WO2020241730A1 - Arylamine compound and use thereof - Google Patents

Arylamine compound and use thereof Download PDF

Info

Publication number
WO2020241730A1
WO2020241730A1 PCT/JP2020/021058 JP2020021058W WO2020241730A1 WO 2020241730 A1 WO2020241730 A1 WO 2020241730A1 JP 2020021058 W JP2020021058 W JP 2020021058W WO 2020241730 A1 WO2020241730 A1 WO 2020241730A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
formula
represented
Prior art date
Application number
PCT/JP2020/021058
Other languages
French (fr)
Japanese (ja)
Inventor
小島 圭介
歳幸 遠藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217041963A priority Critical patent/KR20220016122A/en
Priority to JP2021522843A priority patent/JPWO2020241730A1/ja
Priority to CN202080039976.3A priority patent/CN113874352A/en
Publication of WO2020241730A1 publication Critical patent/WO2020241730A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to arylamine compounds and their use.
  • organic electroluminescence (hereinafter referred to as organic EL) elements are expected to be put into practical use in fields such as displays and lighting, and various developments related to materials and element structures are expected for the purpose of low voltage drive, high brightness, long life, etc. Has been made.
  • a plurality of functional thin films are used in this organic EL element, and one of them, the hole injection layer, is responsible for the transfer of electric charge between the anode and the hole transport layer or the light emitting layer, and is low in the organic EL element. It plays an important role in achieving voltage drive and high brightness.
  • the method for producing the hole injection layer is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing these processes, the wet process can efficiently produce a thin film with a large area and high flatness. For this reason, as the area of organic EL displays is being increased, a hole injection layer that can be formed by a wet process is desired.
  • the present inventors have a charge transporting property that gives a thin film that can be applied to various wet processes and can realize excellent EL element characteristics when applied to a hole injection layer of an organic EL element.
  • the charge-transporting thin film for organic EL elements has been in the visible region because the coloring of the charge-transporting thin film used for the organic EL element reduces the color purity and color reproducibility of the organic EL element. It is desired to have high transparency and high transparency (see Patent Document 6).
  • the present invention has been made in view of such circumstances, and when a thin film having good solubility in an organic solvent and good optical characteristics is provided and this thin film is applied to a hole injection layer or the like. It is an object of the present invention to provide an arylamine compound capable of realizing an organic EL device having good properties.
  • the present inventors have at least arylcarbazole at the center via a spacer having an aryldiamine skeleton and a predetermined arylene skeleton at the two amino groups.
  • the compounds bonded one by one have good solubility in an organic solvent, and the varnish obtained by dissolving this in an organic solvent gives a thin film having excellent optical properties, and this thin film is applied to a hole injection layer or the like.
  • the present invention has been completed by finding that an organic EL element having good characteristics can be obtained in some cases.
  • Arylamine compounds represented by any of the following formulas (1) to (6) (excluding compounds represented by the following formulas (P1) to (P4)), wherein, Ar c each independently represent a group represented by the formula (Q), X represents an arylene group which may be independently substituted and may contain a heteroatom. Y represents a phenylene group which may be substituted independently of each other. g represents an integer of 1 to 10 independently of each other.
  • R 1 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • R 2 represents an aryl group that may be independently substituted and may contain a hetero atom
  • Ar s represents an aryl group.
  • R 3 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • V 1 is an independent C (R 4 ) 2 (R 4 is an independent hydrogen atom and has 1 to 20 carbon atoms. It represents an alkyl group or an alkyl halide group having 1 to 20 carbon atoms), NR 5 (R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. ), S, O, or SO 2 , V 2 stands for NR 5 (R 5 stands for the same meaning as above), S or O) 3.
  • Ar s is represented by any of the following formulas (101A) to (118A).
  • Ar s is 3 arylamine compound represented by any one of the following formulas (101A-1) ⁇ (118A -3), (In the formula, R 4 and R 5 have the same meanings as described above.) 5.
  • X is an arylamine compound according to any one of 1 to 4 represented by any of the following formulas (201) to (207).
  • R 6 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • NR 8 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms), S, O, or SO 2.
  • W 3 stands for NR 8 (R 8 stands for the same meaning as above), S or O.) 6. 5 arylamine compounds, wherein X is represented by any of the following formulas (201A) to (207A). (In the formula, R 6 , W 1 , W 2 and W 3 have the same meanings as described above.) 7. 6 arylamine compounds represented by any of the following formulas (201A-1) to (207A-1), wherein X is (In the formula, R 7 , R 8 and W 3 have the same meanings as described above.) 8. Wherein Ar c is one of arylamine compounds of 1-7 are the same group, 9. A charge-transporting varnish containing any of the arylamine compounds 1 to 8 and an organic solvent. 10. 9 charge-transporting varnishes containing dopant material, 11. Charge transport thin films made using 9 or 10 charge transport varnishes, 12. Provided is an electronic device including 11 charge transporting thin films.
  • the arylamine compound of the present invention has good solubility in an organic solvent, and by using a charge-transporting varnish containing this arylamine compound, a charge-transporting thin film having high transparency and high refractive index can be obtained. be able to.
  • This charge transporting thin film can be suitably used as a thin film for electronic devices such as organic EL devices, particularly as a thin film for electronic devices in which a thin film is laminated by a wet process on an upper layer, and the charge transporting property of the present invention can be used.
  • a thin film to a hole injection layer or the like of an organic EL device, an device having good characteristics can be manufactured.
  • FIG. 5 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-1. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-2. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-2. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-2. 3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-3. 3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-3. It is 1 H-NMR spectrum figure of the compound obtained in the production example 1-4. It is 1 H-NMR spectrum figure of the compound obtained in the production example 1-4. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-5.
  • 6 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-6. 6 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-6. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-7. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-7. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-8. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-8. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-9. It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-9.
  • Example 1-2 It is 1 H-NMR spectrum figure of the compound obtained in Example 1-2. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-3. It is a 1 H-NMR spectrum of the compound obtained in Example 1-4. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-5. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-6. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-7. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-8. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-9. It is a 1 H-NMR spectrum of the compound obtained in Example 1-10. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-11.
  • Example 1-12 It is 1 H-NMR spectrum figure of the compound obtained in Example 1-12. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-12. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-13. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-13. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-14. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-15. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-16. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-17. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-17. It is 1 H-NMR spectrum figure of the compound obtained in Example 1-18.
  • the arylamine compound according to the present invention is characterized by being represented by any of the following formulas (1) to (6), and includes the compounds represented by the formulas (P1) to (P4) as described above. do not do.
  • Ar c each independently represent a group represented by the following formula (Q), X is independently together may be substituted, a hetero atom Represents an arylene group which may contain, Y represents an independently and optionally substituted phenylene group, and g each independently represents an integer of 1 to 10, but preferably.
  • Ar c each independently represent a group represented by the following formula (Q ') or (Q'').
  • R 1 independently has a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and 1 carbon atom.
  • Ar s represents an arylene group which may be independently substituted and may contain a heteroatom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl or t-butyl.
  • the alkyl group having 1 to 20 carbon atoms may have a linear, branched or cyclic alkyl group, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy and n-butoxy. , Isobutoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexyloxy, n-octyloxy, n-decyloxy, 2-methylhexyloxy, 2-ethylhexyloxy, 2-n-propylhexyloxy, 2- Examples thereof include n-butylhexyloxy, 2-ethyldecyloxy and 3-ethylhexyloxy groups.
  • aryl group having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4- Examples include phenyl, 9-phenyl group and the like.
  • the alkyl halide group having 1 to 20 carbon atoms is a group in which at least one hydrogen atom of the alkyl group having 1 to 20 carbon atoms is substituted with a halogen atom, and specific examples thereof include fluoromethyl, difluoromethyl, and tri.
  • Fluoromethyl bromodifluoromethyl, 2-chloroethyl, 2-bromoethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 2-chloro-1, 1,2-Trifluoroethyl, pentafluoroethyl, 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1 , 3,3,3-Hexafluoropropane-2-yl, 3-bromo-2-methylpropyl, 4-bromobutyl, perfluoropentyl, 2- (perfluorohexyl) ethyl group and the like.
  • R 1 is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and more preferably a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. , All hydrogen atoms are even more preferred.
  • the aryl group which may be substituted with R 2 in the above formulas (Q), (Q') and (Q ′′) and may contain a hetero atom contains a hetero atom as a constituent atom thereof. It is also a good arylene group, and may have a structure in which rings are condensed or a structure in which rings are linked.
  • the number of carbon atoms is not particularly limited, but is usually 6 to 60, preferably 40 or less, and more preferably 30 or less.
  • substituent of the aryl group which may be substituted with R 2 and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and a carbon number of carbon atoms.
  • substituent of the aryl group which may be substituted with R 2 and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and a carbon number of carbon atoms.
  • Examples thereof include an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
  • alkenyl group having 2 to 20 carbon atoms include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-Methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-1-decenyl, n- 1-Eicosenyl group and the like can be mentioned.
  • alkynyl group having 2 to 20 carbon atoms examples include ethynyl, n-1-propynyl, n-2-propynyl, n-1-butynyl, n-2-butynyl, n-3-butynyl, and 1-methyl-.
  • an aryl group having 6 to 10 carbon atoms which may be substituted and may contain a hetero atom is preferable, and a phenyl group which may be substituted and a naphthyl group which may be substituted may be used. More preferably, both are more preferably a phenyl group or a naphthyl group, and both are even more preferably a phenyl group.
  • groups suitable for R 2 will be given, but the present invention is not limited thereto.
  • the arylene group which may be substituted with Ar s in the above formulas (Q), (Q') and (Q ′′) and may contain a hetero atom contains a hetero atom as a constituent atom thereof. It is also a good arylene group, and may have a structure in which rings are condensed or a structure in which rings are linked.
  • the number of carbon atoms is not particularly limited, but is usually 6 to 60, preferably 40 or less, and more preferably 30 or less.
  • substituent of the arylene group which may be substituted with Ar s and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and a carbon number of carbon atoms.
  • substituent of the arylene group which may be substituted with Ar s and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and a carbon number of carbon atoms.
  • examples thereof include an alkyl halide group having 1 to 20, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like, a halogen atom, an alkyl group having 1 to 20 carbon atoms, and a halogen having 1 to 20 carbon atoms.
  • Ar s is a group represented by any one of the following formulas (101) to (118).
  • R 3 independently contains a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • V 1 is an independent C (R 4 ) 2
  • R 4 is an independent hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or (Represents an alkyl halide group having 1 to 20 carbon atoms)
  • NR 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • S It represents O or SO 2 , where V 2 is NR 5 (R 5 has the same meaning as above), S or O.
  • halogen atoms alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and alkyl halide groups having 1 to 20 carbon atoms in R 3 to R 5 are described above. The same can be mentioned.
  • R 3 is preferably a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms, or an alkyl halide group having 1 to 10 carbon atoms, respectively, and has a hydrogen atom and a carbon number of carbon atoms.
  • Alkyl groups of 1 to 5 and fluoroalkyl groups having 1 to 5 carbon atoms are more preferable, and hydrogen atoms, methyl groups and trifluoromethyl groups are even more preferable.
  • At least one R 3 may be an electron-withdrawing group such as a halogen atom, a nitro group, a cyano group, or a fluoroalkyl group having 1 to 5 carbon atoms.
  • a trifluoromethyl group is more preferable.
  • R 4 preferably has an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and even more preferably a methyl group.
  • R 5 is preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and a naphthyl group, and a hydrogen atom.
  • Methyl group and phenyl group are even more preferable.
  • V 1 is, S, O, SO 2
  • V 2 is, S, O is preferred.
  • V 2 is S or O
  • an electron-withdrawing group may be present in R 3 .
  • R 5 has the same meaning as above.
  • R 5 has the same meaning as above.
  • the arylene group which may be substituted with X in the above formulas (1) and (2) and may contain a hetero atom is not particularly limited, and even if the structure is a condensed ring, the ring is not particularly limited. May be a connected structure.
  • the number of carbon atoms is not particularly limited, but is usually 6 to 60, preferably 40 or less, and more preferably 30 or less.
  • Specific examples of the substituent of the arylene group which may be substituted with X and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and 1 carbon atom.
  • Examples thereof include an alkyl group having 20 to 20, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like, a halogen atom, an alkyl group having 1 to 20 carbon atoms, and a halogenation having 1 to 20 carbon atoms.
  • Examples of the alkyl group, the alkoxy group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms include the same as above.
  • the arylene group which may be substituted with X in the above formulas (1) and (2) and may contain a heteroatom is the following formula (A divalent group represented by any one of 201) to (207) is preferable.
  • R 6 independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and an alkyl halide group having 1 to 20 carbon atoms.
  • W 1 is an independent single bond
  • halogen atoms alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and alkyl halide groups having 1 to 20 carbon atoms in R 6 to R 8 are described above. The same can be mentioned.
  • R 6 is preferably a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms, or an alkyl halide group having 1 to 10 carbon atoms, respectively, and has a hydrogen atom and a carbon number of carbon atoms.
  • Alkyl groups of 1 to 5 and fluoroalkyl groups having 1 to 5 carbon atoms are more preferable, and hydrogen atoms, methyl groups and trifluoromethyl groups are even more preferable.
  • At least one R 6 is preferably an electron-withdrawing group such as a halogen atom, a nitro group, a cyano group, or a fluoroalkyl group having 1 to 5 carbon atoms. Considering the point, a trifluoromethyl group is more preferable.
  • R 7 preferably has an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and even more preferably a methyl group.
  • R 8 is preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and a naphthyl group, and a hydrogen atom. , Methyl group and phenyl group are even more preferable.
  • R 6 is not an electron withdrawing group
  • W 1 is S, O, and SO 2
  • an electron-withdrawing group may be present in R 6 .
  • W 2 is, S, O, SO 2
  • W 3 is, S, O is preferred.
  • W 3 is S, O, SO 2
  • an electron-withdrawing group may be present in R 6 .
  • the bonding position of the amino group and the spacer W 1 on the aromatic ring is not particularly limited, but any of the following formulas (201A) to (207A).
  • a divalent group represented by is preferable.
  • R 6 ' are each independently a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms Represents an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • Specific examples of the alkoxy group and the aryl group having 6 to 20 carbon atoms are the same as those described above.
  • R 6' preferably an alkyl group having 1 to 10 carbon atoms and an alkyl halide group having 1 to 10 carbon atoms, and an alkyl group having 1 to 5 carbon atoms and a fluoroalkyl group having 1 to 5 carbon atoms. More preferably, a methyl group and a trifluoromethyl group are even more preferable.
  • Examples of X suitable in the present invention include those represented by the following formulas, but are not limited thereto.
  • Examples of the phenylene group in which Y may be substituted in the above formulas (3) to (6) include a 1,4-phenylene group, which may be substituted with a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or the like. , 3-Phenylene group or 1,2-phenylene group, but may be substituted 1,4-phenylene group or 1,3-phenylene group in consideration of the balance of refractive index, transparency and electrical characteristics. Is preferable, and an unsubstituted 1,4-phenylene group or a 1,3-phenylene group is more preferable.
  • g independently represents an integer of 1 to 10, but considering the solubility of the compound in an organic solvent and the transparency of the obtained thin film, 1 to 7 Is preferred, an integer of 1 to 5 is more preferred, an integer of 1 to 3 is even more preferred, 1 or 2 is even more preferred, and 1 is optimal considering the availability of the starting compound.
  • Ar s is preferably a group represented by the formula (107), more preferably a group represented by any one of formulas (107A) ⁇ (107C), and even more preferably formula (107A-1) A group represented by any of (107C-5), more preferably a group represented by the formula (107B-1) or (107C-1).
  • Arc is the same group in each of the formulas (1) to (6).
  • Ar c is preferably a group (Ar C1) represented by the formula (Q-1), more preferably a group represented by the formula (Q-2) (Ar C2 ) or formula (Q-3 ) Is a group (Ar C3 ).
  • the arylamine compound of the present invention is represented by any of the following formulas (1-1) to (6-1) in a preferred embodiment, and the following formulas (1-2) to (6-1) in a more preferred embodiment. It is represented by any of 6-2) and (1-3) to (6-3).
  • the arylamine compound represented by the formula (1) or (2) of the present invention (hereinafter, also referred to as arylamine compound (1) or (2)) is an aryldiamine compound [I] as shown in the following scheme. ] And the aryl halide compound [II] can be produced by reacting in the presence of a catalyst.
  • Z represents a halogen atom or a pseudohalogen group
  • X, R 1 , R 2 and Ar s have the same meanings as above.
  • Examples of the halogen atom include the same as above.
  • Examples of the pseudohalogen group include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy, trifluoromethanesulfonyloxy and nonafluorobutanesulfonyloxy groups; aromatic sulfonyloxy groups such as benzenesulfonyloxy and toluenesulfonyloxy groups. ..
  • the charging ratio of the aryldiamine compound [I] to the halogenated aryl compound [II] depends on whether the compound to be synthesized is the arylamine compound (1) or (2), and the reaction of the raw material compound.
  • the aryl halide compound is appropriately determined in the range of 1.2 to 0.6 equivalents with respect to the amount of all NH groups of the aryldiamine compound [I] in consideration of the properties and bulkiness.
  • 1.0 equivalent or more of the aryl halide compound is preferable.
  • Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide and copper iodide; Pd (PPh 3 ) 4 (tetrax (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (Bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt-Bu) 3 ) Examples thereof include palladium catalysts such as 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate). These catalysts may be used alone or in combination of two or more. These catalysts may also be used with suitable known ligands.
  • copper catalysts such as copper chloride, copper bromide and copper iodide
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl ( Phine) phosphine, di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphine) ethane, 1,3-bis (diphenylphosphine) propane, 1,4-bis (diphenylphos) Tertiary phosphine such as fino) butane, 1,1'-bis (diphenylphosphine) ferrocene, tertiary phosphine such as trimethylphosphine, triethylphosphine, triphenylphosphine, ter
  • the amount of the catalyst used can be about 0.01 to 0.5 mol with respect to 1 mol of the aryl halide compound [II], but is preferably about 0.05 to 0.2 mol.
  • the amount used can be 0.1 to 5 equivalents with respect to the metal complex to be used, but 1 to 2 equivalents are preferable.
  • a base may be used in the above reaction.
  • the base include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium, t-butoxypotassium, sodium hydroxide, potassium hydroxide.
  • Alkali metal alone such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, alkali metal hydride, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal hydrogen carbonate; alkaline soil carbonate such as calcium carbonate Metals; n-butyl lithium, s-butyl lithium, t-butyl lithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidin (LiTMP), hexamethyldisilazane lithium (LHMDS), etc.
  • LDA lithium 2,2,6,6-tetramethylpiperidin
  • LiHMDS hexamethyldisilazane lithium
  • Organic lithium examples thereof include amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, and pyridine.
  • amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, and pyridine.
  • the amount used can be 0.1 to 5 equivalents with respect to the aryl halide compound [II] to be used, but 1 to 2 equivalents are preferable.
  • Each of the above reactions is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the target arylamine compound.
  • a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), and aromatics.
  • Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesityrene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, etc.) P-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butylmethyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), ketones (acetone, methylethylketone, etc.) Methylisobutylketone, di-n-butylketone, cyclohexanone, etc.), amides (N, N-dimethylformamide, N, N-dimethylacetamide
  • the reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but is particularly preferably about 0 to 200 ° C., more preferably 20 to 150 ° C.
  • the reaction time is appropriately determined in consideration of the reaction temperature, the reactivity of the raw material compound, and the like, but is usually about 30 minutes to 50 hours.
  • post-treatment can be carried out according to a conventional method to obtain the desired arylamine compound.
  • arylamine compounds represented by the formulas (3) to (5) of the present invention are aryl as shown in the following scheme. It can be produced by reacting a diamine compound [I'] with an aryl halide compound [II] in the presence of a catalyst.
  • the charging ratio of the aryldiamine compound [I'] to the aryl halide compound [II] is not particularly limited as long as the desired product can be obtained, but usually the compounds to be synthesized are the arylamine compounds (3) to Depending on which of (5) is used, and in consideration of the reactivity and bulkiness of the raw material compound, the amount of the aryl halide compound is 1 with respect to the total amount of NH groups of the aryldiamine compound [I']. .2 Equivalent or less is appropriately determined, and when synthesizing the arylamine compound (3), 1.0 equivalent or more of the aryl halide compound is preferable with respect to the amount of all NH groups of the aryldiamine compound [I'].
  • the amount of the aryldiamine compound [I'] can be 2.0 equivalents or more of the aryl halide compound, but 2.0 to 2.4 equivalents.
  • the amount of the aryl compound can be 4.0 equivalents or more with respect to the amount of the aryldiamine compound [I'], but 4.0 to 4.8 equivalents. Is preferable.
  • various conditions and suitable conditions of the coupling reaction regarding the catalyst, the ligand, the base, the solvent, the temperature and time of the reaction, etc. are described with respect to the arylamine compound represented by the formula (1) or (2). Is the same as.
  • arylamine compound represented by the formula (6) of the present invention (hereinafter, also referred to as arylamine compound (6)) can be produced by the following method. First, the dinitro compound [I "-1] is reacted with the aryl halide compound [II] to obtain the dinitro compound [I "-2].
  • the charging ratio of the dinitro compound [I "-1] to the aryl halide compound [II] can be 1 equivalent or more of the aryl halide compound with respect to the amount of substance of the total NH groups of the dinitro compound. About 1 to 1.2 equivalents are preferable.
  • the reaction conditions and suitable conditions regarding the catalyst, ligand, base, solvent, reaction temperature and time, etc. are the same as those described for the arylamine compound represented by the formula (1) or (2). Is.
  • Hydrogenation includes a hydrogenation reaction using Pd / C or the like, and can be carried out by a known method.
  • the amine compound [I "-3] can be reacted with the aryl halide compound [II] to obtain the arylamine compound (6).
  • the charging ratio of the amine compound [I "-3] and the aryl halide compound [II] can be 2 equivalents or more of the aryl halide compound with respect to the amine compound, but is about 2 to 2.4 equivalents. Is preferable.
  • the reaction conditions and suitable conditions regarding the catalyst, ligand, base, solvent, reaction temperature and time, etc. are the same as those described for the arylamine compound represented by the formula (1) or (2). Is.
  • the aryl halide compound [II] which is a raw material used for producing the arylamine compound of the present invention, can be produced by reacting an arylcarbazole compound [III] with an aryldihalide compound [IV] in the presence of a catalyst.
  • Z B independently represents a group represented by the following formula (E1) or (E2).
  • Z' represents a halogen atom or a pseudohalogen group, and examples of the halogen atom and the pseudohalogen group include the same as above.
  • Z and Z' may be the same, but from the viewpoint of efficiently obtaining the desired aryl halide compound [II], the reactivity of the atom (group) of Z'is Z. It is preferable that the reactivity of the atom (group) is higher than that of the atom (group).
  • the Z B group in the arylcarbazole compound [III] reacts preferentially with the Z'atom (group) over the Z atom (group), and is efficient.
  • the desired aryl halide compound [II] can be obtained.
  • D 1 and D 2 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms
  • D 3 is an alcandiyl group or carbon having 1 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms, which represent an arylene group having 6 to 20 carbon atoms are the same as those described above.
  • the alcandiyl group having 1 to 20 carbon atoms includes methylene, ethylene, propane-1,2-diyl, propane-1,3-diyl, 2,2-dimethylpropane-1,3-diyl, and 2-ethyl-2.
  • 1,2-phenylene, 1,2-naphthylene, 2,3-naphthylene, 1,8-naphthylene, 1,2-anthrylene, 2,3-anthrylene, 1,2 -Phenantrylene, 3,4-phenanthrylene, 9,10-phenanthrylene group and the like can be mentioned.
  • the charging ratio of the arylcarbazole compound [III] to the dihalide aryl compound [IV] can be 1.0 or more with respect to the arylcarbazole compound [III] 1 in terms of molar ratio. However, it is preferably about 1.0 to 1.2.
  • Each of the above reactions is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the target arylamine halide compound.
  • a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples include cyclic ethers such as tetrahydrofuran and 1,4-dioxane; amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP).
  • Ketones such as methylisobutylketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
  • halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene
  • aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
  • These solvents can be used alone or in admixture of two or more. Of these, 1,4-dioxane, toluene, xylene and the like are particularly preferable.
  • Examples of the catalyst used in the above reaction are [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)) and tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ).
  • the reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but is particularly preferably about 0 to 200 ° C., more preferably 20 to 150 ° C.
  • the reaction time is appropriately determined in consideration of the reaction temperature, the reactivity of the raw material compound, and the like, but is usually about 30 minutes to 50 hours.
  • post-treatment can be carried out according to a conventional method to obtain the desired arylamine halide compound.
  • the aryl halide compound [IV] can be obtained by reacting the compound represented by the formula [IV'] with a halogenating agent as shown in the scheme below.
  • halogenating agent known ones can be used, and specific examples thereof include, but are not limited to, N-bromosuccinimide and the like.
  • the amount of the halogenating agent is about 1 to 1.5 in terms of molar ratio with respect to the compound represented by the formula [IV'].
  • the solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
  • the reaction temperature is usually appropriately determined from the range of 0 to 140 ° C., and the time is usually appropriately determined from the range of 0.1 to 100 hours.
  • arylcarbazole compound [III] can be obtained by reacting a compound represented by the formula [III'] with a compound represented by the formula [V] as shown in the scheme below.
  • the preparation of the compound represented by the formula [III'] and the compound represented by the formula [V] is represented by the formula [V] with respect to the compound 1 represented by the formula [III'] in terms of molar ratio.
  • the solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
  • the temperature of the reaction is usually appropriately determined from the range of 0 to 140 ° C., and the time thereof is usually appropriately determined from the range of 0.1 to 100 hours.
  • the compound represented by the formula [III'] is obtained after reacting the compound represented by the formula [III'-2] with an aryl halide compound (R 2 Z) as shown in the following scheme. , be accomplished by treatment with a halogenating agent, the compound represented by the formula [III'-2], after treatment with a halogenating agent, can be obtained by reacting a halogenated aryl compound (R 2 Z), The latter reaction is preferable from the viewpoint of avoiding halogenation of the N-position aryl group of the carbazole skeleton and obtaining the target product more efficiently.
  • halogenating agent used in the above reaction a known halogenating agent can be used, and the amount of the halogenating agent is represented by the formula [III'-1-1] or [III'-2] in terms of molar ratio. It is about 1 to 1.5 with respect to the compound 1 to be produced.
  • the solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
  • the temperature is usually appropriately determined from the range of 0 to 140 ° C., and the time is usually appropriately determined from the range of 0.1 to 100 hours.
  • the compound represented by the formula [VI] having two alkyl groups at the 9-position of the fluorene ring which is a raw material of the spacer skeleton of Ar S , is prepared in the presence of a base as shown in the scheme below. It can be obtained by reacting a compound represented by the formula [VI'] with a compound represented by the formula [VII].
  • R 4' are each independently an alkyl group or a halogenated alkyl group having 1 to 20 carbon atoms, having 1 to 20 carbon atoms Represents.
  • the preparation of the compound represented by the formula [VI'] and the compound represented by the formula [VII] is represented by the formula [VII] with respect to the compound 1 represented by the formula [VI'] in terms of molar ratio.
  • Compounds 1 to 1.5 The bases that can be used in the above reaction are not particularly limited as long as they are the bases used in this type of reaction, and specific examples thereof include t-BuOK, t-BuONa, CsCO 3 , K 2 CO 3 , and Na.
  • the solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
  • the temperature of the reaction is usually appropriately determined from the range of 0 to 140 ° C., and the time thereof is usually appropriately determined from the range of 0.1 to 100 hours.
  • the amine compounds that can be used as raw materials for the arylamine compounds of the present invention are (A) amine compounds [I'''] or [I''''] and aryl compounds [VIII], as shown in the following scheme. ] And (B) the reduction reaction of the nitro group by hydrogenation. By repeating the reactions (A) and (B), the chain length (phenylene number) is extended. I can go.
  • the amine compounds included in the amine compound [I'] are (A) m-phenylenediamine or 3-nitroaniline and 3-halonitrobenzene, as shown in the following scheme. It can be obtained by the coupling reaction of (B) and the reduction reaction of the nitro group by hydrogenation, and by repeating the reactions of (A) and (B), the chain length (m-phenylene number) is extended. I can go.
  • An amine compound [I'] having a desired number of phenylene can be freely produced without using a method.
  • the charging ratio of the raw material compounds in each reaction is 1 to 1 to the raw material compound having a nitro group (raw material compound containing a halogen atom (pseudohalogen group)) with respect to the raw material compound having an amino group.
  • the charging ratio of the raw material compounds in each reaction is 1 to 1 to the raw material compound having a nitro group (raw material compound containing a halogen atom (pseudohalogen group)) with respect to the raw material compound having an amino group.
  • a ligand can be used as the palladium catalyst used for the coupling reaction.
  • a ligand in addition to those exemplified above, JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDave, which are commercially available from Aldrich.
  • -Biphenylphosphine compounds such as Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me 3 (OMe) tBuXPhos, (2-Biphenyl) di-1-adamantylphosphine, RockPhos, CPhos can be preferably used. ..
  • Examples of the base used in the coupling reaction include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium, t-butoxypotassium, and hydroxide.
  • Alkali metal alone such as sodium, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, alkali metal hydride, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal hydrogen carbonate; calcium carbonate Alkali carbonate earth metals such as n-butyllithium, s-butyllithium, t-butyllithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidine (LiTMP), hexamethyldisilazane.
  • Organic lithium such as lithium (LHMDS); amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine and the like can be mentioned.
  • H is a hydrogen atom
  • Ph is a phenyl group
  • Me is a methyl group
  • n-Hex is an n-hexyl group
  • p-Toly is a p-tolyl group
  • 2-Thie is 2-thienyl.
  • the groups, 1,3-Ph represents a 1,3-phenylene group
  • 1,4-Ph represents a 1,4-phenylene group.
  • the arylamine compounds of Nos. 1 and 865 are the following compounds, respectively. ..
  • the above-mentioned arylamine compound of the present invention can be suitably used as a charge transporting substance.
  • it can be used as a charge-transporting varnish containing the arylamine compound of the present invention and an organic solvent, and the charge-transporting varnish can be used to improve its charge-transporting ability depending on the use of the obtained thin film.
  • It may contain a dopant substance for the purpose of.
  • the arylamine compound of the present invention can be used in combination with other conventionally known charge-transporting substances such as an aniline derivative and a thiophene derivative, but the arylamine compound of the present invention alone can be used as a charge-transporting substance. preferable.
  • charge transportability is synonymous with conductivity.
  • the charge-transporting varnish may be one that has charge-transporting property by itself, and the solid film obtained thereby may have charge-transporting property.
  • the dopant substance is not particularly limited as long as it is soluble in at least one solvent used for the varnish, and either an inorganic dopant substance or an organic dopant substance can be used. Further, the inorganic and organic dopant substances may be used alone or in combination of two or more. Furthermore, the dopant substance first exhibits its function as a dopant substance in the process of obtaining a charge-transporting thin film which is a solid film from the varnish, for example, when a part of the molecule is removed by an external stimulus such as heating during firing. Alternatively, it may be a substance that improves, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
  • a heteropolyacid is preferable as the inorganic dopant substance.
  • the heteropolyacid has a structure in which a hetero atom is located at the center of a molecule, which is typically represented by a Keggin type represented by the formula (H1) or a Dawson type chemical structure represented by the formula (H2). It is a polyacid formed by condensing isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and oxygen acid of a different element.
  • Oxygen acids of such dissimilar elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
  • heteropolyacid examples include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, phosphotungstic acid, and the like, and these may be used alone or in combination of two or more. Good. These heteropolyacids are available as commercially available products, and can also be synthesized by a known method. In particular, when one kind of heteropolyacid is used, the one kind of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable.
  • one of the two or more kinds of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • heteropolyacids in quantitative analysis such as elemental analysis, have a large number of elements or a small number of elements from the structure represented by the general formula, but the heteropolyacid is obtained as a commercially available product or a known synthesis. As long as it is properly synthesized according to the method, it can be used in the present invention.
  • phosphotungsten acid is represented by chemical formulas H 3 (PW 12 O 40 ) and nH 2 O
  • phosphomolydic acid is represented by chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O, respectively.
  • P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product.
  • it can be used in the present invention as long as it is appropriately synthesized according to a known synthesis method.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
  • the amount of the heteropolyacid used can be about 0.001 to 50.0 with respect to the charge transporting substance 1 in terms of mass ratio, but is preferably about 0.01 to 20.0, more preferably 0. It is about 1 to 10.0.
  • a tetracyanoquinodimethane derivative or a benzoquinone derivative can be particularly used as the organic dopant substance.
  • the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and halotetracyanoquinodimethane represented by the formula (H3).
  • benzoquinone derivatives include tetrafluoro-1,4-benzoquinone (F4BQ), tetrachloro-1,4-benzoquinone (chloranil), tetrabromo-1,4-benzoquinone, 2,3-dichloro-5, and so on. 6-Dicyano-1,4-benzoquinone (DDQ) and the like can be mentioned.
  • R 500 to R 503 each independently represent a hydrogen atom or a halogen atom, but at least one is a halogen atom, at least two are preferably halogen atoms, and at least three are halogen atoms. It is more preferable that all of them are halogen atoms.
  • the halogen atom include the same as above, but a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
  • halotetracyanoquinodimethane examples include 2-fluoro-7,7,8,8-tetracyanoquinodimethane and 2-chloro-7,7,8,8-tetracyanoquinodimethane.
  • 2,5-Difluoro-7,7,8,8-Tetracyanoquinodimethane 2,5-Dichloro-7,7,8,8-Tetracyanoquinodimethane, 2,3,5,6-Tetra
  • the amount of the tetracyanoquinodimethane derivative and the benzoquinone derivative used is preferably 0.0001 to 100 equivalents, more preferably 0.01 to 50 equivalents, and even more preferably 1 to 20 equivalents, relative to the charge transporting substance. is there.
  • the organic dopant substance is an electrically neutral onium composed of a monovalent or divalent anion represented by the following formula (a1) and a counter cation represented by the formulas (c1) to (c5). Borate salts can also be used.
  • Ar represents an aryl group having 6 to 20 carbon atoms which may have a substituent or a heteroaryl group having 2 to 20 carbon atoms which may have a substituent, respectively, and L.
  • the alkylene group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene, methylmethylene, dimethylmethylene, ethylene, trimethylene and propylene. , Tetramethylene, pentamethylene, hexamethylene group and the like. Examples of the aryl group and the heteroaryl group include the same as above.
  • anion of the above formula (a1) include, but are not limited to, those represented by the formula (a2).
  • the amount of the onium borate salt used can be about 0.1 to 10 with respect to the charge-transporting substance in terms of the amount of substance (molar).
  • the onium borate salt can be synthesized by referring to, for example, a known method described in JP-A-2005-314682.
  • an aryl sulfonic acid compound or an aryl sulfonic acid ester compound can also be preferably used.
  • aryl sulfonic acid compound examples include benzene sulfonic acid, tosylic acid, p-styrene sulfonic acid, 2-naphthalene sulfonic acid, 4-hydroxybenzene sulfonic acid, 5-sulfosalicylic acid, p-dodecylbenzene sulfonic acid, and dihexyl benzene.
  • aryl sulfonic acid compounds examples include aryl sulfonic acid compounds represented by the formula (H4) or (H5).
  • a 1 represents O or S, with O being preferred.
  • a 2 represents a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable.
  • a 3 represents a 2- to tetravalent perfluorobiphenyl group, p represents the number of bonds between A 1 and A 3, and is an integer satisfying 2 ⁇ p ⁇ 4, where A 3 is perfluorobiphenyldiyl.
  • the group, preferably a perfluorobiphenyl-4,4'-diyl group, preferably has a p of 2.
  • q represents the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ⁇ q ⁇ 4, but 2 is optimal.
  • a 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms, or halogenation having 2 to 20 carbon atoms. Representing an alkenyl group, at least three of A 4 to A 8 are halogen atoms.
  • Alkyl halide groups having 1 to 20 carbon atoms include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, and 3,3,3-trifluoropropyl. , 2,2,3,3,3-pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4 , 4-Pentafluorobutyl, 2,2,3,3,4,5,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. Be done.
  • halogenated alkenyl group having 2 to 20 carbon atoms examples include perfluorovinyl, perfluoropropenyl (perfluoroallyl), perfluorobutenyl group and the like.
  • Other examples of the halogen atom and the alkyl group having 1 to 20 carbon atoms include the same as above, but the halogen atom is preferably a fluorine atom.
  • a 4 to A 8 are hydrogen atoms, halogen atoms, cyano groups, alkyl groups having 1 to 10 carbon atoms, alkyl halide groups having 1 to 10 carbon atoms, or alkenyl halides having 2 to 10 carbon atoms.
  • a 4 ⁇ a 8 is preferably a fluorine atom, a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 5 carbon atoms, having 1 to 5 carbon atoms More preferably, it is an alkyl fluoride group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and hydrogen atom, fluorine atom, cyano group, and the like.
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
  • R represents the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ⁇ r ⁇ 4, but 2 to 4 is preferable, and 2 is optimal.
  • the molecular weight of the aryl sulfonic acid compound used as the dopant substance is not particularly limited, but is preferably 2000 or less, more preferably 2000 or less, considering the solubility in an organic solvent when used together with the arylamine compound of the present invention. It is 1500 or less.
  • the amount of the aryl sulfonic acid compound used is preferably about 0.01 to 20.0, more preferably about 0.4 to 5.0, with respect to the charge transporting substance 1 in terms of the amount of substance (molar) ratio. ..
  • Commercially available products may be used as the aryl sulfonic acid compound, but International Publication No. 2006/025342, International Publication No. 2009/096322, International Publication No. 2015/111654, International Publication No. 2015/0533320, International Publication No. 2015 It can also be synthesized by a known method described in / 115515 and the like.
  • examples of the aryl sulfonic acid ester compound include an aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, an aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217457, and Japanese Patent Application No. 2017-243631 (Japanese Patent Application No. 2017-243631).
  • Examples thereof include the aryl sulfonic acid ester compounds described in International Publication No. 2019/124412), and specifically, those represented by any of the following formulas (H6) to (H8) are preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • a 11 is an m-valent group derived from perfluorobiphenyl.
  • a 12 is —O— or —S—, but —O— is preferred.
  • a 13 is a (n + 1) -valent group derived from naphthalene or anthracene, but a group derived from naphthalene is preferable.
  • R s1 to R s4 are each independently a hydrogen atom or a linear or branched chain alkyl group having 1 to 6 carbon atoms, and R s5 is an optionally substituted alkyl group having 2 to 20 carbon atoms. It is a monovalent hydrocarbon group of.
  • linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl group and the like.
  • An alkyl group having 1 to 3 carbon atoms is preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl, n-propyl, isopropyl, n-butyl, isobutyl and t-butyl.
  • Alkyl groups such as groups; aryl groups such as phenyl, naphthyl and phenanthryl groups can be mentioned.
  • R s1 to R s4 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom, or R s1 is a linear alkyl group having 1 to 3 carbon atoms. It is preferable that R s2 to R s4 are hydrogen atoms. In this case, the methyl group is preferable as the linear alkyl group having 1 to 3 carbon atoms. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
  • a 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted, and the hydrocarbon group may be one or more. It is a group obtained by removing m hydrogen atoms from a hydrocarbon compound having 6 to 20 carbon atoms containing an aromatic ring. Examples of such a hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
  • a part or all of the hydrogen atom may be further substituted with a substituent, and examples of such a substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro.
  • Cyano hydroxy, amino, silanol, thiol, carboxy, sulfonic acid ester, phosphoric acid, phosphoric acid ester, ester, thioester, amide, organooxy, organoamino, organosilyl, organothio, acyl, sulfo, monovalent hydrocarbon group And so on.
  • a 14 a group derived from benzene, biphenyl or the like is preferable.
  • a 15 is —O— or —S—, but —O— is preferable.
  • a 16 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms. Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among them, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s6 and R s7 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups, and R s8 is a linear or branched chain monovalent aliphatic hydrocarbon. It is a hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • linear or branched monovalent aliphatic hydrocarbon group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl, n-octyl, and the like.
  • Alkyl groups having 1 to 20 carbon atoms such as 2-ethylhexyl and decyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a hexenyl group.
  • R s6 is preferably a hydrogen atom
  • R s7 and R s8 are each independently preferably an alkyl group having 1 to 6 carbon atoms.
  • R s9 to R s13 independently represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkyl halide group having 1 to 10 carbon atoms. Alternatively, it is an alkenyl halide group having 2 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and s-butyl.
  • Examples thereof include t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group and the like.
  • the alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms is substituted with a halogen atom.
  • Specific examples include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3.
  • the halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms is substituted with a halogen atom.
  • Specific examples include perfluorovinyl, perfluoro-1-propenyl, perfluoro-2-propenyl, perfluoro-1-butenyl, perfluoro-2-butenyl, perfluoro-3-butenyl group and the like.
  • R s9 a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, and an alkenyl halide group having 2 to 10 carbon atoms are preferable, and a nitro group, a cyano group, and 1 to 4 carbon atoms are preferable.
  • the alkyl halide group and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group and the perfluoropropenyl group are even more preferable.
  • R s10 to R s13 a halogen atom is preferable, and a fluorine atom is more preferable.
  • a 17 is -O-, -S- or -NH-, but -O- is preferable.
  • a 18 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms. Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s14 to R s17 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • Specific examples of the monovalent aliphatic hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl and n.
  • -Alkyl groups having 1 to 20 carbon atoms such as heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl
  • alkenyl groups having 2 to 20 carbon atoms such as -2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl and hexenyl groups, but alkyl groups having 1 to 20 carbon atoms are preferable, and alkyl groups having 1 to 20 carbon atoms are preferable.
  • An alkyl group of 10 is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
  • R s18 is a linear or branched chain monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or OR s19 .
  • R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted. Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms of R s18 include the same groups as described above.
  • R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Even more preferable.
  • Examples of the monovalent hydrocarbon group having 2 to 20 carbon atoms of R s19 include those other than the methyl group among the above-mentioned monovalent aliphatic hydrocarbon groups, and aryl groups such as phenyl, naphthyl, and phenanthryl groups. Among these, R s19 is preferably a linear alkyl group or a phenyl group having 2 to 4 carbon atoms. Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
  • Suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
  • the amount of the aryl sulfonic acid ester compound used is preferably about 0.01 to 20, more preferably about 0.05 to 10 with respect to the charge transporting substance 1 in terms of the amount of substance (molar) ratio.
  • a commercially available product may be used as the aryl sulfonic acid ester compound, but it may also be synthesized by a known method described in International Publication No. 2017/217455, International Publication No. 2017/217457, International Publication No. 2019/124412 and the like. it can.
  • aryl sulfonic acid compound or an aryl sulfonic acid ester compound as the dopant substance, and the solubility in a solvent is preferable.
  • an aryl sulfonic acid ester compound in consideration of obtaining a thin film having a smaller extinction coefficient.
  • the charge transport varnish is an organic silane compound for the purpose of improving the injection property into the hole transport layer and improving the life characteristics of the device. May include. Its content is usually about 1 to 30% by mass with respect to the total mass of the charge transporting substance and the dopant substance.
  • a highly polar solvent capable of satisfactorily dissolving the arylamine compound of the present invention can be used as the organic solvent used when preparing the charge transporting varnish of the present invention.
  • the arylamine compound of the present invention can be dissolved in a solvent regardless of the polarity of the solvent.
  • a low-polarity solvent may be used because it is superior in process compatibility to a high-polarity solvent.
  • a low-polarity solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz
  • a high-polarity solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
  • low polar solvents include, for example. Chlorine-based solvents such as chloroform and chlorobenzene; Aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene, decylbenzene; Aliphatic alcohol solvents such as 1-octanol, 1-nonanol, 1-decanol; Ether-based solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, and triethylene glycol butyl methyl ether; Esters such as methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dibutyl male
  • Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone; Ketone solvents such as ethyl methyl ketone, isophorone, cyclohexanone; Cyan-based solvents such as acetonitrile and 3-methoxypropionitrile; Polyhydric alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, and 2,3-butanediol; Other than aliphatic alcohols such as diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3-phenyl
  • the viscosity of the charge-transporting varnish is appropriately determined depending on the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the solid content means a component other than the solvent contained in the charge transporting varnish of the present invention.
  • the solid content concentration of the charge-transporting varnish is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, and the like, but is usually 0.1 to 20.0 mass. It is about%, preferably about 0.5 to 10.0% by mass, and more preferably about 1.0 to 5.0% by mass in consideration of improving the coatability of the varnish.
  • the method for preparing the charge-transporting varnish is not particularly limited, but for example, a method of dissolving all solids such as a charge-transporting substance containing the arylamine compound of the present invention in an organic solvent at once, or a solid. Examples thereof include a method in which a part of the charge is dissolved in an organic solvent and then the remaining solid content is dissolved.
  • a charge-transporting varnish when preparing a charge-transporting varnish, from the viewpoint of obtaining a thin film with higher flatness with good reproducibility, after dissolving a charge-transporting substance, a dopant substance, etc. in an organic solvent, a submicrometer-order filter or the like is used. It is desirable to use and filter.
  • the charge transporting varnish described above can easily produce a charge transporting thin film by using the varnish, it can be suitably used when manufacturing an electronic device, particularly an organic EL device.
  • the charge-transporting thin film can be formed by applying the above-mentioned charge-transporting varnish on a substrate and firing it.
  • the varnish coating method is not particularly limited, and examples thereof include a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an inkjet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish accordingly.
  • the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum can be obtained. Although it can be obtained, depending on the type of dopant substance used, a thin film having higher charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
  • the firing temperature is appropriately set within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, etc., and the obtained thin film is obtained.
  • it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C., but when the arylamine compound of the present invention is used as a charge transporting substance, it is as low as 200 ° C. or less. Even by firing, a thin film having good charge transportability can be formed.
  • a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
  • the film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 300 nm when used as a hole injection layer, a hole transport layer, or a hole transport layer of an organic EL element.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of solution (varnish amount) on the substrate at the time of coating.
  • the charge-transporting thin film of the present invention described above usually exhibits a refractive index (n) of 1.60 or more and an extinction coefficient (k) of 0.100 or less with an average value in the wavelength region of 400 to 800 nm. In some embodiments, it exhibits a refractive index of 1.65 or higher, in other embodiments it exhibits a refractive index of 1.70 or higher, and in some embodiments it has an extinction coefficient of 0.050 or lower. Shows an extinction coefficient of 0.010 or less.
  • the above-mentioned charge-transporting thin film When the above-mentioned charge-transporting thin film is applied to an organic EL element, the above-mentioned charge-transporting thin film can be provided between a pair of electrodes constituting the organic EL element.
  • Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f).
  • an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole (hole) block layer or the like may be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer or the hole injection transport layer may also have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer is a hole (hole). It may also have a function as a block layer or the like. Further, if necessary, an arbitrary functional layer can be provided between the layers.
  • A Electron / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode
  • c anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • the "hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer.
  • it has a function and only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and between the light emitting layer and the anode,
  • the layer close to the anode is the “hole injection layer” and the other layers are the “hole transport layer”.
  • the hole injection (transport) layer a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
  • the "electron injection layer”, “electron transport layer” and “electron transport layer” are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer.
  • an “electron injection transporting layer” When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injection transporting layer”, and a layer of electron transporting material is provided between the light emitting layer and the cathode.
  • the layer close to the cathode is the “electron injection layer”
  • the other layers are the “electron transport layer”.
  • the "light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted.
  • the host material mainly has a function of promoting the recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the charge-transporting thin film produced from the charge-transporting varnish of the present invention is a functional layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer provided between the anode and the light emitting layer of the organic EL element.
  • a functional layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer provided between the anode and the light emitting layer of the organic EL element.
  • it is usually suitable as a hole injection layer on which an upper layer is formed by a coating method.
  • Examples of materials and methods for producing an organic EL device using the charge-transporting varnish of the present invention include, but are not limited to, the following.
  • An example of a method for manufacturing an OLED device having a hole injection layer made of a thin film obtained from the charge transporting varnish is as follows. It is preferable that the electrode is preliminarily subjected to surface treatment such as cleaning with alcohol, pure water or the like, UV ozone treatment, oxygen-plasma treatment or the like within a range that does not adversely affect the electrode.
  • a hole injection layer is formed on the anode substrate by the above method using the above charge transporting varnish.
  • a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited.
  • a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metals typified by aluminum, and metal anodes composed of alloys thereof. Those that have been flattened are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimer, N, N'-bis (naphthalen-1-yl) -N, N'-bis.
  • Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, and (2-hydroxyphenyl) benzo.
  • a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, and (2-hydroxyphenyl) benzo.
  • Low molecular weight luminescent materials such as thiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3-alkyl Examples thereof include, but are not limited to, a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) and polyvinylcarbazole.
  • the light emitting layer When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant is a metal complex such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). , A naphthacene derivative such as rubrene, a quinacridone derivative, a condensed polycyclic aromatic ring such as perylene, and the like, but are not limited thereto.
  • Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
  • Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). Examples include, but are not limited to, metal fluorides such as.
  • Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
  • hole-transporting polymer examples include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,4-diaminophenylene).
  • the luminescent polymer examples include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH-).
  • polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF)
  • MEH- poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene)
  • PVCz polyvinylcarbazole
  • the charge-transporting thin film obtained from the charge-transporting varnish of the present invention serves as a functional layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer provided between the anode and the light emitting layer of the organic EL element.
  • organic photoelectric conversion elements organic thin film solar cells, organic perovskite photoelectric conversion elements, organic integrated circuits, organic field effect transistors, organic thin films, organic light emitting transistors, organic optical testers, organic photoreceivers, organic It can also be used as a charge transporting thin film in electronic devices such as electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes and organic Plasmon light emitting devices.
  • electronic devices such as electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes and organic Plasmon light emitting devices.
  • Fine shape measuring machine Surfcoder ET-4000 Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd. (7) Measurement of element current density and brightness: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (8) Life measurement of EL element (brightness half-life measurement): Organic EL brightness life manufactured by EHC Co., Ltd. Evaluation system PEL-105S (9) Measurement of refractive index (n) and extinction coefficient (k): Multi-incident angle spectroscopic ellipsometer VASE manufactured by JA Woolam Japan
  • Lithium Hexamethyldi Shirajide (LHMDS) 1.3 mol / L tetrahydrofuran solution 2-Bromo-7-iodofluorene manufactured by Tokyo Kasei Kogyo Co., Ltd. benzyltriethylammonium chloride manufactured by Tokyo Kasei Kogyo Co., Ltd. 3-Nitroaniline manufactured by Tokyo Kasei Kogyo Co., Ltd. Tokyo 1-Bromo-3-nitrobenzene manufactured by Kasei Kogyo Co., Ltd. Hydrogen chloride (approx. 1 mL / L ethyl acetate solution) manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • the dried solid was dissolved in 20 mL of tetrahydrofuran, the obtained solution was added to 200 mL of n-hexane, the precipitated solid was filtered off by a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C.
  • the dried solid was dissolved in 20 mL of tetrahydrofuran, the obtained solution was added to 200 mL of a mixed solvent of methanol and water (3/1 (v / v)), and the precipitated solid was filtered off by a membrane filter. The obtained solid was dried under reduced pressure at 60 ° C.
  • the aqueous layer was removed.
  • the obtained organic layer was added dropwise to a mixed solvent of methanol and water (3/1 (v / v)), the precipitated solid was filtered off with a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C. Further, the dried solid was dissolved in 20 mL of tetrahydrofuran, the obtained solution was added to 200 mL of n-hexane, the precipitated solid was filtered off by a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C.
  • the reaction mixture was cooled to room temperature, filtered through a filter filled with 200 g of silica gel N60, the obtained filtrate was concentrated to a weight of 100 g, the concentrate was added dropwise to 1000 mL of toluene, and the resulting solid was filtered off. .. The obtained solid was dried to obtain 24.1 g of bis (3-nitrophenyl) amine (yield 93.1%).
  • Example 1-1 except that 0.5 mmol (123.2 mg) of N, N'-bis (4-aminophenyl) terephthalamide was used instead of 3,3', 5,5'-tetramethylbenzidine. The operation was carried out in the same manner to obtain 0.43 g (70.9%) of the arylamine compound D2d.
  • the 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
  • Example 1-1 Same as in Example 1-1 except that 0.5 mmol (160.12 mg) of 2,2'-bis (trifluoromethyl) benzidine was used instead of 3,3', 5,5'-tetramethylbenzidine. The procedure was carried out to obtain 0.46 g (44.8%) of arylamine compound A3d.
  • the 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
  • the arylamine compound was operated in the same manner as in Example 1-1 except that 0.5 mmol (106.1 mg) of m-trizine was used instead of 3,3', 5,5'-tetramethylbenzidine. 0.17 g (17.5%) of G3d was obtained.
  • the 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
  • Example 2-1 A solution obtained by adding arylamine compound A3b (0.028 g) and aryl sulfonic acid ester A (0.022 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared having a pore size of 0.2 ⁇ m. The mixture was filtered through a syringe filter to obtain a charge-transporting varnish A3b-1.
  • Example 2-2 The solution obtained by adding arylamine compound A3c (0.030 g) and aryl sulfonic acid ester A (0.020 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish A3c-1.
  • Example 2-3 The solution obtained by adding arylamine compound A3d (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish A3d-1.
  • Example 2-4 The solution obtained by adding arylamine compound A3e (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish A3e-1.
  • Example 2-5 The solution obtained by adding arylamine compound A3f (0.032 g) and aryl sulfonic acid ester A (0.018 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. The mixture was filtered through a filter to obtain a charge-transporting varnish A3f-1.
  • Example 2-6 The solution obtained by adding 3 g (0.031 g) of the arylamine compound A (0.031 g) and the aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish A3g-1.
  • Example 2-7 The solution obtained by adding arylamine compound A3h (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. The mixture was filtered through a filter to obtain a charge-transporting varnish A3h-1.
  • Example 2-8 The solution obtained by adding arylamine compound B3b (0.029 g) and aryl sulfonic acid ester A (0.021 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish B3b-1.
  • Example 2-9 The solution obtained by adding arylamine compound B3c (0.030 g) and aryl sulfonic acid ester A (0.020 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish B3c-1.
  • Example 2-10 The solution obtained by adding arylamine compound B3d (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish B3d-1.
  • Example 2-11 The solution obtained by adding arylamine compound B2b (0.022 g) and aryl sulfonic acid ester A (0.028 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish B2b-1.
  • Example 2-12 The solution obtained by adding arylamine compound B2c (0.024 g) and aryl sulfonic acid ester A (0.026 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish B2c-1.
  • Example 2-13 The solution obtained by adding arylamine compound B2d (0.025 g) and aryl sulfonic acid ester A (0.025 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish B2d-1.
  • Example 2-14 The solution obtained by adding arylamine compound H3d (0.033 g) and aryl sulfonic acid ester A (0.017 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish H3d-1.
  • Example 2-15 The solution obtained by adding arylamine compound I3d (0.033 g) and aryl sulfonic acid ester A (0.017 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 ⁇ m. Filtering with a filter gave a charge-transporting varnish I3d-1.
  • Examples 3-1 to 3-11 In the same manner as in Comparative Example 3-1 except that the arylamine compounds A3b, A3c, A3d, A3e, A3f, A3g, A3h, B3d, B2d, H3d, or I3d were used instead of the arylamine compound A3a. Obtains charge-transporting varnishes A3b-2, A3c-2, A3d-2, A3e-2, A3f-2, A3g-2, A3h-2, B3d-2, B2d-2, H3d-2, or I3d-2. It was.
  • the thin film obtained from the charge-transporting varnish of the present invention has the same or higher refractive index than the thin film obtained from the charge-transporting varnish of Comparative Example 4-1 and is equivalent. Or it can be seen that it has a low extinction coefficient.
  • the charge-transporting varnish A3a-2 was applied onto the hole injection layer using a spin coater, and then fired at 130 ° C. for 10 minutes in an air atmosphere to form a hole transport layer (film thickness: 40 nm). Formed.
  • a hole-only element (HOD) was obtained by forming an aluminum thin film of 80 nm at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa).
  • the composition for forming a hole injection layer was prepared by the following procedure. 0.137 g of the aniline derivative represented by the formula (3) synthesized according to the method described in WO2013 / 084664 and the aryl represented by the formula (4) synthesized according to the method described in WO 2006/025432.
  • 0.271 g of sulfonic acid was dissolved in 6.7 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere.
  • 10 g of cyclohexanol and 3.3 g of propylene glycol were sequentially added and stirred to obtain a composition for forming a hole injection layer (the same applies hereinafter).
  • Example 5-1 to 5-11 instead of the charge-transporting varnish A3a-2, the charge-transporting varnish A3b-2, A3c-2, A3d-2, A3e-2, A3f-2, A3g-2, A3h-2, B3d-2, B2d-2 , H3d-2, or I3d-2 were used, respectively, and HOD was prepared in the same manner as in Example 5-1.
  • the thin film prepared from the charge transporting varnish of the present invention exhibits better charge transporting property than the thin film prepared from the charge transporting varnish of the comparative example. This improvement in charge transportability is considered to be associated with an increase in the effective conjugation length of the conductive site in the arylamine compound of the present invention.
  • Example 7-1 to 7-12, Comparative Example 7-2 instead of the charge-transporting varnish A3a-1, the charge-transporting varnishes A3b-1, A3c-1, A3d-1, A3e-1, A3f-1, A3g-1, A3h-1, B3b-1, B3d-, respectively.
  • HOD was prepared in the same manner as in Comparative Example 7-1 except that 1, B2d-1, H3d-1, I3d-1, or B3a-1 was used.
  • the device using the hole injection layer made from the charge-transporting varnish of the present invention has a higher relative strength of the HOD current density with respect to the SLD current density than the device made in the comparative example. I understand.
  • a 10 nm film was formed on the electronic block material HTEB-01 manufactured by Kanto Chemical Co., Inc.
  • the light emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and the light emitting layer dopant material Ir (ppy) 3 were co-deposited.
  • the vapor deposition rate was controlled so that the concentration of Ir (ppy) 3 was 6%, and 40 nm was laminated.
  • thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL device.
  • the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, respectively, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
  • the organic EL element was sealed with a sealing substrate and then the characteristics were evaluated. Sealing was performed by the following procedure.
  • an organic EL element is placed between the sealing substrates, and the sealing substrate is an adhesive (Matsumura Oil Research Corp., Moresco Moisture Cut WB90US (P)). It was pasted together.
  • a water catching agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the organic EL element.
  • the bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ) and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • Example 8-1 to 8-12 instead of the charge-transporting varnish A3a-1, the charge-transporting varnishes A3b-1, A3c-1, A3d-1, A3e-1, A3f-1, A3g-1, A3h-1, B3b-1, B3d-, respectively.
  • An organic EL device was produced in the same manner as in Comparative Example 8-1 except that 1, B2d-1, H3d-1, or I3d-1 was used.

