

# Mgevilis acaicultumi ogvelomemt <br> Fouct Papti <br> Fible of Contense 

Exation Pre

1. moject duia suest ..... 1
2. necourionifon and sumany ..... 3
3. Paje: ERinip:loy ..... $\theta$
 ..... 0
B. micess hadis plickan ..... 23
4. Cof: Es:Ju:i and fixacigal PLI ..... 39
5. orflorx:a:!un flay ..... 44
6. mamyundo PLas ..... 41
7. sceufir of axal bes ..... 48
 ..... 34

- DMFI Mojli: atyonilation ..... 58
 ..... 38A. IID APFMOVAL MESEAGEB. Locical powegolx mathix
D. bif hatif fon ablifarce

8. FM 6ll (e)
F. Mo䣕: 4itit tis
1, socilat motmoness
9. 1tandial
10. Leomicalc
11. antilistative
12. EmHOMEMTAL

- 2 -


## 6. Emery

7. TECHNICAL ANALEIS - MATURAL IESOUICES MAMACEAEIT
8. techical avalysis = access hoads

## 2. RECOMENDATIONS AND SLMMARY

## A. Recomendations

Pursuant to the reviev and approval of the proposed Highlands Agricultural Develofaent Project by the USAID/Guatemala Mission Review Comaltzee, it is recomanded that:
(1) The MA/LAC approve the Project described herein for a total cost to AID of $\$ 7,500,000$ in loan funding and $\$ 1,500,000$ in grant funding to be cotally authorized in FY 1983.
3. Terns

25 years, 2 percent interest during a 10 year grace period, 3 percent intereat chereafter.
C. Borrover/Grantee

The Borrover/Grantee vill be the Government of the Republic of Guateaala acting through the Direccion General de Servicios Agricolas (DIGESA), the Banco Nactional de Desarrollo Agricola (BANDESA), the Instituto Nacional Forestal (INAFOR) and the Direceion General de Caninos (DCR),
D. PROJECT RATIONALE

Within the Guatemalan econony, agriculture is the doainant productive sector, accounting for $26 \frac{1}{2}$ of all econoaic activity in 1978. The 1979 census indicates that the agricultural sector eaploys 55 percent of the nation's work force. Over half of all farms in Guatemala, contalning 802 of the rural population, consist of plots of 1,4 hectares or less. This is generally considered too samil to generate sufficient incose for the basic needs of a rural fanily ( 5 or aore people) without resorting to outside incose. This problea is most visible in Guatemala's lighland region which contains 462 of the country' a population but anly 19 z of soils capable of high to moderate yields. In spite of the relative poverty of solis and the mountafnous terrain, this area produces about 352 of the country's focdstuffs.

Saall farsers predoainate in this region. A study prepared in 1982 by the Centro de Consultora, S,A, of Guateaala estimated that 912 of the people in the Weatern itighlands had per capita incones of less than 0480 per year vhlle for sore than half of these, annual per capital incomes vere less than Q250. Farsing reasins the priaary occupation of aost reaidents of the lifghlands despite the fact that farss have been subdivided to the polat that they are no longer capable of supporting fasilies given the existing corn and bean technologies avaliable to the area.

Incentives for these faraers to produce additional crops have eroded since oid=1970. The teras of trade for the litghlands saall faraer $==$ the relationohip betveen the prices he recelves for his output and the prices he must pay for goods and serviees produced in the urban areas $=$ has decilned 327 since 1975. If these terias contiaue to detertorate, the resulting
declines in production vill result in a growing dependence on imported foodstuffs placing an added burden on the balance of payments. Also in the absence of alternative crops, the saall farmer's real incoae vill continue to decline.

The Mission's Agricultural Strategy is to increse the size and quality of the existing resource base while iaproving the efficiency of utilizazion of these rescurcas. Azteation is directed tovard the Highlands in order to impact on the greatest nuaber of saall commercial or potentially commercial faras. The present program actions to carry out this agricultural strategy faclude natural resource management (land terracing, on farm irrigation, reforestation, access road construction and asintenabce). agricultural tecnification (agricultural research, extenaion, crop diveraification), and agricultural aarketing and processing.

A May 1983 evaluation of the terracing, saall-scale irrigation and access roads activities carried out under the Saall Faraer Developaest Project (520-0233) ia the Highlands has deaonstrated these activities to be successfut. Terracing, irrigation, and resulting crop diversification have seant aore productive hours in the fields for faraers. Wheye vegetables and fruits have been iatroduced, vomen prepare this produce for the aarket (cleaniag, sorting, bunching) thereby providing addicional sources of faaily income and eaployment. It is clear that the sajority of farzers who participated in these soll conservation and frrigation activities have benefieted econoaically. Even those farmers continuing to sou traditional crops on newly-terraced or irrigated plots report a doubling of total annual output. Roads have contributed to iacreased agricultural activity by providing saviags in tiae previously needed to tranaport produce to markets, resultiag in 20 z to 30 z more produce arriving in the aarketplace.

Apart from the imediate econoaic benefits to the sall faraers, rural fasilies have derived other benefits. Soan participating farmers have experienced less need to aigrate for eaployment afnce their addstional cash needs have been aet from the sale of production increases. Further, samall faraer's recogatition of the benefits of on-fara Irrigation and terraciag has been demonstrated by the spread effect which folloved intital introducrion of this technology in the lifghlands. Approxiaately one bectare of cooperative, self-financed terracing for each three hectares directly supported by the Direceton Cienera! de Servicios Agricolas (DIGESA) has been identified. measure of peabant interest in samiliscale trrigation is that they have donated theft labor aven when their aargin of econonic extatence noralily would force thea to sell their labor elsevhere, Iatervieved rural faraerg have indicated that the access roads not only have facilitated the export of the agricultural produce out of the inaedlate area, but also have provided greater access to agricultural isputs and to numerous governaneat services particularly those provided for bealth care.

## E. Summary of Project

The project goal is to increase agricultural productivity. More specilitcally, the purpose is to improve the productive resource base of the rural poor in the Highlands. Thie vill be achieved by financing a labor fatensive access roads maintenance progran to guarantee small farmers a constant access to arkets. agricultural inputs and extension services. Project funds vill finance technical assistance and social cost payments for farmers and comunities undertaking soil conservation and improvement programs auch as land terracing. Technical assistance and credit to individual saall farmers or groups of sasil farmers who are interested in utilizing existing vater resources to develop small-scale irrigation systems vill be provided. With project ifnanced outputs (access roads, terraces, reforestation and saall-scale irrigation), the Highlands farmer will be in a better position to preserve the liaited uatural resources available, increase his fara production and transport it to sarket, thereby increasing his level of income. Given the curreat undereaployment of the rural population, the project design eaphasizes tadividuals and/or comantcy/based labor fatensive self-help to achieve project outputs. Sumaary deacriptions of Project Coaponents follow:

## 1. Natural Resources Management:

There are three elements proposed under this coaponent,
Sali-Scale Irrigation, Soll Conservation Structures and Reforestation. The taterventions planned vill all be undertaken in the Guatemalan Highlands and vill iapact upon over 60,000 rural poor faailies. DIGESA cechnical teass vili survey, design and assist fa the construction of approxiantely 50 saall frrigation systeas uhich vill provide irrigation vater co soae 750 hectares. The systeas conatructed vill be priaarily gravity fed uhich req̧utre no aechanical puaping devices. DIGESA extension agents vill instruct interested farmers fa the construction of approxiaately 2200 soll consurvation structures, whith vill protect approxiaately 5000 hectares of land, The type of atructure vill vary according to land topogfaphy and other factors but the priaary cype of structures bullt vill be land terfaces. All sfructures vill be brief, ustag locally obtataed matertals and labor tatensive aethods. Troject doan funds vill be used to pay for labor costs incurred by the farmers during construction. Aa estimated 120 hectares of land vill be iaproved through the IXAFOR reforestacton efforts. Rapid efoulag fuelvood frees vili be grown on publically ovned lands and seedtags sold at cost to area farmers for fuelvood purposes. The activities undertaken under this forestff sub=activity vili be conducted on a pilot basis to deteraine relative stranths of the frafoi impleaenctig ageacy.

## 2. Access Roado Maintenance Component:

This Coaponest is designed to asoure that rural aceess foass

 מot adequately matafalfed and benefits to usefs vere efoded, if is known
that such roads in the Hghlande deteriorate very rapldiy without ealntemance. Without such malntenance theso roads ausc often be coupletely recoser ructed after tive years of use. Therofurw, the Direceton de Calinos
 Eaintanance program. The program vould tachusa dator tintenalve road eatntena": e. aatatenance ot heavy equipaent utilized for both ruad malntenance and cons ruction, and acieas ruads applay. plamatia and proavetun. Dy the and of etie pruject lju0 ruads will be under malatenance betatiting the if. 700

 eadaremance progran will have beon ostablaties and lledd toated.

IMLE 1
sumary of projeci inputs
(s 000)


| MATLTAL RESOCEE MAMAGBEAT <br> a. Boil and threr <br> b. Retoreacacion | $\begin{array}{r} 3,000 \\ 300 \end{array}$ | $200$ | $\begin{array}{r} 1.117 \\ 158 \end{array}$ | $\begin{array}{r} 4.867 \\ 658 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| ACCESI ROADS MAKACMEMT | 3.655 | 870 | 3.757 | 6,282 |
| hastime jutiey | - | 100 | $\cdots$ | 100 |
| Waluaitors | - | 10 | $\cdots$ | 100 |
| Alditis | $\cdots$ | 50 | -®-** | 50 |
| Combincerime | 45 | 180 | 2008 | 125 |
| TOTAL | 7.500 | 1.500 | 5.782 | 14.718 |

## 7. PLONET PREPAZATION PAREICIPANTS

```
Profuct Developaent Comittuel
Luvfanca dalic, moso
George Like. URD
RLearqu Perer, PDSO/ENG
Clara Carr. PM
Jutlen Herrios, macap/ECOK
Largy Griezurd. CoN
```

Oether Contribuetma Yianion and coc Officere:
Gustavo La.al. Poso
Getr Vautan. PDso
Viecormirua, cus
Cecil Mcfarland. ORD
Devit Loper. Gicioticia
Techntegl Aoslotanco:
Junn Cassactu. Inactectitional Anelyafe
John Havitia, Juetal Aatyals
Candedoro minta. Ratimetind
Pereay Ferat. Enatheariat Connulitag
Gery besth. :304
Beft Labry. Fectatcat Amblyis of Miat-irfigation ad
ferfactad
Migion Envient
Chartes Contatlo. Mistion Directer
Feler motar. bupuly Nibiton Dtrecter
Bumerd likep, foso
Marif Vad. Geld
Blehoft MeLughlim. Pon

## 3. PROJECT OESCRIPTION

## A. NATURAL RESOURCE MANAGEMENT

## 1. Acrivity Overview

As described in various studies, most recently the 1982 Land and Labor in Guateaala: An Assesseant, only six percent of all available lands in the Guateaalan Highlands is classified as first class land (lands suitabie for intensive cultivation vith lítie or no líatafion). This comparas to 20 percent first class land in all other Guatealan departaents excluding El Peten. This limited amoust of prime agricultural land coabined uth high population grouth rates has forced the saall farmer in the Highlands to reaove natural forest grovth on hillsides and cultivate this steep land, oftes vith drasatic soli losses.

Calculations have shovt. that in a saall area of the Quiche Departaent, Ja setric toas of top soll, are being lost per hectare annually due to sheet and riliz erosion. More stribing is the estiante that 534 surface hectares ( $6^{\circ}$ ia depth) of top soil are lost anaually due go erosion from the 36,000 hectare Jaya-Pixcaya vatershed uear Guatenala City, 1/ Siailar probleas are eacountered throughout the lighlanis. Although there is general recognition of the problea and corrective actions have been taken by some fadividuals and collectively by a tev villages, there bas been no effective prograa (until receatly) to deal with these erosion probleas. It is estiasted that no more than 102 of lifghland farms have iaproveneats and practices which adequately cope vith the problea of soil erosion and vater aismanagenent. In the Heetern and Central Highlands (the departaents of Baja Verapaz, Chiaaltenango, Ei Progreso, Guateala, Huehuetenango, Sacatepequez, San Marcos, Solola, and fotonicapan) vhere this project vili be concentrated (See Map il), vater ratation is so poor and runoff so rapid that cropa atart to suffer froa lack of soil moisture shortly after heavy rains. Rapid runoff also carries avay heavy loads of top soil and sedineat as well as anounts of chealcal fertilizers applied to the soli. This loss of soil and water results in decreased crop yields and, as a resuls, decreased faraer income,

While the wse of iaproved seed, faftiliser and cultural practices has costributed to increased agricuitural productivity, maxinum benefic frow these taputa in many areas of the tighlands camaot be realiaed unless aeasures afe taken te tacfease vatef availabilizy and reteation and provide protectios against soli erosion. These comservation measures vili also ingure the long=teru productive eapacity of the hiliside piots in the Guarłルulan Highlands.

The activities undertaken under the Land Resources Improvement Activity of the Sasil Yaraer Development Project (520-0233) successfully initiated a saall nuaber of soil and vater conservation aeasures. The success of these services in tieras of increased agricultural production and increased farmer incoae has bien noted in several reports and evaluations. i/ As noted in the Saith report, when using terraces and vithout changing any other agricultural practice, coln yields increased 100\%, bean yields increased $133 \%$ and wheat yields increased 80\%. 3/ This report also indicates that there is a substantial jotential for increasing sall farmer incomes up to 1002 by iaproving theif ability to exploit soll and vater resources, especiaily through peraitting longer groulag seasons for non-traditional, diversified crops (i,e. anow peas, broccoli, cauliflover, etc.).

In spite of the actions taken under Project 520-0233, the probleas of soil erosion and vater underutilization art still videspread and, as a result, the saall farmer continues to suffer froa lou agricultural production. The Mission believes it vital to continue and expand these activities to other areas of the Highlands. Visual inspection shows that there are still vast areas of land, which could benefit from saall irrigation and soil conservation projects. It. ia estiaated that over 1.9 aillion hectares of land in MAGA legions I and V alone could benefit froa these activities. These projects vould generally protect fara units less than 5 hectares in size and vould consist of siaple, lowecost designs (gravity irrigation systeas, earth and rock cerrac*a, contouring, belt reforestation, efc.)

Aarlenlture in the lighlands is basically dependent on rainfall which has highly unpredictabla patterns ia Guatemala. Given vide variance ia these ratnfall patteris and the fact that subsistence faraeca cannot afford a crop fallure, if is clear that aupplemeatary irrigation hes a high potential for soctal and financial payoff. The benefics froa supplemental vater aupplies derive priacipally froa!

[^0]

Eabbling the iatroduction of aultiple cropping in many areas;
Reducing risk of loss due to lack of vater at critical periods during the groving season:

Increasing yield potentials through use of fertilizers and pesticides: and

Reducing planting tiae restrictions.
The major activities required to perait effective use of supplemental water in the lifghands arei

Construction of systeas to introduce proven irrigation techntques;

Capture of runoff vater to increasa total supply through contouriag and terracing, and

Conservation of sofls by regulating runoff rates through proper cropping patterua.

The benefita froa iapleaentiag soil conservation aay be sumarized as fo110ws

Preveation of hiliside erosion, thus conserving the soil;
Ia conjunction vith an assured vater supply, an increase in flexibilify regarding sowing and harvest times, thus enhanciag the farmer's ability so take advantage uf shifts in prices and other market condfetons: and

Prevention of fertilizer and pestictide runoff uish rais, thus coafributiag to higher yields.

During the last 30 yeafs, the country' s forested area has diainatsed frou 55: E9 33t due priactpaliy te the htgh rates of population grovth of more than three percent annually. This has resulted in increased pressure to produce agricultural produces, and subseq̧uent cieariag of forest land for agricultural purposes, as veli as a greatez absolufe denand for fuelvoed by khis inereased pepulafion. As deforestaftos occyfs, rypal fanilies aysf opend are tiae and tfavel furiher distances to obtaln fuelvood, which sinulfanegusiy drives up
 With indiscriainate cutting the long=fange effect wili be increased seit tepiecios, $\ddagger 1$ gappearase of forest=gupported vildiffe, ereessive vafer arosiga, and strean and lake sediaentatien,

[^1]Eapirically while per capita consuaption of fuelwood declines uith increasing incomes and urbanization, deanad for fuelvood facreases proportionally with grovth in population. Presently in Guatemala population grovth is about three percent whila average growth in the econoay in real teras during the last three years has been about one percent Given these growth levels, the demand for fuelvood in the coaing years is estimated to bet $1985-6.5$ ailifon cubic meters, $1990=7.6$ ailiton cubic meters, and $2000=10.2$ ailition cubic aeters. With this increasing level of deaand for fuelvood and the decreasing availabililty of natural fuelvood forests it will be necessary for Guateasla to increase sharply its planting of fuelvoods of fapidly aaturing rafiefies especially in the highly populated Highlands. in order to avoid the replacement of a domestic, reaevable resource (fuelvood) by an iaported, noa"renevable fuel (peeroleua), Failure co do so vill have a negative iapact on the Guateaalan balance of payments in general and on the Highlands rural populations standard of living in particular.

A second reason for the rapid disappearance of natural fuelvooda is the use by over 807 of rural households of open fires or inefficient traditional vood cookstoves, fesulting in an energy loss of froa 25-60\%. If fuel=efticient stoves vere used by this population, these fanilies could reduce by 502 the asount of fuelwood they presently use, thereby reducias theif financial outlay for fuelvood as well as peraitting existing natural fuelwood supplies to last further foto the future.

The replacenent of a renevable, donestically avallable fuel by non"renevable, iaported fuels is aot an tnevitable process. There are aumerous vays of aaking fuelvood a viable source ia the long"run for che aajority of Guateaslan fasilies, all of vhtch faply a varying coabination of humas testifutional and financlal reseurces.

## 1:. Detatied Activisy Desctiption

Three progfaas have been desigaed vaich will expand the conservation and proper asagement of soli, vater and ferestry fesources. These prograns vill be cartied out os approxiaately 5,500 bectares beneficiting over 60,000 fufal fogr fanilies. The activifies carried out under this activity vili proaste soli cosservation practices, salil ifrigation syatens and promote reforestation activictes in Guatenala.

## a. Snati=beate iffigation

These sub=projects thetude the censtruction of staple tiffrastructure vorks ustag local labor and matefials to ifrigate agficulture lands used priaarily fer ratay season cultivation. This addition of vatef fintroduces a potenflat for the qoubling of tacomes on the sane land area fhrough producing af least ane addictenal harvest annualiy.

Based on the expefience of an iffigatign engineer frem Ukah State Universifyty, verking vish Gog engiseefs and agfonenisis, if has been

[^2]$$
-13=
$$
shown that there are no overriding techaical difficulties with this activity, A nuaber of potential approaches are feasible for providing irrigation depending on the terrain and vater source. Thesc will be carried out in confunction with soll conservation and drainage faprovements. Exasples of potential returns from different types of syateas a rit costa are discussed in detail in Anex $Y$ with high internal rates of return shovi.

On-Yara - Siaple Diversion, Gravity Flou Systea: This example assumes that a fara is close to sufficient water, which means it is next to or running through the fara. Under these conditions, a staple diyeraton system yish grayity ditchtaf and complese open furrows will be constructed.

Comunity $=$ Siaple Diversion, Gravity Flow Systea: For this exaaple a streas flow, adjacent to or flowing through tha land to be irrigated, of two cubic feet/secoed is assumed along with $4^{*}$ veekly irrigation vater delivered to each individual plot. This systen. consisting of a rock and earth diversion daa, gravity canals and opea furrows, vould be constructed. Due to the aaterials used and coastruction aethods utilized, the cost of the above two systeas vill be alniaal.

Conanalty $=$ Siaple Diverston, Gravity Pipe Systen: This alteraative assumes flow of two cubic feet/seconf froa a strean that can be diverted froa high up on a steep hill. The systea is destgned to provide suffleteat pressure for sprinklers and would be constructed usiag an eatrance box $=$ settling basin strweture, and appropriate pipeifnes. Uaing this systea, it is estiaated that it uili cost $\mathbf{i z 6}$ to trrigate one cuerta (.04) hectare) of land.

Lake and Iiver Comanity $=$ Pump Irrigation Systeni Under this assuaption two cubic teet/second of kater ( $76 \mathrm{gat} / \mathrm{ain}$ ) would be lifted from the vater supply for gravity flow distfibution. This more complex systea would req̧ulre a puanp, moter, pipe systea, sprinklers, installatson and annus operating cests. Vsiag a punp systes, it vili cost approsiatily 361 to irrigate one cuerfa (.06) hectare) of land.

It is anticipated that, based en past experience, b0\% of ali ifrigatios systens constrycted vill be of the slaple diverstes gravity flew types. For the roughty 20 E son"gravity flow systens, egaveational electrieal of diesel puaps ayy be used, as well as hydraulic rans, vheel puaps or visd a111s if proper circunstances to operate these trrigation aechasisas exist,

The Difercton Genefal de fervietes Agrtegias (DiGESA) will be ta cbafise of the design and constifuctien of salil iffigatign systens and soli canservation devices. Four sandi=scale frfigation DIGESA fechatetan teans cosalotimg of a toydraulie engiseer, agfobonise, topographef and traftsuan vili work vith the farmers to drav up plans abs spectications, and a siaple credit agreenent. The plass and agfeenent vill be fevteved ty the regigand ghtef of


#### Abstract

7 Hifis teat pesented ta teme proper agency for approval and disbursement, The ranae $+4 i \frac{1}{2}$ efigaize laber and supervise construction providing any neaded   Thowt gutas agitieglas will awsist the 30 curreat DICESA extension agents in fagu via the prejects and facilitatiag the organiaction of faforal vater user w.tur tiaifons (where desifable). Fa addition the DIGFSA team uill soaitor    ain afi faniliaf vitis all aethods and fechnologies required for the 


Sife identificaniea, desige, construction and on fara ¢) ratepuesi wili be caffied se siauleaneously, this procedure vas chosen in * die: ta lake advantage of the strengths of the iapleaenting agency to s der ilify a sfudf and execufe smali scale fritgacion and soil conservation


 s) 4 tou is techeicalify feasible and what type of otructure best suits the estaticioss present, This tean wili alse ievestigate vater rights and tand Gevere, fetspaine poteselat land use, caleulate waker quantity and eSulitabilitify and detequine the seeial and ecosonic feasibililty of the



The fabuising plas will inelude what is to be done techaically

 Tcietiala), and whe witil accomplish given casis (achedule mapriayo of vork,












 - petelionet。

[^3]
## b. Soll Conservation

This activity will be carried out in close conjunction with smali-scale irrigation activities, and where technically feasible, on the same farz lands. The structures aay consist of any one of several designs, Hovever, due to soil and varer retantion and soil slopes encountered, it is estiaated that $70 \%$ of these devices constructed will be simple bench serpaces, osher types of soil conseryacion gtryctures constructed or practiced will be brush and rock dass, strip cropping or contour furrows. The type of soil coaservation aethod used vill be determined by the DIGESA extension agent and the local faraer.

Approximately 115 person-days of labor are required to construct Qae hectare of bench terrace vhile noraal land preparation requires 25 person-days per hectare, It vas deaonstrated under Project 520-0233 that farzers, once they have observed and been convinced of the benefits, vill construct soil coaservation structures vithout social benefit payments. Hovever, to aaxiaize the deaonstration fapact of these vorks throughout the liighlands and the resultant spread effect, \$1,500,000 in loan funda will be used by DIGESA, in Regions $I$ and $V$ for social benefiz payaents and logiatical costs to coapensate farmers for this extra labor and co make these practices aore attractive. Uning proposed project funds and under the guidance of DIGESA approximately 2,200 soil conservation structures vill be built which vill protect 5,000 hectares of land and vill directly benefit over 20,000 fanilies, or 120,000 rural poor, Assusing that each participating fagaly vill cerrace six cuardas ( 0.258 hectares) of land, the one-tiae social benefit payment to each fanily vill be approximately $\$ 80$. In order to increase the effectiveness of the DIGESA personnel, 60 selected individuals from the comanity (guias agricolas) vili be utilized by DigEsA to promote and, if secessary, supervise the coastruction of the soil conservation devices. 3ANDESA vili participate as the finanaial agent for the social cost payments which will be approved by the DIGESA exteasion agent and which vill be paid after the construetion process. Once coapleted, the soll conservation terraces vili require littie additional taput froa the GOG. The hand conatruction of these soil terraces requitres ondy rudiaentary aquipaent to survey and design the terrace and only ainiaal maintenance is refuired to keep the terraces $\frac{\mathrm{fn}}{\mathrm{t}} \mathrm{good}$ rapaif. Incowes have been shovn to increase vhen oniy terraces are cosstructed but not as dramatically as vien ifrigation systeas are utilized (Aanex Y).

DIGESA extension agents, in conjunction uith locally trataed area farmers or gutas agricolas (vhose vages are paid by Dighsa), vili be responsible for the site selection and construction of soit conservation structures (prisarily bench terraces and conteur rovs). Thirty=six nosths of short and long"tern loan funded techaical assistance vili be provited to iaprove the agricultural extenston abilities of the DigEsA eapioyees and gutas agricolan. Usiag homenade leveling devices and hand toois, the taterested farmer will vork under the guldance of the extenston agent to coastruct the sell congervation structure. The construetion precess vili be as foliovsi

Site identification by the interested farmer and DIGESA personnti.
Examination of the topography and determination of appropriate structure.

Construction of soil conservation structure using hand tools and locally made equipuent.

One cuerda of soil terraces requires approximataly four days for construction. This time, hovever, vill vary considerably due to soil topography, soil type and size of structure. After the construction of the bench terrace, the entire backwall will be planted in grasses (obtained from DiGESA) for anjaal fodder and to provide additional protection from soil erosica.

Social cost payments will be used only to introduce soil conservation practices in areas where they are not presently used. Interested farmers vill be selected by DIGESA agents to receive payments and uill be paid on a per unit of land improved basis, calculating approximately $\$ 3.20$ per day for their labor, BANDESA vill participate as the financial agent for the social cost payments which vili be approved by the DIGESA extension agent and which vill be paid after the construction process.

Project loan funds vill purchase 12 four-wheel drive vehicies and 12 motorcycles for use by DIGESA soil conservation agents to make their efforts more effective, In addition, sixty locally manufactured bicycles vill be purchased fcr use (by the guias agricolas), as appropriate, for Smali-5cale Irrigation and Soil Conservation.

Table II
INPUTS - SMALL SCALE IRRIGATION, SOIL CONSERVATION aND rEFORESTATION (\$000)

## IIEM

| FOREIGN | LOCAL |
| :--- | :---: |
| EXEHANGE | CURRENCY |

I. USAID
A. Saall Scale Irrigation

| 1. Construction Materials |  | 1,000 | 1,000 |
| :---: | :---: | :---: | :---: |
| 2. 4 WD Vehicles $\times 8$ | 80 |  | 80 |
| 3. Motorcycles $X 6$ | 10 |  | 10 |
| 4. Bicycles X 60 |  | 10 | 10 |
| 5. Educational and Training |  |  |  |
| Materials |  | 50 | 50 |
| 6. Office Supplies/Eq̧uipaent | 50 | $\underline{\square}$ | 50 |
| SUBTOTAL | 140 | 1,060 | 1,200 |

3. Soll Conservation Structures
4. 4WD Vehicies $x 44040$
5. Motercycles X6 10

10
3. Office Supplies/Eqquipaent 50 50
4. Educational and Frainaing Materials

140
140
5. Fechniesi Assistance 300
6. Social Payments
$=$
1,260
300

- = SUBTOTAL

400
1,400
1,260
C. Reforestation

| 1. | Labor fatensive Mages | = | 248 | 248 |
| :---: | :---: | :---: | :---: | :---: |
| 2. | Comodities (Total) | 13 | 28 | 41 |
|  | a. Polyethylene Bags | 6 | * | 6 |
|  | b. Fencing Vife | 7 | = | 7 |
|  | c. Festieides, Iasee and Feftilisefs | = | 2 | 2 |
|  | d. Other | = | 26 | 26 |
| 3. | Is Countiy Frainiag | $=$ | 11 | 11 |
| 4. | Fechateal Assistance | 200 | $=$ | 290 |
| 5. | GOG Fersonnel Costs | $=$ | = |  |
| 6. | Land (runicipalieies) | $\underline{=}$ | $\underline{=}$ | $\underline{\underline{L}}$ |
|  | SUBFOTAL | 213 | 287 | 500 |
|  | HSAID TOTAL | 753 | 2.747 | 3,500 |

II. GOVERNENT O7 GEATBMALA (GOG)

## A. Small Scale Irrigacion*

| 1. Conatruction Haterials <br> 2. Admin. Overhead/Indirect <br> Costs | $=$ | 281 | 218 |
| :--- | :--- | :--- | :--- |
|  |  | $\underline{460}$ | $\underline{460}$ |
|  |  | 741 | 741 |

3. Soll Conservation Structures
$\begin{array}{ll}\text { 1. Social Payaents } & 450 \\ 450\end{array}$
4. Admia. Overhead/ Indirect Costs $=\underline{\underline{676} \quad \underline{676}}$

SUBTOTAL $\quad 1,126 \quad 1126$
C. Refofestation

1. Labor Iatensive Wages 23
2. Coanodities 1
a. Polyethylene Bagn
b, Fencing Wire
$+\frac{1}{1 /} 1$
c. Pesticides, Iasecticides and Fertiliaers
3. Other
a. Other 1
4. Ia Country Frainiag
5. Techaieal Assistance
6. GOC Fersonal Costs 71
7. Land Munieipaitities) $\quad=\quad 63$
SUBTOTAL 158 158

| G0G FOTAL |  | 2,025 | 2,025 |
| :--- | :--- | :--- | :--- |
| USAID AND GOC TOTAL | 753 | 4,772 | 5,525 |

1/ Less than Q1,000

* The beneficiafies of a systen wili provide on the average, 670 pefson days of laber to cembtruct an iffigation system.
c) Reforestation

1 Strategy
The purpose of this reforestation activity is to assure a long=run profitable supply of fuelvood for the Highland population at fair aarket prices which vilit not effect a reduction in their net incomes. The objectives of chis activity afa:

Miafmize deforestation in the Altiplanp as a result of fuelwood
consuaption.
Reteratne the feasibility of private reforestation activities.
Provide eaploymeat opportunities in the comanatites where reforestation is faking place.

