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Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respi-
ratory syndrome-coronavirus-2 (SARS-CoV-2), has affected millions of people 
globally. It was declared a pandemic by the World Health Organization in March 
2020. The hyperinflammatory response to the entry of SARS-CoV-2 into the host 
through angiotensin-converting enzyme 2 is the result of a “cytokine storm” and 
the high oxidative stress responsible for the associated symptomatology. Not only 
respiratory symptoms are reported, but gastrointestinal symptoms (diarrhea, 
vomiting, and nausea) and liver abnormalities (high levels of aspartate amino-
transferase, alanine aminotransferase transaminases, and bilirubin) are observed 
in at least 30% of patients. Reduced food intake and a delay in medical services 
may lead to malnutrition, which increases mortality and poor outcomes. This 
review provides some strategies to identify malnutrition and establishes nutri-
tional approaches for the management of COVID-19 and liver injury, taking 
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energy and nutrient requirements and their impact on the immune response into 
account. The roles of certain phytochemicals in the prevention of the disease or as 
promising target drugs in the treatment of this disease are also considered.
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Core Tip: The Coronavirus disease 2019 (COVID-19) outbreak caused by severe acute 
respiratory syndrome-coronavirus-2 (SARS-CoV-2), was declared a pandemic by the 
World Health Organization in 2020. It has since affected millions of persons wor-
ldwide. In some cases, entry of the virus into the cell leads to a hyperinflammatory 
response, giving rise to all of the associated symptomatology. Liver abnormalities have 
been detected frequently during the course of COVID-19, with or without related 
symptoms. Herein we discuss the infectious process, the response to the immune 
system and to the oxidative stress induced, and provide a brief guideline for nutritional 
therapy in patients affected by SARS-CoV-2 and liver injury.

Citation: Vargas-Mendoza N, García-Machorro J, Angeles-Valencia M, Martínez-Archundia M, 
Madrigal-Santillán EO, Morales-González Á, Anguiano-Robledo L, Morales-González JA. 
Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals. World J 
Gastroenterol 2021; 27(34): 5630-5665
URL: https://www.wjgnet.com/1007-9327/full/v27/i34/5630.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i34.5630

INTRODUCTION
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) belongs to the family 
of coronaviruses; the genome is +ssRNA, which is nonsegmented and has a size of 30 
kb[1,2]. In the cytoplasm of the host cell, it can be translated immediately into protein, 
as occurs with messenger (m)RNA. The genome encodes 16 nonstructural proteins 
(nsps) that are not part of the virion and have various functions in genome replication, 
protein processing, viral assembly, the exit of viral progeny, and others[3]. It also 
codes for four structural proteins, including spike (S), nucleocapsid (N), membrane 
(M), and envelope (E) that are required to constitute the complete virus particle 
(Figure 1)[2,4]. The origin of the disease may be from BatCov RaTG13 (GenBank: 
MN996532), a relatively close virus and one that was isolated from horseshoe bats[5]. 
SARS-CoV-2 causes the disease known as coronavirus disease 2019 (COVID-19). Since 
March 2020, a pandemic has been declared, and up to December 31, 2020, 81475053 
cases were confirmed and 1798050 deaths had been reported. The global lethality rate 
is 2.22%[6].

SARS-CoV-2 can affect various organs that express the entry receptor. The main 
receptor described is angiotensin-converting enzyme 2 (ACE2)[1]. Distribution of the 
ACE2 protein was investigated by immunohistochemistry, and the protein was found 
present in endothelial cells from small and large arteries and veins, arterial smooth 
muscle cells, myofibroblasts, the membrane of fat cells in various organs, and in the 
basal layer of nonkeratinizing squamous epithelium. Importantly, ACE2 is expressed 
in nasal and oral mucosae and the nasopharynx in type I and type II alveolar epithelial 
cells in normal lungs, which explains the respiratory tract infection. Gastrointestinal 
manifestations can be explained by the presence of the receptor in smooth muscle cells 
and in the endothelium of vessels in the stomach, small intestine, and colon. In 
addition, the receptor can be found in the brush border of enterocytes in the small 
intestine, including the duodenum, jejunum, and ileum, but not in enterocytes of the 
colon. In the kidney, weak glomerular visceral ACE2 staining was observed, whereas 
parietal epithelial cells were moderately positive. In the skin, ACE2 was present in the 
basal cell layer of the epidermis extending to the basal cell layer of hair follicles. 
Smooth muscle cells surrounding the sebaceous glands were also positive for ACE2. In 
the brain, ACE2 receptors were found in only endothelial and smooth muscle cells[7]. 
Some of the extra respiratory manifestations can be explained by the previous fin-
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Figure 1 Genome and structure of severe acute respiratory syndrome-coronavirus-2. The 30-kb severe acute respiratory syndrome-coronavirus-2 
virus genome is shown. It possesses different open reading frames (ORFs). ORF 1a generates the nonstructural proteins (nsp) from nsp1-nsp11, ORF 1b generates 
proteins nsp12-nsp16. The spike, envelope, membrane, and nucleoprotein structural proteins and accessory proteins are generated from the 3’ region. Created with 
BioRender.com. SARS-CoV-2: Severe acute respiratory syndrome-coronavirus-2.

dings. However, several alterations, such as those related to the liver, require 
explanation. The underlying mechanisms of acute liver injury associated with COVID-
19 have yet to be determined. The possible mechanisms of damage are described 
below.

PATHOPHISIOLOGY IN COVID-19 INFECTION
Viral receptor
The ACE2 receptor has been described as the main entry receptor for the SARS-CoV 
and SARS-CoV-2 viruses, and it is abundantly expressed in the cells of the biliary 
system (i.e. cholangiocytes)[7]. Thus, it has been implicated in elevated levels of 
alkaline phosphatase and gamma-glutamyl transferase (GGT). However, those 
changes have been found in a small number of patients[8], compared with elevated 
levels of aminotransferases directly related to functions of hepatocytes that do not 
express the ACE2 receptor (Figure 2)[9].

Direct damage of liver cells by SARS-CoV-2 has been reported, based on ultra-
structural changes and SARS-CoV-2 viral particles observed in the cytoplasm of 
hepatocytes by transmission electron microscopy of liver biopsies of two COVID-19 
who subsequently died, one of acute respiratory distress syndrome (ARDS) and the 
other of septic shock distress syndrome[10]. In a subsequent letter to the editor[11], 
multiple observations were made indicating that the elevation of alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST) were not sufficient for the con-
dition to be called acute liver injury, the number of biopsies performed were those of 
two patients, the characteristics of liver cell renewal could be mistaken for hepatic 
injury, “corona-like” particles could have been intrahepatic cholesterol crystals, and 
lamellations, or “crown-like” structures are observed in patients with nonalcoholic 
fatty liver disease.

In addition to the above observations, we would ask how the virus enters cells that 
do not have the receptor? In the case of cells with high phagocytic capacity that could 
swallow the virus, viral replication capacity would have to be investigated by the 
detection of nonstructural proteins. In the case of suspected viral reservoir cells, 
detecting at least some of the viral structural proteins would require staining, as has 
been reported for other viruses[12].

On the other hand, SARS-CoV-2 can use transmembrane protease serine 2 
(TMPRSS2), which has not been detected in the liver, to enter cells. However, other 
transmembrane serine proteases have been detected, in particular furin and hepsin (in 
Huh7-25-CD81 cells)[13]. In three-dimensional (3D) culture systems, liver bile duct-
derived progenitor cells form “liver ductal organoids” that retain their tissue-of-origin 
commitment and genetic stability. In a SARS-CoV-2 infection model with human liver 
ductal organoids, cholangiocytes expressing ACE2 and TMPRSS2 were preserved ex 
vivo in long-term culture. In addition, the expression of TMPRSS2 mRNA was found in 
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Figure 2 Possible mechanisms of acute liver damage by severe acute respiratory syndrome-coronavirus-2 infection. Direct damage to the 
hepatocyte is does not occur because it does not possess the viral entry receptor. However, indirect damage-associated with the immune response against viral 
antigens, cytokine storm, pre-existing liver diseases such as hepatitis A, B, and C viruses infection, and treatment with hepatotoxic drugs like acetaminophen, 
remdesivir, lopinavir, etc. has been characterized. In severely affected patients, oxygen deficiency can give rise to hypoxic hepatitis. Severe acute respiratory 
syndrome-coronavirus-2 damage to cholangiocytes has been documented, because they both possess the angiotensin-converting enzyme 2 and transmembrane 
protease serine 2 receptors. Created with BioRender.com. ACE2: Angiotensin-converting enzyme 2; ALT: Alanine aminotransferase; AST: Aspartate 
aminotransferase; DILI: Drug-induced liver injury; FA: Alkaline phosphatase; GGT: Gamma-glutamyl transferase;SARS-CoV-2: Severe acute respiratory syndrome-
coronavirus-2; TBIL: Total bilirubin; TMPRSS2: Transmembrane protease serine 2.

a subset of hepatocytes and cholangiocytes[14]. In other experiments, human liver 
ductal organoids showed increased expression of viral mRNA 24 h after being infected 
with SARS-CoV-2[15]. The experimental evidence suggests that viral receptors are not 
static and that they can be regulated by mechanisms that involve the presence of the 
virus and have not yet been described.

Response against viral antigens
Damage to the liver is known to be caused by hepatotropic viruses that replicate in the 
liver (e.g., hepatitis A, B, C, and E viruses). However, some viruses that attack the 
respiratory tract can cause liver damage, from small alterations in transaminases to 
fulminant liver failure, for example, the influenza virus[16,17], parvovirus[18], and 
respiratory syncytial virus bronchiolitis[19]. In general, hepatitis is thought to be a 
consequence of an immune response to viral antigens and to the loss of regulation of 
the inflammatory response. SARS-CoV-2 infection has been associated with hepatitis 
characterized by focal lobular lymphocytic infiltrates[20]. SARS-CoV-2 viral antigens 
were recently detected in liver as nucleocapsids and spike proteins[21].

Cytokine storm
The first line of antiviral defense is the innate immune response, initiated by the 
production of interferon (IFN) type 1 or IFN-α/β[22,23]. IFN-α/β binds to its cellular 
receptor and initiates autocrine and paracrine signaling to stimulate the expression of 
genes involved in the antiviral response (interferon-stimulated genes, ISG), in order to 
build resistance to infection and limit the spread of the virus. However, poor inter-
feron response and high viral replication have been characterized in severe cases of 
COVID-19[24]. High viral replication stimulates an exaggerated systemic inflam-
matory response that is related to a sustained elevation of interleukin (IL)-1β, IL-2, IL-
7, IL-8, IL-9, IL-10, IL-17, granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM)-CSF, IFN-γ, TNF-α, interferon γ-induced 
protein 10 kDa (IP-10), monocyte chemoattractant protein (MCP)-1, macrophage 
inflammatory protein (MIP)1α, and MIP-1β, and decreases in CD4+ T cell (TCD4+) and 
TCD8+ cell counts[25-27]. The latter could contribute to altered liver function[28] and 
to activation of the coagulation cascade[29,30], and an alteration of iron homeostasis 
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with elevated ferritin levels[31].

Pre-existing liver diseases
Correlations between the severity of COVID-19 and chronic diseases such as diabetes 
mellitus, arterial hypertension, obesity, renal alterations, and cardiovascular disease 
have been clearly described[32-34]. Regarding the impact of liver diseases on the 
progression of COVID-19, ALT and AST activity, and the concentration of C-reactive 
protein (CRP) have been related to the prediction of disease severity. The prediction of 
mortality was correlated with liver failure, total bilirubin, platelet count, and serum 
albumin concentration. Chronic hepatitis B and chronic liver disease were not related 
to disease severity, the requirement for treatment in the intensive care unit (ICU), or 
mortality[35]. In another study, 17 inactive hepatitis B virus carriers with SARS-CoV-2 
co-infection were found to have abnormal liver function tests (total bilirubin, ALT, and 
AST)[36]. Thus, it is not clear whether pre-existing liver diseases, such as viral hepa-
titis, are associated with the severity of COVID-19 infection[37].

