR, = cos a or
kR, = 1, where R, is the second radius of curvature at the inner edge (eq.
(4.68)). In region III the bending resonant and antiresonant frequencies are

proportional to 4/R, (eqs (5.33), (5.34)).

Figures 5.10a and b show the displacement patterns at the third bendinganti-
resonant frequency for #/R, = 1-25.10~3 and A/R, = 2 .10~2 respectively

(points a and b in fig. 5.7).
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Fig. 5.8. Calculated dependence of the ring antiresonant frequency f;,, the first longitudinal
antiresonant frequency f;,; (drawn curves) and the lowest five bending antiresonant fre-
quencies (dashed) on the semi-apex angle & for R,/R, = 5 and h/Ry, = 5.1073,

—_ ()
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5.6.2. Influence of the apex angle

The influence of the apex angle on the lowest five bending antiresonant fre-
quencies is shown in fig. 5.8 for R,/R, = 5 and #/R, = 5.10~3. The ring
antiresonant frequency decreases with increasing a (see sec. 4.4). It becomes
zero at o = 90°. The lower bending antiresonant frequencies show the same
tendency. However, as o approaches 90° the latter become equal to the lower
bending antiresonant frequencies of a flat annular ring. The spacing between the
antiresonant frequencies increases with increasing o, because the meridional
cone length L decreases (R,/R,is kept constant). At higher bending antiresonant
frequencies the slope of the curves therefore becomes positive, as predicted by
eq. (4.35) for f > f;, (not shown in fig. 5.8). '

The displacement patterns at f,3 for « = 50 and 70 degrees (points ¢ and d
in fig. 5.8) are shown in figs 5.10c and d. Although the value f,,; for « = 50°
is higher than that for « = 70° the transition point of the latter lies closer
to the inner edge. This is caused by the fact that f;, and f;, decrease faster with
increasing o than the bending antiresonant frequencies.

5

Region 1T

Region IT

Region T

o = 50° -
h/R,= 5.10

-.2 L 1 3 L L 11 1 (]
0 2 5 10 2 5

Fig. 5.9a. Calculated dependence of the ring antiresonant frequency f;,, the lowest two longi-
tudinal antiresonant frequencies (drawn curves) and the lowest five bending antiresonant fre-
quencies (dashed) on R,/R, for #/Ry = 5.1073 and a = 50°.
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5.6.3. Influence of the ratio of outer- to inner-edge radius

The dependence of five lowest bending antiresonant frequencies on R,/R, is
shown in figs 5.9a, b and ¢ for « = 50, 60 and 70 degrees respectively and
h/R, = 5.10~3 (this value holds approximately for many practical loud-
speaker cones). These figures show that for R,/R, > 3, the bending anti-
resonant frequencies are inversely proportional to R,/R,, which is predicted by
eq. (5.34) for f > f;,. The same holds for the longitudinal antiresonant fre-
quencies (cf. fig. 4.195). For R,/R, < 3 the higher bending antiresonant fre-
quencies increase faster with decreasing R,/R, than the higher longitudinal
antiresonant frequencies. The figures also show that in practice the ring anti-
resonant frequency f;, can be approximated by the upper-boundary frequency
Jzp of region I (lower dash-dotted lines in figs 5.9a, b and ¢). The displacement
patterns at f,,3 for « = 50° and for R,/R, = 25 and R,/R, = 10 are shown
by figs 5.10e and f respectively (points e and f in fig. 5.95). In general fig. 5.10
shows that the influence of the cone geometry on the longitudinal displacement
patterns at f,,3 is rather small.

In the preceding sections the dependence of the lower bending antiresonant
frequencies and the modes on the cone geometry was discussed. Calculations
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Fig. 5.9b. See legend to fig. 5.9a; o = 60°.
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Fig. 5.9¢. See legend to fig. 5.9a; & = 70°.

on cones with other boundary conditions 1°) show that the boundary condi-
tions have little influence on the bending antiresonant frequencies. In region II,
a change of boundary conditions at the outer edge has much more influence
on frequencies and modes than at the inner edge.

5.7. Frequency characteristic of the axial admittance

In this section the typical course of the frequency characteristic of the axial
admittance Y, at the inner edge, calculated with the general equations, will be
discussed. On the basis of eq. (5.25) we introduce the reduced axial admittance

Ya> defined by
Y,

Vo= cos? a. (5.35)

lc
Figure 5.11 shows the frequency characteristic of y, of cone 50.3 for 6 =0
in region I and the lower part of region II. At very low frequencies ( f < fs),
| yal is inversely proportional to the frequency, according to the low-frequency
approximation (eq. (5.28)):

Y, ~ 1[joM,. (5.36)
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Fig. 5.10. Calculated transverse and longitudinal displacement patterns at the third bending
antiresonant frequency f,,3 for various cone geometries; the characters in each figure cor-
respond to those indicated in figs 5.7 to 5.9 (exact solution).

(@) @ =60° Ry/R, =75, /Ry =125.10"3, (d) @ = 70°, Ry/Ra =5, h/Ry =5.10"3,
(b) @ = 60°% Ry/Ra =S5, h|Ry=2.10"2, (¢) o = 60°, Ry/R; =25, h/Ry = 5.10~3,
(€) & =50% Ry/Ra =5, /R, =5.10"3,  (f) ¢ = 60°, Ry/Rs =10, h/R, = 5.10-3.
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Above the ring antiresonant frequency f;, (1840 Hz), at which y, becomes zero
for the first time, bending resonances (at which | yal = o0) and antiresonances
(at which y, = 0) appear. At each antiresonant frequency, another node ap-
pears at the inner edge which shifts to the outer edge when the frequency is
further increased (cf. figs 5.4d through 5.4i).

As for the numerical calculations, the introduction of internal losses doubles
the number of differential equations, bringing it to 12 for axisymmetric vibra-
tions; the method of solution remains the same (see appendices A and B).
Figure 5.12 shows Iyal as a functlon of frequency for cone 50.3 with 6 = 0-01
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Fig. 5. 116 Calculated frequency characteristic of the reduced axial admittance y, of cone
50.3 for 6 = 0.
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Fig. 5.12. Calculated frequency characteristics of the reduced axial admittance |y,| of cone
50.3 for & = 0:01 (drawn curve) and & = 0-1 (dashed curve).
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(drawn curve) and 6 = 0-1 (dashed curve). Figure 5.12 is more realistic than
fig. 5.11: internal losses limit IJ’al to finite values at resonant frequencies,
whereas at antiresonant frequencies |ya] no longer becomes zero. In region II
bending resonances and antiresonances cause |ya| to oscillate about a mean
value, determined by Y, (eq. (5.25)). The magnitude of these oscillations is
proportional to 1/dkpL. This is well known from plate bending theory °) and
can be easily explained by considering the ratio of the amplitude of the wave
received back at the inner edge after reflection to that of the outgoing wave; this
ratio decreases when either 6, kg or L is increased, because the wave has to
cover more wavelengths before arriving at the inner edge again. Consequently
resonances and antiresonances cannot fully build up. It may also be explained
by comparing the bandwidth of each bending resonance with the spacing be-
tween the bending resonant frequencies; if the former becomes greater than the
latter, the oscillations practically disappear.

Figure 5.13 shows the frequency characteristic of |ya| of cone 50.3 for
0 = 0-1 in a greater frequency interval. On the average, this characteristic
follows the same course as that of fig. 4.15, which was calculated with the
membrane equations. The only difference is the appearance of small oscilla-
tions (fine structure) in | y,,| just above f;,, which are caused by bending reso-
nances and antiresonances. In region III, |ya| oscillates about the value 1,
which is easily explained as follows. It was shown in sec. 5.4 that Y, is deter-
mined by the longitudinal admittance Y,; with eq. (5.25) we find

Y, ~ Y,/cos? a. (5.37)

For high frequencies, |Y,| oscillates around a frequency-independent charac-
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Fig. 5.13. Calculated frequency characteristic of the reduced axial admittance |y, of cone
50.3 for 6 = 0-1.



teristic value Y,. (eq. (4.48)); these oscillations are caused by longitudinal’
resonances and antiresonances. The frequency average of |Ya| in region III
is therefore

(

Y,

> = Yy [cos? a. (5.38)
Hence

Qo> =1 (5.39)
in this region.

Figure 5.14 shows the frequency characteristic of |ya| of cone 50.1, which
has a smaller thickness than cone 50.3. For this cone 50.1 the fine structure
has fully disappeared, the characteristics of figs 4.15 and 5.14 are almost equal.
In the latter figure the real part of y, is shown dashed. This part is very small
in region I, where bending is negligible; in region III, y, becomes virtually real
(the characteristic longitudinal impedance Z,, is real and bending has a negligible
influence since Z,. < Z,, see sec. 5.4).

The influence of the cone geometrical and material parameters (except the
thickness 4) on y, can therefore be examined by calculating y, with the mem-
brane equations. Of course, this may only be done as long as eq. (5.25) is
satisfied. This is nearly always the case in practice. However, to compute the
sound radiation in the next chapter we need in any case to calculate the exact
transverse velocity distribution with the twelve general differential equations
for a great number of frequencies. Further, to illustrate the influence of the
cone geometry and material on the sound radiation these calculations must
be carried out for various cones of different geometry. Therefore we may as
well show the frequency characteristics of |y,,| of these cones. In the following
this is done for cone 50.1 of which one parameter is varied at a time.

5.7.1. Influence of the thickness

The influence of the cone thickness # on the axial admittance |ya| was dis-
cussed in the preceding sections: it has no influence on the frequency average
of | y,,| but merely influences the amplitude of the fine structure: this amplitude
is proportional to 1/ky or h'/2 (eq. (5.10)). When # is sufficiently small, this
fine structure completely disappears (cf. figs 5.13 and 5.14). The relatively small
value of # = 0-1 mm has therefore been chosen for the following cones to
reduce the number of frequencies at which y, has to be calculated. Further,
to approximatively account for the rim damping and the radiation damping
we take 6 = 0-1, as discussed in sec. 4.7.4.

5.7.2. Influence of the apex angle

In sec. 4.7.5 the influence of an increasing semi-apex angle a on the frequency
characteristic of | y,| was discussed; the meridional cone length L was kept
constant. This resulted in a slight decrease of the ring antiresonant frequency f;,;



70 Lll’l i 12 Ll § !lZlo-, M ] |5 ! ; 1L ?
2 Cone 50.1
5t E,
Relvalvel 4 ™\ I A [\ SRe( ) g
T 1E ';’ 2 (5
i \ ! V V 10" T
L 7N s
2t \ l/ \f [°
10" / 2
55 y, 570-2
2: Re(ya)\ \/ 55
] 7 :
702 AT 4 SR T te b b 1 a0tl2
0wt 2 5 g0’ 2| 5 gt 2 s 10
—™ f(Hz2)
T fta

Fig. 5.14. Calculated frequency characteristic of the real part and the modulus of the reduced
axial admittance y, of cone 50.1.

02, s 1002 s 1 2 5

70 :llll L L 1.1 L1l L Lt 4|t 1 1l |_
st Cone 60.1 |2
A\ L1
C (m
N TP
1E 7 | -
5-:. K\/ :‘:0.]
2} :
L5
10 \V X
" 2
N 107
N T
—_— 2,
fio fia

Fig. 5.15. Calculated frequency characteristic of the reduced axial admittance |y,| of cone 60.1.

the longitudinal resonant and antiresonant frequencies remained practically
unaltered. To show the influence of « on the sound radiation it is more expe-
dient, however, to keep the inner- and outer-edge radii R, and R, constant.
A variation of o then implies a variation of L and a shift of all longitudinal
resonant and antiresonant frequencies. The following examples will illustrate
this. '
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Fig. 5.16. Calculated frequency characteristic of the reduced axial admittance |y,| of cone 70.2.
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Fig. 5.17. Calculated frequency characteristic of the reduced axial admittance |y,| of cone 50.4.

The frequency characteristic of the reduced axial admittance | yal of cone 60.1
is shownin fig. 5.15. Except for o, this conehas the same geometry and material
parameters as cone 50.1 (see table 5-II). According to eqs (4.11) and (4.12) the
values of f;, and f;, are lowered relative to those of cone 50.1 (cf. figs 5.14, 5.15).
The same holds for f;, lying just below f;;. The longitudinal resonant and anti-
resonant frequencies have increased due to the decrease of the meridional cone
length L.
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TABLE 5-11
Cone 60.1
geometry material
semi-apex angle o = 60° Young’s modulus E=2.10° N/m?
inner-edge radius R, = 17 mm mass density o = 600 kg/m?
outer-edge radius R, = 83 mm Poisson’s ratio y =03
thickness h =01 mm loss factor 0=01
TABLE S5-II1
Cone 70.2
geometry material
semi-apex angle o ="70° Young’s modulus E =2.10° N/m?
inner-edge radius R, = 17 mm mass density o = 600 kg/m?3
outer-edge radius Ry, = 83 mm Poisson’s ratio v =03
thickness h =01 mm loss factor 0 =01

Because the cone mass M, is decreased as well, the |Ya|-curve is shifted up-
wards in region I. In regions II and III, |Y,| has increased by a factor cos? 50°/
cos? 60° (eq. (5.38)). Relative to the low-frequency curve the average high-
frequency value of | Y,,| of cone 60.1 is therefore higher than that of cone 50.1.

The above is further illustrated by fig. 5.16, which shows the frequency
characteristic of | yal for cone 70.2 (parameters in table 5-III). The frequencies
Jrar J1» and f;, of cone 70.2 are lower than those of the foregoing cones, whereas
the longitudinal resonant and antiresonant frequencies are shifted upwards.

The ring resonant frequency f;, (6500 Hz) now falls above region II, which
causes a distinct peak.

5.7.3. Influence of the outer-edge radius

To illustrate the influence of a variation of theratio of the outer- to inner-edge
radius R,/ R,, the axial admittance | y,,l is calculated for a cone with R, twice that
of cone 50.1. This cone, numbered 50.4, otherwise has the same parameters
as cone 50.1, see table 5-IV. The dgubling of R, causes a halving of f,, and
fip (cf. figs 5.14, 5.17). Because the cone length L is approximately doubled
relative to cone 50.1, the longitudinal resonant and antiresonant frequencies
are also approximately halved (eqs (4.49) and (4.51)). The frequency f;, remains
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TABLE S5-IV
Cone 50.4
geometry material
semi-apex angle o = 50° Young’s modulus E = 2. 10° N/m?
inner-edge radius R,= 17 mm | mass density o = 600 kg/m3
outer-edge radius R, = 166 mm | Poisson’s ratio » =03
thickness h= 01 mm | loss factor 6 =01

unchanged. This results in an increase of region II, which now covers two
longitudinal antiresonant frequencies, viz. f;,; = 3500 Hz and f,,, = 8500 Hz.
The former is not clearly visible in fig. 5.17, because of the relatively high
damping in region II; the ring resonance at about 3200 Hz is not visible either.
For the same reason the height of the peak at the first longitudinal resonance
(4500 Hz) is considerably reduced as compared with that of cone 50.1.

In the low-frequency region the value of |Ya| has decreased by a factor of 4
(influence of M ,). In region III, |Y,| oscillates around the same mean value as
cone 50.1 (fig. 5.14), because Y,. and « are not changed (eq. (5.38)). The ampli-
tude of the oscillations around | yal = 1 is approximately halved since they are
proportional to 1/6k,L.

5.8. Membrane resonant frequencies

It was seen in sec. 4.7.3 that at certain frequencies the inner-edge displace-
ment of the conical membrane is purely axial. At these so-called membrane
resonant frequencies the inner edge can be radially supported without violating
the membrane requirement (no resultant force in transverse direction). Since it
is assumed in this chapter that the inner edge is radially supported, the cone
exhibits a purely longitudinal resonance at these frequencies, which overshadows
all bending effects.

This may be illustrated on the basis of the frequency characteristic of the
strain-energy coefficient % (eq. (5.30)) of cone 50.3 for 6 = 0, shown in fig. 5.18.
Below f;, the cone is hardly bent at all and % is very low. After a sharp rise
above f,,, where bending waves appear,  asymptotically approaches 1. At
the membrane resonant frequencies f;,. (7968, 17960, 28610 Hz), however, the
characteristic shows a pronounced dip indicating that the strain energy caused
by bending becomes very small. The displacement patterns at these frequencies
are very well approximated by those calculated with the membrane equations;
this will be illustrated in the next section.

The above frequencies f,,., obtained with the exact equations by minimizing #»,
are slightly different from those calculated with the membrane equations. The
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Fig. 5.18. Calculated frequency characteristic of the strain-energy coefficient 5 of cone 50.3
for = 0.

difference is greater for f,,., than for the higher frequencies because of the
singularity on the cone. This difference decreases with increasing frequency.
As shown in sec. 4.7.3 the higher membrane frequencies are practically equal
to the longitudinal antiresonant frequencies.

5.9. Comparison of the exact solutions and the solutions obtained with the mem-
brane approximation

It was shown in sec. 5.7 that the frequency characteristic of the reduced
longitudinal admittance | y,l calculated with the membrane equations is a very
good approximation of the frequency characteristic of the reduced axial admit-
tance |y,| calculated with the exact equations (the moduli of Y, and ¥, differ
approximately by a factor cos? o). In this section, the transverse and lon-
gitudinal displacement patterns w(x) and u(x) of cone 50.1 calculated with the
membrane equations (membrane patterns) are compared with those of cone
50.3 calculated with the exact equations (exact patterns), both for 6 = 0. Cone
50.3 is used here because its exact behaviour was already calculated in sec. 5.5.
The fact that cone 50.1 is thinner than cone 50.3 has no influence on the shape of
the membrane patterns. It should further be noted that, if the same driving
force is used, the amplitudes of the exact patterns are a factor 1/cos « larger than
the amplitudes of the membrane patterns owing to the different direction of the
driving force. :

To facilitate discussion, the characters # and w will be provided with the
subscript m (for membrane) or e (for exact). Since only the shape of the patterns
is important, the displacements are normalized by the maximum value of w(x).
At each frequency, u,(x) and w,(x) are drawn to the same scale, although these
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scales are different for different frequencies (this was also done for the mem-
brane patterns in chapter 4). '

In region I the membrane patterns are a very good approximation of the
exact patterns because bending effects are very small. The exact patterns wy(x)
and u/(x) atf = 1000 Hz are shown in fig. 5.4a, which should be compared with
the membrane patterns of fig. 4.7a. At the ring antiresonant frequency f;,
(1840 Hz) a small difference appears between membrane and exact patterns (cf.
figs 4.8a, 5.4b): the rigid inner edge forces wy(a) to zero at all frequencies where
u.(a) becomes zero (eq.(5.12a)). At the membrane approximation the inner edge
is free in the transverse direction (see sec. 4.5); therefore w,(a) attains a small
but nonzero value. The difference between the membrane and the exact patterns
increases when the lower boundary of region II is approached. However, even
at 2200 Hz the agreement is still good (cf. figs 4.9a, 5.4c).

In regions IT and III the displacement patterns in general differ considerably.
In region II the membrane patterns show a singularity at the transition point x,,
whereas the exact patterns show bending waves for x > x,. This is illustrated in
fig. 5.19, which shows w,(x) and u,(x) for cone 50.3 at 3083 Hz. These patterns
should be compared with the exact patterns of fig. 5.4i; both figures are drawn
to the same scale. The longitudinal displacement patterns closely resemble each
other; there is some resemblance in the transverse displacement patterns for
x < x;, where longitudinal stresses predominate.

At the longitudinal antiresonant frequencies, u,(x) is equal to u,(x) (besides a
sharp singularity of u,,(x) at x, in region II). This is illustrated by fig. 5.20, which

w | u
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Fig. 5.19. Calculated transverse and longitudinal displacement patterns of cone 50.3 with
d = 0 at 3083 Hz (membrane solution, cf. the exact solution of fig. 5.4i).
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Fig. 5.20. Calculated transverse and longitudinal displacement patterns of cone 50.3 with
0 = 0 at the first longitudinal antiresonant frequency f;,; = 7513 Hz (exact solution, cf. the
membrane solution of fig. 4.10a).
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shows w.(x) and u.(x) at the first longitudinal antiresonant frequency f,,, ; these
patterns should be compared with the membrane solutions of fig. 4.10. The
transverse displacement patterns w.(x) and w,(x) differ considerably.

At the membrane resonant frequencies f,,, the cone exhibits a pure lon-
gitudinal resonance with negligible bending; both w,,(x) and u,(x) are then
excellent approximations of w.(x) and u.(x) (except w,(x) for x ~ x, in region
II). This is illustrated by fig. 5.21, which shows the exact patterns at f,,,;. These
mode shapes should be compared with the membrane patterns of fig. 4.13a.
The exact patterns at the higher membrane resonances are equal to the mem-
brane patterns (figs 4.136 and c).

—_— X \ —— X
O | a‘\

Fig. 5.21. Calculated transverse and longitudinal displacement patterns of cone 50.3 with
0 = 0 at the first membrane resonant frequency fm;1 = 7968 Hz (exact solution, cf. the
membrane solution of fig. 4.13a).

For small values of » the transverse displacement patterns w.(x) at f,,., and
J1an differ considerably owing to the appearance of bending waves at fy,,. As n
increases and f,,,, approaches f;,, the amplitude of the bending wave decreases
and the patterns w.(x) show an increasing resemblance at these frequencies.
The longitudinal displacement patterns uJx) at f,,., and f,,, always resemble
one another closely owing to the small influence of the bending waves at fian OD
u(x).

If there are internal losses, the cone cannot build up a pure longitudinal
resonance at the membrane resonant frequencies: the displacements caused by
longitudinal wave motion become lower. In that case bending waves become
visible as a superposition on the longitudinal wave (figs 522a and b). Never-
theless, the amplitude of the transverse displacement caused by the longitudinal
wave remains relatively high compared to the amplitude of the bending wave.
Because the former displacement has a relatively long wavelength, it consider-
ably influences the sound radiation, as will be shown in the next chapter.

We may summarize the foregoing as follows. The frequency characteristic of
the mechanical admittance of the cone, calculated with the membrane equations
is a good approximation of the exact characteristic apart from some small
deviations in region II, which disappear for a sufficiently high loss factor. As
the vibration patterns are concerned, the membrane approximation is rather
good in region I. In general, however, it leads to wrong results in regions II
and IIL
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Fig. 5.22. Calculated transverse displacement patterns (exact solution) of cone 50.3 with
0 = 0-1 at the membrane resonant frequencies
(@) fmr1 = 7968 Hz, (b) finr2 = 17960 Hz.
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5.10. Influence of the voice-coil mass on the frequency characteristic of the axial
admittance

In all preceding calculations the mass of the voice coil and of other parts
attached to the inner édge has been omitted. The influence of this additional
mass is relatively easy to describe on the basis of the equivalent circuit of the
electrodynamic loudspeaker, shown in fig. 3.1a. The compliances of the inner
and outer suspensions C;; and C,; as well as the mechanical resistance R have
a negligible influence since we assume the driving frequency to lie far above the
fundamental resonant frequency f, of the loudspeaker mass-spring system.
The total mechanical impedance Z,, is

Ziw = Z, +jch | (540)

where M is the voice-coil mass with inclusion of all other additional masses at
the inner edge (inner suspension, dust cap). Figure 5.23 shows the absolute value
of the axial impedance Z, of cone 50.3 with mass M, and the mechanical react-
ance wM_ of the voice coil for M, = My/2 and M, = M,/4 as a function of
frequency.

The frequency characteristic of |Z m| of cone 50.3 with M, = M /4 is shown
in fig. 5.24. Below the frequency at which IZ | and wM . intersect in fig. 5.23,
|Zm| has the same shape as IZ | and is only shifted upwards. At very low fre-
quencies (f < fra)» Zio: remains proportional to the frequency; then

Ziow = joo (M, + M,).
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Fig. 5.23. Comparison of the calculated mechanical 1mpedances of cone 50.3 with mass M,
and a voice coil with mass M, = M4/2 and M, = M4/4.
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Fig. 5.25. Calculated frequency characteristic of the total mechanical admittance |Yo| of

cone 50.3 with M, = M,/2.

Above the frequency at which |Z ,,| and wM, are equal, |Zt°t| is determined by
wM_. and the mean value therefore increases in proportion to the frequency;
peaks and dips in |Za| only appear as small disturbances in |th|. The maxima
in |Z,,| at fia1, f1a2> €tc., fall at somewhat lower frequencies in the frequency
characteristic of [Z,°t|. A further influence of M, is that the minima in |Zm| do
not at all coincide with the minima in |Za| at the longitudinal resonant frequen-

cies.

Figure 5.25 shows the total mechanical admittance |Ym| of cone 50.3 with
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M, = M,/2 as a function of frequency. On the average, |th| decreases by 6 dB
per octave over the whole frequency range, except at f;, where a sharp rise oc-
curs. These figures illustrate the dominant influence of an additional mass in the
middle- and high-frequency region: the shape of the |Ya| characteristic is com-
pletely changed (cf. figs 5.13, 5.25).

5.11. Asymmetric vibrations

In the foregoing only axisymmetric vibrations have been discussed. If the
loudspeaker cone were perfectly homogeneous and rotationally symmetric and
if the driving force were uniformly applied at the inner edge and perfectly
parallel to the cone axis, then indeed no asymmetric vibrations would occur.
However, in practice, misalignment of the cone and the voice-coil axis as well as
inhomogeneities excite waves travelling in both azimuthal directions, which at
certain frequencies cause asymmetric standing waves with radial nodal lines.
The latter are superposed on the symmetric standing waves with circular nodal
lines.

By analogy with the wave types on a cylinder 2°) we may distinguish between
asymmetric bending, extensional and torsional waves. Only the first-mentioned
type is important here because of its significant transverse amplitude. The other
wave types have predominant amplitudes in the meridional and azimuthal
directions respectively. Asymmetric standing waves of the bending type occur
at natural frequencies which are much lower than the symmetric ones because
of (1) the low bending stiffness and (2) the absence of a transition frequency, as
encountered with the symmetric waves, above which the bending resonances
can only occur.

This is illustrated by our calculations on cone 52.1 (parameters in table 5-V).

TABLE 5-V
Cone 52.1
geometry material
semi-apex angle o = 52° Young’s modulus £ = 2. 10° N/m?
inner-edge radius R, = 17 mm mass density o = 600 kg/m3
outer-edge radius R, = 83 mm Poisson’s ratio  » =0-3
thickness h = 03 mm loss factor =0

The natural frequencies for asymmetric bending vibrations are calculated on
the basis of the eight general differential equations for forced asymmetric vibra-
tion (appendix A). In principle, the same boundary conditions as in the symmet-
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ric case are applied, viz. an inner edge which can only move axially *) and to
which the cone is clamped, and a free outer edge.

In order to calculate the eigenfrequencies we assume the driving force to
vary sinusoidally over the circumference of the inner edge:

F,= F,, cos(n0). (5.41)

The boundary conditions read:

u(a) sin o + w,(a) cos « = 0, (5.42)

v,(@) = 0, (5.43)

Bun@) = 0, (5.44)

Oxn(@) sin & — Ny,(a) cos o = P , (5.45)
27 R,

0n(b) = Nyn(b) = Ny(b) = M,(b) = 0. (5.46)

Note that in the latter equation the effective shear resultants NV, and Q, are used
because of the free-edge condition *8). For several values of the circumferential
wavenumber n the axial admittance Y,,, defined by

Yo = jo [u,(a) cos « — w,(a) sin o]/F,, (5.47)

is calculated as a function of frequency; this yields the resonant (I Ya,,| = o0)
and antiresonant (IY,,,,] = 0) frequencies. However, in this process we assumed
that the asymmetrical standing waves were provided by a sinusoidally distributed
axial driving force at the inner edge. In practice, these waves will mainly be
due to cone inhomogeneities **), and the relatively rigid inner edge will not in
effect be deformable. Since the inner edge is not deformed at the antiresonant
frequencies (IYa,,| = 0), the natural frequencies for asymmetric vibrations ex-
cited by inhomogeneities on a cone with a rigid inner edge will be the above-
mentioned asymmetric antiresonant frequencies. '
Figure 5.26 shows these natural frequencies f,,, for cone 52.1 plotted as a
function of n, indicating the number of nodal diameters of the asymmetric mode.
The value of m indicates the number of nodal circles without that on the inner
edge. On the ordinate (» = 0) the symmetric bending antiresonant frequencies
are encountered. Asymmetric natural frequencies appear at much lower fre-
quencies. For cone 52.1 the lowest asymmetric natural frequency lies at about

*) Note that this condition cannot be represented by a rigid massless ring at the inner edge
(see sec. 5.4) since the axial displacement varies with cos (n 0).
. **) An exception occurs if cone and voice-coil axis are misaligned; then the inner edge is
submitted to a bending moment varying with cos 6.
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Fig. 5.26. Calculated natural frequencies for asymmetric bending vibrations of cone 52.1 with
a clamped inner edge; n is the number of nodal diameters, m the number of nodal circles
(excluding the one at the inner edge).

120 Hz. The cone then shows an asymmetric vibration pattern with four nodal
diameters, one nodal circle at the inner edge and an antinode at the outer edge.
When the driving frequency is raised, many natural frequencies are passed;
inhomogeneities will excite asymmetric vibration patterns with a certain number
of nodal diameters that changes with frequency. Asymmetric vibrations will not
be discussed in any further detail since their influence on the sound radiation is
negligible (chapter 6). Further approximative calculations on asymmetric
vibrations of cones can be found inter alia in ref. 21.

5.12. Measurements

Measurements have been carried out on a few cones mainly to verify the
foregoing calculations. These measurements comprise the recording of the
motional impedance as a function of frequency and the holographicvisualization
of vibration patterns.

5.12.1. Comparison of calculated and measured motional impedances

The motional impedance of three plastic (CAB¥*)) truncated loudspeaker
cones was measured as a function of frequencywith the circuit shown in fig. 3.3.
These cones differ in several parameters (table 5-VI), but have other parameters
in common (table 5-VII). '

The value of Young’s modulus E was obtained experimentally from the fol-
lowing adjustment procedure applied to cone 60.2e. The first bending anti-
resonant frequency f,,; was calculated for an arbitrary value E’ of Young’s
modulus and 6 = 0. Then f,,, was measured from the recorded motional

*) CAB stands for cellulose-aceto-butyrate.
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TABLE 5-VI
Cones 50.5e, 60.2e and 70.3e
o (°) h (mm) MM,
cone 50.5¢ 50 027 0-24
cone 60.2e 60 0-26 0-28
cone 70.3e 70 0-28 0-28
TABLE 5-VII

Cones 50.5e, 60.2e and 70.3e

geometry material (CAB)
inner-edge radius R, = 17 mm Young’s modulus E =2-2. 10° N/m?
outer-edge radius R, = 83 mm mass density o = 1160 kg/m3
Poisson’s ratio v ~ 0-34
loss factor 0 ~ 006

impedance (fig. 5.27a). Since all resonant and antiresonant frequencies are pro-
portional to the square root of Young’s modulus, E was found from

(f bal )2 ,
E= E’, (5.48)
f I;al

where the influence of é on the measured value of f,,, is neglected.

Finally, the motional impedance was recorded as a function of frequency for
the cone vibrating in vacuum (100 Pa) without outer suspension. Of course the
above procedure could also be applied to the first longitudinal antiresonant
frequency, but the minimum in the measured curve at the latter frequency is
broader, which leads to a less accurate value of E.

The motional impedance is calculated using the equation

|Zmot| = (B 1)2 IYtotI (5.49)

where Y, follows from eq. (5.40). The value of the electromechanical conver-
sion factor (B )? of the driving system is obtained with eq. (3.7a) by measuring
the motional impedance of cone 60.2e at 200 Hz. We find

(B1)? = 20 Wb2/m2.

Since the same electrodynamic driving system is used in all measurements, this
value is maintained in all subsequent calculations.
The measured frequency characteristics of |Zm°,| of the above experimental
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TABLE 5-VIII
Cones 50.5, 60.2 and 70.3

o (%) h (mm) M. /M,
cone 50.5 50 0-23 0-24
cone 60.2 60 0-26 0-28
cone 70.3 70 ‘ 01 0-28
TABLE 5-IX
Cones 50.5, 60.2, and 70.3
geometry material
inner-edge radius R, = 17 mm Young’s modulus E = 2:2. 10° N/m?
outer-edge radius R, = 83 mm mass density o = 1160 kg/m3
Poisson’s ratio v = 0-3
loss factor 0 =01

cones are compared with the calculated curves of the cones 50.5, 60.2 and 70.3
(see table 5-VIII); the latter cones have the parameters of table 5-IX in common.
As these cones will also be used to compare calculated and measured radiation
characteristics in chapter 6, the theoretical loss factor d is taken higher than the
measured value to account for additional rim and radiation damping, as ex-
plained in sec. 4.7.4. The difference between the theoretical and measured Pois-
son’s ratios has a negligible influence; a theoretical value » = 0-3 is taken be-
cause the Z,(f) characteristics of cones 50.3 and 70.2 have already been cal-
culated with this value *). The latter cones only differ from cones 50.5 and 70.3
in their values of F and p. Therefore the Z( /) characteristics of the latter cones
can easily be obtained from the characteristics of cones 50.3 and 70.2 already
calculated (figs 5.13, 5.16), since all frequencies are proportional to ¢ = (E/p)*/2
and Z,is proportional to gc. The remaining difference in thickness between the
calculated and measured 50° and 70° cones is of minor importance, as shown in
sec. 5.7.1. Although the theoretical and experimental cone masses differ, the
measured ratio M,/M, is constantly used in the calculations in order to keep the
influence of M, on the shape of the characteristics equal.

We will first compare the calculated characteristic of cone 60.2 with the
measured curve of cone 60.2e (fig. 5.27a) because these cones only differ in
their values of » and 8. In the following graphs the calculated curves are dashed.
The drawn curve of fig. 5.27a, measured in vacuum, shows a peak at the fun-

*) In view of the large computing times required, computations carried out previously are
used as much as possible.



— 99 —

10%
: l
. 5t —— Measured (cone 60.2e)
|Zmar2) 1 ———Calculated {cone 60.2)
10k
st
2 -
’ L
st
2..
0L
i F \ ~
sp (ﬂ'a fia1 Ta ~

10 2 5,022 5,032 5;0‘25
— f(Hz)

Fig. 5.27a. Calculated (cone 60.2, dashed) and measured (cone 60.2e, drawn curve) frequency
characteristics of the motional impedance |Z o in vacuum.
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Fig. 5.27b. Measured frequency characteristic of the motional impedance of cone 60.2e
vibrating in air.

damental resonant frequency f, (=~ 40 Hz) of the loudspeaker mass-spring
system (eq.(3.4)). Above fy, calculated and measured curves decrease with in-
creasing frequency (eq.(3.7a)). The measured minimum at f;, is less deep than
the calculated one, presumably because the inner edge is not completely rigid.
The amplitudes of the oscillations above f,, (fine structure) in the calculated
curve are somewhat smaller because of the assumed higher loss factor.



— 100 —

Table 5-X shows the calculated longitudinal and bending antiresonant fre-
quencies of cone 60.2 for 6 = M, = 0 and the measured values (minima in
fig. 5.27a) of cone 60.2e. It should be recalled that the calculated and measured
values of f;,; were made equal by adjusting the value of E.

TABLE 5-X
Cones 60.2 and 60.2¢
calculated values measured values deviation

cone 60.2 (Hz) cone 60.2e (Hz) (%)
fra 1121 1190 6
Ja1 1463 1465 —
Joa2 1733 1730 —_
Ja3 2003 2005 —
Sas 2279 2275 —
Foas 2576 2579 —
Jvas 2894 2912 1
Srar 3238 3262 1
Joas 3607 3685 2
Jbao 4004 4140 3
Sra10 4436 4689 6
Ja11 4915 5288 8
Sia1 5800 5808 —

The deviations between calculated and measured values of f;, increase with
increasing frequency. They may be caused by the decreasing accuracy of the
measuring circuit with increasing frequency, by the fact that Young’s modulus
of plastics is frequency-dependent and finally by the fact that the antiresonant
frequencies are calculated for 6 = M, = 0.

In fig. 5.27a as well as in all following figures the indicated values of f;, and
Jfia are calculated for M, = 0; a nonzero value of M shifts the minimum at
f1a1 to a somewhat lower frequency. Just above f;,, a maximum appears; this
is not a resonance but merely the influence of M, (at this point the mechanical
reactance wM . starts to dominate). Deviations between the calculated and
measured curves may be caused by differences between the test and the reference
loudspeakers (see sec. 3.3). Above 15 kHz the inner edge, not being completely
rigid as assumed in the calculations, introduces additional compliance; this
causes the measured motional impedance to increase.

Figure 5.27b shows the frequency characteristic of the motional impedance
of cone 60.2e vibrating in air. The characteristic is not fundamentally different
from the one in vacuum, except that all longitudinal and bending resonant and
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antiresonant frequencies are decreased by the air-mass loading on the cone
surface. This decrease varies from about 8 9 at the lower boundary of region II
to less than 4 % at the upper boundary of this region. The effect of the radiation
damping on the bandwidths of the bending resonances is small because the
internal material damping of the plastic is already relatively high.

Figure 5.28 shows the calculated motional impedance of cone 50.5 and the
measured characteristic of cone 50.5e. These cones differ in thickness, which
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Fig. 5.28. Calculated (cone 50.5, dashed) and measured (cone 50.5e, drawn curve) frequency
characteristics of the motional impedance |Z 4| in vacuum.

3 ‘ I
- —— Measured (cone 70.3e)
i ——— Calculated (cone 70.3)

b N

< A o
\\J
N\ N

"
T LSRR

(%]
T T rriin

|
\\\ ! A
2 \‘ i \\:J\./
1 ! S
76 5 1f N
e v \\\
sﬁ ﬁ'a fllcr flal

0 2 5 f 2 5 g 2z 5 o qf 2

Fig. 5.29. Calculated (cone 70.3, dashed) and measured (cone 70.3e, drawn curve) frequency
characteristics of the motional impedance |20, in vacuum. The calculated curve is shifted
downward by a factor 2-8 to account for the difference in thickness.
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has no influence on the longitudinal antiresonant frequencies and mean shape
of the curves. The calculated curve runs somewhat higher than the measured
one because of the smaller thickness (Z,q, oc /).

