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Abstract 

Intestinal microbiota is involved in the maintenance of gut homeostasis as well as the regulation of colitis-
associated colorectal tumorigenesis. The aberrant host immune signaling and the presence of opportunistic 
commensals with potential pathogenic characteristics (pathobionts) have been suggested to be incorporated 
into the genetic paradigm of colon carcinogenesis. The reciprocal relationship between innate immune 
response and microbial composition in tumorigenesis is highlighted in this article. A two-hit theory is proposed 
here that dysregulated host epithelial signaling and dysbiotic microbiota are synergistic factors to drive 
malignant transformation. Innate immune receptors such as Toll-like receptors (TLRs) and nucleotide-binding 
oligomerization domain (NOD)-like receptors are involved in colitis-associated carcinogenesis through the 
regulation of epithelial cell death and proliferation, as well as the shaping of microbial community. From the 
microbial side, Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, are identified 
as pro-tumorigenic pathobionts in colitis-associated tumor models. Probiotics such as Lactobacillus, 
Bifidobacterium, and butyrate-producing bacteria displayed tumor-suppressing effects. The Gram-negative 
characteristics of the mucosa-associated pathobionts indicate the involvement of lipopolysaccharide–
dependent epithelial CD14/TLR4 signaling in cancer development. Virulence factors of the pathobionts were 
also identified in causing epithelial genotoxicity and signaling. The mechanistic insights of the interplay 
between host innate immunity and bacterial composition, and the understanding of how the dysfunction of 
one impacts on the other, will shed light to the development of novel strategies for the clinical management 
of inflammatory bowel disease and colon cancers.  
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INTRODUCTION 

The gastrointestinal tract is a unique internal 
organ with a densely populated microbial ecosystem, 
in contrast to other aseptic viscera, in the human 
body (1, 2). Adult human intestine is inhabited by 

approximately 1014 bacterial cells, with the highest 
amount in the colon (3, 4). Over 1000 bacterial 
species mainly belonging to four phyla were 
identified in a cohort study with each individual 
harboring at least 160 species (5). A large inter-
individual diversity was found and about 30-40 

*Corresponding author: Yen-Hsuan Ni, Professor, Department of Pediatrics, National Taiwan University College of 

Medicine and Hospital, 7 Chung-Shan South Road, Taipei, Taiwan. E-mail: yhni@ntu.edu.tw; Tel: 886-2-23123456 

ext. 71516; Fax: 886-2-23938871. 

Citation: Linda Chia-Hui Yu, et al. Interplay between the gut microbiota and epithelial innate signaling in colitis-

associated colon carcinogenesis. Cancer Research Frontiers. 2017; 3(1): 1-28. doi: 10.17980/2017.1 

Copyright: @ 2017 Linda Chia-Hui Yu, et al. This is an open-access article distributed under the terms of the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

Competing Interests: The authors declare no competing financial interests. 

Received Dec 2, 2016; Revised Mar 9, 2017; Accepted Mar 13, 2017. Published Mar 25, 2017 

mailto:yhni@ntu.edu.tw


Cancer Research Frontiers. 2017; 3(1): 1-28. doi: 10.17980/2017.1                                                                 Review                       

- 2 - 
 

species are shared among individuals (5-8). The 
number of bacterial genes are estimated to be 100-
fold higher than those of human genes (3, 5, 9). 
Besides the commensal bacteria, virus and fungi also 
exist in the intestine and are collectively defined as 
the gut microbiome (6, 10).  

In the post-human genome era, much attention is 
now focused on this complex gut ecosystem. 
Advances in DNA sequencing and bioinformatics 
have fostered progress in human microbiome 
research. The explosion of knowledge in 
environment-diet-microbe-host interactions has 
greatly re-shaped our view of human physiology (5, 
6, 11). Currently, enteric dysbiosis (a term that 
describes the condition of having microbial 
compositional, spatial, or number change within the 
body) is regarded not only as a key component of 
gastrointestinal diseases but also of extraintestinal 
and systemic disorders.  

Dysbiosis has been reported in inflammatory 
bowel disease (IBD), colorectal cancer (CRC), 
atherosclerosis, obesity, type II diabetes, non-
alcoholic liver diseases, multiple sclerosis, and 
chronic fatigue syndrome (12-15). A reduction of 
fecal bacterial diversity is found in patients with 
Crohn’s disease and ulcerative colitis (16-18) and 
colonic carcinoma (19, 20), which indicates that even 
fewer species could be making up the majority of a 
disease-associated microbial population. Recently, 
bacteria with colitogenic and pro-tumorigenic 
characteristics are suggested to play critical roles in 
the pathogenesis of colitis-associated CRC (21-23).  

Patients with Crohn’s disease and ulcerative 
colitis are at higher risk of CRC (24, 25). A link 
between inflammation and cancer were also 
observed in gastritis-associated gastric carcinoma, 
hepatitis-associated hepatocellular carcinoma, and 
cholangitis-associated bile duct cancer (26, 27). 
Besides genetic instability mediated by inflammatory 
free radicals (26, 28, 29), the presence of disease-
associated bacteria with virulence factors (21-23) 
and the aberrant innate immune responses to gut 
microbial products (30-32) are also involved in the 
multifaceted pathogenesis of CRC.  

Taken into account the juxtaposition of bacteria 
and mucosa, microbial dysbiosis and dysregulated 
innate signals derived from intestinal epithelium are 
the focus of this review (33-36). A two-hit theory was 
proposed that aberrant host epithelial signaling and 
dysbiotic microbiota are co-existing factors that 
synergistically drive colitis-associated carcinogenesis 

(Figure 1). In this article, we aimed to highlight 
bidirectional evidence of epithelial innate signaling 
affecting the microbes and vice versa, and to discuss 
how aberrant interaction between bacteria and 
epithelium may contribute to tumor development 
and progression.  

 

HOST-MICROBE CROSSTALK AND EPITHELIAL 
INNATE IMMUNITY 

Innate immune signaling are actively involved in 
microbial recognition and colitis-associated CRC 
development. A long line of evidence for IBD-
associated polymorphisms in Toll-like receptors 
(TLRs) and nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLRs) (37-40) 
implicate that aberrant innate responses to their 
own microbial products is involved in disease 
pathogenesis. For information on the adaptive 
aspect of immunopathogenesis of IBD, other reviews 
are recommended (40, 41). Gene polymorphisms in 
lipopolysaccharide (LPS) receptors CD14 and TLR4 
are observed in patients with Crohn’s disease and 
ulcerative colitis, and the polymorphisms are 
correlated with a higher risk of CRC (42-45). Gene 
polymorphisms in TLR2 are also linked with 
susceptibility of IBD and higher risks of CRC (46-49). 
NOD2 was the first gene to be identified with Crohn’s 
susceptibility; variants of NOD2 was found in a 
subset of patients with fibrostenosing Crohn’s 
disease (50-54). Although NOD2 mutation was used 
as a predictor for aggressive diseases in Crohn’s 
patients (55, 56), no correlation was found with CRC 
development (39, 57). 

