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Abstract. Fruit quality is of increasing importance for consumers but is a complex
trait for growers, as it is affected by environment, genotype, and crop management
interactions. Decision support tools, such as computer models that simulate crop
growth and development can help optimize production but require further improve-
ment to simulate quality aspects. The goal of this study was to apply the newly
developed CROPGRO-Strawberry model in the Decision Support System for Agrotech-
nology Transfer (DSSAT) model framework and develop a module for the dynamic pre-
diction of quality traits for strawberry. Experimental data from Florida with quality
measurements from multiple harvests were correlated with indices based on preharvest
weather conditions (temperature, radiation, rainfall) and simulated model parameters
(evapotranspiration) during fruit development. Two quality relationships based on linear
equations were identified and integrated into the model to simulate strawberry fruit
soluble solids content (r2 5 0.89, d 5 0.97) and titratable acidity (r2 5 0.55, d 5 0.85)
based on preharvest temperature. A strategic analysis with historical weather data for a
subtropical growing region over a 10-year period showed the importance of seasonal
climate variability for simulated strawberry yield and fruit quality across different har-
vest months. The improved CROPGRO-Strawberry model is the first process-based crop
model to predict selected quality traits across multiple harvests throughout the season
and can be extended to other crop models for which quality traits are important.

Fruits and vegetables for global food
and nutrition security

Modern agriculture has led to high yields
for growers and producers, low prices for con-
sumers, and year-around availability of agricul-
tural products in vast parts of the world (Motes,
2010). Despite the successes in reducing hun-
ger, issues of malnutrition and nutrition security
continue and are receiving increased attention
(Ingram, 2020). This highlights the role of fruits
and vegetables as important sources for vita-
mins and micronutrients in the human diet

(USDA, 2015) and underlines their role in
overcoming malnutrition and hidden hunger
(Lock et al., 2005). Nutritional guidelines are
based on an average nutrient composition of
the respective food group. However, both pre-
vious and more recent research has shown that
fruits and vegetables, as well as agricultural
commodities in general, vary in their nutritional
and sensorial quality depending on genetics,
preharvest conditions, maturity at harvest, and
post-harvest treatments (Bertin et al., 2018; Da-
vis et al., 1984; Howard et al., 1962; Roe et al.,

2015; Shewfelt, 1990). In addition, the first stud-
ies about the potential impact of climate change
on fruit and vegetable production and quality
have begun to emerge (Cammarano et al., 2022;
Dixon et al., 2014; Gustafson et al., 2021; Mat-
tos et al., 2014). Whereas commercial quality
initially focused more on size, visual appearance
(color, shape), and suitability for processing and
storage (shelf life), recent trends in fruit and veg-
etable quality have started to emphasize flavor
and nutritional aspects (Fallik and Ilic, 2018;
Shewfelt and Bruckner, 2000). Consumers are
also showing an increased demand for high-
quality fruits and vegetables (Acharya et al.,
2014). Specific consumer preferences, however,
are constantly shifting (Schreiner et al., 2013)
and growers must adapt to these preferences to
meet new quality demands.

Strawberry production and quality
Strawberry (Fragaria ×ananassa) is among

the most consumed fruits worldwide and plays
an important role in both the horticultural
industry and global food supply (FAO, 2022).
Although the leading producers are China,
Mexico, and the United States, strawberry pro-
duction occurs on all continents with regional
cultivars and cultivation practices. Florida is
the second largest producer of strawberries in
the United States, with more than 3600 ha in
production and a total production value of
more than $300 million (USDA, 2022). Florida
strawberries are typically grown in mild cli-
mates as a winter crop from September to
April, and the state provides more than three-
quarters of the winter strawberry production in
the United States. Given the perishability of
strawberries in general and variable growing
conditions, strawberry is a high-input and high-
value but also risky crop for growers. Besides
pest and disease pressure, weather variability
and extreme weather conditions are major con-
cerns for commercial growers.

Strawberry and overall fruit quality is gener-
ally separated into external and internal quality,
with the latter encompassing contents in nu-
trients, vitamins, and volatile compounds. Ex-
ternal quality, such as fruit size, has been found
to strongly depend on temperature preceding
harvest (Miura et al., 1994; Menzel, 2021).
Many strawberry taste and internal quality pa-
rameters can be rather complex to quantify, for
example, volatile aromatic compounds influ-
ence sensory attributes and consumer preferen-
ces (Fan et al., 2021a, 2021b). However, other
easy-to-measure quality attributes, such as dry
matter content, soluble solids content (SSC),
titratable acidity (TA), and fruit firmness are es-
tablished as general proxies for overall straw-
berry fruit quality and commonly used by the
strawberry industry (Jouquand et al., 2008;
Mitcham, 1996; Plotto et al., 2013). Growers and
breeders have observed large variability in straw-
berry quality depending on agronomic manage-
ment, cultivar selection, and local weather
conditions. The seasonal weather variability is of
special importance because growers who produce
in open fields can exert only limited control over
growing conditions, compared with those grown
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in high tunnels, greenhouses, and other protected
culture systems.

Seasonal mean SSC for strawberries of
different cultivars grown in central Florida
are reported to range from 5.1% to 10.6%.
These values vary significantly throughout
the growing season, with individual harvests
as low as 5.3% SSC and as high as 14.5%
SSC (Whitaker et al., 2011). Seasonal mean
TA is reported to vary between 0.6% and
1.2% across cultivars and ±0.2% within a
cultivar across individual harvests (Sahari
et al., 2004; Whitaker et al., 2011). Previous
research in Florida has found a significant de-
cline in SSC and TA late during the growing
season across all cultivars (Jouquand et al.,
2008). The SSC and TA content of fruit tends
to be lowest during periods of warm weather
and higher yield, whereas they are highest
during periods of colder weather with lower
yield (Hoppula and Karhu, 2005; MacKenzie,
2011; Wang and Camp, 2000). This could be
because of plant physiological processes and
fruit biochemistry. During fruit development
and maturation, carbohydrates are transported
from the leaf photosynthetic tissue into fruit,
where further biosynthetic processes take
place (Fait et al., 2008). A higher temperature
tends to increase the rate of fruit develop-
ment, hence potentially shortening the time
for carbohydrate accumulation in the fruit.
Also, warm temperature enhances conversion
of carbohydrates to other compounds (acids,
volatiles) found in the fruit, as well as en-
hancing respiration. Hence, under warm con-
ditions, a fruit is then likely lower in SSC and
TA content and perceived of lower quality
from a consumer perspective (Schwieterman
et al., 2014). Considering this high degree of
quality variability and general growing chal-
lenges, developing a model-based decision
support system will be useful to better under-
stand and potentially guide challenges of
strawberry growers such as seasonal quality
fluctuations. Potential adaptations by growers
could be the variation of fertilizer and irriga-
tion amount or frequency, as well as the
choice of cultivars and overall timing of
planting and harvest intervals. More immedi-
ate and realistic in terms of usability and

application is the generation of a more system-
atic understanding of growth, development,
yield, and quality of strawberry production for
what-if analysis or to guide research questions.
Mathematical modeling of the development
and growth of plants based on biophysical
mechanisms and plant-soil-environment inter-
actions, is often referred to as “dynamic or pro-
cess-based crop modeling.” These model-based
tools can, therefore, contribute to the decision
support systems for growers, producers, and
others involved in strawberry production.

Quality modeling
The Cropping System Model (CSM) of

the DSSAT crop modeling software package
integrates weather, soil, genetic, and crop
management information for the prediction
of growth and development, and ultimately
yield (Hoogenboom et al., 2019a, 2019b;
Jones et al., 2003). DSSAT facilitates the de-
velopment of alternative crop management
practices and the optimal use of associated
natural resources, helping reduce negative en-
vironmental impacts (Tsuji et al., 1998). It
was initially developed for grain and legume
crops, such as wheat, soybean, and maize,
but it also has been expanded to horticultural
crops such as tomatoes (Boote et al., 2012;
Scholberg et al., 1997), green bean (Djido-
nou, 2008), and cabbage (Feike et al., 2010).

