(43) International Publication Date 27 April 2017 (27.04.2017)

WIPO/PCT

||

(10) International Publication Number WO 2017/070632 A3
(51) International Patent Classification:

C07K 14/32 (2006.01) C12N 15/10 (2006.01)
C12N 9/22 (2006.01) C12N 15/90 (2006.01)
C12N 9/78 (2006.01)
(21) International Application Number:

PCT/US2016/058344
(22) International Filing Date:

22 October 2016 (22.10.2016)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

62/245,828 23 October 2015 (23.10.2015)
62/279,346 $\quad 15$ January 2016 (15.01.2016)
62/311,763 22 March 2016 (22.03.2016)
62/322,178 $\quad 13$ April 2016 (13.04.2016) 30 June 2016 (30.06.2016)
$\begin{array}{lr}62 / 357,332 & 30 \text { June } 2016(30.06 .2016) \\ 62 / 370,700 & 3 \text { August } 2016(03.08 .2016)\end{array}$
$\begin{array}{lr}62 / 357,332 & 30 \text { June } 2016(30.06 .2016) \\ 62 / 370,700 & 3 \text { August } 2016(03.08 .2016)\end{array}$
62/398,490 22 September 2016 (22.09.2016)
14 October 2016 (14.10.2016)
(74) Agent: BAKER, C. Hunter; Wolf, Greenfield \& Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}$, $\mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DJ}, \mathrm{DK}, \mathrm{DM}$, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
(88) Date of publication of the international search report:

8 June 2017

NUCLEOBASE EDITORS AND USES THEREOF

GOVERNMENT SUPPORT

[0001] This invention was made with government support under grant number R01 EB022376 (formerly R01 GM065400) awarded by the National Institutes of Health, under training grant numbers F32 GM 112366-2 and F32 GM 106601-2 awarded by the National Institutes of Health, and Harvard Biophysics NIH training grant T32 GM008313 awarded by the National Institutes of Health. The government has certain rights in the invention.

RELATED APPLICTIONS

[0002] This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent applications, U.S.S.N. 62/245,828 filed October 23, 2015, U.S.S.N. 62/279,346 filed January 15, 2016, U.S.S.N. 62/311,763 filed March 22, 2016, U.S.S.N. 62/322, 178 filed April 13, 2016, U.S.S.N. 62/357,352 filed June 30, 2016, U.S.S.N. 62/370, 700 filed August 3, 2016, U.S.S.N. 62/398,490 filed September 22, 2016, U.S.S.N. 62/408,686 filed October 14, 2016, and U.S.S.N. 62/357,332 filed June 30, 2016; each of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0003] Targeted editing of nucleic acid sequences, for example, the targeted cleavage or the targeted introduction of a specific modification into genomic DNA, is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases. ${ }^{1}$ An ideal nucleic acid editing technology possesses three characteristics: (1) high efficiency of installing the desired modification; (2) minimal offtarget activity; and (3) the ability to be programmed to edit precisely any site in a given nucleic acid, e.g., any site within the human genome. ${ }^{2}$ Current genome engineering tools, including engineered zinc finger nucleases (ZFNs), ${ }^{3}$ transcription activator like effector nucleases (TALENs), ${ }^{4}$ and most recently, the RNA-guided DNA endonuclease Cas9, ${ }^{5}$ effect sequence-specific DNA cleavage in a genome. This programmable cleavage can result in mutation of the DNA at the cleavage site via non-homologous end joining (NHEJ) or replacement of the DNA surrounding the cleavage site via homology-directed repair (HDR). ${ }^{67}$
[0004] One drawback to the current technologies is that both NHEJ and HDR are stochastic processes that typically result in modest gene editing efficiencies as well as unwanted gene alterations that can compete with the desired alteration. ${ }^{8}$ Since many genetic diseases in principle can be treated by effecting a specific nucleotide change at a specific location in the genome (for example, a C to T change in a specific codon of a gene associated with a disease), ${ }^{9}$ the development of a programmable way to achieve such precision gene editing would represent both a powerful new research tool, as well as a potential new approach to gene editing-based human therapeutics.

SUMMARY OF THE INVENTION

[0005] The clustered regularly interspaced short palindromic repeat (CRISPR) system is a recently discovered prokaryotic adaptive immune system ${ }^{10}$ that has been modified to enable robust and general genome engineering in a variety of organisms and cell lines. ${ }^{11}$ CRISPRCas (CRISPR associated) systems are protein-RNA complexes that use an RNA molecule (sgRNA) as a guide to localize the complex to a target DNA sequence via base-pairing. ${ }^{12}$ In the natural systems, a Cas protein then acts as an endonuclease to cleave the targeted DNA sequence. ${ }^{13}$ The target DNA sequence must be both complementary to the sgRNA, and also contain a "protospacer-adjacent motif" (PAM) at the 3'-end of the complementary region in order for the system to function. ${ }^{14}$
[0006] Among the known Cas proteins, S. pyogenes Cas9 has been mostly widely used as a tool for genome engineering. ${ }^{15}$ This Cas9 protein is a large, multi-domain protein containing two distinct nuclease domains. Point mutations can be introduced into Cas9 to abolish nuclease activity, resulting in a dead Cas9 (dCas9) that still retains its ability to bind DNA in a sgRNA-programmed manner. ${ }^{16}$ In principle, when fused to another protein or domain, dCas 9 can target that protein to virtually any DNA sequence simply by co-expression with an appropriate sgRNA.
[0007] The potential of the dCas9 complex for genome engineering purposes is immense. Its unique ability to bring proteins to specific sites in a genome programmed by the sgRNA in theory can be developed into a variety of site-specific genome engineering tools beyond nucleases, including transcriptional activators, transcriptional repressors, histone-modifying proteins, integrases, and recombinases. ${ }^{11}$ Some of these potential applications have recently been implemented through dCas 9 fusions with transcriptional activators to afford RNAguided transcriptional activators, ${ }^{17,18}$ transcriptional repressors, ${ }^{16,19,20}$ and chromatin
modification enzymes. ${ }^{21}$ Simple co-expression of these fusions with a variety of sgRNAs results in specific expression of the target genes. These seminal studies have paved the way for the design and construction of readily programmable sequence-specific effectors for the precise manipulation of genomes.
[0008] Significantly, 80-90\% of protein mutations responsible for human disease arise from the substitution, deletion, or insertion of only a single nucleotide. ${ }^{6}$ Most current strategies for single-base gene correction include engineered nucleases (which rely on the creation of double-strand breaks, DSBs, followed by stochastic, inefficient homology-directed repair, HDR), and DNA-RNA chimeric oligonucleotides. ${ }^{22}$ The latter strategy involves the design of a RNA/DNA sequence to base pair with a specific sequence in genomic DNA except at the nucleotide to be edited. The resulting mismatch is recognized by the cell's endogenous repair system and fixed, leading to a change in the sequence of either the chimera or the genome. Both of these strategies suffer from low gene editing efficiencies and unwanted gene alterations, as they are subject to both the stochasticity of HDR and the competition between HDR and non-homologous end-joining, NHEJ. ${ }^{23-25}$ HDR efficiencies vary according to the location of the target gene within the genome, ${ }^{26}$ the state of the cell cycle, ${ }^{27}$ and the type of cell/tissue. ${ }^{28}$ The development of a direct, programmable way to install a specific type of base modification at a precise location in genomic DNA with enzyme-like efficiency and no stochasticity therefore represents a powerful new approach to gene editing-based research tools and human therapeutics.
[0009] Some aspects of the disclosure are based on the recognition that certain configurations of a dCas9 domain, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with a cytidine deaminase domain fused to the N -terminus of a nuclease inactive Cas9 (dCas9) via a linker was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. See for example, Examples 3 and 4 below, which demonstrate that the fusion proteins, which are also referred to herein as base editors, generate less indels and more efficiently deaminate target nucleic acids than other base editors, such as base editors without a UGI domain. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N -terminus of the dCas9 domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7). In some embodiments, the nuclease-inactive Cas 9 (dCas 9) domain of comprises the amino acid
sequence set forth in SEQ ID NO: 263. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDAl (SEQ ID NO: 5738). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 5739-5741).
[0010] Some aspects of the disclosure are based on the recognition that certain configurations of a dCas9 domain, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain fused to the N -terminus of a nuclease inactive Cas9 (dCas9) via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7) was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) domain and an apolipoprotein B mRNAediting complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N -terminus of the dCas 9 domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
[0011] In some embodiments, the fusion protein comprises the amino acid residues 11-1629 of the amino acid sequence set forth in SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence of any one of SEQ ID NOs: 5737, 5743, 5745, and 5746.
[0012] Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within a subject's genome, e.g., a human's genome. In some embodiments, fusion proteins of Cas9 (e.g., dCas9, nuclease active Cas9, or Cas9 nickase) and deaminases or deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and deaminases or deaminase domains, are provided.
[0013] Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein as provided herein that is fused to a second protein (e.g., an enzymatic domain such as a cytidine deaminase domain), thus forming a fusion protein. In some embodiments, the
second protein comprises an enzymatic domain, or a binding domain. In some embodiments, the enzymatic domain is a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments, the enzymatic domain is a nucleic acid editing domain. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNAediting complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). It should be appreciated that the deaminase may be from any suitable organism (e.g., a human or a rat). In some embodiments, the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1. [0014] Some aspects of this disclosure provide fusion proteins comprising: (i) a nucleaseinactive Cas9 (dCas9) domain comprising the amino acid sequence of SEQ ID NO: 263; and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N -terminus of the dCas9 domain via a linker comprising the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 7). In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 5737. In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 5738). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a human APOBEC3G variant of any one of SEQ ID NOs: 5739-5741.
[0015] Some aspects of this disclosure provide fusion proteins comprising: (i) a Cas9 nickase domain and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N -terminus of the Cas9 nickase domain.. In some embodiments, the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D . In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 267. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1.
[0016] Some aspects of this disclosure provide fusion proteins comprising: (i) a Cas9 nickase domain and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the Cas9 nickase domain.. In some embodiments, the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 267. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1.
[0017] Other aspects of this disclosure relate to the recognition that fusion proteins comprising a deaminase domain, a dCas9 domain and a uracil glycosylase inhibitor (UGI) domain demonstrate improved efficiency for deaminating target nucleotides in a nucleic acid molecule. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of $\mathrm{U}: \mathrm{G}$ heteroduplex DNA may be responsible for a decrease in nucleobase editing efficiency in cells. Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. As demonstrated herein, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Without wishing to be bound by any particular theory, base excision repair may be inhibited by molecules that bind the single strand, block the edited base, inhibit UGI, inhibit base excision repair, protect the edited base, and/or promote "fixing" of the non-edited strand, etc. Thus, this disclosure contemplates fusion proteins comprising a dCas9-cytidine deaminase domain that is fused to a UGI domain.
[0018] In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) domain; a nucleic acid editing domain; and a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the dCas9 domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D . In some embodiments, the amino acid sequence of the dCas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the dCas9 domain comprises an H840X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for H . In some embodiments, the amino acid sequence of the dCas 9 domain comprises an H840A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260. In some embodiments, the dCas9 domain comprises the amino acid sequence as set forth in SEQ ID NO: 263.
[0019] Further aspects of this disclosure relate to the recognition that fusion proteins using a Cas9 nickase as the Cas9 domain demonstrate improved efficiency for editing nucleic acids. For example, aspects of this disclosure relate to the recognition that fusion proteins comprising a Cas9 nickase, a deaminase domain and a UGI domain demonstrate improved
efficiency for editing nucleic acids. For example, the improved efficiency for editing nucleotides is described below in the Examples section.
[0020] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An "indel", as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels.
[0021] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations. [0022] In some embodiments, a fusion protein comprises a Cas9 nickase domain, a nucleic acid editing domain; and a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 267.
[0023] In some embodiments, the deaminase domain of the fusion protein is fused to the N terminus of the dCas9 domain or the Cas9 nickase. In some embodiments, the UGI domain is fused to the C-terminus of the dCas9 domain or the Cas9 nickase. In some embodiments, the dCas9 domain or the Cas9 nickase and the nucleic acid editing domain are fused via a linker.

In some embodiments, the dCas9 domain or the Cas9 nickase and the UGI domain are fused via a linker.
[0024] In certain embodiments, linkers may be used to link any of the peptides or peptide domains of the invention. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polpeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may included funtionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.
[0025] In some embodiments, the linker comprises the amino acid sequence (GGGGS) n (SEQ ID NO: 5), (G) $)_{\mathrm{n}},(\text { EAAAK })_{\mathrm{n}}$ (SEQ ID NO: 6), (GGS) ${ }_{\mathrm{n}}$, (SGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7), (XP $)_{\mathrm{n}}$, or any combination thereof, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, the linker comprises the amino acid sequence (GGS) ${ }_{\mathrm{n}}$, wherein n is 1,3 , or 7 . In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
[0026] In some embodiments, the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker sequence]-[dCas9 or Cas9 nickase]-[optional linker
sequence]-[UGI]. In some embodiments, the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker sequence]-[UGI]-[optional linker sequence]-[dCas9 or Cas9 nickase]; [UGI]-[optional linker sequence]-[nucleic acid editing domain]-[optional linker sequence]-[dCas9 or Cas9 nickase]; [UGI]-[optional linker sequence]-[dCas9 or Cas9 nickase]-[optional linker sequence]-[nucleic acid editing domain]; [dCas9 or Cas9 nickase][optional linker sequence]-[UGI]-[optional linker sequence]-[nucleic acid editing domain]; or [dCas9 or Cas9 nickase]-[optional linker sequence]-[nucleic acid editing domain]-[optional linker sequence]-[UGI].
[0027] In some embodiments, the nucleic acid editing domain comprises a deaminase. In some embodiments, the nucleic acid editing domain comprises a deaminase. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, an APOBEC3H deaminase, or an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a Lamprey CDA1 (pmCDA1) deaminase.
[0028] In some embodiments, the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is from a human. In some embodiments the deaminase is from a rat. In some embodiments, the deaminase is a rat APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 284). In some embodiments, the deaminase is a human APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 5738). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 5739-5741). In some embodiments, the deaminase is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 266-284 or 5725-5741.
[0029] In some embodiments, the UGI domain comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to SEQ ID NO: 600. In some
embodiments, the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 600.
[0030] Some aspects of this disclosure provide complexes comprising a Cas9 protein or a Cas9 fusion protein as provided herein, and a guide RNA bound to the Cas9 protein or the Cas9 fusion protein.
[0031] Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with a Cas9 protein or a fusion protein as provided herein and with a guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with a gRNA as provided herein.
[0032] Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone
[0033] Some aspects of this disclosure provide polynucleotides encoding a Cas9 protein of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
[0034] Some aspects of this disclosure provide cells comprising a Cas9 protein, a fusion protein, a nucleic acid molecule, and/or a vector as provided herein.
[0035] The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.
[0036] The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] Figure 1 shows the deaminase activity of deaminases on single stranded DNA substrates. Single stranded DNA substrates using randomized PAM sequences (NNN PAM) were used as negative controls. Canonical PAM sequneces used (NGG PAM)
[0038] Figure 2 shows activity of Cas9:deaminase fusion proteins on single stranded DNA substrates.
[0039] Figure 3 illustrates double stranded DNA substrate binding by
Cas9:deaminase:sgRNA complexes.
[0040] Figure 4 illustrates a double stranded DNA deamination assay.
[0041] Figure 5 demonstrates that Cas9 fusions can target positions 3-11 of doublestranded DNA target sequences (numbered according to the schematic in Figure 5). Upper Gel: $1 \mu \mathrm{M}$ rAPOBEC1-GGS-dCas9, 125 nM dsDNA, 1 equivalent sgRNA. Mid Gel: $1 \mu \mathrm{M}$ rAPOBEC1-(GGS) 3_{3} (SEQ ID NO: 596)-dCas9, 125 nM dsDNA, 1 equivalent sgRNA. Lower Gel: $1.85 \mu \mathrm{M}$ rAPOBEC1-XTEN-dCas9, 125 nM dsDNA, 1 equivalent sgRNA.
[0042] Figure 6 demonstrates that the correct guide RNA, e.g., the correct sgRNA, is required for deaminase activity.
[0043] Figure 7 illustrates the mechanism of target DNA binding of in vivo target sequences by deaminase-dCas 9 : sgRNA complexes.
[0044] Figure 8 shows successful deamination of exemplary disease-associated target sequences.
[0045] Figure 9 shows in vitro $\mathrm{C} \rightarrow \mathrm{T}$ editing efficiencies using His6-rAPOBEC1-XTENdCas9.
[0046] Figure 10 shows $\mathrm{C} \rightarrow \mathrm{T}$ editing efficiencies in HEK293T cells is greatly enhanced by fusion with UGI.
[0047] Figures 11A to $\mathbf{1 1 C}$ show NBE1 mediates specific, guide RNA-programmed C to U conversion in vitro. Figure 11A: Nucleobase editing strategy. DNA with a target C (red) at a locus specified by a guide RNA (green) is bound by dCas9 (blue), which mediates the local denaturation of the DNA substrate. Cytidine deamination by a tethered APOBEC1 enzyme (orange) converts the target C to U . The resulting $\mathrm{G}: \mathrm{U}$ heteroduplex can be permanently converted to an $A: T$ base pair following DNA replication or repair. If the U is in the template DNA strand, it will also result in an RNA transcript containing a G to A mutation following transcription. Figure 11B: Deamination assay showing an activity window of approximately five nucleotides. Following incubation of NBE1-sgRNA complexes with dsDNA substrates
at $37^{\circ} \mathrm{C}$ for 2 h , the 5^{\prime} fluorophore-labeled DNA was isolated and incubated with USER enzyme (uracil DNA glycosylase and endonuclease VIII) at $37^{\circ} \mathrm{C}$ for 1 h to induce DNA cleavage at the site of any uracils. The resulting DNA was resolved on a denaturing polyacrylamide gel, and any fluorophore-linked strands were visualized. Each lane is labeled according to the position of the target C within the protospacer, or with "-" if no target C is present, counting the base distal from the PAM as position 1. Figure 11C: Deaminase assay showing the sequence specificity and sgRNA-dependence of NBE1. The DNA substrate with a target C at position 7 was incubated with NBE1 as in Figure 11B with either the correct sgRNA, a mismatched sgRNA, or no sgRNA. No C to U editing is observed with the mismatched sgRNA or with no sgRNA. The positive control sample contains a DNA sequence with a U synthetically incorporated at position 7 .
[0048] Figures 12A to 12B show effects of sequence context and target C position on nucleobase editing efficiency in vitro. Figure 12A: Effect of changing the sequence surrounding the target C on editing efficiency in vitro. The deamination yield of 80% of targeted strands (40% of total sequencing reads from both strands) for C_{7} in the protospacer sequence 5^{\prime}-TTATTTCGTGGATTTATTTA-3'(SEQ ID NO: 264) was defined as 1.0 , and the relative deamination efficiencies of substrates containing all possible single-base mutations at positions 1-6 and 8-13 are shown. Values and error bars reflect the mean and standard deviation of two or more independent biological replicates performed on different days. Figure 12B: Positional effect of each NC motif on editing efficiency in vitro. Each NC target motif was varied from positions 1 to 8 within the protospacer as indicated in the sequences shown on the right (the PAM shown in red, the protospacer plus one base 5^{\prime} to the protospacer are also shown). The percentage of total sequence reads containing T at each of the numbered target C positions following incubation with NBE1 is shown in the graph. Note that the maximum possible deamination yield in vitro is 50% of total sequencing reads (100% of targeted strands). Values and error bars reflect the mean and standard deviation of two or three independent biological replicates performed on different days. Figure 12B depicts SEQ ID NOs: 285 through 292 from top to bottom, respectively.
[0049] Figures 13A to 13C show nucleobase editing in human cells. Figure 13A: Protospacer (black) and PAM (red) sequences of the six mammalian cell genomic loci targeted by nucleobase editors. Target Cs are indicated with subscripted numbers corresponding to their positions within the protospacer. Figure 13A depicts SEQ ID NOs: 293 through 298 from top to bottom, respectively. Figure 13B: HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and an appropriate sgRNA. Three days
after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the six loci. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for NBE1, NBE2, and NBE3 at all six genomic loci, and for wt Cas9 with a donor HDR template at three of the six sites (EMX1, HEK293 site 3, and HEK293 site 4). Values and error bars reflect the mean and standard deviation of three independent biological replicates performed on different days. Figure 13C: Frequency of indel formation, calculated as described in the Methods, is shown following treatment of HEK293T cells with NBE2 and NBE3 for all six genomic loci, or with wt Cas9 and a single-stranded DNA template for HDR at three of the six sites (EMX1, HEK293 site 3, and HEK293 site 4). Values reflect the mean of at least three independent biological replicates performed on different days.
[0050] Figures 14A to $\mathbf{1 4 C}$ show NBE2- and NBE3-mediated correction of three diseaserelevant mutations in mammalian cells. For each site, the sequence of the protospacer is indicated to the right of the name of the mutation, with the PAM highlighted in green and the base responsible for the mutation indicated in bold with a subscripted number corresponding to its position within the protospacer. The amino acid sequence above each disease-associated allele is shown, together with the corrected amino acid sequence following nucleobase editing in red. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. Cells were nucleofected with plasmids encoding NBE2 or NBE3 and an appropriate sgRNA. Two days after nucleofection, genomic DNA was extracted and analyzed by HTS to assess pathogenic mutation correction. Figure 14A: The Alzheimer's disease-associated APOE4 allele is converted to APOE3' in mouse astrocytes by NBE3 in 11% of total reads (44% of nucleofected astrocytes). Two nearby Cs are also converted to Ts, but with no change to the predicted sequence of the resulting protein (SEQ ID NO: 299). Figure 14B The cancer-associated p53 N239D mutation is corrected by NBE2 in 11% of treated human lymphoma cells (12% of nucleofected cells) that are heterozygous for the mutation (SEQ ID NO: 300). Figure 14C The p53 Y163C mutation is corrected by NBE3 in 7.6% of nucleofected human breast cancer cells (SEQ ID NO: 301).
[0051] Figures 15A to 15D show effects of deaminase-dCas9 linker length and composition on nucleobase editing. Gel-based deaminase assay showing the deamination window of nucleobase editors with deaminase-Cas9 linkers of GGS (Figure 15A), (GGS) ${ }_{3}$ (SEQ ID NO: 596) (Figure 15B), XTEN (Figure 15C), or (GGS) ${ }_{7}$ (SEQ ID NO: 597) (Figure 15D). Following incubation of $1.85 \mu \mathrm{M}$ editor-sgRNA complexes with 125 nM dsDNA substrates at $37^{\circ} \mathrm{C}$ for 2 h , the dye-conjugated DNA was isolated and incubated with USER
enzyme (uracil DNA glycosylase and endonuclease VIII) at $37^{\circ} \mathrm{C}$ for an additional hour to cleave the DNA backbone at the site of any uracils. The resulting DNA was resolved on a denaturing polyacrylamide gel, and the dye-conjugated strand was imaged. Each lane is numbered according to the position of the target C within the protospacer, or with - if no target C is present. 8 U is a positive control sequence with a U synthetically incorporated at position 8 .
[0052] Figures 16A to 16B show NBE1 is capable of correcting disease-relevant mutations in vitro. Figure 16A: Protospacer and PAM sequences (red) of seven disease-relevant mutations. The disease-associated target C in each case is indicated with a subscripted number reflecting its position within the protospacer. For all mutations except both APOE4 SNPs, the target C resides in the template (non-coding) strand. Figure 16A depicts SEQ ID NOs: 302 through 308 from top to bottom, respectively. Figure 16B: Deaminase assay showing each dsDNA oligonucleotide before $(-)$ and after $(+)$ incubation with NBE1, DNA isolation, and incubation with USER enzymes to cleave DNA at positions containing U. Positive control lanes from incubation of synthetic oligonucleotides containing U at various positions within the protospacer with USER enzymes are shown with the corresponding number indicating the position of the U .
[0053] Figure 17 shows processivity of NBE1. The protospacer and PAM (red) of a 60 -mer DNA oligonucleotide containing eight consecutive Cs is shown at the top. The oligonucleotide (125 nM) was incubated with NBE1 ($2 \mu \mathrm{M}$) for 2 h at $37^{\circ} \mathrm{C}$. The DNA was isolated and analyzed by high-throughput sequencing. Shown are the percent of total reads for the most frequent nine sequences observed. The vast majority of edited strands ($>93 \%$) have more than one C converted to T. This figure depicts SEQ ID NO: 309.
[0054] Figures 18A to $\mathbf{1 8 H}$ show the effect of fusing UGI to NBE1 to generate NBE2. Figure 18A: Protospacer and PAM (red) sequences of the six mammalian cell genomic loci targeted with nucleobase editors. Editable Cs are indicated with labels corresponding to their positions within the protospacer. Figure 18A depicts SEQ ID NOs: 293 through 298 from top to bottom, respectively. Figures 18B to 18G: HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE1 and UGI, and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the six loci. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for NBE1, NBE1 and UGI, and NBE2 at all six genomic loci. Figure 18H: C to T mutation rates at 510 Cs surrounding the protospacers of interest for NBE1, NBE1 plus UGI on a separate plasmid,

NBE2, and untreated cells are shown. The data show the results of $3,000,000$ DNA sequencing reads from 1.5×106 cells. Values reflect the mean of at least two biological experiments conducted on different days.
[0055] Figure 19 shows nucleobase editing efficiencies of NBE2 in U2OS and HEK293T cells. Cellular C to T conversion percentages by NBE2 are shown for each of the six targeted genomic loci in HEK293T cells and U2OS cells. HEK293T cells were transfected using lipofectamine 2000, and U2OS cells were nucleofected. U2OS nucleofection efficiency was 74%. Three days after plasmid delivery, genomic DNA was extracted and analyzed for nucleobase editing at the six genomic loci by HTS. Values and error bars reflect the mean and standard deviation of at least two biological experiments done on different days.
[0056] Figure 20 shows nucleobase editing persists over multiple cell divisions. Cellular C to T conversion percentages by NBE2 are displayed at two genomic loci in HEK293T cells before and after passaging the cells. HEK293T cells were transfected using Lipofectamine 2000. Three days post transfection, the cells were harvested and split in half. One half was subjected to HTS analysis, and the other half was allowed to propagate for approximately five cell divisions, then harvested and subjected to HTS analysis.
[0057] Figure 21 shows genetic variants from ClinVar that can be corrected in principle by nucleobase editing. The NCBI ClinVar database of human genetic variations and their corresponding phenotypes ${ }^{68}$ was searched for genetic diseases that can be corrected by current nucleobase editing technologies. The results were filtered by imposing the successive restrictions listed on the left. The x -axis shows the number of occurrences satisfying that restriction and all above restrictions on a logarithmic scale.
[0058] Figure 22 shows in vitro identification of editable Cs in six genomic loci. Synthetic 80 -mers with sequences matching six different genomic sites were incubated with NBE1 then analyzed for nucleobase editing via HTS. For each site, the sequence of the protospacer is indicated to the right of the name of the site, with the PAM highlighted in red. Underneath each sequence are the percentages of total DNA sequencing reads with the corresponding base. A target C was considered as "editable" if the in vitro conversion efficiency is $>10 \%$. Note that maximum yields are 50% of total DNA sequencing reads since the non-targeted strand is not a substrate for nucleobase editing. This figure depicts SEQ ID NOs: 293 through 298 from top to bottom, respectively.
[0059] Figure 23 shows activities of NBE1, NBE2, and NBE3 at EMX1 off-targets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the EMX1 sequence using Lipofectamine 2000. Three days after
transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus the top ten known Cas9 off-target loci for the EMX1 sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. EMX1 offtarget 5 locus did not amplify and is not shown. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 293, and 310 through 318 from top to bottom, respectively.
[0060] Figure 24 shows activities of NBE1, NBE2, and NBE3 at FANCF off-targets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the FANCF sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci for the FANCF sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 294 and 319 through 326 from top to bottom, respectively.
[0061] Figure 25 shows activities of NBE1, NBE2, and NBE3 at HEK293 site 2 offtargets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the HEK293 site 2 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci for the HEK293 site 2 sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 295, 327, and 328 from top to bottom, respectively.
[0062] Figure 26 shows activities of NBE1, NBE2, and NBE3 at HEK293 site 3 offtargets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the HEK293 site 3 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci for the HEK293 site 3 sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$ Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 296 and 659 through 663 from top to bottom, respectively.
[0063] Figure 27 shows activities of NBE1, NBE2, and NBE3 at HEK293 site 4 offtargets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the HEK293 site 4 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus the top ten known Cas9 off-target loci for the HEK293 site 4 sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 297 and 664 through 673 from top to bottom, respectively.
[0064] Figure 28 shows non-target C mutation rates. Shown here are the C to T mutation rates at 2,500 distinct cytosines surrounding the six on-target and 34 off-target loci tested, representing a total of $14,700,000$ sequence reads derived from approximately 1.8×106 cells.
[0065] Figures 29A to 29C show base editing in human cells. Figure 29A shows possible base editing outcomes in mammalian cells. Initial editing resulted in a $\mathrm{U}: \mathrm{G}$ mismatch.
Recognition and excision of the U by uracil DNA glycosylase (UDG) initiated base excision repair (BER), which lead to reversion to the C:G starting state. BER was impeded by BE2 and BE3, which inhibited UDG. The U:G mismatch was also processed by mismatch repair (MMR), which preferentially repaired the nicked strand of a mismatch. BE3 nicked the nonedited strand containing the G, favoring resolution of the $\mathrm{U}: \mathrm{G}$ mismatch to the desired $\mathrm{U}: \mathrm{A}$ or

T:A outcome. Figure 29B shows HEK293T cells treated as described in the Materials and Methods in the Examples below. The percentage of total DNA sequencing read with Ts at the target positions indicated show treatment with BE1, BE2, or BE3, or for treatment with wt Cas9 with a donor HDR template. Figure 29C shows frequency of indel formation following the treatment in Figure 29B. Values are listed in Figure 34. For Figures 29B and 29C, values and error bars reflect the mean and s.d. of three independent biological replicates performed on different days.
[0066] Figures 30A to 30B show BE3-mediated correction of two disease-relevant mutations in mammalian cells. The sequence of the protospacer is shown to the right of the mutation, with the PAM in blue and the target base in red with a subscripted number indicating its position within the protospacer. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods. Figure 30A shows the Alzheimer's disease-associated APOE4 allele converted to APOE3r in mouse astrocytes by BE3 in 74.9% of total reads. Two nearby Cs were also converted to Ts , but with no change to the predicted sequence of the resulting protein. Identical treatment of these cells with wt Cas9 and donor ssDNA results in only 0.3% correction, with 26.1% indel formation. Figure 30B shows the cancer associated p53 Y163C mutation corrected by BE3 in 7.6% of nucleofected human breast cancer cells with 0.7% indel formation. Identical treatment of these cells with wt Cas9 and donor ssDNA results in no mutation correction with 6.1% indel formation. This figure depicts SEQ ID NOs: 675 to 680 from top to bottom, respectively.
[0067] Figure 31 shows activities of BE1, BE2, and BE3 at HEK293 site 2 off-targets. HEK293T cells were transfected with plasmids expressing BE1, BE2, or BE3 and a sgRNA matching the HEK293 site 2 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 and dCas9 offtarget loci for the HEK293 site 2 sgRNA, as previously determined by Joung and coworkers using the GUIDE-seq method (63), and Adli and coworkers using chromatin immunoprecipitation high-throughput sequencing (ChIP-seq) experiments (18). Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for $\mathrm{BE} 1, \mathrm{BE} 2$, and BE 3 . On the far right are displayed the total number of sequencing reads
reported, and the ChIP-seq signal intensity reported for each sequence. This figure depicts SEQ ID NOs: 681 to 688 from top to bottom, respectively.
[0068] Figure 32 shows activities of BE1, BE2, and BE3 at HEK293 site 3 off-targets. HEK293T cells were transfected with plasmids expressing BE1, BE2, or BE3 and a sgRNA matching the HEK293 site 3 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci and the top five known dCas9 off-target loci for the HEK293 site 3 sgRNA, as previously determined by Joung and coworkers using the GUIDE-seq method ${ }^{54}$, and using chromatin immunoprecipitation high-throughput sequencing (ChIP-seq) experiments ${ }^{61}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for BE , BE 2 , and BE 3 . On the far right are displayed the total number of sequencing reads reported, and the ChIP-seq signal intensity reported for each sequence. This figure depicts SEQ ID NOs: 689 to 699 from top to bottom, respectively.
[0069] Figure 33 shows activities of BE1, BE2, and BE3 at HEK293 site 4 off-targets. HEK293T cells were transfected with plasmids expressing BE1, BE2, or BE3 and a sgRNA matching the HEK293 site 4 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus the top ten known Cas9 off-target loci and the top five known dCas9 off-target loci for the HEK293 site 4 sgRNA, as previously determined using the GUIDE-seq method ${ }^{54}$, and using chromatin immunoprecipitation highthroughput sequencing (ChIP-seq) experiments ${ }^{61}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for $\mathrm{BE} 1, \mathrm{BE} 2$, and BE 3 . On the far right are displayed the total number of sequencing reads reported, and the ChIP-seq signal intensity reported for each sequence. This figure depicts SEQ ID NOs: 700 to 712 from top to bottom, respectively.
[0070] Figure 34 shows mutation rates of non-protospacer bases following BE3-mediated correction of the Alzheimer's disease-associated APOE4 allele to APOE3r in mouse astrocytes. The DNA sequence of the 50 bases on either side of the protospacer from Figure 30A and Figure 34B is shown with each base's position relative to the protospacer. The side
of the protospacer distal to the PAM is designated with positive numbers, while the side that includes the PAM is designated with negative numbers, with the PAM shown in blue. Underneath each sequence are the percentages of total DNA sequencing reads with the corresponding base for untreated cells, for cells treated with BE3 and an sgRNA targeting the APOE4 C158R mutation, or for cells treated with BE3 and an sgRNA targeting the VEGFA locus. Neither BE3-treated sample resulted in mutation rates above those of untreated controls. This figure depicts SEQ ID NOs: 713 to 716 from top to bottom, respectively.
[0071] Figure 35 shows mutation rates of non-protospacer bases following BE3-mediated correction of the cancer-associated p53 Y163C mutation in HCC1954 human cells. The DNA sequence of the 50 bases on either side of the protospacer from Figure 30B and Figure 39Bis shown with each base's position relative to the protospacer. The side of the protospacer distal to the PAM is designated with positive numbers, while the side that includes the PAM is designated with negative numbers, with the PAM shown in blue. Underneath each sequence are the percentages of total sequencing reads with the corresponding base for untreated cells, for cells treated with BE3 and an sgRNA targeting the TP53 Y163C mutation, or for cells treated with BE3 and an sgRNA targeting the VEGFA locus. Neither BE3-treated sample resulted in mutational rates above those of untreated controls. This figure depicts SEQ ID NOs: 717 to 720 from top to bottom, respectively.
[0072] Figures 36A to 36F show the effects of deaminase, linker length, and linker composition on base editing. Figure 36A shows a gel-based deaminase assay showing activity of rAPOBEC1, pmCDA1, hAID, hAPOBEC3G, rAPOBEC1-GGS-dCas9, rAPOBEC1- (GGS) 3_{3} (SEQ ID NO: 596)-dCas9, and dCas9-(GGS) 3_{3} (SEQ ID NO: 596)rAPOBEC1 on ssDNA. Enzymes were expressed in a mammalian cell lysate-derived in vitro transcription-translation system and incubated with $1.8 \mu \mathrm{M}$ dye-conjugated ssDNA and USER enzyme (uracil DNA glycosylase and endonuclease VIII) at $37^{\circ} \mathrm{C}$ for 2 hours. The resulting DNA was resolved on a denaturing polyacrylamide gel and imaged. The positive control is a sequence with a U synthetically incorporated at the same position as the target C . Figure 36B shows coomassie-stained denaturing PAGE gel of the expressed and purified proteins used in Figures 36C to 36F. Figures 36C to 36F show gel-based deaminase assay showing the deamination window of base editors with deaminase-Cas9 linkers of GGS (Figure 36C), (GGS) 3_{3} (SEQ ID NO: 596) (Figure 36D), XTEN (Figure 36E), or (GGS) 7 (SEQ ID NO: 597) (Figure 36F). Following incubation of $1.85 \mu \mathrm{M}$ deaminase-dCas9 fusions complexed with sgRNA with 125 nM dsDNA substrates at $37^{\circ} \mathrm{C}$ for 2 hours, the dyeconjugated DNA was isolated and incubated with USER enzyme at $37^{\circ} \mathrm{C}$ for 1 hour to cleave
the DNA backbone at the site of any uracils. The resulting DNA was resolved on a denaturing polyacrylamide gel, and the dye-conjugated strand was imaged. Each lane is numbered according to the position of the target C within the protospacer, or with - if no target C is present. 8U is a positive control sequence with a U synthetically incorporated at position 8.
[0073] Figures 37A to 37C show BE1 base editing efficiencies are dramatically decreased in mammalian cells. Figure 37A Protospacer (black and red) and PAM (blue) sequences of the six mammalian cell genomic loci targeted by base editors. Target Cs are indicated in red with subscripted numbers corresponding to their positions within the protospacer. Figure 37B shows synthetic 80 -mers with sequences matching six different genomic sites were incubated with BE1 then analyzed for base editing by HTS. For each site, the sequence of the protospacer is indicated to the right of the name of the site, with the PAM highlighted in blue. Underneath each sequence are the percentages of total DNA sequencing reads with the corresponding base. We considered a target C as "editable" if the in vitro conversion efficiency is $>10 \%$. Note that maximum yields are 50% of total DNA sequencing reads since the non-targeted strand is unaffected by BE1. Values are shown from a single experiment. Figure 37C shows HEK293T cells were transfected with plasmids expressing BE1 and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the six loci. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for BE1 at all six genomic loci. Values and error bars of all data from HEK293T cells reflect the mean and standard deviation of three independent biological replicates performed on different days. Figure 37A depicts SEQ ID NOs: 721 to 726 from top to bottom, respectively. Figure 37B depicts SEQ ID NOs: 727 to 732 from top to bottom, respectively.
[0074] Figure 38 shows base editing persists over multiple cell divisions. Cellular C to T conversion percentages by BE2 and BE3 are shown for HEK293 sites 3 and 4 in HEK293T cells before and after passaging the cells. HEK293T cells were nucleofected with plasmids expressing BE2 or BE3 and an sgRNA targeting HEK293 site 3 or 4. Three days after nucleofection, the cells were harvested and split in half. One half was subjected to HTS analysis, and the other half was allowed to propagate for approximately five cell divisions, then harvested and subjected to HTS analysis. Values and error bars reflect the mean and standard deviation of at least two biological experiments.
[0075] Figures 39A to 39C show non-target C / G mutation rates. Shown here are the C to T and G to A mutation rates at 2,500 distinct cytosines and guanines surrounding the six ontarget and 34 off-target loci tested, representing a total of $14,700,000$ sequence reads derived from approximately 1.8×10^{6} cells. Figures 39A and 39B show cellular non-target C to T and G to A conversion percentages by $\mathrm{BE} 1, \mathrm{BE} 2$, and BE 3 are plotted individually against their positions relative to a protospacer for all 2,500 cytosines/guanines. The side of the protospacer distal to the PAM is designated with positive numbers, while the side that includes the PAM is designated with negative numbers. Figure 39C shows average non-target cellular C to T and G to A conversion percentages by BE1, BE2, and BE3 are shown, as well as the highest and lowest individual conversion percentages.
[0076] Figures 40A to 40B show additional data sets of BE3-mediated correction of two disease-relevant mutations in mammalian cells. For each site, the sequence of the protospacer is indicated to the right of the name of the mutation, with the PAM highlighted in blue and the base responsible for the mutation indicated in red bold with a subscripted number corresponding to its position within the protospacer. The amino acid sequence above each disease-associated allele is shown, together with the corrected amino acid sequence following base editing in green. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. Cells were nucleofected with plasmids encoding BE3 and an appropriate sgRNA. Two days after nucleofection, genomic DNA was extracted from the nucleofected cells and analyzed by HTS to assess pathogenic mutation correction. Figure 40A shows the Alzheimer's disease-associated APOE4 allele is converted to APOE3r in mouse astrocytes by BE3 in 58.3% of total reads only when treated with the correct sgRNA. Two nearby Cs are also converted to Ts, but with no change to the predicted sequence of the resulting protein. Identical treatment of these cells with wt Cas9 and donor ssDNA results in 0.2% correction, with 26.7% indel formation. Figure 40B shows the cancer-associated p53 Y163C mutation is corrected by BE3 in 3.3% of nucleofected human breast cancer cells only when treated with the correct sgRNA. Identical treatment of these cells with wt Cas9 and donor ssDNA results in no detectable mutation correction with 8.0% indel formation. Figures 40A to 40B depict SEQ ID NOs: 733 to 740 from top to bottom, respectively.
[0077] Figure 41 shows a schematic representation of an exemplary USER (Uracil-Specific Excision Reagent) Enzyme-based assay, which may be used to test the activity of various deaminases on single-stranded DNA (ssDNA) substrates.
[0078] Figure 42 is a schematic of the pmCDA-nCas9-UGI-NLS construct and its activity at the HeK-3 site relative to the base editor (rAPOBEC1) and the negative control (untreated).
[0079] Figure 43 is a schematic of the pmCDA1-XTEN-nCas9-UGI-NLS construct and its activity at the HeK-3 site relative to the base editor (rAPOBEC1) and the negative control (untreated).
[0080] Figure 44 shows the percent of total sequencing reads with target C converted to T using cytidine deaminases (CDA) or APOBEC.
[0081] Figure 45 shows the percent of total sequencing reads with target C converted to A using deaminases (CDA) or APOBEC.
[0082] Figure 46 shows the percent of total sequencing reads with target C converted to G using deaminases (CDA) or APOBEC.
[0083] Figure 47 is a schematic of the huAPOBEC3G-XTEN-nCas9-UGI-NLS construct and its activity at the HeK-2 site relative to a mutated form
(huAPOBEC3G*(D316R_D317R)-XTEN-nCas9-UGI-NLS, the base editor (rAPOBEC1) and the negative control (untreated).
[0084] Figure 48 shows the schematic of the LacZ construct used in the selection assay of Example 7.
[0085] Figure 49 shows reversion data from different plasmids and constructs.
[0086] Figure 50 shows the verification of lacZ reversion and the purification of reverted clones.
[0087] Figure 51 is a schematic depicting a deamination selection plasmid used in Example 7.
[0088] Figure 52 shows the results of a chloramphenicol reversion assay (pmCDA1 fusion).
[0089] Figures 53A to 53B demonstrated DNA correction induction of two constructs.
[0090] Figure 54 shows the results of a chloramphenicol reversion assay (huAPOBEC3G fusion).
[0091] Figure 55 shows the activities of BE3 and HF-BE3 at EMX1 off-targets. The sequences, from top to bottom, correspond to SEQ ID NOs: 286-292, 299-301.
[0092] Figure 56 shows on-target base editing efficiencies of BE3 and HF-BE3.
[0093] Figure 57 is a graph demonstrating that mutations affect cytidine deamination with varying degrees. Combinations of mutations that each slightly impairs catalysis allow
selective deamination at one position over others. The FANCF site was GGAATC $_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{TTC}_{11}$ TGCAGCACCTGG (SEQ ID NO: 303).
[0094] Figure 58 is a schematic depicting next generation base editors.
[0095] Figure 59 is a schematic illustrating new base editors made from Cas9 variants.
[0096] Figure 60 shows the base-edited percentage of different NGA PAM sites.
[0097] Figure 61 shows the base-edited percentage of cytidines using NGCG PAM EMX (VRER BE3) and the $\mathrm{C}_{1} \mathrm{TC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{ATC}_{8} \mathrm{AC}_{10} \mathrm{ATCAACCGGT}$ (SEQ ID NO: 304) spacer.
[0098] Figure 62 shows the based-edited percentages resulting from different NNGRRT PAM sites.
[0099] Figure 63 shows the based-edited percentages resulting from different NNHRRT PAM sites.
[00100] Figures 64A to 64C show the base-edited percentages resulting from different TTTN PAM sites using Cpfl BE2. The spacers used were:

TTTCCTC $3_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{AC}_{11}$ AGGTAGAACAT (Figure 64A, SEQ ID NO: 305), TTTCC $_{1} \mathrm{C}_{2} \mathrm{TC}_{4} \mathrm{TGTC}_{8} \mathrm{C}_{9} \mathrm{AC}_{11} \mathrm{ACCCTCATCCTG}^{(F i g u r e}$ 64B, SEQ ID NO: 306), and TTTCC $_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{AGTC}_{7} \mathrm{C}_{8} \mathrm{TC}_{10} \mathrm{C}_{11} \mathrm{AC}_{13} \mathrm{AC}_{15} \mathrm{C}_{16} \mathrm{C}_{17}$ TGAAAC (Figure 64C, SEQ ID NO: 307).
[00101] Figure 65 is a schematic depicting selective deamination as achieved through kinetic modulation of cytidine deaminase point mutagenesis.
[00102] Figure 66 is a graph showing the effect of various mutations on the deamination window probed in cell culture with multiple cytidines in the spacer. The spacer used was: $\mathrm{TGC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{TC}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{TC}_{12} \mathrm{C}_{13} \mathrm{C}_{14}$ TGGCCC (SEQ ID NO: 308).
[00103] Figure 67 is a graph showing the effect of various mutations on the deamination window probed in cell culture with multiple cytidines in the spacer. The spacer used was: AGAGC $5_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{TC}_{13}$ AAAGAGA (SEQ ID NO: 309).
[00104] Figure 68 is a graph showing the effect of various mutations on the FANCF site with a limited number of cytidines. The spacer used was:

GGAATC $_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{TTC}_{11}$ TGCAGCACCTGG (SEQ ID NO: 303). Note that the triple mutant (W90Y, R126E, R132E) preferentially edits the cytidine at the sixth position.
[00105] Figure 69 is a graph showing the effect of various mutations on the HEK3 site with a limited number of cytidines. The spacer used was:
GGCC $_{4} \mathrm{C}_{5}$ AGACTGAGCACGTGATGG (SEQ ID NO: 310). Note that the double and triple mutants preferentially edit the cytidine at the fifth position over the cytidine in the fourth position.
[00106] Figure 70 is a graph showing the effect of various mutations on the EMX1 site with a limited number of cytidines. The spacer used was:
GAGTC $_{5} \mathrm{C}_{6}$ GAGCAGAAGAAGAAGGG (SEQ ID NO: 311). Note that the triple mutant only edits the cytidine at the fifth position, not the sixth.
[00107] Figure 71 is a graph showing the effect of various mutations on the HEK2 site with a limited number of cytidines. The spacer used was:
$\mathrm{GAAC}_{4} \mathrm{AC}_{6} \mathrm{AAAGCATAGACTGCGGG}$ (SEQ ID NO: 312).
[00108] Figure 72 shows on-target base editing efficiencies of BE3 and BE3 comprising mutations W90Y R132E in immortalized astrocytes.
[00109] Figure 73 depicts a schematic of three Cpf1 fusion constructs.
[00110] Figures 74 shows a comparison of plasmid delivery of BE3 and HF-BE3 (EMX1, FANCF, and RNF2).
[00111] Figure 75 shows a comparison of plasmid delivery of BE3 and HF-BE3 (HEK3 and HEK 4).
[00112] Figure 76 shows off-target editing of EMX-1 at all 10 sites.
[00113] Figure 77 shows deaminase protein lipofection to HEK cells using a GAGTCCGAGCAGAAGAAGAAG (SEQ ID NO: 313) spacer. The EMX-1 on-target and EMX-1 off target site 2 were examined.
[00114] Figure 78 shows deaminase protein lipofection to HEK cells using a GGAATCCCTTCTGCAGCACCTGG (SEQ ID NO: 314) spacer. The FANCF on target and FANCF off target site 1 were examined.
[00115] Figure 79 shows deaminase protein lipofection to HEK cells using a GGCCCAGACTGAGCACGTGA (SEQ ID NO: 315) spacer. The HEK-3 on target site was examined.
[00116] Figure 80 shows deaminase protein lipofection to HEK cells using a GGCACTGCGGCTGGAGGTGGGGG (SEQ ID NO: 316) spacer. The HEK-4 on target, off target site 1 , site 3 , and site 4 .
[00117] Figure 81 shows the results of an in vitro assay for sgRNA activity for sgHR_13 (GTCAGGTCGAGGGTTCTGTC (SEQ ID NO: 317) spacer; C8 target: G51 to STOP), sgHR_14 (GGGCCGCAGTATCCTCACTC (SEQ ID NO: 318) spacer; C7 target; C7 target: Q68 to STOP), and sgHR_15 (CCGCCAGTCCCAGTACGGGA (SEQ ID NO: 319) spacer; C10 and C11 are targets: W239 or W237 to STOP).
[00118] Figure 82 shows the results of an in vitro assay for sgHR_17
(CAACCACTGCTCAAAGATGC (SEQ ID NO: 320) spacer; C4 and C5 are targets: W410
to STOP), and sgHR_16 (CTTCCAGGATGAGAACACAG (SEQ ID NO: 321) spacer; C4 and C5 are targets: W273 to STOP).
[00119] Figure 83 shows the direct injection of BE3 protein complexed with sgHR_13 in zebrafish embryos.
[00120] Figure 84 shows the direct injection of BE3 protein complexed with sgHR_16 in zebrafish embryos.
[00121] Figure 85 shows the direct injection of BE3 protein complexed with sgHR_17 in zebrafish embryos.
[00122] Figure 86 shows exemplary nucleic acid changes that may be made using base editors that are capable of making a cytosine to thymine change.
[00123] Figure 87 shows an illustration of apolipoprotein E (APOE) isoforms, demonstrating how a base editor (e.g., BE3) may be used to edit one APOE isoform (e.g., APOE4) into another APOE isoform (e.g., APOE3r) that is associated with a decreased risk of Alzheimer's disease.
[00124] Figure 88 shows base editing of APOE4 to APOE3r in mouse astrocytes.
[00125] Figure 89 shows base editing of PRNP to cause early truncation of the protein at arginine residue 37.
[00126] Figure 90 shows that knocking out UDG (which UGI inhibits) dramatically improves the cleanliness of efficiency of C to T base editing.
[00127] Figure 91 shows that use of a base editor with the nickase but without UGI leads to a mixture of outcomes, with very high indel rates.
[00128] Figures 92A to 92G show that SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 mediate efficient base editing at target sites containing non-NGG PAMs in human cells. Figure 92A shows base editor architectures using S. pyogenes and S. aureus Cas9. Figure 92B shows recently characterized Cas9 variants with alternate or relaxed PAM requirements. Figures 92C and 92D show HEK293T cells treated with the base editor variants shown as described in Example 12. The percentage of total DNA sequencing reads (with no enrichment for transfected cells) with C converted to T at the target positions indicated are shown. The PAM sequence of each target tested is shown below the X-axis. The charts show the results for SaBE 3 and SaKKH-BE3 at genomic loci with NNGRRT PAMs (Figure 92C), SaBE3 and SaKKH-BE3 at genomic loci with NNNRRT PAMs (Figure 92D), VQR-BE3 and EQR-BE3 at genomic loci with NGAG PAMs (Figure 92E), and with NGAH PAMs (Figure 92F), and VRER-BE3 at genomic loci with NGCG PAMs (Figure 92G).

Values and error bars reflect the mean and standard deviation of at least two biological replicates.
[00129] Figures 93A to 93 C demonstrate that base editors with mutations in the cytidine deaminase domain exhibit narrowed editing windows. Figures 93A to 93C show HEK293T cells transfected with plasmids expressing mutant base editors and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the indicated loci. The percentage of total DNA sequencing reads (without enrichment for transfected cells) with C changed to T at the target positions indicated are shown for the EMX1 site, HEK293 site 3, FANCF site, HEK293 site 2, site A, and site B loci. Figure 93A illustrates certain cytidine deaminase mutations which narrow the base editing window. See Figure 98 for the characterization of additional mutations. Figure 93B shows the effect of cytidine deaminase mutations which effect the editing window width on genomic loci. Combining beneficial mutations has an additive effect on narrowing the editing window. Figure 93C shows that YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 effect the product distribution of base editing, producing predominantly singly-modified products in contrast with BE3. Values and error bars reflect the mean and standard deviation of at least two biological replicates.
[00130] Figures 94A and 94B show genetic variants from ClinVar that in principle can be corrected by the base editors developed in this work. The NCBI ClinVar database of human genetic variations and their corresponding phenotypes was searched for genetic diseases that in theory can be corrected by base editing. Figure 94A demonstrates improvement in base editing targeting scope among all pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations in the ClinVar database through the use of base editors with altered PAM specificities. The white fractions denote the proportion of pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations accessible on the basis of the PAM requirements of either BE3, or BE3 together with the five modified-PAM base editors developed in this work. Figure 94B shows improvement in base editing targeting scope among all pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations in the ClinVar database through the use of base editors with narrowed activity windows. BE3 was assumed to edit Cs in positions $4-8$ with comparable efficiency as shown in Figures 93A to 93C. YEE-BE3 was assumed to edit with C5>C6>C7>others preference within its activity window. The white fractions denote the proportion of pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations that can be edited BE3 without comparable editing of other Cs (left), or that can be edited BE3 or YEE-BE3 without comparable editing of other Cs (right).
[00131] Figures 95A to 95 C show the effect of truncated guide RNAs on base editing window width. HEK293T cells were transfected with plasmids expressing BE3 and sgRNAs
of different 5' truncation lengths. The treated cells were analyzed as described in the Examples. Figure 95A shows protospacer and PAM sequence (top, SEQ ID NO: 4270) and cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, at a site within the EMX1 genomic locus. At this site, the base editing window was altered through the use of a $17-n t$ truncated gRNA.

Figure 95B shows protospacer and PAM sequences (top, SEQ ID NO: 4270) and cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, at sites within the HEK site 3 and site 4 genomic loci. At these sites, no change in the base editing window was observed, but a linear decrease in editing efficiency for all substrate bases as the sgRNA is truncated was noted.
[00132] Figure 96 shows the effect of APOBEC1-Cas9 linker lengths on base editing window width. HEK293T cells were transfected with plasmids expressing base editors with rAPOBEC1-Cas9 linkers of XTEN, GGS, (GGS) 3_{3} (SEQ ID NO: 596), (GGS) $)_{5}$ (SEQ ID NO: 4271), or (GGS) $)_{7}$ (SEQ ID NO: 597) and an sgRNA. The treated cells were analyzed as described in the Examples. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for the various base editors with different linkers.
[00133] Figures 97A to 97C show the effect of rAPOBEC mutations on base editing window width. Figure 97C shows HEK293T cells transfected with plasmids expressing an sgRNA targeting either Site A or Site B and the BE3 point mutants indicated. The treated cells were analyzed as described in the Examples. All C's in the protospacer and within three basepairs of the protospacer are displayed and the cellular C to T conversion percentages are shown. The 'editing window widths', defined as the calculated number of nucleotides within which editing efficiency exceeds the half-maximal value, are displayed for all tested mutants.
[00134] Figure 98 shows the effect of APOBEC1 mutation son product distributions of base editing in mammalian cells. HEK293T cells were transfected with plasmids expressing BE3 or its mutants and an appropriate sgRNAs. The treated cells were analyzed as described in the Examples. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown (left). Percent of total sequencing reads containing the C to T conversion is shown on the right. The BE3 point mutants do not significantly affect base editing efficiencies at HEK site 4 , a site with only one target cytidine.
[00135] Figure 99 shows a comparison of on-target editing plasma delivery in BE3 and HF-BE3.
[00136] Figure 100 shows a comparison of on-target editing in protein and plasma delivery of BE3.
[00137] Figure 101 shows a comparison of on-target editing in protein and plasma devliery of $\mathrm{HF}-\mathrm{BE} 3$.
[00138] Figure 102 shows that both lipofection and installing HF mutations decrease offtarget deamination events. The diamond indicates no off targets were detected and the specificity ratio was set to 100 .
[00139] Figure 103 shows in vitro C to T editing on a synthetic substrate with Cs placed at even positions in the protospacer (NNNNTC ${ }_{2} \mathrm{TC}_{4} \mathrm{TC}_{6} \mathrm{TC}_{8} \mathrm{TC}_{10} \mathrm{TC}_{12} \mathrm{TC}_{14} \mathrm{TC}_{16} \mathrm{TC}_{18} \mathrm{TC}_{20} \mathrm{NGG}$, SEQ ID NO: 4272).
[00140] Figure 104 shows in vitro C to T editing on a synthetic substrate with Cs placed at odd positions in the protospacer (NNNNTC $2 \mathrm{TC}_{4} \mathrm{TC}_{6} \mathrm{TC}_{8} \mathrm{TC}_{10} \mathrm{TC}_{12} \mathrm{TC}_{14} \mathrm{TC}_{16} \mathrm{TC}_{18} \mathrm{TC}_{20} \mathrm{NGG}$, SEQ ID NO: 4272).
[00141] Figure 105 includes two graphs depicting the specificity ratio of base editing with plasmid vs. protein delivery.
[00142] Figures 106A to 106B shows BE3 activity on non-NGG PAM sites. HEK293T cells were transfected with plasmids expressing BE3 and appropriate sgRNA. The treated cells were analyzed as described in the Examples. Figure 106A shows BE3 activity on sites can be efficiently targeted by SaBE 3 or SaKKH-BE3. BE3 shows low but significant activity on the NAG PAM. Figure 106B shows BE3 has significantly reduced editing at sites with NGA or NGCG PAMs, in contrast to VQR-BE3 or VRER-BE3.
[00143] Figures 107A to 107B show the effect of APOBEC1 mutations on VQR-BE3 and SaKKH-BE3. HEK293T cells were transfected with plasmids expressing VQR-BE3, SaKKH-BE3 or its mutants and an appropriate sgRNAs. The treated cells were analyzed as described in the Methods. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown. Figure 107A shows that the window-modulating mutations can be applied to VQR-BE3 to enable selective base editing at sites targetable by NGA PAM. Figure 107B shows that, when applied to SaKKH-BE3, the mutations cause overall decrease in base editing efficiency without conferring base selectivity within the target window.
[00144] Figure 108 shows a schematic representation of nucleotide editing. The following abbreviations are used: (MMR) - mismatch repair, (BE3 Nickase) - refers to base editor 3, which comprises a Cas9 nickase domain, (UGI) - uracil glycosylase inhibitor, UDG) - uracil DNA glycosylase, (APOBEC) - refers to an APOBEC cytidine deaminase.

DEFINITIONS

[00145] As used herein and in the claims, the singular forms "a," "an," and "the" include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to "an agent" includes a single agent and a plurality of such agents.
[00146] The term "Cas9" or "Cas9 nuclease" refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3 -aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed $3^{\prime}-5$ ' exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs ("sgRNA", or simply "gNRA") can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821(2012), the entire contents of which is hereby incorporated by reference. Cas 9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., "Complete genome sequence of an M1 strain of Streptococcus pyogenes." Ferretti et al., J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(2011); and "A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816821 (2012), the entire contents of each of which are incorporated herein by reference). Cas 9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, "The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems" (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase.
[00147] A nuclease-inactivated Cas9 protein may interchangeably be referred to as a "dCas9" protein (for nuclease-"dead" Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression" (2013) Cell. 28;152(5):1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the $\mathrm{RuvC1}$ subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28;152(5):1173-83 (2013)). In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as "Cas9 variants." A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98\% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have 1, 2, 3, $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,21,24,25,26,27,28,29,30$, $31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50$ or more amino acid
changes compared to wild type Cas9. In some embodiments, the Cas 9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95\% identical, at least about 96\% identical, at least about 97\% identical, at least about 98\% identical, at least about 99\% identical, at least about 99.5\% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.
[00148] In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least $100,150,200,250,300,350,400,450,500,550,600$, $650,700,750,800,850,900,950,1000,1050,1100,1150,1200,1250$, or at least 1300 amino acids in length. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO:1 (nucleotide); SEQ ID NO:2 (amino acid)).
ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGG GCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAA ATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGGCAG TGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATAC ACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCG AAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAG ACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTA TCATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACT GATAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTC GTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAA ACTATTTATCCAGTTGGTACAAATCTACAATCAATTATTTGAAGAAAACCCTATT AACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCA AGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAGAAATGGCTTG TTTGGGAATCTCATTGCTTTGTCATTGGGATTGACCCCTAATTTTAAATCAAATTT TGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGAT TTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAG CTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATAGTGA AATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAGCGCTACGATGAACATCAT CAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATA AAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGG AGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGAT GGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAA CGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATG CTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAA GATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTG

GCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATG GAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGC ATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGT TTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTA CTGAGGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTG TTGATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAG ATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGA TAGATTTAATGCTTCATTAGGCGCCTACCATGATTTGCTAAAAATTATTAAAGAT AAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAA CATTGACCTTATTTGAAGATAGGGGGATGATTGAGGAAAGACTTAAAACATATG CTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGG TTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGC AAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGC AGCTGATCCATGATGATAGTTTGACATTTAAAGAAGATATTCAAAAAGCACAGG TGTCTGGACAAGGCCATAGTTTACATGAACAGATTGCTAACTTAGCTGGCAGTCC TGCTATTAAAAAAGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAA GTAATGGGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAG ACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGA AGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATAC TCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTACAAAATGGAAGAGACATG TATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCACA TTGTTCCACAAAGTTTCATTAAAGACGATTCAATAGACAATAAGGTACTAACGCG TTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAA AAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACG TAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAA GCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGG CACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTAT TCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAA GATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATG CGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGA ATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCT AAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATA TCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAAC GCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGC GAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAA GAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAG AAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGG TGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAA AAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAATT ATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGGAT ATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGA GTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGG AAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCAT TATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTG GAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTA AGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAA ACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTAC GTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATC GTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATC

CATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA (SEQ ID NO:1)

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGE TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE RHPIFGNIVDEVAYHEKYPTIYHLRKKLADSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNSDVDKLFIQLVQIYNQLFEENPINASRVDAKAILSARLSKSRRLENLIAQLPG EKRNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAD LFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHALLRRQEDFYPFLKDNREKIEKLTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEER LKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR NFMQLIHDDSLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKGILQTVKIVDELVK VMGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ NEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFIKDDSIDNKVLTRSDKNR GKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQ LVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKAT AKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQ VNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK VEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELE NGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA AFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO:2) (single underline: HNH domain; double underline: RuvC domain)
[00149] In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:3
(nucleotide) and/or SEQ ID NO: 4 (amino acid):
ATGGATAAAAAGTATTCTATTGGTTTAGACATCGGCACTAATTCCGTTGGATGGG CTGTCATAACCGATGAATACAAAGTACCTTCAAAGAAATTTAAGGTGTTGGGGA ACACAGACCGTCATTCGATTAAAAAGAATCTTATCGGTGCCCTCCTATTCGATAG TGGCGAAACGGCAGAGGCGACTCGCCTGAAACGAACCGCTCGGAGAAGGTATAC ACGTCGCAAGAACCGAATATGTTACTTACAAGAAATTTTTAGCAATGAGATGGCC AAAGTTGACGATTCTTTCTTTCACCGTTTGGAAGAGTCCTTCCTTGTCGAAGAGG ACAAGAAACATGAACGGCACCCCATCTTTGGAAACATAGTAGATGAGGTGGCAT ATCATGAAAAGTACCCAACGATTTATCACCTCAGAAAAAAGCTAGTTGACTCAA CTGATAAAGCGGACCTGAGGTTAATCTACTTGGCTCTTGCCCATATGATAAAGTT CCGTGGGCACTTTCTCATTGAGGGTGATCTAAATCCGGACAACTCGGATGTCGAC AAACTGTTCATCCAGTTAGTACAAACCTATAATCAGTTGTTTGAAGAGAACCCTA TAAATGCAAGTGGCGTGGATGCGAAGGCTATTCTTAGCGCCCGCCTCTCTAAATC CCGACGGCTAGAAAACCTGATCGCACAATTACCCGGAGAGAAGAAAAATGGGTT GTTCGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTTTAAGTCGAAC TTCGACTTAGCTGAAGATGCCAAATTGCAGCTTAGTAAGGACACGTACGATGAC GATCTCGACAATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTTTTGG CTGCCAAAAACCTTAGCGATGCAATCCTCCTATCTGACATACTGAGAGTTAATAC TGAGATTACCAAGGCGCCGTTATCCGCTTCAATGATCAAAAGGTACGATGAACAT

CACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCTGAGAAAT ATAAGGAAATATTCTTTGATCAGTCGAAAAACGGGTACGCAGGTTATATTGACG GCGGAGCGAGTCAAGAGGAATTCTACAAGTTTATCAAACCCATATTAGAGAAGA TGGATGGGACGGAAGAGTTGCTTGTAAAACTCAATCGCGAAGATCTACTGCGAA AGCAGCGGACTTTCGACAACGGTAGCATTCCACATCAAATCCACTTAGGCGAATT GCATGCTATACTTAGAAGGCAGGAGGATTTTTATCCGTTCCTCAAAGACAATCGT GAAAAGATTGAGAAAATCCTAACCTTTCGCATACCTTACTATGTGGGACCCCTGG CCCGAGGGAACTCTCGGTTCGCATGGATGACAAGAAAGTCCGAAGAAACGATTA CTCCATGGAATTTTGAGGAAGTTGTCGATAAAGGTGCGTCAGCTCAATCGTTCAT CGAGAGGATGACCAACTTTGACAAGAATTTACCGAACGAAAAAGTATTGCCTAA GCACAGTTTACTTTACGAGTATTTCACAGTGTACAATGAACTCACGAAAGTTAAG TATGTCACTGAGGGCATGCGTAAACCCGCCTTTCTAAGCGGAGAACAGAAGAAA GCAATAGTAGATCTGTTATTCAAGACCAACCGCAAAGTGACAGTTAAGCAATTG AAAGAGGACTACTTTAAGAAAATTGAATGCTTCGATTCTGTCGAGATCTCCGGGG TAGAAGATCGATTTAATGCGTCACTTGGTACGTATCATGACCTCCTAAAGATAAT TAAAGATAAGGACTTCCTGGATAACGAAGAGAATGAAGATATCTTAGAAGATAT AGTGTTGACTCTTACCCTCTTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAA ACATACGCTCACCTGTTCGACGATAAGGTTATGAAACAGTTAAAGAGGCGTCGCT ATACGGGCTGGGGACGATTGTCGCGGAAACTTATCAACGGGATAAGAGACAAGC AAAGTGGTAAAACTATTCTCGATTTTCTAAAGAGCGACGGCTTCGCCAATAGGAA CTTTATGCAGCTGATCCATGATGACTCTTTAACCTTCAAAGAGGATATACAAAAG GCACAGGTTTCCGGACAAGGGGACTCATTGCACGAACATATTGCGAATCTTGCTG GTTCGCCAGCCATCAAAAAGGGCATACTCCAGACAGTCAAAGTAGTGGATGAGC TAGTTAAGGTCATGGGACGTCACAAACCGGAAAACATTGTAATCGAGATGGCAC GCGAAAATCAAACGACTCAGAAGGGGCAAAAAAACAGTCGAGAGCGGATGAAG AGAATAGAAGAGGGTATTAAAGAACTGGGCAGCCAGATCTTAAAGGAGCATCCT GTGGAAAATACCCAATTGCAGAACGAGAAACTTTACCTCTATTACCTACAAAATG GAAGGGACATGTATGTTGATCAGGAACTGGACATAAACCGTTTATCTGATTACGA CGTCGATCACATTGTACCCCAATCCTTTTTGAAGGACGATTCAATCGACAATAAA GTGCTTACACGCTCGGATAAGAACCGAGGGAAAAGTGACAATGTTCCAAGCGAG GAAGTCGTAAAGAAAATGAAGAACTATTGGCGGCAGCTCCTAAATGCGAAACTG ATAACGCAAAGAAAGTTCGATAACTTAACTAAAGCTGAGAGGGGTGGCTTGTCT GAACTTGACAAGGCCGGATTTATTAAACGTCAGCTCGTGGAAACCCGCCAAATC ACAAAGCATGTTGCACAGATACTAGATTCCCGAATGAATACGAAATACGACGAG AACGATAAGCTGATTCGGGAAGTCAAAGTAATCACTTTAAAGTCAAAATTGGTG TCGGACTTCAGAAAGGATTTTCAATTCTATAAAGTTAGGGAGATAAATAACTACC ACCATGCGCACGACGCTTATCTTAATGCCGTCGTAGGGACCGCACTCATTAAGAA ATACCCGAAGCTAGAAAGTGAGTTTGTGTATGGTGATTACAAAGTTTATGACGTC CGTAAGATGATCGCGAAAAGCGAACAGGAGATAGGCAAGGCTACAGCCAAATA CTTCTTTTATTCTAACATTATGAATTTCTTTAAGACGGAAATCACTCTGGCAAACG GAGAGATACGCAAACGACCTTTAATTGAAACCAATGGGGAGACAGGTGAAATCG TATGGGATAAGGGCCGGGACTTCGCGACGGTGAGAAAAGTTTTGTCCATGCCCC AAGTCAACATAGTAAAGAAAACTGAGGTGCAGACCGGAGGGTTTTCAAAGGAAT CGATTCTTCCAAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAAGGACTGGG ACCCGAAAAAGTACGGTGGCTTCGATAGCCCTACAGTTGCCTATTCTGTCCTAGT AGTGGCAAAAGTTGAGAAGGGAAAATCCAAGAAACTGAAGTCAGTCAAAGAAT TATTGGGGATAACGATTATGGAGCGCTCGTCTTTTGAAAAGAACCCCATCGACTT CCTTGAGGCGAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATTAAACTACC AAAGTATAGTCTGTTTGAGTTAGAAAATGGCCGAAAACGGATGTTGGCTAGCGC CGGAGAGCTTCAAAAGGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTT

CCTGTATTTAGCGTCCCATTACGAGAAGTTGAAAGGTTCACCTGAAGATAACGAA CAGAAGCAACTTTTTGTTGAGCAGCACAAACATTATCTCGACGAAATCATAGAGC AAATTTCGGAATTCAGTAAGAGAGTCATCCTAGCTGATGCCAATCTGGACAAAGT ATTAAGCGCATACAACAAGCACAGGGATAAACCCATACGTGAGCAGGCGGAAA ATATTATCCATTTGTTTACTCTTACCAACCTCGGCGCTCCAGCCGCATTCAAGTAT TTTGACACAACGATAGATCGCAAACGATACACTTCTACCAAGGAGGTGCTAGAC GCGACACTGATTCACCAATCCATCACGGGATTATATGAAACTCGGATAGATTTGT CACAGCTTGGGGGTGACGGATCCCCCAAGAAGAAGAGGAAAGTCTCGAGCGACT ACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACG ATGACAAGGCTGCAGGA (SEQ ID NO:3)

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPLEKMDGTEELLVKLNREDLLRKQR TFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO:4) (single underline: HNH domain; double underline: RuvC domain)
[00150] In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 8 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 10 (amino acid).

ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGG GCGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAA ATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAG TGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATAC ACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCG AAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAG ACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTA TCATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACT

GATAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTC GTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAA ACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCTATT AACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCA AGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGCTTA TTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTT TGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGAT TTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAG CTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATACTGA AATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCAT CAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATA AAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGG AGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGAT GGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAA CGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATG CTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAA GATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTG GCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATG GAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGC ATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGT TTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTA CTGAAGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTG TTGATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAG ATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGA TAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAAAAATTATTAAAGAT AAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAA CATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAAACATATG CTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGG TTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGC AAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGC AGCTGATCCATGATGATAGTTTGACATTTAAAGAAGACATTCAAAAAGCACAAG TGTCTGGACAAGGCGATAGTTTACATGAACATATTGCAAATTTAGCTGGTAGCCC TGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAA GTAATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAAT CAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGA AGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAA TACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCAAAATGGAAGAGAC ATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATC ACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTCTTAAC GCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGT CAAAAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCA ACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGAT AAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATG TGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAAC

TTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCG AAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCAT GATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAAC TTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATT GCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTA ATATCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAA ACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGG GCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTC AAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAA AGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATAT GGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGG AAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAA TTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGG ATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTT GAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAA GGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTC ATTATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTG TGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTC TAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAAC AAACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTT ACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTG ATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCA ATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGAC TGA (SEQ ID NO: 8)

MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQR TFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK

ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO:
10) (single underline: HNH domain; double underline: RuvC domain)
[00151] In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1), Listeria inпосиа (NCBI Ref: NP_472073.1), Campylobacter jejuni (NCBI Ref: YP_002344900.1) or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 5.
[00152] In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and/or H840A mutation.
dCas9 (D10A and H840A):
MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDS GETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSR FAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYF TVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIEC FDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEE RLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL VKVMGRHKPENIVIEMARENQTTQKGOKNSRERMKRIEEGIKELGSQILKEHPVE NTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKV LTRSDKNRGKSDNVPSEEVVKKMKNYWROLLNAKLITQRKFDNLTKAERGGLS ELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR

Abstract

KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF ATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSP TVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLI IKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN EQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIH LFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 9) (single underline: HNH domain; double underline: RuvC domain). [00153] In some embodiments, the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided in SEQ ID NO: 10, or at corresponding positions in any of the amino acid sequences provided in SEQ ID NOs: 11-260. Without wishing to be bound by any particular theory, the presence of the catalytic residue H 840 restores the acvitity of the Cas 9 to cleave the non-edited (e.g., nondeaminated) strand containing a G opposite the targeted C. Restoration of H840 (e.g., from A840) does not result in the cleavage of the target strand containing the C. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a G to A change on the non-edited strand. A schematic representation of this process is shown in Figure 108. Briefly, the C of a C-G basepair can be deaminated to a U by a deaminase, e.g., an APOBEC deamonase. Nicking the non-edited strand, having the G, facilitates removal of the G via mismatch repair mechanisms. UGI inhibits UDG, which prevents removal of the U.

[00154] In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H820, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 10) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98\% identical, at least about 99\% identical, at least about 99.5\% identical, or at least about 99.9\% identical to SEQ ID NO: 10. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 10) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 10 , by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino
acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.
[00155] In some embodiments, Cas9 fusion proteins as provided herein comprise the fulllength amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.
[00156] In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innoсиа (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1).
[00157] The term "deaminase" or "deaminase domain," as used herein, refers to a protein or enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase domain, catalyzing the hydrolytic deamination of cytosine to uracil. In some embodiments, the deaminase or deaminase domain is a naturally-occuring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occuring deaminase from an organism, that does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occuring deaminase from an organism.
[00158] The term "effective amount," as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nuclease, a deaminase, a recombinase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.
[00159] The term "linker," as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of anucleic-acid editing protein. In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28$, $29,30,30-35,35-40,40-45,45-50,50-60,60-70,70-80,80-90,90-100,100-150$, or $150-200$ amino acids in length. Longer or shorter linkers are also contemplated.
[00160] The term "mutation," as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by,
for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual ($4^{\text {th }}$ ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
[00161] The terms "nucleic acid" and "nucleic acid molecule," as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, "nucleic acid" refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, "nucleic acid" refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms "oligonucleotide" and "polynucleotide" can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, "nucleic acid" encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms "nucleic acid," "DNA," "RNA," and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5^{\prime} to 3^{\prime} direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7deazaadenosine, 7 -deazaguanosine, 8 -oxoadenosine, 8 -oxoguanosine, $\mathrm{O}(6)$-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2^{\prime}-fluororibose, ribose, 2^{\prime}-deoxyribose,
arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and $5^{\prime}-\mathrm{N}$ phosphoramidite linkages).
[00162] The term "nucleic acid editing domain," as used herein refers to a protein or enzyme capable of making one or more modifications (e.g., deamination of a cytidine residue) to a nucleic acid (e.g., DNA or RNA). Exemplary nucleic acid editing domains include, but are not limited to a deaminase, a nuclease, a nickase, a recombinase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments the nucleic acid editing domain is a deaminase (e.g., a cytidine deaminase, such as an APOBEC or an AID deaminase).
[00163] The term "proliferative disease," as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.
[00164] The terms "protein," "peptide," and "polypeptide" are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term "fusion protein" as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an "amino-terminal fusion protein" or a "carboxy-terminal fusion protein," respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas 9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a
nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual ($4^{\text {th }}$ ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.
[00165] The term "RNA-programmable nuclease," and "RNA-guided nuclease" are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though "gRNA" is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas 9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), the entire contents of which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S.S.N. 61/874,682, filed September 6, 2013, entitled "Switchable Cas9 Nucleases And Uses Thereof," and U.S. Provisional Patent Application, U.S.S.N. 61/874,746, filed September 6, 2013, entitled "Delivery System For Functional Nucleases," the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2), and may be referred to as an "extended gRNA." For example, an extended gRNA will, e.g., bind two or more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as
described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNAprogrammable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example Cas9 (Csn1) from Streptococcus pyogenes (see, e.g., "Complete genome sequence of an M1 strain of Streptococcus pyogenes." Ferretti J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(2011); and "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference.
[00166] Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNAprogrammed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).
[00167] The term "subject," as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some
embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development.
[00168] The term "target site" refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase, (e.g., a dCas9deaminase fusion protein provided herein).
[00169] The terms "treatment," "treat," and "treating," refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms "treatment," "treat," and "treating" refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
[00170] The term "recombinant" as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.
[00171] The term "nucleobase editors (NBEs)" or "base editors (BEs)," as used herein, refers to the Cas9 fusion proteins described herein. In some embodiments, the fusion protein comprises a nuclease-inactive $\operatorname{Cas} 9$ (dCas9) fused to a deaminase. In some embodiments, the fusion protein comprises a Cas 9 nickase fused to a deaminase. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 fused to a deaminase and further fused to a UGI domain. In some embodiments, the fusion protein comprises a Cas9 nickase fused to a deaminase and further fused to a UGI domain. In some embodiments, the dCas9 of the fusion protein comprises a D10A and a H840A mutation of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260, which inactivates nuclease activity
of the Cas9 protein. In some embodiments, the fusion protein comprises a D10A mutation and comprises a histidine at residue 840 of SEQ ID NO: 10 , or a corresponding mutation in any of SEQ ID NOs: 11-260, which renders Cas9 capable of cleaving only one strand of a nucleic acid duplex. An example of a Cas9 nickase is shown below in SEQ ID NO: 674. The terms "nucleobase editors (NBEs)" and "base editors (BEs)" may be used interchangeably.
[00172] The term "uracil glycosylase inhibitor" or "UGI," as used herein, refers to a protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme.
[00173] The term "Cas9 nickase," as used herein, refers to a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position H840 of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 674. Such a Cas9 nickase has an active HNH nuclease domain and is able to cleave the non-targeted strand of DNA, i.e., the strand bound by the gRNA. Further, such a Cas9 nickase has an inactive RuvC nuclease domain and is not able to cleave the targeted strand of the DNA, i.e., the strand where base editing is desired.
[00174] Exemplary Cas9 nickase (Cloning vector pPlatTET-gRNA2; Accession No. BAV54124).

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQR TFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK

Abstract

NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO:

 674)
DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

[00175] Some aspects of this disclosure provide fusion proteins that comprise a domain capable of binding to a nucleotide sequence (e.g., a Cas9, or a Cpf1 protein) and an enzyme domain, for example, a DNA-editing domain, such as, e.g., a deaminase domain. The deamination of a nucleobase by a deaminase can lead to a point mutation at the respective residue, which is referred to herein as nucleic acid editing. Fusion proteins comprising a Cas9 variant or domain and a DNA editing domain can thus be used for the targeted editing of nucleic acid sequences. Such fusion proteins are useful for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject. Typically, the Cas9 domain of the fusion proteins described herein does not have any nuclease activity but instead is a Cas 9 fragment or a dCas9 protein or domain. Methods for the use of Cas9 fusion proteins as described herein are also provided.

Cas 9 domains of Nucleobase Editors

[00176] Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nucleasae inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises
any one of the amino acid sequences as set forth in SEQ ID NOs: 10-263. In some embodiments the Cas 9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263. In some embodiments, the Cas9 domain comprises an amino acid sequence that has $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,22,21,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$, $40,41,42,43,44,45,46,47,48,49,50$ or more or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10 , at least 15 , at least 20 , at least 30 , at leat 40, at least 50 , at least 60 , at least 70 , at least 80 , at least 90 , at least 100 , at least 150, at least 200, at least 250 , at least 300 , at least 350 , at least 400 , at least 500 , at least 600 , at least 700 , at least 800 , at least 900 , at least 1000 , at least 1100 , or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263.
[00177] In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D 10 X mutation and a H840X mutation of the amino acid sequence set forth in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260 , wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 263 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).
MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE

KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQR TFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 263; see, e.g., Qi et al., Repurposing CRISPR as an RNA-guided platform for sequencespecific control of gene expression. Cell. 2013; 152(5):1173-83, the entire contents of which are incorporated herein by reference)
[00178] Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and

D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas 9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,21,24,25,26,27,28$,
$29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50$ or more or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10 , at least 15 , at least 20 , at least 30 , at leat 40 , at least 50 , at least 60 , at least 70 , at least 80 , at least 90, at least 100 , at least 150 , at least 200 , at least 250 , at least 300 , at least 350 , at least 400, at least 500, at least 600, at least 700, at least 800 , at least 900 , at least 1000, at least 1100 , or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263.
[00179] In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas 9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas 9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840 of SEQ ID NO: 10, or a mutation in any of SEQ ID NOs: 11-260. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 674. In some embodiments the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10 of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11260. In some embodiments the Cas 9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas 9 nickases provided herein. Additional suitable Cas 9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.

Cas9 Domains with Reduced PAM Exclusivity

[00180] Some aspects of the disclosure provide Cas9 domains that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion
proteins provided herein may need to be placed at a precise location, for example where a target base is placed within a 4 base region (e.g., a "deamination window"), which is approximately 15 bases upstream of the PAM. See Komor, A.C., et al., "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage" Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas 9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., "Engineered CRISPR-Cas9 nucleases with altered PAM specificities" Nature 523, 481-485 (2015); and Kleinstiver, B. P., et al., "Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition" Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference.
[00181] In some embodiments, the Cas9 domain is a Cas9 domain from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas 9 , a nuclease inactive SaCas 9 (SaCas 9 d), or a SaCas 9 nickase (SaCas 9 n). In some embodiments, the SaCas9 comprises the amino acid sequence SEQ ID NO: 4273. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 4273, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for N . In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 4273, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas 9 n domain can bind to a nucleic acid seuqnce having a non-canonical PAM. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas 9 n domain can bind to a nucleic acid sequence having a NNGRRT PAM sequence. In some embodiments, the SaCas9 domain comprises one or more of a E781X, a N967X, and a R1014X mutation of SEQ ID NO: 4273, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 4273, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SaCas9 domain comprises a

E781K, a N967K, or a R1014H mutation of SEQ ID NO: 4273, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
[00182] In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 4273-4275. In some embodiments, the Cas 9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 4273-4275. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 4273-4275.

Exemplary SaCas9 sequence

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTS DYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWY EMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENV FKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAE LLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDEL WHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKK YGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKL HDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKG NRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFIN RNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGY KHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFIT PHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDN DKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYS KKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKF VTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIG VNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVK SKKHPQIIKKG (SEQ ID NO: 4273)

Residue N579 of SEQ ID NO: 4273, which is underlined and in bold, may be mutated (e.g., to a A579) to yield a SaCas9 nickase.

Exemplary SaCas9n sequence

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTS DYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWY EMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENV FKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAE LLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDEL WHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKK YGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKL HDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKG NRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFIN RNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGY KHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFIT PHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDN DKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYS KKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKF VTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIG VNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVK SKKHPQIIKKG (SEQ ID NO: 4274).

Residue A579 of SEQ ID NO: xx, which can be mutated from N579 of SEQ ID NO: 4274 to yield a SaCas9 nickase, is underlined and in bold.

Exemplary SaKKH Cas9

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTS DYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWY EMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENV FKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAE LLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDEL WHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKK YGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKL HDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKG

NRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFIN RNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGY KHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFIT PHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLNGLYDKD NDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKY SKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYK FVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYKNDLIKINGELYRVI GVNNDLLNRIEVNMIDITYREYLENMNDKRPP $\underline{H} I I K T I A S K T Q S I K K Y S T D I L G N L Y E V ~$ KSKKHPQIIKKG (SEQ ID NO: 4275).
Residue A579 of SEQ ID NO: 4275, which can be mutated from N579 of SEQ ID NO: 4275 to yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 of SEQ ID NO: 4275, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 4275 to yield a SaKKH Cas9 are underlined and in italics.
[00183] In some embodiments, the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas 9 , a nuclease inactive SpCas 9 (SpCas 9 d), or a SpCas 9 nickase ($\mathrm{SpCas} 9 n$). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 4276. In some embodiments, the SpCas9 comprises a D9X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260 , wherein X is any amino acid except for D . In some embodiments, the SpCas9 comprises a D9A mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid seuqnce having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or corresponding mutations in any of the amino acid
sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas 9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11260.
[00184] In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 4276-4280. In some embodiments, the Cas 9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 4276-4280. In some embodiments, the Cas 9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 4276-4280.

Exemplary SpCas9

DKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY

KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 4276)

Exemplary SpCas9n

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK

VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 4277)

Exemplary SpEQR Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVV

AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRK $\mathbf{Q Y}$ YTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 4278)

Residues E1134, Q1334, and R1336 of SEQ ID NO: 4278, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 4278 to yield a SpEQR Cas9, are underlined and in bold.

Exemplary SpVQR Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQLLDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA

PAAFKYFDTTIDRK $\underline{\underline{Q} Y \mathbf{R} S T K E V L D A T L I H Q S I T G L Y E T R I D L S Q L G G D ~(S E Q ~ I D ~ N O: ~}$ 4279)

Residues V1134, Q1334, and R1336 of SEQ ID NO: 4279, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 4279 to yield a SpVQR Cas9, are underlined and in bold.

Exemplary SpVRER Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVV AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE LENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ HKHYLDEIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA PAAFKYFDTTIDRKEÝㅗSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 4280)

Residues V1134, R1217, Q1334, and R1336 of SEQ ID NO: 4280, which can be mutated from D1134, G1217, R1334, and T1336 of SEQ ID NO: 4280 to yield a SpVRER Cas9, are underlined and in bold.
[00185] The following are exemplary fusion proteins (e.g., base editing proteins) capable of binding to a nucleic acid sequence having a non-canonical (e.g., a non-NGG) PAM sequence:

Exemplary SaBE3 (rAPOBEC1-XTEN-SaCas9n-UGI-NLS)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSET PGTSESATPESKRNYILGLDIGITSVGYGIDYETRDVIDAGVRLFKEANVENNEGRRS KRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFS AALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELOLERLKKDG EVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSP FGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKL EYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIK DITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHN LSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRS FIQSIK VINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGK ENAKYLIEKIKLHDMOEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKV LVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDI NRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKW KFKKERNKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEI ETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIV NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKY YEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRF DVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNND LIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKY STDILGNLYEVKSKKHPQIIKKGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIG NKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKK KRKV (SEQ ID NO: 4281)

Exemplary SaKKH-BE3 (rAPOBEC1-XTEN-SaCas9n-UGI-NLS)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSET PGTSESATPESKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRS KRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFS AALLHLAKRRGVHNVNEVEEDTGNELSTKEOISRNSKALEEKYVAELOLERLKKDG EVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSP FGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKL EYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIK DITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHN LSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRS FIQSIK VINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMOKRNRQTNERIEEIIRTTGK

ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKV LVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDI NRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKW KFKKERNKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEI ETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIV NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKY YEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRF DVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYKND LIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPHIIKTIASKTQSIKKY STDILGNLYEVKSKKHPQIIKKGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIG NKPESDLVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKK KRKV (SEQ ID NO: 4282)

Exemplary EQR-BE3 (rAPOBEC1-XTEN-Cas9n-UGI-NLS)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQLMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSET PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI GALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIK FRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLN REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPK HSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKE DYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIKDKDFLDNEENEDILEDIVLTLTLF EDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTV KVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKE HPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDN KVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS ELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFA TVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPT VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLII KLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN EQKOLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIH LFTLTNLGAPAAFKYFDTTIDRKOYRSTKEVLDATLIHQSITGLYETRIDLSQLGGDSG GSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLL TSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 4283)

VQR-BE3 (rAPOBEC1-XTEN-Cas9n-UGI-NLS)
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSET

PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI GALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIK FRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL LAQIGDQYADLFLAAKNLSDALLLSDILRVNTEITKAPLSASMIKRYDEHHODLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLN REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPK HSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKE DYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLF EDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTV KVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKE HPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDN KVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS ELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFA TVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGF V SPT VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLII KLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN EQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIH LFTLTNLGAPAAFKYFDTTIDRKOYRSTKEVLDATLIHQSITGLYETRIDLSQLGGDSG GSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLL TSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 4284)

VRER-BE3 (rAPOBEC1-XTEN-Cas9n-UGI-NLS)
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSET PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI GALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIK FRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHODLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLN REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPK HSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKE DYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLF EDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTV KVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKE HPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDN KVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS ELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI

AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFA TVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPT VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLII KLPKYSLFELENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNE QKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHL FTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGG STNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTS DAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 4285)

High Fidelity Base Editors

[00186] Some aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain that has high fidelity. Additional aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a wildtype Cas9 domain. In some embodiments, a Cas9 domain (e.g., a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas 9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, any of the Cas 9 fusion proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 325. In some embodiments, the fusion protein comprises the amino acid sequence as set forth in SEQ ID NO: 285. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B.P., et al. "High-fidelity CRISPR-Cas9 nucleases with no detectable genomewide off-target effects." Nature 529, 490-495 (2016); and Slaymaker, I.M., et al. "Rationally engineered Cas9 nucleases with improved specificity." Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.
[00187] It should be appreciated that the base editors provided herein, for example base editor 2 (BE2) or base editor 3 (BE3), may be converted into high fidelity base editors by modifyint the Cas9 domain as described herein to generate high fidelity base editors, for example high fidelity base editor 2 (HF-BE2) or high fidelity base editor 3 (HF-BE3). In some embodiments, base editor 2 (BE2) comprises a deaminase domain, a dCas9, and a UGI domain. In some embodiments, base editor 3 (BE3) comprises a deaminase domain an nCas9 domain and a UGI domain.

Cas9 domain where mutations relative to Cas9 of SEQ ID NO: 10 are shown in bold and underlines

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARR RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAK AILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLL AQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYK EIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE LHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASA QSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN RKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFE DREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFM ALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEM ARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDIN RLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFD NLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATA KYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASH YEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIH LFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 325)

HF-BE3

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG NTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN

PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYN ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG ALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKS DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQIL DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH QSITGLYETRIDLSQLGGD (SEQ ID NO: 285)

Cas9 fusion proteins

[00188] Any of the Cas9 domains (e.g., a nuclease active Cas9 protein, a nuclease-inactive dCas 9 protein, or a Cas9 nickase protein) disclosed herein may be fused to a second protein, thus fusion proteins provided herein comprise a Cas9 domain as provided herein and a second protein, or a "fusion partner". In some embodiments, the second protein is fused to the Nterminus of the Cas9 domain. However, in other embodiments, the second protein is fused to the C-terminus of the Cas9 domain. In some embodiments, the second protein that is fused to the Cas9 domain is a nucleic acid editing domain. In some embodiments, the Cas9 domain and the nucleic acid editing domain are fused via a linker, while in other embodiments the Cas9 domain and the nucleic acid editing domain are fused directly to one another. In some embodiments, the linker comprises (GGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 265), (GGGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 5), (G) $)_{\mathrm{n}},(\text { EAAAK })_{\mathrm{n}}(\text { SEQ ID NO: 6), (GGS })_{\mathrm{n}},(\text { SGGS })_{\mathrm{n}}($ SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7), or (XP $)_{\mathrm{n}}$ motif, or a combination of any of these, wherein n is independently an integer between 1 and 30 , and wherein X is any amino acid. In some embodiments, the linker comprises a (GGS $)_{n}$ motif, wherein n is 1,3 , or 7 . In some embodiments, the linker comprises a (GGS) ${ }_{\mathrm{n}}$ motif, wherein n is $1,2,3,4,5,6,7,8,9,10$, $11,12,13,14$, or 15 . In some embodiments, the linker comprises an amino acid sequence of

SGSETPGTSESATPES (SEQ ID NO: 7), also referred to as the XTEN linker in the Examples). The length of the linker can influence the base to be edited, as illustrated in the Examples. For example, a linker of 3-amino-acid long (e.g., (GGS) ${ }_{1}$) may give a 2-5, 2-4, 23, 3-4 base editing window relative to the PAM sequence, while a 9 -amino-acid linker (e.g., $(\mathrm{GGS})_{3}$ (SEQ ID NO: 596)) may give a $2-6,2-5,2-4,2-3,3-6,3-5,3-4,4-6,4-5,5-6$ base editing window relative to the PAM sequence. A 16-amino-acid linker (e.g., the XTEN linker) may give a $2-7,2-6,2-5,2-4,2-3,3-7,3-6,3-5,3-4,4-7,4-6,4-5,5-7,5-6,6-7$ base window relative to the PAM sequence with exceptionally strong activity, and a 21 -aminoacid linker (e.g., (GGS) $)_{7}$ (SEQ ID NO: 597)) may give a 3-8, 3-7, 3-6, 3-5, 3-4, 4-8, 4-7, 4-6, $4-5,5-8,5-7,5-6,6-8,6-7,7-8$ base editing window relative to the PAM sequence. The novel finding that varying linker length may allow the dCas9 fusion proteins of the disclosure to edit nucleobases different distances from the PAM sequence affords siginicant clinical importance, since a PAM sequence may be of varying distance to the disease-causing mutation to be corrected in a gene. It is to be understood that the linker lengths described as examples here are not meant to be limiting.
[00189] In some embodiments, the second protein comprises an enzymatic domain. In some embodiments, the enzymatic domain is a nucleic acid editing domain. Such a nucleic acid editing domain may be, without limitation, a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, or an acetyltransferase. Nonlimiting exemplary binding domains that may be used in accordance with this disclosure include transcriptional activator domains and transcriptional repressor domains.

Deaminase Domains

[00190] In some embodiments, second protein comprises a nucleic acid editing domain. In some embodiments, the nucleic acid editing domain can catalyze a C to U base change. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an

APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a vertebrate deaminase. In some embodiments, the deaminase is an invertebrate deaminase. In some embodiments, the deaminase is a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse deaminase. In some embodiments, the deaminase is a human deaminase. In some embodiments, the deaminase is a rat deaminase, e.g., rAPOBEC1. In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDA1). In some embodiments, the deminase is a human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a fragment of the human APOBEC3G (SEQ ID NO: 5740). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 5739). In some embodiments, the deaminase is a frantment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 275 (SEQ ID NO: 5741).
[00191] In some embodiments, the nucleic acid editing domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 266284, 607-610, 5724-5736, or 5738-5741. In some embodiments, the nucleic acid editing domain comprises the amino acid sequence of any one of SEQ ID NOs: 266-284, 607-610, 5724-5736, or 5738-5741.

Deaminase Domains that Modulate the Editing Window of Base Editors

[00192] Some aspects of the disclosure are based on the recognition that modulating the deaminase domain catalytic activity of any of the fusion proteins provided herein, for example by making point mutations in the deaminase domain, affect the processivity of the fusion proteins (e.g., base editors). For example, mutations that reduce, but do not eliminate, the catalytic activity of a deaminase domain within a base editing fusion protein can make it less likely that the deaminase domain will catalyze the deamination of a residue adjacent to a target residue, thereby narrowing the deamination window. The ability to narrow the deaminataion window may prevent unwanted deamination of residues adjacent of specific target residues, which may decrease or prevent off-target effects.
[00193] In some embodiments, any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has reduced catalytic deaminase activity. In some embodiments, any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has a reduced catalytic deaminase activity as compared to an appropriate control. For example, the appropriate control may be the deaminase activity of the deaminase prior to introducing one or more mutations into the deaminase. In other embodiments, the appropriate control may be a wild-type deaminase. In some embodiments, the appropriate control is a wild-type apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the appropriate control is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, or an APOBEC3H deaminase. In some embodiments, the appropriate control is an activation induced deaminase (AID). In some embodiments, the appropriate control is a cytidine deaminase 1 from Petromyzon marinus (pmCDA1). In some embodiments, the deaminse domain may be a deaminase domain that has at least 1%, at least 5%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at lest 70%, at least 80%, at least 90%, or at least 95% less catalytic deaminase activity as compared to an appropriate control.
[00194] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121X, H122X, R126X, R126X, R118X, W90X, W90X, and R132X of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase, wherin X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
[00195] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316X, D317X, R320X, R320X, R313X, W285X, W285X, R326X of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase, wherin X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of
hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
[00196] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a H121R and a H122Rmutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126A mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R118A mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90A mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R126E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E and a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y, R126E, and R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
[00197] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a D316R and a D317R mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320A mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R313A mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285A mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R320E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E and a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y, R320E, and R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
[00198] Some aspects of this disclosure provide fusion proteins comprising (i) a nucleaseinactive Cas9 domain; and (ii) a nucleic acid editing domain. In some embodiments, a
nuclease-inactive Cas9 domain (dCas9), comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of a Cas 9 as provided by any one of SEQ ID NOs: 10-263, and comprises mutations that inactivate the nuclease activity of Cas9. Mutations that render the nuclease domains of Cas 9 inactive are well-known in the art. For example, the DNA cleavage domain of Cas 9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816821(2012); Qi et al., Cell. 28;152(5):1173-83 (2013)). In some embodiments, the dCas9 of this disclosure comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 of this disclosure comprises a H840A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 of this disclosure comprises both D10A and H840A mutations of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 further comprises a histidine residue at position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. The presence of the catalytic residue H840 restores the acvitity of the Cas9 to cleave the non-edited strand containing a G opposite the targeted C. Restoration of H840 does not result in the cleavage of the target strand containing the C. In some embodiments, the dCas9 comprises an amino acid sequence of SEQ ID NO: 263. It is to be understood that other mutations that inactivate the nuclease domains of Cas 9 may also be included in the dCas 9 of this disclosure.
[00199] The Cas9 or dCas9 domains comprising the mutations disclosed herein, may be a full-length Cas9, or a fragment thereof. In some embodiments, proteins comprising Cas9, or fragments thereof, are referred to as "Cas9 variants." A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70\% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about
99% identical, at least about 99.5% identical, or at least about 99.9% to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas 9, e.g., a Cas 9 comprising the amino acid sequence of SEQ ID NO: 10 .
[00200] Any of the Cas9 fusion proteins of this disclosure may further comprise a nucleic acid editing domain (e.g., an enzyme that is capable of modifying nucleic acid, such as a deaminase). In some embodiments, the nucleic acid editing domain is a DNA-editing domain. In some embodiments, the nucleic acid editing domain has deaminase activity. In some embodiments, the nucleic acid editing domain comprises or consists of a deaminase or deaminase domain. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 family deaminase. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). Some nucleic-acid editing domains as well as Cas9 fusion proteins including such domains are described in detail herein. Additional suitable nucleic acid editing domains will be apparent to the skilled artisan based on this disclosure and knowledge in the field.
[00201] Some aspects of the disclosure provide a fusion protein comprising a Cas9 domain fused to a nucleic acid editing domain, wherein the nucleic acid editing domain is fused to the N -terminus of the Cas9 domain. In some embodiments, the Cas9 domain and the nucleic acid editing-editing domain are fused via a linker. In some embodiments, the linker comprises a (GGGS) $)_{n}(\text { SEQ ID NO: 265), a (GGGGS) })_{n}$ (SEQ ID NO: 5), a (G) $)_{n}$, an (EAAAK) $)_{\mathrm{n}}$ (SEQ ID NO: 6), a (GGS) ${ }_{\mathrm{n}}$, (SGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 4288), an SGSETPGTSESATPES (SEQ ID NO: 7) motif (see, e.g., Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas 9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP $)_{\mathrm{n}}$ motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, n is independently $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29$, or 30 , or, if more than one linker or more than one linker motif is present, any combination thereof. In some embodiments, the linker comprises a (GGS) ${ }_{\mathrm{n}}$ motif,
wherein n is $1,2,3,4,5,6,7,8,9,10,11,12,13,14$ or 15 . In some embodiments, the linker comprises a (GGS) ${ }_{\mathrm{n}}$ motif, wherein n is 1,3 , or 7 . In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7). Additional suitable linker motifs and linker configurations will be apparent to those of skill in the art. In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10): 1357-69, the entire contents of which are incorporated herein by reference. Additional suitable linker sequences will be apparent to those of skill in the art based on the instant disclosure. In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:
[NH_{2}]-[nucleic acid editing domain]-[Cas9]-[COOH] or
[NH_{2}]-[nucleic acid editing domain]-[linker]-[Cas9]-[COOH],
wherein NH_{2} is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein.
[00202] The fusion proteins of the present disclosure may comprise one or more additional features. For example, in some embodiments, the fusion protein comprises a nuclear localization sequence (NLS). In some embodiments, the NLS of the fusion protein is localized between the nucleic acid editing domain and the Cas9 domain. In some embodiments, the NLS of the fusion protein is localized C-terminal to the Cas9 domain. [00203] Other exemplary features that may be present are localization sequences, such as cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable protein tags provided herein include, but are not limited to, biotin carboxylase carrier protein (BCCP) tags, myc-tags, calmodulin-tags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-Stransferase (GST)-tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art. In some embodiments, the fusion protein comprises one or more His tags.
[00204] In some embodiments, the nucleic acid editing domain is a deaminase. For example, in some embodiments, the general architecture of exemplary Cas9 fusion proteins with a deaminase domain comprises the structure:

$$
\text { [} \left.\mathrm{NH}_{2}\right] \text {-[NLS]-[deaminase]-[Cas9]-[COOH], }
$$

$\left[\mathrm{NH}_{2}\right]-[\mathrm{Cas} 9]-[$ deaminase $]-[\mathrm{COOH}]$,
$\left[\mathrm{NH}_{2}\right]-[$ deaminase $]-[\mathrm{Cas} 9]-[\mathrm{COOH}]$, or
$\left[\mathrm{NH}_{2}\right]-[$ deaminase $]-[\mathrm{Cas} 9]-[\mathrm{NLS}]-[\mathrm{COOH}]$
wherein NLS is a nuclear localization sequence, NH_{2} is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank et al., PCT/EP2000/011690, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 741) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 742). In some embodiments, a linker is inserted between the Cas9 and the deaminase. In some embodiments, the NLS is located C-terminal of the Cas9 domain. In some embodiments, the NLS is located N-terminal of the Cas9 domain. In some embodiments, the NLS is located between the deaminase and the Cas9 domain. In some embodiments, the NLS is located Nterminal of the deaminase domain. In some embodiments, the NLS is located C-terminal of the deaminase domain.
[00205] One exemplary suitable type of nucleic acid editing domain is a cytidine deaminase, for example, of the APOBEC family. The apolipoprotein B mRNA-editing complex (APOBEC) family of cytidine deaminase enzymes encompasses eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner. ${ }^{29}$ One family member, activation-induced cytidine deaminase (AID), is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion. ${ }^{30}$ The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reversetranscribed viral ssDNA. ${ }^{31}$ These proteins all require a Zn^{2+}-coordinating motif (His-X-Glu-X_{23-26}-Pro-Cys- X_{2-4}-Cys; SEQ ID NO: 598) and bound water molecule for catalytic activity. The Glu residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular "hotspot", ranging from WRC (W is A or T, R is A or G) for hAID, to TTC for hAPOBEC3F. ${ }^{32}$ A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprised of a five-stranded β-sheet core flanked by six α-helices, which is believed to be conserved across the entire family. ${ }^{33}$ The active center loops have been shown to be responsible for both ssDNA binding and in determining "hotspot" identity. ${ }^{34}$

Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting. ${ }^{35}$
[00206] Some aspects of this disclosure relate to the recognition that the activity of cytidine deaminase enzymes such as APOBEC enzymes can be directed to a specific site in genomic DNA. Without wishing to be bound by any particular theory, advantages of using Cas9 as a recognition agent include (1) the sequence specificity of Cas9 can be easily altered by simply changing the sgRNA sequence; and (2) Cas 9 binds to its target sequence by denaturing the dsDNA, resulting in a stretch of DNA that is single-stranded and therefore a viable substrate for the deaminase. It should be understood that other catalytic domains, or catalytic domains from other deaminases, can also be used to generate fusion proteins with Cas9, and that the disclosure is not limited in this regard.
[00207] Some aspects of this disclosure are based on the recognition that Cas9:deaminase fusion proteins can efficiently deaminate nucleotides at positions 3-11 according to the numbering scheme in Figure 3. In view of the results provided herein regarding the nucleotides that can be targeted by Cas9:deaminase fusion proteins, a person of skill in the art will be able to design suitable guide RNAs to target the fusion proteins to a target sequence that comprises a nucleotide to be deaminated.
[00208] In some embodiments, the deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., AID) and the Cas9 domain can be employed (e.g., ranging from very flexible linkers of the form (GGGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 5), (GGS) $)_{\mathrm{n}}$, and (G) $)_{\mathrm{n}}$ to more rigid linkers of the form (EAAAK) $)_{\mathrm{n}}$ (SEQ ID NO: 6), (SGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7) (see, e.g., Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference) and $\left.(\mathrm{XP})_{\mathrm{n}}\right)^{36}$ in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, the linker comprises a (GGS) ${ }_{\mathrm{n}}$ motif, wherein n is 1,3 , or 7. In some embodiments, the linker comprises a (an SGSETPGTSESATPES (SEQ ID NO: 7) motif.
[00209] Some exemplary suitable nucleic-acid editing domains, e.g., deaminases and deaminase domains, that can be fused to Cas9 domains according to aspects of this disclosure are provided below. It should be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localization sequence, without nuclear export signal, cytoplasmic localizing signal).
[00210] Human AID:
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHEN SVRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 266)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00211] Mouse AID:
MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIGIMTFKDYFYCWNTFVENRERTFKAWEGLHEN SVRLTRQLRRILLPLYEVDDLRDAFRMLGF (SEQ ID NO: 267)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00212] Dog AID:
MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENREKTFKAWEGLHEN SVRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 268)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00213] Bovine AID:
MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTAR LYFCDKERKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHE NSVRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 269)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00214] Rat AID
MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRWLRPAATQDPVSPPRS LLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGYLRNKSGCHVE LLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLTG WGALPAGLMSPARPSDYFYCWNTFVENHERTFKAWEGLHENSVRLSRRLRRILLPL YEVDDLRDAFRTLGL (SEQ ID NO: 5725)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00215] Mouse APOBEC-3:
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVS LHHGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLA

THHNLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNG GRRFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICLTKGLPETRFCVEGR RMDPLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQ HAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWK RPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLR RIKESWGLQDLVNDFGNLQLGPPMS (SEQ ID NO: 270)
(italic: nucleic acid editing domain)
[00216] Rat APOBEC-3:
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVS LHHGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLA THHNLSLDIFSSRLYNIRDPENQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGG RRFRPWKKLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICLTKGLPETRFCVERRR VHLLSEEEFYSQFYNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKGCLLSEKGKQ H AEILFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKR PFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLHR IKESWGLQDLVNDFGNLQLGPPMS (SEQ ID NO: 271)
(italic: nucleic acid editing domain)
[00217] Rhesus macaque APOBEC-3G:
MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKY HPEMRFLRWFHKWRQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVA RLYYFWKPDYQQALRILCQKRGGPHATMKIMNYNEFQDCWNKFVDGRGKPFKPRN NLPKHYTLLQATLGELLRHLMDPGTFTSNFNNKPWVSGQHETYLCYKVERLHNDT WVPLNQHRGFLRNQAPNIHGFPKGRHAELCFLDLIPFWKLDGQQYRVTCFTSWSPCFS CAQEMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYC WDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI (SEQ ID NO: 272)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00218] Chimpanzee APOBEC-3G:
MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQ VYSKLKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDVATFLAEDPKV TLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRE LFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTSNFNNELWVRGRHETYLCYEVERL HNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLHQDYRVTCFTS WSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSE FKHCWDTFVDHQGCPFQPWDGLEEHSQALSGRLRAILQNQGN (SEQ ID NO: 273)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00219] Green monkey APOBEC-3G:
MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGK LYPEAKDHPEMKFLHWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKV TLTIFVARLYYFWKPDYQQALRILCQERGGPHATMKIMNYNEFQHCWNEFVDGQG KPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTSNFNNKPWVSGQRETYLCYKVE RSHNDTWVLLNQHRGFLRNQAPDRHGFPKGRHAELCFLDLIPFWKLDDQQYRVTCFT SWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNY SEFEYCWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI (SEQ ID NO: 274)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00220] Human APOBEC-3G:
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQ VYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKV TLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRE LFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERM HNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTS WSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSE FKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN (SEQ ID NO: 275) (italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00221] Human APOBEC-3F:
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQ VYSQPEHHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVTL TISAARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFVYSEGQPFMPW YKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRKAYGRNESWLCFTMEVVK HHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCPECA GEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCW ENFVYNDDEPFKPWKGLKYNFLFLDSKLQEILE (SEQ ID NO: 276)
(italic: nucleic acid editing domain)
[00222] Human APOBEC-3B:
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFR GQVYFKPQYHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHPN VTLTISAARLYYYWERDYRRALCRLSQAGARVTIMDYEEFAYCWENFVYNEGQQF MPWYKFDENYAFLHRTLKEILRYLMDPDTFTFNFNNDPLVLRRRQTYLCYEVERLD

NGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWS $P C F S W G C A G E V R A F L Q E N T H V R L R I F A A R I Y D Y D P L Y K E A L Q M L R D A G A Q V S I M T Y$ DEFEYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQNQGN (SEQ ID NO: 277) (italic: nucleic acid editing domain)
[00223] Rat APOBEC-3B:
MQPQGLGPNAGMGPVCLGCSHRRPYSPIRNPLKKLYQQTFYFHFKNVRYAWGRKN NFLCYEVNGMDCALPVPLRQGVFRKQGHIHAELCFIYWFHDKVLRVLSPMEEFKVT WYMSWSPCSKCAEQVARFLAAHRNLSLAIFSSRLYYYLRNPNYQQKLCRLIQEGVH VAAMDLPEFKKCWNKFVDNDGQPFRPWMRLRINFSFYDCKLQEIFSRMNLLREDVF YLQFNNSHRVKPVQNRYYRRKSYLCYQLERANGQEPLKGYLLYKKGEQHVEILFLE KMRSMELSQVRITCYLTWSPCPNCARQLAAFKKDHPDLILRIYTSRLYFYWRKKFQK GLCTLWRSGIHVDVMDLPQFADCWTNFVNPQRPFRPWNELEKNSWRIQRRLRRIKE SWGL (SEQ ID NO: 5729)
[00224] Bovine APOBEC-3B:
DGWEVAFRSGTVLKAGVLGVSMTEGWAGSGHPGQGACVWTPGTRNTMNLLREVL FKQQFGNQPRVPAPYYRRKTYLCYQLKQRNDLTLDRGCFRNKKQRHAEIRFIDKINS LDLNPSQSYKIICYITWSPCPNCANELVNFITRNNHLKLEIFASRLYFHWIKSFKMGLQ DLQNAGISVAVMTHTEFEDCWEQFVDNQSRPFQPWDKLEQYSASIRRRLQRILTAPI (SEQ ID NO: 5730)
[00225] Chimpanzee APOBEC-3B:
MNPQIRNPMEWMYQRTFYYNFENEPILYGRSYTWLCYEVKIRRGHSNLLWDTGVFR GQMYSQPEHHAEMCFLSWFCGNQLSAYKCFQITWFVSWTPCPDCVAKLAKFLAEHP NVTLTISAARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFVYNEGQPF MPWYKFDDNYAFLHRTLKEIIRHLMDPDTFTFNFNNDPLVLRRHQTYLCYEVERLD NGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFIS WSPCFSWGCAGQVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIM TYDEFEYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQVRASSLCMVPHRPPP PPQSPGPCLPLCSEPPLGSLLPTGRPAPSLPFLLTASFSFPPPASLPPLPSLSLSPGHLPVP SFHSLTSCSIQPPCSSRIRETEGWASVSKEGRDLG (SEQ ID NO: 5731)
[00226] Human APOBEC-3C:
MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVF RNQVDSETHCHAERCFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEFLARHSN VNLTIFTARLYYFQYPCYQEGLRSLSQEGVAVEIMDYEDFKYCWENFVYNDNEPFKP WKGLKTNFRLLKRRLRESLQ (SEQ ID NO: 278)
(italic: nucleic acid editing domain)
[00227] Gorilla APOBEC3C
MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVF RNQVDSETHCHAERCFLSWFCDDILSPNTNYQVTWYTSWSPCPECAGEVAEFLARHSN VNLTIFTARLYYFQDTDYQEGLRSLSQEGVAVKIMDYKDFKYCWENFVYNDDEPFK PWKGLKYNFRFLKRRLQEILE (SEQ ID NO: 5726)
(italic: nucleic acid editing domain)
[00228] Human APOBEC-3A:
MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLH NQAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAGEVRAFLQ ENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFKHCWDTFVDHQGC PFQPWDGLDEHSQALSGRLRAILQNQGN (SEQ ID NO: 279)
(italic: nucleic acid editing domain)
[00229] Rhesus macaque APOBEC-3A:
MDGSPASRPRHLMDPNTFTFNFNNDLSVRGRHQTYLCYEVERLDNGTWVPMDERR GFLCNKAKNVPCGDYGCHVELRFLCEVPSWQLDPAQTYRVTWFISWSPCFRRGCAGQ VRVFLQENKHVRLRIFAARIYDYDPLYQEALRTLRDAGAQVSIMTYEEFKHCWDTF VDRQGRPFQPWDGLDEHSQALSGRLRAILQNQGN (SEQ ID NO: 5727)
(italic: nucleic acid editing domain)
[00230] Bovine APOBEC-3A:
MDEYTFTENFNNQGWPSKTYLCYEMERLDGDATIPLDEYKGFVRNKGLDQPEKPCH AELYFLGKIHSWNLDRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHISLHILASRIYTH NRFGCHQSGLCELQAAGARITIMTFEDFKHCWETFVDHKGKPFQPWEGLNVKSQAL CTELQAILKTQQN (SEQ ID NO: 5728)
(italic: nucleic acid editing domain)
[00231] Human APOBEC-3H:
MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCHAEI CFINEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWC KPQQKGLRLLCGSQVPVEVMGFPKFADCWENFVDHEKPLSFNPYKMLEELDKNSRA IKRRLERIKIPGVRAQGRYMDILCDAEV (SEQ ID NO: 280)
(italic: nucleic acid editing domain)
[00232] Rhesus macaque APOBEC-3H:
MALLTAKTFSLQFNNKRRVNKPYYPRKALLCYQLTPQNGSTPTRGHLKNKKKDHAE IRFINKIKSMGLDETQCYQVTCYLTWSPCPSCAGELVDFIKAHRHLNLRIFASRLYYH

WRPNYQEGLLLLCGSQVPVEVMGLPEFTDCWENFVDHKEPPSFNPSEKLEELDKNS QAIKRRLERIKSRSVDVLENGLRSLQLGPVTPSSSIRNSR (SEQ ID NO: 5732)
[00233] Human APOBEC-3D
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFR GPVLPKRQSNHRQEVYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVV KVTKFLAEHPNVTLTISAARLYYYRDRDWRWVLLRLHKAGARVKIMDYEDFAYCW ENFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAMYPHIFYFHFKNLLKACG RNESWLCFTMEVTKHHSAVFRKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNY EVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGAS VKIMGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ (SEQ ID NO: 281)
(italic: nucleic acid editing domain)
[00234] Human APOBEC-1:
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKN TTNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYV ARLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYP PLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIH PSVAWR (SEQ ID NO: 282)
[00235] Mouse APOBEC-1:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQN TSNHVEVNFLEKFTTERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIA RLYHHTDQRNRQGLRDLISSGVTIQIMTEQEYCYCWRNFVNYPPSNEAYWPRYPHL WVKLYVLELYCIILGLPPCLKILRRKQPQLTFFTITLQTCHYQRIPPHLLWATGLK (SEQ ID NO: 283)
[00236] Rat APOBEC-1:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 284)
[00237] Human APOBEC-2:
MAQKEEAAVATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRN VE

YSSGRNKTFLCYVVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILPAFDPALR YNVTWYVSSSPCAACADRIIKTLSKTKNLRLLILVGRLFMWEEPEIQAALKKLKEAG CKLRIMKPQDFEYVWQNFVEQEEGESKAFQPWEDIQENFLYYEEKLADILK (SEQ ID NO: 5733)
[00238] Mouse APOBEC-2:
MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFR NVEYSSGRNKTFLCYVVEVQSKGGQAQATQGYLEDEHAGAHAEEAFFNTILPAFDP ALKYNVTWYVSSSPCAACADRILKTLSKTKNLRLLILVSRLFMWEEPEVQAALKKLK EAGCKLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK (SEQ ID NO: 5734)
[00239] Rat APOBEC-2:
MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFR NVEYSSGRNKTFLCYVVEAQSKGGQVQATQGYLEDEHAGAHAEEAFFNTILPAFDP ALKYNVTWYVSSSPCAACADRILKTLSKTKNLRLLILVSRLFMWEEPEVQAALKKLK EAGCKLRIMKPQDFEYLWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK (SEQ ID NO: 5735)
[00240] Bovine APOBEC-2:
MAQKEEAAAAAEPASQNGEEVENLEDPEKLKELIELPPFEIVTGERLPAHYFKFQFRN VE

YSSGRNKTFLCYVVEAQSKGGQVQASRGYLEDEHATNHAEEAFFNSIMPTFDPALR YMVTWYVSSSPCAACADRIVKTLNKTKNLRLLILVGRLFMWEEPEIQAALRKLKEA GCRLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK (SEQ ID NO: 5736)
[00241] Petromyzon marinus CDA1 (pmCDA1)
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNK PQSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSW SPCADCAEKILEWYNQELRG NGHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQ LNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV (SEQ ID NO: 5738)
[00242] Human APOBEC3G D316R_D317R
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQ VYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDP KVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQ RELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVER

Abstract

MHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTC FTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISIMT YSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN (SEQ ID NO: 5739) [00243] Human APOBEC3G chain A MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHG FLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCI FTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLD EHSQDLSGRLRAILQ (SEQ ID NO: 5740)

[00244] Human APOBEC3G chain A D120R_D121R MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHG FLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCI FTARIYRRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDE HSQDLSGRLRAILQ (SEQ ID NO: 5741)
[00245] In some embodiments, fusion proteins as provided herein comprise the full-length amino acid of a nucleic acid editing enzyme, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length sequence of a nucleic acid editing enzyme, but only a fragment thereof. For example, in some embodiments, a fusion protein provided herein comprises a Cas9 domain and a fragment of a nucleic acid editing enzyme, e.g., wherein the fragment comprises a nucleic acid editing domain. Exemplary amino acid sequences of nucleic acid editing domains are shown in the sequences above as italicized letters, and additional suitable sequences of such domains will be apparent to those of skill in the art.
[00246] Additional suitable nucleic-acid editing enzyme sequences, e.g., deaminase enzyme and domain sequences, that can be used according to aspects of this invention, e.g., that can be fused to a nuclease-inactive Cas9 domain, will be apparent to those of skill in the art based on this disclosure. In some embodiments, such additional enzyme sequences include deaminase enzyme or deaminase domain sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar to the sequences provided herein. Additional suitable Cas9 domains, variants, and sequences will also be apparent to those of skill in the art. Examples of such additional suitable Cas 9 domains include, but are not limited to, D10A,

D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838 the entire contents of which are incorporated herein by reference). In some embodiments, the Cas9 comprises a histidine residue at position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. The presence of the catalytic residue H840 restores the acvitity of the Cas9 to cleave the non-edited strand containing a G opposite the targeted C. Restoration of H840 does not result in the cleavage of the target strand containing the C.
[00247] Additional suitable strategies for generating fusion proteins comprising a Cas9 domain and a deaminase domain will be apparent to those of skill in the art based on this disclosure in combination with the general knowledge in the art. Suitable strategies for generating fusion proteins according to aspects of this disclosure using linkers or without the use of linkers will also be apparent to those of skill in the art in view of the instant disclosure and the knowledge in the art. For example, Gilbert et al., CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, showed that Cterminal fusions of Cas9 with VP64 using 2 NLS's as a linker (SPKKKRKVEAS, SEQ ID NO: 599), can be employed for transcriptional activation. Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, reported that C-terminal fusions with VP64 without linker can be employed for transcriptional activation. And Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, reported that C-terminal fusions with VP64 using a Gly ${ }_{4}$ Ser (SEQ ID NO: 5) linker can be used as transcriptional activators. Recently, dCas9- FokI nuclease fusions have successfully been generated and exhibit improved enzymatic specificity as compared to the parental Cas9 enzyme (In Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82, and in Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325 a
SGSETPGTSESATPES (SEQ ID NO: 7) or a GGGGS (SEQ ID NO: 5) linker was used in FokI-dCas9 fusion proteins, respectively).
[00248] Some aspects of this disclosure provide fusion proteins comprising (i) a Cas9 enzyme or domain (e.g., a first protein); and (ii) a nucleic acid-editing enzyme or domain
(e.g., a second protein). In some aspects, the fusion proteins provided herein further include (iii) a programmable DNA-binding protein, for example, a zinc-finger domain, a TALE, or a second Cas9 protein (e.g., a third protein). Without wishing to be bound by any particular theory, fusing a programmable DNA-binding protein (e.g., a second Cas9 protein) to a fusion protein comprising (i) a Cas9 enzyme or domain (e.g., a first protein); and (ii) a nucleic acidediting enzyme or domain (e.g., a second protein) may be useful for improving specificity of the fusion protein to a target nucleic acid sequence, or for improving specificity or binding affinity of the fusion protein to bind target nucleic acid sequence that does not contain a canonical PAM (NGG) sequence. In some embodiments, the third protein is a Cas9 protein (e.g, a second Cas9 protein). In some embodiments, the third protein is any of the Cas9 proteins provided herein. In some embodiments, the third protein is fused to the fusion protein N -terminal to the Cas9 protein (e.g., the first protein). In some embodiments, the third protein is fused to the fusion protein C-terminal to the Cas9 protein (e.g., the first protein). In some embodiments, the Cas9 domain (e.g., the first protein) and the third protein (e.g., a second Cas9 protein) are fused via a linker (e.g., a second linker). In some embodiments, the linker comprises a (GGGGS) (SEQ ID NO: 5), a (G)n, an (EAAAK)n (SEQ ID NO: 6), a (GGS)n, (SGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 4288), an SGSETPGTSESATPES (SEQ ID NO: 7), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:
[NH2]-[nucleic acid-editing enzyme or domain]-[Cas9]-[third protein]-[COOH];
[NH 2]-[third protein]-[Cas9]-[nucleic acid-editing enzyme or domain]-[COOH];
[NH2]-[Cas9]-[nucleic acid-editing enzyme or domain]-[third protein]-[COOH];
[NH2]-[third protein]-[nucleic acid-editing enzyme or domain]-[Cas9]-[COOH];
[NH2]-[UGI]-[nucleic acid-editing enzyme or domain]-[Cas9]-[third protein][COOH];
[NH2]-[UGI]-[third protein]-[Cas9]-[nucleic acid-editing enzyme or domain][COOH];
[NH2]-[UGI]-[Cas9]-[nucleic acid-editing enzyme or domain]-[third protein][COOH];
[NH2]-[UGI]-[third protein]-[nucleic acid-editing enzyme or domain]-[Cas9][COOH];
[NH2]-[nucleic acid-editing enzyme or domain]-[Cas9]-[third protein]-[UGI][COOH];
[NH2]-[third protein]-[Cas9]-[nucleic acid-editing enzyme or domain]-[UGI][COOH];
[NH2]-[Cas9]-[nucleic acid-editing enzyme or domain]-[third protein]-[UGI][COOH]; or
[NH2]-[third protein]-[nucleic acid-editing enzyme or domain]-[Cas9]-[UGI][COOH];
wherein NH 2 is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein. In some embodiments, the "]-[" used in the general architecture above indicates the presence of an optional linker sequence. In other examples, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:
[NH2]-[nucleic acid-editing enzyme or domain]-[Cas9]-[second Cas9 protein][COOH];
[NH2]-[second Cas9 protein]-[Cas9]-[nucleic acid-editing enzyme or domain][COOH];
[NH2]-[Cas9]-[nucleic acid-editing enzyme or domain]-[second Cas9 protein][COOH];
[NH2]-[second Cas9 protein]-[nucleic acid-editing enzyme or domain]-[Cas9][COOH];
[NH2]-[UGI]-[nucleic acid-editing enzyme or domain]-[Cas9]-[second Cas9 protein][COOH],
[NH2]-[UGI]-[second Cas9 protein]-[Cas9]-[nucleic acid-editing enzyme or domain][COOH];
[NH2]-[UGI]-[Cas9]-[nucleic acid-editing enzyme or domain]-[second Cas9 protein][COOH];
[NH2]-[UGI]-[second Cas9 protein]-[nucleic acid-editing enzyme or domain]-[Cas9][COOH];
[NH2]-[nucleic acid-editing enzyme or domain]-[Cas9]-[second Cas9 protein]-[UGI][COOH];
[NH2]-[second Cas9 protein]-[Cas9]-[nucleic acid-editing enzyme or domain]-[UGI][COOH];
[NH2]-[Cas9]-[nucleic acid-editing enzyme or domain]-[second Cas9 protein]-[UGI][COOH]; or
[NH2]-[second Cas9 protein]-[nucleic acid-editing enzyme or domain]-[Cas9]-[UGI][COOH];
wherein NH_{2} is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein. In some embodiments, the "]-[" used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the second Cas9 is a dCas9 protein. In some examples, the general architecture of exemplary Cas9 fusion proteins provided herein comprises a structure as shown in Figure 3. It should be appreciated that any of the proteins provided in any of the general architectures of exemplary Cas9 fusion proteins may be connected by one or more of the linkers provided herein. In some embodiments, the linkers are the same. In some embodiments, the linkers are different. In some embodiments, one or more of the proteins provided in any of the general architectures of exemplary Cas9 fusion proteins are not fused via a linker. In some embodiments, the fusion proteins further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N -terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N -terminus of the third protein. In some embodiments, the NLS is fused to the C-terminus of the third protein. In some embodiments, the NLS is fused to the N -terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the nucleic acid-editing enzyme or domain. In some embodiments, the NLS is fused to the C-terminus of the nucleic acidediting enzyme or domain. In some embodiments, the NLS is fused to the N -terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusioin protein without a linker

Uracil glycosylase inhibitor fusion proteins

[00249] Some aspects of the disclosure relate to fusion proteins that comprise a uracil glycosylase inhibitor (UGI) domain. In some embodiments, any of the fusion proteins provided herein that comprise a Cas9 domain (e.g., a nuclease active Cas9 domain, a nuclease inactive dCas9 domain, or a Cas9 nickase) may be further fused to a UGI domain either directly or via a linker. Some aspects of this disclosure provide deaminase-dCas9 fusion proteins, deaminase-nuclease active Cas9 fusion proteins and deaminase-Cas9 nickase fusion proteins with increased nucleobase editing efficiency. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of $\mathrm{U}: \mathrm{G}$ heteroduplex DNA
may be responsible for the decrease in nucleobase editing efficiency in cells. For example, uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the $\mathrm{U}: \mathrm{G}$ pair to a $\mathrm{C}: \mathrm{G}$ pair as the most common outcome. As demonstrated in the Examples below, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Thus, this disclosure contemplates a fusion protein comprising dCas9-nucleic acid editing domain futher fused to a UGI domain. This disclosure also contemplates a fusion protein comprising a Cas9 nickase-nucleic acid editing domain further fused to a UGI domain. It should be understood that the use of a UGI domain may increase the editing efficiency of a nucleic acid editing domain that is capable of catalyzing a C to U change. For example, fusion proteins comprising a UGI domain may be more efficient in deaminating C residues. In some embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[UGI]; [deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[dCas9]; [UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[dCas9];
[UGI]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[deaminase]; [dCas9]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[UGI]; or [dCas9]-[optional linker sequence]-[UGI]-[optional linker sequence]-[deaminase].

In other embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence][UGI];
[deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9 nickase];
[UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[Cas9 nickase];
[UGI]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence][deaminase];
[Cas9 nickase]-[optional linker sequence]-[deaminase]-[optional linker sequence][UGI]; or
[Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence][deaminase].
[00250] In some embodiments, the fusion proteins provided herein do not comprise a linker sequence. In some embodiments, one or both of the optional linker sequences are present.
[00251] In some embodiments, the "-" used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the fusion proteins comprising a UGI further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N -terminus of the fusion protein. In some embodiments, the NLS is fused to the Cterminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the N -terminus of the second Cas9. In some embodiments, the NLS is fused to the C-terminus of the second Cas9. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusioin protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. In some embodiments, the NLS comprises an amino acid sequence as set forth in SEQ ID NO: 741 or SEQ ID NO: 742.
[00252] In some embodiments, a UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 600. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 600. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 600. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 600 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 600. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as "UGI variants." A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or
at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 600. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 600. In some embodiments, the UGI comprises the following amino acid sequence:
>sp|P14739|UNGI_BPPB2 Uracil-DNA glycosylase inhibitor
MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLT SDAPEYKPWALVIQDSNGENKIKML (SEQ ID NO: 600)
[00253] Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:11631171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of each are incorporated herein by reference.
[00254] It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. Additionally, any proteins that block or inhibit base-excision repair as also within the scope of this disclosure. In some embodiments, a protein that binds DNA is used. In another embodiment, a substitute for UGI is used. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Erwinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 322). In some embodiments, a uracil glycosylase inhibitor is a protein that
binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 323). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 324). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that is homologous to any one of SEQ ID NOs: 322-324.. In some embodiments, a uracil glycosylase inhibitor is a protein that is at least 50% identical, at least 55% identical at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 98% identical, at least 99% identical, or at least 99.5% identical to any one of SEQ ID NOs: 322-324.

Erwinia tasmaniensis SSB (themostable single-stranded DNA binding protein) MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETKEKTEW HRVVLFGKLAEVAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTTEVVVNVGGT MQMLGGRSQGGGASAGGQNGGSNNGWGQPQQPQGGNQFSGGAQQQARPQQQPQ QNNAPANNEPPIDFDDDIP (SEQ ID NO: 322)

UdgX (binds to Uracil in DNA but does not excise)
MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMIGEQPG DKEDLAGLPFVGPAGRLLDRALEAADIDRDALYVTNAVKHFKFTRAAGGKRRIHKT PSRTEVVACRPWLIAEMTSVEPDVVVLLGATAAKALLGNDFRVTQHRGEVLHVDDV PGDPALVATVHPSSLLRGPKEERESAFAGLVDDLRVAADVRP (SEQ ID NO: 323)

UDG (catalytically inactive human UDG, binds to Uracil in DNA but does not excise) MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPEESGDAAAIPAKKAPAGQEEP GTPPSSPLSAEQLDRIQRNKAAALLRLAARNVPVGFGESWKKHLSGEFGKPYFIKLM GFVAEERKHYTVYPPPHQVFTWTQMCDIKDVKVVILGQEPYHGPNQAHGLCFSVQR PVPPPPSLENIYKELSTDIEDFVHPGHGDLSGWAKQGVLLLNAVLTVRAHQANSHKE

RGWEQFTDAVVSWLNQNSNGLVFLLWGSYAQKKGSAIDRKRHHVLQTAHPSPLSV YRGFFGCRHFSKTNELLQKSGKKPIDWKEL (SEQ ID NO: 324)

[00255] In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the demianse is a rat APOBEC1 (SEQ ID NO: 282). In some embodiments, the deminase is a human APOBEC1 (SEQ ID No: 284). In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDA1). In some embodiments, the deminase is a human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a fragment of the human APOBEC3G (SEQ ID NO: 5740). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 5739). In some embodiments, the deaminase is a frantment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 275 (SEQ ID NO: 5741).
[00256] In some embodiments, the linker comprises a (GGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 265), $(\text { GGGGS })_{\mathrm{n}}(\text { SEQ ID NO: 5), a (G) })_{\mathrm{n}}$, an (EAAAK) $)_{\mathrm{n}}$ (SEQ ID NO: 6), a (GGS) $)_{\mathrm{n}}$, an SGSETPGTSESATPES (SEQ ID NO: 7), or an (XP) $)_{\mathrm{n}}$ motif, or a combination of any of these, wherein n is independently an integer between 1 and 30 .
[00257] Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-

1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of which are incorporated herein by reference. In some embodiments, the optional linker comprises a (GGS) $)_{\mathrm{n}}$ motif, wherein n is $1,2,3,4,5,6,7,8,9,19,11,12,13,14,15$, $16,17,18,19$, or 20 . In some embodiments, the optional linker comprises a (GGS)n motif, wherein n is 1,3 , or 7 . In some embodiments, the optional linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7), which is also referred to as the XTEN linker in the Examples.
[00258] In some embodiments, a Cas9 nickase may further facilitate the removal of a base on the non-edited strand in an organism whose genome is edited in vivo. The Cas9 nickase, as described herein, may comprise a D10A mutation in SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260. In some embodiments, the Cas9 nickase of this disclosure may comprise a histidine at mutation 840 of SEQ ID NO: 10, or a corresponding residue in any of SEQ ID NOs: 11-260. Such fusion proteins comprising the Cas9 nickase, can cleave a single strand of the target DNA sequence, e.g., the strand that is not being edited. Without wishing to be bound by any particular theory, this cleavage may inhibit mis-match repair mechanisms that reverse a C to U edit made by the deaminase.

Cas9 complexes with guide RNAs

[00259] Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA bound to a Cas9 domain (e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase) of fusion protein.
[00260] In some embodiments, the guide RNA is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is $15,16,17,18,19,20,21,22,23,24,25$, $26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49$, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15,16 ,
$17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$, or 40 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3^{\prime} end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the guide RNA is complementary to a sequence associated with a disease or disorder. In some embodiments, the guide RNA is complementary to a sequence associated with a disease or disorder having a mutation in a gene selected from the genes disclosed in any one of Tables 1-3. In some embodiments, the guide RNA comprises a nucleotide sequence of any one of the guide sequences provided in Table 2 or Table 3. Exemplary sequences in the human genome that may be targeted by the complexes of this disclosure are provided herein in Tables 1-3.

Methods of using Cas9 fusion proteins

[00261] Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with any of the the Cas9 proteins or fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with at least one gRNA as provided herein. In some embodiments, the 3^{\prime} end of the target sequence is not immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3 ' end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.
[00262] In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the Cas9 protein, the Cas9 fusion protein, or the complex results in a correction of the point mutation. In some embodiments, the target DNA sequence comprises a $T \rightarrow C$ point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder. In some embodiments, the target DNA sequence encodes a protein and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon. In some embodiments, the deamination of the mutant C results in a change of the amino acid
encoded by the mutant codon. In some embodiments, the deamination of the mutant C results in the codon encoding the wild-type amino acid. In some embodiments, the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder. In some embodiments, the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), desminrelated myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB1 protein, a mutant HRAS protein, or a mutant p53 protein.
[00263] Some embodiments provide methods for using the Cas9 DNA editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a Cas9 DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein
[00264] In some embodiments, the purpose of the methods provide herein is to restore the function of a dysfunctional gene via genome editing. The Cas 9 deaminase fusion proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the fusion proteins provided herein, e.g., the fusion proteins comprising a Cas9 domain and a nucleic acid deaminase domain can be used to correct any single point $\mathrm{T}->\mathrm{C}$ or $\mathrm{A}->\mathrm{G}$ mutation. In the first case, deamination of the mutant C back to U corrects the mutation, and in the latter case, deamination of the C that is base-paired with the mutant G, followed by a round of replication, corrects the mutation.
[00265] An exemplary disease-relevant mutation that can be corrected by the provided fusion proteins in vitro or in vivo is the H1047R (A3140G) polymorphism in the PI3KCA protein. The phosphoinositide-3-kinase, catalytic alpha subunit (PI3KCA) protein acts to phosphorylate the 3-OH group of the inositol ring of phosphatidylinositol. The PI3KCA gene has been found to be mutated in many different carcinomas, and thus it is considered to be a potent oncogene. ${ }^{37}$ In fact, the A3140G mutation is present in several NCI-60 cancer cell lines, such as, for example, the HCT116, SKOV3, and T47D cell lines, which are readily available from the American Type Culture Collection (ATCC). ${ }^{38}$
[00266] In some embodiments, a cell carrying a mutation to be corrected, e.g., a cell carrying a point mutation, e.g., an A3140G point mutation in exon 20 of the PI3KCA gene, resulting in a H1047R substitution in the PI3KCA protein, is contacted with an expression construct encoding a Cas9 deaminase fusion protein and an appropriately designed sgRNA targeting the fusion protein to the respective mutation site in the encoding PI3KCA gene. Control experiments can be performed where the sgRNAs are designed to target the fusion enzymes to non-C residues that are within the PI3KCA gene. Genomic DNA of the treated cells can be extracted, and the relevant sequence of the PI3KCA genes PCR amplified and sequenced to assess the activities of the fusion proteins in human cell culture.
[00267] It will be understood that the example of correcting point mutations in PI3KCA is provided for illustration purposes and is not meant to limit the instant disclosure. The skilled artisan will understand that the instantly disclosed DNA-editing fusion proteins can be used to correct other point mutations and mutations associated with other cancers and with diseases other than cancer including other proliferative diseases.
[00268] The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of Cas9 and deaminase enzymes or domains also have applications in "reverse" gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating Trp (TGG), $\mathrm{Gln}(\mathrm{CAA}$ and CAG), or $\operatorname{Arg}(\mathrm{CGA})$ residues to premature stop codons (TAA, TAG, TGA) can be used to abolish protein function in vitro, ex vivo, or in vivo.
[00269] The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a Cas 9 DNA editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a PI3KCA point mutation as described above, an effective amount of a Cas9
deaminase fusion protein that corrects the point mutation or introduces a deactivating mutation into the disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.
[00270] The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation, cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria - e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., McDonald et al., Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS) - e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX (T>C mutation) - see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK) - e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g.,

Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic obstructive pulmonary disease (COPD) - e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of α_{1}-antitrypsin or residue 78 in the unprocessed form or a homologous residue ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number P01011 in the UNIPROT database; Charcot-Marie-Toot disease type $4 \mathrm{~J}-e . g$., isoleucine to threonine mutation at position 41 or a homologous residue in FIG4 (T>C mutation) - see, e.g., Lenk et al., PLoS Genetics. 2011; 7: e1002104; neuroblastoma (NB) - e.g., leucine to proline mutation at position 197 or a homologous residue in Caspase-9 (T>C mutation) - see, e.g., Kundu et al., 3 Biotech. 2013, 3:225-234; von Willebrand disease (vWD) - e.g., cysteine to arginine mutation at position 509 or a homologous residue in the processed form of von Willebrand factor, or at position 1272 or a homologous residue in the unprocessed form of von Willebrand factor ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., Lavergne et al., Br. J. Haematol. 1992, see also accession number P04275 in the UNIPROT database; 82: 66-72; myotonia congenital - e.g., cysteine to arginine mutation at position 277 or a homologous residue in the muscle chloride channel gene CLCN1 ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., Weinberger et al., The J. of Physiology. 2012; 590: 3449-3464; hereditary renal amyloidosis - e.g., stop codon to arginine mutation at position 78 or a homologous residue in the processed form of apolipoprotein AII or at position 101 or a homologous residue in the unprocessed form ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., Yazaki et al., Kidney Int. 2003; 64: 11-16; dilated cardiomyopathy (DCM) - e.g., tryptophan to Arginine mutation at position 148 or a homologous residue in the FOXD4 gene ($\mathrm{T}>\mathrm{C}$ mutation), see, e.g., Minoretti et. al., Int. J. of Mol. Med. 2007; 19: 369-372; hereditary lymphedema - e.g., histidine to arginine mutation at position 1035 or a homologous residue in VEGFR3 tyrosine kinase (A>G mutation), see, e.g., Irrthum et al., Am. J. Hum. Genet. 2000; 67: 295-301; familial Alzheimer's disease - e.g., isoleucine to valine mutation at position 143 or a homologous residue in presenilin1 (A>G mutation), see, e.g., Gallo et. al., J. Alzheimer's disease. 2011; 25: 425-431; Prion disease - e.g., methionine to valine mutation at position 129 or a homologous residue in prion protein ($\mathrm{A}>\mathrm{G}$ mutation) - see, e.g., Lewis et. al., J. of General Virology. 2006; 87: 2443-2449; chronic infantile neurologic cutaneous articular syndrome (CINCA) - e.g., Tyrosine to Cysteine mutation at position 570 or a homologous residue in cryopyrin (A>G mutation) - see, e.g., Fujisawa et. al. Blood. 2007; 109: 29032911; and desmin-related myopathy (DRM) - e.g., arginine to glycine mutation at position 120 or a homologous residue in $\alpha \beta$ crystallin (A>G mutation) - see, e.g., Kumar et al., J.

Biol. Chem. 1999; 274: 24137-24141. The entire contents of all references and database entries is incorporated herein by reference.
[00271] The instant disclosure provides lists of genes comprising pathogenic $\mathrm{T}>\mathrm{C}$ or $\mathrm{A}>\mathrm{G}$ mutations. Provided herein, are the names of these genes, their respective SEQ ID NOs, their gene IDs, and sequences flanking the mutation site. (Tables 2 and 3). In some instances, the gRNA sequences that can be used to correct the mutations in these genes are disclosed (Tables 2 and 3).
[00272] In some embodiments, a Cas9-deaminase fusion protein recognizes canonical PAMs and therefore can correct the pathogenic $\mathrm{T}>\mathrm{C}$ or $\mathrm{A}>\mathrm{G}$ mutations with canonical PAMs, e.g., NGG (listed in Tables 2 and 3, SEQ ID NOs: 2540-2702 and 5084-5260), respectively, in the flanking sequences. For example, the Cas9 proteins that recognize canonical PAMs comprise an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 10, or to a fragment thereof comprising the RuvC and HNH domains of SEQ ID NO: 10.
[00273] It will be apparent to those of skill in the art that in order to target a Cas9:nucleic acid editing enzyme/domain fusion protein as disclosed herein to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the Cas9:nucleic acid editing enzyme/domain fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. In some embodiments, the guide RNA comprises a structure 5'-[guide sequence]guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuu uuu-3' (SEQ ID NO: 601), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific target sequences are provided below.
[00274] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An "indel", as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is greater than 1:1. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least $6: 1$, at least $6.5: 1$, at least $7: 1$, at least $7.5: 1$, at least $8: 1$, at least $10: 1$, at least $12: 1$, at least $15: 1$, at least $20: 1$, at least $25: 1$, at least $30: 1$, at least $40: 1$, at least $50: 1$, at least $100: 1$, at least 200:1, at least 300:1, at least 400:1, at least 500:1, at least 600:1, at least 700:1, at least $800: 1$, at least $900: 1$, or at least $1000: 1$, or more. The number of intended mutations and indels may be determined using any suitable method, for example the methods used in the below Examples.
[00275] In some embodiments, the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid. In some embodiments, the region is at a nucleotide targeted by a base editor or a region within $2,3,4,5,6,7,8,9$, or 10 nucleotides of a nucleotide targeted by a base editor. In some embodiments, any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%. The number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor. In some embodiments, an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.
[00276] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations. In some embodiments, a intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to generate the intended mutation. In some embodiments, the intended mutation is a mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a point mutation that generates a stop codon, for example, a premature stop codon within the coding region of a gene. In some embodiments, the intended mutation is a mutation that eliminates a stop codon. In some embodiments, the intended mutation is a mutation that alters the splicing of a gene. In some embodiments, the intended mutation is a mutation that alters the regulatory sequence of a gene (e.g., a gene promotor or gene repressor). In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations unintended point mutations) that is greater than $1: 1$. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is at least $1.5: 1$, at least $2: 1$, at least $2.5: 1$, at least $3: 1$, at least $3.5: 1$, at least $4: 1$, at least $4.5: 1$, at least $5: 1$, at least $5.5: 1$, at least $6: 1$, at least $6.5: 1$, at least $7: 1$, at least $7.5: 1$, at least $8: 1$, at least $10: 1$, at least $12: 1$, at least $15: 1$, at least $20: 1$, at least $25: 1$, at least $30: 1$, at least $40: 1$, at least $50: 1$, at least $100: 1$, at least $150: 1$, at least $200: 1$, at least $250: 1$, at least $500: 1$, or at least 1000:1, or more. It should be appreciated that the characterstics of the base editors described in the "Base Editor Efficiency" section, herein, may be applied to any of the fusion proteins, or methods of using the fusion proteins provided herein.

Methods for Editing Nucleic Acids

[00277] Some aspects of the disclosure provide methods for editing a nucleic acid. In some embodiments, the method is a method for editing a nucleobase of a nucleic acid (e.g., a
base pair of a double-stranded DNA sequence). In some embodiments, the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor (e.g., a Cas9 domain fused to a cytidine deaminase domain) and a guide nucleic acid (e.g., gRNA), wherein the target region comprises a targeted nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, and d) cutting no more than one strand of said target region, where a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase; and the method results in less than 20% indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, the first nucleobase is a cytosine. In some embodiments, the second nucleobase is a deaminated cytosine, or a uracil. In some embodiments, the third nucleobase is a guanine. In some embodiments, the fourth nucleobase is an adenine. In some embodiments, the first nucleobase is a cytosine, the second nucleobase is a deaminated cytosine, or a uracil, the third nucleobase is a guanine, and the fourth nucleobase is an adenine. In some embodiments, the method results in less than $19 \%, 18 \%, 16 \%, 14 \%, 12 \%, 10 \%, 8 \%, 6 \%, 4 \%, 2 \%, 1 \%, 0.5 \%, 0.2 \%$, or less than 0.1% indel formation. In some embodiments, the method further comprises replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair (e.g., C:G -> $\mathrm{T}: \mathrm{A}$). In some embodiments, the fifth nucleobase is a thymine. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least $10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, or 50% of the intended basepaires are edited.
[00278] In some embodiments, the ratio of intended products to unintended products in the target nucleotide is at least $2: 1,5: 1,10: 1,20: 1,30: 1,40: 1,50: 1,60: 1,70: 1,80: 1,90: 1$, $100: 1$, or $200: 1$, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than $1: 1,10: 1,50: 1,100: 1,500: 1$, or $1000: 1$, or more. In some embodiments, the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the base editor comprises a Cas9 domain. In some embodiments, the first base is cytosine, and the second base is not a G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the first base is cytosine. In some embodiments, the second base is not a $\mathrm{G}, \mathrm{C}, \mathrm{A}$, or T . In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base escision repair of the
edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the base editor comprises UGI activity. In some embodiments, the base editor comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is $1,2,3,4,5$, $6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15$, $16,17,18,19$, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, linker is $10,11,12,13,14,15,16,17,18,19$, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 110 nucleotides. In some embodiments, the target window is $1-9,1-8,1-7,1-6,1-5,1-4,1-3$, $1-2$, or 1 nucleotides in length. In some embodiments, the target window is $1,2,3,4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides in length. In some embodiments, the intended edited base pair is within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the method is performed using any of the base editors provided herein. In some embodiments, a target windo is a deamination window
[00279] In some embodiments, the disclosure provides methods for editing a nucleotide. In some embodiments, the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence. In some embodiments, the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) cutting no more than one strand of said target region, wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase, and the second nucleobase is replaced with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited basepair, wherein the efficiency of generating the intended edited basepair is at least 5%. It should be appreciated that in some embodiments, step b is omitted. In some
embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least $10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, or 50% of the intended basepaires are edited. In some embodiments, the method causes less than $19 \%, 18 \%, 16 \%, 14 \%, 12 \%, 10 \%$, $8 \%, 6 \%, 4 \%, 2 \%, 1 \%, 0.5 \%, 0.2 \%$, or less than 0.1% indel formation. In some embodiments, the ratio of intended product to unintended products at the target nucleotide is at least $2: 1$, $5: 1,10: 1,20: 1,30: 1,40: 1,50: 1,60: 1,70: 1,80: 1,90: 1,100: 1$, or $200: 1$, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, $50: 1,100: 1,500: 1$, or $1000: 1$, or more. In some embodiments, the cut single strand is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the first base is cytosine. In some embodiments, the second nucleobase is not $\mathrm{G}, \mathrm{C}, \mathrm{A}$, or T . In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base escision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the nucleobase editor comprises UGI activity. In some embodiments, the nucleobase edit comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is $1,2,3$, $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 520 amino acids in length. In some embodiments, the linker is $10,11,12,13,14,15,16,17$, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is $1-9,1-8,1-7,1-6,1-5,1-4,1-3,1-2$, or 1 nucleotides in length. In some embodiments, the target window is $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$, 19 , or 20 nucleotides in length. In some embodiments, the intended edited base pair occurs within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the nucleobase editor is any one of the base editors provided herein.

Kits, vectors, cells
[00281] Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
[00282] Some aspects of this disclosure provide polynucleotides encoding a Cas9 protein of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
[00283] Some aspects of this disclosure provide cells comprising a Cas9 protein, a fusion protein, a nucleic acid molecule encoding the fusion protein, a complex comprise the Cas 9 protein and the gRNA, and/or a vector as provided herein.
[00284] The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.

EXAMPLES

EXAMPLE 1: Cas9 Deaminase Fusion Proteins

[00285] A number of Cas9:Deaminase fusion proteins were generated and deaminase activity of the generated fusions was characterized. The following deaminases were tested:

Human AID (hAID):
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPYLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHEN SVRLSRQLRRILLPLYEVDDLRDAFRTLGLLD (SEQ ID NO: 607)

Human AID-DC (hAID-DC, truncated version of hAID with 7-fold increased activity): MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHEN

SVRLSRQLRRILL (SEQ ID NO: 608)
Rat APOBEC1 (rAPOBEC1):
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 284)

Human APOBEC1 (hAPOBEC1)
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKN TTNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYV ARLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYP PLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIH PSVAWR (SEQ ID NO: 5724)

Petromyzon marinus (Lamprey) CDA1 (pmCDA1):
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNK PQSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRG NGHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQ LNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV (SEQ ID NO: 609)

Human APOBEC3G (hAPOBEC3G):
MELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKV TLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRE LFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERM HNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFT SWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYS EFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN (SEQ ID NO: 610)
[00286] Deaminase Activity on ssDNA. A USER (Uracil-Specific Excision Reagent) Enzyme-based assay for deamination was employed to test the activity of various deaminases on single-stranded DNA (ssDNA) substrates. USER Enzyme was obtained from New England Biolabs. An ssDNA substrate was provided with a target cytosine residue at different positions. Deamination of the ssDNA cytosine target residue results in conversion of the target cytosine to a uracil. The USER Enzyme excises the uracil base and cleaves the ssDNA backbone at that position, cutting the ssDNA substrate into two shorter fragments of DNA. In some assays, the ssDNA substrate is labeled on one end with a dye, e.g., with a 5^{\prime} Cy3 label (the * in the scheme below). Upon deamination, excision, and cleavage of the strand, the substrate can be subjected to electrophoresis, and the substrate and any fragment released from it can be visualized by detecting the label. Where Cy5 is images, only the fragment with the label will be visible via imaging.
[00287] In one USER Enzyme assay, ssDNA substrates were used that matched the target sequences of the various deaminases tested. Expression cassettes encoding the deaminases
tested were inserted into a CMV backbone plasmid that has been used previously in the lab (Addgene plasmid 52970). The deaminase proteins were expressed using a TNT Quick Coupled Transcription/Translation System (Promega) according to the manufacturers recommendations. After 90 min of incubation, 5 mL of lysate was incubated with 5' Cy3labeled ssDNA substrate and 1 unit of USER Enzyme (NEB) for 3 hours. The DNA was resolved on a 10% TBE PAGE gel and the DNA was imaged using Cy-dye imaging. A schematic reparesentation of the USER Enzyme assay is shown in Figure 41.
[00288] Figure 1 shows the deaminase activity of the tested deaminases on ssDNA substrates, such as Doench 1, Doench 2, G7' and VEGF Target 2. The rAPOBEC1 enzyme exhibited a substantial amount of deamination on the single-stranded DNA substrate with a canonical NGG PAM, but not with a negative control non-canonical NNN PAM.

Cas9 fusion proteins with APOBEC family deaminases were generated. The following fusion architectures were constructed and tested on ssDNA:
rAPOBEC1-GGS-dCas 9 primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGGS D KKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHP IFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK KNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLF LAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYK EIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEE RLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELV KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDK NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVR EINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKAT AKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMP QVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK VEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELE NGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA AFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 611)
rAPOBEC1-(GGS) $)_{3}-d C a s 9$ primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGGSG GSGGSMDKKYSIGLAIGTNSVGWAVITDE YKVPSKKFKVLGNTDRHSIKKNLIGALLF DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEED KKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGH FLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLI AQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQ QLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLL RKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLAR GNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSL LYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFK KIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDR EMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSD GFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVL TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDK AGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQ FYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQE IGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKV LSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSL FELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFV EQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNL GAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 612)
dCas9-GGS-rAPOBEC1
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVA YHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYF TVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF DSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE ERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT QLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSD KNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFI

Abstract

KRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMP QVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA YSVLVVAK VEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELE NGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA AFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGSMSSETGPVA VDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFI EKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPR NRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLEL YCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 613)

dCas9-GGS 3 -rAPOBEC1
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADL FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYF TVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF DSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE ERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT QLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSD KNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFI KRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMP QVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA YSVLVVAK VEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELE NGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA AFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGSGGSGGSMSS ETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYH HADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRL YVLELYCIILGLPPCLNLRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 614)
rAPOBEC1-XTEN-dCas9 primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW

VRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSE TPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI GALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESF LVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIK FRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLN REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYV GPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVL PKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILD FLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGIL QTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQI LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSI DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGL SELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFA TVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT VA YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIK LPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQ KQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSA YNKHRDKPIREQAENIIHLF TLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 615)
[00289] Figure 2 shows that the N-terminal deaminase fusions showed significant activity on the single stranded DNA substrates. For this reason, only the N-terminal architecture was chosen for further experiments.
[00290] Figure 3 illustrates double stranded DNA substrate binding by deaminase-
dCas9:sgRNA complexes. A number of double stranded deaminase substrate sequences were generated. The sequences are provided below. The structures according to Figure 3 are identified in these sequences (36bp: underlined, sgRNA target sequence: bold; PAM: boxed; $21 \mathrm{bp}:$ italicized). All substrates were labeled with a 5'-Cy3 label:
2:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGTCCCGCGGATTTATTTATTT AATGG $A T G A C C T C T G G A T C C A T G G A C-3^{\prime}$ (SEQ ID NO: 616) 3:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCTTCCGCGGATTTATTTATT TATGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 617) 4:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTTCCGCGGATTTATTTAT TATGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 618) 5:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTCCGCGGATTTATTTA TTTGG $A T G A C C T C T G G A T C C A T G G A C-3 '(S E Q ~ I D ~ N O: ~ 619) ~$ 6:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTCCGCGGATTTATTT ATTGG $A T G A C C T C T G G A T C C A T G G A C-3 '(S E Q ~ I D ~ N O: ~ 620) ~$

7:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTTATTCCGCGGATTTATT TATGG $A T G A C C T C T G G A T C C A T G G A C-3^{\prime}$ (SEQ ID NO: 621)
 8:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTCCGCGGATTTAT TTTGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 622)
 9:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTATTCCGCGGATTTA TTTGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 623)
 10:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATATTCCGCGGATTT ATTGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 624)
 11:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTATATTCCGCGGATT TATGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 625)
 12:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTTATTATATTCCGCGGAT TTTGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 626)
 13:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTATATTCCGCGGA
 TTTGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 627)
 14:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTATTATATTCCGCGG
 ATTGG $A T G A C C T C T G G A T C C A T G G A C-3^{\prime}$ (SEQ ID NO: 628)
 15:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTATTATTACCGCG GATGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 629) 18:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTATTATTATTACC GCTGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 630)
 "،

GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGTAATATTAATTTATTTATTTAA TGG $A T G A C C T C T G G A T C C A T G G A C-3 '$ (SEQ ID NO: 631)
 8U:GTAGGTAGTTAGGATGAATGGAAGGTTGGTGTAGATTATTATCUGCGGATTTA TTGG $A T G A C C T C T G G A T C C A T G G A C A T-3 '$ (SEQ ID NO: 632)

*In all substrates except for " 8 U ", the top strand in Figure 3 is the complement of the sequence specified here. In the case of " 8 U ", there is a "G" opposite the U .
[00291] Figure 4 shows the results of a double stranded DNA Deamination Assay. The fusions were expressed and purified with an N-terminal His6 tag via both Ni-NTA and sepharose chromatography. In order to assess deamination on dsDNA substrates, the various dsDNA substrates shown on the previous slide were incubated at a 1:8 dsDNA:fusion protein ratio and incubated at $37^{\circ} \mathrm{C}$ for 2 hours. Once the dCas 9 portion of the fusion binds to the DNA it blocks access of the USER enzyme to the DNA. Therefore, the fusion proteins were denatured following the incubation and the dsDNA was purified on a spin column, followed by incubation for 45 min with the USER Enzyme and resolution of the resulting DNA substrate and substrate fragments on a 10% TBE-urea gel.
[00292] Figure 5 demonstrates that Cas9 fusions can target positions 3-11 of doublestranded DNA target sequences (numbered according to the schematic in Figure 3). Upper Gel: $1 \mu \mathrm{MrAPOBEC} 1-G G S-d C a s 9,125 \mathrm{nM}$ dsDNA, 1 eq sgRNA. Mid Gel: $1 \mu \mathrm{M}$
rAPOBEC1-(GGS) $3^{-d C a s} 9,125 \mathrm{nM}$ dsDNA, 1 eq sgRNA. Lower Gel: $1.85 \mu \mathrm{M}$ rAPOBEC1-XTEN-dCas9, 125 nM dsDNA, 1 eq sgRNA. Based on the data from these gels, positions 311 (according to the numbering in Figure 3) are sufficiently exposed to the activity of the deaminase to be targeted by the fusion proteins tested. Access of the deaminase to other positions is most likely blocked by the dCas9 protein.
[00293] The data further indicates that a linker of only 3 amino acids (GGS) is not optimal for allowing the deaminase to access the single stranded portion of the DNA. The 9 amino acid linker [(GGS) $)_{3}$ (SEQ ID NO: 596) and the more structured 16 amino acid linker (XTEN) allow for more efficient deamination.
[00294] Figure 6 demonstrates that the correct guide RNA, e.g., the correct sgRNA, is required for deaminase activity. The gel shows that fusing the deaminase to dCas9, the deaminase enzyme becomes sequence specific (e.g., using the fusion with an eGFP sgRNA results in no deamination), and also confers the capacity to the deaminase to deaminate dsDNA. The native substrate of the deaminase enzyme is ssDNA, and no deamination occurred when no sgRNA was added. This is consistent with reported knowledge that APOBEC deaminase by itself does not deaminate dsDNA. The data indicates that Cas9 opens the double-stranded DNA helix within a short window, exposing single-stranded DNA that is then accessible to the APOBEC deaminase for cytidine deamination. The sgRNA sequences used are provided below. sequences (36 bp : underlined, sgRNA target sequence: bold; PAM: boxed; 21bp: italicized)
DNA sequence 8 :
5'-Су3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTCCGCGGATTTATT TTGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 633)

Correct sgRNA sequence (partial 3' sequence):
5'-AUUAUUCCGCGGAUUUAUUUGUUUUAGAGCUAG...-3' (SEQ ID NO: 634)
eGFP sgRNA sequence (partial 3 '-sequence):
5'-CGUAGGCCAGGGUGGUCACGGUUUUAGAGCUAG...-3' (SEQ ID NO: 635)

EXAMPLE 2: Deamination of DNA target sequence

[00295] Exemplary deamination targets. The dCas9:deaminase fusion proteins described herein can be delivered to a cell in vitro or ex vivo or to a subject in vivo and can be used to effect C to T or G to A transitions when the target nucleotide is in positions 3-11 with respect to a PAM. Exemplary deamination targets include, without limitation, the following: CCR5
truncations: any of the codons encoding Q93, Q102, Q186, R225, W86, or Q261 of CCR5 can be deaminated to generate a STOP codon, which results in a nonfunctional truncation of CCR5 with applications in HIV treatment. APOE4 mutations: mutant codons encoding C11R and C57R mutant APOE4 proteins can be deaminated to revert to the wild-type amino acid with applications in Alzheimer's treatment. eGFP truncations: any of the codons encoding Q158, Q184, Q185 can be deaminated to generate a STOP codon, or the codon encoding M1 can be deaminated to encode I, all of which result in loss of eGFP fluorescence, with applications in reporter systems. eGFP restoration: a mutant codon encoding T65A or Y66C mutant GFP, which does not exhibit substantial fluorescence, can be deaminated to restore the wild-type amino acid and confer fluorescence. PIK3CA mutation: a mutant codon encoding K111E mutant PIK3CA can be deaminated to restore the wild-type amino acid residue with applications in cancer. CTNNB1 mutation: a mutant codon encoding T41A mutant CTNNB1 can be deaminated to restore the wild-type amino acid residue with applications in cancer. HRAS mutation: a mutant codon encoding Q61R mutant HRAS can be deaminated to restore the wild-type amino acid residue with applications in cancer. P53 mutations: any of the mutant codons encoding Y163C, Y236C, or N239D mutant p53 can be deaminated to encode the wild type amino acid sequence with applications in cancer.
The feasibility of deaminating these target sequences in double-stranded DNA is
demonstrated in Figures 7 and 8. Figure 7 illustrates the mechanism of target DNA binding of in vivo target sequences by deaminase-dCas9:sgRNA complexes.
[00296] Figure 8 shows successful deamination of exemplary disease-associated target sequences. Upper Gel: CCR5 Q93: coding strand target in pos. 10 (potential off-targets at positions $2,5,6,8,9$); CCR5 Q102: coding strand target in pos. 9 (potential off-targets at positions 1, 12, 14); CCR5 Q186: coding strand target in pos. 9 (potential off-targets at positions 1,5,15); CCR5 R225: coding strand target in pos. 6 (no potential off-targets); eGFP Q158: coding strand target in pos. 5 (potential off-targets at positions 1, 13, 16); eGFP Q184 /185: coding strand target in pos. 4 and 7 (potential off-targets at positions 3, 12, 14, 15, 16, 17, 18); eGFP M1: template strand target in pos. 12 (potential off-targets at positions 2, 3, 7, 9,11) (targets positions 7 and 9 to small degree); eGFP T65A: template strand target in pos. 7 (potential off-targets at positions 1, 8, 17); PIK3CA K111E: template strand target in pos. 2 (potential off-targets at positions 5, 8, 10, 16, 17); PIK3CA K111E: template strand target in pos. 13 (potential off-targets at positions $11,16,19$) X. Lower Gel: CCR5 W86: template strand target in pos. 2 and 3 (potential off-targets at positions 1, 13) X; APOE4 C11R: coding strand target in pos. 11 (potential off-targets at positions 7, 13, 16, 17); APOE4 C57R: coding
strand target in pos. 5) (potential off-targets at positions 7, 8, 12); eGFP Y66C: template strand target in pos. 11 (potential off-targets at positions $1,4,6,8,9,16$); eGFP Y66C: template strand target in pos. 3 (potential off-targets at positions $1, \mathbf{8}, 17$); CCR5 Q261: coding strand target in pos. 10 (potential off-targets at positions $3, \mathbf{5}, \mathbf{6}, 9,18$); CTNNB1 T41A: template strand target in pos. 7 (potential off-targets at positions $1,13,15,16$) \mathbf{X}; HRAS Q61R: template strand target in pos. 6 (potential off-targets at positions $1,2,4,5,9$, 10,13); p53 Y163C: template strand target in pos. 6 (potential off-targets at positions 2, 13, 14); p53 Y236C: template strand target in pos. 8 (potential off-targets at positions 2, 4); p53 N 239 D : template strand target in pos. 4 (potential off-targets at positions 6,8). Exemplary DNA sequences of disease targets are provided below (PAMs (5'-NGG-3') and target positions are boxed):

CCR5 Q93: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAACTATGCTGCCGCC
CAGTGGGACTTTGG $A A A T A C A A T G T G T C A A C T C T T-3 '$ (SEQ ID NO: 636)
CCR5 Q102: 5'-Су3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAAATACAATGTGT
СААСТСТTGACA GGGCTCTATTTTATAGGCTTCTTC-3' (SEQ ID NO: 637)
CCR5 Q186: 5'-Су3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATTTTCCATACAGT
CAGTATCAATTCTGGAAGAATTTCCAGACATTAAAG-3' (SEQ ID NO: 638)
CCR5 R225: 5'-Сy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGCTTCGGTGTCGA
AATGAGAAGAAG AGGCACAGGGCTGTGAGGCTTATC-3' (SEQ ID NO: 639)
CCR5 W86: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGTGAGCCCAGAAGG
GGACAGTAAGA AGG $A A A A A C A G G T C A G A G A T G G C C-3 '$ (SEQ ID NO: 640) CCR5 Q261: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATCCTGAACACCTT
CCAGGAATTCTTTGGCCTGAATAATTGCAGTAGCTC-3' (SEQ ID NO: 641)
APOE4 C11R: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGACATGGAGGAC
GTGCGCGGCCGCCTGGTGCAGTACCGCGGCGAGGTGC-3' (SEQ ID NO: 642) APOE4 C57R: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACTGCAGAAGCGC
CTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCG-3' (SEQ ID NO: 643)
eGFP Q158: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGCCGACAA GCAGA
AGAACGGCATCA AGG $T G A A C T T C A A G A T C C G C C A C A-3 '$ (SEQ ID NO: 644)
eGFP Q184/185: 5'-Cy3-GTAGGTAGTTAGGATGAATGGAAGGTTGGTAACCACTACC
AGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCC-3' (SEQ ID NO: 645)
eGFP M1: 5'-Су3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACCTCGCCCTTGCTCA
CCATCTCGAGTCGGCCGCCAGTGTGATGGATATCT-3' (SEQ ID NO: 646)

```
eGFP T65A: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACACGCGTAGGCCA
GGGTGGTCACGAGG \(G T G G G C C A G G G C A C G G G C A G C-3^{\prime}\) (SEQ ID NO: 647)
eGFP Y66C: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAAGCACTGCACTC
CGCA GGTCAGGGTGG \(T C A C G A G G G T T G G C C A G G G C A-3\) ' (SEQ ID NO: 648)
eGFP Y66C: 5’-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACACTCCGCAGGTC
AGGGTGGTCACGAGG \(G T T G G C C A G G G C A C G G G C A G G-3^{\prime}\) (SEQ ID NO: 649)
PIK3CA K111E: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGGATCTCTTC
TTCACGGTTGCCTACTGGTTCAATTACTTTTAAAAATGG-3' (SEQ ID NO: 650)
PIK3CA K111E: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATTCTCGATTG
AGGATCTCTTCTTCACGGTTGCCTACTGGTTCAATTACT-3' (SEQ ID NO: 651)
CTNNB1 T41A: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAGGAGCTGTGG
CAGTGGCACCAGAATGG \(A T T C C A G A G T C C A G G T A A G A C-3 '(\) SEQ ID NO: 652)
HRAS Q61R: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGTACTCCTCCCGG
CCGGCGGTATCCAGG \(A T G T C C A A C A G G C A C G T C T C C-3 ’\) (SEQ ID NO: 653)
p53 Y163C: 5’-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATGACTGCTTGCAG
ATGGCCATGGCGCGG \(A C G C G G G T G C C G G G C G G G G G T-3 '\) (SEQ ID NO: 654)
p53 Y236C: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACTGTTACACATGC
AGTTGTAGTGGATGG \(T G G T A C A G T C A G A G C C A A C C T-3 '\) (SEQ ID NO: 655)
p53 N239D: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGGAACTGTCACAC
ATGTAGTTGTAGTGG \(A T G G T G G T A C A G T C A G A G C C A-3\) ' (SEQ ID NO: 656)
```

EXAMPLE 3: Uracil Glycosylase Inhibitor Fusion Improves Deamination Efficiency
[00297] Direct programmable nucleobase editing efficiencies in mammalian cells by dCas9:deaminase fusion proteins can be improved significantly by fusing a uracil glycosylase inhibitor (UGI) to the dCas9: deaminase fusion protein.
[00298] Figure 9 shows in vitro $\mathrm{C} \rightarrow \mathrm{T}$ editing efficiencies in human HEK293 cells using rAPOBEC1-XTEN-dCas9:
rAPOBEC1-XTEN-dCas9-NLS primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWV RLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETP GTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIG ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLV

Abstract

EEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFR GHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLE NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLA QIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALV RQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRED LLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLAR GNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLL YEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFK KIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRE MIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDG FANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVE NTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLT RSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDK AGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQ FYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQ EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKV LSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYS LFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLF VEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNL GAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKR $K V$ (SEQ ID NO: 657)

Protospacer sequences were as follows:
EMX1: $\quad 5^{\prime}$ - GAGTC $_{5} \mathbf{C}_{6}$ GAGC $\mathbf{1 0}^{\text {AGAAGAAGAAGGG }}$-3' (SEQ ID NO: 293)
FANCF: $\quad 5^{\prime}-$ GGAATC $_{6} \mathbf{C}_{7} \mathbf{C}_{8}$ TTC $_{11}$ TGCAGCACCTGG -3' (SEQ ID NO: 294)
HEK293 site 2: 5' - GAAC $\mathbf{4}^{\prime}$ AC $_{6}$ AAAGC $\mathbf{1 1}^{\prime}$ ATAGACTGCGGG - 3^{\prime} (SEQ ID NO: 295)
HEK293 site 3: 5' - GGC $\mathbf{3}_{4}$ C $_{5}$ AGAC ${ }_{9}$ TGAGCACGTGATGG -3' (SEQ ID NO: 296)
HEK293 site 4: 5'- GGC $\mathbf{3}^{\prime}$ AC $_{5}$ TGC $\mathbf{8 G G}_{11}$ TGGAGGTGGGGG - $\mathbf{3}^{\prime}$ (SEQ ID NO: 297)
RNF2: $\quad 5^{\prime}$ - GTC $\mathbf{3}^{\text {ATC }}$ 6 TTAGTCATTACCTGAGG -3' (SEQ ID NO: 298)
*PAMs are boxed, C residues within target window (positions 3-11) are numbered and bolded.
[00299] Figure 10 demonstrates that $\mathrm{C} \rightarrow \mathrm{T}$ editing efficiencies on the same protospacer sequences in HEK293T cells are greatly enhanced when a UGI domain is fused to the rAPOBEC1:dCas9 fusion protein.
rAPOBEC1-XTEN-dCas9-UGI-NLS primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWV RLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETP

GTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIG ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLV EEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFR GHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLE NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLA QIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALV RQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRED LLRKQRTFDNGSIPHQIHLGELHALLRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLAR GNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLL YEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFK KIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRE MIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDG FANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVE NTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLT RSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDK AGFIKRQLVETRQITKHVAQLLDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQ FYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQ EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKV LSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYS LFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLF VEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNL GAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSD
IEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAP EYKPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 658)
[00300] The percentages in Figures 9 and 10 are shown from sequencing both strands of the target sequence. Because only one of the strands is a substrate for deamination, the maximum possible deamination value in this assay is 50%. Accordingly, the deamination efficiency is double the percentages shown in the tables. E.g., a value of 50% relates to deamination of 100% of double-stranded target sequences.

When a uracil glycosylase inhibitor (UGI) was fused to the dCas9:deaminase fusion protein (e.g., rAPOBEC1-XTEN-dCas9-[UGI]-NLS), a significant increase in editing efficiency in cells was observed. This result indicates that in mammalian cells, the DNA repair machinery that cuts out the uracil base in a $\mathrm{U}: \mathrm{G}$ base pair is a rate-limiting process in DNA editing. Tethering UGI to the dVas9:deaminase fusion proteins greatly increases editing yields. [00301] Without UGI, typical editing efficiencies in human cells were in the $\sim 2-14 \%$ yield range (Figure 9 and Figure 10, "XTEN" entries). With UGI (Figure 10, "UGI" entries) the editing was observed in the $\sim 6-40 \%$ range. Using a UGI fusion is thus more efficient than the current alternative method of correcting point mutations via HDR, which also creates an
excess of indels in addition to correcting the point mutation. No indels resulting from treatment with the cas9:deaminase:UGI fusions were observed.

EXAMPLE 4: Direct, programmable conversion of a target nucleotide in genomic DNA without double-stranded DNA cleavage

[00302] Current genome-editing technologies introduce double-stranded DNA breaks at a target locus of interest as the first step to gene correction. ${ }^{39,40}$ Although most genetic diseases arise from mutation of a single nucleobase to a different nucleobase, current approaches to revert such changes are very inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus as a consequence of the cellular response to double-stranded DNA breaks. ${ }^{39,40}$ Reported herein is the development of nucleobase editing, a new strategy for genome editing that enables the direct conversion of one target nucleobase into another in a programmable manner, without requiring double-stranded DNA backbone cleavage. Fusions of CRISPR/Cas9 were engineered and the cytidine deaminase enzyme APOBEC1 that retain the ability to be programmed with a guide RNA, do not induce double-stranded DNA breaks, and mediate the direct conversion of cytidine to uracil, thereby effecting a $\mathrm{C} \rightarrow \mathrm{T}$ (or $\mathrm{G} \rightarrow \mathrm{A}$) substitution following DNA replication, DNA repair, or transcription if the template strand is targeted. The resulting "nucleobase editors" convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease in vitro. In four transformed human and murine cell lines, second- and third-generation nucleobase editors that fuse uracil glycosylase inhibitor (UGI), and that use a Cas9 nickase targeting the non-edited strand, respectively, can overcome the cellular DNA repair response to nucleobase editing, resulting in permanent correction of up to 37% or ($\sim 15-75 \%$) of total cellular DNA in human cells with minimal (typically $\leq 1 \%$) indel formation. In contrast, canonical Cas9-mediated HDR on the same targets yielded an average of 0.7% correction with 4% indel formation. Nucleobase editors were used to revert two oncogenic $p 53$ mutations into wild-type alleles in human breast cancer and lymphoma cells, and to convert an Alzheimer's Disease associated Arg codon in ApoE4 into a non-disease-associated Cys codon in mouse astrocytes. Base editing expands the scope and efficiency of genome editing of point mutations.
[00303] The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive immune system that has been adapted to mediate genome engineering in a variety of organisms and cell lines. ${ }^{41}$ CRISPR/Cas9 protein-RNA complexes localize to a
target DNA sequence through base pairing with a guide RNA, and natively create a DNA double-stranded break (DSB) at the locus specified by the guide RNA. In response to DSBs, endogenous DNA repair processes mostly result in random insertions or deletions (indels) at the site of DNA cleavage through non-homologous end joining (NHEJ). In the presence of a homologous DNA template, the DNA surrounding the cleavage site can be replaced through homology-directed repair (HDR). When simple disruption of a disease-associated gene is sufficient (for example, to treat some gain-of-function diseases), targeted DNA cleavage followed by indel formation can be effective. For most known genetic diseases, however, correction of a point mutation in the target locus, rather than stochastic disruption of the gene, is needed to address or study the underlying cause of the disease. ${ }^{68}$
[00304] Motivated by this need, researchers have invested intense effort to increase the efficiency of HDR and suppress NHEJ. For example, a small-molecule inhibitor of ligase IV, an essential enzyme in the NHEJ pathway, has been shown to increase HDR efficiency. ${ }^{42,43}$ However, this strategy is challenging in post-mitotic cells, which typically down-regulate HDR, and its therapeutic relevance is limited by the potential risks of inhibiting ligase IV in non-target cells. Enhanced HDR efficiency can also be achieved by the timed delivery of Cas9-guide RNA complexes into chemically synchronized cells, as HDR efficiency is highly cell-cycle dependent. ${ }^{44}$ Such an approach, however, is limited to research applications in cell culture since synchronizing cells is highly disruptive. Despite these developments, current strategies to replace point mutations using HDR in most contexts are very inefficient (typically ~ 0.1 to 5%), ${ }^{42,43,45,46,75}$ especially in unmodified, non-dividing cells. In addition, HDR competes with NHEJ during the resolution of double-stranded breaks, and indels are generally more abundant outcomes than gene replacement. These observations highlight the need to develop alternative approaches to install specific modifications in genomic DNA that do not rely on creating double-stranded DNA breaks. A small-molecule inhibitor of ligase IV, an essential enzyme in the NHEJ pathway, has been shown to increase HDR efficiency. ${ }^{42,43}$ However, this strategy is challenging in post-mitotic cells, which typically down-regulate HDR, and its therapeutic relevance is limited by the potential risks of inhibiting ligase IV in non-target cells. Enhanced HDR efficiency can also be achieved by the timed delivery of Cas9-guide RNA complexes into chemically synchronized cells, as HDR efficiency is highly cell-cycle dependent. ${ }^{44}$ Such an approach, however, is limited to research applications in cell culture since synchronizing cells is highly disruptive. In some cases, it is possible to design HDR templates such that the product of successful HDR contains mutations in the PAM sequence and therefore is no longer a substrate for subsequent Cas 9 modification, increasing
the overall yield of HDR products, ${ }^{75}$ although such an approach imposes constraints on the product sequences. Recently, this strategy has been coupled to the use of ssDNA donors that are complementary to the non-target strand and high-efficiency ribonucleoprotein (RNP) delivery to substantially increase the efficiency of HDR, but even in these cases the ratio of HDR to NHEJ outcomes is relatively low $(<2) .{ }^{83}$
[00305] It was envisioned that direct catalysis of the conversion of one nucleobase to another at a programmable target locus without requiring DNA backbone cleavage could increase the efficiency of gene correction relative to HDR without introducing undesired random indels at the locus of interest. Catalytically dead Cas9 (dCas9), which contains Asp10Ala and His840Ala mutations that inactivate its nuclease activity, retains its ability to bind DNA in a guide RNA-programmed manner but does not cleave the DNA backbone. ${ }^{16,47}$ In principle, conjugation of dCas9 with an enzymatic or chemical catalyst that mediates the direct conversion of one nucleobase to another could enable RNA-programmed nucleobase editing. The deamination of cytosine (C) is catalyzed by cytidine deaminases ${ }^{29}$ and results in uracil (U), which has the base pairing properties of thymine (T). dCas9 was fused to cytidine deaminase enzymes in order to test their ability to convert C to U at a guide RNA-specified DNA locus. Most known cytidine deaminases operate on RNA, and the few examples that are known to accept DNA require single-stranded DNA ${ }^{48}$ Recent studies on the dCas9-target DNA complex reveal that at least nine nucleotides of the displaced DNA strand are unpaired upon formation of the Cas9:guide RNA:DNA "R-loop" complex. ${ }^{12}$ Indeed, in the structure of the Cas9 R- loop complex the first 11 nucleotides of the protospacer on the displaced DNA strand are disordered, suggesting that their movement is not highly restricted. ${ }^{76}$ It has also been speculated that Cas9 nickase-induced mutations at cytosines in the non-template strand might arise from their accessibility by cellular cytidine deaminase enzymes. ${ }^{77}$ Recent studies on the dCas9-target DNA complex have revealed that at least 26 bases on the non-template strand are unpaired when Cas9 binds to its target DNA sequence. ${ }^{49}$ It was reasoned that a subset of this stretch of single-stranded DNA in the R-loop might serve as a substrate for a dCas9-tethered cytidine deaminase to effect direct, programmable conversion of C to U in DNA (Figure 11A).
[00306] Four different cytidine deaminase enzymes (hAID, hAPOBEC3G, rAPOBEC1, and pmCDA1) were expressed in a mammalian cell lysate-derived in vitro transcriptiontranslation system and evaluated for ssDNA deamination. Of the four enzymes, rAPOBEC1 showed the highest deaminase activity under the tested conditions and was chosen for dCas9 fusion experiments (Figure 36A). Although appending rAPOBEC1 to the C-terminus of
dCas9 abolishes deaminase activity, fusion to the N-terminus of dCas9 preserves deaminase activity on ssDNA at a level comparable to that of the unfused enzyme. Four rAPOBEC1dCas9 fusions were expressed and purified with linkers of different length and composition (Figure 36B), and evaluated each fusion for single guide RNA (sgRNA)-programmed dsDNA deamination in vitro (Figures 11A to 11C and Figures 15A to 15D).

Efficient, sequence-specific, sgRNA-dependent C to U conversion was observed in vitro (Figures 11 A to 11 C). Conversion efficiency was greatest using rAPOBEC1-dCas9 linkers over nine amino acids in length. The number of positions susceptible to deamination (the deamination "activity window") increases with linker length was extended from three to 21 amino acids (Figures 36 C to 36 F 15 A to 15 D). The 16 -residue XTEN linker ${ }^{50}$ was found to offer a promising balance between these two characteristics, with an efficient deamination window of approximately five nucleotides, from positions 4 to 8 within the protospacer, counting the end distal to the protospacer-adjacent motif (PAM) as position 1. The rAPOBEC1-XTEN-dCas9 protein served as the first-generation nucleobase editor (NBE1). [00307] Elected were seven mutations relevant to human disease that in theory could be corrected by C to T nucleobase editing, synthesized double-stranded DNA 80-mers of the corresponding sequences, and assessed the ability of NBE1 to correct these mutations in vitro (Figures 16A to 16B). NBE1 yielded products consistent with efficient editing of the target C, or of at least one C within the activity window when multiple Cs were present, in six of these seven targets in vitro, with an average apparent editing efficiency of 44\% (Figures 16A to 16B). In the three cases in which multiple Cs were present within the deamination window, evidence of deamination of some or all of these cytosines was observed. In only one of the seven cases tested were substantial yields of edited product observed (Figures 16A to 16B). Although the preferred sequence context for APOBEC1 substrates is reported to be CC or TC, ${ }^{51}$ it was anticipated that the increased effective molarity of the deaminase and its singlestranded DNA substrate mediated by dCas9 binding to the target locus may relax this restriction. To illuminate the sequence context generality of NBE1, its ability to edit a 60 -mer double-stranded DNA oligonucleotide containing a single fixed C at position 7 within the protospacer was assayed, as well as all 36 singly mutated variants in which protospacer bases 1-6 and 8-13 were individually varied to each of the other three bases. Each of these 37 sequences were treated with $1.9 \mu \mathrm{M} \mathrm{NBE1}, 1.9 \mu \mathrm{M}$ of the corresponding sgRNA, and 125 nM DNA for 2 h , similar to standard conditions for in vitro Cas9 assays ${ }^{52}$. High-throughput DNA sequencing (HTS) revealed 50 to $80 \% \mathrm{C}$ to U conversion of targeted strands (25 to 40% of total sequence reads arising from both DNA strands, one of which is not a substrate for

NBE1) (Figure 12A). The nucleotides surrounding the target C had little effect on editing efficiency was independent of sequence context unless the base immediately 5^{\prime} of the target C is a G , in which case editing efficiency was substantially lower (Figures 12A to 12B). NBE1 activity in vitro was assessed on all four NC motifs at positions 1 through 8 within the protospacer (Figures 12A to 12B). In general NBE1 activity on substrates was observed to follow the order $\mathrm{TC} \geq \mathbf{C C} \geq \mathrm{AC}>\mathrm{GC}$, with maximum editing efficiency achieved when the target C is at or near position 7 . In addition, it was observed that the nucleobase editor is highly processive, and will efficiently convert most of all Cs to Us on the same DNA strand within the 5 -base activity window (Figure 17).
[00308] While BE1 efficiently processes substrates in a test tube, in cells a tree of possible DNA repair outcomes determines the fate of the initial $\mathrm{U}: \mathrm{G}$ product of base editing (Figure 29A). To test the effectiveness of nucleobase editing in human cells, NBE1 codon usage was optimized for mammalian expression, appended a C-terminal nuclear localization sequence (NLS), ${ }^{53}$ and assayed its ability to convert C to T in human cells on 14Cs in six well-studied target sites throughout the human genome (Figure 37A). ${ }^{54}$ The editable Cs were confirmed within each protospacer in vitro by incubating NBE1 with synthetic 80-mers that correspond to the six different genomic sites, followed by HTS (Figures 13A to 13C, Figure 29B and Figure 25). Next, HEK293T cells were transfected with plasmids encoding NBE1 and one of the six target sgRNAs, allowed three days for nucleobase editing to occur, extracted genomic DNA from the cells, and analyzed the loci by HTS. Although C to T editing in cells at the target locus was observed for all six cases, the efficiency of nucleobase editing was 1.1% to 6.3% or $0.8 \%-7.7 \%$ of total DNA sequences (corresponding to 2.2% to 12.6% of targeted strands), a 6.3 -fold to 37 -fold or 5 -fold to 36 -fold decrease in efficiency compared to that of in vitro nucleobase editing (Figures 13A to 13C, Figure 29B and Figure 25). It was observed that some base editing outside of the typical window of positions 4 to 8 when the substrate C is preceded by a T , which we attribute to the unusually high activity of APOBEC1 for TC substrates. ${ }^{48}$
[00309] It was asked whether the cellular DNA repair response to the presence of $\mathrm{U}: \mathrm{G}$ heteroduplex DNA was responsible for the large decrease in nucleobase editing efficiency in cells (Figure 29A). Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells and initiates base excision repair (BER), with reversion of the U:G pair to a C:G pair as the most common outcome (Figure 29A). ${ }^{55}$ Uracil DNA glycosylase inhibitor (UGI), an 83residue protein from B. subtilis bacteriophage PBS1, potently blocks human UDG activity $\left(\mathrm{IC}_{50}=12 \mathrm{pM}\right){ }^{56}$ UGI was fused to the C-terminus of NBE1 to create the second-generation
nucleobase editor NBE2 and repeated editing assays on all six genomic loci. Editing efficiencies in human cells were on average 3-fold higher with NBE2 than with NBE1, resulting in gene conversion efficiencies of up to 22.8% of total DNA sequenced (up to 45.6% of targeted strands) (Figures 13A to 13C and Figure 29B). To test base editing in human cells, BE1 codon usage was optimized for mammalian expression and appended a Cterminal nuclear localization sequence (NLS). ${ }^{53}$
[00310] Similar editing efficiencies were observed when a separate plasmid overexpressing UGI was co-transfected with NBE1 (Figures 18A to 18H). However, while the direct fusion of UGI to NBE1 resulted in no significant increase in C to T mutations at monitored nontargeted genomic locations, overexpression of unfused UGI detectably increased the frequency of C to T mutations elsewhere in the genome (Figures 18A to 18H). The generality of NBE2-mediated nucleobase editing was confirmed by assessing editing efficiencies on the same six genomic targets in U2OS cells, and observed similar results with those in HEK293T cells (Figure 19). Importantly, NBE2 typically did not result in any detectable indels (Figure 13C and Figure 29C), consistent with the known mechanistic dependence of NHEJ on double-stranded DNA breaks. ${ }^{57,78}$ Together, these results indicate that conjugating UGI to NBE1 can greatly increase the efficiency of nucleobase editing in human cells.
[00311] The permanence of nucleobase editing in human cells was confirmed by monitoring editing efficiencies over multiple cell divisions in HEK293T cells at two of the tested genomic loci. Genomic DNA was harvested at two time points: three days after transfection with plasmids expressing NBE2 and appropriate sgRNAs, and after passaging the cells and growing them for four additional days (approximately five subsequent cell divisions). No significant change in editing efficiency was observed between the nonpassaged cells (editing observed in 4.6% to 6.6% of targeted strands for three different target Cs) and passaged cells (editing observed in 4.6% to 6.4% of targeted strands for the same three target Cs), confirming that the nucleobase edits became permanent following cell division (Figure 20). Indels will on rare occasion arise from the processing of $\mathrm{U}: \mathrm{G}$ lesions by cellular repair processes, which involve single-strand break intermediates that are known to lead to indels. ${ }^{84}$ Given that several hundred endogenous U:G lesions are generated every day per human cell from spontaneous cytidine deaminase, ${ }^{85}$ it was anticipate that the total indel frequency from $\mathrm{U}: \mathrm{G}$ lesion repair is unlikely to increase from BE 1 or BE 2 activity at a single target locus.
[00312] To further increase the efficiency of nucleobase editing in cells, it was anticipated that nicking the non-edited strand may result in a smaller fraction of edited Us being removed
by the cell, since eukaryotic mismatch repair machinery uses strand discontinuity to direct DNA repair to any broken strand of a mismatched duplex (Figure 29A). ${ }^{58,79,80}$ The catalytic His residue was restored at position 840 in the Cas9 HNH domain, ${ }^{47,59}$ resulting in the thirdgeneration nucleobase editor NBE3 that nicks the non-edited strand containing a G opposite the targeted C , but does not cleave the target strand containing the C. Because NBE3 still contains the Asp10Ala mutation in Cas9, it does not induce double-stranded DNA cleavage. This strategy of nicking the non-edited strand augmented nucleobase editing efficiency in human cells by an additional 1.4- to 4.8 -fold relative to NBE2, resulting in up to 36.3% of total DNA sequences containing the targeted C to T conversion on the same six human genomic targets in HEK293T cells (Figures 13A to 13C and Figure 29B). Importantly, only a small frequency of indels, averaging 0.8% (ranging from 0.2% to 1.6% for the six different loci), was observed from NBE3 treatment (Figure 13C, Figure 29C, and Figure 34). In contrast, when cells were treated with wild-type Cas 9 , sgRNA, and a single-stranded DNA donor template to mediate HDR at three of these loci C to T conversion efficiencies averaging only 0.7% were observed, with much higher relative indel formation averaging 3.9% (Figures 13A to 13 C and Figure 29C). The ratio of allele conversion to NHEJ outcomes averaged $>1,000$ for BE2, 23 for BE3, and 0.17 for wild-type Cas9 (Fig. 3c). We confirmed the permanence of base editing in human cells by monitoring editing efficiencies over multiple cell divisions in HEK293T cells at the HEK293 site 3 and 4 genomic loci (Figure 38). These results collectively establish that nucleobase editing can effect much more efficient targeted single-base editing in human cells than Cas9-mediated HDR, and with much less (NBE3) or no (NBE2) indel formation.
[00313] Next, the off-target activity of NBE1, NBE2, and NBE3 in human cells was evaluated. The off-target activities of Cas9, dCas9, and Cas9 nickase have been extensively studied (Figures 23 to 24 and 31 to 33)..$^{54,60-62}$ Because the sequence preference of rAPOBEC1 has been shown to be independent of DNA bases more than one base from the target $\mathrm{C},{ }^{63}$ consistent with the sequence context independence observed in Figures 12A to 12B, it was assumed that potential off-target activity of nucleobase editors arises from offtarget Cas 9 binding. Since only a fraction of Cas9 off-target sites will have a C within the active window for nucleobase editing, off-target nucleobase editing sites should be a subset of the off-target sites of canonical Cas9 variants. For each of the six sites studied, the top ten known Cas9 off-target loci in human cells that were previously determined using the GUIDEseq method were sequenced (Figures 23 to 27 and 31 to 33). ${ }^{54,61}$ Detectable off-target nucleobase editing at only a subset ($16 / 34,47 \%$ for NBE1 and NBE2, and $17 / 34,50 \%$ for

NBE3) of known dCas9 off-target loci was observed. In all cases, the off-target base-editing substrates contained a C within the five-base target window. In general, off-target C to T conversion paralleled off-target Cas9 nuclease-mediated genome modification frequencies (Figures 23 to 27). Also monitored were C to T conversions at 2,500 distinct cytosines surrounding the six on-target and 34 off-target loci tested, representing a total of 14,700,000 sequence reads derived from approximately 1.8×10^{6} cells, and observed no detectable increase in C to T conversions at any of these other sites upon NBE1, NBE2, or NBE3 treatment compared to that of untreated cells (Figure 28). Taken together, these findings suggest that off-target substrates of nucleobase editors include a subset of Cas9 off-target substrates, and that nucleobase editors in human cells do not induce untargeted C to T conversion throughout the genome at levels that can be detected by the methods used here. No substantial change was observed in editing efficiency between non-passaged HEK293T cells (editing observed in 1.8% to 2.6% of sequenced strands for the three target Cs with BE2, and 6.2% to 14.3% with BE3) and cells that had undergone approximately five cell divisions after base editing (editing observed in 1.9% to 2.3% of sequenced strands for the same target Cs with BE2, and 6.4% to 14.5% with BE3), confirming that base edits in these cells are durable (Extended Data Fig. 6).
[00314] Finally, the potential of nucleobase editing to correct three disease-relevant mutations in mammalian cells was tested. The apolipoprotein E gene variant APOE4 encodes two Arg residues at amino acid positions 112 and 158, and is the largest and most common genetic risk factor for late-onset Alzheimer's disease. ${ }^{64}$ ApoE variants with Cys residues in positions 112 or 158, including APOE2 (Cys112/Cys158), APOE3 (Cys112/Arg158), and APOE3 ' ${ }^{\prime}(\operatorname{Arg} 112 / C y s 158)$ have been shown ${ }^{65}$ or are presumed ${ }^{81}$ to confer substantially lower Alzheimer's disease risk than APOE4. Encouraged by the ability of NBE1 to convert APOE4 to APOE3' in vitro (Figures 16A to 16B), this conversion was attempted in immortalized mouse astrocytes in which the endogenous murine $A P O E$ gene has been replaced by human APOE4 (Taconic). DNA encoding NBE3 and an appropriate sgRNA was delivered into these astrocytes by nucleofection (nucleofection efficiency of 25%), extracted genomic DNA from all treated cells two days later, and measured editing efficiency by HTS. Conversion of Arg158 to Cys 158 was observed in $58-75 \%$ of total DNA sequencing reads (44% of nucleofected astrocytes) (Figures 14A to 14C and Figures 30A). Also observed was 36-50\% editing of total DNA at the third position of codon 158 and 38-55\% editing of total DNA at the first position of Leu159, as expected since all three of these Cs are within the active nucleobase editing window. However, neither of the other two $\mathrm{C} \rightarrow \mathrm{T}$ conversions results in a
change in the amino acid sequence of the ApoE3' protein since both TGC and TGT encode Cys, and both CTG and TTG encode Leu. From > 1,500,000 sequencing reads derived from 1×10^{6} cells evidence of 1.7% indels at the targeted locus following NBE3 treatment was observed (Figure 35). In contrast, identical treatment of astrocytes with wt Cas9 and donor ssDNA resulted in 0.1-0.3\% APOE4 correction and 26-40\% indels at the targeted locus, efficiencies consistent with previous reports of single-base correction using Cas9 and $H D R R^{45,75}$ (Figure 30A and Figure 40A). Astrocytes treated identically but with an sgRNA targeting the VEGFA locus displayed no evidence of APOE4 base editing (Figure 34 and Figure 40A). These results demonstrate how nucleobase editors can effect precise, singleamino acid changes in the coding sequence of a protein as the major product of editing, even when their processivity results in more than one nucleotide change in genomic DNA. The off-target activities of Cas9, dCas9, and Cas9 nickase have been extensively studied. ${ }^{54,60-62}$ In general, off-target C to T conversions by BE1, BE2, and BE3 paralleled off-target Cas9 nuclease-mediated genome modification frequencies.
[00315] The dominant-negative p53 mutations Tyr163Cys and Asn239Asp are strongly associated with several types of cancer. ${ }^{66-67}$ Both of these mutations can be corrected by a C to T conversion on the template strand (Figures 16A to 16B). A human breast cancer cell line homozygous for the p53 Tyr163Cys mutation (HCC1954 cells) was nucleofected with DNA encoding NBE3 and an sgRNA programmed to correct Tyr163Cys. Because the nucleofection efficiency of HCC1954 cells was $<10 \%$, a plasmid expressing IRFP was conucleofected into these cells to enable isolation of nucleofected cells by fluorescenceactivated cell sorting two days after treatment. HTS of genomic DNA revealed correction of the Tyr163Cys mutation in 7.6\% of nucleofected HCC1954 cells (Figure 30B and Figure 40A to 40B). Also nucleofected was a human lymphoma cell line that is heterozygous for p53 Asn239Asp (ST486 cells) with DNA encoding NBE2 and an sgRNA programmed to correct Asn239Asp with 92% nucleofection efficiency). Correction of the Asn239Asp mutation was observed in 11% of treated ST486 cells (12% of nucleofected ST486 cells). Consistent with the findings in HEK cells, no indels were observed from the treatment of ST486 cells with NBE2, and 0.6% indel formation from the treatment of HCC1954 cells with NBE3. No other DNA changes within at least 50 base pairs of both sides of the protospacer were detected at frequencies above that of untreated controls out of $>2,000,000$ sequencing reads derived from 2×10^{5} cells (Figures 14A to 14C, Figure 30B and Table 1). These results collectively represent the conversion of three disease-associated alleles in genomic DNA into their wild-
type forms with an efficiency and lack of other genome modification events that is, to our knowledge, not currently achievable using other methods.
[00316] To illuminate the potential relevance of nucleobase editors to address human genetic diseases, the NCBI ClinVar database ${ }^{68}$ was searched for known genetic diseases that could in principle be corrected by this approach. ClinVar was filtered by first examining only single nucleotide polymorphisms (SNPs), then removing any nonpathogenic variants. Out of the 24,670 pathogenic SNPs, 3,956 are caused by either a T to C , or an A to G , substitution. This list was further filtered to only include variants with a nearby NGG PAM that would position the SNP within the deamination activity window, resulting in 1,089 clinically relevant pathogenic gene variants that could in principle be corrected by the nucleobase editors described here (Figure 21 and Table 1). To illuminate the potential relevance of base editors to address human genetic diseases, the NCBI ClinVar database ${ }^{68}$ was searched for known genetic diseases that could in principle be corrected by this approach. ClinVar was filtered by first examining only single nucleotide polymorphisms (SNPs), then removing any non-pathogenic variants. Out of the 24,670 pathogenic SNPs, 3,956 are caused by either a T to C , or an A to G , substitution. This list was further filtered to only include variants with a nearby NGG PAM that would position the SNP within the deamination activity window, resulting in 911 clinically relevant pathogenic gene variants that could in principle be corrected by the base editors described here. Of these, 284 contain only one C within the base editing activity window. A detailed list of these pathogenic mutations can be found in Table 1.
[00317] Table 1. List of 911 base-editable gene variants associated with human disease with an NGG PAM (SEQ ID NOs: 747 to 1868 appear from top to bottom below, respectively). The "Y" in the protospacer and PAM sequences indicates the base to be edited, e.g., C. (SEQ ID NOs: 747 to 1868 appear from top to bottom below, respectively)

dbSNP \#	Genotype	Protospacer and PAM sequence(s)	Associated genetic disease
755445790	$\begin{aligned} & \text { NM_000391.3(TPP1):c. } 887- \\ & 10 \mathrm{~A}>G \end{aligned}$	TTTYTTTTTTTTTTTTTTTGAGG	Ceroid lipofuscinosis, neuronal, 2
113994167	NM 000018.3 (ACADVL) $: .848 \mathrm{~T}>\mathrm{C}$ (p.Val283Ala)	TTTGYGGTGGAGAGGGGCTTCGG, TTGYGGTGGAGAGGGGCTTCGGG	Very long chain acyl-CoA dehydrogenase deficiency
119470018	NM_024996.5(GFM1):c.521A>G (p. Asnl74Ser)	TTGYTAATAAAAGTTAGAAACGG	Combined oxidative phosphorylation deficiency 1
115650537	$\begin{gathered} \text { NM_000426.3(LAMA2):c.8282T>C } \\ (\text { p.Ile2761Thr) } \end{gathered}$	TTGAYAGGGAGCAAGCAGTTCGG, TGAYAGGGAGCAAGCAGTTCGGG	Merosin deficient congenital muscular dystrophy
587777752	NM_014946.3(SPAST):c.1688-	TTCYGTAAAACATAAAAGTCAGG	Spastic paraplegia 4, autosomal dominant

794726821	$\underset{\text { NM_001165963.1(SCN1A):c.4055T }>C \mathrm{C}}{\text { (p.Leu1352Pro) }}$	TTCYGGTTTGTCTTATATTCTGG	Severe myoclonic epilepsy in infancy
397514745	$\underset{\text { NM_001130089.1(KARS):c.517T>C }}{\text { (p.Tyr173His) }}$	CTTCYATGATCTTCGAGGAGAGG, TTCYATGATCTTCGAGGAGAGG G	Deafness, autosomal recessive 89
376960358	NM_001202.3(BMP4):c.362A>G (p.Hisl21Arg)	TTCGTGGYGGAAGCTCCTCACGG	Microphthalmia syndromic 6
606231280	NM $001287223.1(\mathrm{SCNIIA}): \mathrm{c} .1142 \mathrm{~T}>\mathrm{C}$ (p.Ile381Thr)	CTTCAYTGTGGTCATTTTCCTGG TTCAYTGTGGTCATTTTCCTGG G	Episodic pain syndrome, familial, 3
387906735	m. $608 \mathrm{~A}>\mathrm{G}$	TTCAGYGTATTGCTTTGAGGAGG	
199474663	m. $3260 \mathrm{~A}>\mathrm{G}$	TTAAGTTYTATGCGATTACCGGG	Cardiomyopathy with or without skeletal myopathy
104894962	$\begin{aligned} & \text { NM_003413.3(ZIC3):c. } 1213 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys405Glu) } \end{aligned}$	TGTGTTYGCGCAGGGAGCTCGGG, ATGTGTTYGCGCAGGGAGCTCG G	Heterotaxy, visceral, X-linked
796053181	NM $021007.2(\mathrm{SCN} 2 \mathrm{~A}): \mathrm{c} .1271 \mathrm{~T}>\mathrm{C}$ (p.Val424Ala)	TGTGGYGGCCATGGCCTATGAGG	not provided
267606788	NM_000129.3(Fl3Al):c. $728 \mathrm{~T}>\mathrm{C}$ (p.Met243Thr)	TGTGAYGGACAGAGCACAAATGG	Factor xiii, a subunit, deficiency of
397514503	NM_003863.3(DPM2):c. $68 \mathrm{~A}>\mathrm{G}$ (p. Tyr23Cys)	TGTAGYAGGTGAAGATGATCAGG	Congenital disorder of glycosylation type lu
104893973	NM_000416.2(IFNGRI):c.260T>C (p.Ie87Thr)	TGTAATAYTTCTGATCATGTTGG	Disseminated atypical mycobacterial infection, Mycobacterium tuberculosis, susceptibility to
121908466	$\begin{gathered} \mathrm{NM} 005682.6(\mathrm{ADGRG} \mathrm{I}) \mathrm{c} .263 \mathrm{~A}>\mathrm{G} \\ \text { (p.Tyr88Cys) } \end{gathered}$	TGGYAGAGGCCCCTGGGGTCAGG	Polymicrogyria, bilateral frontoparietal
147952488	NM_002437.4(MPV17):c.186+2T> C	TGGYAAGTTCTCCCCTCAACAGG	Navajo neurohepatopathy
121909537	NM 001145.4(ANG):c. $121 \mathrm{~A}>\mathrm{G}$ (p.Lys41Glu)	TGGTTYGGCATCATAGTGCTGGG, GTGGTTYGGCATCATAGTGCTG G	Amyotrophic lateral sclerosis type 9
121918489	NM_000141.4(FGFR2):C. $1018 \mathrm{~T}>\mathrm{C}$ (p.Tyr340His)	TGGGGAAYATACGTGCTTGGCGG, GGGGAAYATACGTGCTTGGCGGG	Crouzon syndrome
121434463	m. $12320 \mathrm{~A}>\mathrm{G}$	GAGTYGCACCAAAATTTTTGGGG, GGAGTYGCACCAAAATTTTTGGG, TGGAGTYGCACCAAAATTTTTG G	Mitochondrial myopathy
121908046	NM_000403.3(GALE):c. $101 \mathrm{~A}>\mathrm{G}$ (p.Asn34Ser)	TGGAAGYTATCGATGACCACAGG	UDPglucose-4-epimerase deficiency
431905512	NM_003764.3(STXI1):c.173T>C (p.Leu58Pro)	TGCYGGTGGCCGACGTGAAGCGG	Hemophagocytic lymphohistiocytosis, familial, 4
121917905	NM_000124.3(ERCC6):c.2960T>C (p.Leu987Pro)	TGCYAAAAGACCCAAAACAAAGG	Cerebro-oculo-facio-skeletalsyndrome
121918500	NM_000141.4(FGFR2):c.874A $>G$ (p.Lys292Glu)	TGCTYGATCCACTGGATGTGGGG, GTGCTYGATCCACTGGATGTGGG, CGTGCTYGATCCACTGGATGTG G	Crouzon syndrome
60431989	NM_000053.3(ATP7B):c. $3443 \mathrm{~T}>\mathrm{C}$ (p.Ile 1148Thr)	TGCTGAYTGGAAACCGTGAGTGG	Wilson disease
78950939	NM_000250. 1(MPO):c. $518 \mathrm{~A}>\mathrm{G}$ (p.Tyrl73Cys)	GTGCGGYATTTGTCCTGCTCCGG, TGCGGYATTTGTCCTGCTCCGG G	Myeloperoxidase deficiency
115677373	NM_201631.3(TGM5):c.763T>C (p.Trp255Arg)	TGCGGAGYGGACGGGCAGCGTGG	Peeling skin sy ndrome, acral type
5030804	$\begin{aligned} & \text { NM_000551.3(VHL):c.233A>G } \\ & \text { (p.Asn78Ser) } \end{aligned}$	GCGAYTGCAGAAGATGACCTGGG. TGCGAYTGCAGAAGATGACCTG G	Von Hippel-Lindau syndrome
397508328	NM 000492.3(CFTR):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	GCAYGGTCTCTCGGGCGCTGGGG, TGCAYGGTCTCTCGGGCGCTGGG CTGCAYGGTCTCTCGGGCGCTGG	Cystic fibrosis

137853299	NM_000362.4(TIMP3):c. $572 \mathrm{~A}>\mathrm{G}$ (p.Tyr191Cys)	TGCAGYAGCCGCCCTTCTGCCGG	Sorsby fundus dystrophy
121908549	NM_000334.4(SCN4A):c.3478A>G (p.Ile 1 160Val)	TGAYGGAGGGGATGGCGCCTAGG	
121909337	NM 001451.2(FOXF1):C.1138T>C (p.Ter380Arg)	TGATGYGAGGCTGCCGCCGCAGG	Alveolar capillary dysplasia with misalignment of pulmonary veins
281875320	NM_005359.5(SMAD4):c. $1500 \mathrm{~A}>\mathrm{G}$ (p.Ile500Met)	TGAGYATGCATAAGCGACGAAGG	Myhre syndrome
730880132	NM_170707.3(LMNA):c.710T>C (p.Phe237Ser)	TGAGTYTGAGAGCCGGCTGGCGG	Primary dilated cardiomyopathy
281875322	$\underset{\text { NM_005359.5(SMAD4):c. } 1498 \mathrm{~A}>\mathrm{G}}{\text { (p.Ile500Val) }}$	TGAGTAYGCATAAGCGACGAAGG	Hereditary cancer-predisposing syndrome, My hre syndrome
72556283	NM_000531.5(OTC):c. $527 \mathrm{~A}>\mathrm{G}$ (p. Tyrl76Cys)	TGAGGYAATCAGCCAGGATCTGG	not provided
74315311	$\begin{aligned} & \text { NM_020435.3(GJC2):c. } 857 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met286Thr) } \end{aligned}$	TGAGAYGGCCCACCTGGGCTTGG, GAGAYGGCCCACCTGGGCTTGGG	Leukodystrophy, hypomyelinating, 2
121912495	NM_170707.3(LMNA):c. $1139 \mathrm{~T}>\mathrm{C}$ (p.Leu880Ser)	TCTYGGAGGGCGAGGAGGAGAGG	Congenital muscular dystrophy, LMNA-related
128620184	NM_000061.2(BTK):c. $1288 \mathrm{~A}>\mathrm{G}$ (p.Lys430Glu)	TCTYGATGGCCACGTCGTACTGG	X-linked agammaglobulinemia
118192252	NM_004519.3(KCNQ3):c. $1403 \mathrm{~A}>\mathrm{G}$ (p.Asn468Ser)	TCTTTAYTGTTTAAGCCAACAGG	Benign familial neonatal seizures 2, not specified
121909142	NM_001300.5(KLF6):c. 190T>C (p. Trp64Arg)	TCTGYGGACCAAAATCATTCTGG	
104895503	$\begin{aligned} & \mathrm{NM} \text { _001127255.1(NLRP7) } \mathrm{c} .2738 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn913Ser) } \end{aligned}$	TCTGGYTGATACTCAAGTCCAGG	Hydatidiform mole
587783035	$\begin{aligned} & \text { NM_000038.5(APC):c. } 1744- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	TCCYAGTAAGAAACAGAATATGG	Familial adenomatous polyposis 1
72556289	```NM_000531.5(OTC):c.541- 2A>G```	TCCYAAAAGGCACGGGATGAAGG	not provided
28937313		TCCAYTGTGGCCCAGGAAGGAGG, CGCTCCAYTGTGGCCCAGGAAGG	Tangier disease
143246552	NM_001003811.1(TEX11):c. $511 \mathrm{~A} \rightleftharpoons \mathrm{G}$ (p.Met171Val)	TCCAYGGTCAAGTCAGCCTCAGG, CCAYGGTCAAGTCAGCCTCAGGG	Spermatogenic failure, X-linked, 2
587776451	NM_002049.3(GATA1):c.2T>C (p.MetlThr)	CTCCAYGGAGTTCCCTGGCCTGG, TCCAYGGAGTTCCCTGGCCTGGG, CCAYGGAGTTCCCTGGCCTGGGG	GATA-1-related thrombocytopenia with dyserythropoiesis
121908403	NM_021102.3(SPINT2):C. $488 \mathrm{~A}>\mathrm{G}$ (p.Tyr163Cys)	TCCAYAGATGAAGTTATTGCAGG	Diarrhea 3, secretory sodium, congenital, syndromic
281874738	$\begin{aligned} & \text { NM_000495.4(COL4A5):c.438+2T } \\ & >\mathrm{C} \end{aligned}$	CTCCAGYAAGTTATAAAATTIGG, TCCAGYAAGTTATAAAATTTGG c.	Alport syndrome, X -linked recessive
730880279	$\begin{aligned} & \text { NM_030653.3(DDX11):c.2271+2T } \\ & \times \mathrm{C} \end{aligned}$	TCCAGGYGCGGGCGTCATGCTGG, CCAGGYGCGGGCGTCATGCTGGG	Warsaw breakage sy ndrome
28940272	NM_017890.4(VPS13B):C. $8978 \mathrm{~A}>\mathrm{G}$ (p.Asn2993Ser)	TCAYTGATAAGCAGGGCCCAGGG, TTCAYTGATAAGCAGGGCCCAGG	Cohen syndrome, not specified
137852375	NM_000132.3(F8):c. $5372 \mathrm{~T}>\mathrm{C}$ (p.Met1791Thr)	TCAYGGTGAGTTAAGGACAGTGG	Hereditary factor VIII deficiency disease
11567847	NM_021961.5(TEAD1):c. 1261T>C (p. Tyr?His)	TCATATTYACAGGCTTGTAAAGG	
786203989	$\begin{aligned} & \text { NM_016069.9(PAM16):c.226A>G } \\ & \text { (p.Asn76Asp) } \end{aligned}$	CATAGTYCTGCAGAGGAGAGGGG, TCATAGTYCTGCAGAGGAGAGGG	Chondrodysplasia, megarbane-dagher-melki type
587776437	NC_012920.1:m. $9478 \mathrm{~T}>\mathrm{C}$	TCAGAAGYTTTTTTCTTCGCAGG	Leigh disease
121912474	NM 000424.3(KRT5):c.20T>C (p.Val7Ala)	TCAAGTGYGTCCTTCCGGAGCGG, CAAGTGYGTCCTTCCGGAGCGGG, AAGTGYGTCCTTCCGGAGCGGGG, AGTGYGTCCTTCCGGAGCGGGGG	Epidermolysis bullosa simplex, Koebner type
104886461	$\mathrm{NM}=020533.2(\mathrm{MCOLN1}): \mathrm{c} .406-$ $2 \mathrm{~A} \subset \mathrm{G}$	TACYGTGGGCAGAGAAGGGGAGG, AGGTACYGTGGGCAGAGAAGGGG, CAGGTACYGTGGGCAGAGAAGGG	Ganglioside sialidase deficiency

104894275	$\begin{aligned} & \text { NM_000317.2(PTS):c. } 155 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn52Ser) } \end{aligned}$	TAAYTGTGCCCATGGCCATTTGG	6-pyruvoyl-tetrahydropterin sy nthase deficiency
587777562	$\begin{aligned} & \text { NM_015599.2(PGM3):c. } 737 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn246Ser) } \end{aligned}$	TAAATGAYTGAGTTTGCCCTTGG	Immunodeficiency 23
121964906	NM_000027.3(AGA):c.916T>C (p.Cys306Arg)	GTTATAYGTGCCAATGTGACTGG	Aspartylglycosaminuria
28941769	NM_000356.3(TCOF1):c. $149 \mathrm{~A}>\mathrm{G}$ (p.Tyr50Cys)	GTGTGTAYAGATGTCCAGAAGGG	Treacher collins syndrome 1
121434464	m. $12297 \mathrm{~T}>\mathrm{C}$	GTCYTAGGCCCCAAAAATTTTGG	Cardiomyopathy, mitochondrial
121908407	NM 054027.4(ANKH):c. $143 \mathrm{~T}>\mathrm{C}$ (p.Met48Thr)	GTCGAGAYGCTGGCCAGCTACGG, TCGAGAYGCTGGCCAGCTACGGG	Chondrocalcinosis 2
59151893	NM_000422.2(KRT17):c. 275A>G (p.Asn92Ser)	GTCAYTGAGGTTCTGCATGGTGG, GCGGTCAYTGAGGTTCTGCATGG	Pachyonychia congenita type 2
121909499	NM_002427.3(MMP 13);c.272T>C (p.Met91Thr)	GTCAYGAAAAAGCCAAGATGCGG TCAYGAAAAAGCCAAGATGCGG G.	
61748478	$\text { NM_000552.3(VWF):c. } 2384 \mathrm{~A}>\mathrm{G}$ (p. Tyr795Cys)	GTCAYAGTTCTGGCACGTTTTGG	von Willebrand disease type 2 N

387906889	NM $006796.2(\mathrm{AFG3L} 2) \cdot \mathrm{c} .1847 \mathrm{~A}>\mathrm{G}$ (p.Tyr616Cys)	GTAYAGAGGTATTGTTCTTTTGG	Spastic ataxia 5, autosomal recessive
118203907	NM 000130.4(F5):c. $5189 \mathrm{~A}>\mathrm{G}$ (p.Tyr1730Cys)	GTAGYAGGCCCAAGCCCGACAGG	Factor V deficiency
118203945	NM_013319.2(UBIADI):c $305 \mathrm{~A}>\mathrm{G}$ (p.Asn102Ser)	GTAAGTGYTGACCAAATTACCGG	Schnyder crystalline corneal dystrophy
267607080	NM_005633.3(SOS1):c. $1294 \mathrm{~T}>\mathrm{C}$ (p. Trp432Arg)	GGTYGGGAGGGAAAAGACATTGG	Noonan syndrome 4, Rasopathy
137852953	NM_012464.4(TLLI):C. $1885 \mathrm{~A}>\mathrm{G}$ (p.Ile629Val)	GGTTAYGGTGCCGTTAAGTTTGG	Atrial septal defect 6
118203949	NM_013319.2(UBIADI):c. $695 \mathrm{~A}>\mathrm{G}$ (p.Asn232Ser)	GGTGTTGYTGGAATGGAGAATGG	Schnyder crystalline corneal dystrophy
137852952	NM 012464.4(TLLI):c.713T>C (p.Val238Ala)	GGGATTGYTGTTCATGAATTGGG	Atrial septal defect 6
41460449	m. $3394 \mathrm{~T}>\mathrm{C}$	GGCYATATACAACTACGCAAAGG	Leber optic atrophy
80357281	NM_007294.3(BRCA1):c.5291T>C (p.Leu1764Pro)	GGGCYAGAAATCTGTTGCTATGG, GGCYAGAAATCTGTTGCTATGGG	Familial cancer of breast, Breast-ovarian cancer, familial 1
5030764	NM 000174.4(GP9) c. 182A>G (p.Asn61Ser)	GGCTGYTGTTGGCCAGCAGAAGG	Bernard-Soulier sy ndrome type C
72556282	NM_000531.5(OTC):c. $526 \mathrm{~T}>\mathrm{C}$ (p.Tyrl76His)	GGCTGATYACCTCACGCTCCAGG, GATYACCTCACGCTCCAGGTTGG	not provided
121913594	NM_000530.6(MPZ):c. $242 \mathrm{~A}>\mathrm{G}$ (p.His81Arg)	GGCATAGYGGAAGATCTATGAGG	Charcot-Marie-Tooth disease type 1B
587777736	NM_017617.3(NOTCH1):c. $1285 \mathrm{~T}>\mathrm{C}$ (p.Cys429Arg)	GGCAAGYGCATCAACACGCTGGG, GGGCAAGYGCATCAACACGCTGG	Adams-Oliver syndrome 1, AdamsOliver syndrome 5
63750912	NM_016835.4(MAPT):c. $1839 \mathrm{~T}>\mathrm{C}$ (p.Asn613=)	GGATAAYATCAAACACGTCCCGG, GATAAYATCAAACACGTCCCGG G	Frontotemporal dementia
121918075	NM 000371.3(TTR):c. $401 \mathrm{~A}>\mathrm{G}$ (p. Tyr 134 Cys)	GGAGYAGGGGCTCAGCAGGGCGG, ATAGGAGYAGGGGCTCAGCAGGG	Amy loidogenic transthyretin amy loidosis
730882063	NM_004523.3(KIF11):c.2547+2T> C	GGAGGYAATAACTTTGTAAGTGG	Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation
397516156	NM_000257.3(MYH7):c. $2546 \mathrm{~T}>\mathrm{C}$ (p.Met849Thr)	GGAGAYGGCCTCCATGAAGGAGG	Primary familial hypertrophic cardiomyopathy,
118204430	NM 000035.3(ALDOB):c. $442 \mathrm{~T}>\mathrm{C}$ (p.Trp148Arg)	GGAAGYGGCGTGCTGTGCTGAGG	Hereditary fructosuria
200198778	NM 013382.5(POMT2) c. 1997A>G (p.Tyr666Cys)	GGAAGYAGTGGTGGAAGTAGAGG	Congenital muscular dystrophy, Congenital muscular dystrophy-dystrogly canopathy with brain and eye anomalies, type A2, Muscular dystrophy, Congenital muscular dystrophydystroglycanopathy with mental retardation, type B2
754896795	NM_004006.2(DMD):c. $6982 \mathrm{~A}>\mathrm{T}$ (p.Lys2328Ter)	GCTITTYTTCAAGCTGCCCAAGG	Duchenne muscular dystrophy, Becker muscular dystrophy, Dilated cardiomy opathy 3B
148924904	NM_000546.5(TP53):c.488A>G (p.Tyrl63Cys)	GCTTGYAGATGGCCATGGCGCGG	Hereditary cancer-predisposing sy ndrome

786204770	NM_016035.4(COQ4):c.155T>C (p.Leu52Ser)	GCTGTYGGCCGCCGGCTCCGCGG	COENZYME Q10 DEFICENCY, PRLMARY, 7
121909520	NM_001100.3(ACTA1):c. $350 \mathrm{~A} \subset \mathrm{G}$ (p.Asnl17Ser)	CGGYTGGCCTTGGGATTGAGGGG, GCGGYTGGCCTTGGGATTGAGGG, CGCGGYTGGCCTTGGGATTGAGG	Nemaline myopathy 3
587776879	$\begin{aligned} & \mathrm{NM} 004656.3(\mathrm{BAP}): \mathrm{c} .438- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	GCCYGGGGAAAAACAGAGTCAGG	Tumor predisposition syndrome
727504434	$\begin{aligned} & \text { NM_000501.3(ELN):c. } 890- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	GCCYGAAAACACAGCCACAGAGG	Supravalvar aortic stenosis
119455953	$\begin{aligned} & \text { NM_000391.3(TPPl):c. } 1093 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys365Arg) } \end{aligned}$	GCCGGGYGTTGGTCTGTCTCTGG	Ceroid lipofuscinosis, neuronal, 2
121964983	$\begin{aligned} & \text { NM_000481.3(AMT):c. } 125 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 42 \mathrm{Arg} \text {) } \end{aligned}$	GCCAGGYGGAAGTCATAGAGCGG	Non-ketotic hyperglycinemia
121908300	$\begin{gathered} \text { NM } 001005741.2(\mathrm{GBA}) \mathrm{c} .751 \mathrm{~T}>\mathrm{C} \\ \text { (p.Tyr251His) } \end{gathered}$	GCCAGAYACTTTGTGAAGTAAGG, CCAGAYACTTTGTGAAGTAAGG	Gaucher disease, type 1
786205083	$\begin{aligned} & \text { NM_003494.3(DYSF):c.3443- } \\ & 33 \mathrm{~A}>\mathrm{G} \end{aligned}$	GCCAGAGYGAGTGGCTGGAGTGG	Limb-girdle muscular dystrophy, type 2B
121908133	$\begin{aligned} & \text { NM_175073.2(APTX):c.602A>G } \\ & \text { (p.His201Arg) } \end{aligned}$	GCCAA YGGTAACGGGCCTTTGGG, AGCCAAYGGTAACGGGCCTTTGG	Adult onset ataxia with oculomotor apraxia
587777195	NM_005017.3(PCYT1A):c. $571 \mathrm{~T}>\mathrm{C}$ (p.Phe191Leu)	GCATGYTTGCTCCAACACAGAGG	Spondy lometaphyseal dysplasia with cone-rod dystrophy
431905520	NM_014714.3(IFT140):c. $4078 \mathrm{~T}>\mathrm{C}$ (p.Cys 1360Arg)	CAAGCAGYGTGAGCTGCTCCTGG, GCAGYGTGAGCTGCTCCTGGAGG	Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia and skeletal dysplasia
121912889	$\mathrm{NM} 001844.4(\mathrm{COL} 2 \mathrm{Al}): \mathrm{c} .4172 \mathrm{~A}>\mathrm{G}$ (p.Tyr1391Cys)	GCAGTGGYAGGTGATGTTCTGGG	Spondyloperipheral dysplasia, Platyspondylic lethal skeletal dysplasia Torrance type
137854492	$\begin{aligned} & \text { NM_001363.4(DKCl):c. } 1069 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr357Ala) } \end{aligned}$	GCAGGYAGAGATGACCGCTGTGG	Dyskeratosis congenita X -linked
121434362	$\begin{aligned} & \text { NM_152783.4(D2HGDH):c.1315A>G } \\ & \text { (p.Asn439Asp) } \end{aligned}$	GCAGGTYACCATCTCCTGGAGGG, TGCAGGTYACCATCTCCTGGAGG	D-2-hydroxyglutaric aciduria I
80338732	NM 002764.3(PRPSI): $.344 \mathrm{~T}>\mathrm{C}$ (p.Metl15Thr)	GCAAATAYGCTATCTGTAGCAGG	Charcot-Marie-Tooth disease, X linked recessive, type 5
387906675	$\begin{gathered} \text { NM_000313.3(PROS1):c. } 701 \mathrm{~A}>\mathrm{G} \\ \text { (p.Tyr234Cys) } \end{gathered}$	GATTAYATCTGTAGCCTTCGGGG, AGATTAYATCTGTAGCCTTCGGG, GAGATTAYATCTGTAGCCTTCGG	Thrombophilia due to protein S deficiency, autosomal recessive

28935478	$\begin{aligned} & \text { NM_000061.2(BTK):c. } 1082 \mathrm{~A}>\mathrm{G} \\ & \text { (p. Tyr361Cys) } \end{aligned}$	GATGGYAGTTAATGAGCTCAGGG, TGATGGYAGTTAATGAGCTCAGG	
201777056	$\begin{aligned} & \text { NM_005050.3(ABCD4):c.956A>G } \\ & \text { (p.Tyr319Cys) } \end{aligned}$	GATGAGGYAGATGCACACAAAGG	METHYLMALONIC ACDURIA AND HOMOCYSTINURIA, cblJ
121918528	NM 000098.2(CPT2):c.359A>G (p.Tyrl20Cys)	GATAGGYACATATCAAACCAGGG, AGATAGGYACATATCAAACCAG G	Carnitine palmitoy ltransferase II deficiency, infantile
267607014	NM_002942.4(ROBO2):c.2834T>C (p.Ile945Thr)	GAGAYTGGAAATTTTGGCCGTGG	Vesicoureteral reflux 2
281865192	$\begin{aligned} & \mathrm{NM} \text { 025114.3(CEP290):C.2991+1655 } \\ & \mathrm{A}>\mathrm{G} \end{aligned}$	GATAYTCACAATTACAACTGGGG, AGATAYTCACAATTACAACTGGG, GAGATAYTCACAATTACAACTG	Leber congenital amaurosis 10
386833492	$\begin{aligned} & \mathrm{NM} 000112.3(\mathrm{SLC} 26 \mathrm{~A} 2): \mathrm{c} .- \\ & 26+2 \mathrm{~T}>\mathrm{C} \end{aligned}$	GAGAGGYGAGAAGAGGGAAGCGG	Diastrophic dysplasia
587779773	$\begin{aligned} & \text { NM_001101.3(ACTB):c. } 356 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Metl19Thr) } \end{aligned}$	GAGAAGAYGACCCAGGTGAGTGG	Baraitser-Winter syndrome 1
121913512	$\begin{aligned} & \text { NM_000222.2(KIT):c.1924A>G } \\ & \text { (p.Lys642Glu) } \end{aligned}$	GACTTYGAGTTCAGACATGAGGG, GGACTTYGAGTTCAGACATGAGG	
28939072	NM_006329.3(FBLN5):c.506T>C (p.Ile169Thr)	GACAYTGATGAATGTCGCTATGG	Age-related macular degeneration 3
104894248	NM_000525.3(KCNJI1) $\mathrm{c} .776 \mathrm{~A}>\mathrm{G}$ $(\mathrm{p} . \mathrm{His} 259 \mathrm{Arg})$	GACAYGGTAGATGATCAGCGGGG, TGACAYGGTAGATGATCAGCGGG, ATGACAYGGTAGATGATCAGCGG	Islet cell hyperplasia
387907132	$\begin{gathered} \text { NM_016464.4(TMEM138):c.287A>G } \\ \text { (p.His96Arg) } \end{gathered}$	GACAYGAAGGGAGATGCTGAGGG, AGACAYGAAGGGAGATGCTGAGG	Joubert sy ndrome 16
121918170	NM 000275.2(OCA2):c. $1465 \mathrm{~A}>\mathrm{G}$ (p.Asn489Asp)	GACATYTGGAGGGTCCCCGATGG	Tyrosinase-positive oculocutaneous albinism
122467173	NM_014009.3(FOXP3):c. $970 \mathrm{~T}>\mathrm{C}$ (p.Phe324Leu)	GACAGAGYTCCTCCACAACATGG	Insulin-dependent diabetes mellitus secretory diarrhea sy ndrome
137852268	NM_000133.3(F9);c.1328T>C (p.Ile443Thr)	GAAYATATACCAAGGTATCCCGG	Hereditary factor LX deficiency disease
149054177	NM_001999.3(FBN2):c.3740T>C (p.Met1247Thr)	GAATGTAYGATAATGAACGGAGG	not specified, Macular degeneration, earlyonset

137854488	$\begin{aligned} & \text { NM_212482.1(FN1):c.2918A>G } \\ & \text { (p.Tyr973Cys) } \end{aligned}$	GAAGTAAYAGGTGACCCCAGGGG	Glomerulopathy with fibronectin deposits 2
786204027	$\begin{aligned} & \text { NM_005957.4(MTHFR):c. } 1530+2 \mathrm{~T} \\ & >\mathrm{C} \end{aligned}$	GAAGGYGTGGTAGGGAGGCACGG, AAGGYGTGGTAGGGAGGCACGGG, AGGYGTGGTAGGGAGGCACGGGG	Homocysteinemia due to MTHFR deficiency
104894223	$\begin{aligned} & \text { NM_012193.3(FZD4):c. } 766 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile256Val) } \end{aligned}$	GAAATAYGATGGGGCGCTCAGGG, AGAAATAYGATGGGGCGCTCAGG	Retinopathy of prematurity
137854474	NM_000138.4(FBNI):c.3793T>C (p.Cys 1265Arg)	CTTGYGTTATGATGGATTCATGG	Marfan sy ndrome
587784418	NM_066306.3(SMC1A):c. $3254 \mathrm{~A}>\mathrm{G}$ (p.Tyr1085Cys)	CTTAYAGATCTCATCAATGTTGG	Congenital muscular hypertrophy-cerebral syndrome
81002805	```NM_000059.3(BRCA2):c.316+2T> C```	CTTAGGYAAGTAATGCAATATGG	Familial cancer of breast, Breast-ovarian cancer, familial 2, Hereditary cancerpredisposingsyndrome
121909653	NM_182925.4(FLT4):c.3104A>G (p.Hisl035Arg)	CTGYGGATGCACTGGGGTGCGGG. TCTGYGGATGCACTGGGGTGCGG	
786205107	$\begin{aligned} & \text { NM_031226.2(CYP19A1):c. } 743+2 \mathrm{~T} \\ & >\mathrm{C} \end{aligned}$	CTGTGYAAGTAATACAACTTTGG	Aromatase deficiency
587777037	$\begin{gathered} \text { NM_001283009.1(RTEL1):c.3730T>C } \\ \text { (p.Cys1244Arg) } \end{gathered}$	CTGTGTGYGCCAGGGCTGTGGGG	Dyskeratosis congenita, autosomal recessive, 5
794728380	$\begin{aligned} & \text { NM_000238.3(KCNH2):c.1945+6T } \\ & >\mathrm{C} \end{aligned}$	CTGTGAGYGTGCCCAGGGGCGGG, TGAGYGTGCCCAGGGGCGGGCGG	Cardiac arrhythmia
267607987	$\begin{aligned} & \text { NM_000251.2(MSH2):c. } 2005+2 \mathrm{~T}> \\ & \mathrm{C} \end{aligned}$	CTGGYAAAAAACCTGGTTTTTGG, TGGYAAAAAACCTGGTTTTTGG G	Hereditary Nonpolyposis Colorectal Neoplasms
397509397	NM_006876.2(B4GAT1):c.1168A>G (p.Asn390Asp)	TGATYTTCAGCCTCCTTTTGGGG, CTGATYTTCAGCCTCCTTTTGGG, GCTGATYTTCAGCCTCCTTTTGG	Congenital muscular dystrophydystroglycanopathy with brain and eye anomalies, type A13
121918381	$\begin{aligned} & \text { NM_000040.l(APOC3):c. } 280 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr} 94 \mathrm{Ala} \text {) } \end{aligned}$	CTGAAGYTGGTCTGACCTCAGGG, GCTGAAGYTGGTCTGACCTCAGG	
104894919	NM $001015877.1(\mathrm{PHF} 6): .769 \mathrm{~A}>\mathrm{G}$ (p.Arg257Gly)	CTCYTGATGTTGTTGTGAGCTGG	Borjeson-Forssman-Lehmannsyndrome
267606869	NM_005144.4(HR) :c.-218A>G	CTCYAGGGCCGCAGGTTGGAGGG, GCTCYAGGGCCGCAGGTTGGAGG, GGCGCTCYAGGGCCGCAGGTTGG	Marie Unna hereditary hypotrichosis 1
139732572	NM_000146.3(FTL):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	CTCAYGGTTGGTTGGCAAGAAGG	L-ferritin deficiency
397515418	$\begin{aligned} & \text { NM_018486.2(HDAC8) } \mathrm{c} .1001 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His334Arg) } \end{aligned}$	CTCAYGATCTGGGATCTCAGAGG	Cornelia de Lange syndrome 5
372395294	$\begin{gathered} \text { NM_198056.2(SCN5A):c. } 1247 \mathrm{~A}>\mathrm{G} \\ \text { (p. Tyr416Cys) } \end{gathered}$	CTCAYAGGCCATTGCGACCACGG	not provided
104895304	$\begin{aligned} & \text { NM_000431.3(MVK):c. } 803 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile268Thr) } \end{aligned}$	CTCAAYAGATGCCATCTCCCTGG	Hyperimmunoglobulin \mathbf{D} with periodic fever, Mevalonic aciduria
587777188	NM_001165899.1(PDE4D):c. $1850 \mathrm{~T}>\mathrm{C}$ (p.Ile617Thr)	CTATAYTGTTCATCCCCTCTGGG, ACTATAYTGTTCATCCCCTCTGG	Acrodysostosis 2 , with or without hormone resistance
398123026	NM_003867.3(FGF17):c. $560 \mathrm{~A}>\mathrm{G}$ (p.Asn187Ser)	CGTGGYTGGGGAAGGGCAGCTGG	Hypogonadotropic hypogonadism 20 with or without anosmia

121964924	$\begin{aligned} & \text { NM_001385.2(DPYS):c. } 1078 \mathrm{~T}>\mathrm{C} \\ & (\text { (Trp360Arg) } \end{aligned}$	CGTAATAYGGGAAAAAGGCGTGG, AATAYGGGAAAAAGGCGTGGTGG, ATAYGGGAAAAAGGCGTGGTGGG	Dihydropyrimidinase deficiency
587777301	$\begin{aligned} & \text { NM_199189.2(MATR3):c. } 1864 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr622Ala) } \end{aligned}$	CGGYTGAACTCTCAGTCTTCTGG	Myopathy, distal, 2
200238879	NM_000527.4(LDLR): $\mathrm{C} .694+2 \mathrm{~T}>\mathrm{C}$	ACTGCGGYATGGGCGGGGCCAGG, CTGCGGYATGGGCGGGGCCAGGG, CGGYATGGGCGGGGCCAGGGTGG	Familial hypercholesterolemia
142951029	$\begin{aligned} & \text { NM_145046.4(CALR3);c.245A>G } \\ & \text { (p.Lys82Arg) } \end{aligned}$	CGGTYTGAAGCGTGCAGAGATGG	Arrhythmogenic right ventricular cardiomyopathy, Familial hypertrophic cardiomyopathy 19 , Hypertrophic cardiomyopathy
786200953	$\text { NM_006785.3(MALT1):c. } 1019$	CGCYTTGAAAAAAAAAGAAAGGG, TCGCYTTGAAAAAAAAAGAAAG	Combined immunodeficiency
120074192	$\begin{gathered} \text { NM_000218.2(KCNQ1):c.418A>G } \\ \text { (p.Ser140Gly) } \end{gathered}$	CGCYGAAGATGAGGCAGACCAGG	Atrial fibrillation, familial, 3, Atrial fibrillation
267606887	NM 005957.4(MTHFR):c. $971 \mathrm{~A}>\mathrm{G}$ (p.Asn324Ser)	CGCGGYTGAGGGTGTAGAAGTGG	Homocystinuria due to MTHFR deficiency
118192117	NM_000540.2(RYR1):c. $1205 \mathrm{~T}>\mathrm{C}$ (p.Met402Thr)	CGCAYGATCCACAGCACCAATGG	Congenital myopathy with fiber type disproportion, Central core disease
199473625	$\begin{gathered} \text { NM_198056.2(SCN5A):c.4978A>G } \\ (\text { p.Ile1660Val) } \end{gathered}$	CGAYGTTGAAGAGGGCAGGCAGG, AGCCCGAYGTTGAAGAGGGCAGG	Brugada syndrome
794726865	NM_000921.4(PDE3A):c. $1333 \mathrm{~A}>\mathrm{G}$ (p.Thr445Ala)	CGAGGYGGTGGTGGTCCAAGTGG	Brachydactyly with hypertension
606231254	NM_005740.2(DNAL4) $\mathrm{c} .153+2 \mathrm{~T}>\mathrm{C}$	CGAGGYATTGCCAGCAGTGCAGG	Mirror movements 3
786204826	$\begin{gathered} \text { NM_004771.3(MMP20):c.611A>G } \\ \text { (p.His204Arg) } \end{gathered}$	CGAAAYGTGTATCTCCTCCCAGG	Amelogenesis imperfecta, hypomaturation type, IIA2

796053139	NM_021007.2(SCN2A):C.4308+2T>C	CGAAATGYAAGTCTAGTTAGAGG, GAAATGYAAGTCTAGTTAGAGG	not provided
137854494	$\begin{gathered} \text { NM_005502.3(ABCA1):c. } 4429 \mathrm{~T}>\mathrm{C} \\ \text { (p.Cys1477Arg) } \end{gathered}$	CCTGTGYGTCCCCCAGGGGCAGG, CTGTGYGTCCCCCAGGGGCAGGG, TGTGYGTCCCCCAGGGGCAGGGG, GTGYGTCCCCCAGGGGCAGGGGG	Tangier disease
786205144	NM_001103.3(ACTN2):C.683T>C (p.Met228Thr)	CCTAAAAYGTTGGATGCTGAAGG	Dilated cardiomy opathy 1AA
199919568	NM_007254.3(PNKP):c. $1029+2 \mathrm{~T}>\mathrm{C}$	CCGGYGAGGCCCTGGGGCGGGGG, TCCGGYGAGGCCCTGGGGCGGGG, ATCCGGYGAGGCCCTGGGGCGGG, GATCCGGYGAGGCCCTGGGGCGG	not provided
28939079	$\begin{gathered} \text { NM_018965.3(TREM2):c. } 401 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asp134Gly) } \end{gathered}$	TGAYCCAGGGGGTCTATGGGAGG, CGGTGAYCCAGGGGGTCTATGGG, CCGGTGAYCCAGGGGGTCTATGG	Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy
193302855	NM_032520.4(GNPTG):c.610-2A>G	CCCYGAAGGTGGAGGATGCAGGG, GCCCYGAAGGTGGAGGATGCAGG	Mucolipidosis III Gamma
111033708	$\begin{aligned} & \text { NM_000155.3(GALT):c.499T>C } \\ & \text { (p.Trpl67Arg) } \end{aligned}$	CCCTYGGGTGCAGGTTTGTGAGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase
28933378	$\begin{aligned} & \text { NM_000174.4(GP9):c.70T>C } \\ & \text { (p.Cys24Arg) } \end{aligned}$	CCCAYGTACCTGCCGCGCCCTGG	Bernard Soulier syndrome, Bernard-Soulier syndrome type C
364897	$\begin{aligned} & \text { NM_ } 000157.3(\mathrm{GBA}): \mathrm{c} .680 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn227Ser) } \end{aligned}$	CCAYTGGTCTTGAGCCAAGTGGG, TCCAYTGGTCTTGAGCCAAGTGG	Gaucher disease, Subacute neuronopathic Gaucher disease, Gaucher disease, type 1
796052551	NM 000833.4 (GRIN2A):c. $2449 \mathrm{~A}>\mathrm{G}$ (p.Met817Val)	CCAYGTTGTCAATGTCCAGCTGG	not provided
63751006	NM_002087.3(GRN):c.2T>C (p.MetlThr)	CCAYGTGGACCCTGGTGAGCTGG	Frontotemporal dementia, ubiquitin-positive
786203997	$\underset{(\text { p. MetlVal })}{\text { NM } 001031.4(\text { RPS28) :c. } 1 A>G}$	TGTCCAYGATGGCGGCGCGGCGG, CCAYGATGGCGGCGCGGCGGCGG	Diamond-Blackfan anemia with microtia and cleft palate
121908595	NM_002755.3(MAP2K1):C. $389 \mathrm{~A}>\mathrm{G}$ (p. Tyrl30Cys)	CCAYAGAAGCCCACGATGTACGG	Cardiofaciocutaneous syndrome 3, Rasopathy
398122910	NM_000431.3(MVK):c.1039+2T>C	CCAGGYATCCCGGGGGTAGGTGG, CAGGYATCCCGGGGGTAGGTGGG	Porokeratosis, disseminated superficial actinic 1
119474039	NM_020365.4(EIF2B3):c.1037T>C (p.Ile 346 Thr)	CCAGAYTGTCAGCAAACACCTGG	Leukoencephalopathy with vanishing white matter
587777866	NM_000076.2(CDKNIC) C . ${ }^{\text {a }}$ +2T 7 C	CCAAGYGAGTACAGCGCACCTGG, CAAGYGAGTACAGCGCACCTGGG, AAGYGAGTACAGCGCACCTGGGG	Beckwith-Wiedemannsyndrome
121918530	NM_005587.2(MEF2A):c. $788 \mathrm{~A}>\mathrm{G}$ (p.Asn263Ser)	AGAYTACCACCACCTGGTGGAGG, CCAAGAYTACCACCACCTGGTGG	
483352818	NM_000211.4(ITGB2):c.1877+2T>C	CATGYGAGTGCAGGCGGAGCAGG	Leukocyte adhesion deficiency type I
460184	NM_000186.3(CFH):C.3590T>C (p. Vall197Ala)	CAGYTGAATTTGTGTGTAAACGG	Atypical hemolytic-uremic syndrome I
121908423	NM 004795.3(KL):c. $578 \mathrm{~A}>\mathrm{G}$ (p. His 193 Arg)	CAGYGGTACAGGGTGACCACGGG, CCAGYGGTACAGGGTGACCACGG	
281860300	$\begin{aligned} & \text { NM_005247.2(FGF3):c.146A>G } \\ & \text { (p.Tyr49Cys) } \end{aligned}$	CAGYAGAGCTTGCGGCGCCGGGG, GCAGYAGAGCTTGCGGCGCCGGG, CGCAGYAGAGCTTGCGGCGCCGG	Deafness with labyrinthine aplasia microtia and microdontia (LAMM)
28935488	NM_000169.2(GLA):c. $806 \mathrm{~T}>\mathrm{C}$ (p.Val269Ala)	CAGTTAGYGATTGGCAACTTTGG	Fabry disease