 These innate receptors were originally identified 
in monocytic cells for induction of proinflammatory 
responses following binding to bacterial products. 
The TLRs are known to be expressed on the cell 
surface, whereas NLRs are mostly recognized in the 
cytosols of immune cells (58, 59). The LPS receptor 
CD14/TLR4 activates a myeloid differentiation factor 
(MyD88)-dependent proinflammatory signaling (e.g. 
mitogen-activated protein kinases (MAPKs) and 
nuclear factor-kappa B (NFκB)) for production of 
proinflammatory cytokines in monocytes (Figure 2A) 
(60, 61). TLR2 (a bacterial peptidoglycan and 
lipoteichoic acid receptor) was shown to complex 
with TLR1, TLR6, or CD14, and to induce MyD88-
dependent signals (62, 63). Moreover, NOD2 after 
binding to a peptidoglycan component, i.e. muramyl 
dipeptide (MDP), activates inflammasome pathways 
and NFB signaling in immune cells (58, 59).  
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A weak expression of TLR2/4 (64-67) and NOD2 
(68, 69) was found in the intestinal epithelium of 
healthy individuals, and was traditionally considered 
a means to tolerate gut commensals. Constitutive 
CD14 expression was noted in the cell surface of 
normal intestinal epithelium (34, 64). In IBD and CRC 
patients, increased expression of CD14 and TLR4 was 
reported in the mucosal tissues and epithelial layers 
(Table 1) (64-66). Overexpression of TLR2 and NOD2 
was also found in the epithelial cells of inflamed 
colon in Crohn’s disease (68, 70, 71). In addition, 
membrane recruitment of wild type NOD2 in 
contrast to the cytosolic presence of mutant NOD2 
(R702W and G908R) have been reported in human 
intestinal epithelial cell lines (72, 73). Accumulating 
evidence indicate that the aberrant innate receptor 
expression and signaling on intestinal epithelium are 
involved in tumor progression.  

The cause-and-effect relationship between innate 
responses and carcinogenesis was first implicated by 
the observation of diminished tumor formation in 
APC(Min/+) mice when TLRs or MyD88 signaling was 
ablated (32, 74). Spontaneous intestinal tumor 
development is seen in the multiple intestinal 

neoplasia (Min) mice, which carry a heterozygous 
mutation in the adenomatous polyposis coli (Apc) 
gene (75). Further evidence was shown in 
experimental models that epithelia-specific or 
systemic knockout of TLR4 display reduced colon 
tumor numbers and sizes (33, 76, 77), whereas mice 
with genetic deficiency in NLRs, such as NOD1, NOD2, 
NLRC4, NLRP3, and NLRP6, demonstrated higher 
susceptibility to CRC (78-83); inconsistent data were 
observed for the role of TLR2 in colon tumorigenesis 
(84-86). So far, TLR4 is the best characterized innate 
receptor expressed on intestinal epithelium for 
promoting colon tumorigenesis (33, 76, 77). 

The opposite effects of TLR4 and NLRs on 
regulation of CRC growth are striking cause both 
types of innate receptors are known to activate NFκB 
signals (58, 59). A number of features have been 
proposed to explain the discrepancy between the 
two receptors in colitis-associated tumor formation. 
One of the possible reasons is that dysregulated 
epithelial cell death and proliferation mediated by 
imbalances in epithelial CD14/TLR4 signaling 
(uncoupled to proinflammatory responses) serves as 
a key mechanism in LPS-induced CRC progression 

 
 

Figure 1. Schema of a two-hit theory of synergistic host and microbial factors involved in colon carcinogenesis. 

Aberrant innate signaling by host intestinal epithelium and immune cells to bacterial products has been 

demonstrated to alter the susceptibility of tumorigenesis. Enteric dysbiosis including microbiota changes and 

virulence increase also play crucial roles in the development of colorectal tumors. Modulation of host immune 

factors by antagonists or bacterial factors by antibiotics and virulence deletion are potential therapeutic strategies 

to reduce tumor growth. 
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(33-35, 87). On the other hand, inflammasome-
dependent autophagy pathways (80, 88) and 
shaping of the microbiome (79, 89) are involved in 
the mechanisms of NLR-dependent suppression of 
tumorigenesis. The role of TLR4 in CRC development 
are described in this section, whereas the role of 
NLRs are discussed in relation to dysbiotic 
microbiota in the next section.  

Previous studies using bone marrow chimera 

have demonstrated that epithelial TLR4 
overexpression plays a more dominant role than the 
receptor expression on myeloid cells in driving colon 
tumor growth (33, 76, 87). Intestinal epithelial cell 
studies had shown that downstream signals of TLR4 
such as NFκB and Akt were involved in the epithelial 
hyperproliferative responses in vitro (36, 90, 91). 
Moreover, upregulation of TLR4/MyD88 promotes 
colon carcinogenesis via cyclooxygase-2 (COX-2) and 

 

 

Figure 2. Bacterial LPS receptor subunits (CD14 and TLR4) are involved in proinflammatory signaling and regulation 

of cell death and proliferation in intestinal epithelium. (A) Binding of LPS to the CD14/TLR4 complex on lipid raft 

triggers myeloid differentiation factor (MyD88)-dependent and -independent signaling for proinflammatory cytokine 

production in intestinal epithelial cells. Early studies show that TLR4 activates MyD88-dependent pathways, including 

inhibitor of κB kinase (IKK)/inhibitor of κB (IκB)/nuclear factor-kappa B (NFκB), phosphatidylinositide- 3 kinase 

(PI3K)/Akt, and mitogen-activated protein kinases (MAPK) such as JNK, ERK, and p38. The TLR4-mediated MyD88-

indepent pathway includes interferon regulatory factor 3 (IRF3). Nuclear translocation of NFκB subunits (p65 and p50), 

AP-1, or IRF3 cause the transcription of proinflammatory cytokines. (B) Recent findings indicate that LPS/CD14 binding 

on lipid raft triggers a number of lipid messengers to induce epithelial cell apoptosis which is counteracted by 

upregulation of TLR4. The cascade of lipid signaling involves conversion of membranous phophatidylcholine (PC) to 

diacylglycerol (DAG) by PC-specific phospholipase (PC-PLC), activation of sphingomyelinase (SMase) for sphingolipid 

metabolism and ceramide production, and phosphorylation of protein kinase C  (PKC). In absence of TLR4, the 

activation of PKC leads to caspase-dependent cell apoptosis in intestinal epithelial cells. However, upregulation of 

TLR4 serves as a antagonizing signal to inhibit epithelial cell apoptosis following PKC-dependent recruitment of TLR4 

onto raft domains, acts as hyperproliferative signals through IKK/NFκB and PI3K/Akt molecules, and is involved in 

tumorigenesis via macrophage-associated cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR)-

dependent pathways. 



