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Abstract: With the rise in fog computing, users are no longer restricted to only accessing resources
located in central and distant clouds and can request services from neighboring fog nodes distributed
over networks. This can effectively reduce the network latency of service responses and the load
of data centers. Furthermore, it can prevent the Internet’s bandwidth from being used up due to
massive data flows from end users to clouds. However, fog-computing resources are distributed
over multiple levels of networks and are managed by different owners. Consequently, the problem
of service discovery becomes quite complicated. For resolving this problem, a decentralized service
discovery method is required. Accordingly, this research proposes a service discovery framework
based on the distributed ledger technology of IOTA. The proposed framework enables clients to
directly search for service nodes through any node in the IOTA Mainnet to achieve the goals of
public access and high availability and avoid network attacks to distributed hash tables that are
popularly used for service discovery. Moreover, clients can obtain more comprehensive information
by visiting known nodes and select a fog node able to provide services with the shortest latency.
Our experimental results have shown that the proposed framework is cost-effective for distributed
service discovery due to the advantages of IOTA. On the other hand, it can indeed enable clients to
obtain higher service quality by automatic node selection.

Keywords: distributed ledger technology; masked authenticated message (MAM); time-difference
registration addressing; tree-based MAM indexing; node selection

1. Introduction

With the rise in the Internet of Things, the concept of fog or edge computing was
proposed for minimizing the response time of cloud services. By bringing resources from
distant data centers to the end of networks, fog-computing nodes can provide services
for user applications with lower network latency and less bandwidth consumption com-
pared with cloud-computing nodes. Many fog-computing toolkits or platforms have been
proposed in recent years. For example, Cloudlet [1,2] was proposed by Carnegie Mellon
University to support user applications with a network distance of one hop. Fog Comput-
ing [3] was created by CISCO to analyze time-sensitive data at the network edge instead
of sending massive IoT data to the cloud. ETSI standardized mobile Edge Computing
(MEC) [4] to provide cloud-computing services close to mobile users with the radio access
network. Cisco, ARM, DELL, INTEL, Microsoft, and other companies cooperatively pro-
posed OpenFog [5] to move computation, storage, communication, and decision making
closer to the users along a cloud-to-thing continuum. The Linux Foundation proposed
EdgeX [6] to be the edge computing gateway of IoT and software development.

Among the projects and standards mentioned above, the OpenFog standard clearly
states that containerization is used at the software layer to provide software and application
microservices, which require an efficient mechanism of service discovery. The software
development documents of MEC show that it is recommended to use microservice and
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DesOps to develop and deploy applications. EdgeX adopted a microservice to be the
uniform architecture of application development. Amazon Web Services (AWS) launched
the IoT Greengrass framework [7], which enables AWS Lambda microservices developed
in the cloud to be directly deployed to client nodes. As previously described, adopting the
microservice architecture is a trend for the development of fog-computing applications.

Microservices are an evolution of service-oriented architecture (SOA) [8]. The same
as SOA, microservices support tandardized service interfaces, service reusability, and
loose coupling of services. The difference is that microservices emphasize the granularity
of software and services, that is, to combine several single-function and independently
operable microservices through a unified interface and protocol to achieve the required
applications. In microservices, the service discovery mechanism plays a critical role. Since
the web service system is composed of multiple services, each service may have multiple
instances, and each service instance also has an access path, such as IP, Port, Path, and
Query, which is usually represented by URL. Additionally, the instance itself is dynamically
deployed by the container scheduling software. Therefore, the microservice framework
usually uses Service Proxy or API Gateway as the external unified entry point (IP, PORT)
to reduce certificates, domains, firewall management, and traffic difficulties in monitoring.
Service Proxy usually combines the service discovery mechanism to delay binding user
requests to service instances. It is useful for solving service access path changes caused by
container scheduling and achieving load balancing among multiple service instances.

However, service discovery (SD) becomes a critical and complicated issue when
microservices are deployed to fog-computing nodes. In the cloud environment, the service
discovery mechanism is usually constructed in Kubernetes and Swarm clusters. The service
container regularly registers its information with the service discovery mechanism through
the client–server model. When the service agent receives a request, the request is redirected
to an available server through the lookup table. Nonetheless, in fog computing, the client
is no longer restricted to only accessing resources located in the cloud but can request
resources from neighboring fog nodes. Moreover, fog-computing nodes are distributed
across different network levels, including the gateway; access network; core network;
cloud; and node holders, such as end users, company organizations, Internet Service
Provider (ISP) operators, Content Delivery Network (CDN) operators, cloud operators,
and service leasing/providers. Therefore, it is challenging to use centralized management
mechanisms for service discovery because service instances are scattered among the fog
nodes at different network levels, and it is difficult to register and query through the
client–server method. Achieving a globally and publicly accessible distributed service
registration and discovery mechanism becomes a critical issue for fog computing.

As previously discussed, we propose an IOTA-based service discovery (IBSD) frame-
work in this paper. The proposed framework can support service publishers to publish
service information, such as version, ownership, image file location, and service descrip-
tion, by using transactions. On the other hand, it also enables fog-computing nodes to
register node information and deploy services into transactions. The entire service registry
table is stored in the IOTA transaction and is distributed to all IOTA nodes as copies. When
a user application attempts a service, it can query any IOTA node for transaction content to
obtain a list of the service instances. Therefore, the proposed mechanism can achieve the
goal of a distributed service query and simultaneously ensures correct data transmission
through distributed ledger technology. Compared with related work, the main contri-
bution of the proposed framework is that it is the first work that makes use of IOTA for
resolving the service discovery problem for fog computing. Due to the advantages of IOTA,
it can support a distributed, reliable, and zero-fee service discovery for fog-computing
applications and can avoid the cyberattack to Distributed Hash Table (DHT)-based service
discovery mechanisms.