Previous pharmacological treatment
The liver contributes mainly to the elimination of lipophilic drugs by increasing their 
solubility, therefore facilitating their elimination through the cytochrome P450 
isoenzyme complex. Therefore, it is important to inquire whether patients diagnosed 
with COVID-19 are using medications for the treatment of chronic diseases or even 
anti-influenza or antipyretic drugs[38]. Drugs that are especially potentially hepato-
toxic, such as acetaminophen, lopinavir/ritonavir, remdesivir, corticosteroids, and 
immune modulators, should be taken into account[39] because they can predispose to 
drug-induced liver injury.

Hypoxic hepatitis
Ischemic hepatitis, also known as hypoxic hepatitis or liver shock, is defined as 
extensive and potentially severe predominantly centrilobular hepatocellular necrosis 
resulting from a significant decrease in hepatic perfusion. In patients with severe 
COVID-19, mechanical ventilation, or hemodynamic disturbance and the occurrence of 
a sudden drop in systemic blood pressure, can lead to a reduction in hepatic blood 
pressure, decreased perfusion, and hepatocellular hypoxia. The pathogenesis involves 
hepatic ischemia and hepatic venous congestion because of elevated central venous 
pressure, which can predispose the hepatocytes to irreversible hypoxic injury[39,40]. 
Additionally, the hypoxia can directly affect the tissue–oxygen demand[41].

LIVER MANIFESTATIONS IN COVID-19
Various hepatic manifestations associated with COVID-19 have been documented, 
ranging from mild enzyme disruption to acute hepatic injury (Figure 3). The manifest-
ations can be grouped into enzymatic (ALT and AST), metabolic (hypoglycemia and 
hyperammonemia), secretory (hyperbilirubinemia), synthetic (hypoalbuminemia and 
prothrombin time), and degradation (D-dimer) dysfunctions. Cholestasis with impai-
red GGT and alkaline phosphatase (FA) is rare, but it is suggested that it may be 
caused by the dysfunction of the bile duct cells rather than by liver cell damage[8].

Enzymatic liver dysfunction
Liver enzyme abnormalities in patients with COVID-19 are usually transient and are 
associated with disease severity. Alanine and aspartate aminotransferases (ALT and 
AST) are generally found to be elevated in the serum and are more often observed in 
hospitalized patients[33,42-44] than in patients with subclinical disease. Acute hepatic 
injury can be diagnosed by an ALT at 10 times the upper reference limit and by AST at 
three times the appropriate upper reference limit[45].

Metabolic liver dysfunction
Hypoglycemia and hyperammonemia suggest liver failure and have not been found in 
COVID-19 patients, but there is a hypothesis that coronaviruses can cause a transient 
dysfunction of pancreatic beta cells[46], leading to acute hyperglycemia and relative 
insulin deficiency. The hypothesis is supported by a previous study including 39 
patients with SARS and without a history of diabetes. Twenty of the patients deve-
loped diabetes, all but two temporarily. In addition, ACE2 has been identified in the 
pancreas of patients with SARS[47].
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Figure 3 Liver manifestations in coronavirus disease 2019 are quite varied. Increased transaminases and hypercoagulability have been observed in 
the majority of patients. In rare cases, autoimmune hemolytic anemia has been observed. Created with BioRender.com. AIHA: autoimmune hemolytic anemia; ALT: 
Alanine aminotransferase; AST: Aspartate aminotransferase; COVID-19: Coronavirus disease 2019.

Secretory liver dysfunction (hyperbilirubinemia)
Regarding bilirubin, no relationship has been directly associated with SARS-CoV-2. 
However, there are reports of autoimmune hemolytic anemia (AIHA) in patients with 
symptomatic COVID-19[48,49]. Additionally, there is a report of a patient without 
clear evidence of SARS-CoV-2 infection for 2 wk and a subsequent positive PCR test. 
The final diagnosis was AIHA secondary to COVID-19)[50].

Synthetic liver dysfunction (hypoalbuminemia) elevated prothrombin time
Albumin is a protein synthesized in the liver and has a serum half-life of approx-
imately 21 d[51]. In the majority of cases, a decrease in serum albumin can be ex-
plained by two factors, either a decrease in its synthesis in the liver) or an increase in 
renal permeability. However, the prevalence of hypoalbuminemia (< 35 g/L) in 
COVID-19 patients was increased in critically ill patients in an ICU, but liver damage 
or albuminuria were not detected. hypoalbuminemia was associated with high-
sensitivity C-Reactive protein (hs-CRP) and elevated D-dimer, which is considered to 
be a marker of thrombin. Therefore, an attempt was made to establish a cause–effect 
relationship between hypoalbuminemia and hypercoagulability, in that albumin 
possesses anticoagulant and antiplatelet activity[52]. In a separate study, it was 
determined that hypoalbuminemia (< 35 g/L) on hospital admission increased the risk 
of death in COVID-19 patients by at least six-fold. Lower albumin levels on hospital 
admission can predict the outcome of COVID-19 independently of other known 
indicators, such as lymphocyte count or comorbidities[32,53].

D-dimer levels
D-dimer is the end-product of fibrin degradation, and it serves as a serological 
indicator of the activation of coagulation and of the fibrinolytic system. D-dimer levels 
have been reported as elevated in patients with COVID-19 and have been used as a 
tool for the prediction of disease severity in 178 studies[54]. In one study, it was 
determined that elevated D-dimer levels predicted in-hospital mortality in patients 
with COVID-19[55]. However, the usefulness of D-dimer is diminished by poor 
reporting of the values. The majority of publications did not identify either the assay 
manufacturer or the D-dimer product used for the determination. The majority of the 
authors did not identify whether D-dimer values were reported as D-dimer units or 
fibrinogen equivalent units (FEU), which differ by approximately ×2. The studies did 
not report normal cutoff values, and the units of comparison were not the same[56].

IMMUNE SYSTEM AND OXIDATIVE STRESS
Response of the immune system in infection by SARS-CoV-2
The innate immunological system functions as the first line of defense of the host 
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against infection by SARS-CoV-2; it is crucial for identifying and eliminating the 
infected cells, and at the same time, for coordinating an adaptive immunity response
[57]. The immune response of the host in cases of COVID-19 can be described as an 
early local immune response (antiviral defense) and a later local/systemic response 
phase, followed by uncontrolled inflammatory responses and cytokine storm syn-
dromes (Figure 4)[58]. Because SARS-CoV-2 initially affects the upper respiratory tract, 
its first interactions with the immunological system during the inductive and effector 
phases, should take place predominantly on the surfaces of the respiratory and oral 
mucosae[57,59]. Exposure to the virus antigens causes immunoglobulin (Ig)A-me-
diated responses in the mucosa[60,61] that can be accompanied by the systemic 
production of IgA, but the systemic production can be absent, transitory, or delayed
[61]. The response involving IgA antibodies of the mucosa that maintains an essen-
tially noninflammatory medium[59] and can be particularly prevalent in young people 
with a mild infection by SARS-CoV-2 without evidence of pneumonia[61].

If the immunological system of the individual does not counteract the virus during 
the initial phase of exposure through a rapid early response, the virus advances to the 
lower respiratory tract (LRT)[62,63]. Once the virus reaches terminal respiratory pa-
thways and the alveoli, B and T cells are activated, which results in the production of 
specific anti-SARS-CoV-2 antibodies[61], with the predominance of an inflammatory 
environment dominated by IgG[59]. The S and N proteins are the two principal 
antigens of the coronavirus that induce the production of Ig[64,65]. The IgA, IgM, and 
IgG antibodies against the N and S proteins, and the IgM and IgG antibodies against 
the protein receptor-binding domain, as well as the presence of neutralizing antibodies 
(nAbs) against SARS-CoV-2 are positive from day 1 after the appearance of symptoms
[64]. The antibody levels, especially IgG, increase during the disease course, while a 
limited increase of IgA and IgM is observed[64]. The antibodies against the S1 and N 
antigens persist for at least 3 mo after the infection[60,65]. In addition, higher levels of 
nAbs as well as IgG and IgM antibodies and anti-S1 and -N antibodies have been 
observed in patients with very severe symptoms[9]. In addition, depletion of memory 
B cells of IgM was associated with worse outcomes, including a higher mortality rate 
and a greater risk of developing superimposed infections[66].

In response to viral invasion, the innate immunological system recognizes viral 
nucleic acids by host recognition-pattern (HRP) receptors, which are expressed in 
innate immune cells (e.g., neutrophils, dendritic cells, epithelial cells, and macro-
phages)[67], and by toll-like receptors (TLRs) and retinoic acid-inducible gene I-like 
(NOD-like) receptors (NLRs) (Figure 4C). For the production of cytokines and the 
induction of an antiviral state[57,58], as a response to specific pathogen-associated 
molecular patterns and damage-associated molecular patterns (DAMPs)[57,68]. HRP 
receptors can activate antiviral responses in neighboring cells and recruit innate and 
adaptive immune cells and the participation of phagocytes such as macrophages and 
neutrophils, as well as natural killer (NK) cells[59,68].

Once the virus was detected by an HRP receptor, intracellular signaling pathways 
are triggered that activate interferon regulatory factor 3 (IRF3) and the nuclear factor 
kappa beta (NF-κB) signaling cascade[58]. The initial phase of the production of 
interferon (IFN) mediated by IRF3 performs the initial phase of the innate immune 
response to detect and brake viral replication[69]. Viral detection stimulates the pro-
duction of type-1 and type-3 IFN, which results in the expression of interferon-
simulated genes ISG (IRF1, IFI44L, and IFIT3) and antiviral genes (OAS3 and ADAR)
[70], and the release of large amounts of inflammatory procytokines like interferon 
gamma (IFN-γ), interleukin (IL)-1RA, IL-6, IL-8, IL-10, and IL-19, monocyte chemoat-
tractant protein 1 (MCP-1), MCP-2, and MCP-3, bonding with C-X-C motif chemo-
kines, including CXCL9, CXCL10, and CXCL5, and tumor necrosis factor alpha (TNF-
α)[71]. Stimulation of TLRs activates NF-κΒ, giving rise to the production of inflam-
matory markers deriving from monocytes (IL-1, TNF-α, and IL-6) to control the 
infection by means of direct antiviral pathways and the recruitment of other leu-
kocytes[67]. Signaling is elevated 24 h after infection by SARS-CoV-2, leading to the 
progressive loss of the pulmonary alveolar epithelial function[62]. The activation of 
complement, and especially of the C5a/C5aR1 axis, was also implicated in the pulmo-
nary pathology of COVID-19[71].

HRP receptors, particularly the nucleotide-binding oligomerization domain-like 
(NOD)-like receptor (NLR) family, subsequent to the SARS-CoV-2 infection, assemble 
a multiprotein complex called inflammasome NLRP3, which results in the activation 
of caspase-1. Activated caspase-1 splits from the pro-interleukin IL-1β, pro-IL-18, and 
gasdermin D (GSDMD) and releases the GSDMD N-terminal fragment that can be 
oligomerized within membranes to form membrane pores and “pyroptosis”[57]. The 
excision of caspase-1-dependent GSDMD leads to the release of IL-1β and IL-18[72], 
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Figure 4 Immune response and oxidative stress in severe acute respiratory syndrome-coronavirus-2 infection. A: Oxidative stress; B: Adaptive immune response; C: Innate immune response; D: Cytokine storm. Created with 
BioRender.com.
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which are key mediators of the inflammatory response, and their increase in the 
plasma have been correlated with COVID-19 mortality or severity[73]. Apoptosis, 
another type of cell death, also occurs during SARS-CoV-2 infection and is driven by 
the excision of the caspase-8, -9, -10 initiators of the executioner caspase-3 and -7. 
Apoptotic caspase-3 activates gasdermin E (GSDME) to induce the lytic form of cell 
death; the protein ORF3a of the SARS-CoV-2 virus also induces the excision of 
caspase-8 and -9 and causes apoptosis[57]. The activation associated with the death 
pathways of the inflammatory cells can give rise to critical tissue damage, severe 
inflammation, and lactate dehydrogenase (LDH), which is a marker of cell death that 
has high concentrations in COVID-19 patients. The LDH concentration is considered a 
predictive factor for the early recognition of pulmonary lesions in severe cases[74].