Figure 5.29 shows the calculated motional impedance of cone 70.3 divided
by a factor of 2:8 and the measured curve of cone 70.3e. The factor 2-8 is
introduced to allow easy comparison of both curves; it originates from the
smaller thickness # of cone 70.3. The small value of # completely eliminates the
fine structure in the calculated curve.

On the basis of the preceding figures it may be concluded that there is good
agreement between calculations and measurements. Further, these figures con-
firm the theoretical conclusion drawn in sec. 5.7.1 that the cone thickness has
no influence on the mean shape of the frequency characteristic of the axial
admittance (provided that M /M, is kept constant).

5.12.2. Comparison of calculated and measured vibration patterns

To compare theory and experiment, cone vibration patterns are visualized
holographically by means of the time-average fringe technique (appendix F).
Holographic recordings are made of cone 50.2e at a number of frequencies
selected on the basis of the measured motional-impedance characteristic
(fig. 4.20). The cone, which is given a thin layer of white paint to enhance re-
flection of the He-Ne laser beam, vibrates without outer suspension in free air.
Upon each recording the vibration amplitude is adjusted in such a way that
bright and dark parts appear. At bright parts the transverse amplitude is low
(nodal line), at grey and black parts it is high, which indicates the positions of
antinodes, as explained in appendix F.

Calculated and measured vibration patterns are compared in fig. 5.30. The
measured pattern of fig. 5.30a at f,, shows that an asymmetric standing-wave
pattern with 10 nodal diameters is superimposed upon the symmetric pattern.
As the outer edge is approached, black (circular) parts alternate with grey
areas; the latter are not nodes but originate from the high vibrational amplitude
at the outer edge. Figures 5.300 through 5.30d were recorded at bending resonant
and antiresonant frequencies. These figures clearly show the different pattern of
vibration of the inner and the outer cone parts; the transition point is indicated
by a dot.

Figure 5.30e was calculated and recorded at 6432 Hz, which lies just above

Fig. 5.30. Calculated (cone 50.2) and measured (cone 50.2¢) vibration patterns at
(a) the ring antiresonant frequency f,, = 1646 Hz,

(b) the second bending resonant frequency fy2 = 2063 Hz,

(c) the second bending antiresonant frequency fp,» = 2170 Hz,

(d) the third bending resonant frequency fy,3 = 2337 Hz,

(e) 6432 Hz (calculated first membrane resonant frequency f,r; = 6172 Hz),

(f) 8956 Hz (calculated upper boundary of region II f;, = 8520 Hz),

(g) 13970 Hz (calculated second membrane resonant frequency f,,2 = 13912 Hz),
(k) 25000 Hz (calculated third membrane resonant frequency f,,3 = 22160 Hz).



— 103 —




B




— 105 —




— 106 —




— 107 —

the theoretical value of the first membrane resonant frequency f,,, = 6172 Hz.
Figure 5.30 f'shows the calculated and measured patterns at 8956 Hz, which is
just above f,, = 8520 Hz. The cone is fully covered by bending waves. Since
the distance between two nodal circles is equal to half the bending wavelength,
the average value of the latter can be obtained by dividing the cone meridional
length by half the number of nodal circles in the recorded pattern. The value
found is 9-5 mm. Using eq. (5.10) for the bending wavelength on a plate we
find a 10 per cent lower value.

Figure 5.30g shows the calculated and recorded patterns in the neighbourhood
of the second membrane resonant frequency f,,,,. The longitudinal wave with
superimposed bending waves is clearly visible. Since f,,,, lies close to the second
longitudinal antiresonant frequency, the cone is covered by # of a longitudinal
wavelength 4,. From L = 34,/4 we find 4, = 115 mm, whereas for the lon-
gitudinal wavelength in an infinite polycarbonate plate at 13970 Hz we calculate
A, = ¢;/f = 109 mm. The measured pattern of fig. 5.304, recorded at about
25000 Hz, shows the typical vibration at the third membrane resonant fre-
quency. The theoretical value of f,,,; lies at 22160 Hz.

The above figures illustrate the satisfactory agreement between calculated

Fig. 5.31. Stroboscopically visualized asymmetric vibration pattern with 2 nodal diameters
of cone 50.2e at 130 Hz.
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and measured vibration patterns. As discussed in sec. 5.11, asymmetric vibra-
tion patterns already appear at relatively low frequencies. This is illustrated by
fig. 5.31, which shows the stroboscopically visualized vibration pattern with
four nodal diameters of cone 50.2e at 130 Hz.

The inhomogeneities on a paper cone are in general greater and cause a more
distorted pattern. Additional distortions of the symmetry may be caused by the
outer suspension. This is illustrated in fig. 5.32, which shows the holographically
visualized vibration pattern of a complete (i.e. with top) paper cone with paper
rim, vibrating in air,

Fig. 5.32. Calculated and measured vibration patterns of a complete paper cone at 5929 Hz.
Cone parameters:x = 52°, R, = 17 mm, Ry = 83 mm, A = 0-:36 mm, £ = 2-7. 10° N/m?,
e = 420 kg/m3, v = 0-3, § = 0:04.
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5.13. Conclusion

It has been shown that the introduction of bending stiffness considerably
complicates the description of the forced mechanical cone behaviour. On the
average, the mechanical admittance at the inner edge shows the same frequency
characteristic as the longitudinal admittance calculated with the membrane
equations. The difference lies in the appearance of a fine structure above cone
break-up (f > f.), caused by bending resonances and antiresonances. Above
f+a» the vibration patterns calculated with the general equations may consider-
ably deviate from the membrane patterns. Bending waves appear on the outer
cone part and gradually cover the whole cone with increasing frequency.
Simultaneously, the inner part of the cone vibrates more or less uniformly while
decreasing in area with increasing frequency. The voice-coil mass causes a roll-
off of the frequency characteristic of the axial admittance. At the longitudinal
resonant frequencies for the radially supported inner edge (in the foregoing
briefly called membrane resonant frequencies) all bending action is overshad-
owed and the transverse displacement pattern is determined by a longitudinal
wave with a relatively large wavelength. This pattern can be accurately pre-
dicted on the basis of the membrane equations. It has been shown that cal-
culations of motional impedance and vibration patterns agree well with meas-
urements.
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6. SOUND RADIATION

6.1. Introduction

The calculation of the sound radiation of a loudspeaker cone in the entire
audio region has in the past been regarded as intractable. Therefore approxi-
mations have been made, and the most commonly used approximation, to be
found in almost any textbook on acoustics, has been to consider the cone as a
rigid piston 1:10:25.26) However, this approximation is very crude in the
middle- and high-frequency regions, and it is only at low frequencies that the
sound radiation is predicted correctly.

About thirty years ago, two authors 27-28) discussed the radiation of a rigid
cone, and showed that above a certain frequency the rigid-cone radiation sub-
stantially deviates from that of the rigid piston. However, at about the same
frequency, mechanical waves appear on the cone (cone break-up) which makes
the rigid-cone approximation only useful at low frequencies.

Itis clear that a description of the mechanical behaviour of the cone must f orm
the basis of a description of its sound radiation. This mechanical behaviour was
discussed in chapters 4 and 5. Once the transverse velocity distribution on the
cone is known, the sound-pressure and -power responses can be approximated
by simple numerical integration. The calculation of this transverse velocity
distribution for a sufficient number of frequencies requires a great deal of com-
puter time. In this chapter the aim is therefore to describe and explain the sound
radiation on the basis of calculations on a few cones rather than to produce a
more or less complete list of tables or graphs to predict the frequency response
for any loudspeaker cone used in practice.

The outline of this chapter is as follows. First, in sec. 6.2, basic assumptions
and definitions used in the calculation of the sound radiation will be discussed.
Théj’n, since the real cone acts as a rigid piston at low frequencies, sound radia-
tion by a rigid piston will be briefly reviewed in sec. 6.3. In sec. 6.4. sound radia-
tion by a rigid cone is calculated, which in the high-frequency region shows
typical deviations from radiation by a rigid piston. In sec. 6.5 the sound radia-
tion by a flexible cone is discussed; this section also deals with the influence of
the cone geometry and material, and demonstrates the essential influence of the
voice-coil mass. In sec. 6.6 calculations are compared with measurements on a
few loudspeaker cones. Finally, in sec. 6.7 some essential rules of design are
discussed.

6.2. Basic assumptions and definitions

A cross-section of a normal electrodynamic loudspeaker has been shown in
fig. 2.1b. Its working principle and characteristic properties have been discussed
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in chapter 3 and may be found in the textbooks, for example in ref. 41. To
allow a proper comparison of the properties of a rigid piston, a rigid cone and
a flexiblé cone and to separate essential from inessential parameters, a number
of assumptions will be made, some of which were briefly mentioned in sec. 2.2.

First, all radiators are assumed to vibrate in an infinite rigid baffle. Further,
the radiated sound pressure and intensity at a great distance are calculated (far-
field or Fraunhofer region). In all radiation calculations reported here, the
reaction of the air and the influence of the radiation (formally expressed by the
radiation impedance) will be neglected. This may be justified on the basis of the
following considerations on the simplest radiator, viz. the flat rigid piston. In
the low-frequency region, where the sound wavelength is longer than the radia-
tor circumference, the air reaction is mainly mass-like. This is shown in fig. 6.1

Resistoncé Ry, reactance X,

10‘2 H p 15-, ; L !;lll!; ; 1 |;|-||,|0 2
—~k°Rb

Fig. 6.1. Real part R,, and imaginary part X}, of the normalized mechanical radiation imped-
ance of a rigid piston in an infinite baffle. Normalization factor @ R,2 9 co.

where the real and imaginary parts of the radiation impedance of a rigid piston
are plotted as a function of frequency !). At low frequencies neglecting this
mass is equivalent to assuming too small a value for the piston mass; with a
constant driving force the sound pressure and power are frequency-independent
and inversely proportional to the total moving mass (sec. 6.3). The above holds
equally well for rigid non-plane radiators, for instance cones, because in the
frequency region considered only the created volume velocity is of interest and
not the shape of the radiator. It should be remarked that in practice the air mass
and diaphragm mass of a real loudspeaker may have the same order of mag-
nitude. '
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‘In the high-frequency region, where the sound wavelength is shorter than the
piston circumference, the reaction of the air on the radiator is resistive; the
influence of the air mass decreases rapidly with frequency and can be neglected
(fig. 6.1). The mechanical radiation resistance of the piston is in most cases
negligible as compared with the mechanical reactance of the piston. The effect
of neglecting the radiation impedance on the sound radiation of non-rigid dia-
phragms is explicitly considered in sec. 6.5.2. '

Summarizing the effect of neglecting the air reaction we may conclude that
in the low-frequency range the calculated sound pressure and power may be too
high. We will accept this discrepancy because we are not primarily concerned
with the low-frequency region: Moreover, calculations that account for the
effect of the radiation impedance in this region can be found in many text-
books 25:26),

We will further assume in all cases that the radiator is driven by a sinusoidally
alternating axial force F, the amplitude of which is frequency-independent. In
practice this is achieved by supplying the voice coil with a sinusoidal current
having a frequency-independent amplitude i. The axial force is then F, = B [i,
where B is the magnetic induction in the air gap of the permanent magnet and /
the total length of the voice-coil windings. This assumption rules out the in-
fluence of the voice-coil impedance, which considerably simplifies the cal-
culations without loss of generality. A possible frequency dependence of the
force can easily be introduced afterwards.

Finally, the frequency of the driving force is assumed to be higher than
the fundamental resonant frequency f, of the loudspeaker mass-spring
system. The well-known influence of the diaphragm suspension can then be
neglected.

The sound pressure level L, is always referred to 20 Pa and the sound power
level Ly to 10712 W, |

In all radiation calculations the following four acoustic parameters are cal-
culated as a function of frequency: the axial sound-pressure level L,, the power
level Ly 100, the beam width 8 and the directivity index DI, 0. The power level
Lyw100 follows from the ratio of the sound power radiated within a space sector
with an apex angle of 100 degrees to the reference power of 10~12 W. This
angle has been chosen because the approximation for the sound pressure (see
sec. 6.4) is unrealistic for field points lying outside the space sector bounded by
the cone surface and its extension; in this paper we will not consider cones with
apex angles smaller than 100 degrees. The beam width /3 and the directivity
index DI, 00 have been defined in sec. 2.5.2.

A simple relation between DI;q0, L, and Ly, can be derived as follows.
Let W be the radiated sound power of a cone within a space angle of 100° and
W, the power (within the same space angle) of a point source creating the same
intensity on the cone axis as the cone itself, then it follows that
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50°

27 r? .
W = P2 sin @ do, (6.1)
Qo Co
2r? [
W,=—— [ b’ sin pdg, (6.2)
Qo Co 0

where j, is the amplitude of the axial sound pressure created by the cone at a
distance r, g, is the air mass density and ¢, the sound velocity in air. With the
above definition of the directivity index, we find

(1 — cos 50°) p.,2

DI 00 =101g pr (6.3)
[* sin pdo
which can be written as ’
Dl oo = L, — Ly100 + 101g(22r3). (6.42)
In the calculations » = 10 m is mostly used, so
Dl 00 = L,— Lyj00 + 23-4dB. (6.4b)

On the basis of the following considerations the sound radiation by asymmet-
ric bending vibrations will be neglected. The bending wavelength Ap is rather
short; azimuthal standing waves already appear at very low frequencies (about
100 Hz for a paper cone of 16 cm diameter). This bending wavelength remains
short as compared with the sound wavelength in air 44, although Ay increases
with f~1/2, The coincidence frequency, at which Az becomes equal to 4, has an
order of magnitude of 105 Hz for normal cones. The waves are therefore acous-
tically short-circuited in the audio region. Moreover, adjacent segments that
vibrate in antiphase have equal areas. Therefore, the sound radiation of the
bending waves travelling in the azimuthal direction can be neglected as com-
pared with that of the bending waves propagating in the meridional direction.
The latter are also acoustically short-circuited, but the vibrating concentric
areas are not equal, as will be discussed in sec. 6.5.

6.3. Rigid-piston radiation

One of the simplest approximations that can be made in calculating the
loudspeaker sound radiation is the well-known rigid-piston approximation.
The loudspeaker cone is then assumed to be a flat rigid piston vibrating in an
infinite rigid baffle (fig. 6.2). Simple expressions result for the sound pressure
at large distances and the total radiated sound power. As they can be found in
almost any textbook on acoustics, we will confine ourselves to simply men-
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Fig. 6.2. Coordinates of a source point Q on a rigid piston in an infinite baffie and a field
point P.

tioning the results. Basic formulas are given in appendix D.
The sound pressure at a distant field point with coordinates (r, @) (fig. 6.2)
is given by
0 F,S 2 J,(ko R; sin @)

= exp(—jkor 6.5
p 275” Md p( J ° ) koRbSinqg ( )

where k, is the sound wavenumber in air; R,, M, and S are respectively the
radius, mass and area of the piston. The time factor exp (jwt) has been left out.
The amplitude of the axial sound pressure is frequency-independent:

90 Fa S
Aax = . 6.6
b 2nr M, (6.6)

At low frequencies, where koR;, < 1, the directivity function
2 J,(koR, sin @)/(koR, sin @)

approaches unity; then sound is radiated uniformly into all directions. In the
high-frequency region, where koR; > 1, the radiation concentrates in a central
beam with small sidelobes.

The radiated sound power (see appendix D) is given by

F, \? J,(2 koR
W=-}QOCOS( ) [1—_‘(—°ﬂ]. (6.7)
(X)Md kORb

At low frequencies, where koR, < 1, the function in square brackets may be
approximated by (koR,)?/2, using the series development for the Bessel func-
tion. Then eq (6 7) becomes

R £ s - ,
W=_ ( ).‘ (6.8)
4w co \ M,
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In that region the radiated sound power is frequency-independent. In the high-
frequency region (koR, > 1) the factor in square brackets approximates to 1
and the sound power decreases with the square of the frequency:

_ F, \?
W=%roos(w M) _ (6.9)
d

To illustrate the foregoing the axial sound-pressure level L,, the power level
Ly 100, the beam width § and the directivity index DI, ,, are calculated as a
function of frequency for a piston with an outer radius R, = 83 mm. These fre-
quency characteristics are shown in figs 6.6a and b (dashed curves). The sound-
pressure level L, is referred to the value given by eq. (6.6); Ly,00 is plotted
relative to its value at very low frequencies (eq. (6.8)).

The low- and high-frequency regions of the piston radiation are clearly
visible in the characteristic of Ly,00. The transition between the two regions
is marked by the transition frequency f; at which the asymptotes, given by eqs
(6.8) and (6.9), intersect. At the intersection point we have

koR, = 14, (6.10a)
hence
P (6.10b)
‘T TR, ) )

At this frequency the sound wavelength in air 4 is approximately equal to the
piston circumference. For the piston under consideration, f; lies at 920 Hz
(fig. 6.6a).

The quantity describing the directional effect of the radiator is the beam width
p. In fig. 6.6b, B is shown for the above-mentioned piston parameters (dashed
curve). In the high-frequency region the beam becomes very narrow. It follows
from eq. (6.4) that the directivity index DI, 4o increases by 6 dB per octave in
this region, because L, is constant and Ly 00 decreases by 6 dB per octave
(eq. (6.9)).

In figs 6.6¢, d and e the directivity diagrams for the above piston are shown
at 1, 5, 10 and 20 kHz (left parts). These figures clearly illustrate the increasing
beaming effect of the rigid piston with increasing frequency.

The foregoing is well known and is only intended as a background to the
description of the radiation by conical diaphragms.

6.4. Rigid-cone radiation

In this section we will deal with the sound radiation of a rigid cone in an
infinite baffle. We will first discuss some alternative methods of calculating the
sound radiation by a conical surface (rigid or not). The configuration is shown
in fig. 6.3.
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Fig. 6.3. Coordinates of a source point on a rigid cone in an infinite baffle and a field point P.
For a flexible cone the same configuration holds, except that the cone is then truncated.

The first method (which will not be used for reasons discussed below) makes
use of the specific conical shape of the radiator. The starting point is the Helm-
holtz integral for the velocity potential ¢ (from which the sound pressure p
and particle velocity v can be derived using the relations p = jwp ¢ and
v=—grad ¢): '

0 0 :
4@ = | ( G | r) — #(e) — (e — G | rs)> as (611

S

where r and r; are the position vectors of the field point and source point
respectively, S is a closed surface around P, and G is Green’s function, satisfying
the inhomogeneous wave equation

(V* + k) 6 [ r) = 8 ¢ —x,). (6.12)

Let the closed surface S be composed of the cone surface S, the baffle surface

and a hemisphere with infinite radius. The problem is then reduced to finding a

Green’s function G that

— is regular at infinity (i.e. lim R G = finite, where R is the radius of the
hemisphere), Rovee

— satisfies Sommerfeld’s radiation condition

) 0G
11mR<—+jk0R) =0,
R0 OR
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— and in our case satisfies 0G/on = 0 on the cone and the baffle. -
For this characteristic function G the Helmholtz integral reduces with

d(ry)fon = + v (ry) *)

to

#r) = [ G(r | 1) vix) dS (6.13)

where v,(r;) is the transverse velocity at the source point and_ the integration
must be carried out over the cone surface. For an infinite cone Green’s function
given above can be expressed by an infinite series 3°*3!). For the configuration
of fig. 6.3 the construction of Green’s function would at least be impractical.
This method is therefore rejected.

There exists another class of solution methods that can be applied to radiating
surfaces of any shape 32+32). A common feature of these methods is thatfirst an
initially unknown function (source-density distribution or sound pressure on
the radiator surface) is numerically determined on the basis of an integral equa-
tion, after which the sound pressure in the field point is calculated by numerical
quadrature, using the above-mentioned function. However, these methods
require long computation times and are therefore not economical. Besides, the
relatively high accuracy with which the sound pressure in the field point is cal-
culated is of no use as long as the velocity distribution on the cone is only
approximately known.

We will therefore adopt a more approximative method of calculation, in
which in eq. (6.11) the Green’s function of an infinite plane is used. The fact
that this plane has a conical indentation is neglected. This leads to the following
expression for the velocity potentlal $(r) at the field point P:

$(r) = [ %jsmv,@ ds (6.14)

where s is the distance from the surface element dS to the field point P (fig. 6.3)
and v(r;) is the transverse velocity of dS. When the radiating surface is plane,
the equation is rigorously correct 1°). One of the effects of a non-plane radiating
surface concerns the relative positions of the surface elements, regarded as
point sources; these positions are taken into account by integrating over the
radiating surface a function of the distance s. The integral disregards the fact
that waves radiated by some part of the non-plane radiator are diffracted by
other parts. This secondary diffraction due to the curvature can be neglected if
theradiator is only slightly curved. The results obtained with this approximation

*) Note that v,(r,) has a direction opposnte to the normal n on S, which points awayfrom the
the field point P, hence the plus sign.
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will presumably be reasonably accurate for shallow cones (cf. the results for
shallow spherical radiators obtained by O’Neil 3*) and Belle 35:36)).
The integral is further processed as follows. For a point in the far field we
may write '
s & r— x (cos o cos ¢ + sin « sin ¢ cos 6) (6.15)

where r is the distance from the origin of the coordinate system to the field
point, @ is the angle between the vector r and the cone axis, x is the distance
from the origin to the source element dS and 6 is the azimuthal coordinate of
thelatter. Approximating s in the denominator of the integrand of eq. (6.14) by
r and using p = jw go ¢ we find for the sound pressure p at the field point:

Qo w sin o [b

p=jexp(—jkor) ve(x) x dx X

2z

X /exp [jko x (cosacos ¢ + sin asin g cos §)] d (6.16)
4]
where the transverse velocity v,(x) is assumed to depend on x only (axisymmetric
vibration). Carrying out the 6 integration we find:
Qo @ Sin o
p =feXP(—jkor)—r— X
b
X / v,(x) exp (j ko x cos o cos @) Jo(ko xsin & sin p) xdx. (6.17)
0
The latter integral may be evaluated numerically if the.velocity distribution
v,(x) on the cone is known. For a rigid cone v,(x) is easily found; for a flexible
cone v,(x) can be numerically calculated with the mechanical differential equa-
tions (chapter 5). .

The assumption that the radiation pattern of each source element is not
affected by small departures of the radiating surface from a plane certainly will
not hold for field points at angles ¢ > «. In that case, parts of the cone are
screened off. In the calculations we will therefore only consider field points at
angles ¢ < a, although the directivity diagrams will be drawn up to ¢ = 90°.
For easy comparison of the radiated sound power L, of cones with different
apex angles we will calculate the radiated power L0 inside an angle of
100 degrees and not consider cones with o« < 50°.

In the remaining part of this section we will deal with the sound radiation of
a rigid cone. Although in practice the cone can only be considered to vibrate
rigidly well below cone break-up (f < f;.), the understanding of the rigid-cone
radiation is indispensable for explaining the low-frequency radiation of a
flexible cone (see sec. 6.5.3).
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Since a rigid cone has a uniform velocity distribution v,, eq. (6.17) becomes
) ) Qo WV, Sin o
p=jexp(—jko r)——r—— X
b

X / exp(jko x cos a cos @) Jo(ko x sin a sin @) x dx. 6.18)
0
In 1941 Brown 27) had already calculated the sound pressure on the basis of
the above formula for one frequency. In 1945, Bordoni 2%) developed a series
expansion for eq. (6.18)*). Both, however, were very brief in their calculations
and conclusions.
For a cone driven with a frequency-independent force F, the transverse
velocity v, becomes

F,sina 6.19)
v, = s .
t JoM,
giving a sound pressure
0o F,sin? a _
p=— exp (—jkor) X
r d
b
X / exp (ko x cos a cos p) Jo(ko x sin o sin p) x dx. (6.20)

0
For field points on the cone axis the integral in eq. (6.20) may be easily eval-
uated; we find for the amplitude of the axial sound pressure:

0 F,S, 2(2—2cosz—2zsinz + z2)1/2

Dax = s 6.21
i 2nr M, z2 (6.21)

where S, = 7 R,? is the cone base area and z = kg, b cos a.

In the low-frequency limit, where z — 0 (which may be effectuated by either
increasing the cone angle or decreasing the frequency), the last factor in eq.
(6.21) becomes equal to unity and the axial sound pressure for the rigid cone
becomes equal to that for the rigid piston (eq. (6.6)):

Qo F, a Sb

Pax = . 6.22
2nr M, ( )

For off-axis directions the sound pressure is easily found if k¢ b sin ¢ < 1,
which is equivalent to f < f;, where f; is the transition frequency for the rigid
piston (eq. (6.10b)). In that case we may integrate the series development of the
integrand of eq. (6.20) and neglect terms of higher order than 2. Then we
arrive at *

. P~ Pux [1 — (% ko b sin g)? (11 sin? o — 2)]1/2,

*) Both authors erroneously took the axial velocity for v,.
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A crude approximation is
PR P LS (6.23)

the cone then radiates sound uniformly in all directions.
In the high-frequency limit, when z — oo, thelastfactor in eq. (6.21) decreases
as 2/z and the sound pressure on the axis becomes

F,S 2
ug = o a0 . (6.24)
2nr M, kobcosa
Low- and high-frequency asymptotes intersect at
kobcoso =2 (6.25)

which may also be written as
ko H=2
where H = b cos a is the cone depth. The intersection occurs at a characteristic

cone frequency f;, which divides the sound-pressure response into a low- and a
high-frequency region. For £, it follows that

fo= 2 (6.262)
. — .26a
n H
or
Co tan «
Jo=———, (6.26b)
7 R,

From eqs (6.10b) and (6.26b) it follows that the characteristic cone frequency £,
lies above the transition frequency for the rigid piston f; if « > 35°, which is
nearly always the case in practice.

Figure 6.4 shows the axial sound-pressure level as a function of ko b cos «

"0
Ly(dB)
10}

1
N
(=]

(arbit. ref ) ——e
|
8

&
"
=

2 L] 5!! ’ 2 1 l;l!!l?lo é 1 léll_l_l
— kgb cos &

Fig. 6.4. Calculated sound-pressure level L, of a rigid cone as a function of the dimension-
less frequency parameter kg b cos a.
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(in fact this means that the last factor in eq. (6.21) is plotted as a function of
frequency).

The foregoing may be interpreted as follows. For low frequencies the cone
acts as a point source; the conical shape has no influence. For high frequencies
where ko H > 2, the axial sound pressure decreases with frequency and cone
depth H. Inthat case many sound wavelengths A, fit between cone top and base.
Waves radiated by different concentric cone areas no longer arrive in phase at
the field point, thus decreasing the sound pressure.

This will be illustrated with fig. 6.5a. Let the cone be divided into concentric
areas S; whose mean distances to the (distant) field point on the axis differ by
half a wavelength in air. Then waves from neighbouring areas arrive in anti-
phase at the field point. Since the sound pressure is proportional to each radiat-
ing area, the total sound pressure at the field point will be

pOCSl—-Sz—l—S;,—-.... (6.27)

The outer radius of the nth area S, being equal to # (1¢/2) tan «, it follows that

s, oc( ';)2 ((n—l) )2 (6.28)

and we find for the alternating series eq. (6.27):
p o N Ao (6.29)
where & is the number of wavelengths on the cone depth H: N 4, = H. We find

Fig. 6.5a. Illustration of the axial sound radiation of a rigid cone by concentric conical rings
at high frequencies (f > f£,).

%

a o
| R0

Fig. 6.556. Tllustration of the origin of a sidelobe in the directivity diagram of a rigid cone at
90 — o degrees.
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P Ao
or
p <« 1/f, (6.30)

which shows the typical frequency dependence of the sound pressure in the
high-frequency region for the rigid cone.

If the cone depth H is decreased by increasing the apex angle «, the transition
frequency f, increases according to eq. (6.26a). In the limit, when a— 7/2, f.
tends to infinity and the axial pressure becomes frequency-independent at all
frequencies, in accordance with the rigid-piston radiation.

The off-axis sound pressure and the beam width 8 must be calculated by
numerical evaluation of eq. (6.20). The sound-power level Ly, o0 is calculated
by numerically integrating the intensity over a space angle of 100 degrees. The
directivity index DI, o, is then found with eq. (6.4b).

In order to demonstrate the difference between the rigid cone and the piston
we calculated the axial sound-pressure level L,, the sound-power level Ly, o,
the beam width 8 and the directivity index DI, ¢, for a rigid cone with a semi-
apex angle & = 50° and an outer radius R, = 83 mm;the same values were used
for the rigid piston discussed in the preceding section. The results are shown in
fig. 6.6a (drawn curves). As remarked before, L, is frequency-independent at
low frequencies and equal to L, of the rigid piston. Above f. (1580 Hz) L, starts
to decrease as 1/f. The sound-power level L, ;4 starts to decrease at a some-
what lower frequency in the neighbourhood of the piston transition frequency
f: = 920 Hz. Because in the high-frequency region the sound powers in both
cases are about equal whereas the axial sound pressures are not, we may
conclude that for off-axis points, L, of the cone must on the average be higher
than L, of the piston. This is illustrated in fig. 6.66 which shows that the
directivity index DI, of the cone is relatively small and on the average almost
frequency-independent, indicating a relatively high off-axis radiation. This is
further illustrated by directivity diagrams.

The figures 6.6¢, d and e show the directivity diagrams for the rigid cone
(right parts) at various frequencies. At 1 kHz the radiation is practically uniform
and equal in both cases. At 5 kHz, the cone shows a broad sidelobe normal to
the cone axis (p = 40°); this direction is indicated by an arrow. At higher fre-
quencies this sidelobe becomes the principle sidelobe and is now more pro-
nounced, which is illustrated by the directivity diagrams of figs 6.6d and e, cal-
culated for 10 and 20 kHz respectively.

The cause of the big sidelobe at 90 — « degrees can easily be explained: at
wavelengths smaller than the dimensions of the radiating surface, the radiation
normal to the latter becomes very high. This is illustrated in fig. 6.5b where
concentric parts with mutual spacing 1,/2 on the left cone side radiate waves
which arrive in phase at the field point. The contribution from the right cone
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Fig. 6.6a. Calculated pressure and power responses of a piston (dashed) and a rigid cone
with a = 50° (drawn curves), both with R, = 83 mm.
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Fig. 6.6b4. Calculated frequency characteristics of the beam width g and the directivity index
DI, o0 of the rigid piston (dashed) and the rigid cone (drawn curves) of fig. 6.6a.

side is relatively low. The result is a sidelobe which may even exceed the axial
lobe (fig. 6.6e).

The power level Ly, o0 Of the cone is about 2 dB lower than that of the piston
in the high-frequency region (fig. 6.6a). One cause is the fact that the intensity
at @ = 50°, which is the boundary value for the integration over a space angle
of 100°, is much higher for the cone than for the piston. It is interesting to
calculate the sound power radiated by a piston and by a cone into a semi-
space. The result (fig. 6.6/) shows that the difference between the piston and
cone powers is somewhat smaller than the difference between L, 4, for the two
radiators. The remaining difference of about 1 dB may be attributed to the



Rigid piston Rigid cone
Fig. 6.6¢. Calculated directivity diagrams of the rigid piston (left) and the rigid cone (right)
of fig. 6.6a at 1 and 5 kHz.

Rigid piston Rigid cone
Fig. 6.6d. Calculated directivity diagrams of the rigid piston (left) and the rigid cone (right)
of fig. 6.6a at 10 kHz.

Rigid piston ' Rigid cone
Fig. 6.6e. Calculated directivity diagrams of the rigid piston (left) and the rigid cone (right)

of fig. 6.6a at 20 kHz.
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Fig. 6.6f. Calculated frequency characteristics of the sound power radiated into semi-space of
the rigid piston (dashed) and the rigid cone (drawn curve) of fig. 6.6a.
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approximative character of the solution for field points in the shadow region
(ie. ¢ > o).

The beam widths § of the rigid piston and the rigid cone do not differ much
(fig. 6.6b). It must be remembered, though, that § is the width of the central
beam; the directivity diagram of the cone is as a whole much wider than that of
the piston.

6.5. Flexible-cone radiation

6.5.1. Introduction

The sound radiation of a flexible cone is greatly influenced by the fact that
above cone break-up the transverse velocity of the cone surface is no longer
uniform. This transverse velocity may be created by longitudinal as well as
bending waves. In a certain frequency region (region II), they even appear
simultaneously: a longitudinal wave at the cone top, bending waves at the cone
base. The sound radiation of a flexible cone can only be calculated numerically,
although approximate analytical descriptions can be given in the low- and
high-frequency regions (secs 6.5.3 and 6.5.4).

First of all it will be shown why the air reaction on the cone vibrations can
be neglected. In secs 6.5.5, 6.5.6 and 6.5.7, the sound radiation of a number of
cones will be discussed and the influence of the geometry and material param-
eters of the cone will be considered. In sec. 6.5.9, finally, it will be shown that
voice-coil mass has a considerable influence on the sound radiation in the
high-frequency region.

6.5.2. Description of the problem

The sound radiation of a flexible cone may be calculated in the same way as
that of a rigid cone. First, the transverse (axisymmetric) velocity v,(x) is com-
puted for a number of points on the cone and for various frequencies, using the
general differential equations described in the preceding chapter. Then the
integral for the sound pressure eq. (6.17) is numerically evaluated for these
frequencies. Lastly the beam width S, the sound power Ly ;0o and the direc-
tivity index DI, 00 are calculated as described in the foregoing section. In these
numerical calculations the sound radiation of a truncated cone is considered
(i.e. v, = 0 for x < a). The influence of a rigid cone top (0 < x < a) will be
discussed in sec. 6.5.8.

The velocity distribution »,(x) is calculated for a cone vibrating in vacuum.
This means that the air reaction on the velocity distribution is neglected. Some
justification for this at first sight crude approximation is offered by Lax 37),
who calculated the effect of the radiation on a circular plate. It is shown by him
that for :
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2o R,
oh

<1

where R, is the plate radius, the shift in resonant frequencies and the change
in shape of the four lowest modes due to the reaction of the air on the plate
is negligible. Further, the air influence tends to decrease with increasing
mode number. Substituting normal loudspeaker parameters (R,/h = 200,
o = 500 kg/m?3 for paper cones) we arrive at

0o Rp
eh

~~ 05,

Hence, the neglect of the air reaction would be justified if the cone were a flat
plate. We do not expect, however, a fundamentally different air reaction in the
case of the cone, especially not in the high-frequency region, where the cone
behaves as a flat plate.

It is also shown in ref. 37 that the effect of the radiation damping on the
sharpness of the plate resonances is not negligible. Of course the additional
effect of the radiation damping decreases with increasing loss factor of the
radiator material. In the preceding chapter it was shown experimentally that
the reactive part of the radiation impedance reduced the antiresonant fre-
quencies by a few per cent. In the following calculations the influence of the
reactive part of the radiation impedance is neglected; the influence of the
resistive part is accounted for in an approximative way: the internal material
damping is taken higher (0 = 0-1) than the value encountered in practice
(6 ~ 004 for normal cone paper).

Before carrying out specific numerical calculations we will first modify
somewhat the radiation integral eq. (6.17). At the inner edge, the axial admit-

tance Y, is defined by
va(@)
Y, = 6.31
F (6.31)

where v,(a) is the axial velocity at the inner edge and F, is the applied axial
force. Let v,(x) be the transverse velocity distribution on the cone; then we have

v(a) = v,(a) sin ¢, (6.32)
which may be written as
v(a) =Y, F,sin a. (6.33)

Introducing V,(x) as the transverse velocity at the point x divided by v,(a):

V(%)

Vilx) = @

(6.34)
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it follows that

v(x) =Y, F,V{(x)sin a (6.35)
and

Via) =1. (6.36)
Substituting eq. (6.35) in eq. (6.17) we arrive at
. . Qo .
p=jexp(—jkor)—wY,F,;sin?a X
r

b
X [ Vi(x)exp (j ko x cos o cos @) Jo(ko x sin o sin ) x dx  (6.37)

and for the axial value of p we find

b

Dax =J€Xp —jko r)Q—0 wY,F,sin? o / Vix)exp(jkoxcosa)xdx.  (6.38)
r
Hence
b
oo = 2w E, sin? o |Y, [ Vi@ exp (ko xcos ) xdx|  (639)
P
which can also be written as
0o F,tan? o ’
Pux=— ———ky|¥a / Vi(x)exp (j ko x cos a) x dx|, (6.40)
r 2nR,0h ;

where y, is the reduced axial admittance, defined by eq. (5.35).
The radiated sound power within a space angle of 100 degrees is given by

50°

P? sin @ dep. (6.41)

2

W1oo =

Qo Co ;

On thebasis of eq. (6.39) we may roughly predict the sound-pressure response
as follows. For low frequencies (region I) the cone oscillates more or less
rigidly, hence V,(x) ~ 1. If ko b cos a < 1, the integral becomes approximately
equal to (b> — a?)/2, independent of ¢. The radiation will be uniform and the
sound pressure and sound power will be frequency-independent, because |Y,,|
is inversely proportional to the frequency. This low-frequency radiation will be
further discussed in the next section.

For high frequencies (region III) the velocity distribution V,(x) is in general
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determined by bending waves. For normal loudspeaker cones the bending
wavelength Ag is much smaller than the sound wavelength in air 4,. Hence,
the bending waves are acoustically short-circuited and their sound radiation
depends only on the geometric mean volume velocity created by these waves.
This is expressed by the integral in eq. (6.39) whose integrand is a highly oscil-
lating function of x. The resultant mean volume velocity and consequently the
sound radiation will be small. In the middle-frequency region (region II) the
sound radiation is difficult to predict, because the inner part of the cone oscil-
lates more or less rigidly and contributes a great deal to the sound radiation,
whereas the outer part of the cone shows acoustically short-circuited bending
waves which radiate little sound. The radiation in this region will therefore be
discussed on the basis of numerical examples in subsequent sections. Note that
the sound pressure is directly proportional to Y, and hence to Y;: the peaks and
dips in Y, will also show up in the sound-pressure response (except the dip at
fra» as explained in the next section). Before carrying out numerical computa-
tions of eqs (6.37) and (6.41), we will first take a closer look at the sound radia-
tion in the low- and high-frequency regions.

6.5.3. Radiation in the low-frequency region

It has been shown in chapter 5 that cone break-up, which is synonymous with
the appearance of axisymmetric bending waves on the cone, starts at the ring
antiresonant frequency f,,, which can be approximated by (see sec. 4.4)

C COS o

~NY

= 275Rb .