Abstract

For example, arylamine compounds represented by formula (1) or (2) have good solubility in organic solvents and provide a varnish having good storage stability and a thin film having good optical properties, and an organic EL element having good properties can be achieved when this thin film is applied to a hole injection layer or the like. (R1 each independently represent a hydrogen atom, a halogen atom, a nitro group, a cyano group, a C1-20 alkyl group, a C1-20 alkyl halide group, a C1-20 alkoxy group, or a C6-20 aryl group, R2 each independently represent an optionally substituted aryl group optionally containing a hetero atom, Ars each independently represent an optionally substituted arylene group optionally containing a hetero atom, and X represents an optionally substituted arylene group optionally containing a hetero atom.)

Description

アリールアミン化合物およびその利用Arylamine compounds and their uses
 本発明は、アリールアミン化合物およびその利用に関する。 The present invention relates to arylamine compounds and their use.
 有機エレクトロルミネッセンス(以下、有機ELという)素子は、ディスプレイや照明といった分野での実用化が期待されており、低電圧駆動、高輝度、高寿命等を目的とし、材料や素子構造に関する様々な開発がなされている。
 この有機EL素子では複数の機能性薄膜が用いられるが、その中の1つである正孔注入層は、陽極と正孔輸送層または発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な役割を果たす。
Organic electroluminescence (hereinafter referred to as organic EL) elements are expected to be put into practical use in fields such as displays and lighting, and various developments related to materials and element structures are expected for the purpose of low voltage drive, high brightness, long life, etc. Has been made.
A plurality of functional thin films are used in this organic EL element, and one of them, the hole injection layer, is responsible for the transfer of electric charge between the anode and the hole transport layer or the light emitting layer, and is low in the organic EL element. It plays an important role in achieving voltage drive and high brightness.
 この正孔注入層の作製方法は、蒸着法に代表されるドライプロセスとスピンコート法に代表されるウェットプロセスとに大別される。これらのプロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。
 このため、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
The method for producing the hole injection layer is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing these processes, the wet process can efficiently produce a thin film with a large area and high flatness.
For this reason, as the area of organic EL displays is being increased, a hole injection layer that can be formed by a wet process is desired.
 このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(特許文献1~3参照)。 In view of these circumstances, the present inventors have a charge transporting property that gives a thin film that can be applied to various wet processes and can realize excellent EL element characteristics when applied to a hole injection layer of an organic EL element. We have been developing compounds with good solubility in materials and organic solvents used for them (see Patent Documents 1 to 3).
 一方、これまで、有機EL素子を高性能化するために様々な取り組みがなされてきているが、光取出し効率を向上させる等の目的で、用いる機能性薄膜の屈折率を調整する取り組みがなされている。具体的には、素子の全体構成や隣接する他の部材の屈折率を考慮して、相対的に高いあるいは低い屈折率の正孔注入層や正孔輸送層を用いることで、素子の高効率化を図る試みがなされている(特許文献4,5参照)。
 このように、屈折率は有機EL素子の設計上重要な要素であり、有機EL素子用材料では、屈折率も考慮すべき重要な物性値と考えられている。
On the other hand, various efforts have been made to improve the performance of organic EL devices, but efforts have been made to adjust the refractive index of the functional thin film used for the purpose of improving the light extraction efficiency. There is. Specifically, by using a hole injection layer or a hole transport layer having a relatively high or low refractive index in consideration of the overall configuration of the device and the refractive index of other adjacent members, the efficiency of the device is high. Attempts have been made to achieve this (see Patent Documents 4 and 5).
As described above, the refractive index is an important factor in the design of the organic EL element, and in the material for the organic EL element, the refractive index is also considered to be an important physical property value to be considered.
 また、有機EL素子に用いられる電荷輸送性薄膜の着色は、有機EL素子の色純度および色再現性を低下させる等の事情から、近年、有機EL素子用の電荷輸送性薄膜は、可視領域での透過率が高く、高透明性を有することが望まれている(特許文献6参照)。 Further, in recent years, the charge-transporting thin film for organic EL elements has been in the visible region because the coloring of the charge-transporting thin film used for the organic EL element reduces the color purity and color reproducibility of the organic EL element. It is desired to have high transparency and high transparency (see Patent Document 6).
国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2015/050253号International Publication No. 2015/050253 国際公開第2017/217457号International Publication No. 2017/217457 特表2007-536718号公報Special Table 2007-536718 特表2017-501585号公報Special Table 2017-501585 国際公開第2013/042623号International Publication No. 2013/0426223
 本発明は、このような事情に鑑みてなされたものであり、有機溶媒への溶解性が良好であるとともに、光学特性が良好な薄膜を与え、この薄膜を正孔注入層等に適用した場合に良好な特性を有する有機EL素子を実現できるアリールアミン化合物を提供することを目的とする。 The present invention has been made in view of such circumstances, and when a thin film having good solubility in an organic solvent and good optical characteristics is provided and this thin film is applied to a hole injection layer or the like. It is an object of the present invention to provide an arylamine compound capable of realizing an organic EL device having good properties.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、中心にアリールジアミン骨格を有し、その2つのアミノ基に、所定のアリーレン骨格を有するスペーサを介してアリールカルバゾールが少なくとも1つずつ結合した化合物が、有機溶媒への溶解性が良好であり、これを有機溶媒に溶かして得られるワニスが光学特性に優れた薄膜を与え、この薄膜を正孔注入層等に適用した場合に良好な特性を有する有機EL素子が得られることを見出し、本発明を完成した。 As a result of diligent studies to achieve the above object, the present inventors have at least arylcarbazole at the center via a spacer having an aryldiamine skeleton and a predetermined arylene skeleton at the two amino groups. The compounds bonded one by one have good solubility in an organic solvent, and the varnish obtained by dissolving this in an organic solvent gives a thin film having excellent optical properties, and this thin film is applied to a hole injection layer or the like. The present invention has been completed by finding that an organic EL element having good characteristics can be obtained in some cases.
 すなわち、本発明は、
1. 下記式(1)~(6)のいずれかで表されることを特徴とするアリールアミン化合物(ただし、下記式(P1)~(P4)で表される化合物を除く。)、
Figure JPOXMLDOC01-appb-C000042
[式中、Arcは、それぞれ独立して、式(Q)で表される基を表し、
 Xは、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基を表し、
 Yは、それぞれ独立して、置換されていてもよいフェニレン基を表し、
 gは、それぞれ独立して、1~10の整数を表す。
Figure JPOXMLDOC01-appb-C000043
(式中、R1は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、R2は、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリール基を表し、Arsは、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基を表す。)
Figure JPOXMLDOC01-appb-C000044
2. 前記Arsが、下記式(101)~(118)のいずれかで表される1のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
(式中、R3は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、V1は、それぞれ独立して、C(R42(R4は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)、NR5(R5は、水素原子、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表す。)、S、O、またはSO2を表し、V2は、NR5(R5は、前記と同じ意味を表す。)、SまたはOを表す。)
3. 前記Arsが、下記式(101A)~(118A)のいずれかで表される1のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
(式中、R3、V1およびV2は、前記と同じ意味を表す。)
4. 前記Arsが、下記式(101A-1)~(118A-3)のいずれかで表される3のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
(式中、R4およびR5は、前記と同じ意味を表す。)
5. 前記Xが、下記式(201)~(207)のいずれかで表される1~4のいずれかのアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000078
(式中、R6は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、W1は、それぞれ独立して、単結合、C(R72(R7は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)、S、O、またはSO2を表し、W2は、C(R72(R7は、それぞれ独立して前記と同じ意味を表す。)、NR8(R8は、水素原子、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表す。)、S、O、またはSO2を表し、W3は、NR8(R8は、前記と同じ意味を表す。)、SまたはOを表す。)
6. 前記Xが、下記式(201A)~(207A)のいずれかで表される5のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000079
(式中、R6、W1、W2およびW3は、前記と同じ意味を表す。)
7. 前記Xが、下記式(201A-1)~(207A-1)のいずれかで表される6のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
(式中、R7、R8およびW3は、前記と同じ意味を表す。)
8. 前記Arcが、同一の基である1~7のいずれかのアリールアミン化合物、
9. 1~8のいずれかのアリールアミン化合物と、有機溶媒とを含む電荷輸送性ワニス、
10. ドーパント物質を含む9の電荷輸送性ワニス、
11. 9または10の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜、
12. 11の電荷輸送性薄膜を備える電子素子
を提供する。
That is, the present invention
1. 1. Arylamine compounds represented by any of the following formulas (1) to (6) (excluding compounds represented by the following formulas (P1) to (P4)),
Figure JPOXMLDOC01-appb-C000042
Wherein, Ar c each independently represent a group represented by the formula (Q),
X represents an arylene group which may be independently substituted and may contain a heteroatom.
Y represents a phenylene group which may be substituted independently of each other.
g represents an integer of 1 to 10 independently of each other.
Figure JPOXMLDOC01-appb-C000043
(In the formula, R 1 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents an alkoxy group of, or an aryl group having 6 to 20 carbon atoms, R 2 represents an aryl group that may be independently substituted and may contain a hetero atom, and Ar s represents an aryl group. Represents an arylene group that may be independently substituted and may contain a heteroatom.)
Figure JPOXMLDOC01-appb-C000044
2. 2. 1 arylamine compound, wherein Ar s is represented by any of the following formulas (101) to (118).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
(In the formula, R 3 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents an alkoxy group or an aryl group having 6 to 20 carbon atoms, where V 1 is an independent C (R 4 ) 2 (R 4 is an independent hydrogen atom and has 1 to 20 carbon atoms. It represents an alkyl group or an alkyl halide group having 1 to 20 carbon atoms), NR 5 (R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. ), S, O, or SO 2 , V 2 stands for NR 5 (R 5 stands for the same meaning as above), S or O)
3. 3. 1 arylamine compound, wherein Ar s is represented by any of the following formulas (101A) to (118A).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
(In the equation, R 3 , V 1 and V 2 have the same meanings as described above.)
4. Wherein Ar s is 3 arylamine compound represented by any one of the following formulas (101A-1) ~ (118A -3),
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
(In the formula, R 4 and R 5 have the same meanings as described above.)
5. X is an arylamine compound according to any one of 1 to 4 represented by any of the following formulas (201) to (207).
Figure JPOXMLDOC01-appb-C000078
(In the formula, R 6 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents an alkoxy group or an aryl group having 6 to 20 carbon atoms, W 1 is an independent single bond, and C (R 7 ) 2 (R 7 is an independent hydrogen atom and 1 carbon atom. Represents an alkyl group of ~ 20 or an alkyl halide group having 1 to 20 carbon atoms), S, O, or SO 2 , where W 2 is C (R 7 ) 2 (R 7 is independent of each other). (Same as above), NR 8 (R 8 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms), S, O, or SO 2. W 3 stands for NR 8 (R 8 stands for the same meaning as above), S or O.)
6. 5 arylamine compounds, wherein X is represented by any of the following formulas (201A) to (207A).
Figure JPOXMLDOC01-appb-C000079
(In the formula, R 6 , W 1 , W 2 and W 3 have the same meanings as described above.)
7. 6 arylamine compounds represented by any of the following formulas (201A-1) to (207A-1), wherein X is
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
(In the formula, R 7 , R 8 and W 3 have the same meanings as described above.)
8. Wherein Ar c is one of arylamine compounds of 1-7 are the same group,
9. A charge-transporting varnish containing any of the arylamine compounds 1 to 8 and an organic solvent.
10. 9 charge-transporting varnishes containing dopant material,
11. Charge transport thin films made using 9 or 10 charge transport varnishes,
12. Provided is an electronic device including 11 charge transporting thin films.
 本発明のアリールアミン化合物は、有機溶媒への溶解性が良好であり、このアリールアミン化合物を含む電荷輸送性ワニスを用いることで、高透明性、かつ、高屈折率な電荷輸送性薄膜を得ることができる。
 この電荷輸送性薄膜は、有機EL素子をはじめとした電子素子用薄膜として、特に、上層にウェットプロセスで薄膜が積層される電子素子用薄膜として好適に用いることができ、本発明の電荷輸送性薄膜を有機EL素子の正孔注入層等に適用することで、良好な特性を有する素子を作製することができる。
The arylamine compound of the present invention has good solubility in an organic solvent, and by using a charge-transporting varnish containing this arylamine compound, a charge-transporting thin film having high transparency and high refractive index can be obtained. be able to.
This charge transporting thin film can be suitably used as a thin film for electronic devices such as organic EL devices, particularly as a thin film for electronic devices in which a thin film is laminated by a wet process on an upper layer, and the charge transporting property of the present invention can be used. By applying a thin film to a hole injection layer or the like of an organic EL device, an device having good characteristics can be manufactured.
製造例1-1で得られた化合物の1H-NMRスペクトル図である。FIG. 5 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-1. 製造例1-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-2. 製造例1-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-2. 製造例1-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-2. 製造例1-3で得られた化合物の1H-NMRスペクトル図である。3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-3. 製造例1-3で得られた化合物の1H-NMRスペクトル図である。3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-3. 製造例1-4で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in the production example 1-4. 製造例1-4で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in the production example 1-4. 製造例1-5で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-5. 製造例1-5で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-5. 製造例1-6で得られた化合物の1H-NMRスペクトル図である。6 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-6. 製造例1-6で得られた化合物の1H-NMRスペクトル図である。6 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 1-6. 製造例1-7で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-7. 製造例1-7で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-7. 製造例1-8で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-8. 製造例1-8で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-8. 製造例1-9で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-9. 製造例1-9で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 1-9. 製造例2-1で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in the production example 2-1. 製造例2-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in the production example 2-2. 製造例2-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in the production example 2-2. 製造例2-3で得られた化合物の1H-NMRスペクトル図である。3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 2-3. 製造例2-4で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 2-4. 製造例2-4で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Production Example 2-4. 製造例2-5で得られた化合物の1H-NMRスペクトル図である。3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 2-5. 製造例2-5で得られた化合物の1H-NMRスペクトル図である。3 is a 1 H-NMR spectrum diagram of the compound obtained in Production Example 2-5. 実施例1-1で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-1. 実施例1-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-2. 実施例1-3で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-3. 実施例1-4で得られた化合物の1H-NMRスペクトル図である。It is a 1 H-NMR spectrum of the compound obtained in Example 1-4. 実施例1-5で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-5. 実施例1-6で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-6. 実施例1-7で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-7. 実施例1-8で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-8. 実施例1-9で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-9. 実施例1-10で得られた化合物の1H-NMRスペクトル図である。It is a 1 H-NMR spectrum of the compound obtained in Example 1-10. 実施例1-11で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-11. 実施例1-12で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-12. 実施例1-12で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-12. 実施例1-13で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-13. 実施例1-13で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-13. 実施例1-14で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-14. 実施例1-15で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-15. 実施例1-16で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-16. 実施例1-17で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-17. 実施例1-17で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-17. 実施例1-18で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-18. 実施例1-19で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-19. 実施例1-20で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-20. 実施例1-21で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-21. 実施例1-22で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-22. 実施例1-23で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Example 1-23. 比較例1-1で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Comparative Example 1-1. 比較例1-2で得られた化合物の1H-NMRスペクトル図である。It is 1 H-NMR spectrum figure of the compound obtained in Comparative Example 1-2. 比較例1-3で得られた化合物の1H-NMRスペクトル図である。6 is a 1 H-NMR spectrum diagram of the compound obtained in Comparative Example 1-3.
 以下、本発明についてさらに詳しく説明する。
 本発明に係るアリールアミン化合物は、下記式(1)~(6)のいずれかで表されることを特徴とするが、上記のとおり式(P1)~(P4)で表される化合物を包含しない。
Hereinafter, the present invention will be described in more detail.
The arylamine compound according to the present invention is characterized by being represented by any of the following formulas (1) to (6), and includes the compounds represented by the formulas (P1) to (P4) as described above. do not do.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 式(1)~(6)において、Arcは、それぞれ独立して、下記式(Q)で表される基を表し、Xは、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基を表し、Yは、それぞれ独立して、置換されていてもよいフェニレン基を表し、gは、それぞれ独立して、1~10の整数を表すが、好ましくは、Arcは、それぞれ独立して、下記式(Q’)または(Q’’)で表される基を表す。 In the formula (1) ~ (6), Ar c each independently represent a group represented by the following formula (Q), X is independently together may be substituted, a hetero atom Represents an arylene group which may contain, Y represents an independently and optionally substituted phenylene group, and g each independently represents an integer of 1 to 10, but preferably. Ar c each independently represent a group represented by the following formula (Q ') or (Q'').
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 式(Q)、(Q’)および(Q’’)において、R1は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、R2は、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリール基を表し、Arsは、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基を表す。 In formulas (Q), (Q') and (Q ″), R 1 independently has a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and 1 carbon atom. Represents an alkyl halide group of up to 20, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 may be independently substituted and contains a heteroatom. It represents an aryl group which may be an aryl group, and Ar s represents an arylene group which may be independently substituted and may contain a heteroatom.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロブチル、ビシクロペンチル、ビシクロヘキシル、ビシクロヘプチル、ビシクロオクチル、ビシクロノニル、ビシクロデシル基等の炭素数3~20の環状アルキル基などが挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl or t-butyl. , N-Pentyl, n-Hexyl, n-Heptyl, n-octyl, n-Nonyl, n-decyl group and other linear or branched alkyl groups having 1 to 20 carbon atoms; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. , Cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclobutyl, bicyclopentyl, bicyclohexyl, bicycloheptyl, bicyclooctyl, bicyclononyl, bicyclodecyl group and other cyclic alkyl groups having 3 to 20 carbon atoms.
 炭素数1~20のアルコキシ基は、その中のアルキル基が直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキシルオキシ、n-オクチルオキシ、n-デシルオキシ、2-メチルヘキシルオキシ、2-エチルヘキシルオキシ、2-n-プロピルヘキシルオキシ、2-n-ブチルヘキシルオキシ、2-エチルデシルオキシ、3-エチルヘキシルオキシ基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms may have a linear, branched or cyclic alkyl group, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy and n-butoxy. , Isobutoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexyloxy, n-octyloxy, n-decyloxy, 2-methylhexyloxy, 2-ethylhexyloxy, 2-n-propylhexyloxy, 2- Examples thereof include n-butylhexyloxy, 2-ethyldecyloxy and 3-ethylhexyloxy groups.
 炭素数6~20のアリール基の具体例としては、フェニル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等が挙げられる。 Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4- Examples include phenyl, 9-phenyl group and the like.
 炭素数1~20のハロゲン化アルキル基は、上記炭素数1~20のアルキル基の少なくとも1つの水素原子をハロゲン原子で置換した基であり、その具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ブロモジフルオロメチル、2-クロロエチル、2-ブロモエチル、1,1-ジフルオロエチル、2,2,2-トリフルオロエチル、1,1,2,2-テトラフルオロエチル、2-クロロ-1,1,2-トリフルオロエチル、ペンタフルオロエチル、3-ブロモプロピル、2,2,3,3-テトラフルオロプロピル、1,1,2,3,3,3-ヘキサフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル、3-ブロモ-2-メチルプロピル、4-ブロモブチル、パーフルオロペンチル、2-(パーフルオロヘキシル)エチル基等が挙げられる。 The alkyl halide group having 1 to 20 carbon atoms is a group in which at least one hydrogen atom of the alkyl group having 1 to 20 carbon atoms is substituted with a halogen atom, and specific examples thereof include fluoromethyl, difluoromethyl, and tri. Fluoromethyl, bromodifluoromethyl, 2-chloroethyl, 2-bromoethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 2-chloro-1, 1,2-Trifluoroethyl, pentafluoroethyl, 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1 , 3,3,3-Hexafluoropropane-2-yl, 3-bromo-2-methylpropyl, 4-bromobutyl, perfluoropentyl, 2- (perfluorohexyl) ethyl group and the like.
 R1は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基が好ましく、水素原子、炭素数1~10のアルキル基がより好ましく、すべて水素原子がより一層好ましい。 R 1 is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and more preferably a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. , All hydrogen atoms are even more preferred.
 上記式(Q)、(Q’)および(Q’’)におけるR2の置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリール基は、その構成原子としてヘテロ原子を含んでいてもよいアリーレン基であり、また、環が縮合した構造であっても、環が連結した構造であってもよい。その炭素数は、特に限定されるものではないが、通常6~60であり、好ましくは40以下、より好ましくは30以下である。
 R2の置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリール基の置換基の具体例としては、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基および炭素数6~20のアリール基等が挙げられ、ハロゲン原子、炭素数1~20のアルキル基および炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基および炭素数6~20のアリール基の具体例としては上記と同様のものが挙げられる。
The aryl group which may be substituted with R 2 in the above formulas (Q), (Q') and (Q ″) and may contain a hetero atom contains a hetero atom as a constituent atom thereof. It is also a good arylene group, and may have a structure in which rings are condensed or a structure in which rings are linked. The number of carbon atoms is not particularly limited, but is usually 6 to 60, preferably 40 or less, and more preferably 30 or less.
Specific examples of the substituent of the aryl group which may be substituted with R 2 and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. Examples thereof include an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms. Specific examples of the atom, the alkyl group having 1 to 20 carbon atoms, the alkyl halide group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms are the same as above. Can be mentioned.
 炭素数2~20のアルケニル基の具体例としては、エテニル、n-1-プロペニル、n-2-プロペニル、1-メチルエテニル、n-1-ブテニル、n-2-ブテニル、n-3-ブテニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、1-エチルエテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、n-1-ペンテニル、n-1-デセニル、n-1-エイコセニル基等が挙げられる。 Specific examples of the alkenyl group having 2 to 20 carbon atoms include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-Methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-1-decenyl, n- 1-Eicosenyl group and the like can be mentioned.
 炭素数2~20のアルキニル基の具体例としては、エチニル、n-1-プロピニル、n-2-プロピニル、n-1-ブチニル、n-2-ブチニル、n-3-ブチニル、1-メチル-2-プロピニル、n-1-ペンチニル、n-2-ペンチニル、n-3-ペンチニル、n-4-ペンチニル、1-メチル-n-ブチニル、2-メチル-n-ブチニル、3-メチル-n-ブチニル、1,1-ジメチル-n-プロピニル、n-1-ヘキシニル、n-1-デシニル、n-1-ペンタデシニル、n-1-エイコシニル基等が挙げられる。 Specific examples of the alkynyl group having 2 to 20 carbon atoms include ethynyl, n-1-propynyl, n-2-propynyl, n-1-butynyl, n-2-butynyl, n-3-butynyl, and 1-methyl-. 2-Propynyl, n-1-pentynyl, n-2-pentynyl, n-3-pentynyl, n-4-pentynyl, 1-methyl-n-butynyl, 2-methyl-n-butynyl, 3-methyl-n- Butynyl, 1,1-dimethyl-n-propynyl, n-1-hexynyl, n-1-decynyl, n-1-pentadecynyl, n-1-eicosynyl group and the like can be mentioned.
 R2としては、置換されていてもよいとともに、ヘテロ原子を含んでいてもよい炭素数6~10のアリール基が好ましく、置換されていてもよいフェニル基、置換されていてもよいナフチル基がより好ましく、いずれもフェニル基またはナフチル基がより一層好ましく、いずれもフェニル基がさらに好ましい。
 以下、R2として好適な基の具体例を挙げるが、これらに限定されない。
As R 2 , an aryl group having 6 to 10 carbon atoms which may be substituted and may contain a hetero atom is preferable, and a phenyl group which may be substituted and a naphthyl group which may be substituted may be used. More preferably, both are more preferably a phenyl group or a naphthyl group, and both are even more preferably a phenyl group.
Hereinafter, specific examples of groups suitable for R 2 will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 上記式(Q)、(Q’)および(Q’’)におけるArsの置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基は、その構成原子としてヘテロ原子を含んでいてもよいアリーレン基であり、また、環が縮合した構造であっても、環が連結した構造であってもよい。その炭素数は、特に限定されるものではないが、通常6~60であり、好ましくは40以下、より好ましくは30以下である。
 Arsの置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基の置換基の具体例としては、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基および炭素数6~20のアリール基等が挙げられ、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基および炭素数6~20のアリール基としては上記と同様のものが挙げられる。
 好ましい一態様では、Arsが、下記式(101)~(118)のいずれかで表される基である。
The arylene group which may be substituted with Ar s in the above formulas (Q), (Q') and (Q ″) and may contain a hetero atom contains a hetero atom as a constituent atom thereof. It is also a good arylene group, and may have a structure in which rings are condensed or a structure in which rings are linked. The number of carbon atoms is not particularly limited, but is usually 6 to 60, preferably 40 or less, and more preferably 30 or less.
Specific examples of the substituent of the arylene group which may be substituted with Ar s and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. Examples thereof include an alkyl halide group having 1 to 20, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like, a halogen atom, an alkyl group having 1 to 20 carbon atoms, and a halogen having 1 to 20 carbon atoms. Examples of the alkylated alkyl group, the alkoxy group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms are the same as those described above.
In one preferred embodiment, Ar s is a group represented by any one of the following formulas (101) to (118).
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 R3は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、V1は、それぞれ独立して、C(R42(R4は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)、NR5(R5は、水素原子、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表す。)、S、O、またはSO2を表し、V2は、NR5(R5は、前記と同じ意味を表す。)、SまたはOを表す。
 R3~R5における、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数1~20のハロゲン化アルキル基としては上記と同様のものが挙げられる。
R 3 independently contains a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Alternatively, it represents an aryl group having 6 to 20 carbon atoms, where V 1 is an independent C (R 4 ) 2 (R 4 is an independent hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or (Represents an alkyl halide group having 1 to 20 carbon atoms), NR 5 (R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms), S, It represents O or SO 2 , where V 2 is NR 5 (R 5 has the same meaning as above), S or O.
The halogen atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and alkyl halide groups having 1 to 20 carbon atoms in R 3 to R 5 are described above. The same can be mentioned.
 特に、R3は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基が好ましく、水素原子、炭素数1~5のアルキル基、炭素数1~5のフルオロアルキル基がより好ましく、水素原子、メチル基、トリフルオロメチル基がより一層好ましい。なお、得られる薄膜の消衰係数を低下させるという点から、少なくとも1つのR3が、ハロゲン原子、ニトロ基、シアノ基、炭素数1~5のフルオロアルキル基等の電子吸引基であることが好ましく、この点を考慮すると、トリフルオロメチル基がより好ましい。
 R4は、それぞれ独立して、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、いずれもメチル基がより一層好ましい。
 R5は、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基が好ましく、水素原子、炭素数1~5のアルキル基、フェニル基、ナフチル基がより好ましく、水素原子、メチル基、フェニル基がより一層好ましい。
In particular, R 3 is preferably a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms, or an alkyl halide group having 1 to 10 carbon atoms, respectively, and has a hydrogen atom and a carbon number of carbon atoms. Alkyl groups of 1 to 5 and fluoroalkyl groups having 1 to 5 carbon atoms are more preferable, and hydrogen atoms, methyl groups and trifluoromethyl groups are even more preferable. From the viewpoint of lowering the extinction coefficient of the obtained thin film, at least one R 3 may be an electron-withdrawing group such as a halogen atom, a nitro group, a cyano group, or a fluoroalkyl group having 1 to 5 carbon atoms. Preferably, in consideration of this point, a trifluoromethyl group is more preferable.
Independently, R 4 preferably has an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and even more preferably a methyl group.
R 5 is preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and a naphthyl group, and a hydrogen atom. , Methyl group and phenyl group are even more preferable.
 また、全てのR3が電子吸引基ではない場合、得られる薄膜の消衰係数を低下させるという点から、V1は、S、O、SO2が好ましい。なお、V1が、S、O、SO2の場合に、R3中に電子吸引基が存在してもよい。
 さらに、全てのR3が電子吸引基ではない場合、得られる薄膜の消衰係数を低下させるという点から、V2は、S、Oが好ましい。なお、V2が、S、Oの場合に、R3中に電子吸引基が存在してもよい。
Also, if all R 3 is not an electron withdrawing group, the extinction coefficient of the thin film from the viewpoint of reducing the resulting, V 1 is, S, O, SO 2 are preferred. When V 1 is S, O, SO 2 , an electron-withdrawing group may be present in R 3 .
Furthermore, if all R 3 is not an electron withdrawing group, from the viewpoint of lowering the extinction coefficient of the thin film obtained, V 2 is, S, O is preferred. When V 2 is S or O, an electron-withdrawing group may be present in R 3 .
 Arsとしては、下記式(101A)~(118A)のいずれかで表される基が好ましい。 As Ar s , a group represented by any of the following formulas (101A) to (118A) is preferable.
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
(式中、R3、V1およびV2は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000102
(In the equation, R 3 , V 1 and V 2 have the same meaning as above.)
 以下、Arsとして好適な具体例を挙げるが、これらに限定されるものではない。 Hereinafter, specific examples suitable as Ar s will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000107
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000108
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000108
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000109
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000109
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000110
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000110
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000111
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000111
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000112
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000112
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000113
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000113
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000114
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000114
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000115
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000115
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000116
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000116
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000117
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000117
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000118
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000118
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000119
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000119
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000120
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000120
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000121
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000121
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000122
(式中、R4およびR5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000122
(In the equation, R 4 and R 5 have the same meaning as above.)
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
(式中、R5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000124
(In the formula, R 5 has the same meaning as above.)
Figure JPOXMLDOC01-appb-C000125
(式中、R5は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000125
(In the formula, R 5 has the same meaning as above.)
 上記式(1)および(2)におけるXの置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基は特に限定されるものではなく、環が縮合した構造であっても、環が連結した構造であってもよい。その炭素数は、特に限定されるものではないが、通常6~60であり、好ましくは40以下、より好ましくは30以下である。
 Xの置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基の置換基の具体例としては、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基および炭素数6~20のアリール基等が挙げられ、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基および炭素数6~20のアリール基としては上記と同様のものが挙げられる。
The arylene group which may be substituted with X in the above formulas (1) and (2) and may contain a hetero atom is not particularly limited, and even if the structure is a condensed ring, the ring is not particularly limited. May be a connected structure. The number of carbon atoms is not particularly limited, but is usually 6 to 60, preferably 40 or less, and more preferably 30 or less.
Specific examples of the substituent of the arylene group which may be substituted with X and may contain a hetero atom include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and 1 carbon atom. Examples thereof include an alkyl group having 20 to 20, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like, a halogen atom, an alkyl group having 1 to 20 carbon atoms, and a halogenation having 1 to 20 carbon atoms. Examples of the alkyl group, the alkoxy group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms include the same as above.
 特に屈折率、透明性および電気特性のバランスを考慮すると、上記式(1)および(2)におけるXの置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基は、下記式(201)~(207)のいずれかで表される2価の基が好ましい。 In particular, considering the balance of refractive index, transparency and electrical characteristics, the arylene group which may be substituted with X in the above formulas (1) and (2) and may contain a heteroatom is the following formula ( A divalent group represented by any one of 201) to (207) is preferable.
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 式(201)~(207)において、R6は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、W1は、それぞれ独立して、単結合、C(R72(R7は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)、S、O、またはSO2を表し、W2は、C(R72(R7は、上記と同じ意味を表す。)、NR8(R8は、水素原子、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表す。)、S、O、またはSO2を表し、W3は、NR8(R8は、上記と同じ意味を表す。)、SまたはOを表す。R6~R8における、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数1~20のハロゲン化アルキル基としては上記と同様のものが挙げられる。 In formulas (201) to (207), R 6 independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, and an alkyl halide group having 1 to 20 carbon atoms. , Represents an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, W 1 is an independent single bond, and C (R 7 ) 2 (R 7 is an independent element. Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl halide group having 1 to 20 carbon atoms), S, O, or SO 2 , where W 2 is C (R 7 ) 2 (R). 7 represents the same meaning as above), NR 8 (R 8 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms), S, O, or. Represents SO 2 , W 3 represents NR 8 (R 8 represents the same meaning as above), S or O. The halogen atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and alkyl halide groups having 1 to 20 carbon atoms in R 6 to R 8 are described above. The same can be mentioned.
 特に、R6は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基が好ましく、水素原子、炭素数1~5のアルキル基、炭素数1~5のフルオロアルキル基がより好ましく、水素原子、メチル基、トリフルオロメチル基がより一層好ましい。なお、得られる薄膜の消衰係数を低下させるという点から、少なくとも1つのR6は、ハロゲン原子、ニトロ基、シアノ基、炭素数1~5のフルオロアルキル基等の電子吸引基が好ましく、この点を考慮すると、トリフルオロメチル基がより好ましい。
 R7は、それぞれ独立して、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、いずれもメチル基がより一層好ましい。
 R8は、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基が好ましく、水素原子、炭素数1~5のアルキル基、フェニル基、ナフチル基がより好ましく、水素原子、メチル基、フェニル基がより一層好ましい。
In particular, R 6 is preferably a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms, or an alkyl halide group having 1 to 10 carbon atoms, respectively, and has a hydrogen atom and a carbon number of carbon atoms. Alkyl groups of 1 to 5 and fluoroalkyl groups having 1 to 5 carbon atoms are more preferable, and hydrogen atoms, methyl groups and trifluoromethyl groups are even more preferable. From the viewpoint of lowering the extinction coefficient of the obtained thin film, at least one R 6 is preferably an electron-withdrawing group such as a halogen atom, a nitro group, a cyano group, or a fluoroalkyl group having 1 to 5 carbon atoms. Considering the point, a trifluoromethyl group is more preferable.
Independently, R 7 preferably has an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and even more preferably a methyl group.
R 8 is preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and a naphthyl group, and a hydrogen atom. , Methyl group and phenyl group are even more preferable.
 また、全てのR6が電子吸引基ではない場合、得られる薄膜の消衰係数を低下させるという点から、W1は、S、O、SO2が好ましい。なお、W1が、S、O、SO2の場合に、R6中に電子吸引基が存在してもよい。 Also, if all R 6 is not an electron withdrawing group, the extinction coefficient of the thin film from the viewpoint of reducing the obtained, W 1 is, S, O, SO 2 are preferred. When W 1 is S, O, and SO 2 , an electron-withdrawing group may be present in R 6 .
 また、全てのR6が電子吸引基ではない場合、得られる薄膜の消衰係数を低下させるという点から、W2は、S、O、SO2が好ましい。なお、W2が、S、O、SO2の場合に、R6中に電子吸引基が存在してもよい。
 さらに、全てのR6が電子吸引基ではない場合、得られる薄膜の消衰係数を低下させるという点から、W3は、S、Oが好ましい。なお、W3が、S、O、SO2の場合に、R6中に電子吸引基が存在してもよい。
Also, if all R 6 is not an electron withdrawing group, the extinction coefficient of the thin film from the viewpoint of reducing the obtained, W 2 is, S, O, SO 2 are preferred. When W 2 is S, O, SO 2 , an electron-withdrawing group may be present in R 6 .
Furthermore, if all R 6 is not an electron withdrawing group, from the viewpoint of lowering the extinction coefficient of the resulting thin film, W 3 is, S, O is preferred. When W 3 is S, O, SO 2 , an electron-withdrawing group may be present in R 6 .
 さらに、上記式(201)~(207)において、芳香環上におけるアミノ基およびスペーサであるW1の結合位置は特に限定されるものではないが、下記式(201A)~(207A)のいずれかで表される2価の基が好ましい。 Further, in the above formulas (201) to (207), the bonding position of the amino group and the spacer W 1 on the aromatic ring is not particularly limited, but any of the following formulas (201A) to (207A). A divalent group represented by is preferable.
Figure JPOXMLDOC01-appb-C000127
(式中、R6、W1、W2およびW3は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000127
