(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date 09 January 2020 (09.01.2020)

WIPOIPCT

|||

(10) International Publication Number WO 2020/010042 A1
(51) International Patent Classification:

C12N 15/713 (2010.01) A61K 48/00 (2006.01)
C12N 15/86 (2006.01) A61P 25/00 (2006.01)
(21) International Application Number:

PCT/US2019/040230
(22) International Filing Date:

02 July 2019 (02.07.2019)
(25) Filing Language:

English
English
(30) Priority Data:

62/693,040 02 July 2018 (02.07.2018) US 62/746,104 16 October 2018 (16.10.2018) US
(71) Applicant: VOYAGER THERAPEUTICS, INC. [US/US]; 75 Sidney Street, Cambridge, Massachusetts 02139 (US)
(72) Inventors: SAH, Dinah Wen-Yee; c/o Voyager Therapeutics, Inc., 75 Sidney Street, Cambridge, Massachusetts 02139 (US). CHEN, Qingmin; 13 Francis Street, Belmont, Massachusetts 02478 (US). CARROLL, Jenna; c/o Voyager Therapeutics, Inc., 75 Sidney Street, Cambridge, Massachusetts 02139 (US). PATZKE, Holger; c/o Voyager Therapeutics, Inc., 75 Sidney Street, Cambridge, MassCORD
achusetts 02139 (US). HOU, Jinzhao; c/o Voyager Therapeutics, Inc., 75 Sidney Street, Cambridge, Massachusetts 02139 (US). HERSCH, Steven M.; c/o Voyager Therapeutics, Inc., 75 Sidney Street, Cambridge, Massachusetts 02139 (US).
(74) Agent: WARD, Donna T.; DT WARD, PC, 142A Main Street, Groton, Massachusetts 01450 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(54) Title: TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS AND DISORDERS ASSOCIATED WITH THE SPINAL

Higure

(57) Abstract: The present disclosure relates to AAVs encoding a SOD1 targeting polynucleotide which may be used to treat amyotrophic lateral sclerosis (ALS) and delivery methods for the treatment of spinal cord related disorders including ALS.

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

TREATMENT OF AMYOTROPHC LATERAL SCLEROSIS AND DISORDERS ASSOCIATED WITH THE SPINAL CORD

REFERENCE TO RELEVANT APPLICATIONS

[0001] This application chaims the benefit of U.S. Provisional Patent Application No. $62 / 693,040$, entitled "Treatment of ALS and disorders associated with the spinal cord", filed July 2, 2018, and U.S. Provisional Patent Application No. 62/746, 104, entitled "Treatment of ALS and disorders associated with the spinal cord", filed October 16, 2018, the contents of each of which are herein incorporated by reference in their entirety.

REFERENCE TO THE SEQUENCE LISTING

[0002] The present application is being filed along with a Sequence Listing in electronic format as an ASCII text file. The Sequence Listing is provided as an ASCII text file entitled 20571070 PCT SEQLST, created on July 2, 2019, which is 15,822 bytes in size. The Sequence Listing is incorporated hercin by reference in its entirety.

FIELD OF THE DSCLOSURE

[0003] The present disclosure relates to compositions, methods and processes for the design, preparation, manufacture and/or formulation of polynucleotides, including $A A V$ vectors, small interfering RNA (siRNA) duplexes, shRNA, microRNA or precursors thereof which target or encode molecules which target the superoxide dismutase 1 (SOD1) gene to interfere with SODI gene expression and/or SODI enzyme production. In some embodiments, polynucleotides are inserted into recombinant adeno-associated virus (AAV) vectors.
[0004] Methods for inhibiting SOD1 or altering the expression of any gene associated with a spinal cord related disease or disorder in a subject with a disease and/or other disorder associated with the spinal cord are also disclosed. The method includes the administration of the at least one polynucleotide into the subject with a disorder associated with the spinal cord (c.g., neurodegenerative disease) via at least the route of intraparenchymal delivery to the spinal cord. In these embodiments the disease is a motor neuron disease, and more specifically, the disease is amyotrophic lateral sclerosis (ALS).

BACKGROUND

[0005] Anyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a fatal progressive neurodegenerative disease, characterized by the predominant loss of upper and lower motor neurons (MNs) in primary motor cortex, the brainstem, and the spinal cord. Upper (e.g., cortical) and lower motor neurons (e.g., spinal cord) normally communicate
messages from the brain to the muscles to generate voluntary movement. When these neurons degenerate and/or die, the loss of the message to the muscles results in a gradual weakening and/or atrophy of the muscle and inability to initiate or control voluntary movements, until ultimately, an individual suffering from ALS loses muscle strength and the ability to move, speak, eat and even breathe. Most patients will require some form of breathing aid for survival, and even then, most ALS patients die as a result of respiratory failure within $2-5$ years of diagnosis. During disease progression, some patients (e.g., FTDALS) may also develop frontotemporal dementia.
[0006] According to the ALS Association, approximately 5,600 people in the United States of America are diagnosed with ALS each year. The incidence of ALS is two per 100,000 people, and it is estimated that as many as 30,000 Americans may have the disease at any given time.
[0007] Two forms of ALS have been described: one is sporadic ALS (sALS), which is the most common form of ALS in the United States of America and accounts for 90 to 95% of all cases diagnosed; the other is familial ALS (fALS), which occurs in a family lineage mainly with a dominant inheritance and only accounts for about 5 to 10% of all cases in the United States of America. SALS and fALS are clinically indistinguishable.
[0008] Pathological studies have linked numerous cellular processes with disease pathogenesis such as increased ER stress, generation of free radicals (i.e., reactive oxygen species (ROS), mitochondrial dysfunction, protein aggregation, apoptosis, inflammation and glutamate excitotoxicity, specifically in the motor neurons (MNs)
[0009] The causes of ALS are complicated and beterogeneous. In gencral, ALS is considered to be a complex genetic disorder in which multiple genes in combination with environmental exposures combine to render a person susceptible. More than a dozen genes associated with ALS have been discovered, including, $\mathrm{SODI}\left(\mathrm{Cu}^{2+} / \mathrm{Zn}^{2+}\right.$ superoxide dismutase), TDP-43 (TARDBP, TAR DNA binding protein-43), FUS (Fused in Sarcoma/Translocated in Sarcoma), ANG (Angiogenin), ATXN2 (Ataxin-2), valosin containing protein (VCP), OPTN (Optineurin) and an expansion of the noncoding GGGGCC hexanucleotide repeat in the chronosome 9 , open reading frame 72 (C9ORF72). However, the exact mechanisms of motor neuron degeneration are still elusive.
[0010] Currently, there is no curative treatment for ALS. Until recently, the only FDA approved drug was Riluzole, which antagonizes the glutamate response to reduce the pathological development of ALS However, only about a three-month life span expansion
for ALS patients in the early stages has been reported, and no therapeutic benefit for ALS patients in the late stages has been observed, indicating a lack of therapeutic options for this patient population (Bensimon Get al, J Neurol. 2002, 249, 609-615). In 2017, the FDA approved Radicava (edaravone) for the treatment of ALS, the first such approval in 22 years Radicava is administered intravenously and serves as a free-radical scavenger, reducing oxidative stress in patients suffering from ALS and thereby slowing disease progression. In a clinical Phase 3 trial (NCT01492686) of 137 patients, Radicava slowed the decline in physical function as compared to those patients taking placebo and as determined by score on the ALS Functional Rating Scale-Revised (ALSFRS-R) (Writing group, Edaravone (MCI186) ALS 19 Study Group Lancet Neurol. 2017 Jul;16(7):505-512). The approval of Radicava is considered an advance in terms of treatment of ALS, however it is still not a cure. New treatment strategies that can effectively prevent and/or significantly hinder the disease progression are still in demand.
[0011] Mutations in the gene of $\mathrm{Cu}^{2+} / \mathrm{Zn}^{2+}$ superoxide dismutase type I (SOD1) are the most common cause of fALS, accounting for about 20 to 30% of all fALS cases. Recent reports indicate that SODI mutations may also be linked to about 4% of all SALS cases (Robberecht and Philip, Nat. Rev. Neurosci, 2013, 14, 248-264). SOD1-linked fals is most likely not caused by loss of the normal SODl activity, but rather by a gain of a toxic function One of the hypotheses for mutant SOD 1-inked fALS toxicity proposes that an aberrant SODI enzyme causes small molecules such as peroxynitrite or hydrogen peroxide to produce damaging free radicals. Other hypotheses for mutant SOD 1 neurotoxicity include inhibition of the proteasome activity, mitochondrial damage, disuption of RNA processing and formation of intracellular aggregates. Abnomal accumulation of mutant SOD1 variants and/or wild-type SOD1 in ALS forms insoluble fibrillar aggregates which are identified as pathological inclusions. Aggregated SOD1 protein can induce mitochondria stress (Vehvilainen P et al., Front Cell Neurosci., 2014, 8, 126) and other toxicity to cells, particularly to motor neurons.
[0012] These findings indicate that SODI can be a potential therapeutic target for both familial and sporadic AlS. A therapy that can reduce the SOD 1 protein, whether wildtype or mutant, produced in the central nervous system of ALS patients may ameliorate the symptoms of ALS in patients such as motor neuron degeneration and muscle weakness and atrophy. Agents and methods that aim to prevent the formation of wild type and/or mutant SODI protein aggregation may prevent disease progression and allow for amelioration of

ALS symptoms. RNA interfering (RNAi) mediated gene silencing has drawn researchers interest in recent years. Small double stranded RNA (small interfering RNA) molecules that target the SODl gene have been taught in the art for their potential in treating AlS (See, e.g., U.S. Pat. No. 7,632,938 and U.S. Patent Publication No. 20060229268).
[0013] The present disclosure develops an RNA interference, or knoek-down based approach to imbibit or prevent the expression of SOD1 gene in ALS patients for treatment of disease.
[0014] The present disclosure provides novel polynucleotides, including double stranded RNA (dsRNA) constructs and/or siRNA constructs, shRNA constructs and/or microRNA constructs and methods of their design. In addition, these siRNA constructs may be synthetic molecules encoded in an expression vector (one or both strands) for delivery into cells. Such vectors include, but are not limited to adeno-associated viral vectors such as vector genomes of any of the $A A V$ serotypes or other viral delivery vehicles such as lentivirus, etc.
[0015] The present disclosure also provides novel methods for the delvery and/or transmission of the $A A V$ vectors and viral genomes of the disclosure, which may be applied to other disorders associated with the spinal cord, such as, but not limited to, the larger family of motor neuron disorders, neuropathies, diseases of myelination, and proproceptive, somatosensory and/or sensory disorders.

SUMMARY OF THE DESCLOSURE

[0016] The present disclosure provides AAV vectors encoding a SOD 1 targeting polynucleotide to interfere with SOD 1 gene expression and/or SOD 1 protein production and methods of use thereof Methods for treating diseases associated with motor neuron degeneration such as amyotrophic lateral sclerosis are also included in the present disclosure. [00]7] In certain embodiments, SODI is suppressed 30% in a subject treated with an AAV encoding a SOD 1 targeting polynucleotide as compared to an untreated subject. The subject may be administered the AAV in an infusion or as a bolus at a pre-determined dose level. As a non-limiting example, the suppression is seen in the $C l$ to $L 7$ ventral hom region.
$[0018]$ The present disclosure relates to RNA molecule mediated gene specific interfercnce with gene expression and protein production. Methods for treating diseases associated with motor neuron degeneration, such as amyotrophic lateral sclerosis are also inchuded in the present disclosure. The siRNA included in the compositions featured herein encompass a dsRNA having an antisense strand (the antisense or guide strand) having a
region that is 30 nucleotides or less, generally $19-24$ nucleotides in length, that is substantially complementary to at least part of an mRNA transcript of the SODI gene. [O[9] According to the present disclosure, each strand of the siRNA duplex targeting the SOD 1 gene is about $19-25$ nucleotides in length, preferably about 19 nucleotides, 20 nucleotides, 21 mucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, or 25 nucleotides in length. In some aspects, the siRNAs may be unmodified RNA molecules.
[0620] In certain embodiments, an siRNA or dsRNA includes at least two sequences that are complementary to each other. The dsRNA includes a sense strand having a first sequence and an antisense strand having a second sequence. The antisense strand includes a nucleotide sequence that is substantially complementary to at least part of an mRNA encoding SODI, and the region of complementanty is 30 nucleotides or less, and at least 15 mucleotides in length. Generally, the dsRNA is 19 to 24, e.g., 19 to 21 nucleotides in length. In some embodiments the dsRNA is from about 15 to about 25 nucleotides in length, and in other embodiments the dsRNA is from about 25 to about 30 nucleotides in length.
[0021] According to the present disclosure, AAV vectors comprising the nucleic acids encoding the siRNA duplexes, one strand of the siRNA duplex or the dsRNA targeting SOD1 or other neurodegenerative associated gene or spinal cord disease associated gene are produced, the AAV vector serotype may be AAV1, AAV2, AAV2G9, AAV3, AAV3a, AAV3b, AAV3-3, AAV4, AAV4-4, AAV5, AAV6, AAV6.1, AAV6.2, AAV6.1.2, AAV7, AAV7.2, AAV8, AAV9, AAV9.11, AAV9.13, AAV9.16, AAV9.24, AAV9.45, AAV9.47, AAV9.61, AAV9.68, AAV9.84, AAV9.9. AAV10, AAV11, AAV12, AAV16.3, AAV24.1, AAV273, AAV42,12, AAV42-1b, AAV42-2, AAV42-3a, AAV42-3b, AAV42-4, AAV42$5 \mathrm{a}, \mathrm{AAV} 42-5 \mathrm{~b}, \mathrm{AAV} 42-6 \mathrm{~b}, \mathrm{AAV} 42-8$, AAV42-10, AAV42-11, AAV42-12, AAV42-13, AAV42-15, AAV42-aa, AAV43-1, AAV43-12, AAV43-20, AAV43-21, AAV43-23, AAV43-25, AAV43-5, AAV44.1, AAV44.2, AAV44.5, AAV223.1, AAV223.2, AAV223.4, AAV223.5, AAV223.6, AAV223.7, AAV1-7/h.48, AAV1-8/r.49, AAV2-15/m.62, AAV23/h.61, AAV2-4/h.50, AAV2-5/m51, AAV3.1/hu.6, AAV3.1/hu.9, AAV3-9/rh.52, AAV311/ch.53, AAV4-8/rl1.64, AAV4-9/m.54, AAV4-19/rh.55, AAV5-3/rh.57, AAV5-22/h.58, AAV7.3/hu.7, AAV16.8/hu.10, AAV16.12/bu.11, AAV29.3/bb.1, AAV29.5/bb.2, AAV106.1/hu. 37, AAV114.3/hu.40, AAV 127.2/hu.41, AAV127.5/hu.42, AAV128.3/hu.44, AAV130.4/hu.48, AAV145.1/hu.53, AAV145.5/hu.54, AAV145.6/hu.55, AAV161.10/hu.60, AAV161.6/hu.61, AAV33.12hu.17, AAV33.4/hu.15, AAV33.8/hu.16, AAV52/hu.19, AAV52.1/hu. 20, AAV58.2/hu.25, AAVA3.3, AAVA3.4, AAVA3.5, AAVA3.7, AAVCl,

AAVC2, AAVC5, AAV-DJ, AAV-D38, AAVF3, AAVF5, AAVH2, AAVh.72, AAVhu.8, AAVrh.68, AAVrh.70, AAVpi.1, AAVpi.3, AAVpi.2, AAVrh.60, AAVrh.44, AVh. 65, AAVm. 55, AAVrh.47, AVm. 69 , AAVh.45, AAVh. 59 , AAVhu. 12, AAVH6, AAVLK03. AAVH-1/hu. 1, AAVH-5/hu.3, AAVLG-10/m.40, AAVLG-4/h.38, AAVLG-9/bu. 39. AAVN721-8/th.43, AAVCh.5, AAVCh.5R1, AAVcy.2, AAVcy.3, AAVcy.4, AAVcy.5, AAVCy.5R1, AAVCy.5R2, AAVCy.5R3, AAVCy.5R4, AAVcy.6, AAVhu.1, AAVhu.2, AAVhu.3, AAVhu.4, AAVhu.5, AAVhu.6, AAVhu 7, AAVhu.9, AAVhu.10, AAVhu.11, AAVhu 13, AAVhu. 15, AAVhu. 16, AAVhu.17, AAVhu.18, AAVhu.20, AAVhu.21, AAVhu.22, AAVhu.23.2, AAVhu.24, AAVhu.25, AAVhu.27, AAVhu.28, AAVhu.29, AAVhu.29R, AAVhu.31, AAVhu.32, AAVhu.34, ADhu.35, ADhu.37, AAVhu. 39, AAVhu.40, AAVhu.41, AAVhu.42, AAVhu.43, AAVhu.44, AAVhu.44R1, AAVhu.44R2, AAVhu. 44R3, AAVhu.45, AAVhu.46, AAVhu.47, AAVhu.48, A AVhu.48R1, AAVhu.48R2, AAVhu.48R3, AAVhu.49, AAVhu.51, AAVhu.52, AAVhu.54, A AVhu.55, AAVhu.56, AAVhu.57, AAVhu.58, AAVhu.60, AAVhu.61, AAVhu. 63, AAVhu.64, AAVbu. 66, AAVhu. 67, AAVhu 14/9, AAVhu.t 19, AAVh.2, AAVrb.2R, AAVrb. 8 , AAVrh.8R, AAVrh.10, AAVrh.12, AAVm.13, AAVm.13R, AAVm.14, AAVrh.17, AAVm.18, AAVm.19, AAVm.20, AAVh.21, AAVm.22, AAVm.23, AAVm.24, AAVrh.25, AAVr.31, AAVrh32, AAVh. 33 , AAVh. 34 , AAVh. 35 , AAVh. 36, AAVth.37, AAVrh.37R2, AAVh.38, AAVm.39, AAVh.40, AVrh.46, AAVrh. 48, AAVrh.48.1, AAVm.48.1.2, AAVr.48.2, AAVrh.49, AAVrh.51, AAVh.52, AAVh.53, AAVrh.54, AAVrh.56, AAVm.57, AAVh. 58 , AAVm.61, AAVh.64, AAVrh.64R1, AAVrh.64R2, AAVrh.67, AAVrh.73, AAVrb.74, AAVrb8R, AAVrh8R A586R mutant, AAVrh8R R533A mutant, AAAV, BAAV, caprine AAV, bovine AAV, AAVhE1.1, AAVhEr1.5, AAVhER1.14, AAVhEr1.8, AAVhEr1.16, AAVhEr1.18, AAVhEr1.35, AAVhErl.7, AAVhEr1.36, AAVhEr2 29, AAVhEr2.4, AAVhEr2.16, AAVhEr2.30, AAVhEr2.31, AAVhEr2.36, AAVhER1.23, AAVhEr3.1, AAV2.5T, AAV-PAEC, AAVLK01, AAV-LK02, AAV-LK03, AAV-LK04, AAV-LK05, AAV-LK06, AAV-LK07, AAVLK08, AAV-LK09, AAV-LK10, AAV-LK11, AAV-LK12, AAV-LK13, AAV-LK14, AAVLK15, AAV-LK16, AAV-LK17, AAV-LK18, AAV-LK19, AAV-PAEC2, AAV-PAEC4, AAV-PAEC6, AAV-PAEC7, AAV-PAEC8, AAV-PAEC11, AAV-PAEC12, AAV-2-pre-miRNA-101, AAV-8h, AAV-8b, AAV-h, AAV-b, AAV SM 10-2, AAV Shuffe 100-1, AAV Shuffle 100-3, AAV Shuffle 100-7, AAV Shuffle 10-2, AAV Shuffle 10-6, AAV Shuffle $10-8$, AAV Shuffle 100-2, AAV SM 10-1, AAV SM 10-8, AAV SM 100-3, AAV

SM 100-10, BNP61 AAV, BNP62 AAV, BNP63 AAV, AAVrh. 50 , AAVm.43, AAVrh.62, AAVr. 48 , AAVhu. 19, AAVhu. 11, AAVhu.53, AAV4-8/H.64, AAVLG-9/hu.39, AAV54.5/hu 23, AAV54 2/hu.22, AAV54.7/hu.24, AAV54.1/hu.21, AAV54.4R/hu.27, AAV46.2hu. 28 . AAV46.6/hu.29, AAV128.1/hu.43, twe type AAV (tAAV), UPENN AAV 10, Japanese AAV 10 serotypes, AAV CBr-7.1, AAV CBr-7.10, AAV CBr-7.2, AAV CBr7.3, AAV CBr-7.4, AAV CBr-7.5, AAV CBr-7.7, AAV CBr-7.8, AAV CBr-B7.3, AAV CBr-B7.4, AAV CBr-E1, AAV CBr-E2, AAV CBr-E3, AAV CBr-EA, AAV CBr-E5, AAV CBre5, AAV CBr-E6, AAV CBr-E7, AAV CBr-E8, AAV CHt-1, AAV CHt-2, AAV CHt-3, AAV CHt-6.1, AAV CHt-6.10, AAV CHt-6.5, AAV CHt-6.6, AAV CHt-6.7, AAV CHt-6.8, AAV CHt-P1, AAV CHt-P2, AAVCHt-P5, AAVCHt-P6, AAV CHt-P8, AAVCHt-P9, AAV CKd-1, AAV CKd-10, AAV CKd-2, AAV CKd-3, AAV CKd-4, AAV CKd-6, AAV CKd-7, AAV CKd-8, AAV CKd-B1, AAV CKd-B2, AAV CKd-B3, AAV CKd-B4, AAV CKd-B5, AAV CKd-B6, AAV CKd-B7, AAV CKd-B8, AAV CKd-H1, AAV CKd-H2, AAV CKdH3, AAV CKd-H4, AAV CKd-H5, AAV CKd-H6, AAV CKd-N3, AAV CKdN4, AAV CKd-N9, AAV Clg-Fl, AAV CLg-F2, AAV Clg-F3, AAVClg-F4, AAV ClgF5, AAV CLg-F6, AAV CLg-F7, AAV CLg-F8, AAV CLv-1, AAV CLv1-1, AAV Clv1-10, AAVClv1-2, AAVCLv-12, AAV Clv1-3, AAVCLv-13, AAV CLv1-4, AAVClv1-7, AAV Clv l-8, AAV Clv1-9, AAV Clv-2, AAV Clv-3, AAV Clv-4, AAV Clv-6, AAV CLv-8, AAV CLv-Dl, AAV CLv-D2, AAV CLr-D3, AAV CLv-D4, AAV CLv-D5, AAV CLv-D6, AAV CLv-D7, AAV CLv-D8, AAV CLv-E1, AAV Clv-K1, AAV Clv-K3, AAV Clv-K6, AAV CLv-L4, AAV CLv-L5, AAV CLv-L6, AAV Clv-M1, AAV CLv-M11, AAV Clv-M2, AAV CLv-M5, AAV Clv-M6, AAV CLv-M7, AAV Clv-M8, AAV ClvM9, AAV CLv-R1, AAV CLv-R2, AAV CLv-R3, AAV CLv-R4, AAV CLv-R5, AAV CLvR6, AAV CLv-R7, AAV CLv-R8, AAV CLv-R9, AAV CSp-1, AAV CSp-10, AAV CSp-11, AAV CSp-2, AAV CSp-3, AAV CSp-4, AAV CSp-6, AAV CSp-7, AAV CSp-8, AAV CSp8.10, AAV CSp-8.2, AAV CSp-8.4, AAV CSp-8.5, AAV CSp-8.6, AAV CSp-8.7, AAV CSp-8.8, AAV CSp-8.9, AAV CSp-9, AAVhu.48R3, AAVVR-355, AAV3B, AAV4, AAV5, AAVFl/HSCl, AAVFl1/HSCl1, AAVF12/HSC12, AAVF13/HSC13, AAVF14/HSC14, AAVF15/HSC15, AAVF16/HSC16, AAVF17/HSC17, AAVF2/HSC2, AAVF3/HSC3, AAVF4/HSC4, AAVF5/HSC5, AAVF6/HSC6, AAVF7/HSC7, AAVF8/HSC8, AAVE9/HSC9, AAV-PHP.B, AAV-PHP.A, G2B-26, G2B-13, TH1.1-32, TH1. 1-35, AAVPHP.B2, AAVPHPB3, AAVPHP N/PHP.B-DGT, AAVPHP.B-EST, AAVPHP.B-GGT, AAVPHP B-ATP, AAVPHP.B-ATT-T, AAVPHPB-DGT-T,

AAVPHP.B-GGT-T, AAVPHP.B-SGS, AAVPHP $B-A Q P, ~ A A V P G P . B-Q Q P, ~ A A V P H P B-~$ SNP(3), AAVPHP.B-SNP, AAVPHP.B-QGT, AAVPHP.B-NOT, AAVPHP.B-EGS, AAVPHP.B-SGN, AAVPHP.B-EGT, AAVPHP.B-DST, AAVPHP.B-DST, AAVPHP BSTP AAVPHP B-PQP, AAVPHP.B-SQP, AAVPHP.B-QLP, AAVPHP.B-TMP. AAVPHP.B-TTP, AAVPHP.S/G2A12, AAVG2A15/G2A3, AAVG2B4, AAVG2B5 and variants thereof.
[0022] The present disclosure also provides phamaceutical compositions comprising at least one siRNA duplex targeting the SOD 1 gene and a pharmaceutically acceptable carrier. In some aspects, a nucleic acid sequence encoding the siRNA duplex is inserted into an AAV vector.
[0023] In some embodiments, the present disclosure provides methods for inhibiting/silencing of SOD 1 gene expression in a cell. Accordingly, the siRNA duplexes or dSRNA can be used to substantially inhibit SOD 1 gene expression in a cell, in particular in a motor ncuron. In some aspects, the imhibition of SOD 1 gene expression refers to an imbibition by at least about 20%, preferably by at least about $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 85 \%$, $90 \%, 95 \%$ and 100%. Accordingly, the protein product of the targeted gene may be inhibited by at least about 20%, preferably by at least about $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 85 \%$, $90 \%, 95 \%$ and 100%. The SODI gene can be either a wild type gene or a mutated SOD 1 gene with at least one mutation. Accordingly, the SOD1 protein is either wild type protein or a mutated polypeptide with at least one mutation.
[0024] In some embodiments, the present disclosure provides methods for treating, or ameliorating amyotrophic lateral sclerosis associated with abnomal SOD gene and/or SODI protein in a subject in need of treatment, the method comprising administering to the subject a pharmaceutically effective amount of at least one siRNA duplex targeting the SOD1 gene, delvering said siRNA duplex into targeted cells, inhibiting SODI gene expression and protein production, and ameliorating symptoms of ALS in the subject.
[0325] In some embodiments, the AAV vector genome may include a promoter. In one aspect, the promoter may be H$\}$. In some embodiments. The AAV vector genome may include a filler sequence. The filler sequence may be derived from a lentivirus. To some embodiments, the filler may be derived from a mammalian albumin gene. In some embodiments the mammahian albumin gene is the human albumin gene.
[0026] In some aspects, ALS is familial ALS linked to SODI mutations. In other aspects, ALS is sporadic ALS which is characterized by abnomal aggregation of SOW 1 protein or
dismption of SOD 1 protein function or localization, though not necessarily as a result of genetic mutation. The symptoms of ALS ameliorated by the present method may include motor neuron degeneration, muscle weakness, stiffeess of muscles, slurred speech and /or difficulty in breathing.
[0027] In some embodiments, the siRNA duplexes or dsRNA targeting SOD 1 gene or the A AV vectors comprising such siRNA-encoding molecules may be introduced directly into the central nervous system of the subject, for example, by intracranial injection.
[0028] In some embodiments, the phamaceutical composition of the present disclosure is used as a solo therapy. In other embodiments, the phamaceutical composition of the present disclosure is used in combination therapy. The combination therapy may be in combination with one or more neuroprotective agents such as small molecule compounds, growth factors and hormones which have been tested for their neuroprotective effect on motor neuron degeneration.
[0029] In some embodiments, the present disclosure provides methods for treating, or ameliorating amyotrophic lateral sclerosis by administering to a subject in need thereof a therapeutically effective amount of a plasmid or AAV vector described herein. The ALS may be familial ALS or sporadic ALS.
[OO30] The methods may involve administering AAV particles to the subject intraparenchymally at one or more sites. The methods may involve administering AAV particles to the subject intraparenchymally into the spinal cord. In some aspects, the AV particles may be administered to two sites within the spinal cord. In some embodiments, AAV particles may be administered at two sites within the cervical spinal cord. In some embodiments, AAV particles may be administered at levels $C 3$ and $C 5$ of the spinal cord. In certain embodiments, the volume of administration is from about 5 uL to about $240 \mathrm{\mu L}$ at level C3 of the spinal cord and from about $5 \mu \mathrm{~L}$ to about $240 \mu \mathrm{~L}$ at level C 5 of the spmal cord. In centain embodiments, the volume of administration may be from about 5 uL to about $60 \mu \mathrm{~L}$ at level C3 of the spinal cord and from about $5 \mu \mathrm{~L}$ to about $60 \mu \mathrm{~L}$ at level C 5 of the spinal cord. Go one aspect, the volume of administration may be from about 25 to about $40 \mu \mathrm{~L}$ at level C 3 of the spinal cord and from about 25 to about 40 LL at level C 5 of the spinal cord. The dose administered to the spinal cord may be from about $1 \times 10^{10} \mathrm{vg}$ to about $1 \times 10^{12} \mathrm{vg}$ at level C3 of the spinal cord and from about $1 \times 10^{10} \mathrm{vg}$ to about $1 \times 10^{12} \mathrm{vg}$ at level C 5 of the spinal cord. [a some aspects, the dose administered to the spinal cord may be from about $5 \times 10^{11} \mathrm{vg}$ to about $8 \times 10^{11} \mathrm{vg}$ at level C 3 of the spinal cord and from about $5 \times 10^{11} \mathrm{vg}$ to about
$8 \times 10^{1 /}$ vg at level C5 of the spinal cord. In certain embodiments, the dose may be from about $2 \times 10^{10} \mathrm{vg}$ to about $7 \times 10^{21} \mathrm{vg}$ at level C3 of the spinal cord and from about $2 \times 10^{10} \mathrm{vg}$ to about $7 \times 10^{12} \mathrm{vg}$ at level C 5 of the spinal cord. In one aspect, the injection rate may be $5 \mu \mathrm{~L} / \mathrm{min}$.

BREEF DESCRTPTION OF THE DRAWWGS

[0031] The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.
[0032] Figure 1 shows the dose response curve for haman SOBI mRNA expression with different $n \mathrm{M}$ concentrations of siRNA.
[OM33] Figure 2 shows SOD 1 mRNA knockdown in SK-RST cell line.

DETAKED DESCRETION

[0034] The present disclosure relates to SOD1 targeting polynucleotides as therapentic agents. RNA interfering mediated gene silencing can specifically inhibit gene expression. The present disclosure therefore provides polynucleotides such as small double stranded RNA (dsRNA) molecules (small interfering RNA, siRNA), shRNA, microRNA and precursors thereof targeting SODI gene, pharmaceutical compositions encompassing such polynucleotides, as well as processes of their design. The present disclosure also provides methods of their use for inhibiting SOD 1 gene expression and protein production, for treating disorders associated with the spinal cord and/or neurodegenerative disease, in particular, amyotrophic lateral sclerosis (ALS).
[0035] The details of one or more embodiments of the disclosure are set forth in the accompanying description below. Alhough any materials and methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred materials and methods are now described. Other features, objects and advantages of the invention will be apparent from the description. In the description, the singular forms also include the phural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In the case of conflict, the present description will control.

Disorders associated with the spimal cord

[0036] The spinal cord is one of two components that together characterize the central nervous system (CNS; brain and spinal cord). The spinal cord connects the body to the brain,
serving as a conduit for the messages and communications necessary for movement and sensation. The spinal cord is a fragile, thin, tubular bundle made up of nerve fibers and cell bodies, as well as support cells, housed within the vertebral column.
[0037] The motor neurons and pathways of the spinal cord are important for the initiation, execution, modification, and precision of movement. When these neurons and/or pathways are damaged in some manner, such as, but not limited to, trauma, tumorous growth, cardiovascular defects, inflammation, de-myelination, ncuropathy, degeneration and/or cell death, the consequence is typically a defect in some form of movement. Similarly, sensory neurons and pathways of the spinal cord are critical for proprioception and sensation, and when damaged, can result in an inablity to sense certain stimuli and/or pain syndromes. [0038] Non-limiting examples of disorders such as those described above, which are associated with the spinal cord include, but are not limited to, motor neuron disease, amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease), progressive bulbar palsy, pseudobulbar palsy, primary lateral sclerosis, progressive muscular atrophy, spinal muscular atrophy, post-polio syndrome, bulbar palsy, Kemedy's disease, hereditary spastic paraplegia, Friedreich's ataxia, Charcot-Marie-Tooth disease, hereditary motor and sensory neuropathy, peroneal muscular atrophy, neuropathies, de-myelinating diseases, viral de-myelination, metabolic de-myelination, multiple sclerosis, neuromyelitis optica (Devic's disease), concentric sclerosis (Balós sclerosis), ataxias, paraplegia, spinocerebellar ataxia, acutedisseminated encephalomyelitis, complex regional pain syndrome (CPRS I and CPRS II), ataxia telangiectasia, cpisodic ataxia multiple system atrophy, sporadic ataxia, lipid storage diseases, Niemam-Pick disease, Fabry discase, Faber's discase, GM1 or GM2 gangliosidoses, Tay-Sachs disease, Sandhoff disease, Krabbe disease, metachromatic leukodystrophy, Machado-Ioseph disease (spinocerebellar ataxia type 3), meningitis, myelitis, myopathy, mitochondrial myopathy, encephalomyopathy, Barth syndrome, Chronic progressive external ophtalmoplegia, Keams-Sayre syndrome, Leigh syndrome, mitochondrial DNA depletion syndromes, myoclonus epilepsy with ragged red fibers, NARP (neuropathy, ataxia and retinitis pigmentosa, diseases of the neuromuscular junction, myasthenia gravis, myoclonus, neuropathic pain, neurodegenerative diseases, Parkinson's disease, Alzhemer's discase, Huntington's disease, Lewy body disease, Vitamin B12 deficiency, subacute combined degeneration of the spinal cord (Lichtheim's disease), tropical spastic paraparesis, distal hereditary motor neuronopathies, Morvan's syndrome, leukodystrophies, and/or Rett syndrome
[0039] In certain embodiments, the compositions and methods of the present disclosure may be used to treat any disease of the central nervous system.
[9040] In certain embodiments, the compositions and methods of the present disclosure may be used to treat a disease associated with the spinal cord
[0041] In certain embodiments, the compositions and methods of the present diselosure may be used for the treatment of a neurodegenerative disease.
[0642] In certain embodiments, the compositions and methods of the present disclosure may be used for the treatment of a motor neuron disease.
[0043] In certain embodiments, the compositions and methods of the present disclosure may be used for the treatment of amyotrophic lateral sclerosis (ALS).

Ampotrophic lateral sclerosis (ALS) and SODI

[0044] Amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disorder, is a progressive and fatal disease characterized by the selective death of motor neurons in the motor cortex, brainstem and spinal cord. Patients diagnosed with ALS develop a progressive muscle phenotype characterized by spasticity, byperreflexia or byporeflexia, fasciculations, muscle atrophy and paralysis. These motor impairments are caused by the de-innervation of muscles due to the loss of motor neurons. The major pathological features of ALS include degeneration of the corticospinal tracts and extensive loss of lower motor neurons (LMNs) or anterior hom cells (Ghatak et al., J Neuropathol Exp Neurol., 1986, 45, 385-395), degeneration and loss of Betz cells and other pyramidal cells in the primary motor cortex (Udaka et al, Acta Neuropathol, 1986, 70, 289-295; Maekawa et al, Brain, 2004, 127, 12371251) and reactive gliosis in the motor cortex and spinal cord (Kawamata et al, Am , J Pathol., 1992, 140,691-707; and Schiffer et al., J Neurol Sci, 1996, 139, 27-33). ALS is usually fatal within 3 to 5 years after the diagnosis due to respiratory defects and/or inflammation (Rowland LP and Shneibder NA, N Engl. J. Med., 2001, 344, 1688-1700).
[0045] A cellular hallmark of $A(S$ is the presence of proteinaceous, ubiquitnated, cytoplasmic inclusions in degenerating motor neurons and surrounding cells (e.g., astrocytes). Ubiquitinated inclusions (ie., Lewy body-like inclusions or Skein-like inclusions) are the most common and specific type of inclusion in ALS and are found in LMNs of the spinal cord and brainstem, and in corticospinal upper motor neurons (UMNs) (Matsumoto et al, J Neurol Sci., 1993, 115, 208-213; and Sasak and Maruyama, Acta Neuropathol., 1994, 87, $578-585$). A few proteins have been identified to be components of the inclusions, including ubiquitin, CuiZn superoxide dismutase 1(SODI), peripherin and Borfin. Neurofilamentous
inclusions are often found in hyaline conglomerate inclusions (HCls) and axonal 'spheroids' in spinal cord motor neurons in ALS. Other types and less specific inclusions include Bunina bodies (cystatin C-containing inclusions) and Crescent shaped inclusions (SCls) in upper layers of the cortex. Other neuropathological features seen in ALS include fragmentation of the Golgi apparatus, mitochondrial vacuolization and ultrastructural abnormalities of synaptic terminals (Fujita et al., Acta Neuropathol. 2002, 103, 243-247).
[0046] In addition, in frontotemporal dementia ALS (FTD-ALS), cortical atrophy (including the frontal and temporal lobes) is also observed, which may cause cognitive impaiment in FTD-ALS patients.
[0047] ALS is a complex and multifactorial disease and multiple mechanisms hypothesized as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, inflammation, protein misfolding and aggregation, aberrant RNA metabolism, and altered gene expression.
[0048] About 10% of ALS cases have family history of the disease, and these patients are referred to as familial ALS (fALS) or inherited patients, commonly with a Mendelian dominant mode of inheritance and high penetrance. The remainder (approximately 90% 95%) is classified as sporadic ALS (sALS), as they are not associated with a documented family history, which is thought to be due to other risk factors, including envirommental factors, genetic polymorphisms, somatic mutations, and possibly gene-environmental interactions. In most cases, familial (or inherited) ALS is inherited as autosomal dominant discase, but pedigrees with autosomal recessive and X-linked inheritance and incomplete penetrance exist. Sporadic and familial forms are clinically indistinguishable, suggesting a common pathogenesis. The precise cause of the selective death of motor neurons in ALS remains elusive. Progress in understanding the genetic factors in fALS may shed light on both forms of the disease
[0049] Recently, an explosion in research and understanding of genetic causes of ALS has led to the discovery of mutations in more than 10 different genes now known to cause fALS. The most common ones are found in the genes encoding $\mathrm{Cu} / \mathrm{Zn}$ superoxide dismutase 1 (SODI; $\sim 20 \%$) (Rosen DR et al., Nature, 1993, 362, 59-62), fused in sarcoma/translated in Hposarcoma (FUS/TLS; 1-5\%) and TDP-43 (TARDBP; 1-5\%). Recently, a hexanucleotide repeat expansion (GGGGCC) in the C9orf72 gene was identified as the most frequent cause of fALS $(\sim 40 \%)$ in the Westem population (reviewed by Renton et al., Nat. Neurosci., 2014,

17, 17-23). Other genes mutated in ALS include alsin (ALS2), senataxin (SETX), vesicleassociated membrane protein (VAPB), angiogenin (ANG). fALS genes control different cellular mechanisms, suggesting that the pathogenesis of ALS is complicated and may be related to several different processes finally leading to motor neuron degeneration.
[0050] SOD$]$ is one of the three human superoxide dismutases identified and characterized in mammals: copper-zinc superoxide dismutase (Cu/ZnSOD or SOD1), manganese superoxide dismutase (MnSOD or SOD2), and extracellular superoxide disnutase (ECSOD or SOD3). SOD1 is a 32 kDa homodimer of a 153 -residue polypeptide with one copper- and one zinc-binding site per subumit, which is encoded by SODl gene (GeneBank access No.: NM 000454.4) on human chromosome 21 (see Table 10). SODI catalyzes the reaction of superoxide anion (O^{2-}) into molecular oxygen (O_{2}) and hydrogen peroxide ($\mathrm{H}_{2} \mathrm{O}_{2}$) at a bound copper ion. The intracellular concentration of SOD 1 is high (ranging from 10 to $100 \mu \mathrm{M}$), accounting for 1% of the total protein content in the central nervous system (CNS). The protein is localized not only in the cytoplasm but also in the nucleus, lysosomes, peroxisomes, and mitochondrial intermembrane spaces in eukaryotic cells (Lindenau J et al., Glia, 2000, 29, 25-34).
[0051] Mutations in SOD 1 gene are carried by $15-20 \%$ of fALS patients and by $1-2 \%$ of all ALS cases. Currently, at least 170 different mutations distributed throughout the 153amino acid SOD 1 polypeptide have been found to cause ALS, and an updated list can be found at the ALS online Genetic Database (ALSOD) (Wroe Ret al., Amyotroph Lateral Scler., 2008, 9, 249-250). Table 1 lists some examples of mutations in SOD1 in ALS. These mutations are predominantly single amino acid substitutions (i.e missense mutations) although deletions, insertions, and C-terminal truncations also occur. Different SOD1 mutations display different geographic distribution patterns. For instance, about half of all Americans with ALS caused by SODI gene mutations have a particular mutation Ala4Val (or A4V). The A4V mutation is typically associated with more severe signs and symptoms. The 1113 T mutation is by far the most common mutation in the United Kingdom. The most prevalent mutation in Europe is D90A substitution.

Table 1. Examples of SODI mutations in ALS

	Matations
Exonl (2200p)	Q22L, E2LK, G; F20C, N19S; G16A, S, V14M, S; G12R; G10G, V, R: L8O, V: V7E; C6G, F: V5L; A4T, V, S
Exon2 (97bp)	T54R; E49K; H48R, Q; V47F, A; H46R; F45C; H43R; G4IS, D, G37R, V29, insA
Exon3 (700 p)	D76Y, V; G72 S, C; L67R, P66A; N65S; S591,
Exon4 (1180p)	D124G, V; V118L, InsAAAAC; L117V; T116T; R115G; G114A: H13T, F; I112M, T: G108V; L106V, F; S106L,

	delTCACTC; I104F; D101G, Y, H, N; E100G, K; 199V; V97L, M; D96N, V; A95T, V; G93S, V, A, C, R, D; D90V, A; A89T, V, T88delactGCTGAC; V87A, M; N86I, S, D, K: G85R, S; L84V, F; H80R
ExonS (4616p)	I151T, S; I49T; V1481, G; G147D, R; C146R, stop; A145T, G; L144F, S; G141E, stop, A140A, G; N139D, K, H, N; G138E; T137R, S134N, E133V, delGAA, insTT, E132insTT; GI27R, InsTGGG; L126S, delITT, stop; D126, deITT

[0052] To investigate the mechanism of neuronal death associated with SOD1 gene defects, several rodent models of SOD 1 -linked ALS were developed in the art, which express the human SOD1 gene with different mutations, including missense mutations, small deletions or insertions. Some examples of ALS mouse models include SOD1 ${ }^{\text {G33A }}$, SOD1 $1^{\text {A4V }}$,
 SOD ${ }^{126 X}$ and SOD $1^{\text {L126deITT }}$. There are two transgene rat models carrying two different buman SOD 1 mutations: SOD $1^{\text {H46R }}$ and SOD $1^{\text {G33R }}$. These rodent ALS models can develop muscle weakness similar to human ALS patients and other pathogenic features that reflect several characteristics of the human disease, in particular, the selective death of spinal motor neurons, aggregation of protein inclusions in motor neurons and microglial activation. It is well known in the art that the transgenic rodents are good models of human SOD 1 -assocaited ALS disease and provide models for studying disease pathogenesis and developing disease treatment.
[0053] Studies in animal and cellular models showed that SOD 1 pathogenic variants cause ALS by gain of function. That is to say, the superoxide dismutase enzyme gains new but harmful properties when altered by SODI mutations. For example, some SOD1 mutated variants in ALS increase oxidative stress (e.g., increased accumulation of toxic superoxide radicals) by disrupting redox cycle. Other studies also indicate that some SOD1 mutated variants in ALS might acquire toxic properties that are independent of its normal physiological function (such as abnormal aggregation of misfolded SOD1 variants). In the aberrant redox chemistry model, mutant SOD1 is unstable and through aberrant chemistry interacts with nonconventional substrates causing reactive oxygen species (ROS) overproduction. In the protein toxicity model, unstable, misfolded SODl aggregates into cytoplasmic inclusion bodies, sequesterng proteins crucial for cellular processes. These two hypotheses are not mutually exclusive. It has been shown that oxidation of selected histidine residues that bind metals in the active site mediates SOD1 aggregation.
[0054] The aggregated mutant SOD 1 protein may also induce mitochondrial dysfunction (Vehvilainen P et al, Front Cell Neurosci., 2014, 8, 126), impaiment of axonal transport,
aberrant RNA metabolism, glial cell pathology and glutamate excitotoxicity. In some sporadic ALS cases, misfolded wild-type SOD 1 protein is found in diseased motor neurons which forms "toxic conformation" that is similar to familial ALS-linked SODI variants (Rotunno MS and Bosco DA, Front Cell Neurosci., 2013, 16, 7, 253). Such evidence suggests that ALS is a protein misfolding disease analogous to other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
[0055] Currently, no curative treatments are available for patients suffering from ALS Until recently, the only FBA approved drug was Riluzole (also called Rilutek), an inhibitor of glutamate release, with a moderate effect on ALS, only extending survival by $2-3$ months if it is taken for 18 months. Unfortunately, patients taking riluzole do not experience any slowing in disease progression or improvement in muscle function. Therefore, riluzole does not present a cure, or even an effective treatment. In 2017, the FDA approved Radicava (edaravone) for the treatment of ALS, the first such approval in 22 years. Administered intravenously and serving as a free-radical scavenger and anti-oxidant, Radicava has been shown to slow disease progression. In a climical Phase 3 trial (NCT01492686) of 137 patients, Radicava slowed the decline in physical function as compared to those patients taking placebo and as detemmed by score on the ALS Functional Rating Scale-Revised (ALSFRSR) (Writing group; Edaravone (MCl-186) ALS 19 Study Group Lancet Neurol. 2017 Jul; 16(7):505-512). The approval of Radicava is considered an advance in terms of treatment of ALS, however it is still not a cure. Researchers contimue to search for better therapeutic agents.
$[0056]$ One approach to inhibit abnomal SOD] proten aggregation is to silence/mhibit SOD1 gene expression in ALS. It has been reported that small interfering RNAs for specific gene silencing of the mutated allele is therapeutically beneficial for the treatment of fALS (e.g., Ralgh GS et al., Nat, Medicine, 2005, 11(4), 429-433; and Raoul C et al., Nat. Medicine, 2005, 11(4), 423-428; and Maxwell MM et al. PNAS, 2004, 101(9), 3178-3183; and Ding H et al., Chinese Medical.J., 2011, 124(1), 106-110; and Scharz DS et al., Plos Genet., $2006,2(9)$, e 440 , the content of each of which is incorporated herein by reference in their entirety)
[0057] Many other RNA therapeunic agents that target SODI gene and modulate SODI expression in ALS are taught in the art, such RNA based agents include antisense oligonucleotides and double stranded small interfering RNAs. See, e.g., Wang H et al., J Biol. Chem., 2008, 283(23), 15845-15852); U.S. Pat. Nos. 7,498,316, 7,632,938; 7,678,895;
$7,951,784 ; 7,977,314 ; 8,183,219 ; 8,309,533$ and $8,586,554 ;$ and U.S. Patent publication Nos. 2006/0229268 and 2011/0263680; the content of each of which is herein incorporated by reference in their entirety.
$[0058]$ The present disclosure employs viral vectors such as adeno-associated viral (AAV) vectors to deliver siRNA duplexes or SODI targeting polynucleotides into cells with high efficiency. The AAV vectors comprising RNAi molecules, e.g., siRNA molecules of the present disclosure may increase the delivery of active agents into motor neurons. SOD targeting polynucleotides may be able to inhibit SODI gene expression (e.g, mRNA level) significantly inside cells, therefore, ameliorating SOB1 expression induced stress inside the cells such as aggregation of protein and formation of inclusions, increased free radicals, mitochondrial dysfunction and RNA metabolism
[0059] Such SOD 1 targeting polynucleotides may be used for treating ALS. According to the present disclosure, methods for treating and/or ameliorating A ES in a patient comprises administering to the paticnt an effective amount of at least one SOD 1 targeting polynucleotide encoding one or more siRNA duplexes into cells and allowing the inhibition/silence of SODI gene expression, are provided.

Compositions

Vectors
[0060] In some embodiments, the siRNA molecules described herein can be inserted into, or encoded by, vectors such as plasmids or viral vectors. Preferably, the siRNA molecules are inserted into, or encoded by, viral vectors.
[0061] Viral vectors may be Herpesvirus (HSV) vectors, retroviral vectors, adenoviral vectors, adeno-associated viral vectors, lentiviral vectors, and the like. In some specific embodiments, the viral vectors are $A A V$ vectors.

Retroviral vectors

[0062] In some embodiments, the siRNA duplex targeting SOW1 gene may be encoded by a retroviral vector (See, e.g., U.S. Pat. Nos. 5,399,346; 5, 124,263; 4,650,764 and 4,980,289; the content of each of which is incorporated herein by reference in their entirety)

Adenoviral vectors

[0063] Adenovinuses are eukaryotic DNA viruses that can be modified to efficiently deliver a nucleic acid to a variety of cell types in vivo, and have been used extensively in gene therapy protocols, including for targeting genes to neural cells. Various replication defective adenovirus and minimum adenovirus vectors have been described for nucleic acid
therapeutics (See, e.g. PCT Fatent Publication Nos. WO199426914, WO 199502697, WO199428152, W0199412649, WO199502697 and W0199622378; the content of each of which is incorporated by reference in their entirety). Such adenoviral vectors may also be used to deliver siRNA molecules of the present disclosure to cells.

Adeno-associated viral (AV) vectors

[00664] An AAV is a dependent parvovirus. Like other parvoviruses, AAV is a single stranded, non-enveloped DNA virus, having a genome of about 5000 nucleotides in length containing two open reading frames that encode the proteins responsible for replication (Rep) and the structural protein of the capsid (Cap). The open reading frames are flanked by two Inverted Terminal Repeat (TRR) sequences, which serve as the origin of replication of viral genome. Furthermore, the AAV genome contains a packaging sequence, allowing packaging of the viral genome into an AAV capsid. The AAV vector requires co-helper (eg., adenovins) to undergo a productive infection in infected cells. In the absence of such helper functions, the AAV virions essentially enter host cells and integrate into cells 'genome
[0065] AAV vectors have been investigated for siRNA delivery because of its several unque features. These features include (i) ability to infect both dividing and non-dividing cells; (ii) a broad host range for infectivity, including human cells; (iii) wild-type AAV has never been associated with any disease and cannot replicate in infected cells; (iv) lack of cellmediated immune response against the vector and (v) ability to integrate into a host chromosome or persist episomally, thereby creating potential for long-term expression. Morcover, infection with AAV vectors has minimal influence on changing the pattem of cellular gene expression (Stilwell and Samulski et al., Biotechniques, 2003, 34, 148).
[0066] Typically, AAV vectors for siRNA delivery may be recombinant viral vectors which are replication defective because of lacking sequences encoding functional Rep and Cap proteins in viral genome. In some cases, the defective AAV vectors may lack most of all coding sequences and essentially only contains one or two AAV ITR sequences and a packaging sequence.
[0067] AAV vectors may also comprise self-complementary AAV vectors (scAAVs) seAAV vectors contain both DNA strands which anneal together to form double stranded DNA. By skipping second strand synthesis, seAAVs allow for rapid expression in the cell. [0068] Methods for producing/modifying AAV vectors are disclosed in the art such as pseudotyped AAV vectors (PCT Patent Publication Nos. WO200028004; WO200123001;

WO2004112727, WO 2005005610 and WO 2005072364, the content of each of which is incorporated herein by reference in their entirety).
[0069] AAV vectors for delivering siRNA molecules into mammalian cells, may be prepared or derived from various serotypes of AAVs, including, but not himited to, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV9.47, AAV9(hul4), AAV10, AAV11, AAV12, AAVm8, AAVrh10, AAV-DI8 and AAV-DI. In some cases, different serotypes of $A A V$ s may be mixed together or with other types of viruses to produce chimeric $A A V$ vectors.
[0070] In certain embodiments, the AV serotype is AAVrh10.
[0071] AAV vectors for siRNA delivery may be modified to enhance the efficiency of delivery. Such modified AAV vectors containing the siRNA expression cassette can be packaged efficiently and can be used to infect successfully the target cells at high frequency and with minimal toxicity.
[0072] In some embodiments, the AAV vector for delivering siRNA duplexes of the present disclosure may be a human serotype AAV vector. Such human AAV vector may be derived from any known serotype, e.g., from any one of serotypes AAVI-AAV11. As nonlimiting examples, $A A V$ vectors may be vectors comprising an $A V I$-derived genone in an AAV1-derived capsid; vectors comprising an A AV2-derived genome in an AAV2-derived genome, vectors comprising an AAV4-derived genome in an AAV4 derived capsid; vectors comprising an A A Voderived genome in an A AV6 derived capsid or vectors comprising an AAV9-derived genome in an AAV9 derived capsid.
[0073] In other embodiments, the AAV vector for delivering siRNA duplexes of the present disclosure may be a pseudotyped AAV vector which contains sequences and/or components originating from at least two different A AV serotypes. Pseudotyped A AV vectors may be vectors comprising an $A A V$ genome derived from one $A A V$ serotype and a Capsid protein derived at least in part from a different A AV serotype. As non-limiting examples, such pseudotyped AV vectors may be vectors comprising an AAV2-derived genome in an AAV 1 -derived capsid; or vectors comprising an AAV2-derived genome in an AAV6-derived capsid; or vectors comprising an AAV2-derived genome in an AAV4-derived capsid; or an AAV2-derived genome in an AAVO-derived capsid.
[0074] In other embodiments, AAV vectors may be used for delivering siRNA molecules to the central nervous system (e.g., U.S. Pat. No. 6,180,613; the content of which is herein incorporated by reference in its entirety).
[0075] In some aspects, the AAV vector for delivering siRNA duplexes of the present disclosure may further comprise a modified capsid including peptides from non-viral ongin. In other aspects the AAV vector may contain a CNS specific chimeric capsid to facilitate the delivery of siRNA duplexes into the brain and the spinal cord. For example, an alignment of cap nucleotide sequences from AAV variants exhibiting CNS tropism may be constructed to identify variable region (VR) sequence and structure.
[0076] The present disclosure refers to structural capsid proteins (including VP1, VP2 and VP3) which are encoded by capsid (Cap) genes. These capsid proteins form an outer protein structural shell (i.e. capsid) of a viral vector such as AAV. VP capsid proteins synthesized from Cap polynucleotides generally include a methionine as the first amino acid in the peptide sequence (Met), which is associated with the start codon (AUG or ATG) in the corresponding Cap nucleotide sequence. However, it is common for a first-methionine (Met1) residue or generally any first amino acid (AA1) to be cleaved off after or during polypeptide synthesis by protein processing enzymes such as Met-aminopeptidases. This "Met/AA-clipping" process often correlates with a corresponding acetylation of the second amino acid in the polypeptide sequence (e.g., alanine, valine, serine, threonine, etc.). Metclipping commonly occurs with VP1 and VP3 capsid proteins but can also occur with VP2 capsid proteins.
[0077] Where the Met/AA-clipping is incomplete, a mixture of one or more (one, two or three) VP capsid proteins comprising the viral capsid may be produced, some of which may include a Met1/AAl amino acid (Met $+/ \mathrm{AA}+$) and some of which may lack a Met $1 / \mathrm{AAl}$ amino acid as a result of Met/AA-clipping (Met-/AA-). For further discussion regarding Met/AA-clipping in capsid proteins, see Jin, et al. Direct Liquid Chromatography/Mass Spectrometry Analysis for Complete Characterization of Recombinant Adeno-Associated Virus Capsid Proteins. Hum Gene Ther Methods. 2017 Oct. 28(5):255-267; Hwang, et al. NTerminal Acetylation of Cellular Proteins Creates Specific Degradation Signals. Science. 2010 February 19. 327(5968): 973-977; the contents of which are each incorporated herein by reference in its entirety
[0078] According to the present disclosure, references to capsid proteins is not limited to either clipped (Met-AA-) or unclipped (Met $+/ \mathrm{AA}$) and may, in context, refer to independent capsid proteins, viral capsids comprised of a mixture of capsid proteins, and/or polynucleotide sequences (or fragments thereof) which encode, describe, produce or result in capsid proteins of the present disclosure. A direct reference to a "capsid protem" or "capsid
polypeptide" (such as VP1, VP2 or VP2) may also comprise VP capsid proteins which include a Met $1 / \mathrm{AA}$ l amino acid (Met $+/ \mathrm{AA}+$) as well as corresponding VP capsid proteins which lack the Met $1 / A A 1$ amino acid as a result of Met/AA-clipping (Met-/AA-).
[0079] Further according to the present disclosure, a reference to a specific SEQ ID NO. (whether a protein or nucleic acid) which comprises or encodes, respectively, one or more capsid proteins which include a Met1/AAl amino acid (Met+/AA+) should be understood to teach the VP capsid proteins which lack the Met1/AA1 amino acid as upon review of the sequence, it is readily apparent any sequence which merely lacks the first listed amino acid (whether or not Met 1/AAI).
[0080] As a non-limiting example, reference to a VP1 polypeptide sequence which is 736 amino acids in length and which includes a "Metl" amino acid (Met+) encoded by the AUG/ATG start codon may also be understood to teach a VP1 polypeptide sequence which is 735 amino acids in length and which does not include the "Met1" amino acid (Met-) of the 736 amino acid Met+ scquence. As a second non-limiting example, reference to a VP1 polypeptide sequence which is 736 amino acids in length and which includes an "AA1" amino acid (AA1 +) encoded by any NNN initiator codon may also be understood to teach a VPl polypeptide sequence which is 735 ammo acids in length and which does not include the "AA1" amino acid (AA1-) of the 736 amino acid $A A 1+$ sequence.
[0081] References to viral capsids fomed from VP capsid proteins (such as reference to specific AAV capsid serotypes), can incorporate VP capsid proteins which include a Mct//AA1 amino acid (Mct+/AA1+), corresponding VP capsid proteins which lack the Met/AA1 amino acid as a result of Met/AAl-clipping (Met-/AAl-), and combinations thereof (Met $+/ \mathrm{AA} 1+$ and Met-/AA1-).
[0082] As a non-limiting example, an AAV capsid serotype can include VP1
(Met+/AAl+), VP1 (Met-/AA1-), or a combination of VPI (Met+/AAl+) and VPI (Met-/AA1-). An AAV capsid serotype can also include VP3 (Met+/AA1+), VP3 (Met-/AA1-), or a combination of VP3 (Met $+/ \mathrm{AAl}+$) and VP3 (Met- $/ \mathrm{AAl}$) ; and can also include similar optional combinations of VP2 (Met+/AA1) and VP2 (Met-/AA1-).