By definition the low-frequency region (region I) is given by f < f;» or, approx-
imately,

(6.42)

ra

f<fa (6.43)

The sound radiation in this region can be described by the rigid-cone approx-
imation. For the sound-power characteristic even the rigid-piston approx-
imation can be used in view of the small difference between the rigid piston and
rigid cone (fig. 6.6a). At very low frequencies, the radiated axial sound pressure
and sound power are frequency-independent and given by eqs (6.6) and (6.8).

Let us first consider the sound-power response, which shows a 6-dB roll-off
above f;. Atf,, the sound power rises again, because of cone break-up (shown
later). Therefore, if f; < f., a dip will appear between f; and f;, in the power
response. This dip will not appear if f; > f,, from which we find with eqgs
(6.10b) and (6.42)

e
cosa < 1:4—. (6.44)
c

For normal paper cones with ¢ = 2700 m/s, we find that this dip will not appear
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if « > 80°. Since in practice nearly all semi-apex angles are smaller than 80°,
we will find a dip in the frequency characteristic of Ly ,00. The depth of this dip
increases with increasing spacing between f; and f;,; for a paper cone with
o = 70° and ¢ = 2700 m/s, we find f, = 1 f,, and the dip will be relatively small
(~ 3 dB). Besides a we can also vary c; if ¢ decreases, eq. (6.44) will be satisfied
at smaller cone angles. This will be illustrated in sec. 6.5.7.

The axial sound-pressure response is not influenced by} the transition fre-
quency f;, but by the characteristic cone frequency f, (eq. (6.26b)) above which
L, of the rigid cone shows a 6-dB roll-off. At f,, the pressure response rises
again(cone break-up). If f, < f,,, a dipwill appear in the pressure response. This
dip does not appear if f. > f,,, or according to eqs (6.26b) and (6.42) if

Co 2 1/2 Co )
sin o > [(—) + 1:| e (6.45)
c c

For a paper cone with ¢ = 2700 m/s, eq. (6.45) is satisfied if « > 60°, which
is the case for many practical loudspeaker cones.

The requirement f, > f;, for avoiding a dip is not stringent; even if f, = % 1,,
the dip is hardly noticeable (fig. 6.14b, upper graph). This is due to the fact that
in the neighbourhood of f;, the outer-edge amplitude w(b) becomes higher than
the amplitude w, of a rigid cone (see fig. 4.8a). The inner-edge amplitude is
relatively small. Because the outer cone area, where w(x) > w,, is much larger
than the inner cone area, where w(x) < w,, the total volume velocity will be
higher than that of the rigid cone. To a certain extent this compensates for the
roll-off above f, predicted by the rigid-cone approximation. A possible dip may
be eliminated by decreasing ¢ or increasing a.

We may summarize the sound radiation of the flexible cone in the low-
frequency region as follows. The (axial) sound-pressure and sound-power
responses are well described by the rigid-piston approximation, provided f,
lies above cone break-up (f. > f..). If f, < f;4, the sound-pressure response
must be described by the rigid-cone approximation in the interval f, < f < f,..
The foregoing will be further illustrated on the basis of specific numerical
examples in subsequent sections.

6.5.4. Radiation in the high-frequency region

In this section we derive an approximate expression (of limited practical
value) for the axial sound pressure at high frequencies, i.e. for f>> f;..

Now, as far as the radiation of sound is concerned, surfaces with dimensions
large with respect to wavelength (the bending wavelength in this case) tend to
behave as infinite plates when considered per unit area and on averaging over
frequency. A case to the point is the sound transmission through walls at high
frequencies where identical results are obtained for an infinite wall with travel-
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ling waves only #2) and a finite wall with standing waves only #3). The resonances
occurring in the latter case apparently average out.

Assuming that the above holds for the loudspeaker cone for the frequencies
under consideration we introduce a reduced transverse velocity disttibution of
the travelling-wave type:

Ho®(kr x
V(x) = & (6.46)
Ho (kg a)
where H,‘? is the zero-order Hankel function of the second kind and kg the

bending wavenumber. With eq. (6.39) we find for the modulus j,, of the axial
sound pressure:

Pox = 2w F,|Y,1I,|sin? « (6.47)
P
where
) b
I =—-——[I-I(2)Ic x) exp (j ko x cos o) x dx. (6.48
1 Ho(z)(kna)a o' (kg x) exp (j ko ) )
From f > f,, it follows
kB az> 1: (6.49)

provided A (tan «)/a /12 < 1 (see eqs (4.12), (5.7)). The latter inequality is
nearly always satisfied in practice. As the argument of the Hankel function is
always much larger than unity, we replace it by its asymptotic expansion:

7 \1/2
Ho?(t) ~ (——) exp [—j(t—n/d)], t>1. (6.50)
Tt
Then the assumed velocity distribution (eq. (6.46)) becomes
a 1/2
Vi(x) ~ <;) exp [—j ks (x— a)],
in accordance with the asymptotic bending solution given by Ross #). Thus:

b
I, ~a'?exp (kg a)/ x1/2 exp [—j x (kg — ko cos a)] dx

b

= a2 exp (j kp a)/ x!/% exp [—j ks x(1 —g)] dx (6.51)

where
ko
qg= - Ccos a. . (6.52)

B
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Assuming

f<fe®) (6.53)
we see that

qg <L 1. ' (6.54)

Introducing

kB X = t,

2(1— 1/2
<M kB x) = s,
7T

we now rewrite eq. (6.51):

a \1/2 kpb
I = (r) exp(jkya) [ 112 exp [~ (1—g) 1] ds

B k ga
a \"2exp(jkga kpb
=j(—3) _(Q_)<,1,2 exp [/ (1—4) 1 _12> (6:5)
kB l_q kpa
where
7 12 72 n
I, = ——w [ex —j—s?)ds,
: <2(1—q)) J p( 72 )
2(1—g) 12 2(1— 12
Sl = <—'—— kB a> ) Sz = <_(‘_q2' kB b) . (6.56)
7T 7T

Now I, reduces to (see eqs 7.3.1, 7.3.2, 7.3.9, 7.3.10, 7.3.27, 7.3.28 in ref. 38):

1/2
I = <2(1”—_q)) {Lif (52)— g(s2)] exp [—~j (1 — q) ke b] +

—[jf(s1)—&(s)]exp [—j (1 —q) k; al},
where

. 1 : 3
0= —(1—=5-)

1 1
g(s)=—< 2)
TS \7TS

*) At the coincidence frequency f., the bending wavenumber kg becomes equal to the sound
wavenumber in air kq; for bending waves on an infinite plate ?) f,, = c¢o2%/2 np? For
practical loudspeaker cones we find f,, ~ 10° Hz.

(6.57)
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On considering eqs (6.55), (6.56), (6.57) in conjunction with eq. (6.49) we see
that, in the present order of approximation, 7, may be neglected in eq. (6.55).
Thus _

r 41/2
L= L exp(jka )b exp[—j(1—q) kyb]— a'/* exp [—j (1— g) kaa}
(1—q) kg
and
1/2
| = (l—j—qm {6+ a— 2 (ab)?*cos [(1 —q) kg (b — a)]}*/2. (6.58)

In order to find the frequency average of |I 1| we determine
1, ,
L =— / [b + a— 2(a b)!'2 cos 8]*/2 d6. (6.59)
7T
(0}

Substituting
0=n—2¢p
and assuming
b>a (6.60)

we find that (see eqs 17.3.3, 17.3.12 in ref. 38)

n/2

2
Iy == (/b + Va) / [1 — 4 (a b)!/2 sin® g/(Yb + Ya)?]V/2 dp

: |
=—(/b+ V@) E[4(ab) (/b + Ya)’]

2
~ ;(Vb + Va) [1— (@b)*2/()b + Ja)?. . .]

2 b¥2—g32 2
=——~—|b. (6.61)
Tt b—a 7
Neglecting g with respect to unity eqs (6.58), (6.59) and (6.61) now yield the
following relation for the frequency average (|I 1|>:

2

ﬂkB

L]y ~ —— (a by . (6.62)

Using eq. (6.47) we find the following approximation for the frequency aver-
age of the amplitude of the axial sound pressure:
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, |
o) =2y F (@ a ) (¥ sin o (6.63)

In region III, for semi-apex angles « not near 90° the frequency average of
|Ya| is given by eq. (5.38):

(IY,,]) = Y. [ cos? a.
Using eq. (5.8) we find

(Bax) ~

k,b\1? F, tan? o
20 ( ! ) . (6.64)

124752 ¢r \ ha o sin o

It is expedient to normalize the above value of {j,,) with respect to the sound
pressure j, at low frequencies (eq. (6.22)) *):

ﬁnx 2 h 1/2
o kib- (6.65a)
Po 1214 5 cos? « a
which can also be written as
/ p> 2 <f R, h (665
\ﬁo T 124 g fia Ry Rocos®a) :65b)

where a factor (1 —»?)'/2 is omitted. Note that the frequency average of the
normalized axial sound pressure increases by 3 dB per octave. Further, it in-
creases relatively fast with increasing .

The above approximations hold for frequencies in the interval

Jia L € feos (6.66)

which interval in practice usually lies above the region for which the loudspeaker
is designed. Therefore, the practical value of eq. (6.65) is limited. An impression
of the value of the normalized mean pressure may be obtained by substituting
the following practical values: « = 60°, R,/R, = 5 and #/R, = 25 . 1073; we

find
<li“> ~ 0-6
Po
at f = 3 f,,. For the cones numbered 50.1 and 70.2, whose numerically cal-

culated frequency characteristics will be discussed elsewhere, we find a normal-
ized frequency-average sound pressure of 0-2 and 0-5 respectively at f = 3 f;,.

*) Equation (6.22) holds for a complete cone but is a fair approximation for the truncated
cone if @ € b, which is assumed here (eq. (6.60)).
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We may conclude that f or frequencies well above f;, (but below f,) the mean
value of the axial sound-pressure level increases by 3 dB per octave. This in-
crease is caused by the fact that the ratio of the bending wavelength Az to the
sound wavelength in air Ao increases by }/f: with increasing frequency the
bending waves become acoustically less short-circuited and radiate more sound.
The pressure level at a constant frequency strongly increases with «. Since in
region IT only the outer part of the cone (x > x,) is covered by acoustically
short-circuited bending waves, whereas the wavelength on the inner part of the
cone is relatively large, we may expect that on the average the sound pressure
in region II will be higher than that in region III. In the next sections the above
conclusions will be illustrated by numerical calculations.

6.5.5. A typical example

In this section all characteristic phenomena encountered in the sound radia-
tion of flexible cones will be discussed on the basis of the numerical evaluation
of eqs (6.37) and (6.41) for cone 50.3 (cone parameters in table 5-I) and for a
great number of frequencies (about 50). The frequencies are chosen in such a
way that the frequency characteristics of the mechanical and acoustical variables
can be drawn with sufficient accuracy. In all cases, the calculation of the mechan-
ical variables (axial admittance and transverse displacement pattern) requires
a computer time (about 2 minutes for each frequency with an IBM 370/168
computer) which is much longer than that needed for the evaluation of the
acoustic variables.

The voice-coil mass will always be neglected. The amplitude of the axial
driving force F, is assumed to be 1 N. The frequency characteristic of the axial
admittance of this cone, shown in fig. 5.13, was discussed in sec. 5.7.

Figure 6.7a shows the calculated axial sound-pressure level L, at a distance
of 10 metres from the cone top (if not stated otherwise this value will always be
taken), the radiated sound-power level Ly, o0, the beam width 8 and the direc-
tivity index DI, oo of cone 50.3. Comparing fig. 6.7a with fig. 6.6a for the rigid
piston and rigid cone we make the following observations.

Below f;, (1840 Hz) the sound radiation of both the flexible and therigid cone
is practically piston-like. However, at f. = 1580 Hz, L, of the rigid cone starts
to decrease. Because Iy,,| becomes minimum at f;, = 1840 Hz, we expect a
corresponding dip in the flexible-cone response, but this does not appear, owing
to the increasing transverse amplitude w(d) at the outer edge, as explained in
sec. 6.5.3.

Although £, < f.., no rigid-cone roll-off appears above f, because f, and f;,
lie relatively close together (sec. 6.5.3). In region II (f;; <f < fi,) the sound
radiation is predominantly controlled by the more or less uniformly vibrating
inner part of the cone; the acoustically short-circuited bending waves on the
outer part of the cone radiate little sound. In this region, cone 50.3 shows a
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Fig. 6.7a. Calculated frequency characteristics of cone 50.3.

broad maximum with a superimposed fine structure (bending resonances and
antiresonances) followed by a deep minimum at the first longitudinal anti-
resonant frequency f,; = 7513 Hz where |ya| becomes minimum (fig. 5.13).
In the high-frequency region (region III, f > f;,) the pressure response shows
the same oscillating character as the frequency characteristic of | ya|: peaks and
dips appear at longitudinal resonant and antiresonant frequencies (eq. (6.40)).
However, the mean value of L, decreases with increasing frequency to the level
predicted by the high-frequency approximation (eq. (6.65)). If L, had been
calculated for higher frequencies than those plotted in fig. 6.7a the mean value
of L, would be shown to rise again, as explained in sec. 6.5.4. The high-frequency
approximation eq. (6.65) is represented by the dash-dotted line.

The power response of cone 50.3 is shown by the middle graph of fig. 6.7a.
Below f, the response is practically frequency-independent, as predicted by the
low-frequency approximation (sec. 6.5.3). A roll-off starts at f; with a faint
minimum at f,,, as was also explained in sec. 6.5.3. On the average the power
response has roughly the same shape as the pressure response, although the
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former does not have such a high maximum in region IT but has a steeper mean
slope in region III than the latter. Both differences indicate a main lobe in the
axial direction.

Above f,, the beam width f of a flexible cone (bottom picture) is greater than
that of the rigid piston and rigid cone (cf. fig. 6.6b). This is due to the wave
motion of the cone surface, which smooths the directivity diagram.

The directivity index DI, o, is relatively low below cone break-up (f < f;,);in
this frequency region it is about equal to that of the rigid piston and the rigid
cone. Above f,,, however, the slope is much less than that of the rigid piston,
because in region II the radiating area decreases with increasing frequency and
in region III bending waves, which radiate sound in all directions, cover the
entire cone. Compared with the rigid cone, DI o0 of the flexible cone is in
general higher, because the former radiates a great deal of energy normal to its
surface. :

Minima in the DI,,, characteristic occur at the axial membrane resonant
frequencies (7968 and 17960 Hz); as will be explained below, they indicate a
broad sidelobe at these frequencies.

Figures 6.7b and c illustrate the shape of the directivity pattern in the various
frequency regions. At 1 kHz (region I) the radiation is practically uniform; at
5 and 10 kHz (region IT) a main axial lobe appears; at 20 kHz (region III) this
lobe has become narrower and a broad sidelobe normal to the cone surface
shows up.

Fig. 6.7c. Calculated directivity diagrams of cone 50.3 at 10 kHz (left) and 20 kHz (right).



Fig. 6.7d. Calculated directivity diagrams of cone 50.3 at the first (left) and second (right)
membrane resonant frequencies.

Pronounced sidelobes appear at the membrane resonant frequencies f,,,. At
these frequencies (about 7968, 17960, 28610 Hz for cone 50.3) the entire cone
comes into pure membrane resonant conditions, which overshadow all bending
effects (sec. 5.8). At least, this occurs in the absence of internal losses. Because
the wavelength A; of the longitudinal waves is three to four times longer than
2o, much sound is radiated normal to the cone surface. It may even occur that
the sound pressure radiated in axial direction becomes smaller than that
radiated in directions approximately normal to the cone surface. In that case
the minima in the frequency characteristic of the axial sound-pressure level L,
at the longitudinal antiresonant frequencies f,, may be further lowered (as
discussed in sec. 4.7.3, f,... approaches f,, with increasing »).

In the presence of internal damping the longitudinal resonance cannot fully
build up, because the reflected longitudinal wave is damped. In that case,
bending waves with Az < A, are superimposed upon the longitudinal wave
(figs 5.22a and b) which somewhat flatten the sidelobe. This blurring effect in-
creases with increasing d, owing to the decreasing longitudinal-wave amplitude.
Nevertheless, even for d = 0-1 strong sidelobes exist, as the directivity patterns
at the first and second membrane resonant frequencies show (fig. 6.74).

6.5.6. Influence of the cone geometry

In the next sections the influence of the cone geometrical parameters i, R,
and o on the sound radiation will be discussed on the basis of numerical
examples.

6.5.6.1. Influence of the cone thickness

Figure 6.8 shows the calculated frequency characteristics of cone 50.1, which
has the same parameters as cone 50.3 except that the thickness is reduced from
0-23 to 0-1 mm. This reduction in thickness eliminates the fine structure, as
explained in sec. 5.7.1 (cf. figs 6.7a, 6.8). The mean shapes of the characteristics
are approximately equal.
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Fig. 6.8. Calculated frequency characteristics of cone 50.1.

At low frequencies, the L , and Ly, characteristics are shifted upwards by
72 dB relative to those of cone 50.3 because of the difference in cone mass.

In the high-frequency region (f > f,,) the L, characteristic decreases, as
discussed in sec. 6.5.5; if L, is calculated for higher frequencies than those
shown in fig. 6.8 we would find an average value lying below that for cone 50.3
(fig. 6.7a). The high-frequency approximation is again represented by the dash-
dotted line.

The characteristics of the directivity index DI, ¢ and the beam width f of the
cones 50.1 and 50.3 are also practically equal. This is trivial in the low-frequency
region; in the high-frequency region the directivity patterns are the same because
in both cases the bending waves are acoustically well short-circuited.

In all subsequent calculations the thickness # will be taken as 0-1 mm to
eliminate the fine structure. In this way the number of frequencies at which the
mechanical variables have to be calculated can be reduced from at least 50 to
about 30, which considerably shortens the computer time required.

6.5.6.2. Influence of the outer-edge radius

In this section the influence of a variation of the outer-edge radius R, will be
discussed. It was shown in chapter 4 that the ring antiresonant frequency f;, is
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inversely proportional to R, (eq. (6.42)); the same holds for the characteristic
cone frequency f, (eq. (6.26b)). Therefore, a variation of R, will not change the
ratio of these frequencies, and the shape of the L, response up to f,, will be
independent of R,. The longitudinal resonant and antiresonant frequencies are
inversely proportional to the meridional cone length L = b— a. If b > a, Lis
approximately proportional to R,. Hence, the longitudinal resonant and anti-
resonant frequencies are also inversely proportional to R, Therefore, an in-
crease of R, means a shifting of the whole frequency response to lower fre-
quencies. This is illustrated in the following example.

The outer radius R, of cone 50.1 is doubled, which leads to cone 50.4 (cone
parameters in table 5-IV). The frequency characteristic of the axial admittance
of this cone, shown in fig. 5.17, was discussed in sec. 5.7.3.

Figure 6.9 shows the calculated acoustic performance of cone 50.4. As com-
pared with cone 50.1, all characteristic frequencies are approximately halved
and the curves are shifted to the lower side of the spectrum. In the low-frequency
region the values of L, and Ly, are equal in both cases, because the ratio of
the cone base area S, to the cone mass M, remains practically *) unchanged
(eq. (6.22)).

The foregoing is well illustrated by fig. 6.10, in which the frequency charac-

*) Remember that M, is the mass of the truncated flexible cone.
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Fig. 6.10. Comparison of the calculated frequency characteristics of the cones 50.1 (drawn
curves) and 50.4 (dashed).

teristics of L,, Ly90 and DI,;qo of the cones 50.1 and 50.4 are plotted as a
function of the dimensionless frequency parameter k,L. The value of L, and
Ly,00 are taken relative to the low-frequency value. Note that in the high-
frequency region the mean values of L, and Ly,o, of cone 50.4 are higher than
those of cone 50.1. According to the high-frequency approximation eq. (6.65)
(which cannot be used rigorously in the region considered), this difference
should be about 3 dB.

6.5.6.3. Influence of the apex angle

The influence of a variation of the apex angle is demonstrated by comparing
the frequency characteristics of cone 50.1 (¢ = 50°) with those of cone 60.1
(o = 60°) and cone 70.2 (o = 70°). The other geometrical and material param-
eters of these cones are equal and given in tables 4-I, 5-II and S-IIL

We will first discuss cone 60.1. The frequency characteristic of the axial
admittance was shown in fig. 5.15 and discussed in sec. 5.7.2. The frequency
characteristics of the acoustic output of cone 60.1 are shown in fig. 6.11. Com-
pared with cone 50.1 the values of L, and Ly, have increased by about 1 dB
because of the smaller cone mass. Region II is shifted to lower frequencies and
the broad maximum has decreased in height. In the high-frequency region the
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Fig. 6.11., Calculated frequency characteristics of cone 60.1.

longitudinal resonant and antiresonant frequencies are shifted slightly upwards.
The DI, oo characteristic of cone 60.1 runs higher in this region.

The above applies equally well to cone 70.2, the frequency characteristics of
which are shown in fig. 6.12. Note the pronounced maximum at f,, = 6500 Hz;
. the broad maximum in region II has still further decreased, although the |Y,,|
characteristics run higher for larger a (cf. figs 5.14, 5.15 and 5.16). This is
explained as follows. As stated previously, in region II only the inner part of
the cone radiates effectively. An increase in apex angle reduces this inner part -
because x; oc 1/tan « (eq. (4.10)). This decreases L, and Ly 140 in the lower part
of region IIL.

The influence of a variation of the apex angle is more clearly illustrated by
fig. 6.13, in which the frequency characteristics of the cones 50.1, 60.1 and 70.2
are plotted as a function of the dimensionless frequency parameter k,L. In
this way the differences in the higher longitudinal resonant and antiresonant
frequencies are eliminated. This figure clearly illustrates the effects of an in-
creasing a, viz. ' ‘

(1) the decrease of f,,,
(2) the decrease of L,, Ly;00 and DI, g0 in region II,
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Fig. 6.12. Calculated frequency characteristics of cone 70.2.

(3) the increase of the mean value of L, and DI, o for the highest frequencies
(in accordance with eq. (6.65)). In this region DI, ,, increases because the
sidelobe normal to the cone surface shifts closer to the cone axis with in-
creasing o.

657 Influence of the cone material

In this section, the influence of the cone material will be described. The cone
material is determined by Young’s modulus E, the mass per unit volume p,
Poisson’s ratio ¥ and the internal loss factor 6. The influence of 6 on the
mechanical cone behaviour has been discussed in sec. 5.7; an increase in &
smooths the peaks and dips in the frequency characteristic of |Y,,|; the same
occurs in the frequency characteristics of the acoustic quantities. This will not
be further illustrated. Poisson’s ratio » has in general a negligible influence;
only the lower axial membrane resonant frequencies depend to a certain extent
on its value (eq. (4.63)).

A rough estimate of the influence of the remaining material parameters E
and p can be given on the basis of eq. (6.39). The positions of the peaks and dips
in the pressure and the power responses are proportional to ¢ = (E/p)'/2. At
low frequencies the axial admittance |Y ,,I is proportional to 1/p (eq. (5.28)). At



— 143 —

Fig. 6.13. Comparison of the calculated frequency characteristics o f three cones with different
apex angles: cone 50.1, ----cone 60.1, ------- cone 70.2.

high frequencies the frequency average of |Y,,| is determined by Y. (eq. (5.38))
and is consequently proportional to 1/pc. The reduced velocity distribution
V(x) is influenced by c.

The above is illustrated in figs 6.14a and b which show the frequency charac-
teristics of the acoustic performance of cone 50.1 if its specific mass density is
increased and decreased by a factor of 4 respectively. Compared with fig. 6.8
the resonant and antiresonant frequencies as well as the transition frequencies
f:» and f;, are halved and doubled. The frequencies f; and f. remain unchanged.

In the low-frequency region the values of L, and Ly, in figs 6.14e and b
differ by 24 dB. Owing to the high value of ¢ in fig. 6.14b, the characteristic cone
frequency f, falls well below cone break-up, which causes a faint minimum at
Jra in the L, characteristic. In the Ly, oo characteristic a clear dip occurs at f,,,
as discussed in sec. 6.5.3. In the power response of fig. 6.14a this dip has com-
pletely disappeared, since f;, = f; here.

In the mid-frequency region (region IT) the broad maximum decreases with
decreasing c, since this region shifts to lower frequencies. This enhances the
acoustic short-circuit of the inner cone part, which is responsible for the radia-
tion in this region.
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Fig. 6.14b. Calculated frequency characteristics of cone 50.1 with a mass density ¢ = 150 kg/m?3.



Fig. 6.15. Comparison of the calculated frequency characteristics of cone 50.1 with different
mass densities g: - - - - 150 kg/m3, 600 kg/m3, - - - - - + - 2400 kg/m3.

In the high-frequency region the influence of a variation of ¢ can be better
illustrated with the aid of fig. 6.15, where k,L is used as the independent vari-
able. Since L, and Ly, oo are proportional to 1/g at low frequencies and to 1/}/p
at high frequencies, a normalization relative to the low-frequency value means
a 6-dB decrease at high values of k,L when g decreases by a factor of 4. In these
normalized characteristics the dips at high values of k,L remain at rest, which
proves that these dips are determined mechanically.

According to the high-frequency approximation eq. (6.65a) the normalized
characteristics should have the same mean value. This is not the case; the reason
may be that the condition f > f;, is not fully satisfied at the frequencies consid-
ered.

The DI, characteristics of fig. 6.15 show the increasing acoustic short-
circuit in regions I and II as g increases. In the high-frequency region, there is
not much difference because in all cases the bending waves are well short-
circuited.

In the foregoing, the influence of a variation of the mass density o was dis-
cussed. The influence of a variation of Young’s modulus E on the frequency
characteristics of L, and Ly, o, can now be easily predicted. Atlow frequencies
the influence is small: dips may appear at f;,. At high frequencies the influence
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of E on L, and Ly, is the same as that of p. The positions of the peaks and
dips, being proportional to ¢, show the inverse dependence on E as compared
with p.

6.5.8. Influence of a rigid cone top

In the preceding calculations the interval 0 < x < a was assumed to radiate
no sound. However, in practice the cone is either complete or it is truncated
and provided with a dust cap. If this part is relatively rigid, it may considerably
contribute to the sound radiation in the high-frequency region. ,

This is shown by fig. 6.16 where L, Ly 00 and D10 are plotted as functions
of kL for the cones 50.1, 60.1 and 70.2 with a massless rigid conically shaped
top having the same apex angle as the cone. These characteristics should be
compared with those of fig. 6.13. The additional cone top has little influence in
the low-frequency region, at least if b6 > a. In the high-frequency region, how-
ever, the top contributes considerably to the sound radiation. It increases the
radiation in the direction normal to the cone surface and therefore lowers the
DI, oo curves, which may even become negative. This occurs in the case of cone
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Fig. 6.16. Comparison of the calculated frequency characteristics of three cones with a rigid
conical top: cone 50.1, ---- cone 60.1, -+ ----- cone 70.2.
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70.2 at the first membrane resonant frequency (k, L = 2-1), at which there is
already a big sidelobe for the truncated cone. Of course, in practice the contri-
bution of the cone top is not as extreme as shown in fig. 6.16 because it is not
completely rigid. This section only serves an illustrative purpose. In the follow-
ing we will again consider the sound radiation of truncated cones.

6.5.9. Influence of the voice-coil mass

In the preceding radiation calculations the mass of the voice coil and of the
other parts attached to the inner cone edge (suspension, dust cap) was not taken
into account. The influence of this additional mass (briefly called M, in the
following) on the frequency characteristic of the mechanical impedance was
discussed in sec. 5.10 and illustrated in figs 5.23, 5.24 and 5.25. In the latter
section it was shown that above the frequency at which |Za| and wM_ become
equal the additional mass completely changes the shape of the frequency char-
acteristic of the axial admittance: the total admittance |Yt°t| decreases with
1/f (fig. 5.25). Below the mentioned frequency, the |Y,,| characteristic is only
shifted downwards without a change of the shape. The same effects can be
observed in the frequency characteristics of the acoustic quantities, which will
now be discussed.

In the presence of a voice-coil mass the total axial impedance becomes

Ziw=2Z, + joM.. (5.40)

Calling v,(x) the transverse velocity distribution on the cone for M, == 0, we
find for the velocity distribution v,'(x) in the presence of M,:

z,
v,'(x) = Z. 1 jol. v(x). - (6.67)

The reduced velocity distribution V(x) is not influenced by M,:

s v/(x) . v,(x) .
) = e = = ) (668)

This means that the absolute value of the axial sound pressure now becomes

Pox = @' o F, |Ytot I1| sin® a (6.69)
r

where the integral
b

I, = / Vix)exp (jko x cos o) x dx
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is not changed by the introduction of M, and Y, istheinverse of Z,,,, given by
eq. (5.40). Hence, the axial sound pressure p;, and sound power Wioo of a
cone with an additional voice-coil mass are related to j,, and W, of the same
cone with M, = 0 by the expression

’i‘r.l\x — Wioo — IYtotl — | Za | (670)
Dax WIOO | YaI I Za +JCOMc |
For frequencies at which
oM, > |Z,| (6.71)
we find |
| 5l _ W z.
b. _ 100 | I (6.72)

~ .
PAax WlOO I chl

Because eq. (6.71) is usually satisfied in the high-frequency region, in which
Pax already decreases, this roll-off is further steepened by M ..

Condition (6.71) can be further elaborated by introducing the mean value of
[Z,,| in the high-frequency region:

([Za|) =27 R, 0 hec, cos? a (6.73)

which follows from eqs (5.38) and (4.46).
Substituting eq. (6.73) into eq. (6.71) we find as an approximative expression
for the frequency region in which the voice-coil mass steepens the roll-off:

f>f M"(R" " 2 (6.74
> Jia — | sm Za. .
M M, Rb) )

Equation (6.72) then becomes
Pix  Wico  fia M4 (&)2 .
sin 2a.

— N, — ———

2 (6.75)

Dax W00 f M,

In the derivation of eqs (6.74) and (6.75) a factor (1 — »?)/2 is omitted, while
the cone mass M, is approximated by

M;~nR,?ph/sina (6.76)

which is valid for 42 > a2.

In the vicinity of f;, the pressure and power characteristics decrease in any
case so that f;, can roughly be considered as the upper limit of the loudspeaker
response. This upper limit is not shifted downwards by the voice-coil mass if

Mc Ra 2 . ;
< (—) sin 2. (6.77)
M, \Ry
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For a cone with & = 60° and R,/R, = 5 we find M, < 0-:03 M, which is too
low to be of any value in practice. The latter condition might be satisfied by
taking an exceptionally heavy cone as compared with the voice coil; however,
this would greatlyreduce the pressure and power levels and hence the efficiency
of the loudspeaker.

In practice, the dip in the pressure and power characteristics that occurs in
any loudspeaker at the first longitudinal antiresonant frequency f,; will usually
be inacceptable. Then the upper limit of the frequency response of a louds':peaker
is in fact formed by fi,;. If fi,; </f:, the ratio of the voice-coil mass to tbe cone
mass may therefore be somewhat higher. In practice this ratio is mostly higher
than 0-1 and the upper frequency limit is usually decreased by the voice-coil
mass. On the other hand the bandwidth of a given loudspeaker can be increased
by making the ratio M /M, as small as possible *). This can be achieved by
minimizing the voice-coil mass or by making the cone heavy. Of course the
latter cannot be done without loss of efficiency.

- . —kR,
90 1!102 12 1 1.5,.1(.}’ |2 L Llslll"] g 1 1-5
Lp(dB) Cone 50.3
T 80
70
60
50
VAL, fi'u ﬁlul
L R
—f{Hz)
100F
Lwi6o0(dB)
T S0f
80
70r
60r
50702 5 1 |;lll;63 é 1 !lsillIIIO‘ ; 1] !;!ll!ws
. —f(Hz)

Fig. 6.17a. Calculated pressure and power responses of cone 50.3 with a voice-coil mass
M, = M,/4. .

*) For maximum efficiency of the electro-acoustical conversion below cone break-up, the
voice-coil mass M, should be equal to the sum of the cone mass M, and the mass of the air
load 8 gg Rp3/3 41).
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Fig. 6.17b. Calculated pressure and power responses of cone 50.3 with a voice-coil mass
M, = My/[2.

Figures 6.17a and b show the pressure and power responses of cone 50.3 with
an additional voice-coil mass M, equal to one fourth and to one half of the cone
mass M, respectively. In the low-frequency region, the pressure and power
levels are lower than those of fig. 6.7a, because of the increase of the total mass.
The upper limit of the frequency response is in both cases formed by the first
longitudinal antiresonant frequency, where a very steep roll-off occurs. Because
the reduced transverse velocity distribution V(x) is not influenced by M, the
frequency characteristic of the directivity index is not changed; for cone 50.3
it is shown in fig. 6.7a.

6.6. Measurements

Measurements have been carried out for two reasons. First, to verify exper-.
imentally the preceding calculations the calculated and measured frequency
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characteristics of three plastic cones are compared with each other in sec. 6.6.1.
Secondly, it is shown in sec. 6.6.2 on the basis of the measured frequency
responses of four commercial loudspeakers that the rough shape of these
responses can be explained on the basis of a few easily obtainable characteristic
frequencies. In all figures the indicated positions of f,, fi.1, f: and f;, are calcu-
lated for the case M, = 0 (the influence of M, on f;, and f;,; is comparatively
small).

6.6.1. Comparison of calculated and measured acoustical behaviour

The preceding calculations are experimentally verified by acoustical meas-
urements on the three plastic loudspeaker cones 50.5e, 60.2e and 70.3e, whose
geometry and material parameters have been given in tables 5-VI and 5-VII.
To prevent acoustic short-circuit a textile disc of negligible weight and stiffness
was attached in the plane of the inner edge of these truncated cones. The meas-
ured frequency characteristics will be compared with the calculated ones of
cones 50.5, 60.2 and 70.3, which have the same values of R,, R,, E, o and
M_/M, as the above experimental cones (see tables 5-VIII and 5-IX). The
thickness / of the cones 50.5 and 70.3 is smaller than that of their corresponding
experimental specimens (50.5¢ and 70.3e). The theoretical value of the loss
factor ¢ is taken higher than the experimental value to account for radiation and
rim damping.

The measurements are carried out as follows. First, the frequency charac-
teristic of the axial sound-pressure level L, is measured for the unbaffled cones
without outer suspension in an anechoic chamber (driving current i, = 100
mA, microphone distance »r = 0-5 m). This is done to show the influence of the
outer suspension which is attached afterwards; moreover, most frequency char-
acteristics are given for an unbaffled cone in practice. Because a baffle is
always assumed in the calculations, calculations and measurements deviate
considerably in the low-frequency region. The free responses should therefore
only be considered as an illustration and a reference for the understanding of
other unbaffled characteristics. Subsequently the cone is provided with a rubber
outer suspension of 5 g and placed in an acoustic box of 100 1. This box is
attached to the middle of a square baffle (1-5 X 1-5 m?), which should approxi-
mate to the infinite baffle assumed in the calculations. The axial sound-pressure
level is then again recorded with i, = 300 mA and r = 1 m.

The sound-power level L, 00, the directivity index DI, o, and the beam
width 8 are measured as follows. Ten microphones are distributed with equal
mutual spacings over 50 degrees of a circle (fig. 6.18). The loudspeaker is fed
with a signal current of 200 mA. For a number of discrete frequencies, the
sound-pressure levels of the microphones are stored on paper tape, which is
used as input for a computer program. With the latter, Ly, ¢, is calculated by
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' Fig. 6.18. Set-up for the measurement of the sound-power level Ly 1005 the directivity inde)é
DI,00 and the beam width B.

numerical integration; DI, is calculated using eq. (6.4). With the same pro-
gram, f is calculated by inverse linear interpolation.

At each frequency, the acoustic parameters are determined as the mean value
of two measurements by each microphone; the second measurement is carried
out after rotating the loudspeaker by 180 degrees about its own axis. This is
done to compensate for measuring errors caused by possible azimuthal asym-
metries in the directivity diagram.

It was remarked above that there is a mass difference (caused by the dif-
ference in /) between the experimental cones 50.5¢ and 70.3e and the cones 50.5
and 70.3 on which the calculations are carried out. The degree of correction for
this mass difference is obtained in the calculations by making the applied force
per unit mass equal to the value in the experiment. In all figures the calculated
curves are shown dashed, whereas the measured curves are represented by
drawn curves.

Figure 6.19a shows the calculated and measured frequency characteristics of
cones 50.5 and 50.5e respectively, both with M, = 0-24 M,. The upper figure
shows the measured response of the unbaffled cone, which of course greatly
deviates from the calculated curve in the low-frequency region (acoustic short-
circuit). A deep minimum occurs at f~ = 1500 Hz, where the sound wave
radiated by the front of the cone arrives in the measuring point in antiphase
with the wave emanating from the back of the cone. This pronounced dip only
occurs if the cone vibrates more or less uniformly at f~. This is indeed the case
for cone 50.5e, for which f~ =~ f,,.

If we assume that the value of f~ is independent of the apex angle, the cones
60.2e and 70.3e would also show a dip at 1500 Hz. However, this dip does not
appear since for these cones f,, < 1500 Hz (cf. figs 6.20a, 6.21a, upper figures).
At f*= 1000 Hz the waves from the back of the cones arrive in phase with
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those from the front and cause a higher pressure level L, than the theoretical
level for the baffled cones.

For frequencies much higher than f, = 920 Hz, a baffle has not much in-
fluence: the sound wavelength A, has become so small that the cone acts as its
own baffle (remember that mainly the inner part of the cone provides the sound
_radiation in region II). At these frequencies there is a satisfactory agreement

between the calculated and measured curves.

It should be noted that the loss factor of the measured cone is lower than that
assumed in the calculations; this causes the measured response to be more
spiky. In the high-frequency region the measured curve runs higher than the
calculated one. A possible cause may be the fact that the voice-coil cylinder is
not completely rigid and theinner edge of thecone may vibrate with significant
amplitudes in other directions than the axial one. This may lead to a higher
motional impedance (see fig. 5.28) and a higher sound pressure.

