(12) STANDARD PATENT
(11) Application No. AU 2004207233 B2
(19) AUSTRALIAN PATENT OFFICE
(54) Title

Nucleic acids and corresponding proteins entitled 254P1D6B useful in treatment and detection of cancer
(51) International Patent Classification(s) C07K 14/47 (2006.01)
(21) Application No: 2004207233
(22) Date of Filing: 2004.01.23
(87) WIPO No: WO04/067716
(30) Priority Data
(31) Number

60/442,526
(32) Date 2003.01.24
(33) Country US
(43) Publication Date: 2004.08 .12
(44) Accepted Journal Date: 2007.08 .09
(71) Applicant(s)

Agensys, Inc.
(72) Inventor(s)

Ge, Wangmao;Perez-Villar, Juan J.;Raitano, Arthur B.;Jakobovits, Aya;Kanner, Steven B.;Challita-Eid, Pia M.
(74) Agent / Attorney

FB Rice \& Co, Level 2344 Market Street, Sydney, NSW, 2000
(56) Related Art

Nagase et al, DNA research Vol. 4, pp. 141-150 (1997)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 12 August 2004 (12.08.2004)

PCT
(10) International Publication Number WO 2004/067716 A2
(51) International Patent Classification ${ }^{7}$:
(21) International Application Number:

PCT/US2004/001965
(22) International Filing Date: 23 January 2004 (23.01.2004)

(25) Filing Language:	English	
(26) Publication Language:		
		English
(30) Priority Data:		
$60 / 442,526$	24 January $2003(24.01 .2003)$	US

(71) Applicant (for all designated States except US): IGEN SYS, INC. [US/ITS]; 1545 17th Street, Santa Monica, CA 90404 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): KANNER, Steven, B. [US/US]; 1107 Princeton Street, \#101, SAnta Monica, CA 90403 (US). RAITANO, Arthur, B. [US/US]; 12685 Rose Avenue, Los Angeles, CA 90066 (US). JAKOBOVITS, Aya [US/US]; 3135 Hutton Drive, Beverly Hills, CA 90210 (US). CHALLITA-EID, Pia, M. [I B/US]; 15745 Morrison Street, Encino, CA 91436 (US). GE, Wangmao [CN/US]; 4838 Hollow Corner Road, Apt. \# 314, Culver City, CA 90230 (US). PEREZ-VILLAR, Juan, J. [ES/US]; 12424 Texas Avenue, Los Angeles, CA 90025 (US). FARIS, Mary [US/US]; 2538 Almaden Court, Los Angeles, CA 90077 (US).

C12N
(74) Agents: DEVERNOE, David, L. et al.; Morrison \& Foer ster LLP, Suite 500, 3811 Valley Centre Drive, San Diego, CA 92130-2332 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\Lambda \mathrm{E}, ~ \Lambda \mathrm{G}, ~ \Lambda \mathrm{~L}, ~ \Lambda \mathrm{M}$, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CL, C $\angle, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{D} \not, \mathrm{EC}, \mathrm{EE}, \mathrm{EG}, \mathrm{ES}, \mathrm{FI}$, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, K7, IC., IK, LR, IS, LT, LU, IV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PI, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
(54) Title: NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 254P1D6B USEFUL IN TREATMENT AND DETECTION OF CANCER

Abstract

254P1D6B SSH sequence of 186 nucleotides (SĖQ ID NO: 1).

1 GATCCACAGA TAGGACACAA ITCTTTGGTC ATCAGTAGAC CITGAACCAT CCAAAGTAAT 61 GGAATTATTG GGAAGCACAA GAACATGTCT GCCACCAGCC CGGGCTCTGG GAGGACTATT 121 ATTTTCCTTC TTCACAGCCA CAGTGAGGGT GGACGTGCTG CTCAGTCCCT GCTGGTCTTT 181 TACTGTCAAA CGGAAGTGGT AGGTCCCCAC CTGGAGACCA GTCACAGTGG CTATTGCTTT 241 GTCAATATTI TCCATCTCCA ETGCACTGGG GCCTCTGACG TGCT

(57) Abstract: A novel gene 254P1D6B and its encoded protein, and variants thereof, are described wherein 254P1D6B exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 254P1D6B provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 254P1D6B gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 254P1D6B can be used in active or passive immunization.

NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 254P1D6B USEFUL IN TREATMENT AND DETECTION OF CANCER

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH

Not applicable.

FIELD OF THE INVENTION

The invention described herein relates to genes and their encoced proteins, termed 254P1D6B and variants thereof, expressed in certain cancers, and to diagnostic and therapeutic methods and compositions useful in the management of cancers that express 254P1D6B.

BACKGROUND OF THE INVENTION

Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, witn over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.

Worldwide, several cancers stand out as the leading killers. In oarticular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the prmary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilifations following treatrent. Furthermore, many cancer patients experience a recurrence

Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease - second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable corsequences.

On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects.

Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate

Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein et al. 1997, Nat. Med. 3:402). More recently idenifified prostate cancer markers include PCTA-1 (Su et at., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto et al., Clin Cancer Res 1996 Sep 2 (9): 144551), STEAP (Hubert, et al., Froc Natl Acad Sci U S A. 1999 Dec 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter et al, 1998, Proc. Nall. Acad. Sci. USA 95: 1735).

While previously identified markers such as PSA, FSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the idenfification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy.
Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm , malignant potential exists. In the edult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureier. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States.

Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, metastatic disease has been refractory to any systemic therapy. With recent develcrments in systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate patients with a possibility of durable responses. Nevertheless, there is a remaining need for effect ve therapies for these patients.

Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (ffifh most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998 , there was an estimated 54,500 cases, including 39,500 in men and 15,000 in wonen. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of $3: 1$ may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer ir 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing probiem as the population becomes more elderly.

Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the biadder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cyslectomy and urinary diversion is the most eflective means to eliminate the cancer but carry an undeniable impact on urinary and sexual funclion. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.

An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (-2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal carcer) in 2000 , accounling for about 11% of all U.S. cancer deaths.

At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently
required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.

There were an estimated 164,100 new cases of lung and bronchial cancer in 2000 , accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining signifcantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women, was 42.3 per 100,000 .

Lung and bronchial cancer caused an estimated 156.900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992-1996, mortality from lung cancer declined significantly among men (-1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987 , more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again.

Treaiment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.

An estimated 182,800 new invasive cases of breast cancer vere expected to occur among women in the United Slates during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990 s to about 110.6 cases per 100,000.

In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significanlly during 1992-1996 wilh the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved trealment

Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lympi nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more melhods are used in combination. Numerous studies have shown that, for ear'y stage disease, long-lerm survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.

Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or lamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS , if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments.

There were an estimaled 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynecologic cancers. During 1992-1996, ovarian cancer incidence
rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000 . Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intro-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer.

There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about -0.9% per year) while rates have increased slightly among women.

Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most: There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer.

SUMMARY OF THE INVENTION

The present invention relates to a gene, designated 254P1D6B, that has now been found to be over-expressed in the cancer(s) listed in Table I. Northern blot expression analysis of 254P1D6B gene expression in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (Figure 2) and amino acid (Figure 2, and Figure 3) sequences of 254P1D6B are provided. The tissue-related profile of 254P1D6B in normal adult tissues, combined with the over-expression observed in the tissues listed in Table I, shows that 254P1D6B is aberrantly over-expressed in at least some cancers, and thus serves as a useful diagnostic, prophylactic, prognostic, and/or therapeutic target for cancers of the tissue(s) such as those listed in Table I.

The invention provides polynucleotides corresponding or complementary to all or part of the 254P1D6B genes, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding 254P1D6B-related proteins and fragments of $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$,
or more than 25 contiguous amino acids; at least $30,35,40,45,50,55,60,65,70,80$, $85,90,95,100$ or more than 100 contiguous amino acids of a 254P1D6B-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules, polynucleotides or oligonucleotides complementary or having at least a 90% homology to the 254 P 1 D 6 B genes or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the 254 P 1 D 6 B genes, mRNAs, or to 254 P 1 D 6 B -encoding polynucleotides. Also provided are means for isolating cDNAs and the genes encoding 254P1D6B. Recombinant DNA molecules containing 254 P 1 D 6 B polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of 254P1D6B gene products are also provided. The invention further provides antibodies that bind to 254P1D6B proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or therapeutic agent. In certain embodiments, there is a proviso that the entire nucleic acid sequence of Figure 2 is not encoded and/or the entire amino acid sequence of Figure 2 is not prepared. In certain embodiments, the entire nucleic acid sequence of Figure 2 is encoded and/or the entire amino acid sequence of Figure 2 is prepared, either of which are in respective human unit dose forms.

The present invention further provides an isolated polynucleotide that encodes a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO: 7 .

The present invention further provides a recombinant expression vector comprising a polynucleotide of the invention.

The present invention further provides a host cell that contains an expression vector of the invention.

The present invention further provides an isolated protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.

The present invention further provides a process for producing the protein of the invention comprising culturing a host cell of the invention under conditions sufficient for the production of the protein.

The present invention further provides an antibody or fragment thereof that immunospecifically binds to an epitope on the protein of the invention.

In one aspect, the present invention provides a 254 P 1 D 6 B siRNA composition that comprises:
a double stranded siRNA that corresponds to the nucleic acid ORF sequence which encodes the 254P1D6B protein, or corresponds to a subsequence of the ORF, wherein said double stranded siRNA is $19,20,21,22,23,24$, or 25 contiguous nucleotides in length.

The invention further provides methods for detecting the presence and status of 254P1D6B polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 254P1D6B. A typical embodiment of this invention provides methods for monitoring 254P1D6B gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer.

The present invention further provides a method for detecting the presence of a protein or a polynucleotide in a test sample comprising:
contacting the sample with an antibody or a probe, respectively, that specifically binds to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, or the polynucleotide of the invention, respectively; and
detecting binding of protein or polynucleotide, respectively, in the sample thereto.
In another aspect, the present invention provides a composition that comprises, consists essentially of, or consists of:
a) a peptide of eight, nine, ten, or eleven contiguous amino acids of a protein of Figure 2;
b) a peptide of Tables VIII-XXI;
c) a peptide of Tables XXII to XLV; or,
d) a peptide of Tables XLVI to XLIX.

In one embodiment, the present invention provides a composition that modulates the status of a cell that expresses a protein of Figure 2 comprising:
a) a substance that modulates the status of a protein of Figure 2, or b) a molecule that is modulated by a protein of Figure 2.
The invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express 254P1D6B such as cancers of tissues listed in Table I, including therapies aimed at inhibiting the transcription, translation, processing or function of 254P1D6B as well as cancer vaccines. In one aspect, the invention provides compositions, and methods comprising them, for treating a cancer that expresses 254P1D6B in a human subject wherein composition comprises a carrier suitable for human use and a human unit dose of one or more than one agent
that inhibits the production or function of 254P1D6B. Preferably, the carrier is a uniquely human carrier. In another aspect of the invention, the agent is a moiety that is immunoreactive with 254P1D6B protein. Non-limiting examples of such moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations thereof. The antibodies can be conjugated to a diagnostic or therapeutic moiety. In another aspect, the agent is a small molecule as defined herein.

The present invention further provides a method of inducing an immune response to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising: providing a protein epitope; contacting the epitope with an immune system T cell or B cell, whereby the immune system T cell or B cell is induced.

In another aspect, the agent comprises one or more than one peptide which comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to 254P1D6B and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds an HLA class II molecule in a human to elicit an HTL response. The peptides of the invention may be on the same or on one or more separate polypeptide molecules. In a further aspect of the invention, the agent comprises one or more than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating peptides as described above. In yet another aspect of the invention, the one or more than one nucleic acid molecule may express a moiety that is immunologically reactive with 254P1D6B as described above. The one or more than one nucleic acid molecule may also be, or encodes, a molecule that inhibits production of 254P1D6B. Non-limiting examples of such molecules include, but are not limited to, those complementary to a nucleotide sequence essential for production of 254P1D6B (e.g. antisense sequences or molecules that form a triple helix with a nucleotide double helix essential for 254P ID6B production) or a ribozyme effective to lyse 254P ID6B mRNA.

Note that to determine the starting position of any peptide set forth in Tables VIII-XXI and XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1 , variant 2 , etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides of a particular for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, if a

Search Peptide begins at position " X ", one must add the value " $X-1$ " to each position in Tables VIII-XXI and XXII to XLIX to obtain the actual position of the HLA peptides in their parental molecule. For example, if a particular Search Peptide begins at position 150 of its parental molecule, one must add $150-1$, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.

One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables VIII-XXI and XXII to XLIX collectively, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the invention comprises an HLA peptide that occurs at least once in Tables VIII-XXI and at least once in tables XXII to XLIX, or an oligonucleotide that encodes the HLA peptide.

Another embodiment of the invention is antibody epitopes, which comprise a peptide regions, or an oligonucleotide encoding the peptide region, that has one, two, three, four, or five of the following characteristics:
i) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7$, $0.8,0.9$, or having a value equal to 1.0 , in the Hydrophilicity profile of Figure 5;
ii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or less than $0.5,0.4,0.3,0.2$, 0.1 , or having a value equal to 0.0 , in the Hydropathicity profile of Figure 6;
iii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7$, $0.8,0.9$, or having a value equal to 1.0 , in the Percent Accessible Residues profile of Figure 7;
iv) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7$, $0.8,0.9$, or having a value equal to 1.0 , in the Average Flexibility profile of Figure 8 ; or
v) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7$, $0.8,0.9$, or having a value equal to 1.0 , in the Beta-turn profile of Figure 9.

In another aspect, there is provided a method of generating a mammalian immune response directed to a protein of Figure 2, the method comprising:
exposing cells of the mammal's immune system to a portion of
a) a $254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}-r e l a t e d$ protein and/or
b) a nucleotide sequence that encodes said protein,
whereby an immune response is generated to said protein.
In another aspect, there is provided a method of delivering a cytotoxic agent or a diagnostic agent to a cell that expresses a protein of Figure 2 , said method comprising:
providing the cytotoxic agent or the diagnostic agent conjugated to an antibody or fragment thereof according to the invention; and,
exposing the cell to the antibody-agent or fragment-agent conjugate.
The present invention further provides a method of delivering a cytotoxic agent to a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an effective amount of an antibody according the invention.

In another aspect, the present invention provides a method of inhibiting growth, reproduction or survival of cancer cells that express a protein of Figure 2, the method comprising:
administering to the cells a composition according to the invention, thereby inhibiting the growth, reproduction or survival of said cells.

The present invention further provides a method of inhibiting growth of a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an effective amount of an antibody according to the invention to the cell, whereby the growth of the cell is inhibited.

In another aspect, the present invention provides use of a $254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}-\mathrm{related}$ protein that comprises at least one T cell or at least one B cell epitope in the manufacture of a medicament for generating an immune response.

The present invention further provides use of an epitope from a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, for the preparation of a medicament to induce a T cell or B cell immune response in a subject.

The present invention further provides use of an antibody according to the invention in the manufacture of a medicament for inhibiting growth of a cell expressing a protein comprising the amino acid sequence of SEQ ID:NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. The 254P1D6B SSH sequence of 284 nucleotides.
Figure 2. A) The cDNA and amino acid sequence of 254P1D6B variant 1 (also called "254P1D6B v.1" or "254P1D6B variant l") is shown in Figure 2A. The start methionine is underlined. The open reading frame extends from nucleic acid 5123730 including the stop codon.
B) The cDNA and amino acid sequence of 254P1D6B variant 2 (also called "254P1D6B v.2") is shown in Figure 2B. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 512-3730 including the stop codon.
C) The cDNA and amino acid sequence of 254P1D6B variant 3 (also called "254P1D6B v.3") is shown in Figure 2C. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 739-3930 including the stop codon.
D) 254PID6B v. 4 through v.20, SNP variants of 254P1D6B v.l. The 254P1D6B v. 4 through v. 20 (also called "254P1D6B variant 4 through variant 20") proteins have 1072 amino acids. Variants 254P1D6B v. 4 through v. 20 are variants with single nucleotide difference from 254P1D6B v. 1. 254P1D6B v. 5 and v. 6 proteins differ from 254P1D6B v. 1 by one amino acid. 254P1D6B v. 4 and v. 7 through v. 20 proteins code for the same protein as v.l. Though these SNP variants are shown separately, they can also occur in any combinations and in any of the transcript variants listed above in Figure 2A, Figure 2B, and Figure 2C.

Figure 3.
A) The amino acid sequence of 254P1D6B v.l clone LCP-3 is shown in Figure 3A; it has 1072 amino acids.
B) The amino acid sequence of 254 P ID6B v. 2 is shown in Figure 3 B ; it has 1072 amino acids.
C) The amino add sequence of 254P1D6B v. 3 is shown in Figure 3C; it has 1063 amino acids.
D) The amino acid sequence of 254P1D6B v. 5 is shown in Figure 3D; it has 1072 amino acids.
E) The amino acid sequence of 254P1D6B v. 6 is shown in Figure 3E; it has 1072 amino acids.
As used herein, a reference to 254P1D6B includes all variants thereof, including those shown in Figures 2, 3, 10, 11, and 12 unless the context clearly indicates otherwise.

Figure 4. Intentionally Omitted.
Figure 5. Hydrophilicity amino acid profile of 254P1D6B v. 1 determined by computer algorithm sequence analysis using the method of Hopp and Woods (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website located on the World Wide Web at (expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 6. Hydropathicity amino acid profile of 254 P 1 D 6 B v. 1 determined by computer alcorithm sequence analysis using the method of Kyte and Doolittle (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 7. Percent accessible residues amino acid profile of 254 P 1 DEB v. 1 determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 8. Average flexibility amino acid profile of 254P1D6B v. 1 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. $32: 242-255$) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server

Figure 9. Beta-turn amino acid profile of 254P1D6B v. 1 determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 10. Structures of transcript variants of 254P1D6B. Variant 254P1D6B v. 3 was identified as a transcript variant of 254P1D6B v.1. Variant 254P1D6B v. 3 extended exon 1 by 109 bp as compared to v. 1 and added an exon in between exons 2 and 3 of variant v.1. Poly A tails and SNP are not shown here. Numbers in " ()" underneath the boxes correspond to those of 254P1D6B v.1. Lengths of introns and exons are not proportional.

Figure 11. Schematic alignment of protein variants of 254P1D6B. Protein variants correspond to nucleotide variants. Nucleotide veriants 254P1DEB v. 4 and v. 7 through v. 20 coded for the same protein as v.1. Variant v. 2 coded the same protein as variant v.6. 254P1D6Bv. 5 coded for a protein that differed by one amino acid from v.1. Nucleotide variant 254P1D6E v. 3 was a transcript variant of v .1 , as shown in Figure 10 , and coded a protein that differed from v .1 in the N terminal. SNP in v. 1 could also appear in v.3. Single amino acid differences were indicated above the boxes. Black boxes represent the same sequence as 254P1D6B v.1. Numbers underneath the box correspond to 254P1D6B.

Figure 12. Schematic alignment of SNP variants of 254P1D6B. Variants 254P1D6B v. 4 through v. 20 were variants with single nucleotide differences as compared to variant v. 1 (ORF: 512-3730). Though these SNP variants were shown separately, they could also occur in any combinations, (e.g., cocur with 254P1D6Bv.2, and in any transcript variants that contained the base pairs, such as v. 3 shown in Fig. 10. Numbers correspond to those of 254P1D6B v.1. Elack box shows the same sequence as 254P1D6B v.1. SNPs are indicated above the box.

Figure 13. Secondary structure and transmembrane domains prediction for 254P1D6b protein variant 1.
Figure 13A: The secondary structures of 254P1D6b protein variant was predicted using the HNN - Hierarchical Neural Network method (NPS@) Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-150 Combet C., Blanchet C., Geourjon C. and Deléage G., http://pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html), accessed from the ExPasy molecular biology server located on the World Wide Web at .expasy.ch/tools/. This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence. The percent of the protein variant in a given secondary structure is also listed. Figure 13B: Schematic representation of the probability of existerce of transmembrane regions of 254P1D6b variant 1 based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMEASE - A datzbase of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993). Figure 13C: Schematic representation of the probability of the existence of transmembrane regions of 254P1D6b variant 1 based on the TMHMM algorithm of Sonnhammer, von Heijne, and Krogh (Erik L.L.
Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markoy model for predicting transmembrane helices in
protein sequences. In Froc. of Sixith int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998). The TMpred and TMHMM algorithms are accessed from the ExPasy molecular biology server located on the World Wide Web at expasy.ch/tools/.

Figure 14. Expression of 254 P1D6B by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal lung, ovary cancer pool, lung cancer pool (Figure 14A), as well as from normal stomach, brain, heart, liver, spleen, skele:al muscle, testis, prostate, bladder, kidney, colon, lung and ovary cancer pool (Figure 14B). Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254P1D6B, was performed at 26 and 30 cycles of amplification. Resulls show strong expression of 254 P 1068 in lung cancer pool and ovary cancer pool but not in normal lung nor in vital pool 1. Low expression was cetected in vital pool 2.

Figure 15. Expression of 254P1D6B in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNAllane were probed with the 254P1D6B sequence. Size stancards in kilobases ($k b$) are indicated on the side. Results show expression of two 254P1D6B transcript, 4.4 kb and 7.5 kb primarily in brain and testis, and only the 4.4 kb transcript in placenta, but not in any other normal tissue tested.

Figure 16. Expression of 254P1D6B in lung cancer patient specimens. First strand cDNA was prepared from normal lung lung cancer cell line A427 and a panel of lung cancer patient specimens. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254 P 1 D 6 B , was performed at 26 and 30 cycles of amplification. Results show expression of 254P1D6B in 13 out of 30 tumor specimens tested but not in normal lung. Expression was also detected in the A427 cell line.

Figure 17. Expression of 254P1D6b in 293 T cells. Figure 17A. 293 T cells were transfected with either an empty pCDNA 3.1 vector plasmid or pCDNA 3.1 plasmid enccding the full length cDNA of 254P1D6b. 2 days posttransfection, lysates were prepared from the transfected cells and separated by SDS-PAGE, transferred to nitrocellulose and subjected to Western blolting using an anti-His pAb (Santa Cruz Biotechnology, Santa Cruz, California) to detect the Cterminal epitope tag on the protein. An arrow indicates the band corresponding to the full length 254P106b protein product. An additional verified lysate containing an epitope tagged AGSX protein served as a positive control Figure 17B. 2937 cells were transfected with either an emply vector or the Tag5 expression vector encoding the extracellular domain (ECD) of 254P1D6 (amino acids 26-953) and subjected to SDS-PAGE and Western bloting as described above. An arrow indicates the band corresponding to the 254P1D6b ECD present in the lysates and the media from transfected cells.

DETAILED DESCRIPTION OF THE INVENTION

Outline of Sections

1.) Definitions
II.) 254P1D6B Polynucleotides
II. A.) Uses of 254P1D6E Polynuclectides
II.A.1.) Monitoring of Genetic Abnormalities
II.A.2.) Antisense Embodiments
II.A.3.) Primers and Primer Pairs
II.A.4.) Isolation of 254P1D6E-Encoding Nucleic Acid Molecules
II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems
III.) 254P1D6B-related Proteins
III.A.) Motif-bearing Protein Embodiments
III.B.) Expression of 254P1D6B-related Proteins
III.C.) Modifications of 254P1D6B-related Proteins

	D.) Uses of 254P1D6B-related Proteins
Iv.)	254P1D6B Antibodies
V.)	254P1D6B Cellular Immune Responses
VI.)	254P106B Transgenic Animals
VII.)	Methods for the Detection of 254P106B
VIII.)	Methods for Monitoring the Status of 254P1D6B-related Genes and Their Products
IX.)	Identification of Molecules That Interact With 254P106B
X.)	Therapeutic Methods and Compositions
	X.A.) Anti-Cancer Vaccines
	X.B.) 254P1D6B as a Target for Antibody-Based Therapy
	X.C.) 254P1D6B as a Target for Cellular Immune Responses
	X.C.1. Minigene Vaccines
	X.C.2. Combinations of CTL Peptides with Helper Peptides
	X.C.3. Combinations of CTL Peptides with T Cell Priming Agents
	X.C.4. Vaccine Compositions Comprising DC Puised with CTL and/or HTL Peptides
	X.D.) Adoptive Immunotherapy
X.E.)	Administration of Vaccines for Therapeutic or Prophylactic Purposes
XI.)	Diagnostic and Prognostic Embodiments of 254P106B.
XII.)	Inhibition of 254P1D6B Protein Function
	XII.A.) Inhibition of 254P1D6B With Intracelluar Antibodies
	XIII. B.) Inhibition of 254P1D6B with Recombinant Proteins
	XIIIC.) Inhibition of 254P1D6B Transcription or Translation
	XIII.) General Considerations for Therapeutic Strategies
XIII.)	Identification, Characterization and Use of Modulators of 254P1D6B
XIV.)	RNAi and Therapeutic use of small interfering RNA
XV.)	KITS/Articles of Manufacture
1.)	Definitions:
Unless otherwise defined, all terms of art, notations and other scientific terms or terminotogy used herein are d to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion definitions herein should not necessarily be construed to represent a substantial difference over what is generally lood in the art. Many of the techniques and procedures described or referenced herein are well understood and nly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized ar cloning methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2nd edition (1989) pring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of rcially available kils and reagents are generally carried out in accordance with manufacturer defined protocols and/or ters unless otherwise noted. The terms "advanced prostate cancer", "locally advanced prostate cancer", "advanced disease" and "locally disease" mean prostate cancers that have extended through the prostale capsule, and are meant to include stage se under the American Urological Association (AUA) system, stage C1-C2 disease under the Whitmore-Jewett and stage T3-T4 and $N+$ disease under the TNM (tumor, node, metastasis) system. In general, surgery is not	

recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer. Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base. Locally advanced prostate cancor is presently diagnosed pathologically following radical prostatectomy if the tumor invades or penelrates the prostatic capsule, extends into the surgical margin, or invades the seminal vesicles.
"Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 254P1D6B (either by removing the underying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 254P1D6B. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

The lerm "analog" refers to a molecule which is struclurally similar or shares similar or corresponding attributes with another molecule (e.g. a 254 P 1 D 6 B -related proten). For example, an analog of a 254 P 1 D 6 B protein can be specifically bound by an antibody or T cell that specifically binds to 254P1D6B.

The term "antibody" is used in the broadest sense. Therefore, an "antbody" can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology. Anti-254P1D6B antibodies comprise monocional and polyconal antibodies as well as fragments containing the antigen-binding domain anc/or one or more complementarily determining regions of these antibodies.

An "antibody fragment" is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-254P1D6B antbodies and clones thereof (including agonist, antagonist and neutralizing antibodies) and anti-254P106B antibody compositions with polyepitopic specificity.

The term "codon optimized sequences" refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of $G C$ content in addition to codon optimization are referred to herein as an "expression enhanced sequences."

A "combinatcrial library" is a collection of diverse cremical compounds gene-ated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Numerous chemical compounds are synthesized through such combinatorial mixing of chemical building blocks (Gallopet al., J. Med. Chem. 37(9): 1233-1251 (1994)),

Preparation and screening of combinatorial libraries is well known to those of skill in the att. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g. U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio- oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydartoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6508 (1992)), nonpeptidal peptidominetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al, J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbarnates (Cho, et al., Science $261: 1303$ (1993)), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Stratagene,

Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent $5,539,083$), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3): 309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum, C\&EN, Jan 18, page 33 (1993); isoprencids, U.S. Patent No. $5,569,588$; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506, 337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially avalable (see, e.g., 357 NIPS, 390 NIPS, Advanced Chem Tech, Louisville KY; Symphony, Rainin, Woburn, MA; 433A, Applied Biosystems, Foster City, CA; 9050, Plus, Millipore, Bedford, NIA). A number of well-known robotic systens have also been developed for solution phase chemistries. These systems include automated workstations such as the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate H, Zymark Corporation, Hopkinton, Mass.; Orca Hewlett-Packard, Palo Allo, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be aoparent to persons skilled in the relevant art. In addition, rumerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, NJ; Asinex, Moscon, RU; Tripos, Inc., St. Louis, MO; ChemStar, Lid, Moscow, RU; 3D Pharmaceuticais, Exton, PA; Martek Biosciences, Columbia, MD; etc.).

The term "cytotoxic agent' refers to a substance that inhibits or prevents the expression activity of cels, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not imited to auristatins, auromycins, maytansinoids, ytrium, bismuth, riin, ricin A-chain, combrestatin, duocarmycins, dolostatins, doxorubicin, daunorubicin, taxol, cisplatin, co1065, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, milogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, Sapaonaria officinalis inhibitor, and glucocoricoid and other chemotherapeutic agents, as well as radioisotopes such as At ${ }^{211}, 1^{131}, 1^{125}, Y^{90}$, Re ${ }^{186}$, $\mathrm{Re}^{188}, \mathrm{Sm}^{153}, \mathrm{~B}{ }^{12120-213}, \mathrm{P}^{32}$ and radioactive isotopes of Lu including Lu ${ }^{177}$. Antibodies may also be conjugated to an anticancer pro-drug activeting enzyme capable of converting the pro-drug to its active form.

The "gene product" is sometimes referred to herein as a protein or mRNA. For example, a "gene product of the invention" is sometimes referred to herein as a "cancer amino acid sequence", "cancer protein", "protein of a cancer listed in Table l", a "cancer mRNA", "mRNA of a cancer listed in Tablal", etc. In one embodiment, the cancer protein is encoded by a nucleic acid of Figure 2. The cancer protein can be a fragment, or alternatively, be the full-length protein to the fragmenl encoded by the nucleic acids of Figure 2. In one embodiment, a cancer amino acid sequence is used to determine sequence identity or similarity. In another embodiment, the sequences are naturally cccurring allelic variants of a protein encoded by a nucleic acid of Figure 2. In another embodiment, the sequences are sequence variants as further described herein.
"High throughput screening" assays for the presence, absence, quantification, or other properties of particular nucieic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Palent No. $5,559,410$ discloses high throughput screening methods for proteins; U.S. Patent No. $5,585,639$ discloses high throughput screening methods for nucleic acid binding (i.e., in arrays); while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.
n addition, high throughput screening systems are commercially available (see, e.g., Amersham Biosciences, Piscataway, NJ; Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH : Eeckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA; etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid stert up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the moduation of gene transcription, ligand binding, and the the.

The term "homolog" refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions.
"Human Leukocyle Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMJNOLOGY, $8^{\text {rim }}$ ED., Lange Publishing, Los Altos, CA (1994).

The terms "hybridize", "hybridizing", "hybridizes" and the like, used in the coniext of polynucleotides, are meant to refer to conventional hytridization conditions, preferably such as hybridization in 50% formamide/6XSSC/0.1\% SDS/100 $\mu \mathrm{g} / \mathrm{ml}$ ssDNA, in which temperatures for hybridization are above 37 degrees C and temperatures for washing in 0.1 XSSC/0.1\% SDS are above 55 degrees C .

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. For example, a polynucleotide is said to be "isolated" when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 254P1D6B genes or that encode polypepides other than 254P1D6B gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 254P1D6B polynucleotide. A protein is said to be "isolated," for example, when physical, mechanical or chemical methods are employed to remove the 254P1D6B proteins from cellular constituents that are normaly associated with the protein. A skilled ertisan can readily employ standard purification methods to obtain an isolated 254P1D6B protein. Alternalively, an isolated protein can be prepared by chemical means.

The term "mammal" refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human.

The terms "metastatic prostate cancer" and "metestatic disease" mean prostate cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage TXNXM+ under the TNM system. As is the case with locally advanced pros:ate cancer, surgery is generally not indicated for patients with metastatic disease, and hormonal (androgen ablation) therapy is a preferred treatment modaitity. Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 months of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after developing that status. The most common site for prostate cancer metastasis is bone. Prostate cancer bone metastases are often osteoblastic rather than osteolytic (i.e., resulting in net bone formation). Bone metastases are found most frequently in the spine, followed by the fernur, pelvis, rib cage, skull and humerus. Other common sites for metastasis include lymph nodes, lung, liver and brain. Metastalic prostate cancer is typically diagnosed by open or laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion biopsy.

The term "modulator" or "est compound" or "drug candidate" or granmatical equivalents as used herein describe any molecule, e.g., protein, oligopeptde, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the
capacily to direotly or indirectly alter the cancer phenotype or the expression of a cancer sequence, eg, a nucleic acid or protein sequences, or effects of cancer sequences (e.g., signaling, gene expression, protein interaction, etc.) In one aspect, a modulator will neutralize the effect of a cancer protein of the invention. By "neutralize" is meant that an activity of a protein is inhibiled or blocked, along with the consequent effect on the cell. In another aspect, a modulator will neutralize the effect of a gene, and its corresponding protein, of the invention by normalizing levels of said protein. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein, or downstream effector pathways. In one embodiment, the modulator suppresses a cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a cancer phenotype. Generally, a plurelity of assay mixtures is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

Modulators, drug candidates or test compounds encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Preferred small molecules are less than 200C, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyolical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Modulators also comprise biomolecules such as peptides, saccharides, fatly acids, stercids, purines, oyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides. One class of modulators are peptides, for example of from about five to about 35 amino acids, with from about five to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. Preferably, the cancer modulatory protein is soluble, includes a non-transmembrane region, and/or, has an N terminal Cys to aid in solubility. In one embodiment, the C -terminus of the fragment is kept as a free acid and the N -terminus is a free amine to aid in coupling, i.e., to cysteine. In one embodiment, a cancer protein of the invention is conjugated to an immunogenic agent as discussed herein. In one embodiment, the cancer protein is conjugated to BSA. The peptides of the invention, e.g., of preferred lengths, can be linked io each other or to other amino acids to create a longer peptide/protein. The modulatory peptides can be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. In a preferred embodiment, peptide/prolein-based modulators are antibodies, and fragments thereof, as defined herein.

Modulators of cancer can also be nucleic acids. Nucleic acid modulating agents can be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For example, digests of prokaryotic or eukaryotic genomes can be used in an approach analogous to that outlined above for proteins.

The term "monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts.

A "motif", as in biological motif of a 254P1D6B-related protein, refers to any pattern of amino acids forming part of the primary sequence of a protein, that is associated with a particular function (e.g. protein-protein interaction, protein-DNA interaction, etc) or modification (e.g. that is phosphorylated, glycosylated or amidated), or localization (e.g. secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being immunogenic, either humorally or cellularly. A molif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property. In the context of HLA motifs, "molif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from abcut 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class 11 HLA motif, which is recognized by a particular HLA molecule. Peptide motifs for HLA binding are typically
different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "pharmaceulical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like
"Pharmaceuticaily acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals.

The term "polynucleotide" means a polymeric form of nucleotides of at leasi 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with "oligonucleotide". A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in Figure 2, can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracl (U) instead of thymidine (T).

The term "polypeplide" means a polymer of at least about $4,5,6,7$, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with "peptide" or "protein".

An HLA "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peplide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodimen:, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention. Alternalively, in another embodiment, the primary anchor residues of a peptide binds an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length. The primary anchor positions for each motif and supermotif are sel forth in Table IV. For example, anaicg peptioes can be created by altering the presence or absence of particular residues in the primary and/or secondary anchor posilions shown in Table IV. Such analogs are used to modulate the binding affinity andior population coverage of a peptide comprising a particular HLA motif or supermotif.
"Radioisotopes" include, but are not limited to the following (non-limiting exemplary uses are also set forth):
Examples of Medical Isotopes:
Isotope Description of use
Actinium-225 See Thorium-229 (Th-229)
(AC-225)
Aclinium-227 Parent of Radium-223 (Ra-223) which is an alpha emitter used to treat metastases in the
(AC-227) skeleton resulting from cancer (i.e., breast and prostate cancers), and cancer radioimmunotherapy
Bismuth-212
(Bi-212)
See Thorium-228 (Th-228)
Bismuth-213
(Bi -213)
See Thorium-229 (Th-229)
Cadmium-109
(Cd-109)
Cancer detection
Cobalt-60 Radiation source for radiotherapy of cancer, for food irraciators, and for sterilization of (Co-60) medical supplies

Copper-64 (Cu-64)

A positron emitter used for cancer therapy and SPECT imaging

$\begin{aligned} & \text { Copper-67 } \\ & (\mathrm{Cu}-67) \end{aligned}$	Beta/gamma emitter used in cancer radioimmunotherapy and diagnostic studies (ie., breast and colon cancers, and lymphoma)
$\begin{aligned} & \text { Dysprosium-166 } \\ & \text { (Dy-166) } \end{aligned}$	Cancer radioimmunotherapy
$\begin{aligned} & \text { Erbium-169 } \\ & \text { (Er-169) } \end{aligned}$	Rheumatoid arthritis treatment, particulary for the small joints associated with fingers and toes
$\begin{aligned} & \text { Europium-152 } \\ & \text { (Eu-152) } \end{aligned}$	Radiation source for food irradiation and for sterilization of medical supplies
$\begin{aligned} & \text { Europium-154 } \\ & \text { (Eu-154) } \end{aligned}$	Radiation source for food irradiation and for sterilization of medical supplies
$\begin{aligned} & \text { Gadolinium-153 } \\ & (\mathrm{Gd}-153) \end{aligned}$	Osteoporosis detection anó nuclear medical quality assurance devices
$\begin{aligned} & \text { Gold-198 } \\ & (\text { Au-198) } \end{aligned}$	Implant and intracavity therapy of ovarian, prostate, and brain cancers
$\begin{aligned} & \text { Holmium-166 } \\ & \text { (Ho-166) } \end{aligned}$	Multiple myeloma treatment in targeted skeletal therapy, cancer radioimmunotherapy, bone marrow ablation, and rheumatoid arthritis treatment
$\begin{aligned} & \text { lodine-125 } \\ & (1-125) \end{aligned}$	Osteoporosis detection, diagnostic imaging, tracer drugs, brain cancer treatment, radiolabeling, tumor imaging, mapping of receptors in the brain, interstitial radiation therapy, brachytherapy for treatment of prostate cancer, determination of glomerular filtration rate (GFR), determination of plasma volume, delection of deep vein thrombosis of the legs
$\begin{aligned} & \text { lodine-131 } \\ & (1-131) \end{aligned}$	Thyrcid function evaluation, thyroid disease detection, treatment of thyroid cancer as weil as other non-malignant thyroid diseases (i.e., Graves disease, goiters, and hyperthyroidism), treatment of leukemia, lymphoma, and other forms of cancer (e.g., breast cancer) using radioimmunotherapy
$\begin{aligned} & \text { Iridium-192 } \\ & (1 \text { r-192) } \end{aligned}$	Brachytherapy, brain and spinal cord tumor treatment, treatment of blocked arteries (i.e. arteriosclerosis and restenosisi, and implanis for breast and prostate tumors
$\begin{aligned} & \text { Lutetium-177 } \\ & \text { (Lu-177) } \end{aligned}$	Cancer radioimmunotherapy and treatment of blocked arleries (i.e., arieriosclerosis and restenosis)
Molybdenum-99 (Mo-99)	Parent of Technetium-99m ($\mathrm{Tc}-99 \mathrm{~m}$) which s used for imaging the brain, liver, lungs, heart, and other organs. Currently, $T c-99 \mathrm{~m}$ is the most widely used radioisotope used for diagnostic imaging of various cancers and diseases involving the brain, heart, liver, lungs; aso used in detection of deep vein thrombosis of the legs
$\begin{aligned} & \text { Osmium-194 } \\ & (\text { Os-194) } \end{aligned}$	Cancer radioimmunotherapy
$\begin{aligned} & \text { Palladium-103 } \\ & \text { (Pd-103) } \end{aligned}$	Prostate cancer treatment
$\begin{aligned} & \text { Platinum-195m } \\ & (\mathrm{Pt}-195 \mathrm{~m}) \end{aligned}$	Stucties on biodistribution and metabolism of cisplatin, a chemotherapeutic drug
$\begin{aligned} & \text { Phosphorus- } 32 \\ & \text { (P-32) } \end{aligned}$	Polycythemia rubra vera (blood cell disease) and leukemia treatment bone cancer diagnosis/treatment; colon, pancreatic, and liver cancer treatment; radiolabeling nucleic acids for in vitro research, diagnosis of superficial tumors, treatment of blocked arteries (i.e., arteriosclerosis and restenosis,, and intracavity therapy
Phosphorus-33 (P-33)	Leukemia treatment, bone disease diagnosis/treatment, radiolabeling, and treatment of blocked arteries (i.e., arteriosclerosis and restenosis)
$\begin{aligned} & \text { Radium-223 } \\ & \text { (Ra-223) } \end{aligned}$	See Actinium-227 (Ac-227)
Rhenium-186 (Re-186)	Bone cancer pain relief, rheumatoid arthritis treatment, and diagnosis and treatment of lymphoma and bone, breast colon, and live: cancers using radioimmunotherapy
$\begin{aligned} & \text { Rhenium-188 } \\ & \text { (Re-188) } \end{aligned}$	Cancer diagnosis and lreatment using radioimmunotherapy, bone cancer pain relief, treatment of rheumatoid arthritis, and treatment of prostale cancer
$\begin{aligned} & \text { Rhodium-105 } \\ & \text { (Rh-105) } \end{aligned}$	Cancer radioimmunotherapy
Samarium-145	Ocular cancer treatment

(Sm-145)	
Samarium-153 (Sm-153)	Cancer radioimmunotherapy and bone cancer pain relief
$\begin{aligned} & \text { Scandium-47 } \\ & (S c-47) \end{aligned}$	Cancer radioimmunotherapy and bone cancer pain relief
$\begin{aligned} & \text { Selenium-75 } \\ & (\mathrm{Se}-75) \end{aligned}$	Radiotracer used in brain studies, imaging of adrenal cortex by gamma-scintigraphy, lateral locations of steroid secreting tumors, pancreatic scanning, detection of hyperactive paraihyroid glands, measure rate of bile acid loss from the endogenous pool
$\begin{aligned} & \text { Strontium-85 } \\ & (\mathrm{Sr}-85) \end{aligned}$	Bone cancer detection and brain scans
Strontium-89 (Sr-89)	Bone cancer pain relief, multiple myeloma treatment, and osteoblastic therapy
$\begin{aligned} & \text { Technetium-99r } \\ & \text { (Tc-99m) } \end{aligned}$	See Molybdenum-99 (Mo-99)
Thorium-228 (Th-228)	Parent of Bismuth-212 (Bi-212) which is an alpha emitter used in cancer radioimmunotherapy
$\begin{aligned} & \text { Thorium-229 } \\ & \text { (Th-229) } \end{aligned}$	Parent of Actinium-225 (Ac-225) and grandparent of Bismuth-213 (Bi-213) which are alpha emitters used in cancer radioimmunotherapy
$\begin{aligned} & \text { Thulium-170 } \\ & \text { (Tm-170) } \end{aligned}$	Gamma source for blood irradiators, energy source for implanted medical devices
$\begin{aligned} & \text { Tin-117m } \\ & (\mathrm{Sn}-117 \mathrm{~m}) \end{aligned}$	Cancer immunotherapy and bone cancer pain relief
Tungsten-188 (W-188)	Parent for Rhenium-188 (Re-188) which is used for cancer diagnostics/itreatment, bone cancer pain relief, rheumatoid arthritis treatrent, and treatment of blocked arteries (i.e., arteriosclerosis and restenosis)
Xenon-127 (Xe -127)	Neuro maging of brain disorders, high resolution SPECT studies, pulmonary function tests, and cerebral blood flow studies
$\begin{aligned} & \text { Yterbium-175 } \\ & \text { (Yb-175) } \end{aligned}$	Cancer radicimmur:otherapy
$\begin{aligned} & \text { Yttrium-90 } \\ & (\gamma-90) \end{aligned}$	Microseeds obtained fromi irradiating Y Ytrium-89 (Y -89) for liver cancer treatment
$\begin{aligned} & \text { Yttrium-91 } \\ & (Y-91) \end{aligned}$	A gamma-emitting label for Yttrium-90 ($Y-90$) which is used for cancer radioimmunotherapy (i.e., lymphoma, breast, colon, kidney, lung, ovarian, prostate, pancreatic, and inoperable liver cancers)

By "randomized" or grammatical equivalents as herein applied to nucleic acids and proteins is meant that each rucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. These random peptides (or nucleic acids, discussed herein) can incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the lenglh of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, a library is "fully randomized," with no sequence preferences or constants at any position. In another embodiment, the library is a "biased random" library. That is, sore positions within the sequence either are held constant, or are selected from a limited number of possibilities. For example, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

A "recombinant" DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vifro.

Non-limiting examples of small molecules include compounds that bind or interact with 254P1D6B, ligands inoluding hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit 254P1D6B protein function. Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa , more preferably below about 9 , about 8 , about 7 , about 6 , about 5 or about 4 kLa . In certain embodiments, small molecules physically associate with, or bind, 254P1D6B protein; are not found in naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions
"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes reed lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
"Stringent conditions" or "high stringency conditions', as defined herein, are identified by, but not limited to, those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/ 0.0015 M sodium citrate/ 0.1% sodium dodecyl sulfate at $50^{\circ} \mathrm{C}$; (2) employ during hybridization a denaturing agent, such as formamide, for example, $50 \%(\mathrm{v} / \mathrm{v})$ formamide with 0.1% bovine serum albumin/ $/ 0.1 \%$ Fiooll/ $/ \mathbf{0} \%$ polyvinylpyrrolidone/ 50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at $42{ }^{\circ} \mathrm{C}$; or (3) employ 50% formamide, $5 \times$ SSC ($0.75 \mathrm{M} \mathrm{NaCl}, 0.075 \mathrm{M}$ sodium citrate), 50 mM sodium phosphate (OH 6.8), 0.1% sodium pyrophosphate, 5 x Denhard's solution, sonicated salmon sperm DNA ($50 \mu \mathrm{~g} / \mathrm{ml}), 0.1 \%$ SDS, and 10% dexiran sulfate at $42{ }^{\circ} \mathrm{C}$, with washes at $42^{\circ} \mathrm{C}$ in $0.2 \times \mathrm{SSC}$ (sodium chloride/sodium. citrate) and 50% formamide at $55^{\circ} \mathrm{C}$, followed by a high-stringency wash consisting of $0.1 \times$ SSC containing EDTA at $55^{\circ} \mathrm{C}$. "Moderately stringent conditions" are described by, but not limited to, those in Sambrook et al, Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and \%SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation al $37^{\circ} \mathrm{C}$ in a solution comprising: 20% formamide, $5 \times \mathrm{SSC}(150 \mathrm{mM} \mathrm{NaCl}, 15 \mathrm{mM}$ risodium citrate), 50 mM sodium phosphate (pH 7.6), $5 \times$ Denhardt's solution, 10% dextran sulfate, and $20 \mathrm{mg} / \mathrm{mL}$ denatured sheared salmon sperm DNA, followed by washing the filters in $1 \times$ SSC at about $37-50^{\circ} \mathrm{C}$. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

An HLA "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Overall phenotypic frequencies of HLA-supertypes in different ethnic populations are set forth in Table IV (F). The nonlimiting constituents of various supetypes are as follows:

A2: $A^{*} 0201, A^{*} 0202, A^{*} 0203, A^{*} 0204, A^{*} 0205, A^{*} 0206, A^{*} 6802, A^{*} 6901, A^{*} 0207$
A3: $A 3, A 11, A 31, A^{*} 3301, A^{*} 6801, A^{*} 0301, A^{*} 1101, A^{*} 3101$
B7: $B 7, B^{*} 3501-03, B^{*} 51, B^{*} 5301, B^{*} 5401, B^{*} 5501, B^{*} 5502, B^{*} 5601, B^{*} 6701, B^{*} 7801, B^{*} 0702, B^{*} 5101, B^{*} 5602$
B44: $B^{*} 3701, B^{*} 4402, B^{*} 4403, B^{*} 60\left(B^{*} 4001\right), B 61$ ($\left.B^{*} 4006\right)$
A1: $A^{*} 0102, A^{*} 2604, A^{*} 3601, A^{*} 4301, A^{*} 8001$
A24: $A^{*} 24, A^{*} 30, A^{*} 2403, A^{*} 2404, A^{*} 3002, A^{*} 3003$

B27: $\mathrm{B}^{*} 1401-02, \mathrm{~B}^{*} 1503, \mathrm{~B}^{*} 1509, \mathrm{~B}^{*} 1510, \mathrm{~B}^{*} 1518, \mathrm{~B}^{*} 3801-02, \mathrm{~B}^{*} 3901, \mathrm{~B}^{*} 3902, \mathrm{~B}^{*} 3903-04, \mathrm{~B}^{*} 4801-02, \mathrm{~B}^{*} 7301$, B*2701-08

B58: $B^{*} 1516, B^{*} 1517, Q^{*} 5701, B^{*} 5702, B 58$
B62: $B^{*} 4601, B 52, B^{*} 1501$ (B62), $B^{*} 1502(B 75), E^{*} 1513$ (B77)
Calculated population coverage afforded by different HLA-supertype combinations are set forth in Table IV (G).
As used herein "to treat" or "therapeutic" and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; full eradication of disease is not required.

A "transgenic animal" (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A "transgene" is a DNA that is integrated into the genome of a cell from which a transgenic animal develops.

As used herein, an HLA or cellular immune response "vaccine" is a composition that contains or encodes one or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit inleger from $1-150$ or more, e.g., at least $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55$, $30,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145$, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of largeting or other sequences. HLA class I peptides of the invention can be admixed with, or linked to, HLA class II peptides, to facilitate activation of both cytotoxic Tlymphocytes and helper T lymphocyles. HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g. dendritic cel's.

The term "variant" refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponcing position(s) of a specifically described protein (e.g. the 254P1D6B protein shown in Figure 2 or Figure 3. An analog is an example of a variant protein. Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants.

The "254P1D3B-related proteins" of the invention include those specifically identified herein, as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolatedigenerated and characterized without undue experimentation following the methods outined herein or readily availabte in the art. Fusion proteins that combine parts of different 254P106B proteins or fragments thereof, as well as fusion proteins of a 254P1D6B protein and a heterologous polypeptide are also included. Such 254P1D6B proteins are collectively referred to as the 254P1D6B-related proteins, the proteins of the invention or 254P1D6B. The term "254P1D6B-related prolein" refers to a polypeptide fragment or a 254P1D6B protein sequence of $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$, or more than 25 amino acids; or, at least $30,35,40,45,50,55,60,65,70,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160$, $165,170,175,180,185,190,195,200,225,250,275,300,325,350,375,400,425,450,475,500,525,550,575$, or 576 or more amino acids.
il.) 254P1D6B Polynucleotides
One aspect of the invention provides polynucleotides corresponding or complementary to all or part of a 254P1D6B gene, mRNA, and/or coding sequence, preferably in isolated form, including polynucleotides encoding a 254P1D6B-related protein and fragments thereo; DNA, RNA, DNAIRNA hybrid, and related molecules, polynucleotides or cligonucleotides complementary to a 254P1D6B gene or mRNA sequence or a part thereof, and polynucleotides or
oligonucleotides that hybridize to a 254P1D6B gene, mRNA, or to a 254P1D6B encoding polynucleotide (collectively, '254P1D6B polynucleotides'). In all instances when referred to in this section, T can also be U in Figure 2.

Embodiments of a 254P1D6B polynucleotide includs: a 254P1D6B polynucleotide having the sequence shown in Figure 2, the nucleotide sequence of 254P1D6B as shown in Figure 2 wherein T is U ; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2 where T is U . For example, embodiments of 254 P 1 D 68 nucleotides comprise, without limitation:
(I) a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown in Figure 2, wherein T can also be J ;
(II) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2 A, from nucleotide residue number 512 through nucleotide residue number 3730 , including the stop codon, wherein T can also be U;
(III) a polynucleatide comprising, consisting essentially of, or consisting of the sequence as shown in Figure $2 B$, from nucleolide residue number 512 through nucleotide residue number 3730 , including the stop codon, wherein T can also be U;
(IV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2C, from nucleotide residue number 739 through nucleotide residue number 3930, including the a stop codon, wherein T can also be U ;
(V) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2D, from nucleotide residue number 512 through nucleotide residue number 3730 , including the stop codon, wherein T can also be U ;
(VI) a polynucleotide that encodes a 254P1 D6B-related protein that is at least $90,91,92,93,94,95,96,97$, 98,99 or 100% homologous to an entire amino acid sequence shown in Figure 2A-D;
(VII) a polynucleotide that encodes a 254 P 1 D 6 B -related protein that is at least $90,91,92,93,94,95,96,97$, 98,99 or 100% identical to an entire amino acid sequence shown in Figure 2A-D;
(VIII) a polynucleotide that encodes at least one peptide set forth in Tables VIII-XXI and XXII-XLIX;
(IX) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figures $3 A, 3 B, 3 D$, and $3 E$ in any whole number increment up to 1072 that includes at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Hydrophilisity profile of Figure 5 ;
(X) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{D}$, and $3 E$ in any whole number increment up to 1072 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,24,25,26,27,23,29,30,31,32,33,34,35$ amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6 ;
(XI) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 A, 3 B, 3 D$, and

3E in any whole number increment up to 1072 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$. $18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;
(XII) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{D}$, and $3 E$ in any whole number increment up to 1072 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greate than 0.5 in the Average Flexibility profile of Figure 8;
(XIII) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{D}$, and 3 E in any whole number increment up to 1072 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9 ;
(XIV) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 C$ in any whole number increment up to 1063 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5;
(XV) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 C$ in any whole number increment up to 1063 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$ $23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6;
(XVI) a polynucleotice that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure 30 in any whole number increment up to 1063 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$ $23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;
(XVII) a polynucleotice that encodes a peptide region of at leasl $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure $3 C$ in any whole number increment up to 1063 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$ $23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8 ;
(XVIII) a polynucleotide that encodes a peptide region of at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acids of a peptide of Figure 3 C in any whole number increment up to 1053 that includes $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Betaturn profile of Figure 9
(X|X) a polynucleotide that is fully complementary to a polynucleotide of any one of (I)-(XVIII);
(XX) a polynucleotide that is fully complementary to a polynucleotide of any one of $(I)-(X \mid X)$;
$(X X I)$ a peplide that is encoded by any of (I) to $(X X)$; and;
(XXII) a composition comprising a polynucleotide of any of $(I)-(X X)$ or peptide of $(X X I)$ together with a pharmaceutical excipient and/or in a human unit dose form;
(XXIII) a method of using a polynudeotide of any $(I)-(X X)$ or peptide of $(X X I)$ or a composition of $(X X I I)$ in a method to modulate a cell expressing 254P1D6B;
(XXIV) a method of using a polynucleotide of any (I)-(XX) or peptide of $(X X I)$ or a composition of $(X X I I)$ in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B;
(XXV) a method of using a polynucleotide of any (1)-(XX) or peptide of $(X X I)$ or a composition of $(X X I I)$ in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B, said cell from a cancer of a tissue listed in Table ;
(XXVI) a method of using a polynucleotide of any (II-(XX) or peptide of (XXI) or a composition of (XXII) in a method to diagnose, prophylax, prognose, or treat a a cancer;
(XXVII) a method of using a polynucleotide of any (II-(XX) or peptide of $(X X X)$ or a composition of $(X X X I)$ in a method to diagnose, prophylax, prognose, or treat a a cancer of a tissue listed in Table I; and;
(XXVIII) a method of using a polynucleotide of any (I)-(XX) or peplide of $(X X I)$ or a composition of $(X X \mid I)$ in a meihod to identify or characterize a modulator of a cell expressing 254P1D6B.

As used herein, a range is understooc to disclose specifically al whole unit positions thereof.
Typical embodiments of the invention disclosed herein include $254 \mathrm{P1D6B}$ polynucleotides that encode specific portions of 254P106B mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example: .
(a) $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,30,35,40,45,50,55,60,65,70$, $75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195,200$, $225,250,275,300,325,350,375,400,425,450,475,500,525,550,575,600,625,650,675,700,725,750,775,800$, $825,850,875,900,925,950,975,1000,1025,1050,1060.1065,1070$, and 1072 or more contiguous amino acids of 254P106B variant 1; the maximai lengths relevant for other variants are: variant 2,1072 amino acids; variant 3,1063 amino acids, variant 5, 1072 amino acids, variant 6, 1072 amino acids, and variants 4, 7-20, 1072 amoni acids.

For example, representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 10 to about amino acid 20 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 20 to about amino acid 30 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amins acid 30 to about amino acid 40 of the 254P1D6E protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 40 to about amino acid 50 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 50 to about amino acid 60 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleo:ides encoding about amino acid 60 to about amino acid 70 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 70 to about amino acid 80 of the 254P106B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 80 to about amino acid 90 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 90 to about amino acid 100 of the 254 P1D6B protein shown in Figure 2 or Figure 3, in increments of about 10 amino acids, ending at the
carboxyl terminal amino acid sel forth in Figure 2 or Figure 3. Accordingly, polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids, 100 through the carboxyl terminal amino acid of the 254P1D6B protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues.

Polynuclootides encoding relatively long portions of a 254P106B protein are also within the scope of the invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc .) to about amino acid 20 , (or 30 , or 40 or 50 etc.) of the 254 P 1 D 6 B protein "or variant" shown in Figure 2 or Figure 3 can be generated by a variety of fechniques well known in the art. These polynucleotide fragments can inslude any portion of the 254P106B sequence as shown in Figure 2.

Additional illustrative embodiments of the invention disclosed herein include 254P1D6B polynucleotide fragments encoding one or more of the biological molifs contained wilhin a 254 P 1 D 6 B protein "cr variant" sequence, including one or more of the motif-bearing subsequences of a 254P106B protein "or variant" set forth in Tables VIII-XXI and XXXI-XLIX. In another embodiment, typical polynucleotide fragnents of the nvention encode one or more of the regions of 254P1D6B protein or variant that exhibit homolcgy to a known molecule. In another embodiment of the invention, typical polynucleotide fragments can encode one or more of the 254P1D6B protein or variant N -clycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or N -myristoylation site and amidation sites.

Note that to determine the starting position of any paptide set forih in Tables VIII-XXI and Tables XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1 , variant 2 , etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides listec in Table VII. Generally, a unique Search Peptide is used to obtain HLA peplides for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, if a Search Pepide begins at position " X ", one must add the value " X minus 1 " to each position in Tables VIII-XXI and Tables XXII-IL to obtain the actual position of the HLA peptides in their parental molecule. For example if a particular Search Peplide begins at position 150 of its parental molecule, one must add $150-1$, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecuie.

II.A.) Uses of 254P1D6B Polynucleotides

II.A.1.) Monitoring of Genetic Abnormalities

The polynucleotides of the preceding paragraphs have a number of different specific uses. The human 254P1D6B gene maps to the chromosomal location set forth in the Example entitled "Chromosomal Mapping of 254P1D6B." For example, because the 254P1D6B gene maps to this chromosome, polynucleotides that encode different regions of the 254P1D6B proteins are used to characterize cytogenetic abnormaities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers. In certain genes, a variely of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalities in a number of different cancers (see e.g. Krajinovic et al, Mulat. Res. 382(3-4): 81-83 (1998); Johansson et al., Blood 86(10): 3905-3914 (1995) and Finger et al, P.N.A.S. 85(23): $9158-9162$ (1988)). Thus, polynucleotides encoding specific regions of the 254P1D6B proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes 254P1D6B that may contribute to the malignant phenotype. In this contexi, these polynucleotides satisfy a need in the art for expanding the sersitivity of chromosomal screening in order to identify more subtle and less comnion chromosomal abnormalities (see e.g. Evans et al., Am. J. Obstet. Gynecol 171(4): 1055-1057 (1994)).

Furthermore, as 254P1D6B was shown to be highly expressed in prostate and other cancers, 254P1D6B polynucleotides are used in methods assessing the status of 254 P 1 D 6 B gene products in normal versus cancerous tissues.

Typically, polynucleotides that encode specific regions of the 254P1D6B proteins are used to assess the presence of perturbations (such as celetions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 254F1D63 gene, such as regions containing one or more motifs. Exemplary assays include both RT-PCR assays as well as single-strand conformation polymorphism (SSCP) analysis (see, e.g, Marrogi et al., J. Cutan. Pathol. 26(8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein.

II.A.2.) Antisense Embodiments

Other speciicaliy contemplaied nucleic acid related enbodiments of the invention disclosed herein are genomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative backbone, or including alternative bases, whether derived from natural sources or synthesized, and include molecules capable of inhibiting the RNA or protein expression of 254P1D6B. For example, antisense molecules can be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as phosphorothicate derivatives that specifically bind DNA or RNA in a base pair-dependent manner. A skilled artisan can readily obtain these classes of nucleic acid molecules using the 254P1D6B polynucleotides and polynucleotide sequences disclosed herein.

Antsense technology entails the administration of exogenous oligonucleotides that bind to a target polynucleotide located within the cells. The term "antisense" refers to the fact that such oligonucleotices are complementary to their intracellular targets, e.g., 254P1D6B. See for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988). The 254P103B antisense oligonucleotides of the present invention include derivatives such as S -oligonucieotides (phosphorothioale derivatives or S -oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (O -oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S -oligos of the present invention can be prepared by treatment of the corresponding O -oligos with $3 \mathrm{H}-1,2$ -benzodithicl-3-one-1, \}-dioxide, which is a sulfur transfer reagent. See, e.g., lyer, R. P. et al, J. Org. Chem. 55:4693-4698 (1990); and lyer, R. P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990). Additional 254P1D6B antisense oligonucleotides of the present invention include morpholino antiserse oligonucleotides known in the art (see, e.g., Partridge et al., 1996, Antisense \& Nucleic Acid Drug Development 6: 169-175).

The 254P1D6B antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 1005^{\prime} codons or last 1003^{\prime} codons of a 254P106B genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 254P1D6B mRNA and not to mRNA specifying other regulatory subunits of protein kinase. In one embodiment, 254P1D6B antisense oligonucleotides of the present invertion are 15 to 30 -mer fragments of the antisense DNA molecule that have a sequence that hybricizes to 254 P 1068 mRNA . Optionally, 254 P 1 D 6 B antisense cligonucleotide is a 30 -mer cligonucleotide that is complementary to a region in the first 105^{\prime} codons or last 103^{\prime} codons of 254P1D6B. Alternatively, the antisense molecules are modified to employ ribozymes in the inhibition of 254P1D6B expression, see, e.g. L. A. Couture \& D. T. Stinchcomb; Trends Genet 12: 510-515 (1996).

II.A.3.) Primers and Primer Pairs

Further specific embodiments of these nucleotides of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any speciic parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Probes can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a
chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to detect the presence of a 254P1D6B polynucleotide in a sample and as a means for detecting a cell expressing a 254P1D6B protein.

Examples of such probes include polypeptides comprising all or par of the human 254P1D6B CDNA sequence shown in Figure 2. Examples of primer pairs capable of specifically amplifying 254P1D6B mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 254 P 106 B mRNA.

The 254P1D6B polynucleotides of the invention are useful for a variety of purposes, induding but not limited to their use as probes and primers for the amplification and/or detection of the 254P1D6B gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding sequences capable of directing the expression of 254P1D6B polypeplides; as tools for modulating or inhibiting the expression of the 254P1D6B gene(s) and/or translation of the 254 P 1 D 6 B transcript(s); and as therapeutic agents.

The present invention includes the use of any probe as described herein to identify and isolate a 254P106B or 254P1D6B related nucleic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found in the probe used.
II.A.4.) Isolation of 254P1D6B-Encoding Nucleic Acid Molecules

The 254P1D6B cDNA sequences described herein enable the isolation of other polynucleotides encoding 254P1D6B gene product(s), as well as the isolation of polynucleotides encoding 254P1D6B gene producthomologs, alternatively spliced isoforms, allelic variants, and mutant forms of a 254 P 1 D 6 B gene product as well as polynucleotides that encode analogs of 254P1D6B-related proteins. Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a 254P1D6B gene are well known (see, for example, Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Protocols in Molecular Biology. Ausubel et al, Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies can be conveniently employed, using commercially avalable cloning systems (e.g., Lambda ZAP Express, Stralagene). Phage clones containing 254P1D6B gene cDNAs can be identified by probing with a labeled 254P1D6B cDNA or a fragment thereof. For example, in one embodiment, a 254P1D6B cDNA (e.g., Figure 2) or a portion thereof can be synthesized and used as a probe to retrieve overlapping and full-length cDNAs corresponding to a 254P1D6B gene. A 254P1D6B gene itself can be isolated by screening genomic DNA libraries, bacterial arificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with 254P1D6B DNA probes or primers.

II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems

The invention also provides recombinant DNA or RNA molecules containing a 254P1D6B polynucleotide, a fragment, analog or homologue thereof, including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook et al., 1989, supra).

The invention further provides a host-vector system comprising a recombinant DNA molecule containing a 254P1D6B polynucleotide, fragment, analog or homologue thereof within a suitable prokaryotic or eukaryotic host cell. Examples of suitable eukaryotic host cells include a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an insect cell (e.g., a baculovirus-infectible cell such as an $\mathrm{Sf9} 0$: HighFive cell). Examples of suitable mammalian cells include various prostate cancer cell lines such as DU145 and TsuPr1, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, $\mathrm{CHO}, 293,293 \mathrm{~T}$ cells). More particularly, a polynucleotide comprising the coding sequence of 254 P 1 D 6 B or a fragment, analog or homolog thereof can be used to generate 254P1D6B proteins or fragments thereof using any number of host-vector systems routinely used and widely known in the art.

A wide range of host-vector systems suitable for the expression of 254P1D6B proteins or fragments thereof are available, see for example, Sambrook et al., 1989, supra; Current Protocols in Molecular Biology, 1995, supra). Preferred vectors for mammalian expression include but are not liniled to pcDNA 3.1 myc-His-tag (Invitrogen) and the reiroviral vector pSRatkneo (Muller et al., 1991, MCB 11:1785). Using these expression vectors, 254P1D6B can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, 293T, rat-1, NHH 3 T3 and TsuPr1. The host-vector systems of the invention are useful for the production of a 254P1D6B protein or fragment thereof. Such host-vector systems can be employed to study the functional properiies of 254P1D6B and 254P1D6B mutations or analogs.

Recombinant human 254P1 D6B protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 254P106B-related nucleotide. For example, 293T cells can be transfected with an expression plasmid encoding 254P1D6B or fragment. analog or homolog thereof, a 254P1D6B-related protein is expressed in the 293T cells, and the recombinant 254P1D6B protein is isolated using standard purification methods (e.g., affinity purification using anti-254P1D6B antibodies). In another embodiment, a 254P1D6B coding sequence is subcloned into the retroviral vector $\mathrm{pSR} \alpha$ MSV/Ikneo and used to infect various mammalian cell lines, such as NIH 3 T3, TsuPr1, 293 and rat-1 in order to establish 254P1D6B expressing cell lines. Various other expression systems well known in the art can also be employed. Expression consiructs encoding a leader peptide joined in frame to a 254P1D6E coding sequence can be used for the generation of a secreted form of recombinant 254P1D63 protein.

As discussed herein, redundancy in the genetic code permits variation in 254P106B gene sequences. In particular, it is known in the art that specific hosi species ofte) have specifc codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, preferred analog codon sequences typically have rare codons (i.e., codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced wilh higher frequency codons. Codon preferences for a specific species are calculated, for example, by utilizing codon usage tables available on the INTERNET such as at URL dna.afirc.go.jp/-nakamuraicodon.html.

Additional sequence modifications are known to enhance protein expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon'intron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given cellutar host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures. Other useful modifications include the addition of a translational initiation consensus secuence at the start of the open reading frame, as described in Kozak, Mol. Cell Biol, $9: 5073$-5080 (1989). Skilled arisans understand that the general rule that eukaryotic ribosomes initiate translation exclusively at the 5 ' proximal AUG codon is abrogated only under rare conditions (see, e.g., Kozak PNAS 92(7): 2662-2666, (1995) and Kozak NAR 15(20): 3125-8148 (1987)).

III.) 254P1D6B-related Proteins

Another aspect of the present invention provides 254P1D6B-related proteins. Specific embodiments of 254P1D6B proteins comprise a polypeptide having all or part of the amino acid sequence of human 254P1D6B as shown in Figure 2 or Figure 3. Alternatively, embodiments of 254P1D6B proteins comprise variant, homolog or analog polypeptides that have alterations in the aminc acid sequence of 254P1D6B shown in Figure 2 or Figure 3.

Embodiments of a 254P1D6B polypeptide include: a 254P1D6B polypeptide having a sequence shown in Figure 2, a peptide sequence of a 254P1D6B as shown in Figure 2 wherein T is U ; at least 10 contiguous nucleotides of a polypeptide having the sequence as shown in Figure 2 ; or, at least 10 cortiguous peptides of a polypeptide having the sequence as shown in Figure 2 where T is U . For example, embodiments of 254P1 D6B peptides comprise, without limilation:
(I) a protein comprising, consisting essentially of, or consisting of an amino acid sequence as shown in Figure 2A-D or Figure 3A-E;
(II) a 254P1D6B-related protein that is at least $90,91,92,93,94,95,96,97,98,99$ or 100% homologous to an entire amino acid sequence shown in Figure 2A-D or $34-E_{\text {; }}$
(III) a 254 P 1 D 6 B -related protein that is at least $90,91,92,93,94,95,96,97,98,99$ or 100% identical to an entire amino acid sequence shown in Figure 2A-D or $3 \mathrm{~A}-\mathrm{E}$;
(IV) a protein that comprises at least one peptide set forth in Tables VIII to XLIX, optionally with a proviso that it is not an entire protein of Figure 2;
(V) a protein that comprises at least one peptide set forth in Tables VIII-XXI, collectively, which peptide is also set forth in Tables XXII to XLIX, collectively, oplionally with a proviso that it is not an entire protein of Figure 2;
(VI) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII-XLIX, optionally with a proviso that it is not an entire protein of Figure 2;
(VII) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII to XLIX collectively, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of Figure 2 ;
(VIII) a protein that comprises at least one peptide selected from the peptides set forth in Tables VIII-XXI; and at least one peptide selected from the peptides set forth in Tables $X X X I I$ to $X L I X$, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of Figure 2;
(IX) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{D}$, and 3 E in any whole number increment up to 1072 respectively that includes at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$, $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position's) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5 ;
(X) a polypeptide comprising ai least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{D}$, and 3 E , in any whole number increment up to : 072 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value less than 0.5 in the Hydropalhicity profile of Figure 6;
(XI) a polypeptide comprising at least $5,6,7,3,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 A, 3 B, 3 D$, and $3 E$, in any whole number increment up to 1072 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;
(XII) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{D}$, and 3 E , in any whole number increment up to 1072 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,13,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8;
(XIII) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34$, amino acids of a protein of Figure $3 A, 3 B, 3 D$, and $3 E$ in any whole number increment up to 1072 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$, $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9 ;
(XIV) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 C$, in any whole number increment up to :063 respectively that includes at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5;
(XV) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 C$, in any whole number increment up to 1063 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$, $21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value less than 0.5 in the Hydropathicity profie of Figure 6 ;
(XVI) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 C$, in any whole number incerement up to 1063 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$, $21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profle of Figure 7;
(XVII) a polypeptide comprising at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,23,29,30,31,32,33,34,35$ amino acids of a protein of Figure $3 C$, in any whole number increment up to 1063 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$, $21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8 :
(XVIII) a polypeptide comprising at least $5,6,7,3,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34$, amino acids of a protein of Figure 3 C in any whole number increment up to 1063 respectively that includes at least at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21$ $22,23,24,25,26,27,28,29,30,31,32,33,34,35$ amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9 ;
(XIX) a peptide that occurs at least twice in Tables VIII-XXI and XXII to XLIX, collectively;
(XX) a peptide that occurs at least three times in Tables VIII-XXI and XXII to XLIX, collectively;
(XXI) a peptide that occurs at least four times in Tables VIII-XXI and XXII to XLIX, collectively;
(XXII) a peptide that occurs at least five times in Tables VIII-XXI and XXII to XLIX, collectively;
(XXIII) a peptide that occurs at least once in Tables VIII-XXI, and at least once in tables XXII to XLIX;
(XXIV) a peptide that occurs at least once in Tabes VIII-XXI, and at least twice in tables $X \times 11$ to XLII ;
(XXV) a peptide that occurs at least twice in Tables VIII-XXI, and at least once in tables XXII to XLIX;
(XXVI) a peptide that eccurs at least wice in Tables VIII-XXI, and at leasi twice in tables XXII to XLIX;
(XXVII) a peptide which comprises one two, three, four, or five of the following characteristics, or an oligonucleotide encoding such peplide:
i) a region of at least 5 amino acids of a particular pepide of Figure 3 , in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7,0.8,0.9$, or having a value equal to 1.0 , in the Hydrophilicity profile of Figure 5 ;
ii) a region of at least 5 amino acids of a particular peptide of Figure 3 , in any whole number increment up to the full length of that protein in Figure 3 , that includes an amino acid position having a value equal to or less than $0.5,0.4,0.3,0.2,0.1$, or having a value equal :0 0.0 , in the Hydropathicity profile of Figure 6 ;
iii) a region of at least 5 amino acids of a particular peptide of Figure 3 , in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7,0.8,0.9$, or having a value equal to 1.0 , in the Percent Accessible Residues profile of Figure 7;
iv) a region of at least 5 amino acids of a particular peptide of Figure 3 , in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7,0.8,0.9$, or having a value equal to 1.0 , in the Average Flexibility profile of Figure 8 ; or,
v) a region of at least 5 amino acids of a particular peptide of Figure 3 , in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than $0.5,0.6,0.7,0.8,0.9$, or having a value equal to 1.0 in the Beta-turn profile of Figure 9 ;;
(XXVIII) a composition comprising a peptide of (II)-(XXVII) or an antibody or binding region thereof together with a pharmaceulical excipient and/or in a human unit dose form.
(XXIX) a method of using a peplide of (1)-(XXVII), or an antibody or binding region thereof or a composition of (XXVIII) in a method to modulate a cell expressing 254P1D6B;
(XXX) a method of using a peptide of (I)-(XXVII) or an antikody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B;
(XXXI) a method of using a peptide of ((1)-(XXVII) or an antibody or binding region thereof or a composition (XXVIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B, said cell from a cancer of a tissue listed in Table I;
(XXXII) a method of using a peptide of ($)$-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat a a cancer;
(XXXIII) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, progncse, or treat a a cancer of a tissue listed in Table l; and; (XXXIV) a method of using a a peptide of (l)-(XXVI) or an antibody or binding region thereof or a composition (XXVIII) in a method to identify or characlerize a modulator of a cell expressing 254P1D6B

As used herein, a range is understood to specifically disclose all whole unit positions thereof.
Typical embodiments of the invention disclosed herein include 254P1D6B polynucleotides that encode specific portions of 254P1D6B mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example:
(a) $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,30,35,40,45,50,55,60,65,70$, $75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195,200$, $225,250,275,300,325,350,375,400,425,450,475,500,525,550,575,600,625,650,575,700,725,750,775,800$, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1060, 1070 and 1072 or more contiguous amino acids of 254P1D6B variant 1 ; the maximal lengths relevant for other variants are: variant 2,1072 amino acids; variant 3,1063 amino acids, variant 5,1072 amino acids, variant 6,1072 amino acids, and variants 4, 7-20, 1072 amino acids. .

In general, naturally occurring allelic variants of human 254P1D6B share a high degree of structural identity and homology (e.g., 90% or more homolagy). Typically, allelic variants of a 254P1D6B protein contain conservative amino acid substitutions within the 254P1D6B sequences described herein or contain a substitution of an amino acid from a corresponding position in a homologue of 254P1D6B. One class of 254P1D6B allelic variants are proteins that share a high degree of homology with at least a small region of a particular 254P1D6B amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift. In comparisons of protein sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms.

Amino acid abbreviations are provided in Table ll. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1,2 , $3,4,5,6,7,8,9,10,11,12,13,14,15$ conservative substitutions. Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (C) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the threedimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments (see, e.g. Table lll herein; pages 13-15 "Biochemistry" 2rd ED. Lubert Stryer ed (Stanford University); Henikoff et al., PNAS 1992 Vol 89 10915-10919; Lei of al., J Biol Chem 1995 May 19; 270(20):11882-6).

Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 254P1D6B proteins such as polypeptides having amino acid insertions, deletions and substitutions. 254P1D6B variants can be made using methods known in the art such as site-directed mutagenesis, alanine scanning, and PCR mutagenesis. Sitedirected mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et al., Gene, $34: 315$ (1985)), restriction selectlon mutagenesls (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)) or other known techniques can be performed on the cloned DNA to produce the 254P1D6B variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a specific biological activity such as a protein-protein interaction. Among the preferred scanning amino acids are relalively small, neulral amino acids. Such amino acids include alanine, glycine, serine, and cysteine.
Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the betacarbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, The Proteins,
(W.H. Freeman \& Co., N.Y.); Chothia, J. Mol. Bial., $150: 1$ (1976i). If alanine substifution does not yield adequate amounts of variant, an isosteric amino acid can be used

As defined herein, 254P1D6B variants, analogs or homologs, have the distinguishing attribute of having at least one epitope that is "cross reactive" with a 254P1D6B protein having an amino acid sequence of Figure 3. As used in this sentence, "cross reactive" means that an antibody or T cell that specifically binds to a 254 P 1 D 6 B variant also specifically binds to a 254P1D6E protein having an amino acid sequence sel forth in Figure 3. A polypeptide ceases to be a variant of a protein shown in Figure 3, when it no longer contains any epitope capable of being recognized by an antibody or T cell that specifically binds to the starting 254P1D6B protein. Those skilled in the art understand that antibocies that recognize proteins bind to epitopes of varying size, and a grouping of tre order of about four or five amino acids, contiguous or not, is regarded as a typical number of amino acids in a minimal epitope. See, e.g., Nair et al., J. Immunol 2000 165(12): 69496955; Hebbes et al., Mol Immunol (1989) 26(9):865-73; Schwartz et al., J Immunol (1985) 135(4):2598-608.

Other classes of 254 P 1 D6B-related protein variants share $70 \%, 75 \%, 80 \%, 85 \%$ or 90% or more similarity with an amino acid sequence of Figure 3, or a fragment thereof. Another specific class of 254P1D6B protein variants or analogs comprises one or more of the 254P1D6B biological motifs described herein or presently known in the art. Thus, encompassed by the present invention are analogs of 254P106B fragments (nucleic or amino acid) that have altered functional (e.g. immunogenic) properties relative to the starting fragment. It is to be appreciated that motifs now or which become part of the art are to be applied to the nucleic or amino acid sequences of Figure 2 or Figure 3.

As discussed herein, embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a 254 P1D6B protein shown in Figure 2 or Figure 3. For example, representative embodiments of the invention comprise peptides/proteins having any $4,5,6,7,8,9,10,11,12,13,14,15$ or more contiguous amino acids of a 254P1D6B protein shown in Figure 2 or Figure 3.

Moreover, representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid 1 to about amino acid 10 of a 254 P1 D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 10 to about amino acid 20 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 20 to about amino acid 30 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 30 to about amino acid 40 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 40 to about amino acid 50 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 50 to about amino acid 60 of a 254P1 D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 70 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 70 to about amino acid 80 of a 254 P 1 D 6 B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 80 to about amino acid 90 of a 254 P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 to about amino acid 100 of a 254P1D6B protein shown in Figure 2 or Figure 3, etc. Throughout the entirety of a 254P1D6B amino acid sequence. Moreover, polypeptides consisting of about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20 , (or 130 , or 140 or 150 etc .) of a $254 \mathrm{FID6B}$ protein shown in Figure 2 or Figure 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues.

254P1D6B-related proteins are generated using standard peplide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a 254P1D6B-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a 254P1D6B protein (or variants, homologs or analogs thereof)

III.A.) Motif-bearing Protein Embodiments

Additional illustrative embodiments of the invention disclosed herein include 254P1D6B polypeptides comprising the amino acid residues of one or more of the biological motifs contained within a 254P1D6B polypeptide sequence set forth in Figure 2 or Figure 3. Various molifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, e.g., URL addresses: pfam. wustl.edu/; searchlauncher.bcm.tmc.edu/seq-search/struc-predict.htm; psort.ims.u-tokyo.ac.jp/; cbs.dtu.dk/; ebi.ac.uk/interpro/scan html; expasy.ch/tools/scnpsit1.html; Epimatrix ${ }^{\text {TM }}$ and Epimer ${ }^{\mathrm{TM}}$, Brown University, brown.edu/Research/TB-HIV_Lab/epimatrixepimatrix.html; and BIMAS, bimas.dcrt.nih.govI.).

Motif bearing subsequences of all 254P1D6B variant proteins are set forth and identified in Tables VIII-XXI and XXII-XLIX.

Table V sets forth several frequently occurring motis based on pfam searches (see URL address pfam.wusill.edu). The columns of Table V list (1) motif name abbreviation, (2) percent identity found amongst the different member of the motif family, (3) motif name or description and (4) most common funclion; location information is included if the motif is relevant for location.

Polypeptides comprising one or more of the 254 P1D6B motifs discussed above are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the 254P1D6B motifs discussed above are associated with growth dysregulation and because 254P1D6B is overexpressed in certain cancers (See, e.g., Table 1). Casein kinase 11 , CAMP and camp-dependent protein kinase, and Protein Kinase C , for example, are enzymes known to be associated with the development of the malignant phenotype (see e.g. Chen et al., Lab Invest., 78(2): 165-174 (1998); Gaiddon et al, Endocrinology 136(10): 4331-4338 (1995); Hell et al., Nucleic Acids Research 24(6): 1119-1126 (1996); Peterziel et al., Oncogene 18(46): 6322-6329(1999) and O'Bian, Oncol. Rep. 5(2): 305-309 (1998)). Moreover, both glycosylation and myristoylation are prolein modifications also associated with cancer and cancer progression (see e.g. Dennis et al., Biochem. Biophys. Acta 1473(1):21-34 (1999); Raju et al., Exp. Cell Res. 235(1): 145-154 (1997)). Amidation is another protein modification also associated with cancer and cancer progression (see e.g. Treston et al., J. Natl. Cancer Inst. Monogr. (13): 169-175 (1992)).

In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the pepildes set forth in Tables VIII-XXI and XXII-XLIX. CTL epitopes can be determined using specific algorithms to identify peptides with.n a 254P1D63 protein that are capable of optimally binding to specified HLA alleles (e.g., Table N: Epimatrix ${ }^{T M}$ and Epimer ${ }^{\mathrm{TM}}$, Brown University, URL brown.edu/Research/TBHIV_Lablepimatrix/epimatrix.html; and BIMAS, URL bimas.dort.nih.gov/.) Moreover, processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes, are well known in the art, and are carried out without undue experimentation. In addition, processes for idenifying peptides that are immunogenic epitopes, are well known in the art, and are carried out without undue experimentation either in vitro or in vivo.

Also known in the art are principles for creating ana ogs of such epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, e.g., the HLA Class I and HLA Class I motifs/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at one of the specifed positions, and replacing it with another amino acid specified for that position. For exemple, on the basis of residues defined in Table N , one can substitute out a deleterious residue in favor of any other residue, such as a preferred residue; substitute a lesspreferred residue with a preferred residue; or substitule an originally-ocourring preferred residue with another preferred residue. Substitutions can occur at primary anchor positions or at other positions in a peptide; see, e.g., Table IV.

A variety of references reflect the art regarding the identification and generation of epitopes in a protein of interest as well as analogs thereof. See, for example, WO 97/33602 to Chesnut et al.; Sette, Immunogenetics 1999 50(3-4): 201. 212; Sette et al., J. Immunol. 2001 166(2): 1389-1397; Sidney et al., Hum. immunol. 1997 58(1): 12-20; Kondo et al.,

Immunogenetics 1997 45(4): 249-258; Sidney et al., J. Immunol. 1990 157(8): 3480-90; and Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al. J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)); Kast et al., 1994 152(8): 3504-12; Borras-Cuesta et a'., Hum. Immunol. 200061(3): 266-278; Alexander et al., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., PMID: 7895164, UI: 95202582; O'Sulivan et al., J. Immunol. 1991 147(8): 2663-2669; Alexander et al., Immunity 1994 1(9); 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92

Related embodiments of the invention include polypeptides comprising combinations of the different motifs set forth in Table VI , and/or, one or more of the predicted CTL epitopes of Tables VIII-XXI and XXII-XLIX, and/or, one or more of the predicted HTL epitopes of Tables XLVI-XLIX, and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or within the intervening sequences of the polypeptides. In addition, embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typisally, the number of N -terminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues.

254P1D6B-related proteins are embodied in many forms, preferably in isolated form. A purified 254P1D6B protein molecule will be substantially free of other proteins or molecules that impair the binding of 254P1D6B to antibody, T cell or other ligand. The nature and degree of isolation and purification will depend on the intended use. Embodiments of a 254P1D6B-related proteins include purified 254P1D6B-related proteins and functional, soluble 254P1D6B-related proteins. In one embodiment, a functional, soluble 254 P 1 D 6 B protein or fragment thereof retains the ability to be bound by antibody, T cell or other ligand.

The invention also provides 254P1D6B proteins comprising biologically active fragments of a 254P1D6B amino acid sequence shown in Figure 2 or Figure 3. Such proteins exhibit properties of the starting 254P1D6B protein, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the starting 254P1D6B protein; to be bound by such antibodies; to elicit the acfivation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein.

254P1D6B-related polypeptides that contain particularly interesting structures can be predicted and/or identified using various analytical techniques well known in the at, including, for example, the methods of Chou-Fasman, Garnier-Robson, KyteDoolitlle, Eisenberg, Karplus-Schuliz or Jameson-Wolf analysis, or based on immunogenicity. Fragments that contain such struclures are particularly useful in generating subunit-specific anli-254P1D6B antibodies or T cells or in identifying cellular faciors that bind to 254 P 1 D 6 B . For example, hydrophilicity profles can be generated, and immunogenic peptide fragments identified, using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated, and immunogenic peptide fragments idertified, using the method of Kyte, J. and Dooliftle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (\%) Accessible Residues pofiles can be generated, and immunogenio peptide fragments identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated, and mmunogenic peptide fragments identified, using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294.

CTL epitopes can be determined using specific algorithms to identify peptides within a 254P106B protein that are capable of oplimally binding to specified HLA alleles (e.g., by using the SYFPEITHI site at World Wide Web URL syfpeithi.bmiheidelberg.com/; the listings in Table IV(A)-(E); Epimatrix ${ }^{\text {TM }}$ and Epimer ${ }^{\text {TM }}$, Brown University, URL (brownedu/Research/TBHIV_Lab/epimatrixepimatrix.html); and BIMAS, URL bimas.dort.nih.gov/). Mustrating this, peptide epitopes from 254P1D6B that are presented in the context of human MHC Class I molecules, e.g., HLA-A1, A2, A3, A11, A24, B7 and B35 were predicted
(see, e.g., Tables VIII-XXI, XXII-XLIX). Specifically, the complete amino acid sequence of the 254P1D6B protein and relevant portions of other variants, i.e., for HLA Class I predictions 9 flanking residues on either side of a point mutation or exon juction, and for HLA Class II predictions 14 flanking residues on either side of a point mutation or exon junction corresponding to that variant, were entered into the HLA Peptide Motif Search algorithm found in the Bioinformatics and Molecular Analysis Section (BIMAS) web site listed above; in addition to the site SYFPEITHI, at URL syfpeithi.bmiheidelberg.com/.

The HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, in particular HLA-A2 (see, e.g., Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunal. 152: 63-75 (1994)). This algorithm allows location and ranking of 8 -mer, 9 -mer, and 10 -mer peptides from a complate protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peplides are 8 -, 9 -, 10 or 11-mers. For example, for Class I HLA-A2, the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-terminus (see, e.g., Parker et al., J. Immunol. 149:3580-7 (1992)). Selected results of 254P1D6B predicted binding peptides are shown in Tables VIII-XXI and XXII-XLIX herein. In Tables VIIIXXI and XXII-XLVII, selected candidates, 9 -mers and 10 -mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. In Tables XLVI-XLIX, selected candidates, 15 -mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. The binding score corresponds to the estimated half time of cissociation of complexes containing the peptice at $37^{\circ} \mathrm{C}$ at pH 6.5 . Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of time and thus represent the best immunogenic. targets for T-cell recognition.

Actual binding of peptides to an HLA allele can be evaluated by stabilization of HLA expression on the antigenprocessing defective cell line T2 (see, e.g., Xue et al., Prostate 30:73-8 (1997) and Peshwa et al., Prostate 36:129-33 (1998)). Immunogenicity of specific peptides can be evaluated in vitro by stimulation of CD8 + cytotoxic T lymphocytes (CTL) in the presence of antigen presenting cells such as dendritic cells.

It is to be appreciated that every epitope predicted by the BlMAS site, Epimer ${ }^{T M}$ and Epimatrix ${ }^{T M}$ sites, or specified by the HLA class I or class II motifs available in the art or which become part of the art such as set forth in Table IV (or determined using World Wide Web site URL syfpeithi.bmimeldelberg.com/, or BIMAS, bimas.dcrt.nih.gov/) are to be "applied" to a 254 P1D6B protein in accordance with the invention. As used in this context "applied" means that a 254P1D6D protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of a 254P1D6B protein of $8,9,10$, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of g or more amino acid residues that bear an HLA Class II motif are within the scope of the invention.

Ill.B.) Expression of 254P1D6B-related Proteins

In an embodiment described in the examples that follow, 254P1D6B can be conveniently expressed in cells (such as $293 T$ cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 254P1D6B with a C-terminal 6XHis and MYC tag (pcDNA3.1/mycHIS, Invitrogen or Tag5, GenHunter Corporation, Nashville TN). The Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted 254P1D6B protein in transfected cells. The secreted HIS-tagged 254P1D6B in the culture media can be purified, e.g., using a nickel column using standard techniques.

III.C. $)$ Modifications of 254P1D6B-related Proteins

Modifications of 254P1D6B-related proteins such as covalent modifications are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a 254F1D6B polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N - or C - terminal residues of a 254P1D6B protein. Another type of covalent modification of $\mathfrak{2} 254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of a protein of the invention. Another type of covalent modification of 254P1D6B comprises linking a 254P1D6B polypeptide to one of a variety of nonproteinaceous polymers, e.g, polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner sel forth in U.S. Patent Nos. 4,640,835; $4,496,689 ; 4,301,144 ; 4,670,417 ; 4,791,192$ or $4,179,337$.

The 254P1D6B-related proteins of the present invention can also be modified to form a chimeric molecule comprising 254P1D6B fused to another, heterologous polypeptide or amino acid sequence. Such a chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumor-associated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of a 254F1D6B sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in Figure 2 or Figure 3 . Such a chimeric molecule can comprise mutiples of the same subsequence of 254P1D6B. A chimeric molecule can comprise a fusion of a 254P1D6B. related protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind with cytokines or with growth factors. The epitope tag is generally placed at the amino- or carboxyl- terminus of a 254P1D6B protein. In an alternative embodiment, the chimeris molecule can comprise a fusion of a 254P1D6B-related protein with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an lgG molecule. The ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 254P1D6B polypeptide in place of at least one variable recion within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH 2 and CH 3 , or the hinge, $\mathrm{CH}, \mathrm{CH} 2$ and CH 3 regions of an lg GI molecule. For the production of immunoglobulin fusions see, e.g., U.S. Patent No. 5,428,130 issued June 27, 1995.

III.D.) Uses of 254P1D6B-related Proteins

The proteins of the invention have a number of different specific uses. As 254 P 1 D 6 B is highly expressed in prostate and other cancers, 254P1D6B-related proteins are used in methods that assess the status of 254P1D6B gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specific regions of a 254P1D6B protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing ene or more molifs). Exemplary assays utilize antibodies or T cells targeting 254P1D6B-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a 254P1D6B polypeptide sequence in order to evaluate the character stics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, 254P1D6B-related proteins that contain the amino acid residues of one or more of the biolocical molifs in a 254 P 1 D 6 B protein are used to screen for factors that interact with that region of 254P1D6B.

254P1D6B protein fragments/subsequences are particularly useful in generating and characterizing domain-specific antibodies (e.g., antibodies recognizing an extracellular or intracellular epilope of a 254 P 1 D 6 B protein), for identifying agents or cellular factors that bind to 254P1D6B or a particular structural domain thereoi, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines.

Proteins encoded by the 254P1D6E genes, or by analogs, homologs or fragments thereof, have a varety of uses, including but not limited to generating antibodies and in methods for identifying ligands and other agents and cellular
constituents thal bind to a 254 P106B gene product. Antibodies raised agairsta 254P1 D6B protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of 254P1D6B protein, such as those listed in Table I. Such antibodies can be expressed intracelluarly and used in methods of treating patients with such cancers. 254P1D6B-related nucleic acids or proteins are also used in generating HTL or CTL responses.

Various immunological assays useful for the detection of 254P1D63 proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunoscrbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like. Antibodies can be labeled and used as immunological imaging reagents capable of detecting 254P1D6B-expressing cells (e.g., in radioscintigraphic imaging methods). 254P1D6B proteins are aiso particularly useful in generating cancer vaccines, as further described herein.

IV.) 254P1D6B Antibodies

Another aspect of the invention provides antibodies that bind to 254P1D6B-related proteins. Preferred antibodies specifically bind to a 254P1D6B-related proteir and do not bind (or bind weakly) to peptides or proteins that are not 254P1D6Brelated proteins under physiological conditions. In this context, examples of physiological conditions include: 1) phosphate buffered saline; 2) Tris-buffered saline containing 25mM Tris and 150 mM NaCl ; or normal saline ($0.9 \% \mathrm{NaCl}$; 4) animal serum such as human serum; or, 5) a combination of any of 1 ; through 4); these reactions preferably taking place at pH 7.5 , atternatively in a range of pH 7.0 to 8.0 , or alternatively in a range of pH 6.5 to 8.5; also, these reactions taking place at a temperature between $4^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. For example, anjbodies that bind 254 P 1 D 6 B can bind 254 P 1 D 6 B -related proteins such as the homologs or analogs thereof.

254P1D6B antibodies of the invention are particulaly useful in cancer (see, ə.g., Table f) diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the ireaiment, diagnosis, and/or prognosis of other cancers, to the extent 254P1D6B is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 254P1D63 is involved, such as advanced or metastalic prostate cancers.

The invention also provides various immunological assays useful for the detecion and quanification of 254P1D6B and mutant 254P1D6B-related proteins. Such assays can comprise one or more 254P1D6B antibodies cajable of recognizing and binding a 254 P106B-related protein, as appropriate. These assays are performed within various immunological assay formats well known in the art, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.

Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory or stimulatory) as well as major histocompatibility complex (MHC) binding assays.

In addition, immunological imaging methods capable of detecting prostate cancer and other cancers expressing 254P1D6B are also provided by the invention, including but not imited to radioscintigraphic imaging methods using labeled 254P1D6B antibodies. Such assays are clinically useful in the cetection, monitoring, and prognosis of 254P1D6B expressing cancers such as prostate cancer.

254P1D6B antbodies are also used in methods for purifying a 254P1D6B-related protein and for isolating 254P1D6B homologues and related molecules. For example, a method of purifying a 254 P 1 D 6 B -related protein comprises incubating a 254P1D6B antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 254P1D6B-related protein under conditions that permit the 254P1D6B antibody to tind to the 254P1D6B-related protein; washing the solid matrix to eliminate impurities; and eluting the 254P1D6B-related protein from the coupled antibody. Other uses of 254P1D6E antibodies in accordance with the invention include generatng anti-idictypric antibodies that mimic a 254P1D6B protein.

Various methods for the preparation of antibodies are well known in the art. For example, antibodies can be prepared by immunizing a suitable mammalian host using a 254P1D6B-related protein, peptide, or fragment, in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 254 P 106 B can also be used, such as a 254P1D6B GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 2 or Figure 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a 254P1D6B-related protein is synthesized and used as an immunogen.

In addition, naked DNA immunization techniques known in the art are used (with or without purified 254P1D6B-related protein or 254P1D6B expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al., 1997, Ann. Rev. Immunol. 15: 617-648).

The amino acid sequence of a 254P1D6B protein as shown in Figure 2 or Figure 3 can be analyzed to select specific regions of the 254P1D6B protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of a 254P1D6B amino acid sequence are used to identify hydrophilio regions in the 254P1D6B structure. Regions of a 254P1D6B protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Garnier-Fobson, Kyte-Doolitte, Eisenberg, Karplus-Schultz or Jameson-Wcif analysis. Hydrophilicity profiles can be generated using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (\%) Accessible Residues profiles can be generated using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32242-255. Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 254P1D6B antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein. In some circumstances, cirect conjugation using, for example, carbodiimide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of a 254P1D6B immunogen is often conducled by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art During the immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation.

254P1D6B monocional antibodies can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications thal immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 254P1D6B-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vitro cultures or from ascites fluid.

The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a 254P1D6B protein can also be produced in the context of chimeric or complementaritydetermining region (CDR) grafted antibodies of multiple species origin. Humanized or human 254P1D6B antibodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones et al., 1986, Nature 321: 522-525; Riechmann et al., 1988, Nature 332: 323-327; Verhoeyen et al., 1988, Science 239: 1534-1536). See also, Carter et al., 1993, Proc. Nat. Acad. Sci. USA 89: 4285 and Sims et al., 1993, J. Immunol, 151: 2296.

Methods for producing fully human monoclonal antibodies include phage display and transcenic methods (for review, see Vaughan et al., 1998, Nature Biotechnology 16: 535-539). Fully human 254P1D6B monoclonal anibodies can be generated using cloning technologies employing large human Ig gene combinatorial lbraries (i.e,, phage display) (Grifiths and Hoogenboom, Building an in vitro immune system: human antibcdies from phage display libraries. In: Protein Engineering of Antibody Molecules for Prophylaclic and Therapeutic Applications in Man, Clark, M. (Ed.) Nottingnam Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. 터., pp 65-82). Fully human 254P1D6B monoclonal antibodies can also be produced using transgeric mice engineered to contain human inmunoglobulin gene loci as described in PCT Patent Application WO98/24893, Kucherlepati and Jakobovits et al., published December 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7(4): 607-614; U.S. patents 6,162,963 issued 19 December $2000 ; 6,150,584$ issued 12 November 2000; and, 6.114598 issued 5 September 2000). This method avoids the in vitro manipulation required with phage display technology and efficiently produces high affinity auhentic human antibodies.

Reaclivity of 254P1D6B antibodies with a 254P1D6B-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 254P1D6B-related proteins, 254P1D6B-expressing cells or extracts thereof. A 254P1D6B antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitabla detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-speciic antibodies specific for two or more 254P1D6B epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known in the art (e.g., Wolff et al., Cancer Res. 53: 2560-2565).

V.) \quad 254P1D6B Cellular Immune Responses

The mechanism by which T cells recognize antigens has been delineated. Efficacious peptide epitope vaccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the worldwide population. For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided.

A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. ot al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601. 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogencusly bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are set forth in Table IV (see also, e.g., Southwood, et al., J. immunol. 160:3363, 19¢8; Rammensee, et al, Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, access via World Wide Web at URL (134.2.96.221/scripts. hlaserver. dll/home.htm); Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigagia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937. 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov; 50(3-4);201-12, Review).

Furthermore, x-ray crystallographic aralyses of HLA-peptide complexes have revealed pockets within the peptide binding cleftgroove of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the pepides in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stern et al., Structure 2:245, 19C4; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367,

1992; Matsumura, M. et al, Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)

Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s).

Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been identified; such candidates can be further evaluated by HLA-peptide binding assays to delermine binding affinity and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes wih preferred characteristics in terms of population coverage, and/or immunogenicity.

Various stralegies can be utilized to evaluate cellular immunogenicity, inducing:

1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Hiuman Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal sukjects with a test peptide in the presence of antigen presenting cells in vitro over a periad of several weeks. T cells specific for the peptide become aclivated during this time and are detected using, e.g., a lymphokine- or ${ }^{51}$ Cr-release assay involving peptide sensitized target cells.
2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al, J. Immunol. 26:97, 1996; Wentworth, F. A. et al, Int. Immunol. 8:651, 1996; Alexander, J. ef al., J. Immunol. 159:4753, 1997). For example, in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a ${ }^{51} \mathrm{Cr}$-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
3) Demonstration of recall T cell responses from in:mune individuals who have been eilher effecively vaccinated and/or from chronically ill patients (see, e.g., Rehermann, B. of al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al, J. Virol. 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the anticen due to disease and thus have generated an immune response "naturally", or from patients who were vaccinated against the antigen. PBL from subjects are cutured in vitro for $1-2$ weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays including ${ }^{51} \mathrm{Cr}$ release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.

VI.) 254P1D6B Transgenic Animals

Nucleic acids that encode a 254 P 1 D63-related protein can also be used to generate either transgenic animals or "knock out" animals that, in turn, are useful in the development and screening of therapeutically useful reagents. In accordance with established techniques, CDNA encoding 254P1D6B can be used to clone genomic DNA that encodes 254P1D6B. The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 254F1D6B. Methods for generating transgenic animels, particularly animals such as mice or rats, have become conventional in the art and are described, for exampe, in U.S. Patent Nos. 4,736,866 issued 12 April 1988, and 4,870,009 issued 26 September 1989. Typically, particular cells would be targeted for 254P1D6B transgene incorporation with tissue-specific enhancers.

Transgenic animals that include a copy of a transgene encoding 254P1D6B can be used to examine the effect of increased expression of DNA that encodes 254P1D6B. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions assoclated with its overexpression. In accordance with this aspect of the invention, an animal is reated with a reagent and a reduced incidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a potential therapeutic intervention for the pathoogical condition.

Alternatively, non-human homologues of 254P1D6B can be used to construct 254P1D6B "knock out" animal that has a defective or altered gene encoding 254P1D6B as a result of homologous recombination between the endogenous gene encoding 254P1D6B and altered genomic DNA encoding 254P1D6B introduced into an embryonic cell of the animal. For example, cDNA that encodes 254P1D6B can be used to clone genomic DNA encoding 254P1D6B in accordance with established techniques. A portion of the genomic DNA encoding 254P1D6B can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5 ' and 3 ' ends) are included in the vector (see, e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectiors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Li et al., Cell, 69:915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (RL, Oxford, 1987), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knock out animals can be characterized, for example, for their ability to defend against certain pathological conditions or for their development of pathological conditions due to absence of a 254P1D6B polypeptide.

VII.) Methods for the Detection of 254P1D6B

Another aspect of the present invention relates to methods for detecting 254P1D6B polynucleotides and 254P1D6Brelated proteins, as well as methods for idenilifying a cell that expresses 254P1D6B. The expression profile of 254P1D6B makes it a diagnostic marker for metastasized disease. Accordingly, the status of 254P1D6B gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage cisease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of 254P1D6B gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Norihern bloting techniques including in situ hybridization, RT-PCR analysis (fir example on laser capture micro-dissected samples), Western blot analysis and tissue array analysis.

More particularly, the inventon provides assays for the detection of 254P1D6B polynucleotides in a biological sarinple, such as serum, bone, prostate, and other tissues, urine, semen, cell preparations, and the like. Detectable 254P1D6B polynucleotides include, for example, a 254 P 1 D 6 B gene or fragment thereof, 254P1D6B mRNA , alternative splice variant 254P1D6B mRNAs, and recombinant DNA or RNA molecules that contain a 254P1D6B polynucleotide. A number of methods for amplifying and/or detecting the presence of 254P1D6B polynucleotides are well known in the art and can be employed in the practice of this aspect of the invention.

In one embodiment, a method for detecting a 254P1D6B mRNA in a biological sample comprises producing CDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using a 254P1D6B polynucleotides as sense and antisense primers to amplify 254P1D6B cDNAs therein; and detecting the presence of the amplified 254P' D6B CDNA. Optionally, the sequence of the ampififed 254P1D6B cDNA can be determined.

In another embodiment, a method of detecting a 254P1D6B gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the isolated genomic DNA using 254P1D6B polynucleotides as sense and antisense primers; and detecting the presence of the amplified 254P1D6B gene. Any number of appropriate sense and antisense probe combinations can be designed from a 254P1D6B nucleotide sequence (see, e.g., Figure 2) and used for this purpose.

The invention also provides assays for detecting the presence of a 254P1D6B protein in a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like. Methods for detecting a 254P1D6B-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Western blot analysis, molecular binding assays, ELISA, ELIFA and the like. For example, a method of detecting the presence of a 254P1D6E-related protein in a biological sample comprises first contacting the sample with a 254P1D6B antibody, a 254P1D6B-reaclive fragment thereof, or a recombinant protein containing an antigen-binding region of a 254P1D6B antibody; and then detecting the binding of 254P1D6B-related protein in the sample.

Mehods for idenifying a cell that expresses 254P1D6B are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a 254P1 D6B gene comprises detecting the presence of 254P1D6B mRNA in the cell. Methods for the detection of particular mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled 254P1D6B riboprobes, Northern blot and reated lechniques) and various nucleic acid amplification assays (such as RT-PCR using complenentary primers specific for 254P106B, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like). Aliernatively, an assay for identifying a cell that expresses a 254P1D6B gene comprises detecing the presence of 254P1D6B-related protein in the cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of 254P1D6B-related proteins and cells that express 254P1D6B-related proteins.

254P1D6B expression analysis is also useful as a tocl for identifying and evaluating agents that modulate 254P1D6B gene expression. For example, 254P1D6B expression is signiicantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or biological agent that inhibits 254P1D6B expression or over-expression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies 254P1D6B expression by RT-PCR, nucleic acid hybridization or antibody binding.

VIII.) Methods for Monitoring the Status of 254P106B-related Genes and Their Products

Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers et al., Lab Invest. 77(5): 437-438 (1997) and Isaacs et al., Cancer Surv. 23: 19-32 (1995)). In this context, examining a biclogical sample for evidence of dysregulated cell growth (such as aberant 254P1D6B expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse. In such examinations, the status of 254P1D6B in a biological sample of interest can be compared, for example, to the status of 254P1D6B in a corresponding normal sample (e.g. a sample from that individual or alternatively another individual that is not affected by a pathology). An alteration in the status of 254P1D6B in the biological sample (as compared to the normal sample) provides evidence of dysregulated cellular growth. In addition to using a blological sample that is not affected by a pathology as a normal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever et al., J. Comp. Neurol. 1996 Dec $9 ; 376(2)$: 306-14 and U.S. Patent No. $5,837,501$) to compare 254P1D6B status in a sample.

The term "status" in this context is used according to ils art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and ils
products. These include, but are not limited to the location of expressed gene products (inciuding the location of 254P1D6B expressing celis) as well as the level, and biological activity of expressed gene products (such as 254P1D6B mRNA, polynucleotides and polypeptides). Typically, an alteration in the status of 254P1D6B comprises a change in the location of 254P1D6B and/or 254P1D6B expressing cells and/or an increase in 254P1D6B mRNA and/or protein expression.

254P1D6B status in a sample can be analyzed by a rumber of means well known in the art, including without limitation, immunohistochemical analysis, in situ hybridization, RT-PCR analysis on lase- capture micro-dissected samples, Western blot analysis, and tissue array analysis. Typical protocols for evaluaing the stalus of a 254 P 1 D 6 B gene and gene products are found, for example in Ausubel et al. eds., 1995, Current Protocols In Molecular Biclogy, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunobloting) and 18 (PCR Analysis). Thus, the status of 254P1D6B in a biological sample is evaluated by various methods utilized by skilled arisans including, but not limited to genomic Southern analysis (to examine, for example perturbations in a 254P1D6B gene), Northern analysis and/or PCR analysis of 254P1D6B mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 254P106B mRNAs), and, Western and/or immunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 254P1D6B proteins and/or associations of 254P1D6B proteins with polypeptide binding pariners). Detectable 254P1D6B polynucleotides include, for exarnple, a 254P1D6B gene or fragment thereof, 254P1D6B mRNA, alternative splice variants, 254P1D6B mRNAs, and recombinant DNA or RNA molecules containing a 254P1D6B polynucleofide.

The expression profile of 254P1D6B makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status of $254 \mathrm{P1D6B}$ provides information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness. The invention provides methods and assays for deternining 254P1D6B status and diagnosing cancers that express 254P1D6B, such as cancers of the tissues listed in Table 1 . For example, because 254P1D5B mRNA is so highly expressed in prostate and other cancers relative to nornal prostate lissue, assays that evaluate the levels of 254P1D6B mRNA transcripts or proteins in a biological sample can be used to diagnose a disease associated with 254P1D6B dysregulation, and can provide prognostic information useful in defning appropriate therapeutic options.

The expression status of 254P1D6B provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Morecver, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 254P1D6B in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer.

