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ABSTRACT The use of black soldier fly (BSF) as a bioconversion agent has become an emerging break-
through in waste processing. Organic wastes, such as household waste and livestock manure, can be
used as a growth medium for BSF larvae and converted into favorable products. The average compost-
ing time of BSF larvae is around 12– 15 days, which is faster than that of microbes or earthworms (4–5
weeks). BSF shows potential as a feed and food ingredient because it has a high nutritional content,
such as enzyme, chitin, medium-chain fatty acid, and antimicrobial peptides, and can be used as a
functional food ingredient. From an economical perspective, the short composting period and the
role of BSF as a feed and food alternatives can benefit producers and consumers. The safety aspects
of BSF utilization, including microbial safety, chemical safety, and environmental safety, warrant clar-
ification to ensure BSF safety. However, some challenges arise regarding the use of BSF larvae (BSFL)
as a bioconversion agent, such as for heavy metal residues, pesticide residues, pathogens, and antimi-
crobial gene transmission and residues that require the best composting strategy for mitigation. The
environmental safety of organic waste treated with BSFL has a good impact; therefore, this strategy
can be used to reduce global warming. Research must focus on effectively and safely enhancing the
cultivation and processing of BSF and its applications as a functional food. In conclusion, BSF is a
profitable alternative for organic waste bioconversion in developed and developing countries.

© The Author(s) 2022. This article is distributed under a Creative Commons Attribution-ShareAlike 4.0 International license.

1. INTRODUCTION
One of the huge challenges in almost all the cities in In-
donesia is waste management. For example, the amount of
waste in East Java in 2018 reached 5,064.88 tons/day con-
sisting of 43.24% food waste, 17.73% wood branches and
leaves, and 39.03% inorganic waste (Ministry of Environ-
ment and Forestry 2022). With the fast urbanization and
agricultural land transformation into accommodation gen-
erating bulk waste in a quick span in some areas and the
growing population, an upsurge in waste has become issue
in developed and developing countries and may shortly be-
come the most prominent concern for the world (Shazia
Iqbal et al. 2021). The food supply chain generates 1.3 billion
tons of agricultural and food waste every year (Yeona 2022).
Current environmental, health, economic, and food secu-
rity issues are related to the increasing use of unsustain-
able food and feed production, resulting in large amounts
of organic waste. Thus, an economical and environmentally
friendly strategy to manage organic waste is necessary.

The cultivation of insects as a bioconversion agent for
organic wastes, such as food waste and livestock manure,
can be adopted to produce nutrient-rich feed and organic
fertilizer (Surendra and Kuehnle 2019). Insects can also act
as an agent that bioconverts chicken and pig manure up
to 50% and reduces phosphorus and nitrogen waste up to
75% (Newton et al. 2005a; Abd El-Hack et al. 2020). Several

types of insects belonging to the order of Lepidoptera, Hy-
menoptera, Coleoptera, Hemiptera, Trichoptera, Odonata,
and Diptera can decompose organic wastes and reduce
odors and the presence of pathogenic microbes (Surendra
et al. 2020). Other insects can live in various organicwastes,
such as the Hong Kong caterpillar or mealworm (Tenebrio
molitor) (Azizah et al. 2019; Schiavone et al. 2019), locust in-
sects (Locusta migratoria and Schistocerca gregaria) (Aleg-
beleye et al. 2012; van Huis 2013), crickets (Acheta domestica
and Gryllodes sigillatus) (Wang et al. 2005; Navarro del Hi-
erro et al. 2020), house fly (Musca domestica) (Adesina et al.
2012; Okah and Onwujiariri 2012), and black soldier fly (BSF)
(Hermetia illucent) (Purnamasari et al. 2019).

The BSF is one popular insect potentially developed as
a bioconversion agent for various organic wastes and live-
stock manure (Hermetia illucent). Its cultivation is easy,
cheap, and fast, and this insect can simultaneously produce
nutrient-rich animal feed (Liu et al. 2017; Stadtlander et al.
2017), organic fertilizers (Liu et al. 2017; Song et al. 2021), fuel
(Rehman et al. 2018; Kamarulzaman et al. 2019), and other
derivative products (Caligiani et al. 2018). Several studies
havementioned the success of BSF larvae (BSFL) and pupae
as feed for animals, such as fish (Bruni et al. 2018), poultry
(Cullere et al. 2018), and pigs (Tan et al. 2020), as a substi-
tute for the main protein source (usually fish meal or soy-
bean meal). The BSF is not a vector of disease in humans
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and animals (Diener et al. 2015) so it is safe for cultivation
on awide scale. Adult BSFs do not eat because theirmouths
do not function, and they die after laying eggs (Wardhana
2017). BSFL modify feces, reduce pathogenic bacteria such
as Escherichia coli and Salmonella enterica (Erickson et al.
2004), and contain natural antibiotics (Newton et al. 2005b).
These promising abilities must be explored to improve the
production and productivity of BSF for the application of
their derivative products to various types of livestock and
plants. This review discussed the BSF life cycle, BSF biocon-
version, utilization, safety aspects, and future application in
producing various kinds of derivative products for organic
fertilizers, nutrient-rich animal feed, bioactive compounds.
The challenge of BSFL utilization was also addressed.

2. BSF LIFE CYCLE
The BSF is an insect that belongs to order Diptera and fam-
ily Stratiomyidae and is found in subtropical and tropical cli-
mates (46° North –42° South Latitude) (Surendra et al. 2016).
Its life cycle consists of five phases, namely, egg, BSFL, pre-
pupa, pupa, and imago, (Martínez-Sánchez et al. 2011). BSF
egg and larval development (Maglangit and Alosbanos 2021)
are shown in Figure 1. The BSF life cycle is holometabolous
and starts from the egg phase. BSF fly eggs are oval with a
length of 1 mm and color of pale white that gradually turns
yellow until hatching time; a colony usually produces 200–
900 eggs (Fahmi 2015; Wardhana 2017). The number of eggs
produced is directly proportional to the body and wing size
of BSFs (Gobbi et al. 2013); adults can optimally lay eggs
at a humidity of more than 60% (Tomberlin and Sheppard
2002). Female flies lay eggs near food sources, such as or-
ganic waste.