Cancer Research Frontiers. 2017; 3(1): 1-28. doi: 10.17980/2017.1                                                                 Review                       

- 5 - 
 

epidermal growth factor receptor (EGFR)-dependent 
pathways in mouse models of colitis-associated CRC 
(Figure 2B) (74, 76, 92, 93). Our recent studies 
showed that TLR4 played an antagonistic role against 
its co-receptor CD14 in regulation of epithelial cell 
survival. Normal colonocytes respond to bacterial 
LPS through the constitutively expressed CD14 (34, 
35). The intestinal epithelial cells undergo apoptosis 
following LPS/CD14 activation via lipid messengers 
and protein kinase C  (PKC) signals in the absence 
of TLR4, whereas upregulation of TLR4 expression 
inhibited CD14-mediated epithelial cell death and 

promoted tumor development (Figure 2B) (34, 35). 
Use of eritoran, which is a LPS mimicking molecule 
that acts as a CD14 agonist and TLR4 antagonist, 
caused an increase of cell death and a decrease of 
cell proliferation in tumor cells and significantly 
reduced tumor burden in a mouse CRC models (34, 
35). Overall, functional antagonism between CD14 
and TLR4 was identified in the bacterial regulation of 
epithelial apoptosis and proliferation, and the 
imbalance between the receptor subunits on 
epithelial cells plays a critical role in promoting 
tumorigenesis (34, 35, 94).  

Table 1. Expression of LPS receptors in primary human intestinal epithelial cells  

Receptor 

subset 
Intestinal samples Expression & Location  Techniques Ref. 

CD14 
   

protein Colonic epithelial cells 

isolated from healthy 

subjects 

 

Epithelial expression Flow 64 

 Colonic normal and 

tumor tissues in CRC 

patients  

Apical expression in normal epithelium 

and increased levels in tumors  

IF 34 

    

TLR4    

protein 

 

Colonic normal and 

tumor tissues in CRC 

patients and healthy 

subjects 

 

Undetectable in normal tissues, and 

increased apical and cytoplasm 

expression in tumors 

IF, IHC 34,66,264 

 Colorectal tissues in 

IBD patients and 

healthy subjects 

 

Undetectable in tissues of healthy 

subjects, and increased expression in 

apical membrane of crypt cells in IBD 

patients 

 

IHC 265,266 

mRNA 

 

Colonic epithelial cells 

isolated from healthy 

subjects 

 

Low levels in epithelial cells of healthy 

subjects  

qPCR, RT-PCR 67,256,267 

 Colonic mucosal 

biopsies from IBD 

patients and healthy 

subjects 

 

Low levels in mucosal tissues of healthy 

subjects and increased expression in IBD 

patients 

RT-PCR  70 

Note: CRC, colorectal carcinoma; IBD, inflammatory bowel disease; Flow, flow cytometry; IF, immunofluorescent 

staining; IHC, immunohistochemistry; qPCR, real time quantitative polymerase chain reaction; RT-PCR, reverse 

transcription polymerase chain reaction.  
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In keeping with early studies showing that 
commensal bacterial products are actively involved 
in the regulation of epithelial turnover and 
restitution (30, 95-97), our studies support the 
concept that aberrant epithelial signaling tips the 
balance toward malignancy. These findings provided 
novel information on the bacteria-regulated 
malignant transformation through innate signaling; 
however, the question remains as to what roles 
enteric dysbiosis play. 

 

ENTERIC DYSBIOSIS 

      Alterations in the intestinal microbiota (such as 
changes in bacterial population or distribution) were 
documented in patients with IBD (98, 99), and CRC 
(100-102). Reduced microbial diversity was found in 
mucosal biopsies of patients with Crohn’s disease 
(16, 17) and ulcerative colitis (18). Lower bacterial 
diversity was also reported in biopsy tissues and 
stool samples of carcinoma patients compared to 
controls (19, 20). However, colonic adenoma 
biopsies showed higher diversity and greater 
numbers of bacteria compared to healthy individuals 
(103, 104). It is noteworthy that live bacteria reside 
in gut mucosa of IBD and CRC patients, in contrast to 
the mostly lumen-dwelling commensals in normal 
subjects (105, 106).  

      A role of bacteria in intestinal carcinogenesis was 
first suggested in 1978 by Reddy et al (107), based 
upon the observation of a lower incidence of 
chemically induced duodenal and colonic tumors in 
germ-free rats than in conventional rats. Reduced 
severity and delayed onset of chemically or 
genetically induced colitis was later reported in 
germ-free mice (108-110). Nevertheless, a causative 
role of bacteria was challenged by the notion of the 
lack of immune maturation and/or tolerance (which 
is dependent on commensal colonization) in germ-
free intestine (111-113). Additional studies showed 
that bacterial depletion by antibiotics significantly 
reduced tumor burden in the mutagen-induced wild 
type mice (114, 115), as well as in the tumor-
susceptible NOD1(-/-), NOD2(-/-) and NLRP6(-/-) 
mice (78, 79, 82), providing direct evidence of 
bacterial involvement in tumorigenesis.  

      The existence of pathobionts (opportunistic 
pathogenic bacteria converted from commensals) 
with colitogenic and pro-tumorigenic abilities was 
not confirmed until clear evidence of ‘transmissible’ 
colitis and CRC was demonstrated through fecal 
microbial transplantation and co-housing 

experiments (79, 82, 114). Previous studies have 
shown that the severe colitis and high tumor 
susceptibility in NOD2(-/-) or NLRP6(-/-) mice are 
‘communicable’ through fecal transplantation to the 
recipients of wild type mice (79, 82). Indeed, the 
fecal microbial composition was altered in NOD2(-/-) 
and NLRP6(-/-) mice compared to their wild type 
counterparts through imbalance in the 
inflammasome-mediated regulation in antimicrobial 
peptide (AMP) profiles (89, 116-118). The findings 
indicate the emergence of dysbiotic microbiota as a 
result of the host genetic deficiency in NLRs. In 
addition, changes in mucosal defensin levels were 
also documented after TLR4 signaling (119-121), 
implicating AMP-dependent modulation in microbial 
ecology by TLR4. The increase of tumor burden in 
NLR-deficient mice strongly supported that dysbiotic 
microbiota plays an active role in colitis and 
carcinogenesis. Clinical observation showed 
beneficial effects of antibiotic therapy in the 
induction of remission in IBD patients (122-124). 
Overall, these studies suggested that host NLRs were 
essential in the shaping of gut microbiota, and the 
lack of NOD1, NOD2, or NLRP6 might alter the 
microbial community to a disease-associated profile.  