Viral Genome

[0083] In certain embodiments, as shown in an AAV particle comprises a viral genome with a payload region.

Viral Genome Size

[0084] In certain embodiments, the viral genome which comprises a payload described herein, may be single stranded or double stranded viral genome. The size of the viral genome may be small, medium, large or the maximum size. Additionally, the viral genome may comprise a promoter and a poly A tail.
[0085] In certain embodiments, the viral genome which comprises a payload described berein, may be a small single stranded viral genome. A small single stranded viral genome may be 2.7 to 3.5 kb in size such as about $2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4$, and 3.5 kb in size. As a non-limiting example, the small single stranded viral genome may be 3.2 kb in size. Additionally, the viral genome may comprise a promoter and a polyA tail.
[0086] In certain embodiments, the viral genome which comprises a payload described herein, may be a small double stranded viral genome. A small double stranded viral genome may be 1.3 to 1.7 kb in size such as about $1.3,1.4,1.5,1.6$, and 1.7 kb in size. As a nonlimiting example, the small double stranded viral genome may be 1.6 kb in size. Additionally, the viral genome may comprise a promoter and a poly A tail
[0087] In certain embodiments, the viral genome which comprises a payload described herein, may a medium single stranded viral genome. A medium single stranded viral genome may be 3.6 to 4.3 kb in size such as about $3.6,3.7,3.8,3.9,4.0,4.1,4.2$ and 4.3 kb in size. As a non-limiting example, the medium single stranded viral genome may be 4.0 kb in size. Additionally, the viral genome may comprise a promoter and a poly A tail.
[0088] In certain embodiments, the viral genome which comprises a payload described herein, may be a medium double stranded viral genome. A medium double stranded viral genome may be 1.8 to 2.1 kb in size such as about $1.8,1.9,2.0$, and 2.1 kb in size. As a nonlimiting example, the medium double stranded viral genome may be 2.0 kb in size. Additionally, the viral genome may comprise a promoter and a poly A tail
[0089] In certain embodiments, the viral genome which comprises a payload described herein, may be a large single stranded viral genome. A large single stranded viral genome may be 4.4 to 6.0 kb in size such as about $4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4$, $5.5,5.6,5.7,5.8,5.9$ and 6.0 kb in size. As a non-limiting example, the large single stranded viral genome may be 4.7 kb in size. As another non-limiting example, the large single stranded viral genome may be 4.8 kb in size. As yet another non-Imiting example, the large single stranded viral genome may be 6.0 kb in size. Additionally, the viral genome may comprise a promoter and a poly A tail.
[0090] In certain embodiments, the viral genome which comprises a payload described herein, may be a large double stranded viral genome. A large double stranded viral genome may be 2.2 to 3.0 kb in size such as about $2.2,2.3,2.4,25,2.6,2.7,2.8,29$ and 3.0 kb in size. As a non-limiting example, the large double stranded viral genome may be 2.4 kb in size. Additionally, the viral genome may comprise a promoter and a poly A tail. Yiral Genome Component: Inverted Terninal Repeats (TTRs)
[0091] The AAV particles of the present disclosure comprise a viral genome with at least one ITR region and a payload region. In certain embodiments the viral genome has two ITRs These two ITRs flank the payload region at the 5 ' and 3 ' ends. The ITRs function as origins of replication comprising recognition sites for replication. ITRs comprise sequence regions which can be complementary and symmetrically arranged. TRR incorporated into viral genomes of the disclosure may be comprised of naturally occurring polynucleotide sequences or recombinantly derived polynucleotide sequences.
[0092] The ITRs may be derived from the same serotype as the capsid, selected from any of the serotypes herein, or a derivative thereof. The ITR may be of a different serotype from the capsid. In certain embodiments the AAV particle has more than one ITR. In a nonlimiting example, the AAV particle has a viral genome comprising two ITRs. In certain embodiments the IRRs are of the same scrotype as one another. In another embodiment the ITRs are of different serotypes, Non-limiting examples include zero, one or both of the ITRs having the same serotype as the capsid. In certain embodiments both ITRs of the viral genome of the AAV particle are AAV2 ITRs.
[0093] Independently, each ITR may be about 100 to about 150 nucleotides in length. An ITR may be about 100-105 nucleotides in length, 106-110 nucleotides in length, 111-115 nucleotides in length, 116-120 nucleotides in length, 121-125 nucleotides in length, 126-130 nucleotides in length, 131-135 nucleotides in length, 136-140 nucleotides in length, 141-145 nucleotides in length or 146-150 nucleotides in length. In certain embodiments the ITRs are 140-142 nucleotides in length. Non limiting examples of ITR length are 102, 140, 141, 142, 145 nucleotides in length, and those having at least 95% identity thereto.
[0094] In certain embodiments, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule which may be located near the 5^{\prime} end of the flip TRR in an expression vector. In another embodiment, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located near the 3 ' end of the flip ITR in an expression vector. In yet another embodiment, the AAV particle comprises a nucleic acid
sequence encoding an siRNA molecule may be located near the 5 ' end of the flop ITR in an expression vector. In yet another embodiment, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located near the 3 ' end of the flop ITR in an expression vector. In certain embodiments, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located between the 5' end of the flip ITR and the 3 ' end of the flop ITR in an expression vector. In certain embodiments, the AAV particle comprises a nueleic acid sequence encoding an siRNA molecule may be located between (e.g., half-way between the 5^{\prime} end of the flip ITR and 3' end of the flop ITR or the 3^{\prime} end of the flop ITR and the 5^{\prime} end of the Hip ITR), the $3^{\prime \prime}$ end of the flip ITR and the 5^{\prime} end of the flip ITR in an expression vector. As a non-limiting example, the $A A V$ particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within $1,2,3,4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or more than 30 nucleotides downstream from the 5^{\prime} or 3^{\prime} end of an ITR (e.g. Flip or Flop ITR) in an expression vector. As a non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within $1,2,3,4,5,6,7,8,9,10,11$, $12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or more than 30 nucleotides upstream from the 5^{\prime} or 3^{*} end of an ITR (e.g., Flip or Flop ITR) in an expression vector. As another non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within $1-5,1-10,1-15,1-20,1-25,1-30,5-10$, $5-15,5-20,5-25,5-30,10-15,10-20,10-25,10-30,15-20,15-25,15-30,20-25,20-30$ or $25-$ 30 nucleotides downstream from the 5 ' or 3 ' end of an MTR (c.g., Flip or Flop JTR) in an expression vector. As another non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within 1-5, 1-10, 1-15, 1-20, 1-$25,1-30,5-10,5-15,5-20,5-25,5-30,10-15,10-20,10-25,10-30,15-20,15-25,15-30,20-$ $25,20-30$ or $25-30$ upstream from the 5 or 3^{\prime} end of an TRR (e.g., Flip or Flop ITR) in an expression vector. As a non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an sirNA molecule may be located within the frst $1 \%, 2 \%, 3 \%, 4 \%, 5 \%$, $6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 15 \%, 20 \%, 25 \%$ or more than 25% of the nucleotides upstream from the 5^{\prime} or 3^{\prime} end of an ITR (e.g., Flip or Flop ITR) in an expression vector. As another nonlimiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located with the first $1-5 \%, 1-10 \%, 1-15 \%, 1-20 \%, 1-25 \%, 5-10 \%, 5-15 \%$, $5-20 \%, 5-25 \%, 10-15 \%, 10-20 \%, 10-25 \%, 15-20 \%, 15-25 \%$, or $20-25 \%$ downstream from the 5^{\prime} or 3 ' end of an ITR (e.g., Flip or Flop (TR) in an expression vector.

Viral Genome Component: Promoters

$[0095]$ In certain embodiments, the payload region of the viral genome comprises at least one element to enhance the transgene target specificity and expression (See e.g., Powell et al. Viral Expression Cassette Elements to Enhance Transgene Target Specificity and Expression in Gene Therapy, 2015; the contents of which are herein incorporated by reference in its entirety). Non-limiting examples of elements to enhance the transgene target specificity and expression include promoters, endogenous miRNAs, post-transcriptional regulatory elements (PREs), polyadenylation (PolyA) signal sequences and upstream enhancers (USEs), CMV enhancers and introns.
[0096] A person skilled in the att may recognize that expression of the polypeptides of the disclosure in a target cell may require a specific promoter, including but not limited to, a promoter that is species specific, inducible, tissue-specific, or cell cycle-specific (Parr et al., Nat. Med.3:1145-9 (1997); the contents of which are herein incorporated by reference in their entirety)
[0097] In certain embodiments, the promoter is deemed to be efficient when it drives expression of the polypeptide(s) cncoded in the payload region of the viral genome of the AAV particle.
[0098] In certain embodiments, the promoter is a promoter deemed to be efficient to drive the expression of the modulatory polynucleotide.
[0099] In certain embodiments, the promoter is a promoter deemed to be efficient when it drives expression in the cell being targeted.
[0100] In certain embodiments, the promoter drives expression of the payload for a period of time in targeted tissues. Expression driven by a promoter may be for a period of 1 hour, 2, hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 3 weeks, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 days, 31 days, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 13 months, 14 months, 15 months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22 months, 23
months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years or more than 10 years. Expression may be for 1-5 hours, 1-12 hours, 1-2 days, 1-5 days, 1-2 weeks, 13 weeks, 1-4 weeks, 1-2 months, 1-4 months, 1-6 months, 2-6 months, 3-6 months, 3-9 months, $4-8$ months, $6-12$ months, $1-2$ years, $1-5$ years, $2-5$ years, $3-6$ years, $3-8$ years, $4-8$ years or $5-10$ years
[0101] In certain embodiments, the promoter drives expression of the payload for at least 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 2 years, 3 years 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years, 37 years, 38 years, 39 years, 40 years, 41 years, 42 years, 43 years, 44 years, 45 years, 46 years, 47 years, 48 years, 49 years, 50 years, 55 years, 60 years, 65 years, or more than 65 years. [0192] Promoters may be naturally occurring or non-naturally occurring. Non-limiting examples of promoters include viral promoters, plant promoters and mammalian promoters. In some embodiments, the promoters may be human promoters. In some embodiments, the promoter may be truncated
[0103] Promoters which drive or promote expression in most tissues include, but are not Imited to, human elongation factor 1α-subunit ($\mathrm{EF} 1 \alpha$), cytomegalovirus (CMV) immediateearly enhancer and/or promoter, chicken β-actin (CBA) and its derivative CAG, β glucuronidase (GUSB), or ubiquitin C (UBC). Tissue-specific expression elements can be used to restrict expression to certain cell types such as, but not limited to, muscle specific promoters, B cell promoters, monocyte promoters, leakocyte promoters, macrophage promoters, pancreatic acinar cell promoters, endothelial cell promoters, lung tissue promoters, astrocyte promoters, or nervous system promoters which can be used to restrict expression to neurons, astrocytes, or oligodendrocytes.
[0104] Non-limiting examples of muscle-specific promoters include mammalian muscle creatine kinase (MCK) promoter, mammalian desmin (DES) promoter, mammalian troponin l (TNN2) promoter, and mammalian skeletal alpha-actin (ASKA) promoter (see, e.g. U.S Patent Publication US 20110212529 , the contents of which are herein incorporated by reference in their entirety)
[0105] Non-limiting examples of tissue-specific expression elements for neurons include neuron-specific enolase (NSE), platelet-derived growth factor (PDGF), platelet-derived
growth factor B-chain (PDGF-B), synapsin (Syn), methyl-CpG binding protein 2 (MeCP2), $\mathrm{Ca}^{2+} /$ calmodulin-dependent protein kinase I (CaMKI) , metabotropic glutamate receptor 2 (mGluR2), neurofilament light (NFL) or beavy (NFH), β-globin minigene n $\beta 2$, preproenkephalin (PPE), enkephalin (Enk) and excitatory amino acid transporter 2 (EAAT2) promoters. Non-limiting examples of tissue-specific expression elements for astrocytes include glial fibrillary acidic protein (GFAP) and EAAT2 promoters. A non-limiting example of a tissue-specific expression element for oligodendrocytes includes the myelin basic protein (MBP) promoter.
[0100] In certain embodiments, the promoter may be less than 1 kb . The promoter may have a length of $200,210,220,230,240,250,260,270,280,290,300,310,320,330,340$, $350,360,370,380,390,400,410,420,430,440,450,460,470,480,490,500,510,520$, $530,540,550,560,570,580,590,600,610,620,630,640,650,660,670,680,690,700$, $710,720,730,740,750,760,770,780,790,800$ or more than 800 nucleotides. The promoter may have a length between 200-300, 200-400, 200-500, 200-600, 200-700, 200-800, 300-$400,300-500,300-600,300-700,300-800,400-500,400-600,400-700,400-800,500-600$, $500-700,500-800,600-700,600-800$ or $700-800$.
[0107] In certain embodiments, the promoter may be a combination of two or more components of the same or different starting or parental promoters such as, but not limited to, CMV and CBA. Each component may have a length of $200,210,220,230,240,250,260$, $270,280,290,300,310,320,330,340,350,360,370,380,381,382,383,384,385,386$, $387,388,389,390,400,410,420,430,440,450,460,470,480,490,500,510,520,530$, $540,550,560,570,580,590,600,610,620,630,640,650,660,670,680,690,700,710$, $720,730,740,750,760,770,780,790,800$ or more than 800 . Each component may have a length between 200-300, 200-400, 200-500, 200-600, 200-700, 200-800, 300-400, 300-500, $300-600,300-700,300-800,400-500,400-600,400-700,400-800,500-600,500-700,500-$ $800,600-700,600-800$ or 700-800. In certain embodiments, the promoter is a combination of a 382 nucleotide CMV-enhancer sequence and a 260 nucleotide CBA-promoter sequence
[0108] In certain embodiments, the viral genome comprises a ubiquitous promoter. Nonlimiting examples of ubiquitous promoters include $\mathrm{CMV}, \mathrm{CBA}$ (including derivatives CAG , CBh, etc.), EF-1a, PGK, UBC, GUSB (hGBp), and UCOE (promoter of HNRPA2B1CBX3).
[0109] Yuct al. (Molecular Pain 2011, 7:63; the contents of which are herein incorporated by reference in their entrety) evaluated the expression of eGFP under the CAG, EFl α, PGK
and UBC promoters in rat DRG cells and primary DRG cells using lentiviral vectors and found that UBC showed weaker expression than the other 3 promoters and only $10-12 \%$ ghal expression was seen for all promoters. Soderblom et al. (E. Neuro 2015; the contents of which are herein incorporated by reference in its entirety) evaluated the expression of eGFP in AAV8 with CMV and UBC promoters and AAV2 with the CMV promoter after injection in the motor cortex. Intranasal administration of a plasmid containing a UBC or EFIo promoter showed a sustained airway expression greater than the expression with the CMV promoter (See e.g., Gill et al, Gene Therapy 2001, Vol, 8, 1539-1546; the contents of which are herein incorporated by reference in their entrety). Husain et al. (Gene Therapy 2009; the contents of which are herein incorporated by reference in its entirety) evaluated an HBH construct with a hGUSB promoter, a HSV-LLAT promoter and an NSE promoter and found that the HBH construct showed weaker expression than NSE in mouse brain. Passini and Wolfe (3. Virol. 2001, 12382-12392, the contents of which are herein incorporated by reference in its entircty) evaluated the long term effects of the H H H vector following an intraventricular injection in neonatal mice and found that there was sustained expression for at least 1 year. Low expression in all brain regions was found by Xu et al. (Gene Therapy 2001, 8, 1323-1332; the contents of which are herein incorporated by reference in their entirety) when NFL and NFH promoters were used as compared to the CMV-lacZ, CMV-luc, EF, GFAP, hENK, nAChR, PPE, PPE + wpre, NSE (0.3 kb), NSE (1.8 kb) and NSE (1.8 kb + wpre). Xu et al found that the promoter activity in descending order was NSE (1.8 kb), EF, NSE (03 kb), GFAP, CMV, hENK, PPE, NFL and NFH. NFL is a 650 nucleotide promoter and NFH is a 920 mucleotide promoter which are both absent in the liver but NFH is abundant in the sensory proprioceptive neurons, brain and spinal cord and NFH is present in the heart. Scn8a is a 470 nucleotide promoter which expresses throughout the DRG, spinal cord and brain with particularly high expression seen in the hippocampal neurons and cerebellar Purkinje cells, cortex, thalamus and hypothalamus (See e.g., Drews et al. Identification of evolutionary conserved, finctional noncoding elements in the promoter region of the sodium chomnel gene SCN8A, Mamm Genome (2007) 18:723-731; and Raymond et al. Expression of Alternatively Spliced Sodium Channel a-subunit genes, Journal of Biological Chemistry (2004) 279(44) 46234-46241; the contents of each of which are herein incorporated by reference in their entireties).
[0110] Any of promoters taught by the aforementioned Yu, Soderblom, Gill, Husain, Passini, Xu, Drews or Raymond may be used in the present compositions.
[0111] In certain embodiments, the promoter is not cell specific
[0112] In certain embodiments, the promoter is a ubiquitin c (UBC) promoter. The UBC promoter may have a size of $300-350$ nucleotides. As a non-limiting example, the UBC promoter is 332 nucleotides
[0113] In certain embodiments, the promoter is a β-gheuronidase (GUSB) promoter. The GUSB promoter may have a size of 350 - 400 nucleotides. As a non-limiting example, the GUSB promoter is 378 nucleotides.
[0114] In certain embodiments, the promoter is a neurofilament light (NFL) promoter. The NFL promoter may have a size of 600-700 nucleotides. As a non-limiting example, the NFL promoter is 650 nucleotides. As a non-limiting example, the construct may be AAV-promoter-CMV/globin intron-modulatory polynucleotide-RBG, where the AAV may be selfcomplementary and the AAV may be the DI serotype
[0115] In certain embodiments, the promoter is a neurofilament heavy (NFH) promoter. The NFH promoter may have a size of 900 -950 nuclcotides. As a non-limiting example, the NEE promoter is 920 nucleotides. As a non-limiting example, the construct may be AAV-promoter-CMV/globin intron-modulatory polynucleotide-RBG, where the AV may be selfcomplementary and the AAV may be the DI serotype
[0116] In centain embodiments, the promoter is a sen8a promoter. The scn8a promoter may have a size of $450-500$ nucleotides. As a non-limiting example, the scn8a promoter is 470 nucleotides. As a non-limiting example, the construct may be A $A V$-promoterCMV/globin intron-modulatory polynucleotide-RBG, where the AAV may be selfcomplementary and the AAV may be the DI serotype
[0117] In certain embodiments, the viral genome comprises a Polll promoter.
[O188] In certain embodiments, the viral genome comprises a Pl promoter.
[0119] In certain embodiments, the viral genome comprises a FXN pronoter.
[0120] In certain embodiments, the promoter is a phosphoglycerate kinase 1 (PGK) promoter
[0121] In certain embodiments, the promoter is a chicken β-actin (CBA) promoter.
[0122] In certain embodiments, the promoter is a CAG promoter which is a construct comprising the cytomegalovirus (CMV) enhancer fused to the chicken beta-actin (CBA) promoter.
[0123] In certain embodiments, the promoter is a cytomegalovirus (CMV) promoter.
[0124] In certain embodiments, the viral genome comprises a H promoter.
[0125] In certain embodiments, the viral genome comprises a U6 promoter.
[0126] In certain embodiments, the promoter is a liver or a skeletal muscle promoter. Nonlimiting examples of liver promoters include human $\alpha-1$-antitrypsin (bAAT) and thyroxine binding globulin (TBG). Non-limiting examples of skeletal muscle promoters include Desmin, MCK or synthetic C5-12.
[0127] In certain embodiments, the promoter is a RNA pol III promoter. As a non-limiting example, the RNA pol III promoter is U6. As a non-limiting example, the RNA pol III promoter is H1.
[0128] In certain embodiments, the viral genome comprises two promoters. As a nonlimiting example, the promoters are an EFla promoter and a CMV promoter.
[0129] In certain embodiments, the viral genome comprises an enhancer element, a promoter and/or a 5 UTR intron. The enhancer element, also referred to herein as an "enhancer," may be, but is not limited to, a CMV enhancer, the promoter may be, but is not limited to, a CMV, CBA, UBC, GUSB, NSE, Synapsin, MeCP2, and GFAP promoter and the 5 'UTR/intron may be, but is not limited to, SV40, and CBA-MVM. As a non-limiting example, the enhancer, promoter and/or intron used in combination may be: (1) CMY enhancer, CMV promoter, SV40 5 UTR intron; (2) CMV enhancer, CBA promoter, SV 40 5 UTR intron; (3) CMV enhancer, CBA promoter, CBA-MVM 5 UTR intron; (4) UBC pronoter, (5) GUSB promoter, (6) NSE promoter, (7) Synapsin promoter, (8) MeCP2 promoter, (9) GFAP promoter, (10) H1 promoter, and (11) U6 promoter.
[0130] In certain embodiments, the viral genome comprises an engincered promoter. [0131] In another embodiment the viral genome comprises a promoter from a naturally expressed protein.

Viral Genome Component: Untransiated Regions (UTRs)
[0132] By definition, wild type untranslated regions (UTRs) of a gene are transcribed but not translated. Generally, the 5' UTR starts at the transeription start site and ends at the start codon and the 3 ' UTR starts immediately following the stop codon and continues until the termination signal for transcription.
[0133] Features typically found in abundantly expressed genes of specific target organs may be engineered into UTRs to enhance the stability and protein production. As a nonlimiting example, a 5 ' UTR from mRNA nomally expressed in the liver (e.g., abumin, serum amyloid A , Apolipoprotein $\mathrm{A} / \mathrm{B} / \mathrm{E}$, transferrin, alpha fetoprotein, erythropoietin, or

Factor VIII) may be used in the viral genomes of the AAV particles of the disclosure to enhance expression in hepatic cell lines or liver.
[0134] While not wishing to be bound by theory, wild-type 5^{\prime} untranslated regions (UTRS) include features which play roles in transiation initiation. Kozak sequences, which are commonly known to be involved in the process by which the ribosome initiates translation of many genes, are usually included in 5^{\prime} UTRs. Kozak sequences have the consensus CCR(A/G) CCAUGG, where R is a purine (adenine or guanine) three bases upstream of the start codon (ATG), which is followed by another ' G '.
[0135] In certain embodiments, the 5UTR in the viral genome includes a Kozak sequence.
[0136] In certain embodiments, the 5 UTR in the viral genome does not include a Kozak sequence.
[0137] While not wishing to be bound by theory, wild-type 3' UTRs are known to have stretches of Adenosines and Uridines embedded therein. These AU rich signatures are particularly prevalent in genes with high rates of tumover. Based on their sequence features and functional properties, the AU rich elements (AREs) can be separated into three classes (Chen et al, 1995, the contents of which are herein incorporated by reference in its entirety): Class I AREs, such as, but not limited to, c-Myc and MyoD, contain several dispersed copies of an AUUUA motif within U-rich regions. Class II AREs, such as, but not limited to, GMCSF and TNF-a, possess two or more overlapping UUAUUUA(U/A)(U/A) nonamers. Class III ARES, such as, but not limited to, c-Jun and Myogenin, are less well defined. These U rich regions do not contain an AUUUA motif. Most proteins binding to the AREs are known to destabilize the messenger, whereas members of the ELAV family, most notably HuR, have been documented to increase the stability of mRNA. HuR binds to AREs of all the three classes. Engineering the HuR specific binding sites into the 3 ' UTR of nucleic acid molecules will lead to HuR binding and thus, stabilization of the message in vivo.
[0138] Introduction, removal or modification of 3' UTR AU rich elements (AREs) can be used to modulate the stability of polynucleotides. When engincering specific polynucleotides, e.g., payload regions of viral genomes, one or more copies of an ARE can be introduced to make polymucleotides less stable and thereby cortail translation and decrease production of the resultant protein. Likewise, AREs can be identified and removed or mutated to increase the intracellular stability and thus increase translation and production of the resultant protein.
[0139] In certain embodiments, the 3' UTR of the viral genome may include an oligo(dT) sequence for templated addition of a poly-A tail
[0140] In certain embodiments, the viral genome may include at least one miRNA seed, binding site or full sequence. microRNAs (or miRNA or miR) are 19-25 nucleotide noncoding RNAs that bind to the sites of nucleic acid targets and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. A microRNA sequence comprises a "seed" region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence of the nucleic acid.
[0141] In certain embodiments, the viral genome may be engineered to include, alter or remove at least one miRNA binding site, sequence or seed region.
[0142] Any UTR from any gene known in the art may be incorporated into the viral genome of the AAV particle. These UTRs, or portions thereof, may be placed in the same orientation as in the gene from which they were selected or they may be altered in orientation or location. In certain embodiments, the UTR used in the viral genome of the AAV particle may be inverted, shortened, lengthened, made with one or more other 5^{\prime} UTRs or 3^{\prime} UTRS known in the art. As used herein, the term "altered" as it relates to a UTR, means that the UTR has been changed in some way in relation to a reference sequence. For example, a 3 ' or 5 UTR may be altered relative to a wild type or native UTR by the change in orientation or location as taught above or may be altered by the inclusion of additional nucleotides, deletion of nucleotides, swapping or transposition of nucleotides.
[0143] In certain embodiments, the viral genome of the AAV particle comprises at least one artificial UTRs which is not a variant of a wild type UTR.
[0144] In certain embodiments, the viral genome of the AAV particle comprises UTRs which have been selected from a family of transcripts whose proteins share a common function, structure, feature or property

Viral Genome Component: Polyadenylation Sequence
[0145] In certain embodiments, the viral genome of the AAV particles of the present disclosure comprise at least one polyadenylation sequence. The viral genome of the AAV paticle may comprise a polyadenylation sequence between the 3^{\prime} end of the payload coding sequence and the 5 ' end of the 3 TTR.
[0146] In certain embodiments, the polyadenylation sequence or "polyA sequence" may range from absent to about 500 nucleotides in length. The polyadenylation sequence may be,
but is not limited to, $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47$, $48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72$, $73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97$, $98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116$, $117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134$, $135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152$, $153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170$, $171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188$, $189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206$, $207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224$, $225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242$, $243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260$, $261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278$, $279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296$, $297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314$, $315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332$, $333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350$, $351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368$, $369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386$, $387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404$, $405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422$, $423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440$, $441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458$, $459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476$, $477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494$, 495, 496, 497, 498, 499, and 500 nucleotides in length.
[0147] In certain embodiments, the polyadenylation sequence is 50 - 100 nucleotides in length.
[0148] In certain embodiments, the polyadenylation sequence is 50 - 150 nucleotides in length.
[0149] In certain embodiments, the polyadenylation sequence is 50 -160 nucleotides in length.
[0150] In certain embodiments, the polyadenylation sequence is $50-200$ nucleotides in length.
[0151] In centain embodiments, the polyadenylation sequence is 60 -100 nucleotides in length.
[0152] In certain embodiments, the polyadenylation sequence is 60 -150 nucleotides in length.

In certain embodiments, the polyadenylation sequence is 60 - 160 nucleotides in length.

In certain embodiments, the polyadenylation sequence is $60-200$ nucleotides in length.
[0155]
In certain embodiments, the polyadenylation sequence is $70-100$ nucleotides in length.

In certain embodiments, the polyadenylation sequence is $70-150$ nucleotides in length.

In certain embodiments, the polyadenylation sequence is $70-160$ nucleotides in length.

In certain embodiments, the polyadenylation sequence is $70-200$ nucleotides in length.

In ceftain embodiments, the polyadenylation sequence is 80 - 100 nucleotides in length

In certain embodiments, the polyadenylation sequence is $80-150$ nucleotides in length.

In certain embodiments, the polyadenylation sequence is $80-160$ nucleotides in length.
[0162] In certain embodiments, the polyadenylation sequence is $80-200$ nucleotides in length.

In certain embodiments, the polyadenylation sequence is $90-100$ nucleotides in length.
[0164] In certain embodiments, the polyadenylation sequence is $90-150$ nucleotides in length.
[0165] In certain embodiments, the polyadenylation sequence is $90-160$ nucleotides in
[0166] In certain embodiments, the polyadenylation sequence is $90-200$ nucleotides in length.
[0167] In certain embodiments, the AAV particle comprises a nucleic acid sequence encoding an siRNA molccule may be located upstream of the polyadenylation sequence in an expression vector. Further, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located downstream of a promoter such as, but not limited to, CMV, U6, CAG, CBA or a CBA promoter with a SV 40 intron or a human beta globin intron in an expression vector. As a non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within $1,2,3,4,5,6,7,8,9,10,11$, $12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or more than 30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector. As another non-hmiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within 1-5, 1-10, 1-15, 1-$20,1-25,1-30,5-10,5-15,5-20,5-25,5-30,10-15,10-20,10-25,10-30,15-20,15-25,15-30$, $20-25,20-30$ or $25-30$ nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector. As a non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located within the first $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 15 \%, 20 \%, 25 \%$ or more than 25% of the nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector. As another non-limiting example, the AAV particle comprises a nucleic acid sequence encoding an siRNA molecule may be located with the first $1-5 \%, 1-10 \%, 1-15 \%, 1-20 \%, 1-25 \%, 5-10 \%, 5-15 \%, 5-20 \%, 5-25 \%$, $10-15 \%, 10-20 \%, 10-25 \%, 15-20 \%, 15-25 \%$, or $20-25 \%$ downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
[0168] In cettain embodiments, the AAV particle comprises a rabbit globin polyadenylation (polyA) signal sequence (rBGpA).
[0169] In certain embodiments, the AAV particle comprises a human growth hormone polyadenylation (poly A) signal sequence.

Viral Genome Component: Introns

[9170] In certain embodiments, the payload region comprises at least one element to enhance the expression such as one or more introns or portions thereof. Non-limiting examples of introns include, $\mathrm{MVM}(67-97 \mathrm{bps})$, F.IX truncated intron 1 (300 bps), β-globin SD/mmunoglobulin heavy chain splice acceptor (250 bps), adenovirus splice
donor/immunoglobin splice acceptor (500 bps) , SV40 late splice donor/splice acceptor (19S/16S) (180 bps) and hybrid adenovirus splice donor/gG splice acceptor (230 bps). [0171] In certain embodiments, the intron or intron portion may be 100-500 nucleotides in length. The intron may have a length of $80,90,100,110,120,130,140,150,160,170,171$, $172,173,174,175,176,177,178,179,180,190,200,210,220,230,240,250,260,270$, $280,290,300,310,320,330,340,350,360,370,380,390,400,410,420,430,440,450$, $460,470,480,490$ or 500 . The intron may have a length between $80-100,80-120,80-140$, $80-160,80-180,80-200,80-250,80-300,80-350,80-400,80-450,80-500,200-300,200-400$, 200-500, 300-400, 300-500, or 400-500.
[0172] In certain embodiments, the AAV viral genome may comprise a promoter such as, but not limited to, CMV or UG. As a non-limiting example, the promoter for the AAV comprising the nucleic acid sequence for the siRNA molecules of the present disclosure is a CMV promoter. As another non-limiting example, the promoter for the A AV comprising the nucleic acid sequence for the siRNA molecules of the present disclosure is a U6 promoter. $[0173]$ In certain embodiments, the AAV viral genome may comprise a CMN promoter. [0174] In certain embodiments, the AAV viral genome may comprise a U 6 promoter. [0175] In certain embodiments, the AAV viral genome may comprise a CMV and a U 6 promoter.
[9176] In cerain embodiments, the AAV viral genome may comprise a Hi promoter.
[0177] In certain embodiments, the AAV viral genome may comprise a CBA promoter.
[0178] In certain embodiments, the encoded siRNA molccule may be located downstream of a promoter in an expression vector such as, but not limited to, $\mathrm{CMV}, \mathrm{U}, \mathrm{Hl}, \mathrm{CBA}, \mathrm{CAG}$, or a CBA promoter with an intron such as SV40 or others known in the art. Further, the encoded siRNA molecule may also be located upstream of the polyadenylation sequence in an expression vector. As a non-limiting example, the encoded siRNA molecule may be located within $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30$ or more than 30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector. As another non-limiting example, the encoded siRNA molecule may be located within $1-5,1-10,1-15,1-20,1-25,1-$ $30,5-10,5-15,5-20,5-25,5-30,10-15,10-20,10-25,10-30,15-20,15-25,15-30,20-25,20-$ 30 or 25-30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector. As a non-limiting example, the encoded siRNA molecule may be located within the first $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%$,
$10 \%, 15 \%, 20 \%, 25 \%$ or more than 25% of the nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector. As another nonlimiting example, the encoded siRNA molecule may be located with the first $1-5 \%, 1-10 \%$, $1-15 \%,|-20 \%|-,25 \%, 5-10 \%, 5-15 \%, 5-20 \%, 5-25 \%, 10-15 \%, 10-20 \%, 10-25 \%, 15-20 \%$, $15-25 \%$, or $20-25 \%$ downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.

Viral Genome Component: Filler Sequence

[9179] In certain embodiments, the viral genome comprises one or more filler sequences.
[0180] In certain embodiments, the viral genome comprises one or more fller sequences in order to have the length of the viral genome be the optimal size for packaging. As a nonlimiting example, the viral genome comprises at least one filler sequence in order to have the length of the viral genome be about 2.3 kb . As a non-limiting example, the viral genome comprises at least one filler sequence in order to have the length of the viral genome be about 4.6 kb .
[9181] In certain embodiments, the viral genome comprises one or more filler sequences in order to reduce the likelhood that a hairpin structure of the vector genome (e.g., a modulatory polynucleotide described herein) may be read as an inverted terminal repeat (TRR) during expression and/or packaging. As a non-limiting example, the viral genome comprises at least one filler sequence in order to have the length of the viral genome be about 2.3 kb . As a non-limiting example, the viral genome comprises at least one filler sequence in order to have the length of the viral genome be about 4.6 kb
[0182] In certain embodiments, the viral genome is a single stranded (ss) viral genome and comprises one or more filler sequences which have a length about between $0.1 \mathrm{~kb}-3.8$ kb , such as, but not limited to, $0.1 \mathrm{~kb}, 0.2 \mathrm{~kb}, 0.3 \mathrm{~kb}, 0.4 \mathrm{~kb}, 0.5 \mathrm{~kb}, 0.6 \mathrm{~kb}, 0.7 \mathrm{~kb}, 0.8 \mathrm{~kb}, 0.9$ $\mathrm{kb}, 1 \mathrm{~kb}, 1.1 \mathrm{~kb}, 1.2 \mathrm{~kb}, 1.3 \mathrm{~kb}, 1.4 \mathrm{~kb}, 15 \mathrm{~kb}, 1.6 \mathrm{~kb}, 1.7 \mathrm{~kb}, 1.8 \mathrm{~kb}, 1.9 \mathrm{~kb}, 2 \mathrm{~kb}, 2.1 \mathrm{~kb}, 2.2$ $\mathrm{kb}, 2.3 \mathrm{~kb}, 2.4 \mathrm{~kb}, 25 \mathrm{~kb}, 2.6 \mathrm{~kb}, 2.7 \mathrm{~kb}, 2.8 \mathrm{~kb}, 2.9 \mathrm{~kb}, 3 \mathrm{~kb}, 3.1 \mathrm{~kb}, 3.2 \mathrm{~kb}, 3.3 \mathrm{~kb}, 3.4 \mathrm{~kb}$, $3.5 \mathrm{~kb}, 3.6 \mathrm{~kb}, 3.7 \mathrm{~kb}$, or 3.8 kb . As a non-limiting example, the total length fller sequence in the vector genome is 3.1 kb . As a non-limiting example, the total length filler sequence in the vector genome is 2.7 kb . As a non-limiting example, the total length filler sequence in the vector genome is 0.8 kb . As a non-limiting example, the totallength filler sequence in the vector genome is 0.4 kb . As a non-limiting example, the length of each fller sequence in the vector genome is 0.8 kb . As a non-limiting example, the length of each filler sequence in the vector genome is 0.4 kb .
[0183] In certain embodiments, the viral genome is a self-complementary (sc) viral genome and comprises one or more filler sequences which have a length about between 0.1 $\mathrm{kb}-1.5 \mathrm{~kb}$, such as, but not limited to $, 0.1 \mathrm{~kb}, 0.2 \mathrm{~kb}, 0.3 \mathrm{~kb}, 0.4 \mathrm{~kb}, 0.5 \mathrm{~kb}, 0.6 \mathrm{~kb}, 0.7 \mathrm{~kb}$ $0.8 \mathrm{~kb}, 0.9 \mathrm{~kb}, 1 \mathrm{~kb}, 1.1 \mathrm{~kb}, 1.2 \mathrm{~kb}, 1.3 \mathrm{~kb}, 1.4 \mathrm{~kb}$, or 1.5 kb . As a non-limiting example, the total length filler sequence in the vector genome is 0.8 kb . As a non-limiting example, the total length filler sequence in the vector genome is 0.4 kb . As a non-limiting example, the length of each filler sequence in the vector genome is 0.8 kb . As a non-limiting example, the length of each filler sequence in the vector genome is 0.4 kb
[0184] In certain embodiments, the viral genome comprises any portion of a fller sequence. The viral genome may comprise $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%$, $15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%$, 95% or 99% of a filler sequence.
[0185] In certain embodiments, the viral genome is a single stranded (ss) viral genome and comprises one or more filler sequences in order to have the length of the viral genome be about 4.6 kb . As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 3^{\prime} to the 5^{\prime} ITR sequence. As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 5' to a promoter sequence. As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 3' to the polyadenylation signal sequence. As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 5' to the 3^{\prime} ITR sequence. As a non-limiting example, the viral genome comprises at least one filler sequence, and the filler sequence is located between two intron sequences. As a non-limiting example, the viral genome comprises at least one filler sequence, and the filler sequence is located within an intron sequence. As a non-limiting example, the viral genome comprises two filler sequences, and the first filler sequence is located 3^{\prime} to the 5 ' ITR sequence and the second nller sequence is located 3 ' to the polyadenylation signal seguence. As a non-limiting example, the viral genome comprises two filler sequences, and the first filler sequence is located 5' to a promoter sequence and the second fller sequence is located 3 ' to the polyadenylation signal sequence, As a non-limiting example, the viral genome comprises two filler sequences, and the first filler sequence is located 3^{\prime} to the 5^{\prime} ITR sequence and the second filler sequence is located 5^{\prime} to the $5^{\prime} \mathrm{MR}$ sequence.
[0186] In certain embodiments, the viral genome is a self-complementary (sc) viral genome and comprises one or more filler sequences in order to have the length of the viral genome be about 2.3 kb . As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 3^{\prime} to the 5^{\prime} ITR sequence. As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 5' to a promoter sequence. As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 3 to the polyadenylation signal sequence As a non-limiting example, the viral genome comprises at least one filler sequence and the filler sequence is located 5^{\prime} to the 3^{\prime} ITR sequence. As a non-Imiting example, the viral genome comprises at least one filler sequence, and the filler sequence is located between two intron sequences. As a non-limiting example, the viral genome comprises at least one filler sequence, and the filler sequence is located within an intron sequence. As a non-limiting example, the viral genome comprises two filler sequences, and the first filler sequence is located 3' to the 5' TTR sequence and the second filler sequence is located 3' to the polyadenylation signal sequence. As a non-limiting example, the viral genome comprises two filler sequences, and the first filler sequence is located 5 ' to a promoter sequence and the second filler sequence is located 3 ' to the polyadenylation signal sequence. As a non-limiting example, the viral genome comprises two filler sequences, and the first filler sequence is located 3' to the 5' TR sequence and the second niller sequence is located 5^{\prime} to the 5^{\prime} ITR sequence
[0187] In certain embodiments, the viral genome may comprise one or more filler sequences between one of more regions of the viral genome. In certain embodiments, the filler region may be located before a region such as, but not limited to, a payload region, an inverted terminal repeat (ITR), a promoter region, an intron region, an enhancer region, a polyadenylation signal sequence region, and/or an exon region. In certain embodiments, the filler region may be located after a region such as, but not limited to, a payload region, an inverted teminal repeat (ITR), a promoter region, an intron region, an enhancer region, a polyadenylation signal sequence region, and/or an exon region. In certain embodiments, the filler region may be located before and after a region such as, but not limited to, a payload region, an inverted terminal repeat (ITR), a promoter region, an intron region, an enhancer region, a polyadenylation signal sequence region, and/or an exon region.
[0188] In certain embodiments, the viral genome may comprisc one or more filler sequences which bifurcates at least one region of the viral genome. The bifurcated region of
the viral genome may comprise $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 15 \%, 20 \%$, $25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%$, or 99% of the of the region to the 5 ' of the filler sequence region. As a non-limiting example, the filler sequence may bifurcate at least one region so that 10% of the region is located 5 ' to the filler sequence and 90% of the region is located 3^{\prime} to the filler sequence. As a nonlimiting example, the filler sequence may bifurcate at least one region so that 20% of the region is located 5 ' to the filler sequence and 80% of the region is located 3 ' to the filler sequence. As a non-limiting example, the filler sequence may bifurcate at least one region so that 30% of the region is located 5 ' to the filler sequence and 70% of the region is located 3 ' to the filler sequence. As a non-limiting example, the filler sequence may bifurcate at least one region so that 40% of the region is located 5^{\prime} to the filler sequence and 60% of the region is located 3' to the filler sequence. As a non-limiting example, the filler sequence may bifurcate at least one region so that 50% of the region is located 5 ' to the flller sequence and 50% of the region is located 3^{\prime} to the filler sequence. As a non-limiting example, the filler sequence may bifurcate at least one region so that 60% of the region is located 5 ' to the filler sequence and 40% of the region is located 3 ' to the filler sequence. As a non-limiting example, the filler sequence may bifurcate at least one region so that 70% of the region is located 5 ' to the filler sequence and 30% of the region is located 3 ' to the filler sequence. As a non-limiting example, the filler sequence may bifurcate at least one region so that 80% of the region is located 5° to the filler sequence and 20% of the region is located 3^{\prime} to the filler sequence. As a non-limiting example, the filler scquence may bifurcate at least one region so that 90% of the region is located 5^{\prime} to the filler sequence and 10% of the region is located 3^{\prime} to the filler sequence.
[0189] In certain embodiments, the viral genome comprises a filler sequence after the ${ }^{\prime}$ '
ITR.
[0190] In certain embodiments, the viral genome comprises a filler sequence after the promoter region. In certain embodiments, the viral genome comprises a filler sequence after the payload region. In certain embodiments, the viral genome comprises a filer sequence after the intron region. In certain embodiments, the viral genome comprises a filler sequence after the enhancer region. In certain embodiments, the viral genome comprises a filler sequence after the polyadenylation signal sequence region. In certain embodiments, the viral genome comprises a filler sequence after the exon region.
[0191] In certain embodiments, the viral genome comprises a filler sequence before the promoter region. In certain embodiments, the viral genome comprises a filler sequence before the payload region. In certain embodiments, the viral genome comprises a filler sequence before the intron region. In certain embodiments, the viral genome comprises a filler sequence before the enhancer region. In certain embodiments, the viral genome comprises a filler sequence before the polyadenylation signal sequence region. In certain embodiments, the viral genome comprises a filler sequence before the exon region.
[0192] In certain embodiments, the viral genome comprises a filler sequence before the 3 , ITR.

10193] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the 5 ITR and the promoter region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the 5 ' ITR and the payload region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the 5 ' ITR and the intron region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the 5 ITR and the enhancer region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the 5^{\prime} ITR and the polyadenylation signal sequence region.
[0194] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the 5^{\prime} ITR and the exon region
[0195] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the promoter region and the payload region In certain embodiments, a fller sequence may be located between two regions, such as, but not limited to, the promoter region and the intron region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the promoter region and the enhancer region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the promoter region and the polyadenylation signal sequence region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the promoter region and the exon region. In cettain embodiments, a fller sequence may be located between two regions, such as, but not limited to, the promoter region and the 3^{\prime} ITR
[0190] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the payload region and the intron region. In certain embodiments,
a filler sequence may be located between two regions, such as, but not limited to, the payload region and the enhancer region. In certain embodiments, a filler sequence may be located between two regions, such as , but not limited to, the payload region and the polyadenylation signal sequence region. In certain embodiments, a filer sequence may be located between two regions, such as, but not limited to, the payload region and the exon region.
[0197] In certain embodiments, a fller sequence may be located between two regions, such as, but not limited to, the payload region and the 3^{\prime} ITR
[0198] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the intron region and the enhancer region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the intron region and the polyadenylation signal sequence region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the intron region and the exon region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the intron region and the 3 ITR. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the enhancer region and the polyadenylation signal sequence region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the enhancer region and the exon region. In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the enhancer region and the 3 ITR.
[0199] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the polyadenylation signal sequence region and the exon region. In certain cmbodiments, a filler sequence may be located between two regions, such as, but not limited to, the polyadenylation signal sequence region and the 3 ' ITR.
[0200] In certain embodiments, a filler sequence may be located between two regions, such as, but not limited to, the exon region and the 3 ITR
[0201] In certain embodiments, the filler sequence may be derived from a region or a portion of a lentivirus.
[0202] In some embodiments, the filler sequence may be derived from a region or a portion of the albumin gene. In certain embodiments, the fller sequence may be derived from a region or a portion of the human albumin gene (NCBI Reference Sequence: NG 009291.1). Payloads
$[0203]$ The AAV particles of the present disclosure comprise at least one payload region. As used herein, "payload" or "payload region" refers to one or more polynucleotides or
polynucleotide regions encoded by or within a viral genome or an expression product of such polynucleotide or polymucleotide region, e.g., a transgene, a polynucleotide encoding a polypeptide or multi-polypeptide or a modulatory nucleic acid or regulatory mucleic acid. Payloads of the present disclosure typically encode modulatory polynucleotides or fragments or variants thereof.
[0204] The payload region may be constructed in such a way as to reffect a region similar to or mirroring the natural organization of an mRNA.
[0205] The payload region may comprise a combination of coding and non-coding nucleic acid sequences.
[0206] In some embodiments, the AAV payload region may encode a coding or noncoding RNA.
[0207] In certain embodiments, the AAV particle comprises a viral genome with a payload region comprising nucleic acid sequences encoding a siRNA, miRNA or other RNAi agent. In such an embodiment, a viral genome encoding more than one polypeptide may be replicated and packaged into a viral particle. A target cell transduced with a viral particle may express the encoded siRNA, miRNA or other RNAi agent inside a single cell.

Modulatory Polvnucleotides

[0208] In certain embodiments, modulatory polynucleotides e.g. RNA or DNA molecules, may be used to treat neurodegenerative disease, in particular, amyotrophic lateral sclerosis (ALS). As used herein, a "modulatory polynucleotide" is any nucleic acid sequence(s) which functions to modulate (either increase or decreasc) the level or amount of a target gene, e.g, mRNA or protein levels
[0209] In certain embodiments, the modulatory polynucleotides may comprise at least one nucleic acid sequence encoding at least one siRNA molecule. The nucleic acids may, independently if there is more than one, encode $1,2,3,4,5,6,7,8,9$, or more than 9 siRNA molecules.
[0210] In certain embodiments, the molecular scaffold may be located downstream of a CMV promoter, fragment or variant thereof.
[0211] In certain embodiments, the molecular scaffold may be located downstream of a CBA promoter, fragment or vanant thereof.
[0212] In certain embodiments, the molecular scaffold may be a natural pri-miRNA scaffold located downstream of a CMV promoter. As a non-limiting example, the natural primiRNA scaffold is derived from the human miR155 scaffold.
[0213] In certain embodiments, the molecular scaffold may be a natural pri-miRNA scaffold located downstream of a CBA promoter.
[0214] In certain embodiments, the selection of a molecular scaffold and modulatory polymucleotide is determined by a method of comparing modulatory polynucleotides in primiRNA (see e.g., the method described by Miniarikova et al. Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Developmeni of Gene Therapy for Huntington's Disease. Molecular Therapy-Nucleic Acids (2016) 5, e297 and International Publication No. WO2016102664; the contents of each of which are herein incorporated by reference in their entireties). To evaluate the activities of the modulatory polynucleotides, the molecular scaffold used which may be used is a human pri-miRNA scaffold (e.g, miR155 scaffold) and the promoter may be CMV. The activity may be determined in vitro using HEK293T cells and a reporter (e.g., Luciferase)
[0215] In order to evaluate the optimal molecular scaffold for the modulatory polynucleotide, the modulatory polynucleotide is used in pri-miRNA scaffolds with a CAG promoter. The constructs are co-transfected with a reporter (e. g ., luciferase reporter) at 50 ng . Constructs with greater than 80% knockdown at 50 ng co-transfection are considered efficient. In one aspect, the constructs with strong guide-strand activity are preferred. The molecular scaffolds can be processed in HEK 293 T cells by NGS to determine guidepassenger ratios, and processing variability.
[0216] To evaluate the molecular scaffolds and modulatory polynucleotides in vivo the molecular scaffolds comprising the modulatory polynucleotides are packaged in AAV (e.g., the serotype may be AAV5 (see cg., the method and construets described in W02015060722, the contents of which are herein incorporated by reference in their entirety)) and administered to an in vivo model and the guide-passenger ratios, 5^{\prime} and 3^{\prime} end processing, ratio of guide to passenger strands, and knockdown can be determined in different areas of the model (e.g., tissue regions).
[0217] In certain embodiments, the selection of a molecular scaffold and modulatory polynucleotide is determined by a method of comparing modulatory polynucleotides in natural primiRNA and synthetic pri-miRNA. The modulatory polynucleotide may, but it not limited to, targeting an exon other than exon 1 . To evaluate the activities of the modulatory polynucleotides, the molecular scaffold is used with a CBA promoter. In one aspect, the activity may be determined in vitro using HEK293T cells, HeLa cell and a reporter (e.g., Luciferase) and knockdown efficient modulatory polynucleotides showed SODI knockdown
of at least 80% in the cell tested. Additionally, the modulatory polynucleotides which are considered most efficient showed low to no significant passenger strand (p-strand) activity. In another aspect the endogenous SODI knockdown efficacy is evaluated by transfection in vitro using HEK 293 T cells, HeLa cell and a reporter. Efficient modulatory polynucleotides show greater than 50% endogenous SODI knockdown. In yet another aspect, the endogenous SOD1 knockdown efficacy is evaluated in different cell types (e.g., HEK293, HeLa, primary astrocytes, U251 astrocytes, SH-SY5Y neuron cells and fibroblasts from ALS patients) by infection (e, g., AAV2). Efficient modulatory polynucleotides show greater than 60\% endogenous SODI knockdown.
[0218] To evaluate the molecular scaffolds and modulatory polynucleotides in vivo the molecular scaffolds comprising the modulatory polynucleotides are packaged in AAV and administered to an in vivo model and the guide-passenger ratios, 5 ' and 3 ' end processing, ratio of guide to passenger strands, and knockdown can be determined in different areas of the model (e.g., tissue regions). The molecular scaffolds can be processed from in vivo samples by NGS to determine guide-passenger ratios, and processing variability
[0219] In certain embodiments, the modulatory polynucleotide is designed using at least one of the following properties: loop variant, seed mismatch/bulge/wobble variant, stem mismatch, loop variant and vassal stem mismatch variant, seed mismatch and basal stem mismatch variant, stem mismatch and basal stem mismatch variant, seed wobble and basal stem wobble variant, or a stem sequence variant.
[0220] The present disclosure relates, in part, to RNA interfering (RNAi) induced inhibition of gene expression for treating newrodegenerative disorders. Provided are siRNA duplexes or dsRNA that target SODI gene. Such siRNA duplexes or dsRNA can silence SOD1 gene expression in cells, for example, motor neurons, therefore, ameliorating symptoms of ALS such as motor death and muscle atrophy. The SODI siRNA may be encoded in polynucleotides of a recombinant AAV vector.
[0221] siRNA duplexes or dsRNA targeting a specific mRNA may be designed and synthesized as part of a target SODI targeting polynucleotide in vitro and introduced into cells for activating RNAi process.