As described above, the status of 254P106B in a biological sample can be examined by a number of well-known procedures in the art. For example, the status of 254P1D6B in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 254P1D6B expressing cells (e.g, those that express 254P1D6B mRNAs or proteins). This examination can provide evidence of dysregulated cellular growth, for example, when 254P1D6B-expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of 254P1D6B in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular grow th is the metastases of cancer cells from an organ of origin (such as the prostate) to a different area of the body (such as a lymph node). In this context, evidence of dysregulated cellular growth is imporlant for exemple because occult lymoh node metastases can be detected in a substantial proporiion of patients with prostate cancer, and such metastases are associated with known predictors of
disease progression (see, e.g., Murphy et al, Prostate 42(4): 315-317 (2000); Su et al., Semin. Surg. Oncol. 18(1): 17-28 (2000) and Freeman et al., J Urol 1995 Aug 154(2 Pt 1):474-8).

In one aspect, the invention provides methods for monitoring 254P1D6B gene products by determining the status of 254P1D6B gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 254P1D6B gene products in a corresponding normal sample. The presence of aberrant 254P1D6B gene products in the test sample relative to the normal sample provides en indication of the presence of dysregulated cell growth within the cells of the individual.

In another aspect, the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in 254P1D6B mRNA or protein expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue. The presence of 254P1D6B mRNA can, for example, be evaluated in tissues including but not limited to those listed in Table I. The presence of significant 254P1D6B expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the corresponding normal tissues do not express 254P1D6B mRNA or express it at lower levels.

In a related embodiment, 254 P 1 D 6 B slatus is determined at the protein level rather than at the nucleic acid level. For example, such a method comprises determining the level of 254P1D6B protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 254P1D6B expressed in a corresponding normal sample. In one embodiment, the presence of 254 P 1 D 6 B protein is evaluated, for example, using immunohistochemical methods. 254P106B antibodies or binding partners capable of detecting 254P1D6B protein expression are used in a variely of assay formats well known in the art for this purpose.

In a further embodiment, one can evaluate the status of 254P1D6B nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules. These perturbations can include insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growih dysregulated phenotype (see, e.g., Marrogi et al., 1999, J. Cutan. Pathol. 26(8);369-378). For example, a mutation in the sequence of 254P1D6B may be indicative of the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutation in 254P1D6B indicates a potential loss of function or increase in tumor growth.

A wide variety of assays for observing perturbations in nucleotide and amino asid sequences are well known in the art For example, the size and structure of nucleic acid or amino acid sequences of $254 \mathrm{P1}$ D6B gene products are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols discussed herein. In addition, other methods for observing perturbations in nuclectide and amino acid sequences such as single strand conformation polymorphism analysis are well known in the art (see, e.g., U.S. Patent Nos. 5,382,510 issued 7 September 1999, and 5,952,170 issued 17 January 1995).

Additionally, one can examine the methylation status of a 254P1D6B gene in a biological sample. Aberrant demethylation andior hypermethylation of $C p G$ islands in gene 5 ' regulatory regions frequently occurs in immortalized and fransformed cells, and can result in altered expression of various genes. For example, promoter hypermethylation of the pi-class glutathione S-transferase (a protein expressed in normal prostate but not expressed in $>90 \%$ of prostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected genomic alteration in prostate carcinomas (De Marzo ef al., Am. J. Pathol. 155(6): 1985-1992 (1999)). In addition, this alteration is present in at least 70\% of cases of high-grade prostatic intraepithelial neoplasia (PIN) (Brooks et al., Cancer Epidemiol. Biomarkers Prev., 1998, 7:531-536). In another example, expression of the LAGE-I tumor specific gene (which is not expressed in normal prostate but is expressed in $25-50 \%$ of prostate cancers) is induced by deoxy-azacytidine in lymphoblastoid cells, suggesting that tumoral expression is due to demethylation (Lethe et al., Int J. Cancer 76(6): 903-908 (1998)). A variety of assays for
examining methylation status of a gene are well known in the att. For example, one can ullize, in Southern hybridization approaches, melhylation-sensitive restriction enzymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands. In addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG siles present in a CpG island of a given gene. This procedure involves initial modification of DNA by sodium bisulfite (which will convert all unmethylated cytosines to uracil) followed by amplificaton using primers specific for methylated versus unmethylated DNA. Protocols involving methylation inlerference can also be found for example in Current Protocols in Molecular Biology, Unit 12, Frederick M. Ausubel et al. eds,, 1995.

Gene amplification is an additional method for assessing the status of 254P1D6B. Gene amplification is measured in a sample directly, for example, by conventional Southern bloting or Northern bloting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provlded herein. Alternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Blopsied tissue or peripheral blood can be conveniertly assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 254P1D6B expression. The presence of RT-PCR amplifiable 254P1D6B mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art. RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT-PCR assays for the detection of cells expressing PSA and PSM (Verkaik ef al., 1997, Urol. Res. 25:373-384; Ghossein et al, 1995, J. Clin. Oncol. 13:1195-2000; Heston et al., 1995, Clin. Chem. 41:16871688).

A further aspect of the invention is an assessment of the susceptibility that an individual has for developing cancer. In one embodiment, a method for predicing suscepibility to cancer comprises detecting 254P106B mRNA or 254P106B protein in a tissue sample, its presence indicating susceptibility to cancer, wherein the degree of 254P1D6B mRNA expression correlates to the degree of susceptibilty. In a specific embodiment, the presence of 254 P 1068 in prostate or other tissue is examined, with the presence of 254P1D6B in the sample providing an indication of prostate cancer susceptbility (or the emergence or existence of a prostate tumor). Similarly, one can evaluate the integrity 254P1D6B nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations in 254P1L6B gene producis in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor).

The invention also comprises methods for gauging tumor aggressiveness. In one embociiment, a method for gauging aggressiveness of a turnor comprises determiring the level of 254P106B mFNA or 254P1D6B prolein expressed by tumor cells, comparing the level so deiermined to the level of 254P1D6B mRNA or 254P1D6B protein expressed in a corresponding normal tissue taken from the same individual or a normal lissue reference sample, wherein the degree of 254P1D6B mRNA or 254 P1D5B protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a specific embodiment, aggressiveness of a tumor is evaluated by determining the extent to which 254 F 106 B is expressed in the tumor cells; with higher expression levels indicating more aggressive tumors. Anoither embodiment is the evaluaton of the integrity of 254P1D6B nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors.

Another embodiment of the invention is directed to methods for observing the progression of a malignancy in an individual over time. In one embodiment, methods for observing the progression of a malignancy in an individual over time
comprise determining the level of 254P1D6B mRNA or 254P1D6B protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of 254P1D6B mRNA or 254P1D6B protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of 254P1D6B mRNA or 254P1D6B protein expression in the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by determining 254P1D6B expression in the tumor cells over time, where increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity 254P1D6B nucleotide and amino acid sequences in a biological sample in order to idenify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations indicates a progression of the cancer.

The above diagnostic approaches can be combined with any one of a wide variety of prognostic and diagnostic protocols known in the art. For example, another embodiment of the invention is directed to methods for ohserving a coincidence between the expression of 254P1D6B gene and 254P1D6B gene products (or perturbations in 254P1D6B gene and 254P1D6B gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample. A wide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g. PSA, PSCA and PSM expression for prostate cancer etc.) as well as gross cytological observations (see, e.g., Bocking et al., 1984, Anal. Quant. Cytol. 6(2):74-88; Epstain, 1995, Hum. Pathol. 26(2):223-9; Thorson et al., 1998, Mod. Pathol. 11 (6):543-51; Baisden et al., 1999, Am. J. Surg. Pathol. 23(8):918-24). Methods for observing a coincidence between the expression of 254P106B gere and 254P1D6B gene products (or perturbations in 254P1D6B gene and 254P1D6B gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of spectic factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue semple.

In one embodiment, mehods for observing a coincidence between the expression of 254P1D6B gene and 254P1D6B gene products (or perturbations in 254P1D6B gene and 254P1D6B gene products) and another factor associated with malignancy entails detecting the overexpression of 254P1 D6B mRNA or protein in a tissue sample, detecing the overexpression of PSA mRNA or protein in a tissue sample (or PSCA or PSM expression), and observing a coincidence of 254P1D6B mRNA or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression). In a speciic embodiment, the expression of 254P1D6B and PSA mRNA in prostate tissue is examined, where the coincidence of 254P1D6B and PSA mRNA overexpression in the sample indicates the existence of prostate cancer, prostate cancer susceptibility or the emergence or status of a prostate tumor.

Methods for detecting and quantifying the expression of 254P1D6B mRNA or proten are described herein, and standard nucleic acid and protein detection and quantification technologies are well known in the art. Standard methods for the detection and quantification of 254P1D6B mRNA include in situ hybridization using labeled 254P1D6B riboprobes, Northern blot and related techniques using 254P1D6B polynucleotide probes, RT-PCR analysis using primers specific for 254P1D6B, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like. In a specific embodiment, semiquantifative RT-PCR is used to detect and quantify 254P1D6B mRNA expression. Any number of primers capable of amplifying 254P1D6B can be used for this purpose, including but not limited to the various primer sets specifically described herein. In a specific embodiment, polycional or monoclonal antibodies speciically reacive with the wild-type 254P1D6B protein can be used in an immunohistochemical assay of biopsied tissue.

IX.) Identification of Molecules That Interact With 254P1D6B

The 254P1D6B protein and nucleic acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 254P1D6B, as well as pathways activaled by 254P1D6B via any one of a variety of art accepted protocols. For example, one can utilize one of the so-called interaction trap systems (also referred to as the "two-hybrid assay"). In such systems, molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed. Other systems identify protein-
protein interactions in vivo through reconstitution of a eukaryotic transcriptional activator, see, eg., U.S. Patent Nos. 5,955,280 issued 21 September 1999, 5,925,523 issued 20 July 1999, 5,846,722 issued 8 December 1998 and 6,004,746 issued 21 December 1999. Algorithms are also available in the art for genome-based predictions of protein function (see, e.g., Marcotte, et al, Nature 402: 4 November 1999, 83-86).

Alternatively one can screen peptide libraries to identify molecules that interact with 254P1D6B protein sequences. In such methods, peptides that bind to 254P1D6B are identifed by screening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against the 254P1D6B prolein(s).

Accordingly, peptides having a wide variety of uses, such as iherapeutic, prognostic or diagnostic reagents, are thus identified without any prior information on the structure of the expected ligand or receptor molecule. Typical peptide libraries and screening methods that can be used to identify molecules that interact with 254P1D6B protein sequences are disclosed for example in U.S. Patent Nos. 5,723,286 issued 3 March 1998 and 5,733,731 issued 31 March 1998

Alternatively, cell lines that express 254P1D6B are used to identify protein-protein interactions mediated by 254P1D6B. Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton B.J., et al. Biochem. Biophys. Res. Commun. 1999, 261:646-51). 254P1D6B prolein can be immunoprecipitated from 254P1D6Bexpressing cell lines using anti-254F1D6B antibodies. Alternatively, antibodies against His-tag can be used in a cell line engineered to express fusions of 254P1D6B and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western bloting, ${ }^{35} \mathrm{~S}$-methionine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis

Small molecules and ligands that interact with 254P1D6B can be identified through related embodiments of such screening assays. Fcr example, small molecules can be identified that interfere with protein function, including molecules that interfere with 254F1D6B's ability to mediate phosphorylation and de-ohosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis. Similarly, small molecules that modulate 254P1D6B-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses 254P1D6B (see, e.g., Hille, B., Ionic Channels of Excitable Membranes $2^{\text {nd }}$ Ed., Sinauer Assoc., Sunderland, MA, 1992). Moreover, ligands that regulate 254P1D6B function can be identified based on their ability to bind 254P1D5B and activate a reporter construct. Typical methods are discussed for example in U.S. Patent No. 5,928,868 issued 27 July 1999, and include methods for forming hybrid ligands in which at least. one ligand is a small molecule. In an illustrative embodimert, cells engineered to express a fusion protein of 254P1D6B and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators, which activate or inhibit 254P1D6B.

An embodiment of this invention comprises a method of screening for a molecule that interacts with a 254P1D6B amino acid sequence shown in Figure 2 or Figure 3, comprising the steps of contacling a population of molecules with a 254P1D6B amino acid sequence, allowing the population of molecules and the 254P1D6B amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the 254 P 106 B amino acid sequence, and then separating molecules that do not interact with the 254 P 1 D 6 B amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the 254 P 1 D 6 B amino acid sequence. The identified molecule can be used to modulate a
function performed by 254P1D6B. In a preferred embodiment, the 254P1D6B amino acid sequence is contacted with a library of peptides.

X.) Therapeutic Methods and Compositions

The identification of $254 \mathrm{P} 1 \mathrm{D6B}$ as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in cancers such as those listed in Table \mathbf{I}, opens a number of therapeutic approaches to the treatment of such cancers.

Of note, targeted antitumor therapies have been useful even when the targeted protein is expressed on normal tissues, even vital normal organ tissues. A vital organ is one that is necessary to sustain life, such as the heart or colon. A non-vital organ is one that can be removed whereupon the irdividual is still able to survive. Examples of non-vital organs are ovary, breast, and prostate.

For example, Herceptin@ is an FDA approved pharmaceutical that has as its active ingredient an antibody which is immunoreacive with the protein variousty known as HER2, HER2/neu, and erb-b-2. It is marketed by Genentech and has been a commercially successful antitumor agert. Hercepin sales reached almos $\$ 400$ million in 2002. Herceptin is a treatment for HER2 positive metastatic breast cancer. However, the expression of HER2 is not limited to such tumors. The same protein is expressed in a number of normal tissues. In particular, it is known that HER2/neu is present in normal kidney and heart, thus these fissues are present in all humar recipients of Hercepin. The presence of HER2/neu in normal kidney is also confirmed by Latifi, Z., et al., B.J.U. International (2002) 89:5-9. As shown in this aricicle (which evaluated whether renal cell carcinoma should be a preferred indication for anti-HER2 antibodies such as Herceptin) both protein and mRNA are produced in benign renal tissues. Notably, HER2'neu protein was strongly overexpressed in benign renal tissue. Despite the fact that HER2/neu is expressed in such vital lissues as heart and kidney, Herceptin is a very useful, FDA approved, and commercially successful drug. The effect of Herceptin on cardiac tissue, i.e., "cardiotoxicity," has merely been a side effect to treatment. When patients were treated with Herceptin alone, significant cardictoxicity occurred in a very low percentage of patients.

Of particular note, although kidney tissue is indicated to exhibit normal expression, possibly even higher expression than cardiac tissue, kidney has no appreciable Herceptin side effect whatsoever. Moreover, of the diverse array of normal tissues in which HER2 is expressed, there is very little occurrence of any side effect. Only cardiac tissue has maniiested any appreciable side effect at all. A tissue such as kidney, where HER2/neu expression is especially notable, has not been the basis for any side effect.

Furthermore, favorable therapeutic effects have beэn found for antitumor therapies that target epidermal growth factor receptor (EGFR). EGFR is also expressed in numerous normal tisstes. There have been very limited side effects in normal tissues following use of anti-EGFR therapeutics.

Thus, expression of a target protein in normal tissue, even vital normal tissue, does not defeat the utility of a targeting agent for the protein as a therapeutic for certain tumors in which the protein is also overexpressed.

Accordingly, therapeutic approaches that inhibit the activity of a 254P1D6B protein are useful for patients suffering from a cancer that expresses 254P1D6B. These therapeutic approaches generally fall into two classes. One class comprises various metnods for inhibiting the binding or association of a 254P1D6B protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of a 254P1D6B gene or translation of 254P1D6B mRNA.

X.A.) Anti-Cancer Vaccines

The invention provides cancer vaccines comprising a 254P1D6B-related protein or 254P1D6B-related nucielc acid. In view of the expression of 254P1D6B, cancer vaccines prevent and/or treat 254P1D6B-expressing cancers with minimal or no effects on non-targel tissues. The use of a lumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in prostate cancer using human PSMA and rodent PAP immunogens (Hodge et al., 1995, Int J. Cancer 63:231-237; Forg et al., 1997, J. Immunol. 159:3113-3117).

Such methods can be readily praciiced by employing a 254P1DjB-related protein, or a 254P1D6B-encoding nucleic acid molecule and recombinant vectors capable of expressing and presenting the 254P1D6B immunogen (which typically comprises a number of antibody or T cell epitopes). Skilled arilisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., HeryIn et al., Ann Med 1999 Feb 31(1):6678; Maruyama et al., Cancer Immunol immunoiher 2000 Jun 49(3):123-32) Briefly, such methods of generating an immune response (e.g. humoral and/or cell-mediated) in a mammal, comprise the steps of: exposing the mammal's immune system to an immunoreactive epitope (e.c. an epitope present in a 254P1D6B protein shown in Figure 3 or analog or homolog thereof) so that the mammal generates an immune response that is speciic for that epitope (e.g. generates antibodies that specifically recognize that epitope). In a prefered method, a 254P1D6B immunogen contains a biological motf, see e.g., Tables VIII-XXI and XXII-XLIX, or a peptide of a size range from 254P1D6B indicated in Figure 5, Figure 6 , Figure 7, Figure 8 , and Figure 9 .

The entire 254P1D6B protein, immunogenic regions or epitopes thereof can be combined and delivered by various means. Such vaccine compositions can include, for example, lipopeptides (e.g.,Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:237-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873875, 1990; Hu et al., Clin Exp Immunol. $113235-243$, 1998) multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P. Proc. Netl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J.P., J. Immurol. Methods 196:17-32, 19E6), peptides formulated as multivalent peptides; peptides for use in ballistis delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al, In: Concepts in vaccine develooment, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al, Nature 320:537, 1986; Kieny, M.-F. et al., AIDS Bio/Technology 4:790, 1986; Top, F H. et al., J. Infect. Dis. 124:148, 1971; Chanda P. K. ot al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al, Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:339, 1986; Gupla, R. K. et al, Veccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or paricle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. $30: 16,1993$). Toxin-targeted delivery technologies, also known as receplor media:ed targeting, such as those of Avant Immurotherapeutics, Inc. (Needham, Massachusetts) may also be used.

In patients with 254P1D6B-associated cancer, the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, e.g., surçery, chemotherapy, drug therapies, radiation therapies, efo. including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.

Cellular Vaocines:

CTL epitopes can be delermined using specific agorithms to idenify peptides witthin 254P1D6B protein that bind corresponding HLA alleles (see e.g., Table IV; Epimer ${ }^{\text {rM }}$ and Epimatrix ${ }^{T M}$, Brown University (URL brown.edu/Research/TB. HIV_Lab/epimatrix/epinatrix.html); and, BIMAS, (URL bimas.ccrtnih.gov;; SYFPEITHI at URL syipeithi.bmi-heidelberg.com/).

In a preferred embodiment, a 254P1D6B immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables VIII-XXI and XXII-XLIX or a peptide of $8,9,10$ or 11 amino acids specified by an HLA Class I motifisupermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino acids that comprises an HLA Class II motif/supermotif (e.g., Table IV (B) or Table IV (C)). As is appreciated in the art, the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fil into the groove and be bound, generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long. In contrast, the HLA Class I binding groove is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class II molecule. Due to the binding groove differences between HLA Class I and II, HLA Class I motits are length specific, i.e., position two of a Class I motif is the second amino acid in an amino to carboxyl direction of the peptide. The amino acid positions in a Class II motif are relative only to each other, not the overall peptide, i.e., addifional amino acids can be attached to the amino and/or carboxyl termini of a motif-bearing sequence. HLA Class II epitopes are often $9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,23,24$, or 25 amino acids long, or longer than 25 amino acids.

Antibody-based Vaccines

A wide variety of methods for generating an immune response in a mammal are known in the arf (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein ($\epsilon . g$. a 254P1D6B protein) so that an immune response is generated. A typical embodiment consists of a method for generating an immune response to 254P1D6B in a host, by contacting the host with a sufficient amount of at least one 254P1D6B B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contecting the host with the 254P1D6B B cell or cytotoxic T-cell epitope or analog thereof. A specific embodiment consists of a method of generating an immune response against a 254P1D6B-related protein or a man-made multiepitopic peptide comprising: administering 254P1D68 immunogen (e.g. a 254 P1D3B protein or a peptide fragment thereof, a 254 P 1 D 3 B fusion protein or analog etc.) in a vaccine preparation to a human or another mammal. Typically, such vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Patent No. 6,146,635) or a universal helper epitope such as a PADRETm peptide (Epimmune Inc., San Diego, CA; see, e.g., Alexander et al., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., Immunity 1994 1(9); 751 -761 and Alexander ef al., Immunol. Res. 1998 18(2); 79-92). An alternative method comprises generating an immune response in an individual against a 254 P 106 B immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes a 254 P 1 D 6 B immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Patent No. $5,962,428$). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered. In addition, an antidiotypic antibody can be administered that mimics 254 P 1 D 6 B , in order to generate a response to the target antigen.

Nucleic Acid Vaccines:

Vaccine compositions of the invention include nucleic acid-mediated modalifies. DNA or RNA that encode protein(s) of the invention can be administered to a patient. Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 254P1D6B. Construcls comprising DNA encoding a 254 P1D6B-related protein/immunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 254 P 1 D 6 B protein/immunogen. Alternatively, a vaccine comprises a 254 P 1 D 6 B -related protein. Expression of the $25 \angle$ P1D6B-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular immunity against cells that bear a 254 P 1 D 6 B protein. Various prophylactic and therapeutic genetic immunizalion
techniques known in the art can be used (for review, see information and references published at Internet address genweb.com). Nucleic acid-based delivery is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. $5,580,859 ; 5,589,466 ; 5,804,566 ; 5,739,118 ; 5,736,524 ; 5,679,647$; WO 98/04720. Examples of DNAbased delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral or bacterial vectors, Various viral gene delivery systems that can be used in the practice of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang et al. J. Nati. Cancer Inst. 87:982-990 (1995)). Non-viral delivery systems can also be employed by introducing naked DNA encoding a 254 P 1 D 6 B -relaed protein into the patient ($\theta . \mathrm{g}$., intramuscularly or intradermally) to induce an anti-tumor response.

Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Ancther vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhivectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Thus, gene delivery systens are used to deliver a 254P106B-related nucleic acid molecule. In one embodiment, the fuil-length human 254P1D6B cDNA is employed. In another embodiment, 254P1D6B nucleic acid molecules encoding specific cytoloxic T lymphocyte (CTL) and/or antibody epitopes are employed.

Ex Vivo Vaccines

Various ex vivo strategies can also be employed to generate an immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to present 254F1D6B antigen to a patient's immune system. Dendritic cells express MHC class I and II molecules, $B 7 \mathrm{CO}$-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In prostate cancer, autologous dendritic cells pulsed with peptides of the prostate-specific membrane antigen (PSMA) are being used in a Phase I clinical trial to stimulate prostate cancer patients' immune systems (Tjoa et al, 1996, Prostate 28:65-69; Murphy et al., 1996, Prostate 29:371-380). Thus dendritic cells can be used to present 254P1D6B peptides to T cells in the context of MHC class I or II molecules. In one embodiment, autologous dendritic cells are pulsed with 254P1D6B peptides capable of binding to MHC class I and/or class II molecules. In another embodiment, dendritic cells are pulsed with the complete 254P1D6B protein. Yet another embodiment involves engineering the overexpression of a 254P1D6B gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur et al., 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson et al, 1996, Cancer Res. 56:3763-3770), lentivirus, adenoassociated virus, DNA transfection (Ribas et al., 1997, Cance: Res, 57:2865-2869), or tumor-derived RNA transfection (Ashley et al., 1997, J. Exp. Med. 186:1177-1182). Cells that express 254P1D6B can also be engineered to express immune modulators, such as GM-CSF, and used as immunizing agents.

X.B.) 254P106B as a Target for Antibody-based Therapy

254P106B is an attraclive target for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of intrabodies). Because 254P1D6B is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 254P1D6B-immunoreactive compositions are prepared that exhibit
excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and lissues. Antibodies specifically reactive with domains of 254P1D6B are useful to treat 254P1D6B-expressing cancers systemically, either as conjugales with a toxin or therapeutic agent or as naked antibodies capable of inhibiling cell proliferation or function.

254P1D6B antibodies can be introduced into a patient such that the antibocy binds to 254P1D6B and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cels and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 254P1D6B, inhibition of ligand binding or signa transduction pathways, modulation of tumor ceil differentiation, alleration of fumor angiogenesis factor profiles, and/or apoptosis.

Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 254P1D6B sequence shown in Figure 2 or Figure 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, e.g., Slevers et al. Blood 93:11 36783684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell (e.g. 254P1D6B), the cytoloxic agent will exert its known biological effect (i.e. cylotoxicity) on those cells.

A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art. In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/cr therapeutic agent linked to a targeting agent (e.g. an anti254P1D6B antibody) that binds to a marker (e.g. 254P1D6Bi expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 254P106B, comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 254P1D6B epitope, and, exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individua suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective annount of an antibody conjugaied to a cytotoxic and/or therapeutic agent.

Cancer immunotherapy using anti-254P1D6B antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, including but not limited to colon cancer (Arlen et al., 1998, Crit. Rev. Immunol. 18:133-138), muliple myeloma (Ozaki et al. 1997, Blood 90:3179-3186, Tsunenari et al., 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al, 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong of al., 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun et al., 1994, Cancer Res. 54:6160-6166; Velders et al., 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard et al, 1991, J. Clin. Immunol. 11:117-127). Sone therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y^{91} or 1^{133} to anti-CD20 antibodies (e.g., Zevalin'M, IDEC Pharmaceuticals Corp. or Bexxar ${ }^{\text {TM }}$, Coulter Pharmaceuticals), while others involve co-adminisiration of antibodies and other therapeutic agents, such as HerceptinTM (trastuzumab) with paclitaxel (Genentech, Inc.). The antibodies can be conjugated to a therapeutic agent. To treat prostate cancer, for example, 254P1D6E antibodies can be administered in conjunction with radiation, chemotherapy or hormone ablation. Also, antibodies can be conjugated to a toxin such as calicheamicin (e.g., Mylotarg ${ }^{\mathrm{TM}}$, Wyeth-Ayerst, Madison, $N \mathrm{NJ}$, a recombinant humanized $\lg \mathrm{G}_{4}$ kappa antibody conjugated to anlitumor antibiotic calicheamicin) or a maytansinoid (e.g., faxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge, MA, also see e.g., US Patent 5,416,064).

Alihough 254F1D6B antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Trealment with the antibocy therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeulic or rediation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan et al. (Cancer Res. 53:4537-4642, 1993), Prewett et al. (International J. of Onco. 9:217-224, 1996), and Hancock et al. (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents.

Although 254P1D6B antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alernatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, paricularly for patienis who do not tolerate the toxicity of the chemotherapeutic agent very well.

Cancer patients can be evaluated for the presence and level of 254P1D6B expression, preferably using immunchistochemical assessments of tumor tissue, quantitaive 254 P 106 B imaging, or other techniques that reliably indicate the presence and degree of 254P1D6B expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art.

Anti-254P1L6B monoclonal antibodies that treat prostate and other cancers include those that initiate a potent immune response against the tumor or those that are direcilly cytotoxic. In this regard, anti-254P106B monoclonal antibodies (mAbs) can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the inmunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addiion, anti-25431D6B mAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 254P1D6B. Mecharisms by whicin directly cytotoxic mAbs act indude: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular anti-254P106B mAb exerts an anti-tumor effect is evaluated using any number of in viiro assays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art.

In some patients, the use of murine or other non-human monocional antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the mosi severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure. Accordingly, preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 254P1D6B antigen with high affinity but exhibit low or no antigenicity in the patient

Therapeutic methods of the invention contemplate the administration of single anti-254P1D6B mAbs as well as combinations, or cocktails, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs tha: rely on immune effector functionaiity. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, anti254P1D6B mAbs can be administered concomilantly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., L-2, GM-CSF), surgery or radiation. The anti-

254P106B mAbs are administered in their "naked" or unconjugated form, or can have a therapeutic agent(s) conjugated to them.

Anti-254P1D6B antibody formulations are adminislered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraparitoneal, iniramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the anti-254P106B antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1, 2, $.3,4, .5, .6, .7, .8, .9,1,2,3,4,5,6,7,8,9,10,15,20$, or 25 mg /kg body weight. In general, doses in the range of $10-1000$ $m g$ mAb per week are effective and well tolerated.

Based on clinical experience with the Herceptin ${ }^{\top \mathrm{M}} \mathrm{mAb}$ in the treatment of metastatic breast cancer, an initial loading dose of approximately $4 \mathrm{mg} / \mathrm{kg}$ patient body weight IV , followed by woekly doses of about $2 \mathrm{mg} / \mathrm{kg} \mathrm{IV}$ of the anti254F106B mAb preparation represents an acceptable dosing regimen. Preforably, the initial loading dose is administered as a 90 -minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well toleraled. As appreciated by those of skill in the art, various factors can infuence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 254P1D6B exoression in the patient, the extent of circulating shed 254P1D6B antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.

Optionally, patients should be evaluated for the levels of 254P1D6B in a given sample (e.g. the levels of circulating 254P1D6B antigen and/or 254P106B expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the eveluation of other parameters (for example, urine cyiclogy and/or Immunocyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy).

Anii-idiotypic anti-254P1D6B antibodies can also be used in enti-cancer therapy as a vaccine for inducing an immune response to cells expressing a $254 \mathrm{P} 1 \mathrm{C6E}$-related protein. In paricular, the generation of anti-idiotypic antibodies is well known in the art; this methodology can readily be adapted lo generate anti-diotypic anti-254P1D6B antibodies that minic an epitope on a 254P1D6B-related protein (see, for example, Wegner et al., 1997, Hybridoma 16: 33-40; Foon et al, 1995, J. Clin. Invest. 93:334-342; Herlyn et al., 1996, Cancer Immunol. Immunother. 43:65-76). Such an anti-idiotypic antibody can be used in cancer vaccine strategies.

X.C.) 254P1D6B as a Target for Cellular Immune Responses

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines in accordance with the invention encompass compositions of one or more o: the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comorising multiple copies of the same peptide, or as a heteropolymer of various peptides. Folymers have the advartage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism cr tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinanlly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can coniain a physiologically tolerable (i.e., acceptable)
diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or aum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine ($\mathrm{P}_{3} \mathrm{CSS}$). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10 - to 100 -fold. (see, e.g. Davila and Celis, J. Immunol. 165:539-547 (2000))

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, Iransdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 254P1D6B antigen, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses direcled to the target antigen. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRE ${ }^{\text {TM }}$ (Epimmune, San Diego, CA) molecule (described e.g., in U.S. Patent Number $5,736,142)$.

A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritio cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo. Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.

Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.
1.) Epitopes are selected which, upon administration, minic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associaled antigen (TAA). For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs.
2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC_{50} of 500 nM or less, often 200 nM or less; and for Class II an IC_{50} of 1000 nM or less.
3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific molif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the naiive epitope.
5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtapos tion of epitopes), or to facilltate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient. may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.
7.) Where the sequences of multiple variants of the same larget protein are present, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9 -mer core of a class I| binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen.

X.C.1. Minigene Vaccines

A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses rinigene constructs encoding a peptide comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, Ishioka et al., J. Immunol. 162:3915-3925, 1999; An L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotifand/or motif-bearing epitopes derived 254P1D6B, the PADFE® universal helper T cell epitope or multiple HTL epitopes from 254P1D6B (see e.g., Tables VIII-XXI and XXII to XLIX), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.

The immunogenicity of a multi-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional
elements can be incorporated into the minigene design. Exemples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I əpitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeling signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are withir the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleatides ($30-100$ bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector eements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for eficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance). Numercus promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and imnunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stablization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques, The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or $C p G s$) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GMCSF), cytokine-inducing molecules (e.g., LelF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE ${ }^{T M}$, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-3) may be beneficial in certain diseases.

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Flasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel eleclrophoresis or ather methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may de desirable. A variety of methods have been described, and new techniques may become avaliable. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino \& Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'I Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-lransfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are tien chromium-51 ($\left.{ }^{51} \mathrm{Cr}\right)$ labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by ${ }^{51} \mathrm{Cr}$ release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereaffer, for CTL effector cells, assays are conducted for zytolysis of peptide-loaded, ${ }^{51} \mathrm{Cr}$-labeled target cells using standard techniques. Lysis of farget cells that were sensitized by HLA loaded with peptide epitopes corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is confirmed in transgenic rice in an analogous manner.

Alternatively, the nucleic acids can be administerec using ballistic celivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epilapes of the invention can be incorporated into a viral vector such as vaccinia.

X.C.2. Combinations of CTL Peptides with Helper Peptides

Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity.

For instance, the ability of a peptide to induce CTL aclivity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selecied from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutal polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will
usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in a majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules. Examples of such amino acid bind many HLA Class II molecules include sequences from antigens such as tetanus toxoid at positions 830-843 QYIKANSKFIGITE; (SEQ ID NO: 13), Plasmodium falciparum circumsporozoite (CS) protein at positions 378-398 DIEKKIAKMEKASSVFNVVNS; (SEQ ID NO: 14), and Streptococcus 18kD protein at positions 116-131 GAVDSILGGVATYGAA; (SEQ ID NO: 15). Other эxamples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE ${ }^{\text {TM }}$, Epimmune, Inc., San Diego, CA) are designed, most preferably, to bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: $x K X V A A W T L K A A X$ (SEQ ID NO: 16), where " X " is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to mos: HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA lype. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids thal encode the epitope.

HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acio's to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

X.C.3. Combinations of CTL Peptides with T Cell Priming Agents

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or T lymphocyles. Lipids have been identified as agents capable of priming CTL in vivo. For example, palmitic acid residues can be attached to the ε-and α - amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvart. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to ε - and α - amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine ($\mathrm{P}_{3} C S S$) can be used to prime virus specific CTL when covalently altached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an individual to prime specifically an immune response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P_{3} CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.

X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides

An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Prcgenipoietin ${ }^{\text {TM }}$ (Pharmacia-Monsanto, St. Louis, MO) or GM-CSF/IL-4.

After pulsing the $D C$ with peptides and prior to reinfusion into patients, the $D C$ are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCS which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.

The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses 10 254P1D6B. Optionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA Class Il peptide, can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 254P1D6B.

X.D. Adoptive Immunotherapy

Antigenic 254P1D6B-related peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patien's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenling cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. Atter an appropriate incubation time (typically about $7-28$ days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell ie.g., a lumor cell). Transfected dendritic cells may also be used as antigen presenting cells.

X.E. Administration of Vaccines for Therapeutic or Prophylactic Purposes

Fharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 254P1D6B. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, eg., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

For pharmaceutical compcsitions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses 254P1D6B. The peptides or DNA encoding them can be administered individually or as fusicns of one or more peptide sequences. Patients can be treated with the immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate.

For therapeutic use, administration should generally begin at the first diagnosis of 254P1D6B-associated cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodinents such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 254P1D6B, a vaccine comprising 254P1D6B-specific CTL may be more effcacious in killing tumor cells in patient with advanced disease than alternative embodiments.

It is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to stimulate effectively a cylotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.

The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about $1,5,50,500$, or $1,000 \mu \mathrm{~g}$ and the higher value is about 10,$000 ; 20,000 ; 30,000 ;$ or $50,000 \mu \mathrm{~g}$. Dosage values for a human typically range from about $500 \mu \mathrm{~g}$ to about $50,000 \mu \mathrm{~g}$ per 70 kilogram patient. Boosting dosages of between about $1.0 \mu \mathrm{~g}$ to about $50,000 \mu \mathrm{~g}$ of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory lests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.

In certain embodiments, the peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.

The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1,5,50,500, or $1000 \mu \mathrm{~g}$ and the higher value is about 10,$000 ; 20,000 ; 30,000$; or $50,000 \mu \mathrm{~g}$. Dosage values for a human typically range from about $500 \mu \mathrm{~g}$ to about $50,000 \mu \mathrm{~g}$ per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 $\mu \mathrm{g}$ to about $50,000 \mu \mathrm{~g}$ of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local (e.g. as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.

A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterie filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to adminisiration,

The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH -adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurale, triethanolamine oleate, etc.

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.

A human unit dose form of a composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in a volumelquantity that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, $17^{\text {th }}$ Edition, A. Gennero, Edilor, Mack Publishing Co., Easton, Pennsylvania, 1985). For example a peptide dose for initial immunization can be from about 1 to about $50,000 \mu \mathrm{~g}$, generally $100-5,000 \mu \mathrm{~g}$, for a 70 kg patient. For example, for nucleic acids an initial immunization may be jerformed using an expression vector in the form of naked
nucleic acid administered IM (or SC or ID) in the amounts of $0.5-5 \mathrm{mg}$ at multiple sites. The nucleic acid (0.1 to $1000 \mu \mathrm{~g}$) can also be administered using a gene gun. Following an incubation period of $3-4$ weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of $5-10^{7}$ to 5×10^{9} pfu.

For antibocies, a treatment generally involves repeated adminisiration of the anti-254P1D6B antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1 to about $10 \mathrm{mg} / \mathrm{kg}$ body weight. In general, doses in the range of $10-500 \mathrm{mg}$ mAb per week are effective and well tolerated. Moreover, an initial loading dose of approximately $4 \mathrm{mg} / \mathrm{kg}$ patient body weight IV , followed by weekly doses of about 2 $\mathrm{mg} / \mathrm{kg} \mathrm{IV}$ of the anti-254P1D6B mAb preparation represents an acceptable dosing regimen. As appreciated by those of skill in the art, various factors can influence the ideal dose in a particular case. Such factors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a substance, the degree of 254P1D6B expression in the patient, the extent of circulating shed 254P1D6B antigen, the desired steady-state concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient. Non-limiting preferred human unit doses are, for example, $500 \mathrm{mg}-1 \mathrm{mg}, 1 \mathrm{mg}-50 \mathrm{mg}, 50 \mathrm{mg}-100 \mathrm{mg}, 100 \mathrm{mg}-200 \mathrm{mg}, 200 \mathrm{mg}-300 \mathrm{mg}, 400 \mathrm{mg}-500 \mathrm{mg}, 500 \mathrm{mg}-600 \mathrm{mg}, 600 \mathrm{mg}-$ $700 \mathrm{mg}, 700 \mathrm{mg}-800 \mathrm{mg}, 800 \mathrm{mg}-900 \mathrm{mg}, 900 \mathrm{mg}-1 \mathrm{~g}$, or $1 \mathrm{mg}-700 \mathrm{mg}$. In certain embodiments, the dose is in a range of $\mathrm{z}-$ $5 \mathrm{mg} / \mathrm{kg}$ body weight, e.g., with follow on weekly doses of $1-3 \mathrm{mg} / \mathrm{kg} ; 0.5 \mathrm{mg}, 1,2,3,4,5,6,7,8,9,10 \mathrm{mg} / \mathrm{kg}$ body weight followed, e.g., in two, three or four weeks by weekly doses; $0.5 \cdot 10 \mathrm{mg}$ ikg body weight, e.g., followed in two, three or four weeks by weekly doses; $225,250,275,300,325,350,375,400 \mathrm{mg} \mathrm{m}^{2}$ of body area weekly; $1-600 \mathrm{mg} \mathrm{m}^{2}$ of body area weekly; $225-400 \mathrm{mg} \mathrm{m}^{2}$ of body area weekly; these does can be followed by weekly doses for $2,3,4,5,6,7,8,9,19,11,12$ or more weeks.
in one embodiment, human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciateo by one of ordinary skill in the art a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, nolecular weight of the polynucteotide and route of administation. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, hisiory of the patient and the like. Generally, for a polynucleotide of about 20 bases, a dosage range may be selected from, for example, an independently selecied lower limi: such as about $0.1,0.25,0.5,1,2,5,10,20,30,40,50,60,70,80,50,100,200,300,400$ or $500 \mathrm{mg} / \mathrm{lg}$ up to an independenily selected upper limit, greater than the lower limit, of about $60,80,100,200,300,400,500,750,1000,1500$, $2000,3000,4000,5000,6000,7000,8000,9000$ or $10,000 \mathrm{mg} / \mathrm{kg}$. For example, a dose may be about any of the following 0.1 to $100 \mathrm{mg} / \mathrm{kg}, 0.1$ to $50 \mathrm{mg} / \mathrm{kg}, 0.1$ to $25 \mathrm{mg} / \mathrm{kg}, 0.1$ to $10 \mathrm{mg} / \mathrm{kg}, 1$ to $500 \mathrm{mg} / \mathrm{kg}, 100$ to $400 \mathrm{mg} / \mathrm{kg}, 200$ to $300 \mathrm{mg} / \mathrm{kg}, 1$ to $100 \mathrm{mg} / \mathrm{kg}, 100$ to $200 \mathrm{mg} / \mathrm{kg}, 300$ to $400 \mathrm{mg} / \mathrm{kg}, 400$ to $500 \mathrm{mg} / \mathrm{kg}, 500$ to $1000 \mathrm{mg} / \mathrm{kg}, 500$ to $5000 \mathrm{mg} / \mathrm{kg}$, or 500 to $10,000 \mathrm{mg} / \mathrm{kg}$. Generally, parenteral routes of administration may require higher doses of polynucleotide compared to more direct application to the nucleotide to diseased tissue, as do polynucleotides of increasing length.

In one embodiment, human unit dose forms of T-cells comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of o-dinary skill in the art, a therapeutic effect depends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. A dose may be about 10^{4} cells to about 10^{6} cells, about 10^{6} cells to about 10^{8} cells, about 10^{8} to about 10^{11} cells, or about 10^{8} to about 5×10^{10} cells. A dose may also about 10^{6} cells $/ \mathrm{m}^{2}$ to about 10^{10} cells $/ \mathrm{m}^{2}$, or about 10^{3} cells $/ \mathrm{m}^{2}$ to about $10^{8} \mathrm{cells} / \mathrm{m}^{2}$.

Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid fissue; 2) to target selectively to diseases cells; or 3) to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles,
insoluble monolayers, liquid crystals, plospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposones in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. $4,235,871,4,501,728,4,837,028$, and $5,019,369$.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell sufface determinants of the desired immune system cells. Aliposome suspension containing a peptide may be administered inlravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peplide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10 95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of $25 \%-75 \%$.

For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about $0.01 \%-20 \%$ by weight, preferably about $1 \%-10 \%$. The surfactant must, of course, be nontoxic, and preferably solukle in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydris alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constifute about $0.1 \%-20 \%$ by weight of the composition, preferably about $0.25-5 \%$. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, eg., lecithin for intranasal delivery

XI.) Diagnostic and Prognostic Embodiments of 254P1D6B

As disclosed herein, 254P1D6B polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reacive helper T cells (HTL) and anti-polypeptide antibodies are used in well inown diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expression as well as its overexpression in certain cancers as described for example in the Example entitled "Expression analysis of 254P1D6B in normal tissues, and patient specimens").

254P1D6B can be analogized to a prostate associated antigen PSA, the archetypal marker that has been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., Merrill et al, J. Urol. 163(2): 503-5120 (2000); Polascik et al. J. Urol. Aug; 162(2):293-306 (1999) and Fortier et al., J. Nat. Cancer Inst. 91(19): 16351640(1999)). A variety of other diagnostic markers are also used in similar contexts including p53 and K-ras (see, e.g. Tulchinsky et al., Int J Mol Med 1999 Jul 4(1):99-102 and Minimoto et al, Cancer Detect Prev 2000;24(1):1-12). Therefore, this disclosure of 254P1D6B polynucleotides and polypeptides (as well as 254P1D63 polynucleotide probes and anti254P1D6B antibodies used to identify the presence of these molecules) and their properties allows skilled artisans to utilize
these molecules in methods that are analogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated with cancer.

Typical embodiments of ciagnostic methods which utilize the 254P1D6B polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those melhods from well-established diagnostic assays, which employ, e.g., PSA polynucleotides, polypeptides, reactive T cells and antibodies. For example, just as PSA polynucleotides are used as probes (for example in Northern analysis, see, e.g., Sharief et al., Biochem. Mol. Biol. Int. 33(3):567-74(1994)) and primers (for example in PCR analysis, see, e.g., Okegawa et al., J. Urol. 163(4): 1189-1190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA overexpression or the metastasis of prostate cancers, the 254P1D6B polynucleotides described herein can be utilized in the same way to detect 254P106E overexpression or the metastasis of prostate and other cancers expressing this gene. Alternatively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan ei al., Urology 55(4):560-3 (2000)) or the metastasis of prostata cells (see, e.g., Alanen et al., Pathol. Res. Pracl. 102(3):233-7 (1996)), the 254P1D63 polypeptides described herein can be utilized to generate antibodies for use in detecting 254P1D6B overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene.

Specifically, because metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostaie gland etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing 254P106B polynucleotides and/or polypeptides can be used to provide evidence of metastasis. For example, when a biological sample from tissue that does not normaly contain 254P1D6B-expressing cells (iymph node) is found to contain 254P1D6B-expressing cells such as the 254P1D6B expression seen in LAPC 4 and LAPC9, xenografis isolated from lymph node and bone metastasis, respectively, this finding is indicative of metastasis.

Alternatively 254P1D68 polynucleotices and/or polypeptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not nornelly express 254 P 1 D 6 B or express 254 P 1 D 6 B at a different level are found to express 254P1D6B or have an increased expression of 254P1C6B (see, e.g., the 254P106B expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis by testing the biological sample for the presence of a second tissue restricted marker (in addition to 254P1D6B) such as PSA, PSCA etc. (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3): 233-237 (1996)).

The use of immunohistochemistry to identify the presence of a 254P1D6B polypeptide within a tissue section can indicate an altered state of certain cells within that tissue. It is well understood in the art that the ability of an antibody to localize to a polypeptide that is expressed in cancer cells is a way of diagnosing presence of disease, disease stage, progression and/or tumor aggressiveness. Such an antibody can also detect an altered distribution of the polypeptide within the cancer cells, as compared to corresponding non-malignant tissue.

The 254P1D6B polypeptide and immunogenic compositions are also useful in view of the phenomena of altered subcellular protein localization in disease states. Alteration of cells from normal to diseased state causes changes in cellular morphology and is often associated with changes in subcellular protein localization/distribution. For example, cell membrane proteins that are expressed in a polarized manner in normal cells can be altered in disease, resulting in distribution of the protein in a non-polar manner over the whole cell surface.

The phenomenon of altered subcellular protein localization in a disease state has been demonstrated with MUC1 and Her2 protein expression by use of immunohistochemical means. Normal epithelial cells have a typical apical distribution of MUC1, in addition to some supranuclear localization of the glycoprotein whereas malignant lesicns often denionstrate an apolar staining pattern (Diaz et al, The Breast Journal, 7; 40-45 (2001); Zhang et al, Cinical Cancer Research, 4; 2669-2676
(1998): Cao, et al, The Journal of Histochemistry and Cytochemistry, 45: 1547-1557 (1997)). In addition, normal breast epithelium is either negative for Her2 protein or exhibits only a basolateral distribution whereas malignant cells can express the protein over the whole cell surface (De Potter, et al, International Journal of Cancer, 44; 969-974 (1989); McCormick, et al, 117; 935-943 (2002)). Alternatively, distribution of the protein may be altered from a surface only localization to include diffuse cytoplasmic expression in the diseased state. Such an example can be seen with MUC1 (Diaz, et al, The Breast Journal, 7: 40-45 (2001i)

Alteration in the localization/distribution of a protein in the cell, as detected by immunohistochemical methods, can also provide valuable information concerning the favorability of certain treatment modalities. This last point is illustrated by a situation where a protein may be intracellular in normal tissue, but cell surface in malignant cells; the cell surface location makes the cells favorably amenab e to antibody-based diagnostic and freatment regimens. When such an alteration of protein localization occurs for 254 P 1 D 6 B , the 254 P 1 D 6 B protein and immune responses related thereto are very useful. Accordingly, the ability to determine whether alteration of subcellular protein localization occurred for 24 P 4 C 12 make the 254P1D6B protein and immune responses relaled thereto very useful. Use of the 254P106B compositions allows those skilled in the art to make important diagnostic and therapeutic decisions. Immunohistochemical reagents specific to 254P1D6B are also useful to detect metastases of tumors expressing 254P1D6B when the polypeptide appears in tissues where 254P106B is not normally produced.

Thus, 254P1D6B polypeptides and antibodies resulting from immune responses thereto are useful in a variety of important contexts such as diagnostic, prognosic, preventative and/or therapeutic purposes known to those skilled in the art.

Just as PSA polynucleotide fragments and polyrudeotide variants are employed by skilled artisans for use in methods of monitoring PSA, 254P1D68 polynucleotide fragments and polynucleotide variants are used in an analogous manner. In particular, typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illusirating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction. In the context of such PCR reactions, skilled arisans generally create a variety of different polynucleotide fracments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Biotechniques 25(3): 472-476, 478-480 (1998); Robertson et al., Methods Mol. Biol. 98:121-154 (1998)). An acditional illustration of the use of such fragments is provided in the Example entitled "Expression analysis of 254P106B in normal tissues, and patient specimens," where a 254P106B polynucleotide fragment is used as a probe to show the expression of 254P1D6E RNAs in cancer cells. In addition, variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai et al., Fetal Diagn. Ther. 1996 Nov-Dec 11(6):407-13 and Current Protocols In Molecular Biology, Voume 2, Unit 2, Frederick M. Ausubel et al, eds., 1995)). Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g., a 254P1D6B polynucleotide shown in Figure 2 or variant thereof) under conditions of high stringency.

Furthermore PSA polypeptides which contain an epitope that cen be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of mon toring PSA. 254P1D6B polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using. polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel et al. eds., 1995). In this context, each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive. Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, e.g., U.S. Patent No. $5,840,501$ and U.S. Patent No. $5,939,533$). For example it may be preferable to utilize a polypeptide comprising one of the

254P1D6B biological motifs discussed herein or a moti-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibcdy or T cell specific for a target polypeptide sequence (e.g. a 254P1D6B polypeptide shown in Figure 3).

As shown herein, the 254P106B polynucleotides and polypeptides (as well as the 254P106B polynucleotide probes and anti-254P1D6B antibodies or T cells used to identify the presence of these molecules) exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of 254F1D6B gene products, in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA Moreover, these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a deinite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3): 233-237 (1996)), and consequently, materials such as 254P1D6B polynucleotides and polypeptices (as well as the 254P1D6B polynucleotide probes and anti254P1D6B antibodies used to identify the presence of these moleculesi need to be employed to confirm a metastases of prostatic origin.

Finally, in addition to their use in diagnostic assays, the 254 P 1 D 6 B polynucleotides disclosed herein have a number of other ufilities such as their use in the identification of oncogenetic associated chromosomal abnormalities in the chromosomal region to which the 254P1D6B gene maps (see the Example entitled "Chromosomal Mapping of 254P106B" below). Moreover, in addition to their use in diagnostic assavs, the 254P1D6B-related proteins and polynucleotides disclosed herein have other utilities such as ther use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Sci Int 1996 Jun 28;80(1-2): 63-9).

Additionally, 254 P1D6B-related proteins or polynucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 254P1D6B. For example, the amino acid or nucleic acid sequence of Figure 2 or Figure 3, or fragments of either, can be used to generate an immune response to a 254P1D6B antigen. Antibodies or other molecules that react with 254 P 1 D 6 B can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit.

XII.) Inhibition of 254P1D6B Protein Function

The invention includes various methods and compositions for inhibiting the binding of 254P1068 to it binding partner or its association with other protein(s) as well as methods for inhibiting 254P106B function.

XII.A.) Inhibition of 254P1D6B With Intracellular Antibodies

In one approach, a recombinant vector that encodes single chair antibodies that specifically bind to 254P1D6B are introduced into 254P1D6B expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti254P1D6B antibody is expressed iniracellularly, binds to 254 P 1 D 6 B protein, and thereby inhibits its function. Nethods for engineering such intracellular single chain antibodies are well known. Such intracellular antibodies, also known as "intrabodies", are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory activily of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Rithardson et al., 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli et al., 1994, J. Biol. Chem. 289: 23931-23936; Deshane et al., 1994, Gene Ther. 1: 332-337).

Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region. Well-known intracellular trafficking signals are engineered into recombinant polyrucleotide vectors encoding such sirgle chain antibcdies in order to target precisely the intrabody to the desired intracellular compartment. For example, intrabocies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localizalion signal. Lipid moieties are joined to intrabodies in order to lether the intrabody to the cylosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cylosol. For example, cylosclic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural celluar destination.

In one embodiment, intrabodies are used to capture 254P1D6B in the nucleus, thereby preventing its activity within the nucleus. Nuclear targeting signals are engineered into such 254P1D63 intrabodies in order to achieve the desired targeting. Such 254P1D6B intrabocies are designed to bind specifically to a particular 254P1D6B domain. In another embodiment, cytosolic intrabodies that specifically bind to a 254P1D6B protein are used to prevent 254P1D6B from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 254P1D68 from forming transcription complexes with other factors).

In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific pronoter and/or enhancer. In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or promoterlenhancer can be utilized (See, for example, U.S. Patent No. 5,919,652 issued 6 July 1999).

XII.B.) Inhibition of 254P1D6B with Recombinant Proteins

In another approach, recombinant molecules bind to 254P1D6E and thereby inhibit 254P1D6B function. For example, these recombinant molecules prevent or inhibit 254P1D6B from accessing/binding to its binding parther(s) or associating with other protein(s). Such recombirant molecules can, for example, contain the reactive part(s) of a 254P1D6B specific antibody molecule. In a paricular embodiment, the 254P1D6B binding domain of a 254P1D6B binding partner is engineered into a dimeric fusion protein, whereby the fusion protein comprises two 254P1D6B ligand binding domains linked to the Fc portion of a human $\lg \mathrm{G}$ such as human $\operatorname{lgG} 1$. Such $\lg G$ portion can contain, for example, the $\mathrm{C}_{+} 2$ and $\mathrm{C}_{H} 3$ domains and the hinge region, but not the $\mathrm{C}_{\mathrm{H}} 1$ domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 254P1D6B, whereby the dimeric fusion protein specifically binds to 254P1D6B and blocks 254P1 D6B interaction with a binding parther. Such dimeric fusion proteins are furher combined into multimeric proteins using known antibody linking technologies.

XII.C.) Inhibition of 254P1D6B Transcription or Translation

The present invention also comprises various methods and compositions for inhibiting the transcription of the 254P1D6B gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 254P1D6B mRNA into protein.

In one approach, a method of inhibiting the transcription of the 254P1D6B gene comprises contacting the 254P1D6B gene with a 254P1D6B antisense polynucleotide. In another approach, a method of inhibiting 254P1D6B mRNA translation comprises contacting a 254P1D6B mRNA with an antisense polynucleotide. In another approach, a 254P1D6B specific ribozyme is used to cleave a 254P1D6B message, thereby inhibiting translation. Such antisense and ribozyme based methods can atso be directed to the regulatory regions of the 254P1D6B gene, such as 254P1D6B promoter and/or
enhancer elements. Similarly, proteins capable of inhibiting a 254P1D6B gene transcription factor are used to inhibit 254P106B mRNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art.

Other factors that inhibit the transcription of 254 P1D6B by interfering with 254P1D6B transcriptional activation are also useful to treat cancers expressing 254P1D6B. Similarly, factors that interfere with 254P1D6B processing are useful to treat cancers that express 254P1D6B. Cancer treatment methods utilizing such factors are also within the scope of the invention

XIII. D.) General Considerations for Therapeutic Strategies

Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 254P1D6B (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 254P1D6B inhibitory molecules). A number of gene therapy approaches are known in the art. Recombinant vectors encoding 254P1D6B antisense polynucleotides, ribozymes, factors capable of interfering with 254P1D6B transcription, and so forth, can be delivered to target tumor cells using such gene therapy approaches.

The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent adminisistation, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent wel.

The anti-tumor activity of a parlicular composition (e.g., antisensz, ribozyme, intrabody), or a combination of such compositions, can be evaluated using various in vifro and in vivo assay systems. In vitro assays that evaluate therapeutic activity inciude cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 254P1D6B to a binding partner, etc

In vivo, the effect of a 254P1D6B therapeutic composition can be evaluated in a suitable animal model. For example, xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Flein et al, 1997, Nature Medicire 3: 402-408). For example, PCT Patent Application WC98/16628 and U.S. Patent $6,107,540$ describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can pe predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the lice.

In vivo assays that evaluate the promotion of apoptosis are useful in evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the lumors of the treated mice provides an indication of the therapeutic efficacy of the composition.

The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard phermaceutical carriers such as sterile phosphate buffered saline soluticns, bacteriostatic water, and the like (see, generally Remington's Pharmaceutical Sciences 16 ${ }^{\text {th }}$ Edition, A. Osal., Ed, 1980).

Therapeutic formulations can be solubilized and adrninistered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, intravenous,
parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be :yophilized and stored as sterile powders, preferably under vacuum, and then reconsituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to injection.

Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art.

XIII.) Identification, Characterization and Use of Modulators of 254P1D6B

Methods to Identify and Use Modulators

In one embodiment, screening is performed to identify modulators that induce or suppress a particular expression profile, suppress or incuce specific pathways, preferably generating the associated phenotype thereby, In another embodiment, having identified differentially expressed genes important in a particular state; screens are performed to identify modulators that aller expression of individual genes, either increase or decrease. In another embodiment, screening is performed to identify modulators that aller a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gere in a partcular state, screens are performed to identify agents that bind and/or modulate the bislogical activity of the gene product

In addition, screens are done for genes that are incuced in response to a candidate agent. After identifying a modulator (one that suppresses a cancer expression paltern leading to a normal expression pattern, or a modulator of a cancer gene that leads to expression of the gene as in normal tissue) a screen is performed to identify genes that are specifically modulated in response to the agent. Comparing expression profies between normal tissue and agent-treated cancer tissue reveals çenes that are not expressed in normal tissue or cancer tissue, but are expressed in agent treated tissue, and vice versa. These agent-specific sequences are identified and used by methods described herein for cancer genes or proteins. In particular these sequences and the proteins they encode are used in marking or identifying agent treated cells. In addition, antibodies are raised against the agent-induced proteins and used to target novel therapeutics to the treated cancer tissue sample.

Modulator-re ated Identification and Screening Assays:

Gene Expression-related Assays

Proteins, nudeic acids, and antibodies of the invention are used in screening assays. The cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing these sequences are used in screening assays, such as evaluating the effect of drug candidates on a "gene expression profile," expression profile of polypeptides or alteration of bielogical function. In one embodiment, the expression proilles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profle genes after treatment with a candidate agent (e.g., Davis, GF, et al, J Biol Screen 7:69 (2002); Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:98694,1996).

The cancer proteins, antibodies, nucleic acids, modfied proteins and celis containing the native or modified cancer proteins or genes are used in screering assays. That is, the present invention comprises methods for screening for compositions which modulate the cancer phenolype or a physiological function of a cancer protein of the invention. This is done on a gene itself or by evaluating the effect of drug candidales on a "gene expression profile" or biological function. In
one embodiment, expression profiles are used, preferatly in conjunction with high throughput screening technicues to allow monitoring after treatment with a candidate agent, see Zlokamik, supra.

A variety of assays are execuled directed to the genes and proteins of the invention. Assays are run on an individual nucleic acid or protein level. That is, having identified a particular gene as up regulated in cancer, test compounds are screened for the ability to modulate gene expression or for binding to the cancer protein of the invention. "Modulation" in this context includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing cancer, with changes of at least 10%, preferably 50%, more preferably $100-300 \%$, and in some embodiments $300-1000 \%$ or greater. Thus, if a gene exhibits a 4 -fold increase in cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10 -fold decrease in cancer tissue compared to normal tissue a targei value of a 10 -fold increase in expression by the test compound is often desired. Modulators that exacerbate the type of gene expression seen in cancer are also useful, e.g., as an upregulated target in further analyses.

The amount of gene expression is monitored using nucleic acid probes and the quantification of gene expression levels, or alternalively, a gene product itself is monitored, e.g., through the use of antioodies to the cancer protein and standard immunoassays. Proteomics and separation techniques also allow for quantification of expression.

Expression Monitoring to dentify Compounds that Modify Gene Expression
In one embodiment, gene expression monitoring, i.e., an expression profile, is monitored simultaneously for a number of entities. Such profiles will typically involve one or more of the genes of Figure 2 . In this embodiment, e.g, cancer nucleic acid probes are attached to biochips to detect and quantify cancer sequences in a particular cell. Alternatively, PCR can be used. Thus, a series, e.g., wells of a microtiter plate, can be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring is performed to identify compounds that modify the expression of one or more cancerassociated sequences, e.g., a polynucleotide sequence set out in Figure 2. Generally, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate cancer, modulate cancer proteins of the invention, bind to a cancer protein of the invention, or interfere with the binding of a cancer protein of the invention and an antibody or other binding partner.

In one embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chenical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subslasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds," as compounds for screening, or as therapeutics.

In certain embodiments, combinatorial libraries of potential modulators are screened for an ability to bind to a cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by idenlifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., Inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis,

As noted above, gene expression monitoring is conveniently used to test candidate modulators (e.g., protein, nucleic acid or small molecule). After the candidate agen: has been added and the cells allowed to incubate for a period, the sample containing a target sequence to be analyzed is, e.g., added to a bochip.

If required, the target sequence is prepared using known techniques. For example, a sample is treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as
appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE , or with cy 3 or cy5.

The target sequence can be labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radicactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label aiso can be an enzyme, such as alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that is detected. Alternatively, the label is a labeied compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typicaly removed prior to analysis

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outined in U.S. Patent Nos. 5, 681,702; $5,597,909 ; 5,545,730 ; 5,594,117 ; 5,591,584 ; 5,571,670 ; 5,580,731 ; 5,571,670 ; 5,591,584 ; 5,624,802 ; 5,635,352 ; 5,594,118 ;$ $5,359,100 ; 5,124,246$; and $5,681,697$. In this embodiment, in general, the target nucleic acid is prepared as outined above, and then added to the biochip comprising a plurality of nucleis acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temporature, formamide concentration, salt concentration, chaotropic salt concentration pH , organic solvent concentration, etc. These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. $5,681,697$. Thus, it can be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein can be accomplished in a variely of ways. Components of the reaction can be added simultaneously, or sequentially, in different orders, with preferred embodiments outined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which can be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibilors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target. The assay data are analyzed to determine the expression levels of individual genes, and changes in expression levels as between states, forming a gene expression profle.

Biological Activity-related Assays

The invention provides methods idenify or screen for a compound that modulates the activity of a cancer-related gene or protein of the invention. The methods comprise adding a test compound, as defined above, to a cell comprising a cancer protein of the invention. The cells contain a recombinant nucleic acid that encodes a cancer protein of the invention In another embodiment, a library of candidate agents is tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiaton, carcinogenics, or other cells (i.e., cell-cell contacts). In another example, the determinations are made at different stages of the cell cycle process. In this way, compounds that modulate genes or proteins of the invention are identified. Compounds with pharmacological activity are able to enhance or
interfere with the activity of the cancer protein of the invention. Once identified, similar structures are evaluated to identify critical structural features of the compound.

In one embodiment, a method of modulating (e.g., inhibiting) cancer cell division is provided; the method comprises administration of a cancer modulator. In another embodiment, a method of modulating (e.g., inhibiting) cancer is provided; the method comprises administration of a cancer modulator. In a further embodiment, methods of treating cells or individuals with cancer are provided; the method comprises administration of a cancer modulator.

In one embodiment, a method for moculating the status of a cell that expresses a gene of the invention is provided. As used herein status comprises such art-accepted parameters such as growth, proliferation, survival, function, apoptosis senescence, location, enzymatic activity, signal transduction, etc. of a cel. In one embodiment, a cancer inhibitor is an antibody as discussed above. In another embodiment, the cancer inhibitor is an antisense molecule. A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described herein.

High Throughput Screening to Idenlify Modulators

The assays to identify suitable modulators are amenable to high throughpui screening. Preferred assays thus detect enhancement or inhibition of cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

In one embodiment, modulators evaluated in tigh throughput screening methods are proteins, often naturally occuring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular exiracis, are used. In this way, libreries of proteins are made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especialy preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., subsirates for enzymes, or ligands and receptors.

Use of Soft Agar Growth and Colony Formation to Idenlify and Characterize Modulators

Normal cells require a solid substrate to attach and grow. When cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, can regenerate normal phenotype and once again require a solid substrate to attach to and grow. Soft agar growth or colony formation in assays are used to identify modulators of cancer sequences, which when expressed in host cells, irhibit abnormal cellular proliferation and transformation. A modulator reduces or eliminates the host cells' ability to grow suspended in solid or semisolid media, such as agar.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994). See also, the methods section of Garkavtsev et al. (1996), supra.

Evaluation of Contact Inhibition and Growth Density Limitation to Identify and Characterize Modulators Normal cells typically grow in a flat and organized pattern in cell culture until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. Transformed cells, however, are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, ransformed cells grow to a higher saturation density than corresponding normal cells. This is detected morphologically by the formation of a disoriented monolayer of cells or cells in foci. Alternatively, labeling index with $\left({ }^{3} \mathrm{H}\right)$-hhymidine at saturation density is used to measure density imitation of growth, similarly an MTT or Alamar blue assay will reveal proliferation capacity of cells and the the ability of modulators to affect same. See Freshney (1994), supra. Transformed cells, when transfected with tumor suppressor genes, can regenerate a nórmal phenotype and become contact inhibited and would grow to a lower density

In this assay, labeling index with 3 H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected vith a cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (3 H).thymidine is determined by incorporated cpm.

Contact independent growth is used to identify modulators of cancer sequences, which had led to abnormal cellular proliferation and transformation. A modulator reduces or eliminates contact independent growth, and returns the cells to a normal phenotype.

Evaluation of Growth Factor or Serum Dependence to Identify and Characterize Modulators
Transformed cells have lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Inst. 37:167-175 (1966); Eagle et al., J. Exp. Med 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. The degree of growth factor or serum dependence of transformed host cells can be compared with that of control. For example, growth factor or serum dependence of a cell is monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.

Use of Tumor-specific Marker Levels to Identify and Characterize Modulators
Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (FA) is relaased from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tunnor Angiogenesis Factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)), while bFGF is released from endo:helial tumors (Ensoli, B et al).

Various lechniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland \& Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305 312 (1980); Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney, Anticancer Res. 5:111-130 (1985). For example, tumor spesific marker levels are monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.

Invasiveness into Matrigel to ldentify and Characterize Modulators
The degree of invasiveness into Matigel or an extracellular mairx constituent can be used as an assay to identify and characterize compounds that modulate cancer associated sequences. Tumor cells exhibit a positive correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix consfituent. In this assay, lumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells. Techniques described in Cancer Res, 1999; 59:6010; Freshney (1994), supra, can be used. Briefly, the level of invasion of host cells is measured by using filters coated with Matrigel or some other extracellular matrix consituent. Penetration into the gel, or through to the distal side of the filler, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells wilh 1251 and counting the radioactivity on the distal side of the filter or botlom of the dish. See, e.g., Freshney (1984), supra

Evaluation of Tumor Growth in vivo to Identify and Characterize Modulators
Effects of cancer-associated sequences on cell growith are tested in transgenic or immune-suppressed organisms. Transgenic organisms are prepared in a variety of art-accepted ways. For example, knock-out transgenic organisms, e.g., mammals such as mice, are made, in which a cancer gene is disrupted or in which a cancer gene is inserted. Knock-out Iransgenic mice are made by insertion of a marker gene or other heterologous gene into the endogenous cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous cancer
gene with a mutated version of the cancer gene, or by mutating the endogenous cancer gene, e.g., by exposure to carcinogens.

To prepare fransgenic chimeric animals, e.g., mice, a DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lecion are injected into a host mouse embryo, which is reimplanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells some of which are derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science $244: 1288$ (1989)). Chimeric mice can be derived according to US Patent $6,365,797$, issued 2 April 2002; US Patent 6,107,540 issued 22 August 2000; Hogan et al., Manipulating the Mouse Embryo: A laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatlvely, various immune-suppressed or immune-deficient host animals can be used. For example, a genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectornized mouse, or an irradiated mouse (see, e.C., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer $41: 52$ (1980)) can be used as a host. Transplantable tumor cells (typically about 10^{6} cells) injected into isogenic hosts produce invasive tumors in a high proportion of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing cancer-associated sequences are injected subcutaneously or orthotopically. Mice are then separated into groups, including control groups and treated experimental groups) e.g. treated with a modulator). After a suitable length of time, preferably $4-8$ weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions, or weight) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growit.

In Vitro Assays to Identify and Characterize Modulators

Assays to identify compounds with modulating activity can be performed in vitro. For example, a cancer polypeptide is first contacted with a polential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as Western blotting, ELISA and the like with an antibody that selectively binds to the cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e. g., Northern hybridizat on, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using a cancer protein promoter operably linked to a reporter gene such as luciferase: green fluorescent protein, CAT, or P-gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art (Davis GF, supra; Gonzalez, J. \& Negulescu, P. Curr. Opin. Biotechnol. 1998: 9:624).

As outlined above, in vitro screens are done on individual genes and gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself is performed.

In one embodiment, screening for modulators of expression oi specific gene(s) is performed. Typically, the expression of only one or a few genes is evaluaied. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially
expressed activity. Moreover, once initial candicate compounds are idenified, variants can be further screened to better evaluate structure activily relationships.

Binding Assays to Identify and Characterize Modulators

In binding assays in accordance with the invention, a purified or isolated gene product of the invention is generally used. For example, antibodies are generated to a protein of the invention, and immunoassays are run to determine the amount and/or location of protein. Alternatively, cells comprising the cancer proteins are used in the assays.

Thus, the methods comprise combining a cancer protein of the invention and a candidate compound such as a ligand, and determining the binding of the compound to the cancer protein of the invention. Preferred embodiments utilize the human cancer protein; animal models of human disease of can also be developed and used. Also, other analogous mammalian proteins also can be used as appreciated by those of skill in the art. Moreover, in some embodiments variant or derivative cancer proteins are used.

Gererally, the cancer protein of the invention, or the ligand, is non-ciffusibly bound to an insoluble support. The support can, e.g., be one having isolated sample receiving areas (a microtier plate, an array, etc.). The insoluble supports can be made of any composition to which the compositions cen be bound, is readily separated from soluble material, and is otherwise compalible with the overall method of screening. The surface of such supports can be solid or porous and of any convenient shape.

Examples of suitable insoluble supports include microliter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharide, nylon, nitrocellulose, or Teflon ${ }^{T M}$, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition to the support is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antioodies which do not sterically block either the ligand binding site or activation sequence when atlaching the protein to the support, direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or ligand/binding agent to the support excess unbound material is removed by washing. The sample receiving areas may then be blocked itrough incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

Once a cancer protein of the invention is bound to the support, and a test compound is added to the assay. Alternatively, the candidate binding agent is bound to the support and the cancer protein of the invention is then added. Binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc.

Of particular interest are assays to identify agents that have a low toxicity for human cells. A wide variely of assays can be used for this purpose, including proliferation assays, cAMP assays, labeled in vitro protein-protein binding assays, electrophoretic mobility shiff assays, immunoassays for protein bircing, functional assays (phosphorylation assays, etc.) and the like.

A determination of binding of the test compound (ligand, binding agent, modulator, etc.) to a cancer protein of the invention can be done in a number of ways. The test compound can be labeled, and binding determined directly, e.g., by attaching all or a portion of the cancer protein of the invention to a solid support, adding a labeled candidate compound (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps can be ufilized as appropriate.

In certain embodiments, only one of the components is labeled, e.g., a protein of the invention or ligands labeled. Alternatively, more than one component is labeled with different labels, e.g., tit5, for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transier reagents are also useful.

Competitive Binding to Identify and Characterize Modulators

In one embodiment, the binding of the "test compound" is determined by compeitive binding assay with a "competitor." The competitor is a binding moiety that binds to the target molecule (e.g., a cancer protein of the invention). Competiters include compounds such as antibodies, peptices, binding parthers, ligands, elc. Under certain circumstances, the competitive binding between the test compound and the competitor displaces the test compound. In one embodiment, the test compound is labeled. Either the test compound, the competitor, or both, is added to the protein for a time sufficient to allow binding. Incubations are performed at a temperature that facilitates optimal activity, typically between four and $40^{\circ} \mathrm{C}$. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening; typically between zero and one hour will be sufficient. Excess reagent is generally removed cr washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In one embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the cancer protein and thus is capable of binding to, and potentially modulating, the activity of the cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the post-test conpound wash solution indicates displacement by the lest compound. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competito. The absence of binding by the competitor indicales that the lest compound binds to the cancer protein with higher affinity than the competitor. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, indicates that the test compound binds to and thus potentially modulates the cancer protein of the invention.

Accordingly, the competitive binding methods comprise differential screening to identity agents that are capable of modulating the activity of the cancer proieins of the invention. In this embodiment, the methods comprise combining a cancer protein and a competitor in a first sample. A second sample comprises a test compound, the cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native cancer protein, but cannot bind to modified cancer proteins. For exemple the structure of the cancer protein is modeled and used in rational drug design to synthesize agents that interact with that site, agents which generally do not bind to site-modified proteins. Moreover, such drug candidates that affect the activity of a native cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of such proteins.

Posiive controls and negative controls can be used in the asseys. Preferably control and test samples are performed in at least triplicate to oblain statistically significant results. Incubation of all samples occurs for a time sufficient to allow for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents can be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial egents, etc, can be used. The mixture of components is added in an order that provides for the requisite binding.

Use of Polynucleotides to Down-regulate or Inhibit a Protein of the Invention.

Polynucleotide modulators of cancer can be introduced into a cell containing the targel nucleotide sequence by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753. Suitable ligand-binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Proferably, conjugation of the ligand binding molecule does not substantially interfere with the abllity of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotice modulator of cancer can be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of a polynudeotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Inhibitory and Antisense Nucleotides
In certain embodiments, the activity of a cancer-associated protein is down-regulated, or entirely inhibited, by the use of ant sense polynucleotide or inhibitory small nuclear RNA (snRNA), i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a cancer protein of the invention, mRNA, or a subsequence thereof. Einding of the antisense polynuzleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally occurring nucleotides, or synthetic species formed from naturaliy occurring subunils or their close homclogs. Antisense polynucleotides may also have altered sugar moielies or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprised by this invention so long as they function effectively to hybridize with nucleotides of the invention. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vilto. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated der vatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense cligonucleoides, Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single stranded nucleic acid sequence (either RNA or DNA) capable of binding to larget mRNA (sense) or DNA (antisense) sequences for cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 12 nucleotides, preferably from about 12 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in e.g., Stein \&Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

Ribozymes
In addition to antisense polynucleotides, ribczymes can be used to target and inhibit transcription of cancerassociated nucleotide sequences. A ribozyme is an RNA molecule that catalyically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribczymes, hammerhead ribozymes, hairpin ribozymes, RNase P,
and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g, in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0360257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5: 1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Use of Modulators in Phenctypic Screening

In one embodiment, a test compound is administered to a population of cancer cells, which have an associated cancer expression profile. By "administration" or "contacting" herein is meant that the modulator is added to the cells in such a manner as to allow the modulator to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, a nucleic acid encoding a proteinaceous agent (i.e., a peptide) is put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy sysiems can also be used. Once the modulator has been administered to the cells, the cells are washed if desired and are allowed to incubate under preferably physiological conditions for some period. The cells are then harvested and a new gene expression profile is generated. Thus, e.g., cancer tissue is screened for agents that modulate, e.g., induce or suppress, the cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an efiect on cancer activity. Similarly, altering a biological function or a signaling pathway is indicative of modulator activity. By defining such a signature for the cancer phenotype, screens for new drugs that alter the phenctype are devised. With this approach, the drug target need not be known and need not be represented in the original gene/protein expression screening platform, nor does the level of transcript for the target protein need to change. The modulator inhibiting function will serve as a surrogate marker

As outlined above, screens are done to assess genes or gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself is performed.

Use of Modulators to Affect Peptides of the Invention

Measurements of cancer polypeptide activity, or of the cancer phenotype are performed using a variety of assays. For example, the effects of modulators upon the function of a cancer polypeptide(s) are measured by examining parameters described above. A physiological change that affects activity is used to assess the influence of a test compound on the polypeptides of this invention. When the functional outcomes are determined using intact cells or animals, a variety of effects can be assesses such as, in the case of a cancer associated with solid tumors, tumor growth, tumor metastasis, neovascularization, hormone release, franscriptional changes to both known and uncharacterized genetic markers (e.g., by Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGNIP.

Methods of Identifying Characterizing Cancer-associaled Sequences

Expression of various gene sequences is correlated with cancer. Accordingly, disorders based on mutant or variant cancer genes are determined. In one embodiment, the invention provides methods for identifying cells containing variant cancer genes, e.g., determining the presence of, all or part, the sequence of at least one endogenous cancer gene in a cell. This is accomplished using any number of sequencing techniques. The invention comprises methods of identifying
the cancer genotype of an individual, e.g., determining all or part of the sequence of at least one gene of the invention in the individual. This is generally done in at least one tissue of the individual, e.g., a tissue set forth in Table I, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced gene to a known cancer gene, i.e., a wild-type gene to delermine the presence of family members, homologies, mulations or variants. The sequence of all or part of the gene can then be compared to the sequence of a known cancer gene to determine if any differences exist. This is done using any number of known homology programs, such as BLAST, Bestit, etc. The presence of a difference in the sequence between the cancer gene of the patient and the known cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein. In a preferred embodiment, the cancer genes are used as probes to determine the number of copies of the cancer gene in the genome. The cancer genes are used as probes to determine the chromosornal localizalion of the cancer genes Information such as chromosomal localization finds use in previding a diagnosis or prognosis in particular when chromosomal abnormaitites such as translocations, and the like are identified in the cancer gene locus.

XIV.) RNAi and Therapeutic use of small interfering RNA (siRNAs)

The present invention is also directed towards siRNA oligonucleotices, particularly double stranded RNAs encompassing at least a fragment of the 254 P 1 D 6 B coding region or 5 " UTR regions, or complement, or any antisense oligonucleotide specific to the 254 P 1 D 6 B sequence. In one embodiment such oligonusleotides are used to elucidate a function of 254P1D6B, or are used to screen for or evaluate modulators of 254P106B function or expression. In another embodiment, gene expression of 254P1D6B is reduced by using siRNA transfection and results in significantly diminished proliferative capacity of transformed cancer colls that endogenously express the antigen; cells treated with specific 254P1D6B siRNAs show reduced survival as measured, e.g., by a metabolic readout of cell viability, correlating to the reduced proliferative cepacity. Thus, 254P1D6E siRNA compositions comorise siRNA (double stranded RNA) that correspond to the nucleic acid ORF sequence of the 254P1D6B protein or subsequences thereof; these subsequences are generally $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ or more than 35 contiguous RNA nucleotides in length and contain sequences that are complementary and non-complementary to at least a portion of the mRNA coding sequence In a preferred embodiment, the subsequences are 19-25 nucleotides in length, most preferably 21-23 nucleotides in lencth.

RNA interference is a novel approach to silencing genes in vitro and in vivo: thus small double stranded RNAs (siRNAs) are valuable therapeutic agents. The power of siR \wedge As to silence specific gene activities has now been brought to animal models of disease and is used in humans as well. For example, hydrodynamic infusion of a solution of siRNA into a mouse with a siRNA against a particular target has been proven to be therapeutically effective.

The pioneering work by Song et al. indicates that one type of entrely natural nucleic acid, small interfering RNAs (siRNAs), served as therapeutic agents even without further chemical mod fication (Song, E., et al. "RNA interference targeting Fas protects mice from fulminant hepatitis" Nat. Mec. 9(3): 347-51 (2003)). This work provided the frist in vivo evidence that infusion of siRNAs intc an animal could alleviate disease. In that case, the authors gave mice injections of siRNA designed to silence the FAS protein (a cell death receptor that wher over-activeted during inflammatory response induces hepatocyles and other cells to die). The next day, the animals were given an antibody specific to Fas. Control mice died of acute liver failure within a few days, while over 80% of the siRNA-irealed mice remained free from serious disease and survived. About 80% to 90% of their liver cells incorporated the naked siRNA oligonucleotides. Futhermore, the RNA molecules functioned for 10 days before losing effect after 3 weeks.

For use in human therapy, siRNA is delivered by efficient systems that induce long-lasting RNAi activity. A major caveat for clinical use is delivering siRNAs to the appropriate cells. Hepatccyles seem to be particularly recepilive to
exogenous RNA. Today, targets located in the liver are attractive because liver is an organ that can be readily targeted by nucleic acid molecules and viral vectors. However, other tissue and organs targets are preferred as well. Formulations of siRNAs with compounds that promote transit across cell membranes are used to improve administration of siRNAs in therapy. Chemically modified synthetic siRNA, that are resistant to nucleases and have serum stability have concomitant enhanced duration of RNAi effects, are an additional embodiment.

Thus, siRNA technology is a therapeutic for human malignancy by delivery of siRNA molecules directed to 254 P1D6B to individuals with the cancers, such as those listed in Table 1. Such administration of siRNAs leads to reduced growth of cancer cells expressing 254P1D6B, and provides ar anti-tumor therapy, lessening the morbidity and/or mortality associated with malignancy.

The effectiveness of this modality of gene product knockdown is significant when measured in vitro or in vivo. Effectiveness in vitro is readily demonstrable through application of siRNAs to cells in cuiture (as described above) or to aliquots of cancer patient biopsies when in vitro methods are used to detec: the reduced expression of 254P106B protein.

XV.) Kits/Articles of Manufacture

For use in the laboratory, prognostic, prophylactic, diagnostic and therapeutic applications described herein, kils are within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the lise, each of the containeris) comprising one of the separate elements to be used in the method, along with a label or insert comprising instructions for use, such as a use described herein. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a protein or a gene or message of the invention, respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing nucieotide(s) for amplification of the target nucleic acid sequence. Kits can comprise a container comprising a reporter, such as a biotinbinding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatio, fluorescent, or radioisotope label; such a reporter can be used with, e.g., a nucleic acid or antibody. The kit can include all or part of the anino acid sequences in Figure 2 or Figure 3 or anaiogs thereof, or a nucleic acid molecule that encodes such amino acid sequences.

The kit of the invention will typically comprise the container described above and one or more of containers associated therewith that comprise materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, conlainer, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.

A label can be present on or with the container to indicate that the composition is used for a specific therapy or nontherapeutic application, such as a prognostic, prophylactic, diagnostic or laboratory application, and can also indicate directions for either in vivo or in vitro use, such as those described herein. Directions and or other information can also be included on an insert(s) or label(s) which is included with or on the kit. The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself; a label can be associaled with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a neoplasia of a tissue set forth in Table I.

The terms "kit" and "article of manufacture" can be used as synonyms.
In another embodiment of the invention, an article(s) of manufacture containing compositions, such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and'or antibody(s), e.g., materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of neoplasias of tissues such as those set forth in Table I is provided. The article of
manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, botlles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass, metal or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleio acid sequence(s), cell population(s) and/or antibody(s). In one embodiment, the container holds a polynucleotide for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose. In another embodiment a container comprises an antibody, binding fragment thereof or specific binding protein for use in evaluating protein expression of282P1G3 in cells and tissues, or for relevant laboratory, prognostic, diagnostic, prophylactic and therapeutic purposes; indications and/or directions for such uses can be included on or with such container, as can reagents and other compositions or tools used for these purposes. In another embodiment, a container comprises materiais for eliciting a cellular or humoral immune response, together wilh associated indications and/or directions. In another embodirent, a container comprises materials for adoptive immunotherapy, such as cytotoxic T cells (CTL) or helper T cells (HTL), together with associated indications and/or directions; reagents and other compositions or tools used for such purpose can also be included.

The container can alternatively hold a composition that is effective for treating, diagnosis prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an infravenous solution bag or a vial having a slopper pierceable by a hypodermic injection needle). The active agents in the composition can be an antibody capable of specifically binding 282P1G3 and modulating the function of 282P1G3.

The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution avdior dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.

EXAMPLES

Various aspects of the invention are further described and illustrated by way of the severa: examples that follow, none of which is intended to limit the scope of the invention.

Example 1: SSH-Generated Isolation of cDNA Fragment of the 254P1D6B Gene

To isolate genes that are over-expressed in prostate cancer we used the Suppression Subtractive Hybridization (SSH) procedure using cDNA derived from prostate cancer xenograft tissues, LAPC-9AD xenograft was obtained from Dr. Charles Sawyers (UCLA) and was generated as described (Klein et al., 1997, Nature Med. 3:402-408; Craft et al., 1999, Cancer Res. 59:5030-5036). LAPC-9AD² was generated from LAPC-9AD xenograft by growing LAPC-9AD xenograft tissues within a piece of human bone implanted in SCID mice. Tumors were then harvested and subsequently passaged subcutaneous'y into other SCID animals to generate LAPC-9AD2.

The 254P1D6B SSH cDNA of 284 bp is lisled in Figure 1. The full length 254P1D6B variant 1 and variants 2-20, CDNAs and ORFs are described in Figure 2 with the protein sequences listed in Figure 3.

Materials and Methods

RNA Isolation:
Tumor lissues were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using $10 \mathrm{~m} / / \mathrm{g}$ tissue or 10 ml 10^{8} cells to isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. $260 / 280 \mathrm{~nm}$) and analyzed by gel electrophoresis.

Oligonucleotides:

The following HPLC purified oligonucleotides were used.

DPNCDN (cDNA synthesis primer):

 5TTTTGATCAAGCTT303' (SEQ ID NO: 17)Adaptor $1:$
5CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3' (SEQ ID NO: 18) 3'GGCCCGTCCTAG5' (SEQ ID NO: 19)

Adaptor 2
5'GTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAG3' (SEQ ID NO: 20)
3CGGCTCCTAG5' (SEQID NO: 21)

CR primer 1:
5CTAATACGACTCACTATAGGGC3' (SEQ ID NO: 22)

Nested primer (NP)1:
5TCGAGCGGCCGCCCGGGCAGGA3
(SEQIDNO: 23)

Nested primer (NP)2

5'AGCGTGGTCGCGGCCGAGGA3' (SEQID NO: 24)

Suppression Subtractive Hybridization.

Suppression Subtractive Hybridization (SSH) was used to idertify cDNAs corresponding to genes that may be cifferentially expressed in prostate cancer. The SSH reaction utilized oDNA from prostale cancer xenograft LAFC-gAD? The gene 254P1D6B was derived from a prostate cancer xenograft LAPC-9AD² minus prostate cancer xenograft LAPC-9AD tissues. The SSH DNA sequence (Figure 1) was identified.

The cDNA derived from prostate cancer xenograft LAPC-9AD tissue was used as the source of the "driver" cDNA, while the cDNA from prostate cancer xenograft LAPC-9AD2 was used as the source of the "tester" cDNA. Double stranded CDNAs corresponding to tester and driver cDNAs were synthesized from $2 \mu \mathrm{~g}$ of poly(A)+RNA isolated from the relevant tissue, as described above, using CLONTECH's PCR-Select CDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PT1117-1, Catalog No. K1804-1). The resuting cDNA was digested with Dpn II for 3 hrs at $37^{\circ} \mathrm{C}$. Digested cDNA was extracted with phenolichloroform (1:1) and ethanol precipitated.

Tester cDNA was generaled by diluting $1 \mu 1$ of Dpn II digested cDNA from the relevant tissue source (see above) (400 ng) ir 5μ l of water. The diluted cDNA $(2 \mu, 160 \mathrm{ng})$ was then ligated to $2 \mu \mathrm{l}$ of Adaptor 1 and Adaptor $2(10 \mu \mathrm{M})$, in separate ligation reactions, in a total volume of $10 \mu \mathrm{l}$ at $16^{\circ} \mathrm{C}$ overnight, using 400 u of 74 DNA ligase (CLONTECH). Ligation was terminated with $1 \mu \mathrm{l}$ of 0.2 M EDTA and heating at $72^{\circ} \mathrm{C}$ for 5 min .

The first hybridization was performed by adding $1.5 \mu(600 \mathrm{ng})$ of driver cDNA to each of iwo tubes containing 1.5 $\mu \mathrm{l}$ (20 ng) Adaptor 1 - and Adaptor 2 - ligated tester CDNA. In a final volume of 4μ, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at $98^{\circ} \mathrm{C}$ for 1.5 minutes, end then were allowed to hybridize for 8 hrs at $68^{\circ} \mathrm{C}$. The two hybridizations were then mixed together with an additicnal 1μ of fresh denatured driver cDNA and were
allowed to hybridize overnight at $68^{\circ} \mathrm{C}$. The second hybridization was then diluted in $200 \mu \mathrm{l}$ of 20 mM Hepes, $\mathrm{pH} 8.3,50 \mathrm{mM}$ $\mathrm{NaCl}, 0.2 \mathrm{mM}$ EDTA, heated at $70^{\circ} \mathrm{C}$ for 7 min . and stored at $-20^{\circ} \mathrm{C}$.

PCR Amplification, Cloning and Sequencing of Gene Fragments Generated from SSH:

To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1μ l of the diluted final hybridization mix was added to $1 \mu \mathrm{l}$ of PCR primer $1(10 \mu \mathrm{M})$) $0.5 \mu \mathrm{I} \mathrm{dNTP}$ mix (10 $\mu \mathrm{M}), 2.5 \mu 10 \times$ reacion buffer (CLONTECH) and $0.5 \mu \mathrm{l} 50 \times$ Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25μ I. PCR 1 was conducted using the following conditions: $75^{\circ} \mathrm{C}$ for 5 min ., $94{ }^{\circ} \mathrm{C}$ for 25 sec ., then 27 cycles of $944^{\circ} \mathrm{C}$ for $10 \mathrm{sec}, 66^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1.5 min . Five separate primary PCR reactions were performed for each experiment. The products were pooled and diluted $1: 10$ with water. For the secondary PCR reaction, $1 \mu \mathrm{l}$ from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NP1 and NP2 $(10 \mu \mathrm{M})$ were used ins ead of PCR primer 1. PCR 2 was perormed using $10-12$ cycles of $94{ }^{\circ} \mathrm{C}$ for $10 \mathrm{sec} 68^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 1.5 minutes. The PCR products were analyzed using 2% agarose gel electrophoresis.

The PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed E. coli were subjected to blue'white and ampicilin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture overnight. To identify inserts, PCR amplification was performed on 1 ml of bacterial cuiture using the conditions of PCR1 and NP1 and NP? as primers. PCR products were analyzed using 2\% agarose gel electrophoresis.

Bacterial clones were stored in 20% gycerol in a 96 well formai. Plasmid DNA was prepared, sequenced, and subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases.

RT-PCR Expression Analysis

First strand cDNAs can be generated from $1 \mu \mathrm{~g}$ of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacture's protocol was used which included an incubation for 50 min at $42^{\circ} \mathrm{C}$ with reverse transcriplase followed by RNAse H treatment at $37^{\circ} \mathrm{C}$ for 20 min . After completing the reaction, the volume can be increased to $200 \mu i$ with water prior to normelization. Firs: strand cDNAs from 16 different normal human tissues can be obiained from Clontech.

Normalization of the first strand CDNAs from mulliple tissues was performed by using the primers 5'atatcgccgcgctcgtcgtcgacaa3' (SEQ ID NO: 25) and 5'agccacacgcagcicatigtagaagg 3' (SEQ ID NO: 26) to amplify β-actin. First strand $\mathrm{CDNA}(5 \mu)$ were amplified in a total volume of $50 \mu \mathrm{l}$ containing $0.4 \mu \mathrm{M}$ primers, $0.2 \mu \mathrm{M}$ each $\mathrm{dNTPs}, 1$ XPCR buffer (Clontech, 10 mM Tris-HCL, $1.5 \mathrm{mM} \mathrm{MgCl}, 50 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 3.3$) and 1 X Klentaq DNA polymerase (Clontech). Five $\mu \mathrm{l}$ of the PCR reaction can be removed at 18,20 , and 22 cycles and used for agarose gel electrophoresis. PCR was performed using an MJ Research thernal cycler under the following conditions: Initial denaturalion can be at $94^{\circ} \mathrm{C}$ for 15 sec , followed by a 18,20 , and 22 cycles of $94^{\circ} \mathrm{C}$ for $15,65^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 5 sec . A fnal extersion at $72^{\circ} \mathrm{C}$ was carried out for 2 min . After agarose gel electrophoresis, the band intensities of the $233 \mathrm{tp} \beta$-actin bands from multiple tissues were compared by visual inspection. Dilution factors for the first strand cDNAs vere calculated to result in equal β-actin band intensities in all tissues after 22 cycles of PCR. Three rounds of normalization can be required to achieve equal band intensities in all tissues after 22 cycles of PCR.

To determine expression levels of the 254P1D6B gene, 5μ l of normalized first strand CDNA were analyzed by PCR using 26, and 30 cycles of amplification. Semi-quantitaive expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensities.

A typical RT-PCR expression analysis is shown in Figures $14(\mathrm{a})$ and $14(\mathrm{~b})$. First strand CDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal lung ovary cancer pool, lung cancer 0001 (Figure 14A), as well as from normal stomach, brain, heart, liver, spleen, skeletal muscle, testis, prostate, bladder, kidney, colon, lung and ovary cancer pool (Figure 14B). Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254 P1D6B, was performed at 26 and 30 cycles of amplification. Results show strong expression of 254P1D6B in lung cancer pool and ovary cancer pool but not in normal lung nor in vital pool 1 . Low expression was detected in vilal pool 2.

Example 2: Isolation of Full Length 254P1D6B encoding DNA

To isolate genes that are involved in prostate cancer, an experiment was conducted using the prostate cancer xenograft LAPC-9AD2. The gene 254P1D6B was derived from a subtraction consisting of a prostate cancer xenograft LAPC-9AD2 minus prostate cancer xenograft LAPC-9AD. The SSH DNA sequence (Figure 1) was designated 254P1D6B. Variants of 254P1D6B were identified (Figures 2 and 3).

Example 3: Chromosomal Mapping of 254P1D6B

Chromosomal localization can implicate genes in disease pathogenesis. Several chromosome mapping approaches are available including fluorescent in situ hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville All, human-rodent somatic cell hybrid panels such as is available from the Cornell institule (Camden, New Jersey), and genornic viewers utiiizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Maryland).

254P106B maps to chromosome 6 p22 using 254P1D6B sequence and the NCBI BLAST tool: located on the world wide web at: (ncbinlm.nih.gov/genome/seq/page.cgi?F=HsBlast.htm|\&\&ORG=Hs).

Example 4: Expression Analysis of 254P106B in Normal Tissues and Patient Specimens

Figures 14(a) and 14(b) shows expression of 254P1D6B by RT-FCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normail lung cvary cancer pool, lung cancer pool (Figure 14A), as well as from normal stomach, brain, heart, iiver, spleen, skeletal muscle, testis, prostate, bladder, kidney, colon, lung and ovary cancer pool (Figure 14B). Normalization was performed by P.R using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254 P106B, was performed at 26 and 30 cycles of amplification. Results show strong expression of $254 \mathrm{P} 1 \mathrm{D6B}$ in lung cancer pool and ovary cancer pool but not in normal lung nor in vital pool 1. Low expression was detecled in vital pool 2 .

Figure 15 shows expression of 254P1D6B in normal tissues. Two multiple fissue northern blots (Clontech) both with $2 \mu \mathrm{~g}$ of mRNA/ane were probed with the 254P1D6B sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of two 254P1D6B transcript, 4.4 kb and 7.5 kb primarily in brain and testis, and only the 4.4 kb transcript ir placenta, but not in any other normal tissue tested.

Figure 16 shows expression of 254P1D6B in lung cancer patient specimens. First strand CDNA was prepared from rormal lung cancer cell line A427 and a panel of lung cancer patient specimens. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to $254 \mathrm{P} 1 \mathrm{D} \in \mathrm{B}$, was performed at 26 and 30 cycles of annplification. Results show expression of 254P1D6B in 13 out of 30 tumor specimens tesled but not in normal lung. Expression was also delected in the A427 cell line.

As used herein, the term variant or comprises Transcript variants and Single Nucleotide Folymorphisms (SNPs) Transcript variants are variants of mature mRNA from the same gene which arise by aternative transcription or allernative splicing. Alternative transcripts are transcripts from the same gene but statt transcription at different points. Splice variants are mPNA variants spliced differently from the same transcript. In eukaryctes, when a mutti-exon gene is transcribed from genomic DNA, the initial RNA is spliced to produce functional mRNA, which has only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5^{\prime} or 3 ' enc) portions, from the original transcript. Transcript variants can code for the same, similar or different proteins with the same or a similar function or can encode proteins with different functions, and can be expressed in the same tissue at the same time, or in different tissues at the same time, or in the same tissue at difforent times, or in different tissues at different times. Proteins encoded by transcript variants can have similar or cifferent subcellular or extracellular localizations, e.g., secreted versus intracellular.

Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified by full-length cloning experiments, or by use of full-tength transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect idenlity with each other. Second, ESTs in the same cluster were further grouped inio sub-clusters and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-ength sequences. Each consensus sequence is a polential splice variant for that gene. Even when a variant is identified that is not yet a full-ength clone, that porion of the variant is very useful as a research tocl, e.g., for antigen generation and for further cioning of the fuil-length splice variant, using techniques known to those skilled in the art.

Moreover, computer programs are avalable to those skilled in the art that identify transcript variants based on genomic sequences. Genomic-based transcript variant identification programs include FgenesH (A. Salamov and V. Solovyev, "Ab initio gene finding in Drosophila genomic DNA," Genome Research. 2000 April; 10(4):516-22); Grail (URL compbio.ornl.cov/Grail-bin/EmptyGrailForm) and GenScan (URL genes.mitecu/GENSCAN.hml). For a general discussion of splice variant identification protocols see., e.g. Soulhan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun 8; 498(2-3):214-8; de Souza, S.J., et al, Identificaticn of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Nall. Acad. Sci U S A. 2000 Nov 7; 97(23).12690-3.

To further conirm the parameters of a transcript variant, a variety of techniques are available in the art, such as full--length cloning, proteomic validation, PCR-based validation, and 5' RACE validation, etc. (see e.g., Proteomic Validation: Brennan, S.O., et al., Albunin banks peninsula: a new termination variant characlerized by electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug 17;1433(1-2):321-6; Ferranti P, et ai, Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha\{s1)-casein, Eur J Biochem. 1997 Oct 1:249(1):1-7. For PCR-based Validation: Wellimann S. ef ail, Specific reverse transcription-PCR quantification of vascular endotnelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 Apr;47(4);654-60; Jia, H.P., et al,, Discovery of new human betadefensins using a genomics-based approach, Gene. 2001 Jan 24; 263(1-2):211-8. For PCR-based and 5 ' RACE Validation: Brigle, K.E., et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acla. 1997 Aug 7; 1353(2): 191-8).

It is known in the art that genomic regions are modulated in cancers. When the genonic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or spice variants of the gene are modulated as well. Disciosed heren is that 254P1D6B has a particular expression profile related to cancer (See, e.g., Table I). Alternative transcripts and splice variants of 254F106B are also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens.

Using the full-length gene and EST sequences, one additional transcript variant was identified, designated as 254P1D6B v.3. The boundaries of exons in the original transcript, 254P1D6B v. 1 are shown in Table LI. The structures of the transcript variants are shown in Figure 10. Variant 254P1D6B v. 3 extended exon 1 of v. 1 by 109 base pairs and added an exon in between exons 2 and 3 of v .1

Table Lil shows nucleotide sequence of the transcript variant. Table LIII shows the alignment of the transcript variant with rucleic acid sequence 0: 254P1D6B v.1. Table LIV lays out amino acid translation of the transcript variant for the identified reading frame orientation. Table LV displays alignments of the amino acid sequence encoded by the splice variant with that of 254P1D6B v. 1.

Example 6: Single Nucleotide Polvmorphisms of 254P1D3B

A Single Nucleotide Polymorphism (SNP) is a single base pair variation in a nucleotide sequence at a specific location. At any given point of the genome, there are four possible nuclectide base pairs: A/T, C/G, G/C and T/A. Genotype refers to the specific base pair sequence of one or more locations in the genome of an individual. Haplotype refers to the base pair sequence of more than one location on the same DNA molecule (or the same chromosome in higher organisms), often in the context of one gene or in the context of several tightly linked genes. SNPs that occur on a cDNA are called cSNPs. These cSNPs may change amino acids of the protein encoded by the gene and thus change the functions of the protein. Some SNPs cause inherited diseases; others contribute to quantitative variations in phenotype and reactions to environmental factors including diet and drugs among individuals. Therefore, SNPs and/or combinations of alleles (called haplotypes) have many applications, including diagnosis of inherited diseases, determination of drug reactions and dosage, identification of genes responsible for diseases, and analysis of the genetic re'ationship between individuals (P . Nowotny, J . M. Kwon and A. M. Goate, "SNP analysis to dissect human traits," Curr. Opin. Neurobivl. 2001 Oct; 11(5):637-641; M. Firmohamed and B. K. Park, "Genetic susceptibility to adverse drug reactions," Trends Fharmacol. Sci. 2001 Jun; 22(6):298305; J. H. Riley, C. J. Allan, E. Lai and A. Roses, "The use of single nucleotide polymorphisms in the isolation of common disease genes," Pharmacogenomics. 2000 Feb; 1(1):39-47; R. Judson, J. C. Stephens and A. Windemuth, "The predictive power of haplotypes in clinical response," Pharmacogenomics. 2000 Feb; 1(1):15-26).

SNPs are idenlified by a variety of art-accepted methods (P. Bean, "The promising voyage of SNP target discovery," Am. Clin. Lab. 2001 Oct-Nov; 20(9):18-20; K. M. Weiss, "in search of human variation," Genome Res. 1998 Jul; 8(7):691-697; M. M. She, "Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies," Clin. Chem. 2001 Feb; 47(2):164-172). For example, SNPs are identified by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). They can also be discovered by direct sequencing of DNA samples pooled from different individuals or by comparing sequences from different ONA samples. With the rapid accumulation of sequence data in public and private databases, one can discover SNPs by comparing sequences using compuier programs ($Z . \mathrm{Gu}, \mathrm{L}$. Hillier and P. Y. Kwok, "Single nucleotide polymorphism hunting in cyberspace," Hum. Mutat, 1998; 12(4):221-225). SNPs can be verified and genotype or haplotype of an individual can be determined by a variety of methods including direct sequencing and high throughput microarrays (P, Y, Kwok, "Methods for genotyping single nucleotide polymorphisms," Annu. Rev. Genomics Hum. Genel. 2001; 2:235-258; M. Kokoris, K. Dix, K. Moynihan, J. Mathis, B. Erwin, P. Grass, B. Hines and A. Duesterhoeft, "High-throughput SNP genotyping with the Masscode system," Mol. Diagn. 2000 Dec; 5(4):329-340).

Using the methods described above, seventeen SNPs were identified in the original transcript, 254P1D6B v.1, at positions 286 (C/G), 935 (C/A), 980 (T/G), 2347 (G/A), 3762 (C/T), 3772 (A/G), 3955 (C/T), 4096 (C/T), 4415 (G/A), 4519 (G/A), $4539(\mathrm{~A} / \mathrm{G}), 4614(\mathrm{G} / \mathrm{T}), 5184(\mathrm{G} / \mathrm{C}), 5528(\mathrm{~T} / \mathrm{G}), 5641$ (G/A), 6221 (T/C) and 6223 (G/A). The transcripts or proteins with alternative alleles were designated as variants 254P106B v. 4 through v. 20 , respectively. Figure 12 shows the
schematic alignment of the SNP variants. Figure 11 shows the schematic alignment of protein variants, corresponding to nucleotide variants. Nucleotide variants that code for the same amino acid sequence as variant 1 are not shown in Figure 11. These alleles of the SNPs, though shown separately here, can occur in diferent combinations (haplotypes, such as v.2) and in any one of the transcript variants (such as 254P1D6B v.3) that contains the sequence context of the SNPs.

Example 7: Production of Recombinant 254P1D6B in Prokaryotic Systems

To express recombinant 254P106B and 254P1D6B variants in prokaryotic cells, the full or partial length 254P1D6B and 254P1D6B variant CDNA sequences are cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 254 P 1 D 6 B variants are expressed: the fill length sequence presented in Figures 2 and 3 , or any $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or more contiguous amino acids from 254P1D6B, variants, or analogs thereof.
A. In vitro transcription and translation constructs:
pCRII: To generate 254P1D6B sense and anti-sense RNA probes for RNA in situ investigations, pCRII constructs (Invitrogen, Carlsbad CA) are generaled encoding either all or fragments of the 254P1D6B CDNA. The pCRI vector has Sp6 and $T 7$ promoters flanking the insert to drive the transcription of 254P1D6E RNA for tse as probes in RNA in situ hybridization experiments. These probes are used to analyze the cell and tissue expression of 254P1D6B at the RNA level. Transcribed 254P1D6B RNA representing the CDNA amino acid coding region of the 254P1D6B gene is used in in vilto translation systems such as the $\mathrm{Tn}^{T T M}$ Coupled Reticulolysate System (Promega, Corp., Madison, WI) to synthesize 254P106B protein.
B. Bacterial Constructs:
pGEX Consiructs: To generate recombinant 254P1D6B proteins in bacteria that are fused to the Glutathione Stransferase (GST) protein, ail or parts of the 254P106B cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, NJ). These constructs allow controlled expression of recombinant 254 P106B protein sequences with GST fused at the amino-terminus and a six histidire epitope (6 X His) at the carboxy-terminus. The GST and $6 \times$ His tags permit purification of the recombinant fusion protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His antibodies. The 6X His tag is generated by adding 6 histidine codons to the cloning primer at the 3^{\prime} end, e.g., of the open reading framo (ORF). A proteolytic cleavage site, such as the PreScission ${ }^{7 N}$ recognition silt in $\operatorname{FGEX}-6 \mathrm{P}-1$, may be employed such that it permits cleavage of the GST tag from 254P1 D6B-related protein. The ampicilin resistance gene and p RR322 origin permits selection and maintenance of the PGEX plasmids in E. coli.
pMAL Constructs: To generate, in bacieria, recomb:nant 254P1D6B proteins that are fused to maltose-binding protein (MBP), all or parts of the 254 P1D6B CDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Eeverly, MA). These constructs allow controlled expression of recombinani 254P1D6B protein sequences with MBP fused at the amino-terminus and a 6 X His epitope tag at the carboxylterminus. The MBP and $6 \times$ His tags permit purification of the recombinant protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6X His epitope tag is generated by adding 6 histidine codons to the 3^{\prime} cloning primer. A Factor Xa recognition site permils cleavage of the PMAL tag from 254P1D6B. The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinent protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds.
pET Constructs: To express 254P1D6B in bacterial cells, all or parts of the 254P1D6B cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, WI). These vectors allow tightly controlled expression of recombinent 254P106B protein in bacteria with and without fusion to proteins that enhance solubility, such as

NusA and thioredoxin (Trx), and epitope tags, such as $6 \times$ His and S-Tag ${ }^{T M}$ that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 254P1D6B protein are expressed as amino-terminal fusions to NusA.
C. Yeast Constructs:
pESC Constructs: To express 254P1D6B in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 254P1D6B cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP1, LEU2, and URA3 (SIrataçene, La Jolla, CA). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either Flag ${ }^{T M}$ or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein interactions of 254P1D6B. In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations that are found when expressed in eukaryotic cells.
pESP Construcls: To express 254P1D6B in the yeast species Saccharomyces pombe, allor parts of the 254P1D6B cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 254 P 1 D 6 B protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A FlagTM epitope tag allows detection of the recombinant protein with anti- Flag $^{\text {TM }}$ antibody.

Example 8: Production of Recombinant 254P1D6B in Higher Eukaryctic Systems

A. Mammalian Constructs:

To express recombinant 254P1D6B in eukaryotic cells, the full or partial length 254P1D6B cDNA sequences were cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 254P1D6B were expressed in these constructs, amino acids 1 to 1072 , or any $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23$, $24,25,26,27,28,29,30$ or more contiguous amino acids from 254P1D6B v.1, v.2, v.5, and v.6; amino acids 1 to 1063 of v. 3 ; or any $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or more contiguous amino acids from 254P1D6B variants, or analogs thereof.

The constructs can be transfected into any one of a wide variety of mammalian cells such as 293 T cells. Transfected 293 T cell lysates can be probed with the anti-254P1D6B polyclonal serum, described herein.
pcDNA4/HisMax Constructs: To express 254F1L6B in mammalian cells, a 254P1D6B ORF, or portions thereof, of 254P1D6E are cloned into pcDNA4/HisMax Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has Xpress ${ }^{T M}$ and six histidine ($6 \times \mathrm{His}$) epitopes fused to the amino-terminus. The pcDNA4/HisMax vector also contains the bovine growth hormone $(B G H)$ polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE: origin permits selection and maintenance of the plasmid in E coli.
pcDNA3.1/MycHis Constructs: To express 254F1D6B in mammalian cells, a 254P1D6B ORF, or portions thereof, of 254P106B with a consensus Kozak translation initiasion site was cloned into poDNA3.1/Mychis Version A (Invitrogen, Carlsbad, CA). Protein expression was driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the myc epitope and $6 \times$ His epitope fused to the carboxyl-terminus. The pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large
T antigen. The Neomycin resistance gene can be used, as it allows for selection of memmalian cells expressing the protein and the ampicillin resistance gene and ColE 1 origin permits selection and maintenance of the plasmid in E. coli.