Eggs hatch into larvae within 3–6 days at 24°C (Diener
et al. 2011; Holmes et al. 2012). BSFL have an oval, flattened
body shape about 12–17 mm long and 11 body segments with
several transverse hairs. BSFL obtain energy from various
organic wastes that are still full of nutrition, such as exc-
reta or chicken manure (Newton et al. 2005b), palm ker-
nel meal/PKM (Fahmi 2015); tofu waste (Purnamasari et al.
2019); kitchen waste (Newton et al. 2005b); and fruit and
vegetable waste (Žáková and Borkovcová 2013). The larva
runs as a decomposer, and this stage is the longest phase in

BSF life cycle; BSFL are also known as a bioconversion agent.
BSFL can live in wide temperature and pH ranges (Myers
et al. 2008; Tomberlin et al. 2009), and their digestive tract
contains several bacteria, such as Micrococcus sp., Bacillus
sp., Streptococcus sp., and Aerobacter aerogens (Banjo et al.
2005). The quantity and quality of the media used in larval
growth affect the body’s nutrient content (van Huis 2013)
and larval weight (Sundu and Dingle 2002). The growth
rate of BSFL is extremely fast until the 8th day. The body-
weight of the larvae also continues to increase until they are
about to enter the prepupa stage. The white-skinned lar-
val stage lasts for approximately 12 days. The larvae begin
to turn brown and darken a week later (Rachmawati et al.
2015) and reach the prepupa stage for the next 25–31 days
(Myers et al. 2008).

Prepupa does not require feeding and turns into a pupa
bymigrating to a dry and protected place. In the pupa stage,
BSFL are at their maximum size and store a large amount of
fat for defense duringmetamorphosis (Newton et al. 2005a).
The prepupa phase starts on the 19th day, and the pupa
stage begins on the 24th day. The pupa stage takes place
for the next 8 days and lasts for 6–7 days until the individ-
ual becomes an imago/adult fly (Fahmi 2015; Rachmawati
et al. 2015).

BSF adults only rely on body fat reserves obtained dur-
ing the larval stage, so they do not act as a vector of dis-
ease and bacteria. Adult flies only need water to survive for
6–8 days (Tomberlin and Sheppard 2002) and require opti-
mal environmental conditions for reproduction, namely, an
average daytime temperature of 31.8°C; BSF adults are tol-
erant of various temperatures (range: 15°C–47°C) (Diener
et al. 2011). The breeding and egg laying of BSF are influ-
enced by time, light intensity (135 mol m−2 s−1) (Zhang et al.
2010), light wavelength (700 nm) (Briscoe and Chittka 2001),
temperature (24°C–40°C) and relative humidity (30%–90%)
(Tomberlin and Sheppard 2002).

3. ORGANIC WASTE BIOCONVERSION WITH BSF
Bioconversion by insects is an attractive solution that can
overcome the problems of organic wastemanagement. Bio-
conversion converts organic waste into high-value prod-
ucts, such as a source of methane energy, through fermen-

FIGURE 1. BSF egg and larval development (Maglangit and Alosbanos 2021)
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TABLE 1. Organic waste reduction by BSFL.

Reducing material Reducing the per-
centage of BSFL

References

Cattle waste 33%–58% (Myers et al. 2008)
12.7% (Gold et al. 2020)

Poultry waste 50%–56% (Myers et al. 2008;
Siddiqui et al. 2022)

Organic waste 66%–79% (Diener et al. 2011)
Fresh fruit waste 46.7% (Lalander et al. 2019)
Vegetable waste 58.4% (Gold et al. 2020)
Swine manure 86%–88% (Awasthi et al. 2020)
Food manufacturing
byproducts

52% (Siddiqui et al. 2022)

Human feces 39.1%–48.6% (Gold et al. 2020)

tation involving living microorganisms, such as bacteria,
fungi, or insect larvae (family: Chaliforidae, Mucidae, and
Stratiomydae) (Newton et al. 2005a). Furthermore, insect
larvae can convert a large number of nutrients fromorganic
waste (Leong and Kutty 2020) by up to 70% in two weeks
and store them as protein-rich biomass to replace fishmeal
(Diener et al. 2015). BSF life cycle and potential benefits are
shown in Figure 2.

BSFs have been propagated as organic waste converter
agents because they eat a variety of organic materials four
times their bodyweight and produce larvae containing 40%
crude protein and 30% fat biomass. Therefore, the con-
version of organic waste by BSFL is an attractive recycling
technology with many uses, such as in waste reduction and
stabilization and value-added animal feed, and opens up
new economic opportunities for small entrepreneurs in de-
veloping countries (Diener et al. 2015; Nguyen et al. 2015).
Waste reduction by BSFL is commonly used as an indica-
tor to determine the bioconversion efficiency of the type
of waste and is calculated as the difference between the
feed provided and residue and then divided by feed (Sid-
diqui et al. 2022). Larval survival and growth are affected
by the C/N ratio, protein level, and volatile solid content of
the provided substrate (Rehman et al. 2018; Gold et al. 2020).
High fiber concentrations negatively affect the bioconver-
sion efficiency and larval growth (Bohm et al. 2022). Other
factors influencing bioconversion include feeding rate, lar-
val density, and feeding frequency (Diener et al. 2011). The
added synergistic microorganisms, fungi, or exogenous mi-
crobes improve the bioconversion of organic wastes and
do not negatively affect the nutrient value of BSF biomass
(Surendra et al. 2020). The percentage of reduction by or-
ganic waste bioconversion is shown in Table 1. By compar-
ison, the percentage of reduction using vermicomposting
is only 4%–5% of food waste (Ali et al. 2015) and 18% of
cow manure (Contreras-Ramos et al. 2005). He et al. (2021)
reported that bioconversion using the mealworm of rice
straw and corn straw can produce carbon reduction of up
to 16.3% and 13.67%. Therefore, BSFL bioconversion is the
most efficient among these methods.