siRNA Molecules

[0222] The present disclosure relates to RNA interference (RNA) induced inhibition of gene expression for treating neurodegenerative disorders. Provided herein are sikNA
duplexes or encoded dsRNA that target the gene of interest (referred to herein collectively as "siRNA molecules"). Such siRNA duplexes or encoded dsRNA can reduce or silence gene expression in cells, such as but not limited to, medium spiny neurons, cortical neurons and/or astrocytes.
[0223] RNAi (also known as post-transcriptional gene silencing (PTGS), quelling, or cosuppression) is a post-transcriptional gene silencing process in which RNA molecules, in a sequence specific manner, inhibit gene expression, typically by causing the destruction of specific mRNA molecules. The active components of RNAi are short/small double stranded RNAs (dsRNAs), called small interfering RNAs (siRNAs), that typically contain 15-30 nucleotides (e.g., 19 to 25,19 to 24 or 19-21 nucleotides) and 2 nucleotide 3 ' overhangs and that match the nucleic acid sequence of the target gene. These short RNA species may be naturally produced in vivo by Dicer-mediated cleavage of larger dsRNAs and they are functional in mammalian cells.
[0224] Naturally expressed small RNA molecules, named microRNAs (miRNAs), chicit gene silencing by regulating the expression of mRNAs. The miRNAs containing RNA Induced Silencing Complex (RISC) targets mRNAs presenting a perfect sequence complementarity with nucleotides $2-7$ in the 5 'region of the miRNA which is called the seed region, and other base pairs with its 3 'region. miRNA mediated down regulation of gene expression may be caused by cleavage of the target mRNAs, translational inhibition of the target mRNAs, or mRNA decay. miRNA targeting sequences are usually located in the 3° UTR of the target mRNAs. A single miRNA may target more than 100 transcripts from various genes, and one mRNA may be targeted by different miRNAs.
[0225] siRNA duplexes or dsRNA targeting a specific mRNA may be designed and synthesized in vitro and introduced into cells for activating RNAi processes. Elbashir et al. demonstrated that 21 -nucleotide siRNA duplexes (termed small interfering RNAs) were capable of effecting potent and specific gene knockdown without inducing immune response in mammalian cells (Elbashir SM et al., Nature, 2001, 411, 494-498). Since this initial report, post-transcriptional gene silencing by siRNAs quickly emerged as a powerful tool for genetic analysis in mammalian cells and has the potential to produce novel therapcutics.
[0226] RNAi molecules which were designed to target against a nucleic acid sequence that encodes poly-glutamine repeat proteins which cause poly-glutamine expansion diseases such as Huntington's Bisease, are described in US Patent No. 9, 169,483 and 9, 181,544 and Intemational Patent Publication No. WO2015179525, the content of each of which is herein
incorporated by reference in their entirety. US Patent Nos. 9,169,483 and 9,181,544 and Intemational Patent Publication No. WO2015179525 each provide isolated RNA duplexes comprising a first strand of RNA (e.g, 15 contiguous nucleotides) and second strand of RNA (e.g., complementary to at least 12 contiguous nucleotides of the first strand) where the RNA duplex is about 15 to 30 base pairs in length. The first strand of RNA and second strand of RNA may be operably linked by an RNA loop (~ 4 to 50 nucleotides) to form a hairpin structure which may be inserted into an expression cassette. Non-limiting examples of loop portions include SEQ ID NO: 9-14 of US Patent No. 9,169,483, the content of which is herein incorporated by reference in its entirety. Non-limiting examples of strands of RNA which may be used, either full sequence or part of the sequence, to form RNA duplexes include SEQ ID NO: 1-8 of US Patent No. 9, 169,483 and SEQ ID NO: 1-11, 33-59, 208-210, 213-215 and 218-221 of US Patent No. 9,181,544, the contents of each of which is herein incorporated by reference in its entirety. Non-limiting examples of RNAi molecules include SEQ ID NOs: 1-8 of US Patent No. 9, 169,483, SEQ ID NOs: 1-11, 33-59, 208-210, 213-215 and 218-221 of US Patent No. 9,181,544 and SEQ ID NOs: 1, 6,7, and 35-38 of International Patent Publication No. WO2015179525, the contents of each of which is herein incorporated by reference in their entirety.
[0227] In vitro synthetized siRNA molecules may be introduced into cells in order to activate RNAi. An exogenous siRNA duplex, when it is introduced into cells, similar to the endogenous dsRNAs, can be assembled to form the RNA Induced Silencing Complex (RISC), a multiunit complex that interacts with RNA sequences that are complementary to one of the two strands of the siRNA duplex (i.e, the antisense strand). During the process, the sense strand (or passenger strand) of the siRNA is lost from the complex, while the antisense strand (or guide strand) of the siRNA is matched with its complementary RNA. In particular, the targets of siRNA containing RISC complexes are mRNAs presenting a perfect sequence complementanty. Then, siRNA mediated gene silencing occurs by cleaving, releasing and degrading the target
[0228] The siRNA duplex comprised of a sense strand homologous to the target mRNA and an antisense strand that is complementary to the target mRNA offers much more advantage in terms of efficiency for target RNA destruction compared to the use of the single strand (ss)-siRNAs (e.g. antisense strand RNA or antisense oligonucleotides). In many cases, it requires higher concentration of the ss-siRNA to achieve the effective gene silencing potency of the corresponding duplex.
[0229] Any of the foregoing molecules may be encoded by a viral genome.
Design and Sequences of siRNA duplexes targeting gene of interest
[0239] The present disclosure provides small interfering RNA (siRNA) duplexes (and modulatory polynucleotides encoding them) that target mRNA to interfere with gene expression and/or protein production.
[0231] The encoded siRNA duplex of the present disclosure contains an antisense strand and a sense strand bybridized together forming a duplex structure, wherein the antisense strand is complementary to the nueleic acid sequence of the targeted gene, and wherein the sense strand is homologous to the nucleic acid sequence of the targeted gene. In some aspects, the 5 'end of the antisense strand has a 5 'phosphate group and the 3 'end of the sense strand contains a 3 hydroxyl group. In other aspects, there are none, one or 2 nucleotide overhangs at the 3 'end of each strand.
[02321 Some guidelines for designing siRNAs have been proposed in the art. These guidelines generally recommend generating a 19 -nucleotide duplexed region, symmetric $2-3$ mucleotide 3'overhangs, 5'-phosphate and 3'- bydroxyl groups targeting a region in the gene to be silenced. Other rules that may govern siRNA sequence preference include, but are not Imited to, (i) A/U at the 5^{\prime} end of the antisense strand; (ii) G / C at the 5^{\prime} end of the sense strand; (iii) at least five \mathbb{A} / U residues in the 5 terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nucleotides in length. In accordance with such consideration, together with the specific sequence of a target gene, bighly effective siRNA molecules essential for suppressing mammalian target gene expression may be readily designed.
[0233] According to the present disclosure, siRNA molecules (e.g. siRNA duplexes or encoded dsRNA) that target the gene of interest are designed. Such siRNA molecules can specifically, suppress gene expression and protein production. In some aspects, the sikNA molecules are designed and used to selectively "knock out" gene variants in cells, i.e., mutated transcripts. In some aspects, the siRNA molecules are designed and used to selectively "knock down" gene variants in cells. In other aspects, the siRNA molecules are able to inhibit or suppress both the wild type and mutated version of the gene of interest.
[0234] In certain embodiments, an siRNA molecule of the present disclosure comprises a sense strand and a complementary antisense strand in which both strands are hybridized together to form a duplex structure. The antisense strand has sufficient complementarity to the target mRNA sequence to direct target-specific RNAi, i.e., the siRNA molecule has a
sequence sufficient to trigger the destruction of the target mRNA by the RNAi machinery or process.
[0235] In certain embodiments, an siRNA molecule of the present disclosure comprises a sense strand and a complementary antisense strand in which both strands are hybridized together to form a duplex structure and where the start site of the hybridization to the mRNA is between nucleotide 10 and 1000 on the target mRNA sequence. As a non-limiting example, the start site may be between nucleotide $10-20,20-30,30-40,40-50,60-70,70-80,80-90,90-$ $100,100-150,150-200,200-250,250-300,300-350,350-400,400-450,450-500,500-550$, $550-600,600-650,650-700,700-70,750-800,800-850,850-900,900-950,950-1000$, on the target mRNA sequence. As yet another non-limiting example, the start site may be nucleotide $10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34$, $35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59$, $60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84$, $85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106$, $107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124$, $125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142$, $143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160$, $161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178$, $179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196$, $197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214$, $215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232$, $233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250$, $251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268$, $269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286$, $287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304$, $305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322$, $323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340$, $341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358$, $359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376$, $377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394$, $395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412$, $413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430$, $431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448$,
$449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466$, $467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484$, $485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502$, $503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520$, $521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538$, $539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556$, $557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574$, $575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592$, $593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610$, $611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628$, $629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646$, $647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664$, $665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682$, $683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700$, $701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718$, $719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736$, $737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754$, $755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772$, $773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790$, $791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808$, $809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826$, $827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844$, $845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862$, $863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880$, $881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898$, $899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916$, $917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934$, $935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952$, $953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970$, $971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988$, $989,990,991,992,993,994,995,996,997,998,999$, and 1000 on the target mRNA seguence.
[0236] In some embodiments, the antisense strand and target mRNA sequences have 100% complementarity. The antisense strand may be complementary to any part of the target mRNA sequence.
[0237] In other embodiments, the antisense strand and target mRNA sequences comprise at least one mismatch. As a non-hmiting example, the antisense strand and the target mRNA sequence have at least $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%$, $87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% or at least $20-$ $30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-99 \%, 30-40 \%, 30-$ $50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-99 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-$ $80 \%, 40-90 \%, 40-95 \%, 40-99 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-99 \%, 60-$ $70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-99 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-99 \%, 80-90 \%, 80-$ $95 \%, 80-99 \%, 90-95 \%, 90-99 \%$ or $95-99 \%$ complementarity
[0238] In certain embodiments, an siRNA or dsRNA includes at least two sequences that are complementary to each other.
[0239] According to the present disclosure, the siRNA molecule has a length from about $10-50$ or more nucleotides, i.e., each strand comprising $10-50$ nucleotides (or mucleotide analogs). Preferably, the siRNA molecule has a length from about $15-30$, e.g., $15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29$, or 30 nucleotides in each strand, wherein one of the strands is sufficiently complementanty to a target region. In certain embodiments, each strand of the siRNA molecule has a length from about 19 to 25,19 to 24 or 19 to 21 nucleotides. In certain cmbodiments, at least one strand of the siRNA molecule is 19 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 20 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 21 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 22 mucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 23 mucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 24 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 25 mucleotides in length.
[0240] In some embodiments, the siRNA molecules of the present disclosure can be synthetic RNA duplexes comprising about 19 nucleotides to about 25 nucleotides, and two overhanging nucleotides at the 3^{*}-end. In some aspects, the siRNA molecules may be unmodified RNA molecules. In other aspects, the siRNA molecules may contain at least one modified nucleotide, such as base, sugar or backbone modifications.
[0241] In certain embodiments, the siRNA molecules of the present disclosure may comprise an antisense sequence and a sense sequence, or a fragment or variant thereof. As a non-limiting example, the antisense sequence and the sense sequence have at least $30 \%, 40 \%$, $50 \%, 60 \%, 70 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%$, $93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-$ $70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-99 \%, 30-40 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-$ $90 \%, 30-95 \%, 30-99 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-99 \%, 50-$ $60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-99 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-$ $99 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-99 \%, 80-90 \%, 80-95 \%, 80-99 \%, 90-95 \%, 90-99 \%$ or $95-$ 99% complementarity
[0242] In other embodiments, the siRNA molecules of the present disclosure can be encoded in plasmid vectors, AAV particles, viral genome or other nucleic acid expression vectors for delivery to a cell.
[0243] DNA expression plasmids can be used to stably express the siRNA duplexes or dsRNA of the present disclosure in cells and achieve long-term inbibition of the target gene expression. In one aspect, the sense and antisense strands of a siRNA duplex are typically linked by a short spacer sequence leading to the expression of a stem-loop structure termed short hairpin RNA (shRNA). The hairpin is recognized and cleaved by Dicer, thus generating mature siRNA molecules.
[0244] According to the present disclosure, A AV particles comprising the nucleic acids encoding the siRNA molecules targeting the mRNA are produced, the AAV serotypes may be any of the serotypes listed herein. Non-limiting examples of the A AV serotypes include, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV9.47, AAV9(hu14), AAV10, AAV11, AAV12, AAVr8, AAVrh10, AAV-D18, AAV-DJ, AAVPHP A, AAV-YHP B, AAVPHP.B2, AAVPHPB3, AAVPHP.N/PHP.B-DGT, AAVPHPBEST, AAVPHP.B-GGT, AAVPHPB-ATP, AAVPHP.B-ATT-T, AAVPHP.B-DGT-T, AAVPHP.B-GGT-T, AAVPHP.B-SGS, AAVPHP.B-AQP, AAVPHP.B-QQP, AAVPHP.BSNP(3), AAVPHP.B-SNP, AAVPHP B-QGT, AAVPHP.B-NQT, AAVPHP.B-EGS, AAVPHP B-SGN, AAVPKP B-EGT, AAVPHP B-DST, AAVPHP.B-DST, AAVPHP.BSTP, AAVPHP.B-PQP, AAVPHP.B-SQP, AAVPHP.B-QLP, AAVPHP.B-TMP, AAVPHP.B-TTP, AAVPHP.S/G2A12, AAVG2A15/G2A3, AAVG2B4, AAVG235, and variants thercof.
[0245] In some embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) the target mRNA. Accordingly, the siRNA duplexes or encoded dsRNA can be used to substantially inhibit the gene expression in a cell, for example a neuron. In some aspects, the imhibition of the gene expression refers to an inhibition by at least about 20%, preferably by at least about $30 \%, 31 \%, 32 \%, 33 \%, 34 \%, 35 \%, 36 \%, 37 \%$, $38 \%, 39 \%, 40 \%, 41 \%, 42 \%, 43 \%, 44 \%, 45 \%, 46 \%, 47 \%, 48 \%, 49 \%, 50 \%, 51 \%, 52 \%, 53 \%$, $54 \%, 55 \%, 56 \%, 57 \%, 58 \%, 59 \%, 60 \%, 61 \%, 62 \%, 63 \%, 64 \%, 65 \%, 66 \%, 67 \%, 68 \%, 69 \%$, $70 \%, 71 \%, 72 \%, 73 \%, 74 \%, 75 \%, 76 \%, 77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%$, $90 \%, 95 \%, 99 \%$ and 100%, or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%$, $20-90 \%, 20-95 \%, 20-100 \%, 30-40 \%, 30-45 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%$, $30-95 \%, 30-100 \%, 35-45 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-100 \%$, $45-50 \%, 45-55 \%, 50-60 \%, 50-70 \%, 50-75 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-100 \%, 55-65 \%$, $57-68 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-85 \%, 70-90 \%, 70-95 \%$, $70-100 \%, 80-90 \%, 80-95 \%, 80-100 \%, 85-99 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$. Accordingly, the protein product of the targeted gene may be inhibited by at least about 20%, preferably by at least about $30 \%, 31 \%, 32 \%, 33 \%, 34 \%, 35 \%, 36 \%, 37 \%, 38 \%, 39 \%, 40 \%, 41 \%, 42 \%$, $43 \%, 44 \%, 45 \%, 46 \%, 47 \%, 48 \%, 49 \%, 50 \%, 51 \%, 52 \%, 53 \%, 54 \%, 55 \%, 56 \%, 57 \%, 58 \%$, $59 \%, 60 \%, 61 \%, 62 \%, 63 \%, 64 \%, 65 \%, 66 \%, 67 \%, 68 \%, 69 \%, 70 \%, 71 \%, 72 \%, 73 \%, 74 \%$, $75 \%, 76 \%, 77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 90 \%, 95 \%, 99 \%$ and 100%, or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-100 \%$, $30-40 \%, 30-45 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-100 \%, 35 \sim$ $45 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-100 \%, 45-50 \%, 45-55 \%, 50-$ $60 \%, 50-70 \%, 50-75 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-100 \%, 55-65 \%, 57-68 \%, 60-70 \%, 60-$ $80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-85 \%, 70-90 \%, 70-95 \%, 70-100 \%, 80-90 \%$, $80-95 \%, 80-100 \%, 85-99 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$. As a non-limiting example, the mhibition may be $30-40 \%$. As a non-limiting example, the inhibition may be $30-45 \%$. As a non-limiting example, the inhibition may be $35-45 \%$. As a non-limiting example, the inhibition may be greater than 50%. As a non-limiting example, the inhibition may be 50 60%. As a non-limiting example, the inhibition may be greater than 60%. As a non-limiting example, the inhibition may be $50-75 \%$. As a non-limiting example, the inhibition may be $55-65 \%$. As a non-limiting example, the inhibition may be $57-68 \%$. As a non-limiting example, the inhibition may be 70-80\%. As a non-limiting example, the inhibition may be $70-85 \%$. As a non-limiting example, the inhibition may be $85-99 \%$. As a non-limiting
example, the inhibition may be 35%. As a non-limiting example, the inbibition may be 36%. As a non-limiting example, the inhibition may be 40%. As a non-limiting example, the inhibition may be 41%. As a non-limiting example, the inhibition may be 43%. As a nonlimiting example, the inhibition may be 45%. As a non-limiting example, the inbibition may be 49%. As a non-limiting example, the inhibition may be 62%. As a non-limiting example, the inhibition may be 64%. As a non-limiting example, the inhibition may be 74%. As a nonlimiting example, the inbibition may be 77%. As a non-limiting example, the inhibition may be 84%. As a non-limiting example, the inhibition may be 87%. As a non-limiting example, the imhibition may be 95%. As a non-limiting example, the inhibition may be 99%. As a nonlimiting example, the inhibition may be 100%.
[0246] In certain embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) the target mRNA in spinal cord motor neurons. In some aspects, the inhibition of the gene expression refers to suppression of at least about 20%, preferably by at least about $30 \%, 31 \%, 32 \%, 33 \%, 34 \%, 35 \%, 36 \%, 37 \%, 38 \%, 39 \%, 40 \%$, $41 \%, 42 \%, 43 \%, 44 \%, 45 \%, 46 \%, 47 \%, 48 \%, 49 \%, 50 \%, 51 \%, 52 \%, 53 \%, 54 \%, 55 \%, 56 \%$, $57 \%, 58 \%, 59 \%, 60 \%, 61 \%, 62 \%, 63 \%, 64 \%, 65 \%, 66 \%, 67 \%, 68 \%, 69 \%, 70 \%, 71 \%, 72 \%$, $73 \%, 74 \%, 75 \%, 76 \%, 77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 90 \%, 95 \%, 99 \%$ and 100%, or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-$ $95 \%, 20-100 \%, 30-40 \%, 30-45 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-$ $100 \%, 35-45 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-100 \%, 45-50 \%$, $45-55 \%, 50-60 \%, 50-70 \%, 50-75 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-100 \%, 55-65 \%, 57-68 \%$, $60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-85 \%, 70-90 \%, 70-95 \%, 70-100 \%$, $80-90 \%, 80-95 \%, 80-100 \%, 85-99 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$. Accordingly, the protein product of the targeted gene may be inhibited by at least about 20%, preferably by at least about $30 \%, 31 \%, 32 \%, 33 \%, 34 \%, 35 \%, 36 \%, 37 \%, 38 \%, 39 \%, 40 \%, 41 \%, 42 \%, 43 \%$, $44 \%, 45 \%, 46 \%, 47 \%, 48 \%, 49 \%, 50 \%, 51 \%, 52 \%, 53 \%, 54 \%, 55 \%, 56 \%, 57 \%, 58 \%, 59 \%$, $60 \%, 61 \%, 62 \%, 63 \%, 64 \%, 65 \%, 66 \%, 67 \%, 68 \%, 69 \%, 70 \%, 71 \%, 72 \%, 73 \%, 74 \%, 75 \%$, $76 \%, 77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 90 \%, 95 \%, 99 \%$ and 100%, or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-100 \%, 30-$ $40 \%, 30-45 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-100 \%, 35-45 \%, 40-$ $50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-100 \%, 45-50 \%, 45-55 \%, 50-60 \%, 50-$ $70 \%, 50-75 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-100 \%, 55-65 \%, 57-68 \%, 60-70 \%, 60-80 \%, 60-$ $90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-85 \%, 70-90 \%, 70-95 \%, 70-100 \%, 80-90 \%, 80-95 \%$,
$80-100 \%, 85-99 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$. As a non-limiting example, the suppression may be $30-45 \%$. As a non-limiting example, the suppression may be $35-45 \%$. As a non-limiting example, the suppression may be greater than 50%. As a non-limiting example, the suppression may be greater than 60%. As a non-limiting example, the suppression may be $50-60 \%$. As a non-limiting example, the suppression may be $55-65 \%$. As a non-limiting example, the suppression may be $50-75 \%$. As a non-limiting example, the suppression may be $57-68 \%$. As a non-limiting example, the suppression may be $70-80 \%$. As a non-limiting example, the suppression may be $70-85 \%$. As a non-limiting example, the suppression may be $85-99 \%$. As a non-limiting example, the suppression may be 35%. As a non-limiting example, the suppression may be 36%. As a non-limiting example, the suppression may be 40%. As a non-limiting example, the suppression may be 41%. As a nonlimiting example, the suppression may be 43%. As a non-limiting example, the suppression may be 45%. As a non-limiting example, the suppression may be 49%. As a non-limiting example, the suppression may be 62%. As a non-limiting example, the suppression may be 64%. As a non-limiting example, the suppression may be 74%. As a non-limiting example, the suppression may be 77%. As a non-limiting example, the suppression may be 84%. As a non-limiting example, the suppression may be 87%. As a non-limiting example, the suppression may be 95%. As a non-limiting example, the suppression may be 99%. As a nonlimiting example, the suppression may be 100%.
[0247] In certain embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) the target mRNA in spinal cord motor neurons by 78%.
[0248] In certain embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) the target mRNA in spinal cord motor neurons by $45-55 \%$.
[0249] In certain embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) the target mRNA in vg+ cells of motor neuron morphology In some aspects, the inhibition of the gene expression refers to an inhibition by at least about 20%, preferably by at least about $30 \%, 40 \%, 41 \%, 42 \%, 43 \%, 44 \%, 45 \%, 46 \%, 47 \%, 48 \%$, $49 \%, 50 \%, 51 \%, 52 \%, 53 \%, 54 \%, 55 \%, 56 \%, 57 \%, 58 \%, 59 \%, 60 \%, 70 \%, 71 \%, 72 \%, 73 \%$, $74 \%, 75 \%, 76 \%, 77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 90 \%, 95 \%$ and 100%, or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-100 \%$, $30-40 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-100 \%, 40-50 \%, 40-60 \%$, $40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-100 \%, 45-50 \%, 45-55 \%, 50-60 \%, 50-70 \%, 50-80 \%$, $50-90 \%, 50-95 \%, 50-100 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-90 \%$,
$70-95 \%, 70-100 \%, 80-90 \%, 80-95 \%, 80-100 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$ Accordingly, the protein product of the targeted gene may be inhibited by at least about 20%, preferably by at least about $30 \%, 40 \%, 41 \%, 42 \%, 43 \%, 44 \%, 45 \%, 46 \%, 47 \%, 48 \%, 49 \%, 50 \%, 51 \%$, $52 \%, 53 \%, 54 \%, 55 \%, 56 \%, 57 \%, 58 \%, 59 \%, 60 \%, 70 \%, 71 \%, 72 \%, 73 \%, 74 \%, 75 \%, 76 \%$, $77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 90 \%, 95 \%$ and 100%, or at least $20-30 \%$, $20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-100 \%, 30-40 \%, 30-50 \%$, $30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-100 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%$, $40-90 \%, 40-95 \%, 40-100 \%, 45-50 \%, 45-55 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%$, $50-100 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-$ $100 \%, 80-90 \%, 80-95 \%, 80-100 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$.
[0250] In certain embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) the target mRNA in vg+ cells of motor neuron morphology by 53%.
[0251] In certain embodiments, the siRNA molecules comprise a miRNA seed match for the target located in the guide strand. 解 another embodiment, the siRNA molecules comprise a miRNA seed match for the target located in the passenger strand. In yet another embodiment, the siRNA duplexes or encoded dsRNA targeting the gene of interest do not comprise a seed match for the target located in the guide or passenger strand.
[0252] In certain embodiments, the siRNA duplexes or encoded dsRNA targeting the gene of interest may have almost no significant full-length off target effects for the guide strand. In another embodiment, the siRNA duplexes or encoded dsRNA targeting the gene of interest may have almost no significant full-length off target effects for the passenger strand. The siRNA duplexes or encoded dsRNA targeting the gene of interest may have less than 1%, $2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 11 \%, 12 \%, 13 \%, 14 \%, 15 \%, 20 \%, 25 \%, 30 \%$, $35 \%, 40 \%, 45 \%, 50 \%, 1-5 \%, 2-6 \%, 3-7 \%, 4-8 \%, 5-9 \%, 5-10 \%, 6-10 \%, 5-15 \%, 5-20 \%, 5-$ $25 \% 5-30 \%, 10-20 \%, 10-30 \%, 10-40 \%, 10-50 \%, 15-30 \%, 15-40 \%, 15-45 \%, 20-40 \%, 20-$ $50 \%, 25-50 \%, 30-40 \%, 30-50 \%, 35-50 \%, 40-50 \%, 45-50 \%$ full-length off target effects for the passenger strand. In yet another embodiment, the siRNA duplexes or encoded dsRNA targeting the gene of interest may have almost no significant full-length off target effects for the guide strand or the passenger strand. The siRNA duplexes or encoded dsRNA targeting the gene of interest may have less than $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 11 \%$, $12 \%, 13 \%, 14 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%, 1-5 \%, 2-6 \%, 3-7 \%, 4-8 \%, 5-$ $9 \%, 5-10 \%, 6-10 \%, 5-15 \%, 5-20 \%, 5-25 \% 5-30 \%, 10-20 \%, 10-30 \%, 10-40 \%, 10-50 \%, 15-$
$30 \%, 15-40 \%, 15-45 \%, 20-40 \%, 20-50 \%, 25-50 \%, 30-40 \%, 30-50 \%, 35-50 \%, 40-50 \%, 45-$ 50% full-length off target effects for the guide or passenger strand.
[0253] In certain embodiments the siRNA duplexes or encoded dsRNA targeting the gene of interest may have high activity in vitro. In another embodiment, the siRNA molecules may have low activity in vitro. In yet another embodiment, the siRNA duplexes or dsRNA targeting the gene of interest may have high guide strand activity and low passenger strand activity in vitro.
[0254] In certain embodiments, the siRNA molecules have a high guide strand activity and low passenger strand activity in vitro. The target knock-down (KD) by the guide strand may be at least $40 \%, 50 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%, 99.5 \%$ or 100%. The target knock-down by the guide strand may be $40-50 \%, 45-50 \%, 50-55 \%, 50-$ $60 \%, 60-65 \%, 60-70 \%, 60-75 \%, 60-80 \%, 60-85 \%, 60-90 \%, 60-95 \%, 60-99 \%, 60-99.5 \%, 60-$ $100 \%, 65-70 \%, 65-75 \%, 65-80 \%, 65-85 \%, 65-90 \%, 65-95 \%, 65-99 \%, 65-99.5 \%, 65-100 \%$, $70-75 \%, 70-80 \%, 70-85 \%, 70-90 \%, 70-95 \%, 70-99 \%, 70-99.5 \%, 70-100 \%, 75-80 \%, 75-$ $85 \%, 75-90 \%, 75-95 \%, 75-99 \%, 75-99.5 \%, 75-100 \%, 80-85 \%, 80-90 \%, 80-95 \%, 80-99 \%$, $80-99.5 \%, 80-100 \%, 85-90 \%, 85-95 \%, 85-99 \%, 85-99.5 \%, 85-100 \%, 90-95 \%, 90-99 \%, 90-$ $99.5 \%, 90-100 \%, 95-99 \%, 95-99.5 \%, 95-100 \%, 99-99.5 \%, 99-100 \%$ or $99.5-100 \%$. As a non-limiting example, the target knock-down (KD) by the guide strand is greater than 70% As a non-limiting example, the target knock-down (KD) by the guide strand is greater than 60%.
[0255] In certain embodiments, the highest knock-down from delivery of the siRNA molecules is seen around the injection site(s).
$[0256]$ In certain embodiments, knock-down is seen in the ventral hom and around the injection site(s) after delivery of the siRNA molecules.
[0257] In certain embodiments, the siRNA duplex is designed so there is no miRNA seed match for the sense or antisense sequence to the non-gene of interest sequence.
[0258] In certain embodiments, the IC_{50} of the guide strand for the nearest off target is greater than 100 multiphed by the $1 C_{50}$ of the guide strand for the on-target gene. As a nonlimiting example, if the ICso of the guide strand for the nearest off target is greater than 100 multiplied by the IC_{50} of the guide strand for the target then the siRNA molecule is said to have high guide strand selectivity for inhibiting the gene of interest m vitro.
[0259] In certain enbodiments, the 5° processing of the guide strand has a correct start (n) at the 5 ' end at least $75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or 100% of the time in vitro or in vivo.

As a non-limiting example, the 5^{\prime} processing of the guide strand is precise and has a correct start (n) at the 5^{\prime} end at least 99% of the time in vitro. As a non-limiting example, the 5^{\prime} processing of the guide strand is precise and has a correct start (n) at the 5^{\prime} end at least 99% of the time in vivo. As a non-limiting example, the 5 processing of the guide strand is precise and has a correct start (n) at the 5 ' end at least 90% of the time in vitro. As a non-limiting example, the 5' processing of the guide strand is precise and has a correct start (n) at the 5' end at least 90% of the time in vivo. As a non-limiting example, the 5 ' processing of the guide strand is precise and has a correct start (n) at the 5^{\prime} end at least 85% of the time in vitro. As a non-limiting example, the 5 ' processing of the guide strand is precise and has a correct start (n) at the 5^{\prime}, end at least 85% of the time in vivo.
[0260] In certain embodiments, the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is $1: 10,1: 9,1: 8,1: 7,1: 6,1: 5,1: 4,1: 3,1: 2,1,1$, $2: 10,2: 9,2: 8,2: 7,2: 6,2: 5,2: 4,2: 3,2: 2,2: 1,3: 10,3: 9,3: 8,3: 7,3: 6,3: 5,3: 4,3: 3,3: 2,3: 1$, $4: 10,4: 9,4: 8,4: 7,4: 6,4: 5,4: 4,4: 3,4: 2,4: 1,5: 10,5: 9,5: 8,5: 7,5: 6,55,5: 4,5: 3,5: 2,5: 1$, $6: 10,6: 9,6: 8,6: 7,6: 6,6: 5,6: 4,6: 3,6: 2,6: 1,7: 10,7: 9,7: 8,7: 7,7: 6,7: 5,7: 4,7: 3,7: 2,7: 1$, $8: 10,8: 9,8: 8,8: 7,8: 6,8: 5,8: 4,8: 3,8: 2,8: 1,9: 10,9: 9,9: 8,9: 7,9: 6,9: 5,9: 4,9: 3,9: 2,9: 1$, $10: 10,10: 9,10: 8,10: 7,10: 6,10: 5,10: 4,10: 3,10: 2,10: 1,1: 99,5: 95,10: 90,15: 85,20: 80$, $25: 75,30: 70,35: 65,40: 60,45: 55,50: 50,55: 45,60: 40,65: 35,70: 30,75: 25,80: 20,85: 15$, $90: 10,95: 5$, or $99: 1$ in vitro or in vivo. The guide to passenger ratio refers to the ratio of the guide strands to the passenger strands after intracellular processing of the pri-microRNA. For example, a $80: 20$ guide-to-passenger ratio would have 8 guide strands to every 2 passenger strands processed from the precursor. As a non-limiting example, the guide-to-passenger strand ratio is $8: 2$ in vitro. As a non-limiting example, the guide-to-passenger strand ratio is $8: 2 \mathrm{in}$ vivo. As a non-limiting example, the guide-to-passenger strand ratio is 9.1 in vitro. As a non-limiting example, the guide-to-passenger strand ratio is $9: 1$ in vivo.
[0261] In certain embodiments, the guide to passenger (G:P) strand ratio is in a range of 1 -$99,1.3-99,5-99,10-99,15-99,20-99,25-99,30-99,35-99,40-99,45-99,50-99,55-99,60-$ $99,65-99,70-99,75-99,80-99,85-99,90-99,95-99,1-10,1-15,1-20,1-25,1-30,1-35,1-40$, $1-45,1-50,1-55,1-60,1-65,1-70,1-75,1-80,1-85,1-90,1-95,5-10,5-15,5-20,5-25,5-30$, $5-35,5-40,5-45,5-50,5-55,5-60,5-65,5-70,5-75,5-80,5-85,5-90,5-95,10-15,10-20,10-$ $25,10-30,10-35,10-40,10-45,10-50,10-55,10-60,10-65,10-70,10-75,10-80,10-85,10-$ $90,10-95,15-20,15-25,15-30,15-35,15-40,15-45,15-50,15-55,15-60,15-65,15-70,15-$ $75,15-80,15-85,15-90,15-95,20-25,20-30,20-35,20-40,20-45,20-50,20-55,20-60,20-$
$65,20-70,20-75,20-80,20-85,20-90,20-95,25-30,25-35,25-40,25-45,25-50,25-55,25-$ $60,25-65,25-70,25-75,25-80,25-85,25-90,25-95,30-35,30-40,30-45,30-50,30-55,30-$ $60,30-65,30-70,30-75,30-80,30-85,30-90,30-95,35-40,35-45,35-50,35-55,35-60,35-$ $65,35-70,35-75,35-80,35-85,35-90,35-95,40-45,40-50,40-55,40-60,40-65,40-70,40-$ $75,40-80,40-85,40-90,40-95,45-50,45-55,45-60,45-65,45-70,45-75,45-80,45-85,45-$ $90,45-95,50-55,50-60,50-65,50-70,50-75,50-80,50-85,50-90,50-95,55-60,55-65,55=$ $70,55-75,55-80,55-85,55-90,55-95,60-65,60-70,60-75,60-80,60-85,60-90,60-95,65-$ $70,65-75,65-80,65-85,65-90,65-95,70-75,70-80,70-85,70-90,70-95,75-80,75-85,75-$ $90,75-95,80-85,80-90,80-95,85-90,85-95$, or $90-95$. As a non-limiting example, the guide to passenger ratio is a range of 1.3 to 99 . As a non-limiting example, the guide to passenger ratio is a range of 10 to 99 .
[0262] In certain embodiments, the guide to passenger (G:P) strand ratio is $10,10.5,11$, $11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,17.5,18,18.5,19,19.5,20,20.5,21$, $21.5,22,22.5,23,23.5,24,24.5,25,25.5,26,26.5,27,27.5,28,28.5,29,29.5,30,30.5,31$, $31.5,32,32.5,33,33.5,34,34.5,35,35.5,36,36.5,37,37.5,38,38.5,39,39.5,40,40.5,41$, $41.5,42,42.5,43,43.5,44,44.5,45,45.5,46,46.5,47,47.5,48,48.5,49,49.5,50,50.5,51$, $51.5,52,52.5,53,53.5,54,54.5,55,55.5,56,56.5,57,57.5,58,58.5,59,59.5,60,60.5,61$, $61.5,62,62.5,63,63.5,64,64.5,65,65.5,66,66.5,67,67.5,68,68.5,69,69.5,70,70.5,71$, $71.5,72,72.5,73,73.5,74,745,75,755,76,76.5,77,77.5,78,78.5,79,79.5,80,80.5,81$, $81.5,82,82.5,83,83.5,84,84.5,85,85.5,86,86.5,87,87.5,88,88.5,89,89.5,90,90.5,91$, $91.5,92,92.5,93,93.5,94,94.5,95,95.5,96,96.5,97,97.5,98,98.5$, or 99 . As a nonlimiting example, the guide to passenger ($\mathrm{C} ; \mathrm{P}$) strand ratio is 11.5. As a non-limiting example, the guide to passenger (G:P) strand ratio is 99.
10263) In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is greater than 1.
[0264] In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is greater than 2 .
[0265] In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is greater than 5 .
[0266] In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is greater than 10.
[0267] In cettain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is greater than 20.
[0268] In certain embodiments, the guide to passenger ($G: P$) (also referred to as the antisense to sense) strand ratio expressed is greater than 50 .
[0269] In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is greater than 300.
10270] In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is 314.
[0271] In certain embodiments, the guide to passenger ($G: P$) (also referred to as the antisense to sense) strand ratio expressed is greater than 400.
[0272] In certain embodiments, the guide to passenger ($G: P$) (also referred to as the antisense to sense) strand ratio expressed is 434 .
[0273] In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is at least 3:1.
10274) In certain embodiments, the guide to passenger (G: P) (also referred to as the antisense to sense) strand ratio expressed is at least 5:1.
[0275] In certain embodiments, the guide to passenger ($\mathrm{G}: \mathrm{P}$) (also referred to as the antisense to sense) strand ratio expressed is at least $10: 1$.
[0276] In certain embodiments, the guide to passenger ($\mathrm{G}: \mathrm{P}$) (also referred to as the antisense to sense) strand ratio expressed is at least 20:1.
10277) In cettain embodiments, the guide to passenger (G: P) (also teferred to as the antisense to sense) strand ratio expressed is at least 50:1.
[0278] In certain embodiments, the passenger to guide (P:G) (also referred to as the sense to antisense) strand ratio expressed is $1: 10,1: 9,1: 8,1: 7,1: 6,1: 5,1: 4,1: 3,1: 2,1 ; 1,2: 10,2: 9$, $2: 8,2: 7,2: 6,2: 5,2: 4,2: 3,2: 2,2: 1,3: 10,3: 9,3: 8,3: 7,3: 6,3: 5,3: 4,3: 3,3: 2,3: 1,4: 10,4: 9$, $4: 8,4: 7,4: 6,4: 5,4: 4,4: 3,4: 2,4: 1,5: 10,5: 9,5: 8,5: 7,5: 6,5: 5,5: 4,5: 3,5: 2,5: 1,6: 10,6: 9$, $6: 8,6: 7,6: 6,6: 5,6: 4,6: 3,6: 2,6: 1,7: 10,7: 9,7: 8,7: 7,7: 6,7: 5,7: 4,7: 3,7: 2,7: 1,8: 10,8: 9$, $8: 8,8: 7,8: 6,8: 5,8: 4,8: 3,8: 2,8: 1,9: 10,9: 9,9: 8,9: 7,9: 6,9: 5,9: 4,9: 3,9: 2,9: 1,10: 10,10: 9$. $10: 8,10: 7,10.6,10: 5,10: 4,10: 3,10: 2,10: 1,1: 99,5: 95,10: 90,15: 85,20: 80,25: 75,30: 70$, $35: 65,40: 60,45: 55,50: 50,55: 45,60: 40,65 \cdot 35,70: 30,75: 25,80: 20,85: 15,90: 10,95: 5$, or 99:1 in vitro or in vivo. The passenger to guide ratio refers to the ratio of the passenger strands to the guide strands after the intracellular processing of the pri-microRNA. For example, an 80:20 of passenger-to-guide ratio would have 8 passenger strands to every 2 guide strands processed from the precursor. As a non-limiting example, the passenger-toguide strand ratio is $80: 20$ in vitro. As a non-limiting example, the passenger-to-guide strand
ratio is 80.20 in vivo. As a non-limiting example, the passenger-to-guide strand ratio is $8: 2 \mathrm{in}$ vitro. As a non-limiting example, the passenger-to-guide strand ratio is 8.2 in vivo. As a nonlimiting example, the passenger-to-guide strand ratio is $9: 1$ in vitro. As a non-limiting example, the passenger-to-guide strand ratio is 9.1 in vivo.
[0279] In certain embodiments, the passenger to guide ($P: G$) strand ratio is in a range of 1 -$99,1.3-99,5-99,10-99,15-99,20-99,25-99,30-99,35-99,40-99,45-99,50-99,55-99,60-$ $99,65-99,70-99,75-99,80-99,85-99,90-99,95-99,1-10,1-15,1-20,1-25,1-30,1-35,1-40$, $1-45,1-50,1-55,1-60,1-65,1-70,1-75,1-80,1-85,1-90,1-95,5-10,5-15,5-20,5-25,5-30$, $5-35,5-40,5-45,5-50,5-55,5-60,5-65,5-70,5-75,5-80,5-85,5-90,5-95,10-15,10-20,10-$ $25,10-30,10-35,10-40,10-45,10-50,10-55,10-60,10-65,10-70,10-75,10-80,10-85,10-$ $90,10-95,15-20,15-25,15-30,15-35,15-40,15-45,15-50,15-55,15-60,15-65,15-70,15-$ $75,15-80,15-85,15-90,15-95,20-25,20-30,20-35,20-40,20-45,20-50,20-55,20-60,20-$ $65,20-70,20-75,20-80,20-85,20-90,20-95,25-30,25-35,25-40,25-45,25-50,25-55,25-$ $60,25-65,25-70,25-75,25-80,25-85,25-90,25-95,30-35,30-40,30-45,30-50,30-55,30-$ $60,30-65,30-70,30-75,30-80,30-85,30-90,30-95,35-40,35-45,35-50,35-55,35-60,35-$ $65,35-70,35-75,35-80,35-85,35-90,35-95,40-45,40-50,40-55,40-60,40-65,40-70,40-$ $75,40-80,40-85,40-90,40-95,45-50,45-55,45-60,45-65,45-70,45-75,45-80,45-85,45-$ $90,45-95,50-55,50-60,50-65,50-70,50-75,50-80,50-85,50-90,50-95,55-60,55-65,55-$ $70,55-75,55-80,55-85,55-90,55-95,60-65,60-70,60-75,60-80,60-85,60-90,60-95,65-$ $70,65-75,65-80,65-85,65-90,65-95,70-75,70-80,70-85,70-90,70-95,75-80,75-85,75-$ $90,75-95,80-85,80-90,80-95,85-90,85-95$, or $90-95$
[0280] In certain embodiments, the passenger to guide ($\mathrm{P}: \mathrm{G}$) strand ratio is $10,10,5,11$, $11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,17.5,18,18.5,19,19.5,20,20.5,21$, $21.5,22,22.5,23,23.5,24,24.5,25,25.5,26,26.5,27,27.5,28,28.5,29,29.5,30,30.5,31$, $31.5,32,32.5,33,33.5,34,34.5,35,35.5,36,36.5,37,37.5,38,38.5,39,39.5,40,40.5,41$, $41.5,42,42.5,43,43.5,44,44.5,45,45.5,46,46.5,47,47.5,48,48.5,49,49.5,50,50.5,51$, $51.5,52,52.5,53,53.5,54,54.5,55,55.5,56,56.5,57,57.5,58,58.5,59,59.5,60,60.5,61$, $61.5,62,62.5,63,63.5,64,64.5,65,65.5,66,66.5,67,67.5,68,68.5,69,69.5,70,70.5,71$, $71.5,72,72,5,73,73.5,74,745,75,75.5,76,76.5,77,77.5,78,78.5,79,79,5,80,80.5,81$, $81.5,82,82.5,83,83.5,84,84.5,85,85.5,86,86.5,87,87.5,88,88.5,89,89.5,90,90.5,91$, $91.5,92,92.5,93,93.5,94,94.5,95,95.5,96,96.5,97,97.5,98,98.5$, or 99 .
[0281] In certain cmbodiments, the passenger to guide ($P ; G$) (also referred to as the sense to antisense) strand ratio expressed is greater than 1.
[0282] In certain embodiments, the passenger to guide ($P: G$) (also referred to as the sense to antisense) strand ratio expressed is greater than 2 .
[0283] In certain embodiments, the passenger to guide ($P: G$) (also referred to as the sense to antisense) strand ratio expressed is greater than 5 .
[0284) In certain embodiments, the passenger to guide ($P: G$) (also referred to as the sense to antisense) strand ratio expressed is greater than 10 .
[0285] In certain embodments, the passenger to guide ($9 ; G$) (also referred to as the sense to antisense) strand ratio expressed is greater than 20.
[0280] In certain embodiments, the passenger to guide ($P: G$) (also referred to as the sense to antisense) strand ratio expressed is greater than 50.
[9287] In cettain embodiments, the passenger to guide ($\mathrm{P}: \mathrm{G}$) (also referred to as the sense to antisense) strand ratio expressed is at least 3.1.
[0288] In certain embodiments, the passenger to guide ($9: G$) (also referred to as the sense to antisense) strand ratio expressed is at least 5:1.
[0289] In certain embodiments, the passenger to guide ($P: G$) (also referred to as the sense to antisense) strand ratio expressed is at least $10: 1$.
[0290] In certain embodiments, the passenger to guide ($\mathrm{P}: \mathrm{G}$) (also referred to as the sense to antisense) strand ratio expressed is at least 20:1.
[0291] In certain embodiments, the passenger to guide ($P: G$) (also referred to as the sense to antisense) strand ratio expressed is at least 50.1 .
[0292] In certain embodiments, a passenger-guide strand duplex is considered effective when the pri- or pre-microRNAs demonstrate, but methods known in the art and described herein, greater than 2 -fold guide to passenger strand ratio when processing is measured. As a non-limiting examples, the pri- or pre-microRNAs demonstrate great than 2 -fold, 3 -fold, 4 fold, 5 -fold, 6 -fold, 7 -fold, 8 -fold, 9 -fold, 10 -fold, 11 -fold, 12 -fold, 13 -fold, 14 -fold, 15 -fold, or 2 to 5 -fold, 2 to 10 -fold, 2 to 15 -fold, 3 to 5 -fold, 3 to 10 -fold, 3 to 15 -fold, 4 to 5 -fold, 4 to 10 -fold, 4 to 15 -fold, 5 to 10 -fold, 5 to 15 -fold, 6 to 10 -fold, 6 to 15 -fold, 7 to 10 -fold, 7 to 15 -fold, 8 to 10 -fold, 8 to 15 -fold, 9 to 10 -fold, 9 to 15 -fold, 10 to 15 -fold, 11 to 15 -fold, 12 to 15 -fold, 13 to 15 -fold, or 14 to 15 -fold guide to passenger strand ratio when processing is measured.

10293] In certain embodiments, the vector genome encoding the dsRNA comprises a sequence which is at least $60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or more than
99% of the full lengt of the construct. As a non-limiting example, the vector genone comprises a sequence which is at least 80% of the full-length sequence of the construct.
[0294] In certain embodiments, the siRNA molecules may be used to silence wild type or mutant version of the gene of interest by targeting at least one exon on the gene of interest sequence. The exon may be exon 1 , exon 2 , exon 3 , exon 4 , exon 5 , exon 6 , exon 7 , exon 8 , exon 9 , exon 10 , exon 11 , exon 12 , exon 13 , exon 14 , exon 15 , exon 16 , exon 17 , exon 18 , exon 19 , exon 20 , exon 21 , exon 22 , exon 23 , exon 24 , exon 25 , exon 26 , exon 27 , exon 28 , exon 29, exon 30, exon 31, exon 32, exon 33, exon 34, exon 35, exon 36, exon 37, exon 38, exon 39 , exon 40 , exon 41 , exon 42 , exon 43 , exon 44 , exon 45 , exon 46 , exon 47 , exon 48 , exon 49 , exon 50 , exon 51 , exon 52 , exon 53 , exon 54 , exon 55 , exon 56 , exon 57 , exon 58 , exon 59 , exon 60 , exon 61 , exon 62 , exon 63 , exon 64 , exon 65 , exon 66 , and/or exon 67 . Design and Sequences of siRNA duplexes targeting SOD 1 gene
[0295] The present disclosure provides small interfering RNA (siRNA) duplexes (and modulatory polynucleotides encoding them) that target SOD 1 mRNA to interfere with SOD1 gene expression and/or SOD 1 protein production.
[0296] The encoded siRNA duplex of the present disclosure contains an antisense strand and a sense strand hybridized together forming a duplex structure, wherein the antisense strand is complementary to the nucleic acid sequence of the targeted SODI gene, and wherein the sense strand is homologous to the nucleic acid sequence of the targeted SOBI gene. In some aspects, the 5 end of the antisense strand has a 5 ' phosphate group and the 3 'end of the sense strand contains a 3 'hydroxyl group. In other aspects, there are none, one or 2 nucleotide overhangs at the 3 'end of each strand
[0297] Some guidelines for designing siRNAs have been proposed in the art. These guidelines generally recommend generating a 19 -nucleotide duplexed region, symmetric $2-3$ nucleotide 3'overhangs, 5'- phosphate and 3'- hydroxyl groups targeting a region in the gene to be silenced. Other rules that may govern siRNA sequence preference include, but are not limited to, (i) A/U at the 5^{\prime} end of the antisense strand, (ii) G / C at the 5^{\prime} end of the sense strand; (iii) at least five A/U residues in the 5 ' terminal one-third of the antisense strand, and (iv) the absence of any GC stretch of more than 9 nucleotides in length. In accordance with such consideration, together with the specific sequence of a target gene, highly effective siRNA molecules essential for suppressing the SODI gene expression may be readily designed.
[0298] According to the present disclosure, siRNA molecules (e.g., siRNA duplexes or encoded dsRNA) that target the SODl gene are designed. Such siRNA molecules can specifically, suppress SODI gene expression and protein production. In some aspects, the siRNA molecules are designed and used to selectively "knock out" SODI gene variants in cells, i.e., mutated SOD 1 transcripts that are identified in patients with ALS disease. In some aspects, the siRNA molecules are designed and used to selectively "knock down" SODI gene variants in cells fo other aspects, the siRNA molecules are able to inhibit or suppress both the wild type and mutated SODI gene.
[0299] In certain embodiments, an siRNA molecule of the present disclosure comprises a sense strand and a complementary antisense strand in which both strands are hybridized together to form a duplex structure. The antisense strand has sufficient complementarity to the SOD 1 mRNA sequence to direct target-specific RNAi, i.e., the siRNA molecule has a sequence sufficient to trigger the destruction of the target mRNA by the RNAi machinery or process.
[0300] In certain embodiments, an siRNA molecule of the present disclosure comprises a sense strand and a complementary antisense strand in which both strands are hybridized together to fom a duplex structure and where the start site of the hybridization to the SODI mRNA is between nucleotide 15 and 1000 on the SOD 1 mRNA sequence. As a non-limiting example, the start site may be between nucleotide $15-25,15-50,15-75,15-100,100-150$, $150-200,200-250,250-300,300-350,350-400,400-450,450-500,500-550,550-600,600-$ $650,650-700,700-70,750-800,800-850,850-900,900-950$, and $950-1000$ on the SOD1 mRNA sequence. As yet another non-limiting example, the start site may be nucleotide 26 , $27,28,29,30,32,33,34,35,36,37,74,76,77,78,149,153,157,160,177,192,193,195$, $196,197,198,199,206,209,210,239,241,261,263,264,268,269,276,278,281,284$, $290,291,295,296,316,317,329,330,337,350,351,352,354,357,358,364,375,378$, $383,384,390,392,395,404,406,417,418,469,470,475,476,480,487,494,496,497$, $501,504,515,518,522,523,524,552,554,555,562,576,577,578,579,581,583,584$, $585,587,588,589,593,594,595,596,597,598,599,602,607,608,609,610,611,612$, $613,616,621,633,635,636,639,640,641,642,643,644,645,654,660,661,666,667$, $668,669,673,677,692,698,699,700,701,706,749,770,772,775,781,800,804,819$, $829,832,833,851,854,855,857,858,859,861,869,891,892,906,907,912,913,934$, 944 , and 947 on the SOD 1 mRNA sequence.
[0301] In some embodiments, the antisense strand and target SOD 1 mRNA sequences have 100% complementarity. The antisense strand may be complementary to any part of the target SOD 1 mRNA sequence.
[0302] In other embodiments, the antisense strand and target SOD 1 mRNA sequences comprise at least one mismatch. As a non-limiting example, the antisense strand and the target SODI mRNA sequence have at least $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 81 \%, 82 \%$, $83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%$, $20-99 \%, 30-40 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-99 \%, 40-50 \%$, $40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-99 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%$, $50-95 \%, 50-99 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-99 \%, 70-80 \%, 70-90 \%, 70-95 \%$, $70-99 \%, 80-90 \%, 80-95 \%, 80-99 \%, 90-95 \%, 90-99 \%$ or $95-99 \%$ complementarity.
[0303] In certain embodiments, an siRNA or dsRNA targeting SODI includes at least two sequences that are complementary to each other.
[0304] According to the present disclosure, the siRNA molecule targeting SODI has a length from about 10-50 or more nucleotides, i.e., each strand comprising $10-50$ nucleotides (or nucleotide analogs). Preferably, the siRNA molecule has a length from about 15-30, e.g., $15,16,17,18,19,20,21,22,23,24,25,26,27,28,29$, or 30 nucleotides in each strand, wherein one of the strands is sufficiently complementarity to a target region. In certain embodiments, each strand of the siRNA molecule has a length from about 19 to 25,19 to 24 or 19 to 21 nucleotides. In certain embodiments, at least one strand of the siRNA molecule is 19 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 20 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 21 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 22 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 23 mucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 24 nucleotides in length. In certain embodiments, at least one strand of the siRNA molecule is 25 nucleotides in length.
[0305] In some embodiments, the siRNA molecules of the present disclosure targeting SOD 1 can be synthetic RNA duplexes comprising about 19 nucleotides to about 25 nucleotides, and two overhanging nucleotides at the 3^{\prime}-end. In some aspects, the siRNA molecules may be unmodified RNA molecules. In other aspects, the siRNA molecules may contain at least one modified nucleotide, such as base, sugar or backbone modifications.
[0306] In certain embodiments, the siRNA molecules of the present disclosure targeting SODI may comprise a nucleotide sequence such as, but not limited to, the antisense (guide) sequences in Table 2 or a fragment or variant thereof. As a non-limiting example, the antisense sequence used in the siRNA molccule of the present disclosure is at least 30%, $40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%$, $92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-$ $60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-99 \%, 30-40 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-$ $80 \%, 30-90 \%, 30-95 \%, 30-99 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-$ $99 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-99 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-$ $95 \%, 60-99 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-99 \%, 80-90 \%, 80-95 \%, 80-99 \%, 90-95 \%, 90-$ 99% or $95-99 \%$ of a nucleotide sequence in Table 2. As another non-limiting example, the antisense sequence used in the siRNA molecule of the present disclosure comprises at least 3 , $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21$ or more than 21 consecutive nucleotides of a mucleotide sequence in Table 2. As yet another non-limiting example, the antisense sequence used in the siRNA molecule of the present disclosure comprises nucleotides 1 to 22,1 to 21,1 to 20,1 to 19,1 to 18,1 to 17,1 to 16,1 to 15,1 to 14,1 to 13 , 1 to 12,1 to 11,1 to 10,1 to 9,1 to 8,2 to 22,2 to 21,2 to 20,2 to 19,2 to 18,2 to 17,2 to 16,2 to 15,2 to 14,2 to 13,2 to 12,2 to 11,2 to 10,2 to 9,2 to 8,3 to 22,3 to 21,3 to 20,3 to 19,3 to 18,3 to 17,3 to 16,3 to 15,3 to 14,3 to 13,3 to 12,3 to 11,3 to 10,3 to 9,3 to 8 , 4 to 22,4 to 21,4 to 20,4 to 19,4 to 18,4 to 17,4 to 16,4 to 15,4 to 14,4 to 13,4 to 12,4 to 11,4 to 10,4 to 9,4 to 8,5 to 22,5 to 21,5 to 20,5 to 19,5 to 18,5 to 17,5 to 16,5 to 15,5 to 14,5 to 13,5 to 12,5 to 11,5 to 10,5 to 9,5 to 8,6 to 22,6 to 21,6 to 20,6 to 19,6 to 18 , 6 to 17,6 to 16,6 to 15,6 to 14,6 to 13,6 to 12,6 to 11,6 to 10,7 to 22,7 to 21,7 to 20,7 to 19,7 to 18,7 to 17,7 to 16,7 to 15,7 to 14,7 to 13,7 to 12,8 to 22,8 to 21,8 to 20,8 to 19 , 8 to 18,8 to 17,8 to 16,8 to 15,8 to 14,8 to 13,8 to 12,9 to 22,9 to 21,9 to 20,9 to 19,9 to 18,9 to 17,9 to 16,9 to 15,9 to 14,10 to 22,10 to 21,10 to 20,10 to 19,10 to 18,10 to 17 , 10 to 16,10 to 15,10 to 14,11 to 22,11 to 21,11 to 20,11 to 19,11 to 18,11 to 17,11 to 16 , 11 to 15,11 to 14,12 to 22,12 to 21,12 to 20,12 to 19,12 to 18,12 to 17,12 to 16,13 to 22 , 13 to 21,13 to 20,13 to 19,13 to 18,13 to 17,13 to 16,14 to 22,14 to 21,14 to 20,14 to 19 , 14 to 18,14 to 17,15 to 22,15 to 21,15 to 20,15 to 19,15 to 18,16 to 22,16 to 21,16 to 20 , 17 to 22,17 to 21 , or 18 to 22 of the sequences in Table 2 .

Table 2. Antisense Sequences

Antisense ID	Sequence	SEO ID NO
A-4002	UAUUAAAGUGAGGACCUGCUU	1

[0307] In certain embodiments, the siRNA molecules of the present disclosure targeting SODI may comprise a nucleotide sequence such as, but not limited to, the sense (passenger) sequences in Table 3 or a fragment or variant thereof. As a non-limiting example, the sense sequence used in the siRNA molecule of the present disclosure is at least $30 \%, 40 \%, 50 \%$, $60 \%, 70 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%$, $94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%$, $20-80 \%, 20-90 \%, 20-95 \%, 20-99 \%, 30-40 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%$, $30-95 \%, 30-99 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-99 \%, 50-60 \%$, $50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-99 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-99 \%$, $70-80 \%, 70-90 \%, 70-95 \%, 70-99 \%, 80-90 \%, 80-95 \%, 80-99 \%, 90-95 \%, 90-99 \%$ or $95-99 \%$ of a mucleotide sequence in Table 3. As another non-limiting example, the sense sequence used in the siRNA molecule of the present disclosure comprises at least $3,4,5,6,7,8,9,10$, $11,12,13,14,15,16,17,18,19,20,21$ or more than 21 consecutive nucleotides of a nucleotide sequence in Table 3. As yet another non-himing example, the sense sequence used in the siRNA molecule of the present disclosure comprises nucleotides 1 to 22,1 to 21 , 1 to 20,1 to 19,1 to 18,1 to 17,1 to 16,1 to 15,1 to 14,1 to 13,1 to 12,1 to 11,1 to 10,1 to 9,1 to 8,2 to 22,2 to 21,2 to 20,2 to 19,2 to 18,2 to 17,2 to 16,2 to 15,2 to 14,2 to 13,2 to 12,2 to 11,2 to 10,2 to 9,2 to 8,3 to 22,3 to 21,3 to 20,3 to 19,3 to 18,3 to 17,3 to 16, 3 to 15,3 to 14,3 to 13,3 to 12,3 to 11,3 to 10,3 to 9,3 to 8,4 to 22,4 to 21,4 to 20,4 to 19,4 to 18,4 to 17,4 to 16,4 to 15,4 to 14,4 to 13,4 to 12,4 to 11,4 to 10,4 to 9,4 to 8,5 to 22,5 to 21,5 to 20,5 to 19,5 to 18,5 to 17,5 to 16,5 to 15,5 to 14,5 to 13,5 to 12,5 to 11,5 to 10,5 to 9,5 to 8,6 to 22,6 to 21,6 to 20,6 to 19,6 to 18,6 to 17,6 to 16,6 to 15,6 to 14,6 to 13,6 to 12,6 to 11,6 to 10,7 to 22,7 to 21,7 to 20,7 to 19,7 to 18,7 to 17,7 to 16,7 to 15,7 to 14,7 to 13,7 to 12,8 to 22,8 to 21,8 to 20,8 to 19,8 to 18,8 to 17,8 to 16 , 8 to 15,8 to 14,8 to 13,8 to 12,9 to 22,9 to 21,9 to 20,9 to 19,9 to 18,9 to 17,9 to 16,9 to 15,9 to 14,10 to 22,10 to 21,10 to 20,10 to 19,10 to 18,10 to 17,10 to 16,10 to 15,10 to 14,11 to 22,11 to 21,11 to 20,11 to 19,11 to 18,11 to 17,11 to 16,11 to 15,11 to 14,12 to 22,12 to 21,12 to 20,12 to 19,12 to 18,12 to 17,12 to 16,13 to 22,13 to 21,13 to 20,13 to 19,13 to 18,13 to 17,13 to 16,14 to 22,14 to 21,14 to 20,14 to 19,14 to 18,14 to 17,15 to

22,15 to 21,15 to 20,15 to 19,15 to 18,16 to 22,16 to 21,16 to 20,17 to 22,17 to 21, or 18 to 22 of the sequences in Table 3.

Table 3. Sense Sequences

Sense 13	Sequence	SEの 1 NO
S-4003	GCAGGUCCUCACUUUAAUGCU	2

[0308] In certain embodiments, the siRNA molecules of the present disclosure targeting SOD 1 may comprise an antisense sequence from Table 2 and a sense sequence from Table 3, or a fragment or variant thereof. As a non-limiting example, the antisense sequence and the sense sequence have at least $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%$, $86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-99 \%, 30-40 \%$, $30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-99 \%, 40-50 \%, 40-60 \%, 40-70 \%$, $40-80 \%, 40-90 \%, 40-95 \%, 40-99 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-99 \%$, $60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-99 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-99 \%, 80-90 \%$, $80-95 \%, 80-99 \%, 90-95 \%, 90-99 \%$ or $95-99 \%$ complementarity.
[0309] In certain embodiments, the siRNA molecules of the present disclosure targeting SODI may comprise the sense and antisense siRNA duplex as described in Table 4. As a non-limiting example, these siRNA duplexes may be tested for in vitro inhibitory activity on endogenous SODI gene expression.