The complete ORF of 254P1D6B v. 2 was cloned into the pcDNA3. $1 /$ Mychis construct to generate 254P1D6B.pcDNA3.1/MycHis. Figure 17A shows expression of 254P1D6B.pcDNA3.1/Mychis following transfection into 293 T cells. 293T calis were transfected with either 254P1D6B.pcDNA3.1/Mychis or pcDNA3.1/Mychis vector control. Forty hours later, cell lysates were collecied. Samples were run on an SDS-PAGE acryiamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression of 254P1D6E from the 254P1D6B. pCDNA3.1/Mychis construct in the lysates of transfected cells.
pCDNA3.1/CT.GFP.TOPO Construct: To express 254P1D6B in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 254P1D6B ORF, or portions thereof, with a consensus Kozak translation intiation site are cloned into pCDNA3.1/CT-GFP-TOPO (Invilrogen, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, in vivo detection and cell biology studies. The pcDNA3.1CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large Tantigen. The Neomycin resistance gene allows for selectior of mammalian cellis that express the protein and the ampicilin resistance gene and COIE1 origin permits selection and maintenance of the plasmid in E. coli. Additional constructs with an amino-terminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a 254P1D6B protein.

PAPtag: A 254P1D6B ORF, or porlions thereof, is cloned into pAPlag-5 (GenHunter Corp. Nashville, TN). This construct generates an alkaline phosohatase fusion at the carboxyl-terminus of a 254P1D6B protein while fusing the $\lg \mathrm{Gk}_{\mathrm{k}}$ signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an aminoterminal igGK signal sequence is fused to the amino-terminus of a 254P1D6B protein. The resulting recombinant 254P1D6B proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 254P1D3B proteins. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and $6 \times$ His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resislance gene present in the vector allows for selec:ion of nammalian cells expressing the recombinant protein and the ampicilin resistance gene permits selection of the plasmid in E. coli.
pTag5: A 254P1D6B ORF, or portions thereof: were cloned into $\mathrm{pTag}-5$. This vector is similar to pAPlag but without the alkaline phosphatase fusion. This construct generates 254P1D6B protein with an amino-terminal IgGk signal sequence and myc and \bar{x} His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulling recombinant 254P1D6B protein is optimized for secretion into the media of transfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or receptors that interact with the 254P1D6B proteins. Protein expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli.

The extracellular domain, amino acids 26-953, of 254P1D6B v. 1 was cloned into the pTag5 construct to generate 254P1D6B.pTag5. Figure 17B shows expression and secretion of the extracellular domain of 254P1D6B following 254P106B.pTag5 vector transfection into 293T cellis. 293T cells were transiected with 254P1D6B.pTag5 construct. Forty hours later, supernatant as well as cell lysates were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression and secretion of 254P106B from the 254P1D6B.pTag5 transfected cells.

PsecFc: A 254P106B ORF, or portions thereof, is also cloned into psecFc. The psecFc vector was assembled by cloning the human immunoglobulin $\mathrm{G1}$ (IgG) Fc (hinge, $\mathrm{CH} 2, \mathrm{CH} 3$ regions) into $\mathrm{pSec} T a g 2$ (Invitrogen, California). This
construct generates an lgG1 Fc fusion at the carboxyl-terminus of the 254 P 1 DGB proteins, while fusing the lgGK signal sequence to N-terminus. 254P1D6E fusions utilizing the murine IgG1 Fo region are also used. The resulting recombinant 254 P 1 D 6 B proteins are oplimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that interact with 254P1D6B protein. Protein expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampioillin resistance gene permits selection of the plasmid in E. coli.
pSRa Constructs: To generate mammalian cell lines that express 254P1D6B constitutively, 254P1D6B ORF, or portions thereof, of 254P1D6B were cloned into pSRa constructs. Amphotropic and ecotropic retroviruses were generated by fransfection of $\mathrm{pSR} \alpha$ constructs into the 293T-10A1 packaging line or co-transfection of $\mathrm{p} S R \alpha$ and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 254P1D6B, into the host cell-lines. Protein expression is driven from a long terminal repeal (LTR). The Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColE1 origin permit selection and maintenance of the plasmid in E. coli. The retroviral vectors can thereafter be used for infection and generation of various ce:l lines using, for example, PC3, NIH 3T3, TsuPr1, 293 or rat-1 cells.

Additional $p S R \alpha$ constructs are made that fuse an ϵ pitope tag such as the $F L A G^{T M}$ tag to the carboxyl-terminus of 254P1D6B sequences to allow detection using anti-Flag antibodies. For example, the FLAG ${ }^{T M}$ sequence 5^{\prime} gattacaaggat gacgacgataag 3^{\prime} (SEQ ID NO: 27) is added to cloning primer at the 3 ' end of the ORF. Additional pSRa constructs are made to produce both emino-terminal and carboxyl-terminal GFP and myc/SX His fusion proteins of the full-length 254P1D6E proteins.

Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of 254 P 1 D 6 B . High virus titer leading to high level expression of 254 P 1 D 6 B is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 254P1D6B coding sequences or fragments thereof are amplified by PCR and subcioned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors Alternatively, 254P1D6B coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3-3, 293 or rat-1 cells.

Regulated Expression Systems: To control expression of 254F1D6B in mammalian cells, coding sequences of 254 P1D6B, or portions thereof, are cloned into regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-reguiated Ecdysone System (Sratagene). These systems alow the study of the temporal and concentration dependent effects of recombinant 254P1D6B. These vectors are thereafter used to control expression of 254P1 D6B in various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.

B. Baculovirus Expression Systems

To generate recombinant 254P1D6B proteins in a baculovirus expression system, 254P1D6B ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N -terminus. Specifically, pBlueBac-254P1D6B is co-transfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 (Spodoptera frugiperda) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collecled from cell supernatant and purified by plaque assay.
Recombinant 254P1D6B protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus. Recombinant 254P1D6B protein can be detected using anti-254P1D6B or anti-His-tag antibody. 254P1D6B protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 254P1D6B.

Example 9: Antigenicity Profiles and Secondary Structure

Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9 depicl graphically five amino acid profiles of 254P1D6B variant 1, each assessment available by accessing the ProtScale website located on the World Wide Web at (.expasy.ch/cgibin/protscale.pl) on the ExPasy molecular biology server.

These profiles: Figure 5, Hydrophilicity, (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:38243828); Figure 6, Hydropathicity, (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132); Figure 7, Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492); Figure 8, Average Flexibility, (Bhaskaran R., and Ponnuswamy P.K., 1988. lat. J. Pept. Protein Res. 32:242-255); Figure 9, Beta-turn (Deleage, G., Roux B. 1987 Prolein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale websitc, were used to identify antigenic regions of each of the 254P1D6B variant proteins. Each of the above amino acid profiles of 254P106B variants were generated using the following ProlScale parameters for analysis: 1) A window size of $9 ; 2$) 00% weight of the window edges compared to the window center; and, 3) amino acid profile values normalized to lie between 0 and 1.

Hydrophilicity (Figure 5), Hydropathicity (Figure 6) and Percentage Accessible Residues (Figure 7) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies.

Average Flexibility (Figure 3) and Beta-turn (Figure 9) profiles determine strelches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profite; that are not constrained in secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies.

Antigenic sequences of the 254P106B variant proteins indicaled, e.g., by the profiles set forth in Figure 5, Figure 6 Figure 7 , Figure 8 , and/or Figure 9 are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-254P1D6B antibodies. The immunogen can be any $5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,22,23,24,25,30,35,40,45,50$ or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 254P1D6E protein variants listed in Figures 2 and 3 . In particular, peptide immunogens of the invention can comprise, a peptide region of at least 5 anino acids of Figures 2 and 3 in any whole number increment that incluces an amino acid position having a value greater than 0.5 in the Hydrophilicity profiles of Figure 5 ; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value less than 0.5 in the Hydropathicity profle of Figures 6 ; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profiles of Figure 7; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on Figure 8 ; and, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of Figures 9 . Peptide immunogens of the invention can aso comprise nucleic acids that encode any of the forgoing.

All immunogens of the invention, peplide or nucleic acid, can be embodied in human unit dose form, or comprised by a composition that indudes a pharmaceutical excipient compalible wilh human physiology.

The secondary structure of 254P1063 protein varian: 1 , namely the predicted presence and location of alpha helices, extended strands, and random coils, are predicted from the primary amino acid sequence using the HNN Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-

150 Combet C., Blanchet C., Geourjon C. and Deléage G., hitp://ipbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html), accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/tools/). The analysis indicates that 254P1D6B variant 1 is composed of 18.19% alpha helix, 24.81% extended strand, and 57.00% random coil (Figure 13A).

Analysis for the potential presence of transmembrane domains in the 254P106B variant protein 1 was carried out using a variety of transmembrane prediction algorithms accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/toois/). Shown graphically in figure $13 B$ is the result of analysis of variant 1 using the TMpred program and in figure 13C resulis using the TMHMM program. Both the TMpred program and the TMHIMM program predict the presence of 1 transmembrane domain. Analyses of the variants using other structural prediction programs are summarized in Table VI.

Example 10: Generation of 254P1D6B Polyclonal Antibodies

Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typicaily, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length 254P106B protein variant computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis cortain characteristics of being antigenic and available for recognition by the immune system of the irmmunized host (see the Example entitled "Antigenicity Profles and Secondary Structures") Such regions would be predicted to be hydrophilic, flexible, in beta-iurn conformations, and be exposed on the surface of the protein (see, e.g., Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9 for amino acid profiles that indicale such regions of 254P1D6B protein variant 1)

For example, recombinant bacterial fusion proteins or peptides containing hycrophilic, flexible, beta-turn regions of 254P1D6B protein variants are used as antigens to generate polyclonal antibodies in New Zealand White rabbits or monoclonal antibodies as described in the Example entitled "Generation of 254P1D6B Monoclonal Antibodies (mAbs)". For example, in 254P1D6B variant 1 , such regions include, but are not limited to, amino acids 21-32, amino acids $82-96$, amino acids 147-182, amino acids 242-270, amino acids 618-638, amino acids 791-818, and amino acids 980-1072. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. In one embodiment, a peptide encoding amino acids 147-182 of 254P106B variant 1 was conjugated to KLH and used to immunize a rabbit. Alternatively the immunizing agent may include ail or portions of the 254 P 1 D 6 B variant proteins, analogs or fusion proteins thereof. For example, the 254P1D6B variani 1 amino acid sequence can be fused using recombinant DNA techniques to any one of a variety of fusion prolein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins. In another embodiment, amino acids 980-1072 of 254P1D6B variant 1 is fused to GST using recombinant techniques and the pGEX expression vector, expressed, purified and used to immunize a rabbit. Such fusion proteins are purified from induced bacteria using the appropriate affinity matrix.

Other recombinant bacterial fusion proteins that may be employed include mal tose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the section entitled "Production of 254P1D6B in Prokaryotic Systems" and Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L., Damle, N., and Ledbetter, L.(1991) J.Exp. Med. 174, 561-566).

In addition to bacterial derived fusion proteins, mammalian expressed protein antigens are also used. These antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled "Production of Recombinant 254P106B in Eukaryotic Systems"), and retains post-translational modifications such as glycosylations found in native protein. In one embodiment, amino acids 26-953 of 254P1D6B variant 1 was cloned into the

Tag5 mammalian secretion vector, and expressed in 293T cells (Figure 17). The rocombinant proiein is purified by metal chelate chromatography from tissue cullure supernatants of 293 T cells stably expressing the recombinant vector. The purified Tag5 254P1 D6E protein is then used as immunogen.

During the immunization protocol, it is useful to mix or emulsify the antigen in adjuvants that enhance the immune response of the host animal. Examples of adjuvants include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDN adjuvant (monophosphoryI Lipid A, synthefic trehalose dicorynomycolate).

In a typical protocol, rabbits are initially immunized subcutaneously with up to $200 \mu \mathrm{~g}$, typically $100-200 \mu \mathrm{~g}$, of fusion protein or peptide conjugated to KLH mixed in complete Freund's acjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to $200 \mu \mathrm{~g}$, typically $100-200 \mu \mathrm{~g}$, of the immunogen in incompleie Freund's adjuvant (IFA). Test bleeds are taken approximately $7-10$ days following each imrunization and used to monitor the tiler of the antiserum by ELISA.

To test reacivitity and specificity of immune serum, such as the rabbil serum derived from inmunization with the GST-fusion of 254P1D6B variant 1 protein, the full-length 254P1D6B variant 1 CDNA is cloned into pCDNA 3.1 myc-his expression vector (Invitrogen, see the Example enfitted "Production of Recombinant 254P1D6B in Eukaryotic Systems"). After transfection of the constructs into 293T cells, cell lysates are probed with the anti-254P1D6B serum and with anti-His antibody (Santa Cruz Biotechnologies, Santa Cruz, CA) to determine specilic reactivity to denatured 254P1D6B protein using the Weslern blot technique (Figure 17). In addition, the immune serum is tested by fluorescence microscopy, flow cytomety and immunoprecipitation against 293T and other recombinant 254P106B-expressing cells to determine specific recognition of native protein. Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 254P1D6B are also carried out to test reactivity and specificity.

Anti-serum from rabbits immunized with 254P1D6B variant fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reacive to the fusion pertner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevan: fusion protein. For example, antiserum derived from a GST254P1D6E variant 1 fusion protein is first purifed by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP254P1D6B fusion protein covalently coupled to Affigel matrix. The serum is then further purified by protein G affnity chromatography to isolate the lgG fraction. Sera from other His-lagged antgens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free peptide.

Example 11: Generation of 254P1D6B Monoclonal Antibodies (mAbs)

In one embodiment, therapeutic mAbs to 254P1D6B variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would disrupt or moduluate the biological function of the 254P1D6B variants, for example those that would disrupt the interaction with ligands and binding partners. Immunogens for generation of such mAbs include those designed to encode or contain the entire 254 P 1 D 6 B protein variant sequence, regions predicted to contain functional motifs, and regions of the 254P106B protein variants predicted to be antigenic from computer analysis of the amino acid sequence (see, e.g., Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9 , and the Example entitled "Antigenicity Profiles and Secondary Structures"). Immunogens include peptides, recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion proteins. In addition, cells engineered to express high levels of a respoctive 254P1C6B variant, such as 293T-254P1D5B variant 1 or 300.19 254P1D6B variant 1murine Pre-B cells, are used to immunize mice.

To generate mAbs to a 254P1D6B variant, mice are first immunized intraperitoneally (IP) with, typically, $10-50 \mu \mathrm{~g}$ of protein immunogen or 10^{7} 254P1D6B-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every $2-4$ weeks with, typically, $10-50 \mu \mathrm{~g}$ of protein immunogen or 10^{7} cells mixed in incomplete Freund's adjuvant. Alternatively, MPL-TDM adjuvant is used in immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based immunization protocol is empleyed in which a mammalian expression vector encoding a 254P106B variant sequence is used to immunize mice by direct injection of the plasmid DNA. For example, amino acids 26 -953 of 254P1D6B of variant 1 is cloned into the Tag5 mammalian secretion vector and the recombinant vector will then be used as immunogen. In another example the same amino acids are cloned into an Fc-fusion secretion vector in which the 254P106B variant 1 sequence is fused at the amino-terminus to an IgK leader sequence and at the carboxyl-terminus to the coding secuence of the human or murine IgG Fc region. This recombinant vector is then used as immunogen. The plasmid immunization protocols are used in combination with purified proteins expressed from the same vector and with cells expressing the respective 254P1D6B variant.

Alternatively, mice may be immunized directly into their footpads. In this case, $10-50 \mu \mathrm{~g}$ of protein immunogen or 10^{7} 254P106B-expressing cells are injected sub-cutaneously into the footpad of each hind leg. The first immunization is given with Titermax (SigmaTM) as an adjuvant and subsequent injections are given with Alum-gel in conjunction with CpG oligonucleotide sequences with the exception of the final injection which is given with PBS. Injections are given twice weekly (every three to four days) for a period of 4 weeks and mice are sacrificed 3.4 days after the final injection, at which point lymph nodes immediately draining from the footpad are harvested and the 3 -cells are collected for use as antibody producing fusion parfners.

During the imnunization protocol, test bleeds are ta<en 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity is obtained as delermined by ELISA, Western Eloting, immunoprecipitation, fluorescence microscopy, and fiow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988).

In one embodiment for generating 254P1D6B monozlonal antibodies, a GST-fusion of variant 1 antigen encoding amino acids 21-182 is expressed and purfied from bacteria. Baib C mice are initially immunized intraperitoneally with $25 \mu \mathrm{~g}$ of the GST-254P1D6B variant 1 protein mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with $25 \mu \mathrm{~g}$ of the antiger mixed in incomplete Freund's adjuvant for a total of three immunizations. ELISA using the GST-fusion artigen and a cleavage product from which the GST portion is removed determines the titer of serum from immunized mice. Reactivity and spesificity of serum to full length 254? 1D6B variant 1 protein is monitored by Westem blotting, immunoprecipitation and flow cytometry using 2937 cells transfected with an expression vector encoding the 254P1D6B variant 1 CDNA (see e.g, the Example entitled "Production of Recombinant 254P1D6B in Eukaryotic Systems" and Figure 17). Other recombinant 254P1D6B variant 1 -expressing cells or cells endogenously expressing 254P1D6B variant 1 are also used. Mice showing the strongest reactivity are rested and given a inal injection of antigen in PBS and then sacrificed four days later. The spleens of the sacrificed mice are hervested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988). Supernatants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometry to identify 254P1D6B specific antibodyproducing clones.

The binding affinity of 254F1D6B variant specific menoclonal antibodies is determined using standard technologies. Affinity measurements quantify the strength of antibody to epitope binding and are used to help define which 254P1D6B variant monoclonal antibcdies preferred for diagnostic or therapeutic use, as appreciated by one of skill in the art The BlAcore system (Uppsala, Sweden) is a preferred method for determining binding affinity. The BIAcore system uses surface plasmon resonance (SPR, Welford K. 1991, Opt. Quant. Elect. 23:1; Morton and Myszka, 1993, Methods in

Enzymology 295: 268) to monitor biomolecular interactions in real time. BlAcore analysis conveniently generates association rate constents, dissociation rate constants, equilibrium dissociation constants, and affinity constants.

Example 12: HLA Class I and Class II Binding Assays

HLA class I and class II binding assays ușing purifed HLA molecules are performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. $31: 813$ (1994)). Briefly, purified MHC molecules (5 to 500 nM) are incubated with various unlajeled peptide inhibitors and $1-10 \mathrm{nM}{ }^{125}$-radiolabeled probe peptides as described. Following incubation NHC-peptide complexes are separated from free peptide by gel filtration and the fraction of peptide bound is determined. Typically, in preliminary experiments, each MHC preparation is titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10 20% of the total radioacivity. Al subsequent inhibition and direct binding assays are performed using these HLA concentrations.

Since under these conditions [label|<[HLA] and $\mid C_{50} \geq[H L A]$, the measured $1 C_{50}$ values are reasonable approximations of the true Ko values. Peptide inhibitors are lypically tested at concentrations ranging from $120 \mu \mathrm{~g} / \mathrm{ml}$ to 1.2 $\mathrm{ng} / \mathrm{ml}$, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative bincing figure is calculated for each peptice by dividing the I_{50} of a positive control for inhibition by the IC_{50} for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. Those values can subsequently be converted back into $\mathrm{IC}_{50} \mathrm{NM}$ values by dividing the $\mathrm{IC}_{50} \mathrm{NM}$ of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Binding assays as outlined above may be used to analyze HLA supermotif and/or HLA motif-bearing peptides (see Table IV).

Example 13: Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

H_A vaccine compositions of the invention can include multiple epitopes. The multiple cpitopes can comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This exemple illustrates the identification and confirmation of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

The searches performed to identify the motif-bearing peptide sequences in the Example enitited "Antigenicity Profiles" and Tables VIII-XXI and XXII-XLIX employ the protein sequence data from the gene product of 254P1D6B set forth in Figures 2 and 3 , the specific search peptides used to generate the tables are listed in Table VII.

Computer searches for epitopes bearing HLA Class I or Class II supermolifs or motifs are performed as follows. All translated 254P1D63 protein sequences are analyzed using a text string search software program to identify potential peplide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motifl'supermotif disclosares. Furthermore, such calculations can be made mentally.

Idenified A2, A3-, and DF-supermotif sequences are scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Ciass II molecules. These polynomial algorithms account for the impact of different amino acids at diferent positions, and are essentially besed on the premise that the overali affinity (or $\Delta \mathcal{G}$) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:
$" \Delta G^{\prime \prime}=a_{1 i} \times a_{2 i} \times a_{3 i} \ldots . . . \times a_{m i}$
Where $\mathrm{a}_{i j}$ is a coefficient which represents the effect of the presence of a given amino acid (i) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (l.e,, independent binding of individual side-chains). When residue joccurs at position i in the peptice, it is assumed to contribute a constant amount j to the free energy of binding of the peptide irespective of the sequence of the rest of the peptide.

The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol 267:1258-126, 1997; (see also Sidney et al., Human Immunoi. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:33633373,1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides cerrying j is calculated relaiive to the remainder of the group, and used as the estimate of j. For Class Il peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of orediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

Protein sequences from 254P1D6B are scanned utizizing motif idenificication software, to identify 8-, 9-10- and 11mer sequences containing the HLA-A2-supermotf main anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive-scoring sequences are synthesized and lested for their capacity to bind purfied HLA-A*0201 molecules in vitro (HLA-A*O201 is considered a prototype A2 supertype molecule).

These peptides are then tested for the capacity to bind to additional A2-supertype molecules ($A^{*} 0202, A^{*} 0203$, $A^{*} 0206$, and $A^{*} 6802$). Peplides that bind to at least three of the five A2-supertype aileles tested are typically deemed A2supertype cross-reaclive binders. Freferred peptides bind at an affinity equal to or less than 500 nM to three or more HLAA2 supertype molecules.

Selection of HLA-A3 supermotif-bearing epitopes

The 254P1D6B protein sequence(s) scanned above is also examined for the presence oi peptides with the HLA-A3-supermolif primary anchors. Peptides corresponding to the HLA A3 supermolif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A+1101 molecules, the molecules encoded by the two most prevalent A3supertype alleles. The peptides that bind at leas: one of the two alleles with binding affinities of $\leq 500 \mathrm{nM}$, often $\leq 200 \mathrm{nM}$, are then tested for binding cross-reactivity to the other common A3-supertype alleles (e.g., $A^{*} 3101, A^{*} 3301$, and $A^{*} 6801$) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.

Selection of $H L A-B 7$ supermotif bearing epitopes

The 254P1D6B protein(s) scanned above is also analyzed for the presence of 8-, 9-10-, or 11-mer peplides with the HLA-B7-supermotif. Corresponding peptides are synthesized and tested for binding to HLA-B*0702, the molecule encoded by the most common B7-supertype allee (i.e., the prototype B7 supertype allele). Peptides binding B*0702 with $1 \mathrm{C}_{50}$ of $\leq 500 \mathrm{nM}$ are idenified using standard methods. These peptides are then tested for binding to other common B 7 supertype molecules ($0 . g ., B^{\star} 3501, B^{\star} 5101, B^{*} 5301$, and $B^{\star} 5401$). Peptides capable of binding to three or more of the five 37-supertype alleles tested are thereby identified.

Selection of A1 and A24 motif-bearing enitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine compositions. An analysis of the 254P1D6B protein can also be performed to idenify HLA-A1- and A24-motif-containing sequences.

High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified using analogous methodology.

Example 14: Confirmation of Immunogenicity

Cross-reactive candidate CTL A2-supermotif-bearirg peptides that are identified as described herein are selected to confirm in vitro immunogenicity. Confirmation is performed using the following methodology:

Target Cell Lines for Cellular Screening:

The .221 A 2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, $-\mathrm{B}_{1}-\mathrm{C}$ null mutant human B lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, socium pyruvate, nonessential amino acids and 10% (v / v) heat inactivated FCS. Cells that express an antigen of interest, or transfecterts comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability of peptide-specific CTLs to recognize endogenous antigen.

Primary CTL Induction Cultures

Generation of Dendritic Cells (DC): PEMCs are thawed in RPMI wilh $30 \mu g / m l$ DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, Lglutamine and penicillinstreptomycin). The monocytes are purified by plating 10×10^{6} PBMC/well in a 6 -well plaie. Aiter 2 hours at $37^{\circ} \mathrm{C}$, the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the nor-adherent and loosely adherent cells. Three ml of complete redium containing $50 \mathrm{ng} / \mathrm{ml}$ of GM-CSF and $1,000 \mathrm{U} / \mathrm{ml}$ of $\mathrm{lL}-4$ are then added to each well. TNFc is added to the DCs on day 6 at $75 \mathrm{ng} / \mathrm{ml}$ and the cells are used for CTL induction cultures on day 7 .

Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead(®) reagent Typically about 200-250×106 PBMC are processed to oblain $24 \times 10^{6} \mathrm{CDB}^{+}$T-cells (enough for a 48 -well plate culture). Briefly, the PBMCs are thawed in RPMI with $30 \mu \mathrm{~g} / \mathrm{ml}$ DNAse, washed once with PBS containing 1% human $A B$ serum and resuspenced in PBSi 1% AB serum at a concentration of 20×10^{6} cells/mil. The magnetic beads are washed 3 limes with PBS/AB serum, added to the cells ($140 \mu \mathrm{ll}$ beads $/ 20 \times 10^{\circ}$ cells) and incubated for 1 hour at $4^{\circ} \mathrm{C}$ with conlinuous mixing. The beads and cells are washed $4 \times$ with $P B S / A B$ serum to remove the nonadherent cells and resuspended at 100×10^{6} cells'ml (based on the original cell number) in PBS/AB serum containing $100 \mu / \mathrm{ml}$ detacha-bead@ reagent and $30 \mu \mathrm{~g} / \mathrm{ml}$ DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8 $+T$-cells. The $D C$ are collected and centrifuged at 1300 rpm for $5-7$ minutes, washed once with PBS with 1% BSA counted and pulsed with $40 \mathrm{\mu g} / \mathrm{ml}$ of peptide at a cell concentration of $1-2 \times 10^{\circ} / \mathrm{ml}$ in the presence of $3 \mu \mathrm{~g} / \mathrm{ml} \AA_{2}$ - microglobulin for 4 hours at $20^{\circ} \mathrm{C}$. The $D C$ are then irradiated (4,200 rads), washed 1 time with medium and counted again

Setting up induction cuttures: 0.25 ml cytokine-generated DC (at 1×10^{5} cels $/ \mathrm{ml}$) are co-cultured with 0.25 ml of CD8+ T-cells (at 2×10^{6} cell/fm) in each well of a 48 -well plate in the presence of $10 \mathrm{ng} / \mathrm{ml}$ of IL-7. Recombinant human IL- 10 is added the next day at a final conceniration of $10 \mathrm{ng} / \mathrm{ml}$ and numan $\mathrm{IL}-2$ is added 48 hours later at $10 \mathrm{IU} / \mathrm{ml}$.

Restimulation of the induction cultures with pepide-pulsed adherent cells: Seven and foutteen days after the primary induction, the cells are restimulated with peptide-pulsed adherent cells. The PBMCs are thaved and washed twice
with RPMI and DNAse. The cells are resuspended at 5×10^{6} colls $/ \mathrm{ml}$ and irradiated at -4200 rads. The PBMCs are plated at 2×10^{6} in 0.5 ml complete medium per well and incubated for 2 hours at $37^{\circ} \mathrm{C}$. The plates are washed twice with RPMI by lapping the plate gently to remove the nonadherent cells and the adherent cells puised with $10 \mu \mathrm{~g} / \mathrm{ml}$ of peptide in the presence of $3 \mu \mathrm{~g} / \mathrm{ml} \beta_{2}$ microglobulin in 0.25 ml RFMI/5\%AB per well for 2 hours at $37^{\circ} \mathrm{C}$. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human $\mathrm{IL}-10$ is added at a final concentration of $10 \mathrm{ng} / \mathrm{ml}$ and recombinant human HL 2 is added the next day and again $2-3$ days later at $50 \mathrm{JU} / \mathrm{ml}$ (Tsai et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a ${ }^{51} \mathrm{Cr}$ release assay. In some experiments the cultures are assaved for peptide-specific recognition in the in situ IFNY ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison.

Measurement of CTL lytic activity by ${ }^{51}$ Cr release.

Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) ${ }^{51} \mathrm{Cr}$ release assay by assaying individual wells at a single E:T. Peptice-pulsed targets are prepared by incubating the cells with $10 \mu \mathrm{~g} / \mathrm{ml}$ peptide overnight at $37^{\circ} \mathrm{C}$.

Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with $200 \mu \mathrm{Ci}$ of ${ }^{51} \mathrm{Cr}$ sodium chromate (Dupont, Wilmington, DE) for 1 hour at $37^{\circ} \mathrm{C}$. Labeled target ceils are resuspended at 10^{6} per ml and diluted $1: 10$ with K562 cells at a conceniration of $3.3 \times 106 / \mathrm{ml}$ (an NK-sensifive erythroblastoma cell line used to reduce nonspecific lysis). Target cells $(100 \mu \mathrm{l})$ and effectors $(100 \mu \mathrm{l})$ are plated in 96 well round-bottom plates and incubated for 5 hours at $37^{\circ} \mathrm{C}$. At that time, $100 \mu \mathrm{l}$ of supernatant are collected from each well and percent lysis is delermined according to the formula:
[(cpm of the test sample- cpm of the spontaneous ${ }^{5} \mathrm{Cr}$ release sample)/(cpm of the maximal ${ }^{51} \mathrm{Cr}$ release samplecpm of the spontaneous ${ }^{51} \mathrm{Cr}$ release sample)] $\times 100$.

Maximum and spontaneous release are delermined by incubating the labeled targets with 1% Triton $X-100$ and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample-background) is 10% or higher in the case of individual weils ard is 15% or more at the two highest E:T ratios when expanded cultures are assayed

In situ Measurement of Human IFN γ Production as an Indicator of Peptide-specific and Endogenous Recognition
Immulon 2 plates are coated with mouse anti-human IFNz moncolonal antibody ($4 \mu \mathrm{~g} / \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaHCO} 3, \mathrm{pH} 8.2$) overnight at $4^{\circ} \mathrm{C}$. The plates are washed with $\mathrm{Ca}^{3+}, \mathrm{Mg}^{2+}$-free $\mathrm{PBS} / 0.05 \%$ Tween 20 and blocked with PBS $/ 10 \% \mathrm{FCS}$ for two hours, after which the CTLs ($100 \mu 1 /$ well) and targets ($100 \mu /$ /well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1×10^{6} cells $/ \mathrm{ml}$. The plates are incubated for 48 hours at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or $1200 \mathrm{pg} / 100$ microliter/well and the plate incubated for two hours at $37^{\circ} \mathrm{C}$. The plates are washed and $100 \mu \mathrm{l}$ of biotinylated mouse anti-human IFNgamma monocional antibody (2 microgram/ml in PBS/3\%FCS/0.05\% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 microliter HRP-streptavidin (1:4000) are added and the plates incubated for one hour at room temperature. The plates are then washed $6 x$ with wash buffer, 100 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for $5-15$ minutes. The reaction is stopped with 50 microliter/well 1 M $\mathrm{H}_{3} \mathrm{PO}_{4}$ and read at OD450. A culture is considered positive if it measured at least 50 pg of FFN -gammaiwell above background and is twice the background level of expression.

CTLExpansion.

Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or turnor targets are expanded over a two week period with anti-CD3. Briefly, $5 \times 10^{4} \mathrm{CD} 8+$ cells are added to a T 25 flask containing the following: 1×10^{6} irradiated (4,200 rad) PBMC (autologous or allogeneic) per $\mathrm{ml}, 2 \times 10^{5}$ irradiated ($8,000 \mathrm{rad}$) EBV- transformed cells per ml , and OKT3 (anti-CD3) at 30 ng per mil in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, $25 \mu \mathrm{M} 2$-mercapicethanol, L-glulamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of $2001 \mathrm{U} / \mathrm{ml}$ and every three days thereafter with fresh media at $501 \mathrm{U} / \mathrm{ml}$. The cells are split if the cell concentration exceeds $1 \times 10^{6 /} / \mathrm{ml}$ and the cultures are assayed between days 13 and 15 at E :T ratios of 30,10 , 3 and $1: 1$ in the ${ }^{51} \mathrm{Cr}$ release assay or at $1 \times 10^{5} / \mathrm{ml}$ in the in situ IFNr assay using the same targets as before the expansion.

Cultures are expanded in the absence of anti-CC3+ as follows. Those cultures that demonstrate specific Iytic activity against peptide and endogenous targets are selecteo and $5 \times 10^{4} \mathrm{CD} 8^{+}$cells are added to a T25 flask containing the following: 1×10^{6} autologous PBMC per ml which have been peptide-pulsed with $10 \mu \mathrm{~g} / \mathrm{ml}$ peptide for two hours ai $37^{\circ} \mathrm{C}$ and irradiated ($4,200 \mathrm{rad}$); 2×105 irradiated (8,000 rad) EBV-transformed cells per ml RPMI- 1640 containing $10 \%(\mathrm{~V} / \mathrm{v}$) human AE serum, non-essential AA, sodium pyruvate, 25 mM 2-ME, L-glutamine and gentamicin.

Immunogenicity of A2 supermotif-bearing peptides

A2-supermotif cross-reactive binding peptides are tested in the cellular assay for the ability to induce peptidespecific CTL in normal individuals. In this analysis, a peptide is typically considered to be an epitope if it induces peptidespecific CTLs in at least individuals, and preferably, also recognizes the endogenously expressed peptide.

Immunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses 254P1D6B. Briefly, PBMCs are isolated from patients, re-s:imulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.

Evalualion of $A^{\star} 03 /$ A 11 immunogenicity

HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptices.

Evaluation of 37 inmunogenicity

Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth herein are confirmed in a manner analogous to the confirnation of $A 2$-and $A 3$-supermotif-bearing pepides.

Peptides bearing other supermotifs/motifs, o.g. HLAA1, HLA-A24 etc. are also confirmed using similar methodology

Example 15: Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermolifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peplides, as demonstrated herein. Moreover, the defnition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues wilhin a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated bincing affinity are set forth in this example.

Analoging at Primary Anchor Residues
Peptide engineering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are attered, for example, to introduce a preferred L, I, V, or M at position 2 , and I or \vee at the C -terminus.

To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele $\mathrm{A}^{*} 0201$, then, if $\mathrm{A}^{*} 0201$ binding capacity is maintained, for A2-supertype cross-reactivity.

Alternatively, a peptide is confirmed as binding one or al supertype members and then analoged to modulate binding afinity to any one (or more) of the supertype members to add population coverage.

The selection of analogs for immunogenicity in a cellular screening analysis is typically further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakly, i.e., bind at an IC50 of 5000 nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and crossreactivity by T cells specific for the parent epitope (see, e.g., Parkhurst et al., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Natl. Acad. Sci. USA 92:8166, 1995)

In the cellular screening of these peptide analogs, it is important to confirm that analog-specific CTLs are also able to recognize the wild-iype peptide and, when possible, target cells that endogenously express the epitope.

Analoging of HLA-A3 and B7-supermotif-bearing peptides

Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed in analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to $3 / 5$ of the A 3 -supertype molecules are engineered at primary anchor residues to possess a preferred residue $(V, S, M$, or $A)$ at position 2 .

The analog peptides are then tested for the ability to bind $A^{*} 03$ and $A^{*} 11$ (prototype $A 3$ supertype alleles). Those peptides that demonstrate $\leq 500 \mathrm{nM}$ binding capacity are then confirmed as having A3-supertype cross-reacivity.

Sirilarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more $B 7$-supertype alleles can be improved, where possible, to achieve increased cross-reacive binding or greater binding affinity or binding half life. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue $(\mathbb{V}, \mathrm{I}, \mathrm{L}$, or F) at the C -terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996).

Analoging at primary anchor residues of other moif and/or supernotif-bearing epitopes is performed in a like manner.

The analog peptides are then be confirmed for immunogenicity, typically in a celular screening assay. Again, it is generally important to demonstrate that analog-specific CTLs are also aole to recognize the wild-type peplide and, when possible, targets that endogenously express the epitope.

Analoging at Secondary Anchor Residues

Moreover, HLA supermotifs are of value in engineering highly cross-reactive pepides and/or peptides that bind HLA molecules with increased affinity by ideniffying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a $B 7$ supermotif-bearing peplide with an F residue at position 1 is analyzed. The peptide is then analoged to, for example, substiute L for F at position 1 . The analoged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivily. Such a procedure identifies analoged peptides wilh enhanced properties.

Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be lested for immunogenicity in HLA-B7-trensgenic mice, following for exampie, IFA immunization or lipopeptide immunization. Analoged peptides are additionally tested for the ability to stimulate a recall response using PEMC from patients with 254P1D6Bexpressing tumors.

Other analoging strategies

Ancther form of peplide analoging, unrelated to anchor positions, involves the substitution of a cysteine with α amino butyric acid. Due to its chemical nature, cysteine has the propensi:y to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substitution of α-amino butyric acid for cysteine not only alleviates this problem; but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley \& Sons, England, 1999).

Thus, by the use of single amino acid substitutions, the binding properties and/or cross-reacivity of peptide ligands for HILA supertype molecules can be modulaled.

Example 16: Identification and confirmation of 254P1D6E-derived sequences with HLA-DR binding motifs

Peptide epitopes bearing an HLA class II supermotif or motif are dentified and confirmed as outlined below using methodology similar to that described for HLA Class I peptides.

Selection of HLA-DR-supermotif-bearing epitopes.

To identify 254P1D6B-derived, HLA class II HTL epitopes, a 254P1D6B antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15 -mer sequences are selected comprising a DRsupermotif, comprising a 9 -mer core, and three-residue N - and C -terminal flanking regions (15 amino acids total).

Protocols for predicling peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9 -mer core regions. Each protocol not only scores peptide sequences for the presence of $D R$-supermotif primary anchors (i.e., at position 1 and position 6j within a 9 -mer core, but add: itionally evaluates sequences for the presence of secondary anchors, Using allele-specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select pepide sequences with a high probability of binding a parlicular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reaclive peptides.

The 254P1D6B-derived pepides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially lested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Feptides binding at least two of these three DR molecules are then tested for binding to DR2w2 $\beta 1, D R 2 w 2 \beta 2, D R 6 w 19$, and DR9 molecules in secondary assays. Finally, peptides binding at least two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4w15, DR5w11, and CR8w2 molecules in tertiary assays. Peptides binding at leasi seven of the te, DR molecules comprising the primary, secondary, and tertiary screening assays are considered cross-reactive DR binders. 254P1D6B-derived peptides found to bind common HLA-DR alleles are of particular interest.

Selection of DR3 motif peplides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of HTL epitopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.

To efficiently idenlify peptides that bind DR3, target 254P1D6B antigens are analyzed for sequences carrying one of the two DR3-specific binding motifs reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an effinity of $1 \mu \mathrm{M}$ or better, i.e., less than $1 \mu \mathrm{M}$. Peptides are found that meet this binding criterion and qualify as HLA class II high affinity binders

DR3 binding epitopes identified in this manner are insiuded in vaccine compositions with $D R$ supermotif-bearing peptide epitopes.

Similarly to the case of HLA class I motif-bearing peplides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9 -mer core sequence is an optimal residue for DR3 binding, and subsitution for that residue often improves DR 3 binding.

Example 17: Immunogenicity of 254P1D6B-derived HTL epitopes

This example determines immunogenic DR supermolif- and DR3 motif-bearing epitopes among those identified using the methodology set forth herein.

Immunogenicity of HTL epilopes are confirmed in ε manner analogous to the determination of immunogenicity of CTL epitopes, by assessing the ability to stimulate HTL responses and/or by using appropriaie transgenic mouse models. Immunogenicity is determined by screening for: 1.) in viro primary induction using normal PBMC or 2.) recall responses from patients who have 254P106B-expressing tumors.
Example 18: Calculation of phenotypic frequencies of HLA-supertypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverace, gene frequencies of HLA alleles are determined. Gene frequencies for each HLA allele are calculated from antigen or allele frequencies utilizing the binonial distribution formulae $\mathrm{gf}=1$-(SQRT(1af) ((see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overail phenotypic frequencies, cumulative gene frequencies are calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf)].

Where frequency data is not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies is assumed. To obtain total potential supertype population coverage no linkage disequilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations are made by adcing to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total $=A+B^{*}(1-A)$). Confirmed mermbers of the $A 3$-like supertype are $A 3, A 11, A 31, A^{*} 3301$, ard $A^{*} 6801$. A though the $A 3$-like supertype may also include A $34, A 66$, and $A^{*} 7401$, these alleles were not included in overall frequency calculations. Likewise confirmed members of the A2-like supertype family are $A^{*} 0201, A^{*} 0202, A^{*} 0203, A^{*} 0204, A^{*} 0205, A^{*} 0206, A^{*} 0207, A^{*} 6802$, and $A^{*} 6901$. Finally, the B 7 -like supertype-confirmed aileles are: $\mathrm{B} 7, \mathrm{~B}^{*} 3501-03, \mathrm{~B} 51, \mathrm{~B}^{+} 5301, \mathrm{~B}^{*} 5401, \mathrm{~B}^{*} 5501-2, \mathrm{~B}^{*} 5601, \mathrm{~B}^{*} 6701$, and $\mathrm{B}^{*} 7801$ (potentially also $\mathrm{B}^{*} 1401, \mathrm{~B}^{*} 3504-06, \mathrm{~B}^{*} 4201$, and $\mathrm{B}^{*} 5602$).

Population coverage achieved by combining the $A 2-A 3$ - and E 7 -supertypes is approximately 86% in five major ethnic groups. Coverage nay be exiended by ircluding peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29\% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles ae represented with an average frequency of 39% in these same ethnic populations. The total coverage acioss the majcr ethnicities when A1 and A24 are combined with the coverage of the A 2 -, A - and B 7 -supertype alleles is $>95 \%$, see, e.g., Table IV (G). An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.

Immunogenicity studies in humans (e.g., Bertoni et al., J. Clin. Invest. 100:503, 1997; Doclan et al., Immunity 7:97, 1997; and Threlkeld et al, J. Immunol. 159:1648, 1997) have shown lhat highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reacive binding peptides is an important selection criterion in identifying candidate epilopes for inclusion in a vaccine that is immunogenic in a diverse population.

With a sufficient number of epitopes (as disclosed herein and from the art), an average population coverage is predicted to be greater than 95% in each of five major ethnic populations. The game theory Monte Carlo simulation analysis,
which is known in the art (see eg., Osborne, M.J. and Rubinstein, A. "A coursc in game theory" MIT Press, 1994), can be used to estimate what percentage of the individuals in a popLlation comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vacsine epitopes described herein. A preferred percentage is 90%. A more preferred percentage is 95%.

Example 19: CTL Recognition Of Endogenously Processed Antigens After Priming

This example confirms that CTL induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, i.e., native antigens.

Effector celis isolated from Iransgenic mice that are immunized with peptide epitopes, for example HLA-A2 supermotif-bearing epitopes, are re-simulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicily and the cell lines that contain peptide-specific cyto:oxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on ${ }^{51} \mathrm{Cr}$ labeled Jurkat-A2.1/K K° target cells in the absence or presence of peptide, and also tested on ${ }^{51} \mathrm{C}$ r labeled target cells bearing the endogenously synthesized antigen, i.e. cells that are stably transfected with 254P1D3B expression vectors.

The results demonstrate that CTL lines obtained from animals primed with peptide epilope recognize endogenously synthesized 254P1 106B antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to $\mathrm{HLA}-\mathrm{A}^{*} 0201 / \mathrm{K}^{\mathrm{b}}$ Iransyenic mice, several other transgenic mouse models including mice with human $A 11$, which may also be used to evaluate $A 3$ epitopes, and $B 7$ alleles have been characterized and others (e.g., transcenic mice for HLA-A1 and A24) are teing developed. HLA-DR1 and HLA. DR3 mouse models have also been developed, which may be used to evaluate HTL epilopes.

Example 20: Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and - TLs in tansgenic mice, by use of a 254 P 1 D 6 B -derived CTL and HTL peptide vaccine compositions. The vaccine composition used herein comprise peptides to be administered to a patient with a 254P1D6B-expressing tumor. The peptide composition can comprise multiple CTL and/or HTL epitopes. The epitopes are identified using methodology as described herein. This example also illusirates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CTL epitope can be one that binds to multiple HLA family members at an affinity of 500 n M orless, or analogs of that epitope. The pepides may be lipidated, if desired.

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J . Immunol. 159:4753-4761: 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are used to confirm the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, and are primed subcutaneously (base of line tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTLHTL conjugate, in DMSO/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS activaled lymphoblasts coated with peptide.

Cell ines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991)

In vitro CTL activation: One week after priming, spieen cells (30×10^{6} cellsflask) are co-cultured al $37^{\circ} \mathrm{C}$ with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts ($10 \times 10^{\circ} \mathrm{cesl} / \mathrm{s} /$ fask) in 10 ml of culture medium $/ T 25$ flask. After six days, effector cells are harvesled and assayed for cytotoxic activity

Assay for cytotoxic activity: Target cells $(1.0$ to $1.5 \times 106)$ are ircubated at $37^{\circ} \mathrm{C}$ in the presence of $200 \mu \mathrm{~h}$ of ${ }^{51} \mathrm{Cr}$. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of $1 \mu \mathrm{~g} / \mathrm{ml}$. For the assay, $10^{4}{ }^{41} \mathrm{C}$-labeled target cells are added to different concentrations of effector cells (final volume of $200 \mu^{\prime}$) in U-bottom 96 -well plates. After a six hour incubaition period at $37^{\circ} \mathrm{C}$, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is de:ermined in a Micromedic automalic gamma counter. The percent speciic lysis is determined by the formula: percent specific release $=100 \times$ (experimental release - spontaneous release)/(maxinum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, $\%{ }^{51}$ Cr release data is expressed as lytic unts/ 10^{6} cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a six hour ${ }^{51} \mathrm{Cr}$ release assay. To obtain specific lytic unis/ $/ 10^{6}$, the lytic units/ 10^{6} obtained in the absence of peptide is subtracted from the lytic units $/ 10^{6}$ obtained in the presence of peptide. For example, if $30 \%{ }^{51} \mathrm{Cr}$ release is obtained at the effector (E) target (T) ratio of $50: 1$ (i.e,, 5×10^{5} effector cells for 10,000 targets) in the absence of peptide and $5: 1$ (i.e., 5×10^{4} effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: $[(1 / 50,000)-(1 / 500,000)] \times 10^{6}=18 \mathrm{LU}$.

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTLATL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using, for example, CTL epitopes as outlined above in the Example entitled "Confirmation of Immunogenicity." Analyses similar to this may be performed to confirm the immunogenicity of peplide conjugates containing mutiple CTL epitopes and/or multiple HTL epitopes. in accordance with these procedures, it is found that a CTL resoonse is induced, and concomitantly that an HTL response is induced upon administration of such compositions.

Example 21: Selection of CTL and HTL epitopes for inclusion in a 254P1D6B-specific vaccine.

This example ilustrates a procedure for selecting peptide epilopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, sither single or one or more sequences (i.e., minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides.

The following principles are utilized when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the folowing principles is balanced in order to make the selection.

Epitopes are selected which, upon administration, mimic immune responses that are correlated with 254P106B clearance. The number of epitopes used depends on observations of patients who spontaneously clear 254P1D6B. For example, if it has been observed that patients who spontaneously clear 254P1D6B-expressing cells generate an immune response to at least three (3) epitopes from 254P1D6B antigen, then at least three epitopes should be included for HLA class I. A similar rationale is used to determine HLA class II epitopes.

Epitopes are often selected that have a binding affinity of an IC_{51} of 500 nM or less for an HLA class I molecule, or for class II, an IC50 of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site, at URL bimas.dcr.t.nih.gov/.

In order to achieve broad coverage of the vaccine through oul a civerse population, sufficient supermotif bearing peptides, or a sufficient array of alleie-specific motif bearing peptides, are selected to give broad population coverage, in one embodiment, epitopes are selected to provide at least 80% population coverage. A Monte Cario analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.

When creating polyepitopic compositions, or a minigene that encodes same tis typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles enployed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contaned within the sequence, i.e, it has a high
concentration of epitopes. Epitopes may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9 -mer epitopes and one 10 -mer epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. A multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that aiter the cross-reactivity and/or binding affinity properties of the polyepitopic pepiide. Such a vaccine composition is administered for therapeutic or prophylaclic purposes. This embodiment provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and ihereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motifbearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present in 254 P 1 D 6 B , thus avoiding the need to evaluate any junctional epitopes. Laslly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions. Related to this embodiment, computer prograns can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude to an immune response that controls or clears cells that bear or overexpress 254P1D6E.

Example 22: Construction of "Minigene" Mulit-Epitope DNA Plasmids

This example ciscusses the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of B cell, CTL and/or HTL epitopes or epitope analogs as described herein.

A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epilopes and HLA-A1 and -A 24 motif-beaing peptide epilopes are used in conjunction with DR supermotif-bearing epitopos and/or DR3 epitopes. HLA class I supermotif or molif-bearing peptide eoitopes derived $254 \mathrm{P} 1 \mathrm{D6B}$, are selected such that multiple supermotifsimotifs are represented to ensure broad population coverage. Similarly, HLA class 11 epitopes are selected from 254P1D6B to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA [R-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

Such a construct may additionally include sequences that direct the HTL epitopes to the endoplasmic reticulum For example, the li protein may be fused to one or more HTL epitopes as described in the art, wherein the CLIP sequence of the li protein is removed and replaced with an HLA class II epitope sequence so that HLA class II epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class II molecules.

This example llustrates the melhods to be used for construction of a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine kappa lg-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.

Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nuclectides, Kozak: sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used
and a total of 30 cycles are performed using the following conditions: $95^{\circ} \mathrm{C}$ for 15 sec , annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec , and $72^{\circ} \mathrm{C}$ for 1 min .

For example, a minigene is prepared as follows. For a first PCR reaction, $5 \mu \mathrm{~g}$ of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, i.e., four pairs of primers, oligonucleotides $1+2,3+4$, $5+6$, and $7+8$ are combined in 100μ reaclions containing Pfu polymerase buffer ($1 \mathrm{x}=10 \mathrm{mM} \mathrm{KCL}, 10 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 20$ mM Tris-chloride, $\mathrm{pH} 8.75,2 \mathrm{mM} \mathrm{MgSO} 4,0.1 \%$ Triton X- $100,100 \mu \mathrm{~g} / \mathrm{ml}$ BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of $1+2$ and $3+4$, and the product of $5+6$ and $7+8$ are mixed, annealed, and extended for 10 cycles. Half of the two reacions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The fulllength product is gel-purified and cloned into pCR-blunt (Inviltrogen) and individual clones are screened by sequencing.

Example 23: The Plasmid Construct and the Degree to Which It Induces Immunogenicity.

The degree to which a plasmid construct, for example a plasmid constructed in accordance with the previous Example, is able to induce immunogenicity is confirmed in vifto by determining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines 'antigenicity" and allows the use of human APC. The assay cetermines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface Quantitaiion can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et al., J. Immunol. 156:683-692, 1996; Demo:z et al, Nature 342.682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to oblain equivalent levels of lysis or lymphokine release (see, e.g, Kageyama ef al, J. Immunol. 154:567-576, 1995).

Alternatively, immunogenicity is confirmed through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed e.g, in Alexander et al., Immunity 1:751-761, 1994.

For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2. $1 / \mathrm{K}^{\mathrm{D}}$ trarsgenic mice, for example, are immunized intramuscularly with 100 ug of naked CDNA. As a means of comparing the level of CTLs induced by CDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypepide as they would be encoded by the minigene.

Splenocyles from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ${ }^{51} \mathrm{Cr}$ release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the in vivo immunogenicily of the minigene vaccine and polyepitopic vaccine.

It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A 3 and HLA-B7 motif or supermotif epitopes, whereby it is also found that the minigene elicits appropriate immune responses directed toward the provided epitopes.

To confirm the capacity of a class II ep tope-encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, 1 - 1 -restricted mice, for example, are immunized intramuscularly with $100 \mu \mathrm{~g}$ of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsifed in complete Freund's adjuvant.

CD4 $+T$ cells, i.e. HTLs, are purified from splenocyles of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ${ }^{3} \mathrm{H}$-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogonicity of the minigene.

DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:5299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439445, 1998; Sedegah et al., Proc. Nail. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177181, 1999; and Robinson et al., Nature Med. 5.526-34, 1999)

For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/Kb transgenic mice are immunized IM with $100 \mu \mathrm{~g}$ of a DNA minigene encoding the immunogenic peptides including at least one HLLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3 9 weeks), the mice are boosted IP with 10^{7} ptu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with $100 \mu \mathrm{~g}$ of DNA or recombinant vaccinia without the mingene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the mirigene and recombinant vaccinia, then assayed for peptide-specific activity in an alpha, beta and/or gamma IFN ELISA.

It is found that the minigene utilized in a prime-boost protocol elicils greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse modeis to assess CTL inducion by HLA-A3 or HLA-B7 motif or supermotif epitopes. The use of prime boost protocols in humans is described below in the Exampte enitited "Induction of CTL Responses Using a Prime Boost Protocol."

Example 24: Peptide Compositions for Prophylactic Uses

Vaccine compositions of the present invention can be used to prevent 254P' D6B expression in persons who are at risk for tumors that bear this antigen. For example, a polyepitopic peptide epitope composition for a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in the above Examples, which are also selected to target greater than 80% of the population, is administered to individuals at risk for a $254 \mathrm{P} 1 \mathrm{D6B}$-associated tumor.

For example, a peptide-based composition is provided as a single polypeptide that encompasses muliple epitopes. The vaccine is typically administered in a physiolocical solution that comprises an adjuvant, such as incomplete Freunds Adjuvant. The dose of peptide for the intial immunization is from about 1 to about $50,000 \mu \mathrm{~g}$, generally $100-5,000$ $\mu \mathrm{g}$, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient: by techniques that determine the presence of epitopespecific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a proptylaxis against 254P1D6E-associated disease.

Alternatively, a composition typically comprising transfecting agents is used for the administration of a nucleic acidbased vaccine in accordance with methodologies known in the art and cisclosed herein.

Example 25: Polyepitopic Vaccine Compositions Derived from Native 254P1D6E Sequences
 A native 254P1D6B polyprotein sequence is analyzed, preferably using comouter algorithns defined for each class I andior class || supermotif or molff, to identify "reativaly shor." regions of the polyprotein that comprise multiple epitopes.

The "relatively short" regions are preferably less in length than an entire native antigen. This relafively short sequence that contains multiple distinct or overlapping, "nested" epitopes can be used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 250 amino ecids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope molfs may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9 -mer epitopes and one 10 -mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.

The vaccine composition will include, for example, mulliple CTL epitopes from 254P1D6B antigen and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Aliernatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substilutions that aller the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally, such an embodiment provides for the possibility of motifbearing epitopes for an HLA makeup(s) that is presently unknown. Furthermore, this embodiment (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in native 254F106B, thus avoiding the need to evaluate any junctional epitopes. Laslly, the embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions.

Related to this embociment, computer programs are available in the art which can be used to identify in a targel sequence, the grealest number of epitopes per sequence length.

Example 26: Polyepitopic Vaccine Compositions from Multiple Antigens

The 254P1D6B peptide epitopes of the present invention are used in conjunction with epitopes from other target tumor-associated antigens, to create a vaccine composition that is useful for the prevention or treatment of cancer that expresses 254P1D6B and such other antigens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple epitopes from 254P1D6E as well as turmor-associated antigens that are often expressed with a target cancer associated with 254 P1D6B expression, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic celts which have been loaded with the peptide epitopes in vitro.

Example 27: Use of peptides to evaluate an immune response

Peptides of the invent on may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to 254P1D6B. Such an analysis can be performed in a manner described by Ogg et al, Science 279:2103-2106, 1998. In this Example, peptides in accordance wilh the invention are used as a reagent for diagnostic or prognostic purposes, nol as an immunogen.

In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a crosssectional analysis of, for example, 254P1D6B HLA-A*0201-specific CTL frequencies from HLA A ${ }^{*} 0201$-positive individuals at different stages of disease or following immunization comprising a 254P1D6B peplide containing an $\mathrm{A}^{*} 0201$ motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J. Med. 337:1267, 1997). Briefly, purified HiLA heavy chain ($A^{*} 0201$ in this example) and $\beta 2$-microglobulin are synthesized by means of a prokaryotic expression system.

The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH -terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chan, $\beta 2$-microglobulin, and peptide are refolded by dilution. The $45-\mathrm{kD}$ refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5' triphosphate and magnesium. Streplevidin-phycoerythrin conjugate is added in a $1: 4$ molar ratio, and the tetrameric product is concentrated to $1 \mathrm{mg} / \mathrm{ml}$. The resulting product is refered to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one miliion PBMCs are centrifuged at 300 g for 5 minutes and resuspended in $50 \mu \mathrm{l}$ of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain $>99.98 \%$ of control samples. Controls for the tetramers include both $\mathrm{A}^{*} 0201$-negative individuals and $\mathrm{A}^{*} 0201$-positive non-diseased donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The resuls indicate the number of cells in the PBMC sample that contain epitope-restricled CTLs, thereby readily indicaling the extent of immune response to the 254P1D6B epitope, and thus the status of exposure to 254P1D6B, or exposure to a vaccine that elicits a protective or therapeutic response.

Example 28: Use of Feptide Epitopes to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acule or recall responses, in patients. Such an analysis may be performed on patients who have recovered from 254F1D6B-associated disease or who have been vaccinated with a 254 P 1 D 6 B vaccine.

For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any 254P1D6B vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermolifs to provide cross-reaclivity with muliple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three limes in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2 mM), penicillin ($50 \mathrm{U} / \mathrm{ml}$), streptomycin ($50 \mu \mathrm{~g} / \mathrm{ml}$), and Hepes (10 mM) contairing 10% heat-inactivated human $A B$ serum (complete RFMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at $10 \mu \mathrm{~g} / \mathrm{ml}$ to each well and HBV core $128-140$ epitope is added at $1 \mu \mathrm{~g} / \mathrm{ml}$ to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4×10^{5} PBMC are stimu ated with peptice in 8 replicate cultures in 96 -well round boltom plate in $100 \mu / /$ well of complete RPMI. On days 3 and $10,100 \mu$ i of complete RPMI and $20 \mathrm{U} / \mathrm{ml}$ final concentration of rlL-2 are added to each well. On day 7 the cultures are transferred into a 96 -well fat-bottom plate and restimulated with pepide, rll-2 and 105 irradiated ($3,000 \mathrm{rad}$) autologous feeder cells. The cultures are tested for cytoloxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific ${ }^{51} \mathrm{Cr}$ release, based on comparison with non-diseased control subjects as previously described (Rehermann, et al., Nature Med. 2:1104,1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:14321440, 1996).

Target cell lires are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibiity and Immunogenetics (ASHI, Bosion, MA) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of
the invention at $10 \mu \mathrm{M}$, and labeled with $100 \mu \mathrm{Ci}$ of ${ }^{51} \mathrm{Cr}$ (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard 4 h , split well ${ }^{51} \mathrm{Cr}$ release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: $100 \times$ [(experimental release-spontaneous release)/maximum releasespontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Trion $X-100$; Sigma Chemical Co., St. Louis, MO). Spontaneous release is $<25 \%$ of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to 254 P 1 D 6 B or a 254 P 1 D 6 B vaccine.

Similarly, Class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96 -well flat bottom plate at a density of 1.5×10^{5} cells/well and are stimulated with $10 \mu \mathrm{~g} / \mathrm{ml}$ synthetic peptide of the invention, whole 254P1D6B antigen, or PHA. Cells are routinely plated in replicates of $4-6$ wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing $10 \mathrm{U} / \mathrm{ml} \mathrm{IL}-2$. Two days later, $1 \mu \mathrm{Cl} \mathrm{H}^{3} \mathrm{H}$-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for ${ }^{3} \mathrm{H}$-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of ${ }^{3} \mathrm{H}$ thymidine incorporation in the presence of antigen divided by the ${ }^{3} \mathrm{H}$-thymicine incorporation in the absence of antigen.

Example 29: Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and FTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:

A total of about 27 individuals are enrolled and divided into 3 groups:
Group I: 3 subjects are injected with pacebo and 6 subjects are injected with $5 \mu \mathrm{~g}$ of peptide composition;
Group II: 3 subjects are injected with placebo and 6 subjects are injected with $50 \mu g$ peptide composition;
Group III: 3 subjects are injected with placebo and 6 subjects are injected with $500 \mu \mathrm{~g}$ of peptide composition After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.
The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

The vaccine is found to be both safe and efficacious.

Example 30: Phase II Trials in Patients Expressing 254P106B

Phase II trials are performed to study the effect of administering the CTL-HTL. peptide compositions to patients having cancer that expresses 254P1D6B. The main objectives of the trial are to determine an effective dose and regimen for inducing CTLs in cancer patients that express 254P1D6B, to establish the safety of inducing a CTL and HTL response in

These patients, and to see to what extent activation of CTLs improves the clinical picture of these patients, as manifested, e.g., by the reduction and/or shrinking of lesions. Such a study is designed, for example, as follows:

The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50,500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

There are three patient groupings. The frst group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65 and represent diverse ethnic tackgrounds. All of them have a tumor that expresses 254P1D6B

Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of administering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the treatment of 254P1D6Bassociated disease.

Example 31: Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA vaccine in transgenic mice, such as described above in the Example enfitled "The Plasmid Constuct and the Degree to Which It Induces Immunogenicity," can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA fcllowed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an acjuvant.

For examplo, the initial immunization may be performed using an expression vector, such as that constructed in the Example entitled "Construction of "Minigene" Multi-Epitope DNA Flasmids" in the form of naked nucleic acid administered \mathbb{M} (or SC criD) in the amounts of $0.5-5 \mathrm{mg}$ at multiple sites. The nucleic acid (0.1 to $1000 \mu \mathrm{~g}$) can also be administered using a gene gun. Following an incubation period of $3-4$ weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of $5-10^{7}$ to 5×10^{5} pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also ba used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation aliquoted in freezing media and slored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeulic or protective immunity against 254P106B is generated.

Example 32: Administration of Vaccine Compositions Using Dendritic Cells (DC)

Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as $D C$. In this example, peptide-pulsed $D C$ are admiristered to a patient to stimulate a $C T L$ response in viro. In this meihod, denditic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL and HTL then destroy or facilitate destruction, respectively, of the targel cells that bear the 254P1D6B protein from which the epitopes in the vaccine are derived.

For example, a cocktail of epitope-comprising peptices is administered ex vivo to PBMC, cr isolated DC therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Monsanto, St. Louis, MO) or GM-

CSF/LL-4. After pulsing the $D C$ with peptides, and prior to reinfusion into patients, the $D C$ are washed to remove unbound peptides.

As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of $D C$ reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Naiure Med. 2:52, 1996 and Prostate 32:272, 1997). Although $2-50 \times 10^{6} \mathrm{DC}$ per patient ere typically administered, larger number of DC , such as 10^{7} or 10^{6} can also be provided. Such cell populations typically contain between $50-90 \% \mathrm{DC}$.

In some embodiments, peptide-loaded PBMC are injected into patients without purification of the $D C$. For example, PBMC generated after treatment with an agent such as Progenipoietin ${ }^{\top M}$ are injected into patients without purification of the $D C$. The total number of PBMC that are administered often ranges from 10^{3} to 10^{10}. Generally, the cell doses injecled into patients is based on the percentage of $D C$ in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if Progenipoietin ${ }^{\top M}$ mobilizes $2 \% \mathrm{DC}$ in the peripheral blood of a given patient, and that patient is to receive $5 \times 10^{6} \mathrm{DC}$, then the patient will be injected with a total of 2.5×10^{3} peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin ${ }^{7 \times}$ is typically estimated to be between 2-10\%, but can vary as appreciated by one of skill in the art.

Ex vivo activation of CTL/HTL responses

Alternatively, ex vivo CTL or HTL responses to 254F106B antigens can be induced by incubating, in tissue culture, the patients, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and immunogenic peptides. After an appropriate incubation time (yppically about $7-28$ days), in which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or facilitate cestruction (HTL) of their specific target cells, i.e., tumor cells.

Example 33: An Alternative Method of Identifying and Confirming Motif-Bearing Peptides

Another method of identifying and confrming motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be transfected with nucleic acids that express the antigen of interest, e.g. 254P106E. Peplides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transporied and displayed on the cell's surface. Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g, ty mass speciral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.

Aliernatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then te used as described, i.e., they can then be transfected with nucleic acids that encode 254P1D6B to isolate peptides corresponding to 254P1D6B that have been presented on the cell surface. Peptides obtained from such an analysis will bear molif(s) that correspond to binding to the single HLA aliele that is expressed in the cell.

As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

Example 34: Complementary Polynucleotides

Sequences complementery to the 254P1D6B-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occuring 254P1D6B. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using, e.g., OLIGO 4.06 software (National Biosciences) and the coding sequence of 254P1D6B. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5 ' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to a 254 P 1 D 6 B -encoding transcript.

Example 35: Purification of Naturally-occurring or Recombinant 254P1D6B Using 254P1D6B-Specific Antibodies

Naturally occurring or recombinant 254P1D6B is substantially purified by immunoaffinity chromatography using antibodies speciic for 254P1D6B. An immunoaffinity column is constructed by covalently coupling anti-254P1D6B antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing 254P1D6B are passed over the immunoaffrity column, and the column is washed under conditions that allow the preferential absorbance of 254 P 106 B (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under condifions that disrupt antibody/254P1D6B binding (e.g., a buffer of pH 2 to pH 3 , or a high concentration of a chaotrope, such as urea or thiocyanale ion), and GCR.P is collected.

Example 36: Identification of Molecules Which Interact with 254P1D6B

254P1D6B, or biologically active fragments thereof, are labeled with 1211 Eolion-Hunter reagent. (See, e.g., Bolion et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled 254P1D6B, washed, and any wells with labeled 254P1D6B complex are assayed. Data obtained using different concentrations of 254P1D6B are used to calculate values for the number, affinity, anci association of 254P1D6B with the candidate molecules.

Example 37: In Vivo Assay for 254P106B Tumor Growth Promotion

The effect of a 254P1D6B protein on tumor cell growth can be confirmed in vivo by gene overexpression in a variety of cancer cells such as those in Table I. For example, as appropriate, SCID mice can be injected SQ on each flank with $1 \times 10^{\circ}$ proslate, kidney, colon or bladder cancer cells (sush as PC3, LNCaF, SCaBER, UM-UC-3, HT1376, SK-CO, Caco, RT4, T24, Caki, A-498 and SW839 cells) containing tkNeo empty vector or 254P1D6B.

At least two strategies can bs used:
(1) Constitutive 254P1D6B expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK $2,211,504$ published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), or from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, provided such promoters are compatible with the host cell systems.
(2) Regulated expression under control of an inducible vector system, such as ecdysone, tet, etc., can be used provided such promoters are compatible with the host cell systams. Tumor volume is then monitored at the appearance of palpable tumors or by following serum markers such as PSA. Tumor development is followed over time to validate that 254P1D6B-expressing cells grow at a faster rale and/or that tumors produced by 254P1D6B-expressing cells demonstrate characteristics of altered aggressiveness (e.g., erhanced metestasis, vascularization, reduced responsiveness to
chemotherapeutic drugs). Tumor volume is evaluated by caliper measurements. Additionally, mice can be implanted with the same cells orthotopically in the prostate, bladder, colon or kidney to determine if 254P1D6B has an effect on local growth, e.g., in the prostate, bladder; colon or kidney or on the ability of the cells to metastasize, specifically to lungs or lymph nodes (Saffran et al., Proc Natl Acad Sci U S A. 2001, 98: 2658; Fu, X., et al, Int. J. Cancer, 1991. 49: 938-939; Chang, S., ef al., Anticancer Res., 1997, 17: 3239-3242; Peralta, E. A., et al., J. Urol., 1999. 162: 1806-1811). For instance, the orthotopic growth of PC3 and PC3-254P1D6B can be compared in the prostate of SCID mice. Such experiments reveal the effect of 254P1D6B on orthotopic tumor growth, metastas s and/or angogenic potential.

Furthermore, this assay is useful to confirm the inhibitory effect of candidate therapeutic compositions, such as 254P1D6B antibodies or intrabodies, and 254P1 D6B antisense molecules or ribozymes, or 254P1DobB directed small molecules, on cells that express a 254P1D6B protein.

Example 38: 254P1D6B Monoclonal Antibody-mediated Inhibition of Tumors in Vivo

The significant expression of 254P1D6B, in cancer lissues, together with its restricted expression in normal tissues makes 254P1D6B an excellent target for antibody therapy. Similarly, 254P1D6B is a larget for T cell-based immunotherapy. Thus, the therapeutic efficacy of anti-254P1D6B mAbs is evaldated, e.g., in human prostate cancer xenograft mouse models using androgen-independent LAPC-4 and LAPC-9 xenografts (Craft, N., et al. Cancer Res, 1999. 59(19): p. 5030-5036), kidney cancer xenografts (AGS-K3, AGS-K6), kidney cancer metastases to lymph node (AGS-K6 met) xenografts, and kidney cancer cell lines transfected with 254P1D3B, such as 769P-254P1[6B, A498-254P106B.

Antibody efficacy on tumor growth and melastasis formation is studied, e.g., in mouse orthotopic prostate cancer xenograft models and mouse kidney xenograft models. The entibodies can be unconjugated, as discussed in this example, or can be conjugated to a therapeutic modality, as appreciated in the art Anti-254P1D3B mAbs inhibit formation of both the androgen-dependent LAPC-9 and androgen-independent PC3-254P1D6B tumor xenografts. Anti-254P1D6B mAbs also retard the growth of established orthotopic tumors and prolonged survival of tumor-bearing mice. These results indicate the utility of anti-254P1D6B mAbs in the treatment of local and advanced stages of, e.g., prostate cancer. (See, e.g., Saffran, D., et al., PNAS 10:1073-1078 or located on the World Wide Web at (pnas.org/cgi/doi/10.1073/pnas.051624698). Similarly, anti-254P1D63 mAbs inhibit formation of AGS-K3 and AGS-K6 tumors in SCID mice, and prevent or retard the growth A498254P106B tumor xenografts. These results indicate the use of anti-254P1D6B mAbs in the treatment of prostate and/or kidney cancer.

Adminisiration of the anti-254P106E mALbs leads to relardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies indicate that 254P1D6B is an attractive terget for immunotherapy and demonstrate the therapeutic use of anti254P1D6E mAbs for the treatment of local and retastatic cancer. This example demonsitrates that unconjugated 254P1D6B monoclonal antibodies are effective to inhibit the growlh of human prostate tumor xenografts and human kidney xenograts grown in SCID mice

Tumor inhibition using multiple unconjugated 254P1D6B mAbs

Materials and Methods

254P1D6B Monoclonal Antibodies:
Monoclonal antibodies are obtained against 254P1L6E, as described in Example 11 entilled: Generation of 254P1D6B Monoclonal Antibodies (mAbs), or may be obtained commercialy. The antibodies are characterized by ELISA, Western blot, FACS, and immunoprecipitation for their capacity to bind 254P1D6B. Epitope mapping data for the anti254P1D6B mAbs, as determined by ELISA and Western analysis, recognize epitopes on a 254P106E protein. Immunohistochemical analysis of cencer tissues and cells is performed with these antbodies.

The monoclonal antibodies are purified from ascites or hybridoma tissue cullure supernatants by Protein-G Sepharose chromatography, dialyzed agains1 PBS, filter steriized, and stored at $-20^{\circ} \mathrm{C}$. Protein determinations are performed by a Bradford assay (Bio-Rad, Hercuies, CA). A therapeutic monoclonal antbody or a cocktail comprising a mixture of individual monoclonal antibocies is prepared and used for the treatment of mice receiving subcutaneous or orthotopic injections of, e.g., LAPC-9 prostate tumor xenogratts.

Cancer Xenografts and Cell Lines

The LAPC-9 xenograft, which expresses a wid-type androgen receptor and produces prostate-specific antigen (PSA), is passaged in 6 - to 8 -week-old male ICR-severe combined immunodeficient (SCID) mice (Taconic Farms) by subculaneous (s.c.) trocar implant (Craft, N., et al., 1999, Cancer Res. 59:5030-5036). The AGS-K3 and AGS-K6 kidney xenografts are also passaged by subcutaneous implants in 6 - to 8 - week old SCID mice. Single-cell suspensions of tumor cells are prepared as described in Craft, et al. The prostate carcinoma cell line PC3 (American Type Culture Collection) is maintained in RPMI supplemented with L-glutamine and 10% FBS, and the kidney carcinoma line A498 (American Type Culture Collection) is maintained in DMEM suppemented with L-glutamine and 10% FBS.

PC3-254P1D6B and A498-254P1D6B cell populations are generated by retroviral gene transfer as described in Hubert, R.S., et al., STEAP: A Prostate-specific Cell-surface Antigen Higrly Expressed in Human Prostate Tumors, Proc Natl. Acad. Sci. U S A, 1999. 96(25): p. 14523-14528. Anti-254P1D6B staining is detected by using, e.g., an FITCconjugated goat anti-mouse antibody (Soulhern Biotechnology Associates) followed by analysis on a Coulter Epics-XL flow cytometer.

Xenograft Mouse Models.

Subculaneous (s.c.) tumors are generated by injection of 1×10^{6} LAPC-9, AGS-K3, AGS-K6, PC3, PC3. 254P1D6B, A498 or A498-254P1D6B cells mixed at a $1: 1$ dilution with Matigel (Collaborative Research) in the right fiank of male SCID mice. To test antibody efficacy on tumor formation, i.p. antibody injections are started on the same day as tumorcell injections. As a control, mice are injected with either purifed mouse IgG (ICN) or PBS; or a purified monoclonal antibody that recognizes an irrelevant antigen not expressed in human cells. In preliminary studies, no difference is found between mouse lgG or PBS on tumor growth. Tumor sizes are determined by vernier caliper measurements, and the tumor volume is calculated as length x width x height. Mice with s.c. fumors greater than 1.5 cm in diameter are sacrificed. PSA levels are cetermined by using a PSA ELISA kit (Anogen, Mississauga, Ontario). Circulating levels of anti-254P1D6B mAbs are determined by a capture ELISA kit (Bethyl Laboratcries, Montgomery, TX). (See, e.g., (Saffran, D., et al, PNAS 10:10731078 or on the world wide web as pnas.org/cgi/ doi/10.1073/pnas. 051624698)

Orthotopic prostate injections are performed under anesthesia by using ketamine/xylazine. For prostate orthotopic studies, an incision is made through the abdominal muscles to expose the bladder and seminal vesicles, which then are delivered through the incision to expose the dorsal prostate. LAPC-9 cells (5×10^{5}) mixed with Matrigel are injected into each dorsal lobe in a $10 \mu \mathrm{l}$ volume. To monitor tumor growth, mice are bled on a weekly basis for determination of PSA levels. For kidney orthotopic models; an incision is made through the abdominal muscles to expose the kidney. AGS-K3 or AGS-K6 cells mixed with Matrigel are injected under the kidney capsule. The mice are segregated into groups for appropriate treatments, with anti-254P1D6B or control mAbs being injected i.p.

Anti-254P1D6B mAbs Inhibit Growth of 254P1D6B-Expressing Xenograft-Cancer Tumors

The effect of enti-254P1D63 mAbs on fumor formation is lested by using, e.g., LAPC-9 and/or AGS-K3 orthotopic models. As compared with the s.c. tumor model, the crithotopic model, which requires injection of tumor cells directly in the mouse prostate or kidney, respectively, results in a local tumor growth, development of melastasis in distal sites, deterioration of mouse health, and subsequent death (Saffran, D., et al., PNAS supra; Fu, X., et al., Int J Cancer, 1992. 52(6): p. 987-90; Kubote, T., J Cell Biochem, 1994. 56(1): p. 4-8). The features make the orthotopic model more
representaitive of human disease progression and allow for tracking of the therapeutic effect of mAbs on clinically relevant end points.

Accordingly, tumor cells are injected into the mouse prostate or kidney, and the mice are segregated into two groups and treated with either: a) $200-500 \mu \mathrm{~g}$, of anti-254P1D3B Ab, or b) PBS for two to five weeks.

As noted, a major advantage of the or:hotopic prostate-cancer model is the ability to study the development of metastases. Formation of metastasis in mice bearing established orthotopic tumors is studied by IHC analysis on lung sections using an antibody against a prostate-specific cell-surface protein STEAP expressed at high levels in LAPC-9 xenografts (Hubert, R.S., et al., Proc Natl. Acad. Sci. U S A, 1999, 96(26); p. 14523-14528) or anti-G250 antibody for kidney cancer models. G250 is a clinically relevant marker for renal clear cell carcinoma, which is selectively expressed on tumor but not normal kidney cells (Grabmaier K et ai, Int J Cancer. 2000, 85: 855).

Mice bearing established orthotopic LAPC-9 tumors are administered $500-1000 \mu \mathrm{~g}$ injeclions of either anti254P1D6B mAb or PBS over a 4-week period. Mice in both groups are allowed to establish a high tumor burden (PSA levels greater than $300 \mathrm{ng} / \mathrm{ml}$), to ensure a high frequency of metastasis formation in mouse lungs. Mice then are killed and their prostate/kidney and lungs are analyzed for the presence of tumor cells by HC analysis. These studies demonstrate a broad anti-tumor efficacy of anti-254P1D6B antioodies on initiation and/or progression of prostate and kidney cancer in xenograft mouse models. Anti-254P1D6B antibodies inhibit tumor formation of both androgendependent and androgen-independent prostate fumors as well as retarding the growth of already established tumors and prolong the survival of treated mice. Moreover, anti-254P1D6B mAbs demonstrate a dramatic inhibitory effect on the spread of local prostate tumor to distal sites, even in the presence of a large tumor burden. Similar therapeutic effects are seen in the kidney cancer model. Thus, anti-254P1D6B mAbs are efficacious on major clinicaliy relevant end points (tumor growth), prolongalion of survival, and health.

Example 39: Therapeutic and Diagnostic use of Anti-254P1D6B Antibodies in Humans.

Anti-254P1D6B monocloral antibodies are safely ard effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Western blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-254P1D6B mAb show strong extensive staining in carcincma but significantly lower or undeleclable levels in normal iissues. Detection of 254P1D6E in carcinome and in metastatic disease demonsirates the usefulness of the mAb as a diagnostic and/or prognostic indicator. Anti-254P1L6B antibodies are therefore used in diagnostic applications such as immunohistochemistry of kidney biopsy specimens to detect cancer from suspect patients.

As determined by flow cytometry, anti-254P1D68 mAb specifically binds to carcinoma cells. Thus, anti-254P1D6B antibodies are used in diagnostic whole body imaging applications, such as radiommmunoscintigraphy and radicimmunotherapy, (see, e.g., Polamianos S., et. al. Anticancer Res 20(24):925-948 (2000)) for the detection of localized and metastatic cancers that exhibit expression of 254P1D6B. Shedding or release of an extracellular domain of 254P1D6B into the extracellular milieu, such as that seen for alkaline phosphodiesterase B10 (Meerson, N. R., Hepatology 27:563-568 (1998)), allows diagnostic detection of 254P1D6B by anti-254P1D6E antibodies in serum and/or urine samples from suspect patients.

Anti-254P1D6E antibodies that specifically bind 254P1D6B are used in therapeutic applications for the treatment of cancers that express 254P1D6B. Anti-254P1D6B antibodies are used as an unconjugated modality and as conjugated form in which the antibodies are attached to one of various therapeutic or imaging modalities well known in the art, such as a prodrugs, enzymes or radioisotopes. In preclinical studies, unconjugaied and conjugated anti-254P1D6B antibodies are tested for efficacy of tumor prevention and growth inhibition in the SCID mouse cancer xenograft models, e.g., kidney cancer models AGS-K3 and AGS-K6, (see, e.g., the Example entilled "254P1D6B Monoclonal Antibody-mediated Inhibition of

Bladder and Lung Tumors in Vivo'). Either conjugated and unconjugated anti-254P1D5B antibodies are used as a therapeutic modality in human clinical trials either alone or in combination with other treatments as described in following Examples

Example 40: Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of Human Anti-254P1D6B Antibodies In vivo

Antibodies are used in accordance with the present invention which recognize an epitope on 254P1D6B, and are used in the treatment of certain tumors such as those listed in Table I . Based upon a number of factors, including 254P.106B expression levels, tumors such as those listed in Table I are presently preferred indications. In connection with each of these indications, three clinical approaches are successfully pursued.
I.) Adjunctive therapy: In adjunctive therapy, patients are treated with anti-254P1D6B antioodies in combination with a chemotherapeutic or antineoplastic agent and/or radiation therapy. Primary cancer targets, such as those listed in Table I, are treated under standard protocols by the addition anti-254P1D6B antibodies to standard first and second line therapy. Protocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual doses of standard chemotherapy. These dosage reductions allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic agent. Anti-254P1D6B antibodies are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced prostrate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxo! (breast cancer), and doxorubicin (preclinical).
II.) Monotherapy: In connection with the use of the anti-254P1D6B antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease. Patients show some cisease stabilization. Trials demonstrate an effect in refractory patients with cancerous tumors.
III.) Imaging Agent: Through binding a radionuclide (e.g., iodine or yttrium ($1^{131}, Y^{90}$) to anti-254P1D6B antibodies, the radiolabeled antibodies are utilized as a ciagnostic and/or imaging agent. In such a role, the labeled antibodies localize to bot solid tumors, as well as, metastatio lesions of cells expressing 254P106B. In connection with the use of the anti-254P1D6B antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a post-operative follow-up to determine what tumor remains and/or returns. In one embodiment, a ($\left.{ }^{111} \mathrm{In}\right)$-254P106B antibody is used as en imaging agent in a Phese I human clinical trial in patients having a carcinoma that expresses 254P1D6E (ky analogy ses, e.g., Divgi et al. J. Natl. Cancer inst. 83:97-104 (1991)). Patients are followed vith slandard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions are icentfifed.

Dose and Route of Administration

As appreciated by those of ordinary skill in the art, dosing considerations can be determined through comparison with the analogous products that are in the cliric. Thus, enti-254P1068 antibodies can be administered with doses in the range of 5 to $400 \mathrm{mg} / \mathrm{m}^{2}$, with the lower doses used, e.g., in connection with safety studies. The affinity of anti-254P1D6B antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the arl for determining analogous dose regimens. Further, anti-254P1D6B antibodies that are fully human anibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human anti-254P1D3B antibodies can be lower, perhaps in the range of 50 to $300 \mathrm{mg} / \mathrm{m}^{2}$, and still renrain efficacious. Dosing in $\mathrm{mg} / \mathrm{m}^{2}$, as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to include patients of all sizes from iniants to adults.

Three distinct delivery approaches are useful for delivery of anti-254P1D6B antibodies. Conventional intravenous delivery is one standard delivery technique for many tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minirize antibody clearance. In a similar manner, certain solid tumors possess vasculature that is eppropriate for regional perfusion. Regional perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody.

Clinical Development Plan (CDP)

Overview: The CDP follows and develops treatments of anti-254P1D6B antibodies in connection with adjunctive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trails are open label comparing standard chemotherapy with standard therapy plus anti-254P1D6B antibodies. As will be appreciated, one criteria that can be utilized in connection with errolment of patients is 254P1D6B expression levels in their furnors as delermined by biopsy.

As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 254P1D6B. Standard tests and follow-up are utilized to monitor each of these safety concerns. Anti-254P1D6B antibodies are found to be safe upon human administration.

Example 41: Human Clinical Trial Adjunctive Therapy with Human Anti-254P1D6B Antibody and Chemotherapeutic Agent

A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti-254P1D6B antibody in connection with the treatment of a solid tumor, e.g, a cancer of a tissue listed in Table I. In the study, the safety of single doses of anti-254P1D6B antibodies when utilized as an acjunctive therapy to an antineoplastic or chemotherapeutic egent as defined herein, such as, without limitation: cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like, is assessed. The trial design includes delivery of six single doses of an anti-254P1D6B antibody with dosage of antibody escalating from approximately about $25 \mathrm{mg} / \mathrm{m}^{2}$ to about $275 \mathrm{mg} / \mathrm{m}^{2}$ Over the course of the treatment in accordance with the following schedule

| | Day 0 | Day 7 | Day 14 | Day 2 | Day 28 | Day 35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| mAb Dose | 25 | 75 | 125 | 175 | 225 | 275 |
| | $\mathrm{mg} / \mathrm{m}^{2}$ |
| Chemotherapy | + | + | + | + | + | + |

Patients are closely followed for one-week following each administration of antibody and chemotherapy. In particular, patients are assessed for the safety concerns mentioned above: (i) cytokine release syndrome, i.e, hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the palient to the human antibody therapeutic, or HAHA response); and, (iii) toxicity to normal ceils that express 254P106B. Standard tests and follow-up are utilized to monitor each of these safety concerns. Patients are also assessed for clinical outcome, and paricularly reduction in tumor mass as evidenced by MRI or other imaging.

The anti-254P106B antibodies are demonstrated to be safe and efficacious, Phase II trials confirm the efficacy and refine optimum dosing

Example 42: Human Clinical Trial: Monotherapy with Human Anti-254P1D6B Antibody

Anti-254P106B antibodies are safe in connection with the above-discussed adjunctive trial, a Phase II human clinical trial confirms the efficacy and optimum dosing for monotherapy. Such trial is accomplished, and entails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that patients do not receive chemotherapy concurrently with the receipt of doses of anti-254P1D6B antibodies.

Example 43: Human Clinical Trial: Diagnostic Imaging with Anti-254P1D6B Antibody

Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of antl-254F1D6B antibodies as a diagnostic imaging agent. The protocol is designed in a substantially similar manner to those described n the art, such as in Divgi et al. J. Nati. Cancer Inst. 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality.

Example 44: Involvement in Tumor Progression

The 254P1D6B gene contributes to the growth of cancer cells. The role of 254P1D6B in tumor growith is confirmed in a variety of primary and transfected cell lines including prostate, colon, bladder and kidney cell lines, as well as NIH $3 T 3$ cells engineered to stably express 254P1D6B. Parental cells lacking 254P1D6B and cells expressing 254P106B are evaluated for cell growth using a well-documented proliferation assay (Fraser SP, et al., Prostate 2000;44;61, Johnson DE, Ochieng J, Evans SL. Anticancer Drugs, 1996, 7:288). The effect of 254P1D6B can also be observed on cell cycle progression. Control and 254P1D6B-expressing cells are grown in low serum overnight, and treated with 10\% FBS for 48 and 72 hrs. Cells are analyzed for ErdU and propidium iodide incorporation by FACS analysis.

To confirm the role of 254F1D6B in the transformation process, its effect in colony forming assays is investigated Parental NIH-3T3 cells lacking 254P1D6B are compared to $\mathrm{NH}-3 \mathrm{~T} 3$ cells expressing 254P1D6B, using a soft agar assay under stringent and more permissive conditions (Song Z. et al. Cancer Res. 2000;60:6730).

To confirm the role of 254F1D6B in invasion and metastasis of cancer cells, a well-established assay is used. A non-limiting example is the use of an assay which provides a basement membrane or an analog thereof used to detect whether cells are invasive (e.g., a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999; 59:6010)). Control cells, including prostate, and bladder cell lines lacking 254P1D6E are compared to cells expressing 254P1D6B. Cells are oaded with the fluorescent dye, calcein, and plated in the top well of a support structure coated with a basement membrane analog (e.g. the Transwell insert) and used in the assay. Invasion is determined by fluorescence of cells in the lower chamber relative to the fluorescence of the entire cell population.

254P106B also plays a role in cell cycle and apoptosis. Parenial ceils and cells expressing 254P106B are compared for differences in cell cycle regulation using a well-established ErdU assay (Abdel-Malek ZA. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) and limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide. Cells are analyzed for entry into the $\mathrm{G} 1, \mathrm{~S}$, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing 254P1D6B, including normal and tumor prostate, and kidney cells. Engineered and parental cells are treated with various chemotherapeutic agents, such as etoposide, flutamide, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by 254P1D6B can play a critical role in regulating tumor progression and lumbr load.

When 254P1D6B plays a role in cell growth, transformation, invasion or apoptosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.

Example 45: Involvement in Angiogenesis

Angiogenesis or new capillary blood vessel formaticn is necessary for tumor growth (Hanahan D, Folkman J. Cell. 1996, 86:353; Folkman J. Endocrinclogy. 1998 139:441). 254P1D6B plays a role in angiogenesis. Several assays have been developed to measure angiogenesis in vitro and in vivo, such as the tissue culture assays endothelial cell tube formation and endothelial cell proliferation. Using these assays as well as in vitro neo-vascularization, the role of 254P1D6B in angiogenesis, enhancement or inhibition, is confirmed. For example, endothelial cells engineered to express 254P1D6B are evaluated using tube formation and proliferation assays. The effect of 254P1D6B is also confirmed in animal models in vivo. For example, cells either expressing or lacking 254P1D6B are implanted subcutaneously in immunocompromised mice. Endothelial cell migration and angiogenes's are evaluated 5-15 days later using immunohistochemistry techniques. 254P1D6E affects angiogenesis, and it is used as a larget for diagnostic, prognostic, preventative and/or therapeutic purposes.

Example 46: Involvement in Cell Adhesion

Cell adhesion plays a critical role in tissue colonization and metastasis, 254P1D6B participates in cellular organization, and as a consequence cell adhesion and motility. To confirm that 254P1D6B regulates cell adhesion, control cells lacking 254P1D6B are compared to ceils expressing 254P1D6B, using techniques previously described (see, e.g., Haier et al, Br. J. Cancer. 1999, 80:1867; Lehr and Pienta, J. Natl. Cancer Inst. 1998, 90:118). Briefly, in one embodiment, cells labeled with a fluorescent indicator, such as calcein, are incubated on tissue culture wells coated with media alone or with matrix proteins. Adherent cells are detected by fluormetric analysis and percent adhesion is calculated. In another embodiment, cells lacking or expressing 254P1D6B are analyzed for their ability to mediate cell-cell adhesion using similar experimental techniques as described above. Bcth of these experimental systems are used to identify proteins, antibodies and/or small molecules that modulate cell adhesion to extracellular matrix and cell-cell interaction. Cell adhesion plays a critical role in tumor growth, progression, and, colonization, and 254 P 1 D 6 B is involved in these processes. Thus, it serves as a diagnostic, prognostic, preventative and/or therapeutic modality.

Example 47: in vitro biologic target validation: Target activation / inactivation; RNA interference (RNAi)

Systematic alteration of 254P1D6B gene activity in relevant cell assays or in animal models is an approach for understanding gene function. There are two complementary plafforms to alter gene function: Target activation and target inactivation. 254P106B target gene activation induces a disease phenotype (i.e. tumurogenesis) by mimicking the differential gene activity that occurs in several tumors. Conversely, 254P1D3B target inactivation reverses a phenotype found in a particular disease and mimics the inhibition of the target with a putative lead compound/agent.

RNA interference (RNAi) technology is implemented to a variely of cell assays relevant to oncology. RNAi is a post-transcriptional gene silencing mechanism acivated by double stranded RNA (dsRNA). RNAi induces specific mRNA degradation leading to changes in protein expression and subsequently in gene function. In mammalian cells, dsRNAs (>30 bp) can activate the interferon pathway which induces non-specific mRNA degradation and protein translation inhibition. When transfecting small synthetic dsRNA (21-23 nucleotides in length), the activation of the interferon pathway is no longer observed, however these dsRNAs have the correct composition to activate the RNAi palhway targefing for degradation, specifically some mRNAs. See, Elbashir S.M., et. al, Duplexes of 21 -nucleotide RNAs Mediate RNA interference in

Cultured Mammalian Cells, Nature 411(6836):484-8 (2001). Thus, RNAi lechnology is used successfully in mammalian cells to silence targeted genes.

Loss of cell proliferation control is a hallmark of cancerous cells; thus, assessing the role of 254P1D6B specific target genes in cell survivallproliferation assays is relevant. RNAi technology is implemented to the cell survival (cellular metabolic activity as measured by MTS) and proiferalion (DNA synthesis as measured by ${ }^{3 H}$-thymidine uptake) assays as a frst filter to assess 254P1D6B target validation (TV). Tetrazolium-based colorimetric assays (i.e. MTT and MTS) detect viable cells exclusively. Living cells are melabolically active and can reduce tetrazolium salts to colored formazan compounds. Dead cells do not reduce the salts.

An alternative method to analyze 254P106B cell proliferation is the measurement of DNA synthesis as a marker for proliferation. Labeled DNA precursors (i.e. ${ }^{3 H}$-Thymidine) are used and their incorporation to DNA is quantified. Incorporation of the labeled precursor into DNA is directly proportional to the amount of cell division occurring in the culture

Correlating 254P1D6B cellular phenotype with gene knockdown is critical following RNAi treatments to draw valid conclusions and rule ou: toxicity or other non-specific effects cf these reagents. Assays to measure the levels of expression of both protein and mRNA for the 254P1D6B target after RNAi reatments are important. Specific antibodies against the 254P1D6B larget permit this question to be addressed by performing Western blotting with whole celllysates.

An alternative melhod is the use of a tegged full length 254P1D6B target cDNA inserted in a mammalian expression vector (i.e. pcDNA3 series) providing a tag for whish commercial Abs are available (Myc, His, V5 etc) is transiently co-transfected with individual siRNAs for 254P1D6B gene target, for instance in COS cells. Transgene expression permits the evaluation of which siRNA is efficienlly silencing target gene expression, thus providing the necessary information to correlate gene function with protein knockdown. Eoth endogenous and transgene expression approaches show similar resulis.

A further alternative method for 254P1D6B target gene expression is measurement of mFNA levels by RT-PCR or by Taqman/Cybergreen. These methods are appied in a high throughput manner and are used in cases where neither Abs nor full length cDNAs are available. Using this method, poly-A mRNA purification and a careful design of primers/probes (should be 5 ' to the siRNA targeted sequence) is needed for the Taqman approach. Some considerations apply to the primer design if pursuing RT-PCR from total RNA (primers should flank the siRNA targeted sequence). However, in some instances, the correlation between mRNA/protein is not complete (i.e., protein a with lang haff life) and the results could be misleading.

Several siRNAs per 254P1D6B target gene are selected and tested in parallet in numerous cell lines (usually with different lissue origin) in the survival and proliferation assays. Any phenotypic effect of the siRNAs in these assays is correlated with the protein andor mRNA knockdown levels in the same cell lines. To further correiate cell phenotype and speciic gene knockdown by RNAi, serial siRNA titrations are performed and are tested in parallel cell phenotype and gene knockdown. When 254P1D6B is responsible for the phenotype, a similar C_{50} value in both assays is obtained.

Another method used to measure cell proliferation is performing clonogenic assays. In these assays, a defined number of cells are plated onto the appropriate matrix and the number of colonies formed after a period of growith following siRNA treatment is counted.

In 254P1D6B cancer target validation, complementing the cell survival/proliferation analysis with apoplosis and cell cycle profiling studies are considered. The biochemical hallnark of the apoplotic process is genomic DNA fragmentation, an irreversible event that commits the cell to die. A method to observe fragmented DNA in cells is the immunological detection of histone-complexed DNA fragments by an immunoassay (i.e. cell death detection ELISA) which measures the enrichment of histone-complexed DNA fragments (mono- and oligo-nucleosomes) in the cytoplasm of apoptotic cells. This assay does
not require pre-labeling of the cells and can detect DNA degradation in cells that do not proiferate in vitro (i.e. freshly isolated tumor cells).

The most important effector molecules for triggering apoptotic cell death are caspases. Caspases are proteases that when activated cleave numerous substrates at the carboxy-terminal sitc of an aspartate residue mediating very early stages of apoptosis upon activation. All caspases are synthesized as pro-enzymes and activation involves cleavage at aspartate residues. In particular, caspase 3 seems to play a central role in the initiation of cellular events of apoptotis. Assays for determination of caspase 3 activation detect early events of apoptotis. Following RNAi treatments, Western blot detection of active caspase 3 presence or proteclytic cleavage of products (i.e. PARP) found in apoptotic cells further support an active induction of apoptosis. Because the cellular mechanisms that result in apoptosis are complex each has its advantages and limitations. Consideration of other criteria/encpoints such as cellular morphology, chromatin condensation, membrane bebbiing, apoptotic bodies help to furlher support cell death as apoptotic.

Not all the gene targets that regulate cell growth are anti-apoptotic, the DNA content of permeabilized cells is measured to obtain the profile of DNA content or cell cycle profile. Nuclei of apoptotic cells contain less DNA due to the leaking out to the cytoplasm (sub-G1 population) In addition, the use of DNA stains (i.e. propidium iodide) also differentiate between the different phases of the cell cycie in the cell population due to the presence of different quantities of DNA in G0/G1. S and G2M. In these studies the subpopulations can be quantified.

For the 254P106B gene, RNAi studies facilitate the contribution of the gene product in cancer pathways. Such active RNAi molecules have use in identifying assays to screen for mAbs that are active anti-tumor therapeutics. When 254P1D6B plays a role in cell survival, cell proliferation, tumorogenesis, or apoptosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeulic purposes.

Example 48: RNA interierence (RNAi)

Various protocols for achieving RNA interference are available.

exemplary protocol 1

RNA interference (RNAi) makes use of sequence specific double stranded RNA to prevent gene expression. Small interfering RNA (siRNA) is transfected into mammalian cells and thereby induce sequence speciitic mRNA degradation (Elbashir, et al, Nature, 2001; vol, 411: 494-498)

The sense strand of 254P1D6B is labeled at 3 ' with fluorescein, $6-$ FAM (ABS 494 nm , EMM 525 nm , green). The siFNA is dissolved in RNA-free sterile buffer (100 mM KOAc, 30 mM HEPES $\mathrm{KOH}, 2 \mathrm{mM}$ MOAc, at pH 7.4) to make $20 \mu \mathrm{M}$ stock (200 -fold concentration). The siRNA is transfected into cells seeded on 6 -well plates with oligofectamine reagent ($\mathrm{G} / \mathrm{BCO} / \mathrm{Invitrogen}, \mathrm{Cerlsbad}$, CA). The final concentration of siRNA is determined

254P1D6B protein expression is delecled 24 hours after transfection by immunostaining followed by flow cytometry. In addition, conirmation of altered gene expression is performed by Western blotting. Expression reduction is confirmed by Western blot analysis where 254P1D63 protein is substantially reduced in 254F1D6B RNAi treated cells relative to conirol and untreated cells.
exemplary protocol 2
In one embodiment, the day before siRNA transfection, cells are plated in media (e.g., RPMI 1640
(GBCO/Invitrogen, CarISbad, CA) with 10% FBS without antibictics) at 2×10^{5} cells/well in $80 \mu \mathrm{~L}$ (96 well plate format) for the survival, proliferation and apoptosis assays. In another embodiment, the day before siRNA transfection, cells are plated in media (e.g., RPMI 1640 with 10% FBS without antibiotics) at 5×10^{4} cells/well in 300μ (12 well plate format) for the cell cycle analysis by fow cytometry, gene silencing by Western blot and/or PCR analysis. In parallel with the 254P1D6B siRNA sequences, the following sequences are included in every experiment as conirols. Mock transfected cells with Lipofectamine 2000 (GIBCOIlnvitrogen, Carlsbad, CA) and annealing buffer (no siRNA), nor-specific siRNA (targeted sequence not
represented in the human genome 5^{\prime} AATTCTCCGAACGTG ${ }^{-}$CACGTTT 3 '; commercial control from Xeragon/Qiagen, Valencia, CA) (SEQ ID NO: 275); Luciferase specific siRNA (targeted sequence: 5 ' AAGGGACGAAGACGAACACUUCTT 3') (SEQID NO: 276) and Eg5 specific siRNA (targeled sequence: 5' AACTGAAGACCTGAAGACAATAA 3') (SEQID NO: 277). The siRNAs are used et various concentrations (ranging from 200 pM to 100 nM) and $1 \mu \mathrm{~g} / \mathrm{ml}$ Lipofectamine 2000.

The procedure is as follows: First siRNAs are diluted in OPTIMEM (serum-free transfection media, Invitrogen) at suitable $\mu \mathrm{M}$ (10 -fold concentrated) and incubated $5-10 \mathrm{~min}$ at room temperature (RT). Lipofectamine 2000 was diluted at 10 $\mu \mathrm{g} / \mathrm{ml}$ (10 -fold concentrated) for the total number transfections and incubated $5-10 \mathrm{~min}$ RT. Appropriate amounis of diluted 10 -fold concentrated Lipofectamine 2000 are mixed $1: 1$ with diluted 10 -fold concentrated siRNA and incubated at RT for 20 30 minutes (5 -fold concentrated transfection solution). 20 or 200μ) of the 5 -fold concentrated transfection solutions were added to the respective samples and incubated at $37^{\circ} \mathrm{C}$ for 48 to 96 hours (depending upon the assay employed, such as proliferation, apoptosis, survival, ceil cycle analysis, migration or Western blot).

Reduced gene expression of 254P1D6B using siRNA transfection results in significantly diminished proliferation of transformed cancer cells that endogenously express the antigen. Cells treated with specific siRNAs show reduced survival as measured, e.g., by a metabolic readout of cell viability, corresponding to the reduced proliferative capacily. Further, such ceils undergo apoptosis in response to RNAi as measured, e.g., by a nucleosome-release assay (Roche Applied Science Indianapolis, $\mathbb{I N}$) or delection of sub-G1 populations during cell cycle analysis by propidium iodide staining and flow cytometry. These results demonstrate that siRNA treatment jrovides an effective therapeutic for the elimination of cancer cells that specifically express the 254P1D6B antigen.

Throughout this application', various website cata content, publications, patent applications and patents are referenced. (Websites are referenced by their Uniform Resource Locator, or URL, addresses on the World Wide Web.)

The presentinvention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are funstionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invertion, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.

TABLES:
TABLE I: Tissues that Express 254P1D6B when malignant:
Lung
Ovary
Prostale
Pancreas
Breast
TABLE II: Amino Acid Abbreviations

SINGLE LETTER	THREE LETTER	FULL NAME
F	Phe	phenylalanine
L	Leu	leucine
S	Ser	serine
Y	Tyr	tyrosine
C	Cys	cysteine
W	Trp	tryptophan
P	Pro	proline
H	His	histidine
Q	Gln	glutamine
R	Arg	arginine
Ile	isoleucine	
M	Met	methionine
T	Thr	threonine
K	Asn	asparagine
V	Lys	lysine
A	Val	valine
D	Ala	alanine
E	Asp	aspartic acid
G	Glu	glutamic acid

TABLE III: Amino Acid Substitution Matrix

Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution matrix). The higher the value, the more likely a substitution is found in related, natural proteins. (See world wide web URL ikp.unibe.ch/manual/blosum62.htmi)

TABLE IV:

HLA Class I/II Motifs/Supermotifs

TABLE IV (A): HLA Class I Supermotifs/Motifs

SUPERMOTIF	POSITION	POSITION	POSITION
	2 (Primary Anchor)	3 (Primary Anchor)	C Terminus (Primary Anchor)
A1	TILVMS		FWY
A2	LIVMATQ		IVMATL
A3	VSMATLI		RK
A24	YFWIVLMT		FIYWLM
B7	P		VILFMWYA
B27	RHK		FYLWIIIVA
B44	ED		FWYLIMVA
B58	ATS		FWYLIVMA
B62	QLIMMP		FWYMIVLA
MOTIFS			
A1	TSM		Y
A1		DEAS	Y
A2.1	LMVVIAT		VLIMAT
A3	LMVISATFCGD		KYRHFA
A11	VTMLISAGNCDF		KRVH
A24	YFWM		FLIW
A*3101	MVTALIS		RK
A*3301	MVALF/ST		RK
A*6801	AVTMSLI		RK
$\mathrm{B}^{*} 0702$	P		LMFWYAIV
B*3501	P		LMFWYIVA
B51	P		LIVFWYAM
E*5301	P		IMFWYALV
E*5401	P		ATIVLMFWY

Eolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table

TABLE N (B): HLA Class II Supermotif

1	6	9
W, F, Y, V, I, L	A, V, T, L, P, C, S, T	A, V, L, C, S, T, M, Y

TABLE IV (C): HLA Class II Motifs

MOTIFS		1° anchor 1	2	3	4	5	1^{1} anchor 6	7	8	9
DR4	preferred deleterious	FMYLIVW	M	T	W	1	VSTCPALIM	$\begin{aligned} & \mathrm{MH} \\ & \mathrm{RH} \end{aligned}$		$\begin{aligned} & \mathrm{MH} \\ & \text { WDE } \end{aligned}$
DR1	preferred deleterious	MFLIVWY	c	CH	$\begin{aligned} & \text { PAMQ } \\ & \text { FD } \\ & \hline \end{aligned}$	CWD	VMATSPLIC	$\begin{aligned} & \hline M \\ & G D E \end{aligned}$	D	AVM
DR7	preferred deleterious	MFLIVWY	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \\ & \hline \end{aligned}$	W	$\begin{aligned} & A \\ & G \\ & \hline \end{aligned}$		IVMSACTPL	M GRD	N	$\begin{aligned} & \text { IV } \\ & \text { G } \\ & \hline \end{aligned}$
DR3 Motif a preferred Motif b preferred	MOTIFS	1° anchor 1 LIVMFY LIVMFAY	2	3	$\begin{aligned} & 1^{\circ} \text { anchor } 4 \\ & 0 \\ & \text { DNQEST } \end{aligned}$	5	10 anchor 6 KRH			
DR Supermotif		MFLIVWY					VMSTACPLI			

TABLE IV (D): HLA Class I Supermotifs

$\begin{aligned} & \text { SUPER- } \\ & \text { MOTIFS } \\ & \hline \end{aligned}$	POSITION:	1	2	3	4	5	6	7	8	C-terminus
A1			$\frac{1^{\circ} \text { Anchor }}{\text { TILVMS }}$							$\frac{1^{\circ} \text { Anchor }}{\text { FWY }}$
A2			$\frac{1^{\circ} \text { Anchor }}{\text { LIVMATQ }}$							$\frac{1^{\circ} \text { Anchor }}{\text { LIVMAT }}$
A3	Preferred deletericus	$\begin{aligned} & \mathrm{DE}(3,5) ; \\ & \mathrm{P}(5 / 5) \end{aligned}$	$\frac{1^{\circ} \text { Anchor }}{\text { VSMATLI }}$	YFW (4/5) DE (4/5)			$\begin{aligned} & \text { YFW } \\ & (3 / 5) \end{aligned}$	$\begin{aligned} & \text { YFi } \\ & (4 / 5) \end{aligned}$	$\begin{aligned} & \hline p \\ & (4 / 5) \end{aligned}$	$\frac{1^{\circ} \text { Anchor }}{\text { RK }}$
A24			$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { YFWIVLMT } \end{aligned}$							$\begin{aligned} & \frac{1^{\circ} \text { Anchor }}{\text { FIYWLM }} \\ & \hline \end{aligned}$
B7	Preferred deleterious	FWY $(5 / 5)$ LIVM $(3 / 5)$ DE $(3 / 5) ;$ $P(5 / 5) ;$ $G(4 / 5) ;$ A(3/5); QN(3/5)	$\frac{1^{\circ} \text { Anchor }}{p}$	$\begin{aligned} & \text { FWV } \\ & (4 / 5) \end{aligned}$		$\begin{aligned} & D E \\ & (3 / 5) \end{aligned}$	$\begin{aligned} & G \\ & (4 / 5) \end{aligned}$	$\begin{aligned} & \mathrm{QN} \\ & (4 / 5) \end{aligned}$	$\begin{aligned} & \hline F W Y \\ & (3 / 5) \\ & D E \\ & (4 / 5) \end{aligned}$	$\frac{1^{\circ} \text { Anchor }}{\text { VILFMWY' } A}$
B27			$\frac{1^{\circ} \text { Anchor }}{\text { RHK }}$							$\frac{1^{\circ} \text { Anchor }}{\text { FYi WMIVA }}$
844			$\frac{1^{\circ} \text { Anchor }}{E D}$							$\frac{1^{\circ} \text { Anchor }}{\text { FVNLIMVA }}$
858			$\frac{1^{\circ} \text { Anchor }}{\text { ATS }}$							$\frac{1^{\circ} \text { Anchor }}{\text { FWI IVMAA }}$
B62			$\frac{1^{\circ} \text { Anchor }}{\text { QLIMMP }}$							1° Anchor FWYMIVLA

Halicized residues indicate less preferred or "tolerated" residues

TABLE N (E): HLA Class I Motifs

TABLE IV (F):

Summary of HLA-supertypes							
Dverall phenotypic frecuencies of HLA-supertypes in different ethnic populations							
Specificity Pl			Phenotypic frequency				
Supertype	Position 2	C-TerminusCauc	IN.A. Blach	Japanese	Chinese	Hispanic	Average
B7	P	AILMVFWY 43.2	55.1	57.1	43.0	49.3	49.5
A3	AllMVST	RK $\quad 37.5$	42.1	45.3	52.7	43.1	44.2
A2	AILMVT	AILMVT 45.8	39.0	42.4	45.9	43.0	42.2
A24	YF (WIVLMT	FI (YWLM) 23.9	38.9	58.3	40.1	38.3	40.0
B44	E (D)	FWYLIMVA43.0	21.2	42.9	39.1	39.0	37.0
A1	TI (LVMS)	FWY 47.1	16.1	21.3	14.7	26.3	25.2
B27	RHK	FYL (WMI) 28.4	26.1	13.3	13.9	35.3	23.4
B62	QL (IVMP)	FWY (MIV) 12.6	4.8	36.5	25.4	11.1	18.1
B58	ATS	FWY (LIV) 10.0	25.1	1.6	9.0	5.9	10.3

TABLE IV (G):
Calculated population coverage afforded by different HLA-superlype combinations

HLA-supertypes Phenotypic frequency						
	Caucasian	N.A Blacks	Japanese	Chinese	Hispanic	Average
	83.0	86.1	87.5	88.4	86.3	86.2
A2, A 3 and B 7	99.5	98.1	100.0	99.5	99.4	99.3
$A 2, A 3, B 7, A 24, B 44$	99.9	99.6	100.0	99.8	99.9	99.8
$\begin{aligned} & \text { and A1 } \\ & A 2, A 3, B 7, A 24, \\ & B 44, A 1, B 27, B 62, \\ & \text { and B } 58 \end{aligned}$						

Motifs indicate the residues defining supertype specificites. The motifs incorporate residues determined on the basis of published data to be recognized by multiple alleles within the supertype. Residues within brackets are additional residues also predicted to be tolerated by multiple alleles within the supertype.