(In the formula, R 6 , W 1 , W 2 and W 3 have the same meanings as above.)
 また、本発明のアリールアミン化合物を用いたワニスの保存安定性を向上させる観点から、上記式(201)~(207)において、芳香族環上に、少なくとも1つの置換基を有することが好ましく、この観点から、下記式(201A’)~(207A’)のいずれかで表される2価の基が好ましい。 Further, from the viewpoint of improving the storage stability of the varnish using the arylamine compound of the present invention, it is preferable to have at least one substituent on the aromatic ring in the above formulas (201) to (207). From this point of view, a divalent group represented by any of the following formulas (201A') to (207A') is preferable.
Figure JPOXMLDOC01-appb-C000128
(式中、W1、W2およびW3は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000128
(In the formula, W 1 , W 2 and W 3 have the same meaning as above.)
 式(201A’)~(207A’)において、R6’は、それぞれ独立して、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基の具体例としては上記と同様のものが挙げられる。
 これらの中でも、R6’は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基が好ましく、炭素数1~5のアルキル基、炭素数1~5のフルオロアルキル基がより好ましく、メチル基、トリフルオロメチル基がより一層好ましい。
In the formula (201A ') ~ (207A' ), R 6 ' are each independently a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms Represents an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Specific examples of the alkoxy group and the aryl group having 6 to 20 carbon atoms are the same as those described above.
Among these, R 6'preferably an alkyl group having 1 to 10 carbon atoms and an alkyl halide group having 1 to 10 carbon atoms, and an alkyl group having 1 to 5 carbon atoms and a fluoroalkyl group having 1 to 5 carbon atoms. More preferably, a methyl group and a trifluoromethyl group are even more preferable.
 本発明で好適なXとしては、下記式で示されるものが挙げられるが、これらに限定されるものではない。 Examples of X suitable in the present invention include those represented by the following formulas, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
(式中、R7、R8およびW3は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000131
(In the formula, R 7 , R 8 and W 3 have the same meaning as above.)
 上記式(3)~(6)におけるYの置換されていてもよいフェニレン基としては、ハロゲン原子、アルキル基、アルケニル基またはアルキニル基等で置換されていてもよい1,4-フェニレン基、1,3-フェニレン基または1,2-フェニレン基が挙げられるが、屈折率、透明性および電気特性のバランスを考慮すると、置換されていてもよい1,4-フェニレン基または1,3-フェニレン基が好ましく、無置換の1,4-フェニレン基または1,3-フェニレン基がより好ましい。 Examples of the phenylene group in which Y may be substituted in the above formulas (3) to (6) include a 1,4-phenylene group, which may be substituted with a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or the like. , 3-Phenylene group or 1,2-phenylene group, but may be substituted 1,4-phenylene group or 1,3-phenylene group in consideration of the balance of refractive index, transparency and electrical characteristics. Is preferable, and an unsubstituted 1,4-phenylene group or a 1,3-phenylene group is more preferable.
 上記式(3)~(6)において、gは、それぞれ独立して、1~10の整数を表すが、化合物の有機溶媒への溶解性、得られる薄膜の透明性を考慮すると、1~7の整数が好ましく、1~5の整数がより好ましく、1~3の整数がより一層好ましく、1または2が更に好ましく、原料化合物の入手容易性を更に考慮すると、1が最適である。 In the above formulas (3) to (6), g independently represents an integer of 1 to 10, but considering the solubility of the compound in an organic solvent and the transparency of the obtained thin film, 1 to 7 Is preferred, an integer of 1 to 5 is more preferred, an integer of 1 to 3 is even more preferred, 1 or 2 is even more preferred, and 1 is optimal considering the availability of the starting compound.
 本発明において、Arsは、好ましくは式(107)で表される基、より好ましくは式(107A)~(107C)のいずれかで表される基、より一層好ましくは式(107A-1)~(107C-5)のいずれかで表される基、さらに好ましくは式(107B-1)または(107C-1)で表される基である。 In the present invention, Ar s is preferably a group represented by the formula (107), more preferably a group represented by any one of formulas (107A) ~ (107C), and even more preferably formula (107A-1) A group represented by any of (107C-5), more preferably a group represented by the formula (107B-1) or (107C-1).
 本発明においては、合成の容易性の観点から、式(1)~(6)それぞれにおいて、Arcは、同一の基であることが好ましい。
 特に、Arcは、好ましくは式(Q-1)で表される基(ArC1)であり、より好ましくは式(Q-2)で表される基(ArC2)または式(Q-3)で表される基(ArC3)である。
In the present invention, from the viewpoint of ease of synthesis, it is preferable that Arc is the same group in each of the formulas (1) to (6).
In particular, Ar c is preferably a group (Ar C1) represented by the formula (Q-1), more preferably a group represented by the formula (Q-2) (Ar C2 ) or formula (Q-3 ) Is a group (Ar C3 ).
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
 本発明のアリールアミン化合物は、好ましい一態様においては、下記式(1-1)~(6-1)のいずれかで表され、より好ましい一態様においては、下記式(1-2)~(6-2)および(1-3)~(6-3)のいずれかで表される。 The arylamine compound of the present invention is represented by any of the following formulas (1-1) to (6-1) in a preferred embodiment, and the following formulas (1-2) to (6-1) in a more preferred embodiment. It is represented by any of 6-2) and (1-3) to (6-3).
Figure JPOXMLDOC01-appb-C000133
(式中、X、Y、ArC1およびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000133
(In the formula, X, Y, Ar C1 and g have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000134
(式中、X、Y、ArC2およびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000134
(In the formula, X, Y, Ar C2 and g have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000135
(式中、X、Y、ArC3およびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000135
(In the formula, X, Y, Ar C3 and g have the same meanings as above.)
 本発明の式(1)または(2)で表されるアリールアミン化合物(以下、アリールアミン化合物(1)または(2)ともいう。)は、下記スキームに示されるように、アリールジアミン化合物[I]と、ハロゲン化アリール化合物[II]とを触媒存在下で反応させて製造できる。 The arylamine compound represented by the formula (1) or (2) of the present invention (hereinafter, also referred to as arylamine compound (1) or (2)) is an aryldiamine compound [I] as shown in the following scheme. ] And the aryl halide compound [II] can be produced by reacting in the presence of a catalyst.
Figure JPOXMLDOC01-appb-C000136
(式中、Zは、ハロゲン原子または擬ハロゲン基を表し、X、R1、R2およびArsは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000136
(In the formula, Z represents a halogen atom or a pseudohalogen group, and X, R 1 , R 2 and Ar s have the same meanings as above.)
 ハロゲン原子としては、上記と同様のものが挙げられる。
 擬ハロゲン基としては、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
Examples of the halogen atom include the same as above.
Examples of the pseudohalogen group include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy, trifluoromethanesulfonyloxy and nonafluorobutanesulfonyloxy groups; aromatic sulfonyloxy groups such as benzenesulfonyloxy and toluenesulfonyloxy groups. ..
 アリールジアミン化合物[I]と、ハロゲン化アリール化合物[II]との仕込み比は、合成する化合物がアリールアミン化合物(1)と(2)のいずれであるかに応じて、かつ、原料化合物の反応性やかさ高さ等を考慮し、通常、アリールジアミン化合物[I]の全NH基の物質量に対し、ハロゲン化アリール化合物を1.2~0.6当量程度の範囲で適宜決定されるが、アリールアミン化合物(1)を合成する場合、ハロゲン化アリール化合物1.0当量以上が好ましい。 The charging ratio of the aryldiamine compound [I] to the halogenated aryl compound [II] depends on whether the compound to be synthesized is the arylamine compound (1) or (2), and the reaction of the raw material compound. Usually, the aryl halide compound is appropriately determined in the range of 1.2 to 0.6 equivalents with respect to the amount of all NH groups of the aryldiamine compound [I] in consideration of the properties and bulkiness. When synthesizing the arylamine compound (1), 1.0 equivalent or more of the aryl halide compound is preferable.
 上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルホスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルホスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ジベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ジベンジリデンアセトン)ジパラジウム)、Pd(P-t-Bu32(ビス(トリ(t-ブチルホスフィン))パラジウム)、Pd(OAc)2(酢酸パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。 Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide and copper iodide; Pd (PPh 3 ) 4 (tetrax (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (Bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt-Bu) 3 ) Examples thereof include palladium catalysts such as 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate). These catalysts may be used alone or in combination of two or more. These catalysts may also be used with suitable known ligands.
 このような配位子としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-t-ブチルホスフィン、ジ-t-ブチル(フェニル)ホスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等の3級ホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等の3級ホスファイト、Aldrich社で市販されている、JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2’-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me3(OMe)tBuXPhos, (2-Biphenyl)di-1-adamantylphosphine, RockPhos, CPhos等のビフェニルホスフィン化合物などが挙げられる。 Examples of such ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl ( Phine) phosphine, di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphine) ethane, 1,3-bis (diphenylphosphine) propane, 1,4-bis (diphenylphos) Tertiary phosphine such as fino) butane, 1,1'-bis (diphenylphosphine) ferrocene, tertiary phosphine such as trimethylphosphine, triethylphosphine, triphenylphosphine, John Phos commercially available from Aldrich , CyjohnPhos, DavePhos, XPhos, SPhos , tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2'-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me 3 (OMe) tBuXPhos , (2-Biphenyl) di-1-adamantylphosphine, RockPhos, CPhos and other biphenylphosphine compounds.
 触媒の使用量は、ハロゲン化アリール化合物[II]1molに対して、0.01~0.5mol程度とすることができるが、0.05~0.2mol程度が好適である。
 また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
The amount of the catalyst used can be about 0.01 to 0.5 mol with respect to 1 mol of the aryl halide compound [II], but is preferably about 0.05 to 0.2 mol.
When a ligand is used, the amount used can be 0.1 to 5 equivalents with respect to the metal complex to be used, but 1 to 2 equivalents are preferable.
 また、上記反応では塩基を用いてもよい。塩基としては、例えば、リチウム、ナトリウム、カリウム、水素化リチウム、水素化ナトリウム、水酸化リチウム、水酸化カリウム、t-ブトキシリチウム、t-ブトキシナトリウム、t-ブトキシカリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単体、水素化アルカリ金属、水酸化アルカリ金属、アルコキシアルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属;n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド(LDA)、リチウム2,2,6,6-テトラメチルピペリジン(LiTMP)、ヘキサメチルジシラザンリチウム(LHMDS)等の有機リチウム;トリエチルアミン、ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、ピリジン等のアミン類などが挙げられる。
 塩基を用いる場合、その使用量は、使用するハロゲン化アリール化合物[II]に対し0.1~5当量とすることができるが、1~2当量が好適である。
In addition, a base may be used in the above reaction. Examples of the base include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium, t-butoxypotassium, sodium hydroxide, potassium hydroxide. , Alkali metal alone such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, alkali metal hydride, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal hydrogen carbonate; alkaline soil carbonate such as calcium carbonate Metals; n-butyl lithium, s-butyl lithium, t-butyl lithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidin (LiTMP), hexamethyldisilazane lithium (LHMDS), etc. Organic lithium; Examples thereof include amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, and pyridine.
When a base is used, the amount used can be 0.1 to 5 equivalents with respect to the aryl halide compound [II] to be used, but 1 to 2 equivalents are preferable.
 原料化合物が全て固体である場合あるいは目的とするアリールアミン化合物を効率よく得る観点から、上記各反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタムおよびラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。 Each of the above reactions is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the target arylamine compound. When a solvent is used, the type is not particularly limited as long as it does not adversely affect the reaction. Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), and aromatics. Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesityrene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, etc.) P-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butylmethyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), ketones (acetone, methylethylketone, etc.) Methylisobutylketone, di-n-butylketone, cyclohexanone, etc.), amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), lactams and lactones (N-methylpyrrolidone, γ-butyrolactone, etc.), urea Species (N, N-dimethylimidazolidinone, tetramethylurea, etc.), sulfoxides (dimethylsulfoxide, sulfolane, etc.), nitriles (acetoyl, propionitrile, butyronitrile, etc.), etc., and these solvents alone It may be used, or two or more kinds may be mixed and used.
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。反応時間は、反応温度や原料化合物の反応性等を考慮して適宜決定されるが、通常、30分間から50時間程度である。
 反応終了後は、常法にしたがって後処理をし、目的とするアリールアミン化合物を得ることができる。
The reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but is particularly preferably about 0 to 200 ° C., more preferably 20 to 150 ° C. The reaction time is appropriately determined in consideration of the reaction temperature, the reactivity of the raw material compound, and the like, but is usually about 30 minutes to 50 hours.
After completion of the reaction, post-treatment can be carried out according to a conventional method to obtain the desired arylamine compound.
 本発明の式(3)~(5)で表されるアリールアミン化合物(以下、アリールアミン化合物(3)、(4)または(5)ともいう。)は、下記スキームに示されるように、アリールジアミン化合物[I’]と、ハロゲン化アリール化合物[II]とを触媒存在下で反応させて製造できる。 The arylamine compounds represented by the formulas (3) to (5) of the present invention (hereinafter, also referred to as arylamine compounds (3), (4) or (5)) are aryl as shown in the following scheme. It can be produced by reacting a diamine compound [I'] with an aryl halide compound [II] in the presence of a catalyst.
Figure JPOXMLDOC01-appb-C000137
(式中、Y、R1、R2、Z、Arsおよびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000137
(In the formula, Y, R 1 , R 2 , Z, Ar s and g have the same meanings as above.)
 アリールジアミン化合物[I’]と、ハロゲン化アリール化合物[II]との仕込み比は、目的物が得られる限り特に限定されるものではないが、通常、合成する化合物がアリールアミン化合物(3)~(5)のいずれであるかに応じて、かつ、原料化合物の反応性やかさ高さ等を考慮し、アリールジアミン化合物[I’]の全NH基の物質量に対し、ハロゲン化アリール化合物を1.2当量以下の範囲で適宜決定され、アリールアミン化合物(3)を合成する場合、アリールジアミン化合物[I’]の全NH基の物質量に対し、ハロゲン化アリール化合物1.0当量以上が好ましく、アリールアミン化合物(4)を合成する場合、アリールジアミン化合物[I’]の物質量に対し、ハロゲン化アリール化合物2.0当量以上とすることができるが、2.0~2.4当量が好ましく、ハロゲン化アリールアミン化合物(5)を合成する場合、アリールジアミン化合物[I’]の物質量に対し、アリール化合物4.0当量以上とすることができるが、4.0~4.8当量が好ましい。
 その他、触媒、配位子、塩基、溶媒、反応の温度および時間等に関するカップリング反応の諸条件および好適な条件は、式(1)または(2)で表されるアリールアミン化合物に関して説明したものと同じである。
The charging ratio of the aryldiamine compound [I'] to the aryl halide compound [II] is not particularly limited as long as the desired product can be obtained, but usually the compounds to be synthesized are the arylamine compounds (3) to Depending on which of (5) is used, and in consideration of the reactivity and bulkiness of the raw material compound, the amount of the aryl halide compound is 1 with respect to the total amount of NH groups of the aryldiamine compound [I']. .2 Equivalent or less is appropriately determined, and when synthesizing the arylamine compound (3), 1.0 equivalent or more of the aryl halide compound is preferable with respect to the amount of all NH groups of the aryldiamine compound [I']. , In the case of synthesizing the arylamine compound (4), the amount of the aryldiamine compound [I'] can be 2.0 equivalents or more of the aryl halide compound, but 2.0 to 2.4 equivalents. Preferably, when synthesizing the arylamine halide compound (5), the amount of the aryl compound can be 4.0 equivalents or more with respect to the amount of the aryldiamine compound [I'], but 4.0 to 4.8 equivalents. Is preferable.
In addition, various conditions and suitable conditions of the coupling reaction regarding the catalyst, the ligand, the base, the solvent, the temperature and time of the reaction, etc. are described with respect to the arylamine compound represented by the formula (1) or (2). Is the same as.
 本発明の式(6)で表されるアリールアミン化合物(以下、アリールアミン化合物(6)ともいう。)は、次の方法で製造することができる。
 まず、ジニトロ化合物[I”-1]とハロゲン化アリール化合物[II]とを反応させて、ジニトロ化合物[I”-2]を得る。
The arylamine compound represented by the formula (6) of the present invention (hereinafter, also referred to as arylamine compound (6)) can be produced by the following method.
First, the dinitro compound [I "-1] is reacted with the aryl halide compound [II] to obtain the dinitro compound [I "-2].
Figure JPOXMLDOC01-appb-C000138
(式中、R1、R2、Y、Z、Arsおよびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000138
(In the formula, R 1 , R 2 , Y, Z, Ar s and g have the same meanings as above.)
 ジニトロ化合物[I”-1]と、ハロゲン化アリール化合物[II]との仕込み比は、ジニトロ化合物の全NH基の物質量に対し、ハロゲン化アリール化合物を1当量以上とすることができるが、1~1.2当量程度が好適である。
 その他、触媒、配位子、塩基、溶媒、反応の温度および時間等に関する反応の諸条件および好適な条件は、式(1)または(2)で表されるアリールアミン化合物に関して説明したものと同じである。
The charging ratio of the dinitro compound [I "-1] to the aryl halide compound [II] can be 1 equivalent or more of the aryl halide compound with respect to the amount of substance of the total NH groups of the dinitro compound. About 1 to 1.2 equivalents are preferable.
In addition, the reaction conditions and suitable conditions regarding the catalyst, ligand, base, solvent, reaction temperature and time, etc. are the same as those described for the arylamine compound represented by the formula (1) or (2). Is.
 次に、ジニトロ化合物[I”-2]中のニトロ基を水添によって還元してアミン化合物[I”-3]を得る。水添は、Pd/C等を用いた水素添加反応が挙げられ、公知の手法によって行うことができる。 Next, the nitro group in the dinitro compound [I "-2] is reduced by hydrogenation to obtain the amine compound [I" -3]. Hydrogenation includes a hydrogenation reaction using Pd / C or the like, and can be carried out by a known method.
Figure JPOXMLDOC01-appb-C000139
(式中、Y、Arcおよびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000139
(Wherein, Y, Ar c and g are the same as defined above.)
 次に、アミン化合物[I”-3]と、ハロゲン化アリール化合物[II]とを反応させて、アリールアミン化合物(6)を得ることができる。 Next, the amine compound [I "-3] can be reacted with the aryl halide compound [II] to obtain the arylamine compound (6).
Figure JPOXMLDOC01-appb-C000140
(式中、R1、R2、Y、Z、Arc、Arsおよびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000140
(Wherein, R 1, R 2, Y , Z, Ar c, Ar s and g are the same as defined above.)
 アミン化合物[I”-3]と、ハロゲン化アリール化合物[II]との仕込み比は、アミン化合物に対し、ハロゲン化アリール化合物を2当量以上とすることができるが、2~2.4当量程度が好適である。
 その他、触媒、配位子、塩基、溶媒、反応の温度および時間等に関する反応の諸条件および好適な条件は、式(1)または(2)で表されるアリールアミン化合物に関して説明したものと同じである。
The charging ratio of the amine compound [I "-3] and the aryl halide compound [II] can be 2 equivalents or more of the aryl halide compound with respect to the amine compound, but is about 2 to 2.4 equivalents. Is preferable.
In addition, the reaction conditions and suitable conditions regarding the catalyst, ligand, base, solvent, reaction temperature and time, etc. are the same as those described for the arylamine compound represented by the formula (1) or (2). Is.
 本発明のアリールアミン化合物の製造に用いる原料であるハロゲン化アリール化合物[II]は、アリールカルバゾール化合物[III]と、ジハロゲン化アリール化合物[IV]とを触媒存在下で反応させて製造できる。 The aryl halide compound [II], which is a raw material used for producing the arylamine compound of the present invention, can be produced by reacting an arylcarbazole compound [III] with an aryldihalide compound [IV] in the presence of a catalyst.
Figure JPOXMLDOC01-appb-C000141
(式中、R1、R2、ZおよびArsは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000141
(In the formula, R 1 , R 2 , Z and Ar s have the same meaning as above.)
 ZBは、それぞれ独立して、下記式(E1)または(E2)で表される基を表す。 Z B independently represents a group represented by the following formula (E1) or (E2).
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
 Z’は、ハロゲン原子または擬ハロゲン基を表し、ハロゲン原子および擬ハロゲン基としては、上記と同じものが挙げられる。
 ここで、ZおよびZ’は、いずれも同じものであってもよいが、効率的に所望のハロゲン化アリール化合物[II]を得る観点から、Z’の原子(基)の反応性は、Zの原子(基)の反応性よりも高いほうが好ましい。このような反応性の差を設けることで、アリールカルバゾール化合物[III]におけるZBの基は、Zの原子(基)よりも、Z’の原子(基)と優先的に反応し、効率的に所望のハロゲン化アリール化合物[II]を得ることができる。
Z'represents a halogen atom or a pseudohalogen group, and examples of the halogen atom and the pseudohalogen group include the same as above.
Here, Z and Z'may be the same, but from the viewpoint of efficiently obtaining the desired aryl halide compound [II], the reactivity of the atom (group) of Z'is Z. It is preferable that the reactivity of the atom (group) is higher than that of the atom (group). By providing such a difference in reactivity, the Z B group in the arylcarbazole compound [III] reacts preferentially with the Z'atom (group) over the Z atom (group), and is efficient. The desired aryl halide compound [II] can be obtained.
 D1およびD2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基または炭素数6~20のアリール基を表し、D3は、炭素数1~20のアルカンジイル基または炭素数6~20のアリーレン基を表し、炭素数1~20のアルキル基および炭素数6~20のアリール基としては、上記と同じものが挙げられる。 D 1 and D 2 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and D 3 is an alcandiyl group or carbon having 1 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 20 carbon atoms, which represent an arylene group having 6 to 20 carbon atoms, are the same as those described above.
 炭素数1~20のアルカンジイル基としては、メチレン、エチレン、プロパン-1,2-ジイル、プロパン-1,3-ジイル、2,2-ジメチルプロパン-1,3-ジイル、2-エチル-2-メチルプロパン-1,3-ジイル、2,2-ジエチルプロパン-1,3-ジイル、2-メチル-2-プロピルプロパン-1,3-ジイル、ブタン-1,3-ジイル、ブタン-2,3-ジイル、ブタン-1,4-ジイル、2-メチルブタン-2,3-ジイル、2,3-ジメチルブタン-2,3-ジイル、ペンタン-1,3-ジイル、ペンタン-1,5-ジイル、ペンタン-2,3-ジイル、ペンタン-2,4-ジイル、2-メチルペンタン-2,3-ジイル、3-メチルペンタン-2,3-ジイル、4-メチルペンタン-2,3-ジイル、2,3-ジメチルペンタン-2,3-ジイル、3-メチルペンタン-2,4-ジイル、3-エチルペンタン-2,4-ジイル、3,3-ジメチルペンタン-2,4-ジイル、3,3-ジメチルペンタン-2,4-ジイル、2,4-ジメチルペンタン-2,4-ジイル、ヘキサン-1,6-ジイル、ヘキサン-1,2-ジイル、ヘキサン-1,3-ジイル、ヘキサン-2,3-ジイル、ヘキサン-2,4-ジイル、ヘキサン-2,5-ジイル、2-メチルヘキサン-2,3-ジイル、4-メチルヘキサン-2,3-ジイル、3-メチルヘキサン-2,4-ジイル、2,3-ジメチルヘキサン-2,4-ジイル、2,4-ジメチルヘキサン-2,4-ジイル、2,5-ジメチルヘキサン-2,4-ジイル、2-メチルヘキサン-2,5-ジイル、3-メチルヘキサン-2,5-ジイル、2,5-ジメチルヘキサン-2,5-ジイル基等が挙げられる。 The alcandiyl group having 1 to 20 carbon atoms includes methylene, ethylene, propane-1,2-diyl, propane-1,3-diyl, 2,2-dimethylpropane-1,3-diyl, and 2-ethyl-2. -Methylpropane-1,3-diyl, 2,2-diethylpropane-1,3-diyl, 2-methyl-2-propylpropane-1,3-diyl, butane-1,3-diyl, butane-2, 3-Diyl, Butane-1,4-Diyl, 2-Methylbutane-2,3-Diyl, 2,3-Dimethylbutane-2,3-Diyl, Pentane-1,3-Diyl, Pentane-1,5-Diyl , Pentane-2,3-diyl, pentane-2,4-diyl, 2-methylpentane-2,3-diyl, 3-methylpentane-2,3-diyl, 4-methylpentane-2,3-diyl, 2,3-Dimethylpentane-2,3-diyl, 3-methylpentane-2,4-diyl, 3-ethylpentane-2,4-diyl, 3,3-dimethylpentane-2,4-diyl, 3, 3-Dimethylpentane-2,4-diyl, 2,4-dimethylpentane-2,4-diyl, hexane-1,6-diyl, hexane-1,2-diyl, hexane-1,3-diyl, hexane- 2,3-diyl, hexane-2,4-diyl, hexane-2,5-diyl, 2-methylhexane-2,3-diyl, 4-methylhexane-2,3-diyl, 3-methylhexane-2 , 4-diyl, 2,3-dimethylhexane-2,4-diyl, 2,4-dimethylhexane-2,4-diyl, 2,5-dimethylhexane-2,4-diyl, 2-methylhexane-2 , 5-Diyl, 3-methylhexane-2,5-Diyl, 2,5-dimethylhexane-2,5-Diyl group and the like.
 炭素数6~20のアリーレン基としては、1,2-フェニレン、1,2-ナフチレン、2,3-ナフチレン、1,8-ナフチレン、1,2-アントリレン、2,3-アントリレン、1,2-フェナントリレン、3,4-フェナントリレン、9,10-フェナントリレン基等が挙げられる。 As the arylene group having 6 to 20 carbon atoms, 1,2-phenylene, 1,2-naphthylene, 2,3-naphthylene, 1,8-naphthylene, 1,2-anthrylene, 2,3-anthrylene, 1,2 -Phenantrylene, 3,4-phenanthrylene, 9,10-phenanthrylene group and the like can be mentioned.
 アリールカルバゾール化合物[III]と、ジハロゲン化アリール化合物[IV]との仕込み比は、モル比で、アリールカルバゾール化合物[III]1に対して、ジハロゲン化アリール化合物[IV]を1.0以上とできるが、1.0~1.2程度が好ましい。 The charging ratio of the arylcarbazole compound [III] to the dihalide aryl compound [IV] can be 1.0 or more with respect to the arylcarbazole compound [III] 1 in terms of molar ratio. However, it is preferably about 1.0 to 1.2.
 原料化合物が全て固体である場合あるいは目的とするハロゲン化アリールアミン化合物を効率よく得る観点から、上記各反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド;メチルイソブチルケトン、シクロヘキサノン等のケトン;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。これらの溶媒は、1種単独でまたは2種以上混合して用いることができる。これらのうち、特に、1,4-ジオキサン、トルエン、キシレン等が好ましい。 Each of the above reactions is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the target arylamine halide compound. When a solvent is used, the type is not particularly limited as long as it does not adversely affect the reaction. Specific examples include cyclic ethers such as tetrahydrofuran and 1,4-dioxane; amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Ketones such as methylisobutylketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned. These solvents can be used alone or in admixture of two or more. Of these, 1,4-dioxane, toluene, xylene and the like are particularly preferable.
 上記反応において用いる触媒としては、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(PdCl2(dppf))、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh3)2Cl2)、ビス(ベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(トリ-t-ブチルホスフィン)パラジウム(Pd(P-t-Bu3)2)、酢酸パラジウム(II)(Pd(OAc)2)等のパラジウム触媒等が挙げられる。 Examples of the catalyst used in the above reaction are [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)) and tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ). , Bis (triphenylphosphine) dichloropalladium (Pd (PPh 3 ) 2 Cl 2 ), bis (benzilidenacetone) palladium (Pd (dba) 2 ), tris (benzylideneacetone) dipalladium (Pd 2 (dba) 3 ), Examples thereof include palladium catalysts such as bis (tri-t-butylphosphine) palladium (Pd (Pt-Bu 3 ) 2 ) and palladium (II) acetate (Pd (OAc) 2 ).
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。反応時間は、反応温度や原料化合物の反応性等を考慮して適宜決定されるが、通常、30分間から50時間程度である。
 反応終了後は、常法にしたがって後処理をし、目的とするハロゲン化アリールアミン化合物を得ることができる。
The reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but is particularly preferably about 0 to 200 ° C., more preferably 20 to 150 ° C. The reaction time is appropriately determined in consideration of the reaction temperature, the reactivity of the raw material compound, and the like, but is usually about 30 minutes to 50 hours.
After completion of the reaction, post-treatment can be carried out according to a conventional method to obtain the desired arylamine halide compound.
 なお、ジハロゲン化アリール化合物[IV]は、下記スキームに示されるように、式[IV’]で表される化合物とハロゲン化剤とを反応させて得ることができる。 The aryl halide compound [IV] can be obtained by reacting the compound represented by the formula [IV'] with a halogenating agent as shown in the scheme below.
Figure JPOXMLDOC01-appb-C000143
(式中、Ars、ZおよびZ’は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000143
(In the formula, Ar s , Z and Z'have the same meaning as above.)
 上記ハロゲン化剤としては、公知のものを使用することができ、その具体例としては、N-ブロモスクシンイミド等が挙げられるが、これに限定されるものではない。ハロゲン化剤の量は、モル比で、式[IV’]で表される化合物に対して1~1.5程度である。
 上記反応で用い得る溶媒は、この種の反応に用いられる溶媒であれば特に限定されるものではない。
 反応温度は、通常0~140℃の範囲から適宜決定され、その時間は、通常、0.1~100時間の範囲から適宜決定される。
As the halogenating agent, known ones can be used, and specific examples thereof include, but are not limited to, N-bromosuccinimide and the like. The amount of the halogenating agent is about 1 to 1.5 in terms of molar ratio with respect to the compound represented by the formula [IV'].
The solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
The reaction temperature is usually appropriately determined from the range of 0 to 140 ° C., and the time is usually appropriately determined from the range of 0.1 to 100 hours.
 また、アリールカルバゾール化合物[III]は、下記スキームに示されるように、式[III’]で表される化合物と式[V]で表される化合物とを反応させて得ることができる。 Further, the arylcarbazole compound [III] can be obtained by reacting a compound represented by the formula [III'] with a compound represented by the formula [V] as shown in the scheme below.
Figure JPOXMLDOC01-appb-C000144
(式中、R1、R2、ZおよびZBは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000144
(In the formula, R 1 , R 2 , Z and Z B have the same meanings as above.)
 式[III’]で表される化合物と式[V]で表される化合物の仕込みは、モル比で、式[III’]で表される化合物1に対して、式[V]で表される化合物1~3程度である。
 上記反応で用い得る溶媒は、この種の反応に用いられる溶媒であれば特に限定されるものではない。
 上記反応の温度は、通常0~140℃の範囲から適宜決定され、その時間は、通常、0.1~100時間の範囲から適宜決定される。
The preparation of the compound represented by the formula [III'] and the compound represented by the formula [V] is represented by the formula [V] with respect to the compound 1 represented by the formula [III'] in terms of molar ratio. Compounds 1 to 3.
The solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
The temperature of the reaction is usually appropriately determined from the range of 0 to 140 ° C., and the time thereof is usually appropriately determined from the range of 0.1 to 100 hours.
 さらに、式[III’]で表される化合物は、下記スキームに示されるように、式[III’-2]で表される化合物を、ハロゲン化アリール化合物(R2Z)と反応させた後、ハロゲン化剤で処理するか、式[III’-2]で表される化合物を、ハロゲン化剤で処理した後、ハロゲン化アリール化合物(R2Z)と反応させて得ることができるが、カルバゾール骨格のN位のアリール基のハロゲン化を回避し、より効率よく目的物を得る観点から、後者の反応が好ましい。 Further, the compound represented by the formula [III'] is obtained after reacting the compound represented by the formula [III'-2] with an aryl halide compound (R 2 Z) as shown in the following scheme. , be accomplished by treatment with a halogenating agent, the compound represented by the formula [III'-2], after treatment with a halogenating agent, can be obtained by reacting a halogenated aryl compound (R 2 Z), The latter reaction is preferable from the viewpoint of avoiding halogenation of the N-position aryl group of the carbazole skeleton and obtaining the target product more efficiently.
Figure JPOXMLDOC01-appb-C000145
(式中、R1、R2およびZは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000145
(In the formula, R 1 , R 2 and Z have the same meanings as above.)
 上記反応において用いられるハロゲン化剤としては、公知のものを使用することができ、ハロゲン化剤の量は、モル比で、式[III’-1-1]または[III’-2]で表される化合物1に対して1~1.5程度である。
 上記反応で用い得る溶媒は、この種の反応に用いられる溶媒であれば特に限定されるものではない。
 上記温度は、通常0~140℃の範囲から適宜決定され、その時間は、通常、0.1~100時間の範囲から適宜決定される。
As the halogenating agent used in the above reaction, a known halogenating agent can be used, and the amount of the halogenating agent is represented by the formula [III'-1-1] or [III'-2] in terms of molar ratio. It is about 1 to 1.5 with respect to the compound 1 to be produced.
The solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
The temperature is usually appropriately determined from the range of 0 to 140 ° C., and the time is usually appropriately determined from the range of 0.1 to 100 hours.
 また、ArSのスペーサ骨格の原料となる、フルオレン環の9位に2つのアルキル基等を有する式[VI]で表される化合物は、下記スキームに示されるように、塩基の存在下で、式[VI’]で表される化合物と式[VII]で表される化合物とを反応させて得ることができる。 Further, the compound represented by the formula [VI] having two alkyl groups at the 9-position of the fluorene ring, which is a raw material of the spacer skeleton of Ar S , is prepared in the presence of a base as shown in the scheme below. It can be obtained by reacting a compound represented by the formula [VI'] with a compound represented by the formula [VII].
Figure JPOXMLDOC01-appb-C000146
(式中、R3、ZおよびZ’は、上記と同じ意味を表し、R4’は、それぞれ独立して、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)
Figure JPOXMLDOC01-appb-C000146
(Wherein, R 3, Z and Z 'represent the same as defined above, R 4' are each independently an alkyl group or a halogenated alkyl group having 1 to 20 carbon atoms, having 1 to 20 carbon atoms Represents.)
 式[VI’]で表される化合物と式[VII]で表される化合物の仕込みは、モル比で、式[VI’]で表される化合物1に対して、式[VII]で表される化合物1~1.5程度である。
 上記反応で用い得る塩基は、この種の反応に用いられる塩基であれば特に限定されるものではなく、その具体例としては、t-BuOK、t-BuONa、CsCO3、K2CO3、Na2CO3、n-BuLi、t-BuLi、s-BuLi、NaOH、KOH、LiOH等が挙げられるが、t-BuOK、t-BuONa、n-BuLi、t-BuLi、s-BuLi、NaOH、KOHが好ましい。
 上記反応で用い得る溶媒は、この種の反応に用いられる溶媒であれば特に限定されるものではない。
 上記反応の温度は、通常0~140℃の範囲から適宜決定され、その時間は、通常、0.1~100時間の範囲から適宜決定される。
The preparation of the compound represented by the formula [VI'] and the compound represented by the formula [VII] is represented by the formula [VII] with respect to the compound 1 represented by the formula [VI'] in terms of molar ratio. Compounds 1 to 1.5.
The bases that can be used in the above reaction are not particularly limited as long as they are the bases used in this type of reaction, and specific examples thereof include t-BuOK, t-BuONa, CsCO 3 , K 2 CO 3 , and Na. 2 CO 3 , n-BuLi, t-BuLi, s-BuLi, NaOH, KOH, LiOH, etc., but t-BuOK, t-BuONa, n-BuLi, t-BuLi, s-BuLi, NaOH, KOH Is preferable.
The solvent that can be used in the above reaction is not particularly limited as long as it is a solvent used in this type of reaction.
The temperature of the reaction is usually appropriately determined from the range of 0 to 140 ° C., and the time thereof is usually appropriately determined from the range of 0.1 to 100 hours.
 なお、本発明のアリールアミン化合物の原料として用い得るアミン化合物は、下記スキームに示されるように、(A)アミン化合物[I’’’]または[I’’’’]と、アリール化合物[VIII]とのカップリング反応と、(B)水添によるニトロ基の還元反応で得ることができ、この(A)、(B)の反応を繰り返すことで、鎖長(フェニレン数)を伸長していくことができる。 The amine compounds that can be used as raw materials for the arylamine compounds of the present invention are (A) amine compounds [I'''] or [I''''] and aryl compounds [VIII], as shown in the following scheme. ] And (B) the reduction reaction of the nitro group by hydrogenation. By repeating the reactions (A) and (B), the chain length (phenylene number) is extended. I can go.
Figure JPOXMLDOC01-appb-C000147
(式中、Y、Zおよびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000147
(In the formula, Y, Z and g have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000148
(式中、Y、Z、およびgは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000148
(In the formula, Y, Z, and g have the same meanings as above.)
 より具体的な一例を挙げれば、アミン化合物[I’]に包含されるアミン化合物は、下記スキームに示されるように、(A)m-フェニレンジアミンまたは3-ニトロアニリンと、3-ハロニトロベンゼンとのカップリング反応と、(B)水添によるニトロ基の還元反応で得ることができ、この(A)、(B)の反応を繰り返すことで、鎖長(m-フェニレン数)を伸長していくことができる。 To give a more specific example, the amine compounds included in the amine compound [I'] are (A) m-phenylenediamine or 3-nitroaniline and 3-halonitrobenzene, as shown in the following scheme. It can be obtained by the coupling reaction of (B) and the reduction reaction of the nitro group by hydrogenation, and by repeating the reactions of (A) and (B), the chain length (m-phenylene number) is extended. I can go.
Figure JPOXMLDOC01-appb-C000149
(式中、Zは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000149
(In the formula, Z has the same meaning as above.)
 それぞれ、上記スキームの上の反応と下の反応のどちらを選択するかでフェニレン数の偶奇の作り分けが可能であるため、保護基で片方のアミノ基を保護するといった合成的に難易度の高い方法を用いることなく、自由に所望のフェニレン数を有するアミン化合物[I’]を製造することできる。 Since it is possible to create even and odd phenylene numbers depending on whether the reaction above or below the above scheme is selected, it is synthetically difficult to protect one amino group with a protecting group. An amine compound [I'] having a desired number of phenylene can be freely produced without using a method.
 この場合、各反応における原料化合物同士の仕込み比は、物質量比で、アミノ基を有する原料化合物に対してニトロ基を有する原料化合物(ハロゲン原子(擬ハロゲン基)を含む原料化合物)を1~2.4程度の範囲内で、加えるフェニレンの数が1または2であるかに応じて適宜決定される。 In this case, the charging ratio of the raw material compounds in each reaction is 1 to 1 to the raw material compound having a nitro group (raw material compound containing a halogen atom (pseudohalogen group)) with respect to the raw material compound having an amino group. Within the range of about 2.4, it is appropriately determined depending on whether the number of phenylene to be added is 1 or 2.
 また、カップリング反応に用いるパラジウム触媒としては、上記と同様のものが挙げられる。また、この場合も配位子を用いることができる。配位子としては、上記で例示したものに加え、Aldrich社で市販されている、JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2’-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me3(OMe)tBuXPhos, (2-Biphenyl)di-1-adamantylphosphine, RockPhos, CPhos等のビフェニルホスフィン化合物を好適に用いることができる。 Moreover, as the palladium catalyst used for the coupling reaction, the same thing as above can be mentioned. Also in this case, a ligand can be used. As the ligand, in addition to those exemplified above, JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDave, which are commercially available from Aldrich. -Biphenylphosphine compounds such as Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me 3 (OMe) tBuXPhos, (2-Biphenyl) di-1-adamantylphosphine, RockPhos, CPhos can be preferably used. ..
 カップリング反応に用いる塩基としては、例えば、リチウム、ナトリウム、カリウム、水素化リチウム、水素化ナトリウム、水酸化リチウム、水酸化カリウム、t-ブトキシリチウム、t-ブトキシナトリウム、t-ブトキシカリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単体、水素化アルカリ金属、水酸化アルカリ金属、アルコキシアルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属;n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド(LDA),リチウム2,2,6,6-テトラメチルピペリジン(LiTMP),ヘキサメチルジシラザンリチウム(LHMDS)等の有機リチウム;トリエチルアミン、ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、ピリジン等のアミン類などが挙げられる。 Examples of the base used in the coupling reaction include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium, t-butoxypotassium, and hydroxide. Alkali metal alone such as sodium, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, alkali metal hydride, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal hydrogen carbonate; calcium carbonate Alkali carbonate earth metals such as n-butyllithium, s-butyllithium, t-butyllithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidine (LiTMP), hexamethyldisilazane. Organic lithium such as lithium (LHMDS); amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine and the like can be mentioned.
 その他、触媒、溶媒、反応の温度および時間等に関するカップリング反応の諸条件および好適な条件は、式(1)または(2)で表されるアリールアミン化合物に関して説明したものと同じである。
 また、Pd/Cを用いた水素添加反応は、公知の手法によって行うことができる。
 なお、メタフェニレン基の代わりにパラフェニレン基またはオルトフェニレンを導入する場合は、3-ハロニトロベンゼンの代わりに4-ハロニトロベンゼンまたは2-ハロニトロベンゼンを用いればよい。
In addition, various conditions and suitable conditions of the coupling reaction regarding the catalyst, solvent, temperature and time of the reaction, etc. are the same as those described for the arylamine compound represented by the formula (1) or (2).
Further, the hydrogenation reaction using Pd / C can be carried out by a known method.
When a paraphenylene group or orthophenylene is introduced instead of the metaphenylene group, 4-halonitrobenzene or 2-halonitrobenzene may be used instead of 3-halonitrobenzene.
 以下、本発明のアリールアミン化合物の具体例を挙げるが、これらに限定されない。
 なお、表中、Hは水素原子を、Phはフェニル基を、Meはメチル基を、n-Hexはn-ヘキシル基を、p-Tolyはp-トリル基を、2-Thieは2-チエニル基を、1,3-Phは1,3-フェニレン基を、1,4-Phは1,4-フェニレン基をそれぞれ表し、例えば番号1および865のアリールアミン化合物は、それぞれ下記の化合物である。
Hereinafter, specific examples of the arylamine compound of the present invention will be given, but the present invention is not limited thereto.
In the table, H is a hydrogen atom, Ph is a phenyl group, Me is a methyl group, n-Hex is an n-hexyl group, p-Toly is a p-tolyl group, and 2-Thie is 2-thienyl. The groups, 1,3-Ph represents a 1,3-phenylene group, and 1,4-Ph represents a 1,4-phenylene group. For example, the arylamine compounds of Nos. 1 and 865 are the following compounds, respectively. ..
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000166
Figure JPOXMLDOC01-appb-T000166
Figure JPOXMLDOC01-appb-T000167
Figure JPOXMLDOC01-appb-T000167
Figure JPOXMLDOC01-appb-T000168
Figure JPOXMLDOC01-appb-T000168
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000172
 上述した本発明のアリールアミン化合物は、電荷輸送性物質として好適に利用することができる。この場合、本発明のアリールアミン化合物と、有機溶媒とを含む電荷輸送性ワニスとして用いることができるが、この電荷輸送性ワニスには、得られる薄膜の用途に応じ、その電荷輸送能の向上等を目的としてドーパント物質を含んでいてもよい。また、本発明のアリールアミン化合物は、アニリン誘導体、チオフェン誘導体等の従来公知のその他の電荷輸送性物質と併用することもできるが、本発明のアリールアミン化合物単独で電荷輸送性物質として用いることが好ましい。
 なお、本発明において、電荷輸送性とは導電性と同義である。電荷輸送性ワニスとは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
The above-mentioned arylamine compound of the present invention can be suitably used as a charge transporting substance. In this case, it can be used as a charge-transporting varnish containing the arylamine compound of the present invention and an organic solvent, and the charge-transporting varnish can be used to improve its charge-transporting ability depending on the use of the obtained thin film. It may contain a dopant substance for the purpose of. Further, the arylamine compound of the present invention can be used in combination with other conventionally known charge-transporting substances such as an aniline derivative and a thiophene derivative, but the arylamine compound of the present invention alone can be used as a charge-transporting substance. preferable.