Accordiag to the Fecandca! Analysis (Annex F), five possibie iaterventions vere considered, but because of funding liaitavions, project feasibiliey, and the need to teat iaferveations, oniy two production iaterveations were selected to be iazluded ta this Project uith a third more liaited taterventiont

Fuelwood production frea feforested publie lands,
Fyelvood production frou seedilings planted on suall land holdings,
Bevelopment of as action plan fer vider dissealamion of fuel=efficteat staves.

## 2) Descifipftan of the Fargef Area

 reforestaftos sub*pfojects to be iaplemented vift their own fundiag during the pertod 1983~86 (See Map II). These sub=projects are located is the inaron kegian f , vhich includes the six departuents of guedalienange, Huehuefeaange, Et Sulehe, Fetoateapas, Sglola and San Mafres and the Sub=Region of Nehaj, Hovever, because of severe budgef reductions in the goc public seefer ia 1983

 cavefed ithe ofiginal seven gubrfeetong indicated gn the map, the final tecisigs te underiake oniy five of these subwrejects ia referestafien of



 le referested is lizt, 3 hecfares,


- Projects to be undertaken at reduced level

The size of shese sub-projects varies from 4 hectares in Solola to 45 hectares in Huehuetenango and fotonicapan. Alt are located on or near to existing roads which vill facilitate transportation of inputs into and fuelvood out of the area. Other than some extensive holdings by aunicipalities $-=$ the subject of the public lands reforestation $-=$ and a fev fadividual landowners, most of the agricultural land in these areas is held in saall plots worked by Indian faraers with fev technical inputs. It is this group that vill be the target of the seediling for saall land holdings in these same five areas, with the expectation of reaching 40,009 farm fanilies,

## 3. Laplementation Plan

INAPOK, with assistance froa aunicipal officiais and the comuntty and aunichpal reforestation comittees, will carry out the tive sub-projects selected for pilot activities in aunicipal land reforestation. Each of the five responsible INAFOK sub-project aanagers vill be required to keep detailed records of all iaput and labor costs duriag the four-year period so that total and per hectare costs of production of fuelvood can be accurately detarained as vell as the level of labor eaployed, fa this aanner the most efficieat coablation of labor and capital resources and the expected profitability of reforestation can be deterained. Also, recordkeeping fa the pilot approach will enable INAFOR and AID analyots to deteraine geographical differences ia avallability and use of labor, vage rates and difficulty of access to the sub-project area. The predoanant type of fast-growiag fuelvood to be grown on aunicipal lands vill be aliso, although fresng vill also be grovn in San Jose Ojetenaa white chercy and eucalyptus vill be grown ia San Andres Xecul. The IYAFOL sub-project aanagers vill be responsible for obtaialag the appropriste seed and iaputs for establishing the seedbeds in each of the five afeas and, vith the comantty and aunictpai reforestation coanittees, identify the location of the aurseries. Lecal partictpation vili be deteralaed by the above aestiosed conatitces.
 area prior to ialtiation of reforestation activities ia order to plant sone deanstration trees, explain the prograa and belp organize the comantey
 CAFiz fe this task. After these comittiees are established, the subrproject sanaters vill concentrate their efforts ta the organigation of the municipal reforestatios comititees. Haviag achteved this, the aanager vilit then sef up the mufserics. As nentiened eariler, onee the nufseries are established, each sub=project asaget wili keep detalled records on operational costo of this activiky,

The provisten of seedilags to saall farmefs vili be accoapilshed Ehrough
 be produced if the sane bursery used fof feforeatation activities on public Lasts. DuFiat yeaf 1 all transplants will be aade frem eufocries to the land te be reforested, thys fresing up aursery lasd fer adsitiosal activities, in


planting and maintenance, they vill better understand the desirability and profitability of reforestation on their ovn lands. In year 2 INAFOR will have a fund to develop seedlings and provide the people who purchase these seedliags with wire cones to protact the individual trees planted on land boundaries. then coaaunity aeabers purchase the seedilags at cost frou the nurseries, the nussery fund will be replenished which will perait the groving of seedilings in each subsequent year. This fund vill be aanaged by the respectiva aunicipal reforestation coanittee. INAFOX and DICESA technicians vill vork closely in this activity since fruit trees (especially cherry) are the aost likely species of tree for sale to surroundiag coanuntica. Not oaly do they produce tuelwood rapldiy an vell as provida frult, but it appeara to be the type oi tree for which rural inhabitants would be vilifing to pay, DIGESA' = collaboration is iaportaat also because of the posalbility of planting these trees on terraces built under the AID-DIGESA terracing coaponeat.
4) Organizational Requitements

The taplementing agency for this activity uill be the National Forestry tascitute (INAFOR) which has an established regional office in quezaltenango, responsible for all forestry activities in Region i. All activities in this activity will be aanaged out of this regtuasi oiftice with INAFOR budgetary support being provided for salaries, travel and per diea, gasoline and asterials over the four-year duration of the activities.

Ia order to assist MMAPOR in the establishaent and operation of reforestation oa muntipal lands, reforestation conaittees will be set up at the comanatty and aunicipal levels. At the lovest level, the participants vill be solely coanaity fahabitants who vill fa tura elect their representatives to the municipal comatttees. All conaualties which surround the fadividual reforestation sub-projects vill establish these local conalttees, the number varying from five co fifteen, depending on the number of comanities in the area of tafluence. At the aunicipal level the partictpants vill tselute the aayor, a representative of each of the comanatty reforestation conatitees, a representative of IMAFOR, and a represeatative of the Miatstry of Agriculture Extension Service. This comalitee vill be respoasible for deteratalag the level of partictpation (number of persea days per year) to be provided by each local comalttee, the distribution of fuelvood whes it is cut, the priciag policy for fuelvoed sales, and general supervisory and taspection responstbilities conceratag the tapleaentation of each subpproject. Wen the work ģugas are established for each local comatitee, thto conatitee ta tura vili assiga vork reopositbilities to the weabers of the comanaity, Additionaliy, this auntcipal cematttee vili be responsible for asaaging the Bursery fund to provide seedilags for saall faraera.

## 4. Funnary of Activity fapute

These irfigation and soll projects are designed with the ebjectives of providiag the aptiaun number and level of thpyts to coapiete up to 750 bectares of small seale tefigation projects and 5,000 sectares of sell
conservation/vater retention iaprovenents. These inputs will include construction aaterials and equipeent, construction labor costs, staff and equipaent for regional teass and technical assistance to DIGESA in project planaing and execution. In addition to the construction supervistion of the irrigation and soll conservation structures, the DIGESA agents will provide techaical assistance to the farmers in vater utilization as well as advice on crop diversification, optiaal iaputs and asketing advice which vill aaxiaize production asd facoae. Table it belou provides a breakdown of financial iaputs for both the COC and AID

In erder to reforest 124,5 hectares if municipal lands on a pilot basia, distribute fuelvood seedliags to 40,000 fara faalifes and develop a strategy for coordinated action ta the builisiag of fuel-efficient stoves, this activity aust have $\$ 500,000$ of AID funds ( $\$ 300,000$ of $10 a n$ and $\$ 200,000$ of graat) for the apecific iteas indicated in Table IV.

Costs for the reforestation of municipal lands ( 3239,000 of AID funds) go priacipally for payaent of vages to meabers of the surrounding comanities to carry out the nursery transplant and asiatenance ascivities over the four-year period. Likevise for production of seedliags for saall faraer distribution, the priacipal part of total cost ( $\mathbf{5 5 0 , 0 0 0}$ of AID funds) vill becone effective in year 2 and vill be a rotatiag fund to be repleaished by the purchase at cost of the seedilags produced in these nurseries.
la-country trafaing for $\$ 1,4,000$ of AID funds will be undertaken only at a regional and field level for four differeat groups: comanity groups (reforestation conittees), people hitred froa the comunitins to work in the nurseries and voodlots, foreach spectalists in the aanagesent of nurseries and voodlots, and ISAFOR and DIGESA technicians. The aiddle two groups vili be tralaed in aursery manageaent tharough one short course of 4 days as vell as on=tha-fob training and fleld fays. The comuntcy vill be given training through two short courses of 3 days each for establishiag and aaintalatag voodlots and tedivifual plantiags. Also 10 field days for conantty leaders vilt be orgaized as veli as various conferences and informational neecings in comuntities usiag paapkiets, pesters, slides and aovies. Funds vili also be proviled frou this activity for developaent of appropriate audionvisual aaterials.

Grant=funded techateal anstotance for $\mathbf{3 2 0 0 , 0 0 0}$ of AID funds will be proviled for hiriag a U.S.techaician vith experience in atural resource aanagenent, reforestation on saall scale and fuel=efficient vood burniag stoves. Duriag the two years of his contract, be will do the following: assist MAFOR ta the techatcal aspects of reforestation and aursery aatatenance, help develop inforational campaigns with DIGESA and indiron for on"farm planting of seedifago, asalybe the inforation from recordo on austetpal reforestation and ake recomendations on mosteffictent aikes of capical and labor as vell as the profitability of reforestation activities, gulde the aunicipal and comantify reforestation comatitees and, nost faportantly, develop a leng=range strategy fof an fategrated canpaigh of bullides fuel=fficieat woed stoves.

The COC contribution of $\$ 158,000$ will be in the form of uagen, inpute, support personnel costs at both the sub-resional and municipal levels, and laed.

## 3. Access Roads Compogent

## 1. Component Ovarview

The Departamento de Caminos Rurales (DCR) Was estabilshed in 1978 vithin the Direccion (ieneral de Casinos to initiake an AiD=financed labor fatensive access roads coastruction progran. By 1984 the DCR vill have coastructed or rehabilitatifd more than 450 kilometers of AID-financed roads and about 300 kilometers of $G O G=f i n a n c e d$ access roads. Hovever, once constructed these roads reiseived little maintenance resulting in reduced road use benefits such as access to markets, agriculcural inputs, and health and extension services. Access roads uthout maintenance generally have to be coapletely recomstructed after five years at approximately the same cost as butidiag aev roads. Therefore, the Direceion de Caninos Rurales has rey̧uested AD financing to faitiate a labor iatensive access roads aaiatenance progran. This prograa will include all roads previously constructed by the DCR chat do aot nov require rehabilitation $\frac{1 /}{}$ as vell as labor intensive access roads to be coestructed by the DCR furing the next fine years. It is anticipated that by the end of the five year period of the project aatatenance aettods to be faitiated will be sufficieatiy established to allow the DCR to continua beth its laber inteasive aalatenance and constructioa prograa without further fechaical assistance.

The purpose of the coaponent is to assure continuous road access to arkets, agricultural taputs and health and exteasion sepvices by rural highlanders. Since these roads vill be naintalaed utilizieg labor iatensive aethods with the factor cost of labor reasonabiy priced, the cost per kitometer will be relativaly low while at the same time providing part-time eaployment opportunities for a portion of Guiteaala's rural undereaployed population ( 405,000 vork days of labor).

## 2. Malatemancy of Mura! Access Ioads Progras

faitially, 500 kiloaeters of access rasas previously constructed by the CEA utiliatag labor tateasive aethois will be brought fate the sey asiatenance prograa. Each folloviag year about 200 additional kilowiters of new access reads constructed by the DCR will be introduced fato the sapandiag aalatenance progras. At two of DCA's sin regional headquarters aalatenabee offices vili be established, each office coverian three DCR regions. One regional office vill be lecated in kegion iland the other office ia Region iv (see as itif for BCl legions). Rach regional access road malatemace office vili oversee the alatesance of approxiaately 250 kilometers the fifst year

1/ COA will rehabilitate roads not curreat ly in condition to entef the waistesance prograi vith funds provided by Aib withta the 53.0 ailiten extension to the Sasil Faracf Developaent Froject ( $520=7=020$ ),

increasing to 650 kil loaeters by the fifth year, the end of AlD financing, Total roa being mafatained at the end of the project vill be 1300 kilometers. (See table IV below for yearly aaintenance activities).

TABLE III

|  | Ka. under aata= tenance progras /Ka, bajo pro= graan de aanteni afento | Accua, K. of roads alatenance /Ka, accua. mant, caalnos | Required vork days aunually/ dias anua= les requer. | Work days accuanulat= <br> ed/dias de <br> trabajo <br> acunulados |
| :---: | :---: | :---: | :---: | :---: |
| Theafllaf. año | 300 |  | F5,000 | [5,000 |
| 2 Year/2do, ano | 700 | 1200 | 93,000 | 108,000 |
| 3 Year/3er, ano | 900 | 2100 | 81.000 | 109,000 |
| 4 Year/4to. ano | 1100 | 3200 | 99,000 | 288,000 |
| 5 Yeaf/5to, ano | 1300 | 4500 | 117,000 | 405,000 |

The asjority of the aatatenance vork reşuired will be accoaplished by labof inteasive aethods. The reşutred labor vili be provided by fural commalty coastruction and aalatenance coanttteas estabifshed during the DCE construction prograa. At the fattiation of the progran these comatttess will organiae sufficieat laborers to provide 45,000 vork days of annual labef to be
 aatatenance facreases, vork provided by these aalateanace comittiees wili increase. By the fifth year of the project it is asticipated that these cemanatty aatatenance coantttees vilit supply 177,000 vork days of laber asnualiy to be pald on a piece fate bases at roughly 9 3.00 pef day (see Ansen F(8) for a description of reģulred work.

## A. Prolect Atainistfation


 (Realon IV). Bach gev matatesasce office wili adulutifef the falatebase of
 the two regtenal headquarters vili provide payreli and accounting suppori,

 engincer wili have a gtaff of twe assistantg and one asstofani warebowseman


 whe wili be assisfed by one aewiy hifed adalaigfative assisfan,

## B. Pogear Operation

 previdiad iniliai tectisical assistance in ideatifyiag vork requirements during wonthiy fiela visits 53 assess the physical state of each road segaent; (2) j〒وviding sugefvision duFing najor nainfenance effortsi and (3) providing
 ganelailing of cleanimg irainage ditches and culverta, filifag potholes, ainor fead reshatima and eafthwefk, and reapval of excess vegetation vill be

 8f the comanaicy cowniciees. The four aaisteasace assistants vill make poxflie inapection and cerifificatign visits before vorkers receive their jefiadic wages af each of the sig fegional offices located fa the vorkiag area.

The abjor caska of fesurfaciay raad segaeats vich replaceneat graval sad najof peshapiag vilit be regulfed abour oace a year fer portions of each
 iniss effeft eaci ef the rwe naingenamee regional headquarters vill be equipped
 *iti inctade one pead iradef, sin duap irucks and gne backhee/front end toadefo fis adifites, swe lowhey truck vilit be purchased fo facilitate the
 giecss of hasm equignest will he purchased (ace Table IV) fer the najor
 drifve fite kump ciokks and lev hey, and theavy eģufpeenc operators to operate


 comancities provide suffigicat manal laher co opiead and level surfactag abicfleis 49 weit as staje ite featway, Each fead grader wili be assisted









The 17 gieces of hexvy equipment with have the cafactiy te neat





 suginesft and one icgidew ongines\%:

Table IV/Cuadro IV (\$000)

Iamen - Laber Intennive Accesa Roads Malntemance Pishran Impeos - Frograsa de nantenititento de Caninoe do accelto con Uso Intenelvo de Mano de Obra

PXME LCML TOTAL
A. OBAID

2. Othat Coate (fogat)/
gripe coscoo (iotal) $\quad 22$
a. Lubor vinge".

Jormater 765
b. Heavy Rquipeat Lutpicantol

Lubricanten p/iquipo Pesedo
14
104
Sub Poral $\quad 1.476 \quad 274$

1. Bet
2. Armomel (5 years) - 48 enployees/

| 4 |
| :---: |



- 30 •
b. Lasidant Engineer/

Ingeataro healdantexJ
C. Aesiatane co Residene

Englnear/
Ablatenta dol lngontero
Destente 0 -
d. Maren we lan.

Bodegneru: : -
-. Payrodl :tark Plasille:s $\ddagger$ =
8. Detuara,

Pilucos a a
8. Heavy Euctpeent Operatoral
2. Labor Hafea.

Jornalos $\pm$
22 213
3. Operatiai Cosfa/

Cospon de Opertefion
1.426 1.42

Bub Topal -
sotal
1,476
4.166

5,042

By the end of the five year program over approxiaately 50,000 fara fanilies vill have received benefits associated with vell maintained roads, Ia additioa, $01,687,000$ in productive labor costs will have been paid to the target grcup paying for aore than 405,000 vork days of aanal labor, In total, $1,300 \mathrm{kil}$ oaeters of access roads will be included in the labor intenaive aceess roads progran, being aaintained at an average annual cost of Q 1,149 per kiloweter, or 5.72 of the original cost to construct or upgrade a path to an all vather access road using labor fatensive eethods.

## 3. Heavy Equipeent Maintenance:

In order to insure that the above aentioned objectives are achieved, the heavy equipaent purchased to support the road maintenance progran must itself be aintained and operating at top efficiency. In addition, existing DCR equipment used to coastruct reads must be aaintaiaed ia order to assure continued construction of nev rural access roads

A receat survey of the $\mathbf{\$ 2 . 0}$ aillion favestanat ia AID financed heavy equipaent purchased for the iatciation of the labor iatensive secess roads construction prograa under a previous AID loan project ( $520-0233$ ) has shown that the current DCR corrective and routine heavy eq̧uipent aaintenance prograa is not sufficient to keep the existiag heavy equipaest in cop condition. Ia order to reaedy this situation as vell as guaranten the efficient utilization of the heavy equipment to be purchased for road aaiateaance, an eq̧uipaent aalatenance elenent vill be iacluded withis this coaponeat.

The BCR curreatly has a salil mechanic' o shop at each one of the six regional headquarters. Kach shop is staffed uith a diesel engine aechanic, a gasolise engise sechanie, an assistant and a veldef. At two of the shops a aobile tield aatatenance truck vith two assistant mechanies vili provide reşuired preventive matatenance at work attes. In ofder to briag each regional vorkahop up to an equal and adequate level of tastalled eqุupatent abintenance capacity, four aer abblie matatenance trucks vill be pureased, aloag vith 3 electric velitag aachises, 4 aytogenous veldiag aachines and one set of sechanteal topls for each of the six aaintenance shops. To operate this equipment, the b'g vili coatract four addicional drivers, three weiders and efint assistant nechantes to provide abilie preventive aatstename. (See Table $V$ for reşuifed ieputa).
fa the central offiee of the DCA one heavy eģiphent aitatenasce coordiaater vilit be hifed to tatifate an inproved beavy equipaent aisienasce progran at each regional office, He wili be feoponsible for developing atandardo and procedures for preventive equipeent nalatenance as vell as assioting regional office ehtefs to obtais the best utiliaation of eq̧ulpmest
 nitatenance with the bSC district aliatenance sheps, This cegrdinater will be assisted by a newly appeited heavy eq̧ulpest speetailsc whe wili perfera the fellewing labki tespeet alt eşuipment in the fieli, verify if prevestive of

TABLE V/CtadRo V
Inputs $=$ H. try Equipent Malatenance tnsumos = Manteniaiento de Equipo Fesado ( $\$ 000$ )


Tor Malatondnea Equipeant
 Era Ruipo je Manteninienta
3. Tratalacipilaotrableaty
3. Fer jice abd 7ictuopuzcatioal

Vattcoey jtatiojurte
Costaciuaton
Fitb Fotid
TOTAL
corrective aatatenance was coapleted; assist 1 the trainiag of on=board mechanicsi and advise the equipaent malatenance central office of any excessive dovatiae or the need to obtaia corfective aaiatenance at DGG district aatntenance shops. These two eaployees vill be supported with two 4 wheel drive vehictes and Z drivers.

Ia additioa, in order to tasure that spare parts needed for routine aalatenamee are ordered and received whea required, the beg vill coatract a purchasiag expediter to coordiaate all purehase requests at the central office. He vili also check vith regional office varehouse personnel to anticipate future req̧usts and vili advise local suppliers of possible future aee4s.

Approxisafely 3 persoa years of a heavy equipaeas mainteaance progras exgert vili be reşuired to coordiaate and technicaliy support the activities Gescribed above. Specificaliy, the expert vill provide GCR guidance in the efficieat use of heavy equipaest vifhia a labor lafeasive nalafenance prograa, is aaistenamce requifeneses of beavy esufpaeat, in req̧utred spare paris and inventery procedures, asd is oa the job rfainiag for shop mechanics,
b. Mapptag, Ptanateg and Fionotion of Rural Aceess Roads
a. Mappies

Fa order ca assist in estabitshing priaricies asd sebeduliag reas asisfeaance and rehabilitarise, fhis accivity vilit finame che development of
 exisfing access Fead as well as read seccieas chat afe pessible casdidates fer
 Fegardiag the munher of people livieg aloag fhese reass ast fhe econonie value of thetr agficulfural preduce, physteal cafa such as read leagin, vidik,
 cellecfed. This cenpufefiged dafa vili indicafe by gei feaieng gecigmecemente
 sectioss; (i) fist sectioms under cossffuction, (3) fesd sectigns feçufitiag fehabilifaites, and (4) fead secfiess whief matiofenance,

The gathering of the ininial hasexiliae data wili be finameed by efant



 offices why vili gather and fevise access read sfacisfics duFine theif fieid



Read secifiosg wilit be divided af ine boundacy ifnes of each featenal



experienced aaintenance supervisors and social vorkers. They will be annually updated to provide feedback for evaluation of the access road progran thus establishing a realistic basis for future planing and estimates of construction, rehabilitation and matatenance prograas. Field evaluations, which vill faclude inforaation on population, schools, coasuntty organiation and agricultural production, vill be performed by the Access hoads Construction Departaent.

This data will not only serve the DCR in tto selection and aanagement of road construction, rehabilitation and aaintenance activities, but it vili also serve as a basis for inter-agency planaing and decision aking since it *ill assist in deteraining fhe viability of projects planned by other goc agencies. For example, this inforaation os rural accessibility vill be a eritical input iato other agebetest future planal ag decisions regardiag where to best coastruct projects such as rural schoois, bealth posts, grain atorage fazilitites, and rural markets.

Approxiastely 0 person months of a consultant in coaputerized accass roads taventory prograas will be requifred to support the above activities. The expert vill possess experience ta conputer progranalag, data gathering, codtag and report prescatation.

## b. Fromotion

Freseatly, the general public is not adequately avare of the socia! and ecomonic benefits aceruing froa tinely and edeşuate matateanace of rural roads. This tiatied avaresess, in tura, precludes popular pressure for faproved performace in rural read milatenance. Conseq̧uentif, the project vill suppert a proaetios canpaign te educate the general public and key dectsion abkers as to the seed for the governaent to tavest aore of tis reseures ta upgrading rural read aaletenasce prograns.

The preastios caapaige vili coavey two basie messagesi (1) that if is cheaper to aatetain father than to reconstruct reats, and (d) that econonic asd social hesefits of reads are greatly feduced vien roads becone tapassable dee to lack of astatesame. As co contenf, it will comstst of three activities seainafi, fadig spets, and videotaped documentaries, A local advertisieg fifu of firuc vili faplenun tha progran in coordination with the G00 Chief of the Raral Reaso flepartment.

Fear sealaars will be cosducted ampuily begianing is jeaf two, Each
 hefere the hegisaing of the Gog budget ajele. The seaisafs wili discuss achicvenenta/problens of the preject to date, and new work nethods of
 tevilve apprextaately 30 participanto free Caniseg Bufales, and cemunifico invelved is read asiefenace, high=level goc offictais, asd fepreseafatives
 Flansing Gouscily fis adsitios guest speakers from ofhef countifes and the

the Highlands near access roads so that site visits may be made during these training events. AID will flaance travel and per diea for seainar participants and speakers, as vell as materials and supplies. The GOG will provide vehicles and gasolitie for field trips to road maintenance sites.

Approxiaately 15 alnutes per week of radio spots will be broadcast over local stations in the project area beginaing in year two. Messages vill urge comantties to support and participate in local aalatenance road prograss, and will rely heavily on testimonials froa laborers, bus/truck drivers, and other comanity aeabers who work in or benefit from the aaintenance program. A Guateaslan advertising ifra will devote at least two aonths per year in developiag or updating these radio spots. Production costs, which will be financed by AID grant funds, will fund taping and editing of radio aessages. Ia addition, both AID grant and GOG counterpart funds will finance the purchase froa private radio stations of approxiaately $500 \quad 1=3$ afnute spota. Coasercial spots vill be suppleaented by $100 \quad 1-3$ ainute spots aade available by national goverasent radio stations in the project area. Spots vill probably be broadcast early in the aoraing to axiaize the listening audience.

The third and fiaal eleasent fa the proaotion caapaiga vill be videotaped documentaries which will focus on the social and econoaic benefits produced by the aafatenance road progran. The documentaries vill address two audiences: aiddie and upper class opinion leaders through television broadcasts, and a broader audience reached through local aovie theaters in the project area. Addressing the television audience vill help build greater public support for the progran, whereas aovie theater spots vill encourage camcunities to continue vith their involvement in the prograa when they see local road vorkers or users show or intervieved in the docunentaries.

A local advertisiag firz vill devote approxiately two months per year tevard preduciag or updatiag four videotapes to be shown aanualiy begianiag in year two of the project. Ail grant funds will cover all production costs and a portion of the funds reşuired to purchase suffictent television atr tiue to bradcast the decunentaries two or three tiaes a yeaf during the life of the project, as veli as reatal of tiae in tocal aovie theaters ta order to show the docuanestaries during the same period.

## c. Progranaies and Planains

 road aatstesasce, heavy equipuent malstenance, pronetion asi mapping activities. Frocurenest of equipnent and aaterials, bifing of counterpart staff and other project taputs aust all be provided is a tiaciy aamer. Cosseşuentiy, the project wlil fund four person yeafs of techntea! assistance in labof tatessive actess reads progranalas and plansiag. This expert vili pessess expeftice ta coaputef planates, personaci aceds, beavy eşuipment fegutrenents, and budgetary planilag and resources becessafy to suppori expasded censtruction and alatiename of fuFal access reado yoing laber istessive actheds. Fables Vit and vil provide a sumafy of feçulfed ifepts fer this element.