Table V: Frequently Occurring Motifs			
Name	avrg. \% identity	Descriation	Potential Function
$\mathrm{zf}-\mathrm{C} 2 \mathrm{H}_{2}$	34\%	Zinc finger, C 2 H 2 lype	Nucleic acid-binding protein functions as transcription factor, nuclear location probable
cylochrome_b_N	68\%	Cytoch rome b(Nterminal)/b6/petB	membrane bound oxidase, generate superoxide
lg	19\%	Immunoglobulin domain	domains are one hundred amino acids long and include a conserved intradomain disulfide bond.
WD40	18\%	WD domain: G-beta repeat	tandem repeats of about 40 residues, each containing a Trp-Asp motif. Function in signal transduction and protein interaction
PDZ	23\%	PDZ domain	may function in targeting signaling molecules to sub-membranous sites
LRR	28\%	Leucine Rich Repeat	short sequence motifs involved in protein-protein interactions
Pkinase	23\%	Proteir kinase domain	conserved catalytic core common to both serine/threonine and tyrosine protein kinases containing an ATP binding site and a catalylic site

PH	16\%	PH domain	pleckstrin homology involved in intracellular signaling or as constituents of the cytoskeleton
EGF	34\%	EGF-like domain	$30-40$ amino-acid long found in the extracellular domain of membranebound proteins or in secreted proteins
Rvt	49\%	Reverse transcriptase (RNA-dependent DNA polymerase)	
Ank	25\%	Ank repeat	Cytoplasmic protein, associates integral membrane proteins to the cytoskeleton
Oxidored_c1	32\%	NADH- Ubiquinone/plastoquinone (complex 1), various chains	membrane associated. Involved in proton translocation across the membrane
Efhand	24\%	EF hand	Calcium-binding domain, consisis of a12 residue loop flanked on both sides by a 12 residue alpha-helical domain
Rvp	79\%	Retroviral aspartyl protease	Aspartyl or acid proteases, centered on a catalytic aspartyl residue
Collagen	42\%	Collagen triple helix repeat (20 covies)	extracellular structural proteins involved in formation of connective tissue. The sequence consists of the G-X-Y and the polypeptide chains forms a iriple helix.
Fn3	20%	Fibronectin type \|II domain	Located in the extracellular ligandbincing region of receptors and is about 200 amino acid residues long with two pairs of cysteines involved in disulfide bonds
7 tm _1	19\%	7 transmembrane receptor (rhodopsin family)	seven hydrophobic transmembrane regions, with the N -terminus located exiracellularly while the C-terminus is cytoplasmic. Signal through G proteins

Table VI: Post-translational modifications of 254P1D6B

N-Glycosylation site (star! position indicated)

```
196 NSSV (SEQ ID NO: 28)
219 NESA (SEQ ID NO: 29)
262 NSSG (SEQID NO: 30)
394 NLSQ (SEQ ID NO: 31)
421 NVTV (SEQ ID NC: 32)
4 9 8 \text { NYSF (SEQID NC: 33)}
513 NSTT (SEQ ID NO: 34)
536 NHTI (SEQ ID NO: 35)
551 NQSS (SEQ ID NO: 36)
715NNSP (SEQ ID NO: 37)
73 NNSI (SEQ ID NO: 38)
1023 NSSL. (SEQ ID NO: 39)
1056 NGSI (SEQ ID NO: 40)
```


Tyrosine sulfation site (Start Position indicated)

156 EEMSEYSDDYRE (SEQ ID NO: 41)
160 EYSDDYRELEK (SEQ ID NO: 42)
527 NNAVDYPPVANAGPNH (SEQ ID NO: 43)

Serine predictions (Start Position indicatod)

```
9 TGVLSSLLL (SEQ ID NO: 44)
```

```
10 GVLSSLLLL (SEQIDNO: 45)
26 RKQCSEGRT (SEQID NO: 46)
3 2 ~ G R T Y S N A V I ~ ( S E Q I D N O : ~ 4 7 ) ~
37 NAVISPNLE (SEQIDNO: 48)
49 IMRVSHTFP (SEQIDNO: 49)
6 5 ~ C C D L S S C D L ~ ( S E Q 1 D N O ~ 5 0 ) ~
66 CDLSSCDLA (SEQIDNO: 51)
81 CYLVSCPHK (SEQID NO: 52)
98 GPIRSYLTF (SEQIDNO: 53)
125 LNRGSPSGI (SEQ ID NO: 54)
127 RGSPSGIWG (SEQIDNO: 55)
133 IWGDSPEDI (SEQID NO: 56)
154 LEEMSEYSD (SEQID NO: 57)
157 MSEYSDDYR (SEQIDNO: 58)
171 LLQPSGKQE (SEQID NO: 59)
179 EPRGSAEYT (SEQIDNO: 60)
191 LLPGSEGAF (SEQIDNO: 61)
197 GAFNSSVGD (SEQIDNO: 62)
198 AFNSSVGDS (SEQIDNO: 63)
202 SVGDSPAVP (SEQIDNO: 64)
221 YLNESASTP (SEQIDNO: 65)
223 NESASTPAP (SEQ 1D NO: 66)
233 LPERSVLLP (SEQIDNO: 67)
243 PTTPSSGEV (SEQID NO: 68)
244 TTPSSGEVL (SEQID NO: 69)
254 KEKASQLQE (SEQID NO: 70)
264 SSNSSGKEV (SEQ ID NO: 71)
272 VLMPSHSLP (SEQIDNO: 72)
274 MPSHSLPPA (SEQIDNO:73)
279 LPPASLELS (SEQID NO: 74)
283 SLELSSVTV (SEQIONO: 75)
284 LELSSVTVE (SEQIDNO: 76)
290 TVEKSPVLT (SEQ ID NO: 77)
299 VTPGSTEHS (SEQID NO: 78)
303 STEHSIPTP (SEQID NO: 79)
310 TPPTSAAPS (SEQ1D NO: 80)
314 SAAPSESTP (SEQIDNO: 81)
316 APSESTPSE (SEQID NO: 82)
319 ESTPSELPI (SEQID NO: 83)
324 ELPISPTTA (SEQID NO: 84)
338 ELTVSAGDN (SEQID NO: 85)
376 WNLISHPTD (SEQIO NO: 86)
396 TLNLSQLSV (SEQIDNO: 87)
399 LSQLSVGLY (SEQ ID NO: 88)
410 KVTVSSENA (SEQIDNO: 89)
4 1 1 ~ V T V S S E N A F ~ ( S E Q I D ~ N O : ~ 9 0 ) ~
439 VAVVSPQLQ (SEQIDNO: 91)
451 LPLTSALID (SEQIDNO: 92)
457 LIDGSQSTD (SEQID NO: 93)
459 DGSQSTDDT (SEQIDNO: 94)
467 TEIVSYHWE (SEQID NO: 95)
483 EEKTSVDSP (SEQIDNO: 96)
486 TSVDSPVLR (SEQID NO: 97)
492 VLRLSNLDP (SEQID NO: 98)
500 PGNYSFRLT (SEQ ID NO: 99)
508 TVTOSDGAT (SEQID NO: 100)
514 GATNSTTAA (SEQID NO: 101)
545 LPQNSITLN (SEQID NO: 102)
553 NGNQSSDDH (SEQID NO: 103)
5 5 4 ~ G N Q S S D D H Q ~ ( S E Q ~ I D ~ N O : ~ 1 0 4 ) ~
565 LYEWSLGPG (SEQIDNO: 105)
570 LGPGSEGKH (SEQIDNO: 106)
588 YLHLSAMQE (SEQID NO: 107)
```

604 KVTDSSRQQ (SEQID NO: 10B)
605 VTDSSRQQS (SEQ ID NO: 109)
609 SRQQSTAVV (SEQID NO: 110)
641 FPVESATLD (SEQID NO: 111)
647 TLDGSSSSD (SEQIDNO: 112)
648 LDGSSSSDD (SEQIDNO: 113)
649 DGSSSSDDH (SEQIDNO: 114)
650 GSSSSDDHG (SEQID NO: 115)
667 VRGPSAVEM (SEQID NO: 116)
702 QQGLSSTST (SEQID NO: 117)
703 QGLSSTSTL (SEQID NO: 118)
705 LSSTSTLTV (SEQID NO: 119)
717 KENNSPPRA (SEQID NO: 120)
735 LPNNSITLD (SEQ ID NO: 121)
741 TLDGSRSTD (SEQ ID NO: 122)
743 DGSRSTDDQ (SEQIO NO: 123)
751 QRIVSYLWI (SEQ ID NO: 124)
760 RDGQSPAAG (SEQIDNO: 125)
770 VIDGSDHSV (SEQ ID NO: 126)
773 GSDHSVALQ (SEQ ID NO: 127)
795 RVTDSQGAS (SEQIDNO: 128)
799 SQGASDTDT (SEQ ID NO: 129)
815 DPRKSGLVE (SEQID NO: 130)
850 NVLDSDIKV (SEQ ID NO: 131)
861 IRAHSDLST (SEQIDNO: 132)
864 HSDLSTVIV (SEQID NO: 133)
873 FYVQSRPPF (SEQID NO: 134)
894 HMRLSKEKA (SEQ ID NO: 135)
918 LLKCSGHGH (SEQ ID NO: 136)
933 RCICSHLWM (SEQID NO: 137)
G50 WDGESNCEW (SEQID NO: 138)
G55 NCEWSIFYV (SEQ ID NO: 139)
1019 IKHRSTEHN (SEQ ID NO: 140)
1024 TEHNSSLMV (SEQIDNO: 141)
1025 EHNSSLMVS (SEQIDNO: 142)
1029 SLMVSESEF (SEQID NO: 143)
1031 MVSESEFDS (SEQID NO: 144)
1035 SEFDSDQDT (SEQIDNO: 145)
1042 DTIFSREKM (SEQID NO: 146)
1054 NPKVSMNGS (SEQID NO: 147)
1058 SMNGSIRNG (SEQIDNO: ‘48)
1064 RNGASFSYC (SEQIDNO: 149)
1066 GASFSYCSK (SEQID NO: 150)
1069 FSYCSKDR (SEQ ID NO; 151)
Threonine predictions (Start Position indicated)
5 MAPPTGVLS (SEQID NO: 152)
16 LLLVTIAGC (SEQID NO: 153)
30 SEGRTYSNA (SEQID NO: 154)
42 PNLETTRIM (SEQID NO: 155)
3 NLETTRIMR (SEQID NO: 156)
51 RVSHTFPVV (SEQID NO: 157)
53 VVDCTAACC (SEQ ID NO: 158)
101 RSYLTFVLR (SEQIDNO: 159)
183 SAEYTDWGL (SEQID NO: 160)
209 VPAETQQDP (SEQID NO: 161)
224 ESASTPAPK (SEQID NO: 162)
240 LPLPTTPSS (SEQIDNO: 163)
241 PLPTTPSSG (SEQIDNO; 164)
286 LSSVTVEKS (SEQIO NO: 165)
294 SPVLTVTPG (SEQIDNO: 166)
296 VLTVTPGST (SEQIDNO: 167)