The rest of this paper is organized as follows. Section 2 describes related work. Section 3
introduces the framework of IBSD. Section 4 discusses the performance evaluation of IBSD.
Finally, Section 5 gives the conclusions of this paper and our future work.
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2. Related Work

Several researchers have addressed the SD issue for fog computing. Their methods
are briefly described as follows. Chii Chang et al. [9] proposed the Indie Fog architecture
for service providers to purchases the remaining computing resources from consumers
to provide other clients for use. Indie Fog currently supports only the global service
registry table but adaptive and joint service registration and service discovery. Simone
Cirani et al. [10] designed a peer-to-peer architecture of automatic service discovery for
large-scale IoT networks. Their architecture uses Constrained Application Protocol (CoAP)-
based service catalogs and exploits the Distributed Location Service (DLS) and Distributed
Geographic Table (DGT) for service registration and query. The DLS is a name resolution
service based on the Distributed Hash Table (DHT) to access a resource. The DGT is
used to retrieve a list of resources matching geographic conditions based on a distributed
node location database. Giacomo Tanganelli et al. [11] used the CoRE Resource Directory
and DHT for service discovery while integrating service agents and redirection in IoT
Gateway. Consequently, the SD requests of clients are transmitted to gateways for looking
up the DHT and then are redirected to the CoAP server to retrieve the location of service
instances. Sander Soo et al. [12] used the Mobile Ad hoc Social Network (MASN) for
service discovery and computation migration among fog nodes. They also used the
DHT for information exchange among fog nodes, because clients cannot always access
the service registration table. Julien Gedeon et al. [13] adopt a hierarchical architecture
including the client, surrogate, broker, and registry server for SD. In this architecture, the
surrogate is any device that has additional computation capability to execute client tasks.
The broker is responsible for maintaining the local registration table and responding to the
SD requests of clients. It also plays one node of the Chord DHT and registers itself into
the broker registry for information exchange among brokers. Through the overlay of the
DHT, the distributed brokers can collaboratively enable clients to find suitable surrogates
for computational offloading.

In addition to DHT-based SD, Kazuya Okada et al. [14] exploited DNS-SD, mDNS,
and IP anycast to achieve the cooperation of SD among MEC nodes. Hessam Moeini [15]
used applied ontology coding but the hash function on a distributed registry table to build
a routing protocol of SD for increasing the correlation among neighbor nodes. Yuuichi
Teranishi et al. [16] created an overlay network protocol called the Locality-Aware Service
discovery protocol for the K-nearest (LASK) search to support scalable and locality-aware
distributed k-Nearest Service Discovery (kNSD).

As previously described, most researchers have used the DHT for the implementation
of SD. However, the DHT must face the Sybil attack [17], Eclipse attack, and Pollution
attack [18] A Sybil attack interferes with the operation of the DHT to make information
retrieval fail by using multiple fake identifiers. An Eclipse attack prevents a target node
from communicating with any other peer except the attacker by taking over the target
node’s routing table. A Pollution attack inserts a large amount of invalid information
into the index to prevent users from finding the right resource. Due to these attacks, the
DHT-based SD mechanisms face a significant challenge. It is essential to develop a novel
SD mechanism that does not rely on the DHT for fog computing.

Therefore, some researchers have recently devoted themselves to developing blockchain-
based instead of DHT-based service discovery mechanisms due to the rise in decentralized
ledger technology. For instance, Yao Zhao et al. [19] combined Universal Description,
Discovery and Integration (UDDI) with smart contracts to store the service registration
information of service providers through the alliance chain. The UDDI registry only must
manage the authority of registrants and inquirers to operate the license contract. Addi-
tionally, Zhenfeng Gao et al. [20] used INKchain to build a consortium chain to form a
Decentralized Service Ecosystem (DSES) for achieving decentralization through blockchain
and solving problems, such as trust issues, security and privacy, lack of incentives, and
maintenance costs. Jun Wu [21] et al. proposed an advanced social networking architecture
to secure fog-computing services. In this architecture, they designed a crowd sensing-
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enabled security recommendation method to realize security service recommendations.
Shreshth Tuli et al. [22] proposed a framework named FogBus for integrating IoT-enabled
systems, Fog, and Cloud infrastructure. This framework can help developers to overcome
resource heterogeneity and efficiently harnesses edge and remote resources for deploying
and executing their applications according to application requirements, and it applies
blockchain for data integrity when applications transfer confidential data.

The above research results show that the service discovery based on the distributed
ledger technology solves the throughput bottleneck of the centralized architecture and
the problem of centralized management. Compared with the DHT, distributed ledger
technology has the advantages of transmission security and immutable data. However,
the decentralized ledger technologies used in current research are almost all based on
alliance chains and private chains, limiting the speed of node joining and information
access. The main reason for this is that the need to pay miner fees for sending information
on the public chain and the proof of work (POW) under the public chain degrades the
throughput of transaction generation. According to the statistics of bitinfocharts.com [23]
and ethgasstation.info [24], the service discovery mechanism built on the Ethereum public
chain generates one block every 13.4 s, and the average transaction volume per second is
14.78TPS. It has to spend ETH 0.0094 (USD 16.76) on adding the published information
into a block within 2 min.