      Although the presence of pathobionts (such as 
colitogenic bacteria and infectious carcinogens) was 
confirmed in rodent models by mouse to mouse 
fecal transplantation (79, 82), a recent study 
transferring stool samples from CRC and healthy 
patients to germ-free mice before mutagen exposure 
had shown surprising results (125). Mice receiving 
human CRC-associated bacteria developed fewer 
tumors than those given bacteria from tumor-free 
subjects (125). The authors concluded that the initial 
microbiome structure developed by the recipient 
mice following fecal transplantation, but not the 
cancer status of the human donors, was the main 
factor determining tumor incidence in the recipient 
mice. They also found that Gram-negative bacteria 
such as Bacteroides are positively correlated with 
increased tumor burden, whereas Gram-positive 
bacteria such as Clostridiales are negatively 
associated with tumor growth (125). In spite of the 
unexpected results, a crucial role of gut bacteria in 
the regulation of cancer formation is supported by 
this study. More importantly, the exact strains and 
composition of gut microbiota with beneficial or 
detrimental effects on CRC development remain to 
be elucidated.  

 

PATHOBIONTS AND PROBIOTICS 



Cancer Research Frontiers. 2017; 3(1): 1-28. doi: 10.17980/2017.1                                                                 Review                       

- 7 - 
 

The presence of pathobionts and/or a shortage 
of probiotics (beneficial bacteria to the host) both 
serve as key factors for disease development. 
Clinically, bactericidal antibiotic treatment is 
recommended for the management of ulcerative 
colitis if infectious complications are suspected (126). 
Moreover, antibiotics that increase the abundance of 
beneficial bacteria, the so-called ‘eubiotics’, are 
emerging as a new treatment option (127). The good 
and the evil of gut microbiota are equivocal aspects 
in deciphering the bacterial strains for regulation of 
colitis-associated CRC.  

Particular bacterial strains were characterized 
in germ-free and antibiotic-depleted mice by 
monoassociation experiments. These studies offered 
pivotal evidence supporting the presence of bacteria 
with pro-tumorigenic or colitogenic ability. 
Nevertheless, it should be kept in mind that the 
majority of monoassociation studies have utilized 
cancer-prone or immune-compromised mice with 
genetic defects to identify the bacterial strains (79, 
82, 128, 129). The findings therefore support the 
idea that disease progression in patient subsets with 
genetic predispositions is partly attributable to 
pathobionts. However, this remains uncertain for 
individuals in the general heterogeneous population 
who have chronic inflammation and sporadic cancers 
but lack particular genetic traits. The pathobionts 
(Table 2) and probiotics with either direct or causal 
links to colitis and CRC are summarized below. 

 

Escherichia coli 

Enrichment of mucosa-associated or 
internalized Enterobacteriaceae family or 
Escherichia coli was long observed in biopsy samples 
of IBD and CRC patients (18, 130-133). Increased 
Escherichia genus was also identified in fecal 
bacterial population in Crohn’s disease, ulcerative 
colitis, and CRC patients compared to healthy 
individuals (101, 134). The levels of E. coli 
colonization appear to correlate positively with the 
proliferation index of colorectal tumor cells (130). 

Diffusely adherent E. coli found in IBD and CRC 
patients possess a number of virulence genes such 
as afimbrial adhesin (afa), long polar fimbriae (lpf), 
fimbrial adhesin or type-1 pili (fim) and polyketide 
synthase gene complex (pks) (131, 132, 135). A 
subpopulation of E. coli originally identified in the 
ileal mucosa of Crohn’s disease patients, termed 
adherent-invasive E. coli (AIEC), is well-characterized 
for its mucosal attachment and ability to survive 

intracellularly in epithelial cells and macrophages 
(136, 137). Although the adherent-invasive ability 
was observed in these types of E. coli, they were not 
categorized as pathogens according to the classical 
definition due to their lack of known genetic invasive 
or toxigenic determinants (138, 139).  

Recent studies indicated that pks-positive E. 
coli encoding a genotoxin (colibactin) increased the 
susceptibility to colorectal cancer in mutagen-
induced IL-10(-/-) mice (128, 140). DNA damage and 
cell cycle arrest were noted in epithelial cells and 
mouse crypts after exposure to these pks-positive E. 
coli, implicating a pro-tumorigenic mechanism (128, 
140). Colibactin-producing E. coli also indirectly 
enhance tumor growth by inducing the emergence 
of senescent cells that secrete hepatocyte growth 
factors in models of mutagen-induced IL-10(-/-) and 
wild-type mice (141).  

In addition, colitogenic and pro-tumorigenic 
characteristics of AIEC were observed in transgenic 
mice expressing the human-specific 
carcinoembryonic antigen-related cell adhesion 
molecules 6 (CEACAM6) receptors on epithelial cells 
(142, 143). The epithelial CEACAM6 allowed 
bacterial colonization via type 1 pili (fimbriae)(142, 
143). The lipid A moiety of Gram-negative bacteria 
also plays a role in preventing epithelial CEACAM 
shedding and in facilitating mucosal colonization by 
bacteria (144, 145). AIEC owes its pathogenicity to its 
active invasion, which is associated with sustained 
macrophage-derived cyclooxygenase-2 production, 
which promotes mucosal inflammation and 
epithelial proliferation (135, 146). Other studies 
using in vivo and in vitro models have shown that 
AIEC colonization increased mucosal permeability 
and tight junction disruption, implicating a direct 
role of bacteria in triggering gut leakiness, which 
might be another factor leading to chronic 
inflammation (138, 147-149). Further investigation 
of AIEC-induced epithelial innate signaling in barrier 
regulation and cell proliferation is warranted. In sum, 
virulence factors in E. coli conferring mucosal 
adherence/invasion and genotoxicity properties are 
relevant to disease progression in colitis and CRC.  

 

Fusobacterium nucleatum 

         Fusobacterium species are commonly found in 
the oral cavity but rarely in the intestinal tract of 
healthy individuals (150, 151). However, abundance 
of Fusobacterium spp. and F. nucleatum were 
reported not only in fecal samples but also in 
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inflamed mucosa of Crohn’s disease patients and in 
tumor specimens of CRC patients (19, 102, 152-157). 
The presence of mucosa-associated Fusobacterium 
in biopsy specimens of IBD and CRC has sparked 
interest in the emergence of possible invasive strains 
(99, 154, 158). Fusobacterium recovered from 
inflamed tissues of IBD patients displayed higher 
invasive ability to human carcinoma Caco-2 cell lines, 
compared to strains isolated from healthy tissues or 
control patients (158, 159). Moreover, the amount of 
Fusobacterium DNA in tumor tissues was found to be 
positively associated with poor prognosis in cancer 
patients (160). 