A new strawberry crop model was re-
cently developed based on experimental data
from multiple growing seasons in a subtropi-
cal production region (Hopf et al., 2022).
This CSM-CROPGRO-Strawberry model
can predict the growth and development of
the plant and individual fruit cohorts (a set of
fruit initiated on the same day) throughout
the season as a function of genetic, crop man-
agement, and environmental factors, but the
abilities of this and other crop models to pre-
dict fruit and yield quality are limited. Some
cereal and legume crop models already include
quality aspects in their modeling routine, such
as the prediction of lipid and protein concentra-
tion of seed in the CROPGRO-Soybean model
(Boote et al., 1998). The “Simulateur mulTIdis-
ciplinaire pour les Cultures Standard” (STICS)
crop model predicts carbohydrate and lipid as a
fixed concentration proportional to dry matter
content in plant organs for a number of differ-
ent crops, whereas grain nitrogen content is
proportional to the grain filling phase duration,
and grain water content is dependent on hydra-
tion and dehydration dynamics (Brisson et al.,
2003). Many of the wheat crop simulation
models predict grain protein concentration
(Asseng et al., 2018).

Some models that predict fruit development
and the individual aspects of fruit quality have
been developed, for example, peach fruit dry
matter concentration and sweetness during the
final stages of fruit growth (Lescourret and
Genard, 2005), impact of genetic and physiolog-
ical parameters on general peach fruit quality
(Quilot et al., 2005), growth of individual apple
fruits based on cumulative degree days (Chaves
et al., 2017), or impact of early-season tempera-
tures on potential growth and size of apple fruit

(Austin et al., 1999). Other modeling efforts have
focused on predicting quality during post-harvest
and storage of fruits and vegetables, through the
simulation of respiration rates (Fonseca et al.,
2002), nonlinear statistical regression (Lukasse
and Polderdijk, 2003; Tijskens and Polderdijk,
1996), or kinetics based on elementary chemical,
microbial, and physical reactions within the fruit
(van Boekel, 2008).

Strawberry quality model
The existing simulation of elemental com-

ponents, such as lipids and carbohydrates, are
notable for agricultural commodity products,
but the internal quality for horticultural prod-
ucts tends to be determined by more complex
compounds that reflect seasonal variation
(Kyriacou and Rouphael, 2018). However,
the current fruit quality models focus only on
either fruit size or internal fruit quality. These
models do not simulate the growth process of
the crop within the complete agricultural sys-
tem, including soil and plant water dynamics,
interaction with weather conditions, and the
growth and development of the entire crop in-
cluding leaves, stems, roots, and fruits. The
overarching difficulty remains in combining
experimental data or sub-models and apply-
ing them at the field level (Bertin et al.,
2006). With the increasing awareness of fruit
and vegetable quality variability, it has be-
come evident that specific models for horti-
cultural crops must go beyond simulating
bulk yield and will require the incorporation
of quality aspects. Therefore, there is a need
for a dynamic and model-based approach to-
ward understanding and predicting the vari-
ability of quality of fruit and vegetable crops,
throughout the entire growing season. A new
generic sub-model for quality traits needs to
be developed, adapted for specific crops, and
coupled to existing crop models.

The goal of this research was, therefore, to
develop a module for the prediction of quality
traits for strawberries. The specific objectives
were to 1) analyze the relationships between
growing conditions and the variability in fruit
SSC, TA, and firmness for strawberries; 2) im-
plement these relationships in the existing CSM-
CROPGRO-Strawberry crop model to simulate
quality traits; and 3) apply the model to simulate
and analyze seasonal and within-season variabil-
ity of both yield and quality of strawberries over
multiple years using long-term weather data.

Materials and Methods

Experimental data
Field experiments. The experimental data

for this study were obtained from field trials
conducted at the Gulf Coast Research and Ed-
ucation Center (GCREC, www.gcrec.ifas.ufl.
edu) in west-central Florida (lat. 27.7611�N,
long. 82.2277�W) under common practices for
commercial winter strawberry production in
Florida. Winter strawberry fruit production
generally takes place from November to April,
starting with the planting of bare-root transplants
in late-September to mid-October. Contrary to
other production regions, the production in
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Florida starts in relatively warm environment,
which then cools down and warms up again. A
few early fruits are produced in late November
and December, but most of the fruit production
occurs from January to March, after which com-
mercial harvesting declines rapidly, primarily be-
cause of low market prices, although quality,
disease pressure, and inclement weather also can
have impacts.

Observations for the cultivar Florida Radi-
ance (U.S. Plant Patent 20363, known as Flo-
rida Fortuna outside the United States) and
Florida Brilliance (U.S. Plant Patent 30564)
were collected during the 2014–15 (Florida Ra-
diance only), 2016–17, and 2017–18 growing
seasons. Released in 2019, ‘Florida Brilliance’
is a more recent variety with slightly earlier
fruit production in the season and slightly
smaller fruit (Whitaker et al., 2019) compared
with ‘Florida Radiance’, which was released in
2009 (Chandler et al., 2009). Strawberry plants
were grown in raised beds with a plastic film
cover on the soil (plastic mulch). Typical raised
beds were 90 m long, 70 cm wide, 18 cm high
in the center and 15 cm high at the edges and
spaced 1.2 m between centers of two adjacent
beds. Two rows of strawberry plants were
planted per bed, with 28 cm between rows and
38 cm between plants within a row. Bare-root
leaf-on transplants were obtained from Crown
Nursery (Red Bluff, CA, USA) and planted in
early October with typical air temperatures of
24 to 27 �C and soil temperatures of 25 to
28 �C. After planting, overhead irrigation was
applied daily during daylight hours for 8 to 10
d to promote plant establishment, followed
by irrigation and fertigation via drip tapes for
the remainder of the season. Exact irrigation
amounts are unknown but followed general
statewide best practice recommendations to en-
sure optimal growth conditions with one or two
irrigation sessions totaling up to 45 min per
day. Fertilization was controlled to promote
early-season plant growth with up to 2.24 to
3.36 kg/ha of nitrogen per day after transplant-
ing, gradually decreasing to as low as 1.0 kg/ha
of nitrogen per day.

Fields were set up in a randomized com-
plete block design with each measurement rep-
etition coming from a different block, 10 plants
per block. The harvests of ripe fruit occurred
every 3 to 4 d with ripeness being determined
by the extent and depth of fruit red color. For
this study, only fruit harvested once per month
were analyzed. For a given harvest day, a total
of 40 ripe fruit from four repetitions
(10 per repetition) were transported in clam-
shells in an air-conditioned vehicle to off-site
laboratories for further processing to measure
SSC, TA, and firmness. The 10 fruits of one
repetition were measured individually for firm-
ness, then combined and homogenized for SSC
and TA measurements The measurement pro-
cedure was conducted two to four times per
season per cultivar. Measurements from the
four repetitions per measurement day were av-
eraged to a single value for further analysis in
this study. A combined total of 47 observations
for quality are available, with 15 or 16 per qual-
ity trait. An overview of observed quality data

are provided in Table 1. SSC (%) was mea-
sured from the supernatant of a homogenized
fruit mass using a digital refractometer
(RX5000a; Atago, Tokyo, Japan). TA (%) was
measured by titrating 6 g of fruit supernatant
with 0.1 N NaOH to pH 8.1 using a titrator
equipped with a robotic autosampler (model
855; Metrohm, Herisau, Switzerland), a dosing
interface (Dosino model 800; Metrohm) and
controlling software (Tiamo v.2.5; Metrohm).
Firmness (Newton or Newton*m�2) measure-
ments were taken for fresh fruit with a Firm-
Tech 2 (Bioworks, Wamego, KS, USA) for all
seasons except 2017–18, when firmness was
measured with a Texture Analyzer XT2 (Tex-
ture Technologies Corp. Ltd., Hamilton, MA,
USA).

