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PAPERS F. J. M. FRANKORT 

Vibration Patterns and Radiation Behavior of 

LoudspeakerCones* 

F. J. M. FRANKORTt 

Hogere Technische School. Heerlen. The Netherlands 

Many treatments of loudspeakers begin with the comment that the loudspeaker is the 
weakest link in the audio reproduction chain. The complex vibrational behavior of the conical 
loudspeaker diaphral;!m. which noticeably affects the frequency response of the loudspeaker. 
has heen a frequent challenge to mathematical analysis. Only recently. however. with the 
availability of the computer to carry (Jut extensive numerical computations. has it been 
possible to ohtain any detailed picture or the behavior of the loudspeaker cone. The picture 
gives a satisfactory explanation of the irregularities in the behavior of the cone as a radiator. 
which had long been known from acoustic mea�urements. At the same time it has now 
become possihle to indicate the dimensions and material properties that will produce the 
desired frequem:y response. 

INTRODUCTION: The behavior of the conical dia
phragm. a shape that was intuitively chosen for 
loudspeakers right from the beginning. is rather complex. 
The audible sound spectrum contains widely different 
frequencies (about 16 Hz to 20 000 Hz): when alternating 
currents of these frequencies are fed to a single 
loudspeaker. the diaphragm will be caused to vibrate in 
different modes of lower and higher order. It is only at low 
frequencies,that the cone vibrates as a rigid body. It is not 
stifl enough to -withstand the inertial forces that occur at 
higher frequencies: it starts to vibrate in parts and the cone 
is said to "break up." The higher order modes of vibration 
that n<?w appear enable the loudspeaker to fulfill its 
function at higher frequencies and set the air in motion. 

The amount of the air displal.·ement depends to a great 
extent on whether the cone is caused to vibrate at its 
resonant frequencies: hence the marked variation of the 
sound radiation as a function of frequency. As can be seen 
in Fig. I. measurement of the pressure response with a 

• Reprinted with permission from the Philips Technical 
Rn·ieM:. vol. 36. no. I. pp. 1-15 (1976). 

tFormerl) with Philips Research Lahoratories. Eindhoven. 
The Netherlands. 

I An e)(tensive treatment is given in [I]. 

microphone at some distance from the loudspeaker pro
duces a rather irregular curve. 

In the ideal case the sound radiation would· have the 
same amplitude at all frequencies. and the frequency 
response would be linear. Loudspeaker cones that approx
imate to this requirement have hitherto been designed 
mainly on empirical lines. An efficient design procedure 
requires detailed knowledge of the radiation behavior and 
its effect on the properties of the cone material. The 
necessary detailed information can be obtained by setting 
up the differential equations that describe the cone vibra
tions and then. in the absence of an analytical solution. 
solving them numerically for a large number of frequen
cies. This is now possible with the computer. 

In this way frequency and directivity characteristics can 
be calculated. We have made such calculations and found 
that the general shape of the cu.rves agrees well with the 
measured curves. I This agreement largely depends on the 
correct prediction of the various natural frequencies of the 

cone. Once these are known. together with various other 
characteristic frequencies. the shape of the frequency 
response can be broadly predicted. Conversely. in design
ing a loudspeaker cone. it is possible to derive the 
locations of the characteristic frequencies from the shape 

JOURNAL OF THE AUDIO ENGINEERING SOCIETY. SEPTEMBER 1918. VOlUME 28. NUMBl!!R 9 

























PAPERS VIBRATION PATIERNS AND RADIATION BEHAVIOR OF LOUDSPEAKER CONES 

choosing a small apex angle. If a dip in the pressure re

sponse at.l�a is not allowed. Young's modulus of the cone 

material should be chosen such that.f,." is lower than 2 I .. 

6.1 Computer-Aided Design with Visual Display 

It would be ideal if the designer could feed a sketch of 

the desired frequency characteristic into a computer and 
get back a little while later the corresponding dimensions 

and material constants for the cone. This is not feasible. 
however. since not all the curves can be realized in 

practice. Computer-aided design of a loudspeaker cone 
still has to be done the other way round: the designer types 

in some data and the computer calculates the resultant 
frequency characteristic. If it differs from the required 

curve. the designer then changes one or more parameters 

and the computer presents another result. An iterative 
procedure of this type is best carried out at a computer 

terminal with a visual display (Fig. 18). 
Such a procedure requires a great deal of computer time: 

it can take an IBM 370/168 computer as long as an hour to 
calculate a single characteristic. If the procedure is to be 
used frequently. costs can be reduced by storing a number 

of standard characteristics in the computer memory and 

using these as the starting point for each new design. 
These characteristics can be adequately characterized by 

four parameters: the outer radius R". the inner radius Rj• 

the semiapex angle Cl'. and the velocity c of longitudinal 

wave propagation in the cone material. 
Poisson's ratio (of lateral to longitudinal strain) has little 

influence. and is set at Ij, in all cases. The loss factor 
giving the internal damping of the cone material is taken at 
the relatively high value of O. I. and the cone thickness is 
given the empirical value Rn 1800; both values reflect the 

practical measures that need to be taken to avoid a fine 
structure. 

Fig. 18. Computer-aided design of a loudspeaker cone using 
a visual display. 

For R". for example. seven values can be taken [corres

ponding to the commercial diameters of 3. 4. 5. 61,-'2. 8. 
10. and 12 inches. <76.2. 101.6. 127. 153.7.203.2.254. 
and 304.8 mm)]. for Rj three values (for example. 18.35, 

and 50 mm). for Cl' five values (50° to 70° in steps of 5°). 

and for c a single value (2500 m/s). The vibration patterns 
and frequency characteristics of 105 cones now have to be 

calculated and stored. From the stored vibration patterns 

the vit>ration patterns and frequency characteristics for 
other materials can be computed fairly quickly. If we take. 

for example. c = 1500 mls and c = 3500 rnls. we can 

calculate the data for 315 cones and store them in the 
computer memory. 

The designer can call up the characteristics of any one 
of these cones on his visual display. Having done this he 
types in a value for the ratio IIlrlllld of voice-coil mass to 
cone mass. The computer immediately calculates the 

effect of this ratio on the characteristics. which takes very 
little computer time. 

I f the desired characteristic is not sufficiently approxi
mated. the designer can request calculations for inter
mediate values of the four basic variables: the programs 
for this are stored in the computer. The results are stored in 

the memory. so that the range of choices available is 
gradually widened. 

After a trial model has been made in this way, it may be 

found that the characteristics have an undesired fine 
structure. The damping must then be increased or the cone 
thickness reduced: neither of these measures has much 
effect on the general shape of the frequency characteris

tics. provided the ratio 1Il,./mcl and the fundamental reson

ant frequency j" are kept constant. 

The spring constant of the cone suspension and the 
characteristics of the electrodynamic drive can be included 

in the model with very little extra complication. Their 
in fluence can be immediately calculated by the computer 

from relatively simple formulas. In this way a very 

comprehensive loudspeaker design can be produced. 

SUMMARY 

A loudspeaker cone gi ves complex and highly 

frequency-dependent vibration patterns. With a computer 
numerical solutions can be found for the set of simultane
ous differential equations that describe the vibration be
havior of a flexible conical shell. Three frequency regions 
are distinquished: I-Iow frequencies, the cone vibrates 

as a rigid body; II-a ring on the cone gives a special 
resonance, bending waves occur outside this ring; III
high frequencies, the entire cone is covered with bending 
waves. For the frequency characteristics of the pressure 
response and total sound-power response of the cone to 

have the desired shape, it is necessary for the boundaries 
between the regions to be correctly located; this deter

mines the choice of the radii of the outer edge and the 

voice coil, the apex angle, and the material constants of 
the cone. The bending resonances are less pronounced for 
a thinner cone or material with greater damping . For a 

high cut-off' frequency the mass of the voice coil must be 
low compared with that of the cone. Computer-aided 
design is possible by calling up a visual display of 
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On the Calculation of the Axisymmetric Modes and Frequencies of Conical Shells 

JOHN E. GoLDBERG AND JOHN L. BOGDANOFF 
Purdue University, Lafayette,Indiana 

AND 

LEE MARCUS 
Allison Division, General Motors Corporation, Indianapolis, Indiana 

(Received December 1, 1959) 

A numerical method is presented for determining the axisymmetric modes of vibration and natural fre
quencies of thin conical shells such as loudspeaker cones. Assuming the applicability of the classical theory 
of thin shells, the pertinent differential equations are presented in a form which is well-suited to numerical 
integration on an electronic digital computer. The method may be used also to determine the impedance of 
the cone at other than the natural frequencies, and to calculate the mechanical impedance of the assembly 
comprising the cone and the voice coil. Results are shown, by a numerical example, to compare favorably 
with a previously available method based upon the use of power series. 

INTRODUCTION 

T
HE most common type of loudspeaker in general 

use consists essentially of a truncated circular 
conical shell of rather large apical angle, driven by a 
voice coil which is suspended in a magnetic field. The 
voice coil is wound upon a cylindrical tube which, 
together with a flat diaphragm or closure, is attached 
integrally and coaxially to the small end of the trun
cated cone. At the large end, the edge of the cone is 
turned outward to form a flange, usually containing one 
or more concentric corrugations and attached to a 
rigid frame. 

In selecting or designing a loudspeaker of this type, 
information on the natural frequencies and natural 
modes is necessary. The response and mode shape 
assumed by the cone at other frequencies within the 
operating range are also important in the calculation 
of the acoustical impedance of the speaker. Unfortu
nately, simple solutions to the problems of vibrating 
conical shells have not been available, and it has been 
necessary in loudspeaker applications to replace the 
cone by a rigid circular diskl or equivalent piston2 for 
the purpose of calculating the acoustical impedance. 

In the general case of vibration of conical shells, two 
fundamentally different configurations are possible: 
mode shapes having nodal lines coincident with 
generators, and mode shapes having concentric circular 
nodal lines. Combinations of the two are, of course, 
also possible, The radial nodes are associated with 
essentially pure bending and do not require significant 
extension of the median surface. The axisymmetric 
modes, having circular nodal lines, require both bending 
and extension, the latter particularly in the circum
ferential direction. 

1 N. W. McLachlan, Loud Speakers (Oxford University Press, 
London, 1934) p. 8. 

Z I. B. Crandall, Theory of Vibrating Systems and Sound (D. 
Van Nostrand and Company, New York, 1927), pp. 29, 36. See 
also, by L. L. Beranek, Acoustic Measurements (John Wiley and 
Sons, Inc., New York, 1949), p. 22. 

It has been observed3 that the increased rigidity 
obtained at the edge of the cone by bending the edge 
to form a flange which is attached, in turn, to the 
speaker frame suppresses the radial modes. The axi
symmetric modes therefore are particularly important 
in loudspeaker design and selection. 

A solution to the problem of axisymmetric oscillation 
of thin conical shells was obtained by Goldberg" in the 
form of power series involving three parameters 
determined by the geometry of the cone, the mechanical 
properties of the material and the frequency, The 
solution gives the response of the cone to a harmonic 
forcing function of prescribed amplitude and frequency 
applied at one end of the cone, and can be used also 
to determine the natural frequencies since the mechani
cal impedance of a simple cone drops to zero or becomes 
infinite at the natural frequencies, depending upon the 
end constraints. 

The purpose of the present paper is to describe 
a purely numerical method of solution of problems of 
axisymmetric vibration of conical shells and to display 
and discuss some results obtained by this method, 
These results have been obtained on an electronic 
digital computer. 

Equations are presented in a form which is particu
larly convenient for numerical integration. The equa
tions are valid not only for uniform shells but also for 
shells in which the thickness and mechanical properties 
may vary in the direction of the generator. In the form 
given, the equations presuppose that the material is 
isotropic and obeys Hooke's law, and that the other 
assumptions of classical shell theory are not violated. 
Obviously, these restrictions may be relaxed somewhat 
if appropriate modifications are made to the equations. 

3 See reference 1, pp. 307, 308. 
4 John E. Goldberg, "Axisymmetric oscillation of conical shells," 

Proceedings of the IXth International Congress of Applied 
Mechanics, Brussels, 1956. 
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FIG. 1. Median surface of conical shell and generic element· 

EQUATIONS FOR AXISYMMETRIC PROBLEMS 
OF CONICAL SHELLS 

The shell and coordinates are shown in Fig. 1. The 
generic element of the shell and the forces acting upon 
the element are shown in Fig. 2. The lateral boundaries 
of the element lie in meridional planes with an included 
angle dO. The upper and lower boundaries lie on coaxial 
cones which are orthogonal to the median surface of 
the shell. 

By virtue of symmetry about the axis of the cone, the 
internal and external forces and displacements are 
independent of the coordinate 0, and depend only 
upon the coordinate z, measured along the generator 
from the apex of the cone. Because of symmetry, there 
are no shearing forces at the lateral boundaries of the 
element, and there are no tangential shearing forces 
on the upper and lower edges of the element. The 
edges of the element are thus seen to be subjected to 
membrane forces N z and Ne in the direction of the 
generator and in the circumferential direction, bending 
moments Mz and Me in the corresponding directions, 
and normal shears Q at only the upper and lower edges. 
These internal loads are per unit length of edge of 
element. The element is also subjected to distributed 
loadings Y and Z per unit area of the median surface 
applied in the directions of the normal and of the 
generator. The distributed loads may include acoustical 
or aerodynamic loading. 

Consideration of the equilibrium of the element leads 
to the following equation of motion 6: 

a a� 
-(zN z) -Ne+zZ = zph-, 
az d� 

a a2w 
-(zQ)-Ne cota+zY=zph-, 
az . a� 

d 
-(zMz)-Ms-zQ=O, 
az 

(1) 

where v=displacement in the direction of the generator, 

6 Goldberg, Bogdanoff, and Marcus, "Analysis of conical shells 
by electronic com ruter," presented at National Meeting of 
American Society 0 Civil Engineers, Cleveland, Ohio, May, 1959. 

FIG. 2. Element of shell 
showing positive directions of 
applied loads and internal 
forces and moments. la) FORCES 

M'�.' 

� z 8Z 
Ib) MOMENTS 

positive in the direction of positive z, w= displacement 
normal to the surface, positive inward, p=density. 

With the usual assumptions of thin shell theory4·6 
the relations between the internal forces and the 
displacements of the median surface are: 

Eh [av (V w )] 
N.=-- -+J.L ---cota , 

1-J.L2 dZ z z 

Eh (V w av) 
Ne=- --- cota+J.L- , 

1-J.L2 Z z dZ 

( d2W J.L aw) 
Mz=-D -+-- , 

az2 z az 

Me= -D(� 
ow 

+J.L
d2W)

, 
z dZ a z2 

Q=_D
(aaw 

+
� a2w _� aw)

, az3 z dZ2 Z2 dZ 

(2) 

where E= modulus of elasticity, h= thickness, JJ 
=Poisson's ratio, and D= (Eh3)j[12(1-JJ2)]. 

If the distributed loadings and the edge loadings 
fluctuate harmonically with time at a circular fre
quency p, 

Y(z,t)= fez) cospt, 

Z(z,t)=Z(z) cospt, etc. 