587776514	$\begin{aligned} & \text { NM_173560.3(RFX6):c.380+2T> } \\ & \text { C } \end{aligned}$	CAGTGGYGAGACTCGCCCGCAGG, AGTGGYGAGACTCGCCCGCAGGG	Mitchell-Riley syndrome
104894117	$\begin{aligned} & \text { NM_178138.4(LHX3):c.332A>G } \\ & \text { (p Tyrl11Cys) } \end{aligned}$	CAGGTGGYACACGAAGTCCTGGG	Pituitary hormone deficiency, combined 3
34878913	NM_000184.2(HBG2):c. $125 \mathrm{~T}>\mathrm{C}$ (p.Phe42Ser)	CAGAGGTYCTTTGACAGCTTTGG	Cyanosis, transient neonatal
120074124	NM_000543.4(SMPD1):c.911T>C (p.Leu304Pro)	AGCACYTGTGAGGAAGTTCCTGG, GCACYTGTGAGGAAGTTCCTGGG, CACYTGTGAGGAAGTTCCTGGGG	Sphingomyelin/cholesterol lipidosis, NiemannPick disease, type A, Niemann-Pick disease, type B
281860272	$\begin{aligned} & \mathrm{NM}-005211.3 \text { (CSFIR):c. } 2320- \\ & 2 \mathrm{~A} \subset \mathrm{G} \end{aligned}$	CACYGAGGGAAAGCACTGCAGGG, GCACYGAGGGAAAGCACTGCAGG	Hereditary diffuse leukoencephalopathy with spheroids
128624216	NM_000033.3(ABCDI):c. $443 \mathrm{~A}>\mathrm{G}$ Asnl48Ser)	CACTGYTGACGAAGGTAGCAGGG, GCACTGYTGACGAAGGTAGCAGG	Adrenoleukodystrophy
398124257	$\begin{aligned} & \text { NM_012463.3(ATP6V0A2):c.825+2 } \\ & \text { T>C } \end{aligned}$	CACTGYGAGTAAGCTGGAAGTGG	Cutis laxa with osteodystrophy
267606679	NM_004183.3(BESTI):c. $704 \mathrm{~T}>\mathrm{C}$ (p.Val235Ala)	CACTGGYGTATACACAGGTGAGG	Vitreoretinochoroidopathy dominant
397514518	$\begin{aligned} & \text { NM_000344.3(SMN1):c.388T>C } \\ & \text { (p.Tyrl30His) } \end{aligned}$	CACTGGAYATGGAAATAGAGAGG	Kugelberg-Welanderdisease

143946794	NM_001946.3(DUSP6):C.566A>G (p.Asn189Ser)	CACTAYTGGGGTCTCGGTCAAGG	Hypogonadotropic hypogonadism 19 with or without anosmia
397516076	NM_000256.3(MYBPC3):C. $821+2 \mathrm{~T}$	GCACGYGAGTGGCCATCCTCAGG, CACGYGAGTGGCCATCCTCAGGG	Familial hypertrophic cardiomyopathy 4, not specified
149977726	$\begin{gathered} \text { NM_001257988.1(TYMP) c. } 665 \mathrm{~A}>\mathrm{G} \\ \text { (p.Lys222Arg) } \end{gathered}$	CACGAGTYTCTTACTGAGAATGG, GAGTYTCTTACTGAGAATGGAGG	
121917770	NM_003361.3(UMOD):C.383A>G (p.Asn128Ser)	CACAYTGACACATGTGGCCAGGG, CCACAYTGACACATGTGGCCAGG	Familial juvenile gout
121909008	NM_000492.3(CFTR):C.2738A $>$ (. Tyr913Cys)	CACATAAYACGAACTGGTGCTGG	Cystic fibrosis
137852819	NM_003688.3(CASK):c.2740T>C $($ p.Trp914Arg)	CACAGYGGGTCCCTGTCTCCTGG, ACAGYGGGTCCCTGTCTCCTGGG	FG syndrome 4
74315320	NM_024009.2(GJB3):c.421A>G (p.Ilel4lVal)	CAAYGATGAGCTTGAAGATGAGG	Deafness, autosomal recessive
80356747	NM_001701.3(BAAT):c.967A>G (p.Ile 323 Val)	CAAYGAAGAGGAATTGCCCCTGG	Atypical hemolytic-uremic syndrome I
180177324	NM_012203.1(GRHPR):c. $934 \mathrm{~A}>\mathrm{G}$ (p.Asn312Asp)	CAAGTYGTTAGCTGCCAACAAGG	Primary hyperoxaluria, type II
281860274	NM_005211.3(CSFIR):c. $2381 \mathrm{~T}>\mathrm{C}$ (p.Ile794Thr)	CAAGAYTGGGGACTTCGGGCTGG	Hereditary diffuse leukoencephalopathy with spheroids
398122908	$\begin{aligned} & \text { NM_005334.2(HCFCl):c.- } \\ & 970 \mathrm{~T}>\mathrm{C} \end{aligned}$	CAAGAYGGCGGCTCCCAGGGAGG	Mental retardation 3, X-linked
548076633	$\text { NM_002693.2(POLG):C. } 3470 \mathrm{~A}>\mathrm{G}$ (p.Asnl 157Ser)	CAAGAGGYTGGTGATCTGCAAGG	not provided
120074146	$\begin{aligned} & \text { NM_0000193(ACATl):c. } 935 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile } 312 \mathrm{Th} \text {) } \end{aligned}$	CAAGAAYAGTAGGTAAGGCCAGG	Deficiency of acetyl-CoA acetyltransferase
397514489	$\begin{aligned} & \text { NM_005340.6(HINTI):c. } 250 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys84Arg) } \end{aligned}$	CAAGAAAYGTGCTGCTGATCTGG, AAGAAAYGTGCTGCTGATCTGGG	Gamstorp-Wohlfartsyndrome
587783539	NM_178151.2(DCX):c.2T>C (p.MetIThr)	CAAAATAYGGAACTTGATTTTGG	Heterotopia
104894765	NM_005448.2(BMP15):c. $704 \mathrm{~A}>\mathrm{G}$ (р.Ty1235Cys)	ATTGAAAYAGAGTAACAAGAAGG	Ovarian dysgenesis 2
137852429	NM 000132.3(F8) c. $1892 \mathrm{~A}>\mathrm{G}$ (p.Asn631Ser)	ATGYTGGAGGCTTGGAACTCTGG	Hereditary factor VIII deficiency disease
72558441	NM_000531.5(OTC):c.779T>C (p.Leu260Ser)	ATGTATYAATTACAGACACTTGG	not provided
398123765	$\text { NM_003494.3(DYSF):c. } 1284+2 \mathrm{~T}>$ C	ATGGYAAGGAGCAAGGGAGCAGG	Limb-girdle muscular dystrophy, type 2B
387906924	NM_020191.2(MRPS22): $\mathrm{C} .644 \mathrm{~T}>\mathrm{C}$ (p.Leu215Pro)	ATCYTAGGGTAAGGTGACTTAGG	Combined oxidative phosphory lation deficiency 5
397518039	$\begin{aligned} & \text { NM_206933.2(USH2A):c. } 8559- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	ATCYAAAGCAAAAGACAAGCAGG	Retinitis pigmentosa, Usher syndrome, type 2A
5742905	NM 000071.2(CBS):c. $833 \mathrm{~T}>\mathrm{C}$ (p.Ile278Thr)	ATCAYTGGGGTGGATCCCGAAGG, TCAYTGGGGTGGATCCCGAAGGG	Homocystinuria due to CBS deficiency, Homocystinuria, nvtidnxine-resnonsive
397507473	NM_004333.4(BRAF):c. $1403 \mathrm{~T}>\mathrm{C}$ (p.Phe468Ser)	ATCATYTGGAACAGTCTACAAGG, TCATYTGGAACAGTCTACAAGG	Cardiofaciocutaneous sy ndrome, Rasopathy
786204056	$\underset{>C}{\text { NM_000264.3(PTCH1):c. } 3168+2 T}$	ATCATTGYGAGTGTATTATAAGG, TCATTGYGAGTGTATTATAAGGG, CATTGYGAGTGTATTATAAGGG	Gorlin syndrome
72558484	$\begin{aligned} & \text { NM_000531.5(OTC):c. } 1005+2 \mathrm{~T}> \\ & \mathrm{C} \end{aligned}$	ATCATGGYAAGCAAGAAACAAGG	not provided
199473074	NM_000335.4(SCN5A):c. $688 \mathrm{~A}>\mathrm{G}$ (p.Ile230Val)	ATAYAGTTTTCAGGGCCCGGAGG, CTGATAYAGTTTTCAGGGCCCGG	Brugada syndrome
111033273	$\begin{gathered} \text { NM_206933.2(USH2A):c. } 1606 \mathrm{~T}>\mathrm{C} \\ \text { (p.Cys536Arg) } \end{gathered}$	ATATAGAYGCCTCTGCTCCCAGG	Usher syndrome, type 2A
72556290	$\begin{aligned} & \text { NM } 000531.5(\mathrm{OTC}) \mathrm{c} .542 \mathrm{~A}>\mathrm{G} \\ & \text { (0.Glu181Gly } \end{aligned}$	ATAGTGTYCCTAAAAGGCACGGG	not provided
121918711	NM_004612.3(TGFBR1):c. $1199 \mathrm{~A}>\mathrm{G}$ (p.Asp400Gly)	ATAGATGYCAGCACGTTTGAAGG	Locys-Dietz syndrome 1
104886288	NM_000495.4(COL4A5):c.4699T>C (p.Cys 1567 Arg)	AGTAYGTGAAGCTCCAGCTGTGG	Alport syndrome, X -linked recessive

144637717	$\begin{aligned} & \text { NM } 016725.2 \text { (FOLR1):c. } 493+2 \mathrm{~T}> \\ & \mathrm{C} \end{aligned}$	CTTCAGGYGAGGGCIGGGGTGGG. agGygaggactgaggatgagcagg	not provided
72558492	$\begin{aligned} & \text { NM_000531.5(OTC):c.1034A>G } \\ & \text { (p.Tyr345Cys) } \end{aligned}$	AGGTGAGYAATCTGTCAGCAGGG	not provided
62638745	NM_000121.3(EPOR):c. $1460 \mathrm{~A}>\mathrm{G}$ (p.Asn487Ser)	AGGGYTGGAGTAGGGGCCATCGG	Acute myeloid leukemia, M6 type, Familial erythrocytosis, 1

387907021	NM_031427.3(DNAL1):c.449A>G (p.Asn150Ser)	AGGGAYTGCCTACAAACACCAGG	Kartagener syndrome, Ciliary dyskinesia, primary, 16
397514488	NM 001161581.1 (POC1A) c $398 \mathrm{~T}>\mathrm{C}$ (p.Leul33Pro)	AGCYGTGGGACAAGAGCAGCCGG	Short stature, onychodysplasia, facial dysmorphism and hypotrichosis
154774633	NM_017882.2(CLN6):c.200T>C (p.Leu67Pro)	AGCYGGTATTCCCTCTCGAGTGG	Adult neuronal ceroid lipofuscinosis
111033700	NM_000155.3(GALT):c.482T>C (p.Leu161Pro)	AGCYGGGTGCCCAGTACCCTTGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase
128621198	NM_000061.2(BTK):c. $1223 \mathrm{~T}>\mathrm{C}$ (p.Leu408Pro)	GAGCYGGGGACTGGACAATTTGG, AGCYGGGGACTGGACAATTTGGG	X-linked agammaglobulinemia
137852611	$\begin{aligned} & \text { NM_000211.4(ITGB2):c.446T>C } \\ & \text { (p.Leul49Pro) } \end{aligned}$	AGCYAGGTGGCGACCTGCTCCGG	Leukocyte adhesion deficiency
121908838	NM_003722.4(TP63):c.697A>G (p.Lys233Glu)	AGCTTYTTTGTAGACAGGCATGG	Split-hand/foot malformation 4
397515869	NM_000169.2(GLA):c. $1153 \mathrm{~A}>\mathrm{G}$ (p.Thr385Ala)	AGCTGTGYGATGAAGCAGGCAGG	not specified
118204064	$\begin{aligned} & \text { NM_000237.2(LPL):c. } 548 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp183Gly) } \end{aligned}$	GCTGGAYCGAGGCCTTAAAAGGG, AGCTGGAYCGAGGCCTTAAAAGG	Hyperlipoproteinemia, type I
128620186	NM_000061.2(BTK):c.2T>C (p.MetlThr)	AGCTAYGGCCGCAGTGATTCTGG	X-linked agammaglobulinemia
786204132	NM_014946.3(SPAST):c. $1165 \mathrm{~A}>\mathrm{G}$ (p.Thr389Ala)	ATTGYCTTCCCATTCCCAGGTGG, AGCATTGYCTTCCCATTCCCAGG	Spastic paraplegia 4, autosomal dominant
199473661	NM_000218.2(KCNQ1):c.550T>C (p.Tyr184His)	CAGCAAGBACGTGGGCCTCTGGG, AGCAAGBACGTGGGCCTCTGGGG, GCAAGBACGTGGGCCTCTGGGGG	Congenital long QT syndrome, Cardiac arrhythmia
387907129	NM_024599.5(RHBDF2):c. $557 \mathrm{~T}>\mathrm{C}$ (p.Ile 186Thr)	AGAYTGTGGATCCGCTGGCCCGG	Howel-Evans sy ndrome
387906702	NM_006306.3(SMC1A):c. $2351 \mathrm{~T}>\mathrm{C}$ (p.Ile784Thr)	AGAYTGGTGTGCGCAACATCCGG	Congenital muscular hypertrophy-cerebral syndrome
193929348	$\begin{aligned} & \text { NM_000525.3(KCNJ11):c. } 544 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile } 182 \mathrm{Val} \text {) } \end{aligned}$	AGAYGAGGGTCTCAGCCCTGCGG	Permanent neonatal diabetes mellitus
121908934	NM_004086.2(COCH):c. $1535 \mathrm{~T}>\mathrm{C}$ (p.Met512Thr)	AGATAYGGCTTCTAAACCGAAGG	Deafness, autosomal dominant 9
397514377	NM_000060.3(BTD):c. $641 \mathrm{~A}>\mathrm{G}$ (p Asn214Ser)	AGAGGYTGTGTTTACGGTAGCGG	Biotinidase deficiency
72552295	NM_000531.5(OTC):c. $2 \mathrm{~T}>\mathrm{C}$ (p.MetIThr)	AGAAGAYGCTGTTTAATCTGAGG	not provided
201893545	NM_016247.3(IMPG2):c.370T>C (p.Phe124Leu)	ACTYTTTGGGATCGACTTCCTGG	Macular dystrophy, vitelliform, 5
121434469	m. $4290 \mathrm{~T}>\mathrm{C}$	ACTYTGATAGAGTAAATAATAGG	
121918733	$\begin{aligned} & \text { NM_006920.4(SCN1A):c.269T>C } \\ & \text { (p.Phe90Ser) } \end{aligned}$	ACTTYTATAGTATTGAATAAAGG, CTTYTATAGTATTGAATAAAGG G	Severe myoclonic epilepsy in infancy
121434471	m. $4291 \mathrm{~T}>\mathrm{C}$	ACTTYGATAGAGTAAATAATAGG	Hypertension, hypercholesterolemia, and hypomagnesemia, mitochondrial
606231289	NM_001302946.1(TRNTI):c.497T>C (p.Leul66Ser)	ACTTYATTTGACTACTTTAATGG	Sideroblastic anemia with B-celi immunodeficiency, periodic fevers, and developmental delay
63750067	$\begin{aligned} & \mathrm{NM} \mathrm{~N}_{-} 000517.4(\mathrm{HBA} 2): \mathrm{c} . * 92 \mathrm{~A}> \\ & \mathrm{G} \end{aligned}$	CITYATTCAAAGACCAGGAAGGG, ACTTYATTCAAAGACCAGGAAG a	Hemoglobin H disease, nondeletional
121918734	NM_006920.4(SCN1A):c.272T>C (p.Ile91Thr)	ACTTTTAYAGTATTGAATAAAGG, CTTTTAYAGTATTGAATAAAGG G	Severe myoclonic epilepsy in infancy
137854557	NM_000267.3(NFI):c. 1466A>G (p. Tyr 489 Cys)	ACTTAYAGCTTCTTGTCTCCAGG	Neurofibromatosis, type 1
397514626	NM_018344.5(SLC29A3):c. $607 \mathrm{~T}>\mathrm{C}$ (p.Ser203Pro)	ACTGATAYCAGGTGAGAGCCAGG, CTGATAYCAGGTGAGAGCCAGGG	Histiocytosis-lymphadenopathy plus sy ndrome
118204440	NM_000512.4(GALNS):c.1460A>G (p.Asn487Ser)	ACGYTGAGCTGGGGCTGCGCGGG, CACGYTGAGCTGGGGCTGCGCGG	Mucopolysaccharidosis, MPS-IV-A
587776843	NG_012088.1:g. $2209 \mathrm{~A}>\mathrm{G}$	ACCYTATGATCCGCCCGCCTTGG	
137853033	NM_001080463.1(DYNC2HI):C. $4610 \mathrm{~A} \rightleftharpoons \mathrm{G}$ (p. Gln 1537 Arg)	ACCYGTGAAGGGAACAGAGATGG	Short-rib thoracic dysplasia 3 with or without poly dactyly
28933698	$\begin{gathered} \mathrm{NM}_{-} 000435.2 \text { (NOTCH3):c. } 1363 \mathrm{~T} \times \mathrm{C} \\ \text { (PCys } 455 \mathrm{Arg}) \end{gathered}$	TTCACCYGTATCTGTATGGCAGG, aCCYGTATCTGTATGGCAGGTGG	Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
587776766	NM_000463.2(UGT1A1):c.1085- $2 \mathrm{~A}>\overline{\mathrm{G}}$	ACCYGAGATGCAAAATAGGGAGG, GTGACCYGAGATGCAAAATAGGG, GGTGACCYGAGATGCAAAATAGG	Crigler Najar syndrome, type I
587781628	NM_001128425.1(MUTYH):c.1187$2 \mathrm{~A}>\overline{\mathrm{G}}$	ACCYGAGAGGGAGGGCAGCCAGG	Hereditary cancer-predisposing sy ndrome, Carcinoma of colon
61755817	$\begin{aligned} & \text { NM_000322.4(PRPH2):c. } 736 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp246Arg) } \end{aligned}$	ACCTGYGGGTGCGTGGCTGCAGG, CCTGYGGGTGCGTGGCTGCAGGG	Retinitis pigmentosa

121909184	NM_001089.2(ABCA3):c. $1702 \mathrm{~A}>\mathrm{G}$	ACCGTYGTGGCCCAGCAGGACGG	Surfactant metabolism dysfunction, pulmonary, 3
121434466	m. $4269 \mathrm{~A} \times \mathrm{G}$	ACAYATTTCTTAGGTTTGAGGGG, GACAYATTTCTTAGGTTTGAGGG, AGACAYATTTCTTAGGTTTGAGG	
794726768	NM_001165963.1(SCNIA):C. $1048 \mathrm{~A}>\mathrm{G}$ (p.Met350Val)	ACAYATATCCCTCTGGACATTGG	Severe myoclonic epilepsy in infancy
28934876		ACAYAGTACAGGATTCCTGCGGG, GACAYAGTACAGGATTCCTGCGG	Congenital disorder of glycosylation type 1J
104894749	NM_000054.4(AVPR2):c. $614 \mathrm{~A}>\mathrm{G}$ (p.Tyr205Cys)	ACAYAGGTGCGACGGCCCCAGGG, GACAYAGGTGCGACGGCCCCAGG	Nephrogenic diabetes insipidus, Nephrogenic diabetes insipidus, X-linked
128621205	NM_000061.2(BTK):c. $1741 \mathrm{~T}>\mathrm{C}$ (p. Trp581Arg)	ACATTYGGGCTTTTGGTAAGTGG	X -linked agammaglobulinemia
28940892	NM_000529.2(MC2R):c. $761 \mathrm{~A}>\mathrm{G}$ (p. Tyr254Cys)	ACATGYAGCAGGCGCAGTAGGGG, GACATGYAGCAGGCGCAGTAGGG, AGACATGYAGCAGGCGCAGTAGG	ACTH resistance
794726844	$\begin{aligned} & \text { NM_001165963.1(SCN1A):c. } 1046 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ty1349Cys) } \end{aligned}$	ACATAYATCCCTCTGGACATTGG	Severe myoclonic epilepsy in infancy
587783083	NM 003159.2 (CDKL5):c. $449 \mathrm{~A}>\mathrm{G}$ (p.Lys 150Arg)	ACAGTYTTAGGACATCATTGTGG	not provided
397514651	NM_000108.4(DLD):c. $140 \mathrm{~T}>\mathrm{C}$ (p.Ile47Thr)	ACAGTTAYAGGTICIGGTCCTGG, GTTAYAGGTTCTGGTCCTGGAGG	Maple syrup urine disease, type 3
794727060	$\begin{aligned} & \text { NM } 001848.2(\mathrm{COL} 6 \mathrm{Al}) \mathrm{c} .957+2 \mathrm{~T} \\ & >\mathrm{C} \end{aligned}$	ACAAGGYGAGCGTGGGCTGCTGG, CAAGGYGAGCGTGGGCTGCTGGG	Ullrich congenital muscular dystrophy, Bethlem myopathy
72554346	NM_000531.5(OTC):c. $284 \mathrm{~T}>\mathrm{C}$ (p.Leu95Ser)	ACAAGATYGTCTACAGAAACAGG	not provided
483353031	NM_002136.2(HNRNPA1):c. 841 T>C (p.Phe281Leu)	AATYTTGGAGGCAGAAGCTCTGG	Chronic progressive multiple sclerosis
104894271	$\begin{aligned} & \mathrm{NM} \text { _000315.2(PTH):c. } 52 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys18Arg) } \end{aligned}$	AATTYGTTTTCTTACAAAATCGG	Hypoparathy roidism familial isolated
267608260	NM_015599.2(PGM3):c.248T>C (p.Leu83Ser)	AATGTYGGCACCATCCTGGGAGG	Immunodeficiency 23
267606900	NM $018109.3(\mathrm{MTPAP}): \mathrm{c} .1432 \mathrm{~A}>\mathrm{G}$ (p.Asn478Asp)	AATGGATYCTGAATGTACAGAGG	Ataxia, spastic, 4, autosomal recessive
796053169	$\begin{aligned} & \mathrm{NM}-021007.2(\mathrm{SCN} 2 \mathrm{~A}): \mathrm{c} .387- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	AATAAAGYAGAATATCGTCAAGG	not provided
104894937	$\begin{aligned} & \text { NM_000116.4(TAZ) c. } 352 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys118Arg) } \end{aligned}$	AAGYGTGTGCCTGTGTGCCGAGG	3-Methy lglutaconic aciduria type 2
104893911	$\begin{gathered} \text { NM_001018077.1(NR3C1):c.1712T>C } \\ \text { (p.Val57IAla) } \end{gathered}$	AAGYGATTGCAGCAGTGAAATGG	Pseudohermaphroditism, female, with hypokalemia, due to glucocorticoid resistance
397514472	NM_004813.2(PEX16):c.992A>G (p. Tyr331Cys)	AAGYAGATTTTCTGCCAGGTGGG, GAAGYAGATTTTCTGCCAGGTGG, gTAGAAGYAGATTTTCTGCCAGG	Peroxisome biogenesis disorder 8B
121918407	NM 001083112.2 (GPD2):c. $1904 \mathrm{~T}>\mathrm{C}$ (p.Phe635Ser)	AAGTYTGATGCAGACCAGAAAGG	Diabetes mellitus type 2
63751110	$\begin{aligned} & \text { NM_000251.2(MSH2):c. } 595 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys199Arg) } \end{aligned}$	AAGGAAYGTGTTTTACCCGGAGG	Hereditary Nonpolyposis Colorectal Neoplasms
119450945	NM_000026.2(ADSL):c.674T>C (p.Met225Thr)	AAGAYGGTGACAGAAAAGGCAGG	Adenylosuccinate lyase deficiency
113993988	NM_002863.4(PYGL):c.2461T>C (p. Tyr821His)	AAGAAYATGCCCAAAACATCTGG	Glycogen storage disease, type VI
119485091	NM 0220413 (GAN):c. $1268 \mathrm{P}>\mathrm{C}$ (p.Ile 423 Thr)	AAGAAAAYCTACGCCATGGGTGG, AAAAYCTACGCCATGGGTGGAGG	Giant axonal neuropathy
137852419	NM_000132.3(F8):c.1660A>G (p.Ser554Gly)	AACYAGAGTAATAGCGGGTCAGG	Hereditary factor VIII deficiency disease
121964967	$\begin{aligned} & \text { NM_000071.2(CBS).c. } 1150 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 384 \mathrm{Glu} \text {) } \end{aligned}$	AACTYGGTCCTGCGGGATGGGGG, GAACTYGGTCCTGCGGGATGGGG, GGAACTYGGTCCTGCGGGATGGG, AGGAACTYGGTCCTGCGGGATGG	Homocystinuria, pyridoxine-responsive
137852376	NM_000132.3(F8):c. $1754 \mathrm{~T}>\mathrm{C}$ (p.Ile585Thr)	AACAGAYAATGTCAGACAAGAGG	Hereditary factor VIII deficiency disease
121917930	$\begin{gathered} \text { NM_006920.4(SCN1A):c. } 3577 \mathrm{~T} \rightleftharpoons \mathrm{C} \\ (\mathrm{p} . \operatorname{Trp1193Arg)} \end{gathered}$	AACAAYGGTGGAACCTGAGAAGG	Generalized epilepsy with febrile seizures plus, type 1 , Generalized epilepsy with febrile seizures plus, type 2
28939717	$\begin{aligned} & \text { NM_003907.2(EIF2B5):c.271A>G } \\ & \text { (p. Thr91Ala) } \end{aligned}$	AAATGYTTCCTGTACACCTGTGG	Leukoencephalopathy with vanishing white matter
80357276	$\begin{aligned} & \text { NM_007294.3(BRCAl):c. } 122 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 41 \mathrm{Arg} \text {) } \end{aligned}$	AAATATGYGGTCACACTITGTGG	Familial cancer of breast, Breast-ovarian cancer, familial 1

397515897	$\begin{aligned} & \text { NM_000256.3(MYBPC3):c. } 1351+2 \mathrm{~T} \\ & >\mathrm{C} \end{aligned}$	AAAGGYGGGCCTGGGACCTGAGG	Familial hypertrophic cardiomyopathy 4, Cardiomyopathy
397514491	NM_005340.6(HINTl):c.152A>G (p.His51Arg)	AAAAYGTGTTGGTGCTTGAGGGG, GAAAAYGTGTTGGTGCTTGAGGG, AGAAAAYGTGTTGGTGCTTGAGG	Gamstorp-Wohlfart syndrome
387907164	NM 020894.2(UVSSA):c.94T>C (p.Cys32Arg)	AAAATTYGCAAGTATGTCTTAGG, AAATTYGCAAGTATGTCTTAGG G	UV-sensitive syndrome 3
118161496	$\begin{aligned} & \text { NM_025152.2(NUBPL):c. } 815- \\ & 27 \mathrm{~T}>\mathrm{C} \end{aligned}$	TGGTTCYAATGGATGTCTGCTGG, GGTTCYAATGGATGTCTGCTGGG	Mitochondrial complex I deficiency
764313717	NM_005609.2(PYGM):c.425_528d el	TGGCTGYCAGGGACCCAGCAAGG, CTGYCAGGGACCCAGCAAGGAGG	
28934568	NM_003242.5(TGFBR2):c. $923 \mathrm{~T}>\mathrm{C}$ (p.Leu308Pro)	AGTTCCYGACGGCTGAGGAGCGG	Loeys-Dietz syndrome 2
121913461	NM_007313.2(ABL1):c.814T>C (p. Tyr272His)	CCAGYACGGGGAGGTGTACGAGG, CAGYACGGGGAGGTGTACGAGGG	
377750405	NM_173551.4(ANKS6):c.1322A>G (p.Gln441Arg)	AGGGCYGTCGGACCTTCGAGTGG. GGGCYGTCGGACCTTCGAGTGGG, GGCYGTCGGACCTTCGAGTGGGG	Nephronophthisis 16
57639980	NM_001927.3(DES):c. $1034 \mathrm{~T}>\mathrm{C}$ (p.Leu345Pro)	ATTCCCYGATGAGGCAGATGCGG, TTCCCYGATGAGGCAGATGCGGG	Myofibrillar myopathy 1
147391618	$\begin{aligned} & \text { NM_020320.3(RARS2):c.35A>G } \\ & (\mathrm{p} . \mathrm{Gln} 12 \mathrm{Arg}) \end{aligned}$	ATACCYGGCAAGCAATAGCGCGG	Pontocerebellar hypoplasia type 6
182650126	NM_002977.3(SCN9A):c.2215A -G (p.Ile739 Val)	GTAAYTGCAAGATCTACAAAAGG	Small fiber neuropathy
80358278	NM_004700.3(KCNQ4):c. $842 \mathrm{~T}>\mathrm{C}$ (p.Leu281Ser)	ACATYGACAACCATCGGCTATGG	DFNA 2 Nonsyndromic Hearing Loss
786204012	NM_005957.4(MTHFR):c. $388 \mathrm{~T}>\mathrm{C}$ (p.Cys 130Arg)	GACCYGCTGCCGTCAGCGCCTGG	Homocysteinemia due to MTHFR deficiency
786204037	NM_005957.4(MTHFR):c. $1883 \mathrm{~T}>\mathrm{C}$ (p.Leu628Pro)	TCCCACYGGACAACTGCCTCTGG	Homocysteinemia due to MTHFR deficiency
202147607	NM_000140.3(FECH):c.1137+3A> G	GTAGAYACCTTAGAGAACAATGG	Erythropoietic protoporphyria
122456136	NM_005183.3(CACNAIF) c. $2267 \mathrm{~T}>\mathrm{C}$ (p. Ile 756 Thr)	TGCCAYTGCTGTGGACAACCTGG	
786204851	NM_007374.2(SIX6):c.110T>C (p.Leu37Pro)	GTCGCYGCCCGTGGCCCCTGCGG	Cataract, microphthalmia and nystagmus
794728167	$\begin{aligned} & \text { NM_000138.4(FBNI):c. } 1468+2 \mathrm{~T}> \\ & \mathrm{C} \end{aligned}$	ATTGGYACGTGATCCATCCTAGG	Thoracic aortic aneurysms and aortic dissections
121964909	NM_000027.3(AGA):c.214T>C (p. Ser72Pro)	GACGGCYCTGTAGGCTTTGGAGG	Aspartylglycosaminuria
121964978	NM_000170.2(GLDC):c. $2 \mathrm{~T}>\mathrm{C}$ (p.MetlThr)	CGGCCAYGCAGTCCTGTGCCAGG, GGCCAYGCAGTCCTGTGCCAGGG	Non-ketotic hyperglycinemia
121965008	NM_000398.6(CYB5R3):c.446T>C (p.Leul49Pro)	CTGCYGGTCTACCAGGGCAAAGG	METHEMOGLOBINEMIA, TYPE I
121965064	NM_000128.3(Fl1):c.901T>C (p.Phe301Leu)	TGATYTCTTGGGAGAAGAACTGG	Hereditary factor XI deficiency disease
45517398	NM_000548.3(TSC2):c. $5150 \mathrm{~T}>\mathrm{C}$ (p.Leu1717Pro)	GCCCYGCACGCAAATGTGAGTGG, CCCYGCACGCAAATGTGAGTGGG	Tuberous sclerosis syndrome
786205857	NM_015662.2(IFT172):c.770T>C (p.Leu257Pro)	TTGTGCYAGGAAGTTATGACAGG	RETINITIS PIGMENTOSA 71
786205904	NM_001135669.1(XPR1):c. $653 \mathrm{~T}>\mathrm{C}$ (p.Leu218Ser)	GCGTTYACGTGTCCCCCCTTTGG, CGTTYACGTGTCCCCCCTTTGGG	BASAL GANGLLA CALCIFICATION,
104893704	NM_000388.3(CASR):c. $2641 \mathrm{~T}>\mathrm{C}$ (p.Phe881Leu)	ACGCTYTCAAGGTGGCTGCCCGG, CGCTYTCAAGGTGGCTGCCCGGG	Hypercalciuric hypercalcemia
104893747	NM_198159.2(MITF):c. $1195 \mathrm{~T}>\mathrm{C}$ (p.Ser399Pro)	ACTTYСССТTATTCCATCCACGG, CTTYCCCTTATTCCATCCACGGG	Waardenburg syndrome type 2A
104893770	NM 000539.3(RHO):c. $133 \mathrm{~T}>\mathrm{C}$ (p.Phe45Leu)	CATGYTTCTGCTGATCGTGCTGG, ATGYTTCTGCTGATCGTGCTGGG	Retinitis pigmentosa 4
28937596	NM 003907.2(EIF2B5):c. 1882T>C (p.Trp628Arg)	AGGCCYGGAGCCCTGTITTTAGG	Leukoencephalopathy with vanishing white matter
104893876	NM_001151.3(SLC25A4): c. $293 \mathrm{~T}>\mathrm{C}$ (p.Leu98Pro)	GCAGCYCTTCTTAGGGGGTGTGG	Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 2
104893883	NM_006005.3(WFS1):c. $2486 \mathrm{~T}>\mathrm{C}$ (p.Leu829Pro)	ACCATCCYGGAGGGCCGCCTGGG	WFSI-Related Disorders
104893962	NM_000165.4(GIAl):c. $52 \mathrm{~T}>\mathrm{C}$ (p.Ser18Pro)	CTACYCAACTGCTGGAGGGAAGG	Oculodentodigitaldysplasia

104893978	NM_000434.3(NEUl):c.718T>C (p. Trp240Arg)	GCCTCCYGGCGCTACGGAAGTGG, CCTCCYGGCGCTACGGAAGTGGG, CTCCYGGCGCTACGGAAGTGGGG	Sialidosis, type II
104894092	NM_002546.3(TNFRSF11B):c.349T>C (p.Phe117Leu)	TAGAGYTCTGCTTGAAACATAGG	Hyperphosphatasemia with bone disease
104894135	NM_000102.3(CYP17A1): $\mathrm{c} .316 \mathrm{~T}>\mathrm{C}$ (p.Ser106Pro)	CATCGCGYCCAACAACCGTAAGG, ATCGCGYCCAACAACCGTAAGGG	Complete combined 17-alp hahydroxylase/ 17,20 -lyase
104894151	NM_000102.3(CYP17A1):c. $1358 \mathrm{~T}>\mathrm{C}$ (p.Phe453Ser)	AGCTCTYCCTCATCATGGCCTGG	Combined partial 17-alpha-hydroxylase $/ 17,20-$ lyase deficiency
36015961	$\begin{aligned} & \text { NM_000518.4(HBB):c. } 344 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leull5Pro) } \end{aligned}$	TGTGTGCYGGCCCATCACTTTGG	Beta thalassemia intermedia
104894472	$\begin{aligned} & \mathrm{NM}_{-} 152443.2(\mathrm{RDH} 12): \mathrm{c} .523 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Serl75Pro) } \end{aligned}$	TCCYCGGTGGCTCACCACATTGG	Leber congenital amaurosis 13
104894587	NM_004870.3(MPDU1):c. $356 \mathrm{~T}>\mathrm{C}$ (p.Leul 19Pro)	TTCCYGGTCATGCACTACAGAGG	Congenital disorder of glycosylation type 1F
104894588	NM_004870.3(MPDUl):c. $2 \mathrm{~T}>\mathrm{C}$ (p.MetlThr)	AATAYGGCGGCCGAGGCGGACGG	Congenital disorder of glycosylation type 1 F
104894626	$\begin{aligned} & \text { NM_000304.3(PMP22):c. } 82 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp28Arg) } \end{aligned}$	TAGCAAYGGATCGTGGGCAATGG	Charcot-Marie-Tooth disease, type IE
104894631	NM_018129.3(PNPO):c. $784 \mathrm{~T}>\mathrm{C}$ (p.Ter262Gln)	ACCTYAACTCTGGGACCTGCTGG	"Pyridoxal 5-phosphate-dependent epilepsy"
104894703	NM_032551.4(KISSIR):c. $305 \mathrm{~T}>\mathrm{C}$ (p.Leul02Pro)	GCCCTGCYGTACCCGCTGCCCGG, TGCYGTACCCGCTGCCCGGCTGG	
104894826	$\text { NM_000166.5(GJBl):c. } 407 \mathrm{~T}>\mathrm{C}$	ATGYCATCAGCGTGGTGTTCCGG	Dejerine-Sottas disease, X-linked hereditary motor and sensory neuropathy

104894859	NM $001122606.1(\mathrm{LAMP} 2): 961 \mathrm{~T}>\mathrm{C}$ (p.Trp321Arg)	CAGCTACY GGGATGCCCCCCTGG, AGCTACYGGGATGCCCCCCTGGG	Danon disease
104894931	NM_006517.4(SLC16A2):c. $1313 \mathrm{~T}>\mathrm{C}$ (p.Leu438Pro)	TGAGCYGGTGGGCCCAATGCAGG	Allan-Herndon-Dudley syndrome
104894935	$\begin{aligned} & \text { NM_000330.3(RSI):c. } 38 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul3Pro) } \end{aligned}$	TTACTTCYCTTTGGCTATGAAGG	Juvenile retinoschisis
104895217	NM_001065.3(TNFRSF1A):c. $175 \mathrm{~T}>\mathrm{C}$ (p.Cys59Arg)	TGCYGTACCAAGTGCCACAAAGG	TNF receptor-associated periodic fever syndrome (TRAPS)
143889283	$\begin{aligned} & \text { NM_003793.3(CTSF):c.692A>G } \\ & \text { (p.Tyr231Cys) } \end{aligned}$	CTCCAYACTGAGCTGTGCCACGG	Ceroid lipofuscinosis, neuronal, 13
122459147	NM_001159702.2(FHL1):c. $310 \mathrm{~T}>\mathrm{C}$ (p Cys 104Arg)	GGGGYGCTTCAAGGCCATTGTGG	Myopathy, reducing body, X-linked, childhood- onset
74552543	NM 020184.3 (CNNM4) $\mathrm{c} .971 \mathrm{~T}>\mathrm{C}$ (p.Leu324Pro)	AAGCTCCYGGACTTTTTTCTGGG	Cone-rod dystrophy amelogenesis imperfecta
199476117	m.10158T>C	AAAYCCACCCCTTACGAGTGCGG	Leigh disease, Leigh sy ndrome due to mitochondrial complex I deficiency, Mitochondrial complex I deficiency
794727808	$\begin{aligned} & \text { NM_020451.2(SEPN1):c.872+2T> } \\ & \text { C } \end{aligned}$	TTCCGGYGAGTGGGCCACACTGG	Congenital myopathy with fiber type disproportion, Eichsfeld type congenital muscular dystrophy
140547520	$\begin{aligned} & \text { NM_005022.3(PFN1):c.350A>G } \\ & \text { (pGlul17Gly) } \end{aligned}$	CACCTYCTTTGCCCATCAGCAGG	Amyotrophic lateral sclerosis 18
397514359	NM_000060.3(BTD):c.445T>C (p.Phel49Leu)	TCACCGCYTCAATGACACAGAGG	Biotinidase deficiency
207460001	m. $15197 \mathrm{~T}>\mathrm{C}$	CTAYCCGCCATCCCATACATTGG	Exercise intolerance
397514406	$\begin{aligned} & \text { NM_000060.3(BTD):c. } 1214 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu405Pro) } \end{aligned}$	TTCACCCYGGTCCCTGTCTGGGG	Biotinidase deficiency
397514516	$\begin{aligned} & \text { NM_006177.3(NRL):c.287T>C } \\ & \text { (o.Met96Thr) } \end{aligned}$	GAGGCCAYGGAGCTGCTGCAGGG	Retinitis pigmentosa 27
72554312	NM_000531.5(OTC):c. $134 \mathrm{~T}>\mathrm{C}$ (p.Leu45Pro)	CTCACTCYAAAAAACTTTACCGG	Ornithine carbamoyltransferase deficiency
397514569	NM_178012.4(TUBB2B):C.350T>C (p.Leul17Pro)	GGTCCYGGATGTGGTGAGGAAGG	Polymicrogyria, asymmetric
397514571	$\begin{aligned} & \text { NM_000431.3(MVK):c. } 122 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu4lPro) } \end{aligned}$	CGGCYTCAACCCCACAGCAATGG, GGCYTCAACCCCACAGCAATGGG	Porokeratosis, disseminated superficial actinic 1
794728390	NM_000238.3(KCNH2):c.2396T>C (p.Leu799Pro)	GCCATCCYGGGTATGGGGTGGGG, CCATCCYGGGTATGGGGTGGGGG, CATCCYGGGTATGGGGTGGGGGG	Cardiac arrhythmia
397514713	NM_001199107.1(TBC1D24):c.686T>C (p.Phe229Ser)	GGTCTYTGACGTCTTCCTGGTGG	Early infantile epileptic encephalopathy 16
397514719	$\begin{aligned} & \text { NM_080605.3(B3GALT6):c.193A>G } \\ & \text { (p.Ser65Gly) } \end{aligned}$	CGCYGGCCACCAGCACTGCCAGG	Spondyloepimetaphyseal dysplasia with joint laxity
730880608	NM_000256.3(MYBPC3):c. $3796 T>$ C (p.Cys1266Arg)	GAGYGCCGCCTGGAGGTGCGAGG	Cardiomyopathy
397515329	$\begin{aligned} & \text { NM_001382.3(DPAGT1):c.503T>C } \\ & \text { (p.Leul68Pro) } \end{aligned}$	AATCCYGTACTATGTCTACATGG, ATCCYGTACTATGTCTACATGGG, TCCYGTACTATGTCTACATGGGG	Congenital disorder of glycosylation type 1J

397515465	NM_018127.6(ELAC2):c.460T>C (p.Phe154Leu)	ATAYTTTCTGGTCCATTGAAAGG	Combined oxidative phosphorylation deficiency 17
397515557	NM 005211.3(CSFIR):c. $2483 \mathrm{~T}>\mathrm{C}$ (p.Phe828Ser)	CATCTYTGACTGTGTCTACACGG	Hereditary diffuse leukoencephalopathy with spheroids
397515599	NM_194248.2(OTOF):c. $3413 \mathrm{~T}>\mathrm{C}$ (p.Leul 138Pro)	AGGTGCYGTTCTGGGGCCTACGG, GGTGCYGTTCTGGGGCCTACGGG	Deafness, autosomal recessive 9
397515766	$\begin{aligned} & \text { NM_000138.4(FBN1):c. } 2341 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys781Arg) } \end{aligned}$	GGACAAYGTAGAAATACTCCTGG	Marfan sy ndrome
565779970	NM_001429.3(EP300):c.3573T>A (p.Tyr1 191 Ter)	CTTAYTACAGTTACCAGAACAGG	Rubinstein-Taybisy ndrome 2
786200938	NM_080605.3(B3GALT6):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	AGCTICAYGGCGCCCGCGCCGGG, TCAYGgCGCCCGCGCCGGGCCGG	Spondyloepimetaphyseal dysplasia with joint laxity
28942087	$\begin{aligned} & \text { NM_000229.1(LCAT): } 698 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu233Pro) } \end{aligned}$	ATCTCTCYTGGGGCTCCCTGGGG, TCTCYTGGGGCTCCCTGGGGTGG	Norum disease
128621203	NM_000061.2(BTK):c. $1625 \mathrm{~T}>\mathrm{C}$ (p.Leu542Pro)	TCGGCCYGTCCAGGTGAGTGTGG	X -linked agammaglobulinemia with growth hormone deficiency
397515412	NM 006383.3(CIB2):c $368 \mathrm{~T}>\mathrm{C}$ (p.Ile 123 Thr)	CTTCAYCTGCAAGGAGGACCTGG	Deafness, autosomal recessive 48
193929364	$\underset{\text { (p.Leul35Pro) }}{\text { NM_0003 }} \mathbf{}$	AAGCYGCTAATTGGTAGGTGAGG	Permanent neonatal diabetes mellitus
730880872	NM 000257.3(MYH7):c. $1400 \mathrm{~T}>\mathrm{C}$	TCGAGAYCTTCGATGTGAGTTGG, CGAGAYCTTCGATGTGAGTTGGG	Cardiomyopathy
80356474	$\begin{gathered} \text { NM_002977.3(SCN9A):c. } 2543 \mathrm{~T}>\mathrm{C} \\ \text { (p.Ile848Thr) } \end{gathered}$	AAGATCAYTGGTAACTCAGTAGG, agatcaytggtanctcagtaggg, GATCAYTGGTAACTCAGTAGGGG	Primary erythromelalgia
80356489	NM_001164277.1(SLC37A4):c.352T>C (p.Trp118Arg)	GGGCYGGCCCCCATGTGGGAAGG	Glucose-6-phosphate transport defect
80356536	NM_152296.4(ATP1A3):C.2338T>C (p.Phe780Leu)	GCCCYTCCTGCTGTTCATCATGG	Dystonia 12
80356596	NM_194248.2(OTOF):c.3032T>C (p.Leul01 1Pro)	GATGCYGGTGTTCGACAACCTGG	Deafness, autosomal recessive 9 , Auditory neuropathy, autosomal recessive, 1

80356689	NM_000083.2(CLCN1):c.857T>C (p. Val286Ala)	AGGAGYGCTATTTAGCATCGAGG	Myotonia congenita
118203884	m. $4409 \mathrm{~T}>\mathrm{C}$	AGGYCAGCTAAATAAGCTATCGG	Mitochondrial myopathy
587777625	NM_173596.2(SLC39A5):C.911T>C (p.Met304Thr)	AGAACAYGCTGGGGCTTTTGCGG	Myopia 24, autosomal do minant
587783087	NM_003159.2(CDKL5):c.602T>C (p.Leu201Pro)	ATTCYTGGGGAGCTTAGCGATGG	not provided
118203951	NM_013319.2(UBIADI):C.511T>C (p.Serl71Pro)	TCTGGCYCCTTTCTCTACACAGG, gGCYCCTTTCTCTACACAGGAGG	Schnyder crystalline corneal dystrophy
118204017	NM_000018.3(ACADVL):c. $1372 \mathrm{~T}>\mathrm{C}$ (p.Phe458Leu)	TCGCATCYTCCGGATCTTTGGAGG, CGCATCYTCCGGATCTTTGAGGG, GCATCYTCCGGATCTTTGAGGGG	Very long chain acyl-CoA dehydrogenase deficiency
397518466	$\begin{aligned} & \text { NM_000833.4(GRIN2A):c.2P>C } \\ & \text { (p.Met1Thr) } \end{aligned}$	CTAYGGGCAGAGTGGGCTATTGG	Focal epilepsy with speech disorder with or without mental retardation
118204069	NM_000237.2(LPL):c.337T>C (p.Trpl13Arg)	GGACYGGCTGTCACGGGCTCAGG	Hyperlipoproteinemia, type I
118204080	$\begin{aligned} & \text { NM_000237.2(LPL):c. } 755 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile252Thr) } \end{aligned}$	GTGAYTGCAGAGAGAGGACTTGG	Hyperlipoproteinemia, type I
118204111	$\begin{aligned} & \text { NM_000190.3(HMBS):c.739T>C } \\ & \text { (p.Cys247Arg) } \end{aligned}$	GCTTCGCYGCATCGCTGAAAGGG	Acute intermittent porphyria
80357438	NM_007294.3(BRCA1):c.65T>C (p.Leu22Ser)	AAATCTYAGAGTGTCCCATCTGG	Familial cancer of breast, Breast-ovarian cancer, familial 1, Hereditary cancerpredisposingsyndrome
139877390	$\begin{gathered} \mathrm{NM} 001040431.2 \text { (COA } 3 \text {):c.215A }>\mathrm{G} \\ \text { (p.Tyr72Cys) } \end{gathered}$	CCAYCTGGGGAGGTAGGTTCAGG	
793888527	NM_005859.4(PURA):c. $563 \mathrm{~T}>\mathrm{C}$ (p.Ilel88Thr)	GACCAYTGCGCTGCCCGCGCAGG, ACCAYTGCGCTGCCCGCGCAGGG, CCAYTGCGCTGCCCGCGCAGGGG	not provided, Mental retardation, autosomal dominant 31
561425038	NM_002878.3(RAD51D):c.1A>G (p Metl Val)	CGCCCAYGTTCCCCGCAGGCCGG	Hereditary cancer-predisposing sy ndrome
121907934	NM_024105.3(ALG12):c.473T>C (p.Leul58Pro)	TCCYGCTGGCCCTCGCGGCCTGG	Congenital disorder of glycosylation type IG
80358207	NM_153212.2(GJB4):c.409T>C (p.Phe137Leu)	CCTCATCYTCAAGGCCGCCGTGG	Erythrokeratodermiavariabilis
80358228	NM_002353.2(TACSTD2):c.557T>C (p.Leul86Pro)	TCGGCYGCACCCCAAGTTCGTGG	Lattice corneal dystrophy Type III
121908076	NM_138691.2(TMC1):c.1543T>C (p.Cys 515 Arg)	AGGACCTYGCTGGGAAACAATGG, ACCTYGCTGGGAAACAATGGTGG, CCTYGCTGGGAAACAATGGTGGG	Deafness, autosomal recessive 7

121908089	NM_017838.3(NHP2):c.415T>C (p.Tyrl39His)	GGAGGCTYACGATGAGTGCCTGG, GGCTYACGATGAGTGCCTGGAGG	Dyskeratosis congenita autosomal recessive 1 , Dyskeratosis congenita, autosomal recessive 2
121908154	NM_001243133.1(NLRP3):c. 926 T>C (p.Phe309Ser)	GGTGCCTYTGACGAGCACATAGG	Familial cold urticaria, Chronic infantile neurological cutaneous and articular syndrome
121908158	NM_001033855.2(DCLREIC):c. $2 \mathrm{~T}>\mathrm{C}$ (p.MetIThr)	GGCGCTAYGAGTTCTTTCGAGGG, GCGCTAYGAGTTCTTTCGAGGGG	Histiocytic medullary reticulosis
796052870	NM_018129.3(PNPO):c. $2 \mathrm{~T}>\mathrm{C}$ (p.MetlThr)	CCCCCAYGACGTGCTGGCTGCGG, CCCCAYGACGTGCTGGCTGCGGG, CCCAYGACGTGCTGGCTGCGGGG	not provided
121908318	NM 020427.2(SLURPI).e.43T>C (p. Trp 15 Arg)	GCAGCCYGGAGCATGGGCTGTGG	Acroerythrokeratoderma
121908352	NM_022124.5(CDH23):C.5663T>C (p.Phe1888Ser)	CTCACCTYCAACATCACTGCGGG	Deafness, autosomal recessive 12
121908520	NM_000030.2(AGXT):c.613T>C (p. Ser205Pro)	CCTGTACYCGGGCTCCCAGAAGG	Primary hyperoxaluria, type I
121908618	NM_004273.4(CHST3):c. $920 \mathrm{~T}>\mathrm{C}$ (p.Leu307Pro)	CGTGCYGGCCTCGCGCATGGTGG	Spondyloepiphyseal dysplasia with congenital joint dislocations
11694	NM_006432.3(NPC2):c. 199T>C (p. Ser67Pro)	TATTCAGYCTAAAAGCAGCAAGG	Niemann-Pick disease type C2
121908739	NM 000022.2(ADA):c. $320 \mathrm{~T}>\mathrm{C}$ (p.Leul07Pro)	CCTGCYGGCCAACTCCAAAGTGG	Severe combined immunodeficiency due to ADA deficiency
80359022	NM_000059.3(BRCA2).c. 7958 T C (p.Leu2653Pro)	TGCYTCTTCAACTAAAATACAGG	Familial cancer of breast, Breast-ovarian cancer, familial 2
121908902	NM_003880.3(WISP3):c.232T>C (p.Cys78Arg)	AAAATCYGTGCCAAGCAACCAGG, AAATCYGTGCCAAGCAACCAGGG, AATCYGTGCCAAGCAACCAGGGG	Progressive pseudorheumatoid dysplasia
121908947	NM_006892.3(DNMT3B):c.808T (p.Ser270Pro)	CAAGTTCYCCGAGGTGAGTCCGG, AAGTTCYCCGAGGTGAGTCCGGG, AGTTCYCCGAGGTGAGTCCGGGG	Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency
121909028	$\underset{\text { (p.Phel286Ser) }}{\text { NM_000492.3(CFTR): } 387 \mathrm{~T}>\mathrm{C}}$	AGCCTYTGGAGTGATACCACAGG	Cystic fibrosis
121909135	NM 000085.4(CLCNKB):c. 1294 T C (p.Tyr432His)	CTTTGTCYATGGTGAGTCTGGGG	Barter syndrome type 3
121909143	NM_001300.5(KLF6):c.506T>C (p.Leul69Pro)	GGAGCYGCCCTCGCCAGGGAAGG	
121909182	NM $001089.2(\mathrm{ABCA} 3): \mathrm{c} .302 \mathrm{~T}>\mathrm{C}$ (p.Leu101Pro)	GCACYTGTGATCAACATGCGAGG	Surfactant metabolism dysfunction, pulmonary, 3
121909200	NM 000503.5(EYAl):c. $1459 \mathrm{~T}>\mathrm{C}$ (p. Ser 487 Pro)	CACTCYCGCTCATTCACTCCCGG	Melnick-Fraser sy ndrome

121909247	NM_004970.2(IGFALS):c. $1618 \mathrm{~T}>\mathrm{C}$	GGACYGTGGCTGCCCTCTCAAGG	Acid-labile subunit deficiency
121909253	NM 005570.3(LMAN1):c.2T>C (p.MetlThr)	AGAYGGCGGGATCCAGGCAAAGG	Combined deficiency of factor V and factor VIII, 1
121909385	NM_000339.2(SLC12A3):c. 1868 T $>C$ (p.Leu623Pro)	CAACCYGGCCCTCAGCTACTCGG	Familial hypokalemia-hypomagnesemia
121909497	$\begin{aligned} & \text { NM_002427.3(MMP13):c. } 224 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe75Ser) } \end{aligned}$	TTCTYCGGCTTAGAGGTGACTGG	Spondy loepimetaphyseal dysplasia, Missouri type
121909508	NM_000751.2(CHRND):c. $188 \mathrm{~T}>\mathrm{C}$ (p.Leu63Pro)	AACCYCATCTCCCTGGTGAGAGG	MYASTHENICSYNDROME, CONGENITAL, 3B, FASTCHANNEI.
121909519	NM_001100.3(ACTAI):c.287T>C (p.Leu96Pro)	CGAGCYTCGCGTGGCTCCCGAGG	Nemaline myopathy 3
121909572	NM_000488.3(SERPINC1):c.667T $>C$ (p.Ser223Pro)	TGGGTGYCCAATAAGACCGAAGG	Antithrombin III deficiency
121909677	NM 000821.6(GGCX):c.896T>C (p.Phe299Ser)	TATGTYCTCCTACGTCATGCTGG	Pseudoxanthoma elasticum-like disorder with multiple coagulation factor deficiency
121909727	NM_001018077.1(NR3C1):c.2209T>C (p.Phe737Leu)	CTATTGCYTCCAAACATTTTTGG	Glucocorticoid resistance, generalized
139573311	NM_000492.3(CFTR):C. $1400 \mathrm{~T}>\mathrm{C}$ (p.Leu467Pro)	TTCACYTCTAATGGTGATTATGG, TCACYTCTAATGGTGATTATGGG	Cystic fibrosis
121912441	NM_000454.4(SOD1):c.341T>C (p.Ile 114Thr)	CATCAYTGGCCGCACACTGGTGG	Amyotrophic lateral sclerosis type 1
121912446	$\begin{aligned} & \text { NM_000454.4(SODI):c.434T>C } \\ & \text { (p.Leul45Ser) } \end{aligned}$	CGTTYGGCTTGTGGTGTAATTGG, GTTYGGCTTGTGGTGTAATTGGG	Amyotrophic lateral sclerosis type 1
121912463	NM 000213.3(ITGB4):C. $1684 \mathrm{~T}>\mathrm{C}$ (p Cys562Arg)	GGCCAGYGTGTGTGTGAGCCTGG	Epidermolysis bullosa with pyloric atresia
121912492	$\begin{gathered} \text { NM_002292.3(LAMB2);c. } 961 \mathrm{~T}>\mathrm{C} \\ \text { (p.Cys } 321 \mathrm{Arg} \text {) } \end{gathered}$	CCTCAACYGCGAGCAGTGTCAGG	Nephrotic syndrome, type 5, with or without ocular abnormalities
397516659	NM 001399.4(EDA):c.2T>C (p.MetlThr)	GGCCAYGGGCTACCCGGAGGTGG	Hypohidrotic X -linked ectodermal dysplasia

111033589	NM_021044.2(DHH):c.485T>C (p. Leul62Pro)	GTTGCYGGCGCGCCTCGCAGTGG	$46, \mathrm{XY}$ gonadal dysgenesis, complete, dhh-
111033622	NM_000206.2(IL2RG):c.343T>C (p. Cysll5Arg)	TGGCYGTCAGTTGCAAAAAAAGG	X -linked severe combined immunodeficiency
121912613	NM 001041.3(SI):c. $1859 \mathrm{~T}>\mathrm{C}$ (p.Leu620Pro)	ATGCYGGAGTTCAGTTTGTTTGG	Sucrase-isomaltase deficiency
121912619	NM_016180.4(SLC45A2):c. 1082 T>C (p.Leu361Pro)	GAGTTTCYCATCTACGAAAGAGG	Oculocutaneous albinism type 4
61750581	NM_000552.3(VWF):c.4837T>C (p.Ser1613Pro)	CTGCCYCTGATGAGATCAAGAGG	von Willebrand disease, type 2a
121912653	NM_000546.5(TP53):c.755T>C (p Leu252Pro)	CATCCYCACCATCATCACACTGG	Li-Fraumeni syndrome 1
111033683	NM_000155.3(GALT):c.386T>C (p Met129Thr)	AGGTCAYGTGCTTCCACCCCTGG	Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase
111033752	NM_000155.3(GALT):c.677T>C (p.Leu226Pro)	CAGGAGCYACTCAGGAAGGTGGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase
121912729	NM 000039.1(APOA1):c.593T>C (p.Leul98Ser)	GCGCTYGGCCGCGCGCCTTGAGG	Familial visceral amyloidosis, Ostertag type
769452	NM_000041.3(APOE):c. $137 \mathrm{~T}>\mathrm{C}$ (p.Leu46Pro)	AACYGGCACTGGGTCGCTTTTGG	
121912762	NM_016124.4(RHD):c.329T>C (p.Leul 10Pro)	ACACYGTTCAGGTATTGGGATGG	
111033824	NM_000155.3(GALT):c.1138T>C (p. Ter380Arg)	CGCCYGACCACGCCGACCACAGG, GCCYGACCACGCCGACCACAGGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase
111033832	NM_000155.3(GALT):c.980T>C (p.Leu327Pro)	TCCYGCGCTCTGCCACTGTCCGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase
730881974	NM_000455.4(STK 1 1):c.545T>C (p.Leul82Pro)	GGGAACCYGCTGCTCACCACCGG, AACCYGCTGCTCACCACCGGTGG	Hereditary cancer-predisposing syndrome
1064644	NM_000157.3(GBA):c. $703 \mathrm{~T}>\mathrm{C}$ (p.Ser235Pro)	GGGYCACTCAAGGGACAGCCCGG	Gaucher disease
796052090	$\underset{\text { (p.Leul } 78 \mathrm{Pro} \text {) }}{\mathrm{NM} \text { _138413.3(HOGA1) }} \mathbf{~ 5 3 3 \mathrm { T }}>\mathrm{C}$	GGACCYGCCTGTGGATGCAGTGG	Primary hyperoxaluria, type III
121913141	NM_000208.2(INSR):c. $779 \mathrm{~T}>\mathrm{C}$ (p.Leu260Pro)	CTACCYGGACGGCAGGTGTGTGG	Leprechaunism syndrome
121913272	NM_006218.2(PIK3CA):c.1258T>C (p.Cys 420 Arg)	GGAACACYGTCCATTGGCATGGG, GAACACYGTCCATTGGCATGGGG	Congenital lipomatous overgrowth, vascular malformations, and epidermal nevi, Neoplasm of ovary, PIK3CA Related Overgrowth Spectrum
61751310	NM_000552.3(VWF):c.8317T>C (p.Cys2773Arg)	GCTCCYGCTGCTCTCCGACACGG	von Willebrand disease, type 2 a
312262799	NM_024408.3(NOTCH2):c. $1438 \mathrm{~T}>\mathrm{C}$ (p. Cys 480 Arg)	TTCACAYGTCTGTGCATGCCAGG	Alagille syndrome 2
121913570	NM 000426.3(LAMA2):c. $7691 \mathrm{~T}>\mathrm{C}$ (p.Leu2564Pro)	ATCATTCYTTTGGGAAGTGGAGG, TCATTCYTTTGGGAAGTGGAGGG	Merosin deficient congenital muscular dystrophy
121913640	NM_000257.3(MYH7):c. $1046 \mathrm{~T}>\mathrm{C}$ (p.Met349Thr)	AACTCCAYGTATAAGCTGACAGG	Familial hypertrophic cardiomyopathy 1, Cardiomy opathy
121913642	NM 000257.3 (МYH7):c. $1594 \mathrm{~T}-\mathrm{C}$ (p.Ser532Pro)	CATCATGYCCATCCTGGAAGAGG	Dilated cardiomyopathy IS
119463996	NM_001079802.1(FKTN) ©. $527 \mathrm{~T}>\mathrm{C}$ (p.Phel76Ser)	GTAGTCTYTCATGAGAGGAGTGG	Limb-girdle muscular dystrophy-
587776456	$\text { NM_002049.3(GATA1):C. } 1240 \mathrm{~T}>\mathrm{C}$ (p.Ter414Arg)	GCTCAYGAGGGCACAGAGCATGG	GATA-1-related thrombocytopenia with dyserythropoiesis
63750654	NM_000184.2(HBG2):c.-228T>C	ATGCAAAYATCTGTCTGAAACGG	Fetal hemoglobin quantitative trait locus I
587776519	$\text { NM_001999.3(FBN2):c. } 3725-$ $15 \mathrm{~A}>\mathrm{G}$	AGCAYTGCAACCACATTGTCAGG	Congenital contractural arachnodactyly
78365220	NM_000402.4(G6PD):c. $473 \mathrm{~T}>\mathrm{C}$ (p.Leul58Pro)	TGCCCYCCACCTGGGGTCACAGG	Anemia, nonspherocytic hemolytic, due to G6PD deficiency
63750741	NM_000179.2(MSH6):c. $1346 \mathrm{~T}>\mathrm{C}$ (p.Leu449Pro)	CTGGGGCYGGTATTCATGAAAGG	Hereditary Nonpolyposis Colorectal Neoplasms
587776914	NM 017565.3(FAM20A): ©. $590-$ $2 \mathrm{~A}>\mathrm{G}$	GTAATCYGCAAAGGAGGAGAAGG, TAATCYGCAAAGGAGGAGAAGG	Enamel-renal syndrome
5030809	NM_000551.3(VHL):c. $292 \mathrm{~T}>\mathrm{C}$ (p.Tyr98His)	CCCYACCCAACGCTGCCGCCTGG	Von Hippel-Lindau syndrome, Hereditary cancer-predisposing svndrome
199476132	m.5728T>C	CAATCYACTTCTCCCGCCGCCGG, AATCYACTTCTCCCGCCGCCGGG	Cytochrome-c oxidase deficiency, Mitochondrial complex I deficiency

62637012	NM_014336.4(AIPLl):c. $715 \mathrm{~T}>\mathrm{C}$ (p.Cys239Arg)	CTGCCAGYGCCTGCTGAAGAAGG, CCAGYGCCTGCTGAAGAAGGAGG	Leber congenital amaurosis 4
199476199	NM_207352.3(CYP4V2):c. $1021 \mathrm{~T}>\mathrm{C}$ (p.Ser341Pro)	AAACTGGYCCTTATACCTGTTGG, AACTGGYCCTTATACCTGTTGGG	Bietti crystalline corneoretinal dystrophy
587777183	NM_006702.4(PNPLA6):C. $3053 \mathrm{~T}>\mathrm{C}$ (p.Phe 1018Ser)	CCTYTAACCGCAGCATCCATCGG	Boucher Neuhauser syndrome
199476389	NM_000487.5(ARSA):c.899T>C (p.Leu300Ser)	GGTCTCTYGCGGTGTGGAAAGGG	Metachromatic leukodystrophy
199476398	$\begin{aligned} & \text { NM_016599.4(MYOZ2):c. } 142 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser48Pro) } \end{aligned}$	TTAYCCCATCTCAGTAACCGTGG	Familial hypertrophic cardiomyopathy 16
119456967	NM 001037633.1(SLLI):c. $1370 \mathrm{~T}>\mathrm{C}$ (p.Leu457Pro)	TTGCYGAAGGAGCTGAGATGAGG	Marinesco-Sjlxc3\xb6grensyndrome
730882253	NM_006888.4(CALM1) $\mathrm{c} .268 \mathrm{~T}>\mathrm{C}$ (p.Phe90Leu)	GGCAYTCCGAGTCTTTGACAAGG	Long QT syndrome 14
587777283	$\begin{gathered} \text { NM_012338.3(TSPAN12):c.413A>G } \\ \text { (p.Tyr138Cys) } \end{gathered}$	TAATCCAYAATTTGTCATCCTGG	Exudative vitreoretinopathy 5
587777306	NM 015884.3 (MBTPS2):c. $1391 \mathrm{~T}>\mathrm{C}$ (p.Phe464Ser)	GCTYTGCTTTGGATGGACAATGG	Palmoplantar keratoderma, mutilating, with periorificial keratotic plaques, X-linked
56378716	$\begin{aligned} & \text { NM_000250.1(MPO):c. } 752 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met251Thr) } \end{aligned}$	TCACTCAYGTTCATGCAATGGGG	Myeloperoxidase deficiency
587777390	NM_005026.3(PIK3CD):c.1246T>C (p. Cys 416 Arg)	GCAGGACYGCCCCATTGCCTGGG	Activated PI3K-delta syndrome
587777480	NM_003108.3(SOX11):c.178T>C (p Ser60Pro)	TATGGYCCAAGATCGAACGCAGG	Mental retardation, autosomal dominant 27
587777663	NM 001288767.1(ARMC5):c.1379T>C (p.Leu460Pro)	GCCCGACYGCGGGATGCTGGTGG	Acth-independent macronodular adrenal hyperplasia 2
61753033	NM_000350.2(ABCA4):C. $5819 \mathrm{~T}>\mathrm{C}$ (p.Leul940Pro)	AAGGCYACATGAACTAACCAAGG	Stargardt disease, Stargardt disease 1, Conerod dystrophy 3
200488568	NM_002972.3(SBFI):c. $4768 \mathrm{~A}>\mathrm{G}$ (p.Thr1590Ala)	CAGGCGYCCTCTTGCTCAGCCGG	Charcot-Marie-Tooth disease, type 4B3
132630274	NM_000377.2(WAS):c. $809 \mathrm{~T}>\mathrm{C}$ (p.Leu270Pro)	CGGAGTCYGTTCTCCAGGGCAGG	Severe congenital neutropenia X-linked
132630308	NM_001399.4(EDA);c.181T>C (p.Tyr61His)	CTGCYACCTAGAGTTGCGCTCGG	Hypohidrotic X-linked ectodermal dysplasia
60934003	$\underset{\text { NM_170707.3(LMNA):C. } 1589 \mathrm{~T}>\mathrm{C}}{\text { (p.Leu530Pro) }}$	ACGGCTCYCATCAACTCCACTGG, CGGCTCYCATCAACTCCACTGGG, GGCTCYCATCAACTCCACTGGGG	Benign scapuloperoneal muscular dystrophy with cardiomyopathy
180177160	NM_000030.2(AGXT):c. $1076 T>\mathrm{C}$ (p.Leu359Pro)	GGTGCYGCGGATCGGCCTGCTGG, GTGCYGCGGATCGGCCTGCTGGG	Primary hyperoxaluria, type I
180177222	NM_000030.2(AGXT):c.449T>C (p.Leul50Pro)	GTGCYGCTGTTCTTAACCCACGG, TGCYGCTGTTCTTAACCCACGGG	Primary hyperoxaluria, type I
180177254	NM_000030.2(AGXT):c.661T>C (p.Ser221Pro)	GCTCATCYCCTTCAGTGACAAGG	Primary hyperoxaluria, type I
180177264	NM_000030.2(AGXT):c.757T>C (p.Cys253Arg)	GGGGCYGTGACGACCAGCCCAGG	Primary hyperoxaluria, type I
180177293	NM 000030.2(AGXT):c. $893 T>C$ (p.Leu298Pro)	GTATCYGCATGGGCGCCTGCAGG	Primary hyperoxaluria, type I
376785840	NM_001282227.1(CECR1):c.1232A>G (p.Tyr411Cys)	GAAATCAYAGGACAAGCCTTTGG	Polyarteritis nodosa
587779393	NM 000257.3(MYH7):c. $4937 \mathrm{~T}>\mathrm{C}$ (p.Leul646Pro)	GAGCCYCCAGAGCTTGTTGAAGG	Myopathy, distal, 1
587779410		ATTGTACYCAGAGCACTAGAAGG	Sialic acid storage disease, severe infantile type
587779513	NM_000090.3(COL3A1):c. $2337+2 \mathrm{~T}>\mathrm{C}$ (p.Gly762 Lys779del)	AGGYAACCCTTAATACTACCTGG	Ehlers-Danlos sy ndrome, type 4
777539013	$\begin{aligned} & \text { NM_020376.3(PNPLA2):c. } 757+2 \mathrm{~T} \\ & >\mathrm{C} \end{aligned}$	GAACGGYGCGCGGACCCGGGCGG, AACGGYGCGCGGACCCGGGCGGG	Neutral lipid storage disease with myopathy
34557412	NM_012452.2(TNFRSF13B):. $310 \mathrm{~T}>\mathrm{C}$ (p.Cys 104Arg)	ACTTCYGTGAGAACAAGCTCAGG	Immunoglobulin A deficiency 2, Common variable
796052970	NM_001165963.1(SCN1A):c. $1094 \mathrm{~T}>\mathrm{C}$ (p.Phe365Ser)	CAAGCTYTGATACCTTCAGTTGG, AAGCTYTGATACCTTCAGTTGGG	not provided
724159989	NC_012920.1:m.7505T>C	CCTCCAYGACTTTTTCAAAAAGG	Deafness, nonsyndromic sensorineural, mitochondrial
796053222	NM_014191.3(SCN8A):c. $4889 \mathrm{~T}>\mathrm{C}$ (p.Leul630Pro)	CGTCYGATCAAAGGCGCCAAAGG, GTCYGATCAAAGGCGCCAAAGGG	not provided
118192127	NM_000540.2(RYRI):c. $10817 \mathrm{~T}>\mathrm{C}$ (p.Leu3606Pro)	TACTACCYGGACCAGGTGGGTGG, ACTACCYGGACCAGGTGGGTGGG, CTACCYGGACCAGGTGGGTGGGG	Central core disease
118192170	NM_000540.2(RYRI):c. $14693 \mathrm{~T}>\mathrm{C}$ (p.Ile4898Thr)	AGGCAYTGGGGACGAGATCGAGG	Malignant hyperthermia susceptibility type 1 , Central core disease

121917703	NM_005247.2(FGF3):c.466T>C (p.Serl56Pro)	GTACGTGYCTGTGAACGGCAAGG, TACGTGYCTGTGAACGGCAAGGG	Deafness with labyrinthine aplasia microtia and microdontia (LAMM)
690016549	NM 005211.3(CSFIR):c. $2450 \mathrm{~T}>\mathrm{C}$ (p.Leu817Pro)	CCGCCYGCCTGTGAAGTGGATGG	Hereditary diffuse leukoencephalopathy with spheroids
690016552	NM_005211.3(CSFIR):c. $2566 \mathrm{~T}>\mathrm{C}$ (p. Tyr856His)	GAATCCCYACCCTGGCATCCTGG	Hereditary diffuse leukoencephalopathy with spheroids
121917738	NM $001098668.2(\mathrm{SFTPA} 2) \mathrm{C} .593 \mathrm{~T}>\mathrm{C}$ (p.Phe198Ser)	GGAGACTYCCGCTACTCAGATGG, GAGACTYCCGCTACTCAGATGGG	Idiopathic fibrosing alveolitis, chronic form
690016559	NM_005211.3(CSFIR):c. $1957 \mathrm{~T}>\mathrm{C}$ (p.Cys653Arg)	AGCCYGTACCCATGGAGGTAAGG, GCCYGTACCCATGGAGGTAAGGG	Hereditary diffuse leukoencephalopathy with spheroids
690016560	NM_005211.3(CSFIR):c.2717T>C (p.Ile906Thr)	GCAGAYCTGCTCCTTCCTTCAGG	Hereditary diffuse leukoencephalopathy with spheroids
121917769		GGCCACAYGTGTCAATGTGGTGG, GCCACAYGTGTCAATGTGGTGGG	Familial juvenile gout
121917773	$\begin{aligned} & \text { NM_003361.3(UMOD):c. } 943 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys315Arg) } \end{aligned}$	ATGGCACYGCCAGTGCAAACAGG	Glomerulocystic kidney disease with hyperuricemia and isnsthemuria
121917818	$\underset{\text { (p.Leu206Pro) }}{\text { NM_007255. } 617 \mathrm{~T}>\mathrm{C}}$	TGCYCTCCAAGCAGCACTACCGG	Ehlers-Danlos syndrome progeroid type
121917824	NM_021615.4(CHST6):c.827T>C (p.Leu276Pro)	GGACCYGGCGCGGGAGCCGCTGG	Macular corneal dystrophy Type I
121917848	$\begin{gathered} \text { NM_000452.2(SLC10A2):c. } 728 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leu243Pro) } \end{gathered}$	TTTCYTCTGGCTAGAATTGCTGG	Bile acid malabsorption, primary
121918006	$\begin{aligned} & \text { NM_000478.4(ALPL):c. } 1306 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr436His) } \end{aligned}$	TGGACYATGGTGAGACCTCCAGG	Infantile hypophosphatasia
121918010	NM 000478.4(ALPL):c. $979 \mathrm{~T}>\mathrm{C}$ (p.Phe327Leu)	CAAAGGCYTCTTCTTGCTGGTGG, GGCYTCTTCTTGCTGGTGGAAGG	Infantile hypophosphatasia
121918088	NM_000371.3(TTR):c.400T>C (p.Tyrl34His)	CCCCYACTCCTATTCCACCACGG	
121918110	NM_001042465.1(PSAP):c. 1055 P>C (p.Leu352Pro)	GAAGCYGCCGAAGTCCCTGTCGG	Gaucher disease, atypical, due to saposin C deficiency
121918137	$\begin{gathered} \text { NM_003730.4(RNASET2)c. } 550 \mathrm{~T}>\mathrm{C} \\ \text { (p.CysI84Arg) } \end{gathered}$	CCAGYGCCTTCCACCAAGCCAGG	Leukoencephalopathy, cystic, without megalencephaly
121918191	NM_001127628.1(FBPI):C.581 $>\mathrm{C}$ (p.Phe194Ser)	GGAGTYCATTTTGGTGGACAAGG	Fructose-biphosphatase deficiency
121918306	NM_006946.2(SPTBN2):c.758T>C (p.Leu253Pro)	ACCAAGCYGCTGGATCCCGAAGG, AAGCYGCTGGATCCCGAAGGTGG, AGCYGCTGGATCCCGAAGGTGGG	Spinocerebellar ataxia 5
121918505	NM_000141.4(FGFR2):c. $799 \mathrm{~T}>\mathrm{C}$ (p. Ser267Pro)	AATGCCYCCACAGTGGTCGGAGG	Pfeiffer syndrome, Neoplasm of stomach
121918643	NM_003126.2(SPTAI):c.620T>C (p.Leu207Pro)	GTGGAGCYGGTAGCTAAAGAAGG, TGGAGCYGGTAGCTAAAGAAGGG	Hereditary pyropoikilocytosis, Elliptocytosis 2
121918646	NM_001024858.2(SPTB):c. $604 \mathrm{~T}>\mathrm{C}$ (p.Trp202Arg)	CTCCAGCYGGAAGGATGGCTTGG	Spherocytosis type 2
121918648	NM_001024858.2(SPTB):c.6055T>C (p. Ser2019Pro)	ATGCCYCTGTGGCTGAGGCGTGG	
727504166	$\begin{gathered} \text { NM_000543.4(SMPDI):c. } 475 \mathrm{~T}>\mathrm{C} \\ \text { (p.CyS159Arg) } \end{gathered}$	TGAGGCCYGTGGCCTGCTCCTGG, GAGGCCYGTGGCCTGCTCCTGGG	Niemann-Pick disease, type A, Niemann-Pick disease, type B
193922915	NM_000434.3(NEU1):c. $1088 \mathrm{~T}>\mathrm{C}$ (p.Leu363Pro)	CAGCYATGGCCAGGCCCCAGTGG	Sialidosis, type II
727504419	NM_000501.3(ELN):c.889+2T> C	CAGGYAACATCTGTCCCAGCAGG, AGGYAACATCTGTCCCAGCAGGG	Supravalvar aortic stenosis
376395543	$\begin{aligned} & \text { NM_000256.3(MYBPC3):c.26- } \\ & 2 \mathrm{~A} \supset \mathrm{G} \end{aligned}$	GAGACYGAAGGGCCAGGTGGAGG	Primary familial hypertrophic cardiomy opathy, Familial hypertrophic cardiomyopathy 4 , Cardiomyopathy
1169305	NM_000545.6(HNFIA):c.1720G>A (p.Gly574Ser)	GATGCYGGCAGGGTCCTGGCTGG, ATGCYGGCAGGGTCCTGGCTGGG, TGCYGGCAGGGTCCTGGCTGGGG	Maturity-onset diabetes of the young, type 3
730880130	$\begin{aligned} & \text { NM_000527.4(LDLR):c. } 1468 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp490Arg) } \end{aligned}$	CTACYGGACCGACTCTGTCCTGG, TACYGGACCGACTCTGTCCTGGG	Familial hypercholesterolemia
281860286	NM 018713.2(SLC30A10):C.500T>C (p.Phe167Ser)	GGCGCTTYCGGGGGGCCTCAGGG	Hypermanganesemia with dystonia, polycythemia and cirrhosis
730880306	NM_145693.2(LPIN1):c. $1441+2 \mathrm{~T}>$ C	AAGGYACCGCGGGCCTCGCGCGG, AGGYACCGCGGGCCTCGCGCGGG	Myoglobinuria, acute recurrent, autosomal recessive
74315452	$\text { NM_000454.4(SODI):c. } 338 \mathrm{~T}>\mathrm{C}$ (p.Ilell3Thr)	TTGCAYCATTGGCCGCACACTGG	Amyotrophic lateral sclerosis type 1
730880455	NM 000169.2 (GLA) $\mathrm{c} .41 \mathrm{~T}>\mathrm{C}$ (p Leul4Pro)	CGCGCYTGCGCTTCGCTTCCTGG	not provided
267606656	NM_054027.4(ANKH):c. $1015 \mathrm{~T}>\mathrm{C}$ (p.Cys339Arg)	AGCTCYGTTTCGTGATGTTTTGG	Craniometaphyseal dysplasia, autosomal dominant

267606687	NM_033409.3(SLC52A3):c. 1238 T>C (p.Val413Ala)	AGTTACGYCAAGGTGATGCTGGG	Brown-Vialetto-Van laere syndrome
267606721	$\text { NM_001928.2(CFD):c. } 640 \mathrm{~T}>\mathrm{C}$ $\text { (pys } \mathrm{Cy} 214 \mathrm{Arg} \text {) }$	GGTGYGCGGGGGCGTGCTCGAGG, GTGYGCGGGGGCGTGCTCGAGGG	Complement factor deficiency
267606747	$\begin{gathered} \mathrm{NM} 001849.3(\mathrm{COL} 6 \mathrm{~A} 2) \mathrm{c} .2329 \mathrm{~T}>\mathrm{C} \\ \text { (p) Cys777 } \mathrm{Arg} \text {) } \end{gathered}$	CGCCYGCGACAAGCCACAGCAGG	Ullrich congenital muscular dystrophy
431905515	NM_001044.4(SLC6A3):c.671T>C (p.Leu224Pro)	CTGCACCYCCACCAGAGCCATGG	Infantile Parkinsonism-dystonia
267606857	NM_000180.3(GUCY2D):c.2846T>C (p.Ile949 Thr)	AGAGAYCGCCAACATGTCACTGG	Cone-rod dystrophy 6
267606880	NM_022489.3(INF2):c.125T>C (p.Leu42Pro)	GCTGCYCCAGATGCCCTCTGTGG	Focal segmental glomerulosclerosis 5
515726191	$\begin{gathered} \text { NM_015713.4(RRM2B):c.581A>G } \\ \text { (p.Glu194G1y) } \end{gathered}$	AACTCCTYCTACAGCAGCAAAGG	RRM2B-related mitochondrialdisease
267606917	NM 004646.3 (NPHSI) $\mathrm{C} .793 \mathrm{~T}>\mathrm{C}$ (p.Cys265Arg)	GCTGCCGYGCGTGGCCCGAGGGG, CTGCCGYGCGTGGCCCGAGGGGG	Finnish congenital nephrotic syndrome
267607104	NM_001199107.1(TBC1D24):c.751T>C (p.Phe25ILeu)	CAAGTTCYTCCACAAGGTGAGGG, TTCYTCCACAAGGTGAGGGCCGG	Myoclonic epilepsy, familial infantile
267607182	NM_144631.5(ZNF513):c.1015T>C (p.Cys339Arg)	TGGGCGCYGCATGCGAGGAGAGG, CGCYGCATGCGAGGAGAGGCTGG	Retinitis pigmentosa 58
267607211	NM_000229.l(LCAT):c. $508 \mathrm{~T}>\mathrm{C}$ (p. Trp 170 Arg)	TATGACYGGCGGCTGGAGCCCGG	Norum disease
267607215	NM_016269.4(LEFI):c.181T>C (D Ser61Pro)	GAACGAGYCTGAAATCATCCCGG	Sebaceous tumors, somatic
587783580	$\begin{aligned} & \text { NM_178151.2(DCX):c. } 683 \mathrm{~T}>\mathrm{C} \\ & \text { in } \mathrm{I} \text { eu? } 28 \mathrm{Pr} \text {) } \end{aligned}$	AAAAAACYCTACACTCTGGATGG	Heterotopia
587783644	NM_004004.5(GJB2):c. $107 \mathrm{~T}>\mathrm{C}$ (p.Leu36Pro)	GATCCYCGTTGTGGCTGCAAAGG	Hearing impairment
587783653	NM_005682.6(ADGRGI):c. $1460 \mathrm{~T}>\mathrm{C}$ (p.Leu487Pro)	CCCTGCYCACCTGCCTTTCCTGG	Polymicrogyria, bilateral frontoparietal
587783863	$\begin{aligned} & \text { NM_000252.2(MTM1):c. } 958 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser320Pro) } \end{aligned}$	GGAAYCTTTAAAAAAAGTGAAGG	Severe X-linked myotubular myopathy
267607751	NM_000249.3(MLH1):c.453+2T> C	ATCACGGYAAGAATGGTACATGG, TCACGGYAAGAATGGTACATGGG	Hereditary Nonpolyposis Colorectal Neoplasms
119103227	$\begin{aligned} & \text { NM_000411.6(HLCS):c. } 710 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Lev237Pro) } \end{aligned}$	CTATCYTTCTCAGGGAGGGAAGG	Holocarboxy lase synthetase deficiency
119103237	$\begin{aligned} & \text { NM_005787.5(ALG3):c. } 211 \mathrm{~T}>\mathrm{C} \\ & \text { (n. Tr } 71 \mathrm{Arg} \text {) } \end{aligned}$	GATTGACYGGAAGGCCTACATGG	Congenital disorder of glycosylation type ID
398122806	NM_003172.3(SURF1):c.679T>C (p.Trp227Arg)	CCACYGGCATTATCGAGACCTGG	Congenital myasthenic syndrome, acetazolamide-responsive
80338747	NM_004525.2(LRP2):c. $7564 \mathrm{~T}>\mathrm{C}$ (p.Tyr2522His)	GTACCTGYACTGGGCTGACTGGG	Donnai Barrow sy ndrome
398122838	NM_001271723.1(FBXO38):c. $616 \mathrm{~T}>\mathrm{C}$ (p.Cys206Arg)	TTCCTYGTATCCCAATGCTAAGG	Distal hereditary motor neuronopathy 2D
398122989	NM_014495.3(ANGPTL3):c.883T>C (p.Phe295Leu)	ACAAAACYTCAATGAAACGTGGG	Hypobetalipoproteinemia, familial, 2
80338945	NM_004004.5(GJB2):c.269T>C (p.Leu90Pro)	GCTCCYAGTGGCCATGCACGTGG	Deafness, autosomal recessive 1 A , Hearing impairment
80338956	$\begin{gathered} \text { NM_000334.4(SCN4A):c.2078T }>C \text { C } \\ \text { (p.Пle693Thr) } \end{gathered}$	AAGATCAYTGGCAATTCAGTGGG, AGATCAYTGGCAATTCAGTGGGG, GATCAYTGGCAATTCAGTGGGGG	Hyperkalemic Periodic Paralysis Type 1, Paramyotonia congenita of von Eulenburg
267608131	$\text { NM_000179.2(MSH6):c. } 4001+2 \mathrm{~T}>$ C	CGGYAACTAACTAACTATAATGG	Hereditary Nonpolyposis Colorectal Neoplasms
587784573	NM_004963.3(GUCY2C):c. $2782 \mathrm{~T}>\mathrm{C}$ (p.Cys928Arg)	TCCCYGTGCTGCTGGAGTTGTGG, CCCYGTGCTGCTGGAGTTGTGGG	Meconiumileus
267608511	NM_003159.2(CDKL5):c.659T>C (p.Leu220Pro)	CCAACYTTTTACTATTCAGAAGG	Early infantile epileptic encephalopathy 2
373842615	NM_000118.3(ENG):c.1273$2 \mathrm{~A}>\mathrm{G}$	CCGCCYGCGGGGATAAAGCCAGG, CGCCYGCGGGGATAAAGCCAGGG	Haemorrhagic telangiectasia 1
185492581	$\begin{aligned} & \text { NM_000335.4(SCN5A):c.376A }>\mathrm{G} \\ & \text { (p.LyS126Glu). } \end{aligned}$	GAATCTYCACAGCCGCTCTCCGG	Brugada syndrome
200533370	NM_133499.2(SYN1):c. $1699 \mathrm{~A}>\mathrm{G}$ (p. Thr 567 Ala)	GATGYCTGACGGGTAGCCTGTGG, ATGYCTGACGGGTAGCCTGTGGG	Epilepsy, X-linked, with variable learning disabilities and behavior disorders, not specified
118203981	NM_148960.2(CLDN19):c.269T>C (p.Leu90Pro)	GCTCCYGGGCTTCGTGGCCATGG	Hypomagnesemia 5, renal, with ocular involvement
137853892	NM 001235.3(SERPINHI):c. $233 \mathrm{~T}>\mathrm{C}$ (p.Leu78Pro)	GTCGCYAGGGCTCGTGTCGCTGG TCGCYAGGGCTCGTGTCGCTGGG	Osteogenesis imperfecta type 10
118204024	NM_000263.3(NAGLU):c. $142 \mathrm{~T}>\mathrm{C}$	GGCCGACYTCTCCGTGTCGGTGG	Mucopolysaccharicosis,MPS-III-B
690016563	NM_005211.3(CSFIR):C. $1745 \mathrm{~T}>\mathrm{C}$ (p.Leu582Pro)	CAACCYGCAGTTTGGTGAGATGG	Hereditary diffuse leukoencephalopathy with spheroids
58380626	NM_000526.4(KRT14):c.1243T>C (p.Tyr 415 His)	CGCCACCYACCGCCGCCIGCTGG, CACCYACCGCCGCCTGCTGGAGG, ACCYACCGCCGCCTGCTGGAGGG	Epidermolysis bullosa herpetiformis, Dowling- Meara

113994151	NM_207346.2(TSEN54):c.277T>C (p . Ser 93 Pro)	TTGAAGYCTCCCGCGGTGAGCGG, AAGYCTCCCGCGGTGAGCGGCGG	Pontocerebellar hypoplasia type 4
113994206	NM_004937.2(CTNS):c.473T>C (n. Leul58Pro)	TGGTCYGAGCTTCGACTTCGTGG	Cystinosis
62516109	$\begin{aligned} & \text { NM_000277.1(PAH):c. } 638 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu213Pro) } \end{aligned}$	CCACTTCYTGAAAAGTACTGTGG	Pheny lketonuria
370011798	NM_001302946.1(TRNTI):c. 668 T>C (p.Ile 223 Thr)	GCAAYTGCAGAAAATGCAAAAGG	Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay
62517167	NM_000277.l(PAH):c.293T>C (p.Leu98Ser)	AAGATCTYGAGGCATGACATTGG	Mild non-PKU hyperphenylalanemia
12021720	NM_001918.3(DBT):c. $1150 \mathrm{G}>\mathrm{A}$ (p. Gly 384 Ser)	GACYCACAGAGCCCAATTTCTGG	Intermediate maple syrup urine disease type 2
104886289	NM_000495.4(COL4A5):c. $4756 \mathrm{~T}>\mathrm{C}$ (p.Cys1586Arg)	TCCCCATYGTCCTCAGGGATGGG	Alport syndrome, X-linked recessive
370471013	NC_012920.1:m.5559A>G	CAACYTACTGAGGGCTTTGAAGG	Leigh disease
121434215	NM_000487.5(ARSA):c. $410 \mathrm{~T}>\mathrm{C}$ (p.Leu137Pro)	GCCTTCCYGCCCCCCCATCAGGG	Metachromatic leukodystrophy, adult type
386134128	NM_000096.3(CP):c. $1123 \mathrm{~T}>\mathrm{C}$ (o. Tvri7.5His)	ACACTACYACATTGCCGCTGAGG	Deficiency of ferroxidase
121434275	$\begin{aligned} & \text { NM_001127328.2(ACADM):c. } 1136 \mathrm{~T}>\mathrm{C} \\ & \text { (p. } \mathrm{Ile} 379 \mathrm{Thr} \text {) } \end{aligned}$	GTGCAGAYACTTGGAGGCAATGG	Medium-chain acyl-coenzyme A dehydrogenase deficiency
121434276	$\begin{gathered} \text { NM_0011273282(ACADM) c. } 742 \mathrm{~T}>\mathrm{C} \\ (\mathrm{p} . \mathrm{Cys} 248 \mathrm{Arg}) \end{gathered}$	CAGCGAYGTTCAGATACTAGAGG	Medium-chain acyl-coenzyme A dehydrogenase deficiency
121434284	NM_002225.3(IVD):c. $134 \mathrm{~T}>\mathrm{C}$ (p.Leu45Pro)	ATGGGCYAAGCGAGGAGCAGAGG	ISOVALERIC ACIDEMIA, TYPE I
121434334	NM_005908.3(MANBA):c. $1513 \mathrm{~T}>\mathrm{C}$ (p.Ser505Pro)	ATTACGYCCAGTCCTACAAATGG, TTACGYCCAGTCCTACAAATGGG, TACGYCCAGTCCTACAAATGGGG	Beta-D-mannosidosis
121434366	NM 000159.3 (GCDH):c. $883 \mathrm{~T}>\mathrm{C}$ (p. Tyr295His)	CGCCCGGYACGGCATCGCGTGGG, GCCCGGYACGGCATCGCGTGGGG	Glutaric aciduria, type 1
60715293	NM_000424.3(KRT5):c. $541 \mathrm{~T}>\mathrm{C}$ (p.Ser181Pro)	GTTTGCCYCCTTCATCGACAAGG	Epidermolysis bullosa herpetiformis, Dowling- Meara
121434409	$\begin{aligned} & \text { NM_001003722.1(GLE1):c.2051T>C } \\ & \text { (p.He684 Thr) } \end{aligned}$	AAGGACAYTCCTGTCCCCAAGGG	Lethal arthrogryposis with anterior horn cell disease
121434434	NM_001287.5(CLCN7):c. $2297 \mathrm{~T}>\mathrm{C}$ (p.Leu766Pro)	GGGCCYGCGGCACCTGGTGGTGG	Osteopetrosis autosomal recessive 4
121434455	NM_000466.2(PEXI)c.1991T>C (p.Leu664Pro)	GATGACCYTGACCTCATTGCTGG	Zellweger syndrome
199422317	NM_001099274.1(TINF2):C. $862 \mathrm{~T}>\mathrm{C}$ (p.Phe288Leu)	CTGYTTCCCTTTAGGAATCTCGG	Aplastic anemia
104895221	NM_001065.3(TNFRSF1A):c.349T>C (p.Cys117Arg)	CTCTTCTYGCACAGTGGACCGGG	TNF receptor-associated periodic fever syndrome (TRAPS)
137854459	NM 000138.4 (FBNI):c. $4987 \mathrm{~T}>\mathrm{C}$ (p.Cys1663Arg)	GGGACAYGTTACAACACCGTTGG	Marfan sy ndrome
387907075	NM 024027.4(COLEC11):c.505T>C (p.Serl69Pro)	CAGCTGYCCTGCCAGGGCCGCGG, AGCTGYCCTGCCAGGGCCGCGGG, GCTGYCCTGCCAGGGCCGCGGGG, CTGYCCTGCCAGGGCCGCGGGGG	Carnevale sy ndrome
1048095	NM $000352.4(\mathrm{ABCC} 8): .674 \mathrm{~T}>\mathrm{C}$ (p.Leu225Pro)	TGCYGTCCAAAGGCACCTACTGG	Permanent neonatal diabetes mellitus
796065347	$\begin{aligned} & \text { NM_019074.3(DLL4):c.1168T>C } \\ & \text { (p.Cys390Arg) } \end{aligned}$	GAAYGTCCCCCCAACTTCACCGG	Adams-Oliver syndrome, ADAMSOLIVER SYNDROME 6
137852347	$\begin{aligned} & \text { NM_000402.4(G6PD):c. } 1054 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr352His) } \end{aligned}$	AGGGY ACCTGGACGACCCCACGG	Anemia, nonspherocytic hemolytic, due to G6PD deficiency
74315327	NM_213653.3(HFE2):c.302T>C (p.Leul01Pro)	GGACCYCGCCTTCCATTCGGCGG	Hemochromatosis type 2A
137852579	NM 000044.3(AR):c. $2033 \mathrm{P}>\mathrm{C}$ (p.Leu678Pro)	GTCCYGGAAGCCATTGAGCCAGG	
137852636	NM_001166107.1(HMGCS2):C.520T>C $\text { (p.Phel } 74 \mathrm{Leu} \text {) }$	СССТСYTCAATGCTGCCAACTGG	mitochondrial 3-hydroxy-3-methylglutaryl- CoA synthase deficiency
137852661	NM_033163.3(FGF8):c.118T>C (p.Phe40Leu)	TTCCCTGYTCCGGGCTGGCCGGG	Kallmann syndrome 6
121912967	NM_005215.3(DCC):c. $503 \mathrm{~T}>\mathrm{C}$ (p.Met168Thr)	AGCCCAYGCCAACAATCCACTGG	
137852806	NM_001039523.2(CHRNA1):c. $901 \mathrm{~T}>\mathrm{C}$ (p.Phe301Leu)	TGTGYTCCTTCTGGTCATCGTGG	Myasthenic syndrome, congenital, fast-channel
137852850	NM_182760.3(SUMF1):c.463T>C (p.Serl55Pro)	GGCGACYCCTTTGTCTTTGAAGG	Multiple sulfatase deficiency

137852886	NM_000158.3(GBEI):c.671T>C (p.Leu224Pro)	AATGTACYACCAAGAATCAAAGG	Glycogen storage disease, type IV, GLYCOGEN STORAGE DISEASE IV, NONPROGRESSIVE HEPATIC
137852911	NM_000419.3(ITGA2B):c.641T>C (p.Leu214Pro)	CTGGTGCYTGGGGCTCCTGGCGG	Glanzmannthrombasthenia
137852948	NM_138694.3(PKHD1):c. $10658 \mathrm{~T}>\mathrm{C}$ (p.Ile3553Thr)	GAGCCCAYTGAAATACGCTCAGG	Polycystic kidney disease, infantile type
137852964	NM_024960.4(PANK2):c. $178 \mathrm{~T}>\mathrm{C}$ (p. Ser60Pro)	ATTGACYCAGTCGGATTCAATGG	
137853020	NM_006899.3(IDH3B):c. $395 \mathrm{~T}>\mathrm{C}$ (p. Leu132Pro)	TGCGGCYGAGGTAGGTGGTCTGG, GCGGCYGAGGTAGGTGGTCTGGG	Retinitis pigmentosa 46
137853249	NM_033500.2(HKI):c. $1550 \mathrm{~T}>\mathrm{C}$ (p.Leu517Ser)	GACTICTYGGCCCTGGATCTTGG, TTCTYGGCCCTGGATCTTGGAGG	Hemolytic anemia due to hexokinase deficiency

137853270	NM_000444.5(PHEX):c. $1664 \mathrm{~T}>\mathrm{C}$ (p.Leu555Pro)	AGCYCCAGAAGCCTTTCTTTTGG	Familial X-linked hypophosphatemic vitamin D refractory rickets
137853325	$\begin{gathered} \text { NM_003639.4(IKBKG):c. } 1249 \mathrm{~T}>\mathrm{C} \\ \text { (p.Cys417Arg) } \end{gathered}$	TGGAGYGCATTGAGTAGGGCCGG	Hypohidrotic ectodermal dysplasia with immune deficiency, Hyper-IgM immunodeficiency, Xlinked, with hypohidrotic ectodermal dysplasia
28932769	NM_002055.4(GFAP):c. $1055 \mathrm{~T}>\mathrm{C}$ (p.Leu352Pro)	GGACCYGCTCAATGTCAAGCTGG	Alexander disease
397507439	NM_002769.4(PRSS1):c. $116 \mathrm{~T}>\mathrm{C}$ (p.Val39Ala)	TACCAGGYGTCCCTGAATTCTGG	Hereditary pancreatitis
387906446	$\begin{aligned} & \text { NM_000132.3(F8):c. } 1729 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser577Pro) } \end{aligned}$	AAAGAAYCTGTAGATCAAAGAGG	Hereditary factor VIII deficiency disease
387906482	NM_000133.3(F9):c.1031T>C (p.Ile 344 Thr)	ACGAACAYCTTCCTCAAATTTGG	Hereditary factor LX deficiency disease
387906508	NM_000131.4(F7):c.983T>C (p.Phe328Ser)	GACGTYCTCTGAGAGGACGCTGG	Factor VII deficiency
387906532	NM_001040113.1(MYH11):c.3791T>C (p.Leul264Pro)	GAAGCYGGAGGCGCAGGTGCAGG	Aortic aneurysm, familial thoracic 4
387906658	$\underset{\text { NM_002465.3(MYBPC1):c. } 2566 \mathrm{~T}>\mathrm{C}}{\text { (p.Tyr856His) }}$	CAAACCYATATCCGCAGAGTTGG	Distal arthrogryposis type 1B
387906701	NM_003491.3(NAA10):c. $109 \mathrm{~T}>\mathrm{C}$	TGGCCTTYCCTGGCCCCAGGTGG, gGCCTTYCCTGGCCCCAGGTGGG	N -terminal acetyltransferase deficiency
387906717	NM_000377.2(WAS):c. $881 \mathrm{~T}>\mathrm{C}$ (p.Ile294Thr)	GACTTCAYTGAGGACCAGGGTGG, ACTTCAYTGAGGACCAGGGTGGG	Severe congenital neutropenia X-linked
387906809	NM_000287.3(PEX6):c. 1601T>C (p.Leu534Pro)	CTTCYGGGCCGGGACCGTGATGG, TTCYGGGCCGGGACCGTGATGGG	Peroxisome biogenesis disorder 4B
387906965	NM_024513.3(FYCO1):c.4127T>C (p.Leul376Pro)	CAGCCYGATCCCCATCACTGTGG	Cataract, autosomal recessive congenital2
387906967	$\underset{\text { (p.Leu22Pro) }}{\text { NM_06147.3(IRF6):c.65T>C }}$	GCCYCTACCCTGGGCTCATCTGG	Van der Woude syndrome, Popliteal pterygium sy ndrome
387906982	NM_025132.3(WDR19):c.20T>C (p.Leu7Pro)	TCTCACYGCTAGAAAAGACTTGG	Asphy xiating thoracic dystrophy 5
387907072	NM_032446.2(MEGF10):c.2320T>C (p.Cys774Arg)	GGGCAGYGTACTTGCCGCACTGG	Myopathy, areflexia, respiratory distress, and dysphagia, early-onset, Myopathy, areflexia, respiratory distress, and dysphagia, earlyonset, mild variant
137854499	NM $005502.3(\mathrm{ABCAI}): \mathrm{c} .6026 \mathrm{~T}>\mathrm{C}$ (p.Phe2009Ser)	GAGTYCTTTGCCCTTTTGAGAGG	Familial hypoalphalipoproteinemia
387907117	NM_000196.3(HSD11B2):c.1012T>C (p. Tyr338His)	CCGCCGCYATTACCCCGGCCAGG, CGCCGCYATTACCCCGGCCAGGG	Apparent mineralocorticoid excess
387907170	NM 004453.3(ETFDH) c. $1130 \mathrm{~T}>\mathrm{C}$ (p.Leu377Pro)	CCAAAACYCACCTTTCCTGGTGG	
387907205	NM_033360.3(KRAS):c. $211 \mathrm{~T}>\mathrm{C}$ (p.Tyr71His)	GGACCAGYACATGAGGACTGGGG, CCAGYACATGAGGACTGGGGAGG, CAGYACATGAGGACTGGGGAGGG	Cardiofaciocutaneous syndrome 2
387907240	NM_024110.4(CARD14):c.467T>C (p.Leu156Pro)	CAGCAGCYGCAGGAGCACCTGGG	Pityriasis rubra pilaris
387907282	NM_152296.4(ATPIA3):c. $2431 \mathrm{~T}>\mathrm{C}$ (p.Ser811Pro)	TGCCATCYCACTGGCGTACGAGG	Alternating hemiplegia of childhood 2
387907361	NM_005120.2(MED12):c.3493 $>$ C (p.Ser165Pro)	AGGACYCTGAGCCAGGGGCCCGG	Ohdo syndrome, X-linked
28933970	NM_006194.3(PAX9):c.62T>C (p.Leu21Pro)	GGCCGCYGCCCAACGCCATCCGG	Tooth agenesis, selective, 3
137854472	$\begin{aligned} & \text { NM_000138.4(FBN1):c. } 3128 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys1043Arg) } \end{aligned}$	TGCACYTGCCGTGGGTGCAGAGG	
727504261	NM_000257.3(MYH7):c. $2708 \mathrm{~A}>\mathrm{G}$ (p.Glu903Gly)	AGCGCYCCTCAGCATCTGCCAGG	Cardiomyopathy, not specified
81002853	$\underset{2 \mathrm{~A} \triangle \mathrm{C}}{\mathrm{NM}} \mathbf{0 0 0 0 5 9 . 3 \text { (BRCA2):c.476- }}$ $2 \mathrm{~A}>\overline{\mathrm{G}}$	ACCACYGGGGGTAAAAAAAGGGG, TACCACYGGGGGTAAAAAAAGGG	Familial cancer of breast, Breast-ovarian cancer, familial 2 , Hereditary cancerpredisposing syndrome

104894861	$\begin{aligned} & \text { NM_000202.6(IDS):c. } 404 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys135Arg) } \end{aligned}$	AAAGACTYTTCCCACCGACATGG	Mucopolysaccharidosis, MPS-II
104894874	NM 000266.3(NDP):c. $125 \mathrm{~A}>\mathrm{G}$ (p.His42Arg)	TGGYGCCTCATGCAGCGTCGAGG	
191205969	$\begin{aligned} & \text { NM_002420.5(TRPM1);c. } 296 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu99Pro) } \end{aligned}$	AAGCYCTTAATATCTGTGCATGG	Congenital stationary night blindness, type 1C
794727073	$\begin{aligned} & \text { NM 019109.4(ALGI):c. } 1188- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	TAAACYGCAGAGAGAACCAAGGG, GTAAACYGCAGAGAGAACCAAG G	Congenital disorder of glycosylation type 1K
281875236	NM_001004334.3(GPR179):c.659A>G (p.Tyr220Cys)	CCCACAYATCCATCTGCCTGCGG	Congenital stationary night blindness, type IE
28939094	$\begin{aligned} & \text { NM_015915.4(ATLI):c. } 1222 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 408 \mathrm{Val} \text {) } \end{aligned}$	CACCCAYCTTCTTCACCCCTCGG	Spastic paraplegia 3
281875324	NM_005359.5(SMAD4):c. $989 \mathrm{~A}>\mathrm{G}$ (p.Glu330Gly)	ATCCATTYCAAAGTAAGCAATGG	Juvenile polyposis sy ndrome, Hereditary cancer-predisposingsy ndrome
77173848	NM 000037.3(ANK1):c.-	GGGCCYGGCCCGCACGTCACAGG	Spherocytosis, type 1, autosomal recessive
150181226	NM_001159772.1(CANT1) $\mathrm{c} .671 \mathrm{~T}>\mathrm{C}$ (p.Leu224Pro)	CGTCYGTACGTGGGCGGCCTGGG, GCGTCYGTACGTGGGCGGCCTGG	Desbuquois syndrome
397514253	$\begin{aligned} & \text { NM_000041.3(APOE):c. } 237- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	CGCCCYGCGGCCGAGAGGGCGGG, GCGCCCYGCGGCCGAGAGGGCGG	Familial type 3 hyperlipoproteinemia
397514348	NM $000060.3(\mathrm{BTD}): \mathrm{c} .278 \mathrm{~A}>\mathrm{G}$ (p.Tyr93Cys)	GTTCAYAGATGTCAAGGTTCTGG	Biotinidase deficiency
397514415	$\begin{aligned} & \text { NM } 000060.3(\mathrm{BTD}) \mathrm{c} .1313 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr} 438 \mathrm{Cys}) \end{aligned}$	GGCAYACAGCTCTTTGGATAAGG	Biotinidase deficiency
397514501	$\begin{aligned} & \text { NM 007171.3(POMT1):c.430A }>\mathrm{G} \\ & \text { (p.Asnl44Asp) } \end{aligned}$	GAGCATYCTCTGTTTCAAAGAGG	Limb-girdle muscular dystrophy-
370382601	NM_174917.4(ACSF3): $\mathrm{c} .1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	GGCAGCAYTGCACTGACAGGCGG	not provided
72554332	NM 000531.5(OTC):c. $238 \mathrm{~A}>\mathrm{G}$ (p.Lys80Glu)	AAGGACTYCCCTTGCAATAAAGG	Ornithine carbamoyltransferase deficiency
397514599	$\begin{aligned} & \text { NM_033109.4(PNPT1):c.1424A> } \\ & \text { G } \end{aligned}$	GACTYCAGATGTAACTCTTATGG	Deafness, autosomal recessive 70

	(p.Glu475Gly)		
397514650	$\begin{aligned} & \text { NM_000108.4(DLD):c. } 1444 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg482Gly) } \end{aligned}$	GACTCYAGCTATATCTTCACAGG	Maple syrup urine disease, type 3
397514675	$\begin{aligned} & \text { NM_003156.3(STIMl):c. } 251 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp84Gly) } \end{aligned}$	TTCCACAYCCACATCACCATTGG	Myopathy with tubular aggregates
794728378	NM_000238.3(KCNH2):c.1913A>G (p.Lys638Arg)	ATCYTCTCTGAGTTGGTGTTGGG, GATCYTCTCTGAGTTGGTGTTGG	Cardiac arrhythmia
397514711	NM_002163.2(IRF8):c. $238 \mathrm{~A}>\mathrm{G}$ (p.Thr80Ala)	AACCTCGYCTTCCAAGTGGCTGG	Autosomal dominant CD11C $+/ \mathrm{CDIC}+$ dendritic cell deficiency
397514729	$\begin{aligned} & \text { NM_000388.3(CASR):c.85A>G } \\ & \text { (p.Lys29Glu) } \end{aligned}$	CCCCCTYCTTTTGGGCTCGCTGG	Hypocalcemia, autosomal dominant 1, with barter sy ndrome
397514743	$\mathrm{NM} _022114.3(\mathrm{PRDM16}): \mathrm{c} .2447 \mathrm{~A}>\mathrm{G}$ (p.Asn816Ser)	GCCGCCGYTTTGGCTGGCACGGG	Left ventricular noncompaction 8
397514757	$\begin{aligned} & \text { NM_005689.2(ABCB6):c.508A }>\mathrm{G} \\ & \text { (p.Ser170Gly) } \end{aligned}$	TGGGCYGTTCCAAGACACCAGGG, GTGGGCYGTTCCAAGACACCAGG	Dyschromatosis universalis hereditaria 3
28940313	$\begin{aligned} & \mathrm{NM} 152443.2(\mathrm{RDH1} 2): \mathrm{c} .677 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ty } 226 \mathrm{Cys} \text {) } \end{aligned}$	CACTGCGYAGGTGGTGACCCCGG	Leber congenital amaurosis 13
794728538	NM_000218.2(KCNQ1):c.1787A>G (p.Glu596Gly)	GTCTYCTACTCGGTTCAGGCGGG, TGTCTYCTACTCGGTTCAGGCGG	Cardiac arrhythmia
794728569	NM $000218.2(\mathrm{KCNQ} 1) \mathrm{c} .605 \mathrm{~A}>\mathrm{G}$ (p.Asp202Gly)	AGGYCTGTGGAGTGCAGGAGAGG	Cardiac arrhythmia
794728573	NM_000218.2(KCNQ1):c. $1515-$ $2 A>G$	GCCYGCAGTGGAGAGAGGAGAGG	Cardiac arrhythmia
370874727	$\begin{aligned} & \text { NM } 003494.3 \text { (DYSF):c. } 3349- \\ & 2 A>G \end{aligned}$	CCGCCCYGGAGACACGAAGCTGG	Limb-girdle muscular dystrophy, type 2B
794728859	$\begin{aligned} & \text { NM_198056.2(SCN5A):c. } 2788- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	ACCYGTCGAGATAATGGGTCAGG	not provided
794728887	NM_198056.2(SCN5A):c. $4462 \mathrm{~A}>\mathrm{G}$ (p.Thrl488Ala)	CCTCTGYCATGAAGATGTCCTGG	not provided
28940878	NM_000372.4(TYR):c. $125 \mathrm{~A}>\mathrm{G}$ (p.Asp42Gly)	CTCCTGYCCCCGCTCCACGGTGG	Tyrosinase-negative oculocutaneous albinism
397515420	NM_172107.2(KCNQ2):c.1636A>G (p.Met546Val)	GCAYGACACTGCAGGGGGGTGGG, CGCAYGACACTGCAGGGGGGTGG, AACCGCAYGACACTGCAGGGGGG	Early infantile epileptic encephalopathy 7

397515428	NM_001410.2(MEGF8):c. $7099 \mathrm{~A}>\mathrm{G}$ (p.Ser2367Gly)	GACYCCCGTGAAATGATTCCCGG	Carpenter syndrome 2
143601447	NM_201631.3(TGM5):c. 122T>C (p.Leu4 1 Pro)	TCAACCYCACCCTGTACTTCAGG	Peeling skin syndrome, acral type
397515519	NM_000207.2(INS):c.*59A>G	GGGCYTTATTCCATCTCTCTCGG	Permanent neonatal diabetes mellitus
397515523	NM 000370.3(TTPA):c. $191 \mathrm{~A}>\mathrm{G}$ (p.Asp64Gly)	CAGGYCCAGATCGAAATCCCGGG, CCAGGYCCAGATCGAAATCCCGG	Ataxia with vitamin E deficiency
397515891	NM_000256.3(MYBPC3):c.1224- $2 \mathrm{~A}>\overline{\mathrm{G}}$	TACTTGCYGTAGAACAGAAGGGG	Familial hypertrophic cardiomyopathy 4, Cardiomy opathy
397516082	NM 1000256.3 (MYBPC3):c. 927 - $2 \mathrm{~A} \subset \mathrm{G}$	GTCCCYGTGTCCCGCAGTCTAGG	Familial hypertrophic cardiomyopathy 4, Cardiomy opathy
397516138	NM_000257.3(MYH7)c. $2206 \mathrm{~A}>\mathrm{G}$ (p.Ile736Val) (p.Ile736Val)	TATCAAYGAACTGTCCCTCAGGG, CTATCAAYGAACTGTCCCTCAGG	Familial hypertrophic cardiomyopathy 1, Cardiomyopathy, not specified
1154510	NM_002150.2(HPD):c. $97 \mathrm{G}>\mathrm{A}$ (p. Āa ${ }^{3} 3 \mathrm{Thr}$)	ATGACGYGGCCTGAATCACAGGG, AATGACGYGGCCTGAATCACAGG	4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency
397516330	$\begin{aligned} & \mathrm{NM}=000260.3(\mathrm{MYO} 7 \mathrm{~A}): \mathrm{c} .6439- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	ATATCCYGGGGGAGCAGAAAGGG, GATATCCYGGGGGAGCAGAAAGG	Usher syndrome, type 1
72556271	NM_000531.5(OTC):c. $482 \mathrm{~A}>\mathrm{G}$ (p.Asnl61Ser)	CAGCCCAYTGATAATTGGGATGG	not provided
606231260	$\begin{aligned} & \mathrm{NM}=023073.3(\mathrm{C} 50 \mathrm{rf42}): \mathrm{c} .3290- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	ATCYATCAAATACAAAAATTTGG	Orofaciodigital syndrome 6
587777521	NM 004817.3(TJP2):c.1992- $2 \mathrm{~A}>\overline{\mathrm{G}}$	CAGCTCYGAGAAGAAACCACGGG, TCAGCTCYGAGAAGAAACCACGG	Progressive familial intrahepatic cholestasis 4
730880846	$\begin{aligned} & \text { NM_000257.3(MYH7):c.617A>G } \\ & \text { (p.Lys206Arg) } \end{aligned}$	CTTCYTGCTGCGGTCCCCAATGG	Cardiomyopathy
397517978	NM_206933.2(USH2A):c.12067- $2 \mathrm{~A}>\overline{\mathrm{G}}$	TTCCCYGTAAGAAAATTAACAGG	Usher syndrome, type 2A, Retinitis pigmentosa 39
606231409	NM_000216.2(ANOSI):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	GCACCAYGGCTGCGGGTCGAGGG, GGCACCAYGGCTGCGGGTCGAGG	Kallmann syndrome 1
80356546	NM_003334.3(UBAI):c. $1639 \mathrm{~A}>\mathrm{G}$ (p.Ser547Gly)	TGGCYTGTCACCCGGATATGTGG	Arthrogryposis multiplex congenita, distal, X - linked
80356584	NM_194248.2(OTOF): $\mathbf{c} .766-$ $2 A>G$	GACCYGCAGGCAGGAGAAGGGGG, TGACCYGCAGGCAGGAGAAGGGG, CTGACCYGCAGGCAGGAGAAGGG, GCTGACCYGCAGGCAGGAGAAGG	Deafness, autosomal recessive 9
730880930	NM_000257.3(MYH7):c. $1615 \mathrm{~A}>\mathrm{G}$ (p.Met539Val)	GGAACAYGCACTCCTCTTCCAGG	Cardiomyopathy
118203947	NM_013319.2(UBIADI):c. $355 \mathrm{~A}>\mathrm{G}$ (p.Arg119Gly)	TCCYGTCATCACTCTITTTGTGG	Schnyder crystalline corneal dystrophy
60171927	NM_000526.4(KRT14):c. $368 \mathrm{~A}>\mathrm{G}$ (p.Asn123Ser) (p.Asn123Ser)	GCGGTCAYTGAGGTTCTGCATGG	Epidermolysis bullosa herpetiformis, Dowling- Meara
199422248	$\begin{aligned} & \text { NM_001363.4(DKCl):c.941A>G } \\ & \text { (p.Lys314Arg) } \end{aligned}$	AATCYTGGCCCCATAGCAGATGG	Dyskeratosis congenita X -linked

72558467	$\begin{aligned} & \text { NM_000531.5(OTC):C.929A>G } \\ & \text { (p.Glu310Gly) } \end{aligned}$	TCCACTYCTTCTGGCTTICTGGG, ATCCACTYCTTCTGGCTTTCTGG	not provided
72558478	$\begin{aligned} & \text { NM_000531.5(OTC):c.988A>G } \\ & \text { (p.Arg330Gly) } \end{aligned}$	ACTITCYGTTITCTGCCTCTGGG, CACTTTCYGTTTTCTGCCTCTGG	not provided
118204455	NM 000505.3(F12):c. $158 \mathrm{~A}>\mathrm{G}$ (p.Tyr53Cys)	GGTGGYACTGGAAGGGGAAGTGG	
80357477	NM_007294.3(BRCA1):c. $5453 \mathrm{~A}>\mathrm{G}$ (p.Asp1818Gly)	TTGYCCTCTGTCCAGGCATCTGG	Familial cancer of breast, B reast-ovarian cancer, familial 1
121907908	NM_024426.4(WT1):c.1021A>G (p.Ser341Gly)	CGCYCTCGTACCCTGTGCTGTGG	Mesothelioma
121907926	NM_000280.4(PAX6):c. $1171 \mathrm{~A}>\mathrm{G}$ (p.Thr391Ala)	GTGGYGCCCGAGGTGCCCATTGG	Optic nerve aplasia, bilateral
121908023	$\begin{aligned} & \text { NM_024740.2(ALG9):c.860A>G } \\ & \text { (p.Tyr287Cys) } \end{aligned}$	TTAYACAAAACAATGTTGAGTGG	Congenital disorder of glycosylation type 1L
121908148	NM_001243133.1(NLRP3):c. $1880 \mathrm{~A}>\mathrm{G}$ (p.Glu627Gly)	ACAATYCCAGCTGGCTGGGCTGG	Familial cold urticaria
121908166	NM_006492.2(ALX3):c.608A>G (p.Asn203Ser)	CGGYTCTGGAACCAGACCTGGGG, GCGGYTCTGGAACCAGACCTGGG, TGCGGYTCTGGAACCAGACCTGG	Frontonasal dysplasia 1

121908184	$\underset{\text { (p.Metl Val) }}{\underset{\text { NM }}{ } \text { (SEPN1):c. } 1 \mathrm{~A}>\mathrm{G}}$	CCCAYGGCTGCGGCTGGCGGCGG, CGGCCCAYGGCTGCGGCTGGCGG	Eichsfeld type congenital muscular dystrophy
121908258	$\begin{gathered} \text { NM_130468.3(CHST14):c.878A }>\mathrm{G} \\ \text { (p.Tyr293Cys) } \end{gathered}$	AAGTCAYAGTGCACGGCACAAGG	Ehlers-Danlos syndrome, musculocontractural type
121908383	$\begin{gathered} \text { NM_001128425.1(MUTYH) c. } 1241 \mathrm{~A}>\mathrm{G} \\ \text { (p.GIn414Arg) } \end{gathered}$	AAGCYGCTCTGAGGGCTCCCAGG	Neoplasm of stomach
121908580	NM 004328.4(BCSIL):c. $148 \mathrm{~A}>\mathrm{G}$ (p.Thr50Ala)	GTGYGATCATGTAATGGCGCCGG	Mitochondrial complex III deficiency
121908584	$\begin{aligned} & \text { NM_016417.2(GLRX5):c.294A>G } \\ & \text { (p.Gln98=) } \end{aligned}$	CCTGACCYTGTCGGAGCTCCGGG	Anemia, sideroblastic, pyridoxine-refractory, autosomal recessive
121908635	$\begin{aligned} & \text { NM 022817.2(PER2) c. 1984A>G } \\ & \text { (p.Ser662Gly) } \end{aligned}$	GCCACACYCTCTGCCTTGCCCGG	Advanced sleep phase syndrome, familial
121908655	$\begin{gathered} \mathrm{NM}=003839.3 \text { (TNFRSFI1A) } \mathrm{c} .508 \mathrm{~A}>\mathrm{G} \\ \text { (p.Arg170Gly) } \end{gathered}$	GGGTCYGCATTTGTCCGTGGAGG	Osteopetrosis autosomal recessive 7
29001653	$\begin{aligned} & \text { NM_000539.3(RHO):c.886A>G } \\ & \text { (pLys296Glu) } \end{aligned}$	CGCTCTYGGCAAAGAACGCTGGG, GCGCTCTYGGCAAAGAACGCTGG	Retinitis pigmentosa 4
56307355	$\begin{gathered} \text { NM_006502.2(POLH)c. } 1603 \mathrm{~A}>\mathrm{G} \\ \text { (p.Lys } 535 \mathrm{Glu}) \end{gathered}$	AGACTTTYCTGCTTAAAGAAGGG	Xeroderma pigmentosum, variant type
121908919	$\begin{gathered} \text { NM_002977.3(SCN9A):C. } 1964 \mathrm{~A}>\mathrm{G} \\ \text { (p.Lys655AAg) } \end{gathered}$	CCTTTTCYTGTGTATTTGATTGG	Generalized epilepsy with febrile seizures plus, type 7 , not specified
121908939	NM 006892.3(DNMT3B):c. $2450 \mathrm{~A}>\mathrm{G}$ (p.Asp817Gly)	GACACGYCTGTGTAGTGCACAGG	Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency
121909088	$\mathrm{NM} 001005360.2(\mathrm{DNM} 2): \mathrm{c} .1684 \mathrm{~A}>\mathrm{G}$ (p.Lys562Glu)	AСТҮСТТСТСТТТСТССТGAGGG, TACTYСТТСТСТTTСТССTGAGG	Charcot-Marie-Tooth disease, dominant intermediate b, with neutropenia
120074112	$\begin{aligned} & \text { NM_000483.4(APOC2):c. } 1 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Metl Val) } \end{aligned}$	GCCCAYAGTGTCCAGAGACCTGG	Apolipoprotein C2 deficiency
121909239	NM_000314.6(PTEN):c.755A>G (p.Asp252Gly)	ATAYCACCACACACAGGTAACGG	Macrocephaly/autismsyndrome
121909251	$\begin{aligned} & \text { NM_198217.2(ING1):c.515A>G } \\ & \text { (p.Asn172Ser) } \end{aligned}$	TGGYTGCACAGACAGTACGTGGG, CTGGYTGCACAGACAGTACGTGG	Squamous cell carcinoma of the head and neck
121909396	NM_001174089.1(SLC4A11):c. $2518 \mathrm{~A}>\mathrm{G}$ (p.Met840Val)	GATCAYCTTCATGTAGGGCAGGG, AGATCAYCTTCATGTAGGGCAGG	Corneal dystrophy and perceptive deafness
121909533	NM 000034.3(ALDOA): \mathbf{c}.386A>G (p.Asp129Gly)	CCAYCCAACCCTAAGAGAAGAGG	HNSHA due to aldolase A deficiency
128627255	NM_004006.2(DMD):c.835A>G (p.Thr279Ala)	TGACCGYGATCTGCAGAGAAGGG, CTGACCGYGATCTGCAGAGAAGG	Dilated cardiomyopathy 3B
116929575	NM_001085.4(SERPINA3):c. $1240 \mathrm{~A}>\mathrm{G}$ (p.Met414Val)	GCTCAYGAAGAAGATGTTCIGGG, TGCTCAYGAAGAAGATGTTCTGG	
61748392	$\begin{aligned} & \text { NM_004992.3(MECP2)c. } 410 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu137Gly) } \end{aligned}$	CAACYCCACTTTAGAGCGAAAGG	Mental retardation, X-linked, syndromic 13
61748906	NM_001005741.2(GBA):c. $667 \mathrm{~T}>\mathrm{C}$ (p.Trp223Arg)	CCCACTYGGCTCAAGACCAATGG	Gaucher disease, type 1
199473024	NM_000238.3(KCNH2):c. $3118 \mathrm{~A}>\mathrm{G}$ (p.Ser1040Gly)	CTGCYCTCCACGTCGCCCCGGGG, CCTGCYCTCCACGTCGCCCCGGG GCCTGCYCTCCACGTCGCCCCGG	Sudden infant death syndrome
794728365	NM_000238.3(KCNH2):c.1129-	GGACCYGCACCCGGGGAAGGCGG	Cardiac arrhythmia
72556293	NM_000531.5(OTC):c. $548 \mathrm{~A}>\mathrm{G}$ (p. Tyrl83Cys)	AGAGCTAYAGTGTTCCTAAAAGG	not provided
111033244	NM_000441.1(SLC26A4):c. $1151 \mathrm{~A}>\mathrm{G}$ (p.Glu384Gly)	TGAATYCCTAAGGAAGAGACTGG	Pendred sy ndrome, Enlarged vestibular aqueduct syndrome
111033415	NM_000260.3(MYO7A):c.1344- $2 \mathrm{~A}>\overline{\mathrm{G}}$	AGCYGCAGGGGCACAGGGATGGG. AAGCYGCAGGGGCACAGGGATGG	Usher syndrome, type I
121912439	NM_000454.4(SODI):c.302A>G (p. Glu101Gly)	AGAATCTYCAATAGACACATCGG	Amyotrophic lateral sclerosis type 1
111033567	NM 002769.4(PRSS1):c.68A>G (p.Lys23Arg)	ATCYTGTCATCATCATCAAAGGG, GATCYTGTCATCATCATCAAAG G	Hereditary pancreatitis
121912565	NM 000901.4(NR3C2):c. $2327 \mathrm{~A}>\mathrm{G}$ (p. $\mathrm{G} \ln 776 \mathrm{Arg}$)	TCATCYGTTTGCCTGCTAAGCGG	Pseudohypoaldosteronism type 1 autosomal dominant

121912574	$\begin{aligned} & \text { NM_000901.4(NR3C2):c.2915A>G } \\ & \text { (p.Glu972Gly) } \end{aligned}$	CCGACYCCACCTTGGGCAGCTGG	Pseudohypoaldosteronism type 1 autosomal dominant
121912589	$\begin{aligned} & \text { NM_001173464.1(KIF 21A):c. } 2839 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met947Val) } \end{aligned}$	ATTCAYATCTGCCTCCATGTTGG	Fibrosis of extraocular muscles, congenital, 1
111033661	$\begin{aligned} & \text { NM_000155.3(GALT):c. } 253- \\ & 2 A>G \end{aligned}$	ATTCACCYACCGACAAGGATAGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase
111033669	$\begin{aligned} & \text { NM_ } 000155.3 \text { (GALT):c. } 290 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn97Ser) } \end{aligned}$	GAAGTCGYTGTCAAACAGGAAGG	Deficiency of UDPglucose-he xose-1-phosphate uridylyltransferase

111033682	$\begin{aligned} & \text { NM_000155.3(GALT):c. } 379 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys127Glu) } \end{aligned}$	TGACCTYACTGGGTGGTGACGGG, ATGACCTYACTGGGTGGTGACGG	Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase
111033786	NM_000155.3(GALT):c.950A>G (p. Gln 317 Arg)	CAGCYGCCAATGGTTCCAGTTGG	Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase
121912765	$\begin{aligned} & \text { NM_001202.3(BMP4):c. } 278 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu93Gly) } \end{aligned}$	CCTCCYCCCCAGACTGAAGCCGG	Microphthalmia syndromic 6
121912856	$\begin{gathered} \text { NM_000094.3(COL7A1):c.425A>G } \\ \text { (pysI42Arg) } \end{gathered}$	CACCYTGGGGACACCAGGTCGGG, TCACCYTGGGGACACCAGGTCGG	Epidermolysis bullosa dystrophica inversa, autosomal recessive
199474715	$\begin{aligned} & \text { NM_152263.3(TPM3):c.505A>G } \\ & \text { (p.Lys169Glu) } \end{aligned}$	CCAACTYACGAGCCACCTACAGG	Congenital myopathy with fiber type disproportion
199474718	NM_152263.3(TPM3):c.733A $>\mathrm{G}$ (p.Arg245Gly)	ATCYCTCAGCAAACTCAGCACGG	Congenital myopathy with fiber type disproportion
121912895	NM_001844.4(COL2A1):c.2974A>G (p.Arg992Gly)	CCTCYCTCACCACGTTGCCCAGG	Spondy loepimetaphyseal dysplasia Strudwick type
121913074	NM_000129.3(Fl3A1):c.851A>G (p. Tyr284Cys)	ATAGGCAYAGATATTGTCCCAGG	Factor xiii, a subunit, deficiency of
121913145	NM 000208.2 (INSR):c. $707 \mathrm{~A}>\mathrm{G}$ (p.His 236 Arg)	GCTGYGGCAACAGAGGCCTTCGG	Leprechaunismsyndrome
312262745	NM 025137.3 (SPG11).c. $2608 \mathrm{~A}>\mathrm{G}$ (p.Ile870Val)	ACTTAYCCTGGGGAGAAGGATGG	Spastic paraplegia 11, autosomal recessive
121913682	$\begin{aligned} & \text { NM_000222.2(KIT):c. } 2459 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp820Gly) } \end{aligned}$	AGAAYCATTCTTGATGTCTCTGG	Mast cell disease, systemic
587776757	$\underset{\mathrm{G}}{\mathrm{NM}} \mathbf{- 0 0 0 1 5 1 . 3 (\mathrm { G } 6 \mathrm { PC }) : \mathrm { c } . 2 3 0 + 4 \mathrm { A } >}$	GTTCYTACCACTTAAAGACGAGG	Glycogen storage disease type 1A
61752063	NM_000330.3(RSI):c. $286 \mathrm{~T}>\mathrm{C}$ (p.Trp96Arg)	TTCTTCGYGGACTGCAAACAAGG	Juvenile retinoschisis
367543065	$\begin{aligned} & \mathrm{NM}-024549.5(\mathrm{TCTN}): \mathrm{c} .221- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	AGCAACYGCAGAAAAAAGAGGGG, CAGCAACYGCAGAAAAAAGAGG G	Joubert syndrome 13
5030773	NM_000894.2(LHB):c. $221 \mathrm{~A}>\mathrm{G}$ (p. Gln 74 Arg)	CCACCYGAGGCAGGGGCGGCAGG	Isolated lutropin deficiency
199476092	NM_000264.3(PTCHI):c. $2479 \mathrm{~A}>\mathrm{G}$ (p.Ser827Gly)	CGTTACYGAAACTCCTGTGTAGG	Gorlin syndrome, Holoprosencephaly 7, not specified
398123158	$\begin{aligned} & \text { NM_000117.2(EMD):c. } 450- \\ & 2 \mathrm{~A} \subset \mathrm{G} \end{aligned}$	CGTTCCCYGAGGCAAAAGAGGGG	not provided
199476103	RMRP:I.71A>G	ACCTYCCCCCTAGGCGGAAAGGGG, GACTTYCCCCTAGGCGGAAAGGG, GGACTTYCCCCTAGGCGGAAAGG	Metaphyseal chondrodysplasia, McKusick type, Metaphyseal dysplasia without hypotrichosis
5030856	NM_000277.1(PAH):c. $1169 \mathrm{~A}>\mathrm{G}$ (pGlu390Gly)	CTCYCTGCCACGTAATACAGGGG, ACTCYCTGCCACGTAATACAGGG, AACTCYCTGCCACGTAATACAGG	Pheny lketonuria, $\underset{\text { pkup }}{\text { Hyperpheny lalanine mia, non- }}$
5030860	$\begin{aligned} & \text { NM_000277.1(PAH):c. } 1241 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr414Cys) } \end{aligned}$	GGGTCGYAGCGAACTGAGAAGGG, TGGGTCGYAGCGAACTGAGAAGG	Phenylketonuria, Hyperphenylalaninemia, nonpku
587777055	NM 020988.2 (GNAOI):C. $521 \mathrm{~A}>\mathrm{G}$ (p.Asp174Gly)	GGATGYCCTGCTCGGTGGGCTGG	Early infantile epileptic encephalopathy 17
587777223	NM 024301.4(FKRP):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	CCGCAYGGGGCCGAAGTCTGGGG, GCCGCAYGGGGCCGAAGTCTGGG, AGCCGCAYGGGGCCGAAGTCTGG	Congenital muscular dystrophydystroglycanopathy with brain and eye anomalies type A5
587777479	$\underset{\text { NM_003108.3(SOX11):c.347A }}{\text { (p.Tyr116Cys) }}>\mathrm{G}$	GTACTTGYAGTCGGGGTAGTCGG	Mental retardation, autosomal dominant 27
587777496	NM_020435.3(GJC2):c.-170A>G	TTGYTCCCCCCTCGGCCTCAGGG, ATTGYTCCCCCCTCGGCCTCAGG	Leukodystrophy, hypomyelinating, 2
587777507	NM 022552.4 (DNMT3A):C. $1943 \mathrm{~T}>\mathrm{C}$ (p.Leu648Pro)	CTCCYGGTGCTGAAGGACTIGGG, GCTCCYGGTGCTGAAGGACTTGG	Tatton-Brown-rahman sy ndrome
587777557	NM_018400.3(SCN3B):c. $482 \mathrm{~T}>\mathrm{C}$ (p.Met161Thr)	AATCAYGATGTACATCCTTCTGG	Atrial fibrillation, familial, 16
587777569	NM 001030001.2 (RPS29):c. $149 \mathrm{~T}>\mathrm{C}$ (p.Ile50Thr)	GATAYCGGTTTCATTAAGGTAGG	Diamond-Blackfan anemia 13
587777657	$\begin{gathered} \text { NM_1 }_{153334.6(S C A R F 2) \text { c.190T>C }} \text { (p.Cys64Arg) } \end{gathered}$	CCACGYGCTGCGCTGGCTGGAGG	Marden Walker like syndrome
587777689	$\begin{aligned} & \mathrm{NM} 1005726.5(\mathrm{TSFM}): \mathrm{C} .57+4 \mathrm{~A}> \\ & \mathrm{G} \end{aligned}$	ACTTCYCACCGGGTAGCTCCCGG	Combined oxidative phosphory lation deficiency 3
796052005	NM 000255.3(MUT):c.329A>G (p.Tyrl10Cys)	GCAYACTGGCGGATGGTCCAGGG, AGCAYACTGGCGGATGGTCCAGG	not provided
587777809	NM_144596.3(TTC8):c.115- $2 \mathrm{~A}>\overline{\mathrm{G}}$	GTTCCYGGAAAGCATTAAGAAGG	Retinitis pigmentosa 51
587777878	NM_000166.5(GJB1):c. $580 \mathrm{~A}>\mathrm{G}$ (p.Met194Val)	TAGCAYGAAGACGGTGAAGACGG	X-linked hereditary motor and sensory neuropathy

74315420	NM_001029871.3(RSPO4):c. 194A>G (p.Gln65Arg)	CGTACYGGCGGATGCCTTCCCGG	Anonychia
180177219	NM $000030.2(\mathrm{AGXT}) \mathrm{c} .424-2 \mathrm{~A}>\mathrm{G}$ (p.Gly 142 Gln 145 del)	AGGCCCYGAGGAAGCAGGGACGG	Primary hyperoxaluria, type I
367610201	NM 002693.2(POLG):c. $1808 \mathrm{~T}>\mathrm{C}$ (p.Met603Thr)	CTCAYGGCACTTACCTGGGATGG	not provided
180177319	NM 012203.1(GRHPR):c.84- $2 \mathrm{~A}>\mathrm{G}$	TCACAGCYGCGGGGAAAGGGAGG	Primary hyperoxaluria, type II
796052068	$\begin{aligned} & \mathrm{NM} 000030.2(\mathrm{AGXT}): \mathrm{c} .777- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	GGTACCYGGAAGACACGAGGGGG, TGGTACCYGGAAGACACGAGGGG	Primary hyperoxaluria, type I
61754010	NM 000552.3(VWF):c. $1583 \mathrm{~A}>\mathrm{G}$ (p.Asn528Ser)	TGCCAYTGTAATTCCCACACAGG	von Willebrand disease, type 2a
587778866	NM_000321.2(RB1):c. $1927 \mathrm{~A}>\mathrm{G}$ (p.Lys643Glu)	ATTYCAATGGCTTCTGGGTCTGG	Retinoblastoma
74435397	NM 006331.7(EMGI):c.257A>G (p. Asp 86 Gly)	ATAYCTGGCCGCGCTTCCCCAGG	Bowen-Conradisyndrome
796052527	NM $000156.5(\mathrm{GAMT}): \mathrm{c} .1 \mathrm{~A}>\mathrm{G}$ (p.Metl Val)	CGCTCAYGCTGCAGGCTGGACGG	not provided
796052637		GTACYTGTCCCCGTAGCCAATGG	not provided
724159963	$\underset{\text { (p.Asp365Gly) }}{\text { (p } 03228.5(F A R 1): c .1094 A}>G$	GATAYCATACAGGAATGCIGGGG, AGATAYCATACAGGAATGCTGGG, TAGATAYCATACAGGAATGCTGG	Peroxisomal fatty acyl-coa reductase 1 disorder
587779722	NM 000090.3 (COL3A1):c. $1762-2 \mathrm{~A}>\mathrm{G}$ (p. Gly 588 Gln605del)	CACCCYAAAGAAGAAGTGGTCGG	Ehlers-Danlos syndrome, type 4
118192102	m. $8296 \mathrm{~A}>\mathrm{G}$	TTTACAGYGGGCTCTAGAGGGGG	Diabetes-deafness syndrome maternally transmitted
727502787	NM_001077494.3(NFKB2) c. $2594 \mathrm{~A}>\mathrm{G}$ (p.Asp865Gly)	CTGYCTTCCTTCACCTCTGCTGG	Common variable immunodeficiency 10
727503036	NM_000117.2(EMD):c.266$2 \mathrm{~A}>\mathrm{G}$	AGCCYTGGGAAGGGGGGCAGCGG	Emery-Dreifuss muscular dystrophy 1, X-linked
690016544	NM_005861.3(STUB1):c.194A>G (p.Asn65Ser)	GGCCCGGYTGGTGTAATACACGG	Spinocerebellar ataxia, autosomal recessive 16
690016554	$\begin{aligned} & \mathrm{NM} 005211.3(\mathrm{CSFIR}): .2655- \\ & 2 \mathrm{~A} \subset \mathrm{G} \end{aligned}$	GTATCYGGGAGATAGGACAGAGG	Hereditary diffuse leukoencephalopathy with spheroids
118192185	NM_172107.2(KCNQ2):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal)	GCACCAYGGTGCCTGGCGGGAGG	Benign familial neonatal seizures 1
121917869	NM_012064.3(MIP):c.401A>G (p. Glu134Gly)	AGATCYCCACTGTGGTTGCCTGG	Cataract 15, multiple types
121918014	NM_000478.4(ALPL):c.1250A>G $\text { (p.Asn } 417 \text { Ser) }$	AGGCCCAYTGCCATACAGGATGG	Infantile hypophosphatasia
121918036	NM_000174.4(GP9):c. $110 \mathrm{~A}>\mathrm{G}$ (p.Asp37Gly)	GCAGYCCACCCACAGCCCCATGG	Bernard-Soulier sy ndrome type C
121918089	NM 000371.3(TTR): $\mathrm{c} .379 \mathrm{~A}>\mathrm{G}$ (p. Ile 27 Val)	CGGCAAYGGTGTAGCGGCGGGGG, GCGGCAAYGGTGTAGCGGCGGGG	Amy loidogenic transthy retin amy loidosis
121918121	$\begin{aligned} & \text { NM_000823.3(GHRHR):c. } 985 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys329Glu) } \end{aligned}$	CGACTYGGAGAGACGCCTGCAGG	Isolated growth hormone deficiency type 1B
121918333	$\begin{gathered} \text { NM_015335.4(MED13L) C. } 6068 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asp2023Gly) } \end{gathered}$	ATATCAYCTAGAGGGAAGGGGGG, CATATCAYCTAGAGGGAAGGGGG	Transposition of great arteries
121918605	NM_001035.2(RYR2):c. $12602 \mathrm{~A}>\mathrm{G}$ (p. Gln4201Arg)	CGCCAGCYGCATTTCAAAGATGG	Catecholaminergic poly morphic ventricular tachycardia
587781262	NM_002764.3(PRPS1): $\mathrm{c} 343 \mathrm{~A}>\mathrm{G}$ (p.Metll5Val)	TAGCAYATTTGCAACAAGCTTGG	Charcot-Marie-Tooth disease, X-linked recessive, type 5, Deafness, high-frequency sensorineural, X-linked
121918608	NM_001161766.1(AHCY):c.344A $>\mathrm{G}$ (р.Tyrl15Cys)	GCGGGYACTTGGTGTGGATGAGG	Hypermethioninemia with sadenosy lhomocysteine hydrolase deficiency
121918613	$\begin{gathered} \text { NM } 000702.3 \text { (ATPIA2) C. } 1033 \mathrm{~A}>G \\ \text { (p.Thr345Ala) } \end{gathered}$	CTGYCAGGGTCAGGCACACCTGG	Familial hemiplegic migraine type 2
587781339	NM_000535.5(PMS2):c.904- $2 \mathrm{~A}>\overline{\mathrm{G}}$	GCAGACCYGCACAAAATACAAGG	Hereditary cancer-predisposing sy ndrome
121918691	NM 001128177.1(THRB):c. $1324 \mathrm{~A}>\mathrm{G}$ (p.Met442Val)	CTTCAYGTGCAGGAAGCGGCTGG	Thyroid hormone resistance, generalized, autosomal dominant
121918692	$\underset{(\mathrm{p} \text { Lys } 443 \mathrm{Gll})}{\mathrm{NM} \text { _ } 00112817.1327 \mathrm{~A}>\mathrm{G}}$	CCACCTYCATGTGCAGGAAGCGG	Thyroid hormone resistance, generalized, autosomal dominant
727504333	NM 000256.3(MYBPC3):c.2906$2 \mathrm{~A} \subset \mathrm{G}$	CCGTTCYGTGGGTATAGAGTGGG, GCCGTTCYGTGGGTATAGAGTGG	Familial hypertrophic cardiomyopathy 4
730880805	NM_006204.3(PDE6C):c.1483$2 \mathrm{~A}>\overline{\mathrm{G}}$	CTTCYYGTTGAAATAAGGATGGG, TCTTTCYGTTGAAATAAGGATGG	Achromatopsia 5

281860296	NM_000551.3(VHL):c.586A>T (p.Lysl96Ter)	GGTCTTYCTGCACATTTGGGTGG	Von Hippel-Lindau sy ndrome
730880444	$\begin{aligned} & \text { NM_000169.2(GLA):c. } 370- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$	GTGAACCYGAAATGAGAGGGAGG	not provided
756328339	$\mathrm{NM}=000256.3$ (MYBPC3):c. 1227- $2 \mathrm{~A} \triangle \mathrm{G}$ $2 \mathrm{~A}>\mathrm{G}$	GTACCYGGGTGGGGGCCGCAGGG, TGTACCYGGGTGGGGGCCGCAGG	Familial hypertrophic cardiomyopathy 4, Cardiomy opathy
267606643	$\begin{aligned} & \text { NM_013411.4(AK2):c.494A>G } \\ & \text { (p.Asp165Gly) } \end{aligned}$	TCAYCTTTCATGGGCTCTTTTGG	Reticular dysgenesis
267606705	$\underset{(\mathrm{p} L \text { Lys } 382 \mathrm{Glu} \text {) }}{ }$ (CBL):c. $1144 \mathrm{~A}>\mathrm{G}$ (p.Lys382Glu)	TATTTYACATAGTTGGAATGTGG	Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia
62642934	NM_000277.1(PAH):c.916A>G (p.Ile 306 Val)	GGCCAAYTTCCTGTAATTGGGGG, AGGCCAAYTTCCTGTAATTGGGG	Phenylketonuria, Hyperphenylalanine mia, nonpku
267606782	NM_000117.2(EMD):c.1A>G (p.MetlVal)	TCCAYGGCGGGTGCGGGCTCAGG	Emery-Dreifuss muscular dystrophy, X-linked
267606820	NM_014053.3(FLVCRI):c. $361 \mathrm{~A}>\mathrm{G}$ (p.Asn121Asp)	AGGCGTYGACCAGCGAGTACAGG	Posterior column ataxia with retinitis pigmentosa

[00318] In some embodiments, any of the base editors provided herein may be used to treat a disease or disorder. For example, any base editors provided herein may be used to correct one or more mutations associated with any of the diseases or disorders provided herein. Exemplary diseases or disorders that may be treated include, without limitation, 3-Methylglutaconic aciduria type 2, 46,XY gonadal dysgenesis, 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, 6-pyruvoyl-tetrahydropterin synthase deficiency, achromatopsia, Acid-labile subunit deficiency, Acrodysostosis, acroerythrokeratoderma, ACTH resistance, ACTH-independent macronodular adrenal hyperplasia, Activated PI3K-delta syndrome, Acute intermittent porphyria, Acute myeloid leukemia, Adams-Oliver syndrome $1 / 5 / 6$, Adenylosuccinate lyase deficiency, Adrenoleukodystrophy, Adult neuronal ceroid lipofuscinosis, Adult onset ataxia with oculomotor apraxia, Advanced sleep phase syndrome, Age-related macular degeneration, Alagille syndrome, Alexander disease, Allan-Herndon-Dudley syndrome, Alport syndrome, X-linked recessive, Alternating hemiplegia of childhood, Alveolar capillary dysplasia with misalignment of pulmonary veins, Amelogenesis imperfecta, Amyloidogenic transthyretin amyloidosis, Amyotrophic lateral sclerosis, Anemia (nonspherocytic hemolytic, due to G6PD deficiency), Anemia (sideroblastic, pyridoxine-refractory, autosomal recessive), Anonychia, Antithrombin III deficiency, Aortic aneurysm, Aplastic anemia, Apolipoprotein C2 deficiency, Apparent mineralocorticoid excess, Aromatase deficiency, Arrhythmogenic right ventricular cardiomyopathy, Familial hypertrophic cardiomyopathy, Hypertrophic cardiomyopathy, Arthrogryposis multiplex congenital, Aspartylglycosaminuria, Asphyxiating thoracic dystrophy, Ataxia with vitamin E deficiency, Ataxia (spastic), Atrial fibrillation, Atrial septal defect, atypical hemolytic-uremic syndrome, autosomal dominant CD11C+/CD1C+ dendritic cell deficiency, Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions, Baraitser-Winter syndrome, Bartter syndrome, Basa ganglia calcification, Beckwith-Wiedemann syndrome, Benign familial neonatal seizures, Benign scapuloperoneal muscular dystrophy, Bernard Soulier syndrome, Beta thalassemia intermedia, Beta-D-mannosidosis, Bietti crystalline corneoretinal dystrophy, Bile acid malabsorption, Biotinidase deficiency, Borjeson-ForssmanLehmann syndrome, Boucher Neuhauser syndrome, Bowen-Conradi syndrome, Brachydactyly, Brown-Vialetto-Van laere syndrome, Brugada syndrome, Cardiac arrhythmia, Cardiofaciocutaneous syndrome, Cardiomyopathy, Carnevale syndrome, Carnitine palmitoyltransferase II deficiency, Carpenter syndrome, Cataract, Catecholaminergic polymorphic
ventricular tachycardia, Central core disease, Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency, Cerebral autosomal dominant arteriopathy, Cerebro-oculo-facio-skeletal syndrome, Ceroid lipofuscinosis, Charcot-Marie-Tooth disease, Cholestanol storage disease, Chondrocalcinosis, Chondrodysplasia, Chronic progressive multiple sclerosis, Coenzyme Q10 deficiency, Cohen syndrome, Combined deficiency of factor V and factor VIII, Combined immunodeficiency, Combined oxidative phosphorylation deficiency, Combined partial 17-alpha-hydroxylase/17,20-lyase deficiency, Complement factor d deficiency, Complete combined 17-alpha- hydroxylase/17,20-lyase deficiency, Cone-rod dystrophy, Congenital contractural arachnodactyly, Congenital disorder of glycosylation, Congenital lipomatous overgrowth, Neoplasm of ovary, PIK3CA Related Overgrowth Spectrum, Congenital long QT syndrome, Congenital muscular dystrophy, Congenital muscular hypertrophy-cerebral syndrome, Congenital myasthenic syndrome, Congenital myopathy with fiber type disproportion, Eichsfeld type congenital muscular dystrophy, Congenital stationary night blindness, Corneal dystrophy, Cornelia de Lange syndrome, Craniometaphyseal dysplasia, Crigler Najjar syndrome, Crouzon syndrome, Cutis laxa with osteodystrophy, Cyanosis, Cystic fibrosis, Cystinosis, Cytochrome-c oxidase deficiency, Mitochondrial complex I deficiency, D-2-hydroxyglutaric aciduria, Danon disease, Deafness with labyrinthine aplasia microtia and microdontia (LAMM), Deafness, Deficiency of acetyl-CoA acetyltransferase, Deficiency of ferroxidase, Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase, Dejerine-Sottas disease, Desbuquois syndrome, DFNA, Diabetes mellitus type 2, Diabetes-deafness syndrome, Diamond-Blackfan anemia, Diastrophic dysplasia, Dihydropteridine reductase deficiency, Dihydropyrimidinase deficiency, Dilated cardiomyopathy, Disseminated atypical mycobacterial infection, Distal arthrogryposis, Distal hereditary motor neuronopathy, Donnai Barrow syndrome, Duchenne muscular dystrophy, Becker muscular dystrophy, Dyschromatosis universalis hereditaria, Dyskeratosis congenital, Dystonia, Early infantile epileptic encephalopathy, Ehlers-Danlos syndrome, Eichsfeld type congenital muscular dystrophy, Emery-Dreifuss muscular dystrophy, Enamel-renal syndrome, Epidermolysis bullosa dystrophica inversa, Epidermolysis bullosa herpetiformis, Epilepsy, Episodic ataxia, Erythrokeratodermia variabilis, Erythropoietic protoporphyria, Exercise intolerance, Exudative vitreoretinopathy, Fabry disease, Factor V deficiency, Factor VII deficiency, Factor xiii deficiency, Familial adenomatous polyposis, breast cancer, ovarian cancer, cold urticarial, chronic infantile neurological, cutaneous and articular syndrome, hemiplegic migraine, hypercholesterolemia, hypertrophic cardiomyopathy,
hypoalphalipoproteinemia, hypokalemia-hypomagnesemia, juvenile gout, hyperlipoproteinemia, visceral amyloidosis, hypophosphatemic vitamin D refractory rickets, FG syndrome, Fibrosis of extraocular muscles, Finnish congenital nephrotic syndrome, focal epilepsy, Focal segmental glomerulosclerosis, Frontonasal dysplasia, Frontotemporal dementia, Fructose-biphosphatase deficiency, Gamstorp-Wohlfart syndrome, Ganglioside sialidase deficiency, GATA-1-related thrombocytopenia, Gaucher disease, Giant axonal neuropathy, Glanzmann thrombasthenia, Glomerulocystic kidney disease, Glomerulopathy, Glucocorticoid resistance, Glucose-6phosphate transport defect, Glutaric aciduria, Glycogen storage disease, Gorlin syndrome, Holoprosencephaly, GRACILE syndrome, Haemorrhagic telangiectasia, Hemochromatosis, Hemoglobin H disease, Hemolytic anemia, Hemophagocytic lymphohistiocytosis, Carcinoma of colon, Myhre syndrome, leukoencephalopathy, Hereditary factor IX deficiency disease, Hereditary factor VIII deficiency disease, Hereditary factor XI deficiency disease, Hereditary fructosuria, Hereditary Nonpolyposis Colorectal Neoplasm, Hereditary pancreatitis, Hereditary pyropoikilocytosis, Elliptocytosis, Heterotaxy, Heterotopia, Histiocytic medullary reticulosis, Histiocytosis-lymphadenopathy plus syndrome, HNSHA due to aldolase A deficiency, Holocarboxylase synthetase deficiency, Homocysteinemia, Howel-Evans syndrome, Hydatidiform mole, Hypercalciuric hypercalcemia, Hyperimmunoglobulin D, Mevalonic aciduria, Hyperinsulinemic hypoglycemia, Hyperkalemic Periodic Paralysis, Paramyotonia congenita of von Eulenburg, Hyperlipoproteinemia, Hypermanganesemia, Hypermethioninemia, Hyperphosphatasemia, Hypertension, hypomagnesemia, Hypobetalipoproteinemia, Hypocalcemia, Hypogonadotropic hypogonadism, Hypogonadotropic hypogonadism, Hypohidrotic ectodermal dysplasia, Hyper-IgM immunodeficiency, Hypohidrotic X-linked ectodermal dysplasia, Hypomagnesemia, Hypoparathyroidism, Idiopathic fibrosing alveolitis, Immunodeficiency, Immunoglobulin A deficiency, Infantile hypophosphatasia, Infantile Parkinsonism-dystonia, Insulin-dependent diabetes mellitus, Intermediate maple syrup urine disease, Ischiopatellar dysplasia, Islet cell hyperplasia, Isolated growth hormone deficiency, Isolated lutropin deficiency, Isovaleric acidemia, Joubert syndrome, Juvenile polyposis syndrome, Juvenile retinoschisis, Kallmann syndrome, Kartagener syndrome, Kugelberg-Welander disease, Lattice corneal dystrophy, Leber congenital amaurosis, Leber optic atrophy, Left ventricular noncompaction, Leigh disease, Mitochondrial complex I deficiency, Leprechaunism syndrome, Arthrogryposis, Anterior horn cell disease, Leukocyte adhesion deficiency, Leukodystrophy, Leukoencephalopathy, Ovarioleukodystrophy, L-ferritin deficiency, Li-Fraumeni syndrome,

Limb-girdle muscular dystrophy- dystroglycanopathy, Loeys-Dietz syndrome, Long QT syndrome, Macrocephaly/autism syndrome, Macular corneal dystrophy, Macular dystrophy, Malignant hyperthermia susceptibility, Malignant tumor of prostate, Maple syrup urine disease, Marden Walker like syndrome, Marfan syndrome, Marie Unna hereditary hypotrichosis, Mast cell disease, Meconium ileus, Medium-chain acyl-coenzyme A dehydrogenase deficiency, MelnickFraser syndrome, Mental retardation, Merosin deficient congenital muscular dystrophy, Mesothelioma, Metachromatic leukodystrophy, Metaphyseal chondrodysplasia, Methemoglobinemia, methylmalonic aciduria, homocystinuria, Microcephaly, chorioretinopathy, lymphedema, Microphthalmia, Mild non-PKU hyperphenylalanemia, Mitchell-Riley syndrome, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency, Mitochondrial complex I deficiency, Mitochondrial complex III deficiency, Mitochondrial myopathy, Mucolipidosis III, Mucopolysaccharidosis, Multiple sulfatase deficiency, Myasthenic syndrome, Mycobacterium tuberculosis, Myeloperoxidase deficiency, Myhre syndrome, Myoclonic epilepsy, Myofibrillar myopathy, Myoglobinuria, Myopathy, Myopia, Myotonia congenital, Navajo neurohepatopathy, Nemaline myopathy, Neoplasm of stomach, Nephrogenic diabetes insipidus, Nephronophthisis, Nephrotic syndrome, Neurofibromatosis, Neutral lipid storage disease, Niemann-Pick disease, Non-ketotic hyperglycinemia, Noonan syndrome, Noonan syndrome-like disorder, Norum disease, Macular degeneration, N -terminal acetyltransferase deficiency, Oculocutaneous albinism, Oculodentodigital dysplasia, Ohdo syndrome, Optic nerve aplasia, Ornithine carbamoyltransferase deficiency, Orofaciodigital syndrome, Osteogenesis imperfecta, Osteopetrosis, Ovarian dysgenesis, Pachyonychia, Palmoplantar keratoderma, nonepidermolytic, Papillon-Leflxc3|xa8vre syndrome, Haim-Munk syndrome, Periodontitis, Peeling skin syndrome, Pendred syndrome, Peroxisomal fatty acyl-coa reductase 1 disorder, Peroxisome biogenesis disorder, Pfeiffer syndrome, Phenylketonuria, Phenylketonuria, Hyperphenylalaninemia, nonPKU, Pituitary hormone deficiency, Pityriasis rubra pilaris, Polyarteritis nodosa, Polycystic kidney disease, Polycystic lipomembranous osteodysplasia, Polymicrogyria, Pontocerebellar hypoplasia, Porokeratosis, Posterior column ataxia, Primary erythromelalgia, hyperoxaluria, Progressive familial intrahepatic cholestasis, Progressive pseudorheumatoid dysplasia, Propionic acidemia, Pseudohermaphroditism, Pseudohypoaldosteronism, Pseudoxanthoma elasticum-like disorder, Purine-nucleoside phosphorylase deficiency, Pyridoxal 5-phosphate-dependent epilepsy, Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia, skeletal dysplasia, Reticular dysgenesis, Retinitis pigmentosa, Usher syndrome, Retinoblastoma, Retinopathy, RRM2B-related
mitochondrial disease, Rubinstein-Taybi syndrome, Schnyder crystalline corneal dystrophy, Sebaceous tumor, Severe congenital neutropenia, Severe myoclonic epilepsy in infancy, Severe X-linked myotubular myopathy, onychodysplasia, facial dysmorphism, hypotrichosis, Short-rib thoracic dysplasia, Sialic acid storage disease, Sialidosis, Sideroblastic anemia, Small fiber neuropathy, Smith-Magenis syndrome, Sorsby fundus dystrophy, Spastic ataxia, Spastic paraplegia, Spermatogenic failure, Spherocytosis, Sphingomyelin/cholesterol lipidosis, Spinocerebellar ataxia, Split-hand/foot malformation, Spondyloepimetaphyseal dysplasia, Platyspondylic lethal skeletal dysplasia, Squamous cell carcinoma of the head and neck, Stargardt disease, Sucrase-isomaltase deficiency, Sudden infant death syndrome, Supravalvar aortic stenosis, Surfactant metabolism dysfunction, Tangier disease, Tatton-Brown-rahman syndrome, Thoracic aortic aneurysms and aortic dissections, Thrombophilia, Thyroid hormone resistance, TNF receptor-associated periodic fever syndrome (TRAPS), Tooth agenesis, Torsades de pointes, Transposition of great arteries, Treacher Collins syndrome, Tuberous sclerosis syndrome, Tyrosinase-negative oculocutaneous albinism, Tyrosinase-positive oculocutaneous albinism, Tyrosinemia, UDPglucose-4-epimerase deficiency, Ullrich congenital muscular dystrophy, Bethlem myopathy Usher syndrome, UV-sensitive syndrome, Van der Woude syndrome, popliteal pterygium syndrome, Very long chain acyl-CoA dehydrogenase deficiency, Vesicoureteral reflux, Vitreoretinochoroidopathy, Von Hippel-Lindau syndrome, von Willebrand disease, Waardenburg syndrome, Warsaw breakage syndrome, WFS1-Related Disorders, Wilson disease, Xeroderma pigmentosum, X-linked agammaglobulinemia, X-linked hereditary motor and sensory neuropathy, X-linked severe combined immunodeficiency, and Zellweger syndrome.
[00319] The development of nucleobase editing advances both the scope and effectiveness of genome editing. The nucleobase editors described here offer researchers a choice of editing with virtually no indel formation (NBE2), or more efficient editing with a low frequency (here, typically $\leq 1 \%$) of indel formation (NBE3). That the product of base editing is, by definition, no longer a substrate likely contributes to editing efficiency by preventing subsequent product transformation, which can hamper traditional Cas9 applications. By removing the reliance on double-stranded DNA cleavage and stochastic DNA repair processes that vary greatly by cell state and cell type, nucleobase editing has the potential to expand the type of genome modifications that can be cleanly installed, the efficiency of these modifications, and the type of cells that are amenable to editing. It is likely that recent engineered Cas9 variants ${ }^{69,70,82}$ or delivery methods ${ }^{71}$
with improved DNA specificity, as well as Cas9 variants with altered PAM specificities, ${ }^{72}$ can be integrated into this strategy to provide additional nucleobase editors with improved DNA specificity or that can target an even wider range of disease-associated mutations. These findings also suggest that engineering additional fusions of dCas9 with enzymes that catalyze additional nucleobase transformations will increase the fraction of the possible DNA base changes that can be made through nucleobase editing. These results also suggest architectures for the fusion of other DNA-modifying enzymes, including methylases and demathylases, that mau enable additional types of programmable genome and epigenome base editing.

Materials and Methods

[00320] Cloning. DNA sequences of all constructs and primers used in this paper are listed in the Supplementary Sequences. Plasmids containing genes encoding NBE1, NBE2, and NBE3 will be available from Addgene. PCR was performed using VeraSeq ULtra DNA polymerase (Enzymatics), or Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). NBE plasmids were constructed using USER cloning (New England Biolabs). Deaminase genes were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies), and Cas9 genes were obtained from previously reported plasmids. ${ }^{18}$ Deaminase and fusion genes were cloned into pCMV (mammalian codon-optimized) or pET 28 b (E. coli codon-optimized) backbones. sgRNA expression plasmids were constructed using site-directed mutagenesis. Briefly, the primers listed in the Supplementary Sequences were 5' phosphorylated using T4 Polynucleotide Kinase (New England Biolabs) according to the manufacturer's instructions. Next, PCR was performed using Q5 Hot Start High-Fidelity Polymerase (New England Biolabs) with the phosphorylated primers and the plasmid pFYF1320 (EGFP sgRNA expression plasmid) as a template according to the manufacturer's instructions. PCR products were incubated with DpnI (20 U, New England Biolabs) at $37^{\circ} \mathrm{C}$ for 1 h , purified on a QIAprep spin column (Qiagen), and ligated using QuickLigase (New England Biolabs) according to the manufacturer's instructions. DNA vector amplification was carried out using Mach1 competent cells (ThermoFisher Scientific).
[00321] In vitro deaminase assay on ssDNA. Sequences of all ssDNA substrates are listed in the Supplementary Sequences. All Cy3-labelled substrates were obtained from Integrated DNA Technologies (IDT). Deaminases were expressed in vitro using the TNT T7 Quick Coupled Transcription/Translation Kit (Promega) according to the manufacturer's instructions using $1 \mu \mathrm{~g}$ of plasmid. Following protein expression, $5 \mu \mathrm{~L}$ of lysate was combined with $35 \mu \mathrm{~L}$ of ssDNA (1.8
$\mu \mathrm{M}$) and USER enzyme (1 unit) in CutSmart buffer (New England Biolabs) (50 mM potassium acetate, 29 mM Trisacetate, 10 mM magnesium acetate, $100 \mathrm{ug} / \mathrm{mL}$ BSA, pH 7.9) and incubated at $37^{\circ} \mathrm{C}$ for 2 h . Cleaved U-containing substrates were resolved from full-length unmodified substrates on a 10% TBE-urea gel (Bio-Rad).
[00322] Expression and purification of His $_{6}$-rAPOBEC1-linker-dCas9 fusions. E. Coli BL21 STAR (DE3)-competent cells (ThermoFisher Scientific) were transformed with plasmids encoding pET28b-His - $_{6}$ APOBEC-linker-dCas 9 with GGS, (GGS) ${ }_{3}$, (SEQ ID NO: 596) XTEN, or (GGS) $_{7}$ (SEQ ID NO: 597) linkers. The resulting expression strains were grown overnight in Luria-Bertani (LB) broth containing $100 \mu \mathrm{~g} / \mathrm{mL}$ of kanamycin at $37^{\circ} \mathrm{C}$. The cells were diluted $1: 100$ into the same growth medium and grown at $37^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600}=\sim 0.6$. The culture was cooled to $4^{\circ} \mathrm{C}$ over a period of 2 h , and isopropyl - β-D-3- thiogalactopyranoside (PTG) was added at 0.5 $m \mathrm{M}$ to induce protein expression. After $\sim 16 \mathrm{~h}$, the cells were collected by centrifugation at 4,000 g and resuspended in lysis buffer (50 mM tris(bydroxymethy) -aminomethane (Tris)-HCl, pHi 7,0 , $1 \mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 10 mM tris(2 -carboxyethylphosphine (TCEP, Soltec Ventures). The cells were lysed by sonication (20 s pulse-on, 20 s pulse-off for 8 min total at 6 W output) and the lysate supematant was isolated following centrifugation at $25,000 \mathrm{~g}$ for 15 min. The lysate was incubated with His-Pur nickel-nitriloacetic acid (nickel-NTA) resin (ThermoFisher Scientific) at 4 ${ }^{\circ} \mathrm{C}$ for 1 h to capture the His-tagged fusion protein. The resin was transferred to a column and washed with 40 mL of lysis buffer. The His-tagged fusion protein was eluted in lysis buffer supplemented with 285 mM imidazole, and concentrated by ultrafiltration (Amicon-Millipore, $100-\mathrm{kDa}$ molecular weight cut-off) to 1 mL total volume. The protein was diluted to 20 mL in low-salt purification buffer containing 50 mM tris(hydroxymethy) -aminomethane (Tris)- $\mathrm{HCl}, \mathrm{pH}$ $7.0,0.1 \mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 10 mM TCEP and loaded onto SP Sepharose Fast Flow resin (GE Life Sciences). The resin was washed with 40 mL of this low-salt buffer, and the protein eluted with 5 ml of activity buffer containing 50 mM tris(hydroxymethyl)-aminomethane (Tris) HCl , pH $7.0,0.5 \mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 10 mM TCEP. The eluted proteins were quantified on a SDSPAGE gel,
[00323] In witro transcription of sgRNAs. Linear DNA fragments containing the T7 promoter followed by the $20-b p$ sgRNA target sequence were tanscribed $i n$ vitro using the primers listed in the Supplementary Sequences with the TranscriptAid T7 High Yield Transcription Kit (ThermoFisher Scientific) according to the manufacturer's instructions. sgRNA products were
purified using the MEGAclear Kit (ThermoFisher Scientific) according to the manufacturer's instructions and quantified by UV absorbance.
[00324] Preparation of Cy3-conjugated dsDNA substrates. Sequences of 80 -nucleotide unlabeled strands are listed in the Supplementary Sequences and were ordered as PAGE-purified oligonucleotides from IDT. The 25-nt Cy3-labeled primer listed in the Supplementary Sequences is complementary to the 3 ' end of each $80-\mathrm{nt}$ substrate. This primer was ordered as an HPLCpurified oligonucleotide from IDT. To generate the Cy3-labeled dsDNA substrates, the $80-\mathrm{nt}$ strands ($5 \mu \mathrm{~L}$ of a $100 \mu \mathrm{M}$ solution) were combined with the Cy3-labeled primer ($5 \mu \mathrm{~L}$ of a 100 $\mu \mathrm{M}$ solution) in NEBuffer $2(38.25 \mu \mathrm{~L}$ of a $50 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mMTris-HCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, pH 7.9 solution, New England Biolabs) with dNTPs ($0.75 \mu \mathrm{~L}$ of a 100 mM solution) and heated to $95^{\circ} \mathrm{C}$ for 5 min , followed by a gradual cooling to $45^{\circ} \mathrm{C}$ at a rate of $0.1^{\circ} \mathrm{C} / \mathrm{s}$. After this annealing period, Klenow exo ${ }^{-}$(5 U , New England Biolabs) was added and the reaction was incubated at $37^{\circ} \mathrm{C}$ for 1 h . The solution was diluted with Buffer PB ($250 \mu \mathrm{~L}$, Qiagen) and isopropanol ($50 \mu \mathrm{~L}$) and purified on a QIAprep spin column (Qiagen), eluting with $50 \mu \mathrm{~L}$ of Tris buffer.
[00325] Deaminase assay on dsDNA. The purified fusion protein ($20 \mu \mathrm{~L}$ of $1.9 \mu \mathrm{M}$ in activity buffer) was combined with 1 equivalent of appropriate sgRNA and incubated at ambient temperature for 5 min . The Cy3-labeled dsDNA substrate was added to final concentration of 125 nM and the resulting solution was incubated at $37^{\circ} \mathrm{C}$ for 2 h . The dsDNA was separated from the fusion by the addition of Buffer $\mathrm{PB}(100 \mu \mathrm{~L}$, Qiagen) and isopropanol ($25 \mu \mathrm{~L}$) and purified on a EconoSpin micro spin column (Epoch Life Science), eluting with $20 \mu \mathrm{~L}$ of CutSmart buffer (New England Biolabs). USER enzyme (1 U, New England Biolabs) was added to the purified, edited dsDNA and incubated at $37^{\circ} \mathrm{C}$ for 1 h . The Cy3-labeled strand was fully denatured from its complement by combining $5 \mu \mathrm{~L}$ of the reaction solution with $15 \mu \mathrm{~L}$ of a DMSO-based loading buffer (5 mM Tris, 0.5 mM EDTA, 12.5% glycerol, 0.02% bromophenol blue, 0.02% xylene cyan, $80 \% \mathrm{DMSO}$). The full-length C-containing substrate was separated from any cleaved, Ucontaining edited substrates on a 10% TBE-urea gel (Bio-Rad) and imaged on a GE Amersham Typhoon imager.
[00326] Preparation of in vitro-edited dsDNA for high-throughput sequencing (HTS). The oligonucleotides listed in the Supplementary Sequences were obtained from IDT. Complementary sequences were combined ($5 \mu \mathrm{~L}$ of a $100 \mu \mathrm{M}$ solution) in Tris buffer and annealed by heating to $95^{\circ} \mathrm{C}$ for 5 min , followed by a gradual cooling to $45^{\circ} \mathrm{C}$ at a rate of $0.1^{\circ} \mathrm{C} / \mathrm{s}$ to generate $60-\mathrm{bp}$
dsDNA substrates. Purified fusion protein ($20 \mu \mathrm{~L}$ of $1.9 \mu \mathrm{M}$ in activity buffer) was combined with 1 equivalent of appropriate sgRNA and incubated at ambient temperature for 5 min . The $60-\mathrm{mer}$ dsDNA substrate was added to final concentration of 125 nM and the resulting solution was incubated at $37^{\circ} \mathrm{C}$ for 2 h . The dsDNA was separated from the fusion by the addition of Buffer PB ($100 \mu \mathrm{~L}$, Qiagen) and isopropanol ($25 \mu \mathrm{~L}$) and purified on a EconoSpin micro spin column (Epoch Life Science), eluting with $20 \mu \mathrm{~L}$ of Tris buffer. The resulting edited DNA ($1 \mu \mathrm{~L}$ was used as a template) was amplified by PCR using the HTS primer pairs specified in the Supplementary Sequences and VeraSeq Ultra (Enzymatics) according to the manufacturer's instructions with 13 cycles of amplification. PCR reaction products were purified using RapidTips (Diffinity Genomics), and the purified DNA was amplified by PCR with primers containing sequencing adapters, purified, and sequenced on a MiSeq high-throughput DNA sequencer (Illumina) as previously described. ${ }^{73}$
[00327] Cell culture. HEK293T (ATCC CRL-3216), U2OS (ATCC-HTB-96) and ST486 cells (ATCC) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with 10% (v / v) fetal bovine serum (FBS) and penicillin/streptomycin (1 x , Amresco), at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. HCC 1954 cells (ATCC CRL2338) were maintained in RPMI-1640 medium (ThermoFisher Scientific) supplemented as described above. Immortalized rat astrocytes containing the ApoE4 isoform of the APOE gene (Taconic Biosciences) were cultured in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher Scientific) supplemented with 10% (v/v) fetal bovine serum (FBS) and $200 \mu \mathrm{~g} / \mathrm{mL}$ Geneticin (ThermoFisher Scientific).
[00328] Transfections. HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately 85% confluency. Briefly, 750 ng of NBE and 250 ng of sgRNA expression plasmids were transfected using $1.5 \mu \mathrm{l}$ of Lipofectamine 2000 (Thermofisher Scientific) per well according to the manufacturer's protocol. Astrocytes, U2OS, HCC 1954, HEK293T and ST486 cells were transfected using appropriate AMAXA NUCLEOFECTOR ${ }^{\text {TM }}$ II programs according to manufacturer's instructions. 40 ng of infrared RFP (Addgene plasmid 45457) ${ }^{74}$ was added to the nucleofection solution to assess nucleofection efficiencies in these cell lines. For astrocytes, U2OS, and ST486 cells, nucleofection efficiencies were $25 \%, 74 \%$, and 92%, respectively. For HCC1954 cells, nucleofection efficiency was $<10 \%$. Therefore, following trypsinization, the HCC1954 cells were filtered through a 40 micron strainer (Fisher Scientific), and the nucleofected HCC1954 cells were collected on a Beckman Coulter

MoFlo XDP Cell Sorter using the iRFP signal (abs 643 nm , em 670 nm). The other cells were used without enrichment of nucleofected cells.
[00329] High-throughput DNA sequencing of genomic DNA samples. Transfected cells were harvested after 3 d and the genomic DNA was isolated using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. On-target and off-target genomic regions of interest were amplified by PCR with flanking HTS primer pairs listed in the Supplementary Sequences. PCR amplification was carried out with Phusion highfidelity DNA polymerase (ThermoFisher) according to the manufacturer's instructions using 5 ng of genomic DNA as a template. Cycle numbers were determined separately for each primer pair as to ensure the reaction was stopped in the linear range of amplification (30,28, 28, 28, 32, and 32 cycles for EMX1, FANCF, HEK293 site 2, HEK293 site 3, HEK293 site 4, and RNF2 primers, respectively). PCR products were purified using RapidTips (Diffinity Genomics). Purified DNA was amplified by PCR with primers containing sequencing adaptors. The products were gelpurified and quantified using the QUANT-IT ${ }^{\mathrm{TM}}$ PicoGreen dsDNA Assay Kit (ThermoFisher) and KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described. ${ }^{73}$
[00330] Data analysis. Sequencing reads were automatically demultiplexed using MiSeq Reporter (Illumina), and individual FASTQ files were analyzed with a custom Matlab script provided in the Supplementary Notes. Each read was pairwise aligned to the appropriate reference sequence using the Smith-Waterman algorithm. Base calls with a Q-score below 31 were replaced with N's and were thus excluded in calculating nucleotide frequencies. This treatment yields an expected MiSeq base-calling error rate of approximately 1 in 1,000 . Aligned sequences in which the read and reference sequence contained no gaps were stored in an alignment table from which base frequencies could be tabulated for each locus.
[00331] Indel frequencies were quantified with a custom Matlab script shown in the Supplementary Notes using previously described criteria ${ }^{71}$. Sequencing reads were scanned for exact matches to two $10-\mathrm{bp}$ sequences that flank both sides of a window in which indels might occur. If no exact matches were located, the read was excluded from analysis. If the length of this indel window exactly matched the reference sequence the read was classified as not containing an indel. If the indel window was two or more bases longer or shorter than the reference sequence, then the sequencing read was classified as an insertion or deletion, respectively.
[00332] All publications, patents, patent applications, publication, and database entries (e.g., sequence database entries) mentioned herein, e.g., in the Background, Summary, Detailed Description, Examples, and/or References sections, are hereby incorporated by reference in their entirety as if each individual publication, patent, patent application, publication, and database entry was specifically and individually incorporated herein by reference. In case of conflict, the present application, including any definitions herein, will control.

Supplementary Sequences

[00333] Primers used for generating sgRNA transfection plasmids. rev_sgRNA_plasmid was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 329-338 appear from top to bottom below, respectively.

```
rev_sgRNA_glasmid GGTGTTTCGTCCTTTCCACAAG
fwd _p53_Y1G3C GCTTGCAGATGGCCATGGCGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGG
fwG_p53_N239D TGTCACACATGTAGTTGTAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd_APOE4 _CI5&R GAAGCGCCTGGCAGTGTACCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
FW_EMXI GAGTCCGAGCAGAAGAAGAAGTTITAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd_FANCF GGAATCCCTTCTGCAGCACCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
f#OHEK293_2 GAACACAAAGCATAGACTGCGTTTTAGAGCTAGAAATAGOAAGTTAAAATAAGGC
fWG_HEK293_3 GGCCCAGACTGAGCACGTGAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fNG_HEK2G3_4 GGCACTGCGGCTGGAGGTGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
FWd_RNF2 GTCATCTTAGTCATTACCTGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
```

[00334] Sequences of all ssDNA substrates used in in vitro deaminase assays. SEQ ID NOs: 339-341 appear from top to bottom below, respectively.

sAPOBECI substrate	CYЗ-ATTATTATTATTCCGCGGATTTATTTATTTATTTASTTATTG
hAlDipmCDA substrate	CYO-ATTATTATTATTAGCTATTTATTTATTTATTGATTTATTH
hAPOEEC3G substrate	CYB-ATTATTATTATTCCCGGATTTATTIATTTATTTATTTATTT

[00335] Primers used for generating PCR products to serve as substrates for $\mathbf{T 7}$ transcription of sgRNAs for gel-based deaminase assay. rev_gRNA_T7 was used in all cases.

The pFYF 1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 342-365 appear from top to bottom below, respectively.

rey_sgRNA_T7	AAAAAAAGCACOGACTCGGTG
Fwi_sgRNA_T7_dsDNA_2	TAATACGACTCACTATAGGCCGCGGATTTATTIATTTAAGTTTTAGAGCTAGAAATAGCA
	TAATAQGACTCAGTATAGGTCOGGGGATTTATTTATTTAGTTTTAGAGCTAGAAATAGCA
Fic_sgRNA_TI_dsDNA_4	TAATACGACTGACTATAGGTTCCGCGGATTTATTTATHGTTTGAGAGCTAGAAATAGCA
fwa_sgrin _T7_dsDNA_5	TAATACGACTCACTATAGGATTCGGGGGATTATHATTGTTTTAGAGCTAGAAATAGCA
HicisgRNa_TT_dsDNA_ 6	TAATACGACTGACTATAGGTATTGGGGGGATTTATTTATGTTTTAGAGCTAGAAATAGGA
fwi_sgRNA_Th_dsDNA_?	TAATACGACTTACTATAGETTATTCCECSGATTTATTTAGTTGAGAGCTAGAAATAGCA
Fwasgrna_Ti_dsOdA_ 8	TAATACGACTCACTATAGGATTATTEQGQGATTTATTTGTTTAGAGCTAGAAATAGCA
fro_SgRNA_T7_dsONA_9	TAATACGAOTTACTATAGGTATTATTCCGOGGATITATTGTTTTAGAGCTAGAAATAGGA
	TAATACGACTCACTATAGGATTATTATCOGCGEATTTATGTTTTAGAGCTAGAAATAGCA
fwd_sgRNa_ ${ }^{7}$ _dsONA_11	TAATACGACTGACTATAGGTATTATATTCOGCGGATTTAGTTTTAGAGCTAGAAATAGCA
	TAATACGACTCACTATAGGTTATTATATTCOGOGGATTTGTTTTAGAGCTAGAAATAGCA
fwosgrna_ Th_dsDNA_13	TAATACGACTCACTATAGGATTATTATATTOCGCGGATTGTTTTAGAGOTAGAAATAGCA
fwo_sgRNa_T7_dsCNA_14	TAATACGACTCACTATAGGTATTATTATATTCCGCGGATGTITTAGAGCTAGAAATAGCA
fwG_sgRuA_T7_dsDRA_15	TAATACGACTCACTATAGGATTATTATATTACCGCGGAGTITTAGAGCTAGAAATAGCA
fwc_sgRNA_T7_dsDNA_te	TAATACGACTGACTATAGGATTATTATTATTATTACGGCGTTTTAGAGCTAGAAATAGCA
fra_sgrnis_T7_dsDMA_noc fwd sgrwa $T T$ ESDMA	TAATACGACTGACTATAGGATATTAATTHTTTATTTAAGTTTHAGAGCTAGAAATAGCA
APOE4_C1T2R -	TAATACGACTOACTATAGGGGAGGACGTGCGOGGCOGCCGTTTAGAGCTAGAAATAGCA
fwC_sgRNA_T_dSDNA APOEA_CISER	TAATACGACTGACTATAGGGAAGOGCOTGGCAGTGTACCGTTTAGAGOTAGAAATAGGA
fwa_sgRNA TT_dSDNA_ CTNVET_TATA	TAATACGACTGACTATAGGOTGTGGGAGTGGCACGAGAAGTTTTAGAGCTAGACATAGCA
	TAATACGACTGACTATAGGOCTCGGGGCGGGCGOTATGCGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_dsDNA_ 53 Y 18030	TAATACGACTGACTATAGGGCTTGGAGATGGCCATGGGGGTTTTAGAGOTAGAAATAGCA
	TAATACGACTCACTATAGGACACATGCAGTTGTAGTEGAGTITAGAGCTAGAAATAGCA
fre_sgevis_T7_dsDNA_ $53 \text { _N2390 }$	TAATACGACTGACTATAGGTGTCAGACATGTAGTTGTAGGTTTGAGAGOTAGAAATAGCA

[00336] Sequences of 80-nucleotide unlabeled strands and Cy3-labeled universal primer used in gel-based dsDNA deaminase assays. SEQ ID NOs: 366-390 appear from top to bottom below, respectively.

[00337] Primers used for generating PCR products to serve as substrates for T7 transcription of sgRNAs for high-throughput sequencing. rev_gRNA_T7 (above) was used in all cases. The pFYF 1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 391-442 appear from top to bottom below, respectively.

fwd_sgrian_THHTS_ base	TAATACGACTCACTATAGGTTATTTSGTGGATTTATTTAGTTTTAGAGCTAGAAATAGCA
	TAATACGACTGACTATAGGATATTTCGTGGATTHATTMAGTTTHAGAGCTAGAAATAGCA
Wd_sgRNA_TT_HTS_TO	TAATACGACTGACTATAGGCTATTTEGTGGATTTATTYAGTTTAGAGCTAGAAATAGCA
Frd_sgRiva_TH_HTS_ 16	TAATACGACTCACTATAGGGTATTTCGTGGATTHATTTAGTTTBAGAGCTAGAAATAGCA
Wh_sgrid $T 7 \ldots H T S+2 A$	TAATACBACTCACTATAGGTAATTTCGTGGATTHATTTAGTTTEAGAGCTAGAAATAGCA
WO_SgENH_T7_HTS_20	TAATACGACTCACTATAGGTCATTTGGTGGATTTATTYAGTTTAGAGCTAGAAATASCA
Fod_sgRNA_T/_HTS_2G	TAATACGACTGADTATAGGTGATTTCGTGGATTHATTGAGTTTAGAGCTAGAAATAGEA
Fid_sgRNA_TH_HTS_3T	TAATACGACTCACTATAGGTTTTTGGTGGATTTATTTAGTTTTAGAGCTAGAMATAGCA
fNd_sgRMA_TT_HTS_36	TAATACSACTCACTATAGGTTCTTICGTGGATTTATTTASTTTHAGAGCTAGAAATAGCA
W0_SgFMA_TT_HTS_3G	TAATACGACTCACTATAGGTTGTTTCGTGGATTTATTTAGTTTAGAGCTAGAAATAGCA
	TAATACGACTGACTATAGGTTAATTGOTGGATTTATTTAGTTTEAGGTAGAAATAGQA
Fra_sgrina_Th_HTS_40	TAATACGACTCACTATAGGTTACTTEGTGGATTATTFAGTITAGAGCTAGAAATAGCA
W0t_sgRida_T7_HTS_43	TAATACGACTCACTATAGGTTAGTTCGTGGATTTATTTAGTTTTAGAGOTAGAAATABCA
Wh_sgRNA_T7_HTS_5A	TAATACGACTCACTATAGGTTATATCGTGGATTGATTTAGTTTGAGAGCTAGAAATAGCA
Frd_sgRidn_T]_HTS_50	TAATACGACTCACTATAGGTTATCTCGTGGATTATTVAGTTTAGAGCTAGAAATAGCA
FWa_SgRNA_T/HTS_5G	TAATACGACTCACTATAGGTTATGTCGTGGATTTATTTAGTTIGAGAGCTAGAAATAGCA
ANA_SGRNA_Th_HTS_6A.	TAATACGACTCACTATAGGTTATTACGTGGATTHATTTAGTTTAGAGCTAGAAATAGCA
fwn_sgRMA_TT_HTS_EC	TAATACSACTCACTATAGGTTATTCQGTGGATTTATTTAGTGTTAGAGETAGAAATAGCA
AXd_SgFAN_TT_HTS_SE	TAATACGACTGACTATAGGTTATTGGGTGGATTTATTTAGTTTTAGAGCTAGAAATAGCA
fra_SgRMS_T7_HTS_84	TAATACGACTCACTATAGGTTATTICATGGATTHATTAGTTTHGAGCTAGAAATAGCA
WC_SgRNA_T7_hTS_ET	TAATACGACTGACTATAGGTTATTTCTTGGATTTATTGGTTFTAGAGCTAGAAATAGCA
Wo_sbrin $\mathrm{TH}_{-} \mathrm{HTS}$ _ EC	TAATACGACTGAGTATAGGTTATTGGTGGATTHTTTAGTTTAGAGCTAGAAATAGCA
FWd_SQRNA_T7_HTS_SA	TAATACGACTCACTATAGGTTATTTGGAGATTTATTTAGTTTTAGAGCTAGAATAGCA
fwa_SGRNA_T7_HTS_96	TAATAEGAGTCACTATAGGTTATTTGGGGATTATTTAGTTTTAGAGGTAGAATAGGA
Aw_FBRMA_TT_HTS_GG	TAATACGACTGACTATAGGTTATTTGGGGGATTTATTAGTTTTAGAGCTAGAAATAGCA
	TAATACGACTCACTATAGGTTATTTCGTAGATTTATTTAGTTTTAGAGCTAGAAATAGCA
EWO SQRNA TT_HES_IOT	TAATACGACTCACTATAGGTTATTGGTTGATTTATTTAGTTTAGAGCTAGAAASAGCA
AWd_sgRNA_T7_HTS_100	TAATACGAGTCACTATAGGTTATTEGTGGATTATTTAGTTTAGAGCTAGAAATAGCA
Ad_sgRNA_T_HTS_IA	TAATACGACTCACTATAGSTTATTTGGTGAATTTATTHAGTTTAGAGCTAGAATAGCA
W0 SORNA_TT_HTE_IT	TAATACGACTCAGTATAGGTTATTICGTGTATTHTTTAGTTTTAGAGCTAGAAATAGCA
FWO_sgRNA_T7_HTS_ IfC	TAATACGACTCACTATAGGTTATTTGGTGCATTTATTTAGTTTTAGAGCTAGAAATAGCA
GNO_SgRNA_T7_HES_12T	TAATACGACTCACTATAGGTTATTICGTGGTTTATTTAGTTTAGAGCTAGAAATAGCA
ArA_SgRNA_T7_FTS_ 120	TAATACGACTCACTATAGGTTATTICGTGGCTTHATTTAGTTTAGAGOTAGAAATAGCA

```
Ww_sgRNA_T7_HTS_12G
的_SgRNA_TT_HTS_VAA
fwd_sgRNA_TT_HTS_13C
*N_SgRTVA_T7_HTS_13G
NOd_sgRNA_T7_HTS_
mutwe
frd_sgRNA_TT_HTS_
TCGOACOE_0do
fWd_SgRNA_TT_HTS_
COTCGCAC_OGO
fWd_sgRNA_T7_HTS_
ACOCTCEC_Oda
Fwd_sgRNA_T7_HTS_
SCACCOTE_dN
fwd_sgrNA_T7_HTS_
TCECACCE_over
fwd_sgRNA_T7_HTS_
COTCOCAE_Sver
fwd_sgRNA_T7_HTS_
AOECTCEE_ever
Fwd_sgRNA_TT_HTS_
GCACCCTC Even
Nod_sgRNA_TT_HTS_
En<<!
Nvd_sgFM/A_BT_HTS_
FANOF
fov_sgRNA_T7_HTS_
HEK293_site2
fw_sgRivA_TF_HTS_
HEk2OS_site3
fwe_sgRNA_T7_HTS_
HEk2S3_sted
Nwd_sgRNA_T7_HTS_
RNF2
\begin{tabular}{|c|}
\hline TAATAGGACTCACTATAGGTTATTTGGTGGAATTATTTAGTTTGAGAGGTAGAAATAGCA \\
\hline TAATAGGACTCACTATAGGTTATTTGGTBGACTTATTTAGTTTHABAGCTAGAAATAGCA \\
\hline TAATACGACTCACTATAGGTTATTTCGTGGAGTIMTTTAGTTTGGAGCTAGAAATAGCA \\
\hline TAATACGACTCACTATAGGTTCCCCCCCCGATTTATTTAGTTTTAGAGCTAGAAATAGEA \\
\hline TAATACGACTCACTATAGGCGCACCCGTGQATTTATTAGTTTTAGAGCTAGAAATAGCA \\
\hline FAATACGACTCACTATAGGCTCGCACGTGGATTTATTTAGTTTGAGAGCTAGAATAGCA \\
\hline TAATACGACTCACTATAGGOCCTCGCGTGGATTTATTTAGTTTAGAGCTAGAAATAGCA \\
\hline FATACGACTOACTATAGGCACOETCGTGGATTTATTTAGTTTTAGAGCTAGAAATAGCA \\
\hline TAATACGACTCACTATAGGTCGCACCCGTGGATTATTAGTTTTAEAGCTAGAAATAGCA \\
\hline TAATAGGACTACTATAGGCOTCGEACGTGGATTTATTAGTTTAGAGCTAGAAATAGEA \\
\hline TAATACGACTCACTATAGGACCCTCGCGTGGATTHATAGTTTAEAGCTAGAAATAGCA \\
\hline FAATACGACTCACTATAGGGGACGCTCGTGGATTATTAGTTTTAGAGCTAGAAATASCA \\
\hline TATACGACTGACTATAGGGAGTCCGAGCAGAAGAAGAGGTTTAGAGCTAGAAATAOCA \\
\hline TAAECEACTCACTATAGGQGATCCCTTCTGOAGCADCGTTTTAGAGCTAGAAASGCA \\
\hline EAATACSACTCACTATAGGGAACACAAAGCATAGACTGCSTTTTAGAGCTAGAAATAGCA \\
\hline TATACGACTCACTATAGGQGCCCAGACTGAGEACGTGAGTTTAGAGCTAGAAATAGSA \\
\hline TAATACGACTCACTATAGGGGCACTGCGGOTGGAGGTGGOTTTTAGASCTAGAATAGCA \\
\hline TAATAEGACTGACTATAGGGTCATCTTRGTCATTACGTGGTTTTAGAGGTAGAAATAGGA \\
\hline
\end{tabular}
```

[00338] Sequences of in vitro-edited dsDNA for high-throughput sequencing (HTS). Shown are the sequences of edited strands. Reverse complements of all sequences shown were also obtained. dsDNA substrates were obtained by annealing complementary strands as described in Materials and Methods. Oligonucleotides representing the EMX1, FANCF, HEK293 site 2, HEK293 site 3, HEK293 site 4, and RNF2 loci were originally designed for use in the gel-based deaminase assay and therefore have the same $25-\mathrm{nt}$ sequence on their 5^{\prime} ' ends (matching that of the Cy3-primer). SEQ ID NOs: 443-494 appear from top to bottom below, respectively.

AOGTAACGGCOACAAGTGCTTATTYCGTGGATTTATTATGGCATCTTCTICAAGGACG AGGTAAACGGCCACAAGTTCATATTTCGTGGATTTATETATGOCATCTTCTHCAAGGAGG ACGTAAACGGCCACAAGTTCOTATTHCGTGGATTTATTTATGGCATCTTCTTGAAGGACG ACGTAACGGCCACAAGTTCGTATTTCGTGGATTTATTHATGGCATCTTCTTCAAGGACG acgTaAACGgCCACAAGTTCTAATTTCGTGGATTIATTATGGGATCTTCTTCAAGGACG ACGTAARCGGCCACAAGTTCTCATTTCGTGGATTTATTTATGGCATCTFCTTCAAGGACG ACGTAAACGGCCACAAGTTCTGATTTCGTGGATTTATTIATGGCATCTTCTTGAAGGACG agGTAAACGGCGACAAGTTCTITTTCGTGGATTATTTATGGGATCTTCTTCAAGGACG acgTaAACGGCCACAAGTTCTUTTTCGTGGATTTATETATGGCATCTICTTCAAGGACG acGTAAACGGCCACAAGTCTTGTTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG aCGTAAACGGCCACAAGTOTTAATTCGTGGATTTATTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTETTACTMCGTGGATTAATTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCAOAAGTETTAGTTCGTGGATTMATHATGGCATCTTCTHCAAGGAGG acgTanacggccacangmottatatcgtggatttattiatggcatcttcticanggacg ACGTAAACGGCCACAAGTTOTTATCTCGTGGATTTATTAATGGCATCTTCTTCAAGGACG ACGTAAACGGCORCAAGTTCTTATGTGGTGGATTHATHATGGCATCTTCTICAAGGACG ACGTAAACGGCCACAAGTTOTTATHACGTGGATTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCOACAAGTTOTTATECCGTGGATTATTATGGCATCTICTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATEGGGTGGATTMATTHATGGCATCTTCTICAAGGACG AGGTAARGGCCACAAGTTCTTATTTCATGGATTTATTGATGGCATCTTCTTOAAGGACG ACGTAAACGGCCAGAAGTTCTTATTETTGGATTTATTTATGGCATCTTCTTGAAGGACG ACGTAARCGGCOACAAGTICTTATTTCCTGGATTTATTTATGGCATCTTOTTCAAGGACG ACGTAAACGGCOACAAGTTCTTATTTGGAGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTATTTCGCGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTGGGGQATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGTAGATTTATTHAGGCATCTTOTTGAAGGACG ACGTAAACGGCCAGAAGTTCTTATTTCGTPGATTTATEATGGCATCTTOTTCAAGGACG ACGTAAMCGGCCACAAGTTCTATTTCGTCGATTTATTTATGGCATCTTOTTCAAGGACG ACGTAAACGGCCACAAGTTCTBATTTCGTGAATTHATBATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGTGTATTTATETATGGCATCTTCTTCAAGGAOG ACGTAAACGGCOACAAGTTCTTATTTGGTGCATTTATTTATGGCATCTTCTTCAAGGACG

EANCF_inwitro
HEK293_site2_
invitro
HEK293_site3
invitro
HEK293_site4_
invituo
ENF2_Invito

Abstract

ACGTAAACGGCCACAAGTTCTTATTTCGTGGTTTVATTHATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTGGTGGCTTTATTHATGGCATCTTCTTCAAGGACG ACGTAABCGCOACAAGTEOTHATTOGTGGGTTTATTTATGGCATCTTCTECAAGGAGG ACGTAAACGGCGACAAGTTGTTATTTGGTGGAATVATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTECTTATTTOGTGMACTHATTTATGGEATCTTCTTCAAGGACG ABGTAAACGOCCACAAGTTCTTATTTCGTGGAGTFATTTATGGCATCTTCTTCAAGGACG ACGTAAACGCCACAAGTECTTCCCCCOCCSATTVATTTATGGCATCTTCTTCAAGGACG AOGTAAACGGCOACAAGTTTCGCACCCGTGGATTTATTTATGGCATOTTCTTCAAGQACG ACGTAAACQGCGACAATTCOTCQCACGTGOATTVATTTATGGOATCTTGTTOAAOQAG AOGTAAACGGCQACAAGTTAOQCTGGCGTGGATTFATTHAGGOATOTTGTTCAAGGACG ACGTAAACGGCOACAATRGCACOCTCGTGGATTATTTATGGCATCTTOTTCAAGQACG AGGTAAACGGCCACAAGTATTCGCACOCGTGGATTTATTATGGCATCTTCTHCAAGACG ACGTAAACGGCCACAAGTATCCTCGCACGTGGATTTATTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTATACCCTCGCGTGGATTTATTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTATGCACCCTCGTGGATTTATTATGGCATOTTCTTCAAGGACG GTAGGTAGTHAGGATGAATGGAAGGTEGTAGOCCEGGTCGGGCAGAAGAAGAGGGCTCCCATCACATCAACCGGTE GTAGOTAGTAAGGATGATGGAGGTGGGTACTCATGGAATCOCTCTGCAGGACTGGATCOCTTTCCGAGCTECTGG GTAGGTAGTTAGGAGGATGGARGGTTGGTAAMCGGACACAAAGCATAGACTCGGGOGGGCCAGCCTGAATAGCTG GTAGGTAGTTAGGATGAATGGAADGTGGGTACTGGGGGCCCAGACTGAGCACGTGATGGCAGAGGAAAGGAAGCOCTGCT GTAGOTAGTGAGGATGATGGAGGTGGTACOGGRGGCACTGGGGCTGGAGTGGGGGTAARGOGGAGAGTGGGTGO

[00339] Primers for HTS of in vitro edited dsDNA. SEQ ID NOs: 495-503 appear from top to bottom below, respectively.

find kwitrehtrs	ACACTCTTTCOSTACACGACGCTCTTCCGATCTNNWNACGTAAACSGCCACAA
rev_invitro HTS	TGGAGTICAGACGTGTGCTCTTCEGATCTCGTCCTTGAAGAAGATGC
fro_mutro_HEK_targets	ACACTCTTTCCSTACACGACGCTCTTOCGATCTINDNGTAGGTAGTTAGGATGAATGGAA
	TGGAGTGAGACGTGTGCTCTTCCGATCTCACCGGTTGATGTGATGO
	TGGAGTTGAACGTGTGCTCTTCOGATCTCCASAAGCTCGGAAAAGC
rev_HEK293_ste2_hwitro	TGGAGTGAGAGGTGTGCTGTTCCGATCTGASCTATTGAGGCTGGE
rey_HEKC93_site3_invito	TGGAGTICAGACGTGTGCTCTTCCGATCTAGGAGGGCTTCETTTC
rev_HEK293_stes_nvino	TEGAGTEAGACGTGTGCTETTGCGATCTGCACCAGAGTCTECG
rev_FNF2_mutco	TEGAGTTCAGACGTGTGCTETTGGGATCTTTATATGAGTTACAACEAACACE

[00340] Primers for HTS of on-target and off-target sites from all mammalian cell culture experiements. SEQ ID NOs: 504-579 and 1869-1900 appear from top to bottom below, respectively.

```
fwd_EMX:_HTS
rev_m\:HTS
FWI_FANGF_HTS
rev_FANCF_HTS
FWd_HEK293_site2_HTS
rav_HEx2s\mp@subsup{S}{2}{\primeSH2HTS}
TWC_HEK293_site3_HTS
fev_HE%2Q3_site3_HTS
fwd_HEK293_site4_HTS
rev_HEK293_site4_HTS
FWg_RMF2_HTS
Yev_RNF2_HTS
FWd_p53_Y163C_HTS
F2v_R53_M163C_HTS
fmd_p53_N2390_HTS
fev_p53_N2390_HTS
fNd APOE4 CISER HTS
Yev_APOE4_C\SER_HTS
WM_EMN1_o##_HTS
rev_EMK:_om_HTS
HO_EMP?_OW2_HTS
rev_ENX\_of2_HTS
Na,EmX:_ofs_HTS
rev_EMX\_off_HTS
fwd_EMK:_off_HTS
Yev_EMX: OTH4 HTS
```

	ACACTETTTCCOTACACGACGCTCTTCCGATCTNNANCOAAGAGGGCCAASTCGRG
Rev_EMX?_o6S_HTS	TGGAGTTGAGACGTGTECTCTTCOGATCTGAGCGAGGAGTGACAGCC
fod_EMX Of7_HTS	ACACTCTTICGCTACACGACGCTCTTCGGATCTNNNNCACTCCACCTGATCTCGGES
	TGGAGTTCAGACGTGTECTCTTCGGATCTCGAGGAGEGASGGAGCAG
Wd_EMX ${ }_{\text {afte_HTS }}$	ACACTCTTTCCOTACACGACGCTCTTGCGATCTNNNNACCACAAATGCCCAAGAGAC
rev_EMX ${ }_{\text {- }}$ OHS_HTS	TGGAGTTCAGACGTGTECTCTTSCGATCTGACACAGTGAMGGGCCGE
	ACACTCTTTCCCTACACGACQCTCTTCOGATCTNNNNCCCACCTTTGAGGAGGCAAA
Rev_EMX T_oft_HTS	TGGAGTTCAGACGTGTGCTCTTECGATCTTTCCATCTGAGAAGAGAGTGGT
FO_ENX SOATO_HTS	ACACTCTITCCCTACACGACGCTCTTCGGATCTNNMNGTCATACCTTGGCCCTECCT
	TGGAGTTCAGACGTGTECTCTICCGATCTTCOCTAGGCCCACACCAG
+O_FANCF_SffiHTS	ACACTCTTTCCOTACACGACGCTCTTGCGATCTNNNAAMCCACTGAAGAAGCAGGG
EX_FANCF_Dit! STS	TGGAGTTCAGACGTGTECTCTTCOGATCTGGTGCTTAATCSGGCTCGAT
FM_FANCF_Dfta_HTS	ACACTETTICCCTACACGACGCTCTTEGGATCTNNNNTCGAGTGTTTCCATECOGAA
rex_FANCF_OH2_HTS	TGGAGTIGAGACGTGTECTCTICCGATCTCCTCTGACCTCGACAACTCT
FO_FANCF_Off3_HTS	ACACTCTTTCCGTACAGGACGCTCTTCCGATCTNNNNCTGGETACAGTECTGCGTGT
Rev_FANCF_OtS_HTS	TGGAGTTCAGACGTGTECTCTTCCGATETTCACTCTGAGCATCGCCAAE
- FANCF_Dft HTS	ACACTCTTICCETACACGACGCTCTTCCGATCTNNNWGGTTIAEAECCAGTGAACTAGAG
HEV_FANCF_OH4_HTS	TGGAGTTGAGACGTGTGETOTTCOGATETGOAAGASAAATCOTCTTTATACTTTS
(WG_FANCF_ofts_HTS	ACACTCTTTCCCTACACGACECTCTTCOGATSTMNWNGGGAGGGGAGGGCOTEAC
SEV_FANCF_OH5_HTS	TGGASTTEAGACGTGTGOTCTTCCGATCTSCETCTEGCSAACATGGC
WC_FANCF_Otfe_HTS	
EV_FANCF_OHS_HTS	TGGAGTTCAGACGTGTECTCTTCOSATCTGATTGAGTCCCCAGAGCAEA
ANdFAMCF_Of7_HTS	ACACTCTTCCCTAGACGACOCTCTTCOGTETNNNNOCAGTGTTTCCATCCSCAA
Rev_FANCF_OTT_HTS	TGGAGTTCAGACGTETGCTCTTCCGATCTTGACCTECACAACTGGAAMAT
Wd_FANCF_Off_ HTS	ACACTCTTTCOCTAGACGACGCTCTTCCGATCTNNNNGCTECCAGACCCACCTGAAG
EVFANCF_Off_HTS	TGGAGTTCASACETGTGOTCTICOSATCTACOSAGGAAATTGCTTGTCS
Ard_HEK293_siez_ofl_HTS	ACACTCTITCCOTACACGACGOTCTTCOGATCTNNNHGTGTGGAGAGTSAGTAASCOA
rev_HEK233_stez_str_HTS	TGQAGTTCAGACGTETGCTETTCCGATCTACGGTAGGATGATTTCAGGCA
fwi_HEK293_site2_off2_HTS	ACACTCTTTSCCTACACGACGCTCTTCCGATCTHNHNCACAAAGCAGTGTAGSTCAGG
fey_hEK2E3_sitez_off HTS	TGQAGTTCAGACETGTGCTCTECEGTGTTETTEGTACTCGAGTGTTATTCAG
ANHEK293 stie3 Of:_HTS	
rev_HEK2s3_sies_off_hts	TGGAGTTCAGACGTGTGCTCTTCCGATCTCACTGTACTTGCCCTGACSA
ANSHEK293_ste3_0ft_HTS	ACACTCTTTCCETACACGACSCTCTTCEGATCTM
rev_HEK293_sites_ofta_HTS	TGGAGTTGAGACGTGTGCTCTGCEGATCTCTGAGATGTGGGCASAAGGG
fra_HEX293_sites_of3_HTS	ACACTOTTTCCCTACACGACGCTCTTCOGATCTNNHNTGAGAGGGAACAGAAGGGCT
Rev_HEK2S3_ste3_offe_hts	TGGAGTTCAGACGTGTGCTCTECCGATCTGTOCAAABGCOCAAGAACCT
WO_HEK293_site3_off4_HTS	ACACTCTTTCCCTACAOSACSCTCTTCCQATCTHMNMTCCTACCACTTTEGAAGGTCS
	TGEAETTGAGACGTGTGCTCTECSATETGCTGATCTTAATCTOCTCAECU
W0_HEK293_site3_oty_hte	ACACTCTTTCCGTACACGACGCTCTHCCGATCTNUWAAAGGASCAGCTCTTCOTSG
Yev_HEK2S3_site3_ons_hTS	TGGAGTTCAGACGTGTGCTCTFCCGATCTGTCTGCACCATOTCCCACAA

Wh_HEXSS_ste__off_htS sev_HEK29_shet_off_HTS
FWdHEK283_ste4_OT2_HTS
Wh_HEK2E3_ste4_On3_HTS
rev_HEK293_sited_df3_HTS
Fod_HEX293_ste4_oltu_hts
SV_HEK2S3_3te4_Ot4_ HTS
WW_HEK253_Ste4_O6n_HTS
rev_HEK293_sted_uta_HTS
WNa HEK293 ste 4 orto HTS
sev_HEK2en_site__aff_hts
Yev_HEK293_sited_otf? HTE
Wd_HEK293_sited_off3_HTS
yev_HEN233_site +offe_hts
Wd_KEN293_Site _ Ofs_HTS
rev_HE\%293_sites_ofa_HTS
Fw_HEK293_sited_offla_HTS
Pev_HEK293_site +offlo_HTS
fla_HEK2_Chlp_Off _HTS
rev_HEK2_CnPF_off_HTS
WW_HEK2_ChP_OtT2_HTS
WWEHEK2_ChP_OS_HTS
REY SEK2 Chf ofl hts
Wd_ HEK2_CBP_OMA_HTS
rev_SENZ_ChP_off_HTS
WW_HEK2_CHF_OHSHTS
rex HEK2 OnP off HTS

*W\&HEKSS_ste4_afl_HTS
sey_HEK293_ste.__off_HTS

s\%_HEK2SE_sited_OTV_HTS
Wh_HEK253_ste4_OH2_HTE
rev_HEK293_sted_DT3_HTS
FW0_HEX293_site4_Of4_HTS
:Ev_HEK2S3_sie4_atid_HTS
6w_HEK253_site _ofs_htS
Yev_HEK2 ${ }^{2}$ _sted_off_HTS
FWQ HEK293 stes ott HTS
rev_HEK293_ste\&_uff_HTS
Wd_HEK253_ste4_Ont_HTS
rev_HEK293_site__otr_HTE
Fw_HEK293_sited_ofb_HTS
rev_hEK2e3_sifet_off_hTS
W0_REX233_Site4_ofs_HTS
rev_HEK2es_sited_Ofe_HTS
FWCHEK293_siten_offo_HTS
rev_HEK293_site4_off10_HTS
fwd_HEK2_ChP_Off ? HTS
rev_HEK2_CnPF_off_HTS
fwd_HEK2_ChP_oti2_HTS
WWE_HEK2_ChP_OH2HTS
Rey : EEK CnP off HTS
WOCHEKZ_CBP_OFA_HTS
rey_HEKZ_CHP_off_HTS
EX HEK2 ONP OAF HTS

[^0]```
WM_HEK3_ChFPOff_HTS
rev_HEK3_CHP_off_HTS
WNO_HEK3_CHF_Off2_HTS
REV_HEK3_CHP_of2_HTS
NWO_HEK3_ChMP_off_HTS
rev_HEK3_ChPP_of3_HTS
FWd_HEK3_Ch!P_off4_HTS
rev_HEK3_CHPPOfA_HTS
FW\mp@subsup{_}{_}{\primeHEK3_CNP_Off=_HTS}
rev_HEK3_ChF_OF5_HTS
Wh| HEK4_CNP off HTS
YEV_HEK4_ChP_off_HTS
Wd_HEK4_ChP_off3_HTS
rev_HEK4_CNP_off3_HTS
```


[00341] Sequences of single-stranded oligonucleotide donor templates (ssODNs) used in HDR studies.

EMX1 sense (SEQ ID NO: 580)
TGATTGTGGCCCTGCCTGCCTGGCGCAGGTGAAGGTGTGGTTGCAGAACGGGAGGARAAAGTACA AAGGCAGAAGGTGGAGGAGGAAGGGGCGGAGTTTGAGGAGAAGAAOAAGGGCTGOCATGAGAG AACCGGTGGGGQATTGCGAGGAAGGABGCCAATGGGGAGGACATCGATGTCACGTGCAAGGGTAG GGT

EMX1 antisense (SEQ ID NO: 581)
ACOCTAGTCATTGGAGGTGACATCGATGTCCTCOCCATHGGCCTGOTTCGTGGCAATGCGCGACCG gTtGATGTGATGGGAGCCCTICTTCTICTGCTCAAACTCAGGCCCTICCTCCTCCAGCTTCTGCCGT
 A

HEK293 site 3 sense (SEQ ID NO: 582)
CATGCAATTAGTCTATTTCTGCTGCAAGTAAGCATGCATTIGTAGGCTTGATGCTHTTTTTCTGCTTCT CCAGCCCTGGCCTGGGTCAATCCTTGGGGCTTAGACTGAGCACGTGATGGCAGAGGAAAGGAAGO CCTGCTTCCTCOAGAGGGCGTCGGAGGACAGCTHTHCCTAGACAGGGGCTAGTATGTGCAGCTCCT

HEK293 site 3 antisense (SEQ ID NO: 583)
agGagctgcacatactagcccctgtctagganaagctgtcctgcgacgccctctggaggaagcagg gCTTCCTTTCCTCTGCCATCACGTGCTCAGTCTAAGCOCCAAGGATTGACCCAGGCCAGGGCTGGA gangCagahaharagCatcaagcotacanatgCatgCTtacttgcagcagaratagactanttgcatg

HEK site 4 sense (SEQ ID NO: 584)

GGCTGACAAAGGCOGGGCTGGGTGGAAGGAAGGGAGGAAGGGCGAGGCAGAGGGTCCAAAGCAG GATGACAGGCAGGGGCACCGCGGCGCCCCGGTGGCATTGCGGGTGGAGGTGGGGGTTAAAGCGG AGACTOTGGTGCTGTGTGACTACAGTGGGGGCOCTGCCCTCTCTGAGCCCCCGCOTCCAGGCCTGT GTGTGT

HEK site 4 antisense (SEQ ID NO: 585) ACACACACAGGCCTGGAGGCGGGGGCTCAGAGAGGGCAGGGCCCCCACTGTAGTCACACAGCACC AGAOTCTCOGCTTTAACCOCCACOTCCAGCOGCAATGCCACCGGGGCGCOGCGGTGCOCOTGCOT GTGATCCTGCTEGGGACGCTCTGCCTCGCCCTTCCTCOCTTCCTTCCACCCAGCCGGGCGTTIGTGA GCC

APOE4 sense (SEQ ID NO: 743)
AGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCG CGATGCCGATGACCTGCAGAAGTGCCTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCGAG

CGCGGCCTCAGCGCCATCCGCGAGCGCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCG CCACTGT

APOE4 antisense (SEQ ID NO: 744)
ACAGTGGCGGCCCGCACGCGGCCCTGTTCCACCAGGGGCCCCAGGCGCTCGCGGATGGCGCTGA gGCCGCGCTCGGCGCCCTCGCGGGCCCCGGCCTGGTACACTGCCAGGCACTTCTGCAGGTCATCG GCATCGCGGAGGAGCCGCTTACGCAGCTIGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCT CGGTGCT
p53 Y163C sense (SEQ ID NO: 745)
ACTCCCCTGCCCTCAACAAGATGTITTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGA TTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACATGAC GGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGAGCAGCTGGGGC TG
p53 Y163C antisense (SEQ ID NO: 746)
CAGCCCCAGCTGCTCACCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACAACCTC CGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGG AATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGG AGT
[00342] Deaminase gene gBlocks Gene Fragments
$h A I D$ (SEQ ID NO: 586)
CATCCTTGGTACCGAGCTCGGATCGAGCCACGATGGATAGCCTCTTGATGAATAGACGCAAGTTCCT GTATCAGTTTAAAAACGTGAGATGGGCAAAAGGCOGAGGAGAGACATATCTGTGCTATGTCGTTAAG GGCAGAGATTCAGCGACGAGTITCTGTGTGGACTTGGGCTACOTGCGGAACAAGAATGGTGGCCATG TTGAGCTCCTGTTCCTGAGGTATATCAGCGACTGGGATTTGGACCGAGGGCGGTGCTATAGGGTGA CATGGTTTACCTCOTGGTGACCTTGTTATGACTGCGCGGGGCATGTTGCCGATITICTGAGAGGGAA CCCTAACGTGTCTCTGAGGATCTTCACCGCGCGACTGTACTTCTGTGAGGACCGGAAAGCGGAACC CGAGGGACTGAGACGCCTCGACAGAGCGGGTGTGGAGATGGCCATAATGACCTTTAAGGACTACT\} CTACTGCTGGAACACCTTCGTCGAAAATCACGAGCGGACTTTCAAGGCTTGGGAAGGATTGCATGAA AACAGCGTGAGGCTTTCCAGGCAGCTTCGCOGCATTCTTCTCCOGTTGTACGAGGTTGATGACCTCA GAGATGCCTTTAGAACACTGGGACTGTAGGCGGCCGCTCGATTGGTTTGGTGTGGCTCTAA
rAPOBEC1 (mammalian)(SEQ ID NO: 587)


#### Abstract

CATCCTTGGTACCGAGCTCGGATCCAGCCACCATGAGCTCAGAGACTGGCCCAGTGGCTGTGGACC CCACATTGAGACGGCGGATCGAGCCCCATGAGTITGAGGTATTOTTCGATCGGAGAGAGCTCCGCA AGGAGACCTGCCTGCTGTACGAAATTAATTGGGGGGGCCGGCACTCCATTTGGCGACATACATCACA GAACACTAACAAGGACGTCGAAGTCAACTTCATCGAGAAGTTCACGACAGAAAGATATTTCTGTCCG AACACAAGGTGCAGCATTACOTGGTTTCTCAGCTGGAGCCCATGCGGCGAATGTAGTAGGGCCATC ACTGAATRCCTGTCAAGGTATCCCCACGTCACTCTGTTTATBTACATCGCAAGGCTGTACCACCACGC TGACOCGCGCAATCGACAAGGCOTGCGGGATTTGATCTCTTCAGGTGTGACTATCCAAATTATGACT GAGGAGGAGTGAGGATAOTGCTGGAGAAACTTTGTGAATTATAGOCCGAGTAATGAAGCCCACTGG CCTAGGTATCCCCATCTGTGGGTACGACTGTACGTTCTIGAACTGTACTGCATCATACTGGGCOTGC CTCCTIGTCTGAACATTCTGAGAAGGAAGCAGCCACAGCTGACATTCTTTACCATCGCTGTTCAGTCT TGTCATTACCAGCGACTGCCCCCACACATTCTCTGGGCOACCGGGTTGAAATGAGOGGCOGCTCGA TTGGTTTGGTGTGGCTCTAA


## pmCDAl (SEQ ID NO: 588)

CATCCTTGGTACGGAGCTCGGATCGAGCCACGATGACAGACGCTGAATATGTTAGGATGCATGAAAA ACTGGATATCTATACATTTAAGAAGCAGTTGTTCAATAACAAAAAGTGAGTATCTCACAGATGCTATGT CCTGTTCGAACTCAAGAGAAGAGGAGAAAGGCGGGCCTGTTTCTGGGGGTACGCGGTTAATAAACC CGAGTCCGGGACCGAGAGGGGGATTCACGGCGAGATCTITTCAATTAGGAAGGTTGAAGAGTATCT TCGCGACAATCCCGGTCAGTTCACAATTAACTGGTACAGGTCCTGGAGCCCTTGCGCTGATTGCGCC GAGAAAATACTCGAATGGTACAACCAGGAGTTGAGAGGCAATGGCCACACTGTCAAGATTTGGGCTT GCAAGCTTTACTACGAGAAGAACGGGAGAAATCAGATTGGCTTGTGGAACCTGAGGGACAACGGGG TCGGGTTGAATGTTATGGTGTCCGAACATTAOCAGTGCTGTAGAAAGATCTTCATTGAGTCCAGTCAC AATGAGCTGAACGAGAACAGATGGCTGGAGAAAACACTGAAACGGGGAGAGAAAAGGCGCTCAGAG CTGAGTATCATGATCCAGGTCAAAATCCTGCATACAACCAAAAGCCGGGCTGTATAAGCGGCCGOTO GATTGGTEGGGTGTGGCTCTAA

## haPOBEC3G (SEQ ID NO: 589)

GATCCTTGGTACCGAGGTCGGATCGAGCCACGATGGAGCTGAAGTATCACCGTGAGATGGGGTTTTT CCACTGGTTTAGTAAGTGGCGCAAACTTCATCGGGATCAGGAGTATGAAGTGACCTGGTATATCTCT TGGTCTGCCTGCACAAAATGTACAGGCGACATGGCCACATTTGTGGCGGAGGATCCAAAGGTGACG OTCACAATCTTTGTGGCCGGCOTGTATTATTTCTGGGACCCGGATTATCAGGAGGCAOTTAGGTCAT TGTGCCAAAAGCGCGACGGACCACGGGCGACTATGAAAATCATGAATTATGACGAATTCCAGCATTG CTGGAGTAAGTTTGTGTACAGCCAGCGGGAGCTGTTCGAGCCCTGGAACAATCTECCCAAGTACTAC ATACTGCTTCACATTATGTIGGGGGAGATCCTTCGGCACTCTATGGATCCTCCTACCTTTACGTTTAA CTTTAATAATGAGCOTTGGGTTCGCGGGCGCCATGAAACCTATITGTGCTACGAGGTCGAGCGGATG CATAATGATACGTGGGTCCTGCTGAATCAGAGGAGGGGGTTTGTGTGTAACOAGGCTCGAGATAAAC ATGGATITCTCGAGGGGCGGCACGCCGAACTGTGTTRCCTTGATGTGATACCTITCTGGAAGCTOGA CCTTGATCAAGATTACAGGGTGACGTGTTTCACCTCCTGGTCACCCTGCTTCAGTTGCGCCCAAGAG ATGGCTAAATDTATGAGTAAGAACAAGCATGTGTCOCTCTGTATTTTTACAGCGAGAATTGATGATGAC GAGGGCCGGTGCCAGGAGGGGCTGCGGACAGTCGCTGAGGGGGGCGCGAAGATCAGCATAATGA GATACTCCGAATTCAAACACTGTTGGGACACTTTTGTGGACCACCAGGGGTGCCCATITCAGCCGTG GGATGGGCTCGACGAACATAGTCAGGATCTCTCAGGCGGGCTGCGAGCOATATTGCAGAACOAGGA GAATTAGGCGGCGGCTCGATTGGTTGGTGTGGCTCTAA

## rAPOBEC 1(E. Coli) (SEQ ID NO: 590)

GGCCGGGGATICTAGAAATAATTTGTTTAACTTTAAGAAGGAGATATACCATGGATGTCTTCTGAAA GCGGTCGGGTGGCGGTTGACCCGACCOTGCGTCGTGGTATCGAACCGCACGAATTCGAAGTTITCT TCGACCCGCGTGAACTGCGTAAAGAAACCTGCCTGCTGTACGAAATCAACTGGGGTGGTCGTCACT CTATCTGGGGTCACACGTCTCAGAACACCAAGAAACACGTTGAAGTTAACTTGATGGAAAAATTCACC ACCGAACGTTACTTCTGCCOGAACACOCGTTGCTCTATCACCTGGTTGCTGTCTTGGTCTOCGTGOG GTGAAGCTCTCGTGCGATCACCGAATTCCTGTCTCGTTACCCGCACGTTACCCTGTTCATCTACATC GCGCGTCTGTACCACCACGCGGACGCGCGTAACGGTCAGGGTCTGCGTGACOTGATCTCTICTGGT GTTACCATCCAGATCATGACCGAACAGGAATCTGGTTACTGCTGGCGTAACTTCGTTAACTACTCTCG GTCTAACGAAGCGCACTGGCCGCGTTACCGGCACCTGTGGGTTCGTCTGTACGTBCTGGAACTGTA GTGCATCATCOTGGGTCTGCCGCGGTGCOTGAACATCOTGCGTCGTAAACAGCCGCAGCTGACGTT

CTTCACGATCGCGCTGCAGTCTTGCCACTACCAGOGTCTGCCGCCGCACATCCTGTGGGCGACCGG TCTGAAAGGTGGTAGTGGAGGGAGCGGCGGTTCAATGGATAAGAAATAC

## [00343] Amino Acid Sequences of NBE1, NBE2, and NBE3.

## NBE1 for E. Coli expression ( $\mathrm{His}_{6}$-rAPOBEC1-XTEN-dCas9) (SEQ ID NO: 591)

MGSSHHHHHHMSSETGPVAVDPTLRRREPHEFEVFFDFRELRKETCLYEMWGGRHSWNRTSQNTN KHVEVNFIEKFTIERYFCPNTRCSTTWFLSWGPCGECSRATEFLSRYPHVTIFIMARLYHHABPRNRQGL RDLISSGVTIQIMTEQESGYCNRNFVNYSPSNEAHWPRYPHLWNREYVELYCULGLPPCINILRRKQPQ LTFFTIALQSCHYQRLPPHUWATGLKSGSETPGTSESATPESDKKYSIGLAGTMSVGWAVITDEYKVPSK KFKVGGNTDRHSKKNLIGALLFDSGETAEATRLKFTARRRYTRRKNRICYLOEIFSNEMAKVDDSFFHRL EESFEVEEDKKHERHPIFGNVDEVAYHEKYPTMHLRKKLVDSTDKADLRLMLALAHMKFRGHFLIEGOL NPONSDVDKLFIQLVQTYNQLFEENPINASGVDAKALSARISKSRRLENLIAOLPGEKKNGLFGNLIALSL GLTPNFKSNFOLAEDAKLQLSKDTYODDLDNLLAQIGDQYADLFLAAKNLSDALLSDLRVNTEITKAPLSA SMKRYOEHHOOLTLKALVROQLPEKYKEIFFDQSKNGYAGYDGGASOEEFYKFMPILEKMDGTEELI VKLNREDLLRKQRTFDNGSIPHOHHLGELHALRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEENDKKASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYYTE GMRKPAFLSGEQKKAVDLIFKTNRKVTVKQLKEDYFKKECFDSVEISGVEDRFNASLGTYHDLLKIKDK OFLDNEENEDLEOULTLTLFEDREMIEERLKTYAHLFODKVMKOLKRRRYTGNGRLSRKLINGIRDKQS GKTLDELKSDGFANRNFMOLIHODSITFKEOIQKAQVSGQGDSLHEHMALAGSPAKKGUQTVKVDEL VKVMGRHKPENUIEMARENOTTOKGQKNSRERMKRIEEGKEEGSQUKEHPVENTOLONEKEYEYYLQ NGRDMYVDQELDIWRLSDYDVDAVPQSFIKDDSIDNKVLTRSDKNRGKSONVPSEEVVKKMKMYNRQL UNAKLITQRKFDNLTKAERGGLSELDKAGFWROLVETROITKHVAQUDSRMNTKYDENDKLSREVKVITLK SKIVSDFRKDFQFYKVREINNYHHAHDAYLNAWNGTALKKYPKLESEFVYGDYKVYDVRKMAAKSEQEIG KATAKYFFYSNMMNFFKTEITLANGERKRPLIETWGETGEMWDOKGRDFATVRKVLSMFQVNIVKKTEVQT GGFSKESILPKRNSOKLAARKKDWDPKKYGGFDSPTVAYSVUVAKVEKGKSKKLKSVKELLGITMERSS FEKNPIDFLEAKGYKEVKKDLIKLPKYSLFELENGRKRMLASAGELQKGNELALFSKYNFLYLASHYEKL KGSPEDNEQKQLFVEOHKHYLDEIEQISEFSKRVILADANLDKVLSAYNKHROKPIREQAENMHLFTITNL GAPAAFKYFOTTIORKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV

NBE1 for Mammalian expression (rAPOBEC1-XTEN-dCas9-NLS) (SEQ ID NO: 592)
MSSETGPYAVDPTLRRRIEPHEFEVFFOPRELRKETCLLYEINWGGRHSMNHTSONTNKHMEVNFIEKF TTERYFGPNTRCSITWFESWSPCGECSRAIGEFLSRYPHVTEFMIARLYHHADPRNROGLRDLISSGVTIQ WTEQESGYCNRNFVNYSPSNEAHWPRYPHLWURLYVLELYCILGLPPCLNURRKQPQLTFFTALOSC HYOREPPHILWATELKSGSETPGTSESATPESDKKYSIGLAGTNSVGWAVIDEYKVPSKKFKVLGNTDR HSIKKNLGALLFOSGETAEATRLKRTARRRYTRRKNRICYLQEIFGNEMAKVODSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTHHURKKLVDSTDKADLRLIYLALAHMMKFRGHFLIEGDLNPDNSDVDKLF IQLVQTYNQLFEENPINASGVDAKAISSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFOL AEDAKLQLSKDTYDDOLDNLLAQIGDQYADLFLAAKNLSDARLSOLEVVATEITKAPLSASMKRYDEHHO DLTULKALYRQQLPEKYKEIFFDOSKNGYAGYDGGASQEEFYKF:KPILEKMOGTEELLVKLNREDLLRKQ RTFUNGSIFHQHHLGELHALLRRQEDFYPFLKDNREKEKILTFRIPYYVGFLARGNSRFAWMTRKSEETITP WNFEEVVDKGASAOSFERMTMFOKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQ KKAVDLLFKTNRKVTVKQLKEDYFKKIEGFDSVEISGVEDRFNASLGTYHDUKKIKDKDFLDNEENEDLE DULTLTLFEDREMEERLKTYAHLFDOKVMKQLKRRRYTGWGRLSRKLINGIRDKOSGKTILDFLKSDGFA NRNFMOLIHODSITFKEDIOKAQUSGQGOSLHEHIANLAGSPAKKGLOTVKVVDELVKMMGRHKPENVI EMARENQTTOKGOKNSRERMKRIEEGIKELGSOUKKEFVENTOLONEK YLYMENGRDWYVDQELDI MRLSDYDVDAVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYNRQLLNAKUIGRKFONL TKAERGGLSELDKAGFIKRQLVETRQIKHVAQLDDRMMMTKYDENDKLIREVKVITLKSKLVSDFRKDFQF YKVREINWYHHAHDAYLKAVVGTALKKYPKLESEFVMGGYKVYDVRKMSKSEQEIGKATAKYFFYSNMM NFFKTEITLANGEIRKRPLETNGETGEWWOKGRDFATVRKVISMPQVNNKKTEVQTGGFSKESILPKRN SDKLIARGKDWDPKKYGGFDSPTVAYSULVVAKVEKGKSKKIKSUKELIGITMERSSFEKNPIOFLEAKG YKEVKKDLIKLPKYSLFEEENGRKRMLASAGELOKGNELALPSKYVNFLYASHYEKKKGSPEDNEOKQL FVEQHKHYDDEGEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENHHLFTHTNLGAFAAFKYFDTT] DRKRYTSTKEVLDATLIHOSITGLYETRIDLSQLGGDSGGSPKKKRKY

Alternative NBE1 for Mammalian expression with human APOBEC1 (hAPOBEC1-XTEN-dCas9-NLS) (SEQ ID NO: 5737)

MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTN HVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFW HMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLY ALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIHPSVAWRGSETP GTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGD LNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAA KNLSDALLLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQ SKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIH LGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW NFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMR KPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYH DLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRY TGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD YDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ RKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVK VITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDY KVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVW DKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGG FDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKD LIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNE QKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTL TNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKK RKV

NBE2 (rAPOBEC1-XTEN-dCas9-UGI-NLS) (SEQ ID NO: 593)


#### Abstract

MSSETGPVAVDPTLRRRIEFHEFEVFFDPREIRKETCLIYEINWGGRHSWRHTSONTNKHVEVNFIEKF THERYFCPNTRCSIWFLSWSPCGECSRATTEFLSRYPHVTFIYIARLYHHADPRNRQGLRDLISSGVTIQ MTEQESGYCWRNFVNYSPSNEAHVPRYPHLWNRIMLE YCHLGLPPCLNIRRKOPOLTFFTIALOSC HYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVTDEYKVPSKKFKVLGNTDR HSIKKNLIGALFOSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHFIFGWVOEVAYHEKYPTMHLFKKLVOSTOKADLRLMLALAHMIKFRGHFLEEGDLNFDNSOVDKLF IQLVQTYNQLFEENPINASGVDAKARSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL AEDAKLQLSKDTYDODLDNLLAQGDQYADLFLAAKNLSDALLSDLLRVNTEITKAPISASMKRYDEHHQ DLTLKALYRQQLPEKYKEIFFDQSKNGYAGYDGGASGEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ FTFDNGSIPHOIHLGELHALLRRQEDFYPFLKDNREKIEKILTFRIPYMGPLARGNSRFAWMTRKSEETITP WHFEEVDKKGASAOSFERMTNFDKNLPNEKVLFKHSLLYEYFTVMNE TKVKYTEGMRKPAFLSGEQ KKAVDLLFKTHRKVTVKQLKEDYFKMIECFDSVEISGVEDRFNASLGTYHDLIKIKOKDFLDNEENEDLE DMLTLTLFEDREMEERLKTYAHLFDUKVMKQLKRRRYTGWGRLSRKZIMGIRDKQSGKTIDFFLKSDGFA NRNFMQLIHDOSLTFKEDIOKAQVSGQGDSLHEHAMLAGSPAKKGROTVKVVELVKVMGRHKPENMI EMARENQTTQKGQKNSRERMKRIEEGKKELGSQILKEHPVENTQLQNEKLYLYMLQNGRDMYVDQELDI NRLSDYDVDANPQSFLKDDSIDNKVLTRSDKNRGKSDWVPSEVWKKMKNMWRQLINAKLITORKFDNL TKAERGGLSELDKAGFIKRQLVETRQITKHAOLDSRMNTKYDENDKLIREVMVTLKSKLVSDFRKDFQF YKVREINNYHHAHDAYLNAVVGTALIKKPRGESEFVYGDYKVYOVRKMIKSEQEIGKATAKYFFYSNMM NFFKTEITLANGERRKRLIETNGETGEIVWDKGRDFATVRKVLSMFQUNUVKKTEVQTGGFSKESLLPKRN SDKLIARKKDWDPKKYGGFDSPTVAYSULWAKVEKGKSKKLKEVKELLGTMMERSSFEKNPIDFLEAKG YKEVKKDHIKLFKYSLFELENGRKPRLASAGELQKGNELALPSKYVNFLYLASHYEKIKGSPEDNEQKOL FVEOHKHYLDEMEQISEFSKRVHAOANLDKVLSAYNKHRDKPIREQAENUHLFTITMLGAPAAFKYFDTH DRKRYTSTKEVLDATLHOSITGLYETRIDLSQLGGDSGGSTNLSDIEKETGKQLVIOESILMLPEEVEEVIG NKPESDILVHTAYDESTDENVMLITSDAFEYKPWALVIQDSNGENKIKMLSGGSFKKKRKY


## NBE3 (rAPOBEC1-XTEN-Cas9n-UGI-NLS) (SEQ ID NO: 594)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLVEINWGGRHSWRHTSONTNKHVEVNFEKF TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFMMARIYHHADPRNRQGLRDLISSGVTGQ WUTEQESGYOWRNFVNYSPSNEAHWPRYPHLWWRIYMELYCILGLPPCLMLRRKQPQLTFFTALQSC HYQRIPPHHLWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDR HSKKMLIGALFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDOSFFHRLEESFLVEEDKK HERHPIFGNVDEVAYHEKYPTIYHLRKKLVOSTOKADLRLMLALAHMKFRGHFLIEGDENPDNSDVDKLF IQLVQTYNQLFEENPINASGVDAKARSARLSKSRRLENLIAQLPGEKKNGLFGNLIAISLGLTPNFKSNFDL AEDAKLQLSKDTYDDDLDNLIAQIGDQYADLFLAAKNLSDALLSOILRVNTEITKAPLSASMKRYDEHHQ DLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYDGGASQEEFYKFIKPILEKMOGTEELLVKLNREDLLRKQ RTFDNGSIPHOIHLGELHALLRRQEDFYPFIKDWREKIEKIITFRIPYYVGPLARGNSRFAWMTRKSEETITP WNFEENDKKGASAQSFIERMTMFOKNLPNEKVLPKHSLLYEYFTVMNEITKVKYTEGMRKPAFLSGEQ KKAVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHOLIKIKOKOFLDNEENEDHE DVITLTLFEDREMEERLKTYAHLFDDKYMKQLKRRRYTGWGRLSRKLMGRDKQSGKTHLDFLKGDGFA NRNFMQLIHDDSLTFKEDIQKAOVSGQGDSLHEHIANLAGSFAKKGULOTVKWOEIVKVMGRHKPEND/ EMARENOTTOKGQKNSRERMKRIEEGKELGSOLLKEHPVENTQLONEKLYLYYLQNGRDMYVDQELD: NRLSDYDVDHNPQSFLKDDSIDNKVLTRSDKNRGKSDNYSEEVVKKMKNYWRQLLNAKLITQRKFDNL TKAERGGLSELDKAGFIKRQLVETRQITKHVAQLLDSRMNTKYDENOKLIREVKVILKSKLVSDFRKDFOF KVVEINNYHHAHDAVNAVWGTALKKYPKIESEFVYGOYKVYDVRKMAKSEQEIGKATAKYFFYSNMM NFFKTEILANGEIRKRPLIETNGETGEINWDKGRDFATVRKVLSMPQVNNKKTEVOTGGFSKESILPKRN GOKLARKKDWDPKKYGGFDSPTVAYSVLW/AKVEKGKSKKIKSVKELLGTTMERSSFEKNPIDFLEAKG YKEVKKDUIKLFKYSLFELENGRKRMLASAGELOKGNELALPSKYVNFLYLASHYEKIKGSPEDNEQKQL FVEOHKHYLDE:IEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIHLFTLTNLGAPAAFKYFDTT DRKRYTSTKEVLDATLHOSTGGLYETRIDLSQLGGOSGGSTNLSDIEKETGKQLVIQESRMLPEEVEEVG NKPESDIVHTAYDESTDENVMLLTSDAPEYKPWALVIQOSNGENKIKMLSGGSPKKKRKV
pmCDA1-XTEN-dCas9-UGI (bacteria) (SEQ ID NO: 5742)
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQS GTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTL KIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWL

EKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSETPGTSESATPESDKKYSIGLAIGTNSV GWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYH LRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFE ENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLA EDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK ILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLK SDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGLLQTVKVV DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT QLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKN RGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYS NIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSV KELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVIL ADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEV LDATLIHQSITGLYETRIDLSQLGGDSGGSMTNLSDIIEKETGKQLVIQESILMLPEEVEEVI GNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML
pmCDA1-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID NO: 5743)
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQS GTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTL KIW ACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWL EKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSETPGTSESATPESDKKYSIGLAIGTNSV GWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYH LRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFE ENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLA EDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK ILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLK SDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT QLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKN RGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL

VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYS NIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSV KELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVIL ADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEV LDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESLLMLPEEVEEVIG NKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKR KV
huAPOBEC3G-XTEN-dCas9-UGI (bacteria) (SEQ ID NO: 5744)
MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLE GRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIY DDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGR LRALLQSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDR HSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMI KFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKALLSARLSKSRRLE NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMT RKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTK VKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKV MKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAREN QTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQ ELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQ LLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQLDSRMNTKYDE NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLE SEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETN GETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAK GYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKL KGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA ENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD SGGSMTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLL TSDAPEYKPWALVIQDSNGENKIKML
huAPOBEC3G-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID NO: 5745)
MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLE GRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIY DDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGR LRALLQSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDR

HSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMI KFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLE NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMT RKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTK VKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKV MKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAREN QTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQ ELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQ LLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQLLDSRMNTKYDE NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLE SEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETN GETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAK GYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKL KGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA ENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD SGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLT SDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV
huAPOBEC3G (D316R_D317R)-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID NO: 5746)

MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLE GRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIY RRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGR LRAILQSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDR HSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMI KFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKALSARLSKSRRLE NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMT RKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTK VKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKV MKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAREN QTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQ ELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQ LLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE

# NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLE SEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETN GETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAK GYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKL KGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA ENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD SGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLT SDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV 

## [00344] Base Calling Matlab Script

WTnuc='GCGGACATGGAGGACGTGCGCGGCCGCCTGGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGC
CAGA
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCG ATGAC

CTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGC GAGCG CCTGGGGCCCCTGGTGGAACAG'(SEQ ID NO: 595);
\%cycle through fastq files for different samples files=dir('*.fastq');
for $\mathrm{d}=1: 20$
filename=files(d).name;
\%read fastqfile
[header,seqs,qscore]=fastqread(filename);
seqsLength $=$ length(seqs); $\quad$ \% number of sequences seqsFile $=$
strrep(filename,'.fastq',"); $\%$ trims off .fastq
\%create a directory with the same name as fastq file ifexist(seqsFile,'dir'); error('Directory already exists. Please rename or move it before moving on.');
end
mkdir(seqsFile); $\quad$ \%make directory
wtLength = length(WTnuc); \% length of wildtype sequence
\%\% aligning back to the wildtype nucleotide sequence \%
\% AIN is a matrix of the nucleotide alignment window=1:wtLength;
sBLength = length(seqs); $\%$ number of sequences
$\%$ counts number of skips nSkips $=0$;
ALN=repmat(",[sBLengthwtLength]);
\% iterate through each sequencing read for $\mathrm{i}=1$ :sBLength
\%If you only have forward read fastq files leave as is
\%If you have R1 foward and R2 is reverse fastq files uncomment the
\%next four lines of code and the subsequent end statement
$\% \quad i f \bmod (d, 2)==0$;
\% reverse = seqrcomplement(seqs $\{i\}$ );
\% [score,alignment,start]=
swalign(reverse, WTnuc,'Alphabet', 'NT');
\% else
[score,alignment,start]=swalign(seqs $\{\mathrm{i}\}, \mathrm{WTnuc}, ' A l p h a b e t ', ' N T ') ;$
\% end
\% length of the sequencing read len=
length(alignment( $3,:$ ));
$\%$ if there is a gap in the alignment , skip $=1$ and we will
\% throw away the entire read skip $=0$; for $\mathrm{j}=1$ :len
if $\left(\operatorname{alignment}(3, \mathfrak{j})==^{\prime}-'| | \operatorname{alignment}(1, \mathrm{j})=={ }^{\prime}-1\right)$ skip $=1$;
break;
end
\%in addition if the qscore for any given base in the read is
\%below 31 the nucleotide is turned into an N (fastq qscores that are not letters)
ifisletter(qscore $\{i\}(\operatorname{start}(1)+j-1))$ else
alignment $(1, j)=$ 'N';
end
end
if skip $==0$ \& \& len>10
$\operatorname{ALN}(\mathrm{i}, \quad \operatorname{start}(2):(\operatorname{start}(2)+$ length(alignment)-1$))=\operatorname{alignment}(1,:) ;$ end
end
\% with the alignment matrices we can simply tally up the occurrences of
\% each nucleotide at each column in the alignment these
\% tallies ignore bases annotated as N
\% due to low qscores
TallyNTD $=$ zeros $(5, w t$ Length $)$; for $i=1$ :wtLength

TallyNTD $(;, i)=\left[\operatorname{sum}\left(A L N(; i)==^{\prime} A^{\prime}\right), \operatorname{sum}\left(A L N(;, i)=={ }^{\prime} C^{\prime}\right), \operatorname{sum}\left(A L N(;, i)==' G^{\prime}\right), \operatorname{sum}(A\right.$
$\left.\left.\mathrm{LN}(:, \mathrm{i})===^{\prime} \mathrm{T}\right), \operatorname{sum}\left(\operatorname{ALN}(:, \mathrm{i})=={ }^{\prime} \mathrm{N}^{\prime}\right)\right]$;
end
\% we then save these tally matrices in the respective folder for
\% further processing
save(strcat(seqsFile,'/TallyNTD'),'TallyNTD'); dlmwrite(strcat(seqsFile, '/TallyNTD.txt'), TallyNTD,'precision', '\%.3f', 'newline', 'pc'); end

## [00345] INDEL Detection Matlab Script

WTnuc='GCGGACATGGAGGACGTGCGCGGCCGCCTGGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGC CAGA
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCG ATGAC
CTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGC GAGCG CCTGGGGCCCCTGGTGGAACAG'(SEQ ID NO: 595);
\%cycle through fastq files for different samples files= $\operatorname{dir}^{( }{ }^{( }$.fastq');
\%specify start and width of indel window as well as length of each flank indelstart=154;
width $=30$; flank $=10$;
for $d=1: 3$
filename $=$ files(d).name;
\%read fastqfile
[header,seqs,qscore]=fastqread(filename);
seqsLength = length(seqs); $\quad$ \% number of sequences seqsFile
=strcat(strrep(filename,'.fastq',"),'_INDELS');
\%create a directory with the same name as fastq file+_INDELS ifexist(seqsFile,'dir'); error('Directory already exists. Please rename or move it before moving on.');
end
mkdir(seqsFile); \%make directory
$w t$ Length $=$ length $(W T n u c) ; \quad$ \% length of wildtype sequence sBLength $=$
length(seqs);
$\%$ number of sequences
\% initialize counters and cell arrays
nSkips $=0$; notINDEL $=0$;
ins=\{\};
dels $=\{ \} ;$ NumIns $=0$;
NumDels=0;
\% iterate through each sequencing read for $\mathrm{i}=1$ :sBLength
\%search for 10BP sequences that should flank both sides of the "INDEL WINDOW"
windowstart=strfind(seqs $\{\mathrm{i}\}$, WTnuc(indelstart-flank:indelstart));
windowend=strfind(seqs $\{\mathbf{i}\}$,WTnuc(indelstart+width:indelstart+width+flank
));
\%if the flanks are found proceed
iflength(windowstart) $==1 \& \&$ length(windowend) $==1$
\%if the sequence length matches the INDEL window length save as

## \%not INDEL

if windowend-windowstart==width+flank notINDEL=notINDEL+1;
\%if the sequence is two or more bases longer than the INDEL
\%window length save as an Insertion
elseif windowend-windowstart $>=$ width + flank +2 NumIns $=$ NumIns +1 ; ins $\{$ NumIns $\}=$ seqs $\{i\}$;
\%if the sequence is two or more bases shorter than the INDEL \%window length save as a Deletion
elseif windowend-windowstark $=$ =width + flank-2 NumDels=NumDels +1 ; dels $\{$ NumDels $\}=$ seqs $\{i\}$;
\%keep track of skipped sequences that are either one base
\%shorter or longer than the INDEL window width else
nSkips=nSkips+1;
end
\%keep track of skipped sequences that do not possess matching flank
\%sequences else
nSkips $=$ nSkips ${ }^{+1}$;
end
end
fid=fopen(strcat(seqsFile,'/summary.txt'),'wt'); fprintf(fid, 'Skipped reads \%iln not INDEL \%iln Insertions \%iln Deletions
\%iln', [nSkips, notINDEL, NumIns, NumDels]); fclose(fid);
save(strcat(seqsFile,'/nSkips'),'nSkips'); save(strcat(seqsFile,'/notINDEL'),'notINDEL'); save(strcat(seqsFile,'/NumIns'),'NumIns'); save(strcat(seqsFile,'/NumDels'),'NumDels'); save(strcat(seqsFile,'/dels'), 'dels');
$\mathrm{C}=$ dels;

fclose(fid);
save(strcat(seqsFile, '/ins'), 'ins'); C = ins;
fid $=$ fopen(strcat(seqsFile, '/ins.txt'), 'wt'); fprintf(fid, " $" \% s " \backslash n ', C\{:\}$;
fclose(fid);
end

## EXAMPLE 5: Cas9 variant sequences

[00346] The disclosure provides Cas9 variants, for example Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterek, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H 840 residues of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for H . In some embodiments, the H 840 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 10, or a
corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is a D.
[00347] A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 10 or SEQ ID NO: 11 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT(accessible at stva.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties $-11,-1$; End-Gap penalties $-5,-1$. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003 ; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.
[00348] An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 11 | WP_010922251| gi 499224711 | type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 12 | WP_039695303 | gi 746743737 | type II CRISPR RNAguided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 13| WP_045635197 | gi 782887988 | type II CRISPR RNA-guided endonuclease Cas9
[Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 14|5AXW_A | gi 924443546| Staphylococcus aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.