Fortunately, the emergence of IOTA [25] effectively solves the previous problems. It
does not require transaction fees and also has high throughput characteristics. It success-
fully reaches over 1000TPS in the official stress test. Additionally, the IOTA uses Tangle
that is different from the blockchain. A transaction does not need to wait for the creation of
a block to be incorporated into the chain. Instead, it can be initiated, distributed, and stored
as long as the other two transactions are verified. The information storage and dissemina-
tion technology used by IOTA is called masked authenticated messaging (MAM) [26]. In
recent years, it has also been applied to IoT and medical information research [27–29].

On the other hand, the IOTA Foundation is currently implementing mana, a reputation
system to avoid Sybil attacks. When a value transaction is processed, a quantity called
mana will be “pledged” to a specified node ID. This quantity is related to the number of
tokens moved into the transaction. The mana pledged to each node ID is stored as an
extension of the ledger. This process generates a reputation system to distinguish trusted
nodes from new, and thus possibly malicious nodes. Therefore, mana provides adequate
protection against Sybil attacks.

Moreover, the IOTA Foundation proposes an autopeering mechanism to ensure that
the network is secure against Eclipse attacks. The autopeering mechanism is logically
divided into two submodules: peer discovery and neighbor selection. The former is
responsible for operations, such as discovering new peers and verifying their online status.
The latter is responsible for finding and managing neighbors for IOTA’s nodes. The
neighbors of a node are divided into two groups. One group is chosen neighbors, which
the node chooses from its list. Another is accepted neighbors, which choose the node as
their peer. The neighbor selection is determined by a distance function of public salt and
private salt, which defends against dictionary attacks or their hash equivalent. The public
and private salts can help create an asymmetric awareness to discourage an attacker from
harming the system. In the autopeering process, the only way to target a node is brute
forcing different node identities to become closer (in terms of distance) than an existing
neighbor. To prevent brute force attacks, IOTA lets the salts be valid only for a certain
amount of time, after which the node updates both its chosen neighbors and its accepted
neighbors. This frequent reorganization increases the difficulty of attacking a specific node.
Further analysis of the autopeering mechanism can be found in the report in [30].

As previously described, this research adopts IOTA with MAM to implement the
proposed service discovery framework under the public chain. This work is focused on
developing a distributed architecture to discover fog services securely and efficiently but to
recommend which fog service is more secure compared to Jun Wu’s work. Different from
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Fogbus, this work uses blockchain not only for maintaining data integrity in node-to-node
communication but also for building an open, reliable, and decentralized fog-computing
service discovery framework.

3. IBSD

IBSD [31] is a service discovery framework designed and implemented for fog-
computing microservices. There was a service discovery mechanism in the original mi-
croservice framework to solve the mutual conversion relationship between service instances
and service namespaces. The service discovery mechanism of the previous microservice
framework is mainly to manage the services of the master–slave architecture in the cluster.
In contrast, fog-computing routines are distributed under different providers and managers.
It is difficult to manage through a master–slave architecture. Therefore, IBSD uses the IOTA
distributed ledger technology to achieve the consistency of decentralized service discovery
and management through the consensus algorithm.

IOTA is a decentralized ledger technology proposed by David Sønstebø, Sergey
Ivancheglo, Dominik Schiener, and Dr. Serguei Popov in 2015. It is dedicated to the
Internet of Things and peer-to-peer networks. Unlike Bitcoin and Ethereum, IOTA uses
Tangle instead of blocks to store transactions, as shown in Figure 1. Except for the first
genesis transaction, the rest of the transactions are created by selecting two transactions
based on the Markov Chain Monte Carlo (MCMC) algorithm and verifying if they are legal
at first. Since IOTA requires users only to verify the other two transactions by themselves
when they initiate a transaction, it eliminates the dependence of the distributed ledger on
miners. Additionally, the higher the number of transactions initiated per unit time is, the
higher the throughput of transaction verification is.
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IOTA transactions (TX) are classified into Input TX and Output TX. Input TX is used
to withdraw money from the address, while it cannot be a zero-value transaction. In
contrast, output TX is used to collect payments or record data. It can be valued or zero-
valued transactions. IOTA node can pack several transactions into a bundle and check the
transactions in a bundle unit. The sum of value in a bundle must be zero to prove that
the transaction is a break-even one. All transactions in the bundle are either accepted or
rejected together. After the bundle is accepted, the internally recorded transactions are
added to the Tangle ledger.

IOTA reference implementation (IRI) has been proposed, which is a set of JAVA
open-source software. IRI is currently run in public nodes. Clients can use IRI to join the
IOTA network and transfer the IOTA token to one another. IRI has three main functions:
(1) verifying transactions, (2) storing and disseminating, and (3) interacting with the
client library. In the message transmission, IRI uses the gossip protocol to disseminate
transactions. The IRI node must compare the database itself when a neighbor sends a
transaction to it. If the database does not store the transaction, the IRI node must verify the
transaction and store it in the database, then forward the transaction to the neighbor.
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When the client wants to initiate a transaction, the following steps will be performed.
(1) Prepare Input TX and Output TX then add them to a bundle. The sum of the bundle’s
value must be zero. (2) Use the sponge function to hash all TXs to generate the Bundle
Hash. TXs include Address, Value, Tag, Timestamp, currentIndex, lastIndex, and other
information. After that, fill the Bundle Hash into the TX. (3) Generate the Input TX’s
signature by Bundle Hash and private key, and fill the signature into the Input TX. (4) Use
getTransactionsToApprove of API to obtain Tips from IRI, and fill Trunk and Branch into
each TX. (5) Perform PoW for each TX of Bundle, and fill Hash into Nonce. (6) Finally, send
the Bundle to the IRI network, then perform verify, store and broadcast to the IRI network
to complete the transaction.