(3) 

the solution to Eqs. (1) and (2) may be taken in the form 

v(z,t)= V(z) cospt, 

w(z,t)= W(z) cospt, 

M.(z,t)=M.(z) cospt, 
Me(z,t)=Me(z) cospt, 
N.(z,t)=N.(z) cospt, 

Ne(z,t)=Ne(z) cospt, 

Q(z,t)=Q(z) cospt. 

(4) 
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Substitution of Eqs. (3) and (4) into Eqs . (1) and (2) 
and simple algebraic manipulation yield the following 
system of six first-order differential equations in the 
amplitudes of the displacements and forces: 

dW 
-=S, 
dz 

dS M. I" 
-=---S, 
dz D z 

dM. 1-1"_ 
--= ---M. 
dz z 

dQ Q Eh 
-= ---- cota(V -W cota) 
dz z z 

jJcota_ 
---N.- Y-p'lphW, 

z 

dN. Eh 1-jJ_ 
-=- ( V - Wcota)--N.-Z-p'lphV, 
dz z z 

dV 1-1"2 _ jJ 
-=--N.--(V- W cota). 
dz Eh z 

(5) 

The dependent variable S which appears in the first 
of Eqs. (5) is seen to be simply d1e local amplitude of 
slope in the meridional direction, and is introduced to 
permit (5) to be stated completely as a set of first-order 
differential equations for the purpose of numerical 
integration by a suitable technique. 

For a specified value of the circular frequency p and 
with Y and Z expressed as functions of z or of V and W, 
Eq. (5) may be integrated in a straightforward manner 
by numerical methods, subject to appropriate boundary 
conditions. For example, the boundary equations at 
the outer edge may be formulated in terms of the elastic 
constants of the outer suspension. If the impedance of 
the cone is the major consideration, the boundary 

FIG. 3. Illustrative example. 

conditions at the inner edge may be taken as the 
amplitudes associated with a unit axial displacement 
of the voice coil at the specified frequency. After 
integrating Eq. (5) so that the boundary conditions are 
satisfied, the amplitude of the axial force applied at the 
inner edge may be calculated. If this is done for several 
values of the frequency, a curve of impedance vs 
frequency may be drawn. Subject to the accuracy of 
the numerical methods which have been employed, 
the zeros of this curve are the values of the natural 
frequencies for the condition of a "guided" inner end 
or voice coil-that is, the inner end is free only to move 
axially. The infinities of this curve are the approximate 
values of the natural frequencies for the condition of a 
rigidly constrained or built-in inner end. Furthermore, 
the values of frequency for which the total axial force 
at the inner edge is equal to the corresponding inertia 
force of the voice coil assembly are the natural fre
quencies of the system consisting of conical shell and 
voice coil. If only the natural frequencies and mode 
shapes are being sought, the integration may be started 
directly with the appropriate geometrical or natural 
initial conditions. 

Alternatively, as will be discussed later, one may 
take the determinant of the coefficients of the arbitrary 
constants in the three outer boundary equations as a 
measure of the error of the trial value of the frequency. 
Frequencies for which the value of the determinant 
becomes zero are the approximate natural frequencies 
of the cone. 

NUMERICAL ANALYSIS 

The equations of motion (5) of the differential 
element of the shell constitute a set of six first-order 
linear differential equations of the form 

dYi 6 

-= � aijYj i= 1,2,3, " ', 6, (6) 
dz j-I 

for which, in general, three initial conditions have been 
prescribed. In order to perform the numerical inte
gration, the problem is transformed from a two-point 
boundary value problem to an initial value problem. 
This is accomplished by introducing six linear trans

formations of the form 

where N •. a, M •. a, Q.a essentially are three arbitrary 
and previously uncommitted constants and represent 
the values of N., M., and Q at z=a. By use of Eq. (7) 
along with the appropriate initial conditions, the initial 
values of the new dependent variables become known 
in terms of the arbitrary constants. 

Through the substitution of Eq. (7) into Eq. (6) 
and equating coefficients of the arbitrary constants, 
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three sets of differential equations are formed: 

dai 6 

dz 
L aijlY.j 
i=1 

df3i 6 

dz 
L aijf3j i=1,2,3, " ', 6. 
i=1 

(8) 

d'Yi 6 

dz 
L ail'Yj 
i=1 

The three sets of differential equations (8) are 
integrated numerically by an appropriate technique, 
such as the fourth-order Runge-Kutta method, from 
the inner edge at Z= a to the outer edge at z= b, for 
an assigned value of the frequency, p. 

Substituting the transformation equations (7) into 
the boundary equations at the outer edge and using the 
numerical values of the functions ai, f3i, 'Yi (i= 1, 2, 
. .  " 6) at z= b yields three linear equations in the 
arbitrary constants N •. Il, M •. Il, and <i.Il' 

If one is seeking a natural frequency and has begun 
the integrations for a trial value of the frequency with 
the proper boundary conditions at z= a, the determinant 
of the coefficients of the arbitrary constants in the three 
outer boundary equations becomes a measure of the 
error of the trial value of the frequency. If a correct 
value of p were used, the value of this determinant 
would be zero. Thus, letting E be the value of the 
determinant, a plot of E vs p can be constructed for a 
set of trial values of the frequency. The zeros of this 
curve are the approximate values of the natural 
frequencies. 

'�EfffJ I! 

I! J 4 , 16 
12 
8 

14 ,...-...-.,.....,.....,.... ....... ..,....,... .............. ....,.......,.--, 
II! 0 

w .4 

w -8 
-II! 
-16 

.20 

.1!4 I! 
a b 

Alternatively, as suggested in the previous section, 
if one is seeking a natural frequency and has begun the 
integrations with possible displacements of arbitrary 
magnitude at z= a, but with the axial force undefined, 
the outer boundary equations may be solved for the 
arbitrary constants. These constants are then used to 
determine the forces at the inner edge of the cone. The 
resultant force in the axial direction may be calculated 
and a plot of this resultant force vs frequency may be 
constructed. The zeros of this curve are the natural 
frequencies of the cone when there is no constraint 
against axial displacement at z= a. The infinities of this 
curve are the natural frequencies when the inner edge 
is rigidly constrained against axial displacement, i.e. ,  
is  "built-in" with respect to axial displacement. 

The frequencies of the cone when connected to a 
voice coil or other mass can also be determined from 
the latter curve. If m is the mass of the voice coil and 
the integration is made for an axial displacement of 
unit magnitude, the natural frequencies are those 
frequencies for which the resultant force is equal to 
mp2. 

ILLUSTRATIVE EXAMPLE 

As an illustrative example, the lower axisymmetrical 
natural frequencies and mode shapes of the uniform 
cone shown in Fig. 3 were computed. Calculations for 
this cone previously have been made4 by the series 
method and the results obtained by the two methods 
are compared. 

The fundamental data for this cone are: a= 60°, 
h=0.025 in., E= 150,000 psi, JL=0.25, p= 30X 10-6 slug 
per in.3 The cone was assumed to be free at the outer 
edge and clamped at the inner edge. 
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FIG. 4 (a) Mode shape at fundamental frequency; (b) mode shape at second natural 
frequency; (c) mode shape at third natural frequency. 
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TABLE I. Calculated frequency, cps. 

Mode 

1st 
2nd 
3rd 

Numerical 
method 

1072 
1315 
1611 

Series· 
method 

1071 
1315 
1610 

The values of the three lowest frequencies were 
found essentially by a trial-and-error technique as 
indicated in the previous sections. A trial value of the 
frequency was chosen and the equations integrated 
with initial values of the dependent variables satisfying 
the initial boundary conditions. A measure of the 
amount by which the terminal boundary conditions 
were not satisfied was determined. Successive runs were 
made until a value of the frequency was found which 
substantially satisfied the complete set of boundary 
conditions, i.e., the value of the measure vanished. 

The equations were integrated by the Runge-Kutta 
fourth-order process, using fifteen equal intervals to 
represent the total length of the generator. From the 
results which have been obtained, it is seen that this 

number of divisions gives excellent results for the first 
three frequencies and modes. Useful results doubtless 
would be obtained for the fourth natural frequency and 
fourth mode with the same number of intervals, but 
somewhat more dependable results would be obtained 
for the fourth and higher orders of vibration if a greater 
number of intervals were used. 

The three lowest apparent natural frequencies of 
axisymmetric vibration of the shell shown in Fig. 3 
with the boundary conditions previously mentioned, 
computed by the numerical method using only fifteen 
intervals, are listed in Table I. For comparison, the 
frequencies computed by the series method4 are also 
listed. It is seen that the agreement between the 
calculated frequencies as obtained by the two methods 
is excellent. 

The mode shapes computed by the numerical method 
are shown in Fig. 4. The mode shapes have been normal
ized so that the displacement v at the outer edge in the 
direction of the generator has a unit amplitude. For 
comparison, the amplitudes as computed by the series 
method are also shown on these figures, and it is seen 
that the agreement between the results obtained by the 
two methods is again excellent. 
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Analysis of Shells of Revolution 

Subjected to Symmetrical and 

Nonsymmetrical Loads 1 
The bOlmdnry-vallle problem of deformation of a rokltiollally symmetric shell is stnted in 
terms of a lIew system of first-order ordi1w.ry differelltwl eqt/atiolls which CUll be derived 
for any cons·istent lilU!f1r bendinj/ theory of shells. The depel/dent varwbles contained in 
this system of equations are those qlumtities which appear in the "atl/ral boundary 
conditions 011 a rotationally symmetric edge of a shell of revollltion. A nllmerical 
method of solution tohich combines the adva11tages of both the direct integration and the 
fillite-difference approach is developed for the analysis of rotationally symmetric shells. 
This method elimilwtes the loss of accllracy eneollntered ill the uSl/al application of the 
direct integration approach to the allalysis of shells. For the pllrpose of illustration, 
stresses and displacemellts of a pressl/rized torus are ealct/lated and detailed nt/merical 
reslllts are presel/ted. 

T HE shell of revolution is an important structural 
element, and the literature devoted to its analysis is extensive. 
With regard to axisymmetric deformation, various methods have 
heen employed to obtain solutions of the bending theory of shells 
of revolution by means of the H. Reissner-Meissner equations. 
For example, Naghdi and DeSilva (1)2 use asymptotic integra
tion; Lohmann (2), Miinz (3), Klingbeil (4), employ a direct 
numerical integration approach; Galletly, et al. (5) find the solu-

tion for an ellipsoidal shell of revolution by both the finite-differ
ence and the Runge-Kutta method; and Penny (6), Radkowski, 
et al. (7), and Sepetoeki, et al. (8) utilize the finite-difference 
technique. A number of additional references which deal with 
the solution of the H. Reissner-Meissner equations can be found 
in the papers cited. 

For problems of bending in the absence of axial symmetry, a 
reduction of the governing equations of arbitrary shells of revolu
tion to a system of four second-order differential equations in
volving four unknowns has been carried out by Budiansky and 
Radkowski (9). A method for obtaining the solution of these 
equations is given in (9) which is an extension of that employed 
in (7) and (8). Furthermore, treatments of nonsymmetric 
deformation of shells of revolution are found in papers by Gold
berg and Bogdanoff (10), where a system of firstr<>rder differential 
equations for conical shells is derived, and by Steele (11) and 
Schile (12), where solutions of certain typcs are considered by 
means of asymptotic integration. 

I Notional Science Foundotioll Grnnt. No. 23922, Heport No. 3, 
Jul.l', 1963. 

2 Numbers in brackets desigllote Heference& at end of paper. 
Presented at the Summer Conference of the Applied l\Iechonics 

Di"ision, Boulder, Colo., June 9-11, 1964, of THE AMERIC.\N SOCIET1" 
OF MECHANICAL ENGINEERS. 

Discussion of this poper should he nddres..-ed to the Editorinl De
pnrtment, ASME, United Engineering Center, 345 East 47th Street. 
New York, N. Y. 10017, and will be accepted until October 10, 1964. 
Discussion received after the closing date will be returned. Manu
script received by ASME Applied Mechanics Division, July 31, 1963. 
Paper No. 64-APM-33. Among the papers which employ numerieal analysis, two dif-

---Nomenclature---------------------------
tP, 8, r coordinates of a point of 

shell 
8 = distance measured from 

an arbitrary onglll 
along meridian in 
posit.ive direction of tP 

I</>, 18, n unit vectors tangent to 
coordinate ('un'es (see 
Fig. 1) 

R</>, R8 principal radii of curvlI-
ture of middle surfllcc 

r = distance of II point on 
middle surface from 

E 
I' 
h 
a 

D 
K 

axis of symmetry 
Young's modulus 
Poisson's ratio 
thickness of shell 
coefficient of thermal ex-

pansion 
Ehl/[12(1 - 1'2») 
Ehl(1 - 1'2) 
components of displace-

Journal of Applied Mechanics 

M</>,M8,Ms</> 
Q</>, Q8 

N,Q 
J 
U 
H 
n = 

(3 

ment of middle surface 
angle of rotation of nor

lIlal 
componcnts of mechani

cal surface loads 
components of moment 

of surface loads 
tempernturc increment 

and tempernture re
sultants 

membrane stress result
ants 

moment resultants 
transverse-shear result-

ants 
effective-shear resultants 
l1R</> + sin tPlr 
l/R</> + I' sin tPlr 
l/R</> - sin tPlr 
integer, designating nth 

Fourier component 
length factor 

),. 
111 

/II 

derivative wit.h respect to 
any coordinate 

ordcr of system of equa
tions 

number of segments 
X = independent variable, 

Xi 
y(x) 

A(x) 

8(:r) 
1'(x) 
Z(X) 

c 
I 

either tP or 8 
end point of segment 
(111,1) matrix, fundamen

tal variables 
(111, m) matrix, coeffi

cients of differential 
equations 

( Ill, I) matrix, nonho
mogeneous coefficients 

(111,111) matrix, homogene
ous solutions 

(m, 1) matrix, nonho
mogeneous solutions 

(111, 1) matrix, arbitrary 
constants 

unit matrix 

5 E P TE M B E R I 9 6 4 / 467 



ferent methods of solution of the boundary-value problem of 
deformation of sheIla muat be recognized; i.e., the direct integra
tion [2-5) and the finite difference approach [5-9). While the 
direct integration approach has certain important advantages, it 
alao has a serious disadvantage; i.e., when the length of the shell 
is increased, a lOBS of accuracy invariably reaults. Thia phenome
non was clearly pointed out in [8). The 1088 of accuracy doea not 
reault from accumulative errors in integration, but it is caused by 
the subtraction of almost equal numbers in the procesa of deter
mination of the unknown boundary values. It follows that for 
every set of geometric and material parameters of the shell there 
is a critical length beyond which the solution loses all accuracy. 
The advantage of the finite-difference approach over direct inte
gration is that it can avoid such a loaa of accuracy. It is con
cluded from [8) that if the solution of the system of algebraic 
equations, which reault from the finite-difference equations, is 
obtained by means of Gauaaian elimination, then no loBS of ac
curacy is experienced if the length of the shell is increased. 