Macrophages are a key respiratory system. They produce chemokines and IFN-β. 
Infected dendritic cells (DCs) produce antiviral cytokines, like IFN-α and IFN-β; the 
proinflammatory cytokine TNF, IL-6, and high levels of the inflammatory chemokines 
CCL3, CCL5, CCL2, and CXCL10. The cytokines/chemokines are key factors for the 
chemotaxis of neutrophils, monocytes, and activated T cells[75]. Activated neutrophils, 
whose main function is the elimination of pathogens and dendrites by means of 
phagocytosis[67], release leukotrienes and reactive oxygen species (ROS) that induce 
local damage to pneumocytes and the endothelium, which in turn leads directly to 
acute lung lesions[68].

Neutrophils can also develop DNA networks called neutrophilic extracellular traps 
(NETs)[68] through the process of NETosis, or the release of nucleic acids enveloped in 
histones, which retain viral particles and promote the inactivation of the viral infection 
and cytokine production to restrict replication of the virus[67]. NETosis is conditioned 
to the production of ROS by means of nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase. In addition to the physical containment promoted by NETosis, 
NETs contain proteases and cytotoxic enzymes that permit the neutrophils to cen-
tralize lethal proteins at the sites of infection. A variety of stimuli, including toxic 
factors, viruses, and proinflammatory cytokines such as TNF-α and IL-8, can drive 
neutrophils to release NETs (Figure 4D)[67]. The uncontrolled production of NETs is 
correlated with the severity of the disease and the extension of the pulmonary lesion, 
with acute respiratory insufficiency and multiple organic dysfunction syndromes[76]. 
NETs also contribute to the formation of thrombi, or immunothrombosis, which can 
amplify the production of cytokines[68]. The inflammatory process comprises a 
triggering of thrombotic complications that are usually observed in patients with 
COVID-19, and immunothrombotic dysregulation appears to be an important marker 
of the severity of the disease[77,78]. In SARS-CoV-2, elevation of the neutrophil/ 
lymphocyte ratio (NLR), a marker of infection and systemic inflammation, suggests a 
poor disease prognosis. In addition, patients with COVID-19 have the lowest lym-
phocyte count and the highest neutrophil count and NLR during severe disease[67,79,
80].

The inflammatory responses in the respiratory system intended to eliminate SARS-
CoV-2 result in the generation of metabolic-acid waste material that, together with an 
increase in respiratory muscular work, lead to the development of metabolic acidosis. 
Metabolic acidosis compromises adaptive cellular immunity and the efficient era-
dication of SARS-CoV-2[81]. Activated neutrophils and the T lymphocytes depend 
mainly on glycolytic metabolism for their proliferation, differentiation, and function, 
which results in the accumulation of lactic acid[81]. A low pH induces anergy in CD8+ 
T cells, suppresses NK cells, and inhibits the function of CD4+ T cells. Acidosis also 
increases the levels of circulating glucocorticoids; thus, their anti-inflammatory and 
immunosuppressor properties compromise immunity against viruses to an even 
greater degree[81].

Infection by SARS-CoV-2 promotes mechanisms that antagonize proinflammatory 
signals, particularly the signaling of IFN-I and IFN-III, but increases the expression of 
chemokines and proinflammatory cytokines in order to counteract the host’s innate 
immune response[57,58,63]. Thus, the expansion and early differentiation of T cells 
depend on the direct action of IFN-I[82]. The descending production of interferons 
promotes intracellular antiviral defenses in neighboring epithelial cells that can limit 
viral dissemination, while the release of IL-6 and IL-1β from other immune cells 
promotes neutrophil recruitment and immune cell activation[68].

The three most critical components of the adaptive immune responses are viral 
protein-specific CD4+ T cells, CD8+ T cells, and nAbs. The nAbs produced by B cells 
can bind to and neutralize the extracellular SARS-CoV-2 proteins. If the Abs cannot 
prevent the virus from entering cells, cytotoxic CD8+ T cells are called upon to destroy 
the cells directly infected with their granules[83,84]. Pulmonary cytotoxic CD8+ T cells 
recognize and induce apoptosis in cells infected through direct mechanisms (i.e. 
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cell–cell contact) and indirect mechanisms with the participation of the perforin and 
granzyme-secreted cytolytic enzymes, as well as with the cytokines IFN-γ and TNF-α
[85]. However, cytotoxic cells by nature do not prevent the infection, they destroy 
already infected cells, thus reducing propagation of the infection (Figure 4B)[59]. 
Transitory increases of the CD8 effector T and memory T cells constitute an effective 
and efficient response during early viral infection[81]. High counts of CD8+ T cells in 
the lungs are correlated with better control of SARS-CoV-2[80,85].

CD4+ T cells, the third arm, are auxiliaries and coordinators of the production of 
Abs and of the activation of the cytotoxic CD8+ T cells[83,84]. After being infected 
with SARS-CoV-2, CD4+ T cells are activated and differentiate to Th1 cells or cir-
culating T follicular helper T cells (Tfh)[68,80] that secrete proinflammatory cytokines, 
such as IL-2, IL-6, IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-
CSF)[68] that participate in the activation, proliferation, and differentiation of cytotoxic 
T lymphocytes. In addition, elevated levels of cytokines secreted by Th2 cells, such as 
IL-4 and IL-10), which inhibit Th1 inflammatory responses have been reported[86]. 
The severity of SARS-CoV-2 infection has been related to diminished adaptive im-
munity responses, mainly because of depletion of T cells and lymphopenia[80], 
alteration of the differentiation of T follicular helper (Tfh) cells[63,87], low levels of 
CD8+ NK cells[83], CD4+ auxiliary T cells[87], and memory T cells[84]. However, Abs 
by themselves do not correlate with the severity of the disease[64,83]. It is probable 
that the level of inflammation and the amount of proinflammatory cytokines are 
associated with the activation and depletion of T cells, but it has not yet been deter-
mined whether the early response reaches a state of depletion in individuals with 
severe hyperinflammation[63,70].

Lymphocytes gradually decrease as the disease advances, which results in immu-
nosuppression manifested as atrophy of the organs of the immune system, secondary 
infection, and multiple organ dysfunction syndrome[75]. Lymphopenia is consistent 
with overrepresentation of nonfunctional T lymphocytes, with increased percentages 
of virgin Th lymphocytes (i.e. CD45RA+, CXCR3−, CCR4−, CCR6−, and CCR10−) and 
a persistent low frequency of markers associated with effector memory T cells, TFH 
cells, and regulatory T cells (Tregs)[80]. Lymphocytopenia is negatively correlated 
with inflammatory biochemical parameters (ferritin, fibrinogen, PCR, D-dimer, LDH) 
and the percentage of lymphocytes and positively correlated with the neutrophil count
[80]. From an immunological point of view, lymphopenia could depend on the po-
ssibly dysfunctional deactivation of dendritic cells and on the increased concentration 
of cytokines such as TNF-α, IL-6, and IL-10, which act as negative regulators of the 
proliferation and survival of the T lymphocytes[88]. The production of acute-phase 
proteins such as ferritin and CRP, in addition to affecting the equilibrium of pro- and 
anticoagulant pathways (i.e. increasing D-dimer), can induce lymphocyte apoptosis
[82].

The host capacity to generate efficient T cell responses after infection by SARS-CoV-
2 probably depends on the directed epitopes, the presence or absence of pre-existing 
cross-reactive T cells, and genetic factors such as the human lymphocyte antigen 
(HLA) type, and the repertory of T cell receptors (TCRs)[85]. Given that activated T 
cells in elderly persons and in those with chronic disease present reduced responses to 
IFN-I, a longer time is needed to generate effective adaptive immune responses 
because of the deterioration of the immune functions such as the production of virgin 
T cells and memory T cells, which diminish with aging[84], and present asynchronous 
immune responses with high Ab levels and weak T cell responses[83]. Delayed 
activation of SARS-CoV-2-specific T cells and a reduction of the clarification of the 
virus increase the risk of cytokine storm, the earlier appearance of severe disease, and 
increased mortality[68].

In contrast with innate immune responses, which are produced before the infection 
and participate fully in the elimination of the virus, the adaptive immune responses 
begin 4-7 d after infection. If the body does not generate effective adaptive antiviral 
responses in time to eliminate the virus, the innate immune responses will be main-
tained, but without eliminating the virus in an effective manner and even leading to 
systemic inflammatory responses and the uncontrolled release of inflammatory cyto-
kines[68].

The inflammatory cytokine storm, also known as the cytokine release syndrome, is a 
severe excessive immune response caused by positive biofeedback circuit damage of 
immune cells by the cytokines[67,75,87]. The formation of a cytokine storm leads to a 
“suicide attack” that not only limits additional propagation of the virus, but also 
induces secondary tissue damage[68]. The marked release of proinflammatory cyto-
kines causes lymphopenia, lymphocyte dysfunction, granulocyte and monocyte ano-
malies[58], coagulation disorders such as capillary extravasation syndrome, formation 
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of thrombi, and even the combined immunodeficiency syndrome[76,81]. A series of 
destructive effects on tissues, including destabilization of the interactions among 
endothelial cells, damage to the vascular barrier, diffuse alveolar damage charac-
terized by the formation of hyaline membranes[13], ARDS[57,68], tissue toxicities that 
affect the respiratory, hematological, gastrointestinal, cardiovascular, renal, hepatic, 
and neurological systems[89], multiorgan failure[80] and, ultimately death may occur
[58,68,75,76]. Despite the large number of studies much of the physiology of the 
immune response in COVID-19 has yet to be described.

Oxidative stress and infection by SARS-CoV-2
Oxidative stress is the result of disequilibrium between the oxidant system, which 
consists principally of free radicals, ROS), and reactive nitrogen species (RNS), and the 
antioxidant systems that neutralize the free radicals[90]. Reactive oxygen and nitrogen 
species (RONS) are characterized by unpaired valance electrons, obliging them to react 
with diverse biological molecules[90,91]. ROS comprise the hydroxyl (OH) radicals, 
superoxide anion (O2

−), singlet oxygen (¹O2), hydrogen peroxide (H2O2), and ozone 
(O3). RNS include nitric oxide (NO), peroxynitrite (ONOO−), nitrosyl cation (NO+), the 
nitrosyl anion (NO−), and nitrose acid (NH2O2)[90]. Under physiological conditions, 
the reactive species play an important role in cellular signaling (redox signaling) and 
the regulation of cytokines, and growth factors such as immunomodulators, cellular 
differentiation, and others. However, when the equilibrium of oxidant agents and 
antioxidant systems is disturbed, harmful effects are generated[90,91]. The damage 
caused by free radicals affects cellular membranes by lipid peroxidation, oxidation, 
protein denaturalization, DNA damage that can induce inflammatory immune res-
ponses and increase the risk of mutations and tumorigenesis, and apoptosis[90]. In 
general, hydroxyl radicals are highly reactive and are responsible for the greatest 
cellular damage modification of biomolecules induced by ROS. H2O2 is considered the 
least harmful and can travel to and penetrate cell membranes, and the superoxide is 
intermediately harmful[92].

In the pathology of COVID-19, the cytokine storm is an important source of 
endogenous oxidative stress, and excessive production of ROS that in turn stimulates 
the increased release of cytokines, causing an exaggeration of the already initiated 
inflammatory responses (Figure 4A)[93-97]. The interaction of ROS and cytokines ge-
nerates a self-sustaining cycle involving the cytokine storm and the production of 
oxidative stress that eventually leads to a high pulmonary protein exudate with a low 
hemoglobin carrier, the generation of free radicals and proteases, and an increase in 
the permeability and entry of edematous fluid into the alveoli. The results in deficient 
gas exchange in the lungs, pulmonary hypoxia, cytopathic hypoxia, damage to the 
epithelium, acute pulmonary lesions, disseminated coagulation, multiorgan failure 
and death in patients with COVID-19[95-98].