The range of measured firmness values
differed significantly between these two devi-
ces, because of the different probe sizes, pen-
etration in the flesh or not, and speed of
penetration or deformation of the fruit. There-
fore, the measurements were considered as a
separate group because no conversion factor
between the two devices was available.
Strawberry fruit firmness measurements with
different devices are generally weakly corre-
lated (Døving et al., 2005). A more detailed
explanation of fruit quality measurements, in-
cluding the devices, procedures, and reagents
that were used, can be found in Whitaker
et al. (2011). Further details about the experi-
mental data, including field setup and mea-
surement techniques, can be found in the
variety release publications (Whitaker et al.,
2015; 2017b; 2019).

Weather data. The weather data for the
GCREC field location were obtained from the
Florida Automated Weather Network (FAWN;
www.fawn.ifas.ufl.edu; Lusher et al., 2008).
The FAWN weather station “Balm” (lat.
27.75998�N, long. 82.22410�W) was installed
in 2006 and is located near the field trials. It
provides daily minimum and maximum air
temperature (2 m aboveground), precipitation,
solar radiation, wind speed, and relative humid-
ity, in addition to more detailed measurements.

Strawberry quality model. The crop simu-
lations were performed in DSSAT Version
4.7.6 (Jones et al., 2003; Hoogenboom et al.,
2019a, 2019b) with the recently developed
CSM-CROPGRO-Strawberry model (Hopf
et al., 2022), which simulates the continuous
daily addition of flowers and subsequent de-
velopment into fruits throughout the growing
season of a strawberry plant. After flowering
(BBCH 60–67), a fruit body (receptacle) and
seeds are formed, which then grow in size,
increase in weight, and ripen (BBCH 71–81)
until fruit maturity (BBCH 85–89). A fruit
cohort reaches maturity once it reaches a cer-
tain physiological age that depends on photo-
thermal time. On each predefined harvest
date, all fruit cohorts that had achieved simu-
lated maturity are harvested and combined to
account for the harvest of each individual
harvest day. In addition to simulating soil-
water-atmosphere processes and biomass de-
velopment or partitioning of the strawberry
plant, the model provides concrete dates for

when specific growth stages as well as flower
or fruit development phases are reached. The
quality model is based on the modeling and
tracking of the development phase of each in-
dividual fruit cohort and the conditions under
which each cohort grows.

Crop model inputs. Based on the previous
description of the field trial site and data col-
lection methods, the crop model simulation
was set up to resemble the field trials. Sepa-
rate crop model input files were created for
each individual experiment, growing season,
and cultivar. The standard soil profile from
the Candler series was used, representing a
hyperthermic sandy, well-drained, and per-
meable soil typically found in southern Flo-
rida (USDA, 2013). Planting occurred on 10
Oct of each growing season with a planting
density of 4.3 plants/m2 as transplants. The fer-
tilizer and associated nitrogen, potassium, and
phosphorus modules of the model were deacti-
vated to simulate optimal conditions (i.e., no ni-
trogen or phosphorus stress). This assumption
was deemed feasible because variety trials are
generally conducted under optimal fertilization.
Irrigation was based on the simulated soil water
balance, with a set threshold of 80% available
soil water in the top 30 cm soil to trigger auto-
matic irrigation. Fruit harvesting was scheduled
every 3 to 4 d and started between 22 and
24 Nov and continued until 14 to 16 Mar. The
fruit harvest schedule is an important model set-
ting because it drives several internal model
processes and influences the simulated fruit
growth period that is used to calculate weather
indices.

Weather indices. The simulated dates for
flowering, beginning of fruit development, and
harvest date of each fruit cohort were used to
calculate weather indices that occurred during
the 15 to 22-d growth interval from flowering
to maturity. They represent the growing condi-
tions that are relevant for fruit quality. A total
of 16 weather indices were computed for each
cohort, based on observed weather data and
simulated model parameters. For all weather
variables, the timespan between start of fruit de-
velopment (after flowering) for a given cohort
until the date of harvest of that cohort is consid-
ered, representing the entire fruit development
period. For this purpose, the daily minimum
and maximum temperatures (2 m above-
ground), as well as daily rainfall and solar radi-
ation were obtained from the weather station.
The average minimum temperature (Eq. [1],
Tminavg] was calculated by taking sum of the
minimum daily temperature for the days be-
tween the start of fruit growth and harvest for
each individual fruit cohort and then dividing
by timespan in days. The average maximum
temperature (Eq. [2], Tmaxavg) was calculated
by taking sum of the maximum daily tempera-
ture for the days between the start of fruit
growth and harvest for each individual fruit co-
hort and then dividing by timespan in days.

The average temperature (Eq. [3], Tavg)
was calculated by taking sum of the tempera-
ture readings available every 15 min divided
by 96 (for 4*24 readings per day) for the
days between the start of fruit growth and
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harvest for each individual fruit cohort and
then dividing by timespan in days:

Tminavg 5
∑
t1
t0
Tmin

t1 � t0
[1]

Tmaxavg 5
∑
t1
t0Tmax
t1 � t0

[2]

Tavg 5
∑
t1
t0

T15min
96

t1 � t0
, [3]

with Tmax and Tmin, the daily maximum and
minimum temperature in �C; T15min, the tem-
perature reading of the weather station every
15 min in �C; t0, the day of start of fruit de-
velopment; t1, the day of harvest; and t1 – t0
being the timespan in days between start of
fruit growth and date of harvest.

The diurnal temperature variation (Eq. [4],
DTV), also known as temperature differential,
was calculated by taking the mean of the differ-
ences between the daily maximum and mini-
mum temperature for the days between the start
of fruit growth and harvest for each individual
fruit cohort.

DTV 5
∑
t1
t0ðTmax � TminÞ

t1 � t0
, [4]

with Tmax and Tmin, the daily maximum and
minimum temperature in �C; t0, the day of start
of fruit development; t1, the day of harvest; and
t1 – t0 being the timespan in days between start
of fruit development and date of harvest.
Hypothetical growing degree days (Eq. [5],
GDD) based on base temperatures of 0, 7.5, 10,
12.5, and 15.0 �C were calculated by subtracting
the base temperature from the daily mean tem-
perature and integrating on a daily basis, until
harvest for each individual fruit cohort. The base
temperature 0 �C was identified for basic growth
and development processes in other cultivars in
a similar subtropical environment (Rosa et al.,
2011). Additional base temperatures were in-
cluded in this analysis because other studies
have shown a wide range of suitable base

temperatures depending on cultivar and environ-
ment. This should be assessed to obtain a poten-
tial better correlation. The simple average
method was chosen over other more complex
methods, such as the Baskerville-Emin method
(Baskerville and Emin, 1969), because the local
minimum temperature is expected to be mostly
above the base temperature.

GDD 5 ∑
t1

t0

Tmax1Tmin
2

� TBase

� �
> 0

[5]

with Tbase the variable base temperatures of
0, 7.5, 10, 12.5, and 15.0 �C, the integration
was performed when the mean of Tmin and
Tmax was greater than Tbase.

Average daily total rainfall (Eq. [6], Rain-
fallavg) was calculated based on the daily total
observed rainfall (mm2/d) for the growth pe-
riod of each individual fruit cohort.

Rainfallavg 5
∑

t1

t0
H

t1 � t0
[6]

Average daily total solar radiation (Eq. [7],
Sradavg) and total solar radiation (Eq. [8],
Sradtot) were calculated based on the daily total
observed solar radiation per horizontal surface
area (H in MJ/m2/d) for the individual fruit co-
hort growth periods.

Sradavg 5
∑

t1

t0
H

t1 � t0
[7]

Sradtot 5 ∑
t1

t0
H [8]

Average potential evapotranspiration
(Eq. [9], PETavg), total potential evapotrans-
piration (Eq. [10], PETtot), average actual
transpiration (Eq. [11], ATavg), and total ac-
tual transpiration (Eq. [12], ATtot) are based
on simulated values from the soil-water-bal-
ance component of the crop model.

PETavg 5
∑
t1
t0PET

t1 � t0
[9]

PETtot 5 ∑
t1

t0
PET [10]

ATavg 5
∑
t1
t0AT

t1 � t0
[11]

ATtot 5 ∑
t1

t0
AT , [12]

with PET the potential evapotranspiration in
mm/d and AT the actual transpiration in
mm/d calculated by the crop model for every
daily time step of the fruit cohort develop-
ment periods.