On the other hand, the transaction query process is executed as follows: (1) Use the
Hash value of Bundle, Address, Tags, and Approves to call the findTransaction functionand
return the transaction’s Hash value (2) Parse the Hash to view the detailed transaction
content by the getBundle function. Additionally, IOTA uses the MAM framework to prove
the message’s ownership and prevent interference from spam. MAM uses the cotyledons of
the Merkle hash tree to generate a signature. The Root generates an address. The signature
prevents the sender from being impersonated. The Root is used to calculate the address
where the message is sent and record the Root of the next generation hash tree. Through the
hash tree’s generational alternation, IOTA prevents sending messages to the same address
for a long time to avoid spam attacks.

3.1. Framework

The architecture of IBSD is shown in Figure 2. The inner components of a fog/edge
node are IRI, IBSD services, and a microservice framework for operation. IRI is a node
in the IOTA network. The fog node can send transactions through IRI and also receive
transactions from other IRI nodes. In this study, the IBSD service combined with IRI was
used to distribute the fog node’s service information to all IOTA nodes through transactions.
The user applications can exploit IBSD-API to search for a service from any IRI node in the
IOTA network and send a service request to the fog node that provides the service. On the
other hand, the IBSD service also is used to monitor transactions sent by other fog nodes
that provide the service, thereby maintaining a list of fog nodes for the same service. The
user applications can obtain a complete list of fog nodes through IBSD-API to select the
best service node by more detailed node information and obtain better service quality.
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3.2. Design Issues

How IBSD exploits IOTA transactions for different information exchanges to achieve
service discovery is described as follows.
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In IBSD, each IOTA transaction has an independent Hash value. User applications
can obtain the Hash value of a transaction by searching for transaction address (Address),
transaction bundle (Bundle), transaction tag (Tag), and indirectly verified subtransaction
(Approves) through IRI API, and then request the details of the transaction through the
Hash value. Service nodes use general or MAM transactions to pack the released infor-
mation. For the general transaction, it can choose the transaction address to be sent. If it
(i.e., the fog node) is not the owner address, it cannot issue the Winternitz type one-time
(W-OTS) signature.

On the other hand, MAM uses a bundle of transactions to release information. Each
bundle contains a W-OTS signature, the Root of the next message, and the released in-
formation. The transaction address can be Root or the Hash value of Root according to
different MAM modes. Service publishers can register a service through MAM. The Root of
the MAM message is the identification code of the service. The signature is used to prevent
others from forging it. Similarly, fog nodes also release their node information through
MAM, including the service URI and a service identification code list used to record the
providing services, and continuously release the update of node information through the
message chain’s characteristics.

For service discovery, it is necessary to have a method to map between the service
namespace and the information of service nodes. As shown in Figure 3, IBSD uses the
MAM Root of the node information as the transaction content and sends it through a
general transaction to the address calculated by the service ID as the basic concept of
service node registration. When a user application intends to search for a service, it can
search the transaction address of the service by the service ID and then obtain the registered
transaction. Finally, it can obtain the service node information from the MAM message
chain recorded in the transaction content.
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However, the previous design does not consider the following problems. (1) Service
suspension of nodes: when a transaction is released, it will exist in IOTA for a long time.
Even if the service is suspended, the registered transaction can still be searched, which
reduces service discovery effectiveness. (2) The MAM transaction chain of the node status
is too long. Even if a node maintains a service for a long time, it may still release new MAM
transactions due to other service changes. Consequently, it may take a long time to traverse
the recorded MAM transaction chain to obtain the latest node state. (3) The search range is
too broad. Even the timestamp can solve the first problem. The repetitive registration at
the same address will still cause the search range to increase over time continuously. We
explain how to solve the first problem in Section 3.3 and propose an indexing mechanism
to solve the second and third problems in Section 3.4.
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3.3. Service Release and Deployment

For service discovery, each service needs a unique identifier. This study uses the
Root of the MAM transaction to be the service identification code. The Root of the MAM
transaction is a code generated by Merkle Tree, expressed by 27 characters, such as capital
A-Z and Arabic numeral 9. When the Root of a message is created, MAM uses W-OTS to
sign the message and thereby ensure the ownership of the service registration message and
the uniqueness of the service identification code.

The service release and deployment processes are shown in Figure 4. After the
service publisher adds the service program into a container image file, it can be uploaded
to the image file registry (such as Docker Image Registry) for the service provider to
deploy the service. To ensure the consistency of the information between the two parties,
the service publisher can publish the service description, service license, deployment
method, and other information through MAM. Since the Root of the posted message is
the identification code of the service, the information on the service can be found by the
service identification code.
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The service provider can drive the fog node to deploy the service by the service
identification code. When the fog node receives the service’s identification code to be
deployed, IBSD obtains the service’s deployment method from the MAM transaction,
deploys the service to the node, and then registers the service node by the mechanism in
the subsequent chapter. When user applications use the IBSD API to search for the service
identification code, the fog node providing the service can be found.

