(12) STANDARD PATENT (11) Application No. AU 2004207233 B2 (19) AUSTRALIAN PATENT OFFICE		
(54)	Title Nucleic acids and corresponding proteins entitled 254P1D6B useful in treatme detection of cancer	nt and
(51)	International Patent Classification(s) C07K 14/47 (2006.01)	
(21)	Application No: 2004207233 (22) Date of Filing: 2004.01.23	
(87)	WIPO No: WO04/067716	
(30)	Priority Data	
(31)	Number(32)Date(33)Country60/442,5262003.01.24US	
(43) (44)	Publication Date:2004.08.12Accepted Journal Date:2007.08.09	
(71)	Applicant(s) Agensys, Inc.	
(72)	Inventor(s) Ge, Wangmao;Perez-Villar, Juan J.;Raitano, Arthur B.;Jakobovits, Aya;Kanner, S B.;Challita-Eid, Pia M.	Steven
(74)	Agent / Attorney FB Rice & Co, Level 23 44 Market Street, Sydney, NSW, 2000	
(56)	Related Art Nagase et al, DNA research Vol. 4, pp. 141-150 (1997)	

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

PCT

(43) International Publication Date 12 August 2004 (12.08.2004)

- (51) International Patent Classification⁷: C12N
 (21) International Application Number: PCT/US2004/001965
 (22) International Filing Date: 23 January 2004 (23.01.2004)
 (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 60/442,526 24 January 2003 (24.01.2003) US
- (71) Applicant (for all designated States except US): AGEN-SYS, INC. [US/US]; 1545 17th Street, Santa Monica, CA 90404 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KANNER, Steven, B. [US/US]; 1107 Princeton Street, #101, SAnta Monica, CA 90403 (US). RAITANO, Arthur, B. [US/US]; 12685 Rose Avenue, Los Angeles, CA 90066 (US). JAKOBOVITS, Aya [US/US]; 3135 Hutton Drive, Beverly Hills, CA 90210 (US). CHALLITA-EID, Pia, M. [LB/US]; 15745 Morrison Street, Encino, CA 91436 (US). GE, Wangmao [CN/US]; 4838 Hollow Corner Road, Apt. # 314, Culver City, CA 90230 (US). PEREZ-VILLAR, Juan, J. [ES/US]; 12424 Texas Avenue, Los Angeles, CA 90025 (US). FARIS, Mary [US/US]; 2538 Almaden Court, Los Angeles, CA 90077 (US). (10) International Publication Number WO 2004/067716 A2

(74) Agents: DEVERNOE, David, L. et al.; Morrison & Foerster LLP, Suite 500, 3811 Valley Centre Drive, San Diego, CA 92130-2332 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 254P1D6B USEFUL IN TREATMENT AND DETECTION OF CANCER

254P1D6B SSH sequence of 186 nucleotides (SEQ ID NO: 1).

- 1 GATCCACAGA TAGGACACAA TTCTTTGGTC ATCAGTAGAC CTTGAACCAT CCAAAGTAAT
- 61 GGAATTATTG GGAAGCACAA GAACATGTCT GCCACCAGCC CGGGCTCTGG GAGGACTATT
- 121 ATTTTCCTTC TTCACAGCCA CAGTGAGGGT GGACGTGCTG CTCAGTCCCT GCTGGTCTTT
- 181 TACTGTCAAA CGGAAGTGGT AGGTCCCCAC CTGGAGACCA GTCACAGTGG CTATTGCTTT
- 241 GTCAATATTT TCCATCTCCA CTGCACTGGG GCCTCTGACG TGCT

(57) Abstract: A novel gene 254P1D6B and its encoded protein, and variants thereof, are described wherein 254P1D6B exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 254P1D6B provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 254P1D6B gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 254P1D6B can be used in active or passive immunization.

PCT/US2004/001965

WO 2004/067716

NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 254P1D6B USEFUL IN TREATMENT AND DETECTION OF CANCER

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH Not applicable.

FIELD OF THE INVENTION

The invention described herein relates to genes and their encoded proteins, termed 254P1D6B and variants thereof, expressed in certain cancers, and to diagnostic and therapeutic methods and compositions useful in the management of cancers that express 254P1D6B.

BACKGROUND OF THE INVENTION

Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.

Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience.

Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease - second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.

On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects.

Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapilulate different stages of the disease in mice. The LAPC (Los Angeles Prostate

PCT/US2004/001965

<u>C</u>ancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein *et al.*, 1997, Nat. Med. 3:402). More recently identified prostate cancer markers include PCTA-1 (Su *et al.*, 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto *et al.*, Clin Cancer Res 1996 Sep 2 (9): 1445-51), STEAP (Hubert, *et al.*, Proc Natl Acad Sci U S A. 1999 Dec 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter *et al.*, 1998, Proc. Natl. Acad. Sci. USA 95: 1735).

While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy.

Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States.

Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, metastalic disease has been refractory to any systemic therapy. With recent developments in systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate patients with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for these patients.

Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.

Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.

An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (-2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths.

At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently

2

required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.

There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000.

Lung and bronchial cancer caused an estimated 156.900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992–1996, mortality from lung cancer declined significantly among men (-1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again.

Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.

An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000.

In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significantly during 1992–1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment.

Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.

Local excision of ductal carcinoma *in situ* (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments.

There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynecologic cancers. During 1992–1996, ovarian cancer incidence

rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

Surgery, radiation therapy, and chemotherapy are treatment options for ovarian
cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intro-abdominal disease to enhance the effect of chemotherapy. There continues to be an important
need for effective treatment options for ovarian cancer.

There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United

15 States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about -0.9% per year) while rates have increased slightly among women.

Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve 20 symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer.

SUMMARY OF THE INVENTION

The present invention relates to a gene, designated 254P1D6B, that has now 25 been found to be over-expressed in the cancer(s) listed in Table I. Northern blot expression analysis of 254P1D6B gene expression in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (Figure 2) and amino acid (Figure 2, and Figure 3) sequences of 254P1D6B are provided. The tissue-related profile of 254P1D6B in normal adult tissues, combined with the over-expression observed in the 30 tissues listed in Table I, shows that 254P1D6B is aberrantly over-expressed in at least

some cancers, and thus serves as a useful diagnostic, prophylactic, prognostic, and/or therapeutic target for cancers of the tissue(s) such as those listed in Table I.

The invention provides polynucleotides corresponding or complementary to all or part of the 254P1D6B genes, mRNAs, and/or coding sequences, preferably in

35 isolated form, including polynucleotides encoding 254P1D6B-related proteins and fragments of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

4

or more than 25 contiguous amino acids; at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 contiguous amino acids of a 254P1D6B-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules, polynucleotides or oligonucleotides complementary or having at

- 5 least a 90% homology to the 254P1D6B genes or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the 254P1D6B genes, mRNAs, or to 254P1D6B-encoding polynucleotides. Also provided are means for isolating cDNAs and the genes encoding 254P1D6B. Recombinant DNA molecules containing 254P1D6B polynucleotides, cells transformed or transduced with such
- 10 molecules, and host-vector systems for the expression of 254P1D6B gene products are also provided. The invention further provides antibodies that bind to 254P1D6B proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or
- 15 therapeutic agent. In certain embodiments, there is a proviso that the entire nucleic acid sequence of Figure 2 is not encoded and/or the entire amino acid sequence of Figure 2 is not prepared. In certain embodiments, the entire nucleic acid sequence of Figure 2 is encoded and/or the entire amino acid sequence of Figure 2 is prepared, either of which are in respective human unit dose forms.
- 20 The present invention further provides an isolated polynucleotide that encodes a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.

The present invention further provides a recombinant expression vector comprising a polynucleotide of the invention.

25

The present invention further provides a host cell that contains an expression vector of the invention.

The present invention further provides an isolated protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.

The present invention further provides a process for producing the protein of the 30 invention comprising culturing a host cell of the invention under conditions sufficient for the production of the protein.

The present invention further provides an antibody or fragment thereof that immunospecifically binds to an epitope on the protein of the invention.

In one aspect, the present invention provides a 254P1D6B siRNA composition 35 that comprises:

a double stranded siRNA that corresponds to the nucleic acid ORF sequence which encodes the 254P1D6B protein, or corresponds to a subsequence of the ORF,

wherein said double stranded siRNA is 19, 20, 21, 22, 23, 24, or 25 contiguous nucleotides in length.

5

10

The invention further provides methods for detecting the presence and status of 254P1D6B polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 254P1D6B. A typical embodiment of this invention provides methods for monitoring 254P1D6B gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer.

The present invention further provides a method for detecting the presence of a protein or a polynucleotide in a test sample comprising:

contacting the sample with an antibody or a probe, respectively, that specifically binds to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5,

15 SEQ ID NO:7, or SEQ ID NO:11, or the polynucleotide of the invention, respectively; and

detecting binding of protein or polynucleotide, respectively, in the sample thereto.

In another aspect, the present invention provides a composition that comprises, consists essentially of, or consists of:

- 20
- a) a peptide of eight, nine, ten, or eleven contiguous amino acids of a protein of Figure 2;
- b) a peptide of Tables VIII-XXI;
- c) a peptide of Tables XXII to XLV; or,
- d) a peptide of Tables XLVI to XLIX.

25

In one embodiment, the present invention provides a composition that modulates the status of a cell that expresses a protein of Figure 2 comprising:

a) a substance that modulates the status of a protein of Figure 2, or b) a molecule that is modulated by a protein of Figure 2.

The invention further provides various immunogenic or therapeutic 30 compositions and strategies for treating cancers that express 254P1D6B such as cancers of tissues listed in Table I, including therapies aimed at inhibiting the transcription, translation, processing or function of 254P1D6B as well as cancer vaccines. In one aspect, the invention provides compositions, and methods comprising them, for treating a cancer that expresses 254P1D6B in a human subject wherein composition comprises

35 a carrier suitable for human use and a human unit dose of one or more than one agent

that inhibits the production or function of 254P1D6B. Preferably, the carrier is a uniquely human carrier. In another aspect of the invention, the agent is a moiety that is immunoreactive with 254P1D6B protein. Non-limiting examples of such moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations thereof. The antibodies can be conjugated to a diagnostic or therapeutic moiety. In another aspect, the agent is a small molecule as defined herein.

- The present invention further provides a method of inducing an immune 10 response to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising: providing a protein epitope; contacting the epitope with an immune system T cell or B cell, whereby the immune system T cell or B cell is induced.
- In another aspect, the agent comprises one or more than one peptide which 15 comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to 254P1D6B and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds an HLA class II molecule in a human to elicit an HTL response. The peptides of the invention may be on the same or on one or more separate polypeptide molecules. In a further aspect of
- 20 the invention, the agent comprises one or more than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating peptides as described above. In yet another aspect of the invention, the one or more than one nucleic acid molecule may express a moiety that is immunologically reactive with 254P1D6B as described above. The one or more than one nucleic acid molecule may
- 25 also be, or encodes, a molecule that inhibits production of 254P1D6B. Non-limiting examples of such molecules include, but are not limited to, those complementary to a nucleotide sequence essential for production of 254P1D6B (e.g. antisense sequences or molecules that form a triple helix with a nucleotide double helix essential for 254P1D6B production) or a ribozyme effective to lyse 254P1D6B mRNA.
- 30 Note that to determine the starting position of any peptide set forth in Tables VIII-XXI and XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides in Table VII. Generally, a unique Search Peptide is used to obtain HLA 35 peptides of a particular for a particular variant. The position of each Search Peptide
 - relative to its respective parent molecule is listed in Table VII. Accordingly, if a

5

15

Search Peptide begins at position "X", one must add the value "X – 1" to each position in Tables VIII-XXI and XXII to XLIX to obtain the actual position of the HLA peptides in their parental molecule. For example, if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 - 1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.

One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables VIII-XXI and XXII to XLIX collectively, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the invention comprises an 10 HLA peptide that occurs at least once in Tables VIII-XXI and at least once in tables XXII to XLIX, or an oligonucleotide that encodes the HLA peptide.

Another embodiment of the invention is antibody epitopes, which comprise a peptide regions, or an oligonucleotide encoding the peptide region, that has one, two, three, four, or five of the following characteristics:

i) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of Figure 5;

ii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3,
in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2,
0.1, or having a value equal to 0.0, in the Hydropathicity profile of Figure 6;

iii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that
includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of Figure 7;

iv) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that
includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of Figure 8; or

v) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7,

35 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of Figure 9.

5

In another aspect, there is provided a method of generating a mammalian immune response directed to a protein of Figure 2, the method comprising:

exposing cells of the mammal's immune system to a portion of

a) a 254P1D6B-related protein and/or

b) a nucleotide sequence that encodes said protein,

whereby an immune response is generated to said protein.

In another aspect, there is provided a method of delivering a cytotoxic agent or a diagnostic agent to a cell that expresses a protein of Figure 2, said method comprising:

providing the cytotoxic agent or the diagnostic agent conjugated to an antibody 10 or fragment thereof according to the invention; and,

exposing the cell to the antibody-agent or fragment-agent conjugate.

The present invention further provides a method of delivering a cytotoxic agent to a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an 15 effective amount of an antibody according the invention.

In another aspect, the present invention provides a method of inhibiting growth, reproduction or survival of cancer cells that express a protein of Figure 2, the method comprising:

administering to the cells a composition according to the invention, thereby 20 inhibiting the growth, reproduction or survival of said cells.

The present invention further provides a method of inhibiting growth of a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an effective amount of an antibody according to the invention to the cell, whereby the growth of the cell is inhibited

25 growth of the cell is inhibited.

In another aspect, the present invention provides use of a 254P1D6B-related protein that comprises at least one T cell or at least one B cell epitope in the manufacture of a medicament for generating an immune response.

The present invention further provides use of an epitope from a protein 30 comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, for the preparation of a medicament to induce a T cell or B cell immune response in a subject.

The present invention further provides use of an antibody according to the invention in the manufacture of a medicament for inhibiting growth of a cell expressing a protein comprising the amino acid sequence of SEQ ID:NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the 5 field relevant to the present invention as it existed before the priority date of each claim

of this application.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. The 254P1D6B SSH sequence of 284 nucleotides.

Figure 2. A) The cDNA and amino acid sequence of 254P1D6B variant 1
(also called "254P1D6B v.1" or "254P1D6B variant 1") is shown in Figure 2A. The start methionine is underlined. The open reading frame extends from nucleic acid 512-3730 including the stop codon.

B) The cDNA and amino acid sequence of 254P1D6B variant 2 (also called "254P1D6B v.2") is shown in Figure 2B. The codon for the start methionine is
20 underlined. The open reading frame extends from nucleic acid 512-3730 including the stop codon.

C) The cDNA and amino acid sequence of 254P1D6B variant 3 (also called "254P1D6B v.3") is shown in Figure 2C. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 739-3930 including the stop codon.

D) 254P1D6B v.4 through v.20, SNP variants of 254P1D6B v.1. The 254P1D6B v.4 through v.20 (also called "254P1D6B variant 4 through variant 20") proteins have 1072 amino acids. Variants 254P1D6B v.4 through v.20 are variants with single nucleotide difference from 254P1D6B v. 1. 254P1D6B v.5 and v.6 proteins

30 differ from 254P1D6B v.1 by one amino acid. 254P1D6B v.4 and v.7 through v.20 proteins code for the same protein as v.1. Though these SNP variants are shown separately, they can also occur in any combinations and in any of the transcript variants listed above in Figure 2A, Figure 2B, and Figure 2C.

Figure 3.

- A) The amino acid sequence of 254P1D6B v.1 clone LCP-3 is shown in Figure 3A; it has 1072 amino acids.
- B) The amino acid sequence of 254P1D6B v.2 is shown in Figure 3B; it has 1072 amino acids.
- C) The amino add sequence of 254P1D6B v.3 is shown in Figure 3C; it has 1063 amino acids.
- D) The amino acid sequence of 254P1D6B v.5 is shown in Figure 3D; it has 1072 amino acids.

10

5

E) The amino acid sequence of 254P1D6B v.6 is shown in Figure 3E; it has 1072 amino acids.

As used herein, a reference to 254P1D6B includes all variants thereof, including those shown in Figures 2, 3, 10, 11, and 12 unless the context clearly indicates otherwise.

15

Figure 4. Intentionally Omitted.

Figure 5. Hydrophilicity amino acid profile of 254P1D6B v.1 determined by computer algorithm sequence analysis using the method of Hopp and Woods (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website located on the World Wide Web at (expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

20 through the ExPasy molecular biology server.

PCT/US2004/001965

Figure 6. Hydropathicity amino acid profile of 254P1D6B v.1 determined by computer algorithm sequence analysis using the method of Kyte and Doclittle (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 7. Percent accessible residues amino acid profile of 254P1D6B v.1 determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 8. Average flexibility amino acid profile of 254P1D6B v.1 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 9. Beta-turn amino acid profile of 254P1D6B v.1 determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 10. Structures of transcript variants of 254P1D6B. Variant 254P1D6B v.3 was identified as a transcript variant of 254P1D6B v.1. Variant 254P1D6B v.3 extended exon 1 by 109 bp as compared to v.1 and added an exon in between exons 2 and 3 of variant v.1. Poly A tails and SNP are not shown here. Numbers in "()" underneath the boxes correspond to those of 254P1D6B v.1. Lengths of introns and exons are not proportional.

Figure 11. Schematic alignment of protein variants of 254P1D6B. Protein variants correspond to nucleotide variants. Nucleotide variants 254P1D6B v.4 and v.7 through v.20 coded for the same protein as v.1. Variant v.2 coded the same protein as variant v.6. 254P1D6Bv.5 coded for a protein that differed by one amino acid from v.1. Nucleotide variant 254P1D6B v.3 was a transcript variant of v.1, as shown in Figure 10, and coded a protein that differed from v.1 in the N-terminal. SNP in v.1 could also appear in v.3. Single amino acid differences were indicated above the boxes. Black boxes represent the same sequence as 254P1D6B v.1. Numbers underneath the box correspond to 254P1D6B.

Figure 12. Schematic alignment of SNP variants of 254P1D6B. Variants 254P1D6B v.4 through v.20 were variants with single nucleotide differences as compared to variant v.1 (ORF: 512-3730). Though these SNP variants were shown separately, they could also occur in any combinations, (e.g., cocur with 254P1D6Bv.2, and in any transcript variants that contained the base pairs, such as v.3 shown in Fig. 10. Numbers correspond to those of 254P1D6B v.1. Black box shows the same sequence as 254P1D6B v.1. SNPs are indicated above the box.

Figure 13. Secondary structure and transmembrane domains prediction for 254P1D6b protein variant 1. Figure 13A: The secondary structures of 254P1D6b protein variant was predicted using the HNN - Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-150 Combet C., Blanchet C., Geourjon C. and Deléage G., http://pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html), accessed from the ExPasy molecular biology server located on the World Wide Web at .expasy.ch/tools/. This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence. The percent of the protein variant in a given secondary structure is also listed. Figure 13B: Schematic representation of the probability of existence of transmembrane regions of 254P1D6b variant 1 based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMEASE - A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993). Figure 13C: Schematic representation of the probability of the existence of transmembrane regions of 254P1D6b variant 1 based on the TMHMM algorithm of Sonnhammer, von Heijne, and Krogh (Erik L.L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in

protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998). The TMpred and TMHMM algorithms are accessed from the ExPasy molecular biology server located on the World Wide Web at .expasy.ch/tools/.

Figure 14. Expression of 254P1D6B by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal lung, ovary cancer pool, lung cancer pool (Figure 14A), as well as from normal stomach, brain, heart, liver, spleen, skeletal muscle, testis, prostate, bladder, kidney, colon, lung and evary cancer pool (Figure 14B). Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254P1D6B, was performed at 26 and 30 cycles of amplification. Results show strong expression of 254P1D6B in lung cancer pool and ovary cancer pool but not in normal lung nor in vital pool 1. Low expression was detected in vital pool 2.

Figure 15. Expression of 254P1D6B in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNA/lane were probed with the 254P1D6B sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of two 254P1D6B transcript, 4.4 kb and 7.5 kb primarily in brain and testis, and only the 4.4 kb transcript in placenta, but not in any other normal tissue tested.

Figure 16. Expression of 254P1D6B in lung cancer patient specimens. First strand cDNA was prepared from normal lung lung cancer cell line A427 and a panel of lung cancer patient specimens. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254P1D6B, was performed at 26 and 30 cycles of amplification. Results show expression of 254P1D6B in 13 out of 30 tumor specimens tested but not in normal lung. Expression was also detected in the A427 cell line.

Figure 17. Expression of 254P1D6b in 293T cells. Figure 17A. 293T cells were transfected with either an empty pCDNA 3.1 vector plasmid or pCDNA 3.1 plasmid encoding the full length cDNA of 254P1D6b. 2 days post-transfection, lysates were prepared from the transfected cells and separated by SDS-PAGE, transferred to nitrocellulose and subjected to Western blotting using an anti-His pAb (Santa Cruz Biotechnology, Santa Cruz, California) to detect the C-terminal epitope tag on the protein. An arrow indicates the band corresponding to the full length 254P1D6b protein product. An additional verified lysate containing an epitope tagged AGSX protein served as a positive control Figure 17B. 293T cells were transfected with either an empty vector or the Tag5 expression vector encoding the extracellular domain (ECD) of 254P1D6 (amino acids 26-953) and subjected to SDS-PAGE and Western blotting as described above. An arrow indicates the band corresponding to the 254P1D6b ECD present in the lysates and the media from transfected cells.

DETAILED DESCRIPTION OF THE INVENTION Outline of Sections

- I.) Definitions
- II.) 254P1D6B Polynucleotides
 - II.A.) Uses of 254P1D6B Polynucleotides
 - II.A.1.) Monitoring of Genetic Abnormalities
 - II.A.2.) Antisense Embodiments
 - II.A.3.) Primers and Primer Pairs
 - II.A.4.) Isolation of 254P1D6B-Encoding Nucleic Acid Molecules
 - II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems

III.) 254P1D6B-related Proteins

- III.A.) Motif-bearing Protein Embodiments
- III.B.) Expression of 254P1D6B-related Proteins
- III.C.) Modifications of 254P1D6B-related Proteins

PCT/US2004/001965

- III.D.) Uses of 254P1D6B-related Proteins
- IV.) 254P1D6B Antibodies
- V.) 254P1D6B Cellular Immune Responses
- VI.) 254P1D6B Transgenic Animals
- VII.) Methods for the Detection of 254P1D6B
- VIII.) Methods for Monitoring the Status of 254P1D6B-related Genes and Their Products
- IX.) Identification of Molecules That Interact With 254P1D6B
- X.) Therapeutic Methods and Compositions
 - X.A.) Anti-Cancer Vaccines
 - X.B.) 254P1D6B as a Target for Antibody-Based Therapy
 - X.C.) 254P1D6B as a Target for Cellular Immune Responses
 - X.C.1. Minigene Vaccines
 - X.C.2. Combinations of CTL Peptides with Helper Peptides
 - X.C.3. Combinations of CTL Peptides with T Cell Priming Agents
 - X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides
 - X.D.) Adoptive Immunotherapy
- X.E.) Administration of Vaccines for Therapeutic or Prophylactic Purposes
- XI.) Diagnostic and Prognostic Embodiments of 254P1D6B.
- XII.) Inhibition of 254P1D6B Protein Function
 - XII.A.) Inhibition of 254P1D6B With Intracellular Antibodies
 - XII.B.) Inhibition of 254P1D6B with Recombinant Proteins
 - XII.C.) Inhibition of 254P1D6B Transcription or Translation
 - XII.D.) General Considerations for Therapeutic Strategies
- XIII.) Identification, Characterization and Use of Modulators of 254P1D6B
- XIV.) RNAi and Therapeutic use of small interfering RNA
- XV.) KITS/Articles of Manufacture

I.) Definitions:

Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted.

The terms "advanced prostate cancer", "locally advanced prostate cancer", "advanced disease" and "locally advanced disease" mean prostate cancers that have extended through the prostate capsule, and are meant to include stage C disease under the American Urological Association (AUA) system, stage C1 - C2 disease under the Whitmore-Jewett system, and stage T3 - T4 and N+ disease under the TNM (tumor, node, metastasis) system. In general, surgery is not

PCT/US2004/001965

WO 2004/067716

recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer. Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base. Locally advanced prostate cancer is presently diagnosed pathologically following radical prostatectomy if the tumor invades or penetrates the prostatic capsule, extends into the surgical margin, or invades the seminal vesicles.

"Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 254P1D6B (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 254P1D6B. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

The term "analog" refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule (e.g. a 254P1D6B-related protein). For example, an analog of a 254P1D6B protein can be specifically bound by an antibody or T cell that specifically binds to 254P1D6B.

The term "antibody" is used in the broadest sense. Therefore, an "antibody" can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology. Anti-254P1D6B antibodies comprise monoclonal and polycicnal antibodies as well as fragments containing the antigen-binding domain anc/or one or more complementarity determining regions of these antibodies.

An "antibody fragment" is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-254P1D6B antibodies and clones thereof (including agonist, antagonist and neutralizing antibodies) and anti-254P1D6B antibody compositions with polyepitopic specificity.

The term "codon optimized sequences" refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an "expression enhanced sequences."

A "combinatorial library" is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Numerous chemical compounds are synthesized through such combinatorial mixing of chemical building blocks (Gallop et al., J. Med. Chem. 37(9): 1233-1251 (1994)).

Preparation and screening of combinatorial libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio- oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbarnates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Stratagene,

Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3): 309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, Jan 18, page 33 (1993); isoprencids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506, 337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 NIPS, 390 NIPS, Advanced Chem Tech, Louisville KY; Symphony, Rainin, Woburn, MA; 433A, Applied Biosystems, Foster City, CA; 9050, Plus, Millipore, Bedford, NIA). A number of well-known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations such as the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate H, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, NJ; Asinex, Moscow, RU; Tripos, Inc., St. Louis, MO; ChemStar, Ltd, Moscow, RU; 3D Pharmaceuticals, Exton, PA; Martek Biosciences, Columbia, MD; etc.).

The term "cytotoxic agent" refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to auristatins, auromycins, maytansinoids, yttrium, bismuth, ricin, ricin A-chain, combrestatin, duocarmycins, dolostatins, doxorubicin, daunorubicin, taxol, cisplatin, cc1065, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, Sapaonaria officinalis inhibitor, and glucocorricoid and other chemotherapeutic agents, as well as radioisotopes such as At²¹¹, 1¹³¹, 1¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi^{212 or 213}, P³² and radioactive isotopes of Lu including Lu¹⁷⁷. Antibodies may also be conjugated to an anti-cancer pro-drug activating enzyme capable of converting the pro-drug to its active form.

The "gene product" is sometimes referred to herein as a protein or mRNA. For example, a "gene product of the invention" is sometimes referred to herein as a "cancer amino acid sequence", "cancer protein", "protein of a cancer listed in Table I", a "cancer mRNA", "mRNA of a cancer listed in Table I", etc. In one embodiment, the cancer protein is encoded by a nucleic acid of Figure 2. The cancer protein can be a fragment, or alternatively, be the full-length protein to the fragment encoded by the nucleic acids of Figure 2. In one embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Figure 2. In another embodiment, the sequences are sequence variants as further described herein.

"High throughput screening" assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins; U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays); while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

11

PCT/US2004/001965

In addition, high throughput screening systems are commercially available (see, e.g., Amersham Biosciences, Piscataway, NJ; Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA; etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

The term "homolog" refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions.

"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, *et al.*, IMMUNOLOGY, 8THED., Lange Publishing, Los Altos, CA (1994).

The terms "hybridize", "hybridizing", "hybridizes" and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6XSSC/0.1% SDS/100 μ g/ml ssDNA, in which temperatures for hybridization are above 37 degrees C and temperatures for washing in 0.1XSSC/0.1% SDS are above 55 degrees C.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their *in situ* environment. For example, a polynucleotide is said to be "isolated" when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 254P1D6B genes or that encode polypeptides other than 254P1D6B gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 254P1D6B polynucleotide. A protein is said to be "isolated," for example, when physical, mechanical or chemical methods are employed to remove the 254P1D6B proteins from cellular constituents that are normally associated with the protein. A skilled artisan can readily employ B protein. Alternatively, an isolated protein can be prepared by chemical means.

The term "mammal" refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human.

The terms "metastatic prostate cancer" and "metastatic disease" mean prostate cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage TxNxM+ under the TNM system. As is the case with locally advanced prostate cancer, surgery is generally not indicated for patients with metastatic disease, and hormonal (androgen ablation) therapy is a preferred treatment modality. Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 months of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after developing that status. The most common site for prostate cancer metastasis is bone. Prostate cancer bone metastases are often osteoblastic rather than osteolytic (i.e., resulting in net bone formation). Bone metastases are found most frequently in the spine, followed by the femur, pelvis, rib cage, skull and humerus. Other common sites for metastasis include lymph nodes, lung, liver and brain. Metastatic prostate cancer is typically diagnosed by open or laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion biopsy.

The term "modulator" or "test compound" or "drug candidate" or grammatical equivalents as used herein describe any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the

capacity to directly or indirectly alter the cancer phenotype or the expression of a cancer sequence, e.g., a nucleic acid or protein sequences, or effects of cancer sequences (e.g., signaling, gene expression, protein interaction, etc.) In one aspect, a modulator will neutralize the effect of a cancer protein of the invention. By "neutralize" is meant that an activity of a protein is inhibited or blocked, along with the consequent effect on the cell. In another aspect, a modulator will neutralize the effect of a gene, and its corresponding protein, of the invention by normalizing levels of said protein. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein, or downstream effector pathways. In one embodiment, the modulator suppresses a cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a cancer phenotype. Generally, a plurality of assay mixtures is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

Modulators, drug candidates or test compounds encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Modulators also comprise biomolecules such as peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides. One class of modulators are peptides, for example of from about five to about 35 amino acids, with from about five to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. Preferably, the cancer modulatory protein is soluble, includes a non-transmembrane region, and/or, has an Nterminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine. In one embodiment, a cancer protein of the invention is conjugated to an immunogenic agent as discussed herein. In one embodiment, the cancer protein is conjugated to BSA. The peptides of the invention, e.g., of preferred lengths, can be linked to each other or to other amino acids to create a longer peptide/protein. The modulatory peptides can be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. In a preferred embodiment, peptide/protein-based modulators are antibodies, and fragments thereof, as defined herein.

Modulators of cancer can also be nucleic acids. Nucleic acid modulating agents can be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For example, digests of prokaryotic or eukaryotic genomes can be used in an approach analogous to that outlined above for proteins.

The term "monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts.

A "motif", as in biological motif of a 254P1D6B-related protein, refers to any pattern of amino acids forming part of the primary sequence of a protein, that is associated with a particular function (e.g. protein-protein interaction, protein-DNA interaction, etc) or modification (e.g. that is phosphorylated, glycosylated or amidated), or localization (e.g. secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being immunogenic, either humorally or cellularly. A motif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property. In the context of HLA motifs, "motif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class 1 HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs for HLA binding are typically

different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.

"Pharmaceutically acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals.

The term "polynucleotide" means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with "oligonucleotide". A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in Figure 2, can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thymidine (T).

The term "polypeptide" means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with "peptide" or "protein".

An HLA "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodiment, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention. Alternatively, in another embodiment, the primary anchor residues of a peptide binds an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length. The primary anchor positions for each motif and supermotif are set forth in Table IV. For example, analog peptides can be created by altering the presence or absence of particular residues in the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermotif.

"Radioisotopes" include, but are not limited to the following (non-limiting exemplary uses are also set forth):

dical isotopes:
Description of use
See Thorium-229 (Th-229)
Parent of Radium-223 (Ra-223) which is an alpha emitter used to treat metastases in the skeleton resulting from cancer (i.e., breast and prostate cancers), and cancer radioimmunotherapy
See Thorium-228 (Th-228)
See Thorium-229 (Th-229)
Cancer detection
Radiation source for radiotherapy of cancer, for food irradiators, and for sterilization of medical supplies
A positron emitter used for cancer therapy and SPECT imaging

• • • • • • • •

Copper-67 (Cu-67)	Beta/gamma emitter used in cancer radioimmunotherapy and diagnostic studies (i.e., breast and colon cancers, and lymphoma)
Dysprosium-166 (Dy-166)	Cancer radioimmunotherapy
Erbium-169 (E r -169)	Rheumatoid arthritis treatment, particularly for the small joints associated with fingers and toes
Europium-152 (Eu-152)	Radiation source for food irradiation and for sterilization of medical supplies
Europium-154 (Eu-154)	Radiation source for food irradiation and for sterilization of medical supplies
Gadolinium-153 (Gd-153)	Osteoporosis detection and nuclear medical quality assurance devices
Gold-198 (Au-198)	Implant and intracavity therapy of ovarian, prostate, and brain cancers
Holmium-166 (Ho-166)	Multiple myeloma treatment in targeted skeletal therapy, cancer radioimmunotherapy, bone marrow ablation, and rheumatoid arthritis treatment
lodine-125 (I-125)	Osteoporosis detection, diagnostic imaging, tracer drugs, brain cancer treatment, radiolabeling, tumor imaging, mapping of receptors in the brain, interstitial radiation therapy, brachytherapy for treatment of prostate cancer, determination of glomerular filtration rate (GFR), determination of plasma volume, detection of deep vein thrombosis of the legs
lodine-131 (I-131)	Thyroid function evaluation, thyroid disease detection, treatment of thyroid cancer as well as other non-malignant thyroid diseases (i.e., Graves disease, goiters, and hyperthyroidism), treatment of leukemia, lymphoma, and other forms of cancer (e.g., breast cancer) using radioimmunotherapy
lridium-192 (Ir-192)	Brachytherapy, brain and spinal cord tumor treatment, treatment of blocked arteries (i.e., arteriosclerosis and restenosis), and implants for breast and prostate tumors
Lutetium-177 (Lu-177)	Cancer radioimmunotherapy and treatment of blocked arteries (i.e., arteriosclerosis and restenosis)
Molybdenum-99 (Mo-99)	Parent of Technetium-99m (Tc-99m) which is used for imaging the brain, liver, lungs, heart, and other organs. Currently, Tc-99m is the most widely used radioisotope used for diagnostic imaging of various cancers and diseases involving the brain, heart, liver, lungs; also used in detection of deep vein thrombosis of the legs
Osmium-194 (Os-194)	Cancer radioimmunotherapy
Palladium-103 (Pd-103)	Prostate cancer treatment
Platinum-195m (Pt-195m)	Studies on biodistribution and metabolism of cisplatin, a chemotherapeutic drug
Phosphorus-32 (P-32)	Polycythemia rubra vera (blood cell disease) and leukernia treatment, bone cancer diagnosis/treatment; colon, pancreatic, and liver cancer treatment; radiolabeling nucleic acids for in vitro research, diagnosis of superficial tumors, treatment of blocked arteries (i.e., arteriosclerosis and restenosis), and intracavity therapy
Phosphorus-33 (P-33)	Leukemia treatment, bone disease diagnosis/treatment, radiolabeling, and treatment of blocked arteries (i.e., arteriosclerosis and restenosis)
Radium-223 (Ra-223)	See Actinium-227 (Ac-227)
Rhenium-186 (Re-186)	Bone cancer pain relief, rheumatoid arthritis treatment, and diagnosis and treatment of lymphoma and bone, breast, colon, and liver cancers using radioimmunotherapy
Rhenium-188 (Re-188)	Cancer diagnosis and lreatment using radioimmunotherapy, bone cancer pain relief, treatment of rheumatoid arthritis, and treatment of prostate cancer
Rhodium-105 (Rh-105)	Cancer radioimmunotherapy
Samarium-145	Ocular cancer treatment

PCT/US2004/001965

(Sm-145)				
Samarium-153 (Sm-153)	Cancer radioimmunotherapy and bone cancer pain relief			
Scandium-47 (Sc-47)	Cancer radioimmunotherapy and bone cancer pain relief			
Selenium-75 (Se-75)	Radiotracer used in brain studies, imaging of adrenal cortex by gamma-scintigraphy, lateral locations of steroid secreting tumors, pancreatic scanning, detection of hyperactive parathyroid glands, measure rate of bile acid loss from the endogenous pool			
Strontium-85 (Sr-85)	Bone cancer detection and brain scans			
Strontium-89 (Sr-89)	Bone cancer pain relief, multiple myeloma treatment, and osteoblastic therapy			
Technetium-99m (Tc-99m) See Molybdenum-99 (Mo-99)				
Thorium-228 (Th-228)	Parent of Bismuth-212 (Bi-212) which is an alpha emitter used in cancer radioimmunotherapy			
Thorium-229 (Th-229)	Parent of Actinium-225 (Ac-225) and grandparent of Bismuth-213 (Bi-213) which are alpha emitters used in cancer radioimmunotherapy			
Thulium-170 (Tm-170)	Gamma source for blood irradiators, energy source for implanted medical devices			
Tin-117m (Sn-117m)	Cancer immunotherapy and bone cancer pain relief			
⊤ungsten-188 (W-188)	Parent for Rhenium-188 (Re-188) which is used for cancer diagnostics/treatment, bone cancer pain relief, rheumatoid arthritis treatment, and treatment of blocked arteries (i.e., arteriosclerosis and restenosis)			
Xenon-127 (Xe-127)	Neuroimaging of brain disorders, high resolution SPECT studies, pulmonary function tests, and cerebral blood flow studies			
Ytterbium-175 (Yb-175)	Cancer radioimmunotherapy			
Yttrium-90 (Y-90)	Microseeds obtained from irradiating Yttrium-89 (Y-89) for liver cancer treatment			
Yttrium-91 (Y-91)	A gamma-emitting label for Yttrium-90 (Y-90) which is used for cancer radioimmunotherapy (i.e., lymphoma, breast, colon, kidney, lung, ovarian, prostate, pancreatic, and inoperable liver cancers)			

By "randomized" or grammatical equivalents as herein applied to nucleic acids and proteins is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. These random peptides (or nucleic acids, discussed herein) can incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, a library is "fully randomized," with no sequence preferences or constants at any position. In another embodiment, the library is a "biased random" library. That is, some positions within the sequence either are held constant, or are selected from a limited number of possibilities. For example, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

A "recombinant" DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro.

Non-limiting examples of small molecules include compounds that bind or interact with 254P1D6B, ligands including hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit 254P1D6B protein function. Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa, more preferably below about 9, about 8, about 7, about 6, about 5 or about 4 kDa. In certain embodiments, small molecules physically associate with, or bind, 254P1D6B protein; are not found in naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel *et al.*, Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions', as defined herein, are identified by, but not limited to, those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyviny/pyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42 °C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42 °C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium. citrate) and 50% formamide at 55 °C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55 °C. "Moderately stringent conditions" are described by, but not limited to, those in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formarnide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/mL denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

An HLA "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Overall phenotypic frequencies of HLA-supertypes in different ethnic populations are set forth in Table IV (F). The nonlimiting constituents of various supetypes are as follows:

A2: A*0201, A*0202, A*0203, A*0204, A* 0205, A*0206, A*6802, A*6901, A*0207

A3: A3, A11, A31, A*3301, A*6801, A*0301, A*1101, A*3101

<u>B7</u>: B7, B*3501-03, B*51, B*5301, B*5401, B*5501, B*5502, B*5601, B*6701, B*7801, B*0702, B*5101, B*5602 <u>B44:</u> B*3701, B*4402, B*4403, B*60 (B*4001), B61 (B*4006) <u>A1:</u> A*0102, A*2604, A*3601, A*4301, A*8001

A24: A*24, A*30, A*2403, A*2404, A*3002, A*3003

17

<u>B27:</u> B*1401-02, B*1503, B*1509, B*1510, B*1518, B*3801-02, B*3901, B*3902, B*3903-04, B*4801-02, B*7301, B*2701-08

B58: B*1516, B*1517, B*5701, B*5702, B58

B62: B*4601, B52, B*1501 (B62), B*1502 (B75), E*1513 (B77)

Calculated population coverage afforded by different HLA-supertype combinations are set forth in Table IV (G).

As used herein "to treat" or "therapeutic" and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; full eradication of disease is not required.

A "transgenic animal" (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A "transgene" is a DNA that is integrated into the genome of a cell from which a transgenic animal develops.

As used herein, an HLA or cellular immune response "vaccine" is a composition that contains or encodes one or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from 1-150 or more, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 50, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I peptides of the invention can be admixed with, or linked to, HLA class II peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.

The term "variant" refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 254P1D6B protein shown in Figure 2 or Figure 3. An analog is an example of a variant protein. Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants.

The "254P1D6B-related proteins" of the invention include those specifically identified herein, as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art. Fusion proteins that combine parts of different 254P1D6B proteins or fragments thereof, as well as fusion proteins of a 254P1D6B protein and a heterologous polypeptide are also included. Such 254P1D6B proteins are collectively referred to as the 254P1D6B-related proteins, the proteins of the invention, or 254P1D6B. The term "254P1D6B-related protein" refers to a polypeptide fragment or a 254P1D6B protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 amino acids; or, at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, or 576 or more amino acids.

II.) 254P1D6B Polynucleotides

One aspect of the invention provides polynucleotides corresponding or complementary to all or part of a 254P1D6B gene, mRNA, and/or coding sequence, preferably in isolated form, including polynucleotides encoding a 254P1D6B-related protein and fragments thereof, DNA, RNA, DNA/RNA hybrid, and related molecules, polynucleotides or cligonucleotides complementary to a 254P1D6B gene or mRNA sequence or a part thereof, and polynucleotides or

oligonucleotides that hybridize to a 254P1D6B gene, mRNA, or to a 254P1D6B encoding polynucleotide (collectively, '254P1D6B polynucleotides"). In all instances when referred to in this section, T can also be U in Figure 2.

Embodiments of a 254P1D6B polynucleotide include: a 254P1D6B polynucleotide having the sequence shown in Figure 2, the nucleotide sequence of 254P1D6B as shown in Figure 2 wherein T is U; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 contiguous nucleotides comprise, without the sequence as shown in Figure 2 where T is U. For example, embodiments of 254P1D6B nucleotides comprise, without limitation:

(I) a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown in Figure 2, wherein T can also be U;

(II) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2A, from nucleotide residue number 512 through nucleotide residue number 3730, including the stop codon, wherein T can also be U;

(III) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2B, from nucleotide residue number 512 through nucleotide residue number 3730, including the stop codon, wherein T can also be U;

(IV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2C, from nucleotide residue number 739 through nucleotide residue number 3930, including the a stop codon, wherein T can also be U;

a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2D, from nucleotide residue number 512 through nucleotide residue number 3730, including the stop codon, wherein T can also be U;

(VI) a polynucleolide that encodes a 254P1D6B-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in Figure 2A-D;

(VII) a polynucleotide that encodes a 254P1D6B-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identical to an entire amino acid sequence shown in Figure 2A-D;

(VIII) a polynucleotide that encodes at least one peptide set forth in Tables VIII-XXI and XXII-XLIX;

a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figures 3A, 3B, 3D, and 3E in any whole number increment up to 1072 that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5;

(X) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A, 3B, 3D, and 3E in any whole number increment up to 1072 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6;

(XI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A, 3B, 3D, and

3E in any whole number increment up to 1072 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;

(XII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A, 3B, 3D, and 3E in any whole number increment up to 1072 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8;

(XIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A, 3B, 3D, and 3E in any whole number increment up to 1072 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9;

(XIV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3C in any whole number increment up to 1063 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5;

(XV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3C in any whole number increment up to 1063 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6;

(XVI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3C in any whole number increment up to 1063 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;

(XVII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3C in any whole number increment up to 1063 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8;

(XVIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3C in any whole number increment up to 1063 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9;

(XIX) a polynucleotide that is fully complementary to a polynucleotide of any one of (I)-(XVIII);

PCT/US2004/001965

(XX) a polynucleotide that is fully complementary to a polynucleotide of any one of (I)-(XIX);

(XXI) a peptide that is encoded by any of (I) to (XX); and;

(XXII) a composition comprising a polynucleotide of any of (I)-(XX) or peptide of (XXI) together with a pharmaceutical excipient and/or in a human unit dose form;

(XXIII) a method of using a polynucleotide of any (I)-(XX) or peptide of (XXI) or a composition of (XXII) in a method to modulate a cell expressing 254P1D6B;

(XXIV) a method of using a polynucleotide of any (I)-(XX) or peptide of (XXI) or a composition of (XXII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B;

(XXV) a method of using a polynucleotide of any (I)-(XX) or peptide of (XXI) or a composition of (XXII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B, said cell from a cancer of a tissue listed in Table I;

(XXVI) a method of using a polynucleotide of any (I)-(XX) or peptide of (XXI) or a composition of (XXII) in a method to diagnose, prophylax, prognose, or treat a cancer;

(XXVII) a method of using a polynucleotide of any (I)-(XX) or peptide of (XXI) or a composition of (XXII) in a method to diagnose, prophylax, prognose, or treat a cancer of a tissue listed in Table I; and;

(XXVIII) a method of using a polynucleotide of any (I)-(XX) or peptide of (XXI) or a composition of (XXII) in a method to identify or characterize a modulator of a cell expressing 254P1D6B.

As used herein, a range is understood to disclose specifically all whole unit positions thereof.

Typical embodiments of the invention disclosed herein include 254P1D6B polynucleotides that encode specific portions of 254P1D6B mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example: .

(a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1060, 1065, 1070, and 1072 or more contiguous amino acids of 254P1D6B variant 1; the maximal lengths relevant for other variants are: variant 2, 1072 amino acids; variant 3, 1063 amino acids, variant 5, 1072 amino acids, variant 6, 1072 amino acids, and variants 4, 7-20, 1072 amoni acids.

For example, representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 10 to about amino acid 20 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 20 to about amino acid 30 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 30 to about amino acid 40 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 30 to about amino acid 50 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 40 to about amino acid 50 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 60 to about amino acid 60 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 50 to about amino acid 60 to about amino acid 70 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 60 to about amino acid 70 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 60 to about amino acid 80 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 60 to about amino acid 80 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 70 to about amino acid 80 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 90 to about amino acid 100 of the 254P1D6B protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 90 to ab

PCT/US2004/001965

carboxyl terminal amino acid set forth in Figure 2 or Figure 3. Accordingly, polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids, 100 through the carboxyl terminal amino acid of the 254P1D6B protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues.

Polynucleotides encoding relatively long portions of a 254P1D6B protein are also within the scope of the invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30, or 40 or 50 etc.) of the 254P1D6B protein "or variant" shown in Figure 2 or Figure 3 can be generated by a variety of techniques well known in the art. These polynucleotide fragments can include any portion of the 254P1D6B sequence as shown in Figure 2.

Additional illustrative embodiments of the invention disclosed herein include 254P1D6B polynucleotide fragments encoding one or more of the biological motifs contained within a 254P1D6B protein "or variant" sequence, including one or more of the motif-bearing subsequences of a 254P1D6B protein "or variant" set forth in Tables VIII-XXI and XXII-XLIX. In another embodiment, typical polynucleotide fragments of the invention encode one or more of the regions of 254P1D6B protein or variant that exhibit homology to a known molecule. In another embodiment of the invention, typical polynucleotide fragments can encode one or more of the 254P1D6B protein or variant N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or N-myristoylation site and amidation sites.

Note that to determine the starting position of any peptide set forth in Tables VIII-XXI and Tables XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides listed in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, if a Search Peptide begins at position of the HLA peptides in their parental molecule. For example if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 - 1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.

II.A.) Uses of 254P1D6B Polynucleotides

II.A.1.) Monitoring of Genetic Abnormalities

The polynucleotides of the preceding paragraphs have a number of different specific uses. The human 254P1D6B gene maps to the chromosomal location set forth in the Example entitled "Chromosomal Mapping of 254P1D6B." For example, because the 254P1D6B gene maps to this chromosome, polynucleotides that encode different regions of the 254P1D6B proteins are used to characterize cytogenetic abnormalities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers. In certain genes, a variety of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalities in a number of different cancers (see e.g. Krajinovic *et al.*, Mutat. Res. 382(3-4): 81-83 (1998); Johansson *et al.*, Blood 86(10): 3905-3914 (1995) and Finger *et al.*, P.N.A.S. 85(23): 9158-9162 (1988)). Thus, polynucleotides encoding specific regions of the 254P1D6B proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes 254P1D6B that may contribute to the malignant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the ser sitivity of chromosomal screening in order to identify more subtle and less common chromosomal abnormalities (see e.g. Evans *et al.*, Am. J. Obstet. Gynecol 171(4): 1055-1057 (1994)).

Furthermore, as 254P1D6B was shown to be highly expressed in prostate and other cancers, 254P1D6B polynucleotides are used in methods assessing the status of 254P1D6B gene products in normal varsus cancerous tissues.

Typically, polynucleotides that encode specific regions of the 254P1D6B proteins are used to assess the presence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 254P1D6B gene, such as regions containing one or more motifs. Exemplary assays include both RT-PCR assays as well as single-strand conformation polymorphism (SSCP) analysis (see, e.g., Marrogi *et al.*, J. Cutan. Pathol. 26(8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein.

II.A.2.) Antisense Embodiments

Other specifically contemplated nucleic acid related embodiments of the invention disclosed herein are genomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative backbone, or including alternative bases, whether derived from natural sources or synthesized, and include molecules capable of inhibiting the RNA or protein expression of 254P1D6B. For example, antisense molecules can be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as phosphorothicate derivatives that specifically bind DNA or RNA in a base pair-dependent manner. A skilled artisan can readily obtain these classes of nucleic acid molecules using the 254P1D6B polynucleotides and polynucleotide sequences disclosed herein.

Antisense technology entails the administration of exogenous oligonucleotides that bind to a target polynucleotide located within the cells. The term "antisense" refers to the fact that such oligonucleotides are complementary to their intracellular targets, e.g., 254P1D6B. See for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988). The 254P1D6B antisense oligonucleotides of the present invention include derivatives such as S-oligonucleotides (phosphorothioate derivatives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (O-oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-oligos of the present invention can be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithicl-3-one-1,1-dioxide, which is a sulfur transfer reagent. See, e.g., lyer, R. P. et al., J. Org. Chem. 55:4693-4698 (1990); and lyer, R. P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990). Additional 254P1D6B antisense oligonucleotides of the present invention antisense oligonucleotides known in the art (see, e.g., Partridge et al., 1996, Antisense & Nucleic Acid Drug Development 6: 169-175).

The 254P1D6B antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 100 5' codons or last 100 3' codons of a 254P1D6B genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 254P1D6B mRNA and not to mRNA specifying other regulatory subunits of protein kinase. In one embodiment, 254P1D6B antisense oligonucleotides of the present invention are 15 to 30-mer fragments of the antisense DNA molecule that have a sequence that hybridizes to 254P1D6B mRNA. Optionally, 254P1D6B antisense cligonucleotide is a 30-mer cligonucleotide that is complementary to a region in the first 10 5' codons or last 10 3' codons of 254P1D6B. Alternatively, the antisense molecules are modified to employ ribozymes in the inhibition of 254P1D6B expression, see, e.g., L. A. Couture & D. T. Stinchcomb; *Trends Genet* 12: 510-515 (1996).

II.A.3.) Primers and Primer Pairs

Further specific embodiments of these nucleotides of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Probes can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a

chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to detect the presence of a 254P1D6B polynucleolide in a sample and as a means for detecting a cell expressing a 254P1D6B protein.

Examples of such probes include polypeptides comprising all or part of the human 254P1D6B cDNA sequence shown in Figure 2. Examples of primer pairs capable of specifically amplifying 254P1D6B mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 254P1D6B mRNA.

The 254P1D6B polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the 254P1D6B gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding sequences capable of directing the expression of 254P1D6B polypeptides; as tools for modulating or inhibiting the expression of the 254P1D6B gene(s) and/or translation of the 254P1D6B transcript(s); and as therapeutic agents.

The present invention includes the use of any probe as described herein to identify and isolate a 254P1D6B or 254P1D6B related nucleic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence *per* se, which would comprise all or most of the sequences found in the probe used.

II.A.4.) Isolation of 254P1D6B-Encoding Nucleic Acid Molecules

The 254P1D6B cDNA sequences described herein enable the isolation of other polynucleotides encoding 254P1D6B gene product(s), as well as the isolation of polynucleotides encoding 254P1D6B gene product homologs, alternatively spliced isoforms, allelic variants, and mutant forms of a 254P1D6B gene product as well as polynucleotides that encode analogs of 254P1D6B-related proteins. Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a 254P1D6B gene are well known (see, for example, Sambrook, J. *et al.*, Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Protocols in Molecular Biology. Ausubel *et al.*, Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies can be conveniently employed, using commercially available cloning systems (e.g., Lambda ZAP Express, Stratagene). Phage clones containing 254P1D6B gene cDNAs can be identified by probing with a labeled 254P1D6B cDNA or a fragment thereof. For example, in one embodiment, a 254P1D6B cDNA (e.g., Figure 2) or a portion thereof can be synthesized and used as a probe to retrieve overlapping and full-length cDNAs corresponding to a 254P1D6B gene. A 254P1D6B gene itself can be isolated by screening genomic DNA libraries, bacterial artificial chromosome libraries (YACs), and the like, with 254P1D6B DNA probes or primers.

II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems

The invention also provides recombinant DNA cr RNA molecules containing a 254P1D6B polynucleotide, a fragment, analog or homologue thereof, including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook *et al.*, 1989, supra).

The invention further provides a host-vector system comprising a recombinant DNA molecule containing a 254P1D6B polynucleotide, fragment, analog or homologue thereof within a suitable prokaryotic or eukaryotic host cell. Examples of suitable eukaryotic host cells include a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an insect cell (e.g., a baculovirus-infectible cell such as an Sf9 or HighFive cell). Examples of suitable mammalian cells include various prostate cancer cell lines such as DU145 and TsuPr1, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, CHO, 293, 293T cells). More particularly, a polynucleotide comprising the coding sequence of 254P1D6B or a fragment, analog or homolog thereof can be used to generate 254P1D6B proteins or fragments thereof using any number of host-vector systems routinely used and widely known in the art.

PCT/US2004/001965

A wide range of host-vector systems suitable for the expression of 254P1D6B proteins or fragments thereof are available, see for example, Sambrook *et al.*, 1989, supra; Current Protocols in Molecular Biology, 1995, supra). Preferred vectors for mammalian expression include but are not limited to pcDNA 3.1 myc-His-tag (Invitrogen) and the retroviral vector pSRαtkneo (Muller *et al.*, 1991, MCB 11:1785). Using these expression vectors, 254P1D6B can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, 293T, rat-1, NIH 3T3 and TsuPr1. The host-vector systems of the invention are useful for the production of a 254P1D6B protein or fragment thereof. Such host-vector systems can be employed to study the functional properties of 254P1D6B and 254P1D6B mutations or analogs.

Recombinant human 254P1D6B protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 254P1D6B-related nucleotide. For example, 293T cells can be transfected with an expression plasmid encoding 254P1D6B or fragment, analog or homolog thereof, a 254P1D6B-related protein is expressed in the 293T cells, and the recombinant 254P1D6B protein is isolated using standard purification methods (e.g., affinity purification using anti-254P1D6B antibodies). In another embodiment, a 254P1D6B coding sequence is subcloned into the retroviral vector pSRαMSVtkneo and used to infect various mammalian cell lines, such as NIH 3T3, TsuPr1, 293 and rat-1 in order to establish 254P1D6B expressing cell lines. Various other expression systems well known in the art can also be employed. Expression constructs encoding a leader peptide joined in frame to a 254P1D6B coding sequence can be used for the generation of a secreted form of recombinant 254P1D6B protein.

As discussed herein, redundancy in the genetic code permits variation in 254P1D6B gene sequences. In particular, it is known in the art that specific host species often have specific codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, preferred analog codon sequences typically have rare codons (i.e., codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced with higher frequency codons. Codon preferences for a specific species are calculated, for example, by utilizing codon usage tables available on the INTERNET such as at URL dna.affrc.go.jp/~nakamura/codon.html.

Additional sequence modifications are known to enhance protein expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon/intron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures. Other useful modifications include the addition of a translational initiation consensus secuence at the start of the open reading frame, as described in Kozak, *Mol. Cell Biol.*, 9:5073-5080 (1989). Skilled artisans understand that the general rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal AUG codon is abrogated only under rare conditions (see, e.g., Kozak PNAS 92(7): 2662-2666, (1995) and Kozak NAR 15(20): 8125-8148 (1987)).

III.) 254P1D6B-related Proteins

Another aspect of the present invention provides 254P1D6B-related proteins. Specific embodiments of 254P1D6B proteins comprise a polypeptide having all or part of the amino acid sequence of human 254P1D6B as shown in Figure 2 or Figure 3. Alternatively, embodiments of 254P1D6B proteins comprise variant, homolog or analog polypeptides that have alterations in the amino acid sequence of 254P1D6B shown in Figure 2 or Figure 3.

Embodiments of a 254P1D6B polypeptide include: a 254P1D6B polypeptide having a sequence shown in Figure 2, a peptide sequence of a 254P1D6B as shown in Figure 2 wherein T is U; at least 10 contiguous nucleotides of a polypeptide having the sequence as shown in Figure 2; or, at least 10 contiguous peptides of a polypeptide having the sequence as shown in Figure 2; or, at least 10 contiguous peptides of a polypeptide having the sequence as shown in Figure 2; or, at least 10 contiguous peptides comprise, without limitation:

(I) a protein comprising, consisting essentially of, or consisting of an amino acid sequence as shown in Figure 2A-D or Figure 3A-E;

(II) a 254P1D6B-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in Figure 2A-D or 3A-E;

(III) a 254P1D6B-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identical to an entire amino acid sequence shown in Figure 2A-D or 3A-E;

(IV) a protein that comprises at least one peptide set forth in Tables VIII to XLIX, optionally with a *proviso* that it is not an entire protein of Figure 2;

(V) a protein that comprises at least one peptide set forth in Tables VIII-XXI, collectively, which peptide is also set forth in Tables XXII to XLIX, collectively, optionally with a *proviso* that it is not an entire protein of Figure 2;

(VI) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII-XLIX, optionally with a *proviso* that it is not an entire protein of Figure 2;

(VII) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII to XLIX collectively, with a *provise* that the protein is not a contiguous sequence from an amino acid sequence of Figure 2;

(VIII) a protein that comprises at least one peptide selected from the peptides set forth in Tables VIII-XXI; and at least one peptide selected from the peptides set forth in Tables XXII to XLIX, with a *proviso* that the protein is not a contiguous sequence from an amino acid sequence of Figure 2;

(IX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3B, 3D, and 3E in any whole number increment up to 1072 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5;

(X) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3B, 3D, and 3E, in any whole number increment up to 1072 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6;

(XI) a polypeptide comprising at least 5, 6, 7, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3B, 3D, and 3E, in any whole number increment up to 1072 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;

(XII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3B, 3D, and 3E, in any whole number increment up to 1072 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8;

(XIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of Figure 3A, 3B, 3D, and 3E in any whole number increment up to 1072 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9;

(XIV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3C, in any whole number increment up to 1063 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5;

(XV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3C, in any whole number increment up to 1063 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6;

(XVI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3C, in any whole number increment up to 1063 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7;

(XVII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3C, in any whole number increment up to 1063 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8:

(XVIII) a polypeptide comprising at least 5, 6, 7, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of Figure 3C in any whole number increment up to 1063 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Eeta-turn profile of Figure 9;

- (XIX) a peptide that occurs at least twice in Tables VIII-XXI and XXII to XLIX, collectively;
- (XX) a peptide that occurs at least three times in Tables VIII-XXI and XXII to XLIX, collectively;
- (XXI) a peptide that occurs at least four times in Tables VIII-XXI and XXII to XLIX, collectively;
- (XXII) a peptide that occurs at least five times in Tables VIII-XXI and XXII to XLIX, collectively;
- (XXIII) a peptide that occurs at least once in Tables VIII-XXI, and at least once in tables XXII to XLIX;
- (XXIV) a peptide that occurs at least once in Tables VIII-XXI, and at least twice in tables XXII to XLIX;
- (XXV) a peptide that occurs at least twice in Tables VIII-XXI, and at least once in tables XXII to XLIX;
- (XXVI) a peptide that occurs at least twice in Tables VIII-XXI, and at least twice in tables XXII to XLIX;

(XXVII) a peptide which comprises one two, three, four, or five of the following characteristics, or an aligonucleotide encoding such peptide:

i) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of Figure 5;

ii) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of Figure 6;

iii) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of Figure 7;

iv) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of Figure 8; or,

v) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of Figure 9;;

(XXVIII) a composition comprising a peptide of (I)-(XXVII) or an antibody or binding region thereof together with a pharmaceutical excipient and/or in a human unit dose form.

(XXIX) a method of using a peptide of (I)-(XXVII), or an antibody or binding region thereof or a composition of (XXVIII) in a method to modulate a cell expressing 254P1D6B.;

(XXX) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B;

(XXXI) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition (XXVIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 254P1D6B, said cell from a cancer of a tissue listed in Table I;

(XXXII) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat a a cancer;

(XXXIII) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognese, or treat a cancer of a tissue listed in Table I; and;

(XXXIV) a method of using a a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition (XXVIII) in a method to identify or characlerize a modulator of a cell expressing 254P1D6B

As used herein, a range is understood to specifically disclose all whole unit positions thereof.

Typical embodiments of the invention disclosed herein include 254P1D6B polynucleotides that encode specific portions of 254P1D6B mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example:

PCT/US2004/001965

(a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1060, 1070 and 1072 or more contiguous amino acids of 254P1D6B variant 1; the maximal lengths relevant for other variants are: variant 2, 1072 amino acids; variant 3, 1063 amino acids, variant 5, 1072 amino acids, variant 6, 1072 amino acids, and variants 4, 7-20, 1072 amino acids.

In general, naturally occurring allelic variants of human 254P1D6B share a high degree of structural identity and homology (e.g., 90% or more homology). Typically, allelic variants of a 254P1D6B protein contain conservative amino acid substitutions within the 254P1D6B sequences described herein or contain a substitution of an amino acid from a corresponding position in a homologue of 254P1D6B. One class of 254P1D6B allelic variants are proteins that share a high degree of homology with at least a small region of a particular 254P1D6B amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift. In comparisons of protein sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms.

Amino acid abbreviations are provided in Table II. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 conservative substitutions. Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the threedimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchangeable, as can isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments (see, e.g. Table III herein; pages 13-15 "Biochemistry" 2rd ED. Lubert Stryer ed (Stanford University); Henikoff *et al.*, PNAS 1992 Vol 89 10915-10919; Lei *et al.*, J Biol Chem 1995 May 19; 270(20):11882-6).

Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 254P1D6B proteins such as polypeptides having amino acid insertions, deletions and substitutions. 254P1D6B variants can be made using methods known in the art such as site-directed mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis (Carter *et al., Nucl. Acids Res., 13:*4331 (1986); Zoller *et al., Nucl. Acids Res., 10:*6487 (1987)), cassette mutagenesis (Wells *et al., Gene, 34:*315 (1985)), restriction selection mutagenesis (Wells *et al., Philos. Trans. R. Soc. London SerA*, 317:415 (1986)) or other known techniques can be performed on the cloned DNA to produce the 254P1D6B variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a specific biological activity such as a protein-protein interaction. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, *The Proteins*,
(W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)). If alanine substitution does not yield adequate amounts of variant, an isosteric amino acid can be used.

As defined herein, 254P1D6B variants, analogs or homologs, have the distinguishing attribute of having at least one epitope that is "cross reactive" with a 254P1D6B protein having an amino acid sequence of Figure 3. As used in this sentence, "cross reactive" means that an antibody or T cell that specifically binds to a 254P1D6B variant also specifically binds to a 254P1D6B protein having an amino acid sequence set forth in Figure 3. A polypeptide ceases to be a variant of a protein shown in Figure 3, when it no longer contains any epitope capable of being recognized by an antibody or T cell that specifically binds to the starting 254P1D6B protein. Those skilled in the art understand that antibodies that recognize proteins bind to epitopes of varying size, and a grouping of the order of about four or five amino acids, contiguous or not, is regarded as a typical number of amino acids in a minimal epitope. See, e.g., Nair *et al.*, J. Immunol 2000 165(12): 6949-6955; Hebbes *et al.*, Mol Immunol (1989) 26(9):865-73; Schwartz *et al.*, J Immunol (1985) 135(4):2598-608.

Other classes of 254P1D6B-related protein variants share 70%, 75%, 80%, 85% or 90% or more similarity with an amino acid sequence of Figure 3, or a fragment thereof. Another specific class of 254P1D6B protein variants or analogs comprises one or more of the 254P1D6B biological motifs described herein or presently known in the art. Thus, encompassed by the present invention are analogs of 254P1D6B fragments (nucleic or amino acid) that have altered functional (e.g. immunogenic) properties relative to the starting fragment. It is to be appreciated that motifs now or which become part of the art are to be applied to the nucleic or amino acid sequences of Figure 3.

As discussed herein, embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a 254P1D6B protein shown in Figure 2 or Figure 3. For example, representative embodiments of the invention comprise peptides/proteins having any 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous amino acids of a 254P1D6B protein shown in Figure 3.

Moreover, representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid 10 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 20 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 20 to about amino acid 30 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 30 to about amino acid 40 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 40 to about amino acid 50 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 50 to about amino acid 60 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 60 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 70 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 70 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 80 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 90 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 of a 254P1D6B protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 of a 254P1D6B protein shown in Figure 2 or Figure 3 and the entirety of a 254P1D6B amino acid 90 to about amino acid 100 of a 254P1D6B protein shown in Figure 2 or Figure 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues.

254P1D6B-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a 254P1D6B-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a 254P1D6B protein (or variants, homologs or analogs thereof).