The cytokine storm with hyperinflammation accompanied by cytopenia and hy-
perferritinemia is known to generate ROS, by means of the Fenton reaction (Fe²+ + 
H2O2→ Fe³+ + HO- + HO-). Additionally, the cytokines and endotoxins stimulate an 
isoform of nitric oxide synthase (iNOS), the inducible isoform NO, which stimulates 
the production of NO that in turn reacts with the superoxide to yield peroxynitrite 
(ONOO−)[90,96]. Both peroxynitrite and NO are toxic to mitochondria, producing 
dysfunctional mitochondria that, in turn, result in cytopathic hypoxia[96,99]. In 
addition, they cause a possible oxidative storm with all of the harmful effects of RONS, 
in particular the peroxidation of lipids and oxidation of membrane proteins that 
contribute to the transformation and hyalinization of the pulmonary alveolar mem-
branes, with lethal respiratory difficulty[90].

SARS-CoV-2 activates oxidant-sensitive pathways through inflammatory responses 
following activation of the NF-κΒ pathway[93]. The reduction of oxygen saturation 
leads to the generation of superoxide radicals and H2O2 by the mitochondria. Hy-
drogen peroxide triggers the expression of genes that positively regulate proinflam-
matory cytokines, such as IL-1, IL-6, and TNF-α, and inducible nitric oxide synthase 
(iNOS) by means of the activation of the (iNOS) NF-κΒ pathway[94,96,98,100]. That, 
together with the ROS, activates NLRP3 inflammasomes[101]. IFN-γ, IL-1β, IL-2, IL-6, 
and TNF-α stimulate the generation of NO[96]. IL-6 and TNF-α give rise to superoxide 
generation in neutrophils, and hydrogen peroxide stimulates the generation of IL-6[98,
102]. In cyclical fashion, the proinflammatory cytokines activate macrophages, 
neutrophils, and endothelial cells through NADPH oxidase (NOx) to produce more 
superoxide and H2O2. Patients with COVID-19 exhibit an overactivation of NOx2, a 
mechanism that favors ischemic events related to thrombotic events and associated 
with severe disease[103].
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At the same time, the IFN-γ pathways are activated by oxidative stress induced by 
the inflammation intended to combat the infection by the virus[33]. Circulation of the 
inflammatory cytokines and ROS damage erythrocytes, leading to the generation of 
heme and free iron and diminish the circulating nitric oxide (NO), which worsens the 
existing ischemia of the organs. Deterioration of the mitochondria leads to cytopathic 
hypoxia, which results in a partial reduction of oxygen with the generation of ROS and 
the reduced energy production[98]. In addition, macrophages and activated neutro-
phils produce respiratory bursts that generate superoxide radicals and H2O2[94,98] that 
maintain the oxidative stress[98].

Poorly coordinated iron, especially in the presence of high concentrations of oxygen 
and reducers have the potential to generate hydrogen peroxide, superoxide, and 
hydroxyl radicals in the lung[92]. The radical superoxide anion reduces Fe (III) to Fe 
(II) that, in the presence of H2O2, produces hydroxyl radicals (•OH), which are 
extremely toxic and promote the formation of lipid peroxidases in the cell membrane 
and the oxidation of proteins, causing cell death by apoptosis[94]. Hydroxyl radicals 
plus free iron convert soluble plasma fibrinogen into abnormal fibrin clots in the form 
of enzymatic degradation-resistant dense and entangled deposits, leading to micro-
thrombosis in the vascular system and in the microcirculation[95,96].

Oxidative damage resulting from SARS-CoV-2 infection can produce viral mu-
tations that affect the immunological response. In addition, overproduction of ROS 
suppresses T-lymphocyte responses and results in weakened adaptive immunity[94], 
altering the structure and function of the circulating lymphocytes, principally TCD4+, 
with selective depletion reduced antiviral activity of CD8+[94] T cells. In general, the 
host response to stress and to combat an inflammatory condition is marked by a strong 
increase of the cortisol level. Cortisol supports the mechanisms of the host immuno-
logical defense in a permissive manner, and high levels of cortisol suppress inflam-
mation and prevent tissue damage[93]. However, in the case of severe COVID-19, 
patients can develop a corticosteroid insufficiency related to a critical disease[93]. It is 
known that overproduction of ROS and the weakening of antioxidants are needed for 
viral replication and the subsequent disease associated with the virus[97]. Viral 
infections alter antioxidant mechanisms leading to an unbalanced oxidative-
antioxidant state and consequent oxidative cellular damage. Exposure to various pro-
oxidants generally leads to activation of nuclear factor erythroid 2-related factor 2 
(Nrf2) and to an increase of the expression of components of the antioxidant response. 
However, respiratory virus infections have also been associated with inhibition of the 
Nrf2 pathways that leads to inflammation and oxidative damage[97]. Nrf2 is a 
transcription factor responsible for the adaptation of cells and tissues including 
alveolar epithelium, endothelium, and macrophages to electrophilic or oxidative 
stress. Under normal conditions, Nrf2 is found in the cytoplasm bound to its inhibitor 
Keap1, which is directed to Nrf2 for ubiquination and later degradation. In the 
presence of electrophiles or ROS, the Keap1–Nrf2 complex dissociates and Nrf2 
migrates to the nucleus where it stimulates the transcription of target genes with 
sequences of antioxidant response elements in their promoters[104]. Nrf2 controls the 
expression of the genes that participate in the antioxidant response, redox home-
ostasis, and the biogenesis of the mitochondria, etc. In addition, Nrf2 functions as a 
transcription repressor that inhibits the expression of inflammatory cytokines in the 
macrophages (e.g., IL-1β, IL-6, and TNF-α)[95]. SARS-CoV-2 can interfere with the 
equilibrium between the transcription factor NF-κB involved in the expression of 
cytokines and in the activation of Nrf2, responsible for the expression of antioxidant 
enzymes[96], including hemoxygenase 1 (HO-1), superoxide dismutase 1 (SOD1), 
superoxide dismutase 3 (SOD3), glutathione S-transferase (GST), catalase (CAT), and 
glutathione peroxidase (GPx)[96]. Nrf2 also regulates the increase in the production of 
the antioxidant enzymes NAD(P)H and quinone oxidoreductase (NQO1), and en-
zymes needed for the biosynthesis of glutathione, which functions as the main cellular 
antioxidant[95]. In patients with SARS-CoV-2 infection, deficiencies in systems 
protection against free radicals, as well as deficits in superoxide dismutases (SODs), 
CAT, and reduced glutathione (GSH) have been described[94].

Oxidative stress is already increased in the elderly and people with diabetes and 
chronic cardiovascular diseases[90,91]. Increase in the stress level in response to viral 
infection affords a possible explanation of the severity of COVID-19 in such patients. 
In addition, elderly individuals may particularly vulnerable to infection by SARS-CoV-
2 because the level and the activity of Nrf2 diminish with age[98]. Therefore, aging is 
not only associated with alterations in the response to adaptive immunity, but also to a 
proinflammatory state in the host[97].
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NUTRITIONAL MANAGEMENT AND APPROACHES
Malnutrition in patients with COVID-19 infection
SARS-COV-2 infection and the resulting COVID-19 may cause multiorgan failure in 
addition to respiratory symptoms, including gastrointestinal (GI) and liver dysfun-
ction, which can be complicated in the elderly or in the presence of comorbidities. 
There are complications associated with prolonged ICU stays; thus, the longer the ICU 
stay, the greater the risk of malnutrition. Malnutrition, mostly undernutrition, is the 
result of inadequate food intake or altered nutrient assimilation, and when it is caused 
by disease, different degrees of acute or chronic inflammation contribute to the state. 
Inflammation induces the elevation of resting expenditure, anorexia, and reduced 
intake. Such catabolic conditions modify body composition, with waste of muscle mass 
that alters functionality along and clinical outcomes[105]. Indeed, malnutrition may 
develop as a result of the physiological effects of SARS-COV-2, management pro-
cedures such as ventilation. Limited access of patients to direct consultations with 
healthcare professionals because of confinement impairs the identification of risk 
factors for malnutrition as well detection of the reduced food intake. Unplanned 
weight loss and the diminution of muscle mass induce a catabolic state in the patient, 
with an impact on mobility and, in turn, a poor quality of life and an increased risk of 
mortality, in addition to the complication of polymorbidities. As a consequence of 
malnutrition, immune function can be reduced, respiratory and muscle strength may 
be impaired, which delay recovery and result in longer hospital stays with poor 
outcomes. Thus, the additional use of healthcare services increases costs.

Based on the previous statement, malnutrition should be identified as an early step 
in the assessment of patients with SARS-CoV-2 infection, especially in patients with a 
high risk of mortality or of poor outcomes, such as older adults and polymorbid 
individuals. The identification of malnutrition is crucial for establishing effective 
nutritional support in order to improve food consumption, nutritional status, the 
patient’s health prognosis, and even to prevent the occurrence of COVID-19 in the 
future. Particularly in the COVID-19 crisis, food and nutrient absorption is often 
impaired by nausea, vomiting, and diarrhea, the main GI symptoms, which lead to 
enhanced malnutrition. The international meta-analysis of McClave et al[106] of 47 
studies in 10890 patients who were analyzed to determine the prevalence of liver and 
GI manifestations resulting from COVID-19 established consultative management of 
patients. Nausea/vomiting was a very frequent GI manifestation with a pooled 
prevalence of 7.8% (95%CI, 7.1%-8-5%) followed by diarrhea in 7.7% (95%CI, 7.2%-
8.2%) and abdominal pain in 2.7% (95%CI, 2.0-3.4%). Moreover, ALT had a pooled 
prevalence of 15% (95%CI, 13.6%-16.5%) and AST had a prevalence of 15% (95%CI, 
13.6%-15.4%) as manifestations of liver disorders. A cohort study of patients with 
COVID-19 in Hong Kong revealed that GI symptoms were present in 17.6% of patients 
and that diarrhea appeared to be the most common symptom. In the meta-analysis, the 
RNA virus was detected in 48.1% (95%CI, 38.3%-57-9%) of stool samples, and 70.3% 
(95%CI, 49.6%-85.1%) of the samples were collected after respiratory samples were 
found to be negative. Therefore, good management must be considered as a low risk of 
infection through endoscopic procedures or saving stool samples[107]. Thus, it is 
suggested that, prior to the administration of any treatment, it is necessary to evaluate 
the nutritional status of every infected patient.

In clinical practice, malnutrition is assessed with various tools (Table 1). The 
European Society for Clinical Nutrition and Metabolism (ESPEN) recommends using 
the Malnutrition Universal Screening Tool (MUST) for the identification of malnu-
trition in patients diagnosed with COVID-19[100]. The MUST instrument was de-
signed for persons at risk of malnutrition, not only in those who are underweight but 
also in obese individuals. In patients with SARS-COV-2, loss of appetite is very 
frequent because of symptoms such as shortness of breath, loss of taste and smell, 
muscle pain, fatigue, and general discomfort. Related symptoms may contribute to 
insufficient achievement of energy and nutrient demands, thus promoting unplanned 
weight loss. To perform the MUST assessment, simple objective measurements of 
weight and height are needed to estimate the body mass index (BMI) in addition to 
weight at 3-6 mo previously. The acute disease effect denoted no nutritional intake for 
more than 5 d. However, even if conditions do not allow for obtaining objective 
measurements, screening can be carried out utilizing other measurement options, such 
as ulna length to estimate height and mid-upper-arm circumference. The latter are 
very useful for subjective BMI estimation in that healthcare personal and profes-
sionals, the patients’ family members, or the patients themselves are able to obtain 
them. Nevertheless, if the patients are in the ICU or at home, and if it is not possible to 
obtain the measurements in any manner, the second step comprises the subjective 
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Table 1 Tools for malnutrition detection in patients with coronavirus disease 2019 and liver injury

Tool Target patients Criteria

Objective criteria:

Objective measures: weight and height to obtain BMI

Other measures (optional): ulna length and mid upper arm 
circumference

Low weight

Weight loss in las 3-6 mo

Subjective criteria:

Reduced food intake in last 5 d: clinical management, 
psychological factors

MUST

Obese patients

Weight loss appearance (clothes, jewelry)

BMI

Weight loss within 3 mo

NRS-2002 Hospitalized individuals

Reduced dietary intake in last week

Age

Days hospitalized or in the ICU

Number of comorbidities

IL-6 levels (optional)

APACHE II score

NUTRIC score Hospitalized patients at ICU

SOFA score

Age

Temperature

Mean arterial pressure

pH

Heart rate/pulse

Respiratory rate

Sodium, potassium levels

Creatinine

APACHE II score Patients at ICU (predicting mortality)

Acute renal failure

PaO2

FiO2

Medical ventilation

Platelets level

Glasgow Coma Scale

Bilirubin levels

Mean arterial pressure or administration of vasoactive agents 
required

Creatinine levels

SOFA score Patients at ICU (estimation of mortality)

Is a COVID-19 patient?