In the present invention, charge transportability is synonymous with conductivity. The charge-transporting varnish may be one that has charge-transporting property by itself, and the solid film obtained thereby may have charge-transporting property.
 ドーパント物質としては、ワニスに使用する少なくとも1種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント物質、有機系のドーパント物質のいずれも使用できる。
 また、無機系および有機系のドーパント物質は、1種類単独で用いてもよく、2種類以上組み合わせて用いてもよい。
 さらにドーパント物質は、ワニスから固体膜である電荷輸送性薄膜を得る過程で、例えば焼成時の加熱といった外部からの刺激によって、例えば分子内の一部が外れることによってドーパント物質としての機能が初めて発現または向上するようになる物質、例えばスルホン酸基が脱離しやすい基で保護されたアリールスルホン酸エステル化合物であってもよい。
The dopant substance is not particularly limited as long as it is soluble in at least one solvent used for the varnish, and either an inorganic dopant substance or an organic dopant substance can be used.
Further, the inorganic and organic dopant substances may be used alone or in combination of two or more.
Furthermore, the dopant substance first exhibits its function as a dopant substance in the process of obtaining a charge-transporting thin film which is a solid film from the varnish, for example, when a part of the molecule is removed by an external stimulus such as heating during firing. Alternatively, it may be a substance that improves, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
 特に、本発明においては、無機系のドーパント物質としては、ヘテロポリ酸が好ましい。
 ヘテロポリ酸とは、代表的に式(H1)で表されるKeggin型あるいは式(H2)で表されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
In particular, in the present invention, a heteropolyacid is preferable as the inorganic dopant substance.
The heteropolyacid has a structure in which a hetero atom is located at the center of a molecule, which is typically represented by a Keggin type represented by the formula (H1) or a Dawson type chemical structure represented by the formula (H2). It is a polyacid formed by condensing isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and oxygen acid of a different element. Oxygen acids of such dissimilar elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
 ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、これらのヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
 特に、1種類のヘテロポリ酸を用いる場合、その1種類のヘテロポリ酸は、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、2種類以上のヘテロポリ酸を用いる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。
 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。
 すなわち、例えば、一般的には、リンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ示されるが、定量分析において、この式中のP(リン)、O(酸素)またはW(タングステン)もしくはMo(モリブデン)の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態および公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
Specific examples of the heteropolyacid include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, phosphotungstic acid, and the like, and these may be used alone or in combination of two or more. Good. These heteropolyacids are available as commercially available products, and can also be synthesized by a known method.
In particular, when one kind of heteropolyacid is used, the one kind of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable. When two or more kinds of heteropolyacids are used, one of the two or more kinds of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
In addition, in quantitative analysis such as elemental analysis, heteropolyacids have a large number of elements or a small number of elements from the structure represented by the general formula, but the heteropolyacid is obtained as a commercially available product or a known synthesis. As long as it is properly synthesized according to the method, it can be used in the present invention.
That is, for example, in general, phosphotungsten acid is represented by chemical formulas H 3 (PW 12 O 40 ) and nH 2 O, and phosphomolydic acid is represented by chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O, respectively. , In quantitative analysis, even if the number of P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product. Alternatively, it can be used in the present invention as long as it is appropriately synthesized according to a known synthesis method. In this case, the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
 ヘテロポリ酸の使用量は、質量比で、電荷輸送性物質1に対して0.001~50.0程度とすることができるが、好ましくは0.01~20.0程度、より好ましくは0.1~10.0程度である。 The amount of the heteropolyacid used can be about 0.001 to 50.0 with respect to the charge transporting substance 1 in terms of mass ratio, but is preferably about 0.01 to 20.0, more preferably 0. It is about 1 to 10.0.
 一方、有機系のドーパント物質としては、特にテトラシアノキノジメタン誘導体やベンゾキノン誘導体を用いることができる。
 テトラシアノキノジメタン誘導体の具体例としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)や、式(H3)で表されるハロテトラシアノキノジメタンなどが挙げられる。
 また、ベンゾキノン誘導体の具体例としては、テトラフルオロ-1,4-ベンゾキノン(F4BQ)、テトラクロロ-1,4-ベンゾキノン(クロラニル)、テトラブロモ-1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)などが挙げられる。
On the other hand, as the organic dopant substance, a tetracyanoquinodimethane derivative or a benzoquinone derivative can be particularly used.
Specific examples of the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and halotetracyanoquinodimethane represented by the formula (H3).
Specific examples of benzoquinone derivatives include tetrafluoro-1,4-benzoquinone (F4BQ), tetrachloro-1,4-benzoquinone (chloranil), tetrabromo-1,4-benzoquinone, 2,3-dichloro-5, and so on. 6-Dicyano-1,4-benzoquinone (DDQ) and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
 式中、R500~R503は、それぞれ独立して、水素原子またはハロゲン原子を表すが、少なくとも1つはハロゲン原子であり、少なくとも2つはハロゲン原子であることが好ましく、少なくとも3つがハロゲン原子であることがより好ましく、全てがハロゲン原子であることが最も好ましい。
 ハロゲン原子としては上記と同じものが挙げられるが、フッ素原子または塩素原子が好ましく、フッ素原子がより好ましい。
In the formula, R 500 to R 503 each independently represent a hydrogen atom or a halogen atom, but at least one is a halogen atom, at least two are preferably halogen atoms, and at least three are halogen atoms. It is more preferable that all of them are halogen atoms.
Examples of the halogen atom include the same as above, but a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
 このようなハロテトラシアノキノジメタンの具体例としては、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2-クロロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジクロロ-7,7,8,8-テトラシアノキノジメタン、2,3,5,6-テトラクロロ-7,7,8,8-テトラシアノキノジメタン、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)等が挙げられる。 Specific examples of such halotetracyanoquinodimethane include 2-fluoro-7,7,8,8-tetracyanoquinodimethane and 2-chloro-7,7,8,8-tetracyanoquinodimethane. , 2,5-Difluoro-7,7,8,8-Tetracyanoquinodimethane, 2,5-Dichloro-7,7,8,8-Tetracyanoquinodimethane, 2,3,5,6-Tetra Examples thereof include chloro-7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).
 テトラシアノキノジメタン誘導体およびベンゾキノン誘導体の使用量は、電荷輸送性物質に対して、好ましくは0.0001~100当量、より好ましくは0.01~50当量、より一層好ましくは1~20当量である。 The amount of the tetracyanoquinodimethane derivative and the benzoquinone derivative used is preferably 0.0001 to 100 equivalents, more preferably 0.01 to 50 equivalents, and even more preferably 1 to 20 equivalents, relative to the charge transporting substance. is there.
 また、有機系ドーパント物質としては、下記式(a1)で表される1価または2価のアニオンと式(c1)~(c5)で表される対カチオンからなる、電気的に中性なオニウムボレート塩を用いることもできる。 The organic dopant substance is an electrically neutral onium composed of a monovalent or divalent anion represented by the following formula (a1) and a counter cation represented by the formulas (c1) to (c5). Borate salts can also be used.
Figure JPOXMLDOC01-appb-C000175
(式中、Arは、それぞれ独立して、置換基を有してもよい炭素数6~20のアリール基または置換基を有してもよい炭素数2~20のヘテロアリール基を表し、Lは、炭素数1~20のアルキレン基、-NH-、酸素原子、硫黄原子または-CN+-を表す。)
Figure JPOXMLDOC01-appb-C000175
(In the formula, Ar represents an aryl group having 6 to 20 carbon atoms which may have a substituent or a heteroaryl group having 2 to 20 carbon atoms which may have a substituent, respectively, and L. Represents an alkylene group having 1 to 20 carbon atoms, -NH-, an oxygen atom, a sulfur atom or -CN + -.)
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
 式(a1)において、炭素数1~20のアルキレン基としては、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチレン、メチルメチレン、ジメチルメチレン、エチレン、トリメチレン、プロピレン、テトラメチレン、ペンタメチレン、ヘキサメチレン基等が挙げられる。なお、アリール基、ヘテロアリール基としては、上記と同様のものが挙げられる。 In the formula (a1), the alkylene group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene, methylmethylene, dimethylmethylene, ethylene, trimethylene and propylene. , Tetramethylene, pentamethylene, hexamethylene group and the like. Examples of the aryl group and the heteroaryl group include the same as above.
 上記式(a1)のアニオンの好適例としては、式(a2)で表されるものが挙げられるが、これに限定されるものではない。 Preferable examples of the anion of the above formula (a1) include, but are not limited to, those represented by the formula (a2).
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
 オニウムボレート塩の使用量は、物質量(モル)比で、電荷輸送性物質に対して、0.1~10程度とすることができる。
 なお、上記オニウムボレート塩は、例えば、特開2005-314682号公報等に記載された公知の方法を参考に合成することができる。
The amount of the onium borate salt used can be about 0.1 to 10 with respect to the charge-transporting substance in terms of the amount of substance (molar).
The onium borate salt can be synthesized by referring to, for example, a known method described in JP-A-2005-314682.
 また、有機系のドーパント物質として、アリールスルホン酸化合物やアリールスルホン酸エステル化合物も好適に用いることができる。 Further, as the organic dopant substance, an aryl sulfonic acid compound or an aryl sulfonic acid ester compound can also be preferably used.
 アリールスルホン酸化合物の具体例としては、ベンゼンスルホン酸、トシル酸、p-スチレンスルホン酸、2-ナフタレンスルホン酸、4-ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、p-ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5-ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7-ジブチル-2-ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3-ドデシル-2-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4-ヘキシル-1-ナフタレンスルホン酸、7-へキシル-1-ナフタレンスルホン酸、6-ヘキシル-2-ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2-オクチル-1-ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7-ジノニル-4-ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、2,7-ジノニル-4,5-ナフタレンジスルホン酸、国際公開第2005/000832号記載の1,4-ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号記載のアリールスルホン酸化合物、国際公開第2009/096352号記載のアリールスルホン酸化合物等が挙げられる。 Specific examples of the aryl sulfonic acid compound include benzene sulfonic acid, tosylic acid, p-styrene sulfonic acid, 2-naphthalene sulfonic acid, 4-hydroxybenzene sulfonic acid, 5-sulfosalicylic acid, p-dodecylbenzene sulfonic acid, and dihexyl benzene. Sulfonic acid, 2,5-dihexylbenzene sulfonic acid, dibutylnaphthalene sulfonic acid, 6,7-dibutyl-2-naphthalene sulfonic acid, dodecylnaphthalene sulfonic acid, 3-dodecyl-2-naphthalene sulfonic acid, hexylnaphthalene sulfonic acid, 4 -Hexyl-1-naphthalene sulfonic acid, 7-hexyl-1-naphthalene sulfonic acid, 6-hexyl-2-naphthalen sulfonic acid, octyl naphthalene sulfonic acid, 2-octyl-1-naphthalene sulfonic acid, dinonyl naphthalene sulfonic acid , 2,7-Dinonyl-4-naphthalene sulfonic acid, dinonyl naphthalenedisulfonic acid, 2,7-dinonyl-4,5-naphthalenedisulfonic acid, 1,4-benzodioxanedisulfonic acid described in International Publication No. 2005/000832. Examples thereof include compounds, aryl sulfonic acid compounds described in International Publication No. 2006/025342, and aryl sulfonic acid compounds described in International Publication No. 2009/09632.
 好ましいアリールスルホン酸化合物の例としては、式(H4)または(H5)で表されるアリールスルホン酸化合物が挙げられる。 Examples of preferable aryl sulfonic acid compounds include aryl sulfonic acid compounds represented by the formula (H4) or (H5).
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
 A1は、OまたはSを表すが、Oが好ましい。
 A2は、ナフタレン環またはアントラセン環を表すが、ナフタレン環が好ましい。
 A3は、2~4価のパーフルオロビフェニル基を表し、pは、A1とA3との結合数を示し、2≦p≦4を満たす整数であるが、A3がパーフルオロビフェニルジイル基、好ましくはパーフルオロビフェニル-4,4’-ジイル基であり、かつ、pが2であることが好ましい。
 qは、A2に結合するスルホン酸基数を表し、1≦q≦4を満たす整数であるが、2が最適である。
A 1 represents O or S, with O being preferred.
A 2 represents a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable.
A 3 represents a 2- to tetravalent perfluorobiphenyl group, p represents the number of bonds between A 1 and A 3, and is an integer satisfying 2 ≦ p ≦ 4, where A 3 is perfluorobiphenyldiyl. The group, preferably a perfluorobiphenyl-4,4'-diyl group, preferably has a p of 2.
q represents the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ≦ q ≦ 4, but 2 is optimal.
 A4~A8は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、または炭素数2~20のハロゲン化アルケニル基を表すが、A4~A8のうち少なくとも3つは、ハロゲン原子である。 A 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms, or halogenation having 2 to 20 carbon atoms. Representing an alkenyl group, at least three of A 4 to A 8 are halogen atoms.
 炭素数1~20のハロゲン化アルキル基としては、トリフルオロメチル、2,2,2-トリフルオロエチル、1,1,2,2,2-ペンタフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,2,2,3,3,3-ヘプタフルオロプロピル、4,4,4-トリフルオロブチル、3,3,4,4,4-ペンタフルオロブチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 Alkyl halide groups having 1 to 20 carbon atoms include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, and 3,3,3-trifluoropropyl. , 2,2,3,3,3-pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4 , 4-Pentafluorobutyl, 2,2,3,3,4,5,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. Be done.
 炭素数2~20のハロゲン化アルケニル基としては、パーフルオロビニル、パーフルオロプロペニル(パーフルオロアリル)、パーフルオロブテニル基等が挙げられる。
 その他、ハロゲン原子、炭素数1~20のアルキル基の例としては上記と同様のものが挙げられるが、ハロゲン原子としては、フッ素原子が好ましい。
Examples of the halogenated alkenyl group having 2 to 20 carbon atoms include perfluorovinyl, perfluoropropenyl (perfluoroallyl), perfluorobutenyl group and the like.
Other examples of the halogen atom and the alkyl group having 1 to 20 carbon atoms include the same as above, but the halogen atom is preferably a fluorine atom.
 これらの中でも、A4~A8は、水素原子、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数2~10のハロゲン化アルケニル基であり、かつ、A4~A8のうち少なくとも3つは、フッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のアルキル基、炭素数1~5のフッ化アルキル基、または炭素数2~5のフッ化アルケニル基であり、かつ、A4~A8のうち少なくとも3つはフッ素原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のパーフルオロアルキル基、または炭素数1~5のパーフルオロアルケニル基であり、かつ、A4、A5およびA8がフッ素原子であることがより一層好ましい。
 なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。
Among these, A 4 to A 8 are hydrogen atoms, halogen atoms, cyano groups, alkyl groups having 1 to 10 carbon atoms, alkyl halide groups having 1 to 10 carbon atoms, or alkenyl halides having 2 to 10 carbon atoms. a group, and at least 3 of the a 4 ~ a 8 is preferably a fluorine atom, a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 5 carbon atoms, having 1 to 5 carbon atoms More preferably, it is an alkyl fluoride group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and hydrogen atom, fluorine atom, cyano group, and the like. It is even more preferable that it is a perfluoroalkyl group having 1 to 5 carbon atoms or a perfluoroalkenyl group having 1 to 5 carbon atoms, and that A 4 , A 5 and A 8 are fluorine atoms.
The perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
 rは、ナフタレン環に結合するスルホン酸基数を表し、1≦r≦4を満たす整数であるが、2~4が好ましく、2が最適である。 R represents the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ≦ r ≦ 4, but 2 to 4 is preferable, and 2 is optimal.
 ドーパント物質として用いるアリールスルホン酸化合物の分子量は、特に限定されるものではないが、本発明のアリールアミン化合物とともに用いた場合における有機溶媒への溶解性を考慮すると、好ましくは2000以下、より好ましくは1500以下である。 The molecular weight of the aryl sulfonic acid compound used as the dopant substance is not particularly limited, but is preferably 2000 or less, more preferably 2000 or less, considering the solubility in an organic solvent when used together with the arylamine compound of the present invention. It is 1500 or less.
 以下、好適なアリールスルホン酸化合物の具体例を挙げるが、これらに限定されるわけではない。 Specific examples of suitable aryl sulfonic acid compounds will be given below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
 アリールスルホン酸化合物の使用量は、物質量(モル)比で、電荷輸送性物質1に対して、好ましくは0.01~20.0程度、より好ましくは0.4~5.0程度である。
 アリールスルホン酸化合物は市販品を用いてもよいが、国際公開第2006/025342号、国際公開第2009/096352号、国際公開第2015/111654号、国際公開第2015/053320号、国際公開第2015/115515号等に記載の公知の方法で合成することもできる。
The amount of the aryl sulfonic acid compound used is preferably about 0.01 to 20.0, more preferably about 0.4 to 5.0, with respect to the charge transporting substance 1 in terms of the amount of substance (molar) ratio. ..
Commercially available products may be used as the aryl sulfonic acid compound, but International Publication No. 2006/025342, International Publication No. 2009/096322, International Publication No. 2015/111654, International Publication No. 2015/0533320, International Publication No. 2015 It can also be synthesized by a known method described in / 115515 and the like.
 一方、アリールスルホン酸エステル化合物としては、国際公開第2017/217455号に開示されたアリールスルホン酸エステル化合物、国際公開第2017/217457号に開示されたアリールスルホン酸エステル化合物、特願2017-243631(国際公開第2019/124412号)に記載のアリールスルホン酸エステル化合物等が挙げられ、具体的には、下記式(H6)~(H8)のいずれかで表されるものが好ましい。 On the other hand, examples of the aryl sulfonic acid ester compound include an aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, an aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217457, and Japanese Patent Application No. 2017-243631 (Japanese Patent Application No. 2017-243631). Examples thereof include the aryl sulfonic acid ester compounds described in International Publication No. 2019/124412), and specifically, those represented by any of the following formulas (H6) to (H8) are preferable.
Figure JPOXMLDOC01-appb-C000182
(式中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。)
Figure JPOXMLDOC01-appb-C000182
(In the formula, m is an integer satisfying 1 ≦ m ≦ 4, preferably 2. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.)
 式(H6)において、A11は、パーフルオロビフェニルから誘導されるm価の基である。
 A12は、-O-または-S-であるが、-O-が好ましい。
 A13は、ナフタレンまたはアントラセンから誘導される(n+1)価の基であるが、ナフタレンから誘導される基が好ましい。
 Rs1~Rs4は、それぞれ独立して、水素原子、または直鎖状もしくは分岐鎖状の炭素数1~6のアルキル基であり、Rs5は、置換されていてもよい炭素数2~20の1価炭化水素基である。
In formula (H6), A 11 is an m-valent group derived from perfluorobiphenyl.
A 12 is —O— or —S—, but —O— is preferred.
A 13 is a (n + 1) -valent group derived from naphthalene or anthracene, but a group derived from naphthalene is preferable.
R s1 to R s4 are each independently a hydrogen atom or a linear or branched chain alkyl group having 1 to 6 carbon atoms, and R s5 is an optionally substituted alkyl group having 2 to 20 carbon atoms. It is a monovalent hydrocarbon group of.
 直鎖状または分岐鎖状の炭素数1~6アルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ヘキシル基等が挙げられるが、炭素数1~3のアルキル基が好ましい。
 炭素数2~20の1価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル基等のアルキル基;フェニル、ナフチル、フェナントリル基等のアリール基などが挙げられる。
Specific examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl group and the like. , An alkyl group having 1 to 3 carbon atoms is preferable.
The monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl, n-propyl, isopropyl, n-butyl, isobutyl and t-butyl. Alkyl groups such as groups; aryl groups such as phenyl, naphthyl and phenanthryl groups can be mentioned.
 特に、Rs1~Rs4のうち、Rs1またはRs3が炭素数1~3の直鎖アルキル基であり、残りが水素原子であるか、Rs1が炭素数1~3の直鎖アルキル基であり、Rs2~Rs4が水素原子であることが好ましい。この場合、炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。
 また、Rs5としては、炭素数2~4の直鎖アルキル基またはフェニル基が好ましい。
In particular, among R s1 to R s4 , R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom, or R s1 is a linear alkyl group having 1 to 3 carbon atoms. It is preferable that R s2 to R s4 are hydrogen atoms. In this case, the methyl group is preferable as the linear alkyl group having 1 to 3 carbon atoms.
Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
 式(H7)において、A14は、置換されていてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基であり、この炭化水素基は、1つ以上の芳香環を含む炭素数6~20の炭化水素化合物からm個の水素原子を取り除いて得られる基である。
 このような炭化水素化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン等が挙げられる。
 なお、上記炭化水素基は、その水素原子の一部または全部が、更に置換基で置換されていてもよく、このような置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ、シアノ、ヒドロキシ、アミノ、シラノール、チオール、カルボキシ、スルホン酸エステル、リン酸、リン酸エステル、エステル、チオエステル、アミド、オルガノオキシ、オルガノアミノ、オルガノシリル、オルガノチオ、アシル、スルホ、1価炭化水素基等が挙げられる。
 これらの中でも、A14としては、ベンゼン、ビフェニル等から誘導される基が好ましい。
In the formula (H7), A 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted, and the hydrocarbon group may be one or more. It is a group obtained by removing m hydrogen atoms from a hydrocarbon compound having 6 to 20 carbon atoms containing an aromatic ring.
Examples of such a hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
In the above-mentioned hydrocarbon group, a part or all of the hydrogen atom may be further substituted with a substituent, and examples of such a substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro. , Cyano, hydroxy, amino, silanol, thiol, carboxy, sulfonic acid ester, phosphoric acid, phosphoric acid ester, ester, thioester, amide, organooxy, organoamino, organosilyl, organothio, acyl, sulfo, monovalent hydrocarbon group And so on.
Among these, as A 14 , a group derived from benzene, biphenyl or the like is preferable.
 また、A15は、-O-または-S-であるが、-O-が好ましい。
 A16は、炭素数6~20の(n+1)価の芳香族炭化水素基であり、この芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。
 このような芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。
 中でも、A16としては、ナフタレンまたはアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。
Further, A 15 is —O— or —S—, but —O— is preferable.
A 16 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms.
Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like.
Among them, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 Rs6およびRs7は、それぞれ独立して、水素原子、または直鎖状もしくは分岐鎖状の1価脂肪族炭化水素基であり、Rs8は、直鎖状または分岐鎖状の1価脂肪族炭化水素基である。ただし、Rs6、Rs7およびRs8の炭素数の合計は6以上である。Rs6、Rs7およびRs8の炭素数の合計の上限は、特に限定されないが、20以下が好ましく、10以下がより好ましい。
 上記直鎖状または分岐鎖状の1価脂肪族炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、デシル基等の炭素数1~20のアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等の炭素数2~20のアルケニル基などが挙げられる。
 これらの中でも、Rs6は水素原子が好ましく、Rs7およびRs8は、それぞれ独立して、炭素数1~6のアルキル基が好ましい。
R s6 and R s7 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups, and R s8 is a linear or branched chain monovalent aliphatic hydrocarbon. It is a hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
Specific examples of the linear or branched monovalent aliphatic hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl, n-octyl, and the like. Alkyl groups having 1 to 20 carbon atoms such as 2-ethylhexyl and decyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a hexenyl group.
Among these, R s6 is preferably a hydrogen atom, and R s7 and R s8 are each independently preferably an alkyl group having 1 to 6 carbon atoms.
 式(H8)において、Rs9~Rs13は、それぞれ独立して、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数2~10のハロゲン化アルケニル基である。
 炭素数1~10のアルキル基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、シクロペンチル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等が挙げられる。
In the formula (H8), R s9 to R s13 independently represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkyl halide group having 1 to 10 carbon atoms. Alternatively, it is an alkenyl halide group having 2 to 10 carbon atoms.
The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and s-butyl. Examples thereof include t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group and the like.
 炭素数1~10のハロゲン化アルキル基は、上記炭素数1~10のアルキル基の水素原子の一部または全部がハロゲン原子で置換された基であれば、特に限定されるものではなく、その具体例としては、トリフルオロメチル、2,2,2-トリフルオロエチル、1,1,2,2,2-ペンタフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,2,2,3,3,3-ヘプタフルオロプロピル、4,4,4-トリフルオロブチル、3,3,4,4,4-ペンタフルオロブチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 The alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms is substituted with a halogen atom. Specific examples include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3. , 3-Pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,5,4-pentafluorobutyl, 2 , 2,3,3,4,4,4-heptafluorobutyl, 1,1,2,2,3,3,4,4-nonafluorobutyl group and the like.
 炭素数2~10のハロゲン化アルケニル基としては、炭素数2~10のアルケニル基の水素原子の一部または全部がハロゲン原子で置換された基であれば、特に限定されるものではなく、その具体例としては、パーフルオロビニル、パーフルオロ-1-プロペニル、パーフルオロ-2-プロペニル、パーフルオロ-1-ブテニル、パーフルオロ-2-ブテニル、パーフルオロ-3-ブテニル基等が挙げられる。 The halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms is substituted with a halogen atom. Specific examples include perfluorovinyl, perfluoro-1-propenyl, perfluoro-2-propenyl, perfluoro-1-butenyl, perfluoro-2-butenyl, perfluoro-3-butenyl group and the like.
 これらの中でも、Rs9としては、ニトロ基、シアノ基、炭素数1~10のハロゲン化アルキル基、炭素数2~10のハロゲン化アルケニル基が好ましく、ニトロ基、シアノ基、炭素数1~4のハロゲン化アルキル基、炭素数2~4のハロゲン化アルケニル基がより好ましく、ニトロ基、シアノ基、トリフルオロメチル基、パーフルオロプロペニル基がより一層好ましい。
 Rs10~Rs13としては、ハロゲン原子が好ましく、フッ素原子がより好ましい。
Among these, as R s9 , a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, and an alkenyl halide group having 2 to 10 carbon atoms are preferable, and a nitro group, a cyano group, and 1 to 4 carbon atoms are preferable. The alkyl halide group and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group and the perfluoropropenyl group are even more preferable.
As R s10 to R s13 , a halogen atom is preferable, and a fluorine atom is more preferable.
 A17は、-O-、-S-または-NH-であるが、-O-が好ましい。
 A18は、炭素数6~20の(n+1)価の芳香族炭化水素基であり、この芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。
 このような芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。
 これらの中でも、A18としては、ナフタレンまたはアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。
A 17 is -O-, -S- or -NH-, but -O- is preferable.
A 18 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms.
Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like.
Among these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 Rs14~Rs17は、それぞれ独立して、水素原子、または直鎖状もしくは分岐鎖状の炭素数1~20の1価脂肪族炭化水素基である。
 1価脂肪族炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、シクロペンチル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル基等の炭素数1~20のアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等の炭素数2~20のアルケニル基などが挙げられるが、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。
R s14 to R s17 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
Specific examples of the monovalent aliphatic hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl and n. -Alkyl groups having 1 to 20 carbon atoms such as heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl Examples thereof include alkenyl groups having 2 to 20 carbon atoms such as -2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl and hexenyl groups, but alkyl groups having 1 to 20 carbon atoms are preferable, and alkyl groups having 1 to 20 carbon atoms are preferable. An alkyl group of 10 is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
 Rs18は、直鎖状または分岐鎖状の炭素数1~20の1価脂肪族炭化水素基、またはORs19である。Rs19は、置換されていてもよい炭素数2~20の1価炭化水素基である。
 Rs18の直鎖状または分岐状の炭素数1~20の1価脂肪族炭化水素基としては、上記と同様のものが挙げられる。
 Rs18が1価脂肪族炭化水素基である場合、Rs18は、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。
 Rs19の炭素数2~20の1価炭化水素基としては、前述した1価脂肪族炭化水素基のうちメチル基以外のもののほか、フェニル、ナフチル、フェナントリル基等のアリール基などが挙げられる。
 これらの中でも、Rs19は、炭素数2~4の直鎖アルキル基またはフェニル基が好ましい。
 なお、上記1価炭化水素基が有していてもよい置換基としては、フッ素原子、炭素数1~4のアルコキシ基、ニトロ基、シアノ基等が挙げられる。
R s18 is a linear or branched chain monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or OR s19 . R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms of R s18 include the same groups as described above.
When R s18 is a monovalent aliphatic hydrocarbon group, R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Even more preferable.
Examples of the monovalent hydrocarbon group having 2 to 20 carbon atoms of R s19 include those other than the methyl group among the above-mentioned monovalent aliphatic hydrocarbon groups, and aryl groups such as phenyl, naphthyl, and phenanthryl groups.
Among these, R s19 is preferably a linear alkyl group or a phenyl group having 2 to 4 carbon atoms.
Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
 好適なアリールスルホン酸エステル化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。 Specific examples of suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
 アリールスルホン酸エステル化合物の使用量は、物質量(モル)比で、電荷輸送性物質1に対して、好ましくは0.01~20程度、より好ましくは0.05~10程度である。
 アリールスルホン酸エステル化合物は市販品を用いてもよいが、国際公開第2017/217455号、国際公開第2017/217457号、国際公開第2019/124412号等に記載の公知の方法で合成することもできる。
The amount of the aryl sulfonic acid ester compound used is preferably about 0.01 to 20, more preferably about 0.05 to 10 with respect to the charge transporting substance 1 in terms of the amount of substance (molar) ratio.
A commercially available product may be used as the aryl sulfonic acid ester compound, but it may also be synthesized by a known method described in International Publication No. 2017/217455, International Publication No. 2017/217457, International Publication No. 2019/124412 and the like. it can.
 本発明においては、透明性に優れ、高屈折率の電荷輸送性薄膜を作製することを考慮すると、ドーパント物質として、アリールスルホン酸化合物、アリールスルホン酸エステル化合物を用いることが好ましく、溶媒に対する溶解性や、消衰係数のより小さい薄膜を得ることを考慮すると、アリールスルホン酸エステル化合物を用いることがより好ましい。 In the present invention, considering the production of a charge-transporting thin film having excellent transparency and a high refractive index, it is preferable to use an aryl sulfonic acid compound or an aryl sulfonic acid ester compound as the dopant substance, and the solubility in a solvent is preferable. In addition, it is more preferable to use an aryl sulfonic acid ester compound in consideration of obtaining a thin film having a smaller extinction coefficient.
 さらに、得られる薄膜を有機EL素子の正孔注入層として用いる場合、正孔輸送層への注入性の向上、素子の寿命特性等の改善を目的として、上記電荷輸送性ワニスは、有機シラン化合物を含んでいてもよい。その含有量は、電荷輸送性物質およびドーパント物質の合計質量に対して、通常1~30質量%程度である。 Further, when the obtained thin film is used as the hole injection layer of the organic EL device, the charge transport varnish is an organic silane compound for the purpose of improving the injection property into the hole transport layer and improving the life characteristics of the device. May include. Its content is usually about 1 to 30% by mass with respect to the total mass of the charge transporting substance and the dopant substance.
 本発明の電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、本発明のアリールアミン化合物を良好に溶解し得る高極性溶媒を用いることができる。本発明のアリールアミン化合物は、溶媒の極性を問わず、溶媒中に溶解することが可能である。また、必要に応じて、高極性溶媒よりもプロセス適合性に優れている点で低極性溶媒を用いてもよい。本発明において、低極性溶媒とは周波数100kHzでの比誘電率が7未満のものを、高極性溶媒とは周波数100kHzでの比誘電率が7以上のものと定義する。 As the organic solvent used when preparing the charge transporting varnish of the present invention, a highly polar solvent capable of satisfactorily dissolving the arylamine compound of the present invention can be used. The arylamine compound of the present invention can be dissolved in a solvent regardless of the polarity of the solvent. Further, if necessary, a low-polarity solvent may be used because it is superior in process compatibility to a high-polarity solvent. In the present invention, a low-polarity solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz, and a high-polarity solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
 低極性溶媒としては、例えば、
クロロホルム、クロロベンゼン等の塩素系溶媒;
トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;
1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;
テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;
安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸イソアミル、フタル酸ビス(2-エチルヘキシル)、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒
等が挙げられる。
Examples of low polar solvents include, for example.
Chlorine-based solvents such as chloroform and chlorobenzene;
Aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene, decylbenzene;
Aliphatic alcohol solvents such as 1-octanol, 1-nonanol, 1-decanol;
Ether-based solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, and triethylene glycol butyl methyl ether;
Esters such as methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dibutyl maleate, dibutyl oxalate, hexyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc. Examples include a solvent.
 また、高極性溶媒としては、例えば、
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;
エチルメチルケトン、イソホロン、シクロヘキサノン等のケトン系溶媒;
アセトニトリル、3-メトキシプロピオニトリル等のシアノ系溶媒;
エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等の多価アルコール系溶媒;
ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルアルコール、2-フェノキシエタノール、2-ベンジルオキシエタノール、3-フェノキシベンジルアルコール、テトラヒドロフルフリルアルコール等の脂肪族アルコール以外の1価アルコール系溶媒;
ジメチルスルホキシド等のスルホキシド系溶媒
等が挙げられる。
Further, as a highly polar solvent, for example,
Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone;
Ketone solvents such as ethyl methyl ketone, isophorone, cyclohexanone;
Cyan-based solvents such as acetonitrile and 3-methoxypropionitrile;
Polyhydric alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, and 2,3-butanediol;
Other than aliphatic alcohols such as diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3-phenoxybenzyl alcohol, and tetrahydrofurfuryl alcohol. Monohydric alcohol solvent;
Examples thereof include sulfoxide-based solvents such as dimethyl sulfoxide.
 電荷輸送性ワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜定まるものではあるが、通常、25℃で1~50mPa・sである。なお、本発明において、固形分とは、本発明の電荷輸送性ワニスに含まれる溶媒以外の成分を意味する。
 また、電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~20.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~10.0質量%程度、より好ましくは1.0~5.0質量%程度である。
The viscosity of the charge-transporting varnish is appropriately determined depending on the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa · s at 25 ° C. In the present invention, the solid content means a component other than the solvent contained in the charge transporting varnish of the present invention.
The solid content concentration of the charge-transporting varnish is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, and the like, but is usually 0.1 to 20.0 mass. It is about%, preferably about 0.5 to 10.0% by mass, and more preferably about 1.0 to 5.0% by mass in consideration of improving the coatability of the varnish.
 電荷輸送性ワニスの調製法としては、特に限定されるものではないが、例えば、本発明のアリールアミン化合物を含む電荷輸送性物質等の固形分全てを有機溶媒に一度に溶解させる手法や、固形分の一部を有機溶媒に溶解させ、その後に残りの固形分を溶解させる手法等が挙げられる。 The method for preparing the charge-transporting varnish is not particularly limited, but for example, a method of dissolving all solids such as a charge-transporting substance containing the arylamine compound of the present invention in an organic solvent at once, or a solid. Examples thereof include a method in which a part of the charge is dissolved in an organic solvent and then the remaining solid content is dissolved.
 特に、電荷輸送性ワニスの調製の際、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質、ドーパント物質等を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いて濾過することが望ましい。 In particular, when preparing a charge-transporting varnish, from the viewpoint of obtaining a thin film with higher flatness with good reproducibility, after dissolving a charge-transporting substance, a dopant substance, etc. in an organic solvent, a submicrometer-order filter or the like is used. It is desirable to use and filter.
 以上説明した電荷輸送性ワニスは、これを用いることで容易に電荷輸送性薄膜を製造できることから、電子素子、特に有機EL素子を製造する際に好適に用いることができる。
 この場合、電荷輸送性薄膜は、上述した電荷輸送性ワニスを基材上に塗布して焼成して形成することができる。
 ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
Since the charge transporting varnish described above can easily produce a charge transporting thin film by using the varnish, it can be suitably used when manufacturing an electronic device, particularly an organic EL device.
In this case, the charge-transporting thin film can be formed by applying the above-mentioned charge-transporting varnish on a substrate and firing it.
The varnish coating method is not particularly limited, and examples thereof include a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an inkjet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish accordingly.
 また、塗布後の電荷輸送性ワニスの焼成雰囲気も特に限定されるものではなく、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができるが、用いるドーパント物質の種類によっては、ワニスを大気雰囲気下で焼成することで、より高い電荷輸送性を有する薄膜が再現性よく得られる場合がある。 Further, the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum can be obtained. Although it can be obtained, depending on the type of dopant substance used, a thin film having higher charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100~260℃程度の範囲内で適宜設定され、得られる薄膜を有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、145~240℃程度がより好ましいが、本発明のアリールアミン化合物を電荷輸送性物質として用いる場合、200℃以下という低温焼成でも、良好な電荷輸送性を有する薄膜を形成し得る。
 なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
The firing temperature is appropriately set within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, etc., and the obtained thin film is obtained. When used as a hole injection layer for an organic EL element, it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C., but when the arylamine compound of the present invention is used as a charge transporting substance, it is as low as 200 ° C. or less. Even by firing, a thin film having good charge transportability can be formed.
At the time of firing, a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の正孔注入層、正孔輸送層または正孔注入輸送層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量(ワニス量)を変化させたりする等の方法がある。 The film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 300 nm when used as a hole injection layer, a hole transport layer, or a hole transport layer of an organic EL element. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish and changing the amount of solution (varnish amount) on the substrate at the time of coating.
 以上説明した本発明の電荷輸送性薄膜は、400~800nmの波長領域の平均値で、通常、1.60以上の屈折率(n)と0.100以下の消衰係数(k)を示すが、ある態様においては1.65以上の屈折率を、その他のある態様においては1.70以上の屈折率を示し、また、ある態様においては0.050以下の消衰係数を、その他のある態様においては0.010以下の消衰係数を示す。 The charge-transporting thin film of the present invention described above usually exhibits a refractive index (n) of 1.60 or more and an extinction coefficient (k) of 0.100 or less with an average value in the wavelength region of 400 to 800 nm. In some embodiments, it exhibits a refractive index of 1.65 or higher, in other embodiments it exhibits a refractive index of 1.70 or higher, and in some embodiments it has an extinction coefficient of 0.050 or lower. Shows an extinction coefficient of 0.010 or less.
 上記電荷輸送性薄膜を有機EL素子に適用する場合、有機EL素子を構成する一対の電極の間に、上述の電荷輸送性薄膜を備える構成とすることができる。
 有機EL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。さらに、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
When the above-mentioned charge-transporting thin film is applied to an organic EL element, the above-mentioned charge-transporting thin film can be provided between a pair of electrodes constituting the organic EL element.
Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f). In the following configuration, if necessary, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole (hole) block layer or the like may be provided between the light emitting layer and the cathode. Further, the hole injection layer, the hole transport layer or the hole injection transport layer may also have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer is a hole (hole). It may also have a function as a block layer or the like. Further, if necessary, an arbitrary functional layer can be provided between the layers.
(A) Electron / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection transport layer / light emitting layer / cathode