Quality relationships. Observed quality
and weather indices were analyzed to identify
the best linear relationships. The linear regres-
sions were created based on the combined data
for all growing seasons that had observed qual-
ity measurements (i.e., 2014–15, 2016–17, and
2017–18), for both ‘Florida Radiance’ and
‘Florida Brilliance’. The analysis of covariance
test (ANCOVA) was used to determine if
obtained regressions were dependent on the
cultivar. Only regressions with a strong linear
relationship were integrated into the process-
based crop model for further testing. Because
of the limited amount of data available, no sep-
aration of the dataset into a model development
and evaluation dataset was performed. There-
fore, the model needs to be evaluated for other
and independent data sets.

Software, source code, and statistics
The crop simulations were performed with

the CSMmodel (Jones et al., 2003) in the model-
ing software DSSAT (Hoogenboom et al.,
2019a, 2019b) obtained from the DSSAT portal
(www.dssat.net). To improve the model, code
changes were made in the source code of the de-
velopment version 4.7.6 available via the public
GitHub Repository (www.github.com/DSSAT/
dssat-csm-os). The code changes and improve-
ments are further described in Hopf et al. (2022)
and will be implemented in a future version of
CSM and DSSAT for public release and will be
available from the GitHub Repository.

Table 1. Simulated (Sim) and observed (Obs) soluble solids content (SSC) and titratable acidity (TA) and absolute difference (Bias) obtained from the
quality model. Missing values indicated by “n/a” as respective data was not measured in this season.

Fruit development SSC (%) TA (%)

Cultivar Season Harvest (mm/dd) Temp. (�C) Duration (d) Sim Obs Bias Sim Obs Bias
Florida Radiance 2014–15 02/16 14.1 22 8.24 8.40 �0.16 0.78 0.80 �0.02

03/16 22.3 18 5.50 5.40 0.10 n/a n/a n/a
2016–17 01/30 16.9 16 7.30 7.10 0.20 0.74 0.77 �0.03

02/20 18.6 16.5 6.73 6.20 0.53 0.71 0.67 0.04
03/06 20.3 16 6.18 6.50 �0.32 0.68 0.72 �0.04

2017–18 12/11 18.7 16.5 6.73 6.87 �0.14 0.71 0.74 �0.03
01/29 15.1 19.5 7.93 7.97 �0.04 0.77 0.79 �0.02
02/19 22.2 16.5 5.56 5.51 0.05 0.65 0.65 0.00
03/05 21.0 17 5.96 5.53 0.43 0.67 0.63 0.04

Florida Brilliance 2016–17 01/30 16.9 16 7.30 7.13 0.17 0.74 0.72 0.02
02/20 18.6 16.5 6.73 6.24 0.49 0.71 0.65 0.06
03/06 20.3 16 6.18 6.64 �0.46 0.68 0.75 �0.07

2017–18 12/11 18.7 16.5 6.73 6.86 �0.13 0.71 0.74 �0.03
01/29 15.1 19.5 7.93 8.22 �0.29 0.77 0.73 0.03
02/19 22.2 16.5 5.56 6.00 �0.44 0.65 0.68 0.03
03/05 21.0 17 5.96 5.97 �0.01 0.67 0.63 0.04

Note: Results for two to three seasons with two to four harvests per cultivar-season. Simulated values based on average temperature during fruit growth.
Fruit growth temperature and duration were obtained from crop model outputs from the start of growth until final harvest of each individual fruit cohort
and averaged for the cohorts that were harvested on the same date.

HORTSCIENCE VOL. 57(10) OCTOBER 2022 1339

http://www.dssat.net
http://www.github.com/DSSAT/dssat-csm-os
http://www.github.com/DSSAT/dssat-csm-os


Statistical analysis and visualization of the re-
sults were performed in RStudio 1.2.5033 (RStudio
Team, 2015) with packages “ggplot2,” “corrplot,”
and “gridExtra” for graphing; “tidyverse,” “dplyr,”
“readr,” and “reshape2” for data processing;
and “hydroGOF” and “Wilcox” for statistical
analysis.

The Wilmott Index of Model Agreement
(Eq. [13]) also known as the d-statistic was
used to assess general model performance
(Willmott, 1981). It is a dimensionless index
for model agreement related to the Nash-
Sutcliffe index. The d-statistic value ranges
between 0.0 and 1.0, with a value closer to 1
indicating a better model performance.

d � statistic 5

1� ∑
N

i 5 1 Pi � Oið Þ2

∑
N

i 5 1 Pi � �O
�� ��1 Oi � �O

�� ��� �2 , 0#d#1, [13]

with Pi the simulated value, Oi the observed
value, and �O the observed mean.

The Relative Root Mean Square Error
(RRMSE) (Eq. [14]) was used to evaluate de-
viation between observed and simulated peri-
odic harvests while accounting for the mean
magnitude of observations. A lower RRMSE
is considered better, with an RRMSE of 0 in-
dicating perfect agreement between model
and observation. RRMSE is calculated by di-
viding the Root Mean Square Error (RMSE)
by the mean of all observations.

RRMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i 5 1 Pi � O2
i

� 	2
N

q
�O

, [14]

with N the number of values, Pi the simulated
value, Oi the observed value, and �O the ob-
served mean.

In addition, the Pearson correlation coeffi-
cient (R) (Eq. [15]) was used to evaluate the
strength and direction of a linear relationship
between a quality trait and the weather indi-
ces (Wilcox, 2016), as well as among weather
indices or quality traits themselves. A 95%
confidence interval was used to test for sig-
nificance of the correlations. The coefficient
R has a value between 1 and �1, with 1 indi-
cating a strong positive, �1 a strong negative
relationship, and 0 no relationship at all.

R 5
n∑xy� ∑xð Þ ∑yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð∑x2Þ � ∑xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n ∑y2ð Þ � ∑yð Þ2
q ,

[15]

with n the number of pairs of data, and x and
y are the values of respective pairs.

As part of the regression analysis, an AN-
COVA test was applied in RStudio to test if
quality regressions were dependent on the culti-
var (Philippas, 2014). The null hypothesis was
that the slope and the intercept of the two re-
gression lines based on cultivar Florida Radi-
ance or Florida Brilliance were not statistically
different. For the general statistical analysis of
model results, the recommendations provided
by Yang et al. (2014) were followed.

Simulating long-term seasonal yield and
quality distribution

A seasonal analysis (Thornton and Hoogen-
boom, 1994) was performed to demonstrate the
capabilities of the quality module in assessing
the variations in predicted quality due to sea-
sonal climate variability under constant crop
management. Simulations were conducted us-
ing historical weather data from 2010 through
2020, assuming identical crop management as
in the previously described field experiments
with optimal fertilization, irrigation, constant
planting setup, and 3- to 4-d harvest intervals
from 22 Nov to 15 Mar. The SSC and TA con-
tent for cultivar Florida Radiance were pre-
dicted based on the average temperature during
the growth phases of harvested fruit cohorts at
each single harvest date from 2010 to 2020.
The typical strawberry growing season in Flo-
rida lasts from fall (October) through spring
(March) in the following year. For example,
the season of 2010–11 or 2010–2011 refers to
the growing period from Oct 2010 to Mar
2011. Annual production refers to the cumula-
tive fruit harvested throughout the entire grow-
ing season, whereas monthly production refers
to the sum of fruit harvested during a specific
month. Additional quality data, not used in the
model development or the related Hopf et al.
(2022) study, were drawn in for a preliminary
evaluation of the seasonal SSC and TA analy-
sis. A total of 15 quality measurements for each
SSC and TA comprising the seasons 2010–11,
2011–12, 2012–13, 2013–14, 2015–16, and
2018–19 were obtained from previous experi-
mental records. The samples were obtained and
analyzed using the same procedure previously
described for the field experiments. The addi-
tional data do not include yield measurements
and further parameters required to run the crop
model. Hence, they were not suitable for the
initial development or evaluation of the quality

model and considered an independent dataset
for a preliminary evaluation of the seasonal
analysis only.