[^0]```
Tyrosine predictions (Start Position indicated)
3 1 ~ E G R T Y S N A V ~ (S E Q I D ~ N O : ~ 2 3 1) ~
78 EGRCYLVSC (SEQIDNO: 232)
99 PIRSYLTFV (SEQ ID NO: 233)
116 QLLDYGDMM (SEQIDNO: 234)
156 EMSEYSDDY (SEQIDNO: 235)
160 YSDDYRELE (SEQ ID NO: 236)
182 GSAEYTDWG (SEQID NO: 237)
217 PELHYLNES (SEQID NO: 238)
368 VETTYNYEW (SEQ ID NO: 239)
370 TTYNYEWNL (SEQIDNO: 240)
381 HPTDYQGEI (SEQ ID NO: 241)
4 0 3 ~ S V G L Y V F K V ~ (S E Q I D ~ N O : ~ 2 4 2) ~
468 EIVSYHWEE (SEQIDNO: 243)
4 9 9 ~ D P G N Y S F R L ~ (S E Q ~ I D ~ N O : ~ 2 4 4)
527 NAVDYPPVA (SEQ ID NO: 245)
562 QIVLYEWSL (SEQ ID NO: 246)
584 VQTPYLHLS (SEQID NO: 247)
595 QEGDYTFQL (SEQ ID NO: 248)
6 5 8 \text { GIVFYHWEH (SEQ ID NO: 249)}
689 QVGTYHFRL (SEQ IDNO: 250)
72 RIVSYLWIR (SEQID NO: 251)
786 VEGVYTFHL (SEQIDNO: 252)
870 VIVFYVQSR (SEQID NO: 253)
944 LIQRYIWDG (SEQIDNO: 254)
958 WSIFYVTVL (SEQ ID NO: 255)
995 KKTKYTILD (SEQID NO: 256)
1013 LRPKYGIKH (SEQID NO: 257)
1067 ASFSYCSKD (SEQID NO: 258)
```

Table VII:
Search Peptides

## 254P1D6Ev. 1 (SEQ ID NO: 259)

1 MAPRTGVLSS LLLLVTIAGC ARKQCSEGRT YSNAVISPNL ETTRIMRVSH TFPVVDCTAA
61 CCDLSSCDLA WWEEGRCYLV SCPHKENCEE KKMGPIESYL TFVLRPVQRE AQLLOYGDMM 121 LNRGSESGIW GDSEEDIRKD LEFLGKDWGL EEMSEYSDDY RELEKDLLQP SGKQEPRGSA 181 EYTDWGLIPG SEGAENSSVG DSPAVPAETQ QDEELIYLUE SASTPAPKLF ERSVLLPLPT 241 TPSSGEVLEK EKASCLQEQS SNSSGKEVLM PSHSLPPASL ELSSVTVEKS PVLTVTPGST 301 EHSIPTPPTS AAPSESTPSE LEISPTTAER TVKELTVSAG DNLIITLPDN EVELKAFVAE 361 APPVETTYNY EWNLISHPTD YGGEIKQGHK QTLNLSQLSV GLYVFKVTVS SENAEGEGEV 421 NVTVKPAERV NLPPVAVVSP QLQELTLPLT SALIDGSQST DDTEIVSYHW EEINGPEIEE 431 KTSVDSFVLR LSNLDPGNYS ERLTVTDSUG ATNSTTAALI VNNAVDYEPV ANAGPNHTIT 541 LPQNSITLNG NQSSCDHQIV LYEWSLGPGS EGKHVVMQGV QTEYLHLSAM QEGDYTFQLK 601 VTDSSRQQST AVVTVIVQEE NNRPPVAVAG PDKELIFPVE SATLDGSSSS DDHGIVFYHW 651 EHVRGPSAVE MENILKAIAT VTGLQVGTYH FRLTVKDQQG LSSTSतITVA VKKENNSPPR 721 ARAGGRHVLV LPNNSITLDG SRSTDDQRTV SYLWIRDGQS PAAGDVIDGS DHSVALQLTN 781 LVEGVYTFHL RVTDSQGASD TDTATVEVQE DPRESGLVEL TLQVGVGQLT EQRKDTLVRQ 841 LAVLLNVLDS DIKVGKIRAH SDLSTVIVEY VQSRPPFKVL KAAEVARNLH MRLSKEKADE 901 LLFKVLRVDT AGCLIKCSGH GHCDPLTKRC ICSHLWMENL IQRYIWDGES NCEWSIFYVT 951 VLAFTLIVLT GGFTWLCICC CKRQKRTKIR KKTKYTIIDN MDEQERMELR PKYGIKHRST 1021 EHHSSLMVSE SEFDSDQDTI FSREKMERGN PKVSMNGSIR NGASESYCSK DR

254P1D6Bv. 2

> 9-mers, aa 149-175 GLEEMSEYADDYRELEK (SEQID NO: 260) 10 -mers, aa $-48-176$ WGLEEMSEYADDYRELEKD (SEQIDNO: 261) $15-m e r s, ~ a a ~ 143-131 ~$ (SEQID NO: 262)

## 254P1D6BV. 3

> 9-mers, a $1-18$
> MTRLGWPSPCCARKQCSE (SEQIDNO: 263)
> $10-$ mers, aa $1-19$
> MMRLGNPSPCCARKQCSEG (SEQIDNO: 264)
> $15-m e r s, ~ a a ~ 1-24$
> MTRLGWPSPCCARKQCSEGRTYSN (SEQIDNO: 265)

254P106Bv.5
9-mers, aa 134-150
PEDIRKDLTELGKDWGL (SEQIDNO: 266)
10-mers, aa 133-15:
SPEDIRKDLTFLGKDWGLE (SEQID NO: 267)
15-mers, aa 128-156
GIWGDSPEDIRKDLTFLGKDWGLEEMSEY (SEQIDNO: 268)

Tables VIII - XXI:

| Table VIII - 254P1D6B v. 1 HLAA19-mers |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 1; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | Subsequence | Sco |
| 93 | NLDPGNYSF | 100.0 |
| 668 | AVEMENIDK | 90.000 |
| 39 | NLETTRIMR | 45.00 |
| 649 | SSODHGIVF |  |
| 936 | WMENLIQRY | 22.500 |
| 153 | MSEYSDDYR | 13.50 |
| 805 | TVEVQPDP |  |
| 743 | STDDQRIVS | 6.250 |
| 182 | YTDWGLLPG | 6.25 |
| 459 | STDDTEIVS |  |
| 922 | HCDPLTKRC | 5.000 |
| 351 | EVELKAFVA | 4.500 |
| 87 | NCEPKKMGP | 4.500 |
| 244 | SGEVLEKEK | 4.500 |
| 382 | QGEIKQGHK | 4.500 |
| 462 | DTEIVSYHW | 4.500 |
| 951 | NCEWSIFYV | 00 |
| 553 | SSDDHQIVL | 3.750 |
| $\sqrt{103} \begin{array}{\|c} 4 \\ \hline \end{array}$ | DSDQD | 3.750 |
| 569 | GSEGKHVVM | 2.700 |
| 25 | CSEGRTYSN | 2.700 |
| 554: | SDDHOIVLY | 2.500 |
| 650 | SDDHGIVFY | 2.500 |
| 460 | TDDTEIVSY | 2.5 |
| 138. | RKDLPFLGK | 2.500 |
| 157 | SDDYRELEK | 2.500 |
| 897 | KADFLLFKV | 2.500 |
| 378 | PTDYQGEIK | 2.500 |
| 800 | DTDTATVEV | 2.500 |
| 483 | SVDSPVLRL | 2.500 |
| 113 | LLDYGDMML | 2.500 |
| 347 | LPDNEVELK | 2.50 |
| 505 | VTDSDGATN | 2.500 |
| 744 | TDDQRIVSY | 2.500 |


| Table VIII - 254P1D6B v. 1 HLAA1 9 -mers |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 1 ; each start position is speciited, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos, | Subsequence | Score |
| 592 | EGDYTFQLK | 2.500 |
| 349 | DNEVELKA | 2.2 |
| 829 | LTEQRKDTL | 2.2 |
| $\begin{gathered} 101 \\ 9 \end{gathered}$ | STEHNSSLM | 2.250 |
| 565 | SLGP | 2.000 |
| 84 | HKENCEPK | 1.800 |
| 279 | SLELSS |  |
| 860 | HSDLSTVIV | 1.500 |
| 768 | GSDHSVALQ | 1.500 |
| 798 | ASDT |  |
| 410 | SSENAFGEG | 1.350 |
| 190 | GSEGAFNSS | 1.350 |
| 778 | LTNLV |  |
| 130 | WGDSPEJIR | 1.250 |
| 809 | QPDPRKSGL | 1.250 |
| 681 | VTGLO |  |
| 601 | VTDSSRQQS | 1.253 |
| 519 | LIVNNAVDY | 1.000 |
| 705 | STLTVAVKK | 1.000 |
| 862 | DLSTVIVFY | 1.000 |
| 54 | VVDCTAACC | . |
| 15 | VTIAGCAVK | 1.000 |
| 524 | AVDYP | 1.000 |
| 179 | SAEYTDWGL | 0.900 |
| 712 | KKENWSPPR | 0.900 |
| 149 | GLEEMSEYS | 0.90 |
| 781 | LVEGV | 0.900 |
| 882 | AAEVARNLL | 0.900 |
| 817 | LVELTLQVG | 0.900 |
| 210 | QQDPELHYL |  |
| 395 | LSQLSVGLY | 0.750 |
| 4911 | LSNLDPG.Vr | 0.750 |
| 315 | ESTPSELPI | 0.750 |
| 849 | DSDIKVQKI | 0.750 |


| Table VIII-254P1D6B v. 1 <br> HLA A1 9-mers |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 1; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| os | Subsequence | Sc |
| 507 | DSDGATNST | 0.7 |
| 587 | LSAMQEGDY | 0.7 |
| 950 | SN |  |
| 339 | AGDNLIITL |  |
| 98 | LSVGLY | 0.6 |
| 220 | ESASTP |  |
| 704 | TSTLTVAVK |  |
| 224 | TPAPKLPER | 0.5 |
| 131 | GDSPEDIRK |  |
| 766 | , |  |
| 473 | INGPFIEEK | 0.5 |
| 373 | NLIS | 0.500 |
| 274 | SLPP | 0.5 |
| 847 | VLDS | 0.5 |
| 360 ; | PAP |  |
| 61 | DL | 0.500 |
| 907 | RVDTAGCLL | 50 |
| 670 | EMENIDKAI | 0.450 |
| 618 | QPENNRPPV | 0. |
| 299 | STI |  |
| $\begin{gathered} 100 \\ 6 \end{gathered}$ | RM | 0.4 |
| 638 | PVESATLDG | 0.450 |
| 469 | HWEEING | 0.450 |
| 281 | ELSSV | 0.400 |
| 870 | YVQSRPPFK | 0.400 |
| 209 | TQQ | 0.375 |
| 482 | TSVDSPVLR | 0.300 |
| 302 | HSIPTPPTS | 0.3 |
| 97 | RSYLTFVLR |  |
| 375 | ISHPTDYQG | 0.300 |
| 442 | LQELTLPLT | 0.2 |
| 576 | VMQGVQTPY | 0.2 |


| Table VIII-V2-HLA-A1-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5; each start position is specified, the ength of pepide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 5 | MSEYADDYR | 13.500 |
| 9 | ADDYRELEK | 2.500 |
| 1 | GLEEMSEYA | 0.900 |
| 4 | EMSEYADDY | 0.250 |
| 8 | YADDYRELE | 0.050 |
| 2 | LEEMSEYAD | 0.009 |
| 7 | EYADDYREL | 0.001 |
| 6 | SEYADDYRE | 0.000 |
|  | EEMSEYADD | 0.000 |


| Table VIII-V/3-HLA-A1-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a porition of SEQID NO: 7; each start position is specified, the length of peplide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 6 | WPSPCCARK | 1.000 |
| 3 | RLGWPSPCC | 0.020 |
| 5 | GWPSPCCAR | 0.005 |
| 8 | SPCCARKQC | 0.003 |
| 4 | LGWPSPCCA | 0.003 |
| 7 | PSPCCARKQ | 0.002 |
| 9 | PCCARKQCS | 0.001 |
| 1 | MTRLGWPSP | 0.001 |
| 2 | TRLGWPSPC | 0.001 |
| 10 | CCARKQCSE | 0.000 |


| Table VIII-V5-HLA-A1- |
| :---: |
| 9mers-254P1D68 |
| Each peptide is a portion of |
| SEQ IO NO: 11 ; each start |
| position is specified, the |
| length of peptide is 9 amino |
| acids, and the end position |
| for each peptide is the start |
| position plus eight. |
| Starti\| Subsequence Score |


| 5 | RKDLTF-GK: | 2.500 |
| :---: | :---: | :---: | :---: |
| 8 | LTFLGKDWG | 0.025 |
| 7 | DLTFLGKDW | 0.010 |
| 1 | PEDIRKDLT | 0.003 |
| 2 | EDIRKD_TF | 0.003 |
| 9 | TFLGKDWGL | 0.001 |
| 4 | RKODLTFLG | 0.000 |
| 3 | DIRKDLTF | 0.000 |
| 6 | KDLTFLGKD | 0.000 |


| TABLE IX-HLA-A1-10-mers-254F106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequen | Scor |
| 173 |  |  |
| 743 |  | $\begin{aligned} & 125 \\ & 000 \end{aligned}$ |
| 459 |  | 25. |
| 64 |  | 00 |
| 156 |  | 0 |
| 553 |  | $\begin{gathered} 75.0 \\ 00 \end{gathered}$ |
| 90 |  | $00$ |
| 493 |  | $00$ |
| 860 |  | $00$ |
| 1034 | $R$ | $\begin{aligned} & 37.5 \\ & 00 \end{aligned}$ |
| 805 |  | $00$ |
| 84 | $1$ | $0.0$ |
| 410 | $\underset{\mathrm{F}}{\text { SSENAFGEG }}$ | $00$ |
| 30 | K | $\begin{aligned} & 12.5 \\ & 00 \end{aligned}$ |
| 1019 | $V$ | $\begin{array}{r} 11.2 \\ 50 \\ \hline \end{array}$ |


| TABLE IX-HLA-A1--10-mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | [Scor |
| 87 | NCEPKKMG PI | 9.00 0 |
| 849 | DSCIKVQKIR | 7.50 <br> 0 |
| 208 | ETQQDPELH | 6.25 |
| 922 | HCDPLTKRC | 5.00 0 |
| 628 | VAGPOKELIF | 5.00 <br> 0 |
| 997 | $\begin{gathered} \text { ILDNMDEQE } \\ R \\ \hline \end{gathered}$ | 5.00 0 |
| 781 | $\begin{gathered} \text { LVEGVYTFH } \\ L \end{gathered}$ | $\begin{gathered} 4.50 \\ 0 \end{gathered}$ |
| 39 | NLETTRIMR $V$ | 4.50 <br> 0 |
| 882 | $\begin{gathered} \text { AAEVARNLH } \\ M \end{gathered}$ | $\begin{gathered} 4.50 \\ 0 \end{gathered}$ |
| 949 | $\begin{gathered} \text { ESNCEWSIF } \\ Y \end{gathered}$ | $\begin{gathered} 3.75 \\ 0 \end{gathered}$ |
| 769 | GSDHSVALQ | $\left[\begin{array}{c}3.75 \\ 0 \\ 2.70\end{array}\right.$ |
| 569 | GSEGKHVV $M Q$ | 2.70 |
| 66 | SCDLAWWF EG | $\begin{gathered} 2.50 \\ 0 \end{gathered}$ |
| 182 | $\begin{array}{\|c} \text { YTDWGLLPG } \\ S \end{array}$ | $\begin{gathered} 2.50 \\ 0 \end{gathered}$ |
| 113 | LLDYGDMML N | $\begin{gathered} 2.50 \\ 0 \end{gathered}$ |
| 829 | $\begin{gathered} \text { LTEQRKDTL } \\ v \\ \hline \end{gathered}$ | 2.25 <br> 0 <br> 1 |
| 951 | NCEWSIFYV T | 1.80 0 |
| 477 | FIEEKTSVDS | 1.80 |
| 817 | LVELTLQVG | (1.80 |
| 210 | $\begin{gathered} \text { QQDPELHYL } \\ \mathrm{N} \end{gathered}$ | 1.50 0 |
| 1036 | $\begin{gathered} \text { DQDTIFSRE } \\ K \end{gathered}$ | $\begin{gathered} 1.50 \\ 0 \end{gathered}$ |


| TABLE IX- HLA-A1-10 mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each slart position is specifed, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | $\left[\begin{array}{c}\text { Scor } \\ \mathrm{e}\end{array}\right.$ |
| 1028 | $\begin{gathered} \text { VSESEFDSD } \\ Q \end{gathered}$ | 1.35 <br> 0 |
| 25 | $\begin{gathered} \text { CSEGRTYSN } \\ A \end{gathered}$ | $\left[\begin{array}{c} 1.35 \\ 0 \end{array}\right.$ |
| 1030 | $\begin{gathered} \text { ESEFDSDQD } \\ T \end{gathered}$ | $\begin{gathered} 1.35 \\ 0 \end{gathered}$ |
| 190 | $\begin{gathered} \text { GSEGAFNSS } \\ V \end{gathered}$ | $\begin{gathered} 1.35 \\ 0 \end{gathered}$ |
| 601 | $\begin{gathered} V T D S S R Q Q \\ T \end{gathered}$ | $\begin{gathered} 1.25 \\ 0 \end{gathered}$ |
| 792 | $\begin{gathered} \text { VTDSQGASD } \\ T \end{gathered}$ | 1.25 <br> 0 <br> 1.25 |
| 505 | $\begin{gathered} \text { VTDSDGATN } \\ s \end{gathered}$ | $\sqrt{1.25}$ |
| 539 | ITLPONSITL | 1.25 <br> 0 <br> 1.25 |
| 1000 | $\begin{gathered} \text { NMDEQERM } \\ E L \end{gathered}$ | $\begin{gathered} 1.25 \\ 0 \end{gathered}$ |
| 359 | $\begin{gathered} \text { APAPPVETT } \\ Y \end{gathered}$ | $\begin{gathered} 1.25 \\ 0 \end{gathered}$ |
| 800 | $\begin{gathered} \text { DTDTATVEV } \\ Q \end{gathered}$ | $\left[\begin{array}{c} 1.25 \\ 0 \end{array}\right.$ |
| 809 | $\begin{gathered} \text { QPDPRKSGL } \\ v \end{gathered}$ | $\left[\begin{array}{c} 1.25 \\ 0 \end{array}\right]$ |
| 35 | VISPNLETTR | 1.00 <br> 0 <br> 100 |
| 524 | $\begin{gathered} \text { AVDYPPVAN } \\ A \end{gathered}$ | $\begin{gathered} 100 \\ 0 \end{gathered}$ |
| 518 | ALIVNNAVITY | 1.00 <br> 0 |
| 186 | $\begin{gathered} \text { GLLPGSEGA } \\ \mathrm{F} \end{gathered}$ | $\left[\begin{array}{c} 1.00 \\ 0 \end{array}\right.$ |
| 567 | SAVEMENID | $\left[\begin{array}{c} 1.00 \\ 0 \end{array}\right.$ |
| 703 | $\begin{gathered} \text { STSTLTVAV } \\ K \\ \hline \end{gathered}$ | $\left[\begin{array}{c} 1.00 \\ 0 \\ \hline \end{array}\right.$ |
| 670 | EMENIDKAIA | $\begin{gathered} 0.90 \\ 0 \end{gathered}$ |
| 1006 | $\begin{gathered} \text { RMELRPKYG } \\ 1 \end{gathered}$ | $\begin{gathered} 0.90 \\ 0 \\ \hline \end{gathered}$ |
| 179 | $\begin{gathered} \text { SAEYTDWGL } \\ 1 \end{gathered}$ | $\begin{gathered} 0.90 \\ 0 \end{gathered}$ |


| TABLE IX-HLA-A1--10-mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptidə is the start position plus nine. |  |  |
| Start | Subsequence | e |
| 668 |  | 0 |
| 648 |  | 0 <br>  <br> 0 |
| 507 |  | 0 |
| 273 |  | 0 |
| 500 |  | $5$ |
| 442 |  | 67 <br> 5 |
| 592 |  |  |
| 378 |  | $5$ |
| 347 |  | $5$ |
| 872 |  | $0$ |
| 704 |  |  |
| 777 |  | $0$ |
| 687 |  | $0$ |
| 897 |  | 0.50 0 |
| 766 | $\underset{\text { A }}{\text { VIDGSDHSV }}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 729 | LV | $0$ |
| 394 | $\underset{Y}{\text { NLSQLSVL }}$ | $50$ |
| 586 | $D Y$ | $\left[\begin{array}{c} 0.50 \\ 0 \end{array}\right]$ |
| 445 | LTLPLTSALI | $07$ |
| 61 | A | $0.50$ |
| 680 | $\begin{gathered} \text { GLC } \\ Y \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |


| TABLE $\mid X-H L A-A 1$--10-mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each pepide is a portion of SEQ ID NO: 3; each start position is specifed, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor $e$ |
| 223 | $\begin{gathered} \hline \text { STPAPKLPE } \\ R \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 100 | $\begin{gathered} \text { LTFVLRPVQ } \\ R \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 483 | $\begin{gathered} \hline \text { SVDSPVLRL } \\ S \\ \hline \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 1 | $\begin{gathered} \text { MAPPTGVLS } \\ S \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 575 | VVMQGVQT PY | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 955 | SIFYVTVLAF | 0.50 0 |
| 345 | ITLPDNEVEL | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 164 | $\underset{K}{\text { EKDLLQPSG }}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 1039 | $\begin{gathered} \text { TIFSREKME } \\ R \\ \hline \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 481 | $\begin{gathered} \text { KTSVDSPVL } \\ R \end{gathered}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 490 | $\underset{\gamma}{\text { RLSNLDPGN }}$ | $\begin{gathered} 0.50 \\ 0 \end{gathered}$ |
| 532 | NAGPNHTITL | [ 0.50 |
| 415 | FGEGFVNVT V | $\begin{gathered} 0.45 \\ 0 \end{gathered}$ |
| 936 | WIMENLIQRY | 0 <br> 0.45 <br> 0 |
| 349 | $\begin{gathered} \text { DNEVELKAF } \\ v \end{gathered}$ | $\begin{gathered} 0.45 \\ 0 \end{gathered}$ |
| 618 | $\begin{gathered} \text { QPENNRPPV } \\ A \end{gathered}$ | $\begin{gathered} 0.45 \\ 0 \end{gathered}$ |
| 286 | TVEKSPVLT v | $\left[\begin{array}{c} 0.45 \\ 0 \end{array}\right.$ |
| 1001 | $\begin{gathered} \text { MDEQERME } \\ \text { LR } \end{gathered}$ | $\left[\begin{array}{c} 0.45 \\ 0 \end{array}\right.$ |
| 76 | $\begin{gathered} \text { RCYLVSCPH } \\ K \end{gathered}$ | $\left[\begin{array}{c} 0.40 \\ 0 \end{array}\right.$ |
| 397 | $\begin{gathered} \text { QLSVGLYVF } \\ K \end{gathered}$ | $\left[\begin{array}{c} 0.40 \\ 0 \end{array}\right.$ |
| 14 | LVTIAGCARK | 0.40 <br> 0 |


| TABLE IX HLA-A1-10- |  |
| :---: | :---: |
| mers-254P1DoB |  |
| Each peptide is a portion of |  |
| SEQID NO: 3 ; each start |  |
| position is specified, the |  |
| length of peptide is 10 |  |
| amino acids, and the end |  |
| position for each peptide is |  |
| the start position plus nine. |  |
| Start | Subsequence |
| 107 | Scor |
|  | VQRPAQLLD |


| Table IX-V2-HLA-A110 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor <br> $e$ |
| 9 | YADDYRELEK | [ 50.0 |
| 6 | MSEYADCYRE | [0.27 <br> 0 <br> 0 |
| 2 | GLEEMSEYAD | 0.18 0 0 |
| 5 | EMSEYADDYR | 0.05 <br> 0 |
| 4 | EEMSEYADDY | 0.02 <br> 5 |
| 3 | LEEMSEYADD | 5.00 <br> 9 |
| 10 | ADDYRELEKD | $\left[\begin{array}{c}0.00 \\ 3 \\ \hline\end{array}\right.$ |
| 1 | WGLEEMSEYA | 0.00 <br> 3 |
| 7 | SEYADOYREL | 0.00 <br> 1 |
| 8 | EYADDYRELE | [0.00 |


| Table IX-V3-HLA-A1- <br> 10mers-254P1D68 |
| :---: |
| Each peptide is a portion of |
| SEQ ID NO: 7 ; each start |
| position is specified, the |
| length of peptide is 10 amino |
| acids, and the end position |
| for each peptide is the start |
| position plus nine. |



| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
| Start | Subs |  |
| 900 | FLL |  |
| 40 |  |  |
| 968 | VLTGGF |  |
| 228 |  |  |
| 92 | KN |  |
| 816 | GL |  |
| 7 | VLSSLLLLV |  |
| 99 | YL |  |
| 396 | SO |  |
| 944 | YI | 31 |
| 846 | NV | 92.32 <br> 2 |
| 441 | QLQELTLPL | 87.58 6 |
| 346 | TL | \| 6 |
| 399 | SVGL |  |
| 777 | QLTNLVEGV | $\begin{array}{r}5.3 \\ 5 \\ \hline \hline\end{array}$ |
| 784 | GVYTFHLRV | 7 3 |
| 12 | LLLVTIAGC | 71.81 <br> 2 |
| 392 |  | 68.55 <br> 2 |
| 871 | VQSRPPFKV | 69.53 <br> 1 |
| 839 | RGLAVLLNV | 60.01 1 |
| 863 | LSTVIVFYV | $\left[\begin{array}{c}56.62 \\ 9\end{array}\right]$ |
| 958 | YTVLAFTL | $\left\|\begin{array}{c}49.87 \\ 1\end{array}\right\|$ |
| 112 | QLLDYGDMM | 36.92 |


| Table X-V1-HLA-A0201-HLA-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specifed, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
|  |  | 9 |
| 730 | VLPNNSITL | $\begin{gathered} 36.31 \\ 6 \end{gathered}$ |
| 960 | TVLAFTLIV | $\begin{gathered} 35.08 \\ 2 \end{gathered}$ |
| 961 | VLAFTLIVL | [34.24 |
| 655 | IVFYHWEHV | 31.88 <br> 7 |
| 828 | QLTEQRKDT | [ 30.55 |
| 452 | ALIDGSQST | 30.55 3 |
| 350 | NEVELKAFV | $\sqrt{30.49}$ |
| 558 | QIVLYEWSL | 22.03 <br> 0 |
| 394 | NLSQLSVGL | $\begin{gathered} 21.36 \\ 2 \\ \hline \end{gathered}$ |
| 540 | TLPQNSITL | $\begin{gathered} 21.36 \\ 2 \\ \hline \end{gathered}$ |
| 274 | SLFPASLEL | $\begin{gathered} 21.36 \\ 2 \end{gathered}$ |
| 577 | MQGVQTPYL | $\begin{gathered} 20.25 \\ 1 \end{gathered}$ |
| 840 | QLAVLLNVL | $\begin{gathered} 20.14 \\ 5 \end{gathered}$ |
| 836 | TLVRQLAVL | $\left[\begin{array}{c} 20.14 \\ 5 \end{array}\right]$ |
| 897 | KADFLLFKV | $\begin{gathered} 18.04 \\ 1 \end{gathered}$ |
| 344 | LLNVLDSD! | $\begin{gathered} 17.73 \\ 6 \end{gathered}$ |
| 728 | VLVLPNNS | $\begin{gathered} 17.73 \\ 6 \end{gathered}$ |
| 390 | KQTLNL.SQL | $\begin{gathered} 17.43 \\ 6 \end{gathered}$ |
| 10 | SLLLLVTIA | $\begin{gathered} 17.33 \\ 4 \end{gathered}$ |
| 344 | IITLPDNEV | $\left[\begin{array}{c} 16.25 \\ 8 \end{array}\right.$ |
| 607 | QQSTAVVTV | $\left[\begin{array}{c} 16.21 \\ 9 \end{array}\right.$ |


| Table X-V1-HLA-A0201-HLA-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each pepide is the start position plus eight. |  |  |
| St | Su |  |
| 6 | GVLSSLLLL |  |
| 113 | LLDYGDMML |  |
| 687 | GTYHFRLTV | 7 |
| 1045 | KM | \| $\begin{gathered}11.25 \\ 2\end{gathered}$ |
| 210 | QQ | 0 |
| 685 | QV | 1 |
| 44 |  | $3$ |
|  | QEG |  |
| 185 | GLLIPGS |  |
| 673 | NIDKAIA |  |
| 813 | VE |  |
| 700 | GLSSTSTLT |  |
| 437 | WSPQLQEL |  |
| 360 | TTY |  |
| 765 | VIDGS |  |
| 635 | LIFPVESAT | 6.445 |
| 821 | T Q |  |
| 429 | R | 6.085 |
| 284 | SVTVEKSP | 6.085 |
| 774 | VALQL | 6.0 |
| 973 | FTWLCICCC | 6.059 |
| 233 | SVLLPLPTT | 5.549 |
| 497 | GNYSFR_TV | 5.52 |
| 40 | LETTP | 5.28 |
| 191 | SEGAFNSS | 5.13 |
| 47 | RVSHTF | 4.741 |
| 419 | FUNVTVKPA | 4.599 |
| 279 | SLELSSVTV | 4.451 |
| 773 | SVALQL | 4.299 |
| 782 | VEGVITFHL | 4.096 |
| 517 | AALIVNNAV | 3.5 |
| 969 | LTGGFTVILC | 3.343 |


| Table X-V1-HLA-A0201-HLA-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence |  |
| 669 | V |  |
|  |  |  |
| 430 | , | 2.693 |
| 955 |  |  |
|  | K | 2.388 |
| 858 | RA |  |
| 1031 |  |  |
|  | NCEWSIFYV |  |
| 35 | V |  |
| 627 | AVA |  |
| 445 | LTLPLTSAL |  |
| 83 | SV |  |
|  | L/LPNNSIT |  |
| 292 | VLTVTP |  |
|  | ATVTGL | 1.6 |
| 948 | G |  |
| 988 | , | 1.499 |
| 962 | LAFTLIVLT |  |
|  | TITLPQNS |  |
| 830 | TEQ | 1.3 |
| 16 | GE | 1. |
| 1020 | TEHNSSLM | 1.35 |
|  | VSYHWEEI | 1.29 |
| 822 | QVGVGQLT |  |


| Table X-V2-HLA-A0201-9mers-254P1D68 |  |
| :---: | :---: |
| position is specif length of peptide acids, and the end for each peptide i position plus | amino <br> ition <br> start |
| I) Subsequen |  |
| GLEEMS | 3. |
| E |  |
| 6 ! SEY | 0. |
| 8 YAD |  |


| Table X-V2-HLA-A02019 mers -254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the stat position plus eight. |  |  |
| Start | Subsequence | Score |
| 7 | EYADDYREL | 0.000 |
| 3 | EEMSEYADD | 0.000 |
| 2 | LEEMSEYAD | 0.000 |
| 5 | MSEYADDYR | 0.000 |
| 9 | ADDYRELEK | 0,000 |


| Table X-V3-HLA-A0201-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 7 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Sub |  |
|  |  |  |
|  |  |  |
| 8 | SPCCARKQC |  |
| 2 |  |  |
| 6 | WPSPCCARK |  |
| 10 | CCARKQOCSE |  |
| 1 |  |  |
| 9 | PCCARKQCS |  |
| 5 | , |  |
| 7 | PSPCCARKQ |  |


| Table X-V5-HLA-A02019 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of |  |  |
| SEQ ID NO: 11; each start position is specified, the |  |  |
| length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  |  |  |
|  | Sub |  |
| 9 |  |  |
| 3 | D |  |
| 8 | LGK |  |
| 7 | DL |  |



| Table XI-V1-HLA-A0201--10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Score |
| 901 | LLFKVLRVDT | 46.87 <br> 3 |
| 828 | QLTEQRKDT | 42.91 <br> 7 |
| 45 | IMRVSHTFPV | $\left[\begin{array}{c}37.64 \\ 2\end{array}\right]$ |
| 961 | VLAFTLIVLT | [29.13 |
| 1000 | NMDEQERME $L$ | 25.30 <br> 3 |
| 692 | RLTVKDQQG L | $\begin{gathered} 21.36 \\ 2 \\ \hline \end{gathered}$ |
| 836 | TLVRQLAVLL | $\begin{gathered} 21.36 \\ 2 \end{gathered}$ |
| 684 | $\begin{array}{r}\text { LQVGTY } \\ \hline\end{array}$ | 21.35 6 |
| 92 | KMGPIRSYLT | 18.83 <br> 7 <br> 18.4 |
| 635 | LIFPVESATL | $\left[\begin{array}{c} 18.47 \\ 6 \\ \hline \end{array}\right.$ |
| 120 | MLNRGSPSG | $\begin{gathered} 17.73 \\ 6 \end{gathered}$ |
| 343 | LIITLPDNEV | $\begin{gathered} 16.25 \\ 8 \end{gathered}$ |
| 606 | RQQSTAVVT V | $\begin{gathered} 16.21 \\ 9 \end{gathered}$ |
| 808 | VQPDPRKSG $L$ | $\begin{gathered} 15.09 \\ 6 \end{gathered}$ |
| 269 | $\begin{gathered} \text { LMPSHSLPP } \\ A \end{gathered}$ | $\begin{gathered} 14.02 \\ 9 \end{gathered}$ |
| 355 | KAFVAPAPPV! | $\begin{gathered} 12.51 \\ 0 \end{gathered}$ |
| 7 | VLSSLLLLVT | 11.94 <br> 6 <br> 1.75 |
| 729 | LVLPNNSITL. | $\left.\begin{array}{c} 11.75 \\ 7 \end{array}\right]$ |
| 400 | VGLYVFKVTV | $\begin{gathered} 1085 \\ 2 \end{gathered}$ |
| 398 | LSVGLYVFKV | $\left[\begin{array}{c}10.29 \\ 6 \\ \hline 1023\end{array}\right.$ |
| 39 | NLETTRIMRV | $\left[\begin{array}{c}10.23 \\ 8 \\ \hline\end{array}\right.$ |
| 677 | AIATVTGLQV | 9.563 |


| Table XI-V1-HLA-A0201-10 mers -254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Score |
| 958 | YVTVLAFTLI | 7.978 |
| 654 | $\begin{gathered} \text { GIVFYHWEH } \\ V \end{gathered}$ | 7.966 |
| 386 | KQGHKQTLN L | 7.581 |
| 839 | RQLAVLLNVL | 7.557 |
| 821 | TLQVGVGQL $T$ | 7.452 |
| 278 | ASLELSSVTV | 6.887 |
| 413 | $\begin{gathered} \text { NAFGEGFVN } \\ \mathrm{V} \end{gathered}$ | 6.791 |
| 141 | LPFLGKDWG L | 6.579 |
| 960 | TVLAFTLIVL | 6.522 |
| 660 | WEHVRGPSA V | 6.221 |
| 773 | SVALQLTNLV | 6.086 |
| 128 | GIWGDSPEDI | 5.834 |
| 94 | GPIRSYLTFV | 5.743 |
| 429 | $\begin{gathered} \text { RVNLPPVAV } \\ V \\ \hline \end{gathered}$ | 5.739 |
| 904 | KVLRVDTAG c | 5.629 |
| 370 | YEWNLISHPT | 5.532 |
| 965 | TLIVLTGGFT | 5.328 |
| 352 | VELKAFVAPA | 5.311 |
| 669 | VEMENIDKAI | 5.232 |
| 728 | VLVLPNNSIT | 5.194 |
| 436 | $\begin{gathered} \text { AVVSPQLQE } \\ L \end{gathered}$ | 4.299 |
| 178 | GSAEYTOWG | 4.288 |
| 395 | LSQLSVGLYV | 4.245 |
| 12 | LLLVTIAGCA | 4.062 |
| 797 | $\begin{aligned} & \text { GASDTDTAT } \\ & v \end{aligned}$ | 3.961 |
| 1054 | SMNGSIRNG <br> A | 3.538 |
| 391 | QTLNLSQLSV | 3.574 |
| 357 | FVAPAPPVET | 2.999 |


| Table XI-V1-HLA-A0201--10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the slart position plus nine. |  |  |
| Start |  |  |
|  |  |  |
| 551 |  |  |
|  |  |  |
|  | GD |  |
| 827 |  |  |
|  | AF |  |
|  |  |  |
|  |  |  |
| 502 |  |  |
|  |  |  |
| 247 | VLE |  |
|  |  |  |
| 91 |  |  |
|  |  |  |
| 539 |  |  |
|  | ITLPDN |  |
|  | A |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 1031 | SE |  |
|  | A |  |
| 266 | L |  |
|  | SQSTL |  |
|  | KE |  |
|  | $\begin{array}{r} \text { MQEGD } \\ L \end{array}$ |  |
|  | V |  |
| 482 | TSVDSP | 1.315 |
| 939 | NLIQRYIWO | 1.2 |




| Table XI-V5-HLA-A0201$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 68$ |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO: 11; each slart position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor <br> e <br> 13 |
| 9 | LTFLGKDWGL | $\begin{array}{\|c} 13.9 \\ 97 \end{array}$ |
| 3 | EDIRKDLTFL | 0.02 <br> 8 |
| 8 | DLTFLGKDWG | 0.01 5 |
| 1 | SPEDIRKDLT | 0.00 6 |
| 7 | KDLTFLGKDW | 0.00 <br> 1 |
| 4 | DIRKDLTFLG | 0.00 |
| 2 | PEDIRKDLTF | 0.00 0 |
| 6 | RKDLTFLGKD | 0.00 <br> 0 |



| Table XII-V1-HLA-A3-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 1025 | SLMVSESEF | 3.000 |
| 968 | VLTGGFTWL | 2.700 |
| 816 | GLVELTLQV | 2.700 |
| 228 | KLPERSVLL | 2.700 |
| 1008 | ELRPKYGK | 2.700 |
| 862 | DLSTVIVFY | 2.700 |
| 705 | STLTVAVKK | 2.250 |
| 892 | RLSKEKADF | 2.000 |
| 870 | WQSRPPFK | 2.000 |
| 900 | FLLFKVLRV | 1.800 |
| 441 | QLQELTLPL | 1.800 |
| 961 | VLAFTLIVL | 1.800 |
| 784 | GVYTFHLRV | 1.800 |
| 274 | SLPPASLEL | 1800 |
| 15 | VTIAGCARK | 1.500 |
| 366 | TTYNYEWNL | 1.350 |
| 728 | VLVLPNNSI | 1.350 |
| 186 | GLLPGSEGA | 1.350 |
| 836 | TLVRQLAVL | 1.350 |
| 113 | LLDYGDMML | 1.200 |
| 825 | GVGQLTEQR | 1.200 |
| 730 | VLPNNSITL | 1.200 |
| 540 | TLPQNSITL | 1.200 |
| 1052 | KVSMNGSIR | 1.200 |
| 983 | RQKRTKIRK | 1.200 |
| 112 | QLLDYGDMM | 0.900 |
| 840 | OLAVLLNVL | 0.900 |
| 615 | VIVQPENNR | 0.900 |
| 965 | TLIVLTGGF | 0.900 |
| 10 | Sllilivtia | 0.900 |
| 560 | VLYEWSLGP | 0.900 |
| 187 | LLPGSEGAF | 0.900 |
| 687 | GTYHFRLTV | 0.900 |
| 558 | QIVLYEWSL | 0.810 |
| 654 | GIVFYHWEH | 0.810 |
| 6 | GVLSSLLLL | 0.810 |
| 7 | VLSSLLLLLV | 0.600 |


| Table XII-V1-HLA-A3-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 519 | LIVNNAVDY | 0.600 |
| 346 | TLPDNEVEL | 0.600 |
| 440 | TLPLTSALI | 0.600 |
| 394 | NLSQLSVGL | 0.600 |
| 347 | LPDNEVELK | 0.600 |
| 1062 | GASFSYCSK | 0.600 |
| 1045 | KMERGNPK | 0.6 |
| 844 | LLNVLDSDI | 0.600 |
| 777 | QLTNLVEGV | 0.600 |
| 579 | GVOTPYLHL | 0.540 |
| 353 | ELKAFVAPA | 0.540 |
| 685 | QVGTYHFRL | 0.540 |
| 483 | SVCSPVLRL | 0.540 |
| 821 | TLQVGVGQ | 0.5 |
| 399 | SVGLYVFKV | 0.540 |
| 986 | RTKIRKKTK | 0.500 |
| 44 | RIMRVSHTF | 0.450 |
| 12 | LLLVTIAGC | 0450 |
| 634 | ELIFPVESA | 0. |
| 14 | LVTIAGCAR | 0.400 |
| 392 | TLNLSQLSY | 0.400 |
| 421 | NVTVKPARR | 0.400 |
| 805 | TVEVOFDPR | 10.400 |
| 209 | TQQDPELHY | 0.3 |
| 97 | RSYLTFVLR | 10.300 |
| 700 | GLSSTSTLT | 0.300 |
| 704 | TSTLTVAVK | 0.300 |
| 473 | INGPFIEEK | 0.270 |
| 684 | LQVGTYHFR | 0.270 |
| 393 | LSVGLYVFK | 0.225 |
| 934 | HLWMENLIQ | 0.200 |
| 890 | HMRLSKEKA | 0.200 |
| 977 | CICCCKRQK | 0.200 |
| 905 | VLRVDTAGC | 0.200 |
| 625 | PVAVAGPDK | 0.200 |
| 914 | LLKCSGHGH | 0.200 |
| 279 | SLELSSVTV | 0.200 |


| Table XII-V1-HLA-A3-9mers-254P1D58 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Sub |  |
|  |  |  |
|  |  |  |
|  | VTGLQ |  |
|  | VLAFTLIV |  |
| 884 | EVARNLHMR |  |


| Table XII-V2-HLA-A39 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 4 | EMSEY | 5.40 |
| 1 | GLEEMSEYA | 0.90 |
| 9 | ADDYRELEK | 0.04 |
| 5 | MS | 0.02 |
| 6 | SEYADDYRE | 0.00 |
| 8 | YADDYRELE | 0.00 |
| 2 | LEEMSEYAD | . |
| 3 | EEMSEYADD | 0.00 |
| 7 | EYADDYREL | 0.00 |


| Table XII-V3-HLA-A3-9mers-254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  |  |  |
| 3 | RLG |  |
|  | SP |  |
| 5 | VPSP |  |
|  |  |  |
|  |  |  |



| Table XII-V5-HLA-A3-9mers-254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence |  |
| 5 | RKDLTFLGK | 0.1 |
| 7 | LTFLG |  |
| 3 | DIRKCLTFL | 0.02 |
| 8 | TFLGKCWG | 0.0 |
| 9 | FLGKDWGL | 0. |
| 2 | EDIRKDLTF | 0.00 |
| 6 | KDLTFLGKD | 0.00 |
| 4 | RKKDLTFLG |  |
| 1 | PEDIRKDLT | 0.00 |


|  | e XIII-VI-HLA-A mers-254P1D68 |  |
| :---: | :---: | :---: |
| Each SE p | peptide is a portion ID NO: 3 ; each s tion is specified, | on of start the |
|  | of peptide is 10 and the end pos ch peptide is the osition plus nine. | amino ition start |
| Start | Subsequence | Scor |
|  | HLWMENLIQR | 60.0 <br> 00 |
|  | LPDNEVE | 60.0 00 |
|  | VLDSDIKVQK | 30.0 |


| Table XIII-V1-HLA-A3 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
|  |  |  |
| Start | Subsequence | Scor |
|  |  |  |
| 687 |  | 0 |
| 844 | LLNVLDSOIK | 20 <br> 00 |
| 397 | QLSVGL | 20.0 <br> 00 |
| 683 | GLO | 12.0 <br> 00 |
| 888 | NLHMRLSKEK | $\left[\begin{array}{c} 10.0 \\ 00 \end{array}\right.$ |
| 973 | FTWLCICCCK | 7.50 <br> 0 |
| 655 | IVFYHWEHVR | 0 |
| 955 |  | 0 |
| 13 | LLVTIA,GCAR | 0 |
| 825 | GVGQLTEQRK | 6.00 <br> 0 |
| 518 | ALIVN | 6.00 <br> 0 |
| 493 | NLD | 6.00 0 |
| 865 | TVIVFYVGSR | 5.40 <br> 0 |
| 186 | GLLPGSEGAF | 4.05 0 |
| 472 | EINGPFIEEK | 4.05 <br> 0 |
| 1039. | TIFSREKIMER | 4.00 <br> 0 |
| 907 | RVDTAGCLLL | 4.00 <br> 0 |
| 997 | ILDNMDEQE | 4.00 <br> 0 |
| 394 | NLSQLSVGLY | 3.60 <br> 0 |
| 805 | TVEVQPDPRK | 3.00 <br> 0 |
| 703 | STSTLTVAVK | 3.00 |


| Table Xill-V1-HLA-A3. 10 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specifed, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | [Scor |
|  |  | 0 |
| 968 | VLTGGFTWLC | [2.70 |
| 1006 | RMELRPKYG | $\left[\begin{array}{c} 2.70 \\ 0 \end{array}\right]$ |
| 14 | LVTIAGCARK | 2.00 <br> 0 |
| 878 | KVLKAAEVAR | 1.80 0 |
| 152 | EMSEYSDCYR | $\left[\begin{array}{c} 1.80 \\ 0 \end{array}\right]$ |
| 112 | QLLDYGDMML | $\begin{gathered} 1.80 \\ 0 \end{gathered}$ |
| 777 | QLTNLVEGVY | 1.80 <br> 0 |
| $1000$ | NMDEQERMEL | 1.80 0 |
| 401 | GLYVFKVTVS | 1.80 0 |
| 895 | KEKADFLLFK | $\begin{gathered} 1.62 \\ 0 \end{gathered}$ |
| 128 | GIWGDSPEDI | $\begin{gathered} 1.35 \\ 0 \end{gathered}$ |
| 92 | KMGPIRSYLT | $\begin{gathered} 1.35 \\ 0 \end{gathered}$ |
| 586 | HLSAMQEGDY | $\begin{gathered} 1.20 \\ 0 \end{gathered}$ |
| 1058 | SIRNGA.SFSY | $\begin{gathered} 1.20 \\ 0 \end{gathered}$ |
| 241 | TPSSGEVLEK | 1.20 <br> 0 |
| 490 | RLSALLPPGY | 1.20 0 |
| 700 | GLSSTSTLTV | $\begin{gathered} 1.20 \\ 0 \end{gathered}$ |
| 100 | LTFVLRPVVR | $\begin{gathered} 1.00 \\ 0 \end{gathered}$ |
| 76 | RCYLVSCPHK | (1.00 |
| 836. | TLVRQLAVLL | $\left[\begin{array}{c} 0.90 \\ 0 \end{array}\right.$ |
| 828 | QLTEQRKDTL | 0.90 |


| Table XIII-V1-HLA-A3-10mers-254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine |  |  |
| Start | Subsequence | Scor |
|  |  |  |
| 66 | SA | 0.90 0 |
| 575 | VVMQGVQTPY | 0.90 0. |
| 843 | VLLNVLDSDI | 0.90 0 |
| 576 | VMQGVQTPYL | 0 |
| 614 | TVIVQPE | 0.90 0 |
| 862 | DLS | 81 0 0 |
| 781 | LVEGV | 81 0 |
| 780 | NL | 671 <br> 5 |
| 2 | RLSKE | 50 |
|  |  | 0 |
| 35 | VISPNLETTR | $0.60$ |
| 406 | KV | 601 |
| 692 | RLTVKDQQ | 0 |
| 247 | VLEK | 0.60 <br> 0 |
|  | MLNR | 0.60 <br> 0 |
| 45 | IMRVS | 0.60 <br> 0 |
| 481 | KTSVDSP | 0.60 |
| 419 | FVNV | 0.60 0 |
| 416 |  | 54 <br> 0 |
| 1008 | ELRPKYGIKH | 0.54 0 |
| 988 | KIRKKTKYTI | 0.5 |


| Table XIII-V1-HLA-A3-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | [Scor |
|  |  | 0 |
| 228 | KLPERSVLLP | 0.54 0 |
| 173 | KQEPRGSAEY | 0.54 0 |
| 107 | VQRPAQLLDY | $\left[\begin{array}{c} 0.54 \\ 0 \end{array}\right.$ |
| 680 | TVTGLQVGTY | $\left[\begin{array}{c} 0.54 \\ 0 \end{array}\right.$ |
| 901 | LLFKVLRVDT | $\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$ |
| 635 | LIFPVESATL | $\begin{array}{\|c} 0.45 \\ 0 \end{array}$ |
| 804 | ATVEVQPDPR | $\left[\begin{array}{c} 0.45 \\ 0 \end{array}\right.$ |
| 872 | QSRPPFKVLK | $\begin{gathered} 0.45 \\ 0 \end{gathered}$ |
| 1054 | SMNGSIRNGA | $\begin{gathered} 0.45 \\ 0 \\ \hline \end{gathered}$ |
| 11 | LILLVVTIAGC | $\left[\begin{array}{c} 0.45 \\ 0 \end{array}\right]$ |
| 396 | SQLSVGLYVF | $\left[\begin{array}{c} 0.40 \\ 5 \end{array}\right]$ |
| 939 | NLIQRYIWOG | $\begin{gathered} 0.40 \\ 5 \\ \hline \end{gathered}$ |
| 977 | CICCCKRQKR | $\begin{gathered} 0.40 \\ 0 \end{gathered}$ |
| 684 | LQVGTYHFRL | $\begin{gathered} 0.36 \\ 4 \\ \hline \end{gathered}$ |
| 7 | VLSSLLLLVT | $\left[\begin{array}{c} 0.30 \\ 0 \end{array}\right.$ |
| 459 | STDDTEIVSY | $\left[\begin{array}{c} 0.30 \\ 0 \\ \hline \end{array}\right.$ |
| 324 | SPTTAPRTVK | $\begin{gathered} 0.30 \\ 0 \end{gathered}$ |
| 269 | LMPSHSLPPA | $\left[\begin{array}{c} 0.30 \\ 0 \end{array}\right.$ |
| 217 | YLNESASTPA | $\left[\begin{array}{c} 0.30 \\ 0 \end{array}\right.$ |
| 743 | STODQRIVSY | $\left[\begin{array}{c} 0.30 \\ 0 \end{array}\right]$ |
| 913 | CLLKCSGHGH | 0.30 |


| Table XIII-V1-HLA-A3-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peplide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor $e$ |
|  |  |  |
| 223 | STPAPKLPER | [ 0.30 |
| 381 | YQGEIKQGHK | 0.27 0 |
| 729 | LVLPNNSITL | [ 0.27 |
| 960 | TVLAFTLIVL | 0.27 0 |
| 6 | GVLSSLLLLLV | 0.27 <br> 0 |
| 967 | IVLTGGFTWL | 0.27 <br> 0 |
| 149 | GLEEMSEYSD | 0.27 0 |
| 557 | HQIVLYEWSL | ${ }_{3}^{0.24}$ |
| 590 | MQEGDYTFQ- | 0.24 <br> 3 |
| 564 | WSLGPGSEGK; | 0.22 <br> 5 |
| 441 | QLQELTLPLT | 0.22 5 |
| 816 | GLVELTLQVG | 0.20 3 |
| 986 | RTKIRKKTKY | 0.20 0 |



| Table XIII-V2-HLA-A3-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the lengith of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Su | e |
| 2 | GLE | 0.27 0 |
| 4 |  | 0.01 6 |
| 7 | SEYA | 1 |
| 1 | WGLEEMSEYA | 0 |
| 6 |  | 0.0 |
| 3 |  | 0.00 0 |
| 10 | ADDYRELE | 0.00 0 |
| 8 |  | 0.00 0 |


| Table XIII-V3-HLA-A310 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of pepide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor |
| 3 | RLGWPSPCCA | ( 0.20 |
| 5 | GWPSPCCARK | 0.06 0 |
| 4 | LGWPSPCCAR | 0.04 <br> 5 |
| 1 | MTRLGWPSPC | 0.03 0 |
| 2 | TRLGWPSPCC | 0.00 1 |
| 3 | SPCCARKQCS | 1 <br> 0.00 <br> 0 |
| 10 | CCARKQCSEG | 0.00 0 |
| 7 | FSPCCARKQC | 0.00 |


| Table XIII-V3-HLA-A3-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Slart | Subsequence | Scor |
|  |  |  |
| 6 | WPSPCCAR | 0.00 0 |
| 9 | PCCARKQCSE | [0.00 |


| Table XIII-V5-HLA-A3-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 11 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Score |
| 9 | LTFLGKDWGL | 0.450 |
| 5 | IRKDLTFLGK | 0.120 |
| 8 | DLTFLGKDWG | 0.006 |
| 4 | DIRKDLTFLG | 0.002 |
| 2 | PEDIRKOLTF | 0.001 |
| 1 | SPEDIRKDLT | 0.001 |
| 7 | KDLTFLGKDW | 0.000 |
| 3 | EDIRKDLTFL | 0.000 |
| 6 | RKDLTFLGKD | 0000 |
| 10 | TFLGKDWGLE | 0.000 |


| Table XIV-V1-HLA-A1101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the slart position plus eight. |  |  |
| Start | Subsequence | Sco |
| 668 | AVEMEN | 4.0 |
| 983 | RQKRT | 3.6 |
| 870 | YVQSRPPF |  |
| 15 | VTIAGCARK | 1.50 |


| Table XIV-V1-HLA-A11019 mers-254 3 1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  | Subsequen |  |
| 705 | S |  |
| 985 |  |  |
| 825 | G |  |
| 1052 | KVSMNGSIR |  |
| 743 | RIVSYLWIR |  |
| 1062 | G |  |
| 77 | CY |  |
| 421 | N |  |
| 565 | SL |  |
| 683 |  |  |
| 14 | LVTIAGCAR | 0.400 |
| 805 | TV |  |
| 88 |  | 0. |
| 784 |  |  |
| 34 | LPDNEVELK | 0.200 |
| 62 |  |  |
| 6 | G | 0.180 |
| 684 | LQVGTYHFR | 0. |
| 258 | EQS | 0. |
| 39 | - | 0. |
| 13 | G | 0. |
| 13 | R | 0.120 |
| 884 | EVARNLHMR | 0. |
| 687 | $G$ |  |
| 615 | Q | 0. |
|  | EL | 0. |
| 1008 | E | 0.12 |
| 8 | VIV | 0. |
| 5 | GV | 0.120 |
| 3 | PT | 0. |
| 378 | PT | 0.1 |
| 165 | KDLLQPSGK | 0.090 |
| 967 | IVLTGGFTW | 0.0 |
| 8 | KVL | 0.090 |
| 806 | VEVQPDPR | 0.090 |
| 598 | QLKVTDSSR | 0.080 |
| 879 | VLKAAEVAR | 0.080 |


| Table XIV-V1-HLA-A1101$9 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 656 | VFYHWEHVR | 0.080 |
| 975 | WLCICCCKR | 0.080 |
| 1040 | IFSREKMER | 0.080 |
| 831 | EQRKDTLVR | 0.072 |
| 845 | LNVLDSDIK | 0.060 |
| 685 | QVGTYHFRL | 0.060 |
| 958 | YVTVLAFTL | 0.060 |
| 429 | RVNLPPVAV | 0.060 |
| 1010 | RPKYGIKHR | 0.060 |
| 907 | RVDTAGCLL | 0.0 |
| 960 | TVLAFTLIV | 0.060 |
| 47 | RVSHTFPW | 0.0 |
| 101 | TFVLRPVQR | 0.0 |
| 399 | SVGLYVFKV | 0.060 |
| 846 | NVLDSDIKV | 0.060 |
| 406 | KVTVSSENA | 0.06 |
| 839 | RQLAVLLNV | 0.054 |
| 115 | DYGDMMLNR | 0.0 |
| 169 | QPSGKQEPR | 0.040 |
| 908 | VDTAGCLLK | 0.040 |
| 483 | SVDSPVLRL | 0.040 |
| 224 | TPAPKLPER | 0.040 |
| 366 | TTYNYEWNL | 0.040 |
| 920 | HGHCDPLTK | 0.040 |
| 157 | SDDYRELEK | 0.040 |
| 655 | IVFYHWEHV | 0.040 |
| 977 | CICCCKRQK | 0.040 |
| 978 | ICCCKRQKR | 0.040 |
| 473 | WGGPFIEEK | 0.040 |
| 816 | GLVELTLQV | 0.036 |
| 654 | G\|VFYHWEH | 0.036 |
| 974 | TWLCICCCK | 0.030 |
| 398 | LSVGLYVFK | 0.030 |
| 481 | KTSVDSPVL | 0.030 |
| 97 | RSYLTFVLR | 0.024 |
| 68 | DLAWWFEGR | 0.024 |
| 401 | GLYVFKVTV | 0.024 |


| Table XIV-V1-HLA-A1 101 9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 683 | GLQVGTYHF | 0.0 |
| 44 | RIMRVSHTF | . 0 |
| 826 | VGQLTEQRK | 0.02 |
| 889 | LHMRLSKEK | 0.020 |
| 382 | QGEIKQGHK | 0. |
| 980 | CCKRQKRTK | 0.020 |
| 1064 | SFSYCSKDR | 0.0 |
| 848 | LDSDIKVQK | 0.0 |
| 773 | SVALQLTNL | 0.020 |
| 84 | HKENCEPKK | 0.020 |
| 294 | TVTPGSTEH | 0.020 |
| 465 | IVSYHWEEI | 0.020 |
| 704 | TSTLTVAVK | 0.020 |
| 336 | TVSAGDNLI | 0.02 |
| 781 | LVEGWTFH | 0.020 |
| 337 | LVRQLAVLL | 0.020 |
| 873 | SRPPFKVLK | 0.020 |
| 581 | QTPYLHLSA | 0.020 |
| 284 | SVTVEKSPV | 0.020 |
| 437 | VVSPQLQEL | 0.020 |
| 331 | TVKELTVSA | 0.020 |
| 351 | EVELKAFVA | 0.018 |


| Table XIV-V2-HLA-A11019 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5; each siart position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 9 | ADDYRELEK | 0.040 |
| 1 | GLEEMSEYA | 0012 |
| 5 | MSEYADDYR | 0.004 |
| 4 | EMSEYADDY | 0.001 |
| 6 | SEYADDYRE | 0.000 |
| 8 | YADDYRELE | 0.000 |

\(\left.$$
\begin{array}{|c|}\hline \begin{array}{c}\text { Table XIV-V2-HLA-A1101- } \\
\text { 9mers-254P1D68 }\end{array} \\
\hline \begin{array}{c}\text { Each peptide is a portion of } \\
\text { SEQ ID NO: } 5 \text {; each start } \\
\text { position is specified, the }\end{array}
$$ <br>
ength of peptide is 9 amino <br>
acids, and the end position <br>
for each peptide is the start <br>

position plus eight.\end{array}\right\}\)| Start | Subsequence | Score |
| :---: | :---: | :---: |
| 7 | EYADDYREL | 0.000 |
| 2 | LEEMSEYAD | 0.000 |
| 3 | EEMSEYADD | 0.000 |


| Table XIV-V3-HLA-A1101-9mers-254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peplide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  | Su |  |
| 6 |  |  |
| 5 |  |  |
| 3 |  |  |
|  | MTRLGWPSP |  |
| 4 |  |  |
| 10 | C |  |
| 8 | SP |  |
| 2 | RRL |  |
| 9 | PCCARK |  |
| 7 | CARKQ | 0.000 |


| Table XIV-V5-HLA-A1101-Gmers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Scors |
| 5 | RK | 0.120 |
| 9 | THKK | 0.006 |
| 8 | LT | 0. |
| 3 | DIRKDLTFL | 0.001 |
| 7 | DLTFLGK | 0. |
| 2 | EDIRKDLTF | 0.000 |


| Table XIV-V5-HLA-A1 101- |
| :---: | :---: |
| 9mers-254P1D68 |
| Each peptide is a portion of <br> SEQ ID NO: 11; each start <br> position is specified, the <br> length of peptide is 9 amino <br> acids, and the end position <br> for each peptide is the start <br> position plus eight. |
| Start Subsequence Score <br> 6 KDLTFLGKD 0.000 <br> 4 IRKDLTFLG 0.000 <br> 1 PEDIRKDLT 0.000 |


| Table XV-V1-HLA-A1101. 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequ | Scor |
|  | RVDTAGCLLK |  |
| 825 | RK | 0 |
| 687 | G | 0 |
| 1 | , | ${ }^{2.00} 0$ |
| 805 | TVEVQPDPRK | ( 0 |
| 973 | FTWLCICCCK | 2.00 <br> 0 |
|  |  | 1.80 <br> 0 <br> 1.20 |
| 76 |  | 1.20 <br> 0 <br> 1 |
| 703 | ST | 1.00 0 |
| 655 |  | .80 <br> 0 |
| 667 | SA | 0.60 <br> 0 |
| 865 |  | 0.6 <br> 0 |
| 614 | TVIVQPENNR | 0.60 0 |
| 869 |  | 0.60 0 |


| Table XV-V1-HLA-A1 101. 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each pepide is the start position plus nine. |  |  |
| Slart | Subsequence | [scor |
| 481 | KTSVDSPVLR | ( $\begin{gathered}\text { a.60 } \\ 0\end{gathered}$ |
| 381 | YQGEIKQGHK | 0.60 <br> 0 |
| 100 | LTFVLRPVQR | (0.40 <br> 0 |
| 346 | TLPDNEVELK | 0.40 <br> 0 |
| 847 | VLDSDIKVQK | [ 0.40 |
| 419 | FVNVTVKPAR | [0.40 <br> 0 |
| 844 | LLNVLDSDIK | [0.40 |
| 241 | TPSSGEVLEK | [ 0.40 |
| 397 | QLSVGLYVFK | [0.40 |
| 895 | KEKADFLLFK | 0.36 <br> 0 |
| 934 | HLWMENLIQR: | $\begin{gathered} 0.32 \\ 0 \\ \hline \end{gathered}$ |
| 1039 | TIFSREKMER | 0.32 <br> 0 |
| 804 | ATVEVQPDPR | 0.30 <br> 0 |
| 583 | GLQVGTYHFR | [0.24 |
| 388 | NLHMRLSKEK | 0.20 <br> 0 |
| 223 | STPAPKLPER | [0.20 0 |
| 82 | CPHKENCEPK | 0.20 <br> 0 |
| 324 | SPTTAPRTVK | $\left[\begin{array}{c}0.20 \\ 0\end{array}\right.$ |
| 377 | HPTDYQGEIK | [0.20 |
| 6 | GVLSSLLLLLV | $\begin{gathered} 0.18 \\ 0 \end{gathered}$ |
| 597 | FQLKVTDSSR | $\left[\begin{array}{c} 0.18 \\ 0 \end{array}\right.$ |


| Table XV-V1-HILA-A1101-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3 each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor |
| 983 | RQKRTKIRKK | $\begin{gathered} 0.18 \\ 0 \end{gathered}$ |
| 416 | GEGFVNVTVK | $\begin{gathered} 0.18 \\ 0 \end{gathered}$ |
| 1043 | REKMERGNPK | $\begin{gathered} 0.18 \\ 0 \end{gathered}$ |
| 919 | GHGHCLPLTK | $\begin{gathered} 0.12 \\ 0 \\ \hline \end{gathered}$ |
| 982 | KRQKRTKIRK | $\begin{gathered} 0.12 \\ 0 \end{gathered}$ |
| 472 | EINGPFIEEK | $\begin{gathered} 0.12 \\ 0 \end{gathered}$ |
| 13 | LLVTIAGCAR | $\begin{gathered} 0.12 \\ 0 \end{gathered}$ |
| 168 | LQPSGKQEPR | 0.12 0 0 |
| 283 | LELSSV'VEK | [0.09 |
| 1007 | MELRPKYGIK | 0.09 <br> 0 |
| 977 | CICCCKPQKR | $\left[\begin{array}{c} 0.08 \\ 0 \end{array}\right]$ |
| 35 | VISPNLETTR | $\begin{gathered} 0.08 \\ 0 \end{gathered}$ |
| 493 | NLDPGNY'SFR | $\left[\begin{array}{c} 0.08 \\ 0 \end{array}\right.$ |
| 997 | ILDNMDEQER | 0.08 <br> 0 |
| 321 | LPISPTTAPR | $\begin{gathered} 0.06 \\ 0 \end{gathered}$ |
| 870 | YVQSRPPFKV | $\begin{gathered} 0.06 \\ 0 \end{gathered}$ |
| $25 ?$ | QEQSSNSSGK | $\begin{gathered} 0.06 \\ 0 \end{gathered}$ |
| 406 | KVTVSSENAF | $\left[\begin{array}{c} 0.06 \\ 0 \end{array}\right.$ |
| 781 | LVEGWTFHL | $\begin{gathered} 0.06 \\ 0 \end{gathered}$ |
| 960 | TVLAFTLIVL | $\begin{gathered} 0.06 \\ 0 \end{gathered}$ |
| 429 | RVNLPPVAVV | $\begin{gathered} 0.06 \\ 0 \end{gathered}$ |



| Table XV-V1-HLA-A1101 10 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the ength of peplide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor |
| 986 | RT | 0.03 0 |
| 391 | Q | 0.03 0 |
| 436 | AV | 0 |
| 539 | ITLPQNSITL | 03 |
| 727 | HVLVLPNNSI | 03 |
| 684 | LQVG | . 72 |
| 839 | RQLAVLLNVL | 7 |
| 1006 | RM | 4 |
| 830 | TEQRK | 4 |
| 152 | EN | 4 |
| 988 | KRKK | 4 |
| 700 | GLSS | 02 <br> 4 |
| 128 | GIWGDSPED | 4 |
| 979 |  | 0.02 0 |
| 423 | TVKP | 02 |
| 958 | YVTVLAFTLI | . 02 |
| 680 |  | [02 |
| 366 | TTYNYEWNLI | [0.02 |
| 1061 | NG | (1.02 |
| 1019 | STEHNSSLMV | 02 0 |
| 284 | SVTVEKSPVL | [0.02 |


| Table XV-V1-HLA-A1101. 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | ( $\begin{gathered}\text { Scor } \\ \mathrm{e}\end{gathered}$ |
| 872 | QSRPPFKVLK | 0.02 0 |
| 524 | AVDYPPVANA | 0.02 0 |


| Table XV-V2-HLA-A110110 mers -254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5 each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Siart | Subsequence | Sco <br> $e$ |
| 9 |  | 0.40 0 |
| 5 | EMS | 4 |
| 2 |  | 2 |
| 4 | EEMSEYADDY | 0 |
| 1 |  | 0 |
| 8 |  | 0 |
| 7 | SE | 0 |
| 3 | MSE | 0 |
| 6 | E | 0 |
| 10 |  | 0.00 |

Table XV-V3-HLA-A1101-10mers-254P1068

| Each peptide is a portion of <br> SEQ ID NO: 7 ; each start |  |
| :--- | :--- | :--- |
| position is specified, the length |  |
| of peptide is 10 amino acids, |  |
| and the end position for each |  |
| peptice is the start position |  |
| plus nine. |  |,


| Table XV-V5-HLA-A1101-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each pepticie is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequenc $e$ | Score |
| 9 | $\begin{gathered} \text { LTFLGKDW } \\ \text { GL } \end{gathered}$ | 0.040 |
| 5 | $\underset{K}{\text { IRKDLTFLG }}$ | 0.0 |
| 7 | $\begin{array}{\|c\|} \hline \text { KDLTFLGKD } \\ W \end{array}$ | 0.000 |
| 4 | $\begin{gathered} \text { DIRKDLTFL } \\ G \end{gathered}$ | 0.000 |
| 10 | TFLGKDWG | 0.000 |
| 1 | $\underset{T}{\text { SPEDIRKDL }}$ | 0.000 |
| 8 | $\begin{gathered} \hline \text { DLTFLGKD } \\ \text { WG } \end{gathered}$ | 0.000 |
| 2 | $\begin{gathered} \text { PEDIRKDLT } \\ F \end{gathered}$ | 0.000 |
| 3 | $\underset{L}{\text { EDIRKDTF }}$ | 0.000 |
| 6 | $\begin{gathered} \text { RKDLTFLGK } \\ D \end{gathered}$ | 0.000 |


| Table XVI-V1-HLA-A24-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight |  |  |
| Start | Subsequence | Score |
| 159 | DYRELEKDL | 288.0 00 |
| 155 | EYSDDYREL | 264.0 <br> 00 |
| 869 | FYVQSRPFF | $\begin{gathered} 150.0 \\ 00 \end{gathered}$ |
| 367 | TYNYEWNLI | [90.00 |
| 636 | IFPVESATL | 30.00 0 |
| 943 | RYIWDGESN | $\left[\begin{array}{c}15.00 \\ 0\end{array}\right]$ |
| 228 | KL_PERSVLL | 14.40 <br> 0 |
| 92 | KMGPIRSYL | 13.44 <br> 0 |
| 381 | KAAEVARNL | $\left[\begin{array}{c}13.44 \\ 0 \\ -120\end{array}\right.$ |
| 676 | KAIATVTGL | (2.00 |
| 105 | RPVQRPAQL | 12.00 0 |
| 814 | KSGLVELTL | 11.20 <br> 0 |
| 957 | FYVTVLAFT | $\begin{gathered} 10.50 \\ 0 \end{gathered}$ |
| 133 | SPEDIRKDL | $\begin{gathered} 10.08 \\ 0 \end{gathered}$ |
| 956 | IFYVTVLAF | $\begin{gathered} 10.00 \\ 0 \end{gathered}$ |
| 1012 | KYGIKHRST | $\begin{gathered} 10.00 \\ 0 \end{gathered}$ |
| 1018 | RSTEHNSSL | 0.600 |
| 441 | QLQELTLPL | 8.640 |
| 445 | LTLPLTSAL | 8.640 |
| 44 | RIMRVSHTF | 8.400 |
| 481 | KTSVDSPVL | 8.000 |
| 390 | KQTLNLSQL | 8.000 |
| 907 | RVDTAGCLL | 8.000 |
| 274 | SLPPASLEL | 7.920 |
| 346 | TLPDNEVEL | 7.920 |


| Table XVI-V1-HLA-A24-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence |  |
| 216 | HYLNESAST |  |
| 402 | LYVFKVTVS |  |
|  | LT |  |
| 285 | VTVEKS ${ }^{\text {VL }}$ |  |
| 327 |  |  |
| 437 |  |  |
| 836 | TLVRQLAVL |  |
| 439 |  |  |
| 6 | GVLSSLLLL |  |
| 829 |  |  |
| 540 |  |  |
| 821 | TLQVGVGQL |  |
| 730 |  |  |
| 579 |  |  |
| 486 |  |  |
|  | - |  |
| 240 | TTPSS |  |
|  |  |  |
| 533 | AGPNHTITL |  |
|  | SA |  |
| 558 | QIVLYEVSL | 6.000 |
| 267 | EVLMP |  |
| 335 |  |  |
| 99 | QGLSSTSTL | 6.000 |
| 5 | TGVLS |  |
| 840 | QLAVLL |  |
| 872 | Q |  |
| 32 |  | 5.500 |
| 469 | H | 5. |
|  | EF | 5. |
| 594 |  | 5. |
| 498 | NYSFRLTVT | 5.00 |
| 785 | $\checkmark$ | 5.000 |
| 885 | VA | 4.80 |
| 71 | WWFEGR | 4.8 |
| 893 | LSKEKADFL | 4.800 |
| 968 | VLTGGFTWL | 4.8 |


| Table XVI-V1-HLA-A24-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 553 | SSDOHQIVL | 4.800 |
| 809 | QPDPRKSGL | 4.800 |
| 837 | LVRQLAVLL | 4.800 |
| 210 | QQDPELHYL | 4.800 |
| 339 | AGDNLIITL | 4.800 |
| 394 | NLSQLSVGL | 4.800 |
| 768 | DGSDHSVAL | 4.800 |
| 958 | YVTVLAFTL | 4.800 |
| 627 | AVAGPDKEL | 4.400 |
| 221 | SASTPAPKL | 4.400 |
| 113 | LLDYGDMML | 4.000 |
| 685 | QVGTYHFRL | 4.000 |
| 261 | SNSSGKEVL | 4.000 |
| 773 | SVALQLTNL | 4.000 |
| 387 | QGHKQTLNL | 4.000 |
| 56 | DCTAACCDL | 4.000 |
| 918 | SGHGHCDPL | 4.000 |
| 577 | MQGVQTPYL | 4.000 |
| 483 | SVDSPVLRL | 4.000 |
| 366 | TTYNYEWNL | 4.000 |
| 932 | CSHLWMENL | 4.000 |
| 961 | VLAFTLIVL | 4.000 |
| 61 | CCDLSSCDL | 4.000 |
| 495 | DPGNYSFRL | 4.000 |
| 136 | DIRKDLPFL | 4.000 |
| 892 | RLSKEKADF | 4.000 |
| 723 | AGGRHVLVL | 4.000 |
| 589 | AMQEGDYTF | 3.600 |
| 629 | AGPDKELIF | 3.600 |
| 780 | NLVEGVYTF | 3.600 |
| 407 | VTVSSENAF | 3.600 |
| 965 | TLIVLTGGF | 3.600 |
| 1025 | SLIVVSESEF | 3.300 |
| 142 | PFLGKDWGL | 3.000 |
| 1057 | GSIRNGASF | 3.000 |
| 683 | GLQVGTYHF\| | 3.000 |
| 187 | LLPGSEGAF | 3.000 |


| able XVI-V1-HLA-A24 9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peplide is the start position plus eight. |  |  |
|  | Subsequence |  |
| 349 | DNEVELKAF | 3.0 |

Table XVI-V2-HLA-A24-
9mers-254P1D68
Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

| Start | Subsequence | Score |
| :---: | :---: | :---: |


| 7 | EYADDYREL | 264.0 |
| :---: | :---: | :---: | :---: |


| 1 | GLEEMSEYA 0.180 |
| :---: | :---: | :---: |

4 EMSEYADDY 0.120
5 MSEYADDYR 0.015

| 8 | YADDYRELE | 0.012 |
| :---: | :---: | :---: | :---: |
| 3 | EEMSEYADD | 0.002 |
| 2 |  |  |

2 LEEMSEYAD 0.002

| 9 | ADDYRELEK | 0.001 |
| :---: | :---: | :---: |
| 6 | SEYADDYRE | 0.001 |


| Table XVI-V3-HLA-A24-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| St | Subsequence | Score |
| 3 | RLGWPSPCC | 0.200 |
| 4 | LGWPSPCCA | 0.120 |
| 8 | SPCCARKQC | 0.100 |
| 5 | GWPSPCCAR | 0.015 |
| 2 | TRLGWPSPC | 0.015 |
| 6 | WPSPCCARK | 0.012 |
| 9 | PCCARKQCS | 0.012 |
| 10 | CCARKQCSE | 0.010 |


| 1 | MTRLGWPSP | 0.010 |
| :---: | :---: | :---: |
| 7 | PSPCCARKQ | 0.002 |


| Table XVI-V5-HLA-A24-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peplide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 9 | TFLGKDVGL |  |
| 3 | DIRKDLTFL |  |
| 2 | EDIRKD | 0.300 |
| 7 | DLTFLGKDW | 0.120 |
| 8 | TFLGK | 0.0 |
| 6 | KDLTFLEKD | 0.003 |
| 5 | RKDL | 0.002 |
| 4 | IRKDLTFLG | 0.00 |
| 1 | PEDIRKCLT | 0.001 |


| Table XVII-V1-HLA-A24 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the lencth of peptide is 10 amino acids; and the end position for each peptide is the star! position plus nine. |  |  |
| Start | Sub | Scor |
|  |  | 00 |
| 159 | DYRELEKDLL | 20.0 <br> 00 |
| 839 | RQLAVLLNVL | 17.28 0 |
| 943 | C $C$ | 15.00 0 |
| 105 | L | 0 |
| 897 | K |  |
| 402 | LY | 0 |
| 98 | SY | 10.50 0. |
| 132 | DSP | 10.08 0 |
| 868 | VFYVQSRPP | 10.00 |


| Table XVII-V1-HLA-A24-10mers-254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Score |
|  | F | 0 |
| 1032 | EFDSDQDTIF | 10.00 0 |
| 692 | $\begin{aligned} & \text { RLTVKDQQG } \\ & L \end{aligned}$ | 9.600 |
| 561 | LYEWSLGPG $S$ | 9.000 |
| 229 | LPERSVLLPL | 8.400 |
| 31 | YSNAVISPNL | 8.400 |
| 2 | APPTGVLSSL | 8.400 |
| 892 | RLSKEKADFL | 8.000 |
| 720 | RARAGGRHV <br> L | 8.000 |
| 386 | KQGHKQTLN L | 8.000 |
| 722 | RAGGRHVLV | 8.000 |
| 436 | $\begin{gathered} \text { AVVSPQLQE } \\ L \end{gathered}$ | 7.920 |
| 273 | HSLPPASLEL | 7.920 |
| 345 | ITLPDNEVEL | 7.920 |
| 367 | TYNYEWNLIS | 7.500 |
| 751 | SYLWIRDGQ $S$ | 7.500 |
| 482 | TSVDSPVLRL | 7.200 |
| 539 | ITLPQNSITL | 7.200 |
| 209 | $\begin{gathered} \text { TQQDPELHY } \\ L \end{gathered}$ | 7.200 |
| 967 | IVLTGGFTWL | 7.200 |
| 836 | TLVRQLAVLL | 7.200 |
| 393 | LNLSQLSVGL | 7.200 |
| 729 | LVLPNNSITL | 7.200 |
| 808 | VQPDPRKSG L | 7.200 |
| 112 | $\begin{gathered} \text { QLLDYGDMM } \\ L \end{gathered}$ | 7.200 |
| 30 | TYSNAVISPN | 7.000 |
| 626 | $\begin{array}{\|c\|} \hline \text { VAVAGPDKE } \\ L \end{array}$ | 6.600 |
| 557 | HQIVLYEWSL | 6.000 |


| Table XVII-V1-HLA-A.24-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each slart position is specified, the length of peptide is 10 amino acids, and the end position for each peplide is the start position plus nine |  |  |
| Start | Subsequence |  |
| 684 | LQVGTY | 6.0 |
| 835 | DT |  |
| 590 |  |  |
| 438 | VSPQL | 6.000 |
| 247 | VLEKEKA |  |
| 820 | LTLQVGVGQ L. | 6.0 |
| 260 | L | 6.0 |
| 576 | $L$ | 6.00 |
| 179 | SAEYTDWGL L | 6. |
| 485 | DSPVLR |  |
| 5 | TGVLSSLLLL | 6.0 |
| 960 | TVLAFTLI | 6.000 |
|  | LV |  |
| 578 | L | 6.0 |
| 772 | HSVALQLTNL |  |
| 338 | SAGDNL |  |
| 769 | $\begin{gathered} \text { GSDHSVALQ } \\ L \end{gathered}$ | 5.6 |
| 926 | LTKRCICSHL | 5.60 |
| 326 | TTAPRTVKEL | 5.2 |
| 000 | $\begin{gathered} \text { NMDEQERM } \\ \mathrm{L} \end{gathered}$ | 5.2 |
| 312 | APSESTPSEL | 5.28 |
| 893 | LSKEKADFLL | 4.80 |
| 60 | CDLSS | 4.8 |
| 635 | LIFPVESATL | 4.800 |
| 406 | KVTVSSENAF | 4.8 |
| 423 | L | 4.8 |
| 444 | ELTLPLTSAL | 4.8 |
| 828 | $\begin{gathered} \text { QLTEQRKDT } \\ L \end{gathered}$ | 4.8 |


| Table XVII-V1-HLA-A24$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 68$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Sta | Sub |  |
| 884 |  | 4.800 |
| 384 | EIKQG |  |
| 532 | NAGPNH |  |
| 552 | QSSDDHQIVL |  |
| 871 |  |  |
| 178 |  | 4.800 |
| 220 | ES |  |
| 811 | DPRKSC |  |
| 905 | $\overline{\text { VLP }}$ |  |
|  | LPFLGKDWG |  |
| 284 |  |  |
| 510 | GATNSTT |  |
| 698 |  |  |
| 334 | E |  |
| 854 | Vo |  |
|  | CSGHGHCDP $L$ |  |
| 931 | ICSHLWMEN | 4.0 |
| 365 | ETTYNYEWN | 4.0 |
| 953 | EWSIFY | 4.000 |
| 226 | APKLPERSVL |  |
| 70 | YL | 4.0 |
| 186 | F | 3.6 |
| 964 | FILIVLTG | 3. |
| 492 | F |  |
| 1024 | $\begin{gathered} \text { SSLMVSESE } \\ \quad \mathrm{F} \\ \hline \end{gathered}$ | 3.3 |
| 1006 | RMELRPKYGI | 3.00 |
| 779 | TNLVEGVYTF | 3.00 |


| Table XVII-V1-HLA-A24- <br> 10mers-254P1D68 |
| :---: | :---: | :---: |
| Each peptide is a portion of <br> SEQ ID NO: 3; each start <br> position is specified, the |
| length of peptide is 10 amino |
| acids, and the end position |
| for each peptide is the start |
| position plus nine. |


| Table XVII-V2-HLA-A24$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 68$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Su | Scor |
| 8 |  | c 0 0 |
| 7 | SEYADDYREL | 0 |
| 1 |  | 0 |
| 2 | gleemseyad | 8 |
| 6 |  | 5 |
| 4 | EE | 5 |
| 9 |  | , |
| 5 |  | 2 |
| 3 | LEEMSEYADD | co 2 |
| 10 | ADDYRELEKD | 0.00 |




| Table XVIII-V1-HLA-B7-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subseque |  |
| 133 | SPEDIRKDL |  |
| 267 | EV |  |
| 579 | GVQTPYLHL | 0 |
| 809 | QPDPRKSGL |  |
| 437 | VV | 0 |
| 685 | QVGTYHFRL | 0.00 |
| 773 | SVAL | $\begin{aligned} & 5.00 \\ & 0 \end{aligned}$ |
| 175 | EPRGSAEYT | 00 |
| 6 | G | 0 |
| 958 | YVTVL | $\begin{gathered} 0.00 \\ 0 \end{gathered}$ |
| 582 | TP | (20.00 |
| 226 | APKL | $\begin{aligned} & 3.00 \\ & 0 \end{aligned}$ |
| 221 | SASTPAPK | $\begin{aligned} & 3.00 \\ & 0 \end{aligned}$ |
| 533 |  | $\begin{gathered} 2.00 \\ 0 \end{gathered}$ |
| 327 | TAPRTVKEL | $\begin{gathered} 12.00 \\ 0 \end{gathered}$ |
| 676 |  | $\begin{aligned} & 2.00 \\ & 0 \\ & \hline \end{aligned}$ |
| 881 | KAAEVARNL | 0 |
| 723 |  | (2.00 |
| 511 | ATNSTTAAL | $\begin{gathered} 2.00 \\ 0 \\ \hline \end{gathered}$ |
| 359 | APAPPVETT | 9.000 |
| 483 | SVDSPVLRL | 9.000 |
| 3 | PPTGVLSSL | 8.00 |
| 296 | TPGSTEHSI | 8.00 |


| Table XVIII-V1-HLA-B7-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the lergth of peplide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence | Score |
| 37 | SPNLETTRI | 8. |
| 377 | HPTDYQGEI | 8.000 |
| 92 | KMGPIRSYL | 6.000 |
| 720 | RARAGGRHV | 6.000 |
| 907 | RVDTAGCLL | 6.000 |
| 1018 | RSTEHNSSL | 4.000 |
| 346 | TLPDNEVEL | 4.000 |
| 32 | SNAVISPNL | 4.000 |
| 954 | WSIFYVTVL | 4.000 |
| 324 | SPTTAPRTV | 4.000 |
| 821 | TLQVGVGQL | 4.000 |
| 540 | TLPQNSITL | 4.000 |
| 918 | SGHGHCDPL: | 4.000 |
| 927 | TKRCICSHL | 4.000 |
| 121 | LNRGSPSGI | 4.000 |
| 814 | KSGLVELTL | 4.0 |
| 240 | TTPSSGEVL | 4.000 |
| 699 | QGLSSTSTL | 4.000 |
| 968 | VLTGGFTWL | 4. |
| 56 | DCTAACCDL | 4.000 |
| 445 | LTLPLTSAL | 4.000 |
| 932 | CSHLWMENL | 4.000 |
| 558 | QIVLYEWSL | 4.000 |
| 274 | SLPPASLEL | 4.000 |
| 961 | VLAFTLIVL | 4.000 |
| 390 | KQTLNLSQL | 4.000 |
| 768 | DGSDHSVAL | 4.000 |
| 893 | LSKEKADFL | 4.000 |
| 577 | MQGVQTPYL | 4.000 |
| 730 | VLPNNSITL | 4.000 |
| 228 | KLPERSVLL | 4.000 |
| 285 | VTVEKSPVL | 4.000 |
| 366 | TTYNYEWNL | 4.000; |
| 335 | LTVSAGENL | 4.000 |
| 693 | LTVKDQQGL | 4.000 |
| 840 | QLAVLLNVL | 4.000 |
| 159 | DYRELEKDL | 4.000 |


| Table XVIIIV1-HLA-B79 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  |  |  |
| 567 | GP |  |
| 836 | TLVR |  |
| 5 | TG |  |
| 387 | QGHKQTLNL |  |
| 261 | SN |  |
| 481 |  |  |
| 441 | QLQELTLPL |  |
| 394 | NLSQLS |  |
| 179 | SAE |  |
| 339 |  |  |
| 999 | M |  |
| 106 | QRPAQLL |  |
| 304 | IPTPPTSAA |  |
| 924 | DPLT |  |
| 111 | AQLLDYGDM |  |
| 34 | AVISPNLET |  |
| 434 | PVAVVS |  |
| 270 | MPSHSL |  |
| 811 | DPP |  |
| 336 | TV |  |
| 465 | IVSYHWEE |  |
| 874 |  |  |
| 604 | SS | 2.000 |
| 27 | EG | 2.000 |
| 52 | FP | 2.0 |
| 721 | ARAGGP | 1.800 |
| 531 | ANA | 1. |
| 618 | QPENNR | 1.80 |
| 517 | AALIVN | 1.800 |
| 621 | NNRPPVAVA: | 1.5 |



| Each peplide is a portion of |  |  |
| :---: | :---: | :---: |
| SEQ ID NO: 5 ; each start <br> position is specifed, the <br> length of peptide is 9 amino <br> acids, and the end position <br> for each peptide is the start <br> position plus eight: |  |  |
| Start | Subsequence | Score |
| 7 | EYADDYREL | 0.400 |
| 1 | GLEEMSEYA | 0.030 |
| 4 | EMSEYADDY | 0.020 |
| 8 | YADDYRELE | 0.013 |
| 3 | EEMSEYADD | 0.003 |
| 5 | MSEYADDYR | 0.003 |
| 6 | SEYADDYRE | 0.001 |
| 99 | ADDYRELEK | 0.001 |
| 2 | LEEMSEYAD | 0.000 |


| Table XVIII-V3-HLA-B7-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | Coarke |  |
|  |  |  |
| 7 |  |  |


| Table XVIII-V5.HLA-B7-Emers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence |  |
| 3 | DIRKDLTFL | 40.0 |
| 9 | TFLGKDWG |  |


| le XVIII-V5-HLA-B7 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peplide is the start position plus eight. |  |  |
|  |  |  |
|  |  |  |
| 8 | LTFLG |  |
| 2 |  |  |
| 4 |  |  |
| 6 | KDL |  |
|  | PEDIRKDI |  |
| 5 | RKDLTFLGK |  |


| Table XIX-V1-HLA-B7- <br> 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | $\begin{gathered} \text { Scor } \\ \text { e } \end{gathered}$ |
| 811 | DPRKSGLVEL | $\begin{aligned} & 800 \\ & 000 \end{aligned}$ |
| 223 | APKLPERSVL | $\begin{aligned} & 360 . \\ & 000 \end{aligned}$ |
| 312 | APSESTPSEL | 240 <br> 000 |
| 2 | APPTGVLSSL | 240 <br> 000 |
| 720 | RARAGGRHVL | 180 <br> 000 |
| 105 | RPVQRPAQLL | $120 .$ |
| 328 | APRTVKELTV | $\begin{aligned} & 120 \\ & 000 \end{aligned}$ |
| 141 | LPFLGKDWGL | $[80.0$ |
| 436 | AVVSPQLQEL | $\begin{aligned} & 60.0 \\ & 00 \end{aligned}$ |
| 662 | HVRGPSAVEM | $\begin{aligned} & 50.0 \\ & 00 \end{aligned}$ |
| 905 | VLRVDTAGCL | $0$ |
| 423 | TVKPARRVNL | $\left[\begin{array}{c}30.0 \\ 00\end{array}\right.$ |


| Table XIX-V1-HLA-B710 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each paptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor |
| 229 | LPERSVLLPL | 24.0 <br> 00 |
| 37 | SPNLETTRIM | $\begin{gathered} 20.0 \\ 00 \end{gathered}$ |
| 284 | SVTVEKSPVL | $\begin{gathered} 200 \\ 00 \end{gathered}$ |
| 967 | IVLTGGFTWL | $20 .$ |
| 960 | TVLAFTLIVL | $\begin{gathered} 20.0 \\ 00 \end{gathered}$ |
| 729 | LVLPNNSITL | $\begin{array}{\|c} 200 \\ 00 \\ \hline \end{array}$ |
| 884 | EVARNLHMRL | $\begin{array}{\|c\|} \hline 20.0 \\ 00 \\ \hline \end{array}$ |
| 623 | VAVAGPDKEL | $\begin{gathered} 18.0 \\ 00 \end{gathered}$ |
| 338 | SAGDNLIITL | $\left[\begin{array}{c} 12.0 \\ 00 \end{array}\right.$ |
| 722 | RagGRHVLVL | $\begin{gathered} 12.0 \\ 00 \end{gathered}$ |
| 60 | ACCDLSSCDL | $\begin{gathered} 12.0 \\ 00 \\ \hline \end{gathered}$ |
| 510 | GATNSTTAAL | $\begin{aligned} & 12.0 \\ & 00 \end{aligned}$ |
| 532 | NAGPNHTITL | 12.0 <br> 00 |
| 665 | GPSAVEMENI | 8.00 0 |
| 1050 | NPKVSMNGSI | 8.00 <br> 0 |
| 3 | PPTGVLSSLL | 8.00 <br> 0 |
| 433 | PPVAVVSPQL | $\begin{gathered} 8.00 \\ 0 \end{gathered}$ |
| 781 | LVEGYTFHL | $\begin{gathered} 6.00 \\ 0 \end{gathered}$ |
| 871 | VQSRPPFKVL | $\sqrt{6.00}$ |
| 578 | QGVQTPYLHL | 16.00 |
| 627 | AVAGPDKELI | 6.00 0 |
| 220 | ESASTPAPKL | 6.00 |


| Table XIX-V1-HLA-B7-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 : each start position is specified, the length of peptide is 10 amino acids, and the end position for each peplide is the start position plus nine. |  |  |
| Start | Subsequence | ${ }_{\text {S }}^{\text {Scor }}$ |
|  |  | 0 |
| 482 | TSVOSPVLRL | 6.00 0 |
| 132 | DSPEDIRKDL | 6.00 0 |
| 892 | RLSKEKADFL | 4.00 <br> 0 |
| 260 | SSNSSGKEVL | 4.00 0 |
| 828 | QLTEQRKDTL | 4.00 0 |
| 384 | EIKQGHKQTL | 4.00 0 |
| 159 | OYRELEKDLL | 4.00 0 |
| 917 | CSGHGHCDPL | [ $\begin{gathered}4.00 \\ 0\end{gathered}$ |
| 438 | VSPQLQELTL | $\begin{gathered} 4.00 \\ 0 \\ \hline \end{gathered}$ |
| 485 | DSPVLRLSNL | $\left[\begin{array}{c} 4.00 \\ 0 \end{array}\right]$ |
| 893 | LSKEKADFLL | $\left[\begin{array}{c}4.00 \\ 0\end{array}\right]$ |
| 27 | EGRTYSNAVI | [4.00 |
| 323 | TTAPRTVKEL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 693 | QQGLSSTSTL | 4.00 <br> 0 |
| 393 | LNLSQLSVGL | [ $\begin{gathered}4.00 \\ 0\end{gathered}$ |
| 365. | ETTYNYEWNL | [4.00 |
| 238 | LPTTPSSGEV | 4.00 <br> 0 |
| 386 | KQGHKQTLNL | 4.00 <br> 0 |
| 95 | PIRSYLTFVL | 4.00 |
| 835 | DTLVRQLAVL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 820 | LTLQVGVGQL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |


| Table XIX-V1-HLA-B7-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Scor |
| 31 | YSNAVISPNL | 4.00 <br> 0 |
| 925 | LTKRCICSHL | $\left[\begin{array}{c} 4.00 \\ 0 \end{array}\right.$ |
| 539 | ITLPQNSITL | $\begin{array}{\|c} 4.00 \\ 0 \end{array}$ |
| 692 | RLTVKDQQGL | $\left[\begin{array}{c} 4.00 \\ 0 \end{array}\right.$ |
| 5 | TGVLSSLLLL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 635 | LIFPVESATL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 557 | HQIVLYEWSL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 854 | VQKIRAHSDL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 836 | TLVRQLAVLL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 552 | QSSDDHQIVL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 740 | GSRSTDDQRi | [4.00 |
| 475 | GPFIEEKTSV | 4.00 <br> 0 |
| 112 | QLLDYGEMML | 4.00 0 |
| 345 | ITLPDNEVEL | $\left[\begin{array}{c} 4.00 \\ 0 \end{array}\right]$ |
| 334 | ELTVSAGDNL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 273 | HSLPPASLEL | $\begin{gathered} 4.00 \\ 0 \end{gathered}$ |
| 988 | KIRKKTKYTI | 4.00 0 |
| 746 | DQRIVSYLWI | 4.00 <br> 0 |
| 444. | ELTLPLTSAL | 4.00 |
| 576 | VMQGVQTPYL | $\left[\begin{array}{c} 4.00 \\ 0 \end{array}\right.$ |
| 684 | LQVGTYHFRL | $\begin{gathered} 4.00 \\ 0 \\ \hline \end{gathered}$ |
| 772 | HSVALQLTNL | 4.00 |




| Each peptice is a portion of SEQID NO: 7 ; each start position is specified, the lergth of pepide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| :---: | :---: | :---: |
| Start: | Subsequence | Sors |
| M | MT | 100 0 |
| 8 | SP | 0 |
| 6 |  | 0 |
| 3 | A | 0 |
| 7 | PSPCCARKQC: | 0.01 5 |
| 2 | TR | 0.01 <br> 5 |
| 4 |  | 01 |
| 10 | CCARKQCSEG | 0 |
| 9 P | PCCARKOCSE | 1 |
| 5 | PCCARK | 0.00 1 |


| Table XIX-V5-HLA-B7-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Sco |
| 9 | LTFLGKDW | 0 |
| 1 | SPED | 30 0 |
| 3 | EDIRKDLT | 0 |
| 4 | DIRKDLTFLG | 0.10 0 |
| 8 | DLTFLGKDWG | 0.01 |
| 7 | KDLTFLGKD | 0.00 <br> 2 |
| 10 | TFLGKDWGLE | (c.00 |


| Table XIX-V5-HLA-B7$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 68$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peplide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | [Scor |
| 5 | IRKDLTFLGK | 0.00 1 |
| 6 | RKDLTFLGKD | 0.00 0 |
| 2 | PEDIRKDLTF | 0.00 0 |


| Table XX-V1-HLA-B35019 mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO 3 ; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start |  |  |
| 105 |  | - |
| 582 |  | . |
| 893 | LS |  |
| 1018: | RS | $0.00$ |
| 94 | GPIRSYLTF | $0$ |
| 495 | DP | $\begin{gathered} .00 \\ 0 \end{gathered}$ |
| 439 | SPQLQELTL | $0$ |
| 486 | SPV |  |
| 377 | HPTDYQGE | $0$ |
| 491 | LS | $\begin{gathered} 5.00 \\ 0 \end{gathered}$ |
| 872 | QSRPPFKVL | 15.0 |
| 133 | SPEDIRKDL | 0.00 |
| 226 | APKLPERSV | 12.00 0 |


| Table XX-V1-HLA-B3501-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each stari position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight |  |  |
| Start | Subsequ |  |
| 881 | KAAEVARNL |  |
| 37 | SF |  |
| 587 |  | . 0 |
| 814 | KSGLVEL |  |
| 262 | NS | 10.00 0 |
| 65 |  | 0 |
| 395 |  | $0.00$ |
| 88 | VARNLHMRL |  |
| 296 | TPGSTEHSI |  |
| 362 | PP |  |
| 949 | ESNCEWSI |  |
| 742 | RSTDDQRIV |  |
| 999 | DNMDEQERM |  |
| 148 | WGLEEMSEY | 6.0 |
| 676 | KA |  |
| 23 | KO |  |
| 567 | GPGSEG |  |
| 17 | EP |  |
| 809 | QPDPR | 6.000 |
| 1050 | NPKVSMNGS | 6.000 |
| 328 | AP | 6.000 |
| 932 | CSHLWMENL | 5.000 |
| 105 | GSIRNG | 5.000 |
| 954 | WSIFYVTVL |  |
| 136 | DIRKOLPFL |  |
| 228 | KLP | 4.000 |
| 929 | RCICSHLWM |  |
| 874 | RPPFKVLK |  |
| 112 | QLLDYG |  |
| 950 | SNCEWSIFY | 4.000 |
| 209 | TQQDPELH | 4.0 |
| 152 | EMSEYSDD | 4.00 |


| Table XX-V1-HLA-B3501-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start | Subsequence |  |
| 324 | SP |  |
| 64 | LSSC |  |
| 720 | RARAGGRHV |  |
| 327 |  |  |
| 649 | SSDDHGIVF |  |
| 552 | QSSDDHOV |  |
| 221 | SASTPAPKL |  |
| 52 | FPVVDCTAA |  |
| 337 | VSAGDNU |  |
|  |  |  |
| 647 | SSS |  |
| 475 | GPFIEEKTS |  |
| 569 | GS |  |
|  | PVETTYN |  |
| 188 | LPGSEGAFN |  |
| 553 | SSDDHQIVL |  |
| 648 | SSSD | 3.0 |
| 892 | RL | 3.000 |
|  | AOLLD |  |
|  | KTSVDSPVL |  |
|  | LVRQLAVLL |  |
|  | QSTODTEIV |  |
|  | QSPAAGOVI |  |
|  | NLVEGVYTF |  |
|  | TLPDNE |  |
|  | VT |  |
| 304 | IPTPPTSAA |  |
|  | LPQNSI |  |
|  | SPSGI |  |
| 275 | LPPASLELS |  |
| 862 | DLSTVIV | 2.00 |
| 236 | LPLPTTPSS |  |
| 373 | NLISHPTDY | 2.00 |
| 665 | GPSAVEMEN | 2.00 |
| 9 | SSLLLLLVT | 2.0 |
| 270 | MPSHSL.PPA | 2.000 |
| 441 | QLQELTLP | 2.0 |


| Table XX.V1-HLA-B3501-Omers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 each start position is specified, the length of peptide is 9 amino acids, and the end position for each peppide is the start position plus eight. |  |  |
|  |  |  |
|  | AMQ |  |
| 576 | VMQGVQTPY |  |
| 519 |  |  |
| 924 |  |  |
|  |  |  |
| 359 | APAPPVETT |  |
| 778 |  |  |
| 3 |  |  |
| 608 |  |  |
| 306 | TPPT |  |
| 285 |  |  |
| 31 |  |  |
| 44 |  |  |
| 2 | APPTGVLS |  |
| 390 | KQTLNL |  |
| 1038 | DT |  |
| 92 | KM |  |
| 68 | DGSDHSVAL |  |


| able XX-V2-HLA-B3501 9 mers-254-1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5 ; each start position is speciffed, the length of peptide is 9 amino acds, and the end position for each peptide is the start position plus eight. |  |  |
| Start |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 9 |  |  |


| Table XX-V3-HLA-B3501-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Start |  |  |
| 8 |  |  |
| 3 |  |  |
| 6 |  |  |
| 4 | LGWP |  |
| 1 | - |  |
| 10 | CCARKQC |  |
| 9 | PCCARKQCS |  |
| 2 | TRLGWPSPC |  |
| 7 | PSPCCA |  |
| 5 | G |  |


| Table XX-V5-HLA-B3501-9mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Star | Subsequence |  |
| 3 | DIRKDL | . |
| 7 | CL |  |
| 9 | TF |  |
| 2 | EDIRKDLTF | 0.100 |
| 8 | L | 0. |
| 4 | IRKDLTFLG | 0. |
| 6 | KDLTFLGKD | 0.002 |
| 5 | R | 0.00 |
| 1 | PEDIRKDLT | 0.000 |


| Table XXI-V1-HLA-B3501- <br> 10 mers-254P1D68 |
| :---: |
| Each peptide is a portion of <br> SEQ ID NO: 3; each start <br> position is specified, the <br> length of peptide is 10 amino <br> acids, and the end position <br> for each peptide is the start <br> position plus nine. <br> Start <br> Subsequence Score |


| Table XXI-V1-HLA-B3501-10mers-254P1D63 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Score |
| 226 | AFKLPERSVL | 90.00 0 |
| 811 | $\underset{\text { DPRKSGLVE }}{\text { L }}$ | 60.00 0 |
| 361 | APPVETTYNY | [40.00 |
| 312 | APSESTPSEL | 40.00 0 |
| 1018 | RSTEHNSSL $M$ | $\begin{gathered} 40.00 \\ 0 \end{gathered}$ |
| 359 | APAPPVETTY | 40.00 0 |
| 37 | SPNLETTRIM | 40.00 0 |
| 105 | RPVQRPAQL <br> L | $\begin{gathered} 40.00 \\ 0 \end{gathered}$ |
| 893 | LSKEKADFLL | 30.00 0 |
| 1050 | $\begin{gathered} \text { NPKVSMNGS } \\ 1 \end{gathered}$ | $\begin{gathered} 24,00 \\ 0 \end{gathered}$ |
| 141 | $\longdiv { \text { LPFLGKDWG } }$ | $\left[\begin{array}{c} 20.00 \\ 0 \end{array}\right]$ |
| 2 | APPTGVLSSL | 20.00 0 |
| 720 | $\begin{gathered} \text { RARAGGRHV } \\ L \end{gathered}$ | 18.00 |
| 986 | RTKIRKKTKY | 12.00 0 |
| 1010 | RPKYGIKHRS | 12.00 0 |
| 992 | KTKYTILDNM | $\begin{gathered} 12.00 \\ 0 \end{gathered}$ |
| 144 | $\begin{gathered} \text { LGKDWGLEE } \\ M \end{gathered}$ | $\begin{gathered} 12.00 \\ 0 \end{gathered}$ |
| 665 | GPSAVEMEN | 12.00 0 |
| 328 | APRTVKELTV | 12.00 <br> 0 <br> 10 |
| 552 | QSSDDHQIVL | $\begin{gathered} 10.00 \\ 0 \end{gathered}$ |
| 648 | SSSDDHGIVF | $\left[\begin{array}{c} 10.00 \\ 0 \end{array}\right]$ |
| 132 | DSPEDIRKDL | 10.00 |


| Table XXI-V1-HLA-B3501-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 each start posilion is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Start | Subsequence | Score |
|  |  | 0 |
| 178 | $\underset{L}{\text { GSAEYTDWG }}$ | $\begin{gathered} 10.00 \\ 0 \end{gathered}$ |
| 482 | TSVDSPVLRL | $\begin{gathered} 10.00 \\ 0 \end{gathered}$ |
| 949 | ESNCEWSIFY | $\begin{gathered} 10.00 \\ 0 \end{gathered}$ |
| 69 | LAWWFEGRC $Y$ | 9.000 |
| 740 | GSRSTCDQR | 9.000 |
| 553 | SSDDHQIVLY | 6.000 |
| 649 | SSDDHGIVFY | 6.000 |
| 475 | GPFIEEKTSV | 6.000 |
| 89 | EPKKMGPIRS | 6.000 |
| 493 | $\begin{gathered} \text { RLSNLDPGN } \\ Y \end{gathered}$ | 6.000 |
| 722 | $\begin{gathered} \text { RAGGRHVLV } \\ L \end{gathered}$ | 6.000 |
| 1058 | SIRNGASFSY | 6.000 |
| 107 | $\begin{gathered} \text { VQRPAQLLD } \\ y \end{gathered}$ | 6.000 |
| 338 | SAGDNLITT | 6,000 |
| 229 | LPERSVLLPL | 6.000 |
| 662 | HVRGPSAVE M | 6.000 |
| 485 | DSPVLRLSNL | 5.000 |
| 260 | $\underset{\mathrm{L}}{\text { SSNSSGEV }}$ | 5.000 |
| 31 | YSNAVISPNL | 5.000 |
| 1024 | $\begin{gathered} \text { SSLMVSESE } \\ F \end{gathered}$ | 5.000 |
| 64 | $\frac{\operatorname{FSSCDLAWW}}{\mathrm{F}}$ | 5.000 |
| 917 | $\begin{gathered} \mathrm{CSGHGHCDP} \\ L \end{gathered}$ | 5.000 |
| 220 | ESASTPAPKL | 5000 |
| 772 | HSVALQLTNL | 5.000 |
| 273 | HSLPPASLEL | 5.000 |
| 438 | VSPQLQELTL | 5.000 |


| Table XXI-V1-HLA-B3501$10 \mathrm{mers}-254 \mathrm{P1D} 68$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a porion of SEQID NO: 3; each start position is specified, the ength of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| St | Subsequence |  |
| 567 | GPGSEGKH $V$ |  |
|  | GPIRSYLTFV |  |
| 仡 |  |  |
| 317 |  |  |
| 874 |  |  |
| 646 |  |  |
|  |  |  |
| 510 |  |  |
| 209 | L | 3.000 |
| 905 | L |  |
| 456 | GS |  |
| 692 |  | 3. |
| 854 |  |  |
| 36 | ISPNLETTRI |  |
| 588 |  |  |
|  |  |  |
| 423 | L | 3.000 |
| 1041 | FSREKMERG <br> N |  |
| 604 | $V$ | 3.000 |
| 532 | NAGPNHTITL | 3.000 |
| 384 | EI | 3.00 |
| 626 |  |  |
| 858 | RAHSDLSTVI |  |
| 988 | KIRKKTK |  |
| 892 | RLSKE |  |
| 208 | ETQQDPELH $Y$ | 00 |
| 495 | DFGNYSFRL | 000 |
| 188 | LPGSEGAFN | 2.000 |


| Table XXI-V1-HLA-B3501 10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Star | Subsequence | Score |
|  |  |  |
| 278 | LSS |  |
| 270 |  |  |
| 372 | WNLISH |  |
| 777 |  |  |
| 581 | M |  |
| 828 |  |  |
| 808 |  | 2.000 |
| 275 | LPPASLE |  |
| 3 | PPTGVLSSL |  |
| 924 |  |  |
| 680 |  |  |
| 575 |  |  |
| 492 | F |  |
| 386 | KQGHKQTLN L |  |
| 52 | $0$ |  |
| 112 | $L$ |  |
| 111 | M |  |
| 433 | PPVAWVSPQ |  |
| 290 | SPVLTV |  |
| 527 | N |  |
| 586 | $Y$ |  |
| 742 | RSTDDQ | 2.000 |
| 224 | TPAPKLPERS | 2.000 |
| 8 | LSSLLLLVT |  |


| Table XXI-V1-HLA-B3501-$10 \mathrm{mers}-254 \mathrm{P} 1068$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: З; each start position is specified, the length of peplide is 10 amino acids, and the end position for each peptide is the start position plas nine. |  |  |
|  | Subsequence |  |
| $\begin{gathered} \text { Table XXI-V2-HLA-B3501. } \\ 10 \text { mers-254P1D68 } \end{gathered}$ |  |  |
| Each pepide is a portion of SEQID NO: 5 ; each start position is specified, the length of peptide is 10 amino acids, and the эnd position for each peptide is the start position plus nine. |  |  |
|  | Subsequence |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | MSEYADD |  |
|  |  |  |
| 9 |  |  |
| 2 | GLEEMSEYA |  |
| 8 | EYADOYRELE |  |
| 10 | ADC | 0.0 |
|  | LEEMSEYADD | 0.00 |


| Table XXI-V3-HLA-B3501-10mers-254P1D68 |  |  |
| :---: | :---: | :---: |
| $\begin{gathered} \text { Each } \\ \text { SEQ } \\ \text { posi } \\ \text { lengith } \\ \text { acids, } \\ \text { for ea } \end{gathered}$ | peptide is a port QID NO: 7; each sition is specifed of peptide is 10 s, and the end pos ach peptide is the position plus nin | tion of start , the amino posilion start |
| Stert\| | Subsequence | Score |
| 8 | $\begin{gathered} \text { SPCCARKQC } \\ S \end{gathered}$ | 2.000 |
| 1 | $\sqrt{\text { MTRLGWPSP }}$ | 0.300 |
| 6 | WPSPCCARK | 0.200 |
| 3 | RLGWPSPCC <br> A | 0.200 |
| 7 | PSPCCARKQ | 0.050 |



| Table XXI-V5-HLA-B3501-10mers-254P1068 |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
|  | Subsequence |  |
| 1 | SPEDIRKDLT |  |
| 9 | L |  |
| 3 | EDIRKDLTFL |  |
| 7 | W |  |
| 4 | DIRKDLTFLG |  |
| 8 | G |  |
| 5 | IRKDLTFLGK |  |
| 2 | PEDIRKDLTF |  |
| 10 |  | 0.0 |
| 6 | TFLGKD | 0.00 |

Tables XXII - XLIX:

| TableXXII-V1-HLA-A1-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | scor |
| 54 | SDDHQIVLY |  |
| 650 | SDDHGIVFY |  |
| 182 | YTDWGLLPG |  |
| 743 | STDDQRIVS | 26 |
| 46 | TDDTEIVSY | 25 |
| 681 | VTGLQVGTY | 25 |
| 744 | TDDQRIV | 25 |
| 936 | WMENLIQRY |  |
| 778 | LTNLVEGVY |  |
| 108 | QRPAQLLDY | 23 |
| 459 | STDDTEIVS | 23 |
| 209 | TQQDPELHY | 22 |
| 395 | LSQLSVGLY |  |
| 649 | SSDDHGIVF | 22 |
| 360 | PAPFVETTY | 21 |
| 553 | SSDDHQIVL |  |
| 587 | LSAMQEGDY |  |
| 950 | SNCEWS | 21 |
| 138 | RKDLPFLGK |  |
| 156 | YSDDYRELE | 20 |
| 483 | SVDSPVLRL | 20 |
| 69 | VKDQQGLSS | 20 |
| 792 | VTDSQGASD | 20 |
| 1019 | STEHNSSLM | 2 |
| 229 | LPERSVLLP | 19 |
| 378 | PTDYQGEIK | 19 |
| 410 | SSENAFGEG | , |
| 491 | LSNLDPGNY | 1 |
| 576 | VMQGVQTPY | 19 |
| 157 | SDDYRELEK | 18 |
| 190 | GSEGAFNSS | 18 |
| 299 | STEHSIPTP | 18 |
| 462 | DTEIVSYHW | 18 |
| 493 | NLDPGNYSF | 18 |
| 505 | VTDSDGATN | 18 |
| 601 | VTDSSRQQS | 18 |
| 862 | DLSTVIVFY | 18 |


| TableXXII-V1-HLA-A1-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| 1005 | ERMELRPKY | 18 |
| 28 | VSESEFDSD |  |
| 1034 | DSDQDTIFS | 18 |
| 39 | NLETTRIMR | 17 |
| 70 | AWWFEGRC | 7 |
| 91 | 'KMMGPIRSY |  |
| 162 | ELEKDLLQP | 17 |
| 174 | QEPRGSAEY | 7 |
| 76 | GSDHSVALQ | 17 |
| 849 | DSDIKVQk |  |
| 987 | TKIRKKTKY |  |
| 23 | KQCSEGRTY | 16 |
| 152 | EMSEY'SDD | 16 |
| 212 | DPELHYLNE |  |
| 373 | NLISHPTDY | 16 |
| 569 | GSEGKHVVM | 16 |
| 638 | PVESATLDG | 16 |
| 668 | AVEMENIDK | 16 |
| 800 | DTDTATVEV |  |
| 829 | LTEQRKDTL | 16 |
| 1003 | EQERME | 16 |
| 10 | IRNGASFSY | 16 |
| 25 | CSEGRTYSN |  |
| 148 | WGLEEMSEY |  |
| 173 | KQEPRGSAE |  |
| 223 | STPAPK'LPE | 15 |
| 318 | PSELPISPT | 15 |
| 339 | AGDNLIITL | 15 |
| 362 | PPVETT | 15 |
| 507 | DSDGATNST | 15 |
| 519 | LIVNNAVDY | 15 |
| 592 | EGDYTFQLK | 15 |
| 798 | ASDTDTATV | 15. |
| 909 | DTAGCLLKC | 15 |
| 1045 | KMERGNPKV | 15 |


| Each peptide is a portion <br> of SEQ ID NO: 5 ; each <br> start position is specified, <br> the length of peptide is 9 <br> amino acids, and the end <br> position for each peptide <br> is the start position plus <br> eight. |  |  |
| :--- | :--- | :--- |
| Pos | 123456789 | score |
| 9 | ADDYRELEK | 17 |
| 4 | EMSEYADDY | 16 |
| 8 | YADDYRELE | 16 |
| 5 | MSEYADDYR | 14 |
| 1 | GLEEMSEYA | 11 |
| 2 | LEEMSEYAD | 10 |


| TableXXII-V3-HLA-A19 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start positicn is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
|  | MIRLGWPSP |  |
| 7 | PSP |  |
| 4 | LGWPSPCC |  |
| 6 | WPSPCCARK |  |
| 8 | SPCCARKQC |  |


| TableXXII-V5-HLA-A1-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  | 12 |  |
|  | RKDLTFLG |  |
|  | PEDIRKOLT |  |


| TableXXIII-V1-HLA-A0201- |
| :---: |
| 9mers-254P1D6B |


| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
| Pos | 123456789 |  |
|  |  |  |
| 900 | FLL |  |
|  | VL | 27 |
| 274 | SLPPASL |  |
| 40 |  |  |
| 816 | GLVELTLQ |  |
| 441 | QL |  |
| 67 | NIDK |  |
| 821 | TLQVG |  |
|  | TL |  |
| 961 | VL |  |
| 228 |  |  |
| 27 | SLELS |  |
| 346 | TLPDN |  |
| 777 |  |  |
| 98 | YLTFVL |  |
| 392 | TL |  |
|  | NLSQLSVG | 24 |
|  | LTLPLTSAL |  |
| 76 | VIDG |  |
| 968 | VLTG |  |
|  | SL |  |
|  | LLDYG |  |
| 344 | IITLP |  |
| 39 | SV |  |
| 43 | V |  |
| 452 | ALIDG |  |
| 72 | VLVLP |  |
| 730 | VLPNNSIT |  |
| 1045 | KMERGNP |  |
|  | GVLSSLLLLL | 22 |
| 136 | DIRKDLPFL |  |
| 186 | GLLPGSECA | 22 |
| 430 | L | 2 |
| 483 | SVDSPVLRL |  |
| 511 | ATNSTIAAL | 22 |
| 540 | TLPQNSITL | 22 |
| 09 | STAVIVIV | 22 |
| 627 | AVAGPDKEL | 22 |
| 676 | KAIATVTG |  |


| TableXXIII-V1-HLA-A02019 mers -254P1D6B |  |  | $\begin{gathered} \text { TableXXIII-V1-HLA-A0201- } \\ \text { Gmers-254P1D6B } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Each pepide is a portion of SEQ ID NO: 3; each start posilion is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  | Each peptide is a portion of SEQ ID NO: 3; each slart position is specified, the lengh of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score | Pos | 123456789 | score |
| 703 | STSTLIVAV | 22 | 722 | RAGGRHVLV | 18 |
| 773 | SVALQLTNL | 22 | 784 | GVTFHLRV | 18 |
| 844 | LLNVLDSDI | 22 | 798 | ASDTDIATV | 18 |
| 9 | SSLLLLIVTI | 21 | 955 | SIFYVTVLA | 18 |
| 12 | LLLVTIAGC | 21 | 958 | YVTVLAFTL | 18 |
| 35 | VISPNLETT | 21 | 962 | LAFTLIVLT | 18 |
| 92 | KMGPIRSYL | 21 | 11 | LLLLVIIAG | 17 |
| 558 | QIVLYEWSL | 21 | 103 | VLRPVQRPA | 17 |
| 774 | VALCLINLV | 21 | 210 | QQDPELHYL | 17 |
| 780 | NLVEGVYTF | 21 | 217 | YLNESASTP | 17 |
| 897 | KADFLLEKV | 21 | 267 | EVLMPSHSL | 17 |
| 95 | PIRSYLTFV | 20 | 272 | SHSLPPASL | 17 |
| 221 | SASTPAPKL | 20 | 277 | PASLELSSV | 17 |
| 233 | SVLLPLPTT | 20 | 303 | SIPTPPTSA | 17 |
| 446 | TLPLTSALI | 20 | 342 | NLIITLPDN | 17 |
| 517 | AALIVNNAV | 20 | 353 | ELKAFVAPA | 17 |
| 687 | GTY-FRLTV | 20 | 359 | APAPPVETT | 17 |
| 858 | RAHEDLSTV | 20 | 397 | QLSVGLYYF | 17 |
| 960 | TVLAFILIV | 20 | 427 | ARRVNLPPV | 17 |
| 285 | VTVEKSPVL | 19 | 444 | ELTLPLTEA | 7 |
| 327 | TAPRTVKEL | 19 | 493 | NLDPGNYSF | 17 |
| 339 | AGD.VLIITL | 19 | 565 | SLGPGSEGK | 17 |
| 429 | RVNLPPVAV | 19 | 579 | GVQTPYLHL | 17 |
| 538 | THTPQNSI | 19 | 589 | AMQEGDYTF | 17 |
| 634 | ELIFPVESA | 19 | 693 | LTVKDQQGL | 17 |
| 721 | ARAGGRHVL | 19 | 701 | LSSTSILTV | 17 |
| 800 | DTDTATVEV | 19 | 723 | AGGRHVLVL | 17 |
| 837 | LVRGLAVLL | 19 | 736 | ITLOGSRST | 17 |
| 843 | VLLNVLDSD | 19 | 818 | VELTLQVGV | 17 |
| 846 | NVLDSDIKV | 19 | 829 | LTEQRKDTL | 17 |
| 881 | KAAEVARNL | 19 | 835 | DTLVRQLAV | 17 |
| 112 | QLLDYGDMM | 18 | 839 | RQLAVLLNV | 17 |
| 234 | VLLPLPTTP | 18 | 901 | LLFKVLRVD | 17 |
| 287 | VEKSPVLTV | 18 | 1054 | SMINGSIRNG | 17 |
| 414 | AFGEGEVNV | 18 | 13 | Llvtiagca | 16 |
| 531 | ANAGPNHTI | 18 | 34 | AVISPNLET | 16 |
| 607. | QQSTAVVTV | 18 | 120 | MLNRGSPSG | 16 |
| 635 | LIFPVESAT | 18 | 197 | SSVGDSPAV | 16 |


| TableXXIII-V1-HLA-A0201-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 292 | VLTVTPGST |  |
| 331 | TVKELIVSA |  |
| 335 | LTVSAGDNL |  |
| 366 | TTYNYEWNL |  |
| 385 | KQQGHKQTL |  |
| 422 | VTVKPARRV |  |
| 481 | KTSVD |  |
| 486 | SPVLRLSNL |  |
| 497 | GNYSFRLTV |  |
| 518 | ALIVNNAVD |  |
| 533 | AGPNHITLL |  |
| 560 | VLYEWSLG |  |
| 593 | GD |  |
|  | SRQQS |  |
| 636 | IFPVESATL | 6 |
| 655 | IVFYHWEHV | 6 |
| 678 | IA |  |
|  | GLQVG |  |
| 699 | QGLSSISTL | 1 |
| 720 | RARAGGRHVIV | 6 |
| 812 | PRKSG | 16 |
| 877 | FK |  |
| 885 | VARNLH | , |
| 888 | NLHMRLSKE |  |
| 905 | VLRVDI |  |
| 954 | WSIFYVTVL |  |
| 965 | TLIVLTG |  |
| 32 | SNAVISPPNL |  |
| 40 | LETTR |  |
| 47 | RVSHTF | \% |
| 50 | HTFPVVDCT | 碞 |
| 71 | WWFEGRCY |  |
| 78 | YLVSCPHKE |  |
| 128 | GIWGDSPED | \% |
| 179 | SAEYTDWGL | 15 |
| 187 | LLPGSEGAF | 15 |
| 191 | SEGAFNSSV |  |
| 235 | LLPLPTTPS | 15 |


| $\begin{array}{\|c\|} \text { TableXXIII-V1-HLA-A0201- } \\ \text { 9mers-254P1D6B } \\ \hline \end{array}$ |  |  | TableXXIII-V1-HLA-A02019 mers-254P1D6B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each pepide is the start position plus eight. |  |  | Each peptide is a portion of SEQ ID NO: 3 ; each start position is specitied, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score | Pos | 123456789 | score |
| 284 | SVTVEKSPV | 15 | 390 | KQTLNLSQL | 14 |
| 336 | TVSAGDNLI | 15 | 416 | GEGFVNVTV | 14 |
| 338 | SAGDNLIIT | 15 | 431 | NLPPVAVVS | 14 |
| 350 | NEVELKAFV | 15 | 434 | PVAVVSPQL | 14 |
| 396 | SQLSVGLYV | 15 | 453 | LIDGSQSTD | 14 |
| 439 | SPQLQELTL | 15 | 539 | ITLPQNSIT | 14 |
| 465 | IVSYHWEEI | 15 | 575 | VVMQGVQTP | 14 |
| 516 | TAALIVNNA | 15 | 591 | QEGDYIFQL | 14 |
| 525 | VDYPPVANA | 15 | 643 | TLDGSSSSD | 14 |
| 547 | TLNGNQSSD | 15. | 669 | VEMENIDKA | 14 |
| 628 | VAGPDKELI | 15 | 677 | AIATVIGLQ | 14 |
| 685 | QVGTYHFRL | 15 | 706 | TLTVAVKKE | 14 |
| 700 | GLSSTSTLT | 15 | 729 | LVLPNNSIT | 14 |
| 754 | WIRDGQSPA | 15 | 737 | TLDGSRSTD | 14 |
| 833 | RKDTL-VRQL | 15 | 782 | VEGVIFHL | 14 |
| 862 | DLSTVIVFY | 15 | 814 | KSGLVELTL | 14 |
| 863 | LSTVIVFYV | 15 | 328. | QLTEQRKDT | 14 |
| 886 | VIVFY'VQSR | 15 | 847. | VLDSDIKVQ | 14 |
| 940 | LIQRVIVNG | 15 | 849 | DSDIKVQKI | 14 |
| 988 | KIRKKIKYT | 15 | 860 | HSDLSIVIV | 14 |
| 1025 | SLMVSESEF | 15 | 871 | VQSRPPFKV | 14 |
| 3 | PPTGVLSSL | 14 | 890 | HMRLSKEKA | 14 |
| 16. | TIAGCARKQ | 14 | 893 | LSKEKADFL | 14 |
| 96 | IRSYLTFVL | 14. | 907 | RVDTAGCLL | 14 |
| 156 | DLLOPSGKQ | 14 | 909 | DTAGCLLKC | 14 |
| 207 | AETQQDPEL | 14 | 918 | SGHGHCDPL | 14 |
| 226 | AFKLPERSV | 14 | 944 | YIWDGESNC | 14 |
| 239 | PTTPSSGEV | 14 | 966 | LIVLTGGFT | 14 |
| 240 | TTPSSGEVL | 14 | 37 | SPNLEITRI | 13 |
| 247 | VLEKEKASQ | 14 | 121 | LNRGSESGI | 13 |
| 248 | LEKEKASQL | 14 | 142 | PFLGKDWGL | 13 |
| 260 | SSNSSGKEV | 14 | 145 | GKDWGLEEM | 13 |
| 26.1 | SNSSGKEVL | 14 | 167 | LLOPSGKGE | 13 |
| 268 | VLMPSESSLP | 14 | 180 | AEYTDWGLL | 13 |
| 326 | TTAPRIVKE | 14 | 182 | YTDWGLLPG | 13 |
| 337 | VSAGDNLIM | 14 | 214 | ELHYLNESA | 13 |
| 356 | AFVAPAPPV | 14 | 281 | ELSSVIVEK | 13 |
| 358 | VAPAPPVET | 14 | 319 | SELPISPTT | 13 |


| TableXXIII-V1-HLA-A02019 mers-254P1 DĵB |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 320 | ELP |  |
|  | SP |  |
|  | LITLPDN |  |
|  | LIS |  |
| 387 | QG |  |
| 403 | YV |  |
| 419 | FVNVTVKP |  |
| 424 |  |  |
|  |  |  |
|  | FIEEKTSVD |  |
| 49 | RLSNL |  |
| 515 | TT |  |
| 522 |  |  |
|  | VANA |  |
| 553 | SSD |  |
| 577 | MC |  |
| 604 |  |  |
| 621 |  |  |
|  | PDKELIFPV |  |
| 642 | ATLDG |  |
| 48 | SSSC |  |
| 680 | TVT |  |
| 696 | KD |  |
|  | DL |  |
|  | RIV |  |
| 752 | YL |  |
| 75 | GQ |  |
|  | DGSD |  |
|  | SDHSVA |  |
| 775 | AL |  |
|  | QP |  |
|  | A |  |
|  | VLKAAE |  |
| 898 | ADFLLE |  |
| 906 | LR |  |
| 914 | LLKCSGH |  |
| 933 | SHLWMENLI |  |
| 51] | NCEWSIFY |  |


| TableXXIII-V1-HLA-A0201-9mers-254P1D2B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 1018 |  |  |


| Table\XIII-V2-HLA-A0201-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5; each start position is specified, the leng:h of peptide is 9 amino acids, and the end position for each peptide is the start position plus eght. |  |  |
| Fos | 123456789 |  |
|  | GLEEMSEYA: | 16 |
| 7 | EYADJYREL | 12 |
|  | EMSEYADDY |  |
|  | YADDYRELE |  |


| TableXXIII-V3-HLA-A0201-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the lenglh of peptide is $s$ amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
|  | RLGWPSPCC | 12 |
|  | MTRLGWPSP |  |
|  | LGWPSPCCA | 9 |
|  | CCARKQCSE |  |

Table XXIII 254P1D $\hat{B}$ ㄴ́․ HLA-0201-p-mers

| Each peptide is a portion of SEQID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
|  | 123456 |  |
|  | DIRKDLTFL | 21 |
|  | TFLGKDWGL | 16 |
| 6 | KDLTFLGKD |  |


| TableXXIV-V1- |
| :---: |
| HLA-A0203- |
| 9mers- |
| 254P1D6B |$|$|  |
| :---: |
| NoResultsFound. |



| NoResultsFound. |  |  |
| :---: | :---: | :---: |
| TableXXV-V3-HLA-A3-9mers-254P1D6B |  |  |
| Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peplide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
|  | 6 WFSPCCARK | 16 |
|  | RLGWPSPCC | 14 |
|  | 1 MTRLGWPSP | 8 |
|  | 2 TRLGWPSPC | 8 |
|  | 0 CCARKQCSE | 7 |


| TableXXV-V5-HLA-A39 mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 2 | EDIRKDLTF |  |
|  | RKDLTFLGK |  |
|  | DLIFLGKDW | 13 |
|  | DIRKDLTFL |  |


| TableXXVI-V1-HLA-A269 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
|  | EVL |  |
|  | AR |  |
| 483 | SVDSPVLR |  |
|  | GVLSSLL |  |
|  | ED |  |
| 136 | RKDLP |  |
| 246 | EVLEKEKAS | 24 |
| 81 | VTGLQVGTY |  |


| TableXXVIV1-HLA-A26-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NC: 3; each start position is specified, the length of peptide is 9 arino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos. | 123<56789 |  |
| 1005 | ERMELRP |  |
| 285 | VTVEKSP |  |
|  | VVSFQLQE |  |
| 745 |  |  |
| 765 | DVIDGSDH |  |
|  | SVALQ |  |
| 152 | EMSEYSDDY |  |
| 335 | LTVSAGDNL |  |
|  |  |  |
|  | EVQFDP |  |
| 862 | OLS |  |
| 909 | DTAGC |  |
| 41 | ETTFIMRV |  |
|  | DNE |  |
| 35 | EVELK |  |
| 958 | Y |  |
| 1038 | DTIFSREK |  |
|  | , |  |
|  | LTLPLTSA |  |
|  | LT |  |
| 155 | EYSDD |  |
| 159 | DYRELEKD |  |
|  | TTPSSGEVL |  |
|  | EGF |  |
| 434 | PV |  |
|  | EIVS |  |
|  | Li |  |
|  | GV |  |
| 611 | AVVT |  |
| 634 | ELIFPVESA |  |
|  | LTNLVEGVY |  |
|  | NL |  |
| 83 | LVRGLAVLL |  |
| 907 | RVDTAGCLL | 19 |
| 949 | ESNCE |  |
|  | TGVLS |  |
| 106 | PVQRP |  |
| 208 | ETQQDPELH |  |


| TableXXVI-V1-HLA-A26-$9 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each pepiide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Po | 123456789 |  |
| 842 | AVL |  |
| 865 | TVIVFYVQS |  |
| 896 | EK |  |
| 954 | WSI |  |
|  | PPTGVLSSL |  |
| 74 | EG |  |
| 91 | KKMGPIRSY |  |
| 108 | QR |  |
| 132 | DSPEDIRKD |  |
| 231 | ERSVLLPLP |  |
| 251 | EKASQLQE |  |
| 288 | EK |  |
|  | LT |  |
| 331 | TVKE |  |
| 339 | AGDNLIITL |  |
| 373 | NLISHP |  |
| 384 | EIKQGHKOT |  |
| 395 | LSQL |  |
| 403 | YVFKVTVSS |  |
| 472 | EINGPFIEE |  |
| 479 | EEKTSVDSP |  |
|  | TVTDSDGAT |  |
| 514 | STTAALIVN |  |
| 554 | SDDH |  |
| 555 | DDHQIVLYE | 15 |
| 57 | EGKHVVMO | 15 |
| 575 | VMMQG |  |
| 614 | TVIVQPENN |  |
| 650 | SDDHGIVFY | 析 |
| 821 | TLQVGV | 15 |
| 861 | SDLSTVIVF |  |
| 867 | IVFYVQSRP |  |
| 936 | WMENLIQRY | 5 |
| 965 | TLIVLTGGF | 15 |
| 1021 | EHNSSLMVS | 15 |
| 1057. | GSIRNGASF | 15 |
|  | TGVLSSLLL | 14 |
|  | WWFEGRCY |  |


| TableXXVI-V1-HLA-A26 9 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 94 | GPIRSYLTF |  |
| 102 | FVLRPVQRP |  |
| 181 | EYTDWGLLP |  |
| 230 | PERSVLLPL |  |
| 299 | STEHSIPTP |  |
| 316 | STPSELPIS |  |
| 353 | ELKAFVAPA |  |
| 419 | FVNVTVKPA |  |
| 471 | EEINGPFIE |  |
| 515 | TTAPLINNN |  |
| 520 | IVNNAVDYP |  |
| 595 | YTFQLKVT |  |
| 651 | DDHGIVFYH |  |
| 655 | IVFYHWEHV |  |
| 783 | EGVYTFHLR | 14 |
| 86 | YTFHLRVT |  |
| 791 | RVTDSGGA |  |
| 804 | ATVEVGPDP |  |
| 817 | LVELTLQVG |  |
| 833 | RKDTLVRQL | 14 |
| 849 | DSDIKVQK |  |
| 06 | LRVDTAGCL |  |
| 950 | SNCEWSIFY | 14 |
| 956 | IFYVTVLAF | 14 |


| TableXXVI-V2A206-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptice is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
| 4 | 4 EMSEYADDY | 22 |
| 7 | EYADDYREL | 19 |
| 3 | 3 EEMSEVADD | 11 |


| TableXXVI-V3-A26- |
| :---: | :---: |
| 9mers-254P1D6B |$|$| Each peptide is a portion <br> of SEQID NO: 7; each <br> start position is specified <br> the length of peptide is 9 <br> amino acids, and the end <br> position for each peptide <br> is the start position plus <br> eight. |  |
| :---: | :---: |
| Pos 123456789 | score |
| 1 | MTRLGWPSP |


| TableXXVI-V5-A26-9mers254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| S | 12345678 |  |
| 2 | EDIRKDLT |  |
| 3 | DIRKDLTFL |  |
| 8 | LTFLGKDWG |  |


| TableXXVII-V1-HLA. B0702-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
| 359 | APAPPVETT |  |
| 304 | IPTPPTSAA | 23 |
| 3 | PPTGVLSSL |  |
| 105 | RPVQRPAQL |  |
| 439 | SPQLQELTL | 22 |
| 809 | QPDPRKSGL | 22 |
| 133 | SPEDIRKDL | 21 |
| 175 | EPRGSAEYT | 21 |
| 226 | APKLPERSV | 2 |
| 495 | DPGNYSFRL | 21 |
| 270 | MPSHSLPPA | 20 |
| 328 | APRTVKELT | 20 |
| 486 | SPVLRLSNL | 2 |
| 874 | RPPFKVLKA | 20 |
| 618 | QPENNRPPV | 19 |


| TableXXVII-V1-HLA-B0702-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
|  | SPN |  |
|  | FP |  |
| 94 | GP |  |
| 567 | GPGSEGKH |  |
| 627 | AVAG |  |
| 872 | QS |  |
| 875 | PPFKVLKAA |  |
| 296 |  |  |
|  | SVD |  |
| 582 | TPYL |  |
| 721 | AR |  |
| 723 | AG |  |
|  | DP |  |
|  | SA |  |
| 272 | SHSL |  |
| 312 | APSE |  |
| 321 | LPISPTTAP |  |
| 324 |  |  |
| 377 | HPTDY |  |
|  | APPTGVLS |  |
| 96 | IRSY |  |
| 36 | DIP |  |
|  | QPSGKQEP |  |
| 230 | PERSVL |  |
| 301 | EHSIP |  |
|  | KT |  |
| 511 | AT |  |
| 579 | GVQTPYLH |  |
| 621 | NNRP |  |
| 768 | DGSDHSVAL |  |
| 89 | EP |  |
| 92 | KMGPIRSYL |  |
| 125 | SPSGIWGDS |  |
| 188 | LPGSEGAFN | 14 |
| 202 | SPAVPAETQ |  |
| 4 | TPSSGEVLE |  |
| 267 | EVLMPSHSL | 4 |
| 356. | AFVAPAPPV |  |


| TableXXVII-V1-HLA. B0702-9me-s-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peplide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 361 | APPVETTYN | 14 |
| 387 | QGHKQTLNL |  |
| 394 | NLSQ_SVGL |  |
| 424 | VKPARRVNL |  |
| 441 | QLQEETLPL |  |
| 531 | ANAGPNHTI |  |
| 676 | KAIATVTGL |  |
| 715 | NNSPPRARA |  |
| 760 | SPAAGDVID |  |
|  | KSGLVELTL |  |
| 83 | LVRQ_AVLL |  |
| 398 | ADFLLFKVL |  |
| 968 | VLTGGFTWL |  |
| 34 | AVISPNLET |  |
| 106 | PVQRPAQLL | 13 |
| 155 | EYSDOYREL |  |
| 199 | VGDSPAVPA |  |
| 207 | AETQQDPE |  |
| 224 | TPA |  |
| 22 | PKLPERSVL |  |
| 228 | KLPER |  |
| 229 | LPERSVLL |  |
| 236. | LPLP |  |
| 238 | LPTTFSSG |  |
| 261 | SNESGKEVL |  |
| 274 | SLPPASLEL |  |
| 276 | PPASLELSS |  |
| 290 | SPVLTVTPG |  |
| 339 | AGDNLIITL |  |
| 385 | IKQGHKQTL |  |
| 425 | KPARPVNLP |  |
| 429 | RVNLFPVA |  |
| 430 | VNLPFVAV | ) |
| 432 | LPPVAVVSP | 13 |
| 433 | PPVAVVSPQ |  |
| 437 | VVSPQLQEL |  |
| 445 | LTLPLTSAL | 10 |
| 533 | AGPNHTITL | 12 |


| TableXXVII-V1-HLA. B0702-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3: each slart position is specified, the length of peptide is 9 amino acids, and the end position for each pepilide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 577 | MQG |  |
| 620 | EN |  |
| 623 | RP |  |
| 630 | GPDKELIFP |  |
| 665 | GPSAVEME |  |
| 718 | PPRARA |  |
| 833 | RKDTLVRQ |  |
| 907 | RVDT |  |
| 918 | SGHGHCDP |  |
| 954 | WSIFYVTVL |  |
| 1047 | ERGNP |  |
| 5 | TGVLSSLLL |  |
|  | GVLSSLLL |  |
| 32 | SNAVISPN |  |
| 47 | RVSHTFPV |  |
| 109 | RPAQLLDYG |  |
| 142 | PFLGKDWG | - |
| 159 | DYRELEKL | 2 |
| 180 | AEYTOWGL |  |
| 210 | QQDPELHYL |  |
| 212 | DPELHYLNE |  |
| 240 | TTPSSGEV |  |
| 262 | NSSGKEVLM |  |
| 285 | VTVEKSPVL |  |
| 287 | VEKSPVLTV |  |
| 288 | EKSPVLTVT |  |
| 306 | TPPTSAAP | 2 |
| 317 | TPSELPISP |  |
| 346 | TLPDNEVEL | 12 |
| 347 | LPDNEVELK | 12 |
| 358 | VAPAPP | 12 |
| 414 | AFGEGFVNV | 12 |
| 427 | ARRVNLPPV | 12 |
| 434 | PVAVVSPQL | 12 |
| 447 | LPLTSALID |  |
| 525 | VDYPPVANA | 12 |
| 528 | PPVANAGPN | 12 |
| 553 | SSDDHQIVL | 12 |


| TableXXVII-V1-HLA-B0702-9mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123 |  |
| 591 | QEGD |  |
| 624 | PPVAVAGPD |  |
|  | IFPVE |  |
|  | STSTLTVA |  |
| 717 | SP |  |
| 722 | RAGGRHVL |  |
| 755 | IRDGQSPAA |  |
| 770 | SDHSVALQ |  |
|  | SVALQLTNL |  |
|  |  |  |
|  | Pr |  |
| 813 | RKSG |  |
| 836 | TLVRQLAVL |  |
|  | QLAVLLNVL |  |
|  | A |  |
|  | KAAE |  |
| 885 | VARN |  |
| 927 | TKR |  |
|  | VLA |  |
|  | RKKTKYTIL |  |
|  | PT |  |
|  | LSSLL |  |
| 56 | DCTAACCDL |  |
| 61 | CCDLSSCDL |  |
| 71 | WWF |  |
| 82 | CPHKEN |  |
| 113 | LLDYGD |  |
| 205 | VPAETQQDP |  |
|  | LP |  |
| 307 | PPTSA |  |
| 309 | TSAAPSEST |  |
| 315 | ESTPSELP |  |
|  | TAPRT |  |
|  | LTVSAGDNL |  |
| 337 | VSAGDNLII | 1 |
| 353 | ELKAFVAPA | 1 |
| 362 | PPVETTYNY |  |
| 390 |  |  |


| TableXXVIII-Vi-HLA-B0702-9mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO: 3; each start position is specified, the length of pertide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 12 |  |
|  | ELTLPLTSA |  |
|  | YPPV |  |
| 534 | GPNHTITLP |  |
|  |  |  |
|  | GS |  |
|  | QQST |  |
|  | ELIFP |  |
|  | FP |  |
|  |  |  |
|  |  |  |
|  | QGLS |  |
|  | LSS |  |
| 720 | RAR |  |
|  |  |  |
|  | DD |  |
|  | AS |  |
| 821 | TLQV |  |
| 871 | VQS |  |
|  | AEVA |  |
|  | RLSKEKADF |  |
|  | LSKEKADFL |  |
| 894 | SKE |  |
| 895 | KE |  |
| 924 | DP |  |
| 953 | EWSIFYVTV |  |
| 956 | IFYVTVLAF |  |
| 988. | KIRKKTKYT |  |
| 1001 | MDEQERME |  |
| 1010 | RPKYGIKHR |  |
| 1018 | RSTE-NSSL | 1 |

[^1]| Each peptide is a portion of SEQID NO: 5 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
|  | 12345678 |  |
|  |  |  |
|  | GLEEMSEY |  |
|  | ELE |  |


| TableXXVII-V3-HLA-B0702-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 6 | NP |  |
| 8 | SPCCARKQC |  |
| 4 | LGWPSPCCA |  |
| 3 | RLGWPSPCC |  |


| $\begin{gathered} \text { TableXXVII-V5-HILA-B0702- } \\ \text { Ymers-254P1D6B } \\ \hline \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | Scor |
| 3 | DIRKDLTFL |  |
| 9 | TFLGKDWGL |  |
| 2 | EDIRKDLTF |  |
|  | PEDIRKDLT |  |


| TableXXVIII-V1-HLA-B08- |
| :---: |
| 9mers-254P1D6B |
| Each peptide is a portion |
| of SEQID NO: 3; each |
| start position is specified, |
| the length of peptide is 9 |
| anino acids, and the end |
| position for each peptide is |
| the start position plus |
| eight. |


| Pos | 123456789 |  |
| :---: | :---: | :---: |
| 248 | LEKEKASQL | 32 |
| 893 | LSKEKADFL | 32 |
| 990 | RKKTKYTII | 30 |
| 228 | KLPER |  |
| 486 | SPVL |  |
| 105 | RP | 24 |
| 809 | QPDP |  |
| 1008 | ELRFKYG | 24 |
| 1014 | GIKH | 24 |
| 285 | VT | 23 |
| 81 | PR | 22 |
| 981 | CKR | 22 |
| 88 | VaRN |  |
| 98 | Kir |  |
| 136 | DIRK'D | 20 |
| 142 | PFLG |  |
| 42 | VK |  |
| 718 | PP | 0 |
| 133 | SPEDIRKDL |  |
| 159 | DYRELEKDL |  |
| 27 | SLPPASLEL |  |
| 353 | ELKAF | 9 |
| 439 | SPQLQELT |  |
| 854 | VQKI |  |
| 87 | VLK | 19 |
| 986. | RT | 9 |
| 1010 | RPKYG | 19 |
| 1041 | FSREKMER | 9 |
| 89 | EPKKKMGP |  |
| 135 | EDIRKDLP | A |
| 346 | TLPD | 18 |
| 441 | QLQELT |  |
| 821. | TLQVGVGQ |  |
| 82 | LTEQRKD | 18 |
| 900 | FLLFKVVLR | 18 |
| 113 | LLDYG | 17 |
| 179 | SAEYTDWG | \% |
| 224 | TPAPKLPER | 17 |
| 22 | APKLPERSV | 17 |
| 327 | TAFRTVKEL | 17 |
| 384 | EIKQGHKQT | 17 |
| 394 | NLSQLSVGL | 17 |
| 477 | FIEEKTSVD | 17 |
| 598 | QLKVTDSSR | 17 |
| 692 . | RLTVK'DQQG | 17 |


| TableXXVIII-V1-HLA-B08-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 730 | VLP |  |
| 837 | LVRQL |  |
| 840 | QLAVLLNVL |  |
| 849 | DSDIKVQKI |  |
| 872 | QSRPPF |  |
| 874 | RPPFKVLKA |  |
| 961 | VLAFTLIVL |  |
| 968 | VLTGGFTWL |  |
| 984 | QKRTK'IR |  |
| 989 | IRKKTKYTI |  |
| 1050 | NPKVSMNG |  |
|  | PPTGVLSSL |  |
| 88 | CEPKKMGPI |  |
| 169 | QPSGKQEP |  |
| 221 | SASTPAPKL |  |
| 230 | PERSVLLFL |  |
| 246 | EVLEKEKAS |  |
| 495 | DPGNYSFRL |  |
| 540 | TLPQNSITL |  |
| 29. | AGPDKELIF |  |
| 336 | TLVRQLAVL |  |
| 831 | KAAEVARNL |  |
| 895 | KEKADFLLF | 16 |
| 914 | LLKCSGHG | 6 |
| 924 | DPLTK | 16 |
| 927 | TKRCIC |  |
| 1025 | SLMVSESEF |  |
| 37 | SPNLETTRI |  |
| 425 | KPARRVNLP |  |
| 488. | VLRLSNLDP |  |
| 558. | QIVLYEWSL | 15 |
| 676 | KAIATVTGL |  |
| 709 | VAVKKENNS |  |
| 728 | VLVLPNNSI |  |
| 780 | NLVEGVYTF | 1 |
| 851 | DIKVOKIRA |  |


| TableXXVIII-V2-HLA-B08-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123455789 |  |
| 7 | EYADDYREL | 13 |
| 9 | ADDYRELEK | 10 |
|  | GLEEMSEYA |  |


| TableXXVIII-V3-HLA-B08-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each pepitide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 10 | CCARKQCSE | 10 |
| 8 | SPCCARKQC | 9 |
|  | PCCARKQCS |  |
| 1 | MTRLGWPSP |  |
|  | RLGWPSPCC | 6 |
|  | WPSPCCARK | 6 |


| TableXXVIII-V5-HLA-B08$9 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{DEB}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 11 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| OS | 12345678 g |  |
| 3 | DIRKDLTFL |  |
| 9 | TFLGKDWGL |  |
| 2 | EDIRKDLTF |  |
| 4 | IRKDLTFLG |  |
| TableXXIX-V1-HLA-B1510-9mers-254P1D6B |  |  |


| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
| Pos | 123456789 |  |
| 272 | SHSLPPAS |  |
|  | EYSD |  |
| 346 | TLP |  |
| 721 | AR |  |
| 96 | IRSYLTFVL |  |
| 227 | PKLPERSV |  |
| 261 | SNSSGKEVL |  |
|  | IKC |  |
| 481 | KT | 15 |
| 658 | YH |  |
| 768 | DGSDH |  |
| 872 | QS |  |
| 49 | SH |  |
| 285 | VT |  |
| 301 | EHSIPTPPT |  |
| 394 | NLSQL |  |
| 437 | VVSP |  |
| 483 | SVDSPVLRL |  |
|  | TLP |  |
| 62 | AVAGPDKEL |  |
| 63 | IFPVE |  |
| 661 | EHVRGPSA |  |
| 812 | PR |  |
| 821 | TLQVGVGQ |  |
| 328 | LTEQRKDTL |  |
| 840 | QLAVL |  |
| 859 | AHSDL |  |
| 881 | KAAE |  |
| 1001 | MDEQERMEL |  |
| 32 | SNAVISPNL |  |
| 71 | WWFE | 13 |
| 92 | KMGPIRSYL |  |
| 133 | SPEDIRKDL |  |
| 160 | YRELEKDLL | 13 |
| 207 | AETQQDPEL | 1 |
| 22 | SASTPAPKL | 位 |
| 228 | KLPERSVLL |  |
| 40 | TTPSSGEVL | 13 |
| 274 | SLPPASLEL | 13 |
| 313. | PSESTPSEL | 13 |


| TableXXIX-V1-HLA-B1510-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO: 3; each start position is specified, the lenglh of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 327 | TAPR |  |
| 424 | VK |  |
|  |  |  |
|  | LTLPLTSAL |  |
|  | YHWEEING |  |
| 553 | SSDCHQIV |  |
|  | GSE |  |
|  | HVVMQGVO |  |
| 689 | YHFRLTVKD |  |
| 723 | AG |  |
| 809 | QPD |  |
| 833 | RKD |  |
| 836 | TL |  |
| 837 | LV |  |
| 92 | GHCDF |  |
| 954 | WSIF |  |
| 9.8 | YV |  |
| 961 | VLAFTLIVL |  |
| 1021 | EHN |  |
| 83 | PHKE |  |
| 105 | RPVO |  |
|  | DI |  |
|  | QQ |  |
| 215 | LH |  |
| 267 | EVLMP |  |
| 339 | AGDNLIITL |  |
| 388 | GHKQTLNLS |  |
| 495 | DPGN |  |
| 577 | MQGVQ | 2 |
| 579 | GVQTPYLHL | 12 |
| 585 | LHLSA |  |
|  | QVGTYHFRL |  |
|  | VLPNNSITL |  |
|  | DHSVALQLT | 2 |
| 85 | VARNLH | 12 |
| 894 | SKEKADF |  |
| 88 | ADFLLFKVL | 12 |
| 919 | GHGHCDPLT | 1 |


| TableXXIX-V1-HLA-B1510-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 968 | VLTGGFTWL |  |
|  | PPTGVLSSL |  |
|  | PTGVLSSLL |  |
|  | TG |  |
|  | GVLSSLLLLL |  |
| 106 | PVQRPAQLL |  |
| 113 | LLDYGDMML |  |
| 142 | PFLGKD |  |
| 159 | DY |  |
| 179 | SAEYTDWG |  |
| 248 | LEKEKASQL |  |
| 366 | TTYNYEVINL |  |
| 387 | QGHKQTLN |  |
| 390 | KQT |  |
| 397 | QLS | 11 |
| 439 | SPQLQELTL |  |
| 441 | QLQELTLPL |  |
| 511 | ATNSTTAAL |  |
| 533 | AGPN |  |
| 536 | NHTITL |  |
| 556 | DHQULYEW |  |
| 591 | QEGDYTFQL |  |
| 663 | VRGPSAVEI | 1 |
|  | KAIATVTGL |  |
| 693 | LTVKDQQGL |  |
| 699 | QGLSSTSTL |  |
| 726 | RHVLVLPN | 1 |
|  | DDQRIVSYL | 11 |
| 773 | SVALQLTNL |  |
| 782 | VEGVTFHL |  |
| 814 | KSGLVELTL | 11 |
| 889 | LHMRLSKEK | 11 |
| 893 | LSKEKADFL |  |
| 906 | LRVDTAGCL | 1 |
| 918. | SGHGHCDPL | 11 |
| 927 | TKRCICSHL | 11 |
| 932 | CSHLWMENL |  |
| 956 | IFYVTVLAF | 11 |


| TableXXIX-V1-HLA-B15109 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| TableXXIX-V2-HLA-B1510-9mors-264P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5 ; each start position is specfied, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
|  | EYADDYRES | 16 |


| TableXXIX-V3-HLA-B1510-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 7 ; each start position is specified, the leng:h of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 6 | WPSPCCARK |  |
| 2 | TRLGWPSPC |  |
| 4 | LGWPSPCCA |  |
| 5 | GWPSPCCAR |  |
|  | MTRLEWPSP |  |
|  | RLGWPSPCC | $\square$ |
|  | PSPCCARKQ |  |

TableXXIX-V5-HLA-B1510-9mers-254F1D6B
Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

| PCS | 123456789 | score |
| ---: | ---: | ---: |
| 9 | TFLGKDWGL | 12 |
| 3 | DIRKDLTFL | 11 |
| 2 | EDIRKDLTF | 88 |


| TableXXX-V1- |
| :---: |
| HLA-B2705- |
| 9mers- |
| 254P106B |
|  |
| NoResullsFound. |


| TableXXX-V2-B2705-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each pepilde is the start position plus eight. |  |  |
| Pos | 123456789 |  |
|  | ADDYRELEK | 13 |
|  | SEYADDYR | 11 |
|  | EYADOYREL | 11 |
| 4 | EMSEYADDY | 10 |
|  | SEYADDYRE |  |


| TableXXX-V3-B27059 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
| 2 | TRLGWPSPC | 15 |
| 5 | GWPSPCCAR | 14 |
| 6 | WPSFCCARK | 14 |
|  | RLGWPSPCC |  |


| TableXXX-V5-B2705-1 <br> 9mers-254P106B |
| :---: |
| Each pentide is a portion of |
| SEQID NO: 11; each start |
| position is specified, the |
| length of peptide is 9 amino |
| acids, and the end position |


| For each peptide is the start |  |  |
| ---: | :---: | :---: |
| position plus eight. |  |  |
| Pos | 123456789 | score |
| 9 | TFLGKDWGL | 17 |
| 2 | EDIRKDLTF | 16 |
| 5 | RKDLTFLGK | 16 |
| 3 | DIRKDLTFL | 15 |
| 4 | IRKDLTFLG | 12 |


| TableXXXI-V1- <br> HLA-B2709-9mers254P106B |
| :---: |
|  |



| TableXXXII-V1-HLA-B2709-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
| 663 | VRGPSAVEM |  |
| 721 | ARAGGRHVL |  |
| 46 | MRVS |  |
| 160 | YRELEKDLL |  |
| 329 | PRTVKELT |  |
| 427 | AR |  |
| 741 | SRSTDDQ |  |
| 747 | QRIVSYLW |  |
| 989 | IRKKTKYTI |  |
| 1047 | ERGNFKVSM |  |
| 605 | SRQQSTAV |  |
|  | GVLSSLLLL |  |
| 105 | RPVQRPAQL |  |
| 428 | RRVNLPPV |  |
| 833 | RKDTLVRQL |  |
| 839 | RQLAVL |  |
| 497 | GNYSFRLT |  |
| 725 | GRFHVLVLPN |  |
| 784 | GVYTFHLRV |  |
| 1018 | RSTEHNSSL |  |
| 75 | GRCYLVSC |  |
| 92 | KMGPIRSYL |  |
| 180 | AEYTDWGLL |  |
| 390 | KOTLNLSQL | 14 |
| 401 | GLY |  |
| 481 | KTSVDS |  |
| 483 | SVDSPVLRL |  |
| 579 | GVQTPYLHL | 1 |
| 593 | GDYTFQLK |  |
| 676 | KAIATVTGL |  |
| 687 | GTYHFRLTV |  |
| 742 | RSTDDQRIV | , |
| 770 | SDHSVALC |  |
| 816 | GLVELTLQ |  |
| 858 | RAHSDLSTV |  |
| 881 | KAAEVARNL |  |
| 907 | RVDTAGCLL |  |
| 929 | RCICSHLWM |  |


| TableXXXII-V1-HLA-B2709-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight |  |  |
| Po | 123456789 | score |
| 985 | KRTKIRKKT |  |
| 990 | RKKTKYTIL | 4 |
| 32 | SNAVISPNL |  |
| 47 | RVSHTFPVV |  |
| 94 | GPIRSYLTF |  |
| 207 | AETQQDPEL | 13 |
| 227 | PKLPERSVL |  |
| 228 | KLPERSVLL |  |
| 335 | LTVSAGDNL |  |
| 366 | TTYNYEWNL |  |
| 429 | RVNLPPVAV | 13 |
| 445 | LTLPLTSAL |  |
| 489 | LRLSNLDPG |  |
| 522 | NRPPVAVAG |  |
| 691 | FRLTVKDQQ |  |
| 699 | QGLSSTSTL |  |
| 722 | RAGGRHVLV |  |
| 723 | AGGRHVLVL |  |
| 758 | GQSPAAGDV |  |
| 814 | KSGLVELTL |  |
| 891 | MRLSKEKAD |  |
| 898 | ADFILFKVL |  |
| 900 | FLLFKVLRV |  |
| 956 | IFYVTVLAF |  |
| 5 | TGVLSSLLL |  |
| 43 | TRIMRVSHT |  |
| 44 | RIMRVSHTF |  |
| 71 | WWFEGRCYL |  |
| 111 | AQLLDYGDM | 12 |
| 136 | DIRKDLPFL | 12 |
| 142 | PFLGKDWGL | 2 |
| 176 | PRGSAEYTD |  |
| 221 | SASTPAPKL | 12 |
| 230 | PERSVLLPL | 12 |
| 248 | LEKEKASQL | 12 |
| 267 | EVLMPSHSL | 12 |
| 274 | SLPPASLEL | 12 |
| 285 | VTVEKSPVL | 12 |


| TableXXXII-V1-HLA-B2709-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acics, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | Score |
| 356 | AFVAPAPPV |  |
| 387 | QGHKQTL |  |
| 396 | SQLSVGLY |  |
| 416 | GEGFVNVT |  |
| 424 | VKPARRVNL |  |
| 430 | VNLPPVAVV | 12 |
| 434 | PVAVVSPQL |  |
| 485 | SPVLRLSNL |  |
| 501 | FRLTVTDSD |  |
| 511 | ATNSTTAAL |  |
| 567 | GPGSEG | 12 |
| 569 | GSEGK |  |
| 678 | IATVTGLQ |  |
| 683 | GLQVGTYHF |  |
| 693 | LT | 12 |
| 720 | RARAG | 12 |
| 45 | DDQRIVSYL | 12 |
| 755 | IRDGQSPAA | 12 |
| 100 | LRVTDSQGA | 12 |
| 821 | TLQVGVG | 12 |
| 832 | QRKDTLVRQ |  |
| 837 | LVRQLAVLL |  |
| 838 | VRQLAVLLN | 12 |
| 857 | IRAHSELS | 12 |
| 861 | SDLSTVIVF | 12 |
| 873 | SRPPFKVLK | 12 |
| 892 | RLSKEKADF | 12 |
| 895 | KEKADFLLF | 12 |
| 928 | KRCICSHLW | 12 |
| 942 | QRYIWDGES | 12 |
| 954 | WSIFYVTVL | 12 |
| 958 | YVTVLAFTL | 12 |
| 982 | KRQKRTKIR | 12 |
| 993 | TKYTILDNM | 12 |
| 1057 | GSIRNGASF | 12 |
| 3 | PPTGVLSSL | 11 |
| 9 | SSLLLLVTI | 11 |
| 21 | ARKQCSEGR | 11 |


| TableXXXII-V1-HLA-B2709-9 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each pepitde is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
|  | DCT |  |
|  |  |  |
|  | PV |  |
|  | QR |  |
|  | NR |  |
|  | SPEDIRKDL |  |
| 137 | IRKDLPFLG |  |
| 145 | GK |  |
| 155 | EY |  |
| 197 |  |  |
| 210 | Q0 |  |
|  |  |  |
|  |  |  |
| 261 | SN |  |
| 287 | VE |  |
| 313 | PSES |  |
|  | ESTPSELPI |  |
| 327 | TA |  |
| 339 | AGD |  |
|  | TLP |  |
| 385 | IK |  |
| 394 | NL |  |
| 414 | AF |  |
| 422 | VTVK |  |
| 437 | V |  |
| 439 | SP |  |
| 441 | QL |  |
| 495 | DPGNYSFRL |  |
| 513 | NS |  |
| 517 | AA |  |
| 533 | A |  |
| 551 | NQSSDDHQ |  |
| 558 | QIVLYEWSL | 1 |
| 572 | GKHVVV |  |
| 577 | MO |  |
| 691 | QEGD |  |
| 627 | AVAGPDKE | 1 |
| 636 | IFPVESATL |  |


| TableXXXII-V1-HLA-B2709-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specifed, the lencth of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 272 | SHSL |  |
| 337 | VSAGDNLII |  |
| 344 | IITLPDNEV |  |
| 407 | VTVSSENAF |  |
| 458 | QSTDDTEIV |  |
|  | EK |  |
| 493 | NL |  |
| 522 | NHAVDYPPV |  |
| 540 | TLP |  |
| 553 | SSDDHQIVL |  |
|  | TPYLHLSAM |  |
| 589 | AMQE |  |
| 607 | QQSTA |  |
| 608 | QSTA |  |
| 628 | VA |  |
|  | AGPDKELIF |  |
| 647 | SSSSDDHGI |  |
| 730 | VL |  |
| 774 | VALO |  |
|  | QLTNL |  |
| 782 | VE |  |
| 798 | ASDT |  |
| 829 | LTEO |  |
| 840 | QLAVLLNVL |  |
|  | NVLDSDIK |  |
|  | FY |  |
| 877 | FKVL |  |
|  | SKEKAD |  |
| 807 | KADFLLFI |  |
| 918 | SGHGHCDPL |  |
| 933 | SHLWMENL |  |
| 961 | VLAFTLIVL |  |
| 1001 | MDEQERMEL |  |
| 1009 | LRPKYGIIKH |  |
| 1017 | HRSTEHNSS | , |
| 1032 | EFDSDQDTI | 0 |
| 1042 | SREKMERGN | 10 |
| 1051 | PKVSMNGS |  |


| TableXXXI－V2－HLA－ <br> B2709－9mers－254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO：5；each start position is specified， the length of peptide is 9 amino acids，and the end position for each peptide is the start position plus eight． |  |  |
| OS | 123456789 |  |
|  | EYADDYREL | 11 |
|  | SEYADDYRE |  |


| TableXXXI－V3－HLA－ B2709－9mers－254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO：7；each start position is specified， the length of peptide is 9 anino acids，and the end position for each peptide is the start position plus eight． |  |  |
| OS | 123456789 |  |
|  | TRLGWPSPC | 12 |
|  | C |  |


| TableXXXI－V5－HLA－B2709－9mers－254P1DEB |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion 0 SEQID NO：11；each start position is specified，the length of peptide is 9 amino acids and the end position for each peptide is the star position plus eight． |  |  |
|  | 12345678 |  |
|  | TFLGKDWGL |  |
|  | DRKDLTFL |  |
|  | RKDLTFLC |  |
| 2 | EDIRKDLTF | 10 |
| 5 | RKDLTFLGK |  |

> TableXXXII－V1－HLA－ B4402－9mers－254P1D6B
> Each peptide is a portion of SEQID NO： 3 ；each start position is specified，the length of peptide is 9 amino acids，and the end position for each peptide is the start position plus eight．

| Pos | 123456789 |  |
| :---: | :---: | :---: |
| 180 | AEYTDWGLL | 25 |
| 895 | KEKADFLL |  |
| 207 | AETQ |  |
| 591 | QEGDYTFQL | 23 |
| －17．4 | QEPRGSAE |  |
| 230 | PERSVLLP |  |
| 248 | LE |  |
| 364 | VET |  |
| 411 | SENAFGEG | 21 |
| 782 | VEGVYTFH | 21 |
| 93 | MENL |  |
| 330 | AgDNLIITL | 析 |
| 898 | ADF |  |
| 948 | GES | 20 |
| 1007 | MELRPKYGI |  |
| 88 | CEPKKMGPI |  |
| 470 | WEEINGPFI | 析 |
| 533 |  |  |
| 91 | KK |  |
| 135 | EDIRKDLPF |  |
| 319 | SELP |  |
| 44 | LT |  |
| 471 | EEINGPFIE |  |
| 55 | SDDH |  |
| 721 | ARAGG |  |
| 723 | AGGRH | 17 |
| 372． | QSR |  |
| 92 | KMG |  |
| 94 | GPIRSYLTF | 6 |
| 133 | SPEDIRKD |  |
| 210 | QQDFELHYL | 16 |
| 22 | PKLP |  |
| 274 | SLPPASLEL |  |
| 460 | TDDTEIVSY |  |
| 511 | ATNS |  |
| 627 | AVAGPDKEL |  |
| 62 | AGFDKELIF |  |
| 65 | SDDHGIVFY |  |
| 669 | VEMENIDKA |  |
| 670 | EMENIDKAI | 6 |
| 74 | TDDQRIVS | 6 |
| 85 | DLSTVIVFY | 6 |
| 1046 | MERGNPKVS |  |
| 40 | LETTRIMRV | 15 |
| 85 | KENCEPKKM | 15 |


| TableXXXII－V1－HLA－ B4402－9mers－254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO： 3 ；each start position is specified，the length of peptide is 9 amino acids，and the end position for each peptide is the start position plus eight． |  |  |
| Pos | 123456789 |  |
| 155 | EYSDDYREL |  |
| 219 | NESASTPAP |  |
| 221 | SASTPAPKL |  |
| 228 | KL |  |
| 327 | TAP |  |
| 349 | DNEVELKAF | 16 |
| 35 | VELKAFVAP |  |
| 360 | PAPPVETTY |  |
| 373 | NLISHPTDY |  |
| 383 | GEIKQG |  |
| 390 | KQTLNLSQL |  |
| 43 | VVSPQLQEL |  |
| 443 | QELTLFLTS | 5 |
| 493 | NLDPGNYSF |  |
| 553 | SSODHQIV |  |
| 649 | SSDDHGIVF | ， |
| 676 | KAIATVTGL | 5 |
| 730 | VLPNNSITL |  |
| 768 | DGSDHSVAL | 15 |
| 809 | QPDPRKSG | 析 |
| 833 | RKDTLVRQL |  |
| 861 | SDLSTVIVF |  |
| 883 | AEVARNLHM | 15 |
| 954 | WSIFYVTVL | 15 |
| 987 | TKIRKKTK | 析 |
| 1005 | ERMELRPKY | 5 |
| 1057 | GSIRNGASF | 15 |
|  | GVLSSLLLL |  |
|  | SSLLLLVT |  |
| 44 | RIMRVSHTF |  |
| 63 | DLSSCDLAW |  |
| 70 | AWWFEGRC | 14 |
| 187 | LLPGSEGAF |  |
| 267 | EVLMPSHSL |  |
| 272 | SHSLPPASL | 14 |
| 314 | SESTPSELP | 14 |
| 315 | ESTPSELPI | 14 |
| 346 | TLPDNEVEL | 1 |


| TableXXXII-V1-HLA-B4402-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 370 | YEWNLISHP |  |
| 424 | VKPARRVNL | 14 |
| 439 | SPQLQELTL | 14 |
| 463 | TEIVSYHWE | 14 |
| 479 | EEKTSVDS |  |
| 483 | SVDSPVLRL |  |
| 486 | SFVLRLSNL | 14 |
| 519 | LIVNNAVDY |  |
| 531 | ANAGPN |  |
| 540 | TLPQNSITL |  |
| 589. | AMQEGDY |  |
| 619 | PENNRPPVA | 14 |
| 633 | KELIFPVES | 14 |
| 770 | SDHSVALQL | 14 |
| 814 | KSGLVELTL |  |
| 855 | QKIRAHSDL | 14 |
| 859 | AHSDLSTVI | 14 |
| 936 | WMENLIQRY |  |
| 938 | ENLIQRYIW |  |
| 956 | IFYVTVLAF | 14 |
| 965 | TLIVLTGGF | 14 |
| 1031 | SEFDSDQDT | 14 |
| 5 | TGVLSSLLL | 13 |
| 23 | KQCSEGRT | 13 |
| 65 | SSCDLAWWF | 13 |
| 71 | WWFEGRCYL | 13 |
| 73 | FEGRCYLVS | , |
| 96 | IRSYLTFV/L | 13 |
| 105 | RPVQRPAQL | 13 |
| 106 | PVQRPAQLL | 13 |
| 108 | QRPAQLLDY | 1 |
| 134 | PEDIRKDLP | 13 |
| 140 | DLPFLGKDW | 13 |
| 151 | EEMSEYSDD | 13 |
| 152 | EMSEYSDDY | 13 |
| 161 | RELEKDLLQ | 13 |
| 213 | PELHYLNES | 13 |
| 250 | KEKASQLQE | 13 |


| TableXXXXII-V1-HLA-B4402-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | score |
| 245 | GEVLEKEKA | 12 |
| 300 | TEHSIPTPP | 12 |
| 385 | IKQGHKQTL | 12 |
| 387 | QGHKQTLNL | 12 |
| 416 | GEGFVNVTV | 12 |
| 441 | QLQELTLPL | 12 |
| 491 | LSNLDPGNY | 12 |
| 512 | TNSTTAALI | 12 |
| 551 | NQSSDDHQ |  |
| 9. | GVQTPYLHL |  |
| 628 | VAGPDKELI |  |
| 636 | IFPVESATL |  |
| 639 | VESA | 12 |
| 747 | QRIVSYLWI | 12 |
| 778 | LTNLVEGV |  |
| 812 | PRKSGLVEL |  |
| 821 | TLQVGVGQL | 12 |
| 829 | LTEQRK'DTL |  |
| 830 | TEQRKDTLV |  |
| 894 | SKEKADFLL |  |
| 906 | LRVDTAGCL | 12 |
| 918 | SGHGHCDPL | 12 |
| 933 | SHLWMENLI | 12 |
| 949 | ESNCEWSIF | 12 |
| 950 | SNCEWSIFY | 12 |
| 958 | YVTVLAFTL | 12 |
| 968 | VLTGGFTWL | 12 |
| 1002 | DEQERMELR | 12 |
| 1004 | QERMELRPK | 12 |
| 1020 | TEHNSSLMV | 2 |
| 1025 | SLMVSESEF | 2 |
| 1029 | SESEFDSDQ | 1 |
| 1032 | EFDSDQDTI | 12 |
| 1033 | FDSDQDTIF | 12 |
| $\begin{gathered} \text { TableXXXII-V2-HLA- } \\ \text { B4402-9mers-254P1D6B } \end{gathered}$ |  |  |
| Each peplide is a portion of SEQ ID NO: 5; each |  |  |


| start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the stat position plus eight. |  |  |
| :---: | :---: | :---: |
| Pos | 123456789 | 5 SO |
| 4 | EMSEYADOY |  |
| 7 | EYADDYREL | 14 |
| 3 | EEMSEYADD | 13 |
| 2 | LEEMSEYAD | 12 |
|  | SEYADDYRE | 11 |
|  | ADDYRELEK |  |

TableXXXII-V3-HLA-
B4402-9mers-254P1D6B
Each peptide is a portion of SEQID NO: 7; each start position is specified, the lenglh of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.
Pos: 123456789 score

| 8 | SPCCARKOC | 5 |
| :--- | :--- | :--- | :--- |
| 4 | LGWPSPCCA | 4 |
| 6 | WPSPCCARK | 4 |
| 7 | PSPCCARKQ | 4 |
| 2 | TRLGWPSPC | 3 |
| 5 | OWPSPCCAR | 3 |


| TableXXXII-V5-HLA-B4402-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 12345 |  |
|  | KDL |  |
|  | PEDIRKDLT |  |
| 7 | DLTFLGKDW |  |
| 9 | TFLGKDWGL |  |
|  | DLTFL |  |

TableXXXIIII-V1-HLA. B5101-9mers-254P1D6B

| Each peptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptide is 9 amino acios, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
| Pos | 1233456789 |  |
| 517 | AALIVNNAV | 24 |
| 324 | SPTTAPRTV |  |
| 37 | SPNL |  |
| 296 | TP |  |
| 327 | TAPRTVKEL | 22 |
| 377 | HPTDYQGEI | 22 |
| 495 | DPGNYSFRL | 22 |
| 678 | IATVTGLQV |  |
| 774 | VALQLTNL |  |
| 8811 | KaAEVARNL |  |
| 628 | VAGPDKELI | 21 |
| 676 | KAIATVTGL | 21 |
| 720 | RARAGGRHV |  |
| 858 | RAHSDLSTV |  |
| 897 | KADFLLFKV |  |
|  | PPTGVLSSL | 0 |
| 221 | SASTPAPKL |  |
| 567 | GPGSEGKH |  |
| 722 | RAGGRHVL |  |
| 811 | DPRKSGLVE |  |
| 226 | APKLPERSV |  |
| 277 | PASLELSSV |  |
| 439 | SPQLQELTL |  |
| 568 | PGSEGKHVV |  |
| 608 | QSTAVVT |  |
| 849 | DSDIKVQKI |  |
| 970 | TGGFTWLCI |  |
| 133 | SPEDIRKDL |  |
| 447 | LPLTSALID |  |
| 610 | TAVVTVIVQ |  |
| 618 | QPENNRPPV | 18 |
| 723 | AGGRHVLVL | 18 |
| 768 | DGSDHSVAL | 18 |
| 885 | VARNLHMRL | 18 |
| 924 | DPLTKRCIC | 18 |
| 27 | EGRTYSNAV | 17 |
| 105 | RFVQRPAQ | 17 |
| 179: | SAEYTDWGL | , |
| 486. | SPVLRLSNL | 17 |
| 523 | NAVDYPPVA | 17 |


| TableXXXIIII-V1-HLA-B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 699 | QGLSSTSTL |  |
| 874 | RPPF |  |
|  | SSLLLLVTI |  |
| 229 | LP |  |
| 275 | LPPASLELS |  |
| 339 | AGDNLIITL |  |
| 360 | PAPPV |  |
| 40 | VGLYVFKV |  |
| 413 | NA |  |
| 430 |  |  |
| 432 | LPPV |  |
| 533 | AG |  |
|  | TP |  |
|  | GD |  |
|  | FPVE |  |
| 809 | QPDP |  |
|  | NVLDSDIKV |  |
|  | PPFKVLKAA |  |
|  | FLLFKVLRV |  |
|  | LAFTLIVLT |  |
| 989 | IRKKTKYTI |  |
|  | APPTGVLS |  |
|  | TGVLSSLL |  |
| 28 | GR |  |
| 21 | LNR |  |
| 129 | IWGD |  |
| 212 | DPEL | 析 |
| 236 | LPLPTTPSS |  |
| 306 | TPPTS |  |
| 317 | TPSELPISP |  |
| 358 | VA |  |
| 401 | GLY |  |
| 433 | PPV |  |
| 497 | GNYS |  |
| 530 | VA | , |
| 541 | LPQNSITLN |  |
| 626 | VAVAGPDKE |  |
| 687 | GTYHFRLTV |  |


| TableXXXIIII-V1-HiLA-B5101-9mers-254F1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| os | 123456789 | cor |
| 701 | LS |  |
| 731 | LP |  |
| 759 | QSPAAGDVI |  |
| 784 | GVY |  |
| 835 | DT |  |
| 839 | RQLAVLLNV |  |
| 859 | AH |  |
|  | MAPPTGVLS |  |
| 33 | NAVISPNLE |  |
| 69 | LAWW |  |
| 94 | GPIRSYLTF |  |
| 99 |  |  |
| 205 | VPAE |  |
| 225 | PAPKL |  |
|  | VEKSPVLTV |  |
|  | SPVLT |  |
| 337 | VSAG |  |
| 347 | LPD |  |
| 359 | APAP |  |
| 387 | QG |  |
| 415 | FG |  |
| 416 | GEG |  |
| 426 | PA |  |
| 475 | GPFIEEKT |  |
| 509 | DGATNS |  |
| 512 | TNS |  |
| 516 | TAALI |  |
| 527 | YPPVAN |  |
| 531 | ANAGP |  |
|  | QQST |  |
| 624 | PPVAVA |  |
| 667 | SAVEMENID |  |
| 709 | VAVKKENNS | 14 |
| 761 | PAAGDVID |  |
| 762 | AAGDVIDG |  |
| 000 | DTDTATVEV | 14 |
| 841 | LAVLLNVLD | 14 |
| 933 | SHL |  |


| TableXXXIIII-V1-HLA. B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123 |  |
| 981 | CKR |  |
| 17 | IAGCARKOC |  |
| 40 | LETTRIMR |  |
| 47 | RVSHTFPVV |  |
| 88 | CE |  |
| 141 | LPFLGKDWG |  |
| 159 | DYRELEKDL |  |
| 175 | EPRGSAEY |  |
| 193 | GAFNSSVGD |  |
|  | SP |  |
|  | TP |  |
| 238 | LPTTPSSGE |  |
| 270 | MPSHSL |  |
| 285 | VTVEK |  |
| 310 | SAAPSES |  |
| 312 | APSESTPSE |  |
| 321 | LPISPTTAP |  |
| 328 | APRTVKELT |  |
| 336. | TVSAGDNL |  |
| 338 | SAGDNLIIT |  |
| 362 | PPVE |  |
| 396 | SQLSVGLYV |  |
| 399 | SVGLYVFKV |  |
| 417 | EGFV |  |
| 422 | VTVK |  |
| 25 | KPARRVNLP |  |
| 435 | VAVVSPQLQ |  |
| 446 | TLPLTSALI |  |
| 534 | GPNHTITLP |  |
| 566 | LTPGSEG |  |
| 623 | RPPVAVAGP |  |
| 630 | GPDKELIFP |  |
| 665 | GPSAVEMEN |  |
| 673 | NIDKAIATV |  |
| 728 | VLVLPNNSI |  |
| 797 | GASDṪDTAT | 13 |
| 803 | TATVEVQPD |  |
| 818 | VELTLQVG |  |


| TableXXXIIII-V1-HLA-B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123 |  |
| 910 | TAGCLLKCS |  |
|  | SGHG |  |
|  | CDPL |  |
| 954 | WSI |  |
|  | VTVLAFTL |  |
|  |  |  |
|  |  |  |
| 1007 | MEL |  |
| 1010 | RPKY |  |
| 1050 | NP |  |
|  |  |  |
|  | TAACCDLSS |  |
| 82 | CP |  |
|  | EP |  |
|  | YGDM |  |
|  | , | 12 |
|  | QPSGK |  |
| 188 | LPGSEG |  |
| 240 | TTPSS |  |
|  | TPSSGEVLE |  |
|  | LEKEK |  |
| 279 | SLELSSVT |  |
|  | IPTPPTSAA |  |
|  | AAPSE |  |
|  | ESTPSELP |  |
| 329 | PR |  |
| 355 | KAFV |  |
|  | APPV |  |
|  | TTYNYEW |  |
|  | TYNY |  |
| 414 | AFGEG | , |
| 451 | SALIDGSQS |  |
| 457 | SQSTDDTE |  |
|  | IVS |  |
| 510 | GATNSTTAA | 12 |
| 513 | NSTTAALIV | 12 |
| 528 | PPVANAGP | 12 |
|  |  |  |


| TableXXXIIII-V1-HLA-B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | scorc |
| 538 | TITL | 12 |
| 605 | SRO | 12 |
| 655 | IVFYHiVEHV |  |
| 682 | TGLQVGTY | 12 |
| 718 | PPRARAGGR | 2 |
| 741 | SRSTDDQR | 12 |
| 745 | DDQRIVSYL | 12 |
| 747 | QRIVSYLWI | 12 |
| 760 | SPAAGDVID | 12 |
| 844 | LLNVLDSDI | 12 |
| 86 | LSTVIVFYV | 12 |
| 871 | VQSRPPFK' |  |
| 893 | LSKEKADFL | 2 |
| 898 | ADFLLF |  |
| 937 | MENLIQRY | 18 |
| 1032 | EFDSDQDTI | 2 |
| 1051 | PKVSMNGS |  |
| 6 | GVLSS |  |
|  | VLSSLLLLV |  |
| 20 | CARKQCSEG |  |
| 56 | DCTAACCDL |  |
| 59 | AACCDLSSO |  |
| 95 | RSY |  |
| 96 | IRSYLTFVL |  |
| 109 | RPAQLLDYG |  |
| 125 | SPSGIWGDS |  |
| 132 | DSPEDIRKD |  |
| 158 | DDYRELEKD |  |
| 180 | AEYTDWGLL |  |
| 203 | PAVPAETQQ |  |
| 206 | PAETQQDPE |  |
| 227 | PKLPERSVL |  |
| 264 | SGKEVLMPS | 1 |
| 27 | PPASLELSS |  |
| 280 | LELSSVTVE |  |
| 307 | PPTSAAPSE |  |
| 344 | IITLPDNEV | 11 |
| 350 | NEVELKAFV |  |


| TableXXXIIII-V1-HLA-B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each stait position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 385 | IKO |  |
| 392 | TLNLSQLSV |  |
|  | DGSQSTDD |  |
| 476 | PFIEEKTSV |  |
| 540 | TLPQNSITL |  |
| 551 | NQSS |  |
| 553 | SS |  |
| 609 |  |  |
| 631 | PDKELIFPV |  |
| 636 | IFPVESATL |  |
| 645 | DGSSSSDD |  |
|  | EM |  |
|  | SPP |  |
| 730 | VLPI |  |
| 739 | DGSRSTDD |  |
| 757 | DGQSPAAG |  |
|  | VID |  |
| 798 | ASD |  |
|  | KSGLVELTL |  |
| 816 | GLVELTLQV |  |
| 830 | TEQRKDTL |  |
|  | TLVRQLAVL |  |
|  | QLAVLLNV |  |
| 872 | QSRPPP |  |
| 877 | FK | 1 |
| 882 | AAEV |  |
| 901 | LLFKVLRVD |  |
| 906 | LRVDT |  |
| 951 | NCEWS |  |
| 953 | EWSIFY'V | 11 |
| 958 | YVTVLAFTL |  |
| 1013 | YGIKHRST | 11 |
| 1020 | TEHNSSLM | 11 |
| 1045 | KMERGNPK | 11 |
| 1062 | GASFSYCSK |  |

TableXXXIIIIVV2-HLA-B5101-9mers-254P1D6B

| Each pepide is a portion of SEQID NO: 5 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| TableXXXIIII-V3-HLA-B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 | Score |
| 4 | LGWPSPCCA | 11 |
| 6 | WPSPCCARK | 11 |
| 8 | SPCCARKQC | 11 |
| 11 | CARKQCSEG | 11 |
| 2 | TRLGWPSPC | 5 |
| 7 | PSPCCARKO | 5 |


| TableXXXIIII-V5-HLA-B5101-9mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. |  |  |
| Pos | 123456789 |  |
| 3 | CIRKDLTFL |  |
| 9 | TFLGKDWGL |  |
| 6 | KDLTFLGKD |  |


| TableXXXIV-V1-HLA-A1- |
| :---: |
| 10mers-254P1D6B |
| Each peptide is a portion of |
| SEQ ID NO: 3; each start |
| position is specified, the |
| length of peptide is 10 amino |
| acids, and the end position |
| for each peptide is the start |
| position plus nine. |


|  | 123456789 |  |
| :---: | :---: | :---: |
| 459 | STDDTEIVSY |  |
|  | SSDDHQIVL) |  |
|  | SI |  |
|  | SS |  |
|  | KQEPRGSAEY |  |
| 208 | EIQQDPELHY |  |
|  |  |  |
| 1019 | SI |  |
|  | SK |  |
|  | ES | 23 |
|  |  |  |
|  | YSD |  |
|  | PTDYQGEIKQ |  |
|  | YRELEKDLLQ |  |
|  | AP |  |
|  | GSD |  |
|  | HS |  |
|  | NLS |  |
| 554 | SDD |  |
| 72 | WEEGRCYLVS |  |
|  | YTDWGLLIPES |  |
|  | ST |  |
|  | LP |  |
| 592 | EG |  |
| 800 | DT |  |
|  | LTE |  |
| 882 | AAEVARNLHM |  |
| 907 | RVDTAGCLL |  |
|  | QERMELRPKY |  |
|  | TVEKSPVL |  |
|  | SSENAF |  |
|  | VIDSDG |  |
| 518 | ALIVNNAV |  |
| 569 | GSEG |  |
|  | VID |  |
|  | TVTGLQV | 17 |
|  | QLTNL |  |
| 792 | VIDSQGASDT |  |
|  | SDLSTVIVFY |  |
| 058 | SIRNGASFSY |  |
| 22 | RKQCSE |  |
| 69 | LAWWFEGR | 16 |
| 134 | PEDIRKDLPF | 16 |
| 190 | GSEGAFNSSV | 16 |
| 210 | QQDPELHYLN |  |


| TableXXXIV-V1-HLA-A1-10 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each stait position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 123456789 |  |
|  |  |  |
|  |  |  |
|  | PSE |  |
|  | APP |  |
|  | LQELTLPLTS |  |
|  | DTE |  |
|  | RL |  |
|  | DSDGATNS |  |
|  | WMQGVQT |  |
|  | HLSAMQEG |  |
| 798 | ASDTDTA |  |
| 809 | QPDPRKSGL |  |


| TableXXXIV-V2-HLA-A1-$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5; each start position is specified, the lengith of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  | YADDYRELEK | 18 |
|  | EEMSEYADTY | 15 |
|  | MSEYADDYRE |  |
| 10 | ADDYRELEKD | 13 |
|  | GLEEMSEYAD |  |
|  | LEEMSEYADD | 10 |


| TableXXXIV-V3-HLA-A110 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  | MIRLGWPSPC |  |
|  | PSPCCARKQ |  |


| 7 | PSPCCARKQC | 5 |
| ---: | ---: | ---: |
| 4 | LGWPSPCCAR | 4 |
| 8 | SPCCARKOCS | 2 |

TableXXXIV-V5-HLA-A1-10mers-254P1D6B

Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

| Pos | 1234567890 |  |
| :---: | :---: | :---: |
| 2 | PEDIRKDLTF | 16 |
| 1 | SPEDIRKDLT | 14 |
| 6 | RKDLTFLGKD | 12 |
| 5 | IRKDLTELGK | 9 |


| TableXXXV-V1-A0201. 10 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 635 | LIFPVESATL |  |
|  | LITLPDIEV | 25 |
| 3 | ITLPDNEVEL |  |
| 70 | GLSSTSTLTV | 2 |
| 39 | NLETTRIMRV | 23 |
| 11 | QLLDYGDMML | 23 |
| 32 | TTAPRTVKEL |  |
| 338 | SAGDNLIITL | 23 |
| 677 | AIATVTG | 23 |
| 82 | QLTEQRKDTL | 23 |
| 862 | DLSTVIVFYV | 23 |
| 6 | GVLSSLLLL | 2 |
| 436 | AVVSPQLQEL | 22 |
| 539 | ITLPQNSITL | 22 |
| 576 | VMQGVG | 22 |
| 729. | LVLPNNSIT | 22 |
| 820 | LTLQVGVGQL | 22 |
| 836 | TLVRQLAVLL | 22 |
| 961 | VLAFTLIVLT | 22 |
| 1000 | NMDEQERMEL | 22 |
| 11. | LLLLVI\|AGC | 21 |


| $\begin{gathered} \hline \text { TableXXXV-V1-A0201- } \\ \text { 10mers-254P1D6B } \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 429 | RVNLPPVAVV | 21 |
| 441) | QLQELILPLT | 21 |
| 722 | RAGGRHVLVL | 21 |
| 835 | DTLVRQLAVL | 21 |
| 843 | VLLNVLDSDI | 21 |
| 905 | VLRVDTAGCL | 21 |
| 7 | VLSSLLLLVT | 20 |
| 45. | IMRVSHTTFPV | 20 |
| 120 | MLNRGSPPSGI | 20 |
| 128 | GIWGDSPEDI | 20 |
| 247 | VLEKEKASQL | 20. |
| 278 | ASLELSSSVTV | 20 |
| 286 | TVEKSPVLTV | 20 |
| 398 | LSVGLYVFKV | 20 |
| 431 | NLPPVAVVSP | 20 |
| 445 | LTLPLISALI | 20 |
| 692 | RLTVKDQQEL | 20 |
| 775 | ALQLTNLVEG | 0 |
| 797 | GASDTDTATV | 20 |
| 857 | IRAHSDLSTV | 20 |
| 892 | RLSKEKADFL | 20 |
| 960 | TVLAFILIVL | 20 |
| 988 | KIRKKIKYTI | 20 |
| 217 | YLNESASTPA | 19 |
| 269 | LMPSHSLPPA | 19 |
| 391 | QTLNLSQLSV | 19 |
| 413 | NAFGEGFVNV | 19 |
| 765 | DVIDGSDHSV | 19 |
| 773 | SVALQLTNLV | 19 |
| 776 | LQLTNLVEGV | 19 |
| 901 | LLFKVLRVDT | 19 |
| 1054 | SMNGSIRNGA | 9 |
| 2 | APPTGVLSSL | 18 |
| 8 | LSSLLLLVTI | 18 |
| 12 | LlLVTIAGCA | 18 |
| 34 | AVISPNLETT | 18 |
| 98 | SYLTFVLRPV | 18 |
| 228 | KLPERSVLLP | 18 |


| TableXXXV-V1-A0201-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start ${ }^{2}$ position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | 5 |
| 274 | SLPPASLELS | 8 |
| 295 | VTPGSTEHSI | 18 |
| 516 | TAALIVNNAV | 18 |
| 532 | NAGPNHTITL | 18 |
| 560 | VLYEWSLGPG | 18 |
| 606 | RQQSTAVVTV | 18 |
| 627 | AVAGPDKELI | 18 |
| 654 | GIVFYHWEHV | 18 |
| 672 | ENIDKAIATY | 18 |
| 721] | ARAGGRHVLV | 18 |
| 817 | LVELTLQVGV | 18 |
| 870 | YVQSRPPFKV | 18 |
| 950 | SNCEWSIFYV | 18 |
| 967 | IVLTGGFTWL | 18 |
| 94 | GPIRSYLTFV | 17 |
| 273. | HSLPPASLEL | 17 |
| 355 | KAFVAPAPPV | 17 |
| 357 | FVAPAPPVET | 17 |
| 393 | LNLSQLSVGL | 17 |
| 423. | TVKPARRVNL | 17 |
| 444 | ELTLPLTSAL | 17 |
| 452. | ALIDGSQSTD | 17 |
| 510 | GATNSITAAL | 1 |
| 511 | ATNSTIAALI | 17 |
| 530 | VANAGPNHTI | 17 |
| 537 | HTITLPQNSI | 17 |
| 727 | HVLVLPNNSI | 17 |
| 781 | LVEGVYTFHL | 17 |
| 811 | DPRKSGLVEL | 17 |
| 816 | GLVELILQVG | 17 |
| 839 | RQLAVLLNVL | 17 |
| 848 | LDSDIKVVQKI | 17 |
| 969 | LTGGFTWLCI | 17 |
| 1006 | RMELRPKYGI | 17 |
| 92 | KMGPIRSYLT | 16 |
| 167 | LLQPSGGKQEP | 16 |
| 178 | GSAEYTDWGL | 16 |
| 186 | GLLPGSEGAF | 16 |


| TableXXXV-V1-A0201-10 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each stärt position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 187 | LLPGSEGAFN | 6 |
| 209 | TQQDPELHYL | 16 |
| 229 | LPERSVLLPL | 16 |
| 284 | SVTVEKSPVL | 16 |
| 312. | APSESIPSEL | 16 |
| 334 | ELTVSAGDNL | 16 |
| 384 | EIKQGHKQTL | 16 |
| 400 | VGLYVEKVTV | 16. |
| 401 | GLYVFEVTVS | 16 |
| 415 | FGEGFVNVTV | 16 |
| 426 | PARRVNLPPV | 16 |
| 482 | TSVDSPVLRL | 16 |
| 518 | ALIVNNAVDY | 16 |
| 565 | SLGPGSEGKH | 16 |
| 626 | VAVAGPDKEL | 16 |
| 675 | DKAIATVTGL | 16 |
| 799 | SDTDTATVEV |  |
| 338 | VRQLAVILLNV |  |
| 856 | KIRAHSDLST | 16 |
| 879 | VLKAAEVARN | 6 |
| 896. | EKADFLLFKV | 16 |
| 899 | DFLLFKVLRV |  |
| 900 | FLLFKVLRVD |  |
| 939 | NLIQRYIWDG |  |
| 955 | SIFYVIVLAF | 16 |
| 959 | VTVLAETLIV | \% |
| 965 | TLIVLIGGFT | 16 |
| 1019 | STEHNSSLMV |  |
| 5 | TGVLSSLLLLL | 15 |
| 10 | SLLLLVTIAG | 15 |
| 63 | DLSSCDLAWW | 5 |
| 95 | PIRSYLTFVL | 1 |
| 103 | VLRPVQRPAQ | 15 |
| 149 | GLEEMSEYSD | 15 |
| 154 | SEYSODYREL | 15 |
| 234 | VLLPLPTTPS | 15 |
| 235 | LLPLPITPSS | 15 |
| 255 | QLQEQSSNSS | 15 |


| TableXXXV-V1-A0201 $10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 12 |  |
|  |  |  |
|  |  |  |
|  | SL |  |
|  | SIP |  |
|  | APRTVKELTV |  |
|  | LTV |  |
| 346 |  |  |
|  |  |  |
|  |  |  |
|  | ST |  |
|  | EIVSYHWEEI |  |
|  | VL |  |
| 515 |  |  |
|  |  |  |
|  | GP |  |
|  | AVEM |  |
| 720 | RARA |  |
|  | VLVLPNNSIT |  |
|  |  |  |
| 735 | SIT |  |
| 743 | STD |  |
| 752 | YL |  |
|  | WI |  |
|  | VID |  |
|  | IDG |  |
| 789 | HL |  |
|  | RKSGLV |  |
|  | SGLVE |  |
|  | LTE |  |
|  | AHSDLS |  |
| 873 | SR |  |
|  | LT |  |
|  | HLWMEN |  |
|  | WMENL |  |
| 952 | CEWSIF |  |
| 26 | SEGRTY |  |
|  | YSNAVISPNL |  |
|  | WWFEGRCY'V |  |


| TableXXXV-V1-A020110 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 91 | KKMGPIRSYL | 14 |
| 104 | LRPVQRPAQL | 14 |
| 135. | EDIRKDLPFL | 14 |
| 141 | LPFLGKDWGL | 14 |
| 143 | FLGKDWGLEE | 14 |
| 179 | SAEYTDWGLL | 14 |
| 190 | GSEGAFNSSV | 14 |
| 266 | KEVLMPSHSL | 14 |
| 323 | ISPTTAPRTV | 14 |
| 366 | TTYNYEWNLI | 14 |
| 389, | HKQTLNLSQL | , |
| 394 | NLSQLSVGLY | 14 |
| 438 | VSPQLQELTL | 14 |
| 451 | SALIDGSQST | 14 |
| 472 | EINGPFIEEK | 14 |
| 475 | GPFIEEKTSV | 14 |
| 494 | LDPGNYSFRL | 14 |
| 502 | RLTVTDSDGA | 14 |
| 519 | IVNNAVDYP | 14 |
| 540 | TLPQNSITLN | 14 |
| 557 | HQIVLYEWSL | 14 |
| 584 | YLHLSAMQEG | 14 |
| 604 | SSRQQSTAVV | 14 |
| 617 | VQPENNRPPV | 14 |
| 662 | HVRGPSAVEM | 14 |
| 684 | LQVGTYHFRL | 14 |
| 702 | SSTSTLTVAV | 1 |
| 744 | TDDQRIVSYL | 14 |
| 772 | HSVALQLTNL | 14 |
| 784 | GVYTFHLRVT | 14 |
| 821 | TLQVGVGQLT | 14 |
| 832 | QRKDTLVRQL | 14 |
| 840 | QLAVLLNVLD | 14 |
| 842 | AVLLNVLDSD | 14 |
| 845 | LNVLDSDIKV | 14 |
| 880 | LKAAEVARNL | 14 |
| 913 | CLLKCSGHGH | 14 |
| 962 | LAFTLIVLTG | 14 |


| TableXXXV-V1-A0201- <br> 10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the slart position plus nine. |  |  |
| Pos | 1234567890 | score |
| 997 | ILDNMDEQER | 14 |
| 1031 | SEFDSDQDTI | 14 |
| 1 | MAFPTGVLSS | 13. |
| 13 | LLVTIAGCAR | 13 |
| 35 | VISPNLETTR | 13 |
| 50 | HTFPVVDCTA | 13 |
| 60 | ACCDLSSCDL | 13 |
| 78 | YLVSCPHKEN | 13 |
| 119 | MMLNRGSPSG | 13 |
| 198 | SVGDSPAVPA | 13 |
| 206 | PAETQQDPEL | 13 |
| 223 | STPAPKLPER | 13 |
| 225 | PAFKLPERSV | 13 |
| 227 | PKLPERSVLL | 13 |
| 238 | LPTTPSSGEV | 13 |
| 260 | SSNSSGKEVL | 13 |
| 281 | ELSSVIVEKS | 13 |
| 285 | VTVEKSPVLT | 13 |
| 336 | TVSAGDNLII | 13. |
| 337 | VSAGDNLIIT | 13 |
| 352 | VELKAEVAPA | 13 |
| 395 | LSQLSVGLYV | 13 |
| 403 | YVFKVIVSSE | 13 |
| 411 | SENAFGEGFV | 13 |
| 414 | AFGEGFVNVT | 13 |
| 421 | NVTVKPARRV | 13 |
| 428 | RRVNLPPVAV | 13 |
| 485 | DSPVLRLSNL | 13 |
| 521 | VNNAVDYPPV | 13 |
| 547 | TLNGNQSSDD | 13 |
| 566 | LGPGSEGKHV | 13 |
| 633 | KELIFPVESA | 13 |
| 634 | ELIFPVESAT | 13 |
| 679 | ATVTGLQVGT | 13 |
| 705 | STLTVAVKKE | 13 |
| 778 | LTNLVEGVYT | 13 |
| 808 | VQPDPRKSGL | 13 |
| 844 | LLNVLDSDIK | 13 |


| $\begin{gathered} \text { TableXXXV-V1-A0201- } \\ 10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B} \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start. position plus nine. |  |  |
| Ps | 1234567890 |  |
| 847 | VLDSDIKVQK |  |
|  | EVARNL |  |
| 89 | LSKEKADFLL |  |
| 89 | KADFLLFKVL |  |
| 906 | LRVDTAGCLL |  |
|  | YIWDGESNCE |  |
| 956 | IFYVTVLAFT |  |
| 957 | FYVTVLAFT |  |
| 958 | YVTVLAFTLI |  |
| 10 | SLMVSESEFD |  |
| 1044 | EKMERGNPKV | 1 |


| TableXXXV-V2-HLA-A0201-10mers-254P16B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  | SEYADDYREL |  |
|  | GLEEMSEYAD |  |
|  | YADDYRELEK | 10 |
|  | WGLEEMSEYA |  |
|  | EMSEYADDYR |  |
| 10 | ADDYRELEKD |  |


| TableXYXV-V3-HLA-A0201-10mers-254P16B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start posilion plus nine. |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| TableXXXV-V5-HLA-A0201$10 \mathrm{mers}-254 \mathrm{P} 16 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peeptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | SCO |
| 9 | LTFLGKDWGL |  |
| 3 | EDIRKDLTFL | 13 |


| TableXXXVI-V1-HLA-A0203-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 51 | TEPVVDCTAA | 19 |
| 303. | SIPTPFISAA | 19 |
| 509 | DGATNSITAA | 19 |
| 754 | WIRDGQSPAA | 19 |
| 874 | RPPFKVLKAA | 19 |
| 352 | VELKAFVAPA | 18 |
| 524 | AVDYPPVANA | 18 |
| 620 | ENNRPPVAVA | 18 |
| 670 | EMENIDKAIA | 18 |
| 714 | ENNSPPRARA | 8 |
| 52 | FPVVDCTAAC | 17 |
| 304 | IPTPPTSAAP | 17 |
| 510 | GATNSTTAAL | 17 |
| 755 | IRDGQSPAAG | 17 |
| 875 | PPFKVLKAAE | 17 |
| 9 | SSLLLLVVTIA | 10 |
| 12 | Lllvtiagca |  |
| 25 | CSEGRTYSNA | 10 |
| 50. | HIFPVVDCTA | 10 |
| 61 | CCDLSSCDLA | 10 |
| 102 | FVLRPVQRPA | 10 |
| 171 | SGKQEPRGSA | 10 |
| 185 | WGLLPGSEGA | 10 |
| 195 | FNSSVGDSPA | 10 |
| 198 | SVGDSPAVPA | 10 |
| 213 | PELHYLNESA | 10 |
| 217 | YLNESASTPA | 10 |


| TableXXXVI-V1-HLA-A0203-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| P | 123456789 | score |
|  | SG |  |
|  | LMPSHSLPPA |  |
|  | HS |  |
|  | SELPISPTTA |  |
|  | RTVKELTVSA |  |
| 347 | LP |  |
| 350 | NEVELKAFVA | 0 |
| 405 | FK | 0 |
|  | GF |  |
| 427 | ARRVNLPPVA |  |
|  | QELTLPLTSA |  |
|  | RL | 0 |
| 508 | SDG |  |
| 515 | - |  |
| 522 | NNA | 10 |
| 580 | VQTPYL | 10 |
| 602 | TD |  |
| 618 | QP |  |
| 633 | KEL | 10 |
|  | HWEHVRGPSA | 10 |
| 668 | AVE | 10 |
| 701 | LS | 10 |
|  | KKE | 10 |
| 753 | LW | 10 |
| 766 | VI | 1 |
| 789 | HL | 10 |
| 795 | SQGASDIDTA | 10 |
| 83 | RK | 10 |
| 850 | SD | 10 |
|  | SRPPFK |  |
| 87 | FKVLKAAEVA | 10 |
| 88 | LHMRLSKEKA |  |
| 902 | LFKVLRVDTA | 10 |
| 954 | WSIFYVIVLA | 10 |
| 1054 | SMNGSIRNGA | 10 |
| 10 | SLLLLIVIIAG |  |
| 13 | LLVTIAGCAR |  |
| 26 | SEGRTYSNAV |  |


| TableXXXVI-V1-HLA-A0203-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 62 | CDLSSCDLAW |  |
| 103 | VLRPVQRPAQ |  |
| 172 | GKQEPRGSAE |  |
| 186 | GLLPGSEGAF | , |
| 196 | NSSVGDSPAV |  |
| 199 | VGDSPAVPAE |  |
| 214 | ELHYLNESAS |  |
| 218 | LNESASTPAP |  |
| 245 | GEVLEKEKAS |  |
| 270 | MPSHSLPPAS |  |
| 320 | ELPISPITAP |  |
| 331 | TVKELTVSAG |  |
| 348 | PDNEVELKAF |  |
| 351 | EVELKAFVAP |  |
| 353 | ELKAFVAFAP |  |
| 406 | KVTVSSENAF |  |
| 419 | FVNVTVEPAR |  |
| 428 | RRVILPPVAV |  |
| 444 | ELTLPLISAL |  |
| 503 | LIVTDSDGAT |  |
| 516 | TAALIVNNAV |  |
| 523 | NAVDYPPVAN |  |
| 525 | VDYPPVANAG |  |
| 581 | QIPYLHLSAM |  |
| 603 | OSSRQQSTAV | 9 |
| 619 | PENNRPPVAV |  |
| 621 | NNRPPVAVAG |  |
| 634 | ELIFPVESAT |  |
| 660 | WEHVRGPSAV |  |
| 669 | VEMENDKAI |  |
| 671 | MENIDKAIAT |  |
| 702 | SSTSTLTVAV |  |
| 713 | KENNSPPRAR |  |
| 715 | NNSPPRARAG |  |
| 767 | IDGSDHSVAL |  |
| 790 | LRVTDSQGAS | 9 |
| 796 | QGASDTDTAT | 9 |
| 834 | KDTLVRQLAV |  |


| TabieXXXVI-V1-HLA-A0203-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
|  |  |  |
| Pos | 1234567890 |  |
| 851 | DIKVQKIRAH |  |
| 878 | KVLKAAEVAR |  |
| 890 | HMRLSKEKAD |  |
| 903 | FKVLRVDTAG | , |
| 955 | SIFYVTVLAF |  |
| 1055 | MNGSIRNGAS |  |


| TableXXXV1-V2-HLA-A0203-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each pepidide is a portion of SEQID NO: 5 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peplide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  | WGLEEMSEYA |  |
| 2 | GLEEMSEYAD |  |
|  | LEEMSEYADD |  |


| TableXXXVI-V3-HLA-A0203-10mers-254P1D6B |  |
| :---: | :---: |
| Each peptide is a por SEQID NO: 7 ; each position is specified length of peptide is amino acids, and the position for each pep the start position plus | tion of <br> start <br> , the <br> 10 <br> end <br> ptide is <br> nine. |
| Pos 1234567890 |  |
| 3 RLGWPSPCCA |  |
| 4 LGWPSPCCAR |  |
| 5 GWPSPCCARK |  |


| TableXXXVI-V5-HLA- <br> A0203-10mers- <br> 254 F 106 B |  |
| :---: | :---: |
|  |  |
| Fos 1234567890 score |  |
| No Results Found. |  |


| TableXXXVII-V1-HLA-A3-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
|  | 1234567890 |  |
| 518 | AL |  |
|  | - |  |
|  |  |  |
| 397 | Q |  |
| 14 | LVITAGC |  |
| 452 | ALID |  |
|  |  |  |
|  |  |  |
| 47 | R |  |
| 490 | RLS |  |
| 680 | TV |  |
|  | RVIDSQG |  |
|  | ELRPKYG |  |
| 429 | RVI |  |
| 662 | HVR | 22 |
|  | QSP |  |
|  | GLLPGS |  |
| 346 | TLPDNEVELK |  |
| 504 | TVTDSDG | 21 |
| 67 | AIATVTGLQV |  |
| 856 | K1 |  |
|  | KVLR |  |
| 10 | SIIR |  |
| 34 | AVISPNLETT |  |
| 35 | VIS |  |
| 23 | SVL |  |
| 29 | VLVTPGSTE |  |
| 472 | EINGPFIEEK |  |
| 493 | NLDPG |  |
| 655 | IVFYHWEHVR |  |
|  | TVKLQQGLSS |  |
| 805 | TVEVQPDP |  |
| 825 | GVGQLTE |  |
| 836 | TLLVRQLAVLL | 20 |
| 844 | LLNVLDSDIK |  |
| 886 | ARNLHMRLSK |  |
| 888 | NLHMRLSKEK |  |
| 76 | RCYLVSCPHK | 1 |


| TableXXXVII-V1-HLA-A3$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the |  |  |
| length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 198 | SVGDSPAVPA |  |
|  | VLEKEKASQL |  |
| 357 |  |  |
| 40 | GLYVFKVTVS |  |
|  | TVKPARRVNL |  |
| 431 | NLPPVAV |  |
| 565 | SLGPGSE |  |
|  | HLS |  |
|  | GTYHFRL |  |
| 729 | LVLPNNSITL |  |
| 865 | TVIVFYVQSR |  |
| 895 | KEKAD |  |
| 91 | CL_KCSSGHGH |  |
| 13 | LL |  |
| 103 | VLRPVQRPAQ |  |
| 16 | DLLQPSGKQE |  |
|  | LL |  |
|  | EVLEKEKASQ |  |
| 359 | AP |  |
| 39 | TLNLSQL |  |
| 40 | KVIVSS |  |
| 487 | P |  |
| 600 | KVIDSSRQQ |  |
| 63 | LIEPVESATL |  |
| 70 | STSTL |  |
| 70 | TSIL |  |
|  | ALQLTNLV |  |
| 78 | GVYTFHL |  |
| 819 | ELILQVGVGQ |  |
| 842 | AVLLNVL |  |
| 85 | KVQKIRAHSD | 18 |
| 919 | GHGHCDPLTK | 18 |
| 960 | TVLAFTLIVL | 18 |
| 983 | RQKRTKIRKK | 18 |
| 988 | K\|RKKTKYTI | 18 |
| 1043 | REKMERGNPK | 18 |
| 7 | VLSSLLLLLVT | 17 |
| 22 | RKQCSEGRTY | 17 |


| TableXXXVII-V1-HLA-A3-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specifled, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 53 |  |  |
| 112 | QLLDYGD |  |
| 120 | MLNRGSP |  |
| 13 | , |  |
| 22 | KL |  |
| 27 | SLELSSVTVE |  |
| 286 | TVEKSPVLTV |  |
| 324 | SPT |  |
| 353 | ELK |  |
|  | NLS |  |
| 44 | TLPLTSALID |  |
| 559 | IVLYEWSLGP | 17 |
| 575 | VVMQGVO |  |
| 614 | TVIVQP |  |
| 634 | ELIFPVE |  |
| 700 | GLS |  |
| 710 | AVKKENN |  |
| 766 | VID |  |
| 828 | QLTEQRKDTL |  |
| 84 | QLA |  |
| 846 | NVLDSDIKVQ |  |
| 89 | RLSK:EKADF |  |
| 905 | VL |  |
| 934 | HLW |  |
| 95 | SIEYVTVLAF |  |
| 965 | TLIVLTGGFT | 1 |
| 985 | KR |  |
| 997 | ILDNMDEQER |  |
| 11 | LLLLVIIIAGC | 10 |
| 12 | LLLVTIAGCA | 16 |
| 44 | RIMRVSHTFP | 1 |
| 106 | PVQRPAQLLD | 16 |
| 143 | FLGKDWGLEE | 16 |
| 219 | NESASTPAPK | 16 |
| 234 | VLLPLPTTPS | 16 |
| 268 | VLMFSHSLPP | 16 |
| 280 | LELSSVTVEK | 16 |
| 291 | PVLTVTPGST | 16 |


| TableXXXVII-V1-HLA-A310 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ IDNO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567 | score |
| 331 |  |  |
|  | EV |  |
|  | SVGLYVFKVT |  |
| 430 | VNLPPVAVVS | 16 |
| 524 | AVD |  |
|  | VLYEWSLGPG |  |
| 598 | QLKVTDSSRQ |  |
| 627 | AVAGPDKELI | 10 |
| 673 | NID |  |
| 752 | YLWIRDGQSP |  |
| 765 | DVIDGSDHSV |  |
| 78 | NLVEGVY | 15 |
| 807 | EVQ |  |
| 837 | LVR |  |
| 843 | VL |  |
| 879 | VLL | 16 |
| 900 | FLI |  |
| 925 | PLTKRCICSH |  |
| 96 | LIV |  |
|  | IVL |  |
| 976 | LCICCOKRQK |  |
| 10 | MELRPKYGIK | 16 |
| , | GVLSSLLLLLV |  |
| 10 | SLLLLVITIAG | , |
| 16 | TIAGCARKQC | 15 |
| 95 | PIRSYLTFVL |  |
| 99 | YLIFVLR | 15 |
| 102 | FVL |  |
| 10 | VQRFAQLLD | 15 |
| 164 | EKDLLQP |  |
| 173 | KQEPRGS | 15 |
| 204 | AVPAETQ | 15 |
| 255 | QLQEQSSNSS | 5 |
| 257 | QEQSSNSSGK | 15 |
| 267 | EVLMPSHSLP | 15 |
| 284 | SVIVEKSPVL | 15 |
| 336 | TVSAGDNLII | 15 |
| 342 | NLIITLPDNE | 15 |


| TableXXXVII-V1-HLA-A3-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  |  |  |
|  |  |  |
| 416 |  |  |
| 419 | FV |  |
|  |  |  |
|  | TLNG |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 884 | EV |  |
|  |  |  |
| 961 |  |  |
|  | ETI |  |
| 63 | DL |  |
| 156 |  |  |
| 214 |  |  |
|  | SLP |  |
| 278 | AS |  |
| 322 | PI |  |
|  | HPIDYQGEIK |  |
|  |  |  |
|  | VLP |  |
|  | RLT |  |
| 558 | QIV |  |
|  |  |  |
|  |  |  |
| 621 | NN |  |
|  | GL |  |
|  | RL |  |
|  | RAR |  |
|  | HV |  |
| 728 | VL |  |
| 743 | STDLQRI |  |
| 830 | TEQRKDTLVR |  |
| 85 | DIKVQK |  |
| 979 | CCCKRQKP |  |


| TableXXXVII-V1-HLA-A3-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQIDNO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start. position plus nine. |  |  |
|  |  |  |
| Pos | 1234567890 | score |
| 996 | TILDNMDEQE |  |


| TableXXXVII-V2-HLA-A3- |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 9 | YADDY ${ }^{\text {RELEK }}$ |  |
| 2 | GLEEMSEYAD |  |
|  | EEMSEYADDY |  |
|  | SEYADDYREL |  |


| TableXXXVII-V3-HLA-A310 mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NC: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  | RLGWPSPCCA |  |
| 5 | GWPSPCCARK |  |
|  | MTRLGWPSPC |  |
|  | LGWPSPCCAR |  |
| 10. | CCARKQCSEG |  |


| $\begin{gathered} \text { TableXXXVII-V5-HLA-A3- } \\ \text { 10mers-254P1D6B } \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 5 | IRKDLTFLGK | 17 |


| TableXXXVII-V5-HLA-A3$10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{DEB}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 2 | FEDIRKDLTF | 12 |
| 4 | DIRKDLTFLG | 11 |
| 8 | DLTFLGKDWG | 11 |
| 7 | KDLTFLGKDW | 8 |


| TableXXXVIII-V1-HLA-A2610 mers -254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a pertion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 208 | ETQGDPELHY | 20 |
| 680 | TVTGLQVGTY | 28 |
| 835 | DTLVRQLAVL | 28 |
| 884 | EVARNLHMRL | 28 |
| 365 | ETTYNYEWNL | 27 |
| 436 | AVVSPQLQEL | 27 |
| 135 | EDIRKDL.PFL | 26 |
| 459 | STDDTEIVGY | 25 |
| 743 | STDOQRIVSY | 25 |
| 765 | DVIDGSDHSV | 24 |
| 960 | TVLAFTLIVL | 24 |
| 246 | EVLEKEKASQ | 23 |
| 384 | EIKQGHKQTL | 23 |
| 955 | SIFYVTVLAF | 23 |
| 326 | TTAPRTVKEL | 22 |
| 807 | EVQPDPRKSG | 22 |
| 820 | LTLQVGVGQL | 22 |
| 953 | EWSIFYVTVL | 22 |
| 151 | EEMSEYSDDY | 21 |
| 267 | EVLMPSHSLP | 21 |
| 351 | EVELKAFVAP | 21 |
| 444 | ELTLPLTSAL | 21 |
| 485 | DSPVLRLSNL | 21 |
| 729 , | LVLPNNSITL | 21 |
| 949 | ESNCEWSIFY | 21 |


| TableXXXVIII-V1-HLA-A26-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
|  | DTI |  |
|  | AV |  |
|  | ETTR |  |
|  |  |  |
|  |  |  |
|  | ELT |  |
|  | YVF |  |
|  | KVTVS |  |
|  |  |  |
|  | EK |  |
|  | VIMO |  |
|  | ENID |  |
|  | DKAI |  |
|  |  |  |
|  | DT |  |
|  | DPRK |  |
|  | TV |  |
|  | DTAG |  |
|  | DW |  |
|  | PTTP |  |
|  | TVK |  |
|  | EIVSY |  |
|  | TS |  |
|  | ITL |  |
|  | HVVI |  |
|  | RTKIR |  |
|  | EFD |  |
|  | TG |  |
| 132 |  |  |
|  | DYRELEKDL |  |
|  | EINGP |  |
|  | AVVTVIVQP |  |
|  | LIFP |  |
|  | LVEGVYTFH |  |
| 967 | IVLTGGFTW |  |
|  | PTGVLSS |  |
| 181 | EYTDWGLLPG | 17 |
| 286 | TVEKSPVLT |  |


| TableXXXVIII-V1-HLA-A26-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 12345 |  |
|  | TLL |  |
|  |  |  |
|  |  |  |
|  | FT |  |
|  | GVL |  |
| 107 | Vo |  |
| 158 | DD |  |
|  | ELSSVTVEKS |  |
|  |  |  |
|  | SAGDNLIITL |  |
| 62 | DTEIVSVHWE |  |
| 483 | SV |  |
|  |  |  |
|  |  |  |
|  | ELIF |  |
| 649 | SSDD |  |
| 772 | HS |  |
|  | YTFHLRVTOS |  |
|  | SDL |  |
| 896 | EKADF |  |
| 935 | LWMEN |  |
| 1047 | ER |  |
| 1058 | SIRNGA |  |
| 29 | RTYS |  |
| 53 | PV |  |
| 74 | EGRCYL |  |
| 90 | PKKMG |  |
| 348 | PDN |  |
|  | NLSQLS |  |
|  | - |  |
|  | EEING |  |
|  | TVTDSD |  |
| 614 | TVIVQ |  |
| 638 | PVESAT |  |
|  | AVEMEI |  |
| 694 | TVKDQQGLS |  |
| 783 | EGVYTFHLR |  |
| 37. | LVRQLAVLL |  |


| TableXXXVIII-V1-HLA-A26-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 842 | AVLLNVLD | 15 |
| 846 | NVLDSDIK |  |
|  | APPTGVLSSL |  |
| 42 | TTRIMRVSHT |  |
| 43 | TR |  |
| 50 | HTFPVVDCTA |  |
| 162 | ELEKDLLQPS |  |
| 20 | TQQD |  |
| 285 | VT | 14 |
| S8, | HKQTLNLSQL |  |
| 396 | SQLSVGLYVF |  |
| 429 | RV |  |
| 503 | LT |  |
| 514 | STT |  |
| 51 | ALIVNNAV |  |
| 524 | AVDYPPVANA |  |
| 579 | GVQTPYLHLS |  |
| 581 | QT |  |
| 609 | STAVVTVIVQ |  |
| 620 | E |  |
| 655 | IVFYHWEHVR |  |
| 66 | EHVRGP |  |
| 705 | STLTVAVKKE |  |
| 744 | TDDQRIVSYL |  |
| 74 | IVSYLWIRDG |  |
| 770 | TNLVEGV |  |
| 784 | GVYTEHLRVT | 1 |
| 791 | RVTDSQGASD |  |
| 80 | ATVEV |  |
| 823 | QVGVGQLTE |  |
| 831 | EQRKDTL | 1 |
| 832 | QRKDTLVRQL | 14 |
| 864 | STVIVFYVQS | 14 |
| 867 | IVFYVQSRPP | 14 |
| 906 | LRVDTAGCLL | 14 |
| 1003 | EQERMELRPK | 14 |
| 1008 | ELRPKYGIKH | 14 |


| TableXXXVIII-V2-HLA-A26-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is $10^{*}$ amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | Sor |
| 4 | EEMSEYADDY | 21 |
| 5 | EMSEYADD | 12 |
| 8 | EYADDYRELE |  |


| TableXXXVIII-V3-HLA-A26- |
| :---: |
| 10mers-254P1D6B |
| Each peptide is a portion of |
| SEQID NO: 7; each start |
| position is specified, the |
| length of peptide is 10 |
| amino acids. and the end |
| position for each peptide is |
| the start position plus nine. |
| Pos |
| 1234567890 |
| 1 |$|$ STRLGWPSPC


| 10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the stert position plus nine. |  |  |
|  |  |  |
|  |  |  |
| 9 | LT |  |
| 4 | DIP |  |


| $\begin{gathered} \text { TableXXXIX-V1-HLA-B0702- } \\ \text { 10mers-254P1D6B } \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 811 | DPRKSGLVE |  |
| 226 | APKLPER |  |
| 312 | APSESTPSE |  |
| 229 | LPERSVLLPL | 23 |


| TableXXXIX-V1-HLA-B0702- <br> $10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length' of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | Score |
| 2 | APPTGVLSSL | 2 |
| 3 | PPTGVLSSLL | 22 |
| 328 | APRTVKELTV | 22 |
| 433 | PPVAWSPQL | 22 |
| 105 | RPVQRPAQLL | 21 |
| 141 | LPFLGKDWGL | 20 |
| 317 | TPSELPISPT | , |
| 347 | LPDNEVELKA | 1 |
| 630 | GPDKELIFPV | 19 |
| 665 | GPSAVEMENI | 19 |
| 94 | GPIRSYLTFV | 18 |
| 495 | DPGNYSFRLT | 1 |
| 567 | GPGSEGKHW | 18 |
| 618 | QPENNRPPVA | 18 |
| 722 | RAGGRHVLVL | 18 |
| 809 | QPDPRKSGLV | 18 |
| 874 | RPPFKVLKAA | 18 |
| 37 | SPNLETTRIM | 17 |
| 276 | PPASLELSSV | 17 |
| 475 | GPFIEEKTSV | 17 |
| 813 | RKSGLVELTL | 1 |
| 238 | LPTTPSSGEV | 16 |
| 720 | RARAGGRHVL | 16 |
| 953 | EWSIFYVTVL | 1 |
| 1050 | NPKVSMNGSI | 16 |
| 91 | KKMGPIRSYL | 15 |
| 169 | QPSGKQEPRG | 15 |
| 175 | EPRGSAEYTD | 15 |
| 241 | TPSSGEVLEK | 15 |
| 359 | APAPPVETTY | 15 |
| 386 | KQGHKQTLNL | 15 |
| 425 | KPARRVNLPP | 15 |
| 767 | IDGSDHSVAL | 15 |
| 892 | RLSKEKADFL | 15 |
| 95 | FIRSYLTFVL | 14 |
| 125 | SPSGIWGDSP | 14 |
| 270 | MPSHSLPPAS | 14 |
| 304 | IPTPPTSAAP | 14 |


| TableXXXIX-V1-HLA-B0702-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3; each slart position is specified, the lengith of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | score |
| 345 | ITL |  |
| 423 | TV |  |
|  |  |  |
| 534 | GPNHTITLPQ |  |
| 576 | VMQGVQTPYL |  |
| 871 | Vo |  |
| 897 | KA |  |
| 4 | PTG | 13 |
| 52 | FP | 13 |
|  | AWWFEGA | 13 |
| 135 | EDIRKDLPFL | 3 |
| 220 | ES |  |
| 227 | PKLPERSVLL |  |
| 273 | H | 13 |
| 275 | LPPASLELSS |  |
| 321 | LP |  |
|  | SP |  |
| 326 | TT | 13 |
| 361 | AP |  |
|  | ELTLPLTSAL |  |
|  | EKTSVDSPVL |  |
| 482 | TSVDSPVLRL | 13 |
| 510 | G |  |
| 532 | NAGPNHTITL |  |
| 54 | LPQNSITLNG |  |
| 552 | QSSDDHQIVL |  |
| 590 | M | 13 |
| 637 | FPVESATLDG | 13 |
| 675 | DKAIATVTGL | 13 |
| 718 | PP | 13 |
| 721 | ARAGGRHVL | 13 |
| 73 | LPNNSITLOG | 3 |
| 760 | SPAAGDVIDG | 13 |
| 769 | GSDHSVALQL | 13 |
| 781 | LVEGVYTFHL | 13 |
| 839 | RQLAVLLNVL | 13 |
| 859 | AHSDLSTVIV | 13 |
| 875 | PPFKVLKAAE | 13 |


| TableXXXIX-V1-HLA-B0702-10mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
|  | 123 |  |
|  | ICS |  |
|  |  |  |
|  | IRKKTKYTLI |  |
|  |  |  |
| 31 | YS |  |
|  | AC |  |
|  | CP |  |
| 89 | Ef |  |
| 109 | RPAO |  |
|  | DYRELE |  |
| 202 | SP |  |
|  |  |  |
|  |  |  |
| 231 | ERS |  |
| 239 | PTTP |  |
| 284 |  |  |
|  |  |  |
| Os) | LNLSQLSVG |  |
| 427 | AR |  |
| 432 | LP |  |
| 436 | AVVSPQLQE |  |
|  | VSPQL |  |
| 494 | LD |  |
| 528 | PPVA |  |
| 531 | AN |  |
|  | 1 TLP |  |
| 578 | QGV |  |
| 623 | RPP |  |
| 24 | PPVAVAGPDK |  |
|  | LIFPVESATL |  |
|  | HV |  |
| 684 | LQVG |  |
| 698 | QQGLSSTS |  |
| 744 | TDDQRIVS |  |
| 71 | HSVALQ |  |
| 835 | DTLV |  |
| 836 | TLVRQLAVLL |  |
| 856 | KIRAHSDLS |  |


| TableXXXIX-V1-HLA-B0702- <br> 10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start postion is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 |  |
| 880 | LKAAEVARNL | 12 |
| 884 | EVARNLHMRL | 12 |
| 905 | VLRVDTAGCL | 1 |
| 917 | CSGHGHCDPL | 12 |
| 960 | TVLAFTLIVL | 12 |
| 1000 | NMDEQERMEL | 12 |
| 1017 | HRSTEHNSSL | 12 |
| 1046 | MERGNPKVSM | 12 |


| TableXXXIX-V2-HLA-B0702-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID ND: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| OS | 123 |  |
|  | SEY |  |
|  |  |  |


| TableXXXIX-V3-HLA-B0702-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID ND: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each pepide is the start position plus nine. |  |  |
|  | 123 |  |
|  | WPSPCCARKQ |  |
|  | SPCCARKQCS | 10 |
|  | RLGWPSPCCA |  |

[^2]| Each peptide is a portion of SEQID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| :---: | :---: | :---: |
| Pos | 1234567890 |  |
| 1 | SPEDIRKDLT | 16 |
| 3 | EDIRKDLTFL | 13 |
| 9 | LTFLGKDWGL | 10 |
| 2 | PEDIRKDLTF | 9 |


| TableXL-V1-HLA-B08- <br> 10mers-254P1D6B |
| :---: |
| Pos 1234567890 score |
| NoResulisFound. |




| 254P106B |
| :---: |
| Pos 1234567890 \|score |
| NoResullsFound. |


| TablexLIII-V3-HLLA- <br> B2709-10mers- <br> $254 P 106 B$ |
| :---: |
| $\cdots$ |
| Pos $1235657890 \mid$ [score |
| NoResulitsFound. |


| TableXLIII-V5-HLA- <br> B2709-10mers- <br> 254 P 106 B <br>  <br> Pos 1234567890 score <br> NoResullsFound. |
| :---: |


| $\begin{array}{\|c\|} \hline \text { TableXLIV-V2-HLA-B4402- } \\ \text { 10mers-254P1D6B } \end{array}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Os | 1234567890 | Scor |
| 4 | EEMSEYADDY | 24 |
|  | SEYADDYREL | 22 |


| TableXLIV-V3-HLA- <br> B4402-10mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the lergth of peptide is 10 arnino acids, and the end position for each peptide is the start position plus nine. |  |  |
| Pos | 1234567890 | SCO |
|  | WPSPCCARKQ |  |
| 4 | GWPSPCCAR | 5 |
| 7 | PSPCCARKQC | 5 |


| TableXLIV-V5-HLA-B4402- |
| :---: |
| 10mers-254F1D6B |
| Each peptide is a portion of |
| SEQ ID NO: 11 ; each start |
| position is specified, the |
| length of peptide is 10 amino |
| acids, and the end position for |


| each peptide is the start <br> position plus nine. |  |  |
| :---: | :---: | :---: |
| Pos | 1234567890 | score |
| 2 | PEDIRKDLTF | 23 |
| 3 | EDIRKDLTFL | 17 |
| 7 | KDLTFLGKDW | 15 |
| 9 | LTFLGKDWGL | 13 |



| TableXLVI-V2-HLA-DRB1-0101- |
| :---: |
| 15mers-254P1D6B |
| Each peptide is a portion of SEQ ID |
| NO: 5; each start position is |
| specified, the length of peptide is |
| 15 amino acids, and the end |
| position for each peptide is the start |
| position plus fourteen. |
| Pos 123456789012345 |


| 15 | ADDYRELEKDLLOPS | 29 |
| ---: | ---: | ---: |
| 4 | KDWGLEEMSEYADDY | 14 |
| 5 | DWGLEEMSEYADDYR | 14 |


| TableXLVI-V3-HLA-DRB1-0101-15mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 7; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourleen. |  |  |
| Pos | 123456789012345 |  |
|  | MTRLGWPSPCCARK |  |
| 9 | CARKQCSEGRTY |  |
| 3 | GWPSPCCARKQC | 0 |
|  | NPSPCCARKQCSE |  |


| TableXLVI-V5-HLA-DRE1-0101-15mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ.ID NO: 11; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the slart position plus fourfeen. |  |  |
| Pos | 123456789012345 |  |
| 11 | RKDLTFLGKDWGLEE | 9 |
| 7 | PEDIRKDLTFLGKDW | 8 |
| 14 | LTFLGKDWGLEEMSE |  |
| 5 | OSPEDIRKDLTFLGK |  |
| 8 | EDIRKDLTFLGKDWG | 1 |
| 12 | KDLTFLGKDWGLEEM | 1 |
| 13 | DLTFLGKDWGLEEMS | 10 |
| 15 | TFLGKDWGLEEMSEY | 10 |
| 3 | WGDSPEDIRKDLTFL | ) |
| 6 | SPEDIRKDLTFLGKD |  |
| 10 | IRKDLTFLGKDWGLE |  |


| TableXLVII-V1-HLA-DRB1-0301-15MERS-254P106B |  |  |
| :---: | :---: | :---: |
| Each peplide is a portion of SEQ 1 D <br> NO: 3 ; each slarl position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
|  |  |  |
|  | DWGLLP |  |
|  | ,VLRVDTAGCLLKC |  |
|  | PDNE |  |
| 404 | VFKVTVSSENAFGEG |  |


| TableXLVII-V1-HLA-DRB1-0301-15MERS-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | e |
| 421 | NVTVKPARRVNLPPV | 8 |
| 80 | TVEVQPDPRKSGLVE | 28 |
| 845 | LNVLDSDIKVQKIRA | 8 |
| 626 | VAVAGPDKELIFPVE | 27 |
| 1030 | ESEFDSDQDTIFSRE | 7 |
| 206 | PAETQQDPELHYLNE | 26 |
| 382 | QGEIKQGHKQTLNLS | 6 |
| 690 | HFRLTVKDQQGLSST | 26 |
| 826 | VGQLTEQRKDTLVRQ | 26 |
| 998 | LDNMDEQERMELRPK | 26 |
| 130 | WGDSPEDIRKDLPFL | 25 |
| 775 | ALQLTNLVEGVITFH | 5 |
| 550 | GNQSSDDHQIVLYEW | 24 |
| 573 | KHVVMQGVQTPYLHL | 24 |
| 584 | YLLLSAMQEGDY | 2 |
| 134 | PEDIRKDLPFLGKDW | 23 |
| 733 | NNSITLDGSRSTDDQ | 23 |
| 866 | VIVFYVQSRPPFKVL | 23 |
| 160 | YRELEKDLLQPSGKQ | 2 |
| 442 | LQELTLPLTSALIDG | 22 |
| 834 | KDTLVRQLAVLLNVL | 22 |
| 93 | MGPIRSYLTFVLRPV | 21 |
| 110 | PAQLLDYGDMMLNRG | 21 |
| 126 | PSGIWGDSPEDIRKD | 21 |
| 141 | LPFLGKDWGLEEMSE | 21 |
| 24 | SGEVLEKEKASQLQE | 21 |
| 434 | PVAVVSPQLQELTLP | 21 |
| 633 | KELIFPVESATLDGS | 2 |
| 727 | HVLVLPNNSITLDGS | 2 |
| 765 | DVIDGSDHSVALQLT | 21 |
| 965 | TLIVLTGGFTWLCIC | 21 |
| 282 | LSSVTVEKSPVLTVT | 20 |
| 332 | VKELTVSAGDNLIIT | 20 |
| 392 | TLNLSQLSVGLYVFK | 20 |
| 485 | DSPVLRLSNLDPGNY | 20 |
| 516 | TAALIVNNAVDYPPV | 20 |
| 543 | QNSITLNGNQSSDDH | 20 |
| 612 | WVTVIVQPENNRPPV | 20 |
| 725 | GRHVLVLPNNSITLD | 20 |


| TableXLVII-V1-HLA-DRB1-0301-15MERS-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the starl position plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 876 | PFKVLKAAEVARNLH | 20 |
| 888 | NLHMRLSKEKADFLL | 20 |
| 953 | EWSIFYVTVLAFTLI | 20 |
| 958 | YVTVLAFTLIVLTGG | 20 |
| 62 | CDLSSCDLAWWFEGR | 19 |
| 101 | TFVLRPVQRPAQLLD | 19 |
| 152 | EMSEYSDDYRELEKD | 19 |
| 165 | KDLLQPSGKQEPRGS | 9 |
| 245 | GEVLEKEKASQLQEQ | 19 |
| 435 | VAWSPQLQELTL.PL | 19 |
| 488 | VLRLSNLDPGNYSFR | 9 |
| 563 | EWSLGPGSEGKHVV | 19 |
| 598 | QLKVTDSSRQQSTAV | 19 |
| 613 | VTVIVQPENNRPPVA | 19 |
| 678 | IATVTGLQVGTYHFR | 19 |
| 706 | TLTVAVKKENNSPPR | 19 |
| 788 | FHLRVTDSQGASDTD | 19 |
| 815 | SGLVELTLQVGVGQL | 9 |
| 838 | VRQLAVLLNVLDSDI | 19 |
| 882 | AAEVARNLHMRLSKE | 19 |
| 889 | LHMRLSKEKADFLLF | 19 |
| 890 | HMRLSKEKADFLLFK | 19 |
| 941 | IQRYIWDGESNCEWS | 19 |
| 975 | WLCICCCKRQKRTKI | 19 |
| 1024 | SSLMVSESEFDSDQD | 19 |
| 1056 | NGSIRNGASFSYCSK | 19 |
| 33 | NAVISPNLETTRIMR | 18 |
| 97 | RSYLTFVLRPVQRPA | 18 |
| 100 | LTFVLRPVQRPAQLL | 18 |
| 104 | LRPVQRPAQLLDYGD | 18 |
| 147 | DWGLEEMSEYSDDYR | 18 |
| 157 | SDDYRELEKDLLQPS | 18 |
| 342 | NLIITLPDNEVELKA | 18 |
| 450 | TSALIDGSQSTDDTE | 18 |
| 536 | NHTITLPQNSITLNG | 18 |
| 574 | HVVMQGVQTPYLHLS | 18 |
| 588 | SAMQEGDYTFQLKVT | 18 |
| 632 | DKELIFPVESATLDG | 18 |
| 646 | GSSSSDDHGIVFYHW | 18 |


| TableXLVII-V1-HLA-DRB1-0301-15MERS-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 691 | FRLTVKDQQGLSSTS | 18 |
| 726 | RHVLVLPNNSITLDG | 8 |
| 751 | SYLWIRDGQSPAAGD | 8 |
| 779 | TNLVEGVYTFHLRVT | 18 |
| 899 | DFLLFKVLRVDTAGC | 18 |
| 996 | TILDNMDEQERMELR | 18 |
| 1002 | DEQERMELRPKYGIK | 18 |
| 1004 | QERMELRPKYGIKHR | , |
| 1022 | HNSSLMVSESEFDSD | 18 |
| 1037 | QDTIFSREKMERGNP | 18 |
| 77 | CYLVSCPHKENCEFK | 7 |
| 138 | RKDLPFLGKDWGLEE | 17 |
| 153 | MSEYSDDYRELEKDL | 17 |
| 202 | SPAVPAETQQDPELH | 17 |
| 212 | DPELHYLNESASTPA | 17 |
| 224 | TPAPKLPERSVLLFL | , |
| 334 | ELTVSAGDNLIITLP | 17 |
| 417 | EGFVNVTVKPARRVN | 7 |
| 456 | GSQSTDDTEIVSYHN | 17. |
| 490 | RLSNLDPGNYSFRLT | 17 |
| 610 | TAVVTVIVQPENNR? | 17 |
| 614 | TVIVQPENNRPPVAV | 7 |
| 625 | PVAVAGPDKELIFPV | 17 |
| 668 | AVEMENIDKAIATVT | 17 |
| 704 | TSTLTVAVKKENNSP | 17 |
| 708 | TVAVKKENNSPPRAR | 17 |
| 740 | GSRSTDDQRIVSYLW | 7 |
| 823 | QVGVGQLTEQRKDTL | 17 |
| 864 | STVIVFYVQSRPPFK | 17 |
| 984 | QKRTKIRKKTKYTIL | 17 |
| 986 | RTKIRKKTKYTILDN | 析 |
| 995 | YTILDNMDEQERMEL | 17 |
| 1052 | KVSMNGSIRNGASFS | 17 |
| 4 | PTGVLSSLLLLVTIA | 16 |
| 14 | LVTIAGCARKQCSEG | 16 |
| 66 | SCDLAWWFEGRCYLV | 16 |
| 258 | EQSSNSSGKEVLMPS | 16. |
| 361 | APPVETTYNYEWNLI | 16 |
| 363 | PVETTYNYEWNLISH | 16 |


| TableXLVIII-V1-HLA-DRB1-0301-15MERS-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3 ; each start position is specifed, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 |  |
|  | LISHPTDYQGEIKQG |  |
|  | TEI |  |
| 653 | HGIVF |  |
|  | TY |  |
|  | PPRA |  |
|  | D |  |
|  | HLWMENLIQRYIWDG |  |
| 68 | DLAWWF |  |
| 156 | YSDD |  |
| 265 | GKEVLMPSHS |  |
|  | FVAPAPFVETTYNYE |  |
|  | AVVSPQLQELTLPLT |  |
| 466 | VSYH |  |
| 555 | DDHQIVL |  |
| 811 | DPRKSGLVELTLQVG |  |
|  | LSSLLLLVTIAGCAR |  |
|  | SSLLLL |  |
| 89 | EPKKMGPIRSYLTFV |  |
| 226 | APKLPERSVL |  |
| 231 | ERSVLLPLP |  |
|  | RS |  |
| 449 | LTSALIDGSQSTDDT |  |
| 556 | DHQIVLYEWSLGPG |  |
| 572 | GKHVVMQGVQ |  |
| 771 | DHSVALQLTNLVEG |  |
|  | VEVQPDP |  |
| 843 | VLLNVLDSDIKVQKi |  |
| 1015 | IKHRSTEHNSSLMVS |  |


| 15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 5 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
|  |  |  |
|  |  |  |
| 10 |  |  |


| TableXLVII-V2HLA-DRB1-0301-15mers-254P106B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID NO: 5 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Os, | 123456789012345 | score |
| 15 | ADDYRELEKDLLQPS |  |
| 11 | MSEYADOYRELEKDL | , |
| 14 | YADDYRELEKDLLQP | 15 |
| 8 | LEEMSEYADDYRELE | 1 |
| 3 | GKDWGLEEMSEYADD | 10 |
| 7 | GLEEMSEYADDYREL | 9 |


| TableXLVII-V3HLA-DRB1-0301-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 7; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 12 |  |
|  | MTRLGWPSPCCARKQ |  |
| 10 | C |  |
| 6 | WPSPCCARKQCSEGR |  |
| 7 | PSPCCARKQCSEGRT |  |
|  | GWPSPCCARKQCSEG |  |


| TableXLVII-V5HLA-DRB1 0301 15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 15 amino acids, and the end position for each pepilide is the start position plus fourleen. |  |  |
| Pos | 1234567890123 |  |
|  | OS |  |
|  | EDIRKDLTFLG |  |
| 14 | LTFLGKDWGLEEMS |  |
| 11 | RKDLTFLGKDWGLEE |  |
| 13 | DLTFLGKDWGLEEM |  |


| TableXLVIII-V1-HLA-DR1-0401- |
| :---: |
| 15 mers-254P1D6B |
| Each peptide is a portion of SEQ ID |
| NO: 3 ; each start position is |
| specified, the length of peptide is 15 |
| amino acids, and the end position for |
| each peplide is the start position |
| plus fourteen. |


| Pos | 123456789012345 | score |
| :---: | :---: | :---: |
| 68 | DLAWWFEGRCYLVSC | 28 |
| 365 | ETTYNYEWNLISHPT | 28 |
| 751 | SYLWIRDGQSPAAGD | 28 |
| 90 | PKKMGPIRSYLTFVL | 26 |
| 97 | RSYLTTFVLRPVQRPA | 26 |
| 101 | TFVLRPVQRPAQLLD | 26 |
| 232 | RSVLLPLPTTPSSGE | 26 |
| 282 | LSSVTVEKSPVLTVT | 26 |
| 421 | NVTVKPARRVNLPPV | 26 |
| 574 | HVVMQGVQTPYLHLS | 26 |
| 610 | TAWTVIVQPENNRP | 26 |
| 633 | KELIFPVESATLDGS | 26 |
| 725 | GRHVLVLPNNSITLD | 26 |
| 733 | NNSITLDGSRSTDDQ | 26 |
| 779 | TNLVEGVY'TFHLRVT | 26 |
| 842 | AVLLNVLDSDIKVQK | 26 |
| 899 | DFLLFKVLRVDTAGC | 26 |
| 934 | HLWMENLIQRYIWDG | 26 |
| 28 | GRTYSNAVISPNLET | 22 |
| 49 | SHTFPVVDCTAACCD | 22 |
| 96 | IRSYLTFVLRPVQRP | 22 |
| 153 | MSEYSDDYRELEKDL | 22 |
| 157 | SDDYRELEKDLLQPS | 22 |
| 369 | NYEWNLISHFTDYQG | 22 |
| 402 | LYVFKVTVSSENAFG | 22 |
| 416 | GEGFVNVTVKPARRV | 22 |
| 467 | SYHWEEINGPFIEEK | 22 |
| 474 | NGPFIEEKTSVDSPV | 22 |
| 524 | AVDYPFVANAGPNHT | 22 |
| 657 | FYHWEHVRGPSAVEM | 22 |
| 749 | IVSYLWIRDGQSPAA | 22 |
| 874 | RPPFKVLKAAEVARN | 22 |
| 897 | KADFLLFKVLRVDTA | 22 |
| 900 | FLLFKVLRVDTAGCL | 22 |
| 943 | RYIWDGESNCEWSIF | 22 |
| 951 | NCEWSIFYVTVLAFT | 22 |
| 955 | SIFYVTVLAFTLIVL | 22 |
| 992 | KTKYTILDNMDEQER | 22 |
| 5 | TGVLSSLLLLVTIAG | 20 |
| 8 | LSSLLLLLVTIAGCAR | 20 |
| 12 | LLLVT/AGCARKQCS | 20 |
| 42 | TTRIMRVSHTFPVD | 20 |
| 43 | TRIMRVSHTFPVVDC | 20 |
| 76 | RCYLVSCPHKENCEP | 20 |
| 93 | MGPIRSYLTFVLRFV | 20 |


| TableXLVIII-V1-HLA-DR1-0401-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 |  |
| 100 | LTFVLRFVQRPAQLL | 0 |
| 126 | PSGIWGDSPEDIRKD | 20 |
| 160 | YRELEKDLLQPSGKQ | 20 |
| 202 | SPAV | 0 |
| 212 | DPELHYLNESASTP | 20 |
| 215 | LHYLNESASTPAPKL |  |
| 233 | SVLLPLFTTPSSGEV | 20 |
| 245 | GEVLEKEKASQLQEQ | 20 |
| 253 | ASQLQEQSSNSSGKE |  |
| 27 | SHSLPPASLELSSV |  |
| 279 | SLELSSVTVEKSPVL |  |
| 289 | KSPVLTVTPGS | 20 |
| 29 | VLT | 20 |
| 301 | EHSIPTPPTSAAPSE |  |
| 334 | ELTVSAGDNLIITLP |  |
| 341 | DNLIITLPDNEVELK | 20 |
| 355 | KAFVAPAPPVE | 20 |
| 371 | EWNLISHPTDYQGEI | 20 |
| 399 | SVGLYVFKVTVSSE |  |
| 432 | LPPVAVVSPQLQELT | 20 |
| 435 | VAVVSPQLQELT | 20 |
| 439 | SPQLQELTLPLTSAL | 20 |
| 442 | LQELTLPLTSALIDG | 20 |
| 446 | TLPLTSALIDGSQST | 2 |
| 485 | DSPVLRLSNLDPGNY | 20 |
| 500 | SFRLTVTDSDGATNS | 2 |
| 527 | YPPVANAGPNHTITL | 20 |
| 536 | NHTITLPQNSITLNG | 20 |
| 54 | QNSITLNGNQSSDD | 20 |
| 557 | HQIVLYEWSLGPGSE | 20 |
| 596 | TFQLKVVTDSSRQQST | 20 |
| 598 | QLKVTDSSRQQSTAV | 20 |
| 614 | TVIVQPENNRPPVAV | 20 |
| 636 | IFPVESATLDGSSSS | 20 |
| 666 | PSAVEMENIDKAIAT | 20 |
| 668 | AVEMENIDKAIATVT | 20 |
| 671 | MENIDKAIATVTGLQ | 20 |
| 675 | DKAIATVTGLQVGTY | 20 |
| 698 | QQGLSSTSTLTVAVK | 20 |


| TableXLVIII-V1-HLA-DR1-0401-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 704 | TSTLTVAVKKENNSP | 0 |
| 70 | TVAVKKENNSPPRAR | 0 |
| 726 | FHVLVLPNNSITLDG | 20 |
| 727 | HVLVLPNNSITLDGS | 0 |
| 752 | YLWIRDGQSPAAGDV | 20 |
| 764 | GDVIDGSDHSVALQL | 2 |
| 771 | DHSVALQLTNLVEGV | , |
| 782 | VEGVYTFHLRVTDSQ | 20 |
| 787 | TFHLRVTDSQGASDT | 20 |
| 805 | TVEVQPDPRKSGLVE | 20 |
| 815 | SGLVELTLQVGVGQL | 20 |
| 823 | QVGVGQLTEQRKDTL | 2 |
| 835 | [TLVRQLAVLLNVLD | 20 |
| 838 | VRQLAVLLNVLDSDI | 20 |
| 841 | LAVLLNVLDSDIKVQ | 2 |
| 845 | LNVLDSDIKVQKIRA | 2 |
| 860 | HSDLSTVIVFYVQSR | 20 |
| 865 | TVIVFYVQSRPPFKV | 20 |
| 877 | FKVLKAAEVARNLHM | 2 |
| 882 | AAEVARNLHMRLSKE |  |
| 890 | HMRLSKEKADFLLFK | 2 |
| 902 | LFKVLRVDTAGCLLK | 20 |
| 903 | FKVLRVDTAGCLLKC | 20 |
| 905 | VLRVDTAGCLLKCSG | 20 |
| 956 | IFYVTVLAFTLIVLT | 2 |
| 958 | YVTVLAFTLIVLTGG | 20 |
| 983 | AFTLIVLTGGFTWLC | 20 |
| 998 | LDNMDEQERMELRPK | 20 |
| 1024 | SSLMVSESEFDSDQD | 2 |
| 1050 | NPKVSMNGSIRNGAS | 20 |
| 1052 | KVSMNGSIRNGASFS | 20 |
|  | MAPPTGVLSSLLLLV | 18 |
| 2 | APPTGVLSSLLLLVT | 18 |
| 21. | ARKQCSEGRTYSNAV | 18 |
| 29 | RTYSNAVISPNLETT | 18 |
| 34 | AVISPNLETTRIMRV | 18 |
| 35 | VISPNLETTRIMRVS | 18 |
| 58 | TAACCDLSSCDLAWW | 18 |
| 130 | WGDSPEDIRKDLPFL | 18 |


| TableXLVII-V1-HLA-DR1-0401- |
| ---: | :---: |
| 15mers-254P1D6B |


| TableXLVIII-V1-HLA-DR1-0401- <br> 15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 695 | VKDQQGLSSTSTLTV | 8 |
| 739 | DGSRSTDDQRIVSYL | 18 |
| 740 | GSRSTDEQRIVSYLW | 8 |
| 762 | AAGDVIDGSDHSVAL | 8 |
| 765 | DVIDGSDHSVALQLT | 8 |
| 769 | GSDHSVALQLTNLVE | 18 |
| 788 | FHLRVTDSQGASDTD | 18 |
| 813 | RKSGLVELTLQVGVG | 8 |
| 825 | GVGQLTEQRKDTLVR | 18 |
| 831 | EQRKDTLVRQLAVLL | 8 |
| 832 | QRKDTLVRQLAVLLN | 18 |
| 853 | KVQKIRAHSDLSTVI | 18 |
| 856 | KIRAHSDLSTVIVFY | 18 |
| 857 | IRAHSDLSTVIVFYV | 8 |
| 880 | LKAAEVARNLHMRLS | 18 |
| 957 | FYVTVLAFTLIVLTG |  |
| 996 | TILDNMDEQERMELR |  |
| 1009 | LRPKYGIKHRSTEHN |  |
| 1015 | IKHRSTEHNSSLMVS | 18 |
| 1034 | DSDQDTIFSREKMER | 18 |
| 1035 | SDQDTIFSREKMERG | 8 |
| 1053 | VSMNGSIRNGASFSY |  |
| 400 | VGLYVFKVTVSSENA | 17 |
| 594 | DYTFQLKVTDSSRQQ |  |
| 785 | VYTFHLRVTDSQGAS | 17 |
| 69 | LAWWFEGRCYLVSCP | 16 |
| 145 | GKDWGLEEMSEYSDD | 16 |
| 182 | YTDWGLLPGSEGAFN | 16 |
| 214 | ELHYLNESASTPAPK | 16 |
| 378 | PTDYQGEIKQGHKQT | 16 |
| 412 | ENAFGEGFVNVTVKP | 6 |
| 465 | IVSYHWEEINGPFIE | 16 |
| 498 | NYSFRLTVTDSDGAT | 16 |
| 559 | IVLYEWSLGPGSEGK | 16 |
| 581 | QTPYLHLSAMQEGDY | 16 |
| 634 | ELIFPVESATLDGSS | 16 |
| 654 | GIVFYHWEHVRGPSA | 16 |
| 655 | IVFYHWEHVRGPSAV | 16 |
| 688 | TYHFRLTVKDQQGLS | 16 |


| TableXLVIII-V1-HLA-DR1-0401-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourleen. |  |  |
| Pos | 123456789012345 | core |
| 783 | EGVYTFHLRVTDSQG | 6 |
| 866 | VIVFYVQSRPPFKVL | 16 |
| 867 | IVFYVQSRPPFKVLK | 16 |
| 941 | IGRYIWDGESNCEWS | 16 |
| 954 | WSIFYVTVLAFTLIN | 16 |
| 96 | VLAFTLIVLTGGFTW | 6 |
| 970 | TGGFTWLCICCCKRQ | 16 |
| 972 | GFTWLCICCCKRQKR | 16 |
| 1030 | ESEFDSDQDTIFSRE | 16 |
| 1038 | DTIFSREKMERGNPK | 16 |
| 475 | GPFIEEKTSVDSPVL | 15 |
| 690 | HFRLTVKDQQGLSST | 15 |
| 886 | ARNLHMRLSKEKAD | 15 |
| 1012 | KYGIKHRSTEHNSSL | 15 |
| 4 | PTGVLSSLLLLVTIA | 14 |
| 9 | SSLLILVTIAGCARK | 14 |
| 10 | SLLLLVVTIAGCARKQ | 14 |
| 11 | LILLVTIAGCARKQC | 14 |
| 14 | LVTIAGCARKQCSEG | 4 |
| 32 | SNAVISPNLETTRIM | 14 |
| 37 | SPNLETTRIMRVSHT | 14 |
| 104 | LRPVQRPAQLLDY'GD. | 14 |
| 110 | PAQLLDYGDMMLNRG | 14 |
| 11 | AQLLDYGDMMLNRGS | 14 |
| 116 | YGDMMLNRESPSGIW | 14 |
| 118 | DMMLNRGSPSGIWGD | 14 |
| 134 | PEDIRKDLPFLGKDW | 14 |
| 138 | RKDLPFLGKDWGLEE | 14 |
| 141 | LFFLGKDWGLEEMSE | 14 |
| 185 | WGLLPGSEGAFNSSV | 14 |
| 196 | NSSVGDSPAVPAETQ | 14 |
| 235 | LLPLPTTPSSGEVLE | 14 |
| 265 | GKEVLMPSHSLPPAS | 14 |
| 266 | KEVLMPSHSLPPASL | 14 |
| 267 | EVLMPSHSLPPPASLE | 14 |
| 284 | SVTVEKSPVLTVTPG | 14 |
| 318 | PSELPISPTTAPRTV | 14 |
| 320 | ELPISPTTAPRTVKE | 14 |
| 329 | PRTVKELTVSAGDNL | 14 |


| TableXLVIII-V1-HLA-DR1-0401-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 332 | VKELTVSAGDNLIIT | 14 |
| 342 | NLIITLPDNEVELKA |  |
| 344 | IITLPDNEVELKAFV | 14 |
| 351 | EVELKAFVAPAPPVE | 14 |
| 361 | APPVETTYNYEWNLI |  |
| 382 | QGEIKQGHKQTLNLS |  |
| 392 | TLNLSQLSVGLYVFK |  |
| 395 | LSQLSVGLYVFKVTV | 14 |
| 397 | QLSVGLYVFKVTVSS | 14 |
| 401 | GLVVFKVTVSSENAF | 14 |
| 406 | KVTVSSENAFGEGFV | 14 |
| 427 | ARRVNLPPVAVVSPQ | 14 |
| 429 | RVNLPPVAVVSPQLQ | 14 |
| 434 | PVAVVSPQLQELTLP | 14 |
| 450 | TSALIDGSQSTDDTE | 14 |
| 451 | SALIDGSQSTDDTEI | 4 |
| 462 | DTEIVSY'HWEEINGP | 14 |
| 463 | TEIVSYHWEEINGPF | 14 |
| 470 | WEEINGPFIEEKTSV | 14 |
| 481 | KTSVDSPVLRLSNLD | 14 |
| 488 | VLRLSNLDPGNYSFR | 14 |
| 502 | RLTVTDSDGATNSTT | 14 |
| 518 | ALIVNNAVDYPPVAN | 14 |
| 522 | NNAVDYPPVANAGPN | 14 |
| 538 | TITLPQNSITLNGNQ | 4 |
| 545 | SITLNGNQSSDDHQI | 1 |
| 573 | KHVVMQGVQTPYLHL | , |
| 577 | MQGVQTPYLHLSAMQ | 14 |
| 587 | LSAMQEGDYTFQLKV | 4 |
| 609 | STAVVTVIVQPENNR | 14 |
| 613 | VTVIVQPENNRFPVA | 14 |
| 623 | RPPVAVAGPDKELIF | 14 |
| 625 | PVAVAGPDKELIFPV | 14 |
| 632 | DKELIFPVESATLDG | 14 |
| 641 | SATLDGSSSSDDHGI | 14 |
| 652 | DHGIVFYHWEHVRGP | 14 |
| 660 | WEHVRGPSAVEMENI | 14 |
| 678 | IATVTGLQVGTYHFR | 14 |
| 683 | GLQVGTYHFRLTVKD | 14 |


| CXLVIII-V1-HLA-DR1-0401-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123 |  |
|  | RLTV |  |
| 735 | SITLDGSRSTDDQRI |  |
|  | QRIVSY |  |
|  | AGDVIDGSDHSVALQ |  |
|  |  |  |
|  |  |  |
| 814 | KSGLVELTLQVGVGQ |  |
| 817 | LVELTLQVGVGQLTE |  |
| 819 | ELTLQV |  |
|  | TL |  |
|  | VG |  |
|  | KDTLVRQLAVLLNVL |  |
| 844 | VL |  |
|  | DII |  |
|  |  |  |
|  |  |  |
|  | ST |  |
|  | PFK |  |
|  | GCLL |  |
|  | KRCICSHLWMENLIQ |  |
|  | C |  |
|  | QRYIWDGESNCEWSI |  |
|  | EWSIFYVTVLAFTLI |  |
|  |  |  |
|  | TLVLTGGFTWLCIC |  |
|  | LIVLTG |  |
| 973 | FTWLCICCOKR |  |
| 975 | WLCICCCKRO |  |
|  | NSSLMVSESEFDSD |  |
|  | REKMERGNPKVSMMG |  |
| 1056 | NGSIRNGASFSYCSK |  |

TableXLVIII-V2-HLA-DR1-0401-
15mers-254P106B
Each peptide is a portion of SEQ ID NO: 5 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

| Pos | 123456789012345 | score |
| ---: | ---: | ---: |
| 11 | MSEYADDYRELEKDL | 22 |
| 15 | ADDYRELEKDLLQPS | 22 |
| 4 | KDWGLEEMSEYADDY | 18 |
| 3 | GKDWGLEEMSEYADD | 16 |
| 10 | EMSEYADDYRELEKD | 12 |
| 14 | YADDYRELEKDLLQP | 12 |


| TableXLVII-V3-HLA-DR1-0401- |
| :---: | :---: |
| 15 mers-254P1D6B |\(\left|\begin{array}{|r|r|}\hline Each peplide is a portion of SEQ ID <br>

NO: 7 ; each start position is <br>
specified, the length of peptide is <br>
15 amino acids, and the end <br>
position for each peptide is the start <br>

position plus fourteen.\end{array}\right|\)| Pos | 123456789012345 | score |
| ---: | ---: | ---: |
| 3 | RLGWPSPCCARKQCS | 16 |
| 1 | MTRLGWPSPCCARKQ | 14 |
| 6 | WPSPCCARKQCSEGR | 12 |


| TableXLVIII-V5-HLA-DR1-0401-15mers-254P1D6B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 7 | PEDIRKDLTFLGKDW | 0 |
| , | WGDSPEDIRKDLTFL | 8 |
| 11 | RKOLTFLGKDWGLEE | 14 |
| 14 | LTFLGKDWGLEEMSE | 4 |
| 4 | GDSPEDIRKDLTFL.G | 12 |
| 8 | EDIRKDLTFLGKDWG | 2 |


| TableXLIX-V1-HLA-DRB1-1101-15mers-254P162B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID <br> NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | ere |
| 66 | AVEMENIDKAIATVT |  |
| 42 | TTRIMRVSHTFPVVD | 26 |
| 138 | RKDLPFLGKDWGLEE | 6 |
| 654 | GIVFYHWEHVRGPSA | 26 |
| 961 | VLAFTLIVLTGGFTW | 26 |
| 157 | SDDYRELEKDLLQPS | 25 |


| TableXLIX-V1-HLA-DRBi-1101-15mers-254P162B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3 ; each siart position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | re |
| 113 | LLDYGDMMLNRGSP |  |
| 369 | NYEWNLISHPTOYQ |  |
| 49 | SHTFPVVDCTAACCD | 23 |
| 97 | RSYLTFVLRPVGRPA | 23 |
| 831 | EQRKDTL | 23 |
| 900 | FLLFKVLRVDTAGCL | 23 |
| 182 | YTDWGLLFGSEGAF | 22 |
| 242 | PSSGEVLE | 22 |
| 4 | GEGFVNVTVKPARR | 22 |
| 52 | AVDYPPVANAGP | 22 |
| 59 | QLKVTDSSRQQS | 2 |
| 657 | FYHWEHVRGPSA | 22 |
| 749 | IVSYLWIRD |  |
| 848 | LDSDIKVQKIRAHSD |  |
| 131 | GDSPEDIRKDLFFLG |  |
| 26 | GKEVLMPSHSLPPAS | 21 |
| 764 | GDVIDGSDHSV | 21 |
| 88 | RNLHMRLSKEKADF | 21 |
| 899 | DFLLFKVLRVDTAGC |  |
| 8 | LSSLLLLVTIAGCAR |  |
| 101 | TFVLRPVQRPAQLLD | 20 |
| 115 | DYGDMMLNRGS | 20 |
| 165 | KDLLQPSGKQEPRGS | 20 |
| 592 | EGDYTFQLKVTDSSR | 20 |
| 68 | TYHFRLTVKDQQGL | 20 |
| 78 | EGVYTFHLRVTDSQG | 20 |
| 805 | TVEVQPDFRKSGLVE | 20 |
| 865 | TVIVFY VQSRPPFKV | 2 |
| 908 | VDTAGCLLKCSGH | 20 |
| 1040 | IFSREKMERGNFKVS | 20 |
| 1052 | KVSMNGSIRNGASFS | 20 |
| 153 | MSEYSDDYRELEKDL | 19 |
| 279 | SLELSSVTVEKSPVL | 19 |
| 704 | TSTLTVAVKKENNSP | 19 |
| 747 | QRIVSYLWIRDGQSP | 19 |
| 814 | KSGLVELTLQVGVGQ | 19 |
| 866 | VIVFYVQSRPPFKKL | 19 |
| 68 | DLAWWFEGRCYLVSC | 18 |
| 99 | YLTFVLRPVQRPAQL | 18 |


| TableXLIX-V1-HLA-DRB1-1101-15mers-254P162B |  |  | TableXLIX-V1-HLA-DRB1-1101-15mers-254P162B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Each peptide is a portion of SEQ 10 <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  | Each peptide is a portion of SEQ ID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | ore | Pos | 123456789012345 | core |
| 179 | SAEYTDWGLLPGSEG | 18 | 896 | EKADFLLFKVLRVDT | 6 |
| 192 | EGAFNSSVGDSPAVP | 18 | 955 | SIFYVTVLAFTLIVL | 16 |
| 212 | DPELHYLNESASTPA | 18 | 956 | IFYVTVLAFTLIVLT | 16 |
| 232 | RSVLLPLPTTPSSGE | 18 | 983 | RQKRTKIRKK TKYTI | 16 |
| 329 | PRTVKELTVSAGDNL | 18 | 1008 | ELRPKYGIKHRSTEH | 16 |
| 378 | PTDYQGEIKQGHKQT | 18 | 48 | VSHTFPVVDCTAACC | 15 |
| 400 | VGLYVFKVTVSSENA | 18 | 100 | LTFVLRPVQRPAQLL | 5 |
| 429 | RVNLPPVAVVSPQLQ | 18 | 294 | TVTPGSTEHSIPTPP | 5 |
| 485 | DSPVLRLSNLDPGNY | 18 | 500 | SFRLTVTDSDGATNS | 5 |
| 594 | DYTFQLKVTDSSRQQ | 18 | 625 | PVAVAGPDKELIFPV | 15 |
| 970 | TGGFTWLCICCCKRQ | 18 | 873 | SRPPFKVLKAAEVAR | 15 |
| 992 | KTKYTILDNMDEQER | 18 | 879 | VLKAAEVARNLHMRL | 15 |
| 1010 | RPKYGIKHRSTEHNS | 18 | 920 | HGHCDPLTKRCICSH | 15 |
| 1038 | DTIFSREKMERGNPK | 18 | 935 | LWMENLIQRYIWDGE | 15 |
| 70 | AWWFEGRCYLVSCPH | 17 | 975 | WLCICCCKRQKRTK | 5 |
| 365 | ETTYNYEWNLISHPT | 17 | 1009 | LRPKYGIKHRSTEHN | 5 |
| 417 | EGFVNVTVKPARRVN | 17 | 1037 | QDTIFSREKMERGNP | 15 |
| 61 | TAVVTVIVQPENNRP | 17 | 14 | LVIIAGCARKQCSEG | 14 |
| 655 | IVFY'HWEHVRGPSAV | 17 | 15 | VTIAGCARKQCSEGR | 14 |
| 740 | GSRSTDDQRIVSYLW | 17 | 21 | ARKQCSEGRTYSNAV | 14 |
| 775 | ALQLTNLVEGVYTFH | 17 | 76 | RCYLVSCPHKENCEP | 14 |
| 874 | RPPFKVLKAAEVARN | 17 | 77 | CYLVSCFHKENCEPK | 14 |
| 972 | GFTWLCICCCKRQKR | 17 | 83 | PHKENCEPKKMGPIR | 14 |
| 39 | NLETTRIMRVSHTFP | 16 | 84 | HKENCEPKKMGPIRS | 14 |
| 21 | ELHYLNESASTPAPK | 16 | 87 | NCEPKKMGPIRSYLT | 14 |
| 367 | TYNYEWNLISHPTDY | 16 | 169 | QPSGKQEPRGSAEYT | 14 |
| 465 | IVSYHWEEINGPFIE | 16 | 244 | SGEVLEKEKASQLQE | 14 |
| 467 | SYHWEEINGPFIEEK | 16 | 281 | ELSSVTVEKSPVLTV | 14 |
| 481 | KTSVDSPVLRLSNLD | 16 | 292 | VLTVTPGSTEHSIPT | 14 |
| 559 | IVLYEWSLGPGSEGK | 16 | 351 | EVELKAFVAPAPPVE | 14 |
| 561 | LYEWSLGPGSEGKHV | 16 | 382 | QGEIKQGHKQTLNLS | 14 |
| 578 | QGVQTPYLHLSAMQE | 16 | 398 | LSVGLYVFKVTVSSE | 14 |
| 581 | QTPYLHLSAMQEGDY | 16 | 399 | SVGLYVFKVTVSSEN | 14 |
| 655 | VFYHWEHVRGPSAVE | 16 | 421 | NVTVKPARRVNLPPV | 14 |
| 712 | KKENNSFPRARAGGR | 16 | 432 | LPPVAWVSPQLQELT | 14 |
| 751 | SYLWIRDGQSPAAGD | 16 | 446 | TLFLTSALIDGSQST | 14 |
| 826 | VGQLTEQRKDTLVRQ | 16. | 482 | TSVDSPVLRLSNLDP | 14 |
| 864 | STVIVFYVQSRPPFK | 16. | 518 | ALIVNNAVDYPPVAN | 14 |
| 882 | AAEVARNLHMRLSKE | 16 | 543 | QNSITLNGNQSSDDH | 14 |


| TableXLIX-V1-HLA-DRB1-1101-15mers-254P162B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQID <br> NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| Pos | 123456789012345 | 3COre |
| 613 | VTVIVQPENNRPPVA | 14 |
| 678 | IATVTGLQVGTYHFR | 14 |
| 705 | STLTVAVKKENNSPP | 14 |
| 71 | ENNSPPRARAGGRHV | 14 |
| 732 | PNNSITLDGSRSTDD | 14 |
| 823 | QVGVGQLTEQRKDTL | 14 |
| 838 | VRQLAVLLNVLDSDI | 14 |
| 842 | AVLLNVLDSDIKVQK | 14 |
| 845 | LNVLDSDIKVQKIRA | 14 |
| 850 | SDIKVQKIRAHSDLS | 14 |
| 883 | AEVARNLHMRLSKEK | 14 |
| 912 | GCLLKCSGHGHCDPL | 14 |
| 914 | LLKCSGHGHCDPLTK | 4 |
| 986 | RTKIRKKTKYTILDN | 14 |
| 998 | LDNMDEQERMELRPK | 14 |
| 1004 | QERMELRPKYGIKHR | 14 |
| 1014 | GIKHRSTEHNSSLMV | 14 |
| 5 | TGVLSSLLLLVTIAG | 13 |
| 7 | VLSSLLLLVTIAGCA | 13 |
| 10 | SLLLLVTIAGCARKQ | 13 |
| 90 | PKKMGPIRSYLTFVL | 13 |
| 96 | IRSYLTFVLRPVQRP | 13 |
| 114 | LDYGDMMLNRGSPSG | 13 |
| 134 | PEDIRKDLPFLGKDW | 13 |
| 226 | APKLPERSVLLPLPT | 13 |
| 228 | KLPERSVLLPLPTTP | 13 |
| 263 | SSGKEVLMFSHSLPP | 13 |
| 272 | SHSLPPASLELSSVT | 13 |
| 287 | VEKSPVLTVTPGSTE | 13 |
| 337 | VSAGONLIITLPDNE | 13 |


| TableXLIX-V1-HLA-DRB1-1101- <br> 15mers-254P162B |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID <br> NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position. plus fourieen. |  |  |
| Pos | 123456789012345 | score |
| 348 | PDNEVELKAFVAPAP | 13 |
| 390 | KQTLNLSQLSVGLYV | 3 |
| 392 | TLNLSQLSVGLYVFK |  |
| 401 | GLYVFKVTVSSENAF | 3 |
| 402 | LYVFKVTVSSENAFG | 13 |
| 439 | SPQLQELTLPLTSAL | 13 |
| 497 | GNYSFRLTVTDSDGA | 3 |
| 556 | DHQIVLYEWSLGPGS |  |
| 577 | MQGVQTPYLHLSAMQ |  |
| 593 | GDYTFQLKVTDSSRQ | 3 |
| 614 | TVIVQPENNRPPVAV | 13 |
| 633 | KELIFPVESATLDGS | 13 |
| 666 | PSAVEMENIDKAIAT | 13 |
| 06 | TLTVAVKKENNSPPR | 3 |
| 725 | GRHVLVLPNNSITLD | 3 |
| 784 | GVYTFHLRVTDSQGA | 13 |
| 787 | TFHLRVTDSQGASDT | 13 |
| 816 | GLVELTLQVGVGQLT | 13 |
| 835 | DTLVRQLAVLLNVLD | 13 |
| 934 | HLWMENLIQRYIWDG | 13 |
| 953 | EWSIFYVTVLAFTLI | 13 |
| 954 | WSIFYVTVLAFTLIV | 13 |
| 960 | TVLAFTLIVLTGGFT | 13 |
| 963 | AFTLIVLTGGFTWLC | 13 |
| 1043 | REKMERGNPKVSMNG | 13 |

TableXLIX-V2-HLA-DRB1-1101
15mers-254P162B
Each peptide is a portion of SEQ ID NO: 5; each start position is

| specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen. |  |  |
| :---: | :---: | :---: |
| Os | 123456789012345 | core |
| 15 | ADDYRELEKDLLQPS | 25 |
| 11 | MSEYADDYRELEKDL | 19 |
| 5 | DWGLEEMSEYADDY'R | 12 |

TableXLIX-V3-HLA-DRB1-1101-
15mers-254P162B
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

| Pos | 123456789012345 | score |
| ---: | ---: | ---: | ---: |
| 6 | WPSPCCARKQCSEGR | 14 |
| 1 | MTRLGWPSPCCARKQ | 12 |
| 3 | RLGWPSPCCARKQCS | 12 |
| 5 | GWPSPCCARKQCSE | 8 |
| 8 | SPCCARKQCSEGRTY | 6 |


| TableXLIX-V5-HLA-DRB1-1101- <br> $15 \mathrm{mers}-254 \mathrm{P} 162 \mathrm{~B}$ |  |  |
| :---: | :---: | :---: |
| Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 15 amino acids, and the end postion for each peptide is the start posifion plus fourteen. |  |  |
| Pos | 123456789012345 | score |
| 11 | RKDLTFLGKDWGLEE | 28 |
| 4 | GDSPEDIRKDLTFLG | 15 |
| 7 | PEDIRKDLTFLGKDW | 13 |

Table L: Protein Characteristics of 254P1D6B

|  | Bioinformatic Program | URL | Outcome |
| :---: | :---: | :---: | :---: |
| ORF | ORF finder |  | 3216 bp |
| Frotein length | , - . |  | 1072 aa |
| Transmembrane region | TM Pred | hitp://www.ch.embnet.org/ | TM Helix AA 954-981 |
|  | HMMTop | http://www.enzim.hu/hmmtop/ | TM Helix AA 956-980 |
|  | Sosui | http://www.genome.ad.jpiSOSui! | TM Helix AA 957-979 |
|  | TMHMM | http://www.cts.dtu.dk/services/TMHMM | TM Helix AA 956-978 |
| Signal Peptide | Signal P | http://www.cbs.dut.dk/services/SignalP/ | Yes signal peptide |
| pl | pliMW tool | http://www.expasy.ch/tools/ | pl 5.34 |
| Molecular weight | pl/MW tool | http://www.expasy.ch/tools/ | 1.17 |
|  |  |  | 46\% Plasma Membrane 10\% endoplasmic reticulum |
| Lccalization | PSORT | http://psort.nibb.ac.jp/ | 33.3\% Golgi |
|  |  |  | 33.3\% Endoplasmic reticulum |
|  |  |  | 22.2\% Plasma Membrane |
|  | PSORT II | http://psort.nibb.ac.jp/ | 11.1\% extracellular, including cell wall |
|  |  |  | TYA transposon prolein PKD |
| Motifs | Blocks | http://www.blocks. fherc.org/ | Purothionin signature |
|  | Repeats | http://dove.embl-heidelberg.de/ | No Repeats |

Table LI. Exon compositions of 254P1D6B

| Exon No. | Slart position | End position | Length |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 406 | 406 |
| 2 | 407 | 566 | 160 |
| 3 | 567 | 1312 | 746 |
| 4 | 1313 | 1505 | 193 |
| 5 | 1506 | 1604 | 99 |
| 6 | 1605 | 1702 | 98 |
| 7 | 1703 | 1790 | 88 |
| 8 | 1791 | 1883 | 93 |
| 9 | 1884 | 2016 | 133 |
| 10 | 2017 | 2245 | 229 |
| 11 | 2246 | 2369 | 124 |
| 12 | 2370 | 2502 | 133 |
| 13 | 2503 | 2651 | 149 |
| 14 | 2652 | 2803 | 152 |
| 15 | 2804 | 2942 | 139 |
| 16 | 2943 | 3102 | 160 |
| 17 | 3103 | 3245 | 143 |
| 18 | 3246 | 3368 | 123 |
| 19 | 3369 | 3459 | 91 |
| 20 | 3460 | 3551 | 92 |
| 21 | 3552 | 6791 | 3240 |

Table LII. Nucleotide sequence of transcript variant 254P1D6B v. 3 (SEQ ID NO: 269)

