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Abstract: Many wheelchair people depend on others to control the movement of their wheelchairs,
which significantly influences their independence and quality of life. Smart wheelchairs offer a
degree of self-dependence and freedom to drive their own vehicles. In this work, we designed and
implemented a low-cost software and hardware method to steer a robotic wheelchair. Moreover, from
our method, we developed our own Android mobile app based on Flutter software. A convolutional
neural network (CNN)-based network-in-network (NIN) structure approach integrated with a voice
recognition model was also developed and configured to build the mobile app. The technique was
also implemented and configured using an offline Wi-Fi network hotspot between software and
hardware components. Five voice commands (yes, no, left, right, and stop) guided and controlled
the wheelchair through the Raspberry Pi and DC motor drives. The overall system was evaluated
based on a trained and validated English speech corpus by Arabic native speakers for isolated
words to assess the performance of the Android OS application. The maneuverability performance
of indoor and outdoor navigation was also evaluated in terms of accuracy. The results indicated
a degree of accuracy of approximately 87.2% of the accurate prediction of some of the five voice
commands. Additionally, in the real-time performance test, the root-mean-square deviation (RMSD)
values between the planned and actual nodes for indoor/outdoor maneuvering were 1.721 × 10−5

and 1.743 × 10−5, respectively.

Keywords: wheelchair; voice recognition; Raspberry Pi; Android; convolutional neural network

1. Introduction

Many patients still depend on others to help them move their wheelchairs, and
patients with limited mobility still face significant challenges when using wheelchairs in
public and in other places [1]. Statistics also indicate that 9–10% of patients who were
trained to operate power wheelchairs could not use them for daily activities, and 40% of
limited mobility patients reported that it was almost impossible to steer and maneuver a
wheelchair [2]. Moreover, it was reported that approximately half of the 40% of patients
with impaired mobility could not control a powered wheelchair [3]. Furthermore, the
same study determined that over 10% of patients that use traditional power wheelchairs
not equipped with any sensors have accidents after 4 months [3]. However, using an
electric wheelchair equipped with an automatic navigation and sensor system, such as
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a smart wheelchair, would be beneficial in addressing a significant challenge for several
patients. The smart wheelchair is an electric wheelchair equipped with a computer and
sensors designed to facilitate the efficient and effortless movement of patients [4–7]. These
wheelchairs are considered safer and more comfortable than conventional wheelchairs
because they introduce new control options, which include navigation systems (GPS) and
other technologies, such as saving places on the user’s map [8,9].

Various sensors can be used in smart wheelchairs, such as ultrasound, laser, infrared,
and input cameras. These wheelchairs adopt computers that process input data from the
sensors and produce a command that is sent to the motor to spin the wheels of the chair [10].
One of the most important developments in this field is the introduction of the joystick con-
trol system. This system drives the wheelchair via an intelligent control unit [11]. However,
patients with impaired upper extremities cannot operate the joystick flexibly and smoothly.
This leads to fatal accidents when situations require rapid action in motion. Therefore, the
conventional joystick system needs to be replaced with advanced technologies [12]. The
human–computer interface (HCI) is a method for controlling a wheelchair using a signal or
a combination of different signals, such as electroencephalogram (EEG), electrooculogram
(EOG), and electromyogram (EMG) [13–15]. Brain–computer interfaces (BCIs) are one of
the most researched CIs that translate brain signals into action to control a device [16].
Regarding EEG-BCI, it has some limitations, including low spatial resolution and a low
signal-to-noise ratio (SNR). A hybrid BCI (hBCI) that combines EEG with EOG exhibited
improved accuracy and speed. Despite the HCI results, some limitations to the application
of BCI systems still exist. EEG devices are relatively expensive, and bio-potential signals
are affected by artifacts. Furthermore, although hBCI can address some of these challenges,
it is not efficient and flexible in its simultaneous control of speed and direction [17–19].