The lower part of fig. 6.19a shows the calculated response of cone 50.5 and
the measured response of cone 50.5e in the above-mentioned box-baffle system.
The fundamental loudspeaker resonant frequency f, is about 40 Hz, below
which L, decreases by 12 dB per octave with decreasing frequency !). The
baffle-box system causes a diffraction dip at 300 Hz at which a great deal of
sound is radiated into an off-axis direction. At low frequencies (f < f;,) the

~measured curve runs higher than the calculated curve because of the radiation
of the outer suspension. Above cone break-up this suspension contributes little
to the sound radiation. Because of its relatively high damping it smooths the
response slightly (this is more clearly visible in fig. 6.20a). As discussed in sec.
6.5.3, no dip appears at f,,. At the first membrane resonant frequency f,,,
(~ 7000 Hz), which lies just above f},,, a deep minimum appears in both meas-
ured responses: much sound is radiated in off-axis directions. This minimum
does not appear in the calculated response owing to the assumed high value of
the internal loss factor (sec. 6.5.5). The upper frequency limit lies at f,,;,.

Figure 6.19b shows the calculated and measured sound-power responses of
the present cones. The power is measured at discrete frequencies (centre fre-
quencies of the standard one-third-octave bands); the measured values are in-
dicated by dots and interconnected by a drawn curve. Here too, the measured
response runs higher than the calculated response for f < f;, because of the rim
radiation. The baffle dip at 300 Hz in L, does not appear in Ly,;00: the baffle-
box diffraction causes a broad sidelobe which, in the integral of L, 0, com-
pensates for the pressure minimum in the axial direction. The upper limit of the
power response also lies at f;,,. The deep minimum in L, at f,,,, does not appear
in Ly 100 because of the broad sidelobe at this frequency.

Calculated and measured frequency plots of the directivity index DI, ,, are
shown in the upper graph in fig. 6.19¢. The broad sidelobe at 300 Hz causes a
high negative value of DI, 0. For the same reason a minimum appears at f,,,;.
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Fig. 6.19a. Calculated pressure response of cone 50.5 (dashed); measured pressure response
(drawn curves) of cone 50.5¢ unbaffled (upper figure) and in baffle-box system (lower figure).
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Fig. 6.19b. Calculated power response of cone 50.5 (dashed); measured power response of
cone 50.5e (drawn curve).

The lower graph of fig. 6.19¢ shows the calculated and measured beam widths 8

versus frequency.
Calculated and measured directivity diagrams at four frequencies are shown

in figs 6.19d and e. Note that for angles greater than 50 degrees and high fre-



— 155 —

15

DI,dB)
10}

_5-
fo ft fa fiat fa
_’0 L L1 I'll!ll 1 Ll L 1 1t f) 1 L IIII| 2L L
0 2 5§ 1’22 5 07 2 5 ot 2
—f(Hz)
80
A(°) \
T 60} \
40}
20}
O 1 L4 1 1111t [} l|lll|!!3 1 ll|ll!ll‘
0 2 5 102 2 5 1p3 2 5 10

- f(Hz)

Fig. 6.19¢. Calculated frequency characteristics of the directivity index DI 9o and the beam
width f of cone 50.5 (dashed); measured characteristics of cone 50.5e (drawn curves).

Fig. 6.194. Calculated (cone 50.5, dashed) and measured (cone 50.5e, drawn curve) directivity
diagrams at 2040 Hz (left) and 6170 Hz (right).

15090 Hz

Fig. 6.19e. Calculated (cone 50.5, dashed) and measured (cone 50.5e, drawn curve) directivity
diagrams at 10560 Hz (left) and 15090 Hz (right).
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quencies the measured pressure level runs lower than the calculated curve
(screening-off effect).

Figures 6.20a, b and ¢ show the calculated and measured frequency charac-
teristics of cones 60.2 and 60.2e. The frequency characteristics of cones 60.2
do not show fundamental differences from those of cones 50.5. Note that the
maximum in region IT is less high and that the responses start to roll off at a
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Fig. 6.20a. Calculated pressure response of cone 60.2 (dashed); measured pressure response
(drawn curves) of cone 60.2e unbaffled (upper figure) and in baffle-box system (lower figure).
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Fig. 6.20b. Calculated power response of cone 60.2 (dashed); measured power response of
cone 60.2e (drawn curve).
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Fig. 6.20c. Calculated frequency characteristics of the directivity index DI, o¢ and the beam
width B of cone 60.2 (dashed); measured characteristics of cone 60.2e (drawn curves).

Fig. 6.20d. Calculated (cone 60.2, dashed) and measured (cone 60.2e, drawn curve) directivity
diagrams at 5280 Hz (left) and 10940 Hz (right).

somewhat lower frequency than cone 50.5e (influence of M, /M ). Figure 6.20d
illustrates the satisfactory agreement of the calculated and measured directivity
diagrams at two frequencies. ‘

The above remarks hold equally well for figs 6.21a, b and ¢, showing the
calculated characteristics of cone 70.3 and the measured curves of cone 70.3e.
-The calculated pressure response is a good approximation of the mean meas-
ured curve (fig. 6.21a, lower graph). Note the pronounced measured bending
resonances and antiresonances, compared with the other cones (as shown in
sec. 5.6.2 the spacing between these bending resonances and antiresonances in-
creases with increasing o). Bending resonances and antiresonances do not
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appear in the calculated curve as the value of 4 is too small. The maximum in
region I1is lower than that of the foregoing cones. The relatively small value of
fia causes a smaller bandwidth as compared with the other cones. In the high-
frequency region (f > f;.), the measured pressure and power responses run
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Fig. 6.21a. Calculated pressure response of cone 70.3 (dashed); measured pressure response
(drawn curves) of cone 70.3e unbaffled (upper figure) and in baffle-box system (lower figure).
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Fig. 6.21b6. Calculated power response of cone 70.3 (dashed); measured power response of
cone 70.3e (drawn curve). .
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higher than the calculated curves; here the difference in 4 causes a considerable
error (see eq. (6.65)) in addition to the previously mentioned effects. '

Calculated and measured directivity diagrams are shown in fig. 6.21d.

Figure 6.21e shows the measured directivity diagram at the first membrane
resonant frequency (6050 Hz); a deep minimum in the axial direction appears,
as explained in sec. 6.5.5.
"~ The above comparison of calculations and measurements shows that pressure
and power responses as well as directivity diagrams can be calculated with
acceptable accuracy, at least below f;,,. Besides, measurements confirm the
conclusion that the upper limit of pressure and power responses lies at most at
the lower one of f),; and f;,. .

The pronounced off-axis radiation at the membrane resonant frequencies is
further illustrated on the basis of measurements on the polycarbonate cone
50.2e. The frequency response of the latter, shown in fig. 6.22a, closely resembles
that of cone 50.5e (fig. 6.19a), except that cone 50.2e has a smaller internal loss
factor, which causes a more distinct fine structure in region II. The directivity
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Fig. 6.22a. Measured pressure response of cone 50.2¢ in baffle-box system.

i Fig. 6.22b. Measured directivity diagrams at the membrane resonant frequencies
[nr1 = 6430 Hz and f,,,, = 13970 Hz of cone 50.2¢.
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diagrams at the first and second membrane resonant frequencies are shown
in fig. 6.22b (vibration patterns at these frequencies are shown in figs 5.30e
and g). Note the relatively small axial values, which further deepen the already
existing dips at f;,; and f},, in the frequency characteristic of the axial sound
pressure (fig. 6.22a).

6.6.2. Pressure responses of four commercial loudspeakers

In this section it will be shown that the rough shape of the frequency response
can be explained without carrying out extensive numerical calculations. In fact,
only the relative positions of the following frequencies must be known: f,, 1,
Jtas fra and f,,. The first-mentioned three frequencies follow directly from eqs
(6.10b), (6.26) and (4.12) respectively, whereas f,, may be approximated by eq.
(6.42). However. in the following, f,, and f,,, are graphically determined from
fig. 5.9b. In the figures discussed below, f;, is not indicated, it lies just above f..

The above-mentioned frequencies are indicated in the measured sound-
pressure response of four loudspeakers, which are ranked according to their
value of MM, (see table 6-I).

TABLE 6-I
type R, R MM, | fig 623
(mm)
AD8065/W8 75 127 1 a
ADS5080/X8 4 94 07 b
AD7080/X8 61 94 0-4 ¢
AD8080/X8 79 94 02 d

The total mass of voice coil, voice-coil cylinder and dust cap is M, ; M, is the
cone mass plus outer suspension mass if the latter is made of paper (last-
mentioned three types), for the woofer (first-mentioned type) M, is the cone
mass without the mass of the (heavy) rubber rim. All cones have a semi-apex
angle of 60°; for the determination of f,,, f;,; and f;; we have taken ¢ = 2700
my/s. .

Figures 6.23a to 6.23d show the measured pressure responses of the unbaffled
loudspeakers. These curves are recorded with a constant-voltage drive
eerr = 0-63 V, except for the response of the woofer (fig. 6.23a) where e = 24 V
is used. In all cases f; lies just above f,, (/. & 1-1 f;,), so no dip will appear in the
pressure response of the baffled loudspeakers (f; is not indicated). On the other
hand, f; ~ 0-5 f,, for all cones; this will cause a dip at f;, in the power response
of the baffled loudspeakers.
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Fig. 6.23. Measured pressure responses of four unbaffled commercial (Philips) loudspeakers.
The indicated values of fy, frq, f1a1 and fy, are calculated; in all cases f, s 1-1 f;,.
(a) AD 8065/W8 (woofer), (b) AD 5080/X8 (standard), (c) AD 7080/X8 (standard),

(d) AD 8080/X8 (standard).
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At low frequencies the responses increase with increasing frequency, as is
well known. After this low-frequency rise we encounter a maximum caused
by the waves from the front and the back of the cone arriving in phase in the
measuring point (f* ~ 1200 Hz in figs 6.23a and d). At about 1500 Hz in
figs 6.23b and c¢ a rim resonance (a pronounced peak directly followed by a
dip) is superimposed on this maximum. There the outer suspension comes into
a resonant condition: with increasing frequency it first vigorously vibrates in
phase and then in antiphase with the practically uniformly oscillating cone
(the proximity of f; is sheer coincidence).

The maximum at f* is followed by a roll-off caused by the partial mutual
compensation of the waves emanating from the front and the back of the cone.
Though in all cases cone break-up starts at a sufficiently *) high frequency,
pronounced dips at a certain frequency f ~ (as in fig. 6.19a, upper graph) do not
show up. This is probably due to the fact that the present cones are provided
with an outer suspension that may vibrate in a phase different from that of the
cone, thus blurring the above compensation effect. 7

At f,, a relatively sharp rise occurs, followed by a fast roll-off. The frequency
at which this roll-off starts depends on M /M, (sec. 6.5.9). The woofer (fig.
6.23a) has a relatively high value of M_/M,; the response first shows a small
peak just above f,, (remainder of the broad maximum in region II for M, = 0)
and is then practically cut off (this “early” roll-off is of course no disadvantage
for a woofer). . ,

Figures 6.23a through 6.23d show that with decreasing M_/M , the maximum
just above f;, first increases in height and then broadens. Even the value
M /M,=0-2isstill toohigh to prevent an early roll-off caused by the voice-coil
mass (fig. 6.23d), in accordance with the calculations made in sec. 6.5.9.

6.7. Design rules

In practice a flat pressure and power response, a large bandwidth and a high
efficiency cannot be achieved simultaneously. Hence, the design of a loud-
speaker cone is a matter of compromise. First we will discuss how a flat pressure
and power response can be realized (sec. 6.7.1). In sec. 6.7.2, the emphasis is
placed upon the creation of the largest possible bandwidth. I'tis assumed that the
longitudinal wave velocity ¢ in the cone material is known. Further the outer-
edge radius R, is determined by the required sound power and maximum voice-
coil excursion belowcone break-up **). The rigid-piston transition frequency f;
follows from eq. (6.10b).

*) Assuming that f~ is proportional to R, and measuring f~ = 1500 Hz for R, = 83 mm
(fig. 6.19a) we find for the cones in this section f =~ < f,,.
**) Usually R, is directly related to the loudspeaker functioning as a low-, middle- or high-
frequency radiator.
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6.7.1. Realization of a flat pressure and power response

To avoid a dip at f;, in the sound-power response, f;, should not lie too far
above f;. If we take for instance f,, < 2 f;, the apex angle is determined by eqs
(6.10b) and (6.42): cos a < 2-8 co/c. For a paper cone with ¢ = 2700 m/s we
find & > 70°. This range of « corresponds at the same time to a low maximum
in region I, as required for a flat response.

To allow easy elimination of the fine structure we take « as small as possible.
If « is chosen in this way a dip at f;, in the sound-pressure response caused by
a rigid-cone roll-off cannot occur, since £, is higher than £, (sec. 6.5.3).

The inner-edge radius R, determines f,, and f,,; the lower of these frequen-
ciessets the upper limit for the pressure and power responses, at leastif M, = 0.
On the basis of the foregoing we take fj,1 <fis. The value of kR, at Jia 18
determined by the upper boundary of region.II (fig. 4.19a). The intersection
of this horizontal line with the f,,, curve in fig. 4.195 determines the minimum
value of R,/R,. )

The pressure and power responses usually start to roll off at a lower fre-
quency than f,, or fi4;, because of the influence of the voice-coil mass. Hence
M /M, should be chosen as small as possible to obtain a high upper frequency
limit. .

The cone thickness # can be determined experimentally after the deter-
mination of the other geometrical parameters. For a paper cone a first trial
value of # = R,/200 can be taken. If a fine structure appears, either the internal
or the rim damping must be increased or # must be decreased. The latter,
however, reduces M /M, Further, too small a thickness may increase the
harmonic distortion as the vibrational amplitudes may exceed the linear range.
As long as the efficiency of the electro-acoustical conversion is of secondary
importance, the thickness should be taken as great as possible. The elimination
of the fine structure *) in the above example of a paper cone with a relatively
high value of « will not be easy. One remedy may be the use of a highly damping
rim. If it introduces insufficient damping the cone may be covered by a damping
layer (which, of course can also be applied to the rim). Further, ¢ can be made
lower to reduce the spacing between the bending resonant and antiresonant fre-
quencies. If ¢ is made lower by increasing the mass density, M /M, is reduced,
which may increase the upper frequency limit.

6.7.2. Realization of a large bandwidth
As discussed in sec. 6.5.9, a prerequisite for obtaining a large bandwidth is to

*) The elimination of the fine structure also prevents undesired oscillations (ringing) caused
by bending resonances after the application of a transient input signal to the voice coil.
However, after an input pulse even a loudspeaker with a frequency response like that of
fig. 6.23a (in whichthefine structureis practically eliminated) will show decaying oscillations
with frequencies corresponding to the maxima in the response. They are caused by the
loudspeaker acting as a filter to an applied signal.
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have the smallest possible value of M /M,. In general this means a heavy cone
and consequently a low efficiency. If the dips in the responses at f,, and f;,, are
allowed we should choose a small value of « and take c as large as possible *).
Then £, ,, f1a1 @s well as f;, shift upwards (figs 4.19a and ). If only a dip in the
power response at f;, is allowed, we should take f,,; = f;.; this likewise results
in a relatively smiall value of « (e.g. 50°); R,/R, follows from the intersection of
the f;, and f,, curves in figs. 4.19a and b. The small value of « results in a rela-
tively high maximum in region II. The thickness is again chosen in such a way
that the fine structure is eliminated.

6.7.3. Realization of a high efficiency

It is well known how the efficiency below cone break-up may be op-
timized 1'41). A high efficiency above cone break-up usually demands other
measures. The cone weight should be as small as possible (small g #). Therefore
the voice-coil mass will determine the upper limit of the pressure and power
responses, and the bandwidth will be small. A high maximum above cone
break-up can be obtained by taking a small value of «. If a dip in the pressure
response at f;, is not allowed, Young’s modulus E should be adapted in such
a way that f;, < 2f..

6.8. Conclusion

The sound radiation of a flexible cone may be summarized as follows. Below
cone break-up the flexible cone can be approximated by the rigid piston. Above
cone break-up the radiation is provided by the inner part of the cone, which
decreases in area with increasing frequency; this causes a broad maximum in
the pressure and power responses. The bending waves on the outer part radiate
little sound. At high frequencies (f > f;,) bending waves cover the entire cone;
then the average pressure and power responses decrease with increasing fre-
quency. The upper limit of the responses lies at the lower of f;, and the first
longitudinal antiresonant frequency f,;. In practice, however, the upper
frequency limit of the responses is lowered by the voice-coil mass. Longitudinal
effects play an important role in the sound radiation: the axial admittance Y,
which is a measure of the vibration amplitude, is determined by the longitudinal
admittance Y;; above cone break-up the radiation is provided by a longitudinal
wave on the inner cone part; peaks and dips in the responses are caused by
longitudinal resonances and antiresonances.

The bandwidth of a loudspeaker in which cone break-up occurs approp-
riately is larger than that of a rigid cone or a rigid piston. From this point of
view it is therefore quite wrong to make the cone asrigid as possible, for instance
by using expanded plastics or sandwich constructions. Apart from that,

*) If the voice-coil mass causes a roll-off below fj,1, an increase of ¢ does not lead to an in-
crease of the bandwidth as long as M C/M 4 is not decreased at the same time.
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because of the high bending stiffness of a rigid cone, the fine structure will then

consist of pronounced peaks and dips which are very difficult to eliminate.

The directivity diagram of the flexible cone is in general wider than that of
the rigid piston. At the membrane resonant frequencies, which lie just above the
longitudinal antiresonant frequencies, a broad sidelobe appears which may be
accompanied by an axial minimum. This further deepens the minima in the
axial response caused by the longitudinal antiresonant frequencies.

In the foregoing, it has been implicitly explained why a coneis preferable to a
plate. For the cone the bending waves only appear above f,, and on a limited
(outer) part of the cone. The relatively stiff inner part takes care of the sound
radiation: the cone exhibits a “prolonged rigid-piston action” with the advan-
tage that the “piston™ area decreases with increasing frequency. For the plate,
acoustically short-circuited bending waves appear at a much lower frequency
and cover the whole plate, resulting in a low sound-pressure response with
pronounced peaks and dips. _

The preceding conclusions also hold to a certain extent for slightly flared
(i.e. horn-shaped) diaphragms. For such a diaphragm, a increases with the
meridional coordinate. The ring antiresonant frequency f;, of a flared diaphragm
is in general lower than that of a conical diaphragm with the same inner- and
outer-edge radii and depths because the local value of a at the outer edge of
the flared diaphragm is larger than that of the cone ( f;, lies just below f;, which
is proportional to cos a, see eq. (4.11)). Therefore the flared diaphragm has a
less high maximum in region II than the cone. The longitudinal antiresonant
frequencies of the flared diaphragm are somewhat lower than those of a conical
diaphragm because the former has a larger meridional (arc) length L than the
~ latter.

We may summarize the main conclusions as follows.

(1) Pressure and power responses as well as directivity diagrams of a loud-
speaker cone can be calculated with acceptable accuracy.

(2) The shape of the pressure- and power-reponse curves can be easily under-
stood on the basis of the ratio of voice-coil mass to cone mass and five easily
obtainable characteristic frequencies f;, f;, fra> f1a1 and fi,.

(3) The bandwidth of the power response of a flexible cone can be larger than
that of a rigid cone or a rigid piston.

(4) In practice the voice-coil mass causes a roll-off in the pressure and power
responses, thus limiting the loudspeaker bandwidth; to obtain a high upper
frequency limit the ratio of voice-coil mass to cone mass should be made as
small as possible.

(5) The reaction of the cone to the voice-coil force is mainly determined by the
mechanical impedance in the longitudinal (i.e. meridional) direction.

(6) The influence of asymmetrical cone vibrations on the acoustical performance
of the loudspeaker is negligible.
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APPENDIX A

Differential equations for the mechanical cone behaviour

It was discussed in chapters 4 and 5 that the mechanical cone behaviour can
be described by a system of m simultaneous first-order linear differential equa-
tions which can be written as

dy(x)

. A(x) /(x) (A.1)
where y(x) is an m-dimensional vector containing the fundamental variables
and A(x) is an (m, m) matrix. This system is subjected to m/2 boundary condi-
tions at either edge of the cone and it is numerically solved with the method of
direct integration (appendix B).

For the lossless conical membrane m = 2 ;the membrane equations comprise
the following fundamental variables:

¥x) = [ N ] A2)

whereas the matrix 4A(x) is given by

A(l, 1) =—v g/x,

A(1,2) =(1— v2g)/Eh,
AQ, 1) = Eh (g — k? x?)[x2,
A2,2) = (=1 + »g)/x,

where the factor g is given by eq. (4.7). Internal material damping is introduced
by means of a complex Young’s modulus, the differential equations are found
by replacing E by E (1 + jd) in the above lossless equations. All fundamental
variables then become complex and are provided with indices 1 and 2 to in-
dicate the real and imaginary parts. For the conical membrane we then have
m = 4, and eq. (A.1) is determined by

(A.3)

Uy
U
Wx) = N, (A4)
Nx2
and
AL D) = AQ2,2) = —vg,/x,
A(1,2) = —AQ2,1) =—A(3,4) = A4, 3) = v g,/x,
AQ1,3)= AR, 4)=(1—r»*>g,— 35’ g,)/Eh,
AQ1,4) =—42,3)=(0—0+*g, +v*g)Eh, (A.5)
AB, )= A4 2)=Eh(g,—dg,—k* x?)|x?,
A(3,2) =—A4, 1) =—Eh (6 g1 +82)I*%,
AB,3) = A4, 4 =g, — Dx,
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where g, and g, are given by eqs (4.66a) and (4.66b)-and powers of ¢ higher
than unity are neglected with respect to 1.

For axisymmetric vibrations with inclusion of bending effects but without
internal losses (general equations) m = 6, and the system of differential equa-
tions is determined by the following fundamental variables:

-]
u
=B | (A6)
Q
N
M,
The (6, 6) matrix A(x) can be derived fromthat given in ref. 16; if we assume that
h? cos? a
——<1 (A7
12 R.2

we find the following nonzero elements of A(x):

A, 3) = —A(6,4) =—1,

A(2,1) = —A(4, 5) = —v cota/x,
A(2,2) = A3, 3) = —/x,

AR2,5) = (1 — vd|Eh,

A3, 6) = 12 (1 — vd)/E h3,
A(4,1) = E h (cot? a — k? x?)[x?, (A8)
A(4,2) = A(5,1) = E h cot afx?,
A4, 4) = —1/x,

A5,2) = Eh (1 —k? x?)/x2,
A(5,5) = A(6,6) =— (1 — »)/x,
A(6,3) = E h® (1 — k? x?)[12 x2

In the presence of internal losses m = 12; then y(x) is given by

) = | P | | (A9)
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and the (12, 12) matrix A(x) has the following nonzero elements:

AQ,5) = AQ2,6) =—A(11,7)=—4(12,8) =—1,
AB,1) = A4,2) =—A(1,9) =—A(8, 10) = —» cot a/x,
A(3,3) = A4, 4 = A(5,5 = A6, 6) =—v/x,

A(3,9) = A4,10) = (11— ?})/Eh, |

A(3,10) = —A(@4,9) =061 —9?)/Eh,

DA, 11) =  A(6,12) = 12(1—2)ER,
A(5, 12) = —A(6,11) = 12 6(1— v?)[ER3,
A(7,1) = A®,2) = Eh(cot? a—k* x?)/x?,
A(7,2) = —A(8,1) =—0E hcota/x?, (A.10)
A(1,3) = A®84) =A0,1)= A(10,2) = Ehcota/x?,
A(7,49) =—A4®,3) = A9, 2)=—A4(10, 1) = —6 E h cot a/x?,
A(1,T) = A(8,8) =—l/x,
A(9,3) = A(10,4) = Eh(1— k2 x?)/x?,
A(9,4) =—A(10,3) =—8 E hjx?,
A(9,9) = AQ10,10) = A(11, 11) = A(12, 12) = —(1 — ¥)/x,
AQ11,5) = A(12,6) =E h?® (1 — k2 x?)[12 x2,
AQ11,6) =—A(12,5) = —0 E h*[12 x2.

In these equations 62 and higher orders of é are neglected with respect to 1.

Finally, for asymmetric vibrations without internal losses the fundamental
variables which are assumed to be separable in the form given by eq. (5.1) are
the following eight:

w0 =| 8= | (A11)

The (8, 8) matrix 4(x) has the following nonzero elements, which follow from
those given by Kalnins **) under the assumptions

h? cos? a n? h?

12 R < 12 R <!




A(l,4) =—A(8,5 =—1,

A2, 1) = —A(5,6) = —vcot a/x,
A(2,2) = A(4,4) = —v/x,

A2, 3) = —A(7, 6) = —» t/x,

A2,6) = (1— v?)/Eh,

A3, 1) = —A(5,7) = t k? cot /6 x>,
A(3,2) = —A(6, 7) = t/x,

A3, 3) = —A(5,5) = 1/x,

A(3,4) = —A(8,7) = t 2 cot a6 x2,
AB,7)=21 + »)/Eh,

A4, 1) = —A(5, 8) = —v t2/x?,
A(4,3) = —A(7,8) = —v t cot a/x?,
A4,8) =12 (1 — v»/E K,

t? h? 2
AGS, 1)=Eh[ (t2+ )+cotzoz—k2 xz]/xz,
12 x2 149

A(5,2)= A(6,1) = Ehcot a/x? sin a,

A(5,3) = A(7,1) =t Ehcot a (1 — k2 h?/12)[x2,
AG,H = AGB, 1D =t2@ + v ER/12x* (1 + »),
A6,2) = Eh [1— k?x2+ 1?2 h? cos? «f24 (1 + v)]/x?,
A(6,3) = A(7,2) =t Ehlx?,

A(6,4) = A(8,2) = —t2 Eh® cot a/12 (1 + ») x3,
A(6,6) = A(8,8) =— (1 — »)/x,

A(7,3) = E h (2?2 — k* x?)[x2,

A(7,4) = A(8,3) =t 2 + v) E h* cot /12 (1 + ») »°,
AT, T) = —2/x,

AB,H=ER [1 —k%2x* +21%/(1 + v)]/12 x2,

where ¢ = n/fsin c.
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APPENDIX B

Description of the numerical method for the solution of a system of simultaneous
differential equations ’

B.1. Introduction

In the past, various methods have been employed for the numerical
solution of the equations that describe the static and dynamic’ behaviour of
shells of revolution. A short survey with additional references is given in ref. 24.
We have selected the direct-integration method 14:1%), in which the shell
boundary-value problem is reduced to an initial-value problem involving
simultaneous first-order differential equations which are integrated numerically.
An advantage of this method is that it permits a selection of an optimum step
size of integration at each step according to the desired accuracy of the solution.
A further advantage is that it can be applied to an arbitrary number m of first-
order differential equations; the computer program remains basically un-
changed. In this way the cone membrane equations (chapter 4) have been solved
for zero and nonzero values of the internal loss factor (m = 2 and 4 respec-
tively); in chapter 5 the general equations including bending effects have been
solved (m = 6 and 12 respectively). In the latter chapter the antiresonant fre-
quencies for asymmetric vibration (m = 8) were determined with the same
program. -

In comparison with other methods the direct-integration method is rathe
slow if it is used for the determination of the shell natural frequencies 14); the
latter have literally to be searched for. However, this disadvantage does not apply
here since for calculating the sound radiation we want forced-displacement
patterns in the presence of internal losses rather than natural frequencies. How-
ever, with direct integration it appears that a total loss of accuracy results if the
length of the integration interval is increased beyond a certain critical value *%).
This disadvantage of the direct-integration approach is avoided by dividing the
shell into segments.

The method is applicable to any two-point boundary-value problem governed
by a system of m first-order linear ordinary differential equations with m/2
boundary conditions at either end of the interval. Kalnins !#) shows that the
boundary-value problem of a rotationally symmetric shell can be stated in this
form. The resulting equations allow arbitrary meridional variation (including
discontinuities) in Young’s modulus, Poisson’s ratio, radii of curvature and
thickness. The method of solution consists of the following steps. First the
two-point boundary-value problem is reduced to a series of initial-value prob-
lems. These are directly integrated over preselected segments of the total
interval. After integration, continuity requirements on all variables are written
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at the end points of the segments. They constitute a system of linear matrix
equations, which is solved by means of Gaussian elimination.

In the next subsection the method of solution is explained for the case where
the shell is not subdivided into segments; this is followed by a discussion of a
multisegment shell. Further details can be found in ref. 14.

B.2. Method of solution for a one-segment shell

The fundamental variables (sec. 5.2) which appear in the governing system of
differential equations are represented by an m-dimensional vector y(x). If no
external loads are present, the mechanical behaviour is determined by a system
of m homogeneous first-order linear differential equations:

e
YD _ sy, (B.1)
dx

where the (m, m) matrix A(x) was given in appendix A. In the presence of
external loads on the cone surface (a case not dealt with in this thesis) an
inhomogeneous (m, 1) matrix B(x) would appear at the inner edge. This addi-
tional term would require the determination of a particular solution which can
easily be obtained !#). There are m/2 boundary conditions at either edge. The
solution of eq. (B.1) can be written as

Wx) = W(x) C, (B.2)

where W(x) is an (m, m) matrix whose columns represent m linearly independent
solutions of the homogeneous governing equations and C is a column matrix of
m arbitrary constants. The m linearly independent solutions are obtained by
solving the homogeneous system subjected to m linearly independent initial
conditions at x = a. If the initial conditions are independent, then the solutions
will be independent for all values of x in the interval (@, b). To reduce the
boundary-value problem to an initial-value problem we proceed as follows.
At x = aeq. (B.2) becomes:

Wa)= W) C, (B.3)
sO
' C = W~1(a) y(a). (B.4)

Substituting C in eq. (B.2) leads to

Wx) = W(x) W~(a) Aa). . (BS)
Define
Y(x) = W(x) W=(a), (B.6)
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then eq. (B.6) becomes

Wx) = Y(x) ¥(a) (B.7)
- with
Y(a) = I, (B.8)

where I is the unit matrix. Substituting eq. (B.7) into the system of differential
equations (B.1) we find that the original boundary-value problem is reduced to
m initial-value problems given by

dY(x) ) ‘
— = A(x) Y(x), (B.9)
dx ,

Y(a) =1 (B.10)

Equation (B.9) is numerically integrated with a fifth-order Runge-Kutta
method 2°). In this way the matrix Y(d) at the end of the integration interval is
determined. At x = b eq. (B.7) becomes

Wb) = Y(b) (a). (B.11)

Equation (B.1) constitutes a system of m linear algebraic equations with m
unknowns, half of the elements of y(a) and y(b) being known in terms of bound-
ary conditions. After solution of this system, y(a) is fully known and the solution
at any value of x may be calculated using eq. (B.7), provided the value of Y(x)
is stored at that particular value of x during integration.

B.3. Method of solution for a multisegment shell.

If the length of the interval (a, b) is increased, complete loss of accuracy
occurs beyond a certain critical value. This is caused by the fact that with in-
creasing value of b the elements of Y(b) rapidly increase in magnitude; then
Y(b) becomes bad-conditioned and while solving eq. (B.9) small errors in Y(b)
may lead to totally wrong results. This difficulty can be avoided by dividing the
shell into segments and restarting the integration process at the beginning of
each segment. Continuity requirements at the interconnection points lead to
linear algebraic equations which can be easily solved. The above is carried out
as follows.

Let the shell be divided into M segments denoted by S; in which
X <X <Xy, Wherei = 1,2,..., M, The shell edges are now denoted by x,
and x,.,, (fig. B.1). The matrices Y(x) are now determined on each segment:

dY(x) : '
——— =4 ¥,(),. (B.12)
dx

Y,(x,) =1 (B.13)
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\\ SM /X/M Xpte1
N S ¢

Fig. B.1. Notation for the division of a cone into segments.

By numerical integration Y, is determined at the end points of each segment.
The solution on each segment is

¥(x) = Yi(x) y(x1) (B.14)

where x; < x < x;,;. Requiring continuity of y(x) at all points x; we arrive at
the following M matrix equations:

¥(xip1) = Yilxiy 1) ¥0x0)- (B.15)

Assume that at the inner edge the first m/2 elements of y(x,) denoted by y,(x,)
are known and the remaining m/2 elements denoted by y»(x,) are unknown.
At the outer edge y;(xp+1) is the unknown and y,(X,.,) the known half of
¥(xpr+1)- The continuity equations (B.15) are rewritten as a partitioned matrix
product of the form

y1(xis1) Y1 (x4 1) Y2(Xi41) y1(x;)
— (B.16)
Va(Xi41) Y3 (x4 1) Yi*(Xi41) y2(x1)
which turns into a pair of equations
Y1(xi4 1) = Yil yi(x) + Y22 ya(x), (B.17)

Y2 1) = Y2 yi(x) + Y pya(x),

where the matrices Y /(x;,,), j = 1 to 4 are abbreviated by Y,/. The result is a
simultaneous system of 2M linear matrix equations in which Y,/ are known
coefficients; the (m/2, 1) matrices y,(x;) and y,(x;) are unknown. Since y,(x;)
and y,(xy 4 ;) are known there are 2M unknowns: y,(x;,) with i =2, 3, ..,
M+ 1 and y,(x;) withi= 1, 2, ..., M. By means of Gaussian elimination
the system of eqs (B.17) is brought to the form



where the (m/2, m/2) matrices E; and C, are defined by
E, = Y2,
C,=Y,*E," %
i=2,3,..‘.,M: E1=Y(2Y11C;_1H1,
C=@*4+Y>C_,"DE™.

The (m/2, 1) matrices 4, and B, are given by

A, ==Y, yi(xy),

B, ==Y y,(x;)— Y* >E1_1 Ay

i=23...,M—1: A =-Y'C_,""'B_,,
B =—Y?C_y7'B_,—C, A4,

For the Mth segment:

Ay = —=Yp' Cpeo 1™ By—y,

By = y2(Xp41) — Yar® Core 1™ Byy—y — Cpp Ay

By means of eqs (B.19) to (B.28) the unknowns are obtained by

Y1(Xpm+1) = Cpr ! By,
Y2(a) = Epy™ ! [Y1(Xpm41) + An),

andfori=12,..., M—1:

yl(xM—l-.{-l) = Cr— ! [Y2(m—141) + Bh—t],
Valep—) = Ey—y™t Dy pr—i41) + Au-i)-

E, —I 0 O 0 0 f[yalx) | [4:]
0 ¢, —1I 0 0 0 y1(x2) B,
0O 0 E, —I 0O O Va(x3) A,
O 0 0 ¢ 0O O y1(x3) _ B,
0 0 0 0 Ey —I Y2(Xar) Ay
_ 0 0 O 0 0 Cx _J’1(xM+ ) _BM

'~ (B.18)

(B.19)

(B.20)

(B.21)
(B.22)

(B.23)
(B.24)
(B.25)
(B.26)

(B.27)
(B.28)

(B.29)
(B.30)

(B.31)

" (B.32)
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Equations (B.19) to (B.32) should be evaluated in succession, because each equa-
tion involves the result obtained by the preceding equation. If the fundamental
variables y(x) are desired at more points than at the ends of the segments, they
can be obtained from eq. (B.14) provided that the values of Y;(x) at these points
are stored during integration.

The elements of y(x) are the fundamental variables; for the membrane equa-
tions ¥(x) is given by

Y1 U
y(x) = . = e ; (B_33)
Y2 Nx

for the general axisymmetric equations we have

yx) =| - = , (B.34)

whereas for asymmetric vibrations

-

W) = | o | = . (B35)

The boundary conditions at the free outer edge are in all cases readily expressed
in these fundamental variables (eqs (4.18), (5.13), (5.46)):

Y2(Xpe1) = 0. (B.36)

In the general case, the axially driven inner edge is radially supported; hence
the boundary conditions at x; (eqs (5.12) and (5.42) through (5.45)) are linear
combinations of the fundamental variables y(x). Therefore new variables (x)
are introduced, on the first sesgment only, by means of a simple transformation

W(x) = T Y(x) (B.37)
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where T, is an (m, m) nonsingular matrix constructed in such a way that the
first half of y(x,), denoted by v,(x,), is known (see below). Hence, at the end
of the first segment the fundamental variables are determined by

¥(x5) = Poe) w(x,) (B.38)
‘where
Px,) = ¥,(x) T (B.39)

Comparing eq. (B.38) with eq. (B.14) we find that in eqs (B.19), (B.20), (B.23),
(B.24) and (B.32) Y,/ must be replaced by ¥, y,(x,) by »,(x,), and y,(x,) by
w,(x,). Then, after evaluation of all eqs (B.19) through (B.32), the latter equa-
tion yields the value of ,(x,); the fundamental variables at x, are then found
by inverse transformation of eq. (B.37).

The transformation matrix T, is constructed by choosing the elements of
y(x) on the basis of the boundary conditions at the inner edge. In the case of
the longitudinally driven conical membrane we take for the first element of
y(x,) the longitudinal driving force F, at the inner edge and for the second
element the longitudinal displacement u(x,):

p(xy) = [f:le)] . (B.40)
From eqs (4.17), (B.33) and (B.37) we find
0 2w R,
n-[0 =R] @y

If we take F, = 1N, the first half of ®(x,) is known, as required:
vi(x;) = L. (B.42)

In the case of axisymmetric vibration including bending, we define y(x,) as
follows:

27 R, [O(x,) sin & — Ni(x,) cos a]
w(x,) cos o + u(x,) sin o
— ﬂx(xl)
vi) = —w(x,) sin a + u(x;) cos a (B.43)
Nx(xl)
Mx(xl)

of which the first half is known:
1

pilx) =] 0 {. (B.44)
0
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The first element of w(x,) is the axially applied driving force F, at the inner
edge (eq. (5.12¢)) and we take F, = 1N. The second element is the inner-edge
displacement normal to the cone axis which must be zero (eq. (5.12a)). The third
element is the angle of rotation at the inner edge, put equal to zero (eq. (5.12b)).
The fourth element is the axial inner-edge displacement needed to compute the
axial admittance Y,; since F, = 1N it follows that Y, is numerically equal to
Jow times the value of this fourth element. With eqs (B.34), (B.37) and (B.43) we
find the following nonzero elements of the (6, 6) matrix T} :

T,(1,4) = 2=z R, sin a,

T,(1,5) = —2% R, cos a,

T,2,1)=T,(4,2) = cos a, (B.45)
T,2,2) =—T,4,1) =sin a,

T:3,3) = Ty5,5 =T,6,6)=1.