```
S1 1 --MDKK-YSIGLD*IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI--GALLFDSG--ETAEATRLKRTARRRYT }7
S2 1 --MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLL--GALLFDSG--ETAEATRLKRTARRRYT }7
S3 1 --M-KKGYSIGLD*IGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLI--GALLFDEG--TTAEARRLKRTARRRYT }7
S4 1 GSHMKRNYILGLD*IGITSVGYGII--DYET------------------RDVIDAGVRLFKEANVENNEGRRSKRGARRLKR 61
S1 74 RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL 153
S2 75 RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTFDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL 154
S3 74 RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL 153
S4 62 RRRHRIQRVKKLL--------------FDYNLLTD----------------------HSELSGINPYEARVKGLSQKLSEEE 107
S1 }154\mathrm{ IYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK 233
S2 155 VYLALAHMIKERGHFLIEGELNAENTDVQKIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK 234
```

IYLALAHMIKYRGHFLYEEAFDIKNNDIQKI FNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLFPDEK
 131
KNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT ..... 313
KNTLFGNLIALALGLQPNFKTNFKLSEDAKLQFSKDTYEEDLEELLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNST ..... 314
STGLFSEFLKLIVGNQADFKKHFDLEDKAPLQFSKDTYDEDLENLLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPST ..... 313
-----GNELS- -TKEQISRN ..... 144
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV ..... 391
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKIKIDGSDYFLD ..... 394
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQSKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD ..... 391
----SKALEEKYVAELQ- ..... 165
KLNREDLLRKQRTEDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEE ..... 471
KIEREDFLRKQRTEDNGSIPHQIHLQEMHAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE ..... 474
KIEREDFLRKQRTFDNGSIPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE ..... 471
--EVRGSINREKTSD--------YVKEAKQLLKVQKAYHQLDQSEIDTYIDLLETRRTYYEGP--GEGSPFGW- ..... 227
TITPWNFEEVVDKGASAQSEIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL ..... 551
KITPWNFDKVIDKEKSAEKEITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSNMKQEIFDH ..... 553
AIRPWNFEEIVDKASSAEDEINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQFLDSGQKKQIVNQ ..... 551
DIKEW-- YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYYEKFQIIEN ..... 289
LEKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED ..... 628
VEKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED ..... 632
LFKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEFMDDAKNEAILENIVHTLTIFED ..... 627
VEKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS ..... 363
REMIEERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED 707KDMIHERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNKENNKTILDYLIDDGSANRNEMQLINDDTLPFKQI 711REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDKQTGNTILDYLIDDGKINRNEMQLINDDGLSFKEI 706SEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE------LWHTNDNQIAIFNRLKLVP----------- 428
IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTI-----QKGQKNSRERM 781
IQKSQVVGDVDDIEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQTT------NRGRSQSQQRL 784
IQKAQVIGKTDDVKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQTT------ARGKKNSQQRY 779KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD850
KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD ..... 860
KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD ..... 852
ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN ..... 570
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDN-LTKAERGGL-SELD-------KAGFIKRQLV ..... 922
SIDNRVLTSSAKNRGKSDDVPSLDIVRARKAEWVRLYKSGLISKRKFDN-LTKAERGGL-TEAD-------KAGFIKRQLV ..... 932
SLDNRVLTSSKDNRGKSDNVPSIEVVQKRKAFWQQLLDSKLISERKFNN-ITKAERGGL-DERD-------KVGFIKRQLV ..... 924
SFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLV 650

```
S1 923 ETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDERKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYP 1002
S2 933 ETRQITKHVAQILDARFNTEHDENDKVIRDVKVITLKSNLVSQFRKDFEFYKVREINDYHHAHDAYLNAVVGTALLKKYP 1012
S3925 ETRQITKHVAQILDARYNTEVNEKDKKNRTVKIITLKSNLVSNERKEFRLYKVREINDYHHAHDAYLNAVVAKAILKKYP 1004
S4 651 DTRYATRGLMNLLRSYFRVN-------NLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIA-------------}71
S1 1003 KLESEFVYGDYKVYDVRKMIAKSEQ--EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG---7 1077
S2 1013 KLASEFVYGEYKKYDIRKEITNSSD-----KATAKYFFYSNLMNFFKTKVKYADGTVFERPIIETNAD-GEIAWNKQ---- }108
S3 1005 KLEPEFVYGEYQKYDLKRYISRSKDPKEVEKATEKYFFYSNLLNFFKEEVHYADGTIVKRENIEYSKDTGEIAWNKE---_ 1081
S4713 --NADFIFKEWKKLDKAKKVMENQM----------------------------EEKQAESMPEIETEQEYKEIFITPHOIK}76
S1 1078 -----RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD---WDPKKYGGFDSPTVAYSVLVVAKV 1149
S2 1084 -----IDFEKVRKVLSYPQVNIVKKVETQYGGFSKESILPKGDSDKLIPRKTKKVYWDTKKYGGFDSPTVAYSVFVVADV 1158
S3 1082 -----KDFAIIKKVLSLPQVNIVKKREVQTGGFSKESILPKGNSDKLIPRKTKDILLDTTKYGGFDSPVIAYSILLIADI 1156
S4765 HIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKL----KKLIN-KSP----EKLLMYHH }83
S1 1150 EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG-----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG 1223
2 1159 EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASASELQKG 1232
31157 EKGKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKELQKG 1230
S4 836 DPQTYQKLK--------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKV 907
1224 NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH------- 1297
S2 1233 NEMVLPGYLVELLYHAHRADNF-----NSTEYLNYVSEHKKEFEKVLSCVEDFANLYVDVEKNLSKIRAVADSM------ 1301
S3 1231 NEIVLPVYLTTLLYHSKNVHKL-----DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSLYADN------ 1299
S4908 VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKKISNQAEFIASFYNNDLIKING 979
1298 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSIT---------GLYETRI----DLSOL 1365
2 1302 DNFSIEEISNSFINLLTLTALGAPADFNFLGEKIPRKRYTSTKECLNATLIHQSIT--------GLYETRI----DLSKL 1369
1300 EQADIEILANSFINLLTFTALGAPAAFKFFGKDIDRKRYTTVSEILNATLIHQSIT---------GLYETWI----DLSKL 1367
980 ELYRVIGVNNDLLNRIEVNMIDITYR-EYLENMNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKKHPQIIKK 1055
1366 GGD 1368
1370 GEE 1372
1368 GED 1370
1056 G-- 1056
```

[00349] The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 11-14 (e.g., S1, S2, S3, and S4, respectively) are
mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 10 that correspond to the residues identified in SEQ ID NOs: 11-14 by an asterisk are referred to herein as "homologous" or "corresponding" residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 10 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 10, are referred to herein as "homologous" or "corresponding" mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 10 or S1 (SEQ ID NO: 11) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 10 or S1 (SEQ ID NO: 11) are H850A for S2, H842A for S3, and H560A for S4.
[00350] A total of 250 Cas9 sequences (SEQ ID NOs: 11-260) from different species were aligned using the same algorithm and alignment parameters outlined above. Amino acid residues homologous to residues 10 , and 840 of SEQ ID NO: 10 were identified in the same manner as outlined above. The alignments are provided below. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Single residues corresponding to amino acid residues 10 , and 840 in SEQ ID NO: 10 are boxed in SEQ ID NO: 11 in the alignments, allowing for the identification of the corresponding amino acid residues in the aligned sequences.

|  |  |
| :---: | :---: |
|  | WP 0396953 |
|  | P_045635 |
|  | AXW A |
|  | P_00988068 |
|  | P-01092225 |
|  | WP 011054 |
|  | WP 011284745 |
|  | P 0112855 |
|  | WP 011527619 |
|  | P -0125606 |
|  | WP_01440 |
|  | WP_0209051 |
|  | WP_02308000 |
|  | WP_02361028 |
|  | WP 0301259 |
|  | P 03012670 |
|  | P 03148831 |
|  | P 03246014 |
|  | P-032461 |
|  | P 0324620 |
|  | WP 03246293 |
|  | P_0324648 |
|  | WP 0338889 |
|  | WP_03843131 |
|  | P 038432938 |
|  | P 038434062 |
|  | BAQ51233.1 |
|  | KGE60162.1 |
|  | GE60856.1 |
|  | P_00298 |

$\stackrel{m}{7}$








 IT



[^1]

|  | CFO25032.1 |
| :---: | :---: |
|  | CFV16040.1 |
|  | KLJ37842.1 |
|  | KLJ72361 |
|  | KLL20707.1 |
|  | KLL42 |
|  | WP_04 |
|  | WP 047209694 |
|  | WP 050198062 |
|  | WP 050201642 |
|  | WP 050204027 |
|  | WP 050881965.1 |
|  | WP 050886065.1 |
|  | AHN3 |
|  | EAO78 |
|  | CCW42055 |
|  | WP 003041502.1 |
|  | WP-037593752.1 |
|  | WP 049516684.1 |
|  | GAD46167 |
|  | WP 018363470.1 |
|  | WP 003043819.1 |
|  | WP -006269658.1 |
|  | WP_048800889.1 |
|  | WP_012767106.1 |
|  | WP 014612333 |
|  | WP 015017095.1 |
|  | WP 015057649.1 |
|  | WP 048327215.1 |
|  | WP 049519324.1 |
|  | WP 012515931.1 |
|  | NP 021320964.1 |
|  | WP 037581760.1 |
|  | WP_004232481.1 |






$\cdots$ ウM ウ
 K-KG-YSIGLDIGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT MKRN-YILGLDIGITSVGYGII--DYET-------------RDVIDA---GVRLFKEANVEnnEGRRS KRGARRLKR MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKLKGLGNTDRHGI KKNLI GALIFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSI KKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSI KKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSI KKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKLKVLGNTDRHGI KKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKLKVLGNTDRHGI KKNLIGALLFDSGETA--EATRLKRTARRRYT GTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA MDKK-YSIGLDI GTNSVGWAVITDDYKVPSKKFKVLGNTDRHSI KKNLIGALIFDSGETA--EATRLKRTARRRYT
$W P-010922251$
$W P-039695303$
$W P-045635197$
$5 A X W A$
$W P-009880683$
$W P-010922251$
$W P-011054416$
$W P-011284745$
$W P-011285506$
$W P-011527619$
$W P-012560673$
$W P-014407541$
$W P-020905136$
$W P-023080005$
$W P-023610282$
$W P-030125963$
$W P-030126706$
$W P-031488318$
$W P-032460140$


| WP 032461047 |
| :---: |
| WP-032462016 |
| WP 032462936 |
| WP_032464890 |
| WP_033888930 |
| WP 038431314 |
| WP 038432938 |
| WP 038434062 |
| BAQ51233 |
| KGE60162 |
| KGE60856 |
| WP 002989955 |
| WP 003030002 |
| WP 003065552 |
| WP 001040076 |
| WP 001040078 |
| WP 001040080 |
| WP 001040081 |
| WP 001040083 |
| WP 001040085 |
| WP 001040087 |
| WP 001040088 |
| WP 001040089 |
| WP 001040090 |
| WP 001040091 |
| WP 001040092 |
| WP 001040094 |
| WP 001040095 |
| WP 001040096 |
| WP_001040097 |
| WP_001040098 |
| WP 001040099 |
| WP 001040100 |
| WP_001040104 |



[^2]








 み○ ন い －N NN M M $\begin{array}{llllll}10 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$



[^3]| MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT | 73 |
| :--- | :--- | :--- |
| MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT | 73 |
| MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT | 73 |
| MDL------IGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT | 66 |
| ENKN-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT | 74 |
| ENKN-YSIGLDIGTNSVGWSVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT | 74 |
| K-KP-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTNKESIKKNLIGALLFDAGNTA--ADRRLKRTARRRYT | 73 |
| $-------------------------------~$ |  |


| 024786433 |  |
| :---: | :---: |
| WP 049473442 | 1 |
| WP 049474547 |  |
| EMC03581 |  |
| WP-000428612 |  |
| WP 000428613 | 1 |
| WP 049523028 |  |
| WP 003107102 | 1 |
| WP 054279288 | 1 |
| WP-049531101 | 1 |
| WP 049538452 | 1 |
| WP 049549711 | 1 |
| WP 007896501 | 1 |
| EFR44625 |  |
| WP 002897477 |  |
| WP 002906454 | 1 |
| WP 009729476 | 1 |
| CQR24647 |  |
| WP 000066813 | 1 |
| WP-009754323 | 1 |
| WP 044674937 | 1 |
| WP 044676715 | 1 |
| WP-044680361 |  |
| WP 044681799 | 1 |
| WP 049533112 | 1 |
| WP 029090905 | 1 |
| WP 006506696 | 1 |
| AIT42264 | 1 |
| WP 034440723 | 1 |
| AKQ21048 | 1 |
| WP 004636532 | 1 |
| WP-002364836 | 1 |
| WP 016631044 |  |
| EMS 75795 |  |





$m m b$ MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQI KKNFWGVRLFDEGQTA--ADRRMARTARRRIE MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQI KKNFWGVRLFDEGQTA--ADRRMARTARRRIE MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQI KKNFWGVRLFDEGQTA--ADRRMARTARRRIE MRKP-YTIGLDIGTNSVGWAVLTDQYNLVKRKMKVAGSAEKKQI KKNFWGVRLFDEGEVA--AGRRMNRTTRRRIE RRP MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKISGDSEKKQI KKNFWGVRLFEKGETA--AKRRMSRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDEGETA--ADRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKISGDSEKKQI KKNFWGVRLFEKGETA--AKRRMSRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQI KKNFWGVRLFDDGQTA--VDRRMNRTARRRIE MKKP-YTIGLDIGTNSVGWAALTDOYDLVKRKMKVAGNSEKKOIKKNLWGVRLVDEGKTA--AHRRVNRTTRRRIE ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT I-VD-YCIGLDLGTGSVGWAVVDMNHRLMKRN------------GKHLWGSRLFSNAETA--ATRRSSRSIRRRYN KDIR-YSIGLDIGTNSVGWAVMDEHYELLKKG-------------NHHMWGSRLFDAAEPA--ATRRASRSIRRRYN ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT MDKK-YSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT

| WP 010991369 |
| :---: |
| WP_033838504 |
| EHN60060 |
| EFR89594 |
| WP_038409211 |
| EFR95520 |
| WP 003723650 |
| WP 003727705 |
| WP 003730785 |
| WP 003733029 |
| WP 003739838 |
| WP_014601172 |
| WP 023548323 |
| WP 031665337 |
| WP 031669209 |
| WP 033920898 |
| AKI 42028 |
| AKI50529 |
| EFR83390 |
| WP 046323366 |
| AKE81011 |
| CUO82355 |
| WP_033162887 |
| AGZ01981 |
| AKA60242 |
| AKS 40380 |
| 4UN5 B |

143
144
143
104
 $\cdots$
い い



## $\underset{\square}{7}$

$\begin{array}{lll}m & m & m \\ \forall & \exists & \forall \\ \neg & \ddots & \square\end{array}$
$\begin{array}{llll}m & m & 0 & m \\ \nabla & \downarrow & \downarrow & \nabla\end{array}$ コ অ অ コ ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV
DSHPIFGNKA－EEDAYHQKFPTIYHLRKHLA
 －－NPYEARVK－－ー－ーーーーーーー－ー－GLSQKLS FRHPIFGNIV－DFVAYHEKYPTIYHLRKKLV ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV
 ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV
 ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV－DEVAYHEKYPTIYHLRKKLV ERHPTFGNIV－DEVAYHEKYPTTYHTRKKLV
 GRYPIFGNKA－DVVKYHQEFPTIYHLRKHLA SKYPIFATLQ－EEKYYHEKFPTIYHLRKELA
みじひ 『
な戸なざなゴゴ，

ザゴ



 SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
 SKYPIFATLQ-EEKDYHEKFSTIYHIRKEIA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
 SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA SKYPIFATMQ-EEKYYHEKEPTIYHIRKEIA SKYXIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATMQ-EEKDYHEKEPTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
 SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
CRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLEDD-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G



SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA

SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA ERHPIFGNIA-AEVKYHDEFPTIYHLRKHLA SKYPIFGTLK-EEKEYHKKFKTIYHLREELA
 SKYPIFGTLK-EEKEYHKKFKTIYHLREELA
 ERHPIFGNLA-DEVAYHRNYPTIYHLRKKIA EHHPIFGNIA-AEVKYHDDFPTIYHLRRHLA SKYPIFGTLK-EEKEYYKEFETIYHLRKRLA ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
 ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
 NKHPIFANLA-DEVAYHKKYPTIYHLRKELV NKHPIFANLA-DEVAYHKKYPTIYHLRKELV NKHPIFANLA-DEVAYHKKYPTIYHLRKELV DSHPIFGNKA-EEDTYHQEFPTIYHLRKHLA ERHPIFGNKA-EEDAYHQKFPTIYHLRNYLA ERHPIFGNKA-DEIKYHQEFPTIYHLRKHLA RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRILYLQEIFAEKMSKVDDSFFHRLED-SFLV--EEDKR---G
RRRNRLRYLQEIFAEEMMQVDESFFQRLDD-SFLV--DEDKR---G
RRKNRLRYLQEIFTEEMNKVDENFFQRLDD-SFLV--EEDKQ---G
RRRNRLRYLQEIFAEEMMQVDESFFQRLDD-SFLV--EEDKR---G
RRKNRLRYLQEIFTEEMNKVDENFFQRLDD-SFLV--EEDKQ---G
RRKNRLRYLQDIFTEEMAKVDDSFFQRLDE-SFLT--DNDKN---F
RRKNRIRYLQEIFANEMAKLDDSFFQRLEE-SFLV--EEDKK---N
RRKNRLRYLQEIFTGEMNKVDENFFQRLDD--SFLV--DEDKR---G
RRKNRLRYLQEIFIEEMNKVDENFFQRLDD-SFLV--TEDKR---G
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK----
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK----H
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H
RRKNRLRYLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G
RRKNRLRYLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G
RRKNRLRFLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G
RRKNRLRYLQEIFAKEMAKVDESFFQRLEE-SFLT--DDDKT---
RRKNRLRYLQEIFAEEMTKVDESFFYRLDE-SFLT--TDEKD---F
RRKNRLRYLQEIFAEEMAKVDESFFYRLDE-SFLT--TDDKD----F


みツツツツm
戸 サ অ অ サ
 $m$
$\square$ $\omega$
サ
－
 － がいま $\begin{array}{cc}m & m \\ \downarrow \\ \square\end{array}$ $n$
$\cdots$
$\cdots$
 $\cdots$ DSHPIFGNKA－EEDAYHQKFPTIYHLRKHLA
 ENHPIFGNLK－DEITYHNDYPTIYHLRQTLA ENHPIFGNLK－DEITYHNDYPTIYHLRQTLA ENHPIFGNLK－DEITYHNDYPTIYHLRQTLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA SKYPIFGTLE－EEKNYHKNYPTIYHLRKTLA SKYPIFATLE－EEKEYHKNFPTIYHLRKHLA SKYPIFATLT－EEKEYHKQFPTIYHLRKQLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA DSYPIFGNKA－EEDAYHQKFPTIYHLRKHLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA
 ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA DSHPIFGNKA－EEDAYHQKFPTIYHLRKHLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA DSHPIFGNKA－EEDAYHQKFPTIYHLRKHLA
 ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA DSHPIFGNKA－EEDAYHQKFPTIYHLRKHLA
 ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA ERHPIFGNLE－EEVKYHENFPTIYHLRQYLA
 RRKNRLRYLQEIFAKEMTKVDESFFQRLEE－SFLT－－DDDKT－－－F RRKYRIKELQKIFSSEMNELDIAFFPRLSE－SFLV－－SDDKE－－－F RRKYRIKELQKIFSSEMNELDIAFFPRLSE－SFLV－－SDDKE－－－F RRKIRIKELQKIESSEMIEIDIAF RPRLSEーS

RRKYRIKELQKIFSSEMNELDIAFFPRLSE－SFLV－－SDDKE－－－F RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRIRYLQHIFAEEMNRADENFFHRLKE－SFFV－－EEDKT－－－Y RRKNRLRYLQEIFTEEMSKVDISFFHRLDD－SFLV－－PEDKR RRKNRLRYLQEIFSEEMSKVDSSFFHRLDD－SFLI－－P RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G KN－－－ FIV－－TEDKR－－－G RRDNRITVIQEIFSFEMGKVDDSFFHPIED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFAEEMSKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－ （ã－
 RRRNRILYLQEIFSEEMGKVDDSFFHRLDE－SFLT－－DDDKN－－－F RRRNRILYLQEIFAEEMSKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFAEEMSKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFAEEMSKVDDSFFHRLDE－SFLT－－DDDKN RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G ค－－－ช RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G RRRNRILYLQEIFSEEMGKVDDSFFHRLED－SFLV－－TEDKR－－－G
 ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ECHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA ERHPIFGNLE-EEVKYYENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
 SKYPIFATLA-EEKEYHKQFPTIYHLRKQLA SKYPIFGTLE-EEKEYHKQFPTIYYLRKILA DRHPIFGNIK-DEVDYHKNYPTIYHLRKKLA EAHPIFGTLQ-EEKAYHDNYPTIYHLRKALA SKYPIFATLT-EEKEYYKQFPTIYHLRKQLA

 DKHPIFGNSK-EERAYHKTYPTIYHLRKDLA DKHPIFGNSK-EERAYHKTYPTIYHLRKDLA SKYPIFATLQ-EEKEYHKQFPTIYHLRKQLA
 RRRNRITYTQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR RRRNRILYLQEIFAEEMMQVDESFFQRLDD-SFLV--EEDKP RRRNRILYLQEIFSEEMDKVDDSFFHRLED-SELV--TEDKR RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR-RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G RRRNRILYLQEIFAFEMSKVDDSFFHRLED-SFLV--TEDKR---G RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SELV--IEDKR DKR --TEDKR DDEFHRLFD-SFLV--TEDKR RRRNRILYLQEIFAEEMSKVDDSFFHRLDE-SFLT--DDDKN RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SELV - 1 LKR RRRNRILYIQEIESEEMGKVDDSEEHRLED SELV IEDKR促
 RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G
 RRKNRLRYLQEIFAFEMSKVDSSFFHRLDD-SFLI--PEDKR---G RRRNRILYLQEIFAAEMNKVDESFFHRLDD-SFLV--PEDKR---G RRINRIKYLQSIFDDEMSKIDSAFFQRIKD-SFLV--PDDKN-- -RRKNRLRYLQEIFSEエISKVDNSFFHRLDD-SFLV_ P DDKR
 RRRYRLCQLQNIFATEMVKVDDTFFQRLSE-SFFY--YQDKA---F RRRYRLCQLQNIFATEMVKVDDTFFQRLSE-SFFY--YQDKA---E
$ツ$
$\square$
$\square$



SKYPIFATLE-EEKEYHKKFPTIYHLRKHLA
SKYPIFATLA-EEKKYHKQFPTIYHLRKQLA
ERHVIFGNIA-DEVKYHKEFPTIYHLRKHLA SKYPIFATLV-EEKEYHKKFPTIYHLRKHLA SKYPIFATLA-EEKEYHKKFPTIYHLRKHLA SKYPIFATLA-EEKEYHKKFPTIYHLRKHLA
SKHPIFGTLQ-EEKKYHKOFPTIYHLRKQLA SKHPIFGTLQ-EEKEYHKQFPTIYHLRKQLA SKHPIFGTLQ-EEKEYHKQFPTIYHLRKQLA SKHPIFGTLQ-EEKKYHKQFPTIYHLRKQLA ERHPIFGNIA-AEVKYHDDFPTIYHLRKHLA -- - LFNDKDyTDADYYEQYKTIYHLRYDLI DNYNLFIDEDENDYTYYHKYPTIYHLRKALC ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV SKYPIFSNEK-EDKNYYDKYPTIYHLRKDLA ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV DRHPIFGSLE-EEVAYHNTYPTIYHLRKHLA

 HRHPTFAKLE-DEVAYHETYPTIYHLRKKLA HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA SRHPVFATIK-QEKSYHQTYPTIYHLRQALA SRHPVFATIK-QEKSYHQTYPTIYHLRQALA SRHPVFATIK-QEKSYHQTYPTIYHLRQALA SRHPVFATIK-QEKSYHQTYPTIYHLRQALA

## 




$m$
$\cdots$

SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
SRHPVFATIK-QEKSYHQTYPTIYHLRQALA

KRASIFPTLE-EEKEYYQKYPTIYHLRQKLV
KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV

KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
DKHPIFGTLD-EEIHFHEQFPTIYHLRKYLA
AKFPVFATLS-EEKNYHRQYPTIYHLRHDLA



 SNYNLFIDKDfNDKTYYDKYPTIYHLRKHLC SNYNLFIDKD£NDKTYYDKYPTIYHLRKHLC
 －QTSLFNDRT－－DRAFYDDYPTIYHLRYKLM DKYNLFIDNPyTDKEYYREFPTIFHLRKELI SRHPFFATIE－EEVEYHKNYPTIYHLREELV SRHPFFATIE－EEVEYHKNYPTIYHLREELV SRHPFFATIE－EEVEYHKNYPTIYHLREELV

## SRHPFFATIE－EEVAYHEEYKTIYHLREKLV


 SRHPFFATIE－EEVAYHKNYRTIYHLREELV NRHPFFGTVE－EEVAYYKDFPTIYHLRKELI SRHPFFATIE－EEVAYHKNYRTIYHLREELV SRHPFFATIE－EEVAYHKNYRTIYHLREELV
 SRHPFFATIE－EEVAYHKNYRTIYHLREELV NRHPFFGTVE－EEVAYYKDFPTIYHLRKELI RRRQRILELQKIFAPEILKIDEHFFARLNE－SFLV－－LDEKK－－－Q
RRRQRILELQKIFAPEILKIDEHFFARLNE－SFLV－－LDEKK－－－Q RRRQRILELQKIFAPEILKIDEHFFARLNE－SFLV－－LDEKK－－－Q RRKYRLSKLQDLFAEELCKQDDCFFVRLEE－SFLV－－PEEKQ－－－Y RRRQRILELQKIFAPEILKIDEHFFARLNE－SFLV－－LDEKK－－－Q
 RRKYRLSKLQDLFAEELCKQDDCFFVRLEE－SFLV－－PEEKQ－－－Y RRKYRLSKLQDLFAEELCKQDDCFFVRLEE－SFLV－－PEEKQ－－－Y RRKNRICYLQEIFQPEMNHLDNNFFYRLNE－SFLVa－－DDAK－－－Y RRRQRVLALQDIFAEEIHKKDPNFFARLEE－GDRV－－EADKR－－－E


 RRKNRICYLQEIFSNEMAKVDDSFFHRLEE－SFLV－－EEDKK－－－H KRRERIRLLRGIMEDMVLDVDPTFFIRLANvSFLD－－QEDKKdylK丬्र Kр

 と－－－પપ




 RRRNRISYLQEIFAVEMANIDANFFCRLND－SFYV－－DSEKR－－－N
 RRRNRISYLQEIFAIQMNEVDDNFFNRLKE－SFYA－－ESDKK－－－Y RRRNRISYLQEIFALEMANIDANFFCRLND－SFYV－－DSEKR－－－N
 RRRNRISYLQEIFAVEMANIDANFFCRLND－SFYV－－DSEKR－－－N RRRNRISYLQEIFAVEMANIDANFFCRLND－SFYV－－DSEKR－－－N RRRNRISYLQEIFAIQMNEVDDNFFNRLKE－SFYA－－ESDKK－－－

 $n$
$\infty$
0
6
1
$H$
$H$
$H$
$M$ $\begin{array}{ll}6 & \sigma \\ -1 & 0 \\ m & \sigma \\ m & 0 \\ 0 & 0 \\ 0 & 0 \\ \sigma & -1 \\ \sim & m \\ 0 & 0 \\ 1 & 1 \\ 3 & 0 \\ 3 & 3\end{array}$

 0
0
0
-
$\sigma$
0
0
-
0
0
1
1 $\infty$
0
0
1
0
0
$\infty$
0
$m$
$m$
0
1
0
3


WP 038409211
EFR95520
0
0
6
0
$m$
0
$M$
0
0
0
3
3 $m$
$m$
$m$
0
$m$
$m$
$m$
$m$
0
$m$
13
 $m$
$n$
$m$
$\infty$
+
$n$
$m$
$N$
0
1
$n$
13 $W P-031665337$
$W P-031669209$

RHPFFATIE-EEVAYHKNYRTIYHLREELV
RHPFFATIE-EEVAYHKNYRTIYHLREELV
RHPFFATIE-EEVAYHKNYRTIYHLREELV
R-----------------------------
RHPEFATIE-EEVAYHENYRTIYHLREKLV
RHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
NYNLFIDEDfNDYTYYHKYPTIYHLRKALC
DYYNFIEKDfNDKTYYDKYPTIYHLRKELC
RHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
RHPIFGNIV-DEVAYHEKYPTIYHLRKKLV





| WP_010922251 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| :---: | :---: | :---: |
| WP-039695303 | 145 | DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYNRT--FDDS-H |
| WP_045635197 | 144 | DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S |
| 5AXW_A | 105 | EEEFSA-------ALLHLAKRRG---VHNV------NEVE-----------EDT----GN |
| WP-009880683 |  |  |
| WP_010922251 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_011054416 | 144 | DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_011284745 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_011285506 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_011527619 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP 012560673 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_014407541 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQIYNQL--FEEN-- |
| WP_020905136 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_023080005 | 144 | DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_023610282 | 144 | DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_030125963 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_030126706 | 144 | DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_031488318 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_032460140 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_032461047 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGG-LNPDNSDVDKL--FIQLVQTYNQL--FEEN |
| WP_032462016 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_032462936 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_032464890 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_033888930 | 1 | --PDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_038431314 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_038432938 | 144 | DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_038434062 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| BAQ51233 | 55 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| KGE60162 |  |  |
| KGE60856 |  |  |
| WP_002989955 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| WP_003030002 | 144 | DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H |
| WP_003065552 | 147 | DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYDRT--FDDS-H |
| WP_001040076 | 144 | DKKEKADLRLVYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D |


|  | LLSQNVDVE---AI | 212 |
| :---: | :---: | :---: |
| GHFLIEDDs FDVRNTDISKQ--YQDFLEIFNIT--FENN-D | LLSQNVDVE---AI | 2 |
| RGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTI--FENN-D | LLSQNVDVE---AI | 2 |
| DDs FDVI | LLSQNVDVE---AI | 212 |
| DDS FDVRNTDISKQ--YQDFLEIFNTT--FEN | LLSQNVDVE | 2 |
|  | LLSQNVDVE---AI |  |
| D | LLSQNVDVE---AI | 12 |
| HIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNVDVE---AI |  |
| DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNVDVE---AI | 212 |
| DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNV | 212 |
| YQAFLEIFDTS--FENN | LLSQNVDVE---AI |  |
| DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D | LLSQNVDVE | 2 |
| IQKQ--YQ | LLSQNVDVE---AI |  |
| YRAFLEIFDTT--FENN-D | LLSQNVDVE---AI | 212 |
| ADLRLIYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D | LLSQNVDVE---AI |  |
| ADLRLIYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D | LLSQNVDVE---AI |  |
| DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D | LLSQNV | 12 |
| AHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D | LLSQNVDVE---AI | 212 |
| KKKEKADLRLIYIALAHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNVDVE |  |
| LRLIYIALAHIIKFRGH | LLSQNVDVE---AI |  |
| AHIIKFRGHFLIEDDS FDVRNTDIQRQ--YQAFLEIFDTT--FENN-H | LLSQNIDVE---GI |  |
| ADLRLVYLALAHIIKFRGHFLIEDDs FDVRNTDIQRQ--YQAFLEIFDTT--FENN-H | LLSQNIDVE---GI |  |
| AHIIKFRGHFLIEDDs FDVRNTDIQRQ--YQA | LLSQNIDVE---GI |  |
| DKKEKANLRLVYLALAHIIKFRGHFLIEDDs FDVRNTDIQRQ--YQAFLEIFDTT--FENN-H | LLSQNIDVE---GI |  |
| LAHIIKFRGHFLIEDDsFDVRNTDIQRQ--YQ | LLSQNIDVE---GI |  |
| RGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTS--FENN-H | LLSQNVDVE---AI | 212 |
| EKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D | LLSQNVDVE---AI |  |
| ADLRLFYLALAHIIKFRGHFLIEDDs FDVRNTDIQRQ--YQAFLEIFDTT--FENN-H | LLSQNIDIE---GI | 212 |
| KADLRLFYLALAHIIKFRGHFLIEDDs FDVRNTDIQRQ--YQAFLEIFDTT--FENN-H | LLSQNIDVE---GI |  |
| AHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNVDVE---AI | 12 |
| DLRLVYLALAHIIKFRGHFLIEDDs FDVRNTDIQRQ--YQAFLEIFDTT--FENN-H | LLSQNIDVE---GI | 2 |
| KADLRLIYIALAHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNVDVE---AI | 2 |
| DLRLIYIALAHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D | LLSQNVDVE---AI | 2 |
| Ds FDVRNTDISKQ--YQDELEIFNTT--FEN | LLSQNVDVE |  |






 H
1
1
1
1
0
0 H
1
1
1
0
0

0 | H |
| :--- |
| 1 |
| 1 |
| 1 |
| 0 |
| 0 |
| 3 |
| 0 |





 LAEITVDAL---SI INA.SRVDAK---AI






 | 畕 |
| :---: |
| 1 |
| 1 |
| 总 |
| 0 |
| 0 |
| 1 |

 LSEITVDAS---SI

| DKKEKADLRLIYIALAHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| :---: |
| KKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| IIKFRGHFLIEDDSFDVRNTDIQRQ--YQAFLEIFDTT--FENN-H |
| IIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| DDsFDVRNTDIQKQ--YQAFLEIFDTT--FENN-D |
| DsFDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| KADLRLIYIALAHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| DDsFDVRNTDIQRQ--YQAFLEIFDTT--FENN-H |
| DKKEKADLRLIYIALAHIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIFNTT--FENN-D |
| KADLRLVYLALAHIIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTS--FENN-H |
| HIIKFRGHFLIEDDs FDVRNTDISKQ--YQDFLEIFNTT--FEN |
| IIKFRGHFLIEDDrFDVRNTDIQKQ--YQAFLEIFDTT--FENN-H |
| ADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H |
| GHFLYEGD-LKA |
| KADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FK |
| ADLRLVYLALAHMI KFR |
| ADLRLVYLALAHMI KFRGH |
| KADLRLIYLALAHII |
| ADLRLVYLALAHMIKFRGHFLYEGD-LK |
| LAALAHMIKFRGHFLIEGQ-LKAENTDVQ' |
| SDMDKL--FIQLVQTYNQI |
| DNSDVDKL--FIQLVQTYNQL--FEEK-- |
|  |
| KADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSD |
| AHMI KFRGHFLIEGD-LNPDNSDMDKL--FI |
| ADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQ |
| , DLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FE |
| AHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEE |
| KADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ |
|  |
|  |
|  |

[^4]

| P_039695303 | 145 | DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYNRT--FDDS-H | LSEITVDVA---SI | 212 |
| :---: | :---: | :---: | :---: | :---: |
| WP-014334983 | 144 | DSQEKADLRLVYLALAHMIKYRGHFLIEGE-LNAENTDVQKL--FNVFVETYDKI--VDES-H | LSEIEVDAS---SI | 211 |
| WP_003099269 | 144 | DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED- | VETASIDAE---KI | 211 |
| AHY15608 | 144 | DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED- | VETASIDAE---KI | 211 |
| AHY17476 | 144 | DSDQKADLRLIYLALAHIIKFRGHFLIEGN | VETASIDAE---KI | 211 |
| ESR09100 |  |  |  |  |
| AGM98575 | 144 | DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED | VETASIDAE---KI | 211 |
| ALF27331 | 144 | DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_018372492 | 144 | DTPDKMDIRLIYLALAHIIKYRGHFLIEGD-LDIENIGIQDS--FKSEIEEYNTQ-- FGTK | -LDSTTKVE---AI | 209 |
| WP-045618028 | 145 | DSKEKADFRLIYLALAHIIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S | LNGQNAQVE---AI | 212 |
| WP_045635197 | 144 | DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S | LSGQNAQVE---AI | 211 |
| WP_002263549 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP-002263887 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002264920 | 144 | DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H | LSEITVDAS---SI | 211 |
| WP-002269043 | 144 | DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002269448 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002271977 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002272766 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002273241 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002275430 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002276448 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002277050 | 144 | DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H | LSEITVDAS---SI | 211 |
| WP_002277364 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002279025 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002279859 | 144 | DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H | LSEITVDAS---SI | 211 |
| WP_002280230 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002281696 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP-002282247 | 144 | DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H | LSEITVDAS---SI | 211 |
| WP_002282906 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002283846 | 144 | DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002287255 | 144 | DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002288990 | 144 | DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP-002289641 | 144 | DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |
| WP_002290427 | 144 | DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S | LQEQNVQVE---EI | 211 |


DNPEKVDLRLVYLALAHII KFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQKL--FQEFLAVYDNT--FENS-S DNPEKTDLRLVYLALAAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKTDLRLVY LALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAAHIIKFRGHFLIEGK-FDTRNNDVQKL--FQEFLAVYDNT--FENS-S DNPEKTDLRLVYLALAAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H DNPEKVDLRLVYLALAAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKTDLRLVYLALAAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKTDLRLVYLALAAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S
 DSKEKTDLRLIYLALAAMMIKYRGHFLYEDT-FDI KNNDIOKI--FSEFISIYDNT--FEGS-S DSKEKVDLRLIYLALAAHIIKYRGHFLYEDS-FDIKNNDIQKI--FNEFTILYDNT--FEES-S DSDEKADLRLIYLALAAHI IKFRGHFLIEGD-LDSQNTDVNAL--FLKLVDTYNLM--FEDD--
 DSKEKADLRLIYLTLAHMIKYRGHFLYEES-FDI KNNDIQKI--FNEFISIYDNT--FEGS-S DSKEKADLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S DSKEKADLRLIYLVLAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S DRDQKADLRLIYLALSHIIKFRGHFLIEGK-LNSENTDVQKL--FIALVTVYNLL--FEEE-DRDQKADLRLIYLALSHIIKFRGHFLIEGK-LNS ENTDVQKL--FIALVTVYNLL--FEEE-
$\stackrel{2}{2}$

[^5]








$\bigcirc$
0
0
0





LSGQNAQVE---AI $--A I$ LASKHTDIS---GI LSGQNAQVE---AI LSGQNAQVE---AI LSENLPNVA---DV LSENLPNVA---DV LSENLPNVA---DV LSENLPNVA LSEMTVDA IIPETIDINvfekI --KKNLEIL---EI
 INASGVDAK---AI LVGDISKVE---EI
 PLPESVLIE---EE


DSKEKTDLRLIYLALAHMIKYRGHFLYEFS-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYNNT--FEGN-S DSSEKADLRLVYLALAHIIKYRGHFLIDEP-IDIRNMNSQNL--FKEFLLAFDGI--QVDC-Y DSKEKTDLRLIYLALAHMIKYRGHFLYEES-FDI KNNDIQKI--FSEFISIYDNT--FEGK-S DSKEKADLRLIYLALAHITKYRGHFLYEEA-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S DSSOKADIRLIYLALAHIIKYRGHFTFEGD-LKS ENKDVQHL--FNDEVEMFDKT--VEGS-Y DSSQKADIRLIYLALAHIIKYRGHFLFEGD-LKS ENKDVQHL--FNDFVEMFDKT--VEGS-Y DSSQKADIRLIYLALAHIIKYRGHFLFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y
 DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H SQHRQFDIREVYLAIHHLIKYRGHFIYEDQtFTTDGNQLQHH--IKAIITMINSTI---NR--ESTEKADPRLIYLALHHIVKYRGNFLYEGQkFNMDASNIEDK--LSDIFTQFTSFnnIPYEdD
 DSNQKADLRLIYLALAHMIKYRGHFLIEGD-LKMDGISISES--FQEFIDSYNEVCaLEDE-N DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--DNPEKADLRLVYTALAHIVKYRGHFLIEGE-LNTENTSISET--FEQELDTYSDI--EKEQ--DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKDQ--FQQFMVIYNQT--FVNGeS

DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKEQ--FQQFMVIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKDQ--FQQFMVIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEK--FQQFMIIYNQT--FVNGeG
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKDQ--FQQFMVIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-G
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQELSTYNQQ--FSEA-D



## 



| WP_002330729 | 144 | DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D | KLDEAVDCS---FV | 216 |
| :---: | :---: | :---: | :---: | :---: |
| WP-002335161 | 144 | DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D | KLDEAVDCS---FV | 216 |
| WP_002345439 | 144 | DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D | KLDEAVDCS---FV | 216 |
| WP_034867970 | 144 | DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYSKQ--SDQP | -LIVHQPVL---TI | 209 |
| WP-047937432 | 144 | DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D | KLDEAVDCS---FV | 216 |
| WP_010720994 | 144 | DSTEKGDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYGKQ--SDQP | -LIVHQPVL---TI | 209 |
| WP_010737004 | 144 | DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYSKQ--SD | -LIVHQPVL---TI | 209 |
| WP_034700478 | 144 | DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYGKQ--SDQP-- | -LIVHQPVL---TI | 209 |
| WP_007209003 | 144 | DGDEKADLRLVYLAIAHIIKFRGNFLIEGE-LNTENNSVIELs--KVFVQLYNQTI-SEL | FIDESIDFS---EV | 214 |
| WP_023519017 | 144 | NSKEQADIRLVYLAIAHCLKYRGHFLFEGE-LDTENTSVTEN--YQQFLQAYQQF--FPEP-- | -IGDLDDAV---PI | 209 |
| WP_010770040 | 144 | DTSEQADLRLVYLALAHIVKYRGHFLIEGE-LNTENSSVSET--FRTFIQVYNQI--FRENe- | PLAVPDNIE---EL | 212 |
| WP_048604708 | 144 | DAEEKADLRLVYLALAHIIKYRGHFLIEGR-LSTENTSTEET--FKTELQKYNQT--FN | PVDETISIG---SI | 208 |
| WP_010750235 | 144 | DSTEKADIRLVYLALAHMIKYRGHFLFEGE-LDTENTSVEET--FKEFIDIYNEQ--FE | -IIFYKDIP---LI | 209 |
| AII16583 | 183 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- | INASGVDAK---AI | 250 |
| WP_029073316 | 145 | ESKEKEDPRLIYLALHHIVKYRGNFLYEGQkFSMDVSNIEDK--MIDVLRQFNEInlFEYVeD | --KKIDEVL---NV | 215 |
| WP_031589969 | 145 | ESKEKEDPRLIYLALHHIVKYRGNFLYEGQkFSMDVSNIEDK--MIDVLRQFNEInlFEYVeD | --KKIDEVL---NV | 215 |
| KDA45870 | 145 | NNDRPADLRLVYLALAHIIKYRGNFLLEGE-IDLRTTDINKV--FAEFSETLNEN--SDENlG | ----KLDVA---DI | 209 |
| WP_039099354 | 133 | TEKRQFDIREIYLAMHHIVKYRGHFLNEAPVSSFKSSEINLVahFDRLNTIFADL--FSESgF | -TDKLAEVK---AL | 206 |
| AKP02966 | 138 | INKNKADIRLVYLALHNILKYRGNFTYEHQkFNISTLNSNLS---KELIELNQQLikYDIS-- | -FPDNCDWNhis DI | 208 |
| WP_010991369 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE | KLEDNKDVA---KI | 217 |
| WP_033838504 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE | KLEDNKDVA---KI | 217 |
| EHN60060 | 147 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE | KLEDNKDVA---KI | 220 |
| EFR89594 |  |  |  |  |
| WP_038409211 | 144 | NSSDKADLRLVYLALAHIIKYRGNFLIEGM-LDTKNTSVDEV--FKQFIQTYNQI--FASDiE | RLEENKEVA---EI | 217 |
| EFR95520 |  |  |  |  |
| WP_003723650 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIETYNQV--FMSNiE | KVEENIEVA---NI | 217 |
| WP_003727705 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIQTYNQV--FMSNiE | KVEENTEVA---SI | 217 |
| WP_003730785 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIQTYNQV--FMSNiE | KVEENTEVA---SI | 217 |
| WP_003733029 | 144 | DSQKKADLRLVYLALAHIIKYRGHFLIEGA-LDTKNTSIDEM--FKQFLQIYNQV--FANDiE | KTEKNQEVA---QI | 217 |
| WP_003739838 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YKQFIQTYNQV--FISNiE | KMEENTTVA---DI | 217 |
| WP_014601172 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE | KVEENIEVA---NI | 217 |
| WP_023548323 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFILTYNQV--FMSNiE | KVEENIEVA---NI | 217 |
| WP_031665337 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE | KVEENIEVA---NI | 217 |
| WP_031669209 | 144 | DSQKKADLRLVYLALAHIIKYRGHFLIEGA-LDTKNTSIDEM--FKQFLQIYNQV--FANDiE | KTEKNQEVA---QI | 217 |


NNN NNONNNNN
KVEENIEVA---NI
KVEENIEVA---NI
KVEENIEVA---NI
-------------
RIEENNEVA---KI
INASGVDAK---AI
$--K K N L E I I---E I ~$
$--S D I N S M I---A V ~$
INASGVDAK---AI
INASGVDAK---AI
INASGVDAK---AI
INASGVDAK---AI

| WP_033920898 | 144 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE |
| :---: | :---: | :---: |
| AKI 42028 | 147 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE |
| AKI50529 | 147 | NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE |
| EFR83390 |  |  |
| WP_046323366 | 144 | NSSDKADLRLVYLALAHIIKYRGNFLIEGK-LDTKNTSVDEV--FKQFIKTYNQV--FASDiE |
| AKE81011 | 160 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN |
| CUO82355 | 144 | ESTEKADPRLIYLALHHIVKYRGNFLYEGQkFNMDASNIEDK--LSDVFTQFADFnnIPYEdD |
| WP_033162887 | 145 | ENKEKADPRLIYLALHHIVKYRGNFLYEGQs FTMDNSDIEER--LNSAIEKFMSIneFDNRiV |
| AGZ01981 | 177 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNP DNSDVDKL--FIQLVQTYNQL--FEEN-- |
| AKA 60242 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| AKS 40380 | 144 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- |
| 4UN5 - ${ }^{\text {a }}$ | 148 | DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN- |



人○○



LSAR－ISKSRRLENLIAQ－I－PG
TTEK－ISKSRRLENLIKY－Y－PT
ETDK－ISKSAKRERVLKI－F－PD
LSTK－ーーーーー－－EQISRN－S－－K

 LSAR－LSKSRRLENLIAQ－L－PG LSAR－LSKSRRLENLIAQ－L－PG LSAR－LSKSRRLENLIAQ－L－PG LSAR－LSKSRRLENLIAQ－L－PG
 LSAR－LSKSRRLENLIAQ－L－PG


 LSAR－LSKSRRLENLIAQ－」－PG $-I-P G$ LSAR－LSKSRRLENLIAQ－I PG LSAR－LSKSRRLENLIAQ－L－PG

 LSAR－LSKSRRLENLIAQ－L－PG פd－I－Ő甘ITNヨTUצSצSI－પ甘ST
 LSAR－LSKSRRLENLIAQ－L－PG LSAR－LSKSRRLENLIAQ－L－PG

$$
\begin{aligned}
& \text { LSAR-LSKSRRLENLIAQ-L-PG } \\
& \text { LTEK-VSKSRRLENLIAH-Y-PA } \\
& \text { LTEK-ISKSRRLENLIKY-Y-PT } \\
& \text { LTDK-ISKSAKKDRILAQ-Y-PN }
\end{aligned}
$$

|  |  |
| :---: | :---: |
|  | AEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | TGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | KSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | GIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | STGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | KSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  | VVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN |
|  |  |



[^6]





[^7]| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP_047207273 |
| WP 047209694 |
| WP 050198062 |
| WP-050201642 |
| WP-050204027 |
| WP 050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP-003041502 |
| WP 037593752 |
| WP_049516684 |
| GAD46167 |
| WP 018363470 |
| WP 003043819 |
| WP 006269658 |
| WP 048800889 |
| WP-012767106 |
| WP 014612333 |
| WP 015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP 012515931 |
| WP 021320964 |
| WP-037581760 |
| WP-004232481 |
| WP 009854540 |
| WP 012962174 |

GKKNTLFGNLIALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE GKKNTLFGNLIALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE QKRNMLFGNLVSLALGLTPNEKTNF--ELLED-A---KLQ--ISKDSYEEDLDN QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN QKRNMLFGNLVSLALGLTPNEKTNF--ELIED-A-- - KLQ--ISKDSYEEDLDN
QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN FKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV ETAAGNLDKFLKLMLGNQADFKKVF--DLEEK----iTLQ--FSKDSYEEDLEL EKSTGLESEFLKLIVGNQADEKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN EKSTGLESEFLKLIVGNQADFKKHF--DLEDK-A---PLQ--FSKDTYDEDLEN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV FKSNGRFAFFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEFLEV تKKNTLFRNLVALSLGLQPNEKTNF--KLSED-A---KLQ--FSKDTYEEDLEE EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV FKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV FKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKKNTLFGNLIALSLGLQPNEKTNF--KLSED-A---KLQ--FSKDTYEEDLEE EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV FKKNTLFGNLIALSLGLQPNFKTNFー-KLSED-A---KLQ--FSKDTYEEELEV
 FKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKKNTLFGNLIALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV EKSNGCFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV

 LTSK-TSKSRRLENLIAE-I-PN LTSK-TSKSRRLENLIAE-I-PN TSK-TSKSRRLENLIAE-I-P

LTSK-TSKSRRLENLIAE-I-PN ,TDK-ISKSAKKDRVLKL-F-PN ETEN-SSKAKRVETILGL-E-PD FTDK-ISKSAKRERVLKL-F-PD FTDK-ISKSAKRERVLKL-F-PD ,TDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTEK-ISKSRRLEKLINN-Y-PK LTDK-ISKSAKKDRVLKL-E-PN LTDK-ISKSAKKDRVLKL-F-PN TDK-ISKSAKKDRVLKI-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTEK-ISKSRRLEKLINN-Y-PK LTDK-ISKSAKKDRVLKL-F-PN
 LTEK-ISKSRRLEKLINN-Y-PK
 LTDK-ISKSAKKDRVLKL-F-PN LTEK-ISKSRRLEKLINN-Y-PK LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN LTDK-ISKSAKKDRVLKL-F-PN

[^8]
LTDK-ISKSAKKDRVLKL-F-PN
LTDK-ISKSAKKDRVLKL-F-PN
LTEK-VSKSRRLENLVEC-Y-PT
LTDK-ISKSAKKDRVLKL-F-PN
LTEK-ISKSRRLEKLINN-Y-PK
LTDK-ISKSAKKDRVLKL-F-PN
LTDK-ISKSAKKDRVLKL-F-PN
LTEK-ISKSRRLEKLINN-Y-PK
LTDK-ISKSAKKDRVLKL-F-PN
LTDK-ISKSAKKDRVLKL-F-PN
LTDK-ISKSAKKDRVLKL-F-PN
FTDK-ISKSAKRERVLKL-F-PD
FTDK-ISKSAKRERVLKL-F-PD
FTDK-ISKSAKRDRVLKL-F-PD
LTEK-MSKSRRLENLIAK-I-PN
LTEK-ISKTRRLENLISN-I-PG
FTDK-ISKSTKRERVLKL-F-PD
FSDK-ISKSAKRERVLKL-F-PD
FTDK-ISKSAKRERVLKL-F-PD
LTAK-TSKSKRLESLISE-F-PG
LTAK-TSKSKRLESLISE-F-PG
FTDK-ISKSAKRERVLKL-F-PD

\footnotetext{



FKSTGLFSEFLKLIVGNQADFKKHF－－DLEEK－A－－－PLQ－－FSKDTYDEDLEN FKSTGLFSEFLKLIVGNQADEKKHF－－DLEEK－A－－－PLQ－－FSRDTYDEDLEN QKKNSFFGNMVSLVEGLMPNEKSNF－－ELDED－A－－－KLQ－－FSRDSYDEDLEN EKSTGLFSEFLKLIVGNQADFKKHF－－DLEEK－A－－－PLQ－－FSKDTYDEDLEN FKSTGLESEFLKLIVGNQADFKKHF－－DLEEK－A－－－SLQ－－FSKDTYDEDLEN FKKNGLFGNFLALALGLQPNFKTNF－－ELAED－A－－－KIQ－－FSKETYEEDLEE EKKNGLFGNFLTLALGLQPNFKTNF－－ELAED－A－－－KIQ－－FSKETYEEDLEE EKKNGLFGNFLALALGLQPNFKTNF－－ELAED－A－－－KIQ－－FSKETYEEDLEE FKKNGLFGNFLALALGLQPNEKTNF－－ELAED－A－－－KIQ－－FSKETYEEDLEE EKKNTLFGNLIALSLGLQPNEKTNF－－QLSED－A－－－KLQ－－FSKDTYEEDLEG KQDKPLLKELFNLIVGLKAKPASIFe－－－QEN1AtivETM－nMSTEQVQLDLLT KDYKSAFKELVTGIAGNKMNVTKMII \＆EPIKQ－Gds－EIKIkFSDSNYDDQESE
 －KRQSLFGIFLTLIVGNKANFQKIF－－NLEDD－－－－iKLD－－LKEEDYDENLEE EKKNGLFGNLIALSLGLTPNFKSNF－－DLAED－A－－－KLQ－－－LSKDTYDDDLDN ENKLGNEGREMMLIVGNTSNEKPVF－－DLDDE－Y－－－KLK－－LSDETYEEDLDT EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－七YASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－ヒYASESYEEDLEG

 EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－七YASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－tYASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KIKitYASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－tYASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－七YASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－tYASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－七YASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－七YASESYEEDLEG EKANGLFGQFLKLMVGNKADFKKVF－－GLEEE－A－－－KI－－tYA．SESYEEDLEG EKSNGYLSQFIKLMVGNQGNFKNVF－－GL－EE－A－－－KLQ－－FSKETYEEDLEE EKSNGYLSQFIKLMVGNQGNFKNVF－－GL－EEeA－－－KLQ－－FSKETYEEDLEE EKSNGYLSQFIKLMVGNQGNFKNVF－－GL－EEeA－－－－KLQ－－FSKETYEEDLEE

FTDK－ISKSTKRERVLKL－F－SD PD
 LVEK－VSKSRRLENILHY－F－PN LVEK－VSKSRRLENILHY－F－PN LVEK－VSKSRRLENILHY－E－PN LTEK－VSKSRRLENLIAH－Y－PA

 DA－I－J̛ITN＇تTU甘SYST－ZVSI
 LSAR－LSKSRRLENLIAQ－L－PG LSSK－QSRSRKHEQIMAL－F－PN



 LTEK－ASRTKKSEKVLQQ－F－PQ LTEK－ASRTKKSEKVLQQ－F－PQ
 LTEK－ASRTKKSEKVLQQ－F－PQ НTEK－ASRTKKSEKVLQQ－F－PQ TFK－ASRTKKSEKVLQQ－F－PQ LTEK－ASRTKKSEKVLQQ－F－PQ LTEK－ASRTKKSEKVLQQ－F－PQ НTEK－ASRTKKSEKVLQQ－F－PQ FTEK－MSKTKKAETLLKY－F－PH FTEK－MSKTKKAETLLKY－F－PH


| WP 002906454 |
| :---: |
| WP 009729476 |
| CQR24647 |
| WP 000066813 |
| WP－009754323 |
| WP 044674937 |
| WP 044676715 |
| $W P-044680361$ |
| $W P-044681799$ |
| WP 049533112 |
| WP 029090905 |
| WP 006506696 |
| AIT42264 |
| WP 034440723 |
| AKQ21048 |
| WP 004636532 |
| WP 002364836 |
| WP 016631044 |
| EMS 75795 |
| WP 002373311 |
| WP 002378009 |
| WP 002407324 |
| WP 002413717 |
| WP 010775580 |
| WP 010818269 |
| WP 010824395 |
| WP 016622645 |
| WP 033624816 |
| WP 033625576 |
| WP 033789179 |
| WP 002310644 |
| WP 002312694 |
| WP 002314015 |
| WP 002320716 |


$\begin{array}{llllllll}m & m & m & m & m & m & m\end{array}$ $\begin{array}{lcccccccc}\infty & \infty \\ \sim & v & v & n & N & \sim & v & v & N\end{array}$

FKSNGYLSQFIKLMVGNQGNFKNVF--GL-EE-A---KLQ--FSKETYEEDLEE KSSNGYLSQFIKLMVGNQGNEKNVF--GL-EEeA---KLQ--FSKETYEEDLEE FKSNGYLSQEIKLMVGNQGNFKNVE--GL-EEeA---KLQ--FSKETYEEDLEE FKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES EKGTGIFAQFIKLIVGNQGNFKKVF--QLEED----qKLQ--LSTDDYEENIEN ョNTG甘ษ EKSTGTLAQFLKLMVGNQGRFKKTF--DLEED-G---IIQ--IPKEEYEEELET EKRNGTFDQFLKMIVGNQGNFKKTF--ELEED-A---KLQ--FSKEEYDESLEA EKTTGCLAQFLKLIVGNQGNFKQAF--HLDEE-V---KIQ--ISKETYEEDLEK
 KDNKAAYKELCAALAGNKFNVTKMLkeAELHD-EdekDISfkFSDATFDDAFVE KDNKAAYKELCAALAGNKFNVTKMLkeAELHD-EdekDISfkFSDATFDDAFVE


 EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
 EKSTGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES EKSTGMFARFINLIIGSKGDFKKVF--DLDEK-A---EIE--CAKDTYEEDLEA

EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
EKSTGMFAQFISLIVGNKGNFQKVF--NLVEK-T---DIE--CAKDSYEEDLEA EKSTGMFAQFISLIVGNKGNFQKVF--NLVEK-T---DIE--CAKDSYEEDLEA EKTTGVFAQFVNIIVGSTGKFKKHF--NLHEK-K---DIN--CAEDTYDTDLES EKSTGMFAQFISLIVGSKGNFQKVF--DLVEK-T---DIE--CAKDSYEEDLEA EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLEA EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET EKTTGVFAQFVNIIVGSTGKFKKHF--NLHEK-K---DIN--CAEDTYDTDLES

FTEK-MSKTKKAETLLKY-F-PH
FTEK-MSKTKKAETLLKY-F-PH FTEK-MSKTKKAETLLKY-F-PH LTDK-LSKTKKVEEILKY-Y-PT FTEK-MSKTKKAETLLKY-F-PH LTDK-LSKTKKVEEILKY-Y-PT LTDK-LSKTKKVEEILKY-Y-PT LTDK-LSKTKKVEEILKY-Y-PT LTQQ-LSKSERADNVLKL-F-PD LTER-LSKAKRVEKVLAY-Y-PS




 LKEP-LSKKHKAEKAFAL-FdTT


 LVEK-VTRKEKLERILKL-Y-PG LVEK-VTRKEKLERILKL-Y-PG LVEK-VTRKEKLERILKL-Y-PG



,



$\begin{array}{ll}0 & \sigma \\ - & 0 \\ m & \sigma \\ m & \sigma \\ 0 & \infty \\ 0 & 0 \\ \sigma & -1 \\ \sim & m \\ 0 & 0 \\ n & 1 \\ 3 & 9 \\ 3 & 3\end{array}$

 $\sigma$
0
$m$
$न$
$\sigma$
$\sigma$
0
$\sigma$
0
0
1 $\begin{array}{ll}0 & \\ 0 & 0 \\ 1 & 0 \\ 1 & m \\ 0 & 0 \\ 0 & m \\ m & 0 \\ 1 & 0 \\ 3 & 3\end{array}$ $\circ$
6
8
8
6
17
7
7

EFR 038409211 WP
$\begin{array}{ll}0 & 6 \\ 0 & 0 \\ 0 & 1 \\ m & 1 \\ N & 0 \\ M & 1 \\ 0 & m \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 3 & 3\end{array}$ $n$
$n$
$n$
0
1
$m$
$m$
$m$
0
1
1
$n$
3
3 0
$N$
0
$m$
$m$
1
$m$
0
0
1
1
3 $m$
$m$
0
$m$
$m$
$m$
0
1
$m$ WP-014601172 $W P-14601172$ $\begin{array}{ll}n & m \\ m & m \\ \infty & 0 \\ 7 & 6 \\ 0 & 6 \\ m & = \\ 0 & m \\ 1 & 0 \\ n & 0 \\ 3 & 1\end{array}$ $W P-031665337$




| WP_033920898 | 218 | LARK-FTRREKFERILQL-Y-PG |
| :--- | :--- | :--- |
| AKI42028 | 221 | LAGK-FTRREKFERILQL-Y-PG |
| AKI50529 | 221 | LARK-FTRREKFERILQL-Y-PG |
| EFR83390 |  | ------------------ |
| WP_046323366 | 218 | FSEK-LTKREKLDKILNL-Y-PN |
| AKE81011 | 228 | LSAR-LSKSRRLENLIAQ-L-PG |
| CUO82355 | 215 | LKKP-LSKKAKVDEVMAL-ISPE |
| WP_033162887 | 216 | LSKI-YQRSKKADDLLKI-MnPT |
| AGZ01981 | 245 | LSAR-LSKSRRLENLIAQ-L-PG |
| AKA60242 | 212 | LSAR-LSKSRRLENLIAQ-L-PG |
| AKS40380 | 212 | LSAR-LSKSRRLENLIAQ-L-PG |
| 4UN5_B | 216 | LSAR-LSKSRRLENLIAQ-L-PG |



$\begin{array}{llll}0 & 6 & 0 & r \\ n & 0 & n & n\end{array}$ $\begin{array}{lll}n & n & n \\ m & m\end{array}$ LLGKIGDDYADLFTSAKNLYDAILLSGILIVDDNSTKAPLSASMI KRYVEHQEDLEKLKEFIKAN-KSELYHDIFKDKNK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIVADSSK


$\infty \infty \leftharpoondown \sigma$ $\sim \sim \infty$

| 010922251 |
| :---: |
| WP 039695303 |
| WP 045635197 |
| 5AXW A |
| WP 009880683 |
| WP 010922251 |
| WP-011054416 |
| WP 011284745 |
| WP 011285506 |
| WP 011527619 |
| WP 012560673 |
| WP 014407541 |
| WP 020905136 |
| WP 023080005 |
| WP 023610282 |
| WP 030125963 |
| WP 030126706 |
| WP 031488318 |
| WP 032460140 |
| WP 032461047 |
| WP 032462016 |
| WP 032462936 |
| WP 032464890 |
| WP 033888930 |
| WP 038431314 |
| $W P-038432938$ |
| WP 038434062 |
| BAQ51233 |
| KGE60162 |
| KGE60856 |
| WP 002989955 |
| WP 003030002 |
| WP 003065552 |
| WP 001040076 |






LGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK LGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK LLGQIGDEEADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFTDSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFTDSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQEVKAS-LPEKYQEIFADSSK LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK YS Sণ甘거 LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK LLGEVGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKFEDFIKVN-ALDQYNAIFKDKNK LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNTTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK

 LLGKIGDDYADLFTSSKNLYDAILLSGILTVDDNSTKAPLSASMI KRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKTQ LLGQIGDQYADLFSAAKNLSDAILLSDILRSNSEVTKAPLSASMVKRYDEHHQDLALLKTLVRQQ-FPEKYAEIFKDDTK FLGEVGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK LLGKIGDDYADLFTSAKNLYDTILLSGI LAVDDNSTKALLSASMIKRYEEHQKDLKKLKDFIKVN-APAQYDDIFKDETK LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK LLAQIGNQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMI KRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMI KRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK LLAQIGDQYADLFLAAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK LLGKIGDDYADLFTAAKNLYDAILLSGILTVDDNSTKAPLSASMI KRYEEHHEDLEKLKTFIKVN-NFDKYHEIFKDKSK LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMI KRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK



| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KL工42645 |
| WP 047207273 |
| WP 047209694 |
| WP 050198062 |
| WP 050201642 |
| $W P-050204027$ |
| WP 050881965 |
| $W P-050886065$ |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP 003041502 |
| $W P-037593752$ |
| WP 049516684 |
| GAD46167 |
| WP-018363470 |
| WP 003043819 |
| $W P-006269658$ |
| WP 048800889 |
| WP 012767106 |
| WP 014612333 |
| WP 015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP 012515931 |
| WP_021320964 |
| WP 037581760 |
| WP 004232481 |
| WP 009854540 |
| WP 012962174 |

LGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK LGKVGDDYADLFISAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKIN-KLKLYHDIFKDKTK LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK LLAQIEDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQEIRQK-LSDKYNEVFSDVSK LLSKIDEEYAALFDLAKKVYDAVLLSNILTVKEKNTKAPLSASMIKRYEEHKDDLKAFKREFRER-LPEKYETMFKDLTK LLVQIGDDFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIDRYENHQKDLAALKQFIKTN-LPEKYDEVFSDQSK LLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQNDLAALKQFIKNN-LPEKYDEVFSDQSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK Y LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLTQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK LLAQIGDNYAELFLSAKKLYDSILLSGI LTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK

| 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

















| WP 002906454 |  |
| :---: | :---: |
| WP 009729476 |  |
| CQR24647 |  |
|  | 000066813 |
|  | 009754323 |
|  | 044674937 |
|  | 44676715 |
|  | 044680361 |
|  | 044681799 |
|  | 049533112 |
|  | 029090905 |
|  | 006506696 |
|  | AT42264 |
|  | 034440723 |
|  | AKQ21048 |
|  | 004636532 |
|  | 002364836 |
|  | 016631044 |
|  | EMS 75795 |
|  | 002373311 |
|  | P 002378009 |
|  | P 002407324 |
|  | 002413717 |
|  | 010775580 |
|  | P 010818269 |
|  | 010824395 |
|  | 016622645 |
|  | 033624816 |
|  | 033625576 |
|  | 033789179 |
|  | 002310644 |
|  | 002312694 |
|  | 002314015 |
|  | P 002320716 |



LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLIKRFVKEN-LPKKYRAFFGDNSV LEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKREVKEN-LPKKYRAFFGDNSV LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKREVKEN-LPKKYRAFFGDNSV LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTKAKLSSGMVERYERHKADLAKEKQEVKEN-VPQKATVEFKDTTK LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTQAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDTTK LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTKAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDTTK LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTQAKLSSGMVERYERHKADLAKEKQEVKEN-VPQKATVEFKDTTK LLAIIGDEYGDIFVAAQNLYQAILLAGILTSTEK-TRAKLSASMIQRYEEHAKDLKLLKREVKEH-IPDKYAEIFNDATK LLEKTSDDYAELFLKAKGVYDAILLSQILSKSDDETKAKLSANMKLRFEEHQRDLKQLKELVRRD-LPKKYDDFFKNRSK LLAIIGDEYAEIFSATKSVYDAVALSGILSVTDGDTKAKLSASMVERYEAHQKDLVQFKQFIRKE-LPEMYAPIFRDNSV LLGEIGDEYADVFEAAKNVYNAVELSGILTVTDNSTKAKLSASMI KRYEDHKTDLKLFKEFIRKN-LPEKYHEIFNDKNT




 LESSLDDNAHQIIESLQELYSGVLLAGIVPENQSLS-----QAMITKYDDHQKHLKMLKAVREAL-APEDRQRLKQAYDQ LDSILDDDQFTVLDTANRIYSTITLNEIL-----NGESYFSMAKVNQYENHAIDLCKLRDMWHTT----KNEKAV-GLSR LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK LLAKIGDEYAEIFVAAKSTYNAVVLSNIITVTDTETKAKLSASMIERFDKHAKDLKRLKAFFKMQ-LPEKFNEVFNDIEK

LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI

$\begin{array}{lllllllll}6 & 6 & 6 & 0 & 0 & 0 & 0 & 6 & 0 \\ m & m & M & M & m & M & m & m & m\end{array}$





$\begin{array}{lllllllllll} & 0 & \ddots & N & \sim & \ddots & \sigma & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & \ddots & 0\end{array}$


WP 033920898
AKI 42028
AKI 50529
EFR 83390
WP 046323366
AKE81011
CUO82355
WP 033162887
AGZ01981
AKA60242
AKS40380
4UN5 B

| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| :--- | :--- | :--- |
| VKQDEFYKYLKNILSK-IkiDGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM | 422 |
| TTQETFYKYIKNLLSK-F--EGTDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM | 419 |
| $------------K-----T S D Y V k-------------------------~$ | 183 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 103 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNRKDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 244 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 419 |
| ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL | 330 |



420
420
20
20
420
20
420
420
420
420
20
20
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420















凹ロロ



人




TNQEAFYKYLKGLLNK-I--EGSGYEL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYEL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM ATEEEFYKYVKGILNK-V--EGADVWL--DKIDREDFLRKQRTEDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGNGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
 TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
 TTQEAFYKYIKNLLSK-F--EGTDYFL--EKIEREDFLRKQRTFDNGSIPHOIHLQEM TTQEGFYKYIKNLISK-I--EGAEYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM TSQEDFYKYIKPILSK-L--KGAESLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
 TTQEAFYKYIKNLLSK-I--DGADYLL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TTQEAFYKYIKNLLSK-F--EGADYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM TTQEAFYKYIKNLLSK-F--EGTDYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM VSQEDFYRYIKPILSR-L--KGGDEFLa--KIDRDDFLRKQRTFDNGSIPHQIHLKEL VSQEDFYRYIKPILSR-L--KGGDEFLa--KIDRDDFLRKQRTFDNGSIPHQIHLKEL
TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
MMr অM



$\sigma \sigma \circ \bigcirc \bigcirc$




TTQEAFYKYIKNLLSK-L--EGADYEL--NKIEREDFLRKQRTFDNGSIPHQIHLQEM TTQETFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM TNQEDFYKYLKNLLQK-V--DGGDYFI--EKIEREDFLRKQRTFDNGSIPHQVHLDEM TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLKKQRTFDNGSIPHQIHLQEM TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM WGరTTHIOHaISఅNa, WョరొTHIØHaIS TTQENFYRFIKKAIEK-I--EGSNYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM TTQENFYRFIKKAIEK-I--EGSDYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
 TGYロH APVDEFYKYVKKCIEK-VdtPEAKQILn--DIELENFLLKQNSRTNGSVPYQMQLDEM

 ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL TNQEDFYKYIEKVMKT-IksDKKDYFL--DKIDREVFLRKQRSFYNSVIPHQIHLQEM
 VSQLKFYOYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHOIHLAEL TTQEDFYKFLKKELNG-I--AGSERFM--EKVDQENFLLKQRTTANGVI PHQVHLTEL VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL VSQLKKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL VSQLKFYYYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
 VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEI VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVI PHQIHLAAEL VSQLKFYQYVKKIIQD-I-AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL VSQLKFYYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL ATQEAFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLSEL ATQEDFYKFVKKELTG-I--RGSEVEL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL






ATQEDFYKFVKKELTG-I - RGSEVEL--TKIEQENFLRKQRTEDNGVI PHQIHLTEL
ATQEDFYKFVKKELTG-I - RGSEVEL--TKIEQENFLRKQRTEDNGVIPHQIHLTEL
ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHOVHLIEL ATOEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHOIHLTEL TTOEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHQVHLIEL TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHQVHLIEL TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVI PHQVHLIEL TKEEEFYKYLKTTLVQ---kSGYQYFI--EKIEQENFLRKQRIYDNGVIPHQVHAEEL ATQEDFYKFLRTELAG-L--EESQSIM--EKIDLEIYLLKQRTFANGVIPHQIHLVEM VTQAEFYKYIKKAIEK-V--PGAEYFL--EKIEQETFLDKQRTFNNGVIPHQIHLEEL TSQEKFYKYITNLIEK-I--DGAEYFL--KKIENEDFLRKQRTFDNGIIPHQIHLEEL
 ASQEEFYKFIKPILEK-M--DGTEELLV--KLNREDLLRKQRTFDNGSIPHQIHLGEL TPVDEFYKYIKKLIEK-IddPDVKTILn--KIELESFMLKQNSRTNGAVPYQMQLDEL TPVDEFYKYIKKLIEK-IddPDVKTI Ln--KIELESFMLKQNSRTNGAVPYQMQLDEL
VSEEDFYKYTKKTLKG-I--PETEEILq--KIDANNYLRKQRTFDNGAIPHOVHLKEL -SKEDFYGDITKALKNnPdhPIVSEIKk--LIELDQFMPKQRTKDNGAIPHQLHQQEL ---KELYTSLKKFLKVaLp-TNLAKEAe-EKISKGTYLVKPRNSENGVVPYQLNKIEM
 TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL

 ---------MKKMLAN-I--DGADYFI--DQIEEENFLRKQRTFDNGTIPHQLHLEEL TKQVDFYKYLKTILEN-I--EGSDYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
 TKQADFYKYMKATLEK-I--EGADYFI--AKIEEENFLRKQRTFDNGVIPHQLHLE TKQVDFYKYLKTLLEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAI PHQLHLEEL TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL TKQVDFYKYLKTILEN-I--EGSDYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
TKQADFYKYMKATLEK-I--EGADYFI--AKIEEENFLRKQRTFDNGVIPHQLHLEEL




| $n$ |  |
| :--- | :--- |
| $m$ |  |
| 0 |  |
| 0 | $m$ |
| 0 | 00 |
| 0 | 0 |
| - | 6 |
| 0 | $H$ |
| 1 | 1 |
| 0 | $H$ |
| 3 | $H$ |

$\begin{array}{ll}0 & \sigma \\ -1 & 0 \\ m & \sigma \\ m & \sigma \\ \sigma & \infty \\ 0 & 0 \\ \sigma & -1 \\ 0 & m \\ 0 & 0 \\ 1 & 1 \\ 3 & \mu \\ 3 & 3\end{array}$
『
6
$m$
$\sigma$
$\sigma$
0
0
$m$
0
0
$n$
3

 운
WP_038409211
 0 m




 $T K Q V D F Y K Y L K T I L E N-I--E G A D Y F I--A K I E E E N F L R K Q R T E D N G A I P H Q L H L E E I$
$T K Q V D F Y K Y L K T I L E N-I--E G A D Y F I--A K I E E E N F L R K Q R T F D N G A I P H Q L H L E E L$ TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAI PHQLHLEEL --VOFAFYKYMKKMIEH-V--EGADYFI--NOTEFFNFIPKORTFDNGAIPHOIHLEEL TKQEAFYKYMKKMLEH-V--EGADYFI--NQIEEENFLRKQRTFDNGAIPHQLHLEEL APVDEFYKFVKKCIEK-VdtPEAKQILh--DIELENFLLKQNSRTNGSVPYQMQLDEM TPVEEFYKYIKGLLAK-VdtDEAREILe--RIDLEKFMLKQNSRTNGSIPYQMQKDEM ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEI ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL


|  | Uひス U U U U |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |




| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 486 |
| :--- | :--- | :--- |
| VRKD－－SRFAWAEY－－－RSDEKITPWNFDKVIDKEK | 489 |
| ARGN－－RDFAWLTR－－－NSDEAIRPWNFEEIVDKAS | 486 |
| $---E g-S P F G W K D I------------------~$ | 229 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 170 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 486 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 311 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 486 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 486 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 486 |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 397 |
| －－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |  |
| －－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |  |
| ARG－n－SRFAWMTR－－－KSEETITPWNFEEVVDKGA | 486 |
| ARKG－－SRFAWAEY－－－KADEKITPWNFDDILDKEK | 486 |
| ARKD－－SRFSWAEY－－－－HSDEKITPWNFDKVIDKEK | 489 |
| AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK | 487 |
| ARM |  | KIEKILTFRIPYYVGPL

 KIEKILTFRIPYYVGPL TYIDLLETRRTYYEGPG KIEKILTFRIPYYVGPL




















 1
0
3
1
1
1
1
1
1
7
1
4
4
1 KIEKILTFRIPYYVGPL $\qquad$





HAILRRQEDFYPFLKD－－NRE HAILRRQGDYYPFLKE－－KQD NAILRRQGEYYPFLKD－－NKE KQLLKVQKAYHQLDQSfi－－D HAILRRQEDFYPFLKD－－NRE HAI LRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE
 HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE

 HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE HAI LRRQEDFYPFLKD－－NRE HAILRRQEDFYPFLKD－－NRE

－ーーーーーーーーーーーーーーーーーー－ HAILRRQEDFYPFLKD－－NRE HAILRRQEEHYPFLKE－－NQD



| $W P-010922251$ | 420 |
| :--- | :--- |
| $W P-039695303$ | 423 |
| $W P-045635197$ | 420 |
| $5 A X W \_A$ | 184 |
| $W P-009880683$ | 104 |
| $W P-010922251$ | 420 |
| $W P-011054416$ | 420 |
| $W P-011284745$ | 420 |
| $W P-011285506$ | 420 |
| $W P-011527619$ | 420 |
| $W P-012560673$ | 420 |
| $W P-014407541$ | 420 |
| $W P-020905136$ | 420 |
| $W P-023080005$ | 420 |
| $W P-023610282$ | 420 |
| $W P-030125963$ | 420 |
| $W P-030126706$ | 420 |
| $W P-031488318$ | 420 |
| $W P-032460140$ | 420 |
| $W P-032461047$ | 420 |
| $W P-032462016$ | 420 |
| $W P-032462936$ | 420 |
| $W P-032464890$ | 420 |
| $W P-033888930$ | 245 |
| $W P-038431314$ | 420 |
| $W P-038432938$ | 420 |
| $W P-038434062$ | 420 |
| WGE51233 | 331 |
| KGE60856 |  |
| $W P-002989955$ | 420 |
| $W P-003030002$ | 420 |
| $W P-003065552$ | 423 |
| $W P-001040076$ | 421 |
| $W$ |  |


 み ひ みひ

| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| :---: | :---: | :---: |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTERIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIFKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTERIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTERIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | KIEKILTERIPYYVGPL | ARGN－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| RAIIRRQSEYYPFLKE－－NLD | RIEKILTFRIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| RAIIRRQSEYYPL工KE－－NLD | RIEKILTFRIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NLD | RIFKILTFRIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTERIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTERIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTFRIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTFRIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NQD | KIEKILTFRIPYYVGPL | ARGN－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| RAIIRRQSEYYPFLKE－－NLD | RIEKILTFRIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTERIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTERIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTERIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NLD | RIEKILTERIPYYVGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIFKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE－－NQD | RIEKILTFRIPYYIGPL | AREK－－SDFAWMTR－－－KTDDSIRPWNFEDLVDKEK |

\footnotetext{




 $\stackrel{\infty}{\square}$

| KAIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| :---: | :---: | :---: |
| KAIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| AIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNEEDLVDKEK |
| KAIIRRQSEYYPFLKE--NLD | RIEKILTFRIPYYVGPL | AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA |
| KAIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| RAIIRRQSEYYPFLKE--NLD | RIEKILTFRIPYYVGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| AIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE--NLD | RIEKILTFRIPYYVGPL | AREK--SDEAWMTR---KTDDSIRPWNEEELVDKEA |
| KAIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| KDIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | AREK--SDEAWMTR---KTDDSIRPWNEEDLVDKEK |
| KAIIRRQSEYYPFLKE--NQD | KIEKILTFRIPYYVGPL | ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| KAIIRRQSEYYPFLKE--NQD | RIEKILTFRIPYYIGPL | ARFK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK |
| RAIIRRQSEYYPFLKE--NLD | RIEKILTFRIPYYVGPL | AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA |
| HAILRRQGEHYPFLKE--NQD | KIEKILTFRIPYYVGPL | ARKG--SREAWAEY---KADEKITPWNEDDILDKEK |
| HAILRRQGEHYPFLKE--NQD | KIEKILTFRIPYYVGPL | ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK |
| HAILRRQGEHYPFLKE--NQD | KIEKILTFRIPYYVGPL | ARKG--SREAWAEY---KADEKITPWNEDDILDKEK |
| HAILRRQGEHYPFLKE--NQD | KIEKILTFRIPYYVGPL | ARKG--SREAWAEY---KADEKITPWNFDDILDKEK |
| HAILRRQGDYYPFLKE--NQE | EIEKILTFRIPYYVGPL | ARKD--SREAWAEY---RSDEKITPWNFDKVIDKEK |
| HAILRRQEEFYPFLKE--NRE | KIEKILTFRIPYYVGPL | ARG-n-SREAWLTR---KSEEAITPWNEEEVNDKGA |
| HAILRRQGEHYPFLKE--NQD | KIEKILTFRIPYYVGPL | ARKG--SRFAWAFY---KADEKITPWNFDDILDKEK |
| HAILRRQGEHYPFLKE--NQD | KIEKILTFRIPYYVGPL | VRKG--SREAWAEY---KADEKITPWNEDDILDKEK |
| HAILRRQEDEYPFLKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SREAWMTR---KSEETITPWNEEEVVDKGA |
| HAILRRQEDFYPFIKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SREAWMTR---KSEETITPWNEEEVVDKGA |
| HAILRRQEDFYPFLKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SRFAWMTR---KSEETITPWNEEEVVDKGA |
| HAILRRQEDFYPFIKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SREAWMTR---KSEETITPWNEEEVNDKGA |
| HAILRRQEDFYPFLKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SRFAWMTR---KSEETITPWNFEEVNDKGA |
| HAILRRQEDFYPFLKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SREAWMTR---KSEETITPWNEEEVNDKGA |
| HAILRRQEVEYPFLKD--NRK | KIESLLTFRIPYYVGPL | ARG-h-SREAWVKR---KFDGAIRPWNFEEIVDEEA |
| HAILRRQEVEYPFLKD--NRK | KIESLLTERIPYYVGPL | ARG-h-SREAWVKR---KFDGAIRPWNEEEIVDEEA |
| HAILRRQEVEYPFLKD--NRK | KIESLLTFRIPYYVGPL | ARG-h-SREAWVKR---KFDGAIRPWNFEEIVDEEA |
| RTILRRQGEYYPFLKE--NQA | KIEKILTFRIPYYVGPL | ARKN--SREAWAKY---HSDEPITPWNFDEVNDKEK |
| HAILRRQGDYYPFLKE--KQD | RIEKILTFRIPYYVGPL | VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKE |
| HAILRRQGEHYAFLKE--NQA | KIEKILTFRIPYYVGPL | ARKN--SREAWAEY---HSDEKITPWNFDEIIDKE |

\footnotetext{


$\begin{array}{lllll}0 & 0 & 0 & 10 & 10 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 7 & 0\end{array}$
$\begin{array}{ll}10 & 6 \\ 0 & 0\end{array}$ $\stackrel{\infty}{\infty}+$
 ARGK--SDFSWLSR--KSADKITPWNEDEIVDKES ARGN--SSFAWLQR---KSDEAIRPWNFEQVVDMET
ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAR ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAR
ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS

 ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES ARGK--SDFAWLSR---KSADKIT PWNFDEIVDKES ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES ARGK--SDFAWLSR---KSADKIT PWNFDEIVDKES ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
 ARKN--SRFAWAEY---HSDEAVMPWNFDQVIDKES ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
 ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
 ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES

 ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
 ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

KIEKLFTFKIPYYVGPL

 KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL















 RIEKILTFRIPYYVGPL





 HSILRRQGDYYPFLKE--NQA KAIIRRQEKFYPFLKE--NQK KAIIRRQEKFYPFLKE--NQK KAIIRRQEKFYPFLKE--NQK

KAIIRRQEKFYPFLKE--NQK RAIIRRQAEFYPFLAD--NQD QAIILNQSKYYPFLAE--NKE NAIIRRQGEHYPFLQE--NKE NAILRRQGEYYPFLKD--NKE RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD HAILRRQGDYYPFLKE--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD HAILRRQGDYYPFLKE--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQSEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD
 RAIIRRQAEFYPFLAD--NQD HAILRRQGDYYPFLKE--NQD RAIIRRQAEFYPFLAD--NQD RAIIRRQAEFYPFLAD--NQD



$\begin{array}{llll}M & O & O & 0 \\ N & \sim & \sim & \ddots\end{array}$


$m m o$
$0 \infty 6$
$\begin{array}{lll}n & \sigma & N \\ n & \forall & \sigma\end{array}$ $\qquad$
$\qquad$ $\begin{array}{llll}0 & m & 0 & 0 \\ 0 & \forall & 0 & 4\end{array}$ 0
0





 $\begin{array}{ll}n & \infty \\ \cdots & 0\end{array}$

 3 $\stackrel{a}{3}$




ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES ARGK－－SDFAWLSR－－－KSADKITPWNEDEIVDKES VRKG－－SREAWAEY－－－KADEKITPWNEDDILDKEK
 ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES

 ARGK－－SDFAWLSR－－－－KSADKITPWNFDEIVDKES ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES


 ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES

 ASGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES Sヨษּ 1 I
 ASGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES ARGK－－SDFAWLSR－－－KSADKITPWNFDEIVDKES SVY $\triangle$ II ヨヨ


 ARG－n－SRFAWLTR－－－TSDQKITPWNFDEMVDQEA ARGN－－RDFAWLTR－－－NSDQAIRPWNFEEIVDKAS ARGN－－RDFAWLTR－－－NSDQAIRPWNFEEIVDKAS


 ARDN－－RDFSWLTR－－－NSDEPIRPWNFEEVVDKAR
 KIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL

 RIEKILTERIPYYVGPL RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL
 RIEKILTFRIPYYVGPL

 RIEKILTFRIPYYVGPL RIEKILTFRIPYYVGPL

 KIEKILTFRIPYYVGPL

 RIEKIFTFRIPYFVGPL KIEKILTFRIPYYIGPL
 KIEKILTFRIPYYVGPL
 KIEQLLCFRIPYYVGPL


RAIIRRQAEFYPFLAD－－NQD HAILRRQGEHYPFLKE－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAFFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD HAI LRRQGDYYPFLKE－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD HAILRRQGDYYPFLKE－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD RAIIRRQAEFYPFLAD－－NQD NAILRRQGEHYPFLKE－－NKE NAILRRQGEHYPFLKD－－NKE NAILRHQGEYYPFLKE－－NKD KSIIRRQEKYYPFLKD－－KQV QAILERQQAYYPFLKD－－NQE NAILRRQGEHYPFLKE－－NRE NAILRRQGEHYPFLKE－－NKE NAILRRQGEHYPFLKE－－NKE HAILRRQEKYYPFLAE－－QKE










 0
0
0
0 $N$
0
-
0
0
$m$
0
0
1
3 00
00
0
0
0
0
0
4
0
0
1
1
3 $W P-049531101$ -1
0
0
6
0
0
4
0
0
1

0 | 0 |
| :--- |
| 0 |
| 5 |
| 5 |
| 0 |
| 5 | WP＿002897477




ARGN--RDFAWLTR---NSDQAIRPWNFEEVNDKAS ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS ARGN--SRFAWA.SY---NSNEKMTPWNFDNVIDKTS

 ARGK--SEFAWLINR---KSDEKIRPWNFDEMVDKET ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK ADQKd-SEFAWMVR---KQAGKITPFNFEEMVDIDA
 WפY


 SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ


 SKGDa-NTFAWLKR---QSEEPIRPWNLQETVDLDQ


 SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ

 SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ SKGDa-STFAWLKR---QNEKPIRPWNLQETVDLDQ SKGDa-STFAWLKR---QSEEPIRPWNLOETVDLDQ AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG AKKQenSPFAWLIR---KSEEKI KPWNLPEIVDMEG
AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG KIEKILAFRIPYYVGPL KIEKILTFRIPYYVGPL KIQQILTFKIPYYVGPL KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL KIEKILTFRIPYYVGPL茨 QLLSILTFRIPYYFGPL
 KIISLLTFRIPYYVGPL



 KMI RLLTFRIPYYVGPL KIEQLVTFRIPYYVGPL KIEQLVTFRIPYYVGPL

 KIEQLVTFRIPYYVGPL KIEQLVTFRIPYYVGPL品




 KLESLLTFKIPYYVGPL
 NAILRRQGEHYLFLKE--NRE NAILRRQGEHYPFLKE--NKE KAILRRQGEFYPFLKE--NAE NAI IRRQGEHYPFLQE--NKE NAILRRQGEHYPLLKE--NKE HAIIRRQAEFYPFLVE--NQD HAIIRRQAEFYPFLVE--NQD HAIIRRQAEFYPFLVE--NQD HAIIRRQAEFYPFLVE--NQD HAILRRQEEHYPFLKE--NQD VAILENQATYYPFLLE--QKD IKIIDNQAEYYPILKE--KRE HAILRRQEDFYPFLKD--NRE TAVLDQQEKHYSFLKE--NRD HAILRRQEDFYPFLKD--NRE QAILDRQSQYYPFLAE--NRD QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQE KAIIERQKPYYPSLEE--ARD QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQK QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQE QAIIHRQAAYYPFLKE--NQK QAIIHRQAAYYPFLKE--NQE QA.IIHRQAAYYPFLKE--NQK

 RAIIANQKKHYPFLKEE--EQE

\footnotetext{





| RAIIANQKKHYPFLKE--EQE | KLESLLTFKIPYYVGPL | AKKQenSPEAWLIR---KSEEKIKPWNLPEIVDMEG |
| :---: | :---: | :---: |
| RAIIANQKKHYPFLKE--EQE | KLESLLTFKIPYYVGPL | AKKQenSPEAWLIR---KSEEKIKPWNLPEIVDMEG |
| RAIIANQKKHYPFLKE--EQE | KLESLLTFKIPYYVGPL | AKKQenSPEAWLIR---KSEEKIKPWNLPEIVDMEG |
| KAIIDQQKQHYPFLEE--AGP | KIIALFKFRIPYYVGPL | AKEQeaSSEAWIER---KTAFKINPWNESEVVDIEK |
| RAIIANQKKHYPFムKE--EQE | KLESLLTFKIPYYVGPL | AKKQenSPEAWLIR---KSEEKIKPWNLPEIVDMEG |
| KAIIDQQKQHYPFLEE--AGP | KIIALFKFRIPYYVGPL | AKEQeassEAWIER---KTAFKINPWNESEVVDIEK |
| KAIIDQQKQHYPFLEE--AGP | KIIALFKFRIPYYVGPL | AKEQeassFAWIER---KTAFKINPWNFSEVNDIEK |
| KAIIDQQKQHYPFLEE--AGP | KIIALFKFRIPYYVGPL | AKEQeaSSEAWIER---KTAFKINPWNESEVVDIEK |
| RAILRKQEKYYSFLKE--NHE | KIEQIFKVRIPYYVGPL | AKHNeqSREAWNIR---KSDEPIRPWNMNDVVDENA |
| REIMDRQKREYPFLKG--AQG | KIEKLLTERIPYYVGPL | AQEGq-SPEAWIKR---KSPSQITPWNEAEVVDKEN |
| EAIIQKQATYYPFLAD--NKE | EMKQLVTFRIPYYVGPL | ADGN--SPEAWLER---ISSEPIRPGNLAEVVDIKK |
| KAILHHQAMYYPFLQE--KFS | NFVDLLTFRIPYYVGPL | ANGN--SRFSWLSR---KSDEPIRPWNLAEVVDLSK |
| KAIIDQQKQYYPFLEK--SKE | KMIQLLTFRIPYYVGPL | AQDKetSSFAWLER---KTTEKIKPWNAKDVIDYGA |
| HAILRRQEDFYPFLKD--NRE | KIEKILTFRIPYYVGPL | ARG-n-SRFAWMTR---KSEETITPWNFEEVNDKGA |
| NKILENQSVYYSDLKD--NED | KIRSILTFRIPYYFGPL | ITKDr--QFDWIIKkegKENERILPWNANEIVDVDK |
| NKILENQSVYYSDLKD--NED | KIRSILTFRIPYYFGPL | ITKDr--QEDWIIKkegKENERILPWNANEIVDVDK |
| VAIVENQGKYYPFLRE--NKD | KFEKILNFRIPYYVGPL | ARGN--SKFAWLTR--a-GEGKITPYNFDEMIDKET |
| DRIIENQQQYYPWLAE-INPN | KLDELVAFRVPYYVGPL | QQQSsdAKFAWMIR---KAEGQITPWNFDDKVDRQA |
| EKIIDNQSQYYPFLKE--NKE | KLLSILSFRIPYYVGPL | -QSSekNPFAWMER---KSNGHARPWNFDEIVDREK |
| EAILHQQAKYYPFLKE--NYD | KIKSLVTFRIPYFVGPL | ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLRK--DYE | KIRSLVTFRIPYFIGPL | ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLRK--DYE | KIRSLVTFRIPYFIGPL | ANGQ--SDEAWLTR---KADGEIRPWNIEEKVDFGK |
| EAIIHQQAKYYPFLKE--DYD | KIKSLVTFRIPYFVGPL | ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLRE--GYD | KIKSLVTFRIPYFVGPL | ANGQ--SEFAWLTR---KDDGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLRE--GYD | KIKSLVTFRIPYFVGPL | ANGQ--SEFAWLTR---KDDGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLRE--DYE | KIKSLVTFRIPYFVGPL | AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLKE--AYD | KIKSLVTFRIPYFVGPL | ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAIIHQQAKYYPFLRE--DYE | KIKSLVTFRIPYFVGPL | AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAILHQQAKYYPFLRE--DYE | KIKSLVTFRIPYFVGPL | AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK |
| EAITHQQAKYYTFLKE--DYD | KIKSLVTFRIPYEVGPL | ANGQ--SFFAWLTR---KADGEIRPWNIEEKVDFGK |
|  |  |  |

\footnotetext{



492
495
495
492
502
502
503
519
486
486
490
AKGQ--SEFAWITR---KADGEIRPWNIEEKVDFGK
AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
ANGQ---SEFSWLTR----KADGEIRPWNIEEKVDFGK
ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
ETSEh----AWIKRlegKENQRILPWNYQDTVDVDA
AHSE----FAWIKKfedKQKERILPWNYDQIVDIDA
ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
ARG-n-SREAWMTR---KSEETITPWNFEEVVDKGA
ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
KIKSLVTFRI PYFVGPL
KIKSLVTFRI PYFVGPL
KIKSLVTFRI PYFVGPL
-------------
KIKSLVTFRIPYFVGPL
KIEKILTFRIPYYVGPL
QLLSILTFRIPYYFGPL
KLISILEFRIPYYFGPL
KIEKILTFRIPYYVGPL
KIEKILTFRIPYYVGPL
KIEKILTFRIPYYVGPL
KIEKILTFRIPYYVGPL

| WP_033920898 | 426 | EAIIHQQAKYYPFLRE--DYE |
| :--- | :--- | :--- |
| AKI42028 | 429 | EAIIHQQAKYYPFLRE--DYE |
| AKI50529 | 429 | EAIIHQQAKYYPFLRE--DYE |
| EFR83390 |  | ----------------- |
| WP_046323366 | 426 | EAILHQQAKYYPFLKV--DYE |
| AKE81011 | 436 | HAILRRQEDFYPFLKD--NRE |
| CUO82355 | 434 | IKIIDNQAKYYPVLKE--KRE |
| WP_033162887 | 435 | IQIIDNQSVYYPQLKE--NRD |
| AGZ01981 | 453 | HAILRRQEDFYPFLKD--NRE |
| AKA60242 | 420 | HAILRRQEDFYPFLKD--NRE |
| AKS40380 | 420 | HAILRRQEDFYPFLKD--NRE |
| 4UN5_B | 424 | HAILRRQEDFYPFLKD--NRE |


| 51 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 51 |
| :---: | :---: | :---: | :---: |
| WP_039695303 | 490 | SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVFK--ENR-KVTK | 563 |
| WP_045635197 | 487 | SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--ENR-KVTE | 1 |
| 5AXW_A | 230 | --KEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITR--DENEKLEYYE---KFQIIENVFK--QKK-KPTL | 299 |
| WP_009888063 | 171 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 45 |
| WP_010922251 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_-011054416 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_011284745 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKP aFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_011285506 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_011527619 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP_012560673 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP-014407541 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP_020905136 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP_023080005 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP_023610282 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP_030125963 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_030126706 | 48 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 61 |
| WP_031488318 | 487 |  | 561 |
| WP-032460140 | 48 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_032461047 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_032462016 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_032462936 | 48 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 1 |
| WP_032464890 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_033888930 | 31 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 86 |
| WP_038431314 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_038432938 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_038434062 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| BAQ51233 | 398 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 472 |
| KGE60162 |  |  |  |
| KGE60856 |  |  |  |
| WP_002989955 | 487 | SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV | 561 |
| WP_003030002 | 487 | SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENR-KVTK | 560 |
| WP_003065552 | 490 | SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKDS-FFDSNMKQEIFDHVFK--ENR-KVTK | 563 |
|  | 48 |  | 562 |



\footnotetext{



| KN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK |  |
| :---: | :---: |
| EEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK | 561 |
| FTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK | 561 |
| EKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK | 561 |
| EKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNSLFK--EKR-KVTE |  |
| EKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK |  |
| TNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK |  |
| KN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK | 561 |
| DSNI KQEIFDGVFK--EHR-KVSK |  |
| EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK |  |
| KHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNVKQEIFDGVFK--EHR-KVSK |  |
| IHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK |  |
| KKN--EQGETY-FFDSNIKQEIFDGVFK--EYR-KVSK |  |
| ITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENR-KVTK |  |
| TRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK |  |
| VYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK |  |
| MTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK |  |
| VYNELTKVKYVN--EQGKDS-FFDSNMKQEIFDHVFK--ENR-KVTK |  |
| NFDEQLPNKKVLPKHSLLYEYFTVYNELTKVKYVT--ERMRKPeFLSGEQKKAIVDLLFK--TNR-KVTV |  |
| KFITRMTLNDLYLPEEKVLPKHSPLYEAFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK |  |
| ITRMTLNDLYLPEEKVLPKHSLLYEIFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENP-KVTK |  |
| KNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV |  |
| FDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV |  |
| IERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV |  |
| ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV |  |
| SFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV |  |
| QSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV |  |
| QIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV |  |
| EKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV |  |
| FIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV |  |
| FITRMTLNDLYLPEEKVLPKHSYVYETFAVYNELTKIKYVN--EQGKSF-FFDANMKQEIFDHVFK--ENR-KVTK |  |
| -EQGKES-FFDSNMKQEIFDHVFK--ENR-KVTK |  |
|  |  |

\footnotetext{


563
560
561
561
561

00
$\begin{array}{lll}0 & 9 & 8 \\ 6 & 6 & 8 \\ 0 & 1 & 1\end{array}$
$\begin{array}{ll}0 & 0 \\ 6 & 6 \\ 10 & 10\end{array}$

$\begin{array}{lll}0 & 0 & 8 \\ 0 & 0 & 6 \\ n & 0 & 1\end{array}$ $\begin{array}{ll}0 & 8 \\ 0 & 0 \\ 0 & 0\end{array}$ $\begin{array}{lll}8 & 0 & 0 \\ 6 & 6 & \\ n & n & 6\end{array}$ $\begin{array}{ll}0 & 0 \\ 6 & 6 \\ \square & 5\end{array}$ | 0 | 8 | 8 |
| :--- | :--- | :--- |
| 0 | 6 | 8 |
|  | 1 |  | | $\odot$ |
| :--- |
| $\bullet$ |
| $\square$ | $\begin{array}{ll}0 & 0 \\ 6 & 0 \\ 6 & n\end{array}$ 8

 AFKFITRMTLNDLYLPEEKVLPKHSHVYETFTVYNELTKIKYVN－－EQGESE－FFDANMKQEIFDHVFK－－ENR－KVTK ARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQTー－EGMKRPvFLSSEDKEEIVNLLFK SARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT－－EGMKRPVFLSSEDKEEIVNLLFK－－KER－KVTV
SARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT－－EGMKRPVFLSSEDKEEIVNLLFK－－KER－KVTV SAEAFINRMTNYDLYLPNQKVLPRHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SASRFIERMTLHDLYLPDEKVLPRHSLIYEKYTVENELTKVRETP－－EGGKEV－YESKTDKENIFDSLEK－－RYR－KVTK SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA－－EGLRDYqFLDSGQKQQIVTQLFK－－EKR－KVTE SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA－－EGLRDYqFLDSGQKKQIVNQLFK－－ENR－KVTE SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVIK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELIKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK
 SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT－－EIGEAK－FFDANLKQEIFDGLFK－－HER－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK
 SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK
 SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT－－EQGKTA－FFDANMKQEIFDGVFK－－VYR－KVTK
$\begin{array}{lllll}\circ & \sim & \sim & \Gamma & 1 \\ \sigma & \infty & \infty & \infty & \infty\end{array}$ サ サ サ み み


$\begin{array}{ll}m & m \\ 0 & m \\ m & \sigma \\ 0 & \pm \\ 0 & m \\ 0 & m \\ 0 & 4 \\ m & 1 \\ 0 & 0 \\ n & 1 \\ n & 4 \\ 3 & 3\end{array}$
 $\qquad$


 HN H M 6


号品沾
60
60
70
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
62
63
63
64
62
61



[^9]


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GQKKQIVTQLFK--EKR-KVTE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KQKKDIFDTFFKaeNKR-KVTE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| QKKDIVKTLFK--TKR-KVTA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SAEKFITRMTLNDLYLPEEKVLPKHSLLYETETVYNELTKVKYVN--EQGEAK-EFDANMKQEIFDHVFK--ENR-KVTK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EKFIERMTNMDTYLLEEKVLPKRSLLYQTFEVYNELTKVRYTN--EQGKTE-KLNRQQKAEIIETLFK-qKNR--VRE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LFK--TRR-KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| , |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| -TRR-KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DIYLSEKVLPKHSLLIEKFMVENEーIKISIID- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ATAFIERMTNFDTYLPSEKVLPKHSLLYEKFMVENELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ATAFIERMTNFDTYLPSEKVLPKHSLLYEKFMVENELTKISYTD--DRGIKA-NFSGKEKEKIEDYLFK--TRR-KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RMTNFDTYLPSEKVLPKHSLLYEKEMVENELTKISYTD--DRGIKA-NESGKEKEKIEDYLFK--TRR-KVKK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| VRIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK AVRFIERMNNTDMYI PHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK AVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

\footnotetext{

 SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK SAVRFIERMINTDMYI PHNKVLPKNSLLYQKFSIYNELTKVRYOD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMI FNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK SAMRFIQRMTKQDTYLPTEKVLPKNSLFYQKYMI FNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMI FNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV SAVAFIERMTIKDIYL-NENVLPRHSLIYEKFTVFNELTKVLYAD--DRGVFQ-RFSAEEKEDIFEKLFK--SER-KVTK SAIEFIERMTNQDTYLPKEKVLPKQSLIYQRFMI FNELTKVSYTD--ERGKSH-YFSSEQKRKIFNELFK--QHP-RVTE SATKFIERMTNFDTYLPTEKVLPKHSMIYEKYMVYNELTKVSYVD--ERGMNQ-RFSGEEKKQIVEELFK--QSR-KVTK SAELFIERMTNFDLYLPSEKVLPKHSMLYEKYTVYNELTKVTYKD--EQGKVQ-NFSSEEKERIFIDLFK--QHR-KVTK
 SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV TADEFIKRMRNFCTYFPDEPVLAKNSLTVSKYEVLNEINKLRIND---------hLIKRDIKDKMLHTLFM--DHK-SISA TADEFIKRMRNFCTYFPDEPVMAKNSLTVSKYEVLNEINKLRIND--------hLIKRDMKDKMLHTLFM--DHK-SISA SAEDFIKRMTINDLYLPTEPVLPKHSLLYERYTIFNELAGVRYVT--ENGEAK-YFDAQTKRSIFE-LFKl--DR-KVSE SANEFIKRMTTTDTYLLAEDVLPKQSLIYQRFEVLNELNGLKIDD--QPITTE------LKQAIFTDLFM---QKtSVTV SSNKFIRRMTVTDSYLVGEPVLPKNSLIYQRYEVLNELNNIRITEnlKTNPTGsRLTVETKQHIYNELFK--NYK-KITV SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQI FNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK SAIDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTH-HFSGQEKQQIFNGLFK--QQR-KVKK SAIDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTH-HFSGQEKQQIFNGLFK--QQR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGREKQQVFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGREKQQIFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGREKQQIFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLYYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDYFK--QKR-KVSK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQI FNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQI FNDLFK--QKR-KVKK SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK








| WP 033920898 |
| :---: |
| AKI 42028 |
| AKI 50529 |
| EFR83390 |
| WP_046323366 |
| AKE81011 |
| CUO82355 |
| WP 033162887 |
| AGZ01981 |
| AKA60242 |
| AKS 40380 |
| 4UN5 B |




DFLDNEENEDILEDIVLTLTLFEDREMIE

DFLDNEENEDILEDIVLTLTLFEDREMIE
AFLDDKVNEEVIEDIIKTLTLFEDKDMIH प्र IW'H ------ENAELIDQIAKILTIYQSSEDIQ DFLDNEENEDILEDIVLTLTLFEDREMIE
 DFLDNEENEDILEDIVLTLTLFEDREMIE DFLDNEENEDILEDIVLTLTLFEDREMIE DFLDNEENEDILEDIVLTLTLFEDREMIE ы IW'H


 DFLDNEENEDILEDIVLTLTLFEDKEMIE DFLDNEENEDILEDIVLTLTLFEDKEMIE DFLDNEENEDILEDIVLTLTLFEDREMIE


 DFLDNEENEDILEDIVLTLTLFEDREMIE 버포 DFLDNEENEDILEDIVLTLTLFEDKEMIE



 DFLDNEENEDILEDIVLTLTLFEDREMIE DFLDNEENEDILEDIVLTLTLEEDREMIE

DFLDNEENEDILEDIVLTLTLFEDREMIE SFLDDKANEKTIEDIIQTLTLFEDREMIR AFLDDKVNEEVIEDIIKTLTLFEDKDMIH

KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KQIAKEILVNe--EDIKGYRVTSTGKPe---FTNLKVYHDIKDITARK KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK
 KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK


















 KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK

KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNSSLGTYHDLRKIL-DK EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK


$\begin{array}{llll}N & \ddots & 7 & m \\ 0 & 0 & 0 & 0\end{array}$ மமレம








$\begin{array}{lcccc}\top & \ddots & N & 0 \\ 6 & 6 & 0 & 0\end{array}$ ローロ ロ ！



| WP 039695303 |
| :---: |
| WP 014334983 |
| WP 003099269 |
| AHY15608 |
| AHY17476 |
| ESR09100 |
| AGM98575 |
| ALF27331 |
| WP 018372492 |
| WP 045618028 |
| WP 045635197 |
| WP 002263549 |
| WP 002263887 |
| WP 002264920 |
| WP 002269043 |
| WP 002269448 |
| WP 002271977 |
| WP 002272766 |
| WP 002273241 |
| WP 002275430 |
| WP 002276448 |
| WP 002277050 |
| WP 002277364 |
| WP 002279025 |
| WP＿002279859 |
| WP 002280230 |
| WP 002281696 |
| WP 002282247 |
| WP＿002282906 |
| WP 002283846 |
| WP＿002287255 |
| WP 002288990 |
| WP 002289641 |
| WP 002290427 |


DFLDNSKNEKILEDIVLTLTLFEDREMIR
DFLDNSKNEKILEDIVLTLTLFEDREMIR
SFLDNKENEQIIEDIIQTLTLFEDREMIR
DFLDNSKNEKILEDIVLTLTLFEDREMIR
VEMDNPENAEILENIVLTLTLFEDREMIK
DFLDNSKNEKILEDIVLTLTLFEDREMIR
DFLDNSKNEKILEDIVLTLTLFEDREMIR
VEMDNPENAEILENIVLTLTLFEDREMIK
DFLDNSKNEKILEDIVLTLTLFEDREMIR
DFLDNSKNEKILEDIVLTLTLFEDREMIR
DFLDNSKNEKILEDIVLTLTLFEDREMIR
EFMDDPNNEEILENIVHTLTIFEDREMIK
EFMDDSKNEEILENIVHTLTIFEDREMIK
EFMDDPKNEEIFENIVHTLTIFEDRVMIK
KILDDEQNQDSLEDIVLTLTLFEDEKMIA
AFLDNSENENIIEDIILTLTLFEDKEMIA
RFMDEPKNQEILENIVHTLTIFEDREMIK
EFMDDSKNEEILENIVHTLTIFEDREMIK
EFMDDSKNEAILENIVHTLTIFEDREMIK
AFLDDEANAEILEEIVLILTLFQDEKLIE
AFLDDEANAEILEEIVLILTLFQDEKLIE
EFMDDPKNEEILENIVHTLTIFEDREMIK

DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLLNYLNKE--FEEFRIVNLTGLDKEnkVFNSSLGTYHDLRKIL-NK DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNA.SYGTYHDLRKIL-DK
 DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK KKLRTFLDKN--FDEFRIVDIQGLDKEteTFNASYATYQDLLKVIIKDK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK KKLRTFLDKN--FDEFRIVDIQGLDKEteTFNASYATYQDLLKVIKDK DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK

 KDIIHYLHN---VDGYDGIELKGIEKH---FNSSLSTYHDLLKIIKDK KQLKENYFNK--IRCLDSITISGVEDK---FNASLGTYHDLLNIIKNQ KQLKEDFFSK--IECFDTVDISGVEDK---FNASLGTYHDLLKIIIKDK KDLIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KDIIQYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KDIIHYLHT---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIIKDK
 KDLKEKYFSQ--IEGLENVDVTGVEGA---FNASLGTYNDLLKIIKDK KDIIHYLHN---VDGYDGIELKGIEKQ---FNANLSTYHDLLKITKDK

[^10] EFMDNPKNGEILENIIHTLTIEEDREMIK
 IHTLTIFEDREMIK EFMDNHKNQEILENIVHTLTIFEDREMIK
 DLLDNPENEDILENVVLTLTLFEDREMIR DLLDNPENEDILENVVLTLTLFEDREMIR AFIDAEENQEILEDIVLTLTLFEDREMIR SFLDNKENEQIIEDIIQTLTLFEDREMIR ETVSNPANEEMFEKIIYWSTVFEDKKIMR ----DQSNFDLIENIIYDLTVFEDKKIMK --LLEKDEDEILEEIIKILTIFEDRKMRK DFLDNEENEDILEDIVLTLTLFEDREMIE AYLDDPEYADVWEDIIKILTIFEDKAMRK AELDHPDNAEKLEDIIKILTIFEDRQRIR
 ELLEQPEMNAMFEDIVKILTIFEDREMIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILIIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILIIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR AELDHPDNAEKLEDIIKILTIFEDRQRIR QWLEDPELASMFEEIIKTLTVFEDREMIK QWLEDPELASMFEEIIKTLTVFEDREMIK QWLEDPELASMFEEIIKTLTVFEDREMIK KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KDIIQFLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KKILNFLDKN--FDEFRITDIQGLDNEtgNFNASYGTYHDLLKIIGDK KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK KDIKAYL-EN--SNGYAGVELKGLEEQ---FNASLPTYHDLLKILRDK EKLMDFLGKE--FDEFRIVDLLGLDKDnkSFNASLGTYHDLKKIV-SK EKLMDFLGKE--FDEFRIVDLLGLDKDnkSFNASLGTYHDLKKIV-SK KDIKAYL-EN--SNGYAGVELKGLEEQ---FNASLPTYHDLLKILRDK DKLLNYLGKE--FDEFRIVDLTGLDKEnkVFNSSLGTYHDLRKIL-DK TSLKKWLAEH---EHMTVSVVQGTQKEt-EFATSLQAFHREVKIF-DR KKLKNWLVNNqCCS--KDAEIKGFQKEn-QFSTSLTPWIDFTNIFGKI KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK NQLVKYIENK - - EQIIAPEIKGIEDS - - - FNSNYSTYIDLSKIPDMK KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK KDIANYLEQ---YGYVDGTDIKGVEDK---FNASLSTYNDLAKIDGAK KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASESTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR KKLQQFLSAN--YN-IEDAEILGVDKA---FNSSYATYHDFLDLAKPN KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASESTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR


 KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASESTYQDLLKCGLTR KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK





QWLEDPELASMFEEIIKTLTVFEDREMIK QWLEDPELASMFEEIIKTLTVFEDREMIK QWLEDPELASMFEEIIKTLTVEEDREMIK EWLEQPEMEPIFEDIVKILTIFEDRQMIK QWLEDPELASMFEEIIKTLTVFEDREMIK EWLEQPEMEPIFEDIVKILTIFEDRQMIK EWLEQPEMEPIFEDIVKILTIFEDRQMIK EWLEQPEMEPIFEDIVKILTIFEDRQMIK PYLDDEKYQDTLEEVIKVLTVEEDRSMIQ TLLDDPDMTTMFEEIIKILTIFEDREMIR EQLDKEENSETLEEIVKILTVEEDRKMIR KVLDDPANEPMFEEIVKILTIFEDRKMLR ELLEQPEMEEMFEDIVKIITIFEDREMVR DFLDNEENEDILEDIVLTLTLFEDREMIE ----NNSNYELIEKIIYDVTVEEDKKILR $----N E S N Y D F I E K I I Y D V T V E E D K K I L R$
ELLNDEVNSEKWEDIIKTLTIFEGRKLIK --VDDVDKQADLEKCIEWSTIFEDGKIYS -FMENNKNYNQIEELIEWLTIFEDKQILN EILDNPVNTEMLENIVKILTVFEDKRMIK EILDNPVNTEMLENIVKILTVFEDKRMIK EILDNPVNTEMLENIVKILTVEEDKRMIK EILDNPVNTEMLENIVKILTVEEDKRMIK EILDNPLNADMLEEIVKILTVFEDKRMIK EILDNPLNADMLEEIVKILTVEEDKRMIK EILDNPLNTEMLEDIVKILTVFEDKPMIK EILDNPLNTEILEDIVKILTVFEDKRMIK EILDNPLNTEILEDIVKILTVFEDKRMIK EILDNPLNTEMLEDIVKILTVFEDKRMIK EVLENPLNTEMLEDIVKILTVFEDKRMIK EILDNPLNTEMLEDIVKILTVEEDKPMIK EILDNPLNTEMLEDIVKILTVFEDKRMIK EILDNPLNTEMLEDIVKILTVFEDKRMIK KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK KKLQNFLYTH--YH-IENAQI FGIEKA---FNASYSTYHDFMKLAKTN旮 KKLQNFLYTH--YH-IENAQI FGIEKA---FNASYSTYHDFMKLAKTN KKLENYLRIEl---SISSPSVKGIEEQ---FNANFGTYLDLKKFDELH
 KLLEKFLSNE--FG-LVDVAIKGIE-T--SFNAGYGTYHDFLKIGITR KDLSNFLRNE--YN-LDDVIIDGIE-N--KFNAS FNTYHDFLKLKIDP KKLQHFLSAN--YN-IEDAEILGVDKV---FNSSYATYHDFLELAKPY KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK NAMKKWLVKNqyFSNTDDIKIEGFQKEn-ACSTSLTPWIDFTKIFGEI NAMKKWLVKNqyFSNTDDIKIEGFQKEn-ACSTSLTPWIDFTKIFGKI KMVIKHLKVV--MPAIRIQALKGLDNGk--FNASYGTYKDLVDMGVAP KNIQDYLVSEk--RYASRPAITGLSDEnk-FNSRLSTYHDLKTIVGDA KKLTKWLIAQg---YYKNPILIGLSQKd-EFNSTLTTYLDMKKIFGSS KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ

 KDLERFLYTI--NH-IESPTIEGVE-D--AFNSSFATYHDLQKGGVTQ KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGLKQ KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGLKQ KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ KDLEQFLRNM--SH-IESPTIEGLE-D--SFNSSYATYHDLLKVGIKQ
 ठЧ Iগ $\wedge$ YKTGHX KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ



37
40
40
5
37
49
41
44
66
33
 EILDNPLNTEMLEDIVKILTVFEDKRMIK
EILDNPLNTEMLEDIVKILTVFEDKPMIK
EILDNPLNTEMLEDIVKILTVFEDKRMIK
EILDNPLNTEMLEDIVKILTVFEDKRMIK
EILDDPLNTEMLEEIIKILTVFEDKRMIN
DFLDNEENEDILEDIVLTLTLFEDREMIE
$----D Q S N E D L I E K I I Y D L T V F E D K K I M K ~$
$----N A S N Y Q L I E K I I Y D I S I F E D K K I L K ~$ KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ
KDLELFLYNM--NH-VESPTVEGVE-D--AFNSSFTTYHDLQKVGVPQ
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK
KKLKNWLVNNqCCR--KDAEIKGFQKEn-QFSTSLTPWIDFTNIFGKI
KKLKDWLVTHqYYDINEELKIEGYQKDI-QFSTSLAPWIDFTKIFGEI
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK
KQLKEDYFKK--IECEDSVEISGVEDR---FNASLGTYHDLLKIIKDK
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK




No O－ $\begin{array}{lll}10 & 0 & 0 \\ 0 & 0 & 0\end{array}$ ○○ONMOOOOOOOOOOOOOOOOOONOOOH －DGチーーーANRNFMQLIHDDSL



 －DG氏－ー－ANRNEMQLIHDDSL －DGチーーーANRNFMQLIHDDSL









 －DGチーーーANRNFMQLIHDDSL



 －DGエーーーANRNEMQLIHDDSL
－DGチーーーANRNFMQLIHDDSL

 －DGfー－ーANRNEMQLIHDDSL





QSGKTILDFLK ENNKTILDYLI QTGNTILDYLI






















 SGKTI




ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLQKYSDIETANQLKKLER－RHYTGWGRLSYKLINGIRNK QRLAQYDSLFDEKVIKALTR－RHYTGWGKLSAKLINGICDK EELTNLNSELTQEEIEQISNlKGYTGTHNLSLKAINLILDE ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTVWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKKYANLFDDKVMKQLKR－RHYTGWGRLSRKLINGIRDK ERLKKYANLFDDKVMKQLKR－RHYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK

 ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK
 ERLKKYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK

 ERLKKYANLFDDKVMKQLKR－RHYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK


[^11]
অ $0 \infty m$

$\begin{array}{llll}m & M & M & M \\ 6 & 6 & 0 & 6\end{array}$

| 010922251 |
| :---: |
| WP 039695303 |
| P 045635197 |
| 5AXW＿A |
| WP 009880683 |
| WP 010922251 |
| P 011054416 |
| WP 011284745 |
| 011285506 |
| WP 011527619 |
| 012560673 |
| WP 014407541 |
| 020905136 |
| TP－023080005 |
| 023610282 |
| PP 030125963 |
| 030126706 |
| WP 031488318 |
| WP 032460140 |
| WP 032461047 |
| WP 032462016 |
| WP 032462936 |
| WP 032464890 |
| WP 033888930 |
| WP 038431314 |
| WP 038432938 |
| WP 038434062 |
| BAQ51233 |
| KGE60162 |
| KGF60856 |
| WP 002989955 |
| WP 003030002 |
| WP 003065552 |
| WP 001040076 |


 DDG－－－RSNRNFMQLINDDGL







 1
0
2
2
3
2
2
3
2
2
2
2
1
1
1
0
0














曷 DDG－－－SANRNFMQLIKDAGL号号 불

 DDG－－－RSNRNFMQLINDDGL ITXITIムタठS年



 ，





告


号








年年





答 KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESOLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDR KRLDIYKDFFTESQLKKLYR－RHYTGWGRLSAKLINGIRNK Ү Y
 KRLDIYKDFFTESQLKKLYR－RHYTGWGRLSAKLINGIRNK KRLDIYKDFFTESQLKKLYR－RHYTGWGRLSAKLINGIRNK
苃 KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK
 KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK
药 KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDR KRLDIYKDFFTESQLKKLYR－RHYTGWGRLSAKLINGIRNK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK

 KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK




 DDG－－－RSNRNFMQLINDDGL

























 －DGf－－－ANRNFMQLIHDSEL

 DDG－－－DANRNFMQLINDDSL
 DDG－－－YANRNFMQLISDDTL ITXGII山YOS＇㘯




 ITXCTIUYOS＇ ESQKTILDYLI



 H H



 QSGKTILDFLK号字

采
号
曷
$H$
E
0
0
0
0









 KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLDIYKDFFTESQLKKLYR－RHYTGWGRLSAKLINGIRNK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLETESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDK KRLENYKDLFTESQLKKLYR－RHYTGWGRLSAKLINGIRDR

 QRLQKYSDIFTKAQLKKLER－RHYTGWGRLSYKLINGIRNK QRLQKYSDI FTKAQLKKLER－RHYTGWGRLSYKLINGIRNK

 QRLQKYSDIFTKQQLKKLER－RHYTGWGRLSYKLINGIRNK

 QRLQKYSDIETKAQLKKLER－RHYTGWGRLSYKLINGIRNK ERLKKYANLFDDKVMKQLKR－RHYTGWGRLSRKLINGIRDK

 ERLKKYANLFDDKVMKQLKR－RHYTGWGRLSRKLINGIRDK ERLKTYAHLFDDKVMKQLKR－RHYTGWGRLSRKLINGIRDK
 KRLDQYAHLFDKVVLNKLER－HHYTGWGRLSGKLINGIRDK KRLDQYAHLFDKVVLNKLER－HHYTGWGRLSGKLINGIRDK


 QRLQKYSDIFTPQQLKKLER－RHYTGWGRLSYKLINGIRNK


| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP 047207273 |
| WP 047209694 |
| WP 050198062 |
| $W P-050201642$ |
| $W P-050204027$ |
| WP 050881965 |
| $W P$＿050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| $W P$＿003041502 |
| $W P-037593752$ |
| $W P-049516684$ |
| GAD46167 |
| WP 018363470 |
| WP＿003043819 |
| $W P-006269658$ |
| WP＿048800889 |
| WP 012767106 |
| $W P 014612333$ |
| WP－015017095 |
| $W P-015057649$ |
| $W P-048327215$ |
| $W P-049519324$ |
| $W P-012515931$ |
| $W P-021320964$ |
| WP 037581760 |
| $W P-004232481$ |
| WP 009854540 |
| WP 012962174 |


| DDG－－－SANRNFMQLINDDTL | 706 |
| :--- | :--- |
| DDG－－－HANRNFMQLINDESL | 703 |
| －DGV－－－ANRNFMQLINDSSL | 702 |
| －DGV－－－ANRNFMQLINDSSL | 702 |
| －DGV－－－ANRNFMQLINDSSL | 702 |
| -------------------- |  |
| －DGv－－－ANRNFMQLINDSSL | 702 |
| DDG－－－NSNRNFMQLINDDAL | 703 |
| DDGf－－－SNRNLMQLINDDGL | 716 |
| DDG－－－EINRNFMQLINDDGL | 702 |
| DDG－－－KINRNFMQLINDDGL | 701 |
| DDG－－－NSNRNFMQLINDDAL | 703 |
| DDA－－－QSNRNLMQLITDDNL | 704 |
| DDG－－－NSNRNFMQLINDDAL | 703 |
| DDA－－－QSNRNLMQLITDDNL | 704 |
| DDG－－－NSNRNFMQLINDDAL | 703 |
| DN |  |

ENNKTILDYLI品
 H
H
H
H
念
0
H
O QTGKTILGFLK







年



 ESRKTLLDYLI






告 ESRKTILDYLI
号
号 ESRKTILDYLI


 RRLVKYADVFEKSVLKKLKK－RHYTGWGRLSQKLINGIKDK RRLVKYADVFEKSVLKKLKK－RHYTGWGRLSQKLINGIKDK
RRLVKYADVFEKSVLKKLKK－RHYTGWGRLSQKLINGIKDK KRLENYSDLLTKEQVKNLER－RHYTGWGRLSAELIHGIRNK KRLSELNIPFENKIIKKLAR－KKYTGWGNLSRKLIDGIRNR QRLAHYASIFDEKVIKALTR－RHYTGWGKLSAKLINGIYDK QRLAQYDSLFDEKVIKALTR－RHYTGWGKLSAKLINGICDK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK花 KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK QRLAKYADVFDKKVIDQLAR－RHYTGWGRLSAKLLNGIRDK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK岂
 KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK QRLAKYADVFDKKVIDQLAR－RHYTGWGRLSAKLLNGIRDK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK
 KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK
 $m$
0
$m$
0
0
0
0
$m$
0
1
3 $m$
$m$
0
$\sigma$
$m$
$m$
$m$
$\square$
-1
0
1
1
3


 み○

 $\infty 100$ ம Mल $\begin{array}{lll}\infty & 0 & 6 \\ 1 & 6 & 4 \\ 0 & 0 & 0\end{array}$ | r |  |
| :--- | :--- |
| 7 | 0 |
| 7 |  |
| 1 |  | $\begin{array}{ll}4 \\ 3 & 4 \\ 3\end{array}$



DDG－－－NSNRNFMQLINDDAL


























 DDG－－－YNNRNFMQLINDDGL



 ITXCII山YપS＇




录录






录



 H







 H
H
合
H
ㅂ
ㄹ
ㅇ
O


 KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK QRLQKYSDIFTKAQLKKLER－RHYTGWGRLSYKLINGIRDK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK
 KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK
 KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK

 KRLKNYSDLLTKEQLKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK QRLAKYADVEDKKVIDQLAR－RHYTGWGRLSAKLLNGIRDK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK QRLAKYADVFDKKVIDQLAR－RHYTGWGRLSAKLLNGIRDK
 KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK KRLENYSDLLTKEQVKKLER－RHYTGWGRLSAELIHGIRNK QRLAQYDSLFDEKVIKALTR－RHYTGWGKLSSKLINGIRDK QRLAQYDSLFDEKVIKALIR－RHYTGWGKLSAKLIDGICDK QRLNQYDSIFDEKVIKALTR－RHYTGWGKLSAKLINGIRDK KRLSKYESIFDPSILKKLKK－RHYTGWGRLSQKLINGIRDK NRLAVYEDLFDQNVLKQLKR－RHYTGWGRLSKQLINGMRDK QRLAQYASI FDEKVIKTLTR－RHYTGWGKLSAKLINCIRDR QRLAQYDSI FDEKVIKALTR－RHYTGWGKLSAKLINGIRDK QRLAQYDSLFDKKVIKALTR－RHYTGWGKLSAKLINGICDK KRLAKYANLFEKSVLKKLRK－RHYRGWGRLSRQLIDGMKDK KRLAKYANLFEKSVLKKLRK－RHYRGWGRLSRQLIDGMKDK
QRLAQYDTLFDEKVIKALTR－RHYTGWGKLSAKLINGIRDK






的



DDG－－－DCNRNFMQLINDDGL




 DDG－－－TSNRNFMQLINDDTL DDG－－－TSNRNFMQLINDDTL DDG－－－TSNRNFMQLINDDTL －－－－－－QTNENFMQIIRNKDY －－－－－－－SRLNLMEIINDKDL DNGcpkNMNRNFMQLINDDTL －DGf－－－ANRNFMQLIHDDSL DEGssgPTNRNFMQLIRDNTL

 DDDfpyNRNRNFMQLINDDSL DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL
 DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL DDGvskHYNRNFMQLINDSQL



 DDDfphHRNRNFMQLINDDSL ITX＇コリムケશ山ठ号

 KTGKTILDYLI VTRKTILGYLI








 | 学 |
| :--- |
| 9 |
|  |
|  |
|  |
| 0 |
| 0 |
| 0 |
| 0 |






牟

 H







 QSNKTILDYLI QRLAQYDTLFDEKVIKALTR－RHYTGWGKLSAKLINGIRDK QRLAQYDSLFDEKVIKALTR－RHYTGWGKLSAKLINGISDK QRLLKYEDIFSKKVIANLTR－RHYTGWGRLSAKLINGIKDK QRLAQYDSLFDEKVIKALTR－RHYTGWGKLSAKLINGIRDK QRLAQYDSIFDEKVIKALTR－RHYTGWGKLSAKLINGICDK KRLEKYKDILTEEQRKKLER－RHYTGWGRLSAKLINGIEDK GWGRLSAKL NAR KRLEKYKDITEEQRKER－RHYGWGRLSAKITNGILDK QRLQKYSDIFTKAQLKKLER－CHYTGWGRLSYKLINGIRNK RKLSEYPQLTEQQQVQLAQV－－RFRGWGRLSQRLINRIKTP RRLKKKYALPDDKVKQILKL－－KYKDWSRLSKKLLDGIVAD ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK RQLMKFKDKLSEKAINQLSK－KHYTGWGQLSEKLINGIRDE ERLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK KQLQTYSDTLSPEILKKLER－KHYTGWGRFSKKLINGLRDE TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK TQLKKYQSVLGDGFFKKLVK－KHYTGWGRLSERLINGIRDK TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK
 TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK学 TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKLINGIYDK IYDK TQLSTFKGQFSAEVLKKLER－KHYTGWGRLSKKL TQLSTFKGQFSEEVLKKLER－KHYTGWGRLSKKLINGIYDK TRLSHHEATLGKHIIKKLTK－KHYTGWGRLSKELIQGIRDK TRLSHHEATLGKHIIKKLTK－KHYTGWGRLSKELIQGIRDK
TRLSHHEATLGKHIIKKLTK－KHYTGWGRLSKELIQGIRDK



| W | 002906454 |
| :---: | :---: |
|  | 009729476 |
|  | 24647 |
| W | 000066813 |
| W | 009754323 |
|  | 044674937 |
|  | 044676715 |
|  | 044680361 |
|  | 044681799 |
|  | 049533112 |
|  | 029090905 |
|  | 006506696 |
|  | 42264 |
|  | 034440723 |
|  | 21048 |
|  | 004636532 |
|  | 002364836 |
|  | 016631044 |
|  | 75795 |
|  | 002373311 |
|  | 002378009 |
|  | 002407324 |
|  | 002413717 |
|  | 010775580 |
|  | 010818269 |
|  | 010824395 |
|  | 016622645 |
|  | 033624816 |
|  | 033625576 |
|  | 033789179 |
|  | 002310644 |
|  | 002312694 |
|  | 002314015 |
|  | 002320716 |





QSNKTILDYLI QSNKTILDYLI
 KTNKTILDYLI QSNKTILDYLI KTNKTILDYLI
 $H$
$H$
H
号
H
E
岂
己
E ？


年




















 TRLSHHEATLGKHIIKKLTK－KHYTGWGRLSKELIQGIRDK TRLSHHEATLGKHIIKKLTK－KHYTGWGRLSKELIQGIRDK HQLSKYQEVEGEKLLKEFAR－KHYTGWGRFSAKLIHGIRDR TRLSHHEATLGKHIIKKLTK－KHYTGWGRLSKELIQGIRDK HQLSKYQEVEGEKLLKEFAR－KHYTGWGRFSAKLIHGIRDR HQLSKYQEVFGEKLLKEFAR－KHYTGWGRFSAKLIHGIRDR HQLSKYQEVEGEKLLKEFAR－KHYTGWGRFSAKLIHGIRDR NQLEQLPLNLSTKTIKALSR－RKYTGWGRLSARLIDGIHDK Y్খ Y＇ヨ EQLSKFSDRLSEKTIKDLER－RHYTGWGRLSAKLINGIHDK TQLKKYQRILGEEIFKKLVK－KKYTGWGRLSKRLINGIRDQ
 RRLKKEYDLDEEKIKKILKL－－KYSGWSRLSKKLLSGIKTK RRLKKEYDLDEEKIKKILKL－－KYSGWSRLSKKLLSGIKTK RRLENYRDFLGEDILRKLSR－KKYTGWGRLSAKLLDGIYDK AKLNEIDWLTDQQRVQLAAK－－RYRGWGRLSAKLLTQIVN－ EKLHSSNYSYTSDQIKKISN－MRYKGWGRLSKKIITCITTE EQLQQFSDVLDGVVLKKLER－RHYTGWGRLSAKLLMGIRDK
 EQLQQFSDVLDGVVLKKLER－RHYTGWGRLSAKLLMGIRDK EQLQQFSDVLDGVVLKKLER－RHYTGWGRLSAKLLMGIRDK
 EQLQSFSDVLDGTILKKLER－RHYTGWGRLSAKLLTGIRDK EQLQQFSDVLDGGVLKKLER－RHYTGWGRLSAKLLVGIREK EQLEQFSDVLDGVNLKKLER－RHYTGWGRLSAKLLVGIRDK EQLEQFSDVLDGVVLKKLER－RHYTGWGRLSAKLLVGIRDK EQLQQFSDVLDGTVLKKLER－RHYTGWGRLSAKLLVGIRDK EQLQQFSDVLDGAVLKKLER－RHYTGWGRLSAKLLVGIRDK EQLQQFSDVLDGGVLKKLER－RHYTGWGRLSAKLLVGIREK
 $E Q L Q Q F S D V L D G V V L K K L E R-R H Y T G W G R L S A K L L V G I R D K$
$E Q L Q Q F S D V L D G T V L K K L E R-R H Y T G W G R L S A K L L V G I R D K ~$


|  | 002330729 |
| :---: | :---: |
|  | 002335161 |
|  | 002345439 |
|  | 034867970 |
|  | 047937432 |
|  | 010720994 |
|  | 010737004 |
|  | 034700478 |
|  | 007209003 |
|  | 023519017 |
|  | 010770040 |
|  | 048604708 |
|  | 010750235 |
|  | 16583 |
|  | 029073316 |
|  | 031589969 |
|  | 45870 |
|  | 039099354 |
|  | 02966 |
|  | 010991369 |
|  | 033838504 |
|  | 60060 |
|  | 89594 |
|  | 038409211 |
|  | 95520 |
|  | 003723650 |
|  | 003727705 |
|  | 003730785 |
|  | 003733029 |
|  | 003739838 |
|  | 014601172 |
|  | 023548323 |
|  | 031665337 |
|  | －031669209 |


| DDG-----LNRNLMQLINDSNL | 706 |
| :--- | :--- |
| DDG----LNRNLMQLINDSNL | 709 |
| DDG----LNRNLMQLINDSNL | 709 |
| DDG----LNRNLMQLINDSNL | 154 |
| DDK----HNRNLMQLINDSNL | 706 |
| -DGf---ANRNFMQLIHDDSL | 718 |
| ------SRLNLMEIINDKEL | 709 |
| ------SNKNLMEIINDEKL | 712 |
| -DGf---ANRNFMQLIHDDSL | 735 |
| -DGf---ANRNFMQLIHDDSL | 702 |
| -DGf---ANRNFMQLIHDDSL | 702 |
| -DGf---ANRNFMQLIHDDSL | 706 |

QSHLTILDYLM
QSHLTILDYLM
QSHLTILDYLM
QSHLTILEYLM
ESHLTILDYLM
QSGKTILDFLK
SV--TVLDVLE
KA--TVLFVLE
QSGKTILDFLK
QSGKTILDFLK
QSGKTILDFLK
QSGKTILDFLK

| WP_033920898 | 638 | EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK |
| :--- | :--- | :--- |
| AKI42028 | 641 | EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK |
| AKI50529 | 641 | EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK |
| EFR83390 | 86 | EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK |
| WP_046323366 | 638 | ERLQEFSNVLDEAVLKKLER-RHYTGWGRLSAKLLIGIRDK |
| AKE81011 | 650 | ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK |
| CUO82355 | 642 | RRLKKKYALPDDKIKQILKL--KYKDWSRLSKKLLDGIVAD |
| WP_033162887 | 645 | RRLKKVYQLDDLLVDKILKL---NYTGWSRLSEKLLTGMTAD |
| AGZ 01981 | 667 | ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK |
| AKA60242 | 634 | ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK |
| AKS40380 | 634 | ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK |
| 4UN5_B | 638 | ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK |




```
~~
```



| 010922251 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| :---: | :---: | :---: |
| P 039695303 | 707 | PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQ |
| WP_045635197 | 702 | SFKEIIQKAQVIG-KTDD-VKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ |
| 5AXW A | 427 | VPKKVDLSQQKEI---PT---TLVDDFILSPVVKRSFIQSIKVINAIIKKYG--LPNDIIIELAREKN |
| WP_009880683 | 387 | TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-010922251 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_011054416 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_011284745 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-011285506 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-011527619 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_012560673 | 703 | TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_014407541 | 703 | TFKEDIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ |
| WP_-020905136 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_023080005 | 703 | TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ |
| WP-023610282 | 703 | TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ |
| WP_030125963 | 703 | TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_030126706 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-031488318 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_032460140 | 703 | TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-032461047 | 703 | TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_032462016 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_032462936 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-032464890 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_033888930 | 528 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP-038431314 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP_038432938 | 703 | TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ |
| WP_038434062 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKIVDELVKVMGrHKPENIVIEMARENQ |
| BAQ51233 | 614 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| KGE60162 |  |  |
| KGE60856 |  |  |
| WP_002989955 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| WP 003030002 | 704 | SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ |
| WP-003065552 | 707 | PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ |
| WP_001040076 | 702 | SFKPIIDKARTGS-HSDN-LKEVIGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ |

TTNQGRRNS
TTAKGLSRS
TTAKGLSRS
TTAKGLSRS
TTAKGLSRL
TTAKGLSRS
TTAKGLSRS
TTAKGLSRS
TTNQGRRNS
TTNQGRRNS
TTNQGRRNT
TTNQGRRNT
TTNQGRRNT
$T T N Q G R R N T ~$
$T T N Q G R R N T ~$
$T T N Q G R R N S ~$
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ
 SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVVG-YEPEQIVVEMARENQ $S E K S I I S K A Q A G S-H S D N-L K E V V G E L A G S P A I K K G I L Q S L K I V D E L V K V M G-Y E P E Q I V V E M A R E N Q$
 SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ
 SFKPIIDKARTGS-HLDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGIIQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVNVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ



TTNQGRRNS
TTNQGRRNS
TTNQGRRNS
TTNKGRRNT
TTNQGRRNS
TTAKGLSRS
TTNQGRRNS
TTNQGRRNS
TTNQGRRNT
TTNQGRRNS
TTNQGRRNS
TTNQGRRNS
TTNQGRRNS
TTNQGRRNS
TTDRGRRNS
TTDKGRRNS
$T T D K G R R N S ~$
$T T D K G R R N S ~$
$T T N R G R S Q S ~$
$T T T K G L Q Q S ~$
$T T D K G R R N S ~$
$T T R ~$
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVNEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ $S F K S I I S K A Q A G S-H S D N-L K E V V G E L A G S P A I K K G I L Q S L K I V D E L V K V M G-Y E P E Q I V V E M A R E N Q$ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGIIQSLKIVDELVKVMG-YEPEQVNVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ
 SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGIIQSLKIVDELVKVMG-YEPEQIVNEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ $S E K S I I S K A Q A G S-H S D N-L K E V V G E L A G S P A I K K G I L Q S L K I V D E L V K V M G-Y E P E Q I V V E M A R E N Q$
 SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ $S E K S I I S K A Q S G S-H S D N-L K E V V S E L A G S P A I K K G I L Q S L K I V D E L V K V M G-Y K P E Q I V V E M A R E N Q$ SFKEEIAKAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGIIQSVKIVDELVKVMG-HNPANIIIEMARENQ SFKQIIQEAQVVG-DVDD-IETVVHDLPGSPAIKKGIIQSVKIVDELIKVMG-DNPDNIVIEMARENQ TFKEEIEKAQVSG-QGDS-LHEQIADLAGSPAIKKGIIQTVKIVDELVKVMG-HKPENIVIEMARENQ SFKEEIARAQIID-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ PFKQIIKDAQAID-DVDD-IELIVHDLPGSPAIKKGIIQSIKIVDELVKVMG-YNPDNIVIEMARENQ $T F K E A I Q K A Q V S G-Q G H S-L H E Q I A N L A G S P A I K K G I L Q S V K V V D E L V K V M G-H K P E N I V I E M A R E N Q$ TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGIIQSVKVVDELVKVMG-HKPENIVIEMARENQ TFKEAIQKAQVSG-QGHS - LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ SFIDEIAKAQVIG-KTEY-SKDLVGNLAGSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ SFIDEIAKAQVIG-KTEY-SKDLVGNLASSPAIKKGISQTIKIVDELVKIMG-YIPQQIVIEMARENQ SFIDEIAKAQVIG-KTEY-SKDLVGNLAGSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ SFKTTIQEAQVVG-DVDD-IEAVVHDLPGSPAIKKGIIQSVKIVDELVKVMG-HNPQNIVIEMARENQ PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ
 -

| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP_047207273 |
| WP 047209694 |
| WP 050198062 |
| WP-050201642 |
| WP-050204027 |
| WP 050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP-003041502 |
| WP 037593752 |
| WP_049516684 |
| GAD46167 |
| WP 018363470 |
| WP 003043819 |
| WP 006269658 |
| WP 048800889 |
| WP-012767106 |
| WP 014612333 |
| WP 015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP 012515931 |
| WP 021320964 |
| WP-037581760 |
| WP-004232481 |
| WP 009854540 |
| WP 012962174 |


| TTNRGRSQS | 780 |
| :--- | :--- |
| TTGYGRNKS | 777 |
| STMQGIKNS | 777 |
| STMQGIKNS | 777 |
| STMQGIKNS | 777 |
| ------- |  |
| STMQGIKNS | 777 |
| FTNQGRRNS | 777 |
| TTQKGRDNS | 790 |
| TTARGKKNS | 776 |
| TTARGKKNS | 775 |
| FTNQGRRNS | 777 |
| FTNQGRQNS | 777 |
| FTNQGRRNS | 777 |
| FTNQGRRNS | 777 |
| FTKQGRRNS | 777 |
| FTNQGRRNS | 777 |
| FTKQGRRNS | 777 |
| TTAKGRRNS | 778 |
| FTNQGRRNS | 777 |
| FTNQGRRNS | 777 |
| FTNQGRRNS | 777 |
| FTKQGRRNS | 777 |
| FTNQGRRNS | 777 |
| TTAKGRRNS | 778 |
| FTNQGRRNS | 777 |
|  |  |

PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQ
 DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ DFKEIIRKAQTIE-NIDT-NQALVSSLPGSPAIKKGILQSLNIVDEIIAIMG-YAPTNIVIEMARENQ SFKEIIQKAQVVG-KTND-VKQVVQELPGSPAIKKGILQSIKLVDELVKVMG-HAPESIVIEMARENQ SFKEIIQKAQVIG-KTDD-VKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ
 SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQS LKIVDELVKVMG-KEPEQIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ

М『ゥ



 $\begin{array}{lll}0 & \infty & 6 \\ 0 & 0 & 0\end{array}$


 M- $0<-1$


$\qquad$ SFKEEIAKAQVIG-FTDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ $S F K E E I A K A Q V I G-E T D N-L N Q V V S D I A G S P A I K K G I L Q S L K I V D E L V K I M G-H Q P E N I V V E M A R E N Q$

 SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ
 SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQNLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ
 SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGIIQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ
 SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ
 SFKEITQKAQVVG-KTDD-VKQVVQELPGSPAIKKGIIQSIKIVDELVKVMG-HTPESIVIEMARENQ SFKETIQKAQVVG-ETND-VKQVVQELPGSPAIKKGILQSIKIVDEIVKVMG-HAPESVVIEMARENQ DFASIIKFAQEKTiKSEK-LEETIANLAGSPAIKKGILQSVKIVDEVVKVMG-YEPSNIVIEMARENQ SFKEEIKKAQEGG-LKDS-INDQIRDLAGSPAIKKGILQTINIVDEIVKIMG-KAPQHIVVEMARDVQ SFKEIIQESQVVG-KPDD-VKQIVQELPGSSAIKKGILQSIKLVDELVKVMG-HDPESIVIEMARENQ $S F K E I I Q K A Q V F G-K T N D-V K Q V V Q E L P G S P A I K K G I L Q S I K I V E E L V K V M G-H E P E S I V I E M A R E N Q$
 DFEKLIDDAQKKAiKRES-LTEAVANLAGSPAIKKGILQSLKVNDEIVKVMG-HNPDNIVIEMSRENQ DFEKLIDDAQKKAi KRES-LTEAVANLAGSPAIKKGILQSLKVVDEIVKVMG-HNPDNIVIEMSRENQ
SFKEIIQKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-YALESIVIEMARENQ

\footnotetext{




 SFKEIIQKAQVFG－KTND－VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG－HAPESIVIEMARENQ $S F K E I I Q K A Q V V G-K T D D-L T Q V V R E L S G S P A I K K G I L Q S I K I V D E L V K I M G-Y A P E S I V I E M A R E N Q$ SFVDEIRLAQGSG－EAED－YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG－YDPEHIVVEMARENQ SFVDEIRLAQGSG－EAED－YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG－YDPEHIVVEMARENQ $S E V D E I R L A Q G S G-E A E D-Y R A E V Q N L A G S P A I K K G I L Q S L K I V D E L I E V M G-Y D P E H I V V E M A R E N Q$ $S E V D E I R L A Q G S G-E A E D-Y R A E V Q N L A G S P A I K K G I L Q S L K I V D E L I E V M G-Y D P E H I V V E M A R E N Q$
 LFKKIIEEQEENETALLN－－KQRIDELAASPANKKGIWQAIKIVKELEKVLQ－QPAENIEIEFARSDE GYAQMIEEATSCPEDGKF－TYEEVERLAGSPALKRGIWQSLQIVEEITKVMK－CRPKYIYIEFERSEE
 SFKEKIRKAQDIN－QVND－IKEIVKDLPGSPAIKKGIYQSIRIVDEIIRKMK－DRPKNIVIEMARENQ TFKEDIQKAQVSG－QGDS－LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ SFKKKIEDAQTIE－DTTH－IYDTVAELPGSPAIKKGIRQALKIVEEIIDIIG－YEPENIVVEMARESQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKEELANELALA－GNQS－LLEVVEALLGSPAIKKGIWQTLKIVEELIEIIG－YNPKNIVVEMARENQ
 SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SEKNAIQKAQSSE－HEET－LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG－YAPKRIVVEMARENQ SFKKEIKKAQMIT－DTEN－LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG－YEPANIVVEMARENQ SFKKEIKKAQMIT－DTEN－LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG－YEPANIVVEMARENQ SFKKEIKKAQMIT－DTEN－LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG－YEPANIVVEMARENQ
SFKKEIKKAQMIT－DTEN－LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG－YEPANIVVEMARENQ

$\qquad$ SFKSIIEKEQVTT-ADKD-IQSIVADLAGSPAI KKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ SFKSIIEKEQVTT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ SFKSIIEKEQVST-ADKG-IQSIVAELAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ SFKSIIEKEQVST-ADKG-IQSIVAELAGSPAI KKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ
 SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAI KKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ
 SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAI KKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ





TTNKGKNNS
TTGKGKNNS
TTNKGKNNS
TTVKGKNNS
TTGKGKNNS
TTQKGQKNS
$----K E R T$
$----K V R K$
TTQKGQKNS
TTQKGQKNS
TTQKGQKNS
TTQKGQKNS

| WP_033920898 | 707 | SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ |
| :--- | :--- | :--- |
| AKI42028 | 710 | SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ |
| AKI50529 | 710 | SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ |
| EFR83390 | 155 | SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ |
| WP_046323366 | 707 | SFKSIIEKEQVST-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ |
| AKE81011 | 719 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVVELVKVMGGHKPENIVIEMARENQ |
| CUO82355 | 710 | GYAQMIEEASSCPKDGKF-TYEEVAKLAGSPALKRGIWQSLQIVEEITKVMK-CRPKYIYIEFERSEE |
| WP-033162887 | 713 | GYKQIIEESNMQDiEGPF-KYDEVKKLAGSPAIKRGIWQALLVVVEITKFMK-HEPSHIYIEFAREEQ |
| AGZ 01981 | 736 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| AKA60242 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| AKS40380 | 703 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |
| 4UN5_B | 707 | TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ |


| RMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| :---: | :---: | :---: | :---: |
| QQRLKKLQNSLK | PSYI | E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI | 851 |
| QQRYKRIEDSLK | ILA.S | NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI | 843 |
| KDAQKMINEMQK | QTNE | EIIRTTGk--E---NAKYLIEKIKLHDMQEGKCLYSLEAIplEdlLNNP FNYEVDHI | 561 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 525 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 8 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 84 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---TTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 0 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 84 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 0 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 0 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELG | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 6 |
| RERMKRIEEGIK | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 84 |
| RERMKRIEE | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 0 |
| RERMKRIEE | ELGS | DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 752 |
|  |  | QEL--D--INRLSGYDVDHI | 16 |
| RERMKRIEEGIK | ELGS | QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |
| QQRLKLLQDSLK | PVNI | K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI | 840 |
| QQRLKKLQNSLK | PSYI | E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI | 851 |
| RQRLTTLRESL | NLK | IDNLSQYDID | 846 |

[^12]







NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI

NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDSLSQYDIDHI NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTEKAL--D--IDNLSQYDIDHI -NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI $-N Q Q L Q N D R L F L Y Y I Q N G K D M Y T G E T L--D--I N N L S Q Y D I D H I$ | 1 |
| :--- | -NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI -NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI

 K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGEEL--D--IHHLSDYDIDHI QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI

 QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
 NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI D----SK--VE---NSHLQNDRLFLYYIQNGKDMYTGEEL--D--IDHLSDYDIDHI E----GK--VE---NNHLQDDRLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI





| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KL工42645 |
| WP 047207273 |
| WP 047209694 |
| WP 050198062 |
| WP 050201642 |
| WP 050204027 |
| WP-050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP 003041502 |
| $W P 037593752$ |
| $W P-049516684$ |
| GAD46167 |
| WP-018363470 |
| WP 003043819 |
| WP 006269658 |
| WP 048800889 |
| WP 012767106 |
| WP 014612333 |
| WP_015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP-012515931 |
| WP 021320964 |
| WP 037581760 |
| WP 004232481 |
| WP 009854540 |
| WP 012962174 |


|  |  |  |
| :---: | :---: | :---: |
|  | QNGKDMYTGEEL－－D－－IDRLSDYDIDHI | 48 |
|  | QDGKDMYTGKEL－－D－－YDNLSQYDIDHI | 1 |
|  | I | 1 |
|  |  | 81 |
|  | YDNUSQIDIDHI | 41 |
|  |  | 81 |
|  | QKEKLFLYYMQNGIDLYTGQPLncD－－PDSLAFYDVDHI | 57 |
|  | EHP－－TD－－－NIQLQNDRLFLYYLQNGKDMYTGKSL－－D－－INQLSSCDIDHI | 84 |
|  | TD－－－NNQLQNDRLFLYYLQNGKDMYTGEAL－－D－－INQLSSYDIDHI | 43 |
|  | SQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | JSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | KEHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 41 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 41 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 41 |
|  | ILKEHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 8 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 1 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | EHP－－TD－－－NQALQNNRLFLYYLQNGRDMYTGESL－－D－－INRLSDYDIDHV | 6 |
|  | LKEHP－－VE－－－HSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | LKEHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 1 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 81 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 41 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 81 |
|  | LQNNRLFLYYLQNGRDMYTGESL－－D－－INRLSDYDIDHV | 46 |
|  | LKEHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 41 |
|  | EHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | QILKEHP－－VE－－－HSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | PP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 841 |
|  | VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDIDHI | 84 |
|  | KEHP－－VE－－－NSQLQNDRLFLYYLQNGRDMYTGEEL－－D－－IDYLSQYDI |  |



$\begin{array}{lllll}-1 & \infty & \infty & \infty & \infty \\ \infty & 1 & 1 & 1 & 1\end{array}$

に上卜人上


|  | 841 |
| :---: | :---: |
| VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 84 |
| EHP--TD---NQALQNDRLFLYYLQNGRDMYTEDPL--D--INRLSDYDIDHI | 5 |
| NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| LQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VK---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI |  |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI |  |
| KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV | 846 |
| QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI |  |
| ILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV |  |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI |  |
| QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 841 |
| QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI | 834 |
| EHP--TD---NIQLQNDRLFLYYLQNGRDMYTGKPL--D--INQLSSYDIDHI | 846 |
| TN---NIQLQNDRLFLYYLQNGRDMYTGKPL--D--INQLSSYDIDHI | 844 |
| QLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSNYDIDHI | 839 |
| KKEHE--IS---NAQLQSDRVYLYLLQDGKDMYTGKDL--D--FDRLSQYDIDHI |  |
| -VE---NFQLQNERLYLYYLQNGKDMYTGEEL--S--ISNLSHYDIDHI | 842 |
| LKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGNPL--D--INHLSSYDIDHI | 844 |
| LKEHP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSCDIDHI | 844 |
| TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI | 844 |
| RILEDNSerIT---NLTLQDNRLYLYLLQDGKDMYTGQDL--D--INNLSQYDIDHI | 846 |
| RILEDNSerIT---NLTLQDNRLYLYLLQDGKDMYTGQDL--D--INNLSQYDIDHI |  |
|  |  |




[^13]

NILKENP--TD---NIQLQNDRLFLYYLQNGKDMYTGKAI--D--INQLSNYDIDHI
KILKEHP--TD---NIQLQNDRLELYYLQNGKDMYTGEAL--D--INQLSSCDIDHI
DILKRYP--VE---NNQLQNDQLYLYYLQNGKDMYTGDTL--D--IHNLSQYDIDHI NILKENP--TD---NIQLQNDRLFLYYLQNGRDMYTGKPL--E--INQLSNYDIDHI TISKENP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI

 QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
 QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI --VKVKD--LK---NENLRNDRLYLYYLQNGRDMYTNEPL--D--INNLSKYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
 PLLKEQP--VD---NQALQKDRLYLYYLQNGKDMYTGEAL--D--IDRLSEYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--IHRLSHYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI NLLKEOP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI

 NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI


 QQRLGSLTKAIQ



 QQRYKKIENAIK
 QQRLKLLQDSLK
号






 IQRLKIVEKAMA
 IQRLKIVEKAMA

先














 RPRLKALEESLK SPRLKALENGLK
 KPRLKALENGLK SPRLKALENGLK KPRLKALENGLK KPRLKGIENGLK RPRLKALEEALK NPRMKALEEAMR RPRLKNLEKAID KPRLKSLEEALK
号

 KRQVEQVYQNIS




















| QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI | 844 |
| :--- | :--- |
| KILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI | 847 |
| QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI | 847 |
| QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI | 292 |
| QILKEHP--TD---NQGLKNDRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHV | 844 |
| QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 857 |
| SVLEELKg-FDn--TKKISSDSLFLYFTQLGKCMYSGKKL--D--IDSLDKYQIDHI | 853 |
| QVYESLKK-EDa--KKRMETDALYLYYLQMGKSMYSGKPL--D--IDKLSTYQIDHI | 855 |
| QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 874 |
| QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDAI | 841 |
| QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI | 841 |



| $\begin{aligned} & \text { M1 } \\ & \text { rI } \\ & \end{aligned}$ |
| :---: |
|  |  |
|  |  |
|  |  |






|  | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| :---: | :---: |
| IPQAFIKDDSIDNRVLTSSAKNRG－KSDD－－VP | S－－LDIVRARKA－EWVRLYKSGLISKRKFDNLTKA－－ERGGLTE |
| IPQAFIKDDSLDNRVLTSSKDNRG－KSDN－－VP | S－－IEVVQKRKA－FWQQLLDSKLISERKFNNLTKA－－ERGGLDE |
| IPRSVSFDNS FNNKVLVKQEEASK－KGNR－－TP | FqY－LSSSDSKI－SYETFKKHILNLAKGKGRISKTk－KEYLLEE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| FLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| P | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFIKDDSIDNKVLTRSDKNRG－KSNN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKEDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKEDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| LKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| QSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| QSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| PQSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| QSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| QSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWKQLLNAKLITQRKEDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| VPQSFLKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| QSFIKDDSIDNKVLTRSDKNRG－KSDN－－VP | S－－EEVVKKMKN－YWRQLLNAKLITQRKFDNLTKA－－ERGGLSE |
| IPQAFIKDNSLDNRVLTRSDKNRG－KSDD－－VP | S－－IEVVHEMKS－FWSKLLSVKLITQRKFDNLTKA－－ERGGLTE |
| IPQAFIKDDSIDNRVLTSSAKNRG－KSDD－－VP | S－－LDIVRARKA－EWVRLYKSGLISKRKFDNLTKA－－ERGGLTE |
| IPQAFIKDDSIDNRVLVSSAKNRG－KSDD－－VP | S－－LEIVKDCKV－FWKKLLDAKLMSQRKYDNLTKA－－ERGGLTS |

[^14]



\footnotetext{
 PQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP PQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD-IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP
IPQAFIKDDSIDNRVIVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP PQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VE VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP
 IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP



| WP 001040078 |
| :---: |
| P 001040080 |
| P 001040081 |
| P-001040083 |
| P 001040085 |
| P-001040087 |
| P 001040088 |
| P 001040089 |
| P 001040090 |
| P 001040091 |
| 001040092 |
| P 001040094 |
| P 001040095 |
| P 001040096 |
| P 001040097 |
| P 001040098 |
| P 001040099 |
| P 001040100 |
| P 001040104 |
| P_001040105 |
| P 001040106 |
| P 001040107 |
| P 001040108 |
| P 001040109 |
| P 001040110 |
| P 015058523 |
| WP 017643650 |
| WP 017647151 |
| WP 017648376 |
| WP 017649527 |
| P 017771611 |
| WP 017771984 |
| CFQ25032 |
| CFV16040 |




|  |  |
| :---: | :---: |
|  | A--ERGGLTS |
|  | A--ERGGLTS |
|  | KA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | KDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | S |
|  | EIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | DCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | -FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP |
|  | EIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS |
|  | -IEVVCARKA-DWMRLRKAGLISQRKFDNLTKA--ERGGLTE |
|  | IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE |
|  | -IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE |
|  | -IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE |
|  | -LGIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE |
|  | -EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | -IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE |
|  | -LEVVCDRKA-DWIRLREAGLISQRKFDNLTKA--ERGGLTE |
|  | -EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | -EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | -EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | -EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | VVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE |
|  | -EAIVRKMKG-YWQSLLRAGAISKQKFDNLTKA--ERGGLTQ |
|  | KG-YWQSLLRAGAI SKQKFDNLTKA--ERGGLTQ |
|  | -EAIVRKMKG-YWQSLLRAGAISKQKFDNLTKA--ERGGLTQ |
|  | -IEIVRNRKS-YWYKLYKSGLISKRKFDNLTKA--ERGGLTE |
|  | -LDIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE |
|  | LDIVHDRKA-DWIRLYKSGLISKRKFDNLTKA |

\footnotetext{
 PQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDN I PQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP
 IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP IPQAYIKDDSFDNRVLTSSSENRG-KSDN--VP IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VE IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP VPQSFIKDDSIDNKVLTRSVENRG-KSDN--VP IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP IPQAFIKDDSIDNRVLTSSAKNRG-KSDN--VP VPQSFIKDDSIDNKILTRSDKNRG-KSDN--VP VPQSFIKDDSIDNKVLTRSDKNRG-KSDD--VP VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP VPQSFIKDDSIDNKVLTRSDKNRG-KSDD--VP VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP




| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP_047207273 |
| WP 047209694 |
| WP 050198062 |
| WP-050201642 |
| WP-050204027 |
| WP 050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP-003041502 |
| WP 037593752 |
| WP_049516684 |
| GAD46167 |
| WP 018363470 |
| WP 003043819 |
| WP 006269658 |
| WP 048800889 |
| WP-012767106 |
| WP 014612333 |
| WP 015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP 012515931 |
| WP 021320964 |
| WP-037581760 |
| WP-004232481 |
| WP 009854540 |
| WP 012962174 |


| KFDNLTKA--ERGGLTE | 920 |
| :---: | :---: |
| S--IEIVRNRRS-YWYKLYKSGLISKRKFDNLTKA--ERGGLTE | 917 |
| N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD | 910 |
| N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD | 910 |
| N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD | 910 |
| D | 910 |
| S--KDVVRKMKS-YWS KLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| A--KEVVEKMEN-TWRRLHAAGLISDIKLSYLMKGe-----LTE | 923 |
| S--LEIVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE | 913 |
| S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE | 912 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWS KLLSAKLITQRKFDNLTKG--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--EDVVRKMKS-YWS KLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTP | 912 |
| S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL | 912 |
| S--KDVVRKMKS-YWS KLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KNVVRKMKS-YWS KLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD | 910 |
| S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD | 910 |

\footnotetext{
I PQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP IPQAFIKDNSIDNKVLTSSAKNRG-KSDD--VP IPQSFIKDNSIDNTVLTTQASNRG-KSDN--VP IPQSFIKDNSIDNTVLTTQA.SNRG-KSDN--VP

 VPRSYIKNDS FDNKVLTTSKGNRK-KLDD--VP IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSI DNRVLTSSKENRG-KSDD--VE IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP

 IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNS I DNRVLTSSKANRG-KSDD--VP
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP

## 






[^15]| DE | 2 |
| :---: | :---: |
| GGLNE | 913 |
| FWLKQLDAKLISQRKFDNLTKA--ERGGLSA | 912 |
| AerERGGLNE | 917 |
| VKKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE | 913 |
| SQRKFDNLTKA--ERGGLTN | 912 |
| IVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN | 914 |
| IVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN | 914 |
| S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN | 912 |
| IEVVRARKA-DWMRLRKAGLISQRKFDNLTKA--ERGGLTE | 909 |
| S---SIINQNYS-RWEQLKNAGLIGEKKFRNLTRTk-----ITD | 0 |
| TE | 916 |
| QRKFDNLTKA--ERGGLSE | 0 |
| -DIVRQQKG-FWKQLLRAGLMSQRKFNNLTKGk-----LTD | 914 |
| S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE | 910 |
| -INIVHKMKP-FWRQLHKAGLISDRKEKNLTKA--EHGGLTE | 915 |
| KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| -KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 872 |
| -QKVVI RMRR-YWEKLLRANLISERKFAYLTKLe-----LTP | 654 |
| -KKVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| -KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 923 |
| -KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| -KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| KEVVKKMKA-YWEKLYAAGLI SQRKFQRLTKG--EQGGLTL | 921 |
| -KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL | 921 |
| -EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE | 918 |
| S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE | 919 |
| VVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE | 919 |
| EKVVKKMRS - FWYDLYSSKLISKRKLDNLTKIk-----LTE | 919 |

\footnotetext{
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP PQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP IPQSFIKDNSLDNRVLTNSKSNRG-KSDN--VP IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP
 IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP IPQAFIKDDSFDNRVLTSSSENRG-KSDN--VP
 VPQSLVKDDS FDNRVLVVPSENQR-KLDDIVVP VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP IPRSFITDNS FDNLVLTSSTVNRG-KLDN--VP VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP
 IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP

 I PQS FMKDDSLDNLVLVGSTENRG-KSDD--VP
IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP
 IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP IPQS FMKDDS LDNLVLVGSTENRG-KSDD--VP
IPQS FMKDDS LDNLVLVGSTENRG-KSDD--VP
IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP IPQS FMKDDSLDNLVLVGSTENRG-KSDD--VP IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP
 IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP




IPRSFTTDNSI DNKVLVSSKENRL-KKDD--VP
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP TGYY-TYN'H SSAT^YNCISNC山山HSY I IPRSFIVDNSIDDKVLVASKQNQK-KRDD--VP IPRSFTTDNSIDNKVLVSSKENRI-KKDD--VP
 IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP IPQSFLTDNSIDNRVLTTSKSNRG-KSDN--VP IPRSFIVDNSLDNKVLVSSKVNRG-KLDN--AP VPQSETTDNSLDNRVLVSSKENRG-KKDD--VP

 VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP VPQSLLKDDSIDNKVLVLSSENQR-KLDDIVIP VPQSLLKDDSIDNKVLVLSSENQR-KLDDIVIP IPQSFLKDDSIENKVLTIKKENVR-KTNG--LP LPQSFIKDNSLDNRVLVSQRMNRS-KADQ--VP LPRTYIPDDSLENKALVLAKENQR-KADDIlLN VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP

 IPQSFITDNSIDNRVLVSSTANRE-KGDN--VP VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP VPQSFITDNSVDNLVLTSSAGNRE-KGDN--VP
 VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP



| 002330729 |
| :---: |
| WP 002335161 |
| WP 002345439 |
| WP 034867970 |
| WP 047937432 |
| WP 010720994 |
| WP 010737004 |
| WP-034700478 |
| WP 007209003 |
| WP 023519017 |
| WP 010770040 |
| WP 048604708 |
| WP 010750235 |
| AII 16583 |
| WP 029073316 |
| WP 031589969 |
| KDA45870 |
| WP_039099354 |
| AKP02966 |
| WP 010991369 |
| WP 033838504 |
| EHN60060 |
| EFR89594 |
| WP 038409211 |
| EFR95520 |
| WP 003723650 |
| WP 003727705 |
| WP 003730785 |
| WP 003733029 |
| WP_003739838 |
| WP_014601172 |
| WP 023548323 |
| WP 031665337 |
| WP 031669209 |



P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTD
$\mathrm{P}--\mathrm{LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE}$
$\mathrm{P}--\mathrm{LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE}$
S--LEVVRKRKV-YWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
$---F D I R D K M Y R-F W K L L F D H E L I S P K K F Y S L I K T e-----Y T E ~$
$---F E I R N K M I G-F W Q M L H E N G L M S N K K F F S L I R T d-----E S D ~$
S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP
VPQSFITDNSIDNRVLASSAANRE-KGDN--VP
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP
VPQSLVKDDSFDNRVLVLPSENQR-KLDDIVVP
LPQSLIKDDSFDNRVLVLPEENQW-KLDSetVP
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP


WP 033920898
AKI 42028
AKI 50529
EFR 83390
WP 046323366
AKE81011
CUO82355
WP 033162887
AGZ01981
AKA60242
AKS40380
4UN5 B

| LD | F | QFYKVREINNY | 981 |
| :---: | :---: | :---: | :---: |
| AD | KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF | EFYKVREINDY | 91 |
| RD | KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNFRKEF | RLYKVREINDY | 83 |
| RD | QKDFINRNLVDTRYATRGLMNLLRSYFR--------VNnlDVKVKSINGGFTSFLRRKW | KFKKERNKGYK | 702 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 65 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 81 |
| LD | KVGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 81 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 81 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 81 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 980 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 81 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 980 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 980 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 1 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 1 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 1 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 06 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 1 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QYYKVREINNY | 980 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 81 |
| LD | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 892 |
| LD | KVGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF | QFYKVREINNY | 156 |
|  | KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF | QFYKVREINNY | 981 |
|  | KAGFIKRQLVETRQITKHVAQILDERFNTEFDGNKRRIR--NVKIITLKSNLVSNFRKEF | ELYKVREINDY | 980 |
| AD | KAGFIKRQLVETRQITKHVAQILDARFNTESDENDKVIR--DVKVITLKSNLVSQFRKDF | EFYKVREINDY | 991 |
| DD | KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF | VFYKIREVNN | 986 |

\footnotetext{




KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEE KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KAREIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERENNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNERKEE KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEE KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEE KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARI LDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARI LDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF
KARFIQRQLVEIRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF




| GFYKIREVNNY | 986 |
| :--- | :--- |
| GFYKIREVNNY | 986 |
| GFYKIREVNNY | 1000 |
| GFYKIREVNDY | 986 |
| GFYKIREVNNY | 986 |
| GFYKIREVNDY | 986 |
| GFYKIREVNNY | 986 |
| GFYKIREVNDY | 986 |
| KFYKVREINDY | 980 |
| ELYKVREINDY | 981 |
| ELYKVREINDY | 981 |
| ELYKVREINDY | 980 |
| KFYKVREINDY | 989 |
| QLYKVRDINNY | 990 |
| ELYKVREINDY | 980 |
| KLYKVREINDY | 980 |
| QFYKVREINNY | 980 |
| GLYKIRDINHY | 980 |
| GLYKIRDINHY | 980 |
| GLYKIRDINHY | 980 |
| KFYKVREINDY | 988 |
| EFYKVREINDY | 989 |
| KFYKVREINDY | 989 |
|  | 9 |

KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTVKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDELFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARI LDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVASILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNERKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVAQVLDARFNAKHDENKKVIR--DVKIITLKSNLVSQFRKDF KAGFIKRQLVETRQITKHVAQILDERFNTEFDGAQRRIR--NVKIITLKSNLVSNERKEF KAGFIKRQLVETRQITKHVAQILDERFNTEFDGAQRRIR--NVKIITLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVAQILDERFNTEFDGAQRRIR--NVKIITLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVAQILDARFNTERDENDKVIR--DVKVITLKSNLVSQFRKEF KAGFIKRQLVETRQITKHVARILDSRMNTKRDKNDKPIR--EVKVITLKSKLVSDFRKDF KAGFIKRQLVETRQITKHVAQILDERFNTEFDGNKRRIR--NVKIITLKSNLVSNFRKEF KAGFIHRQLVETRQITKHVAQILDARFNPKRDDNKKVIR--DVKIITLKSNLVSQFRRDF KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDERKDF KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF KAGFIQRQLVETRQITKHVAQILDSRFNTEFDDHNKRIR--KVHIITLKSKLVSDFRKEF KAGFIQRQLVETRQITKHVAQILDSRENTEFDDHNKRIR--KVHIITLKSKLVSDFRKEF KAGFIQLQLVETRQITKHVAQILDSRFNTEFDDHNKRIR--KVHIITLKSKLVSDFRKEF KAGFIKRQLVETRQITKHVAQILDARFNTKCDENDKVIR--DVKVITLKSSLVSQFRKEF KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF KAGFIKRQLVETRQITKHVAQILDSRFNTERDENDKVIR--NVKVITLKSNLVSQFRKDF




| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP_047207273 |
| WP 047209694 |
| WP 050198062 |
| WP-050201642 |
| WP-050204027 |
| WP 050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP-003041502 |
| WP 037593752 |
| WP_049516684 |
| GAD46167 |
| WP 018363470 |
| WP 003043819 |
| WP 006269658 |
| WP 048800889 |
| WP-012767106 |
| WP 014612333 |
| WP 015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP 012515931 |
| WP 021320964 |
| WP-037581760 |
| WP-004232481 |
| WP 009854540 |
| WP 012962174 |



KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF KAGFIKRQLVETRQITKHVAQILDARFNTKRDENDKVIR--DVKVITLKSNLVSQFRKEF KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIRRQLVETRQITKHVARLLDEKLNRKKNENGEKLR--TTKIITLKSVFASRERANF KVGFIKRQLVETRQITKHVAQILDARFNTEVTEKDKKDR--SVKIITLKSNLVSNERKEF KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSERKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARI LDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDEREHTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNERKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF




ELYKVREINDY ELYKVREINDY ELYKVREINDY

 ELYKVREINDY ELYKVREINDY ELYKVREINDY



合牟号号号 ELYKVREINDY ELYKVREINDY
 n号

号

号号
苞
 KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFI KRQLVETRQITKHVARILDERFYTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARI LDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKHQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFI KRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF HVARMLDERFNKEFDDNNKRIR RVIVTKSNLVSSEREF
 KAGFTKROTVETROITKHVARMIDFRFNKFFDDNNKRIR－－RVKIVTLKSNLVSSFRKEF KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFI KRQLVETRQITKHVARILDERENTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR－－QVKIVTLKSNLVSNFRKEF KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR－－TVKIITLKSNLVSNFRKEF KVGFIKRQLVETRQITKHVAQILDARFNKEVNEKDKKNR－－TVKIITLKSNLVSNFRKEF KVGFI KRQLVETRQITKHVAQILDDRFNAEVNEKNQKLR－－SVKIITLKSNLVSNFRKEF KAGFIKRQLVETRQITKHVAQI LNNRFNNNVDDSSKNKR－－PVKIITLKSKMVSDFRKEF KANFIQRQLVETRQITKHVAQILDSRFNTERDEKDRPIR－－RVKVITLKSKFVSDFRQDF KVGFIKRQLVETRQITKHVAQILDSRFNTKVNEKNQKIR－－TVKIITLKSNLVSNFRKEF KVGFIRRQLVETRQITKHVAQILDSRENTEVTEKDKKNR－－NVKIITLKSNLVSNFRKEF KVGFIKRQLVETRQITKHVAQI LDARFNKEVTEKDKKNR－－NVKIITLKSNLVSNFRKEF KARFLRRQLVETRQITKHVAQLLDSRFNSKSNQNKKLAR－－NVKIITLKSKIVSDFRKDF KARFLRRQLVETRQITKHVAQLLDSRFNSKSNQNKKLAR－－NVKIITLKSKIVSDFRKDF KVGFIRRQLVETQQITKNVAQILDARFNTEVKEKNQKIR－－TVKIITLKSNLVSNFRKEF


[^16]

GLYKVREINDY

| ELYKVREINDY |
| :---: |
| FYKVREINNE |
| LYKVREINDY |
| KLYKVREINDY |
| QLYKVREINNY |
| QLYKVREINNY |
| QLYKVREINNY |
| QLYKVREINNY |
| KFYKVREINDY |
| EFIKNRNVNDY |
| HIYKNRDINDY |
| QFYKVREINNY |
| DFYKVREVNDY |
| QFYKVREINNY |
| KLYKVREINDY |
| GLYKVREVNDY |
| GLYKVREVNDY |
| GINKVREINNH |
| GLYKVREVNDY |
| GIYKVREINEY |
| GIYKVREINEY |
| GIYKVREINEY |
| EIN |








GIYKVREINEY
GIYKVREINEY
GIYKVREINEY
GLYKVREINPH
GIYKVREINEY
GLYKVREINPH
GLYKVREINPH
GLYKVREINPH
NLYKVREINDL
DIYKVREINHH
AIHKVREINDY
GIYKIREINDY
GIHKVREINHH
QFYKVREINNY
HIYKNRDINDF
HIYKNRDDNDF
KLRKVRALNNL
DFPKNRNLNNH
ELVKNRNINDF
QLYKVRDVNDY
QLYKVRDVNDY
QLYKVRDVNDY
QLYKVRGVNDY
QLYKVREVNDY
QLYKVREVVNDY
QLYKVREVNGY
QLYKVREVNDY
QLYKVREVNDY
QFYKVREVNDY
QLYKVREVNDY
QLYKVREVNDY
QLYKVREVNDY
QLYKVREVNDY
QFYKVREVNDY







QLYKVREVNDY
QLYKVREVNDY
QLYKVREVNDDY
QLYKVREVNDY
QLYKVREVNDY
QFYKVREINNY
HIYKNRDINDY
KIYKNRDINDF
QFYKVREINNY
QFYKVREINNY
QFYKVREINNY
QFYKVREINNY
KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF
KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF
KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--QVRIVTLKSALVSQFRKQF
KARFIHRQLVETRQITKNVANI LHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF
KARFIHRQLVETRQITKNVANILHQRFNCKKDESGNVIE--QVRIVTLKAALVSQERKQF
KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF
EERFINRQLVETRQITKNVTQIIEDHYST-------------TKVAAIRANLSHEFRVKN
KERFINRQLVETRQIIKNVAVI INDHYTN--------------TNIVTVRAELSHQFRERY
KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDE
KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF
KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDERKDF


WP 033920898
AKI 42028
AKI 50529
EFR 83390
WP 046323366
AKE81011
CUO82355
WP 033162887
AGZ01981
AKA60242
AKS 40380
$4 U N 5 \_B$

| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| :---: | :---: | :---: | :---: |
| HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI | S---SD------ | KATAK--YfFYSNLM-NFFKTKVK | 1058 |
| HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGEYQKYDL | SkdpKEV---EK | ATEKY--F-FYSNLL-NFFKEEVH | 1055 |
| HHAEDALI-------------IaNADFIFKEWKKLDK | $\mathrm{Nq}-\mathrm{mFE}----\mathrm{EK}$ | ETEQEykEiFITPHQiKHIKDFKD | 771 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 735 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1050 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1050 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1050 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 876 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1050 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 962 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 226 |
| HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV | S---EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT | 1051 |
| HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN- | S---YR---sRK | SATEK--FlFYSNIL-RFFKKE-- | 1041 |
| HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI | S---SD------ | KATAK--YfFYSNLM-NFFKRVIR | 1058 |
| HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- | S---YKT---RK | ATEKL--F-FYSNIM-NFFKTKVT | 1049 |

[^17]




HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGLYRRKK-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEEVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-
 HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-
 HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEEVYGDYPKYN-号 HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-
 HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EREFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEEVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-



[^18]



HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-
HHAHDAYLNAVIGTALLKKYPKL-ASEFVYGEFKKYDV
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-
HHAHDAYLNAVVGTALLKKYPKL-TSEFVYGEYKKYDV
HHAHDAYLNAVVGTALIKKYTKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN-
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN-
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN-
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDV
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDI
HM



| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP_047207273 |
| WP 047209694 |
| WP 050198062 |
| WP-050201642 |
| WP 050204027 |
| WP_050881965 |
| WP 050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP-003041502 |
| WP -037593752 |
| WP 049516684 |
| GAD 46167 |
| WP_018363470 |
| WP 003043819 |
| WP -006269658 |
| WP -048800889 |
| WP_012767106 |
| WP -014612333 |
| WP_015017095 |
| WP 015057649 |
| WP 048327215 |
| WP-049519324 |
| WP_012515931 |
| WP_021320964 |
| WP -037581760 |
| P_004232481 |
| WP-009854540 |
| WP 012962174 |



|  |  |
| :---: | :---: |

芹
 $\mathrm{G}---\mathrm{HK}---$ eNK
$\mathrm{G}---\mathrm{HK}---$ eNK G－－－HK－－－eNK
急
（1）
1
1
1
出
出
1
1
1
0录
0
1
1
1
1
出
1
1
1
1
0


品
0
1
1
1
1
a
$p$
1
1
1
1
$\sim$营
1
1
1
1
采
1
1
1
0



 $\mathrm{G}---\mathrm{HK}---$ eNK



HHAHDAYLNAVVGTALLKKYPKL－ASEFVYGEYKKYDI HHAHDAYLNAVVGTALLKKYPKL－TPEFVYGEYKKYDV HHAQDAYLNAVVGTALLKKYPKL－EAEFVYGDYKHYDL HHAQDAYLNAVVGTALLKKYPKL－EAEFVYGDYKHYDL HHAQDAYLNAVVGTALLKKYPKL－EAEFVYGDYKHYDL

HHAQDAYLNAVVGTALLKKYPKL－EAFFVYGDYKHYDL HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVVAQALLKVYPKE－ERELVYGSYVKESI HHAHDPYLNAVVAKAILKKYPKL－EPEFVYGDYQKYDL HHAHDAYLNAVVAKAILKKYPKL－EPEFVYGEYQKYDL HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVVVKALLVKYPKL－EPEFVYGEYPKYN－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVVVKALLVKYPKL－EPEFVYGEYPKYN－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHTHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHEH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－ HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－
HHAHDAYLNAVIGKALLGVYPQL－EPEFVYGDYPHFH－

Ol $\infty$




|  | 39695303 |
| :---: | :---: |
|  | 014334983 |
|  | 003099269 |
|  | 15608 |
|  | 17476 |
|  | 09100 |
|  | 98575 |
|  | 27331 |
|  | 018372492 |
|  | 045618028 |
|  | 045635197 |
|  | 002263549 |
|  | 002263887 |
|  | 002264920 |
|  | 002269043 |
|  | 002269448 |
|  | 002271977 |
|  | 002272766 |
|  | 002273241 |
|  | 002275430 |
|  | 002276448 |
|  | 002277050 |
|  | 002277364 |
|  | 002279025 |
|  | 002279859 |
|  | 002280230 |
|  | 002281696 |
|  | 002282247 |
|  | 002282906 |
|  | 002283846 |
|  | 002287255 |
|  | 002288990 |
|  | 002289641 |
|  | 002290427 |

 ○○0000000000000000000000000000000




\footnotetext{