Speech is the most important means of communication between humans and in human
communication, speech is the most important mode of communication. By employing
a microphone sensor, speech can be used to interact with a computer and serve as a
potential method for human–computer interactions (HCI). These sensors are being used in
quantifiable voice recognition research in human–computer interactions (HCI), which has
applications in a variety of areas such as human–computer interactions (HCI), controlling
wheelchairs, and health-related applications. Therefore, smart or intelligent wheelchair
developments—based on voice recognition techniques—have increased significantly [20].
For instance, Aktar et al. [21] developed an intelligent wheelchair system using a voice
recognition technique with a GPS tracking model. The voice commands were converted
into hexadecimal numeral data to control the wheelchair in three different speed stages via
a Wi-Fi module. The system also used an infrared radiation (IR) sensor to detect obstacles
and used a mobile app to detect the location of the patient. Similarly, Raiyan et al. [22]
developed an automated wheelchair system based on the Arduino and Easy VR3 speech
recognition module. In this study, the authors claim that the implemented system is less
expensive and does not require any wearable sensor or complex signal processing. In an
advanced study, an adaptive neuro-fuzzy has been designed to drive a powered wheelchair.
The system implementation was based on real-time control signals generated by the voice
commands’ classification unit. The proposed system used a wireless sensor network to
track the wheelchair [23]. Despite highly sophisticated approaches presented by researchers
in this area, high cost, accuracy in distinguishing, classifying, and identifying the patient’s
voice remain the most critical challenges.

To overcome the lack of accuracy for distinguishing and classifying patients’ speech,
many researchers have used the convolutional neural network (CNN) technique [24,25].
This technique relies on converting voice commands into spectrogram images before
being fed into CNN. This method has proven to be helpful in the level of accuracy for
speech recognition. In this context, Huang et al. [26] proposed a method to analyze CNN
for speech recognition. In this method, visualizing the localized filters learned in the
convolutional layer was used to detect automatic learning. The authors claim that this
method has advantages of identifying four domains of CNN over the fully connected
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method. These domains are distant speech recognition, noise robustness, low-footprint
models, and channel-mismatched training–test conditions. In addition, Korvel et al. [27]
analyzed 2D feature spaces for voice recognition based on CNN. The analysis used the
Lithuanian word recognition task to feature maps. The results showed that the highest rate
of word recognition was achieved using spectral analysis. Moreover, the Mel scale and
spectral linear cepstra and chroma are outperformed by cepstral feature spaces.

The driving of smart wheelchairs using voice recognition technologies with CNN has
attracted many researchers [28]. For instance, Sutikno et al. [24] proposed a voice control
method for wheelchairs using long short-term memory (LSTM) and CNN. This method
used Sox Sound Exchange and Sound Recorder Pro to achieve the objective. The accuracy
level of this method was above 97.80%. Another study was conducted by Ali et al. [29], who
designed an algorithm for smart wheelchairs using CNN to help people with disabilities
in detecting buses and bus doors. The method was implemented based on accurate
localization information and used CPU for fast detecting. However, the use of CNN in
smartphones is still under development due to associated complex calculations to achieve
high accuracy predictions [30].

This paper develops a new powerful, low-cost system based on voice recognition and
CNN approaches to drive a wheelchair for disabled users. The method proposes the use
of a network-in-network (NiN) structure for mobile applications [31]. The system used
smartphones to create an interactive user interface that can be easily controlled by sending
a voice command via the mobile application to the system’s motherboard. A mobile
application, voice recognition model, and CNN model were developed and implemented
to achieve the main goal of this study. In addition, all safety issues were considered
during driving and maneuvering at indoor and outdoor locations. Results showed that the
implemented system was robust in time response and had accurate execution of all orders
without time delay.

The paper is organized as follows: Section 2 illustrates the materials and methods
used in this study. Section 3 addresses the experimental procedure. Section 4 shows the
results of the study. Section 5 discusses the results. Section 6 concludes this study. Finally,
Section 7 shows future work.

2. Materials and Methods

Figure 1 illustrates the implementation of the system architecture of the proposed
system. This system is divided into two stages. The first stage is the set of hardware devices
used to control the movement of the wheelchair reliably. These devices include a standard
wheelchair, Android smartphone (Huawei Y9—CPU: Octa-core, 4 × 2.2 GHz), DC electric
motors, batteries, relay model, Raspberry Pi4, and an emergency push button in case of an
abnormal system response. The second stage focuses on the software development of the
mobile application, voice recognition model, and CNN model. The software was designed
and implemented to control the wheelchair using the five voice commands mentioned in
Table 1. The main components for controlling the chair were connected via offline Wi-Fi.