This paper is concerned with the general problem of deforma
tion of thin, elastic shells of revolution, symmetrically or non
symmetrically loaded, and with the development of 1\ numerical 
method of its solution, which employs the direct integration tech
nique, but eliminate8 the loBS of accuracy owing to the length of 
the shell. The method developed here is applicable to any two
point boundary-value problem which is governed within an in
terval by a system of m first-order linear ordinary differential 
equations together with m/2 boundary conditions prescribed at 
each end of the interval. It is shown that the boundary-value 
problem of a rotationally symmetric shell can be stated in this 
form for any consistent linear bending theory of shells in terms 
of those quantities which appear in the natural boundary condi
tions on a rotationally symmetric edge. 

The method of this paper offers definite advantages over the 
finite-difference approach. The main advantages are: (a) It 
can be applied conveniently to a large system of firat-order dif
ferential equatiollB, and (b) it permits an automatic selection of 
an optimum step size of integration at each step according to the 
desired accuracy of the solution. The firat point meana that the 
equations of the theory of sheila of revolution, characterized in 
terms of firat-order differential equationa, can be integrated 
directly, and further reduction of the equations to a smaller num
ber of unknowna is not neceaaary. The second point seems to be 
of great importance if a truly general method is desired which is 
expected to hold for arbitrary loads, shell configuratiollB, thick
neaa, and so on. With the finite-difference approach, a meaning
ful a priori estimate of the step size is often difficult, if not im
poaaible, especially when rapid changes and discontinuities in the 
shell parameters are encountered. If a predictor-corrector direct 
integration approach is employed with the method of this paper, 
then the step size can be selected automatically at each step 
which ensurea a prescribed accuracy of the solution and optimum 
efficiency in the calculation. 

The method given in this paper can be divided into two parts: 
(a) Direct integration of m + 1 initial value problems over pre
selected segments of the total interval, and (b) the use of Gaus
sian elimination for the solution of the reaulting system of matrix 
equations. The firat part of this method is a generalization of 
that which is employed over the whole interval in [2-5). Here, 
however, the initial value problems are defined over segments of 
the total interval, the lengths of which are within the range of the 
applicability of the direct integration approach. After the initial 
value problems are integrated over these segments, continuity 
conditiona on all variables are written at the endpoints of the 
segments, and they constitute a simultaneous system of linear 
matrix equations. Thia system of matrix equations is then solved 
directly by means of Gauaaian elimination. The result is that the 
direct integration method is employed and at the same time there 

is no loaa of accuracy because the lengths of the segments are 

selected in such a way that the solutions of the initial value 

problems are kept sufficiently small. A convenient parameter is 
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given from which the appropriate lengths of the segments can be 
estimated easily. 

In the application of this method to the analysis of rotationally 
symmetric shells, the boundary-value problem is formulated in 
terms of firat-order ordinary differential equations. For this 
purpose, starting with the equations of the linear claaaical bend
ing theory of shells in which the thermal effects are included, first 
a system of equations is derived in the form of eight partial dif
ferential equationa involving eight unknowna in such a manner 
that the system of equations contaillB no derivatives of the ma
terial parameters, thickneBS, or principal radii of curvature. The 
absence of the derivatives in the coefficients of the differential 
equations permits the calculation of the coefficients at a point 
without regard to the values of the shell parameters at preceding 
or following points. Then, B88uming separability with respect to 
the independent variables, the desired system of eight firat-order 
ordinary differential equations is obtained which together with 
the boundary conditions on two edges of the shell constitute a 
two-point boundary-value problem. The derived system of 
equationa is applicable to rotationally symmetric shells with 
arbitrary meridional variations (including discontinuities) in 
Young's modulus, PoiBSon's ratio, radii of curvature, thickness, 
and coefficient of thermal expansion. While such a system of 
equations is derived in this paper only for one version of the 
clB88ical theory of shells, it can be derived in the same way for all 
other consistent linear bending theories of shells, including those 
which account for the dynamic effects, transverse shear deforma
tion, nonhomogeneity, and anisotropy. 

Finally, with the use of the method and the equations given in 
this pnper, stresses and displacements are calculated in a thin
walled torus subjected to internal preBSure. The solution shows 
that the meridional membrane streBS is almost identical to that 
predicted by membrane theory, but that the bending stresses 
even for a relatively thin torus may not be negligible. 

Geometry and Basic Equations 
The position of a point of a shell of revolution is given by the 

coordinate8 8, <p, t measured along the triplet of unit vectors Ie, Iq" 
n, respectively, as shown in Fig. 1. The shape of the shell is de

termined by specifying the two principal radii of curvature Rq" 
Re of the middle surface as functions of <p. Instead of Re, it is 

convenient to use the distance r from a point on the middle sur

face to the z-axis; from Fig. 1 it follows that 

r = Re sin <p (1) 

If the generating curve of the middle surface is given by r = r(z). 
then 

x 
Fig. 1 Element of a .hell of revolution 
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[ ( dr )2J'I./ dl, 
H. - - 1 + - -

dz dzl 

[ ( dr )IJ "/. H, - r 1 + dz 
(2) 

The following analysis requires frequent ditlerentiation of r (or R,) 
with respect to 1/>, and it is convenient to express this derivative 
by the Codazzi relation 

(3) 

The displacement components of the middle surface of the shell 
and the rotations of the normal are defined by the expression of 
the displacement vector U of the fonn 

U = (u. + t{3.)t. + (u, + t{3,)t, + ten (4a) 
The shell is subjected to the mechanical load vector p, which is 
measured as force per unit area of the middle surface and written 
as 

p = P.t. + pr/., + pn (4b) 

and the moment vector m, which is measured as moment per unit 
area and given by 

(4e) 
With reference to Fig. 1, equations (4) serve the purpose for 
establishing the positive directions of the components of the 
displacement and mechanical load vectors. 

The temperature distribution in the shell caused by some ther
mal loads is accounted for in the usual manner by means of the 
integrated temperature elTect of the form 

" 

To«f), 8) = * f"2" T(I/>, 8, t)dt 
-"2 

(Sa) 

(5b) 

The derivation of a new set of equations carried out in the next 
section is based on a linear classical theory of shella given by 
Rei88ner (13). When referred to arbitrary shells of revolution, 
the governing system of equations of ( 13) can be written in the 
following form. Equations of equilibrium: 

,v,., + ;
. 

N., .• + 2 cos I/> N,. + Q, sin I/> + rp. = 0 (00) 

'\, 
r r ; ' •. ' + R� N�.� + (N� - N,) cos I/> + R� Q� + rp. = 0 (6b) 

r . r Q.., + R� Q�.� + Q. cos I/> - N, SID I/> - R. N. + rp = 0 (7) 

r 
.11", + R. !If., .• + 2 cos I/> M,. - rQ, + rm, = 0 (Sa) 

r 
ills •. , + R. ],f ••• + (!If. - M,) cos I/> - rQ. + rln. = a (Bb) 

Stress-strain relations: 

N, K(ES + JlE.) - (1 + JI)aKTo 

K(E. + 'YE,) - (1 + JI)aKTo 

Journal 01 Applied Mechanics 

(9a) 

(9b) 

.\",. = .\"0>' = (1 - II)KE,. 
M, D(K, + 11K.) - (1 + ,')aDT, 

M. D(K. + 11K,) - ( 1  + JI)aDT. 

M,. M •• = ( 1  - JI)DK,. 

Strain-displacement relations: 

1 . E, = - (11", + u. cos I/> + W SID 1/» 
r 

1 1 2E,. = - (up., - II, COB 1/» + R- II' .• 
r • 

1 K, = - ({3 ... + (3. cos 1/» r 

1 Kp - R- {3P.P -. 
1 1 

2K,p - - ({3 •. , - (3, COB 1/» + R- P, .• r • 

1 sin I/> 
(3, = - - W., + -- tl, 

r r 

(ge) 

(10a) 

(lab) 

(lOe) 

(l1a) 

(Ub) 

(lle) 

(l2a) 

(I2b) 

(I2e) 

(l3a) 

(l3b) 

The positive directions of the stress resultant9 in the foregoing 
equations are the same as the corresponding stresses on the edge 
of the shell. The definitions of the stress resultants are found in 
( 13). 

The order of the system of equations (6)-(13) is eight with re
spect to 1/>, and consequently it is possible to reduce (6)-(13) to 
eight first-order differential equations which involve eight un
knowns. If the eight unknowns are those quantities which enter 
into the natural boundary conditions at the edge I/> = const, then 
the boundary-value problem of a rotationally symmetric shell can 
be completely st.a.ted in terms of these unknowns. For this 
reason, the eight differential equations, derived in the following 
sections, and the eight unknowns are called the fundamental set 
of equations and the fundamental variables, respectively. 

Derivation 01 Fundamental Set 01 Equations 
According to the classical theory of shells, the quantities which 

appear in the natural boundary conditions on a rotationally sym
metric edge of a shell of revolution include the elTective shear re
sultants Nand Q defined by 

" i\' sin I/> 
M " = J - '. + -- '. r 

1 Q = Q. + - M, •. , r 

(l4a) 

(l4b) 

Thus, the fundamental variables, which are consistent with the 
theory of (13), are the four generalized displacements w, II., U" {3., 
and the four generalized forces Q, N., N, and AI •. 

In the derivation of the fundamental equations, it is more con
venient to employ the distance 8, measured along the meridian of 
the shell, rather than the angular coordinate 1/>. However, after 
the equations are derived, the problem can again be easily 
formulated in terms of I/> by means of the relation 
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1 () () 

R", ()I/> ()s 

As a preliminary step, it is necessary to express N 8, M 8, !of 8", in 
terms of the fundamental variables, From (9a) it follows that 

1 - v' 
N8 = vN", + K -- (w sin I/> + 1I8.B + tI", cos 1/» 

r 

- aK(1 - v2)'1'0 ( 15) 
and from (lOa) that 

I - v2 (I sin I/> 

) 
1If8 = vM", + D -r- - - IV,88 + -- 1/8.8 + (3", cos I/> 

r /' 

- aD(l - v2)TI (16) 
Elimination of U8 •• and IV.8. from equntion (12e) leads to nn e:\'}lres
sion for M 8", in the form 

I-V [ 2eosl/> 111 8", = LD � 2{3",.8 + -r- UJ.8 

where 

+ HU8 COS I/> - JII",.8] + 
LD sin I/> N (17) 
K I' 

L= 
sin2 q, D 

1 + -- 
r2 K 

In the derivation of the four equations of the fundament.nl set 
which involve the derivatives of the stress resultants with respect 
to B, the use of (14) is essential. Elimination of Q8 from (6a) nnd 
(8a) by means of (14a) leads to 

cos I/> 2 cos q, 1 
N .• = H -- M8'" - -- N - - N9.9 r , r 

sin I/> sin I/> - -- !lfu - V8 - -- 7118 (18) 
1" r 

Similarly, elimination of Q8 froll! (7) nnd (Sa) gives 

2 cos q, 1If cos I/> Q 
sin q, N Q .• = ---.- 8 •• 8 - -- + -- 9 

r r r 

1 1 I 
+ - N", - - M8.88 - V - - 1119.8 (19) 

R. I" T 

Solving (6b) from N •.• there results 

I I 
N •.• = -- N.8 + - J1If8 •. 8 

r T 

cos l/> r 1 
+ -- (/\8 - N.) - - Q - V", (20) 

and it follows from (8b) that 

l' R. 

2 cos I/> 
M", .• = - - M8",.8 + -- (!lf8 - !If.) + Q - m", (21) 

T " 

Wherever necessary, N8", and Q", were eliminated with the use of 
(14). 

The fundamental set of equations consists of (18)-(21), where 
Ns, M8, M8. can be replaced directly in terms of the fundamental 
variables by means of (15)-(17), and four additional equations 
involving the derivatives of w, 1[., U8, {3. with respect to 8, which 
are obtained from (13b), (He), (llb), (12b), respectively, Finally, 
the system of eight differential equations that governs the 
deformation of a shell of revolution cnn be e:\'}lressed in terms of 
the eight fundamental variahles and written as 
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pcosl/> v 
11", •• = - Uw - -- u", - - 118.8 

r r 

(22a) 

+ k N", + a(l + v)'1'o (22b) 

118 •• = 
LD sin 21/> 1 ( I,DJ sin 1/» 

- W.8 - - 1 - 11",.8 
Kr3 r Kr 

cos I/> ( LDH sin 1/» 2LD sin I/> R + -- 1 - 119 - ,.,,,, .8 r KI' Kr2 

+ 
2 (I _ LD sin2 q,) /It 

(1 - p)K . Kr2 
(22c) 

I 
+ D M", + a(l + p)TI (22d) 

I-P
[ 

� � Q = -- D( 1 + v) - - 2LD cos2 A.. -
.• r. () (J4 'I' ()O' 

] 

cos I/> [ 1 ()2 
+ ( 1 + v)Kr2 sin'q, 10 + (I - p) -.- - LDJ -(J' 

r- /' () -

+ (1 + v)K sin q,] u. - I - v 
[� LDH cos2 I/> 

1'2 r 

sin I/> ()'] - (I + v) K sin q, + D(1 + p)7 ()(JI 118.8 

LD sin 21/> cus q, 1 
- N.8 - -- Q - p - - 7119,9 

KI" l' /' 

- a( 1 - p') � (K sin q, 7'0 - � DTI.88
) 

(221') 

N", .• = ( 1  - v) 
cos I/> [! LDJ 

()
(J
' 

+ (1 + v)K sin q,] 10 
1'2 l' () 3 

I-V [ �] 
+ -- (1 + p)K cos2 q, - !LDJ2 -(J II", 

1" () 2 
cos I/> 1 - v 

+ (1 - v) -- I!LDJH + (I + p)KI1I8.8 + JLD -- (3",.89 
1" 1'2 

_ � Q _ (1 _ v) cos I/> 
N", _ ! (1 _ LDJ �in 1/» 

N.9 � l' l' � 

cos I/> , 
- V", - a(1 - p')K -- '10 (22f) 

l' 

N = 1 - v [
H LD 

cos' I/> 
•• 1" r 

sin q, ()2

] 
- (l + v)K sin I/> + (1 + v)D 7 ()(J2 W.8 

cos I/> - (I - v) -,- liLDJH + (1 + v)KIlI",.8 
l' 

1 - p[ ( D sin2 1/» ()3] + -- !LDH2 cos' q, - (1 + v) K + --- - 118 � � � 

cos I/> 
[ 

sin I/> ] v 
- D(l - v) -- (1 + v) -- - LII {3",.8 - - _"'",.8 

1" r l' 
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cos tP 
(2 

LDH Sill tP
)

" II sin tP Of 
sin tP 

- -- - iY - --" •• , - Ps - -- IllS r Kr r' r 

1 
( 

sin tP 
) + a(1 - II') -;: KTo., + D -

r
- T1.8 (22g) 

costP 1-11 
JI •.• = -(1 - II)D -,- (1 + II + 2L)w.H + LDJ -,- " •. 81 r r 

cos tP [ sin tP ] 
+ D(1 - II) -;t (1 + II) -

r
-- HL us., 

1 - II [ 

i)' ] 
2LD sin tP 

+D -- (1+II)cos'tP-2L- {3.+Q - N .• " i)fJ' Kr' 

cos tP cos tP 
- (1 - v) -- ill. - III. - a(1 - v')D -- TI (22h) 

r r 

Equations (22), (14), and (15) to (17) determine all unknown 
variables except Q, which can be found from (Sa.) and written in 
the form 

1 2costP Qs = - AJ,.. + Ms •.• + -- Ms. + IllS (23) 
r r 

By calculating Ms •.• from ( 17) and making use of (16), it is pOBBi
ble to expreB8 Qs directly in terms of the fundamental variables. 
This expreBBion is lengthy and cont.ains derivatives with respect to 
a of the shell parameters. Since Qs does not enter into any bound
ary conditions on the edge 8 = const, it is preferable to calculate 
Qs as the last unknown directly from (23). The derivative of Ms. 
can be easily obtained by numerical differentiation. 