Phenotypic criteria:

Weight loss

Low BMI

Loss of muscle mass

Etiologic criteria:

GLIM Individuals at risk in general
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Reduced food intake or assimilation

Presence of disease or inflammation

Unplanned weight loss in las 3-6 mo

BMI

NRF-NPT Detection of malnutrition in liver patients disease

Reduced dietary intake and uncompleted meals

BMI: Body mass index; GLIM: Global Leadership Initiative of Malnutrition; ICU: Intensive care unit; MUST: Malnutrition Universal Screening Tool; NRF-
NPT: Royal Free Hospital-Nutritional Prioritizing Tool. NRS-2002: Nutrition Risk Screening-2002; NUTRIC: Nutrition risk in the critically ill; SOFA: 
Sequential Organ Failure Assessment.

criteria. The patient is asked to seek information related to reduced food consumption 
during the last 5 d or more, apparent weight loss visible in clothes and jewelry, 
changes in smell and taste perception if the cause of the reduced food intake is due to 
related symptoms in COVID-19 described previously, clinical management (ventila-
tion, medication, and sedation), or because of the influence of physiological factors 
(social restriction, anxiety, and depression). The subjective criteria are useful to es-
timate a low, medium, or high risk of malnutrition under different circumstances, 
considering the limitations of infection-control restrictions instituted by local policies. 
It is highly recommended that patients remaining at home also perform a complete 
MUST assessment following progress after the implementation of nutritional stra-
tegies.

Several tools developed for assessment of hospitalized patients have been applied in 
COVID-19. Nutrition Risk Screening-2002 (NRS-2002) criteria, also recommended by 
ESPEN, predict malnutrition in hospitalized individuals and are recommended by the 
American College of Gastroenterology (ACG) guidelines for nutrition therapy[106]. 
NRS-2002 takes into account BMI; weight loss within the past 3 mo; reduced dietary 
intake in the previous week, and an ICU stay. In addition, the Nutrition Risk in the 
Critically ill (NUTRIC) score[108-111] is designed for patients, particularly for those in 
the ICU, and for those who can benefit from nutritional therapy considering their age, 
days hospitalized or time in the ICU, number of comorbidities, IL-6 Levels (optional). 
The Acute Physiology And Health Evaluation II (APACHE II) score[112,113], which is 
the most widely used tool for predicting mortality in the ICU, and the Sequential 
Organ Failure Assessment (SOFA) score[114,115], which estimates ICU mortality 
based on clinical data and laboratory results have both been used in COVID-19 clinical 
trials[116].

Recently, the Global Leadership Initiative on Malnutrition (GLIM), which includes 
the leading clinical nutrition societies worldwide, achieved a consensus with the 
purpose of establishing global criteria for the diagnosis of malnutrition in clinical 
practice. Such a consensus is a two-step approach. The first consists of the identi-
fication of “at risk” status by validated screening tools, and the second is the asse-
ssment for the diagnosis and categorization of the severity of the malnutrition[117]. 
According to this, three phenotypic criteria were highlighted: weight loss; reduced 
muscle mass, and low BMI, along with two etiological criteria, reduced food intake or 
assimilation and the presence of disease or inflammation. Therefore, the diagnosis of 
malnutrition requires at least one phenotypic and one etiologic criterion. The strati-
fication of the phenotypic metric considers stage 1 (moderate) and stage 2 (severe)
[117].

In patients with liver damage caused by COVID-19, the risk of malnutrition may be 
increased by the presence of GI-associated abnormalities. In severe cases of COVID-19 
infection, liver injury has most commonly been observed. At the same time, patients 
with previous liver damage represent more critical cases of COVID-19[118]. The 
incidence of liver injury ranges from 14%-53%[8]. Approximately one-third of the 
infected population reported altered aminotransferase levels. Liver damage may affect 
glucose, amino acid, and lipid metabolism, and result in poor clearance of lactate and 
protein catabolism as a consequence of hyperaminoacidemia, and hyperammonemia, 
which contributes to malnutrition. On the other hand, it is crucial to determine 
whether the liver injury is a consequence of pre-existing liver injury (cirrhosis, viral 
hepatitis, NASH, and ASH) or the result of COVID-19 infection and/or the reported 
drug-induced liver injury. In conjunction with the MUST and NRS-2002 tools for 
malnutrition assessment, ESPEN recommends the Royal Free Hospital-Nutritional 
Prioritizing tool (RFH-NPT), which has been developed for the detection of mal-
nutrition in patients with liver disease[119]. RFH-NPT is a validated tool very similar 
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to NRS-2002, but it has demonstrated greater sensitivity for the identification of 
malnutrition in liver diseases. The screening tool considers nearly the same indicators, 
namely unplanned weight loss in the previous 3-6 mo, BMI, reduced dietary intake, 
and uncompleted meals. The stratification scale is based scores of 1 (low risk), 2 
(moderate risk), and 2-7 (high risk)[120]. Thus, in patients with COVID-19 and liver 
damage, the use of at least two of these options for the detection of malnutrition could 
be reasonable.

Nutrition strategies for liver injury in COVID-19
In COVID-19, disease complications are basically the result of a hyperinflammatory 
response mediated by cytokine storm and several immune-related stimuli mentioned 
above. Thus, nutrition treatment should be designed to strengthen the immune system 
during the COVID-19 crisis, providing nutrients that relieve inflammation and 
oxidative stress. Whether liver injury emerges as a consequence of COVID-19 or pre-
existing before infection, nutrition strategies should also correct liver and GI manifest-
ations as related symptoms to prevent or treat the associated malnutrition.

Energy and nutrient recommendations
Liver injury associated with COVID-19, as in any disease, could enhance inflam-
mation, which alters the metabolic rate. In critically ill patients, it is recommended to 
estimate energy needs by means of indirect calorimetry considering all of the 
conditions for sterility during the measurement procedure. Significant increases in 
resting energy expenditure (REE) in patients with acute liver failure (ALF, 18%-30%)
[121], alcoholic hepatitis (55%)[122] and alcoholic cirrhosis (26%)[123] have been 
reported. Hypermetabolism reported in patients with liver cirrhosis (> 30%)[124] 
could be related to effect of delay in the improvement of body composition on clinical 
outcomes. Hence, because of the individual variability in liver damage, REE should be 
measured by indirect calorimetry. Recently, the estimation of REE with a less-
expensive handheld calorimeter method based on a respiratory quotient of 0.85, and 
which is very accurate for REE has been proposed[125]. However, when accessibility 
to calorimetric equipment is limited, prediction equations for the estimation of energy 
expenditure could be employed. A summary of caloric and nutrient recommendations 
is shown in Table 2. Caloric intake should be 1500-2000 kcal/d for normal maintenance 
by oral diets, with an increase of 400-500 kcals under conditions of stress or in an 
infection crisis[126]. ESPEN guidelines[100] suggest 27 kcal/kg body weight (Bw)/day 
in polymorbid patients and in patients > 65 years of age. For low-weight or older 
patients, it is suggested to achieve 30 kcal/kg Bw/day. In malnourished cirrhotic 
patients with muscle depletion, the energy supply must provide 30-35 kcal/kg 
Bw/day. Contrariwise, in overweight or obese patients with liver disease, the 
prognosis may be worse. In such cases, obesity has been associated with portal 
hypertension[127]. For that reason, an increased energy intake is not recommended. 
Nonetheless, all energy recommendations must be adjusted individually, taking into 
account disease severity, mobility, physical activity, and tolerance. In severely 
underweight patients, the energy supply must be carefully administered in order to 
prevent the refeeding syndrome, which is very common in such patients. Whenever 
possible, oral feeding should be the first energy and nutrient-supply option. When oral 
feeding is not feasible, support nutrition therapy by nasogastric tube through enteral 
nutrition (EN) or parenteral nutrition (PN) should be available as the next step.

Proteins in the diet are known to be crucial nutrients for gut-associated lymphoid 
tissue, as are active immunoglobulins, which act against infection in the gut mucosa
[128]. The consumption of high-value proteins that contain essential amino acids is 
associated with immune responses, for example, adequate production of antibodies; 
activation of T and B lymphocytes, macrophages, and NK cells; and the production of 
cytokines and other immune elements that prevent infectious diseases[129]. In 
addition, in order to prevent body weight loss and muscle mass, > 1 g/kg Bw/day of 
protein intake is recommended for patients with anorexia or reduced food intake. In 
general, 1 g/kg Bw/day is sufficient to meet the requirement, but protein intake 
should be adapted to individual needs according to disease status, physical activity, 
and tolerance. Overall, 70-100 g/d of protein are acceptable in the oral diet, preferably 
consumed from animal (milk, yogurt, meat, fish, chicken, and cheese) and vegetable 
sources (beans, soy, nuts, and peas)[126]. Oral nutrition supplements (ONS) are a 
fairly good option when the goals of oral feeding are not fully achieved. In the latter 
cases, ONS are suggested to supply 150-400 kcals and 15-30 g of protein and should be 
consumed for at least 1 mo[100,126].
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Table 2 Energy and nutrient recommendations for patients with coronavirus disease 2019 with or without liver injury

Energy/Nutrient Criteria Recommendation

Estimation by indirect calorimetryEstimation of REE All individuals with COVID-19

Prediction equations

1500-2000 kcals/dNormal oral diets

Increase 400-500 kcals in stress or infection crisis

Polymorbid, old patients > 65 yr 27 kcals/kg Bw/day

Low weight, older patients 30 kcals/kg Bw/day

Malnourish chronic patients and muscle 
depletion

30-35 kcals/kg Bw/day

ONS with low oral intolerance:

150-400 kcals/service

70-100 g protein/service

Carbohydrates, fiber, PUFAs, vitamins, minerals, probiotics

Calories

-Patients with COVID-19 outside ICU

Consuming for a month

1 g/kg Bw/day

70-100 g/d

Protein Normal individuals (prevent loss and muscle 
mass)

Form animal (milk, yogurt, meat, fish, chicken, cheese) and 
vegetable sources (beans, soy, nuts, peas)

Patients with liver cirrhosis sarcopenic 1.2-1.5 g/kg Bw/day

Obese sarcopenic Oral supplementation of BCAA 0.20-0.25 g/kg Bw/day or 30 g/d

Glutamine and arginine supplementation

Ratio 70:30 carbohydrates/fat

Medium and low glycemic

Fiber 25-30 g/d

Patients with COVID-19 without respiratory 
impairment

PUFAs: DHA, EPA, ALA

Carbohydrates/fat 

Patients with ventilator support Ratio 50:50 carbohydrates/fat

Vitamins All individuals with COVID-19 A, C, D, E, folate, B6 and B12 (monitoring in patients with liver 
abnormalities)

Minerals All individuals with COVID-19 Zinc, copper, selenium (monitoring in patients with liver 
abnormalities)

EN after 24-36 h. after ICU admission

Initiate with trophic low-dose (10-20 mL/h.)