In this work, the mobile app was built based on Flutter software [32,33]. The design
process includes creating a user flow diagram for each screen, creating and drawing
wireframes, selecting design patterns and color palettes, creating mock-ups, creating an
animated app prototype, and designing final mock-ups to prepare the final screens for
coding to be initiated. Usually, the app appears on the application list, and after it has been
opened, it displays the enlisted words that we have trained in our model. After permitting
the application to use our microphone, it attempts the words and highlights them in the
interface recognition, as shown in Figure 1.
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Figure 1. Overall system architecture.

Table 1. File of voice command.

Voice Command Yes No Left Right Stop

Direction Moving
forward

Moving
backward

Turning
to the left

Turning
to right

Not
moving

2.1. Voice Recognition Model Development

Each audio file signal is subjected to feature extraction to create a map that shows
how the signal changes in frequency over time. Therefore, the Mel frequency cepstral
coefficients (MFCC) were used in speech analysis systems to extract this information [34].
The initial step in character extraction is to emphasize the signal by passing it through
a one-coefficient digital filter (finite impulse response (FIR) filter) to prevent numerical
instability as:

y(n) = x(n)− βx(n− 1) (1)

where x(n) is the original voice signal, y(n) is the output of the filter, n is the number of
sampling, and β is a constant such that 0 < β ≤ 1.

To keep the samples in frame and reduce signal discontinuities, the framing and
windowing [w(n)] are employed as:

w(n) =
{

(1− α)− α cos
( 2πn

N−1
)

.
0

n = 0, 1, . . . . . . . . . . . . , N − 1
otherwise

(2)

where is α constant and N is the number of frames. For spectral analysis, fast Fourier
transform (FFT) is applied to calculate the spectrum of magnitude for each frame as:

y(k) =
N−1

∑
n=0

y(n)e
−j2πkn

N , k = 0, . . . . . . , N − 1 (3)

The spectrum is then processed by a bank of filters according to MFCC, where the Mel
filter bank can be written as:

Hm[ fk] =
fk − f [m− 1]

f [m]− f [m− 1]
(4)
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If we consider fl and fh to be lowest and highest on the filter bank in hertz and
frequency, then the boundary points f [m] can be written as:

f [m] =

(
N
Fs

)
B−1

(
B( fl) + m

B( fh)− B( fl)

M + 1

)
(5)

where N is the size of the FFT, M is the number of filters, and B is the Mel scale which is
given by:

B( f ) = 1125 ln(1 +
f

700
) (6)

To eliminate noise and spectral estimation errors, we applied approximate homomor-
phic transform as:

S[m] = ln

[
N−1

∑
k=0

∣∣∣y[k]2Hm[k]
∣∣∣], 0 < m ≤ M (7)

The logarithmic energy operation log(∑|.|2) and the inverse of discrete cosine trans-
former (DCT) are used in the final step of MFCC processing. The use of DCT has features
for high decorrelation, and partial decorrelation can be given as:

cl [n] =

√
2
M

M

∑
m=1

Sl [m] cos
[

nπ

M

(
m− 1

2

)]
, n = 0, 1, . . . , L < M (8)

To obtain the feature map, we take the first and second derivatives of (8) to obtain:

∆cl [n] =

p
∑

p=1
P
(

cl+p[n]− cl−p[n]
)

2
p
∑

p=1
P2

(9)

∆2cl [n] =

p
∑

p=1
P
(

∆cl+p[n]− ∆cl−p[n]
)

2
p
∑

p=1
P2

(10)

This is applied to all recordings that have been made; the database was thus created
and used by the CNN.

2.2. CNN Implementation Model

Here, we adopted the network-in-network (NIN) structure as the foundational archi-
tecture for mobile application development [35,36]. NIN is a CNN technique that does not
include fully connected (FC) layers and, in addition, can accept images of any size as inputs
to the network by employing global pooling rather than fixed-size pools. This is useful
for mobile applications because users may adjust the balance between speed and accuracy
without affecting the network weights.

To contrast CNN, we adopt a multi-threading technique. In this technique, the smart-
phone has four CPU cores that easily allow dividing a kernel matrix into four sub-matrices
along with the row. Therefore, four generic matrix multiplication (GEMM) operations are
carried out in parallel to obtain the output feature maps of the target convolution layer.
Our method adopted cascaded cross channel parametric pooling (CCCPP) to compensate
for the FC layers’ elimination. Therefore, our CNN model consists of input, output layers,
twelve convolution layers, and two consecutive layers, as shown in Figure 2.
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Figure 2. Diagram of the proposed NIN architecture of the neural network.