III.A.) Motif-bearing Protein Embodiments

PCT/US2004/001965

Additional illustrative embodiments of the invention disclosed herein include 254P1D6B polypeptides comprising the amino acid residues of one or more of the biological motifs contained within a 254P1D6B polypeptide sequence set forth in Figure 2 or Figure 3. Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, e.g., URL addresses: pfam.wustl.edu/;

searchlauncher.bcm.tmc.edu/seq-search/struc-predict.html; psort.ims.u-tokyo.ac.jp/; cbs.dtu.dk/;

ebi.ac.uk/interpro/scan.html; expasy.ch/tools/scnpsit1.html; EpimatrixTM and EpimerTM, Brown University,

brown.edu/Research/TB-HIV_Lab/epimatrix/epimatrix.html; and BIMAS, bimas.dcrt.nih.gov/.).

Motif bearing subsequences of all 254P1D6B variant proteins are set forth and identified in Tables VIII-XXI and XXII-XLIX.

Table V sets forth several frequently occurring motifs based on pfam searches (see URL address pfam.wustl.edu/). The columns of Table V list (1) motif name abbreviation, (2) percent identity found amongst the different member of the motif family, (3) motif name or description and (4) most common function; location information is included if the motif is relevant for location.

Polypeptides comprising one or more of the 254P1D6B motifs discussed above are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the 254P1D6B motifs discussed above are associated with growth dysregulation and because 254P1D6B is overexpressed in certain cancers (See, e.g., Table I). Casein kinase II, cAMP and camp-dependent protein kinase, and Protein Kinase C, for example, are enzymes known to be associated with the development of the malignant phenotype (see e.g. Chen *et al.*, Lab Invest., 78(2): 165-174 (1998); Gaiddon *et al.*, Endocrinology 136(10): 4331-4338 (1995); Hall *et al.*, Nucleic Acids Research 24(6): 1119-1126 (1996); Peterziel *et al.*, Oncogene 18(46): 6322-6329 (1999) and O'Brian, Oncol. Rep. 5(2): 305-309 (1998)). Moreover, both glycosylation and myristoylation are protein modifications also associated with cancer and cancer progression (see e.g. Dennis *et al.*, Biochem. Biophys. Acta 1473(1):21-34 (1999); Raju *et al.*, Exp. Cell Res. 235(1): 145-154 (1997)). Amidation is another protein modification also associated with cancer and cancer progression (see e.g. Inst. Monogr. (13): 169-175 (1992)).

In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the peptides set forth in Tables VIII-XXI and XXII-XLIX. CTL epitopes can be determined using specific algorithms to identify peptides with n a 254P1D6B protein that are capable of optimally binding to specified HLA alleles (e.g., Table IV; EpimatrixTM and EpimerTM, Brown University, URL brown.edu/Research/TB-HIV_Lab/epimatrix/epimatrix.html; and BIMAS, URL bimas.dcrt.nih.gov/.) Moreover, processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes, are well known in the art, and are carried out without undue experimentation. In addition, processes for identifying peptides that are immunogenic epitopes, are well known in the art, and are carried out without undue experimentation.

Also known in the art are principles for creating analogs of such epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, e.g., the HLA Class I and HLA Class II motifs/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at one of the specified positions, and replacing it with another amino acid specified for that position. For example, on the basis of residues defined in Table IV, one can substitute out a deleterious residue in favor of any other residue, such as a preferred residue; substitute a less-preferred residue with a preferred residue; or substitute an originally-occurring preferred residue with another preferred residue; no substitute an originally-occurring preferred residue with another preferred residue; or substitute an originally-occurring in a peptide; see, e.g., Table IV.

A variety of references reflect the art regarding the identification and generation of epitopes in a protein of interest as well as analogs thereof. See, for example, WO 97/33602 to Chesnut *et al.*; Sette, Immunogenetics 1999 50(3-4): 201-212; Sette *et al.*, J. Immunol. 2001 166(2): 1389-1397; Sidney *et al.*, Hum. Immunol. 1997 58(1): 12-20; Kondo *et al.*, Immunogenetics 1997 45(4): 249-258; Sidney *et al.*, J. Immunol. 1998 157(8): 3480-90; and Falk *et al.*, Nature 351: 290-6 (1991); Hunt *et al.*, Science 255:1261-3 (1992); Parker *et al.*, J. Immunol. 149:3580-7 (1992); Parker *et al.*, J. Immunol. 152:163-75 (1994)); Kast *et al.*, 1994 152(8): 3904-12; Borras-Cuesta *et al.*, Hum. Immunol. 2000 61(3): 266-278; Alexander *et al.*, J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander *et al.*, PMID: 7895164, UI: 95202582; O'Sullivan *et al.*, J. Immunol. 1991 147(8): 2663-2669; Alexander *et al.*, Immunity 1994 1(9): 751-761 and Alexander *et al.*, Immunol. Res. 1998 18(2): 79-92.

Related embodiments of the invention include polypeptides comprising combinations of the different motifs set forth in Table VI, and/or, one or more of the predicted CTL epitopes of Tables VIII-XXI and XXII-XLIX, and/or, one or more of the predicted HTL epitopes of Tables XLVI-XLIX, and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or within the intervening sequences of the polypeptides. In addition, embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typically, the number of N-terminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues.

254P1D6B-related proteins are embodied in many forms, preferably in isolated form. A purified 254P1D6B protein molecule will be substantially free of other proteins or molecules that impair the binding of 254P1D6B to antibody, T cell or other ligand. The nature and degree of isolation and purification will depend on the intended use. Embodiments of a 254P1D6B-related proteins include purified 254P1D6B-related proteins and functional, soluble 254P1D6B-related proteins. In one embodiment, a functional, soluble 254P1D6B protein or fragment thereof retains the ability to be bound by antibody, T cell or cell or other ligand.

The invention also provides 254P1D6B proteins comprising biologically active fragments of a 254P1D6B amino acid sequence shown in Figure 2 or Figure 3. Such proteins exhibit properties of the starting 254P1D6B protein, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the starting 254P1D6B protein; to be bound by such antibodies; to elicit the activation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein.

254P1D6B-related polypeptides that contain particularly interesting structures can be predicted and/or identified using various analytical techniques well known in the art, including, for example, the methods of Chou-Fasman, Garnier-Robson, Kyle-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis, or based on immunogenicity. Fragments that contain such structures are particularly useful in generating subunit-specific anti-254P1D6B antibodies or T cells or in identifying cellular factors that bind to 254P1D6B. For example, hydrophilicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated, and immunogenic peptide fragments identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated, and mmunogenic peptide fragments identified, using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294.

CTL epitopes can be determined using specific algorithms to identify peptides within a 254P1D6B protein that are capable of optimally binding to specified HLA alleles (e.g., by using the SYFPEITHI site at World Wide Web URL syfpeithi.bmiheidelberg.com/; the listings in Table IV(A)-(E); Epimatrix[™] and Epimer[™], Brown University, URL (brown.edu/Research/TB-HIV_Lab/epimatrix/epimatrix.html); and BIMAS, URL bimas.dort.nih.gov/). Illustrating this, peptide epitopes from 254P1D6B that are presented in the context of human MHC Class I molecules, e.g., HLA-A1, A2, A3, A11, A24, B7 and B35 were predicted

(see, e.g., Tables VIII-XXI, XXII-XLIX). Specifically, the complete amino acid sequence of the 254P1D6B protein and relevant portions of other variants, i.e., for HLA Class I predictions 9 flanking residues on either side of a point mutation or exon junction, and for HLA Class II predictions 14 flanking residues on either side of a point mutation or exon junction corresponding to that variant, were entered into the HLA Peptide Motif Search algorithm found in the Bioinformatics and Molecular Analysis Section (BIMAS) web site listed above; in addition to the site SYFPEITHI, at URL syfpeithi.bmi-heidelberg.com/.

The HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, in particular HLA-A2 (see, e.g., Falk *et al.*, Nature 351: 290-6 (1991); Hunt *et al.*, Science 255:1261-3 (1992); Parker *et al.*, J. Immunol. 149:3580-7 (1992); Parker *et al.*, J. Immunol. 152:163-75 (1994)). This algorithm allows location and ranking of 8-mer, 9-mer, and 10-mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peptides are 8-, 9-, 10 or 11-mers. For example, for Class I HLA-A2, the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-terminus (see, e.g., Parker *et al.*, J. Immunol. 149:3580-7 (1992)). Selected results of 254P1D6B predicted binding peptides are shown in Tables VIII-XXI and XXII-XLIX herein. In Tables VIII-XXI and XXII-XLIX, selected candidates, 9-mers and 10-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. In Tables XLVI-XLIX, selected candidates, 15-mers, for each family member are shown along with their location of complexes containing the peptide at 37°C at pH 6.5. Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of time and thus represent the best immunogenic targets for T-cell recognition.

Actual binding of peptides to an HLA allele can be evaluated by stabilization of HLA expression on the antigenprocessing defective cell line T2 (see, e.g., Xue *et al.*, Prostate 30:73-8 (1997) and Peshwa *et al.*, Prostate 36:129-33 (1998)). Immunogenicity of specific peptides can be evaluated *in vitro* by stimulation of CD8+ cytotoxic T lymphocytes (CTL) in the presence of antigen presenting cells such as dendritic cells.

It is to be appreciated that every epitope predicted by the BIMAS site, Epimer[™] and Epimatrix[™] sites, or specified by the HLA class I or class II motifs available in the art or which become part of the art such as set forth in Table IV (or determined using World Wide Web site URL syfpeithi.bmi-heidelberg.com/, or BIMAS, bimas.dcrt.nih.gov/) are to be "applied" to a 254P1D6B protein in accordance with the invention. As used in this context "applied" means that a 254P1D6B protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of a 254P1D6B protein of 8, 9, 10, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class II motif are within the scope of the invention.

III.B.) Expression of 254P1D6B-related Proteins

In an embodiment described in the examples that follow, 254P1D6B can be conveniently expressed in cells (such as 293T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 254P1D6B with a C-terminal 6XHis and MYC tag (pcDNA3.1/mycHIS, Invitrogen or Tag5, GenHunter Corporation, Nashville TN). The Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted 254P1D6B protein in transfected cells. The secreted HIS-tagged 254P1D6B in the culture media can be purified, e.g., using a nickel column using standard techniques.

III.C.) Modifications of 254P1D6B-related Proteins

PCT/US2004/001965

Modifications of 254P1D6B-related proteins such as covalent modifications are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a 254P1D6B polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of a 254P1D6B protein. Another type of covalent modification of a 254P1D6B polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of a protein of the invention. Another type of covalent modification pattern of a protein of the invention. Another type of covalent modification of 254P1D6B polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

The 254P1D6B-related proteins of the present invention can also be modified to form a chimeric molecule comprising 254P1D6B fused to another, heterologous polypeptide or amino acid sequence. Such a chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumor-associated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of a 254P1D6B sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in Figure 2 or Figure 3. Such a chimeric molecule can comprise multiples of the same subsequence of 254P1D6B. A chimeric molecule can comprise a fusion of a 254P1D6Brelated protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind, with cytokines or with growth factors. The epitope tag is generally placed at the amino- or carboxyl- terminus of a 254P1D6B protein. In an alternative embodiment, the chimeric molecule can comprise a fusion of a 254P1D6B-related protein with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 254P1D6B polypeptide in place of at least one variable region within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGI molecule. For the production of immunoglobulin fusions see, e.g., U.S. Patent No. 5,428,130 issued June 27, 1995.

III.D.) Uses of 254P1D6B-related Proteins

The proteins of the invention have a number of different specific uses. As 254P1D6B is highly expressed in prostate and other cancers, 254P1D6B-related proteins are used in methods that assess the status of 254P1D6B gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specific regions of a 254P1D6B protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing one or more motifs). Exemplary assays utilize antibodies or T cells targeting 254P1D6B-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a 254P1D6B polypeptide sequence in order to evaluate the characteristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, 254P1D6B-related proteins that contain the amino acid residues of one or more of the biological motifs the transform of 254P1D6B.

254P1D6B protein fragments/subsequences are particularly useful in generating and characterizing domain-specific antibodies (e.g., antibodies recognizing an extracellular or intracellular epitope of a 254P1D6B protein), for identifying agents or cellular factors that bind to 254P1D6B or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines.

Proteins encoded by the 254P1D6B genes, or by analogs, homologs or fragments thereof, have a variety of uses, including but not limited to generating antibodies and in methods for identifying ligands and other agents and cellular

PCT/US2004/001965

constituents that bind to a 254P1D6B gene product. Antibodies raised against a 254P1D6B protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of 254P1D6B protein, such as those listed in Table I. Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers. 254P1D6B-related nucleic acids or proteins are also used in generating HTL or CTL responses.

Various immunological assays useful for the detection of 254P1D6B proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunoscribent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like. Antibodies can be labeled and used as immunological imaging reagents capable of detecting 254P1D6B-expressing cells (e.g., in radioscintigraphic imaging methods). 254P1D6B proteins are also particularly useful in generating cancer vaccines, as further described herein.

IV.) 254P1D6B Antibodies

Another aspect of the invention provides antibodies that bind to 254P1D6B-related proteins. Preferred antibodies specifically bind to a 254P1D6B-related protein and do not bind (or bind weakly) to peptides or proteins that are not 254P1D6B-related proteins under physiological conditions. In this context, examples of physiological conditions include: 1) phosphate buffered saline; 2) Tris-buffered saline containing 25mM Tris and 150 mM NaCl; or normal saline (0.9% NaCl); 4) animal serum such as human serum; or, 5) a combination of any of 1) through 4); these reactions preferably taking place at pH 7.5, alternatively in a range of pH 7.0 to 8.0, or alternatively in a range of pH 6.5 to 8.5; also, these reactions taking place at a temperature between 4°C to 37°C. For example, antibodies that bind 254P1D6B can bind 254P1D6B-related proteins such as the homologs or analogs thereof.

254P1D6B antibodies of the invention are particularly useful in cancer (see, e.g., Table I) diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the treatment, diagnosis, and/or prognosis of other cancers, to the extent 254P1D6B is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 254P1D6B is involved, such as advanced or metastatic prostate cancers.

The invention also provides various immunological assays useful for the detection and quantification of 254P1D6B and mutant 254P1D6B-related proteins. Such assays can comprise one or more 254P1D6B antibodies capable of recognizing and binding a 254P1D6B-related protein, as appropriate. These assays are performed within various immunological assay formats well known in the art, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.

Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory or stimulatory) as well as major histocompatibility complex (MHC) binding assays.

In addition, immunological imaging methods capable of detecting prostate cancer and other cancers expressing 254P1D6B are also provided by the invention, including but not limited to radioscintigraphic imaging methods using labeled 254P1D6B antibodies. Such assays are clinically useful in the detection, monitoring, and prognosis of 254P1D6B expressing cancers such as prostate cancer.

254P1D6B antibodies are also used in methods for purifying a 254P1D6B-related protein and for isolating 254P1D6B homologues and related molecules. For example, a method of purifying a 254P1D6B-related protein comprises incubating a 254P1D6B antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 254P1D6B-related protein under conditions that permit the 254P1D6B antibody to bind to the 254P1D6B-related protein; washing the solid matrix to eliminate impurities; and eluting the 254P1D6B-related protein from the coupled antibody. Other uses of 254P1D6B antibodies in accordance with the invention include generating anti-idiotypic antibodies that mimic a 254P1D6B protein.

Various methods for the preparation of antibodies are well known in the art. For example, antibodies can be prepared by immunizing a suitable mammalian host using a 254P1D6B-related protein, peptide, or fragment, in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 254P1D6B can also be used, such as a 254P1D6B GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 2 or Figure 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a 254P1D6B-related protein is synthesized and used as an immunogen.

In addition, naked DNA immunization techniques known in the art are used (with or without purified 254P1D6B-related protein or 254P1D6B expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly *et al.*, 1997, Ann. Rev. Immunol. 15: 617-648).

The amino acid sequence of a 254P1D6B protein as shown in Figure 2 or Figure 3 can be analyzed to select specific regions of the 254P1D6B protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of a 254P1D6B amino acid sequence are used to identify hydrophilic regions in the 254P1D6B structure. Regions of a 254P1D6B protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Garnier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Welf analysis. Hydrophilicity profiles can be generated using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78;3824-3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 254P1D6B antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein. In some circumstances, direct conjugation using, for example, carbodiimide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of a 254P1D6B immunogen is often conducted by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art. During the immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation.

254P1D6B monoclonal antibodies can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 254P1D6B-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from *in vitro* cultures or from ascites fluid.

The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a 254P1D6B protein can also be produced in the context of chimeric or complementarity-determining region (CDR) grafted antibodies of multiple species origin. Humanized or human 254P1D6B antibodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones *et al.*, 1986, Nature 321: 522-525; Riechmann *et al.*, 1988, Nature 332: 323-327; Verhoeyen *et al.*, 1988, Science 239: 1534-1536). See also, Carter *et al.*, 1993, Proc. Natl. Acad. Sci. USA 89: 4285 and Sims *et al.*, 1993, J. Immunol. 151: 2296.

36

PCT/US2004/001965

Methods for producing fully human monoclonal antibodies include phage display and transgenic methods (for review, see Vaughan *et al.*, 1998, Nature Biotechnology 16: 535-539). Fully human 254P1D6B monoclonal antibodies can be generated using cloning technologies employing large human Ig gene combinatorial libraries (i.e., phage display) (Griffiths and Hoogenboom, Building an *in vitro* immune system: human antibodies from phage display libraries. In: Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man, Clark, M. (Ed.), Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. <u>Id</u>., pp 65-82). Fully human 254P1D6B monoclonal antibodies can also be produced using transgeric mice engineered to contain human immunoglobulin gene loci as described in PCT Patent Application WO98/24893, Kucherlapati and Jakobovits *et al.*, published December 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7(4): 607-614; U.S. patents 6,162,963 issued 19 December 2000; 6,150,584 issued 12 November 2000; and, 6,114598 issued 5 September 2000). This method avoids the *in vitro* manipulation required with phage display technology and efficiently produces high affinity authentic human antibodies.

Reactivity of 254P1D6B antibodies with a 254P1D6B-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 254P1D6B-related proteins, 254P1D6B-expressing cells or extracts thereof. A 254P1D6B antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific antibodies specific for two or more 254P1D6B epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known in the art (e.g., Wolff *et al.*, Cancer Res. 53: 2560-2565).

V.) 254P1D6B Cellular Immune Responses

The mechanism by which T cells recognize antigens has been delineated. Efficacious peptide epitope vaccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the worldwide population. For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided.

A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. *et al.*, *Cell* 47:1071, 1986; Babbitt, B. P. *et al.*, *Nature* 317:359, 1985; Townsend, A. and Bodmer, H., *Annu. Rev. Immunol.* 7:601, 1989; Germain, R. N., *Annu. Rev. Immunol.* 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are set forth in Table IV (see also, e.g., Southwood, *et al.*, *J. immunol.* 160:3363, 1958; Rammensee, *et al.*, *Immunogenetics* 41:178, 1995; Rammensee *et al.*, SYFPEITHI, access via World Wide Web at URL (134.2.96.221/scripts.hlaserver.dll/home.htm); Sette, A. and Sidney, J. *Curr. Opin. Immunol.* 10:478, 1998; Engelhard, V. H., *Curr. Opin. Immunol.* 6:13, 1994; Sette, A. and Grey, H. M., *Curr. Opin. Immunol.* 4:79, 1992; Sinigaglia, F. and Hammer, J. *Curr. Biol.* 6:52, 1994; Ruppert *et al.*, *Cell* 74:929-937, 1993; Kondo *et al.*, *J. Immunol.* 155:4307-4312, 1995; Sidney *et al.*, *J. Immunol.* 157:3480-3490, 1996; Sidney *et al.*, *Human Immunol.* 45:79-93, 1996; Sette, A. and Sidney, J. *Immunol.* 45:79-93, 1996; Sette, A. and Sidney, J. *Immunogenetics* 1999 Nov; 50(3-4):201-12, Review).

Furthermore, x-ray crystallographic analyses of HLA-peptide complexes have revealed pockets within the peptide binding cleft/groove of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stern et al., Structure 2:245, 1994; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367,

1992; Matsumura, M. *et al.*, *Science* 257:927, 1992; Madden *et al.*, *Celi* 70:1035, 1992; Fremont, D. H. *et al.*, *Science* 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., *J. Mol. Biol.* 219:277, 1991.)

Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s).

Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been identified; such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, and/or immunogenicity.

Various strategies can be utilized to evaluate cellular immunogenicity, including:

Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells *in vitro* over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine- or ⁵¹Cr-release assay involving peptide sensitized target cells.

2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997). For example, in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured *in vitro* in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a ⁵¹Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.

3) Demonstration of recall T cell responses from immune individuals who have been either effectively vaccinated and/or from chronically ill patients (see, e.g., Rehermann, B. *et al.*, *J. Exp. Med.* 181:1047, 1995; Doolan, D. L. *et al.*, *Immunity* 7:97, 1997; Bertoni, R. *et al.*, *J. Clin. Invest.* 100:503, 1997; Threlkeld, S. C. *et al.*, *J. Immunol.* 159:1648, 1997; Diepolder, H. M. *et al.*, *J. Virol.* 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an immune response "naturally", or from patients who were vaccinated against the antigen. PBL from subjects are cultured *in vitro* for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays including ⁵¹Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.

VI.) 254P1D6B Transgenic Animals

Nucleic acids that encode a 254P1D6B-related protein can also be used to generate either transgenic animals or "knock out" animals that, in turn, are useful in the development and screening of therapeutically useful reagents. In accordance with established techniques, cDNA encoding 254P1D6B can be used to clone genomic DNA that encodes 254P1D6B. The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 254P1D6B. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 issued 12 April 1988, and 4,870,009 issued 26 September 1989. Typically, particular cells would be targeted for 254P1D6B transgene incorporation with tissue-specific enhancers.

PCT/US2004/001965

Transgenic animals that include a copy of a transgene encoding 254P1D6B can be used to examine the effect of increased expression of DNA that encodes 254P1D6B. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced incidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a potential therapeutic intervention for the pathological condition.

Alternatively, non-human homologues of 254P1D6B can be used to construct a 254P1D6B "knock out" animal that has a defective or altered gene encoding 254P1D6B as a result of homologous recombination between the endogenous gene encoding 254P1D6B and altered genomic DNA encoding 254P1D6B introduced into an embryonic cell of the animal. For example, cDNA that encodes 254P1D6B can be used to clone genomic DNA encoding 254P1D6B in accordance with established techniques. A portion of the genomic DNA encoding 254P1D6B can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Li et al., Cell, 69:915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knock out animals can be characterized, for example, for their ability to defend against certain pathological conditions or for their development of pathological conditions due to absence of a 254P1D6B polypeptide.

VII.) Methods for the Detection of 254P1D6B

Another aspect of the present invention relates to methods for detecting 254P1D6B polynucleotides and 254P1D6Brelated proteins, as well as methods for identifying a cell that expresses 254P1D6B. The expression profile of 254P1D6B makes it a diagnostic marker for metastasized disease. Accordingly, the status of 254P1D6B gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of 254P1D6B gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Northern blotting techniques including *in situ* hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Western blot analysis and tissue array analysis.

More particularly, the Invention provides assays for the detection of 254P1D6B polynucleotides in a biological sample, such as serum, bone, prostate, and other tissues, urine, semen, cell preparations, and the like. Detectable 254P1D6B polynucleotides include, for example, a 254P1D6B gene or fragment thereof, 254P1D6B mRNA, alternative splice variant 254P1D6B mRNAs, and recombinant DNA or RNA molecules that contain a 254P1D6B polynucleotide. A number of methods for amplifying and/or detecting the presence of 254P1D6B polynucleotides are well known in the art and can be employed in the practice of this aspect of the invention.

In one embodiment, a method for detecting a 254P1D6B mRNA in a biological sample comprises producing cDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using a 254P1D6B polynucleotides as sense and antisense primers to amplify 254P1D6B cDNAs therein; and detecting the presence of the amplified 254P1D6B cDNA. Optionally, the sequence of the amplified 254P1D6B cDNA can be determined.

PCT/US2004/001965

In another embodiment, a method of detecting a 254P1D6B gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the isolated genomic DNA using 254P1D6B polynucleotides as sense and antisense primers; and detecting the presence of the amplified 254P1D6B gene. Any number of appropriate sense and antisense probe combinations can be designed from a 254P1D6B nucleotide sequence (see, e.g., Figure 2) and used for this purpose.

The invention also provides assays for detecting the presence of a 254P1D6B protein in a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like. Methods for detecting a 254P1D6B-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Western blot analysis, molecular binding assays, ELISA, ELIFA and the like. For example, a method of detecting the presence of a 254P1D6B-related protein in a biological sample comprises first contacting the sample with a 254P1D6B antibody, a 254P1D6B-relative fragment thereof, or a recombinant protein containing an antigen-binding region of a 254P1D6B antibody; and then detecting the binding of 254P1D6B-related protein in the sample.

Methods for identifying a cell that expresses 254P1D6B are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a 254P1D6B gene comprises detecting the presence of 254P1D6B mRNA in the cell. Methods for the detection of particular mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as *in situ* hybridization using labeled 254P1D6B riboprobes, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for 254P1D6B, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like). Alternatively, an assay for identifying a cell that expresses a 254P1D6B gene comprises detecting the presence of 254P1D6B-related protein in the cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of 254P1D6B-related proteins and cells that express 254P1D6B-related proteins.

254P1D6B expression analysis is also useful as a tool for identifying and evaluating agents that modulate 254P1D6B gene expression. For example, 254P1D6B expression is significantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or biological agent that inhibits 254P1D6B expression or over-expression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies 254P1D6B expression by RT-PCR, nucleic acid hybridization or antibody binding.

VIII.) Methods for Monitoring the Status of 254P1D6B-related Genes and Their Products

Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers *et al.*, Lab Invest. 77(5): 437-438 (1997) and Isaacs *et al.*, Cancer Surv. 23: 19-32 (1995)). In this context, examining a biological sample for evidence of dysregulated cell growth (such as aberrant 254P1D6B expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse. In such examinations, the status of 254P1D6B in a biological sample of interest can be compared, for example, to the status of 254P1D6B in a corresponding normal sample (e.g. a sample from that individual or alternatively another individual that is not affected by a pathology). An alteration in the status of 254P1D6B in the biological sample (as compared to the normal sample) provides evidence of dysregulated cellular growth. In addition to using a biological sample that is not affected by a pathology as a normal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever *et al.*, J. Comp. Neurol. 1996 Dec 9; 376(2): 306-14 and U.S. Patent No. 5,837,501) to compare 254P1D6B status in a sample.

The term "status" in this context is used according to its art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and its

PCT/US2004/001965

products. These include, but are not limited to the location of expressed gene products (including the location of 254P1D6B expressing cells) as well as the level, and biological activity of expressed gene products (such as 254P1D6B mRNA, polynucleotides and polypeptides). Typically, an alteration in the status of 254P1D6B comprises a change in the location of 254P1D6B and/or 254P1D6B expressing cells and/or an increase in 254P1D6B mRNA and/or protein expression.

254P1D6B status in a sample can be analyzed by a rumber of means well known in the art, including without limitation, immunohistochemical analysis, *in situ* hybridization, RT-PCR analysis on laser capture micro-dissected samples, Western blot analysis, and tissue array analysis. Typical protocols for evaluating the status of a 254P1D6B gene and gene products are found, for example in Ausubel *et al.* eds., 1995, Current Protocols In Molecular Biclogy, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis). Thus, the status of 254P1D6B in a biological sample is evaluated by various methods utilized by skilled artisans including, but not limited to genomic Southern analysis (to examine, for example perturbations in a 254P1D6B gene), Northern analysis and/or PCR analysis of 254P1D6B mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 254P1D6B mRNAs), and, Western and/or immunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 254P1D6B proteins and/or associations of 254P1D6B proteins with polypeptide binding pariners). Detectable 254P1D6B polynucleotides include, for example, a 254P1D6B gene or fragment thereof, 254P1D6B mRNA, alternative splice variants, 254P1D6B mRNAs, and recombinant DNA or RNA molecules containing a 254P1D6B polynucleotide.

The expression profile of 254P1D6B makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status of 254P1D6B provides information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness. The invention provides methods and assays for determining 254P1D6B status and diagnosing cancers that express 254P1D6B, such as cancers of the tissues listed in Table I. For example, because 254P1D6B mRNA is so highly expressed in prostate and other cancers relative to normal prostate tissue, assays that evaluate the levels of 254P1D6B mRNA transcripts or proteins in a biological sample can be used to diagnose a disease associated with 254P1D6B dysregulation, and can provide prognostic information useful in defining appropriate therapeutic options.

The expression status of 254P1D6B provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 254P1D6B in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer.

As described above, the status of 254P1D6B in a biological sample can be examined by a number of well-known procedures in the art. For example, the status of 254P1D6B in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 254P1D6B expressing cells (e.g. those that express 254P1D6B mRNAs or proteins). This examination can provide evidence of dysregulated cellular growth, for example, when 254P1D6B-expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of 254P1D6B in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of origin (such as the prostate) to a different area of the body (such as a lymph node). In this context, evidence of dysregulated cellular growth is important for example because occult lymph node metastases can be detected in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of

disease progression (see, e.g., Murphy *et al.*, Prostate 42(4): 315-317 (2000);Su *et al.*, Semin. Surg. Oncol. 18(1): 17-28 (2000) and Freeman *et al.*, J Urol 1995 Aug 154(2 Pt 1):474-8).

In one aspect, the invention provides methods for monitoring 254P1D6B gene products by determining the status of 254P1D6B gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 254P1D6B gene products in a corresponding normal sample. The presence of aberrant 254P1D6B gene products in the test sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual.

In another aspect, the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in 254P1D6B mRNA or protein expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue. The presence of 254P1D6B mRNA can, for example, be evaluated in tissues including but not limited to those listed in Table I. The presence of significant 254P1D6B expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the corresponding normal tissues do not express 254P1D6B mRNA or express it at lower levels.

In a related embodiment, 254P1D6B status is determined at the protein level rather than at the nucleic acid level. For example, such a method comprises determining the level of 254P1D6B protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 254P1D6B expressed in a corresponding normal sample. In one embodiment, the presence of 254P1D6B protein is evaluated, for example, using immunohistochemical methods. 254P1D6B antibodies or binding partners capable of detecting 254P1D6B protein expression are used in a variety of assay formats well known in the art for this purpose.

In a further embodiment, one can evaluate the status of 254P1D6B nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules. These perturbations can include insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growth dysregulated phenotype (see, e.g., Marrogi *et al.*, 1999, J. Cutan. Pathol. 26(8):369-378). For example, a mutation in the sequence of 254P1D6B may be indicative of the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutation in 254P1D6B indicates a potential loss of function or increase in tumor growth.

A wide variety of assays for observing perturbations in nucleotide and amino acid sequences are well known in the art. For example, the size and structure of nucleic acid or amino acid sequences of 254P1D6B gene products are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols discussed herein. In addition, other methods for observing perturbations in nucleotide and amino acid sequences such as single strand conformation polymorphism analysis are well known in the art (see, e.g., U.S. Patent Nos. 5,382,510 issued 7 September 1999, and 5,952,170 issued 17 January 1995).

Additionally, one can examine the methylation status of a 254P1D6B gene in a biological sample. Aberrant demethylation and/or hypermethylation of CpG islands in gene 5' regulatory regions frequently occurs in immortalized and transformed cells, and can result in altered expression of various genes. For example, promoter hypermethylation of the pi-class glutathione S-transferase (a protein expressed in normal prostate but not expressed in >90% of prostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected genomic alteration in prostate carcinomas (De Marzo *et al.*, Am. J. Pathol. 155(6): 1985-1992 (1999)). In addition, this alteration is present in at least 70% of cases of high-grade prostatic intraepithelial neoplasia (PIN) (Brocks *et al.*, Cancer Epidemici). Biomarkers Prev., 1998, 7:531-536). In another example, expression of the LAGE-I tumor specific gene (which is not expressed in normal prostate cancers) is induced by deoxy-azacytidine in lymphoblastoid cells, suggesting that tumoral expression is due to demethylation (Lethe *et al.*, Int. J. Cancer 76(6): 903-908 (1998)). A variety of assays for

PCT/US2004/001965

examining methylation status of a gene are well known in the art. For example, one can utilize, in Southern hybridization approaches, methylation-sensitive restriction enzymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands. In addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG sites present in a CpG island of a given gene. This procedure involves initial modification of DNA by sodium bisulfite (which will convert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus unmethylated DNA. Protocols involving methylation interference can also be found for example in Current Protocols In Molecular Biology, Unit 12, Frederick M. Ausubel *et al.* eds., 1995.

Gene amplification is an additional method for assessing the status of 254P1D6B. Gene amplification is measured in a sample directly, for example, by conventional Southern blotting or Northern blotting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 254P1D6B expression. The presence of RT-PCR amplifiable 254P1D6B mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art. RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT-PCR assays for the detection of cells expressing PSA and PSM (Verkaik *et al.*, 1997, Urol. Res. 25:373-384; Ghossein *et al.*, 1995, J. Clin. Oncol. 13:1195-2000; Heston *et al.*, 1995, Clin. Chem. 41:1687-1688).

A further aspect of the invention is an assessment of the susceptibility that an individual has for developing cancer. In one embodiment, a method for predicting susceptibility to cancer comprises detecting 254P1D6B mRNA or 254P1D6B protein in a tissue sample, its presence indicating susceptibility to cancer, wherein the degree of 254P1D6B mRNA expression correlates to the degree of susceptibility. In a specific embodiment, the presence of 254P1D6B in prostate or other tissue is examined, with the presence of 254P1D6B in the sample providing an indication of prostate cancer susceptibility (or the emergence or existence of a prostate tumor). Similarly, one can evaluate the integrity 254P1D6B nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations in 254P1D6B gene products in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor).

The invention also comprises methods for gauging tumor aggressiveness. In one embodiment, a method for gauging aggressiveness of a tumor comprises determining the level of 254P1D6B mRNA or 254P1D6B protein expressed by tumor cells, comparing the level so determined to the level of 254P1D6B mRNA or 254P1D6B protein expressed in a corresponding normal tissue taken from the same individual or a normal tissue reference sample, wherein the degree of 254P1D6B mRNA or 254P1D6B protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a specific embodiment, aggressiveness of a tumor is evaluated by determining the extent to which 254P1D6B is expressed in the tumor cells, with higher expression levels indicating more aggressive tumors. Another embodiment is the evaluation of the integrity of 254P1D6B nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors.

Another embodiment of the invention is directed to methods for observing the progression of a malignancy in an individual over time. In one embodiment, methods for observing the progression of a malignancy in an individual over time

comprise determining the level of 254P1D6B mRNA or 254P1D6B protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of 254P1D6B mRNA or 254P1D6B protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of 254P1D6B mRNA or 254P1D6B protein expression in the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by determining 254P1D6B expression in the tumor cells over time, where increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity 254P1D6B nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these mclecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations indicates a progression of the cancer.

The above diagnostic approaches can be combined with any one of a wide variety of prognostic and diagnostic protocols known in the art. For example, another embodiment of the invention is directed to methods for observing a coincidence between the expression of 254P1D6B gene and 254P1D6B gene products (or perturbations in 254P1D6B gene and 254P1D6B gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample. A wide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g. PSA, PSCA and PSM expression for prostate cancer etc.) as well as gross cytological observations (see, e.g., Bocking *et al.*, 1984, Anal. Quant. Cytol. 6(2):74-88; Epstein, 1995, Hum. Pathol. 26(2):223-9; Thorson *et al.*, 1998, Mod. Pathol. 11(6):543-51; Baisden *et al.*, 1999, Am. J. Surg. Pathol. 23(8):918-24). Methods for observing a coincidence between the expression of 254P1D6B gene and 254P1D6B gene products (or perturbations in 254P1D6B gene and 254P1D6B gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample.

In one embodiment, methods for observing a coincidence between the expression of 254P1D6B gene and 254P1D6B gene products (or perturbations in 254P1D6B gene and 254P1D6B gene products) and another factor associated with malignancy entails detecting the overexpression of 254P1D6B mRNA or protein in a tissue sample, detecting the overexpression of PSA mRNA or protein in a tissue sample (or PSCA or PSM expression), and observing a coincidence of 254P1D6B mRNA or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression). In a specific embodiment, the expression of 254P1D6B and PSA mRNA in prostate tissue is examined, where the coincidence of 254P1D6B and PSA mRNA overexpression in the sample indicates the existence of prostate cancer, prostale cancer susceptibility or the emergence or status of a prostate tumor.

Methods for detecting and quantifying the expression of 254P1D6B mRNA or protein are described herein, and standard nucleic acid and protein detection and quantification technologies are well known in the art. Standard methods for the detection and quantification of 254P1D6B mRNA include *in situ* hybridization using labeled 254P1D6B riboprobes, Northern blot and related techniques using 254P1D6B polynucleotide probes, RT-PCR analysis using primers specific for 254P1D6B, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like. In a specific embodiment, semi-quantitative RT-PCR is used to detect and quantify 254P1D6B mRNA expression. Any number of primers capable of amplifying 254P1D6B can be used for this purpose, including but not limited to the various primer sets specifically described herein. In a specific embodiment, polyclonal or monoclonal antibodies specifically reactive with the wild-type 254P1D6B protein can be used in an immunohistochemical assay of biopsied tissue.

IX.) Identification of Molecules That Interact With 254P1D6B

The 254P1D6B protein and nucleic acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 254P1D6B, as well as pathways activated by 254P1D6B via any one of a variety of art accepted protocols. For example, one can utilize one of the so-called interaction trap systems (also referred to as the "two-hybrid assay"). In such systems, molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed. Other systems identify protein-

PCT/US2004/001965

protein interactions *In vivo* through reconstitution of a eukaryotic transcriptional activator, see, e.g., U.S. Patent Nos. 5,955,280 issued 21 September 1999, 5,925,523 issued 20 July 1999, 5,846,722 issued 8 December 1998 and 6,004,746 issued 21 December 1999. Algorithms are also available in the art for genome-based predictions of protein function (see, e.g., Marcotte, *et al.*, Nature 402; 4 November 1999, 83-86).

Alternatively one can screen peptide libraries to identify molecules that interact with 254P1D6B protein sequences. In such methods, peptides that bind to 254P1D6B are identified by screening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against the 254P1D6B protein(s).

Accordingly, peptides having a wide variety of uses, such as therapeutic, prognostic or diagnostic reagents, are thus identified without any prior information on the structure of the expected ligand or receptor molecule. Typical peptide libraries and screening methods that can be used to identify molecules that interact with 254P1D6B protein sequences are disclosed for example in U.S. Patent Nos. 5,723,286 issued 3 March 1998 and 5,733,731 issued 31 March 1998.

Alternatively, cell lines that express 254P1D6B are used to identify protein-protein interactions mediated by 254P1D6B. Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton B.J., *et al.* Biochem. Biophys. Res. Commun. 1999, 261:646-51). 254P1D6B protein can be immunoprecipitated from 254P1D6B-expressing cell lines using anti-254P1D6B antibodies. Alternatively, antibodies against His-tag can be used in a cell line engineered to express fusions of 254P1D6B and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, ³⁵S-methicnine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis.

Small molecules and ligands that interact with 254P1D6B can be identified through related embodiments of such screening assays. For example, small molecules can be identified that interfere with protein function, including molecules that interfere with 254P1D6B's ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis. Similarly, small molecules that modulate 254P1D6B-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses 254P1D6B (see, e.g., Hille, B., Ionic Channels of Excitable Membranes 2nd Ed., Sinauer Assoc., Sunderland, MA, 1992). Moreover, ligands that regulate 254P1D6B function can be identified based on their ability to bind 254P1D6B and activate a reporter construct. Typical methods are discussed for example in U.S. Patent No. 5,928,868 issued 27 July 1999, and include methods for forming hybrid ligands in which at least one ligand is a small molecule. In an illustrative embodiment, cells engineered to express a fusion protein of 254P1D6B and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators, which activate or inhibit 254P1D6B.

An embodiment of this invention comprises a method of screening for a molecule that interacts with a 254P1D6B amino acid sequence shown in Figure 2 or Figure 3, comprising the steps of contacting a population of molecules with a 254P1D6B amino acid sequence, allowing the population of molecules and the 254P1D6B amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the 254P1D6B amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the 254P1D6B amino acid sequence from molecule that interacts with the 254P1D6B amino acid sequence from molecules that do.

function performed by 254P1D6B. In a preferred embodiment, the 254P1D6B amino acid sequence is contacted with a library of peptides.

X.) Therapeutic Methods and Compositions

The identification of 254P1D6B as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in cancers such as those listed in Table I, opens a number of therapeutic approaches to the treatment of such cancers.

Of note, targeted antitumor therapies have been useful even when the targeted protein is expressed on normal tissues, even vital normal organ tissues. A vital organ is one that is necessary to sustain life, such as the heart or colon. A non-vital organ is one that can be removed whereupon the individual is still able to survive. Examples of non-vital organs are ovary, breast, and prostate.

For example, Herceptin® is an FDA approved pharmaceutical that has as its active ingredient an antibody which is immunoreactive with the protein variously known as HER2, HER2/neu, and erb-b-2. It is marketed by Genentech and has been a commercially successful antitumor agent. Herceptin sales reached almost \$400 million in 2002. Herceptin is a treatment for HER2 positive metastatic breast cancer. However, the expression of HER2 is not limited to such tumors. The same protein is expressed in a number of normal tissues. In particular, it is known that HER2/neu is present in normal kidney and heart, thus these tissues are present in all human recipients of Herceptin. The presence of HER2/neu in normal kidney is also confirmed by Latif, Z., et al., *B.J.U. International* (2002) 89:5-9. As shown in this article (which evaluated whether renal cell carcinoma should be a preferred indication for anti-HER2 antibodies such as Herceptin) both protein and mRNA are produced in benign renal tissues. Notably, HER2/neu protein was strongly overexpressed in benign renal tissue. Despite the fact that HER2/neu is expressed in such vital tissues as heart and kidney, Herceptin is a very useful, FDA approved, and commercially successful drug. The effect of Herceptin on cardiac tissue, i.e., "cardiotoxicity," has merely been a side effect to treatment. When patients were treated with Herceptin alone, significant cardiotoxicity occurred in a very low percentage of patients.

Of particular note, although kidney tissue is indicated to exhibit normal expression, possibly even higher expression than cardiac tissue, kidney has no appreciable Herceptin side effect whatsoever. Moreover, of the diverse array of normal tissues in which HER2 is expressed, there is very little occurrence of any side effect. Only cardiac tissue has manifested any appreciable side effect at all. A tissue such as kidney, where HER2/neu expression is especially notable, has not been the basis for any side effect.

Furthermore, favorable therapeutic effects have been found for antitumor therapies that target epidermal growth factor receptor (EGFR). EGFR is also expressed in numerous normal tissues. There have been very limited side effects in normal tissues following use of anti-EGFR therapeutics.

Thus, expression of a target protein in normal tissue, even vital normal tissue, does not defeat the utility of a targeting agent for the protein as a therapeutic for certain tumors in which the protein is also overexpressed.

Accordingly, therapeutic approaches that inhibit the activity of a 254P1D6B protein are useful for patients suffering from a cancer that expresses 254P1D6B. These therapeutic approaches generally fall into two classes. One class comprises various methods for inhibiting the binding or association of a 254P1D6B protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of a 254P1D6B gene or iranslation of 254P1D6B mRNA.

X.A.) Anti-Cancer Vaccines

The Invention provides cancer vaccines comprising a 254P1D6B-related protein or 254P1D6B-related nucleic acid. In view of the expression of 254P1D6B, cancer vaccines prevent and/or treat 254P1D6B-expressing cancers with minimal or no effects on non-target tissues. The use of a tumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in prostate cancer using human PSMA and rodent PAP immunogens (Hodge *et al.*, 1995, Int J. Cancer 63:231-237; Fong *et al.*, 1997, J. Immunol. 159:3113-3117).

Such methods can be readily practiced by employing a 254P1D6B-related protein, or a 254P1D6B-encoding nucleic acid molecule and recombinant vectors capable of expressing and presenting the 254P1D6B immunogen (which typically comprises a number of antibody or T cell epitopes). Skilled artisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., Heryln *et al.*, Ann Med 1999 Feb 31(1):66-78; Maruyama *et al.*, Cancer Immunol Immunother 2000 Jun 49(3):123-32) Briefly, such methods of generating an immune response (e.g. humoral and/or cell-mediated) in a mammal, comprise the steps of: exposing the mammal's immune system to an immunoreactive epitope (e.g. an epitope present in a 254P1D6B protein shown in Figure 3 or analog or homolog thereof) so that the mammal generates an immune response that is specific for that epitope (e.g. generates antibodies that specifically recognize that epitope). In a preferred method, a 254P1D6B immunogen contains a biological motif, see e.g., Tables VIII-XXI and XXII-XLIX, or a peptide of a size range from 254P1D6B indicated in Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9.

The entire 254P1D6B protein, immunogenic regions or epitopes thereof can be combined and delivered by various means. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998). multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

In patients with 254P1D6B-associated cancer, the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, e.g., surgery, chemotherapy, drug therapies, radiation therapies, *etc.* including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.

Cellular Vaccines:

CTL epitopes can be determined using specific algorithms to identify peptides within 254P1D6B protein that bind corresponding HLA alleles (see e.g., Table IV; Epimer[™] and Epimatrix[™], Brown University (URL brown.edu/Research/TB-HIV_Lab/epimatrix/epimatrix.html); and, BIMAS, (URL bimas.ccrt.nih.gov); SYFPE1THI at URL syfpeithi.bml-heidelberg.com/).

In a preferred embodiment, a 254P1D6B immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables VIII-XXI and XXII-XLIX or a peptide of 8, 9, 10 or 11 amino acids specified by an HLA Class I motif/supermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino acids that comprises an HLA Class II motif/supermotif (e.g., Table IV (B) or Table IV (C)). As is appreciated in the art, the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long. In contrast, the HLA Class II binding groove is essentially closed ended of about 9 or more amino acids can be bound by an HLA Class II binding groove differences between HLA Class I and II, HLA Class I motifs are length specific, i.e., position two of a Class I motif is the second amino acid in an amino to carboxyl direction of the peptide. The amino acid positions in a Class II motif are relative only to each other, not the overall peptide, i.e., additional amino acids can be attached to the amino and/or carboxyl termini of a motif-bearing sequence. HLA Class II epitopes are often 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids long, or longer than 25 amino acids.

Antibody-based Vaccines

A wide variety of methods for generating an immune response in a mammal are known in the art (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein (e.g. a 254P1D6B protein) so that an immune response is generated. A typical embodiment consists of a method for generating an immune response to 254P1D6B in a host, by contacting the host with a sufficient amount of at least one 254P1D6B B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the 254P1D6B B cell or cytotoxic T-cell epitope or analog thereof. A specific embodiment consists of a method of generating an immune response against a 254P1D6B-related protein or a man-made multiepitopic peptide comprising; administering 254P1D6B immunogen (e.g. a 254P1D6B protein or a peptide fragment thereof, a 254P1D6B fusion protein or analog etc.) in a vaccine preparation to a human or another mammal. Typically, such vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Patent No. 6,146,635) or a universal helper epitope such as a PADRE™ peptide (Epimmune Inc., San Diego, CA; see, e.g., Alexander et al., J. Immunol. 2000 164(3); 164(3); 1625-1633; Alexander et al., Immunity 1994 1(9); 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92). An alternative method comprises generating an immune response in an individual against a 254P1D6B immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes a 254P1D6B immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Patent No. 5,962,428). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered. In addition, an antiidiotypic antibody can be administered that mimics 254P1D6B, in order to generate a response to the target antigen.

Nucleic Acid Vaccines:

Vaccine compositions of the invention include nucleic acid-mediated modalities. DNA or RNA that encode protein(s) of the invention can be administered to a patient. Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 254P1D6B. Constructs comprising DNA encoding a 254P1D6B-related protein/immunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 254P1D6B protein/immunogen. Alternatively, a vaccine comprises a 254P1D6B-related protein. Expression of the 254P1D6B-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular immunity against cells that bear a 254P1D6B protein. Various prophylactic and therapeutic genetic immunization

techniques known in the art can be used (for review, see information and references published at internet address genweb.com). Nucleic acid-based delivery is described, for instance, in Wolff *et. al., Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736.524; 5,679,647; WO 98/04720. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

. For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral or bacterial vectors. Various viral gene delivery systems that can be used in the practice of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang *et al.* J. Natl. Cancer Inst. 87:982-990 (1995)). Non-viral delivery systems can also be employed by introducing naked DNA encoding a 254P1D6B-related protein into the patient (e.g., intramuscularly or intradermally) to induce an anti-tumor response.

Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). ECG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Thus, gene delivery systems are used to deliver a 254P1D6B-related nucleic acid molecule. In one embodiment, the full-length human 254P1D6B cDNA is employed. In another embodiment, 254P1D6B nucleic acid molecules encoding specific cytotoxic T lymphocyte (CTL) and/or antibody epitopes are employed.

Ex Vivo Vaccines

Various ex vivo strategies can also be employed to generate an immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to present 254P1D6B antigen to a patient's immune system. Dendritic cells express MHC class I and II molecules, B7 co-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In prostate cancer, autologous dendritic cells pulsed with peptides of the prostate-specific membrane antigen (PSMA) are being used in a Phase I clinical trial to stimulate prostate cancer patients' immune systems (Tjoa *et al.*, 1996, Prostate 28:65-69; Murphy *et al.*, 1996, Prostate 29:371-380). Thus, dendritic cells can be used to present 254P1D6B peptides to T cells in the context of MHC class I or II molecules. In one embodiment, autologous dendritic cells are pulsed with 254P1D6B peptides capable of binding to MHC class I and/or class II molecules. In another embodiment, dendritic cells are pulsed with the complete 254P1D6B protein. Yet another embodiment involves engineering the overexpression of a 254P1D6B gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur *et al.*, 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson *et al.*, 1996, Cancer Res. 56:3763-3770), lentivirus, adeno-associated virus, DNA transfection (Ribas *et al.*, 1997, Cancer Res. 57:2865-2869), or tumor-derived RNA transfection (Ashley *et al.*, 1997, J. Exp. Med. 136:1177-1182). Cells that express 254P1D6B can also be engineered to express immune modulators, such as GM-CSF, and used as immunizing agents.

X.B.) 254P1D6B as a Target for Antibody-based Therapy

254P1D6B is an attractive target for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of intrabodies). Because 254P1D6B is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 254P1D6B-immunoreactive compositions are prepared that exhibit

PCT/US2004/001965

excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues. Antibodies specifically reactive with domains of 254P1D6B are useful to treat 254P1D6B-expressing cancers systemically, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function.

254P1D6B antibodies can be introduced into a patient such that the antibody binds to 254P1D6B and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 254P1D6B, inhibition of ligand binding or signal transduction pathways, modulation of tumor cell differentiation, alteration of tumor angiogenesis factor profiles, and/or apoptosis.

Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 254P1D6B sequence shown in Figure 2 or Figure 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, e.g., Slevers *et al.* <u>Blood</u> 93:11 3678-3684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell (e.g. 254P1D6B), the cytotoxic agent will exert its known biological effect (i.e. cytotoxicity) on those cells.

A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art. In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/cr therapeutic agent linked to a targeting agent (e.g. an anti-254P1D6B antibody) that binds to a marker (e.g. 254P1D6B) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 254P1D6B, comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 254P1D6B epitope, and, exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent.

Cancer immunotherapy using anti-254P1D6B antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, including but not limited to colon cancer (Arlen *et al.*, 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki *et al.*, 1997, Blood 90:3179-3186, Tsunenari *et al.*, 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk *et al.*, 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi *et al.*, 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong *et al.*, 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun *et al.*, 1994, Cancer Res. 54:6160-6166; Velders *et al.*, 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard *et al.*, 1991, J. Clin. Immunol. 11:117-127). Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y⁹¹ or 1¹³¹ to anti-CD20 antibodies (e.g., Zevalin™, IDEC Pharmaceuticals Corp. or Bexxar™, Coulter Pharmaceuticals), while others involve co-administration of antibodies and other therapeutic agents, such as Herceptin™ (trastuzumab) with paclitaxel (Genentech, Inc.). The antibodies can be conjugated to a therapeutic agent. To treat prostate cancer, for example, 254P1D6B antibodies can be administered in conjunction with radiation, chemotherapy or hormone ablation. Also, antibodies can be conjugated to a toxin such as calicheamicin (e.g., Mylotarg ™, Wyeth-Ayerst, Madison, NJ, a recombinant humanized IgG₃ kappa antibody conjugated to antitumor antibiotic calicheamicin) or a maytansinoid (e.g., taxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge, MA, also see e.g., US Patent 5,416,064).

PCT/US2004/001965

Although 254P1D6B antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan et al. (Cancer Res. 53:4637-4642, 1993), Prewett et al. (International J. of Onco. 9:217-224, 1996), and Hancock et al. (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents.

Although 254P1D6B antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well.

Cancer patients can be evaluated for the presence and level of 254P1D6B expression, preferably using immunchistochemical assessments of tumor tissue, quantitative 254P1D6B imaging, or other techniques that reliably indicate the presence and degree of 254P1D6B expression. Immunchistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunchistochemical analysis of tumor tissues are well known in the art.

Anti-254P1D6B monoclonal antibodies that treat prostate and other cancers include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, anti-254P1D6B monoclonal antibodies (mAbs) can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, anti-254P1D6B mAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 254P1D6B. Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular anti-254P1D6B mAb exerts an anti-tumor effect is evaluated using any number of *in vitro* assays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art.

In some patients, the use of murine or other non-human monocional antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the most severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure. Accordingly, preferred monocional antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 254P1D6B antigen with high affinity but exhibit low or no antigenicity in the patient.

Therapeutic methods of the invention contemplate the administration of single anti-254P1D6B mAbs as well as combinations, or cocktails, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, anti-254P1D6B mAbs can be administered concomitantly with other therapeutic modelities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., IL-2, GM-CSF), surgery or radiation. The anti-

254P1D6B mAbs are administered in their "naked" or unconjugated form, or can have a therapeutic agent(s) conjugated to them.

Anti-254P1D6B antibody formulations are administered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the anti-254P1D6B antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1, .2, .3, .4, .5, .6, .7, .8, .9., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight. In general, doses in the range of 10-1000 mg mAb per week are effective and well tolerated.

Based on clinical experience with the Herceptin[™] mAb in the treatment of metastatic breast cancer, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti-254P1D6B mAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90-minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 254P1D6B expression in the patient, the extent of circulating shed 254P1D6B antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.

Optionally, patients should be evaluated for the levels of 254P1D6B in a given sample (e.g. the levels of circulating 254P1D6B antigen and/or 254P1D6B expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cylclogy and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy).

Anti-idiotypic anti-254P1D6B antibodies can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing a 254P1D6B-related protein. In particular, the generation of anti-idiotypic antibodies is well known in the art; this methodology can readily be adapted to generate anti-idiotypic anti-254P1D6B antibodies that mimic an epitope on a 254P1D6B-related protein (see, for example, Wagner *et al.*, 1997, Hybridoma 16: 33-40; Foon *et al.*, 1995, J. Clin. Invest. 93:334-342; Herlyn *et al.*, 1996, Cancer Immunol. Immunother. 43:65-76). Such an anti-idiotypic antibody can be used in cancer vaccine strategies.

X.C.) 254P1D6B as a Target for Cellular Immune Responses

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (*i.e.*, acceptable)

PCT/US2004/001965

diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P₃CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10- to 100-fold. (see, e.g. Davila and Celis, J. Immunol. 165:539-547 (2000))

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 254P1D6B antigen, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRE[™] (Epimmune, San Diego, CA) molecule (described *e.g.*, in U.S. Patent Number 5,736,142).

A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created *in vitro*, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs *in vitro*. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses *in vivo*. Vaccine compositions, either DNA- or peptide-based, can also be administered *in vivo* in combination with dendritic cell mobilization whereby loading of dendritic cell mobilization whereby loading of dendritic cell mobilization whereby loading of dendritic cells occurs *in vivo*.

Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.

1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA). For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (*see*, e.g., Rosenberg *et al.*, *Science* 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs.

2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC50 of 500 nM or less, often 200 nM or less; and for Class II an IC50 of 1000 nM or less.

3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific molif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.

4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope.

PCT/US2004/001965

5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.

6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.

7.) Where the sequences of multiple variants of the same target protein are present, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen.

X.C.1. Minigene Vaccines

A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, Ishioka *et al.*, *J. Immunol.* 162:3915-3925, 1999; An, L. and Whitton, J. L., *J. Virol.* 71:2292, 1997; Thomson, S. A. *et al.*, *J. Immunol.* 157:822, 1996; Whitton, J. L. *et al.*, *J. Virol.* 67:348, 1993; Hanke, R. *et al.*, *Vaccine* 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotifand/or mctif-bearing epitopes derived 254P1D6B, the PADRE® universal helper T cell epitope or multiple HTL epitopes from 254P1D6B (see e.g., Tables VIII-XXI and XXII to XLIX), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.

The immunogenicity of a multi-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes *in vivo* can be correlated with the *in vitro* responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional

elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numercus promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRETM, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fuscgenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, *BioTechniques* 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, *et al., Proc. Nat'l Acad. Sci. USA* 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (⁵¹Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by ⁵¹Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, ⁵¹Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for *in vivo* induction of CTLs. Immunogenicity of HTL epitopes is confirmed in transgenic mice in an analogous manner.

Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epilopes of the invention can be incorporated into a viral vector such as vaccinia.

X.C.2. Combinations of CTL Peptides with Helper Peptides

Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity.

For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, *e.g.*, Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will

usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in a majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules. Examples of such amino acid bind many HLA Class II molecules include sequences from antigens such as *tetanus toxoid* at positions 830-843 QYIKANSKFIGITE; (SEQ ID NO: 13), *Plasmodium falciparum* circumsporozoite (CS) protein at positions 378-398 DIEKKIAKMEKASSVFNVVNS; (SEQ ID NO: 14), and *Streptococcus* 18kD protein at positions 116-131 GAVDSILGGVATYGAA; (SEQ ID NO: 15). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRETM, Epimmune, Inc., San Diego, CA) are designed, most preferably, to bind most HLA-DR (human HLA class II) molecules. For instance, a *pan-DR-binding epitope* peptide having the formula: xKXVAAWTLKAAX (SEQ ID NO: 16), where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids that encode the epitope.

HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include p-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

X.C.3. Combinations of CTL Peptides with T Cell Priming Agents

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or T lymphocytes. Lipids have been identified as agents capable of priming CTL *in vivo*. For example, palmitic acid residues can be attached to the ε -and α - amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, *e.g.*, incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to ε - and α - amino groups of Lys, which is attached via linkage, *e.g.*, Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, *E. coli* lipoproteins, such as tripalmitoyl-Sglycerylcysteinlyseryl- serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, e.g., Deres, *et al., Nature* 342:561, 1989). Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to prime specifically an Immune response to the larget antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P₃CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.

X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides

An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Pharmacia-Monsanto, St. Louis, MO) or GM-CSF/IL-4.

PCT/US2004/001965

After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.

The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses to 254P1D6B. Optionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA Class II peptide, can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 254P1D6B.

X.D. Adoptive Immunotherapy

Antigenic 254P1D6B-related peptides are used to elicit a CTL and/or HTL response *ex vivo*, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. *Ex vivo* CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (e.g., a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.

X.E. Administration of Vaccines for Therapeutic or Prophylactic Purposes

Pharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 254P1D6B. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses 254P1D6B. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Patients can be treated with the immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate.

For therapeutic use, administration should generally begin at the first diagnosis of 254P1D6B-associated cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (*i.e.*, including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 254P1D6B, a vaccine comprising 254P1D6B-specific CTL may be more efficacious in killing tumor cells in patient with advanced disease than alternative embodiments.

It is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to stimulate effectively a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embediment of the invention.

PCT/US2004/001965

The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. Boosting dosages of between about 1.0 µg to about 50,000 µg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory tests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.

In certain embodiments, the peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.

The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 µg to about 50,000 µg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local (e.g. as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.

A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.

The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, *etc*.

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, *i.e.*, from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, *etc.*, in accordance with the particular mode of administration selected.

A human unit dose form of a composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in a volume/quantity that is known by those of skill in the art to be used for administration of such compositions to humans (*see*, *e.g.*, Remington's Pharmaceutical Sciences, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985). For example a peptide dose for initial immunization can be from about 1 to about 50,000 µg, generally 100-5,000 µg, for a 70 kg patient. For example, for nucleic acids an initial immunization may be performed using an expression vector in the form of naked

PCT/US2004/001965

nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 µg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-10⁷ to 5x10⁹ pfu.

For antibodies, a treatment generally involves repeated administration of the anti-254P1D6B antibody preparation. via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1 to about 10 mg/kg body weight. In general, doses in the range of 10-500 mg mAb per week are effective and well tolerated. Moreover, an initial loading dose of approximately 4 mc/kg patient body weicht IV, followed by weekly doses of about 2 mg/kg IV of the anti- 254P1D6B mAb preparation represents an acceptable dosing regimen. As appreciated by those of skill in the art, various factors can influence the ideal dose in a particular case. Such factors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a substance, the degree of 254P1D6B expression in the patient, the extent of circulating shed 254P1D6B antigen, the desired steady-state concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient. Non-limiting preferred human unit doses are, for example, 500µg - 1mg, 1mg - 50mg, 50mg - 100mg, 100mg - 200mg, 200mg - 300mg, 400mg - 500mg, 500mg - 600mg, 600mg -700mg, 700mg - 800mg, 800mg - 900mg, 900mg - 1g, or 1mg - 700mg. In certain embodiments, the dose is in a range of 2-5 mg/kg body weight, e.g., with follow on weekly doses of 1-3 mg/kg; 0.5mg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10mg/kg body weight followed, e.g., in two, three or four weeks by weekly doses; 0.5 - 10mg/kg body weight, e.g., followed in two, three or four weeks by weekly doses; 225, 250, 275, 300, 325, 350, 375, 400mg m² of body area weekly; 1-600mg m² of body area weekly; 225-400mg m² of body area weekly; these does can be followed by weekly doses for 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 or more weeks.

In one embodiment, human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, molecular weight of the polynucleotide and route of administration. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. Generally, for a polynucleotide of about 20 bases, a dosage range may be selected from, for example, an independently selected lower limit such as about 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg. For example, a dose may be about any of the following: 0.1 to 100 mg/kg, 0.1 to 50 mg/kg, 0.1 to 25 mg/kg, 0.1 to 10 mg/kg, 1 to 500 mg/kg, 100 to 400 mg/kg, or 500 to 10,000 mg/kg, 500 to 1000 mg/kg, 500 to 5000 mg/kg, or 500 to 10,000 mg/kg. Generally, parenteral routes of administration may require higher doses of polynucleotide compared to more direct application to the nucleotide to diseased tissue, as do polynucleotides of increasing length.

In one embodiment, human unit dose forms of T-cells comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art, a therapeutic effect depends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. A dose may be about 10⁴ cells to about 10⁶ cells, about 10⁶ cells to about 10⁸ cells, about 10⁸ cells, about 10⁸ cells, or about 10⁸ to about 10⁸ cells. A dose may also about 10⁶ cells/m² to about 10¹⁰ cells/m², or about 10³ cells/m² to about 10⁸ cells/m².

Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles,

insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, *etc.* in a dose which varies according to, *inter alia*, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about 0.01%-20% by weight, preferably about 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linoleic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute about 0.1%-20% by weight of the composition, preferably about 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

XI.) Diagnostic and Prognostic Embodiments of 254P1D6B.

As disclosed herein, 254P1D6B polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reactive helper T cells (HTL) and anti-polypeptide antibodies are used in well known diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expression as well as its overexpression in certain cancers as described for example in the Example entitled "Expression analysis of 254P1D6B in normal tissues, and patient specimers").

254P1D6B can be analogized to a prostate associated antigen PSA, the archetypal marker that has been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., Merrill *et al.*, J. Urol. 163(2): 503-5120 (2000); Polascik *et al.*, J. Urol. Aug; 162(2):293-306 (1999) and Fortier *et al.*, J. Nat. Cancer Inst. 91(19): 1635-1640(1999)). A variety of other diagnostic markers are also used in similar contexts including p53 and K-ras (see, e.g., Tulchinsky *et al.*, Int J Mol Med 1999 Jul 4(1):99-102 and Minimoto *et al.*, Cancer Detect Prev 2000;24(1):1-12). Therefore, this disclosure of 254P1D6B polynucleotides and polypeptides (as well as 254P1D6B polynucleotide probes and anti-254P1D6B antibodies used to identify the presence of these molecules) and their properties allows skilled artisans to utilize

these molecules in methods that are analogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated with cancer.

Typical embodiments of diagnostic methods which utilize the 254P1D6B polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those methods from well-established diagnostic assays, which employ, e.g., PSA polynucleotides, polypeptides, reactive T cells and antibodies. For example, just as PSA polynucleotides are used as probes (for example in Northern analysis, see, e.g., Sharief *et al.*, Biochem. Mol. Biol. Int. 33(3):567-74(1994)) and primers (for example in PCR analysis, see, e.g., Okegawa *et al.*, J. Urol. 163(4): 1189-1190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA overexpression or the metastasis of prostate cancers, the 254P1D6B polynucleotides described herein can be utilized in the same way to detect 254P1D6B overexpression or the metastasis of prostate and other cancers expressing this gene. Alternatively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan *et al.*, Urclogy 55(4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen *et al.*, Pathol. Res. Pract. 192(3):233-7 (1996)), the 254P1D6B polypeptides described herein can be utilized to generate antibodies for use in detecting 254P1D6B overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene.