```
gctgccgcgg gcggtgggcg gggatccccc gggggtgcaa ccttgctcca cctgtgctgc 60
cctcggcggg cctggctggc ccogcgcaga gcggcggcgg cgctcgctgt cactgccgga 120
ggtgagagcg cagcagtagc ttcagcetgt cttgggcttg gtccagattc gctcctctgg 180
ggctacgtcc cqgggaagag qaagcgagga ttttgctggg gtggggctgt acctcttaac 240
agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg tgtgtgtgtg 300
taagacctgc gatgacgacg aggaggaaca agtgggacgg cgagtgatgc tcagggccag}
cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacaggtac ggtatctact 420
```

tcccagageg cctggccgag aaataggaaa gagggcagcc agtaggcagg ccaataccca acaaagtag aatcgagacg ccctgagttc agaagttctt gaqgccaaat ctggctccta aaaaacatca aaggaagctt gcaccaaact ctcttcaggg cogcctcaga agcctgccat cacccactgt gtggtgcaca atggcgcccc ccacaggtyt getclettca ttgctgctgc tggtgacaat tgcagtttgc ttatggtgga tgcactcatg gcaaaaaäat cactggtgag catcatttaa gaagacccat gactagactg ggctggccga gcccatgttg tgcccgtaag cagtgcagcg aggggaggac atattccaat gcagtcattt cacctaactt ggaaaccacc agaatcatgc gggtgtctca caccttccct gtcgtagact gcacgjccgc ttgctgtgac ctgtccagct gtgacctggc ctggtggttc gagggcogct gctacctggt gagctgcccc cacaaagaga actgtgagcc caagaagatg ggccccatca ggtcttatct cacttttgtg ctccggcctg ttcagaggcc tgcacagctg ctggactatg gggacatgat gctgaacagg ggctccccet cggggatctg gggggactca cctgaggata tcagaaagga cttgcccttt ctaggcaaag attggggect agaggagatg tctgagtact cagatgacta ccgggagetg gagaaggacc tcttgcaacc cagtggcaag caggagccca gagggagtgc egagtacacg gactggggce tactgccggg cagcgagggg gccttcaact cotctgttgg agacagtcct gcggtgccag cggagacgca gcaggaccct gagctccatt acctgaatga gtcggcttca acccctgcce caaaactccc tgagagaagt gtgttgcttc cottgccgac tactccatct tcaggagagg tgttggagaa agaaaaggct tctcagctcc aggaacaatc cagcaacagc tctggaaaag aggttctaat gccttcccat agtcttcctc cqgcasgcct ggagctcagc tcagtcaccg tggagaaaag cccagtgetc acagtcaccc cggggagtac agagcacage atcccaacac ctcccactag cgcagccccc tctgagtcca ccccatctga gctacccata tctcctacca ctgctcccag gacagtgaaa gaacttacgg tatcggctgg agataaccta attataactt tacccgacaa tgaagttgaa ctgaaggcet ttgttgcgec agcgcsacct gtagaaacaa cctacaacta tgaatggaat ttaataagec accccacaga ctaccaaggt gaaataaaac aaggacacaa gcaaactett aacctctctc aattgtccgt cggactttat gtcttcaaag tcactgtttc tagtgaaaac gcctttggag aaggatttgt caatgtcact gttaagcctg ccagaagagt caacctgcca cctgtagcag ttgtttctcc ccaactgcaa gagctcactt tgcctttgac gtcagccetc attgatggea gccaaagtac agatgatact gaaatagtga gttatcattg ggaagaaata aacgggccet tcatagaaga gaagacttca gttgactctc ccgtcttacg cttgtctaac cttgatcctg gtaactatag tttcaggttg actgttacag actcggacgg agccactaac tctacaactg cagccctaat agtgaacaat gctgtggact acccaccagt tgctaatgca ggaccaaatc acaccataac tttgccccaa aactccatca ctttgaatgg aaaccagagc agtgacgatc accagattgt cctctatgag tggtccctgg gtcctgggag tgagggcaaa catgtggtca tgcagggact acagacgcca taccttcatt tatctgcaat gcaggaagga gattatacat ttcagctgaa ggtgacagat tcttcaaggc aacagtctac tgctgtggtg actgtgattg tccagcctga aaacaataga cctccagtgg ctgtggcogg ccctgataaa gagctgatct tcccagtgga aagtgctacc ctggatggga gcagcagcag cqatgaccac ggcattgtct tctaccactg ggagcacgtc agaggcccca gtgaagtgga gatggaaaat attgacaaag caatagccac tgtgactggt ctccaggtgg ggacctacca cttccgtttg acagtgaaag accagcaggg actgagcage acgtccaccc tcactgtgge tgtgaagaag gaaaataata gtcctcccag agccogggct ggtggcagac atgttcttgt gcttcccaat aattccatta ctttggatgg ttcaaggtct actgatgacc aaagaattgt gtcctatctg tggatccggg atggccagag tccagcagct ggagatgtca tcgatggctc tgaccacagt gtggctctgc agcttacgaa totggaggag ggggtgtaca ctttccactt gcgagtcacc gacagtcagg gggcctcgga cacagacact gccactgtgg aagtgcagcc agaccctagg aagagtggce tggtggagct gaccozgcag gttggtgttg ggcagctgac agageagcgg aaggacaccc ttgtgaggca gctggctgtg ctgctgaacg tgctggactc ggacattaag gtccagaaga ttcgggccca ctcggatctc agcaccgtga ttgtgtttta tgtacagagc aggccgcctt tcaaggttct caaagctgct gaagtggccc gaaatctgca catgaggctc tcaaaggaga aggctgactt cttgcttttc aaggtcttga gggttgatac agcaggttgc cttctgaagt gttctggcca tggtcactgc gavcccctca caaagcgctg catttgctct cacttatgga tggagaacct tatacagcgt tatatctggg atggagagag caactgtgag tggagtatat tctatgtgac agtgttggct tttactctta ttgtgctaac aggaggtttc acttggct te gcatctgctg ctgcaaaaga caaaaaagga ctaaaatcag gaaaaaaaca aagtacacca tcctggataa catggatgaa caggaaagaa tggaactgag gcccaaatat ggtazcaage accgaagcac agagcacaac tccagcctga tggtatccga gtctgagttt gacagtgacc aggacacaat cttcagccga gaaaagatgg agagagggaa tccaaaggtt tccatgaatg gttccatcag aaatggagct tcottcagtt attgctcaaa ggacagataa tggcgcagtt cattgtaaag tggaaggacc ccttgaatcc aagaccagtc agtgggagtt a cagcacaaa acccactctt ttagaatagt tcattgacct tct=ccccag tgggttagat gtgtatcccc acgtactaaa agaccggttt ttgaaggcac aaaacaaaaa ctttgctctt ttaactgaga tgcttgttaa tagaaataaa ggctgggtaa aacrctaagg tatatactta aaagagtttt gagtttttgt agctggcaca atctcatatt aaagatgaac aacgatttct atctgtagaa ccttagagaa ggtgaatgaa acaaggtttt aaaagggat gatttctgtc ttagccgctg tgattgcctc taaggaacag cattctaヨac acggtttctc ttgtaggacc tgcagtcaga tggctgtgta tgttaaaata gcttgtctaa gaggcacggg ccatctgtgg aggtacggag tettgcatgt agcaagcttt ctgtgctgac ggcaacactc gcacagtgcc aagccctcct ggtttttaat tctgtgctat gtcaatggca gttttcatct ctctcaagaa agcagctgtt ggccattcaa gagstaagga agaatcgtat tctaaggact gaggcaatag aaaggggagg aggagcttaa tgcegtgcag

480
540
600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
1200
4260
4320
4380
440
4500
4560
4620
gttgaaggta gcattgtaac attatctett ctttctctaa gaaaaactac actgactcct ctcggtgttg tttagcagta tagttctcta atgtaaacgg atccccagtt tacattaaat gcaatagaag tgattaattc attaagcatt tattatgttc tgtaggctgt gcgtttggac tgccatagat agggataacg actcagcalat lytgtatata ttccaaaact ctgaaataca gtcagtctta acttggatgg cgtggttatg atactctggt cccegacagg tactttccaa actaacttga catagatgta ttcacttcat atgtttaaaa atacatttaa gtttttctac cgaataaatc ttatttcaáa catgaaagac ảttaaaaca ttcccaccca caaagzagta cteccgagca attaactgga gttaattgta gectgctang ttgactggtt cagggtagtt ccccatccac ccttggtcct gaggatggtg gecttggtgg tgcccttggc attttttgtg ggaagattag aatgagajat agaaccagtg ttgtggtacc aagtgtgagc acaccraaac aatatcctgt tgcacaatgc ttttttaaca catgggaaaa ctaggaatgc attgctgatg aagaagcaag gtatttazac accagggcag gagtgecaga gaaaatgttt ccccatgggt tcttaaaaaa aattcagctt ttaggtgctt ttgtcatctc coggagtatt catcctcatg ggaccatctt atttttactt attgtaattt actggggaaa ggcagaacta aaagtgtgt cattttattt ttaaaataat tgctttgctt atgcctacac tttctgtata actagccaat tcaatactgt ctatagtgtt agaaggaaaa tgtgattttt tttttttaac cagtattgag cttcataagc ctagaatctg ccttatcagg tgaccagggt tatggttgtt tgcatgcaaa tgtgaatttc tggcataggg gacagcagcc caaaigtaaa gtcatcgggc gtaatgagga agaagggagt gaacatttac cqctttatgt acataacata tgcagtttac atactcattt gatccttata atczaccttg aagaggagat actazcattc ttatgttgca gatagccotc tgaaggccca gagaggttaa gtaacttccc agaggtcatg gccaagaagt agtggctcca agaactgaat gcaaattttt taaactgtag agttctgctt tccactaaac aaagaactcc tgccttgatg gatggagggc aaattctggt ggaacttttg ggccacctga aagttctatt cccaggacta agaggaattt cttttaatgg atccagagag ccaaggtcag agggagagat ggcctgcata gtctcctgtg gatcacaccc gggccacccc tccctctagg tttacagtgg acttcttctg cccetcctcc ttttctgtcc ttggccatct cagcctggce tctctgatcc ttccatcaca gaaggatctt gaatctctgg gaaatcaaac atcacagtag tgatcagaaa gtgagtcctg tcttgtcacc ccatttctca tcagaacaaa gcacgagatg gaatgaccaa ccagcattct tcatgglgga ctgcttatca trgaggatct ttgggagata aagcacgcta agagctctgg acagagaaaa acaggcccta gaatatggga gtgggtgttt gtagggctca taggctaaca agcactttag ttgctggttt acattcaatg aaggaggatt catacccatg gcattacaag gctaagcatg tgtatgacta aggaactatc tgaaaaacat gcagcaaggt agaaaatgt accactcaac aagccagtga tgccacctet tgtgcgcggg gaggagagtg actaccattg ttttttgtgt gacaaagcta tcatggacia ttttaatctt ggttttattg cttaaaatat attatttttc ccta-gtgtt gacaaggtat ttctaatatc acactattaa atatatgcac taatctaaat aaaggtgtct gattttcag taatgottat ttttaggggg aatttgttt tctttatgct tcagggtaga gggattccct tgagtatagg tcagcaaact ctggcctgca gcotgtg=gt gcacgcccca tgagcogaaa agtgggtctt atgttttcaa atggttaaaa ataaataaaa aaatttgaaa catgtgaact atatgacatt cagatttgtg ttcataaata aagttttatt ggaacatatc c

4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5750
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
5660
6720
6730
6840
5900
6960
5991

Table LIII. Nucleotide sequence alignment of 254P1D6B v. 1 (SEQ ID NO: 270) and 254P1D6B v. 3 (SEQ ID NO: 271)

Score $=781$ bits (406), Expect $=0.0$ ldentities $=405 / 406(100 \%)$ Strand $=$ Plus $/$ Plus
Query: 1 gctgccgcgggcggtgggcggggatccccegggggtgcaaccttgctecacctgtgctgc 60

sbjct: 1 getgccgcgggcggtgggeggggatccccogggggtgcaaccttgctccacctgtgctge 60

Query: 51 cetcggcgggcctggctggccccgcgcagagcggcggcggcgctcgctgtcactgccgga 120

sbjct: 61 cctcggcgggcctggctggccccgcgcagagcggcggcggcgctcgctgtcactgccgga 120

Query: 121 ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgetcctctgg 180

Sbjct: 121 ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgctcctctgg 180

Query: 181 ggctacgtcceggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac 240

Sbīct: 181 ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac 240

Query: 241 agcaggtgcgcgcgcgagggtgtgaacgtgtgtgtgtgtgtgtgtctgtgtgtgtgtgtg 300

Sbjct: 241 agcaggtgcgcgcgcgagggtgtgaacgtgtgtgtgtgtgtgtgtctgtgtgtgtgtgtg 300

```
Query: 301 taagacctgcgatgacgacgaggaggaacaagtgggacggcgagtgatgctcagggccag 360
 ||!||
Sbjct: 301 taagacctgcgatgaegacgaggaggaacaagtgggacggcgagtgatgctcagggccag 360
Query: 361 cagcaacgcatggggagagcttcagtgtcgccagcagtgaccacag 405
 ||i||||||||||||||||||||||||||||||||||||||
Sbjct: 361 cagcaacgcatggggcgagcttcagtgtcgccagcagtjaccacag 405
Score = 314 bits (163), Expect =2e-81/dentities = 165/166 (99%) Strand = Plus / Plus
Query: 405 agttcttgaggccaaatctggctcctaaaaaacatcaaaggaagcttgcaccaaactctc 464
 ||
Sbjct: 51.4 agttcttgaggccaa\existstctggct=ctaaaaaacatcaaaggaagcttgcaccaaactctc 573
Query: 465 ttcagggacgcotcagaagcctgccatcacccactgtgtggtgcacaatggcgcccccca 524
 ||
Sbjct: 574 ttcagggscgectcagaagcctgccatcacccactgtgtggtgcacaatggcgcccccca 633
Query: 525 aaggtgtgctctctecattgctgctgctggtgacaattgcaggttg 570
 |||||||||||||||||||||||||||||||||||| ||
Sbjct: 634 caggtgtgctctctecattgctgctgctggtgacaattgcagtttg 679
Score = 1.197e+04 bits (6225), Expect =0.01dentites =6225/6225 (100%) Strand = Pus / Plus
Query: 567 gttgtgcecgtaagcagtgcagcgaggggaggacatattccaatgcagscatttcaccta 626
 |||
Sbjct: 767 gttgtgcccgtaagcagtgcagegaggggaggacatattccaatgcag=catttcaccta }82
Query: 627 acttggaaaccaccagaatcatgcgggtgtctcacaccttccctgtcg=agactgcacgg 686
 ||
Sbjct: 527 acttgg\niaaccacc\existsgaatcatgcgggtgtctcacaccttccctgtcg%agactgcacgg 886
Query: 687 ccgcttgctgtgacctgtccagctgtgacctggcctggtggttcgagggccgctgctacc 746
Sbjct: s87 cegcttgctotcacctgtccagctgtgecctggcctggtggttcgagggccgctgctacc 946
Query: 747 tggtgagctgcccccacaaagagaactgtgagcccaagaagatgggccccatcaggtctt 806
 |||
Sbjct: 947 tggtgagctgcccccacaaagagaactgtgagcccaagaagatgggcoccatcaggtctt 1006
Query: 807 atctcacttttgtgctccggcctgttcagaggcctgcacagctgctggactatggggaca 866
 ||||||||||||||||||||||||{|||||||||||||||||||||||||||||||
Sbjct: 1007 atctca<ttttgtg=tccggcctgttcagaggcctgcacagctgctggactatggggaca 1065
Query: 867 tgatgctgaacaggggctcccc=tcggggatctggggggactcacctgaggatatcagaa 926
 |||
Sbjct: 1067 tgatgctgaacaggggctccccotcggggatctggggggactcacctgaggatatcagaa 1126
Query: 927 aggacttgccctttctaggcaaagattggggcctagaggagatgtctgagtactcagatg 986
 ||
Sbjct: 1127 aggacttgccctttctaggcaaagattggggcctagaggagatgtctgagtactcagatg 1186
Query: 987 actaccgggagctggagaaggacctcttgcaacccagtggcaagcaggagcocagaggga 1045
 |||
Sbjct: 1187 actaccgggagctggagaaggacctcttgcaacccagtggcaagcaggagcccagaggga 1245
```

Query: 1047 gtgccgagtacacggactggggactactgcegggcagcgagggggccttcaactcctctg 1106

Sbjct: 1247 gtgccgagtacacggaclggggectactgccgggcagcyagggggecttcaactcctctg 1306

Query: 1107 ttggagacagtcctgcggtgccagcggagacgcagcaggaccctgagctccattacctga 1165

Sbjct: 1307 ttggagacagtcctgcggtgccagcggagacgcagcaggaccctgagc=ccattacctga 1366

Query: 1167 atgagteggcttcaacccctgccccaaaactccctgagagaagtgtgttgcttccettge 1226

Sbjct: 1357 atgagtaggcttcaacccctgccccaaaastccetgagagaagtgtgttgcttcccttgc 1426

Query: 1227 cgactactccatcttcaggagaggtgttggagaaagaaaaggcttctcagctccaggaac 1286

Sbjct: 1427 cgactactccatcttcaggagaggtgttggagaaagaaaaggcttctcagctccaggaac 1486

Query: 1237 aatccagcaacagctctggaaaagaggttctaatgccttcccatagtcttcctccggcaa 1346

Sbjct: 1487 aatccagcaacagctctggaaagaggttctaatgccttcccatagtcttcctccggcaa 1546

Query: 1347 gcctggagctcagctcagtcaccgtggagaaaagcccagtgctcacagtcacccogggga 1406

Sbjct: 1547 gcctggagctcagctcagtcaccgtggagaaaagcccagtgctcacagtcaccccgggga 1606

Query: 1407 gtacagagcacagcatcccaacacctcccactagcgcagccccctctgagtccaccccat 1466

Sbjct: 1607 gtacagagcacagcatcccaacacctcccactagcgcagcoccotctgagtccaccccat 1666

Query: 1467 ctgagctacccatatctcctaccactgctcccaggacagtgaaagaacttacggtatcgg 1526

skjct: 1667 ctgagctacccatatctcctaccactgctcccaggacagtgaaagaacttacggtatcgg 1726

Query: 1527 ctggagataacctaattataactttacccgacaatgaagttgaactgaaggcctttgttg 1586

Sbjct: 1727 ctggagataaccteattataactttacccgacaatgaagttgaactgaaggccttgttg $\mathbf{7 8 6}$

Query: 1587 cgccagcgccacctgtagaaacaacctacaactatgaatggaatttaataagccacccca 1646

Sbjct: 1787 cgccagcgccacctgtagaaacaacctacaactatgaatggaatttaataagccacccca 1846

Query: 1647 cagactaccaaggtgaaataaaacaaggacacaagcaaactcttaacctctctcaattgt 1706

Sbjct: 1847 cagactaccaaggtgaaataaaacaaggacacaagcaaactcttaacctctctcaattgt 1906

Query: 1707 ccgtcggactttatgtcttcaaagtcactgtttctagtgaaaacgectttggagaaggat 1766

Sbjct: 1907 ccgtcggactttatgtcttcaaagtcactgtttctagtgaaaacgcctttggagaaggat 1966

Query: 1767 ttgtcaatgtcactgttaagcctgccagaagagtcaacctgccacctgtagcagttgttt 1826

Sbjct: 1967 ttgtcaatgtcactgttaagcctgccagaagagtcaacctgccacctgtagcagttgttt 2006

Query: 1827 ctccccaactgcaagagctcactttgcetttgacgtcagccctcattgatggcagccaaa 1886

Sbjct: 2027 ctccccaactgcaagagctcactttgcctttgacgtcagccctcattgatggcagccaaa 2086

Query: 1887 gtacagatgatactgaaatagtgagttatcattgggaagaaataaacgggccettcatag 1946

Sbjct: 2087 gtacagatgatactgaaatagtgagttatcattgggaagaaataaacgggccettcatag 2146

Query: 1947 aagagaagacttcagttgactctcccgtcttacgcttgtctaaccttgatcctggtaact 2006

Sbjct: 2147 aagagaagacttcagttgactctcccgtctuacgcttgtctaaccttgatcctggtaact 2206

Query: 2007 atagtttcaggttgactgttacagactcggacggagccactaactctacaactgcagccc 2066

Sbjct: 2207 atagtttcaggttgactgttacagactcggacggagccactaactctacaactgcagccc 2260

Query: 2067 taatagtgaacaatgctgtggactacccaccagttgctaatgcaggaccaaatcacacca 2126

Sbjct: 2267 taatagtgaacaatgctgtggactacccaccagttgctaatgraggaccaaatcacacca 2326

Query: 2127 taactttgccccaョaactccatcactttgaatggaaaccagagcagtgacgatcaccaga 2186

Sbjct: 2327 taactttgccccaaaactccatcactttgaatggaaaccagagcagtgacgatcaccaga 2386

Query: 2187 ttgtcctctatgagtggtccctgggtcctgggagtgagggcaaacatgtggtcatgcagg 2246

Sbjct: 2387 ttgtcctctatgagtggtccetgggtcctgggagtgagggcaaacatgtggtcatgcagg 2446

Query: 2247 gagtacagacgccataccttcatttatctgcaatgcaggaaggagattatacatttcagc 2306

Sbjct: 2447 gagtacagacgccataccttcatttatctgcaatgcaggaaggagattatacatttcagc 2506

Query: 2307 tgaaggtgacagattcttcaaggcaacagtctactgctgtggtgactgtgattgtccagc 2366

Sbjct: 2507 tgaaggtgacagattcttcaaggcaacagtctactgctgtggtgactgtgattgtccagc 2566

Query: 2367 ctgaaaacaatagacctccagtggctgtggccggccetgataaagagctgatcttcccag 2426

Sbjct: 2567 ctgaaaacaatagacctccagtggctgtggccggccctgataaagagetgatcttcccag 2526

Query: 2427 tggaaagtgctaccctggatgggagcagcagcagcgatgaccacggcattgtcttctacc 2486

Sbjct: 2627 tggaaagtgctaccctggatgggagcagcagcagcgatgaccacggcattgtcttctacc 2686

Query: 2487 actgggagcacgtcagaggccccagtgcagtggagatggaaaatattgacaaagcaatag 2546

Sbjct: 2687 actgggagcacgtcagaggccccagtgcagtggagatggaaaatattgacaaagcaatag 2745

Query: 2547 ccactgtgactggtctccaggtggggacetaccacttccgtttgacagtgaaagaccagc 2606

Sbjct: 2747 ccactgtgactggtctccaggtggggacctaccacttccgtttgacagtgaaagaccage 2805

Query: 2507 agggactgagcagcacgtccaccctcactgtggctgtgaagaaggaaaataatagtcctc 2666

Sbjct: 2807 agggactgagcagcacgtccaccctcactgtggctgtgaagaaggaaaataatagtcctc 2866

Query: 2657 ccagag ccogggctggtggcagacatgttcttgtgcttcccaataattccattactttgg 2726

Sbjct: 2867 ccagageccgggctggtggcagacatgttcttgtgcttcccaataattccattactttgg 2926

Query: 2727 atggttcaaggtctactgatgaccaaagaattgtgtcctatctgtggatccgggatggcc 2786

Sbjct: 2927 atggttcaaggtctactgatgaccaaagaattgtgtcctatctgtggatccgggatggcc 2986

Query: 2787 agagtccagcagctggagatgtcatcgatggctctgaccacagtgtggctctgcagctta 2846

Sbjct: 2937 agagtccagcagctggagatgtcatcgatggctctgaccacagtgtggctetgcagctta 3046

Query: 2817 cgaatctggtggagggggtgtacactttccacttgcgagtcaccgacagtcagggggcct 2906

Sbjct: 3047 cgaatctggtggagggggtgtacactttccacttgcgagtcaccgacagtcagggggcct 3106

Query: 2907 cggacacagacactgccactgtggaagtgaagccagaccctaggaagagtggcctggtgg 2966

Sbjct: 3107 cggacacagacactgccactgtggaagtgcagccagaccctaggaagagtggcctggtgg 3165

Query: 2967 agctgaccctgcaggttggtgttgggcagctgacagagcagcggaaggacaccettgtga 3026

Sbjct: 3167 agctgaccctgcaggttgatgttgggcagctgacagagcagcggaaggacaccettgtga 3226

Query: 3027 ggcagctggctgtgctgctgaacgtgctggactcggacattaaggtccagaagattcggg 3086

Sbjct: 3227 ggcagctggctgtgctgctgaacgtgctggactoggacattaaggtccagaagattcggg 3286

Query: 3087 cccactcggatctcagcaccgtgattgtgttttatgtacagagcaggccgcctttcaagg 3146

Sbjct: 3237 cccactcggatctcagcaccgtgattgtgttttatgtacagagcaggecgectttcaagg 3346

Query: 3147 ttctcaaagctgctgaagtggcccgaaatctgcacatgcggctctcaaaggagaaggetg 3206

Sbjct: 3347 ttctcaaagctgctgaagtggcccgaaatctgcacatgcggctctcaaaggagaaggctg 3406

Query: 3207 acttcttgcttttcaaggtcttgagggttgatacagcaggttgccttctgaagtgttctg 3266

Sbjct: 3407 acttctegcttttcaaggtcttgagggttgatacagcaggttgccttctgaagtgttctg 3466

Query: 3257 gccatggtcactgcgaccecctcacaaagcgctgcatttgctctcacttatggatggaga 3326

Sbjct: 3467 gccatggtcactgcjaccccctcacaaagegctgcatttgctctcacttatggatggaga 3526

Query: 332? accttatacagcgttatatctgggatggagagagcaactgtgagtggagtatattctatg 3386

Sbjct: 3527 accttatacagcgttatatctgggatggagagagcaactgtgagtggagtatattctatg 3586

Query: 3387 tgacagtgttggcttttactcttattgtgctaacaggaggtttcacttggctttgcatct 3445

Sbjct: 3587 tgacagtgttggcttttactcttattgtgctaacaggaggtttcacttggctttgcatct 3646

Query: 3447 gctgctgcaaaagacaaaaeaggactaaaatcaggaasaaaacaaagtacaccatcctgg 3505

Sbjct: 3647 gctgctgcaaaagacaaaaaaggactaaaatcaggaaaaaaacaaagtacaccatcctgg 3706

Query: 3507 ataacatggatgaacaggaaagaatggaactgaggcccaaatatggtatcaagcaccgaa 3566

Sbjct: 3707 ataacatggatgaacaggaaagaatggaactgaggcccaaatatggtatcaagcaccgaa 3766


Query: 4407 ttaatgccgtgcaggttgaaggtagcattgtaacattatctttctttctctaagaaaaa 4466

sbjct: 4607 ttaatgccgtgcaggttgaaggtagcattgtaacattatcttttctttctctaagaaaaa 4666

Query: 4467 ctacactgactcctctcgqtgttgtttagcagtatagttctctaatgtaaacggatccce 4526

Sbjet: 4667 ctacactgactcctctcggtgtegtttagcagtatagttctctaatgtaaacggatcccc 4726

Query: 452? agtttacattaaatgcaatagaagtgattaattcattaagcatttattatgttctgtagg 4586

Sbjct: 4727 agtttacattaaatgcaatagaagtgattaattcattaagcatttattatgttctgtagg 4786

Query: 4587 ctgtgcgtilggactgccatagatagggataacgactcagcaattgtgtatatattccaa 4646

Sbjct: 478? ctgtgcgtttggactgccatagatagggataacgactcagcaattgtgtatatattccaa 4846

Query: 464? aactctgaaatacagtcagtcttaacttggatggegtggttatgatactctggtccccga 4706

Sbjct: 4847 aactctgaaatacagtcagtcttaacttggatggcgtggttatgatactctggtccccqa 4906

Query: 4707 caggtactttccaaaataacttgacatagatgtattcacttcatatgttaaaaatacat 4766

Sbjct: 4907 caggtactttccaaaataacttgacatagatgtattcacttcatatgtttaaaaatacat 4966

Query: 4767 ttaagtttttctaccgaataaatcttatttcaaacatgaaagacaattaaaacattccca 4826

Sbjct: 4967 ttaagtttttctaccgaataadettattlcaaacatgaaagacaattaaaacattccca 5025

Query: 4827 cccacaaagcagtactcccgagcaattaactggagttaattgtagcctgctacgttgact 4885

Sbjct: 5027 cccacaaagcagtactcccgagcaattaactggagttaattgtagcctgctacgttgact 5085

Query: 4887 gqttcagggtagttceccatccacccttggtcctgaggetggtggecttggtggtgccet 4946

Sbjct: 5087 ggttcagggtagttccccatccacccttggtcctgaggctggtggcettggtggtgcect 5146

Query: 3947 tggcattttttgtgggaagattagaatgagagatagaaccagtgttgtggtaccaagtgt 5005

Sbjct: 5147 tggcattttttgtgggaagattagaatgagagatagaaccagtgttgtggtaccaagtgt 5205

Query: 5007 gagcacacctaacaatatcctgttgcacaatgcttttttaacacatgggaaaactagga 5065

Sbjct: 5207 gagcacacctaaacaatatcctgttgcacaatgcttttttaacacatgggaaaactagga 5265

Query: 5067 atgcattgctgatgaagaagcaaggtattさaaacaccagggcaggagtgccagagaaaat 5125

Sbjct: 5267 atgcattgctgatgaagaagcaaggtatteaaacaccagggcaggagtgccagagaaaat 5326

Query: 5127 gtttccccatgggt =cttaaaaaaaattcagcttttaggtgcttttgtcatctcccggag 5186

Sbjct: 5327 gtttccccatgggttcttaaaaaaattcagcttttaggtgcttttgtcatctcccggag 5385

Query: 5187 tattcatcctcatgggaccatcttattttzacttattgtaatttactggggaaaggcaga 5246

Sbjct: 5387 tattcatcctcatgggaccatcttatttttacttattgtaatttactggggaaaggcaga 5446
Query: 5247 actaaaaagtgtgtcattttattttaaaataattgctttgcttatgcctacac ttctg 5306

Sbjct: 5447 actaaaaagtgtgtcattttattttaaaataattgctttgctatgcctacactttctg 5506
Query: 530? tataactagccaattcaatactgtctatagtgttagaaggaaaatgtgatttttttttt 5366

Sbjct: 5507 tataactagccaattcaatactgtctatagtgttagaaggaaaatgtgatttttttttt 5566
Query: 5367 taaccagtattgagcttcataagcctagaatctgccttatcaggtgaccagggttatggt 5426

Sbjct: 556 ? taaccagtattgagcttcataagcctagaatctgcettatcaggtgaccagggttatggt 5626
Query: 5427 tgtttgcatgcaaatgtgaatttctggcataggggacagcagcccaaatgtaaagtcatc 5486

Sbjct: 5627 tgtttgcatgcaaatgtgaatttctggcataggggacagcagcecaaatgtaaagtcatc 5686
Query: 5487 gggcgtaatgaggaagaagggagtgaacatttaccgctttatgtacataacatatgcagt 5546

Sbjct: 5687 gggcgtaatgaggaagaagggagtgaacatttaccgctttatgtacataacatatgcagt 5746
Query: 5547 ttacatactcatttgatccttaJaatcaaccttgaagaggagatactatcattcttatgt 5606

Sbjct: 5747 ttacatactcatttgatcctta亡aatcaaccttgaagaggagatactatcattcttatgt 5806
Query: 5607 tgcagatagccctctgaaggcccagagaggttaagtaacttcccagaggtcatggccaag 5666

Sbjct: 5807 tgcagatagccctctgaaggcccagagaggttaagtaacttcccagaggtcatggccaag 5866
Query: 5667 aagtagtggctccaagaactgaatgcaaatttttaaactgtagagttctgctttccact 5726

Sbjct: 5867 aagtagtggctccaagaactgaatgcaaattttttaaactgtagagttctgctttccact 5926
Query: 3727 aaacaaagaactcctgccttgatggatggagggcaaattctggtggaacttttgggceac 578 万

Sbjct: 5927 aaacaaagaactcctgccttgatggatggagggcaaattctggtggaacttttgggccac 5986
Query: 5787 ctgaaagttctattcccaggactaagaggaatttcttttaatggatccagagagccaagg 5845

Sbjct: 5987 ctgaaagttctattcccaggactaagaggaatttcttttaatggatccagagagccaagg 6045
Query: 5847 tcagagggagagatggectgcatagectcctgtggatcacacecgggccacccetccetc 5905

Sbjet: 6047 tcagagggagagatggectgcatagzctcctotggatcacaccogggccacccctccetc 6106
Query: 5907 taggtttacagtggacttcttctgcccctcctccttttctgtccttggccatctcagcet 5966

Sbjct: 6107 taggtttacagtggacttcttctgccectcctcctttctgtcettggccatctcagcet 6166
Query: 5967 ggcctctctgatccttccatcasagaaggatcttgabetctgggaeatcaaacatcaca 6026

Sbjct: 6167 ggcctctctgatccttccatcacagaaggatcttgaazctctgggaaatcaaacatcaca 6226
Query: 6027 gtagtgatcagaaagtgagtcctgtcttgtcaccccazttctcatcagaacaaagcacga 6086

Sbjct: 6227 gtagtgatcagaaagtgagtcctgtcttgtcaccccazttctcatcagaacaaagcacga 6286