The procedure for the derivation of an equivalent set of equa
tions for other linear claaaical theories of isotropic sheIla is identi
cal to that given before. For general anisotropic and/or non
homogeneous shells of revolution with rotationally symmetric 
properties, the fundamental set of equations is derived in t·he 
same way as (22) except that (9) and (10) must be replaced by the 
appropriate streBB-st.rain relations given, for example, by Am
bartsumyan [141. Otherwise, the derivation is straightforward. 
For the improved theory of shells, such as the one given by N aghdi 
[15), in which the effects of transverse-shear deformation are 
accounted for, the following ten fundamental variables are re
quired: w, "., u" {3., {3" Q., N., N </>8, M., M </>8. Since now Q. and 
Q, appear in (13), the elimination of Q, from (Ga), (7), (Ba), is 
done by means of (13a). The required equations for the deriva
tives of the generalized forces are obtained directly from the five 
equations of equilibrium (6), (7), (8). The remaining five equa
tions are derived by following a procedure similar to that of the 
foregoing. 

Fundamental Equations lor Separable Solutions 
For shells of revolution which consist of complete latitude 

circles, the surface loads are periodic with respect to fJ with a 
period of 211', and they can be aBBumed to be of the form 

Ip., P, 111.1 = {P •• , P., m •• 1 {c�
s 

n
fJ

fJ } (24a) 
SID n 

{To, T./ {COS nfJ } {To., TI.I . fJ SID n 

{
sin nfJ } Ips, msl = {ps.,I11 •• 1 fJ cosn 

(24b) 

(24c) 

where the variables with subscripts n depend only on 8, and each 
integral value of n in (24) can be regarded &8 one Fourier com
ponent in a general Fourier aeries expansion of arbitrary periodic 
surface loads. 
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Separable solutions of (22), corresponding to the value of n in 
(24), are then obtained in the form 

T {
cos nfJ } {i' •• , M.A, Q.I . fJ SID n 

Ius, NI = {u,., N.I {
Sin nfJ

fJ
} 

cos n 

(25a.) 

(25b) 

(25c) 

The a-dependent coefficients with subscripts n on the right
hand side of (25) are governed by a system of equations which is 
obtained from (22) and, after using the aBBumption that the shell 
is thin, I can be written as 

II cos tP Vlt 
" ••.• = - Uw. - --- 1/._ =F - us. 

r r 

(26(1) 

1 
+ K N •• + a(1 + v)To• (2Gb) 

D sin 2tP n cos tP liS ••• = ± K w. ± - 1/ •• + -- I/e. r' r r 

2DII sin tP 
{3 

2 N ± Kr' •• + (1 _ v)K 
(2&) 

VII' 1111 sin tP II cos tP IJ 
{3t/HI .• = - --;- 10n T --,- us" - --- /J •• 

r r r 

1 
+ D M •• + a(1 + v)T •• (26d) 

1 - II Q •.• = --,- [(1 + lI)n'D 
,.. 

+ 21l'D cos' tP + (1 + II)Kr' sill' tPlw. 

cos tP [ . n'] 
+ (1 - II) -- (1 + 11)[( SID tP - - DJ II •• � r 

(1 - v)n [ n' 

] 
± (1 + v)D - sin tP + (1 + v)K sin tP liS. 

r' r' 

COB tP cos tP 
+ n'(1  - V)(3 + II)D -- {3 •• - -- Q. + UN •• 

r' r 

nD sin 2tP vn' n =F K N. + - ill •• - P. =F - IllS. r' r' r 

1 
( 

n' 
) - a(1 - v2) -;: K sin tP To. + D -;: ,]',. 

N ••.• = ( 1  - II) 
cos tP 

[(1 + II)K Bill tP - � JD] w. � r 

+ 1 - V 
[(1 + II)K cos' tP + � DJ'] u._ r' 2 

(1 - v')nK COB tP n'(1 - V) 
± 11,. - • DJ{3 •• r' r 

1 COBtP n 
- - Q - (1 - II) -- N .... =F - N R. · r .. '. r

' 

(2&) 

• In the derivation of the system of equations (6)-(13) the assump
tion is made that the shell is sufficiently thin. so that 1 + hr/12R' "" 
1, where R denotes the minimum principal radius of curvature. 
This same approximation is used to obtain the following equations 
from (22). 
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cos cP - p�. - a( 1 - v')K -- To. (26f) 
r 

N •.• = ± 
n(I 

r
� v) [(1 + v)D :: sin cp + (1 + v)K sin cpJ w. 

(1 - v')nl( cos cp n t( 1 _ v')1( ± u�" + UB. rt r' 

1 - v [ sin cp ] 
± nD -- cos cp (1 + v) -- - H {3�n 

r' r 

V 2 cos cp ± n- N�. - --- N. r r 

lin sin cp sin cp 
± --- IIf�. - pB. - -- mBA 

r' r 

1 ( sin cp ) 'f' a(I - v') -;:- KTon + D -
r

- Tin 

coscp I-v 
!If_n .• = n'(1 - v)(3 + v)D -- Wn - n' -- JDII�n 

r
' r' 

1 - v [ sin cp ] 
± nD -r- '- cos cp (1 + v) -r- - H IISn 

(26g) 

1 - v 2nD sin cp 
+ D -- (1 + v) cos' cp + 2n'I{3�. + Q 'f' 

I( 
N" 

r' r' 

cos cp cos cp - (1 - v) -- M�n - m�. - a(I - vt)D -- TI• (26h) 
r r 

The double signs in (26) correspond to the top or bottom trigono
metric function employed in (24) and (25). 

The quantities which are not included in the fundamental 
variables can be expressed by means of separation of variables by 

{ r {cosn8} 
lIB,lIJ"Q�1 = {NB.,M,.,Q�.I . 8 Sin n 

{ r I { {sin n8} 11 ,�, }.f ,�, Q, = N ,�., M B�., QB.I 
8 cos n 

(27a) 

(27b) 

where the 8-dependent coefficients with subscripts n must satisfy 
a set of equations obtained from equations (14)-(17) and (23) in 
the form 

K . NBn = vN�. + (I - v') -, (w. Sin cp + u�. cos cp ± nUB.) 
r 

- a(1 - v')KTo. (28a) 

MB. = vM�. + (1 - v') � 
(
;' W. + (3�. coscp 

sin cp ) 
± n -r- u,. - a(I - v')DTln (28b) 

I-V ( 2n coscp 
M,�. = D 2;- 'f' --

r
-- w. ± 71Jll�n 

) D sin cp + H cos CPUB. 'f' 2n{3�" + - -- N. 
K r 

n 2 cos cp 
QB. = 'f'- }.Is. + MB� •.• + --- !I[B�. + tIlB. 

r r 

sin cp 
NB�. = N. - -- IIf,�. 

r 

n 
Q�. = Q. 'f' - MB�. 

r 
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(28c) 

(28d) 

(2&) 

(28f) 

The double signs again correspond to ·the top or bottom trigo
nometric function employed in (24), (25), and (27). 

The remainder of this paper is concerned with the solution of 
the system of equations (26), subject to the boundary conditions 
on two edges 8 = const. It should be noted that after the expan
sion of the loads in Fourier series, the solution to (26) is obtained 
for each integral value of n separat�ly, and then the solutions are 
superimposed to form a Fourier series expansion for the unknown 
variables. 

Reduction to Initial Value Problems 
This section is concerned with the reduction of a two-point 

boundary-value problem governed by 

dy(x) dx = A(x)y(x) + B(x) (29a) 

to a series of initial-value problems. In (29a), y(x) is an (m, 1) 
matrix which represents m unknown functions; x is the inde
pendent variable; A(x) denotes the (m, m) coefficient matrix; 
and B(x) is the (m, 1) matrix of the nonhomogeneous terms. The 
elements of A(x) and B(x) are given piecewise continuous func
tions of x. The object is to determine y(x) in the interval a � x � 
b subject to m boundary conditions stated in terms of linear 
combinations of y(a) and y(b) in the form 

F.y(a) + F"y(b) = G (29b) 

where F., Fb are (m, m) matrices and G is an (m, 1 )  matrix, which 
are known from the statement of the boundary conditions of the 
problem. It should be clear that the governing system of equa
tions (26) derived in the preceding section is stated in the form of 
(29a), and that the appropriate boundary conditions for a shell of 
revolution can be expressed in the form of (29b). 

Let the complete solution of (29a) be written as 

y(x) = Y(x)C + Z(x) (30) 

where the (111, 1) matrix C represents m arbitrary constants, and 
Y(x) is an (m, m) and Z(x) an (m, 1) matrix which are defined as 
the homogeneous and particular solutions of (29a) in the form 

dY(x) d;- = A(x)Y(x) 

dZ(x) d;- = A(x)Z(x) + B(x) 

The initial conditions for determining Y(x) and Z(x) are 

whcre [ is the unit matrix. 

Yea) = I 

Zeal = 0 

(3Ia ) 

(31b) 

(32a) 

(32b) 

Evaluation of (30) at x = a leads at once, in view of (32a, b), to 
C = yea), and then (30) at x = b can be written as 

y(b) = Y(b)y(c£) + Z(b) (33) 

Together with (29b), equation (33) constitutes a system of 2m 
linear algebraic equations from which the 2m unknowns, yea) 
and y(b), are determined. Once yea) is known, the solution at 
any value of x is obtained from (30) provided that the values of 
y(x) and Z(x) at that particular x are stored. This completes the 
reduction of a two-point boundary-value problem defined by (29) 
to m + 1 initial-value problems given by (31, 32). 

As stated in the introduction, the solution for shells obtained 
by means of this procedure suffers a complete 1088 of accuracy at 
some critical length of the interval. The reason for this phe
nomenon can be seen clearly from (33). When the initial-value 
problems defined by (31, 32) are solved with the use of the equa-
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tions (26) for shells of revolution, it is observed that the element8 
of Y(x) and Z(x) increase in magnitude in such a way that if the 
length is increased by any factor n, then these solutions increase 
in magnitude approximately exponentially with n. 

Consider, for example, the axisymmetric case when the defor
mation in the shell is caused by some prescribed edge conditions at 
x = a, say, by M�(a) = 1 and N�(a) = Q(a) = O. It is reasonable 
to expect that the corresponding solutions at x = b become smaller 
and smaller when the interval (a, b) is increased in length. The 
connection between y(b) and yea) is given by the matrix equation 

(33) with the following magnitudes of the elements: y(b)-small, 
Y(b)-large, y(a)-unity. Clearly, the only way that the matrix 
product of (33) can give small values of y(b) is that a number of 
significant digits of the large values of Y(b) subtract out. When 
the length of the interval is increased, Y(b) increase, while 
y(b) decrease, and invariably all accuracy is lost at some critical 
length because all significant digits of Y(b) in (33) are lost. This 
simple example serves as an illustration for the 1088 of accuracy 
encountered in the analysis of shells if the foregoing reduction 
technique is employed. 

A convenient length factor, defined by 

(3 = l 13(1 - p2»)l/·/(Rh)1/. (34) 

where l is the length of the meridian of the shell and R is a mini
mum radius of curvature, can be used for an approximate esti
mate of the critical length of the shell. If the solutions Y(x) and 
Z(x) are obtained with a six-digit accuracy, then the foregoing 
procedure gives good result8 in the range (3 � 3 - 5. 

However, the 1088 of accuracy of the solution can be avoided and 
shells of revolution with much larger values of fJ can be analyzed 
by means of the direct integration technique if the multisegment 
method given in the next section is employed. 

Multlsegment Method of Integration 
Let the shell be divided into M-segments (denoted by S" where 

i = 1, 2, ... , M) of arbitrary length in each of which fJ � 3. 
Denote the coordinates of the ends of the segment8 by x = Xi, 
where the left-hand edge of the shell is at X = x, and the right
hand edge is at x = XM+h as shown in Fig. 2. In analogy to (30), 
the solution in the total interval x, � x � XM+, now can be written 
as 

(36d) 

Requiring continuity of all elements of y(x) at the points x" 
i = 2, 3, ... , M + 1, the following M-matrix equations are ob
tained from (35): 

(37) 

",,'here i = 1 , 2, ... , M. Equations (37) involve M + 1 unknown 
(m, 1 )  mat·rices: y(x,), i = 1, 2, . . . , !If + 1. However, if the 
quantities prescribed at the edges of the shell are the fundamental 
variables, then the total number of unknowns is reduced by m, be
cause m/2 elements of y(x,) and m/2 elements of Y(XM+') are 
known. The same is true if the boundary conditions are stated 
in terms of linear combinations of the fundamental variables in the 
form of (29b). In this case, y(x,) and y(XM+I) should be premulti
plied by nonsingular (m, m) transformation matrices F, and FM+h 
respectively, so that the elements of the products contain the 
quantities prescribed at each edge. After eliminating y(x,) and 
Y(XM+') from (37) by means of these products, it is concluded 
that (37) will retain its form if, after integration and before sub
stitution into (37), l',(X2) is postmultiplied by F,-', while 

Y M(XM+,) and ZM(XM+,) are premultiplied by FM+I' In the 
following, it will be regarded that this transformation is carried 
out and that y(x,) and y(XM+I) contain among their elements those 
quantities which are prescribed at x = x, and x = XM+h respec
tively. 

Thus for all boundary conditions in the form of (29b), the sys
tem of !If matrix equations (37) involves exactly M times m un
knowns, and formally it can be solved by any method which is 
applicable to a large number of equations. However, the success 
of the procedure given in this paper lies in the application of 
Gaussian elimination directly on the matrix equations (37). 

First a rearrangement of element8 is performed. Since those 
m/2 elements of y(x,) and y(x.If+l) which are known through the 
boundary conditions can be any m/2 of the m-elements, it is 
necessary to rearrange the rows of y(x,) and Y(XM+I) so that the 
known elements are separated from the unknown elements. It is 
assumed here that the first m/2 elements of y(x,), denoted by 
y,(x,), are known and that the last m/2 elements, denoted by 
Y2(X,), are unknown. On the other hand, y,(XM+') are the un
known and Y,(XJI+,) are the known elements of y(x.\f+'). Since 
the order of the variables in the column matrix y(x) is arbitrnry, 
it should be emphasized that this separation of elements does not 
involve any restriction on the boundary conditions, and that any 
natural boundary condition in the form of (29b) can be prescribed 
at each edge. The separation is achieved by a simple rearrange
ment of the columns of Y,(x.) and the rows of Y M(XM+,) and 
ZM(XM+,) after integrating the initial-value problems defined by 
(36) to the ends of the segments S, and SM and multiplying by 
F,-' and FM+, as stated in the foregoing. 