Specifically, because metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostate gland etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing 254P1D6B polynucleotides and/or polypeptides can be used to provide evidence of metastasis. For example, when a biological sample from tissue that does not normally contain 254P1D6B-expressing cells (lymph node) is found to contain 254P1D6B-expressing cells such as the 254P1D6B expression seen in LAPC4 and LAPC9, xenografts Isolated from lymph node and bone metastasis, respectively, this finding is indicative of metastasis.

Alternatively 254P1D6B polynucleotides and/or polypaptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express 254P1D6B or express 254P1D6B at a different level are found to express 254P1D6B or have an increased expression of 254P1D6B (see, e.g., the 254P1D6B expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis by testing the biological sample for the presence of a second tissue restricted marker (in addition to 254P1D6B) such as PSA, PSCA etc. (see, e.g., Alanen *et al.*, Pathol. Res. Pract. 192(3): 233-237 (1996)).

The use of immunohistochemistry to identify the presence of a 254P1D6B polypeptide within a tissue section can indicate an altered state of certain cells within that tissue. It is well understood in the art that the ability of an antibody to localize to a polypeptide that is expressed in cancer cells is a way of diagnosing presence of disease, disease stage, progression and/or tumor aggressiveness. Such an antibody can also detect an altered distribution of the polypeptide within the cancer cells, as compared to corresponding non-malignant tissue.

The 254P1D6B polypeptide and immunogenic compositions are also useful in view of the phenomena of altered subcellular protein localization in disease states. Alteration of cells from normal to diseased state causes changes in cellular morphology and is often associated with changes in subcellular protein localization/distribution. For example, cell membrane proteins that are expressed in a polarized manner in normal cells can be altered in disease, resulting in distribution of the protein in a non-polar manner over the whole cell surface.

The phenomenon of altered subcellular protein localization in a disease state has been demonstrated with MUC1 and Her2 protein expression by use of immunohistochemical means. Normal epithelial cells have a typical apical distribution of MUC1, in addition to some supranuclear localization of the glycoprotein, whereas malignant lesions often demonstrate an apolar staining pattern (Diaz *et al*, The Breast Journal, 7; 40-45 (2001); Zhang *et al*, Clinical Cancer Research, 4; 2669-2676

(1998): Cao, *et al*, The Journal of Histochemistry and Cytochemistry, 45: 1547-1557 (1997)). In addition, normal breast epithelium is either negative for Her2 protein or exhibits only a basolateral distribution whereas malignant cells can express the protein over the whole cell surface (De Potter, *et al*, International Journal of Cancer, 44; 969-974 (1989): McCormick, *et al*, 117; 935-943 (2002)). Alternatively, distribution of the protein may be altered from a surface only localization to include diffuse cytoplasmic expression in the diseased state. Such an example can be seen with MUC1 (Diaz, *et al*, The Breast Journal, 7: 40-45 (2001)).

Alteration in the localization/distribution of a protein in the cell, as detected by immunohistochemical methods, can also provide valuable information concerning the favorability of certain treatment modalities. This last point is illustrated by a situation where a protein may be intracellular in normal tissue, but cell surface in malignant cells; the cell surface location makes the cells favorably amenable to antibody-based diagnostic and treatment regimens. When such an alteration of protein localization occurs for 254P1D6B, the 254P1D6B protein and immune responses related thereto are very useful. Accordingly, the ability to determine whether alteration of subcellular protein localization occurred for 24P4C12 make the 254P1D6B protein and immune responses related thereto allows those skilled in the art to make important diagnostic and therapeutic decisions.

Immunohistochemical reagents specific to 254P1D6B are also useful to detect metastases of tumors expressing 254P1D6B when the polypeptide appears in tissues where 254P1D6B is not normally produced.

Thus, 254P1D6B polypeptides and antibodies resulting from immune responses thereto are useful in a variety of important contexts such as diagnostic, prognostic, preventative and/or therapeutic purposes known to those skilled in the art.

Just as PSA polynucleotide fragments and polynucleotide variants are employed by skilled artisans for use in methods of monitoring PSA, 254P1D6B polynucleotide fragments and polynucleotide variants are used in an analogous manner. In particular, typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illustrating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction. In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide fragments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Biotechniques 25(3): 472-476, 478-480 (1998); Robertson *et al.*, Methods Mol. Biol. 98:121-154 (1998)). An acditional illustration of the use of such fragments is provided in the Example entitled "Expression analysis of 254P1D6B in normal tissues, and patient specimens," where a 254P1D6B polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai *et al.*, Fetal Diagn. Ther. 1996 Nov-Dec 11(6):407-13 and Current Protocols In Molecular Biology, Volume 2, Unit 2, Frederick M. Ausubel *et al.*, eds., 1995))¹. Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g., a 254P1D6B polynucleotide shown in Figure 2 or variant thereof) under conditions of high stringency.

Furthermore, PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of mon toring PSA. 254P1D6B polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel *et al.* eds., 1995). In this context, each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive. Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, e.g., U.S. Patent No. 5,840,501 and U.S. Patent No. 5,939,533). For example it may be preferable to utilize a polypeptide comprising one of the

PCT/US2004/001965

254P1D6B biological motifs discussed herein or a motif-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence (e.g. a 254P1D6B polypeptide shown in Figure 3).

As shown herein, the 254P1D6B polynucleotides and polypeptides (as well as the 254P1D6B polynucleotide probes and anti-254P1D6B antibodies or T cells used to identify the presence of these molecules) exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of 254P1D6B gene products, in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA. Moreover, these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a definite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, e.g., Alanen *et al.*, Pathol. Res. Pract. 192(3): 233-237 (1996)), and consequently, materials such as 254P1D6B polynucleotides and polypeptices (as well as the 254P1D6B polynucleotide probes and anti-254P1D6B antibodies used to identify the presence of these molecules) need to be employed to confirm a metastases of prostatic origin.

Finally, in addition to their use in diagnostic assays, the 254P1D6B polynucleotides disclosed herein have a number of other utilities such as their use in the identification of oncogenetic associated chromosomal abnormalities in the chromosomal region to which the 254P1D6B gene maps (see the Example entitled "Chromosomal Mapping of 254P1D6B" below). Moreover, in addition to their use in diagnostic assays, the 254P1D6B-related proteins and polynucleotides disclosed herein have other utilities such as their use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Sci Int 1996 Jun 28;80(1-2): 63-9).

Additionally, 254P1D6B-related proteins or polynucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 254P1D6B. For example, the amino acid or nucleic acid sequence of Figure 2 or Figure 3, or fragments of either, can be used to generate an immune response to a 254P1D6B antigen. Antibodies or other molecules that react with 254P1D6B can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit.

XII.) Inhibition of 254P1D6B Protein Function

The invention includes various methods and compositions for inhibiting the binding of 254P1D6B to its binding partner or its association with other protein(s) as well as methods for inhibiting 254P1D6B function.

XII.A.) Inhibition of 254P1D6B With Intracellular Antibodies

In one approach, a recombinant vector that encodes single chain antibodies that specifically bind to 254P1D6B are introduced into 254P1D6B expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti-254P1D6B antibody is expressed intracellularly, binds to 254P1D6B protein, and thereby inhibits its function. Methods for engineering such intracellular single chain antibodies are well known. Such intracellular antibodies, also known as "intrabodies", are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory activity of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Richardson *et al.*, 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli *et al.*, 1994, J. Biol. Chem. 289: 23931-23936; Deshane *et al.*, 1994, Gene Ther. 1: 332-337).

Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region. Well-known intracellular trafficking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies in order to target precisely the intrabody to the desired intracellular compartment. For example, intrabocies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localization signal. Lipid moieties are joined to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cytosol. For example, cytosclic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural cellular destination.

In one embodiment, intrabodies are used to capture 254P1D6B in the nucleus, thereby preventing its activity within the nucleus. Nuclear targeting signals are engineered into such 254P1D6B intrabodies in order to achieve the desired targeting. Such 254P1D6B intrabodies are designed to bind specifically to a particular 254P1D6B domain. In another embodiment, cytosolic intrabodies that specifically bind to a 254P1D6B protein are used to prevent 254P1D6B from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 254P1D6B from forming transcription complexes with other factors).

In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific promoter and/or enhancer. In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or promoter/enhancer can be utilized (See, for example, U.S. Patent No. 5,919,652 issued 6 July 1999).

XII.B.) Inhibition of 254P1D6B with Recombinant Proteins

In another approach, recombinant molecules bind to 254P1D6B and thereby inhibit 254P1D6B function. For example, these recombinant molecules prevent or inhibit 254P1D6B from accessing/binding to its binding partner(s) or associating with other protein(s). Such recombinant molecules can, for example, contain the reactive part(s) of a 254P1D6B specific antibody molecule. In a particular embodiment, the 254P1D6B binding domain of a 254P1D6B binding domains linked to the Fc portion of a human IgG, such as human IgG1. Such IgG portion can contain, for example, the CH2 and CH3 domains and the hinge region, but not the CH1 domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 254P1D6B, whereby the dimeric fusion protein specifically binds to 254P1D6B and blocks 254P1D6B interaction with a binding partner. Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies.

XII.C.) Inhibition of 254P1D6B Transcription or Translation

The present invention also comprises various methods and compositions for inhibiting the transcription of the 254P1D6B gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 254P1D6B mRNA into protein.

In one approach, a method of inhibiting the transcription of the 254P1D6B gene comprises contacting the 254P1D6B gene with a 254P1D6B antisense polynucleotide. In another approach, a method of inhibiting 254P1D6B mRNA translation comprises contacting a 254P1D6B mRNA with an antisense polynucleotide. In another approach, a 254P1D6B specific ribozyme is used to cleave a 254P1D6B message, thereby inhibiting translation. Such antisense and ribozyme based methods can also be directed to the regulatory regions of the 254P1D6B gene, such as 254P1D6B promoter and/or
PCT/US2004/001965

enhancer elements. Similarly, proteins capable of inhibiting a 254P1D6B gene transcription factor are used to inhibit 254P1D6B mRNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art.

Other factors that inhibit the transcription of 254P1D6B by interfering with 254P1D6B transcriptional activation are also useful to treat cancers expressing 254P1D6B. Similarly, factors that interfere with 254P1D6B processing are useful to treat cancers that express 254P1D6B. Cancer treatment methods utilizing such factors are also within the scope of the invention.

XII.D.) General Considerations for Therapeutic Strategies

Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 254P1D6B (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 254P1D6B inhibitory molecules). A number of gene therapy approaches are known in the art. Recombinant vectors encoding 254P1D6B antisense polynucleotides, ribozymes, factors capable of interfering with 254P1D6B transcription, and so forth, can be delivered to target tumor cells using such gene therapy approaches.

The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well.

The anti-tumor activity of a particular composition (e.g., antisense, ribozyme, intrabody), or a combination of such compositions, can be evaluated using various *in vitro* and *in vivo* assay systems. *In vitro* assays that evaluate therapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 254P1D6B to a binding partner, etc.

In vivo, the effect of a 254P1D6B therapeutic composition can be evaluated in a suitable animal model. For example, xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Klein *et al.*, 1997, Nature Medicine 3: 402-408). For example, PCT Patent Application WO98/16628 and U.S. Patent 6,107,540 describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like.

In vivo assays that evaluate the promotion of apoptosis are useful in evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the composition.

The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16th Edition, A. Osal., Ed., 1980).

Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, intravenous,

PCT/US2004/001965

WO 2004/067716

We have B at that had been B at man were an own on

parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be typihilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to injection.

Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art.

XIII.) Identification, Characterization and Use of Modulators of 254P1D6B

Methods to Identify and Use Modulators

In one embodiment, screening is performed to identify modulators that induce or suppress a particular expression profile, suppress or induce specific pathways, preferably generating the associated phenotype thereby. In another embodiment, having identified differentially expressed genes important in a particular state; screens are performed to identify modulators that alter expression of individual genes, either increase or decrease. In another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition, screens are done for genes that are included in response to a candidate agent. After identifying a modulator (one that suppresses a cancer expression pattern leading to a normal expression pattern, or a modulator of a cancer gene that leads to expression of the gene as in normal tissue) a screen is performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent-treated cancer tissue reveals genes that are not expressed in normal tissue or cancer tissue, but are expressed in agent treated tissue, and vice versa. These agent-specific sequences are identified and used by methods described herein for cancer genes or proteins. In particular these sequences and the proteins they encode are used in marking or identifying agent-treated cells. In addition, antibodies are raised against the agent-induced proteins and used to target novel therapeutics to the treated cancer tissue sample.

Modulator-related Identification and Screening Assays:

Gene Expression-related Assays

Proteins, nucleic acids, and antibodies of the invention are used in screening assays. The cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing these sequences are used in screening assays, such as evaluating the effect of drug candidates on a "gene expression profile," expression profile of polypeptides or alteration of biological function. In one embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Davis, GF, et al, J Biol Screen 7:69 (2002); Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986-94,1996).

The cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified cancer proteins or genes are used in screening assays. That is, the present invention comprises methods for screening for compositions which modulate the cancer phenotype or a physiological function of a cancer protein of the invention. This is done on a gene itself or by evaluating the effect of drug candidates on a "gene expression profile" or biological function. In

provide in the main hands that the theory willing out much marks

one embodiment, expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring after treatment with a candidate agent, see Zlokamik, supra.

A variety of assays are executed directed to the genes and proteins of the invention. Assays are run on an individual nucleic acid or protein level. That is, having identified a particular gene as up regulated in cancer, test compounds are screened for the ability to modulate gene expression or for binding to the cancer protein of the invention. "Modulation" in this context includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in cancer tissue compared to normal tissue a target value of a 10-fold increase in expression by the test compound is often desired. Modulators that exacerbate the type of gene expression seen in cancer are also useful, e.g., as an upregulated target in further analyses.

The amount of gene expression is monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, a gene product itself is monitored, e.g., through the use of antibodies to the cancer protein and standard immunoassays. Proteomics and separation techniques also allow for quantification of expression.

Expression Monitoring to Identify Compounds that Modify Gene Expression

In one embodiment, gene expression monitoring, i.e., an expression profile, is monitored simultaneously for a number of entities. Such profiles will typically involve one or more of the genes of Figure 2. In this embodiment, e.g., cancer nucleic acid probes are attached to biochips to detect and quantify cancer sequences in a particular cell. Alternatively, PCR can be used. Thus, a series, e.g., wells of a microtiter plate, can be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring is performed to identify compounds that modify the expression of one or more cancerassociated sequences, e.g., a polynucleotide sequence set out in Figure 2. Generally, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate cancer, modulate cancer proteins of the invention, bind to a cancer protein of the invention, or interfere with the binding of a cancer protein of the invention and an antibody or other binding partner.

In one embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds," as compounds for screening, or as therapeutics.

In certain embodiments, combinatorial libraries of potential modulators are screened for an ability to bind to a cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

As noted above, gene expression monitoring is conveniently used to test candidate modulators (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for a period, the sample containing a target sequence to be analyzed is, e.g., added to a biochip.

If required, the target sequence is prepared using known techniques. For example, a sample is treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as

appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

The target sequence can be labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radicactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that is detected. Alternatively, the label is a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5, 681,702; 5,597,909; 5,545,730; 5,594,117; 5,591,584; 5,571,670; 5,580,731; 5,571,670; 5,591,584; 5,624,802; 5,635,352; 5,594,118; 5,359,100; 5,124, 246; and 5,681,697. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc. These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus, it can be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein can be accomplished in a variety of ways. Components of the reaction can be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which can be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target. The assay data are analyzed to determine the expression levels of individual genes, and changes in expression levels as between states, forming a gene expression profile.

Biological Activity-related Assays

The invention provides methods identify or screen for a compound that modulates the activity of a cancer-related gene or protein of the invention. The methods comprise adding a test compound, as defined above, to a cell comprising a cancer protein of the invention. The cells contain a recombinant nucleic acid that encodes a cancer protein of the invention. In another embodiment, a library of candidate agents is tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e., cell-cell contacts). In another example, the determinations are made at different stages of the cell cycle process. In this way, compounds that modulate genes or proteins of the invention are identified. Compounds with pharmacological activity are able to enhance or

interfere with the activity of the cancer protein of the invention. Once identified, similar structures are evaluated to identify critical structural features of the compound.

In one embodiment, a method of modulating (e.g., inhibiting) cancer cell division is provided; the method comprises administration of a cancer modulator. In another embodiment, a method of modulating (e.g., inhibiting) cancer is provided; the method comprises administration of a cancer modulator. In a further embodiment, methods of treating cells or individuals with cancer are provided; the method comprises administration of a cancer modulator.

In one embodiment, a method for modulating the status of a cell that expresses a gene of the invention is provided. As used herein status comprises such art-accepted parameters such as growth, proliferation, survival, function, apoptosis, senescence, location, enzymatic activity, signal transduction, etc. of a cell. In one embodiment, a cancer inhibitor is an antibody as discussed above. In another embodiment, the cancer inhibitor is an antisense molecule. A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described herein.

High Throughput Screening to Identify Modulators

The assays to identify suitable modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

In one embodiment, modulators evaluated in high throughput screening methods are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, are used. In this way, libraries of proteins are made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes, or ligands and receptors.

Use of Soft Agar Growth and Colony Formation to Identify and Characterize Modulators

Normal cells require a solid substrate to attach and grow. When cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, can regenerate normal phenotype and once again require a solid substrate to attach to and grow. Soft agar growth or colony formation in assays are used to identify modulators of cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A modulator reduces or eliminates the host cells' ability to grow suspended in solid or semisolid media, such as agar.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994). See also, the methods section of Garkavtsev et al. (1996), supra.

Evaluation of Contact Inhibition and Growth Density Limitation to Identify and Characterize Modulators

Normal cells typically grow in a flat and organized pattern in cell culture until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. Transformed cells, however, are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, transformed cells grow to a higher saturation density than corresponding normal cells. This is detected morphologically by the formation of a disoriented monolayer of cells or cells in foci. Alternatively, labeling index with (³H)-thymidine at saturation density is used to measure density limitation of growth, similarly an MTT or Alamar blue assay will reveal proliferation capacity of cells and the the ability of modulators to affect same. See Freshney (1994), supra. Transformed cells, when transfected with tumor suppressor genes, can regenerate a nórmal phenotype and become contact inhibited and would grow to a lower density.

PCT/US2004/001965

In this assay, labeling index with ³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined by incorporated cpm.

Contact independent growth is used to identify modulators of cancer sequences, which had led to abnormal cellular proliferation and transformation. A modulator reduces or eliminates contact independent growth, and returns the cells to a normal phenotype.

Evaluation of Growth Factor or Serum Dependence to Identify and Characterize Modulators

Transformed cells have lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Inst. 37:167-175 (1966); Eagle et al., J. Exp. Med 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. The degree of growth factor or serum dependence of transformed host cells can be compared with that of control. For example, growth factor or serum dependence of a cell is monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.

Use of Tumor-specific Marker Levels to Identify and Characterize Modulators

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, *in* Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor Angiogenesis Factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)), while bFGF is released from endothelial tumors (Ensoli, B et al).

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305 312 (1980); Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, *in* Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney, Anticancer Res. 5:111-130 (1985). For example, tumor specific marker levels are monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.

Invasiveness into Matrigel to Identify and Characterize Modulators

The degree of invasiveness into Matrigel or an extracellular matrix constituent can be used as an assay to identify and characterize compounds that modulate cancer associated sequences. Tumor cells exhibit a positive correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, lumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells. Techniques described in Cancer Res. 1999; 59:6010; Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells is measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵1 and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

Evaluation of Tumor Growth In Vivo to Identify and Characterize Modulators

Effects of cancer-associated sequences on cell growth are tested in transgenic or immune-suppressed organisms. Transgenic organisms are prepared in a variety of art-accepted ways. For example, knock-out transgenic organisms, e.g., mammals such as mice, are made, in which a cancer gene is disrupted or in which a cancer gene is inserted. Knock-out transgenic mice are made by insertion of a marker gene or other heterologous gene into the endogenous cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous cancer

PCT/US2004/001965

gene with a mutated version of the cancer gene, or by mutating the endogenous cancer gene, e.g., by exposure to carcinogens.

To prepare transgenic chimeric animals, e.g., mice, a DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is reimplanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells some of which are derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric mice can be derived according to US Patent 6,365,797, issued 2 April 2002; US Patent 6,107,540 issued 22 August 2000; Hogan et al., Manipulating the Mouse Embryo: A laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, a genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectornized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts produce invasive tumors in a high proportion of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing cancer-associated sequences are injected subcutaneously or orthotopically. Mice are then separated into groups, including control groups and treated experimental groups) e.g. treated with a modulator). After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions, or weight) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

In Vitro Assays to Identify and Characterize Modulators

Assays to identify compounds with modulating activity can be performed in vitro. For example, a cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as Western blotting, ELISA and the like with an antibody that selectively binds to the cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., Northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using cirectly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using a cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or P-gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amcunt of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art (Davis GF, supra; Gonzalez, J. & Negulescu, P. Curr. Opin. Biotechnol. 1998; 9:624).

As outlined above, in vitro screens are done on individual genes and gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself is performed.

In one embodiment, screening for modulators of expression of specific gene(s) is performed. Typically, the expression of only one or a few genes is evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially

expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

Binding Assays to Identify and Characterize Modulators

In binding assays in accordance with the invention, a purified or isolated gene product of the invention is generally used. For example, antibodies are generated to a protein of the invention, and immunoassays are run to determine the amount and/or location of protein. Alternatively, cells comprising the cancer proteins are used in the assays.

Thus, the methods comprise combining a cancer protein of the invention and a candidate compound such as a ligand, and determining the binding of the compound to the cancer protein of the invention. Preferred embodiments utilize the human cancer protein; animal models of human disease of can also be developed and used. Also, other analogous mammalian proteins also can be used as appreciated by those of skill in the art. Moreover, in some embodiments variant or derivative cancer proteins are used.

Generally, the cancer protein of the invention, or the ligand, is non-diffusibly bound to an insoluble support. The support can, e.g., be one having isolated sample receiving areas (a microtiter plate, an array, etc.). The insoluble supports can be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports can be solid or porous and of any convenient shape.

Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharide, nylon, nitrocellulose, or Teflon™, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition to the support is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies which do not sterically block either the ligand binding site or activation sequence when attaching the protein to the support, direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or ligand/binding agent to the support, excess unbound material is removed by washing. The sample receiving areas may then be blocked through includation with bovine serum albumin (BSA), casein or other innocuous protein or other molety.

Once a cancer protein of the invention is bound to the support, and a test compound is added to the assay. Alternatively, the candidate binding agent is bound to the support and the cancer protein of the invention is then added. Binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc.

Of particular interest are assays to identify agents that have a low toxicity for human cells. A wide variety of assays can be used for this purpose, including proliferation assays, cAMP assays, labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

A determination of binding of the test compound (ligand, binding agent, modulator, etc.) to a cancer protein of the invention can be done in a number of ways. The test compound can be labeled, and binding determined directly, e.g., by attaching all or a portion of the cancer protein of the invention to a solid support, adding a labeled candidate compound (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps can be utilized as appropriate.

PCT/US2004/001965

In certain embodiments, only one of the components is labeled, e.g., a protein of the invention or ligands labeled. Alternatively, more than one component is labeled with different labels, e.g., 1¹²⁵, for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

Competitive Binding to Identify and Characterize Modulators

In one embodiment, the binding of the "test compound" is determined by competitive binding assay with a "competitor." The competitor is a binding moiety that binds to the target molecule (e.g., a cancer protein of the invention). Competitors include compounds such as antibodies, peptides, binding partners, ligands, etc. Under certain circumstances, the competitive binding between the test compound and the competitor displaces the test compound. In one embodiment, the test compound is labeled. Either the test compound, the competitor, or both, is added to the protein for a time sufficient to allow binding. Incubations are performed at a temperature that facilitates optimal activity, typically between four and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening; typically between zero and one hour will be sufficient. Excess reagent is generally removed cr washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In one embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the cancer protein and thus is capable of binding to, and potentially modulating, the activity of the cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the post-test compound wash solution indicates displacement by the test compound. Alternatively, if the test compound is labeled, the presence of the labeled, the presence of the labeled of the cancer protein.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor indicates that the test compound binds to the cancer protein with higher affinity than the competitor. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, indicates that the test compound binds to and thus potentially modulates the cancer protein of the invention.

Accordingly, the competitive binding methods comprise differential screening to identity agents that are capable of modulating the activity of the cancer proteins of the invention. In this embodiment, the methods comprise combining a cancer protein and a competitor in a first sample. A second sample comprises a test compound, the cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native cancer protein, but cannot bind to modified cancer proteins. For example the structure of the cancer protein is modeled and used in rational drug design to synthesize agents that interact with that site, agents which generally do not bind to site-modified proteins. Moreover, such drug candidates that affect the activity of a native cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of such proteins.

Positive controls and negative controls can be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples occurs for a time sufficient to allow for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents can be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., can be used. The mixture of components is added in an order that provides for the requisite binding.

Use of Polynucleotides to Down-regulate or Inhibit a Protein of the Invention.

Polynucleotide modulators of cancer can be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753. Suitable ligand-binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of cancer can be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of a polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock cut and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Inhibitory and Antisense Nucleotides

In certain embodiments, the activity of a cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide or inhibitory small nuclear RNA (snRNA), i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a cancer protein of the invention, mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally occurring nucleotides, or synthetic species formed from naturally occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moleties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprised by this invention so long as they function effectively to hybridize with nucleotides of the invention. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated der vatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 12 nucleotides, preferably from about 12 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein &Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

<u>Ribozymes</u>

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of cancerassociated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P,

and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0360257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5: 1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Use of Modulators in Phenotypic Screening

In one embodiment, a test compound is administered to a population of cancer cells, which have an associated cancer expression profile. By "administration" or "contacting" herein is meant that the modulator is added to the cells in such a manner as to allow the modulator to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, a nucleic acid encoding a proteinaceous agent (i.e., a peptide) is put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used. Once the modulator has been administered to the cells, the cells are washed if desired and are allowed to incubate under preferably physiological conditions for some period. The cells are then harvested and a new gene expression profile is generated. Thus, e.g., cancer tissue is screened for agents that modulate. e.g., induce or suppress, the cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on cancer activity. Similarly, altering a biological function or a signaling pathway is indicative of modulator activity. By defining such a signature for the cancer phenotype, screens for new drugs that alter the phenotype are devised. With this approach, the drug target need not be known and need not be represented in the original gene/protein expression screening platform, nor does the level of transcript for the target protein need to change. The modulator inhibiting function will serve as a surrogate marker

As outlined above, screens are done to assess genes or gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself is performed.

Use of Modulators to Affect Peptides of the Invention

Measurements of cancer polypeptide activity, or of the cancer phenotype are performed using a variety of assays. For example, the effects of modulators upon the function of a cancer polypeptide(s) are measured by examining parameters described above. A physiological change that affects activity is used to assess the influence of a test compound on the polypeptides of this invention. When the functional outcomes are determined using intact cells or animals, a variety of effects can be assesses such as, in the case of a cancer associated with solid tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., by Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGNIP.

Methods of Identifying Characterizing Cancer-associated Sequences

Expression of various gene sequences is correlated with cancer. Accordingly, disorders based on mutant or variant cancer genes are determined. In one embodiment, the invention provides methods for identifying cells containing variant cancer genes, e.g., determining the presence of, all or part, the sequence of at least one endogenous cancer gene in a cell. This is accomplished using any number of sequencing techniques. The invention comprises methods of identifying

PCT/US2004/001965

the cancer genotype of an individual, e.g., determining all or part of the sequence of at least one gene of the invention in the individual. This is generally done in at least one tissue of the individual, e.g., a tissue set forth in Table I, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced gene to a known cancer gene, i.e., a wild-type gene to determine the presence of family members, homologies, mutations or variants. The sequence of all or part of the gene can then be compared to the sequence of a known cancer gene to determine if any differences exist. This is done using any number of known homology programs, such as BLAST, Bestfit, etc. The presence of a difference in the sequence between the cancer gene of the patient and the known cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the cancer genes are used as probes to determine the number of copies of the cancer gene in the genome. The cancer genes are used as probes to determine the chromosomal localization of the cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the cancer gene locus.

XIV.) RNAi and Therapeutic use of small interfering RNA (siRNAs)

The present invention is also directed towards siRNA oligonucleotides, particularly double stranded RNAs encompassing at least a fragment of the 254P1D6B coding region or 5" UTR regions, or complement, or any antisense oligonucleotide specific to the 254P1D6B sequence. In one embodiment such oligonucleotides are used to elucidate a function of 254P1D6B, or are used to screen for or evaluate modulators of 254P1D6B function or expression. In another embodiment, gene expression of 254P1D6B is reduced by using siRNA transfection and results in significantly diminished proliferative capacity of transformed cancer cells that endogenously express the antigen; cells treated with specific 254P1D6B siRNAs show reduced survival as measured, e.g., by a metabolic readout of cell viability, correlating to the reduced proliferative capacity. Thus, 254P1D6B siRNA compositions comprise siRNA (double stranded RNA) that correspond to the nucleic acid ORF sequence of the 254P1D6B protein or subsequences thereof; these subsequences are generally 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,31, 32, 33, 34, 35 or more than 35 contiguous RNA nucleotides in length and contain sequences that are complementary and non-complementary to at least a portion of the mRNA coding sequence. In a preferred embodiment, the subsequences are 19-25 nucleotides in length.

RNA interference is a novel approach to silencing genes *in vitro* and *in vivo*, thus small double stranded RNAs (siRNAs) are valuable therapeutic agents. The power of siRNAs to silence specific gene activities has now been brought to animal models of disease and is used in humans as well. For example, hydrodynamic infusion of a solution of siRNA into a mouse with a siRNA against a particular target has been proven to be therapeutically effective.

The pioneering work by Song *et al.* indicates that one type of entirely natural nucleic acid, small interfering RNAs (siRNAs), served as therapeutic agents even without further chemical modification (Song, E., et al. "RNA interference targeting Fas protects mice from fulminant hepatitis" <u>Nat. Med.</u> 9(3): 347-51(2003)). This work provided the first *in vivo* evidence that infusion of siRNAs into an animal could alleviate disease. In that case, the authors gave mice injections of siRNA designed to silence the FAS protein (a cell death receptor that when over-activated during inflammatory response induces hepatocytes and other cells to die). The next day, the animals were given an antibody specific to Fas. Control mice died of acute liver failure within a few days, while over 80% of the siRNA-treated mice remained free from serious disease and survived. About 80% to 90% of their liver cells incorporated the naked siRNA oligonucleotides. Furthermore, the RNA molecules functioned for 10 days before losing effect after 3 weeks.

For use in human therapy, siRNA is delivered by efficient systems that induce long-lasting RNAi activity. A major caveat for clinical use is delivering siRNAs to the appropriate cells. Hepatocytes seem to be particularly receptive to

exogenous RNA. Today, targets located in the liver are attractive because liver is an organ that can be readily targeted by nucleic acid molecules and viral vectors. However, other tissue and organs targets are preferred as well.

Formulations of siRNAs with compounds that promote transit across cell membranes are used to improve administration of siRNAs in therapy. Chemically modified synthetic siRNA, that are resistant to nucleases and have serum stability have concomitant enhanced duration of RNAi effects, are an additional embodiment.

Thus, siRNA technology is a therapeutic for human malignancy by delivery of siRNA molecules directed to 254P1D6B to individuals with the cancers, such as those listed in Table 1. Such administration of siRNAs leads to reduced growth of cancer cells expressing 254P1D6B, and provides an anti-tumor therapy, lessening the morbidity and/or mortality associated with malignancy.

The effectiveness of this modality of gene product knockdown is significant when measured *in vitro* or *in vivo*. Effectiveness *in vitro* is readily demonstrable through application of siRNAs to cells in culture (as described above) or to aliquots of cancer patient biopsies when *in vitro* methods are used to detect the reduced expression of 254P1D6B protein.

XV.) Kits/Articles of Manufacture

For use in the laboratory, prognostic, prophylactic, diagnostic and therapeutic applications described herein, kits are within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method, along with a label or insert comprising instructions for use, such as a use described herein. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a protein or a gene or message of the invention, respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence. Kits can comprise a container comprising a reporter, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, fluorescent, or radioisotope label; such a reporter can be used with, e.g., a nucleic acid or antibody. The kit can include all or part of the amino acid sequences in Figure 2 or Figure 3 or analogs thereof, or a nucleic acid molecule that encodes such amino acid sequences.

The kit of the invention will typically comprise the container described above and one or more other containers associated therewith that comprise materials desirable from a commercial and user standpoint, including buffers, dluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.

A label can be present on or with the container to indicate that the composition is used for a specific therapy or nontherapeutic application, such as a prognostic, prophylactic, diagnostic or laboratory application, and can also indicate directions for either *in vivo* or *in vitro* use, such as those described herein. Directions and or other information can also be included on an insert(s) or label(s) which is included with or on the kit. The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a neoplasia of a tissue set forth in Table I.

The terms "kit" and "article of manufacture" can be used as synonyms.

In another embodiment of the invention, an article(s) of manufacture containing compositions, such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), e.g., materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of neoplasias of tissues such as those set forth in Table I is provided. The article of

manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass, metal or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), cell population(s) and/or antibody(s). In one embodiment, the container holds a polynucleotide for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose. In another embodiment a container comprises an antibody, binding fragment thereof or specific binding protein for use in evaluating protein expression of282P1G3 in cells and tissues, or for relevant laboratory, prognostic, diagnostic, prophylactic and therapeutic purposes; indications and/or directions for such uses can be included on or with such container, as can reagents and other compositions or tools used for these purposes. In another embodiment, a container comprises materials for eliciting a cellular or humoral immune response, together with associated indications and/or directions. In another embodiment, a container comprises materials for alcular or humoral immune response, together with associated indications and/or directions. In another embodiment, a container comprises materials for alcular or humoral immune response, together with associated indications and/or directions. In another embodiment, a container comprises materials for alcular or humoral immune response, together with associated indications and/or directions. In another embodiment, a container comprises materials for alcular or humoral indications and/or directions; reagents and other compositions or tools used for such used for such uses can be included.

The container can alternatively hold a composition that is effective for treating, diagnosis, prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agents in the composition can be an antibody capable of specifically binding 282P1G3 and modulating the function of 282P1G3.

The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.

EXAMPLES:

Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which is intended to limit the scope of the invention.

Example 1: SSH-Generated Isolation of cDNA Fragment of the 254P1D6B Gene

To isolate genes that are over-expressed in prostate cancer we used the Suppression Subtractive Hybridization (SSH) procedure using cDNA derived from prostate cancer xenograft tissues. LAPC-9AD xenograft was obtained from Dr. Charles Sawyers (UCLA) and was generated as described (Klein et al., 1997, Nature Med. 3:402-408; Craft et al., 1999, Cancer Res. 59:5030-5036). LAPC-9AD² was generated from LAPC-9AD xenograft by growing LAPC-9AD xenograft tissues within a piece of human bone implanted in SCID mice. Tumors were then harvested and subsequently passaged subcutaneously into other SCID animals to generate LAPC-9AD².

The 254P1D6B SSH cDNA of 284 bp is listed in Figure 1. The full length 254P1D6B variant 1 and variants 2-20, cDNAs and ORFs are described in Figure 2 with the protein sequences listed in Figure 3.

Materials and Methods

RNA Isolation:

Tumor tissues were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using 10 ml/ g tissue or 10 ml/ 10⁸ cells to isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. 260/280 nm) and analyzed by gel electrophoresis.

Oligonucleotides:

The following HPLC purified oligonucleotides were used.

DPNCDN (cDNA synthesis primer): 5'TTTTGATCAAGCTT₃₀3' (SEQ ID NO: 17)

Adaptor 1:

5'CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3' (SEQ ID NO: 18) 3'GGCCCGTC**CTAG**5' (SEQ ID NO: 19)

Adaptor 2: 5'GTAATACGACTCACTATAGGGCAGCGTGGTCGCGGGCCGAG3' (SEQ ID NO: 20) 3'CGGCTCCTAG5' (SEQ ID NO: 21)

PCR primer 1: 5'CTAATACGACTCACTATAGGGC3' (SEQ ID NO: 22)

Nested primer (NP)1: 5'TCGAGCGGCCGGCCGGGCAGGA3' (SEQ ID NO: 23)

Nested primer (NP)2: 5'AGCGTGGTCGCGGCCGAG**GA**3' (SEQ ID NO: 24)

Suppression Subtractive Hybridization

Suppression Subtractive Hybridization (SSH) was used to identify cDNAs corresponding to genes that may be differentially expressed in prostate cancer. The SSH reaction utilized cDNA from prostate cancer xenograft LAPC-9AD². The gene 254P1D6B was derived from a prostate cancer xenograft LAPC-9AD² minus prostate cancer xenograft LAPC-9AD tissues. The SSH DNA sequence (Figure 1) was identified.

The cDNA derived from prostate cancer xenograft LAPC-9AD tissue was used as the source of the "driver" cDNA, while the cDNA from prostate cancer xenograft LAPC-9AD² was used as the source of the "tester" cDNA. Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from 2 µg of poly(A)+ RNA isolated from the relevant tissue, as described above, using CLONTECH's PCR-Select cDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PT1117-1, Catalog No. K1804-1). The resulting cDNA was digested with Dpn II for 3 hrs at 37°C. Digested cDNA was extracted with phenol/chloroform (1:1) and ethanol precipitated.

Tester cDNA was generated by diluting 1 μ l of Dpn II digested cDNA from the relevant tissue source (see above) (400 ng) in 5 μ l of water. The diluted cDNA (2 μ l, 160 ng) was then ligated to 2 μ l of Adaptor 1 and Adaptor 2 (10 μ M), in separate ligation reactions, in a total volume of 10 μ l at 16°C overnight, using 400 u of T4 DNA ligase (CLONTECH). Ligation was terminated with 1 μ l of 0.2 M EDTA and heating at 72°C for 5 min.

The first hybridization was performed by adding 1.5 μ l (600 ng) of driver cDNA to each of two tubes containing 1.5 μ l (20 ng) Adaptor 1- and Adaptor 2- ligated tester cDNA. In a final volume of 4 μ l, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at 98°C for 1.5 minutes, and then were allowed to hybridize for 8 hrs at 68°C. The two hybridizations were then mixed together with an additional 1 μ l of fresh denatured driver cDNA and were

allowed to hybridize overnight at 68°C. The second hybridization was then diluted in 200 µl of 20 mM Hepes, pH 8.3, 50 mM NaCl, 0.2 mM EDTA, heated at 70°C for 7 min. and stored at -20°C.

PCR Amplification, Cloning and Sequencing of Gene Fragments Generated from SSH:

To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1 μ l of the diluted final hybridization mix was added to 1 μ l of PCR primer 1 (10 μ M), 0.5 μ l dNTP mix (10 μ M), 2.5 μ l 10 x reaction buffer (CLONTECH) and 0.5 μ l 50 x Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25 μ l. PCR 1 was conducted using the following conditions: 75°C for 5 min., 94°C for 25 sec., then 27 cycles of 94°C for 10 sec, 66°C for 30 sec, 72°C for 1.5 min. Five separate primary PCR reactions were performed for each experiment. The products were pooled and diluted 1:10 with water. For the secondary PCR reaction, 1 μ l from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NP1 and NP2 (10 μ M) were used instead of PCR primer 1. PCR 2 was performed using 10-12 cycles of 94°C for 10 sec, 68°C for 30 sec, and 72°C for 1.5 minutes. The PCR products were analyzed using 2% agarose gel electrophoresis.

The PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed *E. coli* were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture overnight. To identify inserts, PCR amplification was performed on 1 ml of bacterial culture using the conditions of PCR1 and NP1 and NP2 as primers. PCR products were analyzed using 2% agarose gel electrophoresis.

Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, and subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases.

RT-PCR Expression Analysis:

First strand cDNAs can be generated from 1 µg of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacturer's protocol was used which included an incubation for 50 min at 42°C with reverse transcriptase followed by RNAse H treatment at 37°C for 20 min. After completing the reaction, the volume can be increased to 200 µl with water prior to normalization. Firs; strand cDNAs from 16 different normal human tissues can be obtained from Clontech.

To determine expression levels of the 254P1D6B gene, 5 µl of normalized first strand cDNA were analyzed by PCR using 26, and 30 cycles of amplification. Semi-quantitative expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensities.

A typical RT-PCR expression analysis is shown in Figures 14(a) and 14(b). First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal lung ovary cancer pool, lung cancer pool (Figure 14A), as well as from normal stomach, brain, heart, liver, spleen, skeletal muscle, testis, prostate, bladder, kidney, colon, lung and ovary cancer pool (Figure 14B). Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254P1D6B, was performed at 26 and 30 cycles of amplification. Results show strong expression of 254P1D6B in lung cancer pool and ovary cancer pool but not in normal lung nor in vital pool 1. Low expression was detected in vital pool 2.

Example 2: Isolation of Full Length 254P1D6B encoding DNA

To isolate genes that are involved in prostate cancer, an experiment was conducted using the prostate cancer xenograft LAPC-9AD². The gene 254P1D6B was derived from a subtraction consisting of a prostate cancer xenograft LAPC-9AD² minus prostate cancer xenograft LAPC-9AD. The SSH DNA sequence (Figure 1) was designated 254P1D6B. Variants of 254P1D6B were identified (Figures 2 and 3).

Example 3: Chromosomal Mapping of 254P1D6B

Chromosomal localization can implicate genes in disease pathogenesis. Several chromosome mapping approaches are available including fluorescent *in situ* hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville AI), human-rodent somatic cell hybrid panels such as is available from the Cornell Institute (Camden, New Jersey), and genomic viewers utilizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Maryland).

254P1D6B maps to chromosome 6p22 using 254P1D6B sequence and the NCBI BLAST tool: located on the world wide web at: (ncbi.nlm.nih.gcv/genome/seq/page.cgi?F=HsBlast.html&&ORG=Hs).

Example 4: Expression Analysis of 254P1D6B in Normal Tissues and Patient Specimens

Figures 14(a) and 14(b) shows expression of 254P1D6B by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal lung ovary cancer pool, lung cancer pool (Figure 14A), as well as from normal stomach, brain, heart, liver, spleen, skeletal muscle, testis, prostate, bladder, kidney, colon, lung and ovary cancer pool (Figure 14B). Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254P1D6B, was performed at 26 and 30 cycles of amplification. Results show strong expression of 254P1D6B in lung cancer pool and ovary cancer pool but not in normal lung nor in vital pool 1. Low expression was detected in vital pool 2.

Figure 15 shows expression of 254P1D6B in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 µg of mRNA/lane were probed with the 254P1D6B sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of two 254P1D6B transcript, 4.4 kb and 7.5 kb primarily in brain and testis, and only the 4.4 kb transcript in placenta, but not in any other normal tissue tested.

Figure 16 shows expression of 254P1D6B in lung cancer patient specimens. First strand cDNA was prepared from normal lung cancer cell line A427 and a panel of lung cancer patient specimens. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 254P1D6B, was performed at 26 and 30 cycles of amplification. Results show expression of 254P1D6B in 13 out of 30 tumor specimens tested but not in normal lung. Expression was also detected in the A427 cell line.

Example 5: Splice Variants of 254P1D6B

PCT/US2004/001965

As used herein, the term variant or comprises Transcript variants and Single Nucleotide Folymorphisms (SNPs). Transcript variants are variants of mature mRNA from the same gene which arise by alternative transcription or alternative splicing. Alternative transcripts are transcripts from the same gene but start transcription at different points. Splice variants are mRNA variants spliced differently from the same transcript. In eukaryotes, when a multi-exon gene is transcribed from genomic DNA, the initial RNA is spliced to produce functional mRNA, which has only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5' or 3' end) portions, from the original transcript. Transcript variants can code for the same, similar or different proteins with the same or a similar function or can encode proteins with different functions, and can be expressed in the same tissue at the same time, or in the same time, or in the same tissue at different times, or in different tissues at the same time, or in the same tissue at different subcellular or extracellular localizations, e.g., secreted versus intracellular.

Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified by full-length cloning experiments, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect identity with each other. Second, ESTs in the same cluster were further grouped into sub-clusters and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene. Even when a variant is identified that is not yet a full-length clone, that portion of the variant is very useful as a research tool, e.g., for antigen generation and for further cloning of the full-length splice variant, using techniques known to those skilled in the art.

Moreover, computer programs are available to those skilled in the art that identify transcript variants based on genomic sequences. Genomic-based transcript variant identification programs include FgenesH (A. Salamov and V. Solovyev, "Ab initio gene finding in Drosophila genomic DNA," Genome Research. 2000 April; 10(4):516-22); Grail (URL compbio.ornl.gov/Grail-bin/EmptyGrailForm) and GenScan (URL genes.mit.edu/GENSCAN.html). For a general discussion of splice variant identification protocols see., e.g., Southan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun 8; 498(2-3):214-8; de Souza, S.J., *et al.*, Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Natl. Acad. Sci U S A. 2000 Nov 7; 97(23):12690-3.

To further confirm the parameters of a transcript variant, a variety of techniques are available in the art, such as full-length cloning, proteomic validation, PCR-based validation, and 5' RACE validation, etc. (see e.g., Proteomic Validation: Brennan, S.O., *et al.*, Albumin banks peninsula: a new termination variant characterized by electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug 17;1433(1-2):321-6; Ferranti P, *et al.*, Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha(s1)-casein, Eur J Biochem. 1997 Oct 1;249(1):1-7. For PCR-based Validation: Wellmann S. *et al.*, Specific reverse transcription-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 Apr;47(4):654-60; Jia, H.P., *et al.*, Discovery of new human beta-defensins using a genomics-based approach, Gene. 2001 Jan 24; 263(1-2):211-8. For PCR-based and 5' RACE Validation: Brigle, K.E., *et al.*, Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acta. 1997 Aug 7; 1353(2): 191-8).

It is known in the art that genomic regions are modulated in cancers. When the genomic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or splice variants of the gene are modulated as well. Disclosed herein is that 254P1D6B has a particular expression profile related to cancer (See, e.g., Table I). Alternative transcripts and splice variants of 254P1D6B are also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens.

PCT/US2004/001965

Using the full-length gene and EST sequences, one additional transcript variant was identified, designated as 254P1D6B v.3. The boundaries of exons in the original transcript, 254P1D6B v.1 are shown in Table LI. The structures of the transcript variants are shown in Figure 10. Variant 254P1D6B v.3 extended exon 1 of v.1 by 109 base pairs and added an exon in between exons 2 and 3 of v.1.

Table LII shows nucleotide sequence of the transcript variant. Table LIII shows the alignment of the transcript variant with nucleic acid sequence of 254P1D6B v.1. Table LIV lays out amino acid translation of the transcript variant for the identified reading frame orientation. Table LV displays alignments of the amino acid sequence encoded by the splice variant with that of 254P1D6B v.1.

Example 6: Single Nucleotide Polymorphisms of 254P1D6B

A Single Nucleotide Polymorphism (SNP) is a single base pair variation in a nucleotide sequence at a specific location. At any given point of the genome, there are four possible nucleotide base pairs: A/T, C/G, G/C and T/A. Genotype refers to the specific base pair sequence of one or more locations in the genome of an individual. Haplotype refers to the base pair sequence of more than one location on the same DNA molecule (or the same chromosome in higher organisms), often in the context of one gene or in the context of several tightly linked genes. SNPs that occur on a cDNA are called cSNPs. These cSNPs may change amino acids of the protein encoded by the gene and thus change the functions of the protein. Some SNPs cause inherited diseases; others contribute to quantitative variations in phenotype and reactions to environmental factors including diet and drugs among individuals. Therefore, SNPs and/or combinations of alleles (called haplotypes) have many applications, including diagnosis of inherited diseases, determination of drug reactions and dosage, identification of genes responsible for diseases, and analysis of the genetic relationship between individuals (P. Nowotny, J. M. Kwon and A. M. Goata, " SNP analysis to dissect human traits," Curr. Opin. Neurobiol. 2001 Oct; 11(5):637-641; M. Pirmohamed and B. K. Park, "Genetic susceptibility to adverse drug reactions," Trends Pharmacol. Sci. 2001 Jun; 22(6):298-305; J. H. Riley, C. J. Allan, E. Lai and A. Roses, "The use of single nucleotide polymorphisms in the isolation of common disease genes," Pharmacogenomics. 2000 Feb; 1(1):39-47; R. Judson, J. C. Stephens and A. Windemuth, "The predictive power of haplotypes in clinical response," Pharmacogenomics. 2000 Feb; 1(1):15-26).

SNPs are identified by a variety of art-accepted methods (P. Bean, "The promising voyage of SNP target discovery," Am. Clin. Lab. 2001 Oct-Nov; 20(9):18-20; K. M. Weiss, "In search of human variation," Genome Res. 1998 Jul: 8(7):691-697; M. M. She, "Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies," Clin. Chem. 2001 Feb; 47(2):164-172). For example, SNPs are identified by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). They can also be discovered by direct sequencing of DNA samples pooled from different individuals or by comparing sequences from different DNA samples. With the rapid accumulation of sequence data in public and private databases, one can discover SNPs by comparing sequences using computer programs (Z. Gu, L. Hillier and P. Y. Kwok, "Single nucleotide polymorphism hunting in cyberspace," Hum. Mutat. 1998; 12(4):221-225). SNPs can be verified and genotype or haplotype of an individual can be determined by a variety of methods including direct sequencing and high throughput microarrays (P. Y. Kwok, "Methods for genotyping single nucleotide polymorphisms," Annu. Rev. Genomics Hum. Genet. 2001; 2:235-258; M. Kokoris, K. Dix, K. Moynihan, J. Mathis, B. Erwin, P. Grass, B. Hines and A. Duesterhoeft, "High-throughput SNP genotyping with the Masscode system," Mol. Diagn. 2000 Dec; 5(4):329-340).

Using the methods described above, seventeen SNPs were identified in the original transcript, 254P1D6B v.1, at positions 286 (C/G), 935 (C/A), 980 (T/G), 2347 (G/A), 3762 (C/T), 3772 (A/G), 3955 (C/T), 4096 (C/T), 4415 (G/A), 4519 (G/A), 4539 (A/G), 4614 (G/T), 5184 (G/C), 5528 (T/G), 5641 (G/A), 6221 (T/C) and 6223 (G/A). The transcripts or proteins with alternative alleles were designated as variants 254P1D6B v.4 through v.20, respectively. Figure 12 shows the

PCT/US2004/001965

schematic alignment of the SNP variants. Figure 11 shows the schematic alignment of protein variants, corresponding to nucleotide variants. Nucleotide variants that code for the same amino acid sequence as variant 1 are not shown in Figure 11. These alleles of the SNPs, though shown separately here, can occur in different combinations (haplotypes, such as v.2) and in any one of the transcript variants (such as 254P1D6B v.3) that contains the sequence context of the SNPs.

Example 7: Production of Recombinant 254P1D6B in Prokaryotic Systems

To express recombinant 254P1D6B and 254P1D6B variants in prokaryotic cells, the full or partial length 254P1D6B and 254P1D6B variant cDNA sequences are cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 254P1D6B variants are expressed: the full length sequence presented in Figures 2 and 3, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 254P1D6B, variants, or analogs thereof.

A. In vitro transcription and translation constructs:

<u>pCRII</u>: To generate 254P1D6B sense and anti-sense RNA probes for RNA *in situ* investigations, pCRII constructs (Invitrogen, Carlsbad CA) are generated encoding either all or fragments of the 254P1D6B cDNA. The pCRII vector has Sp6 and T7 promoters flanking the insert to drive the transcription of 254P1D6B RNA for use as probes in RNA *in situ* hybridization experiments. These probes are used to analyze the cell and tissue expression of 254P1D6B at the RNA level. Transcribed 254P1D6B RNA representing the cDNA amino acid coding region of the 254P1D6B gene is used in *in vitro* translation systems such as the TnTTM Coupled Reticulolysate System (Promega, Corp., Madison, WI) to synthesize 254P1D6B protein.

B. Bacterial Constructs:

pGEX Constructs: To generate recombinant 254P1D6B proteins in bacteria that are fused to the Glutathione Stransferase (GST) protein, all or parts of the 254P1D6B cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, NJ). These constructs allow controlled expression of recombinant 254P1D6B protein sequences with GST fused at the amino-terminus and a six histidine epitope (6X His) at the carboxyl-terminus. The GST and 6X His tags permit purification of the recombinant fusion protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His antibodies. The 6X His tag is generated by adding 6 histidine codons to the cloning primer at the 3' end, e.g., of the open reading frame (ORF). A proteolytic cleavage site, such as the PreScission[™] recognition site in pGEX-6P-1, may be employed such that it permits cleavage of the GST tag from 254P1D6B-related protein. The ampicillin resistance gene and pBR322 origin permits selection and maintenance of the pGEX plasmids in *E, coli*.

pMAL Constructs: To generate, in bacteria, recombinant 254P1D6B proteins that are fused to maltose-binding protein (MBP), all or parts of the 254P1D6B cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, MA). These constructs allow controlled expression of recombinant 254P1D6B protein sequences with MBP fused at the amino-terminus and a 6X His epitope tag at the carboxyl-terminus. The MBP and 6X His tags permit purification of the recombinant protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6X His epitope tag is generated by adding 6 histidine codons to the 3' cloning primer. A Factor Xa recognition site permits cleavage of the pMAL tag from 254P1D6B. The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds.

pET Constructs: To express 254P1D6B in bacterial cells, all or parts of the 254P1D6B cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, WI). These vectors allow tightly controlled expression of recombinant 254P1D6B protein in bacteria with and without fusion to proteins that enhance solubility, such as

PCT/US2004/001965

NusA and thioredoxin (Trx), and epitope tags, such as 6X His and S-Tag [™] that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 254P1D6B protein are expressed as amino-terminal fusions to NusA.

C. Yeast Constructs:

<u>pESC Constructs</u>: To express 254P1D6B in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 254P1D6B cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP1, LEU2, and URA3 (Stratagene, La Jolla, CA). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either FlagTM or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein interactions of 254P1D6B. In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations that are found when expressed in eukaryotic cells.

<u>pESP Constructs</u>: To express 254P1D6B in the yeast species Saccharomyces pombe, all or parts of the 254P1D6B cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 254P1D6B protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A FlagTM epitope tag allows detection of the recombinant protein with anti- FlagTM antibody.

Example 8: Production of Recombinant 254P1D6B in Higher Eukaryotic Systems

A. Mammalian Constructs:

To express recombinant 254P1D6B in eukaryotic cells, the full or partial length 254P1D6B cDNA sequences were cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 254P1D6B were expressed in these constructs, amino acids 1 to 1072, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 254P1D6B v.1, v.2, v.5, and v.6; amino acids 1 to 1063 of v.3; or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 254P1D6B v.1, v.2, v.5, and v.6; amino acids 1 to 1063 of v.3; or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 254P1D6B v.1, v.2, v.5, and v.6; amino acids 1 to 1063 of v.3; or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 254P1D6B v.1, v.2, v.5, and v.6; amino acids 1 to 1063 of v.3; or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 254P1D6B variants, or analogs thereof.

The constructs can be transfected into any one of a wide variety of mammalian cells such as 293T cells. Transfected 293T cell lysates can be probed with the anti-254P1D6B polyclonal serum, described herein.

pcDNA4/HisMax Constructs: To express 254P1D6B in mammalian cells, a 254P1D6B ORF, or portions thereof, of 254P1D6B are cloned into pcDNA4/HisMax Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has Xpress™ and six histidine (6X His) epitopes fused to the amino-terminus. The pcDNA4/HisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and CoIE1 origin permits selection and maintenance of the plasmid in *E coli*.

pcDNA3.1/MycHis Constructs: To express 254F1D6B in mammalian cells, a 254P1D6B ORF, or portions thereof, of 254P1D6B with a consensus Kozak translation initiation site was cloned into pcDNA3.1/MycHis Version A (Invitrogen, Carlsbad, CA). Protein expression was driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the myc epitope and 6X His epitope fused to the carboxyl-terminus. The pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large

T antigen. The Neomycin resistance gene can be used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and CoIE1 origin permits selection and maintenance of the plasmid in *E. coli*.

The complete ORF of 254P1D6B v.2 was cloned into the pcDNA3.1/MycHis construct to generate 254P1D6B.pcDNA3.1/MycHis. Figure 17A shows expression of 254P1D6B.pcDNA3.1/MycHis following transfection into 293T cells. 293T cells were transfected with either 254P1D6B.pcDNA3.1/MycHis or pcDNA3.1/MycHis vector control. Forty hours later, cell lysates were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression of 254P1D6B.pcDNA3.1/MycHis construct in the lysates of transfected cells.

pcDNA3.1/CT-GFP-TOPO Construct: To express 254P1D6B in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 254P1D6B ORF, or portions thereof, with a consensus Kozak translation initiation site are cloned into pcDNA3.1/CT-GFP-TOPO (Invitrogen, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, *in vivo* detection and cell biology studies. The pcDNA3.1/CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene allows for selection of mammalian cells that express the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in *E. coli*. Additional constructs with an amino-terminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a 254P1D6B protein.

PAPtag: A 254P1D6B ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp. Nashville, TN). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a 254P1D6B protein while fusing the IgG κ signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an amino-terminal IgG κ signal sequence is fused to the amino-terminus of a 254P1D6B protein. The resulting recombinant 254P1D6B proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 254P1D6B proteins. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6X His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicillin resistance gene permits selection of the plasmid in *E. coli*.

pTag5: A 254P1D6B ORF, or portions thereof, were cloned into pTag-5. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generates 254P1D6B protein with an amino-terminal IgGic signal sequence and myc and 6X His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant 254P1D6B protein is optimized for secretion into the media of transfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or receptors that interact with the 254P1D6B proteins. Protein expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the protein, and the ampicillin resistance gene permits selection of the plasmid in *E. coli*.

The extracellular domain, amino acids 26-953, of 254P1D6B v.1 was cloned into the pTag5 construct to generate 254P1D6B.pTag5. Figure 17B shows expression and secretion of the extracellular domain of 254P1D6B.pTag5 construct. Forty hours later, supernatant as well as cell lysates were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression and secretion of 254P1D6B from the 254P1D6B.pTag5 transfected cells.

PsecFc: A 254P1D6B ORF, or portions thereof, is also cloned into psecFc. The psecFc vector was assembled by cloning the human immunoglobulin G1 (IgG) Fc (hinge, CH2, CH3 regions) into pSecTag2 (Invitrogen, California). This

construct generates an IgG1 Fc fusion at the carboxyl-terminus of the 254P1D6B proteins, while fusing the IgGK signal sequence to N-terminus. 254P1D6B fusions utilizing the murine IgG1 Fc region are also used. The resulting recombinant 254P1D6B proteins are oplimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that Interact with 254P1D6B protein. Protein expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in *E. coli*.

<u>pSR α Constructs</u>: To generate mammalian cell lines that express 254P1D6B constitutively, 254P1D6B ORF, or portions thereof, of 254P1D6B were cloned into pSR α constructs. Amphotropic and ecotropic retroviruses were generated by transfection of pSR α constructs into the 293T-10A1 packaging line or co-transfection of pSR α and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 254P1D6B, into the host cell-lines. Protein expression is driven from a long terminal repeat (LTR). The Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and CoIE1 origin permit selection and maintenance of the plasmid in *E. coli*. The retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NIH 3T3, TsuPr1, 293 or rat-1 cells.

Additional pSRα constructs are made that fuse an epitope tag such as the FLAG[™] tag to the carboxyl-terminus of 254P1D6B sequences to allow detection using anti-Flag antibodies. For example, the FLAG[™] sequence 5' gattacaaggat gacgacgataag 3' (SEQ ID NO: 27) is added to cloning primer at the 3' end of the ORF. Additional pSRα constructs are made to produce both amino-terminal and carboxyl-terminal GFP and myc/5X His fusion proteins of the full-length 254P1D6B proteins.

Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of 254P1D6B. High virus titer leading to high level expression of 254P1D6B is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 254P1D6B coding sequences or fragments thereof are amplified by PCR and subcloned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors. Alternatively, 254P1D6B coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.

<u>Regulated Expression Systems:</u> To control expression of 254P1D6B in mammalian cells, coding sequences of 254P1D6B, or portions thereof, are cloned into regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant 254P1D6B. These vectors are thereafter used to control expression of 254P1D6B in various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.

B. Baculovirus Expression Systems

To generate recombinant 254P1D6B proteins in a baculovirus expression system, 254P1D6B ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N-terminus. Specifically, pBlueBac-254P1D6B is co-transfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 (*Spodoptera frugiperda*) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell supernatant and purified by plaque assay.

Recombinant 254P1D6B protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus. Recombinant 254P1D6B protein can be detected using anti-254P1D6B or anti-His-tag antibody. 254P1D6B protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 254P1D6B.

PCT/US2004/001965

Example 9: Antigenicity Profiles and Secondary Structure

Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9 depict graphically five amino acid profiles of 254P1D6B variant 1, each assessment available by accessing the ProtScale website located on the World Wide Web at (.expasy.ch/cgibin/protscale.pl) on the ExPasy molecular biology server.

These profiles: Figure 5, Hydrophilicity, (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828); Figure 6, Hydropathicity, (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132); Figure 7, Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492); Figure 8, Average Flexibility, (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255); Figure 9, Beta-turn (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale website, were used to identify antigenic regions of each of the 254P1D6B variant proteins. Each of the above amino acid profiles of 254P1D6B variants were generated using the following ProtScale parameters for analysis: 1) A window size of 9; 2) 100% weight of the window edges compared to the window center; and, 3) amino acid profile values normalized to lie between 0 and 1.

Hydrophilicity (Figure 5), Hydropathicity (Figure 6) and Percentage Accessible Residues (Figure 7) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies.

Average Flexibility (Figure 8) and Beta-turn (Figure 9) profiles determine stretches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained in secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies.

Antigenic sequences of the 254P1D6B variant proteins indicated, e.g., by the profiles set forth in Figure 5, Figure 6. Figure 7, Figure 8, and/or Figure 9 are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-254P1D6B antibodies. The immunogen can be any 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50 or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 254P1D6B protein variants listed in Figures 2 and 3. In particular, peptide immunogens of the invention can comprise, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profiles of Figure 5; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acids of Figures 2 and 3 in any whole number increment that includes an amino acids of Figures 2 and 3 in any whole number increment that includes an amino acids of Figures 7; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profiles of Figure 7; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on Figure 8; and, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on Figure 8; and, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of Figures 9 . Peptide immunogens of the invention can also comprise n

All immunogens of the invention, peptide or nucleic acid, can be embodied in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology.

The secondary structure of 254P1D6B protein variant 1, namely the predicted presence and location of alpha helices, extended strands, and random coils, are predicted from the primary amino acid sequence using the HNN - Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-

150 Combet C., Blanchet C., Geourjon C. and Deléage G., http://pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html), accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/tools/). The analysis indicates that 254P1D6B variant 1 is composed of 18.19% alpha helix, 24.81% extended strand, and 57.00% random coil (Figure 13A).

Analysis for the potential presence of transmembrane domains in the 254P1D6B variant protein 1 was carried out using a variety of transmembrane prediction algorithms accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/tools/). Shown graphically in figure 13B is the result of analysis of variant 1 using the TMpred program and in figure 13C results using the TMHMM program. Both the TMpred program and the TMHMM program predict the presence of 1 transmembrane domain. Analyses of the variants using other structural prediction programs are summarized in Table VI.

Example 10: Generation of 254P1D6B Polyclonal Antibodies

Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length 254P1D6B protein variant, computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled "Antigenicity Profiles and Secondary Structures"). Such regions would be predicted to be hydrophilic, flexible, in beta-turn conformations, and be exposed on the surface of the protein (see, e.g., Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9 for amino acid profiles that indicate such regions of 254P1D6B protein variant 1).

For example, recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta-turn regions of 254P1D6B protein variants are used as antigens to generate polyclonal antibodies in New Zealand White rabbits or monoclonal antibodies as described in the Example entitled "Generation of 254P1D6B Monoclonal Antibodies (mAbs)". For example, in 254P1D6B variant 1, such regions include, but are not limited to, amino acids 21-32, amino acids 82-96, amino acids 147-182, amino acids 242-270, amino acids 618-638, amino acids 791-818, and amino acids 980-1072. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. In one embodiment, a peptide encoding amino acids 147-182 of 254P1D6B variant 1 was conjugated to KLH and used to immunize a rabbit. Alternatively the immunizing agent may include all or portions of the 254P1D6B variant proteins, analogs or fusion proteins thereof. For example, the 254P1D6B variant 1 amino acids 980-1072 of 254P1D6B variant 1 amino acids 980-1072 of 254P1D6B variant 1 amino acids 980-1072 of 254P1D6B variant 1 is fused to GST using recombinant techniques and the pGEX expression vector, expressed, purified and used to immunize a rabbit. Such fusion proteins are purified from induced bacteria using the appropriate affinity matrix.

Other recombinant bacterial fusion proteins that may be employed include maltose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the section entitled "Production of 254P1D6B in Prokaryotic Systems" and Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L., Damle, N., and Ledbetter, L.(1991) J.Exp. Med. 174, 561-566).