3.4. Node Information Releasing

This research adopts periodically releasing node information to confirm the accessi-
bility of nodes and services, as shown in Figure 5. The fog-computing nodes periodically
release their node status information through CRON. The node status information includes
(1) node information, such as IP and node identification number; (2) service list: the identifi-
cation codes of the services hosted by the fog node; (3) service status: the current operating
status of the node service, such as average response time and success rate. Currently, the
fog nodes release their information every second. When a fog node does not release its
service status, it is regarded as not alive.



Electronics 2021, 10, 844 9 of 20

Electronics 2021, 10, x FOR PEER REVIEW 9 of 20 
 

 

the identification codes of the services hosted by the fog node; (3) service status: the cur-
rent operating status of the node service, such as average response time and success rate. 
Currently, the fog nodes release their information every second. When a fog node does 
not release its service status, it is regarded as not alive. 

 
Figure 5. Node information releasing. 

3.5. Registration Addressing, and Indexing 
This research adopts the registration of service nodes for enabling clients to obtain 

the status information of the service nodes from the service namespace. The service nodes 
send the MAM Root of the node status to the service releasing address, and then clients 
can search this address to find the information of the service nodes. However, the trans-
actions on the IOTA network are stored for a long time. Even if a node has stopped provid-
ing a service, the transactions related to the node’s service registration information can 
still be queried by clients later. Therefore, a mechanism of invaliding the out-of-date in-
formation is necessary. Additionally, it may take a long time to search from the MAM 
Root to the latest status because the node status information is continuously released. This 
study proposes time-difference addressing and tree-based MAM (TBMAM) indexing for 
transaction searching to solve the previous problems. 

3.5.1. Time-Difference Registration Addressing 
This study uses a time-difference registration addressing [32] based on IOTA’s ad-

dress generation method, as shown in Figure 6. 

 
Figure 6. Time-difference registration addressing. 

Figure 5. Node information releasing.

3.5. Registration Addressing, and Indexing

This research adopts the registration of service nodes for enabling clients to obtain
the status information of the service nodes from the service namespace. The service
nodes send the MAM Root of the node status to the service releasing address, and then
clients can search this address to find the information of the service nodes. However, the
transactions on the IOTA network are stored for a long time. Even if a node has stopped
providing a service, the transactions related to the node’s service registration information
can still be queried by clients later. Therefore, a mechanism of invaliding the out-of-date
information is necessary. Additionally, it may take a long time to search from the MAM
Root to the latest status because the node status information is continuously released. This
study proposes time-difference addressing and tree-based MAM (TBMAM) indexing for
transaction searching to solve the previous problems.

3.5.1. Time-Difference Registration Addressing

This study uses a time-difference registration addressing [32] based on IOTA’s address
generation method, as shown in Figure 6.
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On IOTA, the address is generated by hashing the Seed of 81Tryte and the positive
integer index, and each address can only be paid once. The wallet program is usually
designed to send the transaction balance to the next index’s address for storage. This
research uses the MAM Root released by the service as the Seed and uses the time-unit
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difference between the service release time and the current registration time as the index.
As a result, the registration address of the service node changes with time. When clients
search which fog node is available for a given service by the address, they can effectively
filter out the registered transactions within the time range.

3.5.2. TBMAM Indexing

MAM transactions are originally linked by a one-way indexing chain. If MAM trans-
actions are used for recording time series data, the transaction-chain length continues to
increase with time. It finally results in a long search range from the start index to the
latest one. To speed up transaction searching, we implement a tree-based MAM indexing
mechanism called TBMAM in this study. Through the hierarchical indexing chains for
different time–length intervals, a tree-based indexing mechanism is formed, as shown in
Figure 7. Assume that the frequency of transaction generation is one per minute. Every
time 60 MAM transactions are released, the latest transaction address in the minute-level
chain is added into the hour-level chain. Every time the addresses of 24 MAM transactions
are added into the hour-level chain, the latest MAM transaction address in the hour-level
chain is added to the day-level chain.
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When registering a service node, the latest MAM Root in the top-level chain in
TBMAM is used as the entry point for searching the status information of service nodes.
As the upper chain in TBMAM has a large time–length interval for horizontal traversal,
the tree-like hierarchical traversal reduces the number of steps required to find the latest
node state from the transaction of node registration. For example, if a client wants to access
the 62nd transaction, the search path is D0-H0-H1-M60-M61. It requires traveling 5 but 62
steps. As a result, TBMAM indexing is useful for reducing the time required to obtain the
newest status of a given fog node.

3.6. IBSD Node Composition

The IBSD nodes’ composition is shown in Figure 8, divided into four parts: database
data collection, dependent software, service composition, and request source.

The database collection is used to record the relevant data required for the opera-
tion of IBSD, which is stored and described in the form of Document-Oriented using
MongoDB. NodeStatus records node information, settings, and service index values. Ser-
viceList records the services deployed by the node and detailed information on the services.
NodeList records other nodes which provide the same services. NamespaceMapping
records the correspondence between TBMAM and nodes. ListeningAddress records the



Electronics 2021, 10, 844 11 of 20

transaction address that is being monitored. MAMChannel keeps track of the current status
of the MAM message chain.
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Dependent software is the software or API required by IBSD, mainly including Open-
Faas, Prometheus, IRI, and PoW. OpenFaaS is a framework for running and managing all
the microservices used by clients and IBSD. Prometheus is a Time Series Database (TSDB)
used to store service call information, including service call time, call times, and running
time. IRI is the software that runs IOTA nodes, used to verify, store, query, and distribute
transactions. In this paper, the node information is packaged as IOTA transactions, and the
transactions are sent to IOTA-Mainnet through IRI to exchange data between nodes. PoW
is the proof of work required to send IOTA transactions, which can be completed within
IRI or handed over to PoW services provided by other computing resources.