Residues from BSFL are used as compost and have nu-
tritional levels suitable for use as fertilizers and soil amend-
ments. The rate of waste consumption by BSFL varies ac-
cording to the type of waste, number of larvae, moisture
content, temperature, and larval size (Alvarez et al. 2019).
BSFL can reduce pathogen bacteria, such as Escherichia
sp., Salmonella sp., Vibrio sp., and Yersinia sp., allowing the

compost end product to meet the requirements for use as
fertilizer and/or soil improver (Awasthi et al. 2020). Table
2 shows the emission potential of several greenhouse gases
(GHGs) during composting by some bioconversion agents.
BSFL produces less and cleaner GHG than vermicompost
and traditional composting in agricultural waste and food
waste substrate. GHG emission is also determined by other
factors, such as C/N ratio, pH, composting time, substrate,
and aeration rate (Rehman et al. 2018; Li et al. 2020; Lind-
berg et al. 2022a).

4. BSF NUTRIENT COMPOSITION
Among various insects that can be developed as feed, BSF
has quite high protein and fat contents ranging 40%–50%
and 29%–32%, respectively (Bosch et al. 2019). These nu-
trients include essential amino acids; thus, allowing BSF
to be a substitute for fish meal and MBM for animal feed.
BSF is also rich in lauric acid (36.74%) (Fitriana et al. 2022).
BSFL can be produced easily and quickly (Mawaddah et al.
2018) and can decompose various kinds of organic mat-
ter, such as livestock manure, vegetable waste, and kitchen
waste (Spranghers et al. 2018), and agroindustrial byprod-
ucts (Meneguz et al. 2018). The use of different substrates
will produce different biochemical compositions of larvae.
Protein sourced from insects is environmentally friendly,
economical, and has an important role in nature. Insects
have high feed conversion rates and can be reared and
mass-produced (Li et al. 2015) and can reduce virus survival
(Lalander et al. 2015). Antibacterial studies in Korea showed
that methanol extract from BSFL has antibiotic properties
against gram-negative bacteria but is not effective against
gram-positive bacteria (Kim et al. 2011).

Omega-3 and -6 fatty acids are present in BSF biomass
and could be enriched by manipulating the composition
of substrates, such as microalgae, seaweed, and fish offal
(Surendra et al. 2020). BSF accumulates manganese (Mn)
and micronutrient calcium (Ca) up to 6% of dry matter
(Spranghers et al. 2018). BSFL has relatively high protein
content and can be potentially used as protein sources (Ta-
ble 3). Compared with other insects usually used for an-
imal feed, such as Jamaican field cricket and mealworm
with crude protein levels of 67.7% and 64.5%, respectively,
BSFL has lower crude protein level at 44.7%–44.9%. De-
spite this disadvantage, BSFL adults aged 2 weeks have the
lowest methane emission compared with Jamaican field
cricket, mealworm, and soybean during rumen fermenta-
tion (Jayanegara et al. 2017).

5. POTENTIAL USE OF BSF AS FEED
Feed availability is a major factor in the success of livestock
business, whether in the form of poultry, ruminant, or fish
farming. Fish waste is the main rawmaterial for supporting
protein, but its availability fluctuates. For increasing the
sustainability of meat production, insects have emerged
as innovative feed ingredients for several livestock species.
The effect of BSFL on animal performance is shown in Ta-
ble 4. Potential alternative raw materials with high protein
content include maggots from BSF, which also contain ani-
mal protein. As a component of a complete diet, BSFL meal
contains the recycled lost nutrients because the residual
fatty acids and amino acids of organic wastes are incorpo-
rated into the biomass high in fat and protein (Henry et al.
2015) and even functional molecules (Iaconisi et al. 2017).
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BSFLmeal can be applied in livestock diets as a replacement
part or even a complete substitute for conventional protein
sources, such as soybean meal and fishmeal. However, in-
sect meal has a high ratio of omega 6 andmonounsaturated
fat, and fish meal is rich in EPA (14%) and DHA (16%) (Bar-
roso et al. 2017). Heavy metals and nonessential elements
do not accumulate in BSFL but rather in the residues (Bohm
et al. 2022).

6. BIOACTIVE COMPOUND IN BSF
Owing to its nutritional content, BSF is generally used as
feedstuff of animals, including those in aquaculture and
livestock production. The use of BSF as a prebiotic and
antimicrobial agent has been discovered recently, and the
bioactive components of BSF were found to be enzymes,
chitin, peptides, and polysaccharides. The bioactive con-
tent is a component that has potential to be developed in
addition to BSF as a protein-rich feed source. The protein
of BSFL can be hydrolyzed to produce antioxidant peptides
for functional foods (Zhu et al. 2020), cosmetic industries,
and pharmaceutical products (Almeida et al. 2022).

6.1 Enzyme
The BSF also secretes beneficial enzymes related to di-
gestion, such as amylase, lipase, and protease, dur-
ing metabolism. The proteases with high activity in
the digestive tract of BSFL include leucine arylami-
dase, �-galactosidase, �-mannosidase, �-fucosidase, and �-
galactosidase (Kim et al. 2021). Cellulase is another enzyme
that is presumed to be produced by BSFL, especially in its
digestive tract, due to the discovery of the novel CS10 cellu-

lase gene in BSF, which is expected to be an excellent oppor-
tunity for cellulase enzyme producers in the industry (Lee
et al. 2014). Several studies also reported cellulase and lign-
inase enzyme activity, such as corncob fermentation with
BSFL to reduce lignin by 2% and cowmanure processing us-
ing BSFL to reduce hemicellulose level by 5% and cellulose
content by 17% (Li et al. 2015; Gold et al. 2018).