Table 4. Sense and antisense strand sequences of SODI dsRNA

siRNA Duplex II	SS 13	Sense Strand Sequence ($5^{\circ}-3^{\prime}$)	$\begin{aligned} & \text { SS } \\ & \text { SEQ } \end{aligned}$ B	AS IE	Antisense Strand Sequence ($5^{\prime}-3^{\prime \prime}$)	AS SEQ [1
D-4012	S-4003	GCAGGUCCUCAC UUUAAUGCU	2	A-4002	UAUUAAAGUGA GGACCUGCUU	1

[0310] In other embodiments, the siRNA molecules of the present disclosure targeting SODI can be encoded in plasmid vectors, AAV particles, viral genome or other nucleic acid expression vectors for delivery to a cell.
[0311 DNA expression plasmids can be used to stably express the siRNA duplexes or dsRNA of the present disclosure targeting SODI in cells and achieve long-term inbibition of the target gene expression. In one aspect, the sense and antisense strands of a siRNA duplex are typically linked by a short spacer sequence leading to the expression of a stem-loop structure termed short hairpin RNA (shRNA). The hairpin is recognized and cleaved by Bicer, thus generating mature siRNA molecules.
[0312] According to the present disclosure, AAV particles comprising the nucleic acids encoding the siRNA molecules targeting SODI mRNA are produced, the AAV serotypes may be any of the serotypes listed herem. Non-limiting examples of the $A \mathrm{~A} V$ serotypes include, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV9.47, A AV9(hul4), AAV10, AAV11, AAV12, AAVm8, AAVh10, AAV-DJ8, AAV-DI, AAVPHP.A, and/or AAV-GHP.B, AAVPHP.B2, AAVPHP.B3, AAVPHP.N/PHP.B-DGT, AAVPHP.B-EST, AAVPHP.B-GGT, AAVPHP.B-ATP, AAVPHP B-ATT-T, AAVPGP.B-DGT-T, AAVPHP.B-GGT-T, AAVPHP.B-SGS, AAVPHP,B-AQP, AAVPUP.B-QQP, AAVPHP.B-SNP(3), AAVPHP.B-SNP, AAVPHP.B-QGT, AAVPHP.B-NQT, AAVPGP.BEGS, AAVPHP.B-SGN, AAVPHP.B-EGT, AAVPHP.B-DSE, AAVPHP.B-DST, AAVPHP B-STP, AAVPHPB-PQP, AAVPHP B-SQP, AAVPHP.B-QLP, AAVPHP.BTMP, AAVPHP B-TTP, AAVPHP.S/G2A12, AAVG2A15/G2A3, AAVG2B4, AAVG2B5, and variants thereof.
[0313] In some embodiments, the siRNA duplexes or encoded dsRNA of the present disclosure suppress (or degrade) SODI mRNA. Accordingly, the siRNA duplexes or encoded dsRNA can be used to substantially inhibit SOD 1 gene expression in a cell. In some aspects, the inhibition of $S O D 1$ gene expression refers to an inhibition by at least about 20%, preferably by at least about $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 85 \%, 90 \%, 95 \%$ and 100%, or at least $20-30 \%, 20-40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-100 \%$, $30-40 \%, 30-50 \%, 30-60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-100 \%, 40-50 \%, 40-60 \%$, $40-70 \%, 40-80 \%, 40-90 \%, 40-95 \%, 40-100 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%$, $50-100 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-$ $100 \%, 80-90 \%, 80-95 \%, 80-100 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$. Accordingly, the protein product of the targeted gene may be inhibited by at least about 20%, preferably by at least about $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 85 \%, 90 \%, 95 \%$ and 100%, or at least $20-30 \%, 20-$ $40 \%, 20-50 \%, 20-60 \%, 20-70 \%, 20-80 \%, 20-90 \%, 20-95 \%, 20-100 \%, 30-40 \%, 30-50 \%, 30-$ $60 \%, 30-70 \%, 30-80 \%, 30-90 \%, 30-95 \%, 30-100 \%, 40-50 \%, 40-60 \%, 40-70 \%, 40-80 \%, 40-$ $90 \%, 40-95 \%, 40-100 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-90 \%, 50-95 \%, 50-100 \%, 60-70 \%$, $60-80 \%, 60-90 \%, 60-95 \%, 60-100 \%, 70-80 \%, 70-90 \%, 70-95 \%, 70-100 \%, 80-90 \%, 80-95 \%$ $80-100 \%, 90-95 \%, 90-100 \%$ or $95-100 \%$.
[0344] According to the present disclosure, the siRNA molecules are designed and tested for their ability in reducing SODI mRNA levels in cultured cells. Such siRNA molecules
may form a duplex such as, but not limited to, include those listed in Table 4. As a nonlimiting example, the siRNA duplexes may be siRNA duplex [D D-4012.
[0335] In cettain embodiments, the siRNA molecules comprise a miRNA seed match for SOD 1 located in the guide strand. In another embodiment, the siRNA moleculcs comprise a miRNA seed match for SODI located in the passenger strand. In yet another embodiment, the siRNA duplexes or encoded dsRNA targeting SOD1 gene do not comprise a seed match for SOD 1 located in the guide or passenger strand.
[0316] In certain embodiments, the siRNA duplexes or encoded dsRNA targeting SOW1 gene may have almost no significant full-length off target effects for the guide strand. In another embodiment, the siRNA duplexes or encoded dsRNA targeting SODI gene may have almost no significant full-length off target effects for the passenger strand. The siRNA duplexes or encoded dsRNA targeting SOD 1 gene may have less than $1 \%, 2 \%, 3 \%, 4 \%, 5 \%$, $6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 11 \%, 12 \%, 13 \%, 14 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%$, $1-5 \%, 2-6 \%, 3-7 \%, 4-8 \%, 5-9 \%, 5-10 \%, 6-10 \%, 5-15 \%, 5-20 \%, 5-25 \% 5-30 \%, 10-20 \%, 10-$ $30 \%, 10-40 \%, 10-50 \%, 15-30 \%, 15-40 \%, 15-45 \%, 20-40 \%, 20-50 \%, 25-50 \%, 30-40 \%, 30-$ $50 \%, 35-50 \%, 40-50 \%, 45-50 \%$ full-length off target effects for the passenger strand. In yet another embodiment, the sIRNA duplexes or encoded dsRNA targeting SOD1 gene may have almost no significant full-length off target effects for the guide strand or the passenger strand. The siRNA duplexes or encoded dsRNA targeting SODI gene may have less than $1 \%, 2 \%$, $3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 11 \%, 12 \%, 13 \%, 14 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%$, $40 \%, 45 \%, 50 \%, 1-5 \%, 2-6 \%, 3-7 \%, 4-8 \%, 5-9 \%, 5-10 \%, 6-10 \%, 5-15 \%, 5-20 \%, 5-25 \% 5 \sim$ $30 \%, 10-20 \%, 10-30 \%, 10-40 \%, 10-50 \%, 15-30 \%, 15-40 \%, 15-45 \%, 20-40 \%, 20-50 \%, 25-$ $50 \%, 30-40 \%, 30-50 \%, 35-50 \%, 40-50 \%, 45-50 \%$ full-length off target effects for the guide or passenger strand.
[0317] In certain embodiments, the siRNA duplexes or encoded dsRNA targeting SOBI gene may have high activity in vitro. In another embodiment the siRNA molecules may have low activity in vitro. In yet another embodiment, the siRNA duplexes or dsRNA targeting the SOD 1 gene may have high guide strand activity and low passenger strand activity in vitro. [0318] In certain embodiments, the siRNA molecules targeting SODI have a high guide strand activity and low passenger strand activity in vitro. The target knock-down (KD) by the guide strand may be at least $40 \%, 50 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$, 99.5% or 100%. The target knock-down by the guide strand may be $40-50 \%, 45-50 \%, 50-$ $55 \%, 50-60 \%, 60-65 \%, 60-70 \%, 60-75 \%, 60-80 \%, 60-85 \%, 60-90 \%, 60-95 \%, 60-99 \%, 60-$
$99.5 \%, 60-100 \%, 65-70 \%, 65-75 \%, 65-80 \%, 65-85 \%, 65-90 \%, 65-95 \%, 65-99 \%, 65-99.5 \%$, $65-100 \%, 70-75 \%, 70-80 \%, 70-85 \%, 70-90 \%, 70-95 \%, 70-99 \%, 70-99.5 \%, 70-100 \%, 75-$ $80 \%, 75-85 \%, 75-90 \%, 75-95 \%, 75-99 \%, 75-99.5 \%, 75-100 \%, 80-85 \%, 80-90 \%, 80-95 \%$, $80-99 \%, 80-99.5 \%, 80-100 \%, 85-90 \%, 85-95 \%, 85-99 \%, 85-99.5 \%, 85-100 \%, 90-95 \%, 90-$ $99 \%, 90-99.5 \%, 90-100 \%, 95-99 \%, 95-99.5 \%, 95-100 \%, 99-99.5 \%, 99-100 \%$ or $99.5-100 \%$.

As a non-limiting example, the target knock-down (KD) by the guide strand is greater than 70%. As a non-limiting example, the target knock-down (KD) by the guide strand is greater than 60%.
[0319] In certain embodiments, the siRNA duplex target SODI is designed so there is no miRNA seed match for the sense or antisense sequence to the non-SOD 1 sequence.
[0320] In certain embodiments, the I_{50} of the guide strand in the siRNA duplex targeting SODI for the nearest off target is greater than 100 multiplied by the KCso of the guide strand for the on-target gene, SOD1. As a non-limiting example, if the C_{50} of the guide strand for the nearest off target is greater than 100 multiplied by the ICso of the guide strand for the taget then the siRNA molecules are said to have high guide strand selectivity for inhibiting SODI in vitro.
[0321] In certain embodiments, the 5° processing of the guide strand of the siRNA duplex targeting SODI has a correct start (n) at the 5^{\prime} end at least $75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or 100% of the time in vitro or in vivo. As anon-limiting example, the 5 ' processing of the guide strand is precise and has a correct start (n) at the 5^{\prime} end at least 99% of the time in vitro. As a non-limiting example, the 5 ' processing of the guide strand is precise and has a correct start (n) at the 5^{\prime} cnd at least 99% of the time in vivo. As a non-limiting example, the 5^{\prime} processing of the guide strand is precise and has a correct start (n) at the 5^{\prime} end at least 90% of the time in vitro. As a non-limiting example, the 5^{\prime} processing of the guide strand is precise and has a correct start (n) at the 5° end at least 90% of the time in vivo. As a nonlimiting example, the 5 processing of the guide strand is precise and has a correct stant (n) at the 5^{\prime} end at least 85% of the time in vitro. As a non-limiting example, the 5^{\prime} processing of the guide strand is precise and has a correct $\operatorname{start}(n)$ at the 5^{\prime} end at least 85% of the time in vivo.
[0322] In certain embodiments, the 5' processing of the gude strand of the siRNA duplex targeting SOD] has a correct start (n) at the 5 ' end in a range of $75-95 \%, 75-90 \%, 75-85 \%$, $75-80 \%, 80-95 \%, 80-90 \%, 80-85 \%, 85-95 \%, 85-90 \%$, or $90-95 \%$. As a non-limiting
example, the 5^{\prime} processing of the guide strand of the siRNA duplex targeting SODI has a correct start (n) at the 5^{\prime} end in a range of $75-95 \%$.
[0323] In certain embodiments, the 5' processing of the guide strand of the siRNA duplex targeting SOD I has a correct start (n) at the 5 ' end for $75 \%, 75.1 \%, 75.2 \%, 75.3 \%, 75.4 \%$, $75.5 \%, 75.6 \%, 75.7 \%, 75.8 \%, 75.9 \%, 76 \%, 76.1 \%, 76.2 \%, 76.3 \%, 76.4 \%, 76.5 \%, 76.6 \%$, $76.7 \%, 76.8 \%, 76.9 \%, 77 \%, 77.1 \%, 77.2 \%, 77.3 \%, 77.4 \%, 77.5 \%, 77.6 \%, 77.7 \%, 77.8 \%$, $77.9 \%, 78 \%, 78.1 \%, 78.2 \%, 78.3 \%, 78.4 \%, 78.5 \%, 78.6 \%, 78.7 \%, 78.8 \%, 78.9 \%, 79 \%$, $79.1 \%, 79.2 \%, 79.3 \%, 79.4 \%, 79.5 \%, 79.6 \%, 79.7 \%, 79.8 \%, 79.9 \%, 80 \%, 80.1 \%, 80.2 \%$ $80.3 \%, 80.4 \%, 80.5 \%, 80.6 \%, 80.7 \%, 80.8 \%, 80.9 \%, 81 \%, 81.1 \%, 81.2 \%, 81.3 \%, 81.4 \%$, $81.5 \%, 81.6 \%, 81.7 \%, 81.8 \%, 81.9 \%, 82 \%, 82.1 \%, 82.2 \%, 82.3 \%, 82.4 \%, 82.5 \%, 82.6 \%$, $82.7 \%, 82.8 \%, 82.9 \%, 83 \%, 83.1 \%, 83.2 \%, 83.3 \%, 83.4 \%, 83.5 \%, 83.6 \%, 83.7 \%, 83.8 \%$, $83.9 \%, 84 \%, 84.1 \%, 84.2 \%, 84.3 \%, 84.4 \%, 84.5 \%, 84.6 \%, 84.7 \%, 84.8 \%, 84.9 \%, 85 \%$, $85.1 \%, 85.2 \%, 85.3 \%, 85.4 \%, 85.5 \%, 85.6 \%, 85.7 \%, 85.8 \%, 85.9 \%, 86 \%, 86.1 \%, 86.2 \%$, $86.3 \%, 86.4 \%, 86.5 \%, 86.6 \%, 86.7 \%, 86.8 \%, 86.9 \%, 87 \%, 87.1 \%, 87.2 \%, 87.3 \%, 87.4 \%$, $87.5 \%, 87.6 \%, 87.7 \%, 87.8 \%, 87.9 \%, 88 \%, 88.1 \%, 88.2 \%, 88.3 \%, 88.4 \%, 88.5 \%, 88.6 \%$, $88.7 \%, 88.8 \%, 88.9 \%, 89 \%, 89.1 \%, 89.2 \%, 89.3 \%, 89.4 \%, 89.5 \%, 89.6 \%, 89.7 \%, 89.8 \%$, $89.9 \%, 90 \%, 90.1 \%, 90.2 \%, 90.3 \%, 90.4 \%, 90.5 \%, 90.6 \%, 90.7 \%, 90.8 \%, 90.9 \%, 91 \%$, $91.1 \%, 91.2 \%, 91.3 \%, 91.4 \%, 91.5 \%, 91.6 \%, 91.7 \%, 91.8 \%, 91.9 \%, 92 \%, 92.1 \%, 92.2 \%$, $92.3 \%, 92.4 \%, 92.5 \%, 92.6 \%, 92.7 \%, 92.8 \%, 92.9 \%, 93 \%, 93.1 \%, 93.2 \%, 93.3 \%, 93.4 \%$, $93.5 \%, 93.6 \%, 93.7 \%, 93.8 \%, 93.9 \%, 94 \%, 94.1 \%, 94.2 \%, 94.3 \%, 94.4 \%, 94.5 \%, 94.6 \%$, $94.7 \%, 94.8 \%, 94.9 \%$, or 95% of the constructs expressed. As a non-limiting example, the 5^{\prime} processing of the guide strand of the siRNA duplex targeting SOD 1 has a correct start (i) at the 5^{\prime} end for 81% of the constructs expressed. As a non-limiting example, the 5^{\prime} processing of the guide strand of the SiRNA duplex targeting SODI has a correct start (n) at the 5° end for 90% of the constructs expressed.
[9324] In certain embodiments, a passenger-gude strand duplex for SOW1 is considered effective when the pri- or pre-microRNAs demonstrate, by methods known in the art and described herein, greater than 2 -fold guide to passenger strand ratio when processing is measured. As a non-limiting examples, the pri- or pre-microRNAs demonstrate great than 2 fold, 3 -fold, 4 -fold, 5 -fold, 6 -fold, 7 -fold, 8 -fold, 9 -fold, 10 -fold, 11 -fold, 12 -fold, 13 -fold, 14 -fold, 15 -fold, or 2 to 5 -fold, 2 to 10 -fold, 2 to 15 -fold, 3 to 5 -fold, 3 to 10 -fold, 3 to 15 fold, 4 to 5 -fold, 4 to 10 -fold, 4 to 15 -fold, 5 to 10 -fold, 5 to 15 -fold, 6 to 10 -fold, 6 to 15 fold, 7 to 10 -fold, 7 to 15 -fold, 8 to 10 -fold, 8 to 15 -fold, 9 to 10 -fold, 9 to 15 -fold, 10 to 15 -
fold, 11 to 15 -fold, 12 to 15 -fold, 13 to 15 -fold, or 14 to 15 -fold guide to passenger strand ratio when processing is measured.
[0325] In certain embodiments, the siRNA molecules may be used to silence wild type or mutant SOD 1 by targeting at least one exon on the SOD 1 sequence. The exon may be exon 1 , exon 2 , exon 3 , exon 4 , exon 5 , exon 6 , exon 7 , exon 8 , exon 9 , exon 10 , exon 11 , exon 12 , exon 13 , exon 14 , exon 15 , exon 16 , exon 17 , exon 18 , exon 19 , exon 20 , exon 21 , exon 22 , exon 23 , exon 24 , exon 25 , exon 26 , exon 27 , exon 28 , exon 29 , exon 30 , exon 31 , exon 32 , exon 33, exon 34, exon 35, exon 36, exon 37, exon 38, exon 39, exon 40, exon 41, exon 42, exon 43 , exon 44 , exon 45 , exon 46 , exon 47 , exon 48 , exon 49 , exon 50 , exon 51 , exon 52 , exon 53 , exon 54 , exon 55 , exon 56 , exon 57 , exon 58 , exon 59 , exon 60 , exon 61 , exon 62 , exon 63, exon 64, exon 65, exon 66, and/or exon 67.
[0326] In certain embodiments, the range of guide strands to the total endogenous pool of miRNAs is $0.001-0.6 \%, 0.005-0.6 \%, 0.01-0.6 \%, 0.015-0.6 \%, 0.02-0.6 \%, 0.025-0.6 \%, 0.03-$ $0.6 \%, 0.035-0.6 \%, 0.04-0.6 \%, 0.045-0.6 \%, 0.05-0.6 \%, 0.055-0.6 \%, 0.06-0.6 \%, 0.065-0.6 \%$ $0.07-0.6 \%, 0.075-0.6 \%, 0.08-0.6 \%, 0.085-0.6 \%, 0,09-0.6 \%, 0.095-0.6 \%, 0.1-0.6 \%, 0.15-$ $0.6 \%, 0.2-0.6 \%, 0.25-0.6 \%, 0.3-0.6 \%, 0.35-0.6 \%, 0.4-0.6 \%, 0.45-0.6 \%, 0.5-0.6 \%, 0.55-$ $0.6 \%, 0.001-0.5 \%, 0.005-0.5 \%, 0.01-0.5 \%, 0.015-0.5 \%, 0.02-0.5 \%, 0.025-0.5 \%, 0.03-0.5 \%$, $0.035-0.5 \%, 0.04-0.5 \%, 0.045-0.5 \%, 0.05-0.5 \%, 0.055-0.5 \%, 0.06-0.5 \%, 0.065-0.5 \%, 0.07-$ $0.5 \%, 0.075-0.5 \%, 0.08-0.5 \%, 0.085-0.5 \%, 0.09-0.5 \%, 0.095-0.5 \%, 0.1-0.5 \%, 0.15-0.5 \%$, $0.2-0.5 \%, 0.25-0.5 \%, 0.3-0.5 \%, 0.35-0.5 \%, 0.4-0.5 \%, 0.45-0.5 \%, 0.001-0.4 \%, 0.005-0.4 \%$, $0.01-0.4 \%, 0.015-0.4 \%, 0.02-0.4 \%, 0.025-0.4 \%, 0.03-0.4 \%, 0.035-0.4 \%, 0.04-0.4 \%, 0.045 \sim$ $0.4 \%, 0.05-0.4 \%, 0.055-0.4 \%, 0.06-0.4 \%, 0.065-0.4 \%, 0.07-0.4 \%, 0.075-0.4 \%, 0.08-0.4 \%$, $0.085-0.4 \%, 0.09-0.4 \%, 0.095-0.4 \%, 0.1-0.4 \%, 0.15-0.4 \%, 0.2-0.4 \%, 0.25-0.4 \%, 0.3-0.4 \%$, $0.35-0.4 \%, 0.001-0.3 \%, 0.005-0.3 \%, 0.01-0.3 \%, 0.015-0.3 \%, 0.02-0.3 \%, 0.025-0.3 \%, 0.03-$ $0.3 \%, 0.035-0.3 \%, 0.04-0.3 \%, 0.045-0.3 \%, 0.05-0.3 \%, 0.055-0.3 \%, 0.06-0.3 \%, 0.065-0.3 \%$, $0.07-0.3 \%, 0.075-0.3 \%, 0.08-0.3 \%, 0.085-0.3 \%, 0.09-0.3 \%, 0.095-0.3 \%, 0.1-0.3 \%, 0.15-$ $0.3 \%, 0.2-0.3 \%, 0.25-0.3 \%, 0.001-0.2 \%, 0.005-0.2 \%, 0.01-0.2 \%, 0.015-0.2 \%, 0.02-0.2 \%$, $0.025-0.2 \%, 0.03-0.2 \%, 0.035-0.2 \%, 0.04-0.2 \%, 0.045-02 \%, 0.05-0.2 \%, 0.055-0.2 \%, 0.06-$ $0.2 \%, 0.065-0.2 \%, 0.07-0.2 \%, 0.075-0.2 \%, 0.08-0.2 \%, 0.085-0.2 \%, 0.09-0.2 \%, 0.095-0.2 \%$, $0.1-0.2 \%, 0.15-0.2 \%, 0.001-0.1 \%, 0.005-0.1 \%, 0.01-0.1 \%, 0.015-0.1 \%, 0.02-0.1 \%, 0.025-$ $0.1 \%, 0.03-0.1 \%, 0.035-0.1 \%, 0.04-0.1 \%, 0.045-0.1 \%, 0.05-0.1 \%, 0.055-0.1 \%, 0.06-0.1 \%$, $0.065-0.1 \%, 0.07-0.1 \%, 0.075-0.1 \%, 0.08-0.1 \%, 0.085-0.1 \%, 0.09-0.1 \%$, or $0.095-0.1 \%$. As a
non-limiting example, the range is $0.06-0.6 \%$. As a non-limiting example, the range is 0.4 0.5%.
[0327] In certain embodiments, the percent of guide strands to the total endogenous pool of miRNAs is $0.001 \%, 0.002 \%, 0.003 \%, 0.004 \%, 0.005 \%, 0.006 \%, 0.007 \%, 0.008 \%$, $0.009 \%, 0.01 \%, 0.02 \%, 0.03 \%, 0.04 \%, 0.05 \%, 0.06 \%, 0.07 \%, 0.08 \%, 0.09 \%, 0.1 \%, 0.2 \%$, $0.3 \%, 0.4 \%, 0.5 \%$, or 0.6%. As a non-limiting example, the percent is 0.06%. As a nonlimiting example, the percent is 0.4%. As a non-limiting example, the percent is 0.5%. siRNA modification
[0328] In some embodiments, the siRNA molecules of the present disclosure, when not delivered as a precursor or GNA, may be chemically modified to modulate some features of RNA molecules, such as, but not limited to, increasing the stability of siRNAs in vivo. The chemically modified siRNA molecules can be used in human therapeutic applications, and are improved without compromising the RNAi activity of the siRNA molecules. As a nonlimiting example, the siRNA molecules modified at both the 3^{\prime} and the 5^{\prime} end of both the sense strand and the antisense strand.
[0329] In some aspects, the siRNA duplexes of the present disclosure may contain one or more modified nucleotides such as, but not limited to, sugar modified nucleotides, nucleobase modifications and/or backbone modifications. In some aspects, the siRNA molecule may contain combined modifications, for example, combined nucleobase and backbone modifications.
[0330] In certain embodiments, the modified nucleotide may be a sugar-modified nucleotide. Sugar modified nucleotides include, but are not limited to 2^{\prime}-fluoro, 2^{\prime}-amino and 2 -thio modified ribonucleotides, e.g. 2'-fluoro modified ribonucleotides. Modified nucleotides may be modified on the sugar moiety, as well as nucleotides having sugars or analogs thereof that are not ribosyl. For example, the sugar moieties may be, or be based on, mannoses, arabinoses, glucopyranoses, galactopyranoses, 4'-thioribose, and other sugars, heterocycles, or carbocycles.
[0331] In certain embodiments, the modified nucleotide may be a nucleobase-modified nucleotide
[0332] In certain cmbodments, the modified nucleotide may be a backbone-modified nucleotide. In some embodiments, the siRNA duplexes of the present disclosure may further comprise other modifications on the backbone. A normal "backbone", as used herein, refers to the repeating alternating sugar-phosphate sequences in a DNA or RNA molecule. The
deoxyribose/ribose sugars are joined at both the 3^{3}-hydroxyl and 5^{\prime}-hydroxyl groups to phosphate groups in ester links, also known as "phosphodiester" bonds/linker (PO linkage) The PO backbones may be modified as "phosphorothioate backbone (PS linkage). In some cases, the natural phosphodiester bonds may be replaced by amide bonds but the four atoms between two sugar units are kept. Such amide modifications can facilitate the solid phase synthesis of oligonucleotides and increase the thermodynamic stability of a duplex formed with siRNA complement. See c.g. Mesmacker et al., Pure \& Appl. Chem., 1997, 3, 437-440; the content of which is incorporated herein by reference in its entirety
[0333] Modified bases refer to nucleotide bases such as, for example, adenine, guanine, cytosine, thymine, uracil, xanthine, inosine, and queuosine that have been modified by the replacement or addition of one or more atoms or groups. Some examples of modifications on the nucleobase moieties include, but are not limited to, alky lated, halogenated, thiolated, aminated, amidated, or acetylated bases, individually or in combination. More specific examples include, for example, 5 -propynyluridine, 5 -propynylcytidine, 6 -methyladenine, 6 metbylguanine, N, N, -dimethyladenine, 2 -propyladenine, 2 -propylguanine, 2 -aminoadenine, 1 -methylinosine, 3 -methyluridine, 5 -methylcytidine, 5 -methyluridine and other nucleotides having a modification at the 5 position, 5 -(2-amino)propyl uridine, 5 -halocytidine, 5 balouridine, 4 -acetylcytidine, 1 -methyladenosine, 2 -methyladenosine, 3 -methylcytidine, 6 methyluridine, 2 -methylguanosine, 7 -methylguanosine, 2,2-dimethylguanosine, 5methylaminoethyluridine, 5 -methyloxyuridine, deazanucleotides such as 7 -deaza-adenosine, 6 -azouridine, 6 -azocytidine, 6 -azothymidine, 5 -methyl-2-thiouridine, other thio bases such as 2 -thourdine and 4 -thiouridine and 2 -thocytidine, dihydrourdine, pscudourdine, quewosine, archaeosine, naphthyl and substituted naphthyl groups, any O - and N -alkylated purines and pyrimidines such as N6-methyladenosine, 5-methylcarbonylmethyluridine, uridine 5oxyacetic acid, pyridine-4-one, pyridine-2-one, phenyl and modified phenyl groups such as aminophenol or 2,4,6-trimethoxy benzene, modified cytosines that act as G-clamp nucleotides, 8 -substituted adenines and guanines, 5 -substituted uracils and thymines, azapyrimidines, carboxyhydroxyalkyl nucleotides, carboxyalkylaminoalkyl nucleotides, and alkylcarbonylalkylated mucleotides.
[0334] In certain embodiments, the modified nucleotides may be on just the sense strand. [0335] In another embodiment, the modified nucleotides may be on just the antisense strand.
[0336] In some embodiments, the modified nucleotides may be in both the sense and antisense strands.
[0337] In some embodiments, the chemically modified nucleotide does not affect the ability of the antisense strand to pair with the target mRNA sequence.
[0338] In certain embodiments, the AAV particle comprising a nucleic acid sequence encoding the siRNA molecules of the present disclosure may encode siRNA molecules which are polycistronic molecules. The siRNA molecules may additionally comprise one or more linkers between regions of the siRNA molecules.

Molecular Scaffold

[0339] In certain embodiments, the siRNA molecules may be encoded in a modulatory polynucleotide which also comprises a molecular scaffold. As used herein a "molecular scaffold" is a framework or starting molecule that forms the sequence or structural basis against which to design or make a subsequent molecule.
[0340] In certain embodiments, the molecular scaffold comprises at least one 5^{\prime} flanking region. As a non-limiting example, the 5 ' flanking region may comprise a 5^{\prime} flanking sequence which may be of any length and may be derived in whole or in part from wild type microRNA sequence or be a completely artificial sequence.
[0341] In some embodiments, one or both of the 5^{\prime} and 3^{\prime} flanking sequences are absent
[0342] In some embodiments the 5 ' and 3 ' flanking sequences are the same length.
[0343] In some embodiments the 5 ' flanking sequence is from 1-10 nucleotides in length, from 5-15 nucleotides in length, from 10-30 nucleotides in length, from $20-50$ nucleotides in length, greater than 40 nuclcotides in length, greater than 50 nuclcotides in length, greater than 100 nucleotides in length or greater than 200 nucleotides in length.
[0344] In some embodiments, the 's' flanking sequence may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, $11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$, $36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60$, $61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107$, $108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125$, $126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143$, $144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161$, $162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179$, $180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197$,
$198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215$, $216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233$, $234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251$, $252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269$. $270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287$, $288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305$, $306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323$, $324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341$, $342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359$, $360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377$, $378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395$, $396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413$, $414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431$, $432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449$, $450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467$, $468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485$, $486,487,488,489,490,491,492,493,494,495,496,497,498,499$, or 500 nucleotides in length.
[0345] In some embodiments the 3 flanking sequence is from $1-10$ nucleotides in length, from $5-15$ nucleotides in length, from 10-30 nucleotides in length, from $20-50$ nucleotides in length, greater than 40 nucleotides in length, greater than 50 nucleotides in length, greater than 100 nucleotides in length or greater than 200 nucleotides in length.
[0346] In some embodiments, the 3 ' flanking sequence may be $1,2,3,4,5,6,7,8,9,10$, $11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$, $36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60$, $61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107$, $108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125$, $126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143$, $144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161$, $162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179$, $180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197$, $198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215$,
$216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233$, $234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251$, $252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269$. $270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287$, $288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305$, $306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323$, $324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341$, $342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359$, $360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377$, $378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395$, $396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413$, $414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431$, $432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449$, $450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467$, $468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485$, $486,487,488,489,490,491,492,493,494,495,496,497,498,499$, or 500 nucleotides in length.
[0347] In some embodiments the 5^{\prime} and 3^{\prime} flanking sequences are the same sequence. In some embodiments they differ by $2 \%, 3 \%, 4 \%, 5 \%, 10 \%, 20 \%$ or more than 30% when aligned to each other.
[0348] In certain embodiments, the molecular scaffold comprises at least one 3' flanking region. As a non-limiting example, the 3^{\prime} flanking region may comprise a 3^{\prime} flanking sequence which may be of any length and may be derived in whole or in part from wild type microRNA sequence or be a completely artificial sequence.
[0349] In certain embodiments, the molecular scaffold comprises at least one loop motif region. As a non-limiting example, the loop motif region may comprise a sequence which may be of any length.
[0350] In certain embodiments, the molecular scaffold comprises a 5 ' flanking region, a loop motif region and/or a 3 ' flanking region.
[0351] In certain embodiments, at least one siRNA, miRNA or other RNAi agent described herein, may be encoded by a modulatory polynucleotide which may also comprise at least one molecular scaffold. The molecular scaffold may comprise a 5 'flanking sequence which may be of any length and may be derived in whole or in par from wild type
microRNA sequence or be completely arificial. The 3^{\prime} flanking sequence may mirror the 5 , flanking sequence and/or a 3' flanking sequence in size and ongin. Either flanking sequence may be absent. The 3 ' flanking sequence may optionally contain one or more CNNC motifs, where " N " represents any nuclcotide.
[0352] Forming the stem of a stem loop structure is a minimum of the modulatory polynucleotide encoding at least one siRNA, miRNA or other RNAi agent described herein. In some embodiments, the siRNA, miRNA or other RNAi agent described herein comprises at least one nucleic acid sequence which is in part complementary or will hybridize to a target sequence. In some embodments the payload is an siRNA molecule or fragment of an siRNA molecule.
[0353] In some embodiments, the 5' arm of the stem loop structure of the modulatory polymucleotide comprises a nucleic acid sequence encoding a sense sequence. Non-limiting examples of sense sequences, or fragments or variants thereof, which may be encoded by the modulatory polynucleotide are described in Table 3.
[0354] In some embodiments, the 3^{\prime} arm of the stem loop of the modulatory polynucleotide comprises a nucleic acid sequence encoding an antisense sequence. The antisense sequence, in some instances, comprises a " G " mucleotide at the 5 ' most end. Nonlimiting examples of antisense sequences, or fragments or variants thereof, which may be encoded by the modulatory polynucleotide are described in Table 2 .
[0355] In other embodiments, the sense sequence may reside on the 3 arm while the antisense sequence resides on the 5^{\prime} am of the stem of the stem loop structure of the modulatory polynuclcotide. Non-limiting examples of sense and antisense sequences wheh may be encoded by the modulatory polynucleotide are described in Tables 2 and 3 .
[0356] In certain embodiments, the sense and antisense sequences may be completely complementary across a substantial portion of their length. In other embodiments the sense sequence and antisense sequence may be at least $70,80,90,95$ or 99% complementanty across independently at least $50,60,70,80,85,90,95$, or 99% of the length of the strands.
[0357] Neither the identity of the sense sequence nor the homology of the antisense sequence need to be 100% complementarity to the target sequence.
[0358] In certain embodiments, separating the sense and antisense sequence of the stem loop structure of the modulatory polynucleotide is a loop sequence (also known as a loop motif, linker or linker motif). The loop sequence may be of any length, between $4-30$ nucleotides, between 4-20 nucleotides, between 4-15 nucleotides, between 5-15 nucleotides,
between 6 - 12 nucleotides, 6 nucleotides, 7 nucleotides, 8 nucleotides, 9 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, and/or 15 pucleotides.
[0359] In some embodiments, the loop sequence comprises a nucleic acid sequence encoding at least one UGUG motif. In some embodiments, the nucleic acid sequence encoding the UGUG motif is located at the 5° terminus of the loop sequence.
[0360] In certain embodiments, spacer regions may be present in the modulatory polynucleotide to separate one or more modules (eg, 5^{7} flanking region, loop motif region, 3 "flanking region, sense sequence, antisense sequence) from one another. There may be one or more such spacer regions present.
[0361] In certain embodiments, a spacer region of between $8-20$, i.e., $8,9,10,11,12,13$, $14,15,16,17,18,19$, or 20 nucleotides may be present between the sense sequence and a flanking region sequence.
[0362] In certain embodiments, the length of the spacer region is 13 nucleotides and is located between the 5 ' terminus of the sense sequence and the 3 ' terminus of the flanking sequence. In certain embodiments, a spacer is of sufficient length to form approximately one helical tum of the sequence.
[0363] In certain embodiments, a spacer region of between $8-20$, i.e., $8,9,10,11,12,13$, $14,15,16,17,18,19$, or 20 nucleotides may be present between the antisense sequence and a flanking sequence.
[0364] In certain embodiments, the spacer sequence is between 10-13, i.e., $10,11,12$ or 13 nucleotides and is located between the 3^{\prime} terminus of the antisense sequence and the 5^{\prime} terminus of a flanking sequence. In certain embodiments, a spacer is of sufficient length to form approximately one helical turn of the sequence.
[0365] In certain embodiments, the molecular scaffold of the modulatory polynucleotide comprises in the 5^{\prime} to 3^{\prime} direction, a 5^{\prime} flanking sequence, a 5' arm, a loop motif, a 3' arm and a $3^{`}$ flanking sequence. As a non-limiting example, the 5^{\prime} arm may comprise a nucleic acid sequence encoding a sense sequence and the 3 ' arm comprises a nucleic acid sequence encoding the antisense sequence. In another non-limiting example, the 5^{\prime} amm comprises a nucleic acid sequence encoding the antisense sequence and the 3 ' am comprises a nucleic acid sequence encoding the sense sequence.
[0360] In certain embodiments, the 5^{\prime} am, sense and/or antisense sequence, loop motif and/or 3 ' amm sequence may be altered (e.g., substituting 1 or more nucleotides, adding
nucleotides and/or deleting nucleotides). The alteration may cause a beneficial change in the function of the constract (e.g., increase knock-down of the target sequence, reduce degradation of the construct, reduce off target effect, increase efficiency of the payload, and reduce degradation of the payload).
[0367] In certain embodiments, the molecular scaffold of the modulatory polynucleotides is aligned in order to have the rate of excision of the guide strand (also referred to herein as the antisense strand) be greater than the rate of excision of the passenger strand (also referred to herein as the sense strand). The rate of excision of the guide or passenger strand may be, independently, $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%$, $55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or more than 99%. As a nonlimiting example, the rate of excision of the guide strand is at least 80%. As another nonlimiting example, the rate of excision of the guide strand is at least 90%.
[0368] In certain embodiments, the rate of excision of the guide strand is greater than the rate of excision of the passenger strand. In one aspect, the rate of excision of the guide strand may be at least $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%$, $55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or more than 99% greater than the passenger strand.
[0369] In certain embodiments, the efficiency of excision of the guide strand is at least $60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or more than 99%. As a non-limiting example, the efficiency of the excision of the guide strand is greater than 80%.
[0370] In certain embodiments, the efficiency of the excision of the guide strand is greater than the excision of the passenger strand from the molecular scaffold. The excision of the guide strand may be $2,3,4,5,6,7,8,9,10$ or more than 10 times more efficient than the excision of the passenger strand from the molecular scaffold.
[0371] In certain embodiments, the molecular scaffold comprises a dual-function targeting modulatory polynucleotide. As used herein, a "dual-function targeting" modulatory polynucleotide is a polynucleotide where both the guide and passenger strands knock down the same target or the guide and passenger strands knock down different targets.
[0372] In certain embodiments, the molecular scaffold of the modulatory polynucleotides described herein may comprise a 5 ' flanking region, a loop motif region and a 3^{\prime} flanking region. Non-limiting examples of the sequences for the 5^{\prime} flanking region, loop motif region (may also be referred to as a linker region) and the 3 flanking region which may be used, or
fragments thereof used, in the modulatory polynucleotides described herein are shown in Tables 5-7.

Table 5.5' Flanking Regions for Molecular Scaffold

5 Flanking Region Name	' Flanking Region Sequence	F Flanking Region SEQ
SF1	CTCCCGCAGAACACCATGCGCTCCACGGAA	3
SF2	GTGCTGGGCGGGGGGCGGGGGGCCCTCCCGC	13
AF3	GTGCTGGGATGCGCTCTTCGGAA AGAACACCATGGGGGCGGCGGGCCCTCCCGC	14

Table 6. Loop Motif Regions for Molecular Scafold

Loop Motif Region Name	Loop Motif Region Sequence	Loop Motif
Region SEQD		

Table 7. 3' Flanking Regions for Mokecular Scaffobd

3' Flanking Region Name	3^{\prime} Flanking Region Sequence	3' Flanking Region SEQID
3 Fl	CTGAGGAGCGCCTTGACAGCAGCCATGGGAG GGCC	5
3 F 2	TGGCCGTGTAGTGCTACCCAGCGCTGGCTGCC TCCTCAGCATTGCAATTCCTCTCCCATCTGGG CACCAGTCAGCTACCCTGGTGGGAATCTGGGI AGCC	17
3F3	CTGTGGAGCGCCTTGACAGCAGCCATGGGAG GGCCGCCCCCTACCTCAGTGA	18

[0373] In certain embodiments, the molecular scaffold may comprise at least one 5°
flanking region, fragment or variant thereof listed in Table 5. As a non-limiting example, the 5 'flaking region may be 5 Fl .
[0374] In certain embodiments, the molecular scaffold may comprise at least one 5 Fl flanking region.
[0375] In certain embodiments, the molecular scaffold may comprise at least one loop motif region, fragment or variant thereof listed in Table 6 . As a non-limiting example, the loop motif region may be L1.
[0376] In certain embodiments, the molecular scaffold may comprise at least one L] loop motif region.
[0377] In certain embodiments, the molecular scaffold may comprise at least one 3 , flanking region, fragment or variant thereof listed in Table 7. As a non-limiting example, the 3 ' flanking region may be 3 Fl.
[0378] In certain embodiments, the molecular scaffold may comprise at least one 3F1 flanking region.
[0379] In certain embodiments, the molecular scaffold may comprise at least one 5 ' flanking region, fragment or variant thereof, and at least one loop motif region, fragment or variant thereof, as described in Tables 5 and 6 . As a non-limiting example, the 5^{\prime} flanking region and the loop motif region may be 5 Fl and L 1 .
[0380] In certain embodiments, the molecular scaffold may comprise at least one 3 flanking region, fragment or variant thereof, and at least one motif region, fragment or variant thereof, as described in Tables 6 and 7. As a non-limiting example, the 3 ' flanking region and the loop motif region may be 3F1 and L1.
[0381] In certain embodiments, the molecular scaffold may comprise at least one 5 , flanking region, fragment or variant thereof, and at least one 3 ' flanking region, fragment or variant thereof, as described in Tables 5 and 7. As a non-limiting example, the flanking regions may be 5 Fl and 3 Fl .
[0382] In certain embodiments, the molecular scaffold may comprise at least one 5° flanking region, fragment or variant thereof, at least one loop motif region, fragment or variant thereof, and at least one 3^{\prime} flanking region as described in Tables 5-7. As a nonlimiting example, the flanking and loop motif regions may be 5F1, L1 and 3F1
[0383] In certain embodiments, the molecular scaffold may be a natural pri-miRNA scaffold. As a non-limiting example, the molecular scaffold may be a scaffold derived from the human miR155 scaffold.
[0384] In certain embodiments, the molecular scaffold may comprise one or more linkers known in the art. The linkers may separate regions or one molecular scaffold from another. As a non-limiting example, the molecular scaffold may be polycistronic

Modulatory Polynucleotide Comprising Molecular Scaffold and siRNA Molecules Targeting SODI

[0385] In certain embodiments, the modulatory polynacleotide may comprise 5^{\prime} and 3^{\prime} flanking regions, loop motif region, and nucleic acid sequences encoding sense sequence and antisense sequence as described in Table 8. In Table 8, the DNA sequence identifier for the passenger and guide strands are described as well as the 5^{\prime} and 3^{\prime} Flanking Regions and the

Loop region (also referred to as the linker region), In Table 8 , the "miR" component of the name of the sequence does not necessarily comespond to the sequence mumbering of miRNA genes (e.g., VOYSOD 1 miR-102 is the name of the sequence and does not necessanly mean that miR-102 is part of the sequence)

Table 8. SOD Modulatory Polynucleotide Sequence Regions (5' to 3')

Modulatory Polynucleotide Construct Name	5, Flanking to ${ }^{3}$ ' Flamking SEQ ID NO	5 Flankin y SEQ 12 NO	$\begin{aligned} & \text { Fassenger } \\ & \text { SEQ IB } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { Loop SEQ } \\ & \text { IB NO } \end{aligned}$	Guide SEQ ID NO	3' Flanking SEQ ID NO
VOYSODImiR104788.2	6		7	4	8	5
VOYSODImiR 127-860	19	13	20	15	21	17
VOYSODLmiR 114-861	22	14	23	16	24	18

AAV Particles Comprising Modulatory Polynucleotides

[0386] In certain embodiments, the AAV particle comprises a viral genome with a payload region comprising a modulatory polynucleotide sequence. In such an embodiment a viral genome encoding more than one polypeptide may be replicated and packaged into a viral particle. A target cell transduced with a viral particle comprising a modulatory polynucleotide may express the encoded sense and/or antisense sequences in a single cell. [0387] In some embodiments, the AAV particles are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of neurological diseases and/or disorders. [6388] In certain embodiments, the AAV particles comprising modulatory polynucleotide sequence which comprises a nucleic acid sequence encoding at least one siRN A molecule may be introduced into mammalian cells.
[0389] Where the AAV particle payload region comprises a modulatory polynucleotide, the modulatory polynucleotide may comprise sense and/or antisense sequences to knock down a target gene. The AAV viral genomes encoding modulatory polynucleotides described berein may be useful in the fields of human disease, viruses, infections veterinary applications and a variety of in vivo and in vitro settings.
[0399] In certain embodiments, the AAV particle viral genome may comprise at least one inverted terminal repeat (ITR) region. The ITR region(s) may, independently, have a length such as, but not hmited to, $75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92$, $93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112$, $113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130$, $131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148$,
$149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166$, $167,168,169,170,171,172,173,174$, and 175 nucleotides. The length of the ITR region for the viral genome may be $75-80,75-85,75-100,80-85,80-90,80-105,85-90,85-95,85-110$, $90-95,90-100,90-115,95-100,95-105,95-120,100-105,100-110,100-125,105-110,105-$ $115,105-130,110-115,110-120,110-135,115-120,115-125,115-140,120-125,120-130$, $120-145,125-130,125-135,125-150,130-135,130-140,130-155,135-140,135-145,135-$ $160,140-145,140-150,140-165,145-150,145-155,145-170,150-155,150-160,150-175$, 155-160, 155-165, 160-165, 160-170, 165-170, 165-175, and 170-175 nucleotides. As a nonlimiting example, the viral genome comprises an ITR that is about 105 nucleotides in length. As a non-limiting example, the viral genome comprises an TR that is about 141 nucleotides in length. As a non-limiting example, the viral genome comprises an ITR that is about 130 mucleotides in length.
[0391] In certain embodiments, the AAV particle viral genome may comprises two inverted terminal repeat (ITR) regions. Each of the GR regions may independently have a length such as, but not limited to, $75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90$, $91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111$, $112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129$, $130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147$, $148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165$, $166,167,168,169,170,171,172,173,174$, and 175 nucleotides. The length of the ITR regions for the viral genome may be $75-80,75-85,75-100,80-85,80-90,80-105,85-90,85$ -$95,85-110,90-95,90-100,90-115,95-100,95-105,95-120,100-105,100-110,100-125$, $105-110,105-115,105-130,110-115,110-120,110-135,115-120,115-125,115-140,120-$ $125,120-130,120-145,125-130,125-135,125-150,130-135,130-140,130-155,135-140$, $135-145,135-160,140-145,140-150,140-165,145-150,145-155,145-170,150-155,150-$ $160,150-175,155-160,155-165,160-165,160-170,165-170,165-175$, and 170-175 mucleotides. As a non-limiting example, the viral genome comprises an ITR that is about 105 nucleotides in length and 141 nucleotides in length. As a non-limiting example, the viral genome comprises an ITR that is about 105 nucleotides in length and 130 nucleotides in length. As a non-limiting example, the viral genome comprises an ITR that is about 130 nucleotides in length and 141 nucleotides in length.
[0392] In certain embodiments, the AAV particle viral genome comprises two 3 TR sequence regions.
[0393] In certain embodiments, the AAV particle viral genome may comprise at least one multiple filler sequence region. The fller region(s) may, independently, have a length such as, but not limited to $, 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68$, $69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93$, $94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113$, $114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131$, $132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149$, $150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167$, $168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185$, $186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203$, $204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221$, $222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239$, $240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257$, $258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275$, $276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293$, $294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311$, $312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329$, $330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347$, $348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365$, $366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383$, $384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401$, $402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419$, $420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437$, $438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455$, $456,457,458,459,460,46 \mathrm{~L}, 462,463,464,465,466,467,468,469,470,471,472,473$, $474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491$, $492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509$, $510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527$, $528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545$, $546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563$, $564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581$, $582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599$, $600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617$,
$618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635$, $636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653$, $654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671$, $672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689$. $690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707$, $708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725$, $726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743$, $744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761$, $762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779$, $780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797$, $798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815$, $816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833$, $834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851$, $852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869$, $870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887$, $888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905$, $906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923$, $924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941$, $942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959$. $960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977$, $978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995$, $996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010$, $1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025$, $1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040$, $1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055$, $1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070$, $1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085$, $1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100$, $1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115$, $1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130$, $1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145$, $1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160$, $1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175$,
$1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190$, $1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205$, $1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220$, $1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235$, $1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250$, $1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265$, $1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280$, $1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295$, $1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310$, $1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325$, $1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340$, $1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355$, $1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370$, $1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385$, $1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400$, $1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415$, $1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430$, $1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445$, $1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460$, $1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475$, $1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490$, $1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505$, $1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520$, $1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535$, $1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550$, $1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565$, $1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580$, $1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595$, $1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610$, $1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625$, $1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640$, $1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655$, $1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670$,
$1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685$, $1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700$, $1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715$, $1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730$, $1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745$, $1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760$, $1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775$, $1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790$, $1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805$, $1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820$, $1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835$, $1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850$, $1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865$, $1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880$, $1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895$, $1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910$, $1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925$, $1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940$, $1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955$, $1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970$, $1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985$, $1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000$, $2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015$, $2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030$, $2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045$, $2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060$, $2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075$, $2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090$, $2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105$, $2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120$, $2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135$, $2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150$, $2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165$,
$2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180$, $2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195$, $2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210$, $2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225$, $2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240$, $2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255$, $2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270$, $2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285$, $2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300$, $2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315$, $2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330$, $2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345$, $2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360$, $2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375$, $2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390$, $2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405$, $2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420$, $2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435$, $2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450$, $2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465$, $2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480$, $2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495$, $2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510$, $2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525$, $2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540$, $2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555$, $2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570$, $2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585$, $2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600$, $2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615$, $2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630$, $2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645$, $2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660$,
$2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675$, $2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690$, $2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705$, $2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720$, $2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735$, $2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750$, $2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765$, $2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780$, $2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795$, $2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810$, $2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825$, $2826,2827,2828,2829,2830,2831,2832,2833,2834,2835,2836,2837,2838,2839,2840$, $2841,2842,2843,2844,2845,2846,2847,2848,2849,2850,2851,2852,2853,2854,2855$, $2856,2857,2858,2859,2860,2861,2862,2863,2864,2865,2866,2867,2868,2869,2870$, $2871,2872,2873,2874,2875,2876,2877,2878,2879,2880,2881,2882,2883,2884,2885$, $2886,2887,2888,2889,2890,2891,2892,2893,2894,2895,2896,2897,2898,2899,2900$, $2901,2902,2903,2904,2905,2906,2907,2908,2909,2910,2911,2912,2913,2914,2915$, $2916,2917,2918,2919,2920,2921,2922,2923,2924,2925,2926,2927,2928,2929,2930$, $2931,2932,2933,2934,2935,2936,2937,2938,2939,2940,2941,2942,2943,2944,2945$, $2946,2947,2948,2949,2950,2951,2952,2953,2954,2955,2956,2957,2958,2959,2960$, $2961,2962,2963,2964,2965,2966,2967,2968,2969,2970,2971,2972,2973,2974,2975$, $2976,2977,2978,2979,2980,2981,2992,2983,2984,2985,2986,2987,2988,2989,2990$, $2991,2992,2993,2994,2995,2996,2997,2998,2999,3000,3001,3002,3003,3004,3005$, $3006,3007,3008,3009,3010,3011,3012,3013,3014,3015,3016,3017,3018,3019,3020$, $3021,3022,3023,3024,3025,3026,3027,3028,3029,3030,3031,3032,3033,3034,3035$, $3036,3037,3038,3039,3040,3041,3042,3043,3044,3045,3046,3047,3048,3049,3050$, $3051,3052,3053,3054,3055,3056,3057,3058,3059,3060,3061,3062,3063,3064,3065$, $3066,3067,3068,3069,3070,3071,3072,3073,3074,3075,3076,3077,3078,3079,3080$, $3081,3082,3083,3084,3085,3086,3087,3088,3089,3090,3091,3092,3093,3094,3095$, $3096,3097,3098,3099,3100,3101,3102,3103,3104,3105,3106,3107,3108,3109,3110$, $3111,3112,3113,3114,3115,3116,3117,3118,3119,3120,3121,3122,3123,3124,3125$, $3126,3127,3128,3129,3130,3131,3132,3133,3134,3135,3136,3137,3138,3139,3140$, $3141,3142,3143,3144,3145,3146,3147,3148,3149,3150,3151,3152,3153,3154,3155$,
$3156,3157,3158,3159,3160,3161,3162,3163,3164,3165,3166,3167,3168,3169,3170$, $3171,3172,3173,3174,3175,3176,3177,3178,3179,3180,3181,3182,3183,3184,3185$, $3186,3187,3188,3189,3190,3191,3192,3193,3194,3195,3196,3197,3198,3199,3200$, $3201,3202,3203,3204,3205,3206,3207,3208,3209,3210,3211,3212,3213,3214,3215$, $3216,3217,3218,3219,3220,3221,3222,3223,3224,3225,3226,3227,3228,3229,3230$, $3231,3232,3233,3234,3235,3236,3237,3238,3239,3240,3241,3242,3243,3244,3245$, $3246,3247,3248,3249$, and 3250 nucleotides. The length of any filler region for the viral genome may be 50-100, 100-150, 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, $450-500,500-550,550-600,600-650,650-700,700-750,750-800,800-850,850-900,900-$ $950,950-1000,1000-1050,1050-1100,1100-1150,1150-1200,1200-1250,1250-1300$, $1300-1350,1350-1400,1400-1450,1450-1500,1500-1550,1550-1600,1600-1650,1650-$ $1700,1700-1750,1750-1800,1800-1850,1850-1900,1900-1950,1950-2000,2000-2050$, $2050-2100,2100-2150,2150-2200,2200-2250,2250-2300,2300-2350,2350-2400,2400-$ $2450,2450-2500,2500-2550,2550-2600,2600-2650,2650-2700,2700-2750,2750-2800$, 2800-2850, 2850-2900, 2900-2950, 2950-3000, 3000-3050, 3050-3100, 3100-3150, 31503200, and 3200-3250 nucleotides. As a non-limiting example, the viral genome comprises a filler region that is about 55 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 56 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 97 nucleotides in length. As a non-limiting example, the viral genome comprises a flller region that is about 103 nucleotides in length. As a non-limiting example, the viral genome comprises a fller region that is about 105 muleotides in length. As a non-limiting example, the viral genome comprises a fller region that is about 357 mucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 363 nucleotides in length. As a nonlimiting example, the viral genome comprises a filler region that is about 712 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 714 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 1203 nucleotides in length. As a non-limiting example, the viral genome comprises a fller region that is about 1209 nueleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 1512 nucleotides in length. As a nonlimiting example, the viral genome comprises a filler region that is about 1519 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 2395 nucleotides in length. As a non-limiting example, the viral genome comprises a filler
region that is about 2403 nucleotides in length. As a non-limiting example, the viral genome comprises a fller region that is about 2405 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 3013 nucleotides in length. As a nonlimiting example, the viral genome comprises a filler region that is about 3021 nucleotides in length.
[0394] In certain embodiments, the AAV particle viral genome may comprise at least one multiple filler sequence region. The filler region(s) may, independently, have a length such as, but not limited to, $50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68$, $69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93$, $94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113$, $114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131$, $132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149$, $150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167$, $168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185$, $186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203$, $204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221$, $222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239$, $240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257$, $258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275$, $276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293$, $294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311$, $312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329$, $330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347$, $348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365$, $366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383$, $384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401$, $402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419$, $420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437$, $438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455$, $456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473$, $474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491$, $492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509$, $510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527$,
$528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545$, $546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563$, $564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581$, $582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599$. $600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617$, $618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635$, $636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653$, $654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671$, $672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689$, $690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707$, $708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725$, $726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743$, $744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761$, $762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779$, $780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797$, $798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815$, $816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833$, $834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851$, $852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869$, $870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887$, $888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905$, $906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923$, $924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941$, $942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959$, $960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977$, $978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995$, $996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010$, $1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025$, $1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040$, $1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055$, $1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070$, $1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085$, $1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100$,
$1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115$, $1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130$, $1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145$, $1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160$, $1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175$, $1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190$, $1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205$, $1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220$, $1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235$, $1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250$, $1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265$, $1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280$, $1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295$, $1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310$, $1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325$, $1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340$, $1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355$, $1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370$, $1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385$, $1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400$, $1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415$, $1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430$, $1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445$, $1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460$, $1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475$, $1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490$, $1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505$, $1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520$, $1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535$, $1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550$, $1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565$, $1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580$, $1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595$,
$1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610$, $1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625$, $1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640$, $1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655$, $1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670$, $1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685$, $1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700$, $1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715$, $1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730$, $1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745$, $1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760$, $1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775$, $1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790$, $1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805$, $1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820$, $1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835$, $1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850$, $1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865$, $1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880$, $1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895$, $1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910$, $1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925$, $1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940$, $1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955$, $1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970$, $1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985$, $1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000$, $2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015$, $2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030$, $2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045$, $2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060$, $2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075$, $2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090$,
$2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105$, $2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120$, $2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135$, $2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150$, $2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165$, $2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180$, $2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195$, $2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210$, $2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225$, $2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240$, $2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255$, $2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270$, $2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285$, $2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300$, $2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315$, $2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330$, $2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345$, $2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360$, $2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375$, $2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390$, $2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405$, $2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420$, $2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435$, $2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450$, $2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465$, $2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480$, $2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495$, $2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510$, $2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525$, $2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540$, $2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555$, $2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570$, $2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585$,
$2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600$, $2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615$, $2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630$, $2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645$, $2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660$, $2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675$, $2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690$, $2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705$, $2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720$, $2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735$, $2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750$, $2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765$, $2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780$, $2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795$, $2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810$, $2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825$, $2826,2827,2828,2829,2830,2831,2832,2833,2834,2835,2836,2837,2838,2839,2840$, $2841,2842,2843,2844,2845,2846,2847,2848,2849,2850,2851,2852,2853,2854,2855$, $2856,2857,2858,2859,2860,2861,2862,2863,2864,2865,2866,2867,2868,2869,2870$, $2871,2872,2873,2874,2875,2876,2877,2878,2879,2880,2881,2882,2883,2884,2885$, $2886,2887,2888,2889,2890,2891,2892,2893,2894,2895,2896,2897,2898,2899,2900$, $2901,2902,2903,2904,2905,2906,2907,2908,2909,2910,2911,2912,2913,2914,2915$, $2916,2917,2918,2919,2920,2921,2922,2923,2924,2925,2926,2927,2928,2929,2930$, $2931,2932,2933,2934,2935,2936,2937,2938,2939,2940,2941,2942,2943,2944,2945$, $2946,2947,2948,2949,2950,2951,2952,2953,2954,2955,2956,2957,2958,2959,2960$, $2961,2962,2963,2964,2965,2966,2967,2968,2969,2970,2971,2972,2973,2974,2975$, $2976,2977,2978,2979,2980,2981,2982,2983,2984,2985,2986,2987,2988,2989,2990$, $2991,2992,2993,2994,2995,2996,2997,2998,2999,3000,3001,3002,3003,3004,3005$, $3006,3007,3008,3009,3010,3011,3012,3013,3014,3015,3016,3017,3018,3019,3020$, $3021,3022,3023,3024,3025,3026,3027,3028,3029,3030,3031,3032,3033,3034,3035$, $3036,3037,3038,3039,3040,3041,3042,3043,3044,3045,3046,3047,3048,3049,3050$, $3051,3052,3053,3054,3055,3056,3057,3058,3059,3060,3061,3062,3063,3064,3065$, $3066,3067,3068,3069,3070,3071,3072,3073,3074,3075,3076,3077,3078,3079,3080$,
$3081,3082,3083,3084,3085,3086,3087,3088,3089,3090,3091,3092,3093,3094,3095$, $3096,3097,3098,3099,3100,3101,3102,3103,3104,3105,3106,3107,3108,3109,3110$, $3111,3112,3113,3114,3115,3116,3117,3118,3119,3120,3121,3122,3123,3124,3125$, $3126,3127,3128,3129,3130,3131,3132,3133,3134,3135,3136,3137,3138,3139,3140$, $3141,3142,3143,3144,3145,3146,3147,3148,3149,3150,3151,3152,3153,3154,3155$, $3156,3157,3158,3159,3160,3161,3162,3163,3164,3165,3166,3167,3168,3169,3170$, $3171,3172,3173,3174,3175,3176,3177,3178,3179,3180,3181,3182,3183,3184,3185$, $3186,3187,3188,3189,3190,3191,3192,3193,3194,3195,3196,3197,3198,3199,3200$, $3201,3202,3203,3204,3205,3206,3207,3208,3209,3210,3211,3212,3213,3214,3215$, $3216,3217,3218,3219,3220,3221,3222,3223,3224,3225,3226,3227,3228,3229,3230$, $3231,3232,3233,3234,3235,3236,3237,3238,3239,3240,3241,3242,3243,3244,3245$, $3246,3247,3248,3249$, and 3250 nucleotides. The length of any filler region for the viral genome may be $50-100,100-150,150-200,200-250,250-300,300-350,350-400,400-450$, $450-500,500-550,550-600,600-650,650-700,700-750,750-800,800-850,850-900,900-$ $950,950-1000,1000-1050,1050-1100,1100-1150,1150-1200,1200-1250,1250-1300$, $1300-1350,1350-1400,1400-1450,1450-1500,1500-1550,1550-1600,1600-1650,1650-$ $1700,1700-1750,1750-1800,1800-1850,1850-1900,1900-1950,1950-2000,2000-2050$, $2050-2100,2100-2150,2150-2200,2200-2250,2250-2300,2300-2350,2350-2400,2400-$ $2450,2450-2500,2500-2550,2550-2600,2600-2650,2650-2700,2700-2750,2750-2800$, $2800-2850,2850-2900,2900-2950,2950-3000,3000-3050,3050-3100,3100-3150,3150-$ 3200 , and $3200-3250$ nucleotides. As a non-limiting example, the viral genome comprises a filler region that is about 55 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 56 nucleotides in length. As a non-limiting example, the viral genome comprises a fller region that is about 97 nucleotides in length. As a non-hmiting example, the viral genome comprises a filler region that is about 103 nucleotides in length. As a non-limiting example, the viral genome comprises a fller region that is about 105 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 357 mucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 363 mulleotides in length. As a non~ limiting example, the viral genome comprises a filler region that is about 712 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 714 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 1203 nucleotides in length. As a non-limiting example, the viral genome
comprises a filler region that is about 1209 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 1512 nucleotides in length. As a nonlimiting example the viral genome comprises a filler region that is about 1519 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 2395 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 2403 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 2405 nucleotides in length. As a non-limiting example, the viral genome comprises a filler region that is about 3013 nucleotides in length. As a nonlimiting example, the viral genome comprises a filler region that is about 3021 nucleotides in length.
[0395] In certain embodiments, the AAV particle viral genome may comprise at least one enhancer sequence region. The enhancer sequence region(s) may, independently, have a length such as, but not limited to, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, $312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329$, $330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347$, $348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365$, $366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383$, $384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399$, and 400 nucleotides. The length of the enhancer region for the viral genome may be $300-310,300$ -$325,305-315,310-320,315-325,320-330,325-335,325-350,330-340,335-345,340-350$, $345-355,350-360,350-375,355-365,360-370,365-375,370-380,375-385,375-400,380-$ $390,385-395$, and $390-400$ mucleotides. As a non-limiting example, the viral genome comprises an enhancer region that is about 303 nucleotides in length. As a non-limiting example, the viral genome comprises an enhancer region that is about 382 nucleotides in length.
[0396] In certain embodiments, the AAV particle viral genome may comprise at least one promoter sequence region. The promoter sequence region(s) may, independently, have a length such as, but not limited to, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, $22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46$, $47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71$, $72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96$, $97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115$, $116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133$,
$134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151$, $152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169$, $170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187$, $188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205$, $206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223$, $224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241$, $242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259$, $260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277$, $278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295$, $296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313$, $314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331$, $332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349$, $350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367$, $368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385$, $386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403$, $404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421$, $422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439$, $440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457$, $458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475$, $476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493$, $494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511$, $512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529$, $530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547$, $548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565$, $566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583$, $584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599$, and 600 nucleotides. The length of the promoter region for the viral genome may be 4-10, 10-20, 10 -$50,20-30,30-40,40-50,50-60,50-100,60-70,70-80,80-90,90-100,100-110,100-150,110-$ $120,120-130,130-140,140-150,150-160,150-200,160-170,170-180,180-190,190-200$, $200-210,200-250,210-220,220-230,230-240,240-250,250-260,250-300,260-270,270-$ $280,280-290,290-300,300-310,300-350,310-320,320-330,330-340,340-350,350-360$, $350-400,360-370,370-380,380-390,390-400,400-410,400-450,410-420,420-430,430-$ $440,440-450,450-460,450-500,460-470,470-480,480-490,490-500,500-510,500-550$,
$510-520,520-530,530-540,540-550,550-560,550-600,560-570,570-580,580-590$, and 590-600 nucleotides. As a non-limiting example, the viral genome comprises a promoter region that is about 4 nucleotides in length. As a non-limiting example, the viral genome comprises a promoter region that is about 17 nucleotides in length. As a non-limiting example, the viral genome comprises a promoter region that is about 204 nucleotides in length. As a non-limiting example, the viral genome comprises a promoter region that is about 219 nuclcotides in length. As a non-limiting example, the viral genome comprises a promoter region that is about 260 nucleotides in length. As a non-limiting example, the viral genome comprises a promoter region that is about 303 nucleotides in length. As a nonlimiting example, the viral genome comprises a promoter region that is about 382 nucleotides in length. As a non-limiting example, the viral genome comprises a promoter region that is about 588 nucleotides in length.
[0397] In certain embodiments, the AAV particle viral genome may comprise at least one exon sequence region. The exon region(s) may, independently, have a length such as, but not limited to, $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$, $26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50$, $51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75$, $76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99$, $100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117$, $118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135$, $136,137,138,139,140,141,142,143,144,145,146,147,148,149$, and 150 nuclcotides. The length of the exon region for the viral genome may be $2-10,5-10,5-15,10-20,10-30$, $10-40,15-20,15-25,20-30,20-40,20-50,25-30,25-35,30-40,30-50,30-60,35-40,35-45$, $40-50,40-60,40-70,45-50,45-55,50-60,50-70,50-80,55-60,55-65,60-70,60-80,60-90$, $65-70,65-75,70-80,70-90,70-100,75-80,75-85,80-90,80-100,80-110,85-90,85-95,90 \sim$ $100,90-110,90-120,95-100,95-105,100-110,100-120,100-130,105-110,105-115,110-$ $120,110-130,110-140,115-120,115-125,120-130,120-140,120-150,125-130,125-135$, 130-140, 130-150, 135-140, 135-145, 140-150, and 145-150 nucleotides. As a non-limiting example, the viral genome comprises an exon region that is about 53 nucleotides in length. As a non-limiting example, the viral genome comprises an exon region that is about 134 nucleotides in length.
[0398] In certain embodiments, the AAV particle viral genome may comprise at least one intron sequence region. The intron region(s) may, independently, have a length such as, but
not limited to, $25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$, $46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70$, $71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95$, $96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114$, $115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132$, $133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150$, $151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168$, $169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186$, $187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204$, $205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222$, $223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240$, $241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258$, $259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276$, $277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294$, $295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312$, $313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330$, $331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348$, 349 , and 350 nucleotides. The length of the intron region for the viral genome may be $25-35$, $25-50,35-45,45-55,50-75,55-65,65-75,75-85,75-100,85-95,95-105,100-125,105-115$, $115-125,125-135,125-150,135-145,145-155,150-175,155-165,165-175,175-185,175-$ $200,185-195,195-205,200-225,205-215,215-225,225-235,225-250,235-245,245-255$, $250-275,255-265,265-275,275-285,275-300,285-295,295-305,300-325,305-315,315-$ $325,325-335,325-350$, and $335-345$ nucleotides. As a non-limiting example, the viral genome comprises an intron region that is about 32 nucleotides in length. As a non-limiting example, the viral genome comprises an intron region that is about 172 nucleotides in length. As a non-limiting example, the viral genome comprises an intron region that is about 201 nucleotides in length. As a non-limiting example, the viral genome comprises an intron region that is about 347 nucleotides in length.
[0399] In centain embodiments, the AAV particle viral genome may comprise at least one polyadenykation signal sequence region. The polyadenylation signal region sequence region(s) may, independently, have a length such as, but not limited to, 4, 5, 6, 7, 8, 9, 10, 11 , $12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36$, $37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61$,
$62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86$, $87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108$, $109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126$, $127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144$, $145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162$, $163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180$, $181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198$, $199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216$, $217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234$, $235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252$, $253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270$, $271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288$, $289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306$, $307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324$, $325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342$, $343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360$, $361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378$, $379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396$, $397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414$, $415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432$, $433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450$, $451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468$, $469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486$, $487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504$, $505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522$, $523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540$, $541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558$, $559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576$, $577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594$, $595,596,597,598,599$, and 600 nucleotides. The length of the polyadenylation signal sequence region for the viral genome may be $4-10,10-20,10-50,20-30,30-40,40-50,50-60$, $50-100,60-70,70-80,80-90,90-100,100-110,100-150,110-120,120-130,130-140,140-$ $150,150-160,150-200,160-170,170-180,180-190,190-200,200-210,200-250,210-220$,
$220-230,230-240,240-250,250-260,250-300,260-270,270-280,280-290,290-300,300-$ $310,300-350,310-320,320-330,330-340,340-350,350-360,350-400,360-370,370-380$, $380-390,390-400,400-410,400-450,410-420,420-430,430-440,440-450,450-460,450-$ $500,460-470,470-480,480-490,490-500,500-510,500-550,510-520,520-530,530-540$, $540-550,550-560,550-600,560-570,570-580,580-590$, and $590-600$ nucleotides. As a nonlimiting example, the viral genome comprises a polyadenylation signal seguence region that is about 127 nucleotides in length. As a non-limiting example, the viral genome comprises a polyadenylation signal sequence region that is about 225 nucleotides in length. As a nonlimiting example, the viral genome comprises a polyadenylation signal sequence region that is about 476 nucleotides in length. As a non-limiting example, the viral genome comprises a polyadenylation signal sequence region that is about 477 mucleotides in length.
[0400] In certain embodiments, the AAV particle viral genome comprises more than one polyA signal sequence region.
[0401] Non-limiting examples of ITR to ITR scquences of AAV particles comprising a viral genome with a payload region comprising a modulatory polynucleotide sequence are described in Table 9A. Table 9A also provides an alternate name for the ITR to ITR construct indicated by the "VOYSOD" identifier.