In addition to bacterial derived fusion proteins, mammalian expressed protein antigens are also used. These antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled "Production of Recombinant 254P1D6B in Eukaryotic Systems"), and retains post-translational modifications such as glycosylations found in native protein. In one embodiment, amino acids 26-953 of 254P1D6B variant 1 was cloned into the

PCT/US2004/001965

Tag5 mammalian secretion vector, and expressed in 293T cells (Figure 17). The recombinant protein is purified by metal chelate chromatography from tissue culture supernatants of 293T cells stably expressing the recombinant vector. The purified Tag5 254P1D6B protein is then used as immunogen.

During the immunization protocol, it is useful to mix or emulsify the antigen in adjuvants that enhance the immune response of the host animal. Examples of adjuvants include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

In a typical protocol, rabbits are initially immunized subcutaneously with up to 200 µg, typically 100-200 µg, of fusion protein or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to 200 µg, typically 100-200 µg, of the immunogen in incomplete Freund's adjuvant (IFA). Test bleeds are taken approximately 7-10 days following each immunization and used to monitor the titer of the antiserum by ELISA.

To test reactivity and specificity of immune serum, such as the rabbit serum derived from immunization with the GST-fusion of 254P1D6B variant 1 protein, the full-length 254P1D6B variant 1 cDNA is cloned into pCDNA 3.1 myc-his expression vector (Invitrogen, see the Example entitled "Production of Recombinant 254P1D6B in Eukaryotic Systems"). After transfection of the constructs into 293T cells, cell lysates are probed with the anti-254P1D6B serum and with anti-His antibody (Santa Cruz Bictechnologies, Santa Cruz, CA) to determine specific reactivity to denatured 254P1D6B protein using the Western blot technique (Figure 17). In addition, the immune serum is tested by fluorescence microscopy, flow cytometry and immunoprecipitation against 293T and other recombinant 254P1D6B-expressing cells to determine specific recognition of native protein. Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 254P1D6B are also carried out to test reactivity and specificity.

Anti-serum from rabbits immunized with 254P1D6B variant fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fusion protein. For example, antiserum derived from a GST-254P1D6B variant 1 fusion protein is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP-254P1D6B fusion protein covalently coupled to Affigel matrix. The serum is then further purified by protein G affinity chromatography to isolate the IgG fraction. Sera from other His-tagged antigens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free peptide.

Example 11: Generation of 254P1D6B Monoclonal Antibodies (mAbs)

In one embodiment, therapeutic mAbs to 254P1D6B variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would disrupt or modulate the biological function of the 254P1D6B variants, for example those that would disrupt the interaction with ligands and binding partners. Immunogens for generation of such mAbs include those designed to encode or contain the entire 254P1D6B protein variant sequence, regions predicted to contain functional motifs, and regions of the 254P1D6B protein variants predicted to be antigenic from computer analysis of the amino acid sequence (see, e.g., Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9, and the Example entitled 'Antigenicity Profiles and Secondary Structures'). Immunogens include peptides, recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion proteins. In addition, cells engineered to express high levels of a respective 254P1D6B variant, such as 293T-254P1D6B variant 1 or 300.19-254P1D6B variant 1murine Pre-B cells, are used to immunize mice.

To generate mAbs to a 254P1D6B variant, mice are first immunized intraperitoneally (IP) with, typically, 10-50 µg of protein immunogen or 10⁷ 254P1D6B-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typically, 10-50 µg of protein immunogen or 10⁷ cells mixed in incomplete Freund's adjuvant. Alternatively, MPL-TDM adjuvant is used in immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based immunization protocol is employed in which a mammalian expression vector encoding a 254P1D6B variant sequence is used to immunize mice by direct injection of the plasmid DNA. For example, amino acids 26-953 of 254P1D6B of variant 1 is cloned into the Tag5 mammalian secretion vector and the recombinant vector will then be used as immunogen. In another example the same amino acids are cloned into an Fc-fusion secretion vector in which the 254P1D6B variant 1 sequence is fused at the amino-terminus to an IgK leader sequence and at the carboxyl-terminus to the coding sequence of the human or murine IgG Fc region. This recombinant vector is then used as immunogen. The plasmid immunization protocols are used in combination with purified proteins expressed from the same vector and with cells expressing the respective 254P1D6B variant.

Alternatively, mice may be immunized directly into their footpads. In this case, 10-50 µg of protein immunogen or 107 254P1D6B-expressing cells are injected sub-cutaneously into the footpad of each hind leg. The first immunization is given with Titermax (SigmaTM) as an adjuvant and subsequent injections are given with Alum-gel in conjunction with CpG oligonucleotide sequences with the exception of the final injection which is given with PBS. Injections are given twice weekly (every three to four days) for a period of 4 weeks and mice are sacrificed 3-4 days after the final injection, at which point lymph nodes immediately draining from the footpad are harvested and the B-cells are collected for use as antibody producing fusion partners.

During the immunization protocol, test bleeds are taken 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity is obtained as determined by ELISA, Western blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988).

In one embodiment for generating 254P1D6B monoclonal antibodies, a GST-fusion of variant 1 antigen encoding amino acids 21-182 is expressed and purified from bacteria. Balb C mice are initially immunized intraperitoneally with 25 µg of the GST-254P1D6B variant 1 protein mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with 25 µg of the antigen mixed in incomplete Freund's adjuvant for a total of three immunizations. ELISA using the GST-fusion antigen and a deavage product from which the GST portion is removed determines the titer of serum from immunized mice. Reactivity and specificity of serum to full length 254P1D6B variant 1 protein is monitored by Western blotting, immunoprecipitation and flow cytometry using 293T cells transfected with an expression vector encoding the 254P1D6B variant 1 cDNA (see e.g., the Example entitled "Production of Recombinant 254P1D6B in Eukaryotic Systems" and Figure 17). Other recombinant 254P1D6B variant 1-expressing cells or cells endogenously expressing 254P1D6B variant 1 are also used. Mice showing the strongest reactivity are rested and given a final injection of antigen in PBS and then sacrificed four days later. The spleens of the sacrificed mice are harvested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988). Supernatants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometry to identify 254P1D6B specific antibody-producing clones.

The binding affinity of 254P1D6B variant specific monoclonal antibodies is determined using standard technologies. Affinity measurements quantify the strength of antibody to epitope binding and are used to help define which 254P1D6B variant monoclonal antibodies preferred for diagnostic or therapeutic use, as appreciated by one of skill in the art. The BIAcore system (Uppsala, Sweden) is a preferred method for determining binding affinity. The BIAcore system uses surface plasmon resonance (SPR, Welford K. 1991, Opt. Quant. Elect. 23:1; Morton and Myszka, 1993, Methods in

Enzymology 295: 268) to monitor biomolecular interactions in real time. BlAcore analysis conveniently generates association rate constants, dissociation rate constants, equilibrium dissociation constants, and affinity constants.

Example 12: HLA Class I and Class II Binding Assays

HLA class I and class II binding assays using purified HLA molecules are performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney *et al.*, *Current Protocols in Immunology* 18.3.1 (1998); Sidney, *et al.*, *J. Immunol.* 154:247 (1995); Sette, *et al.*, *Mol. Immunol.* 31:813 (1994)). Briefly, purified MHC molecules (5 to 500 nM) are incubated with various unlabeled peptide inhibitors and 1-10 nM ¹²⁵I-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes are separated from free peptide by gel filtration and the fraction of peptide bound is determined. Typically, in preliminary experiments, each MHC preparation is titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays are performed using these HLA concentrations.

Since under these conditions [label]<[HLA] and $IC_{50} \ge$ [HLA], the measured IC_{50} values are reasonable approximations of the true K₀ values. Peptide inhibitors are typically tested at concentrations ranging from 120 µg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC_{50} of a positive control for inhibition by the IC_{50} for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC_{50} nM values by dividing the IC_{50} nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Binding assays as outlined above may be used to analyze HLA supermotif and/or HLA motif-bearing peptides (see Table IV).

Example 13: Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

HLA vaccine compositions of the invention can include multiple epitopes. The multiple epitopes can comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification and confirmation of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

The searches performed to identify the motif-bearing peptide sequences in the Example entitled "Antigenicity Profiles" and Tables VIII-XXI and XXII-XLIX employ the protein sequence data from the gene product of 254P1D6B set forth in Figures 2 and 3, the specific search peptides used to generate the tables are listed in Table VII.

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs are performed as follows. All translated 254P1D6B protein sequences are analyzed using a text string search software program to identify potential peptide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motif/supermotif disclosures. Furthermore, such calculations can be made mentally.

Identified A2-, A3-, and DR-supermotif sequences are scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms account for the impact of different amino acids at different positions, and are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

"ΔG" = a1*i* x a2i x a3i x ani

where a_{ji} is a coefficient which represents the effect of the presence of a given amino acid (*j*) at a given position (*i*) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue *j* occurs at position *i* in the peptide, it is assumed to contribute a constant amount *j* to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide.

The method of derivation of specific algorithm coefficients has been described in Gulukota *et al., J. Mol. Biol.* 267:1258-126, 1997; (see also Sidney *et al., Human Immunol.* 45:79-93, 1996; and Southwood *et al., J. Immunol.* 160:3363-3373, 1998). Briefly, for all *i* positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying *j* is calculated relative to the remainder of the group, and used as the estimate of *ji.* For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of orediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

Protein sequences from 254P1D6B are scanned utilizing motif identification software, to identify 8-, 9- 10- and 11mer sequences containing the HLA-A2-supermotif main anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules *in vitro* (HLA-A*0201 is considered a prototype A2 supertype molecule).

These peptides are then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are typically deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA-A2 supertype molecules.

Selection of HLA-A3 supermotif-bearing epitopes

The 254P1D6B protein sequence(s) scanned above is also examined for the presence of peptides with the HLA-A3-supermolif primary anchors. Peptides corresponding to the HLA A3 supermolif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the molecules encoded by the two most prevalent A3-supertype alleles. The peptides that bind at least one of the two alleles with binding affinities of \leq 500 nM, often \leq 200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (e.g., A*3101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.

Selection of HLA-B7 supermotif bearing epitopes

The 254P1D6B protein(s) scanned above is also analyzed for the presence of 8-, 9- 10-, or 11-mer peptides with the HLA-B7-supermotif. Corresponding peptides are synthesized and tested for binding to HLA-B*0702, the molecule encoded by the most common B7-supertype allele (*i.e.*, the prototype B7 supertype allele). Peptides binding B*0702 with IC_{30} of \leq 500 nM are identified using standard methods. These peptides are then tested for binding to other common B7supertype molecules (e.g., B*3501, B*5101, B*5301, and B*5401). Peptides capable of binding to three or more of the five B7-supertype alleles tested are thereby identified.

Selection of A1 and A24 motif-bearing epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine compositions. An analysis of the 254P1D6B protein can also be performed to identify HLA-A1- and A24-motif-containing sequences.

High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified using analogous methodology.

Example 14: Confirmation of Immunogenicity

Cross-reactive candidate CTL A2-supermolif-bearing peptides that are identified as described herein are selected to confirm *in vitro* immunogenicity. Confirmation is performed using the following methodology:

Target Cell Lines for Cellular Screening:

The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human Blymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability of peptide-specific CTLs to recognize endogenous antigen.

Primary CTL Induction Cultures:

Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with 30 μ g/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/streptomycin). The monocytes are purified by plating 10 x 10⁶ PBMC/well in a 6-well plate. After 2 hours at 37°C, the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml of IL-4 are then added to each well. TNF α is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7.

Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead® reagent Typically about 200-250x10⁶ PBMC are processed to obtain 24x10⁶ CD8+ T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed in RPMI with 30µg/mI DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20x10⁶cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140µl beads/20x10⁶ cells) and incubated for 1 hour at 4°C with continuous mixing. The beads and cells are washed 4x with PBS/AB serum to remove the nonadherent cells and resuspended at 100x10⁶ cells/ml (based on the original cell number) in PBS/AB serum containing 100µl/ml detacha-bead® reagent and 30 µg/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA. counted and pulsed with 40µg/ml of peptide at a cell concentration of 1-2x10⁶/ml in the presence of 3µg/ml B₂- microglobulin for 4 hours at 20°C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again.

Setting up induction cultures: 0.25 ml cytokine-generated DC (at 1x10⁵ cells/ml) are co-cultured with 0.25ml of CD8+ T-cells (at 2x10⁶ cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL-10 is added the next day at a final concentration of 10 ng/ml and rouman IL-2 is added 48 hours later at 10 IU/ml.

Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction, the cells are restimulated with peptide-pulsed adherent cells. The PBMCs are thawed and washed twice

PCT/US2004/001965

with RPMI and DNAse. The cells are resuspended at 5x10⁶ cells/ml and irradiated at ~4200 rads. The PBMCs are plated at 2x10⁶ in 0.5 ml complete medium per well and incubated for 2 hours at 37°C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with 10µg/ml of peptide in the presence of 3 µg/ml B₂ microglobulin in 0.25ml RPMI/5%AB per well for 2 hours at 37°C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human IL-10 is added at a final concentration of 10 ng/ml and recombinant human IL2 is added the next day and again 2-3 days later at 501U/ml (Tsai *et al., Critical Reviews in Immunology* 18(1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a ⁵¹Cr release assay. In some experiments the cultures are assayed for peptide-specific recognition in the *in situ* IFNY ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison.

Measurement of CTL lytic activity by 51Cr release.

Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) ⁵¹Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with 10µg/ml peptide overnight at 37°C.

Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with 200µCi of ⁵¹Cr sodium chromate (Dupont, Wilmington, DE) for 1 hour at 37°C. Labeled target cells are resuspended at 10⁶ per ml and diluted 1:10 with K562 cells at a concentration of 3.3x10⁶/ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 µl) and effectors (100µl) are plated in 96 well round-bottom plates and incubated for 5 hours at 37°C. At that time, 100 µl of supernatant are collected from each well and percent lysis is determined according to the formula:

[(cpm of the test sample- cpm of the spontaneous ⁵'Cr release sample)/(cpm of the maximal ⁵¹Cr release sample- cpm of the spontaneous ⁵¹Cr release sample)] x 100.

Maximum and spontaneous release are determined by incubating the labeled targets with 1% Triton X-100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample- background) is 10% or higher in the case of individual wells and is 15% or more at the two highest E:T ratios when expanded cultures are assayed.

In situ Measurement of Human IFNy Production as an Indicator of Peptide-specific and Endogenous Recognition

Immulon 2 plates are coated with mouse anti-human IFN χ monoclonal antibody (4 µg/ml 0.1M NaHCO₃, pH8.2) overnight at 4°C. The plates are washed with Ca²⁺, Mg²⁺-free PBS/0.05% Tween 20 and blocked with PBS/10% FCS for two hours, after which the CTLs (100 µl/well) and targets (100 µl/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1x10⁶ cells/ml. The plates are incubated for 48 hours at 37°C with 5% CO₂.

Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or 1200pg/100 microliter/well and the plate incubated for two hours at 37°C. The plates are washed and 100 μ l of biotinylated mouse anti-human IFNgamma monoclonal antibody (2 microgram/ml in PBS/3%FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 microliter HRP-streptavidin (1:4000) are added and the plates incubated for one hour at room temperature. The plates are then washed 6x with wash buffer, 100 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 microliter/well 1M H₃PO₄ and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN-gamma/well above background and is twice the background level of expression.

CTL Expansion.

PCT/US2004/001965

Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or turnor targets are expanded over a two week period with anti-CD3. Briefly, 5x10⁴ CD8+ cells are added to a T25 flask containing the following: 1x10⁶ irradiated (4,200 rad) PBMC (autologous or allogeneic) per ml, 2x10⁵ irradiated (8,000 rad) EBV- transformed cells per ml, and OKT3 (anti-CD3) at 30ng per ml in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, 25µM 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of 200IU/ml and every three days thereafter with fresh media at 50IU/ml. The cells are split if the cell concentration exceeds 1x10⁶/ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the ⁵¹Cr release assay or at 1x10⁶/ml in the *in situ* IFN₇ assay using the same targets as before the expansion.

Cultures are expanded in the absence of anti-CC3⁺ as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and 5x10⁴ CD8⁺ cells are added to a T25 flask containing the following: 1x10⁶ autologous PBMC per ml which have been peptide-pulsed with 10 µg/ml peptide for two hours at 37°C and irradiated (4,200 rad); 2x10⁵ irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10%(v/v) human AB serum, non-essential AA, sodium pyruvate, 25mM 2-ME, L-glutamine and gentamicin.

Immunogenicity of A2 supermotif-bearing peptides

A2-supermotif cross-reactive binding peptides are tested in the cellular assay for the ability to induce peptidespecific CTL in normal individuals. In this analysis, a peptide is typically considered to be an epitope if it induces peptidespecific CTLs in at least individuals, and preferably, also recognizes the endogenously expressed peptide.

Immunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses 254P1D6B. Briefly, PBMCs are isolated from patients, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.

Evaluation of A*03/A11 immunogenicity

HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides.

Evaluation of B7 immunogenicity

Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth herein are confirmed in a manner analogous to the confirmation of A2-and A3-supermotif-bearing peptides.

Peptides bearing other supermotifs/motifs, ø.g., HLA-A1, HLA-A24 etc. are also confirmed using similar methodology

Example 15: Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, *e.g.* greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated binding affinity are set forth in this example.

Analoging at Primary Anchor Residues

Peptide engineering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.

PCT/US2004/001965

To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2-supertype cross-reactivity.

Alternatively, a peptide is confirmed as binding one or all supertype members and then analoged to modulate binding affinity to any one (or more) of the supertype members to add population coverage.

The selection of analogs for immunogenicity in a cellular screening analysis is typically further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakly, *i.e.*, bind at an IC₅₀ of 5000nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the parent epitope (see, e.g., Parkhurst *et al.*, *J. Immunol.* 157:2539, 1996; and Pogue *et al.*, *Proc. Natl. Acad. Sci. USA* 92:8166, 1995).

In the cellular screening of these peptide analogs, it is important to confirm that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, target cells that endogenously express the epitope.

Analoging of HLA-A3 and B7-supermotif-bearing peptides

Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed in analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to 3/5 of the A3-supertype molecules are engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2.

The analog peptides are then tested for the ability to bind A*03 and A*11 (prototype A3 supertype alleles). Those peptides that demonstrate \leq 500 nM binding capacity are then confirmed as having A3-supertype cross-reactivity.

Similarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more B7-supertype alleles can be improved, where possible, to achieve increased cross-reactive binding or greater binding affinity or binding half life. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney *et al.* (*J. Immunol.* 157:3480-3490, 1996).

Analoging at primary anchor residues of other motif and/or supermotif-bearing epitopes is performed in a like manner.

The analog peptides are then be confirmed for immunogenicity, typically in a cellular screening assay. Again, it is generally important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, targets that endogenously express the epitope.

Analoging at Secondary Anchor Residues

Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide with an F residue at position 1 is analyzed. The peptide is then analoged to, for example, substitute L for F at position 1. The analoged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivity. Such a procedure identifies analoged peptides with enhanced properties.

Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be tested for immunogenicity in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide immunization. Analoged peptides are additionally tested for the ability to stimulate a recall response using PBMC from patients with 254P1D6Bexpressing tumors.

Other analoging strategies

PCT/US2004/001965

Another form of peptide analoging, unrelated to anchor positions, involves the substitution of a cysteine with α amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substitution of α -amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, *e.g.*, the review by Sette *et al.*, In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).

Thus, by the use of single amino acid substitutions, the binding properties and/or cross-reactivity of peptide ligands for HLA supertype molecules can be modulated.

Example 16: Identification and confirmation of 254P1D6E-derived sequences with HLA-DR binding motifs

Peptide epitopes bearing an HLA class II supermotif or motif are identified and confirmed as outlined below using methodology similar to that described for HLA Class I peptides.

Selection of HLA-DR-supermotif-bearing epitopes.

To identify 254P1D6B-derived, HLA class II HTL epitopes, a 254P1D6B antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected comprising a DR-supermotif, comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total).

Protocols for predicting peptide binding to DR molecules have been developed (Southwood *et al., J. Immunol.* 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele-specific selection tables (see, *e.g.*, Southwood *et al., ibid.*), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.

The 254P1D6B-derived peptides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least two of these three DR molecules are then tested for binding to DR2w2 β1, DR2w2 β2, DR6w19, and DR9 molecules in secondary assays. Finally, peptides binding at least two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4w15, DR5w11, and DR8w2 molecules in tertiary assays. Peptides binding at least seven of the ten DR molecules comprising the primary, secondary, and tertiary screening assays are considered cross-reactive DR binders. 254P1D6B-derived peptides found to bind common HLA-DR alleles are of particular interest.

Selection of DR3 motif peptides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of HTL epitopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.

To efficiently identify peptides that bind DR3, target 254P1D6B antigens are analyzed for sequences carrying one of the two DR3-specific binding motifs reported by Geluk *et al.* (*J. Immunol.* 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an affinity of 1 μ M or better, i.e., less than 1 μ M. Peptides are found that meet this binding criterion and qualify as HLA class II high affinity binders.

DR3 binding epitopes identified in this manner are included in vaccine compositions with DR supermotif-bearing peptide epitopes.

- PCT/US2004/001965

Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding.

Example 17: Immunogenicity of 254P1D6B-derived HTL epitopes

This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology set forth herein.

Immunogenicity of HTL epilopes are confirmed in a manner analogous to the determination of immunogenicity of CTL epitopes, by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) *in vitro* primary induction using normal PBMC or 2.) recall responses from patients who have 254P1D6B-expressing tumors.

Example 18: Calculation of phenotypic frequencies of HLA-supertypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverage, gene frequencies of HLA alleles are determined. Gene frequencies for each HLA allele are calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1-(SQRT(1-, af)) (see, e.g., Sidney *et al.*, *Human Immunol.* 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies are calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf)?].

Where frequency data is not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies is assumed. To obtain total potential supertype population coverage no linkage disequilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations are made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. A'though the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602).

Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups. Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%, see, e.g., Table IV (G). An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.

Immunogenicity studies in humans (e.g., Bertoni *et al.*, *J. Clin. Invest.* 100:503, 1997; Doclan *et al.*, *Immunity* 7:97, 1997; and Threlkeld *et al.*, *J. Immunol.* 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reactive binding peptides is an important selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse population.

With a sufficient number of epitopes (as disclosed herein and from the art), an average population coverage is predicted to be greater than 95% in each of five major ethnic populations. The game theory Monte Carlo simulation analysis,

PCT/US2004/001965

which is known in the art (see e.g., Osborne, M.J. and Rubinstein, A. "A course in game theory" MIT Press, 1994), can be used to estimate what percentage of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vaccine epitopes described herein. A preferred percentage is 90%.

Example 19: CTL Recognition Of Endogenously Processed Antigens After Priming

This example confirms that CTL induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, *i.e.*, native antigens.

Effector cells isolated from transgenic mice that are immunized with peptide epitopes, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated *in vitro* using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on ⁵¹Cr labeled Jurkat-A2.1/K^b target cells in the absence or presence of peptide, and also tested on ⁵¹Cr labeled target cells bearing the endogenously synthesized antigen, *i.e.* cells that are stably transfected with 254P1D5B expression vectors.

The results demonstrate that CTL lines obtained from animals primed with peptide epilope recognize endogenously synthesized 254P1D6B antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to HLA-A*0201/K^b transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (*e.g.*, transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.

Example 20: Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice, by use of a 254P1D6B-derived CTL and HTL peptide vaccine compositions. The vaccine composition used herein comprise peptides to be administered to a patient with a 254P1D6B-expressing tumor. The peptide composition can comprise multiple CTL and/or HTL epitopes. The epitopes are identified using methodology as described herein. This example also illustrates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CTL epitope can be one that binds to multiple HLA family members at an affinity of 500 nM or less, or analogs of that epitope. The peptides may be lipidated, if desired.

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/K^b mice, which are transgenic for the human HLA A2.1 allele and are used to confirm the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, and are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSC/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPSactivated lymphoblasts coated with peptide.

Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991)

In vitro CTL activation: One week after priming, spleen cells (30x10⁶ cells/flask) are co-cultured at 37°C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10⁶ cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.
Assay for cytotoxic activity: Target cells (1.0 to 1.5×10^6) are incubated at 37°C in the presence of 200 µl of ⁵¹Cr. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of 1 µg/ml. For the assay, 10⁴ 5¹Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 µl) in U-bottom 96-well plates. After a six hour incubation period at 37°C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % ⁵¹Cr release data is expressed as lytic units/10⁶ cells. One lytic units is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a six hour ⁵¹Cr release assay. To obtain specific lytic units/10⁶, the lytic units/10⁶ obtained in the absence of peptide is subtracted from the lytic units/10⁶ obtained in the presence of peptide. For example, if 30% ⁵¹Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5x10⁵ effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5x10⁴ effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)-(1/500,000)] × 10⁶ = 18 LU.

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using, for example, CTL epitopes as outlined above in the Example entitled "Confirmation of Immunogenicity." Analyses similar to this may be performed to confirm the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures, it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.

Example 21: Selection of CTL and HTL epitopes for inclusion in a 254P1D6B-specific vaccine.

This example illustrates a procedure for selecting peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (*i.e.*, minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides.

The following principles are utilized when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.

Epitopes are selected which, upon administration, mimic immune responses that are correlated with 254P1D6B clearance. The number of epitopes used depends on observations of patients who spontaneously clear 254P1D6B. For example, if it has been observed that patients who spontaneously clear 254P1D6B-expressing cells generate an immune response to at least three (3) epitopes from 254P1D6B antigen, then at least three epitopes should be included for HLA class I. A similar rationale is used to determine HLA class II epitopes.

Epitopes are often selected that have a binding affinity of an IC₅₀ of 500 nM or less for an HLA class I molecule, or for class II, an IC₅₀ of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site, at URL bimas.dcrt.nih.gov/.

In order to achieve broad coverage of the vaccine through out a diverse population, sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. In one embodiment, epilopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.

When creating polyepitopic compositions, or a minigene that encodes same, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, *i.e.*, it has a high

PCT/US2004/001965

concentration of epitopes. Epitopes may be nested or overlapping (*i.e.*, frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. A multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source. Atternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that after the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. This embodiment provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of the possibility of motifbearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present in 254P1D6B, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions. Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude to an immune response that controls or clears cells that bear or overexpress 254P1D6B.

Example 22: Construction of "Minigene" Multi-Epitope DNA Plasmids

This example discusses the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of B cell, CTL and/or HTL epitopes or epitope analogs as described herein.

A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or molif-bearing peptide epitopes derived 254P1D6B, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from 254P1D6B to provide broad population coverage, *i.e.* both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

Such a construct may additionally include sequences that direct the HTL epilopes to the endoplasmic reticulum. For example, the li protein may be fused to one or more HTL epilopes as described in the art, wherein the CLIP sequence of the li protein is removed and replaced with an HLA class II epilope sequence so that HLA class II epilope is directed to the endoplasmic reticulum, where the epilope binds to an HLA class II molecules.

This example illustrates the methods to be used for construction of a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.

Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Etmer 9600 PCR machine is used

and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72°C for 1 min.

For example, a minigene is prepared as follows. For a first PCR reaction, 5 μ g of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, i.e., four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 μ l reactions containing *Pfu* polymerase buffer (1x= 10 mM KCL, 10 mM (NH4)₂SO₄, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO₄, 0.1% Triton X-100, 100 μ g/ml BSA), 0.25 mM each dNTP, and 2.5 U of *Pfu* polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.

Example 23: The Plasmid Construct and the Degree to Which It Induces Immunogenicity.

The degree to which a plasmid construct, for example a plasmid constructed in accordance with the previous Example, is able to induce immunogenicity is confirmed *in vitro* by determining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay cetermines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts *et al., J. Immunol.* 156:683-692, 1996; Demotz *et al., Nature* 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama *et al., J. Immunol.* 154:567-576, 1995).

Alternatively, immunogenicity is confirmed through *in vivo* injections into mice and subsequent *in vitro* assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed *e.g.*, in Alexander *et al.*, *Immunity* 1:751-761, 1994.

For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 supermotif peptide to induce CTLs *in vivo*, HLA-A2.1/K^b transgenic mice, for example, are immunized intramuscularly with 100 µg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.

Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ⁵¹Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the *in vivo* immunogenicity of the minigene vaccine and polyepitopic vaccine.

It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes, whereby it is also found that the minigene elicits appropriate immune responses directed toward the provided epitopes.

To confirm the capacity of a class II epitope-encoding minigene to induce HTLs *in vivo*, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, I-A^b-restricted mice, for example, are immunized intramuscularly with 100 µg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant.

PCT/US2004/001965

CD4+ T cells, *i.e.* HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ³H-thymidine incorporation proliferation assay, (see, e.g., Alexander *et al.* Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the *in vivo* immunogenicity of the minigene.

DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (*e.g.*, Barnett *et al.*, *Aids Res. and Human Retroviruses* 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (*see, e.g.*, Hanke *et al.*, *Vaccine* 16:439-445, 1998; Sedegah *et al.*, *Proc. Natl. Acad. Sci USA* 95:7648-53, 1998; Hanke and McMichael, *Immunol. Letters* 66:177-181, 1999; and Robinson *et al.*, *Nature Med.* 5:526-34, 1999).

For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/K^b transgenic mice are immunized IM with 100 µg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 10⁷ pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 µg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated *in vitro* with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an alpha, beta and/or gamma IFN ELISA.

It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes. The use of prime boost protocols in humans is described below in the Example entitled "Induction of CTL Responses Using a Prime Boost Protocol."

Example 24: Peptide Compositions for Prophylactic Uses

Vaccine compositions of the present invention can be used to prevent 254P1D6B expression in persons who are at risk for tumors that bear this antigen. For example, a polyepilopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in the above Examples, which are also selected to target greater than 80% of the population, is administered to individuals at risk for a 254P1D6B-associated tumor.

For example, a peptide-based composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is typically administered in a physiological solution that comprises an adjuvant, such as Incomplete Freunds Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 μ g, generally 100-5,000 μ g, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against 254P1D6B-associated disease.

Alternatively, a composition typically comprising transfecting agents is used for the administration of a nucleic acidbased vaccine in accordance with methodologies known in the art and disclosed herein.

Example 25: Polyepitopic Vaccine Compositions Derived from Native 254P1D6B Sequences

A native 254P1D6B polyprotein sequence is analyzed, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify "relatively shor:" regions of the polyprotein that comprise multiple epitopes.

The "relatively short" regions are preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct or overlapping, "nested" epitopes can be used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, *i.e.*, it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (*i.e.*, frame shifted relative to one another). For example, with overlapping epitopes, Iwo 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.

The vaccine composition will include, for example, multiple CTL epitopes from 254P1D6B antigen and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally, such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup(s) that is presently unknown. Furthermore, this embodiment (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in native 254P1D6B, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions.

Related to this embodiment, computer programs are available in the art which can be used to identify in a target sequence, the greatest number of epitopes per sequence length.

Example 26: Polyepitopic Vaccine Compositions from Multiple Antigens

The 254P1D6B peptide epitopes of the present invention are used in conjunction with epitopes from other target tumor-associated antigens, to create a vaccine composition that is useful for the prevention or treatment of cancer that expresses 254P1D6B and such other antigens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple epitopes from 254P1D6B as well as tumor-associated antigens that are often expressed with a target cancer associated with 254P1D6B expression, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes *in vitro*.

Example 27: Use of peptides to evaluate an immune response

Peptides of the invention may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to 254P1D6B. Such an analysis can be performed in a manner described by Ogg *et al., Science* 279:2103-2106, 1998. In this Example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.

In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a crosssectional analysis of, for example, 254P1D6B HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization comprising a 254P1D6B peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey *et al.*, *N. Engl. J. Med.* 337;1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system.

PCT/US2004/001965

The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COCH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5' triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one milition PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 µl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycocrythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive non-diseased donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the 254P1D6B epitope, and thus the status of exposure to 254P1D6B, or exposure to a vaccine that elicits a protective or therapeutic response.

Example 28: Use of Peptide Epitopes to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from 254P1D6B-associated disease or who have been vaccinated with a 254P1D6B vaccine.

For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any 254P1D6B vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on FicoII-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/mI), streptomycin (50 μg/mI), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 μg/mI to each well and HBV core 128-140 epitope is added at 1 μg/mI to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4 x 10⁵ PBMC are stimu ated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 µl/well of complete RPMI. On days 3 and 10, 100 µl of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 10⁵ irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific ⁵¹Cr release, based on comparison with non-diseased control subjects as previously described (Rehermann *et al., Nature Med.* 2:1104,1108, 1996; Rehermann *et al., J. Clin. Invest.* 97:1655-1665, 1996; and Rehermann *et al. J. Clin. Invest.* 98:1432-1440, 1996).

Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, *et al. J. Virol.* 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologcus EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of

the invention at 10 μM, and labeled with 100 μCi of ⁵¹Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard 4-h, split well ⁵¹Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to 254P1D6B or a 254P1D6B vaccine.

Similarly, Class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5x10⁵ cells/well and are stimulated with 10 µg/ml synthetic peptide of the invention, whole 254P1D6B antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10U/ml IL-2. Two days later, 1 µCi ³H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for ³H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of ³H-thymidine incorporation in the presence of antigen divided by the ³H-thymidine incorporation in the presence of antigen.

Example 29: Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:

A total of about 27 individuals are enrolled and divided into 3 groups:

Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 µg of peptide composition;

Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 µg peptide composition;

Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 μ g of peptide composition. After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.

The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

The vaccine is found to be both safe and efficacious.

Example 30: Phase II Trials In Patients Expressing 254P1D6B

Phase II trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having cancer that expresses 254P1D6B. The main objectives of the trial are to determine an effective dose and regimen for inducing CTLs in cancer patients that express 254P1D6B, to establish the safety of inducing a CTL and HTL response in

PCT/US2004/001965

these patients, and to see to what extent activation of CTLs improves the clinical picture of these patients, as manifested, e.g., by the reduction and/or shrinking of lesions. Such a study is designed, for example, as follows:

The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65 and represent diverse ethnic backgrounds. All of them have a tumor that expresses 254P1D6B.

Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of administering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the treatment of 254P1D6B-associated disease.

Example 31: Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA vaccine in transgenic mice, such as described above in the Example entitled "The Plasmid Construct and the Degree to Which It induces Immunogenicity," can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.

For example, the initial immunization may be performed using an expression vector, such as that constructed in the Example entitled "Construction of "Minigene" Multi-Epitope DNA Plasmids" in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 µg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-10⁷ to 5×10⁹ pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeutic or protective immunity against 254P1D6B is generated.

Example 32: Administration of Vaccine Compositions Using Dendritic Cells (DC)

Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as DC. In this example, peptide-pulsed DC are administered to a patient to stimulate a CTL response *in vivo*. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses *in vivo*. The induced CTL and HTL then destroy or facilitate destruction, respectively, of the target cells that bear the 254P1D6B protein from which the epitopes in the vaccine are derived.

For example, a cocktail of epitope-comprising peptides is administered *ex vivo* to PBMC, or isolated DC therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Monsanto, St. Louis, MO) or GM-

CSF/IL-4. After pulsing the DC with peptides, and prior to reinfusion into patients, the DC are washed to remove unbound peptides.

As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of DC reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50 x 10⁶ DC per patient are typically administered, larger number of DC, such as 10⁷ or 10⁶ can also be provided. Such cell populations typically contain between 50-90% DC.

In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC generated after treatment with an agent such as ProgenipoietinTM are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 10³ to 10¹⁰. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if ProgenipoietinTM mobilizes 2% DC in the peripheral blood of a given patient, and that patient is to receive 5 x 10⁶ DC, then the patient will be injected with a total of 2.5 x 10⁸ peptide-loaded PBMC. The percent DC mobilized by an agent such as ProgenipoietinTM is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.

Ex vivo activation of CTL/HTL responses

Alternatively, *ex vivo* CTL or HTL responses to 254P1D6B antigens can be induced by incubating, in tissue culture, the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, *i.e.*, tumor cells.

Example 33: An Alternative Method of Identifying and Confirming Motif-Bearing Peptides

Another method of identifying and confirming motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be transfected with nucleic acids that express the antigen of interest, e.g. 254P1D6B. Peptides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transported and displayed on the cell's surface. Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo *et al., J. Immunol.* 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule expressed on the cell.

Alternatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, *i.e.*, they can then be transfected with nucleic acids that encode 254P1D6B to isolate peptides corresponding to 254P1D6B that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.

As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

Example 34: Complementary Polynucleotides

Sequences complementary to the 254P1D6B-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring 254P1D6B. Although use of oligonuclectides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using, e.g., OLIGO 4.06 software (National Biosciences) and the coding sequence of 254P1D6B. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to a 254P1D6B-encoding transcript.

Example 35: Purification of Naturally-occurring or Recombinant 254P1D6B Using 254P1D6B-Specific Antibodies

Naturally occurring or recombinant 254P1D6B is substantially purified by immunoaffinity chromatography using antibodies specific for 254P1D6B. An immunoaffinity column is constructed by covalently coupling anti-254P1D6B antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing 254P1D6B are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of 254P1D6B (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/254P1D6B binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and GCR.P is collected.

Example 36: Identification of Molecules Which Interact with 254P1D6B

254P1D6B, or biologically active fragments thereof, are labeled with 121 1 Bolton-Hunter reagent. (See, e.g., Bolton *et al.* (1973) Biochem, J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled 254P1D6B, washed, and any wells with labeled 254P1D6B complex are assayed. Data obtained using different concentrations of 254P1D6B are used to calculate values for the number, affinity, and association of 254P1D6B with the candidate molecules.

Example 37: In Vivo Assay for 254P1D6B Tumor Growth Promotion

The effect of a 254P1D6B protein on tumor cell growth can be confirmed *in vivo* by gene overexpression in a variety of cancer cells such as those in Table I. For example, as appropriate, SCID mice can be injected SQ on each flank with 1 x 10⁶ prostate, kidney, colon or bladder cancer cells (such as PC3, LNCaP, SCaBER, UM-UC-3, HT1376, SK-CO, Caco, RT4, T24, Caki, A-498 and SW839 cells) containing tkNeo empty vector or 254P1D6B.

At least two strategies can be used:

(1) Constitutive 254P1D6B expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), or from heterologous mammalian promoters, *e.g.*, the actin promoter or an immunoglobulin promoter, provided such promoters are compatible with the host cell systems.

(2) Regulated expression under control of an inducible vector system, such as ecdysone, tet, etc., can be used provided such promoters are compatible with the host cell systems. Tumor volume is then monitored at the appearance of palpable tumors or by following serum markers such as PSA. Tumor development is followed over time to validate that 254P1D6B-expressing cells grow at a faster rate and/or that tumors produced by 254P1D6B-expressing cells demonstrate characteristics of altered aggressiveness (e.g., enhanced metastasis, vascularization, reduced responsiveness to

PCT/US2004/001965

chemotherapeutic drugs). Tumor volume is evaluated by caliper measurements. Additionally, mice can be implanted with the same cells orthotopically in the prostate, bladder, colon or kidney to determine if 254P1D6B has an effect on local growth, e.g., in the prostate, bladder, colon or kidney or on the ability of the cells to metastasize, specifically to lungs or lymph nodes (Saffran *et al.*, Proc Natl Acad Sci U S A. 2001, 98: 2658; Fu, X., *et al.*, Int. J. Cancer, 1991, 49: 938-939; Chang, S., *et al.*, Anticancer Res., 1997, 17: 3239-3242; Peralta, E. A., *et al.*, J. Urol., 1999, 162: 1806-1811). For instance, the orthotopic growth of PC3 and PC3-254P1D6B can be compared in the prostate of SCID mice. Such experiments reveal the effect of 254P1D6B on orthotopic tumor growth, metastas s and/or angiogenic potential.

Furthermore, this assay is useful to confirm the inhibitory effect of candidate therapeutic compositions, such as 254P1D6B antibodies or intrabodies, and 254P1D6B antisense molecules or ribozymes, or 254P1D6B directed small molecules, on cells that express a 254P1D6B protein.

Example 38: 254P1D6B Monoclonal Antibody-mediated Inhibition of Tumors In Vivo

The significant expression of 254P1D6B, in cancer tissues, together with its restricted expression in normal tissues makes 254P1D6B an excellent target for antibody therapy. Similarly, 254P1D6B is a target for T cell-based immunotherapy. Thus, the therapeutic efficacy of anti-254P1D6B mAbs is evaluated, e.g., in human prostate cancer xenograft mouse models using androgen-independent LAPC-4 and LAPC-9 xenografts (Craft, N., *et al.* Cancer Res, 1999. 59(19): p. 5030-5036), kidney cancer xenografts (AGS-K3, AGS-K6), kidney cancer metastases to lymph node (AGS-K6 met) xenografts, and kidney cancer cell lines transfected with 254P1D6B, such as 769P-254P1D6B, A498-254P1D6B.

Antibody efficacy on tumor growth and metastasis formation is studied, e.g., in mouse orthotopic prostate cancer xenograft models and mouse kidney xenograft models. The antibodies can be unconjugated, as discussed in this example, or can be conjugated to a therapeutic modality, as appreciated in the art. Anti-254P1D6B mAbs inhibit formation of both the androgen-dependent LAPC-9 and androgen-independent PC3-254P1D6B tumor xenografts. Anti-254P1D6B mAbs also retard the growth of established orthotopic tumors and prolonged survival of tumor-bearing mice. These results indicate the utility of anti-254P1D6B mAbs in the treatment of local and advanced stages of, e.g., prostate cancer. (See, e.g., Saffran, D., *et al.*, PNAS 10:1073-1078 or located on the World Wide Web at (.pnas.org/cgi/doi/10.1073/pnas.051624698). Similarly, anti-254P1D6B mAbs inhibit formation of AGS-K3 and AGS-K6 tumors in SCID mice, and prevent or retard the growth A498-254P1D6B tumor xenografts. These results indicate the use of anti-254P1D6B mAbs in the treatment of prostate and/or kidney cancer.

Administration of the anti-254P1D6B mAbs leads to relardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies indicate that 254P1D6B is an attractive target for immunotherapy and demonstrate the therapeutic use of anti-254P1D6B mAbs for the treatment of local and metastatic cancer. This example demonstrates that unconjugated 254P1D6B monoclonal antibodies are effective to inhibit the growth of human prostate tumor xenografts and human kidney xenografts grown in SCID mice.

Tumor inhibition using multiple unconjugated 254P1D6B mAbs

Materials and Methods

254P1D6B Monoclonal Antibodies:

Monoclonal antibodies are obtained against 254P1D6B, as described in Example 11 entitled: <u>Generation of</u> <u>254P1D6B Monoclonal Antibodies (mAbs)</u>, or may be obtained commercially. The antibodies are characterized by ELISA, Western blot, FACS, and immunoprecipitation for their capacity to bind 254P1D6B. Epitope mapping data for the anti-254P1D6B mAbs, as determined by ELISA and Western analysis, recognize epitopes on a 254P1D6B protein. Immunohistochemical analysis of cancer tissues and cells is performed with these antibodies.

PCT/US2004/001965

The monoclonal antibodies are purified from ascites or hybridoma tissue culture supernatants by Protein-G Sepharose chromatography, dialyzed against PBS, filter sterilized, and stored at -20°C. Protein determinations are performed by a Bradford assay (Bio-Rad, Hercules, CA). A therapeutic monoclonal antibody or a cocktail comprising a mixture of individual monoclonal antibodies is prepared and used for the treatment of mice receiving subcutaneous or orthotopic injections of, e.g., LAPC-9 prostate tumor xenografts.

Cancer Xenografts and Cell Lines

The LAPC-9 xenograft, which expresses a wild-type androgen receptor and produces prostate-specific antigen (PSA), is passaged in 6- to 8-week-old male ICR-severe combined immunodeficient (SCID) mice (Taconic Farms) by subcutaneous (s.c.) trocar implant (Craft, N., *et al.*, 1999, Cancer Res. 59:5030-5036). The AGS-K3 and AGS-K6 kidney xenografts are also passaged by subcutaneous implants in 6- to 8- week old SCID mice. Single-cell suspensions of tumor cells are prepared as described in Craft, *et al.* The prostate carcinoma cell line PC3 (American Type Culture Collection) is maintained in RPMI supplemented with L-glutamine and 10% FBS, and the kidney carcinoma line A498 (American Type Culture Collection) is maintained in DMEM supplemented with L-glutamine and 10% FBS.

PC3-254P1D6B and A498-254P1D6B cell populations are generated by retroviral gene transfer as described in Hubert, R.S., *et al.*, STEAP: A Prostate-specific Cell-surface Antigen Highly Expressed in Human Prostate Tumors, Proc Natl. Acad. Sci. U S A, 1999. 96(25): p. 14523-14528. Anti-254P1D6B staining is detected by using, e.g., an FITC-conjugated goat anti-mouse antibody (Southern Biotechnology Associates) followed by analysis on a Coulter Epics-XL f low cytometer.

Xenograft Mouse Models.

Subcutaneous (s.c.) tumors are generated by injection of 1 x 10 ⁶ LAPC-9, AGS-K3, AGS-K6, PC3, PC3-254P1D6B, A498 or A498-254P1D6B cells mixed at a 1:1 dilution with Matrigel (Collaborative Research) in the right flank of male SCID mice. To test antibody efficacy on tumor formation, i.p. antibody injections are started on the same day as tumorcell injections. As a control, mice are injected with either purified mouse IgG (ICN) or PBS; or a purified monoclonal antibody that recognizes an irrelevant antigen not expressed in human cells. In preliminary studies, no difference is found between mouse IgG or PBS on tumor growth. Tumor sizes are determined by vernier caliper measurements, and the tumor volume is calculated as length x width x height. Mice with s.c. tumors greater than 1.5 cm in diameter are sacrificed. PSA levels are determined by using a PSA ELISA kit (Anogen, Mississauga, Ontario). Circulating levels of anti-254P1D6B mAbs are determined by a capture ELISA kit (Bethyl Laboratories, Montgomery, TX). (See, e.g., (Saffran, D., *et al.*, PNAS 10:1073-1078 or on the world wide web as pnas.org/cgi/ doi/10.1073/pnas.051624698)

Orthotopic prostate injections are performed under anesthesia by using ketamine/xylazine. For prostate orthotopic studies, an incision is made through the abdominal muscles to expose the bladder and seminal vesicles, which then are delivered through the incision to expose the dorsal prostate. LAPC-9 cells (5 x 10⁵) mixed with Matrigel are injected into each dorsal lobe in a 10 µl volume. To monitor tumor growth, mice are bled on a weekly basis for determination of PSA levels. For kidney orthotopic models, an incision is made through the abdominal muscles to expose the kidney. AGS-K3 or AGS-K6 cells mixed with Matrigel are injected under the kidney capsule. The mice are segregated into groups for appropriate treatments, with anti-254P1D6B or control mAbs being injected i.p.

Anti-254P1D6B mAbs Inhibit Growth of 254P1D6B-Expressing Xenograft-Cancer Tumors

The effect of anti-254P1D6B mAbs on lumor formation is tested by using, e.g., LAPC-9 and/or AGS-K3 orthotopic models. As compared with the s.c. tumor model, the orthotopic model, which requires injection of tumor cells directly in the mouse prostate or kidney, respectively, results in a local tumor growth, development of metastasis in distal sites, deterioration of mouse health, and subsequent death (Saffran, D., *et al.*, PNAS supra; Fu, X., *et al.*, Int J Cancer, 1992. 52(6): p. 987-90; Kubota, T., J Cell Biochem, 1994. 56(1): p. 4-8). The features make the orthotopic model more

representative of human disease progression and allow for tracking of the therapeutic effect of mAbs on clinically relevant end points.

Accordingly, tumor cells are injected into the mouse prostate or kidney, and the mice are segregated into two groups and treated with either: a) 200-500µg, of anti-254P1D3B Ab, or b) PBS for two to five weeks.

As noted, a major advantage of the orthotopic prostate-cancer model is the ability to study the development of metastases. Formation of metastasis in mice bearing established orthotopic tumors is studied by IHC analysis on lung sections using an antibody against a prostate-specific cell-surface protein STEAP expressed at high levels in LAPC-9 xenografts (Hubert, R.S., *et al.*, Proc Natl. Acad. Sci. U S A, 1999. 96(25): p. 14523-14528) or anti-G250 antibody for kidney cancer models. G250 is a clinically relevant marker for renal clear cell carcinoma, which is selectively expressed on tumor but not normal kidney cells (Grabmaier K et al, Int J Cancer. 2000, 85: 865).

Mice bearing established orthotopic LAPC-9 tumors are administered 500-1000 µg injections of either anti-254P1D6B mAb or PBS over a 4-week period. Mice in both groups are allowed to establish a high tumor burden (PSA levels greater than 300 ng/ml), to ensure a high frequency of metastasis formation in mouse lungs. Mice then are killed and their prostate/kidney and lungs are analyzed for the presence of tumor cells by IHC analysis.

These studies demonstrate a broad anti-tumor efficacy of anti-254P1D6B antibodies on initiation and/or progression of prostate and kidney cancer in xenograft mouse models. Anti-254P1D6B antibodies inhibit tumor formation of both androgendependent and androgen-independent prostate tumors as well as retarding the growth of already established tumors and prolong the survival of treated mice. Moreover, anti-254P1D6B mAbs demonstrate a dramatic inhibitory effect on the spread of local prostate tumor to distal sites, even in the presence of a large tumor burden. Similar therapeutic effects are seen in the kidney cancer model. Thus, anti-254P1D6B mAbs are efficacious on major clinically relevant end points (tumor growth), prolongalion of survival, and health.

Example 39: Therapeutic and Diagnostic use of Anti-254P1D6B Antibodies in Humans.

Anti-254P1D6B monoclonal antibodies are safely and effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Western blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-254P1D6B mAb show strong extensive staining in carcinoma but significantly lower or undetectable levels in normal tissues. Detection of 254P1D6E in carcinoma and in metastatic disease demonstrates the usefulness of the mAb as a diagnostic and/or prognostic indicator. Anti-254P1D6B antibodies are therefore used in diagnostic applications such as immunohistochemistry of kidney biopsy specimens to detect cancer from suspect patients.

As determined by flow cytometry, anti-254P1D6B mAb specifically binds to carcinoma cells. Thus, anti-254P1D6B antibodies are used in diagnostic whole body imaging applications, such as radioimmunoscintigraphy and radioimmunotherapy, (see, e.g., Potamianos S., et. al. Anticancer Res 20(2A):925-948 (2000)) for the detection of localized and metastatic cancers that exhibit expression of 254P1D6B. Shedding or release of an extracellular domain of 254P1D6B into the extracellular milieu, such as that seen for alkaline phosphodiesterase B10 (Meerson, N. R., Hepatology 27:563-568 (1998)), allows diagnostic detection of 254P1D6B by anti-254P1D6B antibodies in serum and/or urine samples from suspect patients.

Anti-254P1D6B antibodies that specifically bind 254P1D6B are used in therapeutic applications for the treatment of cancers that express 254P1D6B. Anti-254P1D6B antibodies are used as an unconjugated modality and as conjugated form in which the antibodies are attached to one of various therapeutic or imaging modalities well known in the art, such as a prodrugs, enzymes or radioisotopes. In preclinical studies, unconjugated and conjugated anti-254P1D6B antibodies are tested for efficacy of tumor prevention and growth inhibition in the SCID mouse cancer xenograft models, e.g., kidney cancer models AGS-K3 and AGS-K6, (see, e.g., the Example entitled "254P1D6B Monoclonal Antibody-mediated Inhibition of

PCT/US2004/001965

Bladder and Lung Tumors *In Vivo*"). Either conjugated and unconjugated anti-254P1D6B antibodies are used as a therapeutic modality in human clinical trials either alone or in combination with other treatments as described in following Examples.

Example 40: Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of Human Anti-254P1D6B Antibodies In vivo

Antibodies are used in accordance with the present invention which recognize an epitope on 254P1D6B, and are used in the treatment of certain tumors such as those listed in Table I. Based upon a number of factors, including 254P1D6B expression levels, tumors such as those listed in Table I are presently preferred indications. In connection with each of these indications, three clinical approaches are successfully pursued.

I.) Adjunctive therapy: In adjunctive therapy, patients are treated with anti-254P1D6B antibodies in combination with a chemotherapeutic or antineoplastic agent and/or radiation therapy. Primary cancer targets, such as those listed in Table I, are treated under standard protocols by the addition anti-254P1D6B antibodies to standard first and second line therapy. Protocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual doses of standard chemotherapeutic agent. Anti-254P1D6B antibodies are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced prostrate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxol (breast cancer), and doxorubicin (preclinical).

II.) Monotherapy: In connection with the use of the anti-254P1D6B antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease. Patients show some disease stabilization. Trials demonstrate an effect in refractory patients with cancerous tumors.

III.) Imaging Agent: Through binding a radionuclide (e.g., iodine or yttrium (I¹³¹, Y³⁰) to anti-254P1D6B antibodies, the radiotabeled antibodies are utilized as a diagnostic and/or imaging agent. In such a role, the labeled antibodies localize to both solid tumors, as well as, metastatic lesions of cells expressing 254P1D6B. In connection with the use of the anti-254P1D6B antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a post-operative follow-up to determine what tumor remains and/or returns. In one embodiment, a (¹¹¹ In)-254P1D6B antibody is used as an imaging agent in a Phase I human clinical trial in patients having a carcinoma that expresses 254P1D6B (by analogy see, e.g., Divgi *et al. J. Natl. Cancer Inst.* 83:97-104 (1991)). Patients are followed with standard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions are identified.

Dose and Route of Administration

As appreciated by those of ordinary skill in the art, dosing considerations can be determined through comparison with the analogous products that are in the clinic. Thus, anti-254P1D6B antibodies can be administered with doses in the range of 5 to 400 mg/m², with the lower doses used, e.g., in connection with safety studies. The affinity of anti-254P1D6B antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the art for determining analogous dose regimens. Further, anti-254P1D6B antibodies that are fully human antibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human anti-254P1D6B antibodies can be lower, perhaps in the range of 50 to 300 mg/m², and still remain efficacious. Dosing in mg/m², as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to include patients of all sizes from infants to adults.

PCT/US2004/001965

Three distinct delivery approaches are useful for delivery of anti-254P1D6B antibodies. Conventional intravenous delivery is one standard delivery technique for many tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minimize antibody clearance. In a similar manner, certain solid tumors possess vasculature that is appropriate for regional perfusion. Regional perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody.

Clinical Development Plan (CDP)

Overview: The CDP follows and develops treatments of anti-254P1D6B antibodies in connection with adjunctive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trails are open label comparing standard chemotherapy with standard therapy plus anti-254P1D6B antibodies. As will be appreciated, one criteria that can be utilized in connection with enrollment of patients is 254P1D6B expression levels in their tumors as determined by biopsy.

As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 254P1D6B. Standard tests and follow-up are utilized to monitor each of these safety concerns. Anti-254P1D6B antibodies are found to be safe upon human administration.

Example 41: Human Clinical Trial Adjunctive Therapy with Human Anti-254P1D6B Antibody and Chemotherapeutic Agent

A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti-254P1D6B antibody in connection with the treatment of a solid tumor, e.g., a cancer of a tissue listed in Table I. In the study, the safety of single doses of anti-254P1D6B antibodies when utilized as an adjunctive therapy to an antineoplastic or chemotherapeutic agent as defined herein, such as, without limitation: cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like, is assessed. The trial design includes delivery of six single doses of an anti-254P1D6B antibody with dosage of antibody escalating from approximately about 25 mg/m² to about 275 mg/m² over the course of the treatment in accordance with the following schedule:

Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 mAb Dose 25 75 125 175 225 275 mg/m⁻² mg/m⁻² $mg/m^2 - mg/m^2$ mg/m² mg/m² Chemotherapy ÷ + (standard dose)

Patients are closely followed for one-week following each administration of antibody and chemotherapy. In particular, patients are assessed for the safety concerns mentioned above: (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the human antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 254P1D6B. Standard tests and follow-up are utilized to monitor each of these safety concerns. Patients are also assessed for clinical outcome, and particularly reduction in tumor mass as evidenced by MRI or other imaging.

The anti-254P1D6B antibodies are demonstrated to be safe and efficacious, Phase II trials confirm the efficacy and refine optimum dosing.

Example 42: Human Clinical Trial: Monotherapy with Human Anti-254P1D6B Antibody

Anti-254P1D6B antibodies are safe in connection with the above-discussed adjunctive trial, a Phase II human clinical trial confirms the efficacy and optimum dosing for monotherapy. Such trial is accomplished, and entails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that patients do not receive chemotherapy concurrently with the receipt of doses of anti-254P1D6B antibodies.

Example 43: Human Clinical Trial: Diagnostic Imaging with Anti-254P1D6B Antibody

Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of anti-254P1D6B antibodies as a diagnostic imaging agent. The protocol is designed in a substantially similar manner to those described in the art, such as in Divgi *et al. J. Natl. Cancer Inst.* 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality.

Example 44: Involvement in Tumor Progression

The 254P1D6B gene contributes to the growth of cancer cells. The role of 254P1D6B in tumor growth is confirmed in a variety of primary and transfected cell lines including prostate, colon, bladder and kidney cell lines, as well as NIH 3T3 cells engineered to stably express 254P1D6B. Parental cells lacking 254P1D6B and cells expressing 254P1D6B are evaluated for cell growth using a well-documented proliferation assay (Fraser SP, et al., Prostate 2000;44:61, Johnson DE, Ochieng J, Evans SL. Anticancer Drugs. 1996, 7:288). The effect of 254P1D6B can also be observed on cell cycle progression. Control and 254P1D6B-expressing cells are grown in low serum overnight, and treated with 10% FBS for 48 and 72 hrs. Cells are analyzed for BrdU and propidium iodide incorporation by FACS analysis.

To confirm the role of 254P1D6B in the transformation process, its effect in colony forming assays is investigated. Parental NIH-3T3 cells lacking 254P1D6B are compared to NIH-3T3 cells expressing 254P1D6B, using a soft agar assay under stringent and more permissive conditions (Song Z. et al. Cancer Res. 2000;60:6730).

To confirm the role of 254P1D6B in invasion and metastasis of cancer cells, a well-established assay is used. A non-limiting example is the use of an assay which provides a basement membrane or an analog thereof used to detect whether cells are invasive (e.g., a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999; 59:6010)). Control cells, including prostate, and bladder cell lines lacking 254P1D6B are compared to cells expressing 254P1D6B. Cells are loaded with the fluorescent dye, calcein, and plated in the top well of a support structure coated with a basement membrane analog (e.g. the Transwell Insert) and used in the assay. Invasion is determined by fluorescence of cells in the lower chamber relative to the fluorescence of the entire cell population.

254P1D6B also plays a role in cell cycle and apoptosis. Parental cells and cells expressing 254P1D6B are compared for differences in cell cycle regulation using a well-established BrdU assay (Abdel-Malek ZA. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) and limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide. Cells are analyzed for entry into the G1, S, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing 254P1D6B, including normal and tumor prostate, and kidney cells. Engineered and parental cells are treated with various chemotherapeutic agents, such as etoposide, flutamide, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by 254P1D6B can play a critical role in regulating tumor progression and tumor load.

PCT/US2004/001965

When 254P1D6B plays a role in cell growth, transformation, invasion or apoptosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.

Example 45: Involvement in Angiogenesis

Angiogenesis or new capillary blood vessel formation is necessary for tumor growth (Hanahan D, Folkman J. Cell. 1996, 86:353; Folkman J. Endocrinology. 1998 139:441). 254P1D6B plays a role in angiogenesis. Several assays have been developed to measure angiogenesis *in vitro* and *in vivo*, such as the tissue culture assays endothelial cell tube formation and endothelial cell proliferation. Using these assays as well as *in vitro* nec-vascularization, the role of 254P1D6B in angiogenesis, enhancement or inhibition, is confirmed. For example, endothelial cells engineered to express 254P1D6B are evaluated using tube formation and proliferation assays. The effect of 254P1D6B is also confirmed in animal models *in vivo*. For example, cells either expressing or tacking 254P1D6B are implanted subcutaneously in immunocompromised mice. Endothelial cell migration and angiogenesis are evaluated 5-15 days later using immunohistochemistry techniques. 254P1D6B affects angiogenesis, and it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.

Example 46: Involvement in Cell Adhesion

Cell adhesion plays a critical role in tissue colonization and metastasis. 254P1D6B participates in cellular organization, and as a consequence cell adhesion and motility. To confirm that 254P1D6B regulates cell adhesion, control cells lacking 254P1D6B are compared to cells expressing 254P1D6B, using techniques previously described (see, e.g., Haier et al, Br. J. Cancer. 1999, 80:1867; Lehr and Pienta, J. Natl. Cancer Inst. 1998, 90:118). Briefly, in one embodiment, cells labeled with a fluorescent indicator, such as calcein, are incubated on tissue culture wells coated with media alone or with matrix proteins. Adherent cells are detected by fluorimetric analysis and percent adhesion is calculated. In another embodiment, cells lacking or expressing 254P1D6B are analyzed for their ability to mediate cell-cell adhesion using similar experimental techniques as described above. Both of these experimental systems are used to identify proteins, antibodies and/or small molecules that modulate cell adhesion to extracellutar matrix and cell-cell interaction. Cell adhesion plays a critical role in tumor growth, progression, and, colonization, and 254P1D6B is involved in these processes. Thus, it serves as a diagnostic, preventative and/or therapeutic modality.

Example 47: In vitro biologic target validation: Target activation / inactivation; RNA interference (RNAi)

Systematic alteration of 254P1D6B gene activity in relevant cell assays or in animal models is an approach for understanding gene function. There are two complementary platforms to alter gene function: Target activation and target inactivation. 254P1D6B target gene activation induces a disease phenotype (i.e. tumurogenesis) by mimicking the differential gene activity that occurs in several tumors. Conversely, 254P1D6B target inactivation reverses a phenotype found in a particular disease and mimics the inhibition of the target with a putative lead compound/agent.

RNA interference (RNAi) technology is implemented to a variety of cell assays relevant to oncology. RNAi is a post-transcriptional gene silencing mechanism activated by double stranded RNA (dsRNA). RNAi induces specific mRNA degradation leading to changes in protein expression and subsequently in gene function. In mammalian cells, dsRNAs (>30 bp) can activate the interferon pathway which induces non-specific mRNA degradation and protein translation inhibition. When transfecting small synthetic dsRNA (21-23 nucleotides in length), the activation of the interferon pathway is no longer observed, however these dsRNAs have the correct composition to activate the RNAi pathway targeting for degradation, specifically some mRNAs. See, Elbashir S.M., et. al., Duplexes of 21-nucleotide RNAs Mediate RNA interference in

Cultured Mammalian Cells, Nature 411(6836):494-8 (2001). Thus, RNAi technology is used successfully in mammalian cells to silence targeted genes.

Loss of cell proliferation control is a hallmark of cancerous cells; thus, assessing the role of 254P1D6B specific target genes in cell survival/proliferation assays is relevant. RNAi technology is implemented to the cell survival (cellular metabolic activity as measured by MTS) and proliferation (DNA synthesis as measured by ³H-thymidine uptake) assays as a first filter to assess 254P1D6B target validation (TV). Tetrazolium-based colorimetric assays (i.e. MTT and MTS) detect viable cells exclusively. Living cells are metabolically active and can reduce tetrazolium salts to colored formazan compounds. Dead cells do not reduce the salts.

An alternative method to analyze 254P1D6B cell proliferation is the measurement of DNA synthesis as a marker for proliferation. Labeled DNA precursors (i.e. ³H-Thymidine) are used and their incorporation to DNA is quantified. Incorporation of the labeled precursor into DNA is directly proportional to the amount of cell division occurring in the culture.

Correlating 254P1D6B cellular phenotype with gene knockdown is critical following RNAi treatments to draw valid conclusions and rule out toxicity or other non-specific effects of these reagents. Assays to measure the levels of expression of both protein and mRNA for the 254P1D6B target after RNAi treatments are important. Specific antibodies against the 254P1D6B target permit this question to be addressed by performing Western blotting with whole cell lysates.

An alternative method is the use of a tagged full length 254P1D6B target cDNA inserted in a mammalian expression vector (i.e. pcDNA3 series) providing a tag for which commercial Abs are available (Myc, His, V5 etc) is transiently co-transfected with individual siRNAs for 254P1D6B gene target, for instance in COS cells. Transgene expression permits the evaluation of which siRNA is efficiently silencing target gene expression, thus providing the necessary information to correlate gene function with protein knockdown. Both endogenous and transgene expression approaches show similar results.

A further alternative method for 254P1D6B target gene expression is measurement of mRNA levels by RT-PCR or by Taqman/Cybergreen. These methods are applied in a high throughput manner and are used in cases where neither Abs nor full length cDNAs are available. Using this method, poly-A mRNA purification and a careful design of primers/probes (should be 5' to the siRNA targeted sequence) is needed for the Taqman approach. Some considerations apply to the primer design if pursuing RT-PCR from total RNA (primers should flank the siRNA targeted sequence). However, in some instances, the correlation between mRNA/protein is not complete (i.e., protein a with long half life) and the results could be misleading.

Several siRNAs per 254P1D6B target gene are selected and tested in parallel in numerous cell lines (usually with different tissue origin) in the survival and proliferation assays. Any phenotypic effect of the siRNAs in these assays is correlated with the protein and/or mRNA knockdown levels in the same cell lines. To further correlate cell phenotype and specific gene knockdown by RNAi, serial siRNA titrations are performed and are tested in parallel cell phenotype and gene knockdown. When 254P1D6B is responsible for the phenotype, a similar IC₅₀ value in both assays is obtained.

Another method used to measure cell proliferation is performing clonogenic assays. In these assays, a defined number of cells are plated onto the appropriate matrix and the number of colonies formed after a period of growth following siRNA treatment is counted.