6.2 Chitin
As a bioconversion agent, BSF has an excellent ability to pro-
duce chitin polymers or polymer of glucosamine up to 7%
of BSF biomass on dry matter basis (Surendra et al. 2020).
The chitin content of BSF varies with its life phase. Chitin
content in various stages of BSFwith differentmethod anal-
ysis are shown in Table 5. In particular, the puparium and
cocoon phases have the highest chitin content. Crystalline,
the chitin form found in BSF, is alpha chitin. As a feed in-
gredient, the high chitin content of BSF can interfere with
its digestibility as a monogastric feed. Nafisah et al. (2019)
stated that physical activity, such as exoskeleton separa-
tion and fermentation using chitinolytic bacteria, can in-
crease protein content and reduce fiber content by 65.02%.

The crystallinity index of chitin varies from 49.4%
(BSFs) to 25.20% (BSF pupa). The chitins from BSF have
good thermal stability with a maximum degradation of
chitin BSF imago and BSF pupae at 363°C and 371°C, re-
spectively (Purkayastha and Sarkar 2020). Soetemans et al.
(2020) reported that the thermal property of chitin varies
in different life stages with 366.1°C, 356.6°C, and 356.7°C
for puparia, flakes, and adult BSF , respectively. Given the
characteristics of chitin obtained fromBSF, this insect has a
huge opportunity to be developed for application in various

FIGURE 2. BSF life cycle and potential benefits.
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TABLE 2. Green gases emission produces by different composting methods.

Variables BSFL Vermicomposting Composting

Agriculture waste

Total C loss (%) - 53.2 (Yang et al. 2017) 48.9 (Yang et al. 2017)
Total N loss (%) - 15.5 (Yang et al. 2017) 27.8 (Yang et al. 2017)
CH4 emission (g/kg) 0.08; 0.49; 0.76 (Pang et al. 2020) 2.28 (Yang et al. 2017) 10.52 (Yang et al. 2017)
N2O emission (mg/kg) 1.03; 0.91; 1.36 (Pang et al. 2020) 5.76 (Yang et al. 2017) 12.29 (Yang et al. 2017)
NH3 emission - - -
Total CHG emission (kg CO2-
eq/ton dm)

3.12; 16.93; 26.15 (Pang et al. 2020) 8.1 (Yang et al. 2017) 22.8 (Yang et al. 2017)

Food waste

NH3 emission (g/kg) 0.15–1.68 g/kg (Pang et al. 2020)
; Below detection limit (Lindberg
et al. 2022b)

4 ± 1 (Lleó et al. 2013); 15.3–34.0
Hwang et al. (2020)

2.61 (Komilis and Ham 2006) ; 2.37
(Yang et al. 2013)

CH4 (g/kg) 1.0–3.0 (Lindberg et al. 2022b) ;
0.06–0.79 (Lindberg et al. 2022a)

46.4–69.5 (Hwang et al. 2020) 88.1 (Hwang et al. 2020)

NO2 (g/kg) 0.19–1.0 (Lindberg et al. 2022b);
0.06–0.50 (Lindberg et al. 2022a)

0.27 (Hwang et al. 2020) 4.73 (Hwang et al. 2020)

- Not reported

TABLE 3. Nutrient content of BSF larvae fed with different substrates.

Substrate Nutrient composition References

Food waste Crude Protein 32.80%–44.06%;
Crude Fiber 30.42%–40.96%

(Fitriana et
al. 2022)

Abattoir
waste

Crude Protein 44%–44.4% (Lalander
et al. 2019)

Digested
sludge

Crude Protein 42.3%–42.9% (Lalander
et al. 2019)

Pig manure Crude protein 42.83% Crude lipid
36.52%

(Wang et al.
2020b)

Chicken ma-
nure

Crude protein 41.72% Crude lipid
36.18%

(Shumo
et al. 2019)

industries, such as feed, food, textile industry, and tissue
engineering, and as an adsorbent in water and wastewater
treatment (Leni et al. 2017; Purkayastha and Sarkar 2020).

According to Leke-Aladekoba (2018), chitin from BSF
has an antimicrobial activity against Staphylococcus au-
reus. Giving BSF meals to laying hens can also increase
egg production and egg weight and adjust the composition
of the gut microbiome, especially the chitin-degrading mi-
crobes that increase the production of short-chain fatty
acids. Therefore, BSF feed can be used as an excellent pre-
biotic for the gutmicrobiota (Borrelli et al. 2017) and reduce
the use of antibiotics.

6.3 Lauric Acid
Lauric acid is a medium-chain fatty acid (C12:00) or a sat-
urated fatty acid that is popularly used as an antimicro-
bial agent, especially against gram-positive bacteria. One
of the stages in the life cycle of BSF is prepupae, which
are rich in protein and fatty acids; the fat in prepupae can
reach as much as 0.58 g C12: 0/100 mL, which is benefi-
cial to suppress the growth of Lactobacilli and Streptococci
(Spranghers et al. 2018). The lauric acid content of BSF
with various feeding strategies are shown in Table 6. These
medium-chain fatty acids are widely used as antibacterial
agents, such as a feed additive that can fight pathogenic
bacteria including Streptococcus suis, E. coli, Clostridium

perfringens, Salmonella poona, and S. aureus and functions
as an immunomodulator in livestock (Jackman et al. 2020;
Widianingrum et al. 2019). Lauric acid also represses Liste-
ria monocytogenes, which is a foodborne pathogen that can
infect animal production (Çenesiz and Çiftci 2020), and can
be converted into monolaurin that has antibacterial, antivi-
ral, and antiprotozoal properties (Almeida et al. 2022).