```
\Omega
```



ATEKY--F-FYSNLL-NFFKEKVR 1










 HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL HHAHDAYLNAVVAKALLIRYPKL-EPEFVYGEYPKYN-HHAHDAYLNAVLAKAILKKYPKL-EPEFVYGDYQKYDL HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-HHAHDAYLNAVIGTALLKKYPKL-ASEFVYGEFKKYDV HHAQDAFLVAFLGTNITSNYPKI-EMEYLFKGYQHYLN HHAHDAYIVALIGGFMRDRYPNMhDSKAVYSEYMKMFR HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV HHAHDAYLNGVIALKLLELYPYM-AKDLIYGKYSYHRK HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV HHGHDAYLNAVVATTIMKVYPNL-KPQFVYGQYKKTSM HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT HHAHDAYLNGVVAIALLKKYPKL-EPEFVYGNYTKFNL
 HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT
 HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT
 HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA
 HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKENA
 HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA







HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKENA
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKENA
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKENA
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL
HHAHDAYLNGVIALALLKKYPQL-APEFVYGEYLKENA
$H H A H D A Y L N G V I A L A L L K K Y P Q L-A P E E V Y G E Y L K E N A$
$H H A H D A Y L N G F I A N V L L K R Y P K L-A P E F V Y G K Y V K Y S L ~$
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVGFIANVLLKRYPKL-APEFVYGKYVKYSI
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL
HHAHDAYLNAVVALSLLRVYPQL-KPEFVYGEYGKNS-
HHAHDAYLNGVVAMTLLKKYPKL-APEFVYGSYIKGDI HHGHDAYLNGVVANS LLRVYPQL-QPEFVYGDYPKFNA HHAHDAYLNGVVATALLKIYPQL-EPEFVYGEFHRFNA HHAHDAYLNAVVALALLKKYPRL-APEFVYGSFAKFHL
 HHAHDAYIATILGTYIGHRFESL-DAKYIYGEYQKIFR HHAHDAYIATILGTYIGHRFESL-DAKYIYGEYKRIFR HHAHDAYLNAVVANLIMAKYPEL-EPEFVYGKYRKTK-HHAFDAYLTAFVGLYLLKRYPKL-KPYFVYGEYQKAS-


 HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW

 HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW


 HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFGW

 HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW


の○



\footnotetext{



| NK |  |
| :---: | :---: |
| NK | AT |
| FKA---NK | ATAKK--Q-FYTNIM-LFFAQ |
| NK | ATAKK--Q-FYTNIM-LFF |
| F | ATAKK |
| -EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT |
| NKNd--QK | -g---FVINSM-NYPY-EV |
| -KNy--Kk | -NYg---FILNSM-NHLQSD |
| -EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT |
| EQEi--GK | ATAKY--F-FYSNIM-NFFKTEIT |
| -EQEi--GK | ATAKY--F-FYSNIM-NFFKT |
|  |  |

HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW
HHAHDAYLNGVVANTLLKVYYPQL-EPEFVYGEYHQEDW
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW
HHAHDAYLNCVVANTLLKVYPQL-EPEFVYGDYHQFDW
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYIVALIGGFMRDRYPNMhDSKAVYSEYMKMFR
HHAHDAYIACIVGQFMHQNFEHL-DAKIIYGQYK-----
HHAHDAYLNAVVGTALI KKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV


WP 033920898
AKI 42028
AKI 50529
EFR 83390
WP 046323366
AKE81011
CUO82355
WP 033162887
AGZ01981
AKA60242
AKS40380
4UN5 B


| WP_010922251 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| :---: | :---: | :---: | :---: | :---: |
| WP_039695303 | 1059 | YAD-GTVEERPIIE | T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT | GGFSK |
| WP_045635197 | 1056 | YAD-GTIVKRENIE | Y-SKDtGE-IAWNKEKDFAIIKKVLS-LPQVNIVKKREVQT | GGFSK |
| 5AXW A | 772 | YKYs HRVDKKPNRE | VNNLN-GL---YDKDND--KLKKLINkSPEKLLMYHHDPQT | --YQK |
| WP_009880683 | 736 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_010922251 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_011054416 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_011284745 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_011285506 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_011527619 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_012560673 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_014407541 | 1051 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_020905136 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_023080005 | 1051 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_023610282 | 1051 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_030125963 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_030126706 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_031488318 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_032460140 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_032461047 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_032462016 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGESK |
| WP_032462936 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_032464890 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_033888930 | 877 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_038431314 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_038432938 | 1051 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_038434062 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| BAQ51233 | 963 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| KGE60162 | 227 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| KGE60856 | 1 | -----------IE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_002989955 | 1052 | LAN-GEIRKRPLIE | TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT | GGFSK |
| WP_003030002 | 1042 | ---------DIQ | T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT | GGFSK |
| WP_003065552 | 1059 | YSN-GKVIVRPVVE | Y-SKD-TEdIAWDKKSNERTICKVLS-YPQVNIVKKVETQT | GGFSK |
| WP_001040076 | 1050 | LAD-GTVVVKDDIE | VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT | GGFSK |




|  |  |
| :---: | :---: |
|  |  |
|  | LS－YPQNNIVKKTEIQT |
|  | PQNNIVKKTEIQT |
|  | Q |
|  | KKKKHFATVRKVLS－YPQNNIVKKTEIQT |
|  |  |
|  | DKKKHFATVRKVLS－YPQNN |
|  |  |
|  | NNNET－GE－TAWDKKKHFATVRKVIS－YPQVNIVKKTEVQT |
|  | DT－GE－IVWDKKKHFATVRKVLS－YPQV |
|  |  |
|  | VNNDT－GE－IVWDKKKHFATVRKVLS－YPQVNIVKKTEVQT |
|  |  |
|  |  |
|  | －IVWDKKKHFAT |
|  |  |
|  | IVT |
|  | IVWDKKKHFATVRKVLS－YPQNNIVKKTEIQT |
|  | VNNDT－GE－TVWDKKKHFATVRKVIS－YPQVNIVKKTETOT |
|  | VNNDT－GE－IVWDKKKHFATVRKVLS－YPQVNIVKKTEIQT |
|  |  |
|  | VNNDT－GE－IVWDKKKHFATVRKVLS－YPQVNIVKKTEIQT |
|  | － |
|  | ET－GE－IAWDKKKHFATVRKVLS－YPQVNIVKKTEVQT |
|  | －IVWDKKKHFATVRKVLS－YPQVNIVKKTEIQ |
|  | IVWDKKKHFATVRKVLS－YPQV |
|  | DT－GE－IVWDKKKHFATVRKVLS－YPQVNIVKK |
|  | DT－GE－IVWDKKKHFATVRKVLS－YPQNNIVKKTEIQT |
|  | NDT－GE－IVWDKKKHFATVRKVLS－YPQVNIV |
|  | －IVWDKKKHFATVRKVLS－YPQNNIVKKTEIQT |
|  |  |
|  | VWDKKKHFATVRKVLS－YPQN |

[^19]


|  |
| :---: |
| GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT |
| T |
| VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT |
|  |
| VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT |
| VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT |
| DT-GE-IVWDKKKHFATVRKVLS-YPQVNI |
| G |
| VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT |
| NET-GE-IAWDKKKHFATVRKVLS-YPQVI |
| VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT |
| DT-GE-IVWDKKKHFATVRKVLS-YPQNN |
| SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKTEVQ |
| NED-GE-IAWNKEKHIKILRKVLS-YPQV |
| NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVK |
| T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT |
| KDtGE-IAWNKRTDFEKVRKVLS-YPQV |
| ET-GE-VVWNKEKDFATVRKVLA-MPQVNIVKK |
| QV |
| -SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKVEKQ |
| TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT |
| ET-GE-IVWDKGRDFATVRKVLS-MPQV |
| TNEET-GE-IVWNKGRDFATVRKVLS-MPQVNIVKKTEVQT |
| ET-GE-IVWDKGRDFATVRKVLS-MPQVI |
| ET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT |
| GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT |
| D--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTE |
| QV |
| D--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT |
| T-NAD-GE-VVWNKQRDFNIVRKVLS-YPQVNIVKKVEVQT |
|  |
|  |


| K | 1050 | L |
| :---: | :---: | :---: |
| KLJ72361 | 1050 | LAD-GTVVVKDDIE |
| LL20707 | 1064 | LAD-GTVVVKDDIE |
| LL42645 | 1050 | LAD-GT |
| WP_047207273 | 1050 | LAD-GTVVVKDDIE |
| WP 047209694 | 1050 | LAD-GT |
| WP -050198062 | 1050 | LAD-GTVVIKDDIE |
| WP-050201642 | 1050 | LAD-GT |
| WP_050204027 | 1050 | LAD |
| WP_050881965 | 1050 | LAD-GTVVVKDD |
| WP-050886065 | 1050 | LAD-GTVVV |
| AHN30376 | 1050 | LAD-ETVVVKD |
| AO78426 | 1050 | LAD-GTVVVKD |
| CCW42055 | 1050 | LAD-GTVVVKDD |
| WP_003041502 | 1051 | FAD-GTVVERP |
| WP_037593752 | 1043 |  |
| WP_049516684 | 1043 | -DIQ |
| GAD46167 | 1042 |  |
| WP_018363470 | 1063 | YSN-GKV |
| WP-003043819 | 1061 | LAN-GEIRKRP |
| WP_006269658 | 1042 |  |
| WP_048800889 | 1052 | FAD-GTVVE |
| P_012767106 | 1051 | LAN-GEIRK |
| WP_-014612333 | 1051 | LAN-GEIRKRPLIE |
| WP_015017095 | 1051 | LAN-GEIRKRPLIE |
| WP_015057649 | 1051 | LAN-GEIRKRPLIE |
| WP-048327215 | 1051 | LAN-GEIRKRPLIE |
| WP_049519324 | 1051 | LA |
| WP_012515931 | 1044 |  |
| WP_021320964 | 1044 |  |
| WP-037581760 | 1044 |  |
| WP-004232481 | 1062 | YAD-GRVFERPDIE |
| WP_009854540 | 1057 | YAD-GTVFERPIIE |
| WP 012962174 | 1057 | YSN |


| GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT | GGFSK | ESIL-PKG- | 1120 |
| :---: | :---: | :---: | :---: |
| T-NAD-GE-VVWNKQKDFDIVRKVLS-YPQVNIVKKVEAQT | GGFSK | ESIL-SKG- | 123 |
| VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT | GGFSK | ESIW-PKG- | 1114 |
| VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT | GGFSK | ESIW-PKG- | 14 |
| VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT | GGFSK | ESIW-PKG- | 1114 |
| ET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT | GGFSK | ESIW-PKG- |  |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| -DQEtGE-IVWDKKEIENIVKKVIY-SSPVNIVKKREEQS | GALFK | QSNM-AVGy | 108 |
| -SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKTEEQT | GGLFD | NNIV-SKKk | 1124 |
| Y-SKDtGE-IAWNKEKDFAIIKKVLS-LPQVNIVKKREVQT | GGFSK | ESIL-PKG- | 1118 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| -DRN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 93 |
| VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT | GGLFD | KS | 1111 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 093 |
| T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT | GGLFD | PKS- | 1111 |
| I-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT | GGFSK | ESIL-PKG- | 1093 |
| T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT | GGFFK | ESIL-PKG- | 10 |


| WP_039695303 | 1059 | YAD-GTVFERPIIE |
| :---: | :---: | :---: |
| WP_014334983 | 1062 | YAD-GRVFERPDIE |
| WP-003099269 | 1052 | LAD-DTIFTRPQIE |
| AHY15608 | 1052 | LAD-DTIFTRPQIE |
| AHY17476 | 1052 | LAD-DTIFTRPQIE |
| ESR09100 |  |  |
| AGM98575 | 1052 | LAD-DTIFTRPQIE |
| ALF27331 | 1042 | -DVR |
| WP_018372492 | 1056 |  |
| WP_045618028 | 1057 | YAD-GTIVKRENIE |
| WP_045635197 | 1056 | YAD-GTIVKRENIE |
| WP_002263549 | 1042 |  |
| WP_002263887 | 1042 | VR |
| WP_002264920 | 1042 |  |
| WP_002269043 | 1042 | DVR |
| WP-002269448 | 1042 | -DVR |
| WP_002271977 | 1042 |  |
| WP_002272766 | 1042 | -DVR |
| WP_002273241 | 1042 |  |
| WP_002275430 | 1042 | -DVR |
| WP_002276448 | 1042 | DVR |
| WP_002277050 | 1047 | LAD-DQIVERPMIE |
| WP_002277364 | 1042 | -----------DVR |
| WP_002279025 | 1042 | -DVR |
| WP_002279859 | 1042 | -DVR |
| WP_002280230 | 1042 | VR |
| WP_002281696 | 1042 | DVR |
| WP_002282247 | 1047 | LAD-DQIVERPMIE |
| WP_002282906 | 1042 | R |
| WP_002283846 | 1042 | VR |
| WP_002287255 | 1042 | VR |
| WP_002288990 | 1042 | R |
| WP-002289641 | 1042 | DVR |
| WP_002290427 | 1042 |  |






T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT
Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKREVQT
$Y-S K D t G E-I A W N K E K D F A T I K K V L S-Y P Q V N I V K K R E V Q T ~$







| 0 | 1 |
| :--- | :--- |
| 1 | 1 |
| 1 | 1 |
| 1 | 1 |
| 1 | 1 |
| 1 | 1 |
| 1 | 1 |
| 0 | 1 |
| 1 | 1 |



|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



| WP 002906454 | 1056 |
| :---: | :---: |
| WP 009729476 | 1057 |
| CQR24647 | 1047 |
| WP 000066813 | 1061 |
| WP 009754323 | 1057 |
| WP 044674937 | 1049 |
| WP-044676715 | 1051 |
| P 044680361 | 1051 |
| WP_044681799 | 1049 |
| WP 049533112 | 1051 |
| WP 029090905 | 1008 |
| WP 006506696 | 1039 |
| AIT42264 | 1052 |
| WP 034440723 | 1042 |
| AKQ21048 | 1052 |
| WP 004636532 | 1043 |
| WP 002364836 | 1048 |
| WP 016631044 | 999 |
| EMS 75795 | 783 |
| WP 002373311 | 1048 |
| WP 002378009 | 1048 |
| WP_002407324 | 1048 |
| WP 002413717 | 1048 |
| WP_010775580 | 1050 |
| WP 010818269 | 1048 |
| WP 010824395 | 1048 |
| WP 016622645 | 1048 |
| $W P-033624816$ | 1048 |
| WP 033625576 | 1048 |
| WP 033789179 | 1048 |
| WP 002310644 | 1049 |
| WP 002312694 | 1050 |
| WP 002314015 | 1050 |
| WP 002320716 | 1050 |





|  |  <br>  |
| :---: | :---: |
|  |  |

[^20]



| QNPK－PRG－ | 1095 |
| :--- | :--- |
| ATIK－PKG－ | 1098 |
| QNPK－PRG－ | 1098 |
| ATIK－PKG－ | 543 |
| ATAN－PKG－ | 1095 |
| ESIL－PKR－ | 1130 |
| －TVL－PNDa | 1088 |
| －TVL－PNDa | 1089 |
| ESIL－PKR－ | 1147 |
| ESIL－PKR－ | 1114 |
| ESIL－PKR－ | 1114 |
| ESIL－PKR－ | 1118 |


| 핑 |
| :---: |
|  |  |
|  |  |
|  |  |

IIDEN－GE－ILWDK－KYLETIKKVLN－YRQMNIVKKTEIQK
IIDEN－GE－ILWDK－KYLETIKKVLD－YRQMNIVKKTEIQK
IIDEN－GE－ILWDK－KYLETIKKVLN－YRQMNIVKKTEIQK
IIDEN－GE－ILWDK－KYLETIKKVLD－YRQMNIVKKTEIQK
IIDEN－GE－ILWDK－KYLDTIKKVLN－YRQMNIVKKTEIQK
TNGET－GE－IVWDKGRDFATVRKVLS－MPQVNIVKKTEVQT
－－－－－GK－LIWNP－DLINEIKKCFY－YKDCYCTTKLDQKS
－－－－T－GE－VMWDP－AKIGKIKSCFY－YKDVYVTKKLEQNS
TNGET－GE－IVWDKGRDFATVRKVLS－MPQVNIVKKTEVQT
TNGET－GE－IVWDKGRDFATVRKVLS－MPQVNIVKKTEVQT
TNGET－GE－IVWDKGRDFATVRKVLS－MPQVNIVKKTEVQT
TNGET－GE－IVWDKGRDFATVRKVLS－MPQVNIVKKTEVQT

| $\alpha$ | $\ldots$ | $\ldots$ |  | $\sim_{1}$ | 「1 |  |  | 「 | － | 工 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ｜ | ｜ | ， | 1 | 1 | H | I |  | H | H | H | H |
| I | ｜ | I | I | I | $\dagger$ | I | ｜ | $\downarrow$ | $\downarrow$ | $\cdots$ | $\cdots$ |
| I | ｜ | I | I | I | 0 | I | ｜ | －1 | 0 | 0 | ＋ |
| I | ｜ | I | I | 1 | $\square$ | I | I | $\square$ | $\square$ | ） | ， |
| I | ｜ | I | I | I | 兵 | I | ｜ | 乐 | 屚 | 乐 | 乐 |
| I | I | I | I | 1 | $\sim_{1}$ | I |  | $\sim_{1}$ | ¢ | ${ }_{1}$ | ， |
| I | ｜ | I | I | I | H | I | ｜ | H | $\vdash$ | － | － |
| I | ｜ | I | I | I | ［ㄷ | I |  | ［エ］ | ［工］ | ［1 | 다 |
| ｜ |  | I | 1 | I | $\checkmark$ | I | ｜ | （1） | 1 | 1 | 1 |
| 1 |  | 1 | 1 | 1 | 1 | 1 |  | 1 | ， | 1 | 1 |
| ［5］ | ［9］ | ［9］ | ［ | $\bigcirc$ | ＇ | $\bigcirc$ | $\bigcirc$ | Z | Z |  | Z |
| ｜ | 1 | 1 | 1 | 1 |  | I | I | 宛 |  |  | 1 |
| 1 | 1 | 1 | 1 | 1 | Н | 1 |  | $\rightarrow$ |  |  | $\cdots$ |


WP 033920898
AKI 42028
AKI 50529
EFR 83390
WP 046323366
AKE81011
CUO82355
WP 033162887
AGZ01981
AKA60242
AKS 40380
$4 U N 5 \_B$

| WP_010922251 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WP-039695303 | 1121 | --DSD | KLIPRKTkKV-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME | RSFFEE | 1185 |
| WP_045635197 | 1119 | --NSD | KLIPRKT-KDILL-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME | KAAFEE | 1183 |
| 5AXW_A | 853 | --EKN | -LYKYYEeTGNYL---TKYSKKDNGPVIKKI------------KYYGNKLNAHLDITDDYPNS | -VKLSL | 912 |
| WP_009880683 | 799 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME | RSSFEK | 860 |
| WP_010922251 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_011054416 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP-011284745 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_011285506 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_-011527619 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSEEK | 1176 |
| WP_-012560673 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME | RSSFEK | 1176 |
| WP_014407541 | 1114 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1175 |
| WP_020905136 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGLTIME | RSSFEK | 1176 |
| WP_023080005 | 1114 | --NSD | KLIA ----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1175 |
| WP_023610282 | 1114 | --NSD | KLIA ----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1175 |
| WP_030125963 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_030126706 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSEEK | 1176 |
| WP_031488318 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_-032460140 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME | RSSEEK | 1176 |
| WP_032461047 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME | RSSFEK | 1176 |
| WP_032462016 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_-032462936 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSEEK | 1176 |
| WP_-032464890 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_033888930 | 940 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSEEK | 1001 |
| WP_038431314 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_038432938 | 1114 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1175 |
| WP_038434062 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| BAQ51233 | 1026 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1087 |
| KGE60162 | 290 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 351 |
| KGE60856 | 53 | --NSD | KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSEEK | 114 |
| WP_002989955 | 1115 | --NSD | KLIA----RKKDW-DPKKYGGFDS PTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME | RSSFEK | 1176 |
| WP_003030002 | 1094 | --ESD | KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME | KKRFEK | 1158 |
| WP_003065552 | 1122 | --DSD | KLIPRKTkKA-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME | RSFFEE | 1186 |
| WP_001040076 | 1113 | --NSD | KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME | RSRFEK | 1177 |

KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITTME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPKVAYSV-LVVAD--IK--KGKA@KLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAOKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITTME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVAAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME




| RSREEK | 1177 |
| :---: | :---: |
| RSRFEK | 1177 |
| RSREEK | 1191 |
| RFREEK | 1177 |
| RSREEK | 1177 |
| RFREEK | 1177 |
| RSRFEK | 1177 |
| RSREEK | 1177 |
| RERFEK | 1177 |
| RSRFEK | 1177 |
| RSRFEK | 1177 |
| RITEEK | 1185 |
| KKREEK | 1159 |
| KKRFEK | 1159 |
| KKRFEK | 1158 |
| RSFEEK | 1190 |
| KGSYEK | 1185 |
| KKRFEK | 1158 |
| RPFEEK | 1178 |
| KLVEEK | 1177 |
| RTAFEE | 1156 |
| RIAFEE | 1156 |
| RIAFEE | 1156 |
| RSSFEE | 1188 |
| RSFEEE | 1183 |
| RSSFEE | 1184 |

KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELIGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGGITIME KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME ENLVGVK-RNL---DPKKYGGYAGISNSYAV-LVKAI--IE--KGVKKKETMVLEFQGISILD KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KLIPRKTkKV-LW-EPKKYGGFDSPTVAYSV-LVVAD--VE--KGKTKKLKTVKELVGISIME KLIP----RKKGW-DTRKYGGFGSPTVAYSI-LVVAK--VE--KGKAKKLKSVKVLVGITIME KLIPRKT-KNSYW-DPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KLIARKTkEN-YW-DTKKYGGFDSPTVAYSV-LVVAD--IK--KGKAKKLKTVKELVGISIME KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVV--DGKVKKIKTGKELIGMTLID KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKckVQ--DGKVKKIKTGKELIGITLLD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIkTGKELIGITLLD KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME KLIPRKTkKL-QW-ETQKYGGFDSPTVAYSV-LVVAD--VE--KGKTRKLKTVKELVGISIME KLIPRKTKKV-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME




| KLJ37842 |
| :---: |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP_047207273 |
| WP 047209694 |
| WP 050198062 |
| WP-050201642 |
| WP-050204027 |
| WP 050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP-003041502 |
| WP 037593752 |
| WP_049516684 |
| GAD46167 |
| WP 018363470 |
| WP 003043819 |
| WP 006269658 |
| WP 048800889 |
| WP-012767106 |
| WP 014612333 |
| WP 015017095 |
| WP 015057649 |
| WP 048327215 |
| WP 049519324 |
| WP 012515931 |
| WP 021320964 |
| WP-037581760 |
| WP-004232481 |
| WP 009854540 |
| WP 012962174 |

 KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAN--IE--KGKSKKLKLVKDLVGITIME KLIP----RKKDW-SVDKYGGFIEPAESYSLaIFYTD--IN-----GKKPKKKSTIIAISRME KLTPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKAKKLKRIKEMVGITVQD KLIPRKT-KDILL-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD-----------------TKQLIPISVMD KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKS KKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD-----------------TKQLIPISVMD KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME



KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KSKSKKLKTVKALVGVTIME KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD----------------TKQLIPISVMD KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKRLKTVKTLVGITIME KLIPRKT-KDILW-ETTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME KLIPRKT-KNVQL-DTTKYGGFDSPVIAYSI-LLVAD--VE--KGKSKKLKTVKSLIGITIME KLIP----RKNNW-DPKKYGGFGSPIIAYSV-LVVAK--VT--KGKSQKTKSVKELVGITIME KLIP----RKNKWrDTTKYGGFNTPTVAYSV-LVVAK--VE--KGKAKKLKPVKELVGITIME KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKAKKLKRIKEMVGITIQD KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKTKKLKRIKEMIGITVQD KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKTKKLKRIKEMVGITIQD KLIE----RKKGW-DPKKYGGFDSPNTAYSI-FVVAK--VA--KRKAQKLKTVKEIVGITIME KLIE----RKKGW-DPKKYGGFDS PNTAYSI-FVVAK--VA--KRKAQKLKTVKEIVGITIME
KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME








$\cdots$





 | 0 |
| :---: |
| $n$ |
| 0 |
| 0 |
| 0 |
| 0 |
| 3 | $n$

0
0
0
3
3
3

| KKKFES | 1189 |
| :---: | :---: |
| KDAFEK | 1184 |
| RSREES | 1174 |
| KATEEK | 1188 |
| KAAFEK | 1184 |
| RMAFEK | 1177 |
| RMAFEK | 1179 |
| RMAFEK | 1179 |
| RMAFEK | 117 |
| RITEEK | 118 |
| QTRIDN | 111 |
| KAASIN | 114 |
| RSSEEK | 1176 |
| KKDFEG | 114 |
| RSSEEK | 1176 |
| QKAYEQ | 115 |
| KTRFEQ | 1156 |
| KTRFEQ | 110 |
| QSLEEQ | 892 |
| KTRFEQ | 15 |
| KTRFEQ | 115 |
| KTREEQ | 115 |
| KTREEQ | 115 |
| KTRFEQ | 115 |
| KTREEQ | 115 |
| KTREEQ | 11 |
| KTRFEQ | 115 |
| KTREEQ | 115 |
| KTKEEQ | 1156 |
| KTREEQ | 115 |
| REAFEQ | 115 |

KIPIKS-S---L-SPEKYGGYARPTIAYSV-LVIAD--IEkgKGKAKKLKRIKEIVGITIQD KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME KLIARKT-KNNYL-STQKYGGFDSPTVAYSI-MEVAD--IE--KGKSKRLKTVKEMIGITIME KLIPRKT-KEILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME ENLVGVK-RNL---DPKKYGGYAGISNSYAV-LVKAI--IE--KGVKKKETMVLEFQGISILD KTIP----LKKHL-DTAIYGGYTAVNYASYA---LIQ--FK----KGRKLK--REIIGIPLAV AVVP---vNKNR.S-DVHKYGGFSG--LQYTI----VA--IEgqKKKGKKTELVKKISGVPLHL AVVP---VNKNRS-DVHKYGGFSG--LQYTI----VA---EgqKKKGKKTELVKKISGVPLHL KRIP----IKNNL-DPNIYGGYIEEKMAYYI----AInyLE--NGKTKK-----AIVGISIKD KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME KLIP----VKEGM-DPQKYGGLSQVSEAFAV-VIT----HE--KGKKKQLK--SDLISIPIVD KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LE--T--HE--KGK-KPL-IKQEILGITIME KLIQ----RKAGW-DVSKYGGFGSPVVAYAV-AFI----YE--KGKAR--KKAKAIEGITIMK KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LE--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LE--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME KLLP----RKNNW-DPAKYGGLGSENVAYTV-AFT----YE--KGKAR--KRTNALEGITIME KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME
KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME




が

 REAFEQ
REAFEQ
REAFEQ
QAAFEK
REAFEQ
QAAFEK
QAAFEK
QAAFEK
RESFEG
QLRFEQ
QSLFKK
RAAFEK
QALFEK
RSSFEK
KNVDDE
KNADEE
SKKYEA
KKAFLK
－－－－DK
RKAFEK
RKAFEK
RKAFEK
RKAFEK
RVAFEK
RVAFEK
RKMFEK
RKMFEK
RKMFEK
REAFEK
RKAFEK
RKMFEK
RKAFEK
RKMFEK
REAFEK KLLP－－－－RKNNW－DPAKYGGLGSPNVAYTV－AFT－－－－YE－－KGKAR－－KRTNALEGITIME KLLP－－－－RKNNW－DPAKYGGLGSPNVAYTV－AFT－－－－YE－－KGKAR－－KRTNALEGITIME KLLP－－－－RKNNW－DPTKYGGLGSPNVAYTV－AET－－－－YE－－KGKAR－－KRTNALEGITIME KLIE－－－－RKNNW－DVTKYGGFGSPVIAYAI－AFV－－－－YA－－KGKTQ－－KKTRAIEGITIME KLLP－－－－RKNNW－DPAKYGGLGSPNVAYTV－AFT－－－－YE－－KGKAR－－KRTNALEGITIME KLIE－－－－RKNNW－DVTKYGGFGSPVIAYAI－AFV－－－－YA－－KGKTQ－－KKTKAIEGITIME KLIE－－－－RKNNW－DVTKYGGFGSPVIAYAI－AFV－－－－YA－－KGKTQ－－KKTRAIEGITIME KLIE－－－－RKNNW－DVTKYGGFGSPVIAYAI－AFV－－－－YA－－KGKTQ－－KKTRAIEGITIME KLIR－－－－RKQQW－NTKKYGGFDSPVVAYAI－－－LLS－－ED－－KGK－RKARSEK－IVGITIQD KLIP－－－－RKASL－DPLKYGGYGSPLVAYTV－IFI－－－－EE－－KGKQK－－KVTKGIEGITVME KLIS－－－－RKTNW－SPKLYGGFDSPQVAYSV－II－－T－－YE－－KGK－KKVRA－KAIVGITIME KLIS－－－－RKKEW－DTTKYGGFDSPNVAYSV－VI－－R－－YE－－KGK－TRKLV－KTIVGITIME KLIK－－－－RKNNW－DVTKYGGFGSPVVAYAV－VFT－－－－YE－－KGKNH－－KKAKAIEGITIME KLIA－－－－RKKDW－DPKKYGGFDSPTVAYSV－LVVAK－－VE－－KGKSKKLKSVKELLGITIME AKVP－－－vNKLRS－NVHKYGGFEG－－LKYSI－－－－VA－－IKgkKKKGKKIIDVNKLVGIPLMY ATVP－－－vNKYRS－NVNKYGGFSG－－VNSFI－－－－VA－－IKgkKKKGKKVIEVNKLTGIPLMY वIIdINイT－－－ШҮ＾YY QLIPAKQdRPTAL－－－－－YGGYSGKTVAYMC－－－IVR－－IKnkKGDLYKVCGVETSWLAQLKQ KLIA－－－－QKKDM－DPNIYGGFSGDNKSSIT－－－IVK－－ID－－－－－NNKIKPVA－－IPIRLIN KLIP－－－－RKTNW－DPMKYGGLDSPNMAYAV－VI－－E－－YA－－KGK－NKLVFEKKIIRVTIME KLIS－－－－RKTNW－DPMKYGGIDSPNMAYAV－VI－－E－－YA－－KGK－NKLVFEKKIIRVTIME KLIS－－－－RKTNW－DPMKYGGLDSPNMAYAV－VI－－E－－YA－－KGK－NKLVFEKKIIRVTIME KLIP－－－－RKTNW－DPMKYGGLDSPNMAYAV－VI－－E－－YA－－KGK－NKLVFEKKIIRVTIME KLIS－－－－RKADW－NPIKYGGFDGSNMAYSI－VI－－E－－YE－－KRK－KKTVIKKELIOINIME KLIS－－－－RKADW－NPIKYGGFDGSNMAYSI－VI－－E－－YE－－KRK－KKTVIKKELIQINIME
 KLIP－－－－RKENW－DPMKYGGLDSPNMAYAV－II－－E－－HA－－KGK－KKIVIEKKLIQINIME KLIP－－－－RKENW－DPVKYGGLDSPNMAYAV－II－－E－－HA－－KGK－KKIVIEKKLIQINIME KLIP－－－－RKKDW－DPIKYGGFDGSKMAYAI－II－－E－－YE－－KQK－RKVRIEKKLIQINIME KLIP－－－－RKENW－DPMKYGGLDSPNMAYAV－II－－E－－HA－－KGK－KKVVFEKKIIRITIME KLIP－－－－RKENW－DPMKYGGLDSPNMAYAV－II－－E－－HA－－KGK－KKLIFEKKIIRITIME KLIP－－－－KKTNL－NPIKYGGFEGSNMAYAI－II－－E－－HE－－KRK－KKVTIEKKLIQINIME KLIP－－－－RKENW－DPMKYGGLDSPNMAYAV－II－－E－－HA－－KGK－KRIVIEKKLIQINIME





| RKAFEK | 1154 |
| :--- | :--- |
| RKMFEK | 1157 |
| RKAFEK | 1157 |
| RKMFEK | 602 |
| RTAFEK | 1154 |
| RSSFEK | 1192 |
| KQADIK | 1153 |
| KNAPVE | 1154 |
| RSSFEK | 1209 |
| RSSFEK | 1176 |
| RSSFEK | 1176 |
| RSSFEK | 1180 |

KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME
KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKLIFEKKIIRITIME
KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME
KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME
KLIP----RKADW-DPIKYGGFDGSNMAYAI-VI--E--HE--KRK-KKTVIKKELIQINIME
KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME
AVIP---vNKNRK-DVNKYGGFSG--LQYVI----AA--IEgtKKKGKKLVKVRKLSGIPLYL
ATVP----1NKYRA-DVHKYGGFGN--VQSII----VA--IEgkKKKGKKLIDVRKLTSIPLHL
KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME
KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME
KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME

| 1096 | $--D S S$ |
| :--- | :--- |
| 1099 | $--N S S$ |
| 1099 | $--D S S$ |
| 544 | $--N S S$ |
| 1096 | $--N S S$ |
| 1131 | $--N S D$ |
| 1089 | hsAKG |
| 1090 | hSEKG |
| 1148 | $--N S D$ |
| 1115 | $--N S D$ |
| 1115 | $--N S D$ |
| 1119 | $--N S D$ |

WP 033920898
AKI 42028
AKI 50529
EFR83390
WP_046323366
AKE81011
CUO82355
WP_033162887
AGZ01981
AKA60242
AKS40380
4UN5_B


GELQKGNELALPSKYVNFLYLA
 AKELQKGNEIVLPVYLTTLLYHS -KKISNQAEFIASFYNNDLIKIN -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNELYLA -GELQKGNELALPSKYVNFLYLA GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA GELQKGNELALPSKYVNFLYLA
 -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA -GELQKGNELALPSKYVNFLYLA GELQKGNELALPSKYVNFLYLA ARELQKGNELVIPQRFTTLLYHS ASELQKGNEMVIPGHLVKLLYHA AGELQKGNELALPTQFMKFLYLA

| WP 010922251 | 1 |  |
| :---: | :---: | :---: |
| 039695303 | 1186 | N |
| $P-045635197$ | 1184 |  |
| 5AXW_A | 913 | K |
| P_009880683 | 861 | DPV---DFLE---AKGYKE--V-RKDLII |
| P_010922251 | 1177 | NPI---DFLE---AKGYKE--V-KKDLII |
| - | 1 | DPI---DFLE---AKGYK |
| P-011284745 | 1177 | NPI---DFLE---AKGYKE--V-RKDLIVK--LPKY |
| _-011285506 | 1 | NPI---DFLE---AK |
| P-011527619 | 1177 | NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LE |
| $P-012560673$ | 1177 | DPV---DFLE---AKGYKE--V- |
| 014407541 | 1176 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLF |
| 020905136 | 1177 | NPI---DFLE---AKGYKE--V-KKD |
| 023080005 | 1176 | NPI---DFLE---AKGYKE--V-RKDL |
| -023610282 | 1176 | NPI---DFLE---AKGYKE--V-RK |
| -030125963 | 11 | NPI---DFLE---AKGYKE--V-RKDI |
| P_030126706 | 1177 | NPI---DFLE---AKGYKE--V-RKDI |
| P_031488318 | 1177 | NPI---DFLE---AKGYKE--V-RKDL |
| P-032460140 | 1177 | DPV---DFLE---AK |
| P_032461047 | 1177 | DPV---D |
| P-032462016 | 1 | NPI---DFLE---AKGYKE--V-KKDL |
| P_032462936 | 1177 | NPI---DFLE---AKGYKE--V-P |
| P-032464890 | 1 | NPI---DFLE---AKGYKE--V-P |
| P - 033888930 | 1002 | NPI---DFLE---AKGYKE--V- |
| P_038431314 | 117 | NPI---DFLE---AKGYK |
| P_038432938 | 1176 | NPI---DFLE---AKGYKE--V-RKDLII |
| P_038434062 | 1177 | NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLE |
| AQ51233 | 1088 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LEN |
| GE60162 | 352 | DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLE |
| KGE60856 | 115 | DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LEN |
| P 002989955 | 1177 | NPI---DFLE---AKGYKE--V-RKDLIIK--LPKY |
| $P-003030002$ | 1159 | HPV---DFLE---QRGYRN--V-RLEKIIK--LPK |
| P_003065552 | 1187 | NPV---EFLE---NKGYHN--I-REDKLIK--L |
| WP_001040076 | 1178 | NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGR |

AGELQKGNELALPTQFMKFLYLA 1248
$\begin{array}{ll}\text { AGELQKGNELALPTQFMKFLYLA } & 1248 \\ \text { AGELQKGNELALPTQFMKFLYLA } & 1240\end{array}$

AGETIDRLQKGNELALPTQF＇MKFLYLA
NN N
AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQEMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQYMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQYMKFLYLA AGELQKGNELALPTQYMKFLYLA
 AGELQKGNELALPTQEMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQYMKFLYLA AGELQKGNELALPTQYMKFLYLA AGELOKGNELALPTOYMKFLYLA AGELQKGNELALPTQYMKFLYLA

 ADELQKGNELALPTQFMKFLYLA
 AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA


 NPS --- AFLE－－－SKGYLN－－I－RDDKLMI－－LPKYSLEE－－－LENGRRRLLAS
NPS $---A F L E---S K G Y L N--I-R A D K L I I--L P K Y S L E E---L E N G R R R L L A S ~$
NPSーー－AFLEーー－SKGYLNーーI－RADKLIIーーLPKYSLEEーーーLENGRRRLLAS RADKLII－ーLPKYSLFE－ー－LENGRRRLLAS
 RDDKLMI－－LPKYSLEE－－$-E N G R R R L \perp A S$ RADKLII－ーLPKYSLEE－ー－LENGRRRLLAS ENGRRRLLAS ENGRRRLLAS ENGRRRLLAS ENGRRRLLAS ENGRRRLLAS疗 ENGRRRLLAS
 ENGRRRLLAS EENGRRRLLAS





 ar SPS－－－AFLE－－－SKGYLN－－I－RADKLII－－LPKYSLFE－－－LENGRRRLLAS


##   <br> $\infty \quad 0 \quad 0$ <br> न न न تन

$W P-001040078$
$W P-001040080$
01040081 1240

WP 001040083
WP 001040085
WP 001040087

WP＿001040088 WP＿001040089 | - |
| :--- |
| $\sigma$ |
| 0 |
| 0 |
| - |
| - |
| - |
| - | WP－ 001040091

 | ㅇ |
| :--- |
| $\stackrel{3}{\circ}$ |
| 8 |
|  |

 WP＿001040097
 8
8
7
8
8

8 | 0 |
| :--- |
| 0 |
| 1 |
| 0 |
| + |
| 0 |
| 7 |
| 0 |
| 0 |
| 1 |
| 1 | $n$

0
0
0
0
0
-1
0
0
1
3
3 0
0
-1
-1
0
-1
-1
0
0
1
3 WP－001040107

 | 0 |
| :--- |
| 0 |
| - |
| 0 |
| 0 |
| 0 |
| -1 |
| - |
| 0 |
| 1 |
| 1 |
| 0 |
| 3 | 0

-1
-
0
0
-1
-
0
1
0
3 WP－015058523 0
0
0
0
7
3
$\vdots$
$\vdots$
1
1
3 -7
7
7
7
6
7
0
0
1
3


 WP＿017771984 CFQ－25032

 AGELQKGNELALPTQFMKFLYLA

 AGELQKGNELALPTQFMKFLYLA

 AGELQKGNELALPTQFMKFLYLA AGELQKGNELALPTQFMKFLYLA
 AGELQKGNELALPTQYMKFLYLA
 AGELQKGNELALPTQFMKFLYLA



 ARELQKGNELVIPQRFTTLLYHS

 ATELQKGNEIMLSAHLVALLYHA --ELQKANELVLPQHLVRLLYYT AKELQKGNELVIPQRFTTLLYHS AVELQKGNEMVLPQYLNNLLYHA








运秀 ASELQKGNEMVLPGYLVELLYHA


##  

| CFV16040 |
| :---: |
| KLJ37842 |
| KLJ72361 |
| KLL20707 |
| KLL42645 |
| WP-047207273 |
| WP 047209694 |
| $W P-050198062$ |
| $W P-050201642$ |
| WP 050204027 |
| WP_050881965 |
| WP_050886065 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP 003041502 |
| $W P-037593752$ |
| WP 049516684 |
| GAD46167 |
| WP 018363470 |
| WP_003043819 |
| WP 006269658 |
| WP_048800889 |
| WP 012767106 |
| WP_014612333 |
| WP 015017095 |
| $W P-015057649$ |
| $W P-048327215$ |
| WP_049519324 |
| $W P-012515931$ |
| WP 021320964 |
| WP-037581760 |
| WP 004232481 |
| WP 009854540 |



ASELQKGNEVVLSRHLVELLYHA
FEGGRRRLLAS解 FEGGRRRLLAS ENGRKRLLAS ENGRKRLLAS ENGRKRLLAS LENGRKRLLAS LENGRKRLLAS MENGRRRLLAS MEKGRRRLLAS
FNNGQRRLLAS LENGRRRLLAS S甘＇TTy
 ENGRKRLLAS ENGRKRLLAS SシTTYy 9 NB先 LENGRKRLLAS LENGRKRLLAS LENGRKRLLAS LENGRKRLLAS
IGNGI KRLWAS SVTTצ্পy：ņt

 S甘TTYYyפNはT S甘MTYY IפN〇I
 S甘TTY
 －－LENGRKRLLAS







| V-QEENIIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| :---: | :---: |
| NGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| KGYRN--V-QEENIIK--LPKYSLEK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| JGRKRLLAS | ARELQKGNEIVLPNHLETLLYHA |
| IIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| SYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| IIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| IIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPDHLGTLLYHA |
| IIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| JIIK--LPKYSLEK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLEK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| LE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| LE---RKGYRN--V-QEENI IK--LPKYSLEK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| LE---RKGYRN--V-QEENIIK--LPKYSLEK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| $-A F L E---R K G Y R N--V-Q E E N I I K--L P K Y S L E K---L E N G R K R L L A S ~$ | ARELQKGNEIVLPNHLGTLLYHA |
| -AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| -AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| LK---DKGYQQ--I-EKNNEVK--LPKYTLVD---IGNGIKRLWAS | SKEVHKGNQLVVSKKSQDLLYHA |
| LE---RKGYRN--V-QEENI IK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| $-\mathrm{AFLE}--$ RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLIAS | ARELQKGNEIVLPNHLGTLLYHA |
| LK---DKGYQQ--I-EKNNEVK--LPKYTIVD---IGNGIKRLWAS | SKEVHKGNQLVVSKKSQDLLYHA |
| -AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| -RKGYRN--V-QEENIIK--LPKYSLEK---LENGRKRLLAS | ARELQKGNEIVLPNHLGTLLYHA |
| AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLIAS | ARELQKGNEIVLPNHLGTLLYHA |
| LE---NKGYHN--V-RKENILC--LPKYSLFE---LKNGRRRMLAS | AKELQKGNEIVLPVHLTTLLYHA |
| LE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS | AKELQKGNEIVLPVYLTTLLYHS |
| LE---GKGYQN--V-VEENIIR--LPKYSLFE---LENGRRRMLAS | AKELQKGNEMVLPSYLIALLYHA |
| LE---KKGYQD--I-QESLIIK--LPKESLFE---LENGRKRLLAS | --ELQKGNELSLPNKYIQFLYLA |
| SKGYHD--I-QEHLMIT--LPKYSLEE---LENGRRRLLAS | --ELQKGNEMVLPQHLVTFLYRV |
| -AYLE---EYGYKN--I-NPNLIIK--LPKYSLFK---FNDGQRRLLAS | SIELQKGNELILPYHETTLLYHA |
| $-A Y L E---E C G Y K N--I-N P N L I I K--L P K Y S L F E---F N G G Q R R L L A S$ | SIELQKGNELILPYHETALLYHT |
| $-A Y L E---E C G Y K N--I-N P N L I I K--L P K Y S L F E---F N G G Q R R L L A S$ | SIELQKGNELILPYHETALLYHA |
| I---AFLE---KKGYQD--I-QEKLLIK--LPKYSLFE---LENGRRRLLAS | --EFQKGNELALSGKYMKFLYLA |
|  |  |











 LENGRRRLLAS FNDGQRRLLAS
 ENGRRRLLAS ESGRRRMLAS EENGRRRLLAS ENGRRRLLAS
 LENGRRRLLAS LENGRRRLLAS
 -NNGNRLYIAG --DGGEYLLTS ENGGRKMLAS 0
2
0
0
0
0
0
0
10
10 LENGRKRMLAS LEDGSRRMIAS
 1
9
9
0
0
0
1
1
1
0 LENGRRRMVAS
FPEGRRRLLAS FPEGRRRLLAS
 FPEGRRRLLAS







 PVV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS


\footnotetext{



| WP 002897477 |
| :---: |
| P 002906454 |
| P 009729476 |
| CQR24647 |
| P 000066813 |
| P 009754323 |
| P 044674937 |
| P 044676715 |
| $P-044680361$ |
| P-044681799 |
| P 049533112 |
| P-029090905 |
| P 006506696 |
| AIT 42264 |
| P 034440723 |
| AKQ21048 |
| P 004636532 |
| P 002364836 |
| WP 016631044 |
| EMS 75795 |
| P 002373311 |
| P 002378009 |
| P 002407324 |
| P 002413717 |
| P-010775580 |
| WP 010818269 |
| P 010824395 |
| WP 016622645 |
| P 033624816 |
| P 033625576 |
| P 033789179 |
| P 002310644 |
| P 002312694 |
| WP 002314015 |



 LENGRKRMVAS FNGRKRMVAS ENGRKRMVAS ENGRKRMVAS DNGRRRFLAS SUANZYZפN' FDNGRRRFLAS FDNGRRRFLAS DNGRRRFLAS ENGRRRMVAS AQGGYRRMIAS LENGRRRLLAS ANGQRRMLAS ENGRKRMLAS -NGGLFYVTS * $ニ$ IXXID.〇С
 QKI-spQFTKv---KKQKGtiV-KVVEDFEv-IAPHILINqrfFDNGQELTLGS KTL--qNWLE---ENVKHKksIqIIK---Nn-VPIGQIIY------SKKVGLLS DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS
 DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS DQK---AFLE---EKGYYS--P-KV--LTK--IPKYTLYE---CENGRRRMLGS DQK---AFLE---EKGYYS--P-KV--LTK--IPKYTLYE---CENGRRRMLGS DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS DEE---AFLE---EKGYHQ--P-KV--LTK--LPKYTLYE---CEKGRRRMLS

 KQGYRQ--P-KV--LTK--LPKYTLYE---CENGRRRMLAS
 EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS





ANEAHKGNQMLLPNHLMALLYHA
ANEVHKGNQMLLPNHLMTLLYHA
ANEAQKGNQLVLSNHLVSLLYHA
ANEVHKGNQMLLPNHLMTLLYHA
ANEAQKGNQLVLSNHLVSLLYHA
ANEAQKGNQMVLPNHLMTLLYHA
-GELQKGNELALPSKYVNFLYLA
--ECVNAMQLVLNEEQCKLIADI
--EYVTARQLSLNEQSCKLISEI
-GELQKGNELALPSKYVNFLYLA
-GELQKGNELALPSKYYNFLYLA
-GELQKGNELALPSKYVNFLYLA
-GELQKGNELALPSKYVNFLYLA

| WP-031669209 | 1155 | DEK---TFLE---EKGYHQ--P-KV--LIK--VPKYTLYE---CENGRRRMLGS |
| :--- | :--- | :--- | :--- |
| WP-033920898 | 1155 | DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS |
| AKI42028 | 1158 | DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS |
| AKI50529 | 1158 | DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS |
| EFR83390 | 603 | DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS |
| WP-046323366 | 1155 | DQK---EFLE---GKGYRN--P-KV--ITK--IPKYTLYE---CENGRRRMLGS |
| AKE81011 | 1193 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLEE---LENGRKRMLAS |
| CUO82355 | 1154 | EQI---EYVE--kEEKLSD--VkIIK---Nn-IPLNQLIEi----DGRQYLLTS |
| WP_033162887 | 1155 | EQL---SYIAspeHEDLID--VrIVK---E--ILKNQLIEi----DGGLYYVTS |
| AGZ01981 | 1210 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLEE---LENGRKRMLAS |
| AKA60242 | 1177 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLEE---LENGRKRMLAS |
| AKS40380 | 1177 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS |
| 4UN5 B | 1181 | NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS |





 | 0 | 0 |
| :--- | :--- |
| 0 | 0 |
| 0 | 1 |
| 0 | 1 |







| W | 010922251 |
| :---: | :---: |
|  | 039695303 |
|  | 045635197 |
|  | W_A |
|  | 009880683 |
|  | 010922251 |
|  | 011054416 |
|  | 011284745 |
|  | 011285506 |
|  | 011527619 |
|  | 012560673 |
|  | 014407541 |
|  | 020905136 |
|  | 023080005 |
|  | 023610282 |
|  | 030125963 |
|  | 030126706 |
|  | 031488318 |
|  | 032460140 |
|  | 032461047 |
|  | 032462016 |
|  | 032462936 |
|  | 032464890 |
|  | 033888930 |
|  | 038431314 |
|  | 038432938 |
|  | 038434062 |
|  | 51233 |
|  | 60162 |
|  | 60856 |
|  | 002989955 |
|  | 003030002 |
|  | 003065552 |
|  | 001040076 |











SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K
SRYNESKgKPEEiEKKQE---FVNQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K
KRIN----NPIN-KDHIE---YVKKHRDDFKELLNYVLEFNEKYVGAT--KNGERLK-E
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M
YRIE----KDYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M
HRIG----NFNS-AEHLK--YVSEHKKEFEEVLSCVENFANVYVDVE--KNLSKIR-A
QNISATTgSNNLg-------YIEQHREEFKEIFEKIIDFSEKYILKN--KVNSNLK-S
YRIE----KDYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVIAD--NNLTKIE-M
HRID----NSDN-SEHLK--YITEHKEEFGKLLSYIENFAKSYVDVD--NNLEKIQ-L
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVQ
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E



|  |
| :---: |
| KLJ72361 |
| LL20707 |
| LL42645 |
| WP_047207 |
| WP 04720969 |
| WP 05019806 |
| WP_05020164 |
| WP 050204027 |
| WP 05088196 |
| WP 0508860 |
| AHN30376 |
| EAO78426 |
| CCW42055 |
| WP 003041502 |
| WP 0375937 |
| WP 04951668 |
| AD4 6167 |
| WP_018363 |
| WP 003043819 |
| P 0062696 |
| WP 04880088 |
| 01276710 |
| WP_014612333 |
| WP_01501 |
| WP_01505764 |
| WP 048327215 |
| P 049519324 |
| WP_012515931 |
| WP_021320964 |
| WP_037581760 |
| WP 00423248 |
| WP 00 |
| WP 0129621 |





| D－－－－SENS－TEHLK－－YVSEHKKEFEKVLSCVENFSNLYVDVE－－KNLSKVR－A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KVDVLVkSKDD---DYD---LEEHRAEFAELLDCIKKFNDMYILAS--SNMSKIE-E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －DN－DYSNE－－YVKNHYQQEDILENEITSFSKKCKLGK－－EHIQKIE－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －ーーーKVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYILAE－－GNLEKLK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| D－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| F |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DN－DYSNE－－YVKNHYQQFDILFNEITSFSKKCKIGK－－EHIQKIE－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KVDE RKHコD Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KVDE PKHLD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －ーーーKVE－PKHLD－－YVKHKDEFKE山LDVVSNFSKKYI山AEーーGNLEKIKーE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |








| WP 002295753 | 1222 |  |
| :---: | :---: | :---: |
| 002296423 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 002304487 | 1236 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 002305844 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 2307203 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 002310390 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 2352408 | 1222 | KN |
| 012997688 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GN |
| 14677909 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTI |
| 19312892 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 19313659 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GN |
| 19314093 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 019315370 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVNSNFSKKYT |
| 019803776 | 1222 | KNIH $---K V D E-P K H L D--Y V D K H K D E F K E L L D V V S N F S K K Y T L A E--G N L E K I K-E ~$ |
| 019805234 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELI |
| 024783594 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 024784288 | 1230 | HHL－－－－－－DN－DYSNE－－YVKNHYQQEDILENEITSFSKKCKLGK－－EHIQKIE－E |
| 024784666 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 024784894 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 024786433 | 1230 | HHL－－－ー－ー－DN－DYSNE－－YVKNHYQQEDILFNEITSFSKKCKIGK－－EHIQKIE－E |
| 049473442 | 1222 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| P＿049474547 | 1222 | KNIH－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| EMC03581 | 1215 | KNIH－－－－KVDE－PKHLD－－YVDKHKDEFKELLDVVSNFSKKYTLAE－－GNLEKIK－E |
| 000428612 | 1250 | KNIH－－－－RLDE－PEHLE－－YIQKHRNEFKGLLNLVSEFSQKYVIAD－－ANLEKIK－N |
| 000428613 | 1248 | KNVH－－－－KLDE－PEHLE－－YIQKHRNEFKDLLNLVSEFSQKYVLAD－－ANLEKIQ－N |
| 049523028 | 1243 | KRIQ－ーー－KKDE－PEHLE－－YIKQHHSEFNDLLNFVSEFSQKYVLAE－－SNLEKIK－N |
| 003107102 | 1209 | SRYTSFSgKEEDrEKHRH－－FVESHLHYFDEIKDIIADFSRRYILAD－－ANLEKIL－T |
| 054279288 | 1242 | SKRDK－－gTQSEnME－－－－－YISNHKEKEIEIFHYIIRYAEKNVIKP－－KVIERLN－D |
| 049531101 | 1252 | QRIN－－－－KISE－PIHKQ－－YVETHQSEFEELLTTIISLSKKYI－QK－－PIVE |
| 049538452 | 1252 | QRIN－－－－KISE－PIHKQ－－YVEAHQNEFKELLTTIISLSKKYI－QK－－PNVESL－－－ |
| 049549711 | 1254 | QRIN－－－－KESE－PIHKQ－－YVEAHQNEFKELLTIIISLSKKYI－QK－－PN |
| WP＿007896501 | 1246 | SRYDKLSsKIESEQQKKL－－FVEQHLHYEDEILDIVNKHATCYIKAE－－NNLKKII－S |
| EFR 44625 | 1198 | SRYDKLSsKIESEQQKKL－－FVEQHLHYFDEILDIVNKHATCYIKAE－－NNLKKII－S |
| WP＿002897477 | 1247 | KNLH－－－－KLDE－PEHLE－－YIQKHRNEFKDLLNLVSEFSQKYILAE－－ANLEKIK－D |

[^21]|  | -KLDE-PGHLE--Y |
| :---: | :---: |
|  |  |
|  | -KLDE-PEHLE--YIQKHRYEFKDLLNLVSEFSQKYVLAD--ANLEKIK-N |
|  | DE-PEHLE--YIQKHRYEFKDLLNLVSEFSQKYVLAE--ANLE |
|  |  |
|  | KITE-PIHLN--YVNKNKHEFKELLRHISD |
|  | -KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRL |
|  |  |
|  | PIN-KDHIE--YVKKHRDDFKE |
|  |  |
|  | DYDN1DDILMi-----------QLYIELTNKMKVLYP |
|  | gSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S |
|  | E-----DE--TSHK--FIVEHKAYFDELLNYIVEFANKYLEL |
|  |  |
|  | YDKVK-----fPDSIE--YVHDNLAKFDDLLEYVIDFSNKYINAD--KNVQKIQ |
|  |  |
|  | LL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQ |
|  | DEIAhKESF-----D--YVNDHLSEFREILDQVIDFSNRYTIAA--KNTEKI |
|  |  |
|  | KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K |
|  | LL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQ |
|  | CLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKV |
|  | LL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQ |
|  |  |
|  | CLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKV |
|  | CLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV- |
|  | KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV- |
|  | KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV- |
|  | KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV- |
|  | KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE |
|  | KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE- |
|  |  |
|  |  |





|  |  |
| :---: | :---: |
|  |  |
|  |  |
| IYK-EN---QTDDLAK |  |
|  |  |
| TYF-FN---KYGFTSM- |  |
|  |  |
| IFE-NNfh----KASEqe |  |
|  |  |
| , |  |
|  |  |
| TYE-KN---QEADRKI- |  |
|  |  |
| AYN-KH---RDKPIREq- |  |
|  |  |
|  |  |
| LYE-ENq-----DATPme |  |
| DGN-KMV-----QVGQq |  |
| FNQ--------ATTSEk- |  |
| LFE-QN---KEGDIKA-- |  |
| LFE-QN---KEGDIKA-- |  |
|  |  |
|  |  |
| F |  |
| FFE-QN---KKGDIKV-- |  |
| LFE-QN---KEGDIKA-- |  |
| LFE-QN---KEGDIKA-- |  |
| KEGDI |  |
| KDGDV |  |
| I |  |
| -KEGDI |  |
| LYE-RN---KDGDVKS-- |  |
|  |  |
|  |  |


| 002330729 | 1220 |  |
| :---: | :---: | :---: |
| 002335161 | 122 | KQYDEIShKESF-----D--YVNEHHKEFSEVEARVLEFAGKYT |
| 002345439 | 1221 | KQYDEIShKESF-----D--YV |
| 034867970 | 12 | HYDKITYQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E |
| 7432 | 122 | KQYDEIShKESF-----D--YVNEHHKE |
| 10720994 | 12 | E |
| 737004 | 1211 | QHYDKITYQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E |
| 34700478 |  | TYQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E |
| 007209003 | 1209 | KKIIN--gKNSD---SVS--YIQNNKEKEREIEEYIVDFSSKYISAD--AN |
| 351901 | 1205 | RHYDEINhKVSF-----D--YVNAHKEGFNDIFDFI |
| 010770040 | 1216 | KQVDE-----DS-GKSEE--YVREHRAEFAEILNYVQAFSETKILAN--KNLQT |
| 048604708 | 121 | KHCNE-----KP-D-SLK--YVTEHQSGESEIMAHVKDFAEKYTLVD--KNLEKIL-S |
| 0750235 | 1214 | NHYDEIAYKDSY-----D--YVNEHFSNEQDILDKVIIFAEKYT |
| AII 16583 | 1279 | SHYEKLKgSPEDnEQKQL-- VVEQKHYLDEIIEQISEFSKRVILAD--AN |
| P_02907331 | 1226 | YKAMKYK-NYSEISQEEIm----------NVYDIFVEKLKLYYPT |
| WP_031589969 | 1226 | YKAMKYK-NYDN1DSEKİ-----------DLYRLLINKMELYYP |
| KDA 45870 | 1200 | NAKDG-- - - - - ¢KLE-- - - HKAEFKELFDKIMEFADKYVVAP--KNSEK |
| WP_039099354 | 1242 | LPLTQ-----SEeLAEQV--------- YDEILDQVMHYFPLYDTNQfr |
| AKP02966 | 1238 | QIPDE-- - - DpDQILAf----YDKNILVEILQELITKMKKFYPFY--KNEQE |
| P_010991369 | 1216 | ANCEV-----SD-GKSLD--YIESNREMEAELLAHVSEFA |
| WP_033838504 | 1216 | ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRY |
| EHN60060 | 1219 | ANCEV-----SD-GKSLD--YIESNREMEAELLAHVSEFAKRYTLAE-- |
| EFR89594 | 985 | ANCEV-----SD-GKSLD--YIESNREMEAELLAHVSEFAKRYTLAE--ANLNKIN-Q |
| WP_038409211 | 1216 | KNCEA-----ND-GESLA - Y EMHREMEAELLAY |
| EFR95520 | 835 | KNCEA-- - - ND-GESLA - Y EMHREMEAELLAYISEFAKRYTLAN--DRLEKIN-M |
| P_003723650 | 1216 | KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--A |
| P_003727705 | 1216 | KNCEA-----SD-GKSLK--YIEAHRETESELLAQVSEFATKYTLAD--ANLSKIN-N |
| 003730785 | 1216 | KNCEA----SD-GKSLK--YIEAHRETESELLAQVSEFATKYTLAD-- |
| 003733029 | 1216 | EKYEA-----ID-GESLA--YIEVHRALEDELLAYISEFARKYTLSN--DRLDEIN-M |
| P_003739838 | 1216 | KNCEA-----SD-GKSLD--YIESNREMFGELLAHVSEFAKRYTLAD--ANLSKIN-Q |
| 014601172 | 1216 | KNCEA-----SD-GKSLK--YIEAHRETESELLAQVSEFATRYTLAD--ANLSKIN-N |
| 023548323 | 1216 | EKREA---- I D-GESLA--YIEAHKAVEGELLAHISEFARKYTLAN--DKLDEIN-M |
| P 031665337 | 1216 | KNCEA-----SD-GKSLK--YIEAHRETESELLAQVSEFATRYTLAD--ANLSKIN-N |
| WP 031669209 | 1216 | EKYEA-----ID-GESLA--YIEVHRALFDELLAYISEFARKYTLSN--DRLDEI |



LYE-RN---KDGDVKS--
LFE-QN---KEGDIQA--
LYE-RN---KDGDVKS--
LFE-QN---KEGDIKX--
IFE-QN---KSGDVKV--
AYN-KH---RDKPIREq-
FVS----i----SKEEk-
FKN----i----DVVEk-
AYN-KH---RDKPIREq-
AYN-KH---RDKPIREq-
AYN-KH---RDKPIREq-
AYN-KH---RDKPIREq-

|  | 1216 | EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M |
| :---: | :---: | :---: |
| AKİ 42028 | 1219 | KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N |
| AKI 50529 | 1219 | EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKI |
| EFR83390 | 664 | KNCEA-----SD-GKSLK--YTEAHRETFSELLAQVSEFATRYTLAD--ANL |
| WP_046323366 | 1216 | KNCEA-----SD-GKSLA--YIESHREMFAELLDSISEFASRYTLAD--ANLEKIN-T |
| KE81011 | 1256 | SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S |
| CUO82355 | 1216 | YNAIYKQ-DFDGlDNMLMi-----------QLYLQLIDKLKTLYPIY-mGIVEK |
| WP 03316288 | 1218 | YAAMLKK-RYEYIDEEEIf-----------DLYLQLLQKMDTLYPAY-kGIAKRFF-D |
| AGZ 01981 | 1273 | SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL- |
| AKA60242 | 1240 | SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S |
| AKS 4038 | 1240 | SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S |
| 4UN5_B | 1244 | SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKV |


| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| :---: | :---: | :---: |
| NLLTLTALGAP-ADFNELG--EKI--PRK--R-YTSTKECL | NATLIHQSITGLYETRIDLSKL-- | 1369 |
| NLLTETALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL | NATLIHQSITGLYETWIDLSKL-- | 1367 |
| HLFTLTNLGAP-AAFKCFD--TTI--GRN--R-YKSIKEV | DATLIHQSITGLYETRIDLSQL-- | 1049 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATFIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
|  | DATFIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKCFD--TTI--GRN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1364 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1364 |
| HLFTLTNLGAP-AAFKYFD--TTI- ERN--R-YKSIKEVL | DATLIHQSITGLYEIRIDLSQL-- | 1364 |
| HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNFGAP-AAFIYFD--TTI--GRN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| TLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
|  | DATLIHQSITGLYETRIDLSQL-- | 1365 |
|  | DATFIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1190 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1364 |
| HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL | DATLIHQSITGLYETRIDLSQL-- | 1365 |
| HLFTLTNLGAP-AAFKYFD--TTI- - ${ }^{\text {PRK--R-YTSTKEVL }}$ | DATLIHQSITGLYETRIDLSQL-- | 1276 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 540 |
| HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL | DATLIHQSITGLYETRIDLSQL-- | 303 |
| LFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL | DATFIHQSITGLYETRIDLSQL-- | 1365 |
| SLLTETAFGAP-AAFNEFG--ENI--DRK--R-YTSVTECL | NATLIHQSITGLYETRIDLSKL-- | 1342 |
| NLLTLTALGAP-ADFNELG--EKI--PRK--R-YTSTKECL | NATLIHQSITGLYETRIDLSKI-- | 1370 |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- | 1367 |


| P 010922251 | 1306 | -AE---NII |
| :---: | :---: | :---: |
| WP 039695303 | 1309 | ISN---SFI |
| WP 045635197 | 1307 | LAN---SFI |
| AXW A |  |  |
| WP 009880683 | 990 | -AE---NII |
| WP 010922251 | 1306 | -AE---NII |
| WP 011054416 | 1306 | -AE---NII |
| WP_011284745 | 1306 | -AE---NII |
| WP-011285506 | 1306 | -AE---NII |
| WP_011527619 | 1306 | -AE---NII |
| WP 012560673 | 1306 | -AE---NII |
| WP 014407541 | 1305 | -AE---NII |
| $W P-020905136$ | 1306 | -AE---NII |
| WP 023080005 | 1305 | -AK---NII |
| WP 023610282 | 1305 | -AK---NII |
| WP 030125963 | 1306 | -AE---NII |
| WP 030126706 | 1306 | -AE---NII |
| WP 031488318 | 1306 | -AE---NII |
| WP 032460140 | 1306 | - AE---NII |
| WP 032461047 | 1306 | - AE---NII |
| WP 032462016 | 1306 | -AE---NII |
| WP 032462936 | 1306 | -AE---NII |
| WP 032464890 | 1306 | -AE---NII |
| WP 033888930 | 1131 | -AE---NII |
| $W P-038431314$ | 1306 | - $\mathrm{AE}--\mathrm{NII}$ |
| $W P-038432938$ | 1305 | - $\mathrm{AK}---\mathrm{NII}$ |
| WP 038434062 | 1306 | -AE---NII |
| BAQ51233 | 1217 | -AE---NII |
| KGE60162 | 481 | -AE-- NII |
| KGE60856 | 244 | -AE---NII |
| WP 002989955 | 1306 | -AE---NII |
| $W P-003030002$ | 1282 | LAK---SFI |
| WP 003065552 | 1310 | ISN---SFI |
| WP_001040076 | 1307 | LAN---NII |

1375
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367
1367

| NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLSKL-- |
| :---: | :---: |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KSV--DRK--R-YTSTKEVL | DSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHKSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQFITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KSV--DRK--R-YTSTKEVL | DSTLIHQSITGLYETRIDLGKI-- |
| NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| NLFTETSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDIGKL-- |






| L | NSTLIHQSITGLYETRIDLGKL-- |
| :---: | :---: |
| GAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL- |
| LGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL-- |
| GAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL- |
| AP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDI |
| AP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHKSITGLYETRIDLGKL |
| DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKI |
| AP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL |
| AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL |
| SLGAP-AAFKFFD--KII--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL |
| AFKEFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLG |
| ED--KSV--DRK--R-YTSTKEVL | DSTLIHQSITGLYETRID |
| AP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRIDLGKL |
| GAP-AAFKFFD--KIV--DRK--R-YTSTKEVL | NSTLIHQSITGLYETRID |
| LTSLGSA-SDFEFLG--VKI--PRY--RdYTPSSLLK | DSTLIHQSITGLYETRIDLSKL |
| GAP-AAFNFFG--ENI--DRK--R-YTSVTECL | NATLIHQSITGLYETRIDLSKL |
| AFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL | NATLIHQSITGLYETRIDI |
| AFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL | NATLIHQSITGLYETRIDLSKL |
| E | NATLIHQSITGLYETRIDLS |
| FGAS-GGFTFLD--LDVkqGRL--R-YQTVTEVL | DATLIYQSITGLYETRTDLSQL |
| FGAP-AAFNFFG--ENI--DRK--R-YTSVTECL | NATLIHQSITGLYETRIDLSKL-- |
| LTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL | NATLIHQSITGLYETQTDLSKL |
| SGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL | SSTLIHQSITGLYETRIDLSQL-- |
| TASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL | SSTLIHQSITGLYETRIDLSQL |
| GAP-ADFKFLG--TTI--PRK--R-YGSPQSIL | SSTLIHQSITGLYETRIDLSQL-- |
| TASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL | SSTLIHQSITGLYETRIDLSQL-- |
| LTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL | SSTLIHQSITGLYETRIDLSQL-- |
| SGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL | SSTLIHQSITGLYETRIDLSQL-- |
| TFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL | NATLIHQSVTGLYETRIDLSQL-- |
| FVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL | NATLIHQSVTGLYETRIDLSQL-- |
| GAP-AAFKFFD--ATI--DRK--R-YTSTKEVL | NATLIHQSVTGLYETRIDLSQL |
| AP-GAFKFLK--LDV--KQSnlR-YKSTTEAL | SATLIHQSVTGLYETRIDLSKL-- |
| LTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL |  |
|  |  |


1369
1372
1365

197
1342
1350
1373
1367
1342
1342
1342
1342
1342
1342
1342
1342
1342
1342
1342
1342
1352
1342
1342
1342
1342
1342
1352
1342
13



| $\sigma \sim 6$ |  | $N$ | $\bigcirc \cdot \square$ | $\sim \sim$ | N | N | N | N | N | N | N | N | N | $\infty$ | N | N | N | N | N | $\infty$ | N | N | N | N | N | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc \square 0$ | $\infty$ | 00 | の + | $\bigcirc 00$ | 0 | 00 | $\infty$ | 00 | 0 | $\infty$ | $\infty$ | $\infty$ | 0 | 00 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | O | $\infty$ | $\infty$ | 0 | $\infty$ |
| $m m m$ | m | $\bigcirc$ | N M | $m \sim$ | N | $\bigcirc$ | $\sim$ | N | $\sim$ | N | $\sim$ | N | N | N | $\sim$ | $\bigcirc$ | $\sim$ | $\sim$ | $\checkmark$ | © | N | $\bigcirc$ | $\sim$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ |
| $\cdots \cdots$ | $\checkmark$ | $\square$ |  | $\cdots$ |  |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |  |










MM上ナ অ


 $N$
$N$ $\bigcirc 0$


EMCO3581
$W P-000428612$
洜导




| WP 00290645 | 1312 |  |
| :---: | :---: | :---: |
| WP_009729476 | 1308 | LAN |
| CQR24647 | 1296 |  |
| WP 000066813 | 1312 | LA |
| WP_009754323 | 1308 |  |
| WP 044674937 | 1301 |  |
| WP 044676715 | 1303 |  |
| 44680361 | 1303 |  |
| WP_044681799 | 1301 |  |
| 049533112 | 1314 |  |
| WP_029090905 | 1241 |  |
| WP 006506696 | 1269 | -AN |
| AIT42264 | 1306 | -AE |
| WP_034440723 | 1277 | LVE |
| AKQ21048 | 1306 | -AE |
| WP_004636532 | 1272 | TVE |
| WP_002364836 | 1278 | IA |
| WP_016631044 | 1229 | IAA |
| EMS 75795 | 1014 | LS |
| P_002373311 | 1278 | IA |
| WP-002378009 | 1278 | IAA--- |
| WP 002407324 | 1278 | IAA |
| WP_002413717 | 1278 |  |
| WP_010775580 | 1280 | IAA--- |
| WP_010818269 | 1278 |  |
| WP_010824395 | 1278 | IAA--- |
| WP 016622645 | 1278 |  |
| WP 033624816 | 1278 | IAA |
| WP_033625576 | 1278 | IA |
| WP_033789179 | 1278 | IA |
| WP_002310644 | 1280 | LA |
| WP_002312694 | 1281 |  |
| WP 002314015 | 1281 |  |
| 6 | 1281 |  |



 NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW
 QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW









 QMLVVMHAGPQnGNITFDDf--KL-sNRLg-R-LNCKTISL

 -LIGLHANAAV-SDLGVLKisTPL--GKM--Q---QPSGIS TLLHANSTSAH-LI FNNIE-kKAF--GRK-------THGLT DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL KLKVFNAFGAP-RDFEFFE--TTI--KRK--R-YYNIKELL易
 DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SLKKFNAFGVH-QDFSEFG--TKI--ERK--R-DRKLNELL NLMAFNAMGAP-ASFKFFE--ATI--ERK--R-YTNLKELL DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL






332
335
335
80
332
381
333
335
398
365
365
369
NSTIIYQSITGLYESRKRL------
SSTIIYQSITGLYESRKRL------
NSTIIYQSITGLYESRKRL-----
SSTIIYQSITGLYESRKRL------
NATIIYQSITGLYEARKRL-----
DATLIHQSITGLYETRIDLSQL--
NIEFISQSPTGIYTKKYKL------
KTTFISTSVTGLFSKKYKL------
DATLIHQSITGLYETRIDLSQL--
DATLIHQSITGLYETRIDLSQL--
SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL
DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL
SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL
DLMVFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL
NLLEFNAMGAP-ASFKYFE--TNI--ERK--R-YNNLKELL
HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL
QMLIIMHKGPQnGNIIYDDf--NV-gKRIg-R-LNGRTFYL
QILIIMHAGPMnGNIMYDDf--KF-tNRIg-R-FTHKNIDL
HLETLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL
HLFTLTNLGAP-AAFKYFD--TRI--DRK--R-YTSTKEVL
HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL

WP 033920898
AKI 42028
AKI50529
EFR83390
WP_046323366
AKE81011
CUO82355
WP_033162887
AGZ01981
AKA60242
AKS40380
4UN5_B


























 m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m




M M ト サM O o m o N













[^22]


WP 033920898
AKI 42028
AKI 50529
EFR83390
WP 046323366
AKE81011
CUO82355
WP 033162887
AGZ01981
AKA60242
AKS 40380
$4 U N 5 \quad B$

Table 2. T to C changes with NGG PAM. Table 2 shows a list of T to C mutations that may be corrected using any of the base editors provided herein. GRNAs and gRNAall indicate the protospacer and PAM sequence, where the PAM sequence is the last 3 nucleotides of each of the sequences in GRNAs and gRNAall.

| Name | $\begin{aligned} & \text { Gene } \\ & \text { ID } \end{aligned}$ | Gene Symbo 1 | SEQ <br> ID <br> NO: | Flanks | SEQ <br> ID <br> NO: | GRNAs | SEQ <br> ID <br> NO: | gRNAall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000071.2( } \\ & \text { CBS):c.833T> } \\ & \text { C (p.Ile278Thr) } \end{aligned}$ | 875 | CBS | 2540 | $\begin{aligned} & \text { ['CTGAAGCCGC } \\ & \text { GCCCTCTGCAG } \\ & \text { ATCAYTGGGGT } \\ & \text { GGATCCCGAA } \\ & \text { GGGTCCATC'] } \end{aligned}$ | $\begin{aligned} & 2703 \\ & - \\ & 2704 \end{aligned}$ | ['ATCAYTGGGGTG <br> GATCCCGAAGG', <br> 'TCAYTGGGGTGGA <br> TCCCGAAGGG'] | $\begin{aligned} & 2907 \\ & - \\ & 2908 \end{aligned}$ | ['ATCAYTGGGGTG <br> GATCCCGAAGG', <br> 'TCAYTGGGGTGG <br> ATCCCGAAGGG'] |
| $\begin{aligned} & \text { NM_001385.2( } \\ & \text { DPYS):c. } 1078 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Trp360Arg) } \end{aligned}$ | 1807 | DPYS | 2541 | ['TGTTGAAGAT <br> CGGATGTCCGT <br> AATAYGGGAA <br> AAAGGCGTGG <br> TGGGTTTCAC'] | $\begin{aligned} & 2705 \\ & - \\ & 2707 \end{aligned}$ | ['CGTAATAYGGGA <br> AAAAGGCGTGG', <br> 'AATAYGGGAAAA <br> AGGCGTGGTGG', <br> 'ATAYGGGAAAAA <br> GGCGTGGTGGG'] | $\begin{aligned} & 2909 \\ & - \\ & 2911 \end{aligned}$ | ['CGTAATAYGGGA AAAAGGCGTGG', 'AATAYGGGAAAA AGGCGTGGTGG', 'ATAYGGGAAAAA GGCGTGGTGGG'] |
| $\begin{aligned} & \text { NM_000027.3( } \\ & \text { AGA):c.916T> } \\ & \text { C } \\ & \text { (p.Cys306Arg) } \end{aligned}$ | 175 | AGA | 2542 | $\begin{aligned} & \hline \text { ['TCCAGAATTC } \\ & \text { TTTGGGGCTGT } \\ & \text { TATAYGTGCCA } \\ & \text { ATGTGACTGGA } \\ & \text { AGTTACGG'] } \end{aligned}$ | 2708 | ['GTTATAYGTGCC <br> AATGTGACTGG'] | 2912 | ['GTTATAYGTGCC <br> AATGTGACTGG'] |
| NM_000035.3( ALDOB):c. 442 T>C (p.Trp148Arg) | 229 | $\begin{aligned} & \text { ALDO } \\ & \mathrm{B} \end{aligned}$ | 2543 | $\begin{aligned} & \text { ['GAAAGATGGT } \\ & \text { GTTGACTTTGG } \\ & \text { GAAGYGGCGT } \\ & \text { GCTGTGCTGAG } \\ & \text { GATTGCCGA'] } \end{aligned}$ | 2709 | ['GGAAGYGGCGTG <br> CTGTGCTGAGG'] | 2913 | ['GGAAGYGGCGT <br> GCTGTGCTGAGG'] |
| $\begin{aligned} & \text { NM_173560.3( } \\ & \text { RFX6):c. } 380+2 \\ & \text { T>C } \end{aligned}$ | $\begin{aligned} & 2225 \\ & 46 \end{aligned}$ | RFX6 | 2544 | ['GCAGACACAG CTCACGCTGCA GTGGYGAGAC TCGCCCGCAGG GTACACTGA'] | $\begin{aligned} & 2710 \\ & - \\ & 2711 \end{aligned}$ | ['CAGTGGYGAGAC <br> TCGCCCGCAGG', <br> 'AGTGGYGAGACTC <br> GCCCGCAGGG'] | $\begin{aligned} & 2914 \\ & - \\ & 2915 \end{aligned}$ | ['CAGTGGYGAGAC <br> TCGCCCGCAGG', <br> 'AGTGGYGAGACT <br> CGCCCGCAGGG'] |
| $\begin{aligned} & \text { NM_153704.5( } \\ & \text { TMEM67):c. } 18 \\ & 43 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys615Arg) } \end{aligned}$ | $\begin{aligned} & 9114 \\ & 7 \end{aligned}$ | TMEM $67$ | 2545 | ['AGAACGTTTT GTCACTTATGT TGGAHGTGCCT TTGCTCTGAAG GTAAGTTT'] | 2712 | ['TGGAHGTGCCTTT <br> GCTCTGAAGG'] | 2916 | ['TGGAHGTGCCTT <br> TGCTCTGAAGG'] |


| $\begin{aligned} & \text { NM_000124.3( } \\ & \text { ERCC6):c. } 2960 \\ & \text { T>C } \\ & \text { (p.Leu987Pro) } \end{aligned}$ | 2074 | ERCC6 | 2546 | ['AAGCAGTTTT <br> TGACAAATAG <br> AGTGCYAAAA <br> GACCCAAAAC <br> AAAGGCGGTTT <br> '] | 2713 | ['TGCYAAAAGACC <br> CAAAACAAAGG'] | 2917 | ['TGCYAAAAGACC CAAAACAAAGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_020435.3( } \\ & \text { GJC2):c.857T> } \\ & \text { C } \\ & \text { (p.Met286Thr) } \end{aligned}$ | $\begin{aligned} & 5716 \\ & 5 \end{aligned}$ | GJC2 | 2547 | $\begin{aligned} & \hline \text { ['TGCCTGCTGC } \\ & \text { TCAACCTCTGT } \\ & \text { GAGAYGGCCC } \\ & \text { ACCTGGGCTTG } \\ & \text { GGCAGCGCG'] } \end{aligned}$ | 2714 | ['TGAGAYGGCCCA <br> CCTGGGCTTGG'] | $\begin{array}{\|l} 2918 \\ - \\ 2919 \end{array}$ | ['TGAGAYGGCCCA <br> CCTGGGCTTGG', <br> 'GAGAYGGCCCAC <br> CTGGGCTTGGG'] |
| NM_000920.3( <br> PC):c. $434 \mathrm{~T}>\mathrm{C}$ <br> (p.Val145Ala) | 5091 | PC | 2548 | ['CGGTTTATTG GGCCAAGCCC AGAAGBGGTC CGCAAGATGG GAGACAAGGT G'] | 2715 | ['CCAGAAGBGGTC CGCAAGATGGG'] | 2920 | ['CCAGAAGBGGTC CGCAAGATGGG'] |
| $\begin{aligned} & \text { NM_000026.2( } \\ & \text { ADSL):c. } 674 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Met225Thr) } \end{aligned}$ | 158 | ADSL | 2549 | ['TCCAAGGTAG <br> AGCAGCTTGAC <br> AAGAYGGTGA <br> CAGAAAAGGC <br> AGGATTTAAG'] | 2716 | ['AAGAYGGTGACA <br> GAAAAGGCAGG'] | 2921 | ['AAGAYGGTGAC <br> AGAAAAGGCAGG' <br> ] |
| $\begin{aligned} & \text { NM_000391.3( } \\ & \text { TPP1):c. } 1093 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Cys365Arg) } \end{aligned}$ | 1200 | TPP1 | 2550 | $\begin{aligned} & \hline \text { ['TCTCTCAGGT } \\ & \text { GACAGTGGGG } \\ & \text { CCGGGYGTTG } \\ & \text { GTCTGTCTCTG } \\ & \text { GAAGACACCA'] } \end{aligned}$ | 2717 | ['GCCGGGYGTTGG <br> TCTGTCTCTGG' | 2922 | ['GCCGGGYGTTGG <br> TCTGTCTCTGG'] |
| $\begin{aligned} & \text { NM_004183.3( } \\ & \text { BEST1):c. } 704 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Val235Ala) } \end{aligned}$ | 7439 | BESTI | 2551 | $\begin{aligned} & \hline \text { ['TACGACTGGA } \\ & \text { TTAGTATCCCA } \\ & \text { CTGGYGTATAC } \\ & \text { ACAGGTGAGG } \\ & \text { ACTAGGCTG'] } \end{aligned}$ | 2718 | ['CACTGGYGTATA <br> CACAGGTGAGG' | 2923 | ['CACTGGYGTATA <br> CACAGGTGAGG'] |
| $\begin{aligned} & \text { NM_000019.3( } \\ & \text { ACAT1):c. } 935 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile312Thr) } \end{aligned}$ | 38 | ACAT <br> 1 | 2552 | $\begin{aligned} & \hline \text { ['CTCAATGTTA } \\ & \text { CACCACTGGCA } \\ & \text { AGAAYAGTAG } \\ & \text { GTAAGGCCAG } \\ & \text { GCGAGGTGGC'] } \end{aligned}$ | 2719 | ['CAAGAAYAGTAG <br> GTAAGGCCAGG'] | 2924 | ['CAAGAAYAGTA GGTAAGGCCAGG'] |
| $\begin{aligned} & \text { NM_000543.4( } \\ & \text { SMPD1):c. } 911 \\ & \text { T>C } \\ & \text { (p.Leu304Pro) } \end{aligned}$ | 6609 | $\begin{aligned} & \text { SMPD } \\ & 1 \end{aligned}$ | 2553 | ['CGGGCCCTGA <br> CCACCGTCACA <br> GCACYTGTGA <br> GGAAGTTCCTG <br> GGGCCAGTG'] | 2720 | ['CACYTGTGAGGA <br> AGTTCCTGGGG'] | $2925$ $2927$ | ['AGCACYTGTGAG GAAGTTCCTGG', 'GCACYTGTGAGG AAGTTCCTGGG', 'CACYTGTGAGGA AGTTCCTGGGG'] |
| NM_000527.4( | 3949 | LDLR | 2554 | ['ACAAATCTGA | 2721 | ['CGGYATGGGCGG | 2928 | ['ACTGCGGYATGG |


| $\begin{aligned} & \text { LDLR):c. } 694+2 \\ & \mathrm{~T}>\mathrm{C} \end{aligned}$ |  |  |  | CGAGGAAAAC <br> TGCGGYATGG <br> GCGGGGCCAG <br> GGTGGGGGCG G'] |  | GGCCAGGGTGG'] | $2930$ | GCGGGGCCAGG', <br> 'CTGCGGYATGGG <br> CGGGGCCAGGG', <br> 'CGGYATGGGCGG <br> GGCCAGGGTGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_012464.4( } \\ & \text { TLL1):c.713T> } \\ & \text { C } \\ & \text { (p.Val238Ala) } \end{aligned}$ | 7092 | TLL1 | 2555 | $\begin{aligned} & \hline \text { ['AAGAACTGTG } \\ & \text { ATAAATTTGGG } \\ & \text { ATTGYTGTTCA } \\ & \text { TGAATTGGGTC } \\ & \text { ATGTGATA'] } \end{aligned}$ | 2722 | ['GGGATTGYTGTTC <br> ATGAATTGGG'] | 2931 | ['GGGATTGYTGTT <br> CATGAATTGGG'] |
| $\begin{aligned} & \text { NM_000112.3( } \\ & \text { SLC26A2):c.- } \\ & 26+2 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 1836 | $\begin{aligned} & \text { SLC26 } \\ & \text { A2 } \end{aligned}$ | 2556 | ['CCTGCAGCGG CCCGGACCCG AGAGGYGAGA AGAGGGAAGC GGACCAGGGA $\left.\mathrm{A}^{\prime}\right]$ | 2723 | ['GAGAGGYGAGAA GAGGGAAGCGG'] | 2932 | ['GAGAGGYGAGA <br> AGAGGGAAGCGG' <br> ] |
| $\begin{aligned} & \text { NM_00100574 } \\ & 1.2 \text { (GBA):c. } 751 \\ & \text { T>C } \\ & \text { (p.Tyr251His) } \end{aligned}$ | 2629 | GBA | 2557 | $\begin{aligned} & \hline \text { ['CATCTACCAC } \\ & \text { CAGACCTGGG } \\ & \text { CCAGAYACTTT } \\ & \text { GTGAAGTAAG } \\ & \text { GGATCAGCAA'] } \end{aligned}$ | 2724 | ['GCCAGAYACTTT GTGAAGTAAGG'] | $\begin{aligned} & 2933 \\ & - \\ & 2934 \end{aligned}$ | ['GCCAGAYACTTT GTGAAGTAAGG', 'CCAGAYACTTTGT GAAGTAAGGG' |
| NM_020365.4( EIF2B3):c. 1037 T>C (p.Ile346Thr) | 8891 | EIF2B3 | 2558 | $\begin{aligned} & \hline \text { ['CCACCAGTCC } \\ & \text { ATTCGTCAGCC } \\ & \text { CAGAYTGTCA } \\ & \text { GCAAACACCT } \\ & \text { GGTAAGTGCT'] } \end{aligned}$ | 2725 | ['CCAGAYTGTCAG <br> CAAACACCTGG'] | 2935 | ['CCAGAYTGTCAG <br> CAAACACCTGG'] |
| $\begin{aligned} & \text { NM_022041.3( } \\ & \text { GAN):c. } 1268 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Ile423Thr) } \end{aligned}$ | 8139 | GAN | 2559 | ['TGCTATGCAG <br> CTATGAAAAA <br> GAAAAYCTAC <br> GCCATGGGTG <br> GAGGCTCCTAC '] | 2726 | ['AAGAAAAYCTAC GCCATGGGTGG'] | $\begin{array}{\|l} 2936 \\ - \\ 2937 \end{array}$ | ['AAGAAAAYCTAC <br> GCCATGGGTGG', <br> 'AAAAYCTACGCC <br> ATGGGTGGAGG'] |
| $\begin{aligned} & \text { NM_054027.4( } \\ & \text { ANKH):c. } 143 \mathrm{~T} \\ & >\text { C } \\ & \text { (p.Met } 48 \mathrm{Thr}) \end{aligned}$ | $\begin{aligned} & 5617 \\ & 2 \end{aligned}$ | ANKH | 2560 | ['GCTGTCAAGG <br> AGGATGCAGT <br> CGAGAYGCTG <br> GCCAGCTACG <br> GGCTGGCGTAC <br> 'I | $\begin{aligned} & 2727 \\ & - \\ & 2728 \end{aligned}$ | ['GTCGAGAYGCTG GCCAGCTACGG', <br> 'TCGAGAYGCTGGC CAGCTACGGG'] | $2938$ $2939$ | ['GTCGAGAYGCTG GCCAGCTACGG', <br> 'TCGAGAYGCTGG CCAGCTACGGG'] |
| NM_006329.3( FBLN5):c.506T $>C$ (p.Ile169Thr) | $\begin{aligned} & 1051 \\ & 6 \end{aligned}$ | FBLN5 | 2561 | $\begin{array}{\|l} \hline \text { ['TTGCTTGCAT } \\ \text { TTCTGTTTCCA } \\ \text { GACAYTGATG } \\ \text { AATGTCGCTAT } \\ \text { GGTTACTGC'] } \end{array}$ | 2729 | ['GACAYTGATGAA TGTCGCTATGG'] | 2940 | ['GACAYTGATGAA <br> TGTCGCTATGG'] |
| NM_004086.2( | -1 | - | 2562 | ['GCACCTCTGG | 2730 | ['AGATAYGGCTTC | 2941 | ['AGATAYGGCTTC |


| $\left\lvert\, \begin{aligned} & \mathrm{COCH}): \mathrm{c} .1535 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met5 12Thr) } \end{aligned}\right.$ |  |  |  | ATGACCTGAA <br> AGATAYGGCTT <br> CTAAACCGAA <br> GGAGTCTCAT'I |  | TAAACCGAAGG' |  | TAAACCGAAGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_002942.4( } \\ & \text { ROBO2):c. } 283 \\ & 4 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile945Thr) } \end{aligned}$ | 6092 | $\begin{aligned} & \mathrm{ROBO} \\ & 2 \end{aligned}$ | 2563 | ['AATAGCAACA <br> GTGGCCCAAAT <br> GAGAYTGGAA <br> ATTTTGGCCGT <br> GGAGGTAAG'] | 2731 | ['GAGAYTGGAAAT <br> TTTGGCCGTGG'] | 2942 | ['GAGAYTGGAAAT <br> TTTGGCCGTGG'] |
| $\begin{aligned} & \text { NM_001300.5( } \\ & \text { KLF6):c.190T> } \\ & \text { C (p.Trp64Arg) } \end{aligned}$ | 1316 | KLF6 | 2564 | $\begin{aligned} & \hline \text { ['CAAATTTGAC } \\ & \text { AGCCAGGAAG } \\ & \text { ATCTGYGGACC } \\ & \text { AAAATCATTCT } \\ & \text { GGCTCGGGA'] } \end{aligned}$ | 2732 | ['TCTGYGGACCAA <br> AATCATTCTGG'] | 2943 | ['TCTGYGGACCAA <br> AATCATTCTGG'] |
| $\begin{aligned} & \text { NM_030653.3( } \\ & \text { DDX11):c. } 2271 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 1663 | DDX11 | 2565 | ['CTGGCATATT CCAGGTGCATC CAGGYGCGGG CGTCATGCTGG GCTTGGGTC'] | 2733 | ['TCCAGGYGCGGG <br> CGTCATGCTGG'] | $2944$ $2945$ | ['TCCAGGYGCGGG <br> CGTCATGCTGG', <br> 'CCAGGYGCGGGC <br> GTCATGCTGGG'] |
| $\begin{aligned} & \text { NM_001451.2( } \\ & \text { FOXFI):c. } 1138 \\ & \text { T>C } \\ & \text { (p.Ter380Arg) } \end{aligned}$ | 2294 | FOXF1 | 2566 | $\begin{aligned} & \hline \text { ['CCAAGACATC } \\ & \text { AAGCCTTGCGT } \\ & \text { GATGYGAGGC } \\ & \text { TGCCGCCGCAG } \\ & \text { GCCCTCCTG'] } \end{aligned}$ | 2734 | ['TGATGYGAGGCT GCCGCCGCAGG'] | 2946 | ['TGATGYGAGGCT GCCGCCGCAGG'] |
| $\begin{aligned} & \text { NM_000435.2( } \\ & \text { NOTCH3):c. } 13 \\ & 63 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 455 \mathrm{Arg} \text { ) } \end{aligned}$ | 4854 | NOTC <br> H3 | 2567 | $\begin{aligned} & \hline \text { ['CCTCGACCGC } \\ & \text { ATAGGCCAGTT } \\ & \text { CACCYGTATCT } \\ & \text { GTATGGCAGGT } \\ & \text { GGGTGGTG'] } \end{aligned}$ | 2735 | ['ACCYGTATCTGTA TGGCAGGTGG'] | $\begin{array}{\|l} 2947 \\ - \\ 2948 \end{array}$ | ['TTCACCYGTATC <br> TGTATGGCAGG', <br> 'ACCYGTATCTGTA <br> TGGCAGGTGG'] |
| $\begin{aligned} & \text { NM_002427.3( } \\ & \text { MMP13):c. } 272 \\ & \text { T>C } \\ & \text { (p.Met91Thr) } \end{aligned}$ | 4322 | $\begin{aligned} & \text { MMPI } \\ & 3 \end{aligned}$ | 2568 | $\begin{aligned} & \hline \text { ['CTTGACGATA } \\ & \text { ACACCTTAGAT } \\ & \text { GTCAYGAAAA } \\ & \text { AGCCAAGATG } \\ & \text { CGGGGTTCCT'] } \end{aligned}$ | $\begin{aligned} & 2736 \\ & - \\ & 2737 \end{aligned}$ | ['GTCAYGAAAAAG CCAAGATGCGG', <br> 'TCAYGAAAAAGCC <br> AAGATGCGGG'] | $\begin{aligned} & 2949 \\ & - \\ & 2950 \end{aligned}$ | ['GTCAYGAAAAA GCCAAGATGCGG', 'TCAYGAAAAAGC CAAGATGCGGG'] |
| $\begin{aligned} & \text { NM_000211.4( } \\ & \text { ITGB2):c.446T } \\ & >C \\ & \text { (p.Leu149Pro) } \end{aligned}$ | 3689 | ITGB2 | 2569 | $\begin{aligned} & \hline \text { ['GATGACCTCA } \\ & \text { GGAATGTCAA } \\ & \text { GAAGCYAGGT } \\ & \text { GGCGACCTGCT } \\ & \text { CCGGGCCCTC'] } \end{aligned}$ | 2738 | ['AGCYAGGTGGCG <br> ACCTGCTCCGG'] | 2951 | ['AGCYAGGTGGCG <br> ACCTGCTCCGG'] |
| $\begin{aligned} & \text { NM_005502.3( } \\ & \text { ABCAI):c. } 442 \\ & 9 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1477Arg } \\ & ) \end{aligned}$ | 19 | ABCA <br> 1 | 2570 | ['CAAAATCAAG <br> AAGATGCTGCC <br> TGTGYGTCCCC <br> CAGGGGCAGG <br> GGGGCTGCC'] | $\begin{array}{\|l} 2739 \\ - \\ 2740 \end{array}$ | ['CCTGTGYGTCCCC <br> CAGGGGCAGG', <br> 'CTGTGYGTCCCCC <br> AGGGGCAGGG'] | $\begin{aligned} & 2952 \\ & - \\ & 2955 \end{aligned}$ | ['CCTGTGYGTCCC <br> CCAGGGGCAGG', <br> 'CTGTGYGTCCCCC <br> AGGGGCAGGG', <br> 'TGTGYGTCCCCCA |


|  |  |  |  |  |  |  |  | GGGGCAGGGG', <br> 'GTGYGTCCCCCA <br> GGGGCAGGGGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m. 12297T>C | 4568 | $\begin{aligned} & \text { MT- } \\ & \text { TL2 } \end{aligned}$ | 2571 | ['AAAGGATAAC <br> AGCTATCCATT <br> GGTCYTAGGCC <br> CCAAAAATTTT <br> GGTGCAAC'] | 2741 | ['GTCYTAGGCCCC <br> AAAAATTTTGG' | 2956 | ['GTCYTAGGCCCC <br> AAAAATTTTGG'] |
| m. $4290 \mathrm{~T}>\mathrm{C}$ | 4565 | MT-TI | 2572 | $\begin{aligned} & \hline \text { ['AAATATGTCT } \\ & \text { GATAAAAGAG } \\ & \text { TTACTYTGATA } \\ & \text { GAGTAAATAA } \\ & \text { TAGGAGCTTA'] } \end{aligned}$ | 2742 | ['ACTYTGATAGAG <br> TAAATAATAGG'] | 2957 | ['ACTYTGATAGAG <br> TAAATAATAGG'] |
| m. $4291 \mathrm{~T}>\mathrm{C}$ | 4565 | MT-TI | 2573 | $\begin{aligned} & \hline \text { ['AATATGTCTG } \\ & \text { ATAAAAGAGT } \\ & \text { TACTTYGATAG } \\ & \text { AGTAAATAAT } \\ & \text { AGGAGCTTAA'] } \end{aligned}$ | 2743 | ['ACTTYGATAGAG <br> TAAATAATAGG'] | 2958 | ['ACTTYGATAGAG <br> TAAATAATAGG'] |
| m.3394T>C | 4535 | $\begin{aligned} & \text { MT- } \\ & \text { ND1 } \end{aligned}$ | 2574 | $\begin{aligned} & \hline \text { ['GCTTACCGAA } \\ & \text { CGAAAAATTCT } \\ & \text { AGGCYATATA } \\ & \text { CAACTACGCA } \\ & \text { AAGGCCCCAA'] } \end{aligned}$ | 2744 | ['GGCYATATACAA <br> CTACGCAAAGG'] | 2959 | ['GGCYATATACAA <br> CTACGCAAAGG'] |
| $\begin{aligned} & \text { NM_002764.3( } \\ & \text { PRPS1):c. } 344 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Met1 15Thr) } \end{aligned}$ | 5631 | PRPSI | 2575 | $\begin{aligned} & \hline \text { ['ATCTCAGCCA } \\ & \text { AGCTTGTTGCA } \\ & \text { AATAYGCTATC } \\ & \text { TGTAGCAGGTG } \\ & \text { CAGATCAT'] } \end{aligned}$ | 2745 | ['GCAAATAYGCTA <br> TCTGTAGCAGG'] | 2960 | ['GCAAATAYGCTA TCTGTAGCAGG'] |
| $\begin{aligned} & \text { NM_000132.3( } \\ & \text { F8):c.5372T>C } \\ & \text { (p.Met1791Thr) } \end{aligned}$ | 2157 | F8 | 2576 | ['AGAGCAGAA GTTGAAGATA ATATCAYGGTG AGTTAAGGAC AGTGGAATTAC '] | 2746 | ['TCAYGGTGAGTT <br> AAGGACAGTGG'] | 2961 | ['TCAYGGTGAGTT AAGGACAGTGG'] |
| $\begin{aligned} & \text { NM_000132.3( } \\ & \text { F8):c. } 1754 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile585Thr) } \end{aligned}$ | 2157 | F8 | 2577 | $\begin{aligned} & \hline \text { ['CCTTTCAATA } \\ & \text { TATGTAATTAA } \\ & \text { CAGAYAATGT } \\ & \text { CAGACAAGAG } \\ & \text { GAATGTCATC'] } \end{aligned}$ | 2747 | ['AACAGAYAATGT <br> CAGACAAGAGG'] | 2962 | ['AACAGAYAATGT CAGACAAGAGG'] |
| NM_000133.3( <br> F9):c. $1328 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile443Thr) | 2158 | F9 | 2578 | ['TGTGCAATGA <br> AAGGCAAATA <br> TGGAAYATAT <br> ACCAAGGTATC <br> CCGGTATGTC'] | 2748 | ['GAAYATATACCA <br> AGGTATCCCGG'] | 2963 | ['GAAYATATACCA <br> AGGTATCCCGG'] |


| $\begin{aligned} & \text { NM_000169.2( } \\ & \text { GLA):c.806T> } \\ & \text { C } \\ & \text { (p.Val269Ala) } \end{aligned}$ | -1 | - | 2579 | $\begin{aligned} & \text { ['TTATTTCATTC } \\ & \text { TTTTTCTCAGT } \\ & \text { TAGYGATTGGC } \\ & \text { AACTTTGGCCT } \\ & \text { CAGCTGG'] } \end{aligned}$ | 2749 | ['CAGTTAGYGATT GGCAACTTTGG'] | 2964 | ['CAGTTAGYGATT GGCAACTTTGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000116.4( } \\ & \text { TAZ):c.352T> } \\ & \text { C } \\ & \text { (p.Cys118Arg) } \end{aligned}$ | 6901 | TAZ | 2580 | $\begin{aligned} & \hline \text { ['CTCCCACTTC } \\ & \text { TTCAGCTTGGG } \\ & \text { CAAGYGTGTG } \\ & \text { CCTGTGTGCCG } \\ & \text { AGGTGAGCT'] } \end{aligned}$ | 2750 | ['AAGYGTGTGCCT <br> GTGTGCCGAGG'] | 2965 | ['AAGYGTGTGCCT GTGTGCCGAGG'] |
| $\begin{aligned} & \text { NM_000061.2( } \\ & \text { BTK):c.2T>C } \\ & \text { (p.Met1Thr) } \end{aligned}$ | 695 | BTK | 2581 | $\begin{aligned} & \hline \text { ['GGTGAACTCC } \\ & \text { AGAAAGAAGA } \\ & \text { AGCTAYGGCC } \\ & \text { GCAGTGATTCT } \\ & \text { GGAGAGCATC'] } \end{aligned}$ | 2751 | ['AGCTAYGGCCGC <br> AGTGATTCTGG'] | 2966 | ['AGCTAYGGCCGC <br> AGTGATTCTGG'] |
| $\begin{aligned} & \text { NM_000061.2( } \\ & \text { BTK):c.1223T> } \\ & \text { C } \\ & \text { (p.Leu408Pro) } \end{aligned}$ | 695 | BTK | 2582 | ['AAGGACCTGA CCTTCTTGAAG GAGCYGGGGA CTGGACAATTT GGGGTAGTG'] | 2752 | ['AGCYGGGGACTG GACAATTTGGG'] | $\begin{aligned} & 2967 \\ & - \\ & 2968 \end{aligned}$ | ['GAGCYGGGGACT GGACAATTTGG', <br> 'AGCYGGGGACTG <br> GACAATTTGGG'] |
| $\begin{aligned} & \text { NM_000061.2( } \\ & \text { BTK):c. } 1741 \mathrm{~T}> \\ & \text { C } \\ & \text { (p.Trp581Arg) } \end{aligned}$ | 695 | BTK | 2583 | $\begin{aligned} & \hline \text { ['CAAGTTCAGC } \\ & \text { AGCAAATCTG } \\ & \text { ACATTYGGGCT } \\ & \text { TTTGGTAAGTG } \\ & \text { GATAAGATT'] } \end{aligned}$ | 2753 | ['ACATTYGGGCTTT <br> TGGTAAGTGG'] | 2969 | ['ACATTYGGGCTT <br> TTGGTAAGTGG'] |
| $\begin{aligned} & \text { NM_014009.3( } \\ & \text { FOXP3):c.970T } \\ & >C \\ & \text { (p.Phe324Leu) } \end{aligned}$ | $\begin{aligned} & 5094 \\ & 3 \end{aligned}$ | FOXP3 | 2584 | $\begin{aligned} & \hline \text { ['GATTCATCCC } \\ & \text { CACCCTCTGAC } \\ & \text { AGAGYTCCTCC } \\ & \text { ACAACATGGA } \\ & \text { CTACTTCAA'] } \end{aligned}$ | 2754 | ['GACAGAGYTCCT CCACAACATGG'] | 2970 | ['GACAGAGYTCCT CCACAACATGG'] |
| $\begin{aligned} & \text { NM_003688.3( } \\ & \text { CASK):c. } 2740 \\ & \text { T>C } \\ & \text { (p.Trp914Arg) } \end{aligned}$ | 8573 | CASK | 2585 | ['TGAGCTCGTG TGCACAGCCCC ACAGYGGGTC CCTGTCTCCTG GGTCTATTA'] | $\begin{aligned} & 2755 \\ & - \\ & 2756 \end{aligned}$ | ['CACAGYGGGTCC <br> CTGTCTCCTGG', <br> 'ACAGYGGGTCCCT <br> GTCTCCTGGG'] | $\begin{aligned} & 2971 \\ & - \\ & 2972 \end{aligned}$ | ['CACAGYGGGTCC <br> CTGTCTCCTGG', <br> 'ACAGYGGGTCCC <br> TGTCTCCTGGG'] |
| $\begin{aligned} & \text { NM_004992.3( } \\ & \text { MECP2):c. } 464 \\ & \text { T>C } \\ & \text { (p.Phe155Ser) } \end{aligned}$ | 4204 | $\begin{aligned} & \text { MECP } \\ & 2 \end{aligned}$ | 2586 | ['GACACATCCC <br> TGGACCCTAAT <br> GATTBTGACTT <br> CACGGTAACTG <br> GGAGAGGG'] | 2757 | ['GATTBTGACTTCA CGGTAACTGG'] | $\begin{aligned} & 2973 \\ & - \\ & 2974 \end{aligned}$ | ['GATTBTGACTTC <br> ACGGTAACTGG', <br> 'ATTBTGACTTCAC <br> GGTAACTGGG'] |
| NM_000431.3( <br> MVK):c.803T> <br> C (p.Ile268Thr) | 4598 | MVK | 2587 | ['ATCGTGGCCC CCCTCCTGACC TCAAYAGATG CCATCTCCCTG | 2758 | ['CTCAAYAGATGC <br> CATCTCCCTGG'] | 2975 | ['CTCAAYAGATGC CATCTCCCTGG'] |


|  |  |  |  | GAGTGTGAG'] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_021961.5( } \\ & \text { TEAD1):c. } 1261 \\ & \text { T>C } \\ & \text { (p.Tyr?His) } \end{aligned}$ | 7003 | TEAD1 | 2588 | ['TGAACACGGA <br> GCACAACATC <br> ATATTYACAGG <br> CTTGTAAAGGA <br> CTGAACATG'] | 2759 | ['TCATATTYACAG <br> GCTTGTAAAGG'] | 2976 | ['TCATATTYACAG <br> GCTTGTAAAGG'] |
| $\begin{aligned} & \text { NM_005633.3( } \\ & \text { SOS1):c. } 1294 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Trp432Arg) } \end{aligned}$ | 6654 | SOS1 | 2589 | ['CGAGATTCAG <br> AAGAATATTG <br> ATGGTYGGGA <br> GGGAAAAGAC <br> ATTGGACAGTG '] | 2760 | ['GGTYGGGAGGGA AAAGACATTGG'] | 2977 | ['GGTYGGGAGGG <br> AAAAGACATTGG'] |
| $\begin{aligned} & \text { NM_006920.4( } \\ & \text { SCNIA):c. } 3577 \\ & \text { T>C } \\ & \text { (p.Trp1 193Arg) } \end{aligned}$ | -1 | - | 2590 | ['TGTGGAAGAA GGCAGAGGAA AACAAYGGTG GAACCTGAGA AGGACGTGTTT '] | 2761 | ['AACAAYGGTGGA <br> ACCTGAGAAGG'] | 2978 | ['AACAAYGGTGG AACCTGAGAAGG'] |
| $\begin{aligned} & \text { NM_000141.4( } \\ & \text { FGFR2):c. } 1018 \\ & \text { T>C } \\ & \text { (p.Tyr340His) } \end{aligned}$ | 2263 | FGFR2 | 2591 | $\begin{aligned} & \hline \text { ['TGTAACTTTT } \\ & \text { GAGGACGCTG } \\ & \text { GGGAAYATAC } \\ & \text { GTGCTTGGCGG } \\ & \text { GTAATTCTAT'] } \end{aligned}$ | $\begin{aligned} & 2762 \\ & - \\ & 2763 \end{aligned}$ | ['TGGGGAAYATAC <br> GTGCTTGGCGG', <br> 'GGGGAAYATACGT <br> GCTTGGCGGG'] | $\begin{array}{\|l} 2979 \\ - \\ 2980 \end{array}$ | ['TGGGGAAYATAC <br> GTGCTTGGCGG', <br> 'GGGGAAYATACG <br> TGCTTGGCGGG'] |
| $\begin{aligned} & \text { NM_000174.4( } \\ & \text { GP9):c.70T>C } \\ & \text { (p.Cys24Arg) } \end{aligned}$ | 2815 | GP9 | 2592 | $\begin{aligned} & \text { ['GGCCACCAAG } \\ & \text { GACTGCCCCAG } \\ & \text { CCCAYGTACCT } \\ & \text { GCCGCGCCCTG } \\ & \text { GAAACCAT'] } \end{aligned}$ | 2764 | ['CCCAYGTACCTG <br> CCGCGCCCTGG'] | 2981 | ['CCCAYGTACCTG <br> CCGCGCCCTGG'] |
| NM_000175.3( <br> GPD):c. $1574 \mathrm{~T}>$ <br> C (p.Ile 525 Thr ) | 2821 | GPI | 2593 | $\begin{aligned} & \hline \text { ['CTGGGAAAGC } \\ & \text { AGCTGGCTAA } \\ & \text { GAAAABAGAG } \\ & \text { CCTGAGCTTGA } \\ & \text { TGGCAGTGCT'] } \end{aligned}$ | 2765 | ['AAAABAGAGCCT GAGCTTGATGG'] | 2982 | ['AAAABAGAGCCT GAGCTTGATGG'] |
| $\begin{aligned} & \text { NM_000315.2( } \\ & \text { PTH):c.52T>C } \\ & \text { (p.Cys18Arg) } \end{aligned}$ | 5741 | PTH | 2594 | $\begin{aligned} & \hline \text { ['AGTTATGATT } \\ & \text { GTCATGTTGGC } \\ & \text { AATTYGTTTTC } \\ & \text { TTACAAAATCG } \\ & \text { GATGGGAA'] } \end{aligned}$ | 2766 | ['AATTYGTTTTCTT <br> ACAAAATCGG'] | 2983 | ['AATTYGTTTTCTT ACAAAATCGG'] |
| $\begin{aligned} & \text { NM_000222.2( } \\ & \text { KIT):c.1676T> } \\ & \text { C } \\ & \text { (p.Val559Ala) } \end{aligned}$ | 3815 | KIT | 2595 | ['CCCATGTATG <br> AAGTACAGTG <br> GAAGGNTGTT <br> GAGGAGATAA <br> ATGGAAACAA <br> $T^{\prime}$ ] | 2767 | ['AAGGNTGTTGAG GAGATAAATGG'] | 2984 | ['AAGGNTGTTGAG GAGATAAATGG'] |


| NM_016835.4( <br> MAPT):c. 1839 <br> T>C <br> (p.Asn613=) | 4137 | MAPT | 2596 | ['AGTCCAAGTG TGGCTCAAAG GATAAYATCA AACACGTCCCG GGAGGCGGCA' ] | 2768 - 2769 | ['GGATAAYATCAA ACACGTCCCGG', 'GATAAYATCAAAC ACGTCCCGGG'] | 2985 - 2986 | ['GGATAAYATCAA ACACGTCCCGG', <br> 'GATAAYATCAAA CACGTCCCGGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_170707.3( <br> LMNA):c. 1139 <br> T>C <br> (p.Leu380Ser) | 4000 | LMNA | 2597 | ['GAGATCCACG CCTACCGCAAG CTCTYGGAGG GCGAGGAGGA GAGGTGGGCT'] | 2770 | ['TCTYGGAGGGCG AGGAGGAGAGG'] | 2987 | ['TCTYGGAGGGCG AGGAGGAGAGG'] |
| NM_000424.3( KRT5):c.20T> C (p.Val7Ala) | 3852 | KRT5 | 2598 | ['GCCACCATGT CTCGCCAGTCA AGTGYGTCCTT CCGGAGCGGG GGCAGTCGT'] | 2771 --1773 | ['TCAAGTGYGTCCT TCCGGAGCGG', 'CAAGTGYGTCCTT CCGGAGCGGG', 'AAGTGYGTCCTTC CGGAGCGGGG'] | 2988 <br> 2991 | ['TCAAGTGYGTCC TTCCGGAGCGG', 'CAAGTGYGTCCTT CCGGAGCGGG', 'AAGTGYGTCCTTC CGGAGCGGGG', 'AGTGYGTCCTTCC GGAGCGGGGG' |
| $\begin{aligned} & \text { NM_000184.2( } \\ & \text { HBG2):c.125T } \\ & >\mathrm{C} \\ & \text { (p.Phe42Ser) } \end{aligned}$ | 3048 | HBG2 | 2599 | ['GTTGTCTACC <br> CATGGACCCA <br> GAGGTYCTITG <br> ACAGCTTTGGC <br> AACCTGTCC'] | 2774 | ['CAGAGGTYCTTT GACAGCTTTGG'] | 2992 | ['CAGAGGTYCTTT <br> GACAGCTTTGG'] |
| $\begin{aligned} & \text { NM_000515.4( } \\ & \text { GH1):c.291+6T } \\ & >\mathrm{C} \end{aligned}$ | 2688 | GH1 | 2600 | ['AGGAAACAC AACAGAAATC CGTGAGYGGA tGCCTTCTCCC CAGGCGGGGA T'] | 2775 | ['TGAGYGGATGCC TTCTCCCCAGG'] | 2993 | ['TGAGYGGATGCC TTCTCCCCAGG'] |
| NM_002087.3( <br> GRN):c.2T>C <br> (p.MetIThr) | 2896 | GRN | 2601 | [TCCTTGGTAC TTTGCAGGCAG ACCAYGTGGA CCCTGGTGAGC TGGGTGGCC'] | 2776 | ['CCAYGTGGACCC TGGTGAGCTGG'] | 2994 | ['CCAYGTGGACCC TGGTGAGCTGG'] |
| NM_00108311 <br> 2.2(GPD2):c. 19 <br> $04 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe635Ser) | 2820 | GPD2 | 2602 | ['AGGTATAAGA AGAGATTTCAT AAGTYTGATGC AGACCAGAAA GGCTTTATT] | 2777 | ['AAGTYTGATGCA GACCAGAAAGG'] | 2995 | ['AAGTYTGATGCA GACCAGAAAGG'] |
| NM_00101807 <br> 7.1(NR3C1):c. 1 <br> $712 \mathrm{~T}>\mathrm{C}$ <br> (p.Val571Ala) | 2908 | NR3C1 | 2603 | ['CTCAACATGT tagGaggacg GCAAGYGATT GCAGCAGTGA | 2778 | ['AAGYGATTGCAG CAGTGAAATGG'] | 2996 | ['AAGYGATTGCAG CAGTGAAATGG'] |


|  |  |  |  | AATGGGCAAA $\left.\mathrm{G}^{\prime}\right]$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000138.4( <br> FBN1):c.3793T <br> $>$ C <br> (p.Cys1265Arg <br> ) | 2200 | FBN1 | 2604 | ['TATCCCTGGA GAGTACAGGT <br> GCTTGYGTTAT <br> GATGGATTCAT <br> GGCATCTGA'] | 2779 | ['CTTGYGTTATGAT GGATTCATGG'] | 2997 | ['CTTGYGTTATGA TGGATTCATGG'] |
| NM_000129.3( F13A1):c.728T $>C$ (p.Met243Thr) | 2162 | F13A1 | 2605 | ['ATCCTGGACA <br> CTTGCCTGTAT <br> GTGAYGGACA <br> GAGCACAAAT <br> GGACCTCTCT'] | 2780 | $\begin{aligned} & \text { ['TGTGAYGGACAG } \\ & \text { AGCACAAATGG'] } \end{aligned}$ | 2998 | $\begin{aligned} & \text { ['TGTGAYGGACAG } \\ & \text { AGCACAAATGG'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_031226.2( } \\ & \text { CYP19A1):c. } 74 \\ & 3+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | -1 | - | 2606 | ['ATACAAAAAG TATGAGAAGTC TGTGYAAGTA <br> ATACAACTTTG GAAGATTTA'] | 2781 | ['CTGTGYAAGTAA <br> TACAACTTTGG'] | 2999 | ['CTGTGYAAGTAA <br> TACAACTTTGG'] |
| $\begin{aligned} & \text { NM_000416.2( } \\ & \text { IFNGR1):c. } 260 \\ & \text { T>C } \\ & \text { (p.Ile87Thr) } \end{aligned}$ | 3459 | IFNGR 1 | 2607 | ['AATATTTCTC <br> ATCATTATTGT <br> AATAYTTCTGA <br> TCATGTTGGTG <br> ATCCATCA'] | 2782 | ['TGTAATAYTTCTG ATCATGTTGG'] | 3000 | ['TGTAATAYTTCT GATCATGTTGG'] |
| $\begin{aligned} & \text { NM_000018.3( } \\ & \text { ACADVL):c. } 84 \\ & 8 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val283Ala) } \end{aligned}$ | 37 | $\begin{aligned} & \mathrm{ACAD} \\ & \mathrm{VL} \end{aligned}$ | 2608 | ['GTGAAGGAG AAGATCACAG CTTTTGYGGTG GAGAGGGGCT TCGGGGGCATT 'I | $\begin{aligned} & 2783 \\ & - \\ & 2784 \end{aligned}$ | ['TTTGYGGTGGAG <br> AGGGGCTTCGG', <br> 'TTGYGGTGGAGAG <br> GGGCTTCGGG'] | $\begin{aligned} & 3001 \\ & - \\ & 3002 \end{aligned}$ | ['TTTGYGGTGGAG AGGGGCTTCGG', <br> 'TTGYGGTGGAGA <br> GGGGCTTCGGG'] |
| $\begin{aligned} & \text { NM_000195.4( } \\ & \text { HPS1):c.716T> } \\ & \mathrm{C} \\ & \text { (p.Leu239Pro) } \end{aligned}$ | 3257 | HPSI | 2609 | ['GCTGGGGTAG <br> AGGTCCTGAAC <br> CAGGRGGATG <br> AGGGCAAGCA <br> GGTCGGCCGG'] | 2785 | ['CCAGGRGGATGA GGGCAAGCAGG'] | 3003 | ['CCAGGRGGATGA GGGCAAGCAGG'] |
| $\begin{aligned} & \mathrm{NM} \_000352.4( \\ & \mathrm{ABCC} 8): c .257 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val86Ala) } \end{aligned}$ | 6833 | $\begin{aligned} & \mathrm{ABCC} \\ & 8 \end{aligned}$ | 2610 | $\begin{aligned} & \hline \text { ['ACCTTCATGC } \\ & \text { TGCTCTTCGTC } \\ & \text { CTGGBGTGTGA } \\ & \text { GATTGCAGAG } \\ & \text { GGCATCCTG'] } \end{aligned}$ | $\begin{aligned} & 2786 \\ & - \\ & 2787 \end{aligned}$ | ['CCTGGBGTGTGA GATTGCAGAGG', <br> 'CTGGBGTGTGAGA <br> TTGCAGAGGG'] | $\begin{aligned} & 3004 \\ & - \\ & 3005 \end{aligned}$ | ['CCTGGBGTGTGA <br> GATTGCAGAGG', <br> 'CTGGBGTGTGAG <br> ATTGCAGAGGG'] |
| NM_000528.3( MAN2B1):c. 24 $26 \mathrm{~T}>\mathrm{C}$ (p.Leu809Pro) | 4125 | $\begin{aligned} & \text { MAN2 } \\ & \text { B1 } \end{aligned}$ | 2611 | ['GGCAGCAGCC <br> TGAGAGATGG <br> CTCGCYGGAG <br> CTCATGGTGAG <br> TGGGTCAGAG'] | 2788 | $\begin{aligned} & \text { ['CGCYGGAGCTCA } \\ & \text { TGGTGAGTGGG'] } \end{aligned}$ | $\begin{aligned} & 3006 \\ & - \\ & 3007 \end{aligned}$ | ['TCGCYGGAGCTC <br> ATGGTGAGTGG', <br> 'CGCYGGAGCTCA <br> TGGTGAGTGGG'] |
| NM_002863.4( | 5836 | PYGL | 2612 | ['CTCCAGTGAC | 2789 | ['AAGAAYATGCCC | 3008 | ['AAGAAYATGCCC |

$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { PYGL):c.2461 } \\ \text { T>C } \\ \text { (p.Tyr821His) }\end{array} & & & & \begin{array}{l}\text { CGAACAATTA } \\ \text { AAGAAYATGC } \\ \text { CCAAAACATCT }\end{array} & & \text { AAAACATCTGG'] } & \\ \text { AAAACATCTGG'] } \\ \text { GGAACGTGGA'] }\end{array}\right]$

| NM_006306.3( <br> SMC1A):c. 235 <br> IT>C <br> (p.Ile784Thr) | 8243 | $\begin{aligned} & \text { SMC1 } \\ & \text { A } \end{aligned}$ | 2621 | ['GTGTTTGAAG AGTTTTGTCGG GAGAYTGGTG TGCGCAACATC CGGGAGTTT'] | 2798 | ['AGAYTGGTGTGC GCAACATCCGG'] | 3017 | ['AGAYTGGTGTGC GCAACATCCGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_002242.4( } \\ & \text { KCNJ13):c. } 722 \\ & \text { T>C } \\ & \text { (p.Leu241Pro) } \end{aligned}$ | -1 | - | 2622 | ['TGGTGTAATG GAGTGATAGT ACGITDGTGGA AAGATGAAGA ATGGACATTC'1 | 2799 | ['GTTDGTGGAAAG ATGAAGAATGG'] | 3018 | ['GTTDGTGGAAAG ATGAAGAATGG'] |
| $\begin{aligned} & \text { NM_000199.3( } \\ & \text { SGSH):c.892T } \\ & >\mathrm{C} \\ & (\mathrm{p} . \mathrm{Ser} 298 \mathrm{Pro}) \end{aligned}$ | 6448 | SGSH | 2623 | 「'CCCCAGCGTT tTGGGTGCTCC GGGGRTGACA CCAGTAAGGG TTCAGCAGTG' | 2800 | ['TCCGGGGRTGAC ACCAGTAAGGG'] | 3019 | ['TCCGGGGRTGAC ACCAGTAAGGG'] |
| NM_020191.2( <br> MRPS22):c. 644 <br> T>C <br> (p.Leu215Pro) | $\begin{aligned} & 5694 \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { MRPS2 } \\ & 2 \end{aligned}$ | 2624 | ['CCAATAATTT TCAAGGAAGA AAATCYTAGG GTAAGGTGACT taggittiat' | 2801 | ['ATCYTAGGGTAA GGTGACTTAGG' | 3020 | ['ATCYTAGGGTAA GGTGACTTAGG' |
| NM_017882.2( CLN6):c.200T> C (p.Leu67Pro) | $\begin{aligned} & 5498 \\ & 2 \end{aligned}$ | CLN6 | 2625 | ['CCCATTCTTC CATtTGCTCCG CAGCYGGTATT CCCTCTCGAGT GGTTTCCA'] | 2802 | ['AGCYGGTATTCC CTCTCGAGTGG'] | 3021 | ['AGCYGGTATTCC CTCTCGAGTGG'] |
| $\begin{aligned} & \text { NM_014874.3( } \\ & \text { MFN2):c. } 1392 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 9927 | MFN2 | 2626 | ['GTAGTCCTCA agGtttatang AATGWGAGTC ATGGAGCAAC AGGTCCTCTT'] | 2803 | ['AATGWGAGTCAT GGAGCAACAGG'] | 3022 | ['AATGWGAGTCA TGGAGCAACAGG'] |
| $\begin{aligned} & \text { NM_024599.5( } \\ & \text { RHBDF2):c. } 55 \\ & \text { 7T>C } \\ & \text { (p.Ile186Thr) } \end{aligned}$ | 7965 | $\begin{aligned} & \text { RHBD } \\ & \text { F2 } \end{aligned}$ | 2627 | ['GCTTACCGCC ССССТСССТTC <br> CAGAYTGTGG <br> atccgctggcc <br> CGGGGCCGG'] | 2804 | ['AGAYTGTGGATC CGCTGGCCCGG'] | 3023 | ['AGAYTGTGGATC CGCTGGCCCGG'] |
| $\begin{aligned} & \text { NM_020894.2( } \\ & \text { UVSSA) c. } 94 \mathrm{~T} \\ & >\mathrm{C} \\ & \text { (p.Cys32Arg) } \end{aligned}$ | $\begin{aligned} & 5765 \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { UVSS } \\ & \text { A } \end{aligned}$ | 2628 | ['GAAAATGAA GGAACTGAAG AAAATTYGCA agtatgictta GGGTTCAGTAA '] | 2805 | ['AAAATTYGCAAG <br> TATGTCTTAGG'] | 3024 - 3025 | ['AAAATTYGCAAG <br> tatGTCTTAGG', <br> 'AAATTYGCAAGT <br> ATGTCTTAGGG'] |
| $\begin{aligned} & \text { NM_00116158 } \\ & \text { 1.1(POC1A):c. } \\ & 398 \mathrm{~T}>\mathrm{C} \end{aligned}$ | $2588$ | POC1A | 2629 | ['GCCAGTGATG ACAAGACTGTT AAGCYGTGGG | 2806 | ['AGCYGTGGGACA AGAGCAGCCGG'] | 3026 | ['AGCYGTGGGACA AGAGCAGCCGG'] |


| (p.Leu133Pro) |  |  |  | ACAAGAGCAG <br> CCGGGAATGT'] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_005340.6( HINT1):c.250T $>$ C (p.Cys84Arg) | 3094 | HINT1 | 2630 | ['ACACTTAATG <br> ATTGTTGGCAA <br> GAAAYGTGCT <br> GCTGATCTGGG <br> CCTGAATAA'] | $\begin{aligned} & 2807 \\ & - \\ & 2808 \end{aligned}$ | ['CAAGAAAYGTGC <br> TGCTGATCTGG', <br> 'AAGAAAYGTGCTG <br> CTGATCTGGG'] | $\begin{aligned} & 3027 \\ & - \\ & 3028 \end{aligned}$ | ['CAAGAAAYGTGC <br> TGCTGATCTGG', <br> 'AAGAAAYGTGCT <br> GCTGATCTGGG'] |
| $\left\lvert\, \begin{aligned} & \text { NM_000495.4( } \\ & \text { COL4A5):c. } 43 \\ & 8+2 \mathrm{~T}>\mathrm{C} \end{aligned}\right.$ | 1287 | COL4 A5 | 2631 | ['TTTCCTGGTTT <br> ACAGGGTCCTC <br> CAGYAAGTTAT <br> AAAATTTGGG <br> ATTATGAT'] | 2809 | ['TCCAGYAAGTTA TAAAATTTGGG'] | $\begin{aligned} & 3029 \\ & - \\ & 3030 \end{aligned}$ | ['CTCCAGYAAGTT <br> ATAAAATTTGG', <br> 'TCCAGYAAGTTA <br> TAAAATTTGGG'] |
| NM_000344.3( SMN1):c.388T $>C$ (p.Tyr130His) | 6606 | SMN1 | 2632 | ['AACCTGTGTT GTGGTTTACAC TGGAYATGGA AATAGAGAGG AGCAAAATCT'] | 2810 | ['CACTGGAYATGG <br> AAATAGAGAGG'] | 3031 | ['CACTGGAYATGG <br> AAATAGAGAGG'] |
| $\begin{aligned} & \text { NM_005334.2( } \\ & \text { HCFC1):c.- } \\ & 970 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 3054 | HCFCl | 2633 | ['TTAGTTGTTA CTTCTTCACAC AAGAYGGCGG CTCCCAGGGA GGAGGCATGA'] | 2811 | ['CAAGAYGGCGGC <br> TCCCAGGGAGG'] | 3032 | ['CAAGAYGGCGG <br> CTCCCAGGGAGG'] |
| $\begin{aligned} & \text { NM_000431.3( } \\ & \text { MVK):c. } 1039+ \\ & 2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 4598 | MVK | 2634 | ['GTGGCATCAC <br> ACTCCTCAAGC <br> CAGGYATCCC <br> GGGGGTAGGT <br> GGGCCAGGCT'] | 2812 | $\begin{aligned} & \text { ['CCAGGYATCCCG } \\ & \text { GGGGTAGGTGG'] } \end{aligned}$ | $\begin{aligned} & 3033 \\ & - \\ & 3034 \end{aligned}$ | ['CCAGGYATCCCG <br> GGGGTAGGTGG', <br> 'CAGGYATCCCGG <br> GGGTAGGTGGG'] |
| NM_018344.5( SLC29A3):c. 60 $7 \mathrm{~T}>\mathrm{C}$ (p.Ser203Pro) | $\begin{aligned} & 5531 \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { SLC29 } \\ & \text { A3 } \end{aligned}$ | 2635 | ['TATGAGGAAC <br> TCCCAGGCACT <br> GATAYCAGGT <br> GAGAGCCAGG <br> GTCCGGGCAG'] | 2813 | ['ACTGATAYCAGG <br> TGAGAGCCAGG'] | $\begin{aligned} & 3035 \\ & - \\ & 3036 \end{aligned}$ | ['ACTGATAYCAGG TGAGAGCCAGG', 'CTGATAYCAGGT GAGAGCCAGGG'] |
| $\left\lvert\, \begin{aligned} & \text { NM_000108.4( } \\ & \text { DLD):c.140T> } \\ & \text { C (p.Ile47Thr) } \end{aligned}\right.$ | 1738 | DLD | 2636 | ['GTAGTTGATG <br> CTGATGTAACA <br> GTTAYAGGTTC <br> TGGTCCTGGAG <br> GATATGTT'] | $\begin{aligned} & 2814 \\ & - \\ & 2815 \end{aligned}$ | ['ACAGTTAYAGGT <br> TCTGGTCCTGG', <br> 'GTTAYAGGTTCTG <br> GTCCTGGAGG'] | $\begin{aligned} & 3037 \\ & - \\ & 3038 \end{aligned}$ | ['ACAGTTAYAGGT <br> TCTGGTCCTGG', <br> 'GTTAYAGGTTCTG <br> GTCCTGGAGG'] |
| NM_004333.4( BRAF):c. 1403 T>C (p.Phe468Ser) | 673 | BRAF | 2637 | ['GGACAAAGA <br> ATTGGATCTGG <br> ATCATYTGGAA <br> CAGTCTACAAG <br> GGAAAGTGG'] | $\begin{aligned} & 2816 \\ & - \\ & 2817 \end{aligned}$ | ['ATCATYTGGAAC AGTCTACAAGG', <br> 'TCATYTGGAACAG TCTACAAGGG'] | $\begin{aligned} & 3039 \\ & - \\ & 3040 \end{aligned}$ | ['ATCATYTGGAAC AGTCTACAAGG', <br> 'TCATYTGGAACA <br> GTCTACAAGGG'] |
| $\begin{aligned} & \text { NM_000540.2( } \\ & \text { RYR1):c. } 1205 \mathrm{~T} \end{aligned}$ | 6261 | RYR1 | 2638 | ['CAGGAGGAGT CCCAGGCCGCC | 2818 | ['CGCAYGATCCAC <br> AGCACCAATGG'] | 3041 | ['CGCAYGATCCAC AGCACCAATGG'] |


| $\begin{aligned} & >\mathrm{C} \\ & (\mathrm{p} . \mathrm{Met402Thr}) \end{aligned}$ |  |  |  | CGCAYGATCC <br> ACAGCACCAA <br> TGGCCTATAC'] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000256.3( } \\ & \text { MYBPC3):c. } 13 \\ & 51+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 4607 | $\begin{aligned} & \text { MYBP } \\ & \text { C3 } \end{aligned}$ | 2639 | $\begin{aligned} & \hline \text { ['GTAGCACGGA } \\ & \text { GCTCTTTGTGA } \\ & \text { AAGGYGGGCC } \\ & \text { TGGGACCTGA } \\ & \text { GGATGTGGGA'] } \end{aligned}$ | 2819 | ['AAAGGYGGGCCT GGGACCTGAGG'] | 3042 | ['AAAGGYGGGCCT <br> GGGACCTGAGG'] |
| $\begin{aligned} & \text { NM_000256.3( } \\ & \text { MYBPC3):c. } 82 \\ & 1+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 4607 | $\begin{aligned} & \text { MYBP } \\ & \text { C3 } \end{aligned}$ | 2640 | ['CCTCCTATCA GCCTTCCGCCG CACGYGAGTG GCCATCCTCAG GGCCTGGGG'] | 2820 | ['CACGYGAGTGGC <br> CATCCTCAGGG'] | $\begin{aligned} & 3043 \\ & - \\ & 3044 \end{aligned}$ | ['GCACGYGAGTGG <br> CCATCCTCAGG', <br> 'CACGYGAGTGGC <br> CATCCTCAGGG'] |
| $\begin{aligned} & \text { NM_000257.3( } \\ & \text { MYH7):c. } 2546 \\ & \text { T>C } \\ & \text { (p.Met849Thr) } \end{aligned}$ | 4625 | MYH7 | 2641 | ['AAGAGTGCAG <br> AAAGAGAGAA <br> GGAGAYGGCC <br> TCCATGAAGG <br> AGGAGTTCAC <br> A'] | 2821 | ['GGAGAYGGCCTC <br> CATGAAGGAGG'] | 3045 | ['GGAGAYGGCCTC <br> CATGAAGGAGG'] |
| $\begin{aligned} & \text { NM_206933.2( } \\ & \text { USH2A):c. } 160 \\ & 6 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys536Arg) } \end{aligned}$ | 7399 | $\begin{aligned} & \text { USH2 } \\ & \text { A } \end{aligned}$ | 2642 | ['CGACACAACA <br> AGCCAGCCAT <br> ATAGAYGCCTC <br> TGCTCCCAGGA <br> GAGCTTCAC'] | 2822 | ['ATATAGAYGCCT <br> CTGCTCCCAGG'] | 3046 | ['ATATAGAYGCCT <br> CTGCTCCCAGG'] |
| $\begin{aligned} & \text { NM_000059.3( } \\ & \text { BRCA2):c. } 316 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 675 | $\begin{aligned} & \text { BRCA } \\ & 2 \end{aligned}$ | 2643 | ['TAGATAAATT CAAATTAGACT <br> TAGGYAAGTA <br> ATGCAATATGG <br> TAGACTGGG'] | 2823 | ['CTTAGGYAAGTA <br> ATGCAATATGG'] | 3047 | ['CTTAGGYAAGTA <br> ATGCAATATGG'] |
| $\begin{aligned} & \text { NM_007294.3( } \\ & \text { BRCA1):c. } 529 \\ & \text { IT>C } \\ & \text { (p.Leu1764Pro) } \end{aligned}$ | 672 | BRCA <br> 1 | 2644 | $\begin{aligned} & \hline \text { ['CTCTTCTTCC } \\ & \text { AGATCTTCAGG } \\ & \text { GGGCYAGAAA } \\ & \text { TCTGTTGCTAT } \\ & \text { GGGCCCTTC'] } \\ & \hline \end{aligned}$ | 2824 | ['GGCYAGAAATCT GTTGCTATGGG'] | $3048$ $3049$ | ['GGGCYAGAAATC <br> TGTTGCTATGG', <br> 'GGCYAGAAATCT <br> GTTGCTATGGG'] |
| $\begin{aligned} & \text { NM_00113008 } \\ & 9.1 \text { (KARS):c. } 5 \\ & 17 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr173His) } \end{aligned}$ | 3735 | KARS | 2645 | ['AGCTTCTGGG GGAAAGCTCA TCTTCYATGAT CTTCGAGGAG AGGGGGTGAA' ] | 2825 | ['TTCYATGATCTTC <br> GAGGAGAGGG'] | $\begin{aligned} & 3050 \\ & - \\ & 3051 \end{aligned}$ | ['CTTCYATGATCT <br> TCGAGGAGAGG', <br> 'TTCYATGATCTTC <br> GAGGAGAGGG'] |
| NM_00128300 <br> 9.1(RTEL1):c. 3 <br> $730 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys1244Arg | -1 | - | 2646 | ['CGGGCCCCTC <br> TCAGCAGGCTG <br> TGTGYGCCAG <br> GGCTGTGGGG | 2826 | ['CTGTGTGYGCCA <br> GGGCTGTGGGG'] | 3052 | ['CTGTGTGYGCCA <br> GGGCTGTGGGG'] |


| ) |  |  |  | CAGAGGACGT'] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_005554.3( KRT6A):c. 140 $6 T>C$ (p.Leu469Pro) | 3853 | $\begin{aligned} & \text { KRT6 } \\ & \text { A } \end{aligned}$ | 2647 | ['GAGATCGCCA CCTACCGCAAG CTGCBGGAGG GTGAGGAGTG CAGGTGGGTA'] | 2827 | $\begin{aligned} & \text { ['TGCBGGAGGGTG } \\ & \text { AGGAGTGCAGG'] } \end{aligned}$ | 3053 | $\begin{aligned} & \text { ['TGCBGGAGGGTG } \\ & \text { AGGAGTGCAGG'] } \end{aligned}$ |
| NM_000218.2( KCNQ1):c. 550 T>C (p.Tyr184His) | 3784 | KCNQ 1 | 2648 | ['CTGGTCCGCC <br> GGCTGCCGCA <br> GCAAGBACGT <br> GGGCCTCTGGG <br> GGCGGCTGCG'] | 2828 | $\begin{aligned} & \text { ['AGCAAGBACGTG } \\ & \text { GGCCTCTGGGG'] } \end{aligned}$ | $\begin{aligned} & 3054 \\ & - \\ & 3056 \end{aligned}$ | $\begin{aligned} & \hline \text { ['CAGCAAGBACGT } \\ & \text { GGGCCTCTGGG', } \\ & \text { 'AGCAAGBACGTG } \\ & \text { GGCCTCTGGGG', } \\ & \text { 'GCAAGBACGTGG } \\ & \text { GCCTCTGGGGG'] } \end{aligned}$ |
| $\begin{aligned} & \mathrm{NM}_{-} 198056.2( \\ & \mathrm{SCN} 5 \mathrm{~A}): \mathrm{c} .5624 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met1875Thr) } \end{aligned}$ | 6331 | SCN5A | 2649 | ['GAGATGGACG CCCTGAAGATC CAGAHGGAGG AGAAGTTCATG GCAGCCAAC'] | 2829 | $\begin{aligned} & \text { ['CCAGAHGGAGGA } \\ & \text { GAAGTTCATGG'] } \end{aligned}$ | 3057 | ['CCAGAHGGAGG AGAAGTTCATGG'] |
| NM_006920.4( SCN1A):c. 269 T>C (p.Phe90Ser) | 6323 | SCN1A | 2650 | $\begin{aligned} & \hline \text { ['TGTTGTGTTC } \\ & \text { CTGTCTTACAG } \\ & \text { ACTTYTATAGT } \\ & \text { ATTGAATAAA } \\ & \text { GGGAAGGCC'] } \end{aligned}$ | $\begin{aligned} & 2830 \\ & - \\ & 2831 \end{aligned}$ | ['ACTTYTATAGTAT TGAATAAAGG', 'CTTYTATAGTATT GAATAAAGGG'] | $\begin{aligned} & 3058 \\ & - \\ & 3059 \end{aligned}$ | ['ACTTYTATAGTA TTGAATAAAGG', 'CTTYTATAGTATT GAATAAAGGG'] |
| $\begin{aligned} & \mathrm{NM} \_006920.4( \\ & \mathrm{SCN} 1 \mathrm{~A}): \mathrm{c} .272 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile91Thr) } \end{aligned}$ | 6323 | SCN1A | 2651 | ['TGTGTTCCTG <br> TCTTACAGACT <br> TTTAYAGTATT <br> GAATAAAGGG <br> AAGGCCATC'] | $\begin{aligned} & 2832 \\ & - \\ & 2833 \end{aligned}$ | ['ACTTTTAYAGTAT TGAATAAAGG', 'CTTTTAYAGTATT GAATAAAGGG'] | $\begin{aligned} & 3060 \\ & - \\ & 3061 \end{aligned}$ | ['ACTTTTAYAGTA TTGAATAAAGG', 'CTTTTAYAGTATT GAATAAAGGG'] |
| NM_006514.3( <br> SCN10A):c. 166 <br> $1 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu554Pro) | 6336 | $\begin{aligned} & \mathrm{SCN} 10 \\ & \mathrm{~A} \end{aligned}$ | 2652 | ['GGAGTCAGGG <br> TTGCTGGGTTG <br> AGGARGAGGG <br> CTTCTAGGGAG <br> GGGGCCTTG'] | $\begin{aligned} & 2834 \\ & - \\ & 2836 \end{aligned}$ | ['GAGGARGAGGGC <br> TTCTAGGGAGG', <br> 'AGGARGAGGGCTT <br> CTAGGGAGGG', <br> 'GGARGAGGGCTTC <br> TAGGGAGGGG'] | $\begin{aligned} & 3062 \\ & - \\ & 3064 \end{aligned}$ | $\begin{aligned} & \hline \text { ['GAGGARGAGGG } \\ & \text { CTTCTAGGGAGG', } \\ & \text { 'AGGARGAGGGCT } \\ & \text { TCTAGGGAGGG', } \\ & \text { 'GGARGAGGGCTT } \\ & \text { CTAGGGAGGGG'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000251.2( } \\ & \text { MSH2):c. } 2005 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 4436 | MSH2 | 2653 | ['AACAGATGTT <br> CCACATCATTA <br> CTGGYAAAAA <br> ACCTGGTTTTT <br> GGGCTTTGT'] | $\begin{aligned} & 2837 \\ & - \\ & 2838 \end{aligned}$ | ['CTGGYAAAAAAC CTGGTTTTTGG', 'TGGYAAAAAACCT GGTTTTTGGG'] | $\begin{aligned} & 3065 \\ & - \\ & 3066 \end{aligned}$ | ['CTGGYAAAAAAC <br> CTGGTTTTTGG', <br> 'TGGYAAAAAACC <br> TGGTTTTTGGG'] |
| NM_000251.2( MSH2):c.595T $>$ C (p.Cys199Arg) | 4436 | MSH2 | 2654 | ['CCTCATCCAG <br> ATTGGACCAA <br> AGGAAYGTGT <br> TTTACCCGGAG <br> GAGAGACTGC'] | 2839 | ['AAGGAAYGTGTT <br> TTACCCGGAGG'] | 3067 | ['AAGGAAYGTGTT <br> TTACCCGGAGG'] |
| NM_00100574 | 2629 | GBA | 2655 | ['TTCACCGCTC | 2840 | ['GCCRAGTGGGTG | 3068 | ['GAGCCRAGTGGG |


| $\begin{aligned} & 1.2(\mathrm{GBA}): c .667 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p. } \mathrm{Trp} 223 \mathrm{Arg}) \end{aligned}$ |  |  |  | CATTGGTCTTG <br> AGCCRAGTGG <br> GTGATGTCCAG <br> GGGCTGGCA'] |  | ATGTCCAGGGG'] | $3070$ | TGATGTCCAGG', <br> 'AGCCRAGTGGGT <br> GATGTCCAGGG', <br> 'GCCRAGTGGGTG <br> ATGTCCAGGGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_003494.3( } \\ & \text { DYSF):c. 1284+ } \\ & \text { 2T>C } \end{aligned}$ | 8291 | DYSF | 2656 | ['GAGGTCAGCT <br> TTGCGGGGAA <br> AATGGYAAGG <br> AGCAAGGGAG <br> CAGGAGGGTT <br> $\left.\mathrm{C}^{\prime}\right]$ | 2841 | ['ATGGYAAGGAGC <br> AAGGGAGCAGG'] | 3071 | ['ATGGYAAGGAG <br> CAAGGGAGCAGG' ] |
| $\begin{aligned} & \text { NM_012463.3( } \\ & \text { ATP6V0A2):c. } \\ & 825+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | $\begin{aligned} & 2354 \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { ATP6V } \\ & 0 \mathrm{~A} 2 \end{aligned}$ | 2657 | $\begin{aligned} & \hline \text { ['ACCCGCATCC } \\ & \text { AGGATCTCTAC } \\ & \text { ACTGYGAGTA } \\ & \text { AGCTGGAAGT } \\ & \text { GGATTGCCTC'] } \end{aligned}$ | 2842 | ['CACTGYGAGTAA GCTGGAAGTGG'] | 3072 | ['CACTGYGAGTAA GCTGGAAGTGG'] |
| $\begin{aligned} & \text { NM_016725.2( } \\ & \text { FOLR1):c.493+ } \\ & \text { 2T>C } \end{aligned}$ | 2348 | FOLR1 | 2658 | ['ACAAGGGCTG GAACTGGACTT CAGGYGAGGG CTGGGGTGGG CAGGAATGGA'] | 2843 | ['AGGYGAGGGCTG <br> GGGTGGGCAGG'] | $\begin{aligned} & 3073 \\ & - \\ & 3074 \end{aligned}$ | ['CTTCAGGYGAGG GCTGGGGTGGG', <br> 'AGGYGAGGGCTG GGGTGGGCAGG'] |
| $\begin{aligned} & \text { NM_003764.3( } \\ & \text { STX11):c.173T } \\ & >C \\ & \text { (p.Leu58Pro) } \end{aligned}$ | 8676 | STX11 | 2659 | ['GACATTCAGG <br> ATGAAAACCA <br> GCTGCYGGTG <br> GCCGACGTGA <br> AGCGGCTGGG <br> A'] | 2844 | ['TGCYGGTGGCCG <br> ACGTGAAGCGG'] | 3075 | ['TGCYGGTGGCCG <br> ACGTGAAGCGG'] |
| $\begin{aligned} & \hline \text { NM_014714.3( } \\ & \text { IFT140):c. } 4078 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1360Arg } \end{aligned}$ | 9742 | IFT140 | 2660 | $\begin{aligned} & \hline \text { ['GGACCCCAAG } \\ & \text { GAGTCCATCAA } \\ & \text { GCAGYGTGAG } \\ & \text { CTGCTCCTGGA } \\ & \text { GGAACCAGA'] } \end{aligned}$ | 2845 | ['GCAGYGTGAGCT <br> GCTCCTGGAGG'] | $\begin{aligned} & 3076 \\ & - \\ & 3077 \end{aligned}$ | ['CAAGCAGYGTGA <br> GCTGCTCCTGG', <br> 'GCAGYGTGAGCT <br> GCTCCTGGAGG'] |
| $\begin{aligned} & \text { NM_000531.5( } \\ & \text { OTC):c. } 1005+2 \\ & \text { T>C } \\ & \hline \end{aligned}$ | 5009 | OTC | 2661 | ['GAAAACAGA AAGTGGACAA TCATGGYAAG CAAGAAACAA GGAATGGAGG AT'] | 2846 | ['ATCATGGYAAGC <br> AAGAAACAAGG'] | 3078 | ['ATCATGGYAAGC <br> AAGAAACAAGG'] |
| $\begin{aligned} & \text { NM_000531.5( } \\ & \text { OTC):c.158T> } \\ & \text { C (p.Ile53Thr) } \end{aligned}$ | 5009 | OTC | 2662 | $\begin{aligned} & \hline \text { ['CTAAAAAACT } \\ & \text { TTACCGGAGA } \\ & \text { AGAAABTAAA } \\ & \text { TATATGCTATG } \\ & \text { GCTATCAGCA'] } \end{aligned}$ | 2847 | ['AAGAAABTAAAT <br> ATATGCTATGG'] | 3079 | ['AAGAAABTAAAT ATATGCTATGG'] |
| NM_000531.5( | 5009 | OTC | 2663 | ['GAGAAAAGA | 2848 | ['ACAAGATYGTCT | 3080 | ['ACAAGATYGTCT |


| $\left\lvert\, \begin{aligned} & \text { OTC }): \mathrm{c} .284 \mathrm{~T}> \\ & \mathrm{C}(\mathrm{p} . \mathrm{Leu} 95 \mathrm{Ser}) \end{aligned}\right.$ |  |  |  | AGTACTCGAAC AAGATYGTCTA CAGAAACAGG TAAGTCCACT'] |  | ACAGAAACAGG'] |  | ACAGAAACAGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000531.5( } \\ & \text { OTC):c.2T>C } \\ & \text { (p.Met1Thr) } \end{aligned}$ | 5009 | OTC | 2664 | $\begin{aligned} & \hline \text { ['CGTCCTTTAC } \\ & \text { ACAATTAAAA } \\ & \text { GAAGAYGCTG } \\ & \text { TTTAATCTGAG } \\ & \text { GATCCTGTTA'] } \end{aligned}$ | 2849 | ['AGAAGAYGCTGT <br> TTAATCTGAGG'] | 3081 | ['AGAAGAYGCTGT <br> TTAATCTGAGG'] |
| $\begin{aligned} & \text { NM_000531.5( } \\ & \text { OTC):c.526T> } \\ & \text { C } \\ & \text { (p.Tyr176His) } \end{aligned}$ | 5009 | OTC | 2665 | ['CCATCCTATC CAGATCCTGGC TGATYACCTCA CGCTCCAGGTT GGTTTATT'] | 2850 | ['GGCTGATYACCT <br> CACGCTCCAGG'] | $\begin{aligned} & 3082 \\ & - \\ & 3083 \end{aligned}$ | ['GGCTGATYACCT CACGCTCCAGG', 'GATYACCTCACG CTCCAGGTTGG'] |
| $\begin{aligned} & \text { NM_000531.5( } \\ & \text { OTC):c. } 779 \mathrm{~T}> \\ & \text { C } \\ & \text { (p.Leu260Ser) } \end{aligned}$ | 5009 | OTC | 2666 | $\begin{aligned} & \hline \text { ['GAAGCAGCGC } \\ & \text { ATGGAGGCAA } \\ & \text { TGTATYAATTA } \\ & \text { CAGACACTTGG } \\ & \text { ATAAGCATG'] } \end{aligned}$ | 2851 | ['ATGTATYAATTAC AGACACTTGG'] | 3084 | ['ATGTATYAATTA CAGACACTTGG'] |
| $\begin{aligned} & \text { NM_000322.4( } \\ & \text { PRPH2):c.736T } \\ & >\mathrm{C} \\ & \text { (p.Trp246Arg) } \end{aligned}$ | 5961 | PRPH2 | 2667 | $\begin{aligned} & \hline \text { ['CCACCAGACG } \\ & \text { GAGGAGCTCA } \\ & \text { ACCTGYGGGT } \\ & \text { GCGTGGCTGCA } \\ & \text { GGGCTGCCCT'] } \end{aligned}$ | $\begin{aligned} & 2852 \\ & - \\ & 2853 \end{aligned}$ | ['ACCTGYGGGTGC <br> GTGGCTGCAGG', <br> 'CCTGYGGGTGCGT <br> GGCTGCAGGG'] | $\begin{aligned} & 3085 \\ & - \\ & 3086 \end{aligned}$ | ['ACCTGYGGGTGC <br> GTGGCTGCAGG', <br> 'CCTGYGGGTGCG <br> TGGCTGCAGGG'] |
| $\begin{aligned} & \text { NM_000211.4( } \\ & \text { ITGB2):c. } 1877 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 3689 | ITGB2 | 2668 | ['CCCCTCACCC TGTGGCAAGTA CATGYGAGTG CAGGCGGAGC AGGCAGGGCG' ] | 2854 | ['CATGYGAGTGCA GGCGGAGCAGG'] | 3087 | ['CATGYGAGTGCA GGCGGAGCAGG'] |
| $\begin{aligned} & \text { NM_015474.3( } \\ & \text { SAMHDI):c. } 11 \\ & 06 T>C \\ & \text { (p.Leu369Ser) } \end{aligned}$ | $\begin{aligned} & 2593 \\ & 9 \end{aligned}$ | $\begin{aligned} & \text { SAMH } \\ & \text { D1 } \end{aligned}$ | 2669 | $\begin{aligned} & \hline \text { ['TTTGTGTTGA } \\ & \text { TAAGCTCTACG } \\ & \text { GTGTRAAGAGT } \\ & \text { TGCGAGTGTGG } \\ & \text { AACATGTC'] } \end{aligned}$ | 2855 | ['GGTGTRAAGAGT <br> TGCGAGTGTGG'] | 3088 | ['GGTGTRAAGAGT <br> TGCGAGTGTGG'] |
| $\begin{aligned} & \text { NM_001101.3( } \\ & \text { ACTB):c.356T } \\ & >\text { C } \\ & \text { (p.Met119Thr) } \end{aligned}$ | 60 | ACTB | 2670 | ['AACCCCAAGG <br> CCAACCGCGA <br> GAAGAYGACC <br> CAGGTGAGTG <br> GCCCGCTACCT' <br> ] | 2856 | ['GAGAAGAYGACC <br> CAGGTGAGTGG'] | 3089 | ['GAGAAGAYGAC CCAGGTGAGTGG'] |
| $\begin{aligned} & \text { NM_015713.4( } \\ & \text { RRM2B):c. } 368 \\ & \text { T>C } \\ & \hline \end{aligned}$ | $\begin{aligned} & 5048 \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { RRM2 } \\ & \text { B } \end{aligned}$ | 2671 | ['CTCGATGAGA <br> ATTTGAAAGCC <br> ATAGRAACAG | 2857 | ['CCATAGRAACAG <br> CGAGCCTCTGG'] | 3090 | ['CCATAGRAACAG CGAGCCTCTGG'] |


| (p.Phe123Ser) |  |  |  | CGAGCCTCTGG AACCTGCAC'] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_015599.2( } \\ & \text { PGM3):c.248T } \\ & >C \\ & \text { (p.Leu83Ser) } \end{aligned}$ | 5238 | PGM3 | 2672 | $\begin{aligned} & \hline \text { ['TTGGTTGATC } \\ & \text { CTTTGGGTGAA } \\ & \text { ATGTYGGCACC } \\ & \text { ATCCTGGGAG } \\ & \text { GAACATGCC'] } \end{aligned}$ | 2858 | ['AATGTYGGCACC <br> ATCCTGGGAGG'] | 3091 | ['AATGTYGGCACC <br> ATCCTGGGAGG'] |
| NM_002136.2( HNRNPA1):c. 8 $17 \mathrm{~T}>\mathrm{C}$ (p.Phe273Leu) | 3178 | HNRN <br> PA1 | 2673 | ['GAATTACAAC <br> AATCAGTCTTC <br> AAATBTTGGAC <br> CCATGAAGGG <br> AGGAAATTT'] | $\begin{aligned} & 2859 \\ & - \\ & 2861 \end{aligned}$ | ['TTCAAATBTTGGA CCCATGAAGG', 'TCAAATBTTGGAC CCATGAAGGG', <br> 'AATBTTGGACCCA TGAAGGGAGG'] | $\begin{aligned} & 3092 \\ & - \\ & 3094 \end{aligned}$ | ['TTCAAATBTTGG ACCCATGAAGG', 'TCAAATBTTGGAC CCATGAAGGG', <br> 'AATBTTGGACCC ATGAAGGGAGG'] |
| $\begin{aligned} & \text { NM_002136.2( } \\ & \text { HNRNPA1):c. } 8 \\ & \text { 41T>C } \\ & \text { (p.Phe281Leu) } \end{aligned}$ | 3178 | HNRN <br> PA1 | 2674 | ['TTTTGGACCC <br> ATGAAGGGAG <br> GAAATYTTGG <br> AGGCAGAAGC <br> TCTGGCCCCTA' ] | 2862 | ['AATYTTGGAGGC <br> AGAAGCTCTGG'] | 3095 | ['AATYTTGGAGGC <br> AGAAGCTCTGG'] |
| $\begin{aligned} & \text { NM_022552.4( } \\ & \text { DNMT3A):c. } 27 \\ & 05 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe902Ser) } \end{aligned}$ | 1788 | DNMT <br> 3A | 2675 | $\begin{aligned} & \hline \text { ['CGCAAAATAC } \\ & \text { TCCTTCAGCGG } \\ & \text { AGCGRAGAGG } \\ & \text { TGGCGGATGA } \\ & \text { CTGGCACGCT'] } \end{aligned}$ | 2863 | ['GCGRAGAGGTGG <br> CGGATGACTGG'] | 3096 | ['GCGRAGAGGTGG CGGATGACTGG'] |
| $\begin{aligned} & \text { NM_000076.2( } \\ & \text { CDKN1C):c.*5 } \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 1028 | $\begin{aligned} & \text { CDKN } \\ & 1 \mathrm{C} \end{aligned}$ | 2676 | ['GCGCAAGAG GCTGCGGTGA GCCAAGYGAG TACAGCGCACC TGGGGGGGCG $\left.\mathrm{C}^{\prime}\right]$ | 2864 $2866$ | ['CCAAGYGAGTAC AGCGCACCTGG', 'CAAGYGAGTACA GCGCACCTGGG', 'AAGYGAGTACAG CGCACCTGGGG'] | $\begin{aligned} & 3097 \\ & - \\ & 3099 \end{aligned}$ | ['CCAAGYGAGTAC AGCGCACCTGG', 'CAAGYGAGTACA GCGCACCTGGG', 'AAGYGAGTACAG CGCACCTGGGG'] |
| $\left\lvert\, \begin{aligned} & \text { NC_012920.1: } \\ & \mathrm{m} .9478 \mathrm{~T}>\mathrm{C} \end{aligned}\right.$ | 4514 | $\begin{aligned} & \text { MT- } \\ & \text { CO3 } \end{aligned}$ | 2677 | ['ATAATCCTAT TTATTACCTCA GAAGYTTTTTT CTTCGCAGGAT TTTTCTGA'] | 2867 | ['TCAGAAGYTTTTT <br> TCTTCGCAGG'] | 3100 | ['TCAGAAGYTTTT <br> TTCTTCGCAGG'] |
| NM_002049.3( <br> GATAI):c.2T> <br> C (p.Met1Thr) | 2623 | GATA <br> 1 | 2678 | ['CGCAGGTTAA <br> TCCCCAGAGGC <br> TCCAYGGAGTT <br> CCCTGGCCTGG <br> GGTCCCTG'] | 2868 $2869$ | ['TCCAYGGAGTTC <br> CCTGGCCTGGG', <br> 'CCAYGGAGTTCCC <br> TGGCCTGGGG'] | $\begin{aligned} & 3101 \\ & - \\ & 3103 \end{aligned}$ | ['CTCCAYGGAGTT CCCTGGCCTGG', 'TCCAYGGAGTTC CCTGGCCTGGG', 'CCAYGGAGTTCC CTGGCCTGGGG'] |
| $\begin{aligned} & \text { NM_005740.2( } \\ & \text { DNAL4):c. } 153 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | $\begin{aligned} & 1012 \\ & 6 \end{aligned}$ | DNAL <br> 4 | 2679 | ['GAGAAATTCT CCAACAACAA CGAGGYATTG | 2870 | ['CGAGGYATTGCC <br> AGCAGTGCAGG'] | 3104 | ['CGAGGYATTGCC <br> AGCAGTGCAGG'] |


|  |  |  |  | CCAGCAGTGC <br> AGGCGGCCCCT <br> 'I |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_00128722 } \\ & 3.1(\text { SCN11A }): c \\ & .1142 \mathrm{C}>C \\ & \text { (p.Ile381Thr) } \end{aligned}$ | $\begin{aligned} & 1128 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { SCN11 } \\ & \text { A } \end{aligned}$ | 2680 | ['GGGCTCTACT CAGTCTTCTTC TTCAYTGTGGT CATTTTCCTGG GCTCCTTC'] | 2871 | ['TTCAYTGTGGTCA <br> TTTTCCTGGG'] | $\begin{aligned} & 3105 \\ & - \\ & 3106 \end{aligned}$ | ['CTTCAYTGTGGT <br> CATTTTCCTGG', <br> 'TTCAYTGTGGTCA <br> TTTTCCTGGG'] |
| $\begin{aligned} & \text { NM_00130294 } \\ & 6.1 \text { (TRNTI):c. } 4 \\ & 97 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu166Ser) } \end{aligned}$ | $\begin{aligned} & 5109 \\ & 5 \end{aligned}$ | TRNT1 | 2681 | ['TAATGAATAG GTTTTGATGGC ACTTYATTTGA CTACTTTAATG GTTATGAA'] | 2872 | ['ACTTYATTTGACT <br> ACTTTAATGG'] | 3107 | ['ACTTYATTTGAC <br> TACTTTAATGG'] |
| $\begin{aligned} & \text { NM_178151.2( } \\ & \text { DCX):c.2T>C } \\ & \text { (p.Met1Thr) } \end{aligned}$ | 1641 | DCX | 2682 | ['AGGTCTCTGA GGTTCCACCAA AATAYGGAAC TTGATTTTGGA CACTTTGAC'] | 2873 | ['CAAAATAYGGAA <br> CTTGATTTTGG'] | 3108 | ['CAAAATAYGGA <br> ACTTGATTTTGG'] |
| $\begin{aligned} & \text { NM_000169.2( } \\ & \text { GLA):c.758T> } \\ & \text { C (p.Ile253Thr) } \end{aligned}$ | -1 | - | 2683 | ['TGGACATCTT TTAACCAGGA GAGAAYTGTT GATGTTGCTGG ACCAGGGGGT'] | 2874 | ['GAGAGAAYTGTT GATGTTGCTGG'] | 3109 | ['GAGAGAAYTGTT GATGTTGCTGG'] |
| $\begin{aligned} & \text { NM_170707.3( } \\ & \text { LMNA):c.710T } \\ & >C \\ & \text { (p.Phe237Ser) } \end{aligned}$ | 4000 | LMNA | 2684 | ['ATTGACAATG GGAAGCAGCG TGAGTYTGAG AGCCGGCTGG CGGATGCGCTG '] | 2875 | ['TGAGTYTGAGAG <br> CCGGCTGGCGG'] | 3110 | ['TGAGTYTGAGAG <br> CCGGCTGGCGG'] |
| $\begin{aligned} & \text { NM_000256.3( } \\ & \text { MYBPC3):c. } 33 \\ & 30+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 4607 | $\begin{aligned} & \text { MYBP } \\ & \text { C3 } \end{aligned}$ | 2685 | ['CAGAAAGCCG <br> ACAAGAAGAC <br> CATGGBGAGC <br> CCAGGGTCTGG <br> GGTCCCCACG'] | $\begin{aligned} & 2876 \\ & - \\ & 2878 \end{aligned}$ | ['ACCATGGBGAGC CCAGGGTCTGG', 'CCATGGBGAGCCC AGGGTCTGGG', 'CATGGBGAGCCCA GGGTCTGGGG'] | $\begin{array}{\|l} 3111 \\ - \\ 3113 \end{array}$ | ['ACCATGGBGAGC CCAGGGTCTGG', 'CCATGGBGAGCC CAGGGTCTGGG', 'CATGGBGAGCCC AGGGTCTGGGG'] |
| $\begin{aligned} & \text { NM_005957.4( } \\ & \text { MTHFR):c. } 153 \\ & 0+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 4524 | $\begin{aligned} & \text { MTHF } \\ & \text { R } \end{aligned}$ | 2686 | $\begin{aligned} & \text { ['AGCGGGGGCT } \\ & \text { ATGTCTTCCAG } \\ & \text { AAGGYGTGGT } \\ & \text { AGGGAGGCAC } \\ & \text { GGGGTGCCCC'] } \end{aligned}$ | $\begin{aligned} & 2879 \\ & - \\ & 2881 \end{aligned}$ | ['GAAGGYGTGGTA GGGAGGCACGG', <br> 'AAGGYGTGGTAG <br> GGAGGCACGGG', <br> 'AGGYGTGGTAGG <br> GAGGCACGGGG'] | $\begin{array}{\|l} 3114 \\ - \\ 3116 \end{array}$ | ['GAAGGYGTGGTA GGGAGGCACGG', 'AAGGYGTGGTAG GGAGGCACGGG', 'AGGYGTGGTAGG GAGGCACGGGG'] |
| $\begin{aligned} & \text { NM_000264.3( } \\ & \text { PTCH1):c. } 3168 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 5727 | PTCH1 | 2687 | ['AACCCCTGGA CGGCCGGGAT CATTGYGAGTG | $2882$ $2884$ | ['ATCATTGYGAGT GTATTATAAGG', 'TCATTGYGAGTGT | $\begin{array}{\|l\|} \hline 3117 \\ - \\ 3119 \end{array}$ | ['ATCATTGYGAGT GTATTATAAGG', 'TCATTGYGAGTGT |

$\left.\begin{array}{|l|l|l|l|l|l|l|l|} & & & & \begin{array}{l}\text { TATTATAAGGG } \\ \text { GCTTTGTGG'] }\end{array} & & \begin{array}{l}\text { ATTATAAGGG', } \\ \text { 'CATTGYGAGTGTA } \\ \text { TTATAAGGGG'] }\end{array} & \\ \text { ATAGGG', } \\ \text { 'CATTGYGAGTGT } \\ \text { ATTATAAGGGG'] }\end{array}\right]$

|  |  |  |  | GGCGGCGGCG'] |  |  |  | $\begin{aligned} & \text { 'CCAGGKGAGTCA } \\ & \text { CCTAGTAGGGG'] } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \text { NM_001848.2( } \\ \text { COL6A1):c. } 95 \\ 7+2 \mathrm{~T}>\mathrm{C} \end{array}$ | 1291 | $\begin{aligned} & \text { COL6 } \\ & \text { Al } \end{aligned}$ | 2696 | ['TCCAGGGGAC <br> CCAAGGGCTA <br> CAAGGYGAGC <br> GTGGGCTGCTG <br> GGAGGGGGGA' ] | $\begin{aligned} & 2895 \\ & - \\ & 2896 \end{aligned}$ | ['ACAAGGYGAGCG <br> TGGGCTGCTGG', <br> 'CAAGGYGAGCGT <br> GGGCTGCTGGG'] | $\begin{aligned} & 3131 \\ & - \\ & 3132 \end{aligned}$ | ['ACAAGGYGAGC <br> GTGGGCTGCTGG', <br> 'CAAGGYGAGCGT <br> GGGCTGCTGGG'] |
| $\begin{aligned} & \mathrm{NM} \_000238.3( \\ & \mathrm{KCNH} 2): \mathrm{c} .194 \\ & 5+6 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 3757 | KCNH $2$ | 2697 | ['CTGCGTCATG <br> CTCATTGGCTG <br> TGAGYGTGCCC <br> AGGGGCGGGC <br> GGCGGGGAG'] | $\begin{aligned} & 2897 \\ & - \\ & 2898 \end{aligned}$ | ['CTGTGAGYGTGC CCAGGGGCGGG', <br> 'TGAGYGTGCCCAG GGGCGGGCGG'] | $\begin{aligned} & 3133 \\ & - \\ & 3134 \end{aligned}$ | ['CTGTGAGYGTGC <br> CCAGGGGCGGG', <br> 'TGAGYGTGCCCA <br> GGGGCGGGCGG'] |
| $\begin{aligned} & \mathrm{NM} \_021007.2( \\ & \mathrm{SCN} 2 \mathrm{~A}): \mathrm{c} .1271 \\ & \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \text { Val424Ala) } \end{aligned}$ | 6326 | SCN2A | 2698 | ['CTAATAAATT <br> TGATCTTGGCT <br> GTGGYGGCCA <br> TGGCCTATGAG <br> GAACAGAAT'] | 2899 | ['TGTGGYGGCCAT GGCCTATGAGG'] | 3135 | $\begin{aligned} & \text { ['TGTGGYGGCCAT } \\ & \text { GGCCTATGAGG'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_021007.2( } \\ & \text { SCN2A):c. } 4308 \\ & +2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 6326 | SCN2A | 2699 | ['TATGCAGCTG TTGATTCACGA <br> AATGYAAGTCT <br> AGTTAGAGGG <br> AAATTGTTT'] | $\begin{aligned} & 2900 \\ & - \\ & 2901 \end{aligned}$ | ['CGAAATGYAAGT <br> CTAGTTAGAGG', <br> 'GAAATGYAAGTCT <br> AGTTAGAGGG'] | $\begin{aligned} & 3136 \\ & - \\ & 3137 \end{aligned}$ | ['CGAAATGYAAGT <br> CTAGTTAGAGG', <br> 'GAAATGYAAGTC <br> TAGTTAGAGGG'] |
| $\begin{aligned} & \mathrm{NM}-000083.2( \\ & \mathrm{CLCN} 1): \mathrm{c} .1283 \\ & \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe428Ser) } \end{aligned}$ | 1180 | CLCNI | 2700 | ['CCCCGCGAAG CCATCAGTACT <br> TTGTYTGACAA <br> CAATACATGG <br> GTGAAACAC'] | $\begin{aligned} & 2902 \\ & - \\ & 2903 \end{aligned}$ | ['CTTTGTYTGACAA CAATACATGG', <br> 'TTTGTYTGACAAC <br> AATACATGGG'] | $\begin{aligned} & 3138 \\ & - \\ & 3139 \end{aligned}$ | ['CTTTGTYTGACA ACAATACATGG', <br> 'TTTGTYTGACAAC <br> AATACATGGG'] |
| $\begin{aligned} & \text { NM_004550.4( } \\ & \text { NDUFS2):c. } 87 \\ & 5 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met292Thr) } \end{aligned}$ | 4720 | $\begin{aligned} & \text { NDUF } \\ & \text { S2 } \end{aligned}$ | 2701 | ['CATTATGCTC TCCACAGTGGA GTGAYGCTTCG GGGCTCAGGC ATCCAGTGG'] | 2904 | ['GGAGTGAYGCTT <br> CGGGGCTCAGG'] | 3140 | ['GGAGTGAYGCTT <br> CGGGGCTCAGG'] |
| $\begin{aligned} & \text { NM_000546.5( } \\ & \text { TP53):c.584T> } \\ & \text { C (p.Ile 195Thr) } \end{aligned}$ | 7157 | TP53 | 2702 | ['CACACGCAAA <br> TTTCCTTCCAC <br> TCGGRTAAGAT <br> GCTGAGGAGG <br> GGCCAGACC'] | $\begin{aligned} & 2905 \\ & - \\ & 2906 \end{aligned}$ | ['CTCGGRTAAGAT GCTGAGGAGGG', <br> 'TCGGRTAAGATGC TGAGGAGGGG'] | $\begin{aligned} & 3141 \\ & - \\ & 3143 \end{aligned}$ | ['ACTCGGRTAAGA TGCTGAGGAGG', 'CTCGGRTAAGAT GCTGAGGAGGG', 'TCGGRTAAGATG CTGAGGAGGGG'] |

Table 3. A to $G$ with NGG PAM. Table 2 shows a list of A to $G$ mutations that may be corrected using any of the base editors provided herein. GRNAs and gRNAall indicate the protospacer and PAM sequence, where the PAM sequence is the last 3 nucleotides of each of the sequences in GRNAs and gRNAall.

| Name | $\begin{aligned} & \text { Gene } \\ & \text { ID } \end{aligned}$ | Gene Symbol | SEQ <br> ID <br> NO: | Flanks | SEQ <br> ID <br> NO: | gRNAs | $\begin{aligned} & \text { SEQ } \\ & \text { ID } \\ & \text { NO: } \end{aligned}$ | gRNAall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { NM_017547.3(FO } \\ \text { XRED1):c.1289A } \\ >\mathrm{G}(\mathrm{p} . \mathrm{Asn} 430 \mathrm{Ser}) \end{array}$ | 5557 2 | $\begin{aligned} & \text { FOXRE } \\ & \text { D1 } \end{aligned}$ | 5084 | ['GTGGGCCCCCACC CGCTAGTTGTCAVC ATGTACTTTGCTACT GGCTTCAGT'] | 5261 | ['CCACCCGCTAGT <br> TGTCAVCATGT'] | $\begin{aligned} & 5464- \\ & 5466 \end{aligned}$ | ['CCCACCCGCTAG ITGTCAVCATG', 'CCACCCGCTAGTT GTCAVCATGT', 'CCCGCTAGTTGTC AVCATGTACT'] |
| $\begin{aligned} & \text { NM_000071.2(C } \\ & \text { BS):c. } 1150 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 384 \mathrm{Glu}) \end{aligned}$ | 875 | CBS | 5085 | ['GGTGACTCCCCCAT CCCGCAGGACCRAG TTCCTGAGCGACAG GTGGATGCT'] | 5262 | ['CCCCATCCCGCA GGACCRAGTTC'] | $\begin{aligned} & 5467- \\ & 5470 \end{aligned}$ | ['CCCCCATCCCGC AGGACCRAGTT', 'CCCCATCCCGCA GGACCRAGTTC", 'CCCATCCCGCAG GACCRAGTTCC', CCATCCCGCAGG ACCRAGTTCCT'I |
| $\begin{aligned} & \text { NM_000552.3(V } \\ & \text { WF):c.2384A>G } \\ & \text { (p.Tyr795Cys) } \end{aligned}$ | 7450 | VWF | 5086 | ['GAGTGTACCAAAA CGTGCCAGAACTRT GACCTGGAGTGCAT GAGCATGGGC'] | 5263 | ['CCAAAACGTGCC <br> AGAACTRTGAC'] | 5471 | ['CCAAAACGTGCC <br> AGAACTRTGAC'] |
| $\begin{aligned} & \text { NM_000552.3(V } \\ & \text { WF):c.1583A>G } \\ & \text { (p.Asn528Ser) } \end{aligned}$ | 7450 | VWF | 5087 | ['ACCTGCGGCCTGT GTGGGAATTACART GGCAACCAGGGCGA CGACTTCCTT'] | 5264 | ['CCTGTGTGGGAA <br> TTACARTGGCA'] | 5472 | ['CCTGTGTGGGAA TTACARTGGCA'] |
| $\begin{aligned} & \mathrm{NM} \text { _000308.2(CT } \\ & \mathrm{SA}): \mathrm{c} .1238 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr413Cys) } \end{aligned}$ | 5476 | CTSA | 5088 | ['CTTTAGAAATACC AGATCCTATTATRTA ATGGAGATGTAGAC ATGGCCTGC'] | 5265 | $\begin{aligned} & {[' C C A G A T C C T A T T ~} \\ & \text { ATRTAATGGAG'] } \end{aligned}$ | 5473 | ['CCAGATCCTATT <br> ATRTAATGGAG'] |
| $\begin{aligned} & \text { NM_000277.1(PA } \\ & \text { H):c. } 916 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile306Val) } \end{aligned}$ | 5053 | PAH | 5089 | ['TTCTATTTTCCCCC AATTACAGGAARTT GGCCTTGCCTCTCTG GGTGCACC'] | 5266 | ['CCCCCAATTACA GGAARTTGGCC'] | $\begin{aligned} & 5474- \\ & 5476 \end{aligned}$ | ['CCCCCAATTACA GGAARTTGGCC', CCCCAATTACAG GAARTTGGCCT', CCCAATTACAGG AARTTGGCCTT'] |
| $\begin{aligned} & \hline \text { NM_000512.4(G) } \\ & \text { ALNS):c.1460A> } \\ & \text { G (p.Asn487Ser) } \end{aligned}$ | 2588 | $\begin{aligned} & \text { GALN } \\ & \mathrm{S} \end{aligned}$ | 5090 | ['TTGGTCCCCGCGCA GCCCCAGCTCARCG TGTGCAACTGGGCG GTCATGGTA'] | 5267 | ['CCGCGCAGCCCC <br> AGCTCARCGTG'] | 5477 | ['CCGCGCAGCCCC <br> AGCTCARCGTG'] |
| $\begin{aligned} & \text { NM_013319.2(U } \\ & \text { BIAD1):c.305A> } \\ & \text { G (p.Asn102Ser) } \end{aligned}$ | 2991 4 | $\begin{aligned} & \hline \text { UBIAD } \\ & 1 \end{aligned}$ | 5091 | ['GTGCACGGGGCCG <br> GTAATTTGGTCARC <br> ACTTACTATGACTTT <br> TCCAAGGGC'] | 5268 | ['CCGGTAATTTGG <br> TCARCACTTAC'] | 5478 | ['CCGGTAATTTGG TCARCACTTAC'] |
| NM_013319.2(U | 2991 | UBIAD | 5092 | ['AGCACCGAGGCCA | 5269 | ['CCATTCTCCATT | 5479 | ['CCATTCTCCATT |


| $\begin{aligned} & \text { BIADI):c.695A> } \\ & \mathrm{G}(\mathrm{p} . \mathrm{Asn} 232 \mathrm{Ser}) \end{aligned}$ | 4 | 1 |  | TTCTCCATTCCARCA ACACCAGGGACATG GAGTCCGAC'] |  | CCARCAACACC] |  | CCARCAACACC'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000275.2(O CA2):c.1465A>G (p.Asn489Asp) | 4948 | OCA2 | 5093 | ['TGCCACTGCCATCG GGGACCCTCCARAT GTCATTATTGTTTCC AACCAAGA'] | 5270 | ['CCATCGGGGACC | 5480 | ['CCATCGGGGACC |
| $\begin{array}{\|l\|} \hline \text { NM_001127255.1 } \\ \text { (NLRP7):c.2738A } \\ >G \text { (p.Asn913Ser) } \end{array}$ | -1 | - | 5094 | ['CTCACAAACCTGG ACTTGAGTATCARC CAGATAGCTCGTGG ATTGTGGATT'] | 5271 | ['CCTGGACTTGAG <br> TATCARCCAGA'] | 5481 | ['CCTGGACTTGAG TATCARCCAGA'] |
| NM_152783.4(D2 HGDH):c.1315A> G (p.Asn439Asp) | $\begin{aligned} & 7282 \\ & 94 \end{aligned}$ | $\begin{aligned} & \hline \text { D2HG } \\ & \mathrm{DH} \end{aligned}$ | 5095 | ['TGCCCTTGTCCCTC CAGGAGATGGTRAC CTGCACCTCAATGT GACGGCGGA'] | 5272 | ['CCTCCAGGAGAT GGTRACCTGCA'] | $\begin{aligned} & 5482- \\ & 5483 \end{aligned}$ | ['CCCTCCAGGAGA <br> TGGTRACCTGC', <br> 'CCTCCAGGAGAT <br> GGTRACCTGCA'] |
| NM_022132.4(M <br> CCC2):c.1309A> <br> G (p.Ile437Val) | $\begin{aligned} & 6408 \\ & 7 \end{aligned}$ | $\begin{aligned} & \hline \text { MCCC } \\ & 2 \end{aligned}$ | 5096 | ['TGTGGCCTGTGCCC AAGTGCCTAAGDTA ACCCTCATCATTGG GGGCTCCTA'] | 5273 | ['CCCAAGTGCCTA AGDTAACCCTC'] | 5484 | ['CCCAAGTGCCTA AGDTAACCCTC'] |
| $\begin{aligned} & \text { NM_000022.2(A } \\ & \text { DA):c.219-2A>G } \end{aligned}$ | 100 | ADA | 5097 | ['TTCCCAACCCCTTT CTTCCCTTCCCRGGG GCTGCCGGGAGGCT ATCAAAAG'] | 5274 | ['CCCCTTTCTTCCC <br> TTCCCRGGGG'] | $\begin{aligned} & 5485- \\ & 5487 \end{aligned}$ | ['CCCCTTTCTTCCC <br> TTCCCRGGGG', <br> ICCCTTTCTTCCCT <br> TCCCRGGGGC', <br> 'CCTTTCTTCCCTT <br> CCCRGGGGCT'] |
| NM_017780.3(C HD7):c.3082A $>\mathrm{G}$ (p.Ile1028Val) | $\begin{aligned} & 5563 \\ & 6 \end{aligned}$ | CHD7 | 5098 | ['TTTAGTAATTGCCC CATTGTCCACARTC CCCAACTGGGAAAG GGAATTCCG'] | 5275 | ['CCCCATTGTCCA CARTCCCCAAC'] | 5488 | ['CCCCATTGTCCA CARTCCCCAAC'] |
| $\begin{aligned} & \text { NM_000483.4(AP } \\ & \mathrm{OC} 2): \mathrm{c} .1 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met1 } \mathrm{Val}) \end{aligned}$ | -1 | - | 5099 | ['TCAATGTTCCAGGT CTCTGGACACTRTG GGCACACGACTCCT CCCAGCTCT'] | 5276 | ['CCAGGTCTCTGG <br> ACACTRTGGGC'] | 5489 | ['CCAGGTCTCTGG <br> ACACTRTGGGC'] |
| $\begin{aligned} & \text { NM_000391.3(TP } \\ & \text { P1):c.887-10A>G } \end{aligned}$ | 1200 | TPP 1 | 5100 | ['TGTCCCTCATGCCG GCCTGGATTTTYTTT TTTTTTTTTTTTGAG GGATGGG'] | 5277 | $\begin{aligned} & \text { ['CCGGCCTGGATT } \\ & \hline \text { TTYTTTTTTTT'] } \end{aligned}$ | 5490 | ['CCGGCCTGGATT TTYTTTTTTTT'] |
| NM_017890.4(VP <br> S13B):c.8978A> <br> G (p.Asn2993Ser) | 1576 80 | $\begin{aligned} & \text { VPS13 } \\ & \text { B } \end{aligned}$ | 5101 | ['CTTCTGCCCTGGGC CCTGCTTATCARTG AATCCAAATGGGAC CTCTGGCTA'] | 5278 | ['CCTGGGCCCTGC <br> TTATCARTGAA'] | 5491 | ['CCTGGGCCCTGC TTATCARTGAA'] |
| NM_000226.3(K <br> RT9):c.482A $>G$ <br> (p.Asn161Ser) | 3857 | KRT9 | 5102 | ['GAGAAGAGCACCA <br> TGCAGGAACTCADT <br> TCTCGGCTGGCCTCT | 5279 | ['CCATGCAGGAAC <br> TCADTTCTCGG'] | 5492 | $\begin{aligned} & \text { ['CCATGCAGGAAC } \\ & \text { TCADTTCTCGG'] } \end{aligned}$ |


|  |  |  |  | TACTTGGAT'] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000529.2(M <br> C2R):c.761A>G <br> (p.Tyr254Cys) | 4158 | MC2R | 5103 | ['CCAAGTAACCCCT ACTGCGCCTGCTRC ATGTCTCTCTTCCAG GTGAACGGC'] | $\begin{aligned} & \hline 5280 \\ & - \\ & 5281 \end{aligned}$ | ['CCCTACTGCGCC TGCTRCATGTC', 'CCTACTGCGCCTG CTRCATGTCT'] | $\begin{aligned} & 5493- \\ & 5495 \end{aligned}$ | ['CCCCTACTGCGC CTGCTRCATGT', 'CCCTACTGCGCCT GCTRCATGTC', 'CCTACTGCGCCTG CTRCATGTCT'] |
| NM_005957.4(M <br> THFR):c.971A>G <br> (p.Asn324Ser) | 4524 | $\begin{aligned} & \text { MTHF } \\ & \text { R } \end{aligned}$ | 5104 | ['CCAGGCCTCCACTT <br> CTACACCCTCARCC GCGAGATGGCTACC ACAGAGGTG'] | 5282 | ['CCACTTCTACAC CCTCARCCGCG'] | 5496 | $\begin{aligned} & {[\text { ['CCACTTCTACAC }} \\ & \text { CCTCARCCGCG'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000403.3(G } \\ & \text { ALE):c. } 101 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn34Ser) } \end{aligned}$ | 2582 | GALE | 5105 | ['GGCTACTTGCCTGT GGTCATCGATARCT TCCATAATGCCTTCC GTGGTGAG'] | 5283 | ['CCTGTGGTCATC GATARCTTCCA'] | 5497 | ['CCTGTGGTCATC GATARCTTCCA'] |
| NM_000356.3(TC <br> OF1):c.149A>G <br> (p.Tyr50Cys) | 6949 | TCOF1 | 5106 | ['CAGCCCGTAACCC <br> TTCTGGACATCTRTA <br> CACACTGGCAACAG <br> TAAGTGGTG'] | $\begin{aligned} & \hline 5284 \\ & - \\ & 5285 \\ & \hline \end{aligned}$ | ['CCCTTCTGGACA TCTRTACACAC', 'CCTTCTGGACATC TRTACACACT'] | $\begin{aligned} & 5498- \\ & 5499 \end{aligned}$ | ['CCCTTCTGGACA <br> TCTRTACACAC", <br> CCTTCTGGACATC <br> TRTACACACT'] |
| NM_012464.4(TL <br> L1):c. 1885A>G <br> (p.Ile629Val) | 7092 | TLL1 | 5107 | ['ACTTCTTACCAAAC <br> TTAACGGCACCRTA ACCACCCCTGGCTG GCCCAAGGA'] | 5286 | ['CCAAACTTAACG GCACCRTAACC'] | 5500 | $\begin{aligned} & \text { ['CCAAACTTAACG } \\ & \text { GCACCRTAACC'] } \end{aligned}$ |
| NM_000112.3(SL <br> C26A2):c.1273A> <br> G (p.Asn425Asp) | 1836 | $\begin{aligned} & \text { SLC26 } \\ & \text { A2 } \end{aligned}$ | 5108 | ['GGAAATGTATGCC ATTGGCTTTTGTRAT ATCATCCCTTCCTTC ITCCACTG'] | 5287 | ['CCATTGGCTTTT GTRATATCATC'] | 5501 | $\begin{aligned} & {[\text { 'CCATTGGCTTTT }} \\ & \text { GTRATATCATC'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000157.3(G } \\ & \text { BA):c.680A>G } \\ & \text { (p.Asn227Ser) } \end{aligned}$ | 2629 | GBA | 5109 | ['ACATCACCCACTTG GCTCAAGACCARTG GAGCGGTGAATGGG AAGGGGTCA'] | 5288 | ['CCACTTGGCTCA AGACCARTGGA'] | 5502 | ['CCACTTGGCTCA AGACCARTGGA'] |
| NM_175073.2(AP <br> TX):c.602A $>G$ <br> (p.His201Arg) | $\begin{aligned} & 5484 \\ & 0 \end{aligned}$ | APTX | 5110 | ['GATAAATACCCAA AGGCCCGTTACCRT TGGCTGGTCTTACC GTGGACCTCC'] | $\begin{aligned} & \hline 5289 \\ & - \\ & 5290 \end{aligned}$ | ['CCCAAAGGCCCG <br> TTACCRTTGGC', <br> 'CCAAAGGCCCGT <br> TACCRTTGGCT'] | $\begin{aligned} & 5503- \\ & 5504 \end{aligned}$ | ['CCCAAAGGCCCG <br> TTACCRTTGGC', <br> ICCAAAGGCCCGT <br> TACCRTTGGCT'] |
| $\begin{aligned} & \text { NM_020638.2(FG } \\ & \text { F23):c.211A>G } \\ & \text { (p.Ser71Gly) } \end{aligned}$ | 8074 | FGF23 | 5111 | ['TGGCGCACCCCAT CAGACCATCTACRG TGAGTAGGGCTTCA GGCTGGGAAG'] | 5291 | $\begin{aligned} & {[\text { ['CCCCATCAGACC }} \\ & \text { ATCTACRGTGA'] } \end{aligned}$ | $\begin{aligned} & 5505- \\ & 5507 \end{aligned}$ | ['CCCCATCAGACC ATCTACRGTGA', 'CCCATCAGACCA TCTACRGTGAG', 'CCATCAGACCAT CTACRGTGAGT'] |
| NM_021102.3(SP <br> INT2):c.488A $>\mathrm{G}$ <br> (p.Tyr163Cys) | 1065 3 | SPINT2 | 5112 | ['AGGAACTCCTGCA <br> ATAACTTCATCTRTG <br> GAGGCTGCCGGGGC | 5292 | ['CCTGCAATAACT TCATCTRTGGA'] | 5508 | $\begin{aligned} & {[\text { ['CCTGCAATAACT }} \\ & \hline \text { TCATCTRTGGA'] } \end{aligned}$ |

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline & & & & \text { AATAAGAAC'] } & & & \\ \hline \begin{array}{l}\text { NM_004795.3(K } \\ \text { L):c.578A>G } \\ \text { (p.His193Arg) }\end{array} & 9365 & \text { KL } & 5113 & \text { ['GTGCAGCCCGTGG } & 5293 & \text { ['CCGTGGTCACCC } & 5509 & \text { ['CCGTGGTCACCC } \\ \text { TCACCCTGTACCRCT }\end{array}\right)$

| $\begin{aligned} & \text { TR):c. } 2738 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr913Cys) } \end{aligned}$ |  |  |  | $\begin{aligned} & \hline \text { GCACCAGTTCGTRT } \\ & \text { TATGTGTTTTACATT } \\ & \hline \text { TACGTGGGA'] } \end{aligned}$ |  | [CGTRTTATGTG'] |  | CGTRTTATGTG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001814.4(CT } \\ & \text { SC):c.857A>G } \\ & \text { (p.Gln286Arg) } \end{aligned}$ | 1075 | CTSC | 5124 | ['TCTCAGACCCCAAT CCTAAGCCCTCRGG AGGTTGTGTCTTGTA GCCAGTAT'] | 5305 | $\begin{aligned} & {[' C C C C A A T C C T A A ~} \\ & \text { GCCCTCRGGAG'] } \end{aligned}$ | $\begin{aligned} & 5523- \\ & 5525 \end{aligned}$ | ['CCCCAATCCTAA GCCCTCRGGAG', 'CCCAATCCTAAG CCCTCRGGAGG', 'CCAATCCTAAGC CCTCRGGAGGT'] |
| NM_005144.4(H <br> R):c. $-218 \mathrm{~A}>\mathrm{G}$ | $\begin{aligned} & 5580 \\ & 6 \end{aligned}$ | HR | 5125 | ['TCCGACCCCTCCAA CCTGCGGCCCTRGA GCGCCCCCGCCGCC CCGGGGGAA'] | 5306 | $\left[\begin{array}{l} \text { ['CCTCCAACCTGC } \\ \text { GGCCCTRGAGC'] } \end{array}\right.$ | $\begin{aligned} & 5526- \\ & 5527 \end{aligned}$ | ['CCTCCAACCTGC GGCCCTRGAGC', 'CCAACCTGCGGC CCTRGAGCGCC'] |
| $\begin{aligned} & \text { NM_018488.2(TB } \\ & \mathrm{X} 4): \mathrm{c} .1592 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln531Arg) } \end{aligned}$ | 9496 | TBX4 | 5126 | ['TCCTTGTCCCGAGA <br> ATCTTCCTTACRGTA CCATTCAGGAATGG GGACTGTG'] | 5307 | $\begin{aligned} & {[\text { 'CCCGAGAATCTT }} \\ & \text { CCTTACRGTAC'] } \end{aligned}$ | $\begin{aligned} & 5528- \\ & 5529 \end{aligned}$ | ['CCCGAGAATCTT CCTTACRGTAC', CCGAGAATCTTCC TTACRGTACC'] |
| $\begin{aligned} & \text { NM_001089.2(A } \\ & \text { BCA3):c.1702A> } \\ & \text { G (p.Asn568Asp) } \end{aligned}$ | 21 | ABCA3 | 5127 | ['ACAGATCACCGTC CTGCTGGGCCACRA CGGTGCCGGGAAGA CCACCACCCT'] | 5308 | $\left[\begin{array}{l} \text { ['CCGTCCTGCTGG } \\ \text { GCCACRACGGT'] } \end{array}\right.$ | 5530 | $\begin{aligned} & {[' C C G T C C T G C T G G ~} \\ & \text { GCCACRACGGT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000525.3(K } \\ & \text { CNJ11):c.776A> } \\ & \text { G (p.His259Arg) } \end{aligned}$ | 3767 | $\begin{aligned} & \text { KCNJI } \\ & 1 \end{aligned}$ | 5128 | ['CTGGTGGCCCCGCT GATCATCTACCRTG TCATTGATGCCAAC AGCCCACTC'] | $5309$ $5310$ | ['CCCCGCTGATCA TCTACCRTGTC', 'CCCGCTGATCATC TACCRTGTCA'] | $\begin{aligned} & 5531- \\ & 5533 \end{aligned}$ | ['CCCCGCTGATCA <br> TCTACCRTGTC', <br> 'CCCGCTGATCATC <br> TACCRTGTCA', <br> 'CCGCTGATCATCT <br> ACCRTGTCAT'] |
| $\begin{aligned} & \text { NM_005587.2(M } \\ & \text { EF2A):c.788A>G } \\ & \text { (p.Asn263Ser) } \end{aligned}$ | 4205 | MEF2A | 5129 | ['TCTCCCCCTCCACC AGGTGGTGGTARTC TTGGAATGAACAGT AGGAAACCA'] | 5311 | ['CCACCAGGTGGT | 5534 | $\begin{aligned} & {[\text { 'CCACCAGGTGGT }} \\ & \text { GGTARTCTTGG'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000098.2(CP } \\ & \text { T2):c.359A>G } \\ & \text { (p.Tyr120Cys) } \end{aligned}$ | 1376 | CPT2 | 5130 | ['TTTTTAGGACCCTG GTTTGATATGTRCCT ATCTGCTCGAGACT CCGTTGTT'] | 5312 | ['CCTGGTTTGATA TGTRCCTATCT'] | $\begin{aligned} & 5535- \\ & 5536 \end{aligned}$ | ['CCCTGGTTTGAT ATGTRCCTATC', 'CCTGGTTTGATAT GTRCCTATCT'] |
| NM_178138.4(L <br> HX3):c.332A>G <br> (p.Tyr111Cys) | 8022 | LHX3 | 5131 | ['GTGCGCCGCGCCC AGGACTTCGTGTRC <br> CACCTGCACTGCTTT GCCTGCGTC'] | $\begin{aligned} & \hline 5313 \\ & - \\ & 5314 \end{aligned}$ | ['CCCAGGACTTCG TGTRCCACCTG', 'CCAGGACTTCGT GTRCCACCTGC'] | $\begin{aligned} & 5537- \\ & 5538 \end{aligned}$ | ['CCCAGGACTTCG TGTRCCACCTG', <br> 'CCAGGACTTCGT GTRCCACCTGC'] |
| $\begin{aligned} & \text { NM_005502.3(A } \\ & \text { BCA1):c.2804A> } \\ & \text { G (p.Asn935Ser) } \end{aligned}$ | 19 | ABCA1 | 5132 | ['CAGATCACCTCCTT CCTGGGCCACARTG GAGCGGGGAAGAC GACCACCATG] | 5315 | $\left[\begin{array}{l} {[' C C T C C T T C C T G G ~} \\ \text { GCCACARTGGA'] } \end{array}\right.$ | $\begin{aligned} & 5539- \\ & 5540 \end{aligned}$ | ['CCTCCTTCCTGG GCCACARTGGA', CCTTCCTGGGCCA CARTGGAGCG ${ }^{\prime}$ |
| m. $3260 \mathrm{~A}>\mathrm{G}$ | 4567 | MT- | 5133 | ['GATGGCAGAGCCC | 5316 | ['CCCGGTAATCGC | 5541- | ['CCCGGTAATCGC |


|  |  | TLI |  | GGTAATCGCATARA <br> ACTTAAAACTTTAC <br> AGTCAGAGGT'] | $5317$ | ATARAACTTAA', 'CCGGTAATCGCA TARAACTTAAA'I | 5542 | ATARAACTTAA', 'CCGGTAATCGCA TARAACTTAAA'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m.4269A>G | 4565 | MT-TI | 5134 | ['GCATTCCCCCTCAA ACCTAAGAAATRTG TCTGATAAAAGAGT TACTTTGAT'] | $5318$ $5319$ | ['CCCTCAAACCTA AGAAATRTGTC', 'CCTCAAACCTAA GAAATRTGTCT'] | $\begin{aligned} & 5543- \\ & 5544 \end{aligned}$ | ['CCCTCAAACCTA AGAAATRTGTC', 'CCTCAAACCTAA GAAATRTGTCT'] |
| m. 14495A>G | 4541 | $\begin{aligned} & \text { MT- } \\ & \text { ND6 } \end{aligned}$ | 5135 | ['TCCAAAGACAACC ATCATTCCCCCTRA ATAAATTAAAAAAA CTATTAAACC'] | 5320 | $\begin{aligned} & {[\text { 'CCATCATTCCCC }} \\ & \text { CTRAATAAATT'] } \end{aligned}$ | 5545 | $\begin{aligned} & {[\text { 'CCATCATTCCCC }} \\ & \text { CTRAATAAATT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_002764.3(PR } \\ & \text { PS1):c.341A>G } \\ & \text { (p.Asnl14Ser) } \end{aligned}$ | 5631 | PRPS1 | 5136 | ['CCAATCTCAGCCA AGCTTGTTGCAART ATGCTATCTGTAGC AGGTGCAGAT'] | 5321 | $\begin{aligned} & {[\text { ['CCAAGCTTGTTG }} \\ & \text { CAARTATGCTA'] } \end{aligned}$ | 5546 | $\begin{aligned} & {[\text { ['CCAAGCTTGTTG }} \\ & \text { CAARTATGCTA'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000054.4(A } \\ & \text { VPR2):c.614A>G } \\ & \text { (p.Tyr205Cys) } \end{aligned}$ | 554 | AVPR2 | 5137 | ['GCGGAGCCCTGGG GCCGTCGCACCTRT GTCACCTGGATTGC CCTGATGGTG'] | 5322 | ['CCTGGGGCCGTC GCACCTRTGTC'] | 5547 | ['CCTGGGGCCGTC GCACCTRTGTC'] |
| NM_000033.3(A BCDI):c.443A>G (p.AsnI48Ser) | 215 | ABCD1 | 5138 | ['ATCGCCCTCCCTGC TACCTTCGTCARCA GTGCCATCCGTTAC CTGGAGGGC'] | $\begin{aligned} & 5323 \\ & - \\ & 5324 \end{aligned}$ | ['CCCTGCTACCTT CGTCARCAGTG', 'CCTGCTACCTTCG TCARCAGTGC'] | $\begin{aligned} & 5548- \\ & 5549 \end{aligned}$ | ['CCCTGCTACCTT CGTCARCAGTG', CCTGCTACCTTCG TCARCAGTGC'] |
| $\begin{aligned} & \text { NM_000061.2(BT } \\ & \text { K):c. } 1082 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr361Cys) } \end{aligned}$ | 695 | BTK | 5139 | ['AGCACCATCCCTG AGCTCATTAACTRC CATCAGCACAACTC TGCAGGTGAG'] | $\begin{aligned} & 5325 \\ & - \\ & 5326 \end{aligned}$ | ['CCCTGAGCTCAT <br> TAACTRCCATC', <br> 'CCTGAGCTCATTA <br> ACTRCCATCA'] | $\begin{aligned} & 5550- \\ & 5551 \end{aligned}$ | ['CCCTGAGCTCAT <br> TAACTRCCATC', <br> 'CCTGAGCTCATTA <br> ACTRCCATCA'] |
| $\begin{aligned} & \text { NM_003413.3(ZI } \\ & \text { C3):c. } 1213 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys405Glu) } \end{aligned}$ | 7547 | ZIC3 | 5140 | ['CTACACGCACCCG AGCTCCCTGCGCRA ACACATGAAGGTAA TTACCTCTTT'] | 5327 | $\begin{aligned} & {[\text { 'CCGAGCTCCCTG }} \\ & \text { CGCRAACACAT'] } \end{aligned}$ | $\begin{aligned} & 5552- \\ & 5553 \end{aligned}$ | ['CCCGAGCTCCCT GCGCRAACACA', 'CCGAGCTCCCTGC GCRAACACAT'] |
| NM_005448.2(B MP15):c.704A>G (p.Tyr235Cys) | 9210 | BMP15 | 5141 | ['TTGGACATTGCCTT CTTGTTACTCTRTTT CAATGATACTCATA AAAGCATT'] | 5328 | $\begin{aligned} & {[\text { ['CCTTCTTGTTACT }} \\ & \text { CTRTTTCAAT'] } \end{aligned}$ | 5554 | ['CCTTCTTGTTACT CTRTTTCAAT'] |
| $\begin{aligned} & \text { NM_001363.4(D } \\ & \mathrm{KC1}): \mathrm{c} .1069 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr357Ala) } \end{aligned}$ | 1736 | DKC1 | 5142 | ['ATTAATGACCACA <br> GCGGTCATCTCTRC <br> CTGCGACCATGGTA <br> TAGTAGCCAA'] | 5329 | ['CCACAGCGGTCA <br> TCTCTRCCTGC'] | 5555 | ['CCACAGCGGTCA <br> TCTCTRCCTGC'] |
| $\begin{aligned} & \text { NM_000481.3(A } \\ & \text { MT):c.125A>G } \\ & \text { (p.His } 42 \mathrm{Arg}) \end{aligned}$ | 275 | AMT | 5143 | ['CGCAGGACACCGC <br> TCTATGACTTCCRCC <br> TGGCCCACGGCGGG <br> AAAATGGTG'] | 5330 | ['CCGCTCTATGAC <br> TTCCRCCTGGC'] | 5556 | ['CCGCTCTATGAC <br> TTCCRCCTGGC" |
| NM_003361.3(U | 7369 | UMOD | 5144 | ['TGCCACGCCCTGG | 5331 | ['CCTGGCCACATG | 5557- | ['CCCTGGCCACAT |


| MOD):c.383A>G (p.Asn128Ser) |  |  |  | CCACATGTGTCART GTGGTGGGCAGCTA CTTGTGCGTA'] |  | TGTCARTGTGG'] | 5558 | $\begin{aligned} & \hline \text { GTGTCARTGTG', } \\ & \text { 'CCTGGCCACATGT } \\ & \text { GTCARTGTGG'] } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001382.3(DP } \\ & \text { AGT1):c.509A>G } \\ & \text { (p.Tyr170Cys) } \end{aligned}$ | 1798 | $\begin{aligned} & \hline \text { DPAG } \\ & \mathrm{T} 1 \end{aligned}$ | 5145 | ['TCTCTCCCCGCAGG <br> AATCCTGTACTRTGT <br> CTACATGGGGCTGC <br> TGGCAGTG'] | 5332 | $\begin{aligned} & \text { ['CCGCAGGAATCC } \\ & \text { TGTACTRTGTC'] } \end{aligned}$ | 5559 | $\begin{aligned} & {[\text { ['CCGCAGGAATCC }} \\ & \hline \text { TGTACTRTGTC'] } \end{aligned}$ |
| NM_001128177.1 (THRB):c.1324A $>G$ (p.Met442Val) | 7068 | THRB | 5146 | ['CTGCCATGCCAGC CGCTTCCTGCACRT GAAGGTGGAATGCC CCACAGAACT'] | 5333 | $\begin{aligned} & \text { ['CCAGCCGCTTCC } \\ & \text { TGCACRTGAAG'] } \end{aligned}$ | 5560 | $\begin{array}{\|l\|} \hline \text { ['CCAGCCGCTTCC } \\ \hline \text { TGCACRTGAAG'] } \end{array}$ |
| $\begin{aligned} & \text { NM_000141.4(FG } \\ & \text { FR2):c. } 874 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys292Glu) } \end{aligned}$ | 2263 | FGFR2 | 5147 | ['TGCCCAGCCCCAC ATCCAGTGGATCRA GCACGTGGAAAAGA ACGGCAGTAA'] | 5334 | $\begin{aligned} & \text { ['CCCACATCCAGT } \\ & \text { GGATCRAGCAC'] } \end{aligned}$ | $\begin{aligned} & 5561- \\ & 5563 \end{aligned}$ | ['CCCCACATCCAG <br> TGGATCRAGCA', <br> 'CCCACATCCAGT <br> GGATCRAGCAC", <br> CCACATCCAGTG <br> GATCRAGCACG'] |
| NM_000371.3(TT <br> R):c.401A>G <br> (p.Tyr134Cys) | 7276 | TTR | 5148 | ['ACCATTGCCGCCCT GCTGAGCCCCTRCT CCTATTCCACCACG GCTGTCGTC'] | $5335$ $5337$ | ['CCGCCCTGCTGA <br> GCCCCTRCTCC', <br> 'CCCTGCTGAGCCC <br> CTRCTCCTAT', <br> 'CCTGCTGAGCCCC <br> TRCTCCTATT'] | $\begin{aligned} & \text { 5564- } \\ & 5566 \end{aligned}$ | ['CCGCCCTGCTGA GCCCCTRCTCC", 'CCCTGCTGAGCCC CTRCTCCTAT', CCTGCTGAGCCCC TRCTCCTATT'] |
| NM_000371.3(TT <br> R):c.379A>G <br> (p.Ile127Val) | 7276 | TTR | 5149 | ['CGACTCCGGCCCC CGCCGCTACACCRT TGCCGCCCTGCTGA GCCCCTACTC'] | 5338 | $\left[\begin{array}{l} {[\text { 'CCCCCGCCGCTA }} \\ \text { CACCRTTGCCG'] } \end{array}\right.$ | $\begin{aligned} & 5567- \\ & 5569 \end{aligned}$ | ['CCCCCGCCGCTA CACCRTTGCCG', 'CCCCGCCGCTAC ACCRTTGCCGC', CCCGCCGCTACA CCRTTGCCGCC'] |
| NM_000174.4(GP 9):c.182A $>\mathrm{G}$ (p.Asn61Ser) | 2815 | GP9 | 5150 | ['ACCCGCCACCTTCT GCTGGCCAACARCA GCCTTCAGTCCGTG CCCCCGGGA'] | 5339 | ['CCTTCTGCTGGC CAACARCAGCC'] | 5570 | ['CCTTCTGCTGGC CAACARCAGCC'] |
| $\begin{aligned} & \text { NM_000222.2(KI } \\ & \text { T):c. 1924A>G } \\ & \text { (p.Lys642Glu) } \end{aligned}$ | 3815 | KIT | 5151 | ['ACGGGAAGCCCTC <br> ATGTCTGAACTCRA <br> AGTCCTGAGTTACC <br> TTGGTAATCA'] | $5340$ $5341$ | ['CCCTCATGTCTG AACTCRAAGTC', 'CCTCATGTCTGAA CTCRAAGTCC'] | $\begin{aligned} & 5571- \\ & 5572 \end{aligned}$ | ['CCCTCATGTCTG AACTCRAAGTC', 'CCTCATGTCTGAA CTCRAAGTCC'] |
| NM_000530.6(M <br> PZ):c. $242 \mathrm{~A}>\mathrm{G}$ <br> (p.His81Arg) | 4359 | MPZ | 5152 | ['TCCCCTCATTCCTC <br> ATAGATCTTCCRCT ATGCCAAGGGACAA CCCTACATT'] | 5342 | ['CCTCATAGATCT TCCRCTATGCC'] | 5573 | $\begin{aligned} & \text { ['CCTCATAGATCT } \\ & \text { TCCRCTATGCC'] } \end{aligned}$ |
| NM_000233.3(L <br> HCGR):c.1733A> <br> G (p.Asp578Gly) | -1 | - | 5153 | ['AAAATGGCAATCC <br> TCATCTTCACCGRTT <br> TCACCTGCATGGCA | 5343 | $\begin{aligned} & {[\text { ['CCTCATCTTCAC }} \\ & \text { CGRTTTCACCT'] } \end{aligned}$ | 5574 | $\begin{aligned} & \text { ['CCTCATCTTCAC } \\ & \text { CGRTTTCACCT'] } \end{aligned}$ |

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline & & & & \text { CCTATCTCT'] } & & & \\ \hline \begin{array}{l}\text { NM_000421.3(K } \\ \text { RT10):c.1374- } \\ \text { 2A>G }\end{array} & -1 & - & 5154 & \text { ['CCGCCGCGTCCGC } & 5344 & \text { ['CCGCCGCCTCCG } \\ \text { CGCCTCCGGAACYA }\end{array}\right)$

|  |  |  |  | [CCAGGCTT'] |  | [ACCYTGATG'] |  | TACCYTGATG', 'CCTCACCCAATCT ACCYTGATGG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_001844.4(C <br> OL2A1):c.4172A <br> $>$ >G <br> (p.Tyr1391Cys) | 1280 | $\begin{aligned} & \text { COL2A } \\ & 1 \end{aligned}$ | 5164 | ['ACGGAAGGCTCCC AGAACATCACCTRC CACTGCAAGAACAG CATTGCCTAT'] | $5358$ $5359$ | ['CCCAGAACATCA CCTRCCACTGC', 'CCAGAACATCAC CTRCCACTGCA'] | $\begin{aligned} & 5594- \\ & 5595 \end{aligned}$ | ['CCCAGAACATCA CCTRCCACTGC', 'CCAGAACATCAC CTRCCACTGCA'] |
| NM_001904.3(CT NNB1):c.121A $>\mathrm{G}$ (p.Thr41Ala) | 1499 | CTNN <br> B1 | 5165 | ['CTCTGGAATCCATT CTGGTGCCACTNCC ACAGCTCCTTCTCTG AGTGGTAA'] | 5360 | ['CCATTCTGGTGC CACTNCCACAG'] | 5596 | ['CCATTCTGGTGC CACTNCCACAG'] |
| NM_000040.1(AP OC3):c.280A>G (p.Thr94Ala) | 345 | APOC3 | 5166 | ['GGATTTGGACCCT <br> GAGGTCAGACCARC <br> TTCAGCCGTGGCTG <br> CCTGAGACCT'] | $5361$ $5362$ | ['CCCTGAGGTCAG ACCARCTTCAG', 'CCTGAGGTCAGA CCARCTTCAGC'] | $\begin{aligned} & 5597- \\ & 5598 \end{aligned}$ | ['CCCTGAGGTCAG ACCARCTTCAG', 'CCTGAGGTCAGA CCARCTTCAGC'] |
| NM_000488.3(SE <br> RPINC1):c.655A <br> $>$ G <br> (p.Asn219Asp) | 462 | $\begin{aligned} & \hline \text { SERPI } \\ & \text { NC1 } \end{aligned}$ | 5167 | ['TGCAGAGCAATCC AGAGCGGCCATCRA CAAATGGGTGTCCA ATAAGACCGA'] | 5363 | ['CCAGAGCGGCCA <br> TCRACAAATGG'] | 5599 | $\begin{aligned} & \hline \text { ['CCAGAGCGGCCA } \\ & \text { TCRACAAATGG'] } \end{aligned}$ |
| NM_001085.4(SE <br> RPINA3):c. 1240 <br> A>G <br> (p.Met414Val) | 12 | $\begin{aligned} & \text { SERPI } \\ & \text { NA3 } \end{aligned}$ | 5168 | ['TACAGACACCCAG AACATCTTCTTCRTG AGCAAAGTCACCAA TCCCAAGCA'] | 5364 | ['CCCAGAACATCT <br> TCTTCRTGAGC'] | $\begin{aligned} & 5600- \\ & 5601 \end{aligned}$ | ['CCCAGAACATCT <br> TCTTCRTGAGC', <br> ICCAGAACATCTTC <br> ITCRTGAGCA'] |
| $\begin{aligned} & \text { NM_001145.4(A } \\ & \text { NG):c. } 121 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys41Glu) } \end{aligned}$ | -1 |  | 5169 | ['CTTCCTGACCCAGC ACTATGATGCCRAA CCACAGGGCCGGGA TGACAGATA'] | 5365 | ['CCAGCACTATGA TGCCRAACCAC'] | $\begin{aligned} & 5602- \\ & 5603 \end{aligned}$ | ['CCCAGCACTATG ATGCCRAACCA', 'CCAGCACTATGA TGCCRAACCAC' |
| $\begin{aligned} & \text { NM_001100.3(A } \\ & \text { CTA1):c.350A>G } \\ & \text { (p.Asn1 17Ser) } \end{aligned}$ | 58 | ACTAI | 5170 | ['GAGGCCCCCCTCA ATCCCAAGGCCARC CGCGAGAAGATGAC CCAGATCATG'] | 5366 | ['CCTCAATCCCAA GGCCARCCGCG'] | $\begin{aligned} & 5604- \\ & 5605 \end{aligned}$ | ['CCCTCAATCCCA AGGCCARCCGC', 'CCTCAATCCCAA GGCCARCCGCG'] |
| NM_014053.3(FL VCR1):c.361A $>G$ (p.Asn121Asp) | $\begin{aligned} & 2898 \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline \text { FLVCR } \\ & 1 \end{aligned}$ | 5171 | ['GATCTTCAGCCTGT ACTCGCTGGTCRAC GCCTTTCAGTGGAT CCAGTACAG'] | 5367 | ['CCTGTACTCGCT GGTCRACGCCT'] | 5606 | ['CCTGTACTCGCT GGTCRACGCCT'] |
| $\begin{aligned} & \hline \text { NM_000334.4(SC } \\ & \text { N4A):c.4078A>G } \\ & \text { (p.Met1360Val) } \end{aligned}$ | 6329 | SCN4A | 5172 | ['GAAGCAGGCCTTC GACATCACCATCRT GATCCTCATCTGCCT CAACATGGT'] | 5368 | ['CCTTCGACATCA <br> CCATCRTGATC'] | 5607 | ['CCTTCGACATCA <br> CCATCRTGATC'] |
| NM_004519.3(K <br> CNQ3):c.1403A> <br> G (p.Asn468Ser) | 3786 | $\begin{aligned} & \mathrm{KCNQ} \\ & 3 \end{aligned}$ | 5173 | ['GAACCAAAGCCTG <br> TTGGCTTAAACART <br> AAAGAGCGTTTCCG <br> CACGGCCTTC'] | 5369 | ['CCTGTTGGCTTA AACARTAAAGA'] | 5608 | ['CCTGTTGGCTTA AACARTAAAGA'] |
| NM_007375.3(T | 2343 | TARD | 5174 | ['AATGCCGAACCTA | 5370 | ['CCTAAGCACAAT | 5609 | ['CCTAAGCACAAT |


| $\begin{aligned} & \text { ARDBP):c.800A> } \\ & \text { G (p.Asn267Ser) } \end{aligned}$ | 5 | BP |  | AGCACAATAGCART <br> AGACAGTTAGAAAG <br> AAGTGGAAGA'] |  | AGCARTAGACA'] |  | AGCARTAGACA'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_032520.4(G } \\ & \text { NPTG):c.610- } \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | $\begin{aligned} & 8457 \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { GNPT } \\ & \text { G } \end{aligned}$ | 5175 | ['TGCTGCCCCTGCAT CCTCCACCTTCRGG GCCATGAGAAGTTG CTGAGGACA'] | 5371 | ['CCTGCATCCTCC | 5610 | $\begin{aligned} & {[\text { [CCTGCATCCTCC }} \\ & \text { ACCTTCRGGGC'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000495.4(C } \\ & \text { OL4A5):c.466- } \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 1287 | $\begin{aligned} & \text { COL4A } \\ & 5 \end{aligned}$ | 5176 | ['AGAACTTCCATTG ATGGCTTCTTTTRGG GTGAACCAGGTAGT ATAATTATG'] | 5372 | $\begin{aligned} & \text { ['CCATTGATGGCT } \\ & \text { TCTTTTRGGGT'] } \end{aligned}$ | 5611 | $\begin{aligned} & \text { ['CCATTGATGGCT } \\ & \text { TCTTTTRGGGT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000495.4(C } \\ & \text { OL4A5):c. } 1340- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 1287 | $\begin{aligned} & \text { COL4A } \\ & 5 \end{aligned}$ | 5177 | ['TTGCTATCCTTTCT <br> TTATCTTACTCRGGT <br> GATGAGATATGTGA <br> ACCAGGCC"] | 5373 | ['CCTTTCTTTATCT TACTCRGGTG'] | 5612 | ['CCTTTCTTTATCT TACTCRGGTG'] |
| NM_000060.3(BT D):c.278A>G (p.Tyr93Cys) | 686 | BTD | 5178 | ['CTCATGAACCAGA ACCTTGACATCTRT GAACAGCAAGTGAT GACTGCAGCC'] | 5374 | $\left[\begin{array}{l} {[\text { 'CCAGAACCTTGA }} \\ \text { CATCTRTGAAC'] } \end{array}\right.$ | 5613 | $\begin{aligned} & {[\text { ['CCAGAACCTTGA }} \\ & \text { CATCTRTGAAC'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000060.3(BT } \\ & \text { D):c.641A>G } \\ & \text { (p.Asn214Ser) } \end{aligned}$ | 686 | BTD | 5179 | ['CTTGTTGACCGCTA CCGTAAACACARCC TCTACTTTGAGGCA GCATTCGAT'] | 5375 | ['CCGCTACCGTAA <br> ACACARCCTCT'] | 5614 | ['CCGCTACCGTAA <br> ACACARCCTCT'] |
| NM_000094.3(C <br> OL7A1):c.425A> <br> G (p.Lys142Arg) | 1294 | $\begin{aligned} & \text { COL7A } \\ & 1 \end{aligned}$ | 5180 | ['CAGCTGGCCCGAC <br> CTGGTGTCCCCARG <br> GTGATCCCTACCCC <br> TACCATGCCT'] | 5376 | $\begin{aligned} & \text { ['CCCGACCTGGTG } \\ & \text { TCCCCARGGTG'] } \end{aligned}$ | $\begin{aligned} & 5615- \\ & 5616 \end{aligned}$ | ['CCCGACCTGGTG TCCCCARGGTG', 'CCGACCTGGTGTC CCCARGGTGA'] |
| $\begin{aligned} & \text { NM_005247.2(FG } \\ & \text { F3):c.146A>G } \\ & \text { (p.Tyr49Cys) } \end{aligned}$ | 2248 | FGF3 | 5181 | ['GGGGCGCCCCGGC GCCGCAAGCTCTRC TGCGCCACGAAGTA CCACCTCCAG ${ }^{\prime}$ | $\begin{aligned} & \hline 5377 \\ & - \\ & 5378 \end{aligned}$ | ['CCCGGCGCCGCA <br> AGCTCTRCTGC', <br> 'CCGGCGCCGCAA <br> GCTCTRCTGCG'] | $\begin{aligned} & \hline 5617- \\ & 5618 \end{aligned}$ | $\begin{aligned} & \text { ['CCCGGCGCCGCA } \\ & \text { AGCTCTRCTGC', } \\ & \text { 'CCGGCGCCGCAA } \\ & \text { GCTCTRCTGCG'] } \end{aligned}$ |
| NM_000313.3(PR OS1):c.701A>G (p.Tyr234Cys) | 5627 | PROS1 | 5182 | ['TGTGAATGCCCCG AAGGCTACAGATRT AATCTCAAATCAAA GTCTTGTGAA'] | $\begin{aligned} & \hline 5379 \\ & - \\ & 5380 \end{aligned}$ | ['CCCGAAGGCTAC <br> AGATRTAATCT', <br> 'CCGAAGGCTACA <br> GATRTAATCTC'] | $\begin{aligned} & 5619- \\ & 5621 \end{aligned}$ | ['CCCCGAAGGCTA <br> CAGATRTAATC', <br> CCCGAAGGCTAC <br> AGATRTAATCT', <br> CCGAAGGCTACA <br> GATRTAATCTC'] |
| NM_004612.3(T GFBRI):c.134A> G (p.Asn45Ser) | 7046 | $\begin{aligned} & \text { TGFBR } \\ & 1 \end{aligned}$ | 5183 | ['TTCTGCCACCTCTG <br> TACAAAAGACARTT <br> TTACTTGTGTGACA <br> GATGGGCTC'] | 5381 | ['CCTCTGTACAAA AGACARTTTTA'] | 5622 | $\begin{aligned} & {[\text { ['CCTCTGTACAAA }} \\ & \text { AGACARTTTTA'] } \end{aligned}$ |
| m. $608 \mathrm{~A}>\mathrm{G}$ | 4558 | MT-TF | 5184 | ['GTAGCTTACCTCCT CAAAGCAATACRCT GAAAATGTTTAGAC | 5382 | ['CCTCCTCAAAGC AATACRCTGAA'] | $\begin{aligned} & 5623- \\ & 5624 \end{aligned}$ | ['CCTCCTCAAAGC AATACRCTGAA', CCTCAAAGCAAT |


|  |  |  |  | GGGCTCACA'] |  |  |  | ACRCTGAAAAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001376.4(D } \\ & \text { YNC1H1):c.2909 } \\ & \text { A>G } \\ & \text { (p.Tyr970Cys) } \end{aligned}$ | 1778 | $\begin{aligned} & \hline \text { DYNC } \\ & 1 \mathrm{Hı} \end{aligned}$ | 5185 | ['CTAAGAATAACCA ATCAGGTAATCTRC TTGAATCCACCAAT TGAAGAGTGC'] | 5383 | ['CCAATCAGGTAA <br> TCTRCTTGAAT'] | 5625 | ['CCAATCAGGTAA <br> TCTRCTTGAAT'] |
| $\begin{aligned} & \text { NM_000459.4(TE } \\ & \text { K):c.2690A>G } \\ & \text { (p.Tyr897Cys) } \end{aligned}$ | 7010 | TEK | 5186 | ['ATGCTCTCTTCCTT CCCTCCAGGCTVCT TGTACCTGGCCATT GAGTACGCG'] | 5384 | ['CCTTCCCTCCAG GCTVCTTGTAC'] | 5626 | $\left[\begin{array}{l} {[' C C T T C C C T C C A G ~} \\ \text { GCTVCTTGTAC'] } \end{array}\right.$ |
| $\begin{aligned} & \text { NM_014191.3(SC } \\ & \text { N8A):c.5302A>G } \\ & \text { (p.Asn1768Asp) } \end{aligned}$ | 6334 | SCN8A | 5187 | ['CATGTACATTGCCA TCATCCTGGAGRAC TTCAGTGTAGCCAC AGAGGAAAG'] | 5385 | ['CCATCATCCTGG AGRACTTCAGT'] | 5627 | $\begin{aligned} & \text { ['CCATCATCCTGG } \\ & \text { AGRACTTCAGT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_002552.4(O } \\ & \text { RC4):c.521A>G } \\ & \text { (p.Tyr174Cys) } \end{aligned}$ | 5000 | ORC4 | 5188 | ['CATCATAAAAACC AAACACTTCTCTRT AATCTTTTTGACATT TCTCAGTCT'] | 5386 | $\begin{aligned} & \text { ['CCAAACACTTCT } \\ & \text { CTRTAATCTTT'] } \end{aligned}$ | 5628 | $\begin{aligned} & \text { ['CCAAACACTTCT } \\ & \text { CTRTAATCTTT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_004813.2(PE } \\ & \text { X16):c.992A>G } \\ & \text { (p.Tyr331Cys) } \end{aligned}$ | 9409 | PEX16 | 5189 | ['TACTTGCCCACCTG GCAGAAAATCTRCT TCTACAGTTGGGGC TGACAGACC'] | $5387$ $5388$ | ['CCACCTGGCAGA <br> AAATCTRCTTC', <br> 'CCTGGCAGAAAA <br> TCTRCTTCTAC'] | $\begin{aligned} & \hline 5629- \\ & 5630 \end{aligned}$ | ['CCACCTGGCAGA <br> AAATCTRCTTC', <br> CCTGGCAGAAAA <br> TCTRCTTCTAC"] |
| $\begin{aligned} & \hline \text { NM_016952.4(C } \\ & \text { DON):c.2368A>G } \\ & \text { (p.Thr790Ala) } \end{aligned}$ | $\begin{aligned} & 5093 \\ & 7 \end{aligned}$ | CDON | 5190 | ['GTTTTTGTTTTCCC <br> ICAAAGGTTCARCA <br> TACAAATTTAGGGT <br> CATTGCCAT'] | 5389 | ['CCCTCAAAGGTT CARCATACAAA'] | 5631 | $\begin{aligned} & \text { ['CCCTCAAAGGTT } \\ & \text { CARCATACAAA'] } \end{aligned}$ |
| NM_016464.4(T <br> MEM138):c.287A <br> $>$ G (p.His96Arg) | 5152 4 | $\begin{aligned} & \hline \text { TMEM } \\ & 138 \end{aligned}$ | 5191 | ['TACTTTGCCCTCAG CATCTCCCTTCRTGT CTGGGTCATGGTAA GAGTGGCA'] | $5390$ $5391$ | ['CCCTCAGCATCT CCCTTCRTGTC", 'CCTCAGCATCTCC CTTCRTGTCT'] | $\begin{aligned} & 5632- \\ & 5633 \end{aligned}$ | ['CCCTCAGCATCT CCCTTCRTGTC', CCTCAGCATCTCC CTTCRTGTCT'] |
| $\begin{aligned} & \text { NM_005022.3(PF } \\ & \text { N1):c.350A>G } \\ & \text { (p.Glu117Gly) } \end{aligned}$ | 5216 | PFN1 | 5192 | ['GTTGATCAAACCA CCGTGGACACCTYC TTTGCCCATCAGCA GGACTAGCGC'] | 5392 | ['CCACCGTGGACA CCTYCTTTGCC'] | 5634 | $\left[\begin{array}{l} \text { ['CCACCGTGGACA } \\ \text { ССТYСTTTGCC'] } \end{array}\right.$ |
| NM_022787.3(N <br> MNAT1):c.817A <br> $>\mathrm{G}$ <br> (p.Asn273Asp) | $\begin{aligned} & 6480 \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline \text { NMNA } \\ & \text { TI } \end{aligned}$ | 5193 | ['GGTCATCCTGGCCC CTTTGCAGAGARAC ACTGCAGAAGCTAA GACATAGGA'] | 5393 | ['CCCCTTTGCAGA GARACACTGCA'] | 5635 | ['CCCCTTTGCAGA GARACACTGCA'] |
| NM_005340.6(HI NT1):c.152A $>\mathrm{G}$ (p.His51Arg) | 3094 | HINT1 | 5194 | ['GACATTTCCCCTCA AGCACCAACACRTT TTCTGGTGATACCC AAGAAACAT'] | $\begin{aligned} & \hline 5394 \\ & - \\ & 5396 \end{aligned}$ | ['CCCCTCAAGCAC <br> CAACACRTTTT', <br> 'CCCTCAAGCACC <br> AACACRTTTTC', <br> 'CCTCAAGCACCA <br> ACACRTTTTCT'] | $\begin{array}{\|l\|} \hline 5636- \\ 5638 \end{array}$ | ['CCCCTCAAGCAC <br> CAACACRTTTT', <br> 'CCCTCAAGCACC <br> AACACRTTTTC", <br> CCTCAAGCACCA <br> ACACRTTTTCT'] |
| NM_005211.3(CS | 1436 | CSF1R | 5195 | ['GACTAACCCTGCA | 5397 | ['CCTGCAGTGCTT | 5639 | ['CCTGCAGTGCTT |


| $\begin{aligned} & \text { FIR):c. } 2320- \\ & 2 A>G \end{aligned}$ |  |  |  | GTGCTTTCCCTCRGT <br> GCATCCACCGGGAC <br> GTGGCAGCG'] |  | TCCCTCRGTGC'] |  | TCCCTCRGTGC'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001039958.1 } \\ & \text { MESP2):c.271A } \\ & >\mathrm{G} \text { (p.Lys91Glu) } \end{aligned}$ | $\begin{aligned} & 1458 \\ & 73 \end{aligned}$ | MESP2 | 5196 | ['GCGGCAGAGCGCC AGCGAGCGGGAGRA ACTGCGCATGCGCA CGCTGGCCCG'] | 5398 | ['CCAGCGAGCGGG | 5640 | ['CCAGCGAGCGGG <br> AGRAACTGCGC'] |
| NM_001099274.1 (TINF2):c.850A> G (p.Thr284Ala) | $\begin{aligned} & 2627 \\ & 7 \end{aligned}$ | TINF2 | 5197 | ['TAGGGGAGGCCAT AAGGAGCGCCCCRC AGTCATGCTGTTTCC CTTTAGGAA'] | 5399 | $\begin{aligned} & {[\text { 'CCATAAGGAGCG }} \\ & \text { CCCCRCAGTCA' }] \end{aligned}$ | 5641 | ['CCATAAGGAGCG CCCCRCAGTCA'] |
| $\begin{aligned} & \text { NM_003863.3(DP } \\ & \text { M2):c.68A>G } \\ & \text { (p.Tyr23Cys) } \end{aligned}$ | 8818 | DPM2 | 5198 | ['GCCGTTAGCCTGAT CATCTTCACCTRCTA CACCGCCTGGGTGA TTCTCTTG'] | 5400 | $\left[\begin{array}{l} {[' C C T G A T C A T C T T ~} \\ \text { CACCTRCTACA'] } \end{array}\right.$ | 5642 | $\begin{aligned} & \text { ['CCTGATCATCTT } \\ & \text { CACCTRCTACA'] } \end{aligned}$ |
| NM_000530.6(M <br> PZ):c. $347 \mathrm{~A}>\mathrm{G}$ <br> (p.Asnl 16Ser) | 4359 | MPZ | 5199 | ['AAGGATGGCTCCA TTGTCATACACARC CTAGACTACAGTGA CAATGGCACG'] | 5401 | ['CCATTGTCATAC | 5643 | ['CCATTGTCATAC <br> ACARCCTAGAC'] |
| NM_000138.4(FB N1):c.3058A>G (p.Thr1020Ala) | 2200 | FBN1 | 5200 | ['ACCCGGATTTGCC ACAAAAGAAATTRC AAATGGAAAGCCTT TCTTCAAAGG'] | 5402 | ['CCACAAAAGAA | 5644 | $\left[\begin{array}{l} {[' C C A C A A A A G A A} \\ \text { ATTRCAAATGGA'] } \end{array}\right.$ |
| NM_000169.2(G <br> LA):c.1153A $>G$ <br> (p.Thr385Ala) | -1 |  | 5201 | ['GGCCTGTAATCCTG CCTGCTTCATCRCAC AGCTCCTCCCTGTG AAAAGGAA' | 5403 | $\begin{aligned} & \text { ['CCTGCCTGCTTC } \\ & \text { ATCRCACAGCT'] } \end{aligned}$ | 5645 | $\begin{aligned} & \text { ['CCTGCCTGCTTC } \\ & \text { ATCRCACAGCT'] } \end{aligned}$ |
| NM_000257.3(M YH7):c.2206A>G (p.Ile736Val) | 4625 | MYH7 | 5202 | ['AGCGGCCATCCCT GAGGGACAGTTCRT TGATAGCAGGAAGG GGGCAGAGAA'] | 5404 | $\begin{aligned} & \text { ['CCCTGAGGGACA } \\ & \text { GTTCRTTGATA'] } \end{aligned}$ | $\begin{aligned} & 5646- \\ & 5647 \end{aligned}$ | ['CCCTGAGGGACA <br> GTTCRTTGATA', <br> [CCTGAGGGACAG <br> TTCRTTGATAG'] |
| NM_018972.2(G DAP1):c.368A>G (p.His123Arg) | 5433 | GDAP1 | 5203 | ['AGCATGTATTACCC ACGGGTACAACRTT ACCGAGAGCTGCTT GACTCCTTG'] | 5405 | ['CCCACGGGTACA <br> ACRTTACCGAG'] | 5648 | ['CCCACGGGTACA <br> ACRTTACCGAG'] |
| $\begin{aligned} & \text { NM_001946.3(D } \\ & \text { USP6):c.566A>G } \\ & \text { (p.Asn189Ser) } \end{aligned}$ | 1848 | DUSP6 | 5204 | ['ACTACCATCCGAG TCTGTTGCACTAYTG GGGTCTCGGTCAAG GTCAGACTC'] | 5406 | $\left[\begin{array}{l} {[' C C G A G T C T G T T G ~} \\ \text { CACTAYTGGGG'] } \end{array}\right.$ | 5649 | $\left[\begin{array}{l} \text { ['CCGAGTCTGTTG } \\ \text { CACTAYTGGGG'] } \end{array}\right.$ |
| NM_003867.3(FG F17):c.560A>G (p.Asn187Ser) | 8822 | FGF17 | 5205 | ['TACCAAGGCCAGC TGCCCTTCCCCARCC ACGCCGAGAAGCAG AAGCAGTTC'] | 5407 | $\left[\begin{array}{l} {[' C C A G C T G C C C T T ~} \\ \text { CCCCARCCACG'] } \end{array}\right.$ | 5650 | $\left[\begin{array}{l} \text { ['CCAGCTGCCCTT } \\ \text { CCCCARCCACG'] } \end{array}\right.$ |
| NM_015560.2(OP | 4976 | OPA1 | 5206 | ['TTTTTATTTTTCCT | 5408 | ['CCTGAGTAGACC | 5651 | ['CCTGAGTAGACC |

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Al):c.1146A>G } \\ \text { (p.Ile382Met) }\end{array} & & & & \begin{array}{l}\text { GAGTAGACCATRTC } \\ \text { CTTAAATGTAAAAG }\end{array} & & \text { ATRTCCTTAAA'] } & & \text { ATRTCCTTAAA'] } \\ \text { GCCCTGGAC'] }\end{array}\right]$

|  |  |  |  | GAGATGGAATAARG CCCTTGAACCAGCC CTGCTGTGCC'] |  | GAATAARGCCC'] |  | GAATAARGCCC'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000784.3(C <br> YP27A1):c. 1061 <br> A>G <br> (p.Asp354Gly) | 1593 | $\begin{aligned} & \text { CYP27 } \\ & \text { A1 } \end{aligned}$ | 5217 | $\begin{aligned} & {[\text { 'TGGGCCCTGTACC }} \\ & \text { ACCTCTCAAAGGRC } \\ & \text { CCTGAGATCCAGGA } \\ & \text { GGCCTTGCAC'] } \end{aligned}$ | 5419 | $\left[\begin{array}{l} {[' C C A C C T C T C A A A} \\ \text { GGRCCCTGAGA'] } \end{array}\right.$ | 5669 | ['CCACCTCTCAAA GGRCCCTGAGA'] |
| $\begin{aligned} & \text { NM_000540.2(R } \\ & \text { YR1):c.14572A> } \\ & \text { G } \\ & \text { (p.Asn4858Asp) } \end{aligned}$ | 6261 | RYRI | 5218 | ['CTACCTGTACACCG <br> TGGTGGCCTTCRAC <br> TTCTTCCGCAAGTTC <br> TACAACAA'] | 5420 | $\begin{aligned} & \text { ['CCGTGGTGGCCT } \\ & \text { TCRACTTCTTC'] } \end{aligned}$ | 5670 | ['CCGTGGTGGCCT <br> TCRACTTCTTC'] |
| NM_000238.3(K CNH2):c.1478A> G (p.Tyr493Cys) | 3757 | $\begin{aligned} & \mathrm{KCNH} \\ & 2 \end{aligned}$ | 5219 | ['CACCCCGGCCGCA <br> TCGCCGTCCACTNC <br> TTCAAGGGCTGGTT <br> CCTCATCGAC'] | 5421 | $\left[\begin{array}{l} {[' C C G C A T C G C C G T ~} \\ \text { CCACTNCTTCA'] } \end{array}\right.$ | 5671 | $\begin{aligned} & {[\text { ['CCGCATCGCCGT }} \\ & \text { CCACTNCTTCA'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000335.4(SC } \\ & \text { N5A) }: \text { c. } 688 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile230Val) } \end{aligned}$ | 6331 | SCN5A | 5220 | ['CCGAGTCCTCCGG GCCCTGAAAACTRT ATCAGTCATTTCAG GTGAAAATCA'] | 5422 | $\left[\begin{array}{l} {[' C C G G G C C C T G A A ~} \\ \text { AACTRTATCAG'] } \end{array}\right.$ | 5672 | ['CCGGGCCCTGAA <br> AACTRTATCAG'] |
| NM_000169.2(G LA): c. $548-2 \mathrm{~A}>\mathrm{G}$ | -1 | - | 5221 | ['TATTTTACCCATTG <br> TTTTCTCATACRGGT <br> TATAAGCACATGTC <br> CTTGGCCC'] | 5423 | ['CCCATTGTTTTCT CATACRGGTT'] | $\begin{aligned} & 5673- \\ & 5674 \end{aligned}$ | ['CCCATTGTTTTCT CATACRGGTT', 'CCATTGTTTTCTC ATACRGGTTA'] |
| $\begin{aligned} & \text { NM_000146.3(FT } \\ & \text { L):c.1A>G } \\ & \text { (p.MetI Val) } \end{aligned}$ | 2512 | FTL | 5222 | ['GTTAGCTCCTTCTT <br> GCCAACCAACCRTG <br> AGCTCCCAGATTCG <br> TCAGAATTA'] | 5424 | ['CCTTCTTGCCAA | 5675 | $[$ [CCTTCTTGCCAA CCAACCRTGAG'] |
| NM_000531.5(O <br> TC):c. $1034 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr345Cys) | 5009 | OTC | 5223 | ['GTCATGGTGTCCCT GCTGACAGATTRCT CACCTCAGCTCCAG AAGCCTAAA'] | $\begin{aligned} & 5425 \\ & - \\ & 5426 \end{aligned}$ | ['CCCTGCTGACAG <br> ATTRCTCACCT', <br> 'CCTGCTGACAGA <br> TTRCTCACCTC'] | $\begin{aligned} & 5676- \\ & 5677 \end{aligned}$ | ['CCCTGCTGACAG <br> ATTRCTCACCT', <br> 'CCTGCTGACAGA <br> TTRCTCACCTC'] |
| $\begin{aligned} & \text { NM_000531.5(O } \\ & \text { TC):c.350A>G } \\ & \text { (p.His117Arg) } \end{aligned}$ | 5009 | OTC | 5224 | ['TGTTTTCTTACCAC <br> ACAAGATATTCDTT <br> IGGGTGTGAATGAA <br> AGTCTCACG'] | 5427 | ['CCACACAAGATA <br> TTCDTTTGGGT'] | 5678 | ['CCACACAAGATA <br> TTCDTTTGGGT'] |
| $\begin{aligned} & \text { NM_000531.5(O } \\ & \text { TC):c. } 524 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp175Gly) } \end{aligned}$ | 5009 | OTC | 5225 | ['TACCATCCTATCCA GATCCTGGCTGDTT ACCTCACGCTCCAG GTTGGTTTA'] | 5428 | $\begin{aligned} & {[\text { ['CCAGATCCTGGC }} \\ & \hline \text { TGDTTACCTCA'] } \end{aligned}$ | 5679 | ['CCAGATCCTGGC TGDTTACCTCA'] |
| $\begin{aligned} & \text { NM_000531.5(O } \\ & \text { TC):c. } 527 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr176Cys) } \end{aligned}$ | 5009 | OTC | 5226 | ['CATCCTATCCAGAT CCTGGCTGATTRCCT CACGCTCCAGGTTG GTTTATTT'] | 5429 | $\begin{aligned} & \text { ['CCAGATCCTGGC } \\ & \text { TGATTRCCTCA'] } \end{aligned}$ | 5680 | $\begin{aligned} & \text { ['CCAGATCCTGGC } \\ & \text { TGATTRCCTCA'] } \end{aligned}$ |
| NM_000531.5(O | 5009 | OTC | 5227 | ['TCTCCTTCATCCCG | 5430 | ['CCGTGCCTTTTA | 5681- | ['CCCGTGCCTTTT |


| $\begin{aligned} & \mathrm{TC}): \mathrm{c} .542 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu181Gly) } \end{aligned}$ |  |  |  | TGCCTTTTAGGRAC <br> ACTATAGCTCTCTG <br> AAAGGTCTT'] |  | GGRACACTATA'] | 5682 | AGGRACACTAT', 'CCGTGCCTTTTAG GRACACTATA'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_024301.4(FK } \\ & \text { RP):c.1A>G } \\ & \text { (p.MetIVal) } \end{aligned}$ | $\begin{aligned} & 7914 \\ & 7 \end{aligned}$ | FKRP | 5228 | ['CCAGCTAGCCCCA GACTTCGGCCCCRT GCGGCTCACCCGCT GCCAGGCTGC'] | 5431 | $\begin{aligned} & {[\text { ['CCCCAGACTTCG }} \\ & \text { GCCCCRTGCGG'] } \end{aligned}$ | $\begin{aligned} & 5683- \\ & 5685 \end{aligned}$ | ['CCCCAGACTTCG GCCCCRTGCGG', 'CCCAGACTTCGG CCCCRTGCGGC", CCAGACTTCGGC CCCRTGCGGCT'] |
| NM_000321.2(R <br> B1):c.1927A>G <br> (p.Lys643Glu) | 5925 | RB1 | 5229 | ['AGCCTTCCAGACC CAGAAGCCATTGRA ATCTACCTCTCTTTC ACTGTTTTA'] | 5432 | ['CCCAGAAGCCAT TGRAATCTACC'] | 5686 | $\begin{aligned} & \text { ['CCCAGAAGCCAT } \\ & \text { TGRAATCTACC'] } \end{aligned}$ |
| NM_015713.4(R <br> RM2B):c.581A> <br> G (p.Glu194Gly) | $\begin{aligned} & 5048 \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { RRM2 } \\ & \text { B } \end{aligned}$ | 5230 | ['AAAAGATCCTGAG AAGAAAACTCCTYC TACAGCAGCAAAGG CCACCACTCT'] | 5433 | $\begin{aligned} & {[\text { 'CCTGAGAAGAAA }} \\ & \text { AСТССТYСTAC'] } \end{aligned}$ | 5687 | $\left[\begin{array}{l} {[' C C T G A G A A G A A A} \\ \text { ACTCCTYCTAC'] } \end{array}\right.$ |
| $\begin{aligned} & \text { NM_000219.5(K } \\ & \text { CNE1):c.242A }>\mathrm{G} \\ & \text { (p.Tyr81Cys) } \end{aligned}$ | 3753 | KCNE1 | 5231 | ['CACTCGAACGACC CATTCAACGTCTDC ATCGAGTCCGATGC CTGGCAAGAG'] | 5434 | ['CCCATTCAACGT <br> CTDCATCGAGT'] | 5688 | $\begin{aligned} & {[\text { ['CCCATTCAACGT }} \\ & \text { CTDCATCGAGT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_003108.3(SO } \\ & \text { X11):c.347A>G } \\ & \text { (p.Tyr116Cys) } \end{aligned}$ | 6664 | SOX11 | 5232 | ['AAGCACATGGCCG ACTACCCCGACTRC AAGTACCGGCCCCG GAAAAAGCCC'] | 5435 | ['CCGACTACCCCG ACTRCAAGTAC'] | 5689 | ['CCGACTACCCCG <br> ACTRCAAGTAC'] |
| $\begin{aligned} & \text { NM_002764.3(PR } \\ & \text { PS1):c. } 343 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met115Val) } \end{aligned}$ | 5631 | PRPSI | 5233 | ['AATCTCAGCCAAG <br> CTTGTTGCAAATRTG <br> CTATCTGTAGCAGG <br> TGCAGATCA'] | 5436 | $\left[\begin{array}{l} \text { ['CCAAGCTTGTTG } \\ \text { CAAATRTGCTA'] } \end{array}\right.$ | 5690 | $\begin{aligned} & {[\text { ['CCAAGCTTGTTG }} \\ & \text { CAAAATRTGCTA'] } \end{aligned}$ |
| NM_000546.5(TP <br> 53):c.1101-2A>G | 7157 | TP53 | 5234 | ['TCTCCTCCCTGCTT CTGTCTCCTACRGCC ACCTGAAGTCCAAA AAGGGTCA'] | 5437 | $\begin{aligned} & {[\text { 'CCTGCTTCTGTCT }} \\ & \text { CCTACRGCCA'] } \end{aligned}$ | 5691 | $\begin{aligned} & {[\text { ['CCTGCTTCTGTCT }} \\ & \text { CCTACRGCCA' }] \end{aligned}$ |
| $\begin{aligned} & \text { NM_000166.5(GJ } \\ & \text { B1):c. } 580 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met194Val) } \end{aligned}$ | 2705 | GJB1 | 5235 | ['CGAGAAAACCGTC <br> TTCACCGTCTTCRTG <br> CTAGCTGCCTCTGG <br> CATCTGCAT'] | 5438 | ['CCGTCTTCACCG <br> TCTTCRTGCTA'] | 5692 | $\begin{aligned} & \text { ['CCGTCTTCACCG } \\ & \text { TCTTCRTGCTA'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_003159.2(C } \\ & \text { DKL5):c.449A>G } \\ & \text { (p.Lys150Arg) } \end{aligned}$ | 6792 | CDKL5 | 5236 | ['TTAATCAGCCACA ATGATGTCCTAARA CTGTGTGACTTTGGT AAGTTAAAA'] | 5439 | $\begin{aligned} & {[\text { 'CCACAATGATGT }} \\ & \text { CCTAARACTGT'] } \end{aligned}$ | 5693 | $\begin{aligned} & {[\text { ['CCACAATGATGT }} \\ & \text { CCTAARACTGT'] } \end{aligned}$ |
| NM_000053.3(A <br> TP7B):c.122A>G <br> (p.Asn41Ser) | 540 | ATP7B | 5237 | ['ATCCAGACCACCTT CATAGCCAACAYTG TCAAAAGCAAAACT | 5440 | $\begin{aligned} & {[' C C A C C T T C A T A G ~} \\ & \text { CCAACAYTGTC'] } \end{aligned}$ | $\begin{aligned} & 5694- \\ & 5695 \end{aligned}$ | ['CCACCTTCATAG CCAACAYTGTC', CCTTCATAGCCAA |


|  |  |  |  | CTTCTTCAT'] |  |  |  | CAYTGTCAAA'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_006306.3(S } \\ & \text { MC1A):c.3254A> } \\ & \text { G (p.Tyr1085Cys) } \end{aligned}$ | 8243 | $\begin{aligned} & \text { SMC1 } \\ & \text { A } \end{aligned}$ | 5238 | ['GTGGCTACCAACA TTGATGAGATCTRT AAGGCCCTGTCCCG CAATAGCAGT'] | 5441 | ['CCAACATTGATG <br> AGATCTRTAAG'] | 5696 | ['CCAACATTGATG <br> AGATCTRTAAG'] |
| $\begin{aligned} & \text { NM_005154.4(US } \\ & \text { P8):c.2150A>G } \\ & \text { (p.Tyr717Cys) } \end{aligned}$ | 9101 | USP8 | 5239 | ['GAACCTTCCAAAC TGAAGCGCTCCTDC TCCTCCCCAGATAT AACCCAGGCT'] | 5442 | ['CCAAACTGAAGC GCTCCTDCTCC'] | 5697 | $[$ [CCAAACTGAAGC GCTCCTDCTCC'] |
| $\begin{aligned} & \mathrm{NM} \_000117.2 \mathrm{E} \\ & \mathrm{MD}): \mathrm{c} .266-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 2010 | EMD | 5240 | ['TCTGCTACCGCTGC CCCCCTTCCCARGG CTACAATGACGACT ACTATGAAG'] | 5443 | ['CCGCTGCCCCCC <br> TTCCCARGGCT'] | 5698 | ['CCGCTGCCCCCC <br> TTCCCARGGCT'] |
| $\begin{aligned} & \text { NM_207352.3(C } \\ & \text { YP4V2):c.1393A } \\ & >G \\ & \text { (p.Arg465Gly) } \end{aligned}$ | $\begin{aligned} & 2854 \\ & 40 \end{aligned}$ | $\begin{aligned} & \hline \text { CYP4V } \\ & 2 \end{aligned}$ | 5241 | ['CTACGTGCCCTTCT CTGCTGGCCCCRGG AACTGTATAGGTTT GTATCCATC'] | 5444 | $\begin{aligned} & {[' C C C T T C T C T G C T} \\ & \text { GGCCCCRGGAA'] } \end{aligned}$ | $\begin{aligned} & 5699- \\ & 5700 \end{aligned}$ | ['CCCTTCTCTGCT GGCCCCRGGAA', [CCTTCTCTGCTGG CCCCRGGAAC'] |
| NM_000546.5(TP <br> 53):c. $709 \mathrm{~A}>\mathrm{G}$ <br> (p.Met237Val) | 7157 | TP53 | 5242 | ['CTGTACCACCATCC <br> ACTACAACTACRTG <br> TGTAACAGTTCCTG <br> CATGGGCGG'] | 5445 | ['CCATCCACTACA ACTACRTGTGT'] | 5701 | $\begin{aligned} & {[\text { 'CCATCCACTACA }} \\ & \text { ACTACRTGTGT'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_016069.9(PA } \\ & \text { M16):c.226A>G } \\ & \text { (p.Asn76Asp) } \end{aligned}$ | -1 | - | 5243 | ['CTCACCCGTCCCCT CTCCTCTGCAGRAC TATGAACACTTATTT AAGGTGAA'] | 5446 | $\left[\begin{array}{l} \text { ['CCTCTCCTCTGC } \\ \text { AGRACTATGAA'] } \end{array}\right.$ | $\begin{aligned} & 5702- \\ & 5704 \end{aligned}$ | ['CCCCTCTCCTCT GCAGRACTATG', 'CCCTCTCCTCTGC AGRACTATGA', 'ССТСТССТСТGCA GRACTATGAA'] |
| $\begin{aligned} & \text { NM_006785.3(M } \\ & \text { ALT1):c.1019- } \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | $\begin{aligned} & 1089 \\ & 2 \end{aligned}$ | MALT <br> 1 | 5244 | ['AACACCCCCTTTCT TTTTTTTTCAARGCG AAGGACAAGGTTGC CCTTTTGA'] | 5447 | $\begin{aligned} & \text { ['CCTTTCTTTTTTT } \\ & \hline \text { TTCAARGCGA'] } \end{aligned}$ | 5705 | $\begin{aligned} & \text { ['CCTTTCTTTTTTT } \\ & \hline \text { TTCAARGCGA'] } \end{aligned}$ |
| NM_004771.3(M MP20):c.611A>G (p.His204Arg) | 9313 | $\begin{aligned} & \text { MMP2 } \\ & 0 \end{aligned}$ | 5245 | ['GGAGAAGGCCTGG <br> GAGGAGATACACRT <br> TTCGACAATGCTGA <br> GAAGTGGACT'] | 5448 | ['CCTGGGAGGAGA <br> TACACRTTTCG'] | 5706 | ['CCTGGGAGGAGA <br> TACACRTTTCG ${ }^{\prime}$ |
| NM_003159.2(C DKL5):c.458A>G (p.Asp153Gly) | 6792 | CDKL5 | 5246 | ['CACAATGATGTCCT <br> AAAACTGTGTGRCT <br> TTGGTAAGTTAAAA <br> AGAAATTAA'] | 5449 | $\begin{aligned} & \text { ['CCTAAAACTGTG } \\ & \text { TGRCTTTGGTA'] } \end{aligned}$ | 5707 | ['CCTAAAACTGTG <br> TGRCTTTGGTA'] |
| $\begin{aligned} & \text { NM_001204830.1 } \\ & \text { (LIPTI):c.535A> } \\ & \text { G (p.Thr179Ala) } \end{aligned}$ | -1 | - | 5247 | ['CCGGACTACTGCCT <br> ATCACCATTGCRCTT <br> TATTATGTAGTACTG <br> ATGGGAC'] | 5450 | $\begin{aligned} & {[' C C T A T C A C C A T T ~} \\ & \text { GCRCTTTATTA'] } \end{aligned}$ | 5708 | $\begin{aligned} & {[\text { ['CCTATCACCATT }} \\ & \text { GCRCTTTATTA'] } \end{aligned}$ |
| NM_000921.4(PD | 5139 | PDE3A | 5248 | ['AGTTTCTTCCACTT | 5451 | ['CCACTTGGACCA | 5709 | ['CCACTTGGACCA |


| E3A):c.1333A>G (p.Thr445Ala) |  |  |  | GGACCACCACCRCC <br> TCGGCCACAGGTCT <br> ACCCACCTT'] |  | CCACCRCCTCG'] |  | CCACCRCCTCG'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000182.4(H } \\ & \text { ADHA):c. } 919- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 3030 | $\begin{aligned} & \mathrm{HADH} \\ & \mathrm{~A} \end{aligned}$ | 5249 | ['TTGCTCAATTCCAG TCTTTACCACCYAA AAAACATATAAAGC ACTTGCTCA'] | 5452 | ['CCAGTCTTTACC | 5710 | ['CCAGTCTTTACC |
| $\begin{aligned} & \text { NM_000169.2(G } \\ & \text { LA):c.620A>G } \\ & \text { (p.Tyr207Cys) } \end{aligned}$ | -1 | - | 5250 | ['GTGTACTCCTGTGA GTGGCCTCTTTRTAT GTGGCCCTTTCAAA AGGTGAGA'] | 5453 | $\begin{aligned} & \text { ['CCTGTGAGTGGC } \\ & \text { CTCTTTRTATG'] } \end{aligned}$ | 5711 | $\begin{aligned} & \text { ['CCTGTGAGTGGC } \\ & \text { 'CTCTTTRTATG'] } \end{aligned}$ |
|  <br> NM_000238.3(K <br> CNH2):c.2582A> <br> G (p.Asn861Ser) | 3757 | $\begin{aligned} & \mathrm{KCNH} \\ & 2 \end{aligned}$ | 5251 | ['TGGTCCAGCCTGG AGATCACCTTCANC CTGCGAGATGTGAG TTGGCTGCCC'] | 5454 | ['CCTGGAGATCAC CTTCANCCTGC'] | 5712 | ['CCTGGAGATCAC <br> CTTCANCCTGC'] |
| NM_000218.2(K CNQ1):c.605A>G (p.Asp202Gly) | 3784 | $\begin{aligned} & \mathrm{KCNQ} \\ & 1 \end{aligned}$ | 5252 | ['GCTCCCCCTCTCCT GCACTCCACAGRCC TCATCGTGGTCGTG GCCTCCATG'] | 5455 | $\left[\begin{array}{l} \text { ['CCTGCACTCCAC } \\ \text { AGRCCTCATCG'] } \end{array}\right.$ | 5713 | ['CCTGCACTCCAC <br> AGRCCTCATCG'] |
| NM_012203.1(G RHPR):c.934A $>\mathrm{G}$ (p.Asn312Asp) | 9380 | $\begin{aligned} & \text { GRHP } \\ & \text { R } \end{aligned}$ | 5253 | ['CACCATGTCCTTGT <br> TGGCAGCTAACRAC <br> TTGCTGGCTGGCCT <br> GAGAGGGGA'] | 5456 | ['CCTTGTTGGCAG CTAACRACTTG'] | 5714 | ['CCTTGTTGGCAG CTAACRACTTG'] |
| $\begin{aligned} & \text { NM_021007.2(SC } \\ & \mathrm{N} 2 \mathrm{~A}): c .387- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 6326 | SCN2A | 5254 | ['ACTTTGTCTTCCTT <br> GACGATATTCTRCTT <br> TATTCAATATGCTCA <br> TTATGTG'] | 5457 | $\begin{aligned} & \text { ['CCTTGACGATAT } \\ & \hline \text { TCTRCTTTATT'] } \end{aligned}$ | 5715 | $\begin{aligned} & \text { ['CCTTGACGATAT } \\ & \text { TCTRCTTTATT'] } \end{aligned}$ |
| NM_002693.2(PO LG):c.2840A>G (p.Lys947Arg) | 5428 | POLG | 5255 | ['GTGGGCATCAGCC GTGAGCATGCCARA ATCTTCAACTACGG CCGCATCTAT'] | 5458 | ['CCGTGAGCATGC <br> CARAATCTTCA'] | 5716 | ['CCGTGAGCATGC <br> CARAATCTTCA'] |
| $\begin{array}{\|l\|} \hline \text { NM_020533.2(M } \\ \text { COLNI):c.1406A } \\ >\mathrm{G}(\mathrm{p} . \mathrm{Asn} 469 \mathrm{Ser}) \end{array}$ | $\begin{aligned} & 5719 \\ & 2 \end{aligned}$ | $\begin{aligned} & \mathrm{MCOL} \\ & \mathrm{Nl} \end{aligned}$ | 5256 | ['TCTGAGTGCCTGTT CTCGCTCATCARTG GGGACGACATGTTT GTGACGTTC'] | 5459 | ['CCTGTTCTCGCT | 5717 | ['CCTGTTCTCGCT CATCARTGGGG'] |
| NM_000069.2(C <br> ACNA1S):c. 3526 <br> $-2 A>G$ | 779 | CACN <br> A1S | 5257 | ['TCGCTTTCCCATCC <br> TTTTCCTTCCCRGGG <br> CTACTTTGGAGACC <br> CCTGGAAT'] | 5460 | $\begin{aligned} & \text { ['CCCATCCTTTTCC } \\ & \text { TTCCCRGGGC'] } \end{aligned}$ | $\begin{aligned} & 5718- \\ & 5719 \end{aligned}$ | ['CCCATCCTTTTCC <br> TTCCCRGGGC', <br> 'CCATCCTTTTCCT <br> TCCCRGGGCT'] |
| NM_017662.4(TR PM6):c.3173A>G (p.Tyr1058Cys) | $\begin{aligned} & 1408 \\ & 03 \end{aligned}$ | TRPM6 | 5258 | ['CAAGCTGTCTACCT CTTCGTGCAATRTAT CATCATGGTGAACC TGTTGATT'] | 5461 | $\begin{aligned} & {[' C C T C T T C G T G C A} \\ & \text { ATRTATCATCA'] } \end{aligned}$ | 5720 | $\begin{aligned} & {[' C C T C T T C G T G C A ~} \\ & \text { ATRTATCATCA'] } \end{aligned}$ |
| NM_006642.3(SD | 1080 | SDCC | 5259 | ['AATAAACCCTCTG | 5462 | ['CCTCTGCTTTTGC | 5721 | ['CCTCTGCTTTTGC |


| $\begin{aligned} & \text { CCAG8):c.221- } \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 6 | AG8 |  | CTTTTGCTCTATRGT <br> TAATCAGCTCAAAG <br> ATTTGTTGC'] |  | TCTATRGTTA'] |  | TCTATRGTTA'] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{NM} \_003560.2(\mathrm{PL} \\ & \mathrm{A} 2 \mathrm{G} 6): \mathrm{c} .1349- \\ & 2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 8398 | $\begin{aligned} & \text { PLA2G } \\ & 6 \end{aligned}$ | 5260 | ['CAGCATGCCCTGCT CTGTGCCTCACRGA ACTACAGGATCTCA TGCACATCT'] | 5463 | $\left[\begin{array}{l} {[' C C C T G C T C T G T G ~} \\ \text { CCTCACRGAAC'] } \end{array}\right.$ | $\begin{aligned} & 5722- \\ & 5723 \end{aligned}$ | ['CCCTGCTCTGTG CCTCACRGAAC', 'CCTGCTCTGTGCC TCACRGAACT'] |

## EXAMPLE 6: Next Generation C to T Editors

[00351] Other familes of cytidine deaminases as alterantives to base etitor 3 (BE3) constructs were examined. The different C to T editors were developed to have a narrow or different editing window, alternate sequence specificity to expand targetable substrates, and to have higher activity.
[00352] Using the methods described in Example 4, the pmCDA1 (cytidine deaminase 1 from Petromyzon marinus) activity at the HeK-3 site is evaluated (Figure 42). The pmCDA1-nCas9-UGI-NLS (nCas9 indicates the Cas9 nickase described herein) construct is active on some sites (e.g., the C bases on the complementary strand at position 9, 5, 4, and 3) that are not accessible with rAPOBEC1 (BE3).
[00353] The pmCDA1 activity at the HeK-2 site is given in Figure 43. The pmCDA1-XTEN-nCas9-UGI-NLS construct is active on sites adjacent to " G ," while rAPOBEC1 analog (BE3 construct) has low activity on "C"s that are adjacent to " G "s, e.g., the C base at position 11 on the complementary strand.
[00354] The percent of total sequencing reads with target C converted to T (Figure 44), C converted to A (Figure 45), and C converted to G (Figure 46) are shown for CDA and APOBEC1 (the BE3 construct).
[00355] The huAPOBEC3G activity at the HeK-2 site is shown in Figure 47. Two constructs were used: huAPOBEC3G-XTEN-nCas9-UGI-NLS and huAPOBEC3G*(D316R_D317R)-XTEN-nCas9-UGI-NLS. The huAPOBEC3G-XTEN-nCas9-UGI-NLS construct has different sequence specificity than rAPOBEC1 (BE3), as shown in Figure 47, the editing window appears narrow, as indicated by APOBEC3G's descreased activity at position 4 compared to APOBEC1. Mutations made in huAPOBEC3G (D316R and D317R) increased ssDNA binding and resulted in an observable effect on expanding the sites which were edited (compare APOBEC3G with APOBEC3G_RR in Figure 47). Mutations were chosen based on APOBEC3G crystal structure, see: Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional
implication. Nature. (2008); 121-4, the entire contents of which are incorporated herein by reference.

EXAMPLE 7: pmCDA1/huAPOBEC3G/rAPOBEC1 work in E. coli
[00356] LacZ selection optimization for the A to I conversion was performed using a bacterial strain with lacZ encoded on the F plasmid. A critical glutamic acid residue was mutated (e.g., GAG to GGG, Glu to Gly mutation) so that G to A by a cytidine deaminase would restore lacZ activity (Figure 48). Strain CC102 was selected for the selection assay APOBEC1 and CDA constructs were used in a selection assay to optimize $G$ to $A$ conversion.
[00357] To evaluate the the effect of copy number of the plasmids encoding the deaminase constructs on lacZ reversion frequency, the CDA and APOBEC1 deaminases were cloned into 4 plasmids with different replication origins (hence different copy numbers), SC101, CloDF3, RSF 1030, and PUC (copy number: PUC $>$ RSF1030>CloDF3>SC101) and placed under an inducible promoter. The plasmids were individually transformed into E. coli cells harboring F plasmid containing the mutated LacZ gene. The expression of the deaminases were induced and LacZ activity was detected for each construct (Figure 49). As shown in Figure 49, CDA exhibited significantly higher activity than APOBEC1 in all instances, regardless of the plasmid copy number the deaminases were cloned in. Further, In terms of the copy number, the deaminase activity was positively correlated with the copy number of the plasmid they are cloned in, i.e., PUC $>$ CloDF3 $>\mathrm{SC} 101$.
[00358] LacZ reversions were confirmed by sequencing of the genomic DNA at the lacZ locus. To obtain the genomic DNA containing the corrected LacZ gene, cells were grown media containg X-gal, where cells having LacZ activity form blue colonies. Blue colonies were selected and grown in minimial media containing lactose. The cells were spun down, washed, and re-plated on minimal media plates (lactose). The blue colony at the highest dilution was then selected, and its genomic DNA was sequenced at the lacZ locus (Figure 50).
[00359] A chloramphenicol reversion assay was designed to test the activity of different cytidine deaminases (e.g., CDA, and APOBEC1). A plasmid harboring a mutant CAT1 gene which confers chloramphenicol resistance to bacteria is constructed with RSF1030 as the replication origin. The mutant CAT1 gene encodings a CAT1 protein that has a H195R (CAC to CGC) mutation, rendering the protein inactive (Figure 51). Deamination of the C basepaired to the G base in the CGC codon would convert the codon back to a CAC codon,
restoring the activity of the protein. As shown in Figure 52, CDA outperforms rAPOBEC in E. coli in restoring the acitivyt of the chloramphenicol reisitance gene. The minimum inhibitory concentration (MIC) of chlor in S1030 with the selection plasmid (pNMG_ch_5) was approximately $1 \mu \mathrm{~g} / \mathrm{mL}$. Both rAPOBEC-XTEN-dCas9-UGI and CDA-XTEN-dCas9UGI induced DNA correction on the selection plasmid (Figure 53).
[00360] Next, the huAPOBEC3G-XTEN-dCas9-UGI protein was tested in the same assay. Interestingly, huAPOBEC3G-XTEN-dCas9-UGI exhibited different sequence specificity than the rAPOBEC1-XTEN-dCas9-UGI fusion protein. Only position 8 was edited with APOBEC3G-XTEN-dCas9-UGI fusion, as compared to the rAPOBEC11-XTEN-dCas9UGIfusion (in which positions 3, 6, and 8 were edited) (Figure 54).

## EXAMPLE 8: C to T Base Editors with Less Off Target Editing

[00361] Current base editing technologies allow for the sequence-specific conversion of a C: G base pair into a $T$ :A base pair in genomic DNA. This is done via the direct catalytic conversion of cytosine to uracil by a cytidine deaminase enzyme and thus, unlike traditional genome editing technologies, does not introduce double-stranded DNA breaks (DSBs) into the DNA as a first step. See, Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016), "Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage." Nature 533, 420-424; the entire contents of which are incorporated by reference herein. Instead, catalytically dead SpCas9 (dCas9) or a SpCas9 nickase $(\mathrm{dCas} 9(\mathrm{~A} 840 \mathrm{H}))$ is tethered to a cytidine deaminase enzyme such as rAPOBEC1, pmCDA1, or hAPOBEC3G. The genomic locus of interest is encoded by an sgRNA, and DNA binding and local denaturation is facilitated by the dCas9 portion of the fusion. However, just as wt dCas9 and wt Cas9 exhibit off-target DNA binding and cleavage, current base editors also exhibit C to T editing at Cas9 off-target loci, which limits their therapeutic usefulness. [00362] It has been reported that the introduction of just three to four mutations into SpCas9 that neutralize nonspecific electrostatic interactions between the protein and the sugar-phosphate backbone of its target DNA, increases the DNA binding specificity of SpCas9. See, Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., and Joung, J.K. (2016) "High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects." Nature 529, 490-495; and Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F. (2015) "Rationally engineered Cas9 nucleases with improved specificity. Science $351,84-88$; the entire contents of each are hereby incorporated by reference herein. Four reported neutralizing mutations were therefore
incorporated into the initially reported base editor BE3 (SEQ ID NO: 285), and found that off-target C to T editing of this enzyme is also drastically reduced (Figure 55), with no decrease in on-target editing (Figure 56).
[00363] As shown in Figure 55, HEK293T cells were transfected with plasmids expressing BE3 or HF-BE3 and a sgRNA matching the EMX1 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by high-throughput DNA sequencing at the on-target locus, plus the top ten known Cas 9 offtarget loci for the EMX1 sgRNA, as previously determined by Joung and coworkers using the GUIDE-seq method. See Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., et al. (2015) "GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases." Nat Biotech 33, 187-197; the entire contents of which are incorporated by reference herein. EMX1 off-target 5 locus did not amplify and is not shown. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed (Figure 55). Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for BE 3 and HF-BE3
[00364] In Figure 56, HEK293T cells were transfected with plasmids expressing BE3 or HF-BE3 and sgRNAs matching the genomic loci indicated using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by high-throughput DNA sequencing at the on-target loci. The percentage of total DNA sequencing reads with all four bases at the target Cs within each protospacer are shown for treatment with BE3 or HF-BE3 (Figure 56). Frequencies of indel formation are shown as well.
[00365] Primary Protein Sequence of HF-BE3 (SEQ ID NO: 285):
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG NTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYN ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG ALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH


#### Abstract

PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKS DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQIL DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH QSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDES TDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV


EXAMPLE 9: Development of Base Editors that Use Cas9 Variants and Modulation of the Base Editor Processivity to Increase the Target Range and Precision of the Base Editing Technology
[00366] Unlike traditional genome editing platforms, base editing technology allows precise single nucleotide changes in the DNA without inducing double-stranded breaks(DSBs). See, Komor, A. C. et al. Nature 533, 420-424 (2016). The current generation of base editor uses the NGG PAM exclusively. This limits its ability to edit desired bases within the genome, as the base editor needs to be placed at a precise location where the target base is placed within a 4-base region (the 'deamination window'), approximately 15 bases upstream of the PAM. See, Komor, A. C. et al. Nature 533, 420-424 (2016). Moreover, due to the high processivity of cytidine deaminase, the base editor may convert all cytidines within its deamination window into thymidines, which could induce amino acid changes other than the one desired by the researcher. See, Komor, A. C. et al. Nature 533, 420-424 (2016)

Expanding the scope of base editing through the development of base editors with Cas9 variants
[00367] Cas9 homologs and other RNA-guided DNA binders that have different PAM specificities were incorporated into the base editor architecture. See, Kleinstiver, B. P. et al. Nature 523, 481-485 (2015); Kleinstiver, B. P. et al. Nature Biotechnology 33, 1293-1298 (2015); and Zetsche, B. et al. Cell 163, 759-771 (2015); the entire contents of each are incorporated by reference herein. Furthermore, innovations that have broadened the PAM specificities of various Cas 9 proteins were also incorporated to expand the target reach of the base editor even more. See, Kleinstiver, B. P. et al. Nature 523, 481-485 (2015); and Kleinstiver, B. P. et al. Nature Biotechnology 33, 1293-1298 (2015). The current palette of base editors is summarized in Table 4.

Table 4. New base editors made from Cas9 Variants


## Modulating base editor's processivity through site-directed mutagenesis of rAPOBEC1

[00368] It was reasoned that the processivity of the base editor could be modulated by making point mutations in the deaminase enzyme. The incorporatation of mutations that slightly reduce the catalytic activity of deaminase in which the base editor could still catalyze on average one round of cytidine deamination but was unlikely to access and catalyze another deamination within the relevant timescale were pursued. In effect, the resulting base editor would have a narrower deamination window.
[00369] rAPOBEC1 mutations probed in this work are listed in Table 5. Some of the mutations resulted in slight apparent impairment of rAPOBEC1 catalysis, which manifested as preferential editing of one cytidine over another when multiple cytidines are found within the deamination window. Combining some of these mutations had an additive effect, allowing the base editor to discriminate substrate cytidines with higher stringency. Some of the double mutants and the triple mutant allowed selective editing of one cytidine among multiple cytidines that are right next to one another (Figure 57).

Table 5. rAPOBEC1 Point Mutations Investigated


## Base Editor PAM Expansion and Processivity Modulation

[00370] The next generation of base editors were designed to expand editable cytidines in the genome by using other RNA-guided DNA binders (Figure 58). Using a NGG PAM only
allows for a single target within the "window" whereas the use of multiple different PAMs allows for Cas9 to be positioned anywhere to effect selective deamination. A variety of new base editors have been created from Cas9 variants (Figure 59 and Table 4). Different PAM sites (NGA, Figure 60; NGCG, Figure 61; NNGRRT, Figure 62; and NNHRRT, Figure 63) were explored. Selective deamination was successfully achieved through kinetic modulation of cytidine deaminase point mutagenesis (Figure 65 and Table 5).
[00371] The effect of various mutations on the deamination window was then investigated in cell culture using spacers with multiple cytidines (Figures 66 and 67).
[00372] Further, the effect of various mutations on different genomic sites with limited numbers of cytidines was examined (Figures 68 to 71). It was found that approximately one cytidine will be edited within the deamination windown in the spacer, while the rest of the cytidines will be left intact. Overall, the preference for editing is as follows: $\mathrm{C}_{6}>\mathrm{C}_{5} \gg \mathrm{C}_{7} \approx$ $\mathrm{C}_{4}$.

## Base Editing Using Cpf1

[00373] Cpf1, a Cas9 homolog, can be obtained as AsCpf1, LbCpf1, or from any other species. Schematics of fusion constructs, including BE2 and BE3 equivalents, are shown in Figure 73. The BE2 equivalent uses catalytically inactive Cpf2 enzyme (dCpf1) instead of Cas9, while the BE3 equivalent includes the Cpf1 mutant, which nicks the target strand. The bottom schematic depicts different fusion architectures to combine the two innovations illustrated above it (Figure 73). The base editing results of HEK293T cell TTTN PAM sites using Cpf1 BE2 were examined with different spacers (Figures 64A to 64C). In some embodiments, Cpf1 may be used in place of a Cas9 domain in any of the base editors provided herein. In some embodiments, the Cpfl is a protein that is at lesst $50 \%, 55 \%, 60 \%$, $65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 98 \%, 99 \%$, or $99.5 \%$ identical to SEQ ID NO 313.

Full Protein Sequence of Cpfl (SEQ ID NO: 313):
MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE NKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND

## EXAMPLE 10: Increased Fidelity of Base Editing

[00374] Examining the difference between plasmid delivery of BE3 and HF-BE3, it was found that the two edit on-target loci with comparable efficiency (Figures 74 and 75). However, HF-BE3 edited off-target loci much less than BE3, meaning that HF-BE3 has a much higher DNA specificity than BE3 (Figure 76). Deaminase protein lipofection to HEK cells demonstrated that protein delivery of BE3 results in comparable on-target activity, but much better specificity, than plasmid DNA delivery of BE3. Using improved transfection procedures and better plasmids ( $\mathrm{n}=2$ ), the experiment used the following conditions: protein delivery was 125 nM Cas9:sgRNA complex, plasmid delivery was 750 ng BE3/HF-BE3 plasmid +250 ng sgRNA plasmid, and lipofection was with $1.5 \mu \mathrm{~L}$ of Lipofectamine 2000 per well. EMX-1 off target site 2 and FANCF off-target site 1 showed the most off-target editing with BE3, compared to all of the off-targets assayed (Figures 77 and 78), while HEK-3 showed no significant editing at off-targets for any of the delivery methods (Figure 79). HEK-4 shows some C-to-G editing on at the on-target site, while its off-target sites 1, 3, and 4 showed the most off-target editing of all the assayed sites (Figure 80).

## Delivery of BE3 Protein via Micro-injection to Zebrafish

[00375] TYR guide RNAs were tested in an in vitro assay for sgRNA activity (Figures 81 and 82). The \% HTS reads shows how many C residues were converted to T residues during a 2 h incubation with purified BE3 protein and PCR of the resulting product. Experiments used an 80 -mer synthetic DNA substate with the target deamination site in 60bp of its genomic context. This is not the same as \% edited DNA strands because only one strand was nicked, so the product is not amplified by PCR. The proportion of HTS reads edited is equal to $\mathrm{x} /(2-\mathrm{x})$, where x is the actual proportion of THS reads edited. For $60 \%$ editing, the actual proportion of bases edited is $75 \%$. "Off target" is represents BE3 incubated with the same DNA substrate, while bound to an off-target $\operatorname{sgRNA}$. It was found $\operatorname{sgRNAs} \operatorname{sgRH} 13$, sgHR_17, and possibly sgHR_16 appeared to be promising targets for in vivo injection experiments.
[00376] The delivery of BE3 protein in was tested in vivo in zebrafish. Zebrafish embryos ( $n=16-24$ ) were injected with either scramled $\operatorname{sgRNA}, \operatorname{sgHR} \_13$, $\operatorname{sgHR} \_16$, or $\operatorname{sgHR} \_17$ and purified BE3. Three embryos from each condition were analyzed independently (single embryo) and for each condition, all of the injected embryos were pooled and sequenced as a pool. The results are shown in Figures 83 to 85 .
EXAMPLE 11: Uses of Base Editors to Treat Disease
[00377] Base editors or complexes provided herein (e.g., BE3) may be used to modify nucleic acids. For example, base editors may be used to change a cytosine to a thymine in a nucleic acid (e.g., DNA). Such changes may be made to, inter alia, alter the amino acid sequence of a protein, to destroy or create a start codon, to create a stop codon, to distupt splicing donors, to disrupt splicing acceptors or edit regulatory sequences. Examples of possible nucleotide changes are shown in Figure 86.
[00378] Base editors or complexes provided herein (e.g., BE3) may be used to edit an isoform of Apolipoprotein E in a subject. For example, an Apolipoprotein E isoform may be edited to yield an isoform associated with a lower risk of developing Alzheimer's disease. Apolipoprotein E has four isoforms that differ at amino acids 112 and 158. APOE4 is the largest and most common genetic risk factor for late-onset Alzheimer's disease. Arginine residue 158 of APOE4, encoded by the nucleic acid sequence CGC, may be changed to a cysteine by using a base editor (e.g., BE3) to change the CGC nucleic acid sequence to TGC, which encodes cysteine at residue 158. This change yields an APOE3r isoform, which is associated with lower Alzheimer's disease risk. See Figure 87.
[00379] It was tested whether base editor BE3 could be used to edit APOE4 to APOE3r in mouse astrocytes (Figure 88). APOE 4 mouse astrocytes were nucleofected with Cas9 + template or BE3, targeting the nucleic acid encoding Arginine 158 of APOE4. The Cas $9+$ template yielded only $0.3 \%$ editing with $26 \%$ indels, while BE3 yielded $75 \%$ editing with $5 \%$ indels. Two additional base-edited cytosines are silent and do not yield changes to the amino acid sequence (Figure 88).
[00380] Base editors or complexes provided herein may be used to treat prion protein diseases such as Creutzfeldt-Jakob disease and fatal familial insomnia, for example, by introducing mutations into a PRNP gene. Reverting PRNP mutations may not yield therapeutic results, and intels in PRNP may be pathogenic. Accordingly, it was tested whether PRNP could be mutated using base editors (e.g., BE3) to introduce a premature stop codon in the PRNP gene. BE3, associated with its guide RNA, was introduced into HEK cells
or glioblastoma cells and was capable of editing the PRNP gene to change the encoded arginine at residue 37 to a stop codon. BE3 yielded $41 \%$ editing (Figure 89).
[00381] Additional genes that may be edited include the following: APOE editing of Arg 112 and Arg 158 to treat increased Alzheimer's risk; APP editing of Ala 673 to decrease Alzheimer's risk; PRNP editing of Arg 37 to treat fatal familial insomnia and other prion protein diseases; DMD editing of the exons 23 and 51 splice sites to treat Duchenne muscular dystrophy; FTO editing of intron 1 to treat obesity risk; PDS editing of exon 8 to treat Pendred syndrome (genetic deafness); TMC1 editing of exon 8 to treat congenital hearing loss; $C Y B B$ editing of various patient-relevant mutations to treat chronic granulomatous disease. Additional diseases that may be treated using the base editors provided herein are shown in Table 6, below
[00382] UGI also plays a key role. Knocking out UDG (which UGI inhibits) was shown to dramatically improve the cleanliness and efficiency of C to T base editing (Figure 90). Furthermore, base editors with nickase and without UGI were shown to produce a mixture of outcomes, with very high indel rates (Figure 91).

## EXAMPLE 12: Expanding the Targeting Scope of Base Editing

[00383] Base editing is a new approach to genome editing that uses a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair to induce programmable, single-nucleotide $\mathrm{C} \rightarrow \mathrm{T}$ (or $\mathrm{G} \rightarrow \mathrm{A}$ ) changes in DNA without generating double-strand DNA breaks, without requiring a donor DNA template, and without inducing an excess of stochastic insertions and deletions ${ }^{1}$. The development of five new $\mathrm{C} \rightarrow \mathrm{T}$ (or $\mathrm{G} \rightarrow \mathrm{A}$ ) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing by 2.5 -fold are described herein. Additionally, new base editors containing mutated cytidine deaminase domains that narrow the width of the apparent editing window from approximately 5 nucleotides to 1 or 2 nucleotides were engineered, enabling the discrimination of neighboring C nucleotides that would previously be edited with comparable efficiency. Together, these developments substantially increase the targeting scope of base editing.
[00384] CRISPR-Cas9 nucleases have been widely used to mediate targeted genome editing ${ }^{2}$. In most genome editing applications, Cas9 forms a complex with a single guide RNA (sgRNA) and induces a double-stranded DNA break (DSB) at the target site specified by the sgRNA sequence. Cells primarily respond to this DSB through the non-homologuous
end-joining (NHEJ) repair pathway, which results in stochastic insertions or deletions (indels) that can cause frameshift mutations that disrupt the gene. In the presence of a donor DNA template with a high degree of homology to the sequences flanking the DSB, gene correction can be achieved through an alternative pathway known as homology directed repair (HDR) ${ }^{3,4}$ Unfortunately, under most non-perturbative conditions HDR is inefficient, dependent on cell state and cell type, and dominated by a larger frequency of indels. ${ }^{3,4}$ As most of the known genetic variations associated with human disease are point mutations ${ }^{5}$, methods that can more efficiently and cleanly make precise point mutations are needed.
[00385] Base editing, which enables targeted replacement of a $\mathrm{C}: \mathrm{G}$ base pair with a $\mathrm{T}: \mathrm{A}$ base pair in a programmable manner without inducing DSBs $^{1}$, has been recently described. Base editing uses a fusion protein between a catalytically inactivated (dCas9) or nickase form of Streptococcus pyogenes Cas9 (SpCas9), a cytidine deaminase such as APOBEC1, and an inhibitor of base excision repair such as uracil glycosylase inhibitor (UGI) to convert cytidines into uridines within a five-nucleotide window specified by the sgRNA. ${ }^{1}$ The thirdgeneration base editor, BE 3 , converts $\mathrm{C}: \mathrm{G}$ base pairs to T : A base pairs, including diseaserelevant point mutations, in a variety of cell lines with higher efficiency and lower indel frequency than what can be achieved using other genome editing methods ${ }^{1}$. Subsequent studies have validated the deaminase-dCas9 fusion approach in a variety of settings ${ }^{6,7}$.
[00386] Efficient editing by BE3 requires the presence of an NGG PAM that places the target C within a five-nucleotide window near the PAM-distal end of the protospacer (positions 4-8, counting the PAM as positions 21-23) ${ }^{1}$. This PAM requirement substantially limits the number of sites in the human genome that can be efficiently targeted by BE3, as many sites of interest lack an NGG 13- to 17- nucleotides downstream of the target C. Moreover, the high activity and processivity of BE3 results in conversion of all Cs within the editing window to Ts , which can potentially introduce undesired changes to the target locus. Herein, new $\mathrm{C}: \mathrm{G}$ to T:A base editors that address both of these limitations are described. [00387] It was thought that any Cas9 homolog that binds DNA and forms an "R-loop" complex ${ }^{8}$ containing a single-stranded DNA bubble could in principle be converted into a base editor. These new base editors would expand the number of targetable loci by allowing non-NGG PAM sites to be edited. The Cas9 homolog from Staphylococcus aureus (SaCas9) is considerably smaller than SpCas 9 ( 1053 vs. 1368 residues), can mediate efficient genome editing in mammalian cells, and requires an NNGRRT PAM ${ }^{9}$. SpCas9 was replaced with SaCas9 in BE3 to generate SaBE3 and transfected HEK293T cells with plasmids encoding SaBE3 and sgRNAs targeting six human genomic loci (Figures 92A and 92B). After 3 d, the
genomic loci were subjected to high-throughput DNA sequencing (HTS) to quantify base editing efficiency. SaBE3 enabled $C$ to $T$ base editing of target $C s$ at a variety of genomic sites in human cells, with very high conversion efficiencies (approximately $50-75 \%$ of total DNA sequences converted from C to T , without enrichment for transfected cells) arising from targeting Cs at positions 6-11. The efficiency of SaBE 3 on NNGRRT-containing target sites in general exceeded that of BE3 on NGG-containing target sites ${ }^{1}$. Perhaps due to its higher average efficiency, SaBE3 can also result in detectable base editing at target Cs at positions outside of the canonical BE3 activity window (Figure 92C). In comparison, BE3 showed significantly reduced editing under the same conditions ( $0-11 \%$ ), in accordance with the known SpCas9 PAM preference (Figure 106A) ${ }^{10}$. These data show that SaBE3 can facilitate very efficient base editing at sites not accessible to BE3.
[00388] The targeting range of base editors was further expanded by applying recently engineered Cas 9 variants that expand or alter PAM specificities. Joung and coworkers recently reported three SpCas9 mutants that accept NGA (VQR-Cas9), NGAG (EQR-Cas9), or NGCG(VRER-Cas9) PAM sequences ${ }^{11}$. In addition, Joung and coworkers engineered a SaCas9 variant containing three mutations (SaKKH-Cas9) that relax its PAM requirement to NNNRRT ${ }^{12}$. The SpCas9 portion of BE3 was replaced with these four Cas9 variants to produce VQR-BE3, EQR-BE3, VRER-BE3, and SaKKH-BE3, which target NNNRRT,NGA, NGAG, and NGCG PAMs respectively. HEK293T cells were transfected with plasmids encoding these constructs and sgRNAs targeting six genomic loci for each new base editor, and measured C to T base conversions using HTS.