Table 9A. TR to TTR Sequences of A AV Partickes, H1.mir.104-788.2 (with lentivirus derived filler) comprising Modulatory Polynucleotides

TKR 10 TTR Constract Name	$\begin{aligned} & \text { Tx to ITR } \\ & \text { SEQ NW NO } \end{aligned}$	Modelatory Pobynucleotide SEQ EB NO
H1.mir. 104-788.2 with lentivirus derived filler (VOYSODIG)	9	6

[0402] Table 9B provides TTR to ITR sequence of H1 mir104-788.2 with albumin derived fller. Also provided in Table 9B are the components that comprise the ITR to ITR sequence. In some embodiments, the components may be separated from each other by vector backbone sequence.

Table 9B. ITR to 1 TR of AAV Particles, 11 mir $04-788.2$ (with albumin derived filler) comprising Modulatory Polynucleotides and its components

Bescription	SEOTI NO.
MR to ITR of H1.mir104-788.2 with albumin derived filler	25

ITR-ITR Components of H1.mir104-788.2 (with albumin derived filler)	
5 TTR	26
Albumin derived filler	27
H1 promoter	28
Modulatory Polymucleotide (SODL-miR 104-788.2)	6
rBGpA	29
3 TTR	30

[0463] In certain embodments, the AAV particle comprises a viral genome which comprises a sequence which has a percent identity to SEQ ID NO: 9. The viral genome may have $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or 100% identity to SEQ ID NO: 9 . The viral genome may have $1-10 \%, 10-20 \%, 30-40 \%, 50-60 \%, 50-70 \%, 50-80 \%, 50-$ $90 \%, 50-99 \%, 50-100 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-99 \%, 60-100 \%, 70-80 \%, 70-90 \%$, $70-99 \%, 70-100 \%, 80-85 \%, 80-90 \%, 80-95 \%, 80-99 \%, 80-100 \%, 90-95 \%, 90-99 \%$, or $90-$ 100% to SEQ ID NO: 9 . As a non-limiting example, the viral genome comprises a sequence which as 80% identity to SEQ ID NO: 9. As another non-limiting example, the viral genome comprises a sequence which as 85% identity to SEQ ID NO:9. As another non-limiting example, the viral genome comprises a sequence which as 90% identity to SEQ D NO: 9 . As another non-limiting example, the viral genome comprises a sequence which as 95% identity to SEQ ID NO: 9. As another non-limiting example, the viral genome comprises a sequence which as 99% identity to SEQ ID NO: 9
[6464] In certain embodiments, the AAV particle comprises a viral genome which comprises a sequence which has a percent identity to SEQ ID NO: 25. The viral genome may have $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 6 \%, 7 \%, 8 \%, 9 \%, 10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 99 \%$ or 100% identity to SEQ ID NO: 25 . The viral genome may bave $1-10 \%, 10-20 \%, 30-40 \%, 50-60 \%, 50-70 \%, 50-80 \%$, $50-90 \%, 50-99 \%, 50-100 \%, 60-70 \%, 60-80 \%, 60-90 \%, 60-99 \%, 60-100 \%, 70-80 \%, 70-90 \%$, $70-99 \%, 70-100 \%, 80-85 \%, 80-90 \%, 80-95 \%, 80-99 \%, 80-100 \%, 90-95 \%, 90-99 \%$, or $90-$ 100% to SEQ ID NO: 25 . As a non-limiting example, the viral genome comprises a sequence which as 80% identity to SEQ ID NO: 25 . As another non-limiting example, the viral genome comprises a sequence which as 85% identity to SEQ 1 D NO: 25. As another non-limiting example, the viral genome comprises a sequence which as 90% identity to SEQ ID NO: 25 . As another non-limiting example, the viral genome comprises a sequence which as 95%
identity to SEQ ID NO: 25. As another non-limiting example, the viral genome comprises a sequence which as 99% identity to SEQ ID NO. 25.
[0405] AAV particles may be modified to enbance the efficiency of delivery. Such modified AAV particles comprising the nucleic acid sequence encoding the siRNA molecules of the present disclosure can be packaged efficiently and can be used to successfully infect the target cells at high frequency and with minimal toxicity.
[0406] In some embodiments, the AAV particle comprising a nucleic acid sequence encoding the siRNA molecules of the present disclosure may be a human serotype AD particle. Such human AAV particle may be derived from any known serotype, e.g., from any one of serotypes AAV1-AAV11. As non-limiting examples, AAV particles may be vectors comprising an AAV1-derived genome in an AAV1-derived capsid; vectors comprising an AAV2-derived genome in an AAV2-derived capsid; vectors comprising an AAV4-derived genome in an AAV4 derived capsid, vectors comprising an AAV6-derived genome in an AAV6 derived capsid or vectors comprising an AAV9-derived genome in an AAV9 derived capsid.
[0407] In other embodiments, the AAV particle comprising a nucleic acid sequence for encoding sikNA molecules of the present disclosure may be a pseudotyped hybrid or chimeric AAV particle which contains sequences and/or components originating from at least two different AAV serotypes. Pseudotyped AAV particles may be vectors comprising an A AV genome derived from one AAV serotype and a capsid protein derived at least in part from a different AAV serotype. As non-limiting examples, such pseudotyped AAV particles may be vectors comprising an AAV2-derived genome in an AAV1-derived capsid; or vectors comprising an AAV2-derived genome in an AAV6-derived capsid; or vectors comprising an AAV2-derived genome in an AAV4-derived capsid; or an AAV2-derived genome in an AAV9-derived capsid. In like fashion, the present disclosure contemplates any hybrid or chimeric AAV particle.
[0.408] In other embodiments, A AV particles comprising a nucleic acid sequence encoding the siRNA molecules of the present disclosure may be used to deliver siRNA molecules to the central nervous system (e.g., U.S. Pat No. $6,180,613$; the contents of which is berein incorporated by reference in its entirety).
[0409] In some aspects, the AAV particles comprising a nucleic acid sequence encoding the siRNA molecules of the present disclosure may further comprise a modified capsid including peptides from non-viral ongin. In other aspects, the AAV particle may contain a

CNS specific chimeric capsid to facilitate the delivery of encoded siRNA duplexes into the brain and the spinal cord. For example, an alignment of cap nucleotide sequences from AAV variants exhibiting CNS tropism may be constructed to identify variable region (VR) sequence and structure.
[0410] In other embodiments, the siRNA molecules of the present disclosure can be encoded in plasmid vectors, viral vectors (e.g., AAV vectors), genome or other nucleic acid expression vectors for delivery to a cell.
[0411] DNA expression plasmids can be used to stably express the siRNA duplexes or dsRNA of the present disclosure in cells and achieve long-term inhibition of target gene.
[0412] In one aspect, the sense and antisense strands of a siRNA duplex encoded by a SOD1 targeting polynucleotide are typically linked by a short spacer sequence leading to the expression of a stem-loop structure termed short hairpin RNA (shRNA). The hairpin is recognized and cleaved by Dicer, thus generating mature siRNA molecules.
[0413] According to the present disclosure, AAV vectors comprising the nucleic acids of the siRNA molecules targeting SODI mRNA are produced, the AAV vectors may be AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV9.47, AAV9(hul4), AAV10, AAV11, AAV12, AAVm8, AAVm10, AAV-DI8 and AAV-DI, and variants thereof.
[044] In some embodiments, the siRNA duplexes or dsRNA of the present disclosure when expressed suppress (or degrade) target mRNA (i.e. SODI). Accordingly, the siRNA duplexes or dsRNA encoded by a SOD1 targeting polynucleotide can be used to substantially inhibit SODI gene expression in a cell, for example a motor neuron. In some aspects, the inhibition of SOD1 gene expression refers to an inhibition by at least about 20%, preferably by at least about $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 85 \%, 90 \%, 95 \%$ and 100%. Accordingly, the protein product of the targeted gene may be inhibited by at least about 20%, preferably by at least about $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 85 \%, 90 \%, 95 \%$ and 100%. The SODI gene can be either a wild type gene or a mutated SODI gene with at least one mutation. Accordingly, the protein is either wild type protein or a mutated polypeptide with at least one mutation

Viral production

[0415] The present disclosure provides a method for the generation of parvoviral particles, e.g. AAV particles, by viral genome replication in a viral replication cell comprising contacting the viral replication cell with an AAV polynucleotide or AAV genome.
[0416] The present disclosure provides a method for producing an AAV particle having enhanced (increased, improved) transduction efficiency comprising the steps of. 1) cotransfecting competent bacterial cells with a bacmid vector and either a viral construct vector and/or AAV payload construct vector, 2) isolating the resultant viral construct expression vector and AAV payload construct expression vector and separately transfecting viral replication cells, 3) isolating and purifying resultant payload and viral construct particles comprising viral construct expression vector or AAV payload construct expression vector, 4) co-infecting a viral replication cell with both the AAV payload and viral construct particles comprising viral construct expression vector or AV payload construct expression vector, and 5) harvesting and purifying the viral particle comprising a parvoviral genome.
[0417] In certain embodiments, the present disclosure provides a method for producing an AAV particle comprising the steps of 1) simultaneously co-transfecting mammalian cells, such as, but not limited to HEK293 cells, with a payload region, a construct expressing rep and cap genes and a helper construct, 2) harvesting and purifying the AAV particle comprising a viral genome.

Cells

[0418] The present disclosure provides a cell comprising an AAV polynucleotide andior AAV genome.
[0419] Viral production disclosed herein describes processes and methods for producing A AV particles that contact a target cell to deliver a payload construct, e.g. a recombinant viral construct, which comprises a polynucleotide sequence encoding a payload molecule [0420] In certain embodiments, the AAV particles may be produced in a viral replication cell that comprises an insect cell
[0421] Growing conditions for insect cells in culture, and production of heterologous products in insect cells in culture are well-known in the art, see U.S. Pat. No. 6,204,059, the contents of which are herein incorporated by reference in their entirety.
[0422] Any insect cell which allows for replication of parvovinus and which can be maintained in culture can be used in accordance with the present disclosure. Cell hines may be used from Spodoptera frugiperda, including, but not limited to the Sf9 or St2 cell lines, Drosophila cell lines, or mosquito cell lines, such as Aedes albopichus derived cell lines. Use of insect cells for expression of heterologous proteins is well documented, as are methods of introducing nucleic acids, such as vectors, e.g., insect-cell compatible vectors, into such cells and methods of maintaining such cells in culture. See, for example, Methods in Molecular

Biology, ed. Richard, Humana Press, NJ (1995); O'Reilly et al., Baculovirus Expression
Vectors, A Laboratory Manual, Oxford Univ. Press (1994); Samulski et al., J. Vir.63:3822-8 (1989); Kajigaya et al., Proc. Nat'l. Acad. Sci. USA 88: 4646-50 (1991); Ruffing et al., J. Vir. 66:6922-30 (1992), Kimbauer et al., Vir.219:37-44 (1996); Zhao et al., Vir.272:382-93 (2000), and Samulski et al., U.S. Pat. No. 6,204,059, the contents of each of which is herein incorporated by reference in its entirety.
[0423] The viral replication cell may be selected from any biological organism, including prokaryotic (e.g., bacterial) cells, and cukaryotic cells, including, insect cells, yeast cells and mammalian cells. Viral replication cells may comprise mammalian cells such as A549, WEH1, 3 T3, 10T1/2, BHK, MDCK, COS 1, COS 7, BSC 1, BSC 40, BMT 10, VERO W138, HeLa, HEK293, Saos, C2C12, L cells, HT1080, HepG2 and primary fibroblast, hepatocyte and myoblast cells derived from mammals. Viral replication cells comprise cells derived from mammalian species including, but not limited to, human, monkey, mouse, rat, rabbit, and hamster or cell type, including but not limited to fibroblast, hepatocyte, tumor cell, cell line transformed cell, etc.

Mammalian cell (small scale) production of AAV Particles

[0424] Viral production disclosed herein describes processes and methods for producing AAV particles that contact a target cell to deliver a payload, e.g. a recombinant viral construct, which comprises a polynucleotide sequence encoding a payload.
[0425] In certain embodiments, the AAV particles may be produced in a viral replication cell that comprises a mammalian cell.
[0426] Viral replication cells commonly used for production of recombinant AAV particles include, but are not limited to 293 cells, COS cells, HeLa cells, KB cells, and other mammalian cell lines as described in U.S. Pat. Nos. 6,156,303, 5,387,484, 5,741,683, $5,691,176$, and 5,688,676; U.S. patent application 2002/0081721, and Intemational Patent Applications WO 00/47757, WO 00/24916, and WO 96/17947, the contents of each of which are herein incorporated by reference in their entireties
[0427] In certain embodiments, AAV particles are produced in mammalian-cells wherein all three VP proteins are expressed at a stoichiometry approaching 1:1:10 (VP1:VP2:VP3). The regulatory mechanisms that allow this controlled level of expression include the production of two mRNAs, one for VP1, and the other for VP2 and VP3, produced by differential splicing.
[0428] In another embodiment, AAV particles are produced in mammalian cells using a triple transfection method wherein a payload construct, parvoviral Rep and parvoviral Cap and a helper construct are comprised within three different constructs. The triple transfection method of the three components of AAV particle production may be utilized to produce small lots of virus for assays including transduction efficiency, target tissue (tropism) evaluation, and stability.
[0429] AAV particles described herein may be produced by triple transfection or baculovinus mediated virus production, or any other method known in the art. Any suitable permissive or packaging cell known in the an may be employed to produce the vectors.

Mammalian cells are often preferred. Also preferred are trans-complementing packaging cell Ines that provide functions deleted from a replication-defective helper virus, e.g., 293 cells or other Ela trans-complementing cells.
[0430] The gene cassette may contain some or all of the parvovinus (e.g., AAV) cap and rep genes. Preferably, however, some or all of the cap and rep functions are provided in trans by introducing a packaging vector(s) encoding the capsid and/or Rep proteins into the cell. Most preferably, the gene cassette does not encode the capsid or Rep proteins. Alternatively, a packaging cell line is used that is stably transfomed to express the cap and/or rep genes.
[0431] Recombinant AAV vins particles are, in some cases, produced and purified from calture supernatants according to the procedure as described in US20160032254, the contents of which are incorporated by reference. Production may also involve methods known in the art including those using 293 T cells, sf9 insect cells, triple transfection or any suitable production method
[0432] In some cases, 293 T cells (adhesion/suspension) are transfected with polyethyleneimine (PEl) with plasmids required for production of $A \mathrm{AV}$, i.e., A AV 2 rep , an adenoviral helper constnuct and a TTR flanked transgene cassette. The AAV2 rep plasmid also contains the cap sequence of the particular virus being studied. Twenty-four hours after transfection (no medium changes for suspension), which occurs in DMEM/F17 with/without serum, the medium is replaced with fresh medium with or without serum. Three (3) days after transfection, a sample is taken from the culture medium of the 293 adherent cells.

Subsequently cells are scraped, or suspension cells are pelleted, and transferred into a receptacle. For adhesion cells, after centrifugation to remove cellular pellet, a second sample is taken from the supematant after scraping. Next, cell lysis is achieved by three consecutive freeze-thaw cycles (-80 C to 37 C) or adding detergent triton. Cellular debris is removed by
centrifugation or depth filtration and sample 3 is taken from the medium. The samples are quantified for AAV paticles by DNase resistant genome titration by DNA qPCR. The total production yield from such a transfection is equal to the particle concentration from sample 3.
[0433] AAV particle titers are measured according to genome copy number (genome paticles per mililiter). Genome particle concentrations are based on DNA quantitative PCR of the vector DNA as previously reported (Clark et al. (1999) Hum. Gene Ther., 10:10311039; Veldwijk et al. (2002) Mol. Ther, 6:272-278).

Baculovins

[0434] Particle production disclosed herein describes processes and methods for producing AAV particles that contact a target cell to deliver a payload construct which comprises a polynucleotide sequence encoding a payload.
[0435] Briefly, the viral construct vector and the AAV payload construct vector are each incorporated by a transposon donor/acceptor system into a bacmid, also known as a baculovirus plasmid, by standard molecular biology techniques known and performed by a person skilled in the art. Transfection of separate viral replication cell populations produces two baculovinuses, one that comprises the viral construct expression vector, and another that comprises the AAV payload construct expression vector. The two baculoviruses may be used to infect a single viral replication cell population for production of AAV particles
[0436] Baculoviras expression vectors for producing viral particles in insect cells, including but not limited to Spodoptera frugiperda (Sf9) cells, provide high titers of viral particle product. Recombinant baculovirus cncoding the viral construct expression vector and AAV payload construct expression vector initiates a productive infection of viral replicating cells. Infectious baculovirus particles released from the primary infection secondarily infect additional cells in the culture, exponentially infecting the entire cell culture population in a number of infection cycles that is a function of the initial multiplicity of infection, see Urabe, M. et al., J Virol. 2006 Feb; 80 (4):1874-85, the contents of which are herein incorporated by reference in their entirety
[0437] Production of AAV particles with baculovirus in an insect cell system may address known baculovirus genetic and physical instability, In certain embodiments, the production system addresses baculovirus instability over multiple passages by utilizing a titerless infected-cells preservation and scale-up system. Small scale seed cultures of viral producing cells are transfected with viral expression constructs encodiog the structural, non-structural, components of the viral particle. Baculovirus-infected viral producing cells are harvested into
aliquots that may be cryopreserved in liquid nitrogen; the aliquots retain viability and infectivity for infection of large scale viral producing cell culture Wasilko Bs et al., Protein Expr Purif. 2009 Jun; $65(2): 122-32$, the contents of which are herein incorporated by reference in their entirety.
[0438] A genetically stable baculovirus may be used to produce source of the one or more of the components for producing AAV particles in invertebrate cells. In certain embodiments, defective baculovinus expression vectors may be maintained episomally in insect cells. In such an embodiment the bacmid vector is engineered with replication control elements, including but not hmited to promoters, enhancers, and/or cell-cycle regulated replication elements.
[0439] In certain embodiments, baculoviruses may be engineered with a (non-) selectable marker for recombination into the chitinase/cathepsin locus. The cha/v-cath locus is nonessential for propagating baculovirus in tissue culture, and the V-cath (EC 3.4.22.50) is a cysteine endoprotease that is most active on Arg-Arg dipeptide containing substrates. The Arg-Arg dipeptide is present in densovims and parvovirus capsid structural proteins but infrequently occurs in dependovirus VPl.
[0446] In certain embodiments, stable viral replication cells permissive for baculovirus infection are engineered with at least one stable integrated copy of any of the elements necessary for AAV replication and viral particle production including, but not limited to, the entire AAV genome, Rep and Cap genes, Rep genes, Cap genes, each Rep protein as a separate transcription cassette, each VP protein as a separate transcription cassette, the AAP (assembly activation protein), or at least one of the baculovirus helper genes with native or non-native promoters.

Large-scale production

[0441] In some embodiments, AAV particle production may be modified to increase the scale of production. Large scale viral production methods according to the present disclosure may include any of those taught in US Patent Nos $5,756,283,6,258,595,6,261,551$, $6,270,996,6,281,010,6,365,394,6,475,769,6,482,634,6,485,966,6,943,019,6,953,690$, $7,022,519,7,238,526,7,291,498$ and $7,491,508$ or Intermational Publication Nos. W01996039530, WO1998010088, WO1999014354, WO1999015685, WO1999047691, WO2000055342, WO2000075353 and W02001023597, the contents of each of which are berein incorporated by reference in their entirety. Methods of increasing viral particle production scale typically comprise increasing the number of viral rephcation cells. In some
embodiments, viral replication cells comprise adherent cells. To increase the scale of viral particle production by adherent viral replication cells, larger cell culture surfaces are required. In some cases, large-scale production methods comprise the use of roller bottles to increase cell culture surfaces. Other cell culture substrates with increased surface areas are known in the art. Examples of additional adherent cell culture products with increased surface areas include, but are not limited to CELLSTACK ${ }^{8}$, CELLCUBE ${ }^{(1)}$ (Coming Corp., Coming, NY) and NUNC ${ }^{\text {TM }}$ CELL FACTORY ${ }^{\text {TM }}$ (Themo Scientific, Waltham, MA.) In sone cases, largescale adherent cell surfaces may comprise from about $1,000 \mathrm{~cm}^{2}$ to about $100,000 \mathrm{~cm}^{2}$. In some cases, large-scale adherent cell cultares may comprise from about 10^{7} to about 10^{9} cells, from about 10^{8} to about 10^{10} cells, from about 10^{9} to about 10^{12} cells or at least 10^{12} cells. In some cases, large-scale adherent cultures may produce from about 10^{9} to about 10^{12}, from about 10^{10} to about 10^{13}, from about 10^{11} to about 10^{14}, from about 10^{12} to about 10^{15} or at least 10^{15} viral particles.
[0442] In some embodiments, large-scale viral production methods of the present disclosure may comprise the use of suspension cell cultures. Suspension cell culture allows for significantly increased numbers of cells. Typically, the number of adherent cells that can be grown on about $10-50 \mathrm{~cm}^{2}$ of surface area can be grown in about $1 \mathrm{~cm}^{3}$ volume in suspension.
[0443] Transfection of replication cells in large-scale culture formats may be carried out according to any methods known in the art. For large-scale adherent cell cultures, transfection methods may include, but are not limited to the use of inorganic compounds (e.g. calcium phosphate), organic compounds [e.g. polyethylencimine (PEI] or the use of non-chemical methods (e.g. electroporation.) With cells grown in suspension, transfection methods may include, but are not limited to the use of calcium phosphate and the use of PEI. In some cases, transfection of large scale suspension cultures may be carried out according to the section entitled "Transfection Procedure" described in Feng, L. er al., 2008. Biotechnol Appl. Biochem. 50:121-32, the contents of which are herein incorporated by reference in their entirety. According to such embodiments, PEI-DNA complexes may be formed for introduction of plasmids to be transfected. In some cases, cells being transfected with PEIDNA complexes may be 'shocked' prior to transfection. This comprises lowering cell culture temperatures to $4^{\circ} \mathrm{C}$ for a period of about I hour. In some cases, cell cultures may be shocked for a period of from about 10 minutes to about 5 hours. In some cases, cell cultures may be shocked at a temperature of from about $0^{\circ} \mathrm{C}$ to about $20^{\circ} \mathrm{C}$
[0444] In some cases, transfections may include one or more vectors for expression of an RNA effector molecule to reduce expression of nuclerc acids from one or more A AV payload construct. Such methods may enhance the production of viral particles by reducing cellular resources wasted on expressing payload constructs. In some cases, such methods may be carried according to those taught in US Publication No. US2014/0099666, the contents of which are herein incorporated by reference in their entirety.

Bioreactors

[0445] In sone embodiments, cell culture bioreactors may be used for large scale vira] production. In some cases, bioreactors comprise stired tank reactors. Such reactors generally comprise a vessel, typically cylindrical in shape, with a stirer (e.g. impeller) In some embodiments, such bioreactor vessels may be placed within a water jacket to control vessel temperature and/or to minimize effects from ambient temperature changes. Bioreactor vessel volume may range in size from about 500 ml to about 2 L , from about 1 L to about 5 L , from about 2.5 L to about 20 L , from about 10 L to about 50 L , from about 25 L to about 100 L , from about 75 L to about 500 L , from about 250 L to about $2,000 \mathrm{~L}$, from about $1,000 \mathrm{~L}$ to about $10,000 \mathrm{~L}$, from about $5,000 \mathrm{~L}$ to about $50,000 \mathrm{~L}$ or at least $50,000 \mathrm{~L}$. Vessel botoms may be rounded or flat. In some cases, animal cell cultures may be maintained in bioreactors with rounded vessel bottoms.
[@A46] In some cases, bioreactor vessels may be wamed through the use of a thermocirculator. Thermocirculators pump heated water around water jackets. In some cases, heated water may be pumped through pipes (e.g. coiled pipes) that are present within bioreactor vessels. In some cases, warm air may be circulated aromd bioreactors, including, but not limited to air space directly above culture medium. Additionally, pH and CO_{2} levels may be maintained to optimize cell viability.
[9447] In some cases, bioreactors may comprise hollow-fiber reactors. Hollow-fiber bioreactors may support the culture of both anchorage dependent and anchorage independent cells. Further boreactors may include, but are not limited to packed-bed or fixed-bed bioreactors. Such bioreactors may comprise vessels with glass beads for adherent cell attachment Further packed-bed reactors may comprise ceramic beads.
[9448] In some cases, viral particles are produced through the use of a disposable bioreactor. In some embodiments, such bioreactors may include WAVE ${ }^{\mathrm{TM}}$ disposable bioreactors.
[0449] In some embodiments, AAV particle production in animal cell bioreactor cultures may be carred out according to the methods taught in US Patent Nos. 5,064764, 6, 194,191, $6,566,118,8,137,948$ or US Patent Application No. US2011/0229971, the contents of each of which are herein incorporated by reference in their entrety.

Cell Lysis

[0450] Cells of the disclosure, including, but not limited to viral production cells, may be subjected to cell lysis according to any methods known in the art. Cell lysis may be carried out to obtain one or more agents (e.g. viral particles) present within any cells described herein. In some embodiments, cell lysis may be carried out according to any of the methods listed in US Patent Nos. 7,326,555, 7,579, 181, 7,048,920, 6,410,300, 6,436,394, 7,732,129, $7,510,875,7,445,930,6,726,907,6,194,191,7,125,706,6,995,006,6,676,935,7,968,333$, $5,756,283,6,258,595,6,261,551,6,270,996,6,281,010,6,365,394,6,475,769,6,482,634$, $6,485,966,6,943,019,6,953,690,7,022,519,7,238,526,7,291,498$ and $7,491,508$ or Intemational Publication Nos. WO1996039530, WO1998010088, WO1999014354, W01999015685, WO1999047691, WO2000055342, W02000075353 and W02001023597, the contents of each of which are herein incorporated by reference in their entirety. Cell lysis methods may be chemical or mechanical. Chemical cell lysis typically comprises contacting one or more cells with one or more lysis agent. Mechanical lysis typically comprises subjecting one or more cells to one or more lysis condition and/or one or more lysis force. [0451] In some embodiments, chemical lysis may be used to lyse cells. As used herein, the term "lysis agent" refers to any agent that may aid in the disruption of a cell. In some cases, hysis agents are introduced in solutions, termed lysis solutions or lysis buffers. As used herein, the term "lysis solution" refers to a solution (typically aqueous) comprising one or more lysis agent. In addition to lysis agents, lysis solutions may include one or more buffering agents, solubilizing agents, suffactants, preservatives, cryoprotectants, enzymes, enzyme inhibitors and/or chelators. Lysis buffers are lysis solutions comprising one or more buffering agent. Additional components of lysis solutions may include one or more solubilizing agent. As used herein, the term "solubilizing agent" refers to a compound that enbances the solubility of one or more components of a solution and/or the solubility of one or more entities to which solutions are applied. In some cases, solubilizing agents enhance protein solubility. In some cases, solublizing agents are selected based on their ability to enhance protein solubility while maintaining protein contormation and/or activity
[0452] Exemplary lysis agents may include any of those described in US Patent Nos. $8,685,734,7,901,921,7,732,129,7,223,585,7,125,706,8,236,495,8,110,351,7,419,956$, $7,300,797,6,699,706$ and $6,143,567$, the contents of each of which are herein incorporated by reference in their entirety. In some cases, lysis agents may be selected from lysis salts, amphoteric agents, cationic agents, ionic detergents and non-ionic detergents. Lysis salts may include, but are not limited to, sodium chloride (NaCl) and potassium chloride (KCl) Further lysis salts may include any of those described in US Patent Nos. 8,614,101, 7,326,555, $7,579,181,7,048,920,6,410,300,6,436,394,7,732,129,7,510,875,7,445,930,6,726,907$, $6,194,191,7,125,706,6,995,006,6,676,935$ and $7,968,333$, the contents of each of which are herein incorporated by reference in their entirety. Concentrations of salts may be increased or decreased to obtain an effective concentration for rupture of cell membranes. Amphoteric agents, as referred to hercin, are compounds capable of reacting as an acid or a base. Amphoteric agents may include, but are not limited to lysophosphatidylcholine, 3-(3Cholamidopropyl) dimethylammonium)-1-propanesulfonate (CHAPS), ZWITTERGENT® and the like. Cationic agents may include, but are not limited to, cetyltrimethylammonium bromide (C (16) TAB) and Benzalkonium chloride. Lysis agents comprising detergents may include ionic detergents or non-ionic detergents. Detergents may function to break apart or dissolve cell structures including, but not limited to cell membranes, cell walls, lipids, carbohydates, lipoproteins and glycoproteins. Exemplary ionic detergents include any of those taught in US Patent Nos. 7,625,570 and 6,593,123 or US Publication No. US2014/0087361, the contents of each of which are herein incorporated by reference in their entirety. Some ionic detergents may inelude, but are not limited to, sodium dodecyl sulfate (SDS), cholate and deoxycholate. In some cases, ionic detergents may be included in lysis solutions as a solubilizing agent. Non-ionic detergents may include, but are not limited to octylglucoside, digitonin, lubrol, C12E8, TWEEN®-20, TWEEN®-80, Triton X-100 and Noniodet P-40. Non-ionic detergents are typically weaker lysis agents but may be included as solubilizing agents for solubilizing cellular and/or viral proteins. Futher lysis agents may include enzymes and urea. In some cases, one or more lysis agents may be combined in a lysis solution in order to enbance one or more of cell lysis and protein solubility. In some cases, enzyme inhibitors may be included in lysis solutions in order to prevent proteolysis that may be triggered by cell membrane disruption.
[0453] In some embodiments, mechanical cell lysis is carried out. Mechanical cell lysis methods may include the use of one or more lysis condition and/or one or more lysis force.

As used herein, the term "lysis condition" refers to a state or circumstance that promotes cellular disruption. Lysis conditions may comprise certain temperatures, pressures, osmotic purity, salinity and the like. In some cases, lysis conditions comprise increased or decreased temperatures. According to some embodiments, lysis conditions comprise changes in temperature to promote cellular disuption. Cell lysis carried out according to such embodiments may include freeze-thaw lysis. As used herein, the term "freeze-thaw lysis" refers to cellular lysis in which a cell solution is subjected to one or more freeze-thaw cycle. According to freeze-thaw lysis methods, cells in solution are frozen to induce a mechanical disnution of cellular membranes caused by the formation and expansion of ice crystals. Cell solutions used according freeze-thaw lysis methods, may further comprise one or more lysis agents, solubilizing agents, buffering agents, cryoprotectants, surfactants, preservatives, enzymes, enzyme inhibitors and/or chelators. Once cell solutions subjected to freezing are thawed, such components may enhance the recovery of desired cellular products. In some cases, one or more cryoprotectants are included in cell solutions undergoing freeze-thaw lysis. As used herein, the term "cryoprotectant" refers to an agent used to protect one or more substance from damage due to freezing. Cryoprotectants may include any of those taught in US Publication No. US2013/0323302 or US Patent Nos. 6,503,888, 6, 180,613, 7,888,096, $7,091,030$, the contents of each of which are herein incorporated by reference in their entirety. In some cases, cryoprotectants may include, but are not limited to dimethyl sulfoxide, 1,2-propanediol, 2,3-butanediol, formamide, glycerol, ethylene glycol, 1,3propanediol and n-dimethyl formamide, polyvinylpyrrolidone, hydroxyethyl starch, agarose, dextrans, inositol, glucose, hydroxyethylstarch, lactose, sorbitol, methyl glucose, sucrose and urea. In some embodiments, freeze-thaw lysis may be carried out according to any of the methods described in US Patent No. 7,704,721, the contents of which are herein incorporated by reference in their entirety
[0454] As used herein, the term "lysis force" refers to a physical activity used to disrupt a cell. Lysis forces may include, but are not limited to mechanical forces, sonic forces, gravitational forces, optical forces, electrical forces and the like. Cell lysis carried out by mechanical force is referred to herein as "mechanical lysis." Mechanical forces that may be used according to mechanical lysis may include high shear fluid forces. According to such methods of mechanical lysis, a microfluidizer may be used. Microfluidizers typically comprise an inlet reservoir where cell solutions may be applied. Cell solutions may then be pumped into an interaction chamber via a pump (e.g. high-pressure pump) at high speed
and/or pressure to produce shear fluid forces. Resulting lysates may then be collected in one or more output reservoir. Pump speed and/or pressure may be adjusted to modulate cell lysis and enbance recovery of products (e.g. viral particles.) Other mechanical lysis methods may include physical disruption of cells by seraping.
[04535] Cell lysis methods may be selected based on the cell culture format of cells to be lysed. For example, with adherent cell cultures, some chemical and mechanical lysis methods may be used. Such mechanical lysis methods may include freeze-thaw lysis or scraping. In another example, chemical lysis of adberent cell cultures may be carried out through incubation with lysis solutions comprising surfactant, such as Triton-X-100. In some cases, cell lysates generated from adherent cell cultures may be treated with one more nuclease to lower the viscosity of the lysates caused by liberated DNA.
[0.56] In certain embodiments, a method for harvesting AAV particles without lysis may be used for efficient and scalable AAV particle production. In a non-limiting example, AAV particles may be produced by culturing an $A A V$ particle lacking a hepanin binding site, thereby allowing the AAV particle to pass into the supernatant, in a cell culture, collecting supernatant from the culture, and isolating the AAV particle from the supematant, as described in US Patent Application 20090275107, the contents of which are incorporated herein by reference in their entirety

Clarification

[0457] Cell lysates comprising viral particles may be subjected to clarification.
Clarification refers to imitial steps taken in purfication of viral particles from cell lysates. Clarification serves to prepare lysates for further purification by renoving larger, insoluble debris. Clarification steps may include, but are not limited to centrifugation and filtration. During clanification, centrifugation may be carried out at low speeds to remove larger debris only. Similarly, filtration may be carried out using filters with larger pore sizes so that only larger debris is removed. In some cases, tangential flow filtration may be used during clanfication. Objectives of viral clarification inchde high throughput processing of cell lysates and to optimize ultimate viral recovery. Advantages of including a clarification step include scalability for processing of larger volumes of lysate. In some embodiments, clarification may be carried out according to any of the methods presented in US Patent Nos $8,524,446,5,756,283,6,258,595,6,261,551,6,270,996,6,281,010,6,365,394,6,475,769$, $6,482,634,6,485,966,6,943,019,6,953,690,7,022,519,7,238,526,7,291,498,7,491,508$, US Publication Nos, US2013/0045186, US2011/0263027, US2011/0151434, US2003/0138772,
and International Publication Nos WO2002012455, WO1996039530, WO1998010088, WO1999014354, WO1999015685, WO1999047691, WO2000055342, WO2000075353 and WO2001023597, the contents of each of which are berein incorporated by reference in their entirety.
[0458] Methods of cell lysate clarification by filtration are well understood in the art and may be carried out according to a variety of available methods including, but not limited to passive filtration and flow filtration. Filters used may comprise a variety of materials and pore sizes. For example, cell lysate filters may comprise pore sizes of from about $1 \mu \mathrm{M}$ to about $5 \mu \mathrm{M}$, from about $0.5 \mu \mathrm{M}$ to about $2 \mu \mathrm{M}$, from about $0.1 \mu \mathrm{M}$ to about $1 \mu \mathrm{M}$, from about $0.05 \mu \mathrm{M}$ to about $0.05 \mu \mathrm{M}$ and from about $0.001 \mu \mathrm{M}$ to about $0.1 \mu \mathrm{M}$. Exemplary pore sizes for cell lysate filters may include, but are not limited to, $2.0,1.9,1.8,1.7,1.6,1.5,1.4$, $1.3,1.2,1.1,1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.95,0.9,0.85,0.8,0.75,0.7,0.65$, $0.6,0.55,0.5,0.45,0.4,0.35,0.3,0.25,0.2,0.15,0.1,0.05,0.22,0.21,0.20,0.19,0.18,0.17$, $0.16,0.15,0.14,0.13,0.12,0.11,0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01,0.02$, $0.019,0.018,0.017,0.016,0.015,0.014,0.013,0.012,0.011,0.01,0.009,0.008,0.007$, $0.006,0.005,0.004,0.003,0.002,0.001$ and $0.001 \mu \mathrm{M}$. In certain embodiments, clarification may comprise filtration through a filter with $2.0 \mu \mathrm{M}$ pore size to remove large debris, followed by passage through a filter with $0.45 \mu \mathrm{M}$ pore size to remove intact cells
[0659] Filter materials may be composed of a variety of materials. Such materials may include, but are not limited to polymeric materials and metal materials (e.g. sintered metal and pored aluminum.) Exemplary materials may include, but are not limited to nylon, cellulose materials (e.g. cellulose acetate), polyvinylidene fluoride (PVDF), polycthersulfone, polyamide, polysulfone, polypropylene, and polyethylene terephthalate. In some cases, filters useful for clarification of cell lysates may include, but are not limited to ULTPPLEAT PROFILEM filters (Pall Corporation, Port Washington, NY), SUPOR ${ }^{\text {rM }}$ membrane filters (Pall Corporation, Port Washington, NY)
[0460] In some cases, flow filtration may be carried out to increase filtration speed and/or effectiveness. In some cases, flow filtration may comprise vacuum filtration. According to such methods, a vacum is created on the side of the filter opposite that of cell lysate to be filtered. In some cases, cell lysates may be passed through fiters by centrifugal forces. In some cases, a pump is used to force cell lysate through clarification filters. Flow rate of cell lysate through one or more filters may be modulated by adjusting one of channel size and/or fluid pressure.
[0461] According to some embodiments, cell lysates may be clarified by centrifugation. Centrifugation may be used to pellet insoluble particles in the lysate. During clarification, centrifugation strength [expressed in terms of gravitational units (g), which represents multiples of standard gravitational force] may be lower than in subsequent purification steps. In some cases, centrifugation may be carried out on cell lysates at from about 200 g to about 800 g , from about 500 g to about 1500 g , from about 1000 g to about 5000 g , from about 1200 g to about 10000 g or from about 8000 g to about 15000 g . In some embodiments, cell lysate centrifugation is carried out at 8000 g for 15 minutes. In some cases, density gradient centrifugation may be carried out in order to partition particulates in the cell lysate by sedimentation rate. Gradients used according to methods of the present disclosure may include, but are not limited to cesium chloride gradients and iodixanol step gradients.

Purification: Chromatography

[0462] In some cases, AAV particles may be purified from clarified cell lysates by one or more methods of chromatography. Chromatography refers to any number of methods known in the art for separating out one or more elements from a mixture. Such methods nay include, but are not limited to ion exchange chromatography (e.g. cation exchange chromatography and anion exchange chromatography), immunoaffinity chromatography and size-exclusion chromatography. In some embodiments, methods of viral chromatography may include any of those taught in US Patent Nos. 5,756,283, 6,258,595, 6,261,551, 6,270,996, 6,281,010, $6,365,394,6,475,769,6,482,634,6,485,966,6,943,019,6,953,690,7,022,519,7,238,526$, 7,291,498 and 7,491,508 or International Publication Nos. WO1996039530, WO1998010088, WO1999014354, WO1999015685, WO1999047691, WO2000055342, WO2000075353 and WO2001023597, the contents of each of which are herein incorporated by reference in their entirety.
[0463] In some embodiments, ion exchange chromatography may be used to isolate viral particles. Ion exchange chromatography is used to bind viral particles based on charge-charge interactions between capsid proteins and charged sites present on a stationary phase, typically a column through which viral preparations (e.g. clarified lysates) are passed. After application of viral preparations, bound viral particles may then be cluted by applying an elution solution to disnpt the charge-charge interactions. Elution solutions may be optimized by adjusting salt concentration and/or pH to enhance recovery of bound viral particles. Depending on the charge of viral capsids being isolated, cation or anion exchange chromatography methods may be selected. Methods of ion exchange chromatography may
include, but are not limited to any of those taught in US Patent Nos. $7,419,817,6,143,548$, $7,094,604,6,593,123,7,015,026$ and $8,137,948$, the contents of each of which are herein incorporated by reference in their entirety.
[0464] In some embodiments, immunoaffinity chromatography may be used. Immunoaffinity chromatography is a form of chromatography that utilizes one or more immune compounds (e.g. antibodies or antibody-related structures) to retain viral particles. Immune compounds may bind specifically to one or more structures on viral particle suffaces, including, but not limited to one or more viral coat protein. In some cases, immune compounds may be specific for a particular viral variant. In some cases, immune compounds may bind to multiple viral variants. In some embodiments, immune compounds may include recombinant single-chain antibodies. Such recombinant single chain antibodies may include those described in Smith, R.H. et al., 2009. Mol. Ther. 17(1):1888-96, the contents of which are herein incorporated by reference in their entirety. Such immune compounds are capable of binding to several AAV capsid variants, including, but not limited to AAV1, AAV2, AAV6 and AAV8.
[0465] In some embodiments, size-exclusion chromatography (SEC) may be used. SEC may comprise the use of a gel to separate particles according to size. In viral particle purification, SEC filtration is sometimes referred to as "polishing." In some cases, SEC may be carried out to generate a final product that is near-homogenous. Such fnal products may in some cases be used in pre-clinical studies and/or clinical studies (Kotin, R.M. 2011. Human Molecular Genetics. 20(1):R2-R6, the contents of which are herein incorporated by reference in their entirety.) In some cases, SEC may be carried out according to any of the methods taught in US Patent Nos. 6,143,548, 7,015,026, 8,476,418, 6,410,300, 8,476,418, 7,419,817, $7,094,604,6,593,123$, and $8,137,948$, the contents of each of which are herein incorporated by reference in their entirety.
[0466] In certain embodiments, the compositions comprising at least one AAV patticle may be isolated or purified using the methods described in US Patent No. US 6146874, the contents of which are herein incorporated by reference in its entirety.
[0467] In certain embodiments, the compositions comprising at least one $A A V$ particle may be isolated or purified using the methods described in US Patent No. US 6660514 , the contents of which are herein incorporated by reference in its entirety.
[0468] In certain embodiments, the compositions comprising at least one AAV particle may be isolated or purfied using the methods described in US Patent No. US 8283151, the contents of which are herein incorporated by reference in its entirety
[0469] In certain embodiments, the compositions comprising at least one AAV particle may be isolated or purified using the methods described in US Patent No. US 8524446 , the contents of which are herein incorporated by reference in its entirety.

Introduction into cells

[0470] To ensure the chemical and biological stability of siRNA duplexes, it is important to deliver polynucleotides encoding the siRNAs inside the target cells. The polynucleotides of the present disclosure may be introduced into cells using any of a variety of approaches.
[0471] In some embodiments, the polynucleotide of the present disclosure is introduced into a cell by contacting the cell with the polynucleotide. In some embodiments, the polymucleotide is introduced into a cell by contacting the cell with a composition comprising the polynucleotide and a lipophilic carrier. In other embodiments, the polynucleotide is introduced into a cell by transfecting or infecting the cell with a vector comprising nucleic acid sequences capable of producing the siRNA duplex when transcribed in the cell.
[0472] In some embodiments, the siRNA duplex is introduced into a cell by injecting into the cell a vector comprising nucleic acid sequences capable of producing the siRNA duplex when transcribed in the cell.
[0473] In other embodiments, the polynucleotides of the present disclosure may be delivered into cells by electroporation (e.g. U.S. Patent Publication No. 20050014264; the content of which is herein incorporated by reference in its entirety)
[0474] In addition, the siRNA molecules inserted into viral vectors (e.g. AAV vectors) may be delivered into cells by viral infection. These viral vectors are engineered and optimized to facilitate the entry of siRNA molecule into cells that are not readily amendable to transfection. Also, some synthetic viral vectors possess an ability to integrate the shRNA into the cell genome, thereby leading to stable siRNA expression and long-term knockdown of a target gene. In this manner, viral vectors are engineered as vehicles for specific delivery while lacking the deleterious replication and/or integration features foum in wild-type virus. [0475] In some embodiments, the cells may include, but are not limited to, cells of mammalian origin, cells of human origins, embryonic stem cells, induced pluripotent stem cells, neural stem cells, and neural progenitor cells.

Pharmaceutical compositions sud formulation

[0476] In addition to the phamaceutical compositions, e.g., siRNA duplexes (noluding the encoding plasmids or expression vectors, such as viruses, e.g., AD A) to be delivered, provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to non-human animals, e.g. non-human mammals. Modification of phamaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various anmals is well understood, and the ordinarily skilled veterinary phamacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which admimistration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as ponltry, chickens, ducks, geese, and/or turkeys.
[0477] In some embodiments, compositions are administered to humans, human patients or subjects. For the purposes of the present disclosure, the phrase "active ingredient" generally refers either to synthetic siRNA duplexes or to the viral vector carrying the siRNA duplexes, or to the siRNA molecule delivered by a viral vector as described herein.
[0478] Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereatter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.
[9479] Relative amounts of the active ingredient, the phamaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
$[0480]$ The siRNA duplexes or viral vectors encoding them can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection or transduction; (3)
permit the sustained or delayed release; or (4) alter the biodistribution (e.g., target the viral vector to specific tissues or cell types such as brain and motor neurons).
[0481] Formulations of the present disclosure can include, without limitation, saline, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with viral vectors (e.g., for transplantation into a subject), nanoparticle mimics and combinations thereof. Further, the viral vectors of the present disclosure may be formulated using self-assembled nueleic acid nanoparticles.
[0482] Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of associating the active ingredient with an excipient and/or one or more other accessory ingredients.
[0483] A pharmaceutical composition in accordance with the present disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unt doses. As used herem, a "unit dose" refers to a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
[0484] Relative amounts of the active ingredient, the phamaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the present disclosure may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and 99% (w / w) of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, eg, between . 5 and 50%, between $1-30 \%$, between $5-80 \%$, at least 80% (w/w) active ingredient.
[0485] In some embodiments, the formulations described herein may contain at least one SOD 1 targeting polymucleotide. As a non-limiting example, the formulations may contain 1, 2,3,4 or 5 polynucleotide that target SOD 1 gene at different sites.
[0486] In some embodiments, a pharmaceutically acceptable excipient may be at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure. In some embodiments, an excipient is approved for use for humans and for veterinary use. In some embodiments, an excipient may be approved by United States Food and Drug Administration.