```
Query: 6087 gatggaatgaccaaccagcattcttcatggtggactgcttatcattgaggatctttggga 6146
 ||!|||||||||||
Sbjct: 6287 gatggaatgaccaaccagcattcttcatggtggactgcttatcattgaggatctttggga 6340
Query: 6147 gataaagcacgctaagagctctggacagagaaaaacaggccctagaatatgggagtgggt 6205
 ||
Sbjct: 6347 gaiaaagcacgctaagagctctggacagagaaaaacaggccctagaatatgggagtgggt 6406
Query: 6207 gtttgtagggctcataggctaacaagcactttagttgctggtttacattcaatgaaggag 6266
 |||
Sbjct: 6407 gtttgtagggctcataggctaa=aagcactttagttgctggtttacatzcaatgaaggagg 6466
Query: 6257 gattcatacccatggcattacaaggctaagcatgtgtatgactaaggaactatctgaaaa 6326
 ||
Sbjct: 6457 qattcatacccatggcattacaaggctaagcatgtgtatgactaaggaactatctgaaaa 6526
Query: 6327 acatgcagcaaggtaagaaaatgtaccactcaacaagccagtgatgccaccttttgtgcg 6386
 ||
Sbjct: 6527 acatgcagcaaggtaagaaaatgtaccactcaacaagccagtgatgccaccttttgtgcg 6585
Query: 63B7 cqggqaggagagtgactaccattgttttttgtgtgacaaagctatcatggactattttaa 6446
 |||
Sbjct: 6537 cggggaggagagtgactaccattgttttttgtgtgacaaagctatcatggactattttaa 6646
Query: 6447 tcttggttttattgcttaaaatatattatttttccctatgtgttgacaaggtatttctaa 6506
 ||
Sbjct: 6647 tottggttttattgcttaaaatatattatttttccctatgtgttgacaaggtatttctaa 6705
Query: 5507 tatcacactattaaatatatgcactaatctaaataaaggtgtctgtattttctgtaatgc 6566
 |||
Sbjct: 6707 tatcacactattaaatatatgcactaatctaaataaaggtgtctqtattttctgtaatgc 6766
Query: 6567 ttatttttagggggaaatttgttttotttatgcttcagggtagagggattcccttgagta 6626
 ||
Sbjct: 6767 ttatttttagggggaaatttgttttctttatgcttcagggtagagggattccettgagta 6826
Query: 6627 taggtcagcaaactctggcctgcagcctgtgtgtgcacgccccatgagccgaaaagtggg 6686
 |||
Skjct: 68こ7 taggtcagcaaactctggcctgcagcctctgtgtgcacgccccatgagccgaaaagtggg 6386
Query: 6687 tcttatgttttcaaatggttaaaaataaataaaaaaatttgaaacatgtgaactatatga b740
 ||
Sbjct: 6887 tcttatgttttcaaatggttaaaaataaataaaaaaatttgaaacatgtgaactatatga 5946
Query: }6747\mathrm{ cattcagatttgtgttcataaatacagttttattggaacatatcc 6791
 |||
Sbjct: 5947 cattcagatttgtgttcataaataaagttttattggaacatatcc 6991
```

Table LIV . Peptide sequences of protein coded by 254P1D6B v. 3 (SEQID NO: 272)

| C | CA | - | LETMRIMRVS |  | SCD | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | VSCPHKENCE | PKKNGPIRSY | LTEVLRPVOR | PROLLDYGDM | MLNRGSPSGI | 120 |
| WGDSPEDIRK | DLPFLGEDWG | LEEMSEYSDD | YRELEKDLIQ | PSGKQEERGS | AEYTDWGLLP | 180 |
| GSEGAENSSV | GDSPAVPAET | QQDPELHYLN | ESASTPAPKL | PERSVLLPLP | TTESSGEVLE | 240 |
| KEKASQLQEQ | SSUSSGKEVL | MPSHSLPEAS | LELSSVTVEK | SPVLCVTPGS | TEHSIPTPPT | 300 |
| SAAPSESTES | ELPISPTTAP | RTVKEJTVSA | GONLIITLPD | NEVELKAFVA | PAEPVETTYN | 360 |
| YEWNLISHPT | DYQGEIKQGH | KQTLNLSQLS | VGLYVEKVTV | SSENAEGEGE | VNVTVKPARR | 420 |
| VNLPEVAVVS | PQLQELTLET | TSALIDGSQS | TDDTEIVSYH | WEEINGPEIE | EKTSVDSPVL | 480 |

RLSNLDPGNY SERITVTDSD GATNSTTAAL IVNNAVDYPP VANAGENHTI TLPQNSITLN GNQSSDDHQI VLYEWSLGPG SEGKHVVMQG VQTPYLHLSA MQEGDYTFQL KVTDSSRQQS TAVVTVIVOP ENNRPPVAVA GPDKELIFPV ESATLDGSSS SDDHGIVFYH WEHVRGPSAV EMENIDFAIA TVLGLQVGTY HFRLTVKDQQ GLSSTSTLTV AVKIENNSPP RARAGGRHVL VLPNNSITLD GSRSTDDQRI VSYLWIRDGQ SPAAGDVIDG SDHSVALQLT NLVEGVYTEH LRVTDSQSAS DTDTATVEVQ PDPRKSGLVE LTLQVGVGQL TEQRKDTLVR QLAVLJNVLD SDIKVQKIRA HSDLSTVIVF YVQSRPPEEV LKAAEVARNL HMRISKEEAD FLLEKVLRVD TAGCLLKCSG HGHCDPLTKR CICSHLWMEN LIQRYIWDGE SNCEWSIFYV TVLAFTLIVI TGGFTWLCIC CCKRQKRTKI RKKTKYTILD NMDEQEFMEL RPKYGIKHRS TEHNSSLMVS ESEFDSDQDT IESREMMERG NPKVSMNGSI RNGASFSYCS KDR

540
600
660
720
780
840
900 950
1020
1063

Table LV. Amino acid sequence alignment of 254P1D6B v. 1 (SEQ ID NO: 273) and 254P1D6B v. 3 (SEQ ID NO: 274)
Score $=2124$ bits ( 5503 ), Expect $=0.01$ dentities $=1053 / 1053(100 \%)$, Positives $=1053 / 1053(100 \%)$
7.1: 20 CARKDCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYL 79 CARKQCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYL
V.3: 11 CARKDCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYL 70
V.1: 80 VSCPHKENCEFKKMGPIRSYLTEVLREVQRRAQLLDYGDMMLNRGSPSGIWGDSPEDIRK 139 VSCPHKENCEPKKMGEIRSYLTEVLPEVQRPAQLIDYGDMMLNRGSPSGIWGDSPEDIRK
V.3: 71 VSCPHKENCEPKKMGPIRSYLTEVLRPVQREAQLLDYGDMMLNRGSPSGIWGDSFEDIRK 130
V.1: 140 DLPFLGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDWGLLPGSEGAENSSV 199 DLPELGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDNGLLPGSEGAFNSSV
V.3: 131 DLPFLGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDNGLLPGSEGAFNSSV 190
V.1: 200 GDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLPLETTPSSGEVLEKEKASCLQEQ 259 GDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLELPTTPSSGEVIEKEKASCLQEQ
V.3: 191 GDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLPLPTTPSSGEVLEKEKASCLQEQ 250
V.1: 260 SSNSSGKEVLMPSHSLEPASLELSSVTVEKSPVLTVTPGSTEHSIPTEPTSAAPSESTPS 319 SSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTEPTSAAPSESTPS
V.3: 251 SSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTEPTSAAPSESTPS 310
V.1: 320 ELPISPTTAPRTVKELTVSAGDNLIITLPDNEVELKAFVAPAPPVETTYNYEWNLISHPT 379 ELFISPTTARRTVKELTVSAGDNLIITLPDNEVELEAFVAPRPPVETTYNYEWNLISHPT
V.3: 311 ELPISPTTAPRTVKELTVSAGDNLIITLPDNEVELKAFVAFAPFVETTYNYEWHLISHPT 370
V.1: 380 DYQGEIKQGHKQTLNLSQLSVGLYVFKVTVSSEWAFGEGEVNVTVKPARRVNLPPVAVVS 439 DYQGEIKQGHKQTLNLSQLSVGLYVEKVTVSSENAEGEGFVNVTVKPARRVNLRPVAVVS
V.3: 371 DYQGEIKQGHKQTLNLSQLSVGLYVFKVTVSSENAFGEGFVNVIVKPARRVNL.PPVAVVS 430
V.I: 440 PQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFIEEKTSVDSEVLRLSNLDPGNY 499 PQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFTEEKTSVDSFVLRLSNEDPGIY
V.3: 431 PQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPEIEEKTSVDSEVLRLSNLDPGNY 490
V.1: 500 SERLTVTOSDGATNSTTARLIVNNAVDYPPVANAGPNHTITLPQNSITLNENQSSEDHQT 559 SERLTVTOSDGATNSTTAALIVNNAVDYPPVANAG PNHTITLPQNSITLNGNQSSEDHQI
V.3: 491 SERLTVTDSDGATNSTTAALIVNNAVDYPPVANAGENHTITLPQNSITINGNQSSDDHQI 550
V.1: 560 VLYEWSLGPGSEGKHVVMQGVQTPYLHLSAMC̨EGDYTFQLKVTDSSRQQSTAVVTVIVQP 619 VLYENSLGPGSEGKHVVMQGVQTPYLHLSAMQEGDYTEQLKVTDSSRQQSTAVVTVIVQP
V.3: 551 VLYEWSLGPGSEGKHVVMQGVQTPYLHLSAMQEGDYTEQLKVTDSSRQQSTAVVI'VIVQP 610
V.1: 620 ENNRFPVAVAGPDKELI FPVESATLDGSSSSDDHGIVEYFWEHVRGPSAVEMENIDKAIA 679 ENNRPPVAVAGPDKELIFPVESATLDGSSSSDDHGIVEYHWEHVRGESAVEMENIDKAIA. V.3: 611 ENNRPPVAVAGPDKELIFPVESATLDGSSSSDDHGIVEYHWEHVRGESAVEMENIDKAIA 670
V.1: 680 TVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVKKENNSPERARAGGREVLVLPNNSITLD 739 TVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVKKENNSPEFARAGGREVLVLPNNSITLD
V.3: 671 TVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVEEENNSEFFARAGGRHVLVLPNNSITLD 730
V.1: 740 GSRSTDDQRIVSYLWIRDGQSPAAGDVIDGSDHSVALQLTNLVEGVYTFHLRVTDSQGAS 799 GSRSTDDQRIVSYLWIRDGQSPAAGDVIDGSDHSVALQLTNLVEGVYTFHLRVTDSQGAS
V.3: 731 GSRSTDDQRIVSYLWIRDGQSPAAGDVIDGSDHSVALQLTNLVEGVYTFHLRVTDSQGAS 790
$\nabla .1: 800$ DTDTATVEVQPDFRKSGLVELTLQVGVGQLTEQRKDTLVRQLAVLLNVLDSDIKVOKIRA 859 DTDTATVEVQPDPRKSGLVELTLGVGVGQLTEQRKDTLVRQLAVLLNVLDSDIKVQKIRA


## THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated polynucleotide that encodes a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.
2. The polynucleotide of claim 1, wherein the polynucleotide sequence comprises the sequence of
(a) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730;
(b) SEQ ID NO:4, from nucleotide residue number 512 to nucleotide residue number 3730 ;
(c) SEQ ID NO:6, from nucleotide residue number 739 to nucleotide residue number 3930;
(d) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the cytosine at position 286 is replaced by guanine;
(e) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 2347 is replaced by adenine;
(f) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the cytosine at position 3762 is replaced by thymine;
(g) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the adenine at position 3772 is replaced by guanine;
(h) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the cytosine at position 3955 is replaced by thymine;
(i) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the cytosine at position 4096 is replaced by thymine;
(j) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 4415 is replaced by adenine;
(k) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 4419 is replaced by adenine;
(1) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the adenine at position 4539 is replaced by guanine;
(m) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 4614 is replaced by thymine;
(n) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 5184 is replaced by cytosine;
(o) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the thymine at position 5528 is replaced by guanine;
(p) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 5641 is replaced by adenine;
3. A host cell that contains an expression vector of claim 3.
4. An isolated protein comprising the amino acid sequence of SEQ ID NO:3, SEQ
(q) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the thymine at position 6221 is replaced by cytosine; or
(r) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730 , wherein the guanine at position 6223 is replaced by adenine.
5. A recombinant expression vector comprising a polynucleotide of claim 1 or 2. ID NO:5, or SEQ ID NO:7.
6. A process for producing the protein of claim 5 comprising culturing a host cell of claim 4 under conditions sufficient for the production of the protein.
7. An antibody or fragment thereof that immunospecifically binds to an epitope on the protein of claim 5 .
8. The antibody or fragment thereof of claim 7, which is monoclonal.
9. The antibody or fragment thereof of claim 7 or claim 8 , which is conjugated with a cytotoxic agent.
10. The antibody or fragment thereof of claim 9, wherein the cytotoxic agent is selected from the group consisting of radioactive isotopes, chemotherapeutic agents and toxins.
11. The antibody or fragment thereof of any one of claims 7 to 10 , wherein the antibody or fragment thereof further comprises a pharmaceutically acceptable carrier.
12. A hybridoma that produces an antibody of claim 8.
13. A method for detecting the presence of a protein or a polynucleotide in a test sample comprising:
contacting the sample with an antibody or a probe, respectively, that specifically binds to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, or the polynucleotide of claim 1, respectively; and
detecting binding of protein or polynucleotide, respectively, in the sample thereto.
14. The method of claim 13, wherein the method comprises comparing an amount of binding of the antibody or the probe that specifically binds to the protein or the polynucleotide to the presence of the protein or the polynucleotide in a corresponding normal sample.
15. The method of claim 14, wherein the presence of elevated polynucleotide or protein in the test sample relative to the normal tissue sample provides an indication of the presence of cancer.
16. The method of claim 15, wherein the cancer is selected from the group consisting of prostate cancer, lung cancer, ovarian cancer, breast cancer, and pancreatic cancer.
17. A method of inhibiting growth of a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an effective amount of an antibody according to any one of claims 7 to 11 to the cell, whereby the growth of the cell is inhibited.
18. A method of delivering a cytotoxic agent to a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an effective amount of an antibody according to any one of claims 7 to 11 to the cell.
19. A method of inducing an immune response to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising: providing a protein epitope; contacting the epitope with an
immune system $T$ cell or $B$ cell, whereby the immune system $T$ cell or $B$ cell is induced.
20. Use of an epitope from a protein comprising the amino acid sequence of SEQ ID 5 NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, for the preparation of a medicament to induce a T cell or B cell immune response in a subject.
21. Use of an antibody according to any one of claims 7-11 in the manufacture of a medicament for inhibiting growth of a cell expressing a protein comprising the amino 10 acid sequence of SEQ ID:NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11.

Figure 1: 254P1D6B SSH sequence of 186 nucleotides (SEQ ID NO: 1).

1 GATCCACAGA TAGGACACAA TTCTTTGGTC ATCAGTAGAC CTTGAACCAT CCAAAGTAAT
61 GGAATTATTG GGAAGCACAA GAACATGTCT GCCACCAGCC CGGGCTCTGG GAGGACTATT
121 ATTTICCTTC TTCACAGCCA CAGTGAGGGT GGACGTGCTG CTCAGTCCCT GCTGGTCTTT
181 tACTGTCAAA CGGAAGTGGT AGGTCCCCAC CTGGAGACCA GTCACAGTGG CTATtGCTTT
241 GTCAATATTT TCCATCTCCA CTGCACTGGG GCCTCTGACG TGCT

## Figure 2:

Figure 2A. The cDNA (SEQ ID NO.: 2) and amino acid sequence (SEQ ID NO.: 3) of 254P1D6B v. 1 clone LCP.3. The start methionine is underined. The open reading frame extends from nucleic acid $512-3730$ including the stop codon.

1 gctgcogcgggoggtgggcggggatcccecgggggtgcaaccttgctccacctgtgctcc
61. cotcggegggcotggctggccccgcgcagagcggeggcggcgctcgctgtcactgocgca

121 ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgctcctctcg
181 ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac
241 agcaggtgcgegcgcgagggtgtgaacgtgtgtgtgtgtgtgtgtstgtg=gtgtgtgtg
301 taagacctgcgatgacgacgaggaggaacaagtgggacggcgagtgatgc=cagggccag
361 cagcaacgcatggggcgagcttcagtgtcgccagcagtgaccacagttct=gaggccaaa
421 tctggctcctaaaaaacatcaaaggaagcttgcaccaaactctcttcagggcegcotcag
$1 \mathrm{M} A \mathrm{P} \quad \mathrm{P}$ T G V I S S
481 aaccotgccatcacccactgtgtggtgcacaATGGCGCcccccachagTGTGCTCTCTTC
 541 ATTGCTGCTGCTGGTGACAATTGCAGGTTGTGCCCGTAAGCAGTGCAGCGAGGGGAGGAC
 601 ATATTCCAATGCAGTCATTTCACCTAZCTTGGAAACCACCAGAATCATGCGGGTGTCTCA

5 I 'LI F $\quad \mathrm{F} \quad \mathrm{V}$ 661 CACCTTCCCTGTCGTAGACTGCACGGCCGCTTGCTGTGACCTGTCCAGCTGTGACCTGGC
 721 CTGGTGGTTCGAGGGCCGCTGCTACCTGGTGAGCTGCCCCCACAAAGAGAACTGTGAGCC $91 \mathrm{~K} \quad \mathrm{~K} \quad \mathrm{M} \quad \mathrm{G} \quad \mathrm{P} \quad \mathrm{I} \quad \mathrm{R}$ 781 CAAGAAGATGGGCCCCATEAGGTCTTATCTCACTTTTGTGCTCCGGCCTGTTCAGAGGCC
 841 TGCACAGCTGCTGGACTATGGGGACATGATGCTGAACAGGGGCTCCCCCTCGGGGATCTG
 901 GGGGGACTCACCTGAGGATATCAGAAAGGACTTGMCCTTTCTAGGCAAAGATTGGGGCCT
 961 AGAGGAGATGTCTGAGTACKCAGATGACTACCGGGAGCTGGAGAAGGACCTCTTGCAACC
 1021 CAGTGGCAAGCAGGAGCCCAGAGGGAGTGCCGAGTACACGGACTGGGGCCDACTGCCGGG
 1081 CASCGAGGGGGCCTTCAACTCCTCTGTTGGAGACAGTCCTGCGGTGCCAGCGGAGACGCA.
 1141 GCAGGACCCTGAGCTCCATTACCTGAATGAGTCGGCTTCAACCCCTGCCCCAAAACTCCC
 1201 TGAGAGAAGTGTGTTGCTTCCCTTGCCGACTACTCDATCTTCAGGAGAEGTGTTGGAGAA 251 E K K $\quad \mathrm{A} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{L} \quad \mathrm{Q}$ 1261 AGAAAAGGCTTCTCAGCTCCAGGAACADTCCAGCAACAGCTCTGGAAAZGAGGTTCTAAT
 1321 GCCTTCCCATAGTCTTCCTCCGGCAAGCCTGGAGCTCAGCTCAGTCAこCGTGGAGAAAAG
$\begin{array}{llllllllllllllllllllll}291 & \mathrm{E} & \mathrm{V} & \mathrm{L} & \mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{P} & \mathrm{G} & \mathrm{S} & \mathrm{T} & \mathrm{E} & \mathrm{H} & \mathrm{S} & \mathrm{I} & \mathrm{P} & \mathrm{T} & \mathrm{P} & \mathrm{P} & \mathrm{T} & \mathrm{S}\end{array}$ 1381 CCCAGTGCTCACAGTCACCCCGGGGAGTACAGAGCACAGCATCCCAACACOTCCCACTAG
 1441 CGCAGCCCCCTSTGAGTCCACCCCATCTGAGCTACCCATATCTCCTACCAETGCTCCCAG
 1501 GACAGTGAAAGAACTTACGGTATCGGCTGGAGATAACCTAATTATAACTTTACCCGACAA
 1561 TGAAGTTGAACTGAAGGCCTTTGTTGCGCCAGCGCCACCTGTAGAAACAACCTACAACTA
 1621 TGAATGGAATTTAATAAGCCACCCCACAGACTACCAAGGTGAAATAAAACAAGGACACAA
 1681 GCAAACTCTTAACCTCTCTCAATTGTCCGTCGGACTTTATGTCTTCAAZGTCACTGTITC
 1741 TAGTGAAAACGCCTTTGGAGAAGGATTTGTCAZTGICACTGTIAAGCCTGCCAGAAGAGT
 1801 CAACCTGCCACCTGTAGCAGTTGTTTCTCCCCAACTGCAAGAGCTCACTTTGCCTTTGAC
 1861 GTCAGCCCTCATTGATGGCAGCCAAAGTACAGATGATACTGAAATAGTGAGTTATCATTG
 1921 GGAAGAAATAAACGGGCCCTTCATAGAAGAGAAGASTTCAGTTGACTCTCCCGTCTTACG
 1981 CTTGTCTAACCTTGATCCTGGTAACTATAGTTTCASGTTGACTGTTACZGACTCGGACGG
 2041 AGCCACTAACTCTACAACTGCAGCCCTAATAGTGAACAATGCTGTGGACTACCCACCAGT 531 A $N=A$ 2101 TGCTAATGCAGGACCAAATCACACCATAACTTTGCCCCZAAACTCCATCACTTTGAATGG
 2161 AAACCAGAGCAGTGACGATCACCAGATTGTCCTCTATGAGTGCTCCCTGGGTCCTGGGAG
 2221 TGAGGGCAAACATGTGGTCATGCAGGGAGTACAGACGCCATACCTTCATTTATCTGCAAT
 2281 GCAGGAAGGAGATTATACATTTCAGCIGAAGGTGACAGATTCTTCAAGGCAACAGTCTAC
 2341 TGCTGTRGTGACTGTGATTGTCCAGCCTGAAAACAATAGACCTCCAGTGGCTGTGGCCGG $\begin{array}{lllllllllllllllllll}631 & \mathrm{P} & \mathrm{D} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{I} & \mathrm{F} & \mathrm{P} & \mathrm{V} & \mathrm{E} & \mathrm{S} & \mathrm{A} & \mathrm{T} & \mathrm{L} & \mathrm{D} & \mathrm{G} & \mathrm{S} & \mathrm{S} \\ \mathrm{S} & \mathrm{S} & \mathrm{S}\end{array}$ 2401 CCCTGATAAAGAGCTGATCTTCCCAGTGGAAAGTGCTACCCTSGATGGGAGCAGCAGCAG
 2451 CGATGACCACGGCATTGTCTTCTACCACTGGGAGCACGTCAGAGGCCCCAGTGCAGTGGA
 2521 GATGGAAAATA卫TGACAAAGCAATAGCCACTGTGACTGGTCTCCAGGTGGGGACCTACCA
 2581 CTTCCGTTTGACAGTGAAAGACCAGCAGGGACTGAGCAGCACGTCCACCCTCACTGTGGC
 2641 TGTGAAGAAGGAAAATAATAGTCCTCCOAGAGCCCGGGCTGGTGGCAGACATGTTCTTGT
 2701 GCTTCCCAATAATTCCATTACTTTGGATGGTTCAAGGTCTACTGATGACCAAAGAATTGT
 2751 GTCCTATCTETGGATCCGGGATGGCCAGAGTCCAGCAGCTGGAGATGTCATCGATGGCTC
 2821 TGACCACAGTGTGGCTCTGCAGCTTACGAATCTGGTGGAGGGGGTGTACACTTTCCACTT
 2881 GCGAGTCACCGACAGTCAGGGGGCCTCGGACACAGACACTGCCACTGTGGAAGTGCAGCC $811 \quad D \quad \mathrm{P} \quad \mathrm{R} \quad \mathrm{K} \quad \overline{\mathrm{S}} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{V}$ 2941 AGACCCTAGGAAGAGTGGCCTGGTGGAGCTGACCCTGCAGGTTGGTGTTGGGCAGCTGAC
 3001 AGAGCAGCGGAAGGACACCCTMGTGAGGCAGCTGGCTGTGCTGCTGAZCGTGCTGGACTC
 3061 GGACATPAAGGTCCAGAAGATTCGGGCCCACTCGGALCPCAGCACCGTGATTGTGRTTTA $871 \mathrm{~V} \quad \mathrm{Q} \quad \mathrm{S} \quad \mathrm{R} \quad \mathrm{P} \quad \mathrm{P} \quad \mathrm{F} \quad \mathrm{K} \quad \mathrm{V} \quad \mathrm{I}$ 3121 TGTACAGAGCAGGCCGCCITTCAAGGTTCTCAAAGCTGCTGAAGTGGCCCGAAATCTGCA
 3181 CATGCGGCTCTCAAAGGAGAAGGCTGACTTCTTGCTTTTCAAGGTCTTCAGGGTTGATAC
 3241 AGCAGGTTGCCTTCTGAAGTGTTCTGGCCATGGTCACTGCGACCCCCTCACAAAGCGCTG
 3301 CATTTGCTCTCACTTATGGATGGAGAACCTTATACAGCGTTATATCTGGGATGGAGAGAG
 3361 CAACTGTGAGTGGAGTATATTCTATGTGACAGTGTTGGCTTTTACTCTTATTGTGCTAAC $\begin{array}{llllllllllllllllllll}971 & G & G & \mathrm{~F} & \mathrm{~T} & \mathrm{~N} & \mathrm{~L} & \mathrm{C} & \mathrm{I} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{K} & \mathrm{R} & \mathrm{Q} & \mathrm{K} & \mathrm{R} & \mathrm{T} & \mathrm{K} & \mathrm{I}\end{array} \mathrm{R}$ 3421 AGGAGGTTTCACTTGGCTTTGCATCTGGTGCTGCAAAAGACAAAAZAGGACTAAAATCAG $991 \mathrm{~K} \quad \mathrm{~K} \quad \mathrm{~T} \quad \mathrm{~K} \quad \mathrm{I}$ $34 B 1$ GAAAAAAACAAAGTACACCATCCTGGATAACATGGATGAACAGGAAAGAATGGAACTGAG
 3541 GCCCAAATATGGTATCAAGCACCGAAGCACAGAGCACAACTCCAGCCTGATGGTATCCGA
 3601 GTCTGAGTTTGACAGTGACCAGGACACAATCTTCAGCCGAGAAAAGATGGAGAGAGGGAA
 3661 TCCAAAGGTTTCCATGAATGGTTCCATCAGAAATGGAGCTTCCTTCAGTTATTGCTCAAA 1071 D R * 3721 GGACAGETAAtggcgcagttcattgtaaagtggaaggacccyttgaatccargaccagtc 3781 agtgggagttacagcacaaaacccactcttttagaatagttcattgacc tcttccccag
3841 tgggttagatgtgtatccocacgtactaaaagaccggtttttgaaggcacaaaacaaaaa
3901 ctttgctottttaactgagatgcttgttaatagaaataaaggctgggtaaaactytaagg 3951 tatatacttaaaagagttttgagtttttgtagctggcacaatctcatattaaagatgaac

4021 aecgatttctatctgtagaaccttagagaaggtgaatgaaacaaggttttaaaaagggat 4081 gatttctgtcttagcygctgtgattgcctctagggaacagcettctaaacacggtttcto 4141 ttgtaggacctgcagtcagatggetgtgtatgttaaaajagcttgtctaagaggcacggg 4201 ccatctgtggaggtacggagtcttgcatgtagcaagctitctgtgctgacggcaacactc 4261 gcacagtgccaagccctcctggtttttaattctgtgctatgtcaatggcagttttcatct 4321 ctctcaagaaagcagctgttggocattcaagagctaaggaacaatcgtattctaaggact 4381 gaggcaatagaaaggggaggaggagcttaatgcortgcaggttgaaggtagcattgtaac 4441 attatcttttctttctctaagaaaaactacactgactcctctcggtgttgtttagcagta 4501 tagttctotaatgtaaacrgatoccoagtttacattaartgcaatagaagtgattaatto 4561 attaagcatttattatgttctgtaggctgtgcgtttggactgccatagataggkataacg 4621 actcagcaattgtgtatatattccaaaactctgaaatacagtcagtcttaacttggatgg 4681 cgtggttatgatactctggtcccogacaggtactttccaaaataacttgacatagatgta 4741 ttcaottcatatgtttaaaaatacatttaagtttttctaccgaataaatcetatttcaaa 4801 catgaaagacaattaaaacattcccaccaacaaagcagtactcccgagcaattaactgga 4861 gttanttgtagcetgctacgttgactggttcagggtagttccocatcoacccttggtcct 4921 gaggctggtggecttggtggtgcccttggcattttttgtgggaagattagaatgagagat 4981 agaaccagtgttgtggtaccaagtgtgagcacacctaaacaatatcctgt=gcacaatcc 5041 ttttttaacacatgggaaaactaggaatgcattgatgatgaagaagcaaggtatttaaac 5101 accagggcaggagtsccagagaaaatgtttccccatgggttcttaaaaaaaattcagctt 5161 ttaggtgcttttgtcatctccogsagtattcatcctcatgggaccatcttatttttactt 5221 attgtaatttactggggaaaggcagaactaaaaagtgtgtcattttatttttaaataat 5281 tgctttgcttatgcctacactttctgtataactagccaattcaatactgtctatagtgtt 5341 agaaggaaaatgtgatttttttttttaaccagtattgagcttcataagcctagaatctg 5401 ccttatcaggtgaccagggttatggttgtttgcatgcaaatgtgaatttctggcataggg 5461 gacagcagcccaaatgtaaagtcatcgggcgtaatgaggaagaagggagtgaacatttac 5521 cgctttakgtacataccatatgcagtttacatactcatttgatccttataatcaaccttg 5581 aagaggagatactatcattcttatgttgcagatagccctctgaaggcccagagaggttaa 5641 rtaacttcccagaggtcatggccaagaagtagtggctccaagaacagaatgcaaattttt 5701 taaactgtagagttctgctttccactaaacaaagaactcctgcctsgatggatggagggc 5761 aaattctggtggaacttttgggccacctgaaagtzetattcccaggactaagaggaattt 5821 cttttaatggatccagagagcoaaggtcagagggagagatggcctgcatagtctcctgtg 5881 gatcacaccogggccacccctccctctaggtttacagtggacttcttctgccectcctcc 5941 ttttctgtccttggccatctcagcotggcotctotgatccttccatcacagaaggatctt 5001 gaetctctgggaaatcaaacatcacagtagtgatcagaaagtgagtcctgtcttgtcacc 6061 ccetttctcatcagaacaョagcacgagatggaatgaccaaccagcattcttcatggtgga 6121 ctccttatcattgaggatctttgggagataaagcacgctaagagctctggacagagaaaa 6181 acaggccotagaatatgggagtgggtgtttgtagggctcayargctaacaagcactttag 6241 ttgctggtttacattcaatgaaggaggattcatacccatggcattacaaggctaagcatg 6301 tgtatgactaaggaactatctgaaaaacatgcagcaaggtaagaaaatgtaccactcaac 6361 aagccagtgatgccaccttttgtgcgcggggaggagegtgactaccattgttttttgtgt 6421 gacaaagctatcatggactattttaatcttggttttattgcttaaaatatattatttt 6481 cotatgtgttgacaaggtatttctaatatcacactattaaatatatgsactaatctaaat


#### Abstract

6541 aaaggtgtcegtattttctgtaatgcetatttttagggggacatttgttttcttatgct 6601 tcagggtagagggattcccttgagtataggtcagcaaactctggcctgcagcctgtgtgt 6661 gcacgccccatgagccgaaaagtgggzcttatgttttcaaatggttaaaaataaataaaa 6721 aatttgaaacatgtgaactatatgacattcagatttgtgttcataaataaagttttatt 6781 ggaacatatoc


Figure 2B. The cDNA (SEQ ID NO. : 4) and amino acid sequence (SEQID NO. : 5) of 254P1D6B v.2. The start methionine is underlined. The open reading frame extends from nucleic acid $512-3730$ indluding the stop codon.

1 gctgecgegggeggtgggcggggatcccocgggggtgcaaccttgctccasctgtgetge
61 cctcggcgggcctggctggccccgcgcagagcggcggcggcgetcgctgteactgccgga
121 ggtgagagcgcagcagtegcttcagcctgtcttgggettggtccagattcgctcotctgg
181 ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctettaac
241 agcaggtgcgcgcgcgagggtgtgaacgtgtgtgtgtgtgtctgtctgtgtgtgtgtgtg
301 taagacctgogatgacgacgaggaggaacaagtgggacggcgagtgatgctcagggccag
361 cagcaacgcatggggcgagcttcagtgtcgccagcagtgaccacagttcttgaggccaaa
421 tctggctcctaaaaaacatcaaaggaagcttgcaccaaactctcttcagggccgcctcag
1 . M A $\quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{G} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{S}$
481 aagcctgccatcacccactgtgtggtgcacaATGGCGCCCCCCACAGGmGTGCTCTCTTO
$\begin{array}{lllllllllllllllllllll}11 & L & L & L & \mathrm{~L} & \mathrm{~V} & \mathrm{~T} & \mathrm{I} & \mathrm{A} & \mathrm{G} & \mathrm{C} & \mathrm{A} & \mathrm{R} & \mathrm{K} & \mathrm{Q} & \mathrm{C} & \mathrm{S} & \mathrm{E} & \mathrm{G} & \mathrm{R} & \mathrm{T}\end{array}$
541 ATTGCTGCTGCTGGTGACAATTGCAGGTTGTGCCCGTAAGCAGTGCAGCGAGGGGAGGAC
 601 ATATTCCAATGCAGTCATTTCACCTAACITGGAAACCACCAGAATCATGCGGGTGTCTCA
 661 CACCTTCCOTGTCGTAGACTGCACGGCCGCTTGCTGTGACCTGTCCAGCTGTGACCTGGC
 721 CIGGTGGTTCGAGGGCCECTGCTACCTGGTGAGCTGCCCCCACAAAGAGAACTGTGAGCC
 781 CAAGAAGATGGGCCCCATCAGGTCTTATCTCACTTTTGTGCTCCGGCCTGTPCAGAGGCC $\begin{array}{llllllllllllllllll}111 & Z & Q & L & L & D & Y & G & D & M & M & L & N & R & G & S & P & S \\ G & I & W\end{array}$ 841 TGCACAGCTGCTGGACTATGGGGACATGATGCTGAACAGGGGCTCCCCCTCGGGGATCTG $131 \mathrm{G} \quad \mathrm{D} \quad \mathrm{S} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{R} \quad \mathrm{K} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{P}$ 901 GGGGGACTCACCTGAGGATATCAGAAAGGACTTGCCCTTTCIAGGCAAZGATTGGGGCCT
 961 AGAGGAGATGTCTGAGTACGCAGATGACTACCGGGAGCTGGAGAAGGACCTCIMGCAACC
 1021 CAGTGGCAAGCAGGAGCCCAGAGGGAGTGCCGAGTACACGGACTGGGGCCTACTGCCGGG
 1081 CAGCGAGGGGGCCTTCAACTCCTCTGTTGGAGACAGTCCTGCGGTGCCAGCGGAGACGCA

| 21 | Q | D | P | E | L | H | Y | L | N | E | S | A | S | T | P | A | P | K | L | E |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1141 | $G C A G G A C C C T G A G C T C C A T T A C C T G A A T G A G T C G G C T T C A A C C C C T G C C C C A A A A C T C C C ~$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 231 | E | R | S | V | L | L | P | L | P | T | T | P | S | S | G | E | V | I | E | K |

1201 TGAGAGAAGTGTGTTGCTTCCCTTGCCGACTACTCCATCTTCAGGAGAGGTGTTGGAGAA
 1261 AGAAAAGGCTTCTCAGCTCCAGGAACAATCCAGCAACAGCTCTGGAAAAGAGGTTCTAAT
 1321 GCCTTCCCATAGTCTTCCTCCGGCAAGCCTGGAGCTCAGCTCAGTCACCGTGGAGAAAAG
 1381 CCCAGTGCTCACAGTCACCCCGGGGAGTACAGAGCACAGCATCCCAACACOTCCCACTAG $\begin{array}{lllllllllllllllllllll}311 & A & A & P & S & E & S & T & P & S & E & L & P & I & S & P & T & T & A & P & R\end{array}$ 1441 CGCAGCCCCCTCTGAGTCCACCCCATCTGAGCTACCCATATCTCCTACCACTGCTCCCAG
 1501 GACAGTGAAAGAACTTACGGTATCGGCTGGAGATAACCTAATTATAACTTTACCCGACAA
 1561 TGAAGTTGAACTGAAGGCCTTTGI"IGCGCCAGCGCCACCTGIAGAAACAACCTACAACTA 371 E W N I I S H P T D Y 1621 TGAATGGAATTTAATAAGCCACCCCACAGACTACCADGGTGAAATAAAACAAGGACACAA $\begin{array}{lllllllllllllllllllll}391 & Q & T & L & N & L & S & Q & L & S & V & G & L & Y & V & F & K & V & T & V & S\end{array}$ 1681 GCAAACTCTTAACCTCTCTCAATTGTCCGTCGGACTTTATGTCTTCAAAGTCACTGTTTC
 1741 TAGTGAAAACGCCTTTGGAGARGGATTTGTCAATGTCACTGTTAAGCCIGCCAGAAGAGT $431 \mathrm{~N} \quad \mathrm{~L} \quad \mathrm{P} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{A} \quad \mathrm{V}$ 1801 CARCCTGCCACCTGTAGCAGTTGTTTCTCCCCAACTGCAAGAGCTCACTTTGCCTTTGAC
 1861 GTCAGCCCTCATTGATGGCAGCCAAAGTACAGATGATACTGAAATAGTGAGTTATCATIG 471 E Ellllllllllllllllll 1 1921 GGAAGAAATAAACGGGCCCTTCATAGAAGAGAAGACTTCAGTTGACTCTCCCGTCTTACG
 1981 CTTGTCTAACCTTGATCCTGGTAACTATAGTTICAGGTTGACTGTTACAGACTCGGACGG $\begin{array}{lllllllllllllllllllll}511 & A & T & N & S & T & T & A & A & I & V & N & N & A & V & D & Y & P & P & V\end{array}$ 2041 AGCCACTAACTCTACAACTGCAGCCCTAATAGTGAACAATGCTGTGGACTACCCACCAGT 531 A $N$ N A $\quad$ G $\quad \mathrm{P} \quad \mathrm{N} \quad \mathrm{H} \quad \mathrm{T}$ 2101 TGCTAATGCAGGACCAAATCACACCATAACTTTGCCCCAAAACTCCATCACTTTGAATGG
 2161 AAACCAGAGCAGTGACGATCACCAGATTGTCCTCTATGAGTGGTCCCTGGGTCCTGGGAG
 2221 TGAGGGCAAACATGTGGTCATGCAGGGAGTACAGACGCCATACCTTCATTTATCTECAAT 591 Q E E G $\quad \mathrm{D} \quad \mathrm{Y}$ 2281 GCAGGAAGGAGATTATACATTTCAGCTGAAGGTGACAGATTCTICAAGGCAACAGTCTAC
 2341 TGCTGTAGTGACTGTGATTGTCCAGCCTGAAAACAATAGACCTCCAGTGGCTGTGGCCGG
 2401 CCCTGATAAAGAGCTGATCTTCCCAGTGGAAAGTGCTACCCTGGATGGGAGCAGCAGCAG



3721 GGACAGATAAtggcgcagttcattgtaaagtggaaggaccccttgaatccaagaccagtc 3781 agtgggagttacagcacaaaacccactcttttagaatagttcattgaccttcttcccoag 384 l tgggttagatgtgtatccscacgtactaaaagacoggtttttgaaggcacaaaacaaaaa 3901 ctttgctcttttaactgagatgcttgttaatagaaataaaggctgggtaaaactctaagg 3961 tatatacttaaagagttttgagtttttgtagctggcacaatctcatattaaagatgaac 4021 aacgatttctatctgtagaaccttagagaaggtgaatgaaacaaggttttaaaagggat 4081 gatttctgtcttagccgctgtgattgcctctaaggaacagcattctaaacacggtttctc 4141 ttgtaggacctgcagtcagatggctgtgtatgttaaaatagcttgtctaagaggcacggg 4.201 ccatctgtggaggtacggagtcttgcatgtagcaagctttctgtgctgacggcaacactc 4261 gcacagtgccaagccctcctggtttttaattctgtgctatgtcaatggcagttttcatct 4321 ctctcaagaaagcagctgttggccattcaagagctaaggaagaatcgtattctaaggact 4381 gaggcaatagaaaggggaggaggagcttaatgccgtgcaggttgaaggtagcattgtaac 4441 attatcttttctttctctaagaaaaactacactgactcctctaggtgttgtttagcagta 4501 tagttctctaatgtaaacggatcccoagtttacataaaatgcヨatagaagtgattaattc 4561 attaagcatttattatgt 0 (otgtaggetgtgcgtteggactgacatagatagggataacg 4521 actcagcaattgtgtataこattccaaaactctgaaatacagtsagtcttaccttggatgg 4681 cgtggttatgatactctggtccccgacaggtacttLccaaaataacttgacatagatgta 4741 ttcacttcatatgtttaaaaatacatttaagtttttctaccgaataaatcttatttcaaa 4801 catgaaagacaattaaaacattcccacccacaaagcagtactcccgagcacttaactgga 4861 gttaattgtagcotgctacgttgactggttcagggtagttccocatccacccttggtcot 4921 gaggctggtggccttggtggtgccettggcattttttgtgggaagattagaatgagagat 4981 agaacoagtgttgtggtaccaagtgtgagcacacctaaacaatatcotgttgcacaatgc 5041 ttttttaacacatgggaaaactaggaatgcattgctgatgaagaagcaaggtatttaaac 5101 accagggcaggagtgccagagaaaatgtttccccatgggttc=taaaaaaaattcagct 5161 ttaggtgcttttgtcatctcccggagtattcatcctcatgggaccetcttattttactt 5221 attgtaatttactggggaaaggcagaactaaaaagtgtgtcavtttatttttaaataat 5231 tgctttgcttatgcctacactttctgtataactagccaattcaatactgtctatagtgtt 5341 agaaggaaaatgtgattttttttttttaaccagtattgagcttaataagcctagaatctg 5401 ccttatcaggtgaccagggttatggttgtttgcatgcaaatgtgaatttctggcataggg 5451 gacagcagcccaaatgtaaagtcatcgggcgtaatgaggaagaəgggagtgaacatttac 5521 cgctttatgtacataacatatgcagtttacatactcatttgatccttataatcaaccttg 5581 aagaggagatactatcattcttatgttgcagatagccotctgaaggcccagagaggttaa 5641 gtaacttcccagaggtcatggccaagaagtagtggctccaagaactgaatgcaaatttt 5701 taaactgtagagttctgctttccactaaacaaagaactcctgccttgatggatggagggc 5761 aaattctggtggaacttttgggccacctgaaagttctattcccaggactaagaggaatt 5821 cttttaatggatccagagagccaaggtcagagggagagatggcotgcatagtctcctgtg 5881 gatcacacccgqgccacccotccctctaggtttacagtggactecttctgcccetcctcc 5941 ttttctgtccttggccatctcagcctggcctctctgatccttccatcacagaaggatctt 6001 gaatctctgggaaatcaaacatcacagtagtgatcagaaagtgagtcotgtcttgtcaco
6061 ccatttctcatcagaacaaagcacgagatggaatgaccaaccagcattcttcatggtgga
6121 ctgcttatcattgaggatctttgggagataaagcacgctaagagctctggacagagaaaa
6181 acaggccctagaatatgggagtgggtgtttgtagggctcataggctaacaagcactttag

6241 ttgctggtttacattcaatgaaggaggattcatacccatggcattacaaggctaagcatg 6301 tgtatgactaaggaactatctgaaaaacatgcagcaaggtaagaaaatgtaccactcaac 6361 aagccagtgatgccaccttttgtgcgcggggaggagagtgactaccattg＝tttttgtgt 6421 gacaaagctatcatggactattttaatcttggttttattgcttaaaatatattattttc 6481 cctatgtgttgacaaggtatttctaatatcacactattaaatatatgcaczaatctaaat 6541 aagggtgtctgtattttctgtaatgcttatttttagggggaaatttgtttectttatgct 6601 tcagggtagagggattcccttgagtataggtcagcaaactctggcetgcagcotgtgtgt 6661 gcacgccccatgagccgaaaagtgggtcttatgttttcaaatggttaaaaataaataaaa 6721 aaatttgaaacatgtgaactatatgacattcagatttgtgttcataaataaagttttatt 6781 ggaacatatco

Figure 2C．The cDNA（SEQ ID NO．：6）and amino acid sequence（SEQID NO．：7）of 254P1D6B v．3．The stert methionine is underlined．The open reading frame extends from nucleic acid $739-3930$ including the stop codon

[^3]

$\begin{array}{lllllllllllllllllllll}575 & Y & L & H & L & S & A & M & Q & E & G & D & Y & T & F & Q & L & K & V & T & D\end{array}$
2461 TACCTTCATTTATCTGCAATGCAGGAAGGAGATTATACATTICAGCTGAAGGTGACAGAT
 2521 TCTTCAAGGCAACAGTCTACTGCTGTGGTGACTGTGATTGTCCAGCCTGAAAACAATAGA
 2581 CCTCCAGTGGCTGTGGCCGGCCCTGATAAAGAGCTGATCTTCCCAGTGGAAAGTGCTACC
 2641 CTGGATGGGAGCAGCAGCAGCGATGACCACGGCATTGTCTICTACCACTGGGAGCACGTC
 2701 AGAGGCCCCAGTGCAGTGGAGATGGAAAATATTGACAAAGCAATAGCCACTGTGACTGGT $\begin{array}{llllllllllllllllllll}575 & L & Q & V & G & I & Y & H & F & R & L & T & V & K & D & Q & Q & G & L & S\end{array}$ 2761 CTCCAGGTGGGGACCTACCACTTCCGTTTGACAGTGAAAGACCAGCAGGGACTGAGCAGC
 2021 ACGTCCACCCTCACTGTGGCTGTGAAGAAGGAAAATPATAGTCCTCCCAGAGCCCGGGCT $715 \mathrm{G} \quad \mathrm{G} \quad \mathrm{R} \quad \mathrm{H} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{P}$ N $\quad \mathrm{N} \quad \mathrm{S} \quad \mathrm{I}$ 2881 GGTGGCAGACATGTTCTTGTGCTTCCCAATAATTCCATTACTTTGGATGGTTCAAGGTCT

 2941 ACTGATGACCAAAGAATTGTGTCCTATCTGTGGATCCGGGATGGCCAGAGTCCAGCAGCT | 155 | G | D | V | I | D | G | S | D | H | S | V | A | I | Q | I | T | N | L |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 3001 GGAGATGTCATCGATGGCTCTGACCACAGTGTGGCTCTGCAGCTTACGAATCTGGTGGAG

 3061 GGGGTGTACACTTTCCACTTGCGAGTCACCGACAGICAGGGGGCCTCGGACACAGACACT $\begin{array}{llllllllllllllllll}795 & A & T & V & V & Q & P & D & \mathrm{E} & \mathrm{R} & \mathrm{K} & \mathrm{S} & \mathrm{G} & \mathrm{L} & \mathrm{V} & \mathrm{E} & \mathrm{I} & \mathrm{T}\end{array} \mathrm{L} \quad \mathrm{Q}$ 3121 GCCACTGTGGAAGTGCAGCCAGACCCTAGGAAGAGTGGCCTGGTGGAGCTGACCCTGCAG
 3181 GTIGGTGTTGGGCAGCTGACAGAGCAGCGGAAGGACACCCTTGTGAGGCAGCTGGCTGTG
 3241 CTGCTGAACGTGCTGGACTCGGACATTAAGGTCCAGAAGATTCGGGCCCACTCGGATCTC $855 \mathrm{~S} \quad \mathrm{~T} \quad \mathrm{~V} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{F} \quad \mathrm{Y} \quad \mathrm{V}$ Q 3301 AGCACCGTGATTGTGTTTTATGTACAGAGCAGGCCGCCTTTCARGGTTCTCAAAGCTGCT
 3361 GAAGTGGCCCGAAATCIGCACATGCGGCTCTCAAAGGAGAAGSCTGACTTCTTGCTTTTC $\begin{array}{llllllllllllllllllll}895 & K & V & L & R & V & D & T & A & G & C & L & L & K & C & S & G & H & G & H\end{array}$ 3421 AAGGTCTTGAGGGTTGATACAGCAGGTTGCCTTCTGAAGTGTTCTGGCCATGGTCACTGC 915 D $\quad \mathrm{P} \quad \mathrm{I} \quad \mathrm{T} \quad \mathrm{K} \quad \mathrm{R}$ 3481 GACCCCCTCACAAAGCGCTGCATTTGCTCTCACTTATGGATGGAGAACCTTATACAGCGT 935 Y I W D. G E S N C E W 3541 TATATCTGGGATGGAGAGAGCAACTGTGAGTGGAGTATATECTATGTGACAGTGTTGGCT $\begin{array}{lllllllllllllllllllll}955 & \mathrm{~F} & \mathrm{~T} & \mathrm{~L} & \mathrm{I} & V & \mathrm{~L} & \mathrm{~T} & \mathrm{G} & \mathrm{G} & \mathrm{F} & \mathrm{T} & \mathrm{W} & \mathrm{L} & \mathrm{C} & \mathrm{I} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{K} & \mathrm{R}\end{array}$ 3601 TTTACTCTTATTGIGCTAACAGGAGGTTTCACTTGGCTTTGCATCTGCTGCTGCAAAAGA
 3661 CAAAAAAGGACTAAAATCAGGAAAAAAACAAAGTACACCATCCTGGATAACATGGATGAA

3721 CAGGAAAGAATGGAACTGAGGCCCAAATATGGTATCAAGCACCGAAGCACAGAGCACAAC 1015 S S I M V S E S E F D S 3781 TCCAGCCTGATGGTATCCGAGTCTGAGTTTGACAGTGACCAGGACACAATCTTCAGCCGA
 3841 GAAAAGATGGAGAGAGGGAATCCAAAGGTTTCCATGAATGGTTCCATCAGAAATGGAGCT 1055 S F S Y C S K D R *

3901 TCCTTCAGTTATTGCTCAAAGGACAGATAAtggcgcagttcattgtaaagtggaaggacc
3961 ccttgaatccaagaccagtcagtgggagttacagcacaaacccactottttagaatagt
4021 tcattgaccttcttccccagtgggttagatgtgtatccccacgtactaaaagaccggttt
4081 ttgaaggcacaaaacaaaactttgctcttttaactgagatgcttgttaatagaaataaa
4141 ggctgggtaaaactctaaggtatatacttaaaagagttttgagtttttgtagotggcaca
4201 atctcatattaaagatgaacaacgatttctatctgtagaaccttagagaaggtgaatgaa
4261 acaaggt thaaaaagggatgatttctgtcttagccgctgtgattgcctctaaggaacag
4321 cattctaaacacggtttctcttgtaggacctgcagtcagatggctgtgtatgttaaaata
4381 gcttgtctaagaggcacgggccatctgtggaggtacggagtcttgaatgtagcaagcttt
4441 ctgtgctgacggcaacactcgcacagtgccaagccctcctggtttttaattctgtgctat
4501 gtcaatggcagttttcatctctctcaagaaagcagctgttggccattcaagagctaagga
4561 agaatcgtattctaaggactgaggcaatagaaaggggaggaggagettaatgccgtgcag
4621 gttgaaggtagcattgtaacattatcttttctttctctaagaaaaactacactgactcct
4681 ctcggtgttgtttagcagtatagttctctaatgtaaacggatccccagtttacattaaat
4741 gcaatagaagtgaitaattcattaagcatttattatgttctgtaggctgtgcgtttggac
4801 tcccatagatagggataacgactcagcaattgtgtatatattccaaaactctgaaataca
4861 gtcagtcttaacttggatggcgtggttatgatactctggtccccgacaggtactttccaa
4921 aataacttgacatagatgtattcacttcatatgtttaaaaatacatttaagtttttctac
4981 cgataaatcttatttcaancatgaaagacaattaaabattcccacccacaaagcagta
5041 ctcccgagcaattaactggagttaattgtagcctgctacgttgactggttcagggtagtt
5101 ccccatccacccttggtcctgaggctggtggccttggtggtgccottggcattttttgtg
5161 ggaagattagaatgagagatagaaccagtgttgtggtaccaagtgtgagcacacctaaac
5221 aatatcctgttgcacaatgcttttttaacacatgggaaaactaggaatgcattgctgatg 5281 aagaagcaaggtatttaaacaccagggcaggagtgccagagaaaatgtttccccatgggt 5341 tcttaaaaaaaattcagcttttaggtgctttgtcatctccoggagtattcatcctcatg 5401 ggaccatcttatttttacttattgtaatttactggggaaaggcagaactaaaaagtgtgt 5461 cattttatttttaaaataattgctttgcttatgcctacactttctgtataactagccaat 5521 tcaatactgtctatagtgttagaaggaaaatgtgattttttttttttaaccagtattgag 5581 cttcataagcctagaatctoccttatcaggtgaccagggttatggttgtt=gcatgcaaa 5641 tgtgaatttctggcataggggacagcagcccaaatgtaaagtcatcgggcgtaatgagga 5701 agaagggagtgaacatttaccgctttatgtacataacatatgcagtttacatactcattt 5751 gatccttataatcaacottgaagaggagatactatcattcttatgttgcagatagccotc 5821 tgaaggcccagagaggttaagtaacttcccagaggtcatggccaagaagtagtggctcca
5881 agaactgaatgcaaattttttaaactgtagagttctgctttccactaaacaaagaactcc 5941 tgccttgatggatggagggcaaattctggtggaacttttgggccacctgaaagttctatt

6001 cccaggactaagaggaatttcttttaatggatccagagagccaaggtcagagggagagat 6061 ggcctgcatagtctcctgtggatcacaccogggccaccoctccctctaggtttacagtgg 6121 acttcttctgccectcctccttttctgtccttggccatctcagcctggcctctctgatcc 6181 ttccatcacagaaggatcttgaatctctgggaaatcaaacatcacagtagtgatcagaaa 6241 gtgagtcctgtcttgtcaccocatttctcatcagaacaaagcacgagatggaatgaccaa 6301 ccagcattcttcatggtggactgcttatcattgaggatctttgggagataaagcacgcta 6361 agagctctggacagagaaaaacaggccctagaatatgggagtgggtgtttytagggctca 6421 taggctaacaagcactttagttgctggtttacattcaatgaaggaggattaatacccatg 6481 gcattacaaggclaagcatgtgtatgactaaggałctatctgaaaaacatjcagcaaggt 6541 aagaaaatgtaccactcaacaagccagtgatgccaccttttgtgcgcgggyaggagagtg 6601 actaccattgttttttgtgtgacaāgctatcatggectattttaatcttjgttttattg 6661 cttaaaatatattatttttccctatgtgttgacaaggtatttctaatatcacactattaa 6721 atatatgcactaatctaaataaaggtgtctgtattttctgtaatgcttatttttaggggg 6781 aatttgttttctttatgcttcagggtagagggattcccttgagtataggtcagcaaact 6841 ctggcctgcagcctgtgtgtgcacgccccatgagcccaaaagtgggtcttatgttttcaa 6901 atggttaaaaataaataaaaaaatttgaaacatgtgaactatatgacattcagatttgtg 6961 ttcataaataaggttttattggaacetatcc

Figure 2D. 254P1D5B v. 4 through v.20, SNP variants of 254P1D6B v.1. The 254P1D6B v. 4 through v. 20 proteins have 1072 amino acids. Variants 254P1D6E v. 4 through v. 20 are varianis with single nucleotide difference from 254P1D6B v. 1 . 254P1D6B v. 5 and v. 6 proteins differ from 254P1D6B v. 1 by one amino acid. 254P1D6B v. 4 and v. 7 through v. 20 proteins code for the same protein as v.1. Though these SNP variants ate shown separately, they can also occur in any combinations and in any of the transcript variants listed above in Figures 2A, Figure 2B and Figure 2C.

| - Variant F | Nucleic acid position. | Nuoleic Acid Variatión | Amino Acid Position | Amino Acid Variation |
| :---: | :---: | :---: | :---: | :---: |
| 254P106B v.4 | 286 | C/G | Sitent variant |  |
| 254P1D6B v. 5 | 935 | C/A | 142 | $P \Rightarrow T$ |
| $\begin{gathered} 254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B} \text { v. } 6 \\ \text { (Identical AA as v.2) } \end{gathered}$ | 980 | T/G | 157 | $S \Rightarrow A$ |
| 254P1D6B v. 7 | 2347 | G/A | Slent variant |  |
| 254P106B v. 8 | 3762 | $\mathrm{C} / \mathrm{T}$ | Slent variant |  |
| 254P1D6B v.9 | 3772 | $A / G$ | Slient variant |  |
| 254P1D6B v. 10 | 3955 | CT | Silent variant |  |
| 254P1D6B v.11 | 4096 | $\mathrm{C} / \mathrm{T}$ | Slent variant |  |
| 254P106B v. 12 | 4415 | G/A | Silent variant |  |
| 254P106B v. 13 | 4519 | G/A | Slent variant |  |
| 254P106B v. 14 | 4539 | $A / G$ | Slent variant |  |


| Variant | Nuclelo acid position | Nucleic Acid Variation | Amino Acid Position | Amino Acid Varlation |
| :---: | :---: | :---: | :---: | :---: |
| 254P1D6B v. 15 | 4614 | G/T | Silent variant |  |
| 254P1D6B v. 16 | 5184 | G/C | Slient variant |  |
| 254P1D6B v. 17 | 5528 | T/G | Silent variant |  |
| 254P1D6B v. 18 | 5641 | G/A | Slient variant |  |
| 254P1D6B v. 19 | 6221 | T/C | Sliont variant |  |
| 254P1D6B v. 20 | 6223 | G/A | Slient variant | - |

Figure 3:
Figure 3A. Amino acid sequence 254P106B v. 1 clone LCP-3 (SEQID NO.: 8). The 254P1D6B v. 1 clone LCP-3 protein has 1072 amino acids.

1 MAPPTGVLSS LLLLLVTIAGC ARKQCSEGRT YSNAVISPNL ETTRIMZVSH TFEVVDCTAA
61 CCDISSCDLA WWFEGRCYLV SCPHKENCEP KKMGPIRSYL TEVLRPVQRP AQLLDYGDMM 121 LNEGSPSGIW GDSPEDIRKD LPFLGKDWGL EEMSEYSDEY RELEKDLLQP SGKQEPRGSA 181 EYTDNGLLFG SEGAFNSSVG DSPAVPAETQ QDPELHYLLE SASTPAวKL? ERSVLIPLPT 241 TESSGEVLEK EKASQLQEQS SNSSGKEVLM PSHSLPPASL ELSSVTVEKS PVLTVTPGST 301 EHSIPTPPTS AAPSESTPSE LPISPTTAPR TVKELTVSEGG DNLIITLPDN EVELKAFVAP 361 AFPVETTYNY EWNLTSHPTD YQGETKQGHK QTLNLSQLSV GLYVEKJTVS SENAFGEGEV 421 NVTVKPARRV NLPPVAVVSR QLQELTLPLT BALIDGSQST DDTEIVSYHW EEINGPEIEE 481 KTSVDSFVLR LSNLDPGNYS FRLTVTDSDG ATNSTTAAII VNHAVDYPfV ANAGPNHTIT 541 LFONSITLNG NOSSDDHOIV LYEWSLGPGS FGKFVVMQEV QTPYLḢSAM QEGDYTEQLK 601 VTDSSRQQST AVVTVIVQPE NNRPPVAVAG PDKELIFPVE SATLDGSSSS DDHGIVFYHW 661 ehvrgrsave menidkaiat vtgugvgiyh frlivkdqeg Lsststutva vkkennssper 721 AREGGRHVLY LENNSITLDG SRSTDDORIV SYLWIRDGCS PAAGDVIDGS DHSVALQLTN 781 LVEGVYTEHL RVTDSQGASD TDTATVEVQP DPRKSGLVEL TLQVGVGOLT EQRKDTLVRQ 841 LAVLLNVLDS DIKVQKIRA.H SDLSTVIVFY VQSEPfFKVL KAAEVARNIH MRLSKEKADF 901 LLEKVLRVDT AGCLLKCSGH GHCDPLTKRC ICSHLWMENL IQRYIWDGES NCEWSIFYVT 961 VLAFTLIVLT GGFTWLCICC CKRQKRTKIR KKTKYTILLN MDEQERMELR PKYGIKHRST 1021 EHNSSLMVSE SEFOSDODTI FSREFMERGN PKVSMGGSIE NGASFSYCSK DR

Figure 3B. Amino acid sequence 254P1DiB v. 2 (SEQID NO.: 9). The 254P1D6B v. 2 protein has 1072 amino acids.


961 VLAFTLIVLT GGFTWLCICC CKRQKRTKIR KKIKYTILDN MDEQERMELR PKYGIKHRST 1021 EHNSSLMVSE SEFDSDQDTI FSREKMERGN PKVSMNGSIR NGASFSYCSK DR

Figure 3C. Amino acid sequence 254P1D6B v. 3 (SEQ ID NO: 10). The 254P1D6B v. 3 protein has 1063 amino acids.


#### Abstract

1 MLRLGWPSPC CARKQCSEGR TYSNAVISPN LETTRIMZVS HTEPVVDCTA ACCDLSSCDL GI ANWEEGRCYL VSCRHKENCE PKKMGPIRSY LTFVLRPVQR PAQLIDYGDM MLNRGSPSGI 121 WGDSPEDIRK DLPFLGKDWG LEEMSEYSDD YRELEKDLLQ PSGKQEPRGS AEYTDWGLLP 181 GSEGAFNSSV GDSPAVPAET QQDPEIHYLN ESASTPAPKL PERSVLIPLF TTESSGEVLE 241 KEKASQLQEQ SSNSSGKEVI MPSHSLPPAS LELSSVTVEK SFVLTVOPGS TEHSIPTPPT 301 SAAPSESTPS ELPISPTIAP RTVKELTVSA GDNLIITLPD NEVELKAEVA PAPEVETTYN 361 YEWNLISHPT DYQGEIKDGH KQTLNLSQLS VGLYVFKVTV SSENPFGEGF VNVIVKPARR 421 VNLPPVAVVS PQLQELTLPI TSALIDGSQS TODTEIVSYH WEEINGPEIE EKTSVDSPVL 481 RLSNLDPGNY SERLTVTDSD GATNSTTAAL IVNNAVDYPE VANAGPNATI TLPCNSITLE 541 GNQSSDDHQI VLYEWSLGPG SEGKHVVMQG VQI'PY LHLSA MQEGDYロEQL KVTDSSRQQS 601 TAVVTVIVQP ENNREPVAVA GPDKELIFPV ESATLDGSSS SDDHGIVEYH WEHVRGPSAV 661 EMENIDKAIA TVTGLQVGTY HFRLTVKDQQ GLSSTSTLTV AVKKENISPE RARAGGRHVL 721 VLPNNSITLD GSRSTDDQRI VSYLWIRDGQ SPAAGDVIDG SDHSVALQLT NLVEGVYTEH 781 LRVTDSQGAS DTDTATVEVQ PDPRESGLVE LTLQVGVGQL TEQRKDSLVR QLAVLLIVLD 841 SDIKVQKIRA HSDISTVIVE YVQSEPPEKV IKAAEVARNL HMRLSKEKAD FLLEKVLRVD 901 TAGCLLKCSG HGHCDPLTKR CICSHLWMEN LIDRYIWDGE SNCEWSIEYV TVLAFTLIVL 961 TGGETWLCIC CCKRQKRTKI RKKTKYTILD MMDEQERMEL RPKYGIKHRS TEHNSSLMVE 1021 ESEFDSDQDT IFSREKMシRG NPKVSMNGSI RNGASFSYCS KDR


Figure 3D. Amino acid sequence 254P1D6B v. 5 (SEQ ID NO: 11). The 254P1D6B v. 5 protein has 1072 amino acids.


961 VLAFTLIVLT GGFTWLCICC CKRQERTKIR KKIKYTILDN MDEQERMELR PKYGIKHRST
1021 EHNSSLMVSE SEFDSDODTI FSREKMERGN PKVSMNGSIR NGASESTCSK DR

Figure 3E. Amino acid sequence 254PiD6B v. 6 (SEQ ID NO: 12). The 254P1D6B v. 6 protein has 1072 amino acids.


#### Abstract

1 MAPPTGVLSS LIILVILAGC ARKQCSEGRT YSNAVISPNL ETTRIMRVSH TEPVVDCTAA 61 CCDLSSCDLA WWEEGRCYLV SCPHKENCEP KKMGPZRSYL TEVLRPVQRP AQLLDYGDMM 121 LNRGSPSGIW GDSPEDIRKD LPELGKDWGL EEMSEYADCY RELEKDJLQP SGKQEPRGSA 181 EYTDWGLLPG SEGAFNSSVG DSEAVPAETQ QDPELHYLNE SASTPA?KLP ERSVLLPLPT 241 TPSSGEVLEK EKASQLQEQS SNSSGKEVLM PSHSLPPASL ELSSVTYEKS PVLTVTPGST 301 EHSIPTPPTS AAPSESTPSE LPISPTTAPR TVKELEVSAG DNLIIT」PDN EVELKAFVAP 361 APPVETTYNY EWNLISHPTD YQGETKQGHK QTLNLSQLSV GLYVFKVTVS SENAFGEGFV 421 NVTVKPARRV NLPPVAVVSP QLQELTLFLT SALIDGSQST DDTEIVSYHW EEINGPEIEE 481 KTSVDSPVLR LSNLDPGNYS ERLTVTDSDG ATNSTTAALI VNNAVDYPEV ANAGPNHTII 541 LPQNSITLNG NQSSDDHQIV LYEWSLGPGS EGKEVVMQCV QTPYLHבSAM OEGDYTEOLK 601 VTDSSRQQST AVVTVIVQPE NNRPPVAVAG PDKELIFPVE SATLDGSSSS DDHGIVFYHW 661 EHVRGPSAVE MENIDKAIAT VTGLQVGTYH FRITVKDQCG LSSTSTこTVA. VKKENNSPRR 721 ARAGGRHVLV LPNNSITLDG SRSTDDQRIV SYLWIRDG®S PAAGDVIDGS DHSVALQLTN 781 LVEGVYTEHL RVTDSQGASD TDTATVEVQP DPRESGLVEL TLQVGVGQLT EQRKDTIVRQ 841 LAVLLNVLDS DIKVQKIRAH SDLSTVIVFY VQSFPPFKVL KAAEVARNLH MRLSKEKADE 901 LLFKVLRVDI AGCLLKCSGH GHCDPLTKRC ICSHLWMENL IQRYIWDGES NCEWSIFYVT 961 VLAFTLIVLT GGFTVLCICC CKRQERTKIR KKTEYYILLN MDEQERMELR PKYGIKHRST 1021 EHNSSLMVSE SEFDSDQDTI FSREEMERGN PKVSMNGSIR WGASESYOSK DR


Figure 5: 254P1D6B variant 1 Hydrophilicity profile
(Hopp T.P., Woods K.R., 1981.
Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)


Figure 6: 254P1D6B variant 1 Hydropathicity Profile (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)


Figure 7: 254P1D6B variant 1 \% Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)


Figure 8: 254P1D6B variant 1 Average Flexibility Profile
(Bhaskaran R., Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255)


Figure 9: 254P1D6B variant 1 Beta-turn Profile (Deleage, G., Roux B. 1987.
Protein Engineering 1:289-294)


Figure 10


254P1D6B
exons


Figure 11


Figure 12


Figure 12 (con'd)


Figure 12 (con'd)


Figure 12 (con'd)


## Figure 13: Secondary structure prediction of 254P1D6B variant 1

| $13 A$ | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

MAPETGVLSSLLLLVTIAGCARKQCSEGRTYSNAVISPNLETTRIMRVSHTEPVVDCTAACCDLSSCDLAWWFEGRCYLV cccccchhhhhhhhhhhhhchccccccccocceeeccccceeeeeeccoceeccocccoccccceeeeeccceeee SCPHKENCEPKKMGPIRSYLTFVLRPVQRPAQLLDYGDMMLNRGSPSGIWGDSPEDIRKDLPELGKDWGLEEMSEYSDDY ecccccccccccccccceheheeeccchcccchhhccchhhccccccccccccchccccccccccccccchhhhhcchhh RELEKDLLQPSGKQEPRGSAEYTDWGLLPGSEGAFNSSVGDSPAVPAETOODPELHYLNESASTPAPKLPERSVLLPLPT
 TESSGEVLEKEKASQLQEQSSNSSGKEVLMESHSLPEASLELSSVTVEKSPVLTVTPGSTEHSIPIPUTSAAPSESTPSE ccccchhhhhhhhchhhccccccceeeecccccccoeeeeeeeecccceeeeccccccccocccccccccoccccco LPISPTTAPRTVKELTVSAGDNLIITLPDNEVELKAFVAPAEEVETTYNYEWNLISHPTDYQGEIKDGHKQTLNLSQLSV ccccoccccccheeeeecccceeeecccceeeeehccccccocccceeeeecccccocccchhhchhhheeheeecc GLYVEFVTVSSENAFGEGFVNVTVKPARRVNLPPVAVVSPOLOELILHLTSALIDGSOSTDDTEIVSYHWZETNGPFIEE
 KTSVDSPVLRLSNLDPGNYSFRLTVTDSDGATNSTTAALIVNNAVDYPPVANAGPNHTITLPQNSITLNGNQSSDDHQIV coccocceococcocccceeeeeeeccococochhhhhhhcccccoccccoccceeeeccoceeecccccocceee

```
Alpha helix(h): 18.19%
Extendec strand (e): 24.81%
Random coil(c): 57.00%
```


## Secondary structure prediction of 254P1D6B variant 1

(continued)

| 570 | 580 | 590 | 600 | 610 | 520 | 630 | 640 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

LYEWSLGPGSEGKHVVMQGVQTPYLHLSAMQEGDYTFQLEVVTDSSROQSTAVVTVIVQPENNRPPVAVAGPDKELIFEVE eeeeccocrcccceeeeeccoccheeeehccccceeeeccccccccceeeeeeeeeccccccceeeccccceeeeeec SATLDGSSSSDDHGIVFYHWEFVRGPSAVEMENIDKAIATVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVKKENNSPPR cccccoccccccceeeeeeeccccccchhhhhhhhhhhhhccceecceeeeeeeeccccocccceeeeeeecccccoc ARAGGRHVLVLPNNSITLDGSRSTDDQRIVSYLWIRDGQSEAAGDVIDGSDHSVALQLTNLVEGVYTFHLRVTDSQGASL cccccceeeeecccceeeccccccceeeeeeeeccccccccccccocccheeehhhhhhhcheeeeeeecccccccc TDTATVEVQPDPRKSGLVELTLQVGVGQLTEQRKDTLVRQTAVLLNVLDSDIKVQKIRAHSDLSTVIVFYVQSRPPFKVL cccceeeeccocccccheeeeeeecccccchhhhhhhhhhhhhhhhhncccchhhhehhccccceeeeeeecccccchhh KAAEVARNLHMRLSKEKADFLLEKVLRVDTAGCLLKCSGHGHCDPLTKRCICSHLWMENLICRYIWDGESNCEWSIFYVT hhhhhhhhhhhhhhhhhhhhhhheheeecccceeeeccccccccccchhhhhhhhhhhhhhhhhhecccccchhhhhhhh VLAETLIVLTGGFTWLCICCCKRQKRTKIRKKTKYTILDNMDEQERMELRPKYGIKHRSTEHNSSLMVSESEFDSDQDTI hheeeeeeecccceeeeeeeccchcchccccceeeecccchhhhhhcrcccreeeecccocceeeeeccccocchhhh FSREKMERGNPKVSMNGSIRNGASESYCSKDR
ehhhhhhccccceeccccccccceeeccoc

1 transmembrane domain predicted

Figure: Transmembrane prediction for 254P1D6B variant 1 13C

TMHMM posterior probabilities for Sequence


## Figure 14A 254P1D6B Expression by RT-PCR

M = Marker

1) Vital Pool 1
(Kidney, Liver, Lung)
2) Vital Pool 2
3) Normal Lung
4) Lung Cancer Pool
5) Ovary Cancer Pool
6) Pancreas cancer Pool


Figure 14B Expression of 254P1D6B in Normal Human Tissues and Ovarian Cancer Patient Specimens


Figure 15 Expression of 254P1D6B in Normal Tissues


1. Heart
2. Brain
3. Placenta
4. Lung
5. Liver
6. Skeletal Muscle
7. Kidney
8. Pancreas

9. Spleen
10. Thymus
. Prostate
11. Testis
12. Uterus
13. Small Intestine
14. Colon
15. Leukocytes

Figure 16 Expression of 254P1D6B in Lung Cancer Patient Specimens

| Panel\# Pathology |  |  |  |  | Giade | Expression |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| 1 | Normal |  |  |  |  |  |
| 2 | A427 Cell line |  |  |  |  |  |
| 3 | Adeno | 3 |  |  |  |  |
| 4 | Adeno | I |  |  |  |  |
| 5 | Adeno | IB |  |  |  |  |
| 6 | Adeno | IB |  |  |  |  |
| 7 | Adeno | IIIA |  |  |  |  |
| 8 | Adeno | IIIA |  |  |  |  |
| 9 | Adeno | Mod Diff |  |  |  |  |
| 10 | Adeno | Mod Diff |  |  |  |  |
| 11 | Adeno |  |  |  |  |  |
| 12 | Bronchioalv. | IA |  |  |  |  |
| 13 | Large Cell | II |  |  |  |  |
| 14 | Large Cell | IIB |  |  |  |  |
| 15 | Large Cell | IIIA |  |  |  |  |
| 16 | Large Cell | IV |  |  |  |  |
| 17 | Papillary | I |  |  |  |  |
| 18 | Papillary | IB |  |  |  |  |
| 19 | Papillary | IV |  |  |  |  |
| 20 | Small Cell | I |  |  |  |  |
| 21 | Small Cell | I |  |  |  |  |
| 22 | Small Cell | I |  |  |  |  |
| 23 | Small Cell | IIB |  |  |  |  |
| 24 | Squamous | IB |  |  |  |  |
| 25 | Squamous | ID |  |  |  |  |
| 26 | Squamous | IB |  |  |  |  |
| 27 | Squamous | IIB |  |  |  |  |
| 28 | Squamous | IIB |  |  |  |  |
| 29 | Squamous | IIIA |  |  |  |  |
| 30 | Squamous | IIIA |  |  |  |  |
| 31 | Squamous |  |  |  |  |  |
| 32 | Squamous |  |  |  |  |  |
| 33 | Squamous |  |  |  |  |  |



Figure 17: Expression of 254P1D6b in 293T cells


## SEQUENCE IISTING

```
<1l0> Agensys, Inc.
 Raitano, Arthur B.
 Jakobovits, Aya
 Challita-Eid, Pia M.
 Ge, Wangmao
 Faris, Mary
 Steven B. Kanner
 Juan J. Perez-Villar
<120> Nucleic Acids and Corresponding Proteins
 Entitled 254P1DGB Useful in Treatment and Detection of
 Cancer
<130> 51158-20081.40
<150> US50/442,526
<151> 2003-01-24
<160> 277
<170> FastsEQ for Windows Version 4.0
<210> 1
<21ま> 284
C21.2> DNA
<213> Homo sapiens
<400> 1
gatccacaga taggacacaa ttctttggtc atcagtagac cctgaaccat ccaaagtaat б0
ggaattattg ggaagcacaa gaacatgtct gccaccagcc cgggctctgg gaggactatt 120
attttccttc ttcacagcca cagtgagggt ggacgtgctg ctcagtccct gctggtcttt 180
=actgtcaaa cggaagtggt aggtccccac ctggagacca gtcacagtgg ctattgcttt 240
gtcaatattt tccatctcca ctgcactggg gcctctgacg tgct
284
<210> 2
<211> 6791
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (512)...(3730)
<22I> misc_feature
<222> 285
<223> s = g or c
<221> misc_feature
<2こ2> 935
<223> m = c or a
<221> misc_feature
<222> 980
<223> k = t or g
<221> misc_feature
<222> 2347
<223> r = g or a
<22I> misc_feature
<222> 3752
```



```
<221> misc_feature
<222> (0)...(0)
<223> Pos: 3772; r=a or g
<22I> misc_feature
<222> (0)...(0)
<223> POS: 3955; Y = c or t
<221> misc_feature
<222> (0)...(0)
<223> Fos: 4096; }%=c\mathrm{ or }
<22l> misc_feature
<222> (0)...(0)
<223> Pos: 4415; r=g or a
<221> misc feature
<222> (0)...(0)
<223> FOS: 4519; r = g or a
<221> misc feature
<222> (0)...(0)
<223> POS: 4539; r = a or g
<221> misc_feature
<222> (0)...(0)
<223. POS: 4614; k=t or g
<221> misc feature
<222> (0)...(0)
<223> Pos: 5184; s = g or c
<221> misc feature
<222> (0)...(0)
<223> Pos: 5528; k = t or g
<221> misc_feature
<222> (0)...(0)
<223> POS: 5641; r = g or a
<221> misc_feature
<222> (0)...(0)
<223> Pos: 6221; Y = t or c
<221> misc feature
<222> (0)...(0)
<223> POS: 6223; r = g or a
<400> 2
gctgccgcgg gcggtgggcg gggatcccoc gggggtgcaa ccttgctcca cctgtgctgc 60
cctcggcggg cctggctggc cocgcgcaga gcggcggcgg cgctcgctgt cactgcogga 120
ggtgagagcg cagcagtagc ttcagcctgt cttgggcttg gtccagattc gctcctctgg 180
ggctacgtcc cggggaagag gaagcgagga ttttgctggg gtggggctgt acctcttaac 240
agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtg tgtgtstgtg tgtgtgtgtg 300
taagacctgc gatgacgacg aggaggaaca agtgggacgg cgagtgatgc tcagggccag 360
cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacagttct tgaggccaaa 420
tctggctcct aaaaaacatc aaaggaagct tgcaccaaac tctcttcagg gccgcctcag 480
aagcctgcca tcacccactg tgtggtgcac a atg gcg ccc ccc aca ggt gtg 532
Met Ala Pro Pro Thr Gly Val
1 5
ctc tc= tca ttg ctg ctg ctg gtg aca att gca ggt tgt gcc cgt aag 580
```





$\begin{array}{ccc}\text { Glu Pie Asp Ser Asp Gln Äsp Thr } & \text { Ile Phe Ser Arg Glu Lys Met Glu } \\ 1035 & 1040 & 1045\end{array}$
aga ggg aat cca aag gtt tcc atg aat ggt tcc atc aga aat gga gct
3700 Arg Gly Asn Pro Lys Val Ser Met Asn Gly Ser Ile Ary Asn Gly Ala 105010551060
tcc ttc agt tat tgc tca aag gac aga taa tॄgcgcagtt cattgtaaag 3750 Ser Pie Ser Tyr Cys Ser Liys Asp Arg * 10651070
tggaaggacc cyttgaatcc argaccagtc agtgggagtt acagcacaaa acccactctt 3810 ttagaatagt tcattgacct tcttccccag tgggttagat gtgtatcccc acgtactaaa 3870 agaccggttt ttgaaggcac aaaacaaaaa ctttgctctt ttaactgaga tgcttgttaa 3930 tagaaataaa ggctgggtaa aactytaagg tatatactta aaagagtttt gagtttttgt 3990 agctggcaca atctcatatt aaagatgaac aacgatttct atctgtagaa ccttagagaa 4050 ggtgaatgaa acaaggtttt aaaaagggat gatttctgtc ttagcygctg tgattgcctc 4110 taaggaacag cattctaaac acggtttctc ttgtaggacc tgcagtcaga tggctgtgta 4170 tgttaaaata gcttgtctaa gaggcacggg ccatctgtgg aggtacggag tcttgcatgt 4230 agcaagcttt ctgtgctgac ggcaacactc gcacagtgec aagccetcct ggtttttaat 4290 tctgtgctat gtcaatggca gttttcatct ctctcaagaa agcagctgtt ggccattcaa 4350 gagctaagga agaatcgtat tctaaggact gaggcaatag aaaggggagg aggagcttaa 4410 tgcertgcag gttgaaggta gcattgtaac attatctttt ctttctctaa gaaaaactac 4470 actgactcct ctcggtgttg tttagcagta tagttctcta atgtaaacrg atccccagtt 4530 tacattaart gcaatagaag tgattaattc attaagcatt tattatgttc tgtaggctgt 4590 gcgtttggac tgccatagat aggkataacg actcagcaat tgtgtatata ttccaaaact 4650 ctgaaataca gtcagtctta acttggatgg cgtggttatg atactctggt ccccgacagg 4710 tactttccaa aataacttga catagatgta ttcacttcat atgtttaaaa atacatttaa 4770 gtttttctac cgaataaatc tlatttcaaa catgaaagac aattaaaaca ttcccaccaa 4830 caaagcagta ctcccgagca attaactgga gttaattgta gcctgctacg ttgactggtt 4890 cagggtagtt ccccatcdac ccttggtcct gaggctggtg gccttggtgg tgcecttggc 4950 attttttgtg ggaagattag aatgagagat agaaccagtg ttgtggtace aagtgtgagc 5010 acacctaac aatatcctgt tgcacaatgc ttttttaaca catgggaaaa ctaggaatgc 5070 attgctgatg aagaagcaag gtatttaaac accagggcag gagtgccaga gaaaatgttt 5130 ccccatgggt tcttaaaaaa aattcagctt ttaggtgctt ttgtcatctc cogsagtatt 5190 catcctcatg ggaccatctt atttttactt attgtaattt actggggaaa ggcagaacta 5250 aaaagtgtgt cattttattt ttaaaataat tgctttgctt atgcctacac tttctgtata 5310 actagccaat tcaatactgt ctatagtgtt agaaggaaaa tgtgattttt ttttttaac 5370 cagtattgag cttcataagc ctagaatctg ccttatcagg tgaccagggt tatggttgtt 5430 tgcatgcaaa tytgaatttc tggcataggg gacagcagcc caaatgtaaa gtcatcgggc 5490 gtaatgagga agaagggagt gaacatttac cgctttakgt acataacata tgcagtttac 5550 atactcattt gatccttata atcaaccttg aagaggagat actatcattc ttatgttgea 5610 gatagccctc tgaaggccca gagaggttaa rtaacttccc agaggtcatg gccaagaagt 5670 agtogctcca agaactgaat gcaaattttt taaactgtag agttetgctt tccactaaac 5730 aaagaactcc tgccttgatg gatggagggc aaattctggt ggaacttttg ggccacctga 5790 aagttctatt cccaggacta agaggaattt cttttaatgg atccagagag ccaaggtcag 5850 agggagagat ggcctgcata gtctcctgtg gatcacaccc gggccacccc tccetctagg 5910 tttacagtgg acttcttctg cccctcctcc ttttctgtcc ttggccatct cagcctggec 5970 tctctgatcc ttccatcaca gaaggatctt gatctctgg gaaatcaaac atcacagtag 6030 tgatcagaaa gtgagtcctg tcttgtcacc ccatttctca tcagaacaaa gcacgagatg 6090 gaatgaccaa ccagcattct tcatggtgga ctgcttatca ttgaggatct ttgggagata 6150 aagcacgcta agagctctgg acagagaaaa acaggcccta gaatatggga gtgggtgttt 6210 gtagggctca yargctaaca agcactttag ttgctggttt acattcaatg aaggaggatt 6270 catacccatg gcattacaag gctaagcatg tgtatgacta aggaactatc tgaamaacat 6330 gcagcaaggt aagaaaatgt accactcaac aagcoagtga tgccaccttt tgtgcgcggg 6390 gaggagagtg actaccattg ttttttgtgt gacaaagcta tcatggacta ttttaatctt 6450 ggttttattg cttaaaatat attatttttc cctatgtgtt gacaaggtat ttctaatatc 6510 acactattaa atatatgcac taatctaaat aaaggtgtct gtattttctg taatgcttat 6570 ttttaggggg aaatttgttt tctttatgct tcagggtaga gggattccct tgagtatagg 6630 tcagcaaact ctggcctgca gectgtgtgt gcacgcccea tgagccgaaa agtgggtcet 6690 atgttttcaa atggttaaaa ataaataaaa aatttgaaa catgtgaact atatgacatt 6750 cagatttgtg ttcataaata aagttttatt ggaacatatc c

```
<21I> 1072
<212> PRT
<213> Homo sapiens
<220>
<22I> VARIANT
<222> 142
<223> Xaa = any amino acid
<221> VARIANT
<222> 157
<223> Xaa = any amino acid
<221> VARIANT
<222> 612
<223> Xaa = any amino acid
<400> 3
Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr
1 5 10 15
Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Iyr Ser
Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val
35 40 45
Ser His Thr Phe pro Val val Asp Cys Thr Ala Ala Cys Cys Asp Leu
 5) 55 60
Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val
65 70 75 80
Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile
85 90 95
Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln
 100 105 110
Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly
 15 120 125
Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Xaa the Leu
 1 3 0 ~ 1 3 5 ~ 1 4 0
Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Xaa Asp Asp Tyr
145 150 1b5 160
Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu pro
 165 170 175
Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu pro gly Ser Glu
Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val pro Ala glu
 195 200 205
Thr Gln Gln Asp pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr
 2 1 0 2 1 5 ~ 2 2 0
Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr
225 230 235 240
Thr Pro Ser Ser Gly Glu val Leu Glu Lys Glu Lys Ala Ser Gln Leu
 2 4 5 ~ 2 5 0 ~ 2 5 5
Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Fro ser
His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu
 2 7 5 ~ 2 8 0 ~ 2 8 5
Lys Ser Pro Val Leu Thr val Thr Pro Gly Ser Thr Glu His Ser Ile
 2 9 0 2 9 5 ~ 3 0 0
Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu
305 310 315 320
Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr
 3 2 5 ~ 3 3 0 ~ 3 3 5
Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val
glu Leu Lys Ala phe Val Ala Pro Ala Pro pro Val glu Thr Thr Tyr
 355 360 3la Pro Pro val Glu
```

Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr gln Gly glu 370375380
Ile Lys Gln Gly His iys gln Thr Leu Asn Leu Ser Gln Leu Ser Val
385390395400

Gly Leu Tyr Val Phe Lys Val Thr Val Sex Ser Glu Asn Ala Phe Gly 405410415
Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu 420425430
Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln glu Leu Thr Leu Pro 435440445
Leu Thr Ser Ala ten Tle Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu 450455460
Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu 465470475480
Lys Thr Ser Val Asp Ser Pro Val. Leu Arg Leu Ser Asn Leu Asp Pro 485490495
Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr 500505510
Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro 515520525
Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn 530535540
Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val
545550555560
Leu Tyz Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val 565570575
Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu 580585590
Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp ser Ser Arg Gln Gln 595600605
Ser Thr Ala Xaa Val Thr Val Ile Val Gln Pro glu Asn Asn Arg Pro 610615620
Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Ehe Pro Val Glu 625630635640
Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val
Phe Tyr His Trp glu Bis Val Arg Gly Pro ser Ala Val Glu Met G7u 660665670
Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr 675680685
Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr 690695700
Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro pro Arg 705710715720 Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile 725730735
Thr Lau Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val ser Tyr 740745750
Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp 755760765
Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly 770775780
Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp 785790795800
Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys ser Gly 805810815
Leu Val glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr glu gln 820825830
Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu 835840845
Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser 850855860
Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro fhe Lys Val Leu $\begin{array}{llll}865 & 870 & 875 & 880\end{array}$

```
Lys"Ala Äla Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu
 885 890 895
Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly
 900 905 910
Cys Leu Leu Lys Cys Ser Gly His Gly ris Cys Asp Pro Leu Thr Lys
 915 920 925
Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr
 930 935 940
Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile phe Tyr Val Thr
945 950 955 960
Val Leu Ala Phe Thr Ievu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu
 965 970 975
Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys
 980 985 990
Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu
 995 1000 1005
Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser
 1 0 1 0 1 0 1 5 ~ 1 0 2 0
Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile
1025 1030 1035 104J
Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn
 1045 1050 1055
Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg
 1060 1065 1070
```

<210> 4
<211> 6791
<212> DNA
<213> Homo sapiens
$<220>$
<221> CDS
<222> (512)...(3730)
<400> 4
gctgccgegg gcggtggacg qggatcecce gggggtgcaa ccttgetcca retgtgctgc 60
cctcggcggg cctggctggc cccgcgcaga gcggcggcgg cgctcgctgt cactgccgga 120
ggtgagagcg cagcagtagc ttcagcctgt cttgggcttg gtccagattc gctcctctgg 180
ggetacgtcc cggggaagag gaagcgagga ttttgctggg gtggggctgt acctcttaac 240
agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg tgtgtgtg=g 300
taagacctgc gatgacgacg aggacgaaca agtgggacgg cgagtgatgc tcagggccag 360
cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacagttct tgaggccaaa 420
tctggctcct aaaaaacatc aaaggaagct tgcaccaaac tctcttcagg gcegcctcag 480
aagcctgcca tcacccactg tgtggtgcac a atg gcg ccc ccc aca ggt gtg 532
Met Ala pro pro Thr Gly Val
15
cta tct tca ttg ctg ctg ctg gtg aca att gea ggt tgt gcc cgt aag
Leu Ser Ser Leu Leu Leu Leu Val Thr Ile Ala Gly Cys Ala Arg Lys
$1015 \quad 20$
cag tgc agc gag ggg agg aca tat tcc aat gea gtc att tca cet aac
Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser Pro Asn
35
ttg gaa acc acc aga atc atg egg gtg tct cac acc ttc ect gtc gta
Leu Glu Thr Thx Arg Ile Met Arg Val Ser His Thr Phe pro Val Val
$40 \quad 45 \quad 50 \quad 55$
gac tge acg gcc gce tgc tgt gac ctg tcc agc tgt gac otg gcc tgg
724
Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp
$6065 \quad 70$


```
gct ccc agg aca gtg aaa gae ctt acg gta tcg gct gga gat aac cta
Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu
att ata act tta ccc gac aat gaa gtt gaa ctg aag gcc ttt gtt gcg
Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala phe Val Ala
 345 350 355
cca gag cca cct gta gaa aca acc tac aac tat gaa tgg aat tta ata
Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile
360 365 370 375
agc cac ccc aca gac tac caa ggt gaa ata aaa caa gga cac aag caa
Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln
 380 385 390
act ctt aac ctc tct caa ttg tcc gtc gga ctt tat gtc ttc aaa gtc
Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val
 395 400 405
act gtt tct agt gaa aac gcc ttt gga gaa gga ttt gte aat gtc act
Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly phe Val Asn Val Thr
 410 415 420
gtt aag cot gec aga aga gtc aac ctg cca cct gta gca gtt gtt tct
Val Lys Pro Ala Arg Arg Val Asn Leu Pro pro Val Ala Val Val Ser
 425 430 435
ccc caa ctg caa gag ctc act ttg cct ttg acg tca gcc ctc att gat
Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp
440 445 450 455
ggc agc caa agt aca gat gat act gaa ata gtg agt tat cat tgg gaa
Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu
gaa ata aac gqg ccc ttc ata gae gag aag act tca gtt gac tct ccc
Glu Ile Asn Gly Pro phe Ile Glu Glu Lys Thr Ser Val Asp Ser Prc
 475 480 485
gtc tta cgc ttg tct aac ctt gat cot ggt aac tat agt ttc agg ttc
Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu
 490 495 500
act gtt aca gac tcg gac gga gcc acc aac tct aca act gca gcc cte
Thr val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Lel:
 505 510 515
ata gtg aac aat gct gtg gac tac coa cca gtt gct aat gca gga cce.
Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro
520 525 530 535
aat cac acc ata act ttg ccc caa aac tcc atc act ttg aat gga aac
Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn
 540 545 550
cag agc agt gac gat cac cag att gtc ctc tat gag tgg tcc ctg ggt
Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly
 555 560 565
cct ggg agt gag ggc aaa cat gtg gtc atg cag gga gta cag acg cca
Pro Gly Ser Glu Gly Lys His val Val Met Gln Gly Val Gln Thr pro
 570 575 580
```

1540


agctggcaca atctcatatt aaagatgaac aacgatttct atctgtagaz ccttagagaa 4050 ggtgaatgaa acaaggtttt aaaagggat gatttctgtc ttagccgetg tgattgcctc 4110 taaggaacag cattctaaac acggtttctc ttgtaggacc tgcagtcaga tggctgtgta 4170 tgttaaaata gcttgtctaa gaggcacggg ccatctgtgg aggtacggag tcttgcatgt 4230 agcaagcttt ctgtgctgac ggcaacactc gcacagtgce aagccctcct ggtttttaat 4290 tctgtgctat gtcaatggca gttttcatct ctctcaagaa agcagctgtt ggccattcaa 4350 gagctaagga agaatcgtat tctaaggact gaggcaatag aaaggggagg aggagcttaa 4410 tgccgtgcag gttgaaggta gcattgtaac attatctttt ctttctctaa gaaaaactac 4470 actgactcct ctcggtgttg tttagcagta tagttctcta atgtaaacgg atccccagtt 4530 tacattaat gcaatagaag tgattaattc attaagcatt tattatgttc tgtaggctgt 4590 gcgtttggac tgccatagat agggasaacg actcagcaat tgtgtatata ttccaaaact 4650 ctgaaataca gtcagtctta acttggatgg cgtggttatg atactctggt ccccgacagg 4710 tactttccaa aataacttga catagatgta ttcacttcat atgtttaaaa atacatttā 4770 gtttttctac cgaataaats ttatttcaaa catgaaagac aattaaaaca ttcccaccca 4830 caaagcagta ctcccgagca attaactgga gttaattgta gcctgctacg ttgactggtt 4890 cagggtagtt ccccatccac ccttggtcct gaggctggtg gccttggtgg tgccettggc 4950 attttttgtg ggaagattag aatgagagat agaaccagtg ttgtggtacc aagtgtgagc 5010 acacctaaac aatatcctgt tgcacaatgc ttttttaaca catgggaaaa ctaggaatgc 5070 attgctgatg aagaagcaag gtatt =aaac accagggcag gagtgccaga gaaaatgttt 5130 ccccatgggt tcttaaaaa aattcagctt ttaggtgctt ttgtcatctc ccggagtat 5190 catcctcatg ggaccatctt attttractt attgtaattt actggggaaa ggcagaacta 5250 aaagtgtgt cattttattt ttaaaataat tgctttgctt atgcctacac tttctgtata 5310 actagccaat tcaatactgt ctatagtgtt agaaggaaaa tgtgattttt tttttttaac 5370 cagtattgag cttcataagc ctagaatctg ccttatcagg tgaccagggt tatggttgtt 5430 tgcatgcaaa tgtgaatttc tggcataggg gacagcagcc caaatgtaaa gtcatcgggc 5490 gtaatgagga agaagggagt gaacatttac cgctttatgt acataacata tgcagtttac 5550 atactcattt gatccttata atcaaccttg aagaggagat actatcattc ttatgttgca 5610 gatagccctc tgaaggocca gagaggttaa gtaacttccc agaggtcatg gccaagaagt 5670 agtggctcca agaactgaat gcaaattttt taaactgtag agttctgctt tccactaaac 5730 aaagaactcc tgccttgatg gatggagggc aattotggt ggaacttttg ggccacctga 5790 aagttctatt cccaggacta agaggaattt cttttaatgg atccagagag ccaaggtcag 5850 agggagagat ggcctgcata gtctcctgtg gatcacaccc gggccacccc tccctctagg 5910 tttacagtgg acttcttctg cccctcctcc ttttctgtcc ttggceatct cagcctggce 5970 tctctgatcc ttccatcaca gaaggatctt gaatctctgg gaaatcaaac atcacagtag 6030 tgalcayaaa gtgagtccty tcttgecacc ccatttctca tcagaacaaa gcacgagatg 6090 gaatgaccaa ccagcattct tcatggtgga ctgcttatca ttgaggatct ttgggagata 6150 aagcasgcta agagctctgq acagagaaaa acaggcccta gaatatggga gtgggrgttt 6210 gtagggctca taggctaaca agcactttag ttgctggttt acattcaatg aaggaggatt 6270 catacccatg gcattacaag gctaagcatg tgtatgacta aggaactatc tgaaaaacat 6330 gcagcaaggt aagaaaatgt accactcaac aagccagtga tgccaccttt tgtgcgcggg 6390 gaggagagtg actaccattg ttttttgtgt gacaaagcta tcatggacta ttttaatctt 6450 ggttttattg cttaaaatat attatetttc cctatgtgtt gacaaggtat ttctaatatc 6510 acactattaa atatatgcac taatctaaat aaggtgtct gtattttctg taatgcttat 6570 ttttaggggg aaatttgttt tctttatgct tcagggtaga gggattccct tgagtatagg 6630 ccagcaaact ctggcctgca gcctgtgtgt gcacgcccca tgagccgaaa agtgggtctt 6690 atgttttcaa atggttaaaz ataataaaa aatttgaaa catgtgaact atatgacatt 6750 cagatttgtg ttcataaata aagttttatt ggaacatatc c
$\langle 210\rangle 5$
<211> 1072
$<212>$ PRT
<213> Homo sapiens
$<400>5$
Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr
151015

Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr ser $20 \quad 25 \quad 30$
Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val 354045
Ser His Thr phe pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu 505560
Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val 65

Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Fro Ala Gln 100105110
Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly ser Pro Ser Gly 115120125
Ile Trp Gly Asp Ser pro Glu Asp Ile Arg Lys Asp Leu Pro phe Leu 130135140
Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr 145150155160 Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser GIy Lys Gln Glu Pro 165170175
Arg Gly ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly ser Glu 180185190
Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala val Pro Ala Glu 195200205
Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu ser Ala ser Ihr 210215220
Pro Ala Pro Lys Leu pro Glu Arg Ser Val Leu Leu pro Leu pro Thr $225230235 \quad 240$ Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala ser Cln Leu 245250255
Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser 260265270
His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu 275280285
Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Tle 290 295

300
Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu ser Thr pro Ser Glu $305310315 \quad 320$ Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr 325330335
Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val $340 \quad 345 \quad 350$
Glu Leu Lys Ala phe Val Ala Pro Ala Pro pro Val Glu Thr Thr Tyr $355 \quad 350365$
Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gin Gly Glu $370 \quad 375380$
Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser val $385 \quad 390 \quad 395400$ Gly Leu Tyr Val phe Lys val Thr Val Ser Ser Glu Asn Ala Phe Gly 405410415
Glu Gly Phe Val Asn Val Thr Val Lrs Pro Ala Arg Arg Val Asn Leu 420425430
Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu pro 435440445
Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu 450455460
Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly pro phe Ile Glu Glu 465470475480
Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro 4854490495
Gly Asn Tyr Ser phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr 500505510
Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala val Asp Tyr pro $515 \quad 520525$
Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn 530535540 Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val $545 \quad 550555560$ Leu Tyr Glu Trp ser Leu Gly Pro Gly ser Glu Gly Lys fis Val Val. 565570575
Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu 580 585

$<210\rangle 6$
<211> 5991

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (739)...(3930)
<400> 6
gctgcegcgg gcggtgggcg gggatccccc ggggggtgcea ccttgctcca cctgtgctgc 60
cctcggcggg cctggctgg= cccgcgcaga gcggcggcgg cgctcgctgt cactgccgga 120
ggtgagagcg cagcagtage ttcagcotgt cttgggcttg gtccagattc gctcctctge 180
ggctacgtcc cggggaagag gaagcgagga ttttgctggg gtggggctgt acctcttazc 240
agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg tgtgtgtgtg 300
taagacctgc gatgacgacg aggaggaaca agtgggacgg cgagtgatgc tcagggccac 360
cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacaggtac ggtatctact 420
tcccagagcg cctggccgag aaataggaaa gagggcagcc agtaggcagg ccaataccca 480
acaaajgtag aatcgagacg ccctgagttc agaagttctt gaggccaaat ctggctccta 540
aaaaa`atca aaggaagctt gcaccaaact ctcttcaggg ccgcctcaga agcctgccat 600
cacccactgt gtggtgcaca atggcgcccc ccacaggtgt gctctcttca ttgctgctgc 660
tggtgacaat tgcagtttgc ttatggtgga tgcactcalg gcaaaaaaat cactggtgag 720
catcatttaa gaagaccc atg act aga ctg ggc tgg cog agc cca tgt tgt 771
Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys
 I 5
gcc cgt aag cag tgc agc gag ggg agg aca tat tcc aat gca gtc att 819
Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile
 15 20 25
tca cct aac ttg gaa acc acc aga atc atg cgg gtg tct cac acc ttc367
Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr Phe
 30 35 40
cct gtc gta gac tgc acg gcc gct tgc tgt gac ctg tcc agc tgt gac
915
Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp
 45 50 55
ctg gcc tgg tgg ttc gag ggc cgc tgc tac etg gtg age tgc ccc cac
Leu Ala Trp Trp Phe Glu Gly Arg Cys TYr Leu Val Ser Cys Pro His
 60 65 70 75
aaa gag aac tgt gag ccc aag aag atg ggc ccc atc agg tct tat ctc
Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg ser Tyr Leu
act ttt gtg ctc cgg cct gtt cag agg cet gca cag ctg ctg gac tat
Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr
 95 100 105
ggg gac atg atg ctg aac agg ggc tec cec tcg ggg atc tgg ggg gac
Gly Asp Met Met Leu Asn Arg Gly Ser Pro ser Gly Ile Trp Gly Asp
 110 115 120
tca cct gag gat atc aga aag gac ttg cec ttt cta ggc aaa gat tgg
Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Tre
 125 130 135
ggc cta gag gag atg tct gag tac tca gat gac tac cgg gag ctg gag
Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu
140 145 150 150 155
aag gac ctc ttg caa ccc agt ggc aag cag gag ccc aga ggg agt gec
Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser Ala
 1\in0 165 170
```


gtt gtt tct ccc caa ctg caa gag ctc act ttg cct ttg acg tca gcc Val Vel Ser pro Gln Leu Gin Glu Leu Thr Leu Pro Leu Thr Ser Ala
430
435
ctc att gat ggc agc caa agt aca gat gat act gaa ata gtg agt tat Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr cat tgg gaa gaa ata azc ggg cec ttc ata gaa gag aag act tca gtt $\begin{array}{rl}\text { His } \operatorname{Trp} \text { Glu Glu Ile. Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val } \\ 460 & 465\end{array}$
gac tct ccc gtc tha cgc ttg tet aac ctt gat cct ggt aac tat agt $\begin{array}{rl}\text { Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser } \\ 480 & 485\end{array}$
ttc agg ttg act gtt aca gac tcg gac gga gec act aac tct aca act Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr
gca gcc cta ata gtg aac aat gct gtg gac tac coa coa gtt gct aat Ala Ala $\begin{aligned} & \text { Leu } \\ & 510\end{aligned} r \begin{aligned} \text { Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn } \\ 515\end{aligned}$
520
gca gaa cca aat cac acc ata act ttg ccc caa aac tcc atc act thg Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu 525530535
at gga aac cag agc agt gac gat cac cag att gtc ctc tat gag tgg $\begin{array}{rrrr}\text { Asn Gly Asn Glin Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp } \\ 540 & 545 & 550 & 555\end{array}$
tcc ceg ggt cat ggg agt gag gge aaa cat gtg gtc atg cag gga gta Ser Leu Gly pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly val
560
565
cag acg cca tac ctt cat tta tet gca atg cag gaa gga gat tat aca Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr ttt cag ctg aag gtg aca gat tct tca agg caa cag tct act get gtg Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val 590595600
gtg act gtg att gtc cag cct gaa aac aat aga cct cca gtg get gtg Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro pro Val Ala Val 605610615
gce gge cet gat aaa gag ctg atc ttc cca gtg gaa agt gct acc ctg $\begin{array}{rl}\text { Ala Gly Pro Asp Lys Glu Leu Ile Phe pro Val Glu Ser Ala Thr Leu } \\ 620 & 625 \\ 630 & 635\end{array}$
gat ggg agc agc agc agc gat gac cac ggc att gtc ttc tac cac tgg Asp G-y Ser Ser Ser Ser Asp Asp His Gly Ile Val phe Tyr His Trp 640645550
gag cac gtc aga gge cec agt gca gtc gag atg gaa aat att gac aaa Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys 65566665
gca ata gcc act gtg act ggt ctc cag gtg ggg acc tac cac thc cgt Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg

2067
ttg aca gtg aaa gac cag cag gga ctg agc agc acg tcc acc ctc act ..... 2835Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr$6 \varepsilon 5$690695
gtg gct gtg aag aag gaa aat aat agt cct ccc aga gcc cgg gct ggt Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly 700705710715
ggc aga cat gtt ctt gtg ctt ccc aat aat tcc att act ttg gat ggt
Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly720725730
tca agg tct act gat gac caa aga att gtg tcc tat ctg tgg atc cggSer Arg Ser Thr Asp Asp Gln Arg Ile Val ser Tyr Leu Trp Ile Arg735740745
gat ggc cag agt cca gea gct gga gat gtc atc gat gge tct gac cacAsp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His750755760
agt gtg gct ctg cag ctt acg aat ctg glg gag ggg gly Lac act ttcSer val Ala Leu Gln Leu Thr Asn Leu Val Glu gly Val Tyr Thr Phe765770775
cac ttg cga gtc acc gac agt cag ggg gcc tcg gac aca gac act gecHis Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ale780785790
act $g t g$ gaa gtg cag cca gac cct agg aag agt ggc ctg gtg gag ctg
Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val glu Leu
800
805
810
acc ctg cag gtt ggt gtt ggg cag ctg aca gag cag cgg aag gac acc
Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr
815
820
825
ctt gtg agg cag ctg gct gtg ctg ctg aac gtg ctg gac tog gac att
Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile830835840aag gtc cag aag att cgg gcc cac tcg gat ctc agc acc gtg att gtgLys Vai Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Vai845850855
ttt tat gta cag agc agg ccg cet ttc aag gtt ctc aaa gct gct gaaPhe Tyr Val Gln Ser Arg pro Pro Phe Lys Val Leu Lys Ala Ala Glu860865870 875
gtg gcc cga aat ctg cac atg cgg ctc tca aag gag aag gct gac ttc
Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe
880885890
ttg ctt ttc aag gtc ttg agg gtt gat aca gca ggt tgc ctt ctg aag
Leu Leu Fhe Lys Val Leu Arg Val Asp Thr Ala gly Cys Leu Leu Lys
895900905
tgt tot ggc cat ggt cac tgc gac ccc ctc aca aag egc tgc att tgc
Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys
910915920
tct cac tta tgg atg gag aac ctt ata cag cgt tat atc tgg gat gga
Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly
$925 \quad 930 \quad 935$

gccaagaagt agtggctcca agaactgaat gcaaattttt taaactgtag agttctgctt 5920 tccactaaac aaagaactcc tgccttgatg gatggagggc aaattctggt ggaacttttg 5980 ggccacctga aagttctat cccaggacta agaggaattt cttttaatgg atccagagag 6040 ccaaggtcag agggagagat ggcctgcata gtctcctgtg gatcacaccc gggccaccec 6100 tccotctagg tttacagtgg acttctlctg cccctcctcc ttttctgtcc ttggccatct 6160 cagcctggcc tctctgatcc ttccatcaca gaaggatctt gaatctctgg gaaatcaaac 6220 atcacagtag tgatcagaaa gtgagtcctg tcttgtcacc ccatttctca tcagaacaaa 6280 gcacgagatg gaatgaccaa ccagcattct tcatggtgga ctgcttatca ttgaggatct 6340 ttgggagata aagcacgcta agagctctgg acagagaaaa acaggcccta gaatatggga 6400 gtgggtgttt ctagggctca taggctaaca agcactttag ttgctggttt acattcaaEg 6460 aaggaggatt catacccatg gcattacaag gctaagcatg tgtatgacta aggaactatc 6520 tgaaaacat gcagcaaggt aagaaaatgt accactcaac aagccagtga tgccacctet 6580 tgtgcgcggg gaggagagtg actaccattg ttttttgtgt gacaaagcta tcatggacta 6640 ttttaatctt ggttttattg cttaaaatat attattttc cctatgtgtt gacaaggtat 6700 ttctaatatc acactattaa atatatgcac taatctaaat aaaggtgtct gtattttctg 6760 taatgcttat ttttaggggg aaatttgttt tctttatgct tcagggtaga gggattccot 6820 tgagtatagg tcagcaazct ctggcctgca gcctgtgtgt gcacgcceca tgagccgaaa 6880 agtgggtctt atgttttcaa atggttaaaa ataaataaaa aaatttgaaa catgtgaact 6940 atatgacatt cagatttgtg ttcataaata aagttttatt ggaacatatc c 6991

```
<210> 7
```

<211> 1063
<212> FRT
<213> Homo sapiens
<400> 7
Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gla Cys
151015
Ser Glu Gly Arg Thr tyr Ser Asn Ala Val Ile Ser Pro Asn Leu glu
202530
Thr Thr Arg Ile Met Arg Val Ser His Thr phe Pro Val Val Asp Cys
354045
Thr Ala Ala Cys CYs Asp Leu Ser Scr Cys Asp Leu Ala Trp Trp Phe
505550
Glu Gly Arg Cys Tyr Leu Val Ser Cys Pro His Lys glu Asn Eys Glu
65707580
Pro Lys Lys Met Gly Pro Ile Arg sor Tyr Leu Thr phe Val Leu Arg
859095
Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu
100 105110
Asn Arg Gly Ser pro Ser Gly Ile Trp Gly Asp Ser Pro glu Asp Ile
115120125
Arg Lys Asp Leu pro Phe Leu Gly Lys Asp Trp gly Leu glu Glu Met
130135140
Ser Gau Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gin
145150155160
Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser Ala Glu Tyr Thr Asp Trp
Gly Leu Leu pro Gly Ser glu Gly Ala Phe Asn Ser Ser Val Gly Asp
180185190
Ser Pro Ala Val pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr
195200205
Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser
210215220
Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly glu Val Leu glu
225230235240
Lys Glu Lys Ala Ser Gln Leu Gln Glu gln Ser ser Asn Ser ser Gly
245250255
Lys Glu Val Leu Met Pro Ser His ser Leu Pro Pro Ala Ser Leu Glu
260265270
Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro
275280285
Gly Ser Thr Glu His ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro
290295300

Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro
305310315320

Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile
Thr Leu Pro Asp Asn Glu Val Giu Leu Lys Ala phe Val Ala Pro Ala 340345350
Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His $355 \quad 360 \quad 365$
Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu sn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val 385390395400 Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys 405410415
Pro Ala Arg Arg Val Asn Leu Pro pro Val Ala Val Val Ser pro Glr 420425430
Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser 435440445
Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu glu Ile $450 \quad 455 \quad 460$
Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu
465470475430

Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val
Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val 500505510
Asn Asn Ala Val Asp TYr pro fro Val Ala Asn Ala Gly Pro Asn His 515520525
Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser 530535540
Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp ser Leu Gly Pro Gly
54555055556
Ser Glu Gly Lys His Val val Met Gln Gly Val Gln Thr fro Tyr Leu 565570575
His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val 580585590
Tir Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val 595600605
Gln Pro Glu Asn Asn Arg Pro pro Val Ala Val Ala Gly pro Asp Lys 610615620 Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser 625630635 64) Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly 645650655
Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val 660665670
Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp 675680685
Gln Gln Gly zeu Ser Sex Thr Ser Thr Leu Thr Val Ala Val Lys Lys 690695700
Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu 705710715720 Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp $725 \quad 730$. 735
Asp Gln Arg Ile Val ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser pro 740745750
Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His ser Val Ala Leu Gln 755760755
Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr 770775780 Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln $785 \quad 790 \quad 795800$ Pro Asp Pro Arg Lys Ser Gly Leu Val glu Leu Thr Leu gln Val Gly $805-810 \quad 815$

```
Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu
Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile
 835 840 845
Arg Ala His Ser Asp Leu Ser Thr Val Ile Val phe Tyr Val Gln Ser
 850 855 860
Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu
865 870 875 880
His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu phe Lys Val
 885 890 895
Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly Fis Gly
 905 910
His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met
 915 920 925
Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu
 930 935 940
Trp Ser Ile Phe Tyr val Thr Val Leu Ala Phe Thr Leu Ile val Leu
945 950 955 960
Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys
Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met
 900 985 990
Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His
 995 1000 1005
Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe
 1010 1015 1020
Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg Glu Lys Met Glu Arg Gly
1025 1030 1035 1040
Asn Pro Lys val Ser Net Asn Gly Ser Ile Arg Asn Gly Ala Ser phe
 1045 1050 1055
Ser Iyr Cys Ser Lys Asp Arg
 1050
<210> 8
<211> 1072
<212> PRT
<213> Homo sapiens
<400> 3
Met Dla Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr
 1 5 10 15
Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser
 20 25 30
Asn Ela Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val
 35 40 45
Ser Fis Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu
 5 0 ~ 5 5 ~ 6 0 ~
Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val
65 70 75 80
Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile
Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln
 1 0 0 ~ 1 0 5 ~ 1 1 0
Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly
 115 120 125
Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu
 1 3 0 1 3 5 1 4 0
Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr
145 150 155 160
Arg Glu Leu Glu Lys Asp Leu Leu Gln Fro Ser Gly Lys gln Glu Pro
 165 170 175
Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu
 180 185 190
```

Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu 195200205
Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr 210215220
Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr
225230235240
Thr Pro Ser Ser Gly Glu Val Leu Glu Iys glu Lys Ala Ser Gln Leu 245250255
Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys glu Val Leu Met Pro Ser 260265270
His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Va? Thr Val Glu 275280285
Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile 290295300
Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu 305310315320
Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr 325330335
Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val 340345350
Glu Leu Lys Ala Phe Val Ala pro Ala pro Pro Val Glu Thr Thr Tyr 355360365
Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu 370375380
Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val. 385390395400
Gly Leu Tyr Val phe Lys Val Thr Val sex Ser Glu Asn Ala phe Gly 405410415
Glu $G_{-y}^{-y}$ Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu 420425430
Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu pro 435440445
Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu 450455460
Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile glu glu 465470475480
Lys Thr Ser Val Asp Ser Fro Val Leu Ary Leu Ser Asn Leu Asp Pro 485490495
Gly Asn Tyr Ser phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr 500505510
Z.sn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro 515520525
Pro Val Ala Asn Ala Gly Fro Asn His Thr Ile Thr Leu Pro Gln Asn 530535540
Ser Ile Thr Leu Asn Gly Asn Gln Ser Sex Asp Asp His Gln Ile Val 545550555560
Leu Tyr glu Trp Ser Leu Gly pro Gly Ser glu gly Lys His Val Val 565570575
Net Gln Gly Val Gln Thr pro Tyr Leu His Leu Ser Ala Met Gln Glu 580585590
Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp ser ser Arg Gln Gln 595600605
Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro 610615620
Fro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu 625630635640
Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val 645650655
Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met glu 660665670
Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr 675680685
Tyr His Phe Arg Leu Thr Val Lys Asp Gin Gln Gly Leu Ser Ser Thr 690695700

## WO 2004/067716

```
Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg
```



```
Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile
 7 2 5 7 3 0 7 3 5
Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr
 740 745 750
Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp
 7 5 5 ~ 7 6 0 ~ 7 6 5 ~
Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu val Glu Gly
Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gin Gly Ala Ser Asp
785 790 795 800
Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly
Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln
 820 825 830
Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Lel Asn Val Leu
 835 840 845
Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser
 850 855 860
Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro phe Lys Val Leu
865 870 875 880
Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu
Iys Ala Asp Phe Leu Leu phe Lys Val Leu Arg Val Asp Thr Ala Gly
 900 905 910
Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp pro Leu Thr Lys
 915 920 925
Arg Cys Ile Cys Ser His Leu Tre Met Glu Asn Leu Ile gln Arg Tyr
 930 935 940
Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile phe Tyr Val Thr
945 950 955 960
Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly phe Thr Trp Leu
 965 970 975
Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys
Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Clu Gln Glu Arg Net Glu
 995 1000 1005
Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser
 1 0 1 0 ~ 1 0 1 5 ~ 1 0 2 0
Ser Leu Met Val Ser Glu Ser Glu Fhe Asp Ser Asp Gln Asp Thr Tle
1025 1030 1035 1040
Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn
 1045 1050 1055
Gly Ser Ile Arg Asn Gly Ala Ser phe Ser Tyr Cys Ser Lys Asp Arg
 1060 1065 1070
```