In the case of asymmetric vibration including bending, (x,) differs only
slightly from eq. (B.43):

270 Ry [Qyen(x1) sin o0 — Noy(x,) cos o]
wn(x;) cos o + u,(x,) sin o
vn(xl)

Bxr(x1)

—wu(x,) sin a + u,(x,) cos a
an(xl)

Nn(xl)

| M(x,)

The transformation matrix T, follows from eqs (B.35) and (B.37); it has the
following nonzero elements:

T,(1, 5) = 27 R, sin «,

T,(1, 6) = —2x R, cos «a,

T,2,1) = T,5,2) = cos a, (B.47)
T,2,2) =—T,5,1) = sin a,
T,3,3)=T,4,4)=T,6,6)=T,(7,7 =T,08,8) = 1.

From the boundary conditions eqs (5.42) to (5.45) it follows for the upper half
of y(x,):

P(x,) = (B.46)

oo -

P,(x1) = (B.48)

0
where again the amplitude of the driving force in eq. (5.41) is taken 1N. Of
course the above transformation procedure can also be applied to the outer edge

if the latter is submitted to boundary conditions different from those previously
assumed. '
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APPENDIX C

Strain-energy coefficient

The strain-energy coefficient, primarily introduced by Kalnins 15) for the
classification of modes, is defined as the ratio of the strain energy ¥ due to
bending to the total strain energy of the cone:

Ve

n—Vs+VB’

(C.1)

where V is the strain energy due to stretching of the middle surface. In the
absence of internal losses we find for symmetric vibrations *8):

7w E h sin o
Vo= —— f (6.2 + 02 + 2 v e, ) x dx, (C.2)
— v
- nEhzsinaf( P, ) xd (C3)
= (% % Y X, %) X dX. .
B 12(1_v2) x (/] 0

a

For the strains ¢,, €5 and the changes of curvature x,, », the following relations
hold:

du
Ex = —,
dx
& = (u + w cot a)/x,
dg, (C4)
Hx = »
dx
Xg = :Bx/x'

The derivatives of the fundamental variables in the above equations can be
written as a linear combination of these fundamental variables (eqs (A.1), (A.6)
and (A.8)); we find

&x=—v U+ wceota)/x + (1 — v?) N/E h,

gg = (u + w cot a)/x,

My = —V ﬁx/x +12(1— 1’2) M.|E hs,

o = ﬂx/ x.

(C.5)

The right-hand sides of these equations are calculated simultaneously with the
numerical determination of the solution y(x;) of the general symmetric differen-
tial equations at the end points of each segment (appendix B). The integrals
(C.2) and (C.3) are then determined using Simpson’s rule.
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APPENDIX D

Basic formulas for the rigid-piston radiation

The calculation of the sound radiation of a rigid circular piston vibrating in
an infinite rigid baffle can be found in many textbooks on acoustics, e.g. in
refs 10 and 26. The result for the sound pressure at a distant field point with
coordinates r, @ (see fig. 6.2) is

90 W vt S 2]1(ko Rb Sin ¢)

2 r ko Rb Sin @

p=jexp(—jkor) (D.1)
where ko is the sound wavenumber in air, ¢, the air mass density, w the angular
frequency, v;, R, S the transverse velocity, the radius and the area of the piston
respectively.

The sound intensity at the distant field point is

I = p*[204co (D.2)
where ¢, is the sound velocity in air and p the amplitude of the sound pressure.

The sound power radiated into semi-space is found by integrating the inten-
sity over the hemi-spherical surface with radius r; the result is

J1(2 ko Rb))
koRy /)
In this thesis the radiating diaphragm is assumed to be driven by a sinusoidal
axial force of which the amplitude F, is frequency-independent. We will only
consider frequencies lying above the fundamental resonant frequency f, of the
mass-spring system formed by the total moving mass and the suspension. The

motionis therefore essentially mass-controlled and we find for the piston veloc-
ity v, according to Newton’s law:

v, = F,[joM, (D.4)

where M, is the diaphragm or piston mass. Substituting eq. (D.4) into eq.
(D.1), we find

W=1%0goc¢o vtzs(l— (D.3)

The amplitude of the axial sound pressure then becomes frequency-independent :
0 FS

2rr M, .

The sound power radiated by the mass-bontrolled piston is

Fa 2 Jl(ZkORb)
SR R

(D.6)

ﬁnx =
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APPENDIX E

Measuring circuit for the motional impedance

The block diagram (fig. 3.3) of the measuring circuit for the motional
impedance was discussed in sec. 3.3. It consists of standard electronic parts with
circuit diagrams which are not likely to cause difficulties. As an example the
circuit diagram of the summation network is shown in fig. E.1; the voltage
followers provide the high input impedance of the network and deliver their
output signals to a conventional adder with unity gain. The circuit diagram of
the current source (fig. E.2) is likewise conventional, and can supply a maximum
current of 40 mA. For B (fig. 3.3) any operational amplifier with a power stage
can in principle be used.

AD507JH

uy o——> 100 - 10k 10k
i 1
> 22pF ADS07JH
= | L] —$ w 1
ADS507JH recorder
Uzo—-———\ 10k >
E/ 22pF
Fig. E.1. Circuit diagram of the summation network A in fig. 3.3.
10k
o—+15V
i
—|< BFWI6A
W 2« BAWE?2 | " BFWI6A
& 10k 22
rom
signol 220 U
generator 22
LAD507JH 2x BAWE? ¢ 2N 5583
2N5583
15k
-5V
Sk7 0k
; 470F
470

Fig. E.2. Circuit diagram of the current source in fig. 3.3.
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APPENDIX F

Time-average fringe holography

Cone vibration patterns shown in sec. 5.12.2 are recorded holographically by
means of the time-average fringe technique. A short description of this method
will be given below. Further details can be found in the extensive literature on
the subject 22:23),

The optical set-up is sketched in fig. F.1. The beam of a 50-mW helium-neon
laser is split into an object beam and a reference beam. The object beam
illuminates the sinusoidally vibratingloudspeaker diaphragm. Part of the reflect-
ed light falls on a photographic plate, which at the same time is illuminated by
the reference beam. The intensity of the latter is adjusted to about four times
the intensity of the reflected light from the cone. Thus an interference pattern
is created and recorded by the photographic plate during a time much longer
than the cone vibration period (in practice several seconds). After development,
the photographic plate — now called hologram — is replaced in its original
position and illuminated only by the reference beam at full strength (fig. F.2).
In this way an infinite number of exposures of the continually vibrating cone,
recorded by the hologram, are now reconstructed and interfere with one

. Object
Laser Sﬁl)gzl‘ter beam | Photographic
—— S , N plate

|, Reference

beam
L.s
Attenuator Al
m Vi 7\/

Lens + pinhole
Fig. F.1. Set-up for time-average fringe holography.

? Camera
Laser.
: —— Hologramr
) Reference
beam
N AL
N - \V —/\/

Fig. F.2. Reconstruction of a vibration pattern.
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another. Hence, fringes appear at places where the cone has acertain vibrational
amplitude; cone parts at rest are normally reconstructed. The reconstructed
image of the cone with the superimposed fringes can be photographed normally.

It can be shown 22) that the intensity of the reconstructed image is propor-
‘tional to J,2(p), where J,, is the zero-order Bessel function of the first kind and
@ the amplitude of the phase shift of the object beam caused by a transverse
cone displacement w. It can be shown that

@ = 2n w (cos @, + €OS ®,)A

where @, is the angle between the direction of the object beam and the surface
normal, @, the angle between the direction of the photographic plate and the

Object beam To hologram

Fig. F.3. Detail of fig. F.1 showing the directions of the illuminating beam and the photo-
graphic plate.

—s

Fig. F.4. Intensity of the reconstructed image as a function of the amplitude of the phase
shift @ produced by the cone vibration.
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surface normal (fig. F.3), and A the wavelength of the laser light (632-8 nm).
Figure F.4 shows Jy2 (¢) versus @. Cone parts at rest are reconstructed with full
intensity (p = 0). When going from a node to an antinode, @ increases and the
intensity becomes zero at the roots of the Bessel function. In this way fringes
(black lines) appear on the reconstructed image. The transverse amplitude at
these fringes can be found with the above equation. The intensity between the
fringes is lower than the intensity of cone parts at rest (see e.g. fig. 5.30a).
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APPENDIX G

List of cones used in the calculations and measurements

The cones are numbered according to their value of the semi-apex angle «;
the last digitis an ordinal number. The experimental cones are indicated by the

letter e.
geometry material
o | B | B 3
g8 | B ‘Zé > | £
x| & | & | o 2 |lw-| 8
Ele| s3] 2 g |8 | 2
| .8 5) S > =) ~ =
cone « | R, | R h E 0 v )
number| (°) |(mm)|(mm)|(mm) (. 10° (kg/m?)
N/m?)
50.1 50 | 17 | 83 |01 2 600 {03 |0-1
502e | S0 | 17 | 83 | 0-23| 24 1200 | 0-35 | 0-014] polycarbonate
50.3 50 | 17 | 83 | 023 2 600 ] 0-3 |0O-1
50.4 50 | 17 |166 |01 2 600 ] 0-3 |0-1
50.5 50 | 17 | 83 | 023 22 1160 | 0-3 |0-1
50.5¢ | SO | 17 | 83 | 027| 22 1160 | 0-34 | 0-06 | CAB*)
52.1 52 | 17 | 83 |03 2 600 |03 |O
60.1 60 | 17 | 83 |01 2 600 | 0-3 |0-1
60.2 60 | 17 | 83 | 026| 22 1160 | 0-:3 |0-1
602e | 60 | 17 | 83 | 026 22 1160 | 0-34 | 0-06 | CAB
70.1 70 | 17 | 98 |01 2 600 | 0-3 |0-1
70.2 70 | 17 | 83 |01 2 600 | 0-:3 |0O-1
70.3 70 | 17 | 83 |01 | 22 1160 | 0-:3 |0-1
703e | 70 | 17 | 83 | 028 | 2:2 1160 | 0-34 | 0-06 | CAB

*) Cellulose-aceto-butyrate.



FENT AR

— 186 —

List of symbols
A(x) (m, m) matrix, denoting the coefficients of the differential equa-
. tions for the mechanical cone behaviour (see appendix A)
a meridional coordinate of the inner edge
b meridional coordinate of the outer edge
B magnetic induction in the air gap
c = (E/e)'? longitudinal-wave velocity in a bar
Co sound velocity in air
¢y = ¢/(1 — v?)'/2? longitudinal-wave velocity in a flat plate
Cp bending-wave velocity (eq. (5.9))
Cis compliance of the inner suspension (spider)
Cos compliance of the outer suspension (rim)
Ciot total compliance of inner and outer suspensions
DI, 00 directivity index (eq. (6.3))
E Young’s modulus
f frequency
f+, f- frequency at which the sound pressure radiated by the back of an
unbaffled loudspeaker arrives in phase and in antiphase with that
emanating from the front (sec. 6.6.1)
fo fundamental resonant frequency of the loudspeaker mass-spring
system (eq. (3.4))
fe characteristic cone frequency (eq. (6.26))
Jeo coincidence frequency (definition in sec. 6.5.4)
Sian nth longitudinal antiresonant frequency (approximation given
by eq. (4.51))
Jien nth longitudinal resonant frequency (approximation given by
eq. (4.49))
Sfonrn nth axial membrane resonant frequency (see secs 4.7.3 and 5.8)
Jra ring antiresonant frequency (sec. 4.4)
Jor ring resonant frequency (sec. 4.4)
transition frequency for the rigid piston (eq. (6.10b))
upper limit of the cone transition region (eq. (4.12))
lower limit of the cone transition region (eq. (4.11))
applied axial force at the inner edge
cone thickness
cone height (fig. 6.3)
voice-coil current
sound intensity
= w/c, longitudinal wavenumber in a bar
= w/c;, longitudinal wavenumber in a flat plate
kg = w/cp, bending wavenumber
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- = w/co, sound wavenumber in air

= E h/(1 — v?) extensional stiffness

length of voice-coil windings

= b — a, meridional cone length

inductance of blocked voice coil

sound-power level within a space angle of 100° (sec. 6.2)
mnumber of differential equations; number of nodal circles
number of segments (sec. B.3)

voice-coil mass (including the mass of voice-coil cylinder and dust
cap or cone top)

diaphragm mass

= M_.+ M, total moving mass

moment resultants (fig. 5.1)

number of nodal diameters

= Ny, + Mpy, cot a/x, effective tangential shear resultant (ref. 18)
stress resultants (fig. 5.1)

sound pressure

amplitude of the sound pressure

1 oMy,

xsina 00

=0, + effective transverse shear resultant (ref. 18)
transverse shear resultants (fig. 5.1)

distance from axis of symmetry; distance of field point from cone
top or piston centre

radius of curvature (fig. 4.1a)

inner-edge radius

outer-edge radius

resistance of the blocked voice coil

mechanical resistance of the inner suspension
mechanical resistance of the outer suspension.

= R,/cos a, radius of curvature at the inner edge
piston area

= nzR,2, cone base area

(m, m) transformation matrix (eq. (B.37))

cone displacement in the meridional direction (fig. 5.1)
cone displacement in the azimuthal direction (fig. 5.1)
axial velocity (fig. 5.3a)

longitudinal velocity (fig. 5.3a)

transverse velocity (fig. 5.3a)

reduced transverse velocity (eq. (6.34))

cone displacement in the transverse direction (fig. 5.1)
acoustic power
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Y (x)
Ya % Y

Ya
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meridional coordinate

meridional coordinate of the transition point (eq. (4.10))

(m, m) matrix whose columns are the linearly independent solu-
tions of the mechanical differential equations (eq. (B.7))

(m/2, m[2) matrix, i identifies segment S;, j denotes the quadrant
of the partitioned matrix Y(x) (eq. (B.16))

axial, transverse and longitudinal admittances at the inner edge
(see definition of Z,,,; = 1/Y,,..1, eqs (5.14) and (5.15))

= Y, cos? a/Y;, reduced axial admittance at the inner edge
(eq. (5.35))

= Y,/Y,., reduced longitudinal admittance at the inner edge
(eq. (4.53))

characteristic longitudinal admittance of a single-ended infinite
plate (eq. (4.46))

total axial admittance of cone and voice coil (see definition of
Zior = 1/Y,o, €q. (5.40))

axial, transverse and longitudinal impedances at the inner edge
(egs (5.14) and (5.15))

electrical impedance between voice-coil terminals (eq. (3.1))
characteristic longitudinal impedance of a single-ended infinite
plate (see definition of Y,, = 1/Z,., eq. (4.46))

motional impedance (eq. (3.2))

characteristic transverse impedance of a single-ended infinite plate
(eq. (5.22))

electrical impedance of a reference loudspeaker with a blocked
voice coil (eq. (3.10))

semi-apex angle

beam width (definition in sec. 2.5.2)

angle of rotation in the meridional direction

angle of rotation in the azimuthal direction

bending constant (eq. (5.8))

internal loss factor of the cone material

azimuthal coordinate (fig. 6.3)

sound wavelength in air

longitudinal wavelength in an infinite plate

bending wavelength in an infinite plate (eq. (5.10))

Poisson’s ratio

specific mass density of the cone material

air mass density ]

angle between cone axis and field-point direction (fig. 6.3)
angular frequency
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A numerical method is presented for determining the axisymmetric modes of vibration and natural fre-
quencies of thin conical shells such as loudspeaker cones. Assuming the applicability of the classical theory
of thin shells, the pertinent differential equations are presented in a form which is well-suited to numerical
integration on an electronic digital computer. The method may be used also to determine the impedance of
the cone at other than the natural frequencies, and to calculate the mechanical impedance of the assembly
comprising the cone and the voice coil. Results are shown, by a numerical example, to compare favorably
with a previously available method based upon the use of power series.

INTRODUCTION

HE most common type of loudspeaker in general

use consists essentially of a truncated circular
conical shell of rather large apical angle, driven by a
voice coil which is suspended in a magnetic field. The
voice coil is wound upon a cylindrical tube which,
together with a flat diaphragm or closure, is attached
integrally and coaxially to the small end of the trun-
cated cone. At the large end, the edge of the cone is
turned outward to form a flange, usually containing one
or more concentric corrugations and attached to a
rigid frame.

In selecting or designing a loudspeaker of this type,
information on the natural frequencies and natural
modes is necessary. The response and mode shape
assumed by the cone at other frequencies within the
operating range are also important in the calculation
of the acoustical impedance of the speaker. Unfortu-
nately, simple solutions to the problems of vibrating
conical shells have not been available, and it has been
necessary in loudspeaker applications to replace the
cone by a rigid circular disk! or equivalent piston? for
the purpose of calculating the acoustical impedance.

In the general case of vibration of conical shells, two
fundamentally different configurations are possible:
mode shapes having nodal lines coincident with
generators, and mode shapes having concentric circular
nodal lines. Combinations of the two are, of course,
also possible. The radial nodes are associated with
essentially pure bending and do not require significant
extension of the median surface. The axisymmetric
modes, having circular nodal lines, require both bending
and extension, the latter particularly in the circum-
ferential direction.

IN. W. McLachlan, Loud Speakers (Oxford University Press,
London, 1934) p. 8.

21. B. Crané)a.ll, Theory of Vibrating Systems and Sound (D.
Van Nostrand and Company, New York, 1927), pp. 29, 36. See
also, by L. L. Beranek, Acoustic Measurements (John Wiley and
Sons, Inc., New York, 1949), p. 22.

It has been observed® that the increased rigidity
obtained at the edge of the cone by bending the edge
to form a flange which is attached, in turn, to the
speaker frame suppresses the radial modes. The axi-
symmetric modes therefore are particularly important
in loudspeaker design and selection.

A solution to the problem of axisymmetric oscillation
of thin conical shells was obtained by Goldberg* in the
form of power series involving three parameters
determined by the geometry of the cone, the mechanical
properties of the material and the frequency. The
solution gives the response of the cone to a harmonic
forcing function of prescribed amplitude and frequency
applied at one end of the cone, and can be used also
to determine the natural frequencies since the mechani-
cal impedance of a simple cone drops to zero or becomes
infinite at the natural frequencies, depending upon the
end constraints.

The purpose of the present paper is to describe
a purely numerical method of solution of problems of
axisymmetric vibration of conical shells and to display
and discuss some results obtained by this method.
These results have been obtained on an electronic
digital computer.

Equations are presented in a form which is particu-
larly convenient for numerical integration. The equa-
tions are valid not only for uniform shells but also for
shells in which the thickness and mechanical properties
may vary in the direction of the generator. In the form
given, the equations presuppose that the material is
isotropic and obeys Hooke’s law, and that the other
assumptions of classical shell theory are not violated.
Obviously, these restrictions may be relaxed somewhat
if appropriate modifications are made to the equations.

3 See reference 1, pp. 307, 308.

4 John E. Goldberg, ‘‘ Axisymmetric oscillation of conical shells,”
Proceedings of the IXth International Congress of Applied
Mechanics, Brussels, 1956.
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F1c. 1. Median surface of conical shell and generic element-

EQUATIONS FOR AXISYMMETRIC PROBLEMS
OF CONICAL SHELLS

The shell and coordinates are shown in Fig. 1. The
generic element of the shell and the forces acting upon
the element are shown in Fig. 2. The lateral boundaries
of the element lie in meridional planes with an included
angle df. The upper and lower boundaries lie on coaxial
cones which are orthogonal to the median surface of
the shell.

By virtue of symmetry about the axis of the cone, the
internal and external forces and displacements are
independent of the coordinate 6, and depend only
upon the coordinate z, measured along the generator
from the apex of the cone. Because of symmetry, there
are no shearing forces at the lateral boundaries of the
element, and there are no tangential shearing forces
on the upper and lower edges of the element. The
edges of the element are thus seen to be subjected to
membrane forces N, and Ny in the direction of the
generator and in the circumferential direction, bending
moments M, and My in the corresponding directions,
and normal shears Q at only the upper and lower edges.
These internal loads are per unit length of edge of
element. The element is also subjected to distributed
loadings ¥ and Z per unit area of the median surface
applied in the directions of the normal and of the
generator. The distributed loads may include acoustical
or aerodynamic loading.

Consideration of the equilibrium of the element leads
to the following equation of motion®:

d 0%

—(8N,;)— No+2Z =2ph—,

9z o
] 0w
—(2Q)— N cota+2Y =2ph—, (1)
9z S

¢]
— (M ;)—My—2Q=0,
dz

where v=displacement in the direction of the generator,

5 Goldberg, Bogdanoff, and Marcus, ‘‘Analysis of conical shells
by electronic computer,” presented at National Meeting of
American Society of Civil Engineers, Cleveland, Ohio, May, 1959.
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Fic. 2. Element of shell N+ W24z Y9+ 84z
showing positive directions of 262 &
applied loads and internal

forces and moments. (a) FORCES

M
MZOS—zde

(b) MOMENTS

positive in the direction of positive z, w=displacement
normal to the surface, positive inward, p=density.
With the usual assumptions of thin shell theory#*5
the relations between the internal forces and the
displacements of the median surface are:

Eh [0y v w
N.= —+p.(——— cota)],
1—p2az z 2
dv

Eh 4v w
N9=——(——— cota+pu— |,
1—u?\z 2 0z
0w p dw
Mz=_D(—+__ R (2)
022 2z 9z
10w 0w
M9=_D(__+F'_)7
z 03 022

Fw 16w 1 dw

Q=—D - )
028 2032 22 0z

where E=modulus of elasticity, #A=thickness, u
=Poisson’s ratio, and D= (Eh®)/[12(1—pu?)].

If the distributed loadings and the edge loadings
fluctuate harmonically with time at a circular fre-

quency 2, _
Y (2,t)=Y (2) cospt, 3)

Z(z,t)=2Z () cospt, etc.
the solution to Egs. (1) and (2) may be taken in the form
v(z,t)=V (z) cospt,
w(z,t)=W (z) cospt,
M .(3,t)=M .(3) cospt,
My (2,t)=Mo(3) cospt,
N.(z,)=N.(z) cospt,
Ny (3,t)=Ny(z) cospt,
Q(z,t)=Q(2) cospt.

(4)
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Substitution of Egs. (3) and (4) into Egs. (1) and (2)
and simple algebraic manipulation yield the following
system of six first-order differential equations in the
amplitudes of the displacements and forces:

aw

— =S,

dz

S M, u

dz D z ’
M, 1—p_ (1—u®D

= i1, S+Q, (5)

dz z 2

aQ Q

—=————cota(V—W cota)

dz z 3

u cotar _
— N,—Y—ﬁphW,
z
dN, Eh 1—p_
=—(V—WCOt(!)— Nz—Z_PZPth

dz 3z P4

av 1—p?_

R N,——(V—W cota).

dz Eh z

The dependent variable S which appears in the first
of Egs. (5) is seen to be simply tHe local amplitude of
slope in the meridional direction, and is introduced to
permit (5) to be stated completely as a set of first-order
differential equations for the purpose of numerical
integration by a suitable technique.

For a specified value of the circular frequency p and
with ¥ and Z expressed as functions of z or of V and W,
Eq. (5) may be integrated in a straightforward manner
by numerical methods, subject to appropriate boundary
conditions. For example, the boundary equations at
the outer edge may be formulated in terms of the elastic
constants of the outer suspension. If the impedance of
the cone is the major consideration, the boundary

|

5in.

_._-.J Fic. 3. Illustrative example.
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conditions at the inner edge may be taken as the
amplitudes associated with a unit axial displacement
of the voice coil at the specified frequency. After
integrating Eq. (5) so that the boundary conditions are
satisfied, the amplitude of the axial force applied at the
inner edge may be calculated. If this is done for several
values of the frequency, a curve of impedance vs
frequency may be drawn. Subject to the accuracy of
the numerical methods which have been employed,
the zeros of this curve are the values of the natural
frequencies for the condition of a “guided” inner end
or voice coil—that is, the inner end is free only to move
axially. The infinities of this curve are the approximate
values of the natural frequencies for the condition of a
rigidly constrained or built-in inner end. Furthermore,
the values of frequency for which the total axial force
at the inner edge is equal to the corresponding inertia
force of the voice coil assembly are the natural fre-
quencies of the system consisting of conical shell and
voice coil. If only the natural frequencies and mode
shapes are being sought, the integration may be started
directly with the appropriate geometrical or natural
initial conditions.

Alternatively, as will be discussed later, one may
take the determinant of the coefficients of the arbitrary
constants in the three outer boundary equations as a
measure of the error of the trial value of the frequency.
Frequencies for which the value of the determinant
becomes zero are the approximate natural frequencies
of the cone.

NUMERICAL ANALYSIS

The equations of motion (5) of the differential
element of the shell constitute a set of six first-order
linear differential equations of the form

avyi

6
ai]'YJ' i=1)25 31 “'767
dz 1

(6)

for which, in general, three initial conditions have been
prescribed. In order to perform the numerical inte-
gration, the problem is transformed from a two-point
boundary value problem to an initial value problem.
This is accomplished by introducing six linear trans-
formations of the form

Yi(z)=ai(z)]vz,a'i'ﬁi(Z)Mz.a+7i(z)Q.a, (7)

where N. o M. o Q.o essentially are three arbitrary
and previously uncommitted constants and represent
the values of N, M., and Q at z=a. By use of Eq. (7)
along with the appropriate initial conditions, the initial
values of the new dependent variables become known
in terms of the arbitrary constants.

Through the substitution of Eq. (7) into Eq. (6)
and equating coefficients of the arbitrary constants,
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three sets of differential equations are formed:

dai 62
— a" .a .
=
dﬁ,’ ]
- = Z aiiﬂi i=1)27 3: "',6- (8)
dz =1
dy; 6
= Z aiiYj
dz =1

The three sets of differential equations (8) are
integrated numerically by an appropriate technique,
such as the fourth-order Runge-Kutta method, from
the inner edge at z=a to the outer edge at z=b, for
an assigned value of the frequency, p.

Substituting the transformation equations (7) into
the boundary equations at the outer edge and using the
numerical values of the functions a;, 8;, vi (3=1, 2,
-++,06) at z=b yields three linear equations in the
arbitrary constants N4, M. ., and Q...

If one is seeking a natural frequency and has begun
the integrations for a trial value of the frequency with
the proper boundary conditions at =g, the determinant
of the coefficients of the arbitrary constants in the three
outer boundary equations becomes a measure of the
error of the trial value of the frequency. If a correct
value of p were used, the value of this determinant
would be zero. Thus, letting e be the value of the
determinant, a plot of e vs p can be constructed for a
set of trial values of the frequency. The zeros of this
curve are the approximate values of the natural
frequencies.
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Alternatively, as suggested in the previous section,
if one is seeking a natural frequency and has begun the
integrations with possible displacements of arbitrary
magnitude at z=a, but with the axial force undefined,
the outer boundary equations may be solved for the
arbitrary constants. These constants are then used to
determine the forces at the inner edge of the cone. The
resultant force in the axial direction may be calculated
and a plot of this resultant force vs frequency may be
constructed. The zeros of this curve are the natural
frequencies of the cone when there is no constraint
against axial displacement at z=a. The infinities of this
curve are the natural frequencies when the inner edge
is rigidly constrained against axial displacement, i.e.,
is “built-in”” with respect to axial displacement.

The frequencies of the cone when connected to a
voice coil or other mass can also be determined from
the latter curve. If m is the mass of the voice coil and
the integration is made for an axial displacement of
unit magnitude, the natural frequencies are those
frequencies for which the resultant force is equal to
mp.

ILLUSTRATIVE EXAMPLE

As an illustrative example, the lower axisymmetrical
natural frequencies and mode shapes of the uniform
cone shown in Fig. 3 were computed. Calculations for
this cone previously have been made* by the series
method and the results obtained by the two methods
are compared.

The fundamental data for this cone are: a=60°,
£=0.025 in., E= 150,000 psi, p=0.25, p=30X 106 slug
per in.? The cone was assumed to be free at the outer
edge and clamped at the inner edge.

© ANumerical Method 0
X Series Method
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FiG. 4 (a) Mode shape at fundamental frequency; (b) mode shape at second natural
frequency; (c) mode shape at third natural frequency.
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TasLE I. Calculated frequency, cps.

Numerical Series

Mode method method
1st 1072 1071
2nd 1315 1315
3rd 1611 1610

The values of the three lowest frequencies were
found essentially by a trial-and-error technique as
indicated in the previous sections. A trial value of the
frequency was chosen and the equations integrated
with initial values of the dependent variables satisfying
the initial boundary conditions. A measure of the
amount by which the terminal boundary conditions
were not satisfied was determined. Successive runs were
made until a value of the frequency was found which
substantially satisfied the complete set of boundary
conditions, i.e., the value of the measure vanished.

The equations were integrated by the Runge-Kutta
fourth-order process, using fifteen equal intervals to
represent the total length of the generator. From the
results which have been obtained, it is seen that this

GOLDBERG, BOGDANOFF, AND MARCUS

number of divisions gives excellent results for the first
three frequencies and modes. Useful results doubtless
would be obtained for the fourth natural frequency and
fourth mode with the same number of intervals, but
somewhat more dependable results would be obtained
for the fourth and higher orders of vibration if a greater
number of intervals were used.

The three lowest apparent natural frequencies of
axisymmetric vibration of the shell shown in Fig. 3
with the boundary conditions previously mentioned,
computed by the numerical method using only fifteen
intervals, are listed in Table I. For comparison, the
frequencies computed by the series method* are also
listed. It is seen that the agreement between the
calculated frequencies as obtained by the two methods
is excellent.

The mode shapes computed by the numerical method
are shown in Fig. 4. The mode shapes have been normal-
ized so that the displacement v at the outer edge in the
direction of the generator has a unit amplitude. For
comparison, the amplitudes as computed by the series
method are also shown on these figures, and it is seen
that the agreement between the results obtained by the
two methods is again excellent.
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Nonsymmetrical Loads'

The boundary-value problem of deformation of a rotationally symmetric shell is stated in
terms of a new system of first-order ordinary differential equations which can be derived
for any consistent linear bending theory of shells.

The dependent variables contained in

this system of equations are those quantities which appear in the natural boundary

conditions on a rotationally symmetric edge of a shell of revolution.

A numerical

method of solution which combines the advantages of both the direct integration and the
Sinite-difference approach is developed for the analysis of rotationally symmetric shells.
This method eliminates the loss of accuracy encountered in the usual application of the

direct integration approach lo the analysis of shells.

For the purpose of illustration,

stresses and displacements of « pressurized torus are calculated and detailed numerical

resulls are presented.

THE shell of revolution is an important structural
element, and the literature devoted to its analysis is extensive.
With regard to axisymmetric deformation, various methods have
been employed to obtain solutions of the bending theory of shells
of revolution by means of the H. Reissner-Meissner equations.
For example, Naghdi and DeSilva [1]? use asymptotic integra-
tion; Lohmann (2], Minz (3], Klingbeil [4], employ a direct
numerical integration approach; Galletly, et al. [5] find the solu-
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tion for an ellipsoidal shell of revolution by both the finite-differ-
ence and the Runge-Kutta method; and Penny [6], Radkowski,
et al. (7], and Sepetoski, et al. [8] utilize the finite-difference
technique. A number of additional references which deal with
the solution of the H. Reissner-Meissner equations can be found
in the papers cited.

For problems of bending in the absence of axial symmetry, a
reduction of the governing equations of arbitrary shells of revolu-
tion to a system of four second-order differential equations in-
volving four unknowns has been carried out by Budiansky and
Radkowski [9]. A method for obtaining the solution of these
equations is given in [9] which is an extension of that employed
in [7] and (8). Furthermore, treatments of nonsymmetric
deformation of shells of revolution are found in papers by Gold-
berg and Bogdanoff [10], where a system of first-order differential
equations for conical shells is derived, and by Steele [11] and
Schile [12], where solutions of certain types are considered by
means of asymptotic integration.

Among the papers which employ numerical analysis, two dif-

Nomenclature
¢,0,¢ = coordinates of a point of ment of middle surface ( ), = derivative with respect to
shell B4, Be = angle of rotation of nor- any coordinate
s = distance measured from mal m = order of system of equa-
an arbitrary origin P¢, Do, p = components of mechani- tions
along meridian in cal surface loads M = number of segments
positive direction of ¢ mg, mg = components of moment x = independent  variable,
ts, ts, n = unit vectors tangent to of surface loads eithergors
coordinate curves (see T, To, Ty = temperature increment z; = end point of segment
Fig. 1) and temperature re- y(z) = (m, 1) matrix, fundamen-
IRy, Ry = principal radii of curva- sultants tal variables
ture of middle surface =~ Ng, Ng, Ngy = membrane stress result- A(z) = (m,m) matrix, coeffi-
r = distance of a point on ants cients of differential
middle surface from Ay, Mg, Mgy = moment resultants equations
axis of symmetry Q¢ Qo = transverse-shear result- B(x) = (m,1) matrix, nonho-
E = Young's modulus ants mogeneous coefficients
v = DPoisson’s ratio N, Q = effective-shear resultants Y(z) = (m, m)matrix, homogene-
h = thickness of shell J = 1/Ry +sing/r ous solutions
a = coefficient of thermal ex- U = 1/Ry + vsin/r Z(x) = (m,1) matrix, nonho-
pansion H = 1/R4 —sin¢/r mogeneous solutions
D = Eh3/[12(1 — v2))] n = integer, designating nth C = (m,1) matrix, arbitrary
= Eh/(1 — v?) Fourier component constants
ug, ug, w = components of displace- B = length factor I = unit matrix
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ferent methods of solution of the boundary-value problem of
deformation of shells must be recognized; i.e., the direct integra-
tion [2-5) and the finite difference approach [5-9]). While the
direct integration approach has certain important advantages, it
also has a serious disadvantage; i.e., when the length of the shell
is increased, a loss of accuracy invariably results. This phenome-
non was clearly pointed out in [8). The loss of accuracy does not
result from accumulative errors in integration, but it is caused by
the subtraction of almost equal numbers in the process of deter-
mination of the unknown boundary values. It follows that for
every set of geometric and material parameters of the shell there
is a critical length beyond which the solution loses all accuracy.
The advantage of the finite-difference approach over direct inte-
gration is that it can avoid such a loss of accuracy. It is con-
cluded from (8] that if the solution of the system of algebraic
equations, which result from the finite-difference equations, is
obtained by means of Gaussian elimination, then no loss of ac-
curacy is experienced if the length of the shell is increased.

This paper is concerned with the general problem of deforma-
tion of thin, elastic shells of revolution, symmetrically or non-
symmetrically loaded, and with the development of a numerical
method of its solution, which employs the direct integration tech-
nique, but eliminates the loss of accuracy owing to the length of
the shell. The method developed here is applicable to any two-
point boundary-value problem which is governed within an in-
terval by a system of m first-order linear ordinary differential
equations together with m/2 boundary conditions prescribed at
each end of the interval. It is shown that the boundary-value
problem of a rotationally symmetric shell can be stated in this
form for any consistent linear bending theory of shells in terms
of those quantities which appear in the natural boundary condi-
tions on a rotationally symmetric edge.

The method of this paper offers definite advantages over the
finite-difference approach. The main advantages are: (a) It
can be applied conveniently to a large system of first-order dif-
ferential equations, and (b) it permits an automatic selection of
an optimum step size of integration at each step according to the
desired accuracy of the solution. The first point means that the
equations of the theory of shells of revolution, characterized in
terms of first-order differential equations, can be integrated
directly, and further reduction of the equations to a smaller num-
ber of unknowns is not necessary. The second point seems to be
of great importance if a truly general method is desired which is
expected to hold for arbitrary loads, shell configurations, thick-
ness, and 8o on. With the finite-difference approach, a meaning-
ful e priori estimate of the step size is often difficult, if not im-
possible, especially when rapid changes and discontinuities in the
shell parameters are encountered. If a predictor-corrector direct
integration approach is employed with the method of this paper,
then the step size can be selected automatically at each step
which ensures a prescribed accuracy of the solution and optimum
efficiency in the calculation.

The method given in this paper can be divided into two parts:
(a) Direct integration of m + 1 initial value problems over pre-
selected segments of the total interval, and (b) the use of Gaus-
sian elimination for the solution of the resulting system of matrix
equations. The first part of this method is a generalization of
that which is employed over the whole interval in [2-5]. Here,
however, the initial value problems are defined over segments of
the total interval, the lengths of which are within the range of the
applicability of the direct integration approach. After the initial
value problems are integrated over these segments, continuity
conditions on all variables are written at the endpoints of the
segments, and they constitute a simultaneous system of linear
matrix equations. This system of matrix equations is then solved
directly by means of Gaussian elimination. The result is that the
direct integration method is employed and at the same time there
is no loss of accuracy because the lengths of the segments are
selected in such a way that the solutions of the initial value
problems are kept sufficiently small. A convenient parameter is
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given from which the appropriate lengths of the segments can be
estimated easily.

In the application of this method to the analysis of rotationally
symmetric shells, the boundary-value problem is formulated in
terms of first-order ordinary differential equations. For this
purpose, starting with the equations of the linear classical bend-
ing theory of shells in which the thermal effects are included, first
a system of equations is derived in the form of eight partial dif-
ferential equations involving eight unknowns in such a manner
that the system of equations contains no derivatives of the ma-
terial parameters, thickness, or principal radii of curvature. The
absence of the derivatives in the coefficients of the differential
equations permits the calculation of the coefficients at a point
without regard to the values of the shell parameters at preceding
or following points. Then, assuming separability with respect to
the independent variables, the desired system of eight first-order
ordinary differential equations is obtained which together with
the boundary conditions on two edges of the shell constitute a
two-point boundary-value problem. The derived system of
equations is applicable to rotationally symmetric shells with
arbitrary meridional variations (including discontinuities) in
Young's modulus, Poisson’s ratio, radii of curvature, thickness,
and coefficient of thermal expansion. While such a system of
equations is derived in this paper only for one version of the
classical theory of shells, it can be derived in the same way for all
other consistent linear bending theories of shells, including those
which account for the dynamic effects, transverse shear deforma-
tion, nonhomogeneity, and anisotropy.

Finally, with the use of the method and the equations given in
this paper, stresses and displacements are calculated in a thin-
walled torus subjected to internal pressure. The solution shows
that the meridional membrane stress is almost identical to that
predicted by membrane theory, but that the bending stresses
even for a relatively thin torus may not be negligible.