TABLE VI/CUADRO VI
Inputs = Mappiag, Planning and Promotion Insusos = Mapeo, Planificacion y Promocion (\$000)
YXME LCMN TOTAL
USAID

1. Comodities/Mercaderias (total) ..... 25
10a. Sa.ill Computer/Coaputadora Pequena 10
b. Coaputer Software/
Programas de Computadora 5 ..... 5
e. Audio-Visual Materials/
Materiales Audio-Visualies 10 ..... $=$ ..... 10
2. Other Costs (Fotal)/
otfos Costos (total)$=\quad \underline{\underline{0}}$$\underline{50}$
a. Progranaing/
Progranacion = 3 man ..... 5 ..... 5
b. Production of Audio-Visual Materials/
Production du Materiales Audio=Visuales = 30 ..... 30
c. Radio/TV/Kewspaper Comaereials/
Coberetales ea Radio/TV/Periodicos ..... 15 ..... 15
Sub Total ..... 25909
3. Persomal/
Fersonal
a. Keypunch Opefatof/Progfan Analyst/
Operador de Ferforadora=Analista de
Pregranas
Pregranas ..... 30 ..... 30
4. Seniaaf Costa/

- Coatos de seainafios ..... 15 ..... 15
Sub Fotal ..... 45 ..... 45
TOFAI ..... 25
95 ..... 120
** * ..... **

TABLE VII/CUADRO VII Inputs = Technical Assistance Insusos - Asistencia Fecnica ( $\$ 000$ )


00406

Suanaly Fisancial Plan By Coaponent (Resumen दit Plan Financiero por Coaponente)

|  |  |  | USAID |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Yorelgin Exchange $(F X)(\$)$ | Local Currency (LC) (Q) | Total | 606 | Fotal |
| 1. Loan (Prestamo) |  |  |  |  |  |  |
| Kit! and Water <br> خanagement |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | (Adainistracton de Suelos y Agua) | 550 | 2.450 | 3,000 | 1,867 | 4,867 |
|  | Prirestry |  |  |  |  |  |
|  | ( F forestacton) | 13 | 287 | 300 | 158 | 458 |
|  | A.cess Roads | 2,601 | 1,054 | 3.655 | 3.757 | 7,412 |
|  | Cintingenctes |  |  |  |  |  |
|  |  | 193 | 350 | 565 | * | 545 |
|  | = Subtotal | 3,459 | 4,041 | 7,500 | 5,782 | 13,282 |
| 12. | Crant (Denaction) |  |  |  |  |  |
|  | becess toass |  |  |  |  |  |
|  | Fechateal Assistance |  |  |  |  |  |
|  | Asistebela \%ecalea, | 0:0 | - | 820 | * | 8\%9 |
|  | Katural Resources |  |  |  |  |  |
|  | Managenest Fechsica!, |  |  |  |  |  |
|  | Assistance(Adatsis= |  |  |  |  |  |
|  | EFacios de Recurses |  |  |  |  |  |
|  | Nacyfales=Aststencia |  |  |  |  |  |
|  | Fecalea) | 100 | $=$ | 800 | $=$ | 100 |
|  | Baselise Survey |  |  |  |  |  |
|  | (Escyesta basal) | 30 | 100 | 130 | = | $\pm$ |
|  |  |  |  |  |  |  |
|  | (Evaluacton) | 49 | 50 | 100 | $=$ | 106 |
|  | Audits (Auticemias) | $=$ | 59 | 59 | $=$ | 59 |
|  | Ceatiagenclea |  |  |  |  |  |
|  | (まaprevistes) | +90 |  |  |  |  |
|  | = Subcorai | $\underline{53} 3$ | 309 | $\underline{18300}$ | $\stackrel{*}{*}$ | $\underline{H_{3} 500}$ |
|  | $=70 \% \mathrm{AI}$ | 4.759 | 4, 341 | 3, 0000 | 5, 7 \% \% | 14.78? |

## " 40 =

## TABLE IX CHADRO IX

## Strouny financ:al plan = By infuts

(Resunen de! Plan Financiero - For Iasuses)

| Comporent | Access. | Soli and |  | Support |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| trputs | Foads | Water | Reforestation | Cramt | Fetal |
| (Imsumos per | (Caalies | (Agua y | (keforestacios | (bopacion |  |
| Couposente) | de Acteso) | Sueloz) |  | de Apoye) |  |
| 1. Fechaical Assistance <br> (Asistencla Fecalea) | = | 360 | - | 1,020 | 1,380 |
| 7. Comedieites (AFtirules) | 2,046 | 449 | 41 | $=$ | 3,187 |
| 3. Frataing <br> (Adiestranieete) | 30 | * | 11 | = | 41 |
| b. Sectal Senefits Costs 4 Vages (Cestes y Salafles per Benefletes So= (491es) | 767 | 1, 3 40 | 248 | = | 8,273 |
| 5. Creati (Credice) | = | 4,900 | $=$ | $=$ | 1,069 |
| 6. Oftef (Stuetics, Evaluatiess, butits (Otres = Eatwetes, Evaluacioses, 4veliceflas) | 314 | $=$ | $=$ | 300 | 314 |
| 7. Cestimemeles | 193 | 187 | 109 | 180 | 739 |
| 6c8 \%¢\% | 3.836 | 3,188 | $48 \%$ | +3, 5000 | 3, 0606 |

Thitice a (Gumare 2)
3. 12\%










- Aubincois.al

| TV | 368 |  | 368 |  | 26.7 | - | 3212 | * | 218 |  | 2,200 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 EL | 283 | * | 285 | * | 296 |  | 3182 | - | 123 | 280 | 1,290 | $1,460$ |
| 318 | $\sim$ | 2月50 | $\pm$ | 1814 | $\cdots$ | $=$ | $=$ | $\pm$ | * | 300 | - | 309 |
| 3 BE | 6 6597 | 3 BL | 634 | 3 nc | bed | - |  | - | 262 | *30 | 2,430 | 2,400 |

8. Toviswien Stibuliomponens

9. Clevenumbly faikos
(thewe de (Bhes Cisentuell)
b. Livencoilkaline (Sepsikntiles)



| * | 68 | * | 68 | - |
| :---: | :---: | :---: | :---: | :---: |
| 13 | 21 | * | * | $\cdots$ |
| $\pm$ | 4 | $\pm$ | 4 | $\pm$ |
| 48 | 3 | * | 61 | * |



5．Horsesse Thosile Giemirensess
（Giempine：
8．Lacibar Ansinsuilive thigeme
 Antenmelt＊n）



＝Butherutal


| ＊ | 2m | ＊ | 2ev |
| :---: | :---: | :---: | :---: |
| anix | 28 | ＊ | 3 |
| ＊ | nt | $\sim$ | 5 |
| $\pm$ | 阵 | $=$ | 31 |
|  | 明 | 輜 | 38 |
| 獒 | 迷 | 等 | 迷 |
|  | 近 | P64 | 241 |




266
32
26
25
28
24
28




| 368 | 365 |
| :---: | :---: |
| 43 | 2646 |
| 236 | 234 |
| 31 | 310 |
| 2034 | 3685 |
| 28 | 345 |
| 4063 | 3200 |

3．Givase（Chonasellas）


2．Jensllitue furwey


5．Auklite ©hukiswotise？

 （4）astuenvi）


45
－


## Aiscentrameat of Ousitresels

(Chailepme de Guent amenla)
4. asatia/mankena

1. Sheclel Tegnente Chagee zer hernuilicilee manilalese)
2. Cumbetikiee (artivaine) *上enau)

- hanatatel



2. Band (allerta)

 elalatratilnen)


3. Salieet Ineitatiative thiges

Chiclathese gust awe to sher Datienatac)
$=34$
2. Fotwantiel Cyent



- Aehtatal
- Benal cax
- Mrejena Devene trital

361

## 5. ILLUSTRATIVE mPLEMENTATION PLAN1/

## ACTIVITY <br> DA"IE

1. AID/GOG to signing of Loan/Grant Agreement ..... 08/31/83
2. GOG ratifies Agreement ..... 10/31/83
3. Ministry of Finance meets initial C.F.a. ..... 11/05/83
4. Ministry of Agriculture meats secondary C.P.s ..... 11/15/83
5. Grant Funded baseline survey coapleted ..... 09/15/84
6. Selection of initial small irrigatioa system ..... 01/20/84
7. Identification of participating families for reforestation ..... 01/20/84
8. Design and construction of initial soil and conservation structure ..... 02/01/84
9. Selection of short tera extension techaical assistance ..... 02/01/84
10. Purchase of forestry component comadities ..... 04/15/84
11. Local procureaent of aaterials and
construction of first sasil irrigation systea 04/15/84
12. Cultivation of seedlings ..... 06/30/84
13. Procureaent of vehicles and bycicles ..... 02/28/84
14. Hiring of additional "Guias Agricolas" ..... 03/30/84
15. Project iateria evaluation ..... 03/15/86
16. Activities coapleted ..... 06/30/88
17. Final evaluation ..... 09/30/88
1/ Coapiete iaplenentation plans vili be developed by each iapieneating organization as part of conditions precedent to disbursenest for each componest.


aumaseatahape mas mav sumbian


## 5. MPLEMENTAFION PLAN1/ ACCESS ROAD COHPONENT

ACIIVI:Y BATE

1. AID/GOC sigalag of Loan/Grant Agrecaent ..... 08/31/83
2. GOG ratifies Agreement ..... 10/31/83
3. Ministry of Finance meets iaicial C.P.s ..... 11/05/83
4. Miaistry of Fublic Work aeets secondary C.F.s ..... $11 / 15 / 83$
5. Issuance of $\mathbb{1 7 P}$ for access roads and heavy eq̧uipeest techatcal assistabce ..... 12/15/83
6. Issuasce of IFA for access roads heavy equipaent ..... 12/15/83
7. Grant funded baseliae survey iaitiated ..... 03/15/84
8. Procurezent if access roads handtools ..... 02/15/84
9. Access Roads techaical assistance selected and contracted ..... 02/15/84
10. DCI sew positions staffed ..... 03/15/84
11. Access roads techaical assistance tean on board ..... 03/15/84
12. Access roads bids opesed and coatracts avarded ..... 03/15/84
13. First mectaaics traialag courie beld ..... 05/15/84
14. Aezess rasis beavy eq̧uipaent arrives atfield attes07/15/84
15. Read iaventery fechaieal assistance Arrives in Guateaada ..... 07/15/84
16. Intifation of first read aatateaance projects ..... $08 / 15 / 64$
17, Access reads inventery coppleted ..... 10/15/84
17. Froject ieteria eveluation ..... 03/15/86
18. Heary eçutpaest secosi procureaent conpleted ..... 08/15/86
19. Coupletios of beary equipaset fechatzal assistance ..... 93/15/67
20. Coupletion of road aatatenance techaical assistance ..... 03/15/88
21. Altivities ceapleted ..... 06/30/88
22. Fisal evaluation 99/30/88

 cenpenekit


## 6. MOSFFORING PLAN

The proposed project as described in Section 3 of ehe paper is to be fapleaeaked by four COG eatikies. The Nakural Sesourees Managenenf Component
 vith MaDESA's rural eredif gffices. The forestry eteaent vilit be fapleaented by the Direetor of Fasfitufo Nacional ae Foresfacion (iNAFOR), a
 iatemsive access read anistemamce activity will be executed by the Chief of the Departanento de Canians Ruraies (FEX). Difeceioa Generat de Caniags. withla che fiatatry of Comaunteations and Public forks.

The Offige of Rurai Develupmeat (06i) wifhia tSAFD/Guatcmala vili be respoesibie fof the noaikering of projecf activities, git vili be assisfed by the Missios s Froject Revelopacat and Suppoft Office fPDS9) ga matiefs relating c9 geseral preject aeniterima and faplemeafation as vell as
 4se and cosservation, envifepaental isswes, asd propef documentafion of



ORD vill yse a conhimation of fhree uethods ce cigsely evefoce the coapletiow of preject activities. Guafiefly pregress feperts prepared by ali feyr tapleaentlag agenctes with assistane fion preject funded ferhateal assistame wili heig the 0k in gbtainiag dafa on che sfafus of preject activities, Secendiy, rgutine fieid trifs and viatis te cxecwifag afency gifices and preject sites vili belp vefify and ceafifa the validicy of quarterly ieperis. Thifitiy, giamf financed audics and evaluatieso vilit aseigi the project officef, A aid=iefu evaluafige is scheduled fe aid the Miselem fe assess the pregress fewafi achieviag prgject ebjectives and ine develepment of


 fienfifyitag any potentlat preblem.

## 




## 








and Guatemalans whe follow ilspanic efadicions, For example, aarket coatacts should increase fateatives by Iadian producers to Ieara Spanish so as to better aarket theif produce. The tack of Spanish laaguage fa fadian areas has bean a ajjef constraitat to theif tategration fate the econoaic, political and social watestreas of Guatemala.

Lapleaeatiag ageacies responsible for project activities have deapastrated their ability to effectively work vith Highlanders in both nafural resource and access road projects. Waportant to this success vas the high degree of participatiea is bets decisions and verk by project recipieate. For example, access reass vere selected fer construction osly afcer requests for roads were aade by comalities. These same comanities then elected comaiftee aenbers ta


Fyrihef, Eechaglegy selected was siaple, Fof exampie, for feffaciak oaly twe topls were req̧utred; the hoe, available in aest househelis, and a siaple leveliag devige aade of lecal materials. As a resulf mearby mon*partieipatieg faracts were able to adgpt fhis technology withgut techatcal assiscanee. Fast experieace bas shown chac shis adeptige amousted to Ehtriy pefreat of cotal hectares terfaced undef the project,


 asisteashey of actess faads. They did hewever participate fer wages in the cossifuction thase of the pregram. Therefefe, usder the project aceess fead


## 3. Finametal Aajysia (Fi)

Aabifsin of the preject budger and expendicure plan indicates fhat ine
 prejeci japlenemfarion Dee 49 lafie purchases of cominedifies in the fifot







Keocewfing cosis analysis fer cach inneralien wa alse ynderiakena a qumaty by eact iype of activitiy is given below







The gravity flow aini-irrigation systeas to be billt with project funds vill also require aiaiaal aaiatenance such as eleaniag out catchaent bexes, slutcevays and pipes, vith ainor purchase of new pipes or valves over the loas rua, The labor req̧uired $t o$ ainatain these systeas vill be supplied by the individual faraers on a volustary basis. Approximately 20 z of the aiai-irrigation systeas to be built vili req̧uire puaped vater. Recurreat costs assoctated with these systeas are higher due to the cost of fuel selectrictity or diesel) for the puaps as vell as routime aalateanace and repaif. Hovever, past experience with eleves puap driven systeas indicates that this group of faraers geacrates sufficieat profits to more than cover the

3) Reforestafion:

This eleaest should escounter bo problea vith recurrent coseg. The reforestation subrcoaposeat vill becone selb-substainiag by project's end, The ability of the fastituto Nacional Forestal (IMAFOR) to recuperate its ievestaent and establish a retatiag fund for addicional reforestation by chargiag the buyers of seedilags a price equal to cost of production tasures


## 4) Access Roads Maintemanee:

The design of the Aeress Real Maintenance Frograa allows for a gradual increase til 606 fundiag until the final jear of the projecti at that tiae the goc funds cover all costs which are of a recurfent of oangolag

 recentiy approved $\$ 3.0$ aililion adi=9 to the Aib Lean $520=7=026$ project is the
 Caniag (DCC), Budgeted expeditures fof these twe waits fotal approxinately i4,9, aililion fer 1983.

The ealy cficical poist vich regard te recurfent cests of this e日upement wewld be the time of which aajer equipment purchases veuld have to be aale te feplace sçupment which had reached the end of ifo wacfal ilfe.

 he fasded frea the normal BCC budgel. The BCC tac a very sophtsticaled,
 deprectarien facters fe fund replacement equipacel,

If cas thes be concluded fhat the Governaient of Guateaala will be
 of 4 拫 fuadtus.

## C) Econoaic Analysis (F3)

The Natufal Resource Management Component vill affect some 60,000 faatiles through the adoption of soti conservation sall scale irrigation systems and reforestation practices. Hovever, due to the gradual process of technology adoption, about 10,000 families will have the new systea in place over the eatire project life. As the calculations ia Aasen $F$ ( 3 ) shov, if this group achieves a $8=97$ real income gain annually as a result of aulticroppiag and iaproved yields due to the new technology, the component vili be econoalcally viable af a 3/C ratio of Zi0 even with sigaificant cost จverfuns, पith the fragmentary evidetuce that is arailable these ineome gains are judged to be feasible.

The Access Read Maingenance Coaponest of the project vili affect some 165,000 fasilites but osiy 28,000 vili experieace the potential benefits froa servizeable rgads throughout the project life. Ia the absence of such aaluterance this group vould suffer reduced facomes as coanercial activities of faraers vere sfadually eut off froa access to distant aarkets due to deteriaratiag reads. If the presest discousted value (PDV) of this hypothetical incone loss exceeds the FDV of matatesance costs, the conponent is ecoponicaliy viable. As has been shown, if the preseat incomes of the Earget group vere to degrade jusc $10 \%$ tue to the lack of usable roads, the project vould achieve a B/C ratio of 2i0. This calculafion does bot include any future increases in income that vould be foregose due to the lack of serviceatle foass.

## D. Adainisffative Aalyais (Fi)

This ansex includes an analysig of the three iapleneafieg ageaciea ideatified te erecule the project, they includei i) Difeceion Generai de Servieias Aafiealas (DiGKSA), 2) Bame Jacienal de Desafigile Aaficgia

 Fraject, the asatyais found beth fescitusiens fo the capatie of adnisiotefing as erpasted ferfaciay asd saall seale irifgation activicy vich some aditifenal

 that the twe instifytiens wili be able fe effectively faplene int the prepesed acEfrities.

The analyols of the Difecelon Genefat de Cantmon indicafed that ine


 equipmest aalsfemance pregian are siailaf ce thege pesiciess aifeadj filied,


山alafenahes pregfail tescfibed in Section 3 of finis project papef,

## E. Environmental Analysis (F5)

During the developaent of the PID for the project an Initial Zavironaental Evaluation (IEE) vas prepared. Based on this IEE the Mission recomaended that a negative deterafnation be granted. Annex P5 provides AID/V' coacurrence with the Mission's recomendacions. Therefore, no additional environaental analysis is requifed.

## F. Energy Analysis ( $\mathbf{F} 6$ ):

The vast aajority of vork to be undertaken in the road maistenaace
 prograa vill cousist of aanual labor. Little iapact will be therefore felt on Guatenala's curreatly liaited energy resources.

As the project's objectives are achieved and rural farners increase their productive bse, aore energy will be required to transport increased amoust of fara produce to arket. Fhis increased use of gasolise and diesel fue: vill not sigaificantly alter the curtent trend tovards iacreased iaportation of petroleus produets iato Cuateaala. In addition, the reforestation activity vili generate an addicioal fuel wood in the loag rua, thereby reductag on a liatted scale the aeed to deplete Guateaala's forest resources.
Q. Fechateal Analysis Natural Resourees Manageneat. (Fi)

The technologies reşuired to tapleasat soll conscrvation activities asd to construct sasil ifrigation systens vere tested and proven under the Sasll Fars Developaent Froject. The same construction aethods and procedures vili be utilized uader this project. To impleneat this soll and vatef conservation effert, $\mathbf{5} 1,281,000$ vili be stilised for construction aaterials, $51,710,000$ vili be used for secial cost payments. Ia addition $\$ 300,000$ in project funds will te used for cechaica! asslstance asd $\$ 440,000$ for
 Hissios a six vaiume sel of reforestation projects ceaplete with lecation, cests and benefits. The interventions detailed in these six volumes are sfatlar to an cotag inajok projecto bat ayy ant be tapletiented due to a lack of funding. AtD han sclected two of these interventions to iaplement on a pilot scale. Fi faylenent the feforestation subeoposent, $\mathbf{3 6 3 0 , 0 0 9}$ ia preject
 technical assistance and personnel cests.

## 


 work tegether to astatais feassi fie fyfal cemuntileg whe beafif free veli

roads. The mainterance progras vill be initiated on 500 kilometefs of access roads the first year, and vill increase by 200 kiloaeters a year until the fifth year of the project, hea AlD financing terainates 1300 kilometers of foads vill be aaiafaiaed anaually under the prograz.

The rural comanities liviag along side of these roads vili provide 117,000 vork days of work on an arnual basis to watatain these 1300 kiloweters by the end of the fifth year of the project life. The comanaities vili also provide aatateaance foreaan to organize and supervise all labof tateasive activities. Besides providtag for a source of extra off fara tacome the access roads aalatenamce prograa vill iasure that the target group has year-round access to aarkets and services,

In orter to undertake the progras the DCR vili iaitialiy hire 32 eaployees to mapage dad operate the prograa frou two of the bets six regiosal offices. As project activity grows as addiciosal 16 eaployees will be hired by the fourth year, The cominuities will provide roughiy 6, 750 aan yeafs of paid labor duriag the fiveryear iffe of the preject, The comantites vilit also provide about 950 previously tfatned ferenea co supervise the labor erews,

Fe support the effert ovef $\$ 113,000$ ia kand cogis wili be bought and issued to the read efevs. Ia additioa $\$ 858,000$ ia heavy equipuent vili be
 \$612, 000 is beavy eşuipaeat vili be reşufred censisting of two matatemance units (i roadgrader, 6 duap trucks, I backhee each) plus ane lownboy te transport equipeest betvees work sites, As agre roads enter iafo the alatemence progras a third unit vilit be purchased for the feurth yeaf of activities.

In cetal the project vili egst $\$ 5,642,000$ over five years te brias

 mamal laber, Dufiag the fire year life $\$ 1,607,909$ is laboy cests uilil have been pati fer over 305,909 vari tays of labef,

0635

## 8. EVALUATION AKEAVGEYEIFS;

Buring the tattiat period of the project, prior to iatitation of project activities af the fietd tevel, grant funds wilt be used fo undeftake a coaplete projeet specific and socigecomonic baselime study of afeas te be factuded vithin the project, Also data will be gathered ina few selected sites gutside the project afea to provide costrol group inforastiga, The coatfactad fean vili gbtala baseiliae dafa againsf vhten paject fargets and progress isatcatars ean be aeasured at later dates,

BuFian the thifu year of praject activities asevaluatien witi be पadefiakea by the Nission and the CoG with assistame frea a gianf=finamced
 4ate agalast tapleneatafien plass fer outputs prepared by hest country azenctes and approved by the Nissiga as part of the fequifed condifigas precedeat co dishurgeneat, This evaluation wilil indicate the stafus of
 anatyce fastitutionat effectivaess of the agenties cariying our the preject activities.

During the last year of project activities a grame financed inpact evaluatien vilit be undeftaken fe vefify if the preject pufpese was achieved, and whea the atcaiment of goals is pessible. Alse asaljois of dibctefe preject activifies will be wadertaken fe ascertatio whefher fhe faferveatigas fa fact cosfiftheted te fhe fariet greup's productivicy,

## 

```
Name of Countyy; Guaremala
Name of Frgjec!; Highlamde Agricultural Alevelopmeat
Muaher of Freject; 5%0=0:774
Muaber of leas; }\quad3{0=7=03
```

t. Fyrsuan 59 Seccien 193 of che Fafeige Assisface Aer of 1961 as


 ia leas fuads and Bae sitilies Five Hundred Thewsand United Scafes bellarg
 suftertiation subject te che avallabilicy of funds in acegriance with che
 cyrieacy gest fer the project, The piamed iffe of the preject is ifive jeafo free the 4 ate of the iatifal opligation,
i. The preject cengists of assistance ce iapreve agficulcurat develaphens in the alciplane fegion fiepougts

D) © seil comservarion pregran (includiag refraciag and malit ficifariga sysfens and referestafise pregrain),
3. The Freject Agreenemf which aay be megoriated aud executed by ithe




A. Faferest Rate and Ferus of Neparuent









## B. Souqge and Ofigian of Goodo and Sefvices (ioan)

Goeds and sefvices, except fef eceas shipzing financed by




Ghakh shliging financed by A.I.D, under the Loan shall, except as A.I.D, aay vitervitis afres ia wititag, be fianaced oaly on flag vessels of the United shates of of cematries that are aenbers of the Central Aasrican Coamon Market.

## e. Sowree and gizigin of Coods and Services (Grant)

Goeds asi services, except for ocean shippiag, financed by A.1. H, andef the Grant shall have their souree and origin in the United States at $4 / 3$ zoustries that are aenbers of the Central Aserican Coman Market, except
 withy fice Grant stall, except as A.i,D, aay othervise agree in uriting, be firmied esiy op flag vessels of the Uaited States.

## d. Coaditions Fiecedeaf to Fifse Disbursement (Lgan oaly)

Frige to asy dishurseasat, or the issuance of any comat taent theunests wader the Froject Leas Agreeneat, the Cooperating Country shall

(4)A apiston of counsel advisiag that the Agreenent has been Auby encherized or ratified by and execyted on behalf of the Borrover aid pascitizkes a wilit and legaliy binding obligations in accordance vith all its EFTB.

## (e) Othef Conditions Precedeats to Dishurseneats (Loan Onty)

1. Fitef te any dishorseneat, or the issuance of any coantaent decuments wisher the Froject Agrecaent to fianace activities uader the access ropts activity, With the exception of techateal assistance, the foeperartag couaify shat! furnish is form and substance satiofactory to
 councerpafi conffibution to the project and b) a detailed ciae"phased plan getilag fertion ali activities to be coapleted turiag the life of the Froject.
2. Fitef to any dishursement, of the issuance of any comatineet socuaneto endef the Freject Agreenent to flaaze activitieo under tiae seli consepwation activity with the exception of techaical assistance, the Geopefating Gounciy shali fursioh is forim and substance atiofactory to

 seitiag fortim ail accivilites to be completed during the 41 fe of the project.
 conminatit dwewnents undef the Freject Agreenent to fianace activities under
 Gooperating Gensfey shali fwraiok in feria and subskance satisfactery to Aib a sctitiad cine phased gian seffing forth all activities to he ceapieted duriag shat itis of cee Frejeet.

## P. Melver (Loan)

Notorcyeles timaced by AlD undar the Project ia an amount not to exceed 850,000 ay have thetr source aod ofigin in councries imeluded ta atb Eapgraphic ciode d9y. Excluation of such procurement froe Pree Morld countries other than the cooperating country and countrien tacluded ta Code
 oblectives ta the turesisa asalitance program.

Otto J. Dutch
Aesintane Adalntoerator Burean of Lacia dmprica ad the Cartbbeas
of nUEHET

2RN UUUUU 22H
P 2745846 JaN 83
IM SYCSTh？Y MASELC
TO AMENEASSY GUALLMALA PRIORITY 2a7g
59
DnCLAS S2L2Z UL4Aく2

## AIDAC

B．0． $12335 \mathrm{~K} / \mathrm{K}$
TA3S：
SUYJECT：ALT：RLANO AJAICULTURAZ DEVZLOPMENF PID
1．TRE DAZC PEVITEZD AND AFPROVED SUAJZCT PID ON

ARE PKCYIDFE TO ASS：S7 TSE HISSION IN PAOJLCT


DETE：OYロざ：SCET以 TARLY YAY is URDEA TC ALLOA A JUNE OELIJA：ION．

2．KAㄴ․


THY 015CEJ3：0：SHOUZ





 PERCEITED ：ITLDS Or ZEL FVOFLL IN FIZ ALTIPLANO．IN

















TRON \％



27 JAN 83
TOR： 1044
CN： 48.5 L 2 ET CRR3EL～LI： INFO ECU：


CONCTTY AS EXPKESSED E! THL DAEC, THAZ SIVEN THE CORONIC UIIFICJITIXS, IT IS NCT TVIDS:IT THAT TFE GOC CAN AYYOED :O ONDYITAAE AND SUSTAIN AOAU CONSTEUC\%IOA





 LAZOA COSTS XIUR: TEEN EF MOEI ORADUAL TLAN PAOPOSED.


1) TEE ORZAKIZATYONAL STRUCTUKL OY MAINTEHANCE SYSTEMS EI DESCKILIE.




 ADDET351






 SI5TEM.








 4071717158.

87
84248
USCLASSITIED
s7ati 024422
d．IT SHOULD bF CLZAR IN THI PP FBAT THL TRAINING


 OR PASTURE PLSS：［rizs OH CONUHALET－RELD LAEES SHOULD IE

 DISCUSS EZLCHANF ACTIVI：ITS ONEER TAZ BAIT！





 PAOPOSID FROJFC！S2Oおも




 INCENFTVI PAY＊ InPt？太





























## ONCLISSIFIED







44co
n.x
onclussisiso
namez
Puth ECT Dfsicw sumantr
Latack Facaitwont.


daplogt wet asamurtions

| Wendiverma iammegy |
| :---: |


Noppes Noupest


## armerte:

 Fswile ane yoalme.
2. Winil-dne

 Hsell wome emeiliabilllisy.
 miseses se nevilatz.
 neme.

Theower
donmenaltalles
firalivilus
ane liell limereflis annan:
Gramatis
Belent Giveite
Gievelitrgere/lene
Ниваи
$5 \pi-520$
3, TE5
B. 8 2\%
3. пи
$12 \pi$
$+7 P 5$
3. 1818

|  | atinetion wituricatiom | Haploet met atyump tions |
| :---: | :---: | :---: |
|  <br>  linofsense meve awillill Biken sum beverflitilearles. | 1. Ieneser -ueluellime. | Shesuegetione far millieviey grail tergene: <br> Tarmers wilil sabuyt new praductian sectenelogites. |
| Conditiene thes wifl hedicater muppese lews have <br>  <br>  prodeat lan. | 3. Benrect euglanition. | Sheacmpitiene hay ailitevive pupperee: <br> Imprewed manayement of scerce nataral ratuarase aveilialile to the rursl poor will resalt in angandeel cultalvetime of ters prodiuse and stat she adelilonel produce can lie marthetel. |
| Thippitwilt af tartounn: <br>  <br> * Hat Jues.aive of Brylunflan. <br>  <br>  3n an amuell bicals by vevir of. <br>  <br>  grojowes. | ant staties reyorts. tint staibus swporte. LIDC stestas mportas. Linc stestas twperte. | Shesumpliens fer achilueving asipute: <br> hofl cianservetlion and weteraibed managemest pravide exgansian of nisturall resmurce biese. <br> LDC Inylementling andits can the upgrabiel ta provitie regultad service. <br> Gursl pase will accapt Innowetione and are willilng te Imylamant shem. |
|  <br>  Bueavy argelpemet, anel weltilelise. <br> - Rrallellpy seeniluse. <br>  <br>  | - Capitracia <br> - tab/ta <br>  <br>  <br>  | Sasumpllinest Iop previding inyutre: <br> $\cdot$ <br> - Comentitiles aro awollable on a slamely thents. <br> - The sogmunisilet are Intermsted In provicing luiharers for ronel meln* t.enanes. <br> * Forchelpeting aponclet will provide <br>  |

$5 \mathrm{C}(2)$－PROJECF CHECEIFST
Eisted betev are statutefy efitem Fia applieable te projects．This section is divided into two garts．Faft A includes eritefia applicabie to ali prejeets，Fart B applies to projecta funded frea speetfic sourees onty，B．t apm piles te all prejects funded vith Deveiapaest Assistance Funds．B， abplies te prejeets funded vith
 3．3 applies ta prejeess funded frem ESF．

CROSS BEFEAENCES

| $\ddagger$ |
| :---: |

c\＃ECXEISF 日F IO
DAをE7 His
5FAMDARD ITEM
CHECKさまST BEE
EEVIEUED FOR


2．Yy 1933 Ápprepriatian Aes Sef， $5 \frac{73}{4}$ FAA Seg． 634 A Eौe． $65 \overline{\text { T }}$
（a）Desefite hev aurhey＝ isiag and apprepfiam大iess e日anistees gf Senate and झeves ओave bees ef vili be E9xifics ceserfsisg she prejeet
（b）Is assistane vishts feqezatiesal Teaf Budges）हewnefy er isternakienal eqqus＝ ifatien aliesatien feperted ke EengFees

 ＊सе日音）


This grajeet was pregenced in th Hiseten＇s FY＝34

Cengyes ©iesal Fresensation under sk
 nent

Yes．
excess of $\$ 100,000$, vilit
there bet
(a) engineering, finan=
(b) A reasonabiy fira cetiate of the cost to the 0,8 , of the aentitancep
3. FaA Sea, 6if (a) (?), if fursier legisiakive aem 5ion is requifed vithin recigient country, viat is basis for reasosable expectation that sueh action vili be conpleted in tiae te perait erderiy aceepplishanst of purpese of the assistames?
 seures censtruetion, has preject aes she skandafis asd erikefia us set ferth is the Friseipies ang stasataris fav Plassiag Water asy keiaked fand zesevfees, tated 0eteber 25. 19737 (See AFit Band= beek 3 fer exv quide= lises)

\#et applicable.