In animal studies, eight weeks of daily feeding 
of human isolates of F. nucleatum accelerated the 
onset of cancer formation, increased tumor 
multiplicity, and selectively recruited tumor-
infiltrating myeloid cells in APC(Min/+) mice (161). 
This observation of increased tumor burden by F. 

nucleatum is not associated with the exacerbation of 
colitis in APC(Min/+) mice (161). Further 
experiments were conducted in colitogenic mouse 
strains such as IL-10(-/-) and T-bet(-/-)/Rag2(-/-) mice 
to elaborate on the dissociation between colitis and 
tumors, and it was demonstrated that inoculation of 
F. nucleatum did not aggravate intestinal 
inflammation nor induce tumors in these colitic mice 
(161). These elegant studies suggested that F. 
nucleatum, albeit with protumorigenic potential 
under conditions of oncogenic mutation, did not 
possess colitogenic characteristics or the ability to 
trigger cancer in a colitis background. Moreover, in 
vitro studies had shown that F. nucleatum increased 
cell hyperproliferation in adenocarcinoma cell lines 
with APC mutation (e.g. HT29, DLD1, and SW480) or 
with β-catenin mutation (e.g. HCT116), but not in 
noncancerous HEK293 cells (162). Taken together, 
the findings suggested that pre-existing oncogenic 
mutation precede the F. nucleatum-driven 

Table 2. Potential pathobionts involved in colon carcinogenesis 

Bacterial family, 

genus, and species 

Virulence 

factors 
Suggested mechanisms Ref. 

Enterobacteriaceae    

Escherichia coli pks Production of genotoxic colibactin that causes DNA 

damage and promotes tumor growth and cell 

senescence.  

 

128, 140, 

141 

 afa, lpf, fim Adherence and invasive characteristics that induce 

gut leakiness and macrophage-derived 

cyclooxygenase-2 production. 

 

138, 147-

149 

Fusobactericeae    

Fusobacterium 

nucleatum 

 

FadA Binding to E-cadherin for adherence and invasion, 

and stimulation of β-catenin signaling for NFκB and 

oncogene production in adenocarcinoma cell lines. 

 

158, 159, 

162 

 Fap2  Binding to a polysaccharide, Gal-GalNAc, on tumor 

tissues. 

 

156, 161, 

164 

Bacteroidaceae 

Bacteroides fragilis 

 

B. fragilis 

enterotoxin

  

 

Enterotoxin induces oxidative DNA damage, 

epithelial E-cadherin cleavage for increased 

permeability and cell proliferation, and activation of 

Stat3 and Th17 immune response. 

 

170-172 

    

Note: pks, polyketide synthase gene complex; afa, afimbrial adhesin; lpf, long polar fimbriae; fim, fimbrial adhesin or 

type-1 pili. 
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tumorigenesis.  

Several virulence factors of F. nucleatum have 
been implicated in colon tumorigenesis. A recent 
study demonstrated that FadA adhesin via binding to 
E-cadherin induced nuclear translocation of β-
catenin for oncogene transcription in human 
adenocarcinoma cell lines (162). Indirect evidence of 
a role of FadA in promoting tumor growth was 
demonstrated by xenograft studies (162). Moreover, 
FadA also binds to vascular endothelial cadherin and 
helps F. nucleatum to adhere and breach endothelial 
cells to enhance the penetration of E. coli in in vitro 
transwell assays (163). A report has identified a novel 
lectin-like outermembrane protein Fap2 expressed 
on F. nucleatum that binds to a polysaccharide, Gal-
GalNAc, on mouse CRC, suggesting another potential 
pro-tumorigenic virulence factor for epithelial 
anchoring and signaling (164). In addition, it was 
shown that bacterial surface protein Fap2 and RadD 
facilitated the adherence of F. nucleatum to 
lymphocytes for contact-dependent immune cell 
apoptosis (165). However, the association of these F. 
nucleatum proteins with in vivo orthotopic CRC has 
not yet been documented.  

 

Bacteroides fragilis 

A subclass of the human commensal Bacteroides 
species, enterotoxigenic Bacteroides fragilis (ETBF), 
was associated with acute inflammatory diarrheal 
disease and CRC in patients (155, 166, 167). Presence 
of B. fragilis and ETBF was found in the stool and 
biopsy specimens of both normal and CRC patients, 
but the amount of bacteria and toxin was 
significantly higher in late-stage CRC samples (101, 
102, 155, 167, 168). One report has shown 
inconsistent data of decreased abundance of 
Bacteroides genus in stool specimens of CRC patients 
compared to healthy volunteers (101). 

 Experimental models of colitis were used for the 
assessment of proinflammatory and pro-
tumorigenic ability of ETBF. Orogastric 
administration of ETBF following antibiotic 
disruption of normal flora to promote colonization 
had caused acute colitis that persisted up to one year 
in wild-type mice (169-171). Moreover, ETBF 
worsened the severity of colitis induced by dextran 
sodium sulfate (169). Recent reports demonstrated 
that colonization by ETBF but not its non-toxigenic 
counterpart induced colitis and promoted colon 
tumorigenesis in APC(Min/+) mice (129, 172). This 
observation is different from the solely pro-

oncogenic role of F. nucleatum (161). Several 
mechanisms have been proposed of its virulence 
factor, B. fragilis enterotoxin (also known as 
fragilysin) which acts as a metalloprotease. The 
pathogenic mechanisms include a direct cytotoxic 
effect by causing oxidative DNA damage, induction 
of epithelial E-cadherin cleavage for increased 
mucosal permeability and cell proliferation, and 
activation of Stat3 with a Th17 immune response 
(170-172). These studies indicated that adaptive T 
cell responses, beyond innate signaling in epithelial 
and immune cells, may also contribute to infection-
induced carcinogenesis by ETBF.  

 

Helicobacter species 

Helicobacter pylori is classified as a class I 
carcinogen by the World Health Organization for its 
role in gastric cancer. Two of the extensively studied 
virulence factors cytotoxin-associated gene A (CagA) 
and vaculating cytotoxin A (VacA) have been 
associated with precancerous gastric lesions, 
through activation of epithelial proinflammatory and 
hyperproliferative signaling, and disruption of 
epithelial barrier (for a complete review, please see 
other articles (173, 174)). Although a relationship 
between H. pylori and CRC has been proposed, the 
evidence falls short of a definitive causal link due to 
conflicting results (175-180).  