Results and Discussion

Weather data and indices
An overview of the monthly mean air

temperature (October–March) from 2010 to
2020 in Balm, FL, confirms typical seasonal
fluctuations with some variability from year
to year (Fig. 1). The seasonal mean tempera-
ture ranged between 17.4 and 20.6 �C. The
2010–11 season was a relatively cold season,
with particularly low temperatures during
December and January compared with the
other years. Seasons with similar seasonal
averages can vary significantly on a month-
by-month basis. For example, the 2014–15
season (mean 18.3 �C) had a very warm
month of March (21.9 �C), whereas the
2012–13 season (mean 18.2 �C) had a rela-
tively cold month of March (15.0 �C). It is ac-
knowledged that the measured temperature at
2 m height is only an approximation for ac-
tual temperature at the level of the strawberry
plant, and future measurement should be
taken closer to plant level if feasible. The cor-
relation matrix (Fig. 2) shows positive corre-
lations to varying degree among all weather
indices except for average daily rainfall,
which is negatively correlated to the remain-
ing indices. This is because of the typical sea-
sonal pattern in the growing season, where a
decrease in rainfall coincides with the in-
crease in temperature and vice versa. Most of
the rainfall is concentrated during the hot and
humid summer season (May to August),
which is, however, outside the strawberry
cultivation window and hence not considered
in this analysis. Average temperatures as well
as growing degree days on varying base

Fig. 1. Monthly average maximum and minimum temperature in Balm, FL, for the months of October through
March for each growing season from 2010–11 to 2019–20. Year 2011 comprises the 6 months from Oct
2010 until Mar 2011, and equivalent timespans are used for the other years (from Hopf et al., 2022).
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temperatures were strongly positively corre-
lated (r 5 0.79–0.99), which is expected be-
cause they rely on the same temperature
patterns. Further strong positive correlations
could be found for simulated evaporation
and transpiration indices with radiation and
to a slightly lesser extent temperature-based
indices, which is expected because they are
connected through common physical and
physiological principles.

Quality data
A total of 47 quality measurement were

available across 16 dates, with 16 for SSC,
15 for TA (one missing date), and 16 for
firmness split into two sub-groups of eight
for the two different measurement devices
(Table 1). SSC ranged from 5.4% to 8.4%,
with an average of 6.7%. TA ranged from
0.63% to 0.80%, with an average of 0.71%.
Firmness measured with Firm Tech 2 var-
ied from 176.9 to 250.6 N·m�2, with an av-
erage of 218.8 N·m�2. Firmness measured

with Texture Analyzer XT2 ranged between
3.23 N and 4.35 N, with an average of 3.88 N.
A strong positive correlation was observed be-
tween TA and SSC measurements in the whole
dataset (r 5 0.84–0.87), with a medium posi-
tive correlation among Firmness measured with
the Firm Tech 2 device and SSC (r 5 0.56)
and TA (r 5 0.57) and positive but weaker
correlation for Firmness measured with the
Texture Analyzer XT2 for SSC (r 5 0.25)
and TA (r 5 0.22). All correlations were
significant.

Quality correlations
The 16 weather indices, which represent

the growing conditions of fruit cohorts from
start of individual fruit growth until harvest,
were subjected to a correlation analysis of the
field measurements for SSC, TA, and firm-
ness of the individual fruit cohorts.

Soluble solids content. All regressions
showed a negative Pearson correlation coeffi-
cient, which means that SSC decreased with

an increase in the value of the weather indi-
ces, except for average daily rainfall with a
positive coefficient and reversed trend. The
rainfall anomaly is likely due to its correlation
to temperature driven by the general seasonal
pattern of dry and relatively cooler winters and
increasing rainfall with increasing temperatures
in the spring and summer, and does not neces-
sarily constitute a physiological relationship
between SSC and rainfall. However, one plau-
sible explanation could be that additional rain-
fall preceding harvest leads to uptake of excess
water in the fruit and hence a dilution of SSC.
The strongest and most significant regression
was obtained for the average temperature from
start of fruit development until the harvest of
each individual cohort (Fig. 3A, R 5 �0.94, P
< 0.001). The ANCOVA test confirmed that
the regression line was not significantly differ-
ent for each cultivar (P 5 0.32) and that the
same regression line could be used for both cul-
tivars. Average minimum and maximum tem-
perature during fruit development as well as

Fig. 2. Pearson correlation matrix among weather indices in Balm, FL, for the weather conditions preceding each harvest for both cultivar Florida Radiance
and Florida Brilliance and all seasons that have quality measurements (2014–15, 2016–17, 2017–18). Weather indices are based on observed weather
conditions during the dynamic timespan from flowering to individual fruit maturity, which lasts �2 to 3 weeks. Strong positive correlations are shown in
blue and strong negative correlations are shown as red. Correlations are significant at the 0.05 P value.
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Fig. 3. Quality correlations for observed soluble solid content (SSC) of strawberry fruit and weather indices for average temperature and growing degree
days (A–I), average and total radiation (J and K), potential evapotranspiration (L and M), actual transpiration (N and O) and average rainfall (P). The
linear regression is based on observations (n 5 16) for both cultivar Florida Radiance and Florida Brilliance, and all seasons that have quality measure-
ments (2014–15, 2016–17, 2017–18). The R value indicates the correlation coefficient and P the significance.
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Fig. 4. Quality correlations for observed titratable acidity content of strawberry fruit and weather indices for average temperature and growing degree days
(A–I), average and total radiation (J and K), potential evapotranspiration (L and M), actual transpiration (N and O), and average rainfall (P). The linear
regression is based on observations (n 5 15) for both cultivar Florida Radiance and Florida Brilliance and all seasons with quality measurements
(2014–15, 2016–17, 2017–18). The R value indicates the correlation coefficient and P the significance.
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Fig. 5. Quality correlations for observed firmness of strawberry fruit measured with FirmTech 2 and weather indices for average temperature and growing de-
gree days (A–I), average and total radiation (J and K), potential evapotranspiration (L and M), actual transpiration (N and O), and average rainfall (P).
The linear regression is based on observations (n 5 8) for both cultivar Florida Radiance and Florida Brilliance and seasons 2014–15 and 2016–17. The
R value indicates the correlation coefficient and P the significance.
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Fig. 6. Quality correlations for observed firmness of strawberry fruit measured with Texture Analyzer XT2 and weather indices for average temperature and
growing degree days (A–I), average and total radiation (J and K), potential evapotranspiration (L and M), actual transpiration (N and O), and average
rainfall (P). The linear regression is based on combined observations (n 5 8) for both cultivar Florida Radiance and Florida Brilliance and season
2017–18. The R value indicates the Pearson correlation coefficient and P the significance.
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GDD using a base temperature of 0, 7.5, 10,
12.5, or 15 �C had a similar but slightly weaker
and less significant correlation than average
temperature (Fig. 3B, C, and E–I, R 5 �0.94
to �0.75, P < 0.001 to 0.008). Average daily
rainfall showed a positive and significant but
slightly weaker correlation (Fig. 3P, R 5 0.76,
P < 0.001). All remaining indices for diurnal
temperature difference, average daily and total
radiation, potential evapotranspiration, and ac-
tual transpiration showed very low to fair level
of correlation and low significance with R rang-
ing from �0.64 to 0.18 and P ranging from
0.008 to 0.77 (Fig. 3D and J–O).

The strongest and most significant regres-
sion was found for the average temperature
during cohort growth in this analysis. Within
the range of temperatures that we observed (daily
average 14.1 to 22.3 �C during fruit growth), SSC
decreased as temperature increased, resulting in

less sweet fruit. This is similar to the observed
decrease in SSC due to a late-season increase
in average temperature found in field experi-
ments (Jouquand et al., 2008; MacKenzie,
2011) and controlled growth chamber studies
(Wang and Camp, 2000). A similar pattern has
been observed for post-harvest storage of straw-
berries, in which an increase in average temper-
ature causes an increase in the respiration rate
and, hence, a reduced SSC (Barrios et al.,
2014; Shin et al., 2007).