In 254P1D6B cancer target validation, complementing the cell survival/proliferation analysis with apoptosis and cell cycle profiling studies are considered. The biochemical hallmark of the apoptotic process is genomic DNA fragmentation, an irreversible event that commits the cell to die. A method to observe fragmented DNA in cells is the immunological detection of histone-complexed DNA fragments by an immunoassay (i.e. cell death detection ELISA) which measures the enrichment of histone-complexed DNA fragments (mono- and oligo-nucleosomes) in the cytoplasm of apoptotic cells. This assay does

not require pre-labeling of the cells and can detect DNA degradation in cells that do not proliferate in vitro (i.e. freshly isolated tumor cells).

The most important effector molecules for triggering apoptotic cell death are caspases. Caspases are proteases that when activated cleave numerous substrates at the carboxy-terminal site of an aspartate residue mediating very early stages of apoptosis upon activation. All caspases are synthesized as pro-enzymes and activation involves cleavage at aspartate residues. In particular, caspase 3 seems to play a central role in the initiation of cellular events of apoptotis. Assays for determination of caspase 3 activation detect early events of apoptotis. Following RNAi treatments, Western blot detection of active caspase 3 presence or proteolytic cleavage of products (i.e. PARP) found in apoptotic cells further support an active induction of apoptosis. Because the cellular mechanisms that result in apoptosis are complex, each has its advantages and limitations. Consideration of other criteria/endpoints such as cellular morphology, chromatin condensation, membrane bebbling, apoptotic bodies help to further support cell death as apoptotic.

Not all the gene targets that regulate cell growth are anti-apoptotic, the DNA content of permeabilized cells is measured to obtain the profile of DNA content or cell cycle profile. Nuclei of apoptotic cells contain less DNA due to the leaking out to the cytoplasm (sub-G1 population). In addition, the use of DNA stains (i.e. propidium iodide) also differentiate between the different phases of the cell cycle in the cell population due to the presence of different quantities of DNA in G0/G1, S and G2/M. In these studies the subpopulations can be quantified.

For the 254P1D6B gene, RNAi studies facilitate the contribution of the gene product in cancer pathways. Such active RNAi molecules have use in identifying assays to screen for mAbs that are active anti-tumor therapeutics. When 254P1D6B plays a role in cell survival, cell proliferation, tumorogenesis, or apoptosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.

Example 48: RNA interference (RNAi)

Various protocols for achieving RNA interference are available.

exemplary protocol 1

RNA interference (RNAi) makes use of sequence specific double stranded RNA to prevent gene expression. Small interfering RNA (siRNA) is transfected into mammalian cells and thereby induce sequence specific mRNA degradation (Elbashir, *et al*, <u>Nature</u>, 2001; vol. 411: 494-498).

The sense strand of 254P1D6B is labeled at 3' with fluorescein, 6-FAM (ABS 494nm, EMM 525 nm, green). The siRNA is dissolved in RNA-free sterile buffer (100mM KOAc, 30 mM HEPES KOH, 2mM MOAc, at pH 7.4) to make 20 µM stock (200-fold concentration). The siRNA is transfected into cells seeded on 6-well plates with oligofectamine reagent (GIBCO/Invitrogen, Carlsbad, CA). The final concentration of siRNA is determined.

254P1D6B protein expression is detected 24 hours after transfection by immunostaining followed by flow cytometry. In addition, confirmation of altered gene expression is performed by Western blotting. Expression reduction is confirmed by Western blot analysis where 254P1D6B protein is substantially reduced in 254P1D6B RNAi treated cells relative to control and untreated cells.

exemplary protocol 2

In one embodiment, the day before siRNA transfection, cells are plated in media (e.g., RPMI 1640 (GIBCO/Invitrogen, Carlsbad, CA) with 10% FBS without antibictics) at 2x10³ cells/well in 80 µl (96 well plate format) for the survival, proliferation and apoptosis assays. In another embodiment, the day before siRNA transfection, cells are plated in media (e.g., RPMI 1640 with 10% FBS without antibiotics) at 5x10⁴ cells/well in 800 µl (12 well plate format) for the cell cycle analysis by flow cytometry, gene silencing by Western blot and/or PCR analysis. In parallel with the 254P1D6B siRNA sequences, the following sequences are included in every experiment as controls. Mock transfected cells with Lipofectamine 2000 (GIBCO/Invitrogen, Carlsbad, CA) and annealing buffer (no siRNA), non-specific siRNA (targeted sequence not

PCT/US2004/001965

represented in the human genome 5' AATTCTCCGAACGTGTCACGTTT 3'; commercial control from Xeragon/Qiagen, Valencia, CA) (SEQ ID NO: 275); Luciferase specific siRNA (targeted sequence: 5' AAGGGACGAAGACGAACACUUCTT 3') (SEQ ID NO: 276) and Eg5 specific siRNA (targeted sequence: 5' AACTGAAGACCTGAAGACAATAA 3') (SEQ ID NO: 277). The siRNAs are used at various concentrations (ranging from 200 pM to 100 nM) and 1µg/ml Lipofectamine 2000.

The procedure is as follows: First siRNAs are diluted in OPTIMEM (serum-free transfection media, Invitrogen) at suitable μ M (10-fold concentrated) and incubated 5-10 min at room temperature (RT). Lipofectamine 2000 was diluted at 10 μ g/ml (10-fold concentrated) for the total number transfections and incubated 5-10 min RT. Appropriate amounts of diluted 10-fold concentrated Lipofectamine 2000 are mixed 1:1 with diluted 10-fold concentrated siRNA and incubated at RT for 20-30 minutes (5-fold concentrated transfection solution). 20 or 200 μ l of the 5-fold concentrated transfection solutions were added to the respective samples and incubated at 37°C for 48 to 96 hours (depending upon the assay employed, such as proliferation, apoptosis, survival, cell cycle analysis, migration or Western blot).

Reduced gene expression of 254P1D6B using siRNA transfection results in significantly diminished proliferation of transformed cancer cells that endogenously express the antigen. Cells treated with specific siRNAs show reduced survival as measured, e.g., by a metabolic readout of cell viability, corresponding to the reduced proliferative capacity. Further, such cells undergo apoptosis in response to RNAi as measured, e.g., by a nucleosome-release assay (Roche Applied Science, Indianapolis, IN) or detection of sub-G1 populations during cell cycle analysis by propidium iodide staining and flow cytometry. These results demonstrate that siRNA treatment provides an effective therapeutic for the elimination of cancer cells that specifically express the 254P1D6B antigen.

Throughout this application, various website data content, publications, patent applications and patents are referenced. (Websites are referenced by their Uniform Resource Locator, or URL, addresses on the World Wide Web.)

The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.

.

WO 2004/067716

TABLES:

TABLE I: Tissues that Express 254P1D6B when malignant:

Lung

Ovary

Prostate

Pancreas

Breast

TABLE II: Amino Acid Abbreviations

SINGLE LETTER	THREE LETTER	FULL NAME
F	Phe	phenylalanine
L	Leu	leucine
S	Ser	serine
Y	Tyr	tyrosine
C	Cys	cysteine
W	Trp	tryptophan
Р	Pro	proline
Н	His	histidine
Q	Gln	glutamine
R	Arg	arginine
	lle	isoleucine
M	Met	methionine
Τ	Thr	threonine
N	Asn	asparagine
К	Lys	lysine
V	Val	valine
A	Ala	alanine
D	Asp	aspartic acid
E	Glu	glutamic acid
G	Gly	glycine

TABLE III: Amino Acid Substitution Matrix

Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution matrix). The higher the value, the more likely a substitution is found in related, natural proteins. (See world wide web URL ikp.unibe.ch/manual/blosum62.html)

A C D E F G H I K L M N P Q R Υ. SТ V W 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1 -1 -1 4 1 0 0 -3 -2 A 9 -3 -4 -2 -3 -3 -1 -3 -1 -1 -1 -3 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 C 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -1 -3 -4 -3 D 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -2 E 6 -3 -1 0 -3 0 0 -3 -4 -3 -3 -2 -2 -1 1 3 F 6 -2 -4 -2 -4 -3 0 -2 -2 -2 0 -2 -3 -2 -3 G 8 -3 -1 -3 -2 1 -2 0 0 -1 -2 -3 -2 2 H 4 -3 2 1 -3 -3 -3 -3 -3 -2 -1 3 -3 -1 I 5 -2 -1 0 -1 1 2 0 -1 -2 -3 -2 K 2 -3 -3 -2 -2 -2 -1 1 -2 -1 L 4 5 -2 -2 0 -1 -1 -1 1 -1 -1 M 6 -2 0 0 1 0 -3 -4 -2 N 7 -1 -2 -1 -1 -2 -4 -3 P 5 1 0 -1 -2 -2 -1 Q 5 -1 -1 -3 -3 -2 R 1 -2 -3 -2 S 4 _____т 0 -2 -2 т 5 4 -3 -1 V 11 2 W 7 Y

TABLE IV: HLA Class I/II Motifs/Supermotifs

TABLE IV (A): HLA Class I Supermotifs/Motifs

SUPERMOTIF	POSITION	POSITION	POSITION
	2 (Primary Anchor)	3 (Primary Anchor)	C Terminus (Primary
			Anchor)
A1	TILVMS		FWY
A2	LIVMATQ		IVMATL
A3	VSMATLI		RK
A24	YFWIVLMT		FIYWLM
B7	P		VILFMWYA
B27	RHK		FYLWMVA
B44	ED		FWYLIMVA
B58	ATS		FWYLIVMA
B62	QLIVMP		FWYMIVLA
MOTIFS			
A1	TSM		Y
A1		DEAS	Y
A2.1	LMVQIAT		VLIMAT
A3	LMVISATFCGD		KYRHFA
A11	VTMLISAGNCDF		KRYH
A24	YFWM		- FLIW
A*3101	MVTALIS		RK
A*3301	MVALF/ST		RK
A*6801	AVTMSLI		RK
B*0702	Р	· · · · · · · · · · · · · · · · · · ·	LMFWYAIV
B*3501	Р		
B51	P		LIVEWYAM
B*5301	P		
B*5401	P		ATIVLMEWY

Eolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

TABLE IV (B): HLA Class II Supermotif

1	6	9
W, F, Y, V, .I, L	A, V, I, L, P, C, S, T	A, V, I, L, C, S, T, M, Y

TABLE IV (C): HLA Class II Motifs

MOTIFS		1° anchor 1	2	3	4	5	1° anchor 6	7	8	9
DR4	preferred deleterious	FMYLIVW	M	Т	W	I	VSTCPALIM	MH R		MH WDE
DR1	preferred deleterious	MFLIVWY	С	СН	PAMQ FD	CWD	VMATSPLIC	M GDE		AVM
DR7	preferred	MFLIVWY	Μ	W	A		VMSACTPL			IV
	deleterious		С		G			GRD	N	G
DR3	MOTIFS	1° anchor 1	2	3	1° anchor 4	5	1° anchor 6			
Motif a preferred		LIVMFY			D					
Motif b preferred		LIVMFAY			DNQEST		KRH			
DR Supermotif		MFLIVWY					VMSTACPLI			

Italicized residues indicate less preferred or "tolerated" residues

TABLE IV (D): HLA Class I Supermotifs

	POSITION:	1	2	3	4	5	6	7	8	C-terminus
SUPER-										
A1			1º Anchor				<u> </u>		·	19 0
			TILVMS							FWY
A2			1° Anchor							1° Anchor
40			LIVMATQ				•			LIVMAT
A3	Preferred		<u>1° Anchor</u> VSMA <i>TLI</i>	YFW (4/5)			YFW (3/5)	YFW (4/5)	P (4/5)	<u>1° Anchor</u> RK
	deleterious	DE (3/5);		ÈΕ΄			()	(()	
474		P (5/5)		(4/5)						
A24			<u>1° Anchor</u>							<u>1° Anchor</u>
	Preferred	EWN (E/E)	1º Apphor							FIYWLM
	riciolidu	LIVM (3/5)	P Anchor	EVVY (1/5)					FVVY (2/E)	<u>1°Anchor</u>
	deleterious	DE (3/5);	1	(4/0)		DE	G	ON	(3/5) DE	VILENINYA
		P(5/5);				(3/5)	(4/5)	(4/5)	(4/5)	
		G(4/5);				(0,0)	(0)	(110)	(-40)	
		A(3/5);								
D07		QN(3/5)								
B27			<u>1° Anchor</u>							<u>1°Anchor</u>
		······	RHK							FYLWMIVA
044										<u>1° Anchor</u>
B58			1º Anchor							FWYLIMVA
			ATS							T Anchor
B62			1° Anchor			·····-				1° Apphor
			OL IV/MD							

Halicized residues indicate less preferred or "tolerated" residues

PCT/US2004/001965

TABLE IV (E): HLA Class I Motifs

	POSITION	1	2	3	4	5	6	7	8	9	C- terminus
										or C-terminus	
A1 9-me	preferred r	GFYW	<u>1°Anchor</u> STM	DEA	YFW		Ρ	DEQN	YFW	<u>1°Anchor</u> Y	
	deleterious	DE		RHKLIVMP	А	G	A				
A1 9-mei	preferred r	GRHK	ASTCLIVM	<u>1°Anchor</u> DEAS	GSTC		ASTC	LIVM	DE	<u>1°Anchor</u> Y	
	deleterious	Α	RHKDEPYFW		DE	PQN	RHK	PG	GP		
A1 10- mer	preferred	YFW	<u>1°Anchor</u> STM	DEAQN	A	YFWQN		PASTC	GDE	Р	<u>1°Anchor</u> Y
	deleterious	GP		RHKGLIVM	DE	RHK	QNA	RHKYFW	/ RHK	A	
A1 10- mer	preferred	YFW	STCLIVM	<u>1°Anchor</u> DEAS	A	YFW		PG	G	YFW	1°Anchor Y
	deleterious	RHK	RHKDEPYFW			Ρ	G		PRHK	QN	
A2.1 9-mei	preferred	YFW	<u>1°Anchor</u> LM/VQAT	YFW	STC	YFW		A	Ρ	1°Anchor VLIMAT	
	deleterious	DEP		DERKH			RKH	DERKH			
	POSITION:	1	2	3	4	5	6	7	8	9	C- Terminus
A2.1 10- mer	preferred	AYFW	<u>1°Anchor</u> LM/VQAT	LVIM	G		G		FYWL VIM		1°Anchor VLIMAT
	deleterious	DEP		DE	RKHA	Р		RKH	DERK	IRKH	
A3	preferred	RHK	1°Anchor LMVISATFCGD	YFW	PRHKYF W	A	YFW		P	1°Anchor KYBHEA	
	deleterious	DEP		DE							
A11	preferred	A	1°Anchor VTLMISAGNCE	YFW)	YFW	A	YFW	YFW	P	<u>1°Anchor</u> KRYH	
	deleterious	DEP	F ⁻					^	c		
A24	preferred	YFWRHK	1°Anchor		STC			YEW	YEW	1ºAnchor	
9-mer	deleterious	DEG	YFWM	DE	0		DEDU	/C	1	FLIW	
A24	Preferred	020	1°Anchor		<u>0</u>		DEKH		AGN		1ºAnahar
10- mer			YFWM		1	11 434		1			<u>FL</u> IW
	Deleterious			GDE	QN	RHK	DE	А	QN	DEA	
A3101	Preferred	RHK	<u>1°Anchor</u> MVT <i>ALI</i> S	YFW	P		YFW	YFW	AP	1°Anchor BK	
	Deleterious	DEP		DE		ADE	DE	DE	DE	101	
A3301	Preferred		<u>1°Anchor</u> MVALF/ST	YFW				AYFW	·	<u>1°Anchor</u> RK	<u> </u>
	Deleterious	<u>GP</u>	·	DE							
A6801	Preferred	YFWSTC	<u>1°Anchor</u> AVTMSLI			YFWLIV M		YFW	Р	<u>1°Anchor</u> RK	·
	deleterious	GP		DEG		RHK			A		
B0702	Preferred	RHKFWY	<u>1°Anchor</u> P	RHK		RHK	RHK	RHK	PA	<u>1°Anchor</u> LMF <i>WYAI</i> V	
	deleterious	DEQNP		DEP	DE	DE	GDE	QN	DE		
B3501	Preferred	FWYLIVM	<u>1°Anchor</u> P	FWY				FWY		<u>1°Anchor</u> LMFWY <i>IV</i> A	

126

•

	POSITION	1	2	3	4	5	6	7	8	9	C- terminus
			·							or C-terminus	
A1 9-mer	preferred	GFYW	<u>1°Anchor</u> STM	DEA	YFW		Ρ	DEQN	YFW	<u>1°Anchor</u> Y	
	deleterious	DE		RHKLIVMP	A	G	А				
A1 9-mer	preferred	GRHK	ASTCLIVM	<u>1°Anchor</u> DEAS	GSTC	<u> </u>	ASTC	LIVM	DE	<u>1°Anchor</u> Y	
	deleterious	Α	RHKDEPYFW		DE	PQN	RHK	PG	GP	•	
	deleterious	AGP				G	G				
B51	Preferred	LIVMFWY	1°Anchor P	FWY	STC	FWY		G	FWY	<u>1°Anchor</u> LIVFWYA M	
	deleterious	AGPDER HKSTC				DE	G	DEQN	GDE	<i>///</i>	
B5301	preferred	LIVMFWY	<u>1°Anchor</u> P	FWY	STC	FWY		LIVMFW	ŕFWY	1°Anchor IMFWYAL V	
	deleterious	AGPQN					G	RHKQN	DE	-	
B5401	preferred	Ϝ₩Υ	<u>1°Anchor</u> P	FWYLIVM		LIVM		ALIVM	FWYA P	1°Anchor ATIVLMF WY	
	deleterious	GPQNDE		GDESTC		RHKDE	DE	QNDGE	DE		

TABLE IV (F):

Summary	Summary of HLA-supertypes									
Overall ph	Overall phenotypic frequencies of HLA-supertypes in different ethnic populations									
	Specificity Phenotypic frequency									
Supertype	Position 2	C-Terminus	Caucasian	N.A. Black	Japanese	Chinese	Hispanic	Average		
B7	P	AILMVFWY	43.2	55.1	57.1	43.0	49.3	49.5		
A3	AILMVST	RK	37.5	42.1	45.8	52.7	43.1	44.2		
A2	AILMVT	AILMVT	45.8	39.0	42.4	45.9	43.0	42.2		
A24	YF (WIVLMT)	FI (YWLM)	23.9	38.9	58.3	40.1	38.3	40.0		
B44	E (D)	FWYLIMVA	43.0	21.2	42.9	39.1	39.0	37.0		
A1	TI (LVMS)	FWY	47.1	16.1	21.3	14.7	26.3	25.2		
B27	RHK	FYL (WMI)	28.4	26.1	13.3	13.9	35.3	23.4		
B62	QL (IVMP)	FWY (MIV)	12.6	4.8	36.5	25.4	11.1	18.1		
B58	ATS	FWY (LIV)	10.0	25.1	1.6	9.0	5.9	10.3		

TABLE IV (G):

Calculated population	n coverage afforded	by different HLA-supe	ertype combinatio	ns		
HLA-supertypes						
	Caucaslan	N.A Blacks	Japanese	Chinese	Hispanic	Average
	83.0	86.1	87.5	88.4	86.3	86.2
A2, A3 and B7	99.5	98.1	100.0	99.5	99.4	99.3
A2, A3, B7, A24, B44 and A1	99.9	99.6	100.0	99.8	99.9	99.8
A2, A3, B7, A24, B44, A1, B27, B62,						

and B 58 Motifs indicate the residues defining supertype specificites. The motifs incorporate residues determined on the basis of published data to be recognized by multiple alleles within the supertype. Residues within brackets are additional residues also predicted to be tolerated by multiple alleles within the supertype.

Table V: Frequently Occu	Irring Motifs		
Name	avrg. % identity	Description	Potential Function
zf-C2H2	34%	Zinc finger, C2H2 type	Nucleic acid-binding protein functions as transcription factor, nuclear location probable
cylochrome_b_N	68%	Cytochrome b(N- terminal)/b6/petB	membrane bound oxidase, generate superoxide
lg	19%	Immunoglobulin domain	domains are one hundred amino acids long and include a conserved intradomain disulfide bond.
WD40	18%	WD domain, G-beta repea	tandem repeats of about 40 residues, each containing a Trp-Asp motif. Function in signal transduction and tprotein interaction
PDZ	23%	PDZ domain	may function in targeting signaling molecules to sub-membranous sites
LRR	28%	Leucine Rich Repeat	short sequence motifs involved in protein-protein interactions
Pkinase	23%	Proteir kinase domain	conserved catalytic core common to both serine/threonine and tyrosine protein kinases containing an ATP binding site and a catalytic site

РН	16%	PH domain	pleckstrin homology involved in intracellular signaling or as constituents of the cytoskeleton
EGF	34%	EGF-like domain	30-40 amino-acid long found in the extracellular domain of membrane- bound proteins or in secreted proteins
Rvt	49%	Reverse transcriptase (RNA-dependent DNA polymerase)	
Ank	25%	Ank repeat	Cytoplasmic protein, associates integral membrane proteins to the cytoskeleton
Oxidored_q1	32%	NADH- Ubiquinone/plastoquinone (complex l), various chains	membrane associated. Involved in proton translocation across the membrane
Efhand	24%	EF hand	calcium-binding domain, consists of a12 residue loop flanked on both sides by a 12 residue alpha-helical domain
Rvp	79%	Retroviral aspartyl protease	Aspartyl or acid proteases, centered on a catalytic aspartyl residue
Collagen	42%	Collagen triple helix repeat (20 copies)	extracellular structural proteins involved in formation of connective tissue. The sequence consists of the G-X-Y and the polypeptide chains forms a triple helix.
Fn3	20%	Fibronectin type III domain	Located in the extracellular ligand- binding region of receptors and is about 200 amino acid residues long with two pairs of cysteines involved in disulfide bonds
7tm_1	19%	7 transmembrane receptor (rhodopsin family)	seven hydrophobic transmembrane regions, with the N-terminus located extracellularly while the C-terminus is cytoplasmic. Sicnal through G proteins

Table VI: Post-translational modifications of 254P1D6B

N-Glycosylation site (start position indicated)

196 NSSV (SEQ ID NO: 28) 219 NESA (SEQ ID NO: 29) 262 NSSG (SEQ ID NO: 30) 394 NLSQ (SEQ ID NO: 31) 421 NVTV (SEQ ID NO: 32) 498 NYSF (SEQ ID NO: 33) 513 NSTT (SEQ ID NO: 34) 536 NHTI (SEQ ID NO: 35) 551 NQSS (SEQ ID NO: 36) 715 NNSP (SEQ ID NO: 37) 733 NNSI (SEQ ID NO: 38) 1023 NSSL (SEQ ID NO: 39) 1056 NGSI (SEQ ID NO: 40)

Tyrosine sulfation site (Start Position indicated)

156 EEMSEYSDDYRE (SEQ ID NO: 41) 160 EYSDDYRELEK (SEQ ID NO: 42) 527 NNAVDYPPVANAGPNH (SEQ ID NO: 43)

Serine predictions (Start Position indicated)

9 TGVLSSLLL (SEQ ID NO: 44)

10 GVLSSLLLL (SEQ ID NO: 45) 26 RKQCSEGRT (SEQ ID NO: 46) 32 GRTYSNAVI (SEQ ID NO: 47) 37 NAVISPNLE (SEQ ID NO: 48) 49 IMRVSHTFP (SEQ ID NO: 49) 65 CCDLSSCDL (SEQ ID NO: 50) 66 CDLSSCDLA (SEQ ID NO: 51) 81 CYLVSCPHK (SEQ ID NO: 52) 98 GPIRSYLTF (SEQ ID NO: 53) 125 LNRGSPSGI (SEQ ID NO: 54) 127 RGSPSGIWG (SEQ ID NO: 55) 133 IWGDSPEDI (SEQ ID NO: 56) 154 LEEMSEYSD (SEQ ID NO: 57) 157 MSEYSDDYR (SEQ ID NO: 58) 171 LLQPSGKQE (SEQ ID NO: 59) 179 EPRGSAEYT (SEQ ID NO: 60) 191 LLPGSEGAF (SEQ ID NO: 61) 197 GAFNSSVGD (SEQ ID NO: 62) 198 AFNSSVGDS (SEQ ID NO: 63) 202 SVGDSPAVP (SEQ ID NO: 64) 221 YLNESASTP (SEQ ID NO: 65) 223 NESASTPAP (SEQ ID NO: 66) 233 LPERSVLLP (SEQ ID NO: 67) 243 PTTPSSGEV (SEQ ID NO; 68) 244 TTPSSGEVL (SEQ ID NO: 69) 254 KEKASQLQE (SEQ ID NO: 70) 264 SSNSSGKEV (SEQ ID NO: 71) 272 VLMPSHSLP (SEQ ID NO: 72) 274 MPSHSLPPA (SEQ ID NO: 73) 279 INFORMETY & (DEG ID NO: 74)
279 LPPASLELS (SEQ ID NO: 74)
283 SLELSSVTV (SEQ ID NO: 75)
284 LELSSVTVE (SEQ ID NO: 76)
290 TVEKSPVLT (SEQ ID NO: 77) 299 VTPGSTEHS (SEQ ID NO: 78) 303 STEHSIPTP (SEQ ID NO: 79) 310 TPPTSAAPS (SEQ ID NO: 80) 314 SAAPSESTP (SEQ ID NO: 81) 316 APSESTPSE (SEQ ID NO: 82) 319 ESTPSELPI (SEQ ID NO: 83) 324 ELPISPTTA (SEQ ID NO: 84) 338 ELTVSAGDN (SEQ ID NO: 85) 376 WNLISHPTD (SEQ ID NO: 86) 396 TLNLSQLSV (SEQ ID NO: 87) 399 LSQLSVGLY (SEQ ID NO: 88) 410 KVTVSSENA (SEQ ID NO: 89) 411 VTVSSENAF (SEQ ID NO: 90) 439 VAVVSPQLQ (SEQ ID NO: 91) 451 LPLTSALID (SEQ ID NO: 92) 457 LIDGSQSTD (SEQ ID NO: 93) 459 DGSQSTDDT (SEQ ID NO: 94) 467 TEIVSYHWE (SEQ ID NO: 95) 483 EEKTSVDSP (SEQ ID NO: 96) 486 TSVDSPVLR (SEQ ID NO: 97) 492 VLRLSNLDP (SEQ ID NO: 98) 500 PGNYSFRLT (SEQ ID NO: 99) 508 TVTDSDGAT (SEQ ID NO: 100) 514 GATNSTTAA (SEQ ID NO: 101) 545 LPQNSITLN (SEQ ID NO: 102) 553 NGNQSSDDH (SEQ ID NO: 103) 554 GNQSSDDHQ (SEQ ID NO: 104) 565 LYEWSLGPG (SEQ ID NO: 105) 570 LGPGSEGKH (SEQ ID NO: 106) 588 YLHLSAMQE (SEQ ID NO: 107)

PCT/US2004/001965

604 KVTDSSRQQ (SEQ ID NO: 108) 605 VTDSSRQQS (SEQ ID NO: 109) 609 SRQQSTAVV (SEQ ID NO: 110) 641 FPVESATLD (SEQ ID NO: 111) 647 TLDGSSSSD (SEQ ID NO: 112) 648 LDGSSSSDD (SEQ ID NO: 113) 649 DGSSSSDDH (SEQ ID NO: 114) 650 GSSSSDDHG (SEQ ID NO: 115) 667 VRGPSAVEM (SEQ ID NO: 116) 702 QQGLSSTST (SEQ ID NO: 117) 703 QGLSSTSTL (SEQ ID NO: 118) 705 LSSTSTLTV (SEQ ID NO: 119) 717 KENNSPPRA (SEQ ID NO: 120) 735 LPNNSITLD (SEQ ID NO: 121) 741 TLDGSRSTD (SEQ ID NO: 122) 743 DGSRSTDDQ (SEQID NO: 123) 751 QRIVSYLWI (SEQ ID NO: 124) 760 RDGQSPAAG (SEQ ID NO: 125) 770 VIDGSDHSV (SEQ ID NO: 126) 773 GSDHSVALQ (SEQ ID NO: 127) 795 RVTDSQGAS (SEQ ID NO: 128) 799 SQGASDTDT (SEQ ID NO: 129) 815 DPRKSGLVE (SEQ ID NO: 130) 850 NVLDSDIKV (SEQ ID NO: 131) 861 IRAHSDLST (SEQ ID NO: 132) 864 HSDLSTVIV (SEQ ID NO: 133) 873 FYVQSRPPF (SEQ ID NO: 134) 894 HMRLSKEKA (SEQ ID NO: 135) 918 LLKCSGHGH (SEQ ID NO: 136) 933 RCICSHLWM (SEQ ID NO: 137) 950 WDGESNCEW (SEQ ID NO: 138) 955 NCEWSIFYV (SEQ ID NO: 139) 1019 IKHRSTEHN (SEQ ID NO: 140) 1024 TEHNSSLMV (SEQ ID NO: 141) 1025 EHNSSLMVS (SEQ ID NO: 142) 1029 SLMVSESEF (SEQ ID NO: 143) 1031 MVSESEFDS (SEQ ID NO: 144) 1035 SEFDSDQDT (SEQ ID NO: 145) 1042 DTIFSREKM (SEQ ID NO: 146) 1054 NPKVSMNGS (SEQ ID NO: 147) 1058 SMNGSIRNG (SEQ ID NO: 148) 1064 RNGASFSYC (SEQ ID NO: 149) 1066 GASFSYCSK (SEQ ID NO: 150) 1069 FSYCSKDR (SEQ ID NO: 151)

Threonine predictions (Start Position indicated)

5 MAPPTGVLS (SEQ ID NO: 152)
16 LLLVTIAGC (SEQ ID NO: 153)
30 SEGRTYSNA (SEQ ID NO: 154)
42 PNLETTRIM (SEQ ID NO: 155)
43 NLETTRIMR (SEQ ID NO: 156)
51 RVSHTFPVV (SEQ ID NO: 157)
53 VVDCTAACC (SEQ ID NO: 158)
101 RSYLTFVLR (SEQ ID NO: 159)
133 SAEYTDWGL (SEQ ID NO: 160)
209 VPAETQQDP (SEQ ID NO: 161)
224 ESASTPAPK (SEQ ID NO: 162)
240 LPLPTTPSS (SEQ ID NO: 163)
241 PLPTTPSSG (SEQ ID NO: 164)
286 LSSVTVEKS (SEQ ID NO: 165)
294 SPVLTVTPG (SEQ ID NO: 166)
296 VLTVTPGST (SEQ ID NO: 167)

300 TPGSTEHSI (SEQ ID NO: 168) 306 HSIPTPPTS (SEQ ID NO: 169) 309 PTPPTSAAP (SEQ ID NO: 170) 317 PSESTPSEL (SEQ ID NO: 171)
 326
 PISPTTAPR
 (SEQ ID NO: 172)

 327
 ISPTTAPRT
 (SEQ ID NO: 173)

 331
 TAPRTVKEL
 (SEQ ID NO: 174)
 336 VKELTVSAG (SEQ ID NO: 175) 346 NLIITLPDN (SEQ ID NO: 176) 366 PPVETTYNY (SEQ ID NO: 177)
367 PVETTYNYE (SEQ ID NO: 178)
379 ISHPTDYQG (SEQ ID NO: 179) 392 GHKQTLNLS (SEQ ID NO: 180) 408 VFKVTVSSE (SEQ ID NO: 181) 423 FVNVTVKPA (SEQ ID NO: 182) 446 LQELTLPLT (SEQ ID NO: 183) 450 TLPLTSALI (SEQ ID NO: 184) 460 GSQSTDDTE (SEQ ID NO: 185) 463 STDDTEIVS (SEQ ID NO: 186) 482 IEEKTSVDS (SEQ ID NO: 187) 506 RLTVTDSDG (SEQ ID NO: 188) 512 SDGATNSTT (SEQ ID NO: 189) 515 ATNSTTAAL (SEQ ID NO: 190) 516 TNSTTAALI (SEQ ID NO: 191) 538 GPNHTITLP (SEQ ID NO: 192) 540 NHTITLPQN (SEQ ID NO: 193) 547 QNSITLNGN (SEQ ID NO: 194) 582 QGVQTPYLH (SEQ ID NO: 195) 596 EGDYTFQLK (SEQ ID NO: 196) 602 QLKVTDSSR (SEQ ID NO: 197) 610 RQQSTAVVT (SEQ ID NO: 198) 614 TAVVTVIVQ (SEQ ID NO: 199) 643 VESATLDGS (SEQ ID NO: 200) 680 KAIATVTGL (SEQ ID NO: 201) 682 IATVTGLQV (SEQ ID NO: 202) 688 LQVGTYHFR (SEQ ID NO: 203) 694 HFRLTVKDQ (SEQ ID NO: 204) 704 GLSSTSTLT (SEQ ID NO: 205) 706 SSTSTLTVA (SEQ ID NO: 206) 708 TSTLTVAVK (SEQ ID NO: 207) 737 NNSITLDGS (SEQ ID NO: 208) 744 GSRSTDDOR (SEQ ID NO: 209) 779 ALQLTNLVE (SEQ ID NO: 210) 787 EGVYTFHLR (SEQ ID NO: 211) 793 HLRVTDSQG (SEQ ID NO: 212)
801 GASDTDTAT (SEQ ID NO: 213)
803 SDTDTATVE (SEQ ID NO: 214) 805 TDTATVEVQ (SEQ ID NO: 215) 821 LVELTLQVG (SEQ ID NO: 216) 830 VGQLTEQRK (SEQ ID NO: 217) 836 QRKDTLVRQ (SEQ ID NO: 218) 865 SDLSTVIVF (SEQ ID NO: 219) 910 LRVDTAGCL (SEQ ID NO: 220) 927 CDPLTKRCI (SEQ ID NO: 221) 960 IFYVTVLAF (SEQ ID NO: 222) 965 VLAFTLIVL (SEQ ID NO: 223) 970 LIVLTGGFT (SEQ ID NO: 224) 974 TGGFTWLCI (SEQ ID NO: 225) 987 RQKRTKIRK (SEQ ID NO: 226) 993 IRKKTKYTI (SEQ ID NO: 227) 996 KTKYTILDN (SEQ ID NO: 228) 1020 KHRSTEHNS (SEQ ID NO: 229) 1039 SDQDTIFSR (SEQ ID NO: 230)

132

Tyrosine predictions (Start Position indicated)

31 EGRTYSNAV (SEQ ID NO: 231) 78 EGRCYLVSC (SEQ ID NO: 232) 99 PIRSYLTEV (SEQ ID NO: 233) 116 QLLDYGDMM (SEQ ID NO: 234) 156 EMSEYSDDY (SEQ ID NO: 235) 160 YSDDYRELE (SEQ ID NO: 236) 182 GSAEYTDWG (SEQ ID NO: 237) 217 PELHYLNES (SEQ ID NO: 238) 368 VETTYNYEW (SEQ ID NO: 239) 370 TTYNYEWNL (SEQ ID NO: 240) 381 HPTDYQGEI (SEQ ID NO: 241) 403 SVGLYVFKV (SEQ ID NO: 242) 468 EIVSYHWEE (SEQ ID NO: 243) 499 DPGNYSFRL (SEQ ID NO: 244) 527 NAVDYPPVA (SEQ ID NO: 245) 562 QIVLYEWSL (SEQ ID NO: 246) 584 VQTPYLHLS (SEQ ID NO: 247) 595 QEGDYTFQL (SEQ ID NO: 248) 658 GIVFYHWEH (SEQ ID NO: 249) 689 QVGTYHFRL (SEQ ID NO: 250) 752 RIVSYLWIR (SEQ ID NO: 251) 786 VEGVYTFHL (SEQ ID NO: 252) 870 VIVFYVQSR (SEQ ID NO: 253) 944 LIQRYIWDG (SEQ ID NO: 254) 958 WSIFYVTVL (SEQ ID NO: 255) 995 KKTKYTILD (SEQ ID NO: 256) 1013 LRPKYGIKH (SEQ ID NO: 257) 1067 ASFSYCSKD (SEQ ID NO: 258)

Table VII: Search Peptides

254P1D6Bv.1 (SEQ ID NO: 259)

	MAPPTGVLSS	LLLLVTIAGC	ARKQCSEGRT	YSNAVISPNL	ETTRIMRVSH	TFPVVDCTAA
63	CCDLSSCDLA	WWFEGRCYLV	SCPHKENCEP	KKMGPIRSYL	TFVLRPVQRP	AQLLDYGDMM
12:	. LNRGSPSGIW	GDSPEDIRKD	LPFLGKDWGL	EEMSEYSDDY	RELEKDLLQP	SGKQEPRGSA
18:	. EYTDWGLLPG	SEGAFNSSVG	DSPAVPAETQ	QDPELHYLNE	SASTPAPKLP	ERSVLLPLPT
241	. TPSSGEVLEK	EKASQLQEQS	SNSSGKEVLM	PSHSLPPASL	ELSSVTVEKS	PVLTVTPGST
301	. EHSIPTPPTS	AAPSESTPSE	LFISPTTAFR	TVKELTVSAG	DNLIITLPDN	EVELKAFVAP
361	. APPVETTYNY	EWNLISHPTD	YQGEIKQGHK	QTLNLSQLSV	GLYVFKVTVS	SENAFGEGEV
421	. NVTVKPARRV	NLPPVAVVSP	QLQELTLPLT	SALIDGSQST	DDTEIVSYHW	EEINGPFIEE
481	. KTSVDSPVLR	LSNLDPGNYS	FRLTVTDSDG	ATNSTTAALI	VNNAVDYPPV	ANAGPNHTIT
541	. LPQNSITLNG	NQSSDDHQIV	LYEWSLGPGS	EGKHVVMQGV	QTFYLHLSAM	QEGDYTFQLK
601	. VTDSSRQQST	AVVTVIVQPE	NNRPPVAVAG	PDKELIFPVE	SATLDGSSSS	DDHGIVFYHW
661	. EHVRGPSAVE	MENIDKAIAT	VTGLQVGTYH	FRLTVKDQQG	LSSTSTLTVA	VKKENNSPPR
721	. ARAGGRHVLV	LPNNSITLDG	SRSTDDQRIV	SYLWIRDGQS	PAAGDVIDGS	DHSVALQLTN
781	LVEGVYTFHL	RVTDSQGASD	TDTATVEVQP	DPRKSGLVEL	TLQVGVGQLT	EQRKDTLVRO
841	LAVLLNVLDS	DIKVÇKIRAH	SDLSTVIVFY	VQSRPPFKVL	KAAEVARNLH	MRLSKEKADE
901	. LLFKVLRVDT	AGCLLKCSGH	GHCDPLTKRC	ICSHLWMENL	IQRYIWDGES	NCEWSIFYVT
961	. VLAFTLIVLT	GGFTWLCICC	CKRQKRTKIR	KKTKYTILDN	MDEQERMELR	PKYGIKHRST
1021	. EHNSSLMVSE	SEFDSDQDTI	FSREKMERGN	PKVSMNGSIR	NGASFSYCSK	DR

254P1D6Bv.2

9-mers, aa 149-175 GLEEMSEYADDYRELEK (SEQID NO: 260) 10-mers, aa 148-176 WGLEEMSEYADDYRELEKD (SEQID NO: 261) 15-mers, aa 143-181 FLGKDWGLEEMSEYADDYRELEKDLLQPS (SEQID NO: 262)

PCT/US2004/001965

WO 2004/067716

254P1D6BV.3

9-mers, aa 1-18 MTRLGWPSPCCARKQCSE (SEQ ID NO: 263) 10-mers, aa 1-19 MTRLGWPSPCCARKQCSEG (SEQ ID NO: 264) 15-mers, aa 1-24 MTRLGWPSPCCARKQCSEGRTYSN (SEQ ID NO: 265)

254P1D6Bv.5

9-mers, aa 134-150 PEDIRKDLTFLGKDWGL (SEQ ID NO: 266) 10-mers, aa 133-151 SPEDIRKDLTFLGKDWGLE (SEQ ID NO: 267) 15-mers, aa 128-156 GIWGDSPEDIRKDLTFLGKDWGLEEMSEY (SEQ ID NO: 268)

Tables VIII – XXI:

Ta	Table VIII – 254P1D6B v.1		
	HLA A1 9-mers		
Ea	ich peptide is a po EQ ID NO: 1: eac	ortion of	
posi	tion is specified, t	he length	
of	peptide is 9 amin	o acids,	
	ptide is the start i	or each	
	plus eight.		
Pós	Subsequence	Score	
493	NLDPGNYSF	100.0	
668	AVEMENIDK	90.000	
39	NLETTRIMR	45.000	
649	SSDDHGIVF	37.500	
936	WMENLIQRY	22.500	
153	MSEYSDDYR	13.500	
805	TVEVQPDPR	9.000	
743	STDDQRIVS	6.250	
182	YTDWGLLPG	6.250	
459	STDDTEIVS	6.250	
922	HCDPLTKRC	5.000	
351	EVELKAFVA	4.500	
87	NCEPKKMGP	4.500	
244	SGEVLEKEK	4.500	
382	QGEIKQGHK	4.500	
462	DTEIVSYHW	4.500	
951	NCEWSIFYV	4.500	
553	SSDDHQIVL	3.750	
103 4	DSDQDTIFS	3.750	
569	GSEGKHVVM	2.700	
25	CSEGRTYSN	2.700	
554	SDDHQIVLY	2.500	
650	SDDHGIVFY	2.500	
460	TDDTEIVSY	2.500	
138	RKDLPFLGK	2.500	
157	SDDYRELEK	2.500	
897	KADFLLFKV	2.500	
378	PTDYQGEIK	2.500	
800	DTDTATVEV	2.500	
483	SVDSPVLRL	2.500	
113	LLDYGDMML	2.500	
347	LPDNEVELK	2.500	
505	VTDSDGATN	2.500	
744	TDDQRIVSY	2.500	

Ta	ble VIII – 254P1[HLA A1 9-me	06B v.1 's	
Ea	Each peptide is a portion of		
S	SEQ ID NO: 1; each start		
posi	tion is specified, t	he length	
10 one	peptide is 9 amini	o acids, for each	
De	ptide is the start r	osition	
	plus eight.		
Pos	Subsequence	Score	
592	EGDYTFQLK	2.500	
349	DNEVELKAF	2.250	
829	LTEQRKDTL	2.250	
101 9	STEHNSSLM	2.250	
565	SLGPGSEGK	2.000	
84	HKENCEPKK	1.800	
279	SLELSSVTV	1.800	
860	HSDLSTVIV	1.500	
769	GSDHSVALQ	1.500	
798	ASDTDTATV	1.500	
410	SSENAFGEG	1.350	
190	GSEGAFNSS	1.350	
778	LTNLVEGVY	1.250	
130	WGDSPEDIR	1.250	
809	QPDPRKSGL	1.250	
681	VTGLQVGTY	1.250	
601	VTDSSRQQS	1.250	
519	LIVNNAVDY	1.000	
705	STLTVAVKK	1.000	
862	DLSTVIVFY	1.000	
54	VVDCTAACC	1.000	
15	VTIAGCARK	1.000	
524	AVDYPPVAN	1.000	
179	SAEYTDWGL	0.900	
712	KKENNSPPR	0.900	
149	GLEEMSEYS	0.900	
781	LVEGVYTFH	0.900	
882	AAEVARNLH	0.900	
817	LVELTLQVG	0.900	
210	QQDPELHYL	0.750	
395	LSQLSVGLY	0.750	
491	LSNLDPGNY	0.750	
315	ESTPSELPI	0.750	
849	DSDIKVQKI	0.750	

T a	Table VIII – 254P1D6B v.1 HLA A1 9-mers		
Ea	Each peptide is a portion of		
o Iposi	ition is specified	he lenath	
of	peptide is 9 amin	o acids,	
anc	I the end position	for each	
pe	peptide is the start position plus eight.		
Pos	Subsequence	Score	
507	DSDGATNST	0.750	
587	LSAMQEGDY	0.750	
950	SNCEWSIFY	0.625	
339	AGDNLIITL	0.625	
398	LSVGLYVFK	0.600	
220	ESASTPAPK	0.600	
704	TSTLTVAVK	0.600	
224	TPAPKLPER	0.500	
131	GDSPEDIRK	0.500	
766	VIDGSDHSV	0.500	
473	INGPFIEEK	0.500	
373	NLISHPTDY	0.500	
274	SLPPASLEL	0.500	
847	VLDSDIKVQ	0.500	
360	PAPPVETTY	0.500	
61	CCDLSSCDL	0.500	
907	RVDTAGCLL	0.500	
670	EMENIDKAI	0.450	
618	QPENNRPPV	0.450	
299	STEHSIPTP	0.450	
100 6	RMELRPKYG	0.450	
638	PVESATLDG	0.450	
469	HWEEINGPF	0.450	
281	ELSSVTVEK	0.400	
870	YVQSRPPFK	0.400	
209	TQQDPELHY	0.375	
482	TSVDSPVLR	0.300	
302	HSIPTPPTS	0.300	
97	RSYLTFVLR	0.300	
375	ISHPTDYQG	0.300	
442	LQELTLPLT	0.270	
576	VMQGVQTPY	0.250	

11 1		
9mers-254P1D68		
Each peptide is a portion of		
SEQ ID NO: 5; each start		
position is specified, the		
acids, and the end position		
for each peptide is the start		
position plus eight.		
Start Subsequence Score		
5 MSEYADDYR 13.500		
9 ADDYRELEK 2.500		
1 GLEEMSEYA 0.900		
4 EMSEYADDY 0.250		
8 YADDYRELE 0.050		
2 LEEMSEYAD 0.009		
7 EYADDYREL 0.001		
6 SEYADDYRE 0.000		
3 EEMSEYADD 0.000		
Contraction of a rest o		
Table VIII-V3-HLA-A1-		
9mers-254P1D68		
Each peptide is a portion of		
SEQ ID NO: 7; each start		
length of pentide is 9 amino		
acids, and the end position		
for each peptide is the start		
for each peptide is the start		
for each peptide is the start position plus eight.		
for each peptide is the start position plus eight. Start Subsequence Score		
for each peptide is the start position plus eight. Start Subsequence Score 6 WPSPCCARK 1.000		
for each peptide is the start position plus eight. Start Subsequence Score. 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020		
for each peptide is the start position plus eight. Start Subsequence Score 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCARK 0.005		
for each peptide is the start position plus eight. Start Subsequence Score 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCAR 0.005 8 SPCCARKQC 0.003		
for each peptide is the start position plus eight. Start Subsequence Score, 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCARR 0.005 8 SPCCARKQC 0.003 4 LGWPSPCCA 0.003		
for each peptide is the start position plus eight. Start Subsequence Score. 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCAR 0.005 8 SPCCARKQC 0.003 4 LGWPSPCCA 0.003 7 PSPCCARKQ 0.002		
for each peptide is the start position plus eight. Start Subsequence Score 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCAR 0.005 8 SPCCARKQC 0.003 4 LGWPSPCCA 0.003 7 PSPCCARKQ 0.002 9 PCCARKQCS 0.001		
for each peptide is the start position plus eight. Start Subsequence Score, 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCAR 0.005 8 SPCCARKQC 0.003 4 LGWPSPCCA 0.002 9 PCCARKQCS 0.001 1 MTRLGWPSP 0.001		
for each peptide is the start position plus eight. Start Subsequence Score. 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCAR 0.005 8 SPCCARKQC 0.003 4 LGWPSPCCA 0.003 7 PSPCCARKQ 0.002 9 PCCARKQCS 0.001 1 MTRLGWPSP 0.001 2 TRLGWPSPC 0.001		
for each peptide is the start position plus eight. Start Subsequence Score, 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCAR 0.005 8 SPCCARKQC 0.003 4 LGWPSPCCA 0.003 7 PSPCCARKQ 0.002 9 PCCARKQCS 0.001 1 MTRLGWPSP 0.001 2 TRLGWPSPC 0.001		
for each peptide is the start position plus eight.StartSubsequenceScore6WPSPCCARK1.0003RLGWPSPCC0.0205GWPSPCCAR0.0058SPCCARKQC0.0034LGWPSPCCA0.0037PSPCCARKQ0.0029PCCARKQCS0.0011MTRLGWPSP0.0012TRLGWPSPC0.00110CCARKQCSE0.000		
for each peptide is the start position plus eight. Start Subsequence Score, 6 WPSPCCARK 1.000 3 RLGWPSPCC 0.020 5 GWPSPCCARK 0.003 4 LGWPSPCCA 0.003 7 PSPCCARKQC 0.002 9 PCCARKQCS 0.001 1 MTRLGWPSPC 0.001 10 CCARKQCSE 0.000		

9mers-254P1D68		
Each peptide is a portion of		
SEQ ID NO: 11; each start		
position is specified, the		
length of peptide is 9 amino		
acids, and the end position		
for each peptide is the start		
position plus eight.		
Start Subsequence Score		

5	RKDLTF GK	2,500		
8	LTFLGKDWG	0.025		
7	DLTFLGKDW	0.010		
1	PEDIRKDLT	0.003		
2	EDIRKDLTF	0.003		
9	TFLGKDWGL	0.001		
4	IRKDLTFLG	0.000		
3	DIRKDLTFL	0.000		
6	KDLTFLGKD	0.000		
TAE	TABLE IX- HLA-A110- mers-254P1D6B			
Each	peptide is a port	ion of		
pos	ition is specified.	the		
len	gth of peptide is	10		
amin positi	io acids, and the	end ide is		
the st	art position plus	nine.		
Start	Subsequence	Scor		
		e		
173	KQEPRGSAE Y	135.		
	STDDORIVS	125		
743	Y	000		
459	STDDTE VSY	125. 000		
649	SSDDHGIVF Y	75.0 00		
156	YSDDYRELE	75.0		
	K	00		
553	SSDDHQIVL Y	75.0 00		
907	RVDTAGCLL K	50.0 00		
493	NLDPGNYSF R	50.0 00		
860	HSDLSTVIVF	37.5 00		
1034	DSDQDTIFS R	37.5 00		
805	TVEVQPDPR K	36.0 00		
847	VLDSDIKVQ K	20.0 00		
410	SSENAFGEG F	13.5 00		
130	WGDSPEDIR K	12.5 00		
1019	STEHNSSLM V	11.2 50		

PCT/US2004/001965

[
	BLE IX- HLA-A1- mers-254P1D6E	10- 3	
Each SEC pos ler	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids and the and		
posit the s	ion for each pept tart position plus	tide is nine.	
Start	Subsequence	Scor e	
87	NCEPKKMG PI	9.00 0	
849	DSDIKVQKIR	7.50 0	
208	ETQQDPELH Y	6.25 0	
922	HCDPLTKRC	5.00 0	
628	VAGPDKELIF	5.00 0	
997	ILDNMDEQE R	5.00 0	
781	LVEGVYTFH L	4.50 0	
39	NLETTRIMR	4.50 0	
882	AAEVARNLH M	4.50 0	
949	ESNCEWSIF Y	3.75 0	
769	GSDHSVALQ	3.75 0	
569	GSEGKHVV MQ	2.70 0	
66	SCDLAWWF EG	2.50 0	
182	YTDWGLLPG S	2.50 0	
113	LLDYGDMML N	2.50 0	
829	LTEQRKDTL V	2.25 0	
951	NCEWSIFYV	1.80 0	
477	FIEEKTSVDS	1.80 0	
817	LVELTLQVG V	1.80 0	
210	QQDPELHYL	1.50 0	
1036	DQDTIFSRE K	1.50 0	

PCT/US2004/001965

TAE	ILE IX- HLA-A1 mers-254P1D6	10- 3	
Each SEQ posi	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10		
amin positi the st	amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Scor e	
1028	VSESEFDSD Q	1.35 0	
25	CSEGRTYSN A	1.35 0	
1030	ESEFDSDQD T	1.35 0	
190	GSEGAFNSS V	1.35 0	
601	VTDSSRQQS T	1.25 0	
792	VTDSQGASD T	1.25 0	
505	VTDSDGATN S	1.25 0	
539	ITLPQNSITL	1.25 0	
1000	NMDEQERM EL	1.25 0	
359	APAPPVETT Y	1.25 0	
800	DTDTATVEV Q	1.25 0	
809	QPDPRKSGL V	1.25 0	
35	VISPNLETTR	1.00	
524	AVDYPPVAN A	1.00	
518	ALIVNNAVDY	1.00	
186	GLLPGSEGA F	1.00	
667	SAVEMENID K	1.00	
703	STSTLTVAV K	1.00 D	
670	EMENIDKAIA	0.90	
1006	RMELRPKYG	0.90	
179	SAEYTDWGL L	0.90	
للمرجب بعيد			

		40	
	mers-254P1D6	10- 3	
Each	Each peptide is a portion of		
pos	ition is specified	start the	
length of peptide is 10			
amir positi	io acids, and the on for each nen	e end tide is	
the s	the start position plus nine.		
Start	Subsequence	Scor e	
668	AVEMENIDK	0.90 0	
648	SSSDDHGIV F	0.75 0	
507	DSDGATNST T	0.75 0	
273	HSLPPASLE L	0.75	
590	MQEGDYTF QL	0.67 5	
442	LQELTLPLTS	0.67	
592	EGDYTFQLK V	0.62 5	
378	PTDYQGEIK Q	0.62	
347	LPDNEVELK A	0.62 5	
872	QSRPPFKVL K	0.60	
704	TSTLTVAVK K	0.60	
777	QLTNLVEGV Y	0.50	
687	GTYHFRLTV K	0.50 0	
897	KADFLLFKVL	0.50 0	
766	VIDGSDHSV A	0.50 0	
729	LVLPNNSITL	0.50 0	
394	NLSQLSVGL Y	0.50 0	
586	HLSAMQEG DY	0.50 0	
445	LTLPLTSALI	0.50 0	
61	CCDLSSCDL A	0.50 0	
680	TVTGLQVGT Y	0.50 0	

TAE	TABLE IX- HLA-A110- mers-254P1D6B			
Each SEC pos len amir positi the si	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			
Start	Subsequence	Scor e		
223	STPAPKLPE R	0.50 0		
100	LTFVLRPVQ R	0.50 0		
483	SVDSPVLRL S	0.50 0		
1	MAPPTGVLS S	0.50 0		
575	VVMQGVQT PY	0.50 0		
955	SIFYVTVLAF	0.50		
345	ITLPDNEVEL	0.50		
164	EKDLLQPSG K	0.50		
1039	TIFSREKME R	0.50		
481	KTSVDSPVL R	0.50 0		
490	RLSNLDPGN Y	0.50 0		
532	NAGPNHTITL	0.50 0		
415	FGEGFVNVT V	0.45 0		
936	WMENLIQRY	0.45 0		
349	DNEVELKAF V	0.45 0		
618	QPENNRPPV A	0.45 0		
286	TVEKSPVLT V	0.45		
1001	MDEQERME LR	0.45 0		
76	RCYLVSCPH K	0.40		
397	QLSVGLYVF K	0.40		
14	LVTIAGCARK	0.40 0		
TAB	LE IX- HLA-A1- ners-254P1D6B	-10-		
---	---	--		
Each p SEQ positi leng amine position the sta	peptide is a port ID NO: 3; each ion is specified, ofth of peptide is o acids, and the on for each pept art position plus	ion of start the 10 end ide is nine.		
Start	Subsequence	Scor B		
107	VQRPAQLLD Y	0.37 5		

Table IX-V2-HLA-A1- 10mers-254P1D68		
Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus pine.		
Start	Subsequence	Scor e
9	YADDYRELEK	50.0 00
6	MSEYADDYRE	0.27 0
2	GLEEMSEYAD	0.18
5	EMSEYADDYR	0.05 0
4	EEMSEYADDY	0.02 5
3	LEEMSEYADD	0.00 9
10	ADDYRELEKD	0.00 3
1	WGLEEMSEYA	0.00 3
7	SEYADDYREL	0.00 1
8	EYADDYRELE	0.00 0

More than the second of the second se
Table IX-V3-HLA-A1-
10mers-254P1D68
Each peptide is a portion of
SEQ ID NO: 7; each start
position is specified, the
length of peptide is 10 amino
acids, and the end position
for each peptide is the start
position plus nine.

r ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
Start	Subsequence	Scor e
4	LGWPSPCCAR	0.02 5
6	WPSPCCARKQ	0.02 5
5	GWPSPCCARK	0.02
3	RLGWPSPCCA	0.01
8	SPCCARKQCS	0.00
1	MTRLGWPSPC	0.00 3
7	PSPCCARKQC	0.00
10	CCARKQCSEG	0.00
2	TRLGWPSPCC	0.00
9	PCCARKQCSE	0.00
	<u>l</u>	<u> </u>
Ta	able IX-V5-HLA-A	1-
1	0mers-254P1D68	}
Each	peptide is a portio	on of
	ition is specified.	start fhe
length	of peptide is 10 a	amino
acids	s, and the end pos	ition
	peptide is the cosition plus nine.	SIGN
Start	Subsequence 1	Score
1	SPEDIRKDLT).225
2	PEDIRKDLTF	0.125
9	LTFLGKDWGL	0.025
8	DLTFLGKDWG	0.010
5	IRKDLTFLGK).005
6	RKDLTFLGKD	0.003
4	DIRKDLTFLG	0.001
7	KDLTFLGKDW	0.001
10	TFLGKDWGLE	0.000
3	EDIRKDLTFL	0.000
	en men and an antika metalom at the analysis from	
1 T-L		
	le X-V1-HLA-A02)1-

	Start	Subsequence	Score
	900	FLLFKVLRV	2722. 683
	401	GLYVFKVTV	845.7 52
	968	VLTGGFTWL	379.5 03
	228	KLPERSVLL	306.5 50
	92	KMGPIRSYL	296.9 97
	816	GLVELTLQV	285.1 63
	7	VLSSLLLLV	271.9 48
	99	YLTFVLRPV	147.1 72
an Will Michael and	396	SQLSVGLYV	143.5 04
	944	YIWDGESNC	106.9 31
	846	NVLDSDIKV	92.32 2
	441	GLQELTLPL	87.58 6
	346	TLPDNEVEL	87.58 6
	399	SVGLYVFKV	81.18 5
	777	QLTNLVEGV	78.38 5
	784	GVYTFHLRV	74.00 3
	12	LLLVTIAGC	71.87 2
	392	TLNLSQLSV	69.55 2
	871	VQSRPPFKY	69.53 1
	839	RQLAVLLNV	60.01 1
	863	LSTVIVFYV	56.62 9
	958	YVTVLAFTL	49.87 1
	112	QLLDYGDMM	36.92

PCT/US2004/001965

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Start Subsequence Score

PCT/US2004/001965

Tat HL	Table X-V1-HLA-A0201- HLA-9mers-254P1D68		
Each SEC pos lengt acids for es	HLA-9mers-254P1 Each peptide is a por SEQ ID NO: 3; each position is specified length of peptide is 9 acids, and the end po for each peptide is the position plus aid		
Start	Subsequence	Score	
730	VLPNNSITL	9 36.31 6	
960	TVLAFTLIV	35.08 2	
961	VLAFTLIVL	34.24 6	
655	IVFYHWEHV	31.88 7	
828	QLTEQRKDT	30.55 3	
452	ALIDGSQST	30.55 3	
350	NEVELKAFV	30.49 7	
558	QIVLYEWSL	22.03 0	
394	NLSQLSVGL	21.36	
540	TLPQNSITL	21.36 2	
274	SLPPASLEL	21.36 2	
577	MQGVQTPYL	20.25 1	
840	QLAVLLNVL	20.14 5	
836	TLVRQLAVL	20.14 5	
897	KADFLLFKV	18.04 1	
844	LLNVLDSD!	17.73 6	
728	VLVLPNNSI	17.73 6	
390	KQTLNLSQL	17.43 6	
10	SLLLLVTIA	17.33 4	
344	IITLPDNEV	16.25 B	
607	QQSTAVVTV	16.21 9	

Table X-V1-HLA-A0201- HLA-9mers-254P1D68			
Each SEC	Each peptide is a portion of SEQ ID NO: 3; each start		
pos lengt	ition is specified h of peptide is 9	, the amino	
for e	s, and the end po ach peptide is th	e start	
Start	Subsequence	n. Score	
6	GVI SSI LI	15.90	
		7	
113	LLDYGDMML	14.52 6	
687	GTYHFRLTV	11.74 7	
1045	KMERGNPKV	11.25 2	
210	QQDPELHYL	10.96 0	
685	QVGTYHFRL	10.84 1	
446	TLPLTSALI	10.43 3	
591	QEGDYTFQL	9.878	
183	GLLPGSEGA	9.007	
673	NIDKAIATV	8.798	
818	VELTLQVGV	8.507	
700	GLSSTSTLT	7.452	
437	VVSPQLQEL	7.309	
366	TTYNYEWNL	7.121	
766	VIDGSDHSV	6.503	
635	LIFPVESAT	6.445	
821	TLQVGVGQL	6.387	
429	RVNLPPVAV	6.085	
284	SVTVEKSPV	6.086	
774	VALQLTNLV	6.076	
973	FTWLCICCC	6.059	
233	SVLLPLPTT	5.549	
497	GNYSFR_TV	5.521	
40	LETTRIMRV	5.288	
191	SEGAFNSSV	5.139	
47	RVSHTFPVV	4.741	
419	FVNVTVKPA	4.599	
279	SLELSSVTV	4.451	
773	SVALQLTNL	4.299	
782	VEGVYTFHL	4.096	
517	AALIVNNAV	3.574	
969	LTGGFTWLC	3.343	

يعن متعرض بنياد خط ها . او هو .