The IBSD service composition is a collection of services required to implement the
IBSD mechanism. According to different functions, it can be divided into categories such
as sending transactions, sending information, receiving transactions, receiving informa-
tion, node status, system management, and service discovery. Through the information
release mechanism described in Section 3.4 and the registration and indexing mechanisms
mentioned in Section 3.5, fog nodes can exchange status information with one another
through the IOTA distributed ledger technology. In IBSD, the fog node pays attention to the
information of other nodes with the same service. The mechanism is as shown in Figure 9.

After the service deployment is completed, IBSD first queries the recent registration
records of service nodes and adds the registered address to the monitoring list. For the
service node registration transaction found, the TBMAM indexing is performed, and the
latest node information is updated or added to the database. Finally, the nextRoot of the
updated node status information is also added to the monitoring list. On the other hand,
when IRI receives a new transaction, it checks whether the transaction address is in the
monitoring list. If it is not, no process is performed. If it is, a new service node registration
transaction is performed. Additionally, TBMAM indexing is performed to obtain the latest
node status, and the database is updated to monitor the next sending address of MAM. If it
is the new node status information, the database is updated, and the next sending address
of MAM is monitored.

Finally, the request source is the event source that triggers all IBSD microservices,
including the ZMQ event triggered when the transaction is received by IRI, the regularly
executed CRON event, mutual calls between services, commands issued by managers, and
client requests.
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3.7. Service Discovery

The service discovery process is divided into two stages. The first is searching for
service node registration information through IOTA, and the second is optimizing node
selection through IBSD. Their execution flows are shown in Figure 10.
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The first stage is mainly aimed at dealing with the case of when no service node is
known yet. At first, the client queries any IRI node for the registered service’s transaction
by the service identifier code. By analyzing the transaction, it can retrieve the information
of the registering node by the TMAMA traversal. Then, it sends a request to the registering
node and obtains the state of the available service node.

However, it is not guaranteed to find the most suitable node for the client. Therefore,
the second stage aims to search for more service nodes and select the best one from the
nodes. The first step is to ask the IBSD service about any known service nodes. Since
each fog node of IBSD can provide the state information of the nodes deploying the same
service, the client can select the best node according to the node-state information and then
ask the selected node to provide the required service.
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In the first stage, we designed a location-based information filter for finding the service
nodes close to the client in terms of geographical location. When a fog node registers itself,
the registration transaction’s tag field is filled with its geographical location, such as
country, state, city, and company. By contrast, the client can translate its IP address into
the geographical location by GeoLite [33]. Through geographical location comparison, the
client can find nearby service nodes. On the other hand, when service nodes release their
states, they add their average execution time into the registered state information. When
a client obtains a list of available nodes, it can obtain the average execution time of each
service node. Moreover, the client actively estimates the network latency between each
service node and itself through an HTTP-ping function implemented by this work. Finally,
it can predict the response time of each service node by adding the network latency to the
average execution time and then choose the node with the shortest predicted response time
to provide service.

4. Performance Evaluation

We evaluated the performance of IBSD in this paper. First of all, we measured the cost
of sending transactions to the IOTA Mainnet for propagating service messages. Next, we
estimated the cost of service discovery and the impact of TBMAM indexing. Finally, we
evaluated the cost and effectiveness of node selection. Our experimental environment was
built by six PCs and four virtual machines of Google Cloud Platform (GCP), as shown in
Table 1. PC-01, PC-02, and PC-03 were responsible for performing PoW by using GPU.
PC-04, PC-05, and PC-06 were the IRI nodes. PC-06, GCP-TW, GCP-SG, GCP-JP, and
GCP-US played the fog nodes of providing microservices and the IBSD functions for user
clients. During performance evaluation, PC-06 used the local IRI service. By contrast,
GCP-TW and GCP-JS used the IRI service of PC-02, while GCP-SG and GCP-US used the
IRI services of PC-05.

Table 1. Resources used in performance evaluation.

Host CPU RAM Location Function Notes

PC-01 Xeon E5645 24 GB Lab (TaNET) PoW Use GTX970 for PoW
PC-02 Xeon E5650 24 GB Lab (TaNET) PoW Use GTX1080 for PoW
PC-03 Core i7-7700 32 GB Lab (TaNET) PoW Use GTX1080Ti for PoW
PC-04 Core i7-8700 32 GB Lab (TaNET) IRI, IBSD static peering
PC-05 Core i7-8700 32 GB Lab (TaNET) IRI static peering
PC-06 Core i7-8700 32 GB Lab (TaNET) IRI dynamic peering (Nelson)

GCP-TW 1vCPU 3.75 GB Taiwan (GCP) IBSD -
GCP-SG 1vCPU 3.75 GB Singapore (GCP) IBSD -
GCP-JP 1vCPU 3.75 GB Japan (GCP) IBSD -
GCP-US 1vCPU 3.75 GB US (GCP) IBSD -

4.1. Transaction Release Cost

IBSD makes use of IOTA transactions for information exchanges. The steps of transac-
tion release are Bundle, getTransactionToApprove (GTTA), attachToTangle (ATT), strore-
Transactions (ST), and broadcastTransactions (BC). In this experiment, each bundle has
only one transaction. The depth parameter of transactionsToApprove is set as one, and
the mwm parameter of attachToTangle is set as 14. We used the IRI of PC-06 to start a
transaction and used the GPUof PC-03 for PoW. We measured the cost of a transaction
50 times and then calculated the average time of a transaction. The breakdown of one
transaction release cost is shown in Figure 11.