2.3. DC Motor Control Drive

The drive wheels are powered by motors at the rear and front ends of the chair. The
rear motors correspond to the rear wheel movement, which is used to drive the wheels
forward, and the front wheel (freewheels) corresponds to different chair movements. The
two motors were connected to the driver via four power lines. The motor speed was
predefined at approximately 1 km/h. To move forward or backward, both wheels will
move clockwise and anti-clockwise, respectively. However, to turn right or left, one motor
uses the entire free gear and the other moves forward. If one needs to turn left, the left
wheel uses the free gear and the right one moves forward, thereby causing the wheelchair
to move in the opposite direction. The movement table of the wheelchair is presented in
Table 2.

All wheelchair movements are controlled by a relay module. The relay module
provides four relays that are rated for 15–20 mA at 5 Vdc. Each relay has a normally closed
(NC) and normally open (NO) contact. Each relay is controlled by a corresponding pin that
originates from the microcontroller. The relays are optically isolated, and each motor is
controlled by two relays: one relay is used to switch (on), and the other remains at the first
position (off) by means (ground), which will cause the (on) motor to turn in a clockwise or
opposite direction, based on the (on) or (off) state of the relay. Then, the command is sent
by the microcontroller program, and the relay coil operates at 5 V.

Figure 2 presents the complete electronic circuit diagram for the wheelchair movement.
In this diagram, the polarity across a load for the four relay modules can be altered in both
directions. Terminals are connected between the common poles of the two relays and the
DC motor. Normally open terminals are connected to the positive terminal, whereas a
normally closed terminal of both relays is connected to a current driver circuit (ULN2033) to
protect the pins of the controller from any abrupt sinking current. The current driver circuit
can support approximately 500 mA, which is sufficient for the relay module. Furthermore,
the diode connects to each relay to ensure protection from voltage spikes when the supply
is disconnected.

Table 2. Truth table of the wheelchair movement (−5 v means activate the relay).

Voice Command
Active Relay

Active Motor Movement Type
Relay-10 Relay-11 Relay-12 Relay-13

Yes +5 v −5 v +5 v −5 v Left/right motor Clockwise
No −5 v +5 v −5 v +5 v Left/right motor Anti-clockwise
Left +5 v −5 v +5 v +5 v Right motor Clockwise

Right +5 v +5 v +5 v −5 v Left motor Clockwise
Stop +5 v +5 v +5 v +5 v No movement No movement

Emergency +5 v +5 v +5 v +5 v No movement No movement
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2.4. Mechanical Assembly

Figure 3 illustrates the mechanical assembly of a wheelchair. This wheelchair was
purchased from the market, and no mechanical modifications were made to the basic
design of the original chair. In our proposed design, an electro-mechanical motor was
attached directly to the frame of the wheelchair. A wheelchair’s maneuverability depends
on the position of the steering wheels, which significantly affects the space required for the
chair to turn, including the way the chair moves in narrow spaces. Owing to their small
360-degree turning circumference and tight turning radius (20–26 in), mid-wheel drives are
the most maneuverable, making them excellent indoor wheelchairs. Table 3 summarizes
the hardware specifications of all parts that are used in this work. Figure 4 presents a
flowchart of the complete wheelchair system.

Table 3. Hardware specifications.

Parameter Value

Mechanical Parts

Wheelchair Standard wheelchair
Motor pair 3.13.6LST10 24 v DC 120 rpm

Acid battery NP7-12 12 v 7ah lead acid battery

Control Unit

Raspberry pi4

SoC: Broadcom BCM2711B0 quad-core A72 (ARMv8-A) 64-bit @ 1.5 GHz.
GPU: Broadcom Video Core VI.
Networking: 2.4 GHz and 5 GHz 802.11b/g/n/ac wireless LAN.
RAM: 4 GB LPDDR4 SDRAM.
Bluetooth: Bluetooth 5.0, Bluetooth Low Energy (BLE)
GPIO: 40-pin GPIO header, populated.
Storage: microSD

Relay Module

5 V 4-channel relay interface board.
15–20 mA signal drive current.
TTL logic compatible.
High-current AC250 V/10 A, DC30 V/10 A relay.

Android Smartphone (Huawei Y9)

CPU Core Octa-core (4 × 2.2 GHz Cortex-A73 and 4 × 1.7 GHz Cortex-A53)
Memory 128 GB 6 GB RAM

Operation System Android 8.1
Display 1080 × 2340 pixels, 19.5:9 ratio

Figure 3. Mechanical assembly of wheel chair.
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Figure 4. Flowchart of complete system for wheelchair movement.