1			
Tab HL	le X-V1-HLA-A0 A-9mers-254P1	201- D68	
Each	Each peptide is a portion of		
SEC	ID NO: 3; each	start	
lenat	nion is specified i of peptide is 9	, ine amino	
acids	, and the end po	osition	
for ea	ich peptide is the	e start	
Stort	Subcoquence	IL.	
660		2 900	
570		2.000	
130		2.004	
055		2.093	
676		2.527	
0/0		2.388	
000	CEEDODODT	2.222	
1031	SEFDSDQDT	2.198	
951	NCEWSIFYV	2.132	
35	VISPNLETT	1.963	
627	AVAGPDKEL	1.869	
445	LTLPLTSAL	1.866	
483	SVDSPVLRL	1.720	
729	LVLPNNSIT	1.682	
292	VLTVTPGST	1.647	
678	IATVTGLQV	1.642	
948	GESNCEWSI	1.521	
988	KIRKKTKYT	1.499	
962	LAFTLIVLT	1.497	
538	TITLPQNSI	1.435	
830	TEQRKDTLV	1.352	
416	GEGFVNVTV	1.352	
1020	TEHNSSLMV	1.352	
465	IVSYHWEEI	1.293	
822	LQVGVGQLT	1.284	
Table X-V2-HLA-A0201-			
9mers-254P1D68			
Each peptide is a portion of SEQ ID NO: 5: each start			
position is specified, the			
length of peptide is 9 amino			
acids, and the end position			

SEQ ID NO: 5; each start				
length of peptide is 9 amino acids, and the end position				
for ea	ach peptide is th position plus eig	ie start ht.		
Start	Subsequence	Score		
1	GLEEMSEYA	3.513		
4	EMSEYADDY	0.008		
6	SEYADDYRE	0.001		
8	YADDYRELE	0.001		

	The second se
Í	Table X-V/2-HI A-40201-
	9mers-254P 1000
ļ	Each peptide is a notion of
	SEO ID NO: 5: each start
1	SECIDINO, 0, each start
	position is specified, the
l	length of peptide is 9 amino
İ.	acids, and the end position
le la	for each peptide is the start
ì	
l	position plus eight.
-	Start Subsequence Score
1	
Î	7 EYADDYREL 0.000
1	3 ELIVISETADD 0.000
Ì	2 LEEMSEYAD 0.000
Ì	
	5 MSEYADDYR 0.000
the second	- S ADDITICLER 0.000
	T-1-1- 1/2/11 A A0201
	Table X-V3-FILA-A0201-
	9mers-254P1D68
	Each populde is a portion of
	COLD NO: 7: each stort
	SEQ ID NO. 7, each start
	position is specified, the
	length of peptide is 9 amino
	acids, and the end position
	for each nentide is the start
	not each populatio and each
	position plus eight.
	Start Subsequence Score
	3 RLGWPSPCC 4.968
	4 I GWPSPCCA 0 458
	8 SPCCARKQC 0 032
	TPLCWPSPC 003
	2 11/2011 01 0 10.000
	6 WPSPCCARK 0.000
	10 CLARINGUSE U.UUU
	1 MTBLGWPSP 0.000
	9 PCCARKQCS 0.000
	5 GWPSPCCAPILO00
	7 PSPCCARKQ 0.000
	السويدية المستوجب ومنابع مريا المريد والم
	Table X-V5-HLA-A0201-
	9mers-254P1D68
	Each peptide is a portion of
	SEQ ID NO: 11: each start
	nosition is specified the
	i longth of nontido is 9 amino
	interigut of peptide is a antino
	acids, and the end position
	tor each peptide is the start
	position plus eight.
	Chart Cubasanuares Carre
	SIGUE SUDSequence Score
	9 TELGKDWGI 0 412
	3 DIRKDLTFL 0.212
	8 LITELOKDWG 0.049
	7 DLTFLGKDW 0.006
	3L

1 PEDIRKDLT 0.001 6 KDLTFLGKD 0.000 5 RKDLTFLGK 0.000 2 EDIRKDLTF 0.000 3 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 112 QLLDYGDMM 324.0 68 VLTGGFTWL 240.7 0 SNCEWSIFYV 382.7 968 VLTGGFTWL 240.7 0 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 144.2 209 TQQDPELHY 112.3 11 LLLLVTIAGC				
6 KDLTFLGKD 0.000 5 RKDLTFLGK 0.000 4 IRKDLTFLG 0.000 2 EDIRKDLTF 0.000 3 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 2 B462 VLTGGFTWL 240.7 0 SNCEWSIFYV 136.5 976 VLTGGFTWL 144.2 2 950 SNCEWSIFYV 135 217 YLNESASTPA 64 209 TQQDPELHY 112.3 <t< td=""><td>Ĩ</td><td>1</td><td>PEDIRKDLT</td><td>0.001</td></t<>	Ĩ	1	PEDIRKDLT	0.001
5 RKDLTFLGK 0.000 4 IRKDLTFLG 0.000 2 EDIRKDLTF 0.000 2 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 C0 870 YVQSRPPFK 162.3 V 968 VLTGGFTWL 144.2 56 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY 112.3 1 1 LLLLVTIAGC 71.87 2 700 GLSSTSTLTV 22	ſ	6	KDLTFLGKD	0.000
4 IRKDLTFLG 0.000 2 EDIRKDLTF 0.000 2 EDIRKDLTF 0.000 2 EDIRKDLTF 0.000 1 EDIRKDLTF 0.000 1 Table XI-V1-HLA-A0201 10mers-254P1D38 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 277 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 0 967 VVQSRPPFK 162.3 77 967 VLTGGFTWL 144.2 56 950 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 122.8 64 209 TQQDPELHY 112.3 1 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 700 GLSSTSTLTV 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2	ſ	5	RKDLTFLGK	0.000
2 EDIRKDLTF 0.000 Table XI-V1-HLA-A0201 10mers-254P1D38 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 0 870 YVQSRPPFK 152.3 77 967 YVQSRPPFK 152.3 89 950 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 240.7 64 209 TQQDPELHY 112.3 35 217 YLNESASTPA 64 209 TQQDPELHY 112.3 2 11 LLLLVTIAGC 71.87 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 954 GVLSSLLLLV 60	Ĩ	4	IRKDLTFLG	0.000
Table XI-V1-HLA-A0201 10mers-254P1D38 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 968 VLTGGFTWL 968 VLTGGFTWL 970 YVQSRPPFK 162.3 69 576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 371 YLNESASTPA 64 209 201 TQQDPELHY 11 LLLLVTIAGC 711 LLLVTIAGC 11 LLLLVTIAGC 217 YLNESASTPA 66 11 11 LLLVTIAGC 21 700 GLSSTSTLTV 2 843 VLLNVLDSDI 2 892 892 RLSKEKADFL 57.57 2 6 <t< td=""><td>ſ</td><td>2</td><td>EDIRKDLTF</td><td>0.000</td></t<>	ſ	2	EDIRKDLTF	0.000
Table XI-V1-HLA-A0201 10mers-254P1D58 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 968 VLTGGFTWL 968 VLTGGFTWL 970 YVQSRPPFK 960 SNCEWSIFYV 950 SNCEWSIFYV 950 SNCEWSIFYV 967 VLTGGFTWL 967 VLTGGFTWL 11 LLLLVTIAGC 121 YLNESASTPA 967 YLNESASTPA 967 YLNESASTPA 911 LLLLVTIAGC 121 LLLLVTIAGC 122.8 6 11 LLLLVTAGC 12 35 11 LLLVTIAGC 12 843 VLLNVLDSDI 2 892 RLSKEKADFL 976 GVLSSLLLV		1		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 C 970 YVQSRPPFK 162.3 70 9576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 64 209 TQQDPELHY 112.3 135 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 700 GLSSTSTLTV 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 2 6 GVLSSLLLV 51.79 0 6 GVLSSLLLV 51.79 0 617 VQPENNRPP 49.15 7		Table 10	XI-V1-HLA-A02 mers-254P1D88	01
SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 0 870 YVQSRPPFK 162.3 77 968 VLTGGFTWL 240.7 0 576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 144.2 64 209 TQQDPELHY 112.3 1 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 700 GLSSTSTLTV 2 441 QLQELTLPLT 70.27 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLV 51.79 0 776 LQLTNLVEGV 9.9	l	Each	peptide is a porti	on of
position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 27 968 VLTGGFTWL 240.7 0 968 VLTGGFTWL 240.7 0 970 YVQSRPPFK 162.3 69 950 SNCEWSIFYV 136.5 777 967 VVLTGGFTWL 144.2 122.8 64 209 Q 136.5 777 967 VLTGGFTWL 122.8 64 209 L 35 217 YLNESASTPA 66 11 LLLLVTIAGC 71.87 2 11 LLLLVTIAGC 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 952 RLSKEKADFL 57.57 2 6 GVLSSLLLV 60.7 776 LQ		SEQ	ID NO: 3; each s	start
Inergin of peptide is to anime acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 C 968 VLTGGFTWL 240.7 C 967 YVQSRPPFK 162.3 V 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 144.2 L 209 TQQDPELHY 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 2 6 GVLSSLLLV 51.79 0 776 LQLTNLVEGY 9.9 617 VQPENNRPP 49.15 7	_	posi	tion is specified,	the
for each peptide is the start position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 0 968 VLTGGFTWL 240.7 0 967 YVQSRPPFK 162.3 7 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 240.7 6 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY 112.3 1 11 LLLLVTIAGC 71.87 2 11 LLLLVTIAGC 71.87 2 700 GLSSTSTLTV 2 700 GLSSTSTLTV 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 952 RLSKEKADFL 27.57 2 6 GVLSSLLLV 0 776 LQLTNLVEGV 9.9 617 VQPENNRPP 49.15 7		acids.	and the end pos	sition
position plus nine. Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 0.0 870 YVQSRPPFK 162.3 9 9576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 64 209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 952 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 51.79 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.95	1	for ea	ch peptide is the	start
Start Subsequence Score 862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 C 97 YVQSRPPFK 162.3 69 576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 22.8 64 209 TQQDPELHY 112.3 1 217 YLNESASTPA 66 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 2 843 VLLNVLDSDI 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 60 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15		p	osition plus nine	·
862 DLSTVIVFYV 382.7 27 112 QLLDYGDMM 324.0 68 968 VLTGGFTWL 240.7 C 968 VLTGGFTWL 240.7 C 870 YVQSRPPFK 162.3 V 9576 VMQGVQTPY 144.2 L 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 2 6 GVLSSLLLLV 61.79 0 776 LQLTNLVEGV 9.9 617 VQPENNRPP 49.15		Start	Subsequence	Score
21 112 QLLDYGDMM 324.0 68 VLTGGFTWL 240.7 968 VLTGGFTWL 240.7 870 YVQSRPPFK 162.3 9576 VMQGVQTPY 144.2 950 SNCEWSIFYV 136.5 950 SNCEWSIFYV 114.2 209 TQQDPELHY 112.3 217 YLNESASTPA 93.69 11 LLLLVTIAGC 71.87 211 LLLLVTIAGC 71.87 211 LLLLVTIAGC 2 441 QLQELTLPLT 70.27 2 443 VLLNVLDSDI 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 27.57 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15		862	DLSTVIVFYV	382.7
112 CLU FODIMIN 24.0.7 68 968 VLTGGFTWL 240.7 00 870 YVQSRPPFK 152.3 69 576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY 112.3 1 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 2 843 VLLNVLDSDI 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 60 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15				324.0
968 VLTGGFTWL C 240.7 (0) 870 YVQSRPPFK V 162.3 (9) 576 VMQGVQTPY 144.2 (144.2) 950 SNCEWSIFYV 136.5 (77) 967 VLTGGFTWL 122.8 (64) 209 TQQDPELHY 112.3 (11) 217 YLNESASTPA 93.69 (6) 11 LLLLVTIAGC 71.87 (2) 441 QLQELTLPLT 70.27 (2) 700 GLSSTSTLTV 2 843 VLLNVLDSDI 65.62 (2) 952 CEWSIFYVTV 63.98 (2) 952 RLSKEKADFL 57.57 (2) 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15		112		68
968 C C0 870 YVQSRPPFK V 162.3 69 576 VMQGVQTPY L 144.2 56 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.75 2 6 GVLSSLLLLV 51.79 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V	1	000	VLTGGFTWL	240.7
870 YVQSRPPFK 162.3 69 576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 7		968	C	00
VI 69 576 VMQGVQTPY 144.2 56 950 SNCEWSIFYV 136.5 967 VLTGGFTWL 122.8 64 209 TQQDPELHY 112.3 209 TQQDPELHY 112.3 217 YLNESASTPA 93.69 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 700 GLSSTSTLTV 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 952 RLSKEKADFL 57.57 6 GVLSSLLLLV 0 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15		870	YVQSRPPFK	162.3
576 VMQGVQTPY L 144.2 56 950 SNCEWSIFYV 136.5 77 967 VLTGGFTWL 122.8 64 209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 952 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V			<u> </u>	69
950 SNCEWSIFYV 136.5 777 967 VLTGGFTWL 122.8 64 209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 952 CEWSIFYVTV 63.98 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		576	VMQGVQTPY	144.2
950 SNCEWSIFYV 100.0 967 VLTGGFTWL 122.8 967 VLTGGFTWL 112.3 209 TQQDPELHY 112.3 217 YLNESASTPA 93.69 11 LLLUVTIAGC 71.87 211 LLLUVTIAGC 71.87 2 441 QLQELTLPLT 70.27 441 QLQELTLPLT 69.55 700 GLSSTSTLTV 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 952 RLSKEKADFL 57.57 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15		ļ <u></u>		136.5
967 VLTGGFTWL 122.8 64 209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 1		950	SNCEWSIFYV	77
967 VERGETWE 64 209 TQQDPELHY 112.3 35 217 YLNESASTPA 93.69 6 11 LLLUVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		007		122.8
209 TQQDPELHY L 112.3 35 217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		967	VLIGGEIWL	64
L 35 217 YLNESASTPA 93.691 11 LLLLVTIAGC 71.87 441 QLQELTLPLT 70.27 441 QLQELTLPLT 70.27 700 GLSSTSTLTV 69.55 843 VLLNVLDSDI 65.62 952 CEWSIFYVTV 63.98 952 RLSKEKADFL 57.57 892 RLSKEKADFL 51.79 6 GVLSSLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15		209	TQQDPELHY	112.3
217 YLNESASTPA 93.69 6 11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V			L	35
11 LLLLVTIAGC 71.87 2 441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		217	YLNESASTPA	93.69
11 LLLLVTIAGC 71.87 441 QLQELTLPLT 70.27 700 GLSSTSTLTV 69.55 843 VLLNVLDSDI 65.62 952 CEWSIFYVTV 63.98 952 CEWSIFYVTV 2 892 RLSKEKADFL 57.57 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15			an an and strateging and state and a factor of the strategy of	71 07
441 QLQELTLPLT 70.27 2 700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 51.79 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		11	LLLLVTIAGC	2
441 QLQELILPLT 2 700 GLSSTSTLTV 69.55 843 VLLNVLDSDI 65.62 952 CEWSIFYVTV 63.98 952 CEWSIFYVTV 63.98 892 RLSKEKADFL 57.57 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15				70.27
700 GLSSTSTLTV 69.55 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		441	QLQELILPLI	2
100 OLOGICITITY 2 843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 2 63.98 952 RLSKEKADFL 57.57 892 RLSKEKADFL 57.57 6 GVLSSLLLLV 51.79 6 GVLSSLLLV 9 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V 1 1		700		69.55
843 VLLNVLDSDI 65.62 2 952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 0 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V		100		2
952 CEWSIFYVTV 63.98 2 892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 51.79 0 776 LQLTNLVEGV 49.98 9 617 VQPENNRPP 49.15 V		843	VLLNVLDSDI	65.62
952 CEWSIFYVTV 63.96 892 RLSKEKADFL 57.57 892 GVLSSLLLV 51.79 6 GVLSSLLLV 51.79 776 LQLTNLVEGV 9 617 VQPENNRPP 49.15 V 1 1				
892 RLSKEKADFL 57.57 2 6 GVLSSLLLLV 51.79 6 GVLSSLLLLV 0 0 776 LQLTNLVEGV 9 9 617 VQPENNRPP 49.15 1		952	CEWSIFYVTV	2
892 RLSKEKADFL 2 6 GVLSSLLLLV 51.79 0 776 LQLTNLVEGV 49.98 9 617 VQPENNRPP 49.15 V 1 1 1				57.57
6 GVLSSLLLLV 51.79 0 776 LQLTNLVEGV 49.98 9 617 VQPENNRPP 49.15 1		892	RESKEKADEL	2
0 776 LQLTNLVEGV 49.98 9 617 VQPENNRPP 49.15 V 1		6	GVLSSITTIN	51.79
776 LQLTNLVEGV 9 9 617 VQPENNRPP 49.15 V 1		1		0
617 VQPENNRPP 49.15		776	LQLTNLVEGV	49.98
617 VQPENNKPP 49.10		<u> </u>		1015
		617		49.15

-				
	Table XI-V1-HLA-A0201			
	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the			
1	length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			
	Start	Subsequence	Score	
	901	LLFKVLRVDT	46.87 3	
ſ	828	QLTEQRKDT L	42.91 7	
	45	IMRVSHTFPV	37.64 2	
Ĩ	961	VLAFTLIVLT	29.13 7	
Ī	1000	NMDEQERME L	25.30 3	
-	692	RLTVKDQQG L	21.36 2	
	836	TLVRQLAVLL	21.36 2	
	684	LQVGTYHFR	21.35 6	
	92	KMGPIRSYLT	18.83 7	
the second second	635	LIFPVESATL	18.47 6	
The same in the same same same same same same same sam	120	MLNRGSPSG	17.73 6	
オスショー・ショー	343	LIITLPDNEV	16.25 8	
The second second second	606	RQQSTAVVT	16.21 9	
and a support of the	808	VQPDPRKSG L	15.09 6	
	269	LMPSHSLPP A	14.02 9	
	355	KAFVAPAPPV	12.51 0	
	7	VLSSLLLLVT	11.94 6	
	729	LVLPNNSITL	11.75 7	
	400	VGLYVFKVTV	, 10.85 2	
	398	LSVGLYVFKV	, 10.29 6	
	39	NLETTRIMRV	, 10.23 8	
	677	AIATVTGLQV	9.563	

Table XI-V1-HLA-A0201				
1	Omers-254P1D6	8		
Each SEC	peptide is a port ID NO: 3; each	ion of start		
pos	ition is specified,	the		
acids	and the end po	sition		
for ea	high peptide is the	e start		
Start	Subsequence	Score		
958	YVTVLAFTLI	7.978		
654	GIVFYHWEH V	7.966		
386	KQGHKQTLN L	7.581		
839	RQLAVLLNVL	7.557		
821	TLQVGVGQL T	7.452		
278	ASLELSSVTV	6.887		
413	NAFGEGFVN V	6.791		
141	LPFLGKDWG L	6.579		
960	TVLAFTLIVL	6.522		
660	WEHVRGPSA 6.221			
773	SVALQLTNLV	6.086		
128	GIWGDSPEDI	5.834		
94	GPIRSYLTEV	5.743		
	RVNLPPVAV	- 700		
429	V	5.739		
904	KVLRVDTAG C	5.629		
370	YEWNLISHPT	5.532		
965	TLIVLTGGFT	5.328		
352	VELKAFVAPA	5.311		
669	VEMENIDKAI	5.232		
728	VLVLPNNSIT	5.194		
436	AVVSPQLQE L	4.299		
178	GSAEYTDWG L	4.288		
395	LSQLSVGLYV	4.245		
12	LLLVTIAGCA	4.062		
797	GASDTDTAT V	3.961		
1054	SMNGSIRNG A	3.588		
391 QTLNLSQLSV 3.574				
357	FVAPAPPVET	2.999		
1	Contraction to a second second second	Account and		

Formers-204P 10.00Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.Start Subsequence Score686VGTYHFRLTV2.933551NQSSDDHQI V2.891871VQSRPPFKV 2.868338SAGDNLIITL2.796959VTVLAFTLIV2.559780NLVEGVYTF 2.521936WMENLIQRYI2.440502RLTVTDSDG L.434630GPDKELIFPV2.423247VLEKEKASQL 2.324698QQCLSSTST 2.16691KKMGPIRSYL 2.113765DVIDGSDHSV 1.871539ITLPONSITL 1.866345ITLPONSITL 1.866345SGLVELTLQV 1.680475GPFIEEKTSV 1.680474ELTPDNEVEL 1.366102FVLRPVQRP 1.480266KEVLMPSHS 1.454457SQSTDDTEIV 1.417633KELIFPVESA 1.410590MQEGDYTFQ 1.3672482TSVDSPVLRL 1.315939NLOPYIMDC 1.226	Table	e XI-V1-HLA-A02	201		
SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 686 VGTYHFRLTV 2.933 551 NQSSDDHQI 2.891 871 L 2.891 871 VQSRPPFKV 2.868 338 SAGDNLIITL 2.796 827 GQLTEQRKD 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVTF 2.521 936 WMENLIQRYI 2.434 630 GPDKELIFPV 2.423 6430 GPDKELIFPV 2.423 6430 GPDKELIFPV 2.423 6430 GPDKELIFPV 2.423 6430 GPDKELIFPV 2.423 6431 ITLPONSITL 1.866 193 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 193 SGLVELTLQV 1.680 194 KKMGPIRSYL 1.680 195 SGLVELTLQV	Fach	nentide le a port			
position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.StartSubsequenceScore686VGTYHFRLTV2.933551NQSSDDHQI V2.891871VQSRPPFKV L2.868338SAGDNLIITL2.798827GQLTEQRKD T2.796959VTVLAFTLIV2.559780NLVEGVYTF H2.521936WMENLIQRYI2.440502RLTVTDSDG L2.434630GPDKELIFPV2.423643GPDKELIFPV2.423643ITLPONSTL1.86691KKMGPIRSYL2.113765DVIDGSDHSV1.871539ITLPONSITL1.866193SVGDSPAVP A1.782815SGLVELTLQV1.680444ELTLPLTSAL1.6021031SEFDSDQDTI1.508102FVLRPVGRP A1.480266KEVLMPSHS L1.410590L1.3672482TSVDSPVLRL1.315939NLORVUMCC L1.322482TSVDSPVLRL1.315939NLORVUMCC L1.325	SEQ	ID NO: 3; each	start		
lengin of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Start Subsequence Score 686 VGTYHFRLTV 2.933 551 NQSSDDHQI V 2.891 871 VQSRPPFKV 2.868 338 SAGDNLIITL 2.798 827 GQLTEQRKD T 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.440 502 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 649 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.880 345 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 144 ELTPLTSAL 1.602 1031 SEFDSDQDTI 1.508	posi	tion is specified,	the		
Start Subsequence Score Start Subsequence Score 686 VGTYHFRLTV 2.933 551 NQSSDDHQI 2.891 871 L 2.868 338 SAGDNLIITL 2.796 359 VTVLAFTLIV 2.559 780 NLVEGVTF 2.521 936 WMENLIQRYI 2.440 502 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONSITL 1.866 345 ISGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 102 FVLRPVQRP 1.480 102 FVLRPVQRP 1.480 266 L 1.451 482 TSVDSPVLRL 1.315	ength acids	ot peptide is 10, and the end po	amino sition		
position plus nine. Start Subsequence Score 686 VGTYHFRLTV 2.933 551 NQSSDDHQI 2.891 871 VQSRPPFKV 2.868 338 SAGDNLIITL 2.798 827 GQLTEQRKD 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.434 630 GPDKELIFPV 2.423 630 GPDKELIFPV 2.423 631 GPDKELIFPV 2.423 632 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 631 GPDKELIFPV 2.423 632 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 191 KKMGPIRSYL 1.866 192 SQDSDPAVP 1.782 815 SGLVELTLQV 1.680 145 GPFIEEKTSV <td< td=""><td>for ea</td><td>ch peptide is the</td><td>e start</td></td<>	for ea	ch peptide is the	e start		
Subsequence Score 686 VGTYHFRLTV 2.933 551 NQSSDDHQI 2.891 871 VQSRPPFKV 2.868 338 SAGDNLIITL 2.798 827 GQLTEQRKD 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.440 602 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.133 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 193 SVGDSPAVP 1.866 198 SVGDSPAVP 1.602 1021 FVLRPVQRP 1.602 1031 SEFDSDQDTI 1.602 1031 SEFDSDQDTI 1.480 102 FVLRPVQRP 1.410 590 KELIFPVESA	p	osition plus nine).		
686 VGTYHFRLTV 2.933 551 NQSSDDHQI V 2.891 871 VQSRPPFKV L 2.868 338 SAGDNLIITL 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.400 502 RLTVTDSDG 2.440 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.866 345 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 102 FVLRPVQRP 1.450 102 FVLRPVQRP 1.450 102 FVLRPVQRP 1.450 102 FVLRPVESA 1.410 590 L	Start	Subsequence	Score		
NQSSDDHQI 2.891 871 VQSRPPFKV 2.868 338 SAGDNLIITL 2.796 827 GQLTEQRKD 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVTF 2.521 936 WMENLIQRYI 2.430 630 GPDKELIFPV 2.423 631 FVLRFKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONSITL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 102 FVLRPVQRP 1.480 102 FVLRPVGRP 1.4	686	VGTYHFRLTV	2.933		
871 VQSRPPFKV L 2.868 338 SAGDNLIITL 2.798 827 GQLTEQRKD T 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.440 502 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 630 GPDKELIFPV 2.423 630 GPDKELIFPV 2.423 630 GPDKELIFPV 2.423 631 GPDKELIFPV 2.423 632 IL 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONSITL 1.866 193 SVGDSPAVP 1.782 815 SGLVELTLQV 1.602 1031 SEFDSDQDTI 1.602 1031 SEFDSDQDTI 1.602 1032 FVLRPVQRP 1.480 266 L	551	NQSSDDHQI V	2.891		
338 SAGDNLIITL 2.798 827 GQLTEQRKD 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.440 502 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONSITL 1.866 198 SVGDSPAVP 1.782 A SSGLVELTLQV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.588 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.410 590 L 1.367 261 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 939 NLOEVIMEC	871	VQSRPPFKV L	2.868		
827 GQLTEQRKD T 2.796 959 VTVLAFTLIV 2.559 780 NLVEGVYTF H 2.521 936 WMENLIQRYI 2.440 602 RLTVTDSDG A 2.434 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQCLSSTST L 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.866 345 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 102 FVLRPVQRP A 1.450 102 FVLRPVQRP A 1.450 266 KEVLMPSHS 1.410 590 MQEGDYTFQ L 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315	338	SAGDNLIITL	2.798		
959 VTVLAFTLIV 2.559 780 NLVEGVYTF 2.521 936 WMENLIQRYI 2.440 602 RLTVTDSDG 2.434 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.866 345 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 102 FVLRPVQRP 1.480 266 L 1.454 457 SQSTDDTEIV 1.410 590 MQEGDYTFQ 1.367 266 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315	827	GQLTEQRKD T	2.796		
780 NLVEGVYTF H 2.521 936 WMENLIQRYI 2.440 502 RLTVTDSDG A 2.434 630 GPDKELIFPV 2.423 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST L 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONSITL 1.866 198 SVGDSPAVP A 1.782 815 SGLVELTLQV 1.680 445 GPFIEEKTSV 1.680 144 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPV	959	VTVLAFTLIV	2.559		
936 WMENLIQRYI 2.440 502 RLTVTDSDG A 2.434 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST L 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONSITL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.410 530 KELIFPVESA 1.410 590 L 1.367 266 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315 939 NLORVIMOC 1.226	780	NLVEGVYTF H	2.521		
502 RLTVTDSDG A 2.434 630 GPDKELIFPV 2.423 631 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST L 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP A 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ L 1.367 266 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315	936	WMENLIQRYI	2.440		
630 GPDKELIFPV 2.423 630 GPDKELIFPV 2.423 247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315 939 NLOPYIMDC 1.285	502	RLTVTDSDG A	2.434		
247 VLEKEKASQL 2.324 698 QQGLSSTST 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONEVEL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 102 FVLRPVQRP 1.480 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 266 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 939 NLOPYIMDC 1.225	630	630 GPDKELIFPV			
698 QQGLSSTST L 2.166 91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPONEVEL 1.866 198 SVGDSPAVP A 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP A 1.480 266 KEVLMPSHS L 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315 939 NLORVINDC 1.226	247	247 VLEKEKASQL 2.324			
91 KKMGPIRSYL 2.113 765 DVIDGSDHSV 1.871 539 ITLPQNSITL 1.866 345 ITLPDNEVEL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315	698	QQGLSSTST	2.166		
765 DVIDGSDHSV 1.871 539 ITLPONSITL 1.866 345 ITLPONEVEL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315	91	KKMGPIRSYL	2.113		
539 ITLPQNSITL 1.866 345 ITLPDNEVEL 1.866 198 SVGDSPAVP 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 266 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315	765	DVIDGSDHSV	1.871		
345 ITLPDNEVEL 1.866 198 SVGDSPAVP A 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP A 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315	539	ITLPQNSITL	1.866		
198 SVGDSPAVP A 1.782 815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315	345	ITLPDNEVEL	1.866		
815 SGLVELTLQV 1.680 475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP A 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 266 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315	198	SVGDSPAVP	1.782		
475 GPFIEEKTSV 1.680 444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 266 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 930 NLIOPYMOC 1.252	815	SGLVELTLOV	1.680		
444 ELTLPLTSAL 1.602 1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 L 1.367 266 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 939 NLOPYIMDC 1.285	475	GPFIEEKTSV	1.680		
1031 SEFDSDQDTI 1.508 102 FVLRPVQRP 1.480 266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 939 NLORYIMDG 1.285	444	ELTLPLTSAL	1.602		
IO2 FVLRPVQRP A I.480 266 KEVLMPSHS L 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315	1031	SEFDSDODTI	1.508		
266 KEVLMPSHS 1.454 457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 930 NLICPYMPC 1.252	102	FVLRPVQRP A	1.480		
457 SQSTDDTEIV 1.417 633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 930 NL LOPYIMOC 1.252	266	KEVLMPSHS L	1.454		
633 KELIFPVESA 1.410 590 MQEGDYTFQ 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 939 NLORVINDC 1.285	457	SQSTDDTEIV	1.417		
590 MQEGDYTFQ 1.367 26 SEGRTYSNA 1.352 482 TSVDSPVLRL 1.315 939 NLICEVINDO 1.325	633	KELIFPVESA	1.410		
26 SEGRTYSNA V 1.352 482 TSVDSPVLRL 1.315 939 NILIOPVINDC 1.225	590	MQEGDYTFQ	1.367		
482 TSVDSPVLRL 1.315	26	SEGRTYSNA V	1.352		
	482	482 TSVDSPVLRL 1.315			
555 INCIGENTIVED 1.200	939	NLIQRYIWDG	1.285		

PCT/US2004/001965

Table				
10	mers-254P1D6	8		
Each	peptide is a port	ion of i		
SEQ	ID NO: 3; each	start		
posit	ion is specified,	the		
length	of peptide is 10	amino		
acids,	and the end po	sition		
	on peptide is the	sian		
Ctart	Subsequence	Secro		
Jan				
421		1.217		
701		1 1 20		
		1.100		
521	VININAVDYPP	1.158		
<u> </u>	!	<u> </u>		
Table				
	N-V2-HLA-AU	201- 8		
	niers-204F 100			
Each	Deptide is a port	ion of j		
	ion is specified	the		
Jenath	of peptide is 10	amino		
acids,	and the end po	sition		
for each	ch peptide is the	e start		
p p	osition plus nine	. [
Chart	Cubaaquaaaa	Scor		
Start	Subsequence	e		
	NOL SEMOEVA	6.09		
	WGLEEWISETA	9		
7	SEVADOVOEL	0.39		
	SETADUTREL	9		
		0.00		
5	EMSEYADDYR	9		
	0.00.000	0.00		
2	GLEEMSEYAD	Δ		
		11 77 1		
	NUMBER OF A DESCRIPTION	0.00		
9	YADDYRELEK	0.00		
9	YADDYRELEK	0.00		
9	YADDYRELEK EEMSEYADDY	0.00 2 0.00		
9	YADDYRELEK EEMSEYADDY	0.00 2 0.00 0		
9 4 3	YADDYRELEK EEMSEYADDY LEEMSEYADD	0.00 2 0.00 0		
9 4 3	YADDYRELEK EEMSEYADDY LEEMSEYADD	0.00 2 0.00 0 0 0		
9 4 3 6	YADDYRELEK EEMSEYADDY LEEMSEYADD MSEYADDYRE	0.00 2 0.00 0 0 0 0 0 0		
9 4 3 6	YADDYRELEK EEMSEYADDY LEEMSEYADD MSEYADDYRE	0.00 2 0.00 0 0 0 0 0 0 0 0 0		
9 4 3 6 10	YADDYRELEK EEMSEYADDY LEEMSEYADD MSEYADDYREI ADDYREI EKD	0.00 2 0.00 0 0 0.00 0 0 0.00 0		
9 4 3 6 10	YADDYRELEK EEMSEYADDY LEEMSEYADD MSEYADDYRE ADDYRELEKD	0.00 2 0.00 0 0 0 0 0 0 0 0 0 0		
9 4 3 6 10 8	YADDYRELEK EEMSEYADDY LEEMSEYADD MSEYADDYRE ADDYRELEKD	0.00 2 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
9 4 3 6 10 8	YADDYRELEK EEMSEYADD LEEMSEYADD MSEYADDYRE ADDYRELEKD EYADDYRELE	0.00 2 0.00 0 0.00 0 0 0.00 0 0 0 0 0 0		
9 4 3 6 10 8	YADDYRELEK EEMSEYADDY LEEMSEYADD MSEYADDYRE ADDYRELEKD EYADDYRELE	0.00 2 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Table XI-V3-HLA-A0201-
10mers-254P1D68
Each peptide is a portion of
SEQ ID NO: 7; each start
position is specified, the
length of peptide is 10 amino

.

~		
acid for e	s, and the end po ach peptide is th position plus nin	osition e start e.
Start	Subsequence	Scor e
3	RLGWPSPCCA	4.96 8
1	MTRLGWPSPC	0.00 9
2	TRLGWPSPCC	0.00 3
4	LGWPSPCCAR	0.00
7	PSPCCARKQC	0.00
10	CCARKQCSEG	0.00 0
8	SPCCARKQCS	0.00 0
6	WPSPCCARKQ	0.00 0
9	PCCARKQCSE	0.00 0
5	GWPSPCCARK	0.00
Tab	le XI-V5-HLA-A0 I0mers-254P1D6	201- 8
Each SEQ pos length	peptide is a port ID NO: 11; each sition is specified, of peptide is 10	lion of start the amino
for e	s, and the end po ach peptide is the position plus nine	sition start
Start	Subsequence	Scor e
9	LTFLGKDWGL	13.9 97
3	EDIRKDLTFL	0.02 8
8	DLTFLGKDWG	0.01 5
1	SPEDIRKDLT	0.00 6
7	KDLTFLGKDW	0.00
4	DIRKDLTFLG	0.00 0
2	PEDIRKDLTF	0.00 0
6	RKDLTFLGKD	0.00 0

12201000				
Tat	e XI-V5-H_A-A	0201-		
	10mers-254P1D68			
Each	Each peptide is a portion of			
SEC	2 ID NO: 11; eac	h start		
llenat	h of peptide is 10	, uie amino		
acid	s, and the end p	osition		
for e	ach peptide is th	e start		
 	position plus nin	e. (
Start	Subsequence	Scor e		
10	TFLGKDWGLE	0.00		
-		0.00		
l o		0		
		C Brook,		
Ta	able XII-V1-HLA-	A3-		
	9mers-254P1D6	8		
Each	peptide is a por	tion of		
SEC	D NO: 3; each ו	start		
pog	sition is specified	, the		
acide	and the end or	amino		
for e	ach peptide is th	e start		
	osition plus eigh	nt.		
Start	Subsequence	Score		
700		40.50		
780	NLVEGVYTF	0		
565	SLGPGSEGK	30.00 0		
683	GLQVGTYHF	18.00		
		10.80		
68	DLAWWFEGR	0		
576	VMQGVQTPY	9.000		
397	QLSVGLYVF	9.000		
589	AMQEGDYTF	9.000		
281	ELSSVTVEK	9.000		
401	GLYVFKVTV	9.000		
493	NIDPGNYSE	9 000		
7/0		0.000		
140	I RIVOTLWIR I	0.100		
39		8.000		
936	WMENLIQRY	6.000		
373	NLISHPTDY	6.000		
866	VIVFYVQSR	5.400		
152	EMSEYSDDY	5.400		
92	KMGPIRSYI	4.050		
870	VIKAAEVAP	1 000		
660		4.000		
800	AVENIENIUK	4.000		
598	QLKVTDSSR	4.000		
975	WLCICCCKR	4.000		

Ta	Table XII-V1-HLA-A3- 9mers-254P1D68				
Each	Each peptide is a portion of				
SEC	SEQ ID NO: 3; each start				
pos	position is specified, the				
acid	s, and the end p	osition			
for e	ach peptide is th	e start			
Start	Subsequence	Score			
1025	SIMUSESEE	3 000			
968		2 700			
816	GI VELTI OV	2 700			
228	KIPERSVII	2700			
1008	FLRPKYGIK	2 700			
862	DLSTVIVFY	2,700			
705	STLTVAVKK	2 250			
892	RLSKEKADF	2.000			
870	YVQSRPPFK	2.000			
900	FLLFKVLRV	1.800			
441	QLQELTLPL	1.800			
961	VLAFTLIVL	1.800			
784	GVYTFHLRV	1.800			
274	SLPPASLEL	1.800			
15	VTIAGCARK	1.500			
366	TTYNYEWNL	1.350			
728	VLVLPNNSI	1.350			
186	GLLPGSEGA	1.350			
836	TLVRQLAVL	1.350			
113	LLDYGDMML	1.200			
825	GVGQLTEQR	1.200			
730	VLPNNSITL	1.200			
540	TLPQNSITL	1.200			
1052	KVSMNGSIR	1.200			
983	RQKRTKIRK	1.200			
112	QLLDYGDMM	0.900			
840	QLAVLLNVL	0.900			
615	VIVQPENNR	0.900			
965	TLIVLTGGF	0.900			
10	SLLLLVTIA	0.900			
560	VLYEWSLGP	0.900			
187	LLPGSEGAF	0.900			
687	GTYHFRLTV	0.900			
558	QIVLYEWSL	0.810			
654	GIVFYHWEH	0.810			
6	GVLSSLLLL	0.810			
7	VLSSLLLLV	0.600			

Table XII-V1-HLA-A3-	
9mers-254P1D68	
SEO ID NO: 3: each start	
position is specified, the	
length of peptide is 9 amino	
for each peptide is the start	
position plus eight.	
Start Subsequence Score	
519 LIVNNAVDY 0.600	
346 TLPDNEVEL 0.600	
446 TLPLTSALI 0.600	
394 NLSQLSVGL 0.600	
347 LPDNEVELK 0.600	
1062 GASFSYCSK 0.600	
1045 KMERGNPKV 0.600	
844 LLNVLDSDI 0.600	
777 QLTNLVEGV 0.600	
579 GVQTPYLHL 0.540	
353 ELKAFVAPA 0.540	
685 QVGTYHFRL 0.540	
483 SVDSPVLRL 0.540	
821 TLQVGVGQL 0.540	
399 SVGLYVFKV 0.540	
986 RTKIRKKTK 0.500	
44 RIMRVSHTF 0.450	
12 LLLVTIAGC 0.450	
634 ELIFPVESA 0.405	
14 LVTIAGCAR 0.400	
392 TLNLSQLSV 0.400)
421 NVTVKPARR 0.400	
805 TVEVQPDPR 0.400	
209 TQQDPELHY 0.360	
97 RSYLTFVLR 0.300	
700 GLSSTSTLT 0.300	
704 TSTLTVAVK 0.300)
473 INGPFIEEK 0.270	5
684 LQVGTYHFR 0.270)
398 LSVGLYVFK 0.22	5
934 HLWMENLIQ 0.20	5
	าไ
890 HMRLSKEKA 10.20	
977 CICCCKRQK 0.20	
890 HMRLSKERA 0.200 977 CICCCKRQK 0.200 905 VLRVDTAGC 0.200	
890 HMRLSKEKA 0.200 977 CICCCKRQK 0.200 905 VLRVDTAGC 0.200 625 PVAVAGPDK 0.200	
890 HMMLSKEKA 0.200 977 CICCCKRQK 0.200 905 VLRVDTAGC 0.200 625 PVAVAGPDK 0.200 914 LLKCSGHGH 0.200	

Table XII-V1-HI A-A3-
Omore 254P1D68
Jille13-204 1000
Each peptide is a portion of
SEQ ID NO: 3; each start
position is specified, the
length of peptide is 9 amino
acids, and the end position
for each pentide is the start
nosition plus eight
Start Subsequence Score
138 RKDLPFLGK 0.180
131 GDSPEDIRK 10. ICU
681 VTGLQVGTY 0.180
960 I VLAFTLIV U. 100
884 EVARNLHMR 0.180
<u>[1</u>
{ } [
Table XII-V2-HLA-A3-
9mers-254P1D68
Each peptide is a portion of
SEO ID NO: 5: each start
position is specified the
longth of postide in 9 omine
religit of peptide is a attition
acids, and the end position
in for each peptide is the start (
position plus eight.
Start Subsequence Score
4 ENISETADDY 5.400
1 GLEEMSEYA 0.900
S ADDITICECK 0.040
5 MSEYADDYR 0.020
6 SEYADDYRE 0.001
8 YADDYRELE 0.001
2 LEEMSEYAD 0.000
3 EEMSEYADD 0.000
7 EYADDYREL 0.000
A series of the series of t
Table XII-V3-HLA-A3-
9mers-254P1D68
Each poptido la opertion of
SEQ 10 NO: 7; each start
position is specified, the
length of peptide is 9 amino
acids, and the end position
I for each peptide is the start
position plus eight.
Start Subsequence Score
3 RLGWPSPCC 0.300
6 WPSPCCARK 0 300
0 1 WI CI COART (0.500)
5 GWPSPCCAR 0.018
4 LGWPSPCCA 0.002

•		
Table	XII-V3-HLA-	43- P
Seeb nor	tide is a part	
SEQID	NO: 7; each	start
position	is specified	, the
length of	peptide is 9	amino
for each	nentide is the	e start
posi	ion plus eigh	ıt.
Start Su	bsequence	Score
8 SP	CCARKQC	0.001
1 MT	RLGWPSP	0.001
10 00	ARKQCSE	0.000
9 PC	CARKOCS	0.000
	PCCARKO	0.000
		0.000
Table	XII-V5-HLA-	A3-
9me	ers-254P1D6	8
Each pe	ptide is a por	tion of
SEQ ID	NO: 11; eacl	n start
length of	n is specified peptide is 9	amino
acids, a	nd the end p	osition
for each	peptide is th	e start
posi	tion plus eigi	nt.
Start	bsequence	Score
5 RI	(DLTFLGK	0.120
7 DL	TFLGKDW	0.030
3 D	RKDLTFL	0.027
8 LT	FLGKDWG	0.005
9 TF	LGKDWGL	0.004
2 E	DIRKDLTF	0.002
6 K	DLTFLGKD	0.000
4 IF	KDLTFLG	0.000
1 P		0.000
<u>Un sine e bere</u>		
Table	XIII-V1-HLA	-A3-
10m	iers-254P1D	68
Each pe	ptide is a po	rtion of
SEQ ID	NO: 3; eacl	n start
length of	in is specified	d, the Damino
acids, a	nd the end p	osition
for each	peptide is the	ne start
pos	ition plus nir	ie.
Start	Subsequence	Scor
	way a ferre frank with a statistical and	
934 H	LWMENLIQ	R 00.0
348 7		60.0
340 1) 00
847 V	LDSDIKVQ	< 30.0

Tal	ble XIII-V1-HLA-A Omers-254P1D68	3-				
10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start						
Start	Start Subsequence					
		00				
687	GTYHFRLTVK	22.5 00				
844	LLNVLDSDIK	20.0 00				
397	QLSVGLYVFK	20.0 00				
683	GLQVGTYHFR	12.0 00				
888	NLHMRLSKEK	10.0 00				
973	FTWLCICCCK	7.50 0				
655	IVFYHWEHVR	6.00 0				
955	SIFYVTVLAF	6.00 0				
13	LLVTIAGCAR	6.00 0				
825	GVGQLTEQRK	6.00 0				
518	ALIVNNAVDY	6.00 0				
493	NLDPGNYSFR	6.00 0				
865	TVIVFYVQSR	5.40 0				
186	GLLPGSEGAF	4.05 0				
472	EINGPFIEEK	4.05 0				
1039	TIFSREKMER	4.00 0				
907	RVDTAGCLLK	4.00 0				
997	ILDNMDEQER	4.00 0				
394	NLSQLSVGLY	3.60 0				
805	805 TVEVQPDPRK					
703	STSTLTVAVK	3.00				

1000 - 100 A	Tat 1	ole XIII-V1-HLA-A Omers-254P1D68	3-
	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
	Start	Subsequence	Scor e
			0
	968	VLTGGFTWLC	2.70 0
	1006	RMELRPKYGI	2.70 0
	14	LVTIAGCARK	2.00 0
	878	KVLKAAEVAR	1.80 0
	152	EMSEYSDDYR	1.80 0
	112	QLLDYGDMML	1.80 0
	777	QLTNLVEGŲY	1.80 0
	1000	NMDEQERMEL	1.80 0
	401	GLYVFKVTVS	1.80 0
	895	KEKADFLLFK	1.62 0
	128	GIWGDSPEDI	1.35 0
	92	KMGPIRSYLT	1.35 0
	586	HLSAMQEGDY	1.20 0
:	1058	SIRNGASFSY	1.20 0
	241	TPSSGEVLEK	1.20 0
	490	RLSNLDPGNY	1.20 0
:	700	GLSSTSTLTV	1.20 0
	100	LTFVLRPVQR	1.00 0
	76	RCYLVSCPHK	1.00 0
	836	TLVRQLAVLL	0.90 0
	828	QLTEQRKDTL	0.90

Table XIII-V1-HLA-A3- 10mers-254P1D68		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus pine		
Start	Subsequence	Scor e
667	SAVEMENIDK	0 0.90 0
575	VVMQGVQTPY	0.90 0
843	VLLNVLDSDI	0.90 0
576	VMQGVQTPYL	0.90
614	TVIVQPENNR	0.90
862	DLSTVIVFYV	0.81 0
781	LVEGVYTFHL	0.81
780	NLVEGVYTFH	0.67 5
892	RLSKEKADFL	0.60 0
39	NLETTRIMRV	0.60 0
35	VISPNLETTR	0.60 0
406	KVTVSSENAF	0.60 0
692	RLTVKDQQGL	0.60 0
247	VLEKEKASQL	0.60
120	MLNRGSPSGI	0.60 0
45	IMRVSHTFPV	0.60
481	KTSVDSPŸLR	0.60
419	FVNVTVKPAR	0.60 0
416	GEGFVNVTVK	0.54
1008	ELRPKYGIKH	0.54 0
988	KIRKKTKYTI	0.54

PCT/US2004/001965

......

Tal 1	Table XIII-V1-HLA-A3- 10mers-254P1D68		
Each SEC pos length acids for ea	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start		
Start	Subsequence	Scor e	
		0	
228	KLPERSVLLP	0.54 0	
173	KQEPRGSAEY	0.54 0	
107	VQRPAQLLDY	0.54 0	
680	TVTGLQVGTY	0.54 0	
901	LLFKVLRVDT	0.50 0	
635	LIFPVESATL	0.45 0	
804	ATVEVQPDPR	0.45 0	
872	QSRPFFKVLK	0.45 0	
1054	SMNGSIRNGA	0.45 0	
11	LLLLVTIAGC	0.45 0	
396	SQLSVGLYVF	0,40 5	
939	NLIQRYIWDG	0.40 5	
977	CICCCKRQKR	0.40	
684	LQVGTYHFRL	0.36 4	
7	VLSSLLLLVT	0.30 0	
459	STDDTEIVSY	0.30	
324	SPTTAPRTVK	0.30	
269	LMPSHSLPPA	0.30 0	
217	YLNESASTPA	0.30	
743	STDDQRIVSY	0.30	
913	CLLKCSGHGH	0.30	

Tal 1	ble XIII-V1-HLA-A Omers-254P1D68	3-		
Each SEC pos length	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino			
for ea	for each peptide is the start position plus nine.			
Start	Subsequence	Scor e		
		0		
223	STPAPKLPER	0.30 0		
381	YQGEIKQGHK	0.27 0		
729	LVLPNNSITL	0.27 0		
960	TVLAFTLIVL	0.27 0		
6	GVLSSLLLLV	0.27 0		
967	IVLTGGFTWL	0.27 0		
149	GLEEMSEYSD	0.27 0		
557	HQIVLYEWSL	0.24 3		
590	MQEGDYTFQL	0.24 3		
564	WSLGPGSEGK	0.22 5		
441	QLQELTLPLT	0.22 5		
816	GLVELTLQVG	0.20 3		
986	RTKIRKKTKY	0.20 0		
Та	Table XIII-V2-HLA-A3- 10mers-254P1D68			
Each	Each peptide is a portion of			
SEQ ID NO: 5; each start position is specified, the				
pengin or peptide is 10 amino				
for each peptide is the start position plus nine.				
Start	Subsequence	Scor e		
5	EMSEYADDYR	1.80 0		
9	YADDYRELEK	0.40		

Table XIII-V2-HLA-A3- 10mers-254P1D68			
Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino			
acids for ea	s, and the end pos ach peptide is the position plus nine.	ition start	
Start	Subsequence	Scor e	
2	GLEEMSEYAD	0.27 0	
4	EEMSEYADDY	0.01 6	
7	SEYADDYREL	0.00	
1	WGLEEMSEYA	0.00 0	
6	MSEYADDYRE	0.00 0	
3	LEEMSEYADD	0.00 0	
10	ADDYRELEKD	0.00 0	
8	EYADDYRELE	0.00 0	
ij Ta	ble XIII-V3-HLA-A	\ 3-	
Ta 1	ble XIII-V3-HLA-A 0mers-254P1D68	\3- }	
Each SEC	ble XIII-V3-HLA-A I0mers-254P1D68 peptide is a port Q ID NO: 7; each s	x3- 3 on of (start	
Ta Each SEC pos length	ble XIII-V3-HLA-A 10mers-254P1D66 peptide is a porti 2 ID NO: 7; each s iltion is specified, n of peptide is 10 a	3- 3 on of t start the amino	
Each SEC pos length acids for e	ble XIII-V3-HLA-A 10mers-254P1D6 2 ID NO: 7; each s sition is specified, n of peptide is 10 a s, and the end pos ach peptide is the position plus nine.	3- 3 start the amino sition start	
Each SEC pos length acids for en	ble XIII-V3-HLA-A omers-254P1D60 peptide is a port Q ID NO: 7; each s sition is specified, a of peptide is 10 a s, and the end pos ach peptide is the position plus nine.	3- 3 start the amino sition start Scor e	
Ta Each SEC pos length acids for et Start	ble XIII-V3-HLA-A lomers-254P1D66 peptide is a port Q ID NO: 7; each s sition is specified, n of peptide is 10 a s, and the end pos ach peptide is the position plus nine Subsequence RLGWPSPCCA	x3- on of 1 start the amino sition start Scor e 0.20 0	
Ta Each SEC pos length acids for et Start 3	ble XIII-V3-HLA-A lomers-254P1D66 peptide is a port Q ID NO: 7; each s ition is specified, n of peptide is 10 a s, and the end pos ach peptide is the position plus nine. Subsequence RLGWPSPCCARK	A3- 3 start the amino sition start Scor e 0.20 0 0 0.06 0	
Ta Each SEC pos length acids for et Start 3 5 4	ble XIII-V3-HLA-A omers-254P1D66 peptide is a port Q ID NO: 7; each s sition is specified, a of peptide is 10 a s, and the end pos ach peptide is the position plus nine. Subsequence RLGWPSPCCARK GWPSPCCARK	3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3	
Ta Each SEC pos length acids for each Start 3 5 4	ble XIII-V3-HLA-A lomers-254P1D66 peptide is a port Q ID NO: 7; each s sition is specified, a of peptide is 10 a s, and the end pos ach peptide is the position plus nine Subsequence RLGWPSPCCARK GWPSPCCARK LGWPSPCCARK	3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3	
Ta Each SEC pos length acids for ex Start 3 5 4 1 2	ble XIII-V3-HLA-A lomers-254P1D66 peptide is a port 2 ID NO: 7; each s ition is specified, n of peptide is 10 a s, and the end pos ach peptide is the position plus nine. Subsequence RLGWPSPCCARK LGWPSPCCARK LGWPSPCCARK MTRLGWPSPCC	3- 3- 00 of 1 start the amino start Scor 0.20 0 0.06 0 0.020 0 0.06 0 0.03 0 0.000 1	
Ta Each SEC pos length acids for en Start 3 5 4 1 2 8	ble XIII-V3-HLA-A iomers-254P1D66 peptide is a port Q ID NO: 7; each s sition is specified, of peptide is 10 a s, and the end pos ach peptide is the position plus nine. Subsequence RLGWPSPCCARK GWPSPCCARK LGWPSPCCARK LGWPSPCCARK SPCCARKQCS	3- 3- 0 on of I start start start Scor e 0.20 0.06 0 0.064 5 0.003 0 0.000 1	

7 PSPCCARKQC 0.00

PCT/US2004/001965

WO 2004/067716

Table XIII-V3-HLA-A3-
10mers-254P1D68
Each pentide is a partice of
SEQ ID NO: 7: each start
position is specified the
length of peptide is 10 amino
acids, and the end position
for each peptide is the start
position plus nine.
Scor
Start Subsequence e
6 WPSPCCARKQ 0.00
9 PCCARKQCSE 0.00
0
Table XIII-V5-HLA-A3-
10mers-254P1D68
Each pentide is a portion of
SEQ ID NO: 11: each start
position is specified, the
length of peptide is 10 amino
acids, and the end position
for each peptide is the start
position plus nine.
Start Subsequence Score
9 I TELGKDWGL D 450
5 IRKULTFLGK 0.120
8 DLTFLGKDWG 0.006
4 DIRKDLTFLG 0.002
I SPEDIRKDLT 0.001
7 KDLTFLGKDW 0.000
3 EDIRKDI TEL 0.000
0 RKDLTFLGKD 0.000
10 TFLGKDWGLE 0.000
Table XIV-V1-HI A-A1101-
9mers-254P1D6B
Each poptido io o portion of
SEC ID NO: 3: each start
nosition is specified the
length of pentide is 9 amino i
acids, and the end position
for each peptide is the start
position plus eight.
Start Subsequence Corra
Locard Consectnence (Scole)

	n a star an an Madacha an pag		
Table XIV-V1-HLA-A1101-			
	mers-254P1D6	В	
Each	peptide is a por	tion of	
SEC	ID NO: 3; each	start	
pos	ition is specified	, the	
lengt	of peptide is 9	amino	
acids, and the end position			
for each peptide is the start			
position plus eight.			
Start	Subsequence	Score	
668	AVEMENIDK	4.000	
983	RQKRTKIRK	3.600	
870	YVQSRPPFK	2.000	
15	VTIAGCARK	1.500	

r				
Tabl	Table XIV-V1-HLA-A1101- 9mers-25421D6B			
Each peptide is a portion of				
SEC	SEQ ID NO: 3; each start			
j pos	position is specified, the			
lengt	length of peptide is 9 amino			
for ea	ach pepfide is th	e start		
F	osition plus eigl	nt.		
Start	Subsequence	Score		
705	STLTVAVKK	1.500		
986	RTKIRKKTK	1.500		
825	GVGQLTEQR	1.200		
1052	KVSMNGSIR	1.200		
748	RIVSYLWIR	0.720		
1062	GASESYCSK	0.600		
77	CYLVSCPHK	0.600		
421	NVTVKPARR	0.400		
565	SLGPGSEGK	0.400		
688	TYHFRLTVK	0.400		
14	LVTIAGCAR	0.400		
805	TVEVQPDPR	0.400		
887	RNLHMRLSK	0.360		
784	GVYTFHLRV	0.240		
347	LPDNEVELK	0.200		
625	PVAVAGPDK	0.200		
6	GVLSSLLLL	0.180		
684	LQVGTYHFR	0.180		
258	EQSSNSSGK	0.180		
39	NLETTRIMR	0.160		
131	GDSPEDIRK	0.120		
138	RKDLPFLGK	0.120		
884	EVARNLHMR	0.120		
687	GTYHFRLTV	0.120		
615	VIVQPENNR	0.120		
281	ELSSVTVEK	0.120		
1008	ELRPKYGIK	0.120		
866	VIVFYVQSR	0.120		
579	GVQTPYLHL	0.120		
325	PTTAPRTVK	0.100		
378	PTDYQGEIK	0.100		
165	KDLLQPSGK	0.090		
967	IVLTGGFTW	0.090		
878	KVLKAAEVA	0.090		
806	VEVQPDPRK	0.090		
598	QLKVTDSSR	0.080		
879	VLKAAEVAR	0.080		

Tabl	Table XIV-V1-HLA-A1101-			
Each	Smers-254P1D6B			
SEC	SEQ ID NO: 3; each start			
pos	position is specified, the			
acid	length of peptide is 9 amino			
for e	ach peptide is th	e start		
	position plus eig	ht.		
Start	Subsequence	Score		
656	VFYHWEHVR	0.080		
975	WLCICCCKR	0.080		
1040	IFSREKMER	0.080		
831	EQRKDTLVR	0.072		
845	LNVLDSDIK	0.060		
685	QVGTYHFRL	0.060		
958	YVTVLAFTL	0.060		
429	RVNLPPVAV	0.060		
1010	RPKYGIKHR	0.060		
907	RVDTAGCLL	0.060		
960	TVLAFTLIV	0.060		
47	RVSHTFPVV	0.060		
101	TFVLRPVQR	0.060		
399	SVGLYVFKV	0.060		
846	NVLDSDIKV	0.060		
406	KVTVSSENA	0.060,		
839	RQLAVLLNV	0.054		
115	DYGDMMLNR	0.048		
169	QPSGKQEPR	0.040		
908	VDTAGCLLK	0.040		
483	SVDSPVLRL	0.040		
224	TPAPKLPER	0.040		
366	TTYNYEWNL	0.040		
920	HGHCDPLTK	0.040		
157	SDDYRELEK	0.040		
655	IVFYHWEHV	0.040		
977	CICCCKRQK	0.040		
978	ICCCKRQKR	0.040		
473	INGPFIEEK	0.040		
816	GLVELTLQV	0.036		
654	GIVFYHWEH	0.036		
974	TWLCICCCK	0.030		
398	LSVGLYVFK	0.030		
481	KTSVDSPVL	0.030		
97	RSYLTFVLR	0.024		
68	DLAWWFEGR	0.024		
401	GLYVFKVTV	0.024		

PCT/US2004/001965

	9 XIV-V1-HLA-A1101-				
Each	Sillets-204F TDob				
SEC	Each peptide is a portion of SEQ ID NO: 3' each start				
pos	ition is specified, the				
lengti	n of peptide is 9 amino				
for or	s, and the end position				
	osition plus eight.				
Start	Subsequence Score				
683					
000					
44					
826	VGQLTEQRK 0.020				
889	LHMRLSKEK 0.020				
382	QGEIKQGHK 0.020				
980	CCKRQKRTK 0.020				
1064	SFSYCSKDR 0.020				
848	LDSDIKVQK 0.020				
773	SVALQLTNL 0.020				
84	HKENCEPKK 0.020				
294	TVTPGSTEH 0.020				
105					
405					
/04	ISILIVAVK 0.020				
336	TVSAGDNLI 0.020				
781	LVEGVYTFH 0.020				
837	LVRQLAVLL 0.020				
873	SRPPFKVLK 0.020				
581	QTPYLHLSA 0.020				
284	SVTVEKSPV 0.020				
437	VVSPOLGEL 0.020				
331					
251					
0.001	EVELNAFVA UU.UTO				
Table					
	mers-254P1D68				
Each	pentide is a portion of				
SEQ	ID NO: 5; each start				
posi	tion is specified, the				
length	of peptide is 9 amino				
I for ea	, and the end position				
ior 0a	osition plus eight.				
Start	Subsequence Score				
	ADDYRELEK 0.040				
	CI SEMSEVAL 0.040				
4	EMSEYADDY 0.001				
6	SEYADDYRE 0.000				
8	YADDYRELE 0.000				

Table XIV-V2-HLA-A1101-			
9mers-254P1D68			
Each peptide is a portion of			
SEQ ID NO: 5; each start			
length of pentide is 9 amino			
acids, and the end position			
for each peptide is the start			
position plus eight.			
Start Subsequence Score			
7 EYADDYREL 0.000			
2 LEEMSEYAD 0.000			
3 EEMSEYADD 0.000			
)			
Table XIV-V3-HLA-A1101-			
91191S-204P1D08			
Each peptide is a portion of			
position is specified the			
length of peptide is 9 amino			
acids, and the end position			
for each peptide is the start			
Start Subsequence Score			
6 WPSPCCARK 0.200			
5 GWPSPCCAR 0.012			
3 RLGWPSPCC 0.001			
1 MTRLGWPSP 0.001			
4 LGWPSPCCA 0.000			
10 CCARKQCSE 0.000			
8 SPCCARKQC 0.000			
2 TRLGWPSPC 0.000			
9 PCCARKQCS 0.000			
7 PSPCCARKQ 0.000			
Table XIV-V5-HLA-A1101-			
9mers-254P1D68			
Each peptide is a portion of			
SEQ ID NO: 11; each start			
Pusition is specified, the			
acids, and the end position			
for each peptide is the start			
position plus eight.			
Start Subsequence Score			
5 RKDLTFLGK 0.120			
9 TFLGKDWGL 0.006			
8 LTFLGKDWG 0.002			
3 DIRKDLTFL 0.001			
7 DLTFLGKDW 0.001			
2 EDIRKDLTE 0.000			

Tabl	Table XIV-V5-HLA-A1101- 9mers-254P1D68			
Each SEC pos lengt for e Start 6 4 1 Tabl Each SEC pos lengt	9mers-254P1D68 Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. Start Subsequence Score 6 KDLTFLGKD 0.000 4 IRKDLTFLG 0.000 1 PEDIRKDLT 0.000 Table XV-V1-HLA-A1101- 10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3; each start			
acide	s, and the end nos	anino		
for e	ach peptide is the	start		
	position plus nine			
Start	Subsequence	Scor e		
907	RVDTAGCLLK	12.0 00		
825	GVGQLTEQRK	6.00 0		
687	GTYHFRLTVK	6.00 0		
14	LVTIAGCARK	2.00 0		
805	TVEVQPDPRK	2.00 0		
973	FTWLCICCCK	2.00		
878	KVLKAAEVAR	1,80 0		
76	RCYLVSCPHK	1.20 0		
703	STSTLTVAVK	1.00 0		
655	IVFYHWEHVR	0.80 0		
667	SAVEMENIDK	0.60 0		
865	TVIVFYVQSR	0.60 0		
614	TVIVQPENNR	0.60 0		
869	FYVQSRPPFK	0.60 0		

Tab	Table XV-V1-HLA-A1101- 10mers-254P1D68			
Each SEC pos lengti acidi for e	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			
Start	Subsequence	Scor e		
481	KTSVDSPVLR	0.60 0		
381	YQGEIKQGHK	0.60 0		
100	LTFVLRPVQR	0.40 0		
346	TLPDNEVELK	0.40 0		
847	VLDSDIKVQK	0.40 0		
419	FVNVTVKPAR	0.40 0		
844	LLNVLDSDIK	0.40 0		
241	TPSSGEVLEK	0.40 0		
397	QLSVGLYVFK	0.40 0		
895	KEKADFLLFK	0.36		
934	HLWMENLIQR	0.32 0		
1039	TIFSREKMER	0.32 0		
804	ATVEVQPDPR	0.30 0		
683	GLQVGTYHFR	0.24 0		
888	NLHMRLSKEK	0.20		
223	STPAPKLPER	0.20 0		
82	CPHKENCEPK	0.20		
324	SPTTAPRTVK	0.20 0		
377	HPTDYQGEIK	0.20		
6	GVLSSLLLLV	0.18 0		
597	FQLKVTDSSR	0.18 0		

Table XV-V1-HLA-A1101- 10mers-254P1D68			
Each SEC pos length acids for e	10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3 each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Scor e	
983	RQKRTKIRKK	0.18 0	
416	GEGFVNVTVK	0.18	
1043	REKMERGNPK	0.18 0	
919	GHGHCDPLTK	0.12	
982	KRQKRTKIRK	0.12 0	
472	EINGPFIEEK	0.12 0	
13	LLVTIAGCAR	0.12 0	
168	LQPSGKQEPR	0.12 0	
280	LELSSVTVEK	0.C9 0	
1007	MELRPKYGIK	0.09	
977	CICCCKRQKR	0.08 0	
35	VISPNLETTR	0.08 0	
493	NLDPGNYSFR	0.08 0	
997	ILDNMDEQER	0.08 0	
321	LPISPTTAPR	0.06 0	
870	YVQSRPPFKV	0.06 0	
257	QEQSSNSSGK	0.06 0	
406	KVTVSSENAF	0.06 0	
781	LVEGVYTFHL	0.06 0	
960	TVLAFTLIVL	0.06 0	
429	RVNLPPVAVV	0.06 0	

T			
Table XV-V1-HLA-A1101- 10mers-254P1D68			
Each SEC pos length acids for e	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start		
Start	Subsequence	Scor	
591	QEGDYTFQLK	e 0.06	
219	NESASTPAPK	0.06	
729	LVLPNNSITL	0.06	
330	RTVKELTVSA	0.04	
575	VVMQGVQTPY	0.04	
130	WGDSPEDIRK	0.04	
20	CARKQCSEGR	0.04	
137	IRKDLPFLGK	0.04	
886	ARNLHMRLSK	0.04	
286	TVEKSPVLTV	0.04 0	
717	SPPRARAGGR	0.04 0	
156	YSDDYRELEK	0.04 0	
336	TVSAGDNLII	0.04 0	
386	KQGHĶQTLNL	0.03 6	
624	PPVAVAGPDK	0.03 0	
976	LCICCCKRQK	0.03 0	
564	WSLGPGSEGK	0.03 0	
985	KRTKIRKKTK	0.03 0	
992	KTKYTILDNM	0.03 0	
959	VTVLAFTLIV	0.03	
967	IVLTGGFTWL	0.03 0	

PCT/US2004/001965

Table XV-V1-HLA-A1101- 10mers-254P1D68		
10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Scor e
986	RTKIRKKTKY	0.03 0
391	QTLNLSQLSV	0.03 0
436	AVVSPQLQEL	0.03 0
539	ITLPQNSITL	0.03 0
727	HVLVLPNNSI	0.03 0
684	LQVGTYHFRL	0.02 7
839	RQLAVLLNVL	0.02 7
1006	RMELRPKYGI	0.02
830	TEQRKDTLVR	0.02 4
152	EMSEYSDDYR	0.02 4
988	KIRKKTKYTI	0.02 4
700	GLSSTSTLTV	0.02 4
128	GIWGDSPEDI	0.02
979	CCCKRQKRTK	0.02 0
423	TVKPARRVNL	0.02 0
958	YVTVLAFTLI	0.02 0
680	TVTGLQVGTY	0.02 0
366	TTYNYEWNLI	0.02 0
1061	NGASFSYCSK	0.02 0
1019	STEHNSSLMV	0.02 0
284	SVTVEKSPVL	0.02 0

Table XV-V1-HLA-A1101-			
10mers-254P1D68 Each peptide is a portion of			
po	sition is specified, of peptide is 10	the amino	
acid for e	s, and the end pos ach peptide is the	sition start	
	position plus nine	•	
Start	Subsequence	Scor e	
872	QSRPPFKVLK	0.02 0	
524	AVDYPPVANA	0.02 0	
·····	-		
Tab	le XV-V2-HLA-A1 10mers-254P1D68	101- 3	
Each SE(peptide is a porti D ID NO: 5 each s	on of t	
pos	sition is specified,	the	
lengti) of peptide is 10 a	amino	
for o	s, and the end pos	sition	
	position plus nine.	รเลเ	
		Scor	
Start	Subsequence	e	
9	YADDYRELEK	0.40 0	
5	EMSEYADDYR	0.021	
2			
COMPANY AND A DOM: 1	GLEEMSEYAD	0.00 2	
4	EEMSEYADDY	0.00 2 0.00 0	
4	EEMSEYADDY WGLEEMSEYA	0.00 2 0.00 0 0.00 0	
4 1 8	EEMSEYADDY WGLEEMSEYA EYADDYRELE	0.00 2 0.00 0 0.00 0 0.00 0	
4 1 8 7	GLEEMSEYAD EEMSEYADDY WGLEEMSEYA EYADDYRELE SEYADDYREL	0.00 2 0.00 0 0 0.00 0 0.00 0 0.00 0 0.00 0	
4 1 8 7 3	EEMSEYADDY WGLEEMSEYA EYADDYRELE SEYADDYREL LEEMSEYADD	0.00 2 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0	
4 1 8 7 3 6	EEMSEYADDY WGLEEMSEYA EYADDYRELE SEYADDYREL LEEMSEYADD MSEYADDYRE	0.00 2 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Table XV-V3-HLA-A1101-10mers-254P1D68

Each		
	DID NO: 7: eac	ornon or Shietart
positio	n is specified. t	he length
of per	plide is 10 amir	no acids.
and th	ne end position	for each
pept	ide is the start j	position
	plus nine.	
Start	Subsequenc	e Score
	GWPSPCCA	R
5	K	"` 0.060
3	RI GWPSPC	A 0.012
1		
	LOWFOFUU	10.000
1	MTRLGWPS	P 0.001
10	CCARKQCSE	G 0.000
8	SPCCARKO	S 0.000
2		2010.000
1 4	TINE GWIF SFC	
6	WPSPCCAR	K 0.000
9	PCCARKQCS	E 0.000
7	PSPCCARKC	C 0.000
	E Australit for a paragraphic succession water the	يد بيدينيون الد بيد
Each SEQ	e XV-V5-HLA-/ I0mers-254P10 peptide is a po ID NO: 11; ead	ortion of ch start
Each Each SEQ positio of per and th pepti	e XV-V5-HLA-/ lomers-254P10 peptide is a po ID NO: 11; eac n is specified, to btide is 10 amin ie end position de is the start p	between the benefities of the
Each SEQ position of per and th pepti	e XV-V5-HLA-/ lomers-254P10 peptide is a pc ID NO: 11; eac n is specified, to btide is 10 amin ie end position de is the start p plus nine.	ortion of ch start he length o acids, for each position
Each SEQ positio of per and th pepti	e XV-V5-HLA-/ lomers-254P10 peptide is a poc ID NO: 11; eao n is specified, il btide is 10 amin le end position de is the start p plus nine. Subsequenc	ortion of ch start he length o acids, for each position
Each SEQ positio of per and th pepti	e XV-V5-HLA-/ lomers-254P10 peptide is a pc ID NO: 11; ead n is specified, the btide is 10 amin e end position de is the start p plus nine. Subsequenc e	ortion of ch start he length o acids, for each position
Each SEQ positio of per and th pepti	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; ead n is specified, the btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW	ortion of ch start he length o acids, for each position Score
Each SEQ positio of pep and th pepti	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; ead n is specified, th btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL	Artor 268 prtion of ch start he length o acids, for each position Score 0.040
Each SEQ positio of pep and th pepti Start	e XV-V5-HLA-/ lomers-254P1C ID NO: 11; eac n is specified, il otide is 10 amin de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K	A 101-268 prition of ch start he length o acids, for each position Score 0.040 0.040
Each SEQ positio of pep and th pepti Start 9 5	e XV-V5-HLA-/ lomers-254P1D peptide is a pc ID NO: 11; eac n is specified, Il otide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG KDW KDLTFLGKD	Artor Artor <t< td=""></t<>
Each SEQ positio of per and th pepti Start 9 5	e XV-V5-HLA-/ lomers-254P10 ID NO: 11; eao n is specified, Il otide is 10 amin de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W	Artor Artor <t< td=""></t<>
Each SEQ positio of per and th pepti Start 9 5 7	e XV-V5-HLA-/ 10mers-254P10 ID NO: 11; eac n is specified, to btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFLG	0.040 0.040 0.000
Each SEQ positio of per and th pepti Start 9 5 7 7	e XV-V5-HLA-/ 10mers-254P10 ID NO: 11; eac n is specified, it bitide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFLG G	0.040 0.040 0.040 0.040
Each SEQ positio of per and th pepti Start 9 5 7 4 10	e XV-V5-HLA-/ Iomers-254P10 peptide is a pc ID NO: 11; ead n is specified, Il bide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K LTFLGKDWG UIRKDLTFL G TFLGKDWG LE	A 101-268 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000
Each SEQ positio of per and th pepti Start 9 5 7 4 10	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; ead n is specified, the btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKDW UIRKDLTFL G TFLGKDWG LE	0.040 0.040 0.040 0.040 0.040 0.040 0.040
Each SEQ positio of per and th pepti Start 9 5 7 4 10	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; eac n is specified, tl btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKDW UIRKDLTFLG G TFLGKDWG LE SPEDIRKDL T	0.010 068 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000
Each SEQ positio of per and th pepti Start 9 5 7 4 10 1	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; eac n is specified, tl btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFLG G TFLGKDWG LE SPEDIRKDL T	0.010 068 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000
Start 9 5 7 4 10 1	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; eac n is specified, tl btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFL G TFLGKDWG LE SPEDIRKDL T DLTFLGKD WG	0.010 068 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000 0.000
Start 9 5 7 4 10 1	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; eac n is specified, it btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFL G TFLGKDWG LE SPEDIRKDL T DLTFLGKD WG	0.010 068 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000 0.000
Start 9 5 7 4 10 1 2	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; eac n is specified, th btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFL G TFLGKDWG LE SPEDIRKDL T DLTFLGKD WG PEDIRKDLT F	0.010 068 ortion of ch start he length o acids, for each oosition 0.040 0.040 0.040 0.000 0.000 0.000 0.000 0.000 0.000
Start 9 5 7 4 10 1 8 2	e XV-V5-HLA-/ lomers-254P1C peptide is a pc ID NO: 11; eac n is specified, it btide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFLG G TFLGKDWG LE SPEDIRKDL T DLTFLGKD WG	0.010 068 ortion of ch start he length o acids, for each oosition Score 0.040 0.040 0.040 0.000 0.000 0.000 0.000 0.000
Start 9 5 7 4 10 1 8 2 3	e XV-V5-HLA-/ lomers-254P1C i peptide is a pc in is specified, il otide is 10 amin ie end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKDW GL IRKDLTFLG G TFLGKDWG LE SPEDIRKDLT T DLTFLGKD WG PEDIRKDLT F EDIRKDLTF	0.010 068 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Start 9 5 7 4 10 1 8 2 3	e XV-V5-HLA-/ lomers-254P1C peptide is a pc il D NO: 11; eac n is specified, il otide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFL G TFLGKDWG LE SPEDIRKDLT T DLTFLGKD WG PEDIRKDLT F EDIRKDLTF L	A 101-268 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Start 9 5 7 4 10 1 8 2 3 6	e XV-V5-HLA-/ lomers-254P1C peptide is a pc il D NO: 11; eac n is specified, il otide is 10 amin e end position de is the start p plus nine. Subsequenc e LTFLGKDW GL IRKDLTFLG K KDLTFLGKD W DIRKDLTFL G TFLGKDWG LE SPEDIRKDLT T DLTFLGKD WG PEDIRKDLT F EDIRKDLTF L RKDLTFLGK	A 101-268 ortion of ch start he length o acids, for each position Score 0.040 0.040 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.