Polymeric formula: 15-20 kcals/kg Bw and 1.2-2.0 g/kg Bw/day of 
protein vitamins, minerals, fiber, probiotics

Critically ill patients

Provide 70%-80% needs in over 1 wk

Energy 22-25 kcals/kg IBW

Protein 2 g/kg per day (Class I, II) or 2.5 g/kg IBW/day of (Class 
III)

Sever obese patients BMI > 50

Vitamins, minerals, fiber, probiotics

Use prokineticsGastric intolerance individuals

Post-pyloric feeding in persistence intolerance or at high risk of 
aspiration

Patients with no GI feasible PN recommended

Poor nutrition status Limit the use of omega-6 soy-based ILE during first week

Mixture of lipids such as olive oil based ILE or SMOF (soy, Prolonged stay at ICU
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medium chain triglycerides, olive oil, fish oil)

ALA: Alpha linoleic acid; BCAA: Branch chain amino acids; DHA: Docosahexaenoic acid; EN: Enteral nutrition; EPA: Eicosanoid acid; GI: Gastrointestinal; 
IBW: Ideal body weight; ICU: Intensive care unit; ILE: Intravenous lipid emulsion. ONS: Oral nutritional supplements; PN: Parenteral nutrition; PUFAs: 
Polyunsaturated fatty acids; REE: Resting energy expenditure.

In liver injury, nutritional approaches must be attended to according to the type and 
grade of the lesion(s). In patients with acute liver failure, nutrition therapy must be 
centered on providing sufficient energy in the form of glucose and fatty acids along 
with vitamins and mineral elements, preventing hypoglycemia and hypertrigly-
ceridemia, and protein and amino acid sources adequate to avoid catabolism and to 
promote protein synthesis. Patients with liver cirrhosis are very likely to experience 
malnutrition and muscle wasting because of a decrease in protein synthesis and 
increased total protein breakdown. The recommendation is 1.2-1.5 g/kg Bw/day of 
protein to ameliorate protein synthesis in patients with sarcopenia, including those 
with obese sarcopenia, preferably with high-quality proteins from animal and ve-
getable sources in oral diets. In those with poor tolerance of protein, vegetable sources 
are acceptable[119]. It is preferable to distribute the intake in 3-5 meals a day, avoiding 
long starvation periods. A late evening snack of protein and carbohydrates has been 
shown to be very effective in improving nitrogen balance in cirrhotic patients[130,
131]. Oral supplementation with isoleucine, leucine, valine, and branched chain amino 
acids (BCAA) has been useful for patients with intolerance to protein with liver 
encephalopathy. In liver dysfunction, low BCAA levels are regularly observed in 
addition to high levels of tryptophan, aromatic amino acids, and sulfur-containing 
amino acids. The imbalance of amino acids may induce liver encephalopathy. Hence, 
the administration of 0.20-0.25 g/kg Bw/day or 30 g/d of BCAA has beneficial effects 
on the patient’s mental state after episodes of encephalopathy and on improvement of 
protein metabolism[132,133]. In addition, BCAA supplementation in protein-restricted 
diets has been associated with improvement of the intestinal immune defense by 
increasing the levels of jejunal and ileal immunoglobulins and protecting duodenal 
villous morphology[134]. Some amino acids are responsible for modulating the 
immune response; for instance, glutamine activates protein participation with ex-
tracellular signal-regulated kinases (ERKs) and c-Jun N-terminal (JNKS) kinases in 
signal transduction, triggering transcription factor activation, and the expression of 
genes regulating the proliferation of lymphocytes, macrophages, and neutrophils. 
Moreover, glutamine induces the expression of some cytokines, including IL-6, TNF-α, 
and IFN-γ, and certain surface markers of lymphocytes[135]. Under catabolic and 
hypercatabolic conditions, glutamine has an essential role in metabolism; therefore, it 
is widely utilized in clinical nutrition under conditions of immunosuppression[135,
136]. On the other hand, arginine and its downstream metabolites citrulline and 
ornithine are involved in T cell activation, and promoting and modulating innate and 
adaptive immune responses[137].

During liver injury, the metabolism of glucose is altered, the glucose oxidation rate 
is reduced, and the glucose production rate in the liver is low because of the depletion 
of glycogen stores despite increased gluconeogenesis. Glucose deposition in skeletal 
muscle and liver as glycogen is impaired. At the same time, glucose uptake in tissues 
is reduced because of insulin resistance in response to high secretion and reduced 
degradation[138,139]. Lipid metabolism reflects an augmented rate of lipid oxidation 
parallel to insulin resistance. Additionally, the plasma levels of essential and polyun-
saturated fatty acids are reduced in relation to the nutritional status and to the severity 
of the injury[140]. In patients with COVID-19, the ratio of carbohydrates to fat should 
fall within the range of 70:30 for patients without respiratory impairment and within 
50:50 in patients on ventilatory support[141]. Nonetheless, it is noteworthy to take into 
consideration the previously mentioned changes in glucose and lipid metabolism in 
patients with liver disorders. In oral diets, low glycemic index foods, such as ve-
getables, whole grains, and legumes, are preferable rather than those with high 
glycemic/glycemic loads, which have been associated with the immediate increase of 
the inflammatory cytokines IL-6 and TNF-α[89] and CRP[142]. In parallel, fatty acids 
(FAs) have also been associated with the immune response, impacting on macro-
phages, epithelial cells, lymphocytes, neutrophils, dendritic cells, and lymphoid cells
[143]. The consumption of saturated and trans-FAs from processed and fried foods has 
been correlated with the elevation of hs-CRP, IL-6, and TNF-α[144]. In influenza A 
virus infection, a diet rich in saturated FAs has been associated with impaired immune 
viral response, resulting in higher viral loads in the lung and heart, inducing inflam-
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mation and tissue damage[145]. Contrariwise, polyunsaturated FAs, particularly 
omega-3 FAs, have a potent anti-inflammatory effect. Omega-3 FA eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA), consumed mainly from fish and sea-
foods, including α-linolenic acid (ALA) consumed from plant sources, have been 
reported to initiate anti-inflammatory signaling[143]. In epithelial cells in the lungs, 
gut, and skin, omega-3 FAs are capable of activating nuclear and transmembrane 
receptors and can restore a compromised barrier defense and reducing the production 
of anti-inflammatory mediators such as IL-1β, TNF-α, interferon gamma (IFN-γ), and 
lipopolysaccharides (LPSs)[69]. Also, they reduce the expression of ERK1/2 MAPK, 
NF-κB, and COX-2, the main signaling pathways of the inflammatory response[69]. In 
viral infections, supplementation with omega-3 FAs appears to inhibit the production 
of TNF-α, IL-1β, IL-6, and IL-8 and reduce the production of ROS. In critically ill 
patients in the ICU, the addition of fish oil rich in omega-3/antioxidants in the enteral 
formula appears to enhance the response to oxygen therapy, improve clinical out-
comes, and shorten ICU stays[146,147].

For patients outside the ICU, nutrition treatment should begin early, within 24-48 h 
of hospitalization, orally and mainly in older and polymorbid patients, whose 
nutritional situation may be compromised. The use of ONS could be fully applicable in 
patients with COVID-19 and liver injury in order to prevent or treat malnutrition and 
reestablish liver function. ONS are recommended to meet energy, macronutrient 
(carbohydrate, protein, and lipids) and micronutrient (vitamins and mineral elements) 
needs. Fiber and probiotics are suggested to promote optimal intestinal function. The 
increase of dietary fiber from whole grains benefits gut microbiome composition and is 
also correlated with reducing both systemic and gut inflammation by reducing IL-6, 
TNF-α, and hs-CRP, and by increasing short chain fatty acids (SCFAs)[74]. SCFA are 
produced by gut microbiota as a result of dietary fermentation. They are potential 
activators of anti-inflammatory signaling cascades and inhibitors of proinflammatory 
cytokines, as well as the reduced expression of NF-kB[72]. Furthermore, dietary fiber 
has been reported to promote healthy gut microbiota, which is related to inhibition of 
systemic inflammation and enhanced mucosal thickness, protecting the gut barrier 
from the infiltration of pathogens[77]. Dietary fiber is also thought to influence the gut 
microbiome and respiratory function, and it is noteworthy that, in some cases, the 
macrophage response to respiratory viruses is linked to the composition of the gut 
microbiome[148].

Vitamins and minerals in nutrition therapy
Some vitamins and mineral elements have attracted special attention because of the 
potential benefit that they may have during the COVID-19 crisis. In general, treatment 
with vitamins A, C, D, and E, folate, vitamin B6 and B12, and minerals including zinc, 
selenium, copper, iron, and calcium is recommended as ONS as well as by consum-
ption of natural food sources in the diet. To date, there is no consistent evidence to 
support the idea that the previously mentioned vitamins and minerals possess a 
potential effect in preventing or treating the COVID-19. Nonetheless, in agreement 
with previous data regarding their effect on reducing flu symptoms and possessing 
antioxidant benefits, the consumption of vitamin C is suggested for consumption 
within a range of 1-2 g in persons at risk of respiratory infections[149]. Vitamin C 
exerts an influence on the immune system and on the production, development, and 
maturation of lymphocytes, and in the promotion of phagocytosis and chemotaxis of 
leukocytes during infection[82,150]. In pneumonia, vitamin C has been found to 
reduce ROS and inflammation by inhibiting the activation of NF-κB that, in turn, 
decreases IL-1, IL-8, IL-6, and TNF-α production, and reduces DNA damage and LPS-
induced ROS[82]. In various trials that investigated the treatment of sepsis and ARDS 
vitamin C was found to reduce TNF-α and IL-1β and increase CAT, SOD, and glu-
tathione levels[151]; in that regard, vitamin C supplementation could be beneficial in 
COVID-19.

Regarding vitamin D, recent investigations have pointed out its role in preventing 
infections, including COVID-19. Vitamin D has been described as possessing anti-
inflammatory and immunomodulatory effects and may interfere with viral replication, 
probably by its effects on innate and adaptive responses by the modulation of 
defensins and cathelicidins and reduction of the Th1 helper cell response[152]. Fur-
thermore, vitamin D participates in the activation of regulatory T cells and Th2 cells 
along with a decrease of proinflammatory cytokines, such as TNFα and IFNγ, which 
are involved in the pathogenesis of ARDS, by Th1 cells[153]. Vitamin D deficiency is 
correlated with an increase of susceptibility to infections and increased autoimmunity; 
its benefits are thus highlighted in persons with low levels of vitamin D[154]. One of 
the possible mechanisms by which vitamin D could impair the entry of COVID-19 into 
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host cells is by suppressing the adhesion molecule CD26/DDP4, a key element for 
viral entry[155]. Another possible mechanism of lung protection is through regulation 
of the renin–angiotensin system to inhibit viral entry and replication[156].

It appears that the role of vitamin A in preventing the effects of COVID-19 is not 
fully understood, but it is known that retinoic acid, the most active retinoid form of 
vitamin A, has an impact on the production of IL-1β and IL-1 receptor antagonists by 
means of alveolar macrophages and the consequent infiltration of neutrophils into the 
lungs during the course of ARDS. Retinoic acid contributes to surfactant production, 
which may be another way to protect against ARDS. Meanwhile, carotenes attenuate 
ROS production, diminishing the level of oxidative stress in the lungs. Under con-
ditions of vitamin A deficiency, epithelial damage is often observed during viral 
infections, as is the increase of susceptibility of the host to respiratory viruses like 
influenza and SARS-CoV[156].

The most relevant activity of vitamin E is it antioxidant activity, which protects 
against free radicals like superoxides. In addition, the vitamin E effect is associated 
with the immune response of lymphocytes, NK cells, and neutrophils, which decline 
in the elderly[157]. Vitamin E supplementation in older adults was shown to enhance 
immune cell functions including neutrophil chemotaxis and phagocytosis, NK cell 
activity, and mitogen-induced lymphocyte proliferation[158].