In some embodiments, an excipient may be of pharmaceutical grade. In some embodiments, an excipient may meet the standards of the United States Phamacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopocia, and/or the International Pharmacopoeia.
[0487] Excipients, which, as used herein, includes, but is not limited to, any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, prescrvatives, and the like, as suited to the particular dosage form desired. Various excipients for formulating pharmaceutical compositions and techniques for preparing the composition are known in the art (see Remington: The Science and Practice of Pharmacy, $21^{5 t}$ Edition, A. R. Gennaro, Lippincott, Williams \& Wilkins, Baltimore, MD, 2006; incorporated herein by reference in its entircty). The use of a conventional excipient medium may be contemplated within the scope of the present disclosure, except insofar as any conventional excipient medium may be incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the phamaceutical composition.
[0488] Exemplary dihents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, etc., and/or combinations thereof.
[0489] In some embodiments, the formulations may comprise at least one inactive ingredient. As used herein, the term "inactive ingredient" refers to one or more inactive agents included in formulations. In some embodiments, all, none or some of the inactive ingredients which may be used in the formulations of the present disclosure may be approved by the US Food and Drug Administration (FDA).
[0490] Formulations of viral vectors carrying SOD1 targeting polynucleotides disclosed herein may include cations or anions. In certain embodiments, the formulations include metal cations such as but not limited to, $\mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Mg}^{+}$and combinations thereof. [0491] As used herein, "pharmaceutically acceptable salts" refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moicty to its salt form (c.g., by reacting the free base group with a suitable organic acid). Examples of pharnaceutically acceptable salts include, but are not limited to,
mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. Representative acid addition salts include acetate, acetic acid, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzene sulfonic acid, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochlonide, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2 -naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quatemary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. The pharmaceutically acceptable salts of the present disclosure include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. The pharmaceutically acceptable salts of the present disclosure can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethy] acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, $17^{\text {th }}$ ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, Pharmacenitcal Salts: Properties, Selection, and Use, P.H. Stahl and C.G. Wermuth (eds.), Wiley-VCH, 2008, and Berge et al., Joumal of Pharmaceutical Science, 66 , 1-19 (1977); the content of each of which is incorporated herein by reference in their entirety.
[0492] The term "pharmaceutically acceptable solvate", as used herein, means a compound of the disclosure wherein molecules of a suitable solvent are incorporated in the crystal lattice. A suitable solvent is physiologically tolerable at the dosage administered. For example, solvates may be prepared by crystallization, recrystallization, or precipitation from a solution that includes organic solvents, water, or a mixture thereof Examples of suitable solvents are ethanol, water (for example, mono-, di-, and tri-hydrates), N -
methylpyrrolidinone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DNF), N, N-dimethylacetamide (DMAC), 1,3-dimethyl-2-imidazolidinone (DMEU), 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone (DMPU), acetonitrile (ACN), propylene glycol, ethyl acetate, benzyl alcohol, 2 -pyrrolidone, benzyl benzoate, and the like. When water is the solvent, the solvate is referred to as a "hydrate."
[0493] According to the present disclosure, the SODI targeting polynucleotides, or AAV vectors comprising the same, may be formulated for CNS delivery. Agents that cross the brain blood barrier may be used. For example, some cell penetrating peptides that can target siRNA molecules to the brain blood barrier endothelium may be used to formulate the siRNA duplexes targeting SOD1 gene (e.g., Mathupala, Expert Opin Ther Pat., 2009, 19, 137-140; the content of which is incorporated herein by reference in its entirety).
[0494] In certain embodiments, the AAV particles of the disclosure may be formulated in PBS, in combination with an ethylene oxide/propylene oxide copolymer (also known as pluronic or poloxamer).
[0495] In certain embodiments, the AAV particles of the disclosure may be formulated in PBS with 0.001% pluronic acid (F-68) (poloxamer 188) at a pH of about 7.0.
[0496] In certain embodiments, the AAV particles of the disclosure may be formulated in PBS with 0.001% pluronic acid (F-68) (poloxamer 188) at a pH of about 7.3.
[0497] In certain embodiments, the AAV particles of the disclosure may be formulated in PBS with 0.001% pluronic acid (F-68) (poloxamer 188) at a pH of about 7.4.
[0498] In certain embodiments, the AAV particles of the disclosure may be formulated in a solution comprising sodium chloride, sodium phosphate and an ethylene oxide/propylene oxide copolymer.
[0499] In certain embodiments, the AAV particles of the disclosure may be formulated in a solution comprising sodium chloride, sodium phosphate dibasic, sodium phosphate monobasic and poloxamer $188 /$ pluronic acid ($\mathrm{F}-68$).

Administration

[0500] The SODI targeting polymucleotides of the present disclosure may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited to intraparenchymal (into brain tissue), intraparenchymal (spinal cord), intraparenchymal (CNS), enteral (into the intestine), gastroenteral, epidural (into the dura matter), oral (by way of the mouth), transdermal, peridural, intracerebral (into the cerebrum), intracerebroventricular (into the cerebral ventricles), epicutaneous (application onto the skin),
intrademal, (into the skin itself), subcutaneous (under the skin), nasal administration (through the nose), intravenous (into a vein), intravenous bolus, intravenous drip, intraaterial (into an artery), intramuscular (into a muscle), intracardiac (into the heart), intraosseous infusion (into the bone marrow), intrathecal (into the spinal canal), intraperitoneal, (infusion or injection into the peritoneum), intravesical infusion, intravitreal, (through the eye), intracavernous injection (into a pathologic cavity) intracavitary (into the base of the penis), intravaginal administration, intrauterine, extra-amniotic administration, transdermal (diffusion through the intact skin for systemic distribution), transmucosal (diffusion through a mucous membrane), transvaginal, insumfation (snorting), sublingual, sublabial, enema, eye drops (onto the conjunctiva), in ear drops, auricular (in or by way of the ear), buccal (directed toward the cheek), conjunctival, cutaneous, dental (to a tooth or teeth), electro-osmosis, endocervical, endosimusial, endotracheal, extracorporeal, hemodialysis, infltration, interstitial, intra-abdominal, intra-amniotic, intra-articular, intrabiliary, intrabronchial, intrabursal, intracartilaginous (within a cartilage), intracaudal (within the cauda cquine), intracistemal (within the cistema magna cerebellomedularis), intracomeal (within the comea), dental intracomal, intracoronary (within the coronary atteries), intracorporus cavemosum (within the dilatable spaces of the corporus cavernosa of the penis), intradiscal (within a disc), intraductal (within a duct of a gland), intraduodenal (within the duodenum), intradural (within or beneath the dura), intraepidermal (to the epidemis), intraesophageal (to the esophagus), intragastric (within the stomach), intragingival (within the gingivae), intraileal (within the distal portion of the small intestine), intralesional (within or introduced directly to a localized lesion), intraluminal (within a lumen of a tube), intralymphatic (within the lymph), intramedullary (within the marrow cavity of a bone), intrameningeal (within the meninges), intraocular (within the eye), intraovarian (within the ovary), intrapericardial (within the pericardium), intrapleural (within the pleura), intraprostatic (within the prostate gland), intrapulmonary (within the lungs or its bronchi), intrasinal (within the nasal or periorbital sinuses), intraspinal (within the vertebral column), intrasynovial (within the synovial cavity of a joint), intratendinous (within a tendon), intratesticular (within the testicle), intrathecal (within the cerebrospinal fluid at any level of the cerebrospinal axis), intrathoracic (within the thorax), intratubular (within the tubules of an organ), intratumor (within a tumor), intratympanic (within the aurus media), intravascular (within a vessel or vessels), intraventricular (within a ventricle), iontophoresis (by means of electric current where ions of soluble salts migrate into the tissues of the body), irrigation (to bathe or flush
open wounds or body cavities), laryngeal (directly upon the larynx), nasogastric (through the nose and into the stomach), occhusive dressing technique (topical route administration which is then covered by a dressing which occludes the area), ophthalmic (to the external eye), oropharyngeal (directly to the mouth and pharynx), parenteral, percutancous, periarticular, peridural, perincural, periodontal, rectal, respiratory (within the respiratory tract by inhaling orally or nasally for local or systemic effect), retrobulbar (behind the pons or behind the cyeball, sof tissuc, subarachnoid, subconjuctival, submucosal, topical, transplacental (through or across the placenta), transtracheal (through the wall of the trachea), transtympanic (across or through the tympanic cavity), ureteral (to the ureter), urethral (to the urethra), vaginal, caudal block, diagnostic, nerve block, bliary perfusion, cardiac perfusion, photopheresis, intrastriatal (within the striatum) infusion or spinal.
[0501] In specific embodiments, compositions including A AV vectors comprising at least one SOD 1 targeting polynucleotide may be administered in a way which allows them to enter the central nervous system and penetrate into motor neurons.
[0502] In some embodiments, the therapentics of the present disclosure may be administered by muscular injection. Rizvanov et al. demonstrated for the first time that siRNA molecules, targeting mutant human $S O D 1$ mRNA, is taken up by the sciatic nerve, retrogradely transported to the perikarya of motor neurons, and inhibits mutant SOD 1 mRNA in SOD1 ${ }^{\text {G93A }}$ transgenic ALS mice (Rizvanov A A et al., Exp. Brain Res., 2009, 195(1), 14; the content of which is incorporated herein by reference in its entirety). Another study also demonstrated that muscle delivery of AAV expressing small hairpin RNAs (shRNAs) against the mutant SOD 1 gene, led to significant mutant SODI knockdown in the muscle as well as imervating motor neurons (Towne C et al., Mol Ther., 2011; 19(2): 274-283; the content of which is incorporated herein by reference in its enturety)
[0503] In some embodiments, AAV vectors that express siRNA duplexes of the present disclosure may be administered to a subject by peripheral injections and/or intranasal delivery. It was disclosed in the art that the peripheral administration of $A \mathrm{AV}$ vectors for siRNA duplexes can be transported to the central nervous system, for example, to the motor neurons (e.g., U.S. Patent Publication Nos. 20100240739; and 20100130594; the content of each of which is incorporated herein by reference in their entirety).
[0504] In other embodiments, compositions comprising at least one sirNA duplex of the disclosure may be administered to a subject by intracranial delivery (See, e.g, U. S. Pat. No. $8,119,611$; the content of which is incorporated herein by reference in its entirety).
[0505] The SOD1 targeting polynucleotides of the present disclosure may be administered in any suitable forms, either as a liquid solution or suspension, as a solid form suitable for liquid solution or suspension in a liquid solution. They may be formulated with any appropriate and pharmaceutically acceptable excipient.
[0500] The SOD1 targeting polynucleotides of the present disclosure may be administered in a "therapeutically effective" amount, i.e., an amount that is sufficient to alleviate and/or prevent at least one symptom associated with the disease, or provide improvement in the condition of the subject.
[0507] In some embodiments, the pharmaceutical compositions of the present disclosure may be administered by intraparenchymal injection or infusion. As used herein, "injection" and "infusion" may be used interchangeably and indicate the same. As a non-limiting example, the pharmaceutical compositions of the present disclosure may be administered to a subject by intraparenchymal injection. In certain embodiments, the intraparenchymal injection may be a spinal intraparenchymal injection, wherein the phamaccutical compositions may be administered directly to the tissue of the spinal cord. In certain embodiments, the intraparenchymal injection may be a CNS (central nervous system) intraparenchymal injection wherein the pharmaceutical compositions may be administered directly to the tissue of the CNS.
[0508] In certain embodiments, the pharmaceutical compositions of the present disclosure may be administered to the cistema magna in a therapeutically effective amount to transduce spinal cord motor neurons and/or astrocytes.
[0509] In certain embodiments, the pharmaceutical compositions of the present disclosure may be administered by intrastriatal infusion.
[0510] In some embodiments, the pharmaceutical compositions of the present disclosure may be administered by intraparenchymal injection as well as by another route of administration described herein.
[0511] In some embodiments, the pharmaceutical compositions of the present disclosure may be administered by intraparenchymal injection to the CNS, the brain and/or the spinal cord.
[0512] In some embodiments, the pharmaceutical compositions of the present disclosure may be administered by intraparenchymal injection and intrathecal injection. In certain embodiments, the pharmaceutical compositions of the present disclosure may be administered by intraparenchymal injection and intrastriatal injection.
[0513] In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at any level of the spinal cord, at a single or at multiple sites, at a volume of more than luL. In certain embodiments, a volume of luL-100uL is administered. In certain embodiments, a volume of $1 \mathrm{uL}-240 \mathrm{uL}$ is administered. In centain embodiments, a volume of luL-240uL is administered. In certain embodiments, a volume of $1 \mathrm{LL}-220 \mathrm{uL}$ is administered. In certain embodiments, a volume of between $1 \mathrm{LL}-200 \mathrm{uL}$ is administered. In certain embodiments, a volume of $1 \mathrm{LL}-180 \mathrm{uL}$ is administered. In certain embodiments, a volume of luL-160uL is administered. In certain embodiments, a volume of luL-150uL is administered. In certain embodiments, a volume of luL- 140 uL is administered. In certain embodiments, a volume of luL-130 uL is administered. In certain embodiments, a volume of luL-120uL is administered. In certan embodiments, a volume of $1 \mathrm{LL}-110 \mathrm{uL}$ is administered. In certain embodiments, a volume of $1 \mathrm{uL}-90 \mathrm{uL}$ is administered. In certain embodiments, a volume of between $1 \mathrm{LL}-80 \mathrm{LL}$ is administered. In certain embodiments, a volume of $1 \mathrm{LL}-70 \mathrm{uL}$ is administered. In certain embodiments, a volume of luL-60uL is administered. In certain embodiments, a volume of $1 \mathrm{uL}-50 \mathrm{uL}$ is administered. In certain embodiments, a volume of $1 \mathrm{uL}-40 \mathrm{uL}$ is administered. In certain embodiments, a volume of luL-30uL is administered. In certain embodiments, a volume of luL-20uL is administered. In certain embodiments a volume of $5 \mathrm{uL}-60 \mathrm{uL}$ is administered. In certain embodiments, a volume of $5 \mu \mathrm{~L}-240 \mu \mathrm{~L}$ is administered. In certain embodiments, a volume of $10 \mathrm{LL}-20 \mathrm{uL}$ is administered. In certain embodiments, a volume of $10 \mathrm{uL}-30 \mathrm{uL}$ is administered. In certain embodiments, a volume of $10 \mathrm{LL}-40 \mathrm{LL}$ is administered. In certain embodiments, a volume of $10 \mathrm{LL}-50 \mathrm{uL}$ is administered. In certain embodiments, a volune of $10 \mathrm{uL}-60 \mathrm{uL}$ is administered. In certain embodiments, a volume of $10 \mathrm{uL}-80 \mathrm{uL}$ is administered. In certain embodiments, a volume of $10 \mathrm{uL}-90 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-240 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-200 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-180 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-150 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-120 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-100 \mathrm{LL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-80 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-60 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-50 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-40 \mathrm{uL}$ is administered. In certain embodiments, a volume of $20 \mathrm{uL}-30 \mathrm{uL}$ is administered. In certain embodiments, a volume of $50 \mathrm{uL}-200 \mathrm{uL}$ is administered. In certain embodiments, a volume of $50 \mathrm{~mL}-180 \mathrm{uL}$ is administered. In certain
embodiments, a volume of $50 \mathrm{uL}-150 \mathrm{uL}$ is administered. In certain embodiments, a volume of $50 \mathrm{uL}-100 \mathrm{uL}$ is administered. In certain embodiments, a volume of $50 \mathrm{uL}-80 \mathrm{uL}$ is administered. In certain embodiments, a volume of $50 \mathrm{uL}-70 \mathrm{uL}$ is administered. In certain embodiments, a volume of $100 \mathrm{LL}-240 \mathrm{LL}$ is administered. In certain embodiments, a volume of $100 \mathrm{uL}-200 \mathrm{uL}$ is administered. In certain embodiments, a volume of $100 \mathrm{uL}-180 \mathrm{aL}$ is administered. In certain embodiments, a volume of $100 \mathrm{uL}-150 \mathrm{uL}$ is administered.
[0514] The spinal cord is simated within the spine. The spine consists of a series of vertebral segments. There are 7 cervical (Cl-C7), 12 thoracic (T1-T12), 5 lumbar (L1-L5), and 5 sacral (S1-S5) vertebral segments. Intraparenchymal injection or infusion into the spinal cord of AAV particles described herein may occur at one or multiple of these vertebral segments. For example, intraparenchymal injection or infusion into the spinal cord of AAV particles described herein may occur at $1,2,3,4,5$, or more than 5 sites. The intraparenchymal injection or infusion sites may be at one or more regions independently selected from the cervical spinal cord, the thoracic spinal cord, the lumbar spinal cord, and the sacral spinal cord. In some embodiments, AAV particles described herein are administered via intraparenchymal (IPa) infusion at two sites into the spinal cord.
[0515] In some embodiments, the AAV particle described herein may be administered via intraparenchymal (Pa) infusion to one or more sites (e.g, 2, 3, 4 or 5 sites) selected from Cl , $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6$, and C 7 . In some embodiments, the AAV particle described herein may be administered via intraparenchymal (Pa) infusion to two sites selected from $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3$, $\mathrm{C4}, \mathrm{C}, \mathrm{C} 6$, and C 7 .
[0516] In some cmbodiments, the AAV particle described hercin may be administered via intraparenchymal (Pa a) infusion to one or more sites (e.g., 2, 3, 4 or 5 sites) selected from T , $\mathrm{T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T}, \mathrm{~T}, \mathrm{~T} 8, \mathrm{~T}, \mathrm{~T} 10, \mathrm{~T} 11$, and T 12 . In some embodiments, the AAV particle described herein may be administered via intraparenchymal (IPa) infusion to two sites selected from $\mathrm{T}, \mathrm{T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T} 8, \mathrm{~T}, \mathrm{~T} 10, \mathrm{~T} 11$, and T 12.
[0517] In some embodiments, the AAV particle described herein may be administered via intraparenchymal (IPa) infusion to one or more sites (c.g., 2, 3, 4 or 5 sites) selected from Ll, L2, L3, L4, and L5. In some embodiments, the AAV particle described herein may be administered via intraparenchymal (IPa) infusion to two sites selected from $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4$, and $L 5$.
[0518] In some embodiments, the AAV particle described herein may be administered via intraparenchymal (Pa) infusion to one or more sites (e.g, 2, 3, 4 or 5 sites) selected from Sl ,
$\$ 2, \$ 3, \$ 4$, and $\$ 5$. In some embodiments, the AV particle described herem may be administered via intraparenchymal (Fa) infusion to two sites selected from $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4$, and S5.
$[0519]$ In some embodments, the AAV particle described herein may be administered via intraparenchymal (IPa) infusion at one or more sites (e.g., $2,3,4$ or 5 sites) selected from Cl , $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~T}, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T}, \mathrm{~T} 9, \mathrm{~T} 10, \mathrm{~T} 11, \mathrm{~T} 12, \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4$, $L 5, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4$, and S 5 . In certain embodiments, the $\mathrm{A} A \mathrm{~V}$ particle described herein may be administered via intraparenchymal (IPa) infusion at two sites selected fron $\mathrm{C}, \mathrm{C} 2, \mathrm{C} 3$, $\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~T}, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T} 8, \mathrm{~T} 9, \mathrm{~T} 10, \mathrm{~T} 11, \mathrm{~T} 12, \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4, \mathrm{~L} 5, \mathrm{~S} 1$, $\mathrm{S} 2, \mathrm{~S} 3, \mathrm{~S} 4$, and S 5 .
[0520] In some embodiments, the AAV particle described herein may be administered to one or more sites (e.g. $2,3,4$ or 5 sites) selected from $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6, \mathrm{C} 7, \mathrm{Tl}, \mathrm{T} 2$, $\mathrm{T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T} 8, \mathrm{~T}, \mathrm{~T} 10, \mathrm{~T} 11, \mathrm{~T} 12, \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4$, and L5. In certain embodiments, the AAV particle described herein may be administered via intraparenchymal (IPa) infusion at two sites selected from $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~T}, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T}, \mathrm{~T}, \mathrm{~T}, \mathrm{~T}, \mathrm{~T}$, $\mathrm{T} 10, \mathrm{~T} 11, \mathrm{~T} 12, \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4$, and L 5 .
[0521] In some embodments, the AAV particle described herein may be administered to one or more levels (e.g. 2,3 , or 4 sites) selected from $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~T}, \mathrm{~T} 2$, T3, T4, T5, T6, T7, T8, T9, T10, T11, and T12. In certain embodments, the AAV particle described herein may be administered via intraparenchymal (IPa) infusion at two sites selected from $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~T}, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T}, \mathrm{~T} 9, \mathrm{~T} 10, \mathrm{~T} 11$, and T12. As a non-limiting example, the two sites may include one site from the cervical spinal cord region (e.g., Cl-C7) and one site from the thoracic spinal cord region (e.g., T1-T12). [0522] In some embodments, the AAV particle described herein may be administered to one or more levels (e.g. 2,3 , or 4 sites) selected from $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~L} 1, \mathrm{~L} 2$, L3, LA, and $\mathbf{6 5}$. In certain embodiments, the AAV particle described herem may be administered via intraparenchymal (IPa) infusion at two sites selected from $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$, $\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3,\lfloor 4$, and L5. As a non-limiting example, the two sites may include one site from the cervical spinal cord region (e.g., Cl-C7) and one site from the lumbar spinal cord region (e.g., L1-L5).
[0523] In some embodiments, the AAV particle described herein may be administered to one or more levels (e.g, 2,3 , or 4 sites) selected from $\mathrm{Tl}, \mathrm{T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T}, \mathrm{~T}, \mathrm{~T} 7, \mathrm{~T}, \mathrm{~T}$, , T10, T11, T12, L1, L2, L3, LA, and L5. In certain embodiments, the AAV particle described
herein may be administered via intraparenchymal ($(\mathrm{Pa}$) infusion at two sites selected from Tl , $\mathrm{T} 2, \mathrm{~T}, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T}, \mathrm{~T} 7, \mathrm{~T}, \mathrm{~T}, \mathrm{~T} 10, \mathrm{~T} 11, \mathrm{~T} 12, \mathrm{~L}, \mathrm{~L} 2, \mathrm{L3}, \mathrm{~L} 4$, and L 5 . As a non-limiting example, the two sites may include one site from the thoracic spinal cord region (eg., TlT12) and one site from the lumbar spinal cord region (e.g., LI-L5).
[0524] In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at $\mathrm{C1}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6, \mathrm{C} 7$, and/or L 1 .
[0525] In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa a) infusion at Cl . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at C 2 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 3 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C4. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (PPa) infusion at CS . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C6. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C7.
[0526] In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at two sites. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at Cl and C 2. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at Cl and C 3 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (CPa) infusion at Cl and C 4 . In certain cmbodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at Cl and C5. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at Cl and C . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (PPa) infusion at Cl and C 7 .
[0527] In certain embodiments, the AAV particle described herein is administered via intraparenchymal ($(\mathrm{Pa}$) infusion at two sites. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at C 2 and C 3 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C2 and C4. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at C 2 and C 5 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 2 and

C6. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (1Pa) infusion at C 2 and C 7 .
[0528] In certain embodiments, the AAV particle described berein is administered via intraparenchymal (Pa) infusion at two sites. In certain embodiments, the AAV particle described herein is administered via intraparenchymal ($(\mathrm{Pa}$) infusion at C 3 and C 4 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at C3 and C5. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 3 and C 6 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 3 and C7
[0529] In certain embodiments, the AAV particle described berein is administered via intraparenchymal (IPa) infusion at two sites. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 4 and C 5 . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 4 and C . In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at C 4 and C 7 .
[0530] In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at two sites. In certain embodiments, the $A \mathrm{AV}$ particle described herein is administered via intraparenchymal (IPa) infusion at C5 and C6. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at C 5 and C 7
[0531] In certain embodiments, the AAV particle described herein is administered via intraparenchymal (IPa) infusion at two sites. In certain embodiments, the AAV particle described herein is administered via intraparenchymal (Pa) infusion at C 6 and C 7 of the spinal cord.
[0532] In certain embodiments, the AAV particle described herein is administered via spinal cord infusion at two sites. In another embodiment, the AAV particle described herein comprises administration at level C 3 or C 5 of the spinal cord. In yet another embodiment, the AAV particle described herein are administered at levels C 3 and C 5 of the spinal cord.
[0533] The intraparenchymal (IPa) infusion may be for $1,2,3,4,6,7,8,9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38$, $39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60$ or more than 60 minutes. As a non-limiting example, the infusion is for 10 minutes. As a non-limiting
example, the infusion is for 11 minutes. As a non-limiting example, the infusion is for 12 minutes. As a non-limiting example, the infusion is for 13 minutes. As a non-limiting example, the infusion is for 14 minutes. As a non-limiting example, the infusion is for 15 minutes.
[0534] The intraparenchymal (IPa), e.g., spinal cord, infusion may be, independently, a dose volume of about $5,10,15,20,25,30,35,40,45,50,55,60,80,120,240$ or more than 240 uL . As a non-limiting example, the dose volume is about 20 uL . As a non-limiting example, the dose volume is about 25 uL. As a non-limiting example, the dose volume is about 30 uL . As a non-limiting example, the dose volume is about 35 uL . As a non-limiting example, the dose volume is about 40 uL . As a non-limiting example, the dose volume is about 45 uL . As a non-limiting example, the dose volume is about 50 uL . As a non-limiting example, the dose volume is about 60 uL . As a non-limiting example, the dose volume is about 80 uL . As a non-limiting example, the dose volume is about 120 uL . As a non-limiting example, the dose volume is about 240 uL .
[0535] In certain embodiments, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ per site of administration. In another embodiment, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ per site of administration. In certain embodiments, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ for administration to level $\mathrm{C} 3, \mathrm{C}, \mathrm{C} 6$, or C 7 of the spinal cord. In certain embodiments, the dose volume is 5 ul-60uL for administration to level C3 of the spinal cord. In another embodiment, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ for administration to level C 5 of the spinal cord. In yet another embodiment, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ for administration to level C 3 of the spinal cord and the dose volume for administration to level C 5 of the spinal cord is $5 \mathrm{uL}-60 \mathrm{uL}$. In certain embodiments, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level $\mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 6$, or C 7 of the spinal cord. In certain embodiments, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level C3 of the spinal cord. In another embodiment, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level $C 5$ of the spinal cord. In yet another embodiment, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level C3 of the spinal cord and the dose volume for administration to level C5 of the spinal cord is $250 \mathrm{~L}-40 \mathrm{uL}$.
[0536] The intraparenchymal (IPa) , e.g., spinal cord, infusion may be at an injection rate of $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15$, or more than $15 \mathrm{uL} / \mathrm{min}$. As a non-limiting example, the injection rate is $5 \mathrm{uL} / \mathrm{min}$.
[0537] The intraparenchymal (TPa), e.g, spinal cord, infusion may be at a dose between about 1×10^{6} VG and about $1 \times 10^{16} \mathrm{VG}$. In some embodiments, delivery may comprise a
composition concentration of about $1 \times 10^{6}, 2 \times 10^{6}, 3 \times 10^{6}, 4 \times 10^{6}, 5 \times 10^{6}, 6 \times 10^{6}, 7 \times 10^{6}, 8 \times 10^{6}$, $9 \times 10^{6}, 1 \times 10^{7}, 2 \times 10^{7}, 3 \times 10^{7}, 4 \times 10^{7}, 5 \times 10^{7}, 6 \times 10^{7}, 7 \times 10^{7}, 8 \times 10^{7}, 9 \times 10^{7}, 1 \times 10^{8}, 2 \times 10^{8}, 3 \times 10^{8}$, $4 \times 10^{8}, 5 \times 10^{8}, 6 \times 10^{8}, 7 \times 10^{8}, 8 \times 10^{8}, 9 \times 10^{3}, 1 \times 10^{9}, 2 \times 10^{9}, 3 \times 10^{9}, 4 \times 10^{9}, 5 \times 10^{9}, 6 \times 10^{9}, 7 \times 10^{9}$, $8 \times 10^{9}, 9 \times 10^{9}, 1 \times 10^{10}, 2 \times 10^{10}, 3 \times 10^{10}, 4 \times 10^{10}, 5 \times 10^{10}, 6 \times 10^{10}, 7 \times 10^{10}, 8 \times 10^{10}, 9 \times 10^{10}, 1 \times 10^{11}$, $2 \times 10^{11}, 2.1 \times 10^{11}, 2.2 \times 10^{11}, 2.3 \times 10^{11}, 2.4 \times 10^{11}, 2.5 \times 10^{11}, 2.6 \times 10^{11}, 2.7 \times 10^{11}, 2.8 \times 10^{14}$, $2.9 \times 10^{11}, 3 \times 10^{21}, 4 \times 10^{11}, 4.1 \times 10^{11}, 4.2 \times 10^{11}, 4.3 \times 10^{11}, 4.4 \times 10^{11}, 4.5 \times 10^{11}, 4.6 \times 10^{11}, 4.7 \times 10^{11}$, $4.8 \times 10^{11}, 4.9 \times 10^{11}, 5 \times 10^{11}, 6 \times 10^{11}, 6.1 \times 10^{11}, 6.2 \times 10^{11}, 6.3 \times 10^{11}, 6.4 \times 10^{11}, 6.5 \times 10^{11}, 6.6 \times 10^{11}$, $6.7 \times 10^{11}, 6.8 \times 10^{11}, 6.9 \times 10^{11}, 7 \times 10^{11}, 7.1 \times 10^{11}, 7.2 \times 10^{11}, 7.3 \times 10^{11}, 7.4 \times 10^{11}, 7.5 \times 10^{11}$, $7.6 \times 10^{11}, 7.7 \times 10^{11}, 7.8 \times 10^{11}, 7.9 \times 10^{12}, 8 \times 10^{11}, 9 \times 10^{11}, 1 \times 10^{12}, 1.1 \times 10^{12}, 1.2 \times 10^{12}, 1.3 \times 10^{12}$, $1.4 \times 10^{12}, 1.5 \times 10^{12}, 1.6 \times 10^{12}, 1.7 \times 10^{12}, 1.8 \times 10^{12}, 1.9 \times 10^{12}, 2 \times 10^{12}, 3 \times 10^{12}, 4 \times 10^{12}, 4.1 \times 10^{12}$, $4.2 \times 10^{12}, 4.3 \times 10^{12}, 4.4 \times 10^{12}, 4.5 \times 10^{12}, 4.6 \times 10^{12}, 4.7 \times 10^{12}, 4.8 \times 10^{12}, 4.9 \times 10^{12}, 5 \times 10^{12}, 6 \times 10^{12}$, $7 \times 10^{12}, 8 \times 10^{12}, 8.1 \times 10^{12}, 8.2 \times 10^{12}, 8.3 \times 10^{12}, 8.4 \times 10^{12}, 8.5 \times 10^{12}, 8.6 \times 10^{22}, 8.7 \times 10^{12}, 8.8$ $\times 10^{12}, 8.9 \times 10^{12}, 9 \times 10^{12}, 1 \times 10^{13}, 2 \times 10^{13}, 3 \times 10^{13}, 4 \times 10^{13}, 5 \times 10^{13}, 6 \times 10^{13}, 6.7 \times 10^{13}, 7 \times 10^{13}$, $8 \times 10^{13}, 9 \times 10^{13}, 1 \times 10^{14}, 2 \times 10^{14}, 3 \times 10^{14}, 4 \times 10^{14}, 5 \times 10^{14}, 6 \times 10^{14}, 7 \times 10^{14}, 8 \times 10^{14}, 9 \times 10^{14}$, $1 \times 10^{15}, 2 \times 10^{15}, 3 \times 10^{15}, 4 \times 10^{15}, 5 \times 10^{15}, 6 \times 10^{15}, 7 \times 10^{15}, 8 \times 10^{15}, 9 \times 10^{15}$, or 1×10^{16} VG. As a non-limiting example, the dose is $4.4 \times 10^{10} \mathrm{VG}$. As a non-limiting example, the dose is $1.4 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $4.1 \times 10^{21} \mathrm{VG}$. As a non-limiting example, the dose is $4.4 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $5.0 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $5.1 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $6.6 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $7.2 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $8.0 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $8.1 \times 10^{11} \mathrm{VG}$. As a non-limiting example, the dose is $1.0 \times 10^{12} \mathrm{VG}$. As a non-limiting example, the dose is $1.1 \times 10^{12} \mathrm{VG}$. As a non-limiting example, the dose is $1.2 \times 10^{22} \mathrm{VG}$. As a non-limiting example, the dose is $1.3 \times 10^{12} \mathrm{VG}$. As a non-limiting example, the dose is $1.0 \times 10^{10} \mathrm{vg}-$ $1.0 \times 10^{12} \mathrm{VG}$. As a non-limiting example, the dose is $5.0 \times 10^{21} \mathrm{Vg}-8.0 \times 10^{11} \mathrm{VG}$.
[0538] In certain embodiments, the intraparenchymal (Pa), e.g., spinal cord, infusion may be between about $1.0 \times 10^{13} \mathrm{VG} / \mathrm{ml}$ and about $3 \times 10^{13} \mathrm{VG} / \mathrm{ml}$. In another embodiment, the intraparenchymal (IPa), e.g, spinal cord, infusion is $1.5 \times 10^{13} \mathrm{VG} / \mathrm{ml}-3.0 \times 10^{13} \mathrm{VG} / \mathrm{ml}$. In yet another embodiment, the intraparenchymal ($\mathrm{I} a$ a), e.g, spinal cord, infusion is 1.8×10^{13} VG/ml-2.5×10.3 VG/ml. In certain embodiments, the intraparenchymal (IPa), e.g, spinal cord, infusion is $1.8 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 1.85 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 1.9 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 1.95 \times 10^{13} \mathrm{VG} / \mathrm{ml}$, $2 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.01 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.02 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.03 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.04 \times 10^{13} \mathrm{VG} / \mathrm{ml}$,
$2.05 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.06 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.07 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.08 \times 10^{13} \mathrm{VG} / \mathrm{ml}, 2.09 \times 10^{13} \mathrm{VG} / \mathrm{ml}$, or $2.10 \times 10^{13} \mathrm{VG} / \mathrm{ml}$.
[0539] In certain embodiments, the dose volume is $50 \mathrm{~L}-60 \mathrm{k}$ per site of administration and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$. In certain embodiments, the dose volume is 5 uL 60 LL per site of administration and the dose is $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In another embodiment, the dose volume is $25 \mathrm{~L}-40 \mathrm{uL}$ per site of administration and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$. In another embodiment, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ per site of administration and the dose is $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In certain embodiments, the dose volume is $5 u \mathrm{~L}-60 \mathrm{uL}$ for administration to level $\mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 6$, or C 7 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$. In certain embodiments, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ for administration to level $\mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 6$, or C 7 of the spinal cord and the dose is $5.0 \times 10^{11} \mathrm{VG-}$ $8.0 \times 10^{11} \mathrm{VG}$. In certain embodiments, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ for administration to level C 3 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$. In certain cmbodiments, the dose volume is $5 \mathrm{uL}-60 \mathrm{uL}$ for administration to level C 3 of the spinal cord and the dose is $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In another embodiment, the dose volume is 5 uL 60 uL for administration to level C 5 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12}$ VG. In another embodiment, the dose volume is $5 u \mathrm{~L}-60 \mathrm{u}$ for admmintration to level C5 of the spinal cord and the dose is $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In yet another embodiment: i) the dose volume is $5 \mathrm{uL}-60 \mathrm{~L}$ for administration to level C 3 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$, for example, $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$, and ii) the dose volume for administration to level $C 5$ of the spinal cord is $50 \mathrm{~L}-60 \mathrm{LL}$ and the dose is $1.0 \times 10^{10} \mathrm{VG}-$ $1.0 \times 10^{12} \mathrm{VG}$, for example, $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In certain embodiments, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level $\mathrm{C} 3, \mathrm{C}, \mathrm{C} 6$, or C 7 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$. In certain embodiments, the dose volume is $25 \mathrm{uL}-40 \mathrm{aL}$ for administration to level $\mathrm{C}, \mathrm{C} 5, \mathrm{C} 6$, or C 7 of the spinal cord and the dose is $5.0 \times 10^{11} \mathrm{VG-}$ $8.0 \times 10^{11} \mathrm{VG}$. In certain embodiments, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level C 3 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12} \mathrm{VG}$. In certain embodiments, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level C3 of the spinal cord and the dose is $50 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In another embodiment, the dose volume is $25 \mathrm{uL}-$ 40 LL for administration to level C 5 of the spinal cord and the dose is $1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{12}$ VG. In another embodiment, the dose volume is $25 \mathrm{uL}-40 \mathrm{uL}$ for administration to level Cs of the spinal cord and the dose is $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$. In yet another embodiment, i) the dose volume is $25 \mathrm{uL}-40 \mathrm{ul}$ for administration to level C 3 of the spinal cord, and the dose is
$1.0 \times 10^{10} \mathrm{VG}-1.0 \times 10^{22} \mathrm{VG}$, for example, $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$, and ii) the dose volume for administration to level C 5 of the spinal cord is $25 \mathrm{uL}-40 \mathrm{uL}$, and the dose is $1.0 \times 10^{10} \mathrm{VG}-$ $1.0 \times 10^{12} \mathrm{VG}$, for example, $5.0 \times 10^{11} \mathrm{VG}-8.0 \times 10^{11} \mathrm{VG}$.
[0540] In cettain embodiments, the AAV particle described berein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at the same or different volume for both sites. The AAV particles may be delivered at the same or different volumes for both sites. The AAV particles may be delivered at the same or different infusion rates for both sites
[0541] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV paticles may be delivered at the same volume for both sites. The AAV particles may be delivered at the same dose for both sites. The AAV particles may be delivered at the same infusion rates for both sites.
[0542] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at different volumes for both sites. The AAV particles may be delivered at different doses for both sites. The AAV particles may be delivered at different infusion rates for both sites.
[0543] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at the same volume for both sites. The AAV particles may be delivered at different dose for both sites. The AAV particles may be delivered at different imfusion rates for both sites.
[0544] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at the same volume for both sites. The AAV particles may be delivered at different dose for both sites. The AAV particles may be delivered at the same infusion rates for both sites
[0545] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at the same volume for both sites. The AAV particles may be delivered at the same dose for both sites. The AAV particles may be delivered at different infusion rates for both sites.
[0546] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at different volumes for both sites. The AAV particles may be delivered at the same dose for both sites. The AAV particles may be delivered at the same infusion rates for both sites.
[0547] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at different volume for both sites. The AAV particles may be delivered at different dose for both sites. The AAV particles may be delivered at the same infusion rates for both sites.
[0548] In certain embodiments, the AAV particle described berein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at two sites. The AAV particles may be delivered at different volumes for both sites. The AAV particles may be delivered at the same dose for both sites. The AAV particles may be delivered at different infusion rates for both sites.
[0549] In certain embodiments, the AAV particle described herein encoding siRNA molecules may be administered via intraparenchymal (IPa) infusion at C 3 and C 5 . For the infusion at C 3 , the volume may be 25 uL and the dose may be $4.1 \mathrm{x} 10^{11} \mathrm{vg}$. For the infusion at C , the volume may be 40 uL and the dose may be $6.6 \times 10^{11} \mathrm{vg}$. The injection rate for both infusions may be $5 \mathrm{uL} / \mathrm{min}$ for about 13 minutes.
[0550] In some embodiments, Pa infusions (e g ., spinal cord) may result in delivery of the pharmaceutical compositions (i.e, AAV particles) along the extent of the rostral-caudal axis of the spinal cord. In some embodiments, IPa infusions (e.g., spinal cord) yield a rostrocaudal gradient of AAV particle transmission. In some embodiments, IPa infusions (e.g., spinal cord) result in delivery of the pharmaceutical compositions to regions distal to the injection site. While not wishing to be bound by theory, AAV particles of the disclosure may travel the length of the rostral caudal axis of the spinal cord subsequent to Pa infusion at a particular site. In other words, the AAV particles may not confined to the immediate vicinity of the injection site. As a non-limiting example, the AAV particles may be transported by a trans-synaptic (across the synapse) mechanism. This trans-synaptic mechanism may follow a tract or channel present along the rostral-caudal axis of the spinal cord.

Devices

[0551] As used herein, the term "device" refers to any article constructed or modified to suit a particular purpose, such as facilitating the delivery of the phamaceutical compositions to a subject or the detection of the administered pharmaceutical compositions in a subject
[0552] In some embodiments, the devices may be utilized for intraparenchymal injection of the pharmaceutical compositions. Devices may also be used to administer the phamacentical compositions to the spinal cord.
[0553] In some embodiments, the device may be a custom floating cannula In certain embodiments, the custom infusion camula with a narrow diameter is used for the injections. The cannula may include a 30 -gauge beveled needle of fixed length connected to a 30 -gauge flexible slastic tubing of variable length. The distal end may be fited with a Hamilton luer lock, which, in turn, may be attached to a microinjector pump. The proximal silastic twbing may be ensheathed within a 24 -gauge rigid outer camnula that is seated on the proximal end of the injection needle flange. The flange seats the outer canmula and may serve as a depth stop for the injection needle
[0554] In certain embodiments, the device may be an intraspinal cannula. The intraspinal cannula may include proximal syringe connection and a distal tip. The proximal syringe connection comprises a female luer lock syringe connector which may be connected to a 3 20 cannula with protective sheathing. The canmia may include a single internal lamen from the distal tip to the syringe. The cannula may inchude a $4-6^{\prime \prime}$ flexible portion near the distal tip. The distal tip includes a flange/depth stop and a blunt rigid tip. The intraspinal cannula may also include a mechanism for attachment to the subject
[0555] In certain embodiments, the device may be a complex stereotactic frame.
[0556] In certain embodiments, the device may be a simplified stereotactic frame.
[0557] In certain embodiments, the pharmaceutical compositions may be delivered without a frame.
[6558] In certain embodiments, the device may be magnetic resonance imager. Such imagers when used in conjunction with contrast agents such as Gadolinium can detect the administered pharmaceutical compositions in a subject
[0559] In certain embodiments, any of the devices described herein may be combined to deliver and/detect the administered phamaceutical compositions.

Dosing

[0560] The pharmaceutical compositions of the present disclosure may be administered to a subject using any amount effective for preventing and treating a SOD 1 associated disorder (e.g., ALS). The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like.
[0561] The compositions of the present disclosure are typically formulated in unit dosage form for ease of administration and uniformity of dosage. It will be understood, bowever, that the total daily usage of the compositions of the present disclosure may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effectiveness for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder, the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, and route of administration; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
[0562] In some specific embodiments, the doses of $A A V$ vectors for delivering siRNA duplexes of the present disclosure may be adapted dependent on the disease condition, the subject and the treatment strategy, etc. Typically, about $10^{5}, 10^{6}, 10^{12}, 10^{13}, 10^{14}, 10^{15}$ to 10^{16} viral genome (unit) may be administered per dose.
[0563] The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks.
[0564] In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more admimistrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. As used herein, a "split dose" is the division of single unit dose or total daly dose into two or more doses, e.g., two or more administrations of the single unit dose. As used herein, a "single unit dose" is a dose of any modulatory polynucleotide therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event. As used herein, a "total daily dose" is an amount given or prescribed in 24 hr period. It may be administered as a single unit dose. In certain embodiments, the viral vectors comprising the SOD I targeting
polynucleotides of the present disclosure are administered to a subject in split doses. They may be formulated in buffer only or in a formulation described herein.

Methods of treatment of disorders associated with the spinal cord, including ALS

[0565] Provided in the present disclosure are methods for introducing the SOD1 targeting polynucleotides described herein into cells, the method comprising introducing into said cells any of the polynucleotides in an amount sufficient for degradation of target SOD 1 mRNA to occur. In some aspects, the cells may be stem cells, neurons such as motor neurons, muscle cells and glial cells such as astrocytes.
[0560] Described here are methods for delivering AAV particles to the spinal cord, for the treatment of disorders associated with the spinal cord, such as, but not limited to motor neuron disease (e.g., ALS). In certain embodiments, these methods result in trans-synaptic transmission.
[0567] Disclosed herein are also methods for treating ALS associated with abnormal SODIf function in a subject in need of treatment. The method optionally comprises administering to the subject a therapeutically effective amount of a composition comprising or encoding at least one siRNA duplex targeting SODI gene. Said siRNA duplex will silence SOD1 gene expression and inhibit SODI protein production and reduce one or more symptoms of ALS in the subject such that ALS is therapeutically treated.
[0568] In some embodiments, the SOD1 targeting polynucleotide of the present disclosure or the composition comprising or encoding is administered to the central nervous system of the subject. In other embodiments, the siRNA duplex of the present disclosure or the composition comprising it is administered to the muscles of the subject
[0569] In particular, the SODI targeting polynucleotides may be delivered into specific types of targeted cells, including motor neurons; glial cells including oligodendrocyte, astrocyte and microglia; and/or other cells surrounding neurons such as T cells. Studies in human ALS patients and anmal SODI ALS model implicated that glial cells play an carly role in the dysfunction and death of ALS neurons. Normal SODI in the surrounding, protective glial cells can prevent the motor neurons from dying even though mutant SOD1 is present in motor neurons (e.g., reviewed by Philips and Rothstein, Exp. Neurol., 2014, May 22. pii: S0014-4886(14)00157-5; the content of which is incorporated herein by reference in its entirety).
[0570] In some specific embodiments, at least one siRNA duplex targeting SODI gene used as a therapy for ALS is inserted in a viral vector, such as an AAV vector.
[0571] In some embodiments, the present composition is administered as a single therapeutic or combination therapeutics for the treatment of ALS.
[0572] The viral vectors comprising or encoding siRNA duplexes targeting SOD1 gene may be used in combination with one or more other therapeutic, agents. By "in combination with," it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the present disclosure. Compositions can be adminstered concurently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.
[0573] Therapeutic agents that may be used in combination with the SODI targeting polynucleotides of the present disclosure can be small molecule compounds which are antioxidants, anti-inflammatory agents, anti-apoptosis agents, calcium regulators, antightamatergic agents, structural protein inhibitors, and compouds involved in metal ion regulation.
[0574] Compounds used in combination for treating ALS may include, but are not limited to, agents that reduce oxidative stress, such as free-radical scavengers, or Radicava (edaravone), antiglutamatergic agents: Riluzole, Topiramate, Talampanel, Lamotrigine, Dextromethorphan, Gabapentin and AMPA antagonist, Anti-apoptosis agents: Minocycline, Sodium phenylbutyrate and Armoclomol; Anti-inflammatory agent: ganglioside, Celecoxib, Cyclosporine, Azathioprine, Cyclophosphamide, Plasmaphoresis, Glatiramer acetate and thalidomide; Ceftriaxone (Berry et al., Plos One, 2013, 8(4)); Beat-lactam antibiotics; Pramipexole (a dopamine agonist) (Wang et al, Amyotrophic Lateral Scler, 2008, 9(1), 5058); Nimesulide in U.S. Patent Publication No. 20060074991 ; Diazoxide disclosed in U.S. Patent Publication No. 20130143873); pyrazolone derivatives disclosed in US Patent Publication No. 20080161378; free radical scavengers that inhibit oxidative stress-induced cell death, such as bromocriptine (US Patent Fublication No 2010105s 17); phenyl carbamate compounds discussed in PCT Patent Publication No. 2013100571; neuroprotective compounds disclosed in US Pat. Nos. 6,933,310 and 8,399,514 and US Patent Publication Nos. 20110237907 and 20140038927; and glycopeptides taught in U.S. Patent Publication No. 20070185012; the content of each of which is incorporated herein by reference in their entirety.
[0575] Therapeutic agents that may be used in combination therapy with the siRNA duplexes targeting SODI gene of the present disclosure may be hormones or variants that can protect neuron loss, such as adrenocorticotropic hormone (ACHH) or fragments thereof (e g ., U.S. Patent Publication No. 20130259875), Estrogen (e.g., U.S. Pat. Nos. 6,334,998 and $6,592,845$); the content of each of which is incorporated herein by reference in their entirety. [0576] Neurotrophic factors may be used in combination therapy with the siRNA duplexes targeting SOD1 gene of the present disclosure for treating ALS. Generally, a neurotrophic factor is defined as a substance that promotes survival, growth, differentiation, proliferation and /or maturation of a neuron, or stimulates increased activity of a neuron. In some embodiments, the present methods further comprise delivery of one or more trophic factors into the subject in need of treament. Trophic factors may include, but are not limited to, IGF-I, GDNF, BDNF, CTNF, VEGF, Colivelin, Xaliproden, Thyrotrophin-releasing hormone and ADNF, and variants thereof.
[0577] In one aspect, the AAV vector comprising at least one siRNA duplex targeting SOD I gene may be co-administered with AAV vectors expressing neurotrophic factors such as AAV-IGF-I (Vincent et al., Neuromolecular medicine, 2004, 6, 79-85; the content of which is incorporated herein by reference in its entirety) and AAV-GDNF (Wang et al., J Neurosci., 2002, 22, 6920-6928; the content of which is incorporated herein by reference in its enticty)
[0578] In some embodiments, the composition of the present disclosure for treating ALS is administered to the subject in need intravenously, intramuscularly, subcutaneously, intraperitoneally, intrathecally, intraparenchymally (CNS brain, and/or spinal cord) and/or intraventricularly, allowing the siRNA duplexes or vectors comprising the siRNA duplexes to pass through one or both the blood-brain barrier and the blood spinal cord barrier. In some aspects, the method includes administering (e.g., intraparenchymally administering, intraventricularly administering and/or intrathecally administering) directly to the central nervous system (CNS) of a subject (using, e.g., an infusion pump and/or a delivery scaffold) a therapeutically effective amount of a composition comprising at least one siRNA duplex targeting SOD 1 gene or AAV vectors comprising at least one siRNA duplex targeting SOD 1 gene, silencing/suppressing SOD 1 gene expression, and reducing one or more symptoms of ALS in the subject such that ALS is therapeutically treated.
[0579] In some embodiments, the composition of the present disclosure for treating ALS is administered to the subject in need intraparenchymally (CNS, brain, and/or spinal cord),
allowing the siRNA duplexes or vectors comprising the siRNA duplexes to pass through one or both the blood-brain bamer and the blood spinal cord barrier.
[0580] In certain aspects, the symptoms of A SS including motor neuron degeneration, muscle weakness, muscle atrophy, the stiffness of muscle, difficulty in breathing, shurred speech, fasciculation development, frontotemporal dementia and/or premature death are improved in the subject treated. In other aspects, the composition of the present disclosure is applied to one or both of the brain and the spinal cord. In other aspects, one or both of muscle coordination and muscle function are improved. In other aspects, the survival of the subject is prolonged

Definitions

[0581] Unless stated otherwise, the following terms and phrases have the meanings described below. The definitions are not meant to be limiting in nature and serve to provide a clearer understanding of certain aspects of the present disclosure.
[0582] As used herein, the term "mucleic acid", "polynucleotide" and "oligonucleotide" refer to any nucleic acid polymers composed of either polydeoxyribonucleotides (containing 2 -deoxy-D-ribose), or polyribonucleotides (containing D-ribose), or any other type of polynucleotide which is an N glycoside of a purine or pyrimidine base, or modified purine or pyrimidine bases. There is no intended distinction in length between the term "nucleic acid", "polynucleotide" and "oligonucleotide", and these tems will be used interchangeably. These terms refer only to the primary structure of the molecule. Thus, these terms include doubleand single-stranded DNA, as well as double- and single stranded RNA.
[0583] As used herein, the tem "RNA" or "RNA molecule" or "nibonucleic acid molecule" refers to a polymer of ribonucleotides; the term "DNA" or "DNA molecule" or "deoxyribonucleic acid molecule" refers to a polymer of deoxyribonucleotides. DNA and RNA can be synthesized naturally, eg., by DNA replication and transcription of DNA, respectively; or be chemically synthesized. BNA and RNA can be single-stranded (i.e., ssRNA or ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). The term "mRNA" or "messenger RNA", as used herein, refers to a single stranded RNA that encodes the amino acid sequence of one or more polypeptide chains.
[0584] As used herein, the term "RNA interfering" or "RNA" refers to a sequence specific regulatory mechanism mediated by RNA molecules which results in the inhibition or interfering or "silencing" of the expression of a corresponding protein-coding gene. RNAi
has been observed in many types of organisms, including plants, animals and fungi. RNAi occurs in cells naturally to remove foreign RNAs (e.g., viral RNAs). Natural RNAi proceeds via fragments cleaved from free dsRNA which direct the degradative mechanism to other similar RNA sequences. RNAi is controlled by the RNA-induced silencing complex (RISC) and is initiated by short/small dsRNA molecules in cell cytoplasm, where they interact with the catalytic RISC component argonaute. The dsRNA molecules can be introduced into cells exogenously. Exogenous dsRNA initiates RNAi by activating the ribonuclease protein Dicer, which binds and cleaves dsRNAs to produce double-stranded fragments of $21-25$ base pairs with a few umpaired overhang bases on each end. These short double stranded fragments are called small interfering RNAs (siRNAs).
[0585] As used herein, the term "small/short interfering RNA" or "siRNA" refers to an RNA molecule (or RNA analog) comprising between about 5-60 nucleotides (or mucleotide analogs) which is capable of directing or mediating RNAi. Preferably, a siRNA molecule comprises between about $15-30$ nucleotides or nucleotide analogs, more preferably between about $16-25$ nucleotides (or nucleotide analogs), even more preferably between about 18-23 nucleotides (or nucleotide analogs), and even more preferably between about 19-22 nucleotides (or nucleotide analogs) (e.g., 19, 20, 21 or 22 nucleotides or mucleotide analogs). The term "sbort" siRNA refers to a siRNA comprising 5-23 nucleotides, preferably 21 nucleotides (or nucleotide analogs), for example, 19, 20, 21 or 22 nucleotides. The term "long" siRNA refers to a siRNA comprising 24-60 nucleotides, preferably about $24-25$ nucleotides, for example, $23,24,25$ or 26 mucleotides. Short siRNAs may, in some instances, include fewer than 19 nucleotides, e.g., 16,17 or 18 nucleotides, or as few as 5 nucleotides, provided that the shorter siRNA retains the ability to mediate RNAi. Likewise, long siRNAs may, in some instances, include more than 26 nucleotides, e.g., $27,28,29,30,35,40,45,50$, 55 , or even 60 nucleotides, provided that the longer siRNA retains the ability to mediate RNAi or translational repression absent further processing, e.g., enzymatic processing, to a short siRNA. siRNAs can be single stranded RNA molecules (ss-siRNAs) or double stranded RNA moleculcs (ds-siRNAs) comprising a sense strand and an antisense strand which hybridized to form a duplex structure called siRNA duplex. According to the present disclosure, recombinant AAV vectors may encode one or more RNAi molecules such as an siRNA, shRNA, microRNA or precursor thereof.
[0586] As used herein, the term "the antisense strand" or "the first strand" or "the guide strand" of a siRNA molecule refers to a strand that is substantially complementary to a
section of about $10-50$ mucleotides, e.g., about 15-30, 16-25, 18-23 or 19-22 nucleotides of the mRNA of the gene targeted for silencing. The antisense strand or first strand has sequence sufficiently complementary to the desired target mRNA sequence to direct target-specific silencing, e.g., complementarity sufficient to trigger the destruction of the desired target mRNA by the RNAi machinery or process.
[0587] As used herein, the term "the sense strand" or "the second strand" or "the passenger strand" of a siRNA molecule refers to a strand that is complementary to the antisense strand or first strand. The antisense and sense strands of a siRNA molecule are hybridized to form a duplex structure. As used herein, a "siRNA duplex" includes a siRNA strand having sufficient complementarity to a section of about 10-50 nucleotides of the mRNA of the gene targeted for silencing and a siRNA strand having sufficient complementarity to form a duplex with the siRNA strand. According to the present disclosure, recombinant AAV vectors may encode a sense and/or antisense strand. [0588] As used herein, the term "complementary" refers to the ability of polynucleotides to form base pairs with one another. Base pairs are typically formed by hydrogen bonds between nucleotide units in antiparallel polynucleotide strands. Complementary polynucleotide strands can form base pair in the Watson-Crick manner (e.g., A to T, A to U, C to G), or in any other manner that allows for the formation of duplexes. As persons skilled in the art are aware, when using RNA as opposed to DNA, uracil rather than thymine is the base that is considered to be complementary to adenosine. However, when a U is denoted in the context of the present disclosure, the ability to substitute a T is implied, unless otherwise stated. Perfect complementarity or 100% complementarity refers to the situation in which each nucleotide unit of one polynucleotide strand can form hydrogen bond with a nucleotide unit of a second polynucleotide strand. Less than perfect complementarity refers to the situation in which some, but not all, nucleotide units of two strands can form bydrogen bond with each other. For example, for two 20 -mers, if only two base pairs on each strand can form hydrogen bond with each other, the polynucleotide strands exhibit 10% complementarity. In the same example, if 18 base pairs on each strand can form hydrogen bonds with each other, the polynucleotide strands exhibit 90% complementarity.
[0589] As used herein, "targeting" means the process of design and selection of nucleic acid sequence that will hybridize to a target nucleic acid and induce a desired effect.
[0590] The term "gene expression" refers to the process by which a nucleic acid sequence wodergoes successful transcription and in most instances translation to produce a protein or
peptide. For clarity, when reference is made to measurement of "gene expression", this should be understood to mean that measurements may be of the nucleic acid product of transcription, e.g., RNA or mRNA or of the amino acid product of translation, e.g., polypeptides or peptides. Methods of measuring the amount or levels of RNA, mRNA, polypeptides and peptides are well known in the art.
[0591] As used herein, the term "mutation" refers to any changing of the structure of a gene, resulting in a variant (also called "mutant") form that may be transmitted to subsequent generations. Mutations in a gene may be caused by the altemation of single base in DNA, or the deletion, insertion, or rearrangement of larger sections of genes or chromosomes.
[0592] As used herein, the term "vector" means any molecule or moiety which transports, transduces or otherwise acts as a carrier of a heterologous molecule such as the SOD1 targeting polynucleotides of the disclosure. A "viral vector" is a vector which comprises one or more polynucleotide regions encoding or comprising a molecule of interest, e.g., a transgene, a polynucleotide encoding a polypeptide or multi-polypeptide or a modulatory nucleic acid such as small interfering RNA (siRNA). Viral vectors are commonly used to deliver genetic materials into cells. Viral vectors are offen modified for specific applications. Types of viral vectors include retroviral vectors, lentiviral vectors, adenoviral vectors and adeno-associated viral vectors.
[0593] The tem "adeno-associated virus" or "AAV" or "AAV vector" as used herem refers to any vector which comprises or derives from components of an adeno associated vector and is sutable to infect manmalian cells, preferably human cells. The term AAV vector typically designates an AAV type viral particle or virion comprising a nueleic acid molecule encoding a siRNA duplex. The AAV vector may be derived from various serotypes, including combinations of serotypes (i.e., "pseudotyped" AAV) or from various genomes (e.g., single stranded or self-complementary). In addition, the AAV vector may be replication defective and/or targeted.
[0594] As used herein, the phrase "inhibit expression of a gene" means to cause a reduction in the amount of an expression product of the gene. The expression product can be a RNA molecule transcribed from the gene (e.g., an mRNA) or a polypeptide translated from an mRNA transcribed from the gene. Typically, a reduction in the level of an mRNA results in a reduction in the level of a polypeptide translated therefrom. The level of expression may be determined using standard techniques for measuring mRNA or protein.
[0595] As used herein, the term "in vitro" xefers to events that occur in an artificial environment, e.g., in a test tabe or reaction vessel, in cell culture, in a Petri dish, efc., rather than within an organism (e.g., animal, plant, or microbe).
[0596] As used herein, the term "in vivo" refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).
[0597] As used herein, the term "modified" refers to a changed state or structure of a molecule of the disclosure. Molecules may be modified in many ways including chemically, structurally, and functionally,
[0598] As used herein, the term "synthetic" means produced, prepared, and/or manufactured by the hand of man. Synthesis of polynucleotides or polypeptides or other molecules of the present disclosure nay be chemical or enzymatic.
[0599] As used herein, the term "transfection" refers to methods to introduce exogenous nucleic acids into a cell. Methods of transfection include, but are not limited to, chemical methods, physical treatments and cationic lipids or mixtures. The list of agents that can be transfected into a cell is large and includes, but is not limited to, siRNA, sense and/or antisense sequences, AAV vectors or particles, DNA encoding one or more genes and organized into an expression plasmid, proteins, protem fragments, and more.
[0600] As used herein, "off target" refers to any unintended effect on any one or more target, gene, or cellular transcript.
[0601] As used herein, the phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
[0602] As used herein, the term "effective amount" of an agent is that amount sufficient to effect beneficial or desired results, for example, clinical results, and, as such, an "effective amount" depends upon the context in which it is being applied. For example, in the context of administering an agent that treats ALS, an effective amount of an agent is, for example, an anount sufficient to achieve treatment, as defned herein, of ALS, as compared to the response obtained without administration of the agent.
[0603] As used herein, the term "therapeutically effective amount" means an amount of an agent to be delivered (e.g, nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or
susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition
[0604] As used herein, the term "subject" or "patient" refers to any organism to which a composition in accordance with the disclosure may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates such as chimpanzees and other apes and monkey species, and humans) and/or plants.
[0605] As used herein, the term "preventing" or "prevention" refers to delaying or forestalling the onset, development or progression of a condition or disease for a period of time, including weeks, months, or years.
[0606] The term "treatment" or "treating", as used herein, refers to the application of one or more specific procedures used for the cure or amelioration of a disease. In certain embodiments, the specific procedure is the administration of one or more phamaceutical agents. In the context of the present disclosure, the specific procedure is the administration of one or more siRNA duplexes or dsRNA targeting SODI gene.
[0607] As used herein, the term "amelioration" or "ameliorating" refers to a lessening of severity of at least one indicator of a condition or disease. For example, in the context of neurodegeneration disorder, amelioration includes the reduction of neuron loss.
[0608] As used herein, the term "administering" refers to providing a pharmaceutical agent or composition to a subject.
[0609] As used herein, the term "neurodegeneration" refers to a pathologie state which results in neural cell death. A large number of neurological disorders share neurodegencration as a common pathological state. For example, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS) all cause chronic neurodegeneration, which is characterized by a slow, progressive neural cell death over a period of several years, whereas acute neurodegeneration is characterized by a sudden onset of neural cell death as a result of ischemia, such as stroke, or trauma, such as traumatic brain injury, or as a result of axonal transection by demyelination or trauma caused, for example, by spinal cord injury or multiple sclerosis. In some neurological disorders, mainly one type of neuron cells is degenerative, for example, motor neuron degeneration in ALS.