## Yes.

Tes.
consideration the coun= try's capability offecm tively to maintain and utilime the prejeet?

 effietesey ef istiesm




 "asíg th

Ho.

The maintenance gi rufal aecess reads, ceupled vith the develep" \#ent of land terfaces and minimirm rigation prejecks vili inefease faris 9aspus asd shereby tserease intersarigsal geasedity trade, as vei! as fostering private farisisg and Bafkecing initiatives. The develepaent of mini=irfigatios systes vilit eseguraqe she foriac sign ef farining eseperacives. By greviding saali fariaers vish ia" preved farinisg isfrastyafe, menep" gitesig tesieseies afe reduesd, effieiesey $i s$ isereased and Ese
 esed.

The inemeabed pieduce uviliabie

hov project vili encour= age U.S. private trade and investaent abraad and encourage private 0, 5 . partieipation in foreiqn asefstance prograse finm giuding use of private trade chanaels and the esrvice of U.S. private enterprise).
9.
12.
 assure that, to the maxi= mum swest possible, she geuntry is qestributing legal curfenctes te meet the gest $9 t$ cestractual and ester services, and fereiga guryencies evned by the 0,3, afe utilized ia lieu of 4etiafa.
 pesisive setection precem dures fer the awifitisg of
 epplitabie presureaent Fulfis aligw eskervise?
. FY i3s Apprapfiakion ags
 esy eawasisiy feq expers, 18 sae cenaedisy itkeif se be in suqgize en verid
世eswisimy pieduecive ea*


private trading coppanies from abroad to inyest in Guatemata's export trade for fariacomaditios.

The Gevernaent of Guatemala has cossistentiy supported ail A, I, D. financed developaentai projecta vith geusterpart Becesaafy to achieve project objectives.
\#9.

テes.






 ef she vestefi heniephere kay be


ifkely to sause substan＊ cial injury 59 0，S，gra＊ ducers of the same．simí laf or eospetiag e日日＊ sadtsy？
13.
 vish she enviresmental grocedures set i6f does ghe project or proqfan take $\quad$ \＆to considefatian she problem of the 4 em struetion foreste？
 prejecs，has a deseraina＂
sies beas aade shas she hess governiest has an adequase syssem ter ac＊
 Itng recelpt ani expendi＊ sure of prejegs funds iselまara or lecal eur＊ resey genefates shere＊ fyenl？
\＃．FUsp：
1．Developnest Assistanee

4．Fis seg． $18 \frac{(1814}{18!}$

gant magnitude．

Yes．Project activities vili net be ingiesented in trogieal lov lands．

Nat applicable．
（1）The seit und vaser cessenvis＊ sien，aeces feasa naistenaese asd she teressiy cenpeness．vili prem
 far laber istensive verk wsilising

 cenitsxees asi nisi lifigasies qeaspe vili be eskebitghed esetis she Fefel peer heip sheen
 belit sheif gwn lsind sefinees ainimifyigasien syesene，es vel
 Yetus，sil wikn she ceshnicul
tovas and rural areas，asd insurisg vide partigipation of the poer in the beneftsa of develop＝ eent 9a a sustalised basis，ustiog ह月， appropriate 8，8．

（2）
hetp devetep eeeper＂ atives，especiaity by teahnica！assist ance，to assist
 to help theaselves sevard betser life， and ethervise en＝ e日uғaqe Seageratig private and teca！
 tutionst（3）suppaft
 ferts of develgplag


 satiosal eqeapaies of develeping ceus＝ trife and she 1 in＝
 esatus，and（5）ysi＝ Dise and enegu\％age世eqiena！vesperatisn
 \＆

 efiseqia fer she sy\％e ef tyatio ifwagm sieas a a ceauss）be＝ feg 4sed？
e．Fin Sat， 187 it it emphesis 80 358 ef appraptiase keemsel $=$ 9母y \｛qeiasivedy


assistance and supervision
（3） ruzal voasen vili partigipate in the planting and harvestiag of diversified erops on nev terfages ifrigated fieids and vilit particim pate in the aurketing of the prom duce पहilizing comaunity wain＝ sained aceess roadsi（5）the sam tietpated lacreased faria produc＝ cion cassed froa improved soil and vater e9nservastos asd access Faads aay encegrage aere active Fegionat trada and eqoperation
 Market（CACM）．
teghaoleqies that are ganezaliy aest appropritate for the saal！faras，seal！ businesses，and saa！ingoaes of the peer）？

4．FAA See，ito（a）． gountzy previde as least ？5t of the easts of the pfo＊ gitas．preject sy activity vith Fe＝ spect te which the assistance is tg be furnished（er is the latser gestosharing requiresent being valved fer a＂rela～ sively least devel＝ epes＊eबuntry）
e．Fat Sae，ilo（b） aseistance be dis bufsed fer prejecs ever mere shan 3 yearsi if se，has justifigatias satism faesery te Cengress bees iede，and ef＝ fefts fer ether fi＝
 Feeipiest e9ustify ＂relativeiy leass おeveleped＊）（M，9． なうる．！Gefises＊ qupteat prajees as
 expanetes，equippiag
 physicel faleitity er fa＠ilitiea fi＝ nasest by aip 4atiay
 1e8s khan 5186,938 ， inelydiay

and trainisg serve iees, asd net under= takes as part of a groject of a predome inastiy technical
 ter",
$f$.
 semfegrevth?
2.

Fis Sae. 28! (b)
geseribe extent 59 which pregran Feceq* 5ises she particular \#esti, 4esifes, and世4קetisies 9t she

 esency's bateliae"
 escewtige ingetisw" tiessi 4evaispaener, est ewfperis eivil

 quited fer effeesive





 - ATY
8.


Yes.

By previding the rural poor vith aeans of ingreasing their incose Ehreugh inereased and diversified ereps, and inproved acesss to narket it is antieipated that the rural peor vili not be as econosi= ealiy Ber physiealiy iselated frem these reseurese as deseribed in section $28!$ (b). In addities, yursi cemaitsess und cegperatives estabilehed te maintain rease usa develep mini-ifyigation eysteme vili previde a feusdation fer rafal tareer partieipatien in esif

 espaeisy se fepay on a simely besis ait A, I, e, Ieses.
reasonable rate of interesz.
b. FAA gec, $\frac{620}{\text { If asasistance is for }}$ any productive on= terprise which vili vompete vith 0.5 . enterprises, is there an agresaent by the rectipient country to prevent export to the U.S. of more than 200 of the enterprisets ansual production during the life of the doan?
e. ISDCA of 1981, Sac.
 the loan agreesent requife that the funde be used to the Eaniaum ertent pos" sible fer the pit" vate seeterf Bees the project provite for sentsorisq under FAA See. 6:4 (q) ?
3. Egengaic Suppers Fund yrejace cyitefita
a. FAA Eef, 53: (a). wids bhis aseistases prenete esfasaic or pelitical etabils=女y) Te the extens peasibie, 40 es is reflees the peliey difections of FAA 5eヶties 1027
b.
 under shis ehaptef be uset fan nili= sary, er paraniti= samy aestyities?

Mot applicable.

Mot applicable.
H.A.
e.

4.


Not applicable.

Mot applicable.

La Jueva Quatemala, 6 de junio fe 1983.

## Seffor Minlstro:

Ne es graso dirigirne a usted, para hacer referencia a su Nota No, 502-01400 de fecha 23 de payo de 1983, por medio de la cual bos irforma sobre la necesidad de que la Direccion Ceneral de Canines =DCC*, ezprenda un Frograma especifico de manteniniento de las ckras ya construfdas dentro del Plan de Construcción de Caninos Hrales con Mano de Obra Intensiva, cuyo coeponente podria ser incorporado al Froyecto "Desarrollo Agricola del Altiplano".

Sobre el particular, informo a usted gue con fecha 25 de zayo de 1983 se recibio del Ministario de Agricultura, Ganaderia y Alimetacion, un documente que eentione los lineanientos generales del Froyecto "Desarrello Agricola del Altiplane". Dicho docunento ha sido trabladado a la Secretaria Ceneral del Consejo Nacional de flanificacion Ecendnica =sEOEFLAKi- para su andlisis y dictanen.

Eate Hinisterio comparte su interts en que el Froyecte sea finamiado con fondes blandes de la Ageneia para el Desarrolio Internecional =AFD=, tan pronto se reciba el estudio de factibilidad del misno $y$ se obterga la opinion de la stomplat, procederd a preo sestar la respectiva solicitud de Fristano ante ia Leencia menciopata.

Sin otro particular, ne suscribo de usted con muestras de al alta consideracibn y deferencia.


Sefis Ministre ie Cominicaciones, Frahnyorle y Giras Púbilicas Gnel, e Ift. Efgar Leonel Grtega Rivas

> 6.6.i BECEFLAN. Er, Birector de AFi,

MOTRC/ailn.


Dut Date


## ANEEX E

## CERFIFICATION PURSUAAT TO <br> SECYION ofl (a) OF tai FORETGN ASSTGTAWCE ALF OF 1981 AS AYENDED

!, Charles E. Costeilo, the pribetpal officer of the Agency for International Developaent in Guateanla, certify that to the best of ay knowledge and belief Guateasla possesses both the finascial capabilify and hunan resources co ef= fectively maintaig and utiliae the aini irriantion syaten and seit cosserva= tion structures to be built the ilighlands Agrieultural Developeeat Froject, The cosstruction of this tafrastructure vilt stiaulate the grouth and expan= sion of 40 =fara activities ta the Guatealan lifghlands.

This judgeent is hased in part on the fact that, siailar irfigation and soid conservaritos struckures betag built under twe curteatiy active AlD loan prom jecta have been maincaised in working condicion through efforts of the faraers thenselves with assiotance frou Guatealan Ataistry of Agriculture Eatensioa A4ents.


AUEXY (1)

SOCIAL SOUNDNESS ANALYSIS

The analysia given in this anaex is taken fron a larger, more eacoupassiad report prepared for AID entitted "REGIONAL DEVELOMENT MISSION AEPORT" dated Deceaber 9, 1952 vhich, addressed the sectal iapact and constraints of fouf developaental ienovations facluding land terraciag. saall scale ifrigatiga, labor intenstve açess roads, and foreatry projects, A sumary of the analysis of these four activities is given belou.

## Backifround

Guatenala's veatefi hightands is a region of rugged, mountainous terrata, In this regton live a predoaiaantly rural, asficulturai populatian of mostiy ladians and rural La4igogl/, The already high populacion dessity $i s$ further pressured by a population facrease in as excess of three perceat per year. This has resulted in a pattera of heavily exploited Boustaisaide asficulture. Vith the good valley lasis long taken, fars fasilies have besa forest to fara higher and higher on the foreated nountain stopes. They work this nev land three to five years, or sometimes aore, but the fields afe eventually inpoverished due to the erosion of the steep moustais slopes by the seavy rains. As the land beceaes lacreasiagly less productive, the faraer abasdons the site and clears a sev pateh of the hillside and the cycte begisa againi destruction of the hilisise cover leadiag t9 eventua! erosion and 4epletios of the topseli. These apst taneilately affected by the precess effects are che ryral poer of Guatenala's litghlands, far they are ufterly dependent os successful agrientiufal expiaitastos, or


[^4]To address these urgent and difficult conditions, Guatemalan agricultural extension agents, with techaical and financial assistance from AlD, have begun a system of labor fatensive technically appropriate faterventions involving rural people, that effectively improve natural resource management and increase the value and productivity of the sail farmer's land,

## 1. Sot Conservation

The technology to accomplish the project is staple and can be applied by the farmers who use only two tools the hoe, which they generally have in every household, and a staple leveling device consisting of three sticks or other native materials tied together firaly ta the shape of a capital "A" from whose apex hang a plumb bob of string and a rock. Starting at the top of his field, the farmer uses the level to determine the width and length of an area to be terraced. Then he reaves and stores the topsoil tron a all patch. After the patch has been excavated to a level condition, the topsoil is replaced by taking if from the next patel to be excavated. The process is repeated until a single terrace is completed. The farmer then lays out a sew area just below the completed terrace, and repeats the procedure until tho land is completely terraced. The terrace walls are sodded with grass plugs. and the terrace surface is planted either with traditional subatateace crops (corn and beans) or cash crops.

Terracing is highly labor intensive. For these farmers, a standard days labor consists in has heeling a single "curia" (approximately tho a, 2). Terracing the same size patel by contrast, requites seven or eight days labor. For any rural farmers, whose margin of economic existence is extremely precarious, the 4 iffereace between one day of labor and eight os a single piece of land is considerable, for the farmers would oritaariy sell their labor asa with the wages, buy care and beans to teed their families. Te aet this need, AID funds will be used to compensate the farmers for the exifis later time so that the poor to ant suffer hunger in the ane tie process of converting his fields froe cav slopes fate stable terraces. Digest adataisterg the assetary assistance and varies paysesto according to the difficulty of the task teteraised by the stapes of the slope sail type, and the testee of peasant's poverty. The average tertacteg cost is estimated at Q15 and 920 per "everda" or G330 to 9460 per hectare. Fapaents are made on the completion of the measured walt of terracing. fats cost is a one tin shy expense for each wait of land. Payments will be used to encourage farmers te adopt sol! conservation measures in areas where such practices de set presently exist. Fast experience has shown that when this practice is used, the fetal area of land using conservation practices will te expanded without the wee of payment by 35 percent.

## 3. Saciorecignoaic tazact

Ali evidence indicates that fefracteg subatablialiy fecfases agricultural predutiles, Based on reports free agricultural cechatciang working as the project, the increased coors production an refaced lan to

tor beans 95th/ The satall rural faraers whe have terraced their land are clearty avare of the production iacreases, though in less exact seras. A spismoff benafit of terracteg to the highly nutfitions grass that is grova on the terrace valls to atabitise thea and protect thea froa erosion. The grasa provides feed for a farmer's livestock. There are tadeed aore gathe aanag farmeft with teryses than among faraers net incorporating this practice, Alternatively, the grass is cut as a cash crep. The farmers secure whe cutcing of grass every twe of three manths, vorth approsiastely 05 -0s per cuerda per cutting. Marvestiag requifes so more thas one to two houft of laber. Dis ts a considerable sul is a resion viere tve dollars per day is the comon fara vage. The iscreased agricultural production is due to the ablitty of the tertaces to retais sotature. The tertaces slope back to the hill slightiy so that ratowater that falis oa a givea terrace is retained until it seeps iste the terface soil. Fhis cheafly results ta agre retained ground aotature, asd as a result, ta aore vigorous and praductive crops . Evideace fadicates that even vithows suppleweatary ifrigation, farsers cas grow potatoes and ather vegetables, and that they cas get aore than obe crop of these per reaf,

Sot asly does the terracieg increase agricultural production, but it also decreases 4 frect agfieulfural production costs. Comer reial fertilizers applied to the field do not suickly teach out of the seli, fleus, faraers repars a reduction ia the need for purchasiag comeselal fertilisef, Is addicion, the grass harvested froe the ferrace wall ts waully fed to eows of ather aniasts. This, is tyrs, produces a freater fyabtity of grianic fartiliegf vitah is then returned to the tarraces by the farmer, resulting in ficher soit and a further reducston in the seed fer cheaical fertilisers.
 the farnef if eneth less likety to shift to nev fielis. Thus be atves the cest of opesteg sky lase as the billaties.
 dectuediy tsefeases the value of the lasd tg the farsers. They are vefy nuch oware of the labor they have favested is ferfacting and the production

 Fyrtherwire, the iscrease is pradwction reduces tarat's tha need to algrate for feaperary wage later. This algfation has tradilionalif leen to the plastatios afflewifural areso of Guatenala's Fatifte Coast. There the algatits werk ts the cotfee, sugat case and cotton flaids and afe expesed to


 afe cfuctal fsr the tiveltheod of the fyrit pepulation in fhe praject fegion



[^5]the farmer, Vith reduced vater ruamoff from the hillsides, there is lese likelyhood of floodiag. Thus, water reteation on the terrace results in faproved vatershed aanageaest that directly affects coamunties dove the sountain, providing a greatar volume of agre usable vatar throughout the yeaf, Finally, the terfaciag syotea reduces the destruction of forest and natural bili cover by ainiataing the need to open nev tielis as a result of erosion and depletion of the old tields. Aa taportant facter is that there is a reasiderable spread effect. Se far, DIGESA officials have located approxiaately one bectare of copperative selfotiaanced keriaciag for each three hectares directiy stiaulated by DICESA/AID. This reduces the cost of terracing frem $8350-\mathrm{g} 660$ per hectare te Q280-9350 per hectare. Moreover, this fiaure only reflects these fields that have beea casually found by Digasa in the process of their serviag assisted farwers. Other fielda have probably tees teriaced using the sifuple techaglogy, in locations where DIGESA officials Aqve agt seen.

Apart fren the famediate ecenonic beefits te the sauli faracf, and the lang tery conservation effect, past and future terfaciag vili have sigasficant secfal effects, by reducing the need for aigfation, Both Ladiap ash ladish rurai faraers receive seeial besefiss, theugh they differ because of thy atsration patterna. In Lading fanilies, the man teads to aigrate slage. Fasi researeh by anthrepelagista sugass that such aigration often results tis family tisfvption, as the nea asy take up nev sectal and cenual
 veli result fa a somevhat lessened fate of faniy tisfuption and thereby reduce sarewtiat the stresses this preblea placed es woes asd children. hasen the fadjam, the teadency in of whale fanilies ce aigrate. Fanily aisfatioe, bewevef, ceasidefabiy disfypts che edwcatien of chilimes and has epentilivied fo the lev level of ladias literacy, Cenceguentiy, cerfacing egscritutes somevtat is taproved indias educatios.
 cesaidefable ruspect fer the Gag and fef fhe sefviees itiprevidea. Indiang
 ofher offtetal feafacts. Theif mev apprecianies of the cog will have censiderable giguiftiancs is the tevelopment of a pelicicaily ofable cyfal area. Fisaliy, the cratea of ferfacling ind fine extesion educafien liat cees vift if tevalves che sinife fanily in ine inprevenent of inperiant predmetien resempes asd tevelops a bewte of censervalips prise.

## b. Beatficfaties









person. ladirectiy, the eatire astion benefits froa reduced facuraion on the forest, iaproved vaterahed, and retestion of the soit resources necessary for coatisued foed production vithts the country,

## e. Participants:

The pfiasty participants coasiot of vingie faailies frou boti Ladine and Indian ethate backgrownd, glus DIGESA extenelon agents,

## 4. Soctoncultufat Cosetrainta and Solutions;

Because the social uait iavalved ia the terractas preject is the individual fanily, DIGFSA officiala secure relatively easy pafticipation and acceptane, Horegvef, DfGESA officials afe successfuliy using fadis broadeasts and ofher forms of public comaupications to pass thetf aeseage aere videly, These bresdeasts afe oftes feae in the lacal Iadian language by the agricultafal assistants (gulas agificalas) kifed ce verk with the extensien agests as ryrai Fillage cownefparis. If is estimated that the fefraciag pregfan ayy he mere acceptable and successful in fedian rural areas rathef fhan in Ladiag rurai haalets. This is becawse the extreasiy heavy hase laher faput gees against the Lading cultural preference fer aere skilled, less מama! activities.

Nig siveree effects vere detectable is the terraciag preject, Given the saall lasihatdings the cars and heass deficis of aeot of the fanilies and of the countiry as a whele, there is me pessibilify of averoupplyieg the cera and teame arkef,

## 2. Sanli Scale Frizigation

## a. Aackafound

Withta the Eigsiands of westefi Gwatenala the gharip atrision





## B. Fechateat Eraluafien











the purchase of materials seeded fer the construction of the vater delivery systea as vell as their iffigation boses and sprinkiefs.

## 6. Sacial and Eeanoaie Fapact

In generat, the iapact of the aini trfigation has been highty successful ia bets iacreased agficuifufal productios, reduction of risk, and ia seciai acceptance. Fine intreducties of a dependable lrifigaifen sjaien esables the served fatwers te extrati at least fwe, oftea fhrte, and sonetiaes four harvests annually frea the iritiafed las, Foracriy, they were linited
 per unts of lasd, vhich provides adied eaploymest sad enceurases the saall farmer co reanio in the area, His extra laber is rewarded by previdiag hia vith ghe opportualig te 4 iversify and plasg othef types of efeps, rather than the tradifienal cern and heans. This alfuatios constrasts sharply with the cenditien of asst faraefs fie the preject area whe have feoufficient land co adeguately feed and quppert the cash meeds of theif fanilies, Such farmefs
 search of seasenal wage labef, fader trrigation, woreover, owe tareara have experiemed jess meet of extensive wage aigration sime cheif adeiciomal eagh beeta afe derived frea the sale of seeasd and chici creps, hareover, the c)age te Fegetable faraing enafilibutes te a aere diversified diet beth withis the faraer' f failiy and shroughout the ceminusicy.

Fadirect henefiss inciade yeaprigund vegetabie availabilicy in
 preject desige, cessirwetien, asd felievrwp, faraers received adaicienal









Thefe appeaf is the ac idenifiable adwefoeiy affecfed gFowps,



矿保

## 4. Benficiafies





 construgted vhich vill benefit over 2,000 tara fanilies.
a. Paritefeanta

Farticipants vil! be faraers whe censtruct and asiatain the water telivery syateas. There have bees ne sigatificant difificulties in
 officials have copperated weit, it should be emphasiaed fhat DigesA and
 have a high degree of fechaical skill and have delivered these skilis to the rura! fareers vith exeaplary fedication.

## f. Sacio Cutiufat Cosatfainets and Sgiutionsi

Based an past experience, if is erpected that this preject wilf
 ladias ethate peplatipss. Ferhaps ese aeasure of the peasant taferest if past siailay açivities is that chey have heas wilitigg fo donate thetr laber is ghe canstruccion of saali irrigastes syateas and co expasd seli censervation measures visheas social cest jayments. The narein of ecopeaic esisteace of these individuais phould ta fact ferce aest se sell their laber elsevhere, They have aise hees willifes so suffer teaporary fegd shertages. Ia gat case, aenhers of a ce9perative farwed a feed peet te side ever the
 prejert.

A Buaber of the parsicipating famers repert that is areas vitis


 ffadicipast cfeps of cefs and seand. This, Eheugh, incfeases the ifficulify

 prepafilen of cast creps.











 ifoducites of cefn and beang fabeve inal previded by the cheapef and simplef

basts of corb and beans production alone. AlD fiamaced irfigation projects should be quife videly $4 i s p e r s e d$ vithia the project area. Fer the preseat, givea the heavy vegetable production of Almolonga and Zualt, it would probatly set ba advisable to establish any tryigation prejects in the gueaatienango valley area, Given the evidence of aarket saturation tia the departweat of Saa Mafces, aev lastallatiose should be plamaed there vith caution, On the other Aand, 40 as ast to lase the moacatua of siat iffigation techaical teans, apprepriately 4istributed prejects ia Huehuetenange and Ei Gulehe are encouraged.

Faft of the warketing problea wili ba resolved by addressing the issue of srasopoftation cests. Af present if is expeasive fof the farwer co sove a sas!t quastity of produce te a $4!$ stast arket, This renders his Bratuc! Beampopectifve, and lialfs aia ta a local warketplace, Howevef, soae aiat irfigation groups canceatrate theif ghipmeats inge a fult fruckload and then bire a teest trock re agve theif produce to aarket,

Finaliy, if iapreved seeds are developed or are available, of if other faraing cechatzues are tafreduced that peratt twe creps of cera per
 183ues.

## 3. Beferestantian

Fer beth Ladices and Fadtans, firewoed (ieka) is the principat fuel fof cuaking. Far the wust part, houses afe tatalif wnheafed, the kitchea fires beiny lacaied sfies in a separate builitiat co avald fife hacafi se fhe
 os fifrewod commpaly hare the ceekfifes on fhe gFoynd, suFperifing the ceeking

 giay piaffers. Some fanilies, aesi often ie iowns, have piaced a mefat piate ever a falsed fifepif,
 4ifes afe cheap fe bulit, plactei ite beulkefs es fhe fieer cesto meftingi
 evesi, Thys the inifial cesi aske chats fera of cebking afifacitive, white

 of ssiafy fer of fwat farmef.








## b. Sactorecoaoaic Iapact

The evaluation taan anctetpated that a reforestation project vould tapact upoa the regioas population is the folloving vayst

1) Belf reforestiag an ausicipai lasds, for subsequest firevood use would have a favorable social and econonic fapact on household econoaies and gn the stablliataten of municipal resources,
2) Fuelvoed cultivation on the boundaries of farmer's land shauld cosserve costs as vell as respurces, provided if toes Bot cause a shadiag problea os the farmer's crop lands.
3) Fifrevogd avallable on the fara vould relieve aany vosen and childrea of the ctae coasuaiag task of gathering brushfall firewood or tFasspertiag frou the hilisides firewoed eut by bushands. In additiga, this would 4 saist woen by reductaf a frequent irain frea their liaited cooking purae, cof of which they are obligated to coek fer and feed the faatiy,

## 6. Bemeficiafies

Appraxiaately 200,000 isdividuals will be benefited fron these
 depesiest as fuelvoed, and vell over 69: of the regiess househalds rurat, the
 the the ceaservation of sell asd watef supplies.

## 4. Pariticigatig

1) Fef iadividual land fyalweed planitags aleng bewndaries, ryral fanilieg flefougheyt fle

B) Fer ausicipal level efferis ce develep belf referesiatien
 fiected wela jola 4 is the preject.


[^6]
## e. Sogiorcultural Conotratate and 5. ytionsi

The purpose of the reforestation activity is to assure a long Ne, prafitable supply of fuelvoed for the Hitghans population at prices whigh vitl sof effect reduction in their aet tacoaes. The objectives of gits activity are 50 :
= Miniaige deforestation in the lighlands as a result of fyelwod assuaption.
= Betaraine the feasibility of private reforestation aetivisies.
$=$ Frovide eaployment opportunities in the comunaities where reforestation is takiag place.

Ia suder to tapleaset the project activities as described ia the thedy of che Project Faper, if vilit be necessary to work at the comanaty and fadivideai tevels. The follevian should be taken inte censideratios at these disetact levels:

1) Somenaicy Level
 indivisualiy is theif hanes, and explaie the progran. This vili five then
 esvatil facroa shosid nake an audiovisual preseetation to haniet councile. In ititag hasisis, the axdievisual aateriale sheuld be presanted is the haniet


 tireweod problee sed aey have a greving stanc of crees and aftef they have sess fhe sconesic figyres es the woad cests to be saved.

## 3) fatividual fansi Farm Reforesfalion

fadividuals should be caugh io plant and cafe for crees en












boundaries (except for corner aarkers). Presumabiy ovners vould alternate ovned trees or possess all the trees on one side of the centerpoat of each boundary. Such boundary trees vould also provide valuable vindbreak, for the shallov rooted native corn is prone to vind daage, and the trees vould also provide additional erosion control. (Care aust be taken to ascertain if boundary firevood trees vould cause shade probleas for adjoining ailpa plota, or aoil changes).

## 4. Rural Access Roads

## a. Socio-Econoale Iapacts

Rural farmers igtervieved during the developaent of the Regienal Developaent Mission Report indicated that rural access roads tacilitated the expert of their agricultura! produce and reduced the trassportatian cost of their product to aarket, The presease of the roads alloved thea the opportuatty of produeing crops of greater eash value and facilitated the delivery of meeded goods fren antiet ceatera.

Syral farwers alse emphasise their greater access te munerous governaent services. Ferebest amps these are beatth benefits. The farmers recognt ie that the reads allow eadrgency aedical fransperiatien and permit goveramest healfh ageat s to bring te the villajes regular famoculatioes and
 extesoles agang and ferestry offlefals, are vere able fo delfvef addicional
 Fasia is perhaps ene of the masc laportanf fifat staps in the developacht pfocess. fer they bring utin fhea namy collateral services and apeal sigalficast bev oppertustifes.







 कC!