Titratable acidity. All regressions showed
a negative Pearson correlation coefficient,
which means that TA decreased with an in-
crease in the value of the weather index, ex-
cept for average daily rainfall, which showed
a positive coefficient and reverse trend. Like
for SSC, the rainfall anomaly is likely due to
its correlation to temperature and general sea-
sonal patterns and does not necessarily

constitute a physiological relationship be-
tween TA and rainfall. The strongest and
most significant correlation was obtained for
the average temperature from the start of in-
dividual fruit development until harvest of
each cohort (Fig. 4A, R 5 �0.77, P <
0.001). The ANCOVA test confirmed that the
regression line was not significantly different
for each cultivar (P 5 0.54) and that the same
linear relation can be used for both cultivars.
Average minimum, maximum, and diurnal
temperature as well as GDD based on different
base temperatures showed a very similar but
slightly weaker and less significant regression
(Fig. 4B–I, R5 �0.78 to �0.55, P5 0.034 to
< 0.001) compared with the average tempera-
ture. Average daily rainfall showed a positive
but slightly weaker correlation (Fig. 4P, R 5
0.71, P 5 0.003). Average daily potential
evapotranspiration also showed a fair but less

Fig. 7. Long-term seasonal distribution of simulated soluble solids content and titratable acidity for each harvest every 3 to 4 d for cultivar Florida
Radiance for 10 growing seasons (2010–20) in Balm, FL, with observed data in selected seasons. The y-axis is not continuous and only includes dates
from the harvest period (November to March) of each growing season. The black line and triangle show predicted and measured soluble solids content,
respectively. The blue line and rhombus show predicted and measured titratable acidity, respectively.

Table 2. Statistical indices R2, Wilmott Index (d-statistic), Root Mean Square Error (RMSE), and Relative RMSE (RRMSE) for prediction accuracy (ob-
served versus simulated) of soluble solids content (SSC) and titratable acidity (TA) for each cultivar and season based on the average air temperature
during fruit growth.

SSC (%) TA (%)

Cultivar Season R2 Wilmott index RMSE RRMSE R2 Wilmott index RMSE RRMSE
Florida Radiance 2014–15 1.0 1.0 0.13 0.02 n/a n/a 0.02 0.02

2016–17 0.44 0.79 0.37 0.06 0.26 0.57 0.04 0.05
2017–18 0.97 0.99 0.23 0.35 0.90 0.94 0.03 0.04

All 0.94 0.98 0.27 0.04 0.80 0.91 0.03 0.04
Florida Brilliance 2016–17 0.31 0.72 0.40 0.06 0.09 0.16 0.05 0.07

2017–18 0.97 0.98 0.27 0.40 0.49 0.82 0.03 0.05
All 0.83 0.95 0.33 0.05 0.19 0.65 0.04 0.06

All All 0.89 0.97 0.3 0.05 0.55 0.84 0.04 0.05

Note: There is no value for R2 and Wilmott Index for ‘Florida Radiance’ for the 2014–15 growing season (indicated as n/a) because only one pair of sim-
ulated and observed data was available.
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significant correlation (Fig. 4L, R 5 �0.51,
P 5 0.05), whereas average daily radiation, total
radiation, total potential evapotranspiration, total
actual transpiration, and average daily actual tran-
spiration showed only a weak or no correlation
with a low level of significance (Fig. 4J, K, and
M–O, R5 �0.69 to�0.07, P5 0.80–0.005).

This analysis found that the strongest and
most significant regression of TA was for the
average temperature. Within the range of
temperatures that we observed (daily average
14.1–22.3 �C during fruit growth), TA de-
creased as temperature increased, resulting in
less acidic or tart fruit. This is similar to field
experiments (McKean, 2019) and a con-
trolled growth chamber study (Wang and
Camp, 2000), in which an increase in average
temperature resulted in a reduction in TA, but
to a lesser extent than the reduction in SSC.
A decrease in TA due to an increase in tem-
peratures has also been found for blackberries
(Naumann and Wittenburg, 1990) and grape-
vine (Sadras et al., 2013).

Firmness.Measurements taken with Firm-
Tech 2 and Texture Analyer XT2 were ana-
lyzed as different datasets, as no conversion
coefficient was available. Total solar radia-
tion had a weak positive but not significant
(R 5 0.37, P 5 0.36) and daily actual tran-
spiration a weak negative but not significant
(R 5 �0.4, P 5 0.33) correlation for the
firmness measurements taken with FirmTech
2 (Fig. 5K and N). Measurements with Tex-
ture Analyzer XT2 had a medium negative,
but not a significant correlation with average
daily potential evapotranspiration and total
potential evapotranspiration (Fig. 6L and M,

R 5 �0.68, P 5 0.064–0.066). Regardless of
the measurement device, firmness showed no
strong or significant correlation to any of the re-
maining weather indices, as indicated by low R
values that ranged from�0.33 to 0.14 and high
P values that ranged from 0.42 to 0.92. Overall,
no clear pattern could be found, with some re-
gressions being positive for FirmTech 2 but
negative for Texture Analyzer XT2, which is in
line with the observed lack of correlation be-
tween firmness measurements of different devi-
ces (Døving et al., 2005).

Other studies confirm the complexity of
fruit firmness due to interactions of genetics,
fruit shape and size, maturity stage, and envi-
ronment (Ag€uero et al., 2015; Alavoine and
Crochon, 1989; Capocasa et al., 2008; Døving
and Måge, 2001; Hietaranta and Linna, 1999;
Salentijn et al., 2003). The tested weather indi-
ces alone did not have a sufficient direct rela-
tionship with these processes.

Integration of quality variables into the
strawberry model

To verify the functioning of promising
quality-weather-relations, the derived linear
equations for the impact of average tempera-
ture during fruit cohort growth on SSC (Eq.
[16]) and TA (Eq. [17]) were integrated into
the process-based crop model.

SSC 5 a� b*Tavg, [16]

where a is the reference SSC value of 13%,
b the slope of �0.33 (%/�C), and Tavg the
average Temperature (�C) during fruit cohort
growth.

TA 5 a� b*Tavg, [17]

where a is the reference TA value of 1%, b is
the slope of �0.017 (%/�C), and Tavg is the
average Temperature (�C) during fruit cohort
growth.

The quality model is currently indepen-
dent from the existing simulation of plant
growth and development and is applied after
the simulation has been completed; however,
it uses detailed outputs of the simulation for
each individual cohort. The quality model
can be added as a new subroutine to the
CSM-CROPGRO-Strawberry model at a
later stage. For each simulation, the quality
model tracks the days on which a fruit cohort
is initiated, starting with flowering, when ini-
tial growth starts, and when the individual
fruits of the cohort are mature for each peri-
odic harvest. The quality model then calcu-
lates the average air temperature and other
weather indices for the period during which
each fruit cohort developed. Based on the av-
erage air temperature of a fruit cohort, a qual-
ity trait such as SSC and TA for a specific
harvest is then calculated. The average value
for a single harvest date is obtained by aver-
aging across all cohorts that are harvested on
a single harvest date, because some older ma-
ture fruit may be 2 to 3 d older than later ma-
turing fruit if the harvest interval is 4 d. The
quality trait equations are constrained by a
lower and upper bound, representing the
range slightly above and below the observed
data and biological limits above or below
which a quality trait is not expected to
change. In this analysis, a common equation
was established for two similar cultivars, but

Fig. 8. Simulated soluble solids content with average distribution boxplot of each harvest every 3 to 4 d for cultivar Florida Radiance for 10 growing seasons
(2010–20) in Balm, FL. The horizontal line is the mean, the box extent represents the first and third quartiles, the whiskers the minimum and maximum
quartiles, and the points the outlier values.
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this might not be the case for other cultivars
that may have a different observed range and
variability in the quality trait’s values (Hasing
et al., 2013). Therefore, the linear equations
and upper or lower quality trait bounds are
assumed to be cultivar specific. They will be
implemented in a future model version as cul-
tivar (ecotype) coefficients and may need to
be adjusted depending on available data or
general knowledge when expanding the qual-
ity model for new strawberry cultivars.