3. Experimental Procedure

We evaluated our system on the English speech corpus for isolated words, which was
conducted at the Health and Basic Sciences Research Center, Majmaah University. A total
of 2000 utterances of five words are contained inside this collection, which was created by
10 native Arabic speakers. At a sample rate of 20 kHz and a 16-bit resolution, the corpus
was recorded. Then, that data set was augmented by creating extra speech signals using
a method of augmentation. The additional data set contains 2000 utterances by changing
pitch, speed, dynamic range, adding noise, and forward and backward shift in time. The
new dataset (original and augmented) contains 4000 utterances is divided into two parts: a
training set (training and validation) with 80% of the samples (3200) and the test set with
the remaining 20% of samples (800).

To evaluate the accuracy and the quality of prediction of the proposed system, we
calculate the F-score as:

F− score = 2
(

P ∗ R
P + R

)
(11)

where P and R represent precision and recall, respectively, and are stated by the following:

P =
Tp

Tp + FP
(12)

R =
Tp

Tp + FN
(13)

Here, Tp is the true positive, FP is the false positive, and FN is the false negative.
To evaluate the right prediction of each voice command during the classification, the

percentage difference (%d) equation was used as:

%d =
|V1 −V2|(

V1+V2
2

) ∗ 100% (14)

where V1 and V2 represent the first and second observations during the comparison process,
respectively.

The method also evaluates the real-time performance of indoor/outdoor navigation.
This test (Video S1) describes the indoor/outdoor navigation performance, when the user
controlled the wheelchair via voice commands, and the path is around and inside the
mosque, with the coordinates 24.893374, 46.614728.
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4. Results

In this work, the audio file was recorded and trained for five words to test the applica-
tion performance until it reached the required prediction ratio. These words were chosen
mainly based on the ease of pronunciation and circulation in the Arab countries and the
significant variation among each other in the phonemic outlets. Figures 5–9 illustrate the
recognizable faces of the voice command “Yes, No, Left, Right, and Stop”. Each figure
includes the sound waveform (a) two-dimensional long-term spectrum with frequency
band (b), spectrogram (c), and voice command prediction ratio in the mobile app (d).
Table 4 summarizes the resizing and normalization phases for each voice command. The
program also displays the predicted weight of the spoken word for the user. It is always
a one-voice command and has more weight than other words, and this indicates that an
incorrect decision cannot be made during the classification process.

Table 4. Resizing and normalization phases for the voice commands.

Voice Command Yes No Left Right Stop

Training time after the normalization 0.520 s 0.302 S 0.398 s 0.321 s 0.317
Non-trainable samples 7 9 15 6 13

Total samples 88,347 81,307 74,276 56,348 80,667
Long-term spectrum; frequency range 19.600 KHz 16.650 KHz 21.00 KHz 16.831 kHz 21.264 KHz

Figure 5. Recognition of the “Yes” voice command. (a) Audio shape; training time = 0.520 s; (b) long-
term spectrum; frequency range = 19.6 kHz; (c) spectrogram; (d) screenshot on the mobile app.
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Figure 6. Recognition of the “No” voice command. (a) Audio shape; training time = 0.302 s; (b) long-
term spectrum; frequency range = 16.65 kHz; (c) spectrogram; (d) screenshot of the mobile app.

Figure 7. Cont.
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Figure 7. Recognition of the “Left” voice command. (a) Audio shape; training time = 0.398 s;
(b) long-term spectrum; frequency range = 21kHz; (c) spectrogram; (d) screenshot of the mobile app.

Figure 8. Recognition of the “Right” voice command. (a) Audio shape; training time = 0.321 s; (b) long-
term spectrum; frequency range = 16.83 kHz; (c) spectrogram; (d) screenshot of the mobile app.
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Figure 9. Recognition of the “Stop” voice command. (a) Audio shape; training time = 0.317 s; (b) long-
term spectrum; frequency range = 21.26 kHz; (c) spectrogram; (d) screenshot of the mobile app.