## 30 Beneficiafies








## c. Fariticipanta

There uill be two types of participants vithia the proposed asiatenance prograa. Active participants vill supply labor and receive payment for their work efforts. During the life of the project 405,000 aan days of labor vill be required at a cotal payaent of $\$ 1,687,000$. Inactive participants are shose individuals liviag withia the area of iafluance of the roads whe vill reap soctoreconoaic benefits froa the vell wainalaed roads, but vili not participate directiy ta the road aaintenance plan,

## 4. Sociaf=eultural Coastraines and Solutions

The seneficiaries of the Access Roads Coaponent are sasil farm ovners, aifaly ladiang, whe live ta the lighlands where acceas roads have been oreviously conatrueted or vili be construeted during the proposed project, Ia Guateaala these iifghland Iadians occupy the lovest seciomecononic strata. One of the wata coatributers te this situation is that because of the difficulty of travel in the aountaingus Highland terfais, latian groups faclated frea each other have, over tiae, developed 23 differeac dialects. Separated froa the lovianss, they have net learned Spanish. This iselaties, the mumerous dialegts and the lack of knowledge of the Spantoh language have reduced educational eppertunictes for ladiang further preventing theif econonic.
 and other cultural differesces, if bas often been iffficult fer generaliy


This is net cupected to be atgatificaat problea fer the prepesed preject siace the bog kas effectively inpleneafed siailar prejecta in
 developuset fechatques. The propesed prejecf wili gilitie the same field fested exteasion feshashegy vilis benefificieg fifen the coperience of many of


Suffent expefience has tenemsifated that pejects guth as fhe
















One problen that vas aot forseen under the Rural Access Road Frogran vas that after construction, roads vere not vell waintalaed. the assuaption was that comanities vould aatatain roads without payaent for their labor because of perceived benefits of the rosd to the conaunity, Hovever. coanunity aesbers vould not accept individual responsibility to vork on the roads alace sany people who used the roads had no responalbility to aatatala thea. Further, the vorkers believed that road aatateasace is a proper responsibility of governaest. Takiag this tato account, the proposed project will provide vages for work perforaed. It is believed that thio vill assure comanaity participation as if did uader the construction phases of the progras.

Maistained access roads allov continuous contact with aearby comanities by both Indian ses and voaen as goeds are trasoported for sale at askets and agricultural inputs purchased. In tiae, this increased contact should provide the facentive and the opportunity for indians to learn Spanish. This fa turn vili assist indias jartictpation is the econonic, social asd political aatastrean of Guateasia.

It is taportant to poist out that these roads can only provide soctareconoale beafits if they are aot alloved to deteriorate. Currat DC: estiastes are, that en the average, unasiataised reado deteriorate to the potst whert they aust be coaplately reconstructed after five yeafs. Thiss, each yeaf of deterieration reduces reat wilifacten and reduces benefics accortingly. Extessios asd bealik service aust generally be carried eut over thae is effectively reisfarce the trasafef of cechnelogy. The opperfusity fef this reingarceast is greatiy reduced by deceriefatiag roads which casmet hasdie asterised traffic.

08366

## Aaner $F$ (2) FINANCTAL ANALISIS

## A. Project Budget and Disbursenent Plan

The propi is rotal cosz of the project is $\mathbf{\$ 1 4 , 7 8 2}$ afilion. AlD's soatribution vili coaprise $60,9 \mathrm{~F}$ of the total project budget and vili consiet of $\$ 1.5$ ailition ta grant funds and $\$ 7.5$ ailiton in loan funds for a cotal taput of $\mathbf{\$ 7 , 0} \mathbf{a i l 1 i} \mathrm{en}$. The reaainiag 39,18 of the budget or $\mathbf{\$ 5 . 7 8 2}$ ailiton vilt be contributed by the Governaest of Guateaala,

The projeet 14 fe is estiaated to start August 1,1983 , and end an Septeaber 30,1986 , for a total of 5 yearb, It is projected that 1007 of the loan and grant funds centributed by AID villl be obligated early fa the thh swarter of YY 1983.

The decess Rands Maintenance Conpeneat vili reşuire $\$ 7.612$ ailifoa, of chis amount 50.62 vili be AID funded using $\$ 3.655$ ailites of laan funds and the balance of $\$ 200,000$ frea grant funds. The reasiatag 49, $3 \boldsymbol{4}$ ( $\$ 3.575$ aillian) vill be a counterpart contribution of the Gog.

The Naturat Besources Somposent reşutres $\$ 6,145$ ailites. AiD vili
 fusdes.

The remataina $9,9 \%$ of paject egatg relate te centiagencieg, audits, evaluaties, and haseliae auryey, These cests, tetaliag 384,909 , wili be
 arase funded.

 perifies.

TA. F +5 F



Table 11/Cuadro II
Sumary Financial Plan Iy Congonent
(Resumen del Plan Financiero por Componente)


Exchange Currency
(FX)(8) (LE)(Q)

## ,

TABLE III/CUADRO IFII
SMMARY YINANETAL PLAN - BY EMPUTS
(Resuaes del Flas Financierg = For Lasuags)

| Conponeat | Access | Sait and |  | Aupport |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| trputs | \%acs | Water | Heforestaltos | Crant | Fota |
| (Insumes per Coaponest e) | (Casimos 4e Aecese) | (Agua y Suelos) | (heforestactos | (Donactos de Apoye) |  |
| 1. Ferkaical Assistase (Asistencia Fecsica) | * | 300 | * | 1.820 | 1.320 |
| 2. Comandities (Articules) | 2,646 | 449 | 41 | $=$ | 3.127 |
| 3. Fralalea <br> (Atiesctaalente) | 30 | $=$ | 11 | = | 41 |
| *. Sectal Benefics Gests 4 Viages (Cestes y Salaties per bacticies $8 \mathrm{~g}=$ elales) | 765 | 2. 260 | 248 | = | 8.273 |
| 5. Cra4ic (5eatio) | $=$ | 1,309 | = | * | 1,906 |
| 9. Gfter ( Stadics . <br> Evaleafients, Ladits <br> (Offes $=$ Et5udies. <br> Exal=actenas, <br> twifestias) | 314 | $=$ | = | 306 | 348 |
| 7. Gestingencles | $\underline{164}$ | $\underline{162}$ | 169 | 489 | 735 |
| 968 F9\%ai | 3, 936 | 3,492 | 483 | 1.4.909 | 3.0660 |

The above Fable I gives a breakdown of project expenditures by year for both AID and GOC, On a percentage basis 43 , $i z$ of AID fund witt be expended in year one with $10,6 \pi, 16,1 \frac{1}{2}, 14,7 \%$, and 8,04 respectively, being expended in year ? through 5 , This rate of expenditure appears reasonable given the fact that durian the first year of the project all project conaodities will be purchased, representing a large flow of fund i, and chat during the life of the project AlD financteg of wages and other recurrent coats will $\ddagger$ fadualiy be reduced. One would anfletpare lover expenditure fates as the project matures, At the same time, because AiD funding is requited through the project life, the design of the project cannot be criticized for "frost ending" AlD funds.

On the GOG side during the first year of project activities, expenditures wilt be 12.74 of the planned GOC 11 fe of project budget and expenditures in year 2 through 5 will equal $14,02,16,82,25, k \frac{4}{4}$ and 31,02, respectively,
 anticipate overly abbicta4s, sporadic enpendtivre fates but fatter after the

 management. Table IV g\%aphieally displays A!D=GOG funds flow,

## 




 Feferascatien by charging the buyers of beqilimgs a price equal fa its est of


 can te bi6upafeiy Ediculalet.














Pale iv

$$
\frac{\text { alo }=006 \text { rums ruow }}{(\$ \times 0)}
$$


as routine salstenance and repaif. However, past experieace with eleven puap driven syateas indicates that this group of faraers eanerates sufficient profita to asre than cover the recurreat costs of keeptes the systeas


The sesiga of the Aceess Robl Matateaane Frogran allevs for a graduat iacrease ta GOC fuadiag uatit ta the fiasi year of the projecti at that thae the GOG fuads caver all costs which ate of a recurrent or on-tolad ature. It should be pointed eut that prior to 1983 she DCC 414 not lave a Dudget life tieal for rural raads asimfenace. An tategral part of the
 creatios of two rural rasis construction uaits withia the pireceion Cenerai te Caninag (DCC). Butgeted expenditcfes for these twe units total $\mathbf{1 3 , 8 1 5}$ aililion for 176 ).
 coezonset would ba the tiae at whteh aajor esulpenst purchases would have te be aude to replece egulpaest bougho froa project tunde whleth had reachad the \#ed of its useful life. The 506 askes prsulshan fof eq̧ipment replacement threogh a deprectation process which anorctike egulpuest cesta karough per kiloneter road asfaceance charges. Givea thio deptectation systea ef̧ufpeen purchases cas be funded froa the peraal DGC budget. is vas pelsted evf is the tsatifutienal analysis the DCC has a vefy sephlaricated, ceepetefized acceunting sysfan which vill eadble thea ts egsign adequate deprectation facters to fund replaceasal equipment.

Froa the tellowina analyals if cas be qancluded that che Goveranent
 ificial five yeaf pefiod which faciudes Ath funding. The coselusion can alos be dravin fiat fecwfien casts can be aet,

Lecertina to fecesf ecomait alaifois Gustkaia Genfat Geverument


 grejected Geaffai Geverment budger with expected project expendifizfes.

## 74BLE V

Preject Sugietary Beguifeaeats Compared co
Frajected दentral Coyeranent Budgefo
(18 8000 )

| Yeat | F7ejected Gestral Goverunter Buifer it | $\begin{array}{r} 909 \\ \text { Iaputs } \\ \hline \hline \end{array}$ | Freject Iaputs as i of Budget |
| :---: | :---: | :---: | :---: |
| 1984 | 1, 419,009 | 737 | . 058 |
| 1785 | 1.463,900 | 819 | . 055 |
| 4765 | 1,518,099 | 476 | , 064 |
| 1787 | 4, 584,900 | 1,467 | , 633 |
| 4988 | 1,639,999 | 1.734 | . 108 |

1f Geatatis a iot infialian faccar which equals the faflation facter coapciet in the phaject budgef,




 fer ine Geverunest of Gu4renula,

## ANEX $F(3)$

## ECONOHIC ANALISI5

 faraef in the itightands Fegion of Guateata, Bural road nalatenance vili

 Sots vitt serve to iecrease the cash tacone of the suall Highlands farmer, One etemest of the Naturat Resource Masageaest coaponest, forestafion, is osly 4 pitef project and slace if witl Bef yield a auasingful sfrean of ecengnic henefits gref fhe itfe of the project, if vili agt be considefed in chis

 ¢alcutus vilit ba utilige4, kather falas relate the presest discounted value


 fie amatyais wili te as fallews; give the present discousted value of pfaject cesfs, what musf fhe fresemi value of preject henefics be in ofief ce

 abouf fie tafiet afea and the type of ecpmonie activifies faumithere. The

 ¢4tcytys

## 















 swaf lite enfife five feefo.

TAM43 1


|  | (a) 4x上es3/7 | (2) Gipnets | (3) ¢ethest | $\begin{gathered} \text { (4) } \\ \text { Tata! } \\ \text { Juwnesisc } \\ \text { Cisat: }(1-2) \\ \hline \end{gathered}$ | (1) <br> Capela | (b) $\begin{aligned} & \text { Techlusical } \\ & \text { Azsylatemes } \end{aligned}$ | (1) <br> Tetal <br> Fervist <br> Buchange <br> C.pat $2(1, * 6)$ | ( B$)$ <br> Domestic Talue of Fetcign 3achonee? | (v) <br> Tetal icupunic Cost: $(4 \cdot 8)$ | $\begin{gathered} \text { (10) } \\ \text { PDV } \\ \text { AT Teir } 0 \\ (121) \\ \hline \end{gathered}$ | $\begin{gathered} \text { (11) } \\ \text { P2V } \\ \text { AT Tear } 0 \\ (151) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bext 8 | 688. 0 | 28. 3 | 318.4 | 382-1 | 1976-5 | 123.4 | 220b-\% | 2583.0 | 3548.2 | 2167. | 3055.2 |
| \#eat 2 | 485-4 | 68.7 | 27.4 | 385-7 | 275.1 | 2.DD. 0 | 478.1 | 622.1 | 1178.7 | 089.7 | 291.3 |
| \#esal 3 | 398-4 | 20.4 | 33.3 | 634.8 | 948.7 | 200. 6 | 106. 7 | 658.7 | 1297.0 | 923.2 | 152. |
| *ect 4 | 728.4 | ES 3 | 43. 1 | 438. ${ }^{\text {a }}$ | 747.7 | 158. ${ }^{\text {d }}$ | 467.7 | 1102.0 | 1957.8 | 1243.7 | 1119.1 |
| Wekt 3 | E56.0 | 52. 3 | 31-0 | 925.7 | \$41.1 | * | \$41.1 | 703.4 | 1702.1 | 945.8 | 846.3 |
| 5\%Exa | 2447. ${ }^{\text {a }}$ | 206. 2 | 287.3 | 2419-5 | 2053-3 | 120.6 | 4671. ${ }^{\text {a }}$ | 0072.1 | 9643.3 | 7240.6 | 6796.7 |

 wind ather ovethete c.ests.


## FABLI:

## RURAL ROADS MAINTENANCE: NATRIX OF

 BEAEFIT VAtUESअ(000)

|  | 127 | 158 |
| :---: | :---: | :---: |
| $\begin{aligned} & 1,0 \\ & \text { (*) } \end{aligned}$ | $\begin{gathered} 7,240,6 \\ (7,051,1) \end{gathered}$ | $\begin{gathered} 6,796,7 \\ (8,493,5) \end{gathered}$ |
| 1,5 | $19,869,9$ | 19, 198.1 |
| (*) | $(13,376,7)$ | $(12,740,3)$ |
| i, (8) | $\begin{gathered} 16,481,7 \\ (18,108,2) \end{gathered}$ | $\begin{gathered} 13,589,4 \\ (16,987,8) \end{gathered}$ |



The guesition chat inis analysis ausi adifese is whect =f such legses weuld







 vestid kave te he 10, 各,

These nundefs afe mbl lafie and withewf fead baliefanane if is feabenabie



CSAINGATBALA MD: FON OF THE FIVE YEAR IMONEE STHEN OP TH: TAECET COUFS WHEX DIFFELENT RATES OF REAL CCOMTH (Q Millicas)


| Tear 1 | 2s.el/ | 25.0 | 24.35 | 29.4 | 26.35 | 25.57 | 30.8 | 27.50 | 26.78 | 32.2 | 28.75 | 28.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yeer 2 | 28.0 | 22.32 | 21.17 | 10.9 | 24.63 | 23.36 | 33.9 | 27.02 | 25.63 | 37.0 | 29.50 | 28.00 |
| Year 3 | 28.0 | 19.93 | 18.41 | 32.4 | 23.06 | 21.30 | 37.3 | 26.55 | 24.53 | 42.6 | 30.32 | 28.00 |
| Year 4 | 28.0 | 17.79 | 16.01 | 9.0 | 21.61 | 19.44 | 41.0 | 26.06 | 23.44 | 49.0 | 31.14 | 28.00 |
| Tear 5 | 24.0 | 15.19 | 13.92 | 35.7 | 20.26 | 17.75 | 45.1 | 25.59 | 22.42 | 56.3 | 31.95 | 23.00 |
| HW at Tear | - | 100.93 | 93.06 | - | 115.81 | 107.42 | - | 132.72 | 122.80 | - | 151.66 | 140.00 |
| Kasural lesource Mrumeremetit |  |  |  |  |  |  |  |  |  |  |  |  |
| Year: | 10.2/ | 8.93 | 8.70 | 10.5 | 9.38 | 9.13 | 11.0 | 9.82 | 9.57 | 11.5 | 9.96 | 10.00 |
| Year 2 | 10.0 | 7.97 | 7.56 | 11.0 | t. 79 | 8.32 | 12.1 | 9.65 | 9.15 | 13.2 | 10.55 | 10.00 |
| Year 3 | 10.0 | 7.12 | 6.58 | 11.6 | 8.24 | 7.63 | 13.3 | 9.47 | 8.74 | 15.2 | 10.85 | 10.00 |
| Tear 4 | 10.0 | 6. 36 | 5.72 | 12.2 | 7.73 | 6.98 | 14.6 | 9.30 | 8.35 | 17.5 | 11.12 | 10.50 |
| Fears | 10.0 | 5.67 | 4.97 | 12.8 | 7.24 | 6.36 | 16.1 | 9.14 | 8.00 | 20.1 | 11.41 | 10.00 |
| Heve Tear | - | 36.05 | 33.53 | - | 41.38 | 38.42 | - | 47.38 | 43.34 | - | 53.87 | 50.00 |

[^7]
#### Abstract

Farmer Development Project pointed out that in those areas where soila vere poor and agricultural technologies vere primitive permitting little agricultural surplus for market, the roads accelerated commercial activities such as nev trucking and busing firms, movement of local handicrafts and various roadside businesses. In other regions where conditions permitted a aarketabla surplus, tha roads resulted in significant savinga in tranaport. One comanity of 200 families saved 150 vorkdays of foot or horseback transport by a 3 kilometer stretch of road.


And it must be emphasized that this analysis has only addressed vhat vould be lost of the present level of economic activity, not what future growth vould be foregone. The values in Table 5 indicace that a $5 \%$ real annual increase in incoaes among the 26 thousand fanilias in the adjusted target group amounts to an additional Q15 million in present value terms for that group. If thia or only a part vere to be lost due to the absence of serviceable rural roads, it could be argued that the benefit streas froa this project component is much larger than has been considered.

## TERRACING AND IRRIGATION SYSTEMS

The objective of this project component is to gaise the incomes of the 20,000 fasilies in the target group by increasing tha value of their fara production. Terfacing coabined vith gaall scale irrigation systeas vill aake posaibie aulti-cropping and a production aix less veighted tovards subsiatance crops and more heavily veighted to cash crops such as vegetables.

Not all of the 20,000 fara faailies fa the target group vill adopt irrigation and terracing during the first year of the project. The absorption of nev technologies is a gradual process and even if a 1002 adoption rate ia achieved, it would only cone tovarda the and of the five year period. If is safe to assume that vhereas most of the target group vili have availed theaselves of the nev fara technology by the end of the project, oaly halt, 10,000 faalilies, vill have aade use of the nev systeas for nost of the five years $\frac{1}{-}$

Tables 4 and 5 follow the format of the tables in the preceding section. it e PDV of component costs and of project benefits under three benefit=cost
$1 /$ this assuaption is based on a linear rate of adoption, 5,000 fanilites per year vith 20,000 reached is the fourth year of the project. The veighted average of this progression, t.e., the nuaber of fanilies with the technology in place for all tive years, is 11.33 thousand which ve rounded off to 10 thousand. Sose may argue that this is optiatstic, but since Little is known of the soctological and anthropological dynantes of technology absorption in the lighlands, this assuaption is as defensible 48 any.

TMESE 4

 (4000)

|  | (1) Enpm ${ }^{\text {/ }}$ | (2) Gaata | (3) <br> Total Dumentic Cents | (4) <br> Coads Forelga Eachange | (s) <br> Tectanical Assistance Fereign Eachunge | (6) <br> Total Forcign Eachange Conts | (7) <br> Danestic <br> Value of Foreign Eachange 2/ | (b) <br> Total <br> Eccancialc <br> Costs <br> (3.7) | (9) <br> At Year 0 <br> $(12 t)^{2}$ | (10) <br> At Year 0 <br> $(151)^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teat 1 | ses.0 | 142.0 | 403.0 | 398.0 | 100.0 | 458.0 | 667.0 | 1,340.0 | 1,196.4 | 1,165.2 |
| Tenat 2 | S30.9 | 107.0 | 206.0 | 167.0 | 100.0 | 267.0 | 321.0 | 1,027.0 | 812.7 | 376.6 |
| Test 3 | 350.0 | 167.6 | 717.0 | 167.0 | 100.0 | 267.0 | 321.0 | 1,038.0 | 738.2 | 682.5 |
| Tear 4 | sun.0 | 187.0 | 727.0 | 167.0 | - | 167.0 | 191.0 | 912.0 | St3.4 | 524.9 |
| Tear 5 | 512.0 | 167.0 | 73 cos | 167.0 | - | 167.0 | 191.0 | 830.0 | 527.7 | 462.4 |
| tuese | $2,864.0$ | 734.0 | 3,522.0 | Sts.0 | 300.0 | 1,286.0 | 1,671.0 | 5,253.0 | 3,065.0 | 3,611.6 |



ratios have been calculated. The highest value in the matrix in Table 5 is Q9.7 ailition and represents the PDV of project benefits that is required in order to justify this component at a benefit -cost ratio of 2.0 and with an annual cost overrun of 25\%. Again the question is asked: Which of these are reasonable estimates of project outputs?

A judgement can be made by comparing the values in the matrix to the income stream of the 10,000 families in the adjusted target group. If the adjusted target group vera to collectively increase its real income from the base of Q1,000 by $10 \%$ annually, the PDV (at $12 \%$ discount rate) of that five-year income stream would be Q47,4 million or Q11, 3 million more than under no real growth and greater than the highest value ia Table 5 (see Table 3). The values in Table 5 taply that, under the most demanding conditions -$2.0 \mathrm{~B} / \mathrm{C}$ ratio with $25 \%$ annual cost overruns - - the adjusted target group would have to increase its annual income by $8-9 \mathbb{Z}$ for five years in order to justify the project economically. Under less demanding conditions, for example, a 1.5 3/C with no cost overruns, each of the 10,000 farm families would have to realize about a $6 \mathbf{z}$ real annual increase in facoae to justify the project. Again it is asked; can it be expected that the target group, through the use of new technologies, would achieve such increases in annual incomes over what they would have achieved ir the absence of this project?

TABLE 5
NATURAL RESOURCE MANAGEMENT MATRIX OF BENEFIT VALUES O(000)

|  | $\underline{12 z}$ | $\underline{152}$ |
| :--- | :--- | ---: |
| 1.0 | 3865.0 | 3611.6 |
| (*) | $(4831.3)$ | $(4514.4)$ |
| 1.5 | 5797.5 | 5417.4 |
| (*) | $(7246.95)$ | $(6771.6)$ |
| 2.9 | 7730.0 | 7223.2 |
| (*) | $(9662.6)$ | $(9025.8)$ |

[^8]Based on the fragmentary evidence that is available, these numbers seem to be reasonable. According to the economic evaluation of the Small Farmer Development Project in the Highlands, the use of terracing alone without irrigation permitted an increase in the yield of traditional crops of 757 and of vegetables of 35: The use of irrigation in these cases permitted an increase in fare incomes net of cost by about 20 z . The author emphasized that these estimates were on the lou side.

If the two project components were to reinforce one another, the total stream of project benefits would be higher. Rural road maintenance will make possible lou coat aarketing of the output stemming from the new farm technologies, If terracing and small scale irrigation syatema are adopted by farm families along the afintained roads, both project components will be able to claim higher levels of project benefits.

The project proposed in Section 3 of the Project Paper includes activities to be implemented by four distinct Guatemalan governmental agencies. They include: the Direction General de Servicios Agricolas (DIGESA), the Bunco Nacional de Desarrolio Agricola (BANDESA), the Instituto National Porestal (INAYOR), all under the auspices of the Ministry of Agriculture and the Rural Roads Division of the Direction General de Casinos (DCR) of the Ministry of Communications and Public Works. An administrative analysis of DICESA, BANDESA, and the DCR is given below. Since pilot activities will be undertaken with INAFOR, a brief description of this agency is given in the project paper.
A. DICESA

## 1. Role and Organization

DICESA, formally established ia 1970, is a direct In e agency of the Miafatry of Agriculture charged with a wide range of activities from seed certification to aquaculture. These activities are conducted through three technical directorates: Agricultural Development (Extension), Renewable Natural Resources, and Agriculture Education and Training, The Miafatry of Agriculture operates at the level of eight regions. The DiGest extension directorate in the Ministry of Agriculture Regions i and V (see Map i) is principally responsible for improving the economic conditions of small and aediua size farmers by upgrading their agricultural practices. In the project area, DIGESA operates two regional offices staffed with agricultural technicians who provide educational extension and support services to the various strata of the rural population. Their function includes programs of technical assistance related to small tara production, credit, marketing, and comanty organization and development.

As crop production research findings become available, DIGESA is resposetble for technological transfer by training sail and medium farmers in the appropriate technology as these are adapted to local conditions. Moreover, DIGESA encourages the conservation of agricultural resources, primarily by trading farmers in soil and water aasageaent practices.

To accomplish this tratalag and promotion of soil and water management, DiGESA has thirty extenolonigts and technical personnel
working in Regions I and V. To complement these individuals, 50 guias agricolas have been hired and trained. These guias are bilingual, area faraers who are selected and hired by DIGESA to promote and assist in the establishment and proper use of soll conservation vorks and samall irfigation structures.

The bulk of the institution's technical staff is located in the regioasal offices (Quezaltenango for Region 1 , Guateaala City for Region V), while headquarters in Guatemala City provides administrative and support services to the regional offices.
2. Probleas observed and addressed
a) Personnel

Your irrigation teass exist in Regions I and $V$ which are each coaposed of a civil enginear, an agronoalat, a topographer and a draftaan. These teass survey, design and assist in the construction of saall scale irrigation projects. Fourteen extensionists are involved fa the design and construction of soll conservation structures. Through trial and error under past projects, field technicians have becoae akillful at their respective tasks. Since the teraination of related funds under project $520=0233$ these teass have surveyed and designed over 54 saall irrigation projects with an estianted value of $\mathbf{\$ 1 , 4 0 0 , 0 0 0 \text { , In }}$ addition, these teans have identified and designed soll conservation atructures for over 500 hectares of land.

Because of funding lialtations these sub-projects have not been tattiated. As DIGESA has soll and vater projects designed representing over $51 \%$ of project funds avallable for these coaponents, the Miestion believes additional DIGESA professional staft for sall conservation and saall scale irrigation ts not needed. Hovever, for effective follow up vork to inaure proper vater usage and to encourage crop diversification, sixty additional gulas agricolas are requitred. Under project 520-0233, 50 gulas promoted and assisted in the construction of soll and/or irrigation structures and provided follow up work on 940 hectares of land. The soll and irrigation coaponents of project 520-0233 each had an offective life of three years. During the effective life of Project 52000233 one guia vas able to pronote, assist in the construction of and provide follow up work for the isprovenent of 3 hectares of land. Promotional work vas a ajajor task in teras of tise expended under this period. Siace littie tise will be requifed for project taitiation and ataiaal promotional vork vili be reģuired, the Mission believes that sixty additional gutas can provide the services req̧ulred to each support 5 hectares of iaproved land and can be effectively supervised by extating DIGESA staff. The neviy hitred gulas vili, where appropriate, be provided with bicycles for aore effictent transportation. These blcycles are of local sanufacture and have an estimated life of five years.

## a) Training

Literacy levels and lack of initial knowledge about trrigation methods are ajajor constralnts in the training of saall and medium size farmers. $22 \%$ of the farmers are seai-1fterate while 782 are functionally illiterate, In addition, Region i has many different local indigenous idioas and cultural values which tend to make difficult the task of the extension service professionals who are unfamiliar with the local social environaent.

Rasing the level of literacy of the beneficiaries is a long-tera educational objective. However, while the process takes place and its effects are perceived, some short tera strategies have been devised and will be iaplemented to advance this project e.g., utilization of effective coasunication aeshods such as the audio-visual and "coafc book" approaches tailored to the different cultural groups of the project region. These comanication aethods, including radio programa aimed at the saall scale farmer, vere developed under project 520-0233. Their impact vas considered by DICESA to be great and generally accepted by agriculturalists of all age groups. Project loan funds vill be used to support and continue these coamuication aethods. Trainaing under the above approach will be faplemented through the extensionists as vell as the gulas agricolas who possess local techaical knovledge and can effectively coamunicate uith the local target groups.

In addition, $\mathbf{3 0 0 0 , 0 0 0}$ in loan funds are provided in this project for 2 years of long tera and twelve months of short-tera technical assistance. This techntcal assistance vili concentrate oa faproving extension aethods, epjectally in the areas of crop diversification, and vill enhance and tncrease the effectiveness of DIGESA extenstonists and the gulas agricolas in legions I and IV, Officials from the education and trataing diviston of DIGESA (DECA) vill be favolved in this training and vill benefit from the techaical assiatance.

## c) Project site Selection

Under project 520-0233, saall irrigation projects vere sometines conatructed too close together geographicaliy and the probleas of local arket saturation and resulting low product prices have been identified.

To address these probleas, future sall trrigation projects will be approved for construction by DIGE5A and AID based on the following criterial location of other siatiar activities, proxiaity to access roads, the relative vecinity of gavprsa lending facilities, the aarketebility of proposed crops and possible probleas of aarket satioration. Marketing assistance vill be geared tovard linktng farmers vith larger markets teyond their local ones.
8. BANDESA

The National Agricultural Development Bank. (BANDESA) will be responsible for the administration of the soil and water conservation fund, i.e.. provision of credit and social cost payments to finance investments in soil conservation structures and small scale irrigation systems.

BANDESA is a seai-autonomous division of the Ministry of Agriculture which was established in 1971 as the principal credit agency for the agricultural public sector. According to its charter, BANDESA is the financial institution responsible for the promotion and administration of credit for the country' a agricultural activities oriented fundamentally to sail and medium sized farmers. The current organization has its central offices in Guatemala City and serves national needs through seven regional districts. Thirty-six sub-regional agencies (six in DIGESA Region I and seven in DIGESA Region $V$ ) have been established to serve agricultural credit needs. Each sub-regional office is able to develop and approve (up to established liaits) loans made to farmers.