Once it is established which parts of y(x,) and y(x.\f+l) are 
known, the continuity conditions (37) are rewritten as a parti
tioned matrix product of the form 

[����_i:t:')J = [!.!���'-���i�����!:-'!J [����!!J + [��'-�:�!��J 
Y2(Xi+,) Yi'(x,+,):Yi'(x,+,) Y2(X,) Zi'(X'+I) 

(38) 

y(X) = Yi(x)y(x,) + Z,(x) (35) so that each of the equations (37) turns into a pair of equations, 
given by 

where l'i(X) and Z,(x) denote the matrices corresponding to Y(x) 
and Z(x) in each segment S,(Xi � x � X'+I) and are given by 

dY;;X) = A(x) Y,(x) 

Yi(Xi) = I 
dZ�X) 

= A(x)Z,(x) + B(x) 
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(36b) 

(36c) 

Yi'(Xi+,)y,(Xi) + Y/(x,+,)y,(x,) - y,(x'+I) 

Y,2(x'+I)y,(Xi) + Y,'(xl+')Y,(x,) - y,(X.+l) 

-Zi'(X.+,) 

-Zi2(X.+,) 
(39) 

The result is a simultaneous system of 2M linear matrix equa
tions, in which the known coefficients Y.I(x.+,) and Zil(Xi+l) are 
(m/2, m/2) and (m/2, 1) matrices, respectively, and the un
knowns YI(x,) are (m/2, 1) matrices. Since y,(x,) and Yt(XM+l) are 
known, there are exactly 2M unknowns: y,(x,), with i = 2,3, ... , 
!If + 1, and Y2(Xi), with i = 1 ,  2, ... , M. 
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By means of Gaussian eliminatiun, t.he system of equat.iuns (3!J)  
is first. brought to the form 

E, - I 0 0 , 0 
0 (.', - I  0 , 0 , , , 0 0 E, -I , 0 , 
o 0 0 c, i - I  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J 
0 0 0 0 B.II 
0 0 0 0 0 

where t.he dots indicat.e the tr iangu lari7.ed equations (3!J )  wit·h 
i = 3, 4, . . .  , ?If - 1. The ( 11/. /2, rn/2 ) mat.rices E" C, are defined 
by 

and for oj = 2, 3, . . .  , M 

r,�  + }' i '(." -' - '  
( r, 1  + }';'C,_, - ' )E, - '  

The (11/./2, 1 )  matrices A " B,  are given by 

a nd for i = 2, 3, . . .  , ?If - 1 

B ,  

Finally, for t.he Mt.h segment  

(4 Ia )  
(4 Ib )  

(4 Ic )  
(4 Id )  

(4211 ) 
(42b ) 

(42c) 

A ,II - Z.II ' - Y.II'C.II_, - '/3.II _ '  (42e ) 
B.II Y2(X,I/+, ) - Z.1I2 - l'.1I3C.u_, - 'Il.I/ _' 

- ( }'.u' + l'.11 3C,II_, - ' )E.II - ' A ,I1 (42f)  

For brevity, in place of Y/(x,+, ) and Z/(x,+, ), t.he symbols Y/ 
and Z/ have been used. 

By means of (4 1 )  and ( 42 ), t he unknowns of (39) are obta ined by 

y,(XM+') = C.II - '/3,11 

Y2(X.II ) = E.u - ' [ U,(x.II+ ' ) + A M] 

and fur i = 1, 2, . . .  , l'I - 1 

(.'.11-1 - ' [ 1/2(X.I/-'+' ) + B.I[- d 
E'II_' - ' ( II,(X.II_'+I ) + A ,I/-d 

(4311 ) 
( 43b ) 

(43c) 
(43rl) 

It should be noted thut (41 )-(43 ) m ust, be evaluated in  succession,  
because each equation involves the result obtained by t.he preced
ing equation. 

Once all t.he unknowns y(x,) are found, t.he funda mcntal  
variables are determi ned from (35 ) at any value of :t at which the 
solut.ions l',(x ) and Z,(x )  are stured during thc integration of t.he 
init. ial-value problcms of (36) .  The in tegration of (36)  ca n be 
accompl ished by menns of any of the standard direct integra t. iun 
met.hods. 

On t.he basis of t.he system of equat.ions (26)  given in a ll earlier 
sect ion and the met.hod of solution developed in thc last two se('
t.ions, thc aut.hor has prepared a compu ter programl whieh has 
been appl ied to many she l l configurat. iuns having large va lues of {3 
and successfully tested aga inst known results. One example of a 
pressurized torus wit.h {3 = 57 is presented i n  the next sect.ion. 

The program admits arbitrary meridional variations, i ncluding 
discont.inuities, i n  all shell para meters. It also adm i t s  ri ng loads 
in  t.he form of prescribed values of N "', ill"" N, 01' Q at. any value of 

• The program was written a n d  all  calculations were carried 
out by the author on the IB;\I 70!l computer at the Yale Computer 
Center. The direct i n tegrn t.ion of (a6) is performed by means of the 
Adams predictor-correcto r method. which selects an opt.i l l lu l ll step 
size at e" ery step according to a prescribed accuracy. 
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0 Y2(X,) 

1 r A , 0 y,(X2 )  B, 
Y2(X2 )  ,1 . 0 

= ( ,10) 0 Y" "u)
- J l ;� -I  Y2(X.Ir> 

C,II y,(X,II+' ) B.II 

q, on t.he shell .  Snch loads int.roducc discont.i nui ties in the so lu
tion for the corresponding st.ress resultants, and t.hey can be repre
sented at every x, by an (m, 1 )  d iscont.inuit,y mat.rix which is 
simp ly added to the mntrix Z,(.T,+ , ) on t .he right.-hand side of (37) .  
Th is featul'C is of great value if  shell j u i n t s  arc considered . Any 
discont.inuity, either in  geometry or in luads, is easi ly handled by 
requiring that the end point of a segment coincides with thc loc'a
tion of the discontinuity. Since int.egration is restartcd at the 
begi nn ing u£ each segment, the prec ise effect of thc discont.inuit.y is 
obtained. The program outputs all fundamental variables at a 
number of desired points within each segment, and it a lso ('nm
putes t.he values of Vex;)  twice ; once from (43 )  and then fro m 
(35) .  If a certain number of significant figures of these va lues 
mateh, t.hen the continuity conditions are known to be sat.isfied to 
t.he same number of figures. In this way, a convenient erl'Or esti
mate of the solution is obt.ained for every case. 

Example : Pressurized Torus 
In  t h is section the strcsses and d isplacements are determined i n 

I\. complete torus subjected to a constant internal pressure. It. is  
wel l known thut the solution of this problem, when obtained by 
means of thc lineal' mcmbrane theory of shel ls, has a discontinuity 
in the displaccmcnt field. It has been shown by Jordan [ 1 6] and 
by Sandel'S and Liepins [ 1 7 ] that a satis£actory solution with re
gard to the displacement field £01' a sufficiently thin shell can be 
obtaincd if the nonlinear membrane t.heory of shel ls is employed. 
Subsequently, Reissner ( 18) established bounds on certain  
parameters which show when the nonlinear membrane and when 
the l inear bending theory is applicable. It seems worthwhilc tn  
give here the solution for a pressurized torus as  predicted b y  t.he 
l inea l' bending theory. 

The geomctry of the torus is shown in Fig. 3. W ith rcgard to 
t. he quantities employed i n  equat.ions (26) ,  t.llC two nccesaar." 
parameters for a torus are given as 

R", = b 
r = a + b sin q, 

(44« ) 
(44b) 

Because of symmetry with respect to the plane XX, F ig. 3, the 

I 

a ------l 

,,
/ 

/ 

H
I q, = 270° 

x - ---
\ 
\ 

" 
'" "-
'+' " -... 

Fig. 3 Geometry of torus considered In example 
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Table 1 Stre .. es and displacements of a pre .. urlzed torus; pt./EII = 0.002, a/t. = 1 .5, " � 0.3 
trq, .. /E �b X 10' ( trq,l>/E) X 10· (w/b) X 10' 

.,. 
o 
)( 

90 
108 
126 
144 
162 
171  
180 
184 . 5  
189 
193 . 5  
198 
216 
234 
252 
270 

0 . 005 
1 . 601 
1 . 6 13  
1 . 650 
1 . 720 
1 . 832 
1 . 906 
1 . 900 
2 . 042 
2 . 104 
2 . 1 75 
2 . 254 
2 . 642 
3 . 168 
3 . 730 
3 997 

0 . 05 
- 0 . 063 
- 0 . 188 
-0 . 886 
- 1 . 915 
- 0 . 895 

1 . 002 
3 . 089 
3 . 890 
4 . 270 
4 . 178 
3 . 610 

-0. 587 
- 1 . 245 
- 0 . 7 17 
- 0 . 824 

5 r-----r-----.-----.-----� 

4r-----+---�rt-----�----4 
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Fig. .. Meridional bending stre .. trq,l> a t  outer flber versus meridional 
coordinate 4> 

integration of the initial-value problems is carried out from cp = 

90° to cp = 270°, and the boundary conditions at these endpoint8 
are 1Iq, = (3q, = Q = O. For the purpose of comparison with the 
results of ( 16) and ( 1 7) , the load parameter is chosen 118 pb/Eh 
= 0.002 and alb = 1.5. 

The numerical values of the normal displacement, meridional 
membrane streBB fT q,.. = N q,/h, and meridional bending streBB 
fTq,l> = 6Mq,/hl at r = h/2 for a preBBurized torus are shown in 
Table 1 and in Figs. 4 and 5. These results were taken from the 
output of the computer program prepared for an arbitrary shell of 
revolution after prescribing the geometric parameters as given by 
(44). The meridional membrane stress distribution agrees very 
well with that obtained in ( 1 7) by means of the membrane theory 
of shells and it shows only a small variation with h/b. The de
formed shapes of the cross section of the torus shown in Fig. 5 for 
three values of h/b are in qualitative agreement with those given 
in ( 16) and ( 17) , but their quantitative agreement cannot be ex
pected because the values of h/b used in this example are outside 
the range where the bending effects are negligible. This is con
firmed by the examination of the bending stresses shown in Fig. 4.  
The maximum value of  fTq,b occurs at cp = 189°  for h/b = 0.05 and 
at cp = 184.5° for h/b = 0.005, which are also the points of 
maximum normal displacement and curvature as seen in Fig. 5. 
The comparison of the membrane and the maximum bending 
stress at various values of h/b is shown in Table 2. 
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0 . 005 0 . 05 0 . 02 0 . 005 
- 0 . 016 1 . 249 1 . 284 1 . 298 
- 0 . 019 1 . 26 1  1 .  315  1 . 328 
- 0 . 030 1 . 359 1 . 393 1 . 427 
- 0 . 020 1 . 786 1 . 597 1 . 625 
-0 . 9 10 2 . 820 2 . 580 2 . 159 
- 0 . 605 3 . 467 3 . 493 3 . 297 

1 . 482 3 . 994 4 . 334 4 . 815  
1 . 968 4 . 150 4 . 576 5 . 248 
1 . 520 4 . 208 4 . 637 5 . 151  
0 . 530 4 . 156 4 . 509 4 . 693 

-0 . 274 3 . 998 4 . 221  4 . 162 
- 0 . 079 2 . 652 2 . 527 2 . 481  
- 0 . 066 1 . 273 1 . 269 1 . 269 
-0 . 077 0 . 416 0 . 4 17  0 . 414 
- 0 . 081  0 . 1 03 0 . 101 0 . 1 00 

w/b X 10' 

Fig. 5 Normal displacement w versus 4> showing deformed secllon 

Table 2 Maximum meridional bending stress and meridional membrane 
stre .. at 4> = ,,"0 

h/b 0 . 05 0 . 02 0 . 005 
tf>o 189° 1 89 °  184 . 5 °  

( trq,,./E) X loa 2 . 053 2 . 082 2 . 042 
( trq,l>/ E) X loa 0 . 427 0 . 312  0 . 197 

100 ( trq,l>/trq, .. ) 20 . 8  15 . 0  9 . 6  

I t  is of significance to note that even for the thickness ratio 
h/b = 0.005, which for many applications would be regarded as 
small, the maximum bending stress is about 10 percent of the 
membrane stress at the same point. Such effects of bending in a 
torus were previously noted by Clark ( 19) , and they are also in 
agreement with the st.atement made by Goldenveizer [20] that 
when the middle surface touches a closed-plane curve, which in a 
torus corresponds to cp = 180°,  then in the vicinity of this curve 
bending stresses should be expected and the membrane theory is 
not applicable. 

The boundary layer shown in Fig. 4 is also in agreement with 
the conclusions reached in [ 1 8] to the effect that when p. and p 
given by 

p. = [ 12( 1 - JI�)] ';'(b/a)(b/h) 

p = 12(1 - Jl2)(p/E)(b/h)' 
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are large compared to unity, then a boundary layer in the neigh
borhood of q, - 1800 should be anticipated. For the present 
example, p. ranges from 44 to 440 and p from 9 to 874. However, 
since p is the only load parameter of the problem, the solutions 
shown in Figs. 4 and 5 are proportional to p, and the boundary 
layer remains unaffected if p alone is varied. Of course, for very 
large values of p the deformation of the torus may exceed the 
limits of a linear theory which according to [181 restrict p to the 
range p « p.'/'. 
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Holographic strain analysis 

C. H. F. Velzel 

Holography has attracted wide general interest because of its ability to create 'three

dimensional images' which are so 'real' that they can be viewed from various directions 

just like the actual object; holography differs from the stereoscopic viewing of two 

images, by giving a true parallax. Holography is based on the fact that a light wave 

scattered by an object can be completely recorded in a hologram (e.g. on a photographic 

plate) and exactly re-created later. As a result, it is possible to allow a light wave to 

interfere with a second light wave that is produced at some other time. This leads. to one 

of the most important applications of holography, the interferometric measurement of 

small displacements or strains. Measurement of displacements in the direction of the 

observer is the most obvious application. Displacements perpendicular to this direction 

can, however, also be measured. One method of doing this has been devised by the author. 

Both types of measurement are discussed here,preceded by an introduction to holography 

and followed by some examples. 

When a smooth surface is covered by a thin trans

parent film not quite uniform in thickness, a pattern of 

interference
' 

fringes can be seen if the surface is 

illuminated by monochromatic light. The variations in 

thickness of the film can be read off directly from the 

pattern. The fringe pattern is produced by the inter

ference of light rays reflected at the object-film inter

face and at the outer surface of the film. 