Based on the previous results, the confusion matrix was calculated as shown in Table 5.
The accuracy of voice commend “yes” was approximately 87.2% of the true prediction for
the five voice commands. Regarding the classification tasks, we adopted the terms—true
positives, true negatives, false positives, and false negatives. Tables 6 and 7 present the
calculations of the voice-command prediction ratio, accuracy, and precision. In terms of
calculating percentage difference when comparing one command with other commands,
the example displays “STOP” against other commands. This indicates a slight possibility of
making an incorrect choice during the classification. The difference between the percentage
of true and false predictions is markedly high, which indicates a negligible probability of
making wrong predictions, and the difference reached more than 150%, as presented in
Table 7.

Table 5. Normalized confusion matrix.

Actual Voice Command

Prediction
ratio

%

Class Yes No Left Right Stop
Yes 57% 7% 19% 9% 8%
No 6% 55% 18% 12% 9%
Left 4% 11% 56% 16% 13%

Right 5% 4% 23% 57% 11%
Stop 6% 18% 11% 6% 59%
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Table 6. Accuracy, precision, recall, and F-score of voice commands.

Class Accuracy Precision Recall F-Score

Yes 87.2% 0.57 0.73 0.64
No 83% 0.55 0.58 0.56
Left 77% 0.56 0.44 0.49

Right 82.8% 0.57 0.57 0.57
Stop 83.6% 0.59 0.59 0.59

Table 7. Percentage difference between “stop” command and other commands.

Voice Command Yes No Left Right Stop

Prediction ratio 8% 9% 13% 11% 59%
Percentage difference 152% 147% 127% 137% —

The real-time performance of indoor/outdoor navigation was evaluated in public
places, as shown in Figure 10, which presents the planned route navigation versus the
actual route (outbound navigation). Table 8 presents the coordinate nodes of the planned
and actual paths while navigating. The root-mean-square deviation (RMSD) was adopted
to represent the differences between the planned and actual nodes of this experiment.
RMSD appears to be equal to 1.721 × 10−5 and 1.743 × 10−5 for latitude and longitude
coordinates, respectively.

Table 8. Navigation planned path compared with the actual path (outdoor navigation).

Coordinate Planned
Longitude

Planned
Latitude

Actual
Longitude

Actual
Latitude

Go

24.89337 46.614728 24.893383 46.61478
24.89357 46.61493 24.893598 46.61496
24.89353 46.614947 24.89356 46.614947
24.8935 46.614963 24.8935 46.614995

24.89347 46.61498 24.893468 46.61498

Right 24.89347 46.614989 24.893469 46.614989

Go
24.89348 46.61502 24.89348 46.61505
24.89349 46.615048 24.893498 46.615048
24.89351 46.61508 24.893508 46.615092

Right 24.8935 46.615083 24.8935 46.615083

Go
24.89349 46.615056 24.893497 46.615076
24.89346 46.61499 24.89347 46.614991
24.89345 46.614936 24.893448 46.614966

Right 24.89346 46.614928 24.893457 46.614958

Go
24.89347 46.614915 24.893496 46.614918
24.89354 46.614881 24.893541 46.614891
24.8936 46.614847 24.893642 46.614847

Left 24.8936 46.614847 24.893602 46.614867

Go
24.8936 46.614818 24.893597 46.614819

24.89348 46.614572 24.893495 46.614572

Left
24.89348 46.614572 24.893483 46.614592
24.89351 46.614557 24.893558 46.614557

Right 24.89351 46.614557 24.893509 46.614578

Go
24.89353 46.614578 24.89354 46.614578
24.89362 46.614776 24.893619 46.614779
24.89367 46.614877 24.893698 46.614897
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Table 8. Cont.

Coordinate Planned
Longitude

Planned
Latitude

Actual
Longitude

Actual
Latitude

Right 24.89367 46.614877 24.893675 46.614882

Go
24.89366 46.614884 24.89368 46.614894
24.89363 46.614895 24.89366 46.614898

Figure 10. Navigation planned route versus actual route.

5. Discussion

The objective of this study was to design and implement a low-cost and powerful
system to drive a powered wheelchair system using a built-in voice recognition app on a
smartphone. This design was achieved to facilitate substantial independence among dis-
abled people and, consequently, improving their quality of life. The proposed design of the
smart wheelchair increases the capabilities of the conventional joystick-controlled design
by introducing novel smart control systems, such as voice recognition technology and GPS
navigation systems. Owing to the significant advancements in smartphones, accompanied
by high technology for voice recognition and the use of wireless headphones, the voice
recognition technology for controlling wheelchairs has become widely adopted [4,29,30].