Thirteen rural offices exist in the project area which are each staffed by a credit agent and secretary. The duties of the credit agents include promoting nev and monitoring current loans. Indicative of BANDESA's decentralized organization is that only ten percent of its roughly seven hundred staff reside in the capital city. There are 141 saNDRA positions (excluding those in the Central offices) in Regions I and V. In addition, BANDESA operates seventeen warehouses (five in DIGESA Region I and four in DIGESA Region V) for storage and distribution of tara inputs (primarily fertilizer) which it purchases in large quantities for use by credit program clients.

In line with the basic objective of BANDESA to contribute to rural developaent by providing timely credit on favorable terms to the sail and sedfue farmer, BANDESA's programs do provide facentives to investment through favorable faterest rates and repayant schedules which tit the production/aarketiag cycle. These interest rates are present ry 8 t (compared to regular comeretal rates of $11 \%$ for agricultural lending) and the loan terse are for seven years with an intital grace period of two years.

1. Problems Observed and Addressed
a) Personnel

Under project 520-0233 problems vire encountered in the adalatstrative procedures requited for loans for sail irrigation systems and to awake social cost payments. These probleas vire because ail leans and social cost payments had to be approved in Guatemala City, Further
coaplicating the procedures was the relatively great diatance between the borrover/social payzent recipient and the BANDESA office. To address these probleas BANDESA will open twenty additional rural offices in the project area by January 1984. Existing BANDESA eaployees will be transferred to operate these offices. In addition, the managers of these rural offices will be alloved to authorize fund disbursements up to jZ,000. It is estiaated that with this nev authorization, the time required to process loan applications or social cost payments will be decreased to five days. BANDESA already has the capacity to channel about 8,000 saall loans (under $\mathbf{3 2 , 0 0 0}$ ) each in legions $t$ and $V$ per semester, - The average loan for small irrigation systeas per faaily is 3540. In 1980 BANDESA processed 10,900 loans in Region I alone. Approxisately 1800 loans or social payments would be processed per region per year under this project. The expansion of BANDESA's operations for the project would be saall relative to its present and projected operational levels.

The DIGESA saall irrigation and soll conservation prograa prepares farsers for supervised credit adainistered by BANDKSA and provides follow-up DIGESA technical assistance. Once the credit plan has been vritten by the DIGESA promotor ta collaboration with the BANDESA credit agent and has been aproved by BANDESA, the financial aspects are monitored asd supervised by SANDESA.

The past BANDESA relationship with DIGESA gave the DIGESA extension agents the added responsibility of the developaent of credit plans. It was recogaized by both institutions that this arrangeacat detracted from the DIGESA role of providiag techatcal assistance particulariy in regard to fara activities not related to credit. To free the Digtsa extension agents of this responsibility, BANDESA has more clearly defined the roles of their own extension personat to include the developaent of crefit plass. The 40 MUDESA extension ageats who vill staff the additional 20 rural offices will reduce the work load of existiag personal and provide for aore coapreheasive work jompletion.
C) 相

In 1978 the Departanonte de Caninos Ryfales (DCR) vas establifted vithia the Difeccion Cenefal de caninog (see Organisational Chart attached) to construct and aalstata Alb-financed tabor intensive access roads. The voluas of activities undortaken by the DCR has ateadily inereased during tis five years of existence and tis staff has increased frou seven in

[^9]1978 to 51: in 1983. In 1983 alone 200 new eaployees were added to the DCR acafi.

The AID Mission to Guatemala, convinced of the DCR's ability and capacity to utilize funds, has secured an addictonal $\$ 3.0$ allifon in AID funds durieg 1933 through an amendment to the Saall Farmer Developaent Project to coapleaent the 1983 GOG financing of $\$ 7.2$ ailition. This brings the total to aore than $\$ 10.0$ aillion in labor intensive road construction and upgrading in 1983 alone.

The current project under consideration vould provide an additional $\$ 3.655$ aillion over a five year tiae frame to round out the DCR's active progras. The majority of this fundiag vould be used to assiut the DCR taprove tits road saintenance and equipeent aaintenance capabilities. To coapleaent the nev AID funds, the DCR vill need to facrease its staff, The proposed prograa calla for an addition of 69 DR positions sost of which are statlar to posttions curfently being filled. Nev positions vould include:

## wat 1

1. Assistant to Maintenance Coordinator/Central Officex 1 ..... 1
2. Restdent Maintenance Engtneer x ? ..... 2
J. Assistant t 0 leaident Engineer K 4 ..... 4
3. Assistant varehouseaan $\times$ ? ..... 2
4. Drivers x 25 ..... 25
5. Heavy Equipaent Matatenance Coordinator $x$ ..... 1
6. Heavy Equipaent Spectalist $x$ ! ..... 1
7. Wolders x J ..... 3
8. Asstistant mechantes $x$ ..... 6
9. Rurchas!ag expedicar x ! ..... 1
10. Heavy equipaent operators n 4 ..... 4
11. Key punch aachine operator x 1 ..... $+$
YEAR $\rightarrow$
12. Restdent Natatenance Engtneer x ! ..... 1
13. Assiatant to lesident Kagineef $\times$ Z ..... 2
14. Paytoll elerks x : ..... 2
15. Drivers $x$ ? ..... 9
16. Heavy equtpeent operators : ? ..... $\frac{2}{33}$
FOFAI ..... 69

## SYSTRM OF WORK EXECUTION

## A. Access Roads Mafntepance Program

In order to iapleasat the proposed program five lavels of vork execution are required (sen attached orgaafzational chart).

At the highest litvel the DCR censral office uili coordinate and adainister the prograa. The ©R central office villestabilsh identical vork standards for the two Malntenance Regtonal Centers and vill supervise the Resident Engineers in the parformance of those standards. The coordinator of the progras Vill elaborate the annuals and vill use thea to traia the engineers, assistants and foremen.

The aanuals vili identify:
a) The job of the aosk effective crev tor each activity
b) The equipeent and tools to be provided for each activity
c) The necessary materials for each activity
d) The procedures and aethods of vork.
e) Fatisation of the efficiency grade required to meet standards.

At the regional level the Resident Engineer vili perfora the folloving activities
a) Evaluation of Requifenenfs The Engineer witi establish the becessary VGrk in fiscal feras, This vili require an inventory sumary of the roads systea in his area, effectuate regular tnapections of each rgad, knowledge of the nature and the quancity of vehtcles that use the road and knovledge of the land, soil and cliaate of the regiga.
b) Asolgoment of fesourcesi Caleulate the personnel, naterials and eq̧utpmest reçutred for the differeat jobs deteraining prierities and assigntag resources to assure the effective cost fesults,
c) S.jervision! Verify that the vori performed produces the desifed results and that the cools and eq̧utpment are being used in adeq̧ute form in aceoriance vith the bCh established sfandards.

The Residest Engineer vili be assisted by fvo agsisfange, Each assistanf vili!
 work and provide fechnieal assigfance $f 9$ fibe forenen dufing his vistis and natatename.
b) Collaborate vith the Resideat Ragineer in the evaluation of requifreants and assignation of resources.

In addition the adainistrative staft at the regional office vill provide prograa support with the fiaanctal arrangements. The payrolls and payment cards for the vorkers vili be done fa each. DCR regional construction office localized in the departaents. The paymeat carda vill be gitea personally to aach worker.

In tha field, comunity supplied DCR trained foremen vill supervise comanity labor crevs. These foreaen uili report directly to the assistants of resident engtaeers.
3. Heavy Equipaent Mainteaance Progran

Withia this prograa the asjority of the aaployees are currently on board and vorkiag at regtonal offices nalatalaing heavy equipaent, Three nev positions af the ceatral office vill strengthea this systea;
d. Heavy Equipeent Mafatenance Coopdinator

The DCE heavy equipaent aatntenagce coordinator vil! be Fosponsible for developiag standards and procedures for controlitag the Frevestiva and corrective heavy eq̧uipaeat aatatenance. The heavy eq̧uipaeat coordiaator vil! alao establish the apare parts coatrol procedures, in the regional and cantral varehouse shops.

## 2. Heavy Equipaene Spectalias

The heary eq̧utpaesf coortimater vil! be assisted by a mechanical spectaliat responalible forl (a) inspection of ali the beavy equipuest fa the fieid. (b) assisting in the tratatag of oembarit aechanies, (c) asvisiag fhe heavy equit paesf ceerdiabtor of any oituation of excesoive devm=tine or the aesd for anjer cerfestive aalatemace.

## 3. Frgeuremone Eapedifer

Fats tadivitual vili process ali field fequesfs for fle purchase of beavy evulpmest spare parts asd ingufing that purchased tieas are sest io the regtosal offices os a ciaely basis.



## 2AC/DR-828-13-20

## 

| 2retert Eocation | - Guatomela |
| :---: | :---: |
| Project inite and Mumber | - Melplano Regional Developenat $520-0274$ |
| Funding | 1 91.1 aillion - Grant <br> 85.0 abllion - Lon |
| Life of protect | - Tive yeors |
| ERE Prepsiod by | - Levrence ade Misiton Enviromentel Oftieet |
| Recomended Shreahold Dectalon | Mogative Determination |
| Bureau mreshold pecision | - Concursence wien recczanndation |
| detion | - Copy to Chardes Contello Dlrector, usa: $2 /$ Guntedila Clty |
|  | - Copy to Luvrence Odo |
|  | - Cery co tuan tcheotfer |
|  | - Copr to tre ilde |
|  | Jame 1. Mestar Envirommentsi cificer Bureau for Latin Americe and the caribbean |

ANNEX F, 6 , ENERGY ANALYSIS

## A. Background.

Given the gountainous geography and rainy cliaate Guatemala is rich in hydroelectric generation potential. Although at the present time mugh of Guatemala's electricity is diesel gemerated, when pover generated from Guateasla's new Chixoy Hydroelectric facility comes on strean during the sumaer of 1983 diesel generated electricity will no longer be required except in unusual circuastances to satisfy the faternal needs of Guatemala. Guatemala anticipates that when a second large hydroelectric pover plant is coapleted in fev years, it will be solt to provide both for a growing internal deaand for electrical consuaption as vell as provide electrical power to other countries connected to the Central Aaerican energy grid.

In addition to tts large hydroelectric potential, Guateaala is the only Central daerican country with significant petroleua resources. At the preseat tiae Guateadan vells puap about 8,000 barrels of crude ofl per day, most of which is exported for refining. A amall portion of Guatenala's crude is sent directly to the larger diesel povered electrical generating pover plant where if is aixed or burned as is, perhaps unefficiently, to generate Guatemala"s electricity, In spite of the existence of petroleun resources Guateaala iaports all its petroleun needs with the exception of that aentioned abova. At the present tiae Guateasla uses about 25,000 barrels of faported gasoline and diesel per day, the largest uses being the industrial and transportation sectors. Unleas Guateasla discovera and develops additional petroleua resources, an inftiates tis ovn petroleua refiaing infrastructure, it is antictpated that Guateasia vili continue to be dependent on externaliy oupplied petroleua derivatives.

Preseatiy, the greatest demand for anergy is internally grown firewood. it is estiasted that more than $70 \%$ of all the energy cossuasd is Guateasia is through the burniag of Guateaala' s large yet fiatte forestry resources. With a rapidity growing rural population, Guateataa energy planners anticipate an increasing desand for fuelvood in the foresceable future.

## 3. Proposed Froject's Ehe:zy Deander

The project as described in lection J of the Project Paper is destgned to use labor fatensive sethods te coaplete project activities vierever feasible. The roal aintenance prograa vili use alaost exclusively aanual labor vich oaly aiser suppert fren is sasil duap trucks, 3 road graders and 3 backhees. The coapleacstary huavy equipaest atatenance proaran vill tasure that existing heavy afqupaeat reasins finely tuned to guarantee the use of liatied fuels as effletentiy as pessible. The solit coaservation and atat irrigation elewsat vili be ispleaented by the rural farvers thenselves, supplyiag ali the req̧utred sanual labor, vith osty aintan support of bicycie driven or aetorized Guatenalan governachtal extenston agents. ta the forestry elenent,
aanual labor vill be exclusively used to implement reforestation activities, In short, the proposed Highlands Agricultural Development Project is dasigned to rely heavily on manual labor to achieve project objectives.

In order to further reduce the deands on Guatemala"s scarce refined patroleun resources, all vehicles purchased with project funds will be required to be the most energy efficient vehicles currently available in the U. S. In addition to the fev cases vhere (due to physical conatraiats) gravity fed aini frrigation systems are not fasible and pump systems are required, the most appropriate energy efficient system uill be recommended. In aituations where large volumes of vater exist, hydraulic ram puaps vill be installed, Where electricity is available electric pueps would be recomaended. Oniy in very rare situacioas would diesel vater puaps be installed to puap irrigation vater to the fields.

## C. The Proposed Project's Long Fera Impacts on Energy Use

The labor iatensive access roads aaintenance progran uili guarantee the continual access of Guateaala"s rural faralands to the larger internal Guatealan and external market. This in turn vili encourage incraased transportation of fara related faputs and outputs vhich vili put aore deaands on Guateasia's liaited petroleus resources. It is anticipated that the facreased faraing activities and diversification of crops due to innovations vill encourage increased exportation of Guatenalan fara produce to Central Anerican sarkets and the U.S, as vell as provide for import substitution. The facreased cost of petroleun iaports can be partiaily atfaet by the tnereased revenues geserated by exports as vell as the savings in food faports.

In the future as comanal vood lats atature, the forestry element of the proposed project vill help reduce the need to destroy natural forest areas by providing a more efficient, controlled fers of obtaining vood for rural household consusption. Also the generation of additional fuelvood vili offset the need for the fural faraer so tura to other foras of energy such as a bottied gas, kerosene, diesel or gasoline for his household conouaption needs.

## Ancx I (7)

## Enchatcal Aablyato - Maturat Engoures

The following andyata ia eaken in pare trom therger docuenat - Abbrevisted Economic Analyats of the Ryrat Ronda. Soll Conservetion aed Saall Erifacton Componata of the smalt Farmer Developmat Project (520-0233)" by Dr. Gery latin. Thite report eay be foum in tita entirety in the office of Ruret Devilopeant, USAlD/Guatomala.

## Soil Conservation

The terms "soil conservation" broadly refers to activities designed to protect the qualities (mechanical, nutritive) of a given area of land from degradation due to environmental conditions and cultivation practices. Under the A.I.D. Project 520-T-0233, the focus vas upon reducing water erosion and increasing agricultural yields through promotion of contour cropping on gentle slice, es and bench terracing on steep slopes (are than 10\%). Since most slopes in the central and vestern Highlands of Cuateaala are more than 10\%, and since cost project sites contain cultivated areas with slopes auth steeper (up to 80\%), bench terracing has been and continues to be the primary focus of soil conservation practices in DIGESA Region I and Region V.

A bench cerrace, constructed along level contours of a hillside and characterized by a sail! "backslope" which encourages water to run away from the edge of the terrace back towards the hill, accomplishes the following:

- Prevention of hillside erosion, titus "conserving" the soil.
- Prevention of fertilizer and pesticide runoff caused by rain, thus contributing to higher yields with the same levels of inputs.
- Increase in the effective cropping area of the original hillside plot due to double cropping, thus increasing the farm g land resources.
- Increase fa the planting density and ta the variety of crops which can be planted on a given plot, thereby increasing production and marketable surplus.
=- In conjunction with an assured water supply, an increase in flexibility of sowing and harvest dates, thus enhancing the farmers' ability to take advantage of shifts ta prices and other market conditions.

Ware soil is easily worked=was vas the case in many conservation sites under Project $520=7=02 j\}=-t e r f a c e s$ can be constructed using the farmers' "digging hoe" and a staple "A" frame levelilag device. To anchor the terraces, rye grass, elephant grass, and other hardy varieties of grasses can be planted on the facing edges. In addition to protecting the terraces, this grass can be used as forage for cattle vileh, ta turn, caa provide fertilizer for arovias crops.

Besides providing direct techatcal assistance to farmers ta constructing terraces, Dices soil conservation extension workers trained more than 50 local farmers ("gulas afficolag") to promote terracing among their neighbors is comanttios participating in the project.

To compensate farmers for the time needed to terrace their hillside fields, the project included "social payments" for those willing to act as "pioneers" in their communities. The payments served to reduce the perceived risks of undertaking a significant investment in time and labor, as well as coapensate the farmer for lost employment opportunities. In the longer run, it is expected that such payments vould diminish as farmers' incomes improve and as they see advantages in further terracing on their own.

## Short-Terfecosts and Benefits

According to Saith the only completed and avallable set of data from DIGESA cobcerning soil conservation vas a report titled Breve Informe Proyecto Conservacion de Suelos de 1978 a Marzo de 1983 which covered all actions completed er pending in DIGESA Region I as of his evaluation. Assuang the data aggregated by department are reasonably correct, this sumary report peraits a rough estiate of the results of social payments in terms of areas terraced and fara faallies benefitted.

Table 1 indicates by department the number of projects, total social payments, hectarage and auaber of faailies benefitted with and without social payments. Table 2 converts the data from Table 1 into percentages and average yalues per project and per faaily.

It should be noted that Project $520-\mathrm{T}=0233$ vas intended to consist of a number of pilot projects of which soil conservation was one. It vas not expected that all farms in a given area vould necessarily be terraced by the end of the project. Thus, the global average of 9 families per site (Table 2 , columan 5) is not as trivial as it aight seea to someone unacquainted vith the levels of poverty found among these farmers. DIGESA extension workers told Sattit that approxiately $10 \mathrm{t}_{\text {to }} 15 \mathrm{z}$ of all faraers in any one project area have terraced to some extent, and nev terraces are being constructed with the aid of guias independently of the project. It should be noted, too, that approxiastely $22 \frac{1}{2}$ of all farmers terracing have done so without any social payment at all (Table 2, column 10).


| $\frac{\text { DEPARTANENT/ }}{\text { DEPARTAENTE }}$ | $\begin{aligned} & \text { NO. OF } \\ & \text { PRONECTS } \\ & \hline \text { NO. DE } \\ & \text { PROMETOS } \end{aligned}$ | $\begin{aligned} & \text { SOC IAL PAY- } \\ & \text { MEMT (SP) } \\ & \hline \text { PACO SOCIAL (PS) } \\ & \text { EM QUETZALES } \end{aligned}$ | has. Conserved has. Corszryaces |  |  | fnilies EEXEITED TAILIAS A5ENDIOAS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\frac{W I T H S P}{C O M F S}$ | $\frac{\text { MBNUT } 5}{\text { SINPS }}$ | TOTAL | $\frac{\text { MIT SP }}{\text { COF } S}$ | $\frac{M 1 \text { MOXT } 5}{S 1 m F S}$ | T07al |
| Huehuetenarso | 28 | 34.906.82 | 86.23 | 31.52 | 131.75 | 440 | 97 | 337 |
| Quetralienango | 72 | 43.371.43 | 154.48 | 28. 30 | 181.34 | 310 | 104 | 414 |
| Quiche | 13 | 7.744 .00 | 23.31 | 12.97 | 16.48 | 183 | 49 | 214 |
| Solola | 34 | 14.486.47 | 60.52 | 26.16 | 0. 82 | 219 | 102 | 121 |
| Totonicapan | 65 | 12.362.69 | 39.46 | 14.17 | 36.62 | 313 | 81 | 384 |
| San Marcos | 29 | 31.306.33 | 39.31 | 17.01 | 76.38 | 200 | 67 | 347 |
| TOTAL | 241 | 144.17).74 | 424.01 | 132.39 | 371.49 | 1.747 | 100 | 2.247 |

SOUCE/PUEDTE: Evaluation and Statistice. DICESA./Evaluacion y Eatediatica.

TAELE 11/Cundro 11
Soll conservalion, Letion I - Aledicional Dutal
Comservacton de Surlos. Region 1-Durot indtetonales








## co3sc

A total social payment cost of Q144,000 for DIGESA Region l over a span of 5 years ( $1977-1983$ ) does not seem excessive, especially when that figure is expressed in terms of payments per cuerda (Q10,84) or per tally (Q82,53), If a lou figure of three sabers per family is assumed, the payments per capita come to Q27.51. This payment is made on a onetime basis. Once constructed, the terraces are to be maintained by the farmers without further input from the government. Presumably, the terracing will improve output enough to more than offset such maintenance costs as purchasing seed for the grass to be planted on the facing of the terraces and repair of occasional cave-ins and erosion channels.

Social payments represent roughly the opportunity cost, as perceived by the farmers, of working on the terraces rather than on more traditional tasks. This could include an allowance for risk, at least at the beginning of the project. Once farmers see how terracing improves their yields, the risk element should diminish and the necessary social payments with it. This has, in fact, happened, Saith observed farmers in the Patzun-Lake Atitlan area voluntarily extending terracing for areas initially terraced under Project $520=0253$.

Thus, social payments in the short run are offsets to alternative sources of income as the farmers see thea. At the margin there would be no net benefit. In the longer tern, of course, there is a net benefit, if the terraced land proves to be are profitable than before it was terraced Proa the government's standpoint, social payments (and salaries of extensionists payments for vehicles and gas, etc.) are short -run costs which represent an tavestaent which should yield a lager tern social benefit to the country. As in the cate of rural roads, any innovation witch raises rural facoaes villi contribute to the rural sector's ability to accumulate capital and to the overall decline in the costs of feeding the population, including the urban/tadustrial sector, Viewed ia this perspective, the government's expenditure to date in DIGESA Region f does seen reasonable.

Unfortunately, Saith vas yale to obtain detailed foforation on soft conservation activities in Dtgisa Region $V$, However, the terracing activities observed in DIGESA Region F (near PaEan, San Juan Ostubcalco, and Et Progreso) vert siatlaf to those in DiCRSA Region it, If anything, the social costs in DIGESA Region $V$ should be even smaller since the land in the Western Highlands, especially in San Marcos, liluehuetemanga, and Guedaitenango (Digest Region f) can be difficult to amaze, due to is steeper slopes and greater erosion.

## Longer Pera Costa and Benefits

Unfortunately，no baseline studies of pre－project farming，marketing， and household consumption activities vera aide．To assess changes brought about by soil conservation in a short time requires faith in the memories and veracity of both farmers and DIGESA extensionists．$\frac{1 / \text { Table } 3 \text { sumarizes }}{}$ faforation given Saith by farmers in both DIGESA Region I and DIGESA Region $V$ concerning gre－and post terracing yields．

These data，sparse as they are，seam roughly of the same magnitude．Many of the farmers interviewed by Smith have continued to raise the traditional corn，beans，and wheat on their terraces，and there seems to be an overall consensus that yields of these crops have about doubled．Other farmers， especially in DIGESA Region $V$ uts already vera growing nontraditional vegetable and root crops for cash prior to terracing，reported increases in yields varying from about 302 to nearly 100 z ．Additional nontraditional crops for which a scattering of farmers encountered＂on the road＂estimated increases from 45 z to 100 z were radishes，strawberries，chinese pea pods， lettuce，beets and squash

For the most part，farmers continuing to raise traditional crops on their terraces reported that，prior to terracing，their families had consumed most of their own output and often had to purchase additional cora and beans prior to the next harvest．Some of those living in the Patzun area（DIGESA Region V）earned the necessary cash by seasonal aigration to the coastal sugar and cotton plantations．With the facreased output on their terraces，these farmers still seen to be consualag rather than selilag cora and beans，but they are purchasing considerably less．A feu indicated that they no longer algrate seasonally，$\underline{\underline{2}}$

Most of the conservation sites visited by Saith during the evaluation had so supplementary irrigation．Since the greatest increases is yields． tacones，and crop varieties appear fa the irrigation sites，there is a strong likelihood that a conbiastion of irrigation projects and terracing projects would wake the farmers observed sven better off than they were before．

[^10]PABLE III

## Reported Increases in Yields of Certain Crops

Following Terracias under Project 520-T-0.6
DICESA Region I and DIGESA Region V, Guatgala, 1983.
(Data ia quiatales or bunches per cuerda*)


* 1 guerda $=25$ 㐁 25 yafas $=0.04$ hectare

SOUKF: Saith intervievs, Breve faforne: Froyecto Consarvacion de Suelos, de 1975 a aaf 6 de 1983 , and jerfy Arledge's faforme final

Ia sumasy, using the lovest raported figures, terracing; lone=-without ifrigation, addisional access roads or crop diversification-mperaits a sustalned tacrease in yields of traditional erops (cora, beans, wheat, potatoes) of ahout $75 \%$ and of vegetables of about 35\%. Ia the casa of tradtetonal cropa, this additional output saeas aataly to be consumed by the tanily, thereby releasing resources which ofhervise vould have been used to obtafa additional food, fncluding, perhaps, seasonal aigration, Since aosf vegetable crops seea to be raised aataly for cash, the addition represents an increase iagross cash income, assuning no sigaificant change in prices.

Most farmers vere not quaried concerning the tastances where their cash incoaes rose as a result of both soit conservation and irrigafion projects. The aain taferest vas in identifying changes in food coasuaption habiss. Surprisiagly, very fev farmers reported any changes in the pattern of their dfets. Where the production of traditional cori and besis rose as a result of terfacing, faailies ate about the sama daily diet as before but did not have to purchase as auch. Faraers with cash crops tended to use the cash for specific purposes such as further iaprovements to theif land and/or their houses (t.e., favestaent) or hifing an extra hand thereby peraittiag theif older children $\ddagger 9$ so school, Viftualily no ose sald they bought aore food, at though a aore detalled ourvey aight deferalae that soae of thea did (e, E, , snacks at the local fienda, extra ligquer). This suggests a version of the "peraaneat"incoae" hypothesisi faraers are mot sure that their recent galas in earaings are sufficiently permanent to justify sigaificant fatrafanily changes in habits, includiag dieta. Instead, the money is used to finance deferfed "gne"ghot" expenditufes such as hoae repaif, another year of school for the childrea, addictemal seed and fertiliaer. This kiad of information is very taportant froa a developaest perspective, and the "tracking" of chamges in heusehali behavior vith kechaplegical change is a majof justificatioa for baselise and follow atudtes.

Wift raspect to changea in coat, the aosf iaporianf of these in co日servafios sites seeas to be increased labor, Aside froit the laber needed te censtruct the terraces ortgtality, the tacreased deasity of plantisa Feraitied by tefiacteg feq̧utfes apre work at plantiag and hafrest tiae and


 viefa vegetable asd feas creps (iaffinsicaliy more labor inaesoive) wefe grown. fis a fev lastances, farnefs greving the latief efeps reperted
 reperted feduction is these easto due te qte feduced levels of vater runoff fres the Bev feffaces.

## Saall-Scale Irrigation

The purpose of the irrigation component of $520-7=0233$ vas to increase sail fare incomes by insuring a reliable supply of water throughout the calendar year via relatively inexpensive, staple technologies which exploit existing supplies of ground water and/or nearby river water,

In DIGESA Region i, virtually all irrigation activities funded under this project used a gravity/sprinkler system whereby water from nearby springs was concentrated is a catchment basin and led to staple sprinkler systems via lovecost plastic piping. Aside from simplicity, this system has the virtue of very low aaiatenance costs, favolving mainly the care of valves and the sprinkler mechanisms. The mountainous terrain in DICESA Region I contains any springs with adequate water flow throughout the year.

In DIGESA Region $V$, however, 10 of the original 20 projects involved puapiag water from nearby rivers, often requiring electric pumps from 25 to 50 Hi f, fa some cases two connected in series, to lift water as much as 200 meters to the tavel of the fields. Three DIGESA Region V projects (EI Teapisque, San Jose Facula, and La Vega i) did not use sprinklers, the water being turned directly tate furrows from sail canals. Projects lavolving puapiag also involved significant atatenance and electricity costs.

## Short Fern Benefits and Costs

Table + sumariaes salient features of irrigation projects ta DIGESA Region 1 and DIGESA Region V. Region I data at Saith's disposal vas broken town by departments, the scale of operation there vas larger than ta legion $\nabla$. Pence 5 faith lumped the 20 Region $V$ projects together. Stace this lumping tents to asch some of the higher costs of puaped-ifitigation projects in this Region, be broke out the latter and listed thea in fable 5 .

A comparison of the average materials cost per irrigated ceria ta Digisa Region ! Q26.20 (Table 6, column 6) with that of electric pump projects in teston $V$ of 941.39 (Fable 5, colum an 5) gives some idea of the 41 fierences between pulp and gravity irrigation. The figures for average co fo per family are even more striking (Q257 for gravity va, Q1,164 for pump). Geaparavie figures for sell conservation social payments tron fable 3 are gil per terraced cyeride and ge) fer participating family.