An object that has been given a small deformation 

(e.g. as a result of heating or mechanical stress) is in 

a certain sense analogous to an object coated with a 

film, as discussed above. Here again we have two 

surfaces close together but now separated in time. There 

is now, however, no question of interference; the light 

rays reflected from the deformed and the undeformed 

surface are not simultaneously present. 

To measure deformations by means of conventional 

interferometry, the incident light is split into two 

coherent beams. One is reflected by the deformed 

object whilst the other is reflected by a replica of the 

undeformed object or other optical reference surface 

(e.g. a fiat); interference takes place when the two 

beams are brought together again. Both the reference 

surface and its positioning must be exact to within a 

fraction of a wavelength. This method is practicable 

only when the deformed object has a smooth surface. 

Holography presents ail. elegant solution to this 

problem. In holography a light beam can be 'stored' in 

a hologram and regenerated later. In this way inter

ference is possible between non-simultaneous light 

Dr C. H. F. Velzel is with Philips Research Laboratories, Eilld
hoven. 

beams, so that deformations of an object can be meas

ured in the same way as film thickness. The hologram 

provides in effect an exact and easily positioned replica 

of the surface. A strain measurement can now be made 

as follows. A hologram of a beam scattered by the 

undeformed object is made first; the wave field 

reconstructed from this hologram is then allowed to 

interfere with the beam scattered by the deformed 

object. 

This article is concerned with the relationship be

tween the deformation of an object and the resulting 

interference pattern. Particular attention will be given 

to the conditions that must be fulfilled to obtain high

contrast interference fringes and to the derivation of 

the deformation from the fringe pattern. Finally, a 

number of practical applications will be described. 

Since it is an essential feature of the method a short 

explanation of holography will be given first. 

Holography 

When light waves forming a stationary wave field 

fall on a photographic plate, the intensity distribution 

of the field is recorded as a blackening of the photo

graphic plate. In holography both the local amplitudes 

and phases of the wave field are recorded on the plate 

by allowing a coherent reference wave to fall on the 

plate as well as the original light. The resultant pattern 

of blackening on the plate, the hologram, can be used 

at any later time to produce a wave field having exactly 

the same amplitudes and phases in the plane of the 

hologram as the original field. In accordance with 
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Huygens's principle the original field in the space 

behi':Jd the hologram has then also been exactly recon

structed. 

Fig. 1 illustrates schematically how holography 

works. To make the hologram, coherent light from a 

laser L is split into two beams, a reference beam A and 

a beam incidt:nt on the object V. Part of the light 

scattered from the object, the 'object" beam' B is 

allowed to interfere with A. The resulting interferogram . 

is recorded on a photographic plate and this is the 

hologram H. It is assumed for simplicity that A is a 

plane wave. If B were also a perfectly plane beam, H 
would consist of exactly parallel interference fringes. 

Because B is not a plane wave the blackening of H is 

modulated in a ma�ner which depends on the local 

amplitudes and phases of B (see fig. 2). 

To reconstruct the originar field (fig. Ib), the holo

gram is illuminated with the same reference beam A. 
Diffracted beams appear behind H, one of zero order 

(Gl) and two of the first order (G2, G3). Because the 

interference pattern on H is not spatially exactly 

periodic, these beams exhibit local variations in 

amplitude and phase. In particular - and this will ap-

H 

L -A 

Fig. 1� Holographic recording (a) and reconstruction (b) of a 
light beam scattered by an object. L iaser. To m'ake the hologram, 
the laser beam A is divided into two beams by means of a beam 
splitter. The hologram is recorded on a photographic plate (H); 
it is the interferogram arising from the interference between the 
unmodified laser beam (the reference beam A) and the beam B 
scattered by the object V. If the same laser beam is allowed to fall 
on the hologram after development of the plate, then one of the 
diffracted beams (G2) is identical to the object beam B, and an 
observer 0 sees a virtual image. V· of the object V. The diffracted 
beam Gs forms a real image V· which is reversed and usually 
distorted. The 'efficiency' of· the reconstruction (power of G2 
divided by that of A) is often very small because light is absorbed 
by. H and also because most of the transmitted light resides in the 
zero-order beam Gl. 

pear presently - the variations in G2 are exactly the 

�ame as· those in B so that G2 is 'a faithful copy of B. 
The observer 0 in fig. Ib thus 'sees' the object V once 

more; a virtual image V'is formed of V. The beam G3 
forms a real but reversed and distorted image Y" of V. 

To obtain the above results the apparatus must 

strictly fulfil certain conditions. Firstly, the coherence 

of .the light must be sufficient for a hologram to be 

formed. To achieve sufficient coherence the optical 

path between light source and hologram via the 

reference beam is made as nearly equal as possible to 

that via the object beam - in fact more mirrors than 

shown in fig.la are used - and a laser is used as the 

light source. In addition the apparatus must be rigid 

and unaffected by vibration : while the plate is being 

exposed to form the hologram, the interference fringes 

must remain stationary, i.e. all relative movements 

must be limited to less than a quarter of the wave

length of the light used. Finally, the photographic 

plate must have a high resolution: the spacing between 

the interference fringes is usually not much greater 

than a wavelength and it is necessary to record varia

tions of detail in this fine pattern. 

It is not essential for the reference beam to be a plane 

wave, nor is it essential for the beam to be normally 

incident on the hologram. However, it is essential that 

the reference beam used in reconstruction is exactly the 

same as the beam used to form the hologram and of 

the same orientation with respect to the hologram. 

Holography was invented by D. Gabor (1) in 1947, long before 
the existence of lasers. In Gabor's first holographic experiments 
the object was small and transparent and situated on the axis 
between the source and the hologram. The light passing round 
the object formed the reference wave. The difference in optical 
path length between rays in the reference wave and those 
scattered by the object were then so small that the coherence of 
the 'non-coherent' sources which Gabor had perforce to use was 
sufficient to produce a hologram carrying interference fringes. 
This geometry, which corresponds to an angle of zero between 
the beams A and B in fig. I, had the disadvantage that the virtual 
image could not be observed without unwanted effects due to 
the light from Gl and G3. Holography grew to fruition only after 
the advent of the laser. The laser is a source of coherent light, i.e. 
the light emitted has a long coherence length so that interference 
can be obtained even when the optical paths 'differ considerably 
in length. Holographic images of opaque and large objects can 
therefore be made. In addition, the reconstructed wave can easily 
be kept separate from the other beams emerging behind the 
hologram (2). 

Relation between object beam, hologram and recon

structed beam 

By making use of Huygens's principle, from which 

the structure of the object-beam field B in fig. I is deter

mined by its amplitudes and phases in the plane of the 

hologram H, it will now be shown that H does indeed 



Philips tech. Rev. 35, No. 2/3 HOLOGRAPRIC STRAIN ANALYSIS 55 

� 
" .... "'" .: 

Fig. 2. Three enlargements of a part of a hologram. Magnifications (left to right): about 40 x , 
180 x and 700 x. As the right-hand photograph shows, the blackening forms a sinusoidal 
grating modulated in phase and amplitude; the spacing of the fringes, which can also be faintly 
distinguished in the central photograph, is 2 iJ.m. The essential information is registered pri
marily in the phase modulation (the curvature of the fringes). The speckle pattern, which can 
also be seen in the following photographs, is not characteristic of the object, nor of the holo
gram. but of the use of light of high coherence. It is a kind of random distribution of diffraction 
discs. The discs increase in size as the angle subtended by the source at a point in the hologram 
decreases. 

contain the necessary information concerning B and 

that G2 is a faithful copy of B. We take a coordinate 

system x,y,z in which z = 0 is the plane of the holo

gram. We assume that the reference beam A is a plane 

wave propagating along the z-axis. This wave is de

scribed as a function of time and place by: 

UA = a exp j(wl - kz), (I) 

where UA is the local instantaneous complex amplitude, 

w is the angular frequency of the wave and k its wave 

number, i.e. 2n divided by the wavelength A.. The phase 

<Pa of the wave for 1= 0, z = 0 and the peak amplitude 

ao are combined in the 'complex amplitude' a: 

a = ao exp -j<Pa. (2) 

Suppose that the object beam B propagates in the X,z

plane at an angle {J to the z-axis. If this was a plane 

wave, we could express it as: 

UB = bo exp j(wl - kx sin {J - kz cos (J - <Pb), (3) 

a wave whose wave vector has components k sin {J in 

the x-direction and k cos (J in the z-direction. The 

complex amplitude b of this wave in the plane z = 0 is 

a function of x: 

b = bo exp - j(kx sin f3 + <Pb). 

When B is not exactly a plane wave, but very nearly 

- as will be the case if the angle subtended by the 

object at the hologram is not too large - it can still be 
represented by (3) although bo and <Pb are now weakly 

dependent on x, y and z (the derivatives of bo and <Pb 
with respect to x, y and z must be small compared with 

k sin (3). According to our assumptions, the detailed 

structure of the wave field B is entirely determined by 

the angle f3 and the functions bo(x,y) and <Pb(X,y) in the 

plane of the hologram z = O. 
While the plate is being exposed to form the holo

gram the total complex amplitude at every point x,y 

of the hologram is equal to a + b. The intensity is 

therefore given by: 

I(x,y) = la + bl2 = a02 + b02 + a*b + ab*. (4) 

If the photographic plate is exposed for a time I and 

developed, we get a hologram of transmittance T(X,y) 

which is assumed here to be a linear function of /. In 

practice this can only be approximately true. Fig. 3 
shows qualitatively how T in general depends on the 

exposure H ( = II). Only in a limited region near the 

point of inflexion Ho, TO is the curve approximately 

straight. To keep within this region as far as possible 

the average intensity b02 of the object wave is made 

much smaller than the intensity a02 of the reference 

wave and a021 is made approximately equal to Ho. In 

this linear approximation we have: 

T = TO - T1b02 - Tl(a*b + ab*) (5a) 

= TO - Tlb02 - 2Tlaobo cos {kx sin {J + <Pb - <Pa}. (5b) 

(1) D. Gabor, Nature 161, 777, 1948, and Proc. Roy. Soc. A 197, 
454, 1949. 

[2) E. N. Leith and J. Upatnieks, J. Opt. Soc. Amer.: 52, 1123, 
1962; 53, 1377, 1963; 54, 1295, 1964. 
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If the small term t'lb02 is neglected, this shows that the 
variations in the phase CPb(X,Y) and the amplitude 
bo(x,Y) of the object wave are contained in the holo
gram in the form of variations jn the phase and am
plitude of the modulation of the transmittance. 

T 

t 

TOt------� 

Ho -H 

Fig. 3. Transmittance T of a photographic plate as a function of 
the exposure H. The exposure is the product of the intensity of 
the light and its duration. It is preferable to work only on the 
linear part of the curve, near the point of inflexion (Ho,To). 

In the reconstruction of the original wave field, the 
hologram is illuminated by the reference beam A. 
Behind the hologram we then get a wave of complex 
amplitude t'a. Using (Sa) we find: 

t'a = (t'o - t'lb02)a - t'la02b - -cla2b*. (6) 

The wave behind the hologram is thus a superposition 
of three waves with the complex amplitudes 

gl = (t'o - t'lb02)a, 

g2 = -t'la02b, 

g3 = -t'la2b*. 

These are the three waves of fig. lb. The wave Gl of 
complex amplitude gl has the same phase as the ref
erence beam A in the plane of the hologram and is 
therefore propagated in t�e same direction (the z

direction). The factor (t'o - t'lboZ) implies that Gl 

exhibits small variations in amplitude in the plane of 
the hologram so that the beam behind the hologram 
diverges somewhat. 

The wave G2 of complex amplitude gz is identical, 
apart from the constant factor -t'la02, to the object 
beam B. This is the result we sought. 

Finally there is the wave G3 of complex amplitude g3. 

The argument of g3 is kx sin fJ + CPb - 2cpn. The wave 
Ga is thus propagated in the x,z-plane at an angle -fJ 
to the z-axis. More generally - even if A and Gl are 
not propagated along the z-axis - Ga and Gz are 
symmetrical with respect to Gl. Thus if fJ is �ade large 
enough t� sep�rate G2 ,from Gl, then G2 is certainly 
separated from Ga. 

The treatment given above refers to an absorption 

hologram: the transmittance (5) is real and the wave 
field behind the hologram differs only in amplitude and 
not in phase from the wave field incident on the holo
gram. 'In general, however, the transmittance is a 
complex quantity, so that the hologram changes the 
wave in both amplitude and phase. If the phase only 
is changed, we have a phase hologram. A phase holo
gram can be made by 'bleaching' away the blackening 
of a holographic pattern by rehalogenization [a]. The 
blackening vanishes but the places that were black 
remain slightly thicker; at these places the reference 
wave undergoes a larger phase change than in the non
thickened surroundings. A phase hologram has the 
advantage, often important in practice, that it trans
mits more power. 

Three points will now be briefly discussed: the nature of the 

image formed by G3, the nonlinearity of the transmittance char

acteristic and the efficiency of the hologram. 

When we omit the constant factor -Tla2, the complex ampli

tude of the wave G3 is b·. For brevity we write kx sin {J + q,b 
as '11', a function of x, y and z. We now restrict ourselves to the 

plane of the hologram and its close neighbourhood. Because 'II' 
does not vary rapidly with z we can put 'II' equal to its value VJ(x,y} 
in the plane of the hologram. Again omitting the constant factor 

-Tla2, the waves G2 (or B) and G3 are expressed respectively by: 

bo exp j(wt - kz cos {J - VJ}, 

bo exp j(wt - kz cos {J + VJ}. 

The wavefronts - surfaces of constant phase - are thus given 

by the equations 

kz cos fJ = -!P (x,y) + C for G2 and B, 

kz cos fJ = +VI (x,y) + C' for G3. 

lt follows that the wavefronts ofG3 are the mirror images of those 

of G2 with respect to the plane z = 0 (fig. 4); the amplitudes at 

corresponding points are equal. Taking into account also the 

direction of propagation of the light rays, it can be seen from 

fig. 4 that rays in G2 which diverge from (for example) the virtual 

image point p' correspond to rays in G3 which converge towards 

the symmetry point PH. The virtual image V' thus corresponds to 

the real image V'. The latter is reversed: if the point Q' lies 

illfront of p' for the observer 0, then the corresponding point QN 

lies behilld the point P • for the observer 0'. An essential assump-

..... ..... ..... 
/ 

..... "'\ ..... 

..... "'" , . "'"  V '-.;)0// _-----
, /' ---

P,W--J 
AD· 

Fig. 4; Close to the hologram, the wavefronts in the beams B 
(or G2) and G3 of fig. 1 are mirror images of each other with 
respect to the plane of the hologram. Rays in G2 diverging from 
the points p' and Q' correspond to rays in G3 which converge 
to the corresponding points P' and Q.; the virtual image y' 
thus corresponds to the real image Y·. 
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tion in the foregoing is that the factor - 1:102 is constant. This is 
the case only if the reference beam A is propagated along the 
z-axis. If A falls obliquely on the hologram, the image formed by 

G3 is distorted. 