With regard to the vitamin B group, vitamins B6, B9 (folate), and B12 are considered 
relevant to immune function in the context of the COVID-19 pandemic framework
[159]. Low concentrations of B6 influence on lymphocyte maturation, antibody res-
ponses, and the cytotoxic activity of NK cells. Folate intervenes in the response of Th1 
and NK cells and in optimal antibody production[160]. Two mechanisms have been 
proposed by which folate may blunt the COVID-19 infection. The first is the sig-
nificance of the homocysteine-mediated trans-sulfuration pathway and of ferroptotic 
stress that leads to cell death[88]. The second is the probable disruption of furin 
protease activity involved in SARS-CoV-2 spike protein cleavage, as mentioned 
previously[161]. Vitamin B12 also participates in antibody responses and circulating 
lymphocyte levels. In DNA synthesis, which is important for cell replication, B12 

restores an abnormal ratio of CD4+/CD8+ T cells, and its deficiency may be associated 
with the impairment of the immune response to viruses and bacteria in conjunction 
with suppressed NK cells[86]. Hence, the consumption of folate, B6, and B12, is recom-
mended, and they should be integrated within nutrition therapy.

The trace minerals zinc, copper, and selenium are intricately involved in immune 
function. Zinc is highlighted because of its immunomodulatory effects on NK cell 
activity and macrophage and neutrophil function, complementary activity, and T cell-
mediated function. Antioxidant activity has been attributed to trace minerals because 
they are cofactors of antioxidant metalloenzymes such as SOD. Zinc deficiency is 
implicated in the systemic activation of NF-κΒ[162]. Zinc might reduce viral repli-
cation and attenuate GI and respiratory symptoms related to COVID-19. Additionally, 
zinc at low doses (2 µmol/L) can prevent SARS-CoV replication by inhibiting SARS 
RNA polymerase[163]. Increased intracellular levels of zinc enhance the therapeutic 
effect of some drugs employed in the treatment of COVID-19, such as chloroquine, 
disulfiram, and tetracycline[164]. Recent evidence supports the idea that maintaining 
optimal levels of zinc is fundamental for resistance in the host response in COVID-19 
and for preventing other viral infections[165]. A clinical study of four patients treated 
with oral administration of a high dose of a zinc salt, based on previous data that zinc 
shortens the duration of a cold, reported rapid improvement of the symptomatology
[166]. Therefore, alone or in combination with other drugs, zinc is being investigated 
in several trials to determine its effectiveness in the prevention or treatment of COVID-
19.

Selenium is considered another important trace element with antioxidant and anti-
inflammatory effects. Selenium, together with vitamin D deficiency, probably impairs 
immune responses to COVID-19 and increases the severity of the disease[167]. In 
contrast, other clinical studies reveal that the recovery rate in surviving patients was 
related to increased selenium levels in patients with COVID-19[168,169]. Selenium is 
intricately involved in a wide range of immune activities, such as T cell activation, 
maturation, differentiation, and proliferation. It exerts antiviral activity by regulating 
the TCD4+ response, modulating TCD8+ and NK cells with cytotoxic activity, and it 
has a crucial role in the production of antibodies[170]. It is thought that a selenium 
deficiency has an influence on the high incidence of thromboembolism in patients 
critically ill with COVID-19 in the ICU[171]. A possible explanation is that low 
selenium levels are correlated with an abnormal thromboxane A2-to-prostacyclin I2 

ratio, which is implicated in vasoconstriction and coagulation[172]. However, further 
studies are needed for clarification[170].
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Copper protects DNA integrity by reducing oxidative damage, and its deficiency 
alters the immune response and promotes infectious diseases. Copper appears to 
participate in immune cell differentiation and to inhibit viral replication. It exerts an 
influence on the optimal functioning of NK cells, lymphocytes, neutrophils, ma-
crophages, and monocytes. Supplementation with high doses of copper (7.8 mg/d) 
was shown to improve the activity of antioxidant enzymes and to activate SOD, 
ceruloplasmin, and benzylamine oxidase. However, the high dose affected neutro-
phils, serum IL-2R, and the levels of anti-influenza virus antibodies[173]. In this 
framework, copper has been proposed as a target element, together with others, such 
as zinc, in the treatment of COVID-19[174]. The antiviral properties attributed to 
copper would act directly with the virus by blocking structural proteins or by im-
proving immune cell functioning[159]. Following this line of reasoning, optimal 
plasma levels of copper can elevate innate and adaptive immune responses to promote 
best action against SARS-CoV-2. Therefore, it must be part of regimens for COVID-19 
prevention and therapy[175].

Nutritional support in critically ill patients with COVID-19 and liver injury
The hyperinflammatory response is one of the main characteristics of patients critically 
ill with COVID-19. Accordingly, the GI tract could play a central role in modulation of 
the inflammatory response, as it is the largest immune organ in the body, with the 
greatest microbiome. Nutritional therapy through EN strengthens gut barrier defenses 
and the microbial burden by providing luminal nutrients that impair dysbiosis and 
stimulate the anti-inflammatory response[176]. EN nutrition should start early, within 
24-36 h after admission to the ICU or within 12 h of mechanical ventilation. To avoid 
refeeding syndrome, EN should be initiated with low trophic doses (10-20 mL/h) of a 
standard isosmotic polymeric formula that supplies 15-20 kcal/kg Bw and 1.2-2.0 g/kg 
Bw/day of protein, considering the actual body weight. The goal is to provide 70-80% 
of energy needs during 1 wk. In obese individuals with a BMI of 30-50, EN provides 
11-14 kcals/kg Bw/day; for patients with severe obesity with a BMI >50 energy 22-25 
kcal/kg Bw and 2 g/kg/d (classes I and II) or 2.5 g/kg/d (class III), taking into 
account the ideal body weight (IBW)[102]. Various complications may occur in 
patients with EN, such as GI disorders (e.g., diarrhea, vomiting, and nausea) and 
mechanical disorders related to intubation and metabolic disorders (e.g., hyper-
glycemia and an electrolyte imbalance). Thereafter, close monitoring is required to 
prevent difficulties[177]. In patients with gastric intolerance, prokinetics may alleviate 
symptoms and promote motility, but post-pyloric feeding should be performed in the 
persistence of intolerance or in patients with a high risk of aspiration[118].

For patients in whom GI feeding is not feasible, PN should be considered. Patients 
with a poor nutrition status, significant intolerance to EN, or those with a prolonged 
length-of-stay in the ICU, are potential candidates for PN. To avoid proinflammatory 
infusion, it is suggested to limit the use of omega-6 soy-based intravenous lipid 
emulsion (ILE) in week 1 or to change to a mixture of lipids, such as olive oil-based 
ILE or to soy, medium chain triglycerides, olive oil, and fish oil (SMOF)[102]. PN 
complications include catheter-related bloodstream infections and PN liver-associated 
damage[99]. At present, there are no reported cases associated with these complic-
ations. Nevertheless, the background must be taken into account for patients with 
sustained PN[126].

Certain other aspects must be taken into consideration when determining nu-
tritional support in the patient. For instance, in liver injury, the primary treatment goal 
is against the COVID-19 infection, using antivirals, antibiotics, symptomatic support, 
oxygen therapy, and anti-inflammatory drugs, etc. It has been reported that some of 
the antivirals and drugs employed to treat this infection did cause liver damage[55,
178], and clinicians should consider reducing the dose or discontinuing the drug(s). In 
patients with severe COVID-19, AST, ALT, total bilirubin, albumin, and certain other 
liver function indicators are significantly increased. However, the indices gradually 
returned to normal levels during recovery. With moderate liver damage, the organ 
function was restored without special treatment[179]. Consequently, moderate-to-
severe cases require the regular monitoring of liver indicators, including AST, ALT, 
alkaline phosphatase, bilirubin, GGT, albumin, and prothrombin time. In severe cases, 
hepatoprotective drugs should be administered with caution[8] and the patient should 
probably be referred to the hepatology service for further specialized management. 
Mildly elevated indicators may not require specific liver treatment or hepatoprotective 
drugs[118].
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ROLE OF PHYTOCHEMICALS IN COVID-19 THERAPY
The outbreak of COVID-19 has revolutionized medical science, and has been accom-
panied by the absence of a definitive treatment in addition to the unknown long-term 
effectiveness of recently approved vaccines. That has encouraged researchers to design 
target drugs in the fight against COVID-19 and also to seek further therapeutic 
options. Phytochemicals are molecules that are biologically active and that generally 
derive from plants or vegetable sources. Phytochemicals provide benefits when they 
are consumed in foods, supplements, or as medicinal ingredients. For several years, 
these compounds have been extensively studied from different perspectives. To date, 
5000 bioactive compounds have been identified and classified into different groups 
depending their chemical features or biological activities. The groups include po-
lyphenolic compounds, carotenoids, alkaloids, and sulfur/nitrogen compounds. Each 
group comprises a wide variety of molecules with high biological potential. The most 
predominant biological activities are the result of antioxidant, antitumor, anticancer, 
anti-inflammatory, antimutagenic, detoxifying, and immunomodulatory properties
[180,181]. Moreover, various phytochemicals have antiviral activity that is shown to be 
more effective than that of antivirals, in addition to being generally better tolerated 
and having fewer adverse effects[182]. Two modalities have been proposed by which 
phytochemicals may induce protection against the virus, including (1) direct inter-
action with the structure of the virus and (2), enhancement of endogenous cytopro-
tective systems. In both cases, some of the compounds have proven to be effective. For 
the purpose of this review, some of these will be discussed briefly within the frame-
work of COVID-19 and liver injury.

Direct interaction with the virus
From structural studies of SARS-CoV-2, it has been possible to determine the major 
drug targets, which include 3-chymotrypsin-like protease (3CLpro), papain-like pro-
tease (PLpro), RNA-dependent RNA polymerase, and spike (S) proteins. The S proteins 
are considered potential therapeutic targets because the virus attaches itself to the 
ACE2 receptor through these proteins, leading to fusion with the host cell. Sub-
sequently, the virus releases its genetic material for RNA replication, building new 
viruses. As the proteins participate in the process, are attractive targets of antiviral 
drugs and phytochemicals[183].

Previous studies of SARS-CoV and Middle East Respiratory Syndrome provided 
relevant information for understanding the behavior of SARS-CoV-2 and the effect-
iveness of natural compounds that inhibit viral activity. Among the compounds that 
appear to possess effective antiviral activity against coronaviruses silvestrol, tryp-
tanthrin, scutellarein, saikosaponin B2, quercetin, myricetin, caffeic acid, isobavach-
alcone, psoralidin, and lectins. The majority are extracted from natural herbs that are 
very commonly used in traditional medicines. Many of the bioactive compounds 
depend on enzyme inhibition for their antiviral effects[184]. It appears that polyphe-
nols are the most effective antiviral compounds. For example, quercetin inhibits the 
protease 3CLpro, which has a crucial role in viral transcription. The inhibitory concen-
tration (IC50) of quercetin was reported to be 8.6 ± 3.2 μmol/L against SARS-CoV PLpro

[185]. Quercetin has shown to be effective in inhibiting the influenza virus, poliovirus, 
adenovirus, Epstein-Barr virus, and hepatitis C virus, among others[182].

A few computer modeling studies have been performed to screen the targeted 
biding sites of phytochemicals with SARS-CoV-2. Recently, Kurman et al[76] used 
molecular docking or molecular dynamics (MD) software to predict phytochemical 
interactions with Nps15, a nidoviral RNA uridylate-specific endoribonuclease 
(NendoU) protein commonly present in coronaviruses, and responsible for interfering 
with the innate immune response. It was found that 50 phytochemicals had the 
potential to bond with Nsp15 and obstruct viral replication. The phytochemicals with 
the effective bonding potential were sarsasapogenin, ursonic acid, curcumin, aj-
malicine, novobiocin, silymarin and aranotin, piperine, gingerol, rosmarinic acid, and 
alpha terpinyl acetate, suggestive of potential use as inhibitors of SARS-CoV-2 
replication. In another MD simulation study, phytochemicals from the Aryurvedic 
medicinal plants Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy), and 
Ocimuvingm sanctum (Tulsi), identified as anolide V, somniferine, tinocordiside, 
vicenin, ursolic acid, and isoorientin 4’-O-glucoside 2’’-O-p-hydroxybenzoagte, po-
tentially inhibited the main protease Mpro or the 3Clpro of SARS-CoV-2. The authors 
suggested that such active compounds were safe, and that the drug-likeness test and 
their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile 
predicted their potential effectiveness[186]. In an in-silico MD study of 32 phytocom-
pounds, Swargiary et al[187] found that amentoflavone and gallocatechin gallate were 
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potential inhibitors of 3CLpro and PLpro and might be promising drug candidates for the 
treatment of SARS-CoV-2. However, the findings of in-silico studies require support 
by in vivo research to determine their mechanism of action.