In general, the proposed system is characterized by the ease of installing the proposed
electrical and electronic circuits, along with low economic cost and low energy consumption.
Figure 4 shows a simple structure of the electronic circuit connection inside the installed
protection case. The design used is highly effective and low cost in terms of the materials
and techniques used and their ability to be configured, customized, and subsequently
transferred to the end-user. The average response time for processing a single task is
approximately 0.5 s, which is sufficient to avoid accidents. All programs and applications
in this smart wheelchair can operate offline without requiring access to the Internet. In
addition, the proposed program works under conditions of external noise with high
accuracy.

This study investigated the robustness of the voice recognition model by examining
the percentage difference between true words, predictions, and false predictions. The ex-
perimental results exhibited a significantly high difference between the percentage values
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of different categories, which indicates a very low probability of wrong predictions. Ac-
cording to Table 3, the difference between the true and false predictions was approximately
over 150%. The second experiment was adopted to evaluate the performance of indoor and
outdoor navigation. The user controlled the chair via voice command, and the RMSD was
employed to represent the errors in navigation.

In general, the technology of the speech recognition module in Android has become
widely used in recent years. In this regard, there are many free or commercially online
license software available in the market and suitable for our proposed model, such as
Google Cloud Speech API, Kaldi, HTK, and CMUSphinx [37–39]. However, wheelchairs
require more studies in terms of static, motion, and moment of inertia. These studies make
the system more suitable for different users. In addition, the current voice recognition
model did not implement a speaker identification algorithm. Identifying a speaker could
improve the safety of wheelchair users by only accepting specific instructions from the
authorized person.

Comparing our study with others in terms of efficacy, reliability, and cost, we believe
that our design has overcome many complexities. For example, a recent study conducted
by Abdulghani et al. implemented and tested an adaptive neuro-fuzzy control to track
powered wheelchairs based on voice recognition. To perform a robust accuracy, the design
needs to implement a wireless network where the wheelchair is considered a node within
the network. Furthermore, this controller is dependent on real-time data obtained from
obstacle avoidance sensors and a voice recognition classifier to function appropriately
and efficiently [28]. A different study used an eye and voice-controlled human–machine
interface technique to drive a wheelchair. In this technique, the authors incorporated a
voice-controlled mode with a web camera to achieve congenial and reliable performance
for the controller, in which this camera was used to capture real-time images [22].

6. Conclusions

In this study, a low-cost and robust method was used for designing a voice-controlled
wheelchair and subsequently implemented using an Android smartphone app to connect
microcontrollers via an offline Wi-Fi hotspot. The hardware used in this design consisted
of an Android smartphone (Huawei Y9: CPU—Octa-core, 4 × 2.2 GHz), DC electric
motors, batteries, relay model, Raspberry Pi4, and an emergency push button in case of an
abnormal system response. The system controlled the wheelchair via a mobile app that
was built based on Flutter software. A built-in voice recognition model was developed in
combination with the CNN model to train and classify five voice commands (yes, no, left,
right, and stop).

The experimental procedure was designed and implemented with a total of 2000 utter-
ances of five words that were created by 10 native Arabic speakers. The maneuverability,
accuracy, and performance of indoor and outdoor navigation were evaluated in the pres-
ence of various disturbances. Normalized confusion matrix, accuracy, precision, recall, and
F-score of all voice commands were calculated. Results obtained from real experiments
demonstrated that the accuracy of voice recognition commands and wheelchair maneu-
vers was high. Moreover, the calculated RMSD between the planned and actual nodes at
indoor/outdoor maneuvering was shown to be accurate. Importantly, the implemented
prototype has many benefits, including its simplicity, low cost, self-sufficiency, and safety.
In addition, the system has an emergency push button feature to ensure the safety of the
disabled individual and the system.

7. Future Work

The system can be adapted with GPS location technology, and the user can use this
technology to create their own path, i.e., building a manual map. By introducing ultrasound
sensors for safety purposes, this system will activate and ignore the user’s command if
the chair arrives near an obstacle that could lead to an accident. In addition, we were
able to investigate the users’ preference for a voice-controlled interface against a brain-



Electronics 2022, 11, 168 16 of 17

controlled interface. Moreover, a speaker identification algorithm can be added to the voice
recognition model to ensure the safety of the disabled person by only accepting commands
from a specific user.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/electronics11010168/s1, Video S1: The recorded video for indoor/outdoor maneuvring test.
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