 「正孔注入層」、「正孔輸送層」および「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものであり、発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
The "hole injection layer", "hole transport layer" and "hole injection transport layer" are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. When it has a function and only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and between the light emitting layer and the anode, When two or more layers of the hole transporting material are provided, the layer close to the anode is the “hole injection layer” and the other layers are the “hole transport layer”. In particular, as the hole injection (transport) layer, a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
The "electron injection layer", "electron transport layer" and "electron transport layer" are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an "electron injection transporting layer", and a layer of electron transporting material is provided between the light emitting layer and the cathode. When two or more layers are provided, the layer close to the cathode is the "electron injection layer", and the other layers are the "electron transport layer".
The "light emitting layer" is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted. At this time, the host material mainly has a function of promoting the recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. Has a function. In the case of a phosphorescent device, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 本発明の電荷輸送性ワニスから作製された電荷輸送性薄膜は、有機EL素子の陽極と発光層との間に設けられる正孔注入層、正孔輸送層、正孔注入輸送層等の機能層として用いることができるが、上述のとおり、通常、塗布法によりその上層が形成される正孔注入層として好適である。 The charge-transporting thin film produced from the charge-transporting varnish of the present invention is a functional layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer provided between the anode and the light emitting layer of the organic EL element. However, as described above, it is usually suitable as a hole injection layer on which an upper layer is formed by a coating method.
 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
 上記電荷輸送性ワニスから得られる薄膜からなる正孔注入層を有するOLED素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。
 陽極基板上に、上記の方法により、上記電荷輸送性ワニスを用いて正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成する代わりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。
Examples of materials and methods for producing an organic EL device using the charge-transporting varnish of the present invention include, but are not limited to, the following.
An example of a method for manufacturing an OLED device having a hole injection layer made of a thin film obtained from the charge transporting varnish is as follows. It is preferable that the electrode is preliminarily subjected to surface treatment such as cleaning with alcohol, pure water or the like, UV ozone treatment, oxygen-plasma treatment or the like within a range that does not adversely affect the electrode.
A hole injection layer is formed on the anode substrate by the above method using the above charge transporting varnish. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method, a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属、またはこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されるわけではない。
Examples of the anode material include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metals typified by aluminum, and metal anodes composed of alloys thereof. Those that have been flattened are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used.
Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(α-NPD)、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”-ターチオフェン(BMA-3T)等のオリゴチオフェン類などが挙げられる。 Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimer, N, N'-bis (naphthalen-1-yl) -N, N'-bis. (Phenyl) -benzidine (α-NPD), 4,4', 4 "-tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4', 4" -tris [1 -Triarylamines such as -naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5 "-bis- {4- [bis (4-methylphenyl) amino] phenyl} -2,2': Examples thereof include oligothiophenes such as 5', 2 "-turthiophene (BMA-3T).
 発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。
 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。
Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, and (2-hydroxyphenyl) benzo. Low molecular weight luminescent materials such as thiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3-alkyl Examples thereof include, but are not limited to, a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) and polyvinylcarbazole.
When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant is a metal complex such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). , A naphthacene derivative such as rubrene, a quinacridone derivative, a condensed polycyclic aromatic ring such as perylene, and the like, but are not limited thereto.
 電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)等の金属フッ化物などが挙げられるが、これらに限定されない。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。
 電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。
Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). Examples include, but are not limited to, metal fluorides such as.
Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
 正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,1’-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1’-ペンテン-5’-イル}フルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 Examples of the hole-transporting polymer include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4-diaminophenylene). )], Poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,1'-biphenylene-4,4-diamine) )], Poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4 -Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsis quinoxane, poly [(9,9-) Didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like can be mentioned.
 発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the luminescent polymer include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH-). Examples thereof include polyphenylene vinylene derivatives such as PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
 本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜は、有機EL素子の陽極と発光層との間に設けられる正孔注入層、正孔輸送層、正孔注入輸送層等の機能層として用い得るが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ペロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子ドット発光ダイオード、量子レーザー、有機レーザーダイオードおよび有機プラスモン発光素子等の電子素子における電荷輸送性薄膜としても用い得る。 The charge-transporting thin film obtained from the charge-transporting varnish of the present invention serves as a functional layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer provided between the anode and the light emitting layer of the organic EL element. Although it can be used, other organic photoelectric conversion elements, organic thin film solar cells, organic perovskite photoelectric conversion elements, organic integrated circuits, organic field effect transistors, organic thin films, organic light emitting transistors, organic optical testers, organic photoreceivers, organic It can also be used as a charge transporting thin film in electronic devices such as electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes and organic Plasmon light emitting devices.
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置および試薬は以下のとおりである。
[装置]
(1)MALDI-TOF-MS:ブルカー社製、autoflex III smartbeam
(2)1H-NMR:日本電子(株)製 JNM-ECP300 FT NMR SYSTEM
(3)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(4)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(5)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(6)素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)素子の電流密度と輝度の測定:(株)イーエッチシー製 多チャンネルIVL測定装置
(8)EL素子の寿命測定(輝度半減期測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
(9)屈折率(n)および消衰係数(k)の測定:ジェー・エー・ウーラムジャパン製 多入射角分光エリプソメーターVASE
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The equipment and reagents used are as follows.
[apparatus]
(1) MALDI-TOF-MS: manufactured by Bruker, autoflex III smart beam
(2) 1 1 H-NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd.
(3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method)
(4) Application of varnish: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(5) Film thickness measurement: Kosaka Laboratory Co., Ltd. Fine shape measuring machine Surfcoder ET-4000
(6) Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(7) Measurement of element current density and brightness: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (8) Life measurement of EL element (brightness half-life measurement): Organic EL brightness life manufactured by EHC Co., Ltd. Evaluation system PEL-105S
(9) Measurement of refractive index (n) and extinction coefficient (k): Multi-incident angle spectroscopic ellipsometer VASE manufactured by JA Woolam Japan
[試薬]
RuPhos Aldrich社製
t-BuXPhos Aldrich社製
t-Bu3PHBF4 富士フイルムワコーケミカル(株)製
ヨウ化銅(I) 富士フイルムワコーケミカル(株)製
エチレンジアミン 富士フイルムワコーケミカル(株)製
Pd(DBA)2 東京化成工業(株)製
Pd(ОAc)2 東京化成工業(株)製
Pd[P(C653)]4 東京化成工業(株)製
Pd(dppf)Cl2 東京化成工業(株)製
3-ブロモ-9-フェニルカルバゾール 東京化成工業(株)製
3-ブロモカルバゾール 東京化成工業(株)製
4-ヨードトルエン 東京化成工業(株)製
4-ヨードアニソール 東京化成工業(株)製
18-クラウン-6 東京化成工業(株)製
ビス(ピナコラート)ジボロン 東京化成工業(株)製
3,3’,5,5’-テトラメチルベンジジン 東京化成工業(株)製
リチウムヘキサメチルジシラジド(LHMDS)1.3mol/Lテトラヒドロフラン溶液 東京化成工業(株)製
2-ブロモ-7-ヨードフルオレン 東京化成工業(株)製
ベンジルトリエチルアンモニウムクロライド 東京化成工業(株)製
3-ニトロアニリン 東京化成工業(株)製
1-ブロモ-3-ニトロベンゼン 東京化成工業(株)製
塩化水素(約1mоl/L酢酸エチル溶液) 東京化成工業(株)製
4,4’-ジアミノジフェニルアミン 東京化成工業(株)製
t-BuONa 東京化成工業(株)製
(9-フェニル-9H-カルバゾール-3-イル)ボロン酸 東京化成工業(株)製
1,4-ジオキサン 関東化学(株)製
2,2’-ビス(トリフルオロメチル)ベンジジン 関東化学(株)製
ビス(4-アミノフェニル)スルフォン 関東化学(株)製
1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン 関東化学(株)製
シリカゲルN60 関東化学(株)製
ジメチルスルホキシド 純正化学(株)製
ヨードメタン 純正化学(株)製
炭酸カリウム 純正化学(株)製
酢酸カリウム 東京化成工業(株)製
トルエン 純正化学(株)製
テトラヒドロフラン 純正化学(株)製
酢酸エチル 純正化学(株)製
メタノール 純正化学 社製
ヘキサン 純正化学(株)製
m-トリジン 和歌山精化工業(株)製
N,N’-ビス(4-アミノフェニル)テレフタルアミド 和歌山精化工業(株)製
Pd/C CGS-10DR [H2O]=54.40% N.E.ケムキャット社製
3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール Beijing aglaia technology development co., ltd 製
[reagent]
RuPhos Aldrich t-BuXPhos Aldrich t-Bu 3 PHBF 4 Fujifilm Wako Chemical Co., Ltd. Copper Iodide (I) Fujifilm Wako Chemical Co., Ltd. Toluene Diamine Fujifilm Wako Chemical Co., Ltd. Pd (DBA) ) 2 Pd (ОAc) manufactured by Tokyo Kasei Kogyo Co., Ltd. 2 Pd [P (C 6 H 5 ) 3 )] manufactured by Tokyo Kasei Kogyo Co., Ltd. 4 Pd (dppf) Cl 2 manufactured by Tokyo Kasei Kogyo Co., Ltd. 3-Bromo-9-Phenylcarbazole manufactured by Tokyo Kasei Kogyo Co., Ltd. 3-Bromocarbazole manufactured by Tokyo Kasei Kogyo Co., Ltd. 4-Iodotoluene manufactured by Tokyo Kasei Kogyo Co., Ltd. 4-iodoanisol Tokyo Kasei Kogyo Co., Ltd. ) 18-Crown-6 Tokyo Kasei Kogyo Co., Ltd. Bis (Pinacolat) Diboron Tokyo Kasei Kogyo Co., Ltd. 3,3', 5,5'-Tetramethylbenzidine Tokyo Kasei Kogyo Co., Ltd. Lithium Hexamethyldi Shirajide (LHMDS) 1.3 mol / L tetrahydrofuran solution 2-Bromo-7-iodofluorene manufactured by Tokyo Kasei Kogyo Co., Ltd. benzyltriethylammonium chloride manufactured by Tokyo Kasei Kogyo Co., Ltd. 3-Nitroaniline manufactured by Tokyo Kasei Kogyo Co., Ltd. Tokyo 1-Bromo-3-nitrobenzene manufactured by Kasei Kogyo Co., Ltd. Hydrogen chloride (approx. 1 mL / L ethyl acetate solution) manufactured by Tokyo Kasei Kogyo Co., Ltd. 4,4'-diaminodiphenylamine manufactured by Tokyo Kasei Kogyo Co., Ltd. Tokyo Kasei Kogyo Co., Ltd. ) T-BuONa Tokyo Kasei Kogyo Co., Ltd. (9-Phenyl-9H-carbazole-3-yl) boronic acid Tokyo Kasei Kogyo Co., Ltd. 1,4-dioxane Kanto Chemical Co., Ltd. 2,2'- Bis (Trifluoromethyl) benzidine Kanto Chemical Co., Ltd. Bis (4-aminophenyl) Sulfone Kanto Chemical Co., Ltd. 1,4-Bis (4-amino-2-trifluoromethylphenoxy) benzene Kanto Chemical Co., Ltd. Silica Silica N60 dimethylsulfoxide manufactured by Kanto Chemical Co., Ltd. Iodomethane manufactured by Genuine Chemical Co., Ltd. Potassium carbonate manufactured by Genuine Chemical Co., Ltd. Potassium acetate manufactured by Genuine Chemical Co., Ltd. Toluene manufactured by Tokyo Kasei Kogyo Co., Ltd. Ethyl acetate manufactured by Chemical Co., Ltd. Methanol manufactured by Genuine Chemical Co., Ltd. Hexene manufactured by Genuine Chemical Co., Ltd. m-trizine manufactured by Genuine Chemical Co., Ltd. N, N'-bis (4-aminophenyl) terephthalamide manufactured by Wakayama Seika Kogyo Co., Ltd. Wakayama Seika Kogyo Co., Ltd. Pd / C CGS-10DR [H2O] = 54. 40% N. E. Chemcat 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole Beijing aglaia technology development co., Ltd
[1]化合物の合成
[製造例1-1]
Figure JPOXMLDOC01-appb-C000186
[1] Synthesis of compounds [Production Example 1-1]
Figure JPOXMLDOC01-appb-C000186
 100mLの反応フラスコに、2-ブロモ-7-ヨードフルオレン30mmol(11.1g)およびベンジルトリエチルアンモニウムクロライド3mmol(683.3mg)を量り入れた後、ジメチルスルホキシド60mLを加え、窒素置換しながら10分間撹拌した。
 そこへ、別途調製した水酸化ナトリウム50質量%水溶液14gを加えてから10分間撹拌した後、ヨードメタン72.5mmol(10.3g)を滴下し、室温で終夜撹拌した。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
 得られた反応混合物をメタノールと水の混合溶媒(3/1(v/v))800mLに加え、析出した固体をメンブランフィルターで濾別した。
 最後に、回収した固体を60℃で減圧乾燥し、2-ブロモ-7-ヨード-9,9-ジメチル-9H-フルオレン6.26g(78.4%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重DMSO)を図1に示す。
Weigh 30 mmol (11.1 g) of 2-bromo-7-iodofluorene and 3 mmol (683.3 mg) of benzyltriethylammonium chloride into a 100 mL reaction flask, add 60 mL of dimethyl sulfoxide, and stir for 10 minutes while substituting with nitrogen. did.
After adding 14 g of a separately prepared 50 mass% sodium hydroxide aqueous solution and stirring for 10 minutes, 72.5 mmol (10.3 g) of iodomethane was added dropwise thereto, and the mixture was stirred overnight at room temperature. On the way, a small amount of the solution in the flask was sampled, and the reaction was followed by liquid chromatography. As the area of peaks that can be attributed to raw materials decreased, the area of peaks that could be attributed to the target product increased. At that time, no conspicuous peak corresponding to the by-product was confirmed.
The obtained reaction mixture was added to 800 mL of a mixed solvent of methanol and water (3/1 (v / v)), and the precipitated solid was filtered off by a membrane filter.
Finally, the recovered solid was dried under reduced pressure at 60 ° C. to obtain 6.26 g (78.4%) of 2-bromo-7-iodo-9,9-dimethyl-9H-fluorene. The 1 H-NMR spectrum (measurement solvent: heavy DMSO) of the obtained compound is shown in FIG.
[製造例1-2]
Figure JPOXMLDOC01-appb-C000187
[Manufacturing Example 1-2]
Figure JPOXMLDOC01-appb-C000187
 200mLの二つ口フラスコに、3-ブロモカルバゾール20mmоl(4.93g)、4-ヨードトルエン44mmоl(9.61g)、ヨウ化銅(I)16mmоl(3.05g)、炭酸セシウム50mmоl(16.3g)、トルエン100mLを加え、窒素気流下、室温で5分間撹拌した後、そこへエチレンジアミン30mmоl(1.82g)加え、加熱還流下、終夜撹拌した。
 得られた反応混合物を室温まで冷却した後、不溶物をセライトろ過により取り除き、得られたろ液を濃縮し、濃縮物をカラムクロマトグラフィーで精製し、3-ブロモ-9-(4-トリル)カルバゾール2.84g(42.2%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図2~4に示す。
In a 200 mL two-necked flask, 20 mmоl (4.93 g) of 3-bromocarbazole, 44 mmоl (9.61 g) of 4-iodotoluene, 16 mmоl (3.05 g) of copper (I) iodide, and 50 mmоl (16.3 g) of cesium carbonate. ), 100 mL of toluene was added, and the mixture was stirred at room temperature for 5 minutes under a nitrogen stream, 30 mmоl (1.82 g) of ethylenediamine was added thereto, and the mixture was stirred overnight under heating and reflux.
After cooling the resulting reaction mixture to room temperature, the insoluble material is removed by filtration through Celite, the obtained filtrate is concentrated, and the concentrate is purified by column chromatography to purify 3-bromo-9- (4-tolyl) carbazole. 2.84 g (42.2%) was obtained. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 2 to 4.
[製造例1-3]
Figure JPOXMLDOC01-appb-C000188
[Manufacturing Example 1-3]
Figure JPOXMLDOC01-appb-C000188
 4-ヨードトルエン44mmolの代わりに4-ヨードアニソール88mmol(20.6g)を用い、その他の試薬の使用当量を2倍にした以外は、製造例1-2と同様の方法で反応および精製を行い、3-ブロモ-9-(4-メトキシフェニル)カルバゾール11.1g(78.7%)を得た。得られた化合物の1H-NMRスペクトルを図5および6に示す。 Reaction and purification were carried out in the same manner as in Production Example 1-2 except that 88 mmol (20.6 g) of 4-iodoanisole was used instead of 44 mmol of 4-iodotoluene and the equivalents used for other reagents were doubled. , 3-Bromo-9- (4-methoxyphenyl) carbazole 11.1 g (78.7%) was obtained. The 1 H-NMR spectra of the obtained compound are shown in FIGS. 5 and 6.
[製造例1-4]
Figure JPOXMLDOC01-appb-C000189
[Manufacturing Example 1-4]
Figure JPOXMLDOC01-appb-C000189
 200mLの二つ口フラスコに、3-ブロモカルバゾール60mmоl(14.76g)、ヨウ化銅(I)4.5mmоl(0.86g)、炭酸カリウム63mmоl(8.71g)、18-クラウン-6 61.5mmоl(16.2g)を加え、フラスコ内を窒素置換した後、そこへN,N-ジメチルアセトアミド100mLを加え、室温で10分間撹拌した。その後、160℃まで昇温し、2時間撹拌した後、2-ヨードチオフェン63mmоl(13.23g)を加え、更に70時間撹拌した。
 反応混合物を室温まで冷却した後、不溶物をセライトろ過により取り除き、得られたろ液を濃縮し、濃縮物をカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=100/0→95/5)で精製し、3-ブロモ-9-(チオフェン-2-イル)カルバゾール5.80g(29.5%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図7および8に示す。
In a 200 mL two-necked flask, 3-bromocarbazole 60 mmоl (14.76 g), copper (I) iodide 4.5 mmоl (0.86 g), potassium carbonate 63 mmоl (8.71 g), 18-crown-6 61. After adding 5 mmоl (16.2 g) and replacing the inside of the flask with nitrogen, 100 mL of N, N-dimethylacetamide was added thereto, and the mixture was stirred at room temperature for 10 minutes. Then, the temperature was raised to 160 ° C., and the mixture was stirred for 2 hours, 63 mmоl (13.23 g) of 2-iodothiophene was added, and the mixture was further stirred for 70 hours.
After cooling the reaction mixture to room temperature, the insoluble material is removed by Celite filtration, the obtained filtrate is concentrated, and the concentrate is column chromatographed (developing solvent: n-hexane / ethyl acetate = 100/0 → 95/5). To obtain 5.80 g (29.5%) of 3-bromo-9- (thiophene-2-yl) carbazole. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 7 and 8.
[製造例1-5]
Figure JPOXMLDOC01-appb-C000190
[Manufacturing Example 1-5]
Figure JPOXMLDOC01-appb-C000190
 3-ブロモカルバゾールの代わりに2-ブロモカルバゾール60mmоl(14.76g)を用いた以外は、製造例1-4と同様の方法で反応および精製を行い、2-ブロモ-9-(チオフェン-2-イル)カルバゾール7.36g(37.2%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図9および10に示す。 The reaction and purification were carried out in the same manner as in Production Example 1-4 except that 60 mmоl (14.76 g) of 2-bromocarbazole was used instead of 3-bromocarbazole, and 2-bromo-9- (thiophene-2-) was used. Il) Carbazole 7.36 g (37.2%) was obtained. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 9 and 10.
[製造例1-6]
Figure JPOXMLDOC01-appb-C000191
[Manufacturing Example 1-6]
Figure JPOXMLDOC01-appb-C000191
 100mLの反応フラスコに、3-ブロモ-9-(p-トリル)カルバゾール5mmоl(1.68g)、ビス(ピナコラート)ジボロン5.05mmоl(1.28g)、酢酸カリウム15mmоl(1.47g)、Pd(dppf)Cl20.15mmоl(0.125g)、N,N-ジメチルホルムアミド50mLを加え、10分間、室温で撹拌しながら窒素置換した後、90℃まで昇温し、更に終夜撹拌した。
 反応混合物と、水75mLと、塩化メチレン75mLとを混合して抽出を行い、有機層を回収した。回収した有機層を硫酸マグネシウムで乾燥し、ろ過により硫酸マグネシウムを取り除いた。得られたろ液を濃縮し、濃縮物をカラムクロマトグラフィーで精製し、9-(p-トリル)カルバゾール-3-ボロン酸ピナコラート1.42g(74.3%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図11および12に示す。
In a 100 mL reaction flask, 5-bromo-9- (p-tolyl) carbazole 5 mmоl (1.68 g), bis (pinacolat) diboron 5.05 mmоl (1.28 g), potassium acetate 15 mmоl (1.47 g), Pd ( dppf) Cl 2 0.15 mmоl (0.125 g) and 50 mL of N, N-dimethylformamide were added, nitrogen was replaced with stirring at room temperature for 10 minutes, the temperature was raised to 90 ° C., and the mixture was further stirred overnight.
The reaction mixture, 75 mL of water, and 75 mL of methylene chloride were mixed and extracted, and the organic layer was recovered. The recovered organic layer was dried over magnesium sulfate, and magnesium sulfate was removed by filtration. The obtained filtrate was concentrated, and the concentrate was purified by column chromatography to obtain 1.42 g (74.3%) of 9- (p-tolyl) carbazole-3-boronic acid pinacolate. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 11 and 12.
[製造例1-7]
Figure JPOXMLDOC01-appb-C000192
[Manufacturing Example 1-7]
Figure JPOXMLDOC01-appb-C000192
 3-ブロモ-9-(p-トリル)カルバゾール5mmоlの代わりに3-ブロモ-9-(p-メトキシフェニル)カルバゾール10mmоl(3.522g)を用い、その他の試薬の使用当量を2倍にした以外は、製造例1-6と同様の方法で反応および精製を行い、9-(p-メトキシフェニル)カルバゾール-3-ボロン酸ピナコラート1.53g(38.3%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図13および14に示す。 Except for using 3-bromo-9- (p-methoxyphenyl) carbazole 10 mmоl (3.522 g) instead of 3-bromo-9- (p-tolyl) carbazole 5 mmоl and doubling the amount of other reagents used. Was reacted and purified in the same manner as in Production Example 1-6 to obtain 1.53 g (38.3%) of 9- (p-methoxyphenyl) carbazole-3-boronic acid pinacolalate. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 13 and 14.
[製造例1-8]
Figure JPOXMLDOC01-appb-C000193
[Manufacturing Example 1-8]
Figure JPOXMLDOC01-appb-C000193
 3-ブロモ-9-(p-トリル)カルバゾール5mmоlの代わりに3-ブロモ-9-(チオフェン-2-イル)カルバゾール15mmоl(4.92g)を用い、その他の試薬の使用当量を3倍にした以外は、製造例1-6と同様の方法で反応および精製を行い、9-(チオフェン-2-イル)カルバゾール-3-ボロン酸ピナコラート2.53g(44.9%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図15および16に示す。 3-Bromo-9- (thiophene-2-yl) carbazole 15 mmоl (4.92 g) was used in place of 3-bromo-9- (p-tolyl) carbazole 5 mmоl, and the equivalents of other reagents used were tripled. The reaction and purification were carried out in the same manner as in Production Example 1-6 except that 2.53 g (44.9%) of 9- (thiophene-2-yl) carbazole-3-boronic acid pinacolate was obtained. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 15 and 16.
[製造例1-9]
Figure JPOXMLDOC01-appb-C000194
[Manufacturing Example 1-9]
Figure JPOXMLDOC01-appb-C000194
 3-ブロモ-9-(p-トリル)カルバゾールの代わりに2-ブロモ-9-(チオフェン-2-イル)カルバゾール5mmol(1.64g)を用いた以外は、製造例1-6と同様の方法で反応および精製を行い、9-(チオフェン-2-イル)カルバゾール-2-ボロン酸ピナコラート1.26g(67.2%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図17および18に示す。 The same method as in Production Example 1-6 except that 5 mmol (1.64 g) of 2-bromo-9- (thiophene-2-yl) carbazole was used instead of 3-bromo-9- (p-tolyl) carbazole. The reaction and purification were carried out in 1.26 g (67.2%) of 9- (thiophene-2-yl) carbazole-2-boronic acid pinacolate. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 17 and 18.
[製造例2-1]
Figure JPOXMLDOC01-appb-C000195
[Manufacturing Example 2-1]
Figure JPOXMLDOC01-appb-C000195
 100mLの反応フラスコに、(9-フェニル-9H-カルバゾール-3-イル)ボロン酸5mmol(1.44g)、2-ブロモ-7-ヨード-9,9-ジメチル-9H-フルオレン5.25mmol(2.95g)、水酸化ナトリウム15mmol(600mg)、テトラヒドロフランと水の混合溶媒(2/1(v/v))75mLおよびPd[P(C653)]40.15mmol(173.5mg)を入れ、窒素置換しながら室温で10分間撹拌した後、60℃で5時間撹拌した。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
 得られた反応混合物をメタノールと水の混合溶媒(3/1(v/v))400mLに加え、析出した固体をメンブランフィルターで濾別し、濾別した固体を60℃で減圧乾燥した。
 さらに、乾燥した固体をテトラヒドロフラン20mLに溶解させ、得られた溶液をn-ヘキサン200mLに加え、析出した固体をメンブランフィルターで濾別し、濾別した固体を60℃で減圧乾燥した。
 最後に、乾燥した固体をテトラヒドロフラン20mLに溶解させ、得られた溶液をメタノールと水の混合溶媒(3/1(v/v))200mLに加え、析出した固体をメンブランフィルターで濾別した。得られた固体を60℃で減圧乾燥し、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール1.28g(49.8%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図19に示す。
In a 100 mL reaction flask, 5 mmol (1.44 g) of (9-phenyl-9H-carbazole-3-yl) boronic acid, 5.25 mmol (2) of 2-bromo-7-iodo-9,9-dimethyl-9H-fluorene. .95 g), 15 mmol (600 mg) of sodium hydroxide, 75 mL of mixed solvent of tetrahydrofuran and water (2/1 (v / v)) and Pd [P (C 6 H 5 ) 3 )] 4 0.15 mmol (173.5 mg) ) Was added, and the mixture was stirred at room temperature for 10 minutes while substituting with nitrogen, and then stirred at 60 ° C. for 5 hours. On the way, a small amount of the solution in the flask was sampled, and the reaction was followed by liquid chromatography. As the area of peaks that can be attributed to raw materials decreased, the area of peaks that could be attributed to the target product increased. At that time, no conspicuous peak corresponding to the by-product was confirmed.
The obtained reaction mixture was added to 400 mL of a mixed solvent of methanol and water (3/1 (v / v)), the precipitated solid was filtered off with a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C.
Further, the dried solid was dissolved in 20 mL of tetrahydrofuran, the obtained solution was added to 200 mL of n-hexane, the precipitated solid was filtered off by a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C.
Finally, the dried solid was dissolved in 20 mL of tetrahydrofuran, the obtained solution was added to 200 mL of a mixed solvent of methanol and water (3/1 (v / v)), and the precipitated solid was filtered off by a membrane filter. The obtained solid was dried under reduced pressure at 60 ° C. to 1.28 g (49.8%) of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole. Got The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[製造例2-2]
Figure JPOXMLDOC01-appb-C000196
[Manufacturing Example 2-2]
Figure JPOXMLDOC01-appb-C000196
 100mLの反応フラスコに、9-(p-トリル)カルバゾール-3-ボロン酸ピナコラート2.5mmоl(0.958g)、2-ブロモ-7-ヨード-9,9-ジメチル-9H-フルオレン2.63mmоl(1.05g)、水酸化ナトリウム7.5mmol(300mg)、テトラヒドロフランと水の混合溶媒(2/1(v/v))37.5mLおよびPd[P(C653)]40.075mmol(86.7mg)を入れ、窒素置換しながら室温で10分間撹拌した後、60℃で終夜撹拌した。
 得られた反応混合物を室温まで冷却した後、水層を除去した。得られた有機層を、メタノールと水の混合溶媒(3/1(v/v))に滴下し、析出した固体をメンブランフィルターで濾別し、濾別した固体を60℃で減圧乾燥した。
 さらに、乾燥した固体をテトラヒドロフラン20mLに溶解させ、得られた溶液をn-ヘキサン200mLに加え、析出した固体をメンブランフィルターで濾別し、濾別した固体を60℃で減圧乾燥した。3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(p-トリル)-9H-カルバゾール1.10g(83.3%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図20および21に示す。
In a 100 mL reaction flask, 2.5 mmоl (0.958 g) of 9- (p-tolyl) carbazole-3-boronic acid pinacolaate, 2.63 mmоl of 2-bromo-7-iodo-9,9-dimethyl-9H-fluorene ( 1.05 g), 7.5 mmol (300 mg) of sodium hydroxide, 37.5 mL of mixed solvent of tetrahydrofuran and water (2/1 (v / v)) and Pd [P (C 6 H 5 ) 3 )] 40 . 075 mmol (86.7 mg) was added, and the mixture was stirred at room temperature for 10 minutes while substituting with nitrogen, and then stirred at 60 ° C. overnight.
After cooling the obtained reaction mixture to room temperature, the aqueous layer was removed. The obtained organic layer was added dropwise to a mixed solvent of methanol and water (3/1 (v / v)), the precipitated solid was filtered off with a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C.
Further, the dried solid was dissolved in 20 mL of tetrahydrofuran, the obtained solution was added to 200 mL of n-hexane, the precipitated solid was filtered off by a membrane filter, and the filtered solid was dried under reduced pressure at 60 ° C. 3- (7-Bromo-9,9-dimethyl-9H-fluorene-2-yl) -9- (p-tolyl) -9H-carbazole 1.10 g (83.3%) was obtained. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 20 and 21.
[製造例2-3]
Figure JPOXMLDOC01-appb-C000197
[Manufacturing Example 2-3]
Figure JPOXMLDOC01-appb-C000197
 9-(p-トリル)カルバゾール-3-ボロン酸ピナコラートの代わりに、9-(p-メトキシフェニル)カルバゾール-3-ボロン酸ピナコラート15mmol(5.99g)を用い、その他の試薬の使用当量を6倍にした以外は、製造例2-2と同様の方法で反応および精製を行い、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(p-メトキシフェニル)-9H-カルバゾール5.80g(70.4%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図22に示す。 Instead of 9- (p-tolyl) carbazole-3-boronic acid pinacolalate, use 15 mmol (5.99 g) of 9- (p-methoxyphenyl) carbazole-3-boronic acid pinacolaate, and use 6 equivalents of other reagents. The reaction and purification were carried out in the same manner as in Production Example 2-2 except for doubling, and 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9- (p-methoxy) was carried out. To obtain 5.80 g (70.4%) of phenyl) -9H-carbazole. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[製造例2-4]
Figure JPOXMLDOC01-appb-C000198
[Manufacturing Example 2-4]
Figure JPOXMLDOC01-appb-C000198
 9-(p-トリル)カルバゾール-3-ボロン酸ピナコラートの代わりに、9-(チオフェン-2-イル)カルバゾール-3-ボロン酸ピナコラート5mmоl(1.79g)を用い、その他の試薬の使用当量を2倍にした以外は、製造例2-2と同様の方法で反応および精製を行い、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(チオフェン-2-イル)-9H-カルバゾール1.86g(76.8%)を得た。得られた化合物の1H-NMRスペクトルを図23および24(測定溶媒:重THF)に示す。 Instead of 9- (p-tolyl) carbazole-3-boronic acid pinacolalate, use 9- (thiophene-2-yl) carbazole-3-boronic acid pinacolate 5 mmоl (1.79 g), and use equivalent amounts of other reagents. The reaction and purification were carried out in the same manner as in Production Example 2-2 except that the amount was doubled, and 3- (7-bromo-9,9-dimethyl-9H-fluoren-2-yl) -9- (thiophene-). 2-Il) -9H-carbazole 1.86 g (76.8%) was obtained. The 1 H-NMR spectrum of the obtained compound is shown in FIGS. 23 and 24 (measurement solvent: heavy THF).
[製造例2-5]
Figure JPOXMLDOC01-appb-C000199
[Manufacturing Example 2-5]
Figure JPOXMLDOC01-appb-C000199
 9-(p-トリル)カルバゾール-3-ボロン酸ピナコラートの代わりに、9-(チオフェン-2-イル)カルバゾール-2-ボロン酸ピナコラート5mmоl(1.88g)を用い、その他の試薬の使用当量を2倍にした以外は、製造例2-2と同様の方法で反応および精製を行い、2-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(チオフェン-2-イル)-9H-カルバゾール2.0g(77.7%)を得た。得られた化合物の1H-NMRスペクトルを図25および26(測定溶媒:重THF)に示す。 Instead of 9- (p-tolyl) carbazole-3-boronic acid pinacolaate, use 9- (thiophene-2-yl) carbazole-2-boronic acid pinacolate 5 mmоl (1.88 g), and use equivalent amounts of other reagents. The reaction and purification were carried out in the same manner as in Production Example 2-2 except that the amount was doubled, and 2- (7-bromo-9,9-dimethyl-9H-fluoren-2-yl) -9- (thiophene-) was carried out. 2-Il) -9H-carbazole 2.0 g (77.7%) was obtained. The 1 H-NMR spectrum of the obtained compound is shown in FIGS. 25 and 26 (measurement solvent: heavy THF).
[製造例3]
Figure JPOXMLDOC01-appb-C000200
[Manufacturing Example 3]
Figure JPOXMLDOC01-appb-C000200
 還流塔を取り付けた1000mLの反応フラスコに、Pd(DBA)25mmol(2.88g)、t-BuXPhos10mmol(4.25g)、炭酸カリウム300mmol(41.46g)、3-ニトロアニリン100mmol(13.82g)、1-ブロモ-3-ニトロベンゼン110mmol(22.22g)、トルエン1000mLを入れてフラスコ内を窒素置換した後、80℃の浴中で終夜撹拌した。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
 反応液を室温まで冷やし、シリカゲルN60 200gを詰めたろ過器でろ過し、得られたろ液を重さが100gになるまで濃縮し、濃縮物をトルエン1000mLに滴下して生じた固体を濾別した。得られた固体を乾燥し、ビス(3-ニトロフェニル)アミン24.1gを得た(収率93.1%)。
Reaction flask 1000mL fitted with a reflux column, Pd (DBA) 2 5mmol ( 2.88g), t-BuXPhos10mmol (4.25g), potassium carbonate 300mmol (41.46g), 3- nitroaniline 100 mmol (13.82 g ), 110 mmol (22.22 g) of 1-bromo-3-nitrobenzene and 1000 mL of toluene were added to replace the inside of the flask with nitrogen, and then the mixture was stirred overnight in a bath at 80 ° C. On the way, a small amount of the solution in the flask was sampled, and the reaction was followed by liquid chromatography. As the area of peaks that can be attributed to raw materials decreased, the area of peaks that could be attributed to the target product increased. At that time, no conspicuous peak corresponding to the by-product was confirmed.
The reaction mixture was cooled to room temperature, filtered through a filter filled with 200 g of silica gel N60, the obtained filtrate was concentrated to a weight of 100 g, the concentrate was added dropwise to 1000 mL of toluene, and the resulting solid was filtered off. .. The obtained solid was dried to obtain 24.1 g of bis (3-nitrophenyl) amine (yield 93.1%).
[製造例4]
Figure JPOXMLDOC01-appb-C000201
[Manufacturing Example 4]
Figure JPOXMLDOC01-appb-C000201
 還流塔を取り付けた300mLの反応フラスコに、ビス(3-ニトロフェニル)アミン77.15mmоl(20g)とPd/C CGS-10DR [H2O]=54.40% 2gを量り入れてフラスコ内を水素置換した。そこへテトラヒドロフラン200mLを加えた後、50℃で終夜撹拌した。混合物を室温まで冷却し、セライト200gを詰めたろ過器でろ過し、ろ液から減圧下で溶媒を留去した。残留物を少量採取して1H-NMRを用いて3,3’-ジアミノジフェニルアミンの生成を確認した後、残留物にテトラヒドロフラン100gを加え、得られた溶液を氷浴で0℃まで冷やし、温度が安定したことを確認した後、塩化水素溶液(約1mоl/Lの酢酸エチル溶液)50mLを加え、析出した固体をろ別した。得られた固体を乾燥し、3,3’-ジアミノジフェニルアミン二塩酸塩19.8g(99.0%)を得た。 In a 300 mL reaction flask equipped with a reflux column, weigh 77.15 mmоl (20 g) of bis (3-nitrophenyl) amine and Pd / C CGS-10DR [H2O] = 54.40% 2 g, and replace the inside of the flask with hydrogen. did. After adding 200 mL of tetrahydrofuran to it, the mixture was stirred at 50 ° C. overnight. The mixture was cooled to room temperature, filtered through a filter filled with 200 g of Celite, and the solvent was distilled off from the filtrate under reduced pressure. After collecting a small amount of the residue and confirming the formation of 3,3'-diaminodiphenylamine by 1 H-NMR, 100 g of tetrahydrofuran was added to the residue, and the obtained solution was cooled to 0 ° C. in an ice bath and heated to a temperature. After confirming that was stable, 50 mL of a hydrogen chloride solution (about 1 mL / L ethyl acetate solution) was added, and the precipitated solid was filtered off. The obtained solid was dried to obtain 19.8 g (99.0%) of 3,3'-diaminodiphenylamine dihydrochloride salt.
[実施例1-1]
Figure JPOXMLDOC01-appb-C000202
[Example 1-1]
Figure JPOXMLDOC01-appb-C000202
 還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.1mmol(57.6mg)、RuPhos0.15mmol(70.0mg)、3,3’,5,5’-テトラメチルベンジジン0.5mmol(120.2mg)、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール2.1mmol(1080.4mg)を量り入れ、系中を窒素置換した。
 そこへジオキサン10mLを加え、室温で5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液1.69mL(LHMDS2.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で8時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
 反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチルとテトラヒドロフランの混合溶媒(2/1(v/v))50mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
 硫酸マグネシウムを濾過により除去し、得られた濾液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:n-ヘキサン/塩化メチレン=60/40→0/100)を行い、目的物を含むフラクションを分取した。
 最後に、分取したフラクションから溶媒を取り除き、70℃で減圧乾燥後、アリールアミン化合物C2d 0.56g(>99%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図27に示す。
Pd (DBA) 2 0.1 mmol (57.6 mg), RuPhos 0.15 mmol (70.0 mg), 3,3', 5,5'-tetramethylbenzidine 0.5 mmol in a 30 mL reaction flask equipped with a reflux column. Weigh in (120.2 mg), 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole 2.1 mmol (1080.4 mg), and pour through the system. Nitrogen substituted.
10 mL of dioxane is added thereto, and the mixture is stirred at room temperature for 5 minutes, then 1.69 mL of LHMDS 1.3 mol / L tetrahydrofuran solution (equivalent to 2.2 mmol of LHMDS) is added, and the mixture is stirred at room temperature for 5 minutes and then in a bath at 110 ° C. for 8 hours. The mixture was heated and stirred (internal temperature 92 ° C.). On the way, a small amount of the solution in the flask was sampled, and the reaction was followed by liquid chromatography. As the area of peaks that can be attributed to raw materials decreased, the area of peaks that could be attributed to the target product increased. At that time, no conspicuous peak corresponding to the by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture is placed in a separatory funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 50 mL of a mixed solvent of ethyl acetate and tetrahydrofuran (2/1 (v / v)) for extraction. The organic layer was left in the liquid funnel, and the aqueous layer was recovered. 50 mL of saturated saline was placed in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were recovered, respectively. Then, all the recovered aqueous layers are put together in a separating funnel, 20 mL of ethyl acetate is put therein and extraction is performed, the organic layer is recovered, all the recovered organic layers are put together, and this is dried with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate by a rotary evaporator. Column chromatography (developing solvent: n-hexane / methylene chloride = 60/40 → 0/100) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the desired product was separated. I took it.
Finally, the solvent was removed from the fraction, and the mixture was dried under reduced pressure at 70 ° C. to obtain 0.56 g (> 99%) of the arylamine compound C2d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG. 27.
[実施例1-2]
Figure JPOXMLDOC01-appb-C000203
[Example 1-2]
Figure JPOXMLDOC01-appb-C000203
 3,3’,5,5’-テトラメチルベンジジンの代わりにN,N’-ビス(4-アミノフェニル)テレフタルアミド0.5mmol(123.2mg)を用いた以外は、実施例1-1と同様の方法で操作を行ってアリールアミン化合物D2d 0.43g(70.9%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図28に示す。 Example 1-1, except that 0.5 mmol (123.2 mg) of N, N'-bis (4-aminophenyl) terephthalamide was used instead of 3,3', 5,5'-tetramethylbenzidine. The operation was carried out in the same manner to obtain 0.43 g (70.9%) of the arylamine compound D2d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-3]
Figure JPOXMLDOC01-appb-C000204
[Example 1-3]
Figure JPOXMLDOC01-appb-C000204
 3,3’,5,5’-テトラメチルベンジジンの代わりに2,2’-ビス(トリフルオロメチル)ベンジジン0.5mmol(160.12mg)を用いた以外は、実施例1-1と同様の方法で操作を行ってアリールアミン化合物A3d 0.46g(44.8%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図29に示す。 Same as in Example 1-1 except that 0.5 mmol (160.12 mg) of 2,2'-bis (trifluoromethyl) benzidine was used instead of 3,3', 5,5'-tetramethylbenzidine. The procedure was carried out to obtain 0.46 g (44.8%) of arylamine compound A3d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-4]
Figure JPOXMLDOC01-appb-C000205
[Example 1-4]
Figure JPOXMLDOC01-appb-C000205
 3,3’,5,5’-テトラメチルベンジジンの代わりにビス(4-アミノフェニル)スルフォン0.5mmol(124.5mg)を用いた以外は、実施例1-1と同様の方法で操作を行ってアリールアミン化合物E3d 0.35g(35.3%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:CDCl3)を図30に示す。 The procedure was the same as in Example 1-1, except that 0.5 mmol (124.5 mg) of bis (4-aminophenyl) sulfone was used instead of 3,3', 5,5'-tetramethylbenzidine. This was carried out to obtain 0.35 g (35.3%) of the arylamine compound E3d. The 1 H-NMR spectrum (measurement solvent: CDCl 3 ) of the obtained compound is shown in FIG.
[実施例1-5]
Figure JPOXMLDOC01-appb-C000206
[Example 1-5]
Figure JPOXMLDOC01-appb-C000206
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに3-(7-ブロモ-9,9-ジヘキシル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール2.1mmol(1.375mg)を用いた以外は、実施例1-4と同様の方法で操作を行ってアリールアミン化合物E3i 0.71g(55.8%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図31に示す。 3- (7-Bromo-9,9-dihexyl-9H-fluorene-2) instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole -Il) -9-Phenyl-9H-carbazole 2.1 mmol (1.375 mg) was used, but the procedure was the same as in Example 1-4, and 0.71 g (55.8) of the arylamine compound E3i was used. %) Was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-6]
Figure JPOXMLDOC01-appb-C000207
[Example 1-6]
Figure JPOXMLDOC01-appb-C000207
 3,3’,5,5’-テトラメチルベンジジンの代わりに1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン0.5mmol(219.2mg)を用いた以外は、実施例1-1と同様の方法で操作を行ってアリールアミン化合物F3d 0.35g(32.4%)得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図32に示す。 Examples except that 0.5 mmol (219.2 mg) of 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene was used instead of 3,3', 5,5'-tetramethylbenzidine. The same procedure as in 1-1 was carried out to obtain 0.35 g (32.4%) of arylamine compound F3d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-7]
Figure JPOXMLDOC01-appb-C000208
[Example 1-7]
Figure JPOXMLDOC01-appb-C000208
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに3-(4-ブロモフェニル)-9-フェニル-9H-カルバゾール2.1mmol(836.4mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3b 0.32g(40.3%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図33に示す。 3- (4-Bromophenyl) -9-phenyl-9H-carbazole instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole 2. The procedure was the same as in Example 1-3 except that 1 mmol (836.4 mg) was used to obtain 0.32 g (40.3%) of the arylamine compound A3b. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG. 33.
[実施例1-8]
Figure JPOXMLDOC01-appb-C000209
[Example 1-8]