[00389] SaKKH-BE3 edited sites with NNNRRT PAMs with efficiencies up to $62 \%$ of treated, non-enriched cells (Figure 92D). As expected, SaBE 3 was unable to efficiently edit targets containing PAMs that were NNNHRRT (where $\mathrm{H}=\mathrm{A}, \mathrm{C}$, or T) (Figure 92D). VQRBE3, EQR-BE3, and VRER-BE3 exhibited more modest, but still substantial base editing efficiencies of up to $50 \%$ of treated, non-enriched cells at genomic loci with the expected PAM requirements with an editing window similar to that of BE3 (Figures 92E and 92F). Base editing efficiencies of VQR-BE3, EQR-BE3, and VRER-BE3 in general closely paralleled the reported PAM requirements of the corresponding Cas9 nucleases; for example, EQR-BE3 was unable to efficiently edit targets containing NGAH PAM sequences (Figure 92F). In contrast, BE3 was unable to edit sites with NGA or NGCG PAMs efficiently (0-3\%), likely due to its PAM restrictions (Figure 106B).
[00390] Collectively, the properties of SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 establish that base editors exhibit a modularity that facilitates their ability to exploit Cas9 homologs and engineered variants.
[00391] Next, base editors with altered activity window widths were developed. All Cs within the activity window of BE3 can be efficiently converted to $\mathrm{Ts}^{1}$. The ability to modulate the width of this window would be useful in cases in which it is important to edit only a subset of Cs present in the BE3 activity window.
[00392] The length of the linker between APOBEC1 and dCas9 was previously observed to modulate the number of bases that are accessible by APOBEC1 in vitro ${ }^{1}$. In HEK293T cells, however, varying the linker length did not significantly modulate the width of the editing window, suggesting that in the complex cellular milieu, the relative orientation and flexibility of dCas 9 and the cytidine deaminase are not strongly determined by linker length (Figure 96). Next, it was thought that truncating the $5^{\prime}$ end of the sgRNA might narrow the base editing window by reducing the length of single-stranded DNA accessible to the deaminase upon formation of the RNA-DNA heteroduplex. HEK293T cells were co-transfected with plasmids encoding BE3 and sgRNAs of different spacer lengths targeting a locus with multiple Cs in the editing window. No consistent changes in the width of base editing when using truncated sgRNAs with 17- to 19-base spacers were observed (Figures 95A to 95C). Truncating the sgRNA spacer to fewer than 17 bases resulted in large losses in activity (Figure 95A).
[00393] As an alternative approach, it was thought that mutations to the deaminase domain might narrow the width of the editing window through multiple possible mechanisms. First, some mutations may alter substrate binding, the conformation of bound DNA, or substrate accessibility to the active site in ways that reduce tolerance for non-optimal presentation of a C to the deaminase active site. Second, because the high activity of APOBEC1 likely contributes to the deamination of multiple Cs per DNA binding event, ${ }^{1,13,14}$ mutations that reduce the catalytic efficiency of the deaminase domain of a base editor might prevent it from catalyzing successive rounds of deamination before dissociating from the DNA. Once any C:G to T:A editing event has taken place, the sgRNA no longer perfectly matches the target DNA sequence and re-binding of the base editor to the target locus should be less favorable. Both strategies were tested in an effort to discover new base editors that distinguish among multiple cytidines within the original editing window.
[00394] Given the absence of an available APOBEC1 structure, several mutations previously reported to modulate the catalytic activity of APOBEC3G, a cytidine deaminase from the same family that shares $42 \%$ sequence similarity of its active site-containing domain
to that of APOBEC1, were identified ${ }^{15}$. Corresponding APOBEC1 mutations were incorporated into BE3 and evaluated their effect on base editing efficiency and editing window width in HEK293T cells at two C -rich genomic sites containing Cs at positions 3, 4, $5,6,8,9,10,12,13$, and 14 (site A); or containing Cs at positions $5,6,7,8,9,10,11$, and 13 (site B).
[00395] The APOBEC1 mutations R118A and W90A each led to dramatic loss of base editing efficiency (Figure 97C). R132E led to a general decrease in editing efficiency but did not change the substantially narrow the shape of the editing window (Figure 97C). In contrast, several mutations that narrowed the width of the editing window while maintaining substantial editing efficiency were found (Figures 93A and 97C). The "editing window width" was defined to represent the artificially calculated window width within which editing efficiency exceeds the half-maximal value for that target. The editing window width of BE3 for the two C-rich genomic sites tested was 5.0 (site A ) and 6.1 (site B ) nucleotides.
[00396] R126 in APOBEC1 is predicted to interact with the phosphate backbone of ssDNA ${ }^{13}$. Previous studies have shown that introducing the corresponding mutation into APOBEC3G decreased catalysis by at least 5 -fold ${ }^{14}$. Interestingly, when introduced into APOBEC1 in BE3, R126A and R126E increased or maintained activity relative to BE3 at the most strongly edited positions (C5, C6, and C7), while decreasing editing activity at other positions (Figures 93A and 97C). Each of these two mutations therefore narrowed the width of the editing window at site $A$ and site $B$ to 4.4 and 3.4 nucleotides (R126A), or to 4.2 and 3.1 nucleotides (R126E), respectively (Figures 93A and97C).
[00397] W90 in APOBEC1 (corresponding to W285 in APOBEC3G) is predicted to form a hydrophobic pocket in the APOBEC3G active site and assist in substrate binding ${ }^{13}$. Mutating this residue to Ala abrogated APOBEC3G's catalytic activity ${ }^{13}$. In BE3, W90A almost completely abrogated base editing efficiency (Figure 97C). In contrast, it was found that W90Y only modestly decreased base editing activity while narrowing the editing window width at site A and site B to 3.8 and 4.9 nucleotides, respectively (Figure 93A). These results demonstrate that mutations to the cytidine deaminase domain can narrow the activity window width of the corresponding base editors.
[00398] W90Y, R126E, and R132E, the three mutations that narrowed the editing window without drastically reducing base editing activity, were combined into doubly and triply mutated base editors. The double mutant W90Y+R126E resulted in a base editor (YE1-BE3) with BE3-like maximal editing efficiencies, but substantially narrowed editing window width (width at site A and site B = 2.9 and 3.0 nucleotides, respectively (Figure 93A). The

W90Y+R132E base editor (YE2-BE3) exhibited modestly lower editing efficiencies (averaging 1.4-fold lower maximal editing yields across the five sites tested compared with BE3), and also substantially narrowed editing window width (width at site $A$ and site $B=2.7$ and 2.8 nucleotides, respectively) (Figure 97C). The R126E + R132E double mutant (EE-BE3) showed similar maximal editing efficiencies and editing window width as YE2-BE3 (Figure 97C). The triple mutant W90Y+R126E+R132E (YEE-BE3) exhibited 2.0 -fold lower average maximal editing yields but very little editing beyond the C6 position and an editing window width of 2.1 and 1.4 nucleotides for site A and site B, respectively (Figure 97C). These data taken together indicate that mutations in the cytidine deaminase domain can strongly affect editing window widths, in some cases with minimal or only modest effects on editing efficiency.
[00399] The base editing outcomes of BE3, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 were further compared in HEK293T cells targeting four well-studied human genomic sites that contain multiple Cs within the BE3 activity window ${ }^{1}$. These target loci contained target Cs at positions 4 and 5 (HEK site 3), positions 4 and 6 (HEK site 2), positions 5 and 6 (EMX1), or positions 6, 7, 8, and 11 (FANCF). BE3 exhibited little ( $<1.2$-fold) preference for editing any Cs within the position 4-8 activity window. In contrast, YE1-BE3, exhibited a 1.3 -fold preference for editing C 5 over C 4 (HEK site 3 ), 2.6 -fold preference for C 6 over C 4 (HEK site 2), 2.0-fold preference for C5 over C6 (EMX1), and 1.5 -fold preference for C6 over C7 (FANCF) (Figure 93B). YE2-BE3 and EE-BE3 exhibited somewhat greater positional specificity (narrower activity window) than YE1-BE3, averaging 2.4-fold preference for editing C 5 over C 4 (HEK site 3 ), 9.5 -fold preference for C 6 over C 4 (HEK site 2), 2.9-fold preference for C5 over C6 (EMX1), and 2.6-fold preference for C7 over C6 (FANCF) (Figure 93B). YEE-BE3 showed the greatest positional selectivity, with a 2.9 -fold preference for editing C 5 over C 4 (HEK site 3 ), 29.7 -fold preference for C 6 over C 4 (HEK site 2), 7.9-fold preference for C5 over C6 (EMX1), and 7.9-fold preference for C7 over C6 (FANCF) (Figure 93B). The findings establish that mutant base editors can discriminate between adjacent Cs, even when both nucleotides are within the BE3 editing window.
[00400] The product distributions of these four mutants and BE3 were further analyzed by HTS to evaluate their apparent processivity. BE3 generated predominantly T4-T5 (HEK site 3), T4-T6 (HEK site 2), and T5-T6 (EMX1) products in treated HEK293T cells, resulting in, on average, 7.4 -fold more products containing two Ts , than products containing a single T . In contrast, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 showed substantially higher preferences for singly edited C4-T5, C4-T6, and T5-C6 products (Figure 93C). YE1-BE3
yielded products with an average single-T to double-T product ratio of 1.4. YE2-BE3 and EE-BE3 yielded products with an average single-T to double-T product ratio of 4.3 and 5.1, respectively (Figure 93C). Consistent with the above results, the YEE-BE3 triple mutant favored single-T products by an average of 14.3 -fold across the three genomic loci. (Figure 93C). For the target site in which only one $C$ is within the target window (HEK site 4 , at position C5), all four mutants exhibited comparable editing efficiencies as BE3 (Figure 98) These findings indicate that these BE3 mutants have decreased apparent processivity and can favor the conversion of only a single C at target sites containing multiple Cs within the BE3 editing window. These data also suggest a positional preference of $\mathrm{C} 5>\mathrm{C} 6>\mathrm{C} 7 \approx \mathrm{C} 4$ for these mutant base editors, although this preference could differ depending on the target sequence.
[00401] The window-modulating mutations in APOBEC1 were applied to VQR-BE3, allowing selective base editing of substrates at sites targeted by NGA PAM (Figure 107A). However, when these mutations were applied to SaKKH-BE3, a linear decrease in base editing efficiency was observed without the improvement in substrate selectivity, suggesting a different kinetic equilibrium and substrate accessibility of this base editor than those of BE3 and its variants (Figure 107B).
[00402] The five base editors with altered PAM specificities described in this study together increase the number of disease-associated mutations in the ClinVar database that can in principle be corrected by base editing by 2.5 -fold (Figures 94A and 94B). Similarly, the development of base editors with narrowed editing windows approximately doubles the fraction of ClinVar entries with a properly positioned NGG PAM that can be corrected by base editing without comparable modification of a non-target C (from 31\% for BE3 to 59\% for YEE-BE3) (Figures 94A and 94B).
[00403] In summary, the targeting scope of base editing was substantially expanded by developing base editors that use Cas9 variants with different PAM specificities, and by developing a collection of deaminase mutants with varying editing window widths. In theory, base editing should be possible using other programmable DNA-binding proteins (such as Cpf1 ${ }^{16}$ ) that create a bubble of single-stranded DNA that can serve as a substrate for a single-strand-specific nucleotide deaminase enzyme.
Materials and Methods
[00404] Cloning. PCR was performed using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). Plasmids for BE and sgRNA were constructed using USER cloning
(New England Biolabs), obtained from previously reported plasmids ${ }^{1}$. DNA vector amplification was carried out using NEB 10beta competent cells (New England Biolabs).
[00405] Cell culture. HEK293T (ATCC CRL-3216) were cultured in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with $10 \%$ ( $\mathrm{v} / \mathrm{v}$ ) fetal bovine serum (FBS), at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. Immortalized rat astrocytes containing the ApoE4 isoform of the APOE gene (Taconic Biosciences) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher Scientific) supplemented with $10 \%$ ( $\mathrm{v} / \mathrm{v}$ ) fetal bovine serum (FBS) and $200 \mu \mathrm{~g} / \mathrm{mL}$ Geneticin (ThermoFisher Scientific).
[00406] Transfections. HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately $85 \%$ confluency. 750 ng of BE and 250 ng of sgRNA expression plasmids were transfected using $1.5 \mu 1$ of Lipofectamine 2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol.
[00407] High-throughput DNA sequencing of genomic DNA samples. Transfected cells were harvested after 3 d and the genomic DNA was isolated using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. Genomic regions of interest were amplified by PCR with flanking HTS primer pairs listed in the Supplementary Sequences. PCR amplification was carried out with Phusion hot-start II DNA polymerase (ThermoFisher) according to the manufacturer's instructions. PCR products were purified using RapidTips (Diffinity Genomics). Secondary PCR was performed to attach sequencing adaptors. The products were gel-purified and quantified using the KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described ${ }^{1}$.
[00408] Data analysis. Nucleotide frequencies were assessed using a previously described MATLAB script ${ }^{1}$. Briefly, the reads were aligned to the reference sequence via the SmithWaterman algorithm. Base calls with Q-scores below 30 were replaced with a placeholder nucleotide ( N ). This quality threshold results in nucleotide frequencies with an expected theoretical error rate of 1 in 1000 .
[00409] Analyses of base editing processivity were performed using a custom python script. This program trims sequencing reads to the 20 nucleotide protospacer sequence as determined by a perfect match for the 7 nucleotide sequences that should flank the target site. These targets were then consolidated and sorted by abundance to assess the frequency of base editing products.
[00410] Bioinformatic analysis of the ClinVar database of human disease-associated mutations was performed in a manner similar to that previously described but with small
adjustments ${ }^{1}$. These adjustments enable the identification of targets with PAMs of customizable length and sequence. In addition, this improved script includes a priority ranking of target C positions ( $\mathrm{C} 5>\mathrm{C} 6>\mathrm{C} 7>\mathrm{C} 8 \approx \mathrm{C} 4$ ), thus enabling the identification of target sites in which the on-target C is either the only cytosine within the window or is placed at a position with higher predicted editing efficiency than any off-target C within the editing window.

## References for Example 12

1 Komor, A. C. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).
2 Sander, J. D. \& Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology 32, 347-355 (2014).
3 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
4 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281-2308 (2013).
5 Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862-D868 (2015).
6 Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729-1-8 (2016).
7 Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods doi:10.1038/nmeth. 4027 (2016).
8 Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-71 (2016).
9 Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
10 Zhang, Y. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci. Rep. 4, (2014).
11 Kleinstiver, B. P. et. al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
12 Kleinstiver, B. P. et. al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293-1298 (2015).

13 Holden, L. G. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 452, 121-124 (2008).
14 Chen, K.-M. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452, 116-119 (2008).
15 Harris, R. S., Petersen-Mahrt, S. K. \& Neuberger, M. S. RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Molecular Cell 10, 1247-1253 (2002).
16 Zetsche, B. et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPRCas System. Cell 163, 759-771 (2015).

EXAMPLE 13:
[00411] Using improved transfection procedures and better plasmids, biological replicates $(\mathrm{n}=3)$ were used to install the four HF mutations into the Cas9 portion of BE3. The muations do not significantly effect on-targeting editing with plasmid delivery (Figure 99). At the tested concentration, BE3 protein delivery works; however, the on-target editing is lower than for plasmid delivery (Figure 100). Protein delivery of BE3 with the HF mutations installed reduces on-targeting ediing efficiency but still yields some edited cells (Figure 101).
[00412] Both lipofection and installing HF mutations were shown to decrease off-target deamination events. For the four sites shown in Figure 102, the off-target sitest (OT) with the highest GUIDE-Seq reads and deamination events were assayed (Komor et al., Nature, 2016). The specificity ratio was calculated by dividing the off-target editing by the on-target editing at the closest corresponding C . In cases where off-target editing was not detectable, the ratio was set to 100 . Thus, a higher specificity ratio indicates a more specific construct. BE3 plasmid delivery showed much higher off-target/on-target editing than protein delivery of BE3, plasmid delivery of HF-BE3, or protein delivery of HF-BE3 (Figures 102 and 105). [00413] Purified proteins HF-BE3 and BE3 were analyzed in vitro for their capabilities to convert C to T residues at different positions in the spacer with the most permissive motif. Both BE3 and HF-BE3 proteins were found to have the same "window" for base editing (Figures 103 and 104).
[00414] A list of the disease targets is given in Table 9. The base to be edited in Table 9 is indicated in bold and underlined.

Table 9. Base Editor Disease Targets

| GENE | DISEASE | SPACER | PAM | EDITOR | DEFECT | CELL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RB1 | RETINOBLA | AATCTAGTAAATAAA | AAAA | SAKKH- <br> STOMA | SPLICING <br> TTGATGT | GACCAACGGCTAAGT <br> GAPAIRMENT |
|  |  | TGA | J82 |  |  |  |
| PTEN | CANCER | GAAGA | BE3 | W111R | MC116 |  |
| PIK3C <br> A | CANCER | TCCTTTCTTCACGGTT <br> GCCT | ACTG <br> GT | SAKKH- <br> BE3 | K111R | CRL- |
| IIK3C <br> A | CANCER | CTCCTGCTCAGTGATT <br> TCAG | AGA | VQR- <br> BE3 | Q546R | CRL- <br> 2505 |
| TP53 | CANCER | TGTCACACATGTAGTT <br> GTAG | TGG | YEE-BE3 | N239D | SNU47 <br> 5 |
| HRAS | CANCER | CCTCCCGGCCGGCGG <br> TATCC | AGG | YEE-BE3 | Q61R | MC/C <br> AR |

Table 6. Exemplary diseases that may be treated using base editors. The protospacer and PAM sequences are shown in the sgRNA (PAM) column. The PAM sequence is shown in parentheses and with the base to be edited indicated by underlining.

| Disease target | gene symbol | Base <br> changed | sgRNA (PAM) | Base editor |
| :---: | :---: | :---: | :---: | :---: |
| Prion disease | PRNP | R37* | GGCAGCCGATACCCGGGGCA(GGG) | BE3 |
|  |  |  | GGGCAGCCGATACCCGGGGC(AGG) |  |
| Pendred syndrome | SIc26a4 | c. 919-2A>G | TTATTGTCCGAAATAAAAGA(AGA) | BE3 |
|  |  |  | ATTGTCCGAAATAAAAGAAG(AGG) | (VQR |
|  |  |  | TTGTCCGAAATAAAAGAAGA(GGA) | SaCas9) |
|  |  |  | GTCCGGAAATAAAAGAAGAGGAAAA(AAT) |  |
|  |  |  | GTCCGAAATAAAAGAAGAGGAAAAA(ATT) |  |
| Congenital deafness | Tmc1 | c. $545 \mathrm{~A}>\mathrm{G}$ | CAGGAAGCACGAGGCCACTG(AGG) | BE3 |
|  |  |  | AACAGGAAGCACGAGGCCAC(TGA) | YE-BE3 |
|  |  |  | AGGAAGCACGAGGCCACTGA(GGA) | YEE-BE3 |
| Acquired deafness | SNHL | S33F | TTGGATTCTGGAATCCATTC(TGG) | BE3 |
| Alzheimer's Disease | APP | A673T | TCTGCATCCATCTTCACTTC(AGA) | BE3 VQR |
| Niemann-Pick Disease Type C | NPC1 | 11061T | CTTACAGCCAGTAATGTCAC(CGA) | BE3 VQR |

[00415] Additional exemplary genes in the human genome that may be targeted by the base editors or complexes of this disclosure are provided herein in Tables 7 and 8. Table 7 includes gene mutations that may be correcteded by changing a cytosine (C) to a thymine (T), for example, using a BE3 nucleobase editor. Table 8 includes gene mutations that may be corrected by changing a guanine ( G ) to an adenine (A), for example, using a BE3 nucleobase editor.

Table 7. Human gene mutations that may be corrected by changing a cytosine (C) to a thymine (T). The gene name, gene symbol, and dbSNP database reference number (RS\#) are indicated. Also indicated are exemplary protospacers with their PAM sequences (gRNAs and gRNAall) and the base to be edited, e.g., a C indicated by a " Y ". The "gRNAs" sequences, from top to bottom, correspond to SEQ ID NOs: 1914-2091. The "gRNA all" sequences, from top to bottom, correspond to SEQ ID NOs: 2192-2540, 3144-3433.

| Name | RS\# <br> (dbSNP) | GeneSymbol | gRNAs | gRNAall | Phenotypes |
| :--- | :---: | :--- | :--- | :--- | :--- |
| NM_000138.4(FBN1): <br> c.3220T>C <br> (p.Cys1074Arg) | 137854465 | FBN1 | I] | I] | In |


| $\begin{aligned} & \text { NM_005609.2(PYGM) } \\ & : \text { c. } 425 \_528 \mathrm{del} \end{aligned}$ | 764313717 | PYGM | [] | ['TGGCTGYCAGG GACCCAGCAAGG' <br> 'CTGYCAGGGACC CAGCAAGGAGG'] | [] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000124.3(ERCC6 } \\ & \text { ):c.2830-2A>G } \end{aligned}$ | 373227647 | ERCC6 | [] | [] | 「'Cockayne syndrome, type $B^{\prime} \mid$ |
| NM_000059.3(BRCA2 ):c. $316+2 \mathrm{~T}>\mathrm{C}$ | 81002805 | BRCA2 | ['CTTAG GYAAG TAATG CAATA TGG'] | ['CTTAGGYAAGTA ATGCAATATGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2', 'Hereditary cancerpredisposing syndrome'] |
| NM 003242.5(TGFBR <br> 2):c. $923 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu308Pro) | 28934568 | TGFBR2 | [] | ['AGTTCCYGACGG CTGAGGAGCGG'] | $\begin{aligned} & \text { ['Loeys-Dietz } \\ & \text { syndrome 2'] } \end{aligned}$ |
| NM $000410.3(\mathrm{HFE}):$ c. $314 \mathrm{~T}>\mathrm{C}$ (p.Ile 105Thr) | 28934596 | HFE | [] | [] | ['Hemochromatosis type 1'] |
| NM 000308.2(CTSA): <br> c. $247 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp83Arg) | 28934603 | CTSA | I] | [] | ['Combined deficiency of sialidase AND beta galactosidase'\| |
| $\begin{array}{\|l} \hline \text { NM_033290.3(MID1): } \\ \text { c.1877T>C } \\ \text { (p.Leu626Pro) } \\ \hline \end{array}$ | 28934611 | MID1 | [] | [] | ['Opitz-Frias syndrome'] |
| NM 000329.2(RPE65) <br> :c. $1102 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr368His) | 62653011 | RPE65 | [] | [] | ['Leber congenital amaurosis 2 ', 'Retinitis pigmentosa 20', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_007313.2(ABL1): } \\ & \text { c.814T>C } \\ & \text { (p.Tyr272His) } \end{aligned}$ | 121913461 | ABL1 | [] | ['CCAGYACGGGG <br> AGGTGTACGAGG', <br> 'CAGYACGGGGAG <br> GTGTACGAGGG'] | [ |
| $\begin{aligned} & \hline \text { NM_000546.5(TP53):c } \\ & .398 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met133Thr) } \\ & \hline \end{aligned}$ | 28934873 | TP53 | I] | I] | ['Li-Fraumeni syndrome 1'] |
| NM_000490.4(AVP):c $.200 \mathrm{~T}>\mathrm{C}(\mathrm{p}$. Val67Ala) | 28934878 | AVP | [] | [] | ['Neurohypophyseal diabetes insipidus'] |
| NM $021961.5($ TEAD 1 ):c. $1261 \mathrm{~T}>\mathrm{C}$ (p.Tyr?His) | 11567847 | TEAD1 | ['TCATA TTYAC AGGCT <br> TGTAA <br> AGG'] | ['TCATATTYACAG GCTTGTAAAGG'] | [] |
| NM_002609.3(PDGFR <br> B):c. $1973 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu658Pro) | 397509381 | PDGFRB | [] | [] | ['Basal ganglia calcification, idiopathic, 4'] |
| NM 005236.2(ERCC4 <br> ):c. $689 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu230Pro) | 397509402 | ERCC4 | I] | I] | ['Fanconi anemia, complementation group $\mathrm{Q}^{\prime} \mid$ |
| NM_005236.2(ERCC4 ):c. $706 \mathrm{~T}>\mathrm{C}$ (p.Cys236Arg) | 397509403 | ERCC4 | [] | [] | ['XERODERMA PIGMENTOSUM, TYPE <br> F/COCKAYNE <br> SYNDROME'] |
| NM 173551.4(ANKS6 <br> ):c. $1322 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln441Arg) | 377750405 | ANKS6 | [] | ['AGGGCYGTCGG ACCTTCGAGTGG', 'GGGCYGTCGGAC CTTCGAGTGGG' | $\begin{aligned} & \text { ['Nephronophthisis } \\ & 16 \text { '] } \end{aligned}$ |


|  |  |  |  | 'GGCYGTCGGACC TTCGAGTGGGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000142.4(FGFR3 } \\ & \text { ):c.1612A>G } \\ & \text { (p.Ile538Val) } \end{aligned}$ | 80053154 | FGFR3 | [] | [] | ['Hypochondroplasia '] |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c.707T>C } \\ & \text { (p.Leu236Pro) } \end{aligned}$ | 80338848 | SLC26A4 | [] | [] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| $\begin{aligned} & \text { NM_000518.4(HBB):c } \\ & .337 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cysl13Arg }) \end{aligned}$ | 35849199 | HBB | [] | [] | [] |
| NM_000104.3(CYP1B 1): c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 72549389 | CYP1B1 | [] | [] | ['Irido-corneotrabecular dysgenesis'\| |
| $\begin{aligned} & \text { NM_000169.2(GLA):c } \\ & .484 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Trp162Arg) } \end{aligned}$ | 28935196 | - | [] | [] | ['Fabry disease'] |
| $\begin{aligned} & \text { NM_001927.3(DES):c. } \\ & 1034 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu345Pro) } \end{aligned}$ | 57639980 | DES | [] | ['ATTCCCYGATGA GGCAGATGCGG', 'TTCCCYGATGAG GCAGATGCGGG'] | ['Myofibrillar myopathy 1 ', 'not provided'] |
| NM_006517.4(SLC16 A2):c.1190T>C (p.Leu397Pro) | 122455132 | SLC16A2 | [] | [] | ['Allan-HerndonDudley syndrome'] |
| $\begin{aligned} & \text { NM_020320.3(RARS2 } \\ & \text { ):c.35A>G } \\ & \text { (p.Gln12Arg) } \end{aligned}$ | 147391618 | RARS2 | [] | ['ATACCYGGCAA GCAATAGCGCGG' 1 | ['Pontocerebellar hypoplasia type $6^{\prime}$ ] |
| NM_000239.2(LYZ):c $.221 \mathrm{~T}>\mathrm{C}$ (p.Ile 74 Thr ) | 121913547 | LYZ | [] | [] | ['Familial visceral amyloidosis, <br> Ostertag type'] |
| $\begin{aligned} & \text { NM_002977.3(SCN9A } \\ & \text { ):c. } 2215 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile739 Val) } \end{aligned}$ | 182650126 | - | [] | ['GTAAYTGCAAG ATCTACAAAAGG' ] | ['Small fiber neuropathy', 'not provided'] |
| $\begin{aligned} & \text { NM_004700.3(KCNQ } \\ & \text { 4):c. } 842 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu281Ser) } \end{aligned}$ | 80358278 | KCNQ4 | [] | ['ACATYGACAAC CATCGGCTATGG'] | ['DFNA 2 Nonsyndromic Hearing Loss'] |
| $\begin{aligned} & \text { NM_000169.2(GLA):c } \\ & .806 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \text { Val269Ala) } \end{aligned}$ | 28935488 | - | $\begin{aligned} & \hline \text { ['CAGTT } \\ & \text { AGYGA } \\ & \text { TTGGC } \\ & \text { AACTT } \\ & \text { TGG'] } \\ & \hline \end{aligned}$ | ['CAGTTAGYGATT GGCAACTTTGG'] | ['Fabry disease'] |
| NM_000228.2(LAMB <br> 3): $\mathrm{c} .565-2 \mathrm{~A}>\mathrm{G}$ | 370148688 | LAMB3 | [] | [] | ['Junctional epidermolysis bullosa gravis of Herlitz'] |
| $\begin{aligned} & \text { NM_052867.2(NALC } \\ & \text { N):c.1526T>C } \\ & \text { (p.Leu509Ser) } \end{aligned}$ | 786203987 | NALCN | [] | [] | ['CONGENITAL CONTRACTURES OF THE LIMBS AND FACE, HYPOTONIA, AND DEVELOPMENTA L DELAY'] |
| $\begin{aligned} & \text { NM_001031.4(RPS28) } \\ & : c .1 \bar{A}>G(\text { p.Met1Val }) \end{aligned}$ | 786203997 | RPS28 | ['CCAY <br> GATGG <br> CGGCG <br> CGGCG <br> GCGG'] | ['TGTCCAYGATGG CGGCGCGGCGG', <br> 'CCAYGATGGCGG <br> CGCGGCGGCGG'] | ['Diamond-Blackfan anemia with microtia and cleft palate'] |
| NM_005957.4(MTHF | 786204012 | MTHFR | [] | ['GACCYGCTGCCG | ['Homocysteinemia |


| $\begin{aligned} & \hline \text { R):c.388T>C } \\ & \text { (p.Cys130Arg) } \\ & \hline \end{aligned}$ |  |  |  | TCAGCGCCTGG'] | due to MTHFR deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_005957.4(MTHF } \\ & \text { R):c. } 1530+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 786204027 | MTHFR | ['GAAG <br> GYGTG <br> GTAGG <br> GAGGC <br> ACGG', <br> 'AAGGY <br> GTGGT <br> AGGGA <br> GGCAC <br> GGG', <br> 'AGGYG <br> TGGTA <br> GGGAG <br> GCACG <br> GGG'] | ['GAAGGYGTGGT AGGGAGGCACGG' <br> 'AAGGYGTGGTAG GGAGGCACGGG', 'AGGYGTGGTAGG GAGGCACGGGG'] | ['Homocysteinemia due to MTHFR deficiency'] |
| $\begin{aligned} & \hline \text { NM_005957.4(MTHF } \\ & \text { R):c.1793T>C } \\ & \text { (p.Leu598Pro) } \\ & \hline \end{aligned}$ | 786204034 | MTHFR | [] | [] | ['Homocysteinemia due to MTHFR deficiency'l |
| NM_005957.4(MTHF R):c. $1883 \mathrm{~T}>\mathrm{C}$ (p.Leu628Pro) | 786204037 | MTHFR | [] | ['TCCCACYGGACA ACTGCCTCTGG'] | ['Homocysteinemia due to MTHFR deficiency'] |
| NM_000264.3(PTCH1 ):c. $3168+2 \mathrm{~T}>\mathrm{C}$ | 786204056 | PTCH1 | ['ATCAT TGYGA GTGTA TTATA AGG', 'TCATT GYGAG TGTAT TATAA GGG', <br> 'CATTG YGAGT GTATT <br> ATAAG GGG'] | ['ATCATTGYGAGT GTATTATAAGG', 'TCATTGYGAGTG TATTATAAGGG', 'CATTGYGAGTGT ATTATAAGGGG'] | ['Gorlin syndrome'] |
| NM_000182.4(HADH <br> A):c. $919-2 \mathrm{~A}>\mathrm{G}$ | 200017313 | HADHA | [] | [] | ['Mitochondrial trifunctional protein deficiency', 'Longchain 3-hydroxyacyl-CoA dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c.806T }>\mathrm{C} \\ & \text { (p.Leu269Pro) } \\ & \hline \end{aligned}$ | 180177271 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| NM_006121.3(KRT1): c. $1436 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile479Thr) | 57837128 | KRT1 | [] | [] | ['Ichthyosis, cyclic, with epidermolytic hyperkeratosis', 'not provided'] |
| $\begin{aligned} & \text { NM_000521.3(HEXB) } \\ & \text { :c.185C }>\text { T } \\ & \text { (p.Ser62Leu) } \\ & \hline \end{aligned}$ | 820878 | HEXB | [] | [] | ['Sandhoff disease, infantile type'] |
| $\begin{aligned} & \text { NM_000140.3(FECH): } \\ & \text { c. } 1137+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 202147607 | FECH | [] | ['GTAGAYACCTTA GAGAACAATGG'] | ['Erythropoietic protoporphyria'] |
| $\begin{aligned} & \text { NM_015046.5(SETX): } \\ & \text { c. } 1166 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 29001584 | SETX | [] | [] | ['Amyotrophic lateral sclerosis type |


| (p.Leu389Ser) |  |  |  |  | 4'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 020365.4(EIF2B3 ):c. $1037 \mathrm{~T}>\mathrm{C}$ (p.Ile346Thr) | 119474039 | EIF2B3 | ['CCAG AYTGT CAGCA AACAC CTGG'] | ['CCAGAYTGTCAG CAAACACCTGG'] | ['Leukoencephalopat hy with vanishing white matter'] |
| NM_139058.2(ARX):c .98T>C (p.Leu33Pro) | 28936077 | ARX | [] | [] | ['Mental retardation, with or without seizures, ARXrelated, X-linked'] |
| NM 005183.3(CACN A1F):c. $2267 \mathrm{~T}>\mathrm{C}$ (p.Ile756Thr) | 122456136 | CACNAIF | I] | ['TGCCAYTGCTGT GGACAACCTGG'] | ] |
| NM_007374.2(SIX6):c $.110 \mathrm{~T}>\mathrm{C}$ (p.Leu37Pro) | 786204851 | SIX6 | [] | ['GTCGCYGCCCGT GGCCCCTGCGG'] | ['Cataract, microphthalmia and nystagmus'] |
| NM 000339.2(SLC12 <br> A3):c. $1261 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys421Arg) | 28936387 | SLC12A3 | [] | [] | ['Familial hypokalemiahypomagnesemia'] |
| NM 003865.2(HESX1 ):c. $\overline{77} \mathrm{~T}>\mathrm{C}(\mathrm{p} .1 \mathrm{le} 26 \mathrm{Thr})$ | 28936416 | HESX1 | [] | [] | ['Pituitary hormone deficiency, combined 5'] |
| NM_022114.3(PRDM 16):c.2660T>C (p.Leu887Pro) | 202115331 | PRDM16 | [] | [] | ['Dilated cardiomyopathy 1LL'] |
| NM_001159287.1(TPI <br> 1):c. $832 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe278Leu) | 121964847 | TPI1 | [] | [] | ['Triosephosphate isomerase deficiency'] |
| NM 001692.3(ATP6V 1B1):c. $242 \mathrm{~T}>\mathrm{C}$ (p.Leu81Pro) | 121964880 | ATP6V1BI | [] | I] | [] |
| $\begin{aligned} & \text { NM_000490.4(AVP):c } \\ & .61 \mathrm{~T}>\mathrm{C} \text { (p.Tyr2lHis) } \\ & \hline \end{aligned}$ | 121964893 | AVP | [] | [] | ['Neurohypophyseal diabetes insipidus'\| |
| $\begin{aligned} & \text { NM_000027.3(AGA):c } \\ & .916 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Cys} 306 \mathrm{Arg}) \end{aligned}$ | 121964906 | AGA | ['GTTAT <br> AYGTG <br> CCAAT <br> GTGAC <br> TGG' | ['GTTATAYGTGCC AATGTGACTGG'] | ['Aspartylglycosami nuria'] |
| NM_000138.4(FBN1): c. $14 \overline{6} 8+2 \mathrm{~T}>\mathrm{C}$ | 794728167 | FBN1 | [] | ['ATTGGYACGTGA TCCATCCTAGG'] | ['Thoracic aortic aneurysms and aortic dissections'] |
| NM_000027.3(AGA): .214T>C (p.Ser72Pro) | 121964909 | AGA | [] | ['GACGGCYCTGTA GGCTTTGGAGG'] | ['Aspartylglycosami nuria'] |
| NM 004453.3(ETFDH <br> ):c. $1001 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu334Pro) | 377686388 | ETFDH | [] | [] | ['Glutaric aciduria, type $\left.2^{2}\right]$ |
| NM 001385.2(DPYS): <br> c. $1078 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp360Arg) | 121964924 | DPYS | I'CGTA <br> ATAYG <br> GGAAA <br> AAGGC <br> GTGG', <br> 'AATAY <br> GGGAA <br> AAAGG <br> CGTGG <br> TGG', <br> 'ATAYG <br> GGAAA <br> AAGGC | ['CGTAATAYGGG AAAAAGGCGTGG' <br> 'AATAYGGGAAAA AGGCGTGGTGG', 'ATAYGGGAAAAA GGCGTGGTGGG'] | ['Dihydropyrimidina se deficiency'] |


|  |  |  | $\begin{aligned} & \hline \text { GTGGT } \\ & \text { GGG'] } \\ & \hline \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_004453.3(ETFDH ):c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 121964953 | ETFDH | [] | [] | ['Glutaric acidemia IIC'] |
| $\begin{aligned} & \text { NM_0000071.2(CBS):c. } \\ & 1616 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu539Ser) } \end{aligned}$ | 121964968 | CBS | [] | [] | ['Homocystinuria, pyridoxineresponsive'] |
| NM_000170.2(GLDC) :c. $2 \overline{\mathbf{T}}>\mathrm{C}$ (p.Met1Thr) | 121964978 | GLDC | [] | ['CGGCCAYGCAG <br> TCCTGTGCCAGG', <br> 'GGCCAYGCAGTC <br> CTGTGCCAGGG'] | ['Non-ketotic hyperglycinemia'] |
| $\begin{aligned} & \hline \text { NM_000108.4(DLD):c } \\ & .1178 \mathrm{~T}>\mathrm{C} \\ & \text { (p.1le393Thr) } \\ & \hline \end{aligned}$ | 121964991 | DLD | [] | [] | ['Maple syrup urine disease, type 3'] |
| $\begin{array}{\|l} \hline \text { NM_014425.3(INVS): } \\ \text { c.1478T }>\mathrm{C} \\ \text { (p.Leu493Ser) } \\ \hline \end{array}$ | 121964995 | INVS | [] | [] | ['Infantile nephronophthisis'] |
| NM_000398.6(CYB5R <br> 3): c. $382 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser128Pro) | 121965006 | CYB5R3 | [] | [] | ['Methemoglobinemi a type 2'] |
| NM_000398.6(CYB5R <br> 3): $\mathrm{c} .446 \mathrm{~T}>\mathrm{C}$ <br> (p.Leul49Pro) | 121965008 | CYB5R3 | [] | ['CTGCYGGTCTAC CAGGGCAAAGG'] | ['METHEMOGLOB INEMIA, TYPE I'] |
| NM_000398.6(CYB5R 3): c. $610 \mathrm{~T}>\mathrm{C}$ (p.Cys204Arg) | 121965011 | CYB5R3 | [] | [] | ['Methemoglobinemi a type $\left.2^{\prime}\right]$ |
| NM_000398.6(CYB5R <br> 3): c. $218 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu73Pro) | 121965013 | CYB5R3 | [] | [] | ['METHEMOGLOB INEMIA, TYPE I'] |
| $\begin{aligned} & \text { NM_001103.3(ACTN2 } \\ & \text { ):c. } 683 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met228Thr) } \end{aligned}$ | 786205144 | ACTN2 | ['CCTA <br> AAAYG <br> TTGGA <br> TGCTG <br> AAGG'] | ['CCTAAAAYGTTG GATGCTGAAGG'] | ['Dilated cardiomyopathy 1AA'] |
| $\begin{aligned} & \text { NM_000548.3(TSC2): } \\ & \text { c.3106T>C } \\ & \text { (p.Serl036Pro) } \end{aligned}$ | 45517281 | TSC2 | [] | [] | ['Tuberous sclerosis syndrome', 'Tuberous sclerosis 2'] |
| $\begin{aligned} & \text { NM_000203.4(IDUA): } \\ & \text { c.1469T>C } \\ & \text { (p.Leu490Pro) } \end{aligned}$ | 121965027 | IDUA | [] | [] | ['Mucopoly saccharid osis, MPS-I-H/S', <br> 'Hurler syndrome', 'not provided'] |
| NM_001122764.1(PP OX):c. $35 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile12Thr) | 28936677 | PPOX | [] | [] | ['Variegate porphyria'] |
| NM_000525.3(KCNJ1 <br> 1):c. $440 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu147Pro) | 28936678 | KCNJ11 | [] | [] | ['Islet cell hyperplasia'] |
| NM_001025107.2(AD AR):c. $1883 \mathrm{~T}>\mathrm{C}$ (p.Leu628Pro) | 28936680 | ADAR | [] | [] | ['Symmetrical dyschromatosis of extremities'] |
| $\begin{aligned} & \text { NM_001025107.2(AD } \\ & \text { AR):c.2609T }>\mathrm{C} \\ & \text { (p.Phe870Ser) } \\ & \hline \end{aligned}$ | 28936681 | ADAR | [] | [] | ['Symmetrical dyschromatosis of extremities'] |
| $\begin{aligned} & \text { NM_000557.4(GDF5): } \\ & \text { c.1322T }>\mathrm{C} \\ & \text { (p.Leu441Pro) } \end{aligned}$ | 28936683 | - | [] | [] | ['Brachydactyly type <br> A2', 'Fibular <br> hypoplasia and complex brachydactyly'] |


| $\begin{aligned} & \text { NM_000274.3(OAT):c } \\ & .163 \mathrm{~T}>\mathrm{C}(\text { p.Tyr55His }) \end{aligned}$ | 121965037 | OAT | [] | [] | ['Ornithine aminotransferase deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000274.3(OAT):c } \\ & .1205 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu } 402 \mathrm{Pro} \text { ) } \\ & \hline \end{aligned}$ | 121965043 | OAT | [] | [] | ['Ornithine aminotransferase deficiency'] |
| NM_000223.3(KRT12 ):c. $386 \mathrm{~T}>\mathrm{C}$ (p.Met129Thr) | 28936695 | KRT12 | [] | [] | ['Meesman corneal dystrophy', 'not provided'] |
| $\begin{aligned} & \text { NM_000128.3(F11):c. } \\ & 901 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe301Leu) } \\ & \hline \end{aligned}$ | 121965064 | F11 | [] | ['TGATYTCTTGGG AGAAGAACTGG'] | ['Hereditary factor XI deficiency disease'] |
| $\begin{aligned} & \text { NM_000128.3(F11):c. } \\ & 166 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{Cys} 56 \mathrm{Arg}) \end{aligned}$ | 121965069 | F11 | I] | II | ['Hereditary factor XI deficiency disease'] |
| NM_000235.3(LIPA): <br> c. $599 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu200Pro) | 121965086 | LIPA | [] | [] | ['Lysosomal acid lipase deficiency'] |
| $\begin{aligned} & \hline \text { NM_001199.3(BMP1): } \\ & \text { c. } 2 \mathbf{2}^{4} 1 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 786205217 | BMP1 | [] | [] | ['Osteogenesis imperfecta type 13'] |
| NM_004974.3(KCNA <br> 2):c. $788 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile263Thr) | 786205231 | KCNA2 | [] | [] | ['EPILEPTIC ENCEPHALOPAT HY, EARLY INFANTILE, 32'] |
| $\begin{aligned} & \hline \text { NM_000548.3(TSC2): } \\ & \text { c.5150T>C } \\ & \text { (p.Leu1717Pro) } \end{aligned}$ | 45517398 | TSC2 | I] | l'GCCCYGCACGC AAATGTGAGTGG', 'CCCYGCACGCAA ATGTGAGTGGG' | ['Tuberous sclerosis syndrome', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000212.2(ITGB3) } \\ & \text { :c.176T>C } \\ & \text { (p.Leu59Pro) } \end{aligned}$ | 5918 | ITGB3 | [] | [] | ['Myocardial infarction', <br> 'Posttransfusion purpura', <br> 'Thrombocytopenia, neonatal <br> alloimmune', <br> 'Fracture, hip, susceptibility to'\| |
| m. $9191 \mathrm{~T}>\mathrm{C}$ | 386829069 | MT-ATP6 | [] | [] | ['Leigh disease'] |
| NM 000419.3(ITGA2 <br> B):c. $1787 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile596Thr) | 76811038 | ITGA2B | [] | [] | ['Glanzmann thrombasthenia'] |
| NM_002294.2(LAMP <br> 2):c. $\overline{8} 64+2 \mathrm{~T}>\mathrm{C}$ | 730880485 | LAMP2 | [] | [] | ['Cardiomyopathy', 'Danon disease'] |
| NM_000138.4(FBN1): c. $7111 \mathrm{~T}>\mathrm{C}$ (p.Trp2371Arg) | 794728264 | FBN1 | [] | [] | ['Thoracic aortic aneurysms and aortic dissections'] |
| NM_000531.5(OTC):c $.143 \mathrm{~T}>\mathrm{C}$ (p.Phe 48 Ser ) | 72554315 | OTC | [] | [] | ['not provided'] |
| NM_178454.4(DRAM <br> 2):c. $79 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr27His) | 786205662 | DRAM2 | [] | [] | ['Retinal dystrophy'] |
| NM_000138.4(FBN1): c. $7531 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys2511Arg) | 794728272 | FBN1 | [] | [] | ['Thoracic aortic aneurysms and aortic dissections'] |
| NM_016218.2(POLK): c. $609 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{Asn} 203=$ ) | 786205684 | POLK | [] | [] | ['Malignant tumor of prostate'] |
| $\begin{aligned} & \text { NM_016218.2(POLK): } \\ & \text { c. } \mathbf{6} 6 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 786205688 | POLK | [] | [] | ['Malignant tumor of prostate'] |
| NM_000354.5(SERPI | 28937312 | SERPINA7 | [] | [] | II |


| $\begin{array}{\|l} \hline \begin{array}{l} \text { NA7):c. 740T>C } \\ \text { (p.Leu247Pro) } \end{array} \\ \hline \end{array}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000531.5(OTC):c . $284 \overline{\mathrm{~T}}>\mathrm{C}$ (p.Leu95Ser) | 72554346 | OTC | $\begin{array}{\|l\|} \hline \text { ['ACAA } \\ \text { GATYG } \\ \text { TCTAC } \\ \text { AGAAA } \\ \text { CAGG'] } \\ \hline \end{array}$ | ['ACAAGATYGTCT ACAGAAACAGG' | ['not provided'] |
| NM 015662.2(IFT172 ):c. $770 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu257Pro) | 786205857 | IFT172 | [] | $\begin{aligned} & \hline \text { ['TTGTGCYAGGAA } \\ & \text { GTTATGACAGG'] } \end{aligned}$ | $\begin{aligned} & \hline \text { ['RETINITIS } \\ & \text { PIGMENTOSA 71'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .386+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 72554359 | OTC | [] | [] | ['not provided'] |
| NM 001135669.1(XP R1):c.434T>C (p.Leu145Pro) | 786205901 | XPR1 | I] | II | ['BASAL GANGLIA CALCIFICATION, IDIOPATHIC, $6^{\prime}$ ] |
| NM_001135669.1(XP <br> R1):c.419T>C <br> (p.Leul40Pro) | 786205903 | XPR1 | [] | [] | ['BASAL GANGLIA CALCIFICATION, IDIOPATHIC, $6^{\prime}$ I |
| NM_001135669.1(XP <br> R1):c. $653 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu218Ser) | 786205904 | XPR1 | [] | $\begin{aligned} & \hline \text { ['GCGTTYACGTGT } \\ & \text { CCCCCCTTTGG', } \\ & \text { 'CGTTYACGTGTC } \\ & \text { CCCCCTTTGGG'] } \\ & \hline \end{aligned}$ | ['BASAL GANGLIA CALCIFICATION, IDIOPATHIC, 6'] |
| $\begin{aligned} & \hline \text { NM_181457.3(PAX3): } \\ & \text { c.2687>C } \\ & \text { (p. Tyr90His) } \\ & \hline \end{aligned}$ | 104893654 | PAX3 | [] | [] | ['Klein-Waardenberg syndrome'] |
| $\begin{aligned} & \text { NM_001987.4(ETV6): } \\ & \text { c.1046T>C } \\ & \text { (p.Leu349Pro) } \end{aligned}$ | 786205155 | ETV6 | II | II | ['Thrombocytopenia' , 'LEUKEMIA, ACUTE <br> LYMPHOBLASTIC ; ALL'] |
| NM_000055.2(BCHE) <br> :c. $1004 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu335Pro) | 104893684 | BCHE | I] | [] | ['Deficiency of butyrylcholine esterase'\| |
| NM_000388.3(CASR): <br> c. $382 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 128Leu) | 104893696 | CASR | [] | [] | ['Hypocalcemia, autosomal dominant 1'] |
| NM 000388.3(CASR): <br> c. $1835 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe612Ser) | 104893698 | CASR | [] | [] | ['Hypocalcemia, autosomal dominant 1'] |
| NM_000388.3(CASR): <br> c. $2641 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe881Leu) | 104893704 | CASR | [] | ['ACGCTYTCAAGG <br> TGGCTGCCCGG', <br> 'CGCTYTCAAGGT <br> GGCTGCCCGGG'] | ['Hypercalciuric hypercalcemia'] |
| NM_000388.3(CASR): <br> c. $374 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu125Pro) | 104893708 | CASR | II | [] | ['Hypocalcemia, autosomal dominant 1', 'Hypocalcemia, autosomal dominant 1, with bartter syndrome'\| |
| NM_000388.3(CASR): c. $2362 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe788Leu) | 104893711 | CASR | [] | [] | ['Hypocalcemia, autosomal dominant 1'] |
| NM 000388.3(CASR): c. $38 \mathrm{~T}>\mathrm{C}$ (p.Leu13Pro) | 104893717 | CASR | [] | [] | ['Hypocalciuric hypercalcemia, familial, type 1'] |
| NM_006580.3(CLDN1 <br> 6):c. $500 \mathrm{~T}>\mathrm{C}$ | 104893725 | CLDN16 | [] | [] | ['Primary hypomagnesemia'] |


| (p.Leu167Pro) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_006580.3(CLDN1 <br> 6): $\mathrm{c} .434 \mathrm{~T}>\mathrm{C}$ <br> (p.Leul45Pro) | 104893731 | CLDN16 | [] | [] | $\begin{aligned} & \hline \text { ['Primary } \\ & \text { hypomagnesemia'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000041.3(APOE): } \\ & \text { c. } 388 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cysl30Arg }) \end{aligned}$ | 429358 | APOE | [] | [] | ['Familial type 3 hyperlipoproteinemi a'] |
| $\begin{aligned} & \text { NM_198159.2(MITF): } \\ & \text { c.1051T>C } \\ & \text { (p.Ser351Pro) } \\ & \hline \end{aligned}$ | 104893744 | MITF | [] | [] | ['Waardenburg syndrome type $\left.2 \mathrm{~A}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_198159.2(MITF): } \\ & \text { c.1195T>C } \\ & \text { (p.Ser399Pro) } \end{aligned}$ | 104893747 | MITF | [] | ['ACTTYCCCTTAT TCCATCCACGG', 'CTTYCCCTTATTC CATCCACGGG'] | ['Waardenburg syndrome type 2A'] |
| $\begin{aligned} & \text { NM_001122757.2(PO } \\ & \text { U1F1):c.655T>C } \\ & \text { (p.Trp219Arg) } \\ & \hline \end{aligned}$ | 104893758 | POUIF1 | [] | [] | ['Pituitary hormone deficiency, combined 1'] |
| NM_000539.3(RHO): c $.133 \mathrm{~T}>\mathrm{C}$ (p.Phe45Leu) | 104893770 | RHO | [] | ['CATGYTTCTGCT GATCGTGCTGG', <br> 'ATGYTTCTGCTG <br> ATCGTGCTGGG'] | ['Retinitis pigmentosa 4'] |
| $\begin{aligned} & \hline \text { NM_003106.3(SOX2): } \\ & \text { c.290T>C } \\ & \text { (p.Leu97Pro) } \\ & \hline \end{aligned}$ | 104893802 | ${ }^{-}$ | [] | [] | ['Microphthalmia syndromic 3'] |
| $\begin{aligned} & \text { NM_024009.2(GJB3): } \\ & \text { c.101T }>\text { C } \\ & \text { (p.Leu34Pro) } \end{aligned}$ | 28937583 | GJB3 | [] | [] | ['Erythrokeratodermi a variabilis'] |
| NM_003907.2(EIF2B5 ):c. $1882 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp628Arg) | 28937596 | EIF2B5 | [] | $\begin{aligned} & \hline \text { ['AGGCCYGGAGC } \\ & \text { CCTGTTTTTAGG'] } \end{aligned}$ | ['Leukoencephalopat hy with vanishing white matter'] |
| $\begin{aligned} & \text { NM_000551.3(VHL):c } \\ & .188 \mathrm{~T}>\mathrm{C}(\text { p.Leu63Pro }) \\ & \hline \end{aligned}$ | 104893827 | VHL | [] | [] | ['Pheochromocytom $\left.a^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000320.2(QDPR) } \\ & \text { :c. } 106 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp36Arg) } \\ & \hline \end{aligned}$ | 104893865 | QDPR | [] | [] | ['Dihydropteridine reductase deficiency'] |
| $\begin{aligned} & \text { NM_001151.3(SLC25 } \\ & \text { A4):c.293T>C } \\ & \text { (p.Leu98Pro) } \end{aligned}$ | 104893876 | SLC25A4 | [] | $\begin{aligned} & \hline \text { ['GCAGCYCTTCTT } \\ & \text { AGGGGGTGTGG'] } \end{aligned}$ | ['Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 2'] |
| $\begin{aligned} & \text { NM_006005.3(WFS1): } \\ & \text { c. } 2486 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu829Pro) } \\ & \hline \end{aligned}$ | 104893883 | WFS1 | [] | ['ACCATCCYGGA GGGCCGCCTGGG' ] | ['WFS1-Related Disorders'] |
| $\begin{aligned} & \text { NM_001018077.1(NR } \\ & \text { 3Cl):c. } 1712 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val571Ala) } \end{aligned}$ | 104893911 | NR3C1 | ['AAGY <br> GATTG <br> CAGCA <br> GTGAA $\left.\mathrm{ATGG}^{\prime}\right]$ | ['AAGYGATTGCA GCAGTGAAATGG' ] | ['Pseudohermaphrod itism, female, with hypokalemia, due to glucocorticoid resistance'] |
| $\begin{aligned} & \text { NM_001018077.1(NR } \\ & 3 \mathrm{Cl} \text { ):c.2318T }>\mathrm{C} \\ & \text { (p.Leu773Pro) } \end{aligned}$ | 104893912 | NR3C1 | [] | [] | ['Glucocorticoid resistance, generalized'] |
| NM_003122.4(SPINK 1):c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 104893938 | SPINK1 | [] | [] | ['Hereditary pancreatitis'] |
| NM_000165.4(GJA1): $\text { c. } 52 \overline{\mathrm{~T}}>\mathrm{C}(\text { p.Ser18Pro })$ | 104893962 | GJA1 | [] | $\begin{aligned} & \hline \text { ['CTACYCAACTGC } \\ & \text { TGGAGGGAAGG'] } \\ & \hline \end{aligned}$ | ['Oculodentodigital dysplasia'] |
| NM_000416.2(IFNGR 1): c. $260 \mathrm{~T}>\mathrm{C}$ (p.Ile87Thr) | 104893973 | IFNGR1 | $\begin{aligned} & \hline \text { ['TGTA } \\ & \text { ATAYT } \\ & \text { TCTGA } \\ & \hline \end{aligned}$ | ['TGTAATAYTTCT GATCATGTTGG'] | ['Disseminated atypical mycobacterial |


|  |  |  | $\begin{array}{\|l\|l\|} \hline \text { TCATG } \\ \text { TTGG'] } \end{array}$ |  | infection', 'Mycobacterium tuberculosis, susceptibility to' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000434.3(NEU1): } \\ & \text { c.718T>C } \\ & \text { (p.Trp240Arg) } \end{aligned}$ | 104893978 | NEU1 | [] | ['GCCTCCYGGCGC TACGGAAGTGG', 'CCTCCYGGCGCT ACGGAAGTGGG', 'CTCCYGGCGCTA CGGAAGTGGGG' | ['Sialidosis, type II'] |
| $\begin{aligned} & \text { NM_153704.5(TMEM } \\ & \text { 67):c.755T>C } \\ & \text { (p.Met252Thr) } \end{aligned}$ | 202149403 | TMEM67 | [] | [] | ['Joubert syndrome 6'] |
| $\begin{aligned} & \text { NM } 000162.3(\mathrm{GCK}): \mathrm{c} \\ & .391 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Serl31Pro) } \\ & \hline \end{aligned}$ | 104894010 | GCK | [] | [] | ['Maturity-onset diabetes of the young, type 2'] |
| $\begin{aligned} & \text { NM_004577.3(PSPH): } \\ & \text { c.155T>C } \\ & \text { (p.Met52Thr) } \end{aligned}$ | 104894036 | PSPH | [] | [] | ['Deficiency of phosphoserine phosphatase'] |
| $\begin{aligned} & \hline \text { NM_000193.3(SHH):c } \\ & .995 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val332Ala) } \\ & \hline \end{aligned}$ | 104894052 | SHH | I] | [] | ['Single upper central incisor'] |
| $\begin{aligned} & \text { NM_000282.3(PCCA): } \\ & \text { c.491T>C } \\ & \text { (p.Ile164Thr) } \end{aligned}$ | 202247815 | PCCA | [] | [] | ['Propionic acidemia'] |
| $\begin{aligned} & \text { NM_002546.3(TNFRS } \\ & \text { F11B):c.349T>C } \\ & \text { (p.Phel17Leu) } \end{aligned}$ | 104894092 | TNFRSF11B | [] | $\begin{aligned} & \hline \text { ['TAGAGYTCTGCT } \\ & \text { TGAAACATAGG'] } \end{aligned}$ | ['Hyperphosphatase mia with bone disease'] |
| $\begin{aligned} & \text { NM_000532.4(PCCB): } \\ & \text { c.1556T>C } \\ & \text { (p.Leu519Pro) } \end{aligned}$ | 202247822 | PCCB | I] | II | ['Propionic acidemia'] |
| $\begin{aligned} & \text { NM_006412.3(AGPA } \\ & \text { T2):c. } 683 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu228Pro) } \end{aligned}$ | 104894100 | AGPAT2 | I] | I] | ['Congenital generalized lipodystrophy type 1'] |
| $\begin{array}{\|l\|} \hline \text { NM_000238.3(KCNH } \\ \text { 2):c.2366T>C } \\ \text { (p.Ile789Thr) } \\ \hline \end{array}$ | 794728388 | KCNH2 | [] | [] | ['Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM } 001243133.1(\mathrm{NL} \\ & \text { RP) } \\ & \text { (p.Leu3535Pro) } \end{aligned}$ | 28937896 | NLRP3 | [] | [] | ['Familial cold urticaria'] |
| $\begin{array}{\|l\|} \hline \text { NM_021020.3(LZTS1) } \\ \text { :c. } 85 \mathrm{~T}>\mathrm{C}(\text { p.Ser29Pro }) \\ \hline \end{array}$ | 28937897 | LZTS1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_000102.3(CYP17 } \\ & \text { A1):c.316T>C } \\ & \text { (p.Ser106Pro) } \end{aligned}$ | 104894135 | CYP17A1 | [] |  | ['Complete combined 17-alpha-hydroxylase/17,20lyase deficiency'\| |
| $\begin{aligned} & \hline \text { NM_000102.3(CYP17 } \\ & \text { A1):c.1216T>C } \\ & \text { (p.Trp406Arg) } \end{aligned}$ | 104894143 | CYP17A1 | [] | [] | ['Complete combined 17-alpha-hydroxylase/17,20lyase deficiency'] |
| $\begin{aligned} & \text { NM_000102.3(CYP17 } \\ & \text { A1):c.1358T>C } \\ & \text { (p.Phe453Ser) } \end{aligned}$ | 104894151 | CYP17A1 | [] | ['AGCTCTYCCTCA TCATGGCCTGG'] | $\begin{aligned} & \text { ['Combined partial } \\ & \text { 17-alpha- } \\ & \text { hydroxylase/17,20- } \\ & \text { lyase deficiency'] } \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \text { NM_005097.3(LGI1):c } \\ & .136 \mathrm{~T}>\mathrm{C}(\text { p.Cys46Arg }) \end{aligned}$ | 104894166 | LGIl | I] | [] | ['Epilepsy, lateral temporal lobe, autosomal dominant'] |


| $\begin{aligned} & \text { NM_005097.3(LGII):c } \\ & .695 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu232Pro) } \end{aligned}$ | 104894167 | LGI1 | [] | [] | ['Epilepsy, lateral temporal lobe, autosomal dominant'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000281.3(PCBD1 <br> ):c. $244 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys82Arg) | 104894177 | PCBD1 | [] | [] | ['Hyperphenylalanin emia, BH4-deficient, $\mathrm{D}^{\prime} \mid$ |
| NM 003476.4(CSRP3 ):c. $131 \mathrm{~T}>\mathrm{C}$ (p.Leu44Pro) | 104894205 | CSRP3 | [] | [] | ['Familial hypertrophic cardiomyopathy 12 , 'not specified'] |
| NM 000315.2(PTH):c. $67 \mathrm{~T}>\mathrm{C}$ (p.Ser23Pro) | 104894272 | PTH | [] | [] | ['Hypoparathyroidis m familial isolated'] |
| NM 005055.4(RAPSN ):c. $848 \mathrm{~T}>\mathrm{C}$ (p.Leu283Pro) | 104894293 | RAPSN | I] | I] | ['Myasthenic syndrome, congenital, associated with acetylcholine receptor deficiency', 'MYASTHENIC SYNDROME, CONGENITAL, 11, ASSOCIATED WITH ACETYLCHOLINE RECEPTOR DEFICIENCY'] |
| $\begin{array}{\|l} \hline \text { NM_000518.4(HBB):c } \\ .344 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leul15Pro) } \\ \hline \end{array}$ | 36015961 | HBB | [] | ['TGTGTGCYGGCC CATCACTTTGG'] | ['Beta thalassemia intermedia'] |
| $\begin{aligned} & \text { NM_005055.4(RAPSN } \\ & \text { y:c.41T>C } \\ & \text { (p.Leul4Pro) } \end{aligned}$ | 104894300 | RAPSN | I] | [] | $\begin{aligned} & \hline \text { l'MYASTHENIC } \\ & \text { SYNDROME, } \\ & \text { CONGENITAL, 11, } \\ & \text { ASSOCIATED } \\ & \text { WITH } \\ & \text { ACETYLCHOLINE } \\ & \text { RECEPTOR } \\ & \text { DEFICIENCY'\| } \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \hline \text { NM_000531.5(OTC):c } \\ & .2 \mathrm{~T}>\mathrm{C} \text { (p.Met1Thr) } \end{aligned}$ | 72552295 | OTC | ['AGAA GAYGC TGTTT AATCT GAGG' | ['AGAAGAYGCTG TTTAATCTGAGG'] | ['not provided'] |
| NM 020661.2(AICDA ):c. $238 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp80Arg) | 104894320 | AICDA | [] | [] | ['Immunodeficiency with hyper IgM type ${ }^{2}$ '] |
|  | 104894321 | AICDA | [] | [] | ['Immunodeficiency with hyper IgM type 2'] |
| NM 020661.2(AICDA ):c. $452 \mathrm{~T}>\mathrm{C}$ (p.Phe 151Ser) | 104894327 | AICDA | I] | [] | ['Immunodeficiency with hyper IgM type $2^{\prime} \mid$ |
| NM 000486.5(AQP2): c. $646 \mathrm{~T}>\mathrm{C}$ (p.Ser216Pro) | 104894329 | - | [] | [] | [] |
| NM 020638.2(FGF23) :c. $2 \overline{8} 7 \mathrm{~T}>\mathrm{C}$ <br> (p.Met96Thr) | 104894343 | FGF23 | [] | [] | ['Tumoral calcinosis, familial, hyperphosphatemic'] |
| NM_021044.2(DHH):c $.2 \mathrm{~T}>\mathrm{C}$ (p. Met1Thr) | 104894346 | DHH | [] | [] | ['46,XY gonadal dysgenesis, partial, |


|  |  |  |  |  | with minifascicular neuropathy'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000217.2(KCNA <br> 1):c. $1223 \mathrm{~T}>\mathrm{C}$ <br> (p.Val408Ala) | 104894352 | KCNA1 | [] | [] | ['Episodic ataxia type 1'] |
| NM_000432.3(MYL2) :c. $52 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 18Leu) | 104894370 | MYL2 | [] | [] | ['Familial hypertrophic cardiomyopathy $\left.10^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_080911.2(UNG):c } \\ & .752 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe251Ser) } \end{aligned}$ | 104894380 | UNG | [] | [] | ['Immunodeficiency with hyper IgM type 5'] |
| NM 000192.3(TBX5): c. $161 \mathrm{~T}>\mathrm{C}$ (p.IIle54Thr) | 104894384 | TBX5 | I] | I] | ['Holt-Oram syndrome'\| |
| $\begin{aligned} & \text { NM_175929.2(FGF14) } \\ & \text { :c.449T>C } \\ & \text { (p.Phel50Ser) } \end{aligned}$ | 104894393 | FGF14 | [] | [] | ['Spinocerebellar ataxia $2^{\prime}$ ] |
| NM 007262.4(PARK7 ):c. $497 \mathrm{~T}>\mathrm{C}$ (p.Leu166Pro) | 28938172 | PARK7 | [] | [] | ['Parkinson disease $\left.{ }^{7}\right]$ |
| NM_004004.5(GJB2): <br> c. $229 \mathrm{~T}>\mathrm{C}$ <br> (p. Trp77Arg) | 104894397 | GJB2 | [] | [] | ['Deafness, autosomal recessive 1A', 'not provided'] |
| $\begin{aligned} & \text { NM_001130089.1(KA } \\ & \text { RS):c. } 517 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr173His) } \end{aligned}$ | 397514745 | KARS | I'TTCYA TGATC TTCGA GGAGA GGG'\| | ['CTTCYATGATCT TCGAGGAGAGG', 'TTCYATGATCTTC GAGGAGAGGG' | ['Deafness, autosomal recessive 89'] |
| NM_000161.2(GCH1): c. $662 \mathrm{~T}>\mathrm{C}$ <br> (p.Met221Thr) | 104894434 | GCH1 | [] | [] | ['Dystonia, doparesponsive, with or without hyperphenylalanine mia, autosomal recessive'\| |
| NM_032409.2(PINK1) <br> c. $1040 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu347Pro) | 28940285 | - | [] | [] | ['Parkinson disease 6, autosomal recessive earlyonset'] |
| $\begin{aligned} & \hline \text { NM_006177.3(NRL):c } \\ & .479 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu160Pro) } \end{aligned}$ | 104894463 | NRL | [] | [] | ['Retinal degeneration, autosomal recessive, clumped pigment type'] |
| NM 152443.2(RDH12 ):c. $523 \mathrm{~T}>\mathrm{C}$ (p.Ser 175Pro) | 104894472 | RDH12 | [] | $\begin{aligned} & \hline \text { ['TCCYCGGTGGCT } \\ & \text { CACCACATTGG'] } \end{aligned}$ | ['Leber congenital amaurosis $\left.13^{\prime}\right]$ |
| $\begin{aligned} & \text { NM } 002435.2(\mathrm{MPI}): c . \\ & 413 \overline{\mathrm{~T}}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Met138Thr)} \end{aligned}$ | 104894495 | MPI | I] | [] | ['Congenital disorder of glycosylation type 1B'\| |
| NM $001159702.2(\mathrm{FH}$ L1):c.457T>C (p.Cys153Arg) | 122458144 | FHL1 | [] | [] | ['Myopathy, reducing body, X linked, childhoodonset'] |
| NM 183235.2(RAB27 <br> A): $\mathbf{c} .389 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu130Pro) | 104894498 | RAB27A | [] | [] | ['Griscelli syndrome type 2'] |
| NM 001018005.1(TP <br> M1):c. $284 \mathrm{~T}>\mathrm{C}$ <br> (p.Val95Ala) | 104894504 | TPM1 | [] | [] | ['Familial hypertrophic cardiomyopathy $3^{\prime}$, 'Cardiomyopathy'] |


| $\begin{array}{\|l} \hline \text { NM_000485.2(APRT): } \\ \text { c.329T>C } \\ \text { (p.Leul10Pro) } \\ \hline \end{array}$ | 104894508 | APRT | I] | [] | ['Adenine phosphoribosyltransf erase deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000303.2(PMM2) } \\ & \text { c. 131T>C } \\ & \text { (p.Val44Ala) } \end{aligned}$ | 104894534 | PMM2 | [] | [] | ['Carbohydrate- deficient glycoprotein syndrome type I'] |
| NM_024006.5(VKOR C1):c. 134T>C (p.Val45Ala) | 104894540 | VKORC1 | [] | [] | ['Warfarin response'] |
| NM 001614.3(ACTGI ):c. $1109 \mathrm{~T}>\mathrm{C}$ (p.Val370Ala) | 104894547 | ACTG1 | [] | [] | ['Deafness, autosomal dominant 20'] |
| NM 001128085.1(AS PA):c. $454 \mathrm{~T}>\mathrm{C}$ (p.Cys152Arg) | 104894548 | - | I] | I] | ['Spongy degeneration of central nervous system'] |
| NM_004870.3(MPDU 1):c. $356 \mathrm{~T}>\mathrm{C}$ (p.Leul 19Pro) | 104894587 | MPDU1 | [] | $\begin{aligned} & \text { ['TTCCYGGTCATG } \\ & \text { CACTACAGAGG'] } \end{aligned}$ | 「'Congenital disorder of glycosylation type 1F' |
| NM $004870.3($ MPDU <br> 1):c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 104894588 | MPDU1 | [] | ['AATAYGGCGGC CGAGGCGGACGG' ] | ['Congenital disorder of glycosylation type 1F' |
| $\begin{aligned} & \hline \text { NM_004870.3(MPDU } \\ & \text { 1):c.221T>C } \\ & \text { (p.Leu74Ser) } \\ & \hline \end{aligned}$ | 104894589 | MPDUI | [] | [] | ['Congenital disorder of glycosylation type 1F'] |
| $\begin{array}{\|l\|} \hline \text { NM_153006.2(NAGS) } \\ \text { :c.1289T>C } \\ \text { (p.Leu430Pro) } \\ \hline \end{array}$ | 104894605 | - | I] | I] | ['Hyperammonemia, type III'] |
| NM 000304.3(PMP22 ):c. $47 \mathrm{~T}>\mathrm{C}$ (p.Leu16Pro) | 104894617 | PMP22 | [] | [] | ['Charcot-MarieTooth disease, type IA'] |
| NM 000304.3(PMP22 ):c. $\overline{82} \mathrm{~T}>\mathrm{C}$ <br> (p.Trp28Arg) | 104894626 | PMP22 | [] | ['TAGCAAYGGAT CGTGGGCAATGG' ] | ['Charcot-MarieTooth disease, type [E'] |
| NM_018129.3(PNPO): <br> c. $784 \mathrm{~T}>\mathrm{C}$ <br> (p.Ter262Gln) | 104894631 | PNPO | [] | ['ACCTYAACTCTG GGACCTGCTGG'] | ["Pyridoxal 5'-phosphatedependent epilepsy" |
| NM 173477.4(USHIG <br> ):c. $143 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu48Pro) | 104894651 | USH1G | I] | I] | ['Usher syndrome, type $\left.1 \mathrm{G}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000371.3(TTR):c. } \\ & \text { 191T }>C \text { (p.Phe64Ser) } \end{aligned}$ | 104894665 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis', 'AMYLOIDOSIS, LEPTOMENINGEA L, <br> TRANSTHYRETIN -RELATED'\| |
| NM_024301.4(FKRP): c. $899 \mathrm{~T}>\mathrm{C}$ <br> (p.Val300Ala) | 104894691 | FKRP | [] | [] | ['Limb-girdle muscular dystrophydystroglycanopathy, type C5'] |
| NM_032551.4(KISS1 <br> R): . $305 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu102Pro) | 104894703 | KISSIR | [] | ['GCCCTGCYGTAC CCGCTGCCCGG', 'TGCYGTACCCGC TGCCCGGCTGG'] | [ |
| $\begin{aligned} & \text { NM_000660.5(TGFB1 } \\ & \text { ):c. } 673 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 104894719 | TGFB1 | [] | [] | ['Diaphyseal dysplasia'] |


| (p.Cys225Arg) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000229.1(LCAT): } \\ & \text { c. } 524-22 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 794726664 | LCAT | I] | [] | ['Fish-eye disease'] |
| $\begin{aligned} & \text { NM_003332.3(TYRO } \\ & \text { BP):c.2T>C } \\ & \text { (p.Met1Thr) } \end{aligned}$ | 104894732 | TYROBP | I] | [] | ['Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopath $\left.\mathrm{y}^{\prime}\right]$ |
| NM 000074.2(CD40L <br> G):c. $464 \mathrm{~T}>\mathrm{C}$ <br> (p.Leul55Pro) | 104894769 | CD40LG | I] | [] | ['Immunodeficiency with hyper IgM type 1'] |
| $\begin{aligned} & \text { NM_000495.4(COL4A } \\ & \text { 5):c. } 438+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 281874738 | COL4A5 | $\begin{array}{\|l\|} \hline \text { ['TCCA } \\ \text { GYAAG } \\ \text { TTATA } \\ \text { AAAATT } \\ \text { TGGG'] } \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { ['CTCCAGYAAGTT } \\ & \text { ATAAAATTTGG', } \\ & \text { 'TCCAGYAAGTTA } \\ & \text { TAAAATTTGGG'] } \end{aligned}$ | ['Alport syndrome, <br> X-linked recessive'] |
| NM_000495.4(COL4A <br> 5):c. $4690 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys 1564 Arg ) | 281874745 | COL4A5 | [ | [] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_178152.2(DCX):c } \\ & .373 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr125His) } \end{aligned}$ | 104894781 | DCX | [] | [] | ['Lissencephaly, Xlinked', 'Subcortical laminar heterotopia, X-linked'] |
| NM_006579.2(EBP):c. 53T>C (p.Leu18Pro) | 104894795 | EBP | I] | [] | $\begin{aligned} & \text { ['MEND } \\ & \text { SYNDROME'\| } \end{aligned}$ |
| NM_001097642.2(GJ B1):c. $397 \mathrm{~T}>\mathrm{C}$ (p.Trp133Arg) | 104894813 | GJB1 | [] | [] | ['X-linked hereditary motor and sensory neuropathy'] |
| NM 001165963.1(SC N1A):c. $2690 \mathrm{~T}>\mathrm{C}$ (p.Leu897Ser) | 794726761 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_000166.5(GJB1): } \\ & \text { c.407T>C } \\ & \text { (p.Val136Ala) } \end{aligned}$ | 104894826 | GJB1 | [] | ['ATGYCATCAGCG TGGTGTTCCGG' | ['Dejerine-Sottas disease', 'X-linked hereditary motor and sensory neuropathy' |
| NM 001165963.1(SC N1A):c. $769 \mathrm{~T}>\mathrm{C}$ (p.Cys257Arg) | 794726771 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy', 'not provided'] |
| NM 001165963.1(SC <br> N1A):c. 1033T>C <br> (p.Cys345Arg) | 794726782 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_001122606.1(LA } \\ & \text { MP2):c.961T>C } \\ & \text { (p.Trp321Arg) } \end{aligned}$ | 104894859 | LAMP2 | [] | ['CAGCTACYGGG ATGCCCCCCTGG', 'AGCTACYGGGAT GCCCCCCTGGG'] | ['Danon disease'] |
| m. $10237 \mathrm{~T}>\mathrm{C}$ | 193302927 | MT-ND3 | [] | [] | ['Leber optic atrophy'l |
| $\begin{aligned} & \hline \text { NM_033290.3(MID1): } \\ & \text { c.884T>C } \\ & \text { (p.Leu295Pro) } \\ & \hline \end{aligned}$ | 104894866 | MID1 | [] | [] | ['Opitz-Frias syndrome'] |
| m. $10663 \mathrm{~T}>\mathrm{C}$ | 193302933 | MT-ND4L | [] | [] | ['Leber optic atrophy'] |
| NM 001165963.1(SC N1A):c.4055T>C (p.Leu1352Pro) | 794726821 | - | $\begin{aligned} & \hline \text { I'TTCYG } \\ & \text { GTTTG } \\ & \text { TCTTAT } \\ & \text { ATTCT } \\ & \text { GG'] } \end{aligned}$ | $\begin{aligned} & \hline \text { ['TTCYGGTTTGTC } \\ & \text { TTATATTCTGG'] } \end{aligned}$ | ['Severe myoclonic epilepsy in infancy'] |
| NM_000475.4(NR0B1 | 104894907 | NR0B1 | [] | [] | ['Congenital adrenal |


| $\begin{aligned} & \text { ):c.890T>C } \\ & \text { (p.Leu297Pro) } \end{aligned}$ |  |  |  |  | hypoplasia, Xlinked'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_022567.2(NYX):c $.302 \mathrm{~T}>\mathrm{C}$ (p.Ile101Thr) | 104894911 | NYX | [] | [] | ['Congenital stationary night blindness, type 1A'] |
| $\begin{aligned} & \text { NM_000513.2(OPN1 } \\ & \text { MW):c.607T>C } \\ & \text { (p.Cys203Arg) } \end{aligned}$ | 104894914 | OPN1MW | [] | [] | ['Colorblindness, partial, deutan series', 'Cone monochromatism'] |
| NM_006517.4(SLC16 <br> A2):c.1313T>C <br> (p.Leu438Pro) | 104894931 | SLC16A2 | [] | $\qquad$ | ['Allan-HerndonDudley syndrome'] |
| NM_000330.3(RS1):c. 38T>C (p.Leul3Pro) | 104894935 | RS1 | [] | $\begin{aligned} & \text { ['TTACTTCYCTTT } \\ & \text { GGCTATGAAGG'] } \end{aligned}$ | ['Juvenile retinoschisis', 'not provided'] |
| $\begin{aligned} & \text { NM_000116.4(TAZ):c } \\ & .352 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys118Arg }) \end{aligned}$ | 104894937 | TAZ | ['AAGY <br> GTGTG <br> CCTGT <br> GTGCC <br> GAGG'] | ['AAGYGTGTGCCT GTGTGCCGAGG'] | ['3-Methylglutaconic aciduria type 2'] |
| NM_006517.4(SLC16 A2):c. $1481 \mathrm{~T}>\mathrm{C}$ (p.Leu494Pro) | 104894938 | SLC16A2 | [] | [] | ['Allan-HerndonDudley syndrome'] |
| $\begin{aligned} & \text { NM_001109878.1(TB } \\ & \text { X22):c.641T>C } \\ & \text { (p.Leu214Pro) } \end{aligned}$ | 104894946 | TBX22 | [] | [] | ['Cleft palate with ankyloglossia'] |
| NM_001011658.3(TR APPC2):c.248T>C (p.Phe83Ser) | 104894948 | - | [] | [] | ['Spondyloepiphysea 1 dysplasia tarda'] |
| $\begin{aligned} & \text { NM_003140.2(SRY):c } \\ & .326 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phel09Ser) } \\ & \hline \end{aligned}$ | 104894956 | SRY | [] | [] | ['46,XY sex reversal, type 1'] |
| $\begin{aligned} & \text { NM_003140.2(SRY):c } \\ & .203 \mathrm{~T}>\mathrm{C}(\text { p.Ile68Thr }) \\ & \hline \end{aligned}$ | 104894968 | SRY | [] | [] | ['46,XY sex reversal, type 1'] |
| NM_201269.2(ZNF64 <br> 4):c. $1759 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile 587 Val ) | 146936371 | ZNF644 | [] | [] | ['Myopia 21, autosomal dominant'] |
| $\begin{aligned} & \text { NM_001004434.2(SL } \\ & \text { C30A2):c.161A>G } \\ & \text { (p.His54Arg) } \end{aligned}$ | 587776926 | SLC30A2 | [] | [] | ['Reduced zinc in breast milk'] |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c. } 3469-20 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 373002889 | CFTR | [] | [] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_001848.2(COL6A } \\ & \text { 1):c. } 957+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 794727060 | COL6A1 | ['ACAA <br> GGYGA <br> GCGTG <br> GGCTG <br> CTGG' <br> 'CAAGG <br> YGAGC <br> GTGGG <br> CTGCT <br> GGG'] | ['ACAAGGYGAGC GTGGGCTGCTGG', 'CAAGGYGAGCGT GGGCTGCTGGG'] | ['Ullrich congenital muscular dystrophy', <br> 'Bethlem myopathy'] |
| m.4336T>C | 41456348 | MT-TQ | [] | [] | [] |
| $\begin{aligned} & \text { NM_001065.3(TNFRS } \\ & \text { F1A):c.175T>C } \\ & \text { (p.Cys59Arg) } \end{aligned}$ | 104895217 | TNFRSF1A | [] | $\begin{aligned} & \text { ['TGCYGTACCAAG } \\ & \text { TGCCACAAAGG'] } \end{aligned}$ | ['TNF receptorassociated periodic fever syndrome (TRAPS)'] |
| $\begin{aligned} & \text { NM_003072.3(SMAR } \\ & \text { CA4):c.3032T>C } \end{aligned}$ | 281875229 | SMARCA4 | [] | [] | ['Mental retardation, autosomal dominant |


| (p.Met1011Thr) |  |  |  |  | 16', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_019885.3(CYP26 } \\ & \text { B1):c.436T>C } \\ & \text { (p.Ser146Pro) } \end{aligned}$ | 281875232 | CYP26B1 | [] | [] | ['Radiohumeral fusions with other skeletal and craniofacial anomalies', 'not provided'] |
| $\begin{aligned} & \text { NM_000182.4(HADH } \\ & \text { A):c. } 180+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 781222705 | HADHA | [] | [] | ['Mitochondrial trifunctional protein deficiency', 'Longchain 3-hydroxyacyl-CoA dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \mathrm{NM}=000208.2 \text { (INSR): } \\ & \text { c. } 1124-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587776819 | INSR | I] | [] | ['Pineal hyperplasia AND diabetes mellitus syndrome' |
| NM_006329.3(FBLN5 <br> ):c. $506 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile169Thr) | 28939072 | FBLN5 | ['GACA YTGAT GAATG TCGCT ATGG' | ['GACAYTGATGA ATGTCGCTATGG'] | ['Age-related macular degeneration $3^{\prime \prime}$ ] |
| $\begin{aligned} & \hline \text { NM_000431.3(MVK): } \\ & \text { c.803T>C } \\ & \text { (p.Ile268Thr) } \end{aligned}$ | 104895304 | MVK | ['CTCA <br> AYAGA <br> TGCCA <br> TCTCC <br> CTGG'] | ['CTCAAYAGATGC CATCTCCCTGG'] | ['Hyperimmunoglob ulin D with periodic fever', 'Mevalonic aciduria'] |
| NM 024960.4(PANK2 <br> ):c. $437 \mathrm{~T}>\mathrm{C}$ <br> (p.Met146Thr) | 28939088 | PANK2 | [] | [] | ['Hypoprebetalipopr oteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration'] |
| NM 005359.5(SMAD <br> 4): c. $1499 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile500Thr) | 281875321 | SMAD4 | [] | [] | ['Myhre syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_003793.3(CTSF): } \\ & \text { c.692A>G } \\ & \text { (p.Tyr231Cys) } \\ & \hline \end{aligned}$ | 143889283 | CTSF | I] | ['CTCCAYACTGAG CTGTGCCACGG' | ['Ceroid lipofuscinosis, neuronal, 13'\| |
| NM $001159702.2(\mathrm{FH}$ L1):c.310T>C (p.Cys104Arg) | 122459147 | FHL1 | [] | ['GGGGYGCTTCA AGGCCATTGTGG'] | ['Myopathy, reducing body, X linked, childhoodonset'] |
| NM 001159702.2(FH L1): $\bar{c} .625 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys209Arg) | 122459149 | FHL1 | [] | [] | ['Emery-dreifuss muscular dystrophy ${ }^{6}$ '] |
| $\begin{aligned} & \mathrm{NM} \_006214.3(\mathrm{PHYH}) \\ & \text { c. } 135-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 201578674 | PHYH | [] | [] | ['Refsum disease, adult, $\left.\mathrm{l}^{1}\right]$ |
| NM 006329.3(FBLN5 <br> ):c. $679 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser227Pro) | 28939370 | FBLN5 | [] | [] | ['Autosomal recessive cutis laxa type IA'] |
| NM 004329.2(BMPR 1A):c. $1409 \mathrm{~T}>\mathrm{C}$ (p.Met 470 Thr ) | 199476089 | BMPR1A | [] | [] | ['Juvenile polyposis syndrome'] |
| $\begin{aligned} & \text { NM_005154.4(USP8): } \\ & \text { c.2152T>C } \\ & \text { (p.Ser718Pro) } \\ & \hline \end{aligned}$ | 672601307 | USP8 | [] | [] | ['Pituitary dependent hypercortisolism'] |
| NM_020184.3(CNNM | 74552543 | CNNM4 | [] | ['AAGCTCCYGGA | ['Cone-rod |


| $\begin{aligned} & \text { 4):c. } 971 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu324Pro) } \end{aligned}$ |  |  |  | CTTTTTTCTGGG'] | dystrophy amelogenesis imperfecta'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000734.3(CD247) :c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 672601318 | CD247 | [] | [] | ['Immunodeficiency due to defect in cd3zeta'] |
| NM_016042.3(EXOS <br> C3):c. $712 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp238Arg) | 672601332 | EXOSC3 | [] | [] | ['Pontocerebellar hypoplasia, type 1b'] |
| $\begin{aligned} & \text { NC_012920.1:m. } 1448 \\ & 4 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 199476104 | MT-ND6 | [] | [] | ['Leber optic atrophy', 'Leigh disease'] |
| m.10158T>C | 199476117 | MT-ND3 | [] | ['AAAYCCACCCCT TACGAGTGCGG'] | ['Leigh disease', 'Leigh syndrome due to mitochondrial complex I deficiency', 'Mitochondrial complex I deficiency'] |
| $\begin{aligned} & \text { NM_020451.2(SEPN1 } \\ & \text { ):c. } 872+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 794727808 | SEPN1 | [] | ['TTCCGGYGAGTG GGCCACACTGG'] | ['Congenital myopathy with fiber type disproportion', 'Eichsfeld type congenital muscular dystrophy'] |
| $\begin{aligned} & \text { NM_005022.3(PFN1): } \\ & \text { c.350 } \mathrm{A}>\mathrm{G} \\ & \text { (p.Glu117Gly) } \\ & \hline \end{aligned}$ | 140547520 | PFN1 | [] | ['CACCTYCTTTGC CCATCAGCAGG'] | ['Amyotrophic lateral sclerosis ${ }^{18}$ ] |
| NM_032551.4(KISS1 <br> R):c. $443 \mathrm{~T}>\mathrm{C}$ <br> (p.Leul48Ser) | 28939719 | KISS1R | [] | [] | [] |
| $\begin{aligned} & \text { NM_000084.4(CLCN5 } \\ & \text { ):c.674T>C } \\ & \text { (p.Leu225Pro) } \end{aligned}$ | 273585645 | CLCN5 | [] | [] | ['Dent disease 1'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & : c .605 \mathrm{P}>\mathrm{A} \\ & \text { (p.Ile202Asn) } \\ & \hline \end{aligned}$ | 536352238 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .212 \mathrm{~T}>\mathrm{C}(\text { p.Leu71Pro }) \\ & \hline \end{aligned}$ | 397514333 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .248 \mathrm{~T}>\mathrm{C}(\text { p.Leu83Ser }) \end{aligned}$ | 397514347 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .445 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe149Leu) } \end{aligned}$ | 397514359 | BTD | [] | ['TCACCGCYTCAA TGACACAGAGG'] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .743 \mathrm{~T}>\mathrm{C}(\text { p.Ile248Thr }) \\ & \hline \end{aligned}$ | 397514382 | BTD | [] | [] | ['Biotinidase deficiency'l |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .764 \mathrm{~T}>\mathrm{C}(\mathrm{p} .1 \mathrm{lle} 255 \mathrm{Thr}) \\ & \hline \end{aligned}$ | 397514384 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .833 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Leu} 278 \mathrm{Pro}) \end{aligned}$ | 397514389 | BTD | [] | [] | ['Biotinidase deficiency'] |
| NM_000061.2(BTK):c .2T>C (p.Met1Thr) | 128620186 | BTK | ['AGCT <br> AYGGC <br> CGCAG <br> TGATT <br> CTGG'] | ['AGCTAYGGCCG CAGTGATTCTGG'] | $\begin{aligned} & \text { ['X-linked } \\ & \text { agammaglobulinemi } \\ & \text { a'] } \end{aligned}$ |
| m. $15572 \mathrm{~T}>\mathrm{C}$ | 207459996 | MT-CYB | [] | [] | ['Familial colorectal cancer'] |


| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1096 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser366Pro) } \\ & \hline \end{aligned}$ | 397514399 | BTD | [] | [] | ['Biotinidase deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. 15197T>C | 207460001 | MT-CYB | [] | ['CTAYCCGCCATC CCATACATTGG'] | ['Exercise intolerance'] |
| m. 14849T>C | 207460004 | MT-CYB | [] | [] | [] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1214 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu405Pro) } \\ & \hline \end{aligned}$ | 397514406 | BTD | [] | ['TTCACCCYGGTC CCTGTCTGGGG'] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM-000060.3(BTD):c } \\ & .1252 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 418 \mathrm{Arg} \text { ) } \end{aligned}$ | 397514408 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1267 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 423 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 397514412 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_001128177.1(TH } \\ & \text { RB):c.1336T>C } \\ & \text { (p.Cys } 446 \mathrm{Arg} \text { ) } \end{aligned}$ | 121918703 | THRB | [] | [] | ['Thyroid hormone resistance, generalized, autosomal dominant'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1459 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp } 487 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 397514422 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c. } 3963+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 397514447 | SCN5A | [] | [] | ['Progressive familial heart block type 1A'] |
| $\begin{aligned} & \text { NM_020461.3(TUBG } \\ & \text { CP6):c.2546A>G } \\ & \text { (p.Glu849Gly) } \end{aligned}$ | 368449236 | TUBGCP6 | [] | [] | ['Microcephaly with chorioretinopathy, autosomal recessive'] |
| $\begin{aligned} & \text { NM_006225.3(PLCD1 } \\ & \text { ):c. } 562 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cysl88Arg) } \end{aligned}$ | 397514471 | PLCD1 | [] | [] | ['Leukonychia totalis'] |
| $\begin{aligned} & \text { NM_001161581.1(PO } \\ & \text { C1A):c.398T>C } \\ & \text { (p.Leu133Pro) } \end{aligned}$ | 397514488 | POC1A | $\begin{aligned} & \text { ['AGCY } \\ & \text { GTGGG } \\ & \text { ACAAG } \\ & \text { AGCAG } \\ & \text { CCGG'] } \end{aligned}$ | ['AGCYGTGGGAC AAGAGCAGCCGG' ] | ['Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis'] |
| NM_005340.6(HINT1) :c. $250 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys84Arg) | 397514489 | HINT1 | ['CAAG <br> AAAYG <br> TGCTG <br> CTGAT <br> CTGG', <br> 'AAGAA <br> AYGTG <br> CTGCT <br> GATCT <br> GGG'] | ['CAAGAAAYGTG CTGCTGATCTGG', 'AAGAAAYGTGCT GCTGATCTGGG'] | ['Gamstorp-Wohlfart syndrome'] |
| NM_000051.3(ATM): c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 786203606 | ATM | [] | [] | ['Ataxiatelangiectasia syndrome', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_004281.3(BAG3): } \\ & \text { c.1385T }>\mathrm{C} \\ & \text { (p.Leu462Pro) } \\ & \hline \end{aligned}$ | 397514507 | BAG3 | [] | [] | ['Dilated cardiomyopathy 1HH'] |
| NM_183075.2(CYP2U $\text { 1):c. } 784 \mathrm{~T}>\mathrm{C}$ | 397514515 | CYP2U1 | [] | [] | ['Spastic paraplegia 56, autosomal |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { (p.Cys262Arg) } & & & & \text { recessive'] } \\
\hline \begin{array}{l}\text { NM_006177.3(NRL):c } \\
\text { 287T>C (p.Met96Thr) }\end{array} & 397514516 & \text { NRL } & {[]} & \begin{array}{l}\text { ['GAGGCCAYGGA } \\
\text { GCTGCTGCAGGG'] }\end{array} & \begin{array}{l}\text { ['Retinitis } \\
\text { pigmentosa 27'] }\end{array} \\
\hline \begin{array}{l}\text { NM_000344.3(SMN1) } \\
\text { :c.388T>C } \\
\text { (p.Tyr130His) }\end{array} & 397514518 & \text { SMN1 } & \begin{array}{l}\text { ['CACT } \\
\text { GGAYA } \\
\text { TGGAA } \\
\text { ATAGA } \\
\text { GAGG'] }\end{array} & \begin{array}{l}\text { ['CACTGGAYATG } \\
\text { GAAATAGAGAGG' } \\
\text { ['Kugelberg- }\end{array}
$$ <br>

Welander disease']\end{array}\right]\)| [] |
| :--- |


|  |  |  | CAGG'] | GAGAGCCAGGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000108.4(DLD):c $.140 \mathrm{~T}>\mathrm{C}$ (p.Ile 47 Thr ) | 397514651 | DLD | ['ACAG TTAYA GGTTC TGGTC CTGG', 'GTTAY AGGTT CTGGT CCTGG AGG'] | ['ACAGTTAYAGGT TCTGGTCCTGG', 'GTTAYAGGTTCT GGTCCTGGAGG'] | ['Maple syrup urine disease, type 3'] |
| $\begin{aligned} & \text { NM_020632.2(ATP6V } \\ & \text { 0A4):c.1739T>C } \\ & \text { (p.Met580Thr) } \end{aligned}$ | 3807153 | ATP6V0A4 | [] | [] | ['Renal tubular acidosis, distal, autosomal recessive'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & 2): c .1945+6 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 794728380 | KCNH2 | ['CTGTG AGYGT GCCCA GGGGC GGG', <br> TGAGY GTGCC CAGGG GCGGG CGG'] | ['CTGTGAGYGTGC 'TGAGYGTGCCCA GGGGCGGGCGG' | ['Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM_001033053.2(NL } \\ & \text { RP1):c.230T>C } \\ & \text { (p.Met77Thr) } \end{aligned}$ | 397514692 | NLRP1 | I] | II | I'Corneal intraepithelial dyskeratosis and ectodermal dysplasia'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c.2396T>C } \\ & \text { (p.Leu799Pro) } \end{aligned}$ | 794728390 | KCNH2 | [] | ['GCCATCCYGGGT ATGGGGTGGGG', 'CCATCCYGGGTA TGGGGTGGGGG', 'CATCCYGGGTAT GGGGTGGGGGG'\| | ['Cardiac arrhythmia'] |
| $\begin{array}{\|l} \hline \text { NM_014845.5(FIG4):c } \\ .524 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leu175Pro) } \\ \hline \end{array}$ | 397514707 | FIG4 | [] | [] | ['Yunis Varon syndrome'] |
| $\begin{aligned} & \text { NM_001199107.1(TB } \\ & \text { C1D24):c.686T>C } \\ & \text { (p.Phe229Ser) } \end{aligned}$ | 397514713 | TBC1D24 | [] | ['GGTCTYTGACGT CTTCCTGGTGG'] | ['Early infantile epileptic encephalopathy $16^{\prime}$ ] |
| $\begin{aligned} & \text { NM_080605.3(B3GAL } \\ & \text { T6):c.193A>G } \\ & \text { (p.Ser65Gly) } \end{aligned}$ | 397514719 | B3GALT6 | [] | ['CGCYGGCCACC AGCACTGCCAGG' I | ['Spondyloepimetap hyseal dysplasia with joint laxity'] |
| $\begin{aligned} & \text { NM_004183.3(BEST1 } \\ & \text { ):c. } 253 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr85His) } \end{aligned}$ | 28940274 | BEST1 | [] | [] | ['Vitelliform dystrophy', 'not provided'] |
| $\begin{aligned} & \text { NM_005689.2(ABCB6 } \\ & \text { ):c. } 1067 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu356Pro) } \end{aligned}$ | 397514756 | ABCB6 | [] | [] | ['Dyschromatosis universalis hereditaria 3'] |
| $\begin{aligned} & \text { NM_000551.3(VHL):c } \\ & .488 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul63Pro) } \end{aligned}$ | 28940297 | VHL | [] | [] | [] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 1025 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu342Pro) } \\ & \hline \end{aligned}$ | 794728522 | KCNQ1 | [] | [] | ['Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 1251+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 794728528 | KCNQ1 | [] | [] | $\begin{aligned} & \hline \text { ['Cardiac } \\ & \text { arrhythmia'] } \end{aligned}$ |


| NM_000498.3(CYP11 B2):c.1382T>C <br> (p.Leu461Pro) | 72554627 | - | [] | [] | ['Corticosterone methyloxidase type 1 deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_130799.2(MEN1) } \\ & \text { :c.547T>C } \\ & \text { (p.Trp183Arg) } \\ & \hline \end{aligned}$ | 794728649 | MEN1 | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_213653.3(HFE2): } \\ & \text { c. } 238 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys80Arg) } \end{aligned}$ | 28940586 | HFE2 | [] | [] | ['Hemochromatosis type 2A'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c. } \mathbf{4 2 9 9 + 6 T}>\mathrm{C} \end{aligned}$ | 794728934 | SCN5A | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM } 000548.3(\mathrm{TSC} 2): \\ & \text { c. } 1946+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 397515247 | TSC2 | [] | [] | ['Tuberous sclerosis syndrome'\| |
| NM_000256.3(MYBP <br> C3):c.3796T $>\mathrm{C}$ <br> (p.Cys1266Arg) | 730880608 | MYBPC3 | [] | $\begin{aligned} & \hline \text { ['GAGYGCCGCCT } \\ & \text { GGAGGTGCGAGG' } \\ & 1 \\ & \hline \end{aligned}$ | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_016381.5(TREX1 } \\ & \text { ):c. } 530 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val177Ala) } \end{aligned}$ | 79993407 | TREX1 | [] | [] | ['Aicardi Goutieres syndrome 1'] |
| $\begin{aligned} & \text { NM_001382.3(DPAG } \\ & \text { T1):c. } 503 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu168Pro) } \end{aligned}$ | 397515329 | DPAGT1 | [] | ['AATCCYGTACTA TGTCTACATGG', 'ATCCYGTACTAT GTCTACATGGG', 'TCCYGTACTATG TCTACATGGGG'] | ['Congenital disorder of glycosylation type 1J'] |
| $\begin{aligned} & \text { NM_000372.4(TYR):c } \\ & .265 \mathrm{~T}>\mathrm{C}(\text { p.Cys } 89 \mathrm{Arg}) \end{aligned}$ | 28940877 | TYR | [] | [] | ['Tyrosinasenegative oculocutaneous albinism', 'not provided'] |
| $\begin{aligned} & \text { NM_000375.2(UROS) } \\ & \text { :c.-26-177T>C } \end{aligned}$ | 397515348 | UROS | [] | [] | ['Congenital erythropoietic porphyria'] |
| $\begin{aligned} & \text { NM_015102.4(NPHP4 } \\ & \text { ):c.2972T>C } \\ & \text { (p.Phe991Ser) } \\ & \hline \end{aligned}$ | 28940891 | NPHP4 | [] | [] | ['Nephronophthisis 4'] |
| $\begin{aligned} & \text { NM_020822.2(KCNT1 } \\ & \text { ):c. } 2386 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr796His) } \end{aligned}$ | 397515406 | KCNT1 | [] | [] | ['Epilepsy, nocturnal frontal lobe, 5'] |
| $\begin{aligned} & \text { NM } 000061.2(\mathrm{BTK}): \mathrm{c} \\ & .1516 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys506Arg) } \\ & \hline \end{aligned}$ | 128621200 | BTK | [] | [] | ['X-linked agammaglobulinemi $\left.\mathrm{a}^{\prime}\right]$ |
| NM_006383.3(CIB2):c .272T>C (p.Phe91Ser) | 397515411 | CIB2 | [] | [] | ['Deafness, autosomal recessive 48'] |
| $\begin{aligned} & \text { NM-0000661.2(BTK):c } \\ & .1741 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Trp } 581 \mathrm{Arg}) \end{aligned}$ | 128621205 | BTK | ['ACATT <br> YGGGC <br> TTTTG <br> GTAAG <br> TGG'] | ['ACATTYGGGCTT TTGGTAAGTGG'] | $\begin{aligned} & \text { ['X-linked } \\ & \text { agammaglobulinemi } \\ & \text { a'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_018127.6(ELAC2 } \\ & \text { ):c.460T>C } \\ & \text { (p.Phe154Leu) } \end{aligned}$ | 397515465 | ELAC2 | [] | ['ATAYTTTCTGGT CCATTGAAAGG'] | ['Combined oxidative phosphorylation deficiency 17'] |
| $\begin{aligned} & \text { NM_199355.2(ADAM } \\ & \text { TS18):c.605T>C } \\ & \text { (p.Leu202Pro) } \end{aligned}$ | 397515468 | ADAMTS18 | [] | [] | ['Microcornea, myopic chorioretinal atrophy, and telecanthus'] |
| NM_023110.2(FGFR1 | 397515481 | FGFR1 | [] | [] | ['Hartsfield |


| $\begin{aligned} & \text { ):c. } 494 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu165Ser) } \end{aligned}$ |  |  |  |  | syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001059.2(TACR3 } \\ & \text { ):c. } 766 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr256His) } \end{aligned}$ | 397515483 | TACR3 | [] | [] | ['Hypogonadotropic hypogonadism 11 with or without anosmia'] |
| m.14325T>C | 397515505 | MT-ND6 | [] | [] | ['Leber optic atrophy'] |
| $\begin{aligned} & \text { NM_004333.4(BRAF): } \\ & \text { c.1783T>C } \\ & \text { (p.Phe595Leu) } \end{aligned}$ | 794729219 | BRAF | [] | [] | ['Cardiofaciocutaneo us syndrome'] |
| $\begin{aligned} & \text { NM_000370.3(TTPA): } \\ & \text { c.548T>C } \\ & \text { (p.Leu183Pro) } \end{aligned}$ | 397515525 | TTPA | [] | [] | ['Ataxia with vitamin E deficiency'l |
| $\begin{aligned} & \text { NM_000375.2(UROS) } \\ & \text { :c. } 139 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser47Pro) } \end{aligned}$ | 397515527 | UROS | [] | [] | ['Congenital erythropoietic porphyria'] |
| $\begin{aligned} & \text { NM_001006657.1(WD } \\ & \text { R35):c.1592T }>C \text { ( } \\ & \text { (p.Leu531Pro) } \end{aligned}$ | 397515533 | WDR35 | [] | [] | ['Cranioectodermal dysplasia 2'] |
| NM_004595.4(SMS):c $.449 \mathrm{~T}>\mathrm{C}$ (p.Ile150Thr) | 397515552 | SMS | [] | [] | ['Snyder Robinson syndrome'] |
| $\begin{aligned} & \text { NM_005211.3(CSF1R } \\ & \text { ):c.2483T>C } \\ & \text { (p.Phe828Ser) } \end{aligned}$ | 397515557 | CSF1R | [] | ['CATCTYTGACTG TGTCTACACGG' | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| $\begin{aligned} & \text { NM_000026.2(ADSL): } \\ & \text { c. } 1339 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser447Pro) } \end{aligned}$ | 777821034 | ADSL | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_194248.2(OTOF): } \\ & \text { c. } 3413 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul138Pro) } \end{aligned}$ | 397515599 | OTOF | [] | ['AGGTGCYGTTCT GGGGCCTACGG', <br> 'GGTGCYGTTCTG GGGCCTACGGG'] | ['Deafness, autosomal recessive ${ }^{9}$ ] |
| $\begin{array}{\|l} \hline \text { NM_002608.2(PDGFB } \\ \text { ):c.356T>C } \\ \text { (p.Leul } 19 \mathrm{Pro} \text { ) } \\ \hline \end{array}$ | 397515632 | PDGFB | [] | [] | ['Idiopathic basal ganglia calcification 5'] |
| NM_000404.2(GLB1): $\mathrm{c} .152 \mathrm{~T}>\mathrm{C}$ (p.Ile51Thr) | 72555390 | GLB1 | [] | [] | ['Gangliosidosis GM1 type 3'\| |
| $\begin{aligned} & \hline \text { NM_000116.4(TAZ):c } \\ & .310 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe104Leu) } \\ & \hline \end{aligned}$ | 397515741 | TAZ | [] | [] | ['3-Methylglutaconic aciduria type 2'] |
| $\begin{array}{\|l} \hline \text { NM_000138.4(FBN1): } \\ \text { c.2341T>C } \\ \text { (p.Cys781Arg) } \\ \hline \end{array}$ | 397515766 | FBN1 | [] | $\begin{aligned} & \hline \text { ['GGACAAYGTAG } \\ & \text { AAATACTCCTGG'] } \end{aligned}$ | ['Marfan syndrome'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c. } 4222 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cysl408Arg) } \end{aligned}$ | 397515802 | FBN1 | [] | [] | ['Marfan syndrome'] |
| NM_000112.3(SLC26 A2): $\mathrm{c} .-26+2 \mathrm{~T}>\mathrm{C}$ | 386833492 | SLC26A2 | $\begin{aligned} & \hline \text { ['GAGA } \\ & \text { GGYGA } \\ & \text { GAAGA } \\ & \text { GGGAA } \\ & \text { GCGG'] } \\ & \hline \end{aligned}$ | ['GAGAGGYGAGA AGAGGGAAGCGG' ] | ['Diastrophic dysplasia'] |
| NM_000256.3(MYBP $\mathrm{C} 3): \bar{c} \cdot 1351+2 \mathrm{~T}>\mathrm{C}$ | 397515897 | MYBPC3 | ['AAAG <br> GYGGG <br> CCTGG <br> GACCT <br> GAGG'] | $\begin{aligned} & \text { ['AAAGGYGGGCC } \\ & \text { TGGGACCTGAGG' } \\ & \text { ] } \end{aligned}$ | ['Familial hypertrophic cardiomyopathy 4', 'Cardiomyopathy'] |
| NM_000045.3(ARG1): c. $32 \mathrm{~T}>\mathrm{C}$ (p.Ile11Thr) | 28941474 | ARG1 | [] | [] | ['Arginase deficiency'] |
| NM_004820.3(CYP7B | 587777222 | CYP7B1 | [] | [] | ['Spastic paraplegia', |


| $\begin{aligned} & \text { 1):c. } 889 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr297Ala) } \end{aligned}$ |  |  |  |  | 'Spastic paraplegia 5A'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_017909.3(RMND <br> 1):c. $713 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn238Ser) | 144972972 | RMND1 | [] | [] | ['Combined oxidative phosphorylation deficiency 11'] |
| $\begin{aligned} & \hline \text { NM_000314.6(PTEN): } \\ & \text { c.545T>C } \\ & \text { (p.Leu182Ser) } \\ & \hline \end{aligned}$ | 794729664 | PTEN | [] | [] | ['Macrocephaly/autis m syndrome'] |
| NM_000256.3(MYBP C3):c. $821+2 \mathrm{~T}>\mathrm{C}$ | 397516076 | MYBPC3 | $\begin{aligned} & \hline \text { ['CACG } \\ & \text { YGAGT } \\ & \text { GGCCA } \\ & \text { TCCTC } \\ & \text { AGGG'] } \\ & \hline \end{aligned}$ | ['GCACGYGAGTG GCCATCCTCAGG', <br> 'CACGYGAGTGGC CATCCTCAGGG'] | ['Familial hypertrophic cardiomyopathy 4', 'not specified'] |
| NM_000257.3(MYH7) :c. $1370 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile457Thr) | 397516103 | MYH7 | [] | [] | ['Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & : c .2093 T>C \\ & \text { (p.Val698Ala) } \end{aligned}$ | 397516130 | MYH7 | [] | [] | ['Familial hypertrophic cardiomyopathy 1 ', 'not specified'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.2546T>C } \\ & \text { (p.Met849Thr) } \end{aligned}$ | 397516156 | MYH7 | ['GGAG <br> AYGGC <br> CTCCA <br> TGAAG <br> GAGG'] | $\begin{aligned} & \hline \text { ['GGAGAYGGCCT } \\ & \text { CCATGAAGGAGG' } \\ & ] \end{aligned}$ | ['Primary familial hypertrophic cardiomyopathy', <br> 'Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000271.4(NPC1): } \\ & \text { c.1133T>C } \\ & \text { (p.Va1378Ala) } \end{aligned}$ | 120074134 | NPC1 | [] | [] | ['Niemann-Pick disease type $\mathrm{Cl}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000520.4(HEXA) } \\ & : \text { c. } 538 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr180His) } \end{aligned}$ | 28941771 | HEXA | [] | [] | [] |
| $\begin{aligned} & \text { NM_024426.4(WT1):c } \\ & .1351 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \text { Phe451Leu) } \end{aligned}$ | 28941777 | WT1 | [] | [] | ['Diffuse mesangial sclerosis'] |
| $\begin{aligned} & \hline \text { NM_024426.4(WT1):c } \\ & .1378 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe460Leu) } \\ & \hline \end{aligned}$ | 28941779 | WT1 | [] | [] | ['Frasier syndrome'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c. } 602 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile201Thr) } \end{aligned}$ | 397516258 | MYH7 | [] | [] | ['Dilated cardiomyopathy $1 \mathrm{~S}^{\prime}$, 'Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.788T>C } \\ & \text { (p.Ile263Thr) } \end{aligned}$ | 397516269 | MYH7 | [] | [] | ['Primary familial hypertrophic cardiomyopathy', <br> 'Familial hypertrophic cardiomyopathy 1 ', <br> 'Cardiomyopathy'] |
| $\begin{aligned} & \hline \text { NM_001429.3(EP300) } \\ & \text { :c.3573T }>\mathrm{A} \\ & \text { (p.Tyrl191Ter) } \\ & \hline \end{aligned}$ | 565779970 | EP300 | [] | ['CTTAYTACAGTT ACCAGAACAGG'] | ['Rubinstein-Taybi syndrome 2'] |
| $\begin{aligned} & \text { NM_080605.3(B3GAL } \\ & \text { T6):c.1A>G } \\ & \text { (p.Met1Val) } \end{aligned}$ | 786200938 | B3GALT6 | [] | ['AGCTTCAYGGCG CCCGCGCCGGG', <br> 'TCAYGGCGCCCG CGCCGGGCCGG'] | ['Spondy loepimetap hyseal dysplasia with joint laxity'] |
| NM_032551.4(KISS1 <br> R): c. $937 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr313His) | 587777844 | KISS1R | [] | [] | [] |
| NM_000257.3(MYH7) | 369437262 | MYH7 | [] | [] | ['Familial |


| $\begin{aligned} & \hline \text { :c.5326A>G } \\ & \text { (p.Ser1776Gly) } \end{aligned}$ |  |  |  |  | hypertrophic cardiomyopathy 1 ', 'Cardiomyopathy', 'not specified'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c. } 164+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 397516420 | SLC26A4 | [] | [] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c. } 765+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 397516432 | SLC26A4 | [] | [] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| $\begin{aligned} & \text { NM_000551.3(VHL):c } \\ & .497 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Val166Ala) } \end{aligned}$ | 397516445 | VHL | [] | [] | ['Von Hippel-Lindau syndrome', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM 000256.3(MYBP } \\ & \text { C3):c.709T>C } \\ & \text { (p.Tyr237His) } \end{aligned}$ | 730880624 | MYBPC3 | [] | [] | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM } 000531.5(\mathrm{OTC}): \mathrm{c} \\ & .392 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul31Ser) } \end{aligned}$ | 72556252 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM-000531.5(OTC):c } \\ & .394 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser132Pro) } \end{aligned}$ | 72556253 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .416 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul39Ser) } \end{aligned}$ | 72556259 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .476 \mathrm{~T}>\mathrm{C}(\text { p.Ile159Thr }) \\ & \hline \end{aligned}$ | 72556269 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC) } \mathrm{c} \\ & .490 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser164Pro) } \\ & \hline \end{aligned}$ | 72556273 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .526 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr176His) } \end{aligned}$ | 72556282 | OTC | $\begin{array}{\|l\|} \hline \text { ['GGCT } \\ \text { GATYA } \\ \text { CCTCA } \\ \text { CGCTC } \\ \text { CAGG'] } \\ \hline \end{array}$ | ['GGCTGATYACCT CACGCTCCAGG', 'GATYACCTCACG CTCCAGGTTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .536 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul79Pro) } \end{aligned}$ | 72556286 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000229.1(LCAT): } \\ & \text { c.698T>C } \\ & \text { (p.Leu233Pro) } \end{aligned}$ | 28942087 | LCAT | [] | ['ATCTCTCYTGGG GCTCCCTGGGG', <br> 'TCTCYTGGGGCT CCCTGGGGTGG' | ['Norum disease'] |
| $\begin{aligned} & \text { NM_174936.3(PCSK9 } \\ & \text { ):c.646T>C } \\ & \text { (p.Phe216Leu) } \\ & \hline \end{aligned}$ | 28942112 | PCSK9 | [] | [] | ['Hypercholesterole mia, autosomal dominant, $3^{\prime}$ ] |
| $\begin{aligned} & \text { NM_004572.3(PKP2): } \\ & \text { c. } 2386 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 796 \mathrm{Arg} \text { ) } \end{aligned}$ | 794729098 | PKP2 | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000061.2(BTK):c } \\ & .1223 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu } 408 \mathrm{Pro} \text { ) } \end{aligned}$ | 128621198 | BTK | $\begin{array}{\|l\|} \hline \text { ['AGCY } \\ \text { GGGGA } \\ \text { CTGGA } \\ \text { CAATT } \\ \text { TGGG'] } \\ \hline \end{array}$ | ['GAGCYGGGGAC TGGACAATTTGG', <br> 'AGCYGGGGACTG GACAATTTGGG'] | $\begin{aligned} & \text { ['X-linked } \\ & \text { agammaglobulinemi } \\ & \text { a'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000061.2(BTK):c } \\ & .1625 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu542Pro) } \end{aligned}$ | 128621203 | BTK | [] | ['TCGGCCYGTCCA GGTGAGTGTGG'] | ['X-linked agammaglobulinemi a with growth hormone |


|  |  |  |  |  | deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_006383.3(CIB2):c $.368 \mathrm{~T}>\mathrm{C}$ (p.Ile 123Thr) | 397515412 | CIB2 | [] | ['CTTCAYCTGCAA GGAGGACCTGG'] | ['Deafness, autosomal recessive 48'] |
| $\begin{aligned} & \mathrm{NM}=001943.3(\mathrm{DSG} 2): \\ & \mathrm{c} .523+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 397516709 | DSG2 | I] | [] | ['Arrhythmogenic right ventricular cardiomyopathy, type 10', 'Cardiomyopathy'] |
| $\begin{aligned} & \hline \text { NM_032575.2(GLIS2) } \\ & \text { :c.523T>C } \\ & \text { (p.Cys175Arg) } \\ & \hline \end{aligned}$ | 587777353 | GLIS2 | I] | [] | ['Nephronophthisis $\left.7^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000092.3(CFTR): } \\ & \text { c.3230T>C } \\ & \text { (p.Leu1077Pro) } \end{aligned}$ | 139304906 | CFTR | [] | [] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c.1853T>C } \\ & \text { (p.Ile618Thr) } \end{aligned}$ | 139468767 | CFTR | [] | [] | ['Cystic fibrosis', 'not provided'] |
| NM 002755.3(MAP2 <br> K1):c.388T>C <br> (p.Tyrl30His) | 397516793 | MAP2K1 | [] | [] | ['Cardiofaciocutaneo us syndrome ${ }^{3}$ ] |
| $\begin{aligned} & \hline \text { NM_000525.3(KCNJ1 } \\ & \text { 1):c.755T>C } \\ & \text { (p.Val252Ala) } \\ & \hline \end{aligned}$ | 193929352 | KCNJ11 | [] | [] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000352.4(ABCC8 } \\ & \text { y:c.404T>C } \\ & \text { (p.Leu135Pro) } \end{aligned}$ | 193929364 | ABCC8 | [] | ['AAGCYGCTAATT GGTAGGTGAGG'] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000071.2(CBS):c. } \\ & 833 \mathrm{~T}>C \text { (p.Ile278Thr) } \end{aligned}$ | 5742905 | CBS | ['ATCA <br> YTGGG <br> GTGGA <br> TCCCG <br> AAGG', <br> 'TCAYT <br> GGGGT <br> GGATC <br> CCGAA <br> GGG'] | ['ATCAYTGGGGTG GATCCCGAAGG', 'TCAYTGGGGTGG ATCCCGAAGGG'] | ['Homocystinuria due to CBS deficiency', 'Homocystinuria, pyridoxineresponsive', 'not provided'] |
| NM_001038.5(SCNN1 <br> A):c. $1477 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp493Arg) | 5742912 | SCNN1A | [] | [] | ['Bronchiectasis with or without elevated sweat chloride 2', 'not specified'] |
| $\begin{aligned} & \hline \begin{array}{l} \text { NM_000030.2(AGXT) } \\ : \mathrm{c} .2 \overline{\mathrm{~T}}>\mathrm{C}(\mathrm{p} . \mathrm{Met1Thr}) \end{array} \\ & \hline \end{aligned}$ | 138584408 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| NM_005633.3(SOS1): <br> c. $1649 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu550Pro) | 397517153 | SOS1 | [] | [] | ['Noonan syndrome 4', 'Rasopathy'] |
| $\begin{aligned} & \text { NM_014714.3(IFT140 } \\ & \text { y:c.4078T>C } \\ & \text { (p.Cys1360Arg) } \end{aligned}$ | 431905520 | IFT140 | ['GCAG YGTGA GCTGC TCCTG GAGG' | ['CAAGCAGYGTG AGCTGCTCCTGG', 'GCAGYGTGAGCT GCTCCTGGAGG'] | ['Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia and skeletal dy splasia'] |
| $\begin{aligned} & \text { NM_022168.3(IFIH1): } \\ & \text { c.1009A>G } \\ & \text { (p.Arg337Gly) } \\ & \hline \end{aligned}$ | 587777447 | IFIH1 | I] | [] | ['Aicardi-goutieres syndrome ${ }^{7}$ ] |
| $\begin{array}{\|l} \hline \text { NG_012123.1:g. } 2493 \\ \mathrm{~A}>\mathrm{G} \end{array}$ | 1024611 | CCL2 | [] | [] | ['Coronary artery disease, modifier of', 'Coronary artery disease, |


|  |  |  |  |  | development of, in hiv', <br> 'Mycobacterium tuberculosis, susceptibility to'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. $3394 \mathrm{~T}>\mathrm{C}$ | 41460449 | MT-ND1 | ['GGCY ATATA CAACT ACGCA AAGG'\| | ['GGCYATATACA ACTACGCAAAGG' 1 | ['Leber optic atrophy'] |
| $\begin{aligned} & \text { NM_001127328.2(AC } \\ & \text { ADM):c.997A>G } \\ & \text { (p.Lys333Glu) } \end{aligned}$ | 77931234 | ACADM | [] | [] | ['Medium-chain acyl-coenzyme A dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_005859.4(PURA) } \\ & \text { :c.299T>C. } \\ & \text { (p.Leul00Pro) } \end{aligned}$ | 587782995 | PURA | [] | [] | ['Neonatal hypotonia', 'Intellectual disability', 'Seizures', 'Delayed speech and language development', 'Global developmental delay', 'Mental retardation, autosomal dominant 31'] |
| $\begin{aligned} & \text { NM_000368.4(TSC1): } \\ & \text { c.539T>C } \\ & \text { (p.Leu180Pro) } \end{aligned}$ | 118203396 | TSC1 | [] | [] | ['Tuberous sclerosis syndrome', <br> 'Tuberous sclerosis 1'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c.1696T>C } \\ & \text { (p.Cys566Arg) } \\ & \hline \end{aligned}$ | 730880695 | MYBPC3 | [] | [] | ['Cardiomyopathy'] |
| m.7275T>C | 267606884 | MT-CO1 | I] | II | ['Familial colorectal cancer'\| |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.1400T>C } \\ & \text { (p.Ile467Thr) } \end{aligned}$ | 730880872 | MYH7 | [] | $\begin{aligned} & \text { ['TCGAGAYCTTCG } \\ & \text { ATGTGAGTTGG', } \\ & \text { 'CGAGAYCTTCGA } \\ & \text { TGTGAGTTGGG'] } \end{aligned}$ | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_002977.3(SCN9A } \\ & \text { ):c.647T>C } \\ & \text { (p.Phe216Ser) } \end{aligned}$ | 80356469 | SCN9A | [] | [] | $\begin{aligned} & \text { ['Primary } \\ & \text { erythromelalgia'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_002977.3(SCN9A } \\ & \text { j:c.2543T>C } \\ & \text { (p.Ile848Thr) } \end{aligned}$ | 80356474 | - | [] | ['AAGATCAYTGGT AACTCAGTAGG', 'AGATCAYTGGTA ACTCAGTAGGG', 'GATCAYTGGTAA CTCAGTAGGGG' | ['Primary erythromelalgia'] |
| NM_001164277.1(SL C37A4):c.352T>C (p.Trp118Arg) | 80356489 | SLC37A4 | I] | \|'GGGCYGGCCCC CATGTGGGAAGG' 1 | ['Glucose-6phosphate transport defect', 'not provided'] |
| $\begin{aligned} & \text { NM_001457.3(FLNB): } \\ & \text { c.4804T>C } \\ & \text { (p.Ser1602Pro) } \end{aligned}$ | 80356501 | FLNB | [] | [] | [] |
| $\begin{aligned} & \text { NM_152296.4(ATP1A } \\ & \text { 3):c.2338T>C } \\ & \text { (p.Phe780Leu) } \end{aligned}$ | 80356536 | ATP1A3 | [] | $\begin{aligned} & \text { ['GCCCYTCCTGCT } \\ & \text { GTTCATCATGG'] } \end{aligned}$ | ['Dystonia 12'] |


| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c. } 5857+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 397518022 | - | [] | [] | ['Usher syndrome, type 2A'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_194248.2(OTOF): <br> c. $1544 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile515Thr) | 80356586 | OTOF | [] | [] | ['Deafness, autosomal recessive 9', 'Auditory neuropathy, autosomal recessive, 1'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.3745T>C } \\ & \text { (p.Phe1249Leu) } \end{aligned}$ | 45589741 | SCN5A | [] | [] | ['Acquired long QT syndrome'] |
| $\begin{aligned} & \text { NM_194248.2(OTOF): } \\ & \text { c. } 3032 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu1011Pro) } \end{aligned}$ | 80356596 | OTOF | [] | ['GATGCYGGTGTT CGACAACCTGG'] | ['Deafness, autosomal recessive 9', 'Auditory neuropathy, autosomal recessive, 1'] |
| $\begin{aligned} & \text { NM_000525.3(KCNJ1 } \\ & \text { 1):c.124T>C } \\ & \text { (p.Cys } 42 \mathrm{Arg} \text { ) } \end{aligned}$ | 80356610 | KCNJ11 | [] | [] | ['Permanent neonatal diabetes mellitus', 'Transient neonatal diabetes mellitus $3^{\prime}$, 'MATURITYONSET DIABETES OF THE YOUNG, TYPE 13'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.2723T>C } \\ & \text { (p.Leu908Pro) } \\ & \hline \end{aligned}$ | 730880900 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_152296.4(ATP1A } \\ & \text { 3):c.1112T>C } \\ & \text { (p.Leu371Pro) } \\ & \hline \end{aligned}$ | 606231433 | ATP1A3 | [] | [] | ['Alternating hemiplegia of childhood 2'] |
| $\begin{aligned} & \text { NM_000083.2(CLCN1 } \\ & \text { ):c. } 857 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val286Ala) } \end{aligned}$ | 80356689 | CLCN1 | [] | ['AGGAGYGCTATT TAGCATCGAGG'] | ['Myotonia congenita'] |
| $\begin{aligned} & \text { NM_000083.2(CLCN1 } \\ & \text { ):c. } 920 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe307Ser) } \end{aligned}$ | 80356701 | CLCN1 | [] | [] | ['Myotonia congenita'] |
| $\begin{aligned} & \text { NM_007375.3(TARD } \\ & \text { BP):c. } * 83 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 80356744 | TARDBP | [] | [] | ['Amyotrophic lateral sclerosis type $10^{\prime} \mid$ |
| NM_152296.4(ATP1A <br> 3):c. $1250 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu417Pro) | 606231449 | ATP1A3 | [] | [] | ['Dystonia 12'] |
| $\begin{aligned} & \text { NM_001876.3(CPT1A } \\ & \text { ):c.1451T>C } \\ & \text { (p.Leu484Pro) } \end{aligned}$ | 80356793 | CPT1A | [] | [] | ['Carnitine palmitoyltransferase I deficiency'] |
| NM_000088.3(COL 1A 1):c. $4391 \mathrm{~T}>\mathrm{C}$ (p.Leul464Pro) | 72656353 | COL1A1 | [] | [] | ['Osteogenesis imperfecta type III'] |
| NM_000089.3(COL1A <br> 2): c. $279+2 \mathrm{~T}>\mathrm{C}$ | 72656357 | COL1A2 | [] | [] | ['Ehlers-Danlos syndrome, type 7B'] |
| NM_015046.5(SETX): <br> c. $1807 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn603Asp) | 116205032 | SETX | [] | [] | ['Spinocerebellar ataxia autosomal recessive 1'] |
| m.4409T>C | 118203884 | MT-TM | [] | ['AGGYCAGCTAA ATAAGCTATCGG'] | ['Mitochondrial myopathy'] |
| m. $5874 \mathrm{~T}>\mathrm{C}$ | 118203891 | MT-TY | [] | [] | [] |
| $\begin{aligned} & \hline \text { NM_000130.4(F5):c. } 1 \\ & 160 \overline{\mathrm{~T}}>\mathrm{C} \text { (p.Ile387Thr) } \\ & \hline \end{aligned}$ | 118203911 | F5 | [] | [] | ['Thrombophilia due to activated protein |


|  |  |  |  |  | C resistance'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_173596.2(SLC39 } \\ & \text { A5):c.911T>C } \\ & \text { (p.Met304Thr) } \\ & \hline \end{aligned}$ | 587777625 | SLC39A5 | [] | $\begin{aligned} & \hline \text { ['AGAACAYGCTG } \\ & \text { GGGCTTTTGCGG'] } \end{aligned}$ | ['Myopia 24, autosomal dominant'] |
| $\begin{aligned} & \text { NM_024120.4(NDUF } \\ & \text { AF5):c.686T>C } \\ & \text { (p.Leu229Pro) } \end{aligned}$ | 118203929 | NDUFAF5 | [] | [] | ['Mitochondrial complex I <br> deficiency'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c.602T>C } \\ & \text { (p.Leu201Pro) } \\ & \hline \end{aligned}$ | 587783087 | CDKL5 | [] | ['ATTCYTGGGGAG CTTAGCGATGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_000046.3(ARSB): } \\ & \text { c. } 349 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys } 117 \mathrm{Arg} \text { ) } \end{aligned}$ | 118203939 | ARSB | [] | [] | ['MUCOPOLYSAC CHARIDOSIS, <br> TYPE VI, SEVERE'] |
| $\begin{aligned} & \hline \text { NM_000046.3(ARSB): } \\ & \text { c. } 707 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu236Pro) } \\ & \hline \end{aligned}$ | 118203940 | ARSB | [] | [] | ['MUCOPOLYSAC CHARIDOSIS, <br> TYPE VI, MILD'] |
| $\begin{aligned} & \text { NM_013319.2(UBIAD } \\ & \text { 1):c. } 511 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser171Pro) } \end{aligned}$ | 118203951 | UBIAD1 | [] | $\begin{aligned} & \text { ['TCTGGCYCCTTT' } \\ & \text { CTCTACACAGG', } \\ & \text { 'GGCYCCTTTCTCT } \\ & \text { ACACAGGAGG'] } \\ & \hline \end{aligned}$ | ['Schnyder crystalline corneal dystrophy'] |
| $\begin{aligned} & \text { NM_138387.3(G6PC3 } \\ & \text { ):c.554T>C } \\ & \text { (p.Leu185Pro) } \end{aligned}$ | 118203969 | G6PC3 | [] | [] | ['Severe congenital neutropenia 4, autosomal recessive'] |
| NM_006364.2(SEC23 <br> A):c. $1144 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe382Leu) | 118204000 | SEC23A | [] | [] | ['Craniolenticulosutu ral dysplasia'] |
| NM_000429.2(MAT1 <br> A): c. $914 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu305Pro) | 118204004 | MAT1A | [] | [] | ['Methionine adenosyltransferase deficiency, autosomal recessive'] |
| $\begin{aligned} & \text { NM_000018.3(ACAD } \\ & \text { VL):c.1372T>C } \\ & \text { (p.Phe458Leu) } \end{aligned}$ | 118204017 | ACADVL | [] | ['TCGCATCYTCCG GATCTTTGAGG', 'CGCATCYTCCGG ATCTTTGAGGG', 'GCATCYTCCGGA TCTTTGAGGGG'] | ['Very long chain acyl-CoA dehydrogenase deficiency'] |
| NM_000833.4(GRIN2 <br> A): $\mathrm{c} .2 \mathrm{~T}>\mathrm{C}$ <br> (p.Met1Thr) | 397518466 | GRIN2A | [] | ['CTAYGGGCAGA GTGGGCTATTGG'] | ['Focal epilepsy with speech disorder with or without mental retardation'] |
| $\begin{aligned} & \text { NM_015702.2(MMAD } \\ & \text { HC):c.776T>C } \\ & \text { (p.Leu259Pro) } \\ & \hline \end{aligned}$ | 118204044 | MMADHC | [] | [] | ['Homocystinuria, cblD type, variant 1'] |
| $\begin{aligned} & \text { NM_018077.2(RBM28 } \\ & \text { ):c.1052T>C } \\ & \text { (p.Leu351Pro) } \end{aligned}$ | 118204055 | RBM28 | [] | [] | ['Alopecia, neurologic defects, and endocrinopathy syndrome'] |
| $\begin{aligned} & \text { NM_000237.2(LPL):c. } \\ & 662 \mathrm{~T}>\mathrm{C} \text { (p.Ile221Thr) } \\ & \hline \end{aligned}$ | 118204061 | LPL | [] | [] | ['Hyperlipoproteine mia, type I'] |
| $\begin{aligned} & \hline \text { NM_000237.2(LPL):c. } \\ & 337 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp113Arg) } \\ & \hline \end{aligned}$ | 118204069 | LPL | [] | ['GGACYGGCTGTC <br> ACGGGCTCAGG'] | ['Hyperlipoproteine mia, type I'] |
| NM_000237.2(LPL):c. $755 \mathrm{~T}>\mathrm{C}$ (p.Ile252Thr) | 118204080 | LPL | [] | ['GTGAYTGCAGA GAGAGGACTTGG' 1 | ['Hyperlipoproteine mia, type I'] |
| NM_000155.3(GALT) | 111033726 | GALT | [] | [] | ['Deficiency of |


| $\begin{array}{\|l\|} \hline: c .580 \mathrm{~T}>\mathrm{C} \\ \text { (p.Phe 194Leu) } \end{array}$ |  |  |  |  | UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000190.3(HMBS) } \\ & \text { :c. } 739 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys247Arg) } \\ & \hline \end{aligned}$ | 118204111 | HMBS | [] | $\begin{aligned} & \hline \text { ['GCTTCGCYGCAT } \\ & \text { CGCTGAAAGGG'] } \end{aligned}$ | ['Acute intermittent porphyria'] |
| $\begin{aligned} & \text { NM_000190.3(HMBS) } \\ & \text { :c.242T>C } \\ & \text { (p.Leu81Pro) } \end{aligned}$ | 118204119 | HMBS | [] | [] | ['Acute intermittent porphyria'] |
| $\begin{aligned} & \text { NM_001363.4(DKC1): } \\ & \text { c. } 1193 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu398Pro) } \end{aligned}$ | 199422253 | DKC1 | [] | [] | ['Dyskeratosis congenita X-linked'] |
| $\begin{aligned} & \text { NM_004278.3(PIGL): } \\ & \text { c.500T>C } \\ & \text { (p.Leu167Pro) } \end{aligned}$ | 145303331 | PIGL | [] | [] | ['Zunich neuroectodermal syndrome'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .602 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Leu} 201 \mathrm{Pro}) \end{aligned}$ | 72558407 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .779 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Leu260Ser }) \end{aligned}$ | 72558441 | OTC | ['ATGT <br> ATYAA <br> TTACA <br> GACAC <br> TTGG'] | ['ATGTATYAATTA CAGACACTTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .803 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Met} 268 \mathrm{Thr}) \end{aligned}$ | 72558449 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c. } 1814 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp605Gly) } \end{aligned}$ | 372371774 | MYBPC3 | [] | [] | ['Primary dilated cardiomyopathy', 'Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .947 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Phe} 316 \mathrm{Ser}) \\ & \hline \end{aligned}$ | 72558471 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .1005+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 72558484 | OTC | $\begin{aligned} & \hline \text { ['ATCAT } \\ & \text { GGYAA } \\ & \text { GCAAG } \\ & \text { AAACA } \\ & \text { AGG'] } \\ & \hline \end{aligned}$ | ['ATCATGGYAAG CAAGAAACAAGG' ] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .1018 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser340Pro) } \end{aligned}$ | 72558489 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .1022 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu341Pro) } \end{aligned}$ | 72558490 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c.5291T>C } \\ & \text { (p.Leu1764Pro) } \end{aligned}$ | 80357281 | BRCA1 | $\begin{aligned} & \hline \text { ['GGCY } \\ & \text { AGAAA } \\ & \text { TCTGTT } \\ & \text { GCTAT } \\ & \text { GGG'] } \\ & \hline \end{aligned}$ | ['GGGCYAGAAAT CTGTTGCTATGG', 'GGCYAGAAATCT GTTGCTATGGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial 1'] |
| NM_000035.3(ALDO <br> B): $\mathrm{c} .442 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp148Arg) | 118204430 | ALDOB | ['GGAA <br> GYGGC <br> GTGCT <br> GTGCT <br> GAGG'] | $\begin{aligned} & \hline \text { ['GGAAGYGGCGT } \\ & \text { GCTGTGCTGAGG'] } \end{aligned}$ | ['Hereditary fructosuria'] |
| NM_000512.4(GALN S): $\mathbf{c} .413 \mathrm{~T}>\mathrm{C}$ (p.Val138Ala) | 118204436 | GALNS | [] | [] | ['Mucopoly saccharid osis, MPS-IV-A'] |
| $\begin{aligned} & \text { NM_024782.2(NHEJ1 } \\ & \text { ):c.367T>C } \\ & \hline \end{aligned}$ | 118204452 | NHEJ1 | [] | [] | ['Severe combined immunodeficiency |


| (p.Cys123Arg) |  |  |  |  | with microcephaly, growth retardation, and sensitivity to ionizing radiation'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c.65T>C } \\ & \text { (p.Leu22Ser) } \end{aligned}$ | 80357438 | BRCA1 | [] | ['AAATCTYAGAGT GTCCCATCTGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial $1^{\prime}$, 'Hereditary cancerpredisposing syndrome'] |
| m. 12297T $>\mathrm{C}$ | 121434464 | MT-TL2 | ['GTCYT <br> AGGCC <br> CCAAA <br> AATTT <br> TGG'] | ['GTCYTAGGCCCC AAAAATTTTGG'] | ['Cardiomyopathy, mitochondrial'] |
| NM_001040431.2(CO <br> A3):c. $215 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr72Cys) | 139877390 | COA3 | [] | ['CCAYCTGGGGA GGTAGGTTCAGG'] | [ |
| m.10010T>C | 121434476 | MT-TG | [] | [] | ['Exercise intolerance'] |
| ```NM_000860.5(HPGD) :c.577T>C (p.Ser193Pro)``` | 121434481 | HPGD | [] | [] | ['Digital clubbing, isolated congenital'] |
| $\begin{aligned} & \hline \text { NM_024915.3(GRHL2 } \\ & \text { ):c.1192T>C } \\ & \text { (p.Tyr398His) } \\ & \hline \end{aligned}$ | 587777737 | GRHL2 | [] | [] | ['Ectodermal dysplasia/short stature syndrome'] |
| $\begin{aligned} & \text { NM_032374.4(APOPT } \\ & \text { 1):c. } 353 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe118Ser) } \end{aligned}$ | 587777786 | APOPT1 | [] | [] | ['Cytochrome-c oxidase deficiency'] |
| $\begin{aligned} & \text { NM_001605.2(AARS) } \\ & : \text { c. } 2251 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Arg751Gly) } \end{aligned}$ | 143370729 | AARS | [] | [] | ['EPILEPTIC <br> ENCEPHALOPAT <br> HY, EARLY <br> INFANTILE, 29'] |
| $\begin{aligned} & \hline \text { NM_000257.3(MYH7) } \\ & \text { :c. } 2479 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \operatorname{Trp} 827 \mathrm{Arg}) \\ & \hline \end{aligned}$ | 730880744 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_017415.2(KLHL3 } \\ & \text { ):c.1160T>C } \\ & \text { (p.Leu387Pro) } \end{aligned}$ | 199469630 | KLHL3 |  |  | ['Pseudohypoaldoste ronism, type 2'] |
| $\begin{aligned} & \text { NM_017415.2(KLHL3 } \\ & \text { ):c.1280T>C } \\ & \text { (p.Met427Thr) } \\ & \hline \end{aligned}$ | 199469642 | KLHL3 |  |  | ['Pseudohypoaldoste ronism, type 2'] |
| $\begin{aligned} & \text { NM_005859.4(PURA) } \\ & \text { :c. } 563 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Ile188Thr }) \end{aligned}$ | 793888527 | PURA | [] | ['GACCAYTGCGCT GCCCGCGCAGG', 'ACCAYTGCGCTG CCCGCGCAGGG', 'CCAYTGCGCTGC CCGCGCAGGGG'] | ['not provided', 'Mental retardation, autosomal dominant 31'] |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c. } 212+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 80358026 | BRCA1 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 1'] |
| NM_002878.3(RAD51 D): c. $1 \mathrm{~A}>\mathrm{G}$ <br> (p.Metl Val) | 561425038 | - | [] | $\begin{aligned} & \hline \text { ['CGCCCAYGTTCC } \\ & \text { CCGCAGGCCGG'] } \end{aligned}$ | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_018960.4(GNMT } \\ & \text { ):c. } 149 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu50Pro) } \end{aligned}$ | 121907888 | GNMT | [] | [] | ['Glycine Nmethyltransferase deficiency'] |


| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c. } 5074+2 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 80358089 | BRCAl | [] | [] | ['Breast-ovarian cancer, familial 1'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NC_012920.1:m. } 1198 \\ & 4 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 200911567 | MT-ND4 | [] | [] | ['Leigh disease'] |
| $\begin{aligned} & \text { NM_000280.4(PAX6): } \\ & \text { c. } 773 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe258Ser) } \end{aligned}$ | 121907925 | PAX6 | [] | [] | ['Congenital ocular coloboma', <br> 'Coloboma of optic disc'] |
| $\begin{aligned} & \text { NM_020117.9(LARS): } \\ & \text { c.1118A>G } \\ & \text { (p.Tyr373Cys) } \\ & \hline \end{aligned}$ | 201861847 | LARS | [] | [] | ['Infantile liver failure syndrome 1'] |
| $\begin{aligned} & \text { NM_024105.3(ALG12 } \\ & \text { ):c. } 473 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu158Pro) } \\ & \hline \end{aligned}$ | 121907934 | ALG12 | [] | ['TCCYGCTGGCCC TCGCGGCCTGG'] | ['Congenital disorder of glycosylation type $1 \mathrm{G}^{\prime}$ |
| $\begin{aligned} & \text { NM_000152.3(GAA):c } \\ & .953 \mathrm{~T}>C \\ & (\text { p.Met } 318 \mathrm{Thr}) \\ & \hline \end{aligned}$ | 121907936 | GAA | [] | [] | ['Glycogen storage disease type II, infantile'] |
| $\begin{aligned} & \text { NM_000520.4(HEXA) } \\ & \text { :c.1453T }>\mathrm{C} \\ & \text { (p.Trp485Arg) } \\ & \hline \end{aligned}$ | 121907968 | HEXA | [] | [] | ['Tay-Sachs disease'] |
| $\begin{aligned} & \text { NM_000520.4(HEXA) } \\ & \text { :c.632T>C } \\ & \text { (p.Phe211Ser) } \\ & \hline \end{aligned}$ | 121907974 | HEXA | [] | [] | ['Tay-Sachs disease'] |
| $\begin{aligned} & \text { NM_000053.3(ATP7B } \\ & \text { ):c. } 2123 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu708Pro) } \\ & \hline \end{aligned}$ | 121908000 | ATP7B | [] | [] | ['Wilson disease'] |
| $\begin{aligned} & \text { NM_000375.2(UROS) } \\ & \text { :c. } 217 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 73 \mathrm{Arg} \text { ) } \end{aligned}$ | 121908012 | UROS | [] | [] | ['Congenital erythropoietic porphyria'] |
| $\begin{aligned} & \text { NM_153212.2(GJB4): } \\ & \text { c.409T>C } \\ & \text { (p.Phe137Leu) } \end{aligned}$ | 80358207 | GJB4 | [] | ['CCTCATCYTCAA GGCCGCCGTGG'] | ['Erythrokeratodermi a variabilis'] |
| $\begin{aligned} & \text { NM_000403.3(GALE) } \\ & \text { :c.548T>C } \\ & \text { (p.Leu183Pro) } \\ & \hline \end{aligned}$ | 121908045 | GALE | [] | [] | ['UDPglucose-4epimerase deficiency'] |
| $\begin{aligned} & \text { NM_002353.2(TACST } \\ & \text { D2):c.557T>C } \\ & \text { (p.Leu186Pro) } \\ & \hline \end{aligned}$ | 80358228 | TACSTD2 | [] | ['TCGGCYGCACCC CAAGTTCGTGG'] | ['Lattice corneal dystrophy Type III'] |
| $\begin{aligned} & \text { NM_001563.3(IMPG1 } \\ & \text { ):c.461T>C } \\ & \text { (p.Leu154Pro) } \end{aligned}$ | 713993047 | IMPG1 | [] | [] | ['Macular dystrophy, vitelliform, 4'] |
| $\begin{aligned} & \text { NM_138691.2(TMC1) } \\ & \text { :c. } 1543 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys515Arg) } \end{aligned}$ | 121908076 | TMC1 | [] | ['AGGACCTYGCTG GGAAACAATGG', <br> 'ACCTYGCTGGGA AACAATGGTGG', 'CCTYGCTGGGAA ACAATGGTGGG'] | ['Deafness, autosomal recessive 7'] |
| $\begin{aligned} & \hline \text { NM_000271.4(NPC1): } \\ & \text { c. } 3182 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile1061Thr) } \\ & \hline \end{aligned}$ | 80358259 | NPC1 | [] | [] | ['Niemann-Pick disease type $\mathrm{Cl}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_006432.3(NPC2): } \\ & \text { c. } 295 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 99 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 80358264 | NPC2 | [] | [] | ['Niemann-Pick disease type C2'] |
| $\begin{aligned} & \text { NM_017838.3(NHP2): } \\ & \text { c.415T>C } \\ & \text { (p.Tyr139His) } \end{aligned}$ | 121908089 | NHP2 | [] | ['GGAGGCTYACG ATGAGTGCCTGG', 'GGCTYACGATGA GTGCCTGGAGG'] | ['Dyskeratosis congenita autosomal recessive 1', <br> Dyskeratosis congenita, autosomal recessive |


|  |  |  |  |  | 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_005857.4(ZMPST } \\ & \text { E24):c.1018T>C } \\ & \text { (p.Trp340Arg) } \end{aligned}$ | 121908093 | ZMPSTE24 | [] | [] | ['Mandibuloacral dysplasia with type B lipodystrophy', 'not provided'] |
| $\begin{aligned} & \text { NM_001195794.1(CL } \\ & \text { RN1):c.488T>C } \\ & \text { (p.Leul63Pro) } \end{aligned}$ | 121908142 | CLRN1 | [] | [] | ['Usher syndrome, type 3'] |
| NM_057176.2(BSND) :c.35T>C (p.Ile12Thr) | 121908144 | BSND | [] | [] | ['Sensorineural deafness with mild renal dysfunction'] |
| $\begin{aligned} & \text { NM_001243133.1(NL } \\ & \text { RP3):c.1718T>C } \\ & \text { (p.Phe573Ser) } \end{aligned}$ | 121908152 | NLRP3 | [] | [] | ['Familial cold urticaria', 'Chronic infantile neurological, cutaneous and articular syndrome'] |
| $\begin{aligned} & \text { NM_001243133.1(NL } \\ & \text { RP3):c.926T>C } \\ & \text { (p.Phe309Ser) } \end{aligned}$ | 121908154 | NLRP3 | [] | ['GGTGCCTYTGAC GAGCACATAGG'] | ['Familial cold urticaria', 'Chronic infantile neurological, cutaneous and articular syndrome'] |
| $\begin{aligned} & \hline \text { NM_153741.1(DPM3) } \\ & \text { :c.254T>C } \\ & \text { (p.Leu85Ser) } \\ & \hline \end{aligned}$ | 121908155 | DPM3 | [] | [] | ['Congenital disorder of glycosylation type 10'] |
| NM_001033855.2(DC LRE1C):c. 2 T>C (p.Met1Thr) | 121908158 | DCLRE1C | [] | ['GGCGCTAYGAG <br> TTCTTTCGAGGG', <br> 'GCGCTAYGAGTT <br> CTTTCGAGGGG'] | ['Histiocytic medullary reticulosis'] |
| $\begin{aligned} & \text { NM_017696.2(MCM9 } \\ & \text { ):c. } 1732+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587777871 | MCM9 | [] | [] | ['Premature ovarian failure 1', 'Ovarian dysgenesis 4'] |
| $\begin{aligned} & \hline \text { NM_031433.3(MFRP) } \\ & \text { :c.545T>C } \\ & \text { (p.Ile182Thr) } \\ & \hline \end{aligned}$ | 121908190 | - | [] | [] | ['Nanophthalmos 2'] |
| NM_001127221.1(CA CNĀ1A):c.2141T>C (p.Val714Ala) | 121908213 | CACNA1A | [] | [] | ['Familial hemiplegic migraine type 1'] |
| NM 001127221.1(CA CNA1A):c.4469T>C (p.Phel490Ser) | 121908233 | CACNA1A | [] | [] | ['Episodic ataxia type 2'] |
| $\begin{aligned} & \text { NM_133459.3(CCBE1 } \\ & \text { ):c. } 520 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys174Arg) } \end{aligned}$ | 121908254 | CCBE1 | [] | [] | ['Hennekam lymphangiectasialymphedema syndrome'] |
| NM_018129.3(PNPO): c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 796052870 | PNPO | [] | ['CCCCCAYGACGT GCTGGCTGCGG', 'CCCCAYGACGTG CTGGCTGCGGG', 'CCCAYGACGTGC TGGCTGCGGGG'] | ['not provided'] |
| NM_014845.5(FIG4):c $.122 \mathrm{~T}>\mathrm{C}$ (p.Ile41Thr) | 121908287 | FIG4 | [] | [] | ['Charcot-MarieTooth disease, type 4J', 'not provided'] |
| NM_001005741.2(GB <br> A):c. $751 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr251His) | 121908300 | GBA | ['GCCA <br> GAYAC <br> TTTGT <br> GAAGT | ['GCCAGAYACTTT GTGAAGTAAGG', 'CCAGAYACTTTG TGAAGTAAGGG'] | ['Gaucher disease, type 1'] |


|  |  |  | AAGG'] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_020427.2(SLURP <br> 1):c. $43 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp15Arg) | 121908318 | SLURP1 | [] | ['GCAGCCYGGAG CATGGGCTGTGG'] | ['Acroerythrokeratod erma'] |
| $\begin{aligned} & \text { NM_020427.2(SLURP } \\ & \text { 1):c. } 229 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 77 \mathrm{Arg} \text { ) } \end{aligned}$ | 121908319 | SLURP1 | [] | [] | ['Acroerythrokeratod erma'] |
| $\begin{aligned} & \text { NM_000787.3(DBH):c } \\ & .339+2 \mathrm{C}>\mathrm{C} \end{aligned}$ | 74853476 | DBH | [] | [] | ['Dopamine beta hydroxylase deficiency'\| |
| $\begin{aligned} & \text { NM_017882.2(CLN6): } \\ & \text { c.200T>C } \\ & \text { (p.Leu67Pro) } \end{aligned}$ | 154774633 | CLN6 | $\begin{aligned} & \hline \text { ['AGCY } \\ & \text { GGTAT } \\ & \text { TCCCT } \\ & \text { CTCGA } \\ & \text { GTGG'] } \\ & \hline \end{aligned}$ | ['AGCYGGTATTCC CTCTCGAGTGG'] | ['Adult neuronal ceroid lipofuscinosis', 'not provided'] |
| $\begin{aligned} & \text { NM_022124.5(CDH23 } \\ & \text { ):c. } 5663 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe1888Ser) } \end{aligned}$ | 121908352 | CDH23 | [] | ['CTCACCTYCAAC <br> ATCACTGCGGG'] | ['Deafness, autosomal recessive 12'] |
| $\begin{aligned} & \text { NM_054027.4(ANKH) } \\ & \text { :c.143T>C } \\ & \text { (p.Met } 48 \mathrm{Thr} \text { ) } \end{aligned}$ | 121908407 | ANKH | ['GTCG <br> AGAYG <br> CTGGC <br> CAGCT <br> ACGG', <br> 'TCGAG <br> AYGCT <br> GGCCA <br> GCTAC <br> GGG'] | ['GTCGAGAYGCT GGCCAGCTACGG', 'TCGAGAYGCTGG CCAGCTACGGG'] | ['Chondrocalcinosis 2'] |
| $\begin{aligned} & \text { NM_004924.4(ACTN4 } \\ & \text { ):c. } 784 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser262Pro) } \\ & \hline \end{aligned}$ | 121908417 | ACTN4 | [] | [] | ['Focal segmental glomerulosclerosis 1'] |
| NM_014384.2(ACAD <br> 8):c. $455 \mathrm{~T}>\mathrm{C}$ <br> (p.Met152Thr) | 121908418 | ACAD8 | [] | [] | ['Deficiency of isobutyryl-CoA dehydrogenase'] |
| $\begin{aligned} & \text { NM_153717.2(EVC):c } \\ & .919 \mathrm{~T}>\mathrm{C} \\ & (\text { p. } . \text { Ser } 307 \text { Pro }) \\ & \hline \end{aligned}$ | 121908426 | EVC | [] | [] | ['Chondroectodermal dy splasia', 'CurryHall syndrome'] |
| $\begin{aligned} & \text { NM_001040108.1(ML } \\ & \text { H3):c.3826T }>C \\ & \text { (p.Trp1276Arg) } \end{aligned}$ | 121908439 | MLH3 | [] | [] | ['Hereditary nonpolyposis colorectal cancer type 7'] |
| $\begin{aligned} & \text { NM_013339.3(ALG6): } \\ & \text { c.1432T>C } \\ & \text { (p.Ser478Pro) } \\ & \hline \end{aligned}$ | 121908444 | ALG6 | [] | [] | ['Congenital disorder of glycosylation type $\left.1 C^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_003835.3(RGS9): } \\ & \text { c.895T>C } \\ & \text { (p.Trp299Arg) } \end{aligned}$ | 121908449 | RGS9 | [] | [] | ['Prolonged electroretinal response suppression'] |
| $\begin{aligned} & \text { NM 022336.3(EDAR) } \\ & : c .259 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 87 \mathrm{Arg} \text { ) } \end{aligned}$ | 121908451 | EDAR | [] | [] | ['Autosomal recessive hypohidrotic ectodermal dysplasia syndrome'] |
| $\begin{aligned} & \text { NM_014270.4(SLC7A } \\ & \text { 9):c.131T>C } \\ & \text { (p.Ile44Thr) } \\ & \hline \end{aligned}$ | 121908485 | SLC7A9 | [] | [] | ['Cystinuria'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c.613T>C } \\ & \text { (p.Ser205Pro) } \\ & \hline \end{aligned}$ | 121908520 | AGXT | [] | ['CCTGTACYCGGG CTCCCAGAAGG'] | ['Primary hyperoxaluria, type I'] |


| $\begin{aligned} & \hline \text { NM_000030.2(AGXT) } \\ & \text { :c.731T>C } \\ & \text { (p.Ile244Thr) } \\ & \hline \end{aligned}$ | 121908525 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000026.2(ADSL): } \\ & \text { c.1312T>C } \\ & \text { (p.Ser438Pro) } \\ & \hline \end{aligned}$ | 119450940 | ADSL | [] | [] | ['Adenylosuccinate lyase deficiency'] |
| $\begin{aligned} & \text { NM_000026.2(ADSL): } \\ & \text { c.674T>C } \\ & \text { (p.Met225Thr) } \end{aligned}$ | 119450945 | ADSL | ['AAGA YGGTG ACAGA AAAGG CAGG'] | ['AAGAYGGTGAC AGAAAAGGCAGG' ] | ['Adenylosuccinate lyase deficiency'] |
| NM_014985.3(CEP15 2):c. $2000 \mathrm{~A}>\mathrm{G}$ (p.Lys667Arg) | 200879436 | CEP152 | [] | [] | ['Seckel syndrome 5', 'not specified'] |
| NM_002755.3(MAP2 <br> $\mathrm{K1}$ ):c. $158 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 53 Ser) | 121908594 | MAP2K1 | [] | [] | ['Cardiofaciocutaneo us syndrome $3^{\prime}$, 'Rasopathy'] |
| NM_004820.3(CYP7B <br> 1): c. $647 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe216Ser) | 121908612 | CYP7B1 | [] | [] | ['Spastic paraplegia 5A'] |
| NM 004273.4(CHST3 ):c. $776 \mathrm{~T}>\mathrm{C}$ (p.Leu259Pro) | 121908616 | CHST3 | [] | [] | ['Spondyloepiphysea 1 dysplasia with congenital joint dislocations'] |
| NM 004273.4(CHST3 ):c. $920 \mathrm{~T}>\mathrm{C}$ (p.Leu307Pro) | 121908618 | CHST3 | [] | ['CGTGCYGGCCTC GCGCATGGTGG'] | ['Spondyloepiphysea 1 dysplasia with congenital joint dislocations'] |
| NM 004273.4(CHST3 ):c. $857 \mathrm{~T}>\mathrm{C}$ (p.Leu286Pro) | 121908620 | CHST3 | I] | II | ['Spondyloepiphysea 1 dysplasia with congenital joint dislocations'] |
| $\begin{aligned} & \hline \text { NM_000050.4(ASS1): } \\ & \text { c. } 535 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp179Arg) } \\ & \hline \end{aligned}$ | 121908646 | ASS1 | I] | II | I] |
| NM_030761.4(WNT4) <br> c. $3 \overline{5} \mathrm{~T}>\mathrm{C}$ (p.Leu12Pro) | 121908653 | WNT4 | [] | [] | ['Mullerian aplasia and <br> hyperandrogenism'] |
| NM 006432.3(NPC2): <br> c. $199 \mathrm{~T}>\mathrm{C}$ (p.Ser67Pro) | 11694 | NPC2 | [] | ['TATTCAGYCTAA AAGCAGCAAGG'] | ['Niemann-Pick disease type C2'] |
| NM 003839.3(TNFRS F11A):c. $523 \mathrm{~T}>\mathrm{C}$ (p.Cys175Arg) | 121908656 | TNFRSF11A | I] | II | ['Osteopetrosis autosomal recessive $7^{\prime} \mid$ |
| $\begin{aligned} & \text { NM_000022.2(ADA):c } \\ & .320 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul07Pro) } \end{aligned}$ | 121908739 | ADA | [] | ['CCTGCYGGCCAA CTCCAAAGTGG'] | ['Severe combined immunodeficiency due to ADA deficiency'\| |
| NM_000140.3(FECH): $\text { c. } 315-48 \mathrm{~T}>\mathrm{C}$ | 2272783 | FECH | [] | [] | ['Erythropoietic protoporphyria'] |
| NM_000059.3(BRCA2 <br> ):c. $7529 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu2510Pro) | 80358979 | BRCA2 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2', 'Fanconi anemia, complementation group D1'] |
| $\begin{aligned} & \text { NM_003722.4(TP63):c } \\ & .1033 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys345Arg) } \\ & \hline \end{aligned}$ | 121908837 | TP63 | [] | [] | ['Ectrodactyly, ectodermal dysplasia, and cleft |


|  |  |  |  |  | lip/palate syndrome 3'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 003722.4(TP63):c $.1646 \mathrm{~T}>\mathrm{C}$ (p.Ile549Thr) | 121908845 | TP63 | [] | [] | ['Hay-Wells syndrome of ectodermal dysplasia', 'RappHodgkin ectodermal dysplasia syndrome' |
| NM 000059.3(BRCA2 <br> ):c. $7958 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu2653Pro) | 80359022 | BRCA2 | [] | ['TGCYTCTTCAAC <br> TAAAATACAGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2'] |
| $\begin{aligned} & \hline \text { NM_000369.2(TSHR): } \\ & \text { c.1891T>C } \\ & \text { (p.Phe631Leu) } \end{aligned}$ | 121908861 | TSHR | [] | [] | ['Hyperthyroidism, nonautoimmune', 'Thyroid adenoma, hyperfunctioning'] |
| NM_000369.2(TSHR): <br> c. $1358 \mathrm{~T}>\mathrm{C}$ <br> (p.Met453Thr) | 121908864 | TSHR | [] | [] | ['Hyperthyroidism, nonautoimmune'] |
| NM_000369.2(TSHR): <br> c. $1526 \mathrm{~T}>\mathrm{C}$ <br> (p.Val509Ala) | 121908874 | TSHR | I] | I] | ['Hyperthyroidism, nonautoimmune'] |
| NM 000369.2(TSHR): <br> c. $1798 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys600Arg) | 121908884 | TSHR | [] | [] | ['Hypothyroidism, congenital, nongoitrous, 1 '] |
| NM 000369.2(TSHR): <br> c. $1400 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu467Pro) | 121908885 | TSHR | [] | [] | ['Hypothyroidism, congenital, nongoitrous, 1 1] |
| $\begin{aligned} & \text { NM_001457.3(FLNB): } \\ & \text { c.703T>C } \\ & \text { (p.Ser235Pro) } \\ & \hline \end{aligned}$ | 121908896 | FLNB | I] | I] | ['Boomerang dysplasia'] |
| $\begin{aligned} & \text { NM_003880.3(WISP3) } \\ & \text { :c.232T>C } \\ & \text { (p.Cys78Arg) } \end{aligned}$ | 121908902 | WISP3 | I] | ['AAAATCYGTGCC AAGCAACCAGG', 'AAATCYGTGCCA AGCAACCAGGG', 'AATCYGTGCCAA GCAACCAGGGG' | ['Progressive pseudorheumatoid dysplasia'] |
| NM 003880.3(WISP3) <br> c. $1000 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser334Pro) | 121908903 | WISP3 | [] | [] | ['Progressive pseudorheumatoid dysplasia'] |
| NM 002977.3(SCN9A ):c. $4382 \mathrm{~T}>\mathrm{C}$ (p.Ile 1461Thr) | 121908914 | - | [] | II | ['Paroxysmal extreme pain disorder'] |
| $\begin{aligned} & \text { NM_004086.2(COCH) } \\ & \text { :c.349T>C } \\ & \text { (p. Trp117Arg) } \\ & \hline \end{aligned}$ | 121908929 | - | [] | [] | ['Deafness, autosomal dominant ${ }^{\prime}$ '] |
| $\begin{aligned} & \text { NM_004086.2(COCH) } \\ & \text { :c. 1535T>C } \\ & \text { (p.Met512Thr) } \end{aligned}$ | 121908934 | - | ['AGAT <br> AYGGC <br> TTCTA <br> AACCG <br> AAGG'\| | ['AGATAYGGCTTC TAAACCGAAGG' | ['Deafness, autosomal dominant $\left.9^{\prime}\right]$ |
| NM_006892.3(DNMT <br> 3B):c. $808 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser270Pro) | 121908947 | DNMT3B | [] | ['CAAGTTCYCCGA GGTGAGTCCGG', 'AAGTTCYCCGAG GTGAGTCCGGG', 'AGTTCYCCGAGG TGAGTCCGGGG' | ['Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency'] |
| NM_000226.3(KRT9): c. $503 \mathrm{~T}>\mathrm{C}$ | 61157095 | KRT9 | [] | [] | ['Epidermolytic palmoplantar |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { (p.Leu168Ser) } & & & & \begin{array}{l}\text { keratoderma', 'not } \\
\text { provided'] }\end{array} \\
\hline \begin{array}{l}\text { NM_000051.3(ATM): } \\
\text { c.8584+2T>C }\end{array} & 730881326 & - & {[]} & {[]} & \begin{array}{l}\text { ['Hereditary cancer- } \\
\text { predisposing } \\
\text { syndrome'] }\end{array} \\
\hline \begin{array}{l}\text { NM_000492.3(CFTR): } \\
\text { c.3857T>C } \\
\text { (p.Phe1286Ser) }\end{array} & 121909028 & \text { CFTR } & {[]} & \begin{array}{l}\text { ['AGCCTYTGGAGT } \\
\text { GATACCACAGG'] }\end{array}
$$ <br>
\hline \begin{array}{l}NM_000492.3(CFTR): <br>
c.3763T>C <br>

(p.Ser1255Pro)\end{array} \& 121909041 \& CFTR fibrosis']\end{array}\right]\)| ['Clich |
| :--- |


| (p.Tyr432His) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_001300.5(KLF6): <br> c.346T>C <br> (p.Ser116Pro) | 121909139 | KLF6 | [] | [] | [] |
| m.12338T>C |  |  |  |  |  |


| NM 000314.6(PTEN): c. $209 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu70Pro) | 121909226 | PTEN | [] | [] | ['Cowden syndrome 1', 'Hereditary cancer-predisposing syndrome'\| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000314.6(PTEN): } \\ & \text { c.335T>C } \\ & \text { (p.Leul12Pro) } \\ & \hline \end{aligned}$ | 121909230 | PTEN | [] | [] | ['Lhermitte-Duclos disease'] |
| NM_000314.6(PTEN): c. $722 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe241Ser) | 121909240 | PTEN | [] | [] | ['Macrocephaly/autis m syndrome'] |
| NM 004970.2(IGFAL S):c. $1618 \mathrm{~T}>\mathrm{C}$ (p.Cys540Arg) | 121909247 | IGFALS | [] | $\begin{aligned} & \hline \text { ['GGACYGTGGCT } \\ & \text { GCCCTCTCAAGG'] } \end{aligned}$ | ['Acid-labile subunit deficiency'] |
| NM_005570.3(LMAN 1):c.2T>C (p.Met1Thr) | 121909253 | LMAN1 | I] | ['AGAYGGCGGGA TCCAGGCAAAGG' ] | ['Combined deficiency of factor V and factor VIII, 1'] |
| NM_005055.4(RAPSN <br> ):c. $416 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 139Ser) | 121909256 | RAPSN | [] | [] | ['Pena-Shokeir syndrome type I'] |
| $\begin{aligned} & \text { NM_000391.3(TPP1): } \\ & \text { c. } 887-10 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 755445790 | TPP1 | ['TTTYT TTTTTT TTTTTT TTGAG G'] <br> G'] | ['TTTYTTTTTTTTTT TTTTTTGAGG'] | ['Ceroid lipofuscinosis, neuronal, 2', 'not provided'] |
| NM_006302.2(MOGS) <br> :c. $1954 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe652Leu) | 121909292 | MOGS | [] | [] | ['Congenital disorder of glycosylation type 2B'] |
| NM 005379.3(MYO1 <br> A):c. $2728 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser910Pro) | 121909306 | MYO1A | I] | II | ['Deafness, autosomal dominant 48'] |
| NM_178151.2(DCX):c $.128 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{Leu} 43 \mathrm{Ser})$ | 587783521 | DCX | I] | [1] | ['Heterotopia'] |
| NM_001127221.1(CA CNA1A):c.5126T>C (p.Ile1709Thr) | 121909326 | CACNA1A | [] | [] | ['Spinocerebellar ataxia 6', 'Familial hemiplegic migraine type 1', 'Episodic ataxia type 2'] |
| NM_001451.2(FOXF1 <br> ):c. $1138 \mathrm{~T}>\mathrm{C}$ <br> (p.Ter380Arg) | 121909337 | FOXFI | ['TGAT GYGAG GCTGC CGCCG CAGG'] | ['TGATGYGAGGCT GCCGCCGCAGG'] | ['Alveolar capillary dysplasia with misalignment of pulmonary veins'] |
| $\begin{aligned} & \hline \text { NM_000163.4(GHR):c } \\ & .341 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phel14Ser) } \\ & \hline \end{aligned}$ | 121909357 | GHR | [] | [] | ['Laron-type isolated somatotropin defect'] |
| NM_000163.4(GHR):c $.512 \mathrm{~T}>\mathrm{C}$ (p.Ile171Thr) | 121909367 | GHR | I] | I] | ['Laron-type isolated somatotropin defect'\| |
| NM_000339.2(SLC12 <br> A3):c. $1868 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu623Pro) | 121909385 | SLC12A3 | [] | ['CAACCYGGCCCT CAGCTACTCGG'] | ['Familial hypokalemiahypomagnesemia'] |
| NM 001174089.1(SL C4A11):c. $2480 \mathrm{~T}>\mathrm{C}$ (p.Leu827Pro) | 121909394 | SLC4Al1 | [] | [] | ['Corneal dystrophy and perceptive deafness'] |
| NM 001174089.1(SL C4A11):c.589T>C (p.Ser197Pro) | 121909395 | SLC4A11 | [] | [] | ['Corneal dystrophy and perceptive deafness'\| |
| NM_000519.3(HBD):c | 34975911 | HBD | [] | I] | ['delta Thalassemia'] |


| --127T>C |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 002427.3(MMPl <br> 3):c. $224 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe75Ser) | 121909497 | MMP13 | [] | $\begin{aligned} & \text { ['TTCTYCGGCTTA } \\ & \text { GAGGTGACTGG'] } \end{aligned}$ | ['Spondyloepimetap hyseal dysplasia, Missouri type'] |
| NM_002427.3(MMP1 <br> 3): $\mathrm{c} .221 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 74 Ser ) | 121909498 | MMP13 | I] | II | II |
| NM 002427.3(MMP1 <br> 3):c. $272 \mathrm{~T}>\mathrm{C}$ <br> (p.Met91Thr) | 121909499 | MMP13 | ['GTCA YGAAA <br> AAGCC <br> AAGAT <br> GCGG', <br> TCAYG <br> AAAAA <br> GCCAA <br> GATGC <br> GGG' | ['GTCAYGAAAAA 'TCAYGAAAAAGC CAAGATGCGGG' | $\square$ |
| NM_000751.2(CHRN <br> D):c. $283 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe95Leu) | 121909506 | CHRND | [] | [] | ['Lethal multiple pterygium syndrome'] |
| NM_000751.2(CHRN <br> D):c. $188 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu63Pro) | 121909508 | CHRND | [] | ['AACCYCATCTCC CTGGTGAGAGG'] | ['MYASTHENIC SYNDROME, CONGENITAL, 3B, FAST-CHANNEL'] |
| NM 001100.3(ACTA1 <br> ):c. $287 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu96Pro) | 121909519 | ACTAI | [] | $\begin{aligned} & \text { ['CGAGCYTCGCGT } \\ & \text { GGCTCCCGAGG'] } \end{aligned}$ | ['Nemaline myopathy 3'] |
| NM 001100.3 (ACTA1 ):c.668T>C (p.Leu223Pro) | 121909530 | ACTA1 | II | II | \|'Congenital myopathy with fiber type disproportion'] |
| NM 000488.3(SERPI NC1):c. 1141T>C (p.Ser381Pro) | 121909565 | SERPINC1 | [] | [] | ['Antithrombin III deficiency'] |
| NM_000488.3(SERPI <br> NC1):c. $442 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser148Pro) | 121909569 | SERPINC1 | [] | [] | ['Antithrombin III deficiency'] |
| NM_000488.3(SERPI <br> NC 1 ): :. $667 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser223Pro) | 121909572 | SERPINC1 | [] | ['TGGGTGYCCAAT AAGACCGAAGG'] | ['Antithrombin III deficiency'] |
| NM 000488.3(SERPI NC 1 ): : $.379 \mathrm{~T}>\mathrm{C}$ (p.Cys127Arg) | 121909573 | SERPINC1 | I] | II | ['Antithrombin III deficiency'] |
| NM 023110.2(FGFR1 ):c. $899 \mathrm{~T}>\mathrm{C}$ (p.Ile 300 Thr ) | 121909633 | FGFR1 | [] | [] | ['Interfrontal craniofaciosynostosi $\left.s^{\prime}\right]$ |
| NM_023110.2(FGFR1 ):c.1141T>C (p.Cys381Arg) | 121909634 | FGFR1 | [] | [] | ['Osteoglophonic dysplasia'] |
| NM_182925.4(FLT4): c.3131T>C (p.Leul044Pro) | 121909651 | FLT4 | I] | [] | ['Hereditary lymphedema type I'] |
| NM_182925.4(FLT4): <br> c. $3257 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile 086 Thr ) | 121909655 | FLT4 | [] | [] | ['Hereditary lymphedema type $\left.I^{\prime}\right]$ |
| $\begin{array}{\|l} \hline \text { NM_000145.3(FSHR): } \\ \text { c.479T>C } \\ \text { (p.lle160Thr) } \\ \hline \end{array}$ | 121909659 | FSHR | [] | I] | ['Ovarian dysgenesis 1'] |
| NM_000145.3(FSHR): c. $16 \overline{3} 4 \mathrm{~T}>\mathrm{C}$ | 121909664 | FSHR | [] | [] | ['Ovarian hyperstimulation |


| (p.Ile545Thr) |  |  |  |  | syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000821.6(GGCX) } \\ & \text { :c.896T>C } \\ & \text { (p.Phe299Ser) } \end{aligned}$ | 121909677 | GGCX | [] | $\begin{aligned} & \text { ['TATGTYCTCCTA } \\ & \text { CGTCATGCTGG'] } \end{aligned}$ | ['Pseudoxanthoma elasticum-like disorder with multiple coagulation factor deficiency'] |
| $\begin{aligned} & \text { NM_001018077.1(NR } \\ & \text { 3C1):c.2209T>C } \\ & \text { (p.Phe737Leu) } \\ & \hline \end{aligned}$ | 121909727 | NR3C1 | [] | ['CTATTGCYTCCA AACATTTTTGG'] | ['Glucocorticoid resistance, generalized'] |
| NM 005271.3(GLUD 1):c. $1501 \mathrm{~T}>\mathrm{C}$ (p.Ser501Pro) | 121909732 | GLUD1 | [] | [] | ['Hyperinsulinismhyperammonemia syndrome'\| |
| $\begin{aligned} & \text { NM_004614.4(TK2):c. } \\ & 278 \mathrm{~A}>\mathrm{G}(\text { p.Asn93Ser }) \end{aligned}$ | 142291440 | TK2 | [] | [] | ['Mitochondrial DNA depletion syndrome 2'] |
| NM_032977.3(CASP1 <br> 0): c. $440 \mathrm{~T}>\mathrm{C}$ <br> (p.Met147Thr) | 121909776 | CASP10 | [] | [] | ['Neoplasm of stomach'] |
| $\begin{aligned} & \text { NM_000250.1(MPO):c } \\ & .518 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Tyr173Cys) } \end{aligned}$ | 78950939 | MPO | ['TGCG <br> GYATT <br> TGTCC <br> TGCTC <br> CGGG'] | ['GTGCGGYATTTG TCCTGCTCCGG', 'TGCGGYATTTGT CCTGCTCCGGG'] | ['Myeloperoxidase deficiency'] |
| $\begin{aligned} & \text { NM_001139.2(ALOX } \\ & 12 \mathrm{~B}): c .1562 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr521Cys) } \\ & \hline \end{aligned}$ | 199766569 | ALOX12B | [] | [] | ['Autosomal recessive congenital ichthyosis $2^{2}$ ] |
| $\begin{aligned} & \text { NM_022041.3(GAN):c } \\ & .1268 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile423Thr) } \end{aligned}$ | 119485091 | GAN | ['AAGA <br> AAAYC <br> TACGC <br> CATGG <br> GTGG'] | ['AAGAAAAYCTA CGCCATGGGTGG', <br> 'AAAAYCTACGCC <br> ATGGGTGGAGG'] | ['Giant axonal neuropathy'] |
| $\begin{aligned} & \text { NM_014009.3(FOXP3 } \\ & \text { ):c.970T>C } \\ & \text { (p.Phe324Leu) } \end{aligned}$ | 122467173 | FOXP3 | ['GACA GAGYT <br> CCTCC <br> ACAAC <br> ATGG'] | ['GACAGAGYTCCT CCACAACATGG'] | ['Insulin-dependent diabetes mellitus secretory diarrhea syndrome'] |
| $\begin{aligned} & \text { NM_014009.3(FOXP3 } \\ & \text { ):c.1099T>C } \\ & \text { (p.Phe367Leu) } \end{aligned}$ | 122467175 | FOXP3 | [] | [] | ['Insulin-dependent diabetes mellitus secretory diarrhea syndrome'] |
| $\begin{aligned} & \text { NM_004239.3(TRIP11 } \\ & \text { ):c. } 2102 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn701Ser) } \\ & \hline \end{aligned}$ | 139539448 | TRIP11 | [] | [] | ['Achondrogenesis, type IA'] |
| $\begin{aligned} & \text { NM_001104.3(ACTN3 } \\ & \text { ):c. } 1729 \mathrm{C}>\mathrm{T} \\ & \text { (p.Arg } 577 \mathrm{Ter} \text { ) } \\ & \hline \end{aligned}$ | 1815739 | ACTN3 | [] | [] | ['Sprinting performance', 'Actn3 deficiency'l |
| $\begin{aligned} & \text { NM_002693.2(POLG): } \\ & \text { c. } 2636 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln879Arg) } \\ & \hline \end{aligned}$ | 368587966 | POLG | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000552.3(VWF): } \\ & \text { c. } 3178 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1060Arg) } \\ & \hline \end{aligned}$ | 61748497 | VWF | [] | [] | ['von Willebrand disease type $2 \mathrm{~N}^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_000552.3(VWF): } \\ & \text { c. } 3445 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1149Arg) } \\ & \hline \end{aligned}$ | 61748511 | VWF | [] | [] | ['von Willebrand disease type 1', 'not provided'] |
| $\begin{aligned} & \text { NM_000184.2(HBG2): } \\ & \text { c.125T }>C \\ & \text { (p.Phe42Ser) } \end{aligned}$ | 34878913 | HBG2 | ['CAGA <br> GGTYC <br> TTTGA <br> CAGCT | ['CAGAGGTYCTTT GACAGCTTTGG'] | ['Cyanosis, transient neonatal'] |


|  |  |  | TTGG'] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000371.3(TTR):c. $190 \mathrm{~T}>\mathrm{C}$ (p.Phe64Leu) | 138065384 | TTR | [] | [] | ['Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000402.4(G6PD): } \\ & \text { c.1058T>C } \\ & \text { (p.Leu353Pro) } \end{aligned}$ | 76723693 | G6PD | [] | [] | ['Glucose 6 phosphate dehydrogenase deficiency', 'Anemia, nonspherocytic hemolytic, due to G6PD deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_177405.2(CECR1 } \\ & \text { ):c.355A>G } \\ & \text { (p.Thr119Ala) } \end{aligned}$ | 775440641 | CECR1 | [] | [] | ['Idiopathic livedo reticularis with systemic involvement'] |
| NM_000218.2(KCNQ <br> 1): c. $401 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu134Pro) | 199472685 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000218.2(KCNQ 1): c. $625 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser209Pro) | 199472705 | KCNQ1 |  |  | ['Atrial fibrillation, familial, 3', 'Atrial fibrillation'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 752 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu251Pro) } \end{aligned}$ | 199472716 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ <br> 1): c. $824 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe275Ser) | 199472729 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| $\begin{aligned} & \hline \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 832 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr278His) } \\ & \hline \end{aligned}$ | 199472731 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.845T>C } \\ & \text { (p.Leu282Pro) } \\ & \hline \end{aligned}$ | 199472733 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.730T>C } \\ & \text { (p.Phe244Leu) } \\ & \hline \end{aligned}$ | 730880849 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| NM_000218.2(KCNQ 1):c. $908 \mathrm{~T}>\mathrm{C}$ (p.Leu303Pro) | 199472740 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| NM_000218.2(KCNQ 1):c. $913 \mathrm{~T}>\mathrm{C}$ (p.Trp305Arg) | 199472741 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ <br> 1):c. $1045 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser349Pro) | 199472764 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ 1):c.1117T $>\mathrm{C}$ (p.Ser373Pro) | 199472766 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| NM_000218.2(KCNQ 1):c. $1165 \mathrm{~T}>\mathrm{C}$ (p.Ser389Pro) | 199472772 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.1174T>C } \\ & \text { (p.Trp392Arg) } \end{aligned}$ | 199472774 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |


| NM_000218.2(KCNQ 1):c. $1541 \mathrm{~T}>\mathrm{C}$ (p.Ile514Thr) | 199472786 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000218.2(KCNQ <br> 1):c. $1696 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser566Pro) | 199472803 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.1805T>C } \\ & \text { (p.Leu602Pro) } \\ & \hline \end{aligned}$ | 199472818 | - |  |  | ['Congenital long QT syndrome'] |
| NM_000218.2(KCNQ 1): $\mathrm{c} .608 \mathrm{~T}>\mathrm{C}$ (p.Leu203Pro) | 199472823 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM 000238.3(KCNH <br> 2):c. $65 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe22Ser) | 199472826 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $86 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe29Ser) | 199472831 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $89 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile30Thr) | 199472832 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2): c. $160 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr54His) | 199472843 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A):c.662T>C } \\ & \text { (p.Leu221Pro) } \end{aligned}$ | 796052961 | SCN1A | [] | [] | ['not provided'] |
| NM_000238.3(KCNH <br> 2): $\mathrm{c} .287 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile96Thr) | 199472853 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $322 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys108Arg) | 199472859 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2): c. $872 \mathrm{~T}>\mathrm{C}$ <br> (p.Met291Thr) | 199472881 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM 000238.3(KCNH <br> 2):c. $1238 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu413Pro) | 199472893 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1279 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr427His) | 199472898 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1387 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe463Leu) | 199472904 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1655 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu552Ser) | 199472918 | KCNH2 | [] | [] | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM-000061.2(BTK):c } \\ & .1955 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu652Pro) } \\ & \hline \end{aligned}$ | 128622212 | BTK | [] | [] | ['X-linked agammaglobulinemi $a^{\prime} \mid$ |
| NM_000238.3(KCNH <br> 2):c. $1691 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu564Pro) | 199472924 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1702 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp568Arg) | 199472927 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000138.4(FBN1): | 794728333 | FBN1 | [] | [] | ['Thoracic aortic |


| $\begin{aligned} & \hline \text { c.5726T>C } \\ & \text { (p.Ile1909Thr) } \end{aligned}$ |  |  |  |  | aneurysms and aortic dissections'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_015884.3(MBTP } \\ & \text { S2):c. } 1424 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe475Ser) } \end{aligned}$ | 122468179 | MBTPS2 | [] | [] | ['IFAP syndrome with or without BRESHECK syndrome'] |
| NM_000238.3(KCNH <br> 2):c.1985T>C <br> (p.Ile662Thr) | 199472980 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c.2033T>C } \\ & \text { (p.Leu678Pro) } \end{aligned}$ | 199472981 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c.2078T>C <br> (p.Leu693Pro) | 199472983 | KCNH2 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| $\begin{array}{\|l\|} \hline \text { NM_000238.3(KCNH } \\ \text { 2):c. } 2309 \mathrm{~T}>\mathrm{C} \\ \text { (p.Val770Ala) } \\ \hline \end{array}$ | 199472994 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c.3146T $>\mathrm{C}$ <br> (p.Leu1049Pro) | 199473026 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 278 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe93Ser) } \end{aligned}$ | 199473052 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 544 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys182Arg) } \end{aligned}$ | 199473066 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.689T>C } \\ & \text { (p.Ile230Thr) } \end{aligned}$ | 199473073 | SCN5A |  |  | ['Cardiac conduction defect, nonspecific'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 1187 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val396Ala) } \end{aligned}$ | 199473103 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 1190 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile } 397 \mathrm{Thr} \text { ) } \end{aligned}$ | 199473105 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 2018 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu673Pro) } \end{aligned}$ | 199473141 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 2516 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu839Pro) } \end{aligned}$ | 199473164 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 2783 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu928Pro) } \end{aligned}$ | 199473178 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.2804T>C } \\ & \text { (p.Leu935Pro) } \end{aligned}$ | 199473179 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c.3010T>C } \\ & \text { (p.Cys1004Arg) } \end{aligned}$ | 199473183 | SCN5A | [] | [] | ['Congenital long QT syndrome', 'not specified', 'not provided'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.3679T>C } \\ & \text { (p.Tyr1227His) } \\ & \hline \end{aligned}$ | 199473205 | SCN5A | [] | [] | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 3713 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu1238Pro) } \end{aligned}$ | 199473210 | SCN5A |  |  | ['Brugada syndrome'] |
| NM_000492.3(CFTR): | 139573311 | CFTR | [] | ['TTCACYTCTAAT | ['Cystic fibrosis'] |


| $\begin{aligned} & \mathrm{c} .1400 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu467Pro) } \end{aligned}$ |  |  |  | GGTGATTATGG', 'TCACYTCTAATG GTGATTATGGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.3929T>C } \\ & \text { (p.Leu1310Pro) } \\ & \hline \end{aligned}$ | 199473219 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 4027 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe1343Leu) } \end{aligned}$ | 199473228 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.4028T>C } \\ & \text { (p.Phe1343Ser) } \end{aligned}$ | 199473229 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.4034T>C } \\ & \text { (p.Leu1345Pro) } \end{aligned}$ | 199473231 | SCN5A |  |  | ['Brugada syndrome'] |
| NM_000335.4(SCN5A ):c. $4340 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile1447Thr) | 199473251 | SCN5A |  |  | ['Brugada syndrome'] |
| NM_198056.2(SCN5A ):c. $4493 \mathrm{~T}>\mathrm{C}$ (p.Met1498Thr) | 199473263 | SCN5A |  |  | ['Congenital long QT syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } \mathbf{4 7 4 2 T > C} \\ & \text { (p.Leu1581Pro) } \end{aligned}$ | 199473275 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.4778T>C } \\ & \text { (p.Phe1593Ser) } \\ & \hline \end{aligned}$ | 199473277 | SCN5A |  |  | ['Congenital long <br> QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5179 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1727Arg) } \end{aligned}$ | 199473302 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000219.5(KCNE1 } \\ & \text { ):c. } 158 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe53Ser) } \end{aligned}$ | 199473355 | KCNE1 |  |  | ['Congenital long <br> QT syndrome'] |
| $\begin{aligned} & \text { NM_000219.5(KCNE1 } \\ & \text { ):c.259T>C } \\ & \text { (p.Trp87Arg) } \end{aligned}$ | 199473361 | KCNE1 |  |  | ['Congenital long <br> QT syndrome'] |
| $\begin{aligned} & \text { NM_000891.2(KCNJ2 } \\ & \text { ):c. } 301 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys101Arg) } \end{aligned}$ | 199473374 | KCNJ2 |  |  | ['Ventricular tachycardia'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 560 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu187Pro) } \end{aligned}$ | 199473399 | KCNQ1 | [] | [] | ['Congenital long QT syndrome', 'Cardiac arrhythmia', 'Long QT syndrome, LQT1 subtype'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 572 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu191Pro) } \end{aligned}$ | 199473401 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.1052T>C } \\ & \text { (p.Phe351Ser) } \end{aligned}$ | 199473402 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.1058T>C } \\ & \text { (p.Leu353Pro) } \end{aligned}$ | 199473403 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia', 'Long QT syndrome, LQT1 subtype'] |
| NM_000238.3(KCNH <br> 2): c. $202 \mathrm{~T}>\mathrm{C}$ | 199473417 | KCNH2 |  |  | ['Congenital long QT syndrome', |


| (p.Phe68Leu) |  |  |  |  | 'Cardiac arrhythmia'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.341T>C } \\ & \text { (p.Leul14Pro) } \end{aligned}$ | 199473448 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| $\begin{aligned} & \hline \text { NM_000218.2(KCNQ } \\ & \text { 1):c.716T>C } \\ & \text { (p.Leu239Pro) } \end{aligned}$ | 199473458 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ <br> 1): $\mathrm{c} .742 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp248Arg) | 199473459 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000218.2(KCNQ 1):c. $797 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu266Pro) | 199473460 | KCNQ1 |  |  | ['Long QT syndrome', 'Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000218.2(KCNQ 1):c. $829 \mathrm{~T}>\mathrm{C}$ (p.Ser277Pro) | 199473461 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| NM 000218.2(KCNQ 1):c. $910 \mathrm{~T}>\mathrm{C}$ (p.Trp304Arg) | 199473466 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ <br> 1):c. $1550 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile517Thr) | 199473478 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| NM 000218.2(KCNQ 1):c. $1661 \mathrm{~T}>\mathrm{C}$ <br> (p.Val554Ala) | 199473481 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ 1):c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 199473485 | KCNQ1 |  |  | ['Congenital long QT syndrome', KCNQ1-related Jervell and LangeNielsen syndrome'] |
| NM 000238.3(KCNH <br> 2):c. $260 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu87Pro) | 199473495 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1700 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile567Thr) | 199473519 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c.1705T>C } \\ & \text { (p.Tyr569His) } \\ & \hline \end{aligned}$ | 199473520 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM 000238.3(KCNH <br> 2): c. $1816 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser606Pro) | 199473523 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM 000238.3(KCNH <br> 2):c. $1889 \mathrm{~T}>\mathrm{C}$ <br> (p.Val630Ala) | 199473526 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM 000238.3(KCNH <br> 2):c. $1945 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser649Pro) | 199473530 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $2452 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser818Pro) | 199473537 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c. } 2573 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 199473539 | KCNH2 |  |  | ['Congenital long QT syndrome'] |


| (p.Ile858Thr) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.407T>C } \\ & \text { (p.Leu136Pro) } \\ & \hline \end{aligned}$ | 199473557 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_020166.4(MCCC } \\ & \text { 1):c.1310T>C } \\ & \text { (p.Leu437Pro) } \\ & \hline \end{aligned}$ | 119103215 | MCCCl | [] | [] | ['3 MethylcrotonylCoA carboxylase 1 deficiency'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c.944T>C } \\ & \text { (p.Leu315Pro) } \end{aligned}$ | 199473564 | SCN5A |  |  | ['Brugada syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_002972.3(SBF1): } \\ & \text { c. } 1249 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 417 \mathrm{Val} \text { ) } \end{aligned}$ | 587776986 | SBF1 | [] | [] | ['Charcot-MarieTooth disease, type 4B3'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.2551T>C } \\ & \text { (p.Phe851Leu) } \end{aligned}$ | 199473586 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 2743 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 915 \mathrm{Arg} \text { ) } \end{aligned}$ | 199473588 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.4046T>C } \\ & \text { (p.Ile1349Thr) } \end{aligned}$ | 199473607 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } \mathbf{4 4 5 3 T}>\mathrm{C} \\ & \text { (p.Phe1485Leu) } \end{aligned}$ | 199473615 | SCN5A |  |  | ['Sudden infant death syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5111 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe1704Ser) } \end{aligned}$ | 199473627 | SCN5A |  |  | ['Sudden infant death syndrome'] |
| $\begin{aligned} & \text { NM_000891.2(KCNJ2 } \\ & \text { ):c.650T>C } \\ & \text { (p.Leu217Pro) } \end{aligned}$ | 199473656 | KCNJ2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 550 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr184His) } \end{aligned}$ | 199473661 | KCNQ1 | ['AGCA <br> AGBAC <br> GTGGG <br> CCTCT <br> GGGG'] | ['CAGCAAGBACG TGGGCCTCTGGG', 'AGCAAGBACGTG GGCCTCTGGGG', 'GCAAGBACGTGG GCCTCTGGGGG'] | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000238.3(KCNH <br> 2): c. $206 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu69Pro) | 199473665 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM 001130823.1(DN MT1): c. $1531 \mathrm{~T}>\mathrm{C}$ (p.Tyr511His) | 199473692 | DNMT1 |  |  | ['Hereditary sensory neuropathy type IE'] |
| $\begin{aligned} & \text { NM_031226.2(CYP19 } \\ & \text { A1):c. } 743+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 786205107 | - | $\begin{aligned} & \hline \text { ['CTGTG } \\ & \text { YAAGT } \\ & \text { AATAC } \\ & \text { AACTT } \\ & \text { TGG'] } \\ & \hline \end{aligned}$ | ['CTGTGYAAGTAA TACAACTTTGG'] | ['Aromatase deficiency'] |
| $\begin{aligned} & \text { NM_016373.3(WWO } \\ & \text { X):c.872T>C } \\ & \text { (p.Leu291Pro) } \\ & \hline \end{aligned}$ | 119487098 | WWOX | [] | [] | [] |
| $\begin{aligned} & \text { NM_001287223.1(SC } \\ & \text { N11A) } \mathrm{c} .1142 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile381Thr) } \end{aligned}$ | 606231280 | SCN11A | $\begin{aligned} & \hline \text { ['TTCAY } \\ & \text { TGTGG } \\ & \text { TCATTT } \\ & \text { TCCTG } \\ & \text { GG'] }^{2} \\ & \hline \end{aligned}$ | ['CTTCAYTGTGGT <br> CATTTTCCTGG', <br> 'TTCAYTGTGGTC <br> ATTTTCCTGGG'] | ['Episodic pain syndrome, familial, 3'] |
| NM_003640.3(IKBKA P):c. $2204+6 \mathrm{~T}>\mathrm{C}$ | 111033171 | IKBKAP | [] | [] | ['Familial dysautonomia', 'not provided'] |


| NM_000238.3(KCNH <br> 2):c. $1282 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser428Pro) | 794728368 | KCNH2 | [] | [] | ['Cardiac arrhythmia'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c.1588T>C } \\ & \text { (p.Tyr530His) } \\ & \hline \end{aligned}$ | 111033254 | SLC26A4 | [] | [] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c.10561T>C } \\ & \text { (p.Trp3521Arg) } \end{aligned}$ | 111033264 | USH2A | [] | [] | ['Usher syndrome, type 2A'] |
| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c.1606T>C } \\ & \text { (p.Cys536Arg) } \end{aligned}$ | 111033273 | USH2A | $\begin{aligned} & \text { ['ATAT } \\ & \text { AGAYG } \\ & \text { CCTCT } \\ & \text { GCTCC } \\ & \text { CAGG'] } \end{aligned}$ | ['ATATAGAYGCCT CTGCTCCCAGG'] | ['Usher syndrome, type 2A'] |
| $\begin{aligned} & \text { NM_001363.4(DKC1): } \\ & \text { c.1049T>C } \\ & \text { (p.Met350Thr) } \\ & \hline \end{aligned}$ | 121912300 | DKC1 | [] | [] | ['Dyskeratosis congenita X-linked'] |
| $\begin{aligned} & \text { NM_000274.3(OAT):c } \\ & .1180 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys } 394 \mathrm{Arg}) \end{aligned}$ | 121965054 | OAT | [] | [] | ['Ornithine aminotransferase deficiency'l |
| NM_001302946.1(TR NT1):c.497T>C (p.Leu166Ser) | 606231289 | TRNT1 | ['ACTTY <br> ATTTG <br> ACTAC <br> TTTAA <br> TGG'] | ['ACTTYATTTGAC <br> TACTTTAATGG'] | ['Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay'] |
| $\begin{aligned} & \hline \text { NM_000454.4(SOD1): } \\ & \text { c. } 341 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile114Thr) } \\ & \hline \end{aligned}$ | 121912441 | SOD1 | [] | ['CATCAYTGGCCG CACACTGGTGG'] | ['Amyotrophic lateral sclerosis type 1'] |
| $\begin{aligned} & \text { NM_000454.4(SOD1): } \\ & \text { c. } 434 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu145Ser) } \end{aligned}$ | 121912446 | SOD1 | [] | ['CGTTYGGCTTGT GGTGTAATTGG', 'GTTYGGCTTGTG GTGTAATTGGG'] | ['Amyotrophic lateral sclerosis type 1'] |
| $\begin{aligned} & \hline \text { NM_000454.4(SOD1): } \\ & \text { c.455T>C } \\ & \text { (p.lle152Thr) } \\ & \hline \end{aligned}$ | 121912449 | SOD1 | [] | [] | ['Amyotrophic lateral sclerosis type 1'] |
| $\begin{aligned} & \text { NM_000213.3(ITGB4) } \\ & \text { :c.467T }>\mathrm{C} \\ & \text { (p.Leu156Pro) } \\ & \hline \end{aligned}$ | 121912461 | ITGB4 | [] | [] | ['Epidermolysis bullosa with pyloric atresia'] |
| $\begin{aligned} & \text { NM_000213.3(ITGB4) } \\ & \text { :c.1684T>C } \\ & \text { (p.Cys562Arg) } \\ & \hline \end{aligned}$ | 121912463 | ITGB4 | [] | $\begin{aligned} & \hline \text { ['GGCCAGYGTGT } \\ & \text { GTGTGAGCCTGG'] } \end{aligned}$ | ['Epidermolysis bullosa with pyloric atresia'] |
| $\begin{aligned} & \text { NM_000213.3(ITGB4) } \\ & \text { :c. } 112 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 38 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 121912465 | ITGB4 | [] | [] | ['Epidermolysis bullosa with pyloric atresia'] |
| NM_002198.2(IRF1): c $.31 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \operatorname{Trp} 11 \mathrm{Arg})$ | 121912470 | IRF1 | [] | [] | ['Non-small cell lung cancer'] |
| NM_000424.3(KRT5): c. $20 \mathrm{~T}>\mathrm{C}$ (p.Va17Ala) | 121912474 | KRT5 | ['TCAA <br> GTGYG <br> TCCTTC <br> CGGAG <br> CGG', <br> 'CAAGT <br> GYGTC <br> CTTCC <br> GGAGC <br> GGG', <br> 'AAGTG <br> YGTCC <br> TTCCG | ['TCAAGTGYGTCC TTCCGGAGCGG', 'CAAGTGYGTCCT TCCGGAGCGGG', 'AAGTGYGTCCTT CCGGAGCGGGG', 'AGTGYGTCCTTC CGGAGCGGGGG'] | ['Epidermolysis bullosa simplex, Koebner type'] |


|  |  |  | $\begin{aligned} & \hline \text { GAGCG } \\ & \text { GGG'] } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_002292.3(LAMB <br> 2):c. $961 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys321Arg) | 121912492 | LAMB2 | [] | ['CCTCAACYGCGA GCAGTGTCAGG'] | ['Nephrotic syndrome, type 5, with or without ocular abnormalities'\| |
| $\begin{aligned} & \text { NM_170707.3(LMNA } \\ & \text { ):c. } 1139 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu380Ser) } \end{aligned}$ | 121912495 | LMNA | $\begin{aligned} & \hline \text { ['TCTYG } \\ & \text { GAGGG } \\ & \text { CGAGG } \\ & \text { AGGAG } \\ & \text { AGG'] } \\ & \hline \end{aligned}$ | ```['TCTYGGAGGGC GAGGAGGAGAGG ']``` | ['Congenital muscular dystrophy, LMNA-related', 'not provided'] |
| $\begin{aligned} & \text { NM_001399.4(EDA):c } \\ & .2 \mathrm{~T}>\mathrm{C} \text { (p.Met1Thr) } \end{aligned}$ | 397516659 | EDA | [] | ['GGCCAYGGGCT ACCCGGAGGTGG' 1 | ['Hypohidrotic Xlinked ectodermal dysplasia'] |
| NM_000493.3(COL10 Al):c.1951T>C (p.Trp651Arg) | 111033549 | - | [] | [] | ['Metaphyseal chondrodysplasia, Schmid type'] |
| NM_000233.3(LHCG <br> R):c. $1193 \mathrm{~T}>\mathrm{C}$ <br> (p.Met398Thr) | 121912526 | - | [] | [] | ['Gonadotropinindependent familial sexual precocity'] |
| $\begin{aligned} & \hline \text { NM_000233.3(LHCG } \\ & \text { R):c. } 391 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys131Arg) } \\ & \hline \end{aligned}$ | 121912527 | - | [] | [] | ['Leydig cell hypoplasia, partial'] |
| NM_000493.3(COL10 <br> A1):c.1798T>C <br> (p.Ser600Pro) | 111033555 | - | [] | [] | ['Metaphyseal chondrodysplasia, Schmid type'] |
| $\begin{aligned} & \text { NM_000233.3(LHCG } \\ & \text { R):c.1103T }>\mathrm{C} \\ & \text { (p.Leu368Pro) } \\ & \hline \end{aligned}$ | 121912533 | - | [] | [] | ['Gonadotropinindependent familial sexual precocity'] |
| $\begin{aligned} & \text { NM_000233.3(LHCG } \\ & \text { R):c.1627T }>\mathrm{C} \\ & \text { (p.Cys543Arg) } \\ & \hline \end{aligned}$ | 121912537 | - | [] | [] | ['Leydig cell agenesis'] |
| NM_000233.3(LHCG <br> R):c. $1505 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu502Pro) | 121912538 | - | [] | [] | ['Leydig cell agenesis'] |
| $\begin{aligned} & \text { NM_000901.4(NR3C2 } \\ & \text { ):c. } 2771 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu924Pro) } \end{aligned}$ | 121912563 | NR3C2 | [] | [] | ['Pseudohypoaldoste ronism type 1 autosomal dominant'] |
| $\begin{aligned} & \text { NM_021044.2(DHH):c } \\ & .485 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul62Pro) } \end{aligned}$ | 111033589 | DHH | [] | ['GTTGCYGGCGCG CCTCGCAGTGG'] | ['46,XY gonadal dysgenesis, complete, dhhrelated'] |
| $\begin{aligned} & \text { NM_000901.4(NR3C2 } \\ & \text { ):c.2936T>C } \\ & \text { (p.Leu979Pro) } \end{aligned}$ | 121912567 | NR3C2 | [] | [] | ['Pseudohypoaldoste ronism type 1 autosomal dominant'\| |
| NM_000517.4(HBA2): c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 111033603 | HBA2 | [] | [] | ['alpha Thalassemia'] |
| NM_000762.5(CYP2A <br> 6):c. $670 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser224Pro) | 111033610 | - | [] | [] | ['Tegafur response'] |
| $\begin{aligned} & \text { NM_000660.5(TGFB1 } \\ & \text { ):c.241T>C } \\ & \text { (p.Tyr81His) } \end{aligned}$ | 111033611 | TGFB1 | [] | [] | ['Diaphyseal dysplasia'] |
| $\begin{aligned} & \text { NM_001173464.1(KIF } \\ & 21 \mathrm{~A}): \mathrm{c} .1067 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met356Thr) } \\ & \hline \end{aligned}$ | 121912588 | KIF21A | [] | [] | ['Fibrosis of extraocular muscles, congenital, $1^{\prime}$ ] |


| $\begin{aligned} & \text { NM_000206.2(IL2RG) } \\ & \text { :c.343T>C } \\ & \text { (p.Cys115Arg) } \\ & \hline \end{aligned}$ | 111033622 | IL2RG | [] | $\begin{aligned} & \hline \text { ['TGGCYGTCAGTT } \\ & \text { GCAAAAAAAGG'] } \end{aligned}$ | ['X-linked severe combined immunodeficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_001041.3(SI):c. 18 59T>C (p.Leu620Pro) | 121912613 | SI | [] | ['ATGCYGGAGTTC AGTTTGTTTGG'] | ['Sucrase-isomaltase deficiency'] |
| NM_016180.4(SLC45 A2):c.1082T $>\mathrm{C}$ (p.Leu361Pro) | 121912619 | SLC45A2 | [] | ['GAGTTTCYCATC <br> TACGAAAGAGG'] | ['Oculocutaneous albinism type 4', 'not provided'] |
| $\begin{aligned} & \text { NM_000552.3(VWF): } \\ & \text { c. } 4837 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser1613Pro) } \end{aligned}$ | 61750581 | VWF | [] | ['CTGCCYCTGATG <br> AGATCAAGAGG'] | ['von Willebrand disease, type 2a', 'not provided'] |
| $\begin{aligned} & \text { NM_000552.3(VWF): } \\ & \text { c.4883T }>C \\ & \text { (p.Ile1628Thr) } \end{aligned}$ | 61750584 | VWF | [] | [] | ['von Willebrand disease, type 2a', 'not provided'] |
| $\begin{aligned} & \text { NM_000180.3(GUCY } \\ & \text { 2D):c.1694T>C } \\ & \text { (p.Phe565Ser) } \\ & \hline \end{aligned}$ | 61749755 | GUCY2D | [] | [] | ['Leber congenital amaurosis 1', 'not provided'] |
| $\begin{aligned} & \text { NM_003235.4(TG):c. } 3 \\ & 733 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1245Arg) } \end{aligned}$ | 121912647 | TG | [] | [] | ['Iodotyrosyl coupling defect'] |
| $\begin{aligned} & \text { NM_000546.5(TP53):c } \\ & .755 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu252Pro) } \end{aligned}$ | 121912653 | TP53 | [] | ['CATCCYCACCAT CATCACACTGG'] | ['Li-Fraumeni syndrome 1'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c.350T>C } \\ & \text { (p.Phel17Ser) } \end{aligned}$ | 111033679 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c.374T>C } \\ & \text { (p.Val125Ala) } \end{aligned}$ | 111033680 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_000155.3(GALT) :c. $386 \mathrm{~T}>\mathrm{C}$ <br> (p.Met129Thr) | 111033683 | GALT | [] | ['AGGTCAYGTGCT TCCACCCCTGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000546.5(TP53):c } \\ & .1031 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu344Pro) } \end{aligned}$ | 121912662 | TP53 | [] | [] | ['Li-Fraumeni syndrome 1'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 416 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu139Pro) } \end{aligned}$ | 111033687 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 452 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val151Ala) } \end{aligned}$ | 111033701 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c.499T>C } \\ & \text { (p.Trp167Arg) } \end{aligned}$ | 111033708 | GALT | $\begin{aligned} & \hline \text { ['CCCTY } \\ & \text { GGGTG } \\ & \text { CAGGT } \\ & \text { TTGTG } \\ & \text { AGG'] } \\ & \hline \end{aligned}$ | ['CCCTYGGGTGCA GGTTTGTGAGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & : c .507+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 111033710 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 512 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe 171Ser) } \end{aligned}$ | 111033715 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |


| $\begin{aligned} & \hline \text { NM_000341.3(SLC3A } \\ & \text { 1):c.2033T>C } \\ & \text { (p.Leu678Pro) } \\ & \hline \end{aligned}$ | 121912693 |  | [] | [] | ['Cystinuria'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c.9242T>C } \\ & \text { (p.Met3081Thr) } \\ & \hline \end{aligned}$ | 147012990 | RYR1 | [] | [] | ['Minicore myopathy with external ophthalmoplegia'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 584 \mathrm{P}>\mathrm{C} \\ & \text { (p.Leu195Pro) } \end{aligned}$ | 111033728 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \hline \text { NM_000155.3(GALT) } \\ & \text { :c.650T>C } \\ & \text { (p.Leu217Pro) } \end{aligned}$ | 111033741 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 687+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 111033748 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_000039.1(APOA1 <br> ):c. $220 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp74Arg) | 121912726 | - | I] | [] | ['Familial visceral amyloidosis, Ostertag type'\| |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c.677T>C } \\ & \text { (p.Leu226Pro) } \end{aligned}$ | 111033752 | GALT | [] | ['CAGGAGCYACT CAGGAAGGTGGG' ] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_000039.1(APOAI ):c. $593 \mathrm{~T}>\mathrm{C}$ (p.Leu198Ser) | 121912729 | APOAI | [] | ['GCGCTYGGCCGC GCGCCTTGAGG'] | ['Familial visceral amyloidosis, Ostertag type'] |
| NM 000155.3(GALT) <br> :c. $745 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp249Arg) | 111033757 | GALT | [] | I] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase' |
| NM_001681.3(ATP2A <br> 2):c. $1678 \mathrm{P}>\mathrm{C}$ <br> (p.Cys560Arg) | 121912734 | ATP2A2 | [] | [] | ['Keratosis follicularis'] |
| NM_000041.3(APOE): <br> c. $137 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu46Pro) | 769452 | APOE | [] | ['AACYGGCACTG GGTCGCTTTTGG'] | [ |
| NM 000342.3(SLC4A <br> 1):c. $2317 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser773Pro) | 121912753 | SLC4A1 | [] | [] | ['Renal tubular acidosis, distal, with normal red cell morphology'] |
| $\begin{aligned} & \hline \text { NM_003002.3(SDHD) } \\ & \text { :c.284T>C } \\ & \text { (p.Leu95Pro) } \end{aligned}$ | 80338846 | SDHD | [] | [] | ['Hereditary ParagangliomaPheochromocytoma Syndromes'] |
| $\begin{aligned} & \text { NM_016124.4(RHD):c } \\ & .329 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul10Pro) } \\ & \hline \end{aligned}$ | 121912762 | RHD | [] | ['ACACYGTTCAGG TATTGGGATGG'] | I] |
| $\begin{aligned} & \hline \text { NM_003002.3(SDHD) } \\ & \text { :c.416T>C } \\ & \text { (p.Leu139Pro) } \end{aligned}$ | 80338847 | SDHD | [] | [] | ['Hereditary <br> Paraganglioma- <br> Pheochromocytoma <br> Syndromes', <br> 'Paragangliomas 1'] |
| $\begin{aligned} & \hline \text { NM_001822.5(CHN1): } \\ & \text { c.427T>C } \\ & \text { (p.Tyr143His) } \\ & \hline \end{aligned}$ | 121912794 | CHN1 | [] | [] | ['Duane syndrome type $\left.{ }^{2}\right]$ |
| NM_000155.3(GALT) <br> :c. $1138 \mathrm{~T}>\mathrm{C}$ | 111033824 | GALT | [] | ['CGCCYGACCAC GCCGACCACAGG' | ['Deficiency of UDPglucose- |


| (p.Ter380Arg) |  |  |  | 'GCCYGACCACGC CGACCACAGGG' | hexose-1-phosphate uridylyltransferase'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. $3271 \mathrm{~T}>\mathrm{C}$ | 199474658 | MT-TL1 | [] | [] | ['Juvenile myopathy, encephalopathy, lactic acidosis AND stroke'] |
| NM_000155.3(GALT) <br> :c. $980 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu327Pro) | 111033832 | GALT | [] | ['TCCYGCGCTCTG CCACTGTCCGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| m. $3290 \mathrm{~T}>\mathrm{C}$ | 199474665 | MT-TL1 | [] | [] | ['Sudden infant death syndrome'] |
| $\begin{array}{\|l\|} \hline \text { NM_020549.4(CHAT) } \\ \text { :c.629T>C } \\ \text { (p.Leu210Pro) } \\ \hline \end{array}$ | 121912820 | CHAT | [] | [] | ['Familial infantile myasthenia'] |
| $\begin{aligned} & \text { NM_020549.4(CHAT) } \\ & \text { :c.1007T>C } \\ & \text { (p.Ile336Thr) } \\ & \hline \end{aligned}$ | 121912823 | CHAT | [] | [] | ['Familial infantile myasthenia'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & : c .328+2 T>C \end{aligned}$ | 111033849 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \hline \text { NM_000267.3(NFI):c. } \\ & \text { 1595T>C } \\ & \text { (p.Leu532Pro) } \\ & \hline \end{aligned}$ | 199474737 | NF1 | [] | [] | ['Neurofibromatosis, type 1', 'not provided'] |
| $\begin{aligned} & \text { NM_000455.4(STK11) } \\ & \text { :c.545T>C } \\ & \text { (p.Leu182Pro) } \end{aligned}$ | 730881974 | STK11 | I] | ['GGGAACCYGCT GCTCACCACCGG', 'AACCYGCTGCTC ACCACCGGTGG'] | ['Hereditary cancerpredisposing syndrome'\| |
| NM $001042492.2(\mathrm{NF}$ <br> 1):c. $2288 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu763Pro) | 199474762 | NF1 | [] | [] | ['Hereditary cancerpredisposing syndrome', 'not provided'] |
| NM_001042492.2(NF <br> 1):c. $5858 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu1953Pro) | 199474792 | NF1 | [] | [] | ['Neurofibromatosis, type 1', 'not provided'] |
| m. $7512 \mathrm{~T}>\mathrm{C}$ | 199474817 | MT-TS1 | [] | [] | ['MERRF/MELAS overlap syndrome'] |
| m. $7510 \mathrm{~T}>\mathrm{C}$ | 199474820 | MT-TS1 | [] | I] | ['Deafness, nonsyndromic sensorineural, mitochondrial'] |
| m. $7511 \mathrm{~T}>\mathrm{C}$ | 199474821 | MT-TS1 | [] | [] | ['Deafness, nonsyndromic sensorineural, mitochondrial'] |
| m. 2991 T>C | 199474823 | MT-RNR2 | [] | [] | ['Chloramphenicol resistance'] |
| NM_201253.2(CRB1): <br> c. $3122 \mathrm{~T}>\mathrm{C}$ <br> (p.Met1041Thr) | 62635656 | CRBI | [] | [] | ['Retinitis pigmentosa 12 ', 'not provided'] |
| m. $7587 \mathrm{~T}>\mathrm{C}$ | 199474825 | MT-CO2 | I] | [] | I'Cytochrome-c oxidase deficiency'\| |
| NM 000400.3(ERCC2 <br> ):c. $1454 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu485Pro) | 121913025 | ERCC2 | [] | [] | ['Xeroderma pigmentosum, group D'] |
| $\begin{aligned} & \text { NM_000157.3(GBA):c } \\ & .703 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 1064644 | GBA | [] | ['GGGYCACTCAA GGGACAGCCCGG' | ['Gaucher disease'] |


| (p.Ser235Pro) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_001113755.2(TY <br> MP):c.854T>C <br> (p.Leu285Pro) | 121913042 | TYMP | [] | [] | [] |
| NM_000122.1(ERCC3 <br> ):c.296T>C <br> (p.Phe99Ser) | 121913045 | ERCC3 | [] | [] | ['Xeroderma <br> pigmentosum, <br> complementation <br> group b'] |
| NM_000186.3(CFH):c <br> .1606T>C <br> (p.Cys536Arg) | 121913052 | CFH | [] | [] | ['Factor H <br> deficiency'] |
| NM_138413.3(HOGA <br> $1): c .533 T>C ~$ | 796052090 | HOGA1 | [] | ['GGACCYGCCTGT <br> (p.Leu178Pro) |  |


| 4):c.1622T>C <br> (p.Leu541Pro) |  |  |  | l', 'Cone-rod <br> dystrophy 3', 'not <br> provided'] |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_007313.2(ABL1): <br> c.1109T>C <br> (p.Met370Thr) | 121913457 | ABL1 | [] | [] | [] |
| NM_024408.3(NOTC <br> H2):c.1117T>C <br> (p.Cys373Arg) | 312262793 | NOTCH2 | [] | [] | ['Alagille syndrome <br> 2'] |
| NM_024408.3(NOTC <br> H2):c.1438T>C <br> (p.Cys480Arg) | 312262799 | NOTCH2 | [] | ['TTCACAYGTCTG <br> TGCATGCCAGG'] | ['Alagille syndrome <br> 2'] |
| NM_003611.2(OFD1): <br> c.111+2T>C | 312262809 | OFD1 | [] | [] |  |
| NM_003611.2(OFD1): <br> c.274T>C (p.Ser92Pro) | 312262819 | OFD1 | [] | [] | ['Oral-facial-digital <br> syndrome', 'not <br> provided'] |
| NM_020631.4(PLEKH <br> G5):c.1940T>C <br> (p.Phe647Ser) | 63750315 | PLEKHG5 | [] | [] | ['Oral-facial-digital <br> syndrome'] |
| NM_001288953.1(TT <br> C7A):c.1912T>C <br> (p.Ser638Pro) | 149602485 | TTC7A | [] | [] | ['Distal spinal <br> muscular atrophy, <br> autosomal recessive <br> 4'] |
| NM_000391.3(TPP1): <br> c.1093T>C <br> (p.Cys365Arg) | 119455953 | TPP1 |  |  |  |


| $\begin{aligned} & \text { T):c. } 3446 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met1149Thr) } \end{aligned}$ |  |  |  |  | carcinoma, papillary, l'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_002443.3(MSMB } \\ & \text { ):c.-89T= } \end{aligned}$ | 10993994 | MSMB | [] | [] | ['Prostate cancer, hereditary, 13'] |
| $\begin{aligned} & \text { NM_001079802.1(FK } \\ & \text { TN):c.527T>C } \\ & \text { (p.Phe176Ser) } \end{aligned}$ | 119463996 | FKTN | [] | ['GTAGTCTYTCAT GAGAGGAGTGG'] | ['Limb-girdle muscular dystrophydystroglycanopathy, type C4'] |
| NM_000169.2(GLA):c $.865 \mathrm{~A}>\mathrm{T}$ (p.Ile289Phe) | 140329381 | - | [] | [] | ['Fabry disease'] |
| $\begin{aligned} & \text { NM_000420.2(KEL):c } \\ & .1790 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu597Pro) } \\ & \hline \end{aligned}$ | 8176038 | KEL | [] | [] | [] |
| $\begin{aligned} & \text { NM_003999.2(OSMR) } \\ & \text { :c.2072T>C } \\ & \text { (p.Ile } 691 \mathrm{Thr} \text { ) } \\ & \hline \end{aligned}$ | 63750567 | OSMR | [] | [] | ['Primary localized cutaneous amyloidosis 1'] |
| $\begin{aligned} & \mathrm{NC}-012920.1: \mathrm{m} .9478 \\ & \mathrm{~T}>\overline{\mathrm{C}} \end{aligned}$ | 587776437 | MT-CO3 | $\begin{aligned} & \hline \text { ['TCAG } \\ & \text { AAGYT } \\ & \text { TTTTTC } \\ & \text { TTCGC } \\ & \text { AGG'] } \\ & \hline \end{aligned}$ | ['TCAGAAGYTTTT TTCTTCGCAGG'] | ['Leigh disease'] |
| $\begin{aligned} & \text { NM_002775.4(HTRA1 } \\ & \text { ):c.1091T>C } \\ & \text { (p.Leu364Pro) } \end{aligned}$ | 587776447 | HTRA1 | [] | [] | ['Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopath $\left.y^{\prime}\right]$ |
| NM_002049.3(GATA 1): c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 587776451 | GATA1 | ['TCCA <br> YGGAG <br> TTCCCT <br> GGCCT <br> GGG', <br> 'CCAYG <br> GAGTT <br> CCCTG <br> GCCTG <br> GGG'] | ['CTCCAYGGAGTT CCCTGGCCTGG', 'TCCAYGGAGTTC CCTGGCCTGGG', 'CCAYGGAGTTCC CTGGCCTGGGG'] | ['GATA-1-related thrombocytopenia with dyserythropoiesis'] |
| $\begin{aligned} & \text { NM_000021.3(PSEN1 } \\ & \text { ):c.254T>C } \\ & \text { (p.Leu85Pro) } \end{aligned}$ | 63750599 | PSEN1 | [] | [] | ['Alzheimer disease, familial, 3, with spastic paraparesis and apraxia', 'not provided'] |
| $\begin{aligned} & \text { NM_002049.3(GATA } \\ & \text { 1):c.1240T>C } \\ & \text { (p.Ter414Arg) } \end{aligned}$ | 587776456 | GATA1 | [] | ['GCTCAYGAGGG CACAGAGCATGG' ] | ['GATA-1-related thrombocytopenia with dyserythropoiesis'] |
| $\begin{aligned} & \text { NM_006158.4(NEFL): } \\ & \text { c.281T>C } \\ & \text { (p.Leu94Pro) } \end{aligned}$ | 62636505 | NEFL | [] | [] | ['Charcot-Marie- <br> Tooth disease type <br> 2E', 'not provided'] |
| $\begin{aligned} & \text { NM_000184.2(HBG2): } \\ & \text { c. }-228 T>C \end{aligned}$ | 63750654 | HBG2 | [] | ['ATGCAAAYATCT GTCTGAAACGG'] | ['Fetal hemoglobin quantitative trait locus 1'] |
| $\begin{aligned} & \text { NM_000353.2(TAT):c } \\ & .236-5 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587776512 | TAT | [] | [] | ['Tyrosinemia type 2'] |
| $\begin{aligned} & \text { NM_173560.3(RFX6): } \\ & \text { c. } 380+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587776514 | RFX6 | $\begin{aligned} & \hline \text { ['CAGT } \\ & \text { GGYGA } \\ & \text { GACTC } \\ & \text { GCCCG } \\ & \text { CAGG', } \\ & \hline \end{aligned}$ | ['CAGTGGYGAGA CTCGCCCGCAGG', 'AGTGGYGAGACT CGCCCGCAGGG'] | ['Mitchell-Riley syndrome'] |


|  |  |  | 'AGTGG YGAGA CTCGC CCGCA GGG'] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001999.3(FBN2): } \\ & \text { c.3725-15A>G } \end{aligned}$ | 587776519 | FBN2 | [] | ['AGCAYTGCAAC CACATTGTCAGG'] | 「'Congenital contractural arachnodactyly'\| |
| $\begin{aligned} & \text { NM_000404.2(GLB1): } \\ & \text { c. } 1480-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587776526 | GLB1 | [] | [] | ['GM1GANGLIOSIDOSIS , TYPE I, WITH CARDIAC INVOLVEMENT'] |
| $\begin{aligned} & \text { NM_000402.4(G6PD): } \\ & \text { c.473T>C } \\ & \text { (p.Leu158Pro) } \end{aligned}$ | 78365220 | G6PD | [] | ['TGCCCYCCACCT GGGGTCACAGG'] | ['Anemia, nonspherocytic hemolytic, due to G6PD deficiency', 'not provided'] |
| NM 000179.2(MSH6) <br> :c. $1346 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu449Pro) | 63750741 | MSH6 | [] | ['CTGGGGCYGGT ATTCATGAAAGG'] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| NM_145046.4(CALR3 ):c. $245 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys82Arg) | 142951029 | CALR3 | \|'CGGT YTGAA GCGTG CAGAG ATGG'] | ['CGGTYTGAAGC GTGCAGAGATGG' I | ['Arrhythmogenic right ventricular cardiomyopathy', 'Familial hypertrophic cardiomyopathy 19', 'Hypertrophic cardiomyopathy'] |
| NM_000260.3(MYO7 A): $\mathrm{c} .5573 \mathrm{~T}>\mathrm{C}$ (p.Leu1858Pro) | 368657015 | MYO7A | I] | II | ['Usher syndrome, type $1^{1}$ ] |
| $\begin{aligned} & \text { NM_024753.4(TTC21 } \\ & \text { B):c. } 2758-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 766132877 | TTC21B | [] | [] | $\begin{aligned} & \hline \text { ['Nephronophthisis } \\ & 12 \text { '] } \\ & \hline \end{aligned}$ |
| NM 001195129.1(PR SS56):c.1183T>C (p.Cys395Arg) | 730882161 | PRSS56 | [] | [] | ['Microphthalmia, isolated 6'] |
| $\begin{aligned} & \text { NM_001184.3(ATR):c } \\ & .2022 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gly } 674=\text { ) } \\ & \hline \end{aligned}$ | 587776690 | ATR | I] | II | ['Seckel syndrome 1'I |
| $\begin{aligned} & \text { NM_000354.5(SERPI } \\ & \text { NA7):c.623-2A>G } \end{aligned}$ | 587776720 | SERPINA7 | [] | [] | I] |
| $\begin{aligned} & \text { NM_000133.3(F9):c. } 2 \\ & 77+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587776735 | F9 | [] | [] | ['Hereditary factor IX deficiency disease'] |
| $\begin{aligned} & \text { NM_004006.2(DMD): } \\ & \text { c. } 9225-285 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587776747 | DMD | [] | [] | ['Becker muscular dystrophy'] |
| NM 016835.4(MAPT) <br> :c.1839T>C <br> (p.Asn613=) | 63750912 | MAPT | ['GGAT AAYAT CAAAC ACGTC CCGG', <br> 'GATAA <br> YATCA <br> AACAC <br> GTCCC <br> GGG'] | ['GGATAAYATCA AACACGTCCCGG', 'GATAAYATCAAA CACGTCCCGGG' | ['Frontotemporal dementia', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000321.2(RB1):c. } \\ & 1960+2 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 587776780 | RB1 | [] | II | ['Retinoblastoma'] |


| NM 006517.4(SLC16 A2):c. $1253 \mathrm{~T}>\mathrm{C}$ (p.Leu418Pro) | 367543059 | SLC16A2 | II | [] | ['Allan-HerndonDudley syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000421.3(KRT10 } \\ & \text { ): :c.1374-2A>G } \end{aligned}$ | 587776815 | - | [] | [] | ['Erythroderma, ichthyosiform, congenital reticular'] |
| $\begin{array}{\|l} \hline \text { NM_000251.2(MSH2) } \\ \text { c.2089T>C } \\ \text { (p.Cys697Arg) } \end{array}$ | 63750961 | MSH2 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| $\begin{aligned} & \text { NM_002618.3(PEX13) } \\ & \text { :c.977T>C } \\ & \text { (p.Ile326Thr) } \end{aligned}$ | 61752115 | PEX13 | [] | [] | ['Peroxisome biogenesis disorder 11B'] |
| NM 001079867.1 (PE <br> X2):c.739T>C <br> (p.Cys247Arg) | 61752128 | PEX2 | II | I] | \|'Peroxisome biogenesis disorder 5A'] |
| NM_017929.5(PEX26) <br> :c. $134 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu45Pro) | 61752132 | PEX26 | [] | [] | ['Peroxisome biogenesis disorder 7B'\| |
| $\begin{array}{\|l} \hline \begin{array}{l} \mathrm{NG} \\ \mathrm{~A}>\mathrm{G} \end{array} \\ \hline \end{array}$ | 587776843 | IL10 | ['ACCY <br> TATGA <br> TCCGC <br> CCGCC <br> TTGG'] | ['ACCYTATGATCC GCCCGCCTTGG'] | ] |
| $\begin{aligned} & \text { NM_001735.2(C5):c.1 } \\ & 115 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys372Arg) } \end{aligned}$ | 587776846 | C5 | [] | [] | ['Leiner disease'] |
| NM_002087.3(GRN):c $.2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 63751006 | GRN | I'CCAY GTGGA CCCTG GTGAG CTGG'] | ['CCAYGTGGACCC TGGTGAGCTGG'] | ['Frontotemporal dementia, ubiquitinpositive', 'not provided'] |
| $\begin{array}{\|l} \hline \text { NM_004656.3(BAP1): } \\ \text { c.2057-2A>G } \end{array}$ | 587776878 | BAP1 | I] | I] | ['Tumor predisposition syndrome'\| |
| NM_004656.3(BAP1): c. $43 \overline{8}-2 \mathrm{~A}>\mathrm{G}$ | 587776879 | BAP1 | ['GCCY GGGGA AAAAC AGAGT CAGG'] | ['GCCYGGGGAAA AACAGAGTCAGG' ] | ['Tumor predisposition syndrome'] |
| NM 004329.2(BMPR <br> 1A): c. $370 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys124Arg) | 199476087 | BMPR1A | [] | [] | ['Juvenile polyposis syndrome', <br> 'Hereditary cancerpredisposing syndrome'] |
| NM_000510.2(FSHB): <br> c. $298 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys100Arg) | 5030777 | FSHB | [] | [] | ['Follicle-stimulating hormone deficiency, isolated'] |
| $\begin{array}{\|l} \hline \text { NM 001009944.2(PK } \\ \text { D1):c.2534T }>\mathrm{C} \\ \text { (p.Leu845Ser) } \\ \hline \end{array}$ | 199476100 | PKD1 | I] | I] | ['Polycystic kidney disease, adult type'] |
| NM 004963.3(GUCY 2C):. $1160 \mathrm{~A}>\mathrm{G}$ (p.Asp387Gly) | 587776905 | GUCY2C | [] | [] | ['Meconium ileus'] |
| m. 14487T>C | 199476109 | MT-ND6 | [] | [] | ['Leigh disease', 'Leigh syndrome due to mitochondrial complex I deficiency'] |


| NM_017565.3(FAM20 <br> A):c.813-2A>G | 587776912 | - | [] | [] | ['Enamel-renal syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_017565.3(FAM20 <br> A):c. $590-2 \mathrm{~A}>\mathrm{G}$ | 587776914 | FAM20A | [] | ['GTAATCYGCAA AGGAGGAGAAGG <br> 'TAATCYGCAAAG <br> GAGGAGAAGGG'] | ['Enamel-renal syndrome'] |
| NM_014165.3(NDUF AF4):c.194T>C (p.Leu65Pro) | 63751061 | NDUFAF4 | [] | [] | ['Mitochondrial complex I deficiency'] |
| m.4160T>C | 199476119 | MT-ND 1 | [] | [] | ['Leber optic atrophy'] |
| NM_000551.3(VHL):c .292T>C (p.Tyr98His) | 5030809 | VHL | [] | ['CCCYACCCAACG <br> CTGCCGCCTGG'] | ['Von Hippel-Lindau syndrome', 'Hereditary cancerpredisposing syndrome'] |
| m.3949T>C | 199476124 | MT-ND 1 | [] | [] | ['Juvenile myopathy, encephalopathy, <br> lactic acidosis AND stroke'] |
| m.6742T>C | 199476126 | MT-CO1 | [] | [] | [] |
| m.6721T>C | 199476127 | MT-CO1 | [] | [] | [] |
| m. $5692 \mathrm{~T}>\mathrm{C}$ | 199476131 | MT-TN | [] | [] | [] |
| m.5728T>C | 199476132 | MT-TN | [] | ['CAATCYACTTCT CCCGCCGCCGG', <br> 'AATCYACTTCTC CCGCCGCCGGG'] | ['Cytochrome-c oxidase deficiency', 'Mitochondrial complex I deficiency'] |
| m.9101T>C | 199476134 | MT-ATP6 | [] | [] | ['Leber optic atrophy'] |
| m. $8851 \mathrm{~T}>\mathrm{C}$ | 199476136 | MT-ATP6 | [] | [] | ['Leigh disease', <br> 'Striatonigral degeneration, infantile, mitochondrial'] |
| m. $9185 \mathrm{~T}>\mathrm{C}$ | 199476138 | MT-ATP6 | [] | [] | ['Leigh disease'] |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .143 \mathrm{~T}>\mathrm{C}(\text { p.Leu48Ser }) \\ & \hline \end{aligned}$ | 5030841 | PAH | [] | [] | ['Phenylketonuria', 'not provided'\| |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .691 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser231Pro) } \end{aligned}$ | 5030845 | PAH | [] | [] | ['Phenylketonuria', 'not provided'] |
| $\begin{aligned} & \text { NM_000251.2(MSH2) } \\ & \text { c. } 595 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys199Arg) } \end{aligned}$ | 63751110 | MSH2 | $\begin{aligned} & \text { ['AAGG } \\ & \text { AAYGT } \\ & \text { GTTTT } \\ & \text { ACCCG } \\ & \text { GAGG'] } \end{aligned}$ | ['AAGGAAYGTGT <br> TTTACCCGGAGG'] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| $\begin{aligned} & \text { NM_000039.1(APOA1 } \\ & \text { ):c.341T>C } \\ & \text { (p.Leul14Pro) } \end{aligned}$ | 28931575 | - | [] | [] | [] |
| $\begin{aligned} & \text { NM_001288953.1(TT } \\ & \text { C7A):c.2366T>C } \\ & \text { (p.Leu789Pro) } \end{aligned}$ | 587776972 | TTC7A | [] | [] | ['Multiple gastrointestinal atresias'] |
| $\begin{aligned} & \text { NM_014336.4(AIPL1) } \\ & \text { :c. } 715 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys } 239 \mathrm{Arg} \text { ) } \end{aligned}$ | 62637012 | AIPL1 | [] | $\begin{aligned} & \text { ['CTGCCAGYGCCT } \\ & \text { GCTGAAGAAGG', } \\ & \text { 'CCAGYGCCTGCT } \\ & \text { GAAGAAGGAGG'] } \\ & \hline \end{aligned}$ | ['Leber congenital amaurosis 4', 'not provided'] |
| NM_000155.3(GALT) | 367543254 | GALT | [] | [] | ['Deficiency of |


| :c.336T>C (p.Ser112=) |  |  |  |  | UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_207352.3(CYP4V <br> 2):c. $655 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr219His) | 199476191 | CYP4V2 | [] | [] | ['Bietti crystalline corneoretinal dystrophy'] |
| NM_207352.3(CYP4V <br> 2):c. $1021 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser341Pro) | 199476199 | CYP4V2 | [] | $\begin{aligned} & \hline \text { ['AAACTGGYCCTT } \\ & \text { ATACCTGTTGG', } \\ & \text { 'AACTGGYCCTTA } \\ & \text { TACCTGTTGGG'] } \\ & \hline \end{aligned}$ | ['Bietti crystalline corneoretinal dystrophy'] |
| NM_001142519.1(FA M111A):c.1531T>C (p.Tyr511His) | 587777012 | FAM111A | [] | [] | $\begin{aligned} & {[\text { ['Kenny-Caffey }} \\ & \text { syndrome type 2'] } \end{aligned}$ |
| NM 000435.2(NOTC H3):c. $4556 \mathrm{~T}>\mathrm{C}$ (p.Leu1519Pro) | 367543285 | NOTCH3 | I] | I] | ['Infantile myofibromatosis $1^{\prime}$, 'Infantile myofibromatosis $\left.2^{2}\right]$ |
| $\begin{aligned} & \text { NM_000021.3(PSEN1 } \\ & \text { ):c. } 749 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu250Ser) } \\ & \hline \end{aligned}$ | 63751163 | PSEN1 | [] | [] | ['Alzheimer disease, type 3 ', 'not provided'\| |
| NM_001283009.1(RT EL1):c. $3730 \mathrm{~T}>\mathrm{C}$ (p.Cys1244Arg) | 587777037 | - | ['CTGTG <br> TGYGC <br> CAGGG <br> CTGTG <br> GGG'] | ['CTGTGTGYGCCA GGGCTGTGGGG'] | ['Dyskeratosis congenita, autosomal recessive, 5'] |
| NM_001135021.1(EL MOD3):c. $794 \mathrm{~T}>\mathrm{C}$ (p.Leu265Ser) | 587777040 | ELMOD3 | [] | [] | ['Deafness, autosomal recessive 88'] |
| NM 001001557.2(GD F6):c. $866 \mathrm{~T}>\mathrm{C}$ (p.Leu289Pro) | 63751220 | GDF6 | II | [] | ['Klippel-Feil syndrome 1, autosomal dominant'] |
| NM_014754.2(PTDSS <br> 1):c. $794 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu265Pro) | 587777090 | PTDSS1 | I] | [] | ['Lenz-Majewski hyperostosis syndrome'\| |
| NM 052844.3(WDR3 <br> 4):c. $1307 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys436Arg) | 587777098 | WDR34 | [] | [] | ['Short-rib thoracic dysplasia 11 with or without polydactyly'] |
| NM 001290048.1(AT L3): $\mathrm{c} .521 \mathrm{~A}>\mathrm{G}$ (p.Tyr174Cys) | 587777108 | ATL3 | [] | [] | ['Hereditary sensory neuropathy type $\mathrm{IF}^{\prime}$ ] |
| NM 001018005.1(TP M1):c. $515 \mathrm{~T}>\mathrm{C}$ (p.Ile172Thr) | 199476312 | TPM1 | [] | [] | ['Primary familial hypertrophic cardiomyopathy', 'Cardiomyopathy', 'not provided'] |
| NM 018849.2(ABCB4 ):c. $523 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr175Ala) | 58238559 | ABCB4 | I] | [] | ['Cholecystitis'] |
| NM 001018005.1 (TP M1):c. $842 \mathrm{~T}>\mathrm{C}$ (p.Met281Thr) | 199476321 | TPM1 | [] | [] | ['Cardiomyopathy', 'not specified', 'not provided'] |
| $\begin{aligned} & \text { NM_005763.3(AASS): } \\ & \text { c.874A>G } \\ & \text { (p.Ile292Val) } \\ & \hline \end{aligned}$ | 587777122 | AASS | [] | [] | ['Hyperlysinemia'] |
| $\begin{aligned} & \text { NM_194442.2(LBR):c } \\ & .1639 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn547Asp) } \\ & \hline \end{aligned}$ | 587777171 | LBR | I] | [] | ['Greenberg dy splasia'] |


| NM_006702.4(PNPLA <br> 6):c.3053T>C <br> (p.Phe1018Ser) | 587777183 | PNPLA6 | [] | ['CCTYTAACCGCA <br> GCATCCATCGG'] | ['Boucher Neuhauser <br> syndrome'] |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_000487.5(ARSA) <br> c.899T>C <br> (p.Leu300Ser) | 199476389 | ARSA | [] | ['GGTCTCTYGCGG <br> TGTGGAAAGGG'] | ['Metachromatic <br> leukodystrophy', not <br> provided'] |
| NM_016599.4(MYOZ <br> 2):c.142T>C <br> (p.Ser48Pro) | 199476398 | MYOZ2 | [] | ['TTAYCCCATCTC <br> AGTAACCGTGG'] | ['Familial <br> hypertrophic <br> cardiomyopathy 16', <br> 'not provided'] |
| NM_014740.3(EIF4A3 <br> :c.809A>G <br> (p.Asp270Gly) | 587777204 | EIF4A3 | [] | [] | ['Richieri Costa <br> Pereira syndrome'] |
| NM_001040436.2(YA <br> RS2):c.1303A>G <br> (p.Ser435Gly) | 587777215 | YARS2 | [] |  | [] |


| $\begin{aligned} & \hline \text { c. } 857 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met } 286 \mathrm{Thr} \text { ) } \end{aligned}$ |  |  | AYGGC <br> CCACC <br> TGGGC <br> TTGG'] | ACCTGGGCTTGG', 'GAGAYGGCCCAC CTGGGCTTGGG'] | hypomyelinating, 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_005356.4(LCK):c } \\ & .1022 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu341Pro) } \\ & \hline \end{aligned}$ | 587777335 | LCK | [] | [] | ['Immunodeficiency 22'] |
| $\begin{aligned} & \text { NM_005861.3(STUB1 } \\ & \text { ):c. } 719 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met240Thr) } \\ & \hline \end{aligned}$ | 587777345 | - | [] | [] | ['Spinocerebellar ataxia, autosomal recessive 16'] |
| $\begin{aligned} & \text { NM_000250.1(MPO):c } \\ & .752 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met251Thr) } \end{aligned}$ | 56378716 | MPO | [] | $\begin{aligned} & \text { ['TCACTCAYGTTC } \\ & \text { ATGCAATGGGG'] } \end{aligned}$ | ['Myeloperoxidase deficiency'] |
| NM_017890.4(VPS13 B):c. $11119+2 \mathrm{~T}>\mathrm{C}$ | 587777382 | VPS13B | [] | [] | ['Cohen syndrome'] |
| $\begin{aligned} & \text { NM_005026.3(PIK3C } \\ & \text { D):c. } 1246 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 416 \mathrm{Arg} \text { ) } \end{aligned}$ | 587777390 | PIK3CD | [] | ['GCAGGACYGCC CCATTGCCTGGG'] | ['Activated PI3Kdelta syndrome'] |
| $\begin{aligned} & \text { NM_002633.2(PGM1) } \\ & \text { :c.1547T>C } \\ & \text { (p.Leu516Pro) } \end{aligned}$ | 587777401 | PGM1 | [] | [] | ['Congenital disorder of glycosylation type $\left.1 \mathrm{t}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000261.1(MYOC } \\ & \text { ):c. } 1309 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr437His) } \\ & \hline \end{aligned}$ | 74315328 | MYOC | [] | [] | ['Primary open angle glaucoma juvenile onset l'] |
| NM_001159287.1(TPI <br> 1): c. $833 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe278Ser) | 587777440 | TPI1 | [] | [] | ['Triosephosphate isomerase deficiency'] |
| $\begin{aligned} & \text { NM_000414.3(HSD17 } \\ & \text { B4):c. } 1547 \mathrm{~T}>C \\ & \text { (p.Ile516Thr) } \end{aligned}$ | 587777443 | HSD17B4 | [] | [] | ['Gonadal dysgenesis with auditory dysfunction, autosomal recessive inheritance'] |
| NM_005359.5(SMAD <br> 4): $\mathrm{c} .970 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys324Arg) | 377767339 | SMAD4 | [] | [] | ['Juvenile polyposis syndrome'] |
| $\begin{aligned} & \text { NM_000211.4(ITGB2) } \\ & \text { :c. } 1877+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 483352818 | ITGB2 | $\begin{aligned} & \text { ['CATG } \\ & \text { YGAGT } \\ & \text { GCAGG } \\ & \text { CGGAG } \\ & \text { CAGG'] } \end{aligned}$ | ['CATGYGAGTGC AGGCGGAGCAGG' ] | ['Leukocyte adhesion deficiency type 1'] |
| $\begin{aligned} & \text { NM_005359.5(SMAD } \\ & \text { 4):c. } 1087 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys363Arg) } \\ & \hline \end{aligned}$ | 377767348 | SMAD4 | [] | [] | ['Juvenile polyposis syndrome'] |
| $\begin{aligned} & \text { NM_001128159.2(VP } \\ & \text { S53):c.2084A>G } \\ & \text { (p.Gln695Arg) } \end{aligned}$ | 587777465 | VPS53 | [] | [] | ['Pontocerebellar hypoplasia, type $\left.2 \mathrm{e}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000249.3(MLH1) } \\ & \text { :c. } 1745 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu582Pro) } \end{aligned}$ | 63751616 | MLH1 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| $\begin{aligned} & \text { NM_003108.3(SOX11 } \\ & \text { ):c.178T }>\text { C } \\ & \text { (p.Ser60Pro) } \end{aligned}$ | 587777480 | SOX11 | [] | ['TATGGYCCAAG ATCGAACGCAGG' ] | ['Mental retardation, autosomal dominant 27'] |
| $\begin{aligned} & \text { NM_020630.4(RET):c. } \\ & 1888 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys630Arg) } \end{aligned}$ | 377767404 | RET | [] | [] | [] |