 Table XVI-V1-HLA-A24- 9mers-254P1D68 			
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino			
for e	s, and the end po ach peptide is th position plus eigt	e start nt.	
Start	Subsequence	Score	
159	DYRELEKDL	288.0 00	
155	EYSDDYREL	264.0 00	
869	FYVQSRPPF	150.0 00	
367	TYNYEWNLI	90.00 0	
636	IFPVESATL	30.00 0	
943	RYIWDGESN	15.00 0	
228	KLPERSVLL	14.40 0	
92	KMGPIRSYL	13.44 0	
881	KAAEVARNL	13.44 0	
676	KAIATVTGL	12.00] 0	
105	RPVQRPAQL	12.00 0	
814	KSGLVELTL	11.20 0	
957	FYVTVLAFT	10.50 0	
133	SPEDIRKDL	10.08 0	
956	IFYVTVLAF	10.00 0	
1012	KYGIKHRST	10.00 0	
1018	RSTEHNSSL	9.600	
441	QLQELTLPL	8.640	
445	LTLPLTSAL	8.640	
44	RIMRVSHTF	8.400	
481	KTSVDSPVL	8.000	
390	KQTLNLSQL	8.000	
907	07 RVDTAGCLL 8.000		
274 SLPPASLEL 7.920			
346	TLPDNEVEL	7.920	

Table XVI-V1-HI A-A24-		
9mers-254P1D68		
Each peptide is a portion of		
SEC	DID NO: 3; each	start
pos lenat	sition is specified h of peptide is 0	l, the
acide	s, and the end p	osition
for e	ach peptide is th	e start
	position plus eight	nt.
Start	Subsequence	Score
216	HYLNESAST	7.500
402	LYVFKVTVS	7.500
693	LTVKDQQGL	7.200
285	VTVEKSPVL	7.200
327	TAPRTVKEL	6.600
437	VVSPQLQEL	6.336
836	TLVRQLAVL	6.000
439	SPQLQELTL	6.000
6	GVLSSLLLL	6.000
829	LTEQRKDTL	6.000
540	TLPQNSITL	6.000
821	TLQVGVGQL	6.000
730	VLPNNSITL	6.000
579	GVQTPYLHL	6.000
486	SPVLRLSNL	6.000
954	WSIFYVTVL	6.000
240	TTPSSGEVL	6.000
511	ATNSTTAAL	6.000
533	AGPNHTITL	6.000
179	SAEYTDWGL	6.000
558	QIVLYEWSL	6.000
267	EVLMPSHSL	6.000
335	LTVSAGDNL	6.000
699	QGLSSTSTL	6.000
5	TGVLSSLLL	6.000
840	QLAVLLNVL	5.760
872	QSRPPFKVL	5.760
32	SNAVISPNL	5.600
469	HWEEINGPF	5.040
1032	EFDSDQJTI	5.000
594	DYTFQLKVT	5.000
498	NYSFRLTVT	5.000
785	VYTEHLRVT	5.000
885	VARNLHMR	4.800
71	WWFEGRCYL	4.800
893	LSKEKADFI	4,800
968	VLTGGFTWL	4.800
Concernence 1		In an annual i

	Table XVI-V1-HLA-A24-		
	9mers-254P1D68		
	Each peptide is a portion of SEQ ID NO: 3: each start		
	position is specified, the		
	length of peptide is 9 amino		
	for e	s, and the end p ach peptide is th	osition (
		osition plus eig	ht.
	Start	Subsequence	Score
	553	SSDDHQIVL	4.800
	809	QPDPRKSGL	4.800
	837	LVRQLAVLL	4.800
	210	QQDPELHYL	4.800
	339	AGDNLIITL	4.800
	394	NLSQLSVGL	4.800
	768	DGSDHSVAL	4.800
	958	YVTVLAFTL	4.800
	627	AVAGPDKEL	4.400
	221	SASTPAPKL	4.400
	113	LLDYGDMML	4.000
	685	QVGTYHFRL	4.000
	261	SNSSGKEVL	4.000
	773	SVALQLTNL	4.000
	387	QGHKQTLNL	4.000
	56	DCTAACCDL	4.000
	918	SGHGHCDPL	4.000
	577	MQGVQTPYL	4.000
	483	SVDSPVLRL	4.000
	366	TTYNYEWNL	4.000
	932	CSHLWMENL	4.000
	961	VLAFTLIVL	4.000
	61	CCDLSSCDL	4.000
ſ	495	DPGNYSFRL	4.000
	136	DIRKDLPFL	4.000
Í	892	RLSKEKADF	4.000
I	723	AGGRHVLVL	4.000
	589	AMQEGDYTF	3.600
	629	AGPDKELIF	3.600
	780	NLVEGVYTF	3.600
ľ	407	VTVSSENAE	3 600
ľ	965	TLIVLTGGF	3 6001
	1025	SLMVSESFF	3,300
ſ	142		3 000
	1057	GSIRNGASE	3 000
ſ	683	GLOVGTYHE	3 000
	187	LIPCSECVE	3,000
-fl.	101	LA COLUMP	0.000

r	
Ta	ble XVI-V1-HLA-A24-
[9mers-254P1D68
Eac	h peptide is a portion of
SE	Q ID NO: 3; each start
po	sition is specified, the
leng	th of peptide is 9 amino
acid	s, and the end position
for e	each peptide is the start
	position plus eight.
Start	Subsequence Score
349	DNEVELKAF 3.000
(<u></u>	
Ta	ble XVI-V2-HLA-A24-
	9mers-254P1D68
Eacl	r peptide is a portion of
SE	Q ID NO: 5; each start
po	sition is specified, the
leng	in of peptide is 9 amino
for o	s, and the end position
line	nosition nue sight
1	
Start	Subsequence Score
7	EYADDYREI 264.0
1	GLEEMSEYA 0.180
4	EMSEYADDY 0.120
5	MSEYADDYR 0.015
8	YADDYRELE 0.012
3	EEMSEYADD 0.002
2	
9	ADDYRELEK [0.001
6	SEYADDYRE 0.001
I 	
lat	016 XVI-V3-HLA-A24-
Each	peptide is a portion of
OEU	tion is encoiting the
lengt	nion is specified, the
acids	and the end position
for ea	ach peolide is the start
r	position plus eight.
Start	Subsaguance
	Subsequence (SCOF9)
3	RLGWPSPCC 0.200
4	LGWPSPCCA 0.120
8	SPCCARKQC 0.100
5	GWPSPCCAR 0.015
2	TRLGWPSPC 0 015
6	WPSPCCARK 0.012
	PCCAPKOCC DA42
	FULARINGUS 10,012
10	CCARKQCSE 0.010

1	MTRLGWPSP 0.010			
7	PSPCCARKQ 0.002			
Ta	Table XVI-V5-HLA-A24-			
Ead	Diners-204 1000			
SEC	Q ID NO: 11; each start			
po	sition is specified, the			
leng	th of peptide is 9 amino s and the end position			
fore	ach peptide is the start			
	position plus eight.			
Start	Subsequence Score			
9	TFLGKDWGL 30.000			
3	DIRKDLTFL 4.000			
2	EDIRKDLTF 0.300			
7	DLTFLGKDW 0.120			
8	LTFLGKDWG 0.010			
6	KDLTFLGKD 0.003			
5	RKDLTFLGK 0.002			
4	IRKDLTFLG 0.001			
1	PEDIRKDLT 0.001			
Tab	le XVII-V1-HLA-A24-			
	TUmers-254P1D68			
Each SE(Depute is a portion of D ID NO: 3: each start			
pos	sition is specified, the			
length	of peptide is 10 amino			
for ea	ach peptide is the start			
	position plus nine.			
Start	Subsequence Score			
957	FYVTVLAFTI 360.0			
	00			
159	DYRELEKDLL 00			
839	RQLAVLLNVL			
943	RYIWDGESN 15.00			
<u> </u>				
105				
897	KADFLLFKVL 0			
402	LYVFKVTVSS			
98	SYLTFVLRPV			
132	DSPEDIRKDL			
868	VEYVOSEPP 10.00			

Tal	Table XVII-V1-HLA-A24- 10mers-254P1D68			
Each	Each peptide is a portion of			
SE	SEQ ID NO: 3; each start			
l po	position is specified, the			
acid	s, and the end p	osition		
for e	ach peptide is th position plus nin	ie start e.		
Start	Subsequence	Score		
	F	0		
1032	EFDSDQDTIF	10.00 0		
692	RLTVKDQQG L	9.600		
561	LYEWSLGPG S	9.000		
229	LPERSVLLPL	8.400		
31	YSNAVISPNL	8.400		
2	APPTGVLSSL	8.400		
892	RLSKEKADFL	8.000		
720	RARAGGRHV L	8.000		
386	KQGHKQTLN L	8.000		
722	RAGGRHVLV	8.000		
436	AVVSPQLQE L	7.920		
273	HSLPPASLEL	7.920		
345	ITLPDNEVEL	7.920		
367	TYNYEWNLIS	7.500		
751	SYLWIRDGQ S	7.500		
482	TSVDSPVLRL	7.200		
539	ITLPQNSITL	7.200		
209	TQQDPELHY L	7.200		
967	IVLTGGFTWL	7.200		
836	TLVRQLAVLL	7.200		
393	LNLSQLSVGL	7.200		
729	LVLPNNSITL	7.200		
808	VQPDPRKSG L	7.200		
112	QLLDYGDMM L	7.200		
30	TYSNAVISPN	7.000		
626	VAVAGPDKE	6.600		
557	HQIVLYEWSL	6.000		

Table XVII-V1-HLA-A24- 10mers-254P1D68				
Each peptide is a portion of SEQ ID NO: 3; each start				
pos	position is specified, the			
acids	, and the end po	sition		
for ea	ach peptide is the position plus nine	e start e.		
Start	Subsequence	Score		
684	LQVGTYHFR L	6.000		
835	DTLVRQLAVL	6.000		
590	MQEGDYTFQ L	6.000		
438	VSPQLQELTL	6.000		
247	VLEKEKASQL	6.000		
820	LTLQVGVGQ	6.000		
260	SSNSSGKEV L	6.000		
576	VMQGVQTPY L	6.000		
179	SAEYTDWGL	6.000		
485	DSPVLRLSNL	6.000		
5	TGVLSSLLLL	6.000		
960	TVLAFTLIVL	6.000		
781	LVEGVYTFHL	6.000		
578	QGVQTPYLH L	6.000		
772	HSVALQLTNL	6.000		
338	SAGDNLIITL	5.760		
769	GSDHSVALQ L	5.600		
926	LTKRCICSHL	5.600		
326	TTAPRTVKEL	5.280		
1000	NMDEQERME L	5.280		
312	APSESTPSEL	5.280		
893	LSKEKADFLL	4.800		
60	ACCDLSSCD	4.800		
635	LIFPVESATL	4.800		
406	KVTVSSENAF	4.800		
423	TVKPARRVN L	4.800		
444	ELTLPLTSAL	4.800		
828	QLTEQRKDT L	4.800		

Table XVII-V1-HLA-A24-				
1	0mers-254P1D6	68		
Each	Each pentide is a portion of			
SEC	ID NO: 3; each	start		
pos	ition is specified	, the		
length	of peptide is 10	amino		
acids	, and the end po	sition		
for ea	ach peptide is the	e start :		
ļ	position plus nine) .		
Start	Subsequence	Score		
	EVARNI HMR	[]		
884	L	4.800		
294		1 000		
504		4.000		
532	NAGPNHTITL	4.800		
552	QSSDDHQIVL	4.800		
	VOSRPERV			
8/1	L	4.800		
	CSAEYTDWC			
178	I DWG	4.800		
000		4.400		
220	ESASTPAPKL	4.400		
Q11	DPRKSGLVE	1 100		
011	L L	4.400		
005	VLRVDTAGC			
905	L	4.000		
141	LETEGREMO	4.000		
004		1.000		
284	SVIVEKSPVL	4.000		
510	GATNSTTAAL	4.000		
000	QQGLSSTST	1.000		
098	L	4.000		
334		4 000		
051		4.000		
854	VQKIRAHSDL	4.000		
917	CSGHGHCDP	4 000		
	L	7.000		
004	ICSHLWMEN	4.000		
931	L	4.000		
1	ETTVNVENNI			
365		4.000		
953	EVVSIFYVIVL	4.000		
226	APKLPERSVL	4.000		
	AWWEEGRC			
70	YL	4.000		
186	F	3.600		
964	FTLIVLTGGF	3.600		
400	SNLDPGNYS	2 000		
492	F	3.600		
	SSLMVSESE			
1024	F	3.300		
1000		2 000		
1006	RIVIELRPKYGI	3.000		
	ITMI VEGVYTE	13 000		

Table XVII-V1-HLA-A24-				
<u> </u>	011013-2041 100			
Each	peptide is a port	ion of		
SEC	ID NO: 3; each	start		
pos	ition is specified	the		
length	of peptide is 10	amino		
acids	, and the end po	sition		
tor ea	ion peptide is the	e start		
	position plus nine).		
Start	Subsequence	Score		
682	TGLQVGTYH F	3.000		
588	SAMQEGDYT F	3.000		
93	MGPIRSVI TE	3 000		
		0.000		
410	SSENAFGEG F	3.000		
396 SQLSVGLYVF 3.000				
648 SSSDDHGIVF 2.400				
64	64 LSSCDLAWW 2.400			
858	RAHSDLSTVI	2.400		
1	<u></u>			
Table XVII-V2-HLA-A24-				
10mers-254P1D68				
Each peptide is a portion of				
SEQ ID NO: 5; each start				
position is specified, the				
length of peptide is 10 amino				
acids, and the end position				
for each peptide is the start				
position plus nine.				
Start Subsequence Scor				

Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.				
Start	Subsequence	Scor e		
8	EYADDYRELE	0.60 0		
7	SEYADDYREL	0.44 0		
1	WGLEEMSEYA	0.18 0		
2	GLEEMSEYAD	0.01 8		
6	MSEYADDYRE	0.01 5		
4	EEMSEYADDY	0.01 5		
9	YADDYRELEK	0.01 3		
5	EMSEYADDYR	0.01 2		
3	LEEMSEYADD	0.00 2		
10	ADDYRELEKD	0.00		

n			
Table XVII-V2-HLA-A24- 10mers-254P1D68			
[10mers-204P1D68		
	D ID NO: 5: each	on or start	
	a in NO. 0, eaoil :	the	
l pu:	sition is specified,		
lengu	T of peptide is to a	amino	
acio	s, and the end pos	suon	
TOFE	ach peptide is the	start	
L	position plus nine		
Start	Subsequence	Scor	
Start	Subsequence	е	
		1	
I	<u>.</u>		
Tab	le XVII-V3-HLA-A	24-	
	0mers-254P1D68	3	
Each	poplide is a porli	an of	
	Peptide is a polit		
SEC	JID NO: 7; each s	start	
pos	sition is specified,	the	
lengtr	i of peptide is 10 a	amino	
acids	s, and the end pos	sition	
for e	ach peptide is the	start	
position plus nine.			
	1	Goor	
Start	Subsequence	0001	
		E	
٦	RIGMPSPCCA	0.20	
		0	
		0 12	
8	SPCCARKQCS	0	
<u> </u>			
1	MTRI GWPSPC	0.10	
		0	
		0.01	
7	PSPCCARKQC	5	
5	GWPSPCCARK	0.01	
Ŭ	UNI OI COART	5	
		0.01	
2	TRLGWPSPCC	5	
6	WESECCARKO	0.01	
	WI DE OUMINIQ	3	
	NUMBER OF TRACE	0.01	
4	LGWPSPCCAR	2.01	
		4	
10	COARKOOSEC	0.01	
10	UUARNQUSEG	1	
		0.00	
9	PCCARKQCSE	0.00	
	(1	

Table XVII-V5-HLA-A24- 10mers-254P1D68
Each peptide is a portion of SEQ ID NO: 11; each start
position is specified, the
length of peptide is 10 amino
acids, and the end position
for each peptide is the start
position plus nine.

17 Martin and	Protection and the second s	
Start	Subsequence	Scor
9	LTFLGKDWGL	4.00
3	EDIRKDLTFL	0.60
1	SPEDIRKDLT	0.18 0
10	TFLGKDWGLE	0.07 5
7	KDLTFLGKDW	0.03
2	PEDIRKDLTF	0.02
4	DIRKDLTFLG	0.01
8	DLTFLGKDWG	0.01
6	RKDLTFLGKD	0.00
5	IRKDLTFLGK	0.00
 9mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start 		
	osition plus eigh	it.
Start	Subsequence	Score
837	LVRQLAVLL	200.0
885	VARNLHMRL	120.0 00
627	AVAGPDKEL	90.00 0
105	RPVQRPAQL	80.00 0
486	SPVLRLSNL	80.00 0
495	DPGNYSFRL	80.00 0
439	SPQLQELTL	80.00 0
872	QSRPPFKVL	60.00 0
328	APRTVKELT	60.CO 0
1		40.00

1				
Tat	Table XVIII-V1-HLA-B7- 9mers-254P1D68			
Each SEC pos lengt acids	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position			
	position plus eig	ht.		
Start	Subsequence	Score		
133	SPEDIRKDL	36.00 0		
267	EVLMPSHSL	30.00 0		
579	GVQTPYLHL	30.00 0		
809	QPDPRKSGL	24.00 0		
437	VVSPQLQEL	20.00 0		
685	QVGTYHFRL	20.00 0		
773	SVALQLTNL	20.00 0		
175	EPRGSAEYT	20.00 0		
6	GVLSSLLLL	20.00 0		
958	YVTVLAFTL	20.00 0		
582	TPYLHLSAM	20.00 0		
226	APKLPERSV	18.00 0		
221	SASTPAPKL	18.00 0		
533	AGPNHTITL	12.00 0		
327	TAPRTVKEL	12.00		
676	KAIATVTGL	12.00		
881	KAAEVARNL	12.00		
723	AGGRHVLVL	12.00 0		
511	ATNSTTAAL	12.00		
359	APAPPVETT	9.000		
483	SVDSPVLRL	9.000		
3	PPTGVLSSL	8.000		
296	TPGSTEHSI	8.000		

Table X(III-VI-FILA-B)- 9mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. Start Subsequence Start Subsequence Start Subsequence 37 SPNLETTRI 8.000 92 KMGPIRSYL 6.000 907 RVDTAGCLL 6.000 907 720 RARAGGRHV 6.000 907 92 KMGPIRSYL 6.000 907 92 RVDTAGCLL 6.000 907 92 RARAGGRHV 900 RVDTAGCLL 6.000 343 TLPDNEVEL 4.000 324 SPTTAPRTV 954 WSIFYVTVL 4.000 321 927 TKRCICSHL 4.000 927 121 LNRGSPSGI 121 LNRGSPSGI 121 LNRGSPSGI 121 LNRGSTSTL 4.000 968
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.StertSubsequenceScore37SPNLETTRI8.000377HPTDYQGEI8.00092KMGPIRSYL6.00092RARAGGRHV6.000907RVDTAGCLL6.000907RVDTAGCLL6.000907RVDTAGCLL6.000925SNAVISPNL4.000343TLPDNEVEL4.000324SPTTAPRTV4.0009254WSIFYVTVL4.000924SPGHCHCDFL4.0009254SSHGHCDPL4.000926TLPQNSITL4.000927TKRCICSHL4.000928VLTGGFTWL4.000929QGLSSTSTL4.000940UTTPSSGEVL4.000954VLTGGFTWL4.000927TKRCICSHL4.000928VLTGGFTWL4.000932CSHLWMENL4.000932CSHLWMENL4.000934SLPPASLEL4.000935QVLYEWSL4.000930KQTLNLSQL4.000
SEQ ID NO: 3; each start position is specified, the length of peplide is 9 amino acids, and the end position for each peptide is the start position plus eight. Start Subsequence 37 SPNLETTRI 8.000 92 KMGPIRSYL 6.000 92 KMGPIRSYL 907 RVDTAGCLL 907 SPHENEVEL 908 GLCSTSTL 4.000 56 932 CSHL
position is specified, the length of peplide is 9 amino acids, and the end position for each peptide is the start position plus eight.StartSubsequenceScore37SPNLETTRI8.000377HPTDYQGEI8.00092KMGPIRSYL6.00092KMGPIRSYL6.000907RVDTAGCLL6.0001018RSTEHNSSL4.000345TLPDNEVEL4.00032SNAVISPNL4.000324SPTTAPRTV4.000324SPTTAPRTV4.000540TLPQNSITL4.000918SGHGHCDPL4.000927TKRCICSHL4.000121LNRGSPSGI4.000121LNRGSPSGI4.000699QGLSSTSTL4.000968VLTGGFTWL4.000932CSHLWMENL4.000932CSHLWMENL4.000941VLAFTLIVL4.000953QIVLYEWSL4.000390KQTLNLSQL4.000
length of pepilde is 9 amino acids, and the end position for each peptide is the start position plus eight. Start Subsequence Score 37 SPNLETTRI 8.000 377 HPTDYQGEI 8.000 92 KMGPIRSYL 6.000 92 KMGPIRSYL 6.000 92 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 345 TLPDNEVEL 4.000 324 SPTTAPRTV 4.000 954 WSIFYVTVL 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 921 LNRGSPSGI 4.000 922 TKRCICSHL 4.000 924 TTPSSGEVL 4.000 929 QGLSSTSTL 4.000 945 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 9
Bit Schedule Start Social of the end position Start Subsequence Score 37 SPNLETTRI 8.000 377 HPTDYQGEI 8.000 92 KMGPIRSYL 6.000 92 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 343 TLPDNEVEL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 928 VLTGGFTWL 4.000 940 QELSSTSTL 4.000 941 KSGPVLVENL 4.000 945 LTLPLTSAL 4.000 946
position plus eight. Start Subsequence Score 37 SPNLETTRI 8.000 377 HPTDYQGEI 8.000 92 KMGPIRSYL 6.000 92 KMGPIRSYL 6.000 92 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 345 TLPDNEVEL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 9240 TTPSSGEVL 4.000 9241 TLPQNSITL 4.000 9240 TTPSSGEVL 4.000 941 KSGLVELTL 4.000 968 VLTGGFTWL 4.000
Stert Subsequence Score 37 SPNLETTRI 8.000 377 HPTDYQGEI 8.000 92 KMGPIRSYL 6.000 92 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 343 TLPDNEVEL 4.000 324 SPTTAPRTV 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 928 VLTGGFTWL 4.000 944 KSGLVELTL 4.000 955 DCTAACCDL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 958 QIVLYEWSL
37 SPNLETTRI 8.000 377 HPTDYQGEI 8.000 92 KMGPIRSYL 6.000 720 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 343 TLPDNEVEL 4.000 32 SNAVISPNL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 927 TKRCICSHL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 928 VLTGSPSGI 4.000 940 TTPSSGEVL 4.000 941 KSGLVELTL 4.000 942 CSHLWMENL 4.000 945 QCLSSTSTL 4.000 946 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 958 QULYEWSL <t< td=""></t<>
377 HPTDYQGEI 8.000 92 KMGPIRSYL 6.000 720 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 343 TLPDNEVEL 4.000 321 SNAVISPNL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 921 TLQVGVGQL 4.000 921 TLQVGVGQL 4.000 923 TKRCICSHL 4.000 924 TTPSSGEVL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 9240 TTPSSGEVL 4.000 941 KSGLVELTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 9558 QIVLYEWSL
92 KMGPIRSYL 6.000 720 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 345 TLPDNEVEL 4.000 321 SNAVISPNL 4.000 324 SPITAPRTV 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 924 TTPSSGEVL 4.000 911 LNRGSPSGI 4.000 924 TTPSSGEVL 4.000 941 KSGLVELTL 4.000 942 TTGGFTWL 4.000 948 VLTGGFTWL 4.000 948 VLTGGFTWL 4.000 954 QULYEWSL 4.000 932 CSHLWMENL 4.000 958 QULYEWSL <t< td=""></t<>
720 RARAGGRHV 6.000 907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 343 TLPDNEVEL 4.000 32 SNAVISPNL 4.000 32 SNAVISPNL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 921 LNRGSPSGI 4.000 927 TKRCICSHL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 9240 TTPSSGEVL 4.000 941 KSGLVELTL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 932 CSHLWMENL 4.000 958 QIVLYEWSL
907 RVDTAGCLL 6.000 1018 RSTEHNSSL 4.000 345 TLPDNEVEL 4.000 32 SNAVISPNL 4.000 954 WSIFYVTVL 4.000 324 SPTTAPRTV 4.000 324 SPTTAPRTV 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 918 SGHCHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 918 SGHCHCDPL 4.000 921 LNRGSPSGI 4.000 924 TTPSSGEVL 4.000 940 GLSSTSTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 932 CSHLWMENL 4.000 9558 QIVLYEWSL 4.000 961 VLAFTLIVL
300 REFENSEL 0.000 1018 RSTEHNSSL 4.000 345 TLPDNEVEL 4.000 324 SPTAPRTV 4.000 324 SPTTAPRTV 4.000 324 SPTTAPRTV 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 921 TLPQNSITL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 928 VLTGGFTWL 4.000 940 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 932 CSHLWMENL 4.000 9558 QIVLYEWSL 4.000 961 VLAFTLIVL 4.000 961 VLAFTLIVL 4.000
346 TLPDNEVEL 4.000 321 SNAVISPNL 4.000 954 WSIFYVTVL 4.000 924 SPITAPRTV 4.000 321 TLQVGVGQL 4.000 321 TLQVGVGQL 4.000 954 WSIFYVTVL 4.000 321 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 944 KSGLVELTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 932 CSHLWMENL 4.000 958 QIVLYEWSL 4.000 961 VLAFTLIVL 4.000 930 KQTLNLSQL 4.000
32 SNAVISPNL 4.000 32 SNAVISPNL 4.000 954 WSIFYVTVL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 821 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 917 TKRCICSHL 4.000 927 TKRCICSHL 4.000 121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 699 QGLSSTSTL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 932 CSHLWMENL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
954 USERVESENCE 4.000 954 WSIFYVTVL 4.000 324 SPTTAPRTV 4.000 821 TLQVGVGQL 4.000 921 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 917 TKRCICSHL 4.000 927 TKRCICSHL 4.000 121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 940 TTPSSGEVL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 961 DCTAACCDL 4.000 932 CSHLWMENL 4.000 9558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000
934 WSIFYTYL 4.000 324 SPTTAPRTV 4.000 321 TLQVGVGQL 4.000 921 TLQVGVGQL 4.000 918 SGHGHCDPL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 944 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 932 CSHLWMENL 4.000 958 QIVLYEWSL 4.000 958 QIVLYEWSL 4.000 932 CSHLWMENL 4.000 951 VLAFTLIVL 4.000 961 VLAFTLIVL 4.000 930 KQTLNLSQL 4.000
324 SPTTAPRTV [4.000] 821 TLQVGVGQL [4.000] 540 TLPQNSITL [4.000] 918 SGHGHCDPL [4.000] 918 SGHGHCDPL [4.000] 927 TKRCICSHL [4.000] 927 TKRCICSHL [4.000] 927 TKRCICSHL [4.000] 927 TKRCICSHL [4.000] 911 LNRGSPSGI [4.000] 9240 TTPSSGEVL [4.000] 940 QGLSSTSTL [4.000] 968 VLTGGFTWL [4.000] 968 VLTGGFTWL [4.000] 968 VLTGGFTWL [4.000] 932 CSHLWMENL [4.000] 932 CSHLWMENL [4.000] 958 QIVLYEWSL [4.000] 961 VLAFTLIVL [4.000] 961 VLAFTLIVL [4.000]
821 TLQVGVGQL 4.000 540 TLPQNSITL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 927 TKRCICSHL 4.000 121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 240 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 698 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 390 KQTLNLSQL 4.000
540 TLPQNSITL 4.000 918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 814 KSGLVELTL 4.000 240 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 968 UTLPLTSAL 4.000 968 ULTUPLTSAL 4.000 956 DCTAACCDL 4.000 932 CSHLWMENL 4.000 9558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
918 SGHGHCDPL 4.000 927 TKRCICSHL 4.000 121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 814 KSGLVELTL 4.000 999 QGLSSTSTL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
927 TKRCICSHL 4.000 121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 240 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 968 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 958 QIVLYEWSL 4.000 932 CSHLWMENL 4.000 958 QIVLYEWSL 4.000 951 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
121 LNRGSPSGI 4.000 814 KSGLVELTL 4.000 240 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
814 KSGLVELTL 4.000 240 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 445 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
240 TTPSSGEVL 4.000 699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 445 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
699 QGLSSTSTL 4.000 968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 445 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
968 VLTGGFTWL 4.000 56 DCTAACCDL 4.000 445 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
56 DCTAACCDL 4.000 445 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
445 LTLPLTSAL 4.000 932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
932 CSHLWMENL 4.000 558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
558 QIVLYEWSL 4.000 274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
274 SLPPASLEL 4.000 961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
961 VLAFTLIVL 4.000 390 KQTLNLSQL 4.000
390 KQTLNLSQL 4.000
802 SVEKADEL 4.000
ETT MOOVOTOVA 14,000
700 WARVAIPYL 4.000
730 VLPNNSITL 4.000
228 KLPERSVLL 4.000
285 VTVEKSPVL 4.000
366 TTYNYEWNL 4.000
335 LTVSAGDNL 4.000
693 LTVKDQQGL 4.000
693 LTVKDQQGL 4.000 840 QLAVLLNVL 4.000

Table XVIII-V1-HLA-B7- 9mers-254P1D68			
Each peptide is a portion of			
position is specified, the			
lengt	length of peptide is 9 amino		
acids	s, and the end po sch papida is th	osition	
IOI E	position plus eig	e start ht.	
Start	Subsequence	Score	
567	GPGSEGKHV	4.000	
836	TLVRQLAVL	4.000	
5	TGVLSSLLL	4.000	
387	QGHKQTLNL	4.000	
261	SNSSGKEVL	4.000	
481	KTSVDSPVL	4.000	
441	QLQELTLPL	4.000	
394	NLSQLSVGL	4.000	
179	SAEYTDWGL	3.600	
339	AGDNLIITL	3.600	
999	DNMDEQER M	3.000	
106	PVQRPAQLL	3.000	
304	IPTPPTSAA	3.000	
924	DPLTKRCIC	3.000	
111	AQLLDYGDM	3.000	
34	AVISPNLET	2.250	
434	PVAVVSPQL	2.000	
270	MPSHSLPPA	2.000	
811	DPRKSGLVE	2.000	
336	TVSAGDNLI	2.000	
465	IVSYHWEEI	2.000	
874	RPPFKVLKA	2.000	
604	SSRQQSTAV	2.000	
27	EGRTYSNAV	2.000	
52	FPVVDCTAA	2.000	
721	ARAGGRHVL	1.800	
531	ANAGPNHTI	1.800	
618	QPENNRPPV	1.800	
517	AALIVNNAV	1.800	
621	NNRPPVAVA	1.500	
······································	<u></u>	<u></u>	
Table XVIII-V2-HLA-B7- 9mers-254P1D68			

<u> </u>					
Eacl	n peptide is a portion of I				
SEQ ID NO: 5; each start					
po	position is specified, the				
leng	length of peptide is 9 amino				
acid	s, and the end position				
for e	ach peptide is the start				
	position plus eight.				
Start	Subsequence Score				
7	EYADDYREL 0.400				
1 4					
	GLEEMSEYA U.030				
4	EMSEYADDY 0.020				
8					
3	EEMSEYADD 0.003				
5	MSEYADDYR 0.003				
1					
Ь	SETADDTRE U.001				
9	ADDYRELEK 0.001				
0					
L	LUCIVISE I AD JU.UUU				
Tal	de XVIII-V3-HI A-R7-				
	9mers-254P1D68				
Each	peptide is a portion of				
SEC	🔉 ID NO: 7; each start				
pos	sition is specified, the				
lengt	h of peptide is 9 amino				
acids	s, and the end position				
l fam a	sch pentide is the start				
li ior e	aun deditue is the start of				
lore	position plus eight				
	position plus eight.				
Start	Subsequence Score				
Start	Subsequence Score				
Start	Subsequence Score SPCCARKQC 3.000				
Start	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200				
Start	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150				
Start 8 6 3	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150				
Start 8 6 3	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100				
Start 8 6 3 1	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100				
Ior e Start 8 6 3 1 4 10	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100				
Iof e Start 8 6 3 1 4 10	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.100 LGWPSPCCAR 0.100 CCARKQCSE 0.010				
Inference Start 8 6 3 1 4 10 2	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010				
Inference Start 8 6 3 1 4 10 2 9	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 CCARKQCSE 0.010				
Inference Start 8 6 3 1 4 10 2 9	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCSE 0.002				
Start 8 6 3 1 4 10 2 9 5	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002				
Inference Start 8 6 3 1 4 10 2 9 5 7	action plus eight. Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCSE 0.002 GWPSPCCAR 0.002 PSPCCARKQC 0.001				
Inference Start 8 6 3 1 4 10 2 9 5 7	SubsequenceScoreSubsequenceScoreSPCCARKQC3.000WPSPCCARK0.200RLGWPSPCC0.150MTRLGWPSP0.100LGWPSPCCA0.100CCARKQCSE0.010TRLGWPSPC0.010PCCARKQCS0.002GWPSPCCARKQ0.001				
Inference Start 8 6 3 1 4 10 2 9 5 7	Subsequence Score Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCARKQ 0.001				
Ior e Start 8 6 3 1 4 10 2 9 5 7	Subsequence Score Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCARKQ 0.001 PSPCCARKQ 0.001				
Ior e Start 8 6 3 1 4 10 2 9 5 7	Subsequence Score Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCSE 0.002 GWPSPCCARKQ 0.002 PSPCCARKQ 0.001				
Ior e Start 8 6 3 1 4 10 2 9 5 7	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001				
Inference Start 8 6 3 1 4 10 2 9 5 7 Tab Each	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSPC 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001				
Inference Start 8 6 3 1 4 10 2 9 5 7 Each SEQ	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCSE 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001 De XVIII-V5-HLA-B7- Emers-254P1D68 peptide is a portion of ID NC: 11; each start				
Start Start 8 6 3 1 4 10 2 9 5 7 5 7 7	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 QUESPCCARKQCSE 0.002 GWPSPCCARKQ 0.002 PSPCCARKQCS 0.002 PSPCCARKQ 0.001				
Start Start 8 6 3 1 4 10 2 9 5 7 7 Tab	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 QUEARKQCSE 0.002 GWPSPCCARKQ 0.002 PSPCCARKQCS 0.002 PSPCCARKQ 0.001 De XVIII-V5-HLA-B7- Emers-254P1D68 peptide is a portion of ID NO: 11; each start ition is specified, the nof peptide is 9 amino				
Start Start 8 6 3 1 4 10 2 9 5 7 7 Tab SEQ pos lengtt acids	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001 PCCARKQCS 0.002 PSPCCARKQ 0.001 De XVIII-V5-HLA-B7- Emers-254P1D68 peptide is a portion of ID NO: 11; each start ition is specified, the of peptide is 9 amino s, and the end position				
Start Start 8 6 3 1 4 10 2 9 5 7 7 Tab Each SEQ pos lengtt acids for ea	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCSE 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001				
Start Start 8 6 3 1 4 10 2 9 5 7 7 5 7 7 Each SEQ pos lengt acids for ea	ach peptide is the start cosition plus eight. Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001				
Start Start 8 6 3 1 4 10 2 9 5 7 7 Tab 5 7 7 Each SEQ pos lengt acids for ea	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 CCARKQCSE 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002 PSPCCARKQ 0.001 Det XVIII-V5-HLA-B7- Emers-254P1D68 peptide is a portion of ID NO: 11; each start ition is specified, the nof peptide is 9 amino 6; and the end position ach peptide is 16 estart position plus eight.				
Start Start 8 6 3 1 4 10 2 9 5 7 7 Tac 9 5 7 7 Each SEQ pos lengt acids for ea P Start	Subsequence Score Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.150 MTRLGWPSP 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 CCARKQCSE 0.002 GWPSPCCARKQ 0.002 GWPSPCCARKQ 0.001 PCCARKQCS 0.002 PSPCCARKQ 0.001 Det XVIII-V5-HLA-B7- Emers-254P1D68 peptide is a portion of ID NO: 11; each start ition is specified, the nof peptide is 9 amino 6, and the end position plus eight. Subsequence Score				
Start Start 8 6 3 1 4 10 2 9 5 7 7 5 7 7 Each SEQ pos lengt acids for ea P Start 3	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.100 LGWPSPCCARK 0.100 LGWPSPCCA 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCS 0.002 GWPSPCCAR 0.002 PSPCCARKQC 0.001 De XVIII-V5-HLA-B7- Emers-254P1D68 peptide is a portion of ID NC: 11; each start tition is specified, the n of peptide is 9 amino ach peptide is 19 amino ach peptide is 16 start sosition plus eight. Subsequence Score DIRKDLTFL 40.001				
Start Start 8 6 3 1 4 10 2 9 5 7 7 Tat SEQ pos lengt acids for ea P Start	Subsequence Score SPCCARKQC 3.000 WPSPCCARK 0.200 RLGWPSPCC 0.100 LGWPSPCCA 0.100 LGWPSPCCA 0.100 CCARKQCSE 0.010 TRLGWPSPC 0.010 PCCARKQCSE 0.002 GWPSPCCAR 0.002 PSPCCARKQCS 0.002 PSPCCARKQ 0.001				

Table XVIII-V5-HLA-B7-9mers-254P1D68 Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peplide is the start position plus eight. Start Subsequence Score DLTFLGKDW 0.020 7 LTFLGKDWG 0.010 8 EDIRKDLTF 0.002 2 4 IRKDLTFLG 0.001 KDLTFLGKD 0.001 6 1 PEDIRKDLT 0.000 5 RKDLTFLGK 0.000 Table XIX-V1-HLA-B7-10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Scor Start Subsequence е 800. 811 DPRKSGLVEL 000 360. 226 APKLPERSVL 000 240. 312 APSESTPSEL 000 240. 2 APPTGVLSSL 000 180. RARAGGRHVL 720 000 120. 105 **RPVQRPAQLL** 000 120. APRTVKELTV 328 000 80.0 141 LPFLGKDWGL 00 60.0 AVVSPQLQEL 436 00 50.0 662 HVRGPSAVEM 00 40.0 905 VLRVDTAGCL 00 30.0 423 **TVKPARRVNL**

00

Ta	Table XIX-V1-HLA-B7- 10mers-254P1D68		
Eacl SE po	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino		
acid for e	s, and the end po ach peptide is the position plus nine	sition start	
Start	Subsequence	Scor e	
229	LPERSVLLPL	24.0 00	
37	SPNLETTRIM	20.0 00	
284	SVTVEKSPVL	20.0 00	
967	IVLTGGFTWL	20.0 00	
960	TVLAFTLIVL	20.0 00	
729	LVLPNNSITL	20.0 00	
884	EVARNLHMRL	20.0 00	
626	VAVAGPDKEL	18.0 00	
338	SAGDNLIITL	12.0 00	
722	RAGGRHVLVL	12.0 00	
60	ACCDLSSCDL	12.0 00	
510	GATNSTTAAL	12.0 00	
532	NAGPNHTITL	12.0 00	
665	GPSAVEMENI	8.00 0	
1050	NPKVSMNGSI	8.00 0	
3	PPTGVLSSLL	8.00 0	
433	PPVAVVSPQL	8.00 0	
781	LVEGVYTFHL	6.00 0	
871	VQSRPPFKVL	6.00 0	
578	QGVQTPYLHL	6.00	
627	AVAGPDKELI	6.00 0	
220	ESASTPAPKL	6.00	

Ta	ble XIX-V1-HLA-	B7-		
Each SEC pos lengtl acid for e	10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 3: each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			
Start	Subsequence	Scor e		
482		0 6.00		
132	DSPEDIRKDL	0 6.00		
892	RLSKEKADFL	0 4.00		
260	SSNSSGKEVL	4.00		
828	QLTEQRKDTL	4.00		
384	EIKQGHKQTL	4.00		
159	DYRELEKDLL	4.00 0		
917	CSGHGHCDPL	4.00 0		
438	VSPQLQELTL	4.00 0		
485	DSPVLRLSNL	4.00		
893	LSKEKADFLL	4.00 0		
27	EGRTYSNAVI	4.00 0		
323	TTAPRTVKEL	4.00 0		
693	QQGLSSTSTL	4.00 0		
393	LNLSQLSVGL	4.00 0		
365	ETTYNYEWNL	4.00 0		
238	LPTTPSSGEV	4.00 0		
386	KQGHKQTLNL	4.00 0		
95	PIRSYLTFVL	4.00		
835	DTLVRQLAVL	4.00 0		
820	LTLQVGVGQL	4.00 0		

PCT/US2004/001965

· • .

1	(<u></u>			
Ta	ible XIX-V1-HLA-I 10mers-254P1D6	37 - 8		
Each SEC pos length acidi for e	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start			
Start	Subsequence	Scor e		
31	YSNAVISPNL	4.00 0		
926	LTKRCICSHL	4.00 0		
539	ITLPQNSITL	4.00 0		
692	RLTVKDQQGL	4.00 0		
5	TGVLSSLLLL	4.00 0		
635	LIFPVESATL	4.00 0		
557	HQIVLYEWSL	4.00 0		
854	VQKIRAHSDL	4.00 0		
836	TLVRQLAVLL	4.00 0		
552	QSSDDHQIVL	4.00 0		
740	GSRSTDDQRI	4.00 0		
475	GPFIEEKTSV	4.00 0		
112	QLLDYGDMML	4.00 0		
345	ITLPDNEVEL	4.00 0		
334	ELTVSAGDNL	4.00 0		
273	HSLPPASLEL	4.00 0		
988	KIRKKTKYTI	4.00 0		
746	DQRIVSYLWI	4.00 0		
444	ELTLPLTSAL	4.00		
576	VMQGVQTPYL	4.00 0		
684	LQVGTYHFRL	4.00 0		
772	HSVALQLTNL	4.00		

	Table XIX-V1-HLA-B7- 10mers-254P1D68		
	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start nosition due nine		
	Start	Subsequence	Scor e
			0
	839	RQLAVLLNVL	4.00 0
	567	GPGSEGKHVV	4.00 0
	931	ICSHLWMENL	4.00 0
	209	TQQDPELHYL	4.00 0
	178	GSAEYTDWGL	4.00 0
	808	VQPDPRKSGL	4.00 0
	94	GPIRSYLTFV	4.00 0
	897	KADFLLFKVL	3.60 0
	179	SAEYTDWGLL	3.60 0
· · · · · · · · · · · · · · · · · · ·	111	AQLLDYGDMM	3.00 0
	317	TPSELPISPT	3.00 0
A lot of boundary of	727	HVLVLPNNSI	3.00 0
	882	AAEVARNLHM	2.70 0
	175	EPRGSAEYTD	2.00 0
	52	FPVVDCTAAC	2.00 0
	336	TVSAGDNLII	2.00 0
	45	IMRVSHTFPV	2.00 0
	495	DPGNYSFRLT	2.0
	874	RPPFKVLKAA	2.00 0
	958	YVTVLAFTLI	2.00 0
	604	SSRQQSTAVV	2.00 0

T	Table XIX-V1-HLA-B7- 10mers-254P1D68			
Eac SE leng acid for	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			
Star	Subsequence	Scor e		
70	AWWFEGRCYL	1.80 0		
91	KKMGPIRSYL	1.80 0		
Eac SE po lengi acio	Table XIX-V2-HLA-B7- 10mers-254P1D68 Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position also pipe			
Star	Subsequence	Scor e		
7	SEYADDYREL	0.40		
1	WGLEEMSEYA	0.10 0		
5	EMSEYADDYR	0.01		
9	YADDYRELEK	0.00 9		
4	EEMSEYADDY	0.00 6		
2	GLEEMSEYAD	0.00 3		
6	MSEYADDYRE	0.00 3		
8	EYADDYRELE	0.00 2		
10	ADDYRELEKD	0.00		
3	LEEMSEYADD	0.00 0		

Table XIX-V3-HLA-B7-10mers-254P1D68

PCT/US2004/001965

Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			
Start	Subsequence	Scor e	
1	MTRLGWPSPC	1.00 0	
8	SPCCARKQCS	0.40 0	
6	WPSPCCARKQ	0.20 0	
3	RLGWPSPCCA	0.10 0	
7	PSPCCARKQC	0.01 5	
2	TRLGWPSPCC	0.01 5	
4	LGWPSPCCAR	0.01 5	
10	CCARKQCSEG	0.01 0	
9	PCCARKQCSE	0.00 1	
5	GWPSPCCARK	0.00	
Table XIX-V5-HLA-B7- 10mers-254P1D68			
Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			

Scor

e 4.00

0

0

0 0.10

0

0.00

2

1

Subsequence

LTFLGKDWGL

SPEDIRKDLT

EDIRKDLTFL

DIRKDLTFLG

KDLTFLGKDW

TFLGKDWGLE

DLTFLGKDWG 0.01

Start

9

1

З

4

8

7

10

Table XIX-V5-HLA-B7- 10mers-254P1D68			
Each SEQ pos length acids	Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position		
	con peptide is the position plus nine	e start e.	
Start	Subsequence	Scor e	
5	IRKDLTFLGK	0.00 1	
6	RKDLTFLGKD	0.00 0	
2	PEDIRKDLTF	0.00 0	
Таы		2501	
	9mers-254P1D6	8	
Each	peptide is a port	tion of	
pos	ition is specified.	the	
lengti	n of peptide is 9	amino	
acids	, and the end po	sition	
for ea	ach peptide is the	e start	
	osmon plus eign	[. '	
Start	Subsequence	Score	
105	RPVQRPAQL	40.00 0	
582	TPYLHLSAM	40.00 0	
893	LSKEKADFL	30.00 0	
1018	RSTEHNSSL	20.00 0	
94	GPIRSYLTF	20.00 0	
495	DPGNYSFRL	20.00 0	
439	SPQLQELTL	20.00 0	
486	SPVLRLSNL	20.00 0	
377	HPTDYQGEI	16.00 0	
491	LSNLDPGNY	15.00 0	
872	QSRPPFKVL	15.0	
133	SPEDIRKDL	12.00 0	
226	APKLPERSV	12.00 0	

Y-----

Tab	Table XX-V1-HLA-B3501- 9mers-254P1D68		
Each	Each peptide is a portion of		
SEC	ID NO: 3; each ition is specified	start	
lengt	n of peptide is 9	amino	
acids	, and the end po	sition	
	osition plus eigh	e start It.	
Start	Subsequence	Score	
001		12.00	
001	NAAEVARNL	0	
37	SPNLETTRI	12.00 0	
587	LSAMQEGDY	10.00 0	
814	KSGLVELTL	10.00 0	
262	NSSGKEVLM	10.00 0	
65	SSCDLAWWF	10.00 0	
395	LSQLSVGLY	10.00 0	
885	VARNLHMRL	9.000	
296	TPGSTEHSI	8.000	
362	PPVETTYNY	8.000	
949	ESNCEWSIF	7.500	
742	RSTDDQRIV	6.000	
999	DNMDEQERM	6.000	
148	WGLEEMSEY	6.000	
676	KAIATVTGL	6.000	
23	KQCSEGRTY	6.000	
567	GPGSEGKHV	6.000	
175	EPRGSAEYT	6.000	
809	QPDPRKSGL	6.000	
1050	NPKVSMNGS	6.000	
328	APRTVKELT	6.000	
932	CSHLWMENL	5.000	
1057	GSIRNGASF	5.000	
954	WSIFYVTVL	5.000	
136	DIRKDLPFL	4.500	
228	KLPERSVLL	4.000	
929	RCICSHLWM	4.000	
874	RPPFKVLKA	4.000	
112	QLLDYGDMM	4.000	
950	SNCEWSIFY	4.000	
209	TQQDPELHY	4.000	
152	EMSEYSDDY	4.000	

PCT/US2004/001965

WO 2004/067716

*****		مجير منه وهند ، وريعة م در م	
Tabl	Table XX-V1-HLA-B3501- 9mers-254P1D68		
Each SEC	Each peptide is a portion of SEQ ID NO: 3; each start		
pos	ition is specified	, the	
lengt	h of peptide is 9 and the end or	amino :	
for ea	ach peptide is th	e start	
[[position plus eigl	nt.	
Start	Subsequence	Score	
324	SPTTAPRTV	4.000	
64	LSSCDLAWW	3.750	
720	RARAGGRHV	3.600	
327	TAPRTVKEL	3.000	
649	SSDDHGIVF	3.000	
552	QSSDDHQIV	3.000	
221	SASTPAPKL	3.000	
52	FPVVDCTAA	3.000	
337	VSAGDNLII	3.000	
604	SSRQQSTAV	3.000	
647	SSSSDDHGI	3.000	
475	GPFIEEKTS	3.000	
569	GSEGKHVVM	3.000	
361	APPVETTYN	3.000	
188	LPGSEGAFN	3.000	
553	SSDDHQIVL	3.000	
648	SSSDDHGIV	3.000	
892	RLSKEKADF	3.000	
111	AQLLDYGDM	3.000	
481	KTSVDSPVL	3.000	
837	LVRQLAVLL	3.000	
458	QSTDDTEIV	3.000	
759	QSPAAGDVI	2.000	
780	NLVEGVYTF	2.000	
346	TLPDNEVEL	2.000	
681	VTGLQVGTY	2.000	
304	IPTPPTSAA	2.000	
541	LPQNSITLN	2.000	
125	SPSGIWGDS	2.000	
275	LPPASLELS	2.000	
862	DLSTVIVFY	2.000	
236	LPLPTTPSS	2.000	
373	NLISHPTDY	2.000	
665	GPSAVEMEN	2.000	
9	SSLLLLVTI	2.000	
270	MPSHSLPPA	2.000	
441	QLQELTLPL	2.000	

Tab	e XX-V1-HLA-B	3501-		
	500015-254P1D6	Ö		
	Peptide is a port D NO: 3 each D NO: 3 each	uon ot start		
pos	ition is specified	, the		
lengt	n of peptide is 9	amino		
for ea	, and the end po ach peolide is th	e start		
F	osition plus eigt	nt.		
Start	Subsequence	Score		
589	AMQEGDYTF	2.000		
576	VMQGVQTPY	2.000		
519	LIVNNAVDY	2.000		
924	DPLTKRCIC	2.000		
629	AGPDKELIF	2.000		
359	APAPPVETT	2.000		
778	LTNLVEGVY	2.000		
3	PPTGVLSSL	2.000		
608	QSTAVVTVI	2.000		
306	TPPTSAAPS	2.000		
285	VTVEKSPVL	2.000		
315	ESTPSELPI	2.000		
44	RIMRVSHTF	2.000		
2	APPTGVLSS	2.000		
390	KQTLNLSQL	2.000		
1038	DTIFSREKM	2.000		
92	KMGPIRSYL	2.000		
768	DGSDHSVAL	2.000		
Table	Table XX-V2-HLA-B3501-			
	mers-25491D6	8		
SEO	pepilde is a port ID NO: 5: each	start		
posi	tion is specified,	the		
length	of peptide is 9 a	amino		
for ea	ch peptide is the	siuon e start		
p p	osition plus eigh	t.		
Start	Subsequence	Score,		
4	EMSEYADDY	4.000		
7	EYADDYREL	0.300		
1	GLEEMSEYA	0.060		
8	YADDYRELE	0.018		
5	MSEYADDYR	0.015		
6	SEYADDYRE	0.002		
3	EEMSEYADD	0.002		
2	LEEMSEYAD	0.000		
9	ADDYRELEK	0.000		
	burning to one consistence of the second state			

Tabl	Table XX-V3-HLA-B3501-				
	9mers-254P1D68				
Each	Each peptide is a portion of				
pos	position is specified, the				
lengti	n of peptide is 9	amino			
acids	s, and the end po pob poptido is the	osition			
p	osition plus eigl	e start nt.			
Start	Subsequence	Score			
8	SPCCARKQC	2.000			
3	RLGWPSPCC	0.200			
6	WPSPCCARK	0.200			
4	LGWPSPCCA	0.100			
1	MTRLGWPSP	0.030			
10	CCARKQCSE	0.010			
9	PCCARKQCS	0.010			
2	TRLGWPSPC	0.010			
7	PSPCCARKQ	0.005			
5	GWPSPCCAR	0.001			
[hannessment and]	- And an other as a first front - more printing on the second reported	I			
Table	e XX-V5-HLA-B	3501-			
	mers-254P1D6	8			
Each	Each peptide is a portion of				
DOS	SEQ ID NO: 11; each start				
length	of peptide is 9	amino			
acids	, and the end po	osition			
a loi la	on peptide is the osition plus eigh	e start it.			
Start	Subsequence	Score			
3	DIRKDLTFI	4,500			
7	DLTEL GKDW	0.500			
a	TELGKDWGL	0.100			
2		0.100			
		0.100			
		0.010			
4		0.006			
6	KULIFLGKD	0.002			
5	RKDLTFLGK	0.001			
	PEDIRKDLT	0.000			
Table	Table XXI-V1-HLA-B3501-				
E cob	Tumers-254P1D68				
SEO	Each peptide is a portion of SEQ ID NO: 3: each start				
posi	position is specified, the				
length	of peptide is 10	amino			
acids	and the end ne	-141			
for an	ch poptide is the	sition			

 position plus nine.