 Infection with H. hepaticus has been shown 
to promote intestinal inflammation and CRC 
development in immunocompromised, colitogenic, 
or tumor-prone mouse models, such as Rag2(-/-), 
Rag2(-/-)APC(Min/+), mutagen-induced IL-10(-/-) 
mice (181-184). Although chronic life-long infection 
of H. hepaticus in the liver and colonic crypts are 
seen in immunodeficient mice, the bacteria do not 
colonize well nor cause disease in 
immunocompetent wild type animals (185, 186). In 
addition, there is no evidence of H. hepaticus 
infection on colorectal tumor samples in patient 
studies. The relevance of helicobacter species as a 
pathogen or pathobiont in promoting human CRC 
needs further investigation. 

 

Lactobacillus and Bifidobacterium  

Probiotics as dietary supplements have been 
investigated for their anti-inflammatory and anti-
tumorigenic effects in experimental models. 
Numerous studies have demonstrated that a single 
species or mixtures of probiotics (such as 
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Lactobacillus and Bifidobacterium) prevent intestinal 
inflammation in chemical-induced colitis models or 
in IL-10(-/-) mice (187-191). Other reports had 
shown that administration of Lactobacillus and 
Bifidobacterium spp. suppressed tumor formation in 
mutagen-induced CRC and APC(Min/+) mice models 
(84, 192-195). The beneficial effects of probiotics in 
the prevention of colitis have been generally 
attributed to their immunoregulatory and barrier-
fortifying actions (188, 189). However, the anti-
cancer mechanisms of Lactobacillus and 
Bifidobacterium are suspected to be either related to 
their anti-inflammatory effects or to the modulation 
of epithelial turnover. In vitro data have shown direct 
inhibition of proliferation and induction of apoptosis, 
and strengthening of barrier integrity, in intestinal 
epithelial cell lines by multiple strains of 
Lactobacillus (e.g. L. acidophilus, L. fermentum, L. 
reuteri, L. caseri, L. rhamnosus, and L. gasseri) (196-
201) and Bifidobacterium (e.g. B. lactis and B. 
bifidum (202, 203)). A complete review of the 
beneficial effects of probiotics against cancer can be 
found in the literature (204, 205). 

Nevertheless, there are conflicting data 
regarding the abundance of Lactobacillus and 
Bifidobacterium in inflamed and non-inflamed 
mucosa in patients with IBD (206-209). In addition, 
there is no evidence to support the efficacy of 
probiotics in CD patients, while improvement in 
disease activity is observed only in subsets of UC 
patients (210). In cancer patients, one report has 
revealed lower counts of Bifidobacterium in mucosal 
samples (208), whereas another report found no 
difference in Lactobacillus and Bifidobacterium 
abundance compared to normal individuals (100).  

 

Butyrate-producing bacteria 

Short-chain fatty acids, including acetate, 
propionate, and butyrate, are important 
fermentative metabolites produced from dietary 
fibers by anaerobic commensals in the colon. 
Butyrate is utilized by normal colonocytes as the 
primary energy source through mitochondrial 
oxidation, where its consumption is greater than that 
of glucose or glutamine (211-215). Moreover, 
butyrate is well known for its inhibitory actions on 
histone deacetylase (HDAC) (216, 217). Butyrate 
treatment induces histone hyperacetylation and 
transcriptional activation of pro-apoptotic genes 
such as Fas and the cell-cycle regulator 
p21(Waf1/Cip1), thereby stimulating cell death and 

arresting the cell cycle (216, 217).  

Mounting evidence indicates that butyrate-
producing bacterial genera such as Faecalibacterium, 
Eubacterium, and Roseburia are significantly less 
abundant and the amount of butyrate is decreased 
in fecal samples of IBD and CRC patients (101, 152, 
218-220). A reduction in other butyrate-producing 
bacteria, such as Lachnospiraceae and 
Ruminococcaceae at the family levels, were also 
found in biopsy and surgical specimens of IBD 
patients (18, 221).  

A tumor-suppressing effect of butyrate-
producing bacteria was observed in early nutritional 
studies in mouse models by repeated oral 
administration of Butyrivibrio fibrisolvens one week 
before and during chemical induction of CRC (222). 
B. fibrisolvens is a ruminant bacterium, which also 
resides in human intestine in low numbers. Other 
reports have shown that a high fiber diet, which 
causes a large amount of butyrate production, 
decreases the rate of aberrant crypt foci formation in 
rats (223). A recent study using a gnotobiotic mouse 
model polyassociated with four commensal bacteria 
demonstrated that supplementation with high 
dietary fiber and B. fibrisolvens significantly 
decreased tumor growth (224). These findings 
support a role for butyrate-producing bacteria in the 
prevention of tumorigenesis and provide novel 
insights into the differential usage of butyrate 
between normal and tumor cells. Butyrate, a 
preferential energy fuel for normal colonocytes (212, 
214, 225), is less utilized in tumor cells which 
perform aerobic glycolysis (so called the “Warburg 
effect”) (224, 226). The colonization of the mouse 
intestine by butyrate-producing bacteria prior to the 
chemical induction of CRC caused intracellular 
accumulation of butyrate and lowered HDAC activity, 
leading to increased histone acetylation and the 
expression of specific tumor-suppressor genes in 
cancer cells (224). Further investigation into the 
therapeutic effect of butyrate-producing bacteria in 
tumor-bearing mice is needed to verify the potential 
of butyrate as a treatment for CRC. 

 

CHARACTERISTICS OF GRAM STAINING AND 
AEROTOLERANCE OF BACTERIA  

The aforementioned pathobionts including E. 
coli, F. nucleatum, and B. fragilis are Gram-negative 
rod-shaped cells. Among these bacteria, E. coli is a 
well-known facultative anaerobe, and numerous 
studies showed that E. coli is capable of adhering and 
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invading into intestinal epithelial cells and 
macrophages in oxygenated conditions for triggering 
innate signaling (138, 227, 228). Although F. 
nucleatum and B. fragilis are reported obligate 
anaerobes, a few reports have shown that F. 
nucleatum may grow as monoculture and even 
support other strict anaerobic bacteria in co-cultures 
in aerated environments (229, 230). Invasive strains 
of Fusobacterium were found in gut mucosa biopsies 
of IBD and CRC patients, and were able to survive 
and activate signals in epithelial cell lines (99, 154, 
158, 159). Moreover, clinical strains of B. fragilis 
isolated from intestinal, blood and peritoneal 
specimens can be grown in oxygenated conditions 
(231, 232), and are capable of activating innate 
signaling (233, 234).  

In contrast, the probiotic families such as 
Lactobacillaceae, Bifidobacteriaceae, Clostridiaceae 
(e.g. Faecalibacterium genus), Lachnospiraceae (e.g. 
Lachnospira, Roseburia and Butyrivibrio genus), and 
Ruminococcaceae are all Gram-positive rod-shaped 
cells. These probiotic bacterial strains are known as 
obligate anaerobes, except Lactobacillus being a 
facultative anaerobe.  