| NM_017565.3(FAM20 <br> A):c. $720-2 \mathrm{~A}>\mathrm{G}$ | 587777530 | - | [] | [] | ['Enamel-renal syndrome'] |


| $\begin{aligned} & \text { NM_015599.2(PGM3) } \\ & \text { :c.737A>G } \\ & \text { (p.Asn246Ser) } \end{aligned}$ | 587777562 | PGM3 | ['TAAA <br> TGAYT <br> GAGTT <br> TGCCC <br> TTGG'] | ['TAAATGAYTGA GTTTGCCCTTGG'] | ['Immunodeficiency 23'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_015599.2(PGM3) } \\ & \text { :c. } 1352 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln } 451 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 587777565 | PGM3 | [] | [] | ['Immunodeficiency 23'] |
| $\begin{aligned} & \text { NM-000206.2(IL2RG) } \\ & \text { :c.452T }>\mathrm{C} \\ & \text { (p.Leu151Pro) } \\ & \hline \end{aligned}$ | 137852511 | IL2RG | [] | [] | ['X-linked severe combined immunodeficiency'] |
| $\begin{aligned} & \text { NM_198282.3(TMEM } \\ & \text { 173):c.461A>G } \\ & \text { (p.Asn154Ser) } \\ & \hline \end{aligned}$ | 587777609 | TMEM173 | [] | [] | ['Sting-associated vasculopathy, infantile-onset'] |
| $\begin{aligned} & \text { NM_000329.2(RPE65) } \\ & \text { :c.1022T }>\mathrm{C} \\ & \text { (p.Leu341Ser) } \\ & \hline \end{aligned}$ | 61752909 | RPE65 | [] | [] | ['Retinitis pigmentosa 20', 'not provided'] |
| $\begin{aligned} & \text { NM_001127899.3(CL } \\ & \text { CN5):c.1768T>C } \\ & \text { (p.Ser590Pro) } \end{aligned}$ | 151340623 | CLCN5 | [] | [] | ['Dent disease 1'] |
| NM_005027.3(PIK3R <br> 2):c. $1202 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu401Pro) | 587777624 | PIK3R2 | [] | [] | ['Megalencephaly polymicrogyriapolydactyly hydrocephalus syndrome'] |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c. } 854 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln285Arg) } \end{aligned}$ | 587777629 | STAT1 | [] | [] | ['Immunodeficiency $\left.31 C^{\prime \prime}\right]$ |
| $\begin{aligned} & \text { NM_139276.2(STAT3 } \\ & \text { ):c.1175A>G } \\ & \text { (p.Lys392Arg) } \end{aligned}$ | 587777648 | STAT3 | [] | [] | ['Autoimmune disease, multisystem, infantile-onset'] |
| $\begin{aligned} & \text { NM_001037811.2(HS } \\ & \text { D17B10):c.257A>G } \\ & \text { (p.Asp86Gly) } \end{aligned}$ | 587777651 | HSD17B10 | [] | [] | $\begin{aligned} & \text { ['2-methyl-3- } \\ & \text { hydroxybutyric } \\ & \text { aciduria'] } \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \text { NM_001288767.1(AR } \\ & \text { MC5):c.1928T>C } \\ & \text { (p.Leu643Pro) } \end{aligned}$ | 587777661 | ARMC5 | [] | [] | ['Acth-independent macronodular adrenal hyperplasia 2'] |
| $\begin{aligned} & \text { NM_001288767.1(AR } \\ & \text { MC5):c.1379T>C } \\ & \text { (p.Leu460Pro) } \end{aligned}$ | 587777663 | ARMC5 | [] | ['GCCCGACYGCG GGATGCTGGTGG'] | ['Acth-independent macronodular adrenal hyperplasia 2'] |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c. } 2018 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys673Arg) } \end{aligned}$ | 587777704 | STAT1 | [] | [] | ['Immunodeficiency 31a'] |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c. } 1909 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys637Glu) } \end{aligned}$ | 587777705 | STAT1 | [] | [] | ['Immunodeficiency 31a'] |
| NM_014845.5(FIG4): $.50 \mathrm{~T}>\mathrm{C}$ (p.Leu17Pro) | 587777713 | FIG4 | [] | [] | ['Charcot-MarieTooth disease, type 4J'] |
| $\begin{aligned} & \text { NM_000350.2(ABCA } \\ & \text { 4):c. } 5819 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu1940Pro) } \end{aligned}$ | 61753033 | ABCA4 | [] | ['AAGGCYACATG AACTAACCAAGG' ] | ['Stargardt disease', <br> 'Stargardt disease 1', <br> 'Cone-rod dystrophy <br> 3', 'not provided'] |
| $\begin{aligned} & \text { NM_002972.3(SBF1): } \\ & \text { c. } 4768 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr1590Ala) } \\ & \hline \end{aligned}$ | 200488568 | SBF1 | [] | $\begin{aligned} & \text { ['CAGGCGYCCTCT } \\ & \text { TGCTCAGCCGG'] } \end{aligned}$ | ['Charcot-MarieTooth disease, type 4B3'] |


| $\begin{aligned} & \text { NM_000377.2(WAS): } \\ & \text { c. } 244 \mathrm{~T}>\mathrm{C} \text { (p.Ser82Pro) } \\ & \hline \end{aligned}$ | 132630272 | WAS | [] | ${ }^{11}$ | [] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000377.2(WAS): } \\ & \text { c.809T>C } \\ & \text { (p.Leu270Pro) } \\ & \hline \end{aligned}$ | 132630274 | WAS | [] | ['CGGAGTCYGTTC TCCAGGGCAGG'] | ['Severe congenital neutropenia Xlinked'] |
| NM_001128834.2(PLP <br> 1):c. $487 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp163Arg) | 132630279 | PLPI | [] | [] | ['PelizaeusMerzbacher disease', 'not provided'] |
| $\begin{aligned} & \text { NM_001128834.2(PLP } \\ & \text { 1):c.671T>C } \\ & \text { (p.Leu224Pro) } \end{aligned}$ | 132630283 | PLPI | [] | [] | ['Pelizaeus- Merzbacher disease'] |
| NM 001128834.2(PLP <br> 1):c. $560 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile187Thr) | 132630288 | PLP1 | II | I] | ['Spastic paraplegia ${ }^{2} 1$ |
| NM 001128834.2(PLP <br> 1):c. $710 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe237Ser) | 132630291 | PLP1 | [] | [] | ['Spastic paraplegia 2'] |
| NM_001015877.1(PH <br> F6): : $2 \mathrm{~T}>\mathrm{C}$ <br> (p.Met1Thr) | 132630300 | PHF6 | [] | [] | ['Borjeson- <br> Forssman-Lehmann syndrome'] |
| NM_001399.4(EDA): c $.181 \mathrm{~T}>\mathrm{C}$ (p.Tyr61His) | 132630308 | EDA | [] | ['CTGCYACCTAGA GTTGCGCTCGG'] | ['Hypohidrotic Xlinked ectodermal dysplasia'] |
| NM 001205019.1(GK ):c. $1525 \mathrm{~T}>\mathrm{C}$ (p.Trp509Arg) | 132630330 | GK | I] | II | I'Deficiency of glycerol kinase'] |
| $\begin{aligned} & \text { NM_000076.2(CDKN } \\ & \text { 1C):c. } * 5+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587777866 | CDKN1C | $\begin{array}{\|l} \hline \text { ['CCAA } \\ \text { GYGAG } \\ \text { TACAG } \\ \text { CGCAC } \\ \text { CTGG' } \\ \text { 'CAAGY } \\ \text { GAGTA } \\ \text { CAGCG } \\ \text { CACCT } \\ \text { GGG', } \\ \text { 'AAGYG } \\ \text { AGTAC } \\ \text { AGCGC } \\ \text { ACCTG } \\ \text { GGG'\| } \\ \hline \end{array}$ | ['CCAAGYGAGTA CAGCGCACCTGG', 'CAAGYGAGTACA GCGCACCTGGG', 'AAGYGAGTACAG CGCACCTGGGG'] | ['BeckwithWiedemann syndrome'] |
| $\begin{aligned} & \hline \text { NM_000271.4(NPC1): } \\ & \text { c.2054T>C } \\ & \text { (p.Ile685Thr) } \\ & \hline \end{aligned}$ | 483352888 | NPC1 | [] | [] | ['Niemann-Pick disease type $\mathrm{Cl}^{\prime}$ ] |
| NM 170707.3(LMNA ):c. $1589 \mathrm{~T}>\mathrm{C}$ (p.Leu530Pro) | 60934003 | LMNA | [] | ['ACGGCTCYCATC AACTCCACTGG', 'CGGCTCYCATCA ACTCCACTGGG' 'GGCTCYCATCAA CTCCACTGGGG' | ['Benign <br> scapuloperoneal <br> muscular dystrophy <br> with <br> cardiomyopathy', <br> 'not provided'] |
| NM 001165963.1(SC N1A):c. $5536 \mathrm{~A}>\mathrm{T}$ (p.Lys1846Ter) | 372098964 | - | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| NM 130838.1(UBE3A <br> ):c. $2485 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr829His) | 587784526 | UBE3A | II | I] | ['Angelman syndrome'] |
| NM_014588.5(VSX1): c. $50 \mathrm{~T}>\mathrm{C}$ (p.Leu17Pro) | 74315436 | VSX1 | [] | [] | ['Keratoconus 1'] |
| NM_000404.2(GLB1): | 398123354 | GLB1 | [] | [] | ['Mucopoly saccharid |


| c. $457+2 \mathrm{~T}>\mathrm{C}$ |  |  |  |  | osis, MPS-IV-B', <br> 'Infantile GM1 <br> gangliosidosis', <br> 'Juvenile GM>1< <br> gangliosidosis', <br> 'Gangliosidosis <br> GM1 type 3', 'not <br> provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c.145+2T>C } \end{aligned}$ | 267608430 | CDKL5 | [] | [] | ['Atypical Rett syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_002764.3(PRPS1) } \\ & \text { :c.869T>C } \\ & \text { (p.Ile290Thr) } \end{aligned}$ | 180177153 | PRPS1 | [] | [] | ['Deafness, highfrequency sensorineural, Xlinked'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & : \text { c.1076T }>\text { C } \\ & \text { (p.Leu359Pro) } \end{aligned}$ | 180177160 | AGXT | [] | ['GGTGCYGCGGA <br> TCGGCCTGCTGG', <br> 'GTGCYGCGGATC <br> GGCCTGCTGGG'] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & : \text { c. } 1151 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu384Pro) } \end{aligned}$ | 180177165 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c. } 449 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul50Pro) } \end{aligned}$ | 180177222 | AGXT | [] | ['GTGCYGCTGTTC TTAACCCACGG', 'TGCYGCTGTTCTT AACCCACGGG'] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000268.3(NF2):c. } \\ & 1079 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu360Pro) } \end{aligned}$ | 74315492 | NF2 | [] | [] | ['Neurofibromatosis, type 2'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c.661T }>\mathrm{C} \\ & \text { (p.Ser221Pro) } \end{aligned}$ | 180177254 | AGXT | [] | ['GCTCATCYCCTT CAGTGACAAGG'] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c. } 757 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 253 \mathrm{Arg} \text { ) } \end{aligned}$ | 180177264 | AGXT | [] | $\begin{aligned} & \text { ['GGGGCYGTGAC } \\ & \text { GACCAGCCCAGG' } \\ & \text { ] } \\ & \hline \end{aligned}$ | ['Primary hyperoxaluria, type I'] |
| NM_000030.2(AGXT) :c.77T>C (p.Leu26Pro) | 180177268 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { c. } 851 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu } 284 \mathrm{Pro} \text { ) } \end{aligned}$ | 180177287 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & : c .893 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu298Pro) } \end{aligned}$ | 180177293 | AGXT | [] | ['GTATCYGCATGG GCGCCTGCAGG'] | ['Primary hyperoxaluria, type I'] $\left[\begin{array}{l}\text { P'Pr }\end{array}\right.$ |
| $\begin{aligned} & \text { NM_012203.1(GRHP } \\ & \text { R):c.203T>C } \\ & \text { (p.Leu68Pro) } \end{aligned}$ | 180177305 | GRHPR | [] | [] | $\qquad$ |
| NM_000017.3(ACAD <br> S):c. $1057 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser353Pro) | 796051904 | ACADS | [] | [] | ['not provided'] |
| NM_000406.2(GNRH R): c. $392 \mathrm{~T}>\mathrm{C}$ (p.Met131Thr) | 606231406 | GNRHR | [] | [] | ['Hypogonadotropic hypogonadism'] |
| $\begin{aligned} & \text { NM_000255.3(MUT): } \\ & \text { c. } 842 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu281Ser) } \end{aligned}$ | 796052007 | MUT | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c.947T }>\mathrm{C} \\ & \text { (p.Leu316Pro) } \\ & \hline \end{aligned}$ | 796052063 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |


| NM 138413.3(HOGA 1): c. $875 \mathrm{~T}>\mathrm{C}$ (p.Met292Thr) | 796052087 | HOGAI | [] | [] | ['Primary hyperoxaluria, type III'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_013382.5(POMT } \\ & \text { 2):c.1997A>G } \\ & \text { (p.Tyr666Cys) } \end{aligned}$ | 200198778 | POMT2 | ['GGAA GYAGT GGTGG AAGTA GAGG'] | ['GGAAGYAGTGG TGGAAGTAGAGG' ] | ['Congenital <br> muscular dystrophy', <br> 'Congenital <br> muscular dystrophy- <br> dystroglycanopathy <br> with brain and eye <br> anomalies, type A2', <br> 'Muscular <br> dystrophy', <br> 'Congenital <br> muscular dystrophy- <br> dystrogly canopathy <br> with mental <br> retardation, type B2', <br> 'not provided'] |
| $\begin{aligned} & \hline \text { NM_015909.3(NBAS) } \\ & \text { :c.3164T>C } \\ & \text { (p.Leu1055Pro) } \\ & \hline \end{aligned}$ | 796052121 | NBAS | I] | I] | ['Infantile liver failure syndrome ${ }^{2}$ ] |
| NM 000263.3(NAGL <br> U):c. $1208 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile403Thr) | 796052122 | NAGLU | [] | [] | ['Charcot-MarieTooth disease, axonal type 2V'] |
| NM 203290.2(POLR1 C): $\mathrm{c} .436 \mathrm{~T}>\mathrm{C}$ (p.Cys146Arg) | 796052125 | POLRIC | [] | [] | $\begin{array}{\|l\|} \hline \text { ['LEUKODYSTROP } \\ \text { HY, } \\ \text { HYPOMYELINATI } \\ \text { NG, 11'] } \\ \hline \end{array}$ |
| NM_018359.3(UFSP2) :c. $868 \mathrm{~T}>\mathrm{C}$ (p. Tyr290His) | 796052130 | - | [] | [] | ['Hip dysplasia, beukes type'] |
| NM 000053.3(ATP7B <br> ):c. $122 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn41Ser) | 201738967 | ATP7B | I] | [] | ['Wilson disease'] |
| NM 001356.4(DDX3 <br> X): . $704 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu235Pro) | 796052224 | DDX3X | [] | [] | ['not provided'] |
| NM 001356.4(DDX3 <br> X):c. $1541 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile514Thr) | 796052226 | DDX3X | [] | [] | ['not provided'] |
| NM 001356.4(DDX3 <br> X):c. $1175 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu392Pro) | 796052232 | DDX3X | I] | [] | ['not provided'] |
| $\begin{aligned} & \mathrm{NM} 1000321.2(\mathrm{RB} 1): \mathrm{c} . \\ & 2663+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587778839 | RB1 | I] | [] | ['Retinoblastoma'] |
| $\begin{aligned} & \text { NM_000321.2(RB1):c. } \\ & 1472 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu491Pro) } \\ & \hline \end{aligned}$ | 587778848 | RB1 | [] | [] | ['Retinoblastoma'] |
| $\begin{aligned} & \text { NM_006894.5(FMO3) } \\ & \text { :c.1079T>C } \\ & \text { (p.Leu360Pro) } \\ & \hline \end{aligned}$ | 28363581 | FMO3 | [] | [] | ['Trimethylaminuria' |
| NM_172107.2(KCNQ <br> 2):c. $583 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser195Pro) | 796052620 | KCNQ2 | I] | [] | ['not provided'] |
| NM_001282227.1(CE (R1):c. $1232 \mathrm{~A}>\mathrm{G}$ (p.Tyr411Cys) | 376785840 | CECR1 | [] | ['GAAATCAYAGG ACAAGCCTTTGG'] | ['Polyarteritis nodosa'] |
| NM_170707.3(LMNA ):c. $644 \mathrm{~T}>\mathrm{C}$ | 61295588 | LMNA | [] | [] | ['Dilated cardiomyopathy $1 \mathrm{~A}^{\prime}$. |


| (p.Leu215Pro) |  |  |  |  | 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_005249.4(FOXG1 } \\ & \text { ):c. } 673 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp225Arg) } \\ & \hline \end{aligned}$ | 796052482 | FOXGI | [] | [] | ['not provided'] |
| NM_000806.5(GABR <br> A1):c. $788 \mathrm{~T}>\mathrm{C}$ <br> (p.Met263Thr) | 796052491 | GABRA1 | I] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000251.2(MSH2) } \\ & \text { c. } 1319 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu440Pro) } \end{aligned}$ | 587779084 | MSH2 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms'\| |
| $\begin{aligned} & \text { NM_003401.3(XRCC4 } \\ & \text { ):c.127T>C } \\ & \text { (p.Trp43Arg) } \end{aligned}$ | 587779351 | XRCC4 | [] | [] | ['Ateleiotic dwarfism'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c.1247A>G } \\ & \text { (p.Tyr416Cys) } \end{aligned}$ | 372395294 | SCN5A | ['CTCA <br> YAGGC <br> CATTG <br> CGACC <br> ACGG' | ['CTCAYAGGCCAT TGCGACCACGG'] | ['not provided'] |
| $\begin{array}{\|l} \hline \text { NM_000257.3(MYH7) } \\ \text { c. } 4835 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leul612Pro) } \\ \hline \end{array}$ | 587779392 | - | [] | [] | ['Myopathy, distal, 1'] |
| $\begin{aligned} & \hline \text { NM } 0000257.3(\mathrm{MYH} 7) \\ & \text { :c.4937T>C } \\ & \text { (p.Leul646Pro) } \\ & \hline \end{aligned}$ | 587779393 | - | [] | ['GAGCCYCCAGA GCTTGTTGAAGG'] | ['Myopathy, distal, 1'] |
| $\begin{aligned} & \hline \text { NM_000404.2(GLB1): } \\ & \text { c. } 922 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe308Leu) } \\ & \hline \end{aligned}$ | 587779404 | GLB1 | [] | [] | ['Infantile GM1 gangliosidosis'] |
| $\begin{aligned} & \hline \text { NM_012434.4(SLC17 } \\ & \text { A5):c.500T>C } \\ & \text { (p.Leu167Pro) } \\ & \hline \end{aligned}$ | 587779410 | SLC17A5 | [] | ['ATTGTACYCAGA GCACTAGAAGG'] | ['Sialic acid storage disease, severe infantile type'] |
| $\begin{aligned} & \text { NM } 000257.3(\mathrm{MYH} 7) \\ & \text { c. } .4442 \mathrm{TCC} \\ & \text { (p.Leul481Pro) } \\ & \hline \end{aligned}$ | 587779414 | - | [] | [] | ['Myopathy, distal, 1'] |
| $\begin{aligned} & \text { NM_000090.3(COL3A } \\ & \text { 1):c. } 2022+2 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Gly } \left.660 \_ \text {Lys } 674 \mathrm{del}\right) \\ & \hline \end{aligned}$ | 587779429 | COL3A1 | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| $\begin{aligned} & \text { NM_004453.3(ETFDH } \\ & \text { ):c. 1852T>C } \\ & \text { (p.Ter618GIn) } \\ & \hline \end{aligned}$ | 765742496 | ETFDH | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000090.3(COL3A } \\ & \text { 1):c. } 2337+2 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Gly } 762 \text { Lys } \end{aligned}$ | 587779513 | COL3A1 | [] | ['AGGYAACCCTTA ATACTACCTGG'] | ['Ehlers-Danlos syndrome, type 4'] |
| $\begin{aligned} & \text { NM_000310.3(PPT1): } \\ & \text { c.2T>C (p.Met1Thr) } \end{aligned}$ | 796052927 | PPT1 | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_020376.3(PNPLA } \\ & \text { 2):c. } 757+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 777539013 | PNPLA2 | [] | ['GAACGGYGCGC GGACCCGGGCGG' <br> 'AACGGYGCGCGG ACCCGGGCGGG'] | ['Neutral lipid storage disease with myopathy'] |
| $\begin{aligned} & \text { NM_000090.3(COL3A } \\ & \text { 1):c.3039+6T>C } \\ & \text { (p.Asp1013_Gly } 1014 \mathrm{i} \\ & \text { nsVSSSFYSTSQ) } \end{aligned}$ | 587779532 | COL3A1 | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| $\begin{aligned} & \text { NM_012452.2(TNFRS } \\ & \text { F13B):c.310T>C } \\ & \text { (p.Cys104Arg) } \end{aligned}$ | 34557412 | TNFRSF13B | [] | ['ACTTCYGTGAGA ACAAGCTCAGG'] | ['Immunoglobulin A deficiency $2^{\prime}$, <br> 'Common variable immunodeficiency $\left.2^{\prime}\right]$ |


| NM_000570.4(FCGR3 <br> B): $\mathrm{c} .244 \mathrm{~A}=$ <br> (p.Asn82=) | 147574249 | FCGR3B | I] | [] | [] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 001165963.1(SC <br> N1A):c. 1094T>C <br> (p.Phe365Ser) | 796052970 | SCN1A | [] | $\begin{array}{\|l\|} \hline \text { ['CAAGCTYTGATA } \\ \text { CCTTCAGTTGG', } \\ \text { 'AAGCTYTGATAC } \\ \text { CTTCAGTTGGG'\| } \\ \hline \end{array}$ | ['not provided'] |
| $\begin{aligned} & \mathrm{NC} \text { NC012920.1:m. } 7505 \\ & \mathrm{~T}>\overline{\mathrm{C}} \end{aligned}$ | 724159989 | MT-TS1 | [] | $\begin{array}{\|l} \hline \text { ['CCTCCAYGACTT } \\ \text { TTTCAAAAAGG'] } \\ \hline \end{array}$ | ['Deafness, nonsyndromic sensorineural, mitochondrial'] |
| $\begin{aligned} & \hline \text { NM_000663.4(ABAT) } \\ & \text { :c.1433T>C } \\ & \text { (p.Leu478Pro) } \end{aligned}$ | 724159991 | ABAT | [] | [] | ['Gammaaminobutyric acid transaminase deficiency'] |
| NM_153818.1(PEX10) <br> :c. $890 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu297Pro) | 724160000 | PEX10 | I] | [] | ['Peroxisome biogenesis disorder 6B'] |
| NM_153818.1(PEX10) :c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 724160002 | PEX10 | II | [] | ['Peroxisome biogenesis disorder 6B'\| |
| NM_000090.3(COL3A <br> 1):c. $4399 \mathrm{~T}>\mathrm{C}$ <br> (p.Ter1467Gln) | 587779618 | COL3A1 | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| NM_002485.4(NBN):c <br> $.511 \mathrm{~A}>\mathrm{G}$ (p.Ile171Val) | 61754966 | NBN | [] | [] | ['Microcephaly, normal intelligence and immunodeficiency', 'Aplastic anemia', 'Hereditary cancerpredisposing syndrome', <br> 'Leukemia, acute lymphoblastic, susceptibility to', 'not specified', 'not provided'] |
| NM 000090.3(COL3A <br> 1):c. $2553+2 \mathrm{~T}>\mathrm{C}$ <br> (p.Gly816 Ala851del) | 587779684 | COL3A1 | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| NM_021007.2(SCN2A <br> ):c. $4308+2 \mathrm{~T}>\mathrm{C}$ | 796053139 | SCN2A | ['CGAA ATGYA AGTCT AGTTA GAGG', 'GAAAT GYAAG <br> TCTAG <br> TTAGA GGG'] | ['CGAAATGYAAG 'GAAATGYAAGTC TAGTTAGAGGG'] | ['not provided'] |
| NM 021007.2(SCN2A ):c. $4718 \mathrm{~T}>\mathrm{C}$ (p.Leu1573Pro) | 796053152 | SCN2A | I] | [] | ['not provided'] |
| NM_001101.3(ACTB) c. $356 \mathrm{~T}>\mathrm{C}$ <br> (p.Met119Thr) | 587779773 | ACTB | ['GAGA <br> AGAYG <br> ACCCA <br> GGTGA <br> GTGG' | ['GAGAAGAYGAC CCAGGTGAGTGG' I | ['Baraitser-Winter syndrome 1'] |
| NM_021007.2(SCN2A ):c. $2306 \mathrm{~T}>\mathrm{C}$ | 796053191 | SCN2A | [] | [] | ['not provided'] |


| (p.Ile769Thr) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_014191.3(SCN8A <br> ):c. $4889 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu1630Pro) | 796053222 | SCN8A | I] | ['CGTCYGATCAAA GGCGCCAAAGG', 'GTCYGATCAAAG GCGCCAAAGGG' | ['not provided'] |
| NM_012415.3(RAD54 <br> B):c. $1778 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn593Ser) | 114216685 | RAD54B | [] | [] | ['Malignant lymphoma, nonHodgkin'] |
| NM 007215.3(POLG2 <br> ):c. $1105 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg369Gly) | 201936720 | POLG2 | I] | [] | ['Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 4', 'not specified'] |
| $\begin{aligned} & \hline \text { NM_004006.2(DMD): } \\ & \text { c.6982A>T. } \\ & \text { (p.Lys2328Ter) } \end{aligned}$ | 754896795 | DMD | ['GCTTT <br> TYTTC <br> AAGCT <br> GCCCA <br> AGG'] | ['GCTTTTYTTCAA GCTGCCCAAGG'] | ['Duchenne muscular dystrophy', 'Becker muscular dystrophy', 'Dilated cardiomyopathy 3B' |
| NM 001061.4(TBXA <br> S1):c. $248 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu83Pro) | 140005285 | TBXAS1 | ] | [] | ['not provided'] |
| NM_000540.2(RYR1): <br> c. $10817 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu3606Pro) | 118192127 | RYRI | [] | ['TACTACCYGGAC CAGGTGGGTGG', 'ACTACCYGGACC AGGTGGGTGGG', 'CTACCYGGACCA GGTGGGTGGGG'] | ['Central core disease', 'not provided'] |
| NM_000138.4(FBN1): c. $7754 \mathrm{~T}>\mathrm{C}$ (p.Ile2585Thr) | 727503054 | FBN1 | [] | [] | ['Thoracic aortic aneurysms and aortic dissections', 'Marfan syndrome' |
| NM_001128227.2(GN <br> E):c. $2228 \mathrm{~T}>\mathrm{C}$ <br> (p.Met743Thr) | 28937594 | GNE | [] | [] | ['Inclusion body myopathy $2^{\prime}$, 'Nonaka myopathy' |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c.14693T>C } \\ & \text { (p.Ile4898Thr) } \end{aligned}$ | 118192170 | RYR1 | [] | ['AGGCAYTGGGG ACGAGATCGAGG' ] | ['Malignant hyperthermia susceptibility type 1', 'Central core disease', 'not provided'] |
| NM_005247.2(FGF3): <br> c. $466 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser156Pro) | 121917703 | FGF3 | [] | $\begin{aligned} & \hline \text { ['GTACGTGYCTGT } \\ & \text { GAACGGCAAGG', } \\ & \text { 'TACGTGYCTGTG } \\ & \text { AACGGCAAGGG'] } \end{aligned}$ | ['Deafness with labyrinthine aplasia microtia and microdontia (LAMM)'] |
| NM_005247.2(FGF3): <br> c. $17 \mathrm{~T}>\mathrm{C}$ (p.Leu6Pro) | 121917706 | FGF3 | [] | [] | ['Deafness with labyrinthine aplasia microtia and microdontia (LAMM)'] |
| NM 005211.3(CSF1R ):c. $2450 \mathrm{~T}>\mathrm{C}$ (p.Leu817Pro) | 690016549 | CSF1R | I] | ['CCGCCYGCCTGT GAAGTGGATGG'] | \|'Hereditary diffuse leukoencephalopath y with spheroids'] |
| NM 005211.3(CSF1R <br> ):c. $2480 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile827Thr) | 690016550 | CSF1R | [] | [] | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| NM_005211.3(CSF1R | 690016552 | CSF1R | [] | ['GAATCCCYACCC | ['Hereditary diffuse |


| ):c.2566T>C <br> (p.Tyr856His) |  |  | TGGCATCCTGG'] | leukoencephalopath <br> y with spheroids'] |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_001098668.2(SFT <br> PA2):c.593T>C <br> (p.Phe198Ser) | 121917738 | SFTPA2 | [] | ['GGAGACTYCCG <br> CTACTCAGATGG', <br> 'GAGACTYCCGCT <br> ACTCAGATGGG'] | ['Idiopathic fibrosing <br> alveolitis, chronic <br> form'] |
| NM_005211.3(CSF1R <br> ):c.1957T>C <br> (p.Cys653Arg) | 690016559 | CSF1R | [] | ['AGCCYGTACCCA <br> TGGAGGTAAGG', <br> 'GCCYGTACCCAT <br> GGAGGTAAGGG'] | ['Hereditary diffuse <br> leukoencephalopath <br> y with spheroids'] |
| NM_005211.3(CSF1R <br> ):c.2717T>C <br> (p.Ile906Thr) | 690016560 | CSF1R | [] | ['GCAGAYCTGCTC <br> CTTCCTTCAGG'] | ['Hereditary diffuse <br> leukoencephalopath <br> y with spheroids'] |
| NM_000540.2(RYR1): <br> c.14378T>C <br> (p.Leu4793Pro) | 118192179 | RYR1 | [] |  | [] |


|  |  |  |  |  | 'not provided', 'Leber congenital amaurosis $18^{\prime}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000517.4(HBA2): } \\ & \text { c.89T }>\mathrm{C}(\text { p.Leu30Pro }) \end{aligned}$ | 41341344 | HBA2 | [] | [] | ['Hemoglobin H disease, nondeletional'] |
| NM_002181.3(IHH):c. $569 \overline{\mathrm{~T}}>\mathrm{C}$ (p.Val190Ala) | 121917857 | IHH | [] | [] | ['Acrocapitofemoral dysplasia'] |
| $\begin{aligned} & \text { NM_000322.4(PRPH2 } \\ & \text { ):c. } 736 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp246Arg) } \end{aligned}$ | 61755817 | PRPH2 | ['ACCT <br> GYGGG <br> TGCGT <br> GGCTG <br> CAGG', <br> 'CCTGY <br> GGGTG <br> CGTGG <br> CTGCA <br> GGG'] | ['ACCTGYGGGTGC GTGGCTGCAGG', 'CCTGYGGGTGCG TGGCTGCAGGG'] | ['Retinitis pigmentosa', 'not provided'] |
| $\begin{array}{\|l} \hline \text { NM_005413.3(SLX3):c } \\ .749 \mathrm{~T}>\mathrm{C} \\ \text { (p.Val250Ala) } \\ \hline \end{array}$ | 121917880 | SIX3 | II | [] | ['Holoprosencephaly 2'] |
| $\begin{aligned} & \text { NM_000124.3(ERCC6 } \\ & \text { ):c.2960T>C } \\ & \text { (p.Leu987Pro) } \end{aligned}$ | 121917905 | ERCC6 | ['TGCY <br> AAAAG <br> ACCCA <br> AAACA <br> AAGG'\| | ['TGCYAAAAGAC CCAAAACAAAGG' I | ['Cerebro-oculo-facio-skeletal syndrome'] |
| $\begin{aligned} & \text { NM_006920.4(SCN1A } \\ & \text { ):c. } 4729 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1577Arg) } \\ & \hline \end{aligned}$ | 121917919 | - | [] | [] | ['Severe myoclonic epilepsy in infancy', 'not provided'] |
| $\begin{aligned} & \text { NMM 006920.4(SCN1A } \\ & \text { ):c. } 5113 T>C \\ & \text { (p.Cys1705Arg) } \\ & \hline \end{aligned}$ | 121917926 | - | [] | [] | ['Severe myoclonic epilepsy in infancy', 'not provided'] |
| $\begin{aligned} & \text { NM_006920.4(SCN1A } \\ & \text { ):c.3577T>C } \\ & \text { (p.Trp1 193Arg) } \end{aligned}$ | 121917930 | - | ['AACA AYGGT GGAAC CTGAG AAGG'] | ['AACAAYGGTGG AACCTGAGAAGG' ] | ['Generalized epilepsy with febrile seizures plus, type 1', 'Generalized epilepsy with febrile seizures plus, type 2'] |
| $\begin{array}{\|l\|} \hline \text { NM } 006920.4(\mathrm{SCN} 1 \mathrm{~A} \\ \text { ):c.838T>C } \\ \text { (p.Trp280Arg) } \\ \hline \end{array}$ | 121917938 | SCN1A | I] | II | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_000478.4(ALPL): } \\ & \text { c.1306T>C } \\ & \text { (p.Tyr436His) } \\ & \hline \end{aligned}$ | 121918006 | ALPL | I] | ['TGGACYATGGTG AGACCTCCAGG' | ['Infantile hypophosphatasia'] |
| $\begin{aligned} & \hline \text { NM_000478.4(ALPL): } \\ & \text { c. } 979 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe327Leu) } \end{aligned}$ | 121918010 | ALPL | [] | ['CAAAGGGCYTCTT <br> CTTGCTGGTGG', <br> 'GGCYTCTTCTTGC <br> TGGTGGAAGG'] | ['Infantile hypophosphatasia'] |
| $\begin{array}{\|l} \hline \text { NM_000301.3(PLG):c. } \\ \text { 1771T>C } \\ \text { (p.Ser591Pro) } \\ \hline \end{array}$ | 121918029 | PLG | [] | [] | ['Dysplasminogenem ia'] |
| NM_000174.4(GP9):c. 20T>C (p.Leu7Pro) | 121918038 | GP9 | II | I] | ['Bernard-Soulier syndrome type $\left.\mathrm{C}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000371.3(TTR):c. } \\ & 224 \overline{\mathrm{~T}}>\mathrm{C}(\text { p.Leu75Pro) } \end{aligned}$ | 121918079 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis'] |
| $\begin{array}{\|l\|} \hline \text { NM_000371.3(TTR):c. } \\ 88 T>C \text { (p.Cys } 30 \mathrm{Arg}) \\ \hline \end{array}$ | 121918083 | TTR | [] | [] | ['Amyloidogenic transthyretin |


|  |  |  |  |  | amyloidosis', 'Cardiomyopathy'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000371.3(TTR):c. } \\ & 272 \mathrm{~T}>\mathrm{C} \text { (p.Val91Ala) } \end{aligned}$ | 121918084 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis'] |
| $\begin{aligned} & \hline \text { NM_000371.3(TTR):c. } \\ & 400 \overline{\mathrm{~T}}>\mathrm{C} \text { (p.Tyr134His) } \\ & \hline \end{aligned}$ | 121918088 | TTR | [] | ['CCCCYACTCCTA TTCCACCACGG'] | [] |
| $\begin{aligned} & \text { NM_012275.2(IL36R } \\ & \text { N):c. } 115+6 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 148755083 | IL36RN | [] | [] | ['Pustular psoriasis, generalized'] |
| NM_000371.3(TTR):c. 95T>C (p.Leu32Pro) | 121918094 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis'\| |
| $\begin{aligned} & \text { NM_000371.3(TTR):c. } \\ & 265 \bar{T}>C \text { (p.Tyr89His) } \end{aligned}$ | 121918100 | TTR | [] | [] | ['AMYLOIDOSIS, LEPTOMENINGEA L, <br> TRANSTHYRETIN -RELATED'] |
| $\begin{aligned} & \text { NM_001042465.1(PS } \\ & \text { AP):c.1055T>C } \\ & \text { (p.Leu352Pro) } \end{aligned}$ | 121918110 | PSAP | [] | ['GAAGCYGCCGA AGTCCCTGTCGG'] | ['Gaucher disease, atypical, due to saposin C deficiency'] |
| $\begin{aligned} & \text { NM_013251.3(TAC3): } \\ & \text { c. } 269 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met90Thr) } \\ & \hline \end{aligned}$ | 121918123 | TAC3 | [] | [] | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_199069.1(NDUF } \\ & \text { AF3):c.2T>C } \\ & \text { (p.Met1Thr) } \\ & \hline \end{aligned}$ | 121918136 | NDUFAF3 | [] | [] | ['Mitochondrial complex I deficiency'l |
| $\begin{aligned} & \hline \text { NM_003730.4(RNAS } \\ & \text { ET2):c.550T>C } \\ & \text { (p.Cys184Arg) } \\ & \hline \end{aligned}$ | 121918137 | RNASET2 | [] | ['CCAGYGCCTTCC <br> ACCAAGCCAGG'] | ['Leukoencephalopat hy, cystic, without megalencephaly'] |
| NM_203395.2(IYD):c. $347 \mathrm{~T}>\mathrm{C}$ (p.Ile116Thr) | 121918139 | IYD | [] | [] | ['Iodotyrosine deiodination defect'] |
| $\begin{array}{\|l} \hline \text { NM_001127628.1(FB } \\ \text { Pl):c.581T>C } \\ \text { (p.Phe194Ser) } \\ \hline \end{array}$ | 121918191 | FBP1 | [] | ['GGAGTYCATTTT GGTGGACAAGG'] | $\begin{aligned} & \text { ['Fructose- } \\ & \text { biphosphatase } \\ & \text { deficiency'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_015506.2(MMAC } \\ & \text { HC):c.347T>C } \\ & \text { (p.Leul16Pro) } \\ & \hline \end{aligned}$ | 121918240 | MMACHC | [] | [] | ['Methylmalonic acidemia with homocystinuria'] |
| $\begin{array}{\|l} \hline \text { NM_000255.3(MUT): } \\ \text { c.313T }>C \\ \text { (p.Trp105Arg) } \\ \hline \end{array}$ | 121918249 | MUT | [] | [] | ['METHYLMALON IC ACIDURIA, mut(0) TYPE'] |
| NM_022370.3(ROBO <br> 3):c. $14 \mathrm{~T}>\mathrm{C}$ <br> (p.LeusPro) | 121918275 | ROBO3 | [] | [] | ['Gaze palsy, familial horizontal, with progressive scoliosis'] |
| $\begin{aligned} & \text { NM_018400.3(SCN3B } \\ & \text { ):c.29T>C } \\ & \text { (p.Leu10Pro) } \end{aligned}$ | 121918282 | SCN3B | [] | [] | ['Brugada syndrome', 'Brugada syndrome $7^{\prime}$, 'Cardiac arrhythmia', 'Atrial fibrillation, familial, 16'] |
| $\begin{aligned} & \text { NM_004183.3(BEST1 } \\ & \text { ):c.122T }>\mathrm{C} \\ & \text { (p.Leu41Pro) } \end{aligned}$ | 121918288 | BEST1 | [] | [] | ['Bestrophinopathy, autosomal recessive', 'not provided'] |
| NM 020166.4(MCCC <br> 1): $\mathrm{c} .640-2 \mathrm{~A}>\mathrm{G}$ | 772395858 | MCCC1 | [] | [] | ['3 MethylcrotonylCoA carboxylase 1 deficiency'] |
| $\begin{aligned} & \text { NM_004817.3(TJP2):c } \\ & .143 \mathrm{~T}>\mathrm{C} \text { (p.Val48Ala) } \end{aligned}$ | 121918299 | TJP2 | [] | [] | ['Hypercholanemia, familial'] |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { NM_006946.2(SPTBN } \\
\text { 2):c.758T>C } \\
\text { (p.Leu253Pro) }\end{array} & 121918306 & \text { SPTBN2 } & \text { I] } & \begin{array}{l}\text { ['ACCAAGCYGCT } \\
\text { GGATCCCGAAGG', } \\
\text { 'AAGCYGCTGGAT } \\
\text { CCCGAAGGTGG', }\end{array} & \begin{array}{l}\text { ['Spinocerebellar } \\
\text { ataxia 5'] }\end{array}
$$ <br>
'AGCYGCTGGATC <br>

CCGAAGGTGGG']\end{array}\right]\)| ['Alagille syndrome |
| :--- |
| l'] |


| (p.Phe 198Ser) |  |  |  |  | syndrome', 'Genetic prion diseases'\| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_015665.5(AAAS) <br> :c. $787 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser263Pro) | 121918550 | AAAS | [] | [] | ['Glucocorticoid deficiency with achalasia'] |
| NM 003018.3(SFTPC <br> ):c. $581 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu194Pro) | 121918560 | SFTPC | [] | [] | ['Surfactant metabolism dysfunction, pulmonary, $2^{\prime}$ ] |
| NM 000322.4(PRPH2 ):c.554T>C <br> (p.Leu185Pro) | 121918563 | PRPH2 | [] | [] | $\begin{array}{\|l\|} \hline \text { ['Patterned } \\ \text { dystrophy of retinal } \\ \text { pigment epithelium', } \\ \text { 'Retinitis pigmentosa } \\ \text { 7, digenic', 'not } \\ \text { provided', 'Leber } \\ \text { congenital } \\ \text { amaurosis 18'] } \\ \hline \end{array}$ |
| NM 000322.4(PRPH2 ):c. $\overline{2 T}>\mathrm{C}$ (p.MetIThr) | 121918565 | PRPH2 | [] | [] | ['Macular dystrophy, vitelliform, adultonset', 'not provided'] |
| NM 001035.2(RYR2): c. $1298 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu433Pro) | 121918602 | RYR2 | I] | II | ['Arrhythmogenic right ventricular cardiomyopathy, type 2', <br> 'Catecholaminergic polymorphic ventricular tachycardia', 'Long QT syndrome'] |
| NM $001199138.1(\mathrm{NL}$ RC4):c.1022T>C (p.Val341Ala) | 587781260 | NLRC4 | [] | [] | ['Syndrome of entercolitis and autoinflmmation caused by mutation of NLRC4 (SCAN4)', <br> 'Autoinflammation with infantile enterocolitis'\| |
| NM_000702.3(ATP1A <br> 2):c. $857 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile286Thr) | 121918617 | ATP1A2 | [] | [] | ['Familial hemiplegic migraine type 2'] |
| NM_006920.4(SCN1A ):c. $4250 \mathrm{~T}>\mathrm{C}$ (p.Val1417Ala) | 121918627 | - | [] | [] | ['Generalized epilepsy with febrile seizures plus, type 1', 'Generalized epilepsy with febrile seizures plus, type 2'] |
| NM_006920.4(SCN1A ):c.434T>C (p.Met145Thr) | 121918631 | SCN1A | [] | [] | ['Generalized epilepsy with febrile seizures plus, type 2'] |
| NM 006920.4(SCN1A <br> ):c. $4462 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 1488Leu) | 121918632 | - | I] | [] | ['Familial hemiplegic migraine type 3'] |
| NM_003126.2(SPTA1 <br> ):c. $781 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser261Pro) | 121918636 | SPTA1 | [] | [] | ['Elliptocytosis 2'] |


| $\begin{aligned} & \text { NM_003126.2(SPTA1 } \\ & \text { ):c.620T>C } \\ & \text { (p.Leu207Pro) } \end{aligned}$ | 121918643 | SPTAI | [] | ['GTGGAGCYGGT AGCTAAAGAAGG' <br> 'TGGAGCYGGTAG CTAAAGAAGGG'] | ['Hereditary pyropoikilocytosis'. 'Elliptocytosis 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 001024858.2(SPT <br> B):c. $604 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp202Arg) | 121918646 | SPTB | [] | $\begin{aligned} & \text { ['CTCCAGCYGGA } \\ & \text { AGGATGGCTTGG'] } \end{aligned}$ | ['Spherocytosis type 2'] |
| NM_001024858.2(SPT <br> B):c. $6055 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser2019Pro) | 121918648 | SPTB | [] | ['ATGCCYCTGTGG CTGAGGCGTGG'] | [ |
| NM_001128177.1(TH RB): c. $929 \mathrm{~T}>\mathrm{C}$ (p.Met310Thr) | 121918699 | THRB | [] | [] | [] |
| NM_001128177.1(TH RB):c.1373T>C (p.Val458Ala) | 121918704 | THRB | [] | [] | ['Thyroid hormone resistance, generalized, autosomal recessive'] |
| $\begin{array}{\|l} \hline \text { NM_000421.3(KRT10 } \\ \text { ):c.482T>C } \\ \text { (p.Leul61Ser) } \end{array}$ | 60118264 | - | II | [] | ['Bullous ichthyosiform erythroderma', 'not provided'] |
| NM_006920.4(SCN1A ):c. $269 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe90Ser) | 121918733 | SCN1A |  <br> ['ACTTY <br> TATAG <br> TATTG <br> AATAA <br> AGG', <br> 'CTTYT <br> ATAGT <br> ATTGA <br> ATAAA <br> GGG' | ['ACTTYTATAGTA TTGAATAAAGG', 'CTTYTATAGGTATT GAATAAAGGG'] | ['Severe myoclonic epilepsy in infancy'] |
| NM_006920.4(SCN1A <br> ):c. $272 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile91Thr) | 121918734 | SCN1A | ['ACTTT <br> TAYAG <br> TATTG <br> AATAA <br> 'CTTTT <br> AYAGT <br> ATTGA <br> ATAAA <br> GGG' | $\square$ | ['Severe myoclonic epilepsy in infancy'] |
| NM_006920.4(SCN1A ):c. $3827 \mathrm{~T}>\mathrm{C}$ (p.Leu1276Pro) | 121918740 | - | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| NM_000543.4(SMPD1 <br> ):c. $475 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys159Arg) | 727504166 | SMPDI | [] | ['TGAGGCCYGTG GCCTGCTCCTGG' 'GAGGCCYGTGGC | ['Niemann-Pick disease, type A', 'Niemann-Pick disease, type $\left.\mathrm{B}^{\prime}\right]$ |
| NM 006920.4(SCN1A ):c. $568 \mathrm{~T}>\mathrm{C}$ (p.Trp190Arg) | 121918773 | SCN1A | I] | [] | ['Severe myoclonic epilepsy in infancy'] |
| NM_006920.4(SCN1A ):c. $5522 \mathrm{~T}>\mathrm{C}$ (p.Met1841Thr) | 121918783 | - | [] | [] | ['Severe myoclonic epilepsy in infancy', 'Generalized epilepsy with febrile seizures plus, type 1'I |


| $\begin{aligned} & \text { NM_002538.3(OCLN) } \\ & \text { :c.656T>C } \\ & \text { (p.Phe219Ser) } \end{aligned}$ | 267606926 | OCLN | [] | [] | ['Band-like calcification with simplified gyration and polymicrogyria' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000434.3(NEU1): <br> c. $1088 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu363Pro) | 193922915 | NEU1 | [] | ['CAGCYATGGCC AGGCCCCAGTGG' 1 | ['Sialidosis, type II'] |
| NM_198578.3(LRRK2 <br> ):c. $6059 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile2020Thr) | 35870237 | LRRK2 | [] | [] | ['Parkinson disease <br> 8, autosomal dominant'] |
| $\begin{aligned} & \text { NM_000501.3(ELN):c } \\ & .889+2 \mathrm{C}>\mathrm{C} \end{aligned}$ | 727504419 | ELN | [] | ['CAGGYAACATCT GTCCCAGCAGG' 'AGGYAACATCTG TCCCAGCAGGG' | ['Supravalvar aortic stenosis'] |
| NM_001085.4(SERPI <br> NA3): $c .233 T>C$ <br> (p.Leu78Pro) | 1800463 | SERPINA3 | [] | [] | [] |
| NM 000238.3(KCNH <br> 2):c. $1736 \mathrm{~T}>\mathrm{C}$ <br> (p.Met579Thr) | 199473425 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_001211.5(BUB1B ):c.3035T>C (p.Leul012Pro) | 28989185 | - | [] | [] | ['Mosaic variegated aneuploidy <br> syndrome', <br> 'Premature <br> chromatid separation trait'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c.26-2A>G } \end{aligned}$ | 376395543 | MYBPC3 | [] | ['GAGACYGAAGG GCCAGGTGGAGG' ] | ['Primary familial hypertrophic cardiomyopathy', 'Familial hypertrophic cardiomyopathy $4^{\prime}$, 'Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000051.3(ATM): } \\ & \text { c. } 4776+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587781927 | ATM | [] | [] | ['Ataxiatelangiectasia syndrome', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_006412.3(AGPA } \\ & \text { T2):c. } 589-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 116807569 | AGPAT2 | [] | II | ['Congenital generalized lipodystrophy type 1'] |
| NM 000545.6(HNF1A <br> ):c. $1720 \mathrm{G}>\mathrm{A}$ <br> (p.Gly574Ser) | 1169305 | HNF1A | I] | ['GATGCYGGCAG GGTCCTGGCTGG', 'ATGCYGGCAGGG TCCTGGCTGGG' 'TGCYGGCAGGGT CCTGGCTGGGG' | ['Maturity-onset diabetes of the young, type $\left.3^{\prime}\right]$ |
| NM 024514.4(CYP2R <br> 1):c. $296 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu99Pro) | 61495246 | CYP2R1 | [] | [] | ['Vitamin d hydroxylationdeficient rickets, type 1b'] |
| NM 012213.2(MLYC <br> D):c. $119 \mathrm{~T}>\mathrm{C}$ <br> (p.Met40Thr) | 28937908 | MLYCD | [] | [] | ['Deficiency of malonyl-CoA decarboxylase'] |
| $\begin{aligned} & \text { NM_001101.3(ACTB) } \\ & \text { :c.224T>C } \\ & \text { (p.Ile75Thr) } \end{aligned}$ | 587779771 | ACTB | [] | [] | ['Baraitser-Winter syndrome 1'] |


| NM 021007.2(SCN2A ):c. $1271 \mathrm{~T}>\mathrm{C}$ (p.Val424Ala) | 796053181 | SCN2A | ['TGTG GYGGC CATGG CCTAT GAGG'] | ['TGTGGYGGCCAT | ['not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_002880.3(RAF1): } \\ & \text { c.769T>C } \\ & \text { (p.Ser257Pro) } \\ & \hline \end{aligned}$ | 727505017 | RAF1 | [] | [] | ['Rasopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000527.4(LDLR): } \\ & \text { c.1468T>C } \\ & \text { (p.Trp490Arg) } \end{aligned}$ | 730880130 | LDLR | [] | ['CTACYGGACCG ACTCTGTCCTGG', 'TACYGGACCGAC TCTGTCCTGGG | ['Familial hypercholesterolemi $\left.a^{\prime}\right]$ |
| NM 170707.3(LMNA ):c. $710 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe237Ser) | 730880132 | LMNA | ['TGAG <br> TYTGA <br> GAGCC <br> GGCTG <br> GCGG'] | ['TGAGTYTGAGA GCCGGCTGGCGG' ] | ['Primary dilated cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000080.3(CHRN } \\ & \text { E):c.223T>C } \\ & \text { (p.Trp75Arg) } \end{aligned}$ | 193919341 | - | [] | [] | ['MYASTHENIC SYNDROME, CONGENITAL, 4B, FAST-CHANNEL' |
| NM 005211.3(CSF1R ):c. $2297 \mathrm{~T}>\mathrm{C}$ (p.Met766Thr) | 281860270 | CSF1R | I] | I] | ['Hereditary diffuse leukoencephalopath y with spheroids'\| |
| NM 005211.3(CSF1R ):c. $2381 \mathrm{~T}>\mathrm{C}$ (p.Ile794Thr) | 281860274 | CSF1R | ['CAAG AYTGG GGACT TCGGG CTGG'] | ['CAAGAYTGGGG ACTTCGGGCTGG'] | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| NM 005211.3(CSF1R ):c. $2546 \mathrm{~T}>\mathrm{C}$ (p.Phe849Ser) | 281860277 | CSF1R | [] | [] | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| NM 005211.3(CSF1R ):c. $2624 \mathrm{~T}>\mathrm{C}$ (p.Met875Thr) | 281860279 | CSFIR | [] | [] | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| NM 018713.2(SLC30 A10):c. $266 \mathrm{~T}>\mathrm{C}$ (p.Leu89Pro) | 281860284 | SLC30A10 | I] | II | ['Hypermanganesem ia with dystonia, polycythemia and cirrhosis'\| |
| NM_018713.2(SLC30 <br> A10):c. $500 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 167Ser) | 281860286 | SLC30A10 | [] | ['GGCGCTTYCGGG GGGCCTCAGGG'] | ['Hypermanganesem ia with dystonia, polycythemia and cirrhosis'] |
| NM_018713.2(SLC30 A10):c. $1046 \mathrm{~T}>\mathrm{C}$ (p.Leu349Pro) | 281860291 | SLC30A10 | [] | [] | ['Hypermanganesem ia with dystonia, polycythemia and cirrhosis'] |
| $\begin{aligned} & \hline \text { NM_016218.2(POLK): } \\ & \text { c.2287T>A } \\ & \text { (p.Tyr763Asn) } \\ & \hline \end{aligned}$ | 772307321 | POLK | [] | [] | ['Malignant tumor of prostate'] |
| NM 000570.4(FCGR3 <br> B):c. $194 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn65Ser) | 448740 | FCGR3B | I] | [] | I] |
| $\begin{aligned} & \text { NM_030653.3(DDX11 } \\ & \text { ):c.2271+2T>C } \end{aligned}$ | 730880279 | DDX11 | ['TCCA GGYGC GGGCG TCATG CTGG'] | ['TCCAGGYGCGG GCGTCATGCTGG', 'CCAGGYGCGGGC GTCATGCTGGG'] | ['Warsaw breakage syndrome'] |
| NM_145693.2(LPIN1) | 730880306 | LPIN1 | [] | ['AAGGYACCGCG | ['Myoglobinuria, |


| c. $1441+2 \mathrm{~T}>\mathrm{C}$ |  |  |  | GGCCTCGCGCGG', 'AGGYACCGCGGG CCTCGCGCGGG' | acute recurrent, autosomal recessive' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 002546.3(TNFRS F11B):c.226A>C (p.Thr76Pro) | 200071478 | TNFRSF11B | [] | [] | ['Hyperphosphatase mia with bone disease'] |
| NM_000166.5(GJB1): <br> c. $145 \mathrm{~T}>\mathrm{C}$ (p.Ser49Pro) | 116840817 | GJB1 | [] | [] | ['X-linked hereditary motor and sensory neuropathy'] |
| NM_005159.4(ACTC1 <br> ):c.755T>C <br> (p.Ile252Thr) | 730880398 | - | [] | [] | ['Cardiomyopathy'] |
| NM 020166.4(MCCC <br> 1):c.205A>T <br> (p.Lys69Ter) | 147741073 | MCCCl | [] | [] | ['3 MethylcrotonylCoA carboxylase 1 deficiency'] |
| NM_000454.4(SOD1): <br> c. $338 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile113Thr) | 74315452 | SOD1 | [] | ['TTGCAYCATTGG CCGCACACTGG'] | ['Amyotrophic lateral sclerosis type 1'] |
| NM_000169.2(GLA):c $41 \mathrm{~T}>\mathrm{C}$ (p.Leu14Pro) | 730880455 | - | [] | ['CGCGCYTGCGCT TCGCTTCCTGG' | ['not provided'] |
| NM 152743.3(BRAT1 <br> ):c. $176 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu59Pro) | 727505363 | BRATI | [] | [] | ['Rigidity and multifocal seizure syndrome, lethal neonatal'] |
| $\begin{aligned} & \text { NM_005633.3(SOS1): } \\ & \text { c.2104T>C } \\ & \text { (p.Tyr702His) } \\ & \hline \end{aligned}$ | 727505381 | SOS1 | [] | II | ['Noonan syndrome', 'Rasopathy'] |
| m. 1095T>C | 267606618 | MT-RNR1 | [] | [] | ['Aminoglycosideinduced deafness', 'Auditory neuropathy', 'Deafness, nonsyndromic sensorineural, mitochondrial', 'not specified'] |
| m. $1291 \mathrm{~T}>\mathrm{C}$ | 267606620 | MT-RNR1 | [] | [] | ['Deafness, nonsyndromic sensorineural, mitochondrial'] |
| NM_020247.4(ADCK <br> 3):c. $1398+2 \mathrm{~T}>\mathrm{C}$ | 606231138 | ADCK3 | [] | [] | ['Coenzyme Q10 deficiency, primary, $\left.4^{\prime}\right]$ |
| NM 000256.3(MYBP <br> C3):c. $467 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu156Pro) | 730880616 | MYBPC3 | [] | [] | ['Cardiomyopathy'] |
| NM_022458.3(LMBR <br> 1):c. $423+4842 \mathrm{~T}>\mathrm{C}$ | 606231149 | LMBR1 | [] | I] | ['Triphalangeal thumb', 'Preaxial polydactyly $2^{\prime}$ ] |
| NM_022458.3(LMBR <br> 1):c. $423+4808 \mathrm{~T}>\mathrm{C}$ | 606231152 | LMBR1 | [] | [] | [Triphalangeal thumb', 'Preaxial polydactyly $2^{\prime}$ '] |
| $\begin{aligned} & \text { NM_021102.3(SPINT } \\ & \text { 2):c. } 337+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 606231155 | SPINT2 | [] | [] | ['Diarrhea 3, secretory sodium, congenital, syndromic'] |
| $\begin{aligned} & \text { NM_001004127.2(AL } \\ & \text { G11):c.257T>C } \\ & \text { (p.Leu86Ser) } \\ & \hline \end{aligned}$ | 267606652 | ALGl1 | [] | [] | ['Congenital disorder of glycosylation type 1P' |


| $\begin{aligned} & \text { NM_054027.4(ANKH) } \\ & \text { :c.1015T>C } \\ & \text { (p.Cys339Arg) } \\ & \hline \end{aligned}$ | 267606656 | ANKH | [] | ['AGCTCYGTTTCG TGATGTTTTGG'] | ['Craniometaphyseal dysplasia, autosomal dominant'\| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_054027.4(ANKH) } \\ & \text { :c.1172T>C } \\ & \text { (p.Leu391Pro) } \\ & \hline \end{aligned}$ | 267606658 | - | [] | [] | ['Craniometaphyseal dysplasia, autosomal dominant'] |
| NM_175073.2(APTX): <br> c. $668 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu223Pro) | 267606665 | APTX | [] | [] | ['Adult onset ataxia with oculomotor apraxia'] |
| NM 004183.3(BEST1 ): с. $704 \mathrm{~T}>\mathrm{C}$ (p.Val235Ala) | 267606679 | BESTI | ['CACT GGYGT <br> ATACA <br> CAGGT <br> GAGG'] | ['CACTGGYGTATA CACAGGTGAGG'] | ['Vitreoretinochoroid opathy dominant'] |
| NM_004183.3(BEST1 <br> ):c. $614 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile205Thr) | 267606680 | BESTI | [] | [] | ['Retinitis pigmentosa $5^{\prime}$ ] |
| $\begin{aligned} & \text { NM_033409.3(SLC52 } \\ & \text { A3):c.670T>C } \\ & \text { (p.Phe224Leu) } \\ & \hline \end{aligned}$ | 267606685 | SLC52A3 | [] | [] | ['Brown-Vialetto- <br> Van laere <br> syndrome'\| |
| NM_033409.3(SLC52 A3):c. $1238 T>C$ <br> (p.Val413Ala) | 267606687 | SLC52A3 | [] | ['AGTTACGYCAA GGTGATGCTGGG'] | ['Brown-Vialetto- <br> Van laere <br> syndrome'] |
| NM 004056.4(CA8):c. $298 \overline{\mathrm{~T}}>\mathrm{C}$ (p.Ser100Pro) | 267606695 | CA8 | [] | [] | ['Cerebellar ataxia, mental retardation, and dysequilibrium syndrome ${ }^{3}$ '] |
| NM 000256.3(MYBP <br> C3): $:$. $3713 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu1238Pro) | 730880702 | MYBPC3 | II | II | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_001928.2(CFD):c } \\ & .640 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys214Arg) } \end{aligned}$ | 267606721 | CFD | I] |  | ['Complement factor d deficiency'] |
| $\begin{aligned} & \text { NM_005740.2(DNAL } \\ & \text { 4):c. } 153+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 606231254 | DNAL4 | $\begin{aligned} & \hline \text { ['CGAG } \\ & \text { GYATT } \\ & \text { GCCAG } \\ & \text { CAGTG } \\ & \text { CAGG'' } \end{aligned}$ | ['CGAGGYATTGCC AGCAGTGCAGG'] | ['Mirror movements 3'] |
| NM_020975.4(RET):c. $2753 \mathrm{~T}>\mathrm{C}$ <br> (p.Met918Thr) | 74799832 | RET | [] | [] | ['Multiple endocrine neoplasia, type 2a', 'Multiple endocrine neoplasia, type 2 b ', 'Multiple endocrine neoplasia, type $2^{\prime}$, 'Pheochromocytoma' , 'not provided'] |
| $\begin{aligned} & \text { NM_001849.3(COL6A } \\ & \text { 2):c.2329T>C } \\ & \text { (p.Cys777Arg) } \\ & \hline \end{aligned}$ | 267606747 | COL6A2 | [] | ['CGCCYGCGACA AGCCACAGCAGG' ] | ['Ullrich congenital muscular dystrophy'] |
| NM 001006657.1(WD R35):c. $781 \mathrm{~T}>\mathrm{C}$ (p.Trp261Arg) | 431905505 | WDR35 | I] | I] | ['Short rib polydactyly syndrome $5^{\prime}$ ' |
| $\begin{aligned} & \text { NM_003764.3(STX11) } \\ & \text { :c.173T>C } \\ & \text { (p.Leu58Pro) } \end{aligned}$ | 431905512 | STX11 | ['TGCY GGTGG CCGAC GTGAA GCGG' | ['TGCYGGTGGCCG ACGTGAAGCGG'] | ['Hemophagocytic lymphohistiocytosis, familial, 4'] |
| NM_001044.4(SLC6A | 431905515 | SLC6A3 | [] | ['CTGCACCYCCAC | ['Infantile |


| 3):c.671T>C (p.Leu224Pro) |  |  |  | CAGAGCCATGG'] | Parkinsonismdystonia'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .764 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu255Ser) } \\ & \hline \end{aligned}$ | 62642930 | PAH | [] | [] | ['Phenylketonuria', 'not provided'] |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .932 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu311Pro) } \end{aligned}$ | 62642936 | PAH | [] | [] | ['Phenylketonuria', 'not provided'] |
| NM_000118.3(ENG):c .2T>C (p.Met1Thr) | 267606783 | ENG | [] | [] | ['Osler hemorrhagic telangiectasia syndrome'] |
| NM_000129.3(F13A1) :c. $728 \mathrm{~T}>\mathrm{C}$ <br> (p.Met243Thr) | 267606788 | F13A1 | ['TGTG <br> AYGGA <br> CAGAG <br> CACAA <br> ATGG' | ['TGTGAYGGACA GAGCACAAATGG' 1 | ['Factor xiii, a subunit, deficiency of'] |
| NM 000257.3(MYH7) <br> c. $1952 \mathrm{~A}>\mathrm{G}$ <br> (p.His651Arg) | 606231328 | MYH7 | [] | [] | ['Familial cardiomyopathy'] |
| NM_014053.3(FLVCR <br> 1):c. $574 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys192Arg) | 267606821 | FLVCR1 | [] | [] | ['Posterior column ataxia with retinitis pigmentosa'] |
| NM_005249.4(FOXG1 <br> ):c. $643 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe215Leu) | 267606828 | FOXGI | [] | [] | ['Rett syndrome, congenital variant'] |
| NM_015474.3(SAMH <br> D1):c. $1153 \mathrm{~A}>\mathrm{G}$ <br> (p.Met385Val) | 515726140 | SAMHD1 | I] | II | ['Aicardi Goutieres syndrome 5'\| |
| NM_015474.3(SAMH D1):c.1411-2A>G | 515726141 | SAMHD1 | [] | [] | ['Aicardi Goutieres syndrome 5'] |
| NM 000180.3 (GUCY 2D):c. $2846 \mathrm{~T}>\mathrm{C}$ (p.Ile949Thr) | 267606857 | GUCY2D | [] | ['AGAGAYCGCCA ACATGTCACTGG'] | ['Cone-rod dystrophy 6'] |
| $\begin{aligned} & \text { NM_022489.3(INF2):c } \\ & .556 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser186Pro) } \\ & \hline \end{aligned}$ | 267606877 | INF2 | [] | [] | ['Focal segmental glomerulosclerosis $\left.5^{\prime}\right]$ |
| NM_000257.3(MYH7) <br> :c. $1048 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr350His) | 730880863 | MYH7 | I] | II | ['Cardiomyopathy'] |
| NM_022489.3(INF2):c <br> $.125 \mathrm{~T}>\mathrm{C}$ (p.Leu42Pro) | 267606880 | INF2 | [] | ['GCTGCYCCAGAT GCCCTCTGTGG'] | ['Focal segmental glomerulosclerosis $\left.5^{\prime}\right]$ |
| m. $4681 \mathrm{~T}>\mathrm{C}$ | 267606889 | MT-ND2 | [] | [] | ['Leigh disease', 'Leigh syndrome due to mitochondrial complex I deficiency'] |
| m. $10191 \mathrm{~T}>\mathrm{C}$ | 267606890 | MT-ND3 | [] | [] | ['Leigh disease', 'Mitochondrial complex I deficiency'] |
| m. $10563 \mathrm{~T}>\mathrm{C}$ | 267606892 | MT-ND4L | I] | I] | ['Familial colorectal cancer'\| |
| m. $12706 \mathrm{~T}>\mathrm{C}$ | 267606893 | MT-ND5 | [] | [] | ['Leigh disease', 'Leigh syndrome due to mitochondrial complex I deficiency'] |
| NM_015713.4(RRM2 | 515726190 | RRM2B | [] | [] | ['RRM2B-related |


| B):c.556A>G <br> (p.Arg186Gly) |  |  |  | mitochondrial <br> disease'] |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_015713.4(RRM2 <br> B):c.581A>G <br> (p.Glu194Gly) | 515726191 | RRM2B | [] | ['AACTCCTYCTAC <br> AGCAGCAAAGG'] | ['RRM2B-related <br> mitochondrial <br> disease'] |
| NM_000315.2(PTH):c. <br> 52T>C (p.Cys18Arg) | 104894271 | PTH | ['AATT <br> YGTTT <br> TCTTA <br> CAAAA <br> TCGG'] | ['AATTYGTTTTCT <br> TACAAAATCGG'] | ['Hypoparathyroidis <br> m familial isolated'] |
| NM_001136271.2(NK <br> X2-6):c.451T>C <br> (p.Phe151Leu) | 267606914 | NKX2-6 | [] | [] |  |
| NM_004646.3(NPHS1 <br> ):c.793T>C <br> (p.Cys265Arg) | 267606917 | NPHS1 | [] | ['GCTGCCGYGCGT <br> GGCCCGAGGGG', | ['Finnish congenital <br> nephrotic <br> syndrome'] |
| NM_000406.2(GNRH <br> R):c.94A>G <br> (p.Thr32Ala) | 515726219 | GNRHR | [] | [] | ['Persistent truncus <br> arteriosus'] <br> GCCCGAGGGGG'] |
| NM_152296.4(ATP1A <br> 3):c.2270T>C <br> (p.Leu757Pro) | 606231436 | ATP1A3 | [] | [] | ['Hypogonadotropic <br> hypogonadism'] |
| NM_000513.2(OPN1 <br> MW):c.529T>C <br> (p.Trp177Arg) | 267606927 | OPN1MW | [] | [] | ['Alternating <br> hemiplegia of <br> childhood 2'] |
| NM_152296.4(ATP1A <br> 3):c.1144T>C <br> (p.Trp382Arg) | 606231448 | ATP1A3 | [] | [] | [] |


| (p.Leu60Pro) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 198965.1(PTHLH ):c. $131 \mathrm{~T}>\mathrm{C}$ (p.Leu44Pro) | 267606986 | PTHLH | [] | [] | ['Brachydactyly type E2'] |
| NM_004990.3(MARS) <br> c. $1108 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe370Leu) | 140467171 | MARS | I] | II | ['Interstitial lung and liver disease'] |
| NM 173560.3(RFX6): <br> c. $649 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser217Pro) | 267607012 | RFX6 | [] | [] | ['Mitchell-Riley syndrome'] |
| NM_002942.4(ROBO <br> 2):c. $2834 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile945Thr) | 267607014 | ROBO2 | ['GAGA YTGGA AATTT TGGCC GTGG'] | ['GAGAYTGGAAA TTTTGGCCGTGG'] | ['Vesicoureteral reflux 2'] |
| NM_178857.5(RP1L1) <br> :c. $2 \overline{8} 78 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp960Arg) | 267607018 | RP1L1 | [] | [] | ['Occult macular dystrophy'] |
| $\begin{aligned} & \text { NM_002880.3(RAF1): } \\ & \text { c.1423T>C } \\ & \text { (p.Phe475Leu) } \\ & \hline \end{aligned}$ | 730881003 | RAF1 | [] | [] | ['Rasopathy'] |
| NM 015272.3(RPGRI P1L):c.1975T>C (p.Ser659Pro) | 267607020 | RPGRIP1L | [] | [] | ['Joubert syndrome 7', 'COACH syndrome'] |
| NM 015559.2(SETBP <br> 1):c. $2612 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile871Thr) | 267607038 | SETBP1 | [] | [] | ['Schinzel-Giedion syndrome'] |
| NM_000433.3(NCF2): <br> c. $481 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys161Glu) | 137878529 | NCF2 | [] | [] | ['Chronic granulomatous disease, autosomal recessive cytochrome bpositive, type 2'] |
| NM 001041.3(SI):c. 10 22T>C (p.Leu341Pro) | 267607049 | SI | [] | [] | ['Sucrase-isomaltase deficiency'] |
| NM 005633.3(SOS1): <br> c. $1294 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp432Arg) | 267607080 | SOS1 | ['GGTY <br> GGGAG <br> GGAAA <br> AGACA <br> TTGG'] <br> II | ['GGTYGGGAGGG AAAAGACATTGG ${ }^{\prime}$ ] | ['Noonan syndrome <br> 4', 'Rasopathy'] |
| $\begin{aligned} & \text { NM_018136.4(ASPM) } \\ & \text { :c. } 2419+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587783225 | ASPM | [] | [] | ['Primary autosomal recessive microcephaly $5^{\prime}$ ] |
| $\begin{aligned} & \text { NM_001199107.1(TB } \\ & \text { C1D24):c.751T>C } \\ & \text { (p.Phe251Leu) } \end{aligned}$ | 267607104 | TBC1D24 | [] | ['CAAGTTCYTCCA 'TTCYTCCACAAG GTGAGGGCCGG' | ['Myoclonic epilepsy, familial infantile'] |
| NM_153704.5(TMEM 67):c.1769T>C (p.Phe590Ser) | 267607115 | TMEM67 | [] | [] | ['Joubert syndrome 6', 'COACH syndrome'। |
| NM 153704.5(TMEM <br> 67):c. $2498 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile833Thr) | 267607119 | TMEM67 | [] | [] | ['Joubert syndrome 6', 'COACH syndrome'] |
| $\begin{aligned} & \text { NM_133378.4(TTN):c } \\ & \text { 100163T>C } \\ & \text { (p.Leu33388Pro) } \\ & \hline \end{aligned}$ | 267607156 | - | [] | [] | ['Distal myopathy Markesbery-Griggs type'] |
| m. 12811T>C | 199974018 | MT-ND5 | [] | [] | ['Leber optic atrophy'] |
| NM_144631.5(ZNF51 | 267607182 | ZNF513 | [] | ['TGGGCGCYGCAT | ['Retinitis |


| $\begin{aligned} & \text { 3):c.1015T>C } \\ & \text { (p.Cys339Arg) } \end{aligned}$ |  |  |  | GCGAGGAGAGG', 'CGCYGCATGCGA GGAGAGGCTGG'] | pigmentosa 58'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_004737.4(LARG } \\ & \text { E):c. } 1483 \mathrm{~T}>\mathrm{C} \\ & \text { (p. } \operatorname{Tr} 495 \mathrm{Arg} \text { ) } \end{aligned}$ | 267607209 | LARGE | [] | [] | ['Congenital muscular dystrophydystroglycanopathy with brain and eye anomalies, type A $6^{\prime}$ ' |
| $\begin{aligned} & \text { NM_000229.1(LCAT): } \\ & \text { c.508T>C } \\ & \text { (p.Trp170Arg) } \end{aligned}$ | 267607211 | LCAT | [] | ['TATGACYGGCG GCTGGAGCCCGG' ] | ['Norum disease'] |
| NM_016269.4(LEF1): <br> c.181T>C (p.Ser61Pro) | 267607215 | - | [] | ['GAACGAGYCTG AAATCATCCCGG'] | ['Sebaceous tumors, somatic'] |
| $\begin{aligned} & \text { NM_139248.2(LIPH): } \\ & \text { c. } 322 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp108Arg) } \end{aligned}$ | 267607219 | LIPH | [] | [] | ['Woolly hair, autosomal recessive 2 , with or without hypotrichosis'] |
| $\begin{aligned} & \text { NM_004268.4(MED17 } \\ & \text { ):c. } 1112 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu371Pro) } \end{aligned}$ | 267607232 | MED17 | [] | [] | ['Microcephaly, postnatal progressive, with seizures and brain atrophy'\| |
| $\begin{aligned} & \text { NM_000530.6(MPZ):c } \\ & .341 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{Ile} 114 \mathrm{Thr}) \\ & \hline \end{aligned}$ | 267607241 | MPZ | [] | [] | [] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & \text { :c. } 4840 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1614Arg) } \\ & \hline \end{aligned}$ | 122445094 | ATRX | [] | [] | ['ATR-X syndrome'] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & \text { :c. } 6250 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr2084His) } \\ & \hline \end{aligned}$ | 122445097 | ATRX | [] | [] | ['ATR-X syndrome'] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & : c .1226 T>C \\ & (\text { p.Leu } 409 \text { Ser) } \end{aligned}$ | 122445109 | ATRX | [] | [] | [] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & \text { c. } 6149 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile2050Thr) } \end{aligned}$ | 122445110 | ATRX | [] | [] | ['Multiple congenital anomalies'] |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .272 \mathrm{~T}>\mathrm{C} \text { (p.Leu91Pro) } \end{aligned}$ | 587783536 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .2 \mathrm{C}>\mathrm{C}(\text { p.Met1Thr) } \end{aligned}$ | 587783539 | DCX | ['CAAA <br> ATAYG <br> GAACT <br> TGATT <br> TTGG'] | ['CAAAATAYGGA ACTTGATTTTGG'] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .412 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr138His) } \\ & \hline \end{aligned}$ | 587783551 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_000212.2(ITGB3) } \\ & \text { :c. } 2231 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu744Pro) } \end{aligned}$ | 398122374 | - | [] | [] | $\begin{aligned} & \hline \text { ['Platelet-type } \\ & \text { bleeding disorder } \\ & 16 \text { '] } \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .641 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{Ile} 214 \mathrm{Thr}) \end{aligned}$ | 587783574 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .683 \mathrm{~T}>\mathrm{C} \\ & (\mathrm{p} . \mathrm{Leu} 228 \mathrm{Pro}) \end{aligned}$ | 587783580 | DCX | [] | ['AAAAAACYCTA CACTCTGGATGG'] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_001005360.2(DN } \\ & \text { M2):c. } 1862 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu621Pro) } \end{aligned}$ | 587783597 | DNM2 | [] | [] | ['Myopathy, centronuclear'] |
| $\begin{aligned} & \text { NM_006579.2(EBP):c. } \\ & 310 \overline{\mathrm{~T}}>\mathrm{C}(\text { p.Tyr104His }) \end{aligned}$ | 587783609 | EBP | [] | [] | ['Chondrodysplasia punctata 2 X -linked |


|  |  |  |  |  | dominant'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_004004.5(GJB2): } \\ & \text { c.107T }>C \\ & \text { (p.Leu36Pro) } \end{aligned}$ | 587783644 | GJB2 | [] | ['GATCCYCGTTGT GGCTGCAAAGG'] | ['Hearing impairment'] |
| NM_005682.6(ADGR Gl):c. $1460 \mathrm{~T}>\mathrm{C}$ (p.Leu487Pro) | 587783653 | ADGRG1 | [] | ['CCCTGCYCACCT GCCTTTCCTGG'] | ['Polymicrogyria, bilateral frontoparietal'] |
| NM_000525.3(KCNJ1 1):c. $988 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr330His) | 587783675 | KCNJ11 | [] | [] | ['Diabetes mellitus'] |
| $\begin{aligned} & \text { NM_170707.3(LMNA } \\ & \text { ):c. } 799 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr267His) } \end{aligned}$ | 267607593 | LMNA | [] | [] | ['Dilated cardiomyopathy 1A', 'not provided'] |
| $\begin{aligned} & \text { NM_000252.2(MTM1) } \\ & \text { :c. } 1 \overline{3} 53+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587783780 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_000252.2(MTM1) } \\ & \text { :c.1367T }>\mathrm{C} \\ & \text { (p.Phe456Ser) } \\ & \hline \end{aligned}$ | 587783783 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| NM_000252.2(MTM1) :c.1433T>C <br> (p.Phe478Ser) | 587783794 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_000252.2(MTM1) } \\ & \text { :c.1495T }>\mathrm{C} \\ & \text { (p.Trp499Arg) } \\ & \hline \end{aligned}$ | 587783801 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_000252.2(MTM1) } \\ & \text { :c.260T>C } \\ & \text { (p.Leu87Pro) } \end{aligned}$ | 587783816 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_000252.2(MTM1) } \\ & \text { :c.683T }>\mathrm{C} \\ & \text { (p.Leu228Pro) } \end{aligned}$ | 587783851 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_000252.2(MTM1) } \\ & \text { :c. } 958 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser320Pro) } \end{aligned}$ | 587783863 | MTM1 | [] | ['GGAAYCTTTAAA AAAAGTGAAGG'] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_000526.4(KRT14 } \\ & \text { ):c. } 1151 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu384Pro) } \end{aligned}$ | 59629244 | KRT14 | [] | [] | ['Epidermolysis bullosa simplex, Koebner type', 'not provided'] |
| $\begin{aligned} & \mathrm{NM} \_000249.3(\mathrm{MLH} 1) \\ & : \mathrm{c} .453+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 267607751 | MLH1 | [] | ['ATCACGGYAAG AATGGTACATGG', 'TCACGGYAAGAA TGGTACATGGG'] | ['Hereditary <br> Nonpolyposis <br> Colorectal <br> Neoplasms'] |
| $\begin{aligned} & \text { NM_002764.3(PRPS1) } \\ & \text { :c.455T>C } \\ & \text { (p.Leul52Pro) } \\ & \hline \end{aligned}$ | 80338676 | PRPS1 | [] | [] | ['Arts syndrome', 'not provided'] |
| NM_022132.4(MCCC <br> 2):c. $499 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys167Arg) | 119103222 | MCCC2 | [] | [] | ['3-methylcrotonyl CoA carboxylase 2 deficiency'l |
| $\begin{array}{\|l\|} \hline \text { NM_000411.6(HLCS): } \\ \text { c. } 710 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leu237Pro) } \\ \hline \end{array}$ | 119103227 | HLCS | [] | ['CTATCYTTCTCA GGGAGGGAAGG'] | ['Holocarboxylase synthetase deficiency'] |
| $\begin{aligned} & \hline \text { NM_005787.5(ALG3): } \\ & \text { c. } 211 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp71Arg) } \\ & \hline \end{aligned}$ | 119103237 | ALG3 | [] | ['GATTGACYGGA AGGCCTACATGG'] | ['Congenital disorder of glycosylation type 1D'] |
| $\begin{aligned} & \text { NM_005609.2(PYGM) } \\ & \text { :c.1187T }>\mathrm{C} \\ & \text { (p.Leu396Pro) } \\ & \hline \end{aligned}$ | 119103254 | PYGM | [] | [] | ['Glycogen storage disease, type $\left.V^{\prime}\right]$ |
| m.3250T>C | 199474664 | MT-TL1 | [] | [] | [] |


| $\begin{aligned} & \hline \text { NM_002764.3(PRPS1) } \\ & \text { :c.344T>C } \\ & \text { (p.Met115Thr) } \end{aligned}$ | 80338732 | PRPS 1 | ['GCAA ATAYG CTATC <br> TGTAG CAGG'] | ['GCAAATAYGCT ATCTGTAGCAGG'] | ['Charcot-MarieTooth disease, Xlinked recessive, type 5'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 003172.3(SURF1 ):c. $679 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp227Arg) | 398122806 | SURF1 | II | ['CCACYGGCATTA TCGAGACCTGG'] | ['Congenital myasthenic syndrome, acetazolamideresponsive'\| |
| NM_004525.2(LRP2): <br> c. $7564 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr2522His) | 80338747 | LRP2 | [] | ['GTACCTGYACTG GGCTGACTGGG'] | ['Donnai Barrow syndrome'] |
| NM 006329.3(FBLN5 <br> ):c. $649 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys217Arg) | 80338766 | FBLN5 | [] | [] | ['Autosomal recessive cutis laxa type IA'] |
| NM 001271723.1(FB XO38):c.616T>C (p.Cys206Arg) | 398122838 | FBXO38 | [] | ['TTCCTYGTATCC CAATGCTAAGG'] | ['Distal hereditary motor neuronopathy 2D'] |
| NM_133433.3(NIPBL) :c. $7062+2 \mathrm{~T}>\mathrm{C}$ | 587784032 | NIPBL | I] | II | \|'Cornelia de Lange syndrome 1'】 |
| NM_000334.4(SCN4A ):c. $4468 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 1490Leu) | 80338790 | SCN4A | [] | [] | ['Hyperkalemic Periodic Paralysis Type 1'] |
| $\begin{aligned} & \text { NM_058216.2(RAD51 } \\ & \text { C):c. } 404+2 \mathrm{C}>\mathrm{C} \end{aligned}$ | 730881931 | RAD51C | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_001111.4(ADAR) } \\ & \text { :c.2615T>C } \\ & \text { (p.Ile872Thr) } \\ & \hline \end{aligned}$ | 398122897 | ADAR | I] | II | ['Aicardi-goutieres syndrome 6'] |
| $\begin{aligned} & \text { NM_005334.2(HCFCl } \\ & \text { ):c.-970T }>\mathrm{C} \end{aligned}$ | 398122908 | HCFC1 | ['CAAG AYGGC GGCTC CCAGG GAGG' | ['CAAGAYGGCGG CTCCCAGGGAGG' I | ['Mental retardation 3, X-linked'] |
| NM_000431.3(MVK): <br> c. $10 \overline{3} 9+2 \mathrm{~T}>\mathrm{C}$ | 398122910 | MVK | ['CCAG <br> GYATC <br> CCGGG <br> GGTAG <br> GTGG'] | ['CCAGGYATCCCG GGGGTAGGTGG', 'CAGGYATCCCGG GGGTAGGTGGG'] | ['Porokeratosis, disseminated superficial actinic 1'] |
| NM_000431.3(MVK): <br> c. $1094 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe365Ser) | 398122911 | MVK | [] | [] | ['Porokeratosis, disseminated superficial actinic 1' |
| NM 005050.3(ABCD <br> 4):c. $956 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr319Cys) | 201777056 | ABCD4 | ['GATG <br> AGGYA <br> GATGC <br> ACACA <br> AAGG'] | ['GATGAGGYAGA TGCACACAAAGG ] | ['METHYLMALON IC ACIDURIA AND HOMOCYSTINURI A, cblJ TYPE', 'not provided'] |
| $\begin{aligned} & \text { NM_000251.2(MSH2) } \\ & \text { :c.2005+2T>C } \end{aligned}$ | 267607987 | MSH2 | I'CTGG <br> YAAAA <br> AACCT <br> GGTTT <br> TTGG', <br> TGGYA <br> AAAAA <br> CCTGG <br> TTTTTG <br> GG'] | ['CTGGYAAAAAA 'TGGYAAAAAAACC TGGTTTTTGGG' | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |


| NM_000518.4(HBB):c $.257 \mathrm{~T}>\mathrm{C}$ (p.Phe86Ser) | 35693898 | HBB | [] | [] | ['Hemoglobinopathy' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001194998.1(CE } \\ & \text { P152):c.3149T>C } \\ & \text { (p.Leu1050Pro) } \\ & \hline \end{aligned}$ | 398122977 | CEP152 | [] | [] | ['Primary autosomal recessive microcephaly 9 '] |
| NM_022455.4(NSD1): <br> c. $5989 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr1997His) | 587784171 | NSD1 | [] | [] | ['Sotos syndrome 1'] |
| NM_014495.3(ANGP TL3):c. $883 \mathrm{~T}>\mathrm{C}$ (p.Phe295Leu) | 398122989 | - | [] | ['ACAAAACYTCA ATGAAACGTGGG' 1 | ['Hypobetalipoprotei nemia, familial, 2'] |
| NM_024577.3(SH3TC 2):c.1982T>C (p.Leu661Pro) | 80338927 | SH3TC2 | I] | [] | ['Charcot-MarieTooth disease, type $\left.4 C^{\prime}\right]$ |
| NM_000551.3(VHL):c .227T>C (p.Phe76Ser) | 730882033 | VHL | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| NM_004004.5(GJB2): <br> c. $269 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu90Pro) | 80338945 | GJB2 | [] | ['GCTCCYAGTGGC CATGCACGTGG'] | ['Deafness, autosomal recessive 1A', 'Hearing impairment', 'not provided'] |
| NM_000334.4(SCN4A ):c. $2078 \mathrm{~T}>\mathrm{C}$ (p.Ile693Thr) | 80338956 | SCN4A | [] | ['AAGATCAYTGG CAATTCAGTGGG', 'AGATCAYTGGCA ATTCAGTGGGG', 'GATCAYTGGCAA TTCAGTGGGGG'] | ['Hyperkalemic Periodic Paralysis Type 1', <br> Paramyotonia congenita of von Eulenburg'] |
| $\begin{aligned} & \text { NM_004523.3(KIF11): } \\ & \text { c. } 2547+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 730882063 | KIF11 | ['GGAG GYAAT AACTT <br> TGTAA <br> GTGG'] | ['GGAGGYAATAA CTTTGTAAGTGG'] | ['Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation'] |
| NM 003060.3(SLC22 A5):c. $1051 \mathrm{~T}>\mathrm{C}$ (p.Trp351Arg) | 68018207 | SLC22A5 | II | II | ['Renal carnitine transport defect'] |
| NM_001070.4(TUBG1 ):c. $1160 \mathrm{~T}>\mathrm{C}$ (p.Leu387Pro) | 398123045 | TUBG1 | [] | [] | ['Cortical dysplasia, complex, with other brain malformations 4'] |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c.-103T>C } \end{aligned}$ | 60284988 | - | [] | [] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| NM 000016.5(ACAD <br> M): c. $233 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile78Thr) | 398123074 | ACADM | [] | [] | ['Medium-chain acyl-coenzyme A dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000179.2(MSH6) } \\ & \text { :c. } 4001+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 267608131 | MSH6 | I] | ['CGGYAACTAACT AACTATAATGG'] | ['Hereditary Nonpolyposis Colorectal Neoplasms'\| |
| $\begin{aligned} & \text { NM_000019.3(ACAT1 } \\ & \text { ):c. } 730+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 398123096 | ACAT1 | [] | [] | ['Deficiency of acetyl-CoA acetyltransferase', 'not provided'] |
| NM_000430.3(PAFA H1B1):c.841T>C (p.Cys281Arg) | 587784288 | PAFAHIB1 | [] | [] | ['Lissencephaly 1'] |


| ```NM 000899.4(KITLG ):c.98T>C (p.Val33Ala)``` | 730882156 | KITLG | [] | [] | ['Familial progressive hyperpigmentation with or without hypopigmentation'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \text { NM_015599.2(PGM3) } \\ \text { :c.248T>C. } \\ \text { (p.Leu83Ser) } \end{array}$ | 267608260 | PGM3 | ['AATG TYGGC ACCAT CCTGG GAGG' | ['AATGTYGGCACC ATCCTGGGAGG'] | ['Immunodeficiency $23^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000169.2(GLA):c } \\ & .899 T>C \\ & \text { (p.Leu300Pro) } \\ & \hline \end{aligned}$ | 398123223 | - | [] | [] | ['Fabry disease'] |
| $\begin{aligned} & \text { NM_001256047.1(C19 } \\ & \text { orf12):c.391A>G } \\ & \text { (p.Lys131Glu) } \end{aligned}$ | 146170087 | C19orf12 | [] | [] | ['Neurodegeneration with brain iron accumulation 4'] |
| $\begin{aligned} & \text { NM_172337.2(OTX2): } \\ & \text { c. } 674 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn225Ser) } \end{aligned}$ | 370761964 | OTX2 | [] | [] | ['Pituitary hormone defíciency, combined 6'] |
| NM 000202.6(IDS):c. $587 \overline{\mathrm{~T}}>\mathrm{C}(\mathrm{p}$. Leu196Ser) | 398123250 | IDS | I] | I] | ['Mucopolysaccharid osis, MPS-II', 'not provided'\| |
| $\begin{aligned} & \hline \text { NM_000252.2(MTM1) } \\ & \text { :c.688T>C } \\ & \text { (p.Trp230Arg) } \end{aligned}$ | 398123274 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy', 'not provided'] |
| $\begin{aligned} & \text { NM_022445.3(TPK1): } \\ & \text { c.656A>G } \\ & \text { (p.Asn219Ser) } \end{aligned}$ | 371271054 | TPK1 | [] | [] | ['THIAMINE METABOLISM DYSFUNCTION SYNDROME 5 (EPISODIC ENCEPHALOPAT HY TYPE)'] |
| NM_014139.2(SCN11 <br> A): $\mathrm{c} .2432 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu811Pro) | 483352920 | SCNIIA | [] | [] | ['NEUROPATHY, HEREDITARY SENSORY AND AUTONOMIC, TYPE VII'] |
| $\begin{aligned} & \text { NM_000733.3(CD3E): } \\ & \text { c. } 520+2 \mathrm{C}>\mathrm{C} \end{aligned}$ | 483352928 | CD3E | I] | I] | ['Immunodeficiency 18'\| |
| NM_017653.3(DYM): c. $621-2 \mathrm{~A}>\mathrm{G}$ | 775414124 | DYM | [] | [] | ['Dyggve-MelchiorClausen syndrome'] |
| NM_001253816.1(SL C52A2):c. 1016T>C (p.Leu339Pro) | 148234606 | SLC52A2 | [] | [] | ['Brown-VialettoVan Laere syndrome 2'] |
| NM 004963.3(GUCY <br> 2C):c. $2782 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys928Arg) | 587784573 | - | [] | ['TCCCYGTGCTGC TGGAGTTGTGG', 'CCCYGTGCTGCT GGAGTTGTGGG'] | ['Meconium ileus'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c.659T>C. } \\ & \text { (p.Leu220Pro) } \\ & \hline \end{aligned}$ | 267608511 | CDKL5 | II | ['CCAACYTTTTAC TATTCAGAAGG'] | \|'Early infantile epileptic encephalopathy $2^{\prime}$ \| |
| NM_000528.3(MAN2 B1):c. $2436+2 \mathrm{~T}>\mathrm{C}$ | 398123457 | MAN2B1 | I | I] | ['not provided'] |
| NM 002136.2(HNRN PA1): $c .841 \mathrm{~T}>\mathrm{C}$ (p.Phe281Leu) | 483353031 | HNRNPA1 | ['AATY TTGGA GGCAG AAGCT CTGG'] | ['AATYTTGGAGGC AGAAGCTCTGG'] | ['Chronic progressive multiple sclerosis'] |


| $\begin{aligned} & \text { NM_006920.4(SCN1A } \\ & \text { ):c. } \mathbf{4 2 5 1 + 2 \mathrm { T } > \mathrm { C }} \end{aligned}$ | 398123595 | - | [] | [] | ['Severe myoclonic epilepsy in infancy', 'Generalized epilepsy with febrile seizures plus, type 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_002225.3(IVD):c. } \\ & 465+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 398123683 | IVD | [] | [] | ['Isovaleryl-CoA dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000118.3(ENG):c } \\ & .1273-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 373842615 | ENG | [] | ['CCGCCYGCGGG GATAAAGCCAGG' <br> 'CGCCYGCGGGGA <br> TAAAGCCAGGG'] | ['Haemorrhagic telangiectasia 1'] |
| $\begin{aligned} & \text { NM_005859.4(PURA) } \\ & \text { :c. } 218 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe73Ser) } \\ & \hline \end{aligned}$ | 793888535 | PURA | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_003494.3(DYSF): } \\ & \text { c. } 12 \overline{8} 4+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 398123765 | DYSF | $\begin{aligned} & \hline \text { ['ATGG } \\ & \text { YAAGG } \\ & \text { AGCAA } \\ & \text { GGGAG } \\ & \text { CAGG'] } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ['ATGGYAAGGAG } \\ & \text { CAAGGGAGCAGG' } \\ & \text { ] } \end{aligned}$ | ['Limb-girdle muscular dystrophy, type 2B', 'not provided'] |
| $\begin{aligned} & \text { NM_004006.2(DMD): } \\ & \text { c. } 2380+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 398123885 | DMD | [] | [] | ['Dilated cardiomyopathy 3B'] |
| NM_006364.2(SEC23 <br> A):c. $2104 \mathrm{~A}>\mathrm{G}$ <br> (p.Met702Val) | 138568622 | SEC23A | [] | [] | ['Craniolenticulosutu ral dysplasia'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.376A>G } \\ & \text { (p.Lys126Glu) } \end{aligned}$ | 185492581 | SCN5A | [] | ['GAATCTYCACAG CCGCTCTCCGG'] | ['Brugada syndrome'] |
| NM_015865.6(SLC14 <br> A1):c.871T>C <br> (p.Ser291Pro) | 78242949 | SLC14A1 | [] | [] | [] |
| NM_003995.3(NPR2): c. $226 \mathrm{~T}>\mathrm{C}$ (p.Ser76Pro) | 796065355 | NPR2 | [] | [] | ['SHORT STATURE WITH NONSPECIFIC SKELETAL ABNORMALITIES' I |
| $\begin{aligned} & \text { NM_012463.3(ATP6V } \\ & 0 \mathrm{~A} 2): c .825+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 398124257 | ATP6V0A2 | $\begin{aligned} & \hline \text { ['CACT } \\ & \text { GYGAG } \\ & \text { TAAGC } \\ & \text { TGGAA } \\ & \text { GTGG'] } \\ & \hline \end{aligned}$ | ['CACTGYGAGTA AGCTGGAAGTGG' ] | ['Cutis laxa with osteodystrophy', 'not provided'] |
| $\begin{aligned} & \text { NM_014795.3(ZEB2): } \\ & \text { c. } 73+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 398124282 | ZEB2 | [] | [] | ['Mowat-Wilson syndrome'] |
| $\begin{aligned} & \text { NM_000424.3(KRT5): } \\ & \text { c. } 13 \overline{8} 8 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Leu463Pro) } \end{aligned}$ | 57599352 | KRT5 | [] | [] | ['Epidermolysis bullosa simplex, Koebner type', 'not provided'] |
| NM_133499.2(SYN1): <br> c. $1699 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr567Ala) | 200533370 | SYN1 | [] | ['GATGYCTGACG GGTAGCCTGTGG', <br> 'ATGYCTGACGGG <br> TAGCCTGTGGG'] | ['Epilepsy, X-linked, with variable learning disabilities and behavior disorders', 'not specified'] |
| NM_148960.2(CLDN1 <br> 9): $\mathrm{c} .269 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu90Pro) | 118203981 | CLDN19 | [] | ['GCTCCYGGGCTT CGTGGCCATGG'] | ['Hypomagnesemia 5, renal, with ocular involvement'\| |


| $\begin{aligned} & \text { NM_018006.4(TRMU) } \\ & \text { :c.229T>C } \\ & \text { (p.Tyr77His) } \\ & \hline \end{aligned}$ | 118203990 | TRMU | [] | [] | ['Liver failure acute infantile'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000056.3(BCKD } \\ & \text { HB):c.752T>C } \\ & \text { (p.Val251Ala) } \\ & \hline \end{aligned}$ | 398124593 | BCKDHB | [] | [] | ['Maple syrup urine disease', 'not provided'] |
| NM_182680.1(AMEL <br> $\mathrm{X}): \mathrm{c} .2 \mathrm{~T}>\mathrm{C}$ <br> (p.Met1Thr) | 104894737 | - | [] | [] | ['Amelogenesis imperfecta, type $\left.1 E^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_018105.2(THAP1 } \\ & \text { ):c.241T }>C \\ & \text { (p.Phe81Leu) } \end{aligned}$ | 118204013 | THAP1 | [] | [] | ['Dystonia 6, torsion'] |
| $\begin{aligned} & \text { NM_001235.3(SERPI } \\ & \text { NH1):c.233T>C } \\ & \text { (p.Leu78Pro) } \end{aligned}$ | 137853892 | SERPINH1 | [] | ['GTCGCYAGGGCT CGTGTCGCTGG', 'TCGCYAGGGCTC GTGTCGCTGGG'] | ['Osteogenesis imperfecta type $10^{\prime}$ ] |
| NM_004482.3(GALN T3):c. 516 _688del | 761396172 | GALNT3 | [] | [] | ['Tumoral calcinosis, familial, hyperphosphatemic'] |
| NM_000263.3(NAGL U):c. $142 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe48Leu) | 118204024 | NAGLU | [] | $\begin{aligned} & \hline \text { ['GGCCGACYTCTC } \\ & \text { CGTGTCGGTGG'] } \end{aligned}$ | ['Mucopoly saccharid osis, MPS-III-B'] |
| $\begin{aligned} & \text { NM_000559.2(HBG1): } \\ & \text { c. }-251 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 35710727 | HBG1 | [] | [] | ['Fetal hemoglobin quantitative trait locus 1'] |
| $\begin{aligned} & \text { NM_000527.4(LDLR): } \\ & \text { c. } 694+2 \mathrm{C}>\mathrm{C} \end{aligned}$ | 200238879 | LDLR | ['CGGY <br> ATGGG <br> CGGGG <br> CCAGG <br> GTGG'] | ['ACTGCGGYATG GGCGGGGCCAGG' <br> 'CTGCGGYATGGG CGGGGCCAGGG', 'CGGYATGGGCGG GGCCAGGGTGG'] | ['Familial hypercholesterolemi $\left.\mathrm{a}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_001012515.2(FE } \\ & \text { CH):c.1268T>C } \\ & \text { (p.Phe423Ser) } \\ & \hline \end{aligned}$ | 118204039 | FECH | [] | [] | ['Erythropoietic protoporphyria'] |
| $\begin{aligned} & \text { NM_005211.3(CSF1R } \\ & \text { ):c. } 1745 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu582Pro) } \end{aligned}$ | 690016563 | CSF1R | [] | ['CAACCYGCAGTT TGGTGAGATGG'] | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| $\begin{aligned} & \text { NM_000526.4(KRT14 } \\ & \text { ):c. } 1243 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr415His) } \end{aligned}$ | 58380626 | KRT14 | [] | ['CGCCACCYACCG CCGCCTGCTGG', 'CACCYACCGCCG CCTGCTGGAGG', 'ACCYACCGCCGC CTGCTGGAGGG'] | ['Epidermolysis bullosa herpetiformis, Dowling-Meara', 'not provided'] |
| NM_006493.2(CLN5): c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 201615354 | CLN5 | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_002863.4(PYGL): } \\ & \text { c. } 2461 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr821His) } \end{aligned}$ | 113993988 | PYGL | ['AAGA <br> AYATG <br> CCCAA <br> AACAT <br> CTGG'] | $\begin{aligned} & \hline \text { ['AAGAAYATGCC } \\ & \text { CAAAACATCTGG'] } \end{aligned}$ | ['Glycogen storage disease, type $\left.\mathrm{VI}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_016038.2(SBDS): } \\ & \text { c. } 258+2 \mathrm{C}>\mathrm{C} \end{aligned}$ | 113993993 | SBDS | [] | [] | ['Shwachman syndrome', 'Aplastic anemia, susceptibility to'] |
| $\begin{aligned} & \text { NM_000110.3(DPYD) } \\ & \text { :c.85T>C } \\ & \text { (p.Cys29Arg) } \\ & \hline \end{aligned}$ | 1801265 | DPYD | [] | [] | ['Dihydropyrimidine dehydrogenase deficiency'] |
| NM_001034116.1(EIF | 113994038 | EIF2B4 | [] | [] | ['Ovarioleukodystro |


| $\begin{aligned} & \text { 2B4):c.1393T>C } \\ & \text { (p.Cys465Arg) } \\ & \hline \end{aligned}$ |  |  |  |  | phy'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM-001165963.1(SC } \\ & \text { N1A):c.323T>C } \\ & \text { (p.Leu108Pro) } \end{aligned}$ | 794726793 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_001034116.1(EIF } \\ & \text { 2B4):c.1465T>C } \\ & \text { (p.Tyr489His) } \end{aligned}$ | 113994040 | EIF2B4 | [] | [] | ['Ovarioleukodystro phy'] |
| $\begin{aligned} & \text { NM_004304.4(ALK):c } \\ & .3749 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile1250Thr) } \end{aligned}$ | 113994092 | ALK | [] | [] | ['Neuroblastoma 3'] |
| NM_207346.2(TSEN5 <br> 4): c. $277 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser93Pro) | 113994151 | TSEN54 | [] | ['TTGAAGYCTCCC GCGGTGAGCGG', <br> 'AAGYCTCCCGCG GTGAGCGGCGG'] | ['Pontocerebellar hypoplasia type 4'] |
| $\begin{aligned} & \text { NM_000018.3(ACAD } \\ & \text { VL):c.848T>C } \\ & \text { (p.Val283Ala) } \end{aligned}$ | 113994167 | ACADVL | ['TTTGY <br> GGTGG <br> AGAGG <br> GGCTT <br> CGG', <br> 'TTGYG <br> GTGGA <br> GAGGG <br> GCTTC <br> GGG'] | ['TTTGYGGTGGAG AGGGGCTTCGG', 'TTGYGGTGGAGA GGGGCTTCGGG'] | ['Very long chain acyl-CoA dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000430.3(PAFA } \\ & \text { H1B1):c. } 569-10 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 113994202 | PAFAH1B1 | [] | [] | ['Lissencephaly 1'] |
| $\begin{aligned} & \text { NM_004937.2(CTNS): } \\ & \text { c. } 473 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu158Pro) } \end{aligned}$ | 113994206 | CTNS | [] | $\begin{aligned} & \text { ['TGGTCYGAGCTT } \\ & \text { CGACTTCGTGG'] } \end{aligned}$ | ['Cystinosis'] |
| $\begin{aligned} & \text { NM_000546.5(TP53):c } \\ & .488 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Tyr} 163 \mathrm{Cys}) \end{aligned}$ | 148924904 | TP53 | $\begin{aligned} & \hline \text { ['GCTTG } \\ & \text { YAGAT } \\ & \text { GGCCA } \\ & \text { TGGCG } \\ & \text { CGG'] } \\ & \hline \end{aligned}$ | ['GCTTGYAGATGG CCATGGCGCGG'] | ['Hereditary cancerpredisposing syndrome'] |
| NM_004211.3(SLC6A <br> 5):c. $1444 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp482Arg) | 281864925 | SLC6A5 | [] | [] | ['Hyperekplexia 3'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c.1208T>C } \\ & \text { (p.Ile403Thr) } \end{aligned}$ | 281864973 | GNPTAB | [] | [] | ['Pseudo-Hurler polydystrophy'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c.3002T>C } \\ & \text { (p.Leu1001Pro) } \end{aligned}$ | 281865006 | GNPTAB | [] | [] | ['I cell disease'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c. } 7358 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile2453Thr) } \end{aligned}$ | 118192123 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_000748.2(CHRN } \\ & \text { B2):c.923T }>\text { C } \\ & \text { (p.Val308Ala) } \\ & \hline \end{aligned}$ | 281865070 | CHRNB2 | [] | [] | ['Epilepsy, nocturnal frontal lobe, type 3'] |
| $\begin{aligned} & \text { NM_000526.4(KRT14 } \\ & \text { ):c. } 356 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met119Thr) } \end{aligned}$ | 28928893 | KRT14 | [] | [] | ['Epidermolysis bullosa herpetiformis, Dowling-Meara', 'not provided'] |
| NM_000093.4(COL5A <br> 1): $\mathrm{c} .5137-11 \mathrm{~T}>\mathrm{A}$ | 183495554 | - | [] | [] | ['Ehlers-Danlos syndrome, classic type'] |
| NM_000277.1(PAH):c | 62516109 | PAH | [] | ['CCACTTCYTGAA | ['Phenylketonuria', |


| $\begin{aligned} & \hline .638 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu213Pro) } \end{aligned}$ |  |  |  | AAGTACTGTGG'] | 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000531.5(OTC):c $.663+2 \mathrm{~T}>\mathrm{C}$ | 72558427 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_000531.5(OTC):c } \\ & .717+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 72558431 | OTC | [] | [] | ['Ornithine carbamoyltransferas e deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .793 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp265Arg) } \\ & \hline \end{aligned}$ | 72558445 | OTC | [] | [] | ['not provided'] |
| NM 000493.3(COL10 <br> A1): $: .1841 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu614Pro) | 111033545 | - | I] | II | ['Metaphyseal chondrodysplasia, Schmid type' |
| NM 000493.3(COL10 <br> A1):c. $1771 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys591Arg) | 111033546 | - | [] | [] | ['Metaphyseal chondrodysplasia, Schmid type'] |
| NM 000493.3(COL10 <br> A1):c.2011T>C <br> (p.Ser671Pro) | 111033552 | - | [] | [] | ['Metaphyseal chondrodysplasia, Schmid type'] |
| NM_004614.4(TK2):c. 173A>G (p.Asn58Ser) | 138439950 | TK2 | [] | [] | ['Mitochondrial DNA depletion syndrome 2'] |
| $\begin{aligned} & \text { NM_004614.4(TK2):c. } \\ & 644 \overline{\mathrm{~T}}>\mathrm{C} \\ & \text { (p.Leu215Pro) } \end{aligned}$ | 281865497 | TK2 | I] | [] | ['Mitochondrial DNA depletion syndrome 2'\| |
| $\begin{aligned} & \text { NM_004614.4(TK2):c. } \\ & 156+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 281865499 | TK2 | [] | [] | ['Mitochondrial DNA depletion syndrome 2'] |
| NM 153026.2(PRICK LE1):c. $1414 \mathrm{~T}>\mathrm{C}$ (p.Tyr472His) | 281865564 | PRICKLE1 | [] | [] | ['Progressive myoclonus epilepsy with ataxia'] |
| NM_017882.2(CLN6): c. $767 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp256Gly) | 143781303 | CLN6 | [] | [] | ['not provided'] |
| NM 130838.1(UBE3A ):c. $389 \mathrm{~T}>\mathrm{C}$ (p.Ile130Thr) | 111033597 | UBE3A | [] | I] | ['Angelman syndrome'] |
| NM_001198799.2(AS (C1):c. $953 \mathrm{~A}>\mathrm{G}$ (p.Asn318Ser) | 146370051 | ASCC1 | [] | [] | [] |
| NM 000174.4(GP9):c. $70 \mathrm{~T}>\mathrm{C}$ (p.Cys24Arg) | 28933378 | GP9 | ['CCCA <br> YGTAC <br> CTGCC <br> GCGCC <br> CTGG'] | ['CCCAYGTACCTG CCGCGCCCTGG'] | ['Bernard Soulier syndrome', 'BernardSoulier syndrome type C'] |
| NM 001173464.1(KIF 21A): c. $3029 \mathrm{~T}>\mathrm{C}$ (p.Ile1010Thr) | 121912587 | KIF21A | [] | [] | ['Fibrosis of extraocular muscles, congenital, 1 '] |
| NM 001302946.1(TR <br> NT1):c. $668 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile223Thr) | 370011798 | TRNT1 | I] | ['GCAAYTGCAGA AAATGCAAAAGG' I | ['Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay'\| |
| NM_000371.3(TTR):c. $250 \overline{\mathrm{~T}}>\mathrm{C}$ ( p .Phe84Leu) | 121918091 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis'] |
| m.5814T>C | 200077222 | MT-TC | [] | [] | ['Juvenile myopathy, |


|  |  |  |  |  | encephalopathy, lactic acidosis AND stroke'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000277.1(PAH):c .293T>C (p.Leu98Ser) | 62517167 | PAH | [] | $\begin{aligned} & \hline \text { ['AAGATCTYGAG } \\ & \text { GCATGACATTGG'] } \end{aligned}$ | ['Mild non-PKU hyperphenylalanemi $\mathrm{a}^{\text {', 'not provided' }]}$ |
| $\begin{aligned} & \text { NM_017882.2(CLN6): } \\ & \text { c. } 48 \overline{6}^{2}+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 796052355 | CLN6 | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_001813.2(CENPE } \\ & \text { ):c.4063A>G } \\ & \text { (p.Lys1355GGlu) } \\ & \hline \end{aligned}$ | 141488085 | CENPE | [] | [] | ['Primary autosomal recessive microcephaly $\left.13^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_001918.3(DBT):c } \\ & .1150 \mathrm{G}>\mathrm{A} \\ & \text { (p.Gly } 384 \text { Ser }) \end{aligned}$ | 12021720 | DBT | [] | $\begin{aligned} & \hline \text { ['GACYCACAGAG } \\ & \text { CCCAATTTCTGG'] } \end{aligned}$ | ['Intermediate maple syrup urine disease type 2'] |
| NM_000495.4(COL4A <br> 5):c. $4699 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys1567Arg) | 104886288 | COL4A5 | ['AGTA <br> YGTGA <br> AGCTC <br> CAGCT <br> GTGG'] | ['AGTAYGTGAAG CTCCAGCTGTGG'] | ['Alport syndrome, X-linked recessive'] |
| $\begin{array}{\|l} \hline \text { NM_000495.4(COL4A } \\ \text { 5):c.4756T>C } \\ \text { (p.Cys1586Arg) } \\ \hline \end{array}$ | 104886289 | COL4A5 | [] | $\begin{aligned} & \hline \text { ['TCCCCATYGTCC } \\ & \text { TCAGGGATGGG'] } \end{aligned}$ | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_000495.4(COL4A } \\ & 5): c .5032 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1678Arg) } \end{aligned}$ | 104886310 | COL4A5 | [] | [] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 482 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul61Pro) } \end{aligned}$ | 111033700 | GALT | ['AGCY <br> GGGTG <br> CCCAG <br> TACCC <br> TTGG'] | $\begin{aligned} & \hline \text { ['AGCYGGGTGCC } \\ & \text { CAGTACCCTTGG'] } \end{aligned}$ | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_001199252.2(SG } \\ & \text { OL1):c.67A>G } \\ & \text { (p.Lys23Glu) } \end{aligned}$ | 199815268 | - | [] | [] | ['Chronic atrial and intestinal dysrhythmia'\| |
| $\begin{aligned} & \mathrm{NC} 1012920.1: \mathrm{m} .5559 \\ & \mathrm{~A}>\overline{\mathrm{G}} \end{aligned}$ | 370471013 | MT-TW | [] | $\begin{aligned} & \hline \text { ['CAACYTACTGAG } \\ & \text { GGCTTTGAAGG'] } \\ & \hline \end{aligned}$ | ['Leigh disease'] |
| $\begin{aligned} & \text { NM_000487.5(ARSA) } \\ & \text { :c. } 410 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu137Pro) } \end{aligned}$ | 121434215 | ARSA | [] | ['GCCTTCCYGCCC CCCCATCAGGG'] | ['Metachromatic leukodystrophy, adult type'] |
| $\begin{array}{\|l} \hline \text { NM_000051.3(ATM): } \\ \text { c. } 7967 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leu2656Pro) } \\ \hline \end{array}$ | 121434218 | - | [] | [] | [] |
| $\begin{aligned} & \text { NM_000096.3(CP):c. } 6 \\ & 50 \mathrm{~T}>\mathrm{C} \text { (p.Phe217Ser) } \\ & \hline \end{aligned}$ | 386134125 | CP | [] | [] | ['Deficiency of ferroxidase'] |
| $\begin{aligned} & \text { NM_000096.3(CP):c. } 1 \\ & 123 \bar{T}>C \text { (p.Tyr375His) } \\ & \hline \end{aligned}$ | 386134128 | CP | [] | $\begin{aligned} & \hline \text { ['ACACTACYACAT } \\ & \text { TGCCGCTGAGG'] } \\ & \hline \end{aligned}$ | ['Deficiency of ferroxidase'] |
| NM_000268.3(NF2):c. $185 \mathrm{~T}>\mathrm{C}$ (p.Phe62Ser) | 121434261 | NF2 | [] | [] | ['Neurofibromatosis, type 2'] |
| NM_000495.4(COL4A 5):c. $4803+121 \mathrm{~T}>\mathrm{C}$ | 104886423 | COL4A5 | [] | [] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_024529.4(CDC73 } \\ & \text { ):c. } 191 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu64Pro) } \end{aligned}$ | 121434264 | CDC73 | [] | [] | ['Hyperparathyroidis m 1'] |
| $\begin{aligned} & \text { NM_001061.4(TBXA } \\ & \text { S1):c.1463T>C } \\ & \text { (p.Leu488Pro) } \end{aligned}$ | 199422114 | TBXAS1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_001127328.2(AC } \\ & \text { ADM):c.1136T>C } \\ & \text { (p.Ile379Thr) } \end{aligned}$ | 121434275 | ACADM | [] | ['GTGCAGAYACTT GGAGGCAATGG'] | ['Medium-chain acyl-coenzyme A dehydrogenase deficiency'] |


| NM 001127328.2 (AC ADM):c. $742 \mathrm{~T}>\mathrm{C}$ (p.Cys248Arg) | 121434276 | ACADM | [] | ['CAGCGAYGTTCA GATACTAGAGG' | ['Medium-chain acyl-coenzyme A dehydrogenase deficiency'] | |
|---|---|---|---|---|---|---|
| NM 000016.5(ACAD <br> M):c.199T>C <br> (p.Tyr67His) | 121434280 | ACADM | [] | [] | ['Medium-chain acyl-coenzyme A dehydrogenase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_002225.3(IVD):c. } \\ & 134 \overline{\mathrm{~T}}>\mathrm{C} \text { (p.Leu45Pro) } \end{aligned}$ | 121434284 | IVD | [] | ['ATGGGCYAAGC GAGGAGCAGAGG' 1 | ['TSOVALERIC ACIDEMIA, TYPE I'] |
| NM_005957.4(MTHF R): $\mathrm{c} .968 \mathrm{~T}>\mathrm{C}$ (p.Leu323Pro) | 121434297 | MTHFR | [] | [] | ['Homocystinuria due to MTHFR deficiency'] |
| NM_000136.2(FANC <br> C):c. $1661 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu554Pro) | 104886458 | - | [] | [] | ['Fanconi anemia, complementation group C', 'not provided'] |
| NM 005908.3(MANB <br> A):c. $1513 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser505Pro) | 121434334 | MANBA | I] | ['ATTACGYCCAGT CCTACAAATGG', 'TTACGYCCAGTC CTACAAATGGG', 'TACGYCCAGTCC TACAAATGGGG' | ['Beta-Dmannosidosis'] |
| $\begin{aligned} & \text { NM_000244.3(MEN1) } \\ & \text { :c.518T>C } \\ & \text { (p.Leul73Pro) } \end{aligned}$ | 386134256 | MEN1 | [] | [] | ['Multiple endocrine neoplasia, type 1'] |
| $\begin{aligned} & \text { NM_199242.2(UNC13 } \\ & \text { D):c.1208T>C } \\ & \text { (p.Leu403Pro) } \end{aligned}$ | 121434353 | UNC13D | I | [] | ['Hemophagocytic lymphohistiocytosis, familial, $\left.3^{\prime}\right]$ |
| NM 152783.4(D2HG DH):c. $1331 \mathrm{~T}>\mathrm{C}$ (p.Val444Ala) | 121434360 | D2HGDH | I | [] | ['D-2hydroxyglutaric aciduria 1'] |
| $\begin{aligned} & \text { NM_207118.2(GTF2H } \\ & \text { 5):c. } 62 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu21Pro) } \\ & \hline \end{aligned}$ | 121434365 | GTF2H5 | II | [] | ['Photosensitive trichothiodystrophy'] |
| $\begin{aligned} & \text { NM_000159.3(GCDH) } \\ & \text { :c. } 883 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr295His) } \end{aligned}$ | 121434366 | GCDH | [] | ['CGCCCGGYACG GCATCGCGTGGG', 'GCCCGGYACGGC ATCGCGTGGGG'] | ['Glutaric aciduria, type 1'] |
| NM_018668.4(VPS33 <br> B):c. $89 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu30Pro) | 121434385 | VPS33B | [] | [] | ['Arthrogryposis renal dysfunction cholestasis syndrome'] |
| $\begin{aligned} & \hline \text { NM_000424.3(KRT5): } \\ & \text { c.541T>C } \\ & \text { (p.Ser181Pro) } \end{aligned}$ | 60715293 | KRT5 | [] | $\begin{aligned} & \hline \text { ['GTTTGCCYCCTT } \\ & \text { CATCGACAAGG'] } \end{aligned}$ | ['Epidermolysis bullosa herpetiformis, Dowling-Meara', 'not provided'] |
| NM 001003722.1(GL E1):c.2051T>C (p.Ile684Thr) | 121434409 | GLE1 | I] | ['AAGGACAYTCCT GTCCCCAAGGG'] | \|'Lethal arthrogryposis with anterior horn cell disease'| |
| $\begin{array}{\|l\|} \hline \text { NM_003659.3(AGPS): } \\ \text { c.1406T>C } \\ \text { (p.Leu469Pro) } \\ \hline \end{array}$ | 121434413 | AGPS | I] | [] | ['Rhizomelic chondrodysplasia punctata type 3'] |
| $\begin{aligned} & \text { NM_004550.4(NDUF } \\ & \text { S2):c.1237T>C } \end{aligned}$ | 121434429 | NDUFS2 | I | [] | ['Mitochondrial complex I |


| (p.Ser413Pro) |  |  |  |  | deficiency', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 001287.5(CLCN7 <br> ):c. $2297 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu766Pro) | 121434434 | CLCN7 | [] | ['GGGCCYGCGGC ACCTGGTGGTGG'] | ['Osteopetrosis autosomal recessive $\left.4^{\prime}\right]$ |
| m. $14709 \mathrm{~T}>\mathrm{C}$ | 121434453 | MT-TE | [] | [] | ['Diabetes-deafness syndrome maternally transmitted'] |
| NM_000466.2(PEXI): <br> c.1991T>C <br> (p.Leu664Pro) | 121434455 | PEXI | [] | ['GATGACCYTGAC CTCATTGCTGG'] | ['Zellweger syndrome'] |
| NM 198253.2(TERT): c. 3043 T>C <br> (p.Cys1015Arg) | 199422307 | TERT | I] | II | ['Aplastic anemia'] |
| m.4290T>C | 121434469 | MT-TI | l'ACTYT <br> GATAG <br> AGTAA <br> ATAAT <br> AGG'] | ['ACTYTGATAGAG TAAATAATAGG'] | П |
| m.4291T>C | 121434471 | MT-TI | ['ACTTY <br> GATAG <br> AGTAA <br> ATAAT <br> AGG'] | ['ACTTYGATAGAG TAAATAATAGG'] | ['Hypertension, hypercholesterolemi a, and hypomagnesemia, mitochondrial'] |
| m. $9997 \mathrm{~T}>\mathrm{C}$ | 121434475 | MT-TG | [] | [] | ['Primary familial hypertrophic cardiomyopathy'] |
| $\begin{aligned} & \text { NM_001099274.1(TIN } \\ & \text { F2):c. } 860 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu287Pro) } \end{aligned}$ | 199422316 | TINF2 | I] | I] | ['Dyskeratosis congenita autosomal dominant'] |
| $\begin{aligned} & \text { NM_001099274.1(TIN } \\ & \text { F2):c.862T>C } \\ & \text { (p.Phe288Leu) } \\ & \hline \end{aligned}$ | 199422317 | TINF2 | I] | ['CTGYTTCCCTTT AGGAATCTCGG'] | ['Aplastic anemia'] |
| NM 000430.3(PAFA H1B1):c. $505 \mathrm{~T}>\mathrm{C}$ (p.Ser169Pro) | 121434484 | PAFAHIB1 | [] | [] | ['Subcortical band heterotopia'] |
| NM_000430.3(PAFA H1B1):c.92T>C (p.Phe31Ser) | 121434486 | PAFAHIB1 | [] | [] | ['Lissencephaly 1'] |
| NM 005535.2(IL12R <br> B1):c. $592 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys198Arg) | 121434495 | IL12RB1 | I] | II | ['Immunodeficiency 30'] |
| NM_030662.3(MAP2 K2):c.400T>C (p.Tyr134His) | 121434499 | MAP2K2 | [] | [] | ['Cardiofaciocutaneo us syndrome 4', 'Rasopathy', 'Noonan syndrome and Noonan-related syndrome'\| |
| NM 001065.3(TNFRS F1A): :. $349 \mathrm{~T}>\mathrm{C}$ (p.Cys117Arg) | 104895221 | TNFRSF1A | [] | ['CTCTTCTYGCAC AGTGGACCGGG'] | ['TNF receptorassociated periodic fever syndrome (TRAPS)'] |
| NM 000123.3 (ERCC5 ):c. $2573 \mathrm{~T}>\mathrm{C}$ (p.Leu858Pro) | 121434575 | - | [] | [] | ['Xeroderma pigmentosum, group G'] |
| $\begin{aligned} & \text { NM_001493.2(GDI1): } \\ & \text { c.275T>C } \\ & \text { (p.Leu92Pro) } \end{aligned}$ | 121434607 | GDII | [] | [] | ['X-Linked Mental Retardation 41'] |


| $\begin{aligned} & \text { NM_020061.5(OPNIL } \\ & \text { W) }-\mathrm{c} .607 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys203Arg) } \\ & \hline \end{aligned}$ | 121434621 | OPNILW | [] | [] | $\begin{array}{\|l\|} \hline \text { ['Cone } \\ \text { monochromatism'] } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 024420.2(PLA2G <br> 4A): c. $331 \mathrm{~T}>\mathrm{C}$ <br> (p.Serl11Pro) | 121434634 | PLA2G4A | [] | [] | [] |
| NM 005557.3(KRT16 ):c. $395 \mathrm{~T}>\mathrm{C}$ (p.Leu132Pro) | 60944949 | KRT16 | [] | [] | ['Pachyonychia congenita, type 1', 'not provided'] |
| NM 000485.2(APRT): c. $407 \mathrm{~T}>\mathrm{C}$ <br> (p.Met136Thr) | 28999113 | APRT | [] | [] | ['Adenine phosphoribosyltransf erase deficiency', 'APRT deficiency, Japanese type'] |
| NM_005270.4(GLI2):c .4663T>C <br> (p.Ser1555Pro) | 144372453 | GLI2 | [] | [] | ['Holoprosencephaly 9', 'not specified'] |
| NM 024753.4(TTC21 <br> B): $\mathrm{c} .2384 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu795Pro) | 387907060 | TTC21B | [] | [] | ['Asphyxiating thoracic dystrophy 4'] |
| NM_000155.3(GALT) :c. $680 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu227Pro) | 111033846 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c.4987T>C } \\ & \text { (p.Cys1663Arg) } \end{aligned}$ | 137854459 | FBN1 | [] | ['GGGACAYGTTA CAACACCGTTGG'] | ['Marfan syndrome'] |
| NM 032446.2(MEGF 10):c. $976 \mathrm{~T}>\mathrm{C}$ (p.Cys326Arg) | 387907073 | MEGF10 | I] | II | ['Myopathy, areflexia, respiratory distress, and dysphagia, earlyonset, mild variant'] |
| NM 024027.4(COLE C11):c. $505 \mathrm{~T}>\mathrm{C}$ (p.Serl69Pro) | 387907075 | COLEC11 | I] | $\begin{aligned} & \hline \text { ['CAGCTGYCCTGC } \\ & \text { CAGGGCCGCGG', } \\ & \text { 'AGCTGYCCTGCC } \\ & \text { AGGGCCGCGGG', } \\ & \text { 'GCTGYCCTGCCA } \\ & \text { GGGCCGCGGGG', } \\ & \text { 'CTGYCCTGCCAG } \\ & \text { GGCCGCGGGGG'] } \\ & \hline \end{aligned}$ | ['Carnevale syndrome'] |
| NM_001946.3(DUSP6 <br> ):c. $566 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn189Ser) | 143946794 | DUSP6 | ['CACT <br> AYTGG <br> GGTCT <br> CGGTC <br> AAGG'] | ['CACTAYTGGGGT CTCGGTCAAGG'] | ['Hypogonadotropic hypogonadism 19 with or without anosmia'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c.3793T>C } \\ & \text { (p.Cys1265Arg) } \end{aligned}$ | 137854474 | FBN1 | $\begin{array}{\|l\|} \hline \text { ['CTTGY } \\ \text { GTTAT } \\ \text { GATGG } \\ \text { ATTCA } \\ \text { TGG'] } \\ \hline \end{array}$ | ['CTTGYGTTATGA TGGATTCATGG'] | ['Marfan syndrome'] |
| NM 022068.3(PIEZO <br> 2): c. $2134 \mathrm{~A}>\mathrm{G}$ <br> (p.Met712Val) | 587777453 | PIEZO2 | [] | [] | ['Oculomelic amyoplasia'] |
| NM 000570.4(FCGR3 B): c. $316 \mathrm{~A}=$ (p.Ile106=) | 2290834 | FCGR3B | I] | I] | II |
| $\begin{aligned} & \hline \text { NM 0000352.4(ABCC8 } \\ & \text { ):c.674T>C } \\ & \text { (p.Leu225Pro) } \\ & \hline \end{aligned}$ | 1048095 | ABCC8 | [] | ['TGCYGTCCAAAG GCACCTACTGG'] | ['Permanent neonatal diabetes mellitus'] |


| NM 153490.2(KRT13 ):c. $332 \mathrm{~T}>\mathrm{C}$ (p.Leul11Pro) | 59897026 | KRT13 | [] | [] | ['White sponge nevus 2', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000132.3(F8):c. } 1 \\ & 174 \overline{\mathrm{~T}}>\mathrm{C} \text { (p.Ser392Pro) } \end{aligned}$ | 28933669 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| NM_000492.3(CFTR): <br> c. $1021 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser341Pro) | 397508144 | CFTR | [] | [] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_000133.3(F9):c. } 1 \\ & 058 \mathrm{~T}>C \text { (p.Val353Ala) } \end{aligned}$ | 137852255 | F9 | [] | [] | ['Hereditary factor IX deficiency disease'] |
| $\begin{aligned} & \hline \text { NM_001202.3(BMP4): } \\ & \text { c.362A>G } \\ & \text { (p.His121Arg) } \end{aligned}$ | 376960358 | BMP4 | I'TTCGT GGYGG <br> AAGCT <br> CCTCA <br> CGG'] | ['TTCGTGGYGGAA GCTCCTCACGG'] | ['Microphthalmia syndromic $\left.6^{\prime}\right]$ |
| NM_000133.3(F9):c. 1 $328 \overline{\mathrm{~T}}>\mathrm{C}$ (p.Ile 443 Thr ) | 137852268 | F9 | ['GAAY <br> ATATA <br> CCAAG <br> GTATC <br> CCGG' | ['GAAYATATACC <br> AAGGTATCCCGG'] | ['Hereditary factor IX deficiency disease'] |
| $\begin{aligned} & \hline \text { NM_000133.3(F9):c. } 1 \\ & 357 \overline{\mathrm{~T}}>\mathrm{C} \\ & \text { (p.Trp453Arg) } \\ & \hline \end{aligned}$ | 137852269 | F9 | II | [] | ['Hereditary factor IX deficiency disease'] |
| NM 000435.2(NOTC H3):c. $1363 \mathrm{~T}>\mathrm{C}$ (p.Cys455Arg) | 28933698 | NOTCH3 | ['ACCY GTATC <br> TGTAT <br> GGCAG <br> GTGG'] | ['TTCACCYGTATC TGTATGGCAGG', <br> 'ACCYGTATCTGT <br> ATGGCAGGTGG'] | ['Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopath $y^{\prime} 1$ |
| NM 019074.3(DLL4): <br> c. $1168 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys390Arg) | 796065347 | DLL4 | [] | ['GAAYGTCCCCCC AACTTCACCGG'] | $\begin{aligned} & \text { ['Adams-Oliver } \\ & \text { syndrome', } \\ & \text { 'ADAMS-OLIVER } \\ & \text { SYNDROME 6'] } \\ & \hline \end{aligned}$ |
| NM 000032.4(ALAS2 ):c. $595 \mathrm{~T}>\mathrm{C}$ (p.Tyr199His) | 137852310 | ALAS2 | I] | [] | ['Hereditary sideroblastic anemia'\| |
| NM_019074.3(DLL4): c. $583 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 195Leu) | 796065351 | DLL4 | [] | [] | ['Adams-Oliver syndrome'] |
| NM_000402.4(G6PD): <br> c. $1054 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr352His) | 137852347 | G6PD | [] | ['AGGGYACCTGG ACGACCCCACGG' ] | ['Anemia, nonspherocytic hemolytic, due to G6PD deficiency'] |
| NM 007325.4(GRIA3 ):c. $2117 \mathrm{~T}>\mathrm{C}$ (p.Met706Thr) | 137852352 | GRIA3 | [] | [] | ['Mental retardation, <br> X-linked, <br> syndromic, wu type'] |
| $\begin{aligned} & \hline \text { NM_000132.3(F8):c. } 6 \\ & 554 \overline{\mathrm{~T}}>\mathrm{C} \\ & \text { (p.Leu2185Ser) } \\ & \hline \end{aligned}$ | 137852365 | F8 | I] | [] | ['Hereditary factor VIII deficiency disease'\| |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 5 \\ & 372 \overline{\mathrm{~T}}>\mathrm{C} \\ & \text { (p.Met1791Thr) } \end{aligned}$ | 137852375 | F8 | ['TCAY <br> GGTGA <br> GTTAA <br> GGACA <br> GTGG'] | ['TCAYGGTGAGTT AAGGACAGTGG'] | ['Hereditary factor VIII deficiency disease'] |
| NM_000132.3(F8):c. 1 $754 \mathrm{~T}>\mathrm{C}$ (p.Ile585Thr) | 137852376 | F8 | ['AACA GAYAA | ['AACAGAYAATG TCAGACAAGAGG' | ['Hereditary factor VIII deficiency |


|  |  |  | TGTCA GACAA GAGG'] | 1 | disease'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \text { NM_001127695.1(CT } \\ \text { SA):c.707T>C } \\ \text { (p.Leu236Pro) } \\ \hline \end{array}$ | 137854546 | CTSA | [] | [] | ['Galactosialidosis, early infantile'] |
| NM_000132.3(F8):c. 9 $35 \mathrm{~T}>\mathrm{C}$ (p.Phe312Ser) | 137852405 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| NM_000132.3(F8):c. 9 80T>C (p.Leu327Pro) | 137852407 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_000308.2(CTSA): } \\ & \text { c.1271T>C } \\ & \text { (p.Met424Thr) } \end{aligned}$ | 137854548 | CTSA | I] | II | ['Galactosialidosis, late infantile'] |
| NM_000132.3(F8):c. 1 $481 \mathrm{~T}>\mathrm{C}$ (p.Ile494Thr) | 137852413 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{array}{\|l} \hline \text { NM_001250.5(CD40): } \\ \text { c.247T>C } \\ \text { (p.Cys83Arg) } \\ \hline \end{array}$ | 28931586 | CD40 | [] | [] | ['Immunodeficiency with hyper IgM type 3'] |
| NM_000165.4(GJA1): c. $32 \bar{T}>$ C (p.Leu1 1Pro) | 121912969 | GJA1 | [] | [] | ['Oculodentodigital dysplasia'] |
| $\begin{aligned} & \mathrm{NM}=000132.3(\mathrm{~F} 8): \mathrm{c} .1 \\ & 958 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{Val653Ala}) \end{aligned}$ | 137852430 | F8 | I] | II | ['Hereditary factor VIII deficiency disease'\| |
| NM_001972.2(ELAN <br> E):c. $211 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys71Arg) | 28931611 | ELANE | [] | [] | ['Severe congenital neutropenia autosomal dominant'] |
| $\begin{aligned} & \text { NM_000098.2(CPT2): } \\ & \text { c.1342T>C } \\ & \text { (p.Phe448Leu) } \end{aligned}$ | 74315297 | CPT2 | [] | [] | ['CARNITINE PALMITOYLTRA NSFERASE II DEFICIENCY, LATE-ONSET', 'not provided'] |
| $\begin{aligned} & \begin{array}{l} \text { NM_213653.3(HFE2): } \\ \text { c.842T>C } \\ \text { (p.Ile281Thr) } \end{array} \\ & \hline \end{aligned}$ | 74315326 | HFE2 | [] | [] | ['Hemochromatosis type 2A'] |
| $\begin{aligned} & \text { NM_213653.3(HFE2): } \\ & \text { c.302T>C } \\ & \text { (p.Leu101Pro) } \end{aligned}$ | 74315327 | HFE2 | I] | ['GGACCYCGCCTT CCATTCGGCGG'] | ['Hemochromatosis type 2A'] |
| $\begin{aligned} & \text { NM_000194.2(HPRT1 } \\ & \text { ):c.122T>C } \\ & \text { (p.Leu41Pro) } \\ & \hline \end{aligned}$ | 137852480 | HPRT1 | [] | [] | ['Lesch-Nyhan syndrome'] |
| $\begin{aligned} & \text { NM_000261.1(MYOC } \\ & \text { ):c. } 1297 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys433Arg) } \end{aligned}$ | 74315338 | MYOC | [] | [] | ['Primary open angle glaucoma juvenile onset 1'] |
| $\begin{aligned} & \text { NM_000194.2(HPRT1 } \\ & \text { ):c.170T>C } \\ & \text { (p.Met57Thr) } \end{aligned}$ | 137852495 | HPRTI | [] | [] | ['Lesch-nyhan syndrome, neurologic variant'] |
| $\begin{array}{\|l} \hline \text { NM_000267.3(NF1):c. } \\ 3728 \mathrm{~T}>\mathrm{C} \\ \text { (p.Leu1243Pro) } \\ \hline \end{array}$ | 137854564 | NF1 | I] | I] | ['Neurofibromatosis, type 1'] |
| $\begin{aligned} & \hline \text { NM_000291.3(PGK1): } \\ & \text { c.263T>C } \\ & \text { (p.Leu88Pro) } \\ & \hline \end{aligned}$ | 137852531 | PGK1 | [] | [] | ['Phosphoglycerate kinase 1 deficiency'] |
| $\begin{array}{\|l\|} \hline \text { NM_000291.3(PGK I): } \\ \text { c. } 946 \mathrm{~T}>\mathrm{C} \end{array}$ | 137852533 | PGK1 | [] | [] | ['Phosphoglycerate kinase 1 deficiency'] |


| (p.Cys316Arg) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000291.3(PGK1): } \\ & \text { c.758T>C } \\ & \text { (p.Ile253Thr) } \\ & \hline \end{aligned}$ | 137852534 | PGK1 | [] | [] | ['Phosphoglycerate kinase 1 deficiency'] |
| $\begin{aligned} & \text { NM_170784.2(MKKS) } \\ & \text { :c.830T>C } \\ & \text { (p.Leu277Pro) } \end{aligned}$ | 74315398 | MKKS | I] | I] | ['Bardet-Biedl syndrome 6', 'not provided'] |
| $\begin{aligned} & \text { NM_000451.3(SHOX) } \\ & \text { :c. } 877 \mathrm{TP}>\mathrm{C} \\ & \text { (p.Ter293Arg) } \\ & \hline \end{aligned}$ | 137852559 | SHOX | [] | [] | ['Leri Weill dyschondrosteosis'] |
| NM 001029871.3(RS PO4): $: .319 \mathrm{~T}>\mathrm{C}$ (p.Cys107Arg) | 74315421 | RSPO4 | [] | [] | ['Anonychia'] |
| NM_000044.3(AR):c. 2 <br> $033 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu678Pro) | 137852579 | AR | [] | ['GTCCYGGAAGC CATTGAGCCAGG'] | ] |
| $\begin{aligned} & \text { NM_000044.3(AR):c. } 2 \\ & 423 \bar{T}>C \\ & (\mathrm{p} . \mathrm{Met} 808 \mathrm{Thr}) \\ & \hline \end{aligned}$ | 137852592 | AR | I] | II | ['Reifenstein syndrome'] |
| NM_000044.3(AR):c. 2 $596 \overline{\mathrm{~T}}>\mathrm{C}$ (p.Ser866Pro) | 137852597 | AR | [] | [] | ['Androgen resistance syndrome'] |
| NM_172201.1(KCNE2 ):c. $161 \mathrm{~T}>\mathrm{C}$ (p.Met54Thr) | 74315447 | KCNE2 | [] | [] | $\begin{array}{\|l} \hline \text { ['Long QT syndrome } \\ \text { 6', 'Congenital long } \\ \text { QT syndrome', } \\ \text { Q'Cardiac arrlyythmia'] } \\ \hline \end{array}$ |
| NM 172201.1(KCNE2 <br> ):c. $\overline{7} 0 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile57Thr) | 74315448 | KCNE2 | [] | [] | ['Long QT syndrome 6', 'Cardiac arrhythmia', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000211.4(ITGB2) } \\ & \text { :c.446T>C } \\ & \text { (p.Leu149Pro) } \end{aligned}$ | 137852611 | ITGB2 | ['AGCY AGGTG GCGAC CTGCT CCGG'] | ['AGCYAGGTGGC GACCTGCTCCGG'] | ['Leukocyte adhesion deficiency'] |
| $\begin{aligned} & \hline \text { NM_000211.4(ITGB2) } \\ & \text { :c.412T>C } \\ & \text { (p.Ser138Pro) } \\ & \hline \end{aligned}$ | 137852617 | ITGB2 | [] | [] | ['Leukocyte adhesion deficiency'] |
| NM_000023.2(SGCA) c. $524 \mathrm{~T}>\mathrm{C}$ <br> (p.Val175Ala) | 137852622 | SGCA | [] | [] | ['Limb-girdle muscular dystrophy, type 2D'] |
| NM_001166107.1(HM GCS2):c.520T>C (p.Phe 174Leu) | 137852636 | HMGCS2 | [] | ['CCCTCYTCAATG CTGCCAACTGG'] | ['mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency' |
| $\begin{aligned} & \hline \text { NM_001886.2(CRYB } \\ & \text { A4):c.281T>C } \\ & \text { (p.Phe94Ser) } \\ & \hline \end{aligned}$ | 74315486 | CRYBA4 | [] | [] | ['Cataract 23'] |
| $\begin{aligned} & \text { NM_001886.2(CRYB } \\ & \text { A4):c.206T>C } \\ & \text { (p.Leu69Pro) } \\ & \hline \end{aligned}$ | 74315487 | CRYBA4 | [] | [] | ['Cataract 23'] |
| NM_002047.2(GARS) c. $548 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu183Pro) | 137852644 | GARS | [] | [] | ['Distal hereditary motor neuronopathy type $5^{\prime}$ '] |
| $\begin{aligned} & \text { NM_000268.3(NF2):c. } \\ & 1604 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu535Pro) } \end{aligned}$ | 74315493 | NF2 | [] | [] | ['Neurofibromatosis, type $\left.2^{2}\right]$ |
| $\begin{aligned} & \text { NM_000095.2(COMP) } \\ & : c .982 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 137852653 | COMP | I] | [] | ['Pseudoachondropla stic |


| (p.Cys328Arg) |  |  |  |  | spondyloepiphyseal dysplasia syndrome' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000095.2(COMP) <br> :c. $1042 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys348Arg) | 137852656 | COMP | [] | [] | ['Pseudoachondropla stic spondyloepiphyseal dysplasia syndrome |
| $\begin{array}{\|l} \hline \text { NM_017929.5(PEX26) } \\ \text { c. } 2 \overline{\mathrm{~T}}>\mathrm{C}(\text { p.Met1Thr) } \end{array}$ | 74315506 | PEX26 | [] | [] | ['Peroxisome biogenesis disorder $\left.7 \mathrm{~B}^{\prime}\right]$ |
| NM_033163.3(FGF8): <br> c. $11 \overline{8} \mathrm{~T}>\mathrm{C}$ <br> (p.Phe40Leu) | 137852661 | FGF8 | [] | ['TTCCCTGYTCCG GGCTGGCCGGG'] | ['Kallmann syndrome 6'] |
| NM_007315.3(STAT1 ):c. $2117 \mathrm{~T}>\mathrm{C}$ (p.Leu706Ser) | 137852677 | STAT1 | I] | [] | ['Immunodeficiency $\left.31 a^{\prime}\right]$ |
| NM 007315.3(STAT1 ):c. $1799 \mathrm{~T}>\mathrm{C}$ (p.Leu600Pro) | 137852678 | STAT1 | [] | [] | ['Mycobacterial and viral infections, susceptibility to, autosomal recessive'। |
| NM_000336.2(SCNN1 <br> B): $\mathrm{c} .1858 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr620His) | 137852707 | SCNN1B | [] | [] | $\begin{aligned} & \text { ['Pseudoprimary } \\ & \text { hyperaldosteronism'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_005215.3(DCC):c } \\ & .503 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met1687hr) } \end{aligned}$ | 121912967 | DCC | [] | ['AGCCCAYGCCA ACAATCCACTGG'] | ] |
| $\begin{aligned} & \text { NM_001034850.2(FA } \\ & \text { M134B):c. } 873+2 \mathrm{~F}>\mathrm{C} \end{aligned}$ | 137852738 | FAM134B | II | [] | ['Hereditary sensory and autonomic neuropathy type IIA'] |
| $\begin{aligned} & \text { NM_000182.4(HADH } \\ & \text { A):c.1025T>C } \\ & \text { (p.Leu342Pro) } \\ & \hline \end{aligned}$ | 137852772 | HADHA | I] | II | ['Mitochondrial trifunctional protein deficiency'\| |
| $\begin{aligned} & \text { NM_001165974.1(UR } \\ & \text { OC1):c.209T>C } \\ & \text { (p.Leu70Pro) } \end{aligned}$ | 137852796 | UROC1 | [] | [] | ['Urocanate hydratase deficiency'] |
| $\begin{aligned} & \text { NM_000405.4(GM2A) } \\ & \text { :c. } 412 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys138Arg) } \end{aligned}$ | 137852797 | GM2A | [] | [] | ['Tay-Sachs disease, variant $\left.\mathrm{AB}^{\prime}\right]$ |
| NM 001039523.2(CH RNA1):c. $901 \mathrm{~T}>\mathrm{C}$ (p.Phe301Leu) | 137852806 | CHRNA1 | I] | ['TGTGYTCCTTCT GGTCATCGTGG'] | ['Myasthenic syndrome, congenital, fastchannel'] |
| NM_003688.3(CASK) :c. $802 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr268His) | 137852817 | CASK | [] | [] | ['FG syndrome 4'] |
| $\begin{aligned} & \text { NM_003688.3(CASK) } \\ & \text { c. 2740T>C } \\ & \text { (p.Trp914Arg) } \end{aligned}$ | 137852819 | CASK | ['CACA <br> GYGGG <br> TCCCT <br> GTCTC <br> CTGG', <br> 'ACAGY <br> GGGTC <br> CCTGT <br> CTCCT <br> GGG' | ['CACAGYGGGTC 'ACAGYGGGTCCC TGTCTCCTGGG'] | ['FG syndrome 4'] |
| $\begin{array}{\|l\|} \hline \text { NM_182760.3(SUMF1 } \\ \text { ):c. } 1006 \mathrm{~T}>\mathrm{C} \\ \text { (p.Cys336Arg) } \\ \hline \end{array}$ | 137852848 | SUMF1 | [] | [] | ['Multiple sulfatase deficiency'] |


| $\begin{array}{\|l\|} \hline \text { NM_182760.3(SUMF1 } \\ \text { ):c.463T }>C \\ \text { (p.Ser155Pro) } \\ \hline \end{array}$ | 137852850 | SUMF1 | [] | ['GGCGACYCCTTT GTCTTTGAAGG'] | ['Multiple sulfatase deficiency', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000158.3(GBE1): } \\ & \text { c.671T }>\text { C } \\ & \text { (p.Leu224Pro) } \end{aligned}$ | 137852886 | GBE1 | [] | ['AATGTACYACCA AGAATCAAAGG'] | ['Glycogen storage disease, type IV', <br> 'GLYCOGEN <br> STORAGE <br> DISEASE IV, <br> NONPROGRESSIV <br> E HEPATIC'] |
| m. $8356 \mathrm{~T}>\mathrm{C}$ | 118192099 | MT-TK | [] | [] | ['Myoclonus with epilepsy with ragged red fibers', <br> 'MERRF/MELAS overlap syndrome'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c.1120T>C } \\ & \text { (p.Phe374Leu) } \end{aligned}$ | 137852900 | GNPTAB | [] | [] | ['Pseudo-Hurler polydystrophy', 'I cell disease'] |
| $\begin{aligned} & \text { NM_031924.4(RSPH3 } \\ & \text { ):c. } 631-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 142800871 | RSPH3 | [] | [] | ['Kartagener syndrome'] |
| $\begin{aligned} & \text { NM_058172.5(ANTX } \\ & \text { R2):c.566T>C } \\ & \text { (p.Ile189Thr) } \\ & \hline \end{aligned}$ | 137852905 | ANTXR2 | [] | [] | ['Hyaline fibromatosis syndrome'। |
| NM_000419.3(ITGA2 <br> B): $\mathrm{c} .641 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu214Pro) | 137852911 | ITGA2B | [] | ['CTGGTGCYTGGG <br> GCTCCTGGCGG'] | ['Glanzmann thrombasthenia'] |
| $\begin{aligned} & \text { NM_001171507.2(MC } \\ & \text { FD2):c.407T>C } \\ & \text { (p.Ile136Thr) } \\ & \hline \end{aligned}$ | 137852914 | MCFD2 | [] | [] | ['Factor v and factor viii, combined deficiency of, 2'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c. } 1205 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met } 402 \mathrm{Thr} \text { ) } \end{aligned}$ | 118192117 | RYR1 | ['CGCA <br> YGATC <br> CACAG <br> CACCA <br> ATGG'] | ['CGCAYGATCCAC AGCACCAATGG'] | ['Congenital myopathy with fiber type disproportion', 'Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c. } 13703 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu4568Pro) } \end{aligned}$ | 118192131 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000540.2(RYR1): } \\ & \text { c.13949T>C } \\ & \text { (p.Leu4650Pro) } \\ & \hline \end{aligned}$ | 118192138 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_138694.3(PKHD1 } \\ & \text { ):c. } 10658 \mathrm{~T}>\mathrm{C} \\ & \text { (p.1le3553Thr) } \end{aligned}$ | 137852948 | PKHD1 | [] | ['GAGCCCAYTGA AATACGCTCAGG'] | ['Polycystic kidney disease, infantile type'] |
| $\begin{aligned} & \text { NM_012464.4(TLL1): } \\ & \text { c.713T>C } \\ & \text { (p.Val238Ala) } \end{aligned}$ | 137852952 | TLL1 | $\begin{aligned} & \hline \text { ['GGGA } \\ & \text { TTGYT } \\ & \text { GTTCA } \\ & \text { TGAAT } \\ & \text { TGGG'] } \end{aligned}$ | ['GGGATTGYTGTT CATGAATTGGG'] | ['Atrial septal defect 6'] |
| $\begin{array}{\|l} \hline \text { NM } 0000540.2 \text { (RYR1): } \\ \text { c. } 14762 \mathrm{~T}>\mathrm{C} \\ \text { (p.Phe } 4921 \text { Ser) } \\ \hline \end{array}$ | 118192156 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_024960.4(PANK2 } \\ & \text { ):c.178T>C } \\ & \text { (p.Ser60Pro) } \\ & \hline \end{aligned}$ | 137852964 | PANK2 | [] | ['ATTGACYCAGTC GGATTCAATGG'] | [ |
| $\begin{aligned} & \mathrm{NM} 001001486.1 \text { (AT } \\ & \mathrm{P} 2 \mathrm{Cl} \text { ):c. } 1751 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu584Pro) } \end{aligned}$ | 137853015 | ATP2C1 | [] | [] | ['Familial benign pemphigus'] |
| NM_014363.5(SACS): | 137853017 | SACS | [] | [] | ['Spastic ataxia |


| $\begin{aligned} & \hline \text { c.5836T>C } \\ & \text { (p.Trp1946Arg) } \end{aligned}$ |  |  |  |  | CharlevoixSaguenay type'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_014363.5(SACS): } \\ & \text { c. } 9742 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Trp3248Arg) } \end{aligned}$ | 137853018 | SACS | [] | [] | ['Spastic ataxia Charlevoix- <br> Saguenay type'] |
| $\begin{aligned} & \text { NM_014363.5(SACS): } \\ & \text { c. } 3161 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe } 1054 \text { Ser) } \end{aligned}$ | 137853019 | SACS | [] | [] | ['Spastic ataxia CharlevoixSaguenay type'] |
| ```NM_006899.3(IDH3B ):c. \(395 \mathrm{~T}>\mathrm{C}\) (p.Leul32Pro)``` | 137853020 | IDH3B | [] | ['TGCGGCYGAGG TAGGTGGTCTGG', 'GCGGCYGAGGTA GGTGGTCTGGG' | ['Retinitis pigmentosa 46'] $^{\prime}$ |
| $\begin{aligned} & \text { NM-001139.2(ALOX } \\ & \text { 12B):c.1277T>C } \\ & \text { (p.Leu426Pro) } \end{aligned}$ | 137853023 | ALOX12B | [] | [] | ['Autosomal recessive congenital ichthyosis $2^{\prime}$ ] |
| NM_001080463.1(DY NC2H1):c.3719T>C (p.Ile1240Thr) | 137853028 | DYNC2H1 | [] | [] | ['Short-rib thoracic dysplasia 3 with or without polydactyly'] |
| NM_006009.3(TUBA1 <br> A):c. $1190 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu397Pro) | 137853048 | TUBA1A | [] | [] | ['Lissencephaly 3'] |
| NM_004519.3(KCNQ <br> 3): c. $925 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp309Arg) | 118192249 | KCNQ3 | [] | [] | ['Benign familial neonatal seizures 2'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .332 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leul11Pro) } \\ & \hline \end{aligned}$ | 1800324 | OTC | [] | [] | ['Ornithine carbamoyltransferas e deficiency'\| |
| NM_001172567.1(MY D88):c.317T>C (p.Leul06Pro) | 137853065 | MYD88 | [] | [] | ['Myd88 deficiency'] |
| NM_002241.4(KCNJ1 <br> 0): c. $418 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys140Arg) | 137853068 | KCNJ10 | [] | [] | ['SeSAME syndrome'] |
| $\begin{aligned} & \text { NM_000455.4(STK11) } \\ & \text { :c. } 200 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu67Pro) } \end{aligned}$ | 137853077 | STK11 | [] | [] | ['Peutz-Jeghers syndrome'] |
| $\begin{aligned} & \text { NM_000518.4(HBB):c } \\ & .332 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Leul11Pro }) \\ & \hline \end{aligned}$ | 35256489 | HBB | [] | [] | ['Beta thalassemia major'] |
| NM_005094.3(SLC27 A4):c. $739 \mathrm{~T}>\mathrm{C}$ (p.Ser247Pro) | 137853133 | SLC27A4 | [] | [] | ['Ichthyosis prematurity syndrome'] |
| NM 001145308.4(LR TOMT):c.313T>C (p.Trp105Arg) | 137853186 | LRTOMT | [] | [] | ['Deafness, autosomal recessive 63'] |
| NM_178012.4(TUBB2 <br> B): $\mathrm{c} .514 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser172Pro) | 137853194 | TUBB2B | [] | [] | ['Polymicrogyria, asymmetric'] |
| $\begin{aligned} & \text { NM_178012.4(TUBB2 } \\ & \text { B):c.683T>C } \\ & \text { (p.Leu228Pro) } \\ & \hline \end{aligned}$ | 137853195 | TUBB2B | [] | [] | ['Polymicrogyria, asymmetric'] |
| NM_178012.4(TUBB2 <br> B): $\mathrm{c} .793 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe265Leu) | 137853196 | TUBB2B | [] | [] | ['Polymicrogyria, asymmetric'] |
| NM_001082971.1(DD <br> C): $\mathbf{c} .925 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe309Leu) | 137853209 | DDC | [] | [] | ['Deficiency of aromatic-L-aminoacid decarboxylase'] |
| NM_006121.3(KRT1): | 137853225 | KRT1 | [] | [] | ['Bullous |


| $\begin{aligned} & \mathrm{c} .1424 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu } 475 \mathrm{Pro} \text { ) } \end{aligned}$ |  |  |  |  | ichthyosiform erythroderma'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_033500.2(HK1):c } \\ & .1550 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Leu } 517 \mathrm{Ser}) \end{aligned}$ | 137853249 | HK1 | [] | ['GACTTCTYGGCC <br> CTGGATCTTGG ${ }^{\prime}$, <br> 'TTCTYGGCCCTG <br> GATCTTGGAGG'] | ['Hemolytic anemia due to hexokinase deficiency'] |
| $\begin{aligned} & \text { NM_000249.3(MLH1) } \\ & \text { c. } 229 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys77Arg) } \end{aligned}$ | 63749859 | MLH1 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| $\begin{aligned} & \text { NM_000444.5(PHEX): } \\ & \text { c.1664T }>\mathrm{C} \\ & \text { (p.Leu555Pro) } \end{aligned}$ | 137853270 | PHEX | [] | $\begin{aligned} & \hline \text { ['AGCYCCAGAAG } \\ & \text { CCTTTCTTTTGG'] } \end{aligned}$ | ['Familial X-linked hypophosphatemic vitamin D refractory rickets'] |
| $\begin{aligned} & \text { NM_000321.2(RB1):c. } \\ & 2134 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys } 712 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 137853296 | RB1 | [] | [] | ['Retinoblastoma'] |
| $\begin{aligned} & \text { NM_007313.2(ABL1): } \\ & \text { c.988T>C } \\ & \text { (p.Phe330Leu) } \end{aligned}$ | 137853304 | ABL1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_003639.4(IKBKG } \\ & \text { ):c. } 1249 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys417Arg) } \end{aligned}$ | 137853325 | IKBKG | [] | ['TGGAGYGCATTG <br> AGTAGGGCCGG'] | ['Hypohidrotic ectodermal dysplasia with immune deficiency', 'HyperIgM immunodeficiency, X-linked, with hypohidrotic ectodermal dysplasia'] |
| $\begin{aligned} & \text { NM_017534.5(MYH2) } \\ & \text { :c.5609T>C } \\ & \text { (p.Leu1870Pro) } \\ & \hline \end{aligned}$ | 786201023 | - | [] | [] | ['Inclusion body myopathy 3'] |
| $\begin{aligned} & \text { NM_000314.6(PTEN): } \\ & \text { c.406T>C } \\ & \text { (p.Cys136Arg) } \end{aligned}$ | 786201044 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM-001257988.1(TY } \\ & \text { MP):c.665A>G } \\ & \text { (p.Lys222Arg) } \end{aligned}$ | 149977726 | TYMP | ['CACG AGTYT <br> CTTAC <br> TGAGA <br> ATGG'] | ['CACGAGTYTCTT ACTGAGAATGG', 'GAGTYTCTTACT GAGAATGGAGG'] | [] |
| $\begin{aligned} & \text { NM_016725.2(FOLR1 } \\ & \text { ):c. } 493+2 \mathrm{P}>\mathrm{C} \end{aligned}$ | 144637717 | FOLR1 | ['AGGY <br> GAGGG <br> CTGGG <br> GTGGG <br> CAGG'] | ['CTTCAGGYGAG <br> GGCTGGGGTGGG', <br> 'AGGYGAGGGCTG <br> GGGTGGGCAGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_002225.3(IVD):c. } \\ & 295+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 748026507 | IVD | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000175.3(GPI):c. } \\ & 1016 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu339Pro) } \end{aligned}$ | 137853587 | GPI | [] | [] | [] |
| $\begin{aligned} & \text { NM_002055.4(GFAP): } \\ & \text { c.1055T>C } \\ & \text { (p.Leu352Pro) } \end{aligned}$ | 28932769 | GFAP | [] | ['GGACCYGCTCA <br> ATGTCAAGCTGG'] | ['Alexander disease', 'not provided'] |
| $\begin{aligned} & \text { NM } 020921.3(\mathrm{NIN}): \mathrm{c} . \\ & 3665 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Gln} 1222 \mathrm{Arg}) \end{aligned}$ | 187464517 | NIN | [] | [] | ['Seckel syndrome 7'] |
| NM_005603.4(ATP8B <br> 1):c. $2097+2 \mathrm{~T}>\mathrm{C}$ | 387906381 | ATP8B1 | [] | [] | ['Progressive intrahepatic |


|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_005144.4(HR):c.- <br> $320 \bar{T}>C$ | 387906382 | HR | [] | [] | ['Marie Unna <br> hereditary <br> hypotrichosis 1'] |
| NM_001303.3(COX10 <br> ):c.2T>C (p.Met1Thr) | 387906383 | COX10 | [] | [] | ['Congenital <br> myasthenic <br> syndrome, <br> acetazolamide- <br> responsive'] |
| NM_004415.2(DSP):c. <br> $4961 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu1654Pro) | 749730642 | DSP |  | [] | [] |


| m.11253T>C | 200145866 | MT-ND4 | [] | [] | ['Leber optic atrophy'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000131.4(F7):c. 3 $8 \mathrm{~T}>\mathrm{C}$ (p.Leu13Pro) | 387906507 | F7 | [] | [] | ['Factor VII deficiency'] |
| $\begin{aligned} & \text { NM_000131.4(F7):c. } 9 \\ & 83 \mathrm{~T}>\mathrm{C} \text { (p.Phe328Ser) } \\ & \hline \end{aligned}$ | 387906508 | F7 | [] | ['GACGTYCTCTGA GAGGACGCTGG'] | ['Factor VII deficiency'] |
| $\begin{aligned} & \text { NM_000422.2(KRT17 } \\ & \text { ):c.296T }>\text { C } \\ & \text { (p.Leu99Pro) } \end{aligned}$ | 28933089 | KRT17 | [] | [] | ['Pachyonychia congenita type $2^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_001040113.1(MY } \\ & \text { H11):c.3791T>C } \\ & \text { (p.Leul264Pro) } \\ & \hline \end{aligned}$ | 387906532 | MYH11 | [] | ['GAAGCYGGAGG CGCAGGTGCAGG' 1 | ['Aortic aneurysm, familial thoracic 4'] |
| $\begin{aligned} & \text { NM_013246.2(CLCF1 } \\ & \text { ):c. } 46 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys16Arg) } \end{aligned}$ | 137853934 | - | [] | [] | ['Cold-induced sweating syndrome 2'] |
| $\begin{aligned} & \text { NM_013246.2(CLCF1 } \\ & \text { ):c.676T>C } \\ & \text { (p.Ter226Arg) } \end{aligned}$ | 137853935 | - | [] | [] | ['Cold-induced sweating syndrome 2'] |
| NM_001077620.2(PR CD):c. $2 \mathrm{~T}>\mathrm{C}$ <br> (p.MetlThr) | 527236092 | - | [] | [] | ['Retinitis pigmentosa'] |
| $\begin{aligned} & \text { NM_000488.3(SERPI } \\ & \text { NC1):c.68T>C } \\ & \text { (p.Leu23Pro) } \\ & \hline \end{aligned}$ | 387906575 | SERPINC1 | [] | [] | ['Antithrombin III deficiency'] |
| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c. } 9751 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys3251Arg) } \end{aligned}$ | 527236118 | USH2A | [] | [] | ['Retinitis pigmentosa'] |
| $\begin{aligned} & \text { NM_001458.4(FLNC): } \\ & \text { c. } 752 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met251Thr) } \end{aligned}$ | 387906586 | FLNC | [] | [] | ['Myopathy, distal, 4'] |
| $\begin{aligned} & \text { NM_000781.2(CYP11 } \\ & \text { A1):c.665T>C } \\ & \text { (p.Leu222Pro) } \end{aligned}$ | 387906601 | CYP11A1 | [] | [] | ['Adrenal insufficiency, congenital, with 46,XY sex reversal, partial or complete'] |
| $\begin{aligned} & \text { NM_000548.3(TSC2): } \\ & \text { c. } 2410 \mathrm{~T}>\mathrm{C} \\ & (\text { p.Cys } 804 \mathrm{Arg}) \end{aligned}$ | 137853995 | TSC2 | [] | [] | ['Tuberous sclerosis syndrome', <br> 'Tuberous sclerosis <br> 2', 'not provided'] |
| $\begin{aligned} & \text { NM_001145661.1(GA } \\ & \text { TA2):c. } 1117 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys373Arg) } \\ & \hline \end{aligned}$ | 387906633 | GATA2 | [] | [] | ['Lymphedema, primary, with myelodysplasia'] |
| $\begin{aligned} & \text { NM_002693.2(POLG): } \\ & \text { c. } 3470 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Asn1157Ser) } \end{aligned}$ | 548076633 | POLG | ['CAAG <br> AGGYT <br> GGTGA <br> TCTGC <br> AAGG'] | $\begin{aligned} & \hline \text { ['CAAGAGGYTGG } \\ & \text { TGATCTGCAAGG'] } \end{aligned}$ | ['not provided'] |
| NM_002465.3(MYBP <br> C1):c. $706 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp236Arg) | 387906657 | MYBPC1 | [] | [] | ['Distal arthrogryposis type 1B'] |
| NM_002465.3(MYBP C1):c. $2566 \mathrm{~T}>\mathrm{C}$ (p.Tyr856His) | 387906658 | MYBPC1 | [] | ['CAAACCYATATC CGCAGAGTTGG'] | ['Distal arthrogryposis type $1 \mathrm{~B}^{\prime} \mid$ |
| NM_003392.4(WNT5 <br> A): $\mathrm{c} .544 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys182Arg) | 387906663 | WNT5A | [] | [] | ['Robinow syndrome'] |
| $\begin{aligned} & \text { NM_005188.3(CBL):c } \\ & .1186 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys396Arg) } \\ & \hline \end{aligned}$ | 387906665 | CBL | [] | [] | ['Rasopathy'] |


| $\begin{aligned} & \text { NM_006902.4(PRRX1 } \\ & \text { ):c.338T>C } \\ & \text { (p.Phe113Ser) } \\ & \hline \end{aligned}$ | 387906667 | PRRX1 | [] | [] | ['Dysgnathia complex'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001111035.1(AC } \\ & \text { P5):c.602T>C } \\ & \text { (p.Leu201Pro) } \end{aligned}$ | 387906672 | - | [] | [] | ['Spondyloenchondr odysplasia with immune dy sregulation'] |
| $\begin{aligned} & \text { NM_002734.4(PRKA } \\ & \text { R1A) } \text { )c.1117T>C } \\ & \text { (p.Tyr373His) } \end{aligned}$ | 387906693 | PRKAR1A | [] | [] | ['Acrodysostosis 1 with or without hormone resistance'] |
| $\begin{aligned} & \text { NM_002734.4(PRKA } \\ & \text { R1A):c.980T>C } \\ & \text { (p.Ile327Thr) } \end{aligned}$ | 387906695 | PRKAR1A | [] | [] | ['Acrodysostosis 1 with or without hormone resistance'] |
| $\begin{aligned} & \text { NM_003491.3(NAA10 } \\ & \text { ):c.109T>C } \\ & \text { (p.Ser37Pro) } \end{aligned}$ | 387906701 | NAA10 | [] | ['TGGCCTTYCCTG GCCCCAGGTGG', <br> 'GGCCTTYCCTGG CCCCAGGTGGG'] | ['N-terminal acetyltransferase deficiency'] |
| NM_006306.3(SMC1 <br> A):c. $2351 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile 784Thr) | 387906702 | SMC1A | ['AGAY <br> TGGTG <br> TGCGC <br> AACAT <br> CCGG'] | ['AGAYTGGTGTGC GCAACATCCGG'] | ['Congenital muscular hypertrophy-cerebral syndrome'] |
| $\begin{aligned} & \text { NM_000377.2(WAS): } \\ & \text { c.814T }>\text { C } \\ & \text { (p.Ser272Pro) } \end{aligned}$ | 387906716 | WAS | [] | [] | ['Severe congenital neutropenia Xlinked'] |
| $\begin{aligned} & \text { NM_000377.2(WAS): } \\ & \text { c.881T>C } \\ & \text { (p.Ile294Thr) } \end{aligned}$ | 387906717 | WAS | [] | ['GACTTCAYTGAG <br> GACCAGGGTGG', <br> 'ACTTCAYTGAGG <br> ACCAGGGTGGG'] | ['Severe congenital neutropenia X linked'] |
| m.12201T>C | 387906733 | MT-TH | [] | [] | ['Deafness, nonsyndromic sensorineural, mitochondrial'] |
| $\begin{aligned} & \text { NM_139125.3(MASP1 } \\ & \text { ):c.1888T>C } \\ & \text { (p.Cys630Arg) } \\ & \hline \end{aligned}$ | 387906753 | MASP 1 | [] | [] | ['Michels syndrome'] |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c. } 520 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys174Arg) } \end{aligned}$ | 387906763 | STAT1 | [] | [] | ['Immunodeficiency $\left.31 C^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_053025.3(MYLK } \\ & \text { ):c. } 5275 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser1759Pro) } \end{aligned}$ | 387906781 | - | [] | [] | ['Aortic aneurysm, familial thoracic 7'] |
| $\begin{aligned} & \text { NM_000287.3(PEX6): } \\ & \text { c.1601T>C } \\ & \text { (p.Leu534Pro) } \end{aligned}$ | 387906809 | PEX6 | [] | ['CTTCYGGGCCGG GACCGTGATGG', 'TTCYGGGCCGGG ACCGTGATGGG'] | ['Peroxisome biogenesis disorder 4B'] |
| NM_000174.4(GP9):c. $167 \mathrm{~T}>\mathrm{C}$ (p.Leu56Pro) | 28933377 | GP9 | [] | [] | ['Bernard-Soulier syndrome type $\left.\mathrm{C}^{\prime}\right]$ |
| $\begin{aligned} & \hline \text { NM_004153.3(ORC1): } \\ & \text { c.266T>C } \\ & \text { (p.Phe89Ser) } \\ & \hline \end{aligned}$ | 387906827 | ORC1 | [] | [] | ['Meier-Gorlin syndrome 1'] |
| $\begin{aligned} & \text { NM_021252.4(RAB18 } \\ & \text { ):c.619T>C } \\ & \text { (p.Ter207Gln) } \end{aligned}$ | 387906833 | RAB18 | [] | [] | ['Warburg micro syndrome 3'] |
| $\begin{aligned} & \text { NM_000702.3(ATPlA } \\ & \text { 2):c.2291T>C } \\ & \text { (p.Leu764Pro) } \\ & \hline \end{aligned}$ | 28933398 | ATP1A2 | [] | [] | ['Familial hemiplegic migraine type 2'] |
| $\begin{aligned} & \text { NM_000702.3(ATP1A } \\ & \text { 2):c. } 2659 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 28933399 | ATP1A2 | [] | [] | ['Familial hemiplegic migraine |


| (p.Trp887Arg) |  |  |  |  | type 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000702.3(ATP1A 2): c. $2192 \mathrm{~T}>\mathrm{C}$ (p.Met731Thr) | 28933400 | ATPIA2 | [] | [] | ['Familial hemiplegic migraine type 2'] |
| NM_020433.4(JPH2): <br> $.421 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr141His) | 387906897 | JPH2 | I] | I] | \|'Familial hypertrophic cardiomyopathy $17^{\prime \prime}$ |
| NM_173170.1(IL36R <br> N ): c. $80 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu27Pro) | 387906914 | IL36RN | [] | [] | ['Pustular psoriasis, generalized'] |
| NM_004990.3(MARS) <br> c. $1568 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile523Thr) | 201555303 | MARS | [] | [] | ['Interstitial lung and liver disease'] |
| NM 020191.2(MRPS2 <br> 2):c. $644 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu215Pro) | 387906924 | MRPS22 | ['ATCYT <br> AGGGT <br> AAGGT <br> GACTT <br> AGG'] <br> $[$ | ['ATCYTAGGGTAA GGTGACTTAGG'] | ['Combined oxidative phosphorylation deficiency 5'] |
| NM 022445.3(TPK1): <br> c. $119 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu40Pro) | 387906936 | TPK1 | [] | [] | ['THIAMINE METABOLISM DYSFUNCTION SYNDROME 5 (EPISODIC ENCEPHALOPAT HY TYPE)'] |
| NM_020634.1(GDF3): <br> c. $914 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu305Pro) | 387906945 | GDF3 | I] | II | ['Congenital ocular coloboma', <br> 'Microphthalmia, isolated $7^{\prime} \mid$ |
| NM_024513.3(FYCO1 <br> ):c. $4127 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu1376Pro) | 387906965 | FYCO1 | [] | ['CAGCCYGATCCC CATCACTGTGG'] | ['Cataract, autosomal recessive congenital ${ }^{2} 1$ |
| NM_006147.3(IRF6): .65T>C (p.Leu22Pro) | 387906967 | IRF6 | [] | ['GCCYCTACCCTG GGCTCATCTGG'] | ['Van der Woude syndrome', 'Popliteal pterygium syndrome'] |
| NM 025132.3(WDR1 <br> 9): :. $2129 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu710Ser) | 387906980 | WDR19 | [] | [] | ['Cranioectodermal dy splasia 4', <br> 'SENIOR-LOKEN <br> SYNDROME $8^{\prime}$ |
| NM 025132.3(WDR1 9): c. $20 \mathrm{~T}>\mathrm{C}$ (p.Leu7Pro) | 387906982 | WDR19 | I] | ['TCTCACYGCTAG AAAAGACTTGG'] | ['Asphyxiating thoracic dystrophy 5'] |
| NM_014874.3(MFN2) <br> :c. $647 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe216Ser) | 387906990 | MFN2 | [] | [] | [] |
| NM_016097.4(IER3IP <br> 1):c. $233 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu78Pro) | 387907012 | IER3IP1 | [] | [] | ['Microcephaly, epilepsy, and diabetes syndrome' |
| NM_022489.3(INF2):C <br> .310T>C <br> (p.Cys104Arg) | 387907034 | INF2 | [] | [] | ['Charcot-MarieTooth disease, dominant intermediate $\mathrm{E}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_022489.3(INF2):c } \\ & .383 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu128Pro) } \end{aligned}$ | 387907037 | INF2 | [] | [] | ['Charcot-MarieTooth disease, dominant intermediate $\mathrm{E}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_003235.4(TG):c. } 3 \\ & 229 \overline{\mathrm{~T}}>\mathrm{C} \end{aligned}$ | 137854433 | TG | [] | [] | ['Iodotyrosyl coupling defect'] |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { (p.Cys1077Arg) } & & & & \\
\hline \begin{array}{l}\text { NM_058246.3(DNAJB } \\
\text { 6):c.277T>C } \\
\text { (p.Phe93Leu) }\end{array} & 387907046 & \text { DNAJB6 } & {[]} & {[]} & \begin{array}{l}\text { ['Limb-girdle } \\
\text { muscular dystrophy, } \\
\text { type 1E'] }\end{array} \\
\hline \begin{array}{l}\text { NM_032446.2(MEGF } \\
\text { 10):c.2320T>C } \\
\text { (p.Cys774Arg) }\end{array} & 387907072 & \text { MEGF10 } & \text { [] } & \begin{array}{l}\text { ['GGGCAGYGTAC } \\
\text { TTGCCGCACTGG'] }\end{array} & \begin{array}{l}\text { ['Myopathy, } \\
\text { areflexia, respiratory } \\
\text { distress, and } \\
\text { dysphagia, early- } \\
\text { onset', 'Myopathy, } \\
\text { areflexia, respiratory } \\
\text { distress, and } \\
\text { dysphagia, early- }\end{array}
$$ <br>
\& \& \& \& \& <br>

onset, mild variant']\end{array}\right]\)|  |
| :--- |


| $\begin{aligned} & \text { NM_000267.3(NF1):c. } \\ & 1070 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu357Pro) } \end{aligned}$ | 137854563 | NF1 | [] | [] | ['Neurofibromatosis, type 1', <br> 'Neurofibromatosis, familial spinal'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_024306.4(FA2H): } \\ & \text { c. } 707 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Phe236Ser) } \\ & \hline \end{aligned}$ | 387907172 | FA2H | [] | [] | ['Spastic paraplegia 35'] |
| $\begin{aligned} & \text { NM_001004127.2(AL } \\ & \text { G11):c.1142T>C } \\ & \text { (p.Leu381Ser) } \end{aligned}$ | 387907182 | - | [] | [] | ['Congenital disorder of glycosylation type 1P'] |
| NM_021167.4(GATA <br> D1):c. $304 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser102Pro) | 387907188 | GATAD1 | [] | [] | ['Cardiomyopathy, dilated, 2b'] |
| $\begin{aligned} & \text { NM_033360.3(KRAS) } \\ & : \text { c. } 211 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr71His) } \end{aligned}$ | 387907205 | KRAS | [] | ['GGACCAGYACA TGAGGACTGGGG', 'CCAGYACATGAG GACTGGGGAGG', 'CAGYACATGAGG ACTGGGGAGGG'] | ['Cardiofaciocutaneo us syndrome 2'] |
| $\begin{aligned} & \text { NM_006265.2(RAD21 } \\ & \text { ):c.1753T>C } \\ & \text { (p.Cys585Arg) } \\ & \hline \end{aligned}$ | 387907213 | - | [] | [] | ['Cornelia de Lange syndrome 4'] |
| $\begin{aligned} & \text { NM_000222.2(KIT):c. } \\ & 1859 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val620Ala) } \end{aligned}$ | 387907217 | KIT | [] | [] | [] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5380 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Tyr1794His) } \end{aligned}$ | 137854615 | SCN5A | [] | [] | ['Brugada syndrome', 'Brugada syndrome 1'] |
| $\begin{aligned} & \text { NM_000076.2(CDKN } \\ & \text { 1C):c.827T>C } \\ & \text { (p.Phe276Ser) } \end{aligned}$ | 387907224 | CDKN1C | [] | [] | ['Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies'] |
| $\begin{aligned} & \text { NM_005691.3(ABCC9 } \\ & \text { ):c.3058T>C } \\ & \text { (p.Ser1020Pro) } \\ & \hline \end{aligned}$ | 387907229 | ABCC9 | [] | [] | ['Hypertrichotic osteochondrodysplas ia'\| |
| $\begin{aligned} & \text { NM_012343.3(NNT):c } \\ & .2930 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu977Pro) } \end{aligned}$ | 387907233 | NNT | [] | [] | ['Glucocorticoid deficiency 4'] |
| $\begin{aligned} & \text { NM_024110.4(CARD } \\ & \text { 14):c. } 467 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu156Pro) } \end{aligned}$ | 387907240 | CARD14 | [] | $\begin{array}{\|l} \hline \text { ['CAGCAGCYGCA } \\ \text { GGAGCACCTGGG' } \\ \text { ] } \\ \hline \end{array}$ | ['Pityriasis rubra pilaris'] |
| $\begin{aligned} & \text { NM_002501.3(NFIX): } \\ & \text { c.179T>C } \\ & \text { (p.Leu60Pro) } \end{aligned}$ | 387907254 | NFIX | [] | [] | ['Sotos syndrome 2'] |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A):c. } 121 \mathrm{~A}>\mathrm{T} \\ & \text { (p.Lys } 41 \mathrm{Ter} \text { ) } \end{aligned}$ | 764444350 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_005022.3(PFN1): } \\ & \text { c. } 341 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Met114Thr) } \end{aligned}$ | 387907265 | PFN1 | [] | [] | ['Amyotrophic lateral sclerosis 18'] |
| $\begin{aligned} & \text { NM_001172567.1(MY } \\ & \text { D88):c.818T }>\mathrm{C} \\ & \text { (p.Leu273Pro) } \end{aligned}$ | 387907272 | MYD88 | [] | [] | ['Macroglobulinemia , waldenstrom, somatic'] |
| NM_152296.4(ATP1A 3):c. $2431 \mathrm{~T}>\mathrm{C}$ (p.Ser811Pro) | 387907282 | ATP1A3 | [] | ['TGCCATCYCACT GGCGTACGAGG'] | ['Alternating hemiplegia of childhood 2'] |


| NM_022787.3(NMNA <br> T1):c.838T>C <br> (p.Ter280GIn) | 387907290 | NMNAT1 | [] | [] | ['Leber congenital <br> amaurosis 9'] |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_005120.2(MED12 <br> ):c.3493T>C <br> (p.Ser1165Pro) | 387907361 | MED12 | [] | ['AGGACYCTGAG <br> CCAGGGGCCCGG' <br> I | ['Ohdo syndrome, <br> X-linked'] |
| NM_006194.3(PAX9): <br> c.62T>C (p.Leu21Pro) | 28933970 | PAX9 | [] | ['GGCCGCYGCCC <br> AACGCCATCCGG'] | ['Tooth agenesis, <br> selective, 3'] |
| NM_000492.3(CFTR): <br> c.2780T>C <br> (p.Leu927Pro) | 397508435 | CFTR | [] | [] | ['Cystic fibrosis'] |
| NM_177976.2(ARL6): <br> c.272T>C (p.Ile91Thr) | 137854907 | ARL6 | [] | [] | ['Bardet-Biedl <br> syndrome'] |

Table 8. Human gene mutations that may be corrected by changing a guanine ( $G$ ) to an adenine (A). The gene name, gene symbol, and dbSNP database reference number (RS\#) are indicated. Also indicated are exemplary protospacers with their PAM sequences (gRNAs and gRNAall) and the base to be edited e.g., a C, indicated by a "Y". The "gRNAs" sequences, from top to bottom, correspond to SEQ ID NOs: 3434-3601. The "gRNA all" sequences, from top to bottom, correspond to SEQ ID NOs: 3602-4266.

| Name | $\begin{aligned} & \text { RS\# } \\ & \text { (dbSNP) } \end{aligned}$ | $\begin{aligned} & \text { GeneSym } \\ & \text { bol } \end{aligned}$ | gRNAs | gRNAall | Phenotypes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \text { NM_000138.4(FBN1): } \\ \text { c.3128A>G } \\ \text { (p.Lys1043Arg) } \\ \hline \end{array}$ | 137854472 | FBN1 | [] | ['TGCACYTGCCGT GGGTGCAGAGG'] | [] |
| $\begin{aligned} & \text { NM_000237.2(LPL):c. } \\ & 953 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn318Ser) } \\ & \hline \end{aligned}$ | 268 | LPL | [] | [] | ['Hyperlipidemia, familial combined'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c. } 2708 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu903Gly) } \end{aligned}$ | 727504261 | MYH7 | [] | ['AGCGCYCCTCAG CATCTGCCAGG'] | ['Cardiomyopathy', 'not specified'] |
| NM_000059.3(BRCA2 ):c. $\mathbf{4 7} 6-2 \mathrm{~A}>\mathrm{G}$ | 81002853 | BRCA2 | [] | ['ACCACYGGGGG TAAAAAAAAGGGG' <br> 'TACCACYGGGGG TAAAAAAAGGG', 'ATACCACYGGGG GTAAAAAAAGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_000059.3(BRCA2 } \\ & \text { ):c. } 9118-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 81002862 | BRCA2 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2'] |
| NM_000059.3(BRCA2 ):c. $9649-2 \mathrm{~A}>\mathrm{G}$ | 81002895 | BRCA2 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2'] |
| $\begin{aligned} & \text { NM_000387.5(SLC25 } \\ & \text { A20):c.713A>G } \\ & \text { (p.Gln238Arg) } \end{aligned}$ | 28934589 | $\begin{aligned} & \text { SLC25A2 } \\ & 0 \end{aligned}$ | [] | [] | ['Carnitine acylcarnitine translocase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .755 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp252Gly) } \end{aligned}$ | 28934601 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_172107.2(KCNQ } \\ & 2): c .851 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 28939683 | KCNQ2 | [] | [] | ['Benign familial neonatal seizures 1'] |


| (p.Tyr284Cys) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 006158.4(NEFL): <br> c. $293 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn98Ser) | 58982919 | NEFL | [] | [] | ['Charcot-MarieTooth disease, type [F', 'not provided'] |
| NM 000019.3(ACAT1 <br> ):c. $473 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn158Ser) | 199524907 | ACAT1 | I] | [] | ['Deficiency of acetyl-CoA acetyltransferase'] |
| NM_007294.3(BRCA1 ):c. $4987-2 \mathrm{~A}>\mathrm{G}$ | 397509212 | BRCA1 | [] | [] | ['Familial cancer of breast'] |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c.213-12A>G } \end{aligned}$ | 80358163 | BRCA1 | [] | [] | ['Familial cancer of breast', 'Hereditary breast and ovarian cancer syndrome', 'Breast-ovarian cancer, familial 1', 'Hereditary cancerpredisposing syndrome'] |
| NM 001382.3(DPAG T1):c. $509 \mathrm{~A}>\mathrm{G}$ (p.Tyr170Cys) | 28934876 | DPAGT1 | ['ACAYAGT ACAGGATT CCTGCGGG GACAYAG TACAGGAT TCCTGCGG 1 | ['ACAYAGTACAG GATTCCTGCGGG', 'GACAYAGTACAG GATTCCTGCGG'] | ['Congenital disorder of glycosylation type 1J'] |
| $\begin{aligned} & \hline \text { NM_032237.4(POMK) } \\ & \text { :c.773A>G } \\ & \text { (p.Gln258Arg) } \end{aligned}$ | 397509386 | POMK | [] | [] | ['Congenital muscular dystrophydystroglycanopathy with brain and eye anomalies, type A12'] |
| NM 201647.2(STAM BP):c.125A>G (p.Glu42Gly) | 397509387 | STAMBP | [] | [] | $\begin{aligned} & \text { ['Microcephaly- } \\ & \text { capillary } \\ & \text { malformation } \\ & \text { syndrome'] } \\ & \hline \end{aligned}$ |
| NM 006876.2(B4GAT <br> 1):c. $1168 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn390Asp) | 397509397 | B4GAT1 | ['CTGATYT TCAGCCTC CTTTTGGG' 'GCTGATYT TCAGCCTC CTTTTGG' | ['TGATYTTCAGCC TCCTTTTGGGG', 'CTGATYTTCAGC CTCCTTTTGGG', 'GCTGATYTTCAG CCTCCTTTTGG'] | ['Congenital muscular dystrophydystrogly canopathy with brain and eye anomalies, type ${ }^{\text {A13'] }}$ |
| NM_004315.4(ASAH1 <br> ):c. $965+4 \mathrm{~A}>\mathrm{G}$ | 397509415 | ASAH1 | [] | [] | ['Farber lipogranulomatosis'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { c. 1477A>G } \\ & \text { (p.Met493Val) } \\ & \hline \end{aligned}$ | 730880875 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_021020.3(LZTS1) } \\ & \text { :c.355A>G } \\ & \text { (p.Lys119Glu) } \\ & \hline \end{aligned}$ | 119473032 | LZTS1 | [] | ['CCCTYCTCGGAG CCCTGTAGAGG'] | [] |
| $\begin{aligned} & \text { NM_022455.4(NSD1): } \\ & \text { c.5893-2A>G } \end{aligned}$ | 587784163 | NSD1 | [] | I] | ['Sotos syndrome 1'] |
| $\begin{array}{\|l\|} \hline \text { NM_006894.5(FMO3) } \\ \text { c. } 182 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asn61Ser) } \\ \hline \end{array}$ | 72549322 | FMO3 | [] | [] | ['Trimethylaminuria' ] |
| $\begin{aligned} & \text { NM_000403.3(GALE) } \\ & \text { c. } 101 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn34Ser) } \\ & \hline \end{aligned}$ | 121908046 | GALE | ['TGGAAGY TATCGATG ACCACAGG | ['TGGAAGYTATCG ATGACCACAGG'] | ['UDPglucose-4epimerase deficiency'] |


|  |  |  | '] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000314.6(PTEN): } \\ & \text { c.527A>G } \\ & \text { (p.Tyr176Cys) } \\ & \hline \end{aligned}$ | 757498880 | PTEN | [] | I] | ['Hereditary cancerpredisposing syndrome'] |
| NM_000053.3(ATP7B <br> ):c. $2305 \mathrm{~A}>\mathrm{G}$ <br> (p.Met769Val) | 193922103 | ATP7B | [] | [] | ['Wilson disease', 'not specified', 'not provided'] |
| NM 000173.6(GP1BA ):c. $763 \mathrm{~A}>\mathrm{G}$ (p.Met255Val) | 121908064 | GP1BA | [] | [] | ['Pseudo von Willebrand disease'] |
| $\begin{aligned} & \text { NM_000422.2(KRT17 } \\ & \text { y:c.275A>G } \\ & \text { (p.Asn92Ser) } \end{aligned}$ | 59151893 | KRT17 | ['GTCAYTG AGGTTCTG CATGGTGG ' | $\begin{aligned} & \hline \text { ['GTCAYTGAGGTT } \\ & \text { CTGCATGGTGG', } \\ & \text { 'GCGGTCAYTGAG } \\ & \text { GTTCTGCATGG'] } \\ & \hline \end{aligned}$ | ['Pachyonychia congenita type $2^{\prime}$, 'not provided'] |
| NM_000288.3(PEX7): <br> c. $854 \mathrm{~A}>\mathrm{G}$ <br> (p.His285Arg) | 62653611 | PEX7 | [] | [] | ['Rhizomelic chondrodysplasia punctata type 1'] |
| NM 003742.2(ABCB1 <br> 1):c. $890 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu297Gly) | 11568372 | ABCB11 | [] | [] | ['Progressive familial intrahepatic cholestasis $2^{\prime}$, <br> 'Benign recurrent intrahepatic cholestasis 2'] |
| NM 012243.2(SLC35 <br> A3):c. $886 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser296Gly) | 141952252 | SLC35A3 | [] | I] | ['Arthrogryposis, mental retardation, and seizures'। |
| $\begin{aligned} & \text { NM_000061.2(BTK):c } \\ & .1082 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr361Cys) } \end{aligned}$ | 28935478 | BTK | ['GATGGYA GTTAATGA GCTCAGGG 'TGATGGY AGTTAATG AGCTCAGG ' | ['GATGGYAGTTA ATGAGCTCAGGG', 'TGATGGYAGTTA ATGAGCTCAGG'] | ] |
| $\begin{aligned} & \hline \text { NM_000169.2(GLA):c } \\ & .815 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn272Ser) } \\ & \hline \end{aligned}$ | 28935495 | - | [] | [] | ['Fabry disease'] |
| NM 016069.9(PAM16 <br> ):c.226A>G <br> (p.Asn76Asp) | 786203989 | - | ['TCATAGT YCTGCAGA GGAGAGG $\left.\mathrm{G}^{\prime}\right]$ | $\begin{aligned} & \hline \text { ['CATAGTYCTGCA } \\ & \text { GAGGAGAGGGG', } \\ & \text { 'TCATAGTYCTGC } \\ & \text { AGAGGAGAGGG'] } \\ & \hline \end{aligned}$ | ['Chondrodysplasia, megarbane-daghermelki type'] |
| NM 058163.1(TSR2): <br> c. 191A $>\mathrm{G}$ <br> (p.Glu64Gly) | 786203996 | TSR2 | [] | [] | $\begin{aligned} & \text { ['Diamond-Blackfan } \\ & \text { anemia with } \\ & \text { microtia and cleft } \\ & \text { palate', 'DIAMOND- } \\ & \text { BLACKFAN } \\ & \text { ANEMIA 14 WITH } \\ & \text { MANDIBULOFACI } \\ & \text { AL DYSOSTOSIS'] } \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \hline \text { NM_001098398.1(CO } \\ & \text { PA):c.728A>G } \\ & \text { (p.Asp243Gly) } \\ & \hline \end{aligned}$ | 794727994 | - | [] | [] | [] |
| NM 005957.4(MTHF R): $\mathrm{c} .1114 \mathrm{~A}>\mathrm{G}$ (p.Lys372Glu) | 786204024 | MTHFR | [] | [] | ['Homocysteinemia due to MTHFR deficiency'] |
| NM_012193.3(FZD4): <br> c. $1024 \mathrm{~A}>\mathrm{G}$ <br> (p.Met342Val) | 80358293 | - | [] | [] | $\begin{aligned} & \text { ['Exudative } \\ & \text { vitreoretinopathy 1'] } \end{aligned}$ |
| NM_000186.3(CFH):c | 460184 | CFH | ['CAGYTGA | ['CAGYTGAATTTG | ['Atypical |


| $\begin{aligned} & .3590 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Val1197Ala) } \end{aligned}$ |  |  | ATTTGTGT GTAAACGG 'I | TGTGTAAACGG'] | hemolytic-uremic syndrome 1'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_014846.3(KIAA0 } \\ & \text { 196):c.1411A>G } \\ & \text { (p.Asn471Asp) } \end{aligned}$ | 80338865 | $\begin{aligned} & \text { KIAA019 } \\ & 6 \end{aligned}$ | [] | [] | ['Spastic paraplegia 8'] |
| $\begin{aligned} & \text { NM_014946.3(SPAST } \\ & \text { ):c.1165A>G } \\ & \text { (p.Thr389Ala) } \end{aligned}$ | 786204132 | SPAST | ['AGCATTG YCTTCCCA TTCCCAGG' 1 | ['ATTGYCTTCCCA TTCCCAGGTGG', <br> 'AGCATTGYCTTC <br> CCATTCCCAGG'] | ['Spastic paraplegia 4, autosomal dominant'] |
| $\begin{aligned} & \text { NM_000925.3(PDHB) } \\ & : \text { c. } 395 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr132Cys) } \\ & \hline \end{aligned}$ | 28935769 | PDHB | [] | [] | ['Pyruvate dehydrogenase E1beta deficiency'] |
| NM_000090.3(COL3A 1):c. $2338-2 \mathrm{~A}>\mathrm{G}$ | 794728050 | COL3Al | [] | [] | ['Thoracic aortic aneurysms and aortic dissections'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c. } 97 \mathrm{~A}>\mathrm{G}(\text { p.Lys33Glu }) \end{aligned}$ | 193922746 | RYR1 | [] | [] | ['King Denborough syndrome', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000540.2(RYR1): } \\ & \text { c.7043A }>\mathrm{G} \\ & \text { (p.Glu2348Gly) } \\ & \hline \end{aligned}$ | 193922801 | RYR1 | [] | ['TTCYCCTCCACG CTCTCGCCTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.652A>G } \\ & \text { (p.Lys218Glu) } \end{aligned}$ | 36210419 | KCNQ1 | [] | ['GCCCCTYGGAGC CCACGCAGAGG'] | ['Torsades de pointes', 'Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c. } 14647-1449 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 193922886 | RYR1 | [] | [] | ['Minicore myopathy with external ophthalmoplegia', 'not provided'] |
| $\begin{aligned} & \text { NM_004429.4(EFNB1 } \\ & \text { ):c. } \mathbf{4 7 2 \mathrm { A } > \mathrm { G }} \\ & \text { (p.Met158Val) } \\ & \hline \end{aligned}$ | 28936071 | EFNB1 | [] | [] | ['Craniofrontonasal dysplasia'] |
| $\begin{aligned} & \text { NM_007254.3(PNKP): } \\ & \text { c. } 1029+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 199919568 | PNKP | ['CCGGYGA GGCCCTGG GGCGGGG G', <br> TCCGGYG AGGCCCTG GGGCGGG $\left.\mathrm{G}^{\prime}\right]$ | ['CCGGYGAGGCC CTGGGGCGGGGG' <br> 'TCCGGYGAGGCC CTGGGGCGGGG', 'ATCCGGYGAGGC CCTGGGGCGGG', 'GATCCGGYGAGG CCCTGGGGCGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_005448.2(BMP15 } \\ & \text { ):c.704A>G } \\ & \text { (p.Tyr235Cys) } \end{aligned}$ | 104894765 | BMP15 | ['ATTGAAA <br> YAGAGTAA <br> CAAGAAG <br> $\left.\mathrm{G}^{\prime}\right]$ | ```['ATTGAAAYAGA GTAACAAGAAGG' ]``` | ['Ovarian dysgenesis 2'] |
| $\begin{array}{\|l} \hline \text { NM_004415.2(DSP):c. } \\ 1141-2 \mathrm{~A}>\mathrm{G} \\ \hline \end{array}$ | 794728111 | DSP | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_016035.4(COQ4): } \\ & \text { c.155T }>\mathrm{C} \\ & \text { (p.Leu52Ser) } \end{aligned}$ | 786204770 | COQ4 | $\begin{array}{\|l\|} \hline \text { l'GCTGTYG } \\ \text { GCCGCCGG } \\ \text { CTCCGCGG' } \\ 1 \\ \hline \end{array}$ | ['GCTGTYGGCCGC CGGCTCCGCGG'] | ['COENZYME Q10 DEFICIENCY, PRIMARY, 7'] |
| $\begin{array}{\|l\|l} \hline \text { NM_015717.4(CD207) } \\ \text { :c.790T }>C \\ \text { (p.Trp264Arg) } \\ \hline \end{array}$ | 200837270 | CD207 | [] | [] | ['Birbeck granule deficiency'] |
| $\begin{aligned} & \text { NM_004771.3(MMP2 } \\ & 0): \mathrm{c} .611 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His204Arg) } \end{aligned}$ | 786204826 | MMP20 | $\begin{array}{\|l\|} \hline \text { ['CGAAAYG } \\ \text { TGTATCTC } \\ \text { CTCCCAGG' } \\ \text { ] } \\ \hline \end{array}$ | ['CGAAAYGTGTAT <br> CTCCTCCCAGG'] | ['Amelogenesis imperfecta, hypomaturation type, IIA2'] |
| NM_003392.4(WNT5 | 786204836 | WNT5A | [] | [] | ['Robinow |


| $\begin{aligned} & \text { A):c. } 257 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr86Cys) } \end{aligned}$ |  |  |  |  | syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000918.3(P4HB): } \\ & \text { c. } 1178 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr393Cys) } \end{aligned}$ | 786204843 | P4HB | [] | [] | ['Cole Carpenter syndrome'] |
| $\begin{aligned} & \text { NM_000314.6(PTEN): } \\ & \text { c. } 139 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg47Gly) } \end{aligned}$ | 786204855 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_000314.6(PTEN): } \\ & \text { c. } 320 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp107Gly) } \end{aligned}$ | 786204858 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_000447.2(PSEN2 } \\ & \text { ):c. } 715 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met239 Val) } \\ & \hline \end{aligned}$ | 28936379 | PSEN2 | [] | [] | ['Alzheimer disease, type 4', 'not provided'] |
| $\begin{aligned} & \text { NM_005263.3(GFI1):c } \\ & .1145 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn382Ser) } \end{aligned}$ | 28936381 | GFI1 | [] | [] | ['Severe congenital neutropenia 2, autosomal dominant'] |
| $\begin{aligned} & \text { NM_005263.3(GFI1):c } \\ & .1208 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys403Arg) } \end{aligned}$ | 28936382 | GFI1 | [] | [] | ['Neutropenia, nonimmune chronic idiopathic, of adults'] |
| $\begin{aligned} & \text { NM_000314.6(PTEN): } \\ & \text { c. } 512 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln171Arg) } \end{aligned}$ | 786204865 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \mathrm{NM}=000314.6(\mathrm{PTEN}): \\ & \mathrm{c} .254-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786204926 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \hline \text { NM_001103.3(ACTN2 } \\ & \text { ):c.1883A }>G \\ & \text { (p.Glu628Gly) } \\ & \hline \end{aligned}$ | 786204951 | ACTN2 | [] | [] | ['Familial hypertrophic cardiomyopathy $23^{\prime}$ ] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c.-162-2A>G } \end{aligned}$ | 786204973 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy 2'] |
| NM_001159287.1(TPI <br> 1):c. $622 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile208Val) | 121964849 | TPI1 | [] | [] | ['Triosephosphate isomerase deficiency'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c. } 2277-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786204979 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy $\left.2^{\prime}\right]$ |
| $\begin{array}{\|l} \hline \text { NM_003159.2(CDKL5 } \\ \text { ):c. } 458 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asp153Gly) } \\ \hline \end{array}$ | 786204985 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy $\left.2^{\prime}\right]$ |
| $\begin{array}{\|l} \hline \text { NM_003159.2(CDKL5 } \\ \text { ):c. } 91 \mathrm{~A}>\mathrm{G} \\ \text { (p.Arg31Gly) } \\ \hline \end{array}$ | 786204991 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy 2'] |
| $\begin{aligned} & \text { NM_001007792.1(NT } \\ & \text { RK1):c. } 986 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr329Cys) } \end{aligned}$ | 121964869 | NTRK1 | [] | [] | ['Hereditary insensitivity to pain with anhidrosis'] |
| $\begin{aligned} & \text { NM_001007792.1(NT } \\ & \text { RK1):c.1651A>G } \\ & \text { (p.Met551Val) } \\ & \hline \end{aligned}$ | 121964870 | NTRK1 | [] | [] | ['Hereditary insensitivity to pain with anhidrosis'\| |
| $\begin{aligned} & \text { NM_004360.3(CDH1): } \\ & \text { c.2512A>G } \\ & \text { (p.Ser838Gly) } \end{aligned}$ | 121964872 | CDH1 | [] | [] | ['Hereditary diffuse gastric cancer', <br> 'Hereditary cancerpredisposing syndrome', 'Neoplasm of ovary'] |
| NM_003122.4(SPINK | 17107315 | SPINK1 | [] | [] | ['Hereditary |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { l):c.101A>G } \\
\text { (p.Asn34Ser) }\end{array} & & & & \begin{array}{l}\text { pancreatitis', } \\
\text { 'Tropical calcific } \\
\text { pancreatitis', } \\
\text { 'Pancreatitis, } \\
\text { chronic, }\end{array} \\
\text { susceptibility to'] }\end{array}
$$\right] \begin{array}{l}['Primary <br>

hyperaldosteronism']\end{array}\right]\)|  |
| :--- |


| NM 000398.6(CYB5R 3): c. $719 \mathrm{~A}>\mathrm{G}$ (p.Asp240Gly) | 121965018 | CYB5R3 | [] | [] | ['METHEMOGLOB INEMIA, TYPE I'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000095.2(COMP) } \\ & \text { :c.1358A>G } \\ & \text { (p.Asn453Ser) } \\ & \hline \end{aligned}$ | 28936668 | COMP | [] | [] | [] |
| NM 0000095.2(COMP) <br> c. $1418 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp473Gly) | 28936669 | COMP | [] | ['ATTGYCGTCGTC GTCGTCGCAGG'] | [ |
| $\begin{aligned} & \text { NM_003816.2(ADAM } \\ & 99): c .1396-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 786205151 | ADAM9 | [] | [] | [] |
| NM 001204830.1(LIP <br> T1):c. $535 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr179Ala) | 786205156 | - | [] | II | ['LIPOYLTRANSF ERASE 1 DEFICIENCY' |
| $\begin{aligned} & \text { NM_000274.3(OAT):c } \\ & .734 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr245Cys) } \\ & \hline \end{aligned}$ | 121965046 | OAT | [] | [] | ['Ornithine aminotransferase deficiency'] |
| NM_018488.2(TBX4): <br> c. $1592 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln531Arg) | 28936696 | TBX4 | [] | ['GTACYGTAAGG AAGATTCTCGGG', 'GGTACYGTAAGG AAGATTCTCGG'] | ['Ischiopatellar dysplasia'] |
| $\begin{aligned} & \text { NM_001110556.1(FL } \\ & \text { NA):c. } 1829-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786205183 | FLNA | [] | [] | ['X-linked periventricular heterotopia'] |
| NM 003865.2(HESX1 <br> ):c. $541 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr181Ala) | 28936704 | HESX1 | [] | I] | ['Growth hormone deficiency with pituitary anomalies'\| |
| $\begin{aligned} & \hline \text { NM_000137.2(FAH):c } \\ & .1141 \mathrm{~A}>G \\ & \text { (p.Arg381Gly) } \\ & \hline \end{aligned}$ | 121965077 | FAH | [] | ['TCCYGGTCTGAC CATTCCCCAGG'] | $\begin{aligned} & \text { ['Tyrosinemia type } \\ & \text { I'] } \end{aligned}$ |
| NM 000137.2(FAH):c $.836 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln279Arg) | 121965078 | FAH | [] | [] | ['Tyrosinemia type I'] |
| NM_006129.4(BMP1): <br> c. $808 \mathrm{~A}>\mathrm{G}$ <br> (p.Met270Val) | 786205219 | BMP1 | [] | [] | ['Osteogenesis imperfecta type 13'] |
| $\begin{aligned} & \hline \text { NM_001987.4(ETV6): } \\ & \text { c.1252A>G } \\ & \text { (p.Arg418Gly) } \\ & \hline \end{aligned}$ | 786205226 | ETV6 | [] | I] | ['Thrombocytopenia 5'] |
| $\begin{aligned} & \text { NM_014423.3(AFF4): } \\ & \text { c.760A>G } \\ & \text { (p.Thr254Ala) } \\ & \hline \end{aligned}$ | 786205233 | AFF4 | [] | [] | $\begin{aligned} & \hline \text { ['CHOPS } \\ & \text { SYNDROME'] } \end{aligned}$ |
| NM_000140.3(FECH): c. 68 194del | 786205247 | FECH | [] | [] | ['Erythropoietic protoporphyria'] |
| NM_000138.4(FBN1): c. $3344 \mathrm{~A}>\mathrm{G}$ (p.Asp1115Gly) | 794728203 | FBN1 | [] | ['ACTCAYCAATAT CTGCAAAATGG'] | ['Thoracic aortic aneurysms and aortic dissections'] |
| $\begin{aligned} & \text { NM_198270.3(NHS):c } \\ & .853-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786205257 | NHS | [] | [] | ['Nance-Horan syndrome'\| |
| NM_005502.3(ABCA <br> 1): c. $1790 \mathrm{~A}>\mathrm{G}$ <br> (p. Gln597Arg) | 2853578 | ABCA1 | [] | [] | ['Tangier disease'] |
| $\begin{aligned} & \text { NM_003002.3(SDHD) } \\ & \text { :c.275A>G } \\ & \text { (p.Asp92Gly) } \\ & \hline \end{aligned}$ | 786205436 | SDHD | [] | ['GAATAGYCCATC GCAGAGCAAGG'] | ['Fatal infantile mitochondrial cardiomyopathy'] |
| NM_005259.2(MSTN) <br> :c. $458 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys153Arg) | 1805086 | - | [] | [] | [] |
| NM_198056.2(SCN5A | 1805124 | SCN5A | [] | [] | ['Progressive |


| $\begin{aligned} & \text { ):c. } 1673 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His558Arg) } \end{aligned}$ |  |  |  |  | familial heart block type 1A', 'not specified', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000784.3(CYP27 <br> A1):c. $776 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys259Arg) | 72551317 | CYP27A1 | [] | ['AGTCCACYTGGG GAGGAAGGTGG'] | ['Cholestanol storage disease'] |
| NM_000784.3(CYP27 A1):c. $1061 \mathrm{~A}>\mathrm{G}$ (p.Asp354Gly) | 72551320 | CYP27A1 | [] | [] | ['Cholestanol storage disease'] |
| NM_000463.2(UGT1 <br> Al):c.992A>G <br> (p.Gln331Arg) | 72551348 | - | [] | [] | ['Crigler-Najjar syndrome, type II'] |
| $\begin{aligned} & \text { NM_000463.2(UGT1 } \\ & \text { A1):c.1070A>G } \\ & \text { (p.Gln357Arg) } \\ & \hline \end{aligned}$ | 72551351 | - | [] | [] | ['Crigler Najjar syndrome, type 1'] |
| $\begin{aligned} & \text { NM_016218.2(POLK): } \\ & \text { c. } 1385 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn462Ser) } \\ & \hline \end{aligned}$ | 786205687 | POLK | [] | ['ATTCACAYTCTT CAACTTAATGG'] | ['Malignant tumor of prostate'] |
| $\begin{aligned} & \text { NM_016218.2(POLK): } \\ & \text { c. } 181 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn61Asp) } \end{aligned}$ | 786205689 | POLK | [] | [] | ['Malignant tumor of prostate'] |
| $\begin{aligned} & \text { NM_016218.2(POLK): } \\ & \text { c. } 1477 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys493Glu) } \end{aligned}$ | 786205692 | POLK | [] | [] | ['Malignant tumor of prostate'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c. } 7916 \mathrm{~A}>\mathrm{G} \\ & (\text { p. Tyr2639Cys) } \end{aligned}$ | 794728280 | FBN1 | [] | ['TGTTCAYACTGG AAGCCGGCGGG', <br> 'CTGTTCAYACTG <br> GAAGCCGGCGG' | $\begin{aligned} & \text { ['Thoracic aortic } \\ & \text { aneurysms and } \\ & \text { aortic dissections'] } \end{aligned}$ |
| $\begin{array}{\|l} \hline \text { NM_000132.3(F8):c. } 1 \\ 331 \mathrm{~A}>\mathrm{G} \\ \text { (p.Lys444Arg) } \\ \hline \end{array}$ | 28937272 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'\| |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .268 \mathrm{~A}>\mathrm{G}(\text { p.Ser90Gly }) \\ & \hline \end{aligned}$ | 72554340 | OTC | [] | [] | ['not provided'] |
| NM_005502.3(ABCA <br> 1): $\mathrm{c} .2804 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn935Ser) | 28937313 | ABCAI | ['TCCAYTG <br> TGGCCCAG <br> GAAGGAG <br> $\left.\mathrm{G}^{\prime}\right]$ | ['TCCAYTGTGGCC CAGGAAGGAGG', 'CGCTCCAYTGTG GCCCAGGAAGG'] | ['Tangier disease'] |
| $\begin{aligned} & \text { NM_004380.2(CREB } \\ & \text { BP):c. } 3524 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyrl175Cys) } \end{aligned}$ | 28937315 | CREBBP | [] | [] | ['Rubinstein-Taybi syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 3971 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn1324Ser) } \\ & \hline \end{aligned}$ | 28937317 | SCN5A | [] | ['GCAYTGACCACC ACCTCAAGTGG'] | ['Long QT syndrome 3', 'Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000891.2(KCNJ2 } \\ & \text { ):c. } 901 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met301Val) } \end{aligned}$ | 786205818 | KCNJ2 | [] | [] | ['Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM_144499.2(GNAT } \\ & \text { 1):c.386A>G } \\ & \text { (p.Asp129Gly) } \end{aligned}$ | 786205854 | GNAT1 | [] | ['CGGAGYCCTTCC ACAGCCGCTGG'] | ['NIGHT BLINDNESS, CONGENITAL STATIONARY, TYPE 1G'] |
| NM 000523.3(HOXD 13):c. $974 \mathrm{~A}>\mathrm{G}$ <br> (p.GIn325Arg) | 104893635 | HOXD13 | [] | [] | ['Syndactyly type 5'] |
| $\begin{aligned} & \text { NM_013953.3(PAX8): } \\ & \text { c. } 160 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ser } 54 \mathrm{Gly} \text { ) } \end{aligned}$ | 104893660 | - | [] | [] | ['Thyroid agenesis'] |
| NM_014585.5(SLC40 | 104893663 | SLC40A1 | [] | [] | ['Hemochromatosis |


| $\begin{aligned} & \text { A1):c. } 470 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp157Gly) } \end{aligned}$ |  |  |  |  | type 4'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_003124.4(SPR):c. } \\ & 448 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \operatorname{Arg} 150 \mathrm{Gly}) \end{aligned}$ | 104893665 | SPR | [] | [] | ['Sepiapterin reductase deficiency'] |
| $\begin{aligned} & \text { NM_000258.2(MYL3) } \\ & : \text { c. } 4 \mathbf{4 5} \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met149Val) } \end{aligned}$ | 104893748 | MYL3 | [] | [] | ['Familial hypertrophic cardiomyopathy $8^{\prime}$, 'Cardiomyopathy', 'Hypertrophic cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000539.3(RHO):c } \\ & .533 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p.Tyr} 178 \mathrm{Cys}) \\ & \hline \end{aligned}$ | 104893776 | RHO | [] | ['GGATGYACCTG AGGACAGGCAGG' ] | ['Retinitis pigmentosa 4'] |
| $\begin{aligned} & \text { NM_000539.3(RHO):c } \\ & .569 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Aspl90Gly) } \end{aligned}$ | 104893777 | RHO | [] | [] | ['Retinitis pigmentosa 4'] |
| $\begin{aligned} & \mathrm{NM} 000539.3(\mathrm{RHO}): \mathrm{c} \\ & .44 \mathrm{~A}>\mathrm{G}(\text { p.Asn15Ser }) \end{aligned}$ | 104893786 | RHO | [] | [] | ['Retinitis pigmentosa', 'Retinitis pigmentosa 4'I |
| $\begin{aligned} & \text { NM_001814.4(CTSC): } \\ & \text { c.1235A>G } \\ & \text { (p.Tyr412Cys) } \end{aligned}$ | 28937571 | CTSC | [] | [] | ['Periodontitis, aggressive, $1^{1}$ ] |
| $\begin{aligned} & \text { NM_001701.3(BAAT) } \\ & : \text { c. } 226 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Met } 76 \mathrm{Val}) \\ & \hline \end{aligned}$ | 28937579 | BAAT | [] | [] | ['Hypercholanemia, familial'] |
| $\begin{aligned} & \text { NM_001257342.1(BC } \\ & \text { S1L):c.232A>G } \\ & \text { (p.Ser78Gly) } \end{aligned}$ | 28937590 | BCS1L | [] | ['GACACYGAGGT GCTGAGTACGGG', 'CGACACYGAGGT GCTGAGTACGG'] | ['GRACILE syndrome'] |
| NM_004407.3(DMP1) :c.1A>G (p.Met1Val) | 104893834 | DMP1 | [] | [] | ['Autosomal recessive hypophosphatemic vitamin D refractory rickets'\| |
| NM_000406.2(GNRH <br> R): $\mathrm{c} .317 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln106Arg) | 104893836 | GNRHR | [] | [] | ['Hypogonadotropic hypogonadism'] |
| $\begin{aligned} & \text { NM_172250.2(MMAA } \\ & \text { ):c. } 620 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr207Cys) } \end{aligned}$ | 104893849 | MMAA | [] | [] | ['Methylmalonic aciduria cb1A type'] |
| $\begin{aligned} & \text { NM_000320.2(QDPR) } \\ & : \mathrm{c} .449 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Tyr150Cys }) \end{aligned}$ | 104893866 | QDPR | [] | ['TGCCGYACCCGA TCATACCTGGG', 'ATGCCGYACCCG ATCATACCTGG'] | ['Dihydropteridine reductase deficiency'] |
| NM 015629.3(PRPF3 <br> 1): $c .527+3 \mathrm{~A}>\mathrm{G}$ | 587776590 | PRPF31 | [] | ['GACAYACCCCTG GGTGGTGGAGG', <br> 'GCGGACAYACCC <br> CTGGGTGGTGG'] | ['Retinitis pigmentosa 11'] |
| NM_000112.3(SLC26 A2): c. $1273 \mathrm{~A}>\mathrm{G}$ (p.Asn425Asp) | 104893920 | SLC26A2 | [] | [] | ['Diastrophic dysplasia', 'Achondrogenesis, type IB'] |
| $\begin{aligned} & \text { NM_000344.3(SMN1) } \\ & : c .815 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr272Cys) } \end{aligned}$ | 104893922 | SMN1 | [] | [] | ['Werdnig-Hoffmann disease'] |
| $\begin{aligned} & \text { NM_000344.3(SMN1) } \\ & \text { :c. } 784 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 104893932 | SMN1 | [] | [] | ['KugelbergWelander disease'] |


| (p.Ser262Gly) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000409.3(GUCA 1A): $\mathrm{c} .296 \mathrm{~A}>\mathrm{G}$ (p.Tyr99Cys) | 104893967 | GUCA1A | [] | [] | ['Cone dystrophy 3'] |
| NM 182548.3(LHFPL <br> 5):c. $380 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr127Cys) | 104893975 | LHFPL5 | [] | [] | ['Deafness, autosomal recessive 67'\| |
| NM 001024630.3(RU NX2):c. $598 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr200Ala) | 104893993 | RUNX2 | [] | [] | ['Cleidocranial dysostosis', 'Cleidocranial dysplasia, forme fruste, dental anomalies only' |
| NM_000162.3(GCK):c $641 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr214Cys) | 104894015 | GCK | [] | ['GTAGYAGCAGG AGATCATCGTGG'] | ['Hyperinsulinemic hypoglycemia familial 3'] |
| NM 001002010.2(NT 5C3A):c. $686 \mathrm{~A}>\mathrm{G}$ (p.Asn229Ser) | 104894028 | NT5C3A | [] | [] | ['Uridine 5-prime monophosphate hydrolase deficiency, hemolytic anemia due to' |
| $\begin{aligned} & \text { NM_203288.1(RP9):c. } \\ & \text { 509 }>\mathrm{A}> \\ & \text { (p.Asp170Gly) } \\ & \hline \end{aligned}$ | 104894039 | RP9 | [] | [] | $\begin{aligned} & \hline \text { ['Retinitis } \\ & \text { pigmentosa 9'] } \end{aligned}$ |
| NM 000474.3(TWIST <br> 1):c. $466 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile156Val) | 104894059 | TWIST1 | II | II | ['Saethre-Chotzen syndrome'] |
| NM_000532.4(PCCB): <br> c. $1606 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn536Asp) | 202247823 | PCCB | [] | ['ATATYTGCATGT <br> TTTCTCCAAGG' | ['Propionic acidemia', 'not provided'] |
| NM_021615.4(CHST6 <br> ): $\mathrm{c} .521 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys174Arg) | 28937877 | CHST6 | [] | [] | ['Macular corneal dystrophy Type I'] |
| NM_178138.4(LHX3): <br> c. $332 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyrl11Cys) | 104894117 | LHX3 | ['CAGGTGG YACACGAA GTCCTGGG' 1 | ['CAGGTGGYACA CGAAGTCCTGGG'] | ['Pituitary hormone deficiency, combined 3'] |
| NM_004897.4(MINPP <br> 1):c. $809 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln270Arg) | 104894171 | MINPP1 | [] | [] | ['Thyroid cancer, follicular'] |
| NM_000073.2(CD3G): c. $1 \overline{\mathrm{~A}}>\mathrm{G}$ (p.Met1Val) | 104894199 | CD3G | [] | $\begin{aligned} & \hline \text { ['CCAYGTCAGTCT } \\ & \text { CTGTCCTCCGG'] } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ['Immunodeficiency } \\ & \left.177^{\prime}\right] \\ & \hline \end{aligned}$ |
| NM_001885.2(CRYA <br> B):c. $358 \mathrm{~A}>\mathrm{G}$ <br> (p. $\operatorname{Arg} 120 \mathrm{Gly}$ ) | 104894201 | CRYAB | [] | [] | ['Alpha-B crystallinopathy'] |
| NM_001814.4(CTSC): c. $857 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln286Arg) | 104894208 | CTSC | [] | ['CTCCYGAGGGCT TAGGATTGGGG', 'CCTCCYGAGGGC TTAGGATTGGG', 'ACCTCCYGAGGG CTTAGGATTGG' | ['PapillonLef\xc3\xa8vre syndrome', 'HaimMunk syndrome'] |
| $\begin{aligned} & \text { NM_001814.4(CTSC): } \\ & \text { c.1040A>G } \\ & \text { (p.Tyr347Cys) } \end{aligned}$ | 104894211 | CTSC | II | ['TCCTACAYAGTG GTACTCAGAGG'] | ['PapillonLeflxc3 3 xa8vre syndrome', 'Periodontitis, aggressive, $1^{\prime}$ ] |
| $\begin{aligned} & \text { NM_012193.3(FZD4): } \\ & \text { c.766A>G } \end{aligned}$ | 104894223 | - | ['GAAATAY GATGGGGC | ['GAAATAYGATG GGGCGCTCAGGG', | ['Retinopathy of prematurity'] |


| (p.IIe256Val) |  |  | GCTCAGGG $\because$ <br> 'AGAAATA YGATGGGG CGCTCAGG 'I | 'AGAAATAYGATG GGGCGCTCAGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 005343.2(HRAS) c. $350 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys117Arg) | 104894227 | - | I] | I] | ['Costello syndrome'] |
| NM_145014.2(HYLS1 <br> ):c. $632 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp211Gly) | 104894232 | - | [] | [] | ['Hydrolethalus syndrome'] |
| $\begin{aligned} & \text { NM_000525.3(KCNJI } \\ & \text { 1):c.776A>G } \\ & \text { (p.His259Arg) } \end{aligned}$ | 104894248 | KCNJ11 | ['GACAYGG TAGATGAT CAGCGGGG '] | ['GACAYGGTAGA TGATCAGCGGGG', 'TGACAYGGTAGA TGATCAGCGGG', 'ATGACAYGGTAG ATGATCAGCGG'] | $\begin{aligned} & \text { ['Islet cell } \\ & \text { hyperplasia'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_000317.2(PTS):c. } \\ & 155 \overline{\mathrm{~A}}>\mathrm{G}(\mathrm{p} . \mathrm{Asn} 52 \mathrm{Ser}) \end{aligned}$ | 104894275 | PTS | ['TAAYTGT GCCCATGG CCATTTGG 1 | ['TAAYTGTGCCCA | ['6-pyruvoyltetrahydropterin synthase deficiency'] |
| $\begin{array}{\|l\|} \hline \text { NM_000317.2(PTS):c. } \\ 139 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Asn} 47 \mathrm{Asp}) \\ \hline \end{array}$ | 104894278 | PTS | [] | II | ['Hyperphenylalanin emia, bh4-deficient, a, due to partial pts deficiency'\| |
| $\begin{aligned} & \hline \text { NM_000317.2(PTS):c. } \\ & 347 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp116Gly) } \end{aligned}$ | 104894279 | PTS | [] | [] | ['Hyperphenylalanin emia, bh4-deficient, a, due to partial pts deficiency'] |
| NM_022051.2(EGLN1 <br> ):c. $1121 \mathrm{~A}>\mathrm{G}$ <br> (p.His 374Arg) | 119476045 | EGLN1 | [] | [] | ['Erythrocytosis, familial, 3'] |
| $\begin{array}{\|l} \hline \text { NM_015915.4(ATL1): } \\ \text { c.773A>G } \\ \text { (p.His258Arg) } \\ \hline \end{array}$ | 119476048 | ATL1 | [] | [] | ['Spastic paraplegia 3'] |
| $\begin{aligned} & \text { NM_000448.2(RAG1): } \\ & \text { c.2735A>G } \\ & \text { (p.Tyr912Cys) } \\ & \hline \end{aligned}$ | 104894290 | RAG1 | I] | ['CTGYACTGGCAG AGGGATTCTGG'] | ['Histiocytic medullary reticulosis'\| |
| NM 000448.2(RAG1): <br> c. $1286 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp429Gly) | 104894292 | RAG1 | [] | [] | ['Histiocytic medullary reticulosis'] |
| $\begin{aligned} & \text { NM_003002.3(SDHD) } \\ & \text { c. } 341 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr114Cys) } \end{aligned}$ | 104894304 | SDHD | [] | [] | ['Hereditary ParagangliomaPheochromocytoma Syndromes', 'Paragangliomas 1'] |
| NM 015141.3(GPDIL ):c. $370 \mathrm{~A}>\mathrm{G}$ (p.Ile124Val) | 72552293 | GPDIL | [] | [] | ['Brugada syndrome 2', 'Primary familial hypertrophic cardiomyopathy', 'Long QT syndrome', 'Sudden infant death syndrome', 'Cardiomyopathy'] |
| NM_020661.2(AICDA <br> ):c. $415 \mathrm{~A}>\mathrm{G}$ <br> (p.Met139Val) | 104894322 | AICDA | [] | [] | ['Immunodeficiency with hyper IgM type ${ }^{2} 1$ |


|  | 104894351 | HSPB8 | $1]$ | [] | ['Charcot-MarieTooth disease', 'Distal hereditary motor neuronopathy type 2A'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000217.2(KCNA <br> 1):c. $676 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr226Ala) | 104894354 | KCNA1 | [] | ['GCGYTTCCACGA TGAAGAAGGGG', 'AGCGYTTCCACG ATGAAGAAGGG', 'CAGCGYTTCCAC GATGAAGAAGG' | ['Episodic ataxia type 1'] |
| NM_014239.3(EIF2B2 ): c. $638 \mathrm{~A}>\mathrm{G}$ (p.Glu2 13Gly) | 104894425 | EIF2B2 | [] | ['AGTTGTCYCAAT ACCTGCTTTGG'] | ['Leukoencephalopat hy with vanishing white matter', 'Ovarioleukodystrop hy'] |
| NM 002408.3(MGAT <br> 2):c. $785 \mathrm{~A}>\mathrm{G}$ <br> (p.His262Arg) | 104894447 | MGAT2 | [] | [] | ['Carbohydratedeficient glycoprotein syndrome type II'] |
| NM 002408.3(MGAT <br> 2): $\mathrm{c} .952 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn318Asp) | 104894448 | MGAT2 | [] | [] | ['Carbohydratedeficient glycoprotein syndrome type II'] |
| $\begin{aligned} & \hline \text { NM_000270.3(PNP):c. } \\ & \text { 383A }>G \\ & \text { (p.Asp128Gly) } \end{aligned}$ | 104894450 | PNP | II | ['ATAYCTCCAACC TCAAACTTGGG' 'GATAYCTCCAAC CTCAAACTTGG'] | ['Purine-nucleoside phosphorylase deficiency'] |
| $\begin{aligned} & \hline \text { NM_000270.3(PNP):c. } \\ & 575 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr192Cys) } \\ & \hline \end{aligned}$ | 104894452 | PNP | [] | [] | ['Purine-nucleoside phosphorylase deficiency'\| |
| $\begin{aligned} & \text { NM_005982.3(SIX1):c } \\ & .386 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr129Cys) } \end{aligned}$ | 104894478 | SIX1 | [] | [] | $\begin{array}{\|l} \hline \text { ['Melnick-Fraser } \\ \text { syndrome', } \\ \text { 'Branchiootic } \\ \text { syndrome 3'] } \\ \hline \end{array}$ |
| $\begin{aligned} & \hline \text { NM_000101.3(CYBA) } \\ & \text { :c.281A>G } \\ & \text { (p.His94Arg) } \end{aligned}$ | 104894510 | CYBA | [] | [] | ['Granulomatous disease, chronic, autosomal recessive, cytochrome bnegative'] |
| $\begin{array}{\|l\|} \hline \text { NM_024887.3(DHDD } \\ \text { S):c.124A>G } \\ \text { (p.Lys42Glu) } \\ \hline \end{array}$ | 147394623 | DHDDS | [] | ['GGCACTYCTTGG CATAGCGACGG'] | $\begin{aligned} & \hline \text { ['Retinitis } \\ & \text { pigmentosa 59'] } \end{aligned}$ |
| NM 024006.5(VKOR <br> C1):c. $172 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg58Gly) | 104894541 | VKORC1 | [] | [] | ['Warfarin response'] |
| $\begin{aligned} & \text { NM_001128085.1(AS } \\ & \text { PA):c.692A>G } \\ & \text { (p.Tyr231Cys) } \end{aligned}$ | 104894550 | - | [] | [] | ['Spongy degeneration of central nervous system'] |
| $\begin{aligned} & \hline \text { NM_001128085.1(AS } \\ & \text { PA):c.71A>G } \\ & \text { (p.Glu24Gly) } \end{aligned}$ | 104894551 | - | [] | [] | ['Spongy degeneration of central nervous system'] |
|  | 148639841 | ACAT1 | I] | [] | ['Deficiency of acetyl-CoA acetyltransferase', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_014254.2(TMEM } \\ & \text { 5):c.1016A>G } \\ & \hline \end{aligned}$ | 150736997 | TMEM5 | [] | II | ['Congenital muscular dystrophy- |


| (p.Tyr339Cys) |  |  |  |  | dystroglycanopathy with brain and eye anomalies, type $\left.\mathrm{AlO}^{\prime}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 005557.3(KRT16 ):c. $374 \mathrm{~A}>\mathrm{G}$ (p.Asn125Ser) | 60723330 | KRT16 | [] | ['GCGGTCAYTGA GGTTCTGCATGG'] | ['Pachyonychia congenita, type 1 ', 'Palmoplantar keratoderma, nonepidermolytic, focal', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_005450.4(NOG):c } \\ & .665 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr222Cys) } \end{aligned}$ | 104894602 | NOG | [] | [] | ['Tarsal carpal coalition syndrome', 'Cushing symphalangism'] |
| NM_030665.3(RAII): c. $4685 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln1562Arg) | 104894634 | RAII | [] | $\begin{aligned} & \text { ['CTGCTGCYGTCG } \\ & \text { TCGTCGCTTGG'] } \end{aligned}$ | ['Smith-Magenis syndrome'] |
| $\begin{aligned} & \text { NM_000346.3(SOX9): } \\ & \text { c.517A>G } \\ & \text { (p.Lys173Glu) } \\ & \hline \end{aligned}$ | 104894647 | SOX9 | [] | [] | ['Acampomelic campomelic dysplasia'] |
| NM 024301.4(FKRP): <br> c. $926 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr309Cys) | 104894679 | FKRP | I] | [] | ['Congenital muscular dystrophydystroglycanopathy without mental retardation, type B5'] |
| NM_000495.4(COL4A <br> 5): $\mathrm{c} .2394 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys $798=$ ) | 281874691 | COL4A5 | [] | [] | ['Alport syndrome, <br> X-linked recessive'] |
| NM_001604.5(PAX6): $\text { c. } 1075-2 \mathrm{~A}>\mathrm{G}$ | 794726661 | PAX6 | [] | [] | ['Congenital aniridia'] |
| NM 000363.4(TNNI3) <br> :c. $569 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp 190Gly) | 104894728 | TNNI3 | [] | [] | ['Familial restrictive cardiomyopathy $1^{\prime}$, 'Familial hypertrophic cardiomyopathy $\left.7^{\prime}\right]$ |
| $\begin{aligned} & \hline \text { NM_000363.4(TNNI3) } \\ & : \text { c.532A>G } \\ & \text { (p.Lys178Glu) } \end{aligned}$ | 104894730 | TNNI3 | [] | $\square$ | ['Familial restrictive cardiomyopathy $1^{\prime}$ ] |
| NM 000054.4(AVPR2 ): c. $839 \mathrm{~A}>\mathrm{G}$ (p.Tyr280Cys) | 104894752 | AVPR2 | [] | [] | ['Nephrogenic diabetes insipidus, X-linked'। |
| NM_000074.2(CD40L <br> G): $.386 \mathrm{~A}>\mathrm{G}$ <br> (p. Glu129Gly) | 104894772 | CD40LG | [] | [] | ['Immunodeficiency with hyper IgM type $\left.1^{1}\right]$ |
| NM_000495.4(COL4A 5):c. $4977-2 \mathrm{~A}>\mathrm{G}$ | 281874752 | COL4A5 | [] | [] | ['Alport syndrome, X-linked recessive'] |
| NM 001165963.1(SC N1A): $\mathrm{c} .5264 \mathrm{~A}>\mathrm{G}$ (p.Asp 1755Gly) | 794726722 | - | I] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_000495.4(COL4A } \\ & \text { 5):c. } 547-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 281874756 | COL4A5 | [] | II | ['Alport syndrome, X-linked recessive'] |
| NM_000495.4(COL4A <br> 5):c. $610-2 \mathrm{~A}>\mathrm{G}$ | 281874758 | COL4A5 | [] | I] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_032520.4(GNPT } \\ & \text { G):c. } 610-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 193302855 | GNPTG | ['CCCYGAA GGTGGAGG ATGCAGGG 1 | ['CCCYGAAGGTG GAGGATGCAGGG' <br> 'GCCCYGAAGGTG | ['Mucolipidosis III Gamma'] |


|  |  |  |  | GAGGATGCAGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_002049.3(GATA } \\ & \text { 1):c. } 653 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp218Gly) } \end{aligned}$ | 104894816 | GATAI | [] | $\begin{aligned} & \text { ['GTCCTGYCCCTC } \\ & \text { CGCCACAGTGG'] } \end{aligned}$ | ['GATA-1-related thrombocytopenia with dyserythropoiesis'] |
| $\begin{array}{\|l} \hline \text { NM_000157.3(GBA):c } \\ .680 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asn227Ser) } \end{array}$ | 364897 | GBA | ['CCAYTGG tctigagc CAAGTGGG TCCAYTGG TCTTGAGC CAAGTGG' | $\begin{array}{\|l\|} \hline \text { ['CCAYTGGTCTTG } \\ \text { AGCCAAGTGGG', } \\ \text { 'TCCAYTGGTCTT } \\ \text { GAGCCAAGTGG'] } \end{array}$ | ['Gaucher disease', 'Subacute neuronopathic Gaucher disease', 'Gaucher disease, type 1'] |
| $\begin{aligned} & \text { NM_001097642.2(GJ } \\ & \text { B1):c.194A>G } \\ & \text { (p.Tyr65Cys) } \end{aligned}$ | 104894819 | GJB1 | [] | II | ['X-linked hereditary motor and sensory neuropathy'\| |
| $\begin{aligned} & \text { NM_000166.5(GJB1): } \\ & \text { c.614A>G } \\ & \text { (p.Asn205Ser) } \end{aligned}$ | 104894822 | GJB1 | [] | [] | ['X-linked hereditary motor and sensory neuropathy'] |
| NM_001165963.1(SC <br> N1A):c. $747 \mathrm{~T}>\mathrm{G}$ (p.Asp249Glu) | 773407463 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \hline \text { NM_000169.2(GLA):c } \\ & .886 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met296Val) } \\ & \hline \end{aligned}$ | 104894830 | - | [] | [] | ['Fabry disease', 'Fabry disease, cardiac variant' |
| NM_000169.2(GLA):c $101 \mathrm{~A}>\mathrm{G}$ (p.Asn34Ser) | 104894835 | - | [] | II | ['Fabry disease'] |
| $\begin{array}{\|l\|} \hline \text { NM_001165963.1(SC } \\ \text { N1A):c. } 1662+3 \mathrm{~A}>\mathrm{G} \\ \hline \end{array}$ | 794726773 | SCN1A | [] | ['GTGCCAYACCTG GTGTGGGGAGG'] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{array}{\|l} \hline \text { NM } 0000169.2 \text { (GLA):c } \\ .1228 \mathrm{~A}>\mathrm{G} \\ \text { (p.Thr410Ala) } \\ \hline \end{array}$ | 104894852 | - | [] | [] | ['Fabry disease'] |
| $\begin{aligned} & \text { NM } \mathrm{NM00202.6(DSS):c.} \\ & 404 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys135Arg) } \end{aligned}$ | 104894861 | IDS | [] | ['AAAGACTYTTCC CACCGACATGG'] | ['Mucopolysaccharid osis, MPS-II'] |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A) }: c .383+1 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794726803 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| NM_000266.3(NDP):c $.131 \mathrm{~A}>\mathrm{G}$ (p.Tyr44Cys) | 104894870 | NDP | [] | [] | ['Atrophia bulborum hereditaria'] |
| NM_000266.3(NDP):c $.125 \mathrm{~A}>\mathrm{G}$ (p. His 42 Arg ) | 104894874 | NDP | [] | ['TGGYGCCTCATG CAGCGTCGAGG' | [] |
| NM_001128227.2(GN <br> E):c.604A>G <br> (p.Met202Val) | 121908634 | GNE | [] | [] | ['Inclusion body myopathy 2 '] |
| $\begin{aligned} & \hline \text { NM_001165963.1(SC } \\ & \text { N1A):c. } 3880-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 794726816 | - | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NMM 001165963.1(SC } \\ & \text { N1A):c. } 1046 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr349Cys) } \end{aligned}$ | 794726844 | SCN1A | ['ACATAYA TCCCTCTG GACATTGG 'l | ['ACATAYATCCCT CTGGACATTGG'] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{array}{\|l\|} \hline \text { NM_001015877.1(PH } \\ \text { F6):c.700A }>\mathrm{G} \\ \text { (p.Lys234GIu) } \\ \hline \end{array}$ | 104894917 | PHF6 | [] | [] | ['Borjeson- <br> Forssman-Lehmann syndrome'] |
|  | 104894918 | PHF6 | [] | [] | ['Borjeson-Forssman-Lehmann syndrome'\| |
| $\begin{aligned} & \text { NM_001015877.1(PH } \\ & \text { F6):c. } 769 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg257Gly) } \end{aligned}$ | 104894919 | PHF6 | ['CTCYTGA TGTTGTTG TGAGCTGG ' | ['CTCYTGATGTTG TTGTGAGCTGG'] | ['Borjeson-Forssman-Lehmann syndrome'] |


| NM 000307.4(POU3F <br> 4):c. $1000 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys334Glu) | 104894922 | POU3F4 | [] | [] | ['Deafness, X-linked 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000330.3(RS1):c. } \\ & 667 \mathrm{~T}>C \\ & (\text { p.Cys223Arg) } \end{aligned}$ | 104894929 | - | [] | [] | ['Juvenile retinoschisis'] |
| $\begin{aligned} & \text { NM_003413.3(ZIC3):c } \\ & .1213 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 405 \mathrm{Glu} \text { ) } \end{aligned}$ | 104894962 | ZIC3 | ['TGTGTTY GCGCAGGG AGCTCGGG ' 'ATGTGTTY GCGCAGGG AGCTCGG'] | ['TGTGTTYGCGCA GGGAGCTCGGG', <br> 'ATGTGTTYGCGC AGGGAGCTCGG'] | ['Heterotaxy, visceral, X-linked'] |
| $\begin{aligned} & \text { NM_002420.5(TRPM1 } \\ & \text { ):c. } 296 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu99Pro) } \end{aligned}$ | 191205969 | TRPM1 | [] | ['AAGCYCTTAATA TCTGTGCATGG'] | ['Congenital stationary night <br> blindness, type 1C'] |
| NM_004006.2(DMD): <br> c. $1150-2 \mathrm{~A}>\mathrm{G}$ | 794727030 | DMD | [] | [] | ['Duchenne muscular dystrophy', 'Becker muscular dystrophy'] |
| NM 203290.2(POLR1 <br> C): $\mathrm{c} .221 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn74Ser) | 371802902 | POLR1C | [] | [] | ['LEUKODYSTROP HY, <br> HYPOMYELINATI NG, 11'] |
| $\begin{aligned} & \text { NM_019109.4(ALG1): } \\ & \text { c. } 1188-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794727073 | ALG1 | [] | ['TAAACYGCAGA GAGAACCAAGGG' <br> 'GTAAACYGCAGA GAGAACCAAGG'] | ['Congenital disorder of glycosylation type $\left.1 \mathrm{~K}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_004463.2(FGD1): } \\ & \text { c. } 2016-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794727099 | FGD1 | [] | [] | ['Aarskog syndrome'] |
| $\begin{aligned} & \text { NM_024110.4(CARD } \\ & \text { 14):c. } 425 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu142Gly) } \end{aligned}$ | 281875213 | CARD14 | [] | [] | ['Psoriasis susceptibility 2', 'not provided'] |
| $\begin{aligned} & \text { NM_001004334.3(GP } \\ & \text { R179):c. } 659 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr220Cys) } \end{aligned}$ | 281875236 | GPR179 | [] | ['CCCACAYATCCA <br> TCTGCCTGCGG' | ['Congenital stationary night blindness, type 1 E ', 'not provided'] |
| NM_018965.3(TREM <br> 2): $\mathrm{c} .401 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp134Gly) | 28939079 | TREM2 | $\begin{aligned} & \hline \text { ['CCGGTGA } \\ & \text { YCCAGGGG } \\ & \text { GTCTATGG' } \\ & \text { ] } \end{aligned}$ | ['TGAYCCAGGGG GTCTATGGGAGG', 'CGGTGAYCCAGG GGGTCTATGGG', 'CCGGTGAYCCAG GGGGTCTATGG'] | ['Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopath $\mathrm{y}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_015915.4(ATL1): } \\ & \text { c.1222A>G } \\ & \text { (p.Met } 408 \mathrm{Val} \text { ) } \end{aligned}$ | 28939094 | ATL1 | [] | $\begin{aligned} & \text { ['CACCCAYCTTCT } \\ & \text { TCACCCCTCGG'] } \end{aligned}$ | ['Spastic paraplegia 3'] |
| $\begin{aligned} & \text { NM_002437.4(MPV17 } \\ & \text { ):c. } 186+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 147952488 | MPV17 | ['TGGYAAG <br> TTCTCCCC <br> TCAACAGG <br> 'I | ['TGGYAAGTTCTC CCCTCAACAGG'] | ['Navajo neurohepatopathy', 'not provided'] |
| NM_005359.5(SMAD <br> 4):c. $1500 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile500Met) | 281875320 | SMAD4 | ['TGAGYAT <br> GCATAAGC <br> GACGAAG <br> G'] | ['TGAGYATGCATA AGCGACGAAGG'] | ['Myhre syndrome', 'not provided'] |
| NM_005359.5(SMAD <br> 4):c. $1498 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile500Val) | 281875322 | SMAD4 | $\begin{aligned} & \text { ['TGAGTAY } \\ & \text { GCATAAGC } \\ & \text { GACGAAG } \\ & \text { G'] } \end{aligned}$ | ['TGAGTAYGCATA AGCGACGAAGG'] | ['Hereditary cancerpredisposing <br> syndrome', 'Myhre syndrome', 'not provided'] |


| $\begin{aligned} & \text { NM_005359.5(SMAD } \\ & \text { 4):c.989A>G } \\ & \text { (p.Glu330Gly) } \end{aligned}$ | 281875324 | SMAD4 | [] | ['ATCCATTYCAAA GTAAGCAATGG'] | ['Juvenile polyposis syndrome', <br> 'Hereditary cancerpredisposing syndrome', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000342.3(SLC4A } \\ & \text { 1):c.166A>G } \\ & \text { (p.Lys56Glu) } \\ & \hline \end{aligned}$ | 5036 | SLC4A1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_000518.4(HBB):c } \\ & . * 113 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 33985472 | HBB | [] | [] | [] |
| $\begin{aligned} & \text { NM_001127255.1(NL } \\ & \text { RP7):c.2738A>G } \\ & \text { (p.Asn913Ser) } \end{aligned}$ | 104895503 | $-$ | ['TCTGGYT <br> GATACTCA <br> AGTCCAGG <br> '] | ['TCTGGYTGATAC TCAAGTCCAGG'] | ['Hydatidiform mole'] |
| $\begin{aligned} & \text { NM_000037.3(ANK1) } \\ & : c .-108 T>C \end{aligned}$ | 77173848 | ANK1 | [] | ['GGGCCYGGCCC GCACGTCACAGG' ] | ['Spherocytosis, type <br> 1, autosomal recessive'] |
| $\begin{aligned} & \text { NM_201631.3(TGM5) } \\ & \text { :c.763T }>\mathrm{C} \\ & \text { (p.Trp255Arg) } \end{aligned}$ | 115677373 | TGM5 | ['TGCGGAG YGGACGG GCAGCGTG G'\| | ['TGCGGAGYGGA CGGGCAGCGTGG' ] | ['Peeling skin syndrome, acral type'] |
| $\begin{aligned} & \text { NM_020435.3(GJC2): } \\ & \text { c. }-167 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587776888 | GJC2 | [] | [] | ['Leukodystrophy, hypomyelinating, 2'] |
| NM_130466.3(UBE3B ):c. 1A>G (p.MetlVal) | 672601304 | UBE3B | [] | [] | ['Kaufman oculocerebrofacial syndrome'] |
| $\begin{aligned} & \text { NM_022124.5(CDH23 } \\ & \text { ):c. } 146-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794727649 | - | [] | [] | ['Usher syndrome, type 1D'] |
| NM_014191.3(SCN8A ):c. $667 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg223Gly) | 672601319 | SCN8A | [] | [] | ['Early infantile epileptic encephalopathy $13^{\prime}$ '] |
| $\begin{aligned} & \text { NM_001164405.1(BH } \\ & \text { LHA9):c. } 211 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn71Asp) } \end{aligned}$ | 672601337 | BHLHA9 | [] | [] | ['Syndactyly type 9'] |
| NM_021830.4(C10orf <br> 2):c. $1754 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn585Ser) | 672601360 | C10orf2 | [] | [] | ['Perrault syndrome 5'] |
| $\begin{aligned} & \text { NM_002887.3(RARS): } \\ & \text { c. } 5 \mathrm{~A}>\mathrm{G} \text { (p.Asp2Gly) } \end{aligned}$ | 672601372 | RARS | [] | [] | ['Leukodystrophy, hypomyelinating, $9^{\prime}$ ] |
| $\begin{aligned} & \text { NM_002887.3(RARS): } \\ & \text { c.1A }>G \text { (p.Met1Val) } \end{aligned}$ | 672601375 | RARS | [] | [] | ['Leukodystrophy, hypomyelinating, 9'] |
| $\begin{aligned} & \text { NM_001943.3(DSG2): } \\ & \text { c. } 1880-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397514038 | DSG2 | [] | [] | ['Arrhythmogenic right ventricular cardiomyopathy, type 10', 'Cardiomyopathy'] |
| $\begin{aligned} & \mathrm{NM} \_024422.4(\mathrm{DSC} 2): \\ & \text { c. } 631-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397514042 | DSC2 | [] | [] | ['Arrhythmogenic right ventricular cardiomyopathy, type 11', 'Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_001159772.1(CA } \\ & \text { NT1):c.671T>C } \\ & \text { (p.Leu224Pro) } \end{aligned}$ | 150181226 | CANT1 | [] | ['CGTCYGTACGTG <br> GGCGGCCTGGG', <br> 'GCGTCYGTACGT <br> GGGCGGCCTGG' | ['Desbuquois syndrome'] |
| $\begin{aligned} & \text { NM_031418.2(ANO3) } \\ & \text { :c.2053A>G } \\ & \text { (p.Ser685Gly) } \\ & \hline \end{aligned}$ | 587776923 | ANO3 | [] | [] | ['Dystonia 24'] |


| NM 014191.3(SCN8A ):c. $5302 \mathrm{~A}>\mathrm{G}$ (p.Asn1768Asp) | 202151337 | SCN8A | [] | [] | ['Early infantile epileptic encephalopathy $\mathbf{1 3 '}^{\prime}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000367.3(TPMT) } \\ & \text { c. } 719 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr240Cys) } \\ & \hline \end{aligned}$ | 1142345 | TPMT | [] | [] | ['Thiopurine methyltransferase deficiency'] |
| NM_003907.2(EIF2B5 <br> j:c. $271 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr91Ala) | 28939717 | EIF2B5 | ['AAATGYT TCCTGTAC ACCTGTGG' 1 | ['AAATGYTTCCTG <br> TACACCTGTGG'] | ['Leukoencephalopat hy with vanishing white matter'] |
| NM_004006.2(DMD): <br> c. $10 \overline{5} 54-2 \mathrm{~A}>\mathrm{G}$ | 794727890 | DMD | [] | [] | ['Duchenne muscular dystrophy', 'Becker muscular dystrophy', 'Dilated cardiomyopathy 3B'] |
| $\begin{aligned} & \text { NM_000084.4(CLCN5 } \\ & \text { ):c. } 815 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr272Cys) } \\ & \hline \end{aligned}$ | 273585644 | CLCN5 | [] | [] | ['Dent disease 1'] |
| NM_000084.4(CLCN5 <br> ):c. $1637 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys546Arg) | 273585649 | CLCN5 | I] | II | ['Dent disease 1'] |
| NM_000041.3(APOE): $\text { c. } 23 \overline{7}-2 \mathrm{~A}>\mathrm{G}$ | 397514253 | APOE | [] | $\begin{aligned} & \hline \text { 'CGCCCYGCGGCO } \\ & \text { 'GAGAGGGCGGG', } \\ & \text { 'GCGCCCYGCGGC } \\ & \text { CGAGAGGGGGG'] } \end{aligned}$ | ['Familial type 3 hyperlipoproteinemi ${ }^{a}$ '] |
| $\begin{aligned} & \hline \text { NM_000155.3(GALT) } \\ & \text { :c.940A>G } \\ & \text { (p.Asn314Asp) } \end{aligned}$ | 2070074 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase', 'not provided'] |
| $\begin{aligned} & \text { NM_005045.3(RELN): } \\ & \text { c.2288A>G } \\ & \text { (p.Asp763Gly) } \end{aligned}$ | 794727998 | RELN | [] | [] | ['EPILEPSY, FAMILIAL TEMPORAL LOBE, $7^{7}$ ] |
| $\begin{aligned} & \text { NM_001914.3(CYB5 } \\ & \text { A):c. } 130-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 794728010 | CYB5A | I] | II | ['Methemoglobinemi a type 4'] |
| NM_001613.2(ACTA2 <br> ):c.1A>G (p.Met1Val) | 794728019 | ACTA2 | [] | [] | ['Thoracic aortic aneurysms and aortic dissections'] |
| $\begin{aligned} & \hline \text { NM_000109.3(DMD): } \\ & \text { c.1700T>C } \\ & \text { (p.Leu567Pro) } \end{aligned}$ | 370644567 | DMD | [] | [] | ['Becker muscular dystrophy', <br> 'Exertional myalgia, muscle stiffness and myoglobinuria', 'not provided'] |
| NM_000060.3(BTD):c 194A $>$ ( p . $\mathrm{His65Arg} \mathrm{)} \mathrm{)}$ | 397514341 | BTD | [] | [] | ['Biotinidase deficiency'] |
| NM_000060.3(BTD):c .278A $>\mathrm{G}$ (p.Tyr93Cys) | 397514348 | BTD | [] | ['GTTCAYAGATGT CAAGGTTCTGG' | ['Biotinidase deficiency'] |
| NM_000060.3(BTD):c $.356 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn119Ser) | 397514353 | BTD | [] | [] | ['Biotinidase deficiency'] |
| NM 000060.3(BTD):c $.364 \mathrm{~A}>\mathrm{G}$ <br> (p. Arg 122 Gly ) | 397514354 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .515 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn172Ser) } \\ & \hline \end{aligned}$ | 397514366 | BTD | [] | [] | ['Biotinidase deficiency'] |
| NM_000060.3(BTD):c | 397514370 | BTD | [] | [1] | ['Biotinidase |


| $\begin{aligned} & .583 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Asn} 195 \mathrm{Asp}) \end{aligned}$ |  |  |  |  | deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .584 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn195Ser) } \end{aligned}$ | 397514371 | BTD | [] | [] | ['Biotinidase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .641 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Asn214Ser) } \end{aligned}$ | 397514377 | BTD | ['AGAGGYT GTGTTTAC GGTAGCGG '] | ['AGAGGYTGTGTT TACGGTAGCGG'] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000061.2(BTK):c } \\ & .1288 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys430Glu) } \end{aligned}$ | 128620184 | BTK | ['TCTYGAT GGCCACGT CGTACTGG 1 | ['TCTYGATGGCCA CGTCGTACTGG'] | $\begin{aligned} & \text { ['X-linked } \\ & \text { agammaglobulinemi } \\ & \text { a'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_001002294.2(FM } \\ & \text { O3):c.923A>G } \\ & \text { (p.Glu308Gly) } \\ & \hline \end{aligned}$ | 2266780 | FMO3 | [] | [] | ['Trimethylaminuria' <br> ] |
| m. 15579A>G | 207460002 | MT-CYB | [] | [] | ['Multisystem disorder'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1313 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr438Cys) } \end{aligned}$ | 397514415 | BTD | [] | $\begin{aligned} & \text { ['GGCAYACAGCT } \\ & \text { CTTTGGATAAGG'] } \end{aligned}$ | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1619 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr540Cys) } \\ & \hline \end{aligned}$ | 397514431 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NM_000023.2(SGCA) } \\ & : \text { :c. } 410 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu137Gly) } \\ & \hline \end{aligned}$ | 397514451 | SGCA | [] | [] | ['Limb-girdle muscular dystrophy, type 2D'] |
| $\begin{aligned} & \text { NM_004813.2(PEX16) } \\ & \text { :c. } 992 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Tyr331Cys) } \end{aligned}$ | 397514472 | PEX16 | ['AAGYAGA TTTTCTGC CAGGTGGG <br> 'GAAGYAG ATTTTCTG CCAGGTGG <br> 'GTAGAAG YAGATTTT CTGCCAGG I | ['AAGYAGATTTTC TGCCAGGTGGG', 'GAAGYAGATTTT CTGCCAGGTGG', 'GTAGAAGYAGAT TTTCTGCCAGG'] | ['Peroxisome biogenesis disorder 8B'] |
| $\begin{aligned} & \text { NM_000933.3(PLCB4 } \\ & \text { ):c.1868A>G } \\ & \text { (p.Tyr623Cys) } \end{aligned}$ | 397514480 | PLCB4 | [] | [] | ['Auriculocondylar syndrome 1', <br> 'Auriculocondylar syndrome 2'] |
| $\begin{aligned} & \text { NM_005340.6(HINT1) } \\ & : \text { :c. } 152 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 51 \mathrm{Arg} \text { ) } \end{aligned}$ | 397514491 | HINT1 | ['AAAAYGT GTTGGTGC TTGAGGGG <br> 'GAAAAYG <br> TGTTGGTG <br> CTTGAGGG <br> 'AGAAAAY GTGTTGGT GCTTGAGG I | ['AAAAYGTGTTG GTGCTTGAGGGG', 'GAAAAYGTGTTG GTGCTTGAGGG', 'AGAAAAYGTGTT GGTGCTTGAGG'] | ['Gamstorp-Wohlfart syndrome'] |
| NM_007171.3(POMT <br> 1): c. $430 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn144Asp) | 397514501 | POMT1 | [] | ['GAGCATYCTCTG TTTCAAAGAGG'] | ['Limb-girdle muscular dystrophydystroglycanopathy, type C1'] |


| $\begin{aligned} & \hline \text { NM_003863.3(DPM2) } \\ & \text { :c. } 68 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr23Cys) } \end{aligned}$ | 397514503 | DPM2 | ['TGTAGYA GGTGAAGA TGATCAGG 'I | ['TGTAGYAGGTG AAGATGATCAGG' ] | ['Congenital disorder of glycosylation type lu'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_174917.4(ACSF3 } \\ & \text { ):c.1A>G (p.Met1Val) } \end{aligned}$ | 370382601 | ACSF3 | [] | ['GGCAGCAYTGC ACTGACAGGCGG' 1 | ['not provided'] |
| NM 183075.2(CYP2U <br> 1): $\mathrm{c} .1139 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu380Gly) | 397514514 | CYP2U1 | [] | [] | ['Spastic paraplegia 56 , autosomal recessive'] |
| NM_000344.3(SMNI) cc. $389 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr130Cys) | 397514517 | SMN1 | [] | [] | ['KugelbergWelander disease'] |
| $\begin{aligned} & \mathrm{NM} 1000138.4(\mathrm{FBN} 1): \\ & \mathrm{c} .4337-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794728216 | FBN1 | I] | I] | ['Thoracic aortic aneurysms and aortic dissections'] |
| NM_012082.3(ZFPM2 <br> ):c. $2209 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys737Glu) | 397514521 | - | [] | [] | ['Double outlet right ventricle'] |
| NM_001168272.1(ITP <br> R1):c. $1759 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn587Asp) | 397514536 | ITPR1 | [] | [] | ['Spinocerebellar ataxia $2^{9}$ ] |
| NM_178012.4(TUBB2 <br> B): $: 767 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn256Ser) | 397514568 | TUBB2B | [] | [] | ['Polymicrogyria, asymmetric'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .155 \mathrm{~A}>\mathrm{G} \text { (p.Glu52Gly) } \end{aligned}$ | 72554317 | OTC | I] | II | ['not provided'] |
| $\begin{aligned} & \text { NM_001866.2(COX7 } \\ & \text { B):c.41-2A>G } \end{aligned}$ | 397514584 | COX7B | [] | [] | ['Aplasia cutis congenita, reticulolinear, with microcephaly, facial dysmorphism, and other congenital anomalies'\| |