The addition of lauric acid in the end also improves live-
stock productivity, such as feed efficiency, average daily
gain, eggmass, and animal health in pig and poultry (Irawan
et al. 2020; Elrod et al. 2019; Madeira et al. 2020). Lauric
acid also improves productivity in beef and dairy cattle, in-
cluding carcass percentage, IMF, and meat and milk quality
(Nguyen et al. 2020; Wang et al. 2020a).

Lauric acid from BSF is safe for cattle and can be used
to fight against the adult nymphs or larvae of Rhipicephalus
(Boophilus) microplus (dos Santos et al. 2020). As an an-
tivirus, it can also retrain African swine fever virus, herpes
simplex virus type I, and coronavirus (Jackman et al. 2020;
Aldridge 2020). Lauric acid can also be used as an anticoc-
cidial (Price et al. 2013). Other essential fatty acid in BSF
larva oil are palmitic, linoleic, and oleic acid often used as
emulsifiers, emollients, and stabilizers of cosmetic formu-
lation (Almeida et al. 2022).

6.4 Antimicrobial Peptides (AMPs)
AMPs perform an essential role in innate immunity as the
first line of protection against pathogens, including bacte-
ria, viruses, and fungi. AMPs are small molecules with size
varying from 10 to 100 amino acid residuals and are pro-
duced by all living animals and plants (Vogel et al. 2018). Ow-
ing to their vast biodiversity, insects are among the most
prosperous and most innovative origin for AMPs. Moretta
et al. (2020) identified AMPs in BSFL using bioinformat-
ics and found that 57 putatively active peptides have the
potential to be developed as antimicrobials, antifungals,
anticancer, and antivirals. Four peptides with an aver-
age size of 4.2 kDa can fight Helicobacter pylori (Campy-
lobacteria: Heliobacteria) and E. coli (Enterobacterial: En-
terobacteriaceae) and thus can be employed as a substi-
tute for antibiotics against bacteria with increasing resis-
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tance (Alvarez et al. 2019). Three AMPs from BSF, namely,
hidefensin-1, hidiptericin-1, and hiCG13551, were cloned
and transferred to E. coli to produce transgenic antimicro-
bials to fight entomopathogenic bacteria in Bombyx mori
silkworm; hidefensin-1 and hidiptericin-1 successfully in-
hibited the growth of E. coli and Streptococcus pneumonia,
and HiCG13551 suppressed the growth of E. coli and Strep-
tococcus pneumonia (Xu et al. 2020). A study of AMPs in BSF
confirmed that a new peptide (defensin-like peptide, DLP)
could challenge gram-positive bacteria, including MSRA
(Park et al. 2014). Another type of AMP is cecropin-like pep-
tide 1, which can fight against gram-negative bacteria (Park
and Yoe 2017). AMPs in BSFL are associated with more than
50 genes, 26 of which are classified as defensins. Therefore,

attention must be paid to gut microbiota adaptation in live-
stock because the modification of feed given will modulate
the gut microbiota population (Vogel et al. 2018). The an-
timicrobial peptides present in BSF biomass show potential
use against fungi and viruses.

7. SAFETY ASPECT OF BSF UTILIZATION

7.1 Microbial safety
The popularity of BSF for organic waste bioconversion into
quality products, including products with high protein con-
tent, and a source of polymers and beneficial bioactive ma-
terials, has continued to grow and is increasing globally.
Therefore, the assessment of BSF safety as a portion of food,

TABLE 4. Nutrient content of BSF larvae fed with different substrates.

Animal Treatment Result Reference

Broiler substituting 250 g/kg (w/w) of the basal diet
with BSFL meal

BSFL meals are excellent sources of AME for
broilers and a valuable source of digestible
amino acids

(De Marco et al. 2015)

Layer hen replacement of soybeanmeal with BSFLmeal
on laying hens, from 24 to 45 weak of age

led to a more favorable feed conversion ratio
in hens

(Marono et al. 2017)

A protein replacement of 25% with BSF larvae
in the diet of laying hens

Positively affected on egg mass, Albumin
to globulin ratio decreased, cholesterol and
triglycerides decreased

(Abd El-Hack et al. 2020)

Quail substitution of soya bean meal and oil with
defatted black soldier fly larvae meal

feasible and provide the meat of comparable
quality to that of quails fed a conventional
diet

(Cullere et al. 2018)

replacement to the common soya bean meal
and soyabean oil with BSFL Meal up to 15%

Increase digestibility of nutrients, productive
performance, carcass, and meat quality

(Cullere et al. 2016)

Duck defatted BSF larva meal into the diets of Mus-
covy ducks

did not affect the slaughtering performance
of the birds or the meat quality parameters

(Gariglio et al. 2021)

Swine suitable ingredient in growing pig diets its relative deficiency inmethionine + cystine
and threonine requires the inclusion of those
amino acids for the preparation of balanced
diets. The ash content of the meal is also
high, and this requires attention

(Tan et al. 2020)

Fish partially defatted black soldier fly larvae
meal and mechanically extracted black sol-
dier fly larvae oil (BSFLO)

The digestibility of diets containing BSFL
meal or BSFL oil was significantly superior
to in the Reference diet. The maximum in-
clusion of each BSFL meal and BSFL oil rec-
ommended in rainbow trout diets is 13% and
10%

(Dumas et al. 2018)

suitable to replace up to 50% of dietary Fish
Meal protein with Defatted BSFL Meal

boosted antioxidant status, decreased the
hepatopancreas lipid and serum cholesterol
content of juvenile Jian carp (Cyprinus carpio
var. Jian)

(Li et al. 2017)

partial replacement of Fish Meal protein up
to 50% by Defatted BSFL Meal protein

reduced the feeding cost by 15.5% of Euro-
pean sea bass, Dicentrarchus labrax

(Abdel-Tawwab et al. 2020)

50%–100% replacement of Soybean Oil with
this n-3 enriched BSF Oil

positively influences the performance and
health status of juvenile mirror carp, im-
provement in the serum biochemical profile
as immune status indicator, less inflamma-
tory state of the liver and head kidney

(Xu et al. 2020)

TABLE 5. Chitin content in various stages of BSF with different method analysis.