 Start
 Subsequence
 Score

part and a second second			
Tab	Table XXI-V1-HLA-B3501- 10mers-254P1D68		
Each SEC pos lengti acids for e	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score	
226	APKLPERSVL	90.00 0	
811	DPRKSGLVE L	60.00 0	
361	APPVETTYNY	40.00 0	
312	APSESTPSEL	40.00 0	
1018	RSTEHNSSL M	40.00 0	
359	APAPPVETTY	40.00 0	
37	SPNLETTRIM	40.00 0	
105	RPVQRPAQL L	40.00 0	
893	LSKEKADFLL	30.00 0	
1050	NPKVSMNGS I	24.00	
141	LPFLGKDWG L	20.00	
2	APPTGVLSSL	20.00 0	
720	RARAGGRHV	18.00	
986	RTKIRKKTKY	12.00 0	
1010	RPKYGIKHRS	12.00 0	
992	KTKYTILDNM	12.00 0	
144	LGKDWGLEE M	12.00 0	
665	GPSAVEMENI	12.00 0	
328	APRTVKELTV	12.00 0	
552	QSSDDHQIVL	10.00 0	
648	SSSDDHGIVF	10.00 0	
132	DSPEDIRKDL	10.00	

1				
	Table XXI-V1-HLA-B3501- 10mers-254P1D68			
	Each peptide is a portion of a			
	SEQ ID NO: 3: each start			
	pos	ilion is specified	, the	
	length	of peptide is 10	amino	
	for a	s, and the end po ach poptide is the	sition	
		position plus nine	ટ રાતા ૨.	
	Start	Subsequence	Score	
	[0	
	<u> </u>		10.00	
	178	USAETIDWG	0.00	
			10.00	
	482	TSVDSPVLRL	0	
	0.40		10.00	
	949	ESNCEWSIFY	0	
	60	LAWWFEGRC	0.000	
	09	Y	9.000	
	7/0	GSRSTDDQR	0.000	
	740	I	9.000	
	553	SSDDHQIVLY	6.000	
	649	SSDDHGIVFY	6.000	
	475	GPFIEEKTSV	6.000	
1	89	EPKKMGPIRS	6.000	
		RI SNI DPGN		
	490	Y	6.000	
1		RAGGRHVLV		
j	722	L	6.000	
A NUMBER OF STREET, ST	1058	SIRNGASFSY	6.000	
11 A A	107	VQRPAQLLD	6.000	
		Y !	0.000	
1	338	SAGDNLIITL	6.000	
1	229	LPERSVLLPL	6.000	
	662	HVRGPSAVE	6 000	
		M	0.000	
	485	DSPVLRLSNL	5.000	
ſ	260	SSNSSGKEV	5 000	
	200	L	5.000	
ľ	31	YSNAVISPNL	5.000	
ſ	1004	SSLMVSESE	5.000	
	1024	F	5.000	
	64	LSSCDLAWW	5.000	
	UT	F	3.000	
	917	CSGHGHCDP	5,000	
		L		
	220	ESASTPAPKL	5 000	
	772	HSVALQLTNL	5.000	
-	273	HSLPPASLEL	5.000	
Γ	438	VSPQLQELTL	5.000	

C	(
Tab	Table XXI-V1-HLA-B3501- 10mers-254P1D68			
Each	Each peptide is a portion of			
SE(Q ID NO: 3; each	start		
llengti	n of peptide is 10	amino		
acid	s, and the end po	sition		
lore	ach peptide is the position plus nine	e start e.		
Start	Subsequence	Score		
567	GPGSEGKHV V	4.000		
94	GPIRSYLTFV	4.000		
238	LPTTPSSGEV	4.000		
317	TPSELPISPT	4.000		
874	RPPFKVLKAA	4.000		
646	GSSSSDDHG	3.000		
628	VAGPDKELIF	3.000		
510	GATNSTTAAL	3.000		
200	TQQDPELHY	2 000		
203	L	3.000		
905		3.000		
456	GSQSTDDTE	3.000		
692	RLTVKDQQG L	3.000		
854	VQKIRAHSDL	3.000		
36	ISPNLETTRI	3.000		
588	SAMQEGDYT F	3.000		
926	LTKRCICSHL	3.000		
423	TVKPARRVN	3.000		
1041	FSREKMERG	3.000		
	SSROOSTAV			
604	V	3.000		
532	NAGPNHTITL	3.000		
384	EIKQGHKQTL	3.000		
626	VAVAGPDKE L	3.000		
858	RAHSDLSTVI	2.400		
988	KIRKKTKYTI	2.400		
892	RLSKEKADFL	2.000		
208	ETQQDPELH	2.000		
495	DPGNYSFRL	2.000		
188	LPGSEGAFN	2.000		

Tabl	Table XXI-V1-HLA-B3501-		
Each	poplido is o por	tion of	
SEC	D NO: 3. each	start	
DOS	ition is specified	the	
lenath	of peptide is 10	amino	
acide	s, and the end po	sition	
for ea	ach peptide is the	e start	
I	position plus nine	ə. 🛛	
Start	Subsequence	Score	
	6		
	3		
278	ASLELSSVTV	2.000	
270	MPSHSLPPA	2 000	
210	S	2.000	
372	WNLISHPTDY	2,000	
777		2.000	
		ļ	
581	QIPYLHLSA	2.000	
	IIVI		
828	QLTEQRKDT	2 000	
	L	2.000	
000	VQPDPRKSG	2 000	
000	L	2.000	
275	LPPASI FLSS	2,000	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DDTCVI COL	2.000	
3	FFIGVESSEL	2.000	
924	DPLTKRCICS	2.000	
680	TVTGLQVGT	2 000	
000	Y	2.000	
	VVMQGVQTP		
5/5	Y	2.000	
	SNI DPGNIVS		
492	F	2.000	
	KOCHKOTU		
386	NUGHKUILN	2.000	
52	FPVVDCTAA	2.000	
	<u> </u>		
112	QLLDYGDMM	2 000	
1 1 <b>2</b>	L	2.000	
444	AQLLDYGDM	0.000	
	M	2.000	
	PPVANASPO	<u>'</u>	
433	1	2.000	
200			
290	BEVLIVIEGS	2.000	
527	YPPVANAGP	2 000	
	<u>N</u>	2.000	
590	HLSAMQEGD	0.000	
000	Y	2.000	
742	RSTDDORIVS	2 000	
004	TDADKLOSOC	2.000	
ZZ4 (	TPAPKLPERS	2.000	
8	LSSLLLLVTI	2.000	

Tab	Table XXI-V1-HLA-B3501- 10mers-254P1D68		
Eacl SE	Each peptide is a portion of SEQ ID NO: 3; each start		
lengt	h of peplide is 10 s. and the end n	) amino	
for e	ach peptide is th	e start	
Start	Subsequence	Score	
Tab	le XXI-V2-HLA-B 10mers-254P1D	3501- 58	
Eacl SE	peptide is a por D ID NO: 5; each sition is specified	tion of start the	
lengti acid for e	n of peptide is 10 s, and the end pe ach peptide is th	amino osition e start	
Start	Subsequence	Score	
1	WGLEEMSEY	0.200	
4	EEMSEYADDY	0.200	
7	SEYADDYREL	0.150	
5		0.023	
9	YADDYRELEK	0.020	
2	GLEEMSEYAD	0.006	
8	EYADDYRELE	0.002	
10	ADDYRELEKD	0.000	
3	LEEMSEYADD	0.000	
Tabl	e XXI-V3-HLA-B 0mers-254P1D6	3501- 8	
Each SEC pos	peptide is a port ID NO: 7; each ition is specified,	ion of start the	
acids for ea	and the end po ach peptide is the	sition start	
Stert	Subsequence	Score	
8	SPCCARKQC S	2.000	
1	MTRLGWPSP C	0.300	
6	WPSPCCARK Q	0.200	
3	RLGWPSPCC A	0.200	
7_	PSPCCARKQ	0.050	

	Table XXI-V3-HLA-B3501-		
F	Each poptide is a portion of		
	SEC	QID NO: 7; each	start
	pos	ition is specified	, the
0	length	of peptide is 10	amino
	acids	s, and the end po	sition i
		position plus nine	e start 9.
e	Start	Subsequence	Score
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		C	
	10	CCARKQCSE	0.010
f		G	
	4	LGWPSPCCA R	0.010
0		TPICWDODC	0.01
	2	C	0.01
		PCCARKOCS	0.00
e	9	E	1
0		GWPSPCCAR	0.00
	5	K	1
0	Table		3501-
3	1	0mers-254P1D6	8
ס	Each peptide is a portion of		
8	SEQ ID NO: 11; each start		
	pos	ition is specified	the
	length of peptide is 10 amino		
	acids	, and the end po	sition
	101 96	osition plus nine	start
<u>2</u>	Start	Subsequence	Score
	1		1 200
			1.200
	9	LIFLGKDWG	1.000
	3	EDIRKDLTFL	0.150
	7	KDLTFLGKD W	0.100
	4	DIRKDLTFLG	0.030
	8	DLTFLGKDW G	0.010
	5	IRKDLTFLGK	0.006
	2	PEDIRKDLTF	0.003
	10	TFLGKDWGL E	0.002
1			
	6	RKDLTFLGKD	0.001

#### Tables XXII – XLIX:

Ta	bleXXII-V1-HLA- 9mers-254P1D6	-A1- B
Each	peptide is a por	tion of
SEC nos	UD NO: 3; each ition is specified	start the
lengt	h of peptide is 9	amino
acide	s, and the end po	sition
for ea	ach peptide is the position plus eigh	e start it.
Pos	123456789	score
554	SDDHQIVLY	31
650	SDDHGIVFY	29
182	YTDWGLLPG	26
743	STDDQRIVS	26
460	TDDTEIVSY	25
681	VTGLQVGTY	25
744	TDDQRIVSY	25
936	WMENLIQRY	25
778	LTNLVEGVY	24
108	QRPAQLLDY	23
459	STDDTEIVS	23
209	TQQDPELHY	22
395	LSQLSVGLY	22
649	SSDDHGIVF	22
360	PAPPVETTY	21
553	SSDDHQIVL	21
587	LSAMQEGDY	21
950	SNCEWSIFY	21
138	RKDLPFLGK	20
156	YSDDYRELE	20
483	SVDSPVLRL	20
695	VKDQQGLSS	20
792	VTDSQGASD	20
1019	STEHNSSLM	20
229	LPERSVLLP	19
378	PTDYQGEIK	19
410	SSENAFGEG	19
491	LSNLDPGNY	19
576	VMQGVQTPY	19
157	SDDYRELEK	18
190	GSEGAFNSS	18
299	STEHSIPTP	18
462	DTEIVSYHW	18
493	NLDPGNYSF	18
505	VTDSDGATN	18
601	VTDSSRQQS	18
862	DLSTVIVFY	18

TableXXII-V1-HLA-A1- 9mers-254P1D6BEach peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.1005ERMELRPKY181028VSESEFDSD181034DSDQDTIFS181034DSDQDTIFS181034DSDQDTIFS181034DSDQDTIFS181034DSDQDTIFS181034DSDQDTIFS181034DSDQDTIFS181034DSDQDTIFS181034DSDQNTIFS181034DSDQNTIFS181034DSDQNTIFS181034DSDQNTIFS181034DSDQNTIFS181034DSDQNTIFS181034DSDQNTIFS181039NLETTRIMR17162ELEKDLLQP17174QEPRGSAEY17163GSDHSVALQ17174QEPRGSAEY16152EMSEYSDDY16153KQCSEGRTY16154VESATLDG16155GSEGKHVVM16638PVESATLDG161638PVESATLDG161639RNGASFSY16255CSEGRTYSN15148WGLEEMSEY15339AGDNLIITL15339AGDNLIITL15339AGDNLITL15339AGDNLITL<			
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight         1005       ERMELRPKY       18         1005       ERMELRPKY       18         1005       ERMELRPKY       18         1028       VSESEFDSD       18         1034       DSDQDTIFS       18         1039       NLETTRIMR       17         70       AWWFEGRCY       17         91       KKMGPIRSY       17         162       ELEKDLLQP       17         162       ELEKDLQP       17         162       ELEKDLQP       17         987       TKIRKKTKY       17         987       TKIRKKTKY       16         152       EMSEYSDDY       16         152       EMSEYSDDY       16         154       PVESATLDG       16         1638       PVESATLDG       16         1638       PVESATLDG       16         1639       IRNGASFSY       16         1630       DTDTATVEV       16         1630       DTDTATVEV       16         1631       GSEGRTYSN       15         173	Ta	bleXXII-V1-HLA 9mers-254P1D6	-A1- B
SEQ ID NO: 3; each start           position is specified, the           length of peptide is 9 amino           acids, and the end position           for each peptide is the start           position plus eight           1005           ERMELRPKY           18           1028           VSESEFDSD           18           1034           DSDQDTIFS           18           1034           DSDQDTIFS           18           1034           DSDQDTIFS           18           39           NLETTRIMR           17           162           ELEKDLLQP           17           162           ELEKDLLQP           17           162           GSDHSVALQ           17           987           TKIRKKTKY           17           987           TKIRKKTKY           17           987           154           152           153           154           155           154	Fact	reptide is a por	tion of
position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           1005         ERMELRPKY         18           1028         VSESEFDSD         18           1034         DSDQDTIFS         18           1034         DSDQDTIFS         18           1034         DSDQDTIFS         18           1034         DSDQDTIFS         18           39         NLETTRIMR         17           70         AWWFEGRCY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           987         TKIRKKTKY         17           638	SEC	QID NO: 3; each	start
length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           1005         ERMELRPKY         18           1028         VSESEFDSD         18           1034         DSDQDTIFS         18           1039         NLETTRIMR         17           70         AWWFEGRCY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           638         PVESATLDG         16           648         AVEMENIDK         16           829         LTEQRKDTL         16           1059         IRNGASFSY         <	pos	sition is specified	l, the
Integration           for each peptide is the start position plus eight.           1005         ERMELRPKY           18         1028           1005         ERMELRPKY           18         1028           1034         DSDQDTIFS           18         1034           1034         DSDQDTIFS           18         11           1034         DSDQDTIFS           18         11           1034         DSDQDTIFS           18         11           1034         DSDQDTIFS           18         11           1034         DSDRSY           17         11           162         ELEKDLLQP           177         11           162         ELEKDLLQP           177         11           162         ELEKDLLQP           177         11           178         KQCSEGRTY           179         11           189         DSDIKVQKI           171         11           173         KQCSEGRTY           161         11           173         NLISHPTDY           161         16	llengt	h of peptide is 9	amino
position plus eight           1005         ERMELRPKY         18           1028         VSESEFDSD         18           1034         DSDQDTIFS         18           1034         DSDQDTIFS         18           1034         DSDQDTIFS         18           39         NLETTRIMR         17           70         AWWFEGRCY         17           91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           600         DTDTATVEV         16           820         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16	for e	ach peptide is th	e start
1005         ERMELRPKY         18           1028         VSESEFDSD         18           1034         DSDQDTIFS         18           39         NLETTRIMR         17           70         AWWFEGRCY         17           91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           162         ELEKDLLQP         17           163         GSDHSVALQ         17           987         TKIRKKTKY         17           150         GSEGKHVVM         16           638         PVESATLDG         16           1003		position plus eigl	nt
1028         VSESEFDSD         18           1034         DSDQDTIFS         18           39         NLETTRIMR         17           70         AWWFEGRCY         17           91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PS	1005	ERMELRPKY	18
1034         DSDQDTIFS         18           39         NLETTRIMR         17           70         AWWFEGRCY         17           91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           318         PSELPISPT         15           320         AG	1028	VSESEFDSD	18
39         NLETTRIMR         17           70         AWWFEGRCY         17           91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           152         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           600         DTDTATVEV         16           820         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           323         AGDNLIITL         15           320         PVET	1034	DSDQDTIFS	18
70         AWWFEGRCY         17           91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           638         PVESATLDG         16           638         PVESATLDG         16           600         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           362         PPV	39	NLETTRIMR	17
91         KKMGPIRSY         17           162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           329         AGDNLIITL         15           362         PPVETTYNY         15           592         EGDYTFQLK         15           592         EG	70	AWWFEGRCY	17
162         ELEKDLLQP         17           174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           600         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           250         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798	91	KKMGPIRSY	17
174         QEPRGSAEY         17           769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           820         LTEQRKDTL         16           1003         EQERMELRP         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909	162	ELEKDLLQP	17
769         GSDHSVALQ         17           849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           369         GSEGKHVVM         16           638         PVESATLDG         16           600         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           1059         IRNGASFSY         16           1059         IRNGASFSY         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798 <t< td=""><td>174</td><td>QEPRGSAEY</td><td>17</td></t<>	174	QEPRGSAEY	17
849         DSDIKVQKI         17           987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           152         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909	769	GSDHSVALQ	17
987         TKIRKKTKY         17           23         KQCSEGRTY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           339         AGDNLIITL         15           302         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045 <td< td=""><td>849</td><td>DSDIKVQKI</td><td>17</td></td<>	849	DSDIKVQKI	17
23         KQCSEGRTY         16           152         EMSEYSDDY         16           152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           820         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	987	TKIRKKTKY	17
152         EMSEYSDDY         16           212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           600         DTDTATVEV         16           800         DTDTATVEV         16           1003         EQERMELRP         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           1059         IRNGASFSY         16           1059         IRNGASFSY         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           909         DTAGCLLKC         15           909	23	KQCSEGRTY	16
212         DPELHYLNE         16           373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           608         DTDTATVEV         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           226         CSEGRTYSN         15           173         KQEPRGSAE         15           23         STPAPKLPE         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	152	EMSEYSDDY	16
373         NLISHPTDY         16           569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           318         PSELPISPT         15           339         AGDNLIITL         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	212	DPELHYLNE	16
569         GSEGKHVVM         16           638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15	373	NLISHPTDY	16
638         PVESATLDG         16           668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           225         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	569	GSEGKHVVM	16
668         AVEMENIDK         16           800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	638	PVESATLDG	16
800         DTDTATVEV         16           829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	668	AVEMENIDK	16
829         LTEQRKDTL         16           1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	800	DTDTATVEV	16
1003         EQERMELRP         16           1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	829	LTEQRKDTL	16
1059         IRNGASFSY         16           25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	1003	EQERMELRP	16
25         CSEGRTYSN         15           148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	1059	IRNGASFSY	16
148         WGLEEMSEY         15           173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	25	CSEGRTYSN	15
173         KQEPRGSAE         15           223         STPAPKLPE         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	148	WGLEEMSEY	15
223         STPAPKLPE         15           318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	173	KQEPRGSAE	15
318         PSELPISPT         15           339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	223	STPAPKLPE	15
339         AGDNLIITL         15           362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	318	PSELPISPT	15
362         PPVETTYNY         15           507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	339	AGDNLIITL	15
507         DSDGATNST         15           519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	362	PPVETTYNY	15
519         LIVNNAVDY         15           592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	507	DSDGATNST	15
592         EGDYTFQLK         15           798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	519	LIVNNAVDY	15
798         ASDTDTATV         15           909         DTAGCLLKC         15           1045         KMERGNPKV         15	592	EGDYTFQLK	15
909 DTAGCLLKC 15 1045 KMERGNPKV 15	798	ASDTDTATV	15
1045 KMERGNPKV 15	909	DTAGCLLKC	15
	1045	KMERGNPKV	15

	-
TableXXII-V2-HLA-A1-	
9mers-254P1D6B	

	Eac	ch peptide is a p	ortion
	start position is specified.		
	the	length of peptid	le is 9
	ami	no acids, and th	e end
	is f	the start position	epilae Unlus
		eight.	, piùo
	Pos	123456789	score
	9	A <u>D</u> DYRE <u>L</u> EK	17
j	4	EMSEYADDY	16
1	8	YADDYRELE	16
	5	M <u>S</u> EYAD <u>D</u> YR	14
	1	G <u>L</u> EEMS <u>E</u> YA	11
	2	LEEMSEYAD	10
,			
	Та	bleXXII-V3-HLA	-A1-
	9mers-254P1D6B		
	of SEO ID NO: 7 each		
	start position is specified,		
	the	length of peptid	e is 9
	ami	no acids, and th	e end
	is t	he start position	plus
		eight.	
	Pos	123456789	score
	1	M <u>T</u> RLGW <u>P</u> SP	8
	7	P <u>S</u> PCCA <u>R</u> KQ	6
	4	L <u>G</u> WPSP <u>C</u> CA	4
	6	WPSPCCARK	4
	8	SPCCARKQC	3
-			
	Ta	bleXXII-V5-HLA	-A1-
	Tal (	bleXXII-V5-HLA Omers-254P1D6	-A1- B

Eac	Each peptide is a portion of			
SE	Q ID NO: 11; each	start		
рс	sition is specified,	the		
leng	th of peptide is 9 a	amino		
acio	is, and the end po	sition		
for e	for each peptide is the start			
position plus eight.				
Pos	123456789	score		
5	R <u>K</u> DLTF <u>L</u> GK	. 19		
1	P <u>E</u> DIRK <u>D</u> LT	12		

TableXXIII-V1-HLA-A0201-9mers-254P1D6B

#### PCT/US2004/001965

Each	peptide is a por	tion of
SEC	ID NO: 3; each	start
pos	ition is specified	, the
liengu	i of peptide is 9	amino
for ea	ach peptide is th	e start
p	osition plus eigh	nt.
Pos	123456789	score
840	QLAVLLNVL	28
900	FLLFK <u>V</u> LRV	28
7	VLSSLLLLV	27
274	SLPPASLEL	27
401	GLYVF <u>K</u> VTV	27
816	GLVELTLQV	27
441	QLQELTLPL	26
673	NIDKAIATV	26
821	TLQVGVGQL	26
836	TLVRQLAVL	26
961	VLAFTLIVL	26
228	KLPERSVLL	25
279	SLELSSVTV	25
346	TLPDNEVEL	25
777		25
99		24
392	TLNI SQI SV	24
394	NLSQI SVGI	24
445		24
766	VIDGSDHSV	24
968	VI TGGETWI	24
10		23
113		23
344		23
399	SVGLYVEKV	23
437	VVSPOLOFI	23
452	ALIDGSOST	23
728		23
730		23
1045	KMERCNDKV	23
1040		23
100		22
	UNIL DOULAN	
430	VINLPPVAVV	
483	ATMOTTO AL	
511	AINST AAL	22
020	ILPUNSITL	22
609	STAVVTVIV	22
627	AVAGPDKEL	22
676	KAIAT <u>V</u> TGL	22

Table	XXIII-V1-HLA-A mers-254P1D6	.0201- B	
Fach	peptide is a por	fion of	
SEC	ID NO: 3; each	start	
pos	ition is specified	, the	
llength	n of peptide is 9 and the and p	amino	
for ea	, and the end po ach nentide is th	e start	
p	osition plus eigh	nt.	
Pos	123456789	score	
703	STSTL <u>T</u> VAV	22	
773	SVALQ <u>L</u> TNL	22	
844	LLNVL <u>D</u> SDI	22	
9	SSLLLLVTI	21	
12	LLLVTIAGC	21	
35	VISPNLETT	21	
92	KMGPIRSYL	21	
558	QIVLYEWSL	21	
774	VALQLTNLV	21	
780	NLVEGVYTE	21	
897	KADFLLFKV	21	
95	PIRSYLTFV	20	
221	SASTPAPKL	20	
233	 SVLLPLPTT	20	
446	TLPLTSALI	20	
517	AALIVNNAV	20	
687	GTY-FRLTV	20	
858	RAHSDLSTV	20	
960	TVLAF <u>T</u> LIV	20	
285	VTVEK <u>S</u> PVL	19	
327	TAPRT <u>V</u> KEL	19	
339	AGDNLIITL	19	
429	RVNLPPVAV	19	
538	TITLPQNSI	19	
634	ELIFP <u>V</u> ESA	19	
721	ARAGG <u>R</u> HVL	19	
800	DTDTATVEV	19	
837	LVRQLAVLL	19	
843	VLLNVLDSD	19	
846	NVLDS <u>D</u> IKV	19	
881	KAAEV <u>A</u> RNL	19	
112	QLLDY <u>G</u> DMM	18	
234	VLLPL <u>P</u> TTP	18	
287	VEKSPVLTV	18	
414	AFGEGEVNV	18	
531	ANAGP <u>N</u> HTI	18	
607	QQSTAVVTV	18	
635	LIFPV <u>E</u> SAT	18	

.

Table	eXXIII-V1-HLA-A 9mers-254P1D6	.0201- B
Each	peptide is a por	tion of
pos	ition is specified	stan the
lengti	h of peptide is 9	amino
for ea	s, and the end po ech nentide is the	sition
F	position plus eigh	t.
Pos	123456789	score
722	RAGGR <u>H</u> VLV	18
784	GVYTF <u>H</u> LRV	18
798	ASDTD <u>T</u> ATV	18
955	SIFYV <u>T</u> VLA	18
958	YVTVLAFTL	18
962	LAFTLIVLT	18
11	LLLLVTIAG	17
103	VLRPV <u>Q</u> RPA	17
210	QQDPELHYL	17
217	YLNES <u>A</u> STP	17
267	EVLMPSHSL	17
272	SHSLP <u>P</u> ASL	17
277	PASLELSSV	17
303	SIPTPPTSA	17
342	NLIIT <u>L</u> PDN	17
353	ELKAF <u>V</u> APA	17
359	APAPPVETT	17
397	QLSVGLYVF	17
427	ARRVNLPPV	17
444	ELTLPLTSA	17
493	NLDPGNYSF	17
565	SLGPG <u>S</u> EGK	17
579	GVQTPYLHL	17
589	AMQEG <u>D</u> YTF	17
693	LTVKDQQGL	17
701	LSSTSTLTV	17
723	AGGRH <u>V</u> LVL	17
736	ITLDG <u>S</u> RST	17
818	VELTL <u>Q</u> VGV	17
829	LTEQRKDTL	17
835	DTLVRQLAV	17
839	RQLAVLLNV	17
901	LLFKVLRVD	17
1054	SMNGSIRNG	17
13	LLVTI <u>A</u> GCA	16
34	AVISPNLET	16
120	MLNRG <u>S</u> PSG	16
197	SSVGD <u>S</u> PAV	16

101/001/001/00	PCT/	US2004/	001965
----------------	------	---------	--------

Table	TableXXIII-V1-HLA-A0201-		
[(	Omers-254P1D6	B	
Each	peptide is a por	tion of	
SEC	ID NO: 3; each	start	
pos	nion is specified	, ine amino	
acids	and the end of	psition	
for ea	ich peptide is the	e start	
p	osition plus eigh	it.	
Pos	123456789	score	
292	VLTVTPGST	16	
331	TVKEL <u>T</u> VSA	16	
335	LTVSAGDNL	16	
366	TTYNYEWNL	16	
385	IKQGHKQTL	16	
422	VTVKPARRV	16	
481	KTSVDSPVI	16	
486	SPVI RI SNI	16	
407			
407 E10			
010			
533			
560	VLYEW <u>S</u> LGP	16	
593	GDYTFQLKV	16	
605	SRQQSTAVV	16	
636	IFPVESATL	16	
655	IVFYHWEHV	16	
678	IATVT <u>G</u> LQV	16	
683	GLQVGTYHF	16	
699	QGLSSTSTL	16	
720	RARAGGRHV	16	
812	PRKSGLVEL	16	
877	FKVLKAAEV	16	
885		16	
888			
905			
054	WOEVUTU		
904			
905		16	
32	SNAVI <u>S</u> PNL	15	
40	LETTRIMRV	15	
47	RVSHT <u>F</u> PVV	15	
50	HTFPV <u>V</u> DCT	15	
71	WWFEG <u>R</u> CYL	15	
78	YLVSC <u>P</u> HKE	15	
128	GIWGDSPED	<b>1</b> 5	
179	SAEYTDWGI	15	
187		15	
191	SEGAENSSV	15	
225		15	
230	LLPLPIIPS	10	

.

TableXXIII-V1-HLA-A0201- 9mers-254P1D6B		
Each	nentide is a nor	tion of
SEC	ID NO: 3: each	start
posi	ition is specified	, the
lengt	of peptide is 9	amino
acids	, and the end po	osition
D D	osition plus eigh	e start nt.
Pos	123456789	score
284	SVTVEKSPV	15
336	TVSAGDNLI	15
338	SAGDNLIIT	15
350	NEVELKAFV	15
396	SQLSVGLYV	15
439		15
465	IVSYHWEEI	15
516		15
526		10
525		
047		
628	VAGPDKELI	15
685	QVGIYHFRL	15
700	GLSST <u>S</u> TLT	15
754	WIRDGQSPA	15
833	RKDTL <u>V</u> RQL	15
862	DLSTVIVFY	15
863	LSTVI <u>V</u> FYV	15
866	VIVFY <u>V</u> QSR	15
940	LIQR <u>^I</u> WDG	15
988	KIRKK <u>T</u> KYT	15
1025	SLMVSESEF	15
3	PPTGVLSSL	14
16	TIAGCARKQ	14
96	IRSYLTFVL	14
166	DLLQPSGKO	14
207	AETQODPFI	14
226	APKLPERSV	
239	PTTPSSGEV	
240	TTPSSGEV	
247		
2/18	I EKEKVOO	
280	SCHOROKEV	
200	SNSSCKEV	
	VIMPOUL	
208		
326		14
337	VSAGD <u>N</u> LII	14
356	AFVAPAPPV	14
358	VAPAP <u>P</u> VET	14

Table	XXIII-V1-HLA-A mers-254P1D6	0201- B
Each	peptide is a por	tion of
SEQ	ID NO: 3; each	start fhe
length	of peptide is 9	amino
acids	, and the end po to b poptide is the	osition
p p	osition plus eigh	e start it.
Pos	123456789	score
390	KQTLNLSQL	14
416	GEGFV <u>N</u> VTV	14
431	NLPPV <u>A</u> VVS	14
434	PVAVV <u>S</u> PQL	14
453	LIDGS <u>Q</u> STD	14
539	ITLPQ <u>N</u> SIT	14
575	VVMQG <u>V</u> QTP	14
591	QEGDYTFQL	14
643	TLDGS <u>S</u> SSD	14
669	VEMEN <u>I</u> DKA	14
677	AIATV <u>T</u> GLQ	14
706	TLTVA <u>V</u> KKE	14
729	LVLPN <u>N</u> SIT	14
737	TLDGS <u>R</u> STD	14
782	VEGVYTFHL	14
814	KSGLV <u>E</u> LTL	14
828	QLTEQ <u>R</u> KDT	14
847,	VLDSD <u>I</u> KVQ	14
849	DSDIK <u>V</u> QKI	14
860	HSDLS <u>T</u> VIV	14
871	VQSRP <u>P</u> FKV	14
890	HMRLS <u>K</u> EKA	14
893	LSKEKADFL	14
907	RVDTAGCLL	14
909	DTAGCLLKC	14
918	SGHGH <u>C</u> DPL	14
944	YIWDGESNC	14
966	LIVLT <u>G</u> GFT	14
37	SPNLETTRI	13
121	LNRGS <u>P</u> SGI	13
142	PFLGK <u>D</u> WGL	13
145	GKDWGLEEM	13
167	LLQPSGKQE	13
180	AEYTDWGLL	13
182	YTDWGLLPG	13
214	ELHYL <u>N</u> ESA	13
281	ELSSVTVEK	13
319	SELPISPTT	13

Table	XXIII-V1-HLA-A Omers-254P1D6	0201- B
Each SEC	peptide is a por ID NO: 3; each	tion of start
pos	ition is specified	, the
acids	, and the end po	sition
for ea	ach peptide is the	e start
Pos	123456789	score
320	ELPISPTTA	13
324	SPTTAPRTV	13
343	LIITLPDNE	13
374	LISHPTDYQ	13
387	QGHKQTLNL	13
403	YVFKVTVSS	13
419	FVNVT <u>V</u> KPA	13
424	VKPARRVNL	13
476	PFIEEKTSV	13
477	FIEEKTSVD	13
490	RLSNLDPGN	13
515	TTAALIVNN	13
522	NNAVDYPPV	13
530	VANAG <u>P</u> NHT	13
553	SSDDH <u>Q</u> IVL	13
577	MQGVQ <u>T</u> PYL	13
604	SSRQQSTAV	13
621	NNRPPVAVA	13
631	PDKELIFPV	13
642	ATLDG <u>S</u> SSS	13
648	SSSDDHGIV	13
680	TVTGLQVGT	13
696	KDQQGLSST	13
745	DDQRIVSYL	13
748	RIVSYLWIR	13
752	YLWIRDGQS	13
758	GQSPAAGDV	13
768	DGSDHSVAL	13
770	SDHSVALQL	13
775	ALQLT <u>N</u> LVE	13
809	QPDPRKSGL	13
842	AVLLNVLDS	13
879	VLKAA <u>E</u> VAR	13
898	ADFLL <u>F</u> KVL	13
906	LRVDTAGCL	13
914	LLKCS <u>G</u> HGH	13
933	SHLWM <u>E</u> NLI	13
951	NCEWSIFYV	13

Table	XXIII-V1-HLA-A	0201-
<u> </u>	mers-254P1D6	В
Each	peptide is a por	tion of
SEQ	ID NO: 3; each	start
posi	tion is specified	, the
length	of peptide is 9	amino
acids	, and the end po	osition
for ea	ich peptide is th	e start
р	osition plus eigh	nt.
Pos	123456789	score
959	VTVLAFTLI	13
996	TILDNMDEQ	13
1007	MELRPKYGI	13
1018	RSTEHNSSI	13
	NOTENMODE	10
Ta	ableXXIII-V2-HL	A-
A020	01-9mers-254P	1D6B
Fact	n pentide is a pr	rtion
of	SEO ID NO: 5' e	ach
start	nosition is snee	ified
the	ength of pentide	ie 0
amin	o acids and the	
posi	tion for each ne	ntide
is th	e start position	plus
	eiaht.	
Posl	123456789	score
	GLEEMSEYA	16
		12
	EWSEYADDY	8
8	YADDYRELE	В
<u> </u>		<u> </u>
	ableXXIII-V3-HL	A-
Each	peptide is a po	rtion
01 S	EQIDNO: /; e	acn
start	position is spec	inea,
ine l	engin of peptide	9 IS 9
amin	o acids, and the	end
posit	ion for each pe	
is th	e start position eicht	pius
	122456700	
105	123400/09	score
	KLGWPSPCC	12
	MIRLG <u>W</u> PSP	9
4	LGWPS <u>P</u> CCA	9
_10	CCARKQCSE	5
Tablo	YYIII 2540103	D vie

Table XXIII 254P1D6B v5-HLA-0201-p-mers

## PCT/US2004/001965

Eac	h peptide is a porti	on of
SE	Q ID NO: 11 each	start
n	sition is specified	the
	ith of pentide is 9 c	mino
	ui or pepilue is a a	
acio	is, and the end po	sition
for e	each peptide is the	start
	position plus eight	
Doc	123456780	anarol
1-05	123430789	score
3	DIRKDLTFL	21
2	TELONDWOL	10
6	KDLTFLGKD	10
		-
	TableXXIV-V1-	]
	HLA-A0203-	
	9more	
	254P1D6B	
		1
		-
	NoResultsFound.	
		-
	I	ล
	TableXXIV-V2-	1
	HLA-A0203-	il i
	9mers-	il
	254P1D6B	
	2.5471000	ļ
	No Dooulto Found	il
	Noresulter ound.	
		_
		ก
	ableXXIV-V3-	
	HLA-A0203-	1
	9mers-	
	254P1D6B	l
		1
	NoResultsFound	1
	inter toounter conta.	J)
	Table VVIV/V/5	1
	пLA-A0203-	
	9mers-	
	254P1D6B	
		i
	NoResultsFound.	
	L	U
	TableXXV-V1-	
	HI A-A0203-	
	0mcro	
	Siners-	ļ
	254P1D6B	
į		
	NoResultsFound.	
		L
1		ī
	TableXXV-V2-	
	HLA-A0203-	
	9mers-	
	254P1D6R	
		1
		J

1

NoResultsFound.		
TableXXV-V3-HLA 9mers-254P1D6	-A3- 88	
Each peptide is a po of SEQ ID NO: 7; e	ortion each	
the length of peptid	e is 9	
amino acids, and th	e end	
is the start position eight.	plus	
Pos 123456789	score	
6 WPSPCCARK	16	
3 RLGWPSPCC	14	
1 MTRLGWPSP	8	
2 TRLGWPSPC	8	
10 CCARKQCSE	7	
TableXXV-V5-HLA 9mers-254P1D6	-A3- B	
Each peptide is a por	tion of	
SEQ ID NO: 11; ead	h start	
l length of peptide is 9	amino	
acids, and the end po	osition	
for each peptide is the start		
Poel 1 2 3 4 5 6 7 8 c		
	18	
	18	
	12	
TableXXVI-V1-HLA- 9mers-254P1D6	A26- B	
Each peptide is a por	tion of	
SEQ ID NO: 3; each	start	
position is specified length of pentide is 9	, the amino	
acids, and the end po	osition	
for each peptide is the	e start	
position plus eigr		
267 EVLMD0101	score	
	29	
	20	
AND	20	
	24	
240 EVLEKEKAS	24	

TableXXVI-V1-HLA-A26- 9mers-254P1D6B			
Each SEC	Each peplide is a portion of SEO ID NO: 3: each start		
pos	ition is specified	, the	
length	of peptide is 9 and the end pressure of the	amino	
for ea	ach peptide is the	e start	
p	osition plus eigh	nt	
Pos	123456789	score	
1005	ERMELRPKY	24	
285	VTVEKSPVL	23	
437	VVSFQLQEL	23	
745	DDQRIVSYL	23	
765	DVIDGSDHS	23	
773	SVALQLTNL	23	
152	EMSEYSDDY	22	
335	LTVSAGDNL	22	
407	VTVSSENAF	22	
807	EVQFDPRKS	22	
862	DLSTVIVFY	22	
909	DTAGCLLKC	22	
41	ETTRIMRVS	21	
349	DNEVELKAF	21	
351	EVELKAFVA	21	
958	YVTVLAFTL	21	
1038	DTIFSREKM		
365	ETTYNYEWN	20	
445	LTLPLTSAL	20	
693	LTVKDQQGL	20	
155	EYSDDYREL	19	
159	DYRELEKDL		
240	TIPSSGEVL	19	
417	EGFVNVTVK	19	
434	PVAVVSPQL	19	
464	EIVSYHWEE	19	
519		19	
5/9	GVQTPYLHL	19	
611	AVVIVIVQP	19	
634	LIFPVESA	19	
/78	LINLVEGVY	19	
780	NLVEGVYTE	19	
837		19	
907	RVDIAGCLL	19	
949	ESNCEWSIF	19	
	PTGVLSSLL	18	
106	PVQRPAQLL	18	
208	ETQQDPELH	18	

Tab	TableXXVI-V1-HLA-A26- 9mers-254P1D6B		
Each	peptide is a por DNO: 3: each	tion of start	
pos	ition is specified	, the	
acids	s, and the end po	osition	
forea	ach peptide is th position plus eigh	e start ht	
Pos	123456789	score	
461	DDTEIVSYH	18	
486	SPVLRLSNL	18	
511	ATNSTTAAL	18	
627	AVAGPDKEL	18	
672	ENIDKAIAT	18	
685	QVGTYHFRL	18	
768	DGSDHSVAL	18	
835	DTLVRQLAV	18	
50	HTFPVVDCT	17	
56	DCTAACCDL	17	
366	TTYNYEWNL	17	
436	AVVSPQLQE	17	
558	QIVLYEWSL	17	
612	VVIVIVQPE	17	
802	DIAIVEVQP	17	
829		1/	
030		17	
907		17	
53		10	
167		10	
232		16	
330	RTVKELTVS	16	
362	PPVETTYNY	16	
390		16	
399	SVGLYVFKV	16	
444	ELTLPLTSA	16	
460	TDDTEIVSY	16	
462	DTEIVSYHW	16	
481	KTSVDSPVL	16	
495	DPGNYSFRL	16	
574	HVVMQGVQT	16	
661	EHVRGPSAV	16	
676	KAIATVTGL	16	
679	ATVTGLQVG	16	
744	TDDQRIVSY	16	
800	DTDTATVEV	16	
819	ELTLQVGVG	16	

Tabl	leXXVI-V1-HLA- Omers-254P1D6	A26- B
Fach	nentide is a por	tion of
SEC	ID NO: 3; each	start
pos	ition is specified	, the
lengt	n of peptide is 9	amino
for ea	, and the end po ach neptide is th	e start
p	osition plus eight	nt.
Pos	123456789	score
842	AVLLNVLDS	16
865	TVIVFYVQS	16
896	EKADFLLFK	16
954	WSIFYVTVL	16
3	PPTGVLSSL	15
74	EGRCYLVSC	15
91	KKMGPIRSY	15
108	ORPAQLE DY	15
132	DSPEDIRKD	15
231	FRSVILPLP	15
251		
201		
200	EKSPVLIVI	
293		15
331	IVKELTVSA	15
339	AGDNLIITL	15
373	NLISHPTDY	15
384	EIKQGHKQT	15
395	LSQLSVGLY	15
403	YVFKVTVSS	15
472	EINGPFIEE	15
479	EEKTSVDSP	15
504	TVTDSDGAT	15
514	STTAALIVN	15
554	SDDHQIVLY	15
555	DDHQIVLYE	15
571	EGKHVVMQG	15
575	VVMQGVOTP	15
614		15
650	SDDHGIVEY	15
821		15
861	SDI STVIVE	
001		10
100	WMENLIOPY	
930		
965	TUNOCIAL	15
1021	EHIVSSLMVS	15
1057	GSIRNGASE	15
5	IGVLSSLLL	14
71	WWFEGRCYL	14

Tabl	eXXVI-V1-HLA- mers-254P1D6	A26- B	
Each	peptide is a por	tion of	
SEC	ID NO: 3; each	start	
pos	ition is specified	, the	
liengtr	of peptide is 9 and the end pr	amino	
for ea	ich peptide is the	e start	
р	osition plus eigh	nt.	
Pos	123456789	score	
94	GPIRSYLTF	14	
102	FVLRPVQRP	14	
181	EYTDWGLLP	14	
230	PERSVLLPL	14	
299	STEHSIPTP	14	
316	STPSELPIS	14	
353	ELKAFVAPA	14	
419	FVNVTVKPA	14	
471	EEINGPFIE	14	
515	TTAALIVNN	<b>1</b> 4	
520	IVNNAVDYP	14	
595	YTFQLKVTD	14	
651	DDHGIVFYH	14	
655	IVFYHWEHV	14	
783	EGVYTFHLR	14	
786	YTFHLRVTD	14	
791	RVTDSQGAS	14	
804	ATVEVQPDP	14	
817	LVELTLQVG	14	
833	RKDTLVRQL	14	
849	DSDIKVQKI	14	
906	LRVDTAGCL	14	
950	SNCEWSIFY	14	
956	IFYVTVLAF	14	
ر <u>ال</u>			
TableXXVI-V2A26-			
9	9mers-254P1D6B		
Each peptide is a portion			
start position is specified			
the length of peptide is 9			
amino acids, and the end			

amino acids, and the end			
pos	ition for each pe	eptide	
is t	he start position	plus	
	eight.		
Pos	123456789	score	
4	EMSEYADDY	22	
7	EYADDYREL	19	
3	EEMSEYADD	11	

TableXXVI-V3-A26-
9mers-254P1D6B
Each peptide is a portion
start position is specified
the length of peptide is 9
amino acids, and the end
position for each peptide
is the start position plus
POS 123456789 SCOPE
TableXXVI-V5-A26-9mers-
254P1D6B
Each peptide is a portion of
Deg ID NO: IT; each start
length of peptide is 9 amino
acids, and the end position
for each peptide is the start
position plus eight.
Pos 123456789 score
2 EDIRKDLTF 25
3 DIRKDLTFL 24
8 LTFLGKDWG 12
TableXXVII-V1-HLA-
B0702-9mers-254P1D6B
Each peptide is a portion of
SEQ ID NO: 3; each start
position is specified, the
acids, and the end position
for each peptide is the start
position plus eight.
Pos 123456789 score
359 APAPPVETT 24
304 IPTPPTSAA 23
3 PPTGVLSSL 22
133 SPEDIRKUL 21
1/5 EPRGSAEYT 21
226 APKLPERSV 21
495 DPGNYSFRL 21
270 MPSHSLPPA 20
328 APRTVKELT 20
486 SPVLRI SNI 20
874 RPPFKVI KA 20

#### PCT/US2004/001965

**F** 

	Т В07	ableXXVII-V1-HI 02-9mers-254P	LA- 1D6B
	Each peptide is a portion of		
	SEQ ID NO: 3; each start		
:	lengt	h of peptide is 9	amino
	acids	s, and the end po ach poptido is th	osition
		osition plus eigh	e start nt.
	Pos	123456789	score
	37	SPNLETTRI	18
	52	FPVVDCTAA	18
	94	GPIRSYLTF	18
	567	GPGSEGKHV	18
	627	AVAGPDKEL	18
	872	QSRPPFKVL	18
	875	PPFKVLKAA	18
	296	TPGSTEHSI	17
	483	SVDSPVLRL	17
	582	TPYLHLSAM	<u> </u>
ļ	721	ARAGGRHVL	17
	/23	AGGRHVLVL	
	811	DPRKSGLVE	<u> </u>
	221	SASTPAPKL	16
	272	SHSLPPASL	16
	312	APSESTPSE	16
	321		16
	324		16
	3//	HP IDYQGEI	16
	2	APPIGVLSS	15
	90		15
	130		15
	169	QPSGKQEPR	15
	201	PERSVLLPL	15
	<u> </u>		15
	401 511	ATNOTTAAL	15
	570	GVOTOVIU	15
	624	NINDDDVAVA	15
	760	DCSDUCVAL	15
	2001	FRKKMODIE	10
	03	KMODIDOVI	14
	125	SPSCIWCDO	14
	120		14
	202	SPAU/DAETO	4
ľ	202	TPSSCEVIE	14
L	241	EVI MDeulei	14
ľ	201		14
L	220	AT VALAPPY	14

	Б07	ableXXVII-V1-HI 02-9mers-254P	-A- 1D6B
,	Each SEC	peptide is a por DID NO: 3: each	tion of start
	pos	ition is specified	, the
	lengt	h of peptide is 9	amino
	for e	ach peptide is th	e start
	L F	position plus eigh	nt.
	Pos	123456789	score
	361	APPVETTYN	14
	387	QGHKQTLNL	14
	394	NLSQ_SVGL	14
	424	VKPARRVNL	14
	441	QLQELTLPL	14
	531	ANAGPNHTI	14
	676	KAIATVTGL	14
	715	NNSPPRARA	14
	760	SPAAGDVID	14
	814	KSGLVELTL	14
	837	LVRQLAVLL	14
	898	ADFLLFKVL	14
	968	VLTGGFTWL	14
	34	AVISPNLET	13
	106	PVQRPAQLL	13
	155	EYSDDYREL	13
	199	VGDSPAVPA	13
	207	AETQQDPEL	13
	224	TPAPKLPER	13
	227	PKLPERSVL	13
	228	KLPERSVLL	13
	229	LPERSVLLP	13
	236	LPLPTTPSS	13
	238	LPTTFSSGE	13
	261	SNSSGKEVL	13
	274	SLPPASLEL	13
	276	PPASLELSS	13
	290	SPVLTVTPG	13
	339	AGDNLIITL	13
	385	IKQGHKQTL	13
	425	KPARRVNLP	13
	429	RVNLPPVAV	13
	430	VNLPFVAVV	13
	432	LPPVAVVSP	13
	433	PPVAVVSPQ	13
	437	VVSPQLQEL	13
	445	LTLPLTSAL	13
	533	AGPNHTITL	13

B07	B0702-9mers-254P1D6B		
Each	Each pentide is a portion of		
SEC	SEQ ID NO: 3; each start		
pos	position is specified, the		
llengt	1 of peptide is 9	amino	
for ea	ach peptide is th	e start	
p	osition plus eigl	nt.	
Pos	123456789	score	
577	MQGVQTPYL	13	
620	ENNRPPVAV	13	
623	RPPVAVAGP	13	
630	GPDKELIFP	13	
665	GPSAVEMEN	13	
718	PPRARAGGR	13	
833	RKDTLVRQL	13	
907	RVDTAGCLL	13	
918	SGHGHCDPL	13	
954	WSIFYVTVL	13	
1047	ERGNPKVSM	13	
5	TGVLSSLLL	12	
6	GVLSSLLLL	12	
32	SNAVISPNL	12	
47	RVSHTFPVV	12	
109	RPAQLLDYG	12	
142	PFLGKDWGL	12	
159	DYRELEKDL	12	
180	AEYTDWGLL	12	
210	QQDPELHYL	12	
212	DPELHYLNE	12	
240	TTPSSGEVL	12	
262	NSSGKEVLM	12	
285	VTVEKSPVL	12	
287	VEKSPVLTV	12	
288	EKSPVLTVT	12	
306	TPPTSAAPS	12	
317	TPSELPISP	12	
346	TLPDNEVEL	12	
347	LPDNEVELK	12	
358	VAPAPPVET	12	
414	AFGEGFVNV	12	
427	ARRVNLPPV	12	
434	PVAVVSPQL	12	
447	LPLTSALID	12	
525	VDYPPVANA	12	
528	PPVANAGPN	12	
553	SSDDHQIVL	12	

#### PCT/US2004/001965

Ta	bleXXVII-V1-HL	.A-
_B07	02-9mers-254P1	D6B
Each	peptide is a por	tion of
SEG DOS	HD NO: 3; each	start fhe
length	n of peptide is 9	amino
acids	, and the end po	sition
for ea	osition plus eigh	e start d
Pos	123456789	score
591	QEGDYTFQL	12
624	PPVAVAGPD	12
636	IFPVESATL	12
703	STSTLTVAV	12
717	SPPRARAGG	12
722	RAGGRHVLV	12
755	IRDGQSPAA	12
770	SDHSVALQL	12
773	SVALQLTNL	12
782	VEGVYTFHL	12
812	PRKSGLVEL	12
813	RKSGLVELT	12
836	TLVRQLAVL	12
840	QLAVLLNVL	12
859	AHSDLSTV	12
881	KAAEVARNL	12
885	VARNLHMRL	12
927	TKRCICSHL	12
961	VLAFTLIVL	12
990	RKKTKYTIL	12
4	PTGVLSSLL	11
8	LSSLLLLVT	11
56	DCTAACCDL	11
61	CCDLSSCDL	11
71	WWFEGRCYL	11
82	CPHKENCEP	11
113	LLDYGDMML	11
205	VPAETQQDP	11
275	LPPASLELS	11
307	PPTSAAPSE	11
309	TSAAPSEST	11
315	ESTPSELPI	11
327	TAPRTVKEL	11
335	LTVSAGDNL	11
337	VSAGDNLII	11
353	ELKAFVAPA	11
362	PPVETTYNY	11
390	KQTLNLSQL	11

Ta B070	bleXXVII-V1-HL	A-
Each	peplide is a port	tion of
SEC	ID NO: 3; each	start
pos	ition is specified	, the
lengt	of peptide is 9	amino
for ea	ich peptide is the	e start
p	osition plus eigh	it.
Pos	123456789	score
444	ELTLPLTSA	11
527	YPPVANAGP	11
534	GPNHTITLP	11
541	LPQNSITLN	11
569	GSEGKHVVM	11
607	QQSTAVVTV	11
634	ELIFPVESA	11
637	FPVESATLD	11
685	QVGTYHFRL	11
693	LTVKDQQGL	11
699	QGLSSTSTL	11
701	LSSTSTLTV	11
720	RARAGGRHV	11
731	LPNNSITLD	11
745	DDQRIVSYL	11
798	ASDTDTATV	11
821	TLQVGVGQL	11
871	VQSRPPFKV	11
883	AEVARNLHM	11
892	RLSKEKADF	11
893	LSKEKADFL	11
894	SKEKADFLL	11
895	KEKADFLLF	11
924	DPLTKRCIC	11
953	EWSIFYVTV	11
956	IFYVTVLAF	11
988	KIRKKTKYT	11
1001	MDEQERMEL	11
1010	RPKYGIKHR	11
1018	RSTEHNSSL	11

TableXXVII-V2-HLA-B0702-9mers-254P1D6B

Eac	h peptide is a p	ortion
OT	SEQIDINO: 5; (	each
stan	position is spe	cified,
amir	engin or peptio	
nosi	ition for each pr	ntido
is th	le start position	nlus
	eight.	pius
Pos	123456789	score
7	EYADDYREL	12
1	GLEEMSEYA	6
9	ADDYRELEK	5
		]
Ta	ableXXVII-V3-H	LA-
B07	02-9mers-254P	1D6B
Eac	h peptide is a p	ortion
of	SEQ ID NO: 7; (	each
start	position is spe	cified,
the	length of peptid	e is 9
amir	no acids, and th	e end
i posi	tion for each pe	ptide
IS t	e stan position	pius [
	eigin.	
Pos	123456789	score
6	WPSPCCARK	14
8	SPCCARKQC	11
4	LGWPSPCCA	7
3	RLGWPSPCC	6
Table	XXVII-V5-HLA-	30702-
	mers-254P1D6	В
Each	peptide is a por	tion of
SEQ	ID NO: 11; eac	h start
pos	ition is specified	l, the
lengt	) of peptide is 9	amino
acids	, and the end p	sition
for ea	ion peptide is th	e start
		<u></u>
POS	123456789	score
		15
9	TFLGKDWGL	12
2	EDIRKDLTF	9
	PEDIRKDLT	7
Table	XXVIII-V1-HLA	-B08-
g	mers-254P1D6	в

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

#### PCT/US2004/001965

	Pos	123456789	score	
	248	LEKEKASQL	32	
	893	LSKEKADFL	32	
	990	RKKTKYTIL	30	
	228	KLPERSVLL	27	
	486	SPVLRLSNL	27	
	105	RPVQRPAQL	24	
	809	QPDPRKSGL	24	
	1008	ELRPKYGIK	24	
	1014	GIKHRSTEH	24	
	285	VTVEKSPVL	23	
	812	PRKSGLVEL	22	
	981	CKRQKRTKI	22	
	885	VARNLHMRL	21	
	988	KIRKKTKYT	21	
	136	DIRKDLPFL	20	
	142	PFLGKDWGL	20	
	424	VKPARRVNL	20	
	718	PPRARAGGR	20	
	133	SPEDIRKDL	19	
	159	DYRELEKDL	19	
	274	SLPPASLEL	19	
	353	ELKAFVAPA	19	
	439	SPQLQELTL	19	
	854	VQKIRAHSD	19	
	879	VLKAAEVAR	19	
	986	RTKIRKKTK	19	
	1010	RPKYGIKHR	19	
	1041	FSREKMERG	19	
l	89	EPKKMGPIR	18	
ĺ	135	EDIRKDLPF	18	
ĺ	346	TLPDNEVEL	18	
ļ	441	QLQELTLPL	18	
	821	TLQVGVGQL	18	
Ì	829	LTEQRKDTL	18	
Ĩ	900	FLLFKVLRV	18	
ľ	113	LLDYGDMML	17	
Ì	179	SAEYTDWGL	17	
Ĭ	224	TPAPKLPER	17	
ľ	226	APKLPERSV	17	
ľ	327	TAPRTVKEL	17	
ľ	384	EIKQGHKQT	17	
	394	NLSQLSVGL	17	
ľ	477	FIEEKTSVD	17	
ľ	598	QLKVTDSSR	17	
ľ	692	RLTVKDQQG	17	
عليا				

Table	TableXXVIII-V1-HLA-B08- 9mers-254P1D6B		
Eac	Each peptide is a portion		
ofs	of SEQ ID NO: 3; each		
the	enath of peptid	e is 9	
amir	no acids, and th	e end	
positi	on for each per	otide is	
i uk	eight.	Jius	
Pos	123456789	score	
730	VLPNNSITL	17	
837	LVRQLAVLL	17	
840	QLAVLLNVL	17	
849	DSDIKVQKI	17	
872	QSRPPFKVL	17	
874	RPPFKVLKA	17	
961	VLAFTLIVL	17	
968	VLTGGFTWL	17	
984	QKRTKIRKK	17	
989	IRKKTKYTI	17	
1050	NPKVSMNGS	17	
3	PPTGVLSSL	16	
88	CEPKKMGPI	16	
169	QPSGKQEPR	16	
221	SASTPAPKL	16	
230	PERSVLLPL	16	
246	EVLEKEKAS	16	
495	DPGNYSFRL	16	
540	TLPQNSITL	16	
629	AGPDKELIF	16	
836	TLVRQLAVL	16	
881	KAAEVARNL	16	
895	KEKADFLLF	16	
914	LLKCSGHGH	16	
924	DPLTKRCIC	16	
927	TKRCICSHL	16	
1025	SLMVSESEF	16	
37	SPNLETTRI	15	
425	KPARRVNLP	15	
488	VLRLSNLDP	15	
558	QIVLYEWSL	15	
676	KAIATVTGL	15	
709	VAVKKENNS	15	
728	VLVLPNNSI	15	
780	NLVEGVYTF	15	
851	DIKVQKIRA	15	

E.

TableXXVIII-V2-HLA-		
B08-9mers-254P1D6B		
Each peptide is a portion		
of SEU ID NO: 5; each		
the length of pentide is 9		
amino acids, and the end		
position for each peptide		
is the start position plus		
Post 122456780 Jacoro		
7 ETADDTREL 13		
9 ADDYRELEK 10		
1 GLEEMSEYA  9		
F		
TableXXVIII-V3-HLA-		
BU8-9mers-254P1D6B		
Each peptide is a portion		
start position is specified		
the length of peptide is 9		
amino acids, and the end		
is the start position plus		
eight.		
Pos 123456789 score		
10 CCARKQCSE 10		
8 SPCCARKOC 9		
9 PCCARKOCS 8		
3 RI GWPSPCC		
UWPSPUCARK 6		
T.L. 100000000000000000000000000000000000		
I I ableXXVIII-V5-HLA-B08-		
Each pontido is a partian -f		
SEQ ID NO: 11: each start		
position is specified, the		

ł		· · · · · · · · · · · · · · · · · · ·		
	Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the			
	lieng acic	in of peptide is 9 a	amino sition	
	for each peptide is the start			
	position plus eight.			
	Pos	123456789	score	
	3	DIRKDLTFL	20	
	9	TFLGKDWGL	20	
	2	EDIRKDLTF	18	
	4	IRKDLTFLG	11	
-				

9mers-254P1D6B	TableXXIX-V1-HLA-B1	510-
	9mers-254P1D6B	

Each peptide is a portion of				
SEQ ID NO: 3; each start				
position is specified, the				
length of peptide is 9 amino				
acids, and the end position				
	position plus eigl	ht.		
Pos	123456789	score		
272	SHSLPPASL	23		
155	EYSDDYREL	16		
346	TLPDNEVEL	16		
721	ARAGGRHVL	16		
96		15		
227	PKLPERSVL	15		
261	SNSSGKEVL	15		
385	IKQGHKQTL	15		
481	KTSVDSPVI	15		
658	YHWEHVRGP	15		
768		15		
872		15		
49	SHTEPWAR	14		
285		14		
301	FHSIPTPPT			
394		14		
437				
483	SVDSPVI RI	14		
540				
627				
636				
661	EHVPOPSAV			
910				
012 021	TLOVOVOOL	14		
021		14		
029		14		
040		14		
804	AHSULSIV	14		
881		14		
1001		14		
	SNAVISPNL	13		
	WWFEGRCYL	13		
92	KMGPIRSYL	13		
133	SPEDIRKDL	13		
160	YRELEKDLL	13		
207	AETQQDPEL	13		
221	SASTPAPKL	13		
228	KLPERSVLL	13		
240	TTPSSGEVL	13		
274	SLPPASLEL	13		
313	PSESTPSEL	13		

Each peptide is a portion SEQ ID NO: 3; each star position is specified, the length of peptide is 9 amin acids, and the end position for each postion is the oth	of t
SEQ ID NO: 3; each star position is specified, the length of peptide is 9 amin acids, and the end positio	t
position is specified, the length of peptide is 9 amin acids, and the end positio	
acids, and the end positio	
for each populdo is the sta	n n
Tor each peptice is the sta	rt
position plus eight.	
Pos 123456789 sco	re
327 TAPRTVKEL	3
424 VKPARRVNL	3
434 PVAVVSPQL	3
445 LTLPLTSAL	3
	3
553 SSDDHQIVL 1	3
569 GSEGKHVVM 1	3
573 KHVVMQGVQ 1	3
689 YHFRLTVKD 1	3
723 AGGRHVLVL 1	3
809 QPDPRKSGL 1	3
833 RKDTLVRQL 1	3
836 TLVRQLAVL 1	3
837 LVRQLAVLL 1	3
921 GHCDPLTKR 1	3
954 WSIFYVTVL 1	3
958 YVTVLAFTL 1	3
961 VLAFTLIVL 1	3
1021 EHNSSLMVS 1	3
83 PHKENCEPK 1	2
105 RPVQRPAQL 1	2
136 DIRKDLPFL 1	2
210 QQDPELHYL 1	2
215 LHYLNESAS 1	2
267 EVLMPSHSL 1	2
339 AGDNLIITL 1	2
388 GHKQTLNLS 1	2
495 DPGNYSFRL 1	2
577 MQGVQTPYLI 1	2
	2
	헤
585 LHLSAMQEG 1	4H.
585 LHLSAMQEG 1: 685 QVGTYHFRL 1:	2
585         LHLSAMQEG         11           685         QVGTYHFRL         11           730         VLPNNSITL         11	2
586         LHLSAMQEG         11           685         QVGTYHFRL         11           730         VLPNNSITL         11           771         DHSVALQLT         11	2 2 2
585         LHLSAMQEG         13           685         QVGTYHFRL         13           730         VLPNNSITL         13           771         DHSVALQLT         13           885         VARNLHMRL         13	
585         LHLSAMQEG         13           685         QVGTYHFRL         13           730         VLPNNSITL         13           771         DHSVALQLT         13           885         VARNLHMRL         13           894         SKEKADFLL         13	
585         LHLSAMQEG         11           685         QVGTYHFRL         11           730         VLPNNSITL         11           771         DHSVALQLT         11           886         VARNLHMRL         12           894         SKEKADFLL         12           898         ADFLLFKVL         12	

_			
TableXXIX-V1-HLA-B1510- 9mers-254P1D6B			
Each SEC	Each peptide is a portion of SEQ ID NO: 3; each start		
pos	position is specified, the		
acids	s, and the end p	osition	
for ea	ach peptide is th	ne start	
	tosition plus eig	ht.	
POS	123456789		
300			
	PTGVLSSL		
5			
6	GVISSILLI		
106	PVORPAOLI	11	
113			
142	PELGKDWGL	11	
159			
179	SAFYTDWGL	11	
248	LEKEKASOL		
366		11	
387	QGHKQTLNL		
390	KQTLNLSOL	11	
397	QLSVGLYVF		
439	SPQLQELTL	11	
441	QLQELTLPL	11	
511	ATNSTTAAL	11	
533	AGPNHTITL	11	
536	NHTITLPQN	11	
556	DHQIVLYEW	11	
591	QEGDYTFQL	11	
663	VRGPSAVEM	11	
676	KAIATVTGL	11	
693	LTVKDQQGL	11	
699	QGLSSTSTL	11	
726	RHVLVLPNN	11	
745	DDQRIVSYL	11	
773	SVALQLTNL	11	
782	VEGVYTFHL	11	
814	KSGLVELTL	11	
889	LHMRLSKEK	11	
893	LSKEKADFL	11	
906	LRVDTAGCL	11	
918	SGHGHCDPL	11	
927	TKRCICSHL	11	
932	CSHLWMENL	11	
956	IFYVTVLAF	11	

TableXXIX-V1-HLA-B1510-
9mers-254P1D6B
Each peptide is a portion of
SEQIDINO: 3; each start
position is specified, the
length of peptide is 9 amino
for each pentide is the start
position plus eight
P08 123450789 SCOLE
1018 RSTEHNSSL 11
1047 ERGNPKVSM 11
PableXXIX-VZ-HLA-
B1510-911015-204P1D6B
Each peptide is a portion
of SEQ ID NO: 5; each
start position is specified,
the length of peptide is 9
amino acids, and the end
is the start position plus
eight
Eight.
Pos 123455789 score
7 EYADDYREL 16
TableXXIX-V3-HLA-
B1510-9mers-254P1D6B
Each peptide is a portion
of SEQ ID NO: 7, each
the length of pentide is 9
amino acids and the end
position for each pentide
is the start position plus
eight.
Post 123456789 score
6 WPSPCCARK 5
2 TRLGWPSPC 3
4 LGWPSPCCA 3
SIGWPSPCCAR S
1 MTRLGWPSP 2
3 RLGWPSPCC 2
[]
TableXXIX-V5-HLA-B1510-
9mers-254F1D6B
Each peptide is a portion of
SEQ ID NO: 11; each start
position is specified, the
length of peptide is 9 amino
acids, and the end position
for each peptide is the start
position plus eight.

Pcs 123456789 score
9 TFLGKDWGL 12
3 DIRKDLTFL 11
2 EDIRKDLTF 8
Teble XXX V/1
HLA-B2705-
9mers-
254P1D6B
· · · · · · · · · · · · · · · · · · ·
NoResultsFound.
TableXXX-V2-B2705-
9mers-254P1D6B
Each peptide is a portion
of SEQ ID NO: 5; each
start position is specified,
amino acids and the end
position for each peptide
is the start position plus
eight.
Pos 123456789 score
9 ADDYRELEK 13
5 MSEYADDYR 11
7 EYADDYREL 11
4 EMSEYADDY 10
6 SEYADDYRE 6
TableXXX-V3-B2705-
9mers-254P1D6B
Each peptide is a portion
of SEQ ID NO: 7; each
start position is specified,
amino soids, and the end
position for each peptide
is the start position plus
eight.
Pos 123456789 score
2 TRLGWPSPC 15
5 GWPSPCCAR 14
6 WPSPCCARK 14
3 RLGWPSPCC 7
TableXXX-V5-B2705-
9mers-254P1D6B
Each peptide is a portion of
SEQ ID NO: 11; each start
position is specified, the
length of peptide is 9 amino
acius, and the end position

( <u> </u>		
for ea	ch peptide is the	start
	osition plus eigh	t.
Pos 1	23456789	score
9	TFLGKDWGL	17
2	EDIRKDLTF	16
5	RKDLTFLGK	16
3	DIRKDLTFL	15
4	IRKDLTFLG	12
[		
Γ	TableXXXI-V1-	7
	HLA-B2709-	
	9mers-	
	254P1D6B	
Ī	VoResultsFound	]
<u>L</u>		-1
Г	TableXXXI.V/2.	٦
	HLA-B2709-	
	9mers-	
	254P1D6B	
ſ		]
	VoResultsFound	
Ľ		-1
ſ		٦
	HLA-B2709-	
	9mers-	
	254P1D6B	
ſ		1
Ī	NoResultsFound	ปี
Ľ		
Γ		٦
	HLA-B2709-	
	9mers-	
	254P1D6B	
Γ		
	VoResultsFound	ี่มี
Ľ		
T	hleXXXII_\/1_U	Δ_
B27	09-9mers-254P1	D6B
Fach	peptide is a por	tion of
SEC	ID NO: 3; each	start
pos	ition is specified	, the
llengt	n of peptide is 9	amino
acids	, and the end po	sition
n n	ion peptide is the	e start if.
Pos	123456789	score
20	CRTVCNIAVI	20010
20		
012	TKNOGLVEL	22
906	LRVDTAGCL	22
96	IRSYLTFVL	21

TableXXXII-V1-HLA- B2709-9mers-254P1D6B			
Each SEQ	peptide is a port ID NO: 3; each	tion of start	
posi	tion is specified	, the	
length	of peptide is 9	amino	
for ea	ch peptide is the	e start	
р	osition plus eigh	nt	
Pos	123456789	score	
663	VRGPSAVEM	21	
721	ARAGGRHVL	21	
46	MRVSHTFPV	20	
160	YRELEKDLL	20	
_329	PRTVKELTV	20	
427	ARRVNLPPV	20	
741	SRSTDDQRI	20	
747	QRIVSYLWI	20	
989	IRKKTKYTI	20	
1047	ERGNPKVSM	19	
605	SRQQSTAVV	18	
6	GVLSSLLLL	17	
105	RPVQRPAQL	16	
428	RRVNLPPVA	16	
833	RKDTLVRQL	16	
839	RQLAVLLNV	16	
497	GNYSFRLTV	15	
725	GRHVLVLPN	15	
784	GVYTFHLRV	15	
1018	RSTEHNSSL	15	
75	GRCYLVSCP	14	
92	KMGPIRSYL	14	
180		14	
390	KOTI NI SOL		
 [101			
481			
401			
<b>4</b> 00			
500	COVTEOLICU		
083			
0/0			
087			
/42	RSTUDQRIV		
770	SDHSVALQL		
816	GLVELTLQV		
858	RAHSDLSTV	14	
881	KAAEVARNL	14	
907	RVDTAGCLL	14	
929	RCICSHLWM	14	

TableXXXII-V1-HLA- B2709-9mers-254P1D6B			
Each pentide is a portion of			
SEQ ID NO: 3; each start			
posi	tion is specified,	the	
length	of peptide is 9 a	amino	
for ea	ch peptide is the	start	
р	sition plus eight	t	
Pos	123456789	score	
985	KRTKIRKKT	14	
990	RKKTKYTIL	14	
32	SNAVISPNL	13	
47	RVSHTFPVV	13	
94	GPIRSYLTF	13	
207	AETQQDPEL	13	
227	PKLPERSVL	13	
228	KLPERSVLL	13	
335	LTVSAGDNL	13	
366	TTYNYEWNL	13	
429	RVNLPPVAV	13	
445	LTLPLTSAL	13	
489	LRLSNLDPG	13	
622	NRPPVAVAG	13	
691	FRLTVKDQQ	13	
699	QGLSSTSTL	13	
722	RAGGRHVLV	13	
723	AGGRHVLVL	13	
758	GQSPAAGDV	13	
814	KSGLVELTL	13	
891	MRLSKEKAD	13	
898	ADFLLFKVL	13	
900	FLLFKVLRV	13	
956	IFYVTVLAF	13	
5	TGVLSSLLL	12	
43	TRIMRVSHT	12	
44	RIMRVSHTF	12	
71	WWFEGRCYL	12	
111	AQLLDYGDM	12	
136	DIRKDLPFL	12	
142	PFLGKDWGL	12	
176	PRGSAEYTD	12	
221	SASTPAPKL	12	
230	PERSVLLPL	12	
248	LEKEKASQL	12	
267	EVLMPSHSL	12	
274	SLPPASLEL	12	
285	VTVEKSPVL	12	

.

-

TableXXXII-V1-HLA- B2709-9mers-254P1D6B		
Each	peptide is a port	ion of
SEQ	ID NO: 3; each	start
l posi	tion is specified, of pentide is 9 ;	amino.
acids	, and the end po	sition
for ea	ch peptide is the	e start
	122456780	L.
356	120400709	12
300		12
306		12
416	GEGEVNVTV	12
424		12
430		12
434	PVAVVSPOL	12
486	SPVI RI SNI	12
501		12
511		12
567	GPGSEGKHV	12
569	GSEGKHVVM	12
678	IATVTGLQV	12
683	GLOVGTYHF	12
693	LTVKDQQGL	12
720	RARAGGRHV	12
745	DDQRIVSYL	12
755	IRDGQSPAA	12
790	LRVTDSQGA	12
821	TLQVGVGQL	12
832	QRKDTLVRQ	12
837	LVRQLAVLL	12
838	VRQLAVLLN	12
857	IRAHSDLST	12
861	SDLSTVIVF	12
873	SRPPFKVLK	12
892	RLSKEKADF	12
895	KEKADFLLF	12
928	KRCICSHLW	12
942	QRYIWDGES	12
954	WSIFYVTVL	12
958	YVTVLAFTL	12
982	KRQKRTKIR	12
993	TKYTILDNM	12
1