EXAMPLES

Example 1. SOD1 Targeting Polynucleotide Design siRNA1

[0610] siRNA design is carried out to identify siRNAs targeting human SODI gene. The design uses the SODI transcripts from human (GenBank access No. NM_000454.4 (SEQ ID NO: 10), cynomolgus (GenBank access No. NM 001285406.1 (SEQ ID NO: 11), thesus SOD1 transcript (GenBank access No. NM 001032804.1 (SEQ ID NO: 11)), and Sus scrofa (GenBank access No. NM 001190422.1 (SEQ ID NO: 12), respectively (Table 10). The siRNA duplexes are designed with 100% identity to the human SODI transcript for positions 2-18 of the antisense strand, and partial or 100% identity to the non-human SODI transcript for position 2-18 of the antisense strand. In all siRNA duplexes, position 1 of the antisense strand is engineered to a U and position 19 of the sense strand is engineered to $\mathrm{a} C$, in order to umpair the duplex at this position.

Table 10. SOD1 gene sequences

SOD transctipus	Access No.	$\begin{aligned} & \text { SEQID } \\ & \text { NO. } \\ & \hline \end{aligned}$	Sequence
Human (Homo sapiens) SOD1 cDNA (9816p)	$\begin{aligned} & \hline \text { NM_000 } \\ & 454.4 \end{aligned}$	10	GTTGGGGCCAGAGTGGGCGAGGCGCGGAGGTCTGGCC tataangtagtcgcggagacgggctgctggtitgcgtcg TAGTCTCCTGCAGCGTCTGGGGTTTCCGTTGCAGTCCTCG GAACCAGGACCTCGGCGTGGCCTAGCGAGTTATGGCGA CGAAGGCCGTGTGCGTGCTGAAGGGCGACGGCCCAGTG CagGGCatcatcaattrcgagcagaagganagTantgg ACCAGTGAAGGTGTGGGGAAGCATTAAAGGACTGACTG a agGCCTGCATGGATHCCATGTKCATGAGTTYGGAGATA atacagcaggCtGTaccagtgcaggtcetcactttaate CTCTATCCAGAAAACACGGTGGGCCAAAGGATGAAGAG agGCatGTTGGAGACTTGGGCAATGTGACTGCTGACAA agargGTgTgGCCGATGTGTCTATTGAAGATTCTGTGAT CTCACTCTCAGGAGACCATTGCATCATTGGCCGCACACT gGTGGTCCATGAAAAAGCAGATGACTTGGGCAAAGGTG GAAATGAAGAAAGTACAAAGACAGGAAACGCTGGAAGT CGTTTGGCTTGTGGTGTAATTGGGATCGCCCAATAAACA TTCCCTTGGATGTAGTCTGAGGCCCCTTAACTCATCTGTT ATCCTGCTAGCTGTAGAAATGTATCCTGATAAACATTAA ACACTGTAATCTTAAAAGTGTAATTGTGTGACTTTTTCA GagTTGCTTTAAAGTACCTGTAGTGAGAAACTGATTTAT GATCACTTGGAAGATTTGTATAGTTTTATAAAACTCAGT TAAAATGTCTGTTTCAATGACCTGTATTTTGCCAGACTTA AATCACAGATGGGTATTAAACTTGTCAGAATTTCTTTGT CATTCAAGCCTGTGAATAAAAACCCTGTATGGCACTTAT tatgaggctattanaagantccaanttcanactaanaa AAAAAAAAAAAAA
Cynomolgus (Macaca fasciculatis) SODI cDNA (465bp)	$\begin{aligned} & \hline \text { NM 001 } \\ & 285406.1 \end{aligned}$	11	ATGGCGATGAAGGCCGTGTGCGTGTTGAAGGGCGACAG CCCAGTGCAGGGCACCATCAATTTCGAGCAGAAGGAAA GTAATGGACCAGTGAAGGTGTGGGGAAGCATTACAGGA TTGACTGAAGGCCTGCATGGATTCCATGTTCATCAGTTT GGAGATAATACACAAGGCTGTACCAGTGCAGGTCCTCA CTTTAATCCTCTATCCAGACAACACGGTGGGCCAAAGGA TGAAGAGAGGCATGTTGGAGACCTGGGCAATGTGACTG CTGGCAAAGATGGTGTGGCCAAGGTGTCTTTCGAAGATT

			CTGTGATCTCGCTCTCAGGAGACCATTCCATCATTGGCC GCACATTGGTGGTCCATGAAAAAGCAGATGACTTGGGC AAAGGTGGAAATGAAGAAAGTAAAAAGACAGGAAACG CTGGAGGTCGTCTGGCTTGTGGTGTAATTGGGATCGCCC AATAA
thesus (Macaca mulata) SOD1 cDNA (465bp)	$\begin{aligned} & \text { NM 001 } \\ & 032804.1 \end{aligned}$	11	ATGGCGATGAAGGCCGTGTGCGTGTTGAAGGGCGACAG CCCAGTGCAGGGCACCATCAATTTCGAGCAGAAGGAAA GTAATGGACCAGTGAAGGTGTGGGGAAGCATTACAGGA TTGACTGAAGGCCTGCATGGATTCCATGTTCATCAGTTT GGAGATAATACACAAGGCTGTACCAGTGCAGGTCCTCA CTTTAATCCTCTATCCAGACAACACGGTGGGCCAAAGGA TGAAGAGAGGCATGTTGGAGACCTGGGCAATGTGACTG CTGGCAAAGATGGTGTGGCCAAGGTGTCTTTCGAAGATT CTGTGATCTCGCTCTCAGGAGACCATTCCATCATTGGCC GCACATTGGTGGTCCATGAAAAAGCAGATGACTTGGGC AAAGGTGGAAATGAAGAAAGTAAAAAGACAGGAAACG CTGGAGGTCGTOTGGCTTGTGGTGTAATTGGGATCGCCC AATAA
Pig (Sus scrofa) SODI CDNA 658 bp)	$\begin{array}{\|l\|} \hline \text { NM_001 } \\ 190422.1 \end{array}$	12	CGTCGGCGTGTACTGCGGCCTCTCCCGCTGCTTCTGGTA CCCTCCCAGCCCGGACCGGAGCGCGCCCCCGCGAGTCAT GGCGACGAAGGCCGTGTGTGTGCTGAAGGGCGACGGCC CGGTGCAGGGCACCATCTACTTCGAGCTGAAGGGAGAG AAGACAGTGTTAGTAACGGGAACCATTAAAGGACTGGC TGAAGGTGATCATGGATTCCATGTCCATCAGTTTGGAGA TAATACACAAGGCTGTACCAGTGCAGGTCCTCACTTCAA TCCTGAATCCAAAAAACATGGTGGGCCAAAGGATCAAG AGAGGCACGTTGGAGACCTGGGCAATGTGACTGCTGGC AAAGATGGTGTGGCCACTGTGTACATCGAAGATTCTGTG ATCGCCCTCTCGGGAGACCATTCCATCATTGGCCGCACA ATGGTGGTCCATGAAAAACCAGATGACTTGGGCAGAGG TGGAAATGAAGAAAGTACAAAGACGGGAAATGCTGGAA GTCGTTTGGCCTGTGGTOTAATTGGGATCACCCAGTAAA CATTCCCTCATGCCATGGTCTGAATGCCAGTAACTCATC TGTTATETTGCTAGTTGTAGTTGTAGAAATTTAACTTGAT AAACATTAAACACTGTAACCTTAAAAAAAAAAAAAAAA AA

Example 2, Intraparenchumal delivery of $A A V$ to snimal cord

[0611] Traditional routes of AAV delivery, such as intrathecal or intravenous administration, have not yielded robust transduction of the cervical and thoracic spinal cord in large mammals so a new route of AAV delivery - intraparenchymal injection - was evaluated for improved cervical spinal cord transduction efficiency. Biodistribution of viral genomes and SODI mRNA knockdown were evaluated in the ventral hom at multiple levels of the spinal cord, including the cervical level
[0612] In the first experiment, three Göttingen adult (6 months of age), female mini-pigs weighing $14-20 \mathrm{~kg}$ each were utilized for the study. Animals were not pre-screened for neutralizing antibodies to AAV . A $4-5 \mathrm{~cm}$ laminectomy was performed between C 3 and C 5 , allowing for 3 cm between injections. Self-complementary (sc) AAV vectors (scAAV) with ITR to ITR sequence of SEQ ID NO: 9 , including an H 1 promoter and modulatory
polynucleotide (SEQ ID NO: 6) comprising siRNA targeting SODI were packaged in AAVrh 10 (scAAV-miRSODI)
[0633] Two injections of the scAAV-miRSODI (titer $2.03 \times 10^{13} \mathrm{vg} / \mathrm{mL}$) were administered, for a total dose/animal of $1.3 \times 10^{12} \mathrm{vg}$. At the rostral end of the laminectomy, i.e at the C 3 level of the spinal cord, a single $25 \mu \mathrm{~L}\left(5.1 \times 10^{11} \mathrm{vg}\right)$ volume was injected into the ventral hom of the spinal cord. At the caudal end of the laminectomy, i.e. at the C 5 level of the spinal cord, a single $40 \mu \mathrm{~L}\left(8.1 \times 10^{\mathrm{I}} \mathrm{vg}\right)$ volume was injected into the ventral horn of the contralateral side. Both injections were administered at the rate of $5 \mu \mathrm{~L} / \mathrm{min}$, yielding an approximately 13 -minute total infusion time. Four weeks following the procedure, animals were sacrificed, and spinal cord tissue was collected for analyses.
[0614] To determine if intraparenchymal administration of the scAAV-miRSOD1 leads to transduction of the spinal cord and knockdown of SOD 1 mRNA, ventral hom punches were analyzed by the branched DNA (bDNA) method to quantify levels of SOD 1 mRNA , normalized to the geometric mean of beta-actin (ACTB), TATA-box binding protein (TBP) and peptidylproly isomerase A (PPIA) mRNA levels. These normalized SOD 1 mRNA levels were then expressed relative to normalized SOD 1 mRNA levels in ventral horn punches from the lumbar region of the spinal cord (L1-L3) from the same animals.
[0615] Significant SODI mRNA knockdown was evident in ventral horn punches from Cl to $\mathrm{T} 7-10$, relative to SOD 1 mRNA levels in ventral hom punches from $\mathrm{Ll}-\mathrm{L3}$, with similar SODI mRNA levels in ventral hom punches from both sides of the spinal cord. Oneway ANOVA and Dumnett's test indicated significant SOD1 mRNA knockdown at each level of the spinal cord (C1-T5 $p<0.0001 ; \mathrm{T7}-10 \mathrm{p}<0.05$). As shown in Table 11, spinal cord segments closest to the injections exhibited the greatest SODI mRNA knockdown. Spinal segments Cl through C8 had robust and significant knockdown of SOD 1 mRNA (approximately $50-75 \%$ knockdown). Even at spinal segment T5, distant from the site of vector injection, significant knockdown of SOD 1 mRNA ($32.6 \pm 5.1 \%$ knockdown) was observed.

Table 13. SOD m RNA levels relative to L1-L3

Spinal cord segmena							
	Pig $\# 301$		Pig \#302		Pig\#303		Meam \pm
	Ventral Hom	Ventral Hom 2	Ventral Horn 1	Ventral Horn 2	Ventral Horn 1	Ventral Horn 2	Standard Error
Cl	47.2	49.9	432	48.7	48.3	44.8	47.0 ± 1.0
C2	39.9	41.3	42.3	41.0	49.6	46.5	43.4 ± 1.5
C3-tostal	25.1	28.2	18.1	15.0	22.6	32.5	23.6 ± 2.6
C3-caudal	14.0	17.0	33.1	35.7	29.7	21.3	25.1 ± 3.7

C5-rostral	21.4	19.0	14.6	21.0	36.1	35.3	24.6 ± 3.7
C5-caudal	25.4	26.6	38.2	33.8	31.7	32.8	31.42 .0
C7	31.9	15.6	53.6	48.9	44.1	39.2	38.9 ± 5.6
C8	50.1	45.1	50.5	48.7	36.7	42.8	45.7 ± 2.2
T1-T2	54.0	77.7	55.6	56.0	55.3	55.2	59.0 ± 3.8
TS	65.3	53.1	63.0	58.0	84.9	80.2	67.45 .1
T7-T10	84.6	81.5	83.0	68.0	94.3	93.1	84.1 ± 3.9
L1-L3	98.2	93.8	102.0	96.8	105.2	103.9	$100.0 \pm .18$

[0616] Nomalized SODI mRNA levels in ventral hom punches from AAV particletreated pigs were also expressed relative to nomalized SOD 1 mRNA levels in ventral hom punches from the spinal cord of a single naive pig. SOD 1 mRNA levels were nomalized to the geometric mean of beta-actin (ACTB). TATA-box binding protein (TBP) and peptidylprolyl isomerase A (PPIA) mRNA levels. SODI mRNA levels from cach cervical segment of the treated pigs were then expressed relative to normalized SOD 1 mRNA levels using C2 SOD 1 mRNA levels from the naive pig. Thoracic SOD 1 mRNA levels (treated pigs) were nomalized using T 2 SOD 1 mRNA levels (naive pig), and lumbar SOD 1 mRNA levels (treated pigs) were nomalized using L2 SOD 1 mRNA levels from the naive pig Ventral hom punches from the näve pig spinal cord were collected from C2, T2 and L2 levels. As shown in Table 12, SOD 1 mRNA levels in the ventral horn punches of the scAAV-miRSODI administered pigs showed significant knockdown relative to the naive pig (one-way ANOVA and Dunnctt's test $\mathrm{p}<0.0001$) at all spinal cord levels tested. Similar SOD 1 mRNA levels were observed in ventral hom punches from both sides of the spinal cord. SODI mRNA knockdown was strongest near the C3 and C5 injection sites (79.84% knockdown). Even at spinal cord levels distant from the sites of AAV injection, ventral hom punches exbibited significant SOD 1 mRNA knockdown. At the T5, T7-T10, and Ll spinal cord levels, ventral hom punches showed significant $55.1 \pm 3.4 \%, 44.0 \pm 2.6 \%$ and $33.4=$ 1.2% knockdown of SOD 1 mRNA, respectively.

Table 12. SON1 mRNA levels relative to maive control

Spinal cord segment	SOD mRNA leve nommalized to geomean (ACTB, TERP and PMIA) (relative to naive controk, \%)						
	Pig \#301		Pig \#302		Pig \#303		Vean 土 Stamolard Error
	$\begin{aligned} & \text { Ventral } \\ & \text { Hors } \\ & \text { Punch } 1 \end{aligned}$	Ventral Horm Punch 2	$\begin{aligned} & \text { Ventral } \\ & \text { Fors } \\ & \text { Punch } 1 \end{aligned}$	$\begin{aligned} & \text { Ventral } \\ & \text { Horre } \\ & \text { Punch } 2 \end{aligned}$	$\begin{aligned} & \text { Ventral } \\ & \text { Korn } \\ & \text { Puach } 1 \end{aligned}$	$\begin{aligned} & \text { Ventral } \\ & \text { Horn } \\ & \text { Punch } 2 \end{aligned}$	
Cl	315	33.2	28.8	32.4	32.1	29.8	31.3土0.7
C 2	26.6	27.5	28.2	27.3	33.0	30.9	28.9 ± 1.0
C3-rostral	16.7	18.8	12.1	10.0	150	21.6	15.7 ± 18
C3-caudal	9.3	113	22.0	23.8	198	14.2	16.7×2.4
C5-rostmal	14.3	12.6	9.7	14.0	24.0	23.5	16.4 ± 2.4

C5-caudal	16.9	17.7	25.5	22.5	21.1	21.8	20.9 ± 1.3
C 7	21.2	10.4	35.7	32.6	29.3	26.1	25.9 ± 3.7
C 8	33.3	30.0	33.6	32.4	24.5	28.5	30.4 ± 1.4
$\mathrm{~T}-2$	36.0	51.7	37.0	37.3	36.8	36.8	39.3 ± 2.5
T 5	43.5	35.3	41.9	38.6	56.5	53.4	44.9 ± 3.4
$\mathrm{T7}-10$	56.4	54.2	55.3	45.2	62.8	62.0	56.0 ± 2.6
L	65.4	62.5	67.9	64.5	70.1	69.2	66.6 ± 12

[6617] As shown in Table 13, the analysis of vector genome biodistribution by digital droplet PCR showed high vector genome copy number per diploid cell in ventral hon punches of the cervical spinal cord nearest the injection sites. Vector genome copy numbers dropped steeply (>10-fold) from C3 to C2, and from C7 to C8 spinal cord levels. However, even at spinal cord levels distant from the C3 and C5 sites of AAV injection, ventral hom punches exhibited significant vector genome copies. At the T5, T7-T10, and LI-L3 spinal cord levels, ventral hom punches showed significant $1.7 \pm 1.2,0.2 \pm 0.0$, and 0.5 ± 0.2 vector genome copies per diploid cell, respectively.

Table 13. Vector Genome Quantification

Spinal cord segment	Vector Germme/Biploid Cell (vg/de)						
	Pig 3 301		Pis H302		Pig \#303		Wean 土 Standard Error
	Ventral Horm Punch 1	Ventral forn Puxch 2	Ventral Horn Funch 1	Ventral Hom Punch 2	Ventrak Hom Puncta 3	Ventral Forn Paxch 2	
Cl	4.4	4.8	10.7	7.2	4.7	3.1	5.8 ± 1.1
C 2	14.1	6.6	25.4	32.1	19.8	13.2	$18.5+3.8$
C3-rostral	763.1	13058	618.1	622	798.4	286.2	6389 ± 177.3
C3-catdal	147.3	837.6	1445.7	79.5	185.4	817.1	$\begin{aligned} & 585.4 \pm \\ & 221.0 \end{aligned}$
C5-Rostral	677.7	448.0	1703.8	41.1	70.5	138.2	$\begin{aligned} & 513.2 \pm \\ & 278.7 \end{aligned}$
C5-Caudal	644.3	60.7	564.6	70.2	78.0	174.7	$\begin{aligned} & 265.4 \pm \\ & 109.0 \end{aligned}$
C7	29.4	1225.7	5.5	6.1	24.4	9.3	$\begin{aligned} & 216.7 \pm \\ & 201.8 \\ & \hline \end{aligned}$
C8	12.0	22.4	42	1.7	7.7	11.6	9.9 ± 30
Tl-T2	6.7	0.4	1.3	1.6	3.3	3.9	25 ± 0.9
T5	0.6	7.7	0.6	0.5	0.4	0.2	1.7 ± 1.2
T7-T10	0.3	0.3	0.3	0.4	0.1	0.2	0.2 ± 0.0
L1/L3	0.5	0.4	0.3	0.1	1.4	0.2	0.5 ± 0.2

[0618] Vector genome distribution showed a linear correlation to levels of SOD1 mRNA knockdown in both analyses, i.e., when SOD1 knockdown was compared to L1-L3 ($r^{2}=0.26$, $p<0.0001$) and when compared to naive control ($r^{2}=0.26, p<0.0001$). Low vector genome copy number per diploid cell ($<1 \mathrm{vg} / \mathrm{dc}$) such as 0.2 or 0.5 vector genome copies per diploid cell on average, still yielded substantial SOD 1 mRNA knockdown.
[0619] In a second experiment, six Götringen adult (>9 months of age) female and male mini-pigs weighing $15-30 \mathrm{~kg}$ each were utilized. Anmals were not pre-screened for neutralizing antibodies to AAV. A multi-level laminectomy was performed at the C3 to C5 levels to access the spinal cord, allowing for 3 cm between injections.
[0620] In the first group of three pigs, two injections of the scAAV-miRSODI (titer $2.03 \times 10^{13} \mathrm{vg} / \mathrm{mL}$) were administered, for a total dose/animal of $1.6 \times 10^{12} \mathrm{vg}$. At the rostral end of the laminectomy, a single $40 \mu \mathrm{~L}\left(8.1 \times 10^{11} \mathrm{vg}\right)$ volume was injected into the ventral hom at rostral C 3 on the right side. At the caudal end of the laminectomy, a single $40 \mu \mathrm{~L}$ (8.1 E 1 lvg) volume was injected into the ventral hom at caudal C5 on the left side. Both injections were administered at the rate of $5 \mu \mathrm{~L} / \mathrm{min}$, yielding an approximately 16 -minute total infusion time. In the second group of three pigs, vehicle was injected with the same dosing paradigm. Four weeks following the procedure, animals were sacrificed, and spinal cord tissue was collected for analyses.
[0621] Ventral hom punches were analyzed by the branched DNA (bDNA) method for knockdown of SOB1 mRNA, nomalized to the geometric mean of beta-actin (ACTB), TATA-box binding protein (TBP) and peptidylprolyl isomerase A (PPIA) mRNA levels, and expressed relative to nomalized SOD 1 mRNA levels in ventral hom punches from the same spinal cord level of vehicle treated animals. Significant SOD 1 mRNA knockdown was evident in punches taken from the lef ventral hom from $C 1$ to $T 12$ and in punches taken from the right ventral horn from Cl to L 1 , with similar SOD 1 mRNA levels in ventral horn punches from both sides of the spinal cord. Two-way ANOVA and Sidak's multiple comparisons test indicated significant SOD I mRNA knockdown at each level of the spinal cord relative to the vehicle control group (left side: Cl-T7 $p<0.0001 ; \mathrm{T} 10 \mathrm{p}<0.001, \mathrm{~T} 12$ $\mathrm{P}<0.01$, right side: $\mathrm{Cl}-\mathrm{T} 10 \mathrm{p}<0.0001 ; \mathrm{T} 2 \mathrm{p}<0.001, \mathrm{Ll} \mathrm{P}<0.01$). As shown in Table 14 , spinal cord segments closest to the injections exhibited the greatest SOD 1 mRNA knockdown, with the maximal SOD 1 mRNA knockdown at C5. Spinal segments CI through T5 had robust and significant knockdown of SOD 1 mRNA (50-82\% knockdown). Even at spinal segment T12 on the left side and at spinal cord segment $L 1$ at the right side, distant from the site of vector injection, significant knockdown of $\mathrm{SOD} 1 \mathrm{mRNA}(35.22 \pm 2.76 \%$; $29.14 \pm 10.36 \%$ knockdown, respectively) was observed.

Table 14. SODI mRNA levels relative to velucle group

Spimal cord Segments	SOD 1 mRNA level normalized to geometric mean of housekeeping genes ACTB, TBP and PPLA (relative to vehicle control, \%)							
	Left Ventral Born							
	Vehicke				AAV			
	$\begin{gathered} \text { Pig } \\ \text { H1001 } \end{gathered}$	$\begin{gathered} \text { Pig } \\ \mathrm{H1002} \end{gathered}$	$\begin{gathered} \xi i g \\ \# 1003 \end{gathered}$	Mean \pm Standard Error	$\begin{gathered} \text { Pig } \\ 41005 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \text { H1004 } \end{gathered}$	$\begin{gathered} \text { Pig } \\ H 1006 \end{gathered}$	Meant Standard Erroy
C1	103.66	91.48	106.86	100+4.52	38.45	32.18	37.13	35.92 ± 1.91
C2	79.26	103.29	117.45	100 ± 11.15	27.49	30.11	35.06	30.88 ± 2.22
C3	110.32	107.20	82.48	100+8.81	35.71	41.30	34.96	37.32 ± 200
Cs-Rostral	98.87	122.26	78.86	100 ± 12.54	11.33	14.71	28.73	18.26 ± 5.33
C5-Caudal	99.80	9121	108.99	100 ± 5.13	21.56	20.63	15.97	19.39 ± 1.73
C7	99.00	96.50	104.49	100 ± 2.36	22.55	23.66	26.87	24.36 ± 1.30
C8	106.34	92.34	101.31	$100+4.09$	23.27	32.11	29.59	28.32 ± 2.63
Tl	89.95	92.54	117.51	100 $10 \pm .78$	30.34	41.09	35.28	35.57 ± 311
T4	84.33	100.11	115.56	100 ± 9.02	40.53	45.11	41.78	42.47 ± 1.37
T5	10090	97.81	10130	100 ± 1.10	4422	43.50	41.29	43.00 ± 0.88
T7	91.75	102.39	105.85	100 ± 4.24	63.00	49.46	49.49	53.98 ± 4.51
T10	88.91	111.54	99.55	100 ± 6.34	62.41	50.33	61.55	58.10 ± 3.89
T 12	87.58	107.32	105.09	100 ± 6.24	60.37	64.13	69.85	64.78 ± 2.76
LI	102.65	104.40	92.95	100 ± 3.56	65.43	58.89	107.53	$\begin{gathered} 77.29 \pm 15.2 \\ 4 \\ \hline \end{gathered}$
Spinal cord Scgments	Riphat Ventral Horn							
	Vehicle				AAV			
	$\begin{gathered} \text { इig } \\ \# 1001 \end{gathered}$	$\begin{gathered} \text { Pig } \\ 41002 \end{gathered}$	$\begin{gathered} F i g \\ \text { H1003 } \end{gathered}$	Mean \pm Standard EMrar	$\begin{gathered} \text { Pig } \\ H 1005 \end{gathered}$	$\begin{gathered} 3 i \underline{4} \\ \# 1004 \end{gathered}$	Pig 41006	Mean \pm Standard Erros
Cl	93.18	91.40	115.42	100 ± 7.73	56.06	33.77	41.78	43.87 ± 6.52
C2	100.83	91.11	108.07	$100+4.91$	31.20	31.88	39.79	34.29 ± 2.76
C3	115.93	96.42	87.65	100 ± 8.36	27.03	18.23	33.33	26.20 ± 4.38
C5-Rostral	81.86	99.31	118.83	100 ± 10.68	23.50	13.53	30.29	22.44 ± 4.87
C5-Candal	106.72	92.42	100.86	100+4.15	32.02	18.18	19.09	23.10 ± 4.47
C7	108.37	88.48	103.15	100 ± 5.95	31.51	27.44	24.66	27.87 ± 1.99
C8	107.49	86.23	106.29	$100+6.90$	23.05	26.39	33.22	$27.55+2.99$
Tl	87.95	96.86	115.19	100 ± 8.02	46.68	38.91	37.15	40.93 ± 2.93
T4	93.02	99.40	107.57	$100+4.21$	41.22	41.82	47.36	43.47 ± 1.96
$T 5$	90.86	99.08	11006	100 ± 5.56	55.96	45.69	42.32	47.99 ± 4.10
T7	39.52	99.61	110.87	100 10.17	52.97	51.09	53.84	52.63 ± 0.81
T10	98.17	92.35	109.47	100+5.03	55.06	54.18	61.05	56.76 ± 2.16
T12	86.00	102.54	111.46	100 ± 7.46	57.66	55.25	70.35	61.09 ± 4.69
Ll	96.12	94.31	109.57	100 ± 4.81	67.49	54.85	90.26	$\begin{gathered} 70.86+10.3 \\ 6 \end{gathered}$

[0622] As shown in Table 15 , the analysis of vector genome biodistribution by digital droplet PCR showed high vector genome copy number per diploid cell in ventral hom punches of the cervical spinal cord nearest the injection sites. Vector genome copy numbers dropped steeply (>10-fold on average) from $C 3$ to $C 2$, and from $C 5$ to $C 7$ spinal cord levels. However, even at spinal cord levels distant from the C3 and C5 sites of AAV injection, ventral hom punches exhibited vector genome copies well above background levels. At the $\mathrm{T} 5, \mathrm{~T} 7, \mathrm{~T} 10, \mathrm{~T} 2$, and $Z 1$ spinal cord levels, ventral hom punches showed 0.73 ± 0.18,
$0.35 \pm 0.03,0.27 \pm 0.04,0.25 \pm 0.03$, and 0.38 ± 0.19 vector genome copies per diploid cell, respectively

Table 15: Vector Genome Quantification

Spinaz Cord Segments	Vecter Genome/Wiphoid Cell (vg/de)							
	Lefit Ventral Moma				Kight Ventrab Borm			
	$\begin{gathered} \text { Pig } \\ \# 1005 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1004 \end{gathered}$	$\begin{gathered} \text { Yig } \\ \ddot{H} 1006 \end{gathered}$	Mean土 Standard Error	$\begin{gathered} \text { Pig } \\ \# 1005 \end{gathered}$	$\begin{gathered} \text { Pigg } \\ \text { \#1004 } \end{gathered}$	$\begin{gathered} \text { Fig } \\ \# 1006 \end{gathered}$	Meant Standard Error
Cl	1.74	3.02	1.16	1.97 ± 0.55	2.59	2.12	1.29	2,0040.38
C2	9.57	9.73	4.52	7.94 ± 1.71	10.69	14.29	4.42	9.80 ± 2.88
C3	29.66	35.55	27.98	31.06 ± 2.29	585.67	633.71	28.63	416.01 ± 194.17
C5-Rostral	92.67	187.13	439.19	239.66 ± 103.42	45.37	201.47	554.95	267.27 ± 150.74
C5-Caudal	$\begin{aligned} & 3029.4 \\ & 4 \end{aligned}$	760.00	332.53	$\begin{aligned} & 1373.99 \pm 836.8 \\ & 8 \\ & \hline \end{aligned}$	132.37	960.73	290.71	463.27 ± 233.88
C7	18.39	28.38	56.83	34.53 ± 11.51	9.52	27.43	41.11	26.02 ± 9.14
C8	5.15	6.82	11.99	7.98 ± 2.06	3.57	10.37	15.65	9.86 ± 3.50
Tl	2.03	4.03	7.06	4.37 ± 1.46	2.66	4.40	5.83	4.30 ± 0.92
T4	0.51	0.52	0.84	0.63 ± 0.11	0.63	1.15	0.95	0.91 ± 0.15
TS	0.43	1.54	0.58	0.85 ± 0.35	0.35	0.92	0.55	0.60 ± 0.17
T7	0.23	0.42	0.31	0.32 ± 0.06	0.40	0.41	0.32	0.38 ± 0.03
T10	0.13	0.27	0.36	0.25 ± 0.07	0.26	0.36	0.24	0.29 ± 0.04
T12	0.21	0.17	0.28	0.22 ± 0.03	0.27	0.22	0.38	0.29 ± 0.05
LI	1.32	0.16	0.12	0.53 ± 0.39	0.25	0.30	0.13	0.22 ± 0.05

[0623] Vector genome distribution showed linear correlation to levels of SOD1 mRNA knockdown, when compared to vehicle control ($r^{2}=0.15, p=0.0002$). $50 \% \mathrm{SOD} 1$ knockdown was achicved with low vector genome copy number per diploid cell ($<1 \mathrm{Vg} / \mathrm{de}$) such as 0.2 or 0.5 vector genome copies per diploid cell on average, in ventral hom punches $\sim 30 \mathrm{~cm}$ caudal to the injection site.

Example 3: SOBl reduction in tissues and cells

[0624] In situ bybridization studies of SOD] mRNA were conducted using tissue sections derived from the ventral horn of the spinal cord of the ammals used in the intraparenchymal delivery study (Example 2).
[0625] The ventral hom of the C6 and the T5 spinal cord segments of pig 302 injected with scAAV-miRSOD 1 particles showed little to no SOD 1 mRNA specific staining, indicating SODI knockdown. A substantial reduction in the endogenous SOD1 mRNA expression was observed in the large motor neurons in a rostrocaudal gradient, with strongest reduction in the cervical region. $S O B 1 \mathrm{mRNA}$ specific staining was observed in the $\mathrm{L} 1-\mathrm{L} 3$ spinal cord segments of pig 302 injected with scAAV particles, which is consistent with the
bDNA method data for L1-L3- showing limited knockdown of SODI in the Ll-L3 spinal cord segments. As expected, the ventral hom of the spinal cord segment L 2 of naïve uninjected pigs showed strong staining for SODI mRNA
[0626] SOD 1 mRNA levels were measured in motor neuron pools isolated from the spinal cord segment T13 by laser capture, in depleted grey matter or a cross section of the whole spinal cord segment from the study described in Example 2. The levels of Choline Acetyl Transferase (ChAT), a motor neuron cytoplasmic marker were also measured to confim the enrichment of motor neurons in the isolated motor neuron samples. The results are shown in Table 16a, where VH indicates ventral hom, MN indicates motor neuron, DGM indicates depleted grey matter and leftright indicate the side of cord from which the sample was obtained. The SODI fold change values in Table $16 a$ are relative to vehicle group and the ChAT enrichment was measured relative to vehicle T13 cross section of the entire spinal cord. The values are represented as averages \pm standard error.

Table 16a. Relative SOD1 mRNA levels and ChAT enrichment in motor neurons

Sample and Side 0f cord	SOD1 mRNA		ChAT (fold)
	Vehicle	AAV	
VHMNLeft	1.00 ± 0.05	0.71 ± 0.09	36.03 ± 3.14
VH MN Right	100 ± 0.10	0.72 ± 0.05	31.14 ± 2.73
DGM Left	100 ± 0.04	0.92 ± 0.02	17.39 ± 3.59
DGM Right	1.00 ± 0.06	0.83 ± 0.05	18.24 ± 4.54
T13 Cord Cross section	1.02 ± 0.25	0.95 ± 0.09	1.16 ± 0.57

[0627] Isolated motor neurons obtained from both the left and the right ventral horn, showed a significant reduction of SOD 1 mRNA levels ($p<0.05,2$-way ANOVA, Sidak's Test compared to matched vehicle control). These results are similar to the SODI mRNA levels (bDNA assay) in T12 and L1 segments from the same pigs. ChAT enrichment was observed in the isolated motor neurons but not in the T13 cord cross section samples.
$[0628] S O D 1 \mathrm{mRNA}$ levels were measured in motor neurons isolated from the spinal cord segment C 4 by laser capture and in depleted grey matter from the study described in Example 2. The results are shown in Table 16b, where VH indicates ventral hom, MN indicates motor neuron, DGM indicates depleted grey matter and lettright indicate the side of cord from which the sample was obtained. The SODI fold change values in Table 16 b are relative to vehicle group was measured relative to vehicle $C 4$ cross section. The values are represented as averages \pm standard error.

Table 16b. Relative SOD1 mRNA levels in motor neurons

Sample and Side of		
cord	SOB mRNA	
VIMN Lef	1.00 ± 0.07	0.03 ± 0.00
VHMN Right	1.00 ± 0.04	0.03 ± 0.00
DGM Left	1.04 ± 0.19	0.32 ± 0.05
DGM Right	1.01 ± 0.08	0.28 ± 0.02

[0629] Both isolated motor neurons and motor neuron depleted grey matter (DGM) at C4 show a significant reduction in SOD 1 mRNA levels ($p<0.05,2$-way ANOVA, Sidak's Test compared to matched vehicle control). These data are consistent with the SODI mRNA levels at C3 and C5 (bDNA assay). These data also demonstrate a further specific increase in observed reduction of SOD 1 mRNA in motor neurons compared to grey matter, resulting in almost complete suppression of SODI mRNA (knockdown of 97%) in cervical spinal cord motor neurons.
[0630] The hypoglossal nucleus and the nucleus ambigus are regions of the brain stem nuclei that can be affected by ALS. The hypoglossal nucleus contains a prominent cluster of large motor neurons that supply the muscles of the tongue and the nucleus ambiguus contains large motor neurons which are strongly associated with speech and swallowing. In situ hybridization of SOD I mRNA was conducted using tissue sections derived from the brain stem of pigs injected intraparenchymally to the spinal cord with scAAV-miRSOD 1 . SOD 1 mRNA levels were found to be similar in the vehicle treated and the SODI AAV particle treated groups as measured by in situ hybridization. To determine if intraparenchymal spinal cord administration of the AAV particles led to transduction of the brain stem and knockdown of SOD1 mRNA, left and right caudal brain stem samples were also analyzed by the branched DNA (bDNA) method. The mRNA levels were nomalized to the geometric mean of beta-actin (ACTB), TATA-box binding protein (TBP) and peptidylprolyl isomerase A (PPLA) mRNA levels. The normalized SOD 1 mRNA levels are expressed relative to nommalized SOD 1 mRNA levels in the brain stem from animals treated with vehicle control (Table 17). Vector genome biodistribution was measured by digital droplet PCR for both doses of the ScAAV-miRSOD 1 and the number of vector genomes/diploid cell was measured (Table 17). In Table 17, BLLQ stands for "below the lower himit of quantification" and is approximately $<0.005 \mathrm{vg} / \mathrm{dc}$ for a 40 ng template input.

Table 17. SOD1 mRNA and vector genome distribution in brainstem

Parameter	Caudal				Rostral			
	Left side		Hight side		Left side		Fight side	
	Velticle	AAY	Velicle	AAY	Vehicle	AAY	V ehicle	AAY
$\begin{aligned} & \text { SODI } \\ & \text { mRNA } \end{aligned}$	100 ± 3.03	83.16 ± 1.51	100 ± 4.89	78.22土1.65	100 ± 4.62	95.46 ± 1.72	100 ± 4.85	89.414.82
Vector genome! diploid cell	BLLQ	0.46 ± 0.17	BLLQ	0.63 ± 0.22	BLLQ	0.29 ± 0.05	BLLQ	0.25 ± 0.06

[0631] Statistically significant SOD 1 mRNA knock down was observed in left and right sides of caudal brainstem with a p value <0.01 and p value <0.001 respectively (one wayANOVA and Dunnett's multiple comparison test). Vector genomes were detected in brainstem regions at levels similar to those observed at spinal cord segments T5 through L1 after IPa dosing.
[0632] Serum neutralizing antibody levels in the plasma of pigs injected with scAAVmiRSODI or vehicle control were measured. No correlation between the neutralizing antibody status and the levels of SODI mRNA or viral genome were observed. These results suggest that the neutralizing antibodies do not impact the observed SOD 1 mRNA levels.

Example 4: Effect of SOD siRNA in vitro

[0633] miR788.2 siRNA targeting SOD1 was assayed for inhibition of endogenous human SOD1 expression in HuH-7 cells. Transfection of HuH-7 cells with varying doses of siRNA was carried out with Lipofectamine 2000 (Invitrogen/Life Technologies) according to the manufacturer's instructions. Quantitation of human SODl and GAPDH (control) mRNA levels was performed using the bDNA (branched DNA) assay. The percent human SODI mRNA expression levels are shown in Figure 1. As seen in Figure 1, increasing the concentrations of the siRNA decreased the relative human SOD 1 mRNA expression levels. The IC50 is the concentration of siRNA required to achieve 50% human SOD 1 mRNA expression levels as indicated by the dotted line in Figure 1.
[0634] To test if miR788.2 is selective to human SOD1, bioinformatics analysis of the antisense strand was used to identify 9 potential human off-target genes. These genes included Slit Guidance Ligand 2 (SLIT2), Nuclear Receptor Coactivator 2 (NCOA2), Phospholipase C Eta 1 (PLCH), BRD4 Interacting Chromatin Remodeling Complex Associated Protein Like (BICRAL), Bromodomain Containing 1 (BRD1), Scm Like With Four Mbt Domains 1 (SFMBT1), Dynein Axonemal Heavy Chain 7 (DNAH7), Zinc Finger Matrin-Type 3 (ZMAT3) and Malate Dehydrogenase 1B (MDH1B). Cell lines that
expressed both human SODI and one of these potential off-targets were selected, and SOD 1 siRNA containing the guide strand of miR788.2 was transfected, and the levels of SOD1, the potential off-target and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression were evaluated. The activity of the SODI siRNA containing the guide strand of miR788.2 on any given on- or off-target was expressed as percent on- or off-target mRNA level (nomalized to GAPDH mRNA) in treated cells, relative to the mean on- or off-target mRNA levels (normalized to GAPDH mRNA), respectively, across control wells. ICso values for SOD 1 knockdown by the SOD1 siRNA containing the guide strand of miR788.2 were $<0.02 \mathrm{nM}$ in Huh- 7 cells and $<0.15 \mathrm{nM}$ in C42 cells, indicating potent on-target knockdown. In contrast, no ICso value for any potential off-target could be calculated with a concentration range of 0.1 pM to 24 nM of the SOD 1 siRNA containing the guide strand of miR788.2 These results show that there is an ICso separation of on-target (human SODI) versus offtarget mRNA suppression of at least 160 -fold for the 9 potential off-targets. Thus, the guide strand of miR788. 2 is selective for SOD1 over the nearest predicted potential off targets by at least 160 -fold.

Example 5. In Vitro Activity of AAV-miRNA Vectors Targeting SOD1

[0635] The miRNA expression vectors were designed by engineering VOYSODlmiR104788.2 targeting SODI (modulatory polynucleotide SEQ ID NO: 6), within an TTR to TRR sequence comprising one of two different filler sequences i.e. ITR to ITR with a lentivirus derived filler (SEQ IO NO. 9) or ITR to ITR with an albumin filler (SEQ ID NO. 25). The ITR to ITR sequences were packaged in AAVrb10 to generate scAAV b10.H1 mir104-788.2 (lenti) or scAAVh10H1 mir104-788.2 (albumin) constructs respectively. As used herein the term, "lenti" indicated in parenthesis of the construct name indicates that the construct comprises a lentivirus derived filler sequence, whereas the term "albumin" indicated in parenthesis of the construct name means that the construct comprises an albumin gene derived filler sequence. AAV particles were produced using the HEK293T and triple transfection (TD) method using roller bottles. The particles were infected into HEK293T cells. A vector comprising AAVrh 10 with a green fluorescent protein (GFP) transgene was used as a negative control. HEK 293 T cells were plated into 96 -well plates (2.0×10^{4} cells/well in $100 \mu \mathrm{~L}$ cell culture medium) and infected with 9 different multiplicity of infections (MOIs) ranging from 1.52×10^{3} to 1×10^{7}, with triplicate wells per condition. Forty-eight hours after infection, the cells were harvested for immediate cell lysis. Cell lysates were used for quantitative RT-PCR to quantify human SOD 1 mRNA levels as well as
mRNA levels of housekeeping genes. Human SODI mRNA levels were normalized to the geometric mean of alanyl-tRNA synthetase (AARS) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA levels, and then further nomalized to the GFP control group to obtain relative human SOD1 mRNA levels. The MOIs and relative human SOD mRNA levels nomalized to geometric mean of AARS and GAPDH (relative to GFP control, $\%$ are shown in Table 18 for both vectors tested.

Table 18. Human SOD mRNA levels with different doses of AAV-miRSODI vectors

M93	Relative renaining human SObl mRNA (average \pm standard error)	
	$\begin{aligned} & \text { ScAAVmu0 H1 minlo4-788.2 } \\ & \text { (lenti) } \end{aligned}$	scAAVh10,H1mmo4-788.2 (albumin)
1.00E+07	5.7 ± 0.2	5.8 ± 0.3
$3.33 E+06$	6.0 ± 0.4	6.6 ± 0.5
1.11E+06	7.9 ± 0.3	9.9 ± 0.4
$3.70 \mathrm{E}+05$	17.8 ± 0.8	24.9 ± 1.8
$1.23 \mathrm{E}+05$	37.7 ± 2.3	46.4 ± 1.3
4.12 Et 04	61.8 ± 6.4	71.3 ± 3.3
$1.37 \mathrm{E}+04$	79.6 ± 3.9	79.6 ± 2.9
$4.57 \mathrm{E}+03$	88.9 ± 5.6	92.2 ± 3.0
$1.52 \mathrm{E}+03$	91.5 ± 3.7	97.7 ± 3.3
0	95.3 ± 4.4	100.9 ± 4.3

[0636] Dose dependent knockdown of human SOD1 mRNA was observed for both vectors scAAVrb 10 Hl mir104-788.2 (lenti) and scAAVrh $10 \mathrm{H1}$ mir $104-788.2$ (abumin) in HEK 293 T cells. The relative mRNA values of human SOD1 were also fitted onto a curve and the values are shown in Table 19.

Table 19. Best fit values for $A A V$-miRSOD

Best Eit Values	scAAVrh10. H1.mir104-788.2 (lenti)	ScAAVrh10.H1.min104-788.2 (albumin)
Bothom	4.08	1.99
Top	94.13	99.58
Hillslope	1.02	0.86
1 cs 0	$7.18 \mathrm{E}+04$	$9.62 \mathrm{E}+04$
$\operatorname{loglC} 50$	4.86	4.98
p value	0.08	

[0637] As shown in Table 19, similar potency was observed with both vectors with ap value of 0.08 . IC50 values were also similar and in the 10^{4} range for both vectors.
[0638] Viral genomes and capsid proteins were independently extracted from purified
AAV preparations. Genome integrity was cvaluated using denaturing gel which detected an
approximately 3 kb band. Capsid integrity was measured using silver staining of capsid proteins with polyacrylamide gel electrophoresis which showed 3 bands in the 75 kDa range.

Example 6. In vivo human SOD1 knockdown in transgenic mouse model

$[0639]$ Self-complementary (sc) AAV vectors (scAAV) with an siRNA construct (VOYSODImR104-788.2) targeting SODI and containing different filler sequences within the ITR to ITR as described in Example 4 were packaged in AAVm10 and formulated in phosphate buffered saline (PBS) with 0.001\% F-68. Female or male Tg(SOD13Cje/s mice (Jackson Laboratory, Bar Harbor, ME), 14-30 weeks of age, which express human SODI, received bilateral intrastriatal infusions ($5 \mu \mathrm{~L}$ at $0.5 \mu \mathrm{~L} / \mathrm{min}$) of scAAVm $10 . \mathrm{HI}$. mir 104-788.2 (lenti), scAAVrh 10H1.mir104-788.2 (albumin), or vehicle (n of 3 to 5 per group). For scAAVm10H1 mir104-788.2 (enti), vector concentrations were $1.5 \times 10^{13}, 3.0 \times 10^{12}, 5.6 \times$ 10^{11} or $1.9 \times 10^{11} \mathrm{vg} / \mathrm{mL}$, corresponding to total doses of $7.5 \times 10^{10}, 1.5 \times 10^{10}, 2.8 \times 10^{9}$ or $9.4 \times 10^{8} \mathrm{vg}$. For scAAVh10.H1 mir104.788. 2 (albumin), vector concentrations were $1.5 \times$ $10^{13}, 3.0 \times 10^{12}, 5.7 \times 10^{11}$ or $1.9 \times 10^{11} \mathrm{vg} / \mathrm{mL}$, corresponding to total doses of $7.6 \times 10^{10}, 1.5$ $\times 10^{10}, 2.9 \times 10^{9}$ or $9.5 \times 10^{8} \mathrm{vg}$. Four weeks after dosing, animals were euthanized, brains were removed, and left and right striatal regions were dissected and flash frozen. For each animal, the entire striatal sample was evaluated for human SOD 1 mRNA suppression by qRT-PCR. Total RNA was extracted from striatal tissue samples using the RNeasy Mini Kit according to the manufacturer's protocol (QIAGEN). Complementary DNA synthesis was performed by reverse transcription using the High-Capacity cDNA Reverse Transcription Kit (Applicd Biosystems). All TaqMan assays and master mixes were ordered from Life Technologies and used according to the manufacturer's recommendations. qRT-PCR was performed using the CFX384 real-time system (BIO-RAD) and data were analyzed with the $\triangle \triangle C T$ method. Human SOD1 mRNA levels were normalized to murine GAPDH (mGAPDH) mRNA levels, and then further nomalized to the vehicle control group. These group averages were calculated to obtain a group (treatment) average. The qRT-PCR mRNA results are shown below in Table 20. The human SODI mRNA levels are represented as percent averages \pm standard deviation (SD).
Table 20. Human SODI mRNA suppression in wild-type human SODI transgenic mouse striatum

Grougs	$\begin{gathered} \text { Gose } \\ (v g / 5 g \mathrm{~L}) \end{gathered}$	
Vehicle	0	100土29.4
SCAAVTh10.H1 mir104788.2 (lent)	9.4×10^{8}	39.65 ± 12.63
	28×10^{9}	51.86 ± 39.68
	1.5×10^{10}	36.36 ± 18.11

scAAVrh10.h1mirl04-		
788.2 (abumin)	9.5×10^{8}	33.93 ± 22.20
	2.9×10^{9}	40.10 ± 8.90
	7.5×10^{10}	$29.78+11.95$

[0640] In human SOD 1 transgenic mouse striatum, scAAVm $10 . H 1$ mir104-788.2 (kenti) caused about 48% to 64% silencing of human SOD 1 mRNA at about 28 days after intrastriatal infusion of 9.4×10^{8} vg to $1.5 \times 10^{10} \mathrm{vg}$ per striatum. scAAVm10.H1.mirl04788.2 (albumin) caused about 60% to 79% slencing of human SOB 1 mRNA at about 28 days after intrastriatal infusion of $1.0 \times 10^{9} \mathrm{Vg}$ to $8.0 \times 10^{10} \mathrm{Vg}$ per striatum. Maximum knockdown of 79% was observed with scAAVm10.H1 mir $104-788.2$ (albumin) 8.0×10^{10} dose of viral genome (vg)/5 $\mu\{$. A substantial knockdown was observed even with the lowest dose of either vector tested.
[06*1] The tolerability of the AAV vectors administered by intrastriatal infusion was investigated in human SOD 1 transgenic mice. Body weight was recorded before and after dosing with the vehicle, scAAVm10.H1 mir104-788.2 (lenti), or scAAVrh10.H1 mir104788.2 (albumin). The body weight change obtained with each group is shown as the percentage of body weight measured prior to dosing in Table 21.

Table 21. Body weight change in human SOD1 transgenic mouse striatum

Grougs	$\begin{gathered} \text { Gose } \\ \left(\mathrm{vg} / 5_{\mathrm{L}} \mathrm{~L}\right) \end{gathered}$	Rody weight clannge (\% of gre(bosing)
Vehicle	0	$-128+2.93$
ScAAVrh10.H1 mir104788.2 (lent)	9.4×10^{8}	2.23 ± 3.34
	28×10^{9}	4.54 ± 5.35
	1.5×10^{10}	-14.92土8.86
scAAVrh10.H1.mir104788.2 (abumin)	9.5×10^{8}	3.24 ± 3.93
	2.9×10^{9}	1.30 ± 6.17
	1.5×10^{10}	$2.04+3.90$
	7.6×10^{10}	-22.87 ± 11.62

[0642] The p value was calculated using the one-way ANOVA, Dumnett's test. A p value of <0.05 was obtained with the highest dose $3.60 \mathrm{E}+10(\mathrm{vg} / 5 \mu \mathrm{~L})$ of the scAAVrh10H1 mir $104-788.2$ (lenti) vector and a p value of 0.001 was obtained with the highest dose $8.00 \mathrm{E}+10(\mathrm{vg} / 5 \mu \mathrm{~L})$ of the $\operatorname{scAAVm10.H1.mir104-788.2(albumin)}$ vector suggesting that a significant weight loss occurred at the highest doses of the vectors Morbidity was also observed in the higher dose groups. At a dose of $1.60 \mathrm{E}+10$ (vg/ $5 \mu \mathrm{~L}$), $2 / 6$ mice in the scAAVrh10.H1 mir104-788.2 (albumin) group and $5 / 5$ mice in the scAAVm 10 HI mir104-788.2 (lenti) group were either found dead or cuthanized by week 4 after the injection. $2 / 5$ mice in the highest dose $(8.00 \mathrm{E}+10)$ of the scAAVrb10H1 mirl04-
788.2 (albumin) group were found dead at 2 days and 3.5 weeks respectively. Postmortem analysis revealed that the death may have been due to Klebsiella oxytoca or Klebsiella pneumoniae infection

Example 7. Effect of SODI siRNA in vitro

[0643] VOYSODlmiR104-788.2, VOYSODImiR127-860, VOYSODImiR114-806 and VOYSODlmiR114-861 were engineered into scAAVDI vectors with a CBA promoter. The porcine epithelial cell line, SK-RST was cultured in vitro and infected with the described vectors at 3 different MOIs, namely $4.00 \mathrm{E}+03,2.00 \mathrm{E}+04$, and $1.00 \mathrm{E}+05$. A control scAAVDJ. EGFP vector was also evaluated at these NOIs. The expression of SODI mRNA was measured and normalized to porcine GAPDH mRNA. The relative $S O D 1$ mRNA levels are shown as relative to $\%$ GFP expression in Figure 2. VOYSOD ImiR104-788.2 showed the strongest dose dependent knockdown.

Example 8. Intraparenchymal delivery of SOBl siRNA to spinal cord

[0644] Biodistribution of viral genomes and SOD] mRNA knockdown were evaluated in the ventral horn at multiple levels of the spinal cord, including the cervical levelin pigs.
[0645] Three Göttingen adult (6 months of age), female mini-pigs weighing $14-20 \mathrm{~kg}$ each were utilized for each of the groups in the study. Animals were not pre-screened for neutralizing antibodies to AAV. A $4-5 \mathrm{~cm}$ laminectomy was performed between C 3 and C 5 , allowing for 3 cm between injections. Selfecomplementary (sc) AAV vector (scAAV) with modulatory polynuclcotide (SEQ ID NO: 6) comprising siRNA targeting SODI and ITR to ITR sequence of (SEQ ID NO: 25) which includes an albumin derived filler sequence were packaged into AAVTh10 vector to generate scAAVrh10.H1 mir104-788.2 (albumin).
[0646] For a high dose, two injections of the scAAV (titer $1.73 \times 10^{33} \mathrm{vg} / \mathrm{mL}$) were administered. At the rostral end of the laminectomy, ie. at the C3 level of the spinal cord, a single $40 \mu \mathrm{~L}\left(6.9 \times 10^{11} \mathrm{vg} / \mathrm{mjection}\right)$ volume was injected into the ventral hom of the spinal cord. At the caudal end of the laminectomy, i.e. at the C5 level of the spinal cord, a single $40 \mu \mathrm{~L}\left(6.9 \times 10^{11} \mathrm{vg} / \mathrm{mjection}\right)$ volume was injected into the ventral hom of the contralateral side, for a total dose of $1.38 \times 10^{12} \mathrm{vg}$. For the lower of the two doses, two injections of the scAAV (iter $5.8 \times 10^{11} \mathrm{vg} / \mathrm{mL}$, were administered ($1 / 30^{\text {th }}$ of high dose). At the rostral end of the laminectomy, i.e. at the C 3 level of the spinal cord, a single $40 \mu \mathrm{~L}\left(2.3 \times 10^{10} \mathrm{vg} /\right.$ mjection $)$ volume was injected into the ventral hom of the spinal cord. At the caudal end of the laminectomy, i.e at the $C 5$ level of the spinal cord, a single $40 \mu \mathrm{~L}\left(2.3 \times 10^{10} \mathrm{vg} / \mathrm{mjection}\right)$
volume was injected into the ventral hom of the contralateral side, for a total dose of 4.6×10^{16} $v g$. All injections were administered at the rate of $5 \mu \mathrm{~L} / \mathrm{min}$, yielding an approximately $13-$ minute total infusion time. Four weeks following the procedure, animals were sacrificed, and spinal cord tissue was collected for analyses.
[0647] To determine if intraparenchymal administration of the AAV particles led to transduction of the spinal cord and knockdown of SOD1 mRNA, ventral hom punches were analyzed by the branched DNA (bDNA) method. mRNA levels of SOD 1 mRNA were normalized to the geometric mean of beta-actin (ACTB), TATA-box binding protein (TBP) and peptidylprolyl isomerase A (PPIA) mRNA levels. The nomalized SOD1 mRNA levels are expressed relative to nomalized SOD1 mRNA levels in ventral hom punches from animals treated with vehicle control.
[0648] Significant SOD 1 mRNA knockdown was evident in ventral horn punches from Cl to L 1 of the pigs treated with $6.9 \mathrm{E}+11$ vg/injection. The mRNA knockdown was assessed relative to SOD 1 mRNA levels in ventral horn punches from vehicle control treated animals The results are shown in Table 22a. Similar SODI mRNA levels were obtained from the ventral horn punches from both sides of the spinal cord. Two-way ANOVA and Sidak's multiple comparison test indicated significant SODI mRNA knockdown at each level of the spinal cord (C1-T12 left side p<0.0001; T12 right side p<0.001, L1 p<0.01). As shown in Table 22a, spinal cord segments closest to the injections exhibited the greatest SOD 1 mRNA knockdown. Spinal segments Cl through T 12 had robust and significant knockdown of SOD 1 mRNA (approximately $50-75 \%$ knockdown). Even at spinal cord segment L1, distant from the site of vector injection, significant knockdown of SOD 1 mRNA (approximately, 30% knockdown) was observed.