Sources Gravitrimetric (Soete-
mans et al. 2020)

Glucosamine (Soete-
mans et al. 2020)

Gravitrimeter (Wang
et al. 2020a)

HCL-NaOH (Brigode
et al. 2020)

ADF-ADL (Brigode
et al. 2020)

Larvae 9.5% 7.8% 3.6
Prepupa 9.1% 10.9 3.1
Pupa 10.3% 10.7 14.1 25.39 21.19
Shedding 31.1% 23.7
Cocoon 23.8% 22.4
Flies 5.6 8.4 2.9 7.75 26.78
Flakes 20.69 7.94
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feed, and pharmaceutical ingredient is essential consider-
ing that humans are end-users (Barroso et al. 2017; Lock
et al. 2016). Safety assessment aims to prevent the spread
and contamination of infection agents to humans. A study
of BSF gut microbiota revealed that the use of BSF as feed
requires the pretreatment of the feedstock and posthar-
vest to prevent and depreciate pathogenic contamination
(Khamis et al. 2020). BSF as a feed must be free from con-
tamination or as a carrier that carries pathogens, pesti-
cides, heavy metals, and pharmaceuticals (Surendra et al.
2020). BSF as a bioconversion tool converts organic waste
into a protein source, so many concerns arise about its
safety (Swinscoe et al. 2019). Livestock producers must
maintain cleanliness and safety from farm to fork (FAO
2008).

Contamination can happen through the distribution of
handling and storage of raw material of BSF. Microbiolog-
ical contamination can also occur in the finished product
during packaging and distribution or from the environment.
Therefore, the identification and assessment of critical con-
trol points are necessary to ensure the safety of BSF naval
vessels (Swinscoe et al. 2019). BSF production also affects
its safety; for example, differences in BSF feed produce
different macrobiotics in larvae. A food safety study pro-
vided feed that was inoculated with mycotoxins [aflatoxin
B1, ochratoxin A or zearalenone, and deoxynivalenol (DON)]
above the maximum limit (Reg (EC) 1881/2006; EC 2006)
and found that thesemycotoxins were secreted and did not
accumulate in the body of BSFL (Varotto Boccazzi et al. 2017;
Camenzuli et al. 2018). No evidence can confirm that BSF
is a harbor from pathogenic viruses, but it may be a vec-
tor. As a protein source, BSF may also have the potential as
an allergen. In some cases, the larva can even have viable
Salmonella at the end of the rearing (Erickson et al. 2004).
A recent study reported that BSFL did not show any sig-
nificant reduction in Salmonella in the contaminated sub-
strate during rearing (De Smet et al. 2021). By contrast, the
substrate inoculated with S. aureus showed a decrease af-
ter 6 days and was counted below limit detection (Gorrens
et al. 2022). Regardless, some investigations reported that
extracts of BSFL have antimicrobial effects (Park et al. 2014;
Xia et al. 2021). Being free of contamination is beneficial to
maintain the utilization’s safety aspect of a substrate.

7.2 Chemical safety
When BSF is used as a bioconversion agent, heavy metal
contamination is possible if the organic waste used as BSF
feed is contaminated with heavy metals. Diener et al. (2015)
fed BSFL with a diet containing heavymetals Pb, Cd, and Zn
at low, medium, and high levels and later detected these

TABLE 6. The lauric acid content of BSF with various feeding strategies.

Lauric acid
content (%)

Reference

Chicken feed 0.05 ± 0.01 (Schreven et al. 2021)
Crambe press cake 0.20 ± 0.04 (Schreven et al. 2021)
Crambe seed meal 2.92 ± 0.07 (Schreven et al. 2021)
Flax cake 0.76 ± 0.18 (Hoc et al. 2020)
Food waste 36.96 (Mohamad et al. 2020)
Bacterial dried cell 48.70 (Mohamad et al. 2020)
Preconsumer waste 27.8 (Hong T. et al. 2018)

heavy metals in the bodies of the larvae, prepupa, and
adults. However, heavy metal zinc was not detected in
the BSF larvae, prepupa, and adults when its contamina-
tion was at low levels. BSF can also accumulate naturally
heavy metals (cadmium, lead, mercury, and arsenic) in feed
ingredients, such as in seaweed with the highest retention
percentage of 93% for Cd and the lowest of 22% for arsenic
(Biancarosa et al. 2018). The accumulation of cadmium in
BSF prepupa must be considered as an animal feed ingredi-
ent Diener et al. (2015). Exposure to heavy metal Cu and
Cd also influences the fresh body weight of BSFL; expo-
sure to Cu at 100–400 mg/kg did not influence the fresh
weight of BSFL, exposure to Cu at 800 mg/kg significantly
decreased the fresh body weight, and exposure to Cd at
100–800 mg/kg did not influence the fresh body weight
(Wu et al. 2020). Heavy metal concentrations in BSF vary
in each life stage. The larval stages has 7 –170.5 μg/g Cd
and 3.8–141.7 μg/g Pb, and the prepupa has 7.9 –142.9 μg/g
Cd and 1.5–40.1 μg/g Pb (Diener et al. 2015).

The feed produce is also important in the application
of BSF as animal feed. For organic waste, it must be free
from heavy metal contamination. Even low Cd concentra-
tion in feed can leave residues above the EU threshold (2
mg/kg Cd); low levels of Pb contamination are still below
the threshold for Pb for feed (10 mg/kg Pb) (Diener et al.
2015). BSFL can also tolerate feed containing 6% plastic
fragments or cardboard packaging without directly affect-
ing their growth. The Bioaccumulation factor (BAF) of this
contamination was identified, and the highest BAF was ob-
tained from mixed cardboard packaging produced by veg-
etarian products (van der Fels-Klerx et al. 2020). BSFL bio-
conversion can create high-value biomass with low heavy
metal concentrations and can reduce waste volume of up
to 40% in 20 days (Bohm et al. 2022).