<210> 9
<211> 1072
<212> PRT
<213> Homo sapiens
$<400\rangle 9$
Met Ala Pro Fro Thr gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr
151015
Ile Ala Gly Cys Ala Arg Lys Gln Cys ser Glu Gly Arg Thr Tyr Ser
Asn Ala Val $\begin{aligned} & 20 \\ & \text { Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val }\end{aligned}$
3540 45
Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Lev
505560
$\begin{array}{ll}\text { Ser Ser Cys Asp Leu Ala Trp Trp phe Glu Gly Arg Cys Tyr Leu Val } \\ 65 & 70 \\ 65 & 75\end{array}$



```
<210> 10
<211> 1063
```

```
<212> PRT
<213> Homo sapiens
<400> 10
Met Thr Arg Teu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys
I. 5 10 15
Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser pro Asn Leu Glu
20 25 30
Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val Asp Cys
 35 40 45
Thr Ala Ala CYs Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe
 50 55 60
Glu Gly Arg Cys Tyr Lau Tal Ser Cys pro His Lys Glu Asn Cys Glu
65 70 70
Pro Lys Lys Met Gly Pro Ile Arg ser Tyr Leu Thr phe val Leu Arg
Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu
 100 105 1.10
Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser pro Glu Asp Ile
 115 120 125
Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met
 130 135 140
Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln
145 150 155 160
Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser Ala Glu Tyr Thr Asp Trp
 165 170 175
Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe Asn Ser Ser Val Gly Asp
 180 185 190
Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr
 195 200 205
Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser
 2 1 0 2 1 5 ~ 2 2 0
Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu val Leu Glu
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 4 0
Lys Glu Lys Ala Ser Gln Jeu Glr Glu Gln Ser Ser Asn Ser Ser Gly
 245 250 255
Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu
260 265 270
Leu Ser Ser val Thr Val Glu Lye Ser Pro Val Jeu Thr Val Thr Pro
 275 28C 285
Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro
 290 295 300
Ser Glu Ser Thr Pro Ser Glu Lel Pro Ile Ser Pro Thr Thr Ala Pro
305 310 315 320
Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile
 3 2 5 ~ 3 3 0 ~ 3 3 5
Thr Leu Pro Asp Asn Glu val Glv Leu Lys Ala Phe Val Ala Pro Ala
 340 345 350
Pro pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His
 355 36G 365
Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Lev
 370 375 380
Asn Leu Ser Gln Leu Ser val Gly Leu Tyr Val Phe Lys Val Thr val
385 390 395 400
Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys
 405 410 425
Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Glr.
 420 425 430
Leu GIn Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser
 4 3 5 ~ 4 4 0 ~ 4 4 5
Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile
 450 455 460
Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Lev:
465 470 4, 475 480
```

Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val
Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val 500505510
Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His 515520525
Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn gln Ser 530535540
Ser Asp Asp Fis Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly 545550555560 Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr pro Tyr Leu $565 \quad 570575$
His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr phe Gln Leu Lys Val 580585590
Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val 595600605
Gln Ero Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly fro Asp Lys 610615620
Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser 625666635640 Ser Asp Asp His Gly Ile Val phe Tyr His Trp Glu His Val Arg Gly
Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val $660 \quad 565670$
Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp 675680685
Gln Gln Gly Leu ser ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys $690 \quad 695700$
Glu A.sn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu 705710715720
Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp 725730735
Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro 740745750
Ala fia Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln 755760765
Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Pne fis Leu Arg Val Thr 770775780
Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln 785790795800 Pro Rsp Pro Arg Lys ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly 805810815
Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu
$820-825 \quad 830$
Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gin Lys Ile
Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser ع50 855860
Arg Pro Pro Phe Lys Val Leu Lys Ala Ala glu Val Ala Arg Asn Leu
865870875880

Fis Met Arg Leu ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val
Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly
His $900 \quad 905 \quad 910$
His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met
$920 \quad 925$

Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu
935940

Trp Ser Ile Phe Tyr val Thr Val Leu Ala Phe Thr Leu Ile Val Leu 9459950955960
Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys
Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Ieu Asp Asn Met 980

985
990


```
<210> 11
<211> 1072
<212> PRT
<213> Homo sapiens
<400> 11
Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr
 1 5 10 15
Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr ser
2 0 ~ 2 5 ~ 3 0
Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val
 35 40 45
Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu
 5 0 5 5 5 6 0
Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val
65 70 75 80
Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met gly Pro Ile
 85 90 95
Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gin
 100 105 110
Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly
 1 1 5 1 2 0 ~ 1 2 5
Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Thr Phe Leu
 1 3 0 1 3 5 1 4 0
Gly Lys Asp Trp Gly Leu Glu Glu Net Ser Glu Tyr Ser Asp Asp Tyr
```



```
Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln glu Pro
 165 170 175
Ang Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro gly Ser Glu
 180 185 190
gly Ala phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala glu
 195 200 205
Thr Gln Gln Asp Pro Glu Leu His Tyr J_eu Asn Glu Ser Ala Ser Thr
 2 1 0 2 1 5 ~ 2 2 0
pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu pro Leu pro Thr
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 4 0
Th: Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu
Gln Glu Gln ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro ser
 2 6 0 2 6 5 ~ 2 7 0
Fis Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu
 2 7 5 ~ 2 8 0 ~ 2 8 5
Lys Ser Fro Val Leu Thr Val Thr pro Gly Ser Thr Glu His Sex Ile
 2 9 0 2 9 5 ~ 3 0 0 ~
Ero Thr Fro Dro Thr Ser Ala Ala pro Ser Glu Ser Thr Pro Ser Glu
305 310 315 320
Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr
 3 2 5 ~ 3 3 0 ~ 3 3 5
Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu pro Asp Asn Glu Val
 3\leqslant0 345 350
Glu Leu Lys Ala Phe Val Ala Pro Ala pro Pro Val glu Thr Thr Tyr
 355 360 365
```



```
Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu
 855 890 895
Lys Ala Asp the Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly
 900 905 910
Cys Leu Leu Lys Cys ser Gly His Gly His Cys Asp pro Leu Thr Lys
Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr
 930 935 940
Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr
945 950 955 950
Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Lel
 965 970 975
Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys
 980 985 990
Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu
 995 1000 1005
Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser
 1010 1015 1020
Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile
1025 1030 1035 10\leqslant0
Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn
 1045 1050 1055
Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg
 1060
 1065
 1070
<210> 12
<211> 1072
<212> PRT
<213> Homo sapiens
<400> 12
Met Ala Fro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Th=
 1 5 10 15
Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Se=
Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg IIe Met Arg Val
Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu
```



```
Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val
65 70 75 80
Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile
 85 90 95
Arg Ser Tyr Leu Thr Phe val tren Arg pro val Gln Arg pro Ala Gin
 100 105 110
Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly
 1 1 5 ~ 1 2 0 ~ 1 2 5 ~
Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu
 1 3 0 1 3 5 1 4 0
Gly Jys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr
145150155160
Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln glu Pro
 165 170 175
Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu pro gly Ser Glu
 180 185 190
Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val pro Ala Glu
 195 200 205
Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr
 210 215 220
Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 4 0
Thr fro ser Ser Gly Glu Val Leu Glu Lys Glu Iys Ala ser Gln Leu
```

Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Fro Ser 260265270
His Ser Leu Pro pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu 275280285
Lys Ser Pro Val Leu Thr Val Thr Pro Gly ser Thr Glu His ser Ile 290295300
Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu
305310315320

Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr 325330335
Val Sex Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val 340345350
Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Fro Val Glu Thr Thr Tyr 355360365
Asn Tyr Glu Trp Asn Leu Ile Ser His fro Thr Asp Tyr Gln Gly Glu 370375380
Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser gln Leu Ser Val
385390395400 Gly Leu Tyr Val phe Lys Val Thr Val Ser Ser Glu Asn Ala phe Gly
405410415

Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu
420425430

Pro Ero Val Ala Val Val Ser Pro Gln Leu Gln glu Leu Thr Leu Pro 435440445
Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu 450455460
Ile val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile glu Glu 465470475480 Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr 500505510
Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro 515520525
Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gin Asn 530535540
Ser Ile Thr Leu Asn Gly Asn Gln ser Ser Asp Asp His Gln Ile Val 545550555560 Leu Tyr Giu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met cln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu 580585590
Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln 595600605
Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro 610615620
Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile phe pro Val Glu 625660635640 Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr 675680685
Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr 690695700
Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg 705710715720 Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr 740745750
Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp val Ile Asp

Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly
770775780

Val Ty'r Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp 785790795800
Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Iys Ser Gly 805810815
Leu Val Glu Leu Thr Leu Glr Val Gly Val Gly Gln Leu Thr Glu Gln 820825830
Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu 835840845
Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser 850855860
Thr Val Ile Val phe Tyr Val Gln Ser Arg Pro pro Phe Lys Val Leu 865870875880
Lys Ala Ala glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu 885890895
Lys Ala Asp phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly 900905910
CY's Leu Leu Lys Cys ser Gly His Gly His Cys Asp pro Leu Thr Lys 915920925
Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr 930935940
Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Ehe Tyr Val Thr 945950955960
Val Leu Ala phe Thr Leu Ile Val Leu Thr Gly Gly fhe Thr Trp Leu
Cys Ile Cys Cys Cys Dys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys
Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gin Glu Arg Met Glu 99510001005
Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser 101010151020
Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1025103010351040 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 104510501055
Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 106010651070

```
<210> 13
<211> 14
<212> PRT
<213> tetanus toxoid
<400> 13
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu
```

$<210\rangle 14$
<211> 21
<212> PRT
<213> Plasmodium falciparum
<400> 14

Asn Val Val Asn ser
20
<210> 15
<211> 16

```
<212> PRT
<2I3> Streptococcus
<400> 15
Gly Ala Val Asp Ser Lle Leu Gly Gly Val Ala Thr Tyr Gly Ala Ala
 1 5 10 15
<210> 16
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> pan-DR-binding epitope
<221> VARIANT
<222> 1, 13
<223> Xaa = D-alanine or L-alanine
<221> VARIANT
<222> 3
<223> Xaa = cyclohexylalanine, phenylalanine, or
 tyrosine
<400> 16
Xaa Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Xaa
<210> 17
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223s cDNA synthesis primer
<400> 17
ttttgatcaa gctt
<210> 18
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Frimer
<400> 18
ctaatacgac tcactatagg gctcgagcgg ccgcccgggc ag 42
<210> 19
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Frimex
<400> 19
gatcctgccc gg
<210> 20
```

```
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 20
gtaatacgac tcactatagg gcagcgtggt cgcggccgag
<210> 21
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 21
gatcctcggc 10
<210> 22
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 22
ctaatacgac tcactatagg gc 22
<210> 23
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 23
tcgagcggec gcccgggcag ga 22
<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 24
agcgtggtcg cggccgagga 20
<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 25
atatcgccgc gctcgtcgtc gacaa 25
```

```
<210> 26
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 26
agccacacgc agctcattgt agaagg 26
<210> 27
<21.1> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Flag Tag
<400> 27
gattacaagg atgacgacga taag 24
<210> 28
<21I> 4
<212> FRT
<213> Homo saviens
<400> 28
Asn Ser Ser Val
1
<210> 29
<211> 4
<212> PRT
<213> Homo sapiens
<400> 29
Asn Glu Ser Ala
I
<21.0> 30
<211> 4
<212> PRT
<213> Homo sapiens
<400> 30
Asn Ser Ser Gly
1
<210> 31
<211> 4
<212> PRT
<213> Homo sapiens
<400> 31
Asn Leu Ser Gln
1
<210> 32
```

```
<211> 4
<212> PRT
<213> Homo sapiens
<400> 32
Asn Val Thr Val
1
<210> 33
<211> 4
<212> PRT
<213> Homo sapiens
<400> 33
Asn Tyr Ser Phe
I
<210> 34
<211> 4
<212> PRT
<213> Homo sapiens
<400> 34
Asn Ser Thr Thr
1
<210> 35
<211> 4
<2l2> PRT
<213> Homo sapiens
<400> 35
Asn His Thr Ile
 I
<210= 36
<211= 4
<212> PRT
<213> Homo sapiens
<400> 36
Asn Gln Ser Scr
 I
<210> 37
<211> 4
<212> PRT
<213> Homo sapiens
<400> 37
Asn Asn Ser Pro
1
<210> 38
<2II> 4
<212> PRT
<213> Homo sapiens
```

```
<400> 38
Asn Asn Ser Ile
I
<210> 39
<211> 4
<212> PRT
<213> Homo sapiens
<400> 39
Asn Ser Ser Leu
1
<210> 40
<211> 4
<212> PRT
<213> Homo sapiens
<400> 40
Asn Gly Ser Ile
 1
<210> 41
<211> 12
<212> PRT
<213> Homo sapiens
<400> 41
glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu
<210> 42
<211> 11
<212> PRT
<213> Homo sapiens
<400> 42
Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys
1 5
 10
<210> 43
<211> 16
<212> PRT
<213> Homo sapiens
<400> 43
Asn Asn Ala Val Ase Tyr Pro Pro Val Ala Asn Ala gly Pro Asn His
1
 5 10
 15
<210> 44
<211> 9
<212> PRT
<213> Homo sapiens
<400> 44
Thr Gly Val Leu Ser Ser Leu Leu Leu
I
```

```
<210> 45
<211> 9
<212> PRT
<213> Homo sapiens
<400>45
Gly Val Leu Ser Ser Leu Leu Leu Leu
1
<210> 46
<211> 9
<212> PRT
<213> Homo sapiens
<400> 46
Arg Lys Gln Cys Ser Glu Gly Arg Thr
1 5
<210> 47
<311> 9
<212> PRT
<213> Homo sapiens
<400> 47
Gly Arg Thr Tyr Ser Asn Ala Val Ile
1
<210\rangle 48
<211> 9
<212> PRT
<213> Homo sapiens
<400> 48
Asn Ala Val Ile ser Pro Asn Leu Glu
1
<210> 49
<211> 9
<212> PRT
<213> Homo sapiens
<400> 49
Ile Met Arg Val Ser IIis Thr Phe Pro
I
<210> 50
<211> g
<212> FRT
<213> Homo sapiens
<400> 50
Cyrs Cys Asp Leu Ser Ser Cys Asp Leu
<210> 51
<211> 9
<212> PRT
```

```
<213> Homo sapiens
<400> 51
Cys Asp Leu Ser Ser Cys Asp Leu Ala
<210> 52
<2I1> 9
<212> PRT
<213> Homo sapiens
<400> 52
Cys Tyr Leu Val Ser Cys Pro His Iys
<210> 53
<211> 9
<212> PRT
<213> Homo sapiens
<400> 53
Gly Pro Ile Arg Ser Tyr Leu Thr Phe
1
<210> 54
<211> 9
<212> PRT
<213> Homo sapiens
<400> 54
Leu Asn Arg Gly Ser Pro Ser Gly Ile
7
<210> 55
<211> 9
<212> PRT
<213> Homo sapiens
<400> 55
Arg Gly Ser Pro ser Gly Ile Trp GIy
I
<210> 55
<211> 9
<212\rangle PRT
<213> Homo sapiens
<400> 56
Tle Trp Gly Asp Ser pro glu Asp Ile
1
<210> 57
<211> 9
<212> PRT
<213> Homo sapiens
<400> 57
Leu Glu Glu Met Ser Glu Tym Ser Asp
```

1 5

```
<210\rangle 58
<211> 9
<212> PRT
<213> Homo sapiens
<400> 58
Met Ser glu Tyr Ser Asp Asp Tyr Arg
I
```

<210> 59
<211> 9
<212> PRT
<213> Homo sapiens
$<400>59$
Leu Leu Gln Pro ser Gly Lys Gln Glu
1
$\langle 210\rangle 60$
<211> 9
<212> PRT
<213> Homo sapiens
<400> 60
Glu Pro Arg Gly Ser Ala Glu Tyr Thr
1
<210> 61
<211> 9
$\langle 212\rangle$ PRT
<213> Homo sapiens
<400> 61
Leu Leu Pro Gly Ser Glu Gly Ala phe
1
<210> 62
<211> 9
$<212>$ FRT
$<213\rangle$ Homo sapiens
$<400>62$
Gly Ala Phe Asn ser Ser Val Gly Asp
1
$<210\rangle 63$
<211> 9
<212> PRT
<213> Homo sapiens
$<400>63$
Ala Pie Asn Ser Ser Val Gly Asp Sex
1
$\langle 210\rangle 64$

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 64
ser Val Gly Asp Ser Pro Ala Val Pro
I
<210> 65
<211> ?
<212> PRT
<213> Homo sapiens
<400> 65
Tyr Leu Asn Glu Ser Ala Ser Thr Pro
I
<210> 66
<211> 9
<212> PRT
<213> Homo sapiens
<400> 66
Asn Glu Ser Ala Ser Thr Pro Ala Pro
1
<2I0> 67
<211> 9
<212> PRT
<213> Homo sapiens
<400> 67
Teu pro Glu Arg Ser val Leu Leu Pro
1
<210> 68
<211> 9
<212> PRT
<213> Homo sapiens
<100> 68
Fro Thr Thr Pro Ser Ser Gly Glu Val
 I
<210> 69
<211> 9
<212> PRT
<213> Homo sapiens
<400> 69
Thr Thr Pro Ser Ser Gly Glu Val Leu
 1
<210> 70
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 70
Lys Glu Lys Ala Ser Gln Leu Gln Glu
1 5
<210> 71
<2ll> 9
<212> PRT
<213> Homo sapiens
<400> 71
Ser Ser Asn Ser Ser Gly Lys Glu Val
1 5
<210> 72
<211> 9
<212> FRT
<213> Homo sapiens
<400> 72
Val Leu Met Pro Ser His Ser Leu Pro
7
<210> 73
<2Il> 9
<212> PRT
<213> Homo sapiens
<400> 73
Met Pro Ser His Ser Leu Pro Fro Ala
 1
<210> 74
<211> 9
<212> FRT
<213> Homo sapiens
<400> 74
Leu pro pro Ala Ser Leu Glu Leu Ser
1
<210> 75
<211> 9
<212> PRT
<2I3> Homo sapiens
<400> 75
Ser Leu Glu Leu Ser Ser Val Thr Val
1
<210> 76
<211> 9
<212> PRT
<213> Homo sapiens
<400> 76
Leu Glu Leu Ser Ser Val Thr Val Glu
1
```

```
<210> 77
<211> 9
<212> PRT
<213> Homo sapiens
<400> 77
Thr Val Glu Lys Ser Pro Val Leu Thr
1 5
<210> 78
<21.1> 9
<212> PRT
<213> Homo sapiens
<400> 78
Val Thr Pro Gly Ser Thr Glu His Ser
<210> 79
<211> 9
<212> PRT
<213> Homo sapiens
<400> 79
Ser Thr Glu His Ser Ile Pro Thr Pro
l
<210> 80
<21I> 9
<212> PRT
<213> Homo sapiens
<400> 80
Thr Pro Pro Thr Ser Ala Ala Pro Ser
1 5
<210> 81
<2II> 9
<212> PRT
<213> Homo sapiens
<400> }8
Ser Ala Ala Pro Ser Glu Ser Thr Pro
I 5
<210> 82
<211> 9
<212> PRT
<213> Homo sapiens
<400> }8
Ala Pro Ser Glu ser Thr Pro Ser Glu
I 5
<210> 83
<21I> 9
<2I2> PRT
```

```
<213> Homo sapiens
<400> 83
Glu Ser Thr Pro Ser Glu Leu Pro Ile
I
<210> 84
<211> 9
<212> PRT
<213> Homo sapiens
<400> 84
Glu Leu Pro Ile Ser Pro Thr Thr Ala
I
<210> 85
<211> 9
<212> PRT
<213> Homo sapiens
<400> 85
Glu Leu Thr Val Ser Ala Gly Asp Asn
1
<210> 86
<2II> 9
<212> PRT
<213> Homo sapiens
<400> 86
Trp Asn Leu Ile Ser His Pro Thr Asp
1
<210> 8?
<211> 9
<212> PRT
<213> Homo sapiens
<400> 87
Thr Leu Asn Leu Ser Gln Leu Ser Val
1
<210> 88
<211> 9
<212> PRT
<213> Homo sapiens
<400> 88
Leu Ser Gln Leu Ser val Gly Leu Tyr
I
<210> 89
<211> 9
<212> PRT
<213> Homo sapiens
<400> 89
Lys Val Thr Val Ser Ser Glu Asn Ala
```

```
I
5
<210> 90
<2Il> 9
<212> PRT
<213> Homo sapiens
<400> 90
Val Thr Val Ser ser Glu Asn Ala Phe
1 5
<210> 91
<2Il> 9
<212> PRT
<213> Homo sapiens
<400> 91
Val Ala Val Val ser Pro Gln Leu Gln
1
<210\rangle 92
<211> 9
<212> PRT
<213> Homo sapiens
<400> 92
Leu Fro Leu Thr Ser Ala Leu Ile Asp
1
<210\rangle 93
<211> -
<212> PRT
<213> Homo sapiens
<400> 93
Leu Ile Asp Gly Ser Gln Ser Thr Asp
1
<210> 94
<211> 9
<212> FRT
<213> Homo sapiens
<400> 94
Asp Gly Ser Gln Ser Thr Asp Asp Thr
1
 5
<210> 95
<21l> 9
<212> PRT
<213> Homo sapiens
<400> 95
Thr Glu Ile Val Se: Tyr His Trp Glu
<210> 96
```

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 96
glu Glu Lys Thr Ser Val Asp Ser Pro
1
<210> 9%
<211> 9
<212> PRT
<213> Homo sapiens
<400> 97
Thr Ser Val Asp Ser Pro Val Leu Arg
<210> 98
<211> 9
<212> PRT
<213> Homo sapiens
<400> 98
Val Leu Arg Leu Ser Asn Leu Asp Pro
1 5
<210> 99
<2II> 9
<212> PRT
<213> Homo sapiens
<400> 99
Pro Gly Asn Tyr Ser Phe Arg Leu Thr
1 5
```

$\langle 210\rangle 100$
c211> 9
<212> PRT
<213> Homo sapiens
<400> 100
Thr Val Thr Asp Ser Asp Gly Ala Thr
1
<210> 101
<211> 9
<212> PRT
<213> Homo sapiens
<400> 101
Gly Ala Thr Asn Ser Thr Thr Ala Ala
1
$<210\rangle 102$
<211> 9
<212> PRT
<213> Homo sapiens

```
<400> 102
Leu Pro Gln Asn Ser Ile Thr Leu Asn
1 5
<210> 103
<211> }
<212> PRT
<213> Homo sapiens
<400> 103
Asn Gly Asn Gln Ser Ser Asp Asp His
1 5
<210> 104
<211> 9
<212> PRT
<213> Homo sapiens
<400> 104
Gly Asn Gln Ser Ser Asp Asp His Gln
1 5
<210> 105
<211> 9
<212> PRT
<213> Homo sapiens
<400> 105
Leu Tyr Glu Trp Ser Leu gly pro gly
1 5
<210> 106
<211> 9
<212> PRT
<213> Homo sapiens
400> 106
Leu Gly Pro Gly ser Glu Gly Lys His
1 5
<210> }10
<211> 9
<212> PRT
<213> Homo sapiens
<400> 107
Tyr Leu His Leu Sex Ala Met Gln Glu
1 5
<210> 108
<21I> 9
<212> PRT
<213> Homo sapiens
<400> 108
Lys Val Thr Asp Ser Ser Arg Gln Gln
```

```
<210> 109
<211> }
<212> PRT
<213> Homo sapiens
<400> 109
Val Thr Asp Ser Ser Arg Gln Gln Ser
1
<210> 110
<211> 9
<212> PRT
<213> Homo sapiens
<400> 110
Ser Arg Gln Gln Ser Thr Ala Val Val
1
<210> 111
<211> 9
<212> PRT
<213> Homo sapiens
<400> 111
Phe Pro Val Glu Ser Ala Thr Leu Asp
1
<210> 112
<211> 9
<212> PRT
<213> Homo sapiens
<400> 112
Thr Leu Asp Gly Ser ser Ser Ser Asp
l
<210> 113
<211> 9
<212> PRT
<213> Homo sapiens
<400> 113
Leu Asp Gly Ser Ser Ser Ser Asp Asp
I
<210> 114
<211> 9
<212> PRT
<213> Homo sapiens
<400> 114
Asp Gly Ser Ser Ser Ser Asp Asp His
I 5
<210> 115
<211> 9
<212> PRT
```

```
<213> Homo sapiens
<400> 115
Gly Ser Ser Ser Ser Asp Asp His Gly
1
<210> 116
<211> 9
<212> PRT
<213> Homo sapiens
<400> 116
Val Arg Gly Pro Ser Ala Val Glu Met
1 5
<210> 117
<211> 9
<212> PRT
<213> Homo sapiens
<400> 11%
Gln Gln Gly Leu Ser Ser Thr Ser Thr
I 5
<210> 118
<211> 9
<212> PRT
<213> Homo sapiens
<400> 118
Gln Gly Leu Ser Ser Thr Ser Thr Leu
1
<210> 119
<211> 9
<212> PRI
<213> HomO sapiens
<400> 119
Leu Ser Ser Thr Ser Thr Leu Thr Val.
I
<210> 120
<211> 9
<212> PRT
<213> Homo sapiens
<400> 120
Lys Glu Asn Asn Ser Pro Pro Arg Ala
<210> 121
<211> = 9
<212> PRT
<213> Homo sapiens
<400> 121
Leu Pro Asn Asn Ser Ile Thr Leu Asp
```

```
15
```

```
<210> 122
<211> ?
<212> FRI
<213> FomO sapiens
<400> 122
Thr Leu Asp Gly Ser Arg Ser Thr Asp
 1 5
```

<210> 123
<211> 9
<212> PRT
<213> Homo sapiens
$<400\rangle 123$
Asp Gly Ser Arg Ser Thr Asp Asp Gln
<210> 124
<211> 9
<212> PRT
<213> Homo sapiens
<400> 124
Gln Arg Ile Val Ser Tyr Leu Trp Ile
1
$<210>125$
<211> 9
<212> PRT
<213> Homo sapiens
<400> 125
Arg Asp Gly Gln Ser Pro Ala Ala Gly
1.
$\langle 210\rangle 126$
<211>
<212> PRT
<213> Hono sapiens
<400> 126
Val Ile Asp Gly Ser Asp His Ser Val
1
<210> 127
<211> 9
<212> PRT
<213> Homo sapiens
<400> 127
Gly Ser Asp His Ser Val Ala Leu Gln
$<210>128$

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 128
Arg Val Thr Asp Ser Gln Gly Ala Ser
l
```

<210> 129
<211> 9
<212> PRT'
<213> Homo sapiens
<400> 129
Ser Gln Gly Ala Ser Asp Thr Asp Thr
1 5
$<210>130$
<211> 9
<212> PRT
<213. Homo sapiens
<400> 130
Asp Pro Arg Lys Ser Gly Leu Val Glu
1 5
$<210\rangle 131$
<211> 9
<212> PRT
<213> Homo sapiens
<400> 131
Asn Val Leu Asp ser Asp Ile Lys Val
1
$<210>132$
<211> 9
<212> PRT
<213> Homo sapiens
<400> 132
Ile Arg Ala His Ser asp Leu Ser Thr
1
<210> 133
<211> 9
<212> PRT
<213> Homo sapiens
$<400>133$
His Ser Asp Leu Ser Thr Val Ile Val
1
<210> 134
<211> 9
<212> PRT
<213> Homo sapiens

```
<400> 134
Phe TVr Val Gln Ser Arg Pro Pro Phe
1 5
<210> 135
<211> }
<212> FRT
<213> Homo sapiens
<400> 135
His Met Arg Leu Ser Lys Glu Lys Ala
<210> 136
<2Il> 9
<212> PRT
<213> Homo sapiens
<400> 136
Leu Leu Lys Cys Ser Gly Fis Gly His
<210> 137
<211> 9
<212> PRT
<213> Homo sapiens
<400> 137
Arg Cys Ile Cys Ser His Leu Trp Met
1
<210> 138
<211> 9
<212> PRT
<213> Homo sapiens
<400> 138
Trp Asp Gly Glu Ser Asn Cys Glu Trp
<210> 139
<211> 9
<212> PRT
<213> Homo sapiens
<400> 139
Asn Cys Glu Trp Ser Ile Phe Tyr val
<210> 140
<211> 9
<212> PRT
<213> Homo sapiens
<400> 140
Ile Lys His Arg Ser Thr Glu His Asn
```

```
<210> 141
<211> 9
<212> PRT
<213> Homo sapiens
<400> 141
Thr Glu His Asn Se` Ser Leu Met Val
1
<210> 142
<211> 9
<212> PRT
<213> Homo sapiens
<400> 142
Glu His Asn Ser Ser Leu Met Val Ser
I
<210> 143
<211> 9
<212> PRT
<213> Homo sapiens
<400> 143
Ser Leu Met Val Ser Glu Ser Glu Phe
1
<210> 144
<211> 9
<212> PRT
<213> Homo sapiens
<400> 144
Met Val Ser Glu Ser Glu Phe Asp Ser
 1
<210> 145
<2Il> 9
<212> PRT
<213> Fomo sapiens
<400> 145
Ser Glu Phe Asp Ser Asp Gln Asp Thr
 1
<210> 146
<211> 9
<212> PRT
<213> Homo sapiens
<400> 146
Asp Thr Ile Fhe Ser Arg Glu Lys Net
 1
<210> 147
<211> ?
<212> PRT
```

```
<213> Homo sapiens
<400> 147
Asn Pro Lys Val Ser Met Asn Gly Ser
I
<210> 148
<211> 9
<212> PRT
<213> Homo sapiens
<400> 148
Ser Met Asn Gly Ser Ile Arg Asn Gly
I
```

<210> 149
<211> 9
<212> PRT
<213> Homo sapiens
$<400>149$
Arg Asn Gly Ala ser phe ser Tyr Cys
1
$<210\rangle 150$
<211> 9
<212> PRT
<213> Homo sapiens
$<400>150$
Gly Ala Ser Phe ser Tyr Cys Sex Lys
1
<210> 151
$<211\rangle 8$
<212> PRT
<213> Homo sapiens
<400> 151
Phe Ser Tyr Cys Ser Lys Asp Arg
15
<210> 152
<211> 9
<212> PRT
<213> Homo sapiens
$<400>152$
Met Ala pro Ero Thr Gly Val Leu Ser
15
$<210>153$
<211> 9
<212> PRT
<213> Homo sapiens
s400> 153
Leu Leu Leu Val Thr Ile Ala Gly Cys
<210> 15
<211. 9
<212> PRT
<213> Homo sapiens
<400> 154
Ser Glu Gly Arg Thr Tyr Ser Asn Ala
1
<210> 155
<211> 9
<212> PRT
<213> Homo sapiens
<400> 155
Pro Asn Leu Glu Thr Thr Arg Ile Met
1
<210> 156
<211> 9
<212> PRT
<213> Homo sapiens
$\langle 400\rangle 156$
Asn Leu Glu Thr Thr Arg Ile Met Arg
1
<210> 157
<211> 9
<212> PRT
$<213>$ Homo sapiens
<400> 157
Arg Val Ser His Thr phe pro Val Val
1
<210> 158
<211> 9
<212> PRT
<213> Homo sapiens
<400> 158
Val Val Asp Cys Thr Ala Ala Cys Cys
1
$<210>159$
<211> 9
<212> PRT
$<213>$ Homo sapiens
<400> 159
Arg Ser Tyr Leu Thr phe Val Leu Arg
1
$<210\rangle 160$

```
<211> 9
<212> ERT
<213> Homo sapiens
<400> 160
Ser Ala Glu Tyr Thr Asp Trp Gly Leu
1 5
<210> 161
<211> 9
<212> PRT
<213> Homo sapiens
<400> 161
Val Pro Ala Glu Thr Gln Gln Asp Pro
1 5
<210> 162
<211> 9
<212> PRT
<213> Homo sapiens
<400> 162
Glu Ser Ala Ser Thr Pro Ala Pro Lys
 l
<210> 163
<211> 9
<212> PRT
<213> Homo sapiens
<400> 163
Leu Pro Leu Pro Thr Thr Pro Ser Ser
 I
<210> 164
<211> 9
<212> PRT
<213> Homo sapiens
<400> 164
Pro Lell Pro Thr Thr Pro Ser Ser Gly
 1
<210> 165
<211> 9
<212> PRT
<213> Homo sapiens
<400> 165
Leu Ser Ser Val Thr Val Glu Lys Ser
<210> 166
<211> }
<212> PRT
<213> Homo sapiens
```

```
<400> 166
Ser Pro Val Leu Thr Val Thr Pro gly
 1
<210> 167
<217> 9
<212> PRT
<213> Homo sapiens
<400> 167
Val Leu Thr Val Thr Pro Gly Ser Thr
I 5
<210> 168
<211> 9
<212> PRT
<213> Homo sapiens
<400> 16B
Thr Pro Gly Ser Thr Glu His Ser Ile
I 5
<210> 169
<2Il> 9
<212> PRT
<213> Homo sapiens
<400> 169
His Ser Ile Pro Thr Pro Pro Thr Ser
l
<210> }17
<211> 9
<212> PRT
<213> Homo sapiens
<400> 170
Pro Thr Pro Pro Thr Ser Ala Ala Pro
1
<210> 171
<21I> 9
<212> PRT
<213> Homo sapiens
<400> 171
Pro Ser Glu Ser Thr Pro Ser Glu Ieu
I
<210> 172
<211> 9
<212> PRT
<213> Homo sapiens
<400> 172
Pro Ile Ser Pro Thr Thr Ala Pro Arg
1
```

```
<210> 173
<211> 9
<212> PRT
<213> Homo sapiens
<400> 173
Ile Ser Fro Thr Thr Ala Pro Arg Thr.
1
<210> 174
<211> 9
<212> PRT
<213> Homo sapiens
<400> 174
Thr Ala Pro Arg Thr Val Lys Glu Leu
 1
<210> 175
<211> 9
<212> PRT
<213> Homo sapiens
<400> 175
Val Lys Glu Leu Thr Val Ser Ala Gly
 I
<210> 176
<211> 9
<212> PRT
<213> Homo sapiens
<400> 176
Asn Leu Ile Ile Thr Leu Pro Asp Asn
 1
<210> 177
<211> ?
<212> PRT
<213> Homo sapiens
<400> 177
Pro Pro Val Glu Thr Thr Tyr Asn Tyr
1
<210> 178
<211> 9
<212> PRT
<213> Homo sapiens
<400> 178
Pro Val Glu Thr Thr Tyr Asn Tyr Glu
 1
<210> 179
<211> 9
<212> PRT
```

```
<213> Homo sapiens
<400>.179
Ile Ser His Pro Thr Asp Tyr Gln Gly
<210> 180
<211> 9
<212> PRT
<213> Homo sapiens
<400> 180
Gly His Lys Gln Thr Leu Asn Leu Ser
1 5
<210> 181
<211> 9
<212> PRT
<213> Homo sapiens
<400> 181
Val Phe Lys Val Thr Val Ser Ser Glu
I
<210> 182
<211> 9
<212> PRI
<213> Homo sapiens
<400> 182
Phe Val Asn Val Thr Val Lys pro Ala
1 5
<210> 183
<211> 9
<212> PRT
<213> Homo sapiens
<400> 183
Ieu Gln Glu Leu Thr Leu Pro Leu Thr
1
<210\rangle 184
<211> 9
<212> PRT
<213> Homo sapiens
<400> 184
Thr Leu Pro Leu Thr Ser Ala Leu Ile
 I
<210> 185
<211> 9
<212> PRT
<213> Homo sapiens
<400> 185
Gly Ser Gln Ser Thr Asp Asp Thr Glu
```

```
1
5
```

```
<210> 186
<211> 9
<212> PRT
<213> Homo sapiens
<400> 185
Ser Tix Asp Asp Thr Glu Ile val ser
1
```

<210> 187
<211> 9
<212> PRT
<213> Homo sapiens
<400> 187
Ile Glu Glu Lys Thr Ser Val Asp Ser
1
<210> 188
<211> 9
<212> PRT
<213> Homo sapiens
<400> 188
Arg Leu Thr Val Thr Asp Ser Asp Gly
15
<210> 189
<211> 9
<212> PRT
$<213>$ Homo sapiens
$<400\rangle 189$
Ser Asp Gly Ala Thr Asn Ser Thr Thr
1
$<210\rangle 190$
<211> 9
<212> PRT
$<213>$ Homo sapiens
$<400\rangle 190$
Ala Thr Asn Ser Thr Thr Ala Ala Leu
1
<210> 191
<211> 9
<212> PRT
<213> Homo sapiens
<400> 191
Thr Asn Ser Thr Thr Ala Ala Leu Ile
1
$<210\rangle 192$

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 192
Gly Pro Asn His Thr Ile Thr Leu Pro
1 5
<210> 193
<211> 9
<212> PRT
<213> Homo sapiens
<400> 193
Asn His Thr Ile Thr Leu Pro Gln Asn
 1
<210> 194
<211> 9
<212> PRT
<213> Homo sepiens
<400> 194
Gln Asn Ser Ile Thr Leu Asn Gly Asn
<210> 195
<211> 9
<212> PRT
<213> Homo sapien
<400> 195
Gln Gly Val Gln Thr Pro Tyr Len His
1
<210> 196
<211> 9
<212> PRT
<213> Homo sapiens
-400> 196
Glu Gly Asp Tyr Thr Phe Gln Leu Lys
 1
<210> 197
<211> g
<212> PRT
<213> Homo sapiens
<400> }19
Gln Leu Lys Val Thr Asp Ser Ser Arg
 1
<210> 198
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 198
Arg Gln Gln Ser Thr Ala Val Val Thr
1 5
<210> 199
<211> 9
<212> PRT
<213> Homo sapiens
<400> 199
Thr Ala Val Val Thr Val Ile Val Gln
 I
<210> 200
<211> }
<212> PRT
<213> Homo sapiens
<400> 200
Val Glu Ser Ala Thr Leu Asp Gly Ser
 I
 <210> 201
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 201
 Lys Ala rle Ala Thr val Thr Gly Leu
 I
 <210>202
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 202
 Ile Ala Thr Val Thr Gly Leu Gln Val
 I
 <210> 203
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 203
 Leu Gln Val Gly Thr Tyr His Phe Arg
 1
 <210> 204
 <211> ?
 <212> PRT
 <213> Homo sapiens
 <400> 204
 His ?he Arg Leu Thr Val Lys Asp Gln
 1
 5
```

```
<210> 205
<211> 9
<212> PRT
<213> Homo sapiens
<400> 205
Gly Leu Ser Ser Thr Ser Thr Leu Thr
1
<210> 206
<211> 9
<212> PRT
<213> Homo sapiens
<400> 206
Ser Ser Thr Ser Thr Leu Thr Val Ala
1
<210> 207
<211> 9
<212> PRT
<213> Homo sapiens
<400> 207
Thr Ser Thr Leu Thr Val Ala Val Lys
1
<2I0> 208
<2II> 9
<212> PRT
<213> Homo sapiens
<400> 208
Asn Asn Ser Ile Thr Leu Asp Gly Ser
I
<210> 209
<211> 9
<212> PRT
<213> Homo sapiens
<400> 209
Gly Ser Arg Ser Thr Asp Asp Gln Arg
I
<210> 210
<211> 9
<212> PRT
<213> Homo sapiens
<400> 210
Ala Leu Gln Leu Thr Asn Leu Val Glu
I
<210> 211
<211> 9
<212> PRT
```

```
<213> Homo sapiens
<400> 211
Glu Gly Val Tyr Thr Phe His Leu Arg
I
<210> 212
<211> 9
<212> PRT'
<213> Homo sapiens
<400> 212
His Leu Arg Val Thr Asp Ser Gln Gly
<210> 213
<211> 9
<212> PRT
<213> Homo sapiens
<400> 213
Gly Ala Ser Asp Thr Asp Thr Ala Thr
1
<210> 214
<2II> 9
<212> PRT
<213> Homo sapiens
<400> 214
Ser Asp Thr Asp Thr Ala Thr Val Glu
 1
```

<210> 215
$\langle 211\rangle 9$
<212> PRT
<213> Homo sapiens
<400> 215
Thr Asp Thr Ala Thr Val Glu Val Gln
$\langle 210\rangle 216$
<211> 9
<212> PRT
<213> Homo sapiens
$\langle 400\rangle 216$
Leu Val Glu Leu Thr Leu Gln Val Gly
1
<210> 217
<211> 9
<212> PRT
<213> Homo sapiens
<400> 217
Val Gly Gln Leu Thr Glu Gln Arg Lys

1
5

```
<210> 218
<211> 9
<212> PRI
<213> Homo sapiens
<400> 218
Gln Arg Lys Asp Thr Leu Val Arg Gln
 1
```

<210> 219
<211> 9
<212> PRT
$<213$ > Homo sapiens
$<400\rangle 219$
Ser Rsp Leu Ser Thr Val Ile Val Phe
1
<210> 220
<211> 9
<212> PRT
<213> Homo sapiens
(400) 220
Leu Arg Val Asp Thr Ala Gly Cys Leu
1
<210> 221
<211> 9
<212> PRT
<213> Homo sapiens
<400> 221
Cys Asp Pro Leu Thr Lys Arg Cys Ile
$<210\rangle 222$
<211> 9
<212> PRTT
<213> Homo sapiens
<400> 222
Ile Phe Tyr Val thr Val Leu Ala Phe
1
<210> 223
<211> 9
<212> PRT
<213> Homo sapiens
<400> 223
Val Leu Ala Phe Thr Leu Ile Val Leu
1
$<210>224$

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 224
Leu Ile Val Leu Thr Gly Gly Phe Thr
I 5
<210> 225
<211> 9
<212> PRT
<213> Homo sapiens
<400> 225
Thr Gly Gly Phe Thr Trp Leu cys tle
1 5
<210> 226
<211> 9
<212> PRT
<213> Homo sapiens
<400> 226
Arg Gln Ly's Arg Thr Lys rle Arg Lys
1 5
<210> 227
<211\rangle>9
<212> PRT
<213> Homo sapiens
<400> 227
Ile Arg Lys Lys Thr Lys Tyr Thr Ile
 I
<210> 228
<211\rangle 9
<212> PRT
<213> Homo sapiens
<400> 228
Lys Thr Lys Tyr Thr Ile Leu Asp Asn
<210> 229
<2I1> 9
<212> PRT
<213> Homo sapiens
<400> 229
Lys His Arg Ser Thry Glu Fis Asn Ser
<210> 230
<2II> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 230
Ser Asp Gln Asp Thr Ile Phe Ser Arg
 1
<210> 231
<211> 9
<212> PRT
<213> Homo sapiens
<400> 231
Glu Gly Arg Thr Tyr Ser Asn Ala Val
l
<210> 232
<211> 9
<212> PRT
<213> Homo sapiens
<400> 232
Glu. Gly Arg Cys Tyr Leu Val Ser Cys
<210> 233
<211> 9
<212> PRT
<213> Homo sapiens
<400> 233
Pro Ile Arg Ser Tyr Leu Thr Phe Val
<210> 234
<211> 9
<212> PRT
<213> Homo sapiens
<400> 234
Gln Leu Leu Asp Tyr Gly Asp Met Met
 1
<210> 235
<211> 9
<212> PRT
<213> Homo sapiens
<400> 235
Glu Met Ser Glu Tyr Ser Asp Asp Tyr
<210> 236
<211> }
<212> PRT
<213> Homo sapiens
<400> 236
Tyr Ser Asp Asp Tyr Arg Glu Leu Glu
```

```
<210> 237
<211> 9
<212> PRT
<213> Homo sapiens
<400> 237
Gly Ser Ala Glu Tyr Thr Asp Trp Gly
<210> 238
<211> 9
<212> PRT
<213> Homo sapiens
<400> 238
Pro Glu Leu His TYr Leu Asn Glu Ser
l
<210> 239
<211> 9
<212> PRT
<213> Homo sapiens
<400> 239
Val Glu Thr Thr Tyr Asn Tyr Glu Trp
 l
<210\rangle 240
<211> 9
<212> PRT
<213> Homo sapiens
<400> 240
Thr Thr Tyr Asn Tyr Glu Trp Asn Leu
<210> 241
<211> 9
<212> ERT
<213> Homo sapiens
<400> 241
His Pro Thr Asp Tyr Gln Gly Glu Ile
 l
 <210> 242
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 242
 Ser Val Gly Leu Tyr Val Phe Lys Val
 <210> 243
 <211> 9
 <212> PRT
```

```
<213> Homo sapiens
<400> 243
Glu Ile Val Ser Tyr His Trp Glu Glu
<210> 244
<211>> 9
<212> PRT
<213> Homo sapiens
<400> 244
Asp Pro Gly Asn Tyr Ser Pho Arg Leu
<210> 245
<211> 9
<212> PRT
<213> Homo sapiens
<400> 245
Asn Ala Val Asp Tyr Pro Pro Val Ala
 1
<210> 246
<211> 9
<212> PRT
<213> Homo sapiens
<400> 245
Gln Ile Val Leu Tyr Glu Tre Ser Leu
<210> 247
<211> 9
<212> PRT
<213> Homo sapiens
<400> 247
Val Gln Thr Pro Tyr Leu His Leu Ser
 I
<210\rangle 248
<211> 9
<212> PRT
<213> Homo sapiens
<400> 248
Gln Glu Gly Asp Tyr Thr Phe Gln Leu
<210> 249
<211> 9
<212> PR.T
<213> Homo sapiens
<400> 249
Gly Ile Val Phe Tyr His Trp Glu His
```

1
5
$<210>250$
-211> 9
<212> PRT
<213> Homo sapiens
<400> 250
Gln Val Gly Thr Tyr His Phe Arg Leu 1
<210> 251
<211> 9
<212> PRT
<213> Homo sapiens
$<400>251$
Arg Tle Val ser Tyr Leu Trp Ile Arg
$<210\rangle 252$
<211> 9
<212> PRT
<213> Homo sapiens
$<400>252$
Val Glu Gly Val Tyr Thr Phe His Leu
1
<210> 253
<211> 9
<212> PR'T
<213> Homo sapiens
$<400>253$
Val Zle Val phe Tyr Val Gln Ser Arg 1
<210> 254
<211> 9
<212> PRT
<213> Homo sapiens
<400> 254
Leu Ile Gln Arg Tyr
1
<210> 255
<211> 9
<212> PRT
$<213>$ Homo sapiens
$<400>255$
Trp Ser Ile Phe Tyr Val Thr Val Leu
$<210\rangle 256$

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 256
Lys Lys Thr Lys Tyr Thr Ile Leu Asp
1 5
<210> 257
<211> 9
<212> PRT
<213> Homo sapiens
<400> 257
Leu Arg Pro Lys Tyr Gly Tle bys Hts
1
<210> 258
<211> 9
<212> PRT
<213> Homo sapiens
<400> 258
Ala Ser Phe Ser Tyr Cys Ser Lys Asp
<210> 259
<211> 1072
<212> PRT
<213> Homo sapiens
<400> 259
Met Ala fro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr
 1. 5 10 15
Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser
Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val
35 40 45
Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu
 50 55 60
Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val
```



```
Ser Cys Pro His Lys Glu Asn Cys Glu Fro Lys Lys Met Gly Pro Ile
 8590 95
Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln
 100 105 110
Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly
 115 120 125
Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu
 130 135 140
Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr
1 4 5 ~ 1 5 0 ~ 1 5 5 ~ 1 6 0 ~
Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser gly Lys gln Glu Pro
 165 170 175
Arg ely Ser Ala glu Tyr Thr Asp Trp Gly Leu Leu Pro gly Ser Glu
 180 185 190
Gly Ala Fhe Asn Ser Ser Val Gly Asp Ser Pro Ala Val pro Ala Glu
 195 200 205
Thr Gln Gln Asp Fro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr
 210 215 220
Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr
```

| 225 |  |  |  |  | 230 |  |  |  |  | 235 |  |  |  |  | 240 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thr | Pro | ser | Sex | Gly | Glu | Val | Leu | Glu I | Lys | Glu | LYs | Ala | Ser | Gln | Leu |
|  |  |  |  | 245 |  |  |  |  | 250 |  |  |  |  | 255 |  |
| Gln | Glu | Gln | Ser | Ser | Asn | Ser | Ser | Gly | Lys | Glu | Val | Leu | Met | Pro | Ser |
|  |  |  | 260 |  |  |  |  | 265 |  |  |  |  | 270 |  |  |
| His | Ser | u | Pro | Pro | Ala | Ser | Leu | Glu | Leu | Ser | Sex | al | Thr | Val | Glu |
|  |  | 275 |  |  |  |  | 280 |  |  |  |  | 285 |  |  |  |
| Lys | S | Pro | Val | u | r | 1 | Thr | Pro | Gly | Ser | Thr | Glu | His | Ser | Ile |
|  | 290 |  |  |  |  | 295 |  |  |  |  | 300 |  |  |  |  |
| Pro | Thr | ro | - | Thr | Ser | Ala | Ala | ro | ser | Glu | Ser | Thr | Pro | Ser | Glu |
| 305 |  |  |  |  | 310 |  |  |  |  | 315 |  |  |  |  | 320 |
| Leu |  | e | $r$ | Pro | Thr | r | la | $\bigcirc$ | Arg | Thr | 1 | ys | Glu | Leu | Thr |
|  |  |  |  | 325 |  |  |  |  | 330 |  |  |  |  | 335 |  |
| Val | Ser | Ala | Gly | Asp | Asn | u | 1 e | Ile | Thr | Leu | ro | sp | Asn | Glu | Val |
|  |  |  | 340 |  |  |  |  | 345 |  |  |  |  | 350 |  |  |
| Glu | Leu | Lys | Ala | e | Val | Ala | Pro | Ala | Pro | ro | al | Glu | Thr | Thr | TYY |
|  |  | 355 |  |  |  |  | 360 |  |  |  |  | 365 |  |  |  |
| Asn | Tyr | Glu | Irp | Asn | $u$ | Ile | Ser | is | O | ar | Asp | TYx | Gln | gly | Glu |
|  | 370 |  |  |  |  | 375 |  |  |  |  | 380 |  |  |  |  |
| Ile | Lys | Gln | Gly | His | Lys | G1n | hr | eu | sn | Leu | Ser | Gln | Leu | Ser | Val |
| 385 |  |  |  |  | 390 |  |  |  |  | 395 |  |  |  |  | 400 |
| Gly | Leu | Tyr | Val | Phe | Lys | Val | ar | 1 | Ser | Ser | Glu | Asn | Ala | Phe | Gly |
|  |  |  |  | 405 |  |  |  |  | 410 |  |  |  |  | 415 |  |
| Glu | Gly | he | Val | n | 1 | r | 1 | Lys | Pro | Ia | rg | rg | Val | sn | Leu |
|  |  |  | 420 |  |  |  |  | 425 |  |  |  |  | 430 |  |  |
| Pro | Ero | Val | Ala | Val | Val | Ser | Pro | Gln | Leu | ln | lu | Leu | Thr | , | Pro |
|  |  | 435 |  |  |  |  | 440 |  |  |  |  | 445 |  |  |  |
| Leu | Thr <br> 450 | Ser | Ala | Leu | Ile | Asp $455$ | Gly | Ser | Gln | Ser | Thr <br> 450 | Asp | Asp | Thr | Glu |
| Ile | Val | Ser | Tyr | is | Trp | glu | 1 u | Ile | n | Gly | ro | he | Ile | glu | Glu |
| 465 |  |  |  |  | 470 |  |  |  |  | 475 |  |  |  |  | 480 |
| Lys | Thr | Ser | al | Asp | ser | ro | 1 | Leu | Arg | Leu | Ser | sn | -u | Asp | Pro |
|  |  |  |  | 485 |  |  |  |  | 490 |  |  |  |  | 495 |  |
| Gly | Asn | Tyr |  | Phe | Arg | $u$ | Thr | Val | Thr | Asp | Ser | Asp | Gly | Ala | Thr |
|  |  |  | 500 |  |  |  |  | 505 |  |  |  |  | 510 |  |  |
| Asn | Ser | Thr | Thr | Ala | Ala | Leu | Ile | Val | Asn | Asn | Ala | Vel | Asp | Tyr | Pro |
|  |  | 515 |  |  |  |  | 520 |  |  |  |  | 525 |  |  |  |
| Pro | Val | Ala | Asn | a | Y | Pro | n | His | Thr | le | Thr | , | co | n | n |
|  | 530 |  |  |  |  | 535 |  |  |  |  | 540 |  |  |  |  |
| Ser | Ile | Thr | eu | Asn | Gly | Asn | Gln | Ser | Ser | Asp | Asp | His | Gln | IIe | Va: |
| 545 |  |  |  |  | 550 |  |  |  |  | 555 |  |  |  |  | 560 |
| Leu | Tys | Glu | Trp | Ser | Leu | Gly | Pro | Gly | Ser | Glu | Gly | Lys | His | Val | VaI |
|  |  |  |  | 565 |  |  |  |  | 570 |  |  |  |  | 575 |  |
| Met | Gln | Gly | Val | Gln | r | 0 | $r$ | Leu | His | eu | er | la | Met | G1n | lu |
|  |  |  | 580 |  |  |  |  | 585 |  |  |  |  | 590 |  |  |
| Gly | Rsp | Tyr | rr | Phe |  | $u$ | ¢ | al | r | sp | er | Er | Arg | 1 n | 1 n |
|  |  | 595 |  |  |  |  | 600 |  |  |  |  | 505 |  |  |  |
| Ser | Thr | Ala | Val | al | $r$ | Val | Ile | Val | In | ro | Glu | An | sn | Arg | Pro |
|  | 610 |  |  |  |  | 615 |  |  |  |  | 620 |  |  |  |  |
| Pro | Val | Ala | Val | Ala | Gly | - | Asp | Lys | Glu | Leu | Ile | Phe | Pro | Val | Glu |
| 625 |  |  |  |  | 630 |  |  |  |  | 635 |  |  |  |  | 640 |
| Ser | Ala | Thr | u | Asp | Gly | Ser | r | er | r | Asp | Asp | His | Gly | Ile | Val |
|  |  |  |  | 645 |  |  |  |  | 650 |  |  |  |  | 655 |  |
| Phe | Tyr | His | Trp | Glu | His | I | rg | Gly | Pro | er | la | Val | Glu | Met | Glu |
|  |  |  | 660 |  |  |  |  | 665 |  |  |  |  | 670 |  |  |
| Asn | Ile | Asp | Lys | Ala | Ile | Ale | Thr | Val | Thr | Gly | Leu | Gln | Val | Gly | The |
|  |  | 675 |  |  |  |  | 680 |  |  |  |  | 685 |  |  |  |
| Tyr | His | Phe | Arg | Leu | Thr | Val | Lys | Asp | Gln | Glo | Gly | Leu | Ser | Ser | The |
|  | 690 |  |  |  |  | 695 |  |  |  |  | 700 |  |  |  |  |
| Ser | Thr | Leu | Thr | Val | Ala | Val | Lys | Lys | Glu | Asn | Asn | Ser | Pro | Pro | Arg |
| 705 |  |  |  |  | 710 |  |  |  |  | 715 |  |  |  |  | 720 |
| Ala | Arg | Ala | Gly | $\mathrm{gl}_{Y}$ | Arg | His | Val | Leu | Val | Leu | Pro | Asn | Asn | Ser | Ile |
|  |  |  |  | 725 |  |  |  |  | 730 |  |  |  |  | 735 |  |

```
7 4 0 ~ 7 4 5
750
Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp
Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly
Val Tyr Thr Ehe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp
785 790 795 800
Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly
Leu Val Glu Leu Thr Leu Gln val Gly Val Gly Gln Leu Thr Glu Gln
 820 825 830
Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu
 835 840 845
Asp Ber Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser
 850 855 860
Thr Val Ile Val phe Tyr Val Gln Ser Arg Pro Pro phe Lys Val Leu
865 870 875 880
Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu
Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly
Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys
 915 920 925
Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr
 930 935 940
Ile Trp Asp Gly Glu Ser Asr Cys Glu Trp ser Ile Phe Tyr Val Thr
945 950 965 960
Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu
Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys
Thr Ly'S Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Net Glu
 995 1000 1005
Leu Arg Fro Lys Tyr Gly Ile Lys His Arg Ser Thr G`u His Asn Se:
 1 0 1 0 ~ 1 0 1 5 ~ 1 0 2 0
Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile
1025 1030 1035 1040
Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn
 1045 1050 1055
Gly Ser Ile Arg Asn Gly Ala Ser Phe ser Tyr Cys Ser Lys Asp Arg
 1060 1065 1070
```

```
<210> 260
```

<210> 260
<211> 17
<211> 17
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 250
<400> 250
Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr Arg Glu Leu Glu
Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr Arg Glu Leu Glu
1 5 10 15
1 5 10 15
Lys

```
Lys
```

```
<210> 261
<211> 19
<212> PRI
<213> Homo sapiens
<400> 261
Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr Arg Glu Leu
1 5 10 15
Glu Lys Asp
```

```
<210> 262
<211> 29
<212> PRT
<213> Homo sapiens
<400> 262
Phe Leu Gly Lys Asp Irp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp
1 5 10 15
Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser
20
25
<210> 263
<211> 18
<212> PRT
<213> Homo sapiens
<600> 263
Met Thr Arg Leu Gly Trp pro Ser pro Cys Cys Ala Arg Lys Gln Cys
1 5 10 15
Ser Glu
```

```
<210> 264
<2ll> 19
<212> PRT
<213> Homo sapiens
<400> 264
Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys
 1
Ser Glu Gly
```

<210> 265
<211> 24
<212> PRT
<213> Homo sapiens
<400> 265
Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys gln Cys
Ser Glu Gly Arg Thr Tyr Ser Asn
20
$<210>266$
<211> 17
<212> PRT
<213> Homo sapiens
<400> 266
Pro Glu Asp Ile Arg Lys Asp Leu Thr Phe Leu Gly Lys Asp Trp Gly
$\begin{array}{llll}1 & 5 & 10 & 15\end{array}$
Leu
$<210\rangle 267$

```
<211> 19
<212> PRT
<213> Homo sapiens
<<00> 267
Ser Ero Glu Asp Ile Arg Lys Asp Leu Thr Phe Leu Gly Lys Asp Trp
1 5 10 15
Gly Leu Glu
```

<210> 268
<211> 29
<212> PRT
<213> Homo sapiens
<400> 268
Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Thr Phe
$1 \quad 5$
10
15
Leu Gly Lys Asp Trp Gly Leu Glu glu Met ser glu Tyr
20
25
<210> 269
<211> 6991
<212> DNA
<213> Homo sapiens
<400> 269
gctgccgcgg gcggtgggcg gggatccccc gggggtgcaa ccttgctcca cctgtgctgc 60
cctcggcggg cctggctggc cocgcgcaga gcggcggcgg cgctegctgt cactgccgga 120
ggtgagagcg cagcagtage ttcagcctgt ettgggcttg gtccagattc gctcctctgg 180
ggctacgtcc cggggaagag gaagcgagga ttttgctggg gtggggetgt acctcttaac 240
agcaggtgcg cgegcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg zgtgtgtgtg 300
taagacctgc gatgacgacg aggaggaaca agtgggacgg cgagtgatgc tcagggccag 360
cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacaggtac ggtatctact 420
tcccagagcg cctggccgag aataggaaa gagggcagcc agtaggcagg ccaataccca 480
acaaaagtag aatcgagacg coctgagttc agaagttctt gaggccaaat ctggctccta 540
aaaaacatca aaggaagctt gcaccaaact ctcttcaggg cogcctcaga agcctgccat 500
cacccactgt grggtgceca atggcgcccc ccacaggtgt gctctcttca ttgctgctgc 660
tggtgacaat tgcagtttgc ttatggtgga tgcactcatg gcaaaaaaat cactggtgag 720
catcatttaa gaagacccat gactagactg ggctggccga gcccatgttg tgcccgtaag 780
cagtgcagcg aggggaggac atattccaat gcagtcattt cacctaactt ggaaaccacc 840
agaatcatgc gggtgtctca caccttccet gtcgtagact gcacggccgc ttgctgtgac 900
ctgtccagct gtgacctggc ctggtggttc gagggccgct gctacctggt gagctgcacc 960
cacaaagaga actgtgagcc caagaagatg ggccccatca ggtcttatct cacttttgtg 1020
ctccggectg ttcagaggce tgcacagctg ctggactatg gggacatgat gctgaacacg 1080
ggctccccct cggggatctg gggggactca cctgaggata tcagaaagga cttgcccttt 1140
ctaggcaaag attggggcct agaggagatg tctgagtact cagatgacta cogggagctg 1200
gagaaggacc tcttgcaacc cagtggcaag caggagccca gagggagtgc cgagtacacg 1260
gactggggcc tactgccggg cagcgagggg gccttcaact cctctgttgg agacagtcct 1320
gcggtgccag cggagacgca gcaggaccet gagctccett acctgaatga gtcggcttca 1380
acccctgccc caaaactcce tgagagaagt gtgttgcttc ccttgccgac tactccatct 1440
tcaggagagg tgttggagaa agaaaaggct tctcagctcc aggaacaatc cagcaacagc 1500
tctggaaaag aggttctaat gccttcccat agtcttcctc cggcaagcet ggagctcagc 1560
tcagtcaccg tggagaaaag cccagtgctc acagtcaccc eggggagtac agagcacagc 1620
atcccaacac ctcccactag cgcagccccc tctgagtcca ceccatctga gctacccata 1680
tctcctacca ctgctcccag gacagtgaaa gaacttacgg tatcggctgg agataaccta 1740
atta=aactt tacccgacaa tgaagttgaa ctgaaggcct ttgttgcgcc agcgccacct 1800
gtagaaacaa cctacaacta tgaatggaat ttaataagcc accccacaga ctaccaaggt 1860
gaaa=aaaac aaggacacaa gcaaactctt aacctctctc aattgtccgt cggactttat 1920
gtct=caaag tcactgtttc tagtgaaaac gcctttggag aaggatttgt caatgtcact 1980
gttaagccty ccagaagagt caacctgcca cctgtagcag ttgtttctcc ccaactgcaa 2040
gagcecactt tgcctttgac gtcagccctc attgatggca gccaaagtac agatgatact 2100
gaatagtga gttatcattg ggaagaaata aacgggccet tcatagaaga gaagacttca 2169 gttgactctc cogtcttacg cttgtctaac cttgatcctg gtaactatag tttcaggttg 2220 actgttacag actcggacgg agccactaac tctacaactg cagccctaat agtgaacaat 2281 gctgtggact acccaccagt tgctaatgca ggaccaaatc acaccataac tttgccccaa 2340 aactccatca ctttgaatgg aaaccagagc agtgacgatc accagattgt cctctatgag 2400 tggtccctgg gtcctgggag tgagggcaaa catgtggtca tgcagggagt acagacgcca 2463 taccttcatt tatctgcaat gcaggaagga gattatacat ttcagctgaa ggtgacagat 2520 tcttcaaggc aacagtctac tgctgtggtg actgtgattg tccagcctga aaacaataga 2580 cctccagtgg ctgtggccgg coctgataaa gagctgatct tcccagtgga aagtgctacc 2640 ctggatggga gcagcagcag cgatgaccac ggcattgtct tctaccactg ggagcacgtc 2700 agaggcccca gtgcagtgga gatggaaaat attgacaaag caatagccac tgtgactogt 2760 ctccaggtgg ggacctacca cttccgtttg acagtgaaag accagcaggg actgagcagc 2820 acgtccaccc tcactgtggc tgtgaagaag gaaaataata gtcctcccag agcecgggct 2880 ggtggcagac atgttcttgt gcttcccaat aattccatta ctttggatgg ttcaaggtct 2940 actgatgacc aaagaattgt gtcctatctg tggatccggg atggccagag tccagcacct 3000 ggagatgtca tcgatggctc tgaccacagt gtggctctgc agcttacgaa tctggtgcag 3060 ggggtgtaca ctttccactt gcgagtcacc gacagtcagg gggcctcgga cacagacact 3120 gecactgtgg aagtgcagcc agaccctagg aagagtggce tggtggagct gaccctgcag 3180 gttggtgttg ggcagctgac agagcagcgg aaggacacce ttgtgaggca gctggctctg 3240 ctgctgaacg tgctggactc ggacattaag gtccagaaga ttcgggccca ctcggatctc 3300 agcaccgtga ttgtgtttta tgtacagage aggccgccte tcaaggttct caaagctcct 3360 gaagtggccc gaaatctgca catgcggctc tcaaaggaga aggctgactt cttgcttttc $3 \leqslant 20$ aaggtcttga gggttgatac agcaggttgc cttctgaagt gttctggcca tggtcactgc $3<80$ gaccccctca caaagcgctg catttgctct cacttatgga tggagaacct tatacagcgt 3540 tatatctggg atggagagag caactgtgag tggagtatat tctatgtgac agtgttg@ct 3600 tttactctta ttgtgctaac aggaggtttc acttggcttt gcatctgctg ctgcaaaaga 3660 caaaaaagga ctaaaatcag gaaaaaaaca aagtacacca tcctggataa catggateaa 3720 caggaaagaa tggaactgag gcccaaatat ggtatcaagc accgaagcac agagcacaac 3780 tccagcctga tggtatccga gtctgagttt gacagtgacc aggacacaat cttcagecga 3840 gaaaagatgg agagagggaa tccaaaggtt tccatgaatg gttccatcag aaatggagct 3900 tccttcagtt attgctcaaa ggacagataa tggcgcagtt cattgtaaag tggaaggecc 3960 ccttgaatcc aagaccagtc agtgggagtt acagcacaaa acccactctt ttagaatagt 4020 tcattgacct tcttccccag tgggttagat gtgtatcccc acgtactaaa agaccggttt 4080 ttgaaggcac aaaacaaaaa ctttgctctt ttaactgaga tgcttgttaa tagaaataaa 4140 ggctgggtaa aactctaagg tatatactta aaagagtttt gagtttttgt agctggcaca 4200 atctcatatt aaagatgaac aacgatttct atctgtagaa ccttagagaa ggtgaatgaa 4260 acaaggttt aaaagggat gatttctgtc ttagccgctg tgattgecte taaggaacag 4320 cattctaaac acggtttctc ttgtaggace tgcagtcaga tggctgtgta tgttaaaeta 4380 gcttgtctaa gaggcacggg ccatctgtgg aggtacggag tcttgcatgt agcaagcttt 4440 ctgtgctgac ggcaacactc gcacagtgcc aagccctcct ggtttetaat tctgtgctat 4500 gtcaatggca gttttcatct ctctcaagaa agcagctgtt ggccattcaa gagctaagga 4560 agaatcgtat tctaaggact gaggcaatag aaaggggagg aggagcttaa tgccgtgcag 4620 gttgaaggta gcattgtaac attatctttt ctttctctaa gaaaaactac actgactcct 4680 ctcggtgttg tttagcagta tagttctcta atgtaaacgg atccccagtt tacattacat 4740 gcaatagaag tqattaattc attaagcatt tattatgttc tgtaggctgt gcgtt, tggac 4800 Egccatagat agggataacg actcagcaat tgtgtatata ttccaaaact ctgaaataca 4860 gtcagtctta acttggatgg cgeggttatg acactctggt ccocgacagg tactttccaa 4920 aataacttga catagatgta ttcacttcat aegtttaaaa atacatttaa gtttttctac 4980 cgatataatc ttatttcaaa cargaaagac aattaaaaca ttcccaccca caaagcagta 5040 ctcccgagca attaactgga gttaattgta gcctgctacg ttgactggtt cagggtagtt 5100 ccccatccac cottggtcct gaggctggtg gccttggtgg tgcccttggc attttttgtg 5160 ggaagattag aatgagagat agaaccagtg ttgtggtacc aagtgtgagc acacctāac 5220 aatatcctgt tgcacaatgc ttttttaaca catgggaaaa ctaggaatgc attgctgatg 5280 aagaagcaag gtatttaaac accagggcag gagtgccaga gaaaatgttt ccccatgggt 5340 tcttaaaaaa aattcagctt ttaggtgctt ttgtcatctc ccggagtatt catcctcatg 5400 ggaccatctt atttttactt attgtaattt actggggaaa ggcagaacta aaagtgtgt 5460 cattttattt ttaaaataat tgctttgctt atgcctacac tttctgtata actagccear 5520 tcaatactgt ctatagtgtt agaaggaaaa tgtgattttt tttttttac cagtattgag 5580 cttcataagc ctagaatctg ccttatcagg tgaccagggt tatggttgtt tgcatgcaaa 5640 tgtgaatttc tggcataggg gacagcagcc caaatgtaaa gtcatcgggc gtaatgagga 5700 agaagggagt gaacatttac cgctttatgt acataacata tgcagtttac atactcatte 5760 gatccttata atcaaccttg aagaggagat actatcattc ttatgttgca gatagccctc 5820 tgaaggccca gagaggttaa gtaacttccc agaggtcatg gccaagaagt agtggctcca 5880 agaactgaat gcaaattttt taaactgtag agttctgctt tccactaaac aaagaactcc 5940
tgccttgatg gatggaggg a aattctggt ggaacttttg ggccacctga aagttctatt 6000 cccaggacta agaggaattt cttttaatgg atccagagag ccaaggtcag agggagagat 6060 ggcctgcata gtctcctgtg gatcacaccc gggccacccc tccctctagg tttacagtgg 6120 acttcttctg cccctcctcc ttttctgtcc ttggccatct cagcctggcc tctctgatcc 6180 ttccatcaca gaaggatctt gaatctctgg gaaatcaaac atcacagtag tgatcagaaa 6240 gtgagtcctg tcttgtcacc ccattгctca tcagaacaaa gcacgagatg gaatgaccaa 6300 ccagcattct tcatggtgga ctgcttatca ttgaggatct ttgggagata aagcacgcta 6360 agagctctgg acagagaaaa acaggcccta gaatatggga gtgggtgttt gtagggctca 6420 taggctaaca agcactttag ttgctggttt acattcaatg aaggaggatt catacccatg 6480 gcattacaag gctaagcatg tgtatgacta aggaactatc tgaaaaacat gcagcaacgt 6540 aagaaatgt accactcaac aagccagtga tgccaccttt tgtgcgcggg gaggagagtg 6600 actaccattg etttttgtgt gacaaagcta tcatggacta ttttaatctt ggttttattg 6660 cttaaatat attatttttc cctatgtgtt gacaaggtat ttctaatatc acactattaa 6720 atatatgcac taatctaaat aaaggtgtct grattttctg taatgcttat ttttaggggg 6780 aaatttgttt tctttatgct tcagggtaga gggattccct tgagtatagg tcagcaaace 6840 ctggcctgca gcctgtgtgt gcacgcccca tgagccgaaa agtgggtctt atgttttcaa 6900 atggttaaaa ataaataaaa aaatttgaaa catgtgaact atatgacatt cagatttgtg 5960 ttcataaata aagttttatt ggaacatatc c
<210> 270
<211> 6797
<212> DNA
<213> Homo sapiens
<400> 270
gctgccgcgg gcggtgggcg gggatccccc gggggtgcaa ccttgctcca cctgtgctgc 60 cctcggcggg cetggctggc cccgcgcaga gcggcggcgg cgctcgctgt cactgccgga 120 ggtgagagcg cagcagtagc ttcagcctgt cttgggcttg gtccagattc gctcctctgg 130 ggctacgtcc cggggaagag gaagcgagga ttttgctggg gtggggctgt acctcttaac 240 agcaggtgcg cgegcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg tgtgtgtgtg 300 taagacctgc gatgacgacg aggaggaaca agtgggacgg cgagtgatgc tcagggccag 360 cagcaacgca tggggcgage ttcactgtcg ccagcagtga ccacagagtt cttgaggcca 42C aatctggctc ctaaaaaaca tcaaaggaag cttgcaccaa actctcttca gggccgcctc 480 aq2agcctgc catcacccac tgtgtggtgc acaatggcgc cccccacagg tgtgcte=ct 540 tcattgctgc tgctggtgac aattgcaggt tggttgtgcc cgtaagcagt gcagcgaggg 600 gaggacatat tccaatgcag tcatttcacc taacttggaa accaccagaa tcatgcgggt 660 gtctcacace ttccctgtcg tagactgcac ggccgcttgc tgtgacctgt ccagctgtga 720 cctggactgg tggttcgagg gccgctgcta cctggtgage tgcccccaca aagagaactg 780 tgagcccaag aagatgggcc ccatcaggtc ttatctcact tttgtgctcc ggcctgttca 840 gaggcctgca cagctgctgg actatgggga catgatgctg aacaggggct ccccctcggg 900 gatctggggg gactcacctg aggatatcag aaaggacttg ccctttctag gcaaagattg 960 gggcctagag gagatgtctg agtactcaga tgactaccgg gagctggaga aggacctctt 1020 gcaacccagt ggcaagcagg agcccagagg gagtgccgag tacacggact ggggcctact 1080 gecgggcagc gagggggcet tcaactcctc tgttggagac agtcotgcgg tgccagcgga $11<0$ gacgcagcag gaccetgagc tccattacct gaatgagtcg gcttcaaccc ctgccccaaa 1200 actccctgag agaagtgtgt tgcttccctt gccgactact ccatcttcag gagaggtgtt 1260 ggagaaagaa aaggcttctc agctccagga acaatccagc aacagctotg gaaaagaggt 1320 tctaatgcct tcccatagtc ttcctccggc aagcctggag ctcagctcag tcaccgtgga 1380 gaaaagccca gtgctcacag tcaccccggg gagtacagag cacagcatcc caacacctcc 1440 cactagcgca gccccctc=g agtccacccc atctgagcta cccatatctc ctaccactgc 1500 tcccaggaca gtgaaagaac ttacggtatc ggctggagat aacctaatta taactttacc 1560 cgacaatgaa gttgaactga aggectttgt tgcgccageg ccacctgtag aaacaaccta 1620 caactatgaa tggaatttaa taagccaccc cacagactac caaggtgaaa taaaacaagg 1680 acacaagcaa actcttaacc tctctcaatt gtccgtcgga ctttatgtct tcaaagtcac 1740 tgtttctagt gaaaacgcct ttggagaagg atttgtcaat gtcactgtta agcctgccag 1800 aagagtcaac ctgccacctg tagcagttgt ttctccccaa ctgcaagagc tcactttgcc 1860 tttgacgtca gccctcattg atggcagcca aagtacagat gatactgaaa tagtgagtta 1920 tcattgggaa gaaataaacg ggcccttcat agaagagaag acttcagttg actctcccgt 1980 cttacgcttg tctaaccttg atcctggtaa ctatagtttc aggttgactg ttacagactc 2040 ggacggagcc actaactcta caactgcagc cctaatagtg aacaatgctg tggactaccc 2100 accagttgct aatgcaggac caaatcacac cataactttg ccccaaaact ccatcacttt 2150 gaatggaaac cagagcagtg acgatcacca gattgtcctc tatgagtggt ccctggctcc 2220
tgggagtgag ggcaaacatg tggtcatgca gggagtacag acgccatacc ttcatttatc 2280 tgcaatgcag gaaggagatt atacatttca gctgaaggtg acagattctt caaggcaaca 2340 gtctactgct gtggtgactg tgattgtcca gcctgaaaac aatagacctc cagtggctgt 2400 ggccogccct gataaagagc tgatcttccc agtggaaagt gctaccctgg atgggagcag 2460 cagcagcgat gaccacggca ttgtcttcta ccactgggag cacgtcagag gccccagtge 2520 agtgcagatg gaaaatattg acaaagcaat agccactgtg actggtctcc aggtgggga= 2580 ctaccacttc cgtttgacag tgaaagacca gcagggactg agcagcacgt ccaccctcac 2640 tgtggctgtg aagaaggaaa ataatagtcc tcccagagcc cgggctggtg gcagacatgt 2700 tcttotgctt cccaataatt ccattacttt ggatggttca aggtctactg atgaccaaag 2760 aattgtgtcc tatctgtgga tccgggatgg ccagagtcca gcagctggag atgtcatcga 2820 tggctctgac cacagtgtgg ctctgcagct tacgaatctg gtggaggggg tgtacacttt 2880 ccacttgcga gtcaccgaca gtcagggggc ctcggacaca gacactgcca ctgtggaagt 2940 gcagccagac cctaggaaga gtggcctggt ggagctgacc ctgcaggttg gtgttgggca 3000 gctgacagag cagcggaagg acacccttgt gaggcagctg gctgtgctgc tgaacgtgct 3060 ggactcggac attaaggtcc agaagattcg ggcccactcg gatctcagca ccgtgattgt 3120 gttttatgta cagagcaggc cgcctttcaa ggttctcaaa gctgctgaag tggcccgaaa 3180 tctgcacatg sggctctcaa aggagaaggc tgacttcttg cttttcaagg tcttgagggt 3240 tgatecagca ggttgccttc tgaagtgttc tggccatggt cactgcgacc cectcacaaa 3300 gcgctgcatt tgctctcact tatggatgga gaaccttata cagcgttata tctgggatgg 3360 agagagcaac tgtgagtgga gtatattcta tgtgacagtg ttggctttta ctcttattgt 3420 gctaecagga ggtttcactt ggctttgcat ctgctgctgc aaaagacaaa aaaggactaa 3480 atcaggaaa aaaacaaagt acaccatcct ggataacatg gatgaacagg aaagaatgga 3540 actgaggccc aaatatggta tcaagcaccg aagcacagag cacaactcca gectgatggt 3600 atccgagtct gagtttgaca gtgaccagga cacaatcttc agccgagaaa agatggagag 3660
 ctcaaaggac agataatggc gcagttcatt gtaaagtgga aggacccctt gaatccaaga 3780 ccagtcagtg ggagttacag cacaaaaccc actcttttag aatagttcat tgaccttctt 3840 ccccagtggg ttagatgtgt atccccacgt actaaaagac cggtttttga aggcacaaaa 3900 caaaaacttt gctcttttaa ctgagatgct tgttaataga aataaaggct gggtaaaact 3960 ctaaggtata tacttaaag agttttgagt ttttgtagct ggcacaatct catattaaag 4020 atgaacaacg atttctatct gtagaacctt agagaaggtg aatgaaacaa ggttttaaaa 4080 agggatgatt tctgtcttag ccgctgtgat tgcctctaag gaacagcatt ctaaacacgg 4140 tttctcttgt aggacctgca gtcagatggc tgtgtatgtt aaaatagctt gtctaagagg 4200 cacgggccat ctgtggaggt acggagtctt gcatgtagca agctttctgt gctgacggca 4250 acactcgcac agtgccaagc cctcctggtt tttaattctg tgctatgtca atggcagttt 4320 tcatctctct caagaaagca gctgttggcc attcaagagc taaggaagaa tcgtattcta 4380 aggactgagg caatagaaag gggaggagga gcttaatgcc gtgcaggttg aaggtagcat 4440
tgtaacatta tcttttctt ctctaagaaa aactacactg actcctctcg gtgttgtta 4500 gcagtatagt tctctaatgt aaacggatcc ccagtttaca ttaaatgcaa tagaagtgat 4560 taattcatta agcatttatt atgttctgta ggetgtgcgt ttggactgcc atagataggg 4520 ataacgactc agcaattgtg tatatattcc aaaactctga aatacagtca gtcttaactt 4680 ggatggcgtg gttatgatac tctggtcccc gacaggtact ttccaaaata acttgacata 4740 gatgtattca cttcatatgt ttaaaaatac atttaagttt ttctaccgaa taaatcttat 4300 ttcaaacatg aaagacaatt aaaacattcc cacccacaaa geagtactcc cgagcaatta 4850 actggagtta attgtagcct gctacgttga ctggttcaga gtagetcccc atccaccctt 4920 ggtcctgagg ctggtggcct tggtggtgcc cttggcattt tttgegggaa gattagaatg 4980 agagatagaa ccagtgttst ggtaccaagt gtgagcacac ctaaacaata tcctgttgca 5040 caatgctttt ttaacacatg ggaaaactag gaatgcatty clgaigaaga agcaaggtat 5100 ttaaacacca gggcaggagt gccagagaaa atgtttcccc atgggttctt aaaaaaatt 5160 cagcttttag gtgcttttgt catctcccgg agtatccatc ctcatgggac catcttattt 5220 ttacttattg taatttactg gggaaaggca gaactaaaaa gtgtgtcatt ttatttttaa 5280 aataattgct ttgcttatgc ctacactttc tgtataacta gccaattcaa tactgtctat 5340 agtgttagaa ggaaaatgtg attttttttt tttaaccagt attgagcttc ataagcctag 5400 aatctgcctt atcaggtgac cagggttatg gttgtttgca tgcaaatgtg aatttctggc 5460 ataggggaca gcagcccaaa tgtaaagtca tcgggegtaa tgaggaagaa gggagtgaac 5520 atttaccgct ttatgtacat aacatatgca gtttacatac tcatttgatc cttataatca 5580 accttgaaga ggagatacta tcattcttat gttgcagata gccctctgaa ggcccagaga 5540 ggttaagtaa cttcccagag gtcatggcca agaagtagtg gctccaagaa ctgaatgcaa 5700 attttttaaa ctgtagagtt ctgctttcca ctaaacaaag aactcctgcc ttgatggatg 5760 gagggcaaat tctggtggaa cttttgggcc acctgaaagt tctattccca ggactaagag 5820 gaatttcttt taatggatcc agagagccaa ggtcagaggg agagatggcc tgcatagtct 5880 cctgtggatc acacccgggc cacccctccc tctaggttta cagtggactt cttctgccec 5940 tcctcctttt ctgtccttgg ecatctcagc ctggcctctc tgatccttcc atcacagaag 6000 gatcttgaat ctctgggaaa tcaaacatca cagtagtgat cagaaagtga gtcctgtctt 5060
gtcaccccat ttctcatcag aacaaagcac gagatggaat gaccaaccag cattcttcat 6120 ggtggactgc ttatcattga ggatctttgg gagataaagc acgctaagag ctctggacag 6180 agaaaaacag gccctagaat atgggagtgg gtgtttgtag ggctcatagg ctaacaagca 6240 ctttagttgc tggtttacat tcaatgaagg aggattcata cccatggcat tacaaggcta 6300 agcatgtgta tgactaagga actatctgaa aacatgcag caaggtaaga aatgtacca 6360 ctcaacaagc cagtgatgce accttttgtg cgcggggagg agagtgacta ccattgcttt 6420 ttgtgtgaca aagctatcat ggactatttt aatcttggtt ttattgctta aazatatta 6480 tttttcccta tgtgttgaca aggtatttct aatatcacac tattaaatat atgcactaat 6540 ctaaataaag gtgtctgtat tttctgtaat gcttattttt agggggaaat ttgttttctt 6600 tatgcttcag ggtagaggga ttcccttgag tataggtcag caaactctgg cctgcagcct 6660 gtgtgtgcac gccccatgag cogaaaagtg ggtcttatgt tttcaaatgg ttaaaaataa 6720 ataaaaaat ttgaaacatg tgaactatat gacattcaga tttgtgttca taaataaagt 6780 tttattggaa catatcc
$<210\rangle 271$
<211> 6797
<212> DNA
<213> Homo sapiens
<400> 271
gctgccgcgg gcggtgggcg gggatcccce gggggtgcaa ccttgctcca cctgtgctgc 60 cctcggcggg cctggctggc cccgcgcaga gcggcggcgg cgctcgctgt cactgcegga 120 ggtgagagcg cagcagtagc ttcagcctgt cttgggettg gtccagattc gctcctctgg 180 gcctacgtcc cggggaagag gaagcgagga ttttgctggg gtggggetgt acctcttaac 240 agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg tgtgtgtgtg 300 taagacctgc gatgacgacg aggaggaaca agtgggacgg cgagtgatge tcagggecag 360 cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacagagtt cttgaggcca 420 aatctggctc ctaaaaaca tcaaaggaag cttgcaccaa actctcttca gggcogectc 480 agaagcctgc catcacccac tgtgtggtgc acaatggcgc cecccacagg tgtgctctct 540 tcattgctgc tgctggtgac aattgcagtt tggttgtgec cgtaagcagt geagcgaggg 600 gaggacatat tccaatgcag tcatttcacc taacttggaa accaccagaa tcatgcgggt 660 gtctcacacc ttccctgtcg tagactgcac ggccgcttgc tgtgacctge ccagctgtga 720 cctggcctgg tggttcgagg gcegctgcta cctggtgage tgcceccaca aagagaactg 780 tgagcccaag aagatgggcc ccatcaggtc ttatctcact tttgtgctcc ggcctgttca $8<0$ gaggcctgca cagctgctgg actatgggga catgatgctg aacaggggct ccccoteggg 900 gatctggggg gactcacctg aggatatcag aaaggacttg ccctttctag gcaaagattg 960 gsgcctagag gagatgtctg agtactcaga tgactaccgg gagctggaga aggacctctt 1020 gcaacccagt ggcaagcagg agcccagagg gagtgcegag tacacggact ggggcctact 1080 gccgggcagc gagggggcct tcaactoctc tgttggagac agtcctgcgg tgccagagga 1140 gacgcagcag gaccctgagc tccattacct gatgagtcg gcttcaaccc ctgccceaaa 1200 actccctgag agaagtgtgt tgcttccctt gccgactact ccatcttcag gagaggtgtt 1260 ggagaaagaa aaggcttctc agctccagga acaatccagc aacagctctg gaaaagaggt 1320 tctaatgcct tcccatagtc ttcctccggc aagcetggag ctcagctcag tcaccgtgga 1380 gaaaagccca gtgctcacag tcaccccggg gagtacagag cacagcatcc caacacctcc $1 \leq 40$ cactagcgea gccccctctg agtccacccc atctgagcta cccatatctc ctaccactgc 1500 tcccaggaca gtgaaagaac ttacggratc ggctggagat aacctaatta taactttacc 1560 cgacaatgaa gttgaactga aggcctttgt tgcgccagcg ccacctgtag aaacaaccta 1620 caactatgaa tggaatttaa taagccaccc cacagactac caaggtgaaa taaaacaagg 1680 acacaagcaa actcttaacc tctctcaatt gtccgtcgga ctttatgtct tcaaagtcac 1740 tgtttctagt gaaaacgcct ttggagaagg atttgtcaat gtcactgtta agcctgccag 1800 aagagtcaac ctgccacctg tagcagttgt ttctccccaa ctgcaagagc tcactttgcc 1860 tttgacgtca gccctcattg atggcagcca aagtacagat gatactgaaa tagtgagtta 1920 tcattgggaa gaaataaacg ggcccttcat agaagagaag acttcagttg actctcccgt 1980 cttacgcttg tctaaccttg atcctggtaa ctatagtttc aggttgactg ttacagactc 2040 ggacggagcc actaactcta caactgcagc cctaatagtg aacaatgcty tggactaccc 2100 accagttgct aatgcaggac caaatcacac cataactttg ccccaaaact ccatcacttt 2160 gaatggaaac cagagcagtg acgatcacca gattgtcctc tatgagtggt ccctgggtcc 2220 tgggagtgag ggcaaacatg tggtcatgca gggagtacag acgccatacc ttcatttatc 2280 tgcaatgcag gaaggagatt atacatttca gctgaaggtg acagattctt caaggcaaca 2340 gtctactgct gtggtgactg tgattgtcca gcctgaaaac aatagacctc cagtggctgt 2400 ggccggccct gataaagagc tgatcttccc agtggaaagt gctaccctgg atgggagcag 2460 cagcagcgat gaccacggca ttgtcttcta ccactgggag cacgtcagag gecccagtgc 2520
agtggagatg gaaaatattg acaaagcaat agccactgtg actggtctec aggtgggeac 2580 ctaccacttc cgtttgacag tgaaagacca gcagggactg agcagcacgt ccaccctcac 2640 tgtggctgtg aagaaggaaa ataatagtcc tcccagagcc cgggctggtg gcagacatgt 2700 tcttgtgctt cccaataatt ccattacttt ggatggttca aggtctactg atgaccaeag 2760 aattgtgtcc tatctgtgga tccgggatgg ccagagtcca gcagctggag atgtcatcga 2820 tggctctgac cacagtgtgg ctctgcagct tacgaatctg gtggaggggg tgtacacttt 2880 ccacttgega gtcaccgaca gtcagggggc ctcggacaca gacactgcca ctgtggaagt 2940 gcagccagac cctaggaaga gtggcctggt ggagctgacc ctgcaggttg gtgttgggca 3000 gctgacagag cagcggaagg acacccttgt gaggcagctg gctgtgctgc tgaacgtgct 3060 ggactcggac attaaggtcc agaagattcg ggcccactcg gatctcagca cegtgattgt 3120 gttttatgta cagagcaggc cgcctttcaa ggttctcaaa gctgctgaag tggcccgaaa 3180 tctgcacatg cggctctcaa aggagaaggc tgacttcttg cttttcaagg tcttgagggt 3240 tgatacagca ggttgccttc tgaagtgttc tggccatggt cactgcgacc ccctcacaaa 3300 gcgetgcatt egctctcact tatggatgga gaaccttata cagcgttata tctgggatgg 3360 agagagcaac rgtgagtgga gtatattcta tgtgacagtg ttggctttta ctcttattgt 3420 gctaacagga ggtttcactt ggctttgcat ctgctgctgc aaaagacaaa aaaggactaa 3480 aatcaggaaa aaacaaagt acaccatcct ggataacaig gatgaacagg aaagaatgga 3540 actgaggecc aaatatggta tcaagcaccg aagcacagag cacaactcca gectgatggt 3600 atcc؟agtct gagtttgaca gtgaccagga cacaatcttc agccgagaaa agatggagag 3660 agggaatcca aaggtttcca tgaatggttc catcagaaat ggagcttcct tcagttattg 3720 ctcaaaggac agataatggc gcagttcatt gtaaagtgga aggacccctt gaatccaaga 3780 ccagtcagtg ggagttacag cacaaaaccc actcttttag aatagttcat tgaccttctt 3840 ccccagtggg ttagatgtgt atccccacgt actaadagac cggtttttga aggcacaaaz 3900 caaaaacttt gctcttttaa ctgagatgct tgttaataga aataaaggct gggtaaaact 3960 ctaaggtata tacttaaaag agttttgagt ttttgtaget ggcacaatct catattaaag 4020 atgaccaacg atttctatct gtagaacctt agagaaggtg aatgaaacaa ggttttaaaa 4080 agggatgatt tctgtcttag cogctgtgat tgcctctaag gaacagcatt ctaaacacgg 4140 tttctcttgt aggacctgca gtcagatggc tgtgtatgtt aaaatagctt gtctaagagg 4200 cacgggccat ctgtggaggt acggagtctt gcatgtagca agctitctgt gctgacggca 4260 acactcgcac agtgccaagc cctcctggtt tttaattctg tgctatgtca atggcagttt 4320 tcatctctct caagaaaqca gctgttggcc a aggactgagg caatagaaag gggaggagga tgtaacatta tcttttcttt ctctaagaaa gcagtatagt tctctaatgt aaacggatcc taattcatta agcatttatt atgttctgta gg ataacgactc agcaattgtg tatatattcc ggatggegtg gttatgatac tctggtcccc gac gatgtattca cttcatatgt ttaaaaatac at ttcaaacatg aaagacaatt aaaacattcc cac actggagtta attgtagcct gctacgttga ggtoctgagg ctggtggcct tggtggtgcc agagatagaa ccagtgttgt ggtaccaagt caatgctttt ttaacacatg ggaaeactag ttaaacacca gggcaggagt gccagagaaa cagcttttag gtgcttttgt catctcccgg ttacttattg taatttactg gggaaaggca aataattgct ttgcttatgc ctacactttc agtgttagaa ggaaaatgtg attttttttt aatctgcctt atcaggtgac cagggttatg ataggggaca gcagcccaaa tgtaaagtca atttaccgct ttatgtacat aacatatgca accttgaaga ggagatacta tcattcttat ggttaagtaa cttcccagag gtcatggcca attttttaaa ctgtagagtt ctgctttcca gagggcaaat tctggtggaa cttttgggcc gaatttcttt taatggatcc agagagccaa cotgtggatc acacccgggc cacccotccc tcctcctttt ctgtccttgg ccatctcagc gatcttgaat ctctgggaaa tcaaacatca gtcaccccat ttctcatcag aacaaagcac ggtggactgc ttatcattga ggatctttgg agaaazacag gccctagaat atgggagtgg ctttagttgc tggtttacat tcaatgaagg agcatgtgta tgactaagga actatctgaa
attcaagagc t agaa tcgtattcta 4380 actacactg actcctctcg gtgttgttta 4500 ccagtttaca ttaaatgcaa tagaagtgat 4560 ggctgtgcgt ttggactgcc atagataggg 4520 aaactctga aatacagtca gtcttaactt 4580 gacaggtact ttccaaaata acttgacata 4740 atttaagttt ttctaccgaa taaatcttat 4800 cacccacaaa gcagtactcc cgagcaatta 4860 tggttcagg gtagttccec atccaccctt 4920 cttggcattt tttgtgggaa gattagaatg 4980 gtgagcacac ctaaacaata Ecctgttgca 5040 gaatgcattg ctgatgaaga agcaaggtat 51.C0 atgtttccec atgggttctt aaaaaaaatt 5160 agtattcatc ctcatgggac catcttattt 5220 gaactaaaaa gtgtgtcatt ttatttttaa 5280 tgtataacta gccaattcaa tactgtctat 5340 ttaaccagt attgagcttc ataagcctag 5400 gttgtttgca tgcaaatgtg aatttctggc 5460 tcgggcgtaa tgaggaagaa gggagtgaac 5520 gtttacatac tcatttgatc cttataa=ca 5580 ttgcagata gccctctgaa ggcccagaga 5640 agaagtagtg gctccaagaa stgaatgcaa 5700 ctaaacaaag aactcctgcc ttgatggatg 5760 acctgaaagt tctattccca ggactaagag 5820 ggtcagaggg agagatggcc tgcatagtct 5880 tctaggttta cagtggactt cttctgcccc 5940 ctggcctctc tgatccttcc atcacagaag 6000 cagtagtgat cagaaagtga gtcctgtatt 6060 gagatggaat gaccaaccag cattcttcat 6120 gagataaage acgctaagag ctctggacag 6180 gtgtttgtag ggctcatagg ctaacaagca $62 \leqslant 0$ aggattcata cccatggcat tacaaggeta 6300 aaacatgcag caaggtaaga aaatgtacca 6360

```
ctcaacaagc cagtgatgcc accttttgtg cgcggggagg agagtgacta ccattgtttt 6420
ttgtgtgaca aagctatcat ggactatttt aatcttggtt ttattgctta aaatatatta 6480
tttttcccta tgtgttgaca aggtatttct aatatcacac tattaaatat atgcactaat 6540
ctaaataaag gtgtctgtat tttctgtaat gcttattttt agggggaaat ttgttttctt 6600
tatgcttcag ggtagaggga ttcccttgag tataggtcag caaactctgg cctgcagcct 6660
gtgtgtgcac gccccatgag ccgaaaagtg ggtcttatgt tttcaaatgg ttaaaaataa 6720
ztaaaaaaat ttgaaacatg tgaactatat gacattcaga tttgtgttca taaataaagt 678J
tttattggaa catatcc
6 7 9 7
```

$<210\rangle 272$
<211> 1063
<212> PRT
<213> Homo sapiens
<400> 272
Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys
151015
Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile ser Pro Asn Leu Glu
202530
Thr Thr Arg Ile Met Arg Val Ser His Thr phe Pro Val Val Asp Cys
354045
Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe
505560
Glu Gly Arg Cys Tyr Leu val ser Cys pro His Lys Glu Asn Cys Glu
65707580
Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr phe Val Leu Arc
Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu
100105110
Asn Arg Gly Ser Pro Ser Giy Ile Trp Gly Asp ser pro glu Asp Ile
115120125
Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Trp Gly Leu Glu glu Met
130135140
Ser Glu Tyr Ser Asp Asp Tyr Arg clu Leu Glu Lys Asp Leu Leu Glr.
145150155160
Pro Ser Gly Lys Gln Glu pro Arg Gly Ser Ala Glu Tyr Thr Asp Trp
165170175
Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe Asn Ser ser Val Gly Ase
180185190
Sex Pro Ala Val fro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr
195200205
Leu Asn glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser
210215220
Val Leu Leu pro Leu pro Thr Thr pro Ser Ser Gly Glu Val Leu Glu
225230235240
Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser ser Asn Ser Ser Gly
245250255
Lys Glu Val Leu Met Pro Ser His Sez Leu Pro pro Ala ser Leu Glu
260265270
Leu Sex Ser Val Thr Val Glu Lys ser Pro Val Leu Thr Val Thr Pro
275280285
Gly Ser Thr Glu His ser fle pro Thr Pro Pro Thr Sor Ala Ala Pro
290295300
Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro
305310315320
Arg Thr Val Lys Glu Leu Thr Val Sez Ala Gly Asp Asn Leu Ile Ile
325330335
Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala
340345350
Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His
355360365
Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu


```
885 890
895
Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly Fis Gly
 9 0 0 9 0 5 ~ 9 1 0
His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met
 915 920 g25
Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu
 930 935 940
Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu
945 950 955 960
Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys
 965 970 975
Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met
Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His
 995 1000 1005
Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe
 1010 1015 1020
Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg Glu Lys Met Glu Arg Gly
1025 1030 1035 1040
Asn Pro Lys Val Ser Met Asn Gly Ser Ile Arg Asn Gly Ala ser Phe
 1045 1050 1055
Ser Tyr Cys Ser Lys Asp Arg
 1060
```

<210> 273
<211> 1053
<212> PRT
<213> Homo sapiens
<400> 273
Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala val
$1510 \quad 15$
Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr
202530
Phe pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys
Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val Ser Cys Prc
505560
His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly fro Ile Arg ser Tyr
55707580
Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asf
859095
Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly
100105110
Asp Ser Pro Giu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp
$135120 \pm 25$
Trp Gly Leu Glu glu Met ser Glu Tyr ser Asp Asp Tyr Arg glu Leu
130135140
Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln glu pro Arg. Gly ser
145150155160
Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser glu gly Ala Phe
165170175
Asn Ser Ser Val Gly Asp ser Pro Ala Val Pro Ala Glu Thr Gln Glr
180185190
Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro
195200205
Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser
210215220
Ser Gly Glu Val Leu Glu Lys Glu Lys Ala ser Gln Leu Gln Glu Glr.
$225230235 \quad 240$
Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Sex His Ser Leu.
245250 - 255
Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro


```
 7 7 0 7 7 5
7 8 0
Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu
785 790 795 800
Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp
805 810 815
Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp
 820 825 830
Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile
 835
Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala
 850 855 860
Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp
865 870 875 880
Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu
 885 890 895
Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile
 9 0 0 9 0 5 ~ 9 1 0
Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyx Ile Trp Asp
Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala
 930 ' 935 940
Phe Thr Leu Ile Val Leu Thr Gly gly Phe Thr Trp Leu Cys Ile Cys
945 950 955 950
Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lyg Lys Thr Lys Tyr
965 970 975
Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met glu Leu Arg Pro
980 985 990
Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Met
 995 1000 1005
Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg
 10I0 1015 1020
Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn Gly Ser Ile
1025 1030 1035 1040
Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg
 1045 1050
<210> 274
<211> 1053
<212> PRT
<213= Homo sapiens
<400> 274
Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val
1 5 10 15
Tle Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr
 20 25 30
Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp weu Ser Ser Cys
 35 40 45
Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val ser Cys Pro
 5 0 5 5 5 6 0
His Lys Glu Asn Cys Glu pro Lys Lys Met Gly Pro Ile Arg Ser Tyr
65 70 75 70
Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp
 85 90 95
Tyr Gly Asp Net Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly
 100 105 110
Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp
 115 120 125
Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu
 130 135 140
Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser
145 150 155 160
Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser glu Gly Ala Phe
```

```
165
170
175
Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Gl 180185190
Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Prc 195200205
Lys Leu Pro Glu Arg Ser Val Leu Leu pro Leu Pro Thr Thr Pro ser 210215220
Ser Gly glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln glu gln 225230235340 Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu
\(245-250 \quad 255\)
Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro 260. 265270
Val Leu Thr Val Thr Pro Giy Ser Thr Glu His Ser Ile pro Thr Pro 275280285
Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile 290295300
Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala \(305 \quad 310 \quad 315 \quad 320\) Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys 325330335
Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thx Asp Tyr Gln Gly Glu Ile Lys Gla \(355 \quad 360 \quad 365\)
Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr 370375380 Val Fhe Lys val Thr Val ser ser Glu Asn Ala Phe Gly Glu Gly phe 385390395400 Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Vai 405410415
Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser 420425430
Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser 435440445
Tyr Fis \(\operatorname{Trp}\) Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser 450455460
Val Rsp Ser Pro Val Leu Arg Leu Ser Asm Leu Asp Pro gly Asn Tyr 465470475480 Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr 485490495
Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro pro Val Ala
Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro gln Asn ser Ile Th: 515520525
Leu Asn Gly Asn Gln Ser Ser Asp Asp Fis Gln Ile Val Leu Tyr Glu 530535540
Trp Ser Leu Gly pro Gly Ser Glu Gly Lys His Val Val Met gln Gly 545550555560 Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala 580585590 Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala 595600605
Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val glu Ser Ala Thr 610615620
Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His 625660635640 Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asy Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu
```

```
 675 680 685
Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala
 6 9 0 6 9 5 ~ 7 0 0 ~
Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp
705 710 715 720
Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile
Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp
His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr
 755 760 765
Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr
 700775 780
Ala Thr Val Clu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu
785 790 700
Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp
 805 810 815
Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp
Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile
 855 840 845
Val Ehe Tyr val Gln Ser Arg Pro pro Phe Lys Val Leu Lys Ala Ala
 850 855 860
Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp
865 870 875 880
Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu
 885 890 895
Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Tys Arg Cys Ile
Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp
 9 1 5 ~ 9 2 0 ~ 9 2 5
Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr val Leu Ala
 930 935 940
Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Dys Ile Cys
945 950 955 960
Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys Thr Lys Ty=
Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu Leu Arg Pro
 980 985 990
Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Me=
 995 1000 1005
Val Ser Glu Ser Glv: Phe Asp Ser Asp Gln Asp Thr Ile phe Ser Arg
 IO10 1015 1020
Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn gly Ser Ile
1025 1030 1035 1040
Arg Asn Cly Ala Ser Phe Sor Tyr Cys Ser Lys Asp Arg
 1045 1050
<210> 275
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 275
aattctccga acgtgtcacg ttt
<210> 276
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Primer
<400> 276
aagggacgaa gacgaacacu uctt24
<210> 277
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 277
aactgaagac ctgaagacaa taa23
```


[^0]:    300 TPGSTEHSI (SEQID NO: 168)
    306 HSIPTPPTS (SEQID NO: 169)
    309 PTPPTSAAP (SEQ ID NO: 170)
    317 PSESTPSEL (SEQID NO: 171)
    326 PISPTTAPR (SEQIDNO: 172)
    327 ISPTTAPRT (SEQ ID NO: 173)
    331 TAPRTVKEL (SEQID NO: 174)
    336 VKELTVSAG (SEQID NO: 175)
    346 NLIITLPDN (SEQID NO: 176)
    366 PPVETTYNY (SEQ ID NO: 177)
    367 PVETTYNYE (SEQIDNO: 178)
    379 ISHPTDYQG (SEQID NO: 179)
    392 GHKQTLNLS (SEQID NO: 180)
    408 VFKVTVSSE (SEQ ID NO: 181)
    423 FVNVTVKPA (SEQ ID NO: 182)
    446 LQELTLPLT (SEQ ID NO: 183)
    450 TLPLTSALI (SEQIDNO: 184)
    460 GSQSTDDTE (SEQIDNO: 185)
    463 STDDTEIVS (SEQ ID NO: 186)
    482 IEEKTSVDS (SEQ ID NO: 187)
    506 RLTVTDSDG (SEQIDNQ: 188)
    512 SDGATNSTT (SEQ ID NO: 189)
    515 ATNSTTAAL (SEQIDNO: 190)
    516 TNSTTAALI (SEQ ID NO: 191)
    538 GPNHTITLP (SEQID NO: 192)
    540 NHTITLPQN (SEQ ID NO: 193)
    547 QNSITLNGN (SEQIDNO: 194)
    582 QGVQTPYLH (SEQ ID NO: 195)
    596 EGDYTFQLK (SEQ ID NO: 196 )
    602 QLKVTDSSR (SEQ IDNO: 197)
    610 RQQSTAVVT (SEQIDNO: 198)
    614 TAWVTVIVQ (SEQ ID NO: 199)
    643 VESATLDGS (SEQIDNO: 200)
    680 KAIATVTGL (SEQ ID NO: 201)
    682 IATVTGLQV (SEQIDNO: 202)
    688 LQVGTYHFR (SEQ ID NO: 203)
    694 HFRLTVKDQ (SEQ ID NO; 204)
    4 GLSSTSTLT (SEQID NO: 205)
    SSTSTLTVA (SEQID NO: 206)
    TSTLTVAVK (SEQID NO: 207)
    NNSITLDGS (SEQ ID NO: 208
    GSRSTDDQR (SEQIDNO: 209)
    ALQLTNLVE (SEQID NO: 210)
    EGVYTFHLR (SEQID NO: 211)
    HLRVTDSQG (SEQIDNO: 212)
    GASDTDTAT (SEQ ID NO: 213)
    SDTDTATVE (SEQ ID NO: 214)
    TDTATVEVQ (SEQ ID NO: 215)
    LVELTLQVG (SEQID NO: 216)
    VGQLTEQRK (SEQIDNO: 217)
    QRKDTLVRQ (SEQIDNO: 218)
    SDLSTVIVF (SEQ ID NO: 219)
    LRVDTAGCL (SEQ ID NO: 220)
    CDPLTKRCI (SEQIDNO: 221)
    IFYVTVLAF (SEQIDNO: 222)
    VLAFTLIVL (SEQID NO: 223)
    LIVLTGGFT (SEQID NO: 224)
    TGGFTWLCI (SEQIDNO: 225)
    RQKRTKIRK (SEQID NO: 226)
    IRKKTKYTI (SEQID NO: 227)
    996 KTKYTILDN (SEQ ID NO: 228)
    1020 KHRSTEHNS (SEQID NO: 229)
    1039 SDQDTIFSR (SEQIDNO: 230)

[^1]:    TableXXVII-V2-HLA-
    B0702-9mers-254P1D6B

[^2]:    TableXXXIX-V5-HLA-B0702-
    $10 \mathrm{mers}-254 \mathrm{P} 1 \mathrm{D} 6 \mathrm{~B}$

[^3]:    1 gctgecgcgggeggtgggcggggatcccecgggggtgcaaccttgotccacotgtgctgc
    61 cctcggcgggcctggctggccccgcgcagagcggcggcggcectcgctgtcactgccgga
    121 ggtgagagcgcagcagtagcttcagcctgtcttgggct－ggtccagattcgctcctctgg
    181 ggctacgtcccggggaagaggaagcgaggattttgctgcggtggggctgtacctcttaac
    241 agcaggtgcgcgcgcgagggtgtgaacgtgtgtgtgtgegtctgtctgtgtgtgtgtgtg
    301 taagacctgcgatgacgacgaggaggaacaagtgggacggcgagtgatgctcagggccag
    361 cagcaacgcatggggcgagcttcagtgtcgccagcagtgaccacagctacggtatctact
    421 tcccagagcgcctggccgagaaataggaaagagggcagccactaggcaggscaataccca
    481 acaaaggtagaatcgagacgccotgagttcagaagttcttgaggccaaatatggctccta
    541 aaaaacatcaョaggaagcttgcaccaaactctcttcagggccgcotcagaagcctgccat
    601 cacccactgtgtggtgcacaatggcgccccccacaggtgtgctctcttcattgctgctgc
    661 tggtgacaattgcagtttgcttatggtggatgcactcatggcaaaacaaataactggtgag
    $1 \begin{array}{llllllllllllllll}1 & \mathrm{M} & \mathrm{T} & \mathrm{L} & \mathrm{G} & \mathrm{W} & \mathrm{P} & \mathrm{S} & \mathrm{P} & \mathrm{C} & \mathrm{C} & \text { A } & \mathrm{R} & \mathrm{K}\end{array}$
    721 catcatttaagaagacccATGACTAGACTGGGCTGGCCGAGCCCATGTTGTGCCCGTAAG
    
    781 CAGTGCAGCGAGGGGAGGACATATTCCAATGCAGTCATTTCACCTAACTTGGAAACCACO
     841 AGAATCATGCGGGTGTCTCACACCTOCCCTGTCGTAGACTGCACGGCCGCITGCTGTGAC $\begin{array}{llllllllllllllllllll}55 & \mathrm{~L} & \mathrm{~S} & \mathrm{~S} & \mathrm{C} & \mathrm{D} & \mathrm{L} & \text { A } & \mathrm{W} & \mathrm{W} & \mathrm{F} & \mathrm{E} & \mathrm{G} & \mathrm{R} & \mathrm{C} & \mathrm{Y} & \mathrm{L} & \mathrm{V} & \mathrm{S} & \mathrm{C}\end{array} \mathrm{P}$ 901 CTGTCCAGCTGTGACCTGGCCTGGTGGTTCGAGGGCCGCTGCTACCTGGTJAGCTGCCCC
     961 CACAAAGAGAACTGTGAGCCCAAGAAGATGGGCCCCATCAGGTCTTATCTニACTTTTGTG
    
    1021 CTCCGGCCTGITCAGAGGCCTGCACAGCTGCTGGACTATGGGGACATGATSCTGAACAGG
    
    1081 GGCTCCCCCTCGGGGATCTGGGGGGACTCACCTGAGGATATCAGAAAGGA工TTGCCCTTT
    
    1141 CTAGGCAAAGATTGGGGCCTAGAGGAGATGTCTGAGTACTCAGATGACTAこCGGGAGCTG