Activation of cytoprotective systems
In addition, phytochemicals can also induce protection against SARS-CoV-2 by 
activating cytoprotective systems. A variety of these compounds have been shown to 
trigger signaling pathways related to endogenous defenses such as Nrf2/Keap1/ARE. 
Nuclear factor erythroid 2-related factor 1 (Nrf2) is a nuclear transcription factor coded 
by the NFE2L2 gene. It is known as the master regulator of cytoprotection and 
antioxidant responses[188]. Nrf2 impacts approximately 250 genes involved in an-
tioxidant responses, detoxification, cell growth, proliferation, differentiation, energy 
metabolism, and apoptosis. Under homeostatic conditions, Nrf2 binds to its negative 
regulator Keap1 in the cytosol, but the electrophilic molecules that result, such as ROS, 
encourage Nrf2 dissociation from Keap1 and further translocation into the nucleus to 
bind the specific DNA sequence. The antioxidant response elements (ARE) elicit the 
expression of several genes involved in cell protection, including antioxidant enzymes, 
phase-II detoxifying enzymes, NAD(P)H quinone oxidoreductase 1 (NQO1), and the 
enzymes involved in glutathione synthesis and metabolism via musculo-aponeurotic 
fibrosarcoma proteins (s-Maf)[189]. The redox-sensitive Nrf2/Keap1/ARE signaling 
pathway has a fundamental role in preserving homeostasis caused by oxidative stress, 
inflammation, diabetes, cardiovascular diseases, cancer, neurodegeneration, liver-
kidney injury, and aging[190]. According to the evidence, some phytochemicals 
possess the ability to activate the Nrf2/Keap1/ARE pathway. They are called “Nrf2 
bioactivators”, but few have been broadly studied. Sulphoraphane (SFN), an isothio-
cyanate found in Brassica species like broccoli, is the most potent Nrf2 bioactivator. 
Taking into account the “CD value”, which refers to the amount of a certain com-
pound necessary to double NQO1 activity in murine hepatoma cells (hepg2)[191], SFN 
requires 0.2 µmol/L, and other phytochemicals, such as quercetin, require, 2.5 µmol/L, 
with curcumin requiring 2.7 µmol/L, and silymarin, 3.5 µmol/L. It is important to 
bear in mind that the lower the amount required, the more potent the phytochemical is 
considered to be. Other phytochemicals have been found to activate Nrf2, including 
andrographolides, quercetin, β-carotene, genistein, lutein, resveratrol, and zeaxanthin
[192]. SFN activates nuclear respiratory factor (NRF) by means of a direct reaction with 
the electrophilic isothiocyanate group, changing the covalent linking of the Keap1 
cysteine residues. SFN has thus been extensively employed in several protocols for the 
treatment of inflammation, cancer, diabetes; and cardiovascular, neurodegenerative, 
lung, hepatic, and kidney damage. SFN is considered to be an anticancer, antiprolif-
erative, antioxidant, and anti-inflammatory agent[193,194]. The Nrf2/Keap1/ARE 
pathway is ubiquitously active, which may be the reason why certain phytochemicals 
could be promising protectors under different clinical situations.

To our knowledge, silymarin (SM) could be one of the most remarkable phyto-
chemicals from the COVID-19 and liver injury perspective. SM is a blend of seven 
flavonolignans (65%-80%) obtained from the extract of Silybum marianum. The main 
flavonolignan is silybin (50%-70%) and its isoforms silybin A and silybin B. Isosilybin, 
silychristin, isosilychristin, and silydianin and their isoforms are the remaining 
flavonolignan constituents. SM has been used as a traditional medicine since ancient 
times by physicians and herbalists to treat acute and chronic liver abnormalities 
because of its antioxidant, anti-inflammatory, and antibiotic activities[101]. The 
mechanisms of action of SM are not yet fully elucidated, but involve triggering the 
Nrf2/Keap1/ARE signaling pathway. Various in vitro and in vivo trials have 
demonstrated the efficacy of SM in Nrf2 activation. Likewise, in SFN, the reported 
benefits are not only found in liver injury models[195,196] but have also been des-
cribed in lung[197], neurodegenerative[198], cardio–renal[199], gastric ulcer[200], and 
neurotoxicity[201] models, among others. Furthermore, an in-silico MD study revealed 
the affinity of six SM flavonolignans (silybin A, silybin B, isosilybin A, isosilychristin, 
taxifolin, and silydianin) for bonding Keap1 by electrostatic and van der Waals 
interactions, as well as hydrogen bonds. That could partially explain the ability of SM 
to induce the activation of the Nrf2/Keap1/ARE signaling pathway[202].

Moreover, recent investigations have identified SM antiviral activity against he-
patitis C and B, dengue, influenza, Chikungunya, and HIV[203]. SM even proved to 
inhibit the entry and attachment of enterovirus 71 (EV-A71), which is responsible for 
causing hand, food, and mouth disease in childhood, more effectively than the positive 
control, balcalein[204]. Together with previously mentioned results of MD studies 
with regard to potential SM and COVID-19 inhibition, it is suggested that SM or its 
flavonolignans should be considered as very promising drugs for the treatment of 



Vargas-Mendoza N et al. Liver disorders, COVID-19 and nutritional approaches

WJG https://www.wjgnet.com 5653 September 14, 2021 Volume 27 Issue 34

COVID-19 and liver injury.
Curcumin is another phytochemical with potential for treating SARS-CoV-2 and 

liver damage. Curcumin is the main polyphenol in turmeric, present the rhizome of 
Curcuma longa and other species. In traditional medicine, it is used as an anti-inflam-
matory, antiseptic, analgesic, antimalarial, and as an insect repellent[205]. Current 
evidence supports the ability of curcumin to attenuate oxidative stress produced by 
ROS and RNS. Curcumin induces the antioxidant enzymes GST and γ-Glutamyl 
cysteine ligase (γ-GCL) and, at the same time, inhibits ROS-producing enzymes 
(oxidases, lipooxygenase, xanthine hydrogenase, and cyclooxygenase) and removes 
peroxide radicals, hydrogen peroxide, hydroxyl radicals, oxygen, and nitric oxide. The 
activities are associated with regulation of the Nrf2/Keap1/ARE pathway in addition 
to the modulation of other transcription factors, such as NF-kB and AP1[206]. In rat 
hepatic stellate-T6 (HSC-T6) cells, curcumin reduced the levels of malonaldehyde 
(MDA), and ROS treated with glucose oxidase, upregulated the nuclear translocation 
of Nrf2, augmenting glutathione levels, and reduced the expression of smooth muscle 
α-actin and extracellular matrix molecules[207]. In a rat model of arthritis, curcumin 
reduced inflammation by increasing methionine sulfoxide reductase A and the 
antioxidant enzymes CAT, SOD, and GPx[208]. In macrophages and RAW264.7 cells, 
curcumin protected cells from stress by inducing H2O2, triggering the Nrf2/Keap1/ 
ARE pathway and the expression of antioxidant enzymes, thus promoting cell survival
[209]. Additional evidence that supports the effect of curcumin on Nrf2 activation, 
curcumin is also described as an antiviral. Curcumin interacts with viral proteins on 
the cell surface, impairing entry of the virus. It also interacts with RNA polymerase 
and other proteins to hamper replication and may also interact with protease Mpro[210,
211]. In the previously mentioned MD study, curcumin was an effective inhibitor of 
the SARS-CoV-2 Nps15 protein. The hyperinflammatory response initiated in the 
“cytokine storm” is also weakened by curcumin, which interferes in the NF-κΒ and 
MAPK inflammatory pathways to reduce the expression of the proinflammatory 
cytokines IFN-γ, monocyte chemoattractant protein 1 (MCP)-1, IL-6, IL-10, and TNF-α
[212]. Curcumin appears to prevent apoptosis and lung fibrosis by inhibiting the TGF-
β pathway[213]. The envelope protein of SARS-CoV-2 is the smallest of the four 
structural proteins of the virus and it is known to participate in the viral entry process. 
We have performed some in-silico studies to investigate that protein.

Molecular modeling of the SARS-CoV-2 envelope protein
The three-dimensional model of the SARS-CoV-2 envelope protein of was built using 
Modeller 9.23 Software and considering the crystal structure of the transmembrane 
region of the envelope protein of SARS-CoV (PDB: 5X29). The resulting model re-
presents a homo-pentamer of the E protein of SARS-CoV-2.

Docking analysis of the compounds of interest
Docking studies were used to predict the binding affinity of the compounds of interest 
and the SARS-CoV-2 envelope protein. Results of the analysis of silibylin, curcumina, 
and sulfuraphane were performed with Autodock 4.2 (Table 3 and Figure 5). The input 
files were prepared with the AutoDock Tools 1.5.2 graphic interface[214]. A grid box of 
120 Å × 120 Å × 120 Å and a grid spacing of 0.375 Å was used for the docking studies. 
The Lamarckian genetic algorithm was selected for the sampling score, considering a 
randomized initial population of 100 and a maximum number of energy evaluations of 
107.

CONCLUSION
The current pandemic situation caused by COVID-19 infection has generated global 
changes in not only human health, but in all economic, political, and social levels. The 
lack of an effective vaccine that prevents COVID-19 infections and the absence of an 
effective treatment that reduces multiorgan consequences, only allows us to establish 
guidelines and recommendations based on direct experience with patients and ob-
serving what works and what does not and to make decisions supported by science. In 
this review, we attempted to provide an outline of how hyperinflammatory and 
oxidative stress responses to COVID-19 infection may cause liver injury or worsen a 
pre-existing one. GI-related symptoms, such as diarrhea, vomiting, nausea, and 
reduced food intake, along with a delay in medical attention, promote weight loss. 
Malnutrition increases mortality, hospital stay, and poor outcomes, in addition to high 
economic costs. The detection of malnutrition is thus crucial for establishing optimal 
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Table 3 Curcumina, silibylin, sulfuraphane evaluation by Autodock 4.2

Ligand Binding energy (kcal/mol) kI µmol/L Residue interactions

Curcumine -4.6 428.13 Phe 23, Val 25, Leu 28, Phe 26, Thr 30, Val 26

Silybin -5.73 62.57 Phe 23, Phe 26, Val 29

Sulforaphane -3.75 1.79 Val 29, Phe 26, Val 25, Ala 22, Phe 23, Leu 27

Figure 5 Graphic representation of the binding poses of the ligands on the envelope protein of severe acute respiratory syndrome-
coronavirus-2. Images were carried out using Pymol. Homo-pentamer of the E protein of severe acute respiratory syndrome-coronavirus-2 is shown in green, and 
the ligand is shown in yellow. Surrounded residues are shown in different colors and labeled as indicated. A: Curcumine; B: Silybin; C: Sulforaphane.

nutritional therapy. the nutritional guidelines for patients with SARS-CoV-2 infection 
and liver injury are based on the statements of international clinical nutrition associ-
ations and the currently available evidence. Maintaining an optimal nutritional state is 
fundamental for preventing infection or overcoming SARS-CoV-2. Herein, the key role 
of providing sufficient energy, protein, lipids, and carbohydrates is clarified. Fur-
thermore, the function of vitamins and trace minerals impacting the immune response 
is explained. To complete the nutritional approaches, we considered the use of 
phytochemicals as potential components of the therapy because of the possible 
benefits that they might offer during the COVID-19 crisis. The interactions (i.e. possible 
antiviral effects) of phytochemicals such curcumine, sulphoraphane, and silybin with 
the viral envelope protein have been demonstrated in-silico. The latter is an open door 
to researchers in the race to find tools to help overcome this pandemic in the best 
possible manner.
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