Geometry and Basic Equations

The position of a point of a shell of revolution is given by the
coordinates 0, ¢, { measured along the triplet of unit vectors ty, ts,
n, respectively, as shown in Fig. 1. The shape of the shell is de-
termined by specifying the two principal radii of curvature Ry,
Ry of the middle surface as functions of ¢. Instead of Ry, it is
convenient to use the distance r from a point on the middle sur-
face to the z-axis; from Fig. 1 it follows that

r = Rgsin ¢ (1)

If the generating curve of the middle surface is given by r = r(z),
then

X

Element of a shell of revolution

Fig. 1
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The following analysis requires frequent differentiation of r (or Rp)

with respect to ¢, and it is convenient to express this derivative
by the Codazzi relation

(2)

:—; = Ry cos ¢ 3)

The displacement components of the middle surface of the shell
and the rotations of the normal are defined by the expression of
the displacement vector U of the form

U = (ug + Belte + (uo + $Bolte + wn (4a)
The shell is subjected to the mechanical load vector p, which is
measured as force per unit area of the middle surface and written
as

P = pgty + pote + pn (4b)

and the moment vector m, which is measured as moment per unit
area and given by

m = —mgty + myts (4¢)
With reference to Fig. 1, equations (4) serve the purpose for
establishing the positive directions of the components of the
displacement and mechanical load vectors.

The temperature distribution in the shell caused by some ther-
mal loads is accounted for in the usual manner by means of the

integrated temperature effect of the form

h
Tu#,0) = + f * 706,050 (50)
L3
2 2
T(4,0) = = f | §T(6,6, 008 (55)
2

The derivation of a new set of equations carried out in the next
section is based on a linear classical theory of shells given by
Reissner [13). When referred to arbitrary shells of revolution,
the governing system of equations of [13] can be written in the
following form. Equations of equilibrium:

Noo + Er Ngo.g + 2cos p Nog + Qosind +rpg=0  (6a)
®
Noos + 7= Nowo + (Ng = No)cos ¢ + == Qs +1ps =0 (6)
® ®
Qo6 + = Qo6 + Qo co8 ¢ — Nosin ¢ — LN¢+YP =0 (7)
R¢ R¢

Moo + Ri Moo + 2 cos ¢ Moy — 1Qp + rmg = 0 (8a)
¢

Mogs + RL¢ Mgy + (Mg — Mg) cos @ — 7Qp + ring = 0 (8b)

Stress-strain relations:
No = K(es + veg) — (1 + v)aKT, (9a)

Ng = K(ep + veo) — (1 +»)aKT,o (9b)
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.\'g¢ = .\.¢o =(1 — V)1{€a¢ (9¢)
Mg = D(xe + vkg) — (1 + »)aDT, (10a)
My = D(kg + vig) — (1 + v)aDT, (10b)
Moy = Mgs = (1 — v)Dxgg (10¢)
Strain-displacement relations:
1
€ = 7(uo.a+u¢ cos ¢ + w sin ¢) (11a)
1
€ = — (ug.¢ + W) (11d)
Ry
1 1
2606 = — (ug.0 — ugco8 @) + = use (11¢)
r R¢
1
Ko = — (Ba.s + By cos @) (12a)
_ 1 8 (12b)
k¢ = Ry P¥ <
1 1
2keg = — (B0 — Bocos p) + = Po.e (12¢)
r R¢
Bs = -1 we + Lt ¢ g (13a)
r r
Bo= o v+ o (13b)
*= "R, w.¢ Re U

The positive directions of the stress resultants in the foregoing
equations are the same as the corresponding stresses on the edge
of the shell. The definitions of the stress resultants are found in
[13).

The order of the system of equations (6)-(13) is eight with re-
spect to ¢, and consequently it is possible to reduce (6)-(13) to
eight first-order differential equations which involve eight un-
knowns. If the eight unknowns are those quantities which enter
into the natural boundary conditions at the edge ¢ = const, then
the boundary-value problem of a rotationally symmetric shell can
be completely stated in terms of these unknowns. For this
reason, the eight differential equations, derived in the following
sections, and the eight unknowns are called the fundamental set
of equations and the fundamental variables, respectively.

Derivation of Fundamental Set of Equations

According to the classical theory of shells, the quantities which
appear in the natural boundary conditions on a rotationally sym-
metric edge of a shell of revolution include the effective shear re-
sultants N' and Q defined by

N = Nog + ‘#’ Mg (14a)
1
Q =0Q4 + 7 Moy (14b)

Thus, the fundamental variables, which are consistent with the
theory of [13], are the four generalized displacements w, ug, ug, B4,
and the four generalized forces @, N, N, and M.

In the derivation of the fundamental equations, it is more con-
venient to employ the distance s, measured along the meridian of
the shell, rather than the angular coordinate ¢. However, after
the equations are derived, the problem can again be easily
formulated in terms of ¢ by means of the relation
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1 0 0

Ry 0¢ s
As a preliminary step, it is necessary to express Ng, Mg, Mgy in
terms of the fundamental variables. From (9a) it follows that

1 —_ p?
Noe =vNyg + K d (w sin ¢ + ug.o + gy cos @)

— aK(l — v))To (15)

and from (10a) that

—_ p2 1
! " z (— :' w.e + s": ¢ ug.0 + Bg cos 4’)

— aD(1 — »v))T,

Mg = vy + D
(16)

Elimination of ug,. and w,g, from eguation (12c) leads to an expres-
sion for Mgy in the form

> [2ﬂ¢.o + 2—C:L¢ we

LD
+ Hug cos ¢ — Ju¢,a] + —= B": ¢ (17)
where
1
b= —mg D
rt K

In the derivation of the four equations of the fundamental set
which involve the derivatives of the stress resultants with respect
to s, the use of (14) is essential. Elimination of Q¢ from (6a) and
(8a) by means of (14a) leads to

cos ¢ _ 2co0s8 2 cos ¢
?

N,=H Mgy N - 1 No.g
r

sinzd) ¢ my (18)

sin
Moo — po —
0.0 — Do .

Similarly, elimination of Qg from (7) and (8a) gives

9 .
Q.= — cos¢M“a_cos¢ +B“:_¢N
1 1 1
—_ AV A p— P
+ Re ¢ " Mo.e0 P ; mg,e (19)
Solving (6b) from N, there results
1 1
U —_ ——— -
Ng. = . No + ; JMog.0
cos 1
+ 28 Ny Ny — = @ - ps (20)
r R¢
and it follows from (8b) that
2
Moa = == Mogo + @ (Mo — My) + Q — mg (21)

Wherever necessary, Nog and Q4 were eliminated with the use of
(14).

The fundamental set of equations consists of (18)-(21), where
Ng, Mg, Mgy can be replaced directly in terms of the fundamental
variables by means of (15)-(17), and four additional equations
involving the derivatives of w, ug, us, B4 with respect to s, which
are obtained from (13b), (11c¢), (11b), (12b), respectively. Finally,
the system of eight differential equations that governs the
deformation of a shell of revolution can be expressed in terms of
the eight fundamental variables and written as
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w, = RL¢ ug — By (22a)
Up. = —Uw — ’M Uy — ;um
+ i Ng + a(l + v)Ty (22))
LD sin 2¢ 1 LDJ sin ¢
Upa = we — — (1 = T) .0
+ co: ) (l _ LD};{:in 43) . — 2Ll;(:in ¢ B
i _2V)K (1 - LDI:ir':z ¢> N (220)
Bow = L 10,09 — vsil:d)u” _ vcos¢ﬂ¢
+ ll)M., +a(l + ) (22d)
Q.= — [D(l L u)— — 2LD cost ¢ >
o0
+ (1 + »Kr? sin’¢:| w+ (1 —») °°34’ [7 LDJ 09;—_3

+Q +u)Kain¢] e _,"I:% LDH cos® ¢

re

— (L +») Ksing + D(1 + v)"":zd’ a;] oo

- D1 =)t 4’(1 + v+ 2L)Bpm + UNy = Moay
_[£31n2¢N _MQ_p_imo,o
K3 r N

— ol — v’)—: (K sin ¢ T'o — % DT.,,,) (22¢)

PE _,,)°°°¢[ LDJ +(1 +u)hs.n¢]
1-v [(1 + »)K cos? ¢ — }LDJ? — ]
e 20
+ (1 —V) ¢[§LDJH+(1 + v)K] ugo + JLD ﬂosao
cos ¢ 1 _ LDJ sin ¢
——‘Q—(l—l') os—r(l ~ )
— ps — (1 — 1)K c": ® 1, (22)
N, =1= I:HLDcos ¢
* r2 r
sin ¢ 02
— (1 +»)Ksin¢ + (1 +v)D7- %]
—1-n= d’ BLDJH + (1 + »)Klug.o
+ 5 ”[éLDH? cos? ¢ — (1 +») (K D”"; ¢) am]
- D(1 — uwcos ¢ [(1 + )M - LH] Bs.o —% Ngs
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LDH si i
_CO:¢<2— K:m¢)lv—Vsm¢M'¢a—pg—smT¢nw

+ a(l — »?) -:- (KTo.o + D sin ¢ Tl.o) (229)
Mpo=—(1 —v) ¢ M¢.ao

+D(1 — ) 22® [(1 + )’"“ ¢ _ HL] s.o

l_’y[(l-i-v)cos’qS—ZL ]B¢+Q—2——LDSin¢1\’g
Kr?
=0, — e — (1 — v °°:¢ T, (22h)

Equations (22), (14), and (15) to (17) determine all unknown
variables except Qg which can be found from (8a) and written in
the form

2 cos ¢

1
Qs = = Moo + Moy, + Moy + mg (23)

By calculating AMgg,, from (17) and making use of (16), it is possi-
ble to express Qs directly in terms of the fundamental variables.
This expression is lengthy and contains

s of the shell parameters. Since Qs does not enter into any bound-
ary conditions on the edge s = const, it is preferable to calculate
Qo a8 the last unknown directly from (23). The derivative of Afa¢
can be easily obtained by numerical differentiation.

The procedure for the derivation of an equivalent set of equa-
tions for other linear classical theories of isotropic shells is identi-
cal to that given before. For general anisotropic and/or non-
homogeneous shells of revolution with rotationally symmetric
properties, the fundamental set of equations is derived in the
same way as (22) except that (9) and (10) must be replaced by the
appropriate stress-strain relations given, for example, by Am-
bartsumyan [14]. Otherwise, the derivation is straightforward.
For the improved theory of shells, such as the one given by Naghdi
[15], in which the effects of transverse-shear deformation are
accounted for, the following ten fundamental variables are re-
quired: w, ug, ug, By, Bo, Qs, N¢y Ngg, My, M4s. Since now Qg and
Qo appear in (13), the elimination of Qg from (6a), (7), (8a), is
done by means of (13a). The required equations for the deriva-
tives of the generalized forces are obtained directly from the five
equations of equilibrium (6), (7), (8). The remaining five equa-
tions are derived by following a procedure similar to that of the
foregoing.

Fundamental Equations for Separable Solutions

For shells of revolution which consist of complete latitude
circles, the surface loads are periodic with respect to @
period of 27, and they can be assumed to be of the form

os nf
{Pes D, Mg} = {Pgmy Pa» Mg} :in n (24a)
0
(To, v} = {Ton Tin) {:: :0 (24b)
in nf
{pe, mo} = {Pon, M) sc::f) (24c)

where the variables with subscripts n depend only on s, and each
integral value of n in (24) can be regarded as one Fourier com-
ponent in a general Fourier series expansion of arbitrary periodic
surface loads.
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Separable solutions of (22), corresponding to the value of n in
(24), are then obtained in the form

0
{w: Uy, ﬁ¢} = {wm Ugn, B¢n} {:io: :0} (25a)
0
{Ng, My, Q} = {Ngn, My, Q) {:’: :o (25b)
{1, N} = {ugm, N} {:‘; :z (25c¢)

The s-dependent coeflicients with subscripts » on the right-
hand side of (25) are governed by a system of equations which is
obtained from (22) and, after using the assumption that the shell
is thin,? can be written as

1
Wy, = IE Ugn — B¢n (26(‘)
Upns = —Uw, — d crr)s ¢ ugn F i Ufn
1
+ X Ngn + a(1 + v)To, (26b)
D sin 2
Ugn.a = :h_sll;:.—f w, ES 1’_" Ugn + 92:—¢ Ugn
2Dn sin ¢ 2
.t ———N (2
Bon + —— K (26¢)
Bons = =0 g, 5 MNP, V08 ¢ﬁ¢..
r r
+ I]—)MM + a(1 +v)Twa (26d)
Qﬂ-. = ‘D
+ 2n2D cos? ¢ + (1 + v)Kr?sin? ¢jw,
+a- °°°¢ [(1 + »)K sin ¢ — —DJ] Ugn
— 2
+ (1 r’v)n [(l + v)D l’ sin ¢ + (1 + »)K sin qS] Ugn
+n = ¢ Qn + UNy,
nD sin 2¢ vn? n
¥ Tr'—N" + pry Myn — P, :F?""On

1 . n?
— a(l — v?) " <K sin ¢ Ton + D 7 T.,.) (26¢)

co¢

Ngno=(1 —») [(1+V)Ksin¢—1$JD]w

—) 2
1-v [(1 + »)K cos® ¢ + % Dﬂ] "
— 2 —_
+ (1 vz),:K cos ¢ o — n(1 . v) DJBn
T r

—loca-n=®N, 2N,
Ry r r

3 In the derivation of the system of equations (6)-(13) the assump-
tion is made that the shell is sufficiently thin, so that 1 + h?/12R? =
1, where R denotes the minimum principal radius of curvature.
This same approximation is used to obtain the following equations
from (22).
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— o — a1l — KL 7, 26)
n(l —v) n? .
Now= :t—r,—— [(1 + v)D Py sin¢ + (1 + v)K sin ¢] w
— ‘< — 2
" (1 v’)r:lx cos ¢ on n(1 - K von
r
:i:nD cosq&[(l +V)M—H]B¢,.
+n— Nga — 2 cos ¢N,,
r r
+ V—n sin ¢ Mgn — Pon — anle Mo
r? r
F ol — v’)—i— (KTM +pine® Tx,.) (269)
Myna = 731 — »)X3 + »)D °°s¢ w, — 12 == IDugn

+nD L5 oo ¢ [(1 + )“"’ ¢ H] "
1 2nD sin ¢ _,
+D +QF = N,
-a- )COB ® Myr — mgn — a1 — ¥)D J T\, (26h)

The double signs in (26) correspond to the top or bottom trigono-
metric function employed in (24) and (25).

The quantities which are not included in the fundamental
variables can be expressed by means of separation of variables by

{No, Mo, Qo) = {Non, Mon, Qon) {"."*’ ”Z} (27a)

sin n

. sin nd
{Nog, Moy, Qo) = {Nogn, Mogn, Qon} {cos nO} (27b)

where the s-dependent coefficients with subscripts n must satisfy
a set of equations obtained from equations (14)(17) and (23) in
the form

Non = vNgn + (1 — »?) i—{’ (w, 8in ¢ + ugn cos @ =+ nugn)

— a(l — v*)KT, (28a)
D 2
Mon = vMygn + (1 — »?) " (% w, + Ben cos @
sin ¢
+n = ua,.> — a(l — v?)DT,, (28b)
_ S e 2n cos ¢
Mogn = D 2 <:F " w, £ nJugn
+ H cos pug, F 2nﬂ¢..> + Dened N, (28¢c)
2
Qon = :Fl Mg + M0¢a-l + . ¢ A{0¢n + mgn (28d)
r
Negn = N, — 2B ¢ Mogn (28¢)
Qon = Qu F ~ Magn (28f)
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The double signs again correspond to the top or bottom trigo-
nometric function employed in (24), (25), and (27).

The remainder of this paper is concerned with the solution of
the system of equations (26), subject to the boundary conditions
on two edges s = const. It should be noted that after the expan-
sion of the loads in Fourier series, the solution to (26) is obtained
for each integral value of n separately, and then the solutions are
superimposed to form a Fourier series expansion for the unknown
variables.

Reduction to Initial Value Problems

This section is concerned with the reduction of a two-point
boundary-value problem governed by

dy(x)

= A(zx)y(x) + B(x) (29a)

to a series of initial-value problems. In (29a), (z) is an (m, 1)
matrix which represents m unknown functions; z is the inde-
pendent variable; A(z) denotes the (m,m) coefficient matrix;
and B(z) is the (m, 1) matrix of the nonhomogeneous terms. The
elements of A(z) and B(z) are given piecewise continuous func-
tions of z. The object is to determine y(z) in the intervala < z <
b subject to m boundary conditions stated in terms of linear
combinations of y(a) and y»(b) in the form

Faya) + Fyyd) = G

where Fq, F, are (m, m) matrices and G is an (m, 1) matrix, which
are known from the statement of the boundary conditions of the
problem. It should be clear that the governing system of equa-
tions (26) derived in the preceding section is stated in the form of
(29a), and that the appropriate boundary conditions for a shell of
revolution can be expressed in the form of (29b).

Let the complete solution of (29a) be written as

yz) =

where the (1, 1) matrix C represents m arbitrary constants, and
Y(z) is an (m, m) and Z(z) an (m, 1) matrix which are defined as
the homogeneous and particular solutions of (29a) in the form

(29b)

Y(z)C + Z(x) (30)

dY(x)

= A(z)Y(z) (31a)
dr
e A(z)Z(z) + B(x) (31b)
dz
The initial conditions for determining Y(z) and Z(z) are
Y(@)=1 (32a)
Z(a) = (32b)

where [ is the unit matrix.
Evaluation of (30) at z = a leads at once, in view of (32a, b), to
C = y(a), and then (30) at z = b can be written as

y(b) = Y(d)y(a) + Z(b)

Together with (29b), equation (33) constitutes a system of 2m
linear algebraic equations from which the 2m unknowns, y(a)
and y(b), are determined. Once y(a) is8 known, the solution at
any value of z is obtained from (30) provided that the values of
Y(z) and Z(z) at that particular z are stored. This completes the
reduction of a two-point boundary-value problem defined by (29)
tom + 1 initial-value problems given by (31, 32).

As stated in the introduction, the solution for shells obtained
by means of this procedure suffers a complete loss of accuracy at
some critical length of the interval. The reason for this phe-
nomenon can be seen clearly from (33). When the initial-value
problems defined by (31, 32) are solved with the use of the equa-

(33)
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Fig. 2 Notation for division of total interval into segments

tions (26) for shells of revolution, it is observed that the elements
of Y(z) and Z(z) increase in magnitude in such a way that if the
length is increased by any factor n, then these solutions increase
in magnitude approximately exponentially with n.

Consider, for example, the axisymmetric case when the defor-
mation in the shell is caused by some prescribed edge conditions at
z = a,88y,byMy(a) = 1 and Ngy(a) = Q(a) = 0. Itisreasonable
to expect that the corresponding solutions at z = b become smaller
and smaller when the interval (a, b) is increased in length. The
connection between y(b) and y(a) is given by the matrix equation
(33) with the following magnitudes of the elements: y(b)-small,
Y(b)-large, y(a)-unity. Clearly, the only way that the matrix
product of (33) can give small values of y(b) is that a number of
significant digits of the large values of Y(b) subtract out. When
the length of the interval is increased, Y(b) increase, while
y(b) decrease, and invariably all accuracy is lost at some critical
length because all significant digits of Y(b) in (33) are lost. This
simple example serves as an illustration for the loss of accuracy
encountered in the analysis of shells if the foregoing reduction
technique is employed.

A convenient length factor, defined by

B = U3(1 — »)])"/*/(Rh)"/ (34)

where ! is the length of the meridian of the shell and R is a mini-
mum radius of curvature, can be used for an approximate esti-
mate of the critical length of the shell. If the solutions Y(z) and
Z(z) are obtained with a six-digit accuracy, then the foregoing
procedure gives good results in the range # < 3 — 5.

However, the loss of accuracy of the solution can be avoided and
shells of revolution with much larger values of 8 can be analyzed
by means of the direct integration technique if the multisegment
method given in the next section is employed.

Multisegment Method of Integration

Let the shell be divided into AM-segments (denoted by S;, where
i =1,2 ... M) of arbitrary length in each of which 8 < 3.
Denote the coordinates of the ends of the segments by z = z,,
where the left-hand edge of the shell is at z = z, and the right-
hand edge is at £ = zar41, a8 shown in Fig. 2. In analogy to (30),
the solution in the total interval z; < z < zar41 now can be written
as

¥z) = Yi(z)z:) + Zi(z) (35)

where Y (z) and Z(z) denote the matrices corresponding to Y(z)
and Z(z) in each segment S(z; < z < z:i41) and are given by

a¥yz) _ A(2)Y (z) (35
dz

Yz;) =1 o

{i% = A(2)Zi(z) + B(z) (38
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Z(z) =0 (36d)

Requiring continuity of all elements of y(z) at the points z;,
i=2,3,...,M + 1, the following A{-matrix equations are ob-
tained from (35):

Y(xin) = Yi(xin)y(z) + Zi(zin)

wheret =1,2,..., M. Equations (37) involve M + 1 unknown
(m, 1) matrices: ¥z;), 1 =1,2,... M + 1. However, if the
quantities prescribed at the edges of the shell are the fundamental
variables, then the total number of unknowns is reduced by m, be-
cause m/2 elements of y(z,) and m/2 elements of y(za41) are
known. The same is true if the boundary conditions are stated
in terms of linear combinations of the fundamental variables in the
form of (29b). In this case, y(z;) and y(zar41) should be premulti-
plied by nonsingular (m, m) transformation matrices F, and F.,,,
respectively, so that the elements of the products contain the
quantities prescribed at each edge. After eliminating ¥(z,) and
¥ zar41) from (37) by means of these products, it is concluded
that (37) will retain its form if, after integration and before sub-
stitution into (37), Y\(z,) is postmultiplied by F;~!, while
Yy(zar) and Zy(zary1) are premultiplied by Fary. In the
following, it will be regarded that this transformation is carried
out and that ¥(z,) and ¥(zar41) contain among their elements those
quantities which are prescribed at z = x, and £ = zu4, respec-
tively.

Thus for all boundary conditions in the form of (29b), the sys-
tem of M matrix equations (37) involves exactly M times m un-
knowns, and formally it can be solved by any method which is
applicable to a large number of equations. However, the success
of the procedure given in this paper lies in the application of
Gaussian elimination directly on the matrix equations (37).

First a rearrangement of elements is performed. Since those
m/2 elements of y(z,) and ¥(zxr41) which are known through the
boundary conditions can be any m/2 of the m-elements, it is
necessary to rearrange the rows of y(z:) and y(zar41) 8o that the
known elements are separated from the unknown elements. It is
assumed here that the first m/2 elements of y(z;), denoted by
%(z1), are known and that the last m/2 elements, denoted by
y«{z1), are unknown. On the other hand, y\(zar;1) are the un-
known and yXzir41) are the known elements of y(zar41). Since
the order of the variables in the column matrix y(z) is arbitrary,
it should be emphasized that this separation of elements does not
involve any restriction on the boundary conditions, and that any
natural boundary condition in the form of (29b) can be prescribed
at each edge. The separation is achieved by a simple rearrange-
ment of the columns of Yy(z.) and the rows of Y,(za41) and
Z y(zu4) after integrating the initial-value problems defined by
(36) to the ends of the segments S, and S, and multiplying by
Fy~1and F . a8 stated in the foregoing.

Once it is established which parts of ®(z,) and y¥(zy4.1) are
known, the continuity conditions (37) are rewritten as a parti-
tioned matrix product of the form

I:Ill(-"—'-‘+1):| _ [Yi'(x-'+1)iy."($f+x)] I:!_lfg?_._):l + [_Z_i_'_(_if:'ﬂ_):l
Y2(Tin) Y 3(xin) Y (zin) ) Lyazo) ZXxip1)

so that each of the equations (37) turns into a pair of equations,
given by

Y zeip)yl(z) + Yi¥zin)y(z:) — y(zin) = —Z (zin)
YHzindy(z) + Yid(zondyz) — yozin) = —ZXzin)

(37)

(38)

(39)

The result is a simultaneous system of 2M linear matrix equa-
tions, in which the known coefficients Yi(z:,,) and Z;/(z:,,) are
(m/2, m/2) and (m/2, 1) matrices, respectively, and the un-
knowns y;(z;) are (m/2, 1) matrices. Since yi(z:) and y«(zar1) are
known, there are exactly 2M unknowns: yi(z,), witht = 2,3, ...,
M + 1, and y{z;), withi =1,2,..., M.
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By means of Gaussian elimination, the system of equations (39)
is first. brought to the form

(B, —I 0 0 i
0 ¢ -1 0
0 0 E. -1 |
0 0 0 c. | =1
_________ — J
0 0 0 0
L0 0 0 0 0

where the dots indicate the triangularized equations (39) with
i1=3,4,...,M — 1. The (n/2, m/2) matrices E,, C; are defined
by

E, =Y (4la)
C, = YPE ! (410)
and fori = 2,3,..., M
E; = Y24 Y0, (41c)
C; = (Y 4+ Y0, )E™! (41d)
The (m/2, 1) matrices A, 3; are given by
A = =Zp — Yily(x) (42a)
B, = —Z* — YVi3(x) — YE, "4, (420b)
and for7 =2,3,...,M — 1
Ay = =2 = Y Cia™'Bin (42¢)
B, = —Z2 —Y3CiuBioy — (Y 4+ Y3C, " )E; A, (42d)
Finally, for the Ath segment
Ay = =Zy' — Yy'Coyroy 7 'Byry (42¢)
By = yxyn) — Zaf — Y \P2Cxo7'Baro
— (Yar + Va2Cua™DEy ' Ay (42f)

For brevity, in place of Y (zi.1) and Z;/(zis1), the symbols Y,/
and Z;7 have been used.
By means of (41) and (42), the unknowns of (39) are obtained by

Y(xar+1) = Cy~'By (43a)
ya(xy) = Ex~p(xan) + Ayl (43b)
and fori=12,...,0 —1
n(xar—ip) = Caroy~yTar-iv1) + Bar-i] (43¢)
yzy=i) = Ey_i M n(xyein) + Av_il (43d)

It should be noted that (41)-(43) must be evaluated in succession,
because each equation involves the result obtained by the preced-
ing equation.

Once all the unknowns y(z;) are found, the fundamental
variables are determined from (35) at any value of x at which the
solutions Y;(x) and Z;(z) are stored during the integration of the
initial-value problems of (36). The integration of (36) can be
accomplished by means of any of the standard direct integration
methods.

On the basis of the system of equations (26) given in an earlier
section and the method of solution developed in the last two sec-
tions, the author has prepared a computer program* which has
been applied to many shell configurations having large values of 8
and successfully tested against known results. One example of a
pressurized torus with @ = 57 is presented in the next section.

The program admits arbitrary meridional variations, including
discontinuities, in all shell parameters. It also admits ring loads
in the form of preseribed values of Ng, M4, N, or Q at any value of

i1 The program was written and all calculations were carried
out by the author on the IBM 709 computer at the Yale Computer
Center. The direct integration of (36) is performed by means of the
Adams predictor-corrector method, which selects an optimum step
size at every step according to a prescribed accuracy.
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By

0 |[ys=:) Ay
0 yi(x2) B,
0 ya(22) _ A, (10)
0 Yi(xar) B,
-1 Y« ) A
Cyd Ly(xara) L By |

¢ on the shell. Such loads introduce discontinuities in the solu-
tion for the corresponding stress resultants, and they can be repre-
sented at every r; by an (m, 1) discontinuity matrix which is
simply added to the matrix Z;(x;1) on the right-hand side of (37).
This feature is of great value if shell joints are considered. Any
discontinuity, either in geometry or in loads, is easily handled by
requiring that the end point of a segment coincides with the loca-
tion of the discontinuity. Since integration is restarted at the
beginning of each segment, the precise effect of the discontinuity is
obtained. The program outputs all fundamental variables at a
number of desired points within each segment, and it also com-
putes the values of y(z:) twice; once from (43) and then from
(35). If a certain number of significant figures of these values
match, then the continuity conditions are known to be satisfied to
the same number of figures. In this way, a convenient error esti-
mate of the solution is obtained for every case.

Example: Pressurized Torus

In this section the stresses and displacements are determined in
a complete torus subjected to a constant internal pressure. It is
well known that the solution of this problem, when obtained by
means of the linear membrane theory of shells, has a discontinuity
in the displacement field. It has been shown by Jordan [16] and
by Sanders and Liepins [17] that a satisfactory solution with re-
gard to the displacement field for a sufficiently thin shell can be
obtained if the nonlinear membrane theory of shells is employed.
Subsequently, Reissner [18]) established bounds on certain
parameters which show when the nonlinear membrane and when
the linear bending theory is applicable. It seems worthwhile to
give here the solution for a pressurized torus as predicted by the
linear bending theory.

The geometry of the torus is shown in Fig. 3. With regard to
the quantities employed in equations (26), the two necessary
parameters for a torus are given as
(44a)
r=a+ bsin ¢ (440)

Because of symmetry with respect to the plane XX, Fig. 3, the

Fig. 3 Geomelry of torus considered in example
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Table 1
o¢m/E
Wb X 102 —(ogs/E) X 10*

) 0.005 0.05 0.02

90 1.601 —0.063 —0.031

108 1.613 —0.188 —0.093

126 1.650 —0.886 —0.123

144 1.720 —1.915 —0.908

162 1.832 —0.895 —1.378

171 1.906 1.002 0.168

180 1.990 3.089 2.277

184.5 2.042 3.890 3.035

189 2.104 4.270 3.119

193.5 2.175 4.178 2.580

198 2.254 3.610 1.589

216 2.642 —0.587 —0.957

234 3.168 —1.245 —0.291

252 3.730 -0.717 —0.344

270 3 997 —0.824 —0.331

5
4 N
|
h/b=0.05 \ n
¢« 3 A '
o i
P \U I
\n 2 |
b‘e' 0.005 ~—|_ \ 1
| l
-1 /\\/ // ]

2 Y/

90°

Fig. 4 Meridional bending siress o¢s at outer flber versus meridional
coordinate ¢

integration of the initial-value problems is carried out from ¢ =
90° to ¢ = 270°, and the boundary conditions at these endpoints
are ug = B4 = Q = 0. For the purpose of comparison with the
results of [16) and [17], the load parameter is chosen as pb/Eh
= 0.002and a/b = 1.5.

The numerical values of the normal displacement, meridional
membrane stress cgm = Ng/h, and meridional bending stress
Ogp = 6My/h? at { = h/2 for a pressurized torus are shown in
Table 1 and in Figs. 4 and 5. These results were taken from the
output of the computer program prepared for an arbitrary shell of
revolution after prescribing the geometric parameters as given by
(44). The meridional membrane stress distribution agrees very
well with that obtained in [17] by means of the membrane theory
of shells and it shows only a small variation with A/b. The de-
formed shapes of the cross section of the torus shown in Fig. 5 for
three values of h/b are in qualitative agreement with those given
in [16]) and [17], but their quantitative agreement cannot be ex-
pected because the values of h/b used in this example are outside
the range where the bending effects are negligible. This is con-
firmed by the examination of the bending stresses shown in Fig, 4.
The maximum value of g¢s occursat ¢ = 189° for /b = 0.05 and
at ¢ = 184.5° for h/b = 0.005, which are also the points of
maximum normal displacement and curvature as seen in Fig. 5.
The comparison of the membrane and the maximum bending
stress at various values of h/b is shown in Table 2.
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Stresses and displacements of a pressurized torus; pb/Eh = 0.002, /b = 1.5, » = 0.3

(w/b) X 14—

0.005 0.05 0.02 0.005
—0.016 1.249 1.284 1.298
—0.019 1.261 1.315 1.328
—0.030 1.359 1.393 1.427
—0.020 1.786 1.597 1.625
—0.910 2.820 2.580 2.159
—0.605 3.467 3.493 3.297

1.482 3.994 4.334 4.815

1.968 4.150 4.576 5.248

1.520 4.208 4.637 5.151

0.530 4.156 4.509 4.693
—0.274 3.998 4.221 4.162
—0.079 2.652 2.527 2.481
—0.066 1.273 1.269 1.269
—-0.077 0.416 0.417 0.414
—0.081 0.103 0.101 0.100

Fig. 5 Normal displacement w versus ¢ showing deformed section

Table 2 Maximum meridional bending stress and meridional membrane
stress at ¢ = ¢y

h/b 0.05 0.02 0.005
do 189° 189° 184.5°
(oem/E) X 103 2.053 2.082 2.042
(ogs/E) X 103 0.427 0.312 0.197
100 (ogs/o¢m) 20.8 15.0 9.6

It is of significance to note that even for the thickness ratio
h/b = 0.005, which for many applications would be regarded as
small, the maximum bending stress is about 10 percent of the
membrane stress at the same point. Such effects of bending in a
torus were previously noted by Clark [19], and they are also in
agreement with the statement made by Goldenveizer [20] that
when the middle surface touches a closed-plane curve, which in a
torus corresponds to ¢ = 180°, then in the vicinity of this curve
bending stresses should be expected and the membrane theory is
not applicable.

The boundary layer shown in Fig. 4 is also in agreement with
the conclusions reached in [18] to the effect that when u and p
given by

(12(1 — ¥3)]"/*(b/a)(b/h)

r
I

12(1 — v*)(p/E)(b/R)?

°
]
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are large compared to unity, then a boundary layer in the neigh-
borhood of ¢ = 180° should be anticipated. For the present
example, u ranges from 44 to 440 and p from 9 to 874. However,
since p is the only load parameter of the problem, the solutions
shown in Figs. 4 and 5 are proportional to p, and the boundary
layer remains unaffected if p alone is varied. Of course, for very
large values of p the deformation of the torus may exceed the
limits of a linear theory which according to [18] restrict p to the
range p K n’/ LK
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This paper is concerned with a theoretical investigation of the free vibration of arbitrary shells of revolution
by means of the classical bending theory of shells. A method is developed that is applicable to rotationally
symmetric shells with meridional variations (including discontinuities) in Young’s modulus, Poisson’s ratio,
radii of curvature, and thickness. By means of the method of this paper, the natural frequencies and the
corresponding mode shapes of axisymmetric or nonsymmetric free vibration of rotationally symmetric shells
can be obtained without a limitation on the length of the meridian of the shell. To illustrate the application
of the method given in this paper to particular shells, some results of free vibration of spherical and conical
shells obtained earlier by means of the bending theory are reproduced by the general method of this paper,
and a detailed comparison is made. In addition, paraboloidal shells and a sphere—cone shell combination are
considered, which have been previously analyzed by means of the inextensional theory of shells, and natural

frequencies and mode shapes predicted by the bending theory are given.
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SYMBOLS

(m,m) matrix, denotes coefficients of dif-
ferential equations

=Er/12(1—»?)

Young’s modulus

=1/(14D sin%/Kr?)

=1/R4—sing/r

unit matrix

=1/R4+sing/r

=Eh/(1—»%

some characteristic length of shell
number of segments

moment resultants

effective tangential shear resultant
membrane-stress resultants

=1/R4+v sing/r

effective transverse-shear resultant
transverse-shear resultants

radius of curvature of meridian

(m,m) transformation matrix

(m,m) matrix, related to ¥ (x)

(m,m) matrix, denotes homogeneous
solutions

¢ identifies segment S;, j denotes quad-
rant of partitioned matrix ¥ (x)

end points of shell
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= (E/p)*—speed of sound

thickness of shell

number of first-order differential equa-
tions

integer, denotes Fourier component
distance from axis of symmetry
distance along meridian in positive direc-
tion of ¢

time

(m,1) matrix, related to y(x)
displacements of middle surface in nor-
mal, meridional, circumferential direction
independent variable, can be ¢ or s
(m,1) matrix, denotes fundamental vari-
ables

j=1, 2 denotes upper and lower half of
partitioned y(x) ; 7 denotes 7th element of
each submatrix

angle of rotation of normal in meridional
direction

angle between normal and axis of sym-
metry

Poisson’s ratio

circular frequency, rad/sec

mass density

wL/¢, nondimensional frequency param-
eter
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INTRODUCTION

N the analysis of free vibration of a shell of revolu-
tion, the natural frequencies of the shell are the
roots of a determinant whose elements are related to
certain solutions of the homogeneous field equations.
These solutions, from which the frequency equation is
constructed, are characteristic of a particular shell, and
for simple shell configurations, such as cylindrical and
spherical shells, they are known hypergeometric func-
tions. However, for more-complicated shells such solu-
tions are not available.

The main purpose of the present paper is to develop
a method for the determination of the homogeneous
solutions, natural frequencies, and mode shapes of
free vibration for arbitrary rotationally symmetric
shells by means of the linear-bending theory of shells.
The method given here is applicable to any eigenvalue
problem that is governed in an interval by a system of
m linear homogeneous first-order ordinary differential
equations and /2 homogeneous boundary conditions
at each end of the interval.

It was shown by the present author! that the basic
equations of the classical static theory of shells of
revolution can be reduced to a system of 8 first-order
ordinary differential equations involving 8 unknowns
in such a way that no derivatives of the shell properties
appear in the coefficients of these equations. For the
special case of vibration of a conical shell, a similar
system of equations was previously derived by Gold-
berg and Bogdanoff.2 The essential point in these deriva-
tions is the definition of the 8 variables as exactly those
quantities that enter into the appropriate boundary
conditions on a rotationally symmetric edge of a shell
of revolution.

To obtain a similar system of differential equations
for the analysis of free vibration of arbitrary rotationally
symmetric shells, the reduction scheme given in Ref. 1
is started from the homogeneous equations of the
classical dynamic theory of shells. Again, a system of 8
first-order differential equations results, which together
with the boundary conditions constitutes an eigenvalue
problem. The solution to this problem is obtained
in this paper by means of a multisegment, direct,
numerical integration approach, which is an extension
to eigenvalue problems of the method used successfully
by the author! for the analysis of static deformation of
shells of revolution.

A part of the method given here is similar to the one
used in the analysis of axisymmetric modes of free
vibration of relatively short conical shells by Goldberg,

1 A. Kalnins, “Analysis of Shells of Revolution Subjected to
Symmetrical and Nonsymmetrical Loads,” Paper No. 6 -APM-33,
J. Appl. Mech. (to be published).