Quality model performance
The quality model performance was evalu-

ated by running the crop model with the two
new quality variables and comparing simulated
values for each individual harvest of each
growing season to the observed values for SSC

and TA from the same respective month and
day of each growing season. Observed SSC
values ranged between 5.4% and 8.4% and
simulated between 5.5% and 8.2% (Table 1).
The simulated SSC fits well with the observed
SSC, with the highest prediction bias being
10.5% and �0.5%. All statistical indices indi-
cate a good to very good model agreement for
prediction of SSC across all seasons and for
both cultivars with an r2 of 0.89, a Wilmott In-
dex of 0.97, and a RRMSE of 0.05. When con-
sidering individual seasons and cultivars, the
model performance for SSC was somewhat
more variable for both cultivars in the 2016–17
season, with a low prediction accuracy (r2 of
0.31–0.44, Wilmott Index of 0.72–0.79, and
RRMSE of 0.06) (Table 2). The average r2

across all seasons was less for cultivar Florida

Brilliance (0.83) than for cultivar Florida
Radiance (0.94).

The observed values for TA ranged be-
tween 0.63% and 0.80%, and simulated TA
values ranged between 0.65% and 0.78%
(Table 1). The simulated TA fit the observed
TA well, with the highest prediction bias be-
ing10.06 and �0.07%. All statistical indices
indicate a fair to good model agreement for
TA across all seasons and cultivars (r2 of
0.55, Wilmott Index of 0.84, and RRMSE of
0.05). When considering individual seasons
and cultivars, the model performance for
TA was somewhat more variable for both culti-
vars for the 2016–17 growing season with a
lower prediction accuracy (r2 0.09–0.29, Wilmott
Index 0.16–0.26, RRMSE 0.05–0.07) (Table 2).
The average r2 and Wilmott Index across all

Fig. 9. Distribution patterns of simulated soluble solids content (SSC) for cultivar Florida Radiance in 10 growing seasons (2010–20) in Balm, FL, for
2010–15 (top rows) and 2016–20 (bottom rows) growing seasons. Pie charts represent the % distribution of cumulative fruit weight (first and third row)
and seasonal harvest number (second and fourth row). Periodic harvests were summarized into brackets from 5% to 10% depending on their simulated
soluble solids content. White space indicates lower numbers of harvests in the respective season due to a shorter season.
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seasons was also significantly lower for the cul-
tivar Florida Brilliance (0.19, 0.65) compared
with the cultivar Florida Radiance (0.80, 0.91).

One of the reasons for the better perfor-
mance for the prediction of SSC and TA for
the cultivar Florida Radiance could be because
of the larger number of observations that pro-
vided a wider range for statistical evaluation. In
total, data from the 2014–15, 2016–17, and
2017–18 growing seasons were used to define
the quality correlations with the cultivar Florida
Radiance grown in all three seasons, whereas
the cultivar Florida Brilliance was only grown
during the 2016–17 and 2017–18 seasons.

The feasibility of using the same linear
equations for both cultivar Florida Radiance
and Florida Brilliance, although confirmed by
the ANCOVA test, might have to be reconsid-
ered in future analysis. The lower model perfor-
mance in predicting both observed SSC and
TA for the 2016–17 compared with the
2017–18 growing season could be because of
the lower number and more narrow range of
observations for the 2016–17 growing season.
For the 2016–17 growing season, six observa-
tions with a relatively narrow spread of 6.2% to
7.1% SSC were available, compared with the
2017–18 growing season with eight observa-
tions with a wider spread of 5.5% to 8.2%
SSC. Furthermore, it is also plausible that other
environmental conditions besides average air
temperature had a significant effect on SSC and
TA, but are not reflected in the linear quality
variables for the 2016–17 growing season.

The overall results confirm the correct imple-
mentation and functioning of the fruit SSC and
TA state variables in the strawberry quality
model, although there was relatively high vari-
ability in model performance. Wilmott Index
and r2 values above 0.7 are generally considered

very good to good and within acceptable ranges
for initial model development with limited data.
Values below 0.5 indicate the need for further
analysis and model refinement in these areas.

Model application
Long-term seasonal distribution of quality

traits’ values. The model application for the
seasonal analysis presented in this section is
limited to the cultivar Florida Radiance, in
which the quality model performance for both
SSC and TA were better than for the cultivar
Florida Brilliance. Because of the high impact
of weather variability on strawberry quality, we
analyzed the influence of seasonal weather vari-
ability on SSC, TA, and SSC/TA ratio for the
cultivar Florida Radiance with the new straw-
berry quality model for the Balm, FL, location
using 10 years of historical weather data. The
preliminary evaluation shows good perfor-
mance for predicting SSC (Fig. 7, r2 5 0.76)
and acceptable performance for predicting TA
(Fig. 7, r2 5 0.53) in seasons that were not al-
ready used for model development. Larger dis-
crepancies between individual predicted and
measured quality values would require addi-
tional analysis. They could be related to grow-
ing conditions outside the range of observed
data in the model development dataset (e.g.,
particularly warm, or cold growing periods).
Although further validation is recommended, it
shows that the model can predict with reason-
able accuracy and be used for a more in-depth
seasonal analysis of fruit quality.

Soluble solids content. Simulated SSC val-
ues showed significant variability among
years and throughout the growing season,
ranging from 5.3% to 9.4%. The typical sea-
sonal pattern (Fig. 8) showed a low SSC (5.5%
to 7%) during November and December (with

very few harvestable fruit), then a gradual
increase from 7.5% to 8.5% in January and
February, followed by a decline to 5.5% to 7%
in March. The seasons varied in the number of
harvests, having either a lower or higher SSC
content (Fig. 9, top). The 2010–11 growing sea-
son was the coldest and showed the highest
number of harvests with a high SSC (>8%),
whereas the particularly warm season of
2016–17 had the most harvests with a low SSC
(<6%). On the other hand, the large number of
“high SSC” harvests is less relevant when the
weight of respective harvests and their share of
the total harvest weight per season were consid-
ered (Fig. 9, bottom). The fruit growth period
for harvests that had a high predicted SSC in
2010–11 mainly occurred during the months of
December and early January, when the fruit
production was low due to the low temperature.
Therefore, the harvests with a high predicted
SSC had very little fruit weight and did not sig-
nificantly contribute to cumulative fruit weight
of this season. The opposite is shown in
2017–18, where the number of harvests with
5% to 6% SSC harvest was low, but the har-
vests and respective fruit development occured
during the warmer production time from Febru-
ary to early March. These harvests contain a
larger number and weight of fruit and the re-
sulting share of low (5% to 6%) SSC fruits of
cumulative fruit weight was almost 50%.

Titratable acidity. Simulated TA showed
a significant variability among years and
throughout the season, ranging from 0.64%
to 0.84% and followed a similar pattern as
SSC. The typical seasonal pattern (Fig. 10)
had a low TA (<0.7%) during November and
December, then gradually increased to 0.75%
to 0.84% in January and February, followed
by a decline to 0.64% to 0.75% in March.

Fig. 10. Simulated titratable acidity with average distribution boxplot of each harvest every 3 to 4 d for cultivar Florida Radiance and 10 growing seasons
(2010–20) in Balm, FL. The horizontal line is the mean, the box extent represents the maximum first and minimum third quartiles, the whiskers the mini-
mum and maximum quartiles, and the points the outlier values.
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Similar to SSC, the distribution of harvest
numbers and fruit weight for TA was vari-
able. Almost two-thirds of harvests were clas-
sified with a TA >0.75% in 2010–11
(Fig. 11, top), but their fruit development
occurred during the relatively cold months of
December and early January. Thus, they only
carried �25% of the cumulative fruit weight
(Fig. 11, bottom). Fewer than a third of the
number of harvests in 2018–19 had a low TA
(<0.70%) but their fruit grew mainly during
the high-yielding harvest period in February
and March. Hence, these harvests contributed
to more than 50% of total fruit weight.