| NM_001099922.2(AL G13):c.339A>G (p.Ala113=) | 397514587 | ALG13 | [] | [] | ['Congenital disorder of glycosylation type 1s'] |
| NM $000531.5(\mathrm{OTC}): \mathrm{c}$ $.238 \mathrm{~A}>\mathrm{G}$ (p.Lys80Glu) | 72554332 | OTC | [] | ['AAGGACTYCCCT TGCAATAAAGG'] | ['Ornithine carbamoyltransferas e deficiency', 'not provided'] |
| NM 001083614.1(EA RS2):c. $502 \mathrm{~A}>\mathrm{G}$ (p.Arg168Gly) | 397514591 | EARS2 | [] | [] | ['Combined oxidative phosphorylation deficiency $12^{\prime \prime}$ ] |
| NM_001083614.1(EA RS2):c.193A>G (p.Lys65Glu) | 397514595 | EARS2 | I] | II | ['Combined oxidative phosphorylation deficiency $12^{\prime}$ \| |
| NM_198578.3(LRRK2 <br> ):c. $3364 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile 1122Val) | 34805604 | LRRK2 | [] | [] | ['Parkinson disease <br> 8, autosomal dominant'] |
| NM 033109.4(PNPTI ):c. $1160 \mathrm{~A}>\mathrm{G}$ (p. Gln387Arg) | 397514598 | PNPT1 | [] | [] | ['Combined oxidative phosphorylation deficiency $1^{\prime \prime}$ ] |
| NM 033109.4(PNPTI <br> ):c. $1424 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu475Gly) | 397514599 | PNPTI | [] | ['GACTYCAGATGT AACTCTTATGG'] | ['Deafness, autosomal recessive $70^{\prime}$ ] |


| NM_000531.5(OTC):c $277 \mathrm{~A}>\mathrm{G}$ ( p Thr93 Ala) | 72554344 | OTC | [] | [] | ['not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000390.2(CHM): } \\ & \text { c. } 1520 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His507Arg) } \end{aligned}$ | 397514603 | CHM | [] | [] | ['Choroideremia'] |
| NM_181690.2(AKT3): <br> c. $686 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn229Ser) | 397514605 | AKT3 | [] | [] | ['Megalencephaly-polymicrogyria-polydactylyhydrocephalus syndrome 2'] |
| $\begin{aligned} & \text { NM_006567.3(FARS2 } \\ & \text { ):c.431A>G } \\ & \text { (p.Tyr144Cys) } \end{aligned}$ | 397514610 | FARS2 | [] | [] | ['Mitochondrial encephalomyopathy' <br> , 'Combined oxidative phosphorylation deficiency 14', 'Global developmental delay'] |
| $\begin{array}{\|l} \hline \text { NM_000531.5(OTC):c } \\ .377 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asp126Gly) } \\ \hline \end{array}$ | 72554358 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_005609.2(PYGM) } \\ & \text { c. } 152 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp51Gly) } \\ & \hline \end{aligned}$ | 397514631 | PYGM | I] | I] | ['Glycogen storage disease, type $\left.\mathrm{V}^{\prime}\right]$ |
| $\begin{aligned} & \hline \text { NM_000130.4(F5):c. } 1 \\ & 601 \overline{\mathrm{G}}>\mathrm{A} \\ & (\mathrm{p} . \mathrm{Arg} 534 \mathrm{Gln}) \end{aligned}$ | 6025 | F5 | [] | [] | ['Recurrent abortion', 'Thrombophilia due to factor V Leiden'] |
| $\begin{aligned} & \text { NM_000108.4(DLD):c } \\ & .1444 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Arg} 482 \mathrm{Gly}) \\ & \hline \end{aligned}$ | 397514650 | DLD | [] | ['GACTCYAGCTAT ATCTTCACAGG'] | ['Maple syrup urine disease, type ${ }^{3}$ ] |
| NM_138554.4(TLR4): c. $896 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp299Gly) | 4986790 | TLR4 | [] | [] | ['Endotoxin hyporesponsiveness' ] |
| $\begin{aligned} & \hline \text { NM_003156.3(STIM1) } \\ & \text { :c.251A>G } \\ & \text { (p.Asp84Gly) } \\ & \hline \end{aligned}$ | 397514675 | STIM1 | I] | ['TTCCACAYCCAC ATCACCATTGG'] | ['Myopathy with tubular aggregates'] |
| $\begin{aligned} & \text { NM_003156.3(STIM1) } \\ & \text { :c.326A>G } \\ & \text { (p.His109Arg) } \\ & \hline \end{aligned}$ | 397514677 | STIM1 | [] | [] | $\begin{aligned} & \hline \text { ['Myopathy with } \\ & \text { tubular aggregates'] } \end{aligned}$ |
| NM_000238.3(KCNH <br> 2): $\mathrm{c} .1900 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr634Ala) | 794728377 | KCNH2 | [] | [] | ['Cardiac arrhythmia'] |
| NM 000238.3(KCNH <br> 2):c.1913A>G <br> (p.Lys638Arg) | 794728378 | KCNH2 | [] | ['ATCYTCTCTGAG <br> TTGGTGTTGGG', <br> 'GATCYTCTCTGA <br> GTTGGTGTTGG'] | ['Cardiac arrhythmia'] |
| $\begin{aligned} & \hline \text { NM_001457.3(FLNB): } \\ & \text { c.604A>G } \\ & \text { (p.Met202Val) } \\ & \hline \end{aligned}$ | 121908895 | FLNB | [] | [] | ['Atelosteogenesis type 1'] |
| $\begin{aligned} & \hline \text { NM_001893.4(CSNK1 } \\ & \text { D):c.137A>G } \\ & \text { (p.His46Arg) } \\ & \hline \end{aligned}$ | 397514693 | CSNK1D | [] | [] | ['Advanced sleep phase syndrome, familial, 2'] |
| $\begin{aligned} & \text { NM_002163.2(IRF8):c } \\ & .322 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys108Glu) } \end{aligned}$ | 397514710 | IRF8 | [] | [] | ['Monocyte and dendritic cell deficiency, autosomal recessive'] |


| NM_002163.2(IRF8):c $.238 \mathrm{~A}>\mathrm{G}(\mathrm{p}$. Thr80Ala) | 397514711 | IRF8 | [] | ['AACCTCGYCTTC CAAGTGGCTGG'] | ['Autosomal dominant CD11C+/CDlC + dendritic cell deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001127217.2(SM } \\ & \text { AD9):c.127A>G } \\ & \text { (p.Lys43Glu) } \end{aligned}$ | 397514715 | SMAD9 | [] | [] | ['Primary pulmonary hypertension $2^{\prime}$ ] |
| NM_001035.2(RYR2): <br> c. $12290 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn4097Ser) | 794728784 | RYR2 | [] | [] | ['not provided'] |
| NM_000388.3(CASR): c. $85 \mathrm{~A}>\mathrm{G}$ (p.Lys29Glu) | 397514729 | CASR | [] | ['CCCCCTYCTTTT GGGCTCGCTGG'] | ['Hypocalcemia, autosomal dominant 1, with bartter syndrome'] |
| NM_003793.3(CTSF): <br> c. $962 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln321Arg) | 397514731 | CTSF | [] | [] | ['Ceroid lipofuscinosis, neuronal, 13'] |
| NM 173076.2(ABCA <br> 12):c. $4139 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1380Ser) | 28940269 | ABCA12 | I] | I] | ['Autosomal recessive congenital ichthyosis $4 \mathrm{~A}^{\prime}$ \| |
| NM 017890.4(VPS13 <br> B): $\mathrm{c} .8978 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn2993Ser) | 28940272 | VPS13B | ['TCAYTGA TAAGCAGG GCCCAGGG <br> 'TTCAYTGA TAAGCAGG GCCCAGG' | ['TCAYTGATAAGC AGGGCCCAGGG', 'TTCAYTGATAAG CAGGGCCCAGG'] | ['Cohen syndrome', 'not specified'] |
| NM 022114.3(PRDM <br> 16): $: 2447 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn816Ser) | 397514743 | PRDM16 | [] | ['GCCGCCGYTTTG <br> GCTGGCACGGG'] | ['Left ventricular noncompaction 8'] |
| NM 005689.2(ABCB6 ):c. $508 \mathrm{~A}>\mathrm{G}$ (p.Ser170Gly) | 397514757 | ABCB6 | I] | ['TGGGCYGTTCCA AGACACCAGGG' 'GTGGGCYGTTCC AAGACACCAGG' | ['Dyschromatosis universalis hereditaria 3'] |
| NM_015335.4(MED13 <br> L):c. $752 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu251Gly) | 28940309 | MED 13 L | [] | II | ['Transposition of great arteries'] |
| NM 152443.2(RDH12 ):c. $677 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr226Cys) | 28940313 | RDH12 | [] | ['CACTGCGYAGGT GGTGACCCCGG'] | ['Leber congenital amaurosis 13'] |
| $\begin{aligned} & \text { NM_000517.4(HBA2): } \\ & \text { c. } 96-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 41457746 | HBA2 | [] | [] | [] |
| NM_000218.2(KCNQ <br> 1):c. $1787 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu596Gly) | 794728538 | KCNQ1 | [] | ['GTCTYCTACTCG GTTCAGGCGGG', 'TGTCTYCTACTCG GTTCAGGCGG' | ['Cardiac arrhythmia'] |
| NM_000218.2(KCNQ <br> 1):c. $605 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp202Gly) | 794728569 | KCNQ1 | II | ['AGGYCTGTGGA GTGCAGGAGAGG' 1 | ['Cardiac arrhythmia'] |
| NM_000218.2(KCNQ <br> 1):c. $1515-2 \mathrm{~A}>\mathrm{G}$ | 794728573 | KCNQ1 | [] | ['GCCYGCAGTGG AGAGAGGAGAGG '] | $\begin{aligned} & \hline \text { ['Cardiac } \\ & \text { arrhythmia'] } \end{aligned}$ |
| NM_000498.3(CYP11 B2):c. $1492 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr 498 Ala ) | 72554626 | - | [] | [] | ['Corticosterone methyloxidase type 2 deficiency'] |
| $\begin{aligned} & \text { NM_000169.2(GLA):c } \\ & .644 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn215Ser) } \\ & \hline \end{aligned}$ | 28935197 | - | [] | [] | ['Fabry disease', 'not provided'] |


| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.1085A>G } \\ & \text { (p.Lys362Arg) } \end{aligned}$ | 12720458 | KCNQ1 | [] | [] | ['Congenital long QT syndrome', 'Cardiac arrhythmia', 'Long QT syndrome, LQT1 subtype'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 001035.2(RYR2): <br> c. $12533 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn4178Ser) | 794728787 | RYR2 | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_003494.3(DYSF): } \\ & \text { c.3349-2A>G } \end{aligned}$ | 370874727 | DYSF | [] | ['CCGCCCYGGAG ACACGAAGCTGG' ] | ['Limb-girdle muscular dystrophy, type 2B'] |
| NM_001035.2(RYR2): <br> c. $568 \mathrm{~A}>\mathrm{G}$ <br> (p. $\operatorname{Arg} 190 \mathrm{Gly})$ | 794728814 | RYR2 | [] | [] | ['not provided'] |
| NM_198056.2(SCN5A ):c. $2788-2 \mathrm{~A}>\mathrm{G}$ | 794728859 | SCN5A | [] | ['ACCYGTCGAGAT AATGGGTCAGG' | ['not provided'] |
| NM_198056.2(SCN5A <br> ):c. $4453 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile 1485 Val$)$ | 794728886 | SCN5A | [] | [] | ['not provided'] |
| NM_198056.2(SCN5A ):c. $4462 \mathrm{~A}>\mathrm{G}$ (p.Thr1488Ala) | 794728887 | SCN5A | [] | ['CCTCTGYCATGA AGATGTCCTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_001927.3(DES):c. } \\ & \text { 1324A>G } \\ & \text { (p.Thr442Ala) } \\ & \hline \end{aligned}$ | 794728995 | DES | [] | [] | ['not provided'] |
| NM 001613.2(ACTA2 <br> ):c. $145 \mathrm{~A}>\mathrm{G}$ <br> (p.Met 49 Val ) | 397515325 | ACTA2 | I] | II | ['Aortic aneurysm, familial thoracic 6'] |
| NM_000782.4(CYP24 <br> A1):c. $1226 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu409Ser) | 6068812 | CYP24A1 | [] | [] | ['Idiopathic hypercalcemia of infancy'] |
| $\begin{aligned} & \text { NM_000372.4(TYR):c } \\ & .125 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp42Gly) } \end{aligned}$ | 28940878 | TYR | [] | ['CTCCTGYCCCCG CTCCACGGTGG'] | ['Tyrosinasenegative oculocutaneous albinism', 'not provided'] |
| NM_000372.4(TYR):c <br> . $1 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Metl} \mathrm{Val})$ | 28940881 | TYR | [] | [] | ['Tyrosinasenegative oculocutaneous albinism', <br> 'Oculocutaneous albinism type 1 B ', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000403.3(GALE) } \\ & \text { :c.770A>G } \\ & \text { (p.Lys257Arg) } \\ & \hline \end{aligned}$ | 28940884 | GALE | [] | [] | ['UDPglucose-4epimerase deficiency'] |
| NM_000529.2(MC2R) <br> :c. $761 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr254Cys) | 28940892 | MC2R | ['ACATGYA GCAGGCGC AGTAGGGG 'GACATGY AGCAGGCG CAGTAGGG ' | ['ACATGYAGCAG GCGCAGTAGGGG' <br> 'GACATGYAGCAG GCGCAGTAGGG', 'AGACATGYAGCA GGCGCAGTAGG' | ['ACTH resistance'] |
| $\begin{aligned} & \hline \text { NM_000061.2(BTK):c } \\ & .919 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg307Gly) } \\ & \hline \end{aligned}$ | 128621195 | BTK | [] | [] | ['X-linked agammaglobulinemi $\left.\mathrm{a}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000061.2(BTK):c } \\ & .1766 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 128621206 | BTK | [] | [] | $\begin{aligned} & \text { ['X-linked } \\ & \text { agammaglobulinemi } \end{aligned}$ |


| (p.Glu589Gly) |  |  |  |  | $\left.\mathrm{a}^{\prime}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 018486.2(HDAC <br> 8): $\mathrm{c} .539 \mathrm{~A}>\mathrm{G}$ <br> (p.His180Arg) | 397515416 | HDAC8 | [] | [] | ['Cornelia de Lange syndrome 5'] |
| NM_018486.2(HDAC <br> 8):c. $1001 \mathrm{~A}>\mathrm{G}$ <br> (p.His334Arg) | 397515418 | HDAC8 | ['CTCAYGA <br> TCTGGGAT <br> CTCAGAGG <br> 'I | ['CTCAYGATCTGG GATCTCAGAGG'] | ['Cornelia de Lange syndrome 5'] |
| NM_172107.2(KCNQ <br> 2):c. $1636 \mathrm{~A}>\mathrm{G}$ <br> (p.Met546Val) | 397515420 | KCNQ2 | [] | ['GCAYGACACTG CAGGGGGGTGGG' <br> 'CGCAYGACACTG CAGGGGGGTGG', 'AACCGCAYGACA CTGCAGGGGGG'\| | ['Early infantile epileptic encephalopathy 7'] |
| NM_001410.2(MEGF <br> 8):c. $7099 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser2367Gly) | 397515428 | MEGF8 | [] | ['GACYCCCGTGA AATGATTCCCGG'] | ['Carpenter syndrome 2'] |
| NM_004247.3(EFTUD <br> 2): $\mathrm{c} .623 \mathrm{~A}>\mathrm{G}$ <br> (p.His208Arg) | 397515431 | EFTUD2 | [] | [] | ['Growth and mental retardation, mandibulofacial dy sostosis, microcephaly, and cleft palate'] |
| $\begin{aligned} & \text { NM_004572.3(PKP2): } \\ & \text { c. } 1171-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794729133 | PKP2 | [] | [] | ['not provided'] |
| NM_018972.2(GDAP1 ):c. $368 \mathrm{~A}>\mathrm{G}$ (p.His123Arg) | 397515442 | GDAP1 | [] | [] | ['Charcot-MarieTooth disease type 2K'] |
| $\begin{aligned} & \text { NM_014795.3(ZEB2): } \\ & \text { c.3134A>G } \\ & \text { (p.His1045Arg) } \\ & \hline \end{aligned}$ | 397515449 | ZEB2 | [] | [] | ['Mowat-Wilson syndrome'] |
| $\begin{aligned} & \text { NM_002336.2(LRP6): } \\ & \text { c.1298A>G } \\ & \text { (p.Asn433Ser) } \\ & \hline \end{aligned}$ | 397515473 | LRP6 | [] | [] | ['Coronary artery disease, autosomal dominant 2'] |
| $\begin{aligned} & \text { NM_001015879.1(AU } \\ & \text { RKC):c.379-2A>G } \end{aligned}$ | 397515484 | AURKC | [] | [] | ['Infertility associated with multi-tailed spermatozoa and excessive DNA'] |
| NM_000495.4(COL4A 5):c.3107-4A>G | 397515497 | COL4A5 | [] | [] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_201631.3(TGM5) } \\ & \text { :c.122T>C } \\ & \text { (p.Leu41Pro) } \\ & \hline \end{aligned}$ | 143601447 | TGM5 | [] | ['TCAACCYCACCC TGTACTTCAGG'] | ['Peeling skin syndrome, acral type'] |
| $\begin{aligned} & \text { NM_013254.3(TBK1): } \\ & \text { c. } 1201 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys401Glu) } \end{aligned}$ | 756751089 | TBK1 | [] | [] | ['FRONTOTEMPO <br> RAL DEMENTIA <br> AND/OR <br> AMYOTROPHIC <br> LATERAL <br> SCLEROSIS 4'] |
| $\begin{aligned} & \text { NM_000207.2(INS):c. } \\ & * 59 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397515519 | - | [] | ['GGGCYTTATTCC ATCTCTCTCGG'] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000370.3(TTPA): } \\ & \text { c.191A>G } \\ & \text { (p.Asp64Gly) } \end{aligned}$ | 397515523 | TTPA | [] | ['CAGGYCCAGAT CGAAATCCCGGG', 'CCAGGYCCAGAT CGAAATCCCGG'] | ['Ataxia with vitamin E deficiency'] |
| $\begin{aligned} & \text { NM_001006657.1(WD } \\ & \text { R35):c. } 2912 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 397515535 | WDR35 | [] | [] | ['Cranioectodermal dysplasia 2'] |


| (p.Tyr971Cys) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000424.3(KRT5): } \\ & \text { c. } 1424 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu475Gly) } \end{aligned}$ | 61348633 | KRT5 | [] | [] | ['Epidermolysis bullosa herpetiformis, Dowling-Meara', 'not provided'] |
| $\begin{aligned} & \text { NM_004595.4(SMS):c } \\ & .443 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln148Arg) } \end{aligned}$ | 397515551 | SMS | [] | [] | ['Snyder Robinson syndrome'] |
| NM_001256850.1(TT N):c. $45629-2 \mathrm{~A}>\mathrm{G}$ | 794729266 | - | I] | I] | ['not provided'] |
| NM_000404.2(GLB1): c. $947 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr316Cys) | 72555361 | GLB1 | [] | [] | ['Infantile GM1 gangliosidosis'] |
| NM_000404.2(GLBI): <br> c. $1498 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr500Ala) | 72555368 | GLB1 | [] | [] | ['Mucopolysaccharid osis, MPS-IV-B'] |
| NM_000404.2(GLB1): <br> c. $1772 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr591Cys) | 72555371 | GLB1 | [] | [] | ['GM1- <br> GANGLIOSIDOSIS <br> , TYPE I, WITH CARDIAC INVOLVEMENT'] |
| NM 000487.5(ARSA) <br> c. $1055 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn352Ser) | 2071421 | ARSA | [] | [] | ['Metachromatic leukodystrophy', 'not provided'\| |
| NM 001037811.2(HS D17B10):c. $713 \mathrm{~A}>\mathrm{G}$ (p.Asn238Ser) | 122461163 | $\begin{array}{\|l} \hline \text { HSD17B1 } \\ 0 \end{array}$ | [] | [] | ['2-methyl-3hydroxybutyric aciduria'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c. } 1148-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397515756 | FBN1 | [] | [] | ['Marfan syndrome'] |
| $\begin{aligned} & \text { NM_001875.4(CPS1): } \\ & \text { c.1010A>G } \\ & \text { (p.His337Arg) } \\ & \hline \end{aligned}$ | 28940283 | CPS1 | [] | [] | ['Congenital hyperammonemia, type I'] |
| $\begin{aligned} & \text { NM_000169.2(GLA):c } \\ & .1153 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Thr} 385 \mathrm{Ala}) \end{aligned}$ | 397515869 | - | ['AGCTGTG YGATGAAG CAGGCAGG ' | ['AGCTGTGYGATG AAGCAGGCAGG'] | ['not specified', 'not provided'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c. } 1224-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397515891 | MYBPC3 | [] | ['TACTTGCYGTAG AACAGAAGGGG'] | ['Familial hypertrophic cardiomyopathy $4^{4}$, 'Cardiomyopathy'] |
| NM_000048.3(ASL):c. $857 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln286Arg) | 28941472 | ASL | [] | [] | ['Argininosuccinate lyase deficiency', 'not provided'] |
| $\begin{aligned} & \mathrm{NM}=000256.3(\mathrm{MYBP} \\ & \mathrm{C} 3): \mathrm{c} .1928-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397515937 | MYBPC3 | [] | [] | ['Primary familial hypertrophic cardiomyopathy', 'Familial hypertrophic cardiomyopathy 4 ', 'Cardiomyopathy'] |
| NM_002693.2(POLG): c. $1283 \mathrm{~T}>\mathrm{C}$ (p.Leu428Pro) | 774610098 | POLG | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_004628.4(XPC):c } \\ & .413-24 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794729657 | XPC | [] | [] | ['Xeroderma pigmentosum, group C'] |
| NM_030973.3(MED25 ):c. $116 \mathrm{~A}>\mathrm{G}$ | 794729668 | MED25 | [] | [] | ['BASEL-VANAGAITE- |


| (p.Tyr39Cys) |  |  |  |  | SMIRIN-YOSEF <br> SYNNDROME'] |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NM_001955.4(EDN1): <br> c.271A>G <br> (p.Lys91Glu) | 587777231 | EDN1 | [] |  |  |
| NM_003002.3(SDHD) <br> (c.149A>G <br> (p.His50Arg) | 11214077 | SDHD | [] | [] | ['Auriculocondylar <br> syndrome 3'] |


| $\begin{aligned} & \text { NM_033071.3(SYNE1 } \\ & \text { ):c.15705-12A>G } \end{aligned}$ | 606231134 | SYNE1 | [] | [] | ['Spinocerebellar ataxia, autosomal recessive $\left.8^{\prime}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000187.3(HGD):c $.1112 \mathrm{~A}>\mathrm{G}$ (p.His371Arg) | 120074172 | HGD | [] | [] | ['Alkaptonuria'] |
| NM_000053.3(ATP7B ):c. $3443 \mathrm{~T}>\mathrm{C}$ (p.Ile1148Thr) | 60431989 | ATP7B | ['TGCTGAY TGGAAACC GTGAGTGG 'I | ['TGCTGAYTGGAA ACCGTGAGTGG'] | ['Wilson disease'] |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c.-3-2A>G } \end{aligned}$ | 397516411 | - | [] | [] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| NM_003041.3(SLC5A <br> 2):c. $1961 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn654Ser) | 61742739 | - | I] | II | ['Familial renal glucosuria'] |
| $\begin{aligned} & \hline \mathrm{NM} \text { _000551.3(VHL):c } \\ & .467 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Tyr} 156 \mathrm{Cys}) \\ & \hline \end{aligned}$ | 397516441 | VHL | [] | [] | ['Von Hippel-Lindau syndrome'] |
| NM_000531.5(OTC):c $.481 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn161Asp) | 72556270 | OTC | [] | [] | ['not provided'] |
| NM_000531.5(OTC):c $.482 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn161Ser) | 72556271 | OTC | [] | ['CAGCCCAYTGAT AATTGGGATGG'] | ['not provided'] |
| NM_000531.5(OTC):c $.541-2 \mathrm{~A}>\mathrm{G}$ | 72556289 | OTC | ['TCCYAAA AGGCACGG GATGAAGG 'l | ['TCCYAAAAGGC ACGGGATGAAGG' ] | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_000531.5(OTC):c } \\ & .542 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu181Gly) } \end{aligned}$ | 72556290 | OTC | ['ATAGTGT YCCTAAAA GGCACGGG I | ['ATAGTGTYCCTA AAAGGCACGGG'] | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_000527.4(LDLR): } \\ & \text { c.2483A>G } \\ & \text { (p.Tyr828Cys) } \\ & \hline \end{aligned}$ | 28942085 | LDLR | [] | [] | ['Familial hypercholesterolemi $\mathrm{a}^{\text {a }}$, 'not provided'] |
| NM 000271.4(NPC1): <br> c. $3467 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1156Ser) | 28942105 | NPC1 | [] | [] | ['Niemann-Pick disease type $\mathrm{Cl}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000271.4(NPC1): } \\ & \text { c.3263A>G } \\ & \text { (p.Tyr1088Cys) } \end{aligned}$ | 28942106 | NPC1 | [] | I] | ['NIEMANN-PICK DISEASE, TYPE C1, JUVENILE FORM'] |
| NM 020247.4(ADCK 3):c. $1541 \mathrm{~A}>\mathrm{G}$ (p.Tyr514Cys) | 119468008 | ADCK3 | [] | [] | ['Coenzyme Q10 deficiency, primary, 4'I |
| NM_001063.3(TF):c. 9 56A>G (p.His319Arg) | 41295774 | TF | [] | [] | [] |
| NM 172201.1(KCNE2 <br> ):c.281A>G <br> (p.Glu94Gly) | 74424227 | KCNE2 | [] | [] | ['Congenital long QT syndrome'] |
| NM_002294.2(LAMP <br> 2): $\mathrm{c} .65-2 \mathrm{~A}>\mathrm{G}$ | 397516743 | LAMP2 | I] | II | ['Danon disease'] |
| $\begin{aligned} & \text { NM_002880.3(RAF1): } \\ & \text { c.524A>G } \\ & \text { (p.His175Arg) } \\ & \hline \end{aligned}$ | 397516822 | RAF1 | [] | [] | ['Noonan syndrome $5^{\prime} 1$ |
| NM_033360.3(KRAS) <br> :c.13A>G (p.Lys5Glu) | 193929331 | KRAS | [] | [] | ['Noonan syndrome 3', 'Rasopathy'] |
| NM_000525.3(KCNJ1 | 193929337 | KCNJ11 | [] | [] | ['Permanent neonatal |


| $\begin{aligned} & \text { 1):c. } 155 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln} 52 \mathrm{Arg}) \end{aligned}$ |  |  |  |  | diabetes mellitus'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000525.3(KCNJ1 <br> 1): $\mathrm{c} .544 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile182Val) | 193929348 | KCNJ11 | ['AGAYGAG GGTCTCAG CCCTGCGG' 1 | ['AGAYGAGGGTC TCAGCCCTGCGG'] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000525.3(KCNJ1 } \\ & \text { 1):c. } 989 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr330Cys) } \end{aligned}$ | 193929356 | KCNJ11 | [] | [] | ['Permanent neonatal diabetes mellitus', 'Neonatal insulindependent diabetes mellitus'] |
| $\begin{aligned} & \text { NM_001288953.1(TT } \\ & \text { C7A):c. } 1715 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys572Arg) } \end{aligned}$ | 139010200 | TTC7A | [] | [] | ['Multiple gastrointestinal atresias'] |
| $\begin{aligned} & \text { NM_024809.4(TCTN2 } \\ & \text { ):c. } 1506-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 374349989 | TCTN2 | [] | [] | ['Meckel syndrome type 8'] |
| $\begin{aligned} & \text { NM_012275.2(IL36R } \\ & \text { N):c.104A }>G \\ & \text { (p.Lys35Arg) } \\ & \hline \end{aligned}$ | 187015338 | IL36RN | [] | [] | ['Pustular psoriasis, generalized'] |
| $\begin{aligned} & \text { NM_178517.3(PIGW): } \\ & \text { c. } 499 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met167Val) } \end{aligned}$ | 200024253 | PIGW | [] | [] | ['Hyperphosphatasia with mental retardation syndrome 5'] |
| $\begin{aligned} & \text { NM_015662.2(IFT172 } \\ & \text { ):c. } 5179 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys1727Arg) } \end{aligned}$ | 149614625 | - | [] | [] | ['Short-rib thoracic dysplasia 10 with or without polydactyly'] |
| $\begin{aligned} & \text { NM_000226.3(KRT9): } \\ & \text { c. } 469 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met157Val) } \end{aligned}$ | 58597584 | KRT9 | [] | [] | ['Epidermolytic palmoplantar keratoderma', 'not provided'] |
| NM_023073.3(C50rf4 2):c. $3290-2 \mathrm{~A}>\mathrm{G}$ | 606231260 | C50rf42 | [] | ['ATCYATCAAATA CAAAAATTTGG'] | ['Orofaciodigital syndrome 6'\| |
| $\begin{aligned} & \text { NM_005633.3(SOS1): } \\ & \text { c. } 508 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys170Glu) } \end{aligned}$ | 397517172 | SOS1 | [] | [] | ['Noonan syndrome 4', 'Rasopathy', 'not provided'] |
| NM_006306.3(SMC1 <br> A):c. $3254 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr1085Cys) | 587784418 | SMC1A | $\begin{aligned} & \hline \text { ['CTTAYAG } \\ & \text { ATCTCATC } \\ & \text { AATGTTGG' } \\ & \text { ] } \\ & \hline \end{aligned}$ | ['CTTAYAGATCTC <br> ATCAATGTTGG'] | ['Congenital muscular hypertrophy-cerebral syndrome'] |
| NM_006218.2(PIK3C <br> A):c. $1637 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln546Arg) | 397517201 | PIK3CA | [] | [] | ['Neoplasm of ovary'] |
| NM_006218.2(PIK3C <br> A):c. $3073 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr1025Ala) | 397517202 | PIK3CA | [] | [] | ['Non-small cell lung cancer'] |
| $\begin{aligned} & \text { NM_002354.2(EPCA } \\ & \text { M):c. } 492-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 606231281 | EPCAM | [] | [] | ['Diarrhea 5, with tufting enteropathy, congenital'] |
| NM_033056.3(PCDH1 5):c.1998-2A>G | 397517452 | PCDH15 | [] | [] | ['Usher syndrome, type $\left.1 F^{\prime}\right]$ |
| NM_000301.3(PLG):c. $112 \mathrm{~A}>\mathrm{G}$ (p.Lys38Glu) | 73015965 | PLG | [] | [] | ['Plasminogen deficiency, type I'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 424 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met142Val) } \end{aligned}$ | 111033692 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000096.3(CP):c. } 2 \\ & 953 \overline{\mathrm{~A}}>\mathrm{G} \end{aligned}$ | 386134132 | CP | [] | [] | ['Deficiency of ferroxidase'] |


| (p.Met985Val) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000197.1(HSD17 } \\ & \text { B3):c. } 703 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met235Val) } \\ & \hline \end{aligned}$ | 119481074 | HSD17B3 | [] | [] | ['Testosterone 17 -beta-dehydrogenase deficiency'] |
| $\begin{aligned} & \text { NM_000197.1(HSD17 } \\ & \text { B3):c.389A>G } \\ & \text { (p.Asn130Ser) } \\ & \hline \end{aligned}$ | 119481079 | HSD17B3 | II | I] | ['Testosterone 17-beta-dehydrogenase deficiency'] |
| NM 015474.3(SAMH D1):c. $1106 T>C$ (p.Leu369Ser) | 515726139 | SAMHD1 | [] | [] | ['Aicardi Goutieres syndrome 5'। |
| $\begin{aligned} & \text { NM_004817.3(TJP2):c } \\ & .1992-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777521 | TJP2 | [] | ['CAGCTCYGAGA AGAAACCACGGG' <br> 'TCAGCTCYGAGA AGAAACCACGG'] | ['Progressive familial intrahepatic cholestasis 4'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.617A>G } \\ & \text { (p.Lys206Arg) } \\ & \hline \end{aligned}$ | 730880846 | MYH7 | [] | ['CTTCYTGCTGCG GTCCCCAATGG'] | ['Cardiomyopathy'] |
| $\begin{aligned} & \hline \text { NM_020919.3(ALS2): } \\ & \text { c. } 2980-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 386134184 | ALS2 | [] | [] | ['Juvenile primary lateral sclerosis'] |
| m. $10044 \mathrm{~A}>\mathrm{G}$ | 41362547 | MT-TG | [] | [1] | ['Sudden death'] |
| NM 002977.3(SCN9A ):c. $406 \mathrm{~A}>\mathrm{G}$ (p.Ile136Val) | 80356468 | SCN9A | [] | [] | ['Primary erythromelalgia'] |
| NM_001128425.1(MU <br> TYH): $с .536 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr179Cys) | 34612342 | MUTYH | [] | [] | ['MYH-associated polyposis', <br> 'Hereditary cancerpredisposing syndrome', <br> 'Endometrial carcinoma', <br> 'Carcinoma of colon', 'not specified', 'not provided'] |
| NM_206933.2(USH2A <br> ):c.12067-2A>G | 397517978 | USH2A | [] | ['TTCCCYGTAAGA AAATTAACAGG ${ }^{\prime}$ | ['Usher syndrome, type 2A', 'Retinitis pigmentosa ${ }^{3}{ }^{\prime}$ ' |
| NM_000216.2(ANOS1 ): $\mathrm{c} . \overline{\mathrm{A}}>\mathrm{G}(\mathrm{p}$. Met1Val) | 606231409 | ANOS1 | [] | ['GCACCAYGGCT GCGGGTCGAGGG' <br> 'GGCACCAYGGCT GCGGGTCGAGG'] | ['Kallmann syndrome 1'] |
| NM_206933.2(USH2A ):c. 1841-2A>G | 397518003 | USH2A | [] | [] | ['Usher syndrome, type 2A'] |
| NM 000368.4(TSC1): <br> c. $1760 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys587Arg) | 118203576 | TSC1 | [] | I] | ['Tuberous sclerosis syndrome', <br> 'Tuberous sclerosis $\mathbf{1}^{1}$ ' 'Hereditary cancer-predisposing syndrome', 'not specified'] |
| NM 021830.4(C10orf <br> 2): $\mathrm{C} .1523 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr508Cys) | 80356540 | C10orf2 | [] | [] | ['Mitochondrial DNA depletion syndrome 7 (hepatocerebral type)', 'not provided'] |
| NM_003334.3(UBA1): | 80356546 | UBA1 | [] | ['TGGCYTGTCACC | ['Arthrogryposis |


| $\begin{aligned} & \hline \text { c.1639A>G } \\ & \text { (p.Ser547Gly) } \end{aligned}$ |  |  |  | CGGATATGTGG'] | multiplex congenita, distal, X-linked'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c.8559-2A>G } \end{aligned}$ | 397518039 | USH2A | ['ATCYAAA GCAAAAG ACAAGCAG G'] | ['ATCYAAAGCAA AAGACAAGCAGG' ] | ['Retinitis pigmentosa', 'Usher syndrome, type $\left.2 \mathrm{~A}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000038.5(APC):c } \\ & .1744-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587783035 | APC | ['TCCYAGT AAGAAAC AGAATATG $\left.\mathrm{G}^{\prime}\right]$ | ['TCCYAGTAAGA AACAGAATATGG' ] | ['Familial adenomatous polyposis 1'] |
| $\begin{aligned} & \text { NM_194248.2(OTOF): } \\ & \text { c. } 766-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 80356584 | OTOF | [] | ['GACCYGCAGGC AGGAGAAGGGGG <br> 'TGACCYGCAGGC AGGAGAAGGGG', 'CTGACCYGCAGG CAGGAGAAGGG', 'GCTGACCYGCAG GCAGGAGAAGG'] | ['Deafness, autosomal recessive ${ }^{9}$ ] |
| $\begin{aligned} & \text { NM_000525.3(KCNJ1 } \\ & \text { 1):c. } 509 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys170Arg) } \end{aligned}$ | 80356621 | KCNJ11 | [] | [] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000352.4(ABCC8 } \\ & \text { ):c. } 215 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn } 72 \text { Ser) } \end{aligned}$ | 80356634 | ABCC8 | [] | [] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000352.4(ABCC8 } \\ & \text { ):c. } \overline{42} 70 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile1424Val) } \end{aligned}$ | 80356653 | ABCC8 | [] | [] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000207.2(INS):c. } \\ & 323 \bar{A}>G \\ & \text { (p.Tyr108Cys) } \end{aligned}$ | 80356672 | - | [] | [] | ['Permanent neonatal diabetes mellitus'] |
| $\begin{aligned} & \text { NM_000083.2(CLCN1 } \\ & \text { ):c. } 382 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met128Val) } \end{aligned}$ | 80356699 | CLCN1 | [] | [] | ['Myotonia congenita', 'Congenital myotonia, autosomal dominant form'] |
| NM 001008211.1(OP TN ):c. $1433 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu478Gly) | 267606929 | OPTN | [] | [] | ['Amyotrophic lateral sclerosis type 12'] |
| $\begin{aligned} & \text { NM_007375.3(TARD } \\ & \text { BP):c. } 506 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp169Gly) } \end{aligned}$ | 80356717 | TARDBP | [] | [] | ['Amyotrophic lateral sclerosis type $\left.10^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_007375.3(TARD } \\ & \text { BP):c. } 1009 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 337 \mathrm{Val} \text { ) } \end{aligned}$ | 80356730 | TARDBP | [] | [] | ['Amyotrophic lateral sclerosis type 10'] |
| $\begin{aligned} & \text { NM_007375.3(TARD } \\ & \text { BP):c.1028A>G } \\ & \text { (p.Gln343Arg) } \end{aligned}$ | 80356731 | TARDBP | [] | [] | ['Amyotrophic lateral sclerosis type 10'] |
| $\begin{aligned} & \text { NM_001701.3(BAAT) } \\ & : \text { :c. } 967 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile } 323 \mathrm{Val} \text { ) } \end{aligned}$ | 80356747 | BAAT | ['CAAYGAA GAGGAATT GCCCCTGG' 1 | ['CAAYGAAGAGG AATTGCCCCTGG'] | ['Atypical hemolytic-uremic syndrome 1'] |
| $\begin{aligned} & \text { NM_012463.3(ATP6V } \\ & \text { 0A2):c.732-2A>G } \end{aligned}$ | 80356753 | $\begin{aligned} & \text { ATP6V0 } \\ & \text { A2 } \\ & \hline \end{aligned}$ | [] | [] | ['Cutis laxa with osteodystrophy'] |
| $\begin{aligned} & \text { NM_001876.3(CPT1A } \\ & \text { ):c. } 1361 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp454Gly) } \end{aligned}$ | 80356778 | CPT1A | [] | [] | ['Carnitine palmitoyltransferase I deficiency'] |
| $\begin{aligned} & \text { NM_001876.3(CPT1A } \\ & \text { ):c. } 1079 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 80356787 | CPT1A | [] | [] | ['Carnitine palmitoyltransferase |


| (p.Glu360Gly) |  |  |  |  | I deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001876.3(CPT1A } \\ & \text { ):c. } 1493 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr498Cys) } \end{aligned}$ | 80356791 | CPT1A | [] | [] | ['Carnitine palmitoyltransferase I deficiency'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c. } 211 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn71Asp) } \\ & \hline \end{aligned}$ | 587783072 | CDKL5 | [] | [] | ['Atypical Rett syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c. } 1615 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met539Val) } \\ & \hline \end{aligned}$ | 730880930 | MYH7 | [] | ['GGAACAYGCAC TCСТСТTCCAGG'] | ['Cardiomyopathy'] |
| $\mathrm{m} .5843 \mathrm{~A}>\mathrm{G}$ | 118203894 | MT-TY | [] | [] | [] |
| $\begin{aligned} & \text { NM_000130.4(F5):c. } 1 \\ & 000 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg334Gly) } \\ & \hline \end{aligned}$ | 118203905 | F5 | [] | [] | [] |
| $\begin{aligned} & \text { NM_000130.4(F5):c. } 5 \\ & 189 \mathrm{~A}>G \\ & \text { (p.Tyr1730Cys) } \end{aligned}$ | 118203907 | F5 | ['GTAGYAG GCCCAAGC CCGACAGG '] | ['GTAGYAGGCCC AAGCCCGACAGG' ] | ['Factor V deficiency'] |
| $\begin{aligned} & \text { NM_000052.6(ATP7A } \\ & \text { ):c.3911A>G } \\ & \text { (p.Asn1304Ser) } \\ & \hline \end{aligned}$ | 151340632 | ATP7A | [] | [] | ['Menkes kinky-hair syndrome', 'Cutis laxa, X-linked'] |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c. } 5053 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr1685Ala) } \end{aligned}$ | 80356890 | BRCA1 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 1', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \hline \text { NM_000046.3(ARSB): } \\ & \text { c. } 629 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr210Cys) } \\ & \hline \end{aligned}$ | 118203943 | ARSB | [] | [] | ['Mucopolysaccharid osis type VI', 'not provided'] |
| $\begin{aligned} & \text { NM_013319.2(UBIAD } \\ & \text { 1):c. } 305 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn102Ser) } \end{aligned}$ | 118203945 | UBIAD1 | $\begin{aligned} & \hline \text { ['GTAAGTG } \\ & \text { YTGACCAA } \\ & \text { ATTACCGG' } \\ & 1 \\ & \hline \end{aligned}$ | ['GTAAGTGYTGAC CAAATTACCGG'] | ['Schnyder crystalline corneal dystrophy'] |
| NM_013319.2(UBIAD <br> 1): c. $355 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg119Gly) | 118203947 | UBIAD1 | [] | $\begin{aligned} & \text { ['TCCYGTCATCAC } \\ & \text { TCTTTTTGTGG'] } \end{aligned}$ | ['Schnyder crystalline corneal dystrophy'] |
| $\begin{aligned} & \text { NM_013319.2(UBIAD } \\ & \text { 1):c.695A>G } \\ & \text { (p.Asn232Ser) } \end{aligned}$ | 118203949 | UBIAD1 | ['GGTGTTG <br> YTGGAATG <br> GAGAATGG <br> '] | ['GGTGTTGYTGGA ATGGAGAATGG'] | ['Schnyder crystalline corneal dystrophy'] |
| $\begin{aligned} & \text { NM_013319.2(UBIAD } \\ & \text { 1):c. } 335 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp112Gly) } \\ & \hline \end{aligned}$ | 118203950 | UBIAD1 | [] | [] | ['Schnyder crystalline corneal dystrophy'\| |
| $\begin{aligned} & \text { NM_024334.2(TMEM } \\ & \text { 43):c.271A>G } \\ & \text { (p.Ile91Val) } \end{aligned}$ | 144811578 | TMEM43 | [] | [] | ['Emery-Dreifuss muscular dystrophy <br> 7, autosomal dominant', 'not provided'] |
| $\begin{aligned} & \text { NM_012073.4(CCT5): } \\ & \text { c. } 440 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His147Arg) } \end{aligned}$ | 118203986 | CCT5 | [] | [] | ['Neuropathy, hereditary sensory, with spastic paraplegia, autosomal recessive'] |
| NM_000033.3(ABCD <br> 1): $\mathrm{c} .443 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn148Ser) | 128624216 | ABCD 1 | $\begin{aligned} & \text { ['CACTGYT } \\ & \text { GACGAAG } \\ & \text { GTAGCAGG } \end{aligned}$ | ['CACTGYTGACGA AGGTAGCAGGG', 'GCACTGYTGACG | ['Adrenoleukodystro phy'] |


|  |  |  | $\left.\mathrm{G}^{\prime}\right]$ | AAGGTAGCAGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000146.3(FTL):c. 1A>G (p.MetlVal) | 139732572 | FTL | ['CTCAYGG <br> TTGGTTGG <br> CAAGAAG <br> G'] | $\begin{aligned} & \text { ['CTCAYGGTTGGT } \\ & \text { TGGCAAGAAGG'] } \end{aligned}$ | ['L-ferritin deficiency'] |
| NM_000785.3(CYP27 B1):c. $566 \mathrm{~A}>\mathrm{G}$ (p.Glu189Gly) | 118204012 | CYP27B1 | [] | [] | ['Vitamin Ddependent rickets, type 1'] |
| NM_000252.2(MTM1) :c. 1261-10A>G | 397518445 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'\| |
| NM_139281.2(WDR3 <br> 6):c. $1064 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn355Ser) | 118204022 | WDR36 | [] | [] | ['Glaucoma 1, open angle, $\left.\mathrm{G}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000392.4(ABCC2 } \\ & \text { ):c. } 4145 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln1382Arg) } \\ & \hline \end{aligned}$ | 72558202 | ABCC2 | [] | [] | ['Dubin-Johnson syndrome'] |
| $\begin{aligned} & \text { NM_000165.4(GJA1): } \\ & \text { c. } 617 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys206Arg) } \end{aligned}$ | 397518464 | GJA1 | [] | [] | ['Oculodentodigital dysplasia'] |
| NM_000833.4(GRIN2 <br> A): c. $1123-2 \mathrm{~A}>\mathrm{G}$ | 397518469 | GRIN2A | [] | [] | ['Focal epilepsy with speech disorder with or without mental retardation'] |
| $\begin{aligned} & \text { NM_015702.2(MMAD } \\ & \text { HC):c.746A>G } \\ & \text { (p.Tyr249Cys) } \\ & \hline \end{aligned}$ | 118204046 | MMADH $\mathrm{C}$ | [] | [] | ['Homocystinuria, cblD type, variant 1'] |
| $\begin{aligned} & \text { NM_000526.4(KRT14 } \\ & \text { ):c.368A>G } \\ & \text { (p.Asn123Ser) } \end{aligned}$ | 60171927 | KRT14 | [] | ['GCGGTCAYTGA GGTTCTGCATGG'] | ['Epidermolysis bullosa herpetiformis, Dowling-Meara', 'not provided'] |
| $\begin{aligned} & \text { NM_000237.2(LPL):c. } \\ & 548 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp183Gly) } \end{aligned}$ | 118204064 | LPL | ['AGCTGGA YCGAGGCC TTAAAAGG ' | ['GCTGGAYCGAG GCCTTAAAAGGG', <br> 'AGCTGGAYCGAG GCCTTAAAAGG'] | ['Hyperlipoproteine mia, type I'] |
| $\begin{aligned} & \text { NM_016247.3(IMPG2 } \\ & \text { ):c.370T>C } \\ & \text { (p.Phe124Leu) } \end{aligned}$ | 201893545 | IMPG2 | ['ACTYTTT GGGATCGA CTTCCTGG' 1 | ['ACTYTTTGGGAT CGACTTCCTGG'] | ['Macular dystrophy, vitelliform, $5^{\prime}$ ] |
| NM_004035.6(ACOX <br> 1): c. $832 \mathrm{~A}>\mathrm{G}$ <br> (p.Met278Val) | 118204090 | ACOX1 | [] | [] | ['Pseudoneonatal adrenoleukodystroph $\left.y^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_004035.6(ACOX } \\ & \text { 1):c. } 926 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln309Arg) } \\ & \hline \end{aligned}$ | 118204092 | ACOX1 | [] | [] | ['Pseudoneonatal adrenoleukodystroph $\left.y^{\prime}\right]$ |
| NM_000190.3(HMBS) :c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal) | 118204118 | HMBS | [] | [] | ['Porphyria, acute intermittent, nonerythroid variant'] |
| $\begin{aligned} & \hline \text { NM_001363.4(DKC1): } \\ & \text { c. } 941 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys314Arg) } \\ & \hline \end{aligned}$ | 199422248 | DKC1 | [] | ['AATCYTGGCCCC ATAGCAGATGG'] | ['Dyskeratosis congenita X-linked'] |
| $\begin{aligned} & \text { NM_000078.2(CETP): } \\ & \text { c. } 1376 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp459Gly) } \end{aligned}$ | 2303790 | CETP | [] | [] | ['Hyperalphalipoprot einemia'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .595 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Asn199Asp) } \\ & \hline \end{aligned}$ | 72558405 | OTC | [] | [] | ['not provided'] |


| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .596 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn199Ser) } \\ & \hline \end{aligned}$ | 72558406 | OTC | [] | [] | ['not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000531.5(OTC):c } \\ & .613 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Met205Val)} \\ & \hline \end{aligned}$ | 72558411 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .717+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 72558432 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & 718-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 72558433 | OTC | [] | [] | ['not provided'] |
| $\begin{array}{\|l} \hline \text { NM_000531.5(OTC):c } \\ .788 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asp263Gly) } \\ \hline \end{array}$ | 72558443 | OTC | I] | I] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .790 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr264Ala) } \\ & \hline \end{aligned}$ | 72558444 | OTC | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .929 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu310Gly) } \end{aligned}$ | 72558467 | OTC | [] | $\begin{array}{\|l\|} \hline \text { ['TCCACTYCTTCT } \\ \text { GGCTTTCTGGG''. } \\ \text { 'ATCCACTYCTTCT } \\ \text { GGCTTTCTGG'] } \\ \hline \end{array}$ | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_000531.5(OTC):c } \\ & .988 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg330Gly) } \end{aligned}$ | 72558478 | OTC | [] | $\begin{array}{\|l\|} \hline \text { ['ACTTTCYGTTTT } \\ \text { CTGCCTCTGGG', } \\ \text { 'CACTTTCYGTTT } \\ \text { CTGCCTCTGG'] } \\ \hline \end{array}$ | ['not provided'] |
| NM 000488.3(SERPI NC1):c. $655 \mathrm{~A}>\mathrm{G}$ (p.Asn219Asp) | 121909571 | $\begin{array}{\|l\|} \hline \text { SERPINC } \\ 1 \end{array}$ | II | I] | ['Antithrombin III deficiency'] |
| NM_007294.3(BRCA1 ):c. $122 \mathrm{~A}>\mathrm{G}$ <br> (p.His41Arg) | 80357276 | BRCA1 | ['AAATATG YGGTCACA CTTTGTGG' 1 | ['AAATATGYGGTC ACACTTTGTGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial $1^{\prime}$ '] |
| NM_007294.3(BRCA1 ):c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 80357287 | BRCA1 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 1 ', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{array}{\|l} \hline \text { NM_198056.2(SCN5A } \\ \text { ):c.1134T>A } \\ \text { (p.Tyr378Ter) } \\ \hline \end{array}$ | 373172185 | SCN5A | [] | [] | ['not provided'] |
| m. $7526 \mathrm{~A}>\mathrm{G}$ | 121434454 | MT-TD | [] | I] | I] |
| $\begin{aligned} & \hline \text { NM_007294.3(BRCA1 } \\ & \text { y:c.211A>G } \\ & \text { (p.Arg71Gly) } \end{aligned}$ | 80357382 | BRCA1 | [] | [] | ['Familial cancer of breast', 'Hereditary breast and ovarian cancer syndrome', 'Breast-ovarian cancer, familial 1', 'Hereditary cancerpredisposing syndrome'] |
| NM 000512.4(GALN <br> S):c. $1460 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn487Ser) | 118204440 | GALNS | ['ACGYTGA GCTGGGGC TGCGCGGG 'CACGYTG AGCTGGGG CTGCGCGG '] | $\begin{array}{\|l\|} \hline \text { ['ACGYTGAGCTG } \\ \text { GGGCTGCGCGGG', } \\ \text { 'CACGYTGAGCTG } \\ \text { GGGCTGCGCGG'] } \\ \hline \end{array}$ | ['Mucopolysaccharid osis, MPS-IV-A'] |


| $\begin{aligned} & \text { NM_000505.3(F12):c. } \\ & 158 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Tyr} 53 \mathrm{Cys}) \end{aligned}$ | 118204455 | F12 | [] | ['GGTGGYACTGG AAGGGGAAGTGG' 1 | [] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c. } 5453 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp1818Gly) } \end{aligned}$ | 80357477 | BRCA1 | [] | ['TTGYCCTCTGTC CAGGCATCTGG'] | ['Familial cancer of breast', 'Breastovarian cancer, familial 1 '\| |
| NM_032492.3(JAGN1 ):c. $\overline{48} 5 \mathrm{~A}>\mathrm{G}$ (p.Gln162Arg) | 587777730 | JAGN1 | [] | [] | ['Severe congenital neutropenia', 'Severe congenital neutropenia 6 , autosomal recessive'] |
| $\begin{aligned} & \hline \text { NM_000257.3(MYH7) } \\ & : \text { c.2087A>G } \\ & \text { (p.Asn696Ser) } \end{aligned}$ | 730880732 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| NM 000430.3(PAFA H1B1):c. $446 \mathrm{~A}>\mathrm{G}$ (p.His149Arg) | 121434482 | PAFAH1 <br> B1 | [] | [] | ['Lissencephaly 1'] |
| $\begin{aligned} & \text { NM_000363.4(TNN13) } \\ & : c .547 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys183Glu) } \end{aligned}$ | 730881077 | TNN13 | [] | [] | ['Cardiomyopathy'] |
| $\begin{aligned} & \hline \text { NM_018105.2(THAP1 } \\ & \text { y:c.266A>G } \\ & \text { (p.Lys89Arg) } \\ & \hline \end{aligned}$ | 267607111 | THAP1 | [] | [] | ['Dystonia 6, torsion'] |
| NM 016599.4(MYOZ <br> 2):c. $738 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile246Met) | 140126678 | MYOZ2 | [] | [] | ['Familial hypertrophic cardiomyopathy 16 ', 'not specified', 'not provided'] |
| $\begin{aligned} & \text { NM_000161.2(GCH1): } \\ & \text { c. } 671 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys224Arg) } \end{aligned}$ | 41298442 | GCH1 | [] | [] | ['Dystonia 5, Doparesponsive type', 'Dystonia, doparesponsive, with or without hyperphenylalanine mia, autosomal recessive'] |
| $\begin{aligned} & \text { NM_017415.2(KLHL3 } \\ & \text { ):c.926A>G } \\ & \text { (p.Gln309Arg) } \end{aligned}$ | 199469627 | KLHL3 |  |  | ['Pseudohypoaldoste ronism, type 2'] |
| $\begin{aligned} & \text { NM_017415.2(KLHL3 } \\ & \text { ):c.1670A>G } \\ & \text { (p.Tyr557Cys) } \end{aligned}$ | 199469645 | KLHL3 |  |  | ['Pseudohypoaldoste ronism, type $2^{\prime}$, <br> 'Pseudohypoaldoster onism type 2D'\| |
| $\begin{aligned} & \text { NM } 003590.4(\mathrm{CUL} 3): \\ & \mathrm{c} .1207-26 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 199469650 | CUL3 |  |  | ['Pseudohypoaldoste ronism, type 2'] |
| $\begin{array}{\|l} \hline \text { NM_003590.4(CUL3): } \\ \text { c.1238A }>G \\ \text { (p.Asp413Gly) } \end{array}$ | 199469656 | CUL3 |  |  | ['Pseudohypoaldoste ronism, type 2', <br> 'Pseudohypoaldoster onism type 2E'] |
| $\begin{aligned} & \text { NM_003590.4(CUL3): } \\ & \text { c.1376A>G } \\ & \text { (p.Lys459Arg) } \end{aligned}$ | 199469658 | CUL3 |  |  | ['Pseudohypoaldoste ronism, type 2'] |
| $\begin{aligned} & \text { NM } 003590.4(\text { CUL } 3): \\ & \mathrm{c} .1377+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 199469661 | CUL3 |  |  | ['Pseudohypoaldoste ronism, type 2'] |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c. } 4096+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 80358015 | BRCA1 | [] | [] | ['Hereditary breast and ovarian cancer syndrome', 'Breast- |


|  |  |  |  |  | ovarian cancer, familial $1^{\prime}$, 'Hereditary cancerpredisposing syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_007294.3(BRCA1 ):c. $135-2 \mathrm{~A}>\mathrm{G}$ | 80358065 | BRCA1 | [] | [] | ['Breast-ovarian cancer, familial 1'] |
| $\begin{aligned} & \text { NM_024426.4(WT1):c } \\ & .1391 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp464Gly) } \\ & \hline \end{aligned}$ | 121907902 | WT1 | [] | [] | ['Drash syndrome'] |
| $\begin{aligned} & \text { NM_007294.3(BRCA1 } \\ & \text { ):c. } 212+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 80358083 | BRCA1 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 1'] |
| $\begin{aligned} & \text { NM_024426.4(WT1):c } \\ & .1021 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Ser } 341 \mathrm{Gly}) \\ & \hline \end{aligned}$ | 121907908 | WT1 | [] | ['CGCYCTCGTACC CTGTGCTGTGG'] | ['Mesothelioma'] |
| NM_007294.3(BRCA1 ):c. $4676-2 \mathrm{~A}>\mathrm{G}$ | 80358096 | BRCA1 | [] | [] | ['Breast-ovarian cancer, familial 1', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \text { NM_000280.4(PAX6): } \\ & \text { c.1171A>G } \\ & \text { (p.Thr391Ala) } \\ & \hline \end{aligned}$ | 121907926 | PAX6 | [] | ['GTGGYGCCCGA GGTGCCCATTGG'] | ['Optic nerve aplasia, bilateral'] |
| $\begin{aligned} & \text { NM_000520.4(HEXA) } \\ & \text { :c.611A>G } \\ & \text { (p.His204Arg) } \\ & \hline \end{aligned}$ | 121907976 | HEXA | [] | [] | ['Tay-Sachs disease'] |
| $\begin{aligned} & \text { NM_000159.3(GCDH) } \\ & : \text { c. } 1213 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 405 \mathrm{Val} \text { ) } \\ & \hline \end{aligned}$ | 141437721 | GCDH | [] | [] | ['Glutaric aciduria, type 1'] |
| $\begin{aligned} & \text { NM_024740.2(ALG9): } \\ & \text { c. } 860 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr287Cys) } \\ & \hline \end{aligned}$ | 121908023 | ALG9 | [] | ['TTAYACAAAAC AATGTTGAGTGG'] | ['Congenital disorder of glycosylation type 1L'] |
| NM_003051.3(SLC16 <br> A1):c.610A>G <br> (p.Lys204Glu) | 80358222 | SLC16A1 | [] | [] | ['Erythrocyte lactate transporter defect'] |
| $\begin{aligned} & \text { NM_000229.1(LCAT): } \\ & \text { c. } 463 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn155Asp) } \end{aligned}$ | 121908057 | LCAT | [] | [] | ['Fish-eye disease'] |
| NM_000639.2(FASLG ):c. $466 \mathrm{~A}>\mathrm{G}$ (p.Arg156Gly) | 80358238 | FASLG | [] | I] | ['Autoimmune lymphoproliferative syndrome'] |
| $\begin{aligned} & \text { NM_001369.2(DNAH } \\ & \text { 5):c. } 1121 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ile374Thr) } \\ & \hline \end{aligned}$ | 147499872 | DNAH5 | [] | [] | ['Ciliary dyskinesia, primary, $\left.3^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_138691.2(TMC1) } \\ & \text { :c. } 1960 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met654Val) } \end{aligned}$ | 121908074 | TMC1 | [] | [] | ['Deafness, autosomal recessive 7'] |
| $\begin{aligned} & \text { NM_024301.4(FKRP): } \\ & \text { c. } 1387 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn } 463 \mathrm{Asp} \text { ) } \end{aligned}$ | 121908110 | FKRP | [] | [] | ['Congenital muscular dystrophydystroglycanopathy (with or without mental retardation) type B5', 'Limbgirdle muscular dystrophydystroglycanopathy, type C5', 'Muscular |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { dystrophy', } \\
\text { 'Congenital } \\
\text { muscular dystrophy- } \\
\text { dystroglycanopathy } \\
\text { with brain and eye } \\
\text { anomalies type A5', }\end{array}
$$ <br>
'Congenital <br>
muscular dystrophy- <br>
dystroglycanopathy <br>
without mental <br>
retardation, type B5', <br>

'not provided']\end{array}\right]\)|  |
| :--- |


| (p.Glu747Gly) |  |  |  |  | 'Spiegler-Brooke syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_021102.3(SPINT <br> 2): c. $488 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr163Cys) | 121908403 | SPINT2 | $\begin{aligned} & \text { ['TCCAYAG } \\ & \text { ATGAAGTT } \\ & \text { ATTGCAGG } \\ & \text { I } \\ & \hline \end{aligned}$ | ['TCCAYAGATGA AGTTATTGCAGG'] | ['Diarrhea 3, secretory sodium, congenital, syndromic'] |
| $\begin{aligned} & \text { NM_004924.4(ACTN4 } \\ & \text { ):c. } 763 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys255Glu) } \end{aligned}$ | 121908415 | ACTN4 | [] | [] | ['Focal segmental glomerulosclerosis 1'] |
| $\begin{aligned} & \text { NM_004795.3(KL):c. } 5 \\ & 78 \mathrm{~A}>\mathrm{G} \text { (p.His193Arg) } \end{aligned}$ | 121908423 | KL | ['CAGYGGT ACAGGGTG ACCACGGG 'CCAGYGG TACAGGGT GACCACGG '] | ['CAGYGGTACAG GGTGACCACGGG', 'CCAGYGGTACAG GGTGACCACGG'] | [ |
| $\begin{aligned} & \text { NM_005682.6(ADGR } \\ & \text { G1):c. } 263 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr88Cys) } \end{aligned}$ | 121908466 | ADGRG1 | ['TGGYAGA <br> GGCCCCTG <br> GGGTCAGG <br> '] | ['TGGYAGAGGCC CCTGGGGTCAGG'] | ['Polymicrogyria, bilateral frontoparietal'] |
| $\begin{aligned} & \text { NM_139025.4(ADAM } \\ & \text { TS13):c. } 1582 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg528Gly) } \end{aligned}$ | 121908473 | $\begin{aligned} & \text { ADAMTS } \\ & 13 \end{aligned}$ | [] | [] | ['Upshaw-Schulman syndrome'] |
| $\begin{aligned} & \text { NM_014270.4(SLC7A } \\ & \text { 9):c. } 695 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr232Cys) } \end{aligned}$ | 121908487 | SLC7A9 | [] | [] | ['Cystinuria'] |
| $\begin{aligned} & \text { NM_004211.3(SLC6A } \\ & \text { 5):c.1472A>G } \\ & \text { (p.Tyr491Cys) } \\ & \hline \end{aligned}$ | 121908494 | SLC6A5 | [] | [] | ['Hyperekplexia 3'] |
| $\begin{aligned} & \text { NM_004211.3(SLC6A } \\ & \text { 5):c.1526A>G } \\ & \text { (p.Asn509Ser) } \\ & \hline \end{aligned}$ | 121908497 | SLC6A5 | [] | [] | ['Hyperekplexia 3'] |
| $\begin{aligned} & \text { NM_182643.2(DLC1): } \\ & \text { c. } 2875 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr959Ala) } \\ & \hline \end{aligned}$ | 121908500 | DLC1 | [] | [] | ['Carcinoma of colon'] |
| $\begin{aligned} & \text { NM_014946.3(SPAST } \\ & \text { ):c. } 1322 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp441Gly) } \end{aligned}$ | 121908512 | SPAST | [] | [] | ['Spastic paraplegia 4, autosomal dominant'] |
| $\begin{aligned} & \text { NM_014946.3(SPAST } \\ & \text { ):c. } 1157 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn386Ser) } \end{aligned}$ | 121908514 | SPAST | [] | [] | ['Spastic paraplegia 4, autosomal dominant'] |
| $\begin{aligned} & \text { NM_000026.2(ADSL): } \\ & \text { c. } 736 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 246 \mathrm{Glu} \text { ) } \\ & \hline \end{aligned}$ | 119450944 | ADSL | [] | [] | ['Adenylosuccinate lyase deficiency'] |
| $\begin{aligned} & \text { NM_000334.4(SCN4A } \\ & \text { ):c. } 3478 \mathrm{~A}>\mathrm{G} \\ & \text { (p.1le1160Val) } \end{aligned}$ | 121908549 | SCN4A | ['TGAYGGA GGGGATGG CGCCTAGG 'I | ['TGAYGGAGGGG ATGGCGCCTAGG'] | ] |
| NM_000334.4(SCN4A ):c. $421 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile141Val) | 121908561 | SCN4A | [] | [] | ['Paramyotonia congenita of von Eulenburg'] |
| NM_004328.4(BCS1L ):c. $148 \mathrm{~A}>\mathrm{G}$ (p.Thr50Ala) | 121908580 | BCS1L | [] | ['GTGYGATCATGT AATGGCGCCGG'] | ['Mitochondrial complex III deficiency'] |
| $\begin{aligned} & \text { NM_152384.2(BBS5): } \\ & \text { c. } 547 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr183Ala) } \\ & \hline \end{aligned}$ | 121908582 | BBS5 | [] | [] | ['Bardet-Biedl syndrome 5'] |
| NM_016417.2(GLRX5 | 121908584 | GLRX5 | [] | ['CCTGACCYTGTC | ['Anemia, |

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { ):c.294A>G } \\ \text { (p.Gln98=) }\end{array} & & & & \text { GGAGCTCCGGG'] } & \begin{array}{l}\text { sideroblastic, } \\ \text { pyridoxine- } \\ \text { refractory, } \\ \text { autosomal } \\ \text { recessive'] }\end{array} \\ \hline \begin{array}{l}\text { NM_006206.4(PDGFR } \\ \text { A):c.1664A>G } \\ \text { (p.Tyr555Cys) }\end{array} & 121908589 & \text { PDGFRA } & {[]} & {[]} & {[]} \\ \hline \begin{array}{l}\text { NM_002755.3(MAP2 } \\ \text { K1):c.389A>G } \\ \text { (p.Tyr130Cys) }\end{array} & 121908595 & \text { MAP2K1 } & \begin{array}{l}\text { ['CCAYAGA } \\ \text { AGCCCACG } \\ \text { ATGTACGG } \\ \text { I] }\end{array} & & \begin{array}{l}\text { ['CCAYAGAAGCC } \\ \text { CACGATGTACGG'] }\end{array} \\ \hline \begin{array}{l}\text { NM_012082.3(ZFPM2 } \\ \text { ):c.89A>G } \\ \text { (p.Glu30Gly) }\end{array} & 121908601 & \text { ZFPM2 } & \text { [] } & \begin{array}{l}\text { ['Cardiofaciocutaneo syndrome 3', } \\ \text { us }\end{array} \\ \text { 'Rasopathy'] }\end{array}\right]$

| (p.Lys535Glu) |  |  |  |  | variant type'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_002977.3(SCN9A } \\ & \text { ):c.1964A>G } \\ & \text { (p.Lys655Arg) } \end{aligned}$ | 121908919 | - | [] | ['CCTTTTCYTGTG <br> TATTTGATTGG'] | ['Generalized epilepsy with febrile seizures plus, type 7', 'not specified'] |
| $\begin{aligned} & \text { NM_002977.3(SCN9A } \\ & \text { ):c. } 184 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile62Val) } \end{aligned}$ | 121908920 | SCN9A | [] | [] | ['Febrile seizures, familial, 3b'] |
| NM 006892.3(DNMT 3B): $\mathrm{c} .2450 \mathrm{~A}>\mathrm{G}$ (p.Asp817Gly) | 121908939 | DNMT3B | [] | ['GACACGYCTGTG TAGTGCACAGG'] | ['Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency'\| |
| $\begin{aligned} & \hline \text { NM_001130978.1(DY } \\ & \text { SF):c.3892A>G } \\ & \text { (p.Ile1298Val) } \end{aligned}$ | 121908954 | DYSF | [] | [] | ['Miyoshi muscular dystrophy 1', 'Limbgirdle muscular dystrophy, type $2 \mathrm{~B}^{\prime}$, 'not specified'] |
| $\begin{aligned} & \text { NM_001130978.1(DY } \\ & \text { SF):c. } 5264 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu1755Gly) } \end{aligned}$ | 121908961 | DYSF | [] | [] | ['Limb-girdle muscular dystrophy, type 2B'] |
| $\begin{aligned} & \text { NM_016203.3(PRKA } \\ & \text { G2):c. } 1148 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His383Arg) } \end{aligned}$ | 121908988 | PRKAG2 | [] | [] | ['Familial hypertrophic cardiomyopathy 6'] |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c. } 2738 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr913Cys) } \end{aligned}$ | 121909008 | CFTR | ['CACATAA <br> YACGAACT <br> GGTGCTGG <br> 'I | ['CACATAAYACG AACTGGTGCTGG'] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c. } 326 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr109Cys) } \\ & \hline \end{aligned}$ | 121909031 | CFTR | [] | [] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c. } 650 \mathrm{~A}>\mathrm{G} \\ & (\text { p. Glu217Gly) } \end{aligned}$ | 121909046 | CFTR | [] | [] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_001040667.2(HS } \\ & \text { F4):c. } 256 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile86Val) } \end{aligned}$ | 121909050 | HSF4 | [] | [] | ['Cataract, zonular'] |
| $\begin{aligned} & \text { NM_005025.4(SERPI } \\ & \text { NII):c.1013A>G } \\ & \text { (p.His338Arg) } \end{aligned}$ | 121909052 | SERPINI1 | [] | [] | ['Familial encephalopathy with neuroserpin inclusion bodies'\| |
| $\begin{aligned} & \text { NM_005422.2(TECTA } \\ & \text { ):c. } 5609 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1870Cys) } \end{aligned}$ | 121909058 | TECTA | [] | [] | ['Deafness, autosomal dominant 12'] |
| $\begin{aligned} & \text { NM_170695.3(TGIF1) } \\ & \text { c. } 838 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr280Ala) } \end{aligned}$ | 121909068 | TGIF1 | [] | [] | ['Holoprosencephaly 4'] |
| $\begin{aligned} & \text { NM_001005360.2(DN } \\ & \text { M2):c. } 1684 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 562 \mathrm{Glu} \text { ) } \end{aligned}$ | 121909088 | DNM2 | [] | ['ACTYCTTCTCTT TCTCCTGAGGG', <br> 'TACTYCTTCTCTT TCTCCTGAGG'] | ['Charcot-MarieTooth disease, dominant intermediate $b$, with neutropenia'] |
| $\begin{aligned} & \text { NM_000483.4(APOC2 } \\ & \text { ):c.1A>G (p.Met1Val) } \end{aligned}$ | 120074112 | - | [] | ['GCCCAYAGTGTC CAGAGACCTGG'] | ['Apolipoprotein C2 deficiency'] |
| $\begin{aligned} & \text { NM_000543.4(SMPD1 } \\ & \text { ):c. } 1154 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn385Ser) } \end{aligned}$ | 120074123 | SMPD1 | [] | [] | ['Niemann-Pick disease, type B'] |
| $\begin{aligned} & \text { NM_000019.3(ACAT1 } \\ & \text { ):c. } 278 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 120074145 | ACAT1 | [] | [] | ['Deficiency of acetyl-CoA |


| (p.Asn93Ser) |  |  |  |  | acetyltransferase'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_138477.2(CDAN <br> 1):c. $1796 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn599Ser) | 120074166 | CDAN1 | [1] | [] | ['Congenital dyserythropoietic anemia, type $\mathrm{I}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000187.3(HGD):c } \\ & .1102 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met368Val) } \end{aligned}$ | 120074173 | HGD | II | II | ['Alkaptonuria'] |
| NM 001089.2(ABCA <br> 3):c. $1702 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn568Asp) | 121909184 | ABCA3 | ['ACCGTYG TGGCCCAG CAGGACGG 'I | ['ACCGTYGTGGCC CAGCAGGACGG'] | ['Surfactant metabolism dysfunction, pulmonary, ${ }^{\prime}$ ' |
| $\begin{aligned} & \text { NM_000503.5(EYAl): } \\ & \text { c.1639A }>\mathrm{G} \\ & \text { (p.Arg547Gly) } \\ & \hline \end{aligned}$ | 121909197 | EYA1 | [] | [] | [] |
| NM 000218.2(KCNQ <br> 1):c. $418 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser140Gly) | 120074192 | KCNQ1 | ['CGCYGAA GATGAGGC AGACCAGG 'l | ['CGCYGAAGATG AGGCAGACCAGG' ] | ['Atrial fibrillation, familial, 3', 'Atrial fibrillation'] |
| NM_000314.6(PTEN): <br> c. $368 \mathrm{~A}>\mathrm{G}$ <br> (p.His123Arg) | 121909222 | PTEN | [] | [] | ['Cowden syndrome 1'] |
| $\begin{aligned} & \text { NM_000314.6(PTEN): } \\ & \text { c. } 278 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 93 \mathrm{Arg} \text { ) } \end{aligned}$ | 121909238 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome', 'Macrocephaly/autis m syndrome'\| |
| NM_000314.6(PTEN): c. $755 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp252Gly) | 121909239 | PTEN | [] | ['ATAYCACCACAC ACAGGTAACGG'] | ['Macrocephaly/autis m syndrome'] |
| $\begin{aligned} & \text { NM_198217.2(ING1): } \\ & \text { c.515A>G } \\ & \text { (p.Asn172Ser) } \end{aligned}$ | 121909251 | ING1 | [] | $\begin{aligned} & \hline \text { ['TGGYTGCACAG } \\ & \text { ACAGTACGTGGG', } \\ & \text { 'CTGGYTGCACAG' } \\ & \text { ACAGTACGTGG'] } \end{aligned}$ | ['Squamous cell carcinoma of the head and neck'] |
| NM_012338.3(TSPAN <br> 12):c. $734 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu245Pro) | 200519776 | TSPAN12 | [] | [] | ['Exudative vitreoretinopathy $5^{5}$ ] |
| NM $001001557.2(\mathrm{GD}$ <br> F6):c. $1271 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys424Arg) | 121909353 | GDF6 | [] | [] | ['Klippel-Feil syndrome 1, autosomal dominant'\| |
| $\begin{aligned} & \text { NM_000163.4(GHR):c } \\ & .594 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Glu} 98=) \end{aligned}$ | 121909360 | GHR | I] | [] | ['Laron-type isolated somatotropin defect'] |
| NM_000256.3(MYBP <br> C3):c. $175 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr59Ala) | 121909375 | MYBPC3 | I] | [] | ['Familial hypertrophic cardiomyopathy 4'] |
| NM_001174089.1(SL C4A11):c.2518A>G (p.Met840Val) | 121909396 | SLC4A11 | [] | ['GATCAYCTTCAT GTAGGGCAGGG', 'AGATCAYCTTCA TGTAGGGCAGG' | ['Corneal dystrophy and perceptive deafness'] |
| NM_001100.3(ACTA1 <br> ):c. $350 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn117Ser) | 121909520 | ACTA1 | ['GCGGYTG GCCTTGGG ATTGAGGG 'CGCGGYT GGCCTTGG GATTGAGG 'l | ['CGGYTGGCCTTG GGATTGAGGGG', 'GCGGYTGGCCTT GGGATTGAGGG', 'CGCGGYTGGCCT TGGGATTGAGG'] | ['Nemaline myopathy 3'] |
| NM_000034.3(ALDO | 121909533 | ALDOA | [] | ['CCAYCCAACCCT | ['HNSHA due to |


| $\begin{aligned} & \text { A):c.386A>G } \\ & \text { (p.Asp129Gly) } \end{aligned}$ |  |  |  | AAGAGAAGAGG'] | aldolase A deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000495.4(COL4A 5):c.3455-9A>G | 104886388 | COL4A5 | [] | [] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \text { NM_001145.4(ANG):c } \\ & .208 \mathrm{~A}>\mathrm{G}(\text { p.Ile } 70 \mathrm{Val}) \end{aligned}$ | 121909541 | - | [] | [] | ['Amyotrophic lateral sclerosis type 9'] |
| $\begin{aligned} & \text { NM_000051.3(ATM): } \\ & \text { c. } 3118 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met1040Val) } \end{aligned}$ | 3092857 | ATM | [] | [] | ['Hereditary cancerpredisposing syndrome', 'not specified'] |
| $\begin{aligned} & \text { NM_023110.2(FGFR1 } \\ & \text { ):c.1121A>G } \\ & \text { (p.Tyr374Cys) } \\ & \hline \end{aligned}$ | 121909631 | FGFR1 | [] | [] | ['Osteoglophonic dysplasia'] |
| $\begin{aligned} & \text { NM_182925.4(FLT4) } \\ & \text { c. } 3104 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His1035Arg) } \end{aligned}$ | 121909653 | FLT4 | $\begin{aligned} & \hline \text { ['CTGYGGA } \\ & \text { TGCACTGG } \\ & \text { GGTGCGGG } \\ & \prime \\ & \text { 'TCTGYGG } \\ & \text { ATGCACTG } \\ & \text { GGGTGCGG } \\ & \text { 'I } \\ & \hline \end{aligned}$ | ['CTGYGGATGCAC <br> TGGGGTGCGGG', <br> 'TCTGYGGATGCA <br> CTGGGGTGCGG'] | [ |
| NM_000145.3(FSHR): <br> c. $1345 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr449Ala) | 121909663 | FSHR | [] | [] | ['Ovarian hyperstimulation syndrome'] |
| $\begin{aligned} & \text { NM_001017420.2(ES } \\ & \text { CO2):c.1132-7A>G } \end{aligned}$ | 80359862 | ESCO2 | [] | [] | ['Roberts-SC phocomelia syndrome'] |
| $\begin{aligned} & \text { NM_001017420.2(ES } \\ & \text { CO2):c. } 1674-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 80359869 | ESCO2 | [] | [] | $\begin{aligned} & \text { ['Roberts-SC } \\ & \text { phocomelia } \\ & \text { syndrome'] } \end{aligned}$ |
| NM_024577.3(SH3TC <br> 2): $\mathrm{c} .505 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr169His) | 80359890 | SH3TC2 | [] | [] | ['Charcot-MarieTooth disease, type $4 C^{\prime}$, 'Charcot-MarieTooth disease, type IV', <br> 'Mononeuropathy of the median nerve, mild'] |
| $\begin{aligned} & \text { NM_032119.3(ADGR } \\ & \text { V1):c.18131A>G } \\ & \text { (p.Tyr6044Cys) } \\ & \hline \end{aligned}$ | 121909763 | ADGRV1 | [] | [] | ['Usher syndrome, type 2C'] |
| $\begin{aligned} & \text { NM_001360.2(DHCR } \\ & \text { 7):c. } 839 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr280Cys) } \end{aligned}$ | 121909766 | DHCR7 | [] | [] | ['Smith-Lemli-Opitz syndrome'] |
| NM_000517.4(HBA2): c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal) | 121909803 | HBA2 | [] | [] | ['Hemoglobin H disease, nondeletional'] |
| $\begin{aligned} & \text { NM_004006.2(DMD): } \\ & \text { c. } 835 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr279Ala) } \end{aligned}$ | 128627255 | DMD | [] | ['TGACCGYGATCT GCAGAGAAGGG', 'CTGACCGYGATC TGCAGAGAAGG'\| | ['Dilated cardiomyopathy 3B'] |
| $\begin{aligned} & \hline \text { NM_015896.3(ZMYN } \\ & \text { D10):c.797T>C } \\ & \text { (p.Leu266Pro) } \end{aligned}$ | 200913791 | $\begin{aligned} & \hline \text { ZMYND1 } \\ & 0 \end{aligned}$ | [] | [] | ['Kartagener syndrome', 'Ciliary dyskinesia, primary, 22'] |
| $\begin{aligned} & \text { NM_001085.4(SERPI } \\ & \text { NA3):c.1240A>G } \\ & \text { (p.Met414Val) } \end{aligned}$ | 116929575 | SERPINA 3 | [] | ['GCTCAYGAAGA AGATGTTCTGGG', 'TGCTCAYGAAGA | [] |


|  |  |  |  | AGATGTTCTGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_058216.2(RAD51 <br> C): $\mathrm{c} .1027-2 \mathrm{~A}>\mathrm{G}$ | 587780835 | RAD51C | [] | [] | ['Fanconi anemia, complementation group $\left.\mathrm{O}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_006231.3(POLE): } \\ & \text { c. } 4444+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398122515 | POLE | [] | [] | ['Facial dysmorphism, immunodeficiency, livedo, and short stature'] |
| $\begin{aligned} & \text { NM_002769.4(PRSS1) } \\ & \text { :c. } 161 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn54Ser) } \end{aligned}$ | 144422014 | - | [] | [] | ['Hereditary pancreatitis'] |
| $\begin{aligned} & \text { NM_001204316.1(PR } \\ & \text { LR):c. } 635 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His212Arg) } \end{aligned}$ | 398122522 | PRLR | [] | [] | ['Hyperprolactinemi $\left.\mathrm{a}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_004992.3(MECP2 } \\ & \text { ):c.410A>G } \\ & \text { (p.Glu137Gly) } \\ & \hline \end{aligned}$ | 61748392 | MECP2 | [] | ['CAACYCCACTTT <br> AGAGCGAAAGG'] | ['Mental retardation, X-linked, syndromic 13'] |
| $\begin{aligned} & \text { NM_020366.3(RPGRI } \\ & \text { P1):c.3749-2A>G } \\ & \hline \end{aligned}$ | 376517859 | RPGRIP1 | [] | [] | ['Cone-rod dystrophy 13'] |
| $\begin{aligned} & \text { NM_000552.3(VWF): } \\ & \text { c. } 2384 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr795Cys) } \end{aligned}$ | 61748478 | VWF | ['GTCAYAG <br> TTCTGGCA <br> CGTTTTGG' <br> 1 | ['GTCAYAGTTCTG GCACGTTTTGG'] | ['von Willebrand disease type $2 \mathrm{~N}^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_001040613.2(TM } \\ & \text { EM70):c. }{ }^{* 7-2 A>G} \end{aligned}$ | 183973249 | TMEM70 | [] | [] | ['Nuclearly-encoded mitochondrial complex V (ATP synthase) deficiency 2'] |
| NM_001005741.2(GB <br> A):c. $1049 \mathrm{~A}>\mathrm{G}$ <br> (p.His350Arg) | 78198234 | GBA | [] | [] | ['Gaucher disease, perinatal lethal'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.332A>G } \\ & \text { (p.Tyrl11Cys) } \end{aligned}$ | 199472678 | KCNQ1 | [] | [] | ['Congenital long QT syndrome', 'Cardiac arrhythmia', 'Long QT syndrome, LQTl subtype'] |
| NM_000218.2(KCNQ 1): $\mathrm{c} .344 \mathrm{~A}>\mathrm{G}$ (p.Glu115Gly) | 199472679 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ 1): c. $440 \mathrm{~A}>\mathrm{G}$ (p.Gln147Arg) | 199472689 | KCNQ1 |  |  | ['Atrial fibrillation'] |
| NM_000218.2(KCNQ <br> 1): c. $592 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile198Val) | 199472700 | KCNQ1 | [] | [] | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_001943.3(DSG2): } \\ & \text { c.880A>G } \\ & \text { (p.Lys294Glu) } \end{aligned}$ | 752432726 | DSG2 | [] | [] | ['Cardiomyopathy'] |
| NM_000218.2(KCNQ 1): $\mathrm{c} .820 \mathrm{~A}>\mathrm{G}$ (p.Ile274Val) | 199472728 | KCNQ1 | [] | [] | ['Sudden infant death syndrome', 'Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000218.2(KCNQ 1): c. $842 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr281Cys) | 199472732 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| NM_000218.2(KCNQ | 199472750 | KCNQ1 |  |  | ['Congenital long |


| $\begin{aligned} & \text { 1):c. } 950 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp317Gly) } \end{aligned}$ |  |  |  |  | QT syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000218.2(KCNQ <br> 1):c. $964 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr322Ala) | 199472754 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia', 'Long QT syndrome, LQT1 subtype'] |
| NM_000218.2(KCNQ 1):c. $1138 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg380Gly) | 199472770 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| NM_000218.2(KCNQ 1):c.1193A>G <br> (p.Lys398Arg) | 199472777 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000218.2(KCNQ 1):c. $1640 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln547Arg) | 199472798 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 1669 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 557 \mathrm{Glu} \text { ) } \\ & \hline \end{aligned}$ | 199472801 | KCNQ1 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c.1705A>G } \\ & \text { (p.Lys } 569 \mathrm{Glu} \text { ) } \end{aligned}$ | 199472808 | KCNQ1 |  |  | ['Congenital long <br> QT syndrome'] |
| NM_001005741.2(GB <br> A): c. $667 \mathrm{~T}>\mathrm{C}$ <br> (p.Trp223Arg) | 61748906 | GBA | [] | $\begin{aligned} & \hline \text { ['CCCACTYGGCTC } \\ & \text { AAGACCAATGG'] } \end{aligned}$ | ['Gaucher disease, type 1 ', 'not provided'] |
| $\begin{aligned} & \text { NM_000218.2(KCNQ } \\ & \text { 1):c. } 1756 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn586Asp) } \end{aligned}$ | 199472812 | KCNQ1 |  |  | ['Congenital long QT syndrome', 'Long QT syndrome, LQT1 subtype' |
| NM_000218.2(KCNQ 1):c. $1793 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys598Arg) | 199472817 | KCNQ1 |  |  | ['Sudden infant death syndrome'] |
| NM_000238.3(KCNH <br> 2): $\mathrm{c} .82 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys28Glu) | 199472829 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c. } 128 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr43Cys) } \end{aligned}$ | 199472836 | KCNH2 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM_ } 000238.3(\mathrm{KCNH} \\ & 2): \mathrm{c} .301 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys101Glu) } \end{aligned}$ | 199472856 | KCNH2 | [] | [] | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000238.3(KCNH <br> 2):c. $652 \mathrm{~A}>\mathrm{G}$ <br> (p.Met218Val) | 199472869 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c. } 1424 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr475Cys) } \end{aligned}$ | 199472907 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1777 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile593Val) | 199472930 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c. } 1783 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys595Glu) } \end{aligned}$ | 199472932 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000238.3(KCNH } \\ & \text { 2):c. } 1790 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr597Cys) } \end{aligned}$ | 199472934 | KCNH2 |  |  | ['Long QT syndrome', <br> 'Congenital long QT syndrome'] |
| NM_000238.3(KCNH 2):c. $1826 \mathrm{~A}>\mathrm{G}$ | 199472940 | KCNH2 |  |  | ['Congenital long QT syndrome'] |


| (p.Asp609Gly) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000238.3(KCNH <br> 2):c. $1847 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr616Cys) | 199472946 | KCNH2 |  |  | ['Long QT syndrome', <br> 'Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000238.3(KCNH <br> 2):c. $1885 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn629Asp) | 199472956 | KCNH2 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM 000238.3(KCNH <br> 2):c. $1897 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn633Asp) | 199472960 | KCNH2 |  |  | ['Congenital long <br> QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1903 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn635Asp) | 199472963 | KCNH2 |  |  | ['Congenital long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $1910 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu637Gly) | 199472967 | KCNH2 |  |  | ['Congenital long <br> QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $2510 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp837Gly) | 199473004 | KCNH2 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| NM_000238.3(KCNH <br> 2):c. $2591 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp864Gly) | 199473008 | KCNH2 |  |  | ['Congenital long <br> QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $3118 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser1040Gly) | 199473024 | KCNH2 | [] | ['CTGCYCTCCACG TCGCCCCGGGG', 'CCTGCYCTCCAC GTCGCCCCGGG', 'GCCTGCYCTCCA CGTCGCCCCGG' | ['Sudden infant death syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $3233 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr1078Cys) | 199473029 | KCNH2 |  |  | ['Congenital long <br> QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.343A>G } \\ & \text { (p.Ser115Gly) } \\ & \hline \end{aligned}$ | 199473057 | SCN5A |  |  | ['Congenital long <br> QT syndrome'] |
| m. $827 \mathrm{~A}>\mathrm{G}$ | 28358569 | $\begin{aligned} & \hline \text { MT- } \\ & \text { RNR1 } \end{aligned}$ | [] | [] | ['Aminoglycosideinduced deafness', 'Deafness, nonsyndromic sensorineural, mitochondrial'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.688A>G } \\ & \text { (p.1le230Val) } \end{aligned}$ | 199473074 | SCN5A | ['ATAYAGT TTTCAGGG CCCGGAGG 'CTGATAY AGTTTTCA GGGCCCGG '] | ['ATAYAGTTTTCA GGGCCCGGAGG', <br> 'CTGATAYAGTTT <br> TCAGGGCCCGG'] | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 715 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile239Val) } \\ & \hline \end{aligned}$ | 199473075 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM }-000252.2(\mathrm{MTM1}) \\ & \text { :c. } 575 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr192Cys) } \\ & \hline \end{aligned}$ | 587783838 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_004572.3(PKP2): } \\ & \text { c.275T>A } \\ & \text { (p.Leu92Ter) } \end{aligned}$ | 763639737 | PKP2 | [] | [] | ['not provided'] |


| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 1502 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp501Gly) } \end{aligned}$ | 199473117 | SCN5A |  |  | ['Brugada syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 2249 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln750Arg) } \end{aligned}$ | 199473152 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c.2527A>G } \\ & \text { (p.Thr843Ala) } \\ & \hline \end{aligned}$ | 199473165 | SCN5A |  |  | ['Congenital long QT syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A) }: \text { c. } 1277 \mathrm{~A}>G \\ & \text { (p.Tyr426Cys) } \end{aligned}$ | 796052973 | SCN1A | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 3755 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glul252Gly) } \end{aligned}$ | 199473214 | SCN5A |  |  | ['Brugada syndrome'] |
| NM_198056.2(SCN5A ):c. $4000 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile1334Val) | 199473226 | SCN5A | [] | [] | ['Congenital long QT syndrome', 'not provided'] |
| NM_000335.4(SCN5A ):c. $4252 \mathrm{~A}>\mathrm{G}$ (p.Lys1418Glu) | 199473242 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.4291A>G } \\ & \text { (p.Arg1431Gly) } \end{aligned}$ | 199473245 | SCN5A |  |  | ['Brugada syndrome'] |
| NM 000335.4(SCN5A ):c. $4412 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1471Ser) | 199473255 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c. } 4478 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys1493Arg) } \end{aligned}$ | 199473260 | SCN5A | [] | [] | ['Atrial fibrillation', 'Congenital long QT syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } \mathbf{4 4 8 9 \mathrm { A } > \mathrm { G }} \\ & \text { (p.Met1497Val) } \end{aligned}$ | 199473264 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| NM_000335.4(SCN5A ):c. $4577 \mathrm{~A}>\mathrm{G}$ (p.Lys1526Arg) | 199473270 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5161 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn1721Asp) } \end{aligned}$ | 199473299 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c.5302A>G } \\ & \text { (p.Ile1768Val) } \end{aligned}$ | 199473311 | SCN5A |  |  | ['Congenital long QT syndrome', 'not provided'] |
| NM_000335.4(SCN5A ): c. $5318 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1773Ser) | 199473313 | SCN5A |  |  | ['Brugada syndrome'] |
| NM_000335.4(SCN5A ):c. $5366 \mathrm{~A}>\mathrm{G}$ (p.Asp1789Gly) | 199473317 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5402 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp1801Gly) } \end{aligned}$ | 199473318 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5513 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp1838Gly) } \end{aligned}$ | 199473321 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c. } 5726 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln1909Arg) } \end{aligned}$ | 199473326 | SCN5A |  |  | ['Congenital long QT syndrome', 'not provided'] |
| NM_172201.1(KCNE2 | 199473366 | KCNE2 |  |  | ['Atrial fibrillation'] |



| NM_000238.3(KCNH <br> 2):c.2131A>G <br> (p.Ile711Val) | 199473532 | KCNH2 | [] | [] | ['Long QT syndrome', 'Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000238.3(KCNH <br> 2):c. $2266 \mathrm{~A}>\mathrm{G}$ <br> (p.Met756Val) | 199473534 | KCNH2 |  |  | ['Acquired long QT syndrome'] |
| NM_000238.3(KCNH <br> 2):c. $3343 \mathrm{~A}>\mathrm{G}$ <br> (p.Met1115Val) | 199473546 | KCNH2 |  |  | ['Congenital long QT syndrome', 'Cardiac arrhythmia'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.89A>G } \\ & \text { (p.Glu30Gly) } \end{aligned}$ | 199473551 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 1217 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn406Ser) } \\ & \hline \end{aligned}$ | 199473568 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000249.3(MLH1) } \\ & \text { :c.791-2A>G } \end{aligned}$ | 267607794 | MLH1 | [] | [] | ['Hereditary <br> Nonpolyposis <br> Colorectal <br> Neoplasms', <br> 'Hereditary cancer- <br> predisposing <br> syndrome'\| |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.2780A>G } \\ & \text { (p.Asn927Ser) } \\ & \hline \end{aligned}$ | 199473589 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c.3164A>G } \\ & \text { (p.Asp1055Gly) } \\ & \hline \end{aligned}$ | 199473593 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 4223 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1408Cys) } \\ & \hline \end{aligned}$ | 199473610 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c. } 4346 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1449Cys) } \\ & \hline \end{aligned}$ | 199473613 | SCN5A |  |  | ['Brugada syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_198056.2(SCN5A } \\ & \text { ):c. } 4978 \mathrm{~A}>\mathrm{G} \\ & \text { (p.1le1660Val) } \end{aligned}$ | 199473625 | SCN5A | ['CGAYGTT GAAGAGG GCAGGCAG $\left.\mathrm{G}^{\prime}\right]$ | ['CGAYGTTGAAG AGGGCAGGCAGG' <br> 'AGCCCGAYGTTG <br> AAGAGGGCAGG'] | ['Brugada syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5138 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp1713Gly) } \\ & \hline \end{aligned}$ | 199473628 | SCN5A |  |  | ['Brugada syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5297 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1766Cys) } \end{aligned}$ | 199473632 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000335.4(SCN5A } \\ & \text { ):c. } 5317 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn1773Asp) } \\ & \hline \end{aligned}$ | 199473633 | SCN5A |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .527 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr176Cys) } \end{aligned}$ | 72556283 | OTC | ['TGAGGYA ATCAGCCA GGATCTGG '] | ['TGAGGYAATCA GCCAGGATCTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_001130823.1(DN } \\ & \text { MT1):c.1532A>G } \\ & \text { (p.Tyr511Cys) } \\ & \hline \end{aligned}$ | 199473690 | DNMT1 |  |  | ['Hereditary sensory neuropathy type IE'] $^{\prime}$ |
| $\begin{aligned} & \text { NM_000303.2(PMM2) } \\ & : c .563 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 80338704 | PMM2 | [] | [] | ['Carbohydratedeficient |


| (p.Asp 188Gly) |  |  |  |  | glycoprotein syndrome type I', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000051.3(ATM): <br> c. $8030 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr2677Cys) | 28942103 | - | [] | [1] | ['Ataxiatelangiectasia variant'] |
| NM 175053.3(KRT74 ):c. $821 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe274Ser) | 147962513 | KRT74 | [] | [] | ["Ectodermal dysplasia, 'pure' hair-nail type", <br> 'Ectodermal dysplasia 7, hair/nail type'] |
| NM_000059.3(BRCA2 ):c. $\overline{2} 6-2 \mathrm{~A}>\mathrm{G}$ | 398122779 | BRCA2 | [] | [] | ['Familial cancer of breast', 'Breastovarian cancer, familial 2'] |
| NM_133433.3(NIPBL) $: \mathrm{c} .5 \overline{42} 8-2 \mathrm{~A}>\mathrm{G}$ | 587783974 | NIPBL | [] | [] | ['Cornelia de Lange syndrome 1'J |
| NM_000238.3(KCNH <br> 2): c. $1129-2 \mathrm{~A}>\mathrm{G}$ | 794728365 | KCNH2 | [] | ['GGACCYGCACC CGGGGAAGGCGG' <br> 1 | ['Cardiac arrhythmia'] |
| NM_000260.3(MYO7 <br> A):c. $6029 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp2010Gly) | 111033175 | MYO7A | [] | [] | ['Usher syndrome, type 1'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .548 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyrl83Cys) } \\ & \hline \end{aligned}$ | 72556293 | OTC | [] | ['AGAGCTAYAGT GTTCCTAAAAGG'] | ['not provided'] |
| NM 000441.1(SLC26 A4): $: .1151 \mathrm{~A}>\mathrm{G}$ (p.Glu384Gly) | 111033244 | SLC26A4 | I] | ['TGAATYCCTAAG GAAGAGACTGG'] | ['Pendred syndrome', 'Enlarged vestibular aqueduct syndrome'] |
| NM 004004.5(GJB2): <br> c. $617 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn206Ser) | 111033294 | GJB2 | [] | II | ['Deafness, autosomal recessive 1A', 'Hearing impairment'] |
| $\begin{aligned} & \text { NM_000441.1(SLC26 } \\ & \text { A4):c. } 919-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 111033313 | SLC26A4 | [] | [] | ['Pendred syndrome', <br> 'Enlarged vestibular aqueduct syndrome'] |
| $\begin{aligned} & \text { NM_001363.4(DKC1): } \\ & \text { c.115A>G } \\ & \text { (p.Lys39Glu) } \\ & \hline \end{aligned}$ | 121912296 | DKC1 | [] | [] | ['Dyskeratosis congenita X-linked'] |
| NM 001363.4(DKC1): <br> c. $196 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr66Ala) | 121912297 | DKC1 | [] | II | $\begin{aligned} & \hline \text { ['Dyskeratosis } \\ & \text { congenita X-linked'] } \end{aligned}$ |
| $\begin{aligned} & \text { NM_001363.4(DKC1): } \\ & \text { c.361A>G } \\ & \text { (p.Ser121Gly) } \end{aligned}$ | 121912305 | DKC1 | I] | [] | ['Dyskeratosis congenita X-linked', <br> 'Hoyeraal <br> Hreidarsson <br> syndrome'\| |
| NM_178151.2(DCX):c $.413 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr138Cys) | 587783552 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_024675.3(PALB2 } \\ & \text { ):c. } 212-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 730881879 | PALB2 | I] | I | ['Hereditary cancerpredisposing syndrome'] |
| NM_000260.3(MYO7 <br> A):c. $1344-2 \mathrm{~A}>\mathrm{G}$ | 111033415 | MYO7A | [] | ['AGCYGCAGGGG CACAGGGATGGG' <br> 'AAGCYGCAGGGG CACAGGGATGG'] | ['Usher syndrome, type 1'] |


| $\begin{aligned} & \text { NM_000454.4(SOD1): } \\ & \text { c.131A>G } \\ & \text { (p.His44Arg) } \\ & \hline \end{aligned}$ | 121912435 | SOD1 | [] | [] | ['Amyotrophic lateral sclerosis type 1'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000454.4(SOD1): } \\ & \text { c.302A>G } \\ & \text { (p.Glu101Gly) } \\ & \hline \end{aligned}$ | 121912439 | SOD1 | [] | ['AGAATCTYCAAT AGACACATCGG'] | ['Amyotrophic lateral sclerosis type 1'] |
| $\begin{aligned} & \text { NM_000454.4(SOD1): } \\ & \text { c. } 140 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 47 \mathrm{Arg} \text { ) } \end{aligned}$ | 121912443 | SOD1 | [] | [] | ['Amyotrophic lateral sclerosis type 1'] |
| $\begin{aligned} & \text { NM_133433.3(NIPBL) } \\ & \text { :c.737A>G } \\ & \text { (p.Asp246Gly) } \\ & \hline \end{aligned}$ | 587784042 | NIPBL | [] | [] | ['Cornelia de Lange syndrome 1'] |
| $\begin{aligned} & \text { NM_000454.4(SOD1): } \\ & \text { c. } 242 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His81Arg) } \end{aligned}$ | 121912458 | SOD1 | [] | [] | ['Amyotrophic lateral sclerosis type 1'] |
| $\begin{aligned} & \text { NM_001754.4(RUNX } \\ & \text { 1):c.328A>G } \\ & \text { (p.Lys110Glu) } \end{aligned}$ | 121912498 | RUNX1 | [] | [] | ['Familial platelet disorder with associated myeloid malignancy'] |
| NM_000238.3(KCNH <br> 2):c. $1408 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn470Asp) | 121912505 | KCNH2 | [] | [] | ['Long QT syndrome 2', 'Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_000233.3(LHCG } \\ & \text { R):c.1733A>G } \\ & \text { (p.Asp578Gly) } \\ & \hline \end{aligned}$ | 121912518 | - | [] | [] | ['Gonadotropinindependent familial sexual precocity'] |
| $\begin{aligned} & \text { NM_000493.3(COL10 } \\ & \text { A1):c.1790A>G } \\ & \text { (p.Tyr597Cys) } \\ & \hline \end{aligned}$ | 111033554 | - | [] | [] | ['Metaphyseal chondrodysplasia, Schmid type'] |
| $\begin{aligned} & \text { NM_000233.3(LHCG } \\ & \text { R):c.1691A>G } \\ & \text { (p.Asp564Gly) } \\ & \hline \end{aligned}$ | 121912540 | - | [] | [] | ['Gonadotropinindependent familial sexual precocity'] |
| $\begin{aligned} & \text { NM_002769.4(PRSS1) } \\ & \text { :c.68A>G } \\ & (\text { p.Lys } 23 \mathrm{Arg}) \end{aligned}$ | 111033567 | - | [] | ['ATCYTGTCATCA TCATCAAAGGG', 'GATCYTGTCATC ATCATCAAAGG'] | ['Hereditary pancreatitis'] |
| $\begin{aligned} & \text { NM_004999.3(MYO6) } \\ & \text { :c.737A>G } \\ & \text { (p.His246Arg) } \end{aligned}$ | 121912560 | MYO6 | [] | [] | ['Sensorineural deafness with hypertrophic cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000901.4(NR3C2 } \\ & \text { ):c. } 2327 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln776Arg) } \end{aligned}$ | 121912565 | NR3C2 | [] | ['TCATCYGTTTGC CTGCTAAGCGG' | ['Pseudohypoaldoste ronism type 1 <br> autosomal dominant'] |
| $\begin{aligned} & \text { NM_000901.4(NR3C2 } \\ & \text { ):c.2915A>G } \\ & \text { (p.Glu972Gly) } \end{aligned}$ | 121912574 | NR3C2 | [] | ['CCGACYCCACCT TGGGCAGCTGG'] | ['Pseudohypoaldoste ronism type 1 <br> autosomal dominant'] |
| $\begin{aligned} & \text { NM_001173464.1(KIF } \\ & 21 \mathrm{~A}): c .2839 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met947Val) } \\ & \hline \end{aligned}$ | 121912589 | KIF21A | [] | ['ATTCAYATCTGC CTCCATGTTGG'] | ['Fibrosis of extraocular muscles, congenital, 1'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & : \text { :. } 67 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr23Ala) } \end{aligned}$ | 111033635 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_001041.3(SI):c. } 35 \\ & 0 \mathrm{~A}>\mathrm{G}(\text { p.Gln117Arg) } \\ & \hline \end{aligned}$ | 121912612 | SI | [] | [] | ['Sucrase-isomaltase deficiency'] |
| NM_000155.3(GALT) :c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 111033639 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate |


|  |  |  |  |  | uridylyltransferase'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_021625.4(TRPV4 } \\ & \text { ):c.998A>G } \\ & \text { (p.Asp333Gly) } \end{aligned}$ | 121912634 | TRPV4 | [] | [] | ['Spondylometaphys eal dysplasia, Kozlowski type'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 253-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 111033661 | GALT | [] | ['ATTCACCYACCG ACAAGGATAGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase', 'not provided'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c.290A>G } \\ & \text { (p.Asn97Ser) } \end{aligned}$ | 111033669 | GALT | [] | ['GAAGTCGYTGTC AAACAGGAAGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & : \text { :.379A>G } \\ & (\text { p.Lys127Glu) } \end{aligned}$ | 111033682 | GALT | [] | ['TGACCTYACTGG GTGGTGACGGG', 'ATGACCTYACTG GGTGGTGACGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_000343.3(SLC5A 1):c. $83 \mathrm{~A}>\mathrm{G}$ (p.Asp28Gly) | 121912669 | SLC5A1 | [] | [] | ['Congenital glucose-galactose malabsorption'] |
| $\begin{aligned} & \text { NM_005159.4(ACTC1 } \\ & \text { ):c.1088A>G } \\ & \text { (p.Glu363Gly) } \end{aligned}$ | 121912674 | - | [] | [] | ['Dilated cardiomyopathy 1R'] |
| $\begin{aligned} & \text { NM_005159.4(ACTC1 } \\ & \text { ):c. } 373 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met125Val) } \end{aligned}$ | 121912677 | - | [] | [] | ['Atrial septal defect 5'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { c. } 565-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 111033731 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_001681.3(ATP2A <br> 2):c. $2300 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn767Ser) | 121912732 | ATP2A2 | [] | [] | ['Darier disease, acral hemorrhagic type'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 821-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 111033767 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000342.3(SLC4A } \\ & \text { 1):c.2509A>G } \\ & \text { (p.Thr837Ala) } \\ & \hline \end{aligned}$ | 121912750 | SLC4A1 | [] | [] | ['Spherocytosis type 4'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 950 \mathrm{~A}>\mathrm{G} \\ & \text { (p. } \mathrm{Gln} 317 \mathrm{Arg} \text { ) } \end{aligned}$ | 111033786 | GALT | [] | $\begin{aligned} & \hline \text { ['CAGCYGCCAAT } \\ & \text { GGTTCCAGTTGG'] } \end{aligned}$ | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_001202.3(BMP4): } \\ & \text { c.278A>G } \\ & \text { (p.Glu93Gly) } \end{aligned}$ | 121912765 | BMP4 | [] | ['CCTCCYCCCCAG <br> ACTGAAGCCGG'] | ['Microphthalmia syndromic 6'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 1001 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys334Arg) } \end{aligned}$ | 111033809 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & : c .1048 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr350Ala) } \end{aligned}$ | 111033817 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 1132 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile378Val) } \end{aligned}$ | 111033819 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |


| m. $3243 \mathrm{~A}>\mathrm{G}$ | 199474657 | MT-TL1 | [] | [] | ['Leigh disease', 'Cyclical vomiting syndrome', 'Juvenile myopathy, encephalopathy, lactic acidosis AND stroke', 'Myoclonus with epilepsy with ragged red fibers', 'Cytochrome-c oxidase deficiency', 'Diabetes-deafness syndrome maternally transmitted', '3Methylglutaconic aciduria', 'Agerelated macular degeneration $2^{\prime}$, 'MERRF/MELAS overlap syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. $3252 \mathrm{~A}>\mathrm{G}$ | 199474661 | MT-TL1 | [] | [] | ['Mitochondrial encephalomyopathy' ] |
| m. $3251 \mathrm{~A}>\mathrm{G}$ | 199474662 | MT-TL1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_000258.2(MYL3) } \\ & : \text { c. } 517 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met173Val) } \end{aligned}$ | 199474708 | MYL3 | [] | [] | ['Cardiomyopathy', 'not specified', 'not provided'] |
| $\begin{aligned} & \text { NM_000094.3(COL7A } \\ & \text { 1):c.425A>G } \\ & \text { (p.Lys142Arg) } \end{aligned}$ | 121912856 | COL7Al | [] | ['CACCYTGGGGA CACCAGGTCGGG', <br> 'TCACCYTGGGGA CACCAGGTCGG'] | ['Epidermolysis bullosa dystrophica inversa, autosomal recessive'] |
| $\begin{aligned} & \text { NM_152263.3(TPM3): } \\ & \text { c. } 505 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys169Glu) } \end{aligned}$ | 199474715 | TPM3 | [] | ['CCAACTYACGA GCCACCTACAGG'] | ['Congenital myopathy with fiber type disproportion', 'not provided'\| |
| $\begin{aligned} & \text { NM_152263.3(TPM3): } \\ & \text { c.733A>G } \\ & \text { (p.Arg245Gly) } \end{aligned}$ | 199474718 | TPM3 | [] | ['ATCYCTCAGCAA ACTCAGCACGG'] | ['Congenital myopathy with fiber type disproportion', 'not provided'] |
| $\begin{aligned} & \text { NM_001844.4(COL2A } \\ & \text { 1):c. } 4172 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1391Cys) } \end{aligned}$ | 121912889 | COL2A1 | $\begin{aligned} & \text { ['GCAGTGG } \\ & \text { YAGGTGAT } \\ & \text { GTTCTGGG' } \\ & \text { ] } \end{aligned}$ | ['GCAGTGGYAGG TGATGTTCTGGG'] | ['Spondyloperipheral dy splasia', 'Platyspondylic lethal skeletal dy splasia Torrance type'] |
| $\begin{aligned} & \text { NM_001844.4(COL2A } \\ & \text { 1):c.2974A>G } \\ & \text { (p.Arg992Gly) } \end{aligned}$ | 121912895 | COL2Al | [] | ['ССТСҮСTCACCA CGTTGCCCAGG'] | ['Spondyloepimetap hyseal dysplasia Strudwick type'] |
| $\begin{aligned} & \text { NM_001848.2(COL6A } \\ & \text { 1):c. } 362 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys121Arg) } \end{aligned}$ | 121912936 | COL6Al | [] | [] | ['Ullrich congenital muscular dystrophy', 'Bethlem myopathy', 'not provided'\| |
| $\begin{aligned} & \text { NM_004004.5(GJB2): } \\ & \text { c. } 218 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 73 \mathrm{Arg} \text { ) } \end{aligned}$ | 121912968 | GJB2 | [] | [] | ['Keratoderma palmoplantar deafness'] |
| $\begin{aligned} & \text { NM_000941.2(POR):c } \\ & .1733 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr578Cys) } \end{aligned}$ | 121912975 | POR | [] | [] | $\begin{aligned} & \text { ['Antley-Bixler } \\ & \text { syndrome with } \\ & \text { genital anomalies } \end{aligned}$ |


|  |  |  |  |  | and disordered steroidogenesis'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001943.3(DSG2): } \\ & \text { c.797A>G } \\ & \text { (p.Asn266Ser) } \end{aligned}$ | 121913011 | DSG2 | [] | [] | ['Arrhythmogenic right ventricular cardiomyopathy, type 10'] |
| $\begin{aligned} & \text { NM_000129.3(F13A1) } \\ & \text { :c.851A>G } \\ & \text { (p.Tyr284Cys) } \\ & \hline \end{aligned}$ | 121913074 | F13A1 | [] | ['ATAGGCAYAGA TATTGTCCCAGG'] | ['Factor xiii, a subunit, deficiency of'] |
| $\begin{aligned} & \text { NM_000043.4(FAS):c. } \\ & 695 \overline{\mathrm{~A}}>\mathrm{G} \\ & \text { (p.Tyr232Cys) } \end{aligned}$ | 121913079 | FAS | [] | [] | ['Autoimmune lymphoproliferative syndrome, type 1a'] |
| $\begin{aligned} & \text { NM } 000043.4 \text { (FAS):c. } \\ & 763 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn255Asp) } \end{aligned}$ | 121913082 | FAS | [] | [] | [] |
| $\begin{aligned} & \text { NM_000043.4(FAS):c. } \\ & 353 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn118Ser) } \end{aligned}$ | 121913083 | FAS | [] | [] | [] |
| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c.14020A>G } \\ & \text { (p.Arg4674Gly) } \end{aligned}$ | 80338904 | USH2A | [] | [] | ['Retinitis pigmentosa', 'Retinitis pigmentosa 39'] |
| $\begin{aligned} & \text { NM_000142.4(FGFR3 } \\ & \text { ):c.833A>G } \\ & \text { (p.Tyr278Cys) } \end{aligned}$ | 121913115 | FGFR3 | [] | [] | ['Hypochondroplasia '] |
| $\begin{aligned} & \text { NM_000183.2(HADH } \\ & \text { B):c.788A>G } \\ & \text { (p.Asp263Gly) } \\ & \hline \end{aligned}$ | 121913131 | HADHB | [] | [] | ['Mitochondrial trifunctional protein deficiency'l |
| $\begin{aligned} & \text { NM_001079817.1(INS } \\ & \text { R):c. } 1459 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys487Glu) } \end{aligned}$ | 121913136 | INSR | [] | [] | ['Leprechaunism syndrome'] |
| $\begin{aligned} & \text { NM_000208.2(INSR): } \\ & \text { c. } 707 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His236Arg) } \end{aligned}$ | 121913145 | INSR | [] | ['GCTGYGGCAAC AGAGGCCTTCGG'] | ['Leprechaunism syndrome'] |
| $\begin{aligned} & \text { NM_000208.2(INSR): } \\ & \text { c.1466A>G } \\ & \text { (p.Asn489Ser) } \end{aligned}$ | 121913147 | INSR | [] | [] | ['Insulin-resistant diabetes mellitus AND acanthosis nigricans'] |
| $\begin{aligned} & \text { NM_000208.2(INSR): } \\ & \text { c. } 1372 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn458Asp) } \end{aligned}$ | 121913160 | INSR | [] | [] | ['Leprechaunism syndrome'] |
| $\begin{aligned} & \text { NM_000016.5(ACAD } \\ & \text { M):c. } 797 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp266Gly) } \\ & \hline \end{aligned}$ | 201375579 | ACADM | [] | [] | ['not provided'] |
| NM_024577.3(SH3TC <br> 2): $\mathrm{c} .530-2 \mathrm{~A}>\mathrm{G}$ | 80338920 | SH3TC2 | [] | [] | ['Charcot-MarieTooth disease, type $\left.4 C^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_001127500.1(ME } \\ & \text { T):c.3743A>G } \\ & \text { (p.Tyr1248Cys) } \\ & \hline \end{aligned}$ | 121913246 | MET | [] | [] | ['Renal cell carcinoma, papillary, 1'] |
| $\begin{aligned} & \text { NM_000517.4(HBA2): } \\ & \text { c. }{ }^{*} 92 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 63750067 | HBA2 | $\begin{aligned} & \hline \text { ['ACTTYAT } \\ & \text { TCAAAGAC } \\ & \text { CAGGAAG } \\ & \left.\mathrm{G}^{\prime}\right] \\ & \hline \end{aligned}$ | ['CTTYATTCAAAG ACCAGGAAGGG', 'ACTTYATTCAAA GACCAGGAAGG'] | ['Hemoglobin H disease, nondeletional'] |
| $\begin{aligned} & \text { NM_199440.1(HSPD1 } \\ & \text { ):c.86A>G } \\ & \text { (p.Asp29Gly) } \end{aligned}$ | 72466451 | HSPD1 | [] | [] | ['Leukodystrophy, hypomyelinating, 4'] |
| $\begin{aligned} & \mathrm{NM} 1000249.3(\mathrm{MLH} 1) \\ & \text { :c. } 544 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 63750211 | MLH1 | [] | [] | ['Hereditary Nonpolyposis |


| (p.Arg182Gly) |  |  |  |  | Colorectal Neoplasms'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_025137.3(SPG11) } \\ & \text { :c. } 1457-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 312262726 | SPG11 | [] | [] | ['Spastic paraplegia 11, autosomal recessive'] |
| $\begin{aligned} & \text { NM_025137.3(SPG11) } \\ & : \text { c.2608A>G } \\ & \text { (p.Ile870Val) } \\ & \hline \end{aligned}$ | 312262745 | SPG11 | [] | ['ACTTAYCCTGGG GAGAAGGATGG'] | ['Spastic paraplegia 11, autosomal recessive'] |
| $\begin{aligned} & \text { NM_025137.3(SPG11) } \\ & \text { :c. } 2833 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg945Gly) } \end{aligned}$ | 312262748 | SPG11 | [] | [] | ['Spastic paraplegia 11, autosomal recessive'] |
| $\begin{aligned} & \text { NM_003867.3(FGF17) } \\ & : c .560 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn187Ser) } \end{aligned}$ | 398123026 | FGF17 | ['CGTGGYT <br> GGGGAAG <br> GGCAGCTG <br> $\mathrm{G}^{\prime}$ ] | ['CGTGGYTGGGG AAGGGCAGCTGG' ] | ['Hypogonadotropic hypogonadism 20 with or without anosmia'] |
| $\begin{aligned} & \text { NM_025137.3(SPG11) } \\ & \text { :c. } 6477+4 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 312262780 | SPG11 | [] | [] | ['Spastic paraplegia 11, autosomal recessive'] |
| $\begin{aligned} & \text { NM_000141.4(FGFR2 } \\ & \text { ):c.1124A>G } \\ & \text { (p.Tyr375Cys) } \end{aligned}$ | 121913478 | FGFR2 | [] | [] | ['Cutis Gyrata syndrome of Beare and Stevenson', 'Endometrial carcinoma'] |
| $\begin{aligned} & \text { NM_000142.4(FGFR3 } \\ & \text { ):c.1118A>G } \\ & \text { (p.Tyr373Cys) } \end{aligned}$ | 121913485 | FGFR3 | [] | [] | ['Thanatophoric dysplasia type 1'] |
| $\begin{aligned} & \text { NM_003611.2(OFD1): } \\ & \text { c.290A>G } \\ & \text { (p.Glu97Gly) } \end{aligned}$ | 312262820 | OFD1 | [] | [] | ['Oral-facial-digital syndrome'] |
| $\begin{aligned} & \text { NM_000222.2(KIT):c. } \\ & 1924 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Lys } 642 \mathrm{Glu}) \end{aligned}$ | 121913512 | KIT | $\begin{array}{\|l} \hline \text { ['GACTTYG } \\ \text { AGTTCAGA } \\ \text { CATGAGGG } \\ \text { 'I } \\ \hline \end{array}$ | ['GACTTYGAGTTC AGACATGAGGG', <br> 'GGACTTYGAGTT <br> CAGACATGAGG'] | $\square$ |
| $\begin{aligned} & \text { NM_003611.2(OFD1): } \\ & \text { c. } 382-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 312262829 | OFD1 | [] | [] | ['Oral-facial-digital syndrome'] |
| $\begin{aligned} & \text { NM_000391.3(TPP1): } \\ & \text { c.857A>G } \\ & \text { (p.Asn286Ser) } \end{aligned}$ | 119455958 | TPP1 | [] | [] | ['Ceroid lipofuscinosis, neuronal, 2'] |
| $\begin{aligned} & \text { NM_005912.2(MC4R) } \\ & \text { :c. } 508 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Ile1 } 70 \mathrm{Val}) \\ & \hline \end{aligned}$ | 121913560 | MC4R | [] | [] | ['Obesity'] |
| $\begin{aligned} & \text { NM_005912.2(MC4R) } \\ & \text { :c. } 821 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn274Ser) } \\ & \hline \end{aligned}$ | 121913561 | MC4R | [] | [] | ['Obesity'] |
| $\begin{aligned} & \text { NM_005912.2(MC4R) } \\ & \text { :c.289A }>G \\ & \text { (p.Asn97Asp) } \\ & \hline \end{aligned}$ | 121913565 | MC4R | [] | [] | ['Obesity'] |
| $\begin{aligned} & \mathrm{NM} 1005912.2(\mathrm{MC} 4 \mathrm{R}) \\ & : \text { c. } 185 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn62Ser) } \\ & \hline \end{aligned}$ | 121913566 | MC4R | [] | [] | ['Obesity'] |
| $\begin{aligned} & \text { NM_000530.6(MPZ):c } \\ & .286 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Lys} 96 \mathrm{Glu}) \end{aligned}$ | 121913583 | MPZ | [] | [] | $\begin{aligned} & \text { ['Charcot-Marie- } \\ & \text { Tooth disease type } \\ & \left.1 \mathrm{~B}^{\prime}\right] \end{aligned}$ |
| $\begin{aligned} & \text { NM_0000095.2(COMP) } \\ & : \text { c. } 1760 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His587Arg) } \end{aligned}$ | 312262901 | COMP | [] | [] | ['Pseudoachondropla stic spondyloepiphyseal dysplasia syndrome'] |
| $\begin{aligned} & \text { NM_000530.6(MPZ):c } \\ & .242 \mathrm{~A}>\mathrm{G} \text { (p.His81Arg) } \\ & \hline \end{aligned}$ | 121913594 | MPZ | $\begin{aligned} & \hline \text { ['GGCATAG } \\ & \text { YGGAAGAT } \end{aligned}$ | ['GGCATAGYGGA AGATCTATGAGG'] | ['Charcot-Marie- <br> Tooth disease type |


|  |  |  | $\begin{array}{\|l} \hline \text { CTATGAGG } \\ \text { '] } \\ \hline \end{array}$ |  | 1B'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM 0000484.3(APP):c. } \\ & 2146 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile716 Val) } \end{aligned}$ | 63750399 | APP | [] | [] | ['Alzheimer disease, type 1', 'not provided'] |
| $\begin{aligned} & \text { NM_000329.2(RPE65) } \\ & \text { :c. } 1292 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr431Cys) } \\ & \hline \end{aligned}$ | 62636300 | RPE65 | [] | [] | ['Leber congenital amaurosis $2^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_002470.3(MYH3) } \\ & : \text { c. } 1385 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp462Gly) } \end{aligned}$ | 121913622 | MYH3 | [] | [] | ['Distal arthrogryposis type 2B'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & : \text { c. } 2333 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp778Gly) } \end{aligned}$ | 121913634 | MYH7 | [] | [] | ['Familial hypertrophic cardiomyopathy 1 ', 'not specified'] |
| NM_001127500.1(ME T):c. $3785 \mathrm{~A}>\mathrm{G}$ (p.Lys1262Arg) | 121913677 | MET | [] | [] | ['Childhood hepatocellular carcinoma'] |
| $\begin{aligned} & \text { NM_000222.2(KIT):c. } \\ & 2459 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp820Gly) } \\ & \hline \end{aligned}$ | 121913682 | KIT | [] | ['AGAAYCATTCTT GATGTCTCTGG'] | ['Mast cell disease, systemic'] |
| $\begin{array}{\|l} \hline \text { NM_000222.2(KIT):c. } \\ 2386 \mathrm{~A}>\mathrm{G} \\ \text { (p.Arg796Gly) } \\ \hline \end{array}$ | 121913684 | KIT | [] | [] | [] |
| $\begin{aligned} & \text { NM_006005.3(WFS1): } \\ & \text { c. } 1385 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu462Gly) } \\ & \hline \end{aligned}$ | 398123066 | WFS1 | [] | [] | ['Cataract, nuclear total'] |
| $\begin{aligned} & \text { NM_000495.4(COL4A } \\ & \text { 5):c. } 3925-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587776400 | COL4A5 | [] | [] | ['Alport syndrome, X-linked recessive'] |
| $\begin{aligned} & \begin{array}{l} \mathrm{NC} \_012920.1: \mathrm{m} .1351 \\ 4 \mathrm{~A}>\mathrm{G} \\ \hline \end{array} \\ & \hline \end{aligned}$ | 587776440 | MT-ND5 | [] | [] | ['Leigh disease'] |
| $\begin{array}{\|l} \hline \text { NM_000021.3(PSEN1 } \\ \text { ):c.488A>G } \\ \text { (p.His163Arg) } \\ \hline \end{array}$ | 63750590 | PSEN1 | [] | [] | ['Alzheimer disease, type 3', 'not provided'] |
| $\begin{aligned} & \text { NM_000484.3(APP):c. } \\ & 2140 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr } 714 \mathrm{Ala} \text { ) } \\ & \hline \end{aligned}$ | 63750643 | APP | [] | [] | ['Alzheimer disease, type 1', 'not provided'] |
| $\begin{aligned} & \text { NM_173560.3(RFX6): } \\ & \text { c. } 224-12 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587776515 | RFX6 | [] | [] | ['Mitchell-Riley syndrome'] |
| $\begin{aligned} & \text { NM_014043.3(CHMP } \\ & \text { 2B):c.85A>G } \\ & \text { (p.Ile29Val) } \end{aligned}$ | 63750818 | CHMP2B | [] | [] | ['Frontotemporal Dementia, <br> Chromosome 3Linked', 'Amyotrophic lateral sclerosis 17', 'not provided'] |
| $\begin{aligned} & \text { NM_000057.3(BLM):c } \\ & .1088-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 367543015 | BLM | [] | [] | ['Bloom syndrome'] |
| $\begin{aligned} & \text { NM_001011658.3(TR } \\ & \text { APPC2):c. } 238+4 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 587776753 | - | [] | [] | ['Spondyloepiphysea 1 dysplasia tarda'\| |
| $\begin{aligned} & \hline \text { NM_000151.3(G6PC): } \\ & \text { c. } 230+4 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587776757 | G6PC | [] | $\begin{aligned} & \hline \text { ['GTTCYTACCACT } \\ & \text { TAAAGACGAGG'] } \\ & \hline \end{aligned}$ | ['Glycogen storage disease type $1 \mathrm{~A}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000463.2(UGT1 } \\ & \text { A1):c. } 1085-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587776766 | - | $\begin{aligned} & \text { ['ACCYGAG } \\ & \text { ATGCAAAA } \\ & \text { TAGGGAGG } \\ & \text { '] } \end{aligned}$ | ['ACCYGAGATGC AAAATAGGGAGG' <br> 'GTGACCYGAGAT GCAAAATAGGG', 'GGTGACCYGAGA TGCAAAATAGG'] | ['Crigler Najjar syndrome, type 1'] |


| NM_000330.3(RS1):c. 286T>C (p.Trp96Arg) | 61752063 | - | [] | ['TTCTTCGYGGAC TGCAAACAAGG'] | ['Juvenile retinoschisis', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_001024847.2(TG FBR2):c.1472-2A>G | 587776770 | TGFBR2 | [] | [] | ['Loeys-Dietz syndrome 2'] |
| NM_000257.3(MYH7) <br> c. $5807 \mathrm{~A}>\mathrm{G}$ <br> (p.Ter1936Trp) | 367543053 | MYH7 | [] | [] | ['Congenital myopathy with fiber type disproportion'] |
| $\begin{aligned} & \text { NM_000321.2(RB1):c. } \\ & 2490-1398 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587776791 | RB1 | [] | [] | ['Retinoblastoma'] |
| $\begin{aligned} & \mathrm{NM} \quad 024549.5(\mathrm{TCTN} 1 \\ & \text { ):c. } 221-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 367543065 | TCTN1 | [] | ['AGCAACYGCAG AAAAAAGAGGGG 'CAGCAACYGCAG AAAAAAGAGGG'I | ['Joubert syndrome 13'] |
| NM_000228.2(LAMB <br> 3): $\mathrm{c} .565-3 \mathrm{~T}>\mathrm{C}$ | 587776813 | LAMB3 | [] | [] | ['Adult junctional epidermolysis bullosa'] |
| NM 015884.3(MBTP <br> S2):c. $1523 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn508Ser) | 587776867 | MBTPS2 | [] | [] | ['Keratosis pilaris decalvans'] |
| NM 000174.4(GP9):c. 182A $>\mathrm{G}$ (p.Asn61Ser) | 5030764 | GP9 | ['GGCTGYT GTTGGCCA GCAGAAG $\left.\mathrm{G}^{\prime}\right]$ | ['GGCTGYTGTTGG CCAGCAGAAGG'] | ['Bernard-Soulier syndrome type $\mathrm{C}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000894.2(LHB):c } \\ & .221 \mathrm{~A}>\mathrm{G} \\ & \text { (p.GIn74Arg) } \\ & \hline \end{aligned}$ | 5030773 | LHB | [] | ['CCACCYGAGGC AGGGGCGGCAGG' 1 | ['Isolated lutropin deficiency'] |
| $\begin{aligned} & \text { NM_000264.3(PTCH1 } \\ & \text { y:c. } 2479 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ser827Gly) } \end{aligned}$ | 199476092 | - | [] | ['CGTTACYGAAAC TCCTGTGTAGG'] | ['Gorlin syndrome', 'Holoprosencephaly 7', 'not specified', 'not provided'] |
| NM_000021.3(PSEN1 <br> ):c. $415 \mathrm{~A}>\mathrm{G}$ <br> (p.Met139Val) | 63751037 | PSEN1 | [] | [] | ['Alzheimer disease, type 3', 'not provided'] |
| NM 000484.3(APP):c. 2078A>G (p. Glu693Gly) | 63751039 | APP | [] | [] | ['Alzheimer disease', 'Alzheimer disease, type 1', 'Cerebral amyloid angiopathy, APP-related', 'not provided'] |
| $\begin{aligned} & \text { NM_000117.2(EMD): } \\ & \text { c. } 450-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398123158 | EMD | [] | ['CGTTCCCYGAGG CAAAAGAGGGG' | ['not provided'] |
| RMRP:n.71A>G | 199476103 | RMRP | [] | ['ACTTYCCCCTAG GCGGAAAGGGG', 'GACTTYCCCCTA GGCGGAAAGGG', 'GGACTTYCCCCT AGGCGGAAAGG' | ['Metaphyseal chondrodysplasia, McKusick type', 'Metaphyseal dysplasia without hypotrichosis'] |
| m. 14495A>G | 199476106 | MT-ND6 | [] | [] | ['Leber optic atrophy'] |
| m. $11084 \mathrm{~A}>\mathrm{G}$ | 199476113 | MT-ND4 | 1 | [] | ['Juvenile myopathy, encephalopathy, lactic acidosis AND stroke'] |
| NM 000551.3(VHL):C $233 \mathrm{~A}>\mathrm{G}$ (p.Asn78Ser) | 5030804 | VHL | ['TGCGAYT GCAGAAG ATGACCTG G'] | ['GCGAYTGCAGA 'TGCGAYTGCAGA AGATGACCTGG' | ['Von Hippel-Lindau syndrome'] |


| m.3397A>G | 199476120 | MT-ND1 | [] | [] | ['Alzheimer disease', 'Parkinson disease, late-onset'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. $4136 \mathrm{~A}>\mathrm{G}$ | 199476121 | MT-ND1 | [] | [] | ['Leber optic atrophy'] |
| NM_003094.3(SNRPE ):c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 587776924 | SNRPE | [] | [] | ['Hypotrichosis 11'] |
| $\begin{array}{\|l} \hline \text { NM_001310338.1(MG } \\ \text { ME1):c.743A>G } \\ \text { (p.Tyr248Cys) } \\ \hline \end{array}$ | 587776944 | MGME1 | [] | [] | ['Mitochondrial DNA depletion syndrome 11'] |
| $\begin{aligned} & \text { NM 000249.3(MLH1) } \\ & \text { c. } 122 \text { A }>\mathrm{G} \\ & \text { (p.Asp41Gly) } \end{aligned}$ | 63751094 | MLH1 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| $\begin{aligned} & \text { NM_138425.3(C12orf } \\ & \text { 57):c.1A>G } \\ & \text { (p.Met1Val) } \end{aligned}$ | 587776954 | C12orf57 | [] | [] | ['Temtamy syndrome', <br> 'Seizures', 'Corpus callosum abnormalities', 'Colobomatous microphthalmia', 'Global developmental delay'\| |
| $\begin{aligned} & \hline \text { NM_000277.1(PAH):c } \\ & .1169 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu390Gly) } \end{aligned}$ | 5030856 | PAH | [] | ['CTCYCTGCCACG TAATACAGGGG', 'ACTCYCTGCCAC GTAATACAGGG', 'AACTCYCTGCCA CGTAATACAGG' | ['Phenylketonuria', 'Hyperphenylalanine mia, non-pku', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_000277.1(PAH):c } \\ & .1241 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr414Cys) } \end{aligned}$ | 5030860 | PAH | [] | ['GGGTCGYAGCG AACTGAGAAGGG' <br> 'TGGGTCGYAGCG AACTGAGAAGG'] | ['Phenylketonuria', 'Hyperphenylalanine mia, non-pku', 'not provided'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { c. } 308 \mathrm{~A}>\mathrm{G} \\ & \text { (p.GIn103Arg) } \end{aligned}$ | 367543252 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_207352.3(CYP4V } \\ & \text { 2):c. } 1091-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 199476183 | CYP4V2 | I] | II | ['Bietti crystalline corneoretinal dystrophy'] |
| $\begin{array}{\|l} \hline \begin{array}{l} \mathrm{NM} \\ . \\ * 111 \mathrm{~A}>\mathrm{G} \end{array} \\ \hline \end{array}$ | 63751128 | HBB | [] | [] | II |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { c. } 857 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr286Cys) } \end{aligned}$ | 367543262 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { c. } 854 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys285Arg) } \end{aligned}$ | 367543263 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_207352.3(CYP4V <br> 2): $\mathrm{C} .761 \mathrm{~A}>\mathrm{G}$ <br> (p.His254Arg) <br> (. | 199476193 | CYP4V2 | I] | II | ['Bietti crystalline corneoretinal dystrophy'\| |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 968 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr323Cys) } \end{aligned}$ | 367543267 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'\| |


| NM 001142519.1(FA M111A):c.1012A>G (p.Thr338Ala) | 587777014 | $\begin{aligned} & \text { FAM111 } \\ & \text { A } \end{aligned}$ | II | [] | ['Gracile bone dysplasia'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000132.3(F8):c. 1 660A>G <br> (p.Ser554Gly) | 137852419 | F8 | ['AACYAGA GTAATAGC GGGTCAGG I | ['AACYAGAGTAA TAGCGGGTCAGG' ] | ['Hereditary factor VIII deficiency disease'] |
| NM 020988.2(GNAO <br> 1): $\mathrm{c} .521 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp174Gly) | 587777055 | GNAO1 | [] | $\begin{aligned} & \hline \text { ['GGATGYCCTGCT } \\ & \text { CGGTGGGCTGG'] } \end{aligned}$ | ['Early infantile epileptic encephalopathy $\left.17^{17}\right]$ |
| NM_000155.3(GALT) :c. $905-2 \mathrm{~A}>\mathrm{G}$ | 398123187 | GALT | [] | [] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| NM_015662.2(IFT172 <br> ):c. $4607 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu1536Pro) | 587777080 | IFT172 | [] | [] | [] |
| NM_014754.2(PTDSS <br> 1):c. $1058 \mathrm{~A}>\mathrm{G}$ <br> (p. Gln353Arg) | 587777088 | PTDSS1 | [] | [] | ['Lenz-Majewski hyperostosis syndrome'\| |
| NM 003859.1(DPM1) <br> :c. $742 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser248Pro) | 587777114 | - | [] | [] | ['Congenital disorder of glycosylation type 1E'] |
| NM_001018005.1(TP <br> M1):c. $742 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys248Glu) | 199476319 | TPM1 | [] | [] | ['Left ventricular noncompaction 9 ', 'not provided'] |
| NM 004826.3(ECEL1 <br> ):c. $2278 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys760Arg) | 587777129 | ECEL1 | I] | [] | ['Arthrogryposis, distal, type $\left.5 \mathrm{~d}^{\prime}\right]$ |
| NM_014908.3(DOLK) :c. $2 \mathrm{~T}>\mathrm{C}$ (p.Met1Thr) | 587777137 | DOLK | [] | [] | ['Congenital disorder of glycosylation type $\mathrm{IM}^{\prime} \mid$ |
| NM_000350.2(ABCA <br> 4): $\mathrm{c} .4540-2 \mathrm{~A}>\mathrm{G}$ | 61752435 | ABCA4 | [] | [] | ['Stargardt disease 1', 'not provided'] |
| $\begin{aligned} & \text { NM_001128085.1(AS } \\ & \text { PA):c. } 433-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 63751297 | - | [] | [] | ['Spongy degeneration of central nervous system'] |
| NM_176787.4(PIGN): <br> c. $808 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser270Pro) | 587777186 | PIGN | [] | I] | ['Multiple congenital anomalies-hypotonia-seizures syndrome 1'] |
| NM 001165899.1(PD E4D):c.1850T>C (p.Ile617Thr) | 587777188 | PDE4D | ['CTATAYT GTTCATCC CCTCTGGG' <br> 'ACTATAYT GTTCATCC CCTCTGG' | $\begin{aligned} & \hline \text { ['CTATAYTGTTCA } \\ & \text { TCCCCTCTGGG', } \\ & \text { 'ACTATAYTGTTC } \\ & \text { ATCCCCTCTGG'] } \end{aligned}$ | ['Acrodysostosis 2, with or without hormone resistance' |
| NM_005017.3(PCYT1 <br> A): $: 571 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 191Leu) | 587777195 | PCYT1A | ['GCATGYT TGCTCCAA CACAGAGG ' | ['GCATGYTTGCTC CAACACAGAGG'] | ['Spondylometaphys eal dysplasia with cone-rod dystrophy'] |
| NM_024301.4(FKRP): <br> c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 587777223 | FKRP | [] | ['CCGCAYGGGGC CGAAGTCTGGGG', 'GCCGCAYGGGGC CGAAGTCTGGG', 'AGCCGCAYGGGG CCGAAGTCTGG' | ['Congenital muscular dystrophydystroglycanopathy with brain and eye anomalies type $\left.{ }^{5} 5^{\prime}\right]$ |


| NM_198947.3(FAM11 1B):c. $1879 \mathrm{~A}>\mathrm{G}$ (p.Arg627Gly) | 587777237 | $\begin{aligned} & \text { FAM111 } \\ & \text { B } \end{aligned}$ | I] | [] | ['Poikiloderma, hereditary fibrosing, with tendon contractures, myopathy, and pulmonary fibrosis'\| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_003638.2(ITGA8) $\text { c. } 2 \overline{99} 2+2 \mathrm{~T}>\mathrm{C}$ | 587777279 | ITGA8 | I] | I] | ['Renal adysplasia'] |
| NM 199189.2(MATR <br> 3):c. $1864 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr622Ala) | 587777301 | MATR3 | ['CGGYTGA ACTCTCAG TCTTCTGG 1 | ['CGGYTGAACTCT CAGTCTTCTGG'] | ['Myopathy, distal, 2'] |
| $\begin{aligned} & \hline \text { NM_001739.1(CA5A): } \\ & \text { c.697T>C } \\ & \text { (p.Ser233Pro) } \end{aligned}$ | 587777316 | CA5A | [] | [] | ['Carbonic anhydrase VA deficiency, hyperammonemia due to'] |
| NM_005051.2(QARS) <br> :c. $169 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr57His) | 587777333 | QARS | [] | [] | ['Microcephaly, progressive, with seizures and cerebral and cerebellar atrophy'] |
| $\begin{aligned} & \hline \text { NM_002234.3(KCNA } \\ & \text { 5):c.143A>G } \\ & \text { (p.Glu48Gly) } \\ & \hline \end{aligned}$ | 587777336 | KCNA5 | II | [] | ['Atrial fibrillation, familial, $7^{\prime \prime}$ |
| NM_021803.3(IL21):c $.14 \overline{6 T}>C$ (p.Leu49Pro) | 587777338 | IL21 | [] | [] | ['Common variable immunodeficiency 11'] |
| NM_000132.3(F8):c. 6 $794 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln2265Arg) | 137852470 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_178014.3(TUBB) } \\ & \text { :c. } 895 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met299Val) } \end{aligned}$ | 587777355 | TUBB | [] | [] | ['Cortical dysplasia, complex, with other brain malformations 6'] |
| NM 005957.4(MTHF <br> R): c. $1969 \mathrm{~T}>\mathrm{C}$ <br> (p.Ter657Arg) | 768434408 | MTHFR | II | I] | ['Homocysteinemia due to MTHFR deficiency'\| |
| NM_005359.5(SMAD <br> 4):c. $425-6 \mathrm{~A}>\mathrm{G}$ | 377767327 | SMAD4 | [] | [] | ['Juvenile polyposis syndrome'] |
| NM 022068.3(PIEZO <br> 2):c. $8215 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser2739Pro) | 587777454 | PIEZO2 | [] | ${ }^{[1]}$ | ['Oculomelic amyoplasia'] |
| NM 003108.3(SOX11 ):c. $347 \mathrm{~A}>\mathrm{G}$ (p.Tyrl 16Cys) | 587777479 | SOX11 | [] | $\begin{aligned} & \hline \text { ['GTACTTGYAGTC } \\ & \text { GGGGTAGTCGG'] } \end{aligned}$ | ['Mental retardation, autosomal dominant 27'] |
| NM_021072.3(HCN1): <br> c. $814 \mathrm{~T}>\mathrm{C}$ <br> (p.Ser272Pro) | 587777493 | HCN1 | I] | I] | ['Epileptic encephalopathy, early infantile, $24^{\prime} \mid$ |
| $\begin{aligned} & \text { NM_020435.3(GJC2): } \\ & \text { c.-170A>G } \end{aligned}$ | 587777496 | GJC2 | [] | $\begin{array}{\|l\|} \hline \text { ['TTGYTCCCCCCTT } \\ \text { CGGCCTCAGGG', } \\ \text { 'ATTGYTCCCCCCT } \\ \text { CGGGCTCAGG'] } \\ \hline \end{array}$ | ['Leukodystrophy, hypomyelinating, $2^{\prime}$ ] |
| NM 022552.4(DNMT <br> 3A):c. $1943 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu648Pro) | 587777507 | DNMT3A | [] |  | ['Tatton-Brownrahman syndrome'] |
| $\begin{aligned} & \hline \text { NM_022552.4(DNMT } \\ & \text { 3A):c. } 2705 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 587777510 | DNMT3A | I] | [] | $\begin{array}{\|l\|} \hline \text { ['Tatton-Brown- } \\ \text { rahman syndrome'] } \\ \hline \end{array}$ |


| (p.Phe902Ser) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000223.3(KRT12 } \\ & \text { ):c. } 403 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg135Gly) } \\ & \hline \end{aligned}$ | 58410481 | KRT12 | [] | [] | ['Meesman corneal dystrophy', 'not provided'] |
| NM_000232.4(SGCB): c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 398123262 | SGCB | [] | [] | ['Limb-girdle muscular dystrophy, type 2E', 'not provided'] |
| $\begin{aligned} & \hline \text { NM_020630.4(RET):c. } \\ & 2342 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln} 781 \mathrm{Arg}) \\ & \hline \end{aligned}$ | 377767416 | RET | [] | [] | ['MEN2 phenotype: Unclassified'] |
| $\begin{aligned} & \text { NM_018400.3(SCN3B } \\ & \text { ):c. } \mathbf{4 8 2 T}>\mathrm{C} \\ & \text { (p.Met161Thr) } \\ & \hline \end{aligned}$ | 587777557 | SCN3B | [] | ['AATCAYGATGTA CATCCTTCTGG'] | ['Atrial fibrillation, familial, 16'] |
| $\begin{aligned} & \text { NM_001030001.2(RP } \\ & \text { S29):c.149T>C } \\ & \text { (p.Ile50Thr) } \end{aligned}$ | 587777569 | RPS29 | [] | ['GATAYCGGTTTC ATTAAGGTAGG'] | ['Diamond-Blackfan anemia 13'] |
| NM_177550.4(SLC13 A5):c. $1463 \mathrm{~T}>\mathrm{C}$ (p.Leu488Pro) | 587777578 | SLC13A5 | [] | [] | ['Epileptic encephalopathy, early infantile, $25^{\prime}$ ] |
| $\begin{aligned} & \text { NM_002880.3(RAF1): } \\ & \text { c.1808T }>C \\ & \text { (p.Leu603Pro) } \\ & \hline \end{aligned}$ | 587777586 | RAF1 | [] | [] | ['Cardiomyopathy, dilated, $\left.1 \mathrm{NN}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_025150.4(TARS2 } \\ & \text { ):c. } 695+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777594 | TARS2 | [] | [] | ['Combined oxidative phosphorylation deficiency 21'] |
| $\begin{aligned} & \text { NM_001759.3(CCND } \\ & \text { 2):c. } 838 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr280Ala) } \end{aligned}$ | 587777618 | CCND2 | [] | [] | ['Megalencephaly-polymicrogyria-polydactylyhydrocephalus syndrome 3'] |
| NM_153334.6(SCARF <br> 2): c. $190 \mathrm{~T}>\mathrm{C}$ <br> (p.Cys64Arg) | 587777657 | SCARF2 | [] | ['CCACGYGCTGCG <br> CTGGCTGGAGG'] | ['Marden Walker like syndrome'] |
| $\begin{aligned} & \text { NM_005726.5(TSFM): } \\ & \text { c. } 57+4 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777689 | TSFM | [] | ['ACTTCYCACCGG GTAGCTCCCGG'] | ['Combined oxidative phosphorylation deficiency 3'] |
| $\begin{aligned} & \text { NM_000255.3(MUT): } \\ & \text { c. } 329 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyrl10Cys) } \end{aligned}$ | 796052005 | MUT | [] | ['GCAYACTGGCG <br> GATGGTCCAGGG', <br> 'AGCAYACTGGCG <br> GATGGTCCAGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_021870.2(FGG):c } \\ & .1210 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser404Pro) } \\ & \hline \end{aligned}$ | 587777720 | FGG | [] | [] | ['Hypodysfibrinogen emia'] |
| $\begin{aligned} & \text { NM_017617.3(NOTC } \\ & \text { H1):c. } 1285 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Cys429Arg) } \end{aligned}$ | 587777736 | NOTCH1 | ['GGCAAGY GCATCAAC ACGCTGGG '] | ['GGCAAGYGCAT CAACACGCTGGG', 'GGGCAAGYGCAT CAACACGCTGG'] | ['Adams-Oliver syndrome 1', 'Adams-Oliver syndrome 5'] |
| NM_014946.3(SPAST ):c. $1688-2 \mathrm{~A}>\mathrm{G}$ | 587777752 | SPAST | $\begin{array}{\|l} \hline \text { ['TTCYGTA } \\ \text { AAACATAA } \\ \text { AAGTCAGG } \\ \text { I } \\ \hline \end{array}$ | ['TTCYGTAAAACA TAAAAGTCAGG'] | ['Spastic paraplegia 4, autosomal dominant'] |
| $\begin{aligned} & \text { NM_014946.3(SPAST } \\ & \text { ):c. } 1245+4 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777755 | SPAST | [] | [] | ['Spastic paraplegia 4, autosomal dominant'] |
| $\begin{aligned} & \text { NM_014946.3(SPAST } \\ & \text { ):c. } 1216 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777757 | SPAST | [] | [] | ['Spastic paraplegia 4, autosomal |


| (p.Ile406Val) |  |  |  |  | dominant'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_144596.3(TTC8): } \\ & \text { c. } 115-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777809 | TTC8 | [] | ['GTTCCYGGAAA GCATTAAGAAGG' 1 | $\begin{aligned} & \hline \text { ['Retinitis } \\ & \text { pigmentosa 51'] } \end{aligned}$ |
| NM_170784.2(MKKS) <br> :c. $110 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr37Cys) | 74315396 | MKKS | [] | II | ['Bardet-Biedl syndrome 6', <br> 'McKusick Kaufman syndrome'] |
| NM 000252.2(MTM1) c. $566 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn189Ser) | 132630302 | MTM1 | I] | II | ['Severe X-linked myotubular myopathy'] |
| NM_000252.2(MTM1) <br> c. $1190 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr397Cys) | 132630303 | MTM1 | [] | [] | ['Severe X-linked myotubular myopathy'] |
| $\begin{aligned} & \text { NM_152384.2(BBS5): } \\ & \text { c. } 522+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587777828 | BBS5 | [] | [] | ['Bardet-Biedl syndrome 5'] |
| NM 001205019.1(GK ):c. $880 \mathrm{~A}>\mathrm{G}$ (p.Asn294Asp) | 132630331 | GK | I] | I] | ['Deficiency of glycerol kinase'] |
| NM 000166.5(GJB1): c. $580 \mathrm{~A}>\mathrm{G}$ <br> (p.Met194Val) | 587777878 | GJB1 | [] | ['TAGCAYGAAGA CGGTGAAGACGG' 1 | ['X-linked hereditary motor and sensory neuropathy'] |
| NM_000311.3(PRNP): <br> c. $547 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr183Ala) | 74315411 | PRNP | [] | [] | ['Genetic prion discases', <br> 'Spongiform encephalopathy with neuropsychiatric features'] |
| NM_144773.2(PROK <br> R2): c. $629 \mathrm{~A}>\mathrm{G}$ <br> (p. Gln2 10Arg) | 74315417 | PROKR2 | [] | [] | ['Kallmann syndrome 3'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .919 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Lys } 307 \mathrm{Glu}) \end{aligned}$ | 796052013 | OTC | [] | [] | ['not provided'] |
| NM 001029871.3(RS PO4):c. $194 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln65Arg) | 74315420 | RSPO4 | [] | ['CGTACYGGCGG ATGCCTTCCCGG'] | ['Anonychia'] |
| NM 004333.4(BRAF): <br> c. $770 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln257Arg) | 180177035 | BRAF | [] | [] | ['Noonan syndrome $7^{\prime}$, <br> 'Cardiofaciocutaneo us syndrome', 'Rasopathy', 'not provided'] |
| NM 004333.4(BRAF): <br> c. $1495 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys499Glu) | 180177037 | BRAF | I] | [] | ['Cardiofaciocutaneo us syndrome', <br> 'Rasopathy'] |
| NM 198056.2(SCN5A ):c. $5297 \mathrm{~T}>\mathrm{A}$ (p.Met1766Lys) | 752476527 | SCN5A | [] | [] | ['not provided'] |
| NM 000030.2(AGXT) <br> c. $248 \mathrm{~A}>\mathrm{G}$ <br> (p.His83Arg) | 180177186 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & \text { :c. } 424-2 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gly } 142 \mathrm{Gln} 145 \mathrm{del}) \\ & \hline \end{aligned}$ | 180177219 | AGXT | [] | ['AGGCCCYGAGG AAGCAGGGACGG' 1 | ['Primary hyperoxaluria, type I'] |
| NM_198578.3(LRRK2 <br> ):c. $5096 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr1699Cys) | 35801418 | LRRK2 | [] | [] | ['Parkinson disease <br> 8, autosomal dominant'] |
| NM_002693.2(POLG): | 367610201 | POLG | [] | ['CTCAYGGCACTT | ['not provided'] |


| c. 1808T>C <br> (p.Met603Thr) |  |  |  | ACCTGGGATGG ${ }^{\prime}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000030.2(AGXT) } \\ & : c .596-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 180177245 | AGXT | [] | [] | ['Primary hyperoxaluria, type I'] |
| $\begin{aligned} & \hline \text { NM_020223.3(FAM20 } \\ & \text { C):c. } 1364-2 A>G \end{aligned}$ | 796051853 | FAM20C | [] | [] | ['Raine syndrome'] |
| NM_012203.1(GRHP <br> R): c. $84-2 \mathrm{~A}>\mathrm{G}$ | 180177319 | GRHPR | [] | ['TCACAGCYGCG GGGAAAGGGAGG 'I | ['Primary hyperoxaluria, type I'] |
| NM_006017.2(PROM 1):c. 2077-521A>G | 796051882 | PROM1 | II | I] | ['Cone-rod dystrophy $\left.2^{\prime}\right]$ |
| NM 012203.1(GRHP <br> R):c. $934 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn312Asp) | 180177324 | GRHPR | ['CAAGTYG TTAGCTGC CAACAAGG 1 | ['CAAGTYGTTAGC TGCCAACAAGG'] | ['Primary hyperoxaluria, type II'] |
| NM 000016.5(ACAD <br> M): : . $329 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu1 10Gly) | 796051900 | ACADM | [] | [] | ['not provided'] |
| NM 004453.3(ETFDH ):c. $929 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr310Cys) | 796051958 | ETFDH | [] | [] | ['not provided'] |
| NM 000255.3(MUT): c. $1885 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg629Gly) | 796052004 | MUT | [] | II | ['not provided'] |
| NM_012434.4(SLC17 <br> A5): c . $548 \mathrm{~A}>\mathrm{G}$ <br> (p.His183Arg) | 119491109 | SLC17A5 | [] | [] | ['Sialic acid storage disease, severe infantile type'] |
| NM_000328.2(RPGR): <br> c. $15 \overline{5}-2 \mathrm{~A}>\mathrm{G}$ | 62638632 | RPGR | [] | [] | ['Retinitis pigmentosa 15 ', 'not provided'] |
| NM 005557.3(KRT16 ):c. $373 \mathrm{~A}>\mathrm{G}$ (p.Asn125Asp) | 58608173 | KRT16 | [] | [] | ['Pachyonychia congenita, type 1 ', 'not provided'] |
| NM_000532.4(PCCB): $\text { c. } 655-2 \mathrm{~A}>\mathrm{G}$ | 796052020 | PCCB | [] | II | ['not provided'] |
| NM_000030.2(AGXT) $\text { c. } 7 \overline{7} 7-2 \mathrm{~A}>\mathrm{G}$ | 796052068 | AGXT | [] | ['GGTACCYGGAA GACACGAGGGGG' <br> 'TGGTACCYGGAA GACACGAGGGG'] | ['Primary hyperoxaluria, type I'] |
| NM 000121.3(EPOR): <br> c. $1460 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn487Ser) | 62638745 | EPOR | ['AGGGYTG GAGTAGGG GCCATCGG - | ['AGGGYTGGAGT AGGGGCCATCGG' ] | ['Acute myeloid leukemia, M6 type', Familial erythrocytosis, 1 '] |
| NM 000552.3(VWF): <br> c. $1583 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn528Ser) | 61754010 | VWF | [] | ['TGCCAYTGTAAT <br> TCCCACACAGG'] | ['von Willebrand disease, type 2a', 'not provided'] |
| NM 001918.3(DBT):c 1017_1018insNC_000 001.11:g.100207187_1 00207312 | 796052135 | DBT | [] | I] | ['Intermediate maple syrup urine disease type 2'] |
| $\begin{aligned} & \text { NM_001243473.1(B9 } \\ & \text { D1):c. } 400+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 143149764 | B9D1 | [] | [] | ['Meckel syndrome, type 9 ', 'not provided'] |
| NM 001165963.1(SC <br> N1A):c.4766T>G <br> (p.Val1589Gly) | 764037830 | - | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| NM_000321.2(RB1):c. | 587778866 | RB1 | [] | ['ATTYCAATGGCT | ['Retinoblastoma'] |


| $\begin{array}{\|l\|} \hline \text { 1927A }>\mathrm{G} \\ \text { (p.Lys643Glu) } \\ \hline \end{array}$ |  |  |  | TCTGGGTCTGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NMM006331.7(EMG1) } \\ & \text { c. } 257 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp86Gly) } \\ & \hline \end{aligned}$ | 74435397 | EMG1 | [] | ['ATAYCTGGCCGC GCTTCCCCAGG'] | ['Bowen-Conradi syndrome'] |
| $\begin{aligned} & \text { NM_000249.3(MLH1) } \\ & \text { :c.113A>G } \\ & \text { (p.Asn38Ser) } \end{aligned}$ | 587778888 | MLH1 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| NM_017777.3(MKSI) <br> :c. $1382 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr461Cys) | 730882120 | MKS1 | [] | [] | ['Bardet-Biedl syndrome 13'] |
| $\begin{array}{\|l} \hline \text { NM_000261.1(MYOC } \\ \text { ):c.1010A>G } \\ \text { (p.Gln37AArg) } \\ \hline \end{array}$ | 74315335 | MYOC | [] | I] | ['Primary open angle glaucoma juvenile onset $1^{\prime}$ ] |
| NM 152515.4(CKAP2 <br> L):c. $2 \mathrm{~T}>\mathrm{C}$ <br> (p.Met1Thr) | 548949031 | CKAP2L | [] | [] | ['Filippi syndrome'] |
| NM_000156.5(GAMT ):c. $\overline{1 \mathrm{~A}}>\mathrm{G}(\mathrm{p} . \mathrm{Met} 1 \mathrm{Val})$ | 796052527 | GAMT | [] | ['CGCTCAYGCTGC AGGCTGGACGG'] | ['not provided'] |
| NM 000833.4(GRIN2 <br> A):c. $1930 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser644Gly) | 796052544 | GRIN2A | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000144.4(FXN):c } \\ & .385-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 140987490 | FXN | I] | II | ['Friedreich ataxia'] |
| $\begin{aligned} & \text { NM_172107.2(KCNQ } \\ & 2): c .297-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 796052615 | KCNQ2 | [] | [] | ['not provided'] |
| NM_172107.2(KCNQ <br> 2):c. $611 \mathrm{~A}>\mathrm{G}$ <br> (p. GIn 204 Arg ) | 796052624 | KCNQ2 | [] | [] | ['not provided'] |
| NM_172107.2(KCNQ <br> 2):c. $848 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys283Arg) | 796052637 | KCNQ2 | [] | ['GTACYTGTCCCC GTAGCCAATGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM } 052859.3(\mathrm{RFT1}): \\ & \text { c.887T>A } \\ & \text { (p.Ile296Lys) } \\ & \hline \end{aligned}$ | 772820136 | RFT1 | [] | I] | ['Congenital disorder of glycosylation type 1N'\| |
| NM_000553.4(WRN): c. $56 \overline{1} \mathrm{~A}>\mathrm{G}(\mathrm{p} . \operatorname{Lys} 187=)$ | 775802030 | WRN | [] | [] | ['Werner syndrome'] |
| NM_194277.2(FRMD <br> 7): $\mathrm{c} .556 \mathrm{~A}>\mathrm{G}$ <br> (p.Met186Val) | 786205896 | FRMD7 | [] | [] | ['Infantile nystagmus, Xlinked'] |
| NM_000535.5(PMS2): c. $989-2 \mathrm{~A}>\mathrm{G}$ | 587779347 | PMS2 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms', 'Hereditary cancerpredisposing syndrome'] |
| $\begin{array}{\|l\|} \hline \text { NM 000203.4(IDUA): } \\ \text { c.1874A>G } \\ \text { (p.Tyr625Cys) } \\ \hline \end{array}$ | 587779401 | IDUA | II | II | ['Hurler syndrome'] |
| $\begin{aligned} & \text { NM_001105243.1(PC } \\ & \text { DH19):c. 1019A }>\mathrm{G} \\ & \text { (p.Asn340Ser) } \\ & \hline \end{aligned}$ | 796052839 | PCDH19 | [] | [] | ['not provided'] |
| $\begin{aligned} & \hline \text { NM_002693.2(POLG): } \\ & \text { c.2840A>G } \\ & \text { (p.Lys947Arg) } \\ & \hline \end{aligned}$ | 796052891 | POLG | [] | [] | ['not provided'] |
| NM_032228.5(FAR1): c. $10944 \mathrm{~A}>\mathrm{G}$ | 724159963 | FAR1 | [] | ['GATAYCATACA GGAATGCTGGGG', | ['Peroxisomal fatty acyl-coa reductase 1 |


| (p.Asp365Gly) |  |  |  | 'AGATAYCATACA GGAATGCTGGG', 'TAGATAYCATAC AGGAATGCTGG'] | disorder'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000090.3(COL3A } \\ & \text { 1):c. } 2284-2 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gly762 Lys } 779 \mathrm{del}) \\ & \hline \end{aligned}$ | 587779558 | COL3Al | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| $\begin{aligned} & \text { NM_014305.3(TGDS): } \\ & \text { c. } 269 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu90Gly) } \end{aligned}$ | 724160004 | TGDS | [] | [] | ['Catel Manzke syndrome'] |
| $\begin{aligned} & \text { NM_014305.3(TGDS): } \\ & \text { c. } 892 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn298Asp) } \end{aligned}$ | 724160005 | TGDS | [] | [] | ['Catel Manzke syndrome'] |
| $\begin{aligned} & \text { NM_000090.3(COL3A } \\ & \text { 1):c. } 997-2 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gly333_Lys350del+ } \\ & \text { ) } \\ & \hline \end{aligned}$ | 587779602 | COL3Al | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| NM_002185.3(IL7R):c $.197 \mathrm{~T}>\mathrm{C}$ (p.Ile66Thr) | 1494558 | IL7R | [] | [] | ['Severe combined immunodeficiency, autosomal recessive, T cell-negative, B cell-positive, NK cell-positive', 'not specified'] |
|  | 62508578 | PAH | [] | [] | ['Phenylketonuria', 'not provided'] |
| $\begin{aligned} & \text { NM_000090.3(COL3A } \\ & \text { 1):c. } 997-10 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Pro332_Gly } 333 \mathrm{insF} \\ & \text { FQ) } \end{aligned}$ | 587779670 | COL3AI | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| NM_000090.3(COL3A <br> 1):c. $3202-2 \mathrm{~A}>\mathrm{G}$ <br> (p.Gly 1068_Pro1085de <br> 1) | 587779682 | COL3Al | [] | [] | ['Ehlers-Danlos syndrome, type 4'] |
| $\begin{aligned} & \text { NM_000090.3(COL3A } \\ & \text { 1):c. } 1762-2 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gly588 Gln } 605 \mathrm{del} \text { ) } \\ & \hline \end{aligned}$ | 587779722 | COL3Al | [] | ['CACCCYAAAGA AGAAGTGGTCGG' I | ['Ehlers-Danlos syndrome, type 4'] |
| $\begin{aligned} & \text { NM_021007.2(SCN2A } \\ & \text { ):c.4036A>G } \\ & \text { (p.lle1346Val) } \\ & \hline \end{aligned}$ | 796053135 | SCN2A | [] | [] | ['not provided'] |
| m. 13637A>G | 200855215 | MT-ND5 | [] | [] | ['Leber optic atrophy'] |
| NM_021007.2(SCN2A ):c.387-2A>G | 796053169 | SCN2A | $\begin{array}{\|l} \hline \text { ['AATAAAG } \\ \text { YAGAATAT } \\ \text { CGTCAAGG } \\ \text { '] } \\ \hline \end{array}$ | ['AATAAAGYAGA ATATCGTCAAGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_021007.2(SCN2A } \\ & \text { ):c. } 851 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp284Gly) } \\ & \hline \end{aligned}$ | 796053173 | SCN2A | [] | [] | ['not provided'] |
| NM_006516.2(SLC2A 1):c. $848 \mathrm{~A}>\mathrm{G}$ (p.Gln283Arg) | 796053251 | SLC2A1 | [] | [] | ['not provided'] |
| NM_006516.2(SLC2A <br> 1):c. $19-2 \mathrm{~A}>\mathrm{G}$ | 796053272 | SLC2A1 | [] | [] | ['not provided'] |
| NM_000136.2(FANC <br> C):c. $-78-2 \mathrm{~A}>\mathrm{G}$ | 587779898 | FANCC | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| m.8296A>G | 118192102 | MT-TK | [] | ['TTTACAGYGGGC | ['Diabetes-deafness |


|  |  |  |  | TCTAGAGGGGG'] | syndrome maternally transmitted'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_005360.4(MAF):c $.172 \mathrm{~A}>\mathrm{G}$ (p.Thr58Ala) | 727502767 | MAF | [] | [] | ['Cataracts, congenital, with sensorineural deafness, down syndrome-like facial appearance, short stature, and mental retardation'] |
| $\begin{aligned} & \text { NM_001145901.1(SA } \\ & \text { RS2):c.1175A>G } \\ & \text { (p.Asp392Gly) } \end{aligned}$ | 727502784 | SARS2 | [] | [] | ['Hyperuricemia, pulmonary hypertension, renal failure, and alkalosis'] |
| $\begin{aligned} & \text { NM_001077494.3(NF } \\ & \text { KB2):c.2594A>G } \\ & \text { (p.Asp865Gly) } \\ & \hline \end{aligned}$ | 727502787 | NFKB2 | [] | $\begin{aligned} & \text { ['CTGYCTTCCTTC } \\ & \text { ACCTCTGCTGG'] } \end{aligned}$ | ['Common variable immunodeficiency 10'] |
| NM 002238.3(KCNH <br> 1):c. $1399 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile467Val) | 727502819 | KCNH1 | [] | [] | ['ZimmermannLaband syndrome', 'Temple-Baraitser syndrome'] |
| NM 172362.2(KCNH <br> 1):c. $1508 \mathrm{~A}>\mathrm{G}$ <br> (p. GIn503Arg) | 727502821 | KCNH1 | I] | I] | ['Temple-Baraitser syndrome'\| |
| $\begin{aligned} & \text { NM_000546.5(TP53):c } \\ & .701 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr234Cys) } \end{aligned}$ | 587780073 | TP53 | [] | [] | ['Li-Fraumeni syndrome', 'Hereditary cancerpredisposing syndrome'\| |
| NM 003060.3(SLC22 <br> A5): :. $694 \mathrm{~A}>\mathrm{C}$ <br> (p.Thr232Pro) | 188698686 | SLC22A5 | [] | [] | ['not provided'] |
| NM_000540.2(RYR1): <br> c. $14591 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr4864Cys) | 118192146 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_058216.2(RAD51 } \\ & \text { C):c. } 706-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587780259 | RAD51C | I] | I] | ['Hereditary cancerpredisposing syndrome'\| |
| $\begin{aligned} & \text { NM_000501.3(ELN):c } \\ & .800-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 727503027 | ELN | [] | [] | ['Supravalvar aortic stenosis', 'not provided'\| |
| $\begin{aligned} & \text { NM_000117.2(EMD): } \\ & \text { c. } 266-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 727503036 | EMD | [] | ['AGCCYTGGGAA GGGGGGCAGCGG' ] | ['Emery-Dreifuss muscular dystrophy 1, X-linked'] |
| NM_003242.5(TGFBR <br> 2):c. $1273 \mathrm{~A}>\mathrm{G}$ <br> (p.Met425Val) | 104893817 | TGFBR2 | [] | [] | ['Loeys-Dietz syndrome 2'] |
| NM 153638.2(PANK2 ):c. $700 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr234Ala) | 137852965 | PANK2 | I] | I] | I] |
| $\begin{aligned} & \text { NM_005861.3(STUB1 } \\ & \text { j:c. } 194 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn65Ser) } \\ & \hline \end{aligned}$ | 690016544 | STUB1 | [] | ['GGCCCGGYTGGT GTAATACACGG'] | ['Spinocerebellar ataxia, autosomal recessive ${ }^{16}$ ' |
| $\begin{aligned} & \text { NM_005360.4(MAF):c } \\ & .890 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys297Arg) } \\ & \hline \end{aligned}$ | 121917736 | MAF | [] | [] | ['Cataract, pulverulent, juvenile-onset'] |
| NM_005211.3(CSFlR | 690016554 | CSFlR | [] | ['GTATCYGGGAG | ['Hereditary diffuse |


| ):c.2655-2A>G |  |  |  | ATAGGACAGAGG' <br> 1 | leukoencephalopath y with spheroids'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_003361.3(UMOD } \\ & \text { ):c. } 383 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn128Ser) } \end{aligned}$ | 121917770 | UMOD | ['CACAYTG ACACATGT GGCCAGGG 'I | ['CACAYTGACAC ATGTGGCCAGGG', 'CCACAYTGACAC ATGTGGCCAGG'] | ['Familial juvenile gout'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c. } 2234 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp745Gly) } \end{aligned}$ | 727503190 | MYBPC3 | [] | [] | ['Familial hypertrophic cardiomyopathy $4^{\prime}$, 'Familial hypertrophic cardiomyopathy 1 ', 'not specified'] |
| NM_172107.2(KCNQ <br> 2): c. $1 \mathrm{~A}>\mathrm{G}$ <br> (p.Met1Val) | 118192185 | KCNQ2 | [] | ['GCACCAYGGTG CCTGGCGGGAGG 1 | ['Benign familial neonatal seizures 1'] |
| NM_000256.3(MYBP C3):c. $1213 \mathrm{~A}>\mathrm{G}$ (p.Met405Val) | 727503207 | MYBPC3 | [] | [] | ['Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000021.3(PSEN1 } \\ & \text { ):c.998A>G } \\ & \text { (p.Asp333Gly) } \end{aligned}$ | 121917809 | PSEN1 | [] | [] | ['Primary dilated cardiomyopathy', 'Cardiomyopathy, dilated, lu', 'Heart failure'] |
| $\begin{aligned} & \text { NM_021954.3(GJA3): } \\ & \text { c.188A>G } \\ & \text { (p.Asn63Ser) } \end{aligned}$ | 121917823 | GJA3 | [] | [] | ['Zonular pulverulent cataract 3'] |
| $\begin{aligned} & \text { NM_000322.4(PRPH2 } \\ & \text { ):c. } \mathbf{4 2 2 A}>\mathrm{G} \\ & \text { (p.Tyr141Cys) } \end{aligned}$ | 61755781 | PRPH2 | [] | [] | ['Macular dystrophy, vitelliform, adultonset', 'Patterned dystrophy of retinal pigment epithelium', 'not provided'] |
| $\begin{aligned} & \text { NM_007035.3(KERA) } \\ & \text { :c.740A>G } \\ & \text { (p.Asn247Ser) } \\ & \hline \end{aligned}$ | 121917858 | KERA | [] | [] | ['Cornea plana 2'] |
| $\begin{aligned} & \text { NM_002181.3(IHH):c. } \\ & 284 \overline{\mathrm{~A}}>\mathrm{G}(\text { p. Glu } 95 \mathrm{Gly}) \end{aligned}$ | 121917859 | IHH | [] | [] | ['Brachydactyly type A1'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { c. } 1157 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr386Cys) } \end{aligned}$ | 727503269 | MYH7 | [] | [] | ['Primary familial hypertrophic cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000097.5(CPOX) } \\ & \text { :c. } 1210 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys404Glu) } \end{aligned}$ | 121917868 | CPOX | [] | [] | ['Harderoporphyria'] |
| $\begin{aligned} & \text { NM_012064.3(MIP):c. } \\ & 401 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu134Gly) } \end{aligned}$ | 121917869 | MIP | [] | $\begin{aligned} & \hline \text { ['AGATCYCCACTG } \\ & \text { TGGTTGCCTGG'] } \end{aligned}$ | ['Cataract 15, multiple types'] |
| NM 025243.3(SLC19 A3): c. $1264 \mathrm{~A}>\mathrm{G}$ (p.Thr422Ala) | 121917884 | SLC19A3 | [] | [] | ['Basal ganglia disease, biotinresponsive'] |
| $\begin{aligned} & \text { NM_000373.3(UMPS) } \\ & \text { :c. } 286 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg96Gly) } \\ & \hline \end{aligned}$ | 121917890 | UMPS | [] | [] | ['Orotic aciduria'] |
| $\begin{aligned} & \text { NM_000536.3(RAG2): } \\ & \text { c.115A>G } \\ & \text { (p.Arg39Gly) } \end{aligned}$ | 121917897 | RAG2 | [] | [] | ['Histiocytic medullary reticulosis'] |
| $\begin{aligned} & \text { NM_130838.1(UBE3A } \\ & \text { ):c. } 1694-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587780579 | UBE3A | [] | [] | ['Angelman syndrome'] |
| NM_016335.4(PROD | 2904551 | PRODH | [] | [] | ['Proline |


| $\begin{aligned} & \text { H):c.1322T>C } \\ & \text { (p.Leu441Pro) } \end{aligned}$ |  |  |  |  | dehydrogenase deficiency', <br> 'Schizophrenia 4'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_006920.4(SCN1A } \\ & \text { ):c. } \mathbf{4 3 5 2 A}>\mathrm{G} \\ & \text { (p.Tyr1451Cys) } \end{aligned}$ | 121917962 | - | [] | [] | ['Severe myoclonic epilepsy in infancy', 'not provided'] |
| $\begin{aligned} & \text { NM_006920.4(SCN1A } \\ & \text { ):c.1876A>G } \\ & \text { (p.Ser626Gly) } \end{aligned}$ | 121917990 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy', 'Generalized epilepsy'] |
| NM_000478.4(ALPL): <br> c. $1250 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn417Ser) | 121918014 | ALPL | [] | $\begin{aligned} & \hline \text { ['AGGCCCAYTGCC } \\ & \text { ATACAGGATGG'] } \end{aligned}$ | ['Infantile hypophosphatasia'] |
| NM_000174.4(GP9):c. 110A $>$ G (p.Asp37Gly) | 121918036 | GP9 | [] | ['GCAGYCCACCC ACAGCCCCATGG'] | ['Bernard-Soulier syndrome type $\left.\mathrm{C}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_002693.2(POLG): } \\ & \text { c. } 2591 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn864Ser) } \end{aligned}$ | 121918050 | POLG | [] | [] | ['Mitochondrial DNA depletion syndrome 4B, MNGIE type'] |
| $\begin{aligned} & \text { NM_000374.4(UROD) } \\ & \text { :c. } 932 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr311Cys) } \\ & \hline \end{aligned}$ | 121918061 | UROD | [] | [] | ['Hepatoerythropoiet ic porphyria'] |
| $\begin{aligned} & \text { NM_000217.2(KCNA } \\ & \text { 1):c.763A>G } \\ & \text { (p.Asn255Asp) } \\ & \hline \end{aligned}$ | 121918067 | KCNA1 | [] | [] | [] |
| NM_000371.3(TTR):c. $238 \mathrm{~A}>\mathrm{G}$ (p.Thr80Ala) | 121918070 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis', 'Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000371.3(TTR):c. } \\ & 401 \bar{A}>G \\ & \text { (p.Tyr134Cys) } \end{aligned}$ | 121918075 | TTR | ['GGAGYAG <br> GGGCTCAG <br> CAGGGCGG <br> 1 <br> 'ATAGGAG <br> YAGGGGCT <br> CAGCAGGG <br> I | ['GGAGYAGGGGC TCAGCAGGGCGG', 'ATAGGAGYAGGG GCTCAGCAGGG'] | ['Amyloidogenic transthyretin amyloidosis'] |
| $\begin{aligned} & \text { NM_000371.3(TTR):c. } \\ & 205 \overline{\mathrm{~A}}>\mathrm{G} \text { (p.Thr69Ala) } \end{aligned}$ | 121918081 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis'] |
| NM_000371.3(TTR):c. $379 \mathrm{~A}>\mathrm{G}$ (p.Ile127Val) | 121918089 | TTR | [] | ['CGGCAAYGGTG TAGCGGCGGGGG' <br> 'GCGGCAAYGGTG <br> TAGCGGCGGGG'] | ['Amyloidogenic transthyretin amyloidosis'] |
| NM_000371.3(TTR):c. $113 \overline{\mathrm{~A}}>\mathrm{G}$ (p.Asp38Gly) | 121918098 | TTR | [] | [] | ['Amyloidogenic transthyretin amyloidosis', 'AMYLOIDOSIS, LEPTOMENINGEA L, <br> TRANSTHYRETIN -RELATED'] |
| NM_000823.3(GHRH R): $\mathrm{c} .985 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys329Glu) | 121918121 | GHRHR | [] | ['CGACTYGGAGA GACGCCTGCAGG' 1 | ['Isolated growth hormone deficiency type 1B'] |
| $\begin{aligned} & \text { NM_000275.2(OCA2): } \\ & \text { c. } 1465 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn } 489 \mathrm{Asp} \text { ) } \end{aligned}$ | 121918170 | OCA2 | ['GACATYT GGAGGGTC CCCGATGG 'I | ['GACATYTGGAG GGTCCCCGATGG'] | ['Tyrosinase-positive oculocutaneous albinism'] |


| $\begin{aligned} & \text { NM_000181.3(GUSB) } \\ & : c .1484 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr495Cys) } \end{aligned}$ | 121918178 | GUSB | [] | [] | ['Mucopoly saccharid osis type VII'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_018122.4(DARS2 } \\ & \text { ):c. } 133 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ser45Gly) } \end{aligned}$ | 121918209 | DARS2 | [] | [] | ['Leukoencephalopat hy with Brainstem and Spinal Cord Involvement and Lactate Elevation'] |
| $\begin{aligned} & \text { NM_015697.7(COQ2): } \\ & \text { c.890A>G } \\ & \text { (p.Tyr297Cys) } \\ & \hline \end{aligned}$ | 121918230 | COQ2 | [] | [] | ['Coenzyme Q10 deficiency, primary 1'] |
| $\begin{aligned} & \text { NM_015697.7(COQ2): } \\ & \text { c. } 683 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn228Ser) } \end{aligned}$ | 121918232 | COQ2 | [] | [] | ['Coenzyme Q10 deficiency, primary 1'] |
| $\begin{aligned} & \text { NM_015384.4(NIPBL) } \\ & : \text { c. } 7289 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Tyr2430Cys) } \\ & \hline \end{aligned}$ | 121918265 | NIPBL | [] | [] | ['Cornelia de Lange syndrome 1'] |
| $\begin{aligned} & \text { NM_004183.3(BEST1 } \\ & \text { ):c. } 707 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr236Cys) } \end{aligned}$ | 121918291 | BEST1 | [] | [] | ['Vitreoretinochoroid opathy dominant'] |
| $\begin{aligned} & \text { NM_014362.3(HIBCH } \\ & \text { ):c.365A>G } \\ & \text { (p.Tyr122Cys) } \end{aligned}$ | 121918329 | HIBCH | [] | [] | ['Beta-hydroxyisobutyrylCoA deacylase deficiency'] |
| $\begin{aligned} & \text { NM_015335.4(MED13 } \\ & \text { L):c.6068A>G } \\ & \text { (p.Asp2023Gly) } \end{aligned}$ | 121918333 | MED 13L | [] | ['ATATCAYCTAGA GGGAAGGGGGG', 'CATATCAYCTAG AGGGAAGGGGG'] | ['Transposition of great arteries'] |
| NM 015040.3(PIKFY VE):c.3308A>G (p.Lysl103Arg) | 121918336 | PIKFYVE | [] | [] | ['Fleck corneal dystrophy'] |
| NM_006306.3(SMC1 <br> A):c.2974-2A>G | 727503774 | SMC1A | [] | [] | ['Congenital muscular hypertrophy-cerebral syndrome'\| |
| $\begin{aligned} & \text { NM_002633.2(PGM1) } \\ & \text { :c.343A>G } \\ & \text { (p.Thr115Ala) } \\ & \hline \end{aligned}$ | 121918371 | PGM1 | [] | [] | ['Congenital disorder of glycosylation type $\left.1 t^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000040.1(APOC3 } \\ & \text { ):c.280A>G } \\ & \text { (p.Thr94Ala) } \end{aligned}$ | 121918381 | APOC3 | $\begin{aligned} & \hline \text { ['CTGAAGY } \\ & \text { TGGTCTGA } \\ & \text { CCTCAGGG } \\ & \text { 'G } \\ & \text { YCTGAAG } \\ & \text { YTGGTCTG } \\ & \text { ACCTCAGG } \\ & \text { '] } \\ & \hline \end{aligned}$ | ['CTGAAGYTGGTC TGACCTCAGGG', 'GCTGAAGYTGGT CTGACCTCAGG'] | [ |
| $\begin{aligned} & \text { NM_000040.1(APOC3 } \\ & \text { ):c. } 232 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 78 \mathrm{Glu} \text { ) } \end{aligned}$ | 121918382 | APOC3 | [] | [] | ['Hyperalphalipoprot einemia 2'] |
| $\begin{aligned} & \text { NM_001146040.1(GL } \\ & \text { RA1):c.910A>G } \\ & \text { (p.Lys304Glu) } \\ & \hline \end{aligned}$ | 121918412 | GLRA1 | [] | [] | ['Hyperekplexia hereditary'] |
| $\begin{aligned} & \text { NM_000171.3(GLRA1 } \\ & \text { ):c. } 523 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met175Val) } \end{aligned}$ | 121918414 | GLRA1 | [] | [] | ['Hyperekplexia hereditary'] |
| NM_021957.3(GYS2): <br> c. $116 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn39Ser) | 121918423 | GYS2 | [] | [] | ['Hypoglycemia with deficiency of glycogen synthetase in the liver'] |


| $\begin{aligned} & \text { NM_002834.3(PTPN1 } \\ & \text { 1):c.188A>G } \\ & \text { (p.Tyr63Cys) } \end{aligned}$ | 121918459 | PTPN11 | [] | [] | ['Noonan syndrome', 'Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_013382.5(POMT } \\ & \text { 2):c. } 1726-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 727503873 | POMT2 | [] | [] | ['not provided'] |
| NM_002834.3(PTPN1 <br> 1):c. $236 \mathrm{~A}>\mathrm{G}$ <br> (p. Gln79Arg) | 121918466 | PTPN11 | [] | [] | ['Noonan syndrome', 'Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| NM 000313.3(PROS1 ):c. $773 \mathrm{~A}>\mathrm{G}$ (p.Asn258Ser) | 121918473 | PROS1 | [] | [] | ['Protein S deficiency'] |
| NM 000313.3(PROS1 ):c. $586 \mathrm{~A}>\mathrm{G}$ (p.Lys196Glu) | 121918474 | PROS1 | [] | II | ['Protein S deficiency'] |
| NM 000141.4(FGFR2 ):c. $983 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr328Cys) | 121918493 | FGFR2 | [] | [] | ['Crouzon syndrome'] |
| $\begin{aligned} & \text { NM_000141.4(FGFR2 } \\ & \text { ):c. } 874 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys292Glu) } \end{aligned}$ | 121918500 | FGFR2 | ['TGCTYGA TCCACTGG ATGTGGGG '] | ['TGCTYGATCCAC TGGATGTGGGG', 'GTGCTYGATCCA CTGGATGTGGG', 'CGTGCTYGATCC ACTGGATGTGG'] | ['Crouzon syndrome'] |
| NM 000141.4(FGFR2 ):c. $1576 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys526Glu) | 121918507 | FGFR2 | [] | [] | ['Crouzon syndrome', 'Scaphocephaly, maxillary retrusion, and mental retardation'] |
| NM_002739.3(PRKC <br> G):c. $380 \mathrm{~A}>\mathrm{G}$ <br> (p. GIn127Arg) | 121918515 | PRKCG | [] | [] | ['Spinocerebellar ataxia 14'] |
| NM 002739.3(PRKC <br> G):c. $1081 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser361Gly) | 121918517 | PRKCG | [] | II | ['Spinocerebellar ataxia 14'] |
| NM 000098.2(CPT2): c.359A>G (p.Tyr120Cys) | 121918528 | CPT2 | ['GATAGGY ACATATCA AACCAGGG 'AGATAGG YACATATC AAACCAGG 'I | ['GATAGGYACAT ATCAAACCAGGG', 'AGATAGGYACAT ATCAAACCAGG'] | ['Carnitine palmitoyltransferase II deficiency, infantile'] |
| NM_005587.2(MEF2 <br> A): $\mathbf{c} .788 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn263Ser) | 121918530 | MEF2A | ['CCAAGAY TACCACCA CCTGGTGG' ] | ['AGAYTACCACC 'CCAAGAYTACCA CCACCTGGTGG' | [ |
| NM 006204.3(PDE6C ):c. $1363 \mathrm{~A}>\mathrm{G}$ (p.Met455Val) | 121918539 | PDE6C | [] | [] | ['Achromatopsia 5'] |
| NM 017654.3(SAMD <br> 9): c. $4483 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys1495Glu) | 121918554 | SAMD9 | [] | I] | ['Tumoral calcinosis, familial, normophosphatemic' 1 |
| NM 000191.2(HMGC <br> L):c. $698 \mathrm{~A}>\mathrm{G}$ <br> (p.His233Arg) | 727503963 | HMGCL | [] | [] | ['not provided'] |


| NM_020166.4(MCCC <br> 1): c. $137-2 \mathrm{~A}>\mathrm{G}$ | 727504006 | MCCC1 | [] | [] | ['3 MethylcrotonylCoA carboxylase 1 deficiency', 'not provided'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001035.2(RYR2): } \\ & \text { c. } 12602 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln4201Arg) } \end{aligned}$ | 121918605 | RYR2 | [] | $\begin{aligned} & \hline \text { ['CGCCAGCYGCAT } \\ & \text { TTCAAAGATGG'] } \end{aligned}$ | ['Catecholaminergic polymorphic ventricular tachycardia'\| |
| $\begin{aligned} & \text { NM_002764.3(PRPS1) } \\ & : \text { c.343A }>\mathrm{G} \\ & \text { (p.Met115Val) } \end{aligned}$ | 587781262 | PRPS1 | [] | ['TAGCAYATTTGC AACAAGCTTGG'] | ['Charcot-MarieTooth disease, Xlinked recessive, type 5', 'Deafness, high-frequency sensorineural, Xlinked'] |
| $\begin{aligned} & \text { NM_001161766.1(AH } \\ & \text { CY):c.344A>G } \\ & \text { (p.Tyr115Cys) } \end{aligned}$ | 121918608 | AHCY | [] |  | ['Hypermethioninem ia with sadenosylhomocystei ne hydrolase deficiency'] |
| $\begin{aligned} & \text { NM_000702.3(ATP1A } \\ & \text { 2):c.1033A>G } \\ & \text { (p.Thr345Ala) } \\ & \hline \end{aligned}$ | 121918613 | ATP1A2 | [] | ['CTGYCAGGGTCA GGCACACCTGG'] | ['Familial hemiplegic migraine type 2'] |
| $\begin{aligned} & \text { NM_003126.2(SPTA1 } \\ & \text { ):c.143A>G } \\ & \text { (p.Lys48Arg) } \end{aligned}$ | 121918644 | SPTA1 | [] | [] | ['Hereditary pyropoikilocytosis'] |
| NM_001024858.2(SPT <br> B): c. $1 \mathrm{~A}>\mathrm{G}$ <br> (p.MetlVal) | 121918651 | SPTB | [] | [] | ['Elliptocytosis 3'] |
| $\begin{aligned} & \text { NM_000899.4(KITLG } \\ & \text { ):c. } 107 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn36Ser) } \end{aligned}$ | 121918653 | KITLG | [] | [] | ['Familial progressive hyperpigmentation with or without hypopigmentation'] |
| $\begin{aligned} & \text { NM_198253.2(TERT): } \\ & \text { c. } 2315 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr772Cys) } \end{aligned}$ | 121918663 | TERT | [] | [] | ['Aplastic anemia', <br> 'PULMONARY <br> FIBROSIS <br> AND/OR BONE <br> MARROW <br> FAILURE, <br> TELOMERE- <br> RELATED, 1'] |
| $\begin{aligned} & \text { NM_001063.3(TF):c.1 } \\ & 936 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys646Glu) } \\ & \hline \end{aligned}$ | 121918678 | TF | [] | [] | [] |
| NM_000535.5(PMS2): <br> c. $904-2 \mathrm{~A}>\mathrm{G}$ | 587781339 | PMS2 | [] | ['GCAGACCYGCA CAAAATACAAGG' 1 | ['Hereditary cancerpredisposing syndrome'\| |
| $\begin{aligned} & \text { NM_001128177.1(TH } \\ & \text { RB):c. } 1324 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met442Val) } \end{aligned}$ | 121918691 | THRB | [] | ['CTTCAYGTGCAG GAAGCGGCTGG'] | ['Thyroid hormone resistance, generalized, autosomal dominant'] |
| $\begin{aligned} & \text { NM_001128177.1(TH } \\ & \text { RB):c.1327A>G } \\ & \text { (p.Lys443Glu) } \end{aligned}$ | 121918692 | THRB | [] | ['CCACCTYCATGT GCAGGAAGCGG'] | ['Thyroid hormone resistance, generalized, autosomal dominant'] |
| $\begin{aligned} & \text { NM_001128177.1(TH } \\ & \text { RB):c. } 1009 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 121918709 | THRB | [] | [] | ['Thyroid hormone resistance, selective |


| (p.Thr337Ala) |  |  |  |  | pituitary'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 004612.3(TGFBR <br> 1):c. $1199 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp400Gly) | 121918711 | TGFBR1 | ['ATAGATG YCAGCACG TTTGAAGG' ] | ['ATAGATGYCAG CACGTTTGAAGG'] | ['Loeys-Dietz syndrome 1'] |
| NM 000359.2(TGM1) <br> :c. $1469 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp490Gly) | 121918724 | TGM1 | [] | [] | ['Autosomal recessive congenital ichthyosis 1'] |
| NM 000257.3(MYH7) <br> :c. $1727 \mathrm{~A}>\mathrm{G}$ <br> (p.His576Arg) | 727504238 | MYH7 | [] | [] | \|'Familial hypertrophic cardiomyopathy $\mathrm{l}^{\prime}$, 'Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { c.1954A>G } \\ & \text { (p.Arg652Gly) } \end{aligned}$ | 727504239 | MYH7 | [] | [] | ['Primary familial hypertrophic cardiomyopathy', 'Familial hypertrophic cardiomyopathy $\left.1^{\prime}\right]$ |
| NM_000257.3(MYH7) <br> :c. $1496 \mathrm{~A}>\mathrm{G}$ <br> (p. Glu499Gly) | 727504270 | MYH7 | [] | [] | ['Cardiomyopathy', 'not specified'] |
| NM_000257.3(MYH7) <br> :c. $2539 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys847Glu) | 727504310 | MYH7 | [] | [] | ['Familial hypertrophic cardiomyopathy 1 ', 'Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c.2906-2A>G } \end{aligned}$ | 727504333 | MYBPC3 | I] | $\begin{array}{\|l\|} \hline \text { ['CCGTTCYGTGGG } \\ \text { TATAGAGTGGG', } \\ \text { 'GCCGTTCYGTGG } \\ \text { GTATAGAGTGG'] } \\ \hline \end{array}$ | \|'Familial hypertrophic cardiomyopathy $\left.4^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_001128425.1(MU } \\ & \text { TYH):c.1187-2A>G } \end{aligned}$ | 587781628 | MUTYH | ['ACCYGAG AGGGAGG GCAGCCAG $\mathrm{G}^{\prime}$ ] | ['ACCYGAGAGGG AGGGCAGCCAGG' ] | ['Hereditary cancerpredisposing syndrome', 'Carcinoma of colon'] |
| $\begin{aligned} & \text { NM_005188.3(CBL):c } \\ & .1228-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 727504426 | CBL | [] | [] | ['Juvenile myelomonocytic leukemia', 'Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia', <br> 'Rasopathy'] |
| $\begin{aligned} & \text { NM_000501.3(ELN):c } \\ & .890-2 A>G \end{aligned}$ | 727504434 | ELN | ['GCCYGAA AACACAGC CACAGAGG 1 | ['GCCYGAAAACA CAGCCACAGAGG' ] | ['Supravalvar aortic stenosis'] |
| NM 001165963.1(SC N1A):c. 2877T>A (p.Cys959Ter) | 775214722 | SCN1A | [] | [] | ['not provided'] |
| NM_000833.4(GRIN2 <br> A):c. $2449 \mathrm{~A}>\mathrm{G}$ <br> (p.Met817Val) | 796052551 | GRIN2A | I'CCAYGTT GTCAATGT CCAGCTGG 1 | ['CCAYGTTGTCAA TGTCCAGCTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_000314.6(PTEN): } \\ & \text { c. } 493-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587781784 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |


| $\begin{aligned} & \text { NM_000498.3(CYP11 } \\ & \text { B2):c.1157T>C } \\ & \text { (p.Val386Ala) } \end{aligned}$ | 61757294 |  | [] | [] | ['Corticosterone methyloxidase type 2 deficiency', 'Corticosterone methyloxidase type 1 deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 006204.3(PDE6C ):c. $1483-2 \mathrm{~A}>\mathrm{G}$ | 786200910 | PDE6C | [] |  | ['Achromatopsia 5'] |
| NM_003588.3(CUL4B <br> ):c. $901-2 \mathrm{~A}>\mathrm{G}$ | 786200913 | CUL4B | [] | [] | ['Syndromic Xlinked mental retardation, Cabezas type'] |
| NM 000397.3(CYBB) <br> :c. $302 \mathrm{~A}>\mathrm{G}$ <br> (p.His101Arg) | 137854591 | CYBB | [] | [] | ['Granulomatous disease, chronic, X linked, variant', 'not provided'] |
| NM_000311.3(PRNP): <br> c. $385 \mathrm{~A}>\mathrm{G}$ <br> (p.Met129Val) | 1799990 | PRNP | [] | [] | ['Jakob-Creutzfeldt disease', 'Genetic prion diseases', 'Fatal familial insomnia', 'not specified'] |
| NM_000051.3(ATM): <br> c. $3994-2 \mathrm{~A}>\mathrm{G}$ | 587782276 | ATM | [] | II | ['Ataxiatelangiectasia syndrome', 'Hereditary cancerpredisposing syndrome'] |
| NM 005211.3(CSF1R <br> ):c. $1754-2 \mathrm{~A}>\mathrm{G}$ | 281860267 | CSFlR | [] | I] | ['Hereditary diffuse leukoencephalopath y with spheroids'\| |
| NM 004646.3(NPHS1 <br> ):c. $1756 \mathrm{~A}>\mathrm{G}$ <br> (p. $\operatorname{Arg} 586 \mathrm{Gly})$ | 730880174 | NPHS1 | [] | [] | ['Finnish congenital nephrotic syndrome'] |
| $\begin{aligned} & \text { NM_005211.3(CSF1R } \\ & \text { ):c. } 2320-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 281860272 | CSFIR | ['CACYGAG GGAAAGC ACTGCAGG G'] | ['CACYGAGGGAA 'GCACYGAGGGAA AGCACTGCAGG'] | ['Hereditary diffuse leukoencephalopath y with spheroids'] |
| NM 000256.3(MYBP <br> C3):c. $3392 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile 1131Thr) | 370890951 | MYBPC3 | [] | II | I'Cardiomyopathy', 'Cardiac arrest', 'not specified'] |
| NM 000551.3(VHL):c $.586 \mathrm{~A}>\mathrm{T}$ <br> (p.Lys196Ter) | 281860296 | VHL | II | ['GGTCTTYCTGCA CATTTGGGTGG'] | ['Von Hippel-Lindau syndrome'\| |
| NM 005247.2(FGF3): <br> c. $146 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr49Cys) | 281860300 | FGF3 | ['CAGYAGA GCTTGCGG CGCCGGGG 'GCAGYAG AGCTTGCG GCGCCGGG 'CGCAGYA GAGCTTGC GGCGCCGG ' | ['CAGYAGAGCTT GCGGCGCCGGGG' <br> 'GCAGYAGAGCTT GCGGCGCCGGG', 'CGCAGYAGAGCT TGCGGCGCCGG'] | ['Deafness with labyrinthine aplasia microtia and microdontia (LAMM)'] |
| $\begin{aligned} & \text { NM_005247.2(FGF3): } \\ & \text { c. } 317 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 281860306 | FGF3 | [] | [] | ['Deafness with labyrinthine aplasia |


| (p.Tyr106Cys) |  |  |  |  | microtia and microdontia (LAMM)'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000314.6(PTEN): <br> c. $403 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile135Val) | 587782360 | PTEN | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| NM_004990.3(MARS) <br> c. $1031 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr344Cys) | 766466297 | MARS | [] | [] | ['Pulmonary alveolar proteinosis', <br> 'Interstitial lung and liver disease'] |
| NM_006343.2(MERT K):c. $1605-2 \mathrm{~A}>\mathrm{G}$ | 730880273 | MERTK | [] | [] | ['Retinitis pigmentosa ${ }^{38}$ '] |
| NM_003611.2(OFD1): $\text { c. } 935+706 \mathrm{~A}>\mathrm{G}$ | 730880283 | OFD1 | [] | [] | ['Retinitis Pigmentosa ${ }^{\prime} 3^{\prime}$ |
| NM 004793.3(LONP1 <br> ):c. $2353 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg785Gly) | 730880293 | LONP1 | [] | [] | ['CODAS syndrome'] |
| $\begin{aligned} & \text { NM_001698.2(AUH):c } \\ & .263-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 730880311 | AUH | [] | [] | ['3-Methylglutaconic aciduria'] |
| NM_001698.2(AUH):c $.943-2 \mathrm{~A}>\mathrm{G}$ | 730880312 | AUH | [] | [] | ['3-Methylglutaconic aciduria'] |
| $\begin{aligned} & \text { NM_000169.2(GLA):c } \\ & .370-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 730880444 | - | [] | ['GTGAACCYGAA ATGAGAGGGAGG' I | ['not provided'] |
| NM 001110792.1(ME (P2):c. $520 \mathrm{~A}>\mathrm{G}$ (p.Arg174Gly) | 727505391 | MECP2 | [] | II | ['Rett disorder'] |
| NM 030662.3(MAP2 K2):c. $181 \mathrm{~A}>\mathrm{G}$ (p.Lys61Glu) | 730880517 | MAP2K2 | [] | [] | ['Cardiofaciocutaneo us syndrome', 'Rasopathy'] |
| $\begin{aligned} & \text { NM_000256.3(MYBP } \\ & \text { C3):c. } 1227-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 730880531 | MYBPC3 | [] | ['GTACCYGGGTG GGGGCCGCAGGG' <br> 'TGTACCYGGGTG GGGGCCGCAGG' | ['Familial hypertrophic cardiomyopathy $4^{\prime}$, 'Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_000642.2(AGL):c } \\ & .4260-12 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 369973784 | AGL | [] | I] | ['Glycogen storage disease type III', 'Glycogen storage disease IIIa', 'Glycogen storage disease IIIb'\| |
| $\begin{aligned} & \text { NM_000267.3(NF1):c. } \\ & 1642-8 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 267606602 | NF1 | [] | [] | ['Neurofibromatosis, type 1', 'Juvenile myelomonocytic leukemia'] |
| $\begin{aligned} & \text { NM_000267.3(NF1):c. } \\ & 5944-5 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 267606604 | NF1 | [] | [] | $\begin{aligned} & \text { ['Neurofibromatosis, } \\ & \text { type 1', } \\ & \text { 'Neurofibromatosis, } \\ & \text { familial spinal'] } \\ & \hline \end{aligned}$ |
| m. $1555 \mathrm{~A}>\mathrm{G}$ | 267606617 | $\begin{aligned} & \hline \text { MT- } \\ & \text { RNR1 } \end{aligned}$ | [] | [] | ['Aminoglycosideinduced deafness', 'Cardiomyopathy, restrictive', Deafness, nonsyndromic sensorineural, mitochondrial'] |
| NM_022458.3(LMBR <br> 1):c. $423+5252 \mathrm{~A}>\mathrm{G}$ | 606231150 | LMBR1 | [] | [] | ['Triphalangeal thumb', 'Preaxial |


|  |  |  |  |  | polydactyly 2'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000642.2(AGL):c } \\ & .3439 \mathrm{~A}>\mathrm{G} \\ & \text { (p. Arg1147Gly) } \\ & \hline \end{aligned}$ | 267606639 | AGL | [] | [] | ['Glycogen storage disease IIIc'] |
| $\begin{aligned} & \text { NM_013411.4(AK2):c } \\ & .494 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp165Gly) } \end{aligned}$ | 267606643 | AK2 | I] | $\begin{aligned} & \text { ['TCAYCTTTCATG } \\ & \text { GGCTCTTTTGG'] } \end{aligned}$ | $\begin{aligned} & \text { ['Reticular } \\ & \text { dysgenesis'] } \end{aligned}$ |
| NM 001142800.1 (EY <br> S):c. $9209 \mathrm{~T}>\mathrm{C}$ <br> (p.Ile3070Thr) | 183589498 | EYS | [] | [] | ['Retinitis pigmentosa'] |
| $\begin{aligned} & \text { NM_004183.3(BEST1 } \\ & \text { f:c.680A>G } \\ & \text { (p.Tyr227Cys) } \end{aligned}$ | 267606677 | BEST1 | [] | [] | ['Vitelliform dystrophy', 'Retinitis pigmentosa, concentric', 'not provided'] |
| NM 005188.3(CBL):c $.1144 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys382Glu) | 267606705 | CBL | [] | $\begin{aligned} & \hline \text { ['TATTTYACATAG } \\ & \text { TTGGAATGTGG'] } \end{aligned}$ | ['Noonan syndromelike disorder with or without juvenile myelomonocytic leukemia'] |
| NM 001017361.2(KH DC3L):c. $1 \mathrm{~A}>\mathrm{G}$ (p.MetIVal) | 606231235 | KHDC3L | [] | [] | ['Hydatidiform mole, recurrent, 2'] |
| NM_144577.3(CCDC1 14):c. $487-2 \mathrm{~A}>\mathrm{G}$ | 606231239 | CCDC114 | II | II | ['Ciliary dyskinesia, primary, 20'\| |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .916 \mathrm{~A}>\mathrm{G}(\text { p.Ile306Val }) \end{aligned}$ | 62642934 | PAH | [] | $\begin{aligned} & \hline \text { ['GGCCAAYTTCCT } \\ & \text { GTAATTGGGGG', } \\ & \text { 'AGGCCAAYTTCC } \\ & \text { TGTAATTGGGG'] } \\ & \hline \end{aligned}$ | ['Phenylketonuria', 'Hyperphenylalanine mia, non-pku', 'not provided'] |
| NM_000257.3(MYH7) <br> :c. $2792 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu931Gly) | 730880760 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| NM_207034.2(EDN3): <br> c. $335 \mathrm{~A}>\mathrm{G}$ <br> (p.Hisl12Arg) | 267606778 | EDN3 | [] | [] | ['Waardenburg syndrome type 4B'] |
| $\begin{aligned} & \text { NM_000117.2(EMD): } \\ & \text { c. } 1 \mathrm{~A}>\mathrm{G}(\text { p.Met1Val }) \end{aligned}$ | 267606782 | EMD | [] | ['TCCAYGGCGGGT GCGGGCTCAGG' | ['Emery-Dreifuss muscular dystrophy, X -linked'] |
| NM_003937.2(KYNU) c. $592 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr198Ala) | 606231307 | KYNU | [] | [] | ['Hydroxykynurenin uria'] |
| NM 004387.3(NKX2- <br> 5):c. $461 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu154Gly) | 587782928 | NKX2-5 | [] | [] | ['Atrial septal defect 7 with or without atrioventricular conduction defects'] |
| NM_000142.4(FGFR3 ):c. $1454 \mathrm{~A}>\mathrm{G}$ <br> (p. GIn485Arg) | 267606808 | FGFR3 | [] | [] | ['Thanatophoric dysplasia type 1'] |
| NM 014053.3(FLVCR <br> 1): $\mathrm{c} \cdot \mathbf{3} 61 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn121Asp) | 267606820 | FLVCR1 | [] | ['AGGCGTYGACC AGCGAGTACAGG' 1 | ['Posterior column ataxia with retinitis pigmentosa'] |
| $\begin{aligned} & \text { NM_000257.3(MYH7) } \\ & \text { :c.4664A>G } \\ & \text { (p.Glu1555Gly) } \end{aligned}$ | 730880805 | - | [] | ['GCCCYCCTCGTG CTCCAGGGAGG', 'CTTGCCCYCCTC GTGCTCCAGGG'] | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_138387.3(G6PC3 } \\ & \text { j:c.346A>G } \\ & \text { (p.Met116Val) } \end{aligned}$ | 267606834 | G6PC3 | [] | ['TGATCAYGCAGT GTCCAGAAGGG', 'GTGATCAYGCAG TGTCCAGAAGG'] | ['Dursun syndrome'] |


| NM 020347.3(LZTFL <br> 1): $\mathrm{c} .260 \mathrm{~T}>\mathrm{C}$ <br> (p.Leu87Pro) | 515726135 | LZTFL1 | [] | [] | ['Bardet-Biedl syndrome', 'BardetBiedl syndrome 17'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000175.3(GPI):c. } \\ & \text { 1028A>G } \\ & \text { (p.Gln343Arg) } \end{aligned}$ | 267606851 | GPI | [] | ['GTACYGGTCATA GGGCAGCATGG'] | ['Hemolytic anemia, nonspherocytic, due to glucose phosphate isomerase deficiency'l |
| $\begin{aligned} & \hline \text { NM_005859.4(PURA) } \\ & \text { :c.289A>G } \\ & \text { (p.Lys97Glu) } \end{aligned}$ | 587782994 | PURA | [] | [] | ['Neonatal <br> hypotonia', <br> 'Intellectual <br> disability', 'Seizures', <br> Delayed speech and <br> language <br> development', <br> 'Global <br> developmental <br> delay', 'Mental <br> retardation, <br> autosomal dominant <br> 31'\| |
| $\begin{aligned} & \text { NM_005144.4(HR):c.- } \\ & 218 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 267606869 | HR | ['CTCYAGG GCCGCAGG TTGGAGGG 'l | ['CTCYAGGGCCGC AGGTTGGAGGG', 'GCTCYAGGGCCG CAGGTTGGAGG', 'GGCGCTCYAGGG CCGCAGGTTGG'] | ['Marie Unna hereditary hypotrichosis 1'] |
| NM 000257.3 (MYH7) <br> :c. $789 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile263Met) | 730880855 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| NM_000060.3(BTD):c $.683 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp228Gly) | 587783004 | BTD | [] | [] | ['Biotinidase deficiency'] |
| NM_000257.3(MYH7) <br> :c. $1051 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys351Glu) | 730880864 | MYH7 | [] | I] | ['Cardiomyopathy'] |
| $\begin{aligned} & \hline \text { NM_015713.4(RRM2 } \\ & \text { B):c.190T>C } \\ & \text { (p.Trp64Arg) } \\ & \hline \end{aligned}$ | 515726182 | RRM2B | [] | ['TTCCTTCYGGAC AGCAGAAGAGG'] | ['RRM2B-related mitochondrial disease'] |
| NM 005957.4(MTHF <br> R):c. $971 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn324Ser) | 267606887 | MTHFR | $\begin{array}{\|l\|} \hline \text { ['CGCGGYT } \\ \text { GAGGGTGT } \\ \text { AGAAGTGG } \\ \hline \\ \hline \end{array}$ | ['CGCGGYTGAGG GTGTAGAAGTGG' ] | ['Homocystinuria due to MTHFR deficiency'] |
| NM_015713.4(RRM2 <br> B): $\mathbf{c} .368 \mathrm{~T}>\mathrm{C}$ <br> (p.Phe 123Ser) | 515726187 | RRM2B | [] | [] | ['RRM2B-related mitochondrial disease'] |
| m. 12770A>G | 267606894 | MT-ND5 | I] | I] | ['Juvenile myopathy, encephalopathy, lactic acidosis AND stroke'\| |
| NM 000257.3(MYH7) <br> :c. $1805 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn602Ser) | 730880880 | MYH7 | [] | [] | ['Cardiomyopathy'] |
| $\begin{aligned} & \text { NM_018109.3(MTPA } \\ & \text { P):c.1432A>G } \\ & \text { (p.Asn478Asp) } \end{aligned}$ | 267606900 | MTPAP | ['AATGGAT YCTGAATG TACAGAGG $\qquad$ | ['AATGGATYCTGA ATGTACAGAGG'] | ['Ataxia, spastic, 4 , autosomal recessive'] |
| $\begin{aligned} & \hline \text { NM_000257.3(MYH7) } \\ & \text { :c.2717A>G } \\ & \text { (p.Asp906Gly) } \\ & \hline \end{aligned}$ | 267606908 | MYH7 | [] | [] | ['Primary familial hypertrophic cardiomyopathy', |


|  |  |  |  |  | Familial hypertrophic cardiomyopathy 1 ', 'Cardiomyopathy'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 003122.4(SPINK 1):c. $160 \mathrm{~T}>\mathrm{C}$ <br> (p.Tyr54His) | 515726207 | SPINK1 | [] | [] | ['Hereditary pancreatitis'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { )c. } \mathbf{4 0 4 - 2 \mathrm { A } > \mathrm { G }} \\ & \hline \end{aligned}$ | 587783080 | CDKL5 | [] | [] | ['not provided'] |
| NM 003159.2(CDKL5 ):c. $449 \mathrm{~A}>\mathrm{G}$ (p.Lys150Arg) | 587783083 | CDKL5 | ['ACAGTYT TAGGACAT CATTGTGG' 1 | ['ACAGTYTTAGGA CATCATTGTGG'] | ['not provided'] |
| NM 016203.3(PRKA G2):c. $1589 \mathrm{~A}>\mathrm{G}$ (p.His530Arg) | 267606977 | PRKAG2 | I] | [] | \|'Familial hypertrophic cardiomyopathy ${ }^{6}$, 'not provided'] |
| NM_198965.1(PTHLH <br> ):c.534A>G <br> (p.Ter178Trp) | 267606987 | PTHLH | [] | [] | ['Brachydactyly type E2'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .122 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Asp41Gly)} \\ & \hline \end{aligned}$ | 74518351 | OTC | [] | [] | ['not provided'] |
| NM 001134363.2(RB M20):c. 1909A>G (p.Ser637Gly) | 267607005 | RBM20 | [] | [] | $\begin{array}{\|l} \hline \text { ['Dilated } \\ \text { cardiomyopathy } \\ \text { IDD'] } \\ \hline \end{array}$ |
| NM 000553.4(WRN): c. $403 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys135Glu) | 267607008 | WRN | [] | II | ['Werner syndrome'] |
| NM 002880.3(RAF1): <br> c. $1279 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser427Gly) | 730881002 | RAF1 | [] | ['GCTGCYGCCCTC GCACCACTGGG', 'GGCTGCYGCCCT CGCACC | ['Rasopathy'] |
| $\begin{aligned} & \text { NM_002977.3(SCN9A } \\ & \text { ):c.29A>G } \\ & \text { (p.Gln10Arg) } \end{aligned}$ | 267607030 | SCN9A | [] | ['AAGCTCYGAGG TCCTGGGGGAGG' ] | $\begin{aligned} & \hline \text { ['Primary } \\ & \text { erythromelalgia'] } \end{aligned}$ |
| NM 016955.3(SEPSE <br> CS):c. $1001 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr334Cys) | 267607036 | SEPSECS | [] | [] | ['Pontocerebellar hypoplasia type 2D'] |
| NM_007373.3(SHOC2 <br> ):c.4A>G (p.Ser2Gly) | 267607048 | SHOC2 | [] | ['TACYCATGGTGA CTCAAGCCTGG'] | ['Noonan-like syndrome with loose anagen hair', 'Rasopathy'] |
| $\begin{aligned} & \text { NM_005633.3(SOS1): } \\ & \text { c.1430A>G } \\ & \text { (p.Gln477Arg) } \end{aligned}$ | 730881044 | SOS1 | [] | [] | ['Rasopathy'] |
| NM_007375.3(TARD BP):c.787A>G (p.Lys263Glu) | 267607102 | TARDBP | [] | [] | ['FRONTOTEMPO <br> RAL DEMENTIA <br> WITH TDP43 <br> INCLUSIONS, <br> TARDBP- <br> RELATED'] |
| NM_003286.2(TOPI): <br> c. $1598 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp533Gly) | 267607131 | - | [] | [] | [] |
| $\begin{aligned} & \text { NMM } 021625.4(\mathrm{TRPV4} \\ & \text { ):c. } 1805 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr602Cys) } \\ & \hline \end{aligned}$ | 267607150 | TRPV4 | [] | [] | ['Spondyloepiphysea 1 dysplasia Maroteaux type'] |
| NM_000551.3(VHL):c | 267607170 | VHL | [] | [] | ['Von Hippel-Lindau |


| $\begin{aligned} & .491 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln164Arg) } \\ & \hline \end{aligned}$ |  |  |  |  | syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001006657.1(WD } \\ & \text { R35):c.1877A>G } \\ & \text { (p.Glu626Gly) } \\ & \hline \end{aligned}$ | 267607174 | WDR35 | [] | [] | ['Cranioectodermal dysplasia 2'] |
| $\begin{aligned} & \text { NM_024884.2(L2HG } \\ & \text { DH):c.293A>G } \\ & \text { (p.His } 98 \mathrm{Arg} \text { ) } \end{aligned}$ | 267607206 | L2HGDH | [] | [] | ['L-2hydroxyglutaric aciduria'] |
| $\begin{aligned} & \text { NM_002437.4(MPV17 } \\ & \text { ):c.262A>G } \\ & \text { (p.Lys88Glu) } \end{aligned}$ | 267607256 | MPV17 | [] | [] | ['Navajo neurohepatopathy'] |
| NM 006888.4(CALM <br> 1):c. $293 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn98Ser) | 267607277 | CALM1 | [] | [] | ['Catecholaminergic polymorphic ventricular tachycardia', 'Ventricular tachycardia, catecholaminergic polymorphic, 4'] |
| $\begin{aligned} & \text { NM_000487.5(ARSA) } \\ & \text { :c. }{ }^{*} 96 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 6151429 | ARSA | [] | [] | ['Metachromatic leukodystrophy', 'Arylsulfatase A pseudodeficiency', 'not provided'\| |
| NM_003122.4(SPINK 1): c. $194+2 \mathrm{~T}>\mathrm{C}$ | 148954387 | SPINK1 | [] | [] | ['Hereditary pancreatitis'] |
| $\begin{aligned} & \text { NM_000552.3(VWF): } \\ & \text { c. } 3437 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyrl146Cys) } \end{aligned}$ | 267607326 | VWF | [] | [] | ['von Willebrand disease type 2 ', 'not provided'] |
| $\begin{aligned} & \text { NM } 000489.4 \text { (ATRX) } \\ & \text { :c. } 4826 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His1609Arg) } \end{aligned}$ | 122445093 | ATRX | [] | [] | ['ATR-X syndrome'] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & : \text { c. } 6488 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr2163Cys) } \\ & \hline \end{aligned}$ | 122445098 | ATRX | [] | [] | ['ATR-X syndrome'] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & \text { :c. } 6811 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg2271Gly) } \\ & \hline \end{aligned}$ | 122445112 | ATRX | [] | [] | [] |
| $\begin{aligned} & \text { NM_004380.2(CREB } \\ & \text { BP):c. } 3983-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587783486 | CREBBP | [] | ['GCAGCCCYAGG AAGTCCAGAAGG' 1 | ['Rubinstein-Taybi syndrome'] |
| NM_004380.2(CREB BP):c. $4508 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyrl503Cys) | 587783497 | CREBBP | [] | [] | ['Rubinstein-Taybi syndrome'] |
| $\begin{aligned} & \text { NM_000051.3(ATM): } \\ & \text { c. } 3154-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 730881357 | ATM | [] | ['AGCCYACGGGA AAAGAACTGTGG' 1 | ['Hereditary cancerpredisposing <br> syndrome'\| |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .1027-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 587783518 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{array}{\|l} \hline \text { NM_178151.2(DCX):c } \\ .520 \mathrm{~A}>\mathrm{G} \\ \text { (p.Lys174Glu) } \\ \hline \end{array}$ | 587783557 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{aligned} & \text { NM_178151.2(DCX):c } \\ & .538 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Lys180Glu) } \end{aligned}$ | 587783560 | DCX | [] | [] | ['Heterotopia'] |
| $\begin{aligned} & \hline \mathrm{NM} 178151.2(\mathrm{DCX}): \mathrm{c} \\ & .607 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr203Ala) } \\ & \hline \end{aligned}$ | 587783570 | DCX | [] | [] | ['Heterotopia'] |
| NM_001257235.1(AL | 398122394 | ALG13 | [] | [] | ['Congenital disorder |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Gl3):c.8A>G } \\
\text { (p.Asn3Ser) }\end{array} & & & & \begin{array}{l}\text { of glycosylation type } \\
\text { ls'] }\end{array} \\
\hline \begin{array}{l}\text { NM_001256864.1(DN } \\
\text { AJC6):c.801-2A>G }\end{array} & 398122404 & \text { DNAJC6 } & {[]} & \begin{array}{l}\text { ['AGGTATCYGAA } \\
\text { ACAGAAGGTTGG' } \\
\text { [ }\end{array} & \begin{array}{l}\text { ['Parkinson disease } \\
\text { 19, juvenile-onset'] }\end{array} \\
\hline \begin{array}{l}\text { NM_001927.3(DES):c. } \\
\text { 1024A>G } \\
\text { (p.Asn342Asp) }\end{array} & 267607482 & \text { DES } & {[]} & \begin{array}{l}\text { ['GAATCGTYCTGC } \\
\text { AGGAGAGGGGG'] }\end{array} & \begin{array}{l}\text { ['Myofibrillar } \\
\text { myopathy 1', 'not } \\
\text { provided'] }\end{array} \\
\hline \begin{array}{l}\text { NM_001927.3(DES):c. } \\
\text { 735+3A>G }\end{array} & 267607483 & \text { DES } & {[]} & \begin{array}{l}\text { ['Myofibrillar } \\
\text { myopathy 1', 'not } \\
\text { provided'] }\end{array}
$$ <br>
\hline \begin{array}{l}NM_001927.3(DES):c. <br>
1333A>G <br>

(p.Thr445Ala)\end{array} \& 267607498 \& DES \& {[]} \& {[['not provided']}\end{array}\right]\)| [] |
| :--- |


| B1):c.1831-2A>G |  |  |  |  | alpha-mannosidase'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 022132.4(MCCC <br> 2): $\mathrm{c} .569 \mathrm{~A}>\mathrm{G}$ <br> (p.His190Arg) | 119103225 | MCCC2 | I] | I] | ['3-methylcrotonyl CoA carboxylase 2 deficiency'] |
| m.3260A>G | 199474663 | MT-TL1 | ['TTAAGTT YTATGCGA TTACCGGG' 1 | ['TTAAGTTYTATG CGATTACCGGG'] | ['Cardiomyopathy with or without skeletal myopathy'] |
| $\begin{aligned} & \text { NM_014874.3(MFN2) } \\ & \text { c. } 827 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln276Arg) } \end{aligned}$ | 119103264 | MFN2 | [] | I] | ['Hereditary motor and sensory neuropathy with optic atrophy'\| |
| $\begin{aligned} & \hline \text { NM_004525.2(LRP2): } \\ & \text { c. } 77 \overline{0}-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 80338743 | LRP2 | [] | [] | ['Donnai Barrow syndrome'] |
| NM_005120.2(MED12 <br> ):c. $3020 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1007Ser) | 80338759 | MED12 | [] | [] | ['X-linked mental retardation with marfanoid habitus syndrome'] |
| NM_000834.3(GRIN2 <br> B): c. $2172-2 \mathrm{~A}>\mathrm{G}$ | 398122824 | GRIN2B | [] | [] | ['Mental retardation, autosomal dominant 6'] |
| $\begin{aligned} & \text { NM_000249.3(MLH1) } \\ & \text { :c. } 1990-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 267607883 | MLH1 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms', 'not provided'] |
| NM_000518.4(HBB):c $.59 \bar{A}>G($ p.Asn20Ser $)$ | 33972047 | HBB | [] | ['CACGYTCACCTT GCCCCACAGGG' 'CCACGYTCACCT TGCCCCACAGG'] | ['alpha Thalassemia'] |
| $\begin{aligned} & \text { NM_003688.3(CASK) } \\ & \text { c..2168A>G } \\ & \text { (p.Tyr723Cys) } \end{aligned}$ | 398122844 | CASK | [] | [] | ['FG syndrome 4', 'Mental retardation and microcephaly with pontine and cerebellar hypoplasia'] |
| $\begin{aligned} & \text { NM_024675.3(PALB2 } \\ & \text { ):c. } 109-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 730881897 | PALB2 | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{aligned} & \hline \text { NM_000251.2(MSH2) } \\ & \text { :c.1511-2A>G } \end{aligned}$ | 267607962 | MSH2 | I] | II | ['Hereditary Nonpolyposis Colorectal Neoplasms'] |
| $\begin{aligned} & \text { NM_003124.4(SPR):c. } \\ & 596-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398122922 | SPR | [] | [] | ['Sepiapterin reductase deficiency'] |
| $\begin{aligned} & \text { NM_022455.4(NSD1): } \\ & \text { c. } 4498-3 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587784120 | NSD1 | [] | [] | ['Sotos syndrome 1'] |
| $\begin{aligned} & \hline \text { NM 0000455.4(STK11) } \\ & \text { c. } \mathrm{C} \text { ) } 9 \text { A }>\mathrm{G} \\ & \text { (p.Arg297Gly) } \end{aligned}$ | 730881978 | STK11 | [] | [] | ['Hereditary cancerpredisposing syndrome'\| |
| $\begin{aligned} & \text { NM_001927.3(DES):c. } \\ & 1289-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398122940 | DES | [] | [] | ['Muscular dystrophy, limbgirdle, type $\left.2 \mathrm{r}^{\prime}\right]$ |
| $\begin{aligned} & \hline \text { NM_000546.5(TP53):c } \\ & .709 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met237Val) } \end{aligned}$ | 730882004 | TP53 | [] | ['ACACAYGTAGTT GTAGTGGATGG'] | ['Li-Fraumeni syndrome', 'Hereditary cancerpredisposing syndrome'] |


| $\begin{array}{\|l} \hline \text { NM_024876.3(ADCK } \\ \text { 4):c. } 857 \mathrm{~A}>\mathrm{G} \\ \text { (p.Asp286Gly) } \\ \hline \end{array}$ | 398122979 | ADCK4 | I] | [] | $\begin{aligned} & \text { ['Nephrotic } \\ & \text { syndrome, type 9'] } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM } 022455.4(\mathrm{NSD} 1): \\ & \text { c. } 659 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn2020Ser) } \\ & \hline \end{aligned}$ | 587784178 | NSD1 | [] | [] | ['Sotos syndrome 1'] |
| $\begin{array}{\|l} \hline \text { NM_022455.4(NSD1): } \\ \text { c.6356A>G } \\ \text { (p.Asp2119Gly) } \\ \hline \end{array}$ | 587784191 | NSD1 | [] | [] | ['Sotos syndrome 1'] |
| $\begin{aligned} & \hline \text { NM_007332.2(TRPA1 } \\ & \text { ):c.2564A>G } \\ & \text { (p.Asn855Ser) } \\ & \hline \end{aligned}$ | 398123010 | - | [] | [] | ['Familial episodic pain syndrome 1'] |
| $\begin{aligned} & \hline \text { NM_001231.4(CASQ1 } \\ & \text { ):c. } 731 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp244Gly) } \\ & \hline \end{aligned}$ | 730882052 | CASQ1 | I] | ['GGCTTGYCTGGG ATGGTCACAGG'] | ['Myopathy, vacuolar, with casql aggregates'] |
| NM 004004.5(GJB2): c. $487 \mathrm{~A}>\mathrm{G}$ <br> (p.Met163Val) | 80338949 | GJB2 | [] | [] | ['Deafness, autosomal recessive 1A', 'not specified'] |
| NM_130466.3(UBE3B ):c. $545-2 \mathrm{~A}>\mathrm{G}$ | 398123022 | UBE3B | [] | [] | ['Kaufman oculocerebrofacial syndrome'] |
| NM_000334.4(SCN4A ):c. $4078 \mathrm{~A}>\mathrm{G}$ (p.Met1360Val) | 80338959 | SCN4A | [] | ['GATCAYGATGGT GATGTCGAAGG'] | ['Hyperkalemic Periodic Paralysis Type 1'] |
| NM 000334.4(SCN4A ):c. $\overline{4} 108 \mathrm{~A}>\mathrm{G}$ <br> (p.Met1370Val) | 80338960 | SCN4A | [] | ['CCATCAYGGTGA CCATGTTGAGG' | ['Hyperkalemic Periodic Paralysis Type 1'] |
| NM_000334.4(SCN4A ):c. $4774 \mathrm{~A}>\mathrm{G}$ <br> (p.Met1592Val) | 80338962 | SCN4A | [] | $\begin{aligned} & \hline \text { ['TGTACAYGTTGA } \\ & \text { CCACGATGAGG'] } \end{aligned}$ | ['Hyperkalemic Periodic Paralysis Type 1', 'Familial hyperkalemic periodic paralysis'] |
| $\begin{aligned} & \hline \text { NM_015250.3(BICD2) } \\ & \text { :c.2321A>G } \\ & \text { (p.Glu774Gly) } \end{aligned}$ | 398123030 | BICD2 | [] | [] | ['Spinal muscular atrophy, lower extremity predominant 2, autosomal dominant'] |
| $\begin{aligned} & \hline \text { NM_006012.2(CLPP): } \\ & \text { c. } 270+4 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398123035 | CLPP | [] | [] | ['Autosomal recessive hearing impairment with normal menstrual cycles'] |
| $\begin{aligned} & \text { NM_000179.2(MSH6) } \\ & : \mathrm{c} .3439-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 267608098 | MSH6 | [] | [] | ['Hereditary Nonpolyposis Colorectal Neoplasms', 'Hereditary cancerpredisposing syndrome', 'not provided'] |
| NM 002246.2(KCNK <br> 3):c. $575 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr192Cys) | 398123043 | KCNK3 | [] | [] | ['Primary pulmonary hypertension 4'] |
| $\begin{aligned} & \text { NM_001070.4(TUBG1 } \\ & \text { y:c.275A>G } \\ & \text { (p.Tyr92Cys) } \end{aligned}$ | 398123046 | TUBG1 | [] | [] | ['Cortical dysplasia, complex, with other brain malformations $4^{\prime} 1$ |
| NM_000383.3(AIRE): | 179363882 | AIRE | [] | [] | ['Polyglandular |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { c.254A>G } \\
\text { (p.Tyr85Cys) }\end{array} & & & & \begin{array}{l}\text { autoimmune } \\
\text { syndrome, type 1', } \\
\text { not provided'] }\end{array} \\
\hline \begin{array}{l}\text { NM_001651.3(AQP5): } \\
\text { c.367A>G } \\
\text { (p.Asn123Asp) }\end{array} & 398123057 & \text { AQP5 } & {[]} & \begin{array}{l}\text { ['Diffuse } \\
\text { palmoplantar } \\
\text { keratoderma, } \\
\text { Bothnian type'] }\end{array} \\
\hline \begin{array}{l}\text { NM_012160.4(FBXL4 } \\
\text { ):c.1694A>G } \\
\text { (p.Asp565Gly) }\end{array} & 398123062 & \text { FBXL4 } & {[]} & \begin{array}{l}\text { ['TATGYCCAGCTG } \\
\text { CTGTAACCTGG'] }\end{array} & \begin{array}{l}\text { ['Mitochondrial } \\
\text { DNA depletion } \\
\text { syndrome 13 }\end{array} \\
\text { (encephalomyopathi } \\
\text { c type)'] }\end{array}
$$\right] \begin{array}{l}['Brown-Vialetto- <br>
Van Laere syndrome <br>

2']\end{array}\right]\)|  |
| :--- |


| A):c. $616-2 \mathrm{~A}>\mathrm{G}$ |  |  |  | ACAGGGGAATGG' ] | muscular <br> hypertrophy-cerebral <br> syndrome'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000255.3(MUT): c. $1445-2 \mathrm{~A}>\mathrm{G}$ | 398123276 | MUT | [] | [] | ['Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency', 'not provided'\| |
| $\begin{aligned} & \text { NM_001083962.1(TC } \\ & \text { F4):c. } 991-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 587784470 | TCF4 | [] | [] | ['Pitt-Hopkins syndrome'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .1205 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn402Ser) } \end{aligned}$ | 201023772 | BTD | [] | [] | ['Biotinidase deficiency'] |
| $\begin{aligned} & \text { NC_000007.14:g. } 6253 \\ & 5490 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 483352872 | ${ }^{-}$ | [] | [] | ['Isolated growth hormone deficiency type 1B'] |
| $\begin{aligned} & \text { NM_000271.4(NPC1): } \\ & \text { c. } 1832 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp611Gly) } \end{aligned}$ | 483352887 | NPC1 | [] | [] | ['Niemann-Pick disease type $\mathrm{Cl}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_152419.2(HGSN } \\ & \text { AT):c. } 372-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 483352896 | HGSNAT | [] | [] | ['Mucopoly saccharid osis, MPS-III-C'] |
| $\begin{aligned} & \text { NM_001199397.1(NE } \\ & \text { K1):c.869-2A>G } \end{aligned}$ | 483352906 | NEK1 | [] | [] | ['Short ribpolydactyly <br> syndrome, Majewski type'] |
| NM_000350.2(ABCA <br> 4):c. $67-2 \mathrm{~A}>\mathrm{G}$ | 398123339 | ABCA4 | [] | [] | ['Stargardt disease 1'] |
| NM_004992.3(MECP2 <br> ): c. $27-2 \mathrm{~A}>\mathrm{G}$ | 267608412 | MECP2 | [] | [] | ['Rett disorder', 'not provided'] |
| NM_003159.2(CDKL5 ):c. $100-2 \mathrm{~A}>\mathrm{G}$ | 267608423 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy $2^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c. } 125 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys42Arg) } \end{aligned}$ | 267608429 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy $2^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_000487.5(ARSA) } \\ & \text { :c. } 1108-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398123411 | ARSA | [] | ['GGCTCYGGGGG CAGAGTCAGGGG' <br> 'GGGCTCYGGGGG <br> CAGAGTCAGGG', <br> 'AGGGCTCYGGGG <br> GCAGAGTCAGG'] | ['Metachromatic leukodystrophy'] |
| $\begin{aligned} & \text { NM_003159.2(CDKL5 } \\ & \text { ):c. } 380 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His127Arg) } \\ & \hline \end{aligned}$ | 267608468 | CDKL5 | [] | [] | ['Atypical Rett syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & \text { c. } 134-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398123420 | ATRX | [] | [] | ['not provided'] |
| NM_003159.2(CDKL5 ):c. $464-2 \mathrm{~A}>\mathrm{G}$ | 267608480 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy $2^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_000489.4(ATRX) } \\ & \text { :c. } 536 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn179Ser) } \\ & \hline \end{aligned}$ | 398123425 | ATRX | [] | [] | ['not provided'] |
| $\begin{aligned} & \text { NM_000512.4(GALN } \\ & \text { S):c. } 1171 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met391Val) } \end{aligned}$ | 398123429 | GALNS | [] | ['CCGCCAYCAGC GTGTCGCCACGG'] | ['Mucopoly saccharid osis, MPS-IV-A', 'not provided'] |


| NM 003159.2(CDKL5 ): :. $578 \mathrm{~A}>\mathrm{G}$ (p.Asp193Gly) | 267608500 | CDKL5 | [] |  | ['Early infantile epileptic encephalopathy $\left.2^{\prime}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_000521.3(HEXB) } \\ & \text { c. } 1243-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398123446 | HEXB | [] | [] | ['Sandhoff disease', 'not provided'] |
| NM_003159.2(CDKL5 <br> ): c. $978-2 \mathrm{~A}>\mathrm{G}$ | 267608553 | CDKL5 | [] | [] | ['Early infantile epileptic encephalopathy $2^{\prime}$, 'not provided'] |
| NM 001164342.2(ZB TB20):c. $1787 \mathrm{~A}>\mathrm{G}$ (p.His596Arg) | 483353066 | ZBTB20 | [] | [] | ['Primrose syndrome'] |
| NM_000402.4(G6PD): c. $188 \mathrm{~T}>\mathrm{C}$ (p.Ile63Thr) | 398123552 | - | I] | ['ACACACAYATTC ATCATCATGGG'] | ['Anemia, nonspherocytic hemolytic, due to G6PD deficiency', 'not provided'] |
| NM_001893.4(CSNK1 <br> D):c.130A>G <br> (p.Thr44Ala) | 104894561 | CSNK1D | [] | [] | ['Advanced sleep phase syndrome, familial, $2^{\prime}$ \| |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { c. } 563 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln188Arg) } \end{aligned}$ | 75391579 | GALT | [] | ['TTACCYGGCAGT GGGGGTGGGGG', 'CTTACCYGGCAG TGGGGGTGGGG', 'CCTTACCYGGCA GTGGGGGTGGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase', 'not provided'] |
| NM 007055.3(POLR3 <br> A): $\mathbf{c} .2554 \mathrm{~A}>\mathrm{G}$ <br> (p.Met852Val) | 267608671 | POLR3A | [] | [] | ['Hypomyelinating leukodystrophy 7'] |
| NM 001848.2(COL6A <br> 1): . $805-2 \mathrm{~A}>\mathrm{G}$ | 398123639 | COL6AI | [] | ['TTCTCCCYGGAA CACAAAACAGG'] | ['Ullrich congenital muscular dystrophy' 'Bethlem myopathy', 'not provided'] |
| $\begin{aligned} & \text { NM_001918.3(DBT):c } \\ & .773-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398123674 | DBT | I] | [] | ['Maple syrup urine disease', 'not provided'\| |
| NM_001999.3(FBN2): c. $3740 \mathrm{~T}>\mathrm{C}$ (p.Met1247Thr) | 149054177 | FBN2 | ['GAATGTA YGATAATG AACGGAG $\mathrm{G}^{\prime}$ ] | ['GAATGTAYGAT AATGAACGGAGG' ] | ['not specified', 'Macular degeneration, earlyonset'] |
| NM_003482.3(KMT2 <br> D): c. $5645-2 \mathrm{~A}>\mathrm{G}$ | 398123750 | KMT2D | [] | ['GCAGTTCYGTGG GGGAATGAAGG'] | ['Kabuki make-up syndrome', 'not provided'] |
| NM_003494.3(DYSF): <br> c. $1398-2 \mathrm{~A}>\mathrm{G}$ | 398123769 | DYSF | [] | [] | ['Limb-girdle muscular dystrophy, type 2B', 'not provided'] |
| NM 015560.2(OPA1): <br> c. $1146 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile382Met) | 143319805 | OPA1 | [] | [] | ['Dominant hereditary optic atrophy', 'Optic Atrophy Type 1 ', 'not specified', 'not provided'] |
| NM 203447.3(DOCK <br> 8): $\mathrm{c} .1418 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys473Arg) | 112321280 | DOCK8 | [] | [] | ['Hyperimmunoglob ulin E recurrent infection syndrome, autosomal recessive'\| |


| $\begin{aligned} & \text { NM_001145.4(ANG):c } \\ & .121 \mathrm{~A}>\mathrm{G}(\text { p.Lys } 41 \mathrm{Glu}) \end{aligned}$ | 121909537 |  | \|'TGGTTYG gCATCATA GTGCTGGG 'GTGGTTYG GCATCATA GTGCTGG'] | ['TGGTTYGGCATC ATAGTGCTGGG', 'GTGGTTYGGCAT CATAGTGCTGG' | ['Amyotrophic lateral sclerosis type ${ }^{9}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \mathrm{NM} 1004006.2(\mathrm{DMD}): \\ & \mathrm{c} .3432+3 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 398123938 | DMD | I] | II | ['Dilated cardiomyopathy $3 \mathrm{~B}^{\prime} \mid$ |
| NM_006514.3(SCN10 <br> A):c.1661T>C <br> (p.Leu554Pro) | 138404783 | SCN10A | [] | [] | ['Episodic pain syndrome, familial, 2'] |
| NM_004006.2(DMD): c. $67 \overline{6} 3-2 \mathrm{~A}>\mathrm{G}$ | 398124033 | DMD | [] | [] | ['Dilated cardiomyopathy 3B'] |
| NM 001079802.1(FK TN): $: .1112 \mathrm{~A}>\mathrm{G}$ (p.Tyr371Cys) | 119464998 | FKTN | [] | [] | [] |
| $\begin{aligned} & \text { NM_004006.2(DMD): } \\ & \text { c. } 9224+61934 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398124084 | DMD | [] | [] | ['Dilated cardiomyopathy $3 \mathrm{~B}^{\prime} \mid$ |
| NM_004006.2(DMD): c. $9225-647 \mathrm{~A}>\mathrm{G}$ | 398124091 | DMD | [] | [] | ['Duchenne muscular dystrophy', 'Becker muscular dystrophy', 'Dilated cardiomyopathy 3B'] |
| NM_004006.2(DMD): c. $9650-2 \mathrm{~A}>\mathrm{G}$ | 398124100 | DMD | [] | [] | ['Duchenne muscular dystrophy', 'Becker muscular dystrophy', 'Dilated cardiomyopathy 3B'] |
| NM 198578.3(LRRK2 ):c. $\overline{3} 342 \mathrm{~A}>\mathrm{G}$ (p.Leu1114=) | 35808389 | LRRK2 | I] | [] | ['Parkinson disease 8, autosomal dominant'] |
| NM 031229.2(RBCK1 ):c. $1160 \mathrm{~A}>\mathrm{G}$ (p.Asn387Ser) | 566912235 | RBCK1 | I] | I] | ['Polyglucosan body myopathy 1 with or without immunodeficiency'\| |
| NM 000178.2(GSS):c. $656 \mathrm{~A}>\mathrm{G}$ (p.Asp219Gly) | 28938472 | GSS | [] | [] | ['Glutathione synthetase deficiency of erythrocytes, hemolytic anemia due to'] |
| NM_025132.3(WDR1 9): $\cdot \mathbf{- 4 0 7 - 2 A}>G$ | 374400438 | WDR19 | [] | [] | ['SENIOR-LOKEN SYNDROME 8'] |
| $\begin{aligned} & \text { NM_144997.5(FLCN): } \\ & \text { c. } 1433-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398124528 | FLCN | [] | ['CCCACYGGGGA GAAGGGCAGGGG' <br> 'GCCCACYGGGGA GAAGGGCAGGG', 'GGCCCACYGGGG AGAAGGGCAGG'] | ['Hereditary cancerpredisposing syndrome', 'not provided'] |
| $\begin{aligned} & \text { NM_144997.5(FLCN): } \\ & \text { c. } 250-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 398124533 | FLCN | [] | [] | ['not provided'] |
| $\begin{array}{\|l\|} \hline \text { NM_000146.3(FTL):c. } \\ -160 \mathrm{~A}>\mathrm{G} \\ \hline \end{array}$ | 398124633 | FTL | [] | I] | ['Hyperferritinemia cataract syndrome' |
| $\begin{aligned} & \hline \text { NM_003184.3(TAF2): } \\ & \text { c.1945T>C } \\ & \text { (p.Trp649Arg) } \\ & \hline \end{aligned}$ | 398124645 | TAF2 | [] | [] | ['Mental retardation, autosomal recessive 40'] |
| NM_013281.3(FLRT3 | 398124654 | - | [] | [] | ['Hypogonadotropic |


| $\begin{aligned} & \text { ):c.1016A>G } \\ & \text { (p.Lys339Arg) } \end{aligned}$ |  |  |  |  | hypogonadism 21 with or without anosmia'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_002834.3(PTPN1 1): $\mathrm{c} .767 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln256Arg) | 397507523 | PTPN11 | [] | [] | ['Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| $\begin{aligned} & \text { NM_000054.4(AVPR2 } \\ & \text { ):c. } 614 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr205Cys) } \end{aligned}$ | 104894749 | AVPR2 | ['ACAYAGG TGCGACGG CCCCAGGG <br> 'GACAYAG GTGCGACG GCCCCAGG '] | ['ACAYAGGTGCG ACGGCCCCAGGG' <br> 'GACAYAGGTGCG <br> ACGGCCCCAGG'] | ['Nephrogenic diabetes insipidus', 'Nephrogenic diabetes insipidus, X-linked'] |
| $\begin{aligned} & \text { NM_031157.2(HNRN } \\ & \text { PA1):c.956A>G } \\ & \text { (p.Asn319Ser) } \\ & \hline \end{aligned}$ | 397518454 | HNRNPA 1 | [] | [] | ['Amyotrophic lateral sclerosis 20'] |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .662 \mathrm{~A}>\mathrm{G} \\ & (\mathrm{p} . \mathrm{Glu} 221 \mathrm{Gly}) \end{aligned}$ | 62514934 | PAH | [] | [] | ['Phenylketonuria', 'not provided'] |
| $\begin{aligned} & \text { NM_000219.5(KCNE1 } \\ & \text { ):c. } 176 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu59Pro) } \end{aligned}$ | 141813529 | KCNE1 | [] | [] | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A) }: \text { c. } 1076 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn359Ser) } \end{aligned}$ | 794726713 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_013339.3(ALG6): } \\ & \text { c. } 391 \mathrm{~T}>C \\ & \text { (p.Tyr131His) } \\ & \hline \end{aligned}$ | 35383149 | ALG6 | [] | [] | ['Congenital disorder of glycosylation type $1 C^{\prime}$, 'not specified'] |
| NM_153767.3(KCNJ1 ):c. $1013 \mathrm{~T}>\mathrm{C}$ <br> (p.Met338Thr) | 59172778 | KCNJ 1 | [] | [] | ['Bartter syndrome antenatal type 2'] |
| $\begin{aligned} & \text { NM_176824.2(BBS7): } \\ & \text { c. } 968 \mathrm{~A}>\mathrm{G} \\ & \text { (p. His323Arg) } \\ & \hline \end{aligned}$ | 119466001 | BBS7 | [] | [] | ['Bardet-Biedl syndrome 7'] |
| $\begin{aligned} & \text { NM_000199.3(SGSH): } \\ & \text { c. } 892 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Ser298Pro) } \end{aligned}$ | 138504221 | SGSH | [] | [] | ['Mucopoly saccharid osis, MPS-III-A', 'not provided'] |
| $\begin{aligned} & \text { NM_000891.2(KCNJ2 } \\ & \text { ):c.220A>G } \\ & \text { (p.Thr74Ala) } \end{aligned}$ | 199473652 | KCNJ2 |  |  | ['Congenital long QT syndrome'] |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A):c. } 1048 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met350Val) } \end{aligned}$ | 794726768 | SCN1A | ['ACAYATA TCCCTCTG GACATTGG '] | ['ACAYATATCCCT CTGGACATTGG'] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_002863.4(PYGL): } \\ & \text { c.1016A>G } \\ & \text { (p.Asn339Ser) } \\ & \hline \end{aligned}$ | 113993976 | PYGL | [] | [] | ['Glycogen storage disease, type $\left.\mathrm{VI}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A):c.2537A>G } \\ & \text { (p.Glu846Gly) } \end{aligned}$ | 794726794 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_002693.2(POLG): } \\ & \text { c. } 2864 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr955Cys) } \end{aligned}$ | 113994099 | POLG | [] | [] | ['Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 1'] |
| $\begin{aligned} & \text { NM_000920.3(PC):c. } 1 \\ & 705 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 113994144 | PC | [] | [] | ['Pyruvate carboxylase |


| (p.Thr569Ala) |  |  |  |  | deficiency'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_025265.3(TSEN2 } \\ & \text { ):c. } 926 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr309Cys) } \end{aligned}$ | 113994149 | TSEN2 | [] | ['CAGAGCAYAGA CCAAGAAAAAGG' ] | ['Pontocerebellar hypoplasia type 2B'] |