In this table, BUNDLE represents the cost of transaction packing, and GATT is the
cost of Tip Select. ATT denotes the cost of PoW. ST is the cost of storing a transaction to IRI.
BC is the cost of ordering IRI to broadcast the transaction. Our experimental result shows
that Tip Select and PoW are the main factors determining one transaction’s cost.



Electronics 2021, 10, 844 14 of 20

Electronics 2021, 10, x FOR PEER REVIEW 14 of 20 
 

 

IBSD makes use of IOTA transactions for information exchanges. The steps of trans-
action release are Bundle, getTransactionToApprove (GTTA), attachToTangle (ATT), 
stroreTransactions (ST), and broadcastTransactions (BC). In this experiment, each bundle 
has only one transaction. The depth parameter of transactionsToApprove is set as one, 
and the mwm parameter of attachToTangle is set as 14. We used the IRI of PC-06 to start 
a transaction and used the GPUof PC-03 for PoW. We measured the cost of a transaction 
50 times and then calculated the average time of a transaction. The breakdown of one 
transaction release cost is shown in Figure 11. 

 
Figure 11. Breakdown of transaction release cost. 

In this table, BUNDLE represents the cost of transaction packing, and GATT is the 
cost of Tip Select. ATT denotes the cost of PoW. ST is the cost of storing a transaction to 
IRI. BC is the cost of ordering IRI to broadcast the transaction. Our experimental result 
shows that Tip Select and PoW are the main factors determining one transaction’s cost. 

Moreover, the getTransactionToApprove function of IOTA-BT API can change the 
traversal depth of MCMC by the depth parameter. The influence of traversal depth on the 
cost of the TIP selection is depicted in Figure 12. The traversal depth influences if the 
transaction is bound to unreliable tips or not. The shorter the traversal depth is, the easier 
the transaction is attached to unreliable tips. However, the property of IOTA-BT is zero-
fee transactions. The transaction verification does not affect the operation of IOTA-BT. 
Therefore, we set the traversal depth as one for reducing the transaction cost of IOTA-BT. 

In the IOTA Mainnet, the difficulty of PoW is ensured unless the mwm (minimum 
weight magnitude) parameter’s value must be larger than or equal to 14. During this ex-
periment, PCs used CPU to perform PoW through the ccurl library and OpenCL. By con-
trast, it used the original API of IRI and Java for executing PoW by CPU. The transaction 
content is statically assigned. We measured the cost of PoW in 500 transactions and ob-
tained the average time cost of PoW. Our experimental result is as shown in Figure 13. In 
this figure, the orange charts represent the costs of PoW executed by different GPUs, while 
the blue charts denote the costs of PoW performed by different GPUs. It can be found that 
GPU is useful for reducing the cost of PoW compared with CPU because of its powerful 
computation capability. 

Figure 11. Breakdown of transaction release cost.

Moreover, the getTransactionToApprove function of IOTA-BT API can change the
traversal depth of MCMC by the depth parameter. The influence of traversal depth on
the cost of the TIP selection is depicted in Figure 12. The traversal depth influences if
the transaction is bound to unreliable tips or not. The shorter the traversal depth is, the
easier the transaction is attached to unreliable tips. However, the property of IOTA-BT is
zero-fee transactions. The transaction verification does not affect the operation of IOTA-BT.
Therefore, we set the traversal depth as one for reducing the transaction cost of IOTA-BT.
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In the IOTA Mainnet, the difficulty of PoW is ensured unless the mwm (minimum
weight magnitude) parameter’s value must be larger than or equal to 14. During this
experiment, PCs used CPU to perform PoW through the ccurl library and OpenCL. By
contrast, it used the original API of IRI and Java for executing PoW by CPU. The transaction
content is statically assigned. We measured the cost of PoW in 500 transactions and obtained
the average time cost of PoW. Our experimental result is as shown in Figure 13. In this
figure, the orange charts represent the costs of PoW executed by different GPUs, while the
blue charts denote the costs of PoW performed by different GPUs. It can be found that
GPU is useful for reducing the cost of PoW compared with CPU because of its powerful
computation capability.
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In IBSD, if the hierarchical levels of TBMAM indexing are divided into 1, 3, 12,
and 60 min, it is necessary to send 1.43 MAM transactions per minute, and each MAM
transaction must consist of 3 typical transactions at least. Therefore, it is essential to send
4.3 typical transactions. Accordingly, the time spent on PoW per transaction must not be
greater than 13.95 s, which is the lowest requirement of computation power of the resources
used for applying IBSD in IOTA.