A dichotomy seems to exist that Gram-negative 
bacteria plays a detrimental role in tumorigenesis 
whereas Gram-positive bacteria appears to be 
beneficial. It would be plausible to suspect that in 
addition to specific virulence factors, the outer lipid 
membranous product LPS of Gram-negative bacteria 
might be partly involved in its pro-tumorigenic 
properties through activation of epithelial and 
monocytic TLR4 signaling. On the other hand, MDP 
(a constituent of the peptidoglycan wall) which is in 
large quantities in Gram-positive bacteria and a 
lesser content in Gram-negative bacteria may be 
associated with NOD2 signaling for tumor-
suppressive effects by probiotics. Together with the 
evidence of microbiome shaping by innate immune 
receptors (89, 116-118), a proposed model of the 
reciprocal relationship between innate immune 
responses and bacterial composition in 
carcinogenesis is depicted in Figure 3.  

Other bacterial characteristics such as the 
ability to survive in close proximity to the oxygenated 
mucosa should also be considered as an advantage 
to increase its chance to cause pathology. However, 
solid tumor core is known to be relatively hypoxic 
(226, 235) and anaerobic bacteria may survive in 
oxygenated milieu with surrounding oxygen-
consuming bacteria or in a biofilm (229, 236). 
Therefore, there is insufficient evidence to claim the 

necessity of oxygen-tolerance or -intolerence to be a 
basic requirement for bacteria to act as 
opportunistic pathogens. 

  

UNANSWERED QUESTIONS, EXISTING 
CHALLENGES, AND FUTURE DIRECTIONS  

The pathobionts were generally identified by 
their dominance on inflamed mucosa and cancerous 
tissues, and their pro-tumorigenic roles supported 
by evidence of increased tumor burden after 
inoculating large numbers of bacteria in chemically 
induced or genetically prone animal models of CRC. 
On the other hand, previously identified or widely 
ingested dietary probiotics are tested for their 
beneficial role in preventing cancer in animal models, 
but with limited evidence in patient fecal studies. 
While the search of individual bacterial species with 
essential roles in intestinal carcinogenesis could be a 
start for teasing out this complex host-microbe 
interplay, several fundamental questions remain 
unanswered.  

First, the immunocompromised status or 
genetic mutation (either engineered or chemically 
induced) of the host seems to be a prerequisite for 
the suspected pathobiont to aggravate tumor 
development. The transplantation of dysbiotic 
microbiota or the inoculation of pathobionts only 
exacerbated diseases under pre-existing stimuli (e.g. 
colitogenic and carcinogenic agents, or genetic 
abnormality), but did not initiate lesions in untreated 
wild type conditions. It is noted that E. coli and B. 
fragilis are commonly seen in normal gut microbiota, 
while F. nucleatum mainly resides in the oral cavity 
of healthy individuals. Therefore, is host immune 
defect or early malignancy driving the emergence of 
disease-associated bacteria that further fuels the 
tumor growth? This hypothesis is in agreement with 
our proposed two-hit theory of host and bug, and 
further suggests that host abnormality may come 
first but may not act alone in tumorigenesis (as in 
germ-free condition). Although some may argue that 
increase of tumor susceptibility in wild type mice 
following fecal transplantation of the dysbiotic 
bacteria from NOD2(-/-) and NLRP6(-/-) mice (79, 82) 
is sufficient evidence for the existence of pathogenic 
bacteria uncoupled to host genetics, it should be 
kept in mind that the pro-tumorigenic stool bacteria 
were harvested from genetic deficient mice. 
Whether the pathobionts colonized preferentially in 
fecal contents and malignant niches are clonally 
developed or are orally acquired are still unknown. 
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Considering that the presence of virus and 
bacteriophage is common in the gut and multiplying 
bacteria react to environmental cues rapidly, clonal 
lineages of gut commensals are perhaps more likely 
to make an opportunistic pathobiont in the stressed 
intestine.  

Second, the majority of studies use fecal 
material for microbiome analysis whereas tissue 
biopsy data are mostly for identifying particular 
mucosa-associated bacteria. Inconsistent data 
regarding the abundance of Bacteroidetes phylum in 
fecal and mucosal samples of CRC patients were 

reported (103, 152), leading to the question of 
whether changes in stool or mucosal microbiota 
represent the disease-associated pattern. So far, a 
positive correlation between the abundance of fecal 
and mucosa-associated bacteria in terms of CRC risk 
are seen with the aforementioned pathobionts, i.e. 
Escherichia (101, 130-133) and Fusobacterium (19, 
152-156), and ETBF (155, 167, 168). Whether fecal 
bacterial population simply reflects the 
counterbalance of space and nutrient demand 
between the mucosa-docking and free-floating 
bacteria remains to be determined. Since E. coli (138, 

 

 

Figure 3. A proposed model of the reciprocal relationship between innate immunity and microbiota in the 

pathogenesis of colon cancer. During the transition from physiological intestinal epithelium to pathological 

colorectal carcinoma, two co-existing factors (i.e. innate immune response and microbial composition) 

synergistically determine the fate of malignant transformation on top of host genetic predisposition. Under a healthy 

diet and lifestyle, nucleotide-binding oligomerization domain 2 (NOD2) shapes a healthy microbiome via 

inflammasome-mediated regulation of antimicrobial peptides (AMP). The healthy microbiota contains Gram-

positive (G(+)) bacteria as probiotics that produces butyrate and large quantities of muramyl dipeptide (MDP). MDP 

binding to NOD2 induces inflammasome-dependent autophagy pathways which are involved in the maintenance of 

epithelial homeostasis. However, with an unhealthy diet and after exposure to colitogenic and carcinogenic agents, 

overexpression of Toll-like receptor 4 (TLR4) instigates proinflammatory, hyperproliferative and anti-apoptotic 

signals in colonic epithelial cells after lipopolysaccharide (LPS) binding, and also alters the mucosal defensin level 

and causes dysbiosis. The dysbiotic microbiota contains Gram-negative ((G(-)) pathobionts with virulence factors 

and outer lipid membranous product LPS. Binding to LPS further increases TLR4 expression on cells, leading to a 

viscous cycle of activation. The list of virulence factors (*) with genotoxic, adherence, and invasive properties in the 

pathobionts is shown in Table 2. The bidirectional aggravation between pathobiont LPS and epithelial TLR4 further 