SSC/TA ratio. The SSC/TA ratio was calcu-
lated by dividing the simulated SSC by the
simulated TA. Simulated SSC/TA showed a sig-
nificant variability among years and throughout

the season, ranging from 8.3 to 11.2 and fol-
lowed a similar pattern as SSC and TA. The
typical seasonal pattern (Fig. 12) showed a
low SSC/TA (<9.5) during November and
December, then gradually increased to 10.0 to
10.5 in January and February, followed by a de-
cline to 9.0 to 9.5 in March. The increase in
SSC/TA is caused by SSC increasing more
than TA with decreasing temperatures (or
stronger decreasing with rising temperatures),
as observed by Wang and Camp (2000). Like
SSC and TA, the distribution of harvest num-
bers and fruit weight was variable. Almost half
of harvests were classified with a SSC/TA
>10.5 in 2010–11 (Fig. 13, top), but their fruit
growth occurred during the relatively cold
months of December and early January and
they only carried �15% of the cumulative fruit

weight (Fig. 13, bottom). Fewer than 25% of
the harvests in 2016–17 and 2017–18 had a
low SSC/TA (<9) but their fruit grew mainly
during the high-yielding harvest period in
February and March and contributed to more
than 40% of total fruit weight in each year.

The 10-year simulations confirmed the
initial observation that fruits that grow during
periods of lower temperature have a higher
SSC (>8.0%) and TA (>0.8%), compared
with fruit that develop during periods of
a higher temperature and have a lower SSC
(<6%) and TA (<0.70%). The SSC/TA
ratio follows this trend. Changes in seasonal
weather patterns have a significant impact on
the seasonal distribution of harvested fruit
weight with either a lower or higher SSC and
TA. Particularly low and high simulated

Fig. 11. Distribution patterns of simulated titratable acidity (TA) for cultivar Florida Radiance during 10 growing seasons (2010–20) in Balm, FL, for
2010–15 (top rows) and 2016–20 (bottom rows). Pie charts represent the % distribution of cumulative fruit weight (first and third row) and seasonal har-
vest number (second and fourth row). Periodic harvests were summarized into multiple brackets ranging from <0.65 to >0.8% depending on their simu-
lated titratable acidity. White space indicates lower numbers of harvests in the respective season due to a shorter season.
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quality traits are associated with high or low
temperatures, respectively, in the month be-
fore harvest, representing the temperatures
during fruit growth. Based on the simulation
results and within the range of temperatures
observed (daily average 14.1–22.3 �C during
fruit growth), SSC/TA increased with de-
creasing temperature resulting in more sweet
and tart fruit. For instance, for the same har-
vest date on 28 Dec,. the simulated SSC
(9.4%) and TA (0.84%) were high in
2010–11 and the simulated SSC (5.5%) and
TA (0.65%) were low for the 2015–16 grow-
ing season. The difference can be explained
by a low temperature for December, with a
mean temperature of 10.6 �C in 2010 com-
pared with a mean temperature of 21.6 �C in
2015. Fruit harvested on 28 Dec in each sea-
son had been continuously exposed to a lower
or higher temperature. This is also reflected
in simulated fruit growth duration, with the
respective fruit cohorts taking up to 25 d to
reach harvest maturity in 2010 compared
with only 15 d in 2015. Despite the higher
content in SSC and TA, quantitative fruit har-
vests are much lower for the entire month of
December in 2010–11 (14 g/plant) compared
with 2015–16 (86 g/plant).

The application of the model for simulating
quality from a consumer perspective is limited,
as the current literature or grower practices lack
a clear threshold for a “good” SSC or TA in
strawberry production. Mitcham et al. (1996)
stated that a minimum of 7% SSC and a maxi-
mum of 0.8 TA, equivalent to an SSC/TA Ra-
tio of 8.75, are acceptable strawberry quality,

but this depends on consumer preferences. As a
general rule, however, lower values for SSC
and higher values for TA or a low ratio of SSC/
TA are often related to inferior sensory quality
and result in a lower rating in consumer taste
panels (Alavoine and Crochon, 1989; Azodan-
lou et al., 2003; Carlen and Ancay, 2003;
Giampieri et al., 2012; Jouquand et al., 2008).
Optimizing production and breeding toward a
higher SSC, SSC/TA ratio and other qualitative
compounds should, therefore, be an important
goal for growers, breeders, and other stakehold-
ers (Vitten et al., 2009). The described fruit
quality and yield dynamics are important, for
instance when considering the ongoing breed-
ing efforts to achieve overall higher quality
especially when focused on early-yielding culti-
vars while also improving or maintaining fruit
quality (Mezzetti et al., 2018; Whitaker et al.,
2017a). Decision support systems based on
crop models can help to inform and guide
research though these challenges (Jones et al.,
2017; Tsuji et al., 1998). The 10-year applica-
tion shown here highlights the importance of
seasonal and sub-seasonal weather patterns for
both quality and quantity of strawberry produc-
tion, although further evaluation of the model is
needed with additional experimental data.

Future work
Future research should evaluate different

strawberry cultivars and different environments
that represent additional weather conditions to
make the model more robust across a wider
range of environments, genetics, and manage-
ment options. Other strawberry cultivars were

found to have both a different range and magni-
tude of variation in quality traits such as SSC
(Whitaker et al., 2011) and, thus, would require
adjustment of model parameters. The single-
factor analysis could also be extended with a
multilinear or nonlinear regression to analyze
the combined impact of multiple weather and
growth variables on quality traits to account for
interdependences. The choice of weather indi-
ces, and particularly methods for calculation of
GDDs, can be extended as other methods could
be more suitable (Ruml et al., 2010). A differ-
entiation between rainfall and irrigation could
reveal different effects on quality (e.g., physical
damages or excess water uptake from rainfall
events) (Morton et al., 2017). Related to the da-
taset itself, going beyond a single location and
selected seasons might uncover curvilinear or
otherwise unexpected quality relationships out-
side the range of currently observed data. A
more extensive dataset would allow for a split or
independent dataset for model training and test-
ing, which would improve assessment of perfor-
mance and generalization of model results.
Improvement to the quality simulation could be
made by incorporating the current level of as-
similate production and relating this to fruit load
or number of “competing” fruits growing at the
same time. Correia et al. (2011) observed a
higher SSC in fruit grown under low crop load,
but only for some genotypes. Source-sink rela-
tions are already modeled to determine fruit
size, but the applicability to fruit quality remains
to be explored (Grossman and Dejong, 1994;
Heuvelink et al., 2004). The cohort tracking and
continuous harvesting capabilities of the model

Fig. 12. SSC/TA ratio, calculated from simulated soluble solid content (SSC) and titratable acidity (TA), with average distribution boxplot of each harvest
every 3 to 4 d for cultivar Florida Radiance and 10 growing seasons (2010–20) in Balm, FL. The horizontal line is the mean, the box extent represents
the maximum first and minimum third quartiles, the whiskers the minimum and maximum quartiles, and the points the outlier values.
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provide a suitable framework for further analy-
sis in this direction. In general, future experi-
mental studies should emphasize the more
precise monitoring of individual fruits and their
growth period and quality instead of seasonal or
monthly averages. The adoption of the model
by growers or strawberry industry for actual de-
cision support or strategic planning would likely
involve further work and participatory methods
to refine the decision problem and improve the
usability of the model (Jakku and Thorburn,
2010; Rose et al., 2016; Zhai et al., 2020).

The modeling approach for strawberries to
enable the simulation of continuous harvesting
and prediction of quality traits through tracking
of individual fruit cohorts, can be applied to

other crop models. For instance, a suitable next
crop for quality parameterization may be the
CROPGRO-Tomato model for the production
of processing tomatoes, in which a minimum
SSC of 4.0% or 4.5% is commonly required
for processing and where payout prices vary by
SSC content (Garcia and Barrett, 2006; North
Italian Tomato Producer Organization, 2019).

Conclusion

This study expanded the existing CSM-
CROPGRO-Strawberry crop model of DSSAT
with the prediction of quality traits for individ-
ual harvests of two commercial strawberry cul-
tivars: Florida Radiance and Florida Brilliance.

A seasonal analysis over a 10-year period re-
vealed a large variability in simulated SSC and
TA over 10 growing seasons due to the vari-
ability in air temperature in a subtropical re-
gion. Further studies will be valuable to verify
that the model simulates well for other environ-
mental conditions, strawberry cultivars, and
crop management scenarios and to extend the
simulation to other quality traits and potentially
other vegetable and fruit crops.
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