2J. E. Goldberg, and J. L. Bogdanoff, Proc. Symp. Ballistic
Missile Aerospace Technol., 6th, 1, 219-238 (1961).
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Bogdanoff, and Marcus.? It turns out that, if the
method of Ref. 3 is applied to sufficiently long shells of
revolution, then a complete loss of accuracy invariably
results in the process of calculation of the natural fre-
quencies and mode shapes. The loss of accuracy is
attributed to the subtraction of almost equal numbers,
and its cause is explained in detail in this paper. It is
also shown in this paper that the loss of accuracy can
be avoided and that the natural frequencies and mode
shapes of long shells can be obtained if the shell is
divided into a number of sufficiently short segments
and the numerical integration is carried out over each
segment separately. By requiring the continuity of all
relevant variables at the end points of the segments, a
linear homogeneous system of matrix equations is ob-
tained that possesses a nontrivial solution if the deter-
minant of a certain (m/2,m/2) matrix vanishes. Thus,
the free-vibration problem of an arbitrary rotationally
symmetric shell is reduced to the determination of the
homogeneous solutions for a particular frequency
and to the calculation of the value of an (m/2,m/2)
determinant.

For the purpose of illustration of the use of the
method given in this paper, the natural frequencies and
mode shapes of free vibration are investigated for some
special cases of rotationally symmetric shells. To
demonstrate the accuracy of the method, results are
obtained for free vibration of a conical and a spherical
shell and compared to those obtained previously by
means of the bending theory of shells. Then, the lowest
natural frequencies and mode shapes of a paraboloidal
shell and a sphere—cone shell combination are calculated
and compared to previous results, which have been
obtained earlier by means of the inextensional theory
of shells.

I. FUNDAMENTAL SYSTEM OF EQUATIONS FOR
VIBRATION OF SHELLS OF REVOLUTION

In Ref. 1, the governing system of static equations
for shells of revolution is reduced to a system of 8 differ-
ential equations that contain 8 unknowns. This system
of equations and the unknowns are called the funda-
mental system and the fundamental variables, respec-
tively, because they are necessary and sufficient for a
complete statement of the problem.

In this paper, we are concerned with the fundamental
system of equations that is reduced from the dynamic
theory of shells of revolution. In the absence of any
external loads, the fundamental equations can be
written in matrix form:

dy (x)/dx=A (x)y (), 1)

3]. E. GoIdbergI, J. L. Bogdanoff, and L. Marcus, J. Acoust.
Soc. Am. 32, 738-742 (1960).
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where x is an independent variable, y(x) is a column
matrix whose elements represent the m fundamental
variables, and 4 (x) is an (m,m) coefficient matrix whose
elements are piecewise continuous known functions of
x defined in an interval of x denoted by (a,b). The
system of Egs. (1), together with m/2 homogeneous
boundary conditions at each end point of the interval
(x=a and x=10), forms an eigenvalue problem, for
which a method of solution is given in the following
sections.

It should be noted that the method given in Ref. 1 for
static analysis, as well as that in this paper for free
vibration, can be conveniently used with any version of
the consistent linear shell theories available in the
literature, including the anisotropic and the improved
theories in which the effects of transverse-shear defor-
mation are accounted for. The differences in these
theories are reflected only in the elements of 4 (x) and
the number of the fundamental variables. For example,
for nonsymmetric deformation of a shell of revolution
for improved theory, m=10; for classical theory, m=38,
while, for axisymmetric deformation for both theories,
m=06. For brevity, in this paper we consider only the
symmetric and nonsymmetric free vibration by means
of the classical theory of isotropic rotationally sym-
metric shells. Extensions are straightforward.

The variables of the classical theory of shells used in
this paper are assumed to be separable in the form

w 1 (w,
u¢ u¢n
Bs Bgn
AN

Qe L _J0en |
N, Non cosnf coswt,
Nﬂ Nan
M¢ M¢n
MO MOn

ug | (uen

N L N,

NM No¢n .

« = > sinzf cosw.
Qﬂ Qﬂn .
M0¢ Mﬂqﬁn

~ / .

The fundamental variables, in terms of which the
problem is stated, are taken as those quantities that
appear in the appropriate boundary conditions of the
classical theory on an axisymmetric circular edge. Thus,
The independent variable x can be regarded as either
the angle ¢ between the normal and the axis of sym-
metry of the shell or the distance s measured along the
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NORMAL

S T

F16. 1. Coordinates of the ¢
shell. [

xu xuﬂ

we define the (8,1) matrix y(x) by

»wn (x) -
Ugn (x)
Ugn (x)
YO=1g)
Nyn(x)
Na(x)

meridian, as shown in Fig. 1. For some shells (e.g.,
paraboloidal), ¢ is more convenient, while for shells
with straight generators, when ¢ is a constant (e.g.,
conical), s should be employed. However, the distinc-
tion between ¢ and s is necessary only in the deriva-
tives where the transformation d/ds=(1/R4)d/d¢ holds.

The fundamental equations for vibration of shells of
revolution in the form of Eq. (1) can be derived by
following the steps given in Ref. 1. Based on the linear
classical theory of shells derived by Reissner,* with the
inclusion of the effects of translatory and rotatory
inertia, the nonzero elements A;; of the coefficient
matrix 4 (x) can be written in the form

A12=1/R,,
An=—P, Agypy=—vcosp/r, As=—wn/r, A2s=1/K,
Au=nGD sin2¢/K», Asp=n(1—GDJ sing/Kr)/r,
Ass= (1—GDH sing/Kr) cos¢/r, Asu=2nGD sing/Kr?,
A31=2(1—GD sin’¢/Kr?)/(1—»)K,

- 2/,2
An=—wm?/r,

A14= - 1,

A 3= —vn sing/r?,
A= —vcosg/r, As=1/D,

As1=2n*GD(1—v) cos’¢/r*+n*D(1—2)/r*
+ K (1—1?) sin?¢/r?—QER(1+4h2n?/1202)/ 12,

A so=K(1—?) sin2¢/2r2—n*GDJ (1—v) cos¢/r3,

4E. Reissner, Am. J. Math. 63, 177-184 (1941).
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Ass=n(1—1?) (K+n*D/r?) sing/r?
—nGDH (1—v) cos’p/r3—nQ2ER sing/12r2L?,

As=n*D(1—v) (14+v+2G) cose/7,

Ass=—cosp/r, Ase=P, Asr=—A5n, Am=—Aq,

A=K (1—1?) sin2¢/2r2—n*GDJ (1—v) cos¢/7*,

Aga=K(1—1?) cos?’¢/r*+n*GDJ*(1—v)/2r*—Q2Eh/ L2,

Aes=nK(1—1?) cos¢p/r*+nGDJH (1—v) cosp/27?,

Aes=—n’GDI(1—v)/r?, Aes=—1/Ry,
A66= _ (1_V) COS¢/’, A67= _n(l_GD] Sind)/Kr)’
A71=A53, A72=A63,

An=n*(K+D sin’/r?) (1—v?)/?
+GDH?*(1—v) cos?p/2r?
—QPEh(1472 sin2p/12¢%) / L2
Anu=—nD(1—v)[GH— (14) sing/r] cos¢/7?,

Aze=—As, Awn=—(2—GDH sing/Kr) cos¢/r,
A78= _A43,
A81=A54, A82=A64; A83=A74)

Ass=D(1—v)[(1+) cos’p+2n2G]/r*—QREN /1212,
A35=1, A37=—A34, Asg=—(1—v) COS¢/1’.

The given coefficients A;; are those which arise when x
in Eq. (1) is identified with s. If the independent
variable is taken as ¢, then every element 4;; given
above must be multiplied by R,.

The eigenvalue problem as defined above determines
the fundamental variables y(x). Other variables are
given in terms of y(x) by

Non=vN g3»+ (1—1®) K (wn sing~+u4n COSO+n19,)/7,
M0n= VM¢n+ (1 - V2)
X D(n*wn/r+Bsn cosp+n singue,/7)/7,

Mopn=D(1—v)[ —2n cos¢pw,/r+nJus,
~+ H cos¢usn—2nB4n |/ 2r+singDN ,,/Kr,

Nogn=N,—singMosn/7,
Qsn=Qn—nMosn/7,
Qon=—nMy,/r+ (M 641/ ds)
+2 cos¢M ogn/r+RER (nw,+us, sing)/127L2,

The method given for static problems in Ref. 1 is
equally applicable for finding the forced dynamic re-
sponse of rotationally symmetric shells to harmonic
surface and edge (or ring) loads if the coefficients 4 (x)
derived in Ref. 1 are replaced by those given in this
paper. The main purpose of this paper is the develop-
ment of a method for the analysis of free vibration of
rotationally symmetric shells, which is given in the
following sections.

A. KALNINS

II. METHOD OF SOLUTION FOR A
ONE-SEGMENT SHELL

In order to find the solution of the system of Egs.
(1), it is desirable to reduce the system of differential
equations to one equation and one unknown. This has
been accomplished, for example, for cylindrical and
spherical shells with constant thickness and material
properties by eliminating all other unknowns but the
normal displacement w. Regardless of whether the
solution is obtained from a single equation involving
a single unknown or from the simultaneous system of
Egs. (1), the solution for the fundamental variables
of a shell of revolution in the absence of external loads
can be written in the form

y(x) =W (2)C, (2)

where W (x) is an (m,m) matrix whose columns repre-
sent m linearly independent solutions of the homo-
geneous governing equations, and C denotes a column
matrix of m arbitrary constants.

It should be noted that for cylindrical shells the
columns of W (x) consist of independent trigonometric
functions, while for shallow spherical shells they are
Bessel functions, and for nonshallow spherical shells
they are Legendre functions, all of which can be ob-
tained either from their hypergeometric series or by
means of numerical integration from the corresponding
differential equations. For more-complicated shell con-
figurations, especially in the presence of meridionally
variable properties, the reduction of Egs. (1) to a single
equation with one unknown and a series solution may
not be possible. For such shells, the method of direct
numerical integration of the system of Egs. (1) for
obtaining the solutions W(x) leads to a powerful
method for the analysis of arbitrary rotationally sym-
metric shells.

The solution is obtained by defining the columns of
W (x) as the solutions of m initial-value problems in the
interval (a,b) governed by the system of Egs. (1) and
subjected to arbitrary linearly independent initial condi-
tions at x=a. If the independence requirement is met
at x=a, then the solutions will be independent at any
other value of x in the interval (a,b).

Since the only requirement of the columns of W (x)
is that they be linearly independent solutions of the
system of Egs. (1), in place of W(x) we may employ
in the interval (a,b) a matrix of linear combinations of
the solutions of Egs. (1), which at x=a reduces to a
unit matrix I. Thisis done by evaluating Eq. (2) at x=a

y(a)=W(a)C, 3)
solving for C

C=W=(a)y(a), (4)



FREE VIBRATION OF ROTATIONALLY SYMMETRIC SHELLS

and replacing C in Eq. (2) by Eq. (4) to give
y(x) =W ()W (a)y(a).
Now, we define
Y (x)=W (x)W(a), (5)
and obtain the expression for the solution in the form
y(@)=Y (x)y(a). (6)

Thus, the columns of ¥ (x) are solutions of the  initial-
value problems given by

dY (x)/dx=A(x)Y (x),
Y(a)=1.

(7a)
(7b)

The elements of the rows of ¥ (x) represent those funda-
mental variables that are contained in the corresponding
rows of y(x) in Eq. (1).

It is important to note that the solutions ¥ (x)
depend only on the geometric and material properties
of the shell [i.e., on the coefficient matrix 4 (x) ] but not
on the boundary conditions. The same solutions ¥ (x)
can be used for any appropriate boundary conditions
imposed at the edges of a given shell. For this reason,
the solution of the free-vibration problem of a rota-
tionally symmetric shell is completely determined
by ¥ (x).

At this point, it should be recalled that at each edge
of the shell, i.e,, at x=a and x= b, m/2 quantities must
be prescribed. If these quantities are the fundamental
variables, then m/2 elements of y(a) and m/2 elements
of y(b) are known, and the solution for the m/2 un-
known elements of y(a) is directly obtained from Eq.
(6) when evaluated at x=5 in the form

y(0)=Y (8)y(a). @)

It should be clear that for free-vibration problems,
when the prescribed variables vanish, Eq. (8) consti-
tutes a linear homogeneous system of m/2 equations
with m/2 unknown elements of y(a). Requiring the
vanishing of the determinant of the coefficient matrix
of this system of equations gives the frequency equa-
tion and natural frequencies of the system and a
solution for y(e). Once all elements of y(a) are known,
the mode shapes corresponding to a particular frequency
can be obtained at any desired value of x from Eq. (6).

The above analysis is easily extended to such cases
when the boundary conditions at x=a and x=5 are
imposed on new variables #(x), which are linear com-
binations of the fundamental variables and are related

to y(x) by
u(x) =T (x)y(), ©)

where T'(x) is a given (m,m) nonsingular matrix. In this
case, we obtain an analogous equation to Eq. (6) in
terms of #(x) by substituting y(x) from Eq. (9) into
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(6) and solving for #(x) in the form

w(x)=T )Y (x) T (a)u(a). (10)
If we define
U@)=T @)Y (x)T(a), (11)
we obtain
u(x) = U (x)u(a), (12)

which is of the same form as Eq. (6). Thus, the fre-
quency equation and the solution for #(x) can be ob-
tained in the same manner as those for y(x) by using
the solutions ¥ (x) defined by Egs. (7) and simply trans-
forming them as shown by Eq. (11).

In Sec. III, it becomes necessary to rearrange the
elements of #(x) at some values of x in such a way that
the known and unknown variables of #(a) and u(d)
are separated into two partitioned matrices. The
transformation matrix 7'(x) can easily contain such a
rearrangement.

In the remainder of this section, it is regarded that
the solution of the problem is given by Eq. (12), and
that #(a), #(b) contain those quantities that are pre-
scribed at x=a and x=», respectively. Moreover, for
added simplicity of the analysis, it is regarded that the
first m/2 elements of #(a), denoted by #1(a), and the
last m/2 elements of #(b), denoted by u.(b), are the
prescribed variables. All the necessary transformations
for going from y(x) to #(x) are given by Egs. (9) and
(11), and it should be clear that no loss of generality
is involved in such a transformation.

With this transformation, Eq. (12) evaluated at x=15
can be written as a partitioned matrix product in the

form
I:ul(b)] [U‘(b) | Uz(b)][ul(a)]
-—— — — = —_—_——— | ———— —_———— ’
u3(D) U3(b) | U(b)ILus(a)
where the (m/2,m/2) matrices U7(b) are the partitioned
matrices of U (b). If we assume that for free vibration

u1(a) =u2(b)=0, then the unknowns #,(a) are directly
obtained from

(13)

U*(b)us(a)=0. (14)
Since a nontrivial solution for #,(a) is possible if the
matrix U%(d) is of rank m/2—1, the frequency equation
of the system is given by

| U4(b) | =0. (15)

Once a frequency is found that satisfies Eq. (15), the
corresponding solution for #,(a) is obtained from

usi(a)=d(— 1) | M, (16)
where u,'(a) denotes the 7th element of #.(a), d is an
arbitrary constant, and |M;| is the determinant ob-
tained from any (m/2—1,m/2) submatrix of rank
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m/2—1 contained in U*(d) by deleting the ith column.
After us(a) is calculated from Eq. (16), the corre-
sponding mode shapes for a particular natural fre-
quency are found from Eq. (12).

For the determination of the mode shapes from Eq.
(12) in terms of the quantities that are prescribed at
x=>, values of U(x) are necessary at any x at which
the output is desired. For this purpose, during the
integration process for the determination of Y (),
the intermediate values of ¥ (x) should be stored from
which the corresponding U(x) are obtained by Eq. (11).
If the mode shapes are desired in terms of the funda-
mental variables, then, after determination of #(a) by
means of Eq. (16), the corresponding y(a) can be ob-
tained from Eq. (9), and then the mode shapes are
calculated from Eq. (6) at those points at which ¥ (x)
is stored.

Thus, the free-vibration problem of an arbitrary
rotationally symmetric shell is reduced to (1) integra-
tion for a given Q of Egs. (1) 7 times from x=a tox=5%
to determine the fundamental solutions ¥ (x), starting
with Y (a)=1; (2) transformation of ¥ (x) at certain
values of x to the boundary-condition variables by
Eq. (11); (3) calculation of the value of the determinant
of U4(d) ; (4) repetition of this process for the evaluation
of the natural frequency Q; at which Eq. (15) is satisfied;
and (5) calculation of the mode shapes from Eq. (16)
and either Eq. (12) or Eq. (6) at a particular natural
frequency.

The method thus far is essentially a generalization of
the one employed in the analysis of axisyinmetric vibra-
tion of a conical shell in Ref. 3. It works very well for a
shell with a relatively short interval (a,b). However,
when the length of the meridian of the shell is increased,
the elements of U(d) increase rapidly in magnitude
while the value of the frequency determinant does not,
and, consequently, an increasing number of significant
digits is subtracted out in the process of calculation of
the determinant of U*(). Similarly, because of the large
values of the elements of U(x) at large values of x,
accuracy is invariably lost when the mode shapes are
obtained from Egs. (6) or (12). This phenomenon was
pointed out previously in Ref. 1, and also by Galletly?®
et al. and Sepetoski ef al.% in connection with shells of
revolution, and by Fox? with regard to some boundary-
value problems of second-order differential equations.

To make the direct integration technique applicable
also to long shells, a method was developed in Ref. 1 for
the static analysis of shells of revolution in which the
initial-value problems for the determination of ¥ (b) are

§ G. D. Galletly, W. T. Kyner, and C. E. Moller, J. Soc. Ind.
Appl. Math. 9, 489-513 (1961).

8 W. K. Sepetoski, C. E. Pearson, I. W. Dingwell, and A. W.
Adkins, J. Appl. Mech. 29, 655-661 (1962).

7 L. Fox, Numerical Solution of Ordinary and Partial Differential
Equations (Addison-Wesley Publishing Co., Reading, Mass.,
1962), p. 61.
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defined over suitably selected short segments. This
method is extended in Sec. III to apply to eigenvalue
problems.

III. EXTENSION TO A MULTISEGMENT SHELL

The method of the analysis of shells of revolution
proposed in Ref. 1 is based on the idea that if the m
initial-value problems for the determination of ¥ (x) are
defined over sufficiently short segments of the shell,
then ‘the elements of ¥ (x) are not large in magnitude
and no loss of accuracy occurs due to subtraction of
large almost equal numbers. This idea is also applicable
in the analysis of free vibration of shells of revolution.

As it was done in Ref. 1, let the shell be divided
into M segments, which are denoted by S; in which
2;<x<%;11, where i=1, 2, .-, M. The ends of the
shell, denoted in Sec. II by x=a and x=25, are now at
x=x; and ¥=1%r41, as shown in Fig. 1. The solution in
each segment S; is given by Eq. (6) in the form

y(x) =Y i(x)y(=:), (7)

where YV (x) are obtained from the initial-value prob-
lems defined in S; by

dYi(x)/dx=A(x) Y (), (18)

Continuity requirements on all fundamental variables?
at the end points of the segments (i.e., at x=ux;,
i=2,3, -+, M+1) lead from Eq. (17) to

Y (@ir1) = Vi(xir)y (xs),

where 1=1, 2, -+, M.

The analysis and the prescription of general boundary
conditions in terms of linear combinations of the funda-
mental variables are considerably simplified if the T'(x)
transformation introduced in Sec. II is employed to
obtain the quantities prescribed at the end points (x=x;
and x=xyr,1) of the shell in the form

u(%1) =T (x1)y(21), (20a)
w(2ar41) = T(%pr41)y (Xar41)- (20b)

According to Eq. (11), we must then transform the
solutions ¥V1(x2) and Y (xa41) by

Ui(2)=Y1(22) T (1), (21a)
Unt (2ar11) = T (a011) Ve (%2141). (21b)

The matrix T (x;) is such that the first m/2 elements
of u(x;) are the prescribed quantities at x;, while
T (%a41) is such that the last m/2 elements of % (%a41)
are the prescribed quantities at £=x741. The variables
y(x) at interior points of the shell (i.e., at x; with

Y,-(x,-) = I

(19)

8 It should be mentioned here that the continuity requirement
of the fundamental variables ensures continuity of the stress
resultants but not necessarily of the stresses, which is consistent
with the formulation of the theory of shells in terms of resultants.
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1=2, 3, - -+, M) need not be transformed, and they can
be left in terms of the fundamental variables in the
order in which the appear in Eq. (3).

In the following, it is assumed that the transforma-
tions given by Egs. (20) and (21) are carried out, but
that for simplicity of notation the symbols y(x;),
¥(xu41), Yi(x), Yu(x) are used instead of u(xy),
wu(%p41), Ui(x), Un(x). In this way, the continuity
Egs. (19) can be employed without change when it is
understood that the transformations of Egs. (20) and
(21) have been performed.

Using the partitioned matrix product as given by
Eq. (13), Eq. (19) can be written as

(22a)
(22b)

¥1(®ip1) = Vil (i) () + V2 (#040)y2 (%),
Y2 (®ir1) =V E@ip1)y1(x:) + Vi (xiy1) y2 (22),

where t=1, 2, ---, M, and the superscripts of ¥ and
subscripts of y have the same meaning as in Eq. (13).

Equations (22) constitute a system of 2M linear
homogeneous matrix equations with 2 unknowns:
nx:),1=2,3, -+ -, M+1, and y:(x:), i=1,2, -+ -, M.
For free-vibration problems, we assume that the pre-
scribed quantities y1(x1)= y2(%a41)=0, and then Egs.
(22) can be arranged in matrix form as

YE -1 0 0 | 0 07 yxy)
yge 0 —-I O : 0 0 y1(%2)
0 2% Y2 —1.1 0 0 Y2 (x2) = 0,
0 Y V& 0 | =1 0| yi(xa)
0 0 0 VYu' Y2 —I| ya(xm)
0 0 0 Va2 Vit O | yi(®asa)
~ .J - 7

(23)

where the dashes indicate a pair of rows and/or columns
of Egs. (22) with =3, 4, ---, M—1, and for brevity
we have written V7 in place of V,7(xsy1).

As it was stated in Refs. 1 and 6, if the system of
Eqgs. (23) is solved by means of Gaussian elimination,
then the loss of accuracy due to subtraction is avoided.
For this purpose, we triangularize the coefficient matrix
of Eqgs. (23) to the form

‘Ey —I 0 0! 0 0 “ya(w)
0 Cl -1 0 : 0 0 yl(xg)
0 0 Ez —I1 0 0 yz(xz) =0. (24)
0 0 0 C:j—I 0 vz
0 0 0 0 Ey —I vz
-0 0 0 0 0 Cu- —y1(xM+1)»
The (m/2ym/2) matrices E; and C; (i=1, 2, -+, M),

obtained by the standard Gaussian elimination pro-
cedure from Egs. (23), are evaluated successively from
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Ey=Y2, (25a)
C1=V/E,™ (25b)
E=Y2+YVCiy?, (25¢)
Ci=(YA+Y# i )E, (25d)

where 1=2, 3, ---, M,

A nontrivial solution of the system of Eqgs. (23) is
possible if the (m/2ym/2) matrix Cu is of rank m/2—1, .
and then the solution for the elements of yi(xpy1),
denoted by y1*(xpmy1), where i=1, 2, ---, m/2, is
given by

yri(arga) =d(— 1) | Myl (26)
where again d is an arbitrary constant and the deter-
minant | M;| is obtained from any (m/2—1, m/2) sub-
matrix of rank m/2—1 contained in Cy by deleting the
ith column. Once ¥1(¥y1) is known, the remaining
unknowns in the column matrix of Eq. (24) are deter-
mined in successive order directly from Eq. (24). In
this process, we utilize the inverses of E; and C;, which
are needed in Egs. (25).

The above free-vibration analysis is applicable to any
rotationally symmetric shell with two circular edges,
at each of which m/2 boundary conditions in terms of
linear combinations of the fundamental variables are
specified. Situations may arise when the shell has no
open edges, and we may then regard that the end
points x=x; and x=%x41 are joined together. If this
joint occurs on the axis of symmetry (e.g., a closed
spherical shell) where =0, then by introducing exact
solutions in the vicinity of the axis of symmetry, this
shell can be treated in the same way as a shell with two
open edges.

If, however, the joint of x=x; and ¥=x; does not
occur on the axis of symmetry (e.g., a complete torus),
then, in general, integration must be carried out over
the closed curve of the cross section of the shell, which,
of course, should not cross or touch the axis of sym-
metry. The above analysis can be extended to such
closed shells by requiring in Egs. (22) that y;(x;)
=v1(%my1) and y2(x1)=7y2(xs41), i.€., that the funda-
mental variables at the starting edge are equal to those
at the final edge. The resulting matrix is then triangu-
larized to the form of Eq. (24), and the frequency
equation and mode shapes are obtained in the same
manner as given above. Since no boundary conditions
are given, the transformations to #(x) in this case are
not necessary.

IV. CALCULATION OF NATURAL FREQUENCIES
AND MODE SHAPES

On the basis of the coefficients 4 (x) and the multi-
segment analysis given above, the author has prepared
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a digital-computer program® that is applicable to any
rotationally symmetric shell for the analysis of free
vibration. The input of this program requires (1)
properties of the shell: R4 (%), 7(x), k(x), ¢(x), v(x), E(x)
at every x; (2) boundary conditions [transformation
matrix 7'(x)] at x=2; and x=wxp1; (3) the frequency
interval that is to be investigated for natural fre-
quencies; (4) the number of segments in which the shell
is to be divided. The program outputs each natural fre-
quency ©; and the corresponding mode shapes of all
fundamental variables.

The numerical integration for the determination of
the solutions ¥;(x) in each segment S; is carried out by
means of a predictor—corrector method in which the
step size is automatically selected according to a pre-
scribed accuracy of the solution. Since the shell can
have discontinuities in its properties, it is regarded that
such an automatic selection of step size is absolutely
necessary for a controlled accuracy and optimum eff-
ciency of the solution.

In order to get the precise effect of the discontinuities
in the shell properties, the segments should be selected
in such a way that the end point of one segment coin-
cides with the location of a discontinuity. Otherwise, the
segments may have arbitrary lengths, so that within
each segment < 3—35, where 3=I[3(1—»?) 1}/ (Rh)}, I is
the meridional length of the segment, and R is a radius
of curvature. The program outputs the mode shapes at
the ends of the segments twice—once from Egs. (22)
and then from Eq. (17)—and their comparison offers a
direct check of the satisfaction of the continuity require-
ments. If these repeated values do not match a sufficient
number of significant digits, then accuracy has been
lost by subtraction and the number of segments must
be increased.

From the results of Sec. III, it follows that for the
multisegment analysis the natural frequencies Q; are
the roots of the determinantal equation

|Cx| =0, (27)

which are found by calculating the determinant of
Cu for incremented values of @ until a change in sign
occurs. Then, by inverse interpolation the particular
Q;(4=1, 2, - --) are obtained at which |Cy|=0.

After applying the program to the analysis of free
vibration of many shell configurations, it was observed
that at some values of @, denoted by Qr, a change of
sign of any one of the determinants of the matrices
E:(i=1,2, ---, M) or C;(s=1.. 2, -+, M—1) may
occur. From Egs. (25), it follows that at these fre-
quencies |Cy| becomes infinite, which is accompanied
by a sign change of |Cy| and all the corresponding
values of y;(x;) obtained from Egs. (26) and (24).
Since |Cy| does not actually vanish, no nontrivial

9 The program was prepared and all calculations were carried
out on the IBM-709 computer at the Yale Computer Center.
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solution exists at Qr, and they are not the natural fre-
quencies of the system. However, since an automatic
search of the roots of Eq. (27) is based on the changes
of the sign of |Cx|, then at Q=Qr false natural fre-
quencies are indicated at which the inverse-interpola-
tion technique fails.

We can remove the false sign changes from the fre-
quency equation by using the following procedure: Re-
calling that at Qr both |Cy| and y;(x;) change sign, we
should seek the roots of |Cy| divided by some nonzero
element of y;(x;). It is convenient to choose for this
purpose the first element of ys(x1), denoted by y4' (x1).
Thus, the modified frequency equation is

Z=|Cul/ys (), (28)
which gives the same roots as Eq. (27), but is free from
the sign changes at Q= Q.

We should also note that if in Eq. (22) ys(xpy1) is
not set equal to zero, then y.(x;1) appears in the last
row on the right-hand side of Eq. (23). After triangu-
larization by means of Egs. (25), the last row of Eq.
(24) then reads

y2(®ar41) = Curyr (Far41). (29)
The use of the frequency Eq. (28) involves the deter-
mination of all the y;(«x;)’s by means of Egs. (26) and
(24) at every trial frequency @, so that y.!(x;) can be
found. According to Eq. (29), the values of y;(;), ob-
tained from Egs. (26) and (24) for any @ (except 2),
represent the forced response to the nonzero boundary
values y2(%a41), which are given by Eq. (29). Clearly,
for a natural-frequency £, it follows from Eq. (29) that
y2(%241)=0.

While the computer time for this additional calcula-
tion is found to be negligible, the zeros of the modified
frequency Eq. (28) are obtained much more easily than
those of Eq. (27). This is clearly shown in Fig. 2, where
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TaBLe I. Natural fre- Ref. 3 This paper
quencies Q; of axisymmetric o 0.00238 0.00238
vibration of truncated coni- Qp 0.00292 0.00291
cal shell. Q3 0.00358 0.00358

both [Cx| and Z are plotted versus @ near the lowest
mode of a spherical shell, which is considered in
Sec. V. While a sign change of |Cy| occurs at 2=0.936,
the F curveis free of such a disturbance. Of course, both
curves predict correctly the first natural frequency at
2=0.959.

Once a natural frequency is obtained, the correspond-
ing mode shapes at xy; are found from Eq. (26) and
then at the remaining x; from Eq. (24) starting with
i=M and ending with ¢=1. If the fundamental vari-
ables of the mode shapes are desired at more points
than at the ends of the segments, then they are directly
obtained from Eq. (17), provided that the values of
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TaBLE II. Natural fre- Ref. 10  This paper
quencies ; of axisymmetric
vibration of spherical shell Ql 0.962 0.959
with fixed-hinged edge at 2 1.334 1.328
¢ =60°. Q 2.128 2.114

Vi(x) at these points are stored during the integration
from x=ux; to x=x;; in each segment. Before using
Eq. (17), we should recall that y(x;) and y(xa41) are
really the transformed variables #(x;) and % (xa41), and
in order to use ¥V (x) in Eq. (17) we must transform
them back to the fundamental variables by means
of Egs. (20).

V. ILLUSTRATIVE EXAMPLES
A. Conical Shell

In Ref. 3, the natural frequencies and mode shapes of
free axisymmetric vibration are determined for a trun-
cated conical shell in the shape of a loudspeaker cone.
To show the accuracy of the present method, exactly
the same problem as in Ref. 3 is considered by means
of the general program. The comparison of the first
three natural frequencies is given in Table I. Letting
L=h, the frequency parameter is @=wh/c, where the
speed of sound in Ref. 3 is ¢=7.071X10* in./sec,
h=0.025 in., and »=0.25. The corresponding mode
shapes for the first three modes obtained by the general
program, together with other dimensions of the shell,
are shown in Fig. 3. The agreement with the results of
Ref. 3 is excellent.

B. Spherical Shell

The first three modes of axisymmetric vibration of
a spherical shell with a fixed-hinged edge at ¢=60°
have been calculated by means of the hypergeometric
series solutions of bending theory and are included in
a recent paper.® The natural frequencies @=wR/c for
v=0.3, #/R=0.05, are also calculated by the general
program and are given in Table II, while the corre-
sponding mode shapes are shown in Fig. 4.

The lowest natural frequency of a nonsymmetric
mode (n=2) as predicted by the classical bending theory
of shallow shells is given in Ref. 11: ©,=2.34. For
h/R=0.05, v=0.3, and a clamped edge at ¢=230° the
corresponding result obtained by the general program
is 91= 2.15.

While the agreement with the results of Ref. 10 is
within a few percent, the nonsymmetric frequency pre-

10 A, Kalnins, “Effect of Bending on Vibrations of Spherical
Shells,” J. Acoust. Soc. Am. 36, 74-81 (1964).
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dicted by the theory of shallow shells in Ref. 11 is
higher by about 9%,. The reason for this difference may
be that the admissible maximum limiting angle in
the theory of shallow shells is smaller for #>0 than
for n=0.

The inextensional theory of deformation of shells as
formulated by Lord Rayleigh can be used in the analysis
of the inextensional modes of shells of revolution. Since
the inextensional modes must be included in the general
bending theory of shells, it may be of interest to com-
pare specific results obtained by the general program of
this paper and the inextensional theory. The comparison
is made here with the results given by Johnson and
Reissner,? by Lin and Lee® for paraboloidal shells of
revolution, and by Saunders and Paslay'* for a sphere-
cone combination. Since in the inextensional theory
complete boundary conditions are not ﬁ)rescribed, we
compare here the results of Refs. 12-14 with those of
this paper where the respective shells are assumed to be
closed at one end while the other edge is free.

C. Paraboloidal Shell of Revolution

We consider a paraboloidal shell whose properties
are given by
Ry=2p/cos’p; r=2p tang, (30)
where p denotes the focal distance. Let L=2p. The
natural frequencies for various ratios of #/2p and two
values of the limiting angle ¢, are calculated for n=2
and »=0.3 by the general program and shown in Fig. 5.
In Ref. 12, a formula for the frequency of a shallow

11 A, Kalnins, Proc. U. S. Natl. Congr. Appl. Mech., 4th, pp-

225-233 (1963).

(1‘9’51‘;%. W. Johnson and E. Reissner, J. Math. Phys. 34, 335-346
13Y. K. Lin and F. A. Lee, J. Appl. Mech. 27, 743-744 (1960).
14 H. Saunders and P. R. Paslay, J. Acoust. Soc. Am. 31, 579-

583 (1959).

A. KALNINS

SPHERE /—— CONE —
02
/
[+] S —
N
0.02 \\ |
0.04 ~ -
—
&4+=0.0380 | -
0.06 L L _
] 588 . 1524
S inches
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sional mode (%=3) of sphere—cone shell combination.

first-degree paraboloidal shell is found in the form

Qu=wn2p/c= (h/2)n[ (—1)/3(14»)/sin’o, (31)
where ¢, should be sufficiently small so that the condi-
tion of shallowness is satisfied. The corresponding rela-
tion for ¢o=30° and #»=2 given in Ref. 13 is

Q.=[44/3(1—2*) /2, (32)
where A=18. The natural frequencies given by these
two formulas are also included in Fig. 5.

D. Sphere-Cone Shell Combination

An interesting application of the general program of
this paper can be made to the free-vibration problem
of a sphere-cone shell combination considered by means
of the inextensional theory in Ref. 14. The properties of
the spherical part are given by h=h, cosp, Ry=R,
r=R sing, while those of the conical part are z=bhs,,
Ry= o, $=175.5°, r=>bcosp, where the distance b is
measured from the projected apex of the conical shell.

It should be noted that at the shell joint (at ¢=75.5°
of the spherical shell) the thickness # and Ry are dis-
continuous. It can be seen from Eq. (1), together with
the coefficients 4 (x), that if the fundamental variables
on an edge ¢=const are continuous, then their deriva-
tives may not be continuous at points where the shell
has discontinuities in its properties. For example, the
first equation of Eq. (1) reads dw,/ds= —Bsn+%4n/Rs.
Obviously, if the rotation of the normal B84, and the
tangential displacement %, are continuous but Rj is
discontinuous, then the derivative of w, cannot be con-
tinuous. This conclusion in no way contradicts physical
reasoning, and it follows directly from the mathematical
formulation of the theory of shells.
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For the particular sphere-cone combination con-
sidered in Ref. 14, we let #;,=0.5 in., 2;=0.045 in.,
v=0.3, R=446 in., and calculate the lowest natural
frequency for n=3. The result obtained from the
general program of this paper is 1= w;1R/c=0.0381. The
corresponding value, given in Ref. 14 and obtained by
means of the inextensional theory, is 2;=0.042. The
discrepancy in the predicted frequency may be due to
the fact that, as pointed out in Ref. 14, in the inexten-
sional theory not all fundamental variables can be
made continuous at the shell joint. To illustrate the
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type of the mode of free vibration, which is possible
at this frequency, the mode shapes obtained by the
present method are given in Fig. 6. The absence of
nodes indicates that this is indeed the inextensional
mode.
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Holographic strain analysis

C.H.F. Velzel

Holography has attracted wide general interest because of its ability to create ‘three-
dimensional images’ which are so ‘real’ that they can be viewed from various directions
Jjust like the actual object; holography differs from the stereoscopic viewing of two
images, by giving a true parallax. Holography is based on the fact that a light wave
scattered by an object can be completely recorded in a hologram (e.g. on a photographic
plate) and exactly re-created later. As a result, it is possible to allow a light wave to
interfere with a second light wave that is produced at some other time. This leads.to one
of the most important applications of holography, the interferometric measurement of
small displacements or strains. Measurement of displacements in the direction of the
observer is the most obvious application. Displacements perpendicular to this direction
can, however, also be measured. One method of doing this has been devised by the author.
Both types of measurement are discussed here, preceded by an introduction to holography

53

and followed by some examples.

When a smooth surface is covered by a thin trans-
parent film not quite uniform in thickness, a pattern of
interference fringes can be seen if the surface is
illuminated by monochromatic light. The variations in
thickness of the film can be read off directly from the
pattern. The fringe pattern is produced by the inter-
ference of light rays reflected at the object-film inter-
face and at the outer surface of the film.

An object that has been given a small deformation
(e.g. as a result of heating or mechanical stress) is in
a certain sense analogous to an object coated with a
film, as discussed above. Here again we have two
surfacesclosetogether but now separated in time. There
is now, however, no question of interference; the light
rays reflected from the deformed and the undeformed
surface are not simultaneously present.

To measure deformations by means of conventional
interferometry, the incident light is split into two
coherent beams. One is reflected by the deformed
object whilst the other is reflected by a replica of the
undeformed object or other optical reference surface
(e.g. a flat); interference takes place when the two
beams are brought together again. Both the reference
surface and its positioning must be exact to within a
fraction of a wavelength. This method is practicable
only when the deformed object has a smooth surface.

Holography presents an elegant solution to this
problem. In holography a light beam can be ‘stored’ in
a hologram and regenerated later. In this way inter-
ference is possible between non-simultaneous light

Dr C. H. F. Velzel is with Philips Research Laboratories, Eind-
hoven.

beams, so that deformations of an object can be meas-
ured in the same way as film thickness. The hologram
provides in effect an exact and easily positioned replica
of the surface. A strain measurement can now be made
as follows. A hologram of a beam scattered by the
undeformed object is made first; the wave field
reconstructed from this hologram is then allowed to
interfere with the beam scattered by the deformed
object.