Figure JPOXMLDOC01-appb-C000209
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに3-(4’-ブロモ-[1,1’-ビフェニル]-4-イル)-9-フェニル-9H-カルバゾール2.1mmol(996.2mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3c 0.57g(60.2%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図34に示す。 3- (4'-Bromo- [1,1'-biphenyl] -4 instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole -Il) -9-Phenyl-9H-carbazole 2.1 mmol (996.2 mg) was used, but the procedure was the same as in Example 1-3, and the arylamine compound A3c was 0.57 g (60.2 mg). %) Was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-9]
Figure JPOXMLDOC01-appb-C000210
[Example 1-9]
Figure JPOXMLDOC01-appb-C000210
 3,3’,5,5’-テトラメチルベンジジンの代わりにm-トリジン0.5mmol(106.1mg)を用いた以外は、実施例1-1と同様の方法で操作を行ってアリールアミン化合物G3d 0.17g(17.5%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図35に示す。 The arylamine compound was operated in the same manner as in Example 1-1 except that 0.5 mmol (106.1 mg) of m-trizine was used instead of 3,3', 5,5'-tetramethylbenzidine. 0.17 g (17.5%) of G3d was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-10]
Figure JPOXMLDOC01-appb-C000211
[Example 1-10]
Figure JPOXMLDOC01-appb-C000211
 還流塔を取り付けた200mLの反応フラスコに、Pd(ОAc)22mmol(0.45g)、t-Bu3PHBF44mmol(1.16g)、t-BuONa40mmol(3.84g)、4,4’-ジアミノジフェニルアミン4mmol(797.0mg)、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール20.6mmol(10.61g)を量り入れ、フラスコ内を窒素置換した。そこへトルエン50mLを加え、110℃の浴中で終夜撹拌した。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
 反応混合物を室温まで冷やし、メンブランフィルターでろ過した。ろ液を濃縮し、得られた濃縮物をトルエン10mLで希釈して得られた溶液を用いたカラムクロマトグラフィーを行い(展開溶媒:n-ヘキサン/塩化メチレン=70/30(v/v)→55/45(v/v))、目的物のフラクションを集め、集めたフラクションを濃縮し、得られた濃縮物をトルエン10mLで希釈して得られた溶液を用いて再度同条件でカラムクロマトグラフィーを行い、目的物のフラクションを集めた。集めたフラクションを濃縮し、濃縮物をテトラヒドロフラン30mLに溶解し、得られた溶液を酢酸エチルとメタノールの混合溶媒(1/1(v/v))に滴下し、析出した固体をメンブランフィルターで回収した。得られた固体を乾燥し、アリールアミン化合物H3d 2.67g(28.2%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図36に示す。
Reaction flask fitted with a reflux column 200mL, Pd (ОAc) 2 2mmol (0.45g), t-Bu 3 PHBF 4 4mmol (1.16g), t-BuONa40mmol (3.84g), 4,4'- Weigh 4 mmol (797.0 mg) of diaminodiphenylamine and 20.6 mmol (10.61 g) of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole. The inside of the flask was replaced with nitrogen. Toluene (50 mL) was added thereto, and the mixture was stirred overnight in a bath at 110 ° C. On the way, a small amount of the solution in the flask was sampled, and the reaction was followed by liquid chromatography. As the area of peaks that can be attributed to raw materials decreased, the area of peaks that could be attributed to the target product increased. At that time, no conspicuous peak corresponding to the by-product was confirmed.
The reaction mixture was cooled to room temperature and filtered through a membrane filter. The filtrate was concentrated, and the obtained concentrate was diluted with 10 mL of toluene and column chromatography was performed using the obtained solution (developing solvent: n-hexane / methylene chloride = 70/30 (v / v) → 55/45 (v / v)), collect the fractions of interest, concentrate the collected fractions, dilute the resulting concentrate with 10 mL of toluene and use the resulting solution for column chromatography again under the same conditions. And collected the fractions of the target object. The collected fractions are concentrated, the concentrate is dissolved in 30 mL of tetrahydrofuran, the obtained solution is added dropwise to a mixed solvent of ethyl acetate and methanol (1/1 (v / v)), and the precipitated solid is recovered by a membrane filter. did. The obtained solid was dried to obtain 2.67 g (28.2%) of the arylamine compound H3d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-11]
Figure JPOXMLDOC01-appb-C000212
[Example 1-11]
Figure JPOXMLDOC01-appb-C000212
 還流塔を取り付けた30mLの反応フラスコに、Pd(ОAc)22.5mmol(0.56g)、t-Bu3PHBF45mmol(1.45g)、t-BuONa25mmol(2.40g)、3,3’-ジアミノジフェニルアミン二塩酸塩2.5mmol(80.4mg)、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール12.6mmol(6.49g)を量り入れ、フラスコ内を窒素置換した。そこへトルエン50mLを加え、110℃の浴中で終夜撹拌した。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
 反応混合物を室温まで冷却し、メンブランフィルターでろ過した。ろ液を濃縮し、得られた濃縮物をトルエン5mLで希釈して得られた溶液を用いたカラムクロマトグラフィーを行い(展開溶媒:n-ヘキサン/塩化メチレン=70/30(v/v)→55/45(v/v))、目的物のフラクションを集め、集めたフラクションを濃縮し、得られた濃縮物をトルエン5mLで希釈して得られた溶液を用いて再度同条件でカラムクロマトグラフィーを行い、目的物のフラクションを集めた。集めたフラクションを濃縮し、濃縮物をテトラヒドロフラン30mLに溶解し、得られた溶液を酢酸エチルとメタノールの混合溶媒(1/1(v/v))に滴下し、析出した固体をメンブランフィルターで回収した。得られた固体を乾燥し、アリールアミン化合物I3d 2.34g(39.5%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図37に示す。
Reaction flask fitted with a reflux column 30mL, Pd (ОAc) 2 2.5mmol (0.56g), t-Bu 3 PHBF 4 5mmol (1.45g), t-BuONa25mmol (2.40g), 3,3 '-Diaminodiphenylamine dihydrochloride 2.5 mmol (80.4 mg), 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole 12.6 mmol (6) .49 g) was weighed and the inside of the flask was replaced with nitrogen. Toluene (50 mL) was added thereto, and the mixture was stirred overnight in a bath at 110 ° C. On the way, a small amount of the solution in the flask was sampled, and the reaction was followed by liquid chromatography. As the area of peaks that can be attributed to raw materials decreased, the area of peaks that could be attributed to the target product increased. At that time, no conspicuous peak corresponding to the by-product was confirmed.
The reaction mixture was cooled to room temperature and filtered through a membrane filter. The filtrate was concentrated, and the obtained concentrate was diluted with 5 mL of toluene and column chromatography was performed using the obtained solution (developing solvent: n-hexane / methylene chloride = 70/30 (v / v) → 55/45 (v / v)), collect the fractions of interest, concentrate the collected fractions, dilute the resulting concentrate with 5 mL of toluene and use the resulting solution for column chromatography again under the same conditions. And collected the fractions of the target object. The collected fractions are concentrated, the concentrate is dissolved in 30 mL of tetrahydrofuran, the obtained solution is added dropwise to a mixed solvent of ethyl acetate and methanol (1/1 (v / v)), and the precipitated solid is recovered by a membrane filter. did. The obtained solid was dried to obtain 2.34 g (39.5%) of arylamine compound I3d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG. 37.
[実施例1-12]
Figure JPOXMLDOC01-appb-C000213
[Example 1-12]
Figure JPOXMLDOC01-appb-C000213
 50mLのフラスコに、3,3’-ジアミノジフェニルアミン二塩酸塩0.4mmоl(108.9mg)、3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(p-トリル)-9H-カルバゾール2.02mmоl(1067.5mg)、Pd(ОAc)20.4mmоl(89.8mg)、t-Bu3PHBF40.8mmоl(232.1mg)、t-BuONa4mmоl(384.4mg)を入れて窒素置換した後、トルエン8mLを加え、10分間撹拌し、次いで加熱還流条件下で終夜撹拌した。
 反応混合物を室温まで冷却した後、冷却した反応混合物から水層を除去し、得られた有機層を、メタノールと水の混合溶媒(メタノール/水=3/1(v/v))に滴下した。析出した固体をろ過で回収し、得られた固体をテトラヒドロフランに溶解させ、この溶液をn-ヘキサンに滴下した。得られた固体をろ過で回収し、減圧下で乾燥し、アリールアミン化合物I3e 210mg(21.5%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図38および39に示す。
In a 50 mL flask, 0.4 mmоl (108.9 mg) of 3,3'-diaminodiphenylamine dihydrochloride, 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9- (p) -Trill) -9H-carbazole 2.02 mmоl (1067.5 mg), Pd (ОAc) 2 0.4 mmоl (89.8 mg), t-Bu 3 PHBF 4 0.8 mmоl (232.1 mg), t-BuONa 4 mmоl (384) After adding (0.4 mg) and replacing with nitrogen, 8 mL of toluene was added, and the mixture was stirred for 10 minutes, and then stirred overnight under heating and reflux conditions.
After cooling the reaction mixture to room temperature, the aqueous layer was removed from the cooled reaction mixture, and the obtained organic layer was added dropwise to a mixed solvent of methanol and water (methanol / water = 3/1 (v / v)). .. The precipitated solid was collected by filtration, the obtained solid was dissolved in tetrahydrofuran, and this solution was added dropwise to n-hexane. The obtained solid was collected by filtration and dried under reduced pressure to obtain 210 mg (21.5%) of arylamine compound I3e. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 38 and 39.
[実施例1-13]
Figure JPOXMLDOC01-appb-C000214
[Example 1-13]
Figure JPOXMLDOC01-appb-C000214
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(p-トリル)-9H-カルバゾールの代わりに2-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(チオフェン-2-イル)-9H-カルバゾール2.02mmоl(1051.4mg)を用いた以外は、実施例1-12と同様の方法で操作を行ってアリールアミン化合物I3h 157.0mg(16.4%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図40および41に示す。 2- (7-bromo-9,9-dimethyl-9H) instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9- (p-tolyl) -9H-carbazole -Fluorene-2-yl) -9- (thiophene-2-yl) -9H-carbazole 2.02 mmоl (1051.4 mg) was used, but the same procedure as in Example 1-12 was carried out to create an aryl. Amine compound I3h 157.0 mg (16.4%) was obtained. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 40 and 41.
[実施例1-14]
Figure JPOXMLDOC01-appb-C000215
[Example 1-14]
Figure JPOXMLDOC01-appb-C000215
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(p-トリル)-9H-カルバゾール2.1mmol(1109.8mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3e 323.8mg(38.3%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図42に示す。 3- (7-Bromo-9,9-dimethyl-9H-fluorene-2) instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole -Il) -9- (p-tolyl) -9H-carbazole 2.1 mmol (1109.8 mg) was used, but the procedure was the same as in Example 1-3, and the arylamine compound A3e 323.8 mg. (38.3%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-15]
Figure JPOXMLDOC01-appb-C000216
[Example 1-15]
Figure JPOXMLDOC01-appb-C000216
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(p-メトキシフェニル)-9H-カルバゾール2.1mmol(1143.4mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3f 552.6mg(50.8%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図43に示す。 3- (7-Bromo-9,9-dimethyl-9H-fluorene-2) instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole -Il) -9- (p-methoxyphenyl) -9H-carbazole 2.1 mmol (1143.4 mg) was used, and the same procedure as in Example 1-3 was carried out to carry out the same procedure as in Example 1-3 to carry out the same procedure as for the arylamine compound A3f 552. 6 mg (50.8%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG. 43.
[実施例1-16]
Figure JPOXMLDOC01-appb-C000217
[Example 1-16]
Figure JPOXMLDOC01-appb-C000217
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(チオフェン-2-イル)-9H-カルバゾール2.1mmol(1093.0mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3g 499.9mg(48.1%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図44に示す。 3- (7-Bromo-9,9-dimethyl-9H-fluorene-2) instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole -Il) -9- (thiophene-2-yl) -9H-carbazole 2.1 mmol (1093.0 mg) was used. 9.9 mg (48.1%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-17]
Figure JPOXMLDOC01-appb-C000218
[Example 1-17]
Figure JPOXMLDOC01-appb-C000218
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに2-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-(チオフェン-2-イル)-9H-カルバゾール2.1mmol(1093.0mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3h 664.9mg(64.0%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図45および46に示す。 2- (7-Bromo-9,9-dimethyl-9H-fluorene-2) instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole The arylamine compound A3h 664 was operated in the same manner as in Example 1-3 except that 2.1 mmol (1093.0 mg) of -9H-carbazole was used. 9.9 mg (64.0%) was obtained. 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIGS. 45 and 46.
[実施例1-18]
Figure JPOXMLDOC01-appb-C000219
[Example 1-18]
Figure JPOXMLDOC01-appb-C000219
 50mLの反応フラスコに、オクタフルオロビフェニル-4,4’-ジアミン0.5mmоl(164mg)、3-(4-ブロモフェニル)-9-フェニルカルバゾール2.1mmol(836mg)、Pd(ОAc)20.2mmоl(45mg)、t-Bu3PHBF40.4mmоl(166mg)、t-BuONa4mmоl(385mg)を加えて窒素置換した後、トルエン10mLを加え、室温で5分間撹拌し、次いで100℃で6時間撹拌した。
 反応混合物を室温まで冷却した後、冷却した反応混合物をメンブランフィルターでろ過し、得られたろ液に活性炭を加えて1時間撹拌した。活性炭をろ過で取り除き、得られたろ液を濃縮し、濃縮物をシリカゲルクロマトグラフィー(展開溶媒:n-ヘキサン/ジクロロメタン=3/2(v/v))で精製し、アリールアミン化合物B3b 311.8mg(44.6%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図47に示す。
Octafluorobiphenyl-4,4'-diamine 0.5 mmоl (164 mg), 3- (4-bromophenyl) -9-phenylcarbazole 2.1 mmol (836 mg), Pd (ОAc) 20 in a 50 mL reaction flask. After adding 2 mmоl (45 mg), t-Bu 3 PHBF 4 0.4 mmоl (166 mg) and t-BuONa 4 mmоl (385 mg) for nitrogen substitution, add 10 mL of toluene, stir at room temperature for 5 minutes, and then stir at 100 ° C. for 6 hours. Stirred.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was filtered through a membrane filter, activated carbon was added to the obtained filtrate, and the mixture was stirred for 1 hour. Activated carbon was removed by filtration, the obtained filtrate was concentrated, and the concentrate was purified by silica gel chromatography (developing solvent: n-hexane / dichloromethane = 3/2 (v / v)), and the arylamine compound B3b 311.8 mg. (44.6%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG. 47.
[実施例1-19]
Figure JPOXMLDOC01-appb-C000220
[Example 1-19]
Figure JPOXMLDOC01-appb-C000220
 3-(4-ブロモフェニル)-9-フェニルカルバゾールの代わりに3-(4’-ブロモ-[1,1’-ビフェニル]-4-イル)-9-フェニル-9H-カルバゾール2.1mmol(996.2mg)を用いた以外は、実施例1-18と同様の方法で操作を行ってアリールアミン化合物B3c 391mg(41.1%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図48に示す。 3- (4'-Bromo- [1,1'-biphenyl] -4-yl) -9-phenyl-9H-carbazole 2.1 mmol (996) instead of 3- (4-bromophenyl) -9-phenylcarbazole The procedure was the same as in Example 1-18 except that .2 mg) was used to obtain 391 mg (41.1%) of arylamine compound B3c. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-20]
Figure JPOXMLDOC01-appb-C000221
[Example 1-20]
Figure JPOXMLDOC01-appb-C000221
 3-(4-ブロモフェニル)-9-フェニルカルバゾールの代わりに3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール2.1mmol(1080.4mg)を用いた以外は、実施例1-18と同様の方法で操作を行ってアリールアミン化合物B3d 535mg(51.9%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図49に示す。 Instead of 3- (4-bromophenyl) -9-phenylcarbazole, 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole 2.1 mmol (1080) The procedure was the same as in Example 1-18 except that 0.4 mg) was used to obtain 535 mg (51.9%) of arylamine compound B3d. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG.
[実施例1-21]
Figure JPOXMLDOC01-appb-C000222
[Example 1-21]
Figure JPOXMLDOC01-appb-C000222
 50mLの反応フラスコに、オクタフルオロビフェニル-4,4’-ジアミン0.5mmоl(164mg)、3-(4-ブロモフェニル)-9-フェニルカルバゾール2.1mmol(836mg)、Pd(DBA)20.1mmоl(57.5mg)、t-Bu3PHBF40.2mmоl(84mg)、t-BuONa2mmоl(193mg)を加えて窒素置換した後、トルエン10mLを加え、室温で5分間撹拌し、次いで100℃で6時間撹拌した。
 反応混合物を室温まで冷却した後、冷却した反応混合物をメンブランフィルターでろ過し、得られたろ液に活性炭を加えて1時間撹拌した。活性炭をろ過で取り除き、得られたろ液を濃縮し、濃縮物をシリカゲルクロマトグラフィー(展開溶媒:n-ヘキサン/ジクロロメタン=3/2(v/v))で精製し、アリールアミン化合物B2b 419.0mg(87.0%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重DMSO)を図50に示す。
Octafluorobiphenyl-4,4'-diamine 0.5 mmоl (164 mg), 3- (4-bromophenyl) -9-phenylcarbazole 2.1 mmol (836 mg), Pd (DBA) 20 in a 50 mL reaction flask. After adding 1 mmоl (57.5 mg), t-Bu 3 PHBF 4 0.2 mmоl (84 mg) and t-BuONa 2 mmоl (193 mg) for nitrogen substitution, add 10 mL of toluene, stir at room temperature for 5 minutes, and then at 100 ° C. The mixture was stirred for 6 hours.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was filtered through a membrane filter, activated carbon was added to the obtained filtrate, and the mixture was stirred for 1 hour. Activated carbon was removed by filtration, the obtained filtrate was concentrated, and the concentrate was purified by silica gel chromatography (developing solvent: n-hexane / dichloromethane = 3/2 (v / v)), and the arylamine compound B2b 419.0 mg. (87.0%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy DMSO) of the obtained compound is shown in FIG.
[実施例1-22]
Figure JPOXMLDOC01-appb-C000223
[Example 1-22]
Figure JPOXMLDOC01-appb-C000223
 3-(4-ブロモフェニル)-9-フェニルカルバゾールの代わりに3-(4’-ブロモ-[1,1’-ビフェニル]-4-イル)-9-フェニル-9H-カルバゾール2.1mmol(996.2mg)を用いた以外は、実施例1-21と同様の方法で操作を行ってアリールアミン化合物B2c 72.9mg(13.1%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重DMSO)を図51に示す。 3- (4'-Bromo- [1,1'-biphenyl] -4-yl) -9-phenyl-9H-carbazole 2.1 mmol (996) instead of 3- (4-bromophenyl) -9-phenylcarbazole The procedure was the same as in Example 1-21 except that .2 mg) was used to obtain 72.9 mg (13.1%) of arylamine compound B2c. The 1 H-NMR spectrum (measurement solvent: heavy DMSO) of the obtained compound is shown in FIG.
[実施例1-23]
Figure JPOXMLDOC01-appb-C000224
[Example 1-23]
Figure JPOXMLDOC01-appb-C000224
 3-(4-ブロモフェニル)-9-フェニルカルバゾールの代わりに3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール2.1mmol(1080.4mg)を用いた以外は、実施例1-21と同様の方法で操作を行ってアリールアミン化合物B2d 114.0mg(19.1%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重DMSO)を図52に示す。 Instead of 3- (4-bromophenyl) -9-phenylcarbazole, 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole 2.1 mmol (1080) The operation was carried out in the same manner as in Example 1-21 except that 0.4 mg) was used to obtain 114.0 mg (19.1%) of the arylamine compound B2d. The 1 H-NMR spectrum (measurement solvent: heavy DMSO) of the obtained compound is shown in FIG.
[比較例1-1]
Figure JPOXMLDOC01-appb-C000225
[Comparative Example 1-1]
Figure JPOXMLDOC01-appb-C000225
 3-(7-ブロモ-9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾールの代わりに、3-ブロモ-N-フェニルカルバゾール2.1mmol(676.6mg)を用いた以外は、実施例1-3と同様の方法で操作を行ってアリールアミン化合物A3a 0.45g(70.0%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重DMSO)を図53に示す。 Instead of 3- (7-bromo-9,9-dimethyl-9H-fluorene-2-yl) -9-phenyl-9H-carbazole, use 2.1 mmol (676.6 mg) of 3-bromo-N-phenylcarbazole. Arylamine compound A3a 0.45 g (70.0%) was obtained by the same procedure as in Example 1-3 except that it was used. The 1 H-NMR spectrum (measurement solvent: heavy DMSO) of the obtained compound is shown in FIG. 53.
[比較例1-2]
Figure JPOXMLDOC01-appb-C000226
[Comparative Example 1-2]
Figure JPOXMLDOC01-appb-C000226
 3-(4-ブロモフェニル)-9-フェニルカルバゾールの代わりに3-ブロモ-N-フェニルカルバゾール2.1mmol(677mg)を用いた以外は、実施例1-18と同様の方法で操作を行ってアリールアミン化合物B3a 236.2mg(36.6%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重THF)を図54に示す。 The procedure was the same as in Example 1-18, except that 2.1 mmol (677 mg) of 3-bromo-N-phenylcarbazole was used instead of 3- (4-bromophenyl) -9-phenylcarbazole. Arylamine compound B3a 236.2 mg (36.6%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy THF) of the obtained compound is shown in FIG. 54.
[比較例1-3]
Figure JPOXMLDOC01-appb-C000227
[Comparative Example 1-3]
Figure JPOXMLDOC01-appb-C000227
 3-(4-ブロモフェニル)-9-フェニルカルバゾールの代わりに3-ブロモ-9-フェニルカルバゾール2.1mmol(677mg)を用いた以外は、実施例1-21と同様の方法で操作を行ってアリールアミン化合物B2a 272.3mg(67.2%)を得た。得られた化合物の1H-NMRスペクトル(測定溶媒:重DMSO)を図55に示す。 The procedure was the same as in Example 1-21, except that 2.1 mmol (677 mg) of 3-bromo-9-phenylcarbazole was used instead of 3- (4-bromophenyl) -9-phenylcarbazole. Arylamine compound B2a 272.3 mg (67.2%) was obtained. The 1 H-NMR spectrum (measurement solvent: heavy DMSO) of the obtained compound is shown in FIG. 55.
[2]正孔注入層用ワニスの調製
[比較例2-1]
 クロロホルム(10g)に、アリールアミン化合物A3a(0.025g)と下記式で表されるアリールスルホン酸エステルA(0.025g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3a-1を得た。
[2] Preparation of varnish for hole injection layer [Comparative Example 2-1]
A solution obtained by adding an arylamine compound A3a (0.025 g) and an aryl sulfonic acid ester A (0.025 g) represented by the following formula to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared. A charge-transporting varnish A3a-1 was obtained by filtering with a syringe filter having a pore size of 0.2 μm.
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000228
[実施例2-1]
 クロロホルム(10g)に、アリールアミン化合物A3b(0.028g)と、アリールスルホン酸エステルA(0.022g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3b-1を得た。
[Example 2-1]
A solution obtained by adding arylamine compound A3b (0.028 g) and aryl sulfonic acid ester A (0.022 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared having a pore size of 0.2 μm. The mixture was filtered through a syringe filter to obtain a charge-transporting varnish A3b-1.
[実施例2-2]
 クロロホルム(10g)に、アリールアミン化合物A3c(0.030g)とアリールスルホン酸エステルA(0.020g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3c-1を得た。
[Example 2-2]
The solution obtained by adding arylamine compound A3c (0.030 g) and aryl sulfonic acid ester A (0.020 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish A3c-1.
[実施例2-3]
 クロロホルム(10g)に、アリールアミン化合物A3d(0.031g)とアリールスルホン酸エステルA(0.019g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3d-1を得た。
[Example 2-3]
The solution obtained by adding arylamine compound A3d (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish A3d-1.
[実施例2-4]
 クロロホルム(10g)に、アリールアミン化合物A3e(0.031g)とアリールスルホン酸エステルA(0.019g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3e-1を得た。
[Example 2-4]
The solution obtained by adding arylamine compound A3e (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish A3e-1.
[実施例2-5]
 クロロホルム(10g)に、アリールアミン化合物A3f(0.032g)とアリールスルホン酸エステルA(0.018g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3f-1を得た。
[Example 2-5]
The solution obtained by adding arylamine compound A3f (0.032 g) and aryl sulfonic acid ester A (0.018 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. The mixture was filtered through a filter to obtain a charge-transporting varnish A3f-1.
[実施例2-6]
 クロロホルム(10g)に、アリールアミン化合物A3g(0.031g)とアリールスルホン酸エステルA(0.019g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3g-1を得た。
[Example 2-6]
The solution obtained by adding 3 g (0.031 g) of the arylamine compound A (0.031 g) and the aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish A3g-1.
[実施例2-7]
 クロロホルム(10g)に、アリールアミン化合物A3h(0.031g)とアリールスルホン酸エステルA(0.019g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3h-1を得た。
[Example 2-7]
The solution obtained by adding arylamine compound A3h (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. The mixture was filtered through a filter to obtain a charge-transporting varnish A3h-1.
[比較例2-2]
 クロロホルム(10g)に、アリールアミン化合物B3a(0.026g)とアリールスルホン酸エステルA(0.024g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB3a-1を得た。
[Comparative Example 2-2]
The solution obtained by adding arylamine compound B3a (0.026 g) and aryl sulfonic acid ester A (0.024 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B3a-1.
[実施例2-8]
 クロロホルム(10g)に、アリールアミン化合物B3b(0.029g)とアリールスルホン酸エステルA(0.021g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB3b-1を得た。
[Example 2-8]
The solution obtained by adding arylamine compound B3b (0.029 g) and aryl sulfonic acid ester A (0.021 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B3b-1.
[実施例2-9]
 クロロホルム(10g)に、アリールアミン化合物B3c(0.030g)とアリールスルホン酸エステルA(0.020g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB3c-1を得た。
[Example 2-9]
The solution obtained by adding arylamine compound B3c (0.030 g) and aryl sulfonic acid ester A (0.020 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B3c-1.
[実施例2-10]
 クロロホルム(10g)に、アリールアミン化合物B3d(0.031g)とアリールスルホン酸エステルA(0.019g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB3d-1を得た。
[Example 2-10]
The solution obtained by adding arylamine compound B3d (0.031 g) and aryl sulfonic acid ester A (0.019 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B3d-1.
[比較例2-3]
 クロロホルム(10g)に、アリールアミン化合物B2a(0.020g)とアリールスルホン酸エステルA(0.030g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB2a-1を得た。
[Comparative Example 2-3]
The solution obtained by adding arylamine compound B2a (0.020 g) and aryl sulfonic acid ester A (0.030 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B2a-1.
[実施例2-11]
 クロロホルム(10g)に、アリールアミン化合物B2b(0.022g)とアリールスルホン酸エステルA(0.028g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB2b-1を得た。
[Example 2-11]
The solution obtained by adding arylamine compound B2b (0.022 g) and aryl sulfonic acid ester A (0.028 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B2b-1.
[実施例2-12]
 クロロホルム(10g)に、アリールアミン化合物B2c(0.024g)とアリールスルホン酸エステルA(0.026g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB2c-1を得た。
[Example 2-12]
The solution obtained by adding arylamine compound B2c (0.024 g) and aryl sulfonic acid ester A (0.026 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B2c-1.
[実施例2-13]
 クロロホルム(10g)に、アリールアミン化合物B2d(0.025g)とアリールスルホン酸エステルA(0.025g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスB2d-1を得た。
[Example 2-13]
The solution obtained by adding arylamine compound B2d (0.025 g) and aryl sulfonic acid ester A (0.025 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish B2d-1.
[実施例2-14]
 クロロホルム(10g)に、アリールアミン化合物H3d(0.033g)とアリールスルホン酸エステルA(0.017g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスH3d-1を得た。
[Example 2-14]
The solution obtained by adding arylamine compound H3d (0.033 g) and aryl sulfonic acid ester A (0.017 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish H3d-1.
[実施例2-15]
 クロロホルム(10g)に、アリールアミン化合物I3d(0.033g)とアリールスルホン酸エステルA(0.017g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスI3d-1を得た。
[Example 2-15]
The solution obtained by adding arylamine compound I3d (0.033 g) and aryl sulfonic acid ester A (0.017 g) to chloroform (10 g) and stirring at room temperature to dissolve the solution was prepared with a syringe having a pore size of 0.2 μm. Filtering with a filter gave a charge-transporting varnish I3d-1.
[3]正孔輸送層用ワニスの調製
[比較例3-1]
 クロロホルム(10g)に、アリールアミン化合物A3a(0.040g)を加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターで濾過して電荷輸送性ワニスA3a-2を得た。
[3] Preparation of varnish for hole transport layer [Comparative Example 3-1]
The solution obtained by adding arylamine compound A3a (0.040 g) to chloroform (10 g) and stirring at room temperature to dissolve it is filtered through a syringe filter having a pore size of 0.2 μm to carry charge-transporting varnish A3a-2. Got
[実施例3-1~3-11]
 アリールアミン化合物A3aの代わりに、アリールアミン化合物A3b,A3c,A3d,A3e,A3f,A3g,A3h,B3d,B2d,H3d,またはI3dをそれぞれ用いた以外は、比較例3-1と同様の方法で電荷輸送性ワニスA3b-2,A3c-2,A3d-2,A3e-2,A3f-2,A3g-2,A3h-2,B3d-2,B2d-2,H3d-2,またはI3d-2を得た。
[Examples 3-1 to 3-11]
In the same manner as in Comparative Example 3-1 except that the arylamine compounds A3b, A3c, A3d, A3e, A3f, A3g, A3h, B3d, B2d, H3d, or I3d were used instead of the arylamine compound A3a. Obtains charge-transporting varnishes A3b-2, A3c-2, A3d-2, A3e-2, A3f-2, A3g-2, A3h-2, B3d-2, B2d-2, H3d-2, or I3d-2. It was.
[4]薄膜の製造および膜物性評価
[比較例4-1、実施例4-1~4-3]
 電荷輸送性ワニスA3a-1,A3b-1,A3c-1,およびA3d-1を、それぞれスピンコーターを用いて石英基板に塗布した後、大気焼成下、120℃で1分間乾燥した。次に、乾燥させた石英基板を大気雰囲気下、200℃で15分間焼成し、石英基板上に50nmの均一な薄膜を形成した。
 得られた膜付き石英基板を用いて、波長400~800nmにおける可視域平均屈折率(n)および可視域平均消衰係数(k)の測定を行った。結果を表23に示す。
[4] Production of thin film and evaluation of film physical properties [Comparative Example 4-1 and Examples 4-1 to 4-3]
The charge-transporting varnishes A3a-1, A3b-1, A3c-1, and A3d-1 were each applied to a quartz substrate using a spin coater, and then dried at 120 ° C. for 1 minute under atmospheric firing. Next, the dried quartz substrate was calcined at 200 ° C. for 15 minutes in an air atmosphere to form a uniform thin film of 50 nm on the quartz substrate.
Using the obtained quartz substrate with a film, the visible region average refractive index (n) and the visible region average extinction coefficient (k) at a wavelength of 400 to 800 nm were measured. The results are shown in Table 23.
Figure JPOXMLDOC01-appb-T000229
Figure JPOXMLDOC01-appb-T000229
 表23に示されるように、本発明の電荷輸送性ワニスから得られた薄膜は、比較例4-1の電荷輸送性ワニスから得られた薄膜に比べて同等または高い屈折率を有し、同等または低い消衰係数を有することがわかる。 As shown in Table 23, the thin film obtained from the charge-transporting varnish of the present invention has the same or higher refractive index than the thin film obtained from the charge-transporting varnish of Comparative Example 4-1 and is equivalent. Or it can be seen that it has a low extinction coefficient.
[5]ホールオンリー素子(HOD)の作製および特性評価
[比較例5-1]
 ITO基板として、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。続いて、後述の方法で得た正孔注入層形成用組成物をスピンコートにより塗布し、大気中、ホットプレート上で80℃に加熱して1分間乾燥後、さらに230℃で15分間焼成し、正孔注入層(膜厚:30nm)を形成した。
 次に、電荷輸送性ワニスA3a-2を、スピンコーターを用いて正孔注入層上に塗布した後、大気雰囲気下、130℃で10分間焼成し、正孔輸送層(膜厚:40nm)を形成した。
 この上に、蒸着装置(真空度1.0×10-5Pa)を用いて0.2nm/秒にて80nmのアルミニウム薄膜を形成してホールオンリー素子(HOD)を得た。
 なお、正孔注入層形成用組成物は、次の手順で調製した。国際公開第2013/084664号記載の方法に従って合成した式(3)で表されるアニリン誘導体0.137gと、国際公開第2006/025342号記載の方法に従って合成した式(4)で表されるアリールスルホン酸0.271gとを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン6.7gに溶解させた。得られた溶液に、シクロヘキサノール10g、プロピレングリコール3.3gを順次加えて撹拌し、正孔注入層形成用組成物を得た(以下同様)。
[5] Fabrication and characterization of hole-only devices (HOD) [Comparative Example 5-1]
As the ITO substrate, a 25 mm × 25 mm × 0.7 t glass substrate in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and before use, an O 2 plasma cleaning device (150 W, 30 seconds) is used. Impurities on the surface were removed. Subsequently, the composition for forming a hole injection layer obtained by the method described later is applied by spin coating, heated to 80 ° C. on a hot plate in the air, dried for 1 minute, and then fired at 230 ° C. for 15 minutes. , A hole injection layer (film thickness: 30 nm) was formed.
Next, the charge-transporting varnish A3a-2 was applied onto the hole injection layer using a spin coater, and then fired at 130 ° C. for 10 minutes in an air atmosphere to form a hole transport layer (film thickness: 40 nm). Formed.
A hole-only element (HOD) was obtained by forming an aluminum thin film of 80 nm at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa).
The composition for forming a hole injection layer was prepared by the following procedure. 0.137 g of the aniline derivative represented by the formula (3) synthesized according to the method described in WO2013 / 084664 and the aryl represented by the formula (4) synthesized according to the method described in WO 2006/025432. 0.271 g of sulfonic acid was dissolved in 6.7 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. To the obtained solution, 10 g of cyclohexanol and 3.3 g of propylene glycol were sequentially added and stirred to obtain a composition for forming a hole injection layer (the same applies hereinafter).
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000230
[実施例5-1~5-11]
 電荷輸送性ワニスA3a-2の代わりに、電荷輸送性ワニスA3b-2,A3c-2,A3d-2,A3e-2,A3f-2,A3g-2,A3h-2,B3d-2,B2d-2,H3d-2,またはI3d-2をそれぞれ用いた以外は、実施例5-1と同様の方法でHODを作製した。
[Examples 5-1 to 5-11]
Instead of the charge-transporting varnish A3a-2, the charge-transporting varnish A3b-2, A3c-2, A3d-2, A3e-2, A3f-2, A3g-2, A3h-2, B3d-2, B2d-2 , H3d-2, or I3d-2 were used, respectively, and HOD was prepared in the same manner as in Example 5-1.
 上記実施例および比較例で作製した各HODについて、駆動電圧4Vにおける電流密度を測定した。結果を表24に示す。 The current density at a drive voltage of 4 V was measured for each HOD produced in the above Examples and Comparative Examples. The results are shown in Table 24.
Figure JPOXMLDOC01-appb-T000231
Figure JPOXMLDOC01-appb-T000231
 表24に示されるように、本発明の電荷輸送性ワニスから作製した薄膜は、比較例の電荷輸送性ワニスから作製した薄膜よりも良好な電荷輸送性を示すことがわかる。この電荷輸送性の向上は、本発明のアリールアミン化合物における導電部位の有効共役長の増加に伴うものと考えられる。 As shown in Table 24, it can be seen that the thin film prepared from the charge transporting varnish of the present invention exhibits better charge transporting property than the thin film prepared from the charge transporting varnish of the comparative example. This improvement in charge transportability is considered to be associated with an increase in the effective conjugation length of the conductive site in the arylamine compound of the present invention.
[6]単層素子(SLD)およびHODの作製およびSLDの電流密度に対するHODの電流密度の相対強度の評価
[比較例6-1]
 ITO基板として、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
 電荷輸送性ワニスA3a-1を、ITO基板上にスピンコートにより塗布し、大気下、120℃で1分間乾燥後、200℃で15分間焼成し、ITO基板上に正孔注入層(膜厚:50nm)を形成した。
 この上に、蒸着装置(真空度1.0×10-5Pa)を用いて0.2nm/秒にて80nmのアルミニウム薄膜を形成して単層素子(SLD)を得た。
[6] Fabrication of single-layer device (SLD) and HOD and evaluation of relative strength of HOD current density with respect to SLD current density [Comparative Example 6-1]
As the ITO substrate, a 25 mm × 25 mm × 0.7 t glass substrate in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and before use, an O 2 plasma cleaning device (150 W, 30 seconds) is used. Impurities on the surface were removed.
Charge-transporting varnish A3a-1 is applied onto an ITO substrate by spin coating, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes, and a hole injection layer (film thickness:: 50 nm) was formed.
On this, an aluminum thin film of 80 nm was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa) to obtain a single-layer device (SLD).
[実施例6-1~6-12、比較例6-2]
 電荷輸送性ワニスA3a-1の代わりに、電荷輸送性ワニスA3b-1,A3c-1,A3d-1,A3e-1,A3f-1,A3g-1,A3h-1,B3b-1,B3d-1,B2d-1,H3d-1,I3d-1,またはB3a-1をそれぞれ用いた以外は、比較例6-1と同様の方法でSLDを作製した。
[Examples 6-1 to 6-12, Comparative Example 6-2]
Instead of the charge-transporting varnish A3a-1, the charge-transporting varnish A3b-1, A3c-1, A3d-1, A3e-1, A3f-1, A3g-1, A3h-1, B3b-1, B3d-1 , B2d-1, H3d-1, I3d-1, or B3a-1 were used, but SLD was prepared in the same manner as in Comparative Example 6-1.
[比較例7-1]
 電荷輸送性ワニスA3a-1を、スピンコーターを用いてITO基板に塗布した後、大気下で、120℃で1分間乾燥し、次いで200℃で15分間焼成し、ITO基板上に50nmの薄膜を形成した。なお、ITO基板として、比較例6-1と同様のITO基板を用いた。
 その上に、蒸着装置(真空度2.0×10-5Pa)を用いてα-NPDおよびアルミニウムの薄膜を順次積層し、HODを得た。蒸着は、蒸着レート0.2nm/秒の条件で行った。α-NPDおよびアルミニウムの薄膜の膜厚は、それぞれ30nmおよび80nmとした。
[Comparative Example 7-1]
The charge-transporting varnish A3a-1 is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a 50 nm thin film on the ITO substrate. Formed. As the ITO substrate, the same ITO substrate as in Comparative Example 6-1 was used.
A thin film of α-NPD and aluminum was sequentially laminated on it using a thin film deposition apparatus (vacuum degree 2.0 × 10 -5 Pa) to obtain HOD. The vapor deposition was carried out under the condition of a vapor deposition rate of 0.2 nm / sec. The film thicknesses of the α-NPD and aluminum thin films were 30 nm and 80 nm, respectively.
[実施例7-1~7-12、比較例7-2]
 電荷輸送性ワニスA3a-1の代わりに、それぞれ電荷輸送性ワニスA3b-1,A3c-1,A3d-1,A3e-1,A3f-1,A3g-1,A3h-1,B3b-1,B3d-1,B2d-1,H3d-1,I3d-1,またはB3a-1を用いた以外は、比較例7-1と同様の方法でHODを作製した。
[Examples 7-1 to 7-12, Comparative Example 7-2]
Instead of the charge-transporting varnish A3a-1, the charge-transporting varnishes A3b-1, A3c-1, A3d-1, A3e-1, A3f-1, A3g-1, A3h-1, B3b-1, B3d-, respectively. HOD was prepared in the same manner as in Comparative Example 7-1 except that 1, B2d-1, H3d-1, I3d-1, or B3a-1 was used.
 実施例6-1~6-12および比較例6-1~6-2で作製したSLD、並びに実施例7-1~7-12および比較例7-1~7-2で作製したHODを電圧4Vで駆動した場合の電流密度を測定した。結果を表25に示す。また、これらの測定値を用いて算出した、SLDの電流密度に対するHODの電流密度の相対強度も併せて示す。なお、この相対強度が高いことは、効率良く正孔輸送層への正孔供給が実現されていることを示している。 Voltages of SLDs prepared in Examples 6-1 to 6-12 and Comparative Examples 6-1 to 6-2, and HODs prepared in Examples 7-1 to 7-12 and Comparative Examples 7-1 to 7-2. The current density when driven at 4 V was measured. The results are shown in Table 25. In addition, the relative intensity of the HOD current density with respect to the SLD current density calculated using these measured values is also shown. The high relative strength indicates that the hole supply to the hole transport layer is efficiently realized.
Figure JPOXMLDOC01-appb-T000232
Figure JPOXMLDOC01-appb-T000232
 表25に示されるように、本発明の電荷輸送性ワニスから作製した正孔注入層を用いた素子は、比較例で作製した素子と比べて、SLD電流密度に対するHOD電流密度の相対強度が高いことがわかった。 As shown in Table 25, the device using the hole injection layer made from the charge-transporting varnish of the present invention has a higher relative strength of the HOD current density with respect to the SLD current density than the device made in the comparative example. I understand.
[7]有機EL素子の作製および特性評価
[比較例8-1]
 電荷輸送性ワニスA3a-1を、スピンコーターを用いてITO基板に塗布した後、大気下で、120℃で1分間乾燥し、次いで200℃で15分間焼成し、ITO基板上に50nmの薄膜を形成した。なお、ITO基板として、比較例6-1と同様のITO基板を用いた。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPDを0.2nm/秒にて30nm成膜した。次に、関東化学(株)製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学(株)製の発光層ホスト材料NS60と発光層ドーパント材料Ir(ppy)3を共蒸着した。共蒸着は、Ir(ppy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウムおよびアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nmおよび80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[7] Fabrication and characterization of organic EL devices [Comparative Example 8-1]
The charge-transporting varnish A3a-1 is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a 50 nm thin film on the ITO substrate. Formed. As the ITO substrate, the same ITO substrate as in Comparative Example 6-1 was used.
Next, on the ITO substrate on which the thin film was formed, α-NPD was deposited at 0.2 nm / sec at 30 nm using a thin film deposition apparatus (vacuum degree 1.0 × 10 -5 Pa). Next, a 10 nm film was formed on the electronic block material HTEB-01 manufactured by Kanto Chemical Co., Inc. Next, the light emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and the light emitting layer dopant material Ir (ppy) 3 were co-deposited. For co-evaporation, the vapor deposition rate was controlled so that the concentration of Ir (ppy) 3 was 6%, and 40 nm was laminated. Next, thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL device. At this time, the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, respectively, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
In order to prevent the deterioration of the characteristics due to the influence of oxygen, water, etc. in the air, the organic EL element was sealed with a sealing substrate and then the characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, an organic EL element is placed between the sealing substrates, and the sealing substrate is an adhesive (Matsumura Oil Research Corp., Moresco Moisture Cut WB90US (P)). It was pasted together. At this time, a water catching agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the organic EL element. The bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ) and then annealed at 80 ° C. for 1 hour to cure the adhesive.
[実施例8-1~8-12]
 電荷輸送性ワニスA3a-1の代わりに、それぞれ電荷輸送性ワニスA3b-1,A3c-1,A3d-1,A3e-1,A3f-1,A3g-1,A3h-1,B3b-1,B3d-1,B2d-1,H3d-1,またはI3d-1を用いた以外は、比較例8-1と同様の方法で有機EL素子を作製した。
[Examples 8-1 to 8-12]
Instead of the charge-transporting varnish A3a-1, the charge-transporting varnishes A3b-1, A3c-1, A3d-1, A3e-1, A3f-1, A3g-1, A3h-1, B3b-1, B3d-, respectively. An organic EL device was produced in the same manner as in Comparative Example 8-1 except that 1, B2d-1, H3d-1, or I3d-1 was used.
 得られた有機EL素子を輝度5,000cd/m2で発光させた場合の駆動電圧、電流密度、電流効率、発光効率、外部発光量子収率(EQE)およびLT90(初期輝度5,000cd/m2の10%減少に要する時間)を測定した。結果を表26に示す。 Drive voltage, current density, current efficiency, luminous efficiency, external emission quantum yield (EQE) and LT90 (initial brightness 5,000 cd / m) when the obtained organic EL element is made to emit light at a brightness of 5,000 cd / m 2. The time required for a 10% reduction in 2 ) was measured. The results are shown in Table 26.
Figure JPOXMLDOC01-appb-T000233
Figure JPOXMLDOC01-appb-T000233
 表26に示されるように、比較例8-1の有機EL素子と比べて、本発明の有機EL素子はいずれも同程度またはそれ以下の駆動電圧を示し、かつ同等またはそれ以上の半減期を有していた。 As shown in Table 26, as compared with the organic EL element of Comparative Example 8-1, all the organic EL elements of the present invention show the same or less drive voltage and have the same or more half-life. Had had.