7.3 Environmental impact
Utilizing insects as feed can influence food stock, and a
slight environmental but precise inspection of the resource
is needed to examine the environmental safety, impact, and
economics (Bosch et al. 2019). The use of BSF as a biocon-
version agent is beneficial from an environmental aspect
because it can convert various kinds of waste, including
lime waste, vegetables, fruit, livestock manure, household
waste, agricultural waste, and other organic wastes, into
components of economic value, such as proteins, lipids,
peptides, amino acids, and chitin. This method can be
an alternative waste treatment that can have a positive
impact on the environment and ecology (Liu et al. 2019a).
BSF also suppresses the multiplication of houseflies, which
often harm the environment and humans by causing pol-
lution and carrying diseases (Bradley and Sheppard 1984).
The application of BSFL as a bioconversion agent is a prof-
itable alternative for developing countries that still face
challenges in processing abundant organic waste (Merte-
nat et al. 2019). BSF can also help prevent global warming.
Composting using BSF has 47 times lower CO2 emissions
than open windrow composting, which is accompanied by
almost twice the risk of global warming compared with us-
ing BSF per 1 ton of biowaste (wet weight).

The use of BSFL as a substitute for fish meal tubs can
reduce global warming potential by up to 30% (Mertenat
et al. 2019). Its requirement for electricity source is only
half of the composting. The BSF can reduce the accumu-
lation of volatile fatty acids by 25.58%–80.08% and can in-
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crease the final composting yield by increasing phospho-
rus as much as 42.30%–64.16%, total nitrogen (Kjeldahl
analysis) by 45.41%–88.17%, and total nutrients by 26.51%–
33.34%. BSF can also produce sugar products derived from
BSFL grease and convert dairy manure into biodiesel. A to-
tal of 1248.6 grams of fresh manure was converted to 273.4
grams drymanure and produced 1200 BSFL for 21 days; 70.8
grams of dry BSFL was processed with petroleum ether to
produce 15.8 grams of biodiesel and 86.2 grams of sugar (Li
et al. 2011). With the above potentials, the BSF can be an al-
ternative that is safe for the environment and can mitigate
global warming.

8. ECONOMICAL ASPECT OF BIOCONVERTION OR-
GANIC WASTE USING BSFL

The feed accounts for the largest cost in livestock produc-
tion; a main example is protein feed, which is often ob-
tained from soybean meal and fish meal. For example, the
feed cost is 85.31% of the total cost in the dairy business,
77.41%–80.97% for broiler chickens, and 74.42% for layer
chickens (Haloho et al. 2013; Suwarta et al. 2012). This nutri-
tional source can be obtained by substituting various local
products and feed ingredients; however, the need for pro-
tein sources for livestock has not been satisfied (Frempong
et al. 2019). The substitution of soy-based feed with BSF
meal has a remarkably effect on the cost of feed. The price
of feed per bird fed is lower with BSF meal (1 US $ per bird)
than with soybean meal (1.17 US $ per bird) in the starter
phase. Similarly, in the finisher phase, the cost is 1.63 US $
for the BSF meal and 1.90 US $ for the soybean meal. With
low prices, the performance (body weight gain, FCR, aver-
age daily feed intake, and carcass weight) of broiler or cat-
tle fed soybean meal and BSF meal does not significantly
differ (Onsongo et al. 2018). From an economical perspec-
tive, BSF production varies greatly depending on the lo-
cation, feed source, scale of production, and purpose of
BSF production. It is also influenced by the production
model factor using a tray or batch (Pleissner and Smetana
2020). Dry BSF production of 7.14 tons requires costs of
79,358.15 € and 5,281.56 € for equipment and daily opera-
tional costs. BSF production is deemed feasible if the dry
BSF product is directly commercialized as a downstream
product without further processing. However, processing
through extraction and purification into certain chemicals,
for example, the isolation of bioactive components (fatty
acids, pigments, and chitin), can significantly increase rev-
enue (Pleissner and Smetana 2020). BSF production costs
include indirect cost, labor, consumables, and equipment
that account for 13%, 45%, 12%, and 30% of the total cost,
respectively (Zurbrügg et al. 2018).

Composting using BSF requires a shorter time (12–15
days) than composting using microbes or earthworms (4–
5 weeks). The final product also varies from hummus to
protein, biodiesel, sugar, and grease sugar. However, ad-
ditional treatments are sometimes required to mature the
final products from BSF composting (Madeira et al. 2020;
Choudhury et al. 2018). Waste treatment using BSFL is a
promising concept where a circular economy with main-
tained environmental and economic stability can be at-
tained, especially among lower middle class economies
(Zurbrügg et al. 2018). In Asia, various studies on the use
of BSFL have been carried out to streamline its production
and application in waste processing; BSF in biodiesel pro-
duction, secretion of metabolites from BSFL, rearing tech-

niques, animal feed substitution have already been studied
in China, Republic of Korea, Malaysia, Indonesia, Japan, and
Vietnam (Kim et al. 2021). Studies on BSFL are still ongo-
ing for the synthesis of economically valuable products and
premium products that can be profitable. An economic op-
portunity is to organically produce BSFL products and their
derivatives that are healthy, safe, and nutritious.