This article is concerned with the relationship be-
tween the deformation of an object and the resulting
interference pattern. Particular attention will be given
to the conditions that must be fulfilled to obtain high-
contrast interference fringes and to the derivation of
the deformation from the fringe pattern. Finally, a
number of practical applications will be described.

Since it is an essential feature of the method a short
explanation of holography will be given first.

Holography

When light waves forming a stationary wave field
fall on a photographic plate, the intensity distribution
of the field is recorded as a blackening of the photo-
graphic plate. In holography both the local amplitudes
and phases of the wave field are recorded on the plate
by allowing a coherent reference wave to fall on the
plate as well as the original light. The resultant pattern
of blackening on the plate, the hologram, can be used
at any later time to produce a wave field having exactly
the same amplitudes and phases in the plane of the
hologram as the original field. In accordance with
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Huygens’s principle the original field in the space
behind the hologram has then also been exactly recon-
structed.

Fig. 1 illustrates schematically how holography
works. To make the hologram, coherent light from a
laser L is split into two beams, a reference beam 4 and
a beam incident on the object V. Part of the light
scattered from the object, the ‘object” beam’ B is

allowed to interfere with A. The resulting interferogram -

is recorded on a photographic plate and this is the
hologram H. It is assumed for simplicity that 4 is a
plane wave. If B were also a perfectly plane beam, H
would consist of exactly parallel interference fringes.
Because B is not a plane wave the blackening of A is
modulated in a manner which depends on the local
amplitudes and phases of B (see fig. 2).

To reconstruct the original field (fig. 15), the holo-
gramis illuminated with the same reference beam A.
Diffracted beams appear behind H, one of zero order
(G1) and two of the first order (G2, G3). Because the
interference pattern on H is not spatially exactly
periodic, these beams exhibit local variations in
amplitude and phase. In particular — and this will ap-
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Fig. 1. Holographic recording (a) and reconstruction (b) of a
light beam scattered by an object. L laser. To make the hologram,
the laser beam A is divided into two beams by means of a beam
splitter. The hologram is recorded on a photographic plate (H);
it is the interferogram arising from the interference between the
unmodified laser beam (the reference beam A) and the beam B
scattered by the object V. If the same laser beam is allowed to fall
on the hologram after development of the plate, then one of the
diffracted beams (G?2) is identical to the object beam B, and an
observer O sees a virtual image. V' of the object V. The diffracted
beam G3 forms a real image V “ which is reversed and usually
distorted. The ‘efficiency’ of-the reconstruction (power of G2
divided by that of A4) is often very small because light is absorbed
by H and also because most of the transmitted lightresidesin the
zero-order beam G).
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pear presently — the variations in G2 are exactly the
same as-those in B so that Gq is a faithful copy of B.
The observer O in fig. 1b thus ‘sees’ the object ¥ once
more; a virtual image V' is formed of V. The beam G3
forms a real but reversed and distorted image V" of V.

To obtain the above results the apparatus must
strictly fulfil certain conditions. Firstly, the coherence
of the light must be sufficient for a hologram to be
formed. To achieve sufficient coherence the optical
path between light source and hologram via the
reference beam is made as nearly equal as possible to
that via the object beam — in fact more mirrors than
shown in fig.la are used — and a laser is used as the
light source. In addition the apparatus must be rigid
and unaffected by vibration: while the plate is being
exposed to form the hologram, the interference fringes
must remain stationary, i.e. all relative movements
must be limited to less than a quarter of the wave-
length of the light used. Finally, the photographic
plate must have a high resolution: the spacing between
the interference fringes is usually not much greater
than a wavelength and it is necessary to record varia-
tions of detail in this fine pattern.

It is not essential for the reference beam to be a plane
wave, nor is it essential for the beam to be normally
incident on the hologram. However, it is essential that
the reference beam used in reconstruction is exactly the
same as the beam used to form the hologram and of
the same orientation with respect to the hologram.

Holography was invented by D. Gabor (1) in 1947, long before
the existence of lasers. In Gabor’s first holographic experiments
the object was small and transparent and situated on the axis
between the source and the hologram. The light passing round
the object formed the reference wave. The difference in optical
path length between rays in the reference wave and those
scattcred by the object were then so small that the coherence of
the ‘non-coherent’ sources which Gabor had perforce to use was
sufficient to produce a hologram carrying interference fringes.
This geometry, which corresponds to an angle of zero between
the beams A4 and Bin fig. 1, had the disadvantage that the virtual
image could not be observed without unwanted effects due to
the light from G1 and Gs. Holography grew to fruition only after
the advent of the laser. The laser is a source of coherentlight, i.e.
the light emitted has a long coherence length so that interference
can be obtained even when the optical paths -differ considerably
in length. Holographic images of opaque and large objects can
therefore be made. In addition, the reconstructed wave can easily
be kept separate from the other beams emerging behind the
hologram [2),

Relation between object beam, hologram and recon-
structed beam

By making use of Huygens’s principle, from which
the structure of the object-beam field B in fig. 1 is deter-
mined by its amplitudes and phases in the plane of the
hologram H, it will now be shown that H does indeed
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Fig. 2. Three enlargements of a part of a hologram. Magmﬁcauons (left to right): about 40 x,
180 x and 700 x. As the right-hand photograph shows, the blackening forms a sinusoidal
grating modulated in phase and amplitude; the spacing of the fringes, which can also be faintly
distinguished in the central photograph, is 2 um. The essential information is registered pri-
marily in the phase modulation (the curvature of the fringes). The speckle pattern, which can
also be seen in the following photographs, is not characteristic of the object, nor of the holo-
gram. but of the use of light of high coherence. It is a kind of random distribution of diffraction
discs. The discs increase in size as the angle subtended by the source at a point in the hologram

decreases.

contain the necessary information concerning B and
that G2 is a faithful copy of B. We take a coordinate
system x,y,z in which z = 0 is the plane of the holo-
gram. We assume that the reference beam A4 is a plane
wave propagating along the z-axis. This wave is de-
scribed as a function of time and place by:

us = aexp j(wt — kz), (1)

where u, is the local instantaneous complex amplitude,
w is the angular frequency of the wave and k its wave
number, i.e. 2z divided by the wavelength A. The phase
¢a of the wave for t = 0, z = 0 and the peak amplitude
ap are combined in the ‘complex amplitude’ a:

a == ap exp —jda. (2)

Suppose that the object beam B propagates in the x,z-
plane at an angle § to the z-axis. If this was a plane
wave, we could express it as:

up = bo exp j(wt — kxsin 8 — kzcos B — év), (3)

a wave whose wave vector has components k sin 8 in
the x-direction and k cos f in the z-direction. The
complex amplitude b of this wave in the plane z = O is
a function of x:

b = by exp — j(kx sin 8 + ¢v).

When B is not exactly a plane wave, but very nearly
— as will be the case if the angle subtended by the
object at the hologram is not too large — it can still be
represented by (3) although b¢ and ¢p are now weakly

dependent on x, y and z (the derivatives of bo and ¢y
with respect to x, y and z must be small compared with
k sin B). According to our assumptions, the detailed
structure of the wave field B is entirely determined by
the angle 8 and the functions bo(x,y) and én(x,y) in the
plane of the hologram z = 0.

While the plate is being exposed to form the holo-
gram the total complex amplitude at every point x,y
of the hologram is equal to a + b. The intensity is
therefore given by:

I(x,y) = |a + b|2 = ao® + by? + a*b + ab*.  (4)

If the photographic plate is exposed for a time ¢ and
developed, we get a hologram of transmittance z(x,y)
which is assumed here to be a linear function of /. In
practice this can only be approximately true. Fig. 3
shows qualitatively how 7 in general depends on the
exposure H (= It). Only in a limited region near the
point of inflexion Hg,7o is the curve approximately
straight. To keep within this region as far as possible
the average intensity bo? of the object wave is made
much smaller than the intensity ao? of the reference
wave and a2t is made approximately equal to Ho. In
this linear approximation we have:

T = 10 — T1bo? — T1(@*b + ab*) (5a)
= 19 — T1b02 — 271a0b¢ cOs {kx sin 8 + ¢p — $a}. (5b)
(11 D. Gabor, Nature 161, 777, 1948, and Proc. Roy. Soc. A 197,

454, 1949.

2] E. N. Leith and J. Upatnieks, J. Opt. Soc. Amer.:
1962; 83, 1377, 1963; 54, 1295, 1964.

52, 1123,
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If the small term 71502 is neglected, this shows that the
variations in the phase ¢y(x,y) and the amplitude
bo(x,y) of the object wave are contained in the holo-
gram in the form of variations in the phase and am-
plitude of the modulation of the transmittance.

e aia

% Hy

—_—H

Fig. 3. Transmittance T of a photographic plate as a function of
the exposure H. The exposure is the product of the intensity of
the light and its duration. It is preferable to work only on the
linear part of the curve, near the point of inflexion (Ho,70).

In the reconstruction of the original wave field, the
hologram is illuminated by the reference beam A.
Behind the hologram we then get a wave of complex
amplitude za. Using (5a) we find:

Ta = (to — T1bo2)a — 11a0%b — T1a2%b*. (6)

The wave behind the hologram is thus a superposition
of three waves with the complex amplitudes

g1 = (to — 11bo¥a,

g2 = —T11a0%b,

g3 = —T11a%b*.
These are the three waves of fig. 16. The wave G1 of
complex amplitude g; has the same phase as the ref-
erence beam A in the plane of the hologram and is
therefore propagated in the same direction (the z-
direction). The factor (ro—t1b¢%) implies that Gi
exhibits small variations in amplitude in the plane of
the hologram so that the beam behind the hologram
diverges somewhat.

The wave G2 of complex amplitude g2 is identical,
apart from the constant factor —z1a¢2, to the object
beam B. This is the result we sought.

Finally there is the wave G3 of complex amplitude g3.
The argument of g3 is kxsin f + ¢ — 2¢a. The wave
G3 is thus propagated in the x,z-plane at an angle —f
to the z-axis. More generally — even if 4 and G, are
not propagated along the z-axis — G3 and G: are
symmetrical with respect to G1. Thus if £ is made large
enough to separate Gz from Gy, then G is certainly
separated from Gs.
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The treatment given above refers to an absorption
hologram: the transmittance (5) is real and the wave
field behind the hologram differs only in amplitude and
not in phase from the wave field incident on the holo-
gram. In general, however, the transmittance is a
complex quantity, so that the hologram changes the
wave in both amplitude and phase. If the phase only
is changed, we have a phase hologram. A phase holo-
gram can be made by ‘bleaching’ away the blackening
of a holographic pattern by rehalogenization [3]. The
blackening vanishes but the places that were black
remain slightly thicker; at these places the reference
wave undergoes a larger phase change than in the non-
thickened surroundings. A phase hologram has the
advantage, often important in practice, that it trans-
mits more power.

Three points will now be briefly discussed: the nature of the
image formed by Gs3, the nonlinearity of the transmittance char-
acteristic and the efficiency of the hologram.

When we omit the constant factor —T1a?2, the complex ampli-
tude of the wave Gs is b*. For brevity we write kx sin 8 + ¢ép
as 9, a function of x, y and z. We now restrict ourselves to the
plane of the hologram and its close neighbourhood. Because y
does not vary rapidly with z we can put y equal to its value p(x,y)
in the plane of the hologram. Again omitting the constant factor
—11a2, the waves G2 (or B) and G3 are expressed respectively by:

bo exp j(wt — kz cos B — ),
bo exp j(wt— kz cos B + y)-
The wavefronts — surfaces of constant phase — are thus given
by the equations
kzcos B = —yp(x,y) + C for Gzand B,
kzcos B = +y(x,y) + C for Gs.
It follows that the wavefronts of G3 are the mirror images of those
of G2 with respect to the plane z = 0 ( fig. 4); the amplitudes at
corresponding points are equal. Taking into account also the
direction of propagation of the light rays, it can be seen from
fig. 4 that rays in Gz which diverge from (for example) the virtual
image point P’ correspond to rays in Gs which converge towards
the symmetry point P”. The virtual image ¥’ thus corresponds to
the real image V “. The latter is reversed: if the point 0’ lies
infront of P’ for the observer O, then the corresponding point Q”
lies behind the point P * for the observer O’. An essential assump-
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Fig. 4. Close to the hologram, the wavefronts in the beams B
(or Gg) and Gg of fig. 1 are mirror images of each other with
respect to the plane of the hologram. Rays in G2 diverging from
the points P* and Q’ correspond to rays in Gz which converge
to the corresponding points P” and Q “; the virtual image V*
thus corresponds to the real image V",
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tion in the foregoing is that the factor —t1a? is constant. This is
the case only if the reference beam A is propagated along the
z-axis. If A4 falls obliquely on the hologram, the image formed by
G3 is distorted.

Taking into account the nonlinearity of the transmittance, i.e.
the terms of higher order in the expansion of T in powers of Ho
(see fig. 3), then T is not given by the expression of eq. (5b), but
by a polynomial with terms of the form

bom+2n cos m(kx sin B + ¢v— a),

. where m and n are integers. On reconstruction, thc main term
(m =1, n = 0) discussed earlier gives the beams G2 and G3 in
which Gz reproduces B exactly. When the term withm = 1,n = 1
does not vanish, the reproduction is no longer perfect: the image
has less contrast. The terms with m > 1 lead to diffracted beams
of higher order which waste light. In order to limit these un-
desirable effects, bp must be made much smaller than ao, as
mentioned earlier.

Finally, the ‘efficiency’ of a hologram, which is in practice of
great importance. This is the ratio of the power of the recon-
structed wave Gz to that of the reference wave during reconstruc-
tion. The transmittance of the absorption hologram of a plane
‘object wave’, registered on a photographic plate with a linear
characteristic, is (see eq. 5b):

T =10+ 7 cos (k'x + ¢),

where 7o, T°, k" and ¢ are constants. Since T has everywhere a
value between 0 and 1, the modulation depth T’ cannot exceced 4.
In this notation the amplitude of the reconstructed wave is 47°ao;
the efficiency is here, therefore, 47'2 and this is at most equal to
1/16 or about 6 %. In practice the hologram is not uniformly
exposed and, as discussed earlier, ' is preferably taken much
smaller than %; the efficiency is therefore generally much smaller,
usually less than 29%. A phase hologram transmits more energy
and may have an efficiency of 10 to 15 %. So farit has been tacitly
assumed that the emulsion coating of the photographic plate that
carries the hologram is very thin. In holograms which are thick
compared with the wavelength, the efficiency can exceed 509 as
a result of multiple reflections. Holograms with a thickness of
several hundred microns have been made both in photographic
emulsions and in crystalline materials such as LiNbO3 and
KBr 4],

Strain measurement by holography

There are two ways in which the ‘interference of
non-simultaneous beams of light’ can be brought about
in practice. In one method a hologram is made before
the object is deformed. After development the plate is
accurately replaced in its original position in the other-
wise unchanged arrangement. The object is then
deformed and viewed through the hologram. The
viewer now sees both the reconstructed image of the
undeformed object and the object itself in its deformed
state, illuminated by the source. With this method the
interference fringes and hence the deformation of the
surface can be viewed as they occur. This is called the
method of time-dependent interference [5). In the other
method two holograms are recorded on one photo-
graphic plate: one of the object wave before deforma-
tion and -one after deformation. Since the only term
relevant to the analysis of the holographic process is
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linear in the complex amplitude of the object wave
(see eqgs. S and 6), holograms can indeed be superposed
and the reconstruction gives a superposition of the two
object waves. The resulting interference pattern con-
tains the required information. In this article the dis-
cussion will be limited to this double-exposure
method (6],

If we are concerned with two essentially stationary
states of an object such as a bar whose deformation is
to be measured, there is no limitation to the choice of
exposure time. The plate is exposed before the object
is deformed and again afterwards. In other cases, how-
ever, e.g. in the analysis of fracture, the situations of
interest are not stationary. The exposure then has to
be so short that the deformation occurring during the
exposure is small compared with the wavelength of the
light. This condition can often be met by using a
pulsed laser (7). When the deformation is not only fast
but also periodic, as in a vibrating loudspeaker, a
stroboscopic illumination can be used [8]. Finally, in-
formation about vibrating objects can be obtained
from a hologram recorded with an exposure much
longer than the period of vibration — time-averaged
holograms [9],

The most important problem in holographic strain
analysis is the interpretation of the interference pattern
and we shall concern ourselves mainly with this prob-
lem. From what has been said above it will be clear
that the holographic process itself can be disregarded
here, and the object can be considered to be simultane-
ously present in its two states, deformed and unde-
formed.

It is assumed that the microstructure of the surface
of the object does not change during the deformation.
The same point then scatters the light in the same way
before and after the deformation — the only difference
is that due to the actual deformation. It is also assumed
that the object scatters the light diffusely, i.e. that the
scattered light has lost most of its spatial coherence.
Interference then occurs only between rays coming
from the same point in the two situations; other inter-
ferences do not contribute effectively to the interference
pattern.

31 R. J. Collier, C. B. Burckhardt and L. H. Lin, Optical holo-
graphy, Academic Press, New York 1971, p. 289.

(41 G. Kalman, in: Applications of lasers to photography and
information handling (ed. R. D. Murray), Soc. Phot. Sci. and
Engrs., 1968, p. 99.

[5] K. A. Stetson and R. L. Powell, J. Opt. Soc. Amer. 55, 1694,
1965.

61 R. J. Collier, E. T. Doherty and K. S. Pennington, Appl.
Phys. Lett. 7, 223, 1965. :

(71 R.E.Brooks,L.O. Heflinger, R. F.Wuerkerand R. A.Briones,
Appl. Phys. Lett. 7, 92, 1965.

8] P. Shajenko and C. D. Johnson, Appl. Phys. Lett. 13, 44,

. 1968. i

9 R.L.Powelland K. A. Stetson, J. Opt. Soc. Amer. 55, 1593,

1965.
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Determination of the longitudinal component of the
displacement vector

For an opaque object the light source and the observ-
er must be situated on the same side of the object. In
this configuration the change in optical path from
source to observer via the object has its origin in the
displacement component in the mean direction between
source and observer. The information in the inter-
ference pattern thus concerns this ‘longitudinal com-
ponent’.

Fig. 5 shows how the difference in optical path
depends on the displacement. If, as in fig. 5a, the
source S and the observer O both have the same direc-
tion when viewed from an object point P and if P is also
displaced in this same direction (to Q), the optical path
difference Al = SPO — SQO is equal to twice the
length of the displacement vector PQ. If PS and PO
are at an-angle y to each other (fig. 5b) and the dis-
placement vector e = PQ lies along the bisector of the
angle SPO, the path difference is modified by a factor
cos 3x:

Al = 2e cos 1. ™

Fig. 5S¢, finally, shows a displacement vector of
arbitrary direction, obtained by locating Q at some
arbitrary point in the plane perpendicular to the bi-
sector (fig. 5b). The optical path SQO does not change
since SQ becomes just as much shorter as QO becomes
longer. Equation (7) therefore remains valid if we
replace e by its component e; along the bisector (the
longitudinal component):

Al = 2e) cos 1. ®)

In fig. 5 it is assumed that we have a point light source
and a point observer and that they are both situated at
infinity, i.e. that e is very much smaller than PS and
PO.

The observer looking towards P sees light or dark-
ness according to whether A/is an even or odd multiple
of 2/2. He thus sees light and dark fringes of equal
longitudinal displacement; the interference pattern is
a ‘contour map’ of the deformation. Examples of such
patterns are shownin figs. 6 and 7. In a bright fringe of
the pth order (Al = p4), we have

®

If 4 is not too large, cos 4y is approximately unity; the
difference in height of the surface between adjacent
fringes is then approximately half a wavelength.

The fact that the observing instrument (the eye, a
camera, etc.) has a pupil of finite and not zero diameter
gives a certain practical limitation to this method.
If the opening is so large that the optical path differen-
ces Al for different parts of the pupil differ by more than

e1 = pA/2cos 4.

Philipstech. Rev. 35, No. 2/3

P e Q - —»S
a - —e
b
<

Fig. 5. Calculation of the change A/ in the optical path length
between source S and observer O via a point in the surface of
the object when this point is displaced from P to Q.

a) PS, PO and the displacement vector e = PQ have the same
direction; in this case, Al = 2e.

b) PS and PO are inclined at an angle y to each other and the
displacement vector e is directed along the bisector of . In this
case, Al = PA 4+ PB = 2ecos{y.

c) When Q is displaced in the plane SPO perpendicular to the
bisector PQ’ of the angle SPO, the optical path length SQO does
not change. The difference QC between SQ° and SQ is equal to
the difference QD between QO and QO’, so that SQO remains
equal to SQ’0. This is still true if Q is displaced perpendicular
to the plane SPO; SQ and QO do not then change at all. The
difference Al in optical path length therefore has the same value
as in () except that e must be replaced by ey = PQ’, the longi-
tudinal component of e.

a half-wavelength, the interference fringes fade. From
fig. 8 it can be seen that this is not the case provided
the angle o subtended by the pupil at the object is less
than 1/2e; where e; is the component of the displace-
ment perpendicular to PO. A more detailed calcula-
tion (101 shows that if this condition is fulfilled, the
interference fringes have a contrast of more than 70 %;.
Conversely, for a given aperture, the lateral displace-
ment may not exceed the value A/2«. Suppose, for
example, a helium-neon laser is used in a conventional
arrangement and the interference pattern is observed
with the naked eye; 2 is then 0.6 um and o is of the
order of 0.01. The maximum permissible lateral dis-
placement is then about 30 um.

The maximum permissible value of the lateral dis-
placement, A/2¢, is simply the resolving power of the
observing instrument. The foregoing is another way of
saying that two points separated by a distance of more
than A/2a are separately imaged and that the rays
coming from them no longer interfere with each other.
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Fig. 6. Above: Example of an interference pattern on the image of
a bar deformed under load (obtained from a double hologram).
Below: Displacement y as a function of position z along the bar,
derived from the interference pattern. Each fringe represents an
increment of the displacement of 2/2.

Fig. 7. Interference pattern on the double-hologram image of a
bar with a weak spot. The bar is made up of two parts held
together by adhesive, the plane of the jointlying in the plane of
the paper. The irregularity in the interference fringes indicates a
weak spot in the joint.

Fig. 8. Relation between the size of the pupil of the observer and
the maximum permissible lateral displacement. The observed
interference pattern tends to vanish if the pupil becomes so large
that the differences in optical path lengths SPO" — SQO" and
SPO " — SQO ” differ by more than /2. This difference is equal
to (PA" + PB) — (PA” + PB) = PA" — PA” = aei, where
et = QA is the lateral component of e and « is the angle sub-
tended at P by the pupil. For a high-contrast interference pattern,
a must therefore be less than 1/2et.
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Determination of the transverse components of the
displacement vector

In the method discussed above only the longitudinal
component of the displacement vector is measured. In
principle the complete displacement vector can be
derived in this way by viewing the object from three
directions or by making three exposures with different
directions of the illuminating beam [11), These proce-
dures do, however, involve rather a lot of work with
regard to both the experimental arrangement and the
interpretation of the interferogram.

We have developed a method whereby the trans-
verse components of the displacement can be meas-
ured directly. We look at the hologram from a point in
a real holographic image. The required real image
could be made by placing a positive lens in the beam
G2 in fig. 1b, but we wish to suggest here, with the help
of fig. 9, a still simpler method. The hologram is record-
ed in the conventional way, using a plane wave as the
reference beam (fig. 9a). In the convential method of
reconstruction (fig. 96) a good virtual image V'’ and a
distorted real image V’' would be obtained. Now how-
ever the wave field is reconstructed with a reference
beam A’ identical to 4 as regards wavefronts but
propagated in the opposite direction. In other words,
the back of the hologram is illuminated with a plane
wave from the opposite direction (fig. 9¢c). A wave Gy’
is then generated at the front of the hologram, and this
wave is in all respects a faithful copy of B except that
it also propagates in the opposite direction. This can be
easily checked from the mathematical description of
holographic principles given on page 55/56; it is only
necessary to replace m by —m in the description of the
reconstruction. All waves are then propagated ‘back-
wards’, but otherwise the situation is unchanged. In
this way a faithful, undistorted real image V: of the
object V is obtained. In fig. 9d, finally, it is shown
schematically how this can best be done in practice; in
the configuration of fig. 95 with a fixed reference beam
and the conventional viewing direction, the hologram
is simply rotated through 180° about an axis perpen-
dicular to the paper. The situation so obtained is that
of fig. 9¢, assuming that 4 is indeed a plane wave.

A diaphragm is now placed with its centre at a point
P inthe real image and the hologram is viewed through
it with the naked eye or a camera focused on infinity.
Each point on the retina or on the photographic plate
now corresponds to a viewing direction. If the holo-
gram is a double hologram of a deformed object an
interference pattern is again seen. In fig. 10, PQ is the
displacement vector of a point in the real image. Since

[10) C, H. F. Velzel, J. Opt. Soc. Amer. 60, 419, 1970.
111 J, W. C. Gates, Optics Technol. 1, 247, 1969.
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G2’ is a faithful copy of B, apart from its direction of
propagation, there is a fixed relation between the
phases of the light at P and at Q which depends only
on the positions of P and Q with respect to the light
source. The interference pattern owes its existence to
the fact that the optical path length PQ’' = e cos y
in fig. 10 varies with the viewing direction PR. To put
it more precisely: in the direction of a point R on the
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Fig. 9. Determination of the transverse component of the dis-
placement vector. a) Recording the hologram. b) Usual configura-
tion for reconstruction. ¢) Formation of a real image V: by
reversal of the direction of propagation. The reference beam A4’
has the same wave fronts as A but is propagated in the opposite
direction. If, for example. A were divergent, then A’ would have
to be convergent. d) Practical version of the geometry of (c).
Starting from the configuration (b), the hologram is rotated by
exactly 180°;thebeam 4 must be a planewave. The configuration
(d) is then equivalent to (c). The transverse component of the
displacement at a point P on the object can then be derived from
the interference pattern observed on the hologram through a dia-
phragm about the point P in the real image.
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Fig. 10. Calculation of difference in optical path length from the
interference pattern seen (fig. 9¢) on the hologram H via the dia-
phragm D. P is theinitial point and Q the final point of the dis-
placement vector e at a certain location in the real image. An
interference pattern is observed on the hologram because the
difference PQ’ in optical path length depends on the viewing
direction PR.

hologram the field appears light or dark according to
whether

Al = Alp+- ecos y

is an even or an odd multiple of 4/2, where Al is a
constant independent of the viewing direction. Dark or
light fringes in the field are lines of constant A/, and
thus also lines of constant y; they are therefore inter-
sections of the hologram with cones of apex P and
axis e. The fringes are thus symmetrical with respect to
the projection of e on the hologram. We now let R
move along this symmetry axis and define its position
by means of y¢, the angle between PR and PN, the
perpendicular to the hologram through P. We then
have y = ¢ — yo, where ¢ is the angle between e and
PN. Differentiating A/ with respect to yo gives:

dAl/dye = e sin (e — yo).

For yo = 0, this is simply equal to the magnitude e; of
the transverse component of e:

(dAl/dyo)yo=o = esin € = e4.

The optical path difference A/ between adjacent dark
or light fringes increases with A. Therefore the mag-
nitude e; of the transverse component is given by

er = A/Ayo, (11)

where Ayg is the angle subtended at P by two adjacent
fringes near N. The transverse component is directed
towards the centre of curvature of the fringes.

Fig. 1] shows an example of the measurement of a
transverse displacement. Fig. 11a is the reconstruction
via a double hologram of a bar clamped at the top and
acted on at its lower end by a force directed to the right.
Fig. 116 shows some photographs of what a viewer
would see on the hologram through a diaphragm of
0.5 mm diameter in the real image. The positions in
fig. 115 correspond to those in fig. 11a.
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Fig. 11. Measurement of the lateral displacement of a bar sub-
jected to a lateral force. a) Double-holographic image of the bar.
The bar is clamped at the upper end and the force acts from left
to right on the lower end. ) Interference patterns observed
through a diaphragm of 0.5 mm diameter in the real image. The
positions of the fields in (b) correspond to those in (a). The rather
coarse speckle pattern in (b) is due to the small aperture (see
caption to fig. 2).

To obtain a clearly defined interference pattern, a
large number of point pairs such as PQ must interfere
in the same way. The diaphragm should therefore be
much larger than the transverse component of the
displacement. For small deformations like those we
are concerned with in this article this condition is
always fulfilled. On the other hand, if the deformation
varies over the object, the diaphragm may not be too
large: the variation of the transverse component over
the diaphragm must be so small that the optical path
difference for a given viewing direction varies less than
A/2. If this latter criterion requires the diaphragm to be
so small that, with an absorption hologram, the inter-
ference field is too faint, an improvement may be
obtained by using a bleached hologram. A greater
improvement can be obtained if, when recording the
hologram, only those parts of the object are illuminated
where it is desired to measure the displacement vector.

A disadvantage of the method described here is that
a photograph must be made of the interference field on
the plane of the hologram for each location where the
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displacement vector is to be determined. This dis-
advantage can be partly overcome by making the
exposures for different locations simultaneously (see
fig. 13, lower photograph).

Methods also exist for projecting contours of equal
transverse displacement [12]; these will not be discussed
here.

Comparison of the two methods

The two methods discussed above — determination
of the longitudinal component of the displacement and
determination of the transverse component — will now
be briefly compared with the aid of fig. 9. In both cases
a double hologram is made in the configuration of
fig. 9a. To determine the longitudinal component ey, the
virtual image is viewed through the hologram in the
configuration of fig. 9b; from the interference pattern
seen, the distribution of e; over the surface can be
derived. The transverse component must be deter-
mined point by point; the magnitude (et) and direc-
tion are obtained from the interference pattern that a
viewer sees in the configuration of fig. 94 (hologram
rotated 180°) when he views the hologram through a
diaphragm at the relevant part of the real iamge.

The two procedures have the following characteristic
differences. In the first, only the variations of e; over
the surface are determined; e; changes from fringe to
fringe by an amount /2 (taking the factor cos 1y in
(9) equal to 1 for simplicity). Only if we know, for
example, that e; must be zero at a certain location, can
the absolute values e; be determined on the rest of the
surface. In the other method, however, the actual values
et are determined.

The conditions under which a high-contrast inter-
ference pattern is obtained are of a different nature in
the two methods. In the determination of e, ey must be
less than A/2a. In the determination of e, the difference
in optical path lengths and hence 2e; must not vary
more than A/4 over the diaphragm. This means that the
diaphragm in fig. 99 must be smaller than the fringe
spacing on the object in fig. 95.

Finally, the two procedures differ in sensitivity. The
smallest detectable variation in e, is obtained when
(fig. 9b) only two fringes are visible at the object; the
variation is then 1/2. The smallest detectable value of
et occurs when (fig. 9d) only two fringes are visible on
the hologram. This is the case when, in eq. (11), Ayg is
equal to the angle ag subtended by the hologram at the
object. The smallest detectable value of ey is therefore
A/am. In general ag is less than unity, so that e can be
determined with greater sensitivity than ey.

[12]1 K. A. Stetson, Optics Technol. 2, 80, 1970.
J. N. Butters and J. A. Leendertz, J. Physics E (sci. Instr)4
277, 1971.
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When all these conditions are fulfilled, both the
longitudinal and the transverse components — and
hence the complete displacement vector — can be
determined from one double hologram.

Applications

Some applications of the double-hologram technique
of holographic strain analysis will now be given. The
examples may be divided into three areas of applica-
tion: analysis of experimental models as an aid to
design, the determination of material constants and
fault-finding.

Strain analysis as an aid to design

For objects of complicated shape it is difficult to
predict how they will deform under load or local heat-
ing. When the deformation can upset the correct func-
tioning of the object, holographic strain analysis can
be useful in analysing the deformation and applying
appropriate corrections.

A casting (fig. 12) used as a mount for the pick-up
tubes and the colour-separation prism in a Philips
colour television camera was examined for thermo-
clastic distortion. In such a camera it is critically
important that the relative positions of the pick-up
tubes and the prism do not change under the condi-
tions in a studio where strong lighting may cause local
heating. Fig. 13 shows some of the results of this inves-
tigation. A double hologram was made of the casting.
During the first exposure the casting was uniformly at
room temperature; during the second exposure the
casting was heated underneath to 3 °C above room
temperature. Fig. 13 (above) shows a reconstruction of
the casting by means of this hologram with interference
fringes which show the variations in the longitudinal
displacement. In order to determine the lateral dis-
placement, a real image was formed in the manner in-
dicated in fig. 9d. A screen with a large number of
holes of diameter 0.1 mm was then set up in the plane
of this image. All the interference patterns visible
through these holes were then simultaneously regis-
tered on a single photographic plate behind the screen.
Interferograms recorded in this way are shown in
fig. 13 (below); they correspond to a part of the upper
photograph.

For a complete analysis of the deformation, double
holograms of the casting must be made from various
directions, but the discussion here will be limited to a
few remarks relating to fig. 13, and in particular to the
left-hand and right-hand parts of the wall of the cylin-
der pointed upwards and outwards towards the
observer. The lower left-hand part is displaced lon-
gitudinally more than the lower right-hand part (in the
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Fig. 12. Mount for pick-up tubes and colour-separation prismin
a Philips television camera. The pick-up tubes are clamped in the
cylindrical openings directed obliquely forwards, upwards and
backwards in the photograph. The casting is shown with its
flange on the table. This flange is often subject to local heating
from the powerfull lights in the studio.

upper photograph there are more fringes on the lower
left half than on the lower right half); the reverse holds
for the upper half. The fringes indicate locally the axes
about which the surface (apart from a parallel displace-
ment) tilts. On the right the surface tilts about a hori-
zontal axis, on the left it tilts about an oblique axis.
This indicates some distortion of the casting. This is
also indicated by the lower photograph; the left-hand
part of the cylinder wall has undergone a nearly hori-
zontal displacement while in the right-hand part the
transverse displacement is in an oblique direction.

Determination of material constants

Expansion coefficients and elastic constants of a
material can be determined by measuring the deforma-
tion taking place as a result of heating or mechanical
stress 131, A simple example of this was given in
fig. 6: the determination of the elastic modulus E from
the bending of a bar. The bar is clamped at one end
(the left in fig. 6) and at the other end subjected to a
force F which in fig. 6 is perpendicular to the paper. In
fig. 6 (below) the deflection y is plotted as a function of
the distance z to the clamping point. No account is
taken of the angle y between the direction of the illu-
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Fig. 13. Strain analysis of the casting shown in fig. 12. After the
first exposure of the (double) hologram. the flange (pointing
downwards in the photographs) was locally heated three degrees
above the ambient; the second exposure was then made. Ahove:
determination of the longitudinal strain. Below: Determination
of the transverse strain. For the lower photograph, the plate was
set up close behind a screen with a large number of 0.1-mm holes
and situated in the plane of the real image. The interference
patterns in the hole of the cylinder have no significance (to
prevent undesirable reflections this hole was filled with black

paper).

[13] See the article by K. A. Stetson referred to in [12].
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minating beam and the viewing direction, which was
about 20°, so that the difference in height between
adjacent fringes is not exactly 4/2 but 2/(2cos }y) =
A/(2cos 10°) = 4/1.97 (see eq. 9). The theoretical rela-
tion between y and z is:

y == Fz3/4El, (12)

where [/ is the second moment of area of the cross-
section of the bar. The value of E is found by fitting
(12) to the experimental points. It has to be remem-
bered that the zero point of ) in fig. 6 is not known
because the fringes near the clamp cannot be seen
properly. Not only can E be determined very ac-
curately, because of the large number of fringes, but
there is also a good check on whether the use of eq. (12)
is legitimate. For example if the bar were not uniform
in thickness or did not have everywhere the same
modulus of elasticity, this would be evident from
the impossibility of fitting (12) to the experimental
points.

Detection of defects

A weak spot in a workpiece usually deforms exces-
sively or non-uniformly when under load. In a carefully
chosen double hologram this is immediately evident.
A simple example was shown earlier in fig. 7 where a
weak spot in a bar consisting of two parts held together
by adhesive shows up in the interference pattern.
Fig. 14 shows the result of a check on the adhesion of
the screen of a cathode-ray tube to the rest of the tube.
At the upper edge the adhesion is good, on the lower
edge there is a weak spot.

7

Fig. 14. Tests on a cathode-ray tube. The screen of the tube is
cemented to the body of the tube. A double-holographic image
can show whether a good adhesion has been achieved. The tube
shown here has a weak spot on the lower edge. The mechanical
stress consists of a small underpressure in the tube.
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This method is widely used for the detection of all
sorts of faults, e.g. in car tyres, in plastic bottles, in re-
inforced materials used in the aircraft industry, etc.[14],
The great advantage of holography for such purposes
is its non-destructive nature. The stress that has to be
applied to the object to detect faults is generally so
small that the deformation occurring is completely
reversible and very much smaller than any stress ap-
plied in normal use.

(141 See for example H. Rottenkolber, Z. Werkstatt u. Betrieb
103, 189 and 245, 1970.
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Summary: In holography the amplitude and phase of laser light
scattered by an object are registered in a-hologram, which is the
photographic record of an interference pattern formed by the
scattered light (the ‘object wave’) and a reference beam from the
same source. When the hologram is illuminated later by the same
reference beam, a number of beams are produced behind the
hologram, one of which is a faithful reconstruction of the object
wave. In holographic strain analysis, in particular the technique
using double exposure, to which the author restricts himself, two
holograms are superimposed on one another on thesame photo-
graphic plate, one before the deformation of the object and one
after. The reconstruction procedure then yields a superposition
of the recorded object waves corresponding to these two states;
the deformation can be derived from the interference between
these two waves. The interference fringes seen on the ‘recon-
structed’ object form a contour map of the deformation. For the
displacement in the source-observer (longitudinal) direction
adjacent fringes represent a difference in strain of 4/2. The trans-
verse displacement is derived from the interference pattern seen
when the hologram is viewed through a diaphragm placed at a
point in a real image of the object. This real image is obtained
after rotating the hologram through 180°. Holographic strain
analysis can be used in the determination of material constants,
in the detection of weak spots and as an aid to design. Some
examples of these applications are given.
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