On the other hand, we also measured the cost of IOTA transaction propagation. We set
up three IRI nodes in the same network section and let them join the IOTA Mainnet. How-
ever, none of these three nodes was a neighbor to each other. In this situation, a transaction
sent by one node must be transmitted in the IOTA Mainnet through the gossip protocol to
arrive at another. Since the time clocks at different nodes are not synchronous, using times-
tamps is not precise for estimating the cost of transaction propagation. Therefore, we used
one node to send transactions and receive the transaction-reception messages coming from
the other nodes through Zero Message Queue (ZMQ) to estimate the cost of transaction
propagation. As shown in Figure 14, it spent 450 ms for propagating transactions to the
tested nodes.
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In Ethereum, appending a block into a public chain spends about 13~15 s. The priority
of adding a block into the public chain is determined by how much fee is paid. By contrast,
IOTA only needs to prove two old transactions for a new transaction. A fog node must
spend only 2 s to finish the creation and storage of an MAM transaction with the support of
the accelerators and spend only 450 ms to propagate the MAM transaction to other nodes
with no pay. As a consequence, a service discovery mechanism based on IOTA is practical
and economical.

4.2. Cost of Service Discovery

This experiment is aimed at measuring the cost of fetching and analyzing registration
transactions and evaluating the impact of TBMAM indexing. First, we individually added
5, 10, 15, or 20 transactions at the same registered address and measured the fetching cost
and analyzed a transaction by the registered address. Figure 15 shows the breakdown of
transaction fetching and analysis. In the figure, Count Address denotes the cost of com-
puting the registered address. The symbols of Find Tx and Get Tx represent the searching
and fetching costs of a transaction. Decode Tx is the analysis cost of the transaction. The
experimental result shows that Count Address (Hash function time) spends the most time
cost. The cost of Find Tx and Get Tx is influenced by the IRI state rather than the number
of transactions. By contrast, the cost of Decode Tx is increased as well as the number
of transactions.
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On the other hand, we evaluated the impact of TBMAM indexing on the cost of
obtaining the newest node state information as follows. The length of the MAM transactions
was set as 60. The hierarchical MAM index chains were constructed from the low level
to the high level for 1, 3, 12, and 60 min. Additionally, we used a private IRI node
without the limit of an API access number and the public IRI node provided by Tangle
(https://nodes.thetangle.org:443, accessed on 3 June 2019), which has the limit of an API
access number.

As shown in Figure 16, through 1G Fast Ethernet or 4G, a client spent 1262 or 4690 ms
to obtain the newest node state information from the private IRI node with the TBMAM
indexing. If the IRI node does not support the TBMAM indexing, the client must spend
3548 or 14,131 ms to obtain the newest node state information. When the client queries the
public IRI node for the newest node state, it spends 31,728 ms if the IRI node supports the
TBMAM indexing. However, it must spend 233,357 ms if the IRI node does not support the
TBMAM indexing. The previous result shows that the TBMAM indexing can reduce the
cost of obtaining the new node state information.

https://nodes.thetangle.org:443
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Figure 16. Cost of tree-based MAM (TBMAM) indexing.

In IBSD, the fog node performs TBMAM indexing only when it searches for a new
node. After that, it directly monitors the MAM nextRoot to obtain the node’s information
and store the node information in the local database. When a client queries the same node’s
information later, the fog node only needs to retrieve the node information from the local
database and return the retrieved data back to the client. By comparing Figure 17 with
Figure 16, querying the information of known nodes is much faster than querying the
information on a new node, regardless of which IRI node is queried.
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4.3. Impact of Node Selection

In this experiment, we deployed a simple computing service on two PCs in our lab
and four virtual machines in the GCPs of different countries. Additionally, we ran an
application to ask the deployed service about a client node (i.e., a PC in our lab). After the
client node queried the IBSD node for the service nodes’ information, it obtained the recent
execution time of each service node. Then, it estimated the network latency from the local
to each service node through HTTP-ping and predicted the response time of each service
node according to the execution time and network latency of the service node. Finally, it
selected the node predicted with the lowest response time to be the service provider. The
experimental result is shown in Figure 18. In this figure, the rel string represents real, and
the est string denotes predicted. If the client considered only network latency, it would
choose the PCs in our lab. By contrast, it would select the virtual machine in Japan’s GCP if
it considered only execution time. However, it could choose the best node, which is virtual
machines in Taiwan if it took both execution time and network latency into account. This
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result shows that the node selection mechanism indeed can help clients to obtain a better
service quality.
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5. Conclusions and Future Work

In this paper, we successfully developed an IOTA-based service discovery framework
called IBSD for fog-computing applications. This framework provides higher security
than the DHT to defend against cyberattacks, such as Sybil and Eclipse. Our experimental
results also show that it also is more cost effective and accessible for service discovery than
related work based on Ethereum public or private blockchains, because IOTA resolves the
problems of proof fee and throughput in blockchains. Moreover, the proposed framework
can provide useful node state information for selecting the best fog node to provide services
with the shortest response time.

The IOTA Foundation currently provides digital certificates to all participating parties,
and those parties initially trust the Decentralized Identifier (DID) of the IOTA Foundation.
Eventually, the participants, such as service requestors or providers, can start to create
digital certificates for their own actors. The methods for creating, reading, updating, and
deactivating the DIDs and the associated DID documents are described in the respective
specification (DID method) [34]. We will make use of the DID method for the authentication
of valid service providers and requesters in the future. On the other hand, we will apply
the proposed framework to P2P and edge computing applications. For example, we
will develop an edge intelligence computing (EIC) environment based on the proposed
framework to provide EIC services for IoT and mobile applications at the end of networks.
On the other hand, we will develop a P2P crowdsourcing environment for mobile edge
computing with the support of IBSD.
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