9. CHALLENGES AND POTENTIAL OF BSF IN THE FU-
TURE

The potential of BSFL as a source of protein for livestock
and humans generates not only opportunities but also chal-
lenges because BSFL, which is an insect, is not recogniz-
able or not yet accepted by all groups as a food ingredi-
ent and is considered taboo or unattractive. The safety
of insect-origin food is still being studied. Some contem-
porary cultures have used insects as cuisines (Durst et al.
2010). The Food and Drug Administration in collabora-
tion with the Association of American Feed Control Offi-
cers (AAFCO) through a Memorandum of Understanding
imposed regulations in America regarding BSFL, specifi-
cally on how to produce, label, package, distribution, sell,
import, and export it for food and feed. In August 2016,
AAFCO agreed that dried BSFL could be cultivated as a feed
and composting agent with a minimum fat content of 32%
and 34% protein (Patterson et al. 2021).

As a bioconversion agent, BSFL is widely cultivated us-
ing organic wastes from agriculture and households. BSFL
is allowed for use as animal feed, but its application in hu-
man food is being debated (Liu et al. 2019b; Gold et al. 2018).
In the event of using BSFL as human food, postharvest pro-
cessing must be conducted to ensure that it is free from
contamination (Liu et al. 2019b). Several factors that influ-
ence insect decisions for food are feelings of disgust, house-
hold income and region, insect phobia, knowledge level,
and social demographic factors, such as age and house-
hold size. Moreover, the perceived positive attributes as-
sociated with edible insects, the preferences of children
in the household, and age and knowledge level have posi-
tive impacts on consumption frequency. Concerns of food
safety and the insects’ shape have negative impacts on con-
sumption frequency. Some reports showed that insects can
cause allergies of varying allergy levels, whether consumed
directly or through processed food derived from insects. In
China, consuming pupae silkworm caused acute allergies;
in Botswana, someone was admitted to the hospital due to
acute allergy from Gonimbrasia belina caterpillar (Okezie
et al. 2010; Chung et al. 2001). The allergy is probably due
to the identified tropomyosin in BSFL and crustaceans (Leni
et al. 2020).

As a bioconversion agent, BSFL is widely cultivated us-
ing organic wastes from agriculture and households. BSFL
is allowed for use as animal feed, but its applicat(Liu et al.
2019a; Gold et al. 2018). In the event of using BSFL as hu-
man food, postharvest processing must be conducted to
ensure that it is free from contamination (Liu et al. 2019a).
Several factors that influence insect decisions for food are
feelings of disgust, household income and region, insect
phobia, knowledge level, and social demographic factors,
such as age and household size. Moreover, the perceived
positive attributes associated with edible insects, the pref-
erences of children in the household, and age and knowl-
edge level have positive impacts on consumption frequency.
Concerns of food safety and the insects’ shape have neg-
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ative impacts on consumption frequency. Some reports
showed that insects can cause allergies of varying allergy
levels, whether consumed directly or through processed
food derived from insects. In China, consuming pupae silk-
wormcaused acute allergies; in Botswana, someonewas ad-
mitted to the hospital due to acute allergy from Gonimbra-
sia belina caterpillar (Okezie et al. 2010; Chung et al. 2001).
The allergy is probably due to the identified tropomyosin in
BSFL and crustaceans (Leni et al. 2020).

Some studies indicated that the antibiotic resistance
gene (ARG) has emerged due to aerobic manure compost-
ing (Zhang et al. 2016; Cao et al. 2020). BSFL compost-
ing approach can decrease the ARG by 95% in poultry ma-
nure after 12 days (Cai et al. 2018) and reduce lincomycin
by 84.9% after 12 days of bioconversion (Luo et al. 2022).
Another study also reported that BSFL decreased 97% of
tetracycline after 12 days compared with the traditional
method (Cai et al. 2018). However, another report stated
that BSFL bioconversion does not have an influence in low-
ering ARG (Cifuentes et al. 2020). Niu et al. (2022) revealed
that the density of BSFL during conversion influenced com-
post quality and was associated with ARG abundance. Ele-
vated ARG level was found in gut of high-density BSFL dur-
ing manure conversion and found to be best in the den-
sity of 100 larvae in 100-gram manure. These ARGs, in-
cluding tetX and mcr-1, were reported from hosts, such
as Escherichia, Alcaligenes, Klebsiella, and Providencia from
fresh feces.

As food and feed and functional products, BSF and
its derivatives can provide benefits to producers and con-
sumers. In addition to financial benefits, the functional
properties of BSF render it a healthy bioactive natural re-
source. Given that the environmental safety of organic
waste treated with BSFL has a good environmental impact,
this strategy can be one of the main efforts to mitigate
global warming. Cheap protein sources are also beneficial
for fish, beef cattle, dairy, and poultry farmers. In addition
to the bioremediation of livestock manure (fecal sludge),
BSFL can be used in entomoremediation for heavy metal
wastes, such as Zn and Cd (Bulak et al. 2018). Researchmust
focus on safely and effectively improving the processing
and cultivation of BSF and its applications as a functional
food. The development and enhancement of BSFL genetic
quality must be carried out by identifying potential genes
that regulate various traits for BSF production, such as ma-
nipulating protein as a source of food and functional food
or fat material for biodiesel (Zhu et al. 2019).

10. CONCLUSIONS
BSFL is a popular insect and has potential as a bioconver-
sion agent for reducing and recycling organic biomass. The
potential of BSFL as a source of feed and food (edible prod-
uct) has also been increasingly explored in food technology
and animal feed, especially as a source of protein. Ease of
maintenance and simple handling are important for prod-
ucts that are financially profitable and safe for the envi-
ronment. BSF can be used to produce bioactive and pre-
biotic components, such as antimicrobial peptide, chitin,
and enzymes, and even as a raw material for biodiesel. The
safety of BSFL must be considered from the microbiologi-
cal, chemical, and environmental aspects, including its low
GHG emission during bioconversion. The study of produc-
tion methods, utilization, and potential of BSFL warrants
further and deep exploration to efficiently generate prod-

ucts that are truly profitable, environmentally friendly, and
economical.
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