Taking into account the nonlinearity of the transmittance, i.e. 

the terms of higher order in the expansion of 1: in powers of Ho 
(see fig. 3), then 1: is not given by the expression of eq. (5b), but 

by a polynomial with terms of the form 

bom+2n cos I/I(kx sin (J + t/>b - t/>a), 
where III and II are integers. On reconstruction, the main term 

(//I = I, II = 0) discussed earlier gives the beams G2 and G3 in 
which G2 reproduces B exactly. When the term with //I = I, II = I 
does not vanish, the reproduction is no longer perfect: the image 
has less contrast. The terms with //I > I lead to diffracted beams 
of higher order which waste light. In order to limit these un

desirable effects, bo must be made much smaller than Go, as 
mentioned earlier. 

Finally, the 'efficiency' of a hologram, which is in practice of 

great importance. This is the ratio of the power of the recon 
structed wave G2 to that of the reference wave during reconstruc

tion. The transmittance of the absorption hologram of a plGlle 
'object wave', registered on a photographic plate with a linear 
characteristic, is (see eq. Sb): 

1: = 1:0 + 1:
' cos (k'x + t/», 

where 1:0, 1:', k' and t/> are constants. Since 1: has everywhere a 
value between 0 and I, the modulation depth 1:

' cannot exceed t. 

In this notation the amplitude of the reconstructed wave is t1:' Go; 
the efficiency is here, therefore , t1:' 2 and this is at most equal to 
1/16 or about 6%. In practice the hologram is not uniformly 

exposed and, as discussed earlier, 1:
' is preferably taken much 

smaller than t; the efficiency is therefore generally much smaller, 
usually less than 2 %. A phase hologram transmits more energy 

and may have an efficiency of 10 to IS %. So far it has been tacitly 
assumed that the emulsion coating of the photographic plate that 

carries the hologram is very thin. In holograms which are thick 
compared with the wavelength, the efficiency can exceed SO�{ as 
a result of mUltiple reflections. Holograms with a thickness of 
several hundred microns have been made both in photographic 
emulsions and in crystalline materials such as LiNb03 and 

KBrf4). 

Strain measurement by holography 

There are two ways in which the 'interference of 

non-simultaneous beams of light' can be brought about 

in practice. I n one method a hologram is made before 

the object is deformed. After development the plate is 

accurately replaced in its original position in the other

wise unchanged arrangement. The object is then 

deformed and viewed through the hologram. The 

viewer now sees both the reconstructed image of the 

undeformed object and the object itself in its deformed 

state, illuminated by the source. With this method the 

interference fringes and hence the deformation of the 

surface can be viewed as they occur. This is called the 

method of time-dependent intelference [51. In the other 

method two holograms are recorded on one photo

graphic plate: one of the object wave before deforma

tion and one after deformation. Since the only term 

relevant to the analysis of the holographic process is 

linear in the complex amplitude of the object wave 

(see eqs. 5 and 6), holograms can indeed be superposed 

and the reconstruction gives a superposition of the two 

object waves. The resulting interference pattern con

tains the required information. In this article the dis

cussion will be limited to this double-exposure 

method [61. 
If we are concerned with two essentially stationary 

states of an object such as a bar whose deformation is 

to be measured, there is no limitation to the choice of 

exposure time. The plate is exposed before the object 

is deformed and again afterwards. In other cases, how

ever, e.g. in the analysis of fracture, the situations of 

interest are not stationary. The exposure then has to 

be so short that the deformation occurring during the 

exposure is small compared with the wavelength of the 

light. This condition can often be met by using a 

pulsed laser [71. When the deformation is not only fast 

but also periodic, as in a vibrating loudspeaker, a 

stroboscopic illumination can be used [81. Finally, in

formation about vibrating objects can be obtained 

from a hologram recorded with an exposure much 

longer than the period of vibration - time-averaged 

holograms (91. 
The most important problem in holographic strain 

analysis is the interpretation of the interference pattern 

and we shall concern ourselves mainly with this prob

lem. From what has been said above it will be clear 

that the holographic process itself can be disregarded 

here, and the object can be considered to be simultane

ously present in its two states, deformed and unde

formed. 

It is assumed that the microstructure of the surface 

of the object does not change during the deformation. 

The same point then scatters the light in the same way 

before and after the deformation - the only difference 

is that due to the actual deformation. It is also assumed 

that the object scatters the light diffusely, i.e. that the 

scattered light has lost most of its spatial coherence. 

Interference then occurs only between rays coming 

from the same point in the two situations; other inter

ferences do not contribute effectively to the interference 

pattern. 

(3) R. J. Collier, C. B. Burckhardt and L. H. Lin, Optical holo-
graphy, Academic Press, New York 1971, p. 289. 

. 

(4) G. Kalman, in: A'pplications of lasers to photography and 
information handling (ed. R. D. Murray), Soc. Phot. Sci. and 
Engrs., 1968, p. 99. 

[5) K. A. Stetson and R. L. Powell, J. Opt. Soc. Amer. 55,1694, 
1965 . 

[6) R. J. Collier, E. T. Doherty and K. S. Pennington, Appl . 
Phys. Lett. 7, 223, 1965. 

. 

(7) R. E. Brooks, L. O. Heflinger, R. F. Wuerker and R. A. Briones, 
Appl. Phys. Lett. 7, 92, 1965. 

[8) P. Shajenko and C. D. Johnson, Appl. Phys . Lett. 13, 44, 
.1968. . 

(9) R. L. Powell and K. 'A. Stetson, J. Opt. Soc. Amer. 55, 1593, 
1965 . 
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Determination of the longitudinal component of the 

displacement vector g P e. Q .. - -5 
- - 0  

For an opaque object the light source and the observ

er must be situated on the same side of the object. In 

this configuration the change in optical path from 

source to observer via the object has its origin in the 

displacement component in the mean direction between 

source and observer. The information in the inter

ference pattern thus concerns this 'longitudinal com

ponent'. 

Fig. 5 shows how the difference in optical path 

depends on the displacement. If, as in fig. 50, the 

source S and the observer 0 both have the same direc-

tion when viewed from an object point P and if P is also 

displaced in this same direction (to Q), the optical path 

difference fj.[ = SPO - SQO is equal to twice the 

length of the displacement vector PQ. If PS and PO 

are at an' angle X to each other (fig. 5b) and the dis

placement vector e = PQ lies along the bisector of the 

angle sPa, the path difference is modified by a factor 

cos tx: 
tll = 2e cos lx. (7) 

Fig. 5c, finally, shows a displacement vector of 

arbitrary direction, obtained by locating  Q at some 

arbitrary point in the plane perpendicular to the bi

sector (fig. 5b). The optical path SQO does not change 

since SQ becomes just as much shorter as QO becomes 

longer. Equation (7) therefore remains valid if we 

replace e by its component el along the bisector (the 

longitudinal component): 

fj.[ = 2el cos lx. (8) 

In fig. 5 it is assumed that we have a point light source 

and a point observer and that they are both situated at 

infinity, i.e. that e is very much smaller than PS and 

PO. 

The observer looking towards P sees light or dark

ness according to whether 6.1 is an even or odd multiple 

of 1../2. He thus sees light and dark fringes of equal 

longitudinal displacement; the interference pattern is 

a 'contour map' of the deformation. Examples of such 

patterns are shown infigs. 6 and 7. In a bright fringe of 

the p�h order (tll = pA), we have 

el = pA/2cos tX. (9) 

If X is not too large, cos tx is approximately unity; the 

difference in height of the surface between adjacent 

fringes is then approximately half a wavelength. 

The fact that the observing instrument (the eye, a 

camera, etc.) has a pupil offinite and not zero diaJ.l1eter 

gives a certain practical limitation to this method. 

If the opening is so large that the optical path differen

ces fj.[ for different
" 
parts

' 
of the pupil differ by more than 

f P"""==�-

----------= 5 

Fig. 5. Calculation of the change t:./ in the optical path length 
between source S and observer 0 via a point in the surface of 
the object when this point is displaced from P to Q. 
a) PS, PO and the d isplacement vector e = P Q  have the same 
direction; in this case, M = 2e. 
b) PS and PO are inclined at an angle X to each other and the 
d isplacement vector e is directed along the bisector of X. In this 
case, fj./ = PA + PB = 2e cos h. 
e) When Q is displaced in the plane SPO perpendicular to the 
bisector PQ' of the angle SPO, the optical path length S QO does 
not change. The difference QC between S Q' and SQ is equal to 
the difference QD between QO and QO', so that SQO remains 
equal to SQ' O. This is still true if Q is displaced perpendicular 
to the plane SPO; S Q and QO do not then change at all. The 
d ifference t:.1 in optical path length therefore has the same value 
as in (b) except that e must be replaced by el = PQ', the longi
tudinal component of e. 

a half-wavelength, the interference fringes fade. From 

fig. 8 it can be seen that this is not the case provided 

the angle IX subtended by the pupil at the object is less 

than A/2et where et is the component of the displace

ment perpendicular to PO. A more detailed calcula

tion [10] shows that if this condition is fulfilled, the 

interference fringes have a contrast of more than 70 %. 
Conversely, for a given aperture, the lateral displace

ment may not exceed the value A/21X. Suppose, for 

example, a helium-neon laser is used in a conventional 

arrangement and the interference pattern is observed 

with the naked eye; ;. is then 0.6 (.Lm and IX is of the 

order of 0.01. The maximum permissible lateral dis

placement is then about 30 (.Lm. 

The maximum permissible value of the lateral dis

placement, A/21X, is simply the resolving power of the 

observing instrument. The foregoing is another way of 

saying that two points separated by a distance of more 

than A/21X are separately imaged and that the rays 

coming from them no longer interfere with each other. 
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Fig. 6. Above: Example of an interference pattern on the image of 
a bar deformed under load (obtained from a double hologram). 
Below: Displacement y as a function of position z along the bar, 
derived from the interference pattern. Each fringe represents an 
increment of the displacement of }./2. 

Fig. 7. Interference pattern on the double·hologram image of a 
bar with a weak spot. The bar is made up of two parts held 
together by adhesive, the plane of the joint lying in the plane of 
the paper. The irregularity in the interference fringes indicates a 
weak spot in the joint. 

p 

0" 
Fig. 8. Relation between the size of the pupil of the observer and 
the maximum permissible lateral displacement. The observed 
interference pattern tends to vanish if the pupil becomes so large 
that the differences in optical path lengths SPO' - S QO' and 
SPO n - SQO n differ by more than J../2. This difference is equal 
to (PA' + PB) - (PAn + PB) = PA' - PAn = IXet, where 
et = QA is the lateral component of e and IX is the angle sub
tended at P by the pupil. For a high-contrast interference pattern, 
IX must therefore be less than A/2et. 

Determination of the transverse components of the 

displacement vector 

In the method discussed above only the longitudinal 

component of the displacement vector is measured. In 

principle the complete displacement vector can be 

derived in this way by viewing the object from three 

directions or by making three exposures with different 

directions of the illuminating beam [lll. These proce

dures do, however, involve rather a lot of work with 

regard to both the experimental arrangement and the 

interpretation of the interferogram. 

We have developed a method whereby the trans

verse components of the displacement can be meas

ured directly. We look at the hologram from a point in 

a real holographic image. The required real image 

could be made by placing a positive lens in the beam 

G2 in fig. I b, but we wish to suggest here, with the help 

offig. 9, a still simpler method. The hologram is record

ed in the conventional way, using a plane wave as the 

reference beam (fig. 9a). In the convential method of 

reconstruction (fig. 9b) a good virtual image V' and a 
distorted real image V" would be obtained. Now how

ever the wave field is reconstructed with a reference 

beam A' identical to A as regards wavefronts but 

propagated in the opposite direction. In other words, 

the back of the hologram is illuminated with a plane 

wave from the opposite direction (fig. 9c). A wave G2' 
is then generated at the front of the hologram, and this 

wave is in all respects a faithful copy of B except that 

it also propagates in the opposite direction. This can be 

easily checked from the mathematical description of 

holographic principles given on page 55/56; it is only 

necessary to replace (f) by -(J) in the description of the 

reconstruction. All waves are then propagated 'back

wards', but otherwise the situation is unchanged. In 

this way a faithful, undistorted real image Vr of the 

object V is obtained. In fig. 9d, finally, it is shown 

schematically how this can best be done in practice; in 

the configuration of fig. 9b with a fixed reference beam 

and the conventional viewing direction, the hologram 

is simply rotated through 1800 about an axis perpen

dicular to the paper. The situation so obtained is that 

of fig. 9c, assuming that A is indeed a plane wave. 

A diaphragm is now placed with its centre at a point 

P in the real image and the hologram is viewed through 

it with the naked eye or a camera focused on infinity. 

Each point on the retina or on the photographic plate 

now corresponds to a viewing direction. If the holo

gram is a double hologram of a deformed object an 

interference pattern is again seen. Infig. 10, PQ is the 

displacement vector of a point in the real image. Since 

[1OJ C. H. F. Velzel, J. Opt . Soc. Amer. 60, 419,1970. 
[l1J J. W. C. Gates, Optics Techno!. 1, 247, 1969. 



60 C. H. F. VELZEL Philips tech. Rev. 35, No. 2/3 

G2' is a faithful copy of E, apart from its direction of 

propagation, there is a fixed relation between the 

phases of the light at P and at Q which depends only 

on the positions of P and Q with respect to the light 

source. The interference pattern owes its existence to 

the fact that the optical path length PQ' = e cos y 
in fig. IO varies with the viewing direction PRo To put 

it more precisely: in the direction of a point R on the 

0<1 �--
r� 

Gi ---

o 

\ \ 
"'-., \ 

i 

1>0 

Fig. 9. Determination of the transverse component of the dis
placement vector. a) Recording the hologram. b) Usual configura
tion for reconstruction. c) Formation of a real image Vr by 
reversal of the direction of propagation. The reference beam A' 
has the same wave fronts as A but is propagated in the opposite 
direction. If, for example, A were divergent, then A' would have 
to be convergent. d) Practical version of the geometry of (c). 
Starting from the configuration (b), the hologram is rotated by 
exactly 1800; the beam A must be a plane wave. The configuration 
(d) is then equivalent to (c). The transverse component of the 
displacement at a point P on the object can then be derived from 
the interference pattern observed on the hologram through a dia
phragm about the point P in the real image. 

/ 

o H 
Fig. 10. Calculation of difference in optical path length from the 
interference pattern seen (fig. 9c) on the hologram H via the dia
phragm D. P is the initial point and Q the final point of the dis
placement vector e at a certain location in the real image. An 
interference pattern is observed on the hologram because the 
difference PQ' in optical path length depends on the 'viewing 
direction P R. 

hologram the field appears light or dark according to 

whether 

6.1= Mo+ ecosy 

is an even or an odd multiple of Al2, where 6.10 is a 

constant independent of the viewing direction. Dark or 

light fringes in the field are lines of constant 6.1, and 

thus also lines of constant y; they are therefore inter

sections of the hologram with cones of apex P and 

axis e. The fringes are thus symmetrical with respect to 

the projection of e on the hologram. We now let R 
move along this symmetry axis and define its position 

by means of yo, the angle between PR and PN, the 

perpendicular to the hologram through P. We then 

have I' = e - yo, where e is the angle between e and 

PN. Differentiating 6.1 with respect to yo gives: 

dM/dyo = e sin (e - yo). 