contributes to colon tumor development. 
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227, 228) and F. nucleatum (99, 154, 158, 159) 
adhere to or intracellularly survive in epithelial and 
tumor tissues, and aerotolerant B. fragilis are 
isolated from clinical peritoneal samples suggesting 
bacterial translocation (231, 232), the mucosal 
anchoring of bacteria could potentially increase its 
percentage in the fecal population. We believe that 
the mucosa-associated bacteria populated in vast 
numbers adjacent to epithelium and immune cells 
would be more relevant to disease progression, by 
which the virulence factors facilitating bacterial 
adherence and survival might be recognized by 
pattern recognition receptors for consequences of 
inflammation or tumorigenicity. Another line of 
evidence is that the amount of disease-associated 
bacteria in stool samples of CRC patients (e.g. 
Escherichia spp., Fusobacterium spp., and B. fragilis), 
although increased compared to healthy individuals, 
are still a minor component (<3%) of fecal microbiota 
in disease states (101, 102, 152). In contrast, when 
tumor tissues were used for microbiome analysis, 
the abundance of Fusobacterium genus jumps up to 
~10% (154, 157). Therefore, the stratification of 
bacteria by radial locations rather than by numbers 
in fecal contents may be more important in terms of 
host interaction. Furthermore, mucosal bacterial 
taxa derived from pyrosequencing should be cross-
validated by the culturing of viable internalized 
bacteria to rule out passive uptake of dead bacterial 
residues which might confound the microfloral data.  

Third, whether the wax and wane of particular 
bacterial species are influencing the viability of other 
microbes or even the whole microbiota population 
to impact on tumorigenesis is unclear. A bacterial 
driver-passenger model was proposed by Tjalsma et 
al indicating that particular species may play an 
active role (by initiating or aggravating lesions) or a 
passive role (as a bystander) in tumorigenesis, and 
the concept was suggested to be incorporated into 
the genetic paradigm of cancer progression (237). To 
answer this question, in vitro testing of a single 
bacterial strain to modulate proliferative and death 
response in epithelial cells would support a driver 
role of the microbe on epithelial-derived cancers. 
However, the possibility of this particular strain of 
bacteria acting on other members of the microbiota 
(as an assistant in altering tumorigenesis) is not 
mutually exclusive from its direct role and cannot be 
ruled out in in vivo settings. It is well known that 
maximized mutual fitness and bacteriocin-mediated 
competition co-exists among related species of 
Escherichia (238, 239). Uni- or bi-directional 
enhancement of bacterial growth with 

Fusobacterium, Porphyromonas, and Bacteroides 
species has been reported in in vivo subcutaneous 
abscess models and in vitro microbial co-cultures 
(229, 240). Moreover, probiotic mixture and 
eubiotic/antibiotic studies have shown that 
interaction among bacteria plays a key role in shifting 
the microbial community for suppression of cancer 
growth (115, 241, 242). Furthermore, the use of a 
combination of bacterial operational taxonomy units 
as a screening tool was shown to improve the 
probability of identifying adenoma and the 
prognosis of aggressive malignant transformation 
(156, 243, 244). These observations suggest that a 
consortium of bacterial complex instead of one 
particular species is in control of tumor progression. 
Employing large numbers of the suspected bacteria 
for a long-term repeated inoculation might overrule 
the necessity of supportive microbes for nutrient 
sharing and species competition, or mask the need 
of prebiotics and dietary metabolism that are 
otherwise important in microbiota shaping in normal 
conditions. The dynamics between particular 
bacteria and related species in the microbial 
community could be investigated through biofilm or 
mixed infection studies to provide a more holistic 
view of this complex interaction. We believe that 
although the presence of some bacterial taxa may 
not seem to be crucial in tumor-prone or tumor-
inducing experimental settings, they may play 
regulatory roles in shaping a “healthy” intestinal 
microbiota and in maintaining epithelial and 
immune homeostasis to suppress the transition to 
malignancy. To date, no common species can be 
conclusively ruled out as having roles in intestinal 
cancer.  

Fourth, the time-dependent change of genetic 
signatures of a particular bacteria clone throughout 
the course of tumorigenesis, or the temporal profile 
of genetic diversity of intestinal microbiota with the 
development of pathological conditions may clarify 
the ‘snapshot’ observation in cancer which is widely 
used in current studies and may help differentiate 
the driver or passenger role of bacteria. Moreover, 
employing antibiotic mixtures for bacterial depletion 
at various times to modulate tumor growth would be 
an efficient reductionist strategy. The finding of a 
critical period for bacteria-regulated tumorigenesis 
may justify the application of large scale 
metagenomics to decipher key molecules in host-
microbial interaction and to speed up the search of 
potential therapeutic targets. 

Fifth, the effect of diet either directly or 
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indirectly on bacterial composition adds another 
element of complexity in the quest of determining 
disease-associated bacteria. Dietary substances may 
indirectly modulate the bacterial community 
through endocrine and immune regulation. Other 
than fibers being the fermentative source of 
bacteria-derived butyrate with a clear tumor-
suppressing role, high fat diet is known to increase 
the level of bacteria-derived secondary bile acid (e.g. 
deoxycholic acid) which shows a positive correlation 
to tumor growth (245, 246). Further information on 
diet in relation to dysbiosis and CRC risk could be 
found in recent articles (247-249), and will not be 
discussed in details here. While a direct link between 
diet and bacterial composition is irreputable, it 
should be kept in mind that dietary metabolites by 
affecting gut-brain-liver axis for glucose, lipid, and 
energy homeostasis (250, 251) have direct effects on 
the host systemically, with or without the 
involvement of secondary bacterial factors.  

 

CONCLUDING REMARKS 

Harnessing the aberrant signaling of the host 
epithelium and correcting the virulence of 
pathobionts as a two-hit intervention could be an 
effective strategy for the treatment of colitis-
associated CRC. The appropriate timing, dosage, 
duration, and combination of therapeutic antibiotics 
or eubiotics to abort disease progression has yet to 
be determined. The impact of antibiotics on host 
innate signaling which might further modulate the 
course of colitis and tumorigenesis needs to be 
clarified. Binding of LPS and MDP has been 
previously shown to elicit positive or negative 
feedbacks for surface and vesicle expression of CD14, 
TLR4, or NOD2 (252-255). The phenomena of cross-
tolerance or costimulation of TLRs and NLRs by 
agoinsts have also been documented (256-258). 
Hence, the effect of antibiotic treatment on mucosal 
levels of TLRs and NLRs will provide additional 
information on the microbial regulation of tumor 
growth. Bacterial engineering would be another 
approach to manipulate cancer progression either by 
directly killing pathobionts, by colonization of 
targeted bacteria to outgrow their parent strains, or 
by improvement of probiotics with higher synthesis 
of beneficial metabolites and more stable 
colonization (259-263). In summary, manipulation of 
the gut microbiota to alter the epithelial response or 
vice versa is considered new therapeutic strategies 

for cancer treatment beyond gene-related therapy. 
The understanding of host and microbial interplay 
would benefit the development of novel strategies 
for disease intervention in patients with IBD and CRC.  
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