Claims (12)

  1.  下記式(1)~(6)のいずれかで表されることを特徴とするアリールアミン化合物(ただし、下記式(P1)~(P4)で表される化合物を除く。)。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Arcは、それぞれ独立して、式(Q)で表される基を表し、
     Xは、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基を表し、
     Yは、それぞれ独立して、置換されていてもよいフェニレン基を表し、
     gは、それぞれ独立して、1~10の整数を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、R2は、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリール基を表し、Arsは、それぞれ独立して、置換されていてもよいとともに、ヘテロ原子を含んでいてもよいアリーレン基を表す。)]
    Figure JPOXMLDOC01-appb-C000003
    Arylamine compounds represented by any of the following formulas (1) to (6) (however, compounds represented by the following formulas (P1) to (P4) are excluded).
    Figure JPOXMLDOC01-appb-C000001
    Wherein, Ar c each independently represent a group represented by the formula (Q),
    X represents an arylene group which may be independently substituted and may contain a heteroatom.
    Y represents a phenylene group which may be substituted independently of each other.
    g represents an integer of 1 to 10 independently of each other.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. alkoxy group or an aryl group having a carbon number of 6 ~ 20, R 2, each independently, together with optionally substituted, represents an aryl group which may contain a hetero atom, Ar s is Represents an arylene group that may be substituted independently and may contain a heteroatom.)]
    Figure JPOXMLDOC01-appb-C000003
  2.  前記Arsが、下記式(101)~(118)のいずれかで表される請求項1記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式中、R3は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、V1は、それぞれ独立して、C(R42(R4は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)、NR5(R5は、水素原子、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表す。)、S、O、またはSO2を表し、V2は、NR5(R5は、前記と同じ意味を表す。)、SまたはOを表す。)
    Wherein Ar s is an arylamine compound of claim 1, wherein represented by any one of the following formulas (101) to (118).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 3 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents an alkoxy group or an aryl group having 6 to 20 carbon atoms, where V 1 is an independent C (R 4 ) 2 (R 4 is an independent hydrogen atom and has 1 to 20 carbon atoms. It represents an alkyl group or an alkyl halide group having 1 to 20 carbon atoms), NR 5 (R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. ), S, O, or SO 2 , V 2 stands for NR 5 (R 5 stands for the same meaning as above), S or O)
  3.  前記Arsが、下記式(101A)~(118A)のいずれかで表される請求項1記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    (式中、R3、V1およびV2は、前記と同じ意味を表す。)
    Wherein Ar s is represented by the following formula (101A) ~ arylamine compound of claim 1, wherein represented by any one of (118A).
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    (In the equation, R 3 , V 1 and V 2 have the same meanings as described above.)
  4.  前記Arsが、下記式(101A-1)~(118A-3)のいずれかで表される請求項3記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
    Figure JPOXMLDOC01-appb-C000036
    (式中、R4およびR5は、前記と同じ意味を表す。)
    Wherein Ar s is represented by the following formula (101A-1) ~ (118A -3) arylamine compound of claim 3, wherein represented by any one of the.
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
    Figure JPOXMLDOC01-appb-C000036
    (In the formula, R 4 and R 5 have the same meanings as described above.)
  5.  前記Xが、下記式(201)~(207)のいずれかで表される請求項1~4のいずれか1項記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000037
    (式中、R6は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表し、W1は、それぞれ独立して、単結合、C(R72(R7は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、または炭素数1~20のハロゲン化アルキル基を表す。)、S、O、またはSO2を表し、W2は、C(R72(R7は、それぞれ独立して前記と同じ意味を表す。)、NR8(R8は、水素原子、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表す。)、S、O、またはSO2を表し、W3は、NR8(R8は、前記と同じ意味を表す。)、SまたはOを表す。)
    The arylamine compound according to any one of claims 1 to 4, wherein X is represented by any of the following formulas (201) to (207).
    Figure JPOXMLDOC01-appb-C000037
    (In the formula, R 6 is independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents an alkoxy group or an aryl group having 6 to 20 carbon atoms, W 1 is an independent single bond, and C (R 7 ) 2 (R 7 is an independent hydrogen atom and 1 carbon atom. Represents an alkyl group of ~ 20 or an alkyl halide group having 1 to 20 carbon atoms), S, O, or SO 2 , where W 2 is C (R 7 ) 2 (R 7 is independent of each other). (Same as above), NR 8 (R 8 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms), S, O, or SO 2. W 3 stands for NR 8 (R 8 stands for the same meaning as above), S or O.)
  6.  前記Xが、下記式(201A)~(207A)のいずれかで表される請求項5記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000038
    (式中、R6、W1、W2およびW3は、前記と同じ意味を表す。)
    The arylamine compound according to claim 5, wherein X is represented by any of the following formulas (201A) to (207A).
    Figure JPOXMLDOC01-appb-C000038
    (In the formula, R 6 , W 1 , W 2 and W 3 have the same meanings as described above.)
  7.  前記Xが、下記式(201A-1)~(207A-1)のいずれかで表される請求項6記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000039
    Figure JPOXMLDOC01-appb-C000040
    Figure JPOXMLDOC01-appb-C000041
    (式中、R7、R8およびW3は、前記と同じ意味を表す。)
    The arylamine compound according to claim 6, wherein X is represented by any of the following formulas (201A-1) to (207A-1).
    Figure JPOXMLDOC01-appb-C000039
    Figure JPOXMLDOC01-appb-C000040
    Figure JPOXMLDOC01-appb-C000041
    (In the formula, R 7 , R 8 and W 3 have the same meanings as described above.)
  8.  前記Arcが、同一の基である請求項1~7のいずれか1項記載のアリールアミン化合物。 Wherein Ar c is an arylamine compound as claimed in any one of claims 1 to 7 of the same group.
  9.  請求項1~8のいずれか1項記載のアリールアミン化合物と、有機溶媒とを含む電荷輸送性ワニス。 A charge-transporting varnish containing the arylamine compound according to any one of claims 1 to 8 and an organic solvent.
  10.  ドーパント物質を含む請求項9記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 9, which contains a dopant substance.
  11.  請求項9または10の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。 A charge-transporting thin film produced by using the charge-transporting varnish of claim 9 or 10.
  12.  請求項11記載の電荷輸送性薄膜を備える電子素子。 An electronic device including the charge transporting thin film according to claim 11.
PCT/JP2020/021058 2019-05-31 2020-05-28 Arylamine compound and use thereof WO2020241730A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217041963A KR20220016122A (en) 2019-05-31 2020-05-28 Arylamine compounds and their use
JP2021522843A JPWO2020241730A1 (en) 2019-05-31 2020-05-28
CN202080039976.3A CN113874352A (en) 2019-05-31 2020-05-28 Arylamine compound and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019102431 2019-05-31
JP2019-102431 2019-05-31
JP2019-198793 2019-10-31
JP2019198793 2019-10-31