For yo = 0, this is simply equal to the magnitude et of 

the transverse component of e: 

(dLlI/dyo)yo=o = e sin e = et. 

The optical path difference M between adjacent dark 

or light fringes increases with A. Therefore the mag

nitude et of the transverse component is given by 

(II) 

where Llyo is the angle subtended at P by two adjacent 

fringes near N. The transverse component is directed 

towards the centre of curvature of the fringes. 

Fig. 11 shows an example of the measurement of a 

transverse displacement. Fig. 110 is the reconstruction 

via a double hologram of a bar clamped at the top and 

acted on at its lower end by a force directed to the right. 

Fig. II b shows some photographs of what a viewer 

would see on the hologram through a diaphragm of 

0.5 mm diameter in the real image. The positions in 

fig. lIb correspond to those in fig. 110. 
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a b 

Fig. 1 1. Measurement of the lateral displacement of a bar sub
jected to a lateral force. a) Double-h olographic image of th e bar. 
The bar is clamped at the upper end and the force acts from left 
to right on the lower end. b) Interference patterns observed 
through a diaphragm of 0.5 mm diameter in the real image. The 
positions of the fields in (b) correspond to those in (a). The rather 
coarse speckle pattern in (b) is due to the small aperture (see 
caption to fig. 2). 

To obtain a clearly defined interference pattern, a 

large number of point pairs such as PQ must interfere 

in the same way. The diaphragm should therefore be 

much larger than the transverse component of the 

displacement. For small deformations like those we 

are concerned with in this article this condition is 

always fulfilled. On the other hand, if the deformation 

varies over the object, the diaphragm may not be too 

large: the variation of the transverse component over 

the diaphragm must be so small that the optical path 

difference for a given viewing direction varies less than 

;';2. If this latter criterion requires the diaphragm to be 

so smalI that, with an absorption hologram, the inter

ference field is too faint, an improvement may be 

obtained by using a bleached hologram. A greater 

improvement can be obtained if, when recording the 

hologram, only those parts of the object are illuminated 

where it is desired to measure the displacement vector. 

A disadvantage of the method described here is that 

a photograph must be made of the interference field on 

the plane of the hologram for each location where the 

displacement vector is to be determined. This dis

advantage can be partly overcome by making the 

exposures for different locations simultaneously (see 

fig. 13, lower photograph). 

Methods also exist for projecting contours of equal 

transverse displacement [12]; these will not be discussed 

here. 

Comparison of the two methods 
The two methods discussed above - determination 

of the longitudinal component of the displacement and 

determination of the transverse component - will now 

be briefly compared with the aid of fig. 9. In both cases 

a double hologram is made in the configuration of 

fig.9a. To determine the longitudinal component el, the 

virtual image is viewed through the hologram in the 

configuration of fig. 9b; from the interference pattern 

seen, the distribution of el over the surface can be 

derived. The transverse component must be deter

mined point by point; the magnitude (et) and direc

tion are obtained from the interference pattern that a 

viewer sees in the configuration of fig. 9d (hologram 

rotated 180°) when he views the hologram through a 

diaphragm at the relevant part of the real iamge. 

The two procedures have the following characteristic 

differences. In the first, only the variations of el over 

the surface are determined; el changes from fringe to 

fringe by an amount ;';2 (taking the factor cos !x in 

(9) equal to I for simplicity). Only if we know, for 

example, that el must be zero at a certain location, can 

the absolute values el be determined on the rest of the 

surface. In the other method, however, the actual values 

et are determined. 

The conditions under which a high-contrast inter

ference pattern is obtained are of a different nature in 

the two methods. In the determination of el, et must be 

less than A.f2rx. In the determination of et, the difference 

in optical path lengths and hence 2el must not vary 

more than A.f4 over the diaphragm. This means that the 

diaphragm in fig. 9d must be smaller than the fringe 

spacing on the object in fig. 9b. 

Finally, the two procedures differ in sensitivity. The 

smallest detectable variation in el is obtained when 

(fig. 9b) only two fringes are visible at the object; the 

variation is then ;';2. The smalIest detectable value of 

et occurs when (fig. 9d) only two fringes are visible on 

the hologram. This is the case when, in eq. (11), Llyo is 

equal to the angle rxH subtended by the hologram at the 

object. The smallest detectable value of et is therefore 

;';rxH. In general rxH is less than unity, so that el can be 

determined with greater sensitivity than et. 
(12] K. A. Stetson, Optics Technol. 2, 80, 1970. 

J. N. Butters and J. A. Leendertz, J. Physics E (sci. Instr.) 4, 
277, 1971. 
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When a l l  these cond it ions a re ful fi l led, both the 

l o ngitudinal  and the transverse com ponents - a n d  

hence t h e  complete d isplacement vector - ca n be 

d eterm i ned from one double h o l ogra m .  

Applications 

Some appl icat ions  of the double-hologram tech n i q u e  

of h o l ograph ic stra i n  analys is  w i l l  now b e  given . T h e  

exam ples may b e  d i v ided i nto t h ree areas of appl ica

t ion : analys is  of experi mental  m odels  as  an aid to  

des ign,  the determ inat ion of m a terial  constants a n d  

fa u l t-finding .  

Strain analysis as an aid to design 
For obj ects of compl icated s h ape it is d i fficu l t  to  

p red ict how they wi l l  deform u n d e r  l oad or l ocal heat

i n g .  When the deformation can u pset the correct fu nc

t i o n i n g  of the  obj ect, h o l ogra p h i c  s tra i n  ana lys is  can 

be u seful i n  a n a l y s i n g  the deformat ion and appl y i n g  

appropriate correct i o n s .  

A cast ing ( fig .  1 2 )  u sed as a m o u n t  for t h e  pick- U p  

t u bes a n d  t h e  colou r-sepa rat ion pr ism i n  a Ph i l i ps 

c o l o u r  telev i s i o n  ca m e ra was exa m i ned fo r thermo

elast ic  d istort i o n .  I n such a ca m e ra i t  is cr it ica l l y  

i m portant  t h a t  t h e  rela t i ve pos i t i o n s  o f  t h e  p ick-Up 

t u bes and the prism d o  not  change u nder the cond i

t i o n s  i n  a s t u d i o  where strong l ig h t i n g  may ca use l ocal  

heat i n g .  Fig. 13 shows some of the resu l ts of th is  i n ves

t igat ion . A d o u b l e  h o l ogra m was made of the cast i n g .  

D u ri n g  the fi rst exposure the cast i n g  w a s  u n ifo r m l y  at  

room tem peratu re ;  d u ri n g  the second exposu re the 

cast ing was h eated underneath to 3 DC above room 

temperatu re .  F ig .  1 3  (above) shows a reconstruct i o n  of 

the cast ing by means of t h i s  hol ogra m with  i n terference 

fri nges which show the variat i o n s  in the longitud i n a l  

d isplacement .  I n  order t o  determ i n e  the lateral d i s

p l acement, a rea l i m age was formed i n  the manner  i n 

d icated i n  fi g .  9d. A screen w i t h  a large n u m be r  o f  

h oles o f  d iameter 0. 1 m m  w a s  t h e n  s e t  up i n  the  p l a n e  

of t h i s  i mage . A l l  the  i nterference patterns v i s i bl e  

th rough these h o l e s  were then s i m ultaneously regis

tered on a s i ngle photograph ic plate beh i n d  the screen .  

Interferogram s  recorded i n  t h i s  way are shown i n  

fi g .  1 3  ( below) ; they correspond t o  a part o f  the upper 

photograph . 

For a complete analys is  of the deformation,  d o u b l e  

h o l ograms of t h e  casti n g  m ust  be m ade from vari o u s  

d i rections,  b u t  the d i scussion h e r e  w i l l  b e  l i m ited t o  a 

few remarks relat ing to fig.  1 3 , and i n  particu lar  to the 

left-hand and right-ha n d  parts of the wal l  of the cyl i n 

der  pointed upwards and outwards towards the 

o bserver. The l ower l eft-hand part is displaced lon

gitud i nal ly  m ore than the lower r ight-hand part ( i n  the 

Fig .  1 2. M o u n t  fo r p i ..: k - u p  t u bes a n d  w lo u r- sepa ra t io n p r i s m  i n  
a P h i l ips  t e l e v i s i o n  c a m e ra .  T h e  p i c k - u p  t u bes a re c l a m ped i n  t h e  
c y l i n d r i c a l  o pe n i n gs d i rected o b l i q u e l y  fo rward s ,  u p wa rds a n d  
bac k wa r d s  i n  t h e  photogra p h .  T h e  cast i n g  i s  s h o w n  w i t h  i t s  
fl a n ge o n  t he  t a b l e .  T h i s  fl a n ge i s  o ft e n  s u bjec t t o  l o c a l  heat i n g  
from t h e  powerfu l l  l i gh t s  i n  t h e  s t u d i o .  

upper ph otograph there a re m o re fringes o n  the lower 

left ha lf  t h a n  on the lower r ight  half) ; the rev e rse holds 

for the u pper h a l f. The fri nges i n d icate loca l l y  the axes 

about wh ich the su rface ( a pa rt fro m  a para l l e l  d isplace

ment)  t i l t s .  On the right t h e  su rface t i l ts  a b o u t  a hori

zontal a x i s ,  on the left i t  t i l t s  about an o b l i q ue axis .  

Th is  i n d icates some d is tort i o n  of the cast i ng.  This  is 

a lso i n d i cated by the lower photograph ; the left-hand 

part of the cy l i nder wal l  has  u ndergone a near ly  hori

zonta l d i s pl acement while i n  the right-hand part the 

transverse d is placement i s  in an obl ique d i rect i o n .  

Determination of material constants 
Expa n s i o n  coefficients and elast ic con sta nts of a 

material  can be determ ined by m easu r ing the d eforma

tion tak i n g  place as a resu l t  of h eating or m echan ical 

stress [ 1 3 J .  A s i mple exa mple  of th i s  was given in 

fig. 6 :  t h e  d eterminat ion of the e lastic m od u l u s  E from 

the bend i ng of a bar. The bar i s  c lamped at one end 

(the left in fig.  6) and at the other end s u bj ected to a 

force F which i n  fig. 6 is perpe n d icular to the paper. In 

fig. 6 ( below) the deflect ion y is p lotted as a function of 

the d istance z to the c lamping point. No account is 

taken of the angle X between the d i recti o n  o f  the i l lu-
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Fig. 13. S t ra i n  a n alysis of the cast i n g  shown i n  fig.  1 2 . A fte r  t he 
fi rst exposure of the (double) hologram.  the  flange ( po i n t i n g  
downwards i n  t h e  photographs) w a s  local ly  heated t h ree degrees 
above the ambien t ; the  secon d  exposu re was then made.  A hUl'e: 
determination of t h e  longitud i n a l  s t ra i n .  Belo ll': Dete r m i n ation 
of the t ransverse s t rai n .  For t he l o wer photograph, t h e  plate was 
set up close beh i n d  a sc reen w i t h  a large number o f O . I -m m  holes 
and situated i n  the plane o f  the real image. The i n t e rference 
patterns in  the hole of t he cyl inder  have no sign ificance ( to  
prevent undesirable reflect ions  th is  hole was fil led with black 
paper) . 

[ 1 3) See the article by K .  A. Stetson referred to in [ 1 2 ] .  

m i nat ing beam and the v iewing d i rection, wh ich was 

about 20°, �o that the d i fference in height between 

adjacent fringes is  not exactly )./2 but )./( 2cos h) = 
A/( 2cos 1 0 °) = AI 1 .97 (see eq . 9) . The theoretical rela

tion between ), and z i s : 

y = Fz3/4EI, ( 1 2) 

where 1 is the second moment of a rea of the cross

sect ion of the bar. The va lue of E i s  found by fitting 

( 1 2) to the experi mental points. I t  has to be remem

bered that the zero point of ) '  i n  fig. 6 i s  not known 

beca use the fri nges near the clamp cannot be seen 

properly. Not on ly  ca n E be determ ined very ac

c u rately, beca use of the  la rge n u m ber of fringes, but 

there is  a lso a good check on whether the use of eq. ( 1 2) 

is legit i mate. For exa m pl e  if the bar were not un iform 

in th ickness or did not have everywhere the same 

modulus  of elast ic ity,  t h i s  would be evident from 

the i m poss ib i l ity of fitt ing ( 1 2) to the experi menta l 

points .  

Detection of defects 
A weak spot in a workpiece usual ly  deforms exces

sively or  non-uniform ly when u nder load . In a carefu l l y  

chosen double hologram t h i s  is i m m ed iate ly  evident .  

A s i m ple example was shown earl ier i n  fig.  7 where a 

wea k spot in a bar consist ing of two parts held together 

by ad hesive shows u p  i n  the i n terference pattern . 

Fig. 14 shows the resu l t  of a check on the adhesion of 

the screen of a cathode-ray tube to the rest of the tube. 

A t  the upper edge the adhesion is good, on the lower 

edge there is a wea k s pot. 

Fig. 14. Tests on a cathode-ray t ube. The screen o f  t he tube is  
cemented to the body o f  the t ube. A double-holographic image 
c a n  show whether a good ad hesion has been ach ieved . The tube 
shown here has a weak spot on the lower edge.  The mechanical 
st ress consists of a small underpressure i n  the t ube. 
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This method is widely used for the detection of all 

sorts of faults, e.g. in car tyres, in plastic bottles, in re

inforced materials used in the aircraft industry, etc.£l41. 

The great advantage of holography for such purposes 

is its non-destructive nature. The stress that has to be 

applied to · the object to detect faults is generally so 

small that the deformation occurring is completely 

reversible and very much smaller than any stress ap

plied in normal use. 

(14] See for example H. Rottenkolber, Z. Werkstatt u. Betrieb 
103, 1 89 and 245, 1 970. 

Summary: In holography the amplitude and phase of laser light 
scattered by an object are registered in a' hologram, which is the 
photographic record of an interference pattern formed by the 
scattered light (the 'object wave') and a reference beam from the 
same source. When the hologram is illuminated later by the same 
reference beam, a number of beams are produced behind the 
hologram, one of which is a faithful reconstruction of the object 
wave. In holographic strain analysis, in particular the technique 
using double exposure, to which the author restricts himself, two 
holograms are superimposed on one another on the same photo
graphic plate, one before the deformation of the object and one 
after. The reconstruction procedure then yields a superposition 
of the recorded object waves corresponding to these two states ; 
the deformation can be derived from the interference between 
these two waves. The interference fringes seen on the 'recon
structed' object form a contour map of the deformation. For the 
displacement in the source-observer (longitudinal) direction 
adjacent fringes represent a difference in strain of },/2. The trans
verse displacement is derived from the interference pattern seen 
when the hologram is viewed through a diaphragm placed at a 
point in a real image of the object. This real image is obtained 
after rotating the hologram through 1 80°. Holographic strain 
analysis can be used in the determination of material constants, 
in the detection of weak spots and as an aid to design. Some 
examples of these applications are given. 
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