Costs of tastallatton of pipes, catchateats, paps, sprinklers and other materials are tianaced by the individual families participating fo the projects, etthaf individually of collectively with leans from Basipesa. in ali projects partintpatieg families contribute labor to the construction of the system, e, in laying pipe, alitiag ta the installation of paps, etc, Participants also centithute to aidateanace of the systems, with the assistance of Dtgish extenstoalsts and atlas agricolas.
tanle $V$

## Becticic Rup Irrifacion Projecta in DIGEA Ronton V

Fimanced undar 5:0-T-020

| (1) | (2) | (3) | (4) | (5) | (6) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Foriet | cost of | AREA | *o. of | Chst rex | Cost PRE |
|  | matridals | inagated | FMILIES | curnoa | FMILY |
|  | (1) | (CLEPDAS)* | Panllics | (1) | (9) |
| Et Pepplaque ! | (1,36) | 42 | 4 | 25.90 | 595.75 |
| $E 1$ Peppisqua II | 3.150 | 35 | 1 | 107.14 | 3,750,00 |
| Gan Jobe Pacul | 3, 816 | 58 | 7 | 66.83 | 593.71 |
| Miacos Crama | 30,500 | 460 | 46 | 66.30 | 663.04 |
| Samid Marla Sauque | :5,000 | 472 | 50 | 52.97 | \$00.00 |
| Sam Pantanco | 2,900 | 28 | 2 | 109.57 | 1,490,00 |
| Se Jose | 4.100 | 58 | 2 | 70.69 | 2,050.00 |
| Pase matue | 2,400 | 46 | 2 | 52.17 | 1,200,00 |
| Peoplsque III | 2,000 | 46 | 2 | 52.17 | 1,200,20 |
| Satinge saratipeque! | 30,000 | 460 | 40 | 65.22 | 350.00 |
| Tuliedercta | 1,000 | 81 | 11 | 11.35 | 00.91 |
| Artames | 0,060 | 167 | 15 | 61.31 | 1,163.05 |
|  |  |  |  |  |  |

 4, Gifin ealeutaligat.

Unilike the soil conservation projects, there are no "social payments" for irrigation projects. BANDESA loans carry the immediate burden of the farmers' expenses, and aost of the faraera intervieved by Saith did not sera to regard the work they did instaliing the systeas as excessive. in the loager term, the loana are repaid out of the realized increases in earnings.

## Longer-Tera Costs and Benefits

Of the aany fapacts identified for ainiriego projects, three $\Delta$ 'g eapectally taportant:

1. A raliable, year-round vater supply peralts significant diversification into a variety of crops, including fruits, vegetables, and tubers.
2. Por vay given crop, two or aore harvesta per calendar year are possible; soae vegetables can be harvested four tiaes per year.
3. The farmer can, through diversification of his "expanded portfolio of crops" vary soving and harvesting of certain crops to take advantage of price fluctuations; in the longer tera, all faraers acting in this way should contribute to daaping of traditional vide suing in comodity prices over any given calendar year.

In short, fara incones are expected to rise and become aore secure. Prices for agricultural produce seea to be atabiliaiag for the time being and farmers experimenting with aev crops and different sowing/harvesting times. In addition, faith noted that some farmers are using thair nev earning to purchase additional cattle, both for ailk and for reproduction purposes, which vould provide an additional scarce of incone. Fiaally, most of the faraars involved in irrigation projects are receiving extension assistance fa constructing coapost pits to augaent the quality and quantity of fertilizer.
fa Santiago Sacatepequea and Santa Maria Cauque, both regions of relatively tlat land not tar from Guateasla City, several of the crepo preseatiy irrigated were being sova prior to project 520-0233. Here the wain tapact has been the ability to plant an extra crop duriag the dry seasoni snow peas, radishes, lettuce, beets, carrots, Eylcoy, and acelga, the ais cash crop, -*snow peas-* nou briags about 0150 ger suerda per year, an tacrease of about 50 z atnce inscallation of irrigation. ta general, about 50 z earaing tacrease is realized in most crops, sineq the second harvest does not briag as high prices as the priasry harvest. Farmers ia both of the above areas are aware of the decitne in prices due to iacreased supplies, but they are also avare that the declioe has not been in proportion to the tacresse in arketed volune, i.e., total earaing are sefil significantly above pre"project levels.

Both areas, however, are irrigated with electric pumps, and this has resulted in additional monthly costs of production as follows:

Insecticides and fartilizeya Q56 per cuerda per crop
Soil Preparation $Q 9$ per cuerda per crop
Electricity Q19 per cuerda per month

Labor requireaeats have increased by about 100\%, due to additional time needed for second and third gropplan, more attention given to field preparation and weeding, and occasional work on the irrigation syatea itself,

Saith vas able to visit the following six irrigation sites where systems had been in operation for one year or mores Santa Rita, San Juan Oatuncalco, Santiago Sacatepequez, Santa Maria Cauque, Lo de Silva and Rincon Grade.

Each of these projects was different from the others, but collectively they gave a feeling for how irrigation affected yields, incomes, and participating farmers' outlooks.

Santa Rita according to Saith, is doubtless one of the more impressive projects. He explained this as partly due to the fact that this community of some 17 families lies along the main highway connecting the cities of Quezaltenango and San Marcos. Both cities are large vegetable and fruit market centers. Thus, this site is a good example of hov a nix of more than one kind of project (esE., marketing, diversification, and irrigation) can interact synergetically, The farmers in Santa Rita reported that, prior to project $520=0233$, they vera earning on the average about 010 to 015 per cuerda (.04) hectare) from sales of surplus corn and peans. Since the average holding is 5 to cuertas, this amounted to a yearly cash income of 950 to Q90. Additional cash tacone had to be earned from off-fara sources (including seasonal alteration) and sale of handicrafts. Following installation of gravity/sprinkler irrigation, asst Santa Rita farmers began diversifying fate such crops as cabbage, lettuce, carrots, onions, radishes, and garlic. The vater peratted ? to 3 crops per year and sales to Quezaltenango and San Marcos wert uninterrupted during the first year. Average earnings on land under the nev crops rose to 090 to 9190 per cuerda (counting sales from multiple crops during the calendar year), and several farmers gave up planting corn and beans entirely, preferring to purchase these in the market rather than "waste" irrigated land on thea, la the second year, prices decifnei and total earalngg fell to an average of 960 to 900 per cyerta.

$$
=15-
$$

To illustrate the "vorst-case" situation, a farmer with 10 cuerdas of snow peas had been earning the following before irrigation"


With irrigation and sa extra crop:


In this scenario, net income has gone up by 9100 per year or by about 208.
It should be emphasized that these figures do not take into account the opportunity cost of the farmers' extra labor time, nor extra earninga/costs associated with other crops.

Assualag the 202 figure to apply to all farmers in the Santiago Sacatepeq̧uez/Santa Maria Casque areas, Irrigation has not had as strong an fapact on aet earnings as in Santa Rita, Santa Rita, however, does not have electricity costs. If the $Q 190$ of electricity costs were eliatated, the increase ta net earnings would be Q290 or about 602, a figure comparable to the farmers using a gravity system.

San Juan Ostuncalco and Lo de Silva are examples of hov, unless a good road exists and/or diversification of cropping takes place along with irrigation, there aby be relatively little tapact. Although it was a gravity project, San Juan vas relatively costiy=022,000 total costs of festaliation and asterials, or 970 per cuenca and 973 per family $=$ due to the large area Irrigated ( 316 cyertas) and the large number of households connected to she system ( 300 ), This is the largest single project is the irrigation component of Project $520=0233$. The system is still functioning well and the farmers sees to be content with it. However, many fares are still sowing traditional corn and beans, like other tradtitonal farmers in the terraced areas near Fatrun. The ability to plant two staple crops instead of one ta a given year and to get measurably better yields $(10 \mathrm{~m}=20 \mathrm{t})$ meas that farmers have more staples to eat and fever to purchase. It doesn't indicate, however, the impressive gains in cash incomes observed in other, diversified, irrigation areas. The problem is the cost of getting produce out of the area to vegetable consualan places like Guezalteaango of Guateazia City, Sone farmers, however, are diversifying, in spite of transportation diffieuletes.

$$
=16=
$$

In the case of Lo de Silva (a community near Palencia, El Progress) a number of circumstances, $=-$ a ye poor road, disputes over rights to use water froe certain springs, plant diseases affecting the area's two ala crops (guisquit and potatoes), and a price decline ia the national market for these same crops -m have combined to overvhela any advantages the gravity irrigation system may be contributing. It has also been noted that land values fall some 3002 from plots near the town to similar plots near the end of the road, From discussions with local farmers it is clear that an improved road and help with crop diversification would be welcome.

Qincon Grande, near Zaragoza, Chiaaltenango, with a reported gross income of Q130,000 per year for ties 46 families from the sale of strauberifes, vegetables, and flowers, is one of the more commercially active Indian enterprises participating in the $520=0233$ irrigation activities. It also has been experiencing some of the highest monthly electricity costswabout Q5,000 per month, or soap 030,000 per year, assuan g irisation during the full g-aoath dry season. The farmers Saith intervived copiaiaed about this high cost, but felt that the project nevertheless had been moderately successful despite occasional propleas with the electric pumps.

In summary, where farmers have access to good roads and have been able to tatroduce a variety of short*season crops, irrigation has had a major impact on set earaligg. Where traditional crops continue to be grown, the rasult has been similar to that found on terraces planted to the same crops approximately a doubling of total output over the calendar year due to at least one extra crop permitted by a reliable water supply, Only where a project has been severely handicapped by lack of complementary infrastructure and/or resources, such as Lo de Silva, are the merits of even a gravity gyatea fa doubt, Clearly, gravity flow systems are more economical than pumping syatams, but it is not clear chat pump unreliability and seemingly high power costs have necessarily offset the gains in output and incomes generated by the irrigation. At lincoa Grander, the prosperous appearance of the farmers and the excellent condition of their fields and buildings led Saith to believe that that still are doting very veii indeed.

00516

## technical analysis = Reforisitaition

## a. Technical Evaluation

In order to achieve the objectives of the reforestation activity of the Project, varieus alternativea vefe coasidered.

- Reduced consuaption through fuel-efficient stoves;
- Production of fuelvood from the Peten:
- Production froa fuelvood plantations on public lands;
- Production froa cormercial voodlots on private lands; and
- Production froa seedifags planted on samil land holdings.

Reduced Consuaption - Garly results frou recantly inttiated prograss in Guatenala to encourage the use of Lorena stoves have indicated that there is a high degree of acceptance among rural fanilies of this means of saving on fuelvood consusption, espectally if there is a prior educational caapaign and assistance in helping the fasilies build the stoves. Assuatag the iastallation of fuel-efficient stoves at a rate of 50,000 per year from 1984 to 2000 (which vould reach 501 of faailies usiag fuelvood), forest withdrawls could be cut by 5 aillitoa cubic meters per year by the year 2000. Assuming that all faally users vould provide the matertals and labor for construction of these stoves, the cost to the COC for testructional materials, educational canpaigas, and field techaician's (para-professioeals) salaries to provide testruction of the buildiag of the stoves, vould amount to 91.2 ailliton per year, of Q20,4 alilion for the eatire 17 -year period,

Production free the Petan = Although the Peten represents an enormous ferest resource $=-751$ of the total volune of forest presently extoting in the entire country $=$ the distance from the southers Fetca to the searest aarkets in the casteri part of the country (bot the lighlands), is 150 to 200 kin., the econonie liaft for trasspoft of fuelwood, This warket by the year 2000 could absorb only 0.5 ailiten cuble neters of fuelveod per year, which represents scarcely five percent of the denand for fuelveed, Fhis veuld be considefed a private, conaerital operation,

Production frog comercial veodiots on private lands $n$ The idea of tree faras of fuelvood plantation on pYivate lanss in deveioping countries is beceafal agre prealseat as alteratitre seurces of eneray continue to be very expensive. The advantage of thit appreach is that it would be self=fiaancisa and veuld net need injections of COC of AID funds. Sisce 451 of donestic fuelveed in Guatenala is purchased, the cyrrent high voed priceo and the use
of fast groving tree species vould make such plantations economically feasible. If is private plantations of 1,500 hectares of good land each vere established each year from 1984-1993, production from these woodlots vould reach 4 aillion cubic aeters annually by the year 2000 . The total cost of producis fuelvood froa these 225,000 hectares vould amount to 856.3 million.

Production from fuelvood plantations on public lands - This
iatervantion has been tried previously by INAFOR and has been shown to be succesaful as a feforeatation mechanam, lecause of tha liaited amount of public lands in the Highlands, hovever, its fapact eay not be as videspread as reforestation on private lands. Nevertheless, it is an action that should be used to fts fullest potential stace the COC can guarantee that the most needy ia the rural areas vill be hired to do the reforestation and will have an accessible source of firevood. Establishing 2,000 hectares annually of fuelvood plantations on public lands over the five-year period 1984-88, the resulting 10,000 hectares vould produce 0.2 ailition cuble meters of fuelvood annually by the year 2000 for the comanities vhere they are established. The cost of this intervention over five years vould be $\mathbf{Q 7 . 0}$ alilion, the higher cost due principally to high labor use, training and availability of relatively poor steep land.

Production froa seedifags distributed to saall landovners, The nurseries established to supply the seedlingo for the public lands reforestation activity could also be used to supply seedilings on a cost-plus or governaent subsidized basis to individual landovners. These seedifags could be planted at field borders on eroded slopes and on presently nea-productive land. The distribution of 15 allition seedilags per year over the period $1986-2000$ vould fecrease fuelvood production by approxinately 1 ailiton eubic meters annualiy by the year 2000. At an estimatod cost of 0.10 per seedilisg, the total annual cost of providing an average of is ailiton free seedifags would be $Q 1.5$ aillion per year, or a total of $\$ 25.5$ ailition.

Qiven these five interventions, the total demand for fuelvoed of $\mathbf{1 0 . 2}$ aillios cubic meters ta the year 2000 could be wet at a cost to the coc of 052.9 allilen over 17 years $\frac{17}{7}$. Although this annual amount does not sees so be exessively high, a five-year progran of fuel-efficient stoves, public voedlots, and seedifags for saall land boldings vould amount to Q20.5 mililion, cossiderably wore than the amount viteh the Misston presentiy has avallable

1/ This calculation of cest to the coc dees not tratude Q56.3 ailition for private, comerretal vood plantations, whtel vould account for $40 \%$ of the expected productien in the year 2000, stace this sheuld be censidered solely private investaent, if also assumes that seedilngo vould be distributed free to snali farmers Hovevef, if the Mioston pesitioe of selileg seediliges at cest vere folloved, this cost would be lovevied even nere.
for these purposes under this Project. Consequently, a determination was made as to priority interventions at available funding levels.

Because various government and voluntary institutions are presently undertaking programs, albeit very limited, for building Lorena stoves in Guatemala, the Project will not make a direct investment in the building of these stoves. However, because of its relative importance, a strategy for an integrated approach to dissemination of fuel-efficient stove construction will be developed by technical assistance under the Project, Other AID projects, including Community Based Health and Nutrition Systems (0251) and Non Formal education (0281) offer possibilities for support and funding of an action program.

Since access to markets for Paten fuelvood production is so difficult and this activity should be undertaken by private, comercial enterprises, it will not be considered in this Project.

Fuelvood production by commercial enterprises on private lands offers great potential for alleviating Guat mana's future fuelvood deficit situation. Because this type of operation should be self -financing from private investment, direct $C O G$ investments should not be required in this type of activity. However, the COG should encourage private investment in fuelvood projects through special tax exemptions or vriteooffs for investments in and income from fuelvood projects; through studies of the growth rates of fast growing local species under different site conditions, and through the deteralnation of optimum aanagenent techniques of forest plantations. In addition the profitability of this private reforestation action will be determined through the faplesentation and analysis of the pilot pubite woodlot sub-projects.

On the basis of an analysis (Table VI) of 19 sub-projects for reforestation of municipal lands presented by isarok to AID, it vas determined that although this type of reforestation vas important, there verse considerable variations fa the sub-project costs. For example, costs per hectare per sub-project ranged from 8850 to 87,645 while labor cost as a percentage of total cost varied from 29.2 to 94.0 . This raises the question as to the est appropriate and efficient combination of labor and capital resources in reforestation, as veii as is profitability for comeretal exploitation. Therefore, it vas decided not to finance all 19 proposed sub-projects but only a few pilot sub-projects witch, closely aontcored and analyzed, could provide answers to the above question. Five sub-projects vire chosen which represent a good geographical distribution as well as vide differences in per hectare costs and labor use. These sub-projects will also provide on= the- fob EFaisiag in reforestation for local people employed in public woodlot development and strengthen conauntiy collaboration and responsibility for natural resource conservation,
table $\qquad$ DESCRIPTION OF PROJECTS


* Sup=projects selected fer pilet activities,

1/Median cest per bectare is 92,688 . 2/Median percentage later cest of tetal cest ic 83,0,

Seedlings distributed to small landowners by INAFOR has also been selected for inclusion in this Project because of the availability in Years $2-5$ of the nurseries established originally in Year 1 for public woodlots; the multiplier effect of asking seedlings available to those the have received training on the public woodlots or to a few big, private commercial operations: ans the ability of INAFOR to recuperate its investment and establish a rotating find for additional reforestation by charging the buyers of seedlings a price equal to its cost of production ( $Q 0.10$ per seeding), Thus, the original $\operatorname{COG}$ investment would become a self-financing aechanisan.

INAPOR, at both aational and regional levels, stands ready to improve forestry resources, INAFOR is backed by extensive research done by the Tropical Agricultural Research and Training Center (CATIE), (ROCAP, Yuelvood and Alternative Energy Sources, Project Number 596-0089). Work by CAFIE, in association with IKAFOR, insures INAFOR's stateof-the-art technical preparedness. INAFOR's aa jor difficulty lies in a shortage of personnel able to implement a large program. However, because of the pilot size of the activity, INAYOR appears able to handle these activities.

Research SO, port is already available. The above ROCAP project on Fuelvood and Alternative Energy Sources has conducted $\$ 7$ million of research on both tree planting for farmer and community fuelvood sources and on preferred stove types for fuel efficiency and user convenience. Thus, personnel from this research project and printed data are available to guide a are extensive implementation by the COG.
b. Socio-Econoaic fapact

The reforestation activities would impact upon the region's population is the following ways

1) Belt reforesting on nunfeipal lands, for subseşuent firewood use would have a favorable social and econonte impact on household economies and on the stabilization of auntelpal resources.
2) Fuelvoed cultivation on the boundaries of farmer's land should conserve costs as well as resources, provided it does not cause a shading problem on the farmer's crop lands.
3) Firevoed available on the fare would relieve many women and children of the time cossuniag task of gathering bruatfali tirevoed of trasspertien froe the hillsides fireweed cut by husbands. is addition, this would assist women by reducing a freçuest cash drain from their limited ceokisig purse, out of which they are obligated to cook for and feed the family,

## e. Benefictariag

Since 96 g of the region's beusebolds depend on fuelveod, and well over 60 I of the region's boushbids are rural, a tremendous bunter of people
could be substantially benefited individually, while the country as a whole preserves forest resources, avoids land erosion, and iaproves vater supplies. Municipal reforestation efforts in the five pilot sub-projects covering 124.5 hectares vill provide 60 person-years of eaployment annually while seedilings for fuelvood cultivation on boundaries of saall plots vill be made avallable to 40,000 fara fanilies in the project area.

## d. Participants

For individual land fuelvood plantings along boundaries, rural families in the areas surrounding the five sub-projects vill participate, individually with techaical assistance froa DICESA and INAFOR.

For municipal level efforts to develop belt reforestation and fuelvood supplies, INAYOR will deal with eatire coanunities through their elected aunicipal leadership.
e, Socio-Cultural Constraints and Solutions
INAFOR and DIGESA extension agents must observe suggested method of dealing with ethate differences, especially in the preparation of audionvisual aterials to the native Indian tongues.

A deteralastion must be made on the types of tree seedifing which the small farmer vill be villifag to purchase and how wuch he vould pay. Sone cost aust te charged to each faatly so that they value and protect the plantiaga. Hovever, it aust met be too high to discouragd purchases.

If tree ovnership could be effectively earked, then good quality fireveod trees could be plaated on land boundaries (except for corner aarkers). Fresumably evsers vould alteriate onned trees of possess all the trees on ane side of the centerpoint of each boundary, Sueh boundary trees vould also provide valuable vindbreak, for the shallou rooted easive cors in prose to vind danage, and the trses would also provide additional erosion control. Hovever, care nust be taken to ascertain that boundary firewoed trees vould bot cause shade probleas for adjoining allpa plots.

A deteraination nust be ade on the eventual distiftution of the fuelveed grove ea aunicipal lands. This vould include establishing a prictag mechantsa, wood cuttisg fights based os some calctiation of connunity labor participation and suetas foz cutting. Frecautions nust be taken to assure that these mest in beed of fuelveod are able to have equal access at fatr arket prices.

## F(8) Technical Annex $=$ Access Roads

## 1. Access Roads Maintenance Objectives and Feras

The purpose of this rural access roads aaintenance progran is to guarantee the continuance of access of rural highlanders to farm markets and to agficultural faputs and agricultural, health, and extension services.

The purpose of the design proposed vithin is to utilize comanity supplied labor to the aaxiaun exteat possible to aalataia, not rehabilitate, all veather rural access roads. This aatatenance progran is to taclude both routine aalatenance and periodic ainatenance.

Yor purposes of the project the followiag definitions are eaployed;
A. All-Heather Rural Access Road is of alaiaun standard design, vith a general road vidth of 6 aeters includiag shoulders. The roads to be constructed will have a riding or veariag surface ( 4 meters in vidth) covered either with river gravel or other free draiaiag select aterial. Side ditehes and culverts provide sufficient drainage to insure year round use of the road. The facility should conaect agricultutal produciag areas and comantties to secondary and priaary roads leading to aarketing and processing ceaters.
B. Kehabilitation is a corrective cype aatatenance which restores a previously coapleted but substantially danaged road to its original design standard and aight possibiy include additional drainage structures. Road rehabilitation tasks taclude cleaal as and restoring side ditches, culvert cleaning, reshaping the roadvay and replacing the gravel surface.
C. Roytime Mafataname is a type of preventive naintenance. Tasks iazlude ditch cleaning, control of veeds, culvert cleaning, filling pothoies, restoriag liaited areas of the ridiag surface and anintainiag free flou around bridges. The vork is perforaed throughout the yeaf on a ocheduled basis.
D. Pertodic Maintenance is perforned by the use of heavy equipent on as anaual or seai=anBual basis. Tasks taclude scarification by grader and reshaplag of the foad surface, replacing lost surface asterial and compactiag and repaif of bridges, culverts and other drainage otryetures.

## 2. Propesed Frocess for Malatainalat Ryfal Aecess Roalo ysiag Labor fateasive fetheds

In erdef to establish a successful laber intensive access reats aalatenasce prograia twe ofgasisations ayst work tegether. They include the ruFal comuntify construction and astatenance conalitiees and Bepaftanenfo de Canfeg Ryrales (BCZ).
A. Burai Connunity Cossfruction and Matatesanee Comititees = These eeatitees vili supply the faquifed iaber fef beth reutise and preventative
atatenance, These comatttees vere established during the DCR's tabor tateasive access roads construction progras and include at least one trained coamulty coantttee foreasa per comaittee and a large nuaber of faraers who have had substantia! trainiag ia labor fatensive road construction (building asson culverts, butldiag or taproviag drainage systeas, shaplag foad sections, spreadiag and coapacting gravel surface aatertals, and ctearing road right of way of excess vegetation). These coanalty coanittees have the deanstrated capactity to contioue these activities, aost of which are required for a labor tatensive aliatanance progran. Therefore, ao coamuntty level training is feģulred to perfora the raquifed aatatenance work except for gecosiona! guidance or on the job tralatag by DCA rural foads taspectors.
3. DCR = The DCI is to supply supervision and scheduling of matateaance vorks and hasa tools requifed to assist comanity aalstenance efforts. The Dit bas for the past of years, aanaged a labor tatensive access roads construction prograa where they provided the superviston and schedutian of coanuatty road construction vork and supported it with heavy equipment and sand tools. The labor fateasive access foads aatatenance prograa as prescated ta this anmer vili use auch of the sama systea already established withis the DKZ. Hovever, stace the curreat DCR staff is assoctated with constructioa activities vithta the DCE's str regional offlees, additional persoanel will be Atrea to coordiadte the atatenance activities.

## 6. Volume of Whrk to be Hendertaken

3y the ead of 1983 the RCR and rurat conaunt ty access roads cgastruetlos and aatatenance coaniftees vilt have constructed about o50 kifaeters of access roads ta Guateasta's Hightands stace the tatitation of the progras is 1976. About 150 kilometers of these roads segaents have tetertorated and fequife rehablitlation prior to entering tato a asiatenance prosfan. Heste in the tatitat feaf of the proposed prograa aitatenance vill be given to asty 300 kiloweters of fural aceess foads (foughty 100 individual Fad segnests). If is anticipated that each succeedtag year as adstitenal 200 klleaterg (or about to sections) vill enter the progfan as the DCp/comanatiy cosstruction coastifes coaplete cosstfuction of nev foads. Therefore, for planalag purposes, fhis aliatebance progran will atatala 500 kitoeefers in
 asd $1,300 \mathrm{k}$ lioneters in 1950 the tinal yeaf of the project life, Altheugh by tise asty 1,300 kiloneters witl be vader annual natatenance, dufing the total five year life of the project $4, j 00$ kitometers of access foads with have recelved annyal laber infensive alatenabce. A sunaary of al! cests 4ssertated utim this level of effort are found ta fable $\ddagger$.

## 9. Levei of Efferf by the BCZ

Pufling the fifst yeaf of the prapesed aatateance progran onty 300

 kileneter, vitain the juristletion of each reglgal office. Due to the

Heate 1 Jomare 2


$12 \cdot 1 \operatorname{tax}$


## 

1. Ormentisiles (TMinaly

Avtimane
4. Bervy tign/fuant/ togilye Jonual:
Timen/
ELank:a
Hanatianda/
Hertranilemiate

| 4\% | 21 | 4 | 3 | 20.4 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4.212 | - | - | - | - |  |
| $\theta$ | - | 34 | - | 3.3 | - |
| 17 | 13 | 7 | 5 | * | 5 |

c23 11

3es
.
163

45 152
(
2. Chas Gubls (Thnaly/)

milhtamuavo/
Nantianilailantice cer
Tgallow Pumate
Starat Lation!

| $\sim$ | 22 | - |
| :---: | :---: | :---: |
| - | $3 m$ | - |
| 028 | 134 | m |


| 26 | - | 27 |
| :---: | :---: | :---: |
| 125 | - | 138 |

- 

63
296
-
14.
anmane.
4
1
$\square$
18
-

205
$\square$ 238
18
$1 m$

-
22

29230
220
423
250
1es
1676
974

Ifaited amount of maintenance required, a separate maintenance unit within each of the six regional offices can not be economically justified. On the other hand, one aaintenance unit based out of the DCR central office could not adequately cover the maintenance needs of the six regions due to the distances between the regions compounded by the mountainous topography which reduces accessibility and increases transportation time. Therefore the aaintenance activities, though coordinated by the central office in Guatemala City, will be aanaged taik of two of the six DCR regional offices. Because of their geographic: tecation, the regional offices in Chiaaltenango and Quetzaltenango vere chosen. Each of these DCR offices will be responsible for the aaintenance of about 250 kilometers the first year of the project. The program vill be adainiatered by one resident maintenance engineer at each of the two aaintenance headquarters. Each engineer and two assiatants will inspect all roads being aafatained as vell as those roads which will enter fato the mafatenance prograa shortly, identifying work to be undertaken, levels of comaunity work force required, scheduling of both routine and periodic maintenance efforts and managing the most cost effective alx of heavy equipaent required to support the malntenance effort. It is anticipated that each road vill be visited at least once a veek by either the resident engineer or one of the two assistants. During the firat year of the project roughly 50 road segzents ( 250 kilometers ) need to be visited by one of these three iudividuals each veek, or 17 roads ( 75 kt lometers per veek per person). Given the grouping of diffetsat road segments it vill be feasible to visit these 17 roads within 2 or 3 days per veek. The third year each individual vill have to visit 30 roads segaents per week reaching their capacity to visit project sites. The fourth year additional staff vill be hired. 2 assiatant varehousemen vill be hired to process field requests for handtools, one at each regional center. To initiate the heavy equipaent supported portion of the ainatenance program, each regional aaintenance office uill have at thatr disposal one road grader, six duap trucks and one backhoe/front end loader (requiring eight heavy equipaent operators/drivers) which vili be used priaarily for resurfacing gravel running surface aterials. As the regional aatntenance offtcer fincreasen the level of aaintenance activistes, additional heavy equipeent vili be purchased (at the end of the third year) to compleaent the faitial aix of equipaent. Tvo additional engineeriag asaistants and two payroll clerks, as vell as one additional resident engineer vould be hired at that tiae. Social workers currently located at all six regtonal offices vill undertake comanity aaintenance promotion caapalgns to facrease or continue public avareness of the value of aalatenance to comanities and aunicipalities where the aifatenance prograa is to be faltiated or continued,

The resident eagineer or one of the two assistants vill certify that road aatatenance has been undertakes, so that the comanity road maistenance coanttee neabers can be paid.

The syaten for payment of comantity aatntenance vorkers will be the same as that estatitshed ynder the rural access roads construction progran, This systea has been tield tested over a six year period and has proven to be efficient and acceptable by beth tha DCit as vell as the work erevs, Work erev forenen selected by comantity road conatitees and who vere trataed under the
access roads construction program will coordinate work crews as well as record worker attendance and work performed, This information will then be reported weekly to the Assistant for the resident engineer who requests the DCR payroll unit to process bi-veekly payment claims based on unitary price of work to work performed. These payment claina are then delivered to the vorkers by DCR on a biweekly basis and can then be cashed at Regional Offices of the Bank of Guatemala.