Publications (1)

Publication Number Publication Date
WO2020241730A1 true WO2020241730A1 (en) 2020-12-03

Family

ID=73552365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021058 WO2020241730A1 (en) 2019-05-31 2020-05-28 Arylamine compound and use thereof

Country Status (5)

Country Link
JP (1) JPWO2020241730A1 (en)
KR (1) KR20220016122A (en)
CN (1) CN113874352A (en)
TW (1) TW202108738A (en)
WO (1) WO2020241730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038495A1 (en) * 2021-09-13 2023-03-16 주식회사 엘지화학 Compound, coating composition comprising same, organic light-emitting device using same, and manufacturing method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102112A1 (en) * 2010-02-16 2011-08-25 出光興産株式会社 Aromatic amine derivative, organic device material and hole-injection/transport material and organic electroluminescent element material each comprising the derivative, and organic electroluminescent element
WO2013014908A1 (en) * 2011-07-26 2013-01-31 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element containing same
WO2015050253A1 (en) * 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
CN104629727A (en) * 2013-11-11 2015-05-20 吉林奥来德光电材料股份有限公司 Amine organic compound and applications of the same in electroluminescent devices
WO2015137384A1 (en) * 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof
WO2015137395A1 (en) * 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof
CN107216341A (en) * 2017-07-13 2017-09-29 长春海谱润斯科技有限公司 A kind of luminous organic material and its organic luminescent device
KR20180082360A (en) * 2017-01-10 2018-07-18 주식회사 엘지화학 Compound and organic light emitting device comprising the same
CN108558739A (en) * 2018-04-30 2018-09-21 华南理工大学 Small molecule material and preparation method thereof of the one kind based on the high two-photon absorption of naphtho- indenes fluorenes
WO2019063886A1 (en) * 2016-09-27 2019-04-04 Degbia Martial NOVEL π-CONJUGATED MATERIALS, METHODS FOR PREPARING SAME AND USES THEREOF AS SEMICONDUCTORS
WO2020027258A1 (en) * 2018-08-03 2020-02-06 日産化学株式会社 Production method for fluorinated aromatic secondary amine compound
WO2020027261A1 (en) * 2018-08-03 2020-02-06 日産化学株式会社 Aniline derivative
WO2020090989A1 (en) * 2018-10-31 2020-05-07 日産化学株式会社 Production method for fluorinated aromatic secondary or tertiary amine compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021567A1 (en) 2004-05-03 2005-12-08 Covion Organic Semiconductors Gmbh Electronic devices containing organic semiconductors
CN104821375B (en) 2007-04-12 2018-03-02 日产化学工业株式会社 Oligoaniline compound
US9444052B2 (en) 2011-09-21 2016-09-13 Nissan Chemical Industries, Ltd. Charge-transporting varnish
JP6475251B2 (en) 2013-12-31 2019-02-27 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. Organic light-emitting display device and top emission type OLED device with improved viewing angle characteristics
WO2017217457A1 (en) 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102112A1 (en) * 2010-02-16 2011-08-25 出光興産株式会社 Aromatic amine derivative, organic device material and hole-injection/transport material and organic electroluminescent element material each comprising the derivative, and organic electroluminescent element
WO2013014908A1 (en) * 2011-07-26 2013-01-31 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element containing same
WO2015050253A1 (en) * 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
CN104629727A (en) * 2013-11-11 2015-05-20 吉林奥来德光电材料股份有限公司 Amine organic compound and applications of the same in electroluminescent devices
WO2015137384A1 (en) * 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof
WO2015137395A1 (en) * 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof
WO2019063886A1 (en) * 2016-09-27 2019-04-04 Degbia Martial NOVEL π-CONJUGATED MATERIALS, METHODS FOR PREPARING SAME AND USES THEREOF AS SEMICONDUCTORS
KR20180082360A (en) * 2017-01-10 2018-07-18 주식회사 엘지화학 Compound and organic light emitting device comprising the same
CN107216341A (en) * 2017-07-13 2017-09-29 长春海谱润斯科技有限公司 A kind of luminous organic material and its organic luminescent device
CN108558739A (en) * 2018-04-30 2018-09-21 华南理工大学 Small molecule material and preparation method thereof of the one kind based on the high two-photon absorption of naphtho- indenes fluorenes
WO2020027258A1 (en) * 2018-08-03 2020-02-06 日産化学株式会社 Production method for fluorinated aromatic secondary amine compound
WO2020027261A1 (en) * 2018-08-03 2020-02-06 日産化学株式会社 Aniline derivative
WO2020090989A1 (en) * 2018-10-31 2020-05-07 日産化学株式会社 Production method for fluorinated aromatic secondary or tertiary amine compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038495A1 (en) * 2021-09-13 2023-03-16 주식회사 엘지화학 Compound, coating composition comprising same, organic light-emitting device using same, and manufacturing method therefor

Also Published As

Publication number Publication date
CN113874352A (en) 2021-12-31
KR20220016122A (en) 2022-02-08
TW202108738A (en) 2021-03-01
JPWO2020241730A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7310609B2 (en) charge transport varnish
TWI659944B (en) Charge-transporting paint and its use
JP6763425B2 (en) Arylamine derivatives and their uses
WO2020241730A1 (en) Arylamine compound and use thereof
JP2023126469A (en) Charge transporting varnish
EP3000804B1 (en) Triphenylamine derivative and use therefor
EP3118190A1 (en) Aniline derivative and use thereof
JP7298611B2 (en) Composition for forming charge-transporting thin film
JP7290149B2 (en) Aniline derivative and its use
JP7420073B2 (en) Aniline derivative
WO2020203594A1 (en) Fluorene derivative and use thereof
EP3012245B1 (en) Aniline derivative, charge-transporting varnish and organic electroluminescent device
JPWO2016013556A1 (en) Charge transport material
JP2015092559A (en) Electric charge transportation type varnish, electric charge transportation type thin film and organic electroluminescent element
WO2020196154A1 (en) Arylamine compound and use thereof
TWI663147B (en) Charge transport varnish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041963

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20815165

Country of ref document: EP

Kind code of ref document: A1