Table 22a. SODI mRNA levels (high dose group) relative to velicle group (\%)

Spinal Cord Semments	Left Ventral Mom							
	Vehicle				ScAA Vrh10. H (1.miR10.4.788.2 (high dose)			
	$\begin{gathered} \text { Pig } \\ \text { 化1001 } \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1002 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1003 \end{gathered}$	Mean t Standard Error	$\begin{gathered} \text { Pig } \\ \# 1007 \end{gathered}$	$\begin{gathered} \mathrm{Yig} \\ \# 1008 \end{gathered}$	$\begin{gathered} \text { Fig } \\ \# 1009 \end{gathered}$	Mean土 Stamdard Error
Cl	99.52	82.32	118.16	100 ± 10.35	28.35	35.77	36.21	33.44 ± 2.55
C2	80.14	104.77	115.09	100 ± 10.37	29.17	30.85	29.35	29.79 ± 0.53
C3	113.62	104.09	82.29	100 ± 9.27	24.00	32.45	27.66	$28.94+2.45$
C5-Rostral	98.62	98.05	103.34	100 ± 6.08	8.43	22.08	8.64	16.28 ± 2.01
C5-Caudal	10397	88.05	107.97	100 168	20.29	13.99	14.57	13.05 ± 4.52
C7	105.90	90.03	104.07	100 ± 5.02	22.13	23.29	25.95	23.79 ± 1.13
C8	102.23	91.45	106.32	100 ± 4.44	22.93	48.48	61.17	44.20 ± 11.25
T]	90.02	93.74	11624	100 ± 8.19	34.67	37.90	42.68	38.42 ± 2.33
T4	92.86	93.95	113.19	100+6.60	44.20	34.30	47.17	$41.89+3.89$
TS	90.21	92.92	116.87	100 ± 8.47	44.77	35.12	46.37	42.09 ± 3.52
T7	91.07	99.06	109.87	100 ± 5.45	55.20	42.85	56.77	51.61 ± 4.40

T10	94.64	102.90	102.46	100 ± 2.69	58.37	43.06	54.12	$31.85+4.56$
T12	88.93	102.39	108.69	100 ± 5.83	63.12	23.62	59.50	48.75 ± 12.61
L］	104.69	110.00	8531	100 ± 750	63.08	58.74	72.94	$64.92+4.20$
L4	103.62	98.20	38.18	100 ± 1.81	87.88	77.19	76.96	80.68 ± 3.60
L5	92.66	102.98	10436	100 ± 3.69	81.76	81.98	79.15	80.96 ± 0.91
Spinal Cord Segments	Reght Ventral Horm							
	Vehicle				ScAAVrh10． $\mathrm{H}_{\text {1 }} \mathrm{miR104.788.2} \mathrm{(high} \mathrm{dose)}$			
	$\begin{gathered} \text { Pig } \\ \text { H100 } \end{gathered}$	$\begin{gathered} \text { Pig } \\ H 092 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1003 \end{gathered}$	Mean \pm Standard Excor	$\begin{gathered} \text { Pig } \\ \# 1077 \end{gathered}$	$\begin{gathered} \mathrm{Yig} \\ \# \mathrm{Brag} \end{gathered}$	$\begin{gathered} \text { Yig } \\ \text { W1009 } \end{gathered}$	Meam 土 Stamdard Eroor
Cl	92.12	92.70	115.18	100 ± 7.59	37.53	44.21	48.46	43.40 ± 3.18
C2	98.71	89.22	112.07	100＋6，63	39.02	38.39	43.18	40.20 ± 1.50
C3	113.69	100.21	86.10	100 ± 7.96	19.00	36.45	17.37	24.27 ± 6.11
C5－Rostral	80.97	98.73	120.30	100 ± 3.50	27.63	35.75	26.55	25.39 ± 2.36
C5－Cauda	105.99	93.87	100.14	100 ± 11.37	29.00	20.94	26.23	29.98 ± 2.90
C7	107.82	94.14	98.04	100 ± 4.07	30.91	29.34	34.60	$31.62+1.56$
C8	103.64	96.70	101.67	100t3．65	29.67	31.25	36.78	$32.57+2.15$
Tl	92.80	90.42	116.78	100 ± 8.42	44.93	42.69	49.11	45.58 ± 1.88
T4	93.18	100.01	106.81	100 ± 3.93	53.31	44.59	58.06	51.98 ± 3.95
T5	90.78	97.88	111.34	100 ± 6.03	49.25	40.02	61.22	50.16 ± 6.14
T7	86.50	109.82	103.69	100 ± 6.98	56.43	46.52	72.73	58.56 ± 7.64
T10	10121	97.75	10104	100 ± 1.13	54.48	52.29	68.33	58.37 ± 5.02
T12	94.32	99.59	10608	100 ± 3.40	57.18	53.37	82.46	64.34 ± 9.13
LI	96.60	94.26	109.14	100 ± 4.62	64.35	60.99	86.46	70.60 ± 7.99
LA	103.62	90.24	106.13	100 ± 4.93	81.26	74.38	88.89	81.51 ± 4.19
L5	10484	95.90	99.27	100 ± 2.61	91.68	87.28	90.66	89.87 ± 1.33

［0649］Comparing the SOD］mRNA levels obtained with scAAVm10 H1 mir104－788．2 （lenti）（Table 11）to the levels obtained with scAAVrh10．H1 mir104－788．2（albumin）（Table 22a）showed that similar SODI mRNA knockdown was achicved with both the AAV containing the lentivirus derived filler（ $1.6 \mathrm{E}+12 \mathrm{vg}$ total）or containing the albunin derived filler（ $1.4 \mathrm{E}+12 \mathrm{vg}$ total）．
［1650］The results for the pigs injected with the lower dose of the scAAVm10．H1．mirl04－ 788.2 （albumin）are shown in Table 22 b ．

Table 22b．SODI mRNA levels（lower dose group）relative to vehicle group（\％）

Spixal Cord Segments	Left Ventral Horn							
	Vehicle				SCAAVEb10．Y1．midR 104．788， 2 （low（lose）			
	$\begin{gathered} \text { Fig } \\ \# 1001 \end{gathered}$	$\begin{gathered} \$ 1 g \\ 41062 \end{gathered}$	$\begin{gathered} F i g \\ \# 1003 \end{gathered}$	Mean 土 Standard Crror	$\begin{gathered} \text { Pig } \\ \# 1010 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1018 \end{gathered}$	$\begin{gathered} \text { Fig } \\ H 1012 \end{gathered}$	Mean土 Standard Error
Cl	99.52	82.32	118.16	100 ± 10.35	79.40	84.98	65.41	76.60 ± 5.82
C 2	80.14	10477	115.09	100 ± 10.37	70.49	79.44	56.18	68.70 ± 6.77
C3	113.62	104.09	82.29	100 ± 9.27	71.23	36.43	39.05	48.90 ± 11.19
CSTRostral	98.62	98.05	103.34	100：＋6．08	35.41	47.21	20.12	48.19 ± 9.61
C5－Caudal	103.37	88.05	107.97	100 ± 1.68	64.13	49.52	30.93	34.25 ± 7.84
C7	105.90	90.03	10407	100 ± 502	77.51	77.03	5926	71.27 ± 600
C8	102.23	91.45	106.32	$100+4.44$	63.60	75.69	64.47	67.92 ± 3.89
T1	90.02	93.74	116.24	100：8． 19	98.42	110.11	90.03	$99.52+5.82$
T4	92.86	93.95	113.19	100 ± 6.60	94.22	93.60	87.65	91.82 ± 2.09
T5	90.21	92.92	116.87	$100+8.47$	92.11	90.63	76.65	$86.47+4.92$
T7	91.07	9906	109.87	100 ± 5.45	96.43	83.33	83.99	87.92 ± 4.26

T10	94.64	102.90	102.46	100:2. 269	85.88	84.50	74.36	81.58×3.63
T12	88.93	102.39	108.69	100 ± 5.83	84.25	89.38	80.24	84.63 ± 2.65
Ll	104.69	110.00	85.31	100 ± 7.50	88.86	111.16	8787	95.97 ± 7.60
Spimal Cord Segments	Right Ventral Horn							
	V Vehicle				scAAVrh10.F1.miR104.788.2 (how dose)			
	$\begin{gathered} \text { Pig } \\ \# 1003 \end{gathered}$	$\begin{gathered} 1 \mathrm{y} \\ 41002 \end{gathered}$	$\begin{gathered} \text { \$ig } \\ 41003 \end{gathered}$	Mean \pm Standard Error	$\begin{gathered} \text { Pig } \\ \text { \#1060 } \end{gathered}$	$\begin{gathered} \text { Pig } \\ \text { \#1018 } \end{gathered}$	$\begin{gathered} \text { Pig }^{2} \\ \# 1012 \end{gathered}$	$\begin{gathered} \text { Mean } \pm \\ \text { Standard } \\ \text { Error } \\ \hline \end{gathered}$
Cl	92.12	92.70	115.18	100 ± 7.59	98.99	102.92	79.90	93.94 ± 7.11
C2	98.73	8922	132.07	100:6.63	84.94	94.50	78.86	86.10 ± 4.55
C3	113.69	10021	86.10	100 ± 7.96	65.48	39.95	35.08	46.84 ± 9.43
Cs-Rostral	80.97	98.73	120.30	100×3.50	42.50	38.75	38.70	$49.55+5.11$
C5-Caudal	105.99	93.87	100.14	100 ± 11.37	59.42	46.92	42.31	39.98 ± 1.26
C7	107.82	94.14	98.04	$100+4.07$	76.81	89.17	71.36	$79.11+5.27$
C8	101.64	96.70	101.67	100 ± 1.65	74.10	94.59	84.69	84.46 ± 5.92
Tl	92.80	90.42	116.78	100 ± 8.42	96.90	110.21	87.72	98.28 ± 6.53
T4	93.18	100.01	106.81	100+3.93	97.48	95.65	97.57	$96.90+0.63$
T5	90.78	97.88	111.34	100 ± 6.03	99.17	82.25	85.27	85.90 ± 2.31
T7	86.50	10982	103.69	100 ± 6.98	104.90	91.90	100.84	$99.21+3.84$
T10	101.21	97.75	101.04	100 ± 1.13	99.26	98.84	96.51	98.20 ± 0.85
T12	9432	99.59	106.08	100 ± 3.40	123.15	103.11	10485	110.37 ± 6.41
L. 1	96.60	94.26	109.14	100 ± 4.62	93.11	104.16	9639	$97.89+3.27$

[0651] Pigs injected with the lower of the two doses, (2.3E $+10 \mathrm{vg} / \mathrm{imjection})$ showed SOD 1 mRNA knockdown in the ventral horn punches from spinal cord segments, C 2 to C 8 . Similar SODI mRNA levels were obtained from the ventral horn punches from both sides of the spinal cord. Two-way ANOVA and Sidak's multiple comparison test indicated significant SODI mRNA knockdown at each level of the spinal cord (C3-C5 p<0.0001 with 50% knockdown).
[0652] The SOD1 mRNA levels obtained with $6.9 \mathrm{E}+11$ vg/injection were compared to the SOD 1 mRNA levels obtained with $2.3 \mathrm{E}+10 \mathrm{vg} / \mathrm{mjection}$. Two-way ANOVA and Sidak's multiple comparison test indicated that the SOD 1 mRNA knockdown is significantly lower in the lower dose groups at the following spinal cord segments: Cl right side, C 2 right side, C , C8 right side, T1-T4, 77 left side, T10 right side, T12 right side ($p<0.0001$); C1 left side, T5 ($\mathrm{p}<0.001$) C 2 left side, T 7 right side, T 12 left side ($\mathrm{p}<0.01 ; \mathrm{C} 5$ left side, and $\mathrm{L} 1(\mathrm{p}<0.05$).

No significant difference in the knockdown was observed at injection site C3-C5.
[0653] Vector genome biodistribution was measured by digital droplet PCR for both doses of the scAAVrh10.H1 mir104-788. 2 (abumin). The results for both dose levels are shown in Table 23 as mean of vector genome (vg) per diploid cell (dc) \pm standard error of the mean (SEM).

Table 23．Vector genome biodistribution

Spimat cord Segments	Vector Genome／biploid Celn（vg／de）							
	Figh dose（6．9E＋11 y9／miection）							
	Left Ventral Horn				Rught Ventral Horn			
	$\begin{gathered} \text { Pig } \\ H 1007 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \text { \#rous } \end{gathered}$	$\begin{gathered} \text { Yig } \\ \text { 品 } 1009 \end{gathered}$	Mean土 Standard Error	$\begin{gathered} \mathrm{P}_{\mathrm{ig}} \\ \# 1007 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1008 \end{gathered}$	$\begin{gathered} \text { Yig } \\ \text { W1009 } \end{gathered}$	Mean \pm Standard Error
Cl	1.21	0.60	1.57	1.13 ± 0.28	1.04	0.63	0.95	0.87 ± 0.12
C2	6.21	2.48	5.87	4.85 ± 1.19	6.54	1.83	4.33	4.23 ± 1.36
C3	62.07	8.35	31.38	33.93 ± 15.46	265.36	18.57	349.19	211.04 ± 99.23
C5－Rostral	517.66	14.36	293.54	275.19 ± 145.38	23.92	13.25	73.08	36.75 ± 18.42
C5－Caudal	29.57	210.86	163.63	134．69＋54．30	13.47	86.29	18.31	39.36 ± 23.51
C）	8.36	16.83	6.71	$10.63+3.13$	3.42	8.18	2.70	4.77×1.72
C8	2.14	5.80	0.12	$2.69+1.66$	174	3.56	2.39	$2.56+0.53$
T1	0.85	1.33	0.88	1.02 ± 0.16	0.58	1.28	0.74	0.87 ± 0.21
T4	0.20	0.28	0.20	0.23 ± 0.03	0.17	0.29	0.19	0.22 ± 0.04
TS	0.15	0.20	0.13	0.16 ± 0.02	0.09	0.23	0.18	0.17 ± 0.04
T7	0.13	0.15	0.14	0.14 ± 0.01	0.10	0.16	0.11	0.12 ± 0.02
T12	0.11	0.13	0.14	0.13 ± 0.01	0.20	0.13	0.09	0.14 ± 0.03
T10	0.13	0.09	0.09	0.10 ± 0.01	0.07	0.13	0.08	0.09 ± 0.02
LI	0.04	0.38	0.11	0.18 ± 0.10	0.05	0.11	0.05	0.07 ± 0.02
Spinal cord Segments	Low fose（2，3E＋10 vg／injection）							
	Left Vertral Gorn				Rught Ventral gora			
	$\begin{aligned} & \text { Pig } \\ & \text { \#1010 } \end{aligned}$	$\begin{gathered} \text { Pig } \\ \text { H10I } \end{gathered}$	$\begin{gathered} \text { Yig } \\ \# 1012 \end{gathered}$	Mean \pm Standard Krour	$\begin{gathered} \text { Pig } \\ \# 1010 \end{gathered}$	$\begin{aligned} & \text { Pig } \\ & \text { \#01g } \end{aligned}$	$\begin{gathered} \text { Fig } \\ \# 1912 \end{gathered}$	Veam 士 Sundard Hroor
Cl	0.20	0.14	0.23	0.19 ± 0.03	0.04	0.07	0.12	0.08 ± 0.02
C2	0.25	0.30	0.72	$0.42+0.15$	0.19	3.21	0.50	1.30 ± 0.96
C3	0.71	2.30	2.88	1.96 ± 0.65	0.61	5.90	10.33	5.61 ± 2.81
CS－Rostral	5.63	0.70	21.65	9.33 ± 6.32	2.11	3.15	5.95	3.73 ± 1.15
Cs－Caudal	0.72	0.65	4.58	1.98 ± 1.30	0.45	0.85	1.11	0.80 ± 0.19
C7	0.51	0.37	0.81	0.56 ± 0.13	0.13	0.26	0.48	0.29 ± 0.10
C8	0.15	0.13	0.35	0.21 ± 0.07	0.13	0.16	0.30	0.20 ± 0.05
Tl	0.05	0.08	0.16	0.10 ± 0.03	0.04	0.07	0.13	0.08 ± 0.03
T4	0.03	0.04	0.10	0.06 ± 0.02	0.02	0.02	0.05	0.03 ± 0.01
TS	0.03	0.04	0.07	0.05 ± 0.01	0.27	0.03	0.08	0.13×0.07
T7	0.05	0.02	0.07	0.05 ± 0.01	0.04	0.03	0.06	0.04 ± 0.01
T12	0.01	0.03	0.03	$0.02+0.01$	0.17	0.10	0.05	$0.11+0.04$
T10	0.02	0.11	0.02	$0.05+0.03$	0.04	0.06	0.31	$0.14+0.09$
Ll	0.03	0.17	0.02	0.07 ± 0.05	0.01	0.02	0.01	$0.01+0.00$

［0654］The high dose（ $6.9 \mathrm{E}+11 \mathrm{vg} /$ injection）group showed high vector genome copy number per diploid cell in ventral hom punches of the cervical spinal cord nearest the infusion sites．Vector genome copy numbers then dropped steeply（ >10－fold）from C 3 to Cl ， and from C 7 to G l spinal cord levels，and then held constant from T 4 through L$]$ ．The ratio of the mean for vector genome copy numbers of both dose groups was calculated and is shown in Table 24，where VH indicates ventral hom．

Table 24. Ratio of means for vg/dc of $6.9 \mathrm{E}+11$ vg/injection: $2.3 \mathrm{E}+10$ vg/injection dose groups

Spinal Cord Level	Leff Vh	Right VH	Overall VH
Cl	5.93	11.53	7.53
C 2	11.46	3.26	5.28
C 3	17.28	37.59	32.33
$\mathrm{C} 5-\mathrm{R}$	29.51	9.84	23.88
C 5 C	67.92	49.01	62.47
C 7	18.87	16.43	18.04
T 8	12.8	12.86	12.83
T 4	10.55	30.81	10.67
T	4	7.01	5.06
T 70	3.43	131	188
T 12	3	2.81	2.91
LI	5.43	1.31	2.05

[0655] Vector genome distribution levels were found to be similar on both sides of the spinal cord, except close to the injection sites. The ratio of the vector genome between high dose $(6,9 E+1]$ vg/injection) and low dose $(2.3 E+10 \mathrm{vg} /$ injection $)$ groups near the injection sites is similar to the 30 -fold difference in dose, but this ratio gradually decreased to $1-3$ fold in regions distal to the injection site (T5 through L1).
[0653] Similar vector genome distribution was observed with scAAVh10.H1.mirl04788.2 (lenti) and scAAVm10H1.mir104-788.2 (albumin) as shown in Table 25, where VH indicates ventral hom.

Table 25. Comparison of vector genome copies in ventral horm punches of ScAAVrhin. H1.mir104-788.2 (lenti) and scAAVrh10. H1.mir104-788.2 (albumin) groups

Spinat cord Segments	Vector Genome/Diploid Cell (vg/de)							
	SeAAVrh10. PB mair $104-788.2$ (albumin) (0) High dose ($6.9 \mathrm{E}+11$ velnjection)							
	Left Ventral Horn				Right Ventral Horn			
	$\begin{gathered} \text { Pig } \\ \# 1007 \end{gathered}$	$\begin{gathered} \text { Pig } \\ H 1008 \end{gathered}$	$\begin{gathered} \text { Pig } \\ 41009 \end{gathered}$	Mean 土 Standara Error	$\begin{gathered} \text { Pig } \\ 41097 \end{gathered}$	$\begin{gathered} \text { Pig } \\ H 1008 \end{gathered}$	$\begin{gathered} \text { Yig } \\ H 1009 \end{gathered}$	Mean 土 Standard Brror
C1	121	0.60	1.57	1.13 ± 0.28	1.04	0.63	0.95	0.87 ± 0.12
C2	6.21	2.48	5.87	4.85 ± 1.19	6.54	1.83	4.33	4.23 ± 1.36
C3	62.07	8.35	31.38	33.93 ± 15.46	265.36	18.57	349.19	$211.04+99.23$
C5-Rostal	517.66	14.36	293.54	275.19 ± 145.38	23.92	13.25	73.08	36.75 ± 18.42
C5-Candal	29.57	210.86	163.63	13469 ± 54.30	33.47	86.29	18.33	39.36 ± 23.51
C7	8.36	16.83	6.71	10.63 ± 3.13	3.42	8.18	2.70	4.77 ± 1.72
C8	2.14	5.80	0.12	2.69 ± 1.66	1.74	3.56	2.39	2.56 ± 0.53
T1	0.85	1.33	0.88	1.02 ± 0.16	0.58	1.28	0.74	0.87 ± 0.21
T4	0.20	0.28	0.20	0.23 ± 0.03	0.17	0.29	0.19	0.22 ± 0.04
T5	0.15	0.20	0.13	0.16 ± 0.02	0.09	0.23	0.18	0.17 ± 0.04
77	0.13	0.15	0.14	0.14 ± 0.01	0.10	0.16	0.11	0.12 ± 0.02
T12	0.11	0.13	0.14	0.13 ± 0.01	0.20	0.13	0.09	0.14 ± 0.03
T] 0	0.13	0.09	0.09	0.10 ± 0.01	0.07	0.13	0.08	$0.09+0.02$

1.1	0.04	0.38	0.11	$0.38+0.10$	0.05	0.11	0.05	0.07 ± 0.02
	ScAAVrhlo, He mbx $104-788.2$ (1enti) (9) \$, 1E+1] vg/myection							
Spima	Left Ventral Horn				Xight Venkral Morre			
cord Segments	$\begin{gathered} \text { Big } \\ \# 1005 \end{gathered}$	$\begin{gathered} \text { Mig } \\ \# 1004 \end{gathered}$	$\begin{gathered} \text { Pig } \\ \# 1006 \end{gathered}$	Mean \pm Standard Error	$\begin{gathered} \text { Pig } \\ \# 1005 \end{gathered}$	$\begin{gathered} \$ 1 \underline{g} \\ \# 1004 \end{gathered}$	$\begin{gathered} \mathrm{Big} \\ \text { \#1006 } \end{gathered}$	Meant Standard Error
Cl	1.74	3.02	1.16	1.97 ± 0.55	2.59	2.12	1.29	2.00 ± 0.38
C2	9.57	9.73	4.52	7.94 ± 1.71	10.69	14.29	4.42	9.80 ± 2.88
C3	29.66	35.55	27.98	31.06 ± 2.29	585.67	633.71	28.65	416.01 ± 194.17
C5-Rostral	92.67	187.13	439.19	239.66 ± 103.42	45.37	201.47	554.95	267.27 ± 150.74
Cs-Caudal	3029.44	760	332.53	1373.99 ± 836.88	132.37	960.73	290.71	461.27 ± 253.88
C7	18.39	28.38	56.81	34.53 ± 11.51	9.52	27.43	41.11	26.02 ± 9.14
C8	5.15	6.82	1199	7.98 ± 2.06	3.57	10.37	15.65	9.86 ± 3.50
T1	203	4.03	7.06	4.37 ± 1.46	2.66	4.4	5.83	4.30 ± 0.92
54	051	0.52	0.84	0.63 ± 011	0.63	115	0.95	0.91 ± 0.15
T5	0.43	1.34	0.58	0.85 ± 0.35	0.35	0.92	0.55	0.60 ± 0.17
T7	0.23	0.42	0.31	0.32 ± 0.06	0.4	0.41	0.32	0.38 ± 0.03
Tl2	0.13	0.27	0.36	0.25 ± 0.07	0.26	0.36	0.24	0.29 ± 0.04
T10	0.21	0.17	0.28	0.22 ± 0.03	0.27	0.22	0.38	0.29 ± 0.05
LI	1.32	0.16	0.12	0.53 ± 0.39	0.25	0.3	0.13	0.22 ± 0.05

[0657] Similar vector genome distributions were observed, with a trend (albeit small), towards more vector genomes observed with scAAVm10.H1 mir 04 -788.2 (lenti). The largest difference between the two groups was observed at C 5 where the vector comprising the lentivirus derived filler sequence bad a value that was 4-9-fold higher than the vector comprising the albumin derived filler sequence. Statistically significant difference in vector genome distribution between the two groups was observed at T 4 right side, T 7 night side and T12 right side ($p<0.01$)
[0658] Histopathological analysis was conducted using H\&E staining of tissue sections from the C3 injection site in the spinal cord. Change in histopathology relative to vehicle control was assessed for all the constructs shown in Table 26. The samples were graded as one of the following: Grade 1: Minimal, Grade 2: Mild, Grade 3: Moderate, Grade 4:

Marked, or Grade 5: Severe difference between the construct and vehicle control. In Table 26 the number in parenthesis adjacent to the grade indicates the number of specimens (pigs) that showed the indicated phenotype.

Table 26. Spinal cord histopathology

Parmmeters measured	Vehicle	scAAVrh10.H1mir104788.2 (lenti) $8.1 E+11$ vg/injection	ScAAVrh10.M1.mir104-788.2 (abumin)	
			$6.9 \mathrm{E}+11$ vginnjection high dose	$2.3 \mathrm{x}+10$ vg/imjecion low dose
Axonal degeneration	Grade 1 (2), Grade 13 (1)	Grade 1(2), Grade 1-2 (I)	Grade 1 (1), Grade $1-2(2)$	Grade 1 (2), Grade 1-2(1)
Dystrophic axon	Grade 1 (2)	Grade 1 (2)	Grade 1(1)	Grade $1(2)$

Glosis	None	Grade 1 (2)	Grade 1 (1), Grade 2 (1)	None
Infiltrates	None	Grade 1 (1)	Grade 2 (2)	None
Necrosis	None	None	Grade 2 (1)	None
Neuronophagia	None	Grade 1 (1)	Grade 1-1)	Grade 1(1)
Chomatolysis	None	Grade 1(2), Grade 2 (1)	Grade 1 (2)	Grade 1 (3)

[0659] Minimal to mild changes were observed in AAV-treated groups
[0660] In situ hybridization (ISH) for pig SOD 1 mRNA and vector genome was conducted on cross-sections of the cervical and thoracic spinal cord from animals treated with vehicle or scAAVrh $10 . \mathrm{HI}$ mir104-788.2 (albumin). Vector genome signal in the motor neurons of both sides of the ventral hom was observed in AAV treated anmals. The vg signal was more abundant in the motor neurons on the side closest to the injection. A substantial reduction in the endogenous SODImRNA signal was observed in the large motor neurons in a rostrocaudal gradient, with strongest reduction in the cervical region. Dramatic reduction of SOD 1 mRNA signal was observed in the motor neurons in the ventral hom of both sides of the C5 spinal cord segments of animals injected with AAV. Reduction of SOD 1 mRNA by ISH correlated with the SOD 1 mRNA knockdown in ventral bom punches as assessed by DDNA.

Equivalents and Scope

[0661] Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
[0662] In the claims, articles such as "a," "an," and "the" may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include "or" between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.
[0663] It is also noted that the term "comprising" is intended to be open and permits but does not require the inclusion of additional clements or steps. When the term "comprising" is used herein, the term "consisting of" is thus also encompassed and disclosed.
[0664] Where ranges are given, endpoints are included. Furhermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. [0665] In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the clams. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
[0660] It is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the disclosure in its broader aspects
[0667] While the present disclosure has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such clams in view of the prior art and, therefore, to effectively encompass the intended scope of the disclosure
[0668] All cited sources, for example, references, publications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.
[0669] Section and table headings are not intended to be limiting.

CLAMS

We clam:

1. A method for inhibiting the expression of the SODI gene in a cell comprising administering to a subject at one or more sites by intraparenchymal delivery a composition comprising an adeno-associated viral (AAV) vector, said AAV vector comprising a nucleic acid sequence positioned between two inverted terminal repeats (TTRs) for inhibiting or suppressing expression of SOD 1 in a cell, wherein said nucleic acid sequence comprises a sense strand sequence and an antisense strand sequence, wherein the sense strand sequence comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 7 and the antisense strand sequence comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 8 and wherein said sense strand sequence and antisense strand sequence share a region of complementarity of at least four nucleotides in length.
2. The method of claim 1, wherein the expression of SOD 1 is inhibited or suppressed.
3. The method of clam 2, wherein the SODI is wild type SOD1, mutated SOD 1 with at least one mutation or both wild type SOD1 and mutated SOD1 with at least one mutation
4. The method of claim 2, wherein the expression of SOD 1 is inhibited or suppressed by about 20% to about 100%.
5. The method of any of claims $1-4$, wherein the nucleic acid sequence comprises a sense strand sequence and an antisense strand sequence of an siRNA duplex.
6. The method of claims $1-5$, wherein said nucleic acid sequence positioned between two inverted terminal repeats (TRs) including said ITRs consists of SEQ ID NO: 25.
7. The method of any of claims $1-5$, wherein the region of complementarity is at least 17 nucleotides in length.
8. The method of claim 7, wherein the region of complementarity is between 19 and 21 nucleotides in length.
9. The method of claim 8 , wherein the region of complementarity is 19 nucleotides in length.
10. The method of any of claims $1-5$, wherein the sense strand sequence and the antisense strand sequence are, independently, 30 nucleotides or less
11. An adeno-associated viral (AAV) vector, said AAV vector comprising a nucleic acid sequence positioned between two inverted terminal repeats (ITRs) for inhibiting or suppressing expression of SOD 1 in a cell, wherein said nucleic acid sequence comprises a sense strand sequence and an antisense strand sequence, wherein the sense strand sequence comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 7 and the antisense strand sequence comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 8 and wherein said sense strand sequence and antisense strand sequence share a region of complementarity of at least four mucleotides in length.
12. A polynucleotide sequence comprising SEQ ID NO: 9
13. A polynucleotide sequence consisting of SEQ ID NO: 25 .
14. An adeno-associated viral (AAV) vector, said AAV vector comprising a vector genome sequence comprising SEQ ID NO: 25 packaged in an AAV capsid.
15. The adeno-associated viral (AAV) vector of claim 14, wherein the AAV capsid serotype is selected from AAVrh 10 and AAV9.
16. The adeno-associated viral (AAV) vector of claim 14 wherein the vector genome is self-complementary (scAAV).
17. A method for treating and/or ameliorating a neurodegenerative or spinal cord related disease in a subject in need of treatment, the method comprising administering to the subject at more than one site by intraparenchymal delivery a therapeutically effective amount of a composition comprising an adeno-associated viral (AAV) vector, said AAV vector comprising a nucleic acid sequence positioned between two inverted temminal repeats (ITRs) for imhibiting or suppressing expression of a gene associated with said neurodegenerative or spinal cord related disease in a cell, wherein said nucleic acid sequence comprises a sense strand sequence and an antisense strand sequence, wherein the sense strand sequence comprises at least 15 contiguous mucleotides and the antisense strand sequence comprises at least 15 contiguous nucleotides and wherein said sense strand sequence and antisense strand sequence share a region of complementarity of at least four nucleotides in length.
18. The method of any of claim 17 , wherein the region of complementarity is at least 17 nucleotides in length.
19. The method of claim 18 , wherein the region of complementarity is between 19 and 21 nucleotides in length
20. The method of claim 19 , wherein the region of complementanty is 19 nucleotides in length.
21. The method of claim 17 , wherein the sense strand sequence and the antisense strand sequence are, independently, 30 nucleotides or less.
22. The method of claim 17, wherein the AAV vector comprises a capsid serotype selected from the group consisting of AAV1, AAV2, AAV2G9, AAV3, AAV3a, AAV3b, AAV3-3, AAV4, AAV4~4, AAV5, AAV6, AAV6.1, AAV6.2, AAV6.1.2, AAV7, AAV7.2, AAV8, AAV9, AAV9.11, AAV9.13, AAV9.16, AAV9.24, AAV9.45, AAV9.47, AAV9.61, AAV9.68, AAV9.84, AAV9.9, AAV10, AAV11, AAV12, AAV16.3, AAV24.1, AAV27.3, AAV42.12, AAV42-1b, AAV42-2, AAV42-3a, AAV4236, AAV42-4, AAV42-5a, AAV42-5b, AAV42-6b, AAV42-8, AAV42-10, AAV42-11, AAV42-12, AAV42-13, AAV42-15, AAV42-aa, AAV43-1, AAV43-12, AAV43-20,

AAV43-21, AAV43-23, AAV43-25, AAV43-5, AAV44.1, AAV44.2, AAV44.5, AAV223.1, AAV223.2, AAV223.4, AAV223.5, AAV223.6, AAV223.7, AAV1-7/m.48, AAV1-8/rh.49, AAV2-15/rh.62, AAV2-3/rh.61, AAV2-4/rh.50, AAV2-5/h.51, AAV3.1/hu.6, AAV3.1/hu9, AAV3-9/rh.52, AAV3-11/h.53, AAV4-8/r11.64, AAV49/h.54, AAV4-19/rh.55, AAV5-3/rh.57, AAV5-22/rh.58, AAV7.3/hu.7, AAV16.8/hu.10, AAV16.12/hu.11, AAV29.3/bb.1, AAV29.5/bb.2, AAV106.1/hu.37, AAV114.3/hu.40, AAV127.2/hu.41, AAV127.5/hu.42, AAV128.3/hu.44, AAV 130.4/hu.48, AAV145.1/hu.53, AAV145.5/hu.54, AAV145.6/hu.55, AAV161.10/hu.60, AAV161.6hu.61, AAV33.12hu.17, AAV33.4/hu.15, AAV33.8/hu.16, AAV52/hu.19, AAV52.1/hu 20, AAV58.2/hu.25, AAVA3.3, AAVA3.4, AAVA3.5, AAVA3.7, AAVCl, AAVC2, AAVC5, AAV-D., AAV-B38, AAVE3, AAVE5, AAVH2, AAVh.72, AAVhu. 8, AAVh. 68 , AVm. 70, AAVpi.1, AAVpi.3, AAVpi.2, AAVm. 60, AAVrh. 44, AAVh.65, AAVrh.55, AAVm.47, AAVrh.69, AAVr.45, AAVrh.59, AAVhu. 12, AAVH6, AAVLK03, AAVH-1/mu.1, AAVH-5/hu. 3 , AAVLG-10/rh.40, AAVLG-4/rh.38, AAVLG-9hu 39, AAVN72l-8/rh.43, AAVCh.5, AAVCh.5R1, AAVcy 2, AAVcy 3, AAVcy.4, AAVcy.5, AAVCy.5R1, AAVCy.5R2, AAVCy.5R3, AAVCy.5R4, AAVcy.6, AAVhu.1, AAVhu.2, AAVhu.3, AAVhu.4, AAVhu.5, AAVhu.6, AAVhu.7, AAVhu.9, AAVhu. 10, AAVhu.11, AAVhu.13, AAVhu. 15, AAVhu.16, AAVbu. 17 , AAVhu. 18 , AAVhu.20, AAVhu.21, AAVhu.22, AAVhu.23.2, AAVhu.24, AAVhu.25, AAVhu.27, AAVhu.28, AAVhu.29. AAVhu.29R, AAVhu. 31, AAVhu.32, AAVhu.34, AAVhu.35, AAVhu.37, AAVhu. 39 . AAVhu.40, AAVhu.41, AAVhu.42, AAVhu.43, AAVhu.44, AAVhu 44R1, AAVhu.44R2, AAVhu.44R3, AAVhu.45, AAVhu. 46, AAVhu.47, AAVhu. 48, AAVhu. 48 R 1, AAVhu. 48 R 2, AAVhu. 48 R 3 , AAVhu. 49, AAVhu. 51 , AAVhu.52, AAVhu.54, AAVhu.55, AAVhu.56, AAVhu.57, AAVhu.58, AAVhu.60, AAVhu.61, AAVhu.63, AAVhu.64, AAVhu.66, AAVhu.67, AAVhu. 14/9, AAVhu.t 19, AAVh.2, AAVm.2R, AAVm.8, AAVrb.8R, AAVm.10, AAVh. 12, AAVh.13, AAVh.13R, AAVrh.14, AAVr.17, AAVm.18, AAVm.19, AAVm.20, AAVrh.21, AAVrh.22, AAVrh.23. AAVrb.24, AAVh.25, AAVm.31, AAVrh.32, AAVrh.33. AAVrh.34, AAVrh.35, AAVrh.36, AAVh. 37 , AAVrh. 37 R 2 , AAVrh. 38 , AAVrh. 39, AAVrh.40, AAVrh.46, AAVrh.48, AAVh.48.1, AAVrh.48.1.2, A AVh.48.2, AAVm.49. AAVrh.51, AAVrh.52, AAVrh.53, AAVm.54, AAVm.56, AAVm. 57, AAVm. 58 , AAVrh.61, AAVrh.64, AAVm.64R1, AAVrh.64R2, AAVrh.67, AAVm.73, AAVm.74, AAVm8R, AAVrb8R A586R mutant, AAVrb8R R533A mutant, AAAV, BAAV, caprine

AAV, bovine AAV, AAVhEl.1, AAVhErl.5, AAVhERl. 14 , AAVhErl.8, AAVhErl.16, AAVhEr 1.18 , AAVhEr 1.35 , AAVhErl.7, AAVhEr1.36, AAVhEr2.29, AAVhEr2.4, AAVhEr2.16, AAVhEr2.30, AAVhEr2.31, AAVhEr2.36, AAVhER1.23, AAVhEr3.1, AAV2.5T, AAV-PAEC, AAV-LK01, AAV-LK02, AAV-LK03, AAV-LK04, AAVLK05, AAV-LK06, AAV-LK07, AAV-LK08, AAV-LK09, AAV-LK10, AAV-LK11, AAV-LK12, AAV-LK13, AAV-LK14, AAV-LK15, AAV-LK16, AAV-LK17, AAV LK18, AAV-LK19, AAV-PAEC2, AAV-PAEC4, AAV-PAEC6, AAV-PAEC7, AAVPAEC8, AAV-PAEC11, AAV-PAEC12, AAV-2-pre-miRNA-101, AAV-8h, AAV-8b, AAV-h, AAV-b, AAV SM 10-2, AAV Shuffle 100-1, AAV Shuffle 100-3, AAV Shuffle 100-7, A AV Shuffe 10-2, AAV Shuffe 10-6, AAV Shuffle 10-8, A AV Shumfe $100-2$, AAV SM 10-1, AAV SM $10-8$, AAV SM 100-3, AAV SM $100-10$, BNP61 AAV, BNP62 AAV, BNP63 AAV, AAVrh.50, AAVm.43, AAVrh.62, AAVrh.48, AAVhu. 19, AAVhu. 11, AAVhu.53, AAV4-8/rh.64, AAVLG-9hu.39, AAV54.5/hu.23, AAV54.2/hu.22, AAV54.7/mu.24, AAV54.1/hu.21, AAV54.4R/hu.27, AAV46.2hu.28, AAV46.6/wu.29, AAV $128.1 / \mathrm{hu}, 43$, true type AAV (ttAAV), UPENN AAV 10, Japanese AAV 10 serotypes, AAV CBr-7.1, AAV CBr-7.10, AAV CBr-7.2, AAV CBr-7.3, AAV CBr-7.4, AAV CBr-7.5, AAV CBr-7.7, AAV CBr-7.8, AAV CBr-B7.3, AAV CBr-B7.4, $A A V C B r-E 1, A A V C B r-E 2, A A V C B r-E 3, A A V C B r-E 4, A A V C B r-E 5, A A V C B r-5$, AAV CBr-E6, AAV CBr-E7, AAV CBr-E8, AAV CHt-1, AAV CHt-2, AAV CHt-3, AAV CHt-6.1, AAV CHt-6.10, AAV CHt-6.5, AAV CHt-6.6, AAV CHt-6.7, AAV CHt6.8, AAV CHt-P1, AAV CHt-P2, AAV CHt-P5, AAV CHt-P6, AAV CHt-P8, AAV CHtP9, AAV CKd-1, AAV CKd-10, AAV CKd-2, AAV CKd-3, AAV CKd-4, AAV CKd-6, AAV CKd-7, AAV CKd-8, AAV CKd-B1, AAV CKd-B2, AAV CKd-B3, AAV CKdB4, AAV CKd-B5, AAV CKd-B6, AAV CKd-B7, AAV CKd-B8, AAV CKd-H1, AAV CKd-H2, AAV CKd-H3, AAV CKd-H4, AAV CKd-H5, AAV CKd-H6, AAV CKd-N3, AAV CKd-N4, AAV CKd-N9. AAV CLg-Fl, AAV CLg-F2, AAV CLg-F3, AAV ClgF4, AAV CLg-F5, AAV CLg-F6, AAV CLg-F7, AAV CLg-F8, AAV CLV-1, AAV CLv1-1, AAV Clv1-10, AAV Clyl-2, AAVClv-12, AAVCLv1-3, AAV Clv-13, AAV Clvl-4, AAV Clvl-7, AAV Clvl-8, AAV Clvl-9, AAV Clv-2, AAV Clv-3, AAV CLv-4, AAV CLv-6, AAV CLv-8, AAV CLv-D1, AAV CLv-D2, AAV CLv-D3, AAV CLv-D4, AAV CLv-D5, AAV CLv-D6, AAV CLv-D7, AAV CLv-D8, AAV CLv-El, AAV Clv-K1, AAV Clv-K3, AAV Clv-K6, AAV Clv-LA, AAV CLv- 5 , AAV CLVL6, AAV CLv-M1, AAV Clv-Mu, AAV CLv-M2, AAV CLv-M5, AAV Clv-M6,

AAV CLv-M7, AAV CLv-M8, AAV Clv-M9, AAV CLv-R1, AAV CLv-R2, AAV
CLv-R3, AAV CLv-R4, AAV CLv-R5, AAV CLv-R6, AAV CLv-R7, AAV CLv-R8, AAV CEv-R9, AAV CSp-1, AAV CSp-10, AAV CSp-11, AAV CSp-2, AAV CSp-3, AAV CSp-4, AAV CSp-6, AAV CSp-7, AAV CSp-8, AAV CSp-8. 10, AAV CSp-8.2, AAV CSp-8.4, AAV CSp-8.5, AAV CSp-8.6, AAV CSp-8.7, AAV CSp-8.8, AAV CSp8.9. AAV CSp-9, AAV hu.48R3, AAV.VR-355, AAV3B, AAV4, AAV5, AAVF1/HSCl, AAVF11/HSC11, AAVF12/HSC12, AAVF13/HSC13, AAVF14/HSC14, AAVF15/HSC15, AAVE16/HSC16, AAVF17/HSC17, AAVF2/HSC2, AAVF3/HSC3, AAVF4/HSC4, AAVF5/HSC5, AAVF6/HSC6, AAVF7/HSC7, AAVE8/HSC8, AAVF9/HSC9, AAV-以HP.B, AAV-PHP.A, G2B-26, G2B-13, TH1.1-32, TH1.1-35, AAVPHP.B2, AAVPHP B3, AAVPHP N/PHP.B-DGT, AAVPHP.B-EST, AAVPHP.BGGT, AAVPHP B-ATP, AAVPGP.B-ATT-T, AAVPHPB-DGT-T, AAVPHPB-GGT-T, AAVPHP.B-SGS, AAVPHP.B-AQP, AAVPGPB-QQP, AAVPHP.B-SNP(3), AAVPHP.B-SNP, AAVPHP.B-QGT, AAVPHP.B~NQT, AAVPHP.B-EGS, AAVEHP.BSGN, AAVPHP B-EGT, AAVPHPB-DST, AAVPHP.B-DST, AAVPHP.B-STP, AAVPHP.B-PQP, AAVPHP.B-SQP, AAVPHP.B-QLP, AAVPHP.B-TMP, AAVPHP.BTTP, AAVPHP.S/G2A12, AAVG2A15/G2A3, AAVG2B4, AAVG2B5 and variants thereof.
23. The method of claim 22, wherein the capsid serotype is A AVrh. 10
24. The method of claim 22, wherein the AAV vector comprises a promoter, and wherein the promoter is H .
25. The method of claim 22 , wherein the AAV comprises a filler sequence.
26. The method of claim 25 , wherein the fller sequence is selected from a lentivirus derived filler sequence and an albumin gene derived filler sequence.
27. The method of claims 1 or 17 , wherein the administering step by intraparenchymal delivery occurs at two sites within the spinal cord.
28. The method of claims 1 or 17 , wherein the administration by intraparenchymal delivery occurs at two sites within the cervical spinal cord
29. The method of claims 1 or 17 , wherein the two sites of administration are at levels C 3 and C5 of the spinal cord.
30. The method of claims 1 or 17 , wherein the volume of administration is from about 5 uL to about $240 \mu \mathrm{~L}$ at level C 3 of the spinal cord and from about $5 \mu \mathrm{~L}$ to about $240 \mu \mathrm{~L}$ at level C 5 of the spinal cord.
31. The method of claims 1 or 17 , wherein the volume of administration is from about 5 uL to about $60 \mu \mathrm{~L}$ at level C 3 of the spinal cord and from about $5 \mu \mathrm{~L}$ to about $60 \mu \mathrm{~L}$ at level C 5 of the spinal cord.
32. The method of claim 31, wherein the volume of administration is from about 25 to about $40 \mu \mathrm{~L}$ at level C 3 of the spinal cord and from about 25 to about $40 \mu \mathrm{~L}$ at level C 5 of the spinal cord.
33. The method of claims 1 or 17 , wherein the dose is from about $1 \times 10^{10} \mathrm{vg}$ to about $1 \times 10^{12} \mathrm{vg}$ at level C3 of the spinal cord and from about $1 \times 10^{10} \mathrm{vg}$ to about $1 \times 10^{22} \mathrm{vg}$ at level C5 of the spinal cord.
34. The method of claim 33 , wherein the dose is from about $5 \times 10^{11} \mathrm{vg}$ to about $8 \times 10^{11} \mathrm{vg}$ at level C 3 of the spinal cord and from about $5 \times 10^{11} \mathrm{vg}$ to about $8 \times 10^{11} \mathrm{vg}$ at level C 5 of the spinal cord.
35. The method of claim 33, wherein the dose is from about $2 \times 10^{20} \mathrm{vg}$ to about $7 \times 10^{11} \mathrm{vg}$ at level C 3 of the spinal cord and from about $2 \times 10^{10} \mathrm{vg}$ to about $7 \times 10^{12} \mathrm{vg}$ at level C 5 of the spinal cord.
36. The method of any of claims $30-35$, wherein the injection rate is $5 \mu \mathrm{~L} / \mathrm{min}$.

Figure 1

Figure 2

20571070PCT_SEQLST.txt SEQUENCE LISTING

<110> VOYAGER THERAPEUTICS, INC.
<120> TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS AND DISORDERS ASSOCIATED WITH THE SPINAL CORD
<130> 2057.1070РCT
<140> PCT/US2019/XXXXXX
<141> 2019-07-02
<150> 62/746,104
<151> 2018-10-16
<150> 62/693,040
<151> 2018-07-02
<160> 30
<170> PatentIn version 3.5
<210> 1
<211> 21
<212> RNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"
<400> 1
uauuaaagug aggaccugcu u
<210> 2
<211> 21
<212> RNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide "
<400> 2
gcagguccuc acuuuaaugc u

```
<210> 3
```

<211>30

```
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
    polynucleotide"
<400> 3
ctcccgcaga acaccatgcg ctccacggaa
<210> 4
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
    polynucleotide"
<400> 4
gtggccactg agaag 15
<210> 5
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
    polynucleotide"
<400> 5
ctgaggagcg ccttgacagc agccatggga gggcc 35
<210> 6
<211> 122
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
    polynucleotide"
<400> 6
ctcccgcaga acaccatgcg ctccacggaa gcaggtcctc actttaatgc tgtggccact
6 0
```

 20571070PCT_SEQLST.txt
 gagaagtatt aaagtgagga cctgcttctg aggagcgcct tgacagcagc catgggaggg 120
CC122
<210> 7
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 7
gcaggtcctc actttaatgc t
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 8
tattaaagtg aggacctgct t
<210> 9
<211> 1406
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 9
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt 60
ggtcgccogg cctcagtgag cgagcgagcg cgcagagagg gagtgtagcc atgctctagg 120
aagatcaatt caattcacgc gtccatggct tagaaggcaa gaatcctggc tgtggaaaga 180
tacctaaagg atcaacagct cctggggatt tggggttgct ctggaaaact catttgcacc 240
Page 3

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{20571070PCT_SEQLST.txt} \\
\hline actgctgtgc cttggaatgc tagttggagt aataaatctc tggaacagat ttggaatcac & 300 \\
\hline acgacctgga tggagtggga cagagaaatt aacaattaca caagcttaat acactcotta & 360 \\
\hline attgaagaat cgcaaaacca gcaagaaaag aatgaacaag aattattgga attagataaa & 420 \\
\hline tgggcaagtt tgtggaattg gtttaacata acaaattggc tgtggtatat aaaattattc & 480 \\
\hline ataatgatag taggaggctt ggtaggttta agaatagttt ttgctgtact ttctatagtg & 540 \\
\hline aatagagtta ggcagggata ttcaccatta tcgtttcaga cccacctccc aacccogagg & 600 \\
\hline ggaccogaca ggcccgaagg aatagaagaa gaaggtggag agagagacag agacagatcc & 660 \\
\hline attcgattag tgaacggatc tcgacggtat cgatcacgag actagcotcg agcggcogca & 720 \\
\hline attcgaacgc tgacgtcatc aacccgctcc aaggaatcge gggccoagtg tcactaggcg & 780 \\
\hline ggaacaccea gcgcgcgtgc gccctggcag gaagatggct gtgagggaca gggagtggcg & 840 \\
\hline ccotgcaata tttgcatgtc gctatgtgtt ctgggaaatc accataaacg tgaaatgtct & 900 \\
\hline ttggatttgg gaatcttata agttctgtat gagaccacac cggtaccgag ctctccogca & 960 \\
\hline gaacaccatg cgctccacgg aagcaggtcc tcactttaat gctgtggcca ctgagaagta & 1020 \\
\hline ttaaagtgag gacctgcttc tgaggagcgc cttgacagca gccatgggag ggcctcgagg & 1080 \\
\hline acggggtgaa ctacgcctga ggatccgatc tttttccctc tgccaaaaat tatggggaca & 1140 \\
\hline tcatgaagco cottgagcat ctgacttctg gctaataagg gaaatttatt ttcattgcaa & 1200 \\
\hline tagtgtgttg gaattttttg tgtctctcac tcggcctagg tagataagta gcatggcggg & 1260 \\
\hline ttaatcatta actacaagga accoctagtg atggagttgg ccactcoctc tctgcgcgct & 1320 \\
\hline cgctcgctca ctgaggccgg gcgaccaaag gtcgccogac gcccgggett tgcccgggcg & 1380 \\
\hline gcctcagtga gcgagcgagc gcgcag & 1406 \\
\hline <210> 10 & \\
\hline <211> 981 & \\
\hline <212> DNA & \\
\hline <213> Homo sapiens & \\
\hline <400> 10 & \\
\hline gtttggggce agagtgggcg aggcgcggag gtctggccta taaagtagtc gcggagacgg & 60 \\
\hline ggtgctggtt tgcgtcgtag tctcctgcag cgtctggggt ttcogttgca gtcctcggaa & 120 \\
\hline
\end{tabular}

```

<210> 12
<211> 658
<212> DNA
<213> Sus scrofa
<400> 12
cgtcggcgtg tactgcggcc tctcccgctg cttctggtac cctcccagcc cggaccggag

```
```

<210> 14

```
<210> 14
<211> 54
<211> 54
<212> DNA
<212> DNA
<213> Artificial Sequence
<213> Artificial Sequence
<220>
<220>
<221> source
```

<221> source

```
```

 20571070PCT_SEQLST.txt
 <223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 14
gtgctgggcg ggggggcggcg ggccctcccg cagaacacca tgcgctccac ggaa
<210> 15
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 15
tgtgatttgg
<210> 16
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 16
gtggccactg agaag
<210> 17
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 17
tggccgtgta gtgctaccca gcgctggctg cctcctcagc attgcaattc ctctcccatc
6 0
tgggcaccag tcagctaccc tggtgggaat ctgggtagcc 100
<210> 18

```
```

 20571070PCT_SEQLST.txt
 <211> 52
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 18
ctgtggagcg ccttgacagc agccatggga gggccgcccc ctacctcagt ga
<210> 19
<211> 260
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 19
gaagcaaaga aggggcagag ggagcccgtg agctgagtgg gccagggact gggagaagga
gtgaggaggc agggccggca tgcctctgct gctggccaga ccocttaact catttgttcc 120
cgtctgcacc tgtcactagt aacagatgag ttaaggggtt tggccgtgta gtgctaccca 180
gcgctggctg cctcctcagc attgcaattc ctctcccatc tgggcaccag tcagctaccc 240
tggtgggaat ctgggtagcc 260
<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 20
ccccttaact catttgttcc c
2 1
<210> 21
<211> 21
<212> DNA

```
```

 20571070PCT_SEQLST.txt
 <213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 21
taacagatga gttaaggggt t
<210> 22
<211> 158
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 22
gtgctgggcg gggggcggcg ggccotcccg cagaacacca tgcgctcttc ggaaccctta
actgatctgt taacctgtga cctggttaac agatgagtta agggttctgt ggagcgcctt 120
gacagcagcc atgggagggc cgccccctac ctcagtga 158
<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"
<400> 23
cccttaactg atctgttaac c
2 1
<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"

```

\section*{20571070PCT_SEQLST.txt}
```

<400> 24
ttaacagatg agttaagggt t

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{20571070PCT_SEQLST.txt} \\
\hline tcgaggacgg ggtgaactac gcctgaggat ccgatctttt tccctctgcc aaaaattatg & 1140 \\
\hline gggacatcat gaagccoctt gagcatctga cttctggcta ataaaggaaa tttattttca & 1200 \\
\hline ttgcaatagt gtgttggaat tttttgtgtc tctcactcgg cctaggtaga taagtagcat & 1260 \\
\hline ggcgggttaa tcattaacta caaggaaccc ctagtgatgg agttggccac tccotctctg & 1320 \\
\hline cgcgctcgct cgctcactga ggcogggcga ccaaaggtcg cccgacgecc gggctttgcc & 1380 \\
\hline cgggcggcct cagtgagcga gcgagcgcgc ag & 1412 \\
\hline <210> 26 & \\
\hline <211> 105 & \\
\hline <212> DNA & \\
\hline <213> Artificial Sequence & \\
\hline <220> & \\
\hline <221> source & \\
\hline <223> /note="Description of Artificial Sequence: Synthetic polynucleotide" & \\
\hline <400> 26 & \\
\hline ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggacgtcg ggcgaccttt & 60 \\
\hline ggtcgccogg cctcagtgag cgagcgagcg cgcagagagg gagtg & 105 \\
\hline <210> 27 & \\
\hline <211> 570 & \\
\hline <212> DNA & \\
\hline <213> Homo sapiens & \\
\hline \[
\begin{aligned}
& \text { <400> } 27 \\
& \text { atagtcttct gcacagggca ttctttttgc ttcaggatgt ttacaacatt tgctgcccac }
\end{aligned}
\] & 60 \\
\hline ttttcctagg tttcttgaga cctctacaag agttggagtt gacacttggg gtactttctt & 120 \\
\hline ggtgtaacga actaatagcc tgaaaaaaag aagtcatgtg ttttcagcaa ggcaagaaac & 180 \\
\hline tgtctaacat agtagataaa acagagaaca cttggccgga atcaactaag atgttgctat & 240 \\
\hline gttccattca tcatattatc tccatctgca gagtagtggg ttagtggagg gtagaaaaca & 300 \\
\hline ttctcctgaa caactagtta aacttggctt tgagttccac ctgtaccact tgcataatct & 360 \\
\hline tgggaaagtg agttgcctaa ttcagtgaca ttaataaatt tattaatttc ttctttcaat & 420 \\
\hline aaaacctgga gagagcttca tatgtatcag catatgctaa acttgaaaga tacaagtaga & 480 \\
\hline aaatggaagg aaatatatct gactcaatag ggatagttca agggttaaat taaaagtagt & 540 \\
\hline Page 11 & \\
\hline
\end{tabular}
aaagtattat aattaatctg acatggtacc ..... 570

<210> 28

<211> 219

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic

    polynucleotide"

<400> 28

aattcgaacg ctgacgtcat caacccgctc caaggaatcg cgggcccagt gtcactaggc 60

gggaacaccc agcgcgcgtg cgccctggca ggaagatggc tgtgagggac agggagtggc 120

gccctgcaat atttgcatgt cgctatgtgt tctgggaaat caccataaac gtgaaatgtc 180

tttggatttg ggaatcttat aagttctgta tgagaccac 219
<210> 29
<211> 127
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
    polynucleotide"
<400> 29
gatctttttc cctctgccaa aaattatggg gacatcatga agccccttga gcatctgact 60
tctggctaat aaaggaaatt tattttcatt gcaatagtgt gttggaattt tttgtgtctc 120
tcactcg 127
<210> 30
<211> 130
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
        polynucleotide"
20571070PCT_SEQLST.txt
<400> 30
aggaacccct agtgatggag ttggccactc cctctctgcg cgctcgctcg ctcactgagg ..... 60
ccgggcgacc aaaggtcgcc cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc ..... 120
gagcgcgcag ..... 130```