At the foitiation of the project the DCR will require the hiring of 32 nev employees: 1) ont assistant to the road maintenance coordinator for the central office, 2) two resident maintenance engineers one at each of the regional aaliatenance headquarters, 3) four assistant maintenance personnel, 4) two assistant warehousemen 5) six drivers to drive the personnel in 12 and jJ above to work sites, 6) thirteen drivers for the 12 pump tanks and one low boy, 7) four heavy equipment operators to operate the 2 road graders and 2 back/hess. In addition, payroll personnel and social vorkers currently on board at the six regional offices will be utilized. During the fourth year, the following additional DCR staff will be hired; 1) one resident engineer, 2) two assistant suiatenance personnel, 3) two payroll clerks, 3) three drivers for $\$ 1$ and $\$ 2$ above, 4) six drivers for the 6 nev dump trucks and 5) 2 heavy equipment operators for the nev road grader and backhoe. Therefore, by the fifth year the DiR level of effort will include an additional 48 employees. (salary casts for these new employees is given in Table II).

## Table II

A. Administrative Personnel = DCR Central Ofiticel
A. Personal Adainistrativo = Oficinas Centrales de la inch Afainiefracton $1 Q=1$ US


The Coordinator of the Department of Rural Ross will be resposalble for road maintenance, assisted by his deputy who will represent a nev position at tie adalatatrative management lavel./El coordtader del Departanento de Canines lyfales seta fesponsable del matentatento de los canines ayudado per st asistente que increnenta una pesicton a snivel 4 e 4 freceton adatnistrativa.

$$
\begin{aligned}
& \text { B. Adainistrative Personnel }- \text { Regional officel } \\
& \text { B. Personal Adainistrativo - Oficina Regional } \\
& \begin{array}{c}
\text { Expenses for Tuo Regional Maintenance Centers }
\end{array} \\
& \text { Gastos para Dos Centros Kegionaies de Manteniaiento } \\
& 1 Q=1 \text { USS }
\end{aligned}
$$

| Amount | Titie of Position. | Salar | Salario |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Cant 1- } \\ & \text { dad } \\ & \hline \end{aligned}$ | Titulo del Puesto | Monthly Mensual | Annual Anual | Bonus/ Aguinaldo | Total |
| 2 | Rusident Engineera/Ingeateros Residentes | Q1,215 | Q29,16\% | Q1,600 |  |
| 2 | Harehousemen helpers/ Ayudantes de Sodeguero | 285 | 10.260 | 320 |  |
| $\bullet$ | Operators/Opetadores | 400 | 19,200 | 800 |  |
| 19 | Drivers/Conductores de Vehiculos | 120 | 27,360 | 1,520 |  |
| 4 | Zngineer's Assistant/ Auxiliar de Ingeniero | 500 | 24,000 | 940 |  |
|  |  |  | Q109.980 | 05.188 | Q115,168 |
| Totat | Techateal Adatatstrative a | and Operat | ns Costs |  | Q145,828 |

Fechatcal adainistrative personnel in the legional Maintenance Centers which vill be stationed ta the two access roads regions./Personal tecnico adainistrativo de operacion en los centros regionates de aanteniaieato que estafan localizados en dos de las regiones de candias de acceso.

The cost of the techatcal adalalatrative operations for 5 years uill be Q165, $125 \times 5$ : 0729,140 since there are not any salary facreages anticipated during the ilfe of project.

Beginaing with the fourth year, to cover the needs of the new equipment and assist fts adalaistrative asd techaical staff, it vilit be ascessary for the DCt to increase its staff froa the fourth year as indicated below, This additional equipaent and staff vill be req̧ulred because of the additional access roads constructed by the DCR during the first years of the project is addition to roads planed for construction after the fourth year.

## E. Level of Community Effort

During the construction of 325 kilometers of access roads within the AID financed 520-0233 project approximately 60,000 people or about 12,000 families living in 236 comanities along these access roads benefited from the improved ascus provided by these nev roads as well as benefiting from village labor payments for their participation in the labor intensive construction effort, Assuming that the roads to be maintained are similar in characteristics to those alrandy constructed then la the tifat year of the alatenance program about 474 e'amunty supplied foremen will supervise laborers who will provide 44,933 man days of labor from the 474 communities along the 500 kilometers ta be maintained. With an increasing volume of roads to be maintained the number of these foremen will reach about 949 individuals by the fifth year when 1,300 kilometers are under annual maintenance. These

$$
\begin{gathered}
\text { C. Additional Requirements (Fourth Year) } \\
\text { C. Secesidades Adiciodnales (Quarto Ane) } \\
10=1 \text { uss }
\end{gathered}
$$



The cost of technical adalatscrative operation for two years of


Whereas the DCR villi have to tatrease the fatal cost of ifs budget for the 5 years of the 11 fe of project vil! be $9729,140=0114,760=0863,929$,
foremen will provide their services year around (to be paid by the DCR) at roughly $\mathbf{\$ 3 . 0 0}$ per day depending on the type of work undertaken, Each foreman will supervise a number of community supplied laborers, the exact number depending on the work to be accomplished. In order to spread the opportunity for extra income more equally among all interested community maintenance committee members as well as to insure that members have sufficient time to attend to their fields, each laborer will work 20 days a ant for 3 months a year. Therefor each laborer involved in the program can anticipate an outside annual income of approximately 0180 ( 3 month $\times 20 \times 93.00$ ), Using the criteria that each laborer will supply only 60 san days of labor per year during the first year of the maintenance program 750 laborers will perform 44,955 man days of work required to maintain 500 kilometers of roads (see Table III for calculation of work requirements). By the fifth year 1950 laborers will be required. In total, during the five year project the comualties will provide 6,750 an years of labor and will receive a total of Q1,087,000 in labor vagus which villi be distributed over the 949 rural coanuatites (47,700 families, or about 238,500 individuals).

## F. Project Equipment Needs

In order to maintain access roads using labor intensive methods the comanaicy labor will require handtools. However, for certain types of work, such as transporting fill or runalag surface materials or in spreading large volumes of gravel, heavy equipment is required, it ts acre cost effective to coordinate the level of output of the backhoe and dump trucks with road grader which can spread the material ia the that it takes to deliver it to the work sites. Therefore, both handtools and heavy eq̧ufpaent wilt be needed to maintain the access roads within the program.

## a. Mandtagle

Experience with labor intensive road aalatenance under the previous AiD Project Mo. 520-023) indicates the seed to 4 divide maintenance activities among 5 an crews, each assigned to 3 Kilometer sections of road, fa other words, the maintenance program for the first year will cover 167 sections (ice. 500 ; 3 - 167). Each section, or crew, viii requite a alk of 6 hastcools. Appropriate hand cools to carry out road eatatenance tasks villi taciude picks, shovels, hoes, wheelbarrows and achates. The quantity and cost of hand tools per kilometer are described in Fable VI.

Although handteols by law will always belong to the GOG, the conmatity coabitises will be responsible to the DCA for the hasteols. The handteols villi be replaced by the DCA when no longer vocable. Handteels will be kept within the same cominatites and village maintenance comintices will be responsible for atataiaing the berfeved tools in geod order,

## b. Heavy Equifnemi

If is estimated that about $400 \mathrm{a}^{2}$ of surfactea astefiai is fesulfed per kiteneter to provide an adequate funaleg surface. in total, for

Thale Izt.tountm Iz:


| Failutamanes Annilatiny <br>  <br>  | Fwentian <br> Citsentla/ <br> Cittrethe de <br> F)wnuckion <br> Fropuancy |  | Man <br> Bhelly <br> thatam <br> at <br> Dudes | Ethclancy Ethelavile | tral 2 or val Mert, anisidat ratuy? ceas! |  |  | Nant Dayl Hetice - tele | Cruit peir Dreyf Cantis gray bua | $\begin{aligned} & \text { Patry } \\ & \text { Crent/f } \\ & \text { Oreto } \\ & \text { Nuro } \\ & \text { Crase } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - min Rhave ate Gwe | Nonguancy <br> Townducle | 2 Yuatre <br> 2 Aice | Sin. | I fianchytar $2 \mathrm{Man} / \mathrm{tan}$, $/ \mathrm{CL}$ arials | 200 |  | 270 | 1.250 | 02.003 | 02, 730 |  |
| 2. alanking ant taswalane Tismanchan y Dot titana ense magelive | Neqдимекс Trechanctie | 2 Temetre <br> 2 Angae | Am. | 20 Nindthey <br> 30 An/250 | 280 | 2 | 25 | 30 |  | 190 |  |
| 2. Dutionilwe/lautues | $0^{2} /$ han /heret <br> $3 \mathrm{~m}^{2} / \mathrm{Hm} / \mathrm{hus}$ | 2 Wrant <br> 3 hie | $\begin{aligned} & \omega^{2} \\ & \omega^{2} \end{aligned}$ | 1. $1 \mathrm{~m}^{2} \mathrm{H}$, 保 Dey <br> 2. fienh/cue- <br> arilise 55s | 2.530 | 5 | 1.467 | 4.225 |  | 25,cos | 0 |
|  | Pwatamey Trechuencle | 4 yevere 4 Anewe | $0^{2}$ |  | 40,409 | 20 | 220 | 4. 540 |  | 12.640 | 0 |
| 3. Cheandive and Aeyoltr at Chevertin/tiluellenes of Buyp- <br>  | Nowamayy Twivamels | 4 Runise <br> 4 Rensese | Dis. Cal ventra/2 esurtati 13ne | 4 tan/arues 4 sani//hr-an | 5,000 | 2 | 1.250 | 2.300 |  | 7.700 |  |
| 4. Thand CTasuline Bytithun/talo gikese 7 Duetrikalo Chumitie | Trestianicy Tractuencise | 6 Menchat <br> 5 Hentes | $\begin{aligned} & \text { neutas } \\ & \text { mentars } \end{aligned}$ | 6inut./m/ary cione./hylale | 200,000 | 10 | 1.647 | 24,670 |  | 90,480 |  |
| D. Wequsatian Contace/thantimel as Wegnetaelan | Dixy-a/kayly <br>  | 1 3wher <br> 2 ane | $\Delta^{2}$ |  | 73,000 | 5 | 1.485 | 9.305 |  | 20,125 |  |
| A. Tauti maham/trutrumese | $\begin{aligned} & m^{3} / \text { /hin/thear } \\ & m^{3} / \text { /han/ hive } \end{aligned}$ | 3 2mat <br> 1 anco | $\begin{aligned} & m^{3} \\ & m^{2} \end{aligned}$ | $\begin{aligned} & 3 m^{2} / a / a x y \\ & 2 m^{2} / h / / a j e \end{aligned}$ | 3.390 | $\underline{1}$ | 46 | 2,205 |  | 6.695 | 0 |
|  | mentiat//Crantis | Traliturta on | Nuna a | lua par sakn | 170 |  |  | 44, 955 |  |  |  |

Thase rylamaro TV
 bund bitry Cont hiventione

|  | tim | Onen/tion Crintap/ian | Crut/nural Cuitertacal | प\|x |  | Cxycose |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0 | $\begin{aligned} & \text { haviry } \\ & \text { cornions } \end{aligned}$ | 1 | $\begin{aligned} & \text { moxity } \\ & \text { Onntiond } \end{aligned}$ |
| Init frant/ret ance | 595 | 295 | 125,003 | 85 | 12. 238 | 25 | 33,730 |
| Thet Theur/2as anme | 395 | 2\% |  | es | 140, 7es | 25 | 80, 115 |
| 3ne Nener/3nt ano | 39 | 25 | 222,109 | 25 | 177.705 | 45 | 165,395 |
| ach Trearflete ans | 2309 | 2 m | ce, 309 | es | 293, 525 | 25 | 238,975 |
| Shen Trew/thie anss | 1385 | 625 | 迷本, 590 | 23 | 141, 278 | 73 | 42,425 |
|  |  |  | -2,639,000 |  | - 36,640 |  | - \$222,360 |

anase Nats 6e cixa tiaconest ia

|  |  <br>  |  <br> Nen of Cranidaties |  | Hib. of tetrorers <br>  |
| :---: | :---: | :---: | :---: | :---: |
|  | 435 | 434 | 45,000 | 730 |
| theonat Truar/Smeguente mue | 20 | 521 | 62,000 | 1.050 |
|  | $3 \times 1$ | 457 | 42,000 | 1.250 |
| muesta Smat/famesw mue | 2.835 | 403 | 95,000 | 1.650 |
| Fhat Tenoflorlince ave | 83998 | 3 es | 117,000 | 1,259 |


 $2 \%$ man


asase

500 kil peters, this volume is about $200,000 \mathrm{~m}^{2}$, Given Guatemalan climatic and topographical conditions the volume of resurfacing material required annually to replace lost or worn surfacing material is about 40 percent. Hence during the first year of the maintenance program about $80,000 \mathrm{~m}^{3}$ of material will be replaced. This volume of work will be undertaken by heavy equipment, not by hand labor, because on the average the gravel borrow pits are located 10 to $15 \mathrm{kilomet} \mathrm{m}_{\mathrm{s}}$ from the work sites. Therefore it is more cost effective to use heavy equipment to transport the resurfacing materials than by land with wheelbarrows. One front end loader can load about $350 \mathrm{a}^{3}$ per day. Therefore 229 days ( $00,000 \mathrm{~m}^{3} / 350 \mathrm{~m}^{3} /$ day ) are required to complete the task. A heavy equipment unit at each of the two regional offices consisting of one backhoe, 6 dap trucks and one road grader can undertake half of the required work ia 115 days. Compacting of resurfacing material will be undertaken by manual labor.

By the beginning of the fourth year 900 kilometers of roads will be facluded fa the aaiatesance program with an additional 200 kiloaeters entering tate che prograza. With 900 kilometers to be matatained, approximately $144,000 \mathrm{~m}^{3}$ of resurfacing materials need to be transported to road sections ( 900 kilomet f g x $400 \mathrm{~m} \mathrm{x}, 4=144,000$ ). This will require 411 days ( $144,000 \mathrm{a}^{3 / 350} \mathrm{a}^{3} /$ day). Each backhoe/front end loader val be utilized 205 days or near the limit of available work days per year, Hence, heavy equipment asistenance equipment package will be required to be purchased during the fourth year of the project. Table Vil provides a listing of the heavy equipment to be purchased at two discreet intervals. Table Viii provides operating and aatatenance costs for these veltictes on an annual basis.

## Fehle vitypere ni




timeltsushe sepet juet thay
Sesits die to thertuatenite guet to obec








3nise
A. Heavy Maintenance Equipment for Two Centers A. Equipg Pogado de Manteniaiento para Dos Centros 10 = 1 US3


## Table VIII/Cuadro VIII

$$
\frac{\text { Operating Expenses }=\text { Maintenance and Tires }}{\text { Castos de Operacion }=\text { Manteniaiento y Liantas }}
$$

Puels and Lubricants
Coabustibles y Lubricantes

## Irucks/Caniones

12 Duap Trucks/caalones de volteo
Aanua! nileage per truck/Recorfido anal por canioa; $\quad 60,000 \mathrm{kas}$. Diesel Coasuaption/Consumo Dieseli $15 \mathrm{ka} / \mathrm{Gal}$ Aaount of galloas per truck/Cantilad de galones por caaion: 4,000 Cal diesel Assumag 10 I percent for faflation/Toanado un $\mathbf{I}$ de inflacton del 10 Z

Price of Diesel/Precto del Diesel:
19 - 1 USS


Malatemance/Mantentaienta
If is entiasted ghat each fruck wili fecelve aatafemance service every 5,000 ka. of $h 2$ anasal services.

Average Gest of Service $=0150,00$

|  | Cost per Service/ Costo per Servicio | No, of <br> Services/ <br> No, de <br> Servictos | Firat Procurament |  | Second Procurement |  | $\begin{aligned} & \frac{\text { Total }}{\text { Costt }} \\ & \text { Costo } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | So, of Trucks/ <br> No. de Caalones | Cost <br> Year/ <br> Costo <br> Ano | No, of Trucks/ No, de Caniones | Cost <br> Year/ <br> Costo <br> Aso |  |
| 1. Year/Ano | 150 | 12 | 12 | 21,000 |  |  | 21.600 |
| : Year/Ano | 165 | 12 | 12 | 23.760 |  |  | 23.760 |
| 3)Year/Ano | 180 | 12 | 12 | 25.920 |  |  | 25.920 |
| - Year/Ano | 198 | 12 | 12 | 28,512 | 6 | 14,256 | 42.768 |
| ; Year/Ano | 218 | 12 | 12 | 31.39: | 6 | 15.696 | 47,088 |

Fires/Llantas!
Replacemest of ctres every 25,000 kas, or 2.4 times during the year,/Reposicion de llantas ca4a $25,000 \mathrm{ka}, 9$ sea 2,4 veces al ane,

Falue of Fires/Falor llastas * Q:50

Suaber of tires per truck/Multerg de llantas per canige * 6





Maintenance Manteniatento
It is estiasted that each pickup truck vill receive 10 maintenance services per year per $5,000 \mathrm{ka} . / \mathrm{Se}$ estiman 10 servicios al ano por vehiculo, o sea cada $5,000 \mathrm{~km}$.
ieit cost per service - $Q 100$

$$
19=1 \text { us } 3
$$



## TFes/Lantas:

Replacenent of tires each $15,000 \mathrm{kas} / \mathrm{Reposicion}$ de 1lantas cada $15,000 \mathrm{kas}$.
Ondy two replacenents of tires are estiasted duriag the first year asd three during the followiag years./Se consideran solo 2 reposiciones de liantas el priaer ano y para los siguientes anos.

Value of tire/Valor Llantal
Q 150
Fires per vehtcie/tiantas vehiculoi
4
Annual cost of tirea fer the first year./Cesto anual de las llantas para el primer anor - 150 n - 2 - 91,200

Cost of tires for the 2nd, year $=150 \times 4 \times 3 \times 1,1=91,000$

- 19 -

Cost of Pickup Truck Tires/Costo de Llantas para Pickups


Heavy Equipaent/Equipo Pesado

1. Graders Motoniveladores


The aleanias of ditches is conaidered separate from the ourfaciag vork./Se soseidera ei trabajo de limpiesa de cusetas separade del recubriaisento.

For geographical reasoss two graders are required, one for ach matatenamee centerife cossideran 2 moteniveladores per rasoses de localisacion geografica una para cada Centre de Masteataiente.

Anasal wrk days/Dias de trabaje per ane: 229
Baily fuel eossuaption/Cosoven diario de conbustiblei 32 gals.
For $\mathbf{2}$ graders/Fars 2 motosiveladeras - $229 \times 32 \times 2$ - 14,656 gal Diesel year/ gals Diesel at ane

> Graders - Price of Diesel Motoniveladoras = Precio de Diesel 10 - 1 USs

|  |  |  |  | First Pro | cureaent | Second Pro | rocurement | fotal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Price per Ga:10a/ Precto por Galon | Callona <br> Fer Year/ <br> Galones <br> por Ano | So. <br> Graders/ <br> Motonive - <br> ladoras | Anaual Cost! Costo Anua! | No. <br> Graders/ <br> Motonive- <br> ladoras | Annual <br> Cost/ <br> Costo <br> Anua! | Annual <br> Cost/ <br> Costo <br> Anual |
| 1 | Year/Ano | 81.31 | 14,636 | $\geq$ | 938,399 |  |  | Q38. 399 |
|  | Year/Ano | 1.46 | 14,075 | 2 | 42,209 |  |  | 42,209 |
| J | Year/Ano | 1.59 | 14.675 | 2 | 46,606 |  |  | 46,606 |
| - | Year/ano | 1.76 | 14.075 | 2 | 51,003 | 1 Q25 | 25,501 | 76,504 |
| 5 | Year/Ano | 1.92 | 14,675 | 2 | 50.279 | 120 | 28,139 | 34,418 |
|  |  |  |  |  |  |  |  | 9285,136 |

## Sackhoe vish Front End Loader/hetroexcavadoras:

Sane nuaber of days vorking than graders/lgual nuaero de dias trabajando que las aotoniveladoras

Datiy dtesel conauaption/Consuap diarto de dieseli 26 gals.
Annual 4iesel consuaption/Consuno anual de 4iesel; 10.992 sais.
$10 \cdot 1$ uss

|  |  | Frice per Galion/ Frecta por Galon | Galions <br> per Tear/ <br> Galoses <br> per Ang | First Frecurenat |  | Second Frocyfenent |  | fotat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 30, 3ack= Annual |  | 80. sack= | Annual | Annual |
|  |  | hees/ |  | Cest/ | hoes/ | Coste/ | Cest/ |
|  |  | Motenive $=$ |  | Coste | Motesive | Ceste | Ceste |
|  |  | taderas |  | Anua) | laderas | Anua) | Anual |
| 1 | Tear/ Ano |  | Q1.31 | 10,7\%? | 2 | 923.749 |  |  | 028.775 |
| : | Tear/Ane |  | 1,66 | 10.792 | 2 | 31.657 |  |  | 31.657 |
| 3 | Year/Ase |  | 1.59 | 10.972 | 2 | 34.955 |  |  | 34.955 |
| * | Tear/Ano |  | 1.76 | 10,79: | : | 38, 292 | 1 | 17,126 | 57,378 |
| 5 | Tear/Ase | 4.92 | 10,992 | \% | 56.279 | 1 | 21,105 | 23.316 |
|  |  |  |  |  |  | Fetal |  | 92:9,103 |

Maintenance of Heavy Equipaenc/Mantenialentg Rquipo Pesado


## 

Cest of ctre/Ceste Lianta: $\quad \$ 1.500$
Aapunt of tifes/nunery de tlantas 6 each/e.l.
Nuber of aster traders/Munere de aetontveladerasi ?
The firat set of tires cease vith the nev equipaent/E1 priaer set the liantas vishe ces e! nueve equipo.

The tires vili be replaced during the second year at a $60 a t$ of/ha liabtas seras renevadas a partir 4 e! 29 , ano cen un ceste 4e! $1,500 \times 1.1=1,650$ each/e.s.

- 22 =


## Tires for Graders/Llantas para Motoniveladoras 10 = 1 US



```
It is estianted that during the firat year of the project the graders vill
utilize the factory tifres./Se considera que el priaer ano del proyecto las
motoniveladoras utilizaran ef juego de llantas nuevas de fabrica.
Tires for 2 backhoes/Llantas para 2 retroexcavadoras
Cost of bis tire/Costo Llanta grandei \$1000
Coat of saall tire/costo lianta pequenal 150
davunt of bis tires/manero de tlantas srandes = 2, \(\mathbf{1 2 , 0 0 0}\)
Aapust of saal! tiras/Bunere de Llantas peq̧uenas - 2. 200
```

    Fotal 32,300
    Coat of fires for the secons yearlCoste de las liantas para el segundo ano
$2,300 \times 1.1$ - 02,530


 क्या

1 a. - 1 te

5. awninnest ar aummocay


| 2. Deveruma// Awewanal | - | 186 | - | 364 | - | 106 | - | 203 | - | 203- | - | 504 | 656 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gpwestloy Owhe (twnea/ <br>  | - | 2\% | - | 220 | - | 232 | - | 377 | - | 415 | - | 148 | 1623 |
| Disente <br> 3. Thereny Egniymant | - | 123 | - | 20\% | - | 20 | - | 234 | - | 367 | - | 1262 | 1262 |
| cinaye Dexerle | - | 288 | - | 23 | - | 27 | - | 4 | - | 4 | - | 264 | 164 |
| Whes ate ave mexal | * | 26 | - | 4 | - | 16s | - | 238 | - | 42 | - | 822 | 822 |
| amamenc. | - | 372 | - | 6m | - | 122 | - | 628 | - | 1042 | - | 2482 | 2482 |
| Tonve. | 448 | 3is | * | 484 | 288 | 723 | 43 | 20cs | $1{ }^{\text {a }}$ | 1204 | 16\% | 4166 | 9662 |

lance

## nate- xhomern -

## 




nebe 39 - framley 38

## 



## (4)

|  | valat i$408$ |  | vant no ? |  | nave 3 <br> nam |  | $\text { nuat } 4$$\operatorname{man} 4$ |  | mansmusy |  | $\begin{aligned} & \text { Tone. } \\ & \text { tome. } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ¢ | [13 | 6 | H1 | 8 |  | 9 | 都\| | 9 | [138 | 6 | Yown |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. Oibet at Mwop/aide dal draye - 4 jparw/4 aws | 345 | * | 380 | - | 20 | - | 200 | - | * | - | 200 | - | 600 |
| 2. Heany Begiffeme Bioma/ Howuse an Hgilyme Dremale - 3 ymewn/3 aves | 218 | - | 285 | - | 208 | - | - | - | * | - | 300 | - | 300 |
| 2. 3. It Inventargromeyniak Browert/huwenciatlas ate Chablewe - Bigmikie un Cagnkeciven | 4 * | - | - | - | - | - | - | - | $\cdots$ | - | $\omega$ | - | 60 |
|  Baguersaes as Conyasiat de <br>  4 mernes | 40 | * | - | - | - | * | - | - | * | - | 60 | - | 60 |
|  Gituruall sexome | * | 教 | - | - | - | - | - | - | * | - | - | 50 | 50 |
| Tisal | 328 | $1{ }^{4}$ | 30 | - | 230 | - | 130 | - | * | - | 538 | 50 | 870 |

ankic

Tuile aza fondirs 3at



|  |  |  | $\begin{aligned} & \text { riau } \\ & \text { new } \end{aligned}$ |  | now |  |  |  |  |  | rotice forse |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IT | E | In | 12 | - | 9 | क) | 9 |  | 9 | 48] | 9 | rumy |
| 1. Camenhitlew/hyrimhoe <br> B. Balury Inkanalloe Ibepen/ <br> Diellayliue thane ae dive. | 1-40x | 18 | 5 | 5 | 163 | 3 | 62) | 11 | Les | 13 | 2,601 | 65 | 2006 |
| Aptameil se <br>  | - |  |  | 3 sp |  | 138 | * | 256 | - | 14. | - | 3 c | 245 |
| 6. Gkiuet Chwits | - | 30 |  | 29 |  |  |  |  |  |  |  | 30 | 30 |
|  |  | - | $=$ | 2 | $=$ | 0 | $=$ | 06 | $=$ | 维 |  | 214 | 214 |
| Hibsatall | 2.asm | 158 | 6 | 254 | 3 ta | 23 | 423 | 253 | Les | 205 | 2.604 | 1.254 | 3,655 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| hail ationelise Thembina <br> 2. Hawellinue thiwite/tanuebse | 220 | - | 30 | - | 2 ED | - | 200 | - | - | - | 120 | - | 820 |
| Wivere Shmazebankre | $\approx$ | \$9 | $=$ | $=$ | $=$ | $=$ | $=$ | $=$ | $=$ | $=$ | $=$ | 39 | 30 |
|  | 88 | * | 3 | $=$ | 20 | 9 | 109 |  |  |  | 400 |  |  |
| Tkall tamen | 2.13 | $2 \times 2$ | 20n |  | 308 | 273 | 123 | 23 | 14 St | 25 | c1 | c | - |


finlanthe Wave Ores

2. Dewwhnal//hewsanus
he quarwilim:
c. Trallailuy

Abtratal
Thail satbeary
Twall sarb anat
2828



[^0]:    1) Evaluactoa de Tecufsos Hacufales Pafa Deterainar ei Uoo Pocenctal de la Fieffa en Cuafenala.
    2/ Fiazi Bepori, Jerome Arledge, June 1980. Saali=scale fryigation, Bertis Eabry, March 1983. Aboreviated Fepnopic Ana!ysia of fhe Salit Farmer Bevelopmenf Froject. Aa斤7 Saith, May 1763,
    Satth, Gary, ep, cit.. P,
[^1]:    57 A Fualvaed Folicy fof Guatenala, United Hations Developaent Fregfan Fegece çA/74/gisv, Susan 3egach, Januafy 1981, ק, 1=1,
    5) ibi4, 8, t=19.

[^2]:    

[^3]:    The cine fequifod feq ike conplatise of each phase and
    
    
    
    

[^4]:     Spantsh Gebefaliy vith phonalogical and syatatie laterferenee fren the indigeneus lasuage, veafs etethtag vhieh is distinctive (spectaily the
     retigious patiersa. A Lafing, is cestfast, speaks accent=free spanitsh as sele (yr deainast) lanauage, vears vesfefa giyle elothing, and adheres fe
     Felevast infoughout bitia hinefica,

    近 Fifeject area pepylation is 31 perseas per siuafe kitebetef, of is perseng per squafe alie,

[^5]:    

[^6]:     4973. 7 , $30=21$ ).
    

[^7]:    1/4.00fmilies in the djusted rarget group at Q1,000 anmul income per fanily. Z/IO,000 fanilies ta che adfusted carcet group at Q1,000 annul income per faily.

[^8]:    Wits a 254 annual cost overrun.

[^9]:    1) Sanil Fannef Piversificacion Froject fof the finhlando of Guatemala, Gustave goees, May 17 Bi .
[^10]:    If Ore hypothesis that appears frequently is that innovation ta the Highlands Nil raise the cost of labor in the lowlands because of the disapperance of seasons migrants．If profitable，laber＝intensive crops continue to proliferate is the 格ghlands，this would seen to be a persuasive argument．it＇s certalaly one meriting empirical investigation．

    2）If time and resources permit，Saith recommends a Fere detatied survey of （1）farmers having participated ta the project and（z）a set of eloselymatched farmers who have bet，