| $\begin{aligned} & \text { NM_001039958.1(ME } \\ & \text { SP2):c.271A>G } \\ & \text { (p.Lys91Glu) } \end{aligned}$ | 113994156 | MESP2 | [] | [] | ['Spondylocostal dysostosis 2'] |
| $\begin{aligned} & \text { NM_024649.4(BBS1): } \\ & \text { c. } 1340-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 113994180 | - | [] | [] | ['Bardet-Biedl syndrome'\| |
| $\begin{aligned} & \text { NM_033028.4(BBS4): } \\ & \text { c. } 157-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 113994192 | BBS4 | [] | [] | ['Bardet-Biedl syndrome', 'BardetBiedl syndrome 4'] |
| $\begin{aligned} & \text { NM_212472.2(PRKA } \\ & \text { R1A):c.1A>G } \\ & \text { (p.Met1Val) } \end{aligned}$ | 281864779 | $\begin{aligned} & \text { PRKAR1 } \\ & \text { A } \end{aligned}$ | [] | [] | ['Carney complex, type 1'] |
| $\begin{aligned} & \text { NM_212472.2(PRKA } \\ & \text { R1A):c. } 178-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 281864796 | $\begin{aligned} & \hline \text { PRKAR1 } \\ & \hline \end{aligned}$ | [] | [] | ['Carney complex, type $1^{1}$ ' |
| $\begin{aligned} & \hline \text { NM_212472.2(PRKA } \\ & \text { R1A) :c. } 891+3 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 281864799 | $\begin{aligned} & \hline \text { PRKAR1 } \\ & \hline \text { A } \\ & \hline \end{aligned}$ | [] | [] | ['Carney complex, type $1^{1}$ ' |
| $\begin{aligned} & \text { NM_001165963.1(SC } \\ & \text { N1A):c.433A>G } \\ & \text { (p.Met145Val) } \\ & \hline \end{aligned}$ | 794726849 | SCN1A | [] | [] | ['Severe myoclonic epilepsy in infancy'] |
| $\begin{aligned} & \text { NM_005710.2(PQBP1 } \\ & \text { ):c. } 194 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr65Cys) } \end{aligned}$ | 121917899 | PQBP1 | [] | [] | ['Renpenning syndrome 1'] |
| $\begin{aligned} & \text { NM_000921.4(PDE3A } \\ & \text { ):c. } 1333 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr445Ala) } \end{aligned}$ | 794726865 | PDE3A | ['CGAGGYG GTGGTGGT CCAAGTGG 'I | ['CGAGGYGGTGG TGGTCCAAGTGG'] | ['Brachydactyly with hypertension'] |
| $\begin{aligned} & \hline \mathrm{NM}=024312.4(\mathrm{GNPT} \\ & \mathrm{AB}): \mathrm{c} .1285-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 281864974 | GNPTAB | [] | [] | ['Pseudo-Hurler polydystrophy'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c. } 2783 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 928 \mathrm{Arg} \text { ) } \end{aligned}$ | 281865003 | GNPTAB | [] | [] | ['I cell disease'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c. } 2867 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His } 956 \mathrm{Arg} \text { ) } \end{aligned}$ | 281865005 | GNPTAB | [] | [] | ['Pseudo-Hurler polydystrophy'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c. } 3053 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp1018Gly) } \end{aligned}$ | 281865007 | GNPTAB | [] | [] | ['I cell disease'] |
| NM_024312.4(GNPT AB): c. $3458 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1153Ser) | 281865019 | GNPTAB | [] | [] | ['Pseudo-Hurler polydystrophy'] |
| $\begin{aligned} & \text { NM_024312.4(GNPT } \\ & \text { AB):c. } 118-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 281865023 | GNPTAB | [] | [] | ['I cell disease'] |
| $\begin{array}{\|l} \hline \text { NM_198578.3(LRRK2 } \\ \text { ):c. } 5605 \mathrm{~A}>\mathrm{G} \\ \text { (p.Met1869 Val) } \\ \hline \end{array}$ | 281865052 | LRRK2 | [] | ['TCAACAYAATAT <br> TTCTAGGCAGG'] | ['Parkinson disease 8, autosomal dominant'] |
| $\begin{aligned} & \text { NM_139241.3(FGD4): } \\ & \text { c.1762-2A }>\mathrm{G} \end{aligned}$ | 281865065 | FGD4 | [] | [] | ['Charcot-MarieTooth disease, type 4H'] |
| $\begin{aligned} & \text { NM_006121.3(KRT1): } \\ & \text { c.1445A>G } \\ & (\text { p.Tyr482Cys) } \end{aligned}$ | 58420087 | KRT1 | [] | [] | ['Bullous ichthyosiform erythroderma', 'not provided'] |
| $\begin{aligned} & \text { NM_000195.4(HPS1): } \\ & \text { c. } 716 \mathrm{~T}>\mathrm{C} \\ & \text { (p.Leu239Pro) } \end{aligned}$ | 281865080 | HPS1 | [] | [] | ['Hermansky-Pudlak syndrome 1'] |
| NM_000195.4(HPS1): | 281865090 | HPS1 | [] | [] | ['Hermansky-Pudlak |


| $\begin{aligned} & \text { c.2003T }>C \\ & \text { (p.Leu668Pro) } \end{aligned}$ |  |  |  |  | syndrome 1'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_022081.5(HPS4): } \\ & \text { c. } 461 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His154Arg) } \end{aligned}$ | 281865098 | HPS4 | [] | [] | ['Hermansky-Pudlak syndrome 4'] |
| $\begin{aligned} & \text { NM_000277.1(PAH):c } \\ & .1157 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr386Cys) } \end{aligned}$ | 62516141 | PAH | [] | [] | ['Phenylketonuria', 'not provided'] |
| $\begin{aligned} & \text { NM_025114.3(CEP29 } \\ & 0): \mathrm{c} .2991+1655 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 281865192 | CEP290 | ['GAGATAY TCACAATT ACAACTGG '] | ['GATAYTCACAAT TACAACTGGGG', 'AGATAYTCACAA TTACAACTGGG', 'GAGATAYTCACA ATTACAACTGG'] | ['Leber congenital amaurosis 10', 'not provided'] |
| $\begin{aligned} & \text { NM_018319.3(TDP1): } \\ & \text { c. } 1478 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His493Arg) } \end{aligned}$ | 119467003 | TDP1 | [] | [] | ['Spinocerebellar ataxia autosomal recessive with axonal neuropathy'] |
| NM_000051.3(ATM): c. 5762 _5763insNG_00 9830.1:g.91138 91274 | 774925473 | ATM | [] | [] | ['Ataxiatelangiectasia variant'\| |
| $\begin{aligned} & \text { NM_004614.4(TK2):c. } \\ & 562 \bar{A}>G \\ & \text { (p.Thr188Ala) } \end{aligned}$ | 281865495 | TK2 | [] | $\begin{aligned} & \hline \text { ['AAGYCTCAGGA } \\ & \text { TTGGTCCGAAGG'] } \end{aligned}$ | ['Mitochondrial DNA depletion syndrome 2'] |
| $\begin{aligned} & \text { NM_003494.3(DYSF): } \\ & \text { c. } 3041 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1014Cys) } \end{aligned}$ | 756328339 | DYSF | [] | ['CTAYACTCCCAG CCTGGGGGAGG', 'ATGCTAYACTCC CAGCCTGGGGG', 'GATGCTAYACTC CCAGCCTGGGG'] | ['Limb-girdle muscular dystrophy, type 2B'] |
| $\begin{aligned} & \text { NM_000531.5(OTC):c } \\ & .1034 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Tyr } 345 \mathrm{Cys}) \end{aligned}$ | 72558492 | OTC | ['AGGTGAG <br> YAATCTGT <br> CAGCAGGG <br> '] | ['AGGTGAGYAAT CTGTCAGCAGGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_000518.4(HBB):c } \\ & .199 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Lys} 67 \mathrm{Glu}) \\ & \hline \end{aligned}$ | 34165323 | HBB | [] | [] | ['Hemoglobinopathy' 1 |
| $\begin{aligned} & \text { NM } 153427.2 \text { (PITX2) } \\ & \text { :c. } 262 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys88Glu) } \end{aligned}$ | 387906810 | PITX2 | [] | ['TCTYGAACCAAA CCTGGGGGCGG', 'GATTCTYGAACC AAACCTGGGGG', 'CGATTCTYGAAC CAAACCTGGGG'] | ['Axenfeld-Rieger syndrome type 1'] |
| $\begin{aligned} & \text { NM_030964.3(SPRY4 } \\ & \text { ):c. } 530 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys177Arg) } \end{aligned}$ | 78310959 | SPRY4 | [] | ['AGTGCYTGTCCA GCTCGGGTGGG', <br> 'AAGTGCYTGTCC AGCTCGGGTGG'] | ['Hypogonadotropic hypogonadism 17 with or without anosmia'] |
| NM_002834.3(PTPN1 <br> 1): $\mathrm{c} .922 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn308Asp) | 28933386 | PTPN11 | [] | [] | ['Noonan syndrome', 'Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| $\begin{aligned} & \text { NM_000518.4(HBB):c } \\ & .-50-29 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 34598529 | HBB | [] | [] | ['alpha Thalassemia', 'Beta thalassemia intermedia'] |
| NM_207352.3(CYP4V 2):c. $1393 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg465Gly) | 144109267 | CYP4V2 | [] | ['TTCCYGGGGCCA GCAGAGAAGGG', <br> 'GTTCCYGGGGCC <br> AGCAGAGAAGG'] | ['Bietti crystalline corneoretinal dystrophy'] |
| NM_001360.2(DHCR $\text { 7):c. } 1 \mathrm{~A}>\mathrm{G}$ | 104886033 | DHCR7 | [] | [] | ['Smith-Lemli-Opitz syndrome'] |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { (p.Met1Val) } & & & & \\
\hline \begin{array}{l}\text { NM_000495.4(COL4A } \\
\text { 5):c.1A>G } \\
\text { (p.Met1Val) }\end{array} & 104886050 & \text { COL4A5 } & {[]} & {[]} & \begin{array}{l}\text { ['Alport syndrome, } \\
\text { X-linked recessive'] }\end{array} \\
\hline \begin{array}{l}\text { NM_000495.4(COL4A } \\
\text { 5):c.2692A>G } \\
\text { (p.Met898Val) }\end{array} & 104886192 & \text { COL4A5 } & {[]} & {[]} & \begin{array}{l}\text { ['Alport syndrome, } \\
\text { X-linked recessive'] }\end{array} \\
\hline \begin{array}{l}\text { NM_000495.4(COL4A } \\
\text { 5):c.2746A>G } \\
\text { (p.Ser916Gly) }\end{array} & 104886193 & \text { COL4A5 } & {[]} & {[]} & \begin{array}{l}\text { ['Alport syndrome, } \\
\text { X-linked recessive'] }\end{array} \\
\hline \begin{array}{l}\text { NM_004572.3(PKP2): } \\
\text { c.2062T>C } \\
\text { (p.Ser688Pro) }\end{array} & 144601090 & \text { PKP2 } & {[]} & \begin{array}{l}\text { ['Arrhythmogenic } \\
\text { right ventricular } \\
\text { cardiomyopathy', }\end{array} \\
\text { 'not specified', 'not } \\
\text { provided'] }\end{array}
$$\right] \begin{array}{l}['Alport syndrome, <br>

X-linked recessive']\end{array}\right]\)| [] |
| :--- |


|  |  |  | GG'] | 'AGGTACYGTGGG 'CAGGTACYGTGG GCAGAGAAGGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_018136.4(ASPM) } \\ & \text { :c.2761-25A>G } \end{aligned}$ | 199422149 | ASPM | [] | [] | ['Primary autosomal recessive microcephaly $\left.5^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_017780.3(CHD7): } \\ & \text { c.3082A>G } \\ & \text { (p.Ile1028Val) } \\ & \hline \end{aligned}$ | 121434338 | CHD7 | [] | [] | ['CHARGE association', 'not provided'] |
| $\begin{aligned} & \text { NM_017780.3(CHD7): } \\ & \text { c.164A>G } \\ & \text { (p.His55Arg) } \end{aligned}$ | 121434345 | CHD7 | [] | [] | ['Kallmann syndrome 5'] |
| $\begin{aligned} & \text { NM_152783.4(D2HG } \\ & \text { DH):c.1315A>G } \\ & \text { (p.Asn439Asp) } \end{aligned}$ | 121434362 | D2HGDH | ['GCAGGTY ACCATCTC CTGGAGGG <br> 'TGCAGGT YACCATCT CCTGGAGG '] | $\begin{array}{\|l} \hline \text { ['GCAGGTYACCAT } \\ \text { CTCCTGGAGGG', } \\ \text { 'TGCAGGTYACCA } \\ \text { TCTCCTGGAGG'] } \end{array}$ | ['D-2hydroxyglutaric aciduria 1'] |
| $\begin{aligned} & \text { NM_005006.6(NDUF } \\ & \text { S1):c.755A>G } \\ & \text { (p.Asp252Gly) } \end{aligned}$ | 199422224 | NDUFS1 | [] | [] | \|'Mitochondrial complex I deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_002894.2(RBBP8 } \\ & \text { ):c. } 1009 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys337Glu) } \\ & \hline \end{aligned}$ | 121434388 | RBBP8 | [] | [] | ['Carcinoma of pancreas'] |
| $\begin{aligned} & \text { NM_004621.5(TRPC6 } \\ & \text { ):c. } \overline{2428 A>G} \\ & \text { (p.Asn143Ser) } \end{aligned}$ | 121434391 | TRPC6 | [] | [] | ['Focal segmental glomerulosclerosis 2'] |
| $\begin{aligned} & \text { NMM003705.4(SLC25 } \\ & \text { A12):c.1769A>G } \\ & \text { (p.Gln590Arg) } \end{aligned}$ | 121434396 | $\begin{array}{\|l\|} \hline \text { SLC25A1 } \\ 2 \end{array}$ | [] | [] | ['Hypomyelination, global cerebral'] |
| $\begin{aligned} & \text { NM_001363.4(DKCl): } \\ & \text { c.127A>G } \\ & \text { (p.Lys } 43 \mathrm{Glu} \text { ) } \end{aligned}$ | 199422243 | DKC1 | I] | II | ['Dyskeratosis congenita X-linked'] |
| $\begin{aligned} & \text { NM_001084.4(PLOD3 } \\ & \text { ):c.668A>G } \\ & \text { (p.Asn223Ser) } \end{aligned}$ | 121434414 | PLOD3 | [] | [] | ['Bone fragility with contractures, arterial rupture, and deafness'] |
| $\begin{aligned} & \text { NM_006702.4(PNPLA } \\ & \text { 6):c.3034A>G } \\ & \text { (p.Met1012Val) } \end{aligned}$ | 121434415 | PNPLA6 | [] | [] | ['Spastic paraplegia 39'] |
| $\begin{aligned} & \text { NR_001566.1(TERC): } \\ & \text { n. } 4 \overline{8} \mathrm{~A}>\mathrm{G} \end{aligned}$ | 199422262 | TERC | [] | [] | ['Dyskeratosis congenita autosomal dominant'] |
| $\begin{aligned} & \text { NM 004984.2(KIF5A) } \\ & \text { c. } 767 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn256Ser) } \end{aligned}$ | 121434441 | KIF5A | [] | I] | ['Spastic paraplegia $\left.10^{\prime}\right]$ |
| $\begin{aligned} & \text { NMM004984.2(KIF5A) } \\ & \text { c. } 827 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr276Cys) } \end{aligned}$ | 121434443 | KIF5A | [] | $\begin{array}{\|l} \hline \text { ['GAACAYAGCTTT } \\ \text { TCTGGGGGAGG'] } \end{array}$ | ['Spastic paraplegia 10'] |
| m. $10438 \mathrm{~A}>\mathrm{G}$ | 121434456 | MT-TR | [] | [] | ['Mitochondrial encephalomyopathy ] |
| $\begin{aligned} & \text { NM_198253.2(TERT): } \\ & \text { c.2537A>G } \\ & \text { (p.Tyr846Cys) } \end{aligned}$ | 199422302 | TERT | [] | [] | ['Aplastic anemia'] |


| m. 12320A>G | 121434463 | MT-TL2 | $\begin{aligned} & \text { ['TGGAGTY } \\ & \text { GCACCAAA } \\ & \text { ATTTTTGG' } \\ & \text { ] } \end{aligned}$ | ['GAGTYGCACCA AAATTTTTGGGG', 'GGAGTYGCACCA AAATTTTTGGG', 'TGGAGTYGCACC AAAATTTTTGG'] | ['Mitochondrial myopathy'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. $4317 \mathrm{~A}>\mathrm{G}$ | 121434465 | MT-TI | [] | [] | [] |
| m. $4269 \mathrm{~A}>\mathrm{G}$ | 121434466 | MT-TI | ['ACAYATT TCTTAGGT TTGAGGGG 'GACAYAT TTCTTAGG TTTGAGGG' ] | ['ACAYATTTCTTA GGTTTGAGGGG', 'GACAYATTTCTT AGGTTTGAGGG', 'AGACAYATTTCT TAGGTTTGAGG'] | [ |
| m. $4295 \mathrm{~A}>\mathrm{G}$ | 121434467 | MT-TI | [] | [] | ['Primary familial hypertrophic cardiomyopathy', 'Deafness, nonsyndromic sensorineural, mitochondrial'] |
| m. $4300 \mathrm{~A}>\mathrm{G}$ | 121434470 | MT-TI | [] | [] | ['Primary familial hypertrophic cardiomyopathy'] |
| $\begin{aligned} & \text { NM_001099274.1(TIN } \\ & \text { F2):c.850A }>\mathrm{G} \\ & \text { (p.Thr284Ala) } \end{aligned}$ | 199422314 | TINF2 | [] | $\begin{aligned} & \hline \text { ['TGACTGYGGGG } \\ & \text { CGCTCCTTATGG'] } \end{aligned}$ | ['Dyskeratosis congenita autosomal dominant'] |
| $\begin{aligned} & \text { NM_004044.6(ATIC): } \\ & \text { c. } 1277 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 426 \mathrm{Arg} \text { ) } \end{aligned}$ | 121434478 | ATIC | [] | ['AGTGTACYTGAC AGCAATGGTGG'] | ['AICAR transformylase/IMP cyclohydrolase deficiency'] |
| $\begin{aligned} & \text { NM_001099274.1(TIN } \\ & \text { F2):c. } 871 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Arg291Gly) } \end{aligned}$ | 199422319 | TINF2 | [] | [] | ['Dyskeratosis congenita autosomal dominant'] |
| $\begin{aligned} & \text { NM_015474.3(SAMH } \\ & \text { Dl):c. } 760 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 254 \mathrm{Val} \text { ) } \end{aligned}$ | 121434521 | SAMHD1 | [] | [] | ['Aicardi Goutieres syndrome 5'] |
| $\begin{aligned} & \text { NM_001103.3(ACTN2 } \\ & \text { ):c. } 26 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln9Arg) } \end{aligned}$ | 121434525 | ACTN2 | [] | [] | ['Dilated cardiomyopathy 1AA', <br> 'Cardiomyopathy', <br> Dilated cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c.812A>G } \\ & \text { (p.Glu271Gly) } \end{aligned}$ | 111033765 | GALT | [] | ['CGCYCAGCAGG GGTCAGCTCAGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase', 'not provided'] |
| $\begin{aligned} & \text { NM_000316.2(PTHIR } \\ & \text { ):c.668A>G } \\ & \text { (p.His223Arg) } \end{aligned}$ | 121434597 | PTHIR | [] | [] | ['Metaphyseal chondrodysplasia, Jansen type'] |
| $\begin{aligned} & \text { NM_006006.4(ZBTB1 } \\ & \text { 6):c. } 1849 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met617Val) } \end{aligned}$ | 121434606 | ZBTB16 | [] | ['GATCAYGGCCG AGTAGTCCCGGG', 'TGATCAYGGCCG AGTAGTCCCGG'] | ['Skeletal defects, genital hypoplasia, and mental retardation'] |
| $\begin{aligned} & \text { NM_014305.3(TGDS): } \\ & \text { c. } 700 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 544436734 | TGDS | [] | [] | ['Catel Manzke syndrome'] |


| (p.Tyr234His) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_002835.3(PTPN1 } \\ & \text { 2):c.182A>G } \\ & \text { (p.Lys61Arg) } \\ & \hline \end{aligned}$ | 121434623 | PTPN12 | [] | [] | ['Carcinoma of colon'] |
| NM 000035.3(ALDO <br> B):c. $1027 \mathrm{~T}>\mathrm{C}$ <br> (p. Tyr343His) | 369586696 | ALDOB | I] | [] | ['Hereditary fructosuria'] |
| $\begin{aligned} & \text { NM_006180.4(NTRK2 } \\ & \text { y:c.2165A>G } \\ & \text { (p.Tyr722Cys) } \end{aligned}$ | 121434633 | NTRK2 | [] | [] | ['Obesity, hyperphagia, and developmental delay'\| |
| NM_000107.2(DDB2): c. $730 \mathrm{~A}>\mathrm{G}$ (p.Lys244Glu) | 121434639 | DDB2 | [] | [] | ['Xeroderma pigmentosum, group E'] |
| NM_000017.3(ACAD <br> S):c. $1108 \mathrm{~A}>\mathrm{G}$ <br> (p.Met370Val) | 566325901 | ACADS | [] | ['AGCCCAYGCCG CCCAGGATCTGG'] | ['not provided'] |
| $\begin{aligned} & \text { NM_001151.3(SLC25 } \\ & \text { A4):c.311A>G } \\ & \text { (p.Asp104Gly) } \end{aligned}$ | 28999114 | SLC25A4 | [] | [] | ['Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 2'] |
| $\begin{aligned} & \text { NM_012079.5(DGAT } \\ & \text { 1):c. } 751+2 \mathrm{~T}>\mathrm{C} \\ & \hline \end{aligned}$ | 148665132 | DGAT1 | [] | $\underset{\text { GACCTCTGTGGG' }}{ }$ | ['Diarrhea 7'] |
| $\begin{aligned} & \text { NM_002036.3(ACKR } \\ & \text { 1):c.-67T>C } \end{aligned}$ | 2814778 | ACKR1 | [] | [] | ['White blood cell count quantitative trait locus 1'] |
| NM 000492.3(CFTR): <br> c. $1666 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile556Val) | 75789129 | CFTR | [] | [] | ['Cystic fibrosis', 'not specified'] |
| $\begin{aligned} & \text { NM_000155.3(GALT) } \\ & \text { :c. } 574 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ser192Gly) } \end{aligned}$ | 111033830 | GALT | [] | ['TGCYGGCCCATA <br> CCTGTCAAGGG', <br> 'CTGCYGGCCCAT <br> ACCTGTCAAGG'] | ['Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase'] |
| $\begin{aligned} & \hline \text { NM_174916.2(UBR1): } \\ & \text { c.407A>G } \\ & \text { (p.His136Arg) } \\ & \hline \end{aligned}$ | 119477054 | UBR1 | [] | [] | ['Johanson-Blizzard syndrome'] |
| m. $3274 \mathrm{~A}>\mathrm{G}$ | 199474666 | MT-TL1 | [] | [] | [] |
| NM_000060.3(BTD):c $.128 \mathrm{~A}>\mathrm{G}$ (p.His43Arg) | 146011150 | BTD | [] | [] | ['Biotinidase deficiency'] |
| NM_172107.2(KCNQ <br> 2):c. $635 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp212Gly) | 118192202 | KCNQ2 | [] | [] | ['Benign familial neonatal seizures 1'] |
| NM 006493.2(CLN5): <br> c. $1121 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr374Cys) | 148862100 | CLN5 | [] | [] | ['Ceroid lipofuscinosis neuronal $\left.5^{\prime}\right]$ |
| NM_000060.3(BTD):c $.880 \mathrm{~A}>\mathrm{G}$ (p.Ile294Val) | 35976361 | BTD | [] | II | ['Biotinidase deficiency'\| |
| $\begin{aligned} & \hline \text { NM_000132.3(F8):c. } 1 \\ & 226 \overline{\mathrm{~A}}>\mathrm{G} \\ & \text { (p.Glu } 409 \mathrm{Gly} \text { ) } \\ & \hline \end{aligned}$ | 28933671 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| NM_000132.3(F8):c. 5 $600 \mathrm{~A}>\mathrm{G}$ <br> (p.His1867Arg) | 28933679 | F8 | [] | ['GAGYGCACATCT <br> TTTTCCTAGGG', <br> 'TGAGYGCACATC <br> TTTTTCCTAGG'] | ['Hereditary factor VIII deficiency disease'] |
| NM_000266.3(NDP):c $.1 \mathrm{~A}>\mathrm{G}$ (p.MetlVal) | 28933685 | NDP | [] | [] | ['Atrophia bulborum hereditaria'] |


| $\begin{aligned} & \text { NM_000133.3(F9):c. } 2 \\ & 78 \mathrm{~A}>\mathrm{G} \text { (p.Asp93Gly) } \end{aligned}$ | 137852230 | F9 | [] | [] | ['Hereditary factor IX deficiency disease'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000133.3(F9):c. 3 <br> $29 \mathrm{~A}>\mathrm{G}$ (p.Aspl10Gly) | 137852234 | F9 | [] | [] | ['Hereditary factor IX deficiency disease'] |
| $\begin{aligned} & \text { NM_000133.3(F9):c.9 } \\ & 17 \mathrm{~A}>\mathrm{G}(\text { p.Asn306Ser) } \end{aligned}$ | 137852251 | F9 | [] | ['GCTGCAYTGTAG TTGTGGTGAGG'] | ['Hereditary factor IX deficiency disease'] |
| NM_000133.3(F9):c. 1 $180 \mathrm{~A}>\mathrm{G}$ <br> (p.Met394Val) | 137852262 | F9 | [] | [] | ['Hereditary factor IX deficiency disease'] |
| $\begin{aligned} & \text { NM_000133.3(F9):c. } 1 \\ & \text { 231A }>G \\ & \text { (p.Ser411Gly) } \\ & \hline \end{aligned}$ | 137852277 | F9 | [] | II | ['Hereditary factor IX deficiency disease'] |
| NM_000292.2(PHKA2 <br> ): c. $896 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp299Gly) | 137852289 | PHKA2 | [] | [] | ['Glycogen storage disease type IXa1'] |
| NM_000292.2(PHKA2 <br> ):c. $565 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys189Glu) | 137852295 | PHKA2 | [] | [] | ['Glycogen storage disease IXa2'] |
| NM 000032.4(ALAS2 <br> ):c. $1702 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser568Gly) | 137852306 | ALAS2 | [] | [] | ['Hereditary sideroblastic anemia'] |
| NM_001287223.1(SC <br> N11A): $c .3473 \mathrm{~T}>\mathrm{C}$ <br> (p.Leul158Pro) | 141686175 | SCN11A | [] | ['CGTGCGCYGTCC CAGTTTGAAGG'] | ['Episodic pain syndrome, familial, 3'I |
| NM_000402.4(G6PD): <br> c. $583 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn195Asp) | 137852331 | G6PD | [] | ['ATGCGGTYCCAG CCTCTGCTGGG'] | ['Favism, susceptibility to', 'Anemia, nonspherocytic hemolytic, due to G6PD deficiency'\| |
| NM_000132.3(F8):c. 8 72A - G (p.Glu291Gly) | 137852359 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_018718.2(CEP41) } \\ & \text { :c.107T>C } \\ & \text { (p.Met36Thr) } \\ & \hline \end{aligned}$ | 368178632 | CEP41 | [] | [] | ['Joubert syndrome 9/15, digenic'] |
| NM_000132.3(F8):c. 5 183A>G <br> (p.Tyr1728Cys) | 137852362 | F8 | I] | II | ['Hereditary factor VIII deficiency disease'] |
| NM 000132.3(F8):c. 5 $821 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn1941Asp) | 137852369 | F8 | [] | $\begin{aligned} & \hline \text { ['TAGCCATYGATT } \\ & \text { GCTGGAGAAGG'] } \end{aligned}$ | ['Hereditary factor VIII deficiency disease'] |
| NM_000132.3(F8):c. 3 $28 \mathrm{~A}>\mathrm{G}$ (p.Met110Val) | 137852385 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 3 \\ & 98 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Tyr} 133 \mathrm{Cys}) \end{aligned}$ | 137852389 | F8 | [] | ['TCAYATTCAGCT CCTATAGCAGG'] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 4 \\ & 04 \mathrm{~A}>\mathrm{G}(\text { p.Asp135Gly }) \end{aligned}$ | 137852390 | F8 | [] | II | ['Hereditary factor VIII deficiency disease'] |
| NM_000132.3(F8):c. 9 <br> 40A $>\mathrm{G}$ (p.Thr314Ala) | 137852406 | F8 | [] | ['TGAGCAGYAAG GAAAGTTATTGG'] | ['Hereditary factor VIII deficiency disease'] |
| NM_000041.3(APOE): $\text { c. } 17 \overline{8} \mathrm{~A}>\mathrm{G}$ | 28931576 | APOE | [] | ['ACAGTGYCTGCA CCCAGCGCAGG'] | [ |


| (p.Thr60Ala) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_000132.3(F8):c. } 1 \\ & 682 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp561Gly) } \\ & \hline \end{aligned}$ | 137852420 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \hline \text { NM_000132.3(F8):c. } 1 \\ & \text { 892A }>G \\ & \text { (p.Asn631Ser) } \end{aligned}$ | 137852429 | F8 | ['ATGYTGG AGGCTTGG AACTCTGG 1 | ['ATGYTGGAGGCT TGGAACTCTGG'] | ['Hereditary factor VIII deficiency disease'] |
| NM 012082.3(ZFPM2 <br> ):c. $1969 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser657Gly) | 28374544 | - | I] | [] | ['Tetralogy of Fallot'] |
| NM_000098.2(CPT2): c. $638 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp213Gly) | 74315300 | CPT2 | [] | [] | ['CARNITINE PALMITOYLTRA NSFERASE II DEFICIENCY, LATE-ONSET'] |
| $\begin{aligned} & \hline \text { NM_000396.3(CTSK): } \\ & \text { c. } 990 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ter330Trp) } \\ & \hline \end{aligned}$ | 74315301 | CTSK | [] | ['GAGYCACATCTT GGGGAAGCTGG'] | ['Pyknodysostosis'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 6 \\ & 113 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn2038Ser) } \\ & \hline \end{aligned}$ | 137852454 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 6 \\ & 278 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp2093Gly) } \\ & \hline \end{aligned}$ | 137852457 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_024009.2(GJB3): } \\ & \text { c.421A>G } \\ & \text { (p.Ile141Val) } \end{aligned}$ | 74315320 | GJB3 | ['CAAYGAT GAGCTTGA AGATGAGG ' | ['CAAYGATGAGC TTGAAGATGAGG' ] | ['Deafness, autosomal recessive'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 1 \\ & 04 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Tyr} 35 \mathrm{Cys}) \end{aligned}$ | 137852476 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| NM_000194.2(HPRTI <br> ):c. $602 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp201Gly) | 137852479 | HPRTI | [] | [] | ['Partial <br> hypoxanthine- <br> guanine <br> phosphoribosyltransf <br> erase deficiency'] |
| NM 000261.1(MYOC <br> ):c. $1267 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys423Glu) | 74315336 | MYOC | [] | [] | ['Primary open angle glaucoma juvenile onset $1^{\prime}$ ] |
| NM_014625.3(NPHS2 <br> ):c. $479 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp160Gly) | 74315346 | NPHS2 | [] | [] | ['Nephrotic syndrome, idiopathic, steroidresistant'] |
| $\begin{aligned} & \text { NM_000194.2(HPRT1 } \\ & \text { j:c.155A>G } \\ & \text { (p.Asp52Gly) } \end{aligned}$ | 137852502 | HPRT1 | [] | [] | ['Partial hypoxanthineguanine phosphoribosyltransf erase deficiency'] |
| $\begin{aligned} & \hline \text { NM_002764.3(PRPS1) } \\ & \text { :c.341A>G } \\ & \text { (p.Asn114Ser) } \end{aligned}$ | 137852540 | PRPS1 | [] | ['TAGCATAYTTGC AACAAGCTTGG'] | ['Phosphoribosylpyr <br> ophosphate <br> synthetase <br> superactivity'] |
| $\begin{aligned} & \hline \text { NM } 000055.2 \text { (BCHE) } \\ & \text { c. } 293 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp98GIy) } \\ & \hline \end{aligned}$ | 1799807 | BCHE | [] | [] | ['Postanesthetic apnea'] |
| NM_170784.2(MKKS) <br> :c. $169 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr57Ala) | 74315399 | MKKS | [] | [] | ['Bardet-Biedl syndrome 6'] |


| $\begin{aligned} & \text { NM_000311.3(PRNP): } \\ & \text { c.650A>G } \\ & \text { (p.Gln217Arg) } \end{aligned}$ | 74315406 | PRNP | I] | [] | I'Gerstmann-Straussler-Scheinker syndrome', 'Genetic prion diseases'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000311.3(PRNP): c.560A>G (p.His187Arg) | 74315413 | PRNP | [] | [] | ['Gerstmann-Straussler-Scheinker syndrome', 'Genetic prion diseases', 'Spongiform encephalopathy with neuropsychiatric features'] |
| $\begin{aligned} & \hline \text { NM_000044.3(AR):c. } 2 \\ & 291 \overline{\mathrm{~A}}>\mathrm{G} \\ & \text { (p.Tyr764Cys) } \\ & \hline \end{aligned}$ | 137852567 | AR | [] | [] | ['Reifenstein syndrome'] |
| $\begin{aligned} & \text { NM_000044.3(AR):c. } 2 \\ & 362 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 788 \mathrm{Val} \text { ) } \end{aligned}$ | 137852570 | AR | I] | [] | I |
| $\begin{aligned} & \hline \text { NM_000044.3(AR):c. } 2 \\ & 632 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr878Ala) } \\ & \hline \end{aligned}$ | 137852578 | AR | [] | [] | ['Malignant tumor of prostate'] |
| NM 020436.3(SALL4 <br> ):c. $2663 \mathrm{~A}>\mathrm{G}$ <br> (p.His888Arg) | 74315429 | SALL4 | I] | I] | ['Duane-radial ray syndrome'] |
| NM 000044.3(AR):c. 2 <br> $708 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln903Arg) | 137852582 | AR | [] | [] | ['Malignant tumor of prostate'] |
| NM 000211.4(ITGB2) <br> :c. $1052 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn351Ser) | 137852613 | ITGB2 | [] | [] | ['Leukocyte adhesion deficiency'] |
| $\begin{aligned} & \text { NM_000215.3(JAK3): } \\ & \text { c.299A>G } \\ & \text { (p.Tyr100Cys) } \end{aligned}$ | 137852624 | JAK3 | [] | ['AATCCTGYACAG CAGGACTTGGG'] | ['Severe combined immunodeficiency, autosomal recessive, T cell-negative, B cell-positive, NK cell-negative'] |
| NM 001166107.1(HM GCS2):c.500A>G (p.Tyr167Cys) | 137852640 | HMGCS2 | [] | ['ACCACCGYAGC AGGCATTGGTGG'] | ['mitochondrial 3 hydroxy-3-methylglutaryl-CoA synthase deficiency' |
| NM_002047.2(GARS) <br> :c. $374 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu125Gly) | 137852645 | GARS | [] | [] | ['Charcot-Marie- <br> Tooth disease type <br> 2D', 'Distal <br> hereditary motor <br> neuronopathy type <br> 5'\| |
| NM 033163.3(FGF8): <br> c. $298 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys100Glu) | 137852662 | FGF8 | [] | [] | ['Kallmann syndrome 6'] |
| NM 002180.2(IGHM BP2):c. $638 \mathrm{~A}>\mathrm{G}$ (p.His213Arg) | 137852666 | $\begin{aligned} & \text { IGHMBP } \\ & 2 \end{aligned}$ | [] | [] | ['Werdnig-Hoffmann disease'] |
| $\begin{aligned} & \text { NM_004387.3(NKX2- } \\ & \text { 5):c.896A>G } \\ & \text { (p.Asp299Gly) } \end{aligned}$ | 137852683 | NKX2-5 | [] | I] | ['Atrial septal defect <br> 7 with or without atrioventricular $\qquad$ |
| NM 004387.3(NKX2- <br> 5): $\mathrm{c} .547 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys183Glu) | 137852686 | NKX2-5 | [] | [] | [] |


| $\begin{aligned} & \text { NM_000310.3(PPT1): } \\ & \text { c.236A>G } \\ & \text { (p.Asp79Gly) } \\ & \hline \end{aligned}$ | 137852697 | PPT1 | [] | [] | ['Ceroid lipofuscinosis neuronal 1'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_000336.2(SCNN1 <br> B):c. $863 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn288Ser) | 137852712 | SCNN1B | [] | [] | ['Bronchiectasis'] |
| $\begin{aligned} & \text { NM_000579.3(CCR5): } \\ & \text { c. }-301+246 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 1799987 | - | [] | [] | ['Human immunodeficiency virus type 1 , susceptibility to'] |
| NM_001204.6(BMPR <br> 2):c. $1454 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp485Gly) | 137852745 | BMPR2 | [] | [] | ['Primary pulmonary hypertension'] |
| NM 005591.3(MRE11 <br> A): c. $350 \mathrm{~A}>\mathrm{G}$ <br> (p.Asnl17Ser) | 137852760 | MRE11A | [] | [] | ['Hereditary cancerpredisposing syndrome', 'Ataxia-telangiectasia-like disorder'] |
| $\begin{aligned} & \text { NM_003476.4(CSRP3 } \\ & \text { ):c.206A>G } \\ & \text { (p.Lys69Arg) } \end{aligned}$ | 137852764 | CSRP3 | [] | [] | ['Dilated cardiomyopathy $1 \mathrm{M}^{\prime}$, 'Cardiomyopathy', <br> 'Familial hypertrophic cardiomyopathy $12^{\prime}$ ' |
| $\begin{aligned} & \text { NM_000519.3(HBD):c } \\ & .-81 \bar{A}>G \end{aligned}$ | 35518301 | HBD | [] | [] | [] |
| $\begin{aligned} & \text { NM_005633.3(SOS1): } \\ & \text { c.1654A>G } \\ & \text { (p.Arg552Gly) } \end{aligned}$ | 137852814 | SOS1 | [] | ['GCATCCYTTCCA GTGTACTCCGG'] | ['Noonan syndrome', 'Noonan syndrome 4', 'Rasopathy', 'not provided'] |
| $\begin{aligned} & \text { NM_003688.3(CASK) } \\ & : \text { :c. } 2129 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp710Gly) } \\ & \hline \end{aligned}$ | 137852818 | CASK | [] | [] | ['FG syndrome 4'] |
| $\begin{aligned} & \text { NM_031443.3(CCM2) } \\ & \text { :c. } 1 \mathrm{~A}>\mathrm{G}(\text { p.Met1Val }) \\ & \hline \end{aligned}$ | 137852842 | CCM2 | [] | [] | ['Cerebral cavernous malformations $2^{\prime}$ \| |
| $\begin{aligned} & \text { NM_182760.3(SUMF1 } \\ & \text { ):c.1A>G (p.Met1Val) } \end{aligned}$ | 137852855 | SUMF1 | [] | [] | ['Multiple sulfatase deficiency'] |
| $\begin{aligned} & \text { NM_001171993.1(HP } \\ & \text { D):c.362A>G } \\ & \text { (p.Tyr121Cys) } \end{aligned}$ | 137852865 | HPD | [] | ['CCTCAYATCCAG GCAAGAATTGG'] | ['4- <br> Hydroxyphenylpyru <br> vate dioxygenase deficiency'] |
| $\begin{aligned} & \text { NM_024996.5(GFM1) } \\ & : c .521 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn174Ser) } \end{aligned}$ | 119470018 | GFM1 | ['TTGYTAA <br> TAAAAGTT <br> AGAAACG <br> $\left.\mathrm{G}^{\prime}\right]$ | ['TTGYTAATAAAA GTTAGAAACGG'] | ['Combined oxidative phosphorylation deficiency 1'] |
| NM 000158.3(GBE1): <br> c. $1634 \mathrm{~A}>\mathrm{G}$ <br> (p.His545Arg) | 137852889 | GBE1 | [] | [] | ['Glycogen storage disease, type IV', <br> 'GLYCOGEN <br> STORAGE <br> DISEASE IV, <br> FATAL <br> PERINATAL <br> NEUROMUSCULA <br> R'] |
| $\begin{aligned} & \text { NM_000158.3(GBE1): } \\ & \text { c.1883A>G } \\ & \text { (p.His628Arg) } \end{aligned}$ | 137852891 | GBE1 | [] | [] | ['Glycogen storage disease, type IV', <br> 'GLYCOGEN <br> STORAGE DISEASE IV, |


|  |  |  |  |  | $\begin{aligned} & \text { CHILDHOOD } \\ & \text { NEUROMUSCULA } \\ & \text { R'] } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| m. $8344 \mathrm{~A}>\mathrm{G}$ | 118192098 | MT-TK | [] | [] | ['Parkinson disease, mitochondrial', 'Leigh disease', 'Myoclonus with epilepsy with ragged red fibers'\| |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c.10100A>G } \\ & \text { (p.Lys } 3367 \mathrm{Arg} \text { ) } \end{aligned}$ | 118192126 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c.14572A>G } \\ & \text { (p.Asn4858Asp) } \end{aligned}$ | 118192144 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_012464.4(TLL1): } \\ & \text { c.1885A>G } \\ & \text { (p.Ile629Val) } \end{aligned}$ | 137852953 | TLL1 | ['GGTTAYG GTGCCGTT AAGTTTGG' 1 | ['GGTTAYGGTGCC GTTAAGTTTGG'] | ['Atrial septal defect 6'] |
| $\begin{array}{\|l\|} \hline \text { NM_025243.3(SLC19 } \\ \text { A3):c.130A>G } \\ \text { (p.Lys44Glu) } \\ \hline \end{array}$ | 137852957 | SLC19A3 | [] | II | ['Basal ganglia disease, biotinresponsive'। |
| $\begin{aligned} & \text { NM_138691.2(TMC1) } \\ & \text { c. } 1763+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 370898981 | TMC1 | [] | ['TGGCCYACCAG ATCATGCCTTGG'] | ['Deafness, autosomal recessive $7^{\prime \prime}$ |
| $\begin{aligned} & \text { NM_000540.2(RYRI): } \\ & \text { c.13909A>G } \\ & \text { (p.Thr4637Ala) } \end{aligned}$ | 118192166 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c.14387A>G } \\ & \text { (p.Tyr4796Cys) } \end{aligned}$ | 118192167 | RYR1 | I] | ['CCATAYACCAGC CCAGGTACAGG'] | ['Malignant hyperthermia susceptibility type 1', 'Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_032667.6(BSCL2 } \\ & \text { ):c.263A>G } \\ & \text { (p.Asn88Ser) } \end{aligned}$ | 137852972 | - | [] | ['CGAGACAYTGG CAACAGGGAAGG ] | ['Distal hereditary motor neuronopathy type 5', 'Silver spastic paraplegia syndrome', 'Charcot-Marie-Tooth disease, type 2'\| |
| $\begin{array}{\|l} \hline \text { NM_014795.3(ZEB2): } \\ \text { c.3356A>G } \\ \text { (p.Gln1119Arg) } \\ \hline \end{array}$ | 137852983 | ZEB2 | [] | [] | ['Mowat-Wilson syndrome'\| |
| $\begin{aligned} & \text { NM_000540.2(RYR1): } \\ & \text { c.14740A>G } \\ & \text { (p.Arg4914Gly) } \end{aligned}$ | 118192184 | RYR1 | [] | [] | ['Central core disease', 'not provided'] |
| $\begin{aligned} & \text { NM_172107.2(KCNQ } \\ & \text { 2):c. } 356 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu1 19Gly) } \end{aligned}$ | 118192193 | KCNQ2 | [] | ['CTTCYCATACTC 'GCTCTTCYCATA CTCCTTGATGG' | ['Benign familial neonatal seizures 1'] |
| $\begin{aligned} & \text { NM_172107.2(KCNQ } \\ & \text { 2):c. } 622 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met208Val) } \end{aligned}$ | 118192201 | KCNQ2 | [] | \|'GGATCAYCCGC AGAATCTGCAGG' I | ['Benign familial neonatal seizures 1'] |
| $\begin{aligned} & \text { NM_172107.2(KCNQ } \\ & \text { 2):c.773A>G } \\ & \text { (p.Asn258Ser) } \end{aligned}$ | 118192207 | KCNQ2 | [] | [] | ['Benign familial neonatal seizures 1'] |
| $\begin{aligned} & \text { NM_004006.2(DMD): } \\ & \hline \text { c. } 8734 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 1800278 | DMD | [] | [] | ['Duchenne muscular dystrophy', |


| (p.Asn2912Asp) |  |  |  |  | 'not specified'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { NM_004006.2(DMD): } \\ & \text { c.8762A>G } \\ & \text { (p.His2921Arg) } \\ & \hline \end{aligned}$ | 1800279 | DMD | I] | [] | ['Becker muscular dystrophy', 'not specified'] |
| NM_001080463.1(DY NC2H1):c.11284A>G (p.Met3762Val) | 137853026 | $\begin{aligned} & \hline \text { DYNC2H } \\ & 1 \end{aligned}$ | I] | [] | ['Short-rib thoracic dysplasia 3 with or without polydactyly'] |
| NM 001080463.1(DY NC2H1):c. $9044 \mathrm{~A}>\mathrm{G}$ (p.Asp3015Gly) | 137853027 | $\begin{array}{\|l} \hline \text { DYNC2H } \\ 1 \end{array}$ | II | l'ATAYCTCTAATT 'AGAATAYCTCTA ATTACATCAGG'\| | ['Short-rib thoracic dysplasia 3 with or without polydactyly'\| |
| NM_001080463.1(DY NC2H1):c. $4610 \mathrm{~A}>\mathrm{G}$ (p.Gln1537Arg) | 137853033 | $\begin{array}{\|l} \hline \text { DYNC2H } \\ 1 \end{array}$ | ['ACCYGTG AAGGGAA CAGAGATG $\left.\mathrm{G}^{\prime}\right]$ | ['ACCYGTGAAGG GAACAGAGATGG' ] | ['Short-rib thoracic dysplasia 3 with or without polydactyly'] |
| NM 001080463.1(DY NC2H1):c.5959A>G (p.Thr1987Ala) | 137853035 | $\begin{array}{\|l} \hline \text { DYNC2H } \\ 1 \end{array}$ | [] | [] | ['Short-rib thoracic dysplasia 3 with or without polydactyly'] |
| NM 001430.4(EPAS1 <br> ):c. $1603 \mathrm{~A}>\mathrm{G}$ <br> (p.Met535Val) | 137853037 | EPAS1 | [] | [] | ['Erythrocytosis, familial, 4'] |
| $\begin{aligned} & \text { NM_172107.2(KCNQ } \\ & \text { 2):c. } 1764-2 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 118192238 | KCNQ2 | [] | I] | ['Benign familial neonatal seizures $1^{\prime}$ '] |
| NM_004519.3(KCNQ <br> 3):c. $914 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp305Gly) | 118192248 | KCNQ3 | [] | [] | $\begin{array}{\|l} \hline \text { ['Benign familial } \\ \text { neonatal seizures 2'] } \end{array}$ |
| NM 004519.3(KCNQ <br> 3):c. $1403 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn468Ser) | 118192252 | KCNQ3 | ['TCTTTAY TGTTTAAG CCAACAGG '] | ['TCTTTAYTGTTT | ['Benign familial neonatal seizures 2', 'not specified', 'not provided'] |
| NM 004519.3(KCNQ <br> 3): $\mathrm{c} .2462 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn821Ser) | 118192254 | KCNQ3 | [] | [] | ['Benign familial neonatal seizures $2^{\prime}$, 'not specified', 'not provided'] |
| NM 138701.3(MPLKI <br> P):c. $430 \mathrm{~A}>\mathrm{G}$ <br> (p.Met144Val) | 137853117 | MPLKIP | [] | [] | ['Trichothiodystroph y , nonphotosensitive 1'] |
| NM 005094.3(SLC27 <br> A4):c. $899 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln300Arg) | 137853134 | SLC27A4 | [] | [] | ['Ichthyosis prematurity syndrome'] |
| $\begin{aligned} & \hline \text { NM_194456.1(KRIT1) } \\ & \text { :c.410A>G } \\ & \text { (p.Asp137Gly) } \\ & \hline \end{aligned}$ | 137853139 | KRIT1 | [] | [] | ['Cerebral cavernous malformations 1'] |
| $\begin{aligned} & \text { NM_000351.4(STS):c. } \\ & \text { 1331A>G } \\ & \text { (p.His444Arg) } \\ & \hline \end{aligned}$ | 137853169 | STS | [] | [] | ['X-linked ichthyosis with steryl-sulfatase deficiency'] |
| NM 152416.3(NDUF AF6):c.296A>G (p.GIn99Arg) | 137853184 | $\begin{array}{\|l\|} \hline \text { NDUFAF } \\ 6 \end{array}$ | [] | [] | ['Leigh syndrome <br> due to mitochondrial <br> complex I <br> deficiency'] |
| $\begin{aligned} & \text { NM_144573.3(NEXN) } \\ & \text { :c.1955A>G } \\ & \text { (p.Tyr652Cys) } \end{aligned}$ | 137853197 | NEXN | [] | ['ATAYACTCTCCT CCATCTTCTGG'] | ['Dilated cardiomyopathy 1CC', <br> 'Cardiomyopathy', 'not specified'] |
| $\begin{aligned} & \text { NM_000476.2(AK 1):c } \\ & .491 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 137853203 | AK1 | [] | ['TTCTCAYAGAAG GCGATGACGGG', | ['Adenylate kinase deficiency, |


| (p.Tyr164Cys) |  |  |  | 'TTTCTCAYAGAA GGCGATGACGG'] | hemolytic anemia due to'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_013411.4(AK2):c } \\ & .1 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{Met} 1 \mathrm{Val}) \\ & \hline \end{aligned}$ | 137853206 | AK2 | [] | [] | ['Reticular dysgenesis'] |
| $\begin{aligned} & \text { NM_000308.2(CTSA): } \\ & \text { c. } 746+3 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786200859 | CTSA | [] | ['TCCCAYACCTGT TCCCCAGAAGG'] | ['Galactosialidosis, adult'] |
| $\begin{aligned} & \text { NM_002890.2(RASA1 } \\ & \text { ):c. } 1198 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys400Glu) } \end{aligned}$ | 137853215 | RASA1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_002890.2(RASA1 } \\ & \text { ):c. } 1201 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Ile } 401 \mathrm{Val} \text { ) } \end{aligned}$ | 137853216 | RASA1 | [] | [] | [] |
| $\begin{aligned} & \text { NM_000515.4(GH1):c } \\ & .413 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp138Gly) } \end{aligned}$ | 137853221 | GH1 | [] | [] | ['Kowarski syndrome'] |
| $\begin{aligned} & \text { NM_017636.3(TRPM4 } \\ & \text { ):c. } 2741 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys } 914 \mathrm{Arg} \text { ) } \\ & \hline \end{aligned}$ | 172151858 | TRPM4 | [] | [] | ['Progressive familial heart block type 1B'] |
| $\begin{aligned} & \text { NM_000545.6(HNF1A } \\ & \text { ):c. } 365 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr122Cys) } \end{aligned}$ | 137853237 | HNF1A | [] | [] | ['Maturity-onset diabetes of the young, type 3'] |
| $\begin{aligned} & \mathrm{NM}=003494.3(\mathrm{DYSF}): \\ & \text { c. } 1285-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786200897 | DYSF | [] | ['CAGCYAGAAGA CACAGGGAGGGG' <br> 'ACAGCYAGAAGA CACAGGGAGGG', 'CACAGCYAGAAG ACACAGGGAGG'] | ['Limb-girdle muscular dystrophy, type 2B'] |
| $\begin{aligned} & \text { NM_005055.4(RAPSN } \\ & \text { ):c. }-210 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786200905 | RAPSN | [] | [] | ['MYASTHENIC SYNDROME, CONGENITAL, 11, ASSOCIATED WITH ACETYLCHOLINE RECEPTOR DEFICIENCY'] |
| $\begin{aligned} & \text { NM_000276.3(OCRL) } \\ & \text { :c.1436A>G } \\ & \text { (p.Tyr479Cys) } \\ & \hline \end{aligned}$ | 137853262 | OCRL | [] | [] | ['Dent disease 2'] |
| $\begin{aligned} & \text { NM_004463.2(FGD1): } \\ & \text { c.1396A>G } \\ & \text { (p.Met466Val) } \end{aligned}$ | 137853267 | FGD1 | [] | [] | ['Aarskog syndrome'] |
| NM_153252.4(BRWD <br> 3):c. $4786 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys1596Glu) | 137853272 | BRWD3 | [] | [] | ['Mental retardation, X-linked 93'] |
| $\begin{aligned} & \text { NM_206933.2(USH2A } \\ & \text { ):c. } 7595-2144 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 786200928 | USH2A | [] | $\begin{aligned} & \hline \text { ['CTCTTAYCTTGG } \\ & \text { GAAAGGAGAGG'] } \\ & \hline \end{aligned}$ | ['Usher syndrome, type 2A'] |
| $\begin{aligned} & \text { NM_000362.4(TIMP3) } \\ & \text { c. } 572 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr191Cys) } \end{aligned}$ | 137853299 | - | ['TGCAGYA GCCGCCCT TCTGCCGG' 1 | $\begin{aligned} & \text { ['TGCAGYAGCCG } \\ & \text { CCCTTCTGCCGG'] } \end{aligned}$ | ['Sorsby fundus dystrophy'] |
| NM_006785.3(MALT <br> 1):c. 1019-2A>G | 786200953 | MALT1 | $\begin{aligned} & \text { ['CGCYTTG } \\ & \text { AAAAAAAA } \\ & \text { AAGAAAG } \\ & \text { GG'] }^{\prime} \end{aligned}$ | ['CGCYTTGAAAA AAAAAGAAAGGG <br> 'TCGCYTTGAAAA AAAAAGAAAGG'] | ['Combined immunodeficiency'] |
| $\begin{aligned} & \text { NM_003639.4(IKBKG } \\ & \text { ):c.1259A>G } \\ & \text { (p.Ter420Trp) } \end{aligned}$ | 137853321 | IKBKG | [] | [] | ['Incontinentia pigmenti syndrome', 'Ectodermal |


|  |  |  |  |  | dysplasia, anhidrotic, with immunodeficiency, osteopetrosis, and lymphedema'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_003639.4(IKBKG } \\ & \text { ):c. } 1219 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met } 407 \mathrm{Val} \text { ) } \\ & \hline \end{aligned}$ | 137853322 | IKBKG | [] | $\begin{aligned} & \hline \text { ['CCAYATCAGGG } \\ & \text { GCCTGATACTGG'] } \end{aligned}$ | ['Incontinentia pigmenti syndrome'] |
| $\begin{aligned} & \text { NM_001014797.2(KC } \\ & \text { NMA1):c.1301A }>G \\ & \text { (p.Asp434Gly) } \end{aligned}$ | 137853333 | KCNMA1 | [] | [] | ['Generalized epilepsy and paroxysmal dy skinesia'] |
| $\begin{aligned} & \text { NM_016218.2(POLK): } \\ & \text { c.1679A }>\mathrm{T} \\ & \text { (p.Glu560Val) } \end{aligned}$ | 757103131 | POLK | [] | [] | ['Malignant tumor of prostate'] |
| $\begin{aligned} & \mathrm{NM}=003000.2(\mathrm{SDHB}) \\ & \text { :c. } 541-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 786201161 | SDHB | [] | [] | ['Hereditary cancerpredisposing syndrome'] |
| $\begin{array}{\|l} \hline \text { NM_032383.4(HPS3): } \\ \text { c. } 2482-2 \mathrm{~A}>\mathrm{G} \\ \hline \end{array}$ | 397507168 | - | [] | [] | ['Hermansky-Pudlak syndrome 3'] |
| $\begin{aligned} & \text { NM_000060.3(BTD):c } \\ & .968 \mathrm{~A}>\mathrm{G} \\ & \text { (p.His323Arg) } \\ & \hline \end{aligned}$ | 397507176 | BTD | [] | [] | ['Biotinidase deficiency', 'not provided'] |
| $\begin{aligned} & \text { NM_004315.4(ASAH1 } \\ & \text { ):c. } 155 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr52Cys) } \end{aligned}$ | 137853595 | ASAH1 | [] | [] | ['Farber lipogranulomatosis'] |
| $\begin{aligned} & \text { NM_004315.4(ASAH1 } \\ & \text { ):c. } 1006 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn336Asp) } \end{aligned}$ | 137853596 | ASAH1 | [] | [] | ['Farber lipogranulomatosis'] |
| $\begin{aligned} & \text { NM_000059.3(BRCA2 } \\ & \text { ):c. } 1799 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr600Cys) } \\ & \hline \end{aligned}$ | 397507276 | BRCA2 | [] | [] | ['Breast-ovarian cancer, familial 2'] |
| $\begin{aligned} & \mathrm{NM}-022912.2 \text { (REEP1 } \\ & \text { ):c. } 183-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 387906264 | REEP1 | [] | [] | ['Spastic paraplegia 31, autosomal dominant'] |
| $\begin{aligned} & \text { NM_000022.2(ADA):c } \\ & .219-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 387906267 | ADA | [] | ['CCCCYGGGAAG GGAAGAAAGGGG ', <br> 'GCCCCYGGGAAG GGAAGAAAGGG', 'AGCCCCYGGGAA GGGAAGAAAGG'] | ['Severe combined immunodeficiency due to ADA deficiency'] |
| $\begin{aligned} & \text { NM_018249.5(CDK5 } \\ & \text { RAP2):c.4005-15A>G } \end{aligned}$ | 387906274 | $\begin{aligned} & \text { CDK5RA } \\ & \text { P2 } \end{aligned}$ | [] | [] | ['Primary autosomal recessive microcephaly 3'] |
| $\begin{aligned} & \text { NM_032119.3(ADGR } \\ & \text { V1):c.14973-2A>G } \\ & \hline \end{aligned}$ | 371981035 | ADGRV1 | [] | [] | ['Usher syndrome, type 2C'] |
| $\begin{aligned} & \text { NM_020366.3(RPGRI } \\ & \text { P1):c.3341A>G } \\ & \text { (p.Asp1114Gly) } \end{aligned}$ | 17103671 | RPGRIP1 | [] | [] | ['Leber congenital amaurosis 6', 'not specified'] |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c. } 3717+4 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 387906362 | CFTR | [] | ['TCAAATCYCACC CTCTGGCCAGG'] | ['Cystic fibrosis'] |
| $\begin{aligned} & \hline \text { NM_000492.3(CFTR): } \\ & \text { c. } 273+4 \mathrm{~A}>\mathrm{G} \\ & \hline \end{aligned}$ | 387906374 | CFTR | [] | [] | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_002769.4(PRSS1) } \\ & : \text { c. } 65 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asp22Gly) } \end{aligned}$ | 397507442 | - | [] | ['CTTGYCATCATC ATCAAAGGGGG', 'TCTTGYCATCATC ATCAAAGGGG', 'ATCTTGYCATCA | ['Hereditary pancreatitis'] |


|  |  |  |  | TCATCAAAGGG', 'GATCTTGYCATC ATCATCAAAGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_004006.2(DMD): } \\ & \text { c. } 4675-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 794727575 | DMD | I] | [] | ['Duchenne muscular dystrophy', 'Becker muscular dystrophy'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 1 \\ & 418 \overline{\mathrm{~A}}>\mathrm{G} \\ & \text { (p.Tyr473Cys) } \end{aligned}$ | 387906444 | F8 | [] | [] | ['Hereditary factor VIII deficiency disease'] |
| NM 004333.4(BRAF): <br> c. $2126 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln709Arg) | 397507486 | BRAF | [] | [] | ['Rasopathy'] |
| NM 002834.3(PTPN1 <br> 1):c. $124 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr42Ala) | 397507501 | PTPN11 | I] | I] | ['Noonan syndrome', 'Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| NM 000834.3(GRIN2 <br> B): $\mathrm{c} .1238 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu413Gly) | 527236034 | GRIN2B | [] | [] | ['Mental retardation, autosomal dominant $6^{6} \mid$ |
| NM_004830.3(MED23 <br> ):c. $3638 \mathrm{~A}>\mathrm{G}$ <br> (p.His1213Arg) | 527236035 | MED23 | [] | [] | ['Mental retardation, autosomal recessive 18'] |
| NM 002834.3(PTPN1 <br> 1):c. $844 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile282Val) | 397507529 | PTPN11 | [] | [] | ['Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| NM 000406.2(GNRH <br> R): c. $851 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr284Cys) | 28933074 | GNRHR | [] | I] | [] |
| $\begin{aligned} & \text { NM_002834.3(PTPN1 } \\ & \text { 1):c.1510A>G } \\ & \text { (p.Met504Val) } \end{aligned}$ | 397507547 | PTPN11 | [] | [] | ['Noonan syndrome', 'Noonan syndrome 1', 'Rasopathy', 'not provided'] |
| $\begin{aligned} & \text { NM_004629.1(FANC } \\ & \text { G):c. } 925-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 397507561 | FANCG | [] | [] | ['Fanconi anemia, complementation group $\left.\mathrm{G}^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_000492.3(CFTR): } \\ & \text { c. } 3140-26 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 76151804 | CFTR | [] | [] | ['Cystic fibrosis'] |
| NM 024598.3(USB1): <br> c. $502 \mathrm{~A}>\mathrm{G}$ <br> (p.Arg168Gly) | 137853971 | USB1 | [] | $\begin{aligned} & \hline \text { ['CCACCYGGTTTT } \\ & \text { CTCTTGATTGG'] } \end{aligned}$ | ['Poikiloderma with neutropenia'] |
| $\begin{aligned} & \text { NM_000067.2(CA2):c. } \\ & 754 \mathrm{~A}>\mathrm{G} \\ & (\text { p.Asn252Asp) } \end{aligned}$ | 2228063 | CA2 | [] | $\begin{aligned} & \text { ['TGTYCTTCAGTG } \\ & \text { GCTGAGCTGGG', } \\ & \text { 'CTGTYCTTCAGT } \\ & \text { GGCTGAGCTGG' } \end{aligned}$ | [] |
| NM_000138.4(FBN1): <br> c. $5096 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr1699Cys) | 387906622 | FBN1 | [] | [] | ['Geleophysic dysplasia 2'] |
| NM 001194958.2(KC <br> NJ18):c.1097A>G <br> (p.Lys366Arg) | 527236159 | KCNJ18 | [] | [] | ['Thyrotoxic periodic paralysis', 'Thyrotoxic periodic paralysis 2'] |
| $\begin{aligned} & \hline \text { NM } 000138.4(\mathrm{FBN} 1): \\ & \text { c. } 5087 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr1696Cys) } \\ & \hline \end{aligned}$ | 387906625 | FBN1 | I] | I] | ['Geleophysic dysplasia 2'] |
| $\begin{aligned} & \text { NMM000138.4(FBN1): } \\ & \text { c.5099A>G } \\ & \text { (p.Tyr1700Cys) } \\ & \hline \end{aligned}$ | 387906626 | FBN1 | [] | [] | [] |
| NM_001244710.1(GF | 387906638 | GFPT1 | [] | [] | ['Congenital |


| $\text { PT1):c. } 43 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr15Ala) |  |  |  |  | myasthenic syndrome with tubular aggregates 1'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_002292.3(LAMB <br> 2):c. $440 \mathrm{~A}>\mathrm{G}$ <br> (p.His147Arg) | 387906644 | LAMB2 | [] | [] | ['Nephrotic syndrome, type 5, with or without ocular abnormalities'\| |
| $\begin{aligned} & \text { NM_005188.3(CBL):c } \\ & .1112 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr371Cys) } \end{aligned}$ | 387906666 | CBL | [] | [] | [] |
| NM_000313.3(PROS1 ):c. $701 \mathrm{~A}>\mathrm{G}$ (p.Tyr234Cys) | 387906675 | PROS1 | ['GATTAYA TCTGTAGC CTTCGGGG' <br> 'AGATTAY ATCTGTAG CCTTCGGG' <br> 'GAGATTA YATCTGTA GCCTTCGG' 1 | ['GATTAYATCTGT AGCCTTCGGGG', 'AGATTAYATCTG TAGCCTTCGGG', 'GAGATTAYATCT GTAGCCTTCGG'] | ['Thrombophilia due to protein S deficiency, autosomal recessive'] |
| NM_032018.6(SPRTN <br> ):c. $350 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyrl17Cys) | 527236213 | SPRTN | [] | [] | ['Ruijs-aalfs syndrome'] |
| $\begin{aligned} & \text { NM_022464.4(SIL1):c } \\ & .645+2 \mathrm{~T}>\mathrm{C} \end{aligned}$ | 548535414 | SILI | [] | [] | ['MarinescoSj\|xc3\xb6gren syndrome'] |
| NM 001040142.1(SC $\mathrm{N} 2 \mathrm{~A}): \mathrm{c} .4419 \mathrm{~A}>\mathrm{G}$ (p.Ilel473Met) | 387906685 | SCN2A | [] | II | \|'Early infantile epileptic encephalopathy $11^{\prime}$ \| |
| NM 001040142.1(SC N 2 A ): $\mathrm{c} .754 \mathrm{~A}>\mathrm{G}$ <br> (p.Met252Val) | 387906687 | SCN2A | [] | [] | ['Benign familial neonatal-infantile seizures'] |
| m. 10450A>G | 387906731 | MT-TR | [] | [] | ['Mitochondrial encephalomyopathy' ] |
| m. $5816 \mathrm{~A}>\mathrm{G}$ | 387906732 | MT-TC | I] | II | II |
| m. $608 \mathrm{~A}>\mathrm{G}$ | 387906735 | MT-TF | ['TTCAGYG TATTGCTT TGAGGAGG '] | $\begin{aligned} & \text { ['TTCAGYGTATTG } \\ & \text { CTTTGAGGAGG'] } \end{aligned}$ | I |
| NM 001376.4(DYNC 1H1):c. $917 \mathrm{~A}>\mathrm{G}$ (p.His306Arg) | 387906738 | $\begin{aligned} & \text { DYNC1H } \\ & 1 \end{aligned}$ | [] | [] | ['Charcot-MarieTooth disease, axonal, type 2O', 'Charcot-MarieTooth disease', 'Spinal muscular atrophy, lower extremity predominant 1, autosomal dominant'] |
| NM 001376.4(DYNC 1H1):c. $2011 \mathrm{~A}>\mathrm{G}$ (p.Lys671Glu) | 387906742 | $\begin{aligned} & \text { DYNC1H } \\ & 1 \end{aligned}$ | 1 | [] | ['Spinal muscular atrophy, lower extremity predominant 1 , |


|  |  |  |  |  | autosomal dominant'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NM_001376.4(DYNC } \\ & \text { 1H1):c.2909A>G } \\ & \text { (p.Tyr970Cys) } \end{aligned}$ | 387906743 | $\begin{aligned} & \text { DYNC1H } \\ & 1 \end{aligned}$ | [] | ['ATTCAAGYAGAT TACCTGATTGG'] | $\begin{array}{\|l\|} \hline[\text { 'Spinal muscular } \\ \text { atrophy, lower } \\ \text { extremity } \\ \text { predominant } 1, \\ \text { autosomal } \\ \text { dominant'] } \\ \hline \end{array}$ |
| NM_001354.5(AKR1 <br> C2):c. $235 \mathrm{~A}>\mathrm{G}$ <br> (p.Ile79Val) | 387906750 | AKR1C2 | [] | [] | ['46,XY sex reversal 8'] |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c.604A>G } \\ & \text { (p.Met202Val) } \end{aligned}$ | 387906762 | STAT1 | [] | [] | ['Immunodeficiency $31 C^{\prime}$ ' |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c.494A>G } \\ & \text { (p.Asp165Gly) } \end{aligned}$ | 387906764 | STAT1 | [] | [] | ['Immunodeficiency $31 C^{\prime}$ |
| $\begin{aligned} & \text { NM_007315.3(STAT1 } \\ & \text { ):c.862A>G } \\ & \text { (p.Thr288Ala) } \\ & \hline \end{aligned}$ | 387906765 | STAT1 | [] | [] | ['Immunodeficiency $31 C^{\prime}$ |
| NM_002052.4(GATA <br> 4):c. $928 \mathrm{~A}>\mathrm{G}$ <br> (p.Met310Val) | 387906772 | GATA4 | [] | ['TCCGCAYTGCAA GAGGCCTGGGG', 'TTCCGCAYTGCA AGAGGCCTGGG'] | ['Atrial septal defect 2'] |
| $\begin{aligned} & \text { NM_021615.4(CHST6 } \\ & \text { ):c.329A>G } \\ & \text { (p.Tyr110Cys) } \end{aligned}$ | 72547544 | CHST6 | [] | [] | ['Macular corneal dystrophy Type I'] |
| $\begin{aligned} & \text { NM_000209.3(PDX1): } \\ & \text { c. } 533 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Glu178Gly) } \end{aligned}$ | 387906777 | PDX1 | [] | [] | ['Pancreatic agenesis, congenital'] |
| $\begin{aligned} & \text { NM_000890.3(KCNJ5 } \\ & \text { ):c. } 472 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Thr158Ala) } \end{aligned}$ | 387906778 | KCNJ5 | [] | [] | ['Andersen Tawil syndrome', 'Familial hyperaldosteronism type 3'] |
| $\begin{aligned} & \text { NM_001184.3(ATR):c } \\ & .6431 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Gln2144Arg) } \end{aligned}$ | 387906797 | ATR | [] | [] | ['Cutaneous telangiectasia and cancer syndrome, familial'] |
| $\begin{aligned} & \text { NM_000382.2(ALDH } \\ & \text { 3A2):c.1157A>G } \\ & \text { (p.Asn386Ser) } \\ & \hline \end{aligned}$ | 72547575 | ALDH3A $2$ | [] | [] | ['Sj\xc3\xb6grenLarsson syndrome'] |
| $\begin{aligned} & \text { NM_001005862.2(ER } \\ & \text { BB2):c.2480A>G } \\ & \text { (p.Asn827Ser) } \end{aligned}$ | 28933370 | ERBB2 | [] | [] | ['Neoplasm of ovary'] |
| $\begin{aligned} & \text { NM_006194.3(PAX9): } \\ & \text { c. } 271 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys91Glu) } \end{aligned}$ | 28933373 | PAX9 | [] | [] | ['Tooth agenesis, selective, $3^{\prime}$ ] |
| $\begin{aligned} & \text { NM_001083116.1(PR } \\ & \text { F1):c.755A>G } \\ & \text { (p.Asn252Ser) } \end{aligned}$ | 28933375 | PRF1 | [] | [] | ['Hemophagocytic lymphohistiocytosis, familial, $2^{\prime}$, <br> 'Malignant lymphoma, nonHodgkin'] |
| NM_005257.5(GATA <br> 6):c. $1354 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr452Ala) | 387906817 | GATA6 | [] | [] | ['Pancreatic agenesis and congenital heart disease'] |
| $\begin{aligned} & \text { NM_000414.3(HSD17 } \\ & \text { B4):c.650A>G } \\ & \text { (p.Tyr217Cys) } \end{aligned}$ | 387906825 | HSD17B4 | [] | ['TGCCACAYACTC TGGCTTCAGGG'] | ['Gonadal dysgenesis with auditory |


|  |  |  |  |  | dysfunction, autosomal recessive inheritance'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_004153.3(ORCl): <br> c.380A $>G$ <br> (p.Glu127Gly) <br> . | 387906826 | ORC1 | [] | [] | ['Meier-Gorlin syndrome 1'] |
| $\begin{aligned} & \text { NM_002552.4(ORC4): } \\ & \text { c.521A>GG } \\ & \text { (p.Tyr174Cys) } \\ & \hline \end{aligned}$ | 387906847 | ORC4 | [] | [] | ['Meier-Gorlin syndrome 2'] |
| $\begin{aligned} & \text { NM_004544.3(NDUF } \\ & \text { A10):c.1A>G } \\ & \text { (p.Met1Val) } \end{aligned}$ | 387906872 | $\begin{array}{\|l\|} \hline \text { NDUFA1 } \\ 0 \end{array}$ | [] | [] | ['Leigh syndrome due to mitochondrial complex I deficiency'] |
| $\begin{aligned} & \hline \text { NM_004544.3(NDUF } \\ & \text { Alo):c.425A>G } \\ & \text { (p.GIn142Arg) } \end{aligned}$ | 387906873 | $\begin{array}{\|l\|} \hline \text { NDUFA1 } \\ 0 \end{array}$ | II | I] | ['Leigh syndrome due to mitochondrial complex I deficiency'] |
| $\begin{aligned} & \text { NM_006796.2(AFG3L } \\ & \text { 2):c. } 1847 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr616Cys) } \end{aligned}$ | 387906889 | AFG3L2 | ['GTAYAGA GGTATTGT TCTTTTGG' I | ['GTAYAGAGGTA | ['Spastic ataxia 5 , autosomal recessive'] |
| $\begin{aligned} & \text { NM_006587.3(CORIN } \\ & \text { ):c. } 949 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys317Glu) } \\ & \hline \end{aligned}$ | 387906894 | CORIN | [] | [] | ['Preeclampsia/ecla mpsia 5'] |
| $\begin{aligned} & \text { NM_006587.3(CORIN } \\ & \text { ):c.1414A>G } \\ & \text { (p.Ser472Gly) } \end{aligned}$ | 387906895 | CORIN | [] | ['GGATAACYTGTA CTGTTGTAGGG'] | ['Preeclampsia/ecla mpsia 5'] |
| $\begin{aligned} & \text { NM } 015560.2(\mathrm{OPAl}): \\ & \text { c.1294A>G } \\ & \text { (p.Ile432Val) } \\ & \hline \end{aligned}$ | 387906899 | OPA1 | [] | II | ['Optic Atrophy Type 1'] |
| $\begin{aligned} & \text { NM_021625.4(TRPV4 } \\ & \text { ):c. } 590 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys197Arg) } \\ & \hline \end{aligned}$ | 387906903 | TRPV4 | I] | II | ['Metatrophic dy splasia'] |
| $\begin{aligned} & \text { NMM021625.4(TRPV4 } \\ & \text { ):c.826A>G } \\ & \text { (p.Lys276Glu) } \\ & \hline \end{aligned}$ | 387906907 | TRPV4 | [] | [] | ['Metatrophic dysplasia'] |
| $\begin{aligned} & \text { NM_024022.2(TMPR } \\ & \text { SS3):c.308A>G } \\ & \text { (p.Asp103Gly) } \\ & \hline \end{aligned}$ | 387906915 | $\begin{array}{\|l} \hline \text { TMPRSS } \\ 3 \end{array}$ | [] | [] | ['Deafness, autosomal recessive 8'] |
| $\begin{aligned} & \text { NM_019109.4(ALG1): } \\ & \text { c.1129A>G } \\ & \text { (p.Met377Val) } \end{aligned}$ | 387906925 | ALG1 | [] | I] | ['Congenital disorder of glycosylation type 1K'] |
| $\begin{aligned} & \text { NM_006886.3(ATP5E } \\ & \text { ):c.35A>G } \\ & \text { (p.Tyr12Cys) } \end{aligned}$ | 387906929 | - | [] | [] | ['Nuclearly-encoded mitochondrial complex V (ATP synthase) deficiency 3'\| |
| $\begin{aligned} & \text { NM_032578.3(MYPN) } \\ & \text { c. } 59 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr20Cys) } \end{aligned}$ | 140148105 | MYPN | [] | [] | ['Primary dilated cardiomyopathy', 'Cardiomyopathy', 'Dilated cardiomyopathy 1KK', 'Familial hypertrophic cardiomyopathy $22^{\prime}$, 'not provided'] |
| $\begin{aligned} & \text { NM_016013.3(NDUF } \\ & \text { AF1):c.758A>G } \\ & \text { (p.Lys253Arg) } \\ & \hline \end{aligned}$ | 387906957 | $\begin{array}{\|l} \hline \text { NDUFAF } \\ 1 \end{array}$ | [] | ['ACCYTGACCTCC TGCCAGTAGGG', 'TACCYTGACCTC | ['Mitochondrial complex I deficiency'] |


|  |  |  |  | CTGCCAGTAGG'] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_032580.3(HES7): <br> c. $172 \mathrm{~A}>\mathrm{G}$ (p.Ile 58 Val ) | 387906979 | HES7 | [] | [] | ['Spondylocostal dy sostosis 5'] |
| NM_024700.3(SNIP1) :c. $1097 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu366Gly) | 387906986 | SNIP1 | [] | [] | ['Psychomotor retardation, epilepsy, and craniofacial dysmorphism'] |
| $\begin{aligned} & \hline \text { NM_016952.4(CDON) } \\ & \text { :c.2368A>G } \\ & \text { (p.Thr790Ala) } \\ & \hline \end{aligned}$ | 387906997 | CDON | [] | [] | ['Holoprosencephaly 11'] |
| NM_031427.3(DNAL <br> 1): c. $449 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn150Ser) | 387907021 | DNAL1 | $\begin{aligned} & \hline \text { ['AGGGAYT } \\ & \text { GCCTACAA } \\ & \text { ACACCAGG } \\ & \text { '] } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ['AGGGAYTGCCT } \\ & \text { ACAAACACCAGG' } \\ & \text { ] } \end{aligned}$ | ['Kartagener syndrome', 'Ciliary dyskinesia, primary, 16'] |
| $\begin{aligned} & \text { NM_020320.3(RARS2 } \\ & \text { ):c.1024A>G } \\ & \text { (p.Met342Val) } \\ & \hline \end{aligned}$ | 387907048 | RARS2 | [] | [] | ['Pontocerebellar hypoplasia type 6'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c. } 6431 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn2144Ser) } \\ & \hline \end{aligned}$ | 137854461 | FBN1 | [] | [] | ['Marfan syndrome'] |
| $\begin{aligned} & \text { NM_000138.4(FBN1): } \\ & \text { c. } 2261 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr754Cys) } \\ & \hline \end{aligned}$ | 137854479 | FBN1 | [] | [] | ['Marfan syndrome'] |
| $\begin{aligned} & \text { NM_212482.1(FN1):c. } \\ & 2918 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Tyr973Cys) } \end{aligned}$ | 137854488 | FN1 | ['GAAGTAA <br> YAGGTGAC <br> CCCAGGGG <br> '] | ['GAAGTAAYAGG TGACCCCAGGGG' ] | ['Glomerulopathy with fibronectin deposits 2'] |
| $\begin{aligned} & \hline \text { NM_198994.2(TGM6) } \\ & \text { :c.980A>G } \\ & \text { (p.Asp327Gly) } \\ & \hline \end{aligned}$ | 387907098 | TGM6 | [] | [] | ['Spinocerebellar ataxia 35'] |
| $\begin{aligned} & \text { NM_001363.4(DKC1): } \\ & \text { c.1069A>G } \\ & \text { (p.Thr357Ala) } \end{aligned}$ | 137854492 | DKC1 | ['GCAGGYA GAGATGAC CGCTGTGG' 1 | ['GCAGGYAGAGA TGACCGCTGTGG'] | ['Dyskeratosis congenita X-linked'] |
| $\begin{aligned} & \hline \text { NM_052873.2(IFT43): } \\ & \text { c.1A>G (p.Met1Val) } \\ & \hline \end{aligned}$ | 387907107 | IFT43 | [] | [] | ['Cranioectodermal dysplasia 3'] |
| NM_201269.2(ZNF64 <br> 4):c. $2014 \mathrm{~A}>\mathrm{G}$ <br> (p.Ser672Gly) | 387907109 | ZNF644 | [] | [] | ['Myopia 21, autosomal dominant'] |
| NM_018699.3(PRDM <br> 5):c.320A>G <br> (p.Tyr107Cys) | 387907111 | PRDM5 | [] | [] | ['Brittle cornea syndrome 2'] |
| $\begin{aligned} & \text { NM_000132.3(F8):c. } 5 \\ & 822 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn1941Ser) } \\ & \hline \end{aligned}$ | 28933682 | F8 | [] | ['TAGCCAYTGATT GCTGGAGAAGG'] | ['Hereditary factor VIII deficiency disease'] |
| $\begin{aligned} & \text { NM_016464.4(TMEM } \\ & 138 \text { ):c.287A>G } \\ & \text { (p.His96Arg) } \end{aligned}$ | 387907132 | TMEM13 $8$ | ['GACAYGA AGGGAGAT GCTGAGGG '] | ['GACAYGAAGGG <br> AGATGCTGAGGG', <br> 'AGACAYGAAGGG <br> AGATGCTGAGG'] | ['Joubert syndrome 16'] |
| $\begin{aligned} & \text { NM_016464.4(TMEM } \\ & \text { 138):c.389A>G } \\ & \text { (p.Tyr130Cys) } \end{aligned}$ | 387907135 | TMEM13 8 | [] | ['CAGYACAACAC <br> TGCTGCTGTGGG', <br> 'GCAGYACAACAC <br> TGCTGCTGTGG'] | ['Joubert syndrome ${ }^{16}$ '] |
| NM_177965.3(C8orf3 7): $\mathrm{c} .545 \mathrm{~A}>\mathrm{G}$ <br> (p.Gln182Arg) | 387907137 | C8orf37 | [] | [] | ['Retinitis pigmentosa 64'] |
| $\begin{aligned} & \text { NM_001077488.3(GN } \\ & \text { AS):c. } 1 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Met1Val) } \\ & \hline \end{aligned}$ | 137854530 | GNAS | [] | ['GCCCAYGGCGG CGGCGGCGGCGG' 1 | ['Pseudohypoparathy roidism type $1 \mathrm{~A}^{\prime}$ ] |


| $\begin{aligned} & \text { NM_006920.4(SCN1A } \\ & \text { ):c. } 2557-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 727504140 | SCN1A | I] | [] | ['Severe myoclonic epilepsy in infancy', 'Generalized epilepsy with febrile seizures plus, type $2^{\prime}$ ' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM 000308.2(CTSA): <br> c. 200A $>\mathrm{G}$ <br> (p.Gln67Arg) | 137854541 | CTSA | II | I] | ['Combined deficiency of sialidase AND beta galactosidase'\| |
| NM 000308.2(CTSA): <br> c. $1238 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr413Cys) | 137854543 | CTSA | [] | [] | ['Combined deficiency of sialidase AND beta galactosidase'] |
| $\begin{aligned} & \hline \text { NM_000308.2(CTSA): } \\ & \text { c.1411A>G } \\ & \text { (p.Lys } 771 \mathrm{Glu} \text { ) } \\ & \hline \end{aligned}$ | 137854549 | CTSA | [] | [] | ['Galactosialidosis, late infantile'] |
| $\begin{aligned} & \text { NM } \quad 000267.3(\mathrm{NF} 1): \mathrm{c} . \\ & 4267 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys1423Glu) } \\ & \hline \end{aligned}$ | 137854550 | NF1 | [] | [] | ['Neurofibromatosis, type 1'] |
| $\begin{aligned} & \text { NM_000267.3(NF1):c. } \\ & \text { 1466A>G } \\ & \text { (p.Tyr489Cys) } \end{aligned}$ | 137854557 | NF1 | ['ACTTAYA GCTTCTTG TCTCCAGG 1 | ['ACTTAYAGCTTC TTGTCTCCAGG'] | ['Neurofibromatosis, type $1^{\prime}$ ] |
| NM 018105.2(THAP1 <br> ):c. $70 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys24Glu) | 387907176 | THAP1 | [] | ['CCTCACTYGTGG AAAGAAACGGG'] | ['Dystonia 6, torsion'] |
| NM_000492.3(CFTR): $\text { c. } 1393-2 \mathrm{~A}>\mathrm{G}$ | 397508201 | CFTR | [] | [] | ['Cystic fibrosis'] |
| NM 001172646.1(PL CB4):c. $986 \mathrm{~A}>\mathrm{G}$ (p.Asn329Ser) | 387907179 | PLCB4 | [] | [] | ['Auriculocondylar syndrome 2'] |
| NM 005850.4(SF3B4) <br> c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 387907185 | SF3B4 | II | I] | ['Nager syndrome'] |
| NM_014714.3(IFT140 <br> ):c. $932 \mathrm{~A}>\mathrm{G}$ <br> (p.Tyr311Cys) | 387907193 | IFT140 | [] | [] | ['Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia and skeletal dy splasia'] |
| NM 005006.6(NDUF <br> S1):c. $1783 \mathrm{~A}>\mathrm{G}$ <br> (p.Thr595Ala) | 387907199 | NDUFS1 | [] | [] | ['Mitochondrial complex I deficiency'] |
| NM 000397.3(CYBB) <br> :c. $1499 \mathrm{~A}>\mathrm{G}$ <br> (p.Asp500Gly) | 137854593 | CYBB | [] | ['TCACAYCTTTCT CCTCATCATGG'] | ['Chronic granulomatous disease, X-linked', 'not provided'] |
| $\begin{array}{\|l\|} \hline \text { NM_033360.3(KRAS) } \\ \text { :c.439A>G } \\ \text { (p.Lys147Glu) } \\ \hline \end{array}$ | 387907206 | KRAS | [] | [] | ['Cardiofaciocutaneo us syndrome $2^{\prime}$ ] |
| NM 000335.4(SCN5A ):c. $5381 \mathrm{~A}>\mathrm{G}$ (p.Tyr1794Cys) | 137854614 | SCN5A | [] | [] | ['Long QT syndrome 3', 'Congenital long QT syndrome'] |
| NM 000076.2(CDKN 1C):c. $832 \mathrm{~A}>\mathrm{G}$ (p.Lys278Glu) | 387907226 | CDKN1C | [] | ['CGCTYGGCGAA GAAATCTGCGGG', 'GCGCTYGGCGAA GAAATCTGCGG'] | ['Intrauterine growth retardation, <br> metaphyseal <br> dysplasia, adrenal <br> hypoplasia <br> congenita, and <br> genital anomalies'] |


| $\begin{aligned} & \text { NM_022912.2(REEPI } \\ & \text { ):c.304-2A>G } \end{aligned}$ | 387907242 | REEP1 | [] | ['TCCYGTCAAAGG AAAAACAGAGG'] | ['Distal hereditary motor neuronopathy type 5B'] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM_198253.2(TERT): <br> c. $2705 \mathrm{~A}>\mathrm{G}$ <br> (p.Lys902Arg) | 387907250 | TERT | [] | [] | ['PULMONARY FIBROSIS <br> AND/OR BONE <br> MARROW <br> FAILURE, <br> TELOMERE- <br> RELATED, 1'। |
| NM_005349.3(RBPJ): <br> c. $188 \mathrm{~A}>\mathrm{G}$ <br> (p.Glu63Gly) | 387907270 | RBPJ | [] | [] | ['Adams-Oliver syndrome 3'] |
| $\begin{aligned} & \text { NM_005349.3(RBPJ): } \\ & \text { c. } 505 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Lys169Glu) } \end{aligned}$ | 387907271 | RBPJ | [] | [] | ['Adams-Oliver syndrome 3'] |
| NM 022787.3(NMNA <br> T1):c. $817 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn273Asp) | 387907291 | NMNAT1 | [] | ['TGTYTCTCTGCA AAGGGGCCAGG'] | ['Leber congenital amaurosis 9'] |
| NM_000492.3(CFTR): c. $1 \mathrm{~A}>\mathrm{G}$ (p.Met1Val) | 397508328 | CFTR | ['TGCAYGG TCTCTCGG GCGCTGGG '] | ['GCAYGGTCTCTC GGGCGCTGGGG', 'TGCAYGGTCTCT CGGGCGCTGGG', 'CTGCAYGGTCTC TCGGGCGCTGG' | ['Cystic fibrosis'] |
| $\begin{aligned} & \text { NM_020921.3(NIN):c. } \\ & 5126 \mathrm{~A}>\mathrm{G} \\ & \text { (p.Asn1709Ser) } \end{aligned}$ | 387907308 | NIN | [] | [] | ['Seckel syndrome $\left.7^{\prime}\right]$ |
| $\begin{aligned} & \text { NM_021629.3(GNB4): } \\ & \text { c.265A>G } \\ & \text { (p.Lys89Glu) } \end{aligned}$ | 387907341 | GNB4 | [] | [] | ['Charcot-MarieTooth disease, dominant intermediate $\mathrm{F}^{\prime}$ ] |
| $\begin{aligned} & \text { NM_000355.3(TCN2): } \\ & \text { c. } 580+624 \mathrm{~A}>\mathrm{T} \end{aligned}$ | 372866837 | TCN2 | [] | [] | [] |
| NM 032415.5(CARD 11): $\mathrm{c} .401 \mathrm{~A}>\mathrm{G}$ (p.Glu134Gly) | 387907351 | CARD11 | [] | II | ['B-CELL EXPANSION WITH NFKB AND T-CELL ANERGY' |
| $\begin{aligned} & \text { NM_005430.3(WNT1) } \\ & \text { c. } 624+4 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 387907354 | WNT1 | [] | [] | ['Osteogenesis imperfecta type 15'] |
| NM_207352.3(CYP4V <br> 2):c. $367 \mathrm{~A}>\mathrm{G}$ <br> (p.Met123Val) | 149684063 | CYP4V2 | [] | [] | ['Bietti crystalline corneoretinal dystrophy', 'not provided'] |
| $\begin{aligned} & \text { NM_031885.3(BBS2): } \\ & \text { c. } 472-2 \mathrm{~A}>\mathrm{G} \end{aligned}$ | 137854887 | BBS2 | [] | [] | ['Bardet-Biedl syndrome 2'] |
| NM 015268.3(DNAJC <br> 13):c. $2564 \mathrm{~A}>\mathrm{G}$ <br> (p.Asn855Ser) | 387907571 | DNAJC13 | I] | [] | ['Parkinson disease, late-onset', 'Essential tremor', <br> 'PARKINSON DISEASE 21'] |
| $\begin{aligned} & \text { NM_001287.5(CLCN7 } \\ & \text { ):c.296A>G } \\ & \text { (p.Tyr99Cys) } \end{aligned}$ | 387907576 | CLCN7 | [] | ['TGTCAYAGTCCA AGCTCTGCAGG'] | ['Osteopetrosis autosomal dominant type 2', <br> 'Osteopetrosis autosomal recessive 4'] |

## REFERENCES

1. Humbert O, Davis L, Maizels N. Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol.2012; 47(3):264-81. PMID: 22530743.
2. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012; 16(3-4):268-77. PMID: 22819644.
3. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9):636-46. PMID: 20717154.
4. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1):49-55. PMID: 23169466.
5. Charpentier E, Doudna JA. Biotechnology: Rewriting a genome. Nature. 2013; 495, (7439):50-1. PMID: 23467164.
6. Pan Y, Xia L, Li AS, Zhang X, Sirois P, Zhang J, Li K. Biological and biomedical applications of engineered nucleases. Mol Biotechnol. 2013; 55(1):54-62. PMID: 23089945.
7. De Souza, N. Primer: genome editing with engineered nucleases. Nat Methods. 2012; 9(1):27. PMID: 22312638
8. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. 2008; 105(15):5809-14. PMID: 18359850.
9. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999; 22(3):231-8. PMID: 10391209.
10. Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6):1565-75. PMID: 11952905.
11. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013; 10(10):957-63. PMID: 24076990.
12. Jore MM, Lundgren M, van Duijin E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Shou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011; 18(5):529-36. PMID: 21460843.
13. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327(5962):167-70. PMID: 20056882.
14. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482(7385):331-8. PMID: 22337052.
15. Gasiunas G, Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. 2013; 21(11):562-7. PMID: 24095303.
16. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83. PMID: 23452860.
17. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013; 10(10):973-6. PMID: 23892895.
18. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8. PMID: 23907171.
19. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPRmediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51. PMID: 23849981.
20. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013; 8(11):2180-96. PMID: 24136345.
21. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-6. PMID: 23287722.
22. Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. 1996; 273(5280):1386-9. PMID: 8703073.
23. Tagalakis AD, Owen JS, Simons JP. Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. 2005; 71(2):140-4. PMID: 15791601.
24. Ray A, Langer M. Homologous recombination: ends as the means. Trends Plant Sci. 2002; 7(10):435-40. PMID 12399177.
25. Britt AB, May GD. Re-engineering plant gene targeting. Trends Plant Sci. 2003; 8(2):905. PMID: 12597876.
26. Vagner V, Ehrlich SD. Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. 1988; 170(9):3978-82. PMID: 3137211.
27. Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004; 32(12):3683-8. PMID: 15252152.
28. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007; 25(11):1298-306. PMID: 17965707.
29. Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008; 9(6):229. PMID: 18598372.
30. Reynaud CA, Aoufouchi S, Faili A, Weill JC. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. 2003; 4(7):631-8.
31. Bhagwat AS. DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). 2004; 3(1):85-9. PMID: 14697763.
32. Navaratnam N, Sarwar R. An overview of cytidine deaminases. Int J Hematol. 2006; 83(3):195-200. PMID: 16720547.
33. Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. 2008; 456(7218): 121-4. PMID: 18849968.
34. Chelico L, Pham P, Petruska J, Goodman MF. Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. 2009; 284(41). 27761-5. PMID: 19684020.
35. Pham P, Bransteitter R, Goodman MF. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. 2005; 44(8):2703-15. PMID 15723516.
36. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69. PMID: 23026637.
37. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005; 24(8):1477-80. PMID: 15608678.
38. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironenko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Solomon H, Stephens P, Teaque J, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Reinhold W, Weinstein JN, Stratton MR, Futreal PA, Wooster R. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 2006; 5(11):2606-12. PMID: 17088437.
39. Cox, D. B., Platt, R. J. \& Zhang, F. Therapeutic genome editing: prospects and challenges. Nature medicine 21, 121-131, doi: 10.1038/nm. 3793 (2015).
40. Hilton, I. B. \& Gersbach, C. A. Enabling functional genomics with genome engineering. Genome research 25, 1442-1455, doi:10.1101/gr.190124.115(2015).
41. Sander, J. D. \& Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology 32,347-355, doi:10.1038/nbt. 2842 (2014).
42. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPRCas9 by inhibition of nonhomologous end joining. Nature biotechnology 33, 538-542, doi:10.1038/nbt. 3190 (2015).
43. Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature biotechnology 33, 543-548, doi:10.1038/nbt. 3198 (2015).
44. Lin, S., Staahl, B. T., Alla, R. K. \& Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766, doi:10.7554/eLife. 04766 (2014).
45. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, doi:10.1126/science. 1231143 (2013).
46. Rong, Z., Zhu, S., Xu, Y. \& Fu, X. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein \& cell 5, 258-260, doi:10.1007/s13238-014-0032-5 (2014).
47. Jinek, M. et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816-821, doi:10.1126/science. 1225829 (2012).
48. Harris, R. S., Petersen-Mahrt, S. K. \& Neuberger, M. S. RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Molecular Cell 10, 1247-1253 (2002).
49. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997, doi:10.1126/science. 1247997 (2014).
50. Schellenberger, V. et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nature biotechnology 27, 1186-1190, doi:10.1038/nbt. 1588 (2009).
51. Saraconi, G., Severi, F., Sala, C., Mattiuz, G. \& Conticello, S. G. The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome biology 15, 417- (2014).
52. Anders, C., Niewoehner, O., Duerst, A. \& Jinek, M. Structural basis of PAMdependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573, doi:10.1038/nature13579 (2014).
53. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
54. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR- Cas nucleases. Nature biotechnology 33, 187-197, doi:10.1038/nbt. 3117 (2015).
55. Kunz, C., Saito, Y. \& Schar, P. DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cellular and molecular life sciences : CMLS 66, 1021-1038, doi:10.1007/s00018-009- 8739-9 (2009).
56. D., M. C. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701-708 (1995).
57. Caldecott, K. W. Single-strand break repair and genetic disease. Nature reviews. Genetics 9, 619-631, doi:10.1038/nrg2380 (2008).
58. Fukui, K. DNA mismatch repair in eukaryotes and bacteria. Journal of nucleic acids 2010, doi:10.4061/2010/260512 (2010).
59. Gasiunas, G., Barrangou, R., Horvath, P. \& Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109, E2579-E2586, doi:10.1073/pnas. 1208507109 (2012).
60. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191, doi:10.1038/nature14299 (2015).
61. Kuscu, C., Arslan, S., Singh, R., Thorpe, J. \& Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature biotechnology 32, 677-683, doi:10.1038/nbt.2916(2014).
62. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature biotechnology 32, 670-676, doi: 10.1038/nbt. 2889 (2014).
63. Beale, R. C. L. et al. Comparison of the Differential Context-dependence of DNA Deamination by APOBEC Enzymes: Correlation with Mutation Spectra in Vivo. Journal of Molecular Biology 337, 585-596, doi:10.1016/j.jmb.2004.01.046 (2004).
64. Kim, J., Basak, J. M. \& Holtzman, D. M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303, doi:10.1016/j. neuron.2009.06.026(2009).
65. Liu, C. C., Kanekiyo, T., Xu, H. \& Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature reviews. Neurology 9, 106-118, doi:10.1038/nrneurol.2012.263 (2013).
66. Sjöblom, T. et al. The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science 314, 268-274, doi:10.1126/science. 1133427 (2006).
67. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400-404, doi:10.1038/nature11017 (2012).
68. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Research, doi:10.1093/nar/gkv1222 (2015).
69. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science, doi:10.1126/science.aad5227 (2015).
70. Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. \& Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nature chemical biology 11,316-318, doi:10.1038/nchembio. 1793 (2015).
71. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient proteinbased genome editing in vitro and in vivo. Nature biotechnology 33, 73-80, doi:10.1038/nbt. 3081 (2015).
72. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485, doi:10.1038/nature14592 (2015).
73. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA- programmed Cas9 nuclease specificity. Nature Biotechnology 31, 839-843, doi:10.1038/nbt. 2673 (2013).
74. Shcherbakova, D. M. \& Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods 10,751-754, doi:10.1038/nmeth. 2521 (2013).
75. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281-2308, doi:10.1038/nprot.2013.143 (2013).
76. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, doi:10.1126/science.aad8282 (2016)
77. Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotech 32, 569-576, doi:10.1038/nbt. 2908 (2014).
78. Lieber, M. R., Ma, Y., Pannicke, U. \& Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4, 712-720 (2003).
79. Heller, R. C. \& Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7, 932-943 (2006).
80. Pluciennik, A. et al. PCNA function in the activation and strand direction of MutL $\alpha$ endonuclease in mismatch repair. Proceedings of the National Academy of Sciences of the United States of America 107, 16066-16071, doi:10.1073/pnas. 1010662107 (2010).
81. Seripa, D. et al. The missing ApoE allele. Annals of human genetics 71, 496-500, doi:10.1111/j. 1469-1809.2006.00344.x (2007).
82. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495, doi:10.1038/nature16526 (2016).
83. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. \& Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotech 34, 339-344, doi:10.1038/nbt. 3481 (2016).
84. Simonelli, V., Narciso, L., Dogliotti, E. \& Fortini, P. Base excision repair intermediates are mutagenic in mammalian cells. Nucleic acids research 33, 4404-4411, doi:10.1093/nar/gki749 (2005).
85. Barnes, D. E. \& Lindahl, T. Repair and Genetic Consequences of Endogenous DNA Base Damage in Mammalian Cells. Annual Review of Genetics 38, 445-476, doi:doi:10.1146/annurev.genet.38.072902.092448 (2004).

## EQUIVALENTS AND SCOPE

[00416] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.
[00417] Articles such as "a," "an," and "the" may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include "or" between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes "or" between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
[00418] It is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is
dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
[00419] Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term "comprising" is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
[00420] Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.
[00421] In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.

## CLAIMS

What is claimed is:

1. A fusion protein comprising: (i) a Cas9 domain; (ii) a cytidine deaminase domain; and (iii) a uracil glycosylase inhibitor (UGI) domain.
2. The fusion protein of claim 1, wherein the Cas9 domain comprises an amino acid sequence that is at least $85 \%$ identical to the amino acid sequence provided in SEQ ID NO: 674.
3. The fusion protein of claim 1, wherein the Cas9 domain is a Cas9 nickase domain that cuts a nucleotide target strand of a nucleotide duplex, wherein the nucleotide target strand is the strand that binds to a gRNA of the Cas9 nickase domain.
4. The fusion protein of claim 1, wherein the Cas9 domain is an nCas9 domain that comprises a D10A mutation in the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260.
5. The fusion protein of claim 1, wherein the Cas9 domain is an nCas9 domain that comprises one or more of N496A, R660A, Q694A, and Q926A of the amino acid sequence provided in SEQ ID NO 10, or one or more corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
6. The fusion protein of claim 1, wherein the cytidine deaminase domain is a deaminase from the apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
7. The fusion protein of claim 6, wherein the APOBEC family deaminase is selected from the group consisting of APOBEC1 deaminase, APOBEC2 deaminase, APOBEC3A deaminase, APOBEC3B deaminase, APOBEC3C deaminase, APOBEC3D deaminase, APOBEC3F deaminase, APOBEC3G deaminase, and APOBEC3H deaminase.
8. The fusion protein of claim 1, wherein the cytidine deaminase domain comprises an amino acid sequence that is at least $85 \%$ identical to an amino acid sequence of SEQ ID NO: 266-284, 607-610, 5724-5736, or 5738-5741.
9. The fusion protein of claim 1, wherein the cytidine deaminase domain comprises an amino acid sequence of SEQ ID NO: 266-284, 607-610, 5724-5736, or 5738-5741.
10. The fusion protein of claim 1, wherein the cytidine deaminase domain is a rat APOBEC1 (rAPOBEC1) deaminase comprising one or more mutations selected from the group consisting of W90Y, R126E, and R132E of SEQ ID NO: 284, or one or more corresponding mutations in another APOBEC deaminase.
11. The fusion protein of claim 1 , wherein the cytidine deaminase domain is a human APOBEC1 (hAPOBEC1) deaminase comprising one or more mutations selected from the group consisting of W90Y, Q126E, and R132E of SEQ ID NO: 5724, or one or more corresponding mutations in another APOBEC deaminase.
12. The fusion protein of claim 1, wherein the cytidine deaminase domain is a human APOBEC3G (hAPOBEC3G) deaminase comprising one or more mutations selected from the group consisting of W285Y, R320E, and R326E of SEQ ID NO: 275, or one or more corresponding mutations in another APOBEC deaminase.
13. The fusion protein of claim 1, wherein the cytidine deaminase domain is an activation-induced deaminase (AID).
14. The fusion protein of claim 1, wherein the cytidine deaminase domain is a cytidine deaminase 1 from Petromyzon marinus (pmCDA1).
15. The fusion protein of claim 1, wherein the UGI domain comprises a domain capable if inhibiting UDG activity.
16. The fusion protein of claim 1, wherein the UGI domain comprises an amino acid sequence that is at least $85 \%$ identical to SEQ ID NO: 600 .
17. The fusion protein of claim 1, wherein the UGI domain comprises an amino acid sequence as set forth in SEQ ID NO: 600.
18. The fusion protein of claim 1, wherein the fusion protein comprises the structure: $\mathrm{NH}_{2}$-[ cytidine deaminase domain]-[Cas9 domain]-[UGI domain]-COOH, and wherein each instance of "-" comprises an optional linker.
19. The fusion protein of claim 1, wherein the cytidine deaminase domain of (ii) and the nCas9 domain of (i) are linked via a linker comprising the amino acid sequence (GGGS) $n$ (SEQ ID NO: 265), (GGGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 5), (G) $)_{\mathrm{n}},(\text { EAAAK })_{\mathrm{n}}$ (SEQ ID NO: 6), (GGS) ${ }_{\mathrm{n}}$, (SGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7), or (XP) ${ }_{\mathrm{n}}$ motif, or a combination thereof, wherein ${ }_{n}$ is independently an integer between 1 and 30 , inclusive, and wherein X is any amino acid.
20. The fusion protein of claim 1, wherein the cytidine deaminase domain of (ii) and the nCas9 domain of (i) are linked via a linker comprising the amino acid sequence: SGSETPGTSESATPES (SEQ ID NO: 7).
21. The fusion protein of claim 1 further comprising a nuclear localization sequence (NLS).
22. The fusion protein of claim 21, wherein the NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 741) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 742)
23. The fusion protein of claim 21, wherein the fusion protein comprises the structure: $\mathrm{NH}_{2}$-[cytidine deaminase domain]-[nCas9 domain]-[UGI domain]-[NLS]-COOH, and wherein each instance of "-" comprises an optional linker.
24. The fusion protein of claim 21, wherein the UGI domain and the NLS are linked via a linker comprising the amino acid sequence: SGGS (SEQ ID NO: 4288), or wherein the nCas9 domain and the UGI domain are linked via a linker comprising the amino acid sequence: SGGS (SEQ ID NO: 4288).
25. The fusion protein of claim 1, wherein the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 594.
26. A complex comprising the fusion protein of claim 1 and a guide RNA bound to the nCas 9 domain of the fusion protein.
27. A method comprising contacting a nucleic acid molecule with the fusion protein of claim 1 and a guide RNA, wherein the guide RNA comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence in the genome of an organism and comprises a target base pair.
28. The method of claim 27, wherein the target base pair comprises a T to C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder.
29. The method of claim 27, wherein the contacting results in less than $20 \%$ indel formation upon base editing.
30. The method of claim 27 , wherein the contacting results in at least $2: 1$ intended to unintended product upon base editing.
31. A fusion protein comprising: (i) a nuclease-inactive Cas 9 (dCas9) domain and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N -terminus of the dCas9 domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
32. The fusion protein of claim 31, wherein the nuclease-inactive Cas9 (dCas9) domain of (i) comprises the amino acid sequence that is at least $85 \%$ identical to the amino acid sequence set forth in SEQ ID NO: 263.
33. The fusion protein of claim 31, wherein the nuclease-inactive Cas9 (dCas9) domain of (i) comprises the amino acid sequence set forth in SEQ ID NO: 263.
34. The fusion protein of any one of claims 31-33, wherein the deaminase is a rat APOBEC1 deaminase that is at least $85 \%$ identical the amino acid sequence as set forth in (SEQ ID NO: 284).
35. The fusion protein of any one of claims 31-34, wherein the deaminase is rat APOBEC1 deaminase comprising the amino acid sequence as set forth in (SEQ ID NO: 284).
36. The fusion protein of any one of claims 31-33, wherein the deaminase is a human APOBEC1 deaminase that is at least $85 \%$ identical to the amino acid sequence as set forth in (SEQ ID NO: 282).
37. The fusion protein of any one of claims 31-33, wherein the deaminase is a human APOBEC1 deaminase comprising the amino acid sequence as set forth in (SEQ ID NO: 282).
38. The fusion protein of any one of claims 31-37, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to SEQ ID NO: 600 .
39. The fusion protein of any one of claims 31-38, wherein the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 600
40. The fusion protein of any one of claims 31-37, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to any one of SEQ ID NOs: 322-324.
41. The fusion protein of any one of claims 31-37, wherein the UGI domain comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 322-324.
42. The fusion protein of any one of claims 31-41, wherein the fusion protein comprises amino acid residues 11-1629 of the amino acid sequence set forth in SEQ ID NO: 591.
43. The fusion protein of any one of claims 31-41, wherein the fusion protein comprises the amino acid sequence set forth in any one of SEQ ID NOs: 591-593, 611, 612, 615, 657, 658 , and 5737.
44. A fusion protein comprising: (i) a nuclease-inactive Cas9 (dCas9) domain; (ii) a nucleic acid editing domain; and (iii) a uracil glycosylase inhibitor (UGI) domain.
45. The fusion protein of claim 44, wherein the amino acid sequence of the dCas9 domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260 , wherein $X$ is any amino acid except for $D$.
46. The fusion protein of claim 44 or 45 , wherein the amino acid sequence of the dCas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
47. The fusion protein of any one of claims 44-46, wherein the amino acid sequence of the dCas9 domain comprises an H840X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for H .
48. The fusion protein of any one of claims 44-47, wherein the amino acid sequence of the dCas9 domain comprises an H840A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
49. The fusion protein of any one of claims 44-48, wherein the dCas9 domain comprises an amino acid sequence that is at least $85 \%$ identical to the amino acid sequence as set forth in SEQ ID NO: 263.
50. The fusion protein of any one of claims 44-49, wherein the dCas9 domain comprises the amino acid sequence as set forth in SEQ ID NO: 263.
51. The fusion protein of any one of claims 44-50, wherein the dCas9 domain comprises one or more of a N497X, R661X, Q695X, and Q926X mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid.
52. The fusion protein of any one of claims 44-51, wherein the dCas9 domain comprises one or more of a N497A, R661A, Q695A, and Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
53. The fusion protein of any one of claims 44-52, wherein the dCas9 domain comprises a N497A, R661A, Q695A, and Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
54. The fusion protein of any one of claims 44-53, wherein the dCas9 domain comprises a Staphylococcus aureus (SaCas9).
55. The fusion protein of claim 54, wherein the SaCas9 comprises the amino acid sequence SEQ ID NO: 4273.
56. The fusion protein of claim 54 or 55 , wherein the SaCas9 domain comprises one or more of a E781K, N967K, or R1014H mutation of SEQ ID NO: 4273, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260.
57. The fusion protein of any one of claims 44-53, wherein the dCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260.
58. The fusion protein of any one of claims 44-53, wherein the dCas9 domain comprises one or more of a D1134V, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a
corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260.
59. The fusion protein of any one of claims 44-53, wherein the dCas 9 domain comprises one or more of a D1134V, G1217R, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11260.
60. The fusion protein of any of claims 44-59, wherein the nucleic acid editing domain is fused to the N -terminus of the dCas 9 domain.
61. The fusion protein of any one of claims 44-60, wherein the UGI domain is fused to the C -terminus of the dCas 9 domain.
62. The fusion protein of any one of claims 44-61, wherein the dCas9 domain and the nucleic acid editing domain are fused via a linker.
63. The fusion protein of any one of claims 44-62, wherein the dCas9 domain and the UGI domain are fused via a linker.
64. The fusion protein of claim 62 or 63 , wherein the linker comprises the amino acid sequence (GGGGS)n (SEQ ID NO: 5), (G)n, (EAAAK)n (SEQ ID NO: 6), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 7), SGGS (SEQ ID NO: 4288), (XP)n, or any combination thereof, wherein $n$ is independently an integer between 1 and 30 , and wherein $X$ is any amino acid.
65. The fusion protein of claim 62 or 63 , wherein the linker comprises a covalent bond.
66. The fusion protein of claim 64, wherein the linker comprises the amino acid sequence (GGS)n, wherein $n$ is 1,3 , or 7 .
67. The fusion protein of claim 64, wherein the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
68. The fusion protein of claim 62, wherein the dCas9 domain and the nucleic acid editing domain are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
69. The fusion protein of claim 62, wherein the dCas9 domain and the nucleic acid editing domain are fused via a linker comprising the amino acid sequence (GGS)n, wherein $n$ is 1,3 , or 7 .
70. The fusion protein of claim 63, wherein the dCas9 domain and the UGI domain are fused via a linker comprising the amino acid sequence (GGGGS)n (SEQ ID NO: 5), (G)n, (EAAAK)n (SEQ ID NO: 6), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 7), SGGS (SEQ ID NO: 4288), (XP)n, or any combination thereof, wherein $n$ is independently an integer between 1 and 30 , and wherein X is any amino acid.
71. The fusion protein of claim 63, wherein the dCas9 domain and the UGI domain are fused via a linker comprising the amino acid sequence SGGS (SEQ ID NO: 4288).
72. The fusion protein of any one of claims 44-71, wherein the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker]-[dCas9 domain]-[optional linker]-[UGI].
73. The fusion protein of any one of claims 44-67 wherein the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker]-[UGI]-[optional linker]-[dCas9]; [UGI]-[optional linker]-[nucleic acid editing domain]-[optional linker]-[dCas9]; [UGI][optional linker]-[dCas9]-[optional linker]-[nucleic acid editing domain]; [dCas9]-[optional linker]-[UGI]-[optional linker]-[nucleic acid editing domain]; or [dCas9]-[optional linker][nucleic acid editing domain]-[optional linker]-[UGI].
74. The fusion protein of any one of claims 44-73, wherein the nucleic acid editing domain comprises a deaminase.
75. The fusion protein of claim 74 wherein the deaminase is a cytidine deaminase.
76. The fusion protein of claim 74 or 75 , wherein the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
77. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC1 deaminase.
78. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC2 deaminase.
79. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3A deaminase
80. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3B deaminase.
81. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3C deaminase.
82. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3D deaminase.
83. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3F deaminase.
84. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3G deaminase.
85. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC3H deaminase.
86. The fusion protein of any one of claims 74-76, wherein the deaminase is an APOBEC4 deaminase.
87. The fusion protein of claim 74 or 75 , wherein the deaminase is an activation-induced deaminase (AID).
88. The fusion protein of claim 74 or 75 , wherein the deaminase is an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
89. The fusion protein of claim 74 or 75 , wherein the deaminase is an APOBEC deaminase comprising a W90Y, a R126E, and a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
90. The fusion protein of claim 74 or 75 , wherein the deaminase comprises one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
91. The fusion protein of claim 74 or 75 , wherein the deaminase is an APOBEC deaminase comprising a W285Y, a R320E, and a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
92. The fusion protein of any one of claims 74-91, wherein the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse.
93. The fusion protein of any one of claims 74-92, wherein the deaminase is from a human.
94. The fusion protein of any one of claims 74-92, wherein the deaminase is from a rat.
95. The fusion protein of claim 74 or 75 , wherein the deaminase is an cytidine deaminase 1 from Petromyzon marinus (pmCDA1).
96. The fusion protein of any one of claims 74-76, wherein the deaminase is a rat APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 284).
97. The fusion protein of any one of claims 74-76, wherein the deaminase is a human APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 282).
98. The fusion protein of claim 95, wherein the pmCDA1 comprises an amino acid sequence set forth in (SEQ ID NO: 5738).
99. The fusion protein of claim 84, wherein the APOBEC3G is a human APOBEC3G comprising the amino acid sequence set forth in (SEQ ID NO: 275).
100. The fusion protein of claim 84 , wherein the APOBEC3G is a human APOBEC3G variant comprising the amino acid sequence set forth in any one of (SEQ ID NOs: 57395741).
101. The fusion protein of claim 74 or 75 , wherein the deaminase is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to any one of the amino acid sequences set forth in SEQ ID NOs: 266-284, 607-610, 5724-5736, and 5738-5741.
102. The fusion protein of claim 74 or 75 , wherein the deaminase comprises the amino acid sequence set forth in any one of SEQ ID NOs: 266-284, 607-610, 5724-5736, and 57385741.
103. The fusion protein of any one of claims 44-102, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to SEQ ID NO: 600 .
104. The fusion protein of any one of claims 44-103, wherein the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 600
105. The fusion protein of any one of claims 44-102, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least
$95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to any one of SEQ ID NOs: 322-324.
106. The fusion protein of any one of claims 44-102, wherein the UGI domain comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 322-324.
107. A fusion protein comprising: (i) a Cas9 nickase domain and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N -terminus of the Cas9 nickase domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
108. The fusion protein of claim 107, wherein the deaminase is rat APOBEC1 (SEQ ID NO: 284).
109. The fusion protein of claim 107 or 108 , wherein the deaminase is human APOBEC1 (SEQ ID NO: 282).
110. A fusion protein comprising: (i) a Cas9 nickase domain and (ii) an apolipoprotein B mRNA-editing complex 3 G (APOBEC3G) deaminase domain, wherein the deaminase domain is fused to the N -terminus of the Cas9 nickase domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
111. The fusion protein of claim 110, wherein the deaminase is a human APOBEC3G deaminase comprising an amino acid sequence at least $85 \%$ identical to the amino acid sequence set forth in (SEQ ID NO: 275).
112. The fusion protein of claim 110 or 111 , wherein the deaminase is a human APOBEC3G (SEQ ID NO: 275).
113. The fusion protein of claim 110, wherein the APOBEC3G is a human APOBEC3G variant comprising an amino acid sequence that is at least $85 \%$ identical to the amino acid sequence as set forth in any one of (SEQ ID NOs: 5739-5741).
114. The fusion protein of claim 110, wherein the APOBEC3G is a human APOBEC3G variant comprising the amino acid sequence set forth in any one of (SEQ ID NOs: 57395741).
115. A fusion protein comprising: (i) a Cas9 nickase domain and (ii) pmCDA1 domain, wherein the deaminase domain is fused to the N -terminus of the Cas9 nickase domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
116. The fusion protein of claim 115, wherein the pmCDA1 comprises an amino acid sequence that is at least $85 \%$ identical to the amino acid sequence as set forth in (SEQ ID NO: 5738).
117. The fusion protein of claim 115 or 116 , wherein the pmCDA1 comprises an amino acid sequence set forth in (SEQ ID NO: 5738).
118. The fusion protein of any one of claims 107-117, wherein the amino acid sequence of the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein $X$ is any amino acid except for $D$.
119. The fusion protein of any one of claims 107-118, wherein the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
120. The fusion protein of any one of claims 107-119, wherein the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
121. The fusion protein of any one of claims 107-120, wherein the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence that is at least $85 \%$ identical to the amino acid sequence as set forth in SEQ ID NO: 674.
122. The fusion protein of any one of claims 107-121, wherein the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 674.
123. The fusion protein of any one of claims 107-122, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to SEQ ID NO: 600.
124. The fusion protein of any one of claims 107-123, wherein the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 600
125. The fusion protein of any one of claims 107-122, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to any one of SEQ ID NOs: 322-324.
126. The fusion protein of any one of claims 107-122, wherein the UGI domain comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 322-324.
127. The fusion protein of any one of claims 107-126, wherein the fusion protein comprises the amino acid sequence set forth in any one of SEQ ID NOs: 594, 5743, 5745, and 5746.
128. A fusion protein comprising: (i) a Cas9 nickase (nCas9) domain; (ii) a nucleic acid editing domain; and (iii) a uracil glycosylase inhibitor (UGI) domain.
129. The fusion protein of claim 128, wherein the amino acid sequence of the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D .
130. The fusion protein of claim 128 or 129 , wherein the amino acid sequence of the Cas 9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID

NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
131. The fusion protein of any one of claims 128-130, wherein the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
132. The fusion protein of any one of claims 128-131, wherein the amino acid sequence of the Cas9 nickase domain comprises an amino acid sequence that is at least $85 \%$ identical to the amino acid sequence as set forth in SEQ ID NO: 674.
133. The fusion protein of any one of claims 128-131, wherein the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 674.
134. The fusion protein of any one of claims 128-133, wherein the Cas9 nickase domain comprises one or more of a N497X, R661X, Q695X, and Q926X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein $X$ is any amino acid.
135. The fusion protein of any one of claims 128-134, wherein the Cas9 nickase domain comprises one or more of a N497A, R661A, Q695A, and Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10 , or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
136. The fusion protein of any one of claims 128-135, wherein the Cas9 nickase domain comprises a N497A, R661A, Q695A, and Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
137. The fusion protein of any one of claims 128-136, wherein the Cas9 nickase domain comprises a Staphylococcus aureus (SaCas9).
138. The fusion protein of claim 137, wherein the SaCas 9 comprises the amino acid sequence SEQ ID NO: 4273.
139. The fusion protein of claim 137 or 138 , wherein the SaCas 9 comprises one or more of a E781K, N967K, or R1014H mutation of SEQ ID NO: 4273, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
140. The fusion protein of any one of claims 128-136, wherein the dCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
141. The fusion protein of any one of claims 128-136, wherein the dCas9 domain comprises one or more of a D1134V, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
142. The fusion protein of any one of claims 128-136, wherein the dCas9 domain comprises one or more of a D1134V, G1217R, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
143. The fusion protein of any of claims 128-142, wherein the nucleic acid editing domain is fused to the N -terminus of the Cas9 nickase domain.
144. The fusion protein of any one of claims 128-143, wherein the UGI domain is fused to the C -terminus of the Cas9 nickase domain.
145. The fusion protein of any one of claims 128-144, wherein the Cas9 nickase domain and the nucleic acid editing domain are fused via a linker.
146. The fusion protein of any one of claims 128-145, wherein the Cas9 nickase domain and the UGI domain are fused via a linker.
147. The fusion protein of claims 145 or 146 , wherein the linker comprises the amino acid sequence (GGGGS)n (SEQ ID NO: 5), (G)n, (EAAAK)n (SEQ ID NO: 6), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 7), SGGS (SEQ ID NO: 4288), (XP)n, or any combination thereof, wherein n is independently an integer between 1 and 30 , and wherein X is any amino acid.
148. The fusion protein of claim 145 or 146 , wherein the linker comprises a covalent bond.
149. The fusion protein of claim 147, wherein the linker comprises the amino acid sequence (GGS) n , wherein n is 1,3 , or 7 .
150. The fusion protein of claim 147, wherein the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
151. The fusion protein of claim 145 , wherein the nCas 9 domain and the nucleic acid editing domain are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
152. The fusion protein of claim 145, wherein the nCas9 domain and the nucleic acid editing domain are fused via a linker comprising the amino acid sequence (GGS)n, wherein $n$ is 1,3 , or 7 .
153. The fusion protein of claim 146, wherein the nCas9 domain and the UGI domain are fused via a linker comprising the amino acid sequence (GGGGS)n (SEQ ID NO: 5), (G)n, (EAAAK)n (SEQ ID NO: 6), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 7), SGGS (SEQ ID NO: 4288), (XP) $n$, or any combination thereof, wherein n is independently an integer between 1 and 30 , and wherein $X$ is any amino acid.
154. The fusion protein of claim 146, wherein the nCas9 domain and the UGI domain are fused via a linker comprising the amino acid sequence SGGS (SEQ ID NO: 4288).
155. The fusion protein of any one of claims 128-154 wherein the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker]-[Cas9 nickase]-[optional linker][UGI domain].
156. The fusion protein of any one of claims 128-154 wherein the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker]-[UGI domain]-[optional linker]-[ Cas9 nickase]; [UGI domain]-[optional linker]-[nucleic acid editing domain]-[optional linker]-[Cas9 nickase]; [UGI domain]-[optional linker]-[Cas9 nickase]-[optional linker][nucleic acid editing domain]; [Cas9 nickase]-[optional linker]-[UGI domain]-[optional linker]-[nucleic acid editing domain]; or [Cas9 nickase]-[optional linker]-[nucleic acid editing domain]-[optional linker]-[UGI domain].
157. The fusion protein of any one of claims 128-156, wherein the nucleic acid editing domain comprises a deaminase.
158. The fusion protein of claim 157 wherein the deaminase is a cytidine deaminase.
159. The fusion protein of claim 157 or 158 , wherein the deaminase is an apolipoprotein $B$ mRNA-editing complex (APOBEC) family deaminase.
160. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC1 deaminase.
161. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC2 deaminase.
162. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3A deaminase.
163. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3B deaminase.
164. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3C deaminase.
165. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3D deaminase.
166. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3F deaminase.
167. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3G deaminase
168. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC3H deaminase.
169. The fusion protein of any one of claims 157-159, wherein the deaminase is an APOBEC4 deaminase.
170. The fusion protein of claim 157 or 158 , wherein the deaminase is an activationinduced deaminase (AID).
171. The fusion protein of claim 157 or 158 , wherein the deaminase is an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
172. The fusion protein of claim 157 or 158 , wherein the deaminase is an APOBEC deaminase comprising a W90Y, a R126E, and a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
173. The fusion protein of claim 157 or 158 , wherein the deaminase comprises one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
174. The fusion protein of claim 157 or 158 , wherein the deaminase is an APOBEC deaminase comprising a W285Y, a R320E, and a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
175. The fusion protein of any one of claims 157-174, wherein the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse.
176. The fusion protein of any one of claims 157-175, wherein the deaminase is from a human.
177. The fusion protein of any one of claims 157-175, wherein the deaminase is from a rat.
178. The fusion protein of claim 157 or 158 , wherein the deaminase is an cytidine deaminase 1 from Petromyzon marinus ( pmCDA ).
179. The fusion protein of any one of claims 157-159, wherein the deaminase is a rat APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 284).
180. The fusion protein of any one of claims 157-159, wherein the deaminase is a human APOBEC 1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 282).
181. The fusion protein of claim 178, wherein the pmCDA1 comprises an amino acid sequence set forth in (SEQ ID NO: 5738).
182. The fusion protein of claim 167, wherein the APOBEC3G is a human APOBEC3G comprising the amino acid sequence set forth in (SEQ ID NO: 275).
183. The fusion protein of claim 167, wherein the APOBEC3G is a human APOBEC3G variant comprising the amino acid sequence set forth in any one of (SEQ ID NO: 5739-5741).
184. The fusion protein of claim 157 or 158 , wherein the deaminase is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to any one of the amino acid sequences set forth in SEQ ID NOs: 266-284, 607-610, 5724-5736 and 5738-5741.
185. The fusion protein of claim 157 or 158 , wherein the deaminase comprises the amino acid sequence set forth in any one of SEQ ID NOs: 266-284, 607-610, 5724-5736 and 57385741.
186. The fusion protein of any one of claims 128-185, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to SEQ ID NO: 600 .
187. The fusion protein of any one of claims 128-186, wherein the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 600.
188. The fusion protein of any one of claims 128-185, wherein the UGI domain comprises an amino acid sequence that is at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or at least $99.5 \%$ identical to any one of SEQ ID NOs: 322-324.
189. The fusion protein of any one of claims 128-185, wherein the UGI domain comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 322-324.
190. A complex comprising the fusion protein of anyone of claims 1-30, and a guide RNA (gRNA) bound to the Cas9 domain of the fusion protein.
191. A complex comprising the fusion protein of any one of claims 31-106, and a guide RNA (gRNA) bound to the dCas9 domain of the fusion protein.
192. A complex comprising the fusion protein of any one of claims 107-189 and a guide RNA (gRNA) bound to the Cas9 nickase (nCas9) domain of the fusion protein.
193. The complex of any one of claims 190-192, wherein the guide RNA is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence.
194. The complex of claim 193, wherein the guide RNA is $15,16,17,18,19,20,21,22$, $23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47$, 48,49 , or 50 nucleotides long.
195. The complex of any one of claims 190-194, wherein the guide RNA comprises a sequence of $15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$, $36,37,38,39$, or 40 contiguous nucleotides that is complementary to a target sequence.
196. The complex of any one of claims 190-195, wherein the target sequence is a DNA sequence.
197. The complex of claim 196, wherein the target sequence is in the genome of an organism.
198. The complex of claim 197, wherein the organism is a prokaryote.
199. The complex of claim 198, wherein the prokaryote is bacteria.
200. The complex of claim 197, wherein the organism is a eukaryote.
201. The complex of claim 200, wherein the organism is a plant.
202. The complex of claim 200, wherein the organism is a vertebrate.
203. The complex of claim 202, wherein the vertebrate is a mammal.
204. The complex of claim 203, wherein the mammal is a mouse or rat.
205. The complex of claim 203, wherein the mammal is human.
206. A method comprising contacting a nucleic acid molecule with the fusion protein of any one of claims 1-189 and a guide RNA, wherein the guide RNA is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence.

207 A method comprising contacting a nucleic acid molecule with the complex of any one of claims 190-205.
208. The method of claim 206 or 207, wherein the nucleic acid is DNA.
209. The method of claim 208, wherein the nucleic acid is double-stranded DNA.
210. The method of any one of claims 206-209, wherein the target sequence comprises a sequence associated with a disease or disorder.
211. The method of claim 210 , wherein the target sequence comprises a point mutation associated with a disease or disorder.
212. The method of claim 211, wherein the activity of the fusion protein, or the complex results in a correction of the point mutation.
213. The method of any one of claims 206-212, wherein the target sequence comprises a $T$ to C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder.
214. The method of claim 213, wherein the target sequence encodes a protein, and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to a wild-type codon.
215. The method of claim 214, wherein the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon.
216. The method of claim 215, wherein the deamination of the mutant C results in the codon encoding a wild-type amino acid.
217. The method of any one of claims 206-216, wherein the contacting is performed in vivo in a subject.

218 The method of any one of claims 206-216, wherein the contacting is performed in vitro.
219. The method of claim 217, wherein the subject has been diagnosed with a disease or disorder.
220. The method of any one of claims 210-219, wherein the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), desmin-related myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB1 protein, a mutant HRAS protein, or a mutant p53 protein.
221. The method of any one of claims 211-220, wherein the disease or disorder is associated with a $\mathrm{T}>\mathrm{C}$ or $\mathrm{A}>\mathrm{G}$ mutation in a gene selected from the genes disclosed in Table 1.
222. The method of any one of claims 211-220, wherein the disease or disorder is associated with a $\mathrm{T}>\mathrm{C}$ or $\mathrm{A}>\mathrm{G}$ mutation in a gene selected from the genes disclosed in Table 2 or 3 .
223. The method of any one of claims 206-222, wherein the guide RNA comprises a nucleotide sequence of any one of the protospacer sequences in Table 2 or Table 3.
224. A method for editing a nucleobase pair of a double-stranded DNA sequence, the method comprising:
a. contacting a target region of the double-stranded DNA sequence with a complex comprising a nucleobase editor and a guide nucleic acid, wherein the target region comprises a target nucleobase pair;
b. inducing strand separation of said target region;
c. converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase; and
d. cutting no more than one strand of said target region;
wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase and the method causes less than $20 \%$ indel formation in the double-stranded DNA sequence.
225. The method of claim 224, wherein the method causes less than $20 \%, 19 \%, 18 \%, 16 \%$, $14 \%, 12 \%, 10 \%, 8 \%, 6 \%, 4 \%, 2 \%$, or $1 \%$ indel formation.
226. The method of claim 224 or 225 , further comprising replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited basepair.
227. The method of any one of claims 224-226, wherein the efficiency of generating the intended edited basepair is at least $5 \%$.
228. The method of claim 227 , wherein the efficiency is at least $10 \%, 15 \%, 20 \%, 25 \%$, $30 \%, 35 \%, 40 \%, 45 \%$, or $50 \%$.
229. The method of claim 226 , wherein the ratio of intended products to unintended products at the target nucleotide is at least $2: 1,5: 1,10: 1,20: 1,30: 1,40: 1,50: 1,60: 1,70: 1$, $80: 1,90: 1,100: 1$, or $200: 1$.
230. The method of claim 226, wherein the ratio of intended point mutation to indel formation is greater than $1: 1,10: 1,50: 1,100: 1,500: 1$, or $1000: 1$.
231. The method of any one of claims 224-230, wherein the cut single strand is hybridized to the guide nucleic acid.
232. The method of any one of claims 224-231, wherein the cut single strand is opposite to the strand comprising the first nucleobase.
233. The method of any one of claims 224-232, wherein said first base is cytosine.
234. The method of any one of claims 224-233, wherein the second nucleobase is not a G , C, A, or T.
235. The method of any one of claims 224-234, wherein said second base is uracil.
236. The method of any one of claims 224-235, wherein the nucleobase editor comprises UGI activity.
237. The method of any one of claims 224-236, wherein the nucleobase editor comprises nickase activity.
238. The method of any one of claims 226-237, wherein the intended edited basepair is upstream of a PAM site.
239. The method of claim 238, wherein the intended edited base pair is $1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site.
240. The method of claim 239, wherein the intended edited basepair is downstream of a PAM site.
241. The method of claim 240, wherein the intended edited base pair is $1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides downstream stream of the PAM site.
242. The method of any one of claims 224-241, wherein the method does not require a canonical PAM site.
243. The method of claim 242, wherein the canonical PAM sit comprises NGG, wherein N is $\mathrm{A}, \mathrm{T}, \mathrm{C}$, or G .
244. The method of any one of claims 224-243, wherein the nucleobase editor comprises a linker.
245. The method of claim 244, wherein the linker is 1-25 amino acids in length.
246. The method of claim 244 or 245 , wherein the linker is $5-20$ amino acids in length.
247. The method of any one of claims 244-246, wherein the linker is $10,11,12,13,14,15$, $16,17,18,19$, or 20 amino acids in length.
248. The method of any one of claims 224-247, wherein the target region comprises a target window, wherein the target window comprises the target nucleobase pair.
249. The method of claim 248 , wherein the target window comprises 1-10 nucleotides.
250. The method of claim 248, wherein the target window is $1-9,1-8,1-7,1-6,1-5,1-4,1-$ 3, 1-2, or 1 nucleotides in length.
251. The method of claim 248, wherein the target window is $1,2,3,4,5,6,7,8,9,10,11$, $12,13,14,15,16,17,18,19$, or 20 nucleotides in length.
252. The method of claim any one of claims 224-251, wherein the intended edited base pair occurs within the target window.
253. The method of claim any one of claims 224-252, wherein the target window comprises the intended edited base pair.
254. The method of any one of claims 224-253, wherein the nucleobase editor comprises any one of the fusion proteins of claims 1-189
255. A method for editing a nucleobase pair of a double-stranded DNA sequence, the method comprising:
a. contacting a target region of the double-stranded DNA sequence with a complex comprising a nucleobase editor and a guide nucleic acid, wherein the target region comprises a target nucleobase pair;
b. inducing strand separation of said target region;
c. converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase;
d. cutting no more than one strand of said target region;
wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase; and
e. replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited basepair, wherein the efficiency of generating the intended edited basepair is at least $5 \%$.
256. The method of claim 255 , wherein the efficiency is at least $5 \%, 10 \%, 15 \%, 20 \%$, $25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, or $50 \%$.
257. The method of claim 255 or 256 , wherein the method causes less than $19 \%, 18 \%$, $16 \%, 14 \%, 12 \%, 10 \%, 8 \%, 6 \%, 4 \%, 2 \%$, or $1 \%$ indel formation.
258. The method of any one of claims 255-257, wherein the ratio of intended product to unintended products at the target nucleotide is at least $2: 1,5: 1,10: 1,20: 1,30: 1,40: 1,50: 1$, $60: 1,70: 1,80: 1,90: 1,100: 1$, or $200: 1$.
259. The method of any one of claims 255-258, wherein the ratio of intended point mutation to indel formation is greater than $1: 1,10: 1,50: 1,100: 1,500: 1$, or $1000: 1$.
260. The method of any one of claims 255-259, wherein the cut single strand is hybridized to the guide nucleic acid.
261. The method of claim any one of claims 255-260, wherein the cut single strand is opposite to the strand comprising the first nucleobase.
262. The method of any one of claims 255-261, wherein said first base is cytosine.
263. The method of any one of claims 255-262, wherein the second nucleobase is not G, C, A, or T.
264. The method of any one of claims 255-263, wherein said second base is uracil.
265. The method of any one of claims 255-264, wherein the nucleobase editor comprises UGI activity.
266. The method of any one of claims 255-265, wherein the nucleobase edit comprises nickase activity.
267. The method of any one of claims 255-266, wherein the intended edited basepair is upstream of a PAM site.
268. The method of claim 267, wherein the intended edited base pair is $1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site.
269. The method of any one of claims 255-266, wherein the intended edited basepair is downstream of a PAM site.
270. The method of claim 269 , wherein the intended edited base pair is $1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides downstream stream of the PAM site.
271. The method of any one of claims 255-270, wherein the method does not require a canonical PAM site.
272. The method of claim 271, wherein the canonical PAM site comprises NGG, wherein N is $\mathrm{A}, \mathrm{T}, \mathrm{C}$, or G .
273. The method of any one of claims 255-272, wherein the nucleobase editor comprises a linker.
274. The method of claim 273, wherein the linker is 1-25 amino acids in length.
275. The method of claim 274 or 275 , wherein the linker is $5-20$ amino acids in length.
276. The method of any one of claims 274-275, wherein the linker is $10,11,12,13,14,15$, $16,17,18,19$, or 20 amino acids in length.
277. The method of any one of claims 274-27, wherein the target region comprises a target window, wherein the target window comprises the target nucleobase pair.
278. The method of claim 277 wherein the target window comprises 1-10 nucleotides.
279. The method of claim 277, wherein the target window is $1-9,1-8,1-7,1-6,1-5,1-4,1-$ $3,1-2$, or 1 nucleotides in length.
280. The method of claim 277, wherein the target window is $1,2,3,4,5,6,7,8,9,10,11$, $12,13,14,15,16,17,18,19$, or 20 nucleotides in length.
281. The method of any one of claims 277-280, wherein the intended edited base pair occurs within the target window.
282. The method of any one of claims 277-281, wherein the target window comprises the intended edited base pair.
283. The method of any one of claims 255-282, wherein the nucleobase editor comprises any one of the fusion proteins of claims 1-189
284. A nucleic acid-guided deaminase coupled to an inhibitor of base excision repair.
285. The nucleic acid-guided deaminase of claim 284 comprising an initiator of mismatch repair.
286. The nucleic acid-guided deaminase of claim 284 comprising a nickase.
287. A method for editing a nucleobase pair of a double-stranded DNA sequence, the method comprising:
a. contacting a target region of the double-stranded DNA sequence with a nucleic acidguided deaminase, wherein the target region comprises a target nucleobase pair;
b. converting a first nucleobase of said target nucleobase pair of the target region to a second nucleobase; and
c. inhibiting base excision repair of the second nucleobase.
288. The method of claim 287 further comprising nicking the non-edited strand of the target double-stranded DNA sequence.
289. The method of claim 287 further comprising initiating mismatch repair to convert the nucleobase complementary to the first nucleobase on the non-edited strand to a nucleobase complementary to the second nucleobase.
290. The method of claim 287 further comprising inducing strand separation in the target region.
291. A method for editing a nucleobase pair of a double-stranded DNA sequence, the method comprising:
a. contacting a target region of the double-stranded DNA sequence with a nucleic acidguided deaminase, wherein the target region comprises a target nucleobase pair;
b. converting a first nucleobase of said target nucleobase pair in the target region to a second nucleobase; and
c. initiating mismatch repair to convert the nucleobase complementary to the first nucleobase on the non-edited strand to a nucleobase complementary to the second nucleobase.
292. The method of claim 291 further comprising inhibiting base excision repair of the second nucleobase.
293. The method of claim 291 further comprising inducing strand separation in the target region.
294. The method of claim 287 or 291, wherein the nucleic acid-guided deaminase is a nucleic acid-guided cytidine deaminase.
295. A kit comprising a nucleic acid construct, comprising
(a) a nucleic acid sequence encoding the fusion protein of any one of claims 1-189; and
(b) a heterologous promoter that drives expression of the sequence of (a).
296. The kit of claim 256 , further comprising an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
297. A polynucleotide encoding the fusion protein of any one of claims 1-189.
298. A vector comprising a polynucleotide of claim 258.
299. The vector of claim 259 , wherein the vector comprises a heterologous promoter driving expression of the polynucleotide.
300. A cell comprising the fusion protein of any one of claims 1-189.
301. A cell comprising the complex of any of claims 190-205.
302. A cell comprising the nucleic acid molecule encoding the fusion protein of any one of claims 1-189.
40.60
35.00
30.00
25,00
25.00
20.00
15.00
10.0 O
5.00
0.00

4 400se
FIGURE 1


FIGURE 2


FIGURE 3



$$
\begin{array}{lllllllllllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 18
\end{array}
$$

FIGURE 5



FIGURE 7


FIGURE 8

| EMX1 |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{6}$ | $\mathrm{C}_{10}$ |
| :---: | :---: | :---: | :---: | :---: |
| O UM XTEN | A | 0.1\% | 0.1\% | 0.1\% |
|  | C | 99.8\% | 99.8\% | 99.8\% |
|  | G | 0.0\% | 0.0\% | 0.1\% |
|  | T | 0.0\% | 0.1\% | 0.0\% |
|  |  |  |  |  |
| 1.85 UM XTEN | A | 0.1\% | 0.0\% | 0.1\% |
|  | C | 60.4\% | 61.0\% | 99.1\% |
|  | G | 0.0\% | 0.0\% | 0.1\% |
|  | T | 39.5\% | 39.0\% | 0.7\% |


| FANCF |  | $\mathrm{C}_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O UM XTEN | A | 0.1\% | 0.1\% | 0.1\% | 0.1\% |
|  | C | 99.8\% | 99.8\% | 99.9\% | 99.9\% |
|  | G | 0.0\% | 0.1\% | 0.0\% | 0.0\% |
|  | T | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  |  |  |  |  |  |
| 1.85 UM XTEN | A | 0.1\% | 0.1\% | 0.1\% | 0.1\% |
|  | C | 63.9\% | 64.7\% | 65.0\% | 72.6\% |
|  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 36.0\% | 35.1\% | 34.9\% | 27.3\% |


| HEK293 site 2 |  | $\mathrm{C}_{4}$ | $\mathrm{C}_{6}$ | $\mathrm{C}_{11}$ | HEK293 site 3 |  | $C_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 UMXTEN | A | 0.1\% | 0.1\% | 0.1\% | 0 UM XTEN | A | 0.1\% | 0.1\% | 0.0\% | 0.1\% |
|  | C | 99.9\% | 99.9\% | 99.9\% |  | C | 99.8\% | 99.9\% | 99.9\% | 99.9\% |
|  | G | 0.0\% | 0.0\% | 0.0\% |  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 0.0\% | 0.0\% | 0.1\% |  | T | 0.1\% | 0.0\% | 0.0\% | 0.0\% |
|  |  |  |  |  |  |  |  |  |  |  |
| 1.85 UM XTEN | A | 0.1\% | 0.1\% | 0.1\% | 1.85 UM XTEN | A | 0.1\% | 0.1\% | 0.0\% | 0.1\% |
|  | C | 80.6\% | 76.9\% | 99.6\% |  | C | 92.2\% | 74.8\% | 71.5\% | 96.6\% |
|  | G | 0.0\% | 0.0\% | 0.0\% |  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 19.3\% | 22.9\% | 0.3\% |  | T | 7.7\% | 25.1\% | 28.5\% | 3.3\% |


| HEK293 site 4 |  | $C_{3}$ | $C_{5}$ | $C_{8}$ | $C_{11}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O UM XTEN | A | $0.1 \%$ | $0.0 \%$ | $0.1 \%$ | $0.0 \%$ |
|  | C | $99.8 \%$ | $99.9 \%$ | $99.8 \%$ | $99.9 \%$ |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |
|  | T | $0.0 \%$ | $0.0 \%$ | $0.1 \%$ | $0.0 \%$ |
|  |  |  |  |  |  |
| 1.85 UM XTEN | A | $0.1 \%$ | $0.1 \%$ | $0.1 \%$ | $0.1 \%$ |
|  | C | $98.8 \%$ | $60.1 \%$ | $97.0 \%$ | $99.4 \%$ |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |
|  | T | $1.1 \%$ | $39.8 \%$ | $2.9 \%$ | $0.5 \%$ |


| RNF2 |  | $C_{3}$ | $C_{6}$ |
| :--- | :--- | :--- | :--- |
| 0 UM XTEN | A | $0.1 \%$ | $0.0 \%$ |
|  | $C$ | $99.9 \%$ | $99.9 \%$ |
|  | $G$ | $0.0 \%$ | $0.0 \%$ |
|  | $T$ | $0.0 \%$ | $0.0 \%$ |
|  |  |  |  |
| 8.8 UM XTEN | A | $0.1 \%$ | $0.0 \%$ |
|  | $C$ | $59.1 \%$ | $57.8 \%$ |
|  | $G$ | $0.0 \%$ | $0.0 \%$ |
|  | $T$ | $40.8 \%$ | $42.1 \%$ |

FIGURE 9

| EMX1 |  | $C_{5}$ | $\mathrm{C}_{6}$ | $\mathrm{C}_{10}$ |
| :---: | :---: | :---: | :---: | :---: |
| untreated | A | 0.0\% | 0.0\% | 0.0\% |
|  | C | 99.5\% | 99.7\% | 100.0\% |
|  | G | 0.0\% | 0.1\% | 0.0\% |
|  | $T$ | 0.5\% | 0.2\% | 0.0\% |
| XTEN | A | 0.7\% | 0.5\% | 0.0\% |
|  | C | 93.5\% | 95.8\% | 100.0\% |
|  | G | 2.1\% | 0.3\% | 0.0\% |
|  | T | 3.6\% | 3.3\% | 0.0\% |
| XTEN-UGI | A | 0.2\% | 0.0\% | 0.0\% |
|  | C | 81.8\% | 82.5\% | 100.0\% |
|  | G | 0.6\% | 0.3\% | 0.0\% |
|  | T | 17.4\% | 17.1\% | 0.0\% |


| FANCF |  | $\mathrm{C}_{6}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | 0.0\% | 0.0\% | 0.2\% | 0.1\% |
|  | C | 99.9\% | 99.8\% | 99.8\% | 99.9\% |
|  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 0.1\% | 0.1\% | 0.0\% | 0.0\% |
| XTEN | A | 0.3\% | 0.1\% | 0.0\% | 0.0\% |
|  | C | 98.1\% | 99.2\% | 99.0\% | 99.8\% |
|  | G | 0.4\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 1.2\% | 0.7\% | 1.0\% | 0.2\% |
| XTEN-UGI | A | 0.0\% | 0.0\% | 0.1\% | 0.0\% |
|  | C | 93.2\% | 93.5\% | 93.4\% | 98.2\% |
|  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 6.7\% | 6.5\% | 6.5\% | 1.8\% |


| HEK293 site 2 |  | $\mathrm{C}_{4}$ | $\mathrm{C}_{6}$ | $\mathrm{C}_{11}$ |
| :---: | :---: | :---: | :---: | :---: |
| untreated | A | 0.3\% | 0.2\% | 0.2\% |
|  | C | 99.7\% | 99.7\% | 99.7\% |
|  | G | 0.0\% | 0.0\% | 0.0\% |
|  | T | 0.0\% | 0.0\% | 0.0\% |
| XTEN | A | 0.3\% | 0.3\% | 0.3\% |
|  | C | 99.7\% | 99.4\% | 99.7\% |
|  | G | 0.0\% | 0.3\% | 0.0\% |
|  | T | 0.0\% | 0.0\% | 0.0\% |
| XTEN-UGI | A | 0.3\% | 0.2\% | 0.2\% |
|  | C | 98.8\% | 98.2\% | 99.8\% |
|  | G | 0.0\% | 0.3\% | 0.0\% |
|  | T | 0.9\% | 1.3\% | 0.0\% |


| HEK293 site 2 |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | C | 100.0\% | 100.0\% | 100.0\% | 99.9\% |
|  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
|  | T | 0.0\% | 0.0\% | 0.0\% | 0.1\% |
|  |  |  |  |  |  |
| XTEN | A | 0.0\% | 0.6\% | 0.3\% | 0.1\% |
|  | C | 100.0\% | 95.8\% | 95.8\% | 99.2\% |
|  | G | 0.0\% | 0.2\% | 0.7\% | 0.4\% |
|  | T | 0.0\% | 3.4\% | 3.2\% | 0.3\% |
|  |  |  |  |  |  |
| XTEN-UGI | A | 0.0\% | 0.3\% | 0.3\% | 0.0\% |
|  | C | 96.8\% | 83.0\% | 79.2\% | 98.5\% |
|  | G | 0.0\% | 0.0\% | 1.1\% | 0.2\% |
|  | T | 3.2\% | 16.8\% | 19.4\% | 1.3\% |


| HEK293 site 4 |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | 0.0\% | 0.4\% | 0.0\% | 0.0\% |
|  | C | 99.8\% | 97.6\% | 99.9\% | 100.0\% |
|  | G | 0.0\% | 1.0\% | 0.0\% | 0.0\% |
|  | T | 0.2\% | 1.0\% | 0.0\% | 0.0\% |
|  |  |  |  |  |  |
| XTEN | A | 0.0\% | 1.1\% | 0.0\% | 0.0\% |
|  | C | 99.6\% | 92.2\% | 99.9\% | 100.0\% |
|  | G | 0.0\% | 2.2\% | 0.0\% | 0.0\% |
|  | T | 0.4\% | 4.5\% | 0.0\% | 0.0\% |
|  |  |  |  |  |  |
| XTEN-UGI | A | 0.0\% | 0.5\% | 0.0\% | 0.0\% |
|  | C | 99.4\% | 86.7\% | 99.1\% | 100.0\% |
|  | G | 0.0\% | 1.8\% | 0.0\% | 0.0\% |
|  | T | 0.6\% | 11.0\% | 0.9\% | 0.0\% |


| RNF2 |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{6}$ |
| :---: | :---: | :---: | :---: |
| untreated | A | 0.0\% | 0.0\% |
|  | C | 99.9\% | 99.5\% |
|  | G | 0.0\% | 0.2\% |
|  | T | 0.0\% | 0.3\% |
|  |  |  |  |
| XTEN | A | 0.0\% | 0.0\% |
|  | C | 99.8\% | 99.3\% |
|  | G | 0.0\% | 0.2\% |
|  | T | 0.2\% | 0.5\% |
|  |  |  |  |
| XTEN-UGI | A | 0.0\% | 0.0\% |
|  | C | 99.6\% | 99.1\% |
|  | G | 0.0\% | 0.4\% |
|  | T | 0.4\% | 0.5\% |

FIGURE 10



FIGURE 11B


FIGURE 11C

13/145


SUBSTITUTE SHEET (RULE 26)
TC $\mathrm{CC}_{3} \mathrm{AC}_{5} \mathrm{CC}_{7} \mathrm{GTGGATTTATTTATGG}^{\text {ITM }}$

$\mathrm{CC}_{1} \mathrm{TC}_{3} \mathrm{GC}_{5} \mathrm{AC}_{7} \mathrm{GTGGATTTATTTATGG}^{\prime}$
$\mathrm{TCC}_{2} \mathrm{TC}_{4} \mathrm{GC}_{6} \mathrm{AC}_{8} \mathrm{GTGGATTTATTATGG}^{\text {ITA }}$
$\mathrm{AC}_{1} \mathrm{CC}_{3} \mathrm{TC}_{5} \mathrm{GC}_{7} \mathrm{GTGGATTTATTTATGG}^{\text {ITA }}$ $\mathrm{TAC}_{2} \mathrm{CC}_{4} \mathrm{TC}_{6} \mathrm{GC}_{8} \mathrm{GTGGATTTATTATGG}^{\text {GTA }}$
$\mathrm{GC}_{1} \mathrm{AC}_{3} \mathrm{CC}_{5} \mathrm{TC}_{7} \mathrm{GTGGATTTATTTATGG}^{2}$
$\mathrm{TGC}_{2} \mathrm{AC}_{4} \mathrm{CC}_{6} \mathrm{TC}_{8} \mathrm{GTGGATTTATTATGG}^{\text {ITG }}$



spеәд би!
FIGURE 12B


FIGUIRE 13A



FIGURE 13C



FIGURE 15A


FIGURE 15B


FIGURE 15C


FIGURE 15D

APOE4Cys112Arg: APOE4 Cys $158 \mathrm{Arg}:$ CTNNBI Thr 1 Ala: HRAS GInelarg: p63 Tyr163Cys: p53 Tyr236Cys: p53 Asn239Asp:

5-gGAGGACGTGC GCGGCCGCOTGQ $5-\mathrm{GAAGC}_{5} G C C T G G C A G T G T A C C A G O$ 5-CTGTGGC.AGTGGCACGAGAATGG $5 . \mathrm{CCTCCC}_{5} \mathrm{GGCCGGCGGTATCCAGQ}$ 5 -GCTGC AGATGGCCATGGCGCGQ 5 -ACACATGC AGTIGTAGTGGATGC 5.TOTC ACACATGTAGTTGTAGTGS

FIGURE 16A


FIGURE 16B

Protospacer and PAM sequenoe: 5 TTCCCCCCCCOATMATTTATOM.

| Seguence | \% of total reads |
| :---: | :---: |
| ccccccce | 62.4 |
| TTMTICC | 18.2 |
| TITTTE | 13.4 |
| TTTT]T | 3.3 |
| TCCCCCCC | 0.8 |
| CCCCTTCC | 0.3 |
| CCCTHTCC | 0.3 |
| TTTTCCC | 0.3 |
| cccetcce | 0.3 |

FIGURE 17

EMXI: GAGTC5 $\mathrm{C}_{6}$ GAGCAGAAGAAGAAGQQ
FANCF:
HEK293 site 2: GAAC AC. AAAGCATAGACTGCGGC HEK293 site 3: GCCC $\mathrm{C}_{8}$ AGACTGAGCACGTGATGQ HEK293 site 4: GGCAC,TGCGGCTGGAGGTCCGGQ RNF2: GTC. ATC $_{6}$ TTAGTCATTACCTGAGO

FIGURE 18A

| EMX1 | C $_{5}$ | C $_{5}$ |
| :---: | :---: | :---: |
| NBE1 | $6.2 \%$ | $6.5 \%$ |
| NBE1 + UGI | $9.7 \%$ | $10.1 \%$ |
| NBE2 | $8.0 \%$ | $8.7 \%$ |

FIGURE 18B

| FANCF | $\mathrm{C}_{6}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{40}$ |
| :---: | :---: | :---: | :---: | :---: |
| NBE1 | $3.7 \%$ | $3.2 \%$ | $3.4 \%$ | $2.4 \%$ |
| NBE1+UG1 | $7.5 \%$ | $7.6 \%$ | $7.5 \%$ | $1.6 \%$ |
| NBE2 | $4.7 \%$ | $4.6 \%$ | $4.6 \%$ | $0.8 \%$ |

FIGURE 18C

| HEK293 site 2 | $\mathrm{C}_{4}$ | $\mathrm{C}_{6}$ |
| :---: | :---: | :---: |
| NBE1 | $0.4 \%$ | $0.4 \%$ |
| NBE1 + UG1 | $1.6 \%$ | $2.6 \%$ |
| NBE2 | $3.4 \%$ | $5.9 \%$ |

FIGURE 18D

22/145

| HEK293 site 3 | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ |
| :---: | :---: | :---: |
| NBE1 | $2.0 \%$ | $1.9 \%$ |
| NBE1 + UGI | $6.5 \%$ | $6.7 \%$ |
| NBE2 | $10.0 \%$ | $12.5 \%$ |

FIGURE 18E

| HEK293 site 4 | $\mathrm{C}_{5}$ |
| :---: | :---: |
| NBE1 | $1.4 \%$ |
| NBE + UGI | $5.4 \%$ |
| NBE2 | $8.2 \%$ |

FIGURE 18F


FIGURE 18G

| Non-protospacer Cs | C | $T$ |
| :---: | :---: | :---: |
| untreated | $99.93 \%$ | $0.03 \%$ |
| NBE1 | $99.95 \%$ | $0.03 \%$ |
| NBE1 + UGI | $99.91 \%$ | $0.06 \%$ |
| NBE2 | $99.92 \%$ | $0.04 \%$ |

FIGURE 18H


FIGURE 19


FIGURE 20


FIGURE 21

| ExX |  |  | Q | A | G | T | 05 | 0 | 6 | A | $Q$ | C | A | $G$ | A | A | 9 | A | A | $G$ | A | A | \％ | \％ | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1850 WhEE？ | A | 02 | 2 | 4：4 | 03 | 01 | \＃n | 00 | 03 | U3I | 4 0 | 0. | 4 | 62 | 3：4 | 4 | 03 | Msily | 4．4 | 62 | 4： | 94： | 0.1 | 02 | 02 |
|  | 0 |  |  | 0 | 00 | 03 | SII | 6IS | 50 | 00 | 00 | 34\％ | 00 | 30 | 00 | 0.2 | 03 | 06 | 00 | 00 | 00 | 2.3 | 00 | 03 | 00 |
|  | G | 4 | 4 | 00 | 83 | 00 | 0 | 00 | s\％ | 00 | צ： | 0.1 | 00 | \＄92 | 00 | 00 | S47 | 00 | 013 | \％ 4 | 30 | 00 | \＄8 | \＄8 | 48 |
|  | I | ． | \％ | 00 | 00 | 59 | \＄ | 3 | 0 O | 01 | 0.1 | Q3 | 00 | 0.6 | 01 | 010 | 0. | 03 | 00 | 00 | 06 | 0 | 00 | 0 b | 00 |
| FANCF |  |  | G | 9 | A | A | T | 0 | 0 | C 8 | T | T | am | T | G | C | A | 6 | c | A | C | 0 | \％ | 0 | $\%$ |
| 1850 Weme | A | 0.1 | 0 | 0.2 | \％3 | 4.9 | 06 | 0.1 | 01 | 01 | m | 01 | 0. | 0 | 0.1 | 0.1 | sal | 0.2 | 02 | 58 | 0.1 | 9． | 0.1 | 03 | 0.4 |
|  | c | 00 | 0 | 00 | 0.1 | 01 | 00 | St | St | SIL | 00 | 00 | 7x | 00 | 00 | 384 | 01 | 0 n | 47 | 4.3 | 32 | 3：3 | 00 | 0 m | 00 |
|  | G | 4 | 3 8 | SI | 00 | 00 | 03 | 00 | 00 | 20 | 00 | 00 | 00 | 00 | S88 | 0.2 | 00 | 39 | 02 | 00 | 31 | 0. | 00 | 89 | 4is |
|  | T | 0 | 0 | 01 | 00 | 03 | ¢9 | 4 | \％ | \％ | 48 | 43 |  | 348 | 0.1 | 03 | 00 | $0 \cdot 3$ | 0 B | 00 | 00 | \％ 0 | 4 4 | 03 | 0.1 |
| Hek293 sle 2 |  | Q | Q | A | A | 4 | A | 03 | A | A | A | 6 | 0 | A | T | A | $\xi$ | A | 0 | T | 9 | 0 | 8 | 0 | 0 |
|  | A | 01 | 11 | III | 98. | 0.1 | Sis | 0.1 | \＄4． | Wal | 44 | 0.1 | 0 O | Sux | 00 | SS | 0.2 | KuII | 01 | 00 | 0.1 | 4. | 0.1 | 0.2 | 02 |
|  | c | 00 | 00 | 08 | 01 | Sil | 00 | 764 | 00 | 03 | $0 \cdot$ | 00 | \＄98 | 00 | 08 | 01 | 00 | 00 | S 3 | 00 | 00 | 34 | 00 | 03 | 00 |
|  | G | S | 9 | 00 | 00 | 00 | 0 m | 0 B | 06 | 00 | 00 | 43 | 00 | 0 | 03 | 00 | S4 | 0 | 010 | 01 | 431 | 00 | 344 | 943 | 43 |
|  | I | 0 | \％ | 00 | 00 | 43 | 03 | \％ | 00 | 00 | 00 | 0.1 | Q3 | 00 | $3{ }^{3}$ | 00 | 01 | 06 | $0 \cdot 1$ | 842 | 00 | 01 | 06 | 寿 | 0.0 |
| Hekras sile 3 |  | $G$ | $G$ | $Q$ | C | C4 | 05 | A | $G$ | A | C | $T$ | 6 | A | $G$ | c | A | $\varepsilon$ | 6 | T | 9 | A | 7 | \％ | 6 |
| 185 Wuabe？ | A | 0. | 0 | 0. | 0 O | 01 | 00 | 34： | 02 | 493 | 8 B | 00 | 32 | \＄45 | 0. | 0 1 | \＄114 | 0 | 0. | 00 | 0.2 | W： | 00 | 僻 | 01 |
|  | c | 00 | 03 | 00 | 3 m 2 | 4 | IIS | 00 | 00 | 0.3 | ＋48 | 00 | 00 | 80 | 00 | Sas | 0.0 | 39\％ | 00 | 00 | 00 | 13 | 00 | 03 | 80 |
|  | O | \＄ | 3 ${ }^{\text {a }}$ | 93 | 00 | 00 | 00 | 00 | 4： | 00 | 0.0 | 03 | 393 | 00 | \＄3\％ | 00 | 00 | 0.3 | 48 | 00 | \＄3 | 00 | 00 | 5 | 5 |
|  |  |  | 明 | 31 | 7.7 | \％ | St | 00 | 00 | 0. | 33 | 443 |  | 06 | 06 | 0. | 00 | 0.2 | 00 | \＄ 4 | 3 00 | 00 | 3mis | 0 | 06 |

25／145

| 4Ekgs site 3 |  | 6 | 6 | 0 | Ca | 05 | A | 6 | A | $C$ | T | 6 | A | $G$ | C | A | C | $G$ | T | 3 | A | I | 6 | 䚻 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | 02 | $0 \cdot$ | 惊 | U | 00 | \％ | 0.2 | \＄4． | $0 \cdot 1$ | 00 | 02 | \％ | 0 | 31 | Wis | $0 \cdot$ | 0.1 | （1） | 02 | 緃 | 6m | 0 | 0 a |
|  | C | 00 | 00 | 4 | 4＊ | \＄ | 00 | 0 m | 00 | \％ | 0.0 | 00 | 0 0 | 00 | 4 | 00 | Y | 00 | 0 m | 00 | 13 | 03 | 60 | 00 |
|  | 6 | 4． | \＄s， | 峧 | D0 | 00 | 00 | Wi | 06 | 0． | 0.3 | \＄4． | 03 | 4i\％ | 00 | but | 00 | i | 00 | 4． | 00 | 03 | 4． | 4 |
|  | T | 主 | 01 | 7.7 | K |  | （1） | 0 m | ＠ | 3.3 | 4． | 0.1 | 00 | 01 | 0.1 | 0.6 | 0.2 | 01 | 紋 | 61 | 0］ |  | ＠ 0 | 0.6 |

26／145

| 维K2935ten |  | $G$ | 6 | 0 | A | $\mathrm{C}_{3}$ | T | 6 | 6 | $G$ | $\oint$ | 6 | $T$ | 6 | 6 | 摂 | 0 | 6 | ？ | 9 | 6 | 0 | 0 | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | 0.3 | 0.2 |  | WII | 03 | 30.0 | 02 | 01 | 0.2 | 0.2 | \＃1 | 0 B | 03 | 0.5 | 3i | 0 03 | 01 | 00 | 0.3 | E． | 01 | 02 | 0.2 |
|  | c |  | 00 | \％\％ | 00 | W， | 0.0 | 0 m | 9\％ | 00 | 6．${ }^{2}$ | 4， | 00 | 00 | 0.0 | 0.0 | $0]$ | 00 | 00 | 0.0 | 0.0 | 00 | 00 | 00 |
|  | 6 | 4i | kil | 00 | 00 | 03 | \｛0 | 3幺 | 00 | 3． | 4\％ | ＠0 | 00 | \％ | ， | \}迷 | ， | 4\％ | 01 | 4． |  | 4i | \％ | \％ |
|  | 1 | 线 | 01 | 11 | 00 | \＄ | Mis | 01 | 23 | 03 | 全 1 | 05 | 䜌 | 06 | 0.1 | ¢0 | 00 | 00 | 4． | ¢！ | ［1） | 0.1 | 00 | 011 |


| PWF2 |  | $\xi$ | T | O | A | 1 | $\mathrm{C}_{6}$ | T | T | A | $\}$ | T | C， 2 | A | T | T | A | 0 | C | 1 | 6 | A | 0 | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 685䜌俎E | A | 0.1 | 0.0 |  | Y： | 0 E | 00 | 0. | 03 | \％ 4 | 0.3 | 00 | 0 0， | \＄4． | 0 0） | 00 | \＄ | 01 | 00 | 03 | 0．3 | 9 | 00 | 0 C |
|  | C | 03 | 0 O | ） | 00 | 0 O | \＄ | 01 | 03 | 0 | 0.6 | 00 | \％${ }^{2}$ | 00 | 00 | 0．6 | 景 | 4． | \％ | 00 | 00 | 锊 | 00 | 0 O |
|  | 0 | 4 | 0.1 | 约 | 00 | 03 | 00 | 0 m | 03 | 00 | S\％ | 0. | 01 | 00 | 03 | 6建 | 01 | 00 | 00 | 00 | 絃 | 00 | K | 3 |
|  | T | （3） | 4， | \＄ | 00 | 䜌 | \％ | \％il | \＃ıs | 00 | 包 | 4k | 10.4 | 00 | 交1 | kil | 00 | 00 | 0 b | 4 | （1） | 00 | 01 | 06 |

FIGURE 22 （CONTINUED）
OUEE-5ea conns

E筑

NBE




3123
1455
${ }^{\circ}$

1445





| A | A | 6 | T | E | 0 | 9 | A | 6 | § | A | G | A | \% | G | A | A | 6 | A | A | A | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0014 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| @ 03 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 60 03 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 91 as |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




Ex

Ex
Wbeaze
NBE
WEy
NEE
 unteratad
NEE
WEE
9
GUDE-sectcombs


713E-Ser wounts

Fancy of kract



报的
8




FIGURE 24 (CONTINUED)
buneserconts

FIGURE 25
WUOE-seq COMOB



|  | 3 | A | 8 | \& | 0 | A | 6 | A | 0 | 3 | 6 | 8 | 8 | C | 缶 | 0 | 6 | T | 6 | \& | 6 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢mbextay |  |  | §6 |  | 06 |  |  |  | 30 |  |  |  |  | $0 \cdot 6$ |  | 0.0 |  |  |  |  |  |  |  |
| NEES |  |  | 06 |  | 06 |  |  |  | 32 |  |  |  |  | 06 |  | 0.3 |  |  |  |  |  |  |  |
| WEE2 |  |  | 06 |  | 0.6 |  |  |  | 33 |  |  |  |  | 0.a |  | 0.3 |  |  |  |  |  |  |  |
| NEE3 |  |  | \% |  | 0.6 |  |  |  | \% ${ }^{3}$ |  |  |  |  | 60 |  | 0.3 |  |  |  |  |  |  |  |



 weyter
NBE!
y
號 k8e3
OUDE－Ser Cowns

|  | 9 | 0 | C | A | 0 | ？ | 3 | \％ | $\bigcirc$ | 6 | 0 | T | 8 | $\xi$ | A | 6 | $G$ | $T$ | 6 | 8 | 3 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 00 |  | 00 |  |  | 3 3 |  |  | 0.0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 細家？ |  |  | 3.0 |  | 0.4 |  |  | 31 |  |  | 0.0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 撸2 |  |  | 0.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ％ |  |  | 3.3 |  |  | 00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 15 |  | Kisk |  |  | 1.0 |  |  | 引 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | T | 0 | 0 | A | 6 | T | Q | 0 | 6 | 6 | 0 | 0 | 9 | 9 | A | 0 | 0 | A | 6 | Q | 7 | G | 6 |
| 级tsexters |  |  | 00 |  | 03 |  |  | 玄亥 |  |  | 503 | 0.3 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 53 |  | 26 |  |  | 3． |  |  | 0.5 | 0.3 |  |  |  |  |  |  |  |  |  |  |  |
| 紋辰2 |  |  | 0.3 |  | 33 |  |  | 32 |  |  | 0.3 | 00 |  |  |  |  |  |  |  |  |  |  |  |
| 気边 |  |  | 6．2 |  | k．s． |  |  | 令 |  |  | ต． 3 | 0.0 |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 | $\bigcirc$ | \％ | T | 3 | T | $G$ | c | \％ | \％ | \％ | T | 9 | G | 4 | $\Theta$ | 3 | 3 | G | 9 | T | 6 | 3 |
|  |  |  | 30 |  | 0月 |  |  | 3.3 |  |  | ต |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 30 |  | \％8 |  |  | \％${ }^{3}$ |  |  | 0.3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 坛汭 |  |  | 80 |  | 3.4 |  |  | 0.3 |  |  | リ． |  |  |  |  |  |  |  |  |  |  |  |  |
| 构苝3 |  |  | ＠ 6 |  | 33 |  |  | \％${ }^{3}$ |  |  | 93 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 | 6 | $\%$ | A | 6 | 6 | A | 0 | $\%$ | 3 | C | $T$ | 6 | 6 | ${ }_{4}$ | 6 | 5 | T | 9 | 9 | 6 | 6 | 9 |
|  |  |  | 93 |  |  |  |  | 䜌 |  |  | 9.3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 或里家1 |  |  | 3.8 |  | ＜＜＂ |  |  | \＄${ }^{3}$ |  |  | 6.3 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 3.8 |  | \＃ks |  |  | 1\％ |  |  | 49 |  |  |  |  |  |  |  |  |  |  |  |  |
| 約边 |  |  | 3. |  |  |  |  | \％ 3 |  |  | ＠ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | 0 | 0 | $A$ | ？ | $\bigcirc$ | A | 0 | 0 | 6 | 0 | $T$ | 3 | 9 | A | 0 | 6 | T | 6 | 6 | A | 6 | 6 |
|  |  |  | 36 |  |  | 80 |  | 3， |  |  | 0.0 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 3．0 |  |  | Q2 |  | 参令 |  |  | 0.3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 或配2 |  |  | \％${ }^{\text {\％}}$ |  |  | ¢．$=$ |  | 27 |  |  | 0.3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 极边 |  |  | 32 |  |  |  |  | 3.3 |  |  | 50 |  |  |  |  |  |  |  |  |  |  |  |  |

GU纪-ser counts







| Non-protospacer Cs | $\mathrm{C}(\%)$ | $\mathrm{T}(\%)$ |
| :---: | :---: | :---: |
| untreated | 99.94 | 0.04 |
| NBE1 | 99.92 | 0.05 |
| NBE2 | 99.92 | 0.05 |
| NBE3 | 99.94 | 0.03 |

FIGURE 28


FIGURE 29A

FIGURE 29C

| unterted |  | 牧 |  |  | 大藧 |  |  | Lex |  |  | Af／ |  |  | \a |  |  | 等 |  |  |  |  |  | Inde \％ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APOESOS ${ }^{\text {a }}$ | 6 | A | 気 | 0 | S | 8 | 9 | 0 | 1 | 6 | 6 | C | d | 0 | T | 0 | T | \＆ | G | 0 | A | 6 | 0 | 00 |
| A | 00 | ¢ | \％ | 00 | 00 | 06 | 00 | 03 | 00 | $0 \hat{3}$ | 0 m | 0.0 | 位1 | 0 | 00 | 00 | 00 |  | 00 | 0 0 | \＄ | Q ${ }^{\text {a }}$ | 00 |  |
| C | 0.0 | 0.0 | 01 | $0 \cdot$ | － | 觡 | － | Sİ | 0 y | U | 0 m | 紬 | 0 O | 0.0 | 0.0 | 00 | 00 | 0.4 |  | 紬 | Q | 00 | 0， |  |
| 9 | \＄ | 00 | 01 | \％ | 00 |  | 0 O | 03 | 00 | － | U1 | 03 | 0.0 | 楮 | 0.0 | 隹 | 0.0 | 00 | 0.0 | 0 L | 0 0， | ＊ | \＄4， |  |
| 1 | 00 | 00 | ＠ | 00 | Q 0 | 03 | 0 O | 00 | \％ | 03 | $0{ }^{0}$ | 03 | 00 | 00 |  | 00 | 该 | 0.0 | 00 | $0 \times$ | 00 | Q ${ }^{1}$ | 03 |  |


| BEs）fented |  | Ms |  |  | AX $\rightarrow$ \％ |  |  |  |  |  | A的 |  |  | Vab |  |  | \％ |  |  |  | © A |  |  | $\frac{\text { hde }}{4 \hat{y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APOE4C15\％ | G | k | A | 6 | \％ 3 | G | C | 0 | I | 0 | 6 | C | A | 3 | T | 3 | 3 | $A$ | 6 | C |  | 6 | 6 |  |
| 告 | 0.4 | 将 | \％ | 010 | 0.5 | 01 | 13 | 铲 | $0 \%$ | $0 \times$ | 0 | 0 0 | 校 | 0.6 | 00 | 0.1 | 00 | ＋4 | 00 | $0 \%$ | 紺 | Q 0 | 01 |  |
| c | 00 | 00 | 00 | 00 | 41\％ | 00 |  | 䜌 | 00 | 03 | 00 | 紷 | 00 | 00 | 00 | 00 | 00 | 00 | 校 | 4 | 00 | 03 | 00 |  |
| $\theta$ | \＄ | 0.0 | 60 | \％ | 04 | 娘 | 11 | 0.3 | 0 n | \＄1\％ | ， | 詺 | 00 | 校 | OO | 校 | 00 | Q 0 | O参 | 0 Q | 明 | － |  |  |
| 1 | 00 | 00 | 00 | 00 |  | 0.1 | WWW |  | HIL | 0 O | 03 | 0.1 | 0 | 0.6 | 䜌 | 0.0 |  | 00 | 0.1 | $0{ }^{0}$ | 0 K | Q ${ }^{0}$ | 0 等 |  |


| Oat9＋408 |  | \％ |  |  |  |  |  | 64 |  |  | A 4 |  |  | V6） |  |  | W |  |  | ¢ 8 |  |  |  | $\frac{1 \text { ned }}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abcticis\％ | 6 | k | A | 9 | \％ | 9 | 0 | c | 1 | 6 | 6 | C | A | 0 | T | 6 | ］ | A | 0 |  |  | 6 | 6 |  |
| A | 00 | 待 | \％ | 010 | 01 | 00 | 03 | 0 0 | 01 | 0 ） | 0 O | 00 | \＄ | 00 | 01 | 00 | 00 | ， | 00 | 0， | － | 0 Q | 00 |  |
| ¢ | 00 | 0.0 | 01 | 00 | \％ | 00 | \＄ | 約 | 0.3 | 03 | 0 | － 11 | 0.5 | 00 | 0.0 | 00 | Q | 00 | 䜌 | 䜌 | 0.0 | 03 | 03 |  |
| 6 | 家 | 00 | 00 | \％ | 010 | \％ | 010 | 0 m | 00 | \} | \＄ | 0 b | 0.0 | \％ | 0.0 | \＄4． | 0.2 | 0 O | 00 | $0 \hat{3}$ | 03 | İ | III |  |
| 1 | 00 | 00 | Q0 | 00 | 03 | 0 l | 01 | $0{ }^{3}$ | III | 03 | 的 | 0 O | 0.1 | 0.6 | \％ | 0.5 | ¢ | 0.0 | 00 | 0） | 00 | 03 | 03 |  |


| 乡ffextete |  |  | 成 |  |  | Aa |  |  | W6 |  |  | A |  |  | 磘 |  |  | 4 |  |  | 4 |  |  | indel |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TP5Y4030 | 0 | 6 | 6 | 6 | 0 | 6 | ${ }_{6}$ | A | \％ | 6 | $\theta$ | ${ }_{6}$ | 6 | A | T | 6 | 1 | 参 | 0 | A | A | 6 | $\theta$ | 0 |
| A | 00 | 00 | 0 0， | 00 | 00 | 00 | 00 | \＄ | 00 | 00 | 0.1 | 00 | 00 | \＄ | 00 | 00 | 00 | 00 | 00 |  | 4\％ | 03 | 00 |  |
| 0 | \％ | \％ | 0 | U11 | 10 | \＄ | TI | 03 | 00 | 10 | 00 | － | 行 | 010 | 00 | 䜌 | 0 m | 00 | 位 | 00 | 00 | 0 03 | 待 |  |
| 0 | 00 | 00 | 很 | 00 | \％ | 00 | 0 | 01 | 00 | 年1． | 4 | 0 | 03 | 01 | 0 | 00 | 0 0 | \＄ | 00 | 0 | 00 | II | 03 |  |
| Y | 00 | 0 | 0 0 | 00 | 0 | 00 | 0 | 0 0 | \％ | 0 | 00 | 0 0 | 0 | 00 | K | 0.0 | 14 | 0 O | 00 | 㢳 | 0.0 | $00^{0}$ | 00 |  |
| BES ${ }^{\text {trabied }}$ |  |  | 緮 |  |  | A3 |  |  | 枹哭 |  |  | 蚏 |  |  | 䏡 |  |  | O3 ${ }^{-1}$ |  |  | 的 |  |  | \％䢒第 |
| 7P⿳亠丷厂犬1930 | 0 | ¢ | 3 | C | 6 | 6 | ¢ | A | T | Q | 0 | 6 | C | A | T | 6 | I | 経 | 0 | $A$ | A | 6 | C | 37 |
| A | 00 | M | 00 | 00 | 0. | 00 | 0 |  | 00 | 0 | 01 | 03 | 02 | \＄ | 010 | 04 | 0 L | 18 | 00 |  | 䜌 | 解 | 00 |  |
| C | \％ 4 | 4， | 60 | 4！ | 0 | \＄1\％ | \％1 | 0 0， | 00 | O | 00 | \％${ }^{\text {k }}$ | \％ | 01 | 0 | 桜 | 0 | 0.4 | 柆 | $0{ }^{2}$ | 00 | 0 | 㣪 |  |
| 6 | 00 | 00 | \％ | 08 | \＄ \％ | 00 | 01 | 0 0 | 00 | \＄ | \％ | 00 | 0 0 | 0.10 | 0 m | 00 | 00 | 䜌 | 08 | \％ | 00 | \％I | 03 |  |
| 1 | 00 | 01 | 0 爰 | 00 | 01 | 00 | 016 | 0 或 | \％ | 4 | 00 | 0.1 | 0 佼 | 00 | 交 | 00 | II | 0.1 | 010 | ¢ ${ }^{\text {a }}$ | 00 | 08 | 0 0 |  |
| 6asy 4 俛 |  |  | An |  |  | A緭 |  |  | 気綶 |  |  | A ${ }_{\text {\％}}$ |  |  | 帾 |  |  | 瑟 $\rightarrow$ |  |  | 4 |  |  | Ondela |
| TPSY100 | $\bigcirc$ | 0 | 0 | 6 | 6 | C | 0 | A | \％ | 6 | 6 | 0 | C | A | T | 0 | T | 人） | C | A | A | 6 | 6 | 81 |
| A | 00 | 610 | 01 | 00 | 10 | 0.0 | 010 | 嗗 | 01 | 0 | 00 |  | 00 | \＄ | ¢ | 0.0 | W | 0 | 00 | \＄ | 䜌 | 鯙 | 00 |  |
| Q | \＄ | UI | 0 | Will | 10 | \＄ | \％ | 03 | 00 |  | 00 | \％II | \％ | 0 C | U10 | \＄ | 0 0 | 03 | \＄ | 0 S | 0.0 | 00 | 校 |  |
| 0 | 00 | 30 |  | 00 | ＋！ | 00 | 03 | 0 O | 00 | \＄4． | 4\％ | 00 | 0 h | 00 | 0 | 00 | 00 | 紬 | 0.0 | 0 | 00 | \％II | 00 c |  |
| T | 0.0 | 00 | ＠ | 00 | 00 | 00 | 00 | $0{ }^{\text {a }}$ | 校 | 0 0， | 00 | 00 | 0 0 | 0 O | Ki | ． 00 | III | 00 | 03 | 0 O | 00 | 0 O | 00 |  |


| HEK site 2 on target | 6 | A | A | 6 | A | 0 | A | A | $\beta$ | $Q$ | 3 | A | T | A | 6 | 4 | 6 | T | 0 | $\%$ | $\xi$ | 6 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| unireated |  |  |  | 0.0 |  | 0.0 |  |  |  |  | 0.0 |  |  |  |  |  | 0.3 |  |  | 0.0 |  |  |  |
| BE\％ |  |  |  | \％ 8. |  | 4．4 |  |  |  |  | §0 |  |  |  |  |  | 0.0 |  |  | 0.0 |  |  |  |
| ge2 |  |  |  | ＜＜＜＜＜＜ |  | 玹後 |  |  |  |  | 0.0 |  |  |  |  |  | 0.0 |  |  | 0.0 |  |  |  |
| \％E3 |  |  |  | 核缓 |  | 絁經 |  |  |  |  | 0.0 |  |  |  |  |  | 0.3 |  |  | ¢． 1 |  |  |  |
| HEK size 2 GUDE－sem of target 1 | $\xi$ | A | A | $c$ | A | $\cdots$ | A | A | $\xi$ | G | 5 | A | T | A | G | 4 | $T$ | $T$ | $\cdots$ | $\varepsilon$ | 0 | 6 | c |
| mexrated |  |  |  | 0.0 |  | 0.0 |  |  |  |  | 9.0 |  |  |  |  |  |  |  |  | 0.1 | 0.6 |  |  |
| ges |  |  |  | 0.0 |  | \％． 0 |  |  |  |  | 9.3 |  |  |  |  |  |  |  |  | 0.1 | 9.2 |  |  |
| gez |  |  |  | 0.0 |  | 0.4 |  |  |  |  | 0.0 |  |  |  |  |  |  |  |  | 0.1 | 0.0 |  |  |
| ge3 |  |  |  | 0.2 |  | 0.6 |  |  |  |  | 0.0 |  |  |  |  |  |  |  |  | g． 1 | 0.5 |  |  |
| HEK 絍 2 GUDE－sea 2f taxget 2 | A | A | A | $\bigcirc$ | $\star$ | $T$ | A | $\xi$ | A | 6 | 0 | ${ }^{*}$ | T | $\star$ | G | A | c | $T$ | 0 | 6 | A | $\star$ | A |
| mbrated |  |  |  | 0.0 |  |  |  |  |  |  | 0.0 |  |  |  |  |  | 0.0 |  |  | 0.0 |  |  |  |
| BES |  |  |  | 0.0 |  |  |  |  |  |  | 0.0 |  |  |  |  |  | 0.0 |  |  | 0.0 |  |  |  |
| BE2 |  |  |  | 0.0 |  |  |  |  |  |  | \＄． 0 |  |  |  |  |  | 0.0 |  |  | 9.0 |  |  |  |
| ge3 |  |  |  | 0.0 |  |  |  |  |  |  | ＠ 0 |  |  |  |  |  | 0.0 |  |  | 9.0 |  |  |  |
| HEK site 2 ChP－seq off axget | § | $c$ | A | 6 | 9 | $\xi$ | T | $\Omega$ | A | $\bigcirc$ | $c$ | A | $T$ | A | $\cdots$ | 感 | 6 | $T$ | $\bigcirc$ | $\bigcirc$ | $c$ | $\xi$ | 9 |
| untrated |  | 0.0 |  |  |  |  |  |  |  |  | 0.0 |  |  |  |  |  | 0.3 |  |  | 0.0 | 0.0 |  |  |
| BE； |  | 0.0 |  |  |  |  |  |  |  |  | §． |  |  |  |  |  | 0.0 |  |  | 9.1 | ¢． $0^{6}$ |  |  |
| ge2 |  | 0.0 |  |  |  |  |  |  |  |  | 3.0 |  |  |  |  |  | 0.0 |  |  | 0.1 | פ．${ }^{\text {¢ }}$ |  |  |
| EE3 |  | 0.0 |  |  |  |  |  |  |  |  | 0.0 |  |  |  |  |  | 0.0 |  |  | 0.1 | 0.8 |  |  |

figure 31

| $\infty$ |
| :--- |
| $\infty$ |
| $\cdots$ |
| $\cdots$ |




FIGURE 31 (CONTINUED)

|  | 9 | 6 | 0 | C | 6 | A | 6 | A | 6 | T | 6 | A | 6 | 0 | A | 6 | 6 | \％ | 0 | A | T | 6 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 6 ？ | 31 | 03 |  |  |  | 0.8 |  |  |  |  | 0.3 |  | 0.3 |  |  |  |  |  |  |  |
| EE： |  |  | 0.3 | 48 | $4 \%$ |  |  |  | 0.6 |  |  |  |  | 0 O |  | 03 |  |  |  |  |  |  |  |
| EE2 |  |  | 34 |  | 泫沙 |  |  |  | 00 |  |  |  |  | 0.1 |  | 53 |  |  |  |  |  |  |  |
| 5E3 |  |  | 05 | 夜沙 | 桜幻 |  |  |  | 95 |  |  |  |  | 0.0 |  | 02 |  |  |  |  |  |  |  |
|  <br>  | 0 | 4 | 0 | 0 | $\varrho$ | A | G | k | $\omega$ | T | 3 | ＊ | 9 | 0 | A | 0 | 6 | T | 0 | 0 | T | Q | 3 |
|  | 3.3 |  | 0.0 | \％0 | 20 |  |  |  | 0.0 |  |  |  |  | 0.3 |  | 0.3 |  |  |  | 00 |  |  |  |
| gev | 0． |  | ¢ ${ }^{6}$ | 00 | 颜 |  |  |  | Q．${ }^{\text {a }}$ |  |  |  |  | 90 |  | 03 |  |  |  | a， |  |  |  |
| gez | 05 |  | 0.3 | 30 | 30 |  |  |  | 0.3 |  |  |  |  | 00 |  | 0.3 |  |  |  | 0.3 |  |  |  |
| 5E3 | 38 |  | 03 | 30 | 20 |  |  |  | 00 |  |  |  |  | 0 O |  | 03 |  |  |  | 00 |  |  |  |
| GE <br>  | $\theta$ | A | 6 | A | 6 | ＊ | 6 | A | 5 | T | 6 | 6 | 3 | 0 | A | 0 | 0 | \％ | 6 | A | 3 | 6 | 3 |
| mutreaters |  |  | 6.3 |  | 36 |  |  |  | 0.3 |  |  |  |  | 0.9 |  | 0.3 |  |  |  |  |  |  |  |
| 弫： |  |  | 03 |  | 50 |  |  |  | Q 3 |  |  |  |  | 0.3 |  | 50 |  |  |  |  |  |  |  |
| घE2 |  |  | 0.0 |  | 00 |  |  |  | 0.6 |  |  |  |  | 0.8 |  | 0.0 |  |  |  |  |  |  |  |
| EE3 |  |  | 0.0 |  | \％ |  |  |  | 6． |  |  |  |  | 0.0 |  | 0.3 |  |  |  |  |  |  |  |
| HEK site 3 CuIDE San <br>  | ＊ | 6 | 6 | T | \％ | A | G | \＆ | 6 | T | G | A | 6 | 0 | \＆ | A | 6 | ？ | 6 | A | 6 | $G$ | 3 |
|  |  |  | 03 |  | 3.3 |  |  |  | 0.3 |  |  |  |  | 0.13 |  |  |  |  |  |  |  |  |  |
| 㱜： |  |  | 0.3 |  | 20 |  |  |  | 0.0 |  |  |  |  | 0.0 |  |  |  |  |  |  |  |  |  |
| gE2 |  |  | 0.3 |  | 30 |  |  |  | 0.0 |  |  |  |  | 00 |  |  |  |  |  |  |  |  |  |
| 8E3 |  |  | 0.0 |  | 33 |  |  |  | 06 |  |  |  |  | 0.3 |  |  |  |  |  |  |  |  |  |
| HEX sht 3GMDE－sch <br>  | A | G | A | ¢ | 0 | A | 6 | A | c | T | 6 | A | G | 0 | A | \＆ | 3 | A | 0 | A | 3 | 3 | 6 |
|  |  |  |  | 0.0 | 30 |  |  |  | 0.0 |  |  |  |  | 0.13 |  |  |  |  |  |  |  |  |  |
| EE\％ |  |  |  | 53 | 30 |  |  |  | 60 |  |  |  |  | 0.1 |  |  |  |  |  |  |  |  |  |
| EE2 |  |  |  | ¢3 |  |  |  |  | 6， 2 |  |  |  |  | 0.0 |  |  |  |  |  |  |  |  |  |
| Em |  |  |  | \＄0 | 30 |  |  |  | a 3 |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |

44／145
※े 俞
$\stackrel{\%}{\aleph}$


| A | A | $\varepsilon$ | 0 | 0 | 7 | 9 | A | G | 0 | $\bigcirc$ | A | $Q$ | 0 | A | 0 | 0 | T | s | A | A． | 5 | Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 00 0．0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 0\％ 00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

HEK site 3CTME－san
格数舜 2 U

RE
BE 2
BE3
2640


$8 E 3$
$8 E 2$
$8 E=$ 53

## 88：

HEK side 3 Chesse如縣 4 mbration

BE3
HEK silis 3 Chap－sk






| FEX Sisc 4 GUEDE－SA of＝ayyet | T | 约 | 0 | A | $\%$ | T | 俈 | 0 | G | 3 | 0 | C | G | G | $\stackrel{4}{4}$ | $Q$ | G | A | 5 | 8 | 仡 | G | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| umbseated |  |  | Qa |  | 0.3 |  |  | 3.3 |  |  | 0.3 | 0.0 |  |  |  |  |  |  |  |  |  |  |  |
| 8E3 |  |  | 6） |  | 6s |  |  | 3． |  |  | 0.1 | \％ 0 |  |  |  |  |  |  |  |  |  |  |  |
| ge2 |  |  | 6.3 |  | 3.3 |  |  | 0.3 |  |  | 03 | 05 |  |  |  |  |  |  |  |  |  |  |  |
| 8E3 |  |  | 0.2 |  | ，\％ |  |  | 0.3 |  |  | a． | 9.3 |  |  |  |  |  |  |  |  |  |  |  |
| 昒＂ayct 2 | 3 | 8 | 0 | 7 | $\Leftrightarrow$ | 7 | \％ | $C$ | $\xi$ | 3 | 0 | $\overline{ }$ | 6 | 3 | $A$ | $\bigcirc$ | $G$ | 3 | 3 | 8 | 楌 | G | 3 |
|  |  |  | 6.5 |  | 0.3 |  |  | 3． |  |  | 0.3 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 0.6 |  | 0， |  |  | 0.0 |  |  | 0．0 |  |  |  |  |  |  |  |  |  |  |  |  |
| EE2 |  |  | ¢．${ }^{\text {a }}$ |  | 0.4 |  |  | ＠ |  |  | 0. |  |  |  |  |  |  |  |  |  |  |  |  |
| BES |  |  | 0.6 |  | 33 |  |  | 3. |  |  | 0 ¢ |  |  |  |  |  |  |  |  |  |  |  |  |


FIGURE 33




絮幻酸

FIGURE 33 （CONTINUED）


|  | 20 | 倁人 |  | 号 | 人） | \％全 | 3 ${ }^{3}$ | 人多 | \％気 | 约大 | Ó3 | 612 | 3－6 | 人全佫 | 360 | 㤅谖 | 感售 | 会愍 |  | 5 | S发 | 人20 | G\％ |  | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A |  | 名顽 | 名緭 | 絞 |  |  | 3敉高 |  | S悢\} |  |  |  | 包姟 | 自飱 | 化荗 |  |  | 参的全 | 3碞 | \％約 | 名学渗 |  | 3 |  |  |
| \％ | 参维 | 猚 1 | 爰 | 维娭 | 锘施？ |  | 3为 | 枵 | 戦\} | 倹㧡 |  | 殄姟 |  | 觻放盛 | 刍锬？ |  | 的奚 | 鲧 | 新会 | 维免 | 放的竟 |  | 娌迷 | 栓产 |  |
| O | 锘， | 儗安 5 | 聄放 | 3㱛令 | 約 | 榕效名 |  | 約边 |  | 枵墭 | 詨免 | 侑䠹？ | 新加 | 啫锫 | 缘者 |  | 詮盛 | 牷城负 | 既詅， | 6 3 \％ | 䊾絞 | 化的争\} |  |  |  |
| \％ | 勾殓 6 | 戗维 1 | 気沴！ | 栜钻 | 6放 |  |  | 极浣 |  |  |  |  |  | 铭 | 徵 |  | 等後 | 全後 | 鲑 | 3施 |  |  | 3䜌 | 約2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{*}{*}$ |  |  | 気珓： |  | 3胣全 | 3 致星 | 3键 | 3迷 |  | 名緆 | 名磘食 | 名系緭 |  |  |  |  | 全誂 | 威新 | 全䢒 | 1220 | 自2全豆 | 324， | 6峢 | 首教 |  |
| 6 | 合妨 |  |  |  | 絞挍 | 3㡎娄 | 絡 | 全紹 | 383 |  |  |  |  | 维場 | 的幾 | 等気 | 絾 |  | 㠓 | 缘緆 | 㢶 | 复殓 |  | 程 | 蝺 |
| 6 | 的绞 | 診㐱争 | 詨沕 1 |  |  |  |  | 鋁起 |  |  | 洤㛯含 | 洤括荿 |  | 絲 |  |  | 微场 1 | 珓垴 |  | 包文全 | 渗笑食 |  | 效 | 䊽緆含 |  |
| \％ | 荗彻 |  | 名昭！ | 名如全妾 | 荗始妾 | 包娭娄 |  |  | 影绿高 | 愛紷 | \％勿終． | 或镑 |  | 姟 |  |  |  | 㚏絾 |  | 3絊 |  |  |  |  | 6\％63 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 匈紋？ | 紾： |  | 83紋多 |  | （3） 6 \％ | 4 | 䌊\} | 絲 |  | 免佺 | 第絞 |  | 鲂 | 詮娭 | 全後： | 全䍃 |  |  | 的紷咅 | 名该\} |  | 朗施盛 |  |
| 0 |  | 能争 | 兑絻！ | 枟放 |  | 3種？ | 3全 | 3 ${ }^{3}$ | 36 |  | 䧰蜑？ | 假建 |  |  | 放彦 | 全级食 |  |  | 㠓 | 佼理是 |  |  |  | 3絾 | 緮 |
| 3 | 名㠓 | 胗䍃： |  | 絟 |  |  |  |  | 3\％3\％ | 紋 | 約 |  |  | 绝剆， |  |  |  | 樓䥻 |  | 3䜌 |  | 3慈 | 䂭 | 䜌名 | 紜 |
| 3 |  |  | 强絞！ | 的復 | 3致爯 | 3絲！ | 弦 |  | 絞枵 | 絻 |  | 参紷？ |  | 䋇㡎 | 約 | 糼 | 鈛 | 気詨 | 約 |  | 姚 |  | 3綸： |  |  |
| 40\％参 |  | 为 | 気俭 |  | 㒸諼 |  |  | 人）鑥 | 風 | 参緩 | 約皧 | C\％ |  | 6 | $\hat{3}^{\text {a }}$ 错 | 人 61 | 参緩 |  | 成曻 | 个疑 | 人彩复 | 发？ | 人驚 | 風缓 | 莫豯 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ＊ | 施放， | 多㭥多 |  |  | 勿校妾 |  | 的全 | 3號 | 3緰\} | 包枵 |  | 3） | 気媍 | \％\％\％ | 全级 | 第维 |  | 合䌞 | 为俭 | 6 6咜 |  | 3 3 㐾 | 和的 $\}$ |  |  |
| \％ | 放 |  |  | 䋆䋌 |  | 6\}域\} | 维玲》 | 栓妾 | 約的\} | 飳塻 |  | 彻埋 | 斿放令 |  | 䜌姟 | 絞䭪! | 鲧 |  |  | 约场 |  |  |  | 施盛 |  |
| 6 |  |  | 洨放鱼2 |  |  | 6\％ | 全缶 | 繝 | 3䜌 | 颜 |  |  | 勿絯全 |  | 效 |  | 気倣係 | 包致令 | 参顽食 | 者校 | 纯絞 | \％ 6 |  | 全稔\} | 藙縸！ |
| \％ | 勾䜌全 | 勾紷 1 | 人240 |  |  | 系缄\} |  | 枵絽 | 解边多 | 名佼\} |  |  |  | 角䍃 | 他枵 |  |  | 毅方䊽 | 程的施\} | 3坆？ | 3236 | 3綡多 | 3动3 | $33^{3}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{*}{3}$ |  | 唯萛 |  | 攻 | 3鲳食 | 3 积 | 3铉 | 3积 |  | 胗的 |  |  |  |  | 良紡 | 全娭 | 疑坆 | 全徵 |  |  | 负维者 | 3 3䌞 | 3施 |  | 6䍃高 |
| 6 | 溉 | 絞致！ |  | 鲧教 | 紗 | 3淘娄 | 㓎䜌 |  |  | 酸沲 | ，媸 |  | 始豪放 |  | 詮蚛 | 詮㡎 | 緘 | 気锁 | 猚猃： | 枟猃 | 綔纰名 | 栓聕！ | 吅的学 | 3t |  |
| \％ | 数会色 | 匂结学 |  | 㡎 |  |  | 3和程 | 6 |  | 3\％ | 気故含 | 洓场 | 約䋈负 |  | 令婉 | 放気 | 気喰： |  |  | 娘 | 誰场 | 荿敉\} |  |  |  |
| \％ | 施做． |  | 构全！ | 枵始妾 | 縅安 | 勿娭荿 |  | 墭 | 咃如多 | 5 $2 \mathrm{2k}$ \％ |  |  |  | 猪縞 |  | 维系 | 维系 |  | 为如㐱 | 3统 |  |  |  | 36 | 6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| K | 全㵀 | 效 | Q 倝全 |  |  |  | 6趧 |  | （綏 | 紗 | 殄嗾\} |  | 或挍？ | 负偅 | 綯 | 絞 | 線珍 | 噝 | 放絻 |  | 縅食 |  | 紷 |  |  |
| 0 |  | 姾新 5 | 詮 | 紋放 | 3新荿 | 洨 | 傀致， |  | 3 3 3 3 |  |  | 郊 | 約施伶 | 診䌞 |  |  | 徵 | 戓䊽 | 變致！ | 佼理昜 |  |  |  | 3㖸 |  |
| 6 |  |  | 珓域 | 动金 | 缬这 | 鲧酸 | 致全 |  | 緮 | 綏 |  | 䜌永 | 约絪？ | 峧顽 | 鲧 | 紱 |  | 高緆 | 旡 | 紋 | 紜全 | 弦 | 㐱㡎2 |  |  |
| $\gamma$ | 兴㲎も | 姜绳！ | 旃！ |  | 鲛全 | 弦复 |  | 3迷 |  | 絾 | 奚解多 |  |  | 名䜌。 |  |  | 全倣食： |  |  |  |  | 3餄 | 342\％ |  | 愧䜌 |







49／145










| T0\％3 |
| :---: |
|  |
| A |
| 6 |
| $\hat{6}$ |
| Y |
|  |
| ＂ |
| ， |
| 厚 |
| ？ |
|  |
| A |
| $\hat{0}$ |
| 6 |
| \％ |
| 7903 |
| U的䌞 |
| A |
| 6 |
| 人 |
| Y |


 5


50／145






殓
















FIGURE 36A


FIGURE 36B


FIGURE 36C

53/145


FIGURE 36D



FIGURE 36E


FIGURE 36F

EMX1:
FANCF: RNF2:

HEK293 site 2: GAAC ${ }_{4} \mathrm{AC}_{6}$ AAAGCATAGACTGCGGG
HEK293 site 3:GGCC ${ }_{4}$ C $_{5}$ AGACTGAGCACGTGATGG
HEK293 site 4:GGCAC ${ }_{5}$ TGCGGCTGGAGGTCCGGG
GAGTC $5_{5} \mathrm{C}_{6}$ GAGCAGAAGAAGAAGGG GGAATC ${ }_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{TTC}_{11}$ TGCAGCACCTGG
$\mathrm{GTC}_{3} \mathrm{ATC}_{6}$ TTAGTC $_{12}$ ATTACCTGAGG
FIGURE 37A




FIGURE 38
$\forall / \perp$ оІ рәдәлиоо э/כ
дəכedsoioıd-uou ч!м spead





60／145

| ubrexal |  | Ls |  |  | W |  |  | Lein |  |  | Aha |  |  | 4 |  |  | Y |  |  | 9 C |  |  | Tded |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | A | 4 | ¢ | 6 | G | 0 | 0 | 1 | 6 | 6 | c | A | 9 | 1 | 6 | 1 | \％ | 0 | 0 | A | 6 | 6 | 0 |
| ， | Q | 䜌 | Sem | 0 | 00 | W | 14 | （ta | 0 | 6 |  | 0 | Sk | 0 | 0 | 帾 | 3 | 3xa | 0 | 0 | Wm | 0 | 0 |  |
| ¢ | 45 | 0 | 0 | 06 | 3x\ | 䋨 | \％ | ¢ | 0 | 06 | 0 | \＄w | 06 | 0 | 0 | （b） | 00 | 01 | ＜＜x | ＊ | 48 | 0 | 00 |  |
| 6 | 3x | 0 | 0 | \＄4\％ | 03 | 484 | 0 | （ | 00 | \＄6x | Wx | 04 | 0 | W6\％ | 00 | 3ma | 0 | 0 | 04 | 0 | 0 | \＄49 | Wem |  |
| \％ | 00 | 0 | 4 | 4 | 4 | 41 | 0 | 0.0 | 361 | 4 | （ | 0 | 0 | 06 | \％ma | \％ | （x） | 0 | \＄0 | 00 | $0{ }^{6}$ | 0 | U |  |
|  |  | 4 |  |  | 縎 + ck |  |  | 44＞ty |  |  | 縝 |  |  | v |  |  | Y |  |  | Gn |  |  | Mdet |  |
| aboccle | $Q$ | A | 4 | 9 | $\stackrel{0}{6}$ | 6 | C | 0 | 1 | － 6 | 6 | 0 | $\ldots$ | 6 | 1 | 9 | 1 | 4 | 0 | 0 | A | ¢ | 9 | \％ |
| A | 0 | 3 | －3x | 0 | 18 | 17 | ¢ | 06 | 1 L | 0 | Q | 0 | SW | 03 | 01 | \％ | W | 3S | 0.1 | 00 | W14 | 07 | $\pi$ |  |
| 0 | 00 | 00 | 10 | 06 | \％ | 的 ${ }^{\text {3 }}$ | Yxill | WkW | 0 | 0 m | 盛 | \＄chi | 鲛 | 0 | 詨 | ${ }^{0}$ | 0 | 31 | \＄ | Wax | 0 | 0 H | 0 |  |
| 9 | \＄8 | 0 | 0 | 36al | 15 | （6） 4 | 03 | 05 | 01 | Sm | Wxi | 0 | 0 | \＄43 | 00 | \％m | 0 | 0 | 01 | 01 | 0 | 3x1 | \％ 8 |  |
| T | 0 | ） | 0 | 03 | Wkek | 0 | \＄1／ | \％ | W0 | 6 | 0 | 01 | 0 | 0 | \＄19 | 嗗 | Sx | 0 | 0 | W | 合 | 敂 | 0 |  |
|  |  | L |  |  | k |  |  | 14 |  |  | H0 |  |  | 4 |  |  | U4 |  |  | G |  |  | Cust |  |
|  | 6 | a | 4 | $\underline{0}$ | 6 | G | C | 6 | 1 | 0 | 6 | 8 | 去 | 6 | $T$ | 6 | 1 | 4 | 0 | c | \＆ | 6 | 0 | 0 |
| A | 6 | \％ | Welk | 00 | 01 | 0 | 13 | 0 | 10 | 0 | 0 | 01 | \＄x | 11 | 0 | U | 0 | 3nk | 01 | 1 | 34 | 0 | 0 |  |
| ¢ | 05 | 01 | 0 | 0 | \％\＄9 | （0） | \＄ma | Sm3 | 0 | 0 | 誰 | 3m4 | 06 | 03 | （t） | 嗉 | 0 | 01 | \＄34 | WII | 03 | 0 （t） | 10 |  |
| g | Sme | 00 | 0 | \＄413 | 04 | \ma | 00 | 0. | 0 H | \＄411 | 34 | 08 | ט | \＄ma | 0 n | \％mis | 4 | d | 00 | 0. | 00 | \％mid | WmII |  |
| \％ | 04 | 0 | 0 | 0 | 的 | 4 | 䜌 | 如 | 36m | 4 | 4 | 㚿 | 4 | 01 | \＄ma | 帾 | \＄x\％ | 0 | 04 | 0 | 0 | 0 | 01 |  |
| C3594＊ |  |  | L |  |  | 3－9 |  |  | Lu |  |  | A |  |  | 4 |  |  | M |  |  | St |  |  | （nded |
|  | 6 | 4 | 4 | Q | 6 | 6 | c | c | 1 | 6 | 9 | c | \＆ | 6 | 1 | 6 | 1 | A | c | ${ }^{\circ}$ | 1 | － | S | 綡 |
| 4 | 02 | \％\＄1 | W | 6 | 1 | 4 | 05 | 0 | 0 | \％ | （1） | 0 | \％ 4 | 0 | 0 | \％ | 3 | \％ | 4 | $\square$ | \％x | 0 | \％ |  |
| \％ | （t） | 0 | 02 | 00 | \％48 |  | \＄4 | \％${ }^{\text {a }}$ | U | 0.1 | 0 | \＄4\％ | 18 | 14 | 4.3 | （3） | 0 | 05 | \＄ | 48 | 03 | 0 | 00 |  |
| 9 | \＄42 | 10 | 0 | \＄4 | 04 | \＄al | 0. | 0 | 04 | \＄48 | W\％ | 3 | 0.1 | \％ 8 \％ | 14 | \％ | 0 | 0 | 01 | 0 | 0 | \＄ | Wm |  |
| $\dagger$ | 02 | 0 | 1 | 4 | 0 | 43 | 0 | 0 | \＄4\％ | 0 | 0 | ， 1 | 0 | 13 | \＄8 | 樓 | 4x | 0. | 0 | 00 | 0 | \％ | 0 |  |

61/145



FIGURE 41



## 둥 <br> a00ヶ



PAPOBEC1
$A$
$C$
$G$
$T$





| A | 0.02\% | 0.02\% | 0.0\% | 0.02\% | 0.02\% | 0.02\% | 0.05\% | 0.01\% | 99,95\% | 0.09\% | 0.00\% | 0.01\% | 0.80\% | 99.95\% | 0.01\% | 0.02\% | 601\% | 0.00\% | 0.00\% | 0.00\% | 9,30\% | 003\% | 10.87\% | 0.00\% | 0.01\% | 0.019 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon$ | 9996\% | 0.0.\% | 99.98\% | $99.97 \%$ | 99.97 | $99.97 \%$ | 0.00\% | 99.98\% | D.02\% | 001\% | 0.1\% | 99.98\% | 0.03\% | 0.0.\% | 00\%\% | 0.2.\% | 99.98\% | 10.00\% | $0.01 \%$ | 00\%\% | 18:34\% | 0.00\% | 0.54\% | 001\% | 0.01\% | 99.9 |
| 6 | 0.00\% | 199.96\% | 000\% | 0.00\% | 0.00\% | 0.00\% | 199.33\% | 0.00\% | 0.01\% | 99.86\% | 0.00\% | 0.00\% | 0.00\% | 001\% | 0.00\% | 99,96\% | 000\% | 0.00\% | 000\% | 0.00\% | 72.40\% | 600\% | 88.10\% | 000\% | 0.00\% | 0.00 |
| T | 002\% | 0.02\% | 0.01\% | 0.01\% | 0.01\% | 0.0.\% | 0.02\% | 0.00\% | 0.01\% | 0.33\% | 9999\%\% | 0.01\% | 99,99\% | 0.02\% | 199.982] | 0.0.1\% | 0.03\% | 99958 | 99.98\% | 19999\% | 0.17\% | 29, $98 \%$ | 0.49\% | 99.98 | 89.98\% | 0.03: |
| APOBEC3G | 0.01\% | 0.01\% | 0.0.\% | 000\% | 0.02\% | 0.01\% | 0.05\% | 0.01\% | 99.97\% | 0.01\% | 0.00\% | 0.00\% | 0.00\% | 99.97\% | 0.01\% | 0.0.\% \% | 600\% | 0.00\% | 0.01\% | 0.00\% | 218\% | 00\%\% | 0.34\% | 0.00\% | 0.00\% | 0.09 |
| A | 99.37\% | 0.01\% | 99.98\%/ | 99.88\% | 99,96\% | $99.98 \%$ | 0.00\% | 39.99\% | $0.02 \%$ | 000\% | 001\% | 69.99\% | 0.04\% | 0.01\% | 001\% | 0.00\% | 39.98\% | 0.09\% | 001\% | 0.01\% | 5.34\% | 0.03\% | 0.55\% | 001\% | 0.02\% | 99.98 |
| $t$ | 0.00\% | 99.97\% | 0.0\%\% | 0.00\% | 0.00\% | 0.00\% | 199.33\% | 0.00\% | 0.01\% | 99.38\% | 0.00\% | 0.00\% | 200\% | 0.00\% | 0.00\% | 99.38\% | 000\% | 0.00\% | 000\% | 0.00\% | 92.44\% | 000\% | 69, 46 | 0.00\% | $0.00 \%$ | 0.008 |
| G | 0.02\% | 0.01\% | 0.01\% | 0.0\%\% | 0.02\% | 001\% | $0.02 \%$ | 0.00\% | 0.00\% | 0.01\% | 99.99\% | $0.01 \%$ | 99.99\% | 0.02\% | 999.98\% | n.0.\% | 0.0\%\% | 99,99\% | 99,98\%\% | 199.99\% | 0.0\%\% | 99.98\% | 0.05\% | 99.98\% | $9.98 \%$ |  |
| $T$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| APOBEC36_R | $001 \%$ | 0.02\% | 0.03\% | 0.01\% | 0.02\% | 001\% | 0.05\% | 0.03\% | 99,97\% | 001\% | 000\% | 0.00\% | 0.00\% | 99,.57\% | 001\% | 0.04\% | 0.03\% | 0.0\% | 601\% | 000\% | 2.38\% | 0.03\% | 6.22\% | 000\% | 000\% | 0.02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 199.77\% | 0.00\% | 99.98\% | 99.99\% | 99.97\% | 99.97\% | 0.00\% | 99.98\% | 0.02\% | 0.00\% | 0.01\% | 199.99\% | 0.01\% | 0.01\% | 0.01\% | 0.05\% | 99.98\% | 0.01\% | 0.01\% | 0.01\% | 4.88\% | 00\%\% | 2.49\% | 001\% | 0.02\% | 99.99 |
| $¢$ | 0.00\% | 99,96\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 199.92\% | 0.00\% | 0.01\% | 199.8\% | 0.00\% | . $0.00 \%$ | 0.00\% | 000\% | 600\% | 69.99\% | 0.00\% | $0.00 \%$ | 000\% | 0.00\% | 2280\% | 000\% | 93.04\% | 000\% | 000\% | 000 |
| 6 | 603\% | 0.02\% | 0.03\% | 0.01\% | 0.15\% | 0.02\% | 0.02\% | 0.01\% | 0.00\% | 0.01\% | 199.99\% | 0.00\% | 99.99\%\% | 0.01\% | 99.88\% | 0.0.\% \% | 0.01\% | 69.99\% | 99.99\% | 999.8\% | 0.05\% | 99.98\% | 0.35\% | 99.38\% | 99.98\% | 0,009 |
| T |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| untreated |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | 002\% | 0.02\% | 0.00\% | 0.01\% | 0.02\% | 0.01\% | 0.05\% | 0.03\% | 99.88\% | 0.00\% | 0.00\% | 20.01\% | 0.00\% | 99,97\% | 0.01\% | 000\% | 0.0\%\% | 0.00\% | 0.00\% | 0.00\% | 0.0\%\% | 0.03\% | 0.01\% | 000\% | 0.00\% | 20.09 |
| $\varepsilon$ | 19936\% | 0.00\% | 89.99\% | $99.88 \%$ | 99.77\% | 99.97\% | 000\% | 99,98\% | $0.01 \%$ | 0.00\% | 0.61\% | 99,99\% | 0.01\% | 0.01\% | 0.01\% | 0.00\% | 199.98\% | 0.00\% | 0.01\% | 0.01\% | 0.0\% | 0.0\%\% | 0.00\% | 0.15\% | 001\% | 99.98 |
| 6 | 0.00\% | 199.96\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 99,91\% | 0.00\% | 001\% | c9.98\% | 0.00\% | 0.00\% | 000\% | 0.00\% | 0.00\% | 99.90\% | 000\% | 0.00\% | 0.00\% | 000\% | 99.96\% | 000\% | 999.9\% | 000\% | $0.00 \%$ | $0.00 \%$ |
| T | 0.02\% | 0.02\% | 0.03\% | 0.01\% | 0.01\% | 0.02\% | 0.03\% | 0.03\% | 0.00\% | 0.01\% | 199.99\% | 00\%\% | 199.99\% | 0.02\% | 199.98\% | 000\% | 00\%\% | 99,99\% | 99,99\% | 199.99\% | 0.02\% | 99.98\% | 0.02\% | 99.98\% | 99,98\% | 001 |



$\xrightarrow[\text { FIGURE } 48]{ }$| Strain used to develop selection assay |
| :--- |
| Constructs used: APOBEC1 and CDA |

69/145



FIGURE 49 (CONTINUED)
origin of replication: CloDF3

lacZ locus corrected (MP6 plasmid)
"\%




FIGURE 51
pBad


Row 1: CDA-dCas9 + selection plasmid (chlor ${ }^{5}$ )
Row 2: CDA-dCas9 + pos. control selection (chlor?)
Row 3: APOBEC-dCas9 + selection plasmid (chlors)
Row 4: rAPOBEC-dCas9 + pos. control selection (chlor")
FIGURE 52
rAPOBEC-XTEN-dCas9-UGI on 8 ug/mL chlor


FIGURE 53A
CDA-XTEN-dCas9-UGI: survival on 8 ug/mL chloramphenicol

FIGURE 53B


SUBSTITUTE SHEET (RULE 26)

77／145

| Exa ontayet | 6 | A | 6 | T | 0 | C | 6 | A | G | 6 | A | 6 | A | A | 6 | A | A | 6 | A | A | 6 | 6 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exatered |  |  |  |  | 0tt） | 040 |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SE3 |  |  |  |  | W | NW |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HESER |  |  |  |  |  | 䜌紜洨 |  |  |  | 04 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Enxt oftaratal | 6 | A | 9 | T | ？ | A | 6 | A | 9 | 0 | A | 0 | A | A | 6 | A | A | 6 | A | A | A | 8 | 9 |
| untreates |  |  |  |  |  |  |  |  |  | 00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SE 3 |  |  |  |  |  |  |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HFES |  |  |  |  |  |  |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 | A | 6 | T | C | 1 | A | A | 0 | $\bigcirc$ | A | 6 | A | A | 6 | A | A | 6 | A | A | 0 | A | Q |
| wreated |  |  |  |  | （12t） |  |  |  |  | （20） |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  |  |  |  | \＃WMW |  |  |  |  | 0 0， |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HEES |  |  |  |  | 42033 |  |  |  |  | 040 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | S | A | 6 | 3 | C | C | 6 | A | 0 | ¢ | A | 6 | A | A | 6 | A | A | A | 6 | A | 合 | 6 | c |
| Uxterew |  |  |  |  | （120 | 040 |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  |  |  |  | \％）${ }_{\text {\％}}$ |  |  |  |  | $02 \pm$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HESS |  |  |  |  |  | 020 |  |  |  | 00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Exat outaye 4 | 6 | $\&$ | 6 | T | c | C | T | A | 6 | C | A | 6 | G | A | 6 | 4 | A | 8 | A | A | 3 | 4 | 6 |
| ustesters |  |  |  |  | 64 | （2） |  |  |  | 時 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SES |  |  |  |  | 340］ | 13001 |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HFEES |  |  |  |  | $03 \pm 13$ | 3200 |  |  |  | $0 \times 3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |


|  | 9 | A | 9 | 7 | $\bigcirc$ | C | 9 | 9 | 9 | A | A | 9 | ¢ | A | S | a | A | 6 | A | A | A | 6 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 如新紋 |  |  |  |  | 锘 | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0 \%$ |  |  |  |  | 0409 | 3448 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 纸 | 00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{3}$ | 4 | 6 | C | © | 6 | 9 | 0 | \％ | 0 | A | 6 | a | 幺 | $\bigcirc$ | R | 㐫 | 3 | ¢ | A | 3 | \％ | 6 |
|  |  |  |  | （1）2 | 納 |  |  |  |  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0 \%$ |  |  |  | 60 | 0 |  |  |  |  | （\％） |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ¢ ${ }_{\text {cke }}$ |  |  |  | 0 ¢ | 0 |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | a | 6 | 7 | 0 | 8 | 9 | 4 | 8 | 6 | A | 6 | A | 9 | c | \＆ | A | 6 | A | A | A | 6 | 0 |
|  |  |  |  |  | （1） | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| as |  |  |  |  | \％ | 蚛 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 的 | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9 | 4 | \＆ | 7 | $\bigcirc$ | C | 8 | 求 | 9 | C | 4 | 8 | 9 | 4 | 9 | 4 | 4 | 6 | 4 | 4 | $\bigcirc$ | 9 | 3 |
|  |  |  |  |  | 锊 | 6 |  |  |  | 㙄 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2E3 |  |  |  |  | （1） 0 | 絞 |  |  |  | \％ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \％${ }^{\text {ack }}$ |  |  |  |  | 线 | 0 |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | c | 9 | 7 | c | 3 | 9 | 8 | 6 | 8 | A | 8 | 3 | A | 8 | 4 | 4 | 8 | 4 | A | \％ | 8 | 0 |
|  |  | 3 |  |  | 6 60 |  |  |  |  | 絿 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 絾 |  |  | ［60）${ }^{\text {a }}$ |  |  |  |  | \％ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| W，${ }^{\text {ask }}$ |  | 36 |  |  | 3： $20 / 2$ |  |  |  |  | 絾 |  |  |  |  |  |  |  |  |  |  |  |  |  |

FGURE 55 （CONTNUED）

79/145


| FANCF |  | $C_{5}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{c}_{1}$ | indel \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| inteated | A | $0 \geq 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \div 0$ |
|  | c | 2, ${ }^{2}$ | Pam | 3494\% | 8\% ${ }^{2}$ |  |
|  | 6 | $0 \pm 0$ | $0 \pm 0$ | $0 \geq 0$ | $0 \pm 0$ |  |
|  | T | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |


| 8 E 3 | A | $0.8 \pm 0.1$ | $12 \pm 03$ | $12 \pm 01$ | $0.2 \pm 0.1$ | $5.8 \pm 08$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | c | 64735 | 6793s | 898552 | 354? ${ }^{\text {a }}$ |  |
|  | 6 | $0.6 \pm 0$ | $0.7 \pm 0$ | $0.7 \pm 0.1$ | $0.1 \pm 0$ |  |
|  | 1 | Ms:\$ | 399\% | s | 14.112. |  |


| HF BE3 | A | $1.5 \pm 0.7$ | $0.5 \pm 0.1$ | $0 \pm 0$ | $1 \pm 0.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | c | 448:35 | 499:585 | 3ax |  |
|  | G | $4.2 \pm 1.2$ | $0.0 \pm 0.2$ | $0 \pm 0$ |  |
|  | $T$ | 483.63 | 437:83 | $0 \pm 0$ |  |


| HF EE3 | A | $0.9 \pm 0.2$ | $2 \pm 0.4$ | $0.9 \pm 0.2$ | $0.4 \pm 0$ | $5.9 \pm 07$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | c | 52538 | 571s\% | 6us\%6 | 34 3 |  |
|  | G | $1.4 \pm 0.2$ | $0.0 \pm 0$ | $0.5 \pm 0.1$ | $0.3 \pm 0$ |  |
|  | T | 4s3 | उ¢ ${ }^{\text {a }}$ | 34385 | $14.4 \pm 22$ |  |


| RNF2 |  | $c_{3}$ | $C_{8}$ | $\mathrm{c}_{12}$ | indel $1 / 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |
|  | c | \% $\times$ zax | 2\% | \% $\times$ < |  |
|  | G | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |
|  | T | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |


| HEK3 |  | $\mathrm{C}_{3}$ | $c_{7}$ | $C_{8}$ | $\mathrm{C}_{4}$ | indel \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| untered | A | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |
|  | $c$ | 3x+2\% | \$ $\times$ x | \% $\times 2 \times$ | \% ${ }^{\text {ax }}$ |  |
|  | G | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |
|  | $T$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |


| BE3 | A | $0.4 \pm 0$ | $1.5 \pm 0.2$ | $0.1 \pm 0$ | $2.3 \pm 0.3$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | c | 93s\% | צ\%\% | 3r3432 |  |
|  | G | $0 \pm 0$ | $126 \pm 24$ | $0.1 \pm 0$ |  |
|  | $T$ | 3ssim | 4आय/4 | $4.6 \pm 0.2$ |  |
| HFES | A | $0 \pm 0$ | $0.2 \pm 0$ | $0 \pm 0$ | $0.5 \pm 0.1$ |
|  | c | 383m: | 84 $3 \times 3$ | 38. $\times$ : |  |
|  | 6 | $0 \pm 0$ | $2.4 \pm 05$ | $0 \pm 0$ |  |
|  | T | 3as 18 | उसयक | $4.5 \pm 0.1$ |  |



FIGURE 56
FIGURE 57



FIGURE 58


FIGURE 59


## NGCG PAM EMX (VRER BE3)



FIGURE 62

FIGURE 63


FIGURE 64A


FIGURE 64B


FIGURE 64C


FIGURE 66

89/145


FIGURE 68

$$
91 / 145
$$



FIGURE 70


FIGURE 71

| BE3 |  | Lys |  |  | Arg $\rightarrow$ Cys |  |  | Leu $\rightarrow$ Leu |  |  | M3a |  |  | Fy |  |  | 636 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base | 6 | A | A | G | C | 6 | C | C | $T$ | $G$ | G | $C$ | A | G | 1 | 6 | T | A | $C$ | $C$ |
| A | 0.2 | 99.9 | 99.3 | 0.0 | 1.0 | 0.1 | 1.8 | 1.2 | 0.0 | 0.0 | 0.1 | 0.1 | 90.8 | 0.0 | 0.0 | 0.1 | 0.1 | 39.9 | 0.1 | 0.0 |
| $c$ | 0.0 | 0.0 | 0.1 | 0.0 | 38.1 | 0.0 | 49.8 | 52.3 | 0.0 | 0.0 | 0.0 | 99.7 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 99.9 | 99.9 |
| 6 | 99.8 | 0.0 | 0.0 | 99.9 | 1.6 | 99.3 | 1.3 | 0.7 | 0.1 | 99.9 | 39.8 | 0.0 | 0.1 | 99.9 | 0.1 | 99.9 | 0.1 | 0.0 | 0.0 | 0.0 |
| $\xi$ | 0.0 | 0.0 | 0.1 | 0.1 | 59.2 | 0.1 | 47.0 | 45.8 | 99.9 | 0.1 | 0.1 | 0.2 | 0.0 | 0.0 | 99.8 | 0.0 | 99.8 | 0.0 | 0.1 | 0.1 |
| BE3 W9OYR132E |  | Lys |  |  | Arg $\rightarrow$ Cys |  |  | Lev $\rightarrow$ Leu |  |  | Ala |  |  | $\bar{T}$ |  |  | Gin |  |  |  |
| Base | 63 | A | A | 6 | C | 6 | C | C | $T$ | 6 | $G$ | C | A | G | T | G | T | A | $c$ | $C$ |
| A | 0.0 | 99.9 | 99.9 | 0.0 | 0.5 | 0.1 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 98.8 | 0.0 | 0.0 | 0.0 | 0.1 | 99.9 | 0.1 | 0.0 |
| $C$ | 0.0 | 0.0 | 0.0 | 0.1 | 78.0 | 0.0 | 34.8 | 98.9 | 0.0 | 0.0 | 0.0 | 99.8 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 99.9 | 99.9 |
| 6 | 100.0 | 0.0 | 0.0 | 99.9 | 0.5 | 99.9 | 0.1 | 0.3 | 0.0 | 99.9 | 99.9 | 0.0 | 0.1 | 300.0 | 0.3 | 99.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| T | 0.0 | 0.0 | 0.0 | 0.0 | 21.0 | 0.0 | 4.8 | 0.9 | 99.9 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 99.8 | 0.0 | 93.9 | 0.0 | 0.0 | 0.0 |



FIGURE 73


| 亳 | 0 +1 0 |
| :---: | :---: |
| $\underset{\sim}{*}$ | $\left\lvert\, \begin{array}{llll} 0 & +1 & 0 & 0 \\ +1 & - & +1 & +1 \\ \infty & 8 & \infty & 0 \end{array}\right.$ |
| $\infty$ | $\left\lvert\, \begin{array}{llll} 0 & \hline & 0 & 0 \\ +1 & 4 & +1 & +1 \\ 0 & 8 & 0 & 0 \end{array}\right.$ |
| $\cdots$ | $\left\lvert\, \begin{array}{llll} 0 & 9 & \infty & 0 \\ +1 & +1 & +1 & +1 \\ \infty & g & \infty & \infty \end{array}\right.$ |
|  | वOO\|- |
| $\underset{\underline{E}}{\underset{\sim}{x}}$ |  |



| BE3 | $A$ | $0.8 \pm 0.1$ | $1.2 \pm 0.3$ | $1.2 \pm 0.1$ | $0.2 \pm 0.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $5.8 \pm 0.9$ |  |  |  |  |
|  | $C$ | $64.7 \pm 5.9$ | $67.9 \pm 5.1$ | $68.9 \pm 5.2$ | $85.4 \pm 2.7$ |
|  |  | $0.6 \pm 0$ | $0.7 \pm 0$ | $0.7 \pm 0.1$ | $0.1 \pm 0$ |
|  |  | $0.8 \pm 5$ |  |  |  |
|  |  | $33.8 \pm 5.7$ | $29.9 \pm 4.8$ | $29 \pm 5$ | $14.1 \pm 2.6$ |




numbers are $\mu \pm \sigma$ from three independent replicates
FIGURE 74

FIGURE 75

[^23]| HF BE3 | $A$ | $0 \pm 0$ | $0.8 \pm 0.2$ | $1.1 \pm 0.3$ | $0.4 \pm 0$ | $4.1 \pm 0.7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{cccc}97.8 \pm 0.4 & 65 \pm 3.8 & 40.4 \pm 6.3 & 95.9 \pm 0.5 \\ 0 \pm 0 & 0.9 \pm 0.2 & 6.1 \pm 1.1 & 0.7 \pm 0.2 \\ 2 \pm 0.4 & 33 \pm 3.4 & 52.2 \pm 5.2 & 2.7 \pm 0.2\end{array}$


| BE3 | $A$ | $0 \pm 0$ | $1.6 \pm 0.2$ | $1.5 \pm 0.3$ | $0.2 \pm 0$ | $2.7 \pm 0.4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | $98.7 \pm 0.2$ | $48.6 \pm 5.4$ | $40.8 \pm 6.7$ | $98.6 \pm 0.1$ |  |
|  | G | $0 \pm 0$ | $1.4 \pm 0.2$ | $10.5 \pm 1.2$ | $0.3 \pm 0$ |  |
|  | T | $1.1 \pm 0.2$ | $48.2 \pm 4.9$ | $47 \pm 5.2$ | $0.7 \pm 0.1$ |  |

SUBSTITUTE SHEET (RULE 26)

FIGURE 76

| EMX1 off target 6 | G | A | G | T | C | C | G | G | G | A | A | G | G | A | G | A | A | G | A | A | A | G | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| untreated |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  |  |  |  | $0.4 \pm 0$ | $0.4 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HF-BE3 |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMX1 off target 7 | G | A | G | C | C | G | G | A | G | C | A | G | A | A | G | A | A | G | G | A | G | G | G |
| untreated |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HFPES |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMX1 off target 8 | A | A | G | T | C | C | G | A | G | G | A | G | A | G | G | A | A | G | A | A | A | G | G |
| untreated |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HF-BE3 |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMX1 offtarget9 | G | A | A | T | C | C | A | A | G | C | A | G | G | A | G | A | A | G | A | A | G | G | A |
| untreated |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  |  |  |  | $0.1 \pm 0$ | $0.1 \pm 0$ |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HF-BE3 |  |  |  |  | $0 \pm 0$ | $0 \pm 0$ |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMX1 off target 10 | A | C | G | T | C | T | G | A | G | C | A | G | A | A | G | A | A | G | A | A | T | G | G |
| untreated |  | $0 \pm 0$ |  |  | $0 \pm 0$ |  |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3 |  | $0 \pm 0$ |  |  | $1.5 \pm 0.1$ |  |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HF-BE3 |  | $0 \pm 0$ |  |  | $1.1 \pm 0.2$ |  |  |  |  | $0 \pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | rs are |  | rom | hree | ind | pen |  |  |  |  |  |  |  |  |  |  |  |  |

FIGURE 76 (CONTINUED)


EMX-1 Off Target Site 2


FIGURE 77

FANCF on target


FIGURE 78

HEK-3 on target


FIGURE 79

HEK-4 on target



FIGURE 80

## HEK-4 Off Target Site 3



FIGURE 80 (CONTINUED)
sgHR_13




FIGURE 81


FIGURE 82

107/145
sgHR_13


1 C3 Cr (Oftarget)
$2 \square$ $\mathrm{Co}-78$ ( O : Target)
3 IIII Inde!

## Trastmant

FIGURE 83
sgHR 16


FIGURE 84

## sgHR 17



FIGURE 85

## Possible Changes Using $C \rightarrow T$ Base Editors



FIGURE 86
Base Editing APOE4 to APOE3r

FIGURE 87

| wntreates |  | 48 |  |  | 䊽䌦 |  |  | Lsa |  |  | 㰦 |  |  | V |  |  | Im： |  |  | 6 On |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APTEAC60E | 6 | A | A | 6 | \％ | 0 | 0 | 0 | $T$ | 6 | 6 | 0 | 4 | 6 | T | 6 | ？ | A | 0 | C | 4 | $\bigcirc$ | $\sigma$ | 0.0 |
| A | 00 | 10.3 | 給 | 0.3 | 00 | 1） | 明 | 0.3 | 0. | 0 m | 0 0 | 0．3 | 1006 | \％ | 03 | 0.0 | 0.0 | ¢00 | 0 00 | 00 | 俛號 | 00 | 1析 |  |
| 6 | 00 | 00 | 00 | 0.6 | \％ou | 00 | 100． | 僻妥 | 等 | 00 | $0 \cdot$ | 溉妾 | \％${ }^{3}$ | ¢0 | ）舟 | 0.0 | 36 | 03 | 1000 | 100．0 | 00 | 5 | 00 |  |
| $\bigcirc$ | 100\％ | 00 | 0 ） | \＄000 | 00 | \％00 | 03 | 00 | 00 | 1000 | 3100 | 0.6 | 00 | 1008 | 3） | 0000 | 00 | 00 | 00 | ¢旡 | 00 | 9.9 | 100．a |  |
| T | 00 | 00 | 0 | ติ | 0.3 | 00 | 20 | 00 | 1000 | 00 | \％ | 00 | 0.0 | 0.3 | W00 | 0.3 | 1mo | 0.0 | 00 | ¢ | 0.0 | 0 ¢ | 00 |  |

11／／145

|  | 殓 |  |  |  |  |  | Les |  |  | A 格 |  |  | V |  |  | Trs |  |  | 60 |  |  | indel |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | A | A | 0 | \％ | 0 | 0 | 0 | T | 6 | 0 | C | A | 6 | T | 9 | T | A | C | c | A | Q | Q | 20．3 |
| ＠） | 3 me | mon | 00 | 0， | 00 | （\％） | 00 | 00 | 00 | 6\％ | 00 |  | 0 0， | 00 | 3 B | 00 | 1006 | 00 | ab | 1000 | 引䞨 | 00 |  |
| 9\％ | 0． | ＠ 0 | 00 | 097 | 00 | 6．3 | 309 | 郶 | 0\％ | ＠0 |  | 0.5 | 0 | 00 | \％参 | 00 | 05 | 价敛 | 1000 | 0 O | 6 | 00 |  |
| T0． | 00 | （1） | 300\％ | 6．${ }^{\text {a }}$ | 1006 | 20 | $0 \cdot 1$ |  | \％00 | 的 3 | 0 Q | 0． | 306 | 06 | 6ag | 02 | 30 | 00 | 0） | 0 0 | T000 | 100 1 |  |
| $00^{2}$ | no | 6．${ }^{\text {a }}$ | 00 | ns | ¢0 | 晾 | 0 | \％ox | 0\％ | 00 | 0.0 | 0.1 | 0.4 | 933 | \％． | 30．8 | 00 | 00 | no | $0 \%$ | 5 | $0{ }^{0}$ |  |


|  | 6 |  |  |  |  |  |  |  |  | 第 |  |  | 凩 |  |  | 7 ${ }^{\text {a }}$ |  |  | 60 |  |  | matez\％ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | A | A | 0 | \％ | $\bigcirc$ | $\mathrm{C}_{3}$ | $\mathrm{c}_{8}$ | T | 6 | 6 | C | A | 6 | T | $Q$ | T | 或 | $\bigcirc$ | 0 | A | $\xi$ | 6 | 4．6 |
| 6． | 1000 | 100． | 00 | 05 | 00 | $1{ }^{3}$ | 09 | 0 | 00 | 00 | 00 | 1000 | \％嗉 | 00 | 03 | 00 | 100\％ | 00 | 能 | 6mb | \}免 | 0. |  |
| 0 00 | 0 0．0 | 93 | 00 | 23.3 | 00 | 47.4 | 43.5 | 00 | 00 | ¢ 6 |  | 00 | 03 | 00 | as | 00 | 00 |  | 1000 | 00 | \％${ }^{0}$ | 00 |  |
| 903 | 0.0 | 03 | 300\％ | ［3\％ | 089 | It | 0.3 | \％ | 100．3 | 1000 | 00 | 00 |  | 0.0 | tomb | 00 | 0 s | 06 |  | 00 | 1m0 | 309 |  |
| 515 | 00 | 0.3 | 03 | 74.3 | 0 | 50.2 | 55.0 |  | 0 m | 0． | 0.1 | 05 | 0 \％ | 6wo | 0.3 | 奴等 | 55 | 0 m | 0． | $0 \times 1$ | \％ | 0 |  |


| BE3－4teated | Gu |  |  |  |  |  |  |  |  | 要 |  |  | Pro |  |  | Oy |  |  | Cus |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PENPR37X | 6 | 6 | C | A | 6 | $\mathrm{C}_{3}$ | $\mathrm{C}_{8}$ | 6 | A | T | A | 0 | 0 | 0 | $G$ | 6 | G | 6 | 0 | A | \％ | \％ | 0 |
| A | 0.0 | 00 | 0.1 | 300． | 0.4 | 1. | 0.3 | 0.1 | 1000 | 0.0 | 100.0 | 0.0 | 0.0 | 気 | 00 | 00 | 0.0 | 00 | 03 | 1000 | 00 | 0.0 | 00 |
| 6 | 0.0 | 00 | 多㥯 | 00 | 0.0 | 54.8 | 57.3 | 0.0 | 0.0 | 00 | 00 | 998． | 9 g 8 | 1000 | 0.0 | 00 | 0.0 | 00 | 000 | 0.0 | 0.0 | 00 | 0.0 |
| 6 | 1000 | 100．0 | 0.0 | 00 | 1000 | 2.1 | 0.6 | 90．0 | 0.0 | 00 | 00 | 0.0 | 00 | 0.0 | \＄0．0 | 000 | 100．0 | 100.5 | 0. | 0.0 | 100．0 | 0.0 | W0 |
| T | 0.0 | 00 | ！ 1 | 00 | 0.0 | 43.9 | 412 | 00 | ＠ | 1000 | 00 | 02 | 0.2 | 0．0 | 00 | 00 | 0.0 | 00 | 0.0 | 00 | 00 | 0 0， | 0 |

FIGURE 89


| BE3 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.04 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  | C | $84.5 \%$ | $86.8 \%$ | $100.0 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $15.5 \%$ | $13.2 \%$ | $0.0 \%$ |  |

FIGURE 90

| FANCF-UDG KO |  | $\mathrm{C}_{6}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$ | indel \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A |  | 0.0\% | 0.0\% | 0.0\% | 0.02\% |
|  | C | 99.9\% | 99.9\% | 100.0\% | 100.0\% |  |
|  | G | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |
|  | T | 0.1\% | 0.0\% | 0.0\% | 0.0\% |  |


| BE1 | A | $0.0 \%$ | $0.1 \%$ | $0.0 \%$ | $0.0 \%$ | $0.09 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $60.9 \%$ | $61.1 \%$ | $61.3 \%$ | $94.7 \%$ |  |
|  | G | $0.1 \%$ | $0.1 \%$ | $0.1 \%$ | $0.0 \%$ |  |
|  | T | $39.0 \%$ | $38.8 \%$ | $38.6 \%$ | $5.2 \%$ |  |


| BE2 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.02 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $88.6 \%$ | $88.6 \%$ | $88.7 \%$ | $98.9 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $11.4 \%$ | $11.4 \%$ | $11.3 \%$ | $1.1 \%$ |  |


| BE3 | A | $0.0 \%$ | $0.1 \%$ | $0.1 \%$ | $0.0 \%$ | $0.35 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $47.9 \%$ | $48.5 \%$ | $48.8 \%$ | $55.8 \%$ |  |
|  | G | $0.0 \%$ | $0.1 \%$ | $0.3 \%$ | $0.2 \%$ |  |
|  | T | $52.1 \%$ | $51.3 \%$ | $50.8 \%$ | $44.0 \%$ |  |


| FANCF-parental |  | $\mathrm{C}_{6}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$$0.0 \%$ | $\begin{array}{\|r\|} \hline \text { indel } \% \\ \hline 0.03 \% \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | $\begin{array}{r} \hline 0.0 \% \\ 99.9 \% \\ 0.0 \% \\ 0.1 \% \end{array}$ | 0.0\% | 0.0\% |  |  |
|  | C |  | 99.9\% | 99.9\% | 99.9\% |  |
|  | G |  | 0.0\% | 0.0\% | 0.0\% |  |
|  | T |  | 0.1\% | 0.1\% | 0.0\% |  |


| BE1 | A | 0.5\% | 0.5\% | 0.3\% | 0.0\% | 0.13\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | 94.2\% | 97.8\% | 97.9\% | 99.8\% |  |
|  | G | 0.7\% | 0.0\% | 0.0\% | 0.0\% |  |
|  | T | 4.7\% | 1.6\% | 1.8\% | 0.2\% |  |


| BE2 | A | $0.3 \%$ | $0.4 \%$ | $0.2 \%$ | $0.0 \%$ | $0.25 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $95.3 \%$ | $97.3 \%$ | $97.6 \%$ | $99.8 \%$ |  |
|  | G | $0.4 \%$ | $0.1 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $4.0 \%$ | $2.3 \%$ | $2.1 \%$ | $0.1 \%$ |  |


| BE3 | A | $2.4 \%$ | $3.2 \%$ | $2.2 \%$ | $0.9 \%$ | $18.88 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $60.3 \%$ | $72.6 \%$ | $73.8 \%$ | $86.6 \%$ |  |
|  | G | $1.2 \%$ | $0.6 \%$ | $0.4 \%$ | $0.3 \%$ |  |
|  | $36.2 \%$ | $23.6 \%$ | $23.5 \%$ | $12.3 \%$ |  |  |
|  | T |  |  |  |  |  |

FIGURE 90 (CONTINUED)

| HEK3-parental |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{9}$ | indel \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | $\begin{array}{r} 0.0 \% \\ 100.0 \% \\ 0.0 \% \\ 0.0 \% \end{array}$ | $\begin{array}{r} \hline 0.0 \% \\ 99.9 \% \\ 0.0 \% \\ 0.0 \% \end{array}$ | $0.0 \%$ $0.0 \%$ <br> $99.9 \%$ $100.0 \%$ <br> $0.0 \%$ $0.0 \%$ <br> $0.0 \%$ $0.0 \%$ |  | 0.00\% |
|  | C |  |  |  |  |  |
|  | G |  |  |  |  |  |
|  | T |  |  |  |  |  |


| BE1 | A | $0.0 \%$ | $0.4 \%$ | $0.3 \%$ | $0.1 \%$ | $0.07 \%$ |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :---: |
|  | C | $99.9 \%$ | $96.3 \%$ | $94.4 \%$ | $99.8 \%$ |  |  |
|  | G | $0.0 \%$ | $0.1 \%$ | $1.9 \%$ | $0.1 \%$ |  |  |
|  | T | $0.1 \%$ | $3.2 \%$ | $3.4 \%$ | $0.1 \%$ |  |  |


| BE2 | A | $0.0 \%$ | $0.2 \%$ | $0.3 \%$ | $0.1 \%$ | $0.05 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $100.0 \%$ | $97.7 \%$ | $96.1 \%$ | $99.8 \%$ |  |
|  | $G$ | $0.0 \%$ | $0.0 \%$ | $1.2 \%$ | $0.1 \%$ |  |
|  | T | $0.0 \%$ | $2.1 \%$ | $2.4 \%$ | $0.1 \%$ |  |


| BE3 | A | $0.1 \%$ | $2.9 \%$ | $2.4 \%$ | $0.3 \%$ | $3.27 \%$ |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :---: |
|  | C | $99.4 \%$ | $62.6 \%$ | $55.9 \%$ | $98.8 \%$ |  |  |
|  | G | $0.0 \%$ | $1.5 \%$ | $10.4 \%$ | $0.3 \%$ |  |  |
|  | T | $0.6 \%$ | $33.0 \%$ | $31.3 \%$ | $0.6 \%$ |  |  |
|  |  |  |  |  |  |  |  |

FIGURE 90 (CONTINUED)

| - | \|co |  |
| :---: | :---: | :---: |
| $\bigcirc$ |  |  |
| $0^{\circ}$ |  |  |
| O |  |  |
| $\mathcal{S}$ |  |  |
|  |  |  |
|  |  |  |


| BE1 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.03 \%$ |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $96.0 \%$ | $50.3 \%$ | $41.1 \%$ | $96.3 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.1 \%$ | $0.1 \%$ |  |
|  | T | $4.0 \%$ | $49.6 \%$ | $58.8 \%$ | $3.6 \%$ |  |


| BE2 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.00 \%$ |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $99.0 \%$ | $80.2 \%$ | $73.2 \%$ | $98.8 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $1.0 \%$ | $19.7 \%$ | $26.8 \%$ | $1.1 \%$ |  |


| BE3 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.09 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $98.5 \%$ | $55.6 \%$ | $40.3 \%$ | $99.4 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $1.4 \%$ | $44.3 \%$ | $59.7 \%$ | $0.6 \%$ |  |


| HEK4-UDG KO |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$ | indel $\%$ |
| :--- | :---: | ---: | :---: | :---: | ---: | ---: |
| untreated | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.00 \%$ |
|  | C | $100.0 \%$ | $100.0 \%$ | $99.9 \%$ | $100.0 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $0.0 \%$ | $0.0 \%$ | $0.1 \%$ | $0.0 \%$ |  |


| BE1 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.00 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $99.9 \%$ | $67.5 \%$ | $99.0 \%$ | $100.0 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.1 \%$ | $0.0 \%$ |  |
|  | T | $0.1 \%$ | $32.5 \%$ | $1.0 \%$ | $0.0 \%$ |  |


| BE2 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.00 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $100.0 \%$ | $91.9 \%$ | $99.7 \%$ | $100.0 \%$ |  |
|  | G | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $0.0 \%$ | $8.1 \%$ | $0.2 \%$ | $0.0 \%$ |  |


| BE3 | A | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ | $0.03 \%$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | C | $99.9 \%$ | $65.9 \%$ | $99.7 \%$ | $100.0 \%$ |  |
|  | G | $0.0 \%$ | $0.3 \%$ | $0.0 \%$ | $0.0 \%$ |  |
|  | T | $0.1 \%$ | $33.8 \%$ | $0.3 \%$ | $0.0 \%$ |  |

FIGURE 90 (CONTINUED)


| EMX1 |  | $\mathrm{C}_{3}$ | $\mathrm{C}_{6}$ | $\mathrm{C}_{12}$ | indel \% | FANCF |  | $\mathrm{C}_{6}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{11}$ |  | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| untreated | A | $\begin{array}{ccc} 0 \pm 0 & 0 \pm 0 & 0 \pm 0 \\ 99.9 \pm 0 & 99.9 \pm 0 & 99.9 \pm 0 \\ 0 \pm 0 & 0 \pm 0 & 0 \pm 0 \\ 0 \pm 0 & 0 \pm 0 & 0 \pm 0 \end{array}$ |  |  | $0 \pm 0$ | untreated | A | $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ <br> $99.9 \pm 0$ $99.9 \pm 0$ $99.9 \pm 0$ $99.9 \pm 0$ <br> $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ <br> $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ |  |  |  | $0 \pm 0$ |
|  | C |  |  |  |  |  | C |  |  |  |  |  |
|  | G |  |  |  |  |  | G |  |  |  |  |  |
|  | T |  |  |  |  |  | T |  |  |  |  |  |
| BE3 | $\left[\begin{array}{ccc} 1.3 \pm 0.1 & 0.7 \pm 0.2 & 0 \pm 0 \\ 51.7 \pm 1 & 55.2 \pm 0.1 & 99.9 \pm 0 \\ 4 \pm 0.7 & 1.9 \pm 0.4 & 0 \pm 0 \\ 42.8 \pm 0.2 & 41.9 \pm 0.4 & 0 \pm 0 \\ \hline \end{array}\right.$ |  |  |  | $2.6 \pm 0.3$ | BE3 | $\begin{array}{\|c\|cccc\|} \hline \mathrm{A} & 0.8 \pm 0.1 & 1.2 \pm 0.3 & 1.2 \pm 0.1 & 0.2 \pm 0.1 \\ \cline { 1 - 2 } & 64.7 \pm 5.9 & 67.9 \pm 5.1 & 68.9 \pm 5.2 & 85.4 \pm 2.7 \\ \cline { 1 - 1 } & 0.6 \pm 0 & 0.7 \pm 0 & 0.7 \pm 0.1 & 0.1 \pm 0 \\ \cline { 1 - 1 } & 33.8 \pm 5.7 & 29.9 \pm 4.8 & 29 \pm 5 & 14.1 \pm 2.6 \\ \hline \end{array}$ |  |  |  |  | $5.8 \pm 0.9$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BE3B | A <br> C <br> G <br> $T$ | $\left\{\begin{array}{lcc} 4.9 \pm 1.4 & 3.9 \pm 1.1 & 0 \pm 0 \\ 52.6 \pm 12.161 .9 \pm 10.5 & 99.9 \pm 0 \\ 12.3 \pm 3.3 & 11.3 \pm 3.1 & 0 \pm 0 \\ 30.1 \pm 7.3 & 22.7 \pm 6.1 & 0 \pm 0 \end{array}\right.$ |  |  | $11.6 \pm 2.6$ | BE3B | A $2.9 \pm 0.9$ $4.1 \pm 1.4$ $2.8 \pm 0.9$ $1.1 \pm 0$ <br> C $67.3 \pm 8.8$ $79.3 \pm 5.8$ $79.5 \pm 5.2$ $92 \pm 1.9$ <br> AG $2 \pm 0.5$ $0.7 \pm 0.3$ $0.9 \pm 0.2$ $0.5 \pm 0.1$ <br> T $27.7 \pm 7.3$ $15.6 \pm 4$ $16.5 \pm 4$ $6.1 \pm 1.3$ |  |  |  |  | $20.5 \pm 3.8$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

FIGURE 91

| HEK4 |  | $\mathbf{C}_{\mathbf{6}}$ | $\mathbf{C}_{\mathbf{7}}$ | $\mathbf{C}_{\mathbf{8}}$ | $\mathbf{C}_{\mathbf{1 1}}$ | indel $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| untreated | A | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |
|  | C | $99.9 \pm 0$ | $99.9 \pm 0$ | $99.9 \pm 0$ | $99.9 \pm 0$ |  |
|  | G | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |
|  | T | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ | $0 \pm 0$ |  |


| BE3 | A | $0 \pm 0$ | $5.4 \pm 1.3$ | $0 \pm 0$ | $0 \pm 0$ | $3 \pm 0.7$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | $98.7 \pm 0$ | $44.5 \pm 8.2$ | $98.9 \pm 0$ | $99.8 \pm 0$ |  |
|  | G | $0 \pm 0$ | $18.1 \pm 2.3$ | $0 \pm 0$ | $0 \pm 0$ |  |
|  | T | $1.1 \pm 0.1$ | $31.9 \pm 4.8$ | $0.9 \pm 0.1$ | $0.1 \pm 0$ |  |


FIGURE 91 (CONTINUED)


FIGURE 92A

| Species | PAM | Base editor | Reference |
| :--- | :--- | :--- | :--- |
| S. <br> pyogenes | NGG | BE3 | Wild-type |
|  | NGA | VQR, EQR BE3 | Ref \#7 |
|  | NGCG | VRER BE3 | Ref \#7 |
| S. aureus | NNGRRT | SaBE3 | Wild-type |
|  | NNNRRT | SaKKHBE3 | Ref \#8 |

FIGURE 92B

FIGURE 92C

FIGURE 92D



FIGURE 92F
site A: TGC $\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{8} \mathrm{~T}_{8} \mathrm{C}_{3} \mathrm{C}_{10} \mathrm{TC}_{12} \mathrm{C}_{13} \mathrm{C}_{14}$ TGGCCCAGG
$50 \%$
$40 \%$
$30 \%$

FIGURE 93C

$\omega_{\square}^{\omega}$



FIGURE 94A


FIGURE 94B




FIGURE 95B

## EMX1

$\mathrm{TGC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{8} \mathrm{TC}_{8} \mathrm{C}_{9} \mathrm{C}_{70} \mathrm{TC}_{42} \mathrm{C}_{33} \mathrm{C}_{44}$ TGGCCCAGG


FIGURE 96


FIGURE 97A

| APOBEC1 <br> mutation | APOBEC3G <br> mutation | Reference |
| :---: | :---: | :---: |
| R126A | R320A | $\# 9,10$ |
| R126E | R320E | $\# 9,10$ |
| W90A | W285A | $\# 9,10$ |
| W90Y | W285Y | This work |
| R132E | R326E | This work |

FIGURE 97B
site A 131/145



60\%
$40 \%$
$30 \%$
$20 \%$
$30 \%$
$0 \%$
6-3 C3 C4 C5 C6 CA CS C10C12C13C14


size $B$
$A \mathrm{AAGC}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{3} \mathrm{C}_{10} \mathrm{C}_{7} \mathrm{TC}_{13} A A A G A G A G G G$




$50 \%$
$40 \%$
$30 \%$
$20 \%$
$10 \%$


132/145


Editing window width

|  | Site A | Site B |  | Site A | Site B |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BE3 WT | 5.0 | 6.1 | W90Y | 3.8 | 4.9 |
| H121/122R | 4.2 | 7.4 | R132E | 4.0 | 3.0 |
| R126A | 4.4 | 3.4 | W90Y R126E | 2.9 | 3.0 |
| R126E | 4.2 | 3.1 | R126E R132E | 2.9 | 3.0 |
| R118A | 2.4 | 3.6 | W90Y R132E | 2.7 | 2.8 |
| W90A | 2.5 | 1.1 | W90Y R126E R132E 2.1 | 1.4 |  |

133/145
HEK site 4
GGCAC $_{5}$ TG

FIGURE 98


FIGURE 99





 $*$
8
8
8
8
8











FIGURE 100

Comparison of on-target editing. HF-BE3


FIGURE 101

Specificity Ratio
 specificity ratio was set to 100
Diamond indicates no of kargets were detected and seafily raiowas set 100

1 Protein BE3
2 Protein HF-BE3
3 Plasmid BE3
4 Plasmid $H F-B E 3$

EMX-1 OT2C5
EMX-1 OT3 C5 $\rightarrow$ T5
EMX-1OT3 C6
FANCF OT1 C5
FANCF OT1 C6
FANCF OT1C7
FANCF OT1 C8
FANCF OT1C11
HEKA OT1 C5->T5
HEK4 OT1 C8 $\rightarrow$ T8
HEK4 OT3 C5->T5
HEK4 OT3 C8->T8
HEKA OT4 C5->T5
HEK4 OT4 C8 $\rightarrow$ T8

FIGURE 102


FIGURE 103

In vitro $C \rightarrow T$ editing on synthetic substrate with Cs placed at odd positions in protospacer


FIGURE 104


FIGURE 105



FIGURE 107A



FIGURE 108


[^0]:    ACACTCTTTCCOTACACGACGCTCTTCOEATCTNWNGGCATGGOTTCTGAGACTOA TGGAGTCAGACGTGTECTCTICCGATCTGTCTECCTTGCACTCOCTORCTH ACACTCTMCCOTACACGACGCTCTTCCGATCTNNMMTTGGCAATGGAGGCATTGG TGGAGTTCAGACGTGTGCTCTHCCGATCTGAAGAGGCTGCCCATGAGAG acactettrcectacacgacgetettccgatctununggrotgabgctcgatcetg tegagTtcagacetotectcttccgatctctgtgecctecatatccctg ACACTCTTCCOTACADGACGCTCTTCCGATCTNUNNTTTCCACCAGAACTCAGCOO tgGagticagacgtgTgCtCticceatctcotcgettcotccacancac ACACTCTTTCOCTACACGACGCTCTTCCGATCTMNNNCACGGGAAGGACABGAGAAG tggagttcagacergtgotottcogatctgcaggagaggoatanagcag ACACTCTTCCCTACAOGACGOTCTHCCGATCTMNWNCOACGGGAGATGGCTTATGT tgGAGTCAGACGTGTECTCTICCGATCTCACATCCTCACTGIGCCACT ACACTCTTTCCTACACGACGCTCTTCOQATCTHNWNGTCAGTCTCGGCCCOTCA tggagttcagacgrgtgctettcogatctgccactotanagctetigge
     TGGAGTGCAGACGTGTGCTCTBCCGATCTGGACOCCACATAGTCAGTGC ACACTCTITCCCTACACGACGETOTTCCGATCTNUNGGTGTCAGCOCTATCTCCATC tgagttcagacotgrgctctrccatctigggcanttagacagggac acactcttrccotacacgacgotcttccgatctmunglagcggaggaggtagattg tgGagmeagacgtgtgctottccgatctctcagtacctgangrccoga ACACTETTTCCCTACACGACGCTCTTCCGATCTNNNNGACAGGCTCAGGAAAGCTET tggagttcagacgrgtgctcttccgatctacacaagcctitctccagge acactctitccctacacgacgctcttccgatctnnnnaatagggggtgagactggge
     AGAOTCTTGCOTACACGACGGTCTOCGAGTNNANGGCOAGOAGGAAAGGAATGT TGGAGTTCAGACGTGTGCTCTTCGGATCTGGACTGGACCTGTAGOGATG ACACTCTITCGGTAGAGGACGCTCTICCGATCTNNWTCAAGGAAACAGCOTGCCC TGGAGTGAGAOGTGTGOTETFCOGATCTAACTECTTGGTGTGOAGCT ACACTCTITCCOTACACGACGCTETTCOGATCTHNNKATGGGCTCAGOTACGTCATG TGGAGTCAGAGGTGTGCTCTTCOGATGTAATAGGAGTGTGGTGGGOAA

[^1]:    

[^2]:    
    
    M サNNN N N N
    NN
    $\cdots \begin{array}{llllll} \\ \cdots & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$
    
    
    
    

[^3]:    
    
    
    
    
    
    
    

[^4]:    
    

[^5]:    
    

[^6]:    
    

[^7]:    
    

[^8]:    
    $\begin{array}{ll}m & m \\ 0 & 0 \\ m & 0 \\ 0 & 0 \\ 0 & m \\ 0 & m \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 3\end{array}$
    $\begin{array}{ll}m & \sigma \\ 0 & 0\end{array}$

    | 0 | 0 |
    | :--- | :--- |
    |  |  |

    み
     0 M O O
    
    

[^9]:    

    MMr অM
    
    
    
    
    
    
    

[^10]:    
    
    
    
    
    
    
    
    
    

[^11]:    RRLKTYAHLFDDKVMKQLKR－RRYTGWGRLSRKLINGIRDK QRLQKYSDIFTKAQLKKLER－RHYTGWGRLSYKLINGIRNK ERLQKYSDIFTADQLKKLER－RHYTGWGRLSYKLINGIRNK

[^12]:    
    
    

[^13]:    
    
    

[^14]:    

    ザッベか
    $\infty 0000$
    

[^15]:     PQAFIKDNSIDNRVLTSSKENRG-KSDD--VP PQAFIKDNSIDNRVLTRSDKNRG-KSDD-VP PQAFIRNSIDNRVLSSKERG-KSDD-VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP
     IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP PQAFIKDNSIDNRVLTSSKENRG-KSDD--VE IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP PQAFIKDNSIDNRVLTSSKENRG-KSDD--VP IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP VPOAFIKDDSLDNRVLTSLKDNRG-KSDN--VP VPQAFIKDDSLDNRVLTSLKDNRG-KSDN--VP IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP IPQSFIKDNSIDNIVLTSQESNRG-KSDN--VE IPRSFIKDDSIDNKVLTRSEHNRG-KTDN--VP IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP IPQAFIKDDSLDNRVLTSSKENRG-KSDN--VP IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP
    IPQSFIKDNSIDNLVLTTQKANRG-KSDN--VP IPQSFIKDNSIDNLVLTTQKANRG-KSDN--VP IPQAFIKDDSIDNRVLTSSKDNRG-KSDN--VP
    

    MMr অM
    
    
    
    
    
    
    
    
    $\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 7 & 0 \\ 7 & 0\end{array}$

[^16]:    
    
    
    
    
    
    
    
    
    

[^17]:    
    
    $\begin{array}{ccc}1 \\ \infty & \sim \\ 0 & 0 & 0 \\ 0 & 0\end{array}$
    o o $\sigma=$
    

[^18]:    
    

[^19]:    LAD－GSIVVRPVIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE
    LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE留
     LAD－GTVVVKDDIE LAD－GTVVVKDDIE
     LAD－GTVVVKDDIE毕贸 LAD－GTVVVKDDIE赼 LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－ETVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE LAD－GTVVVKDDIE䨽
     H，H H H H H H H H H H H H H H H H H H H H H H H H H H H H H
    

[^20]:    IIDEN-GE-ILWDK-RYLETVKKVLG-YRQMNIVKKTEIQK

[^21]:    
    
    

[^22]:    

[^23]:    numbers are $\mu \pm \sigma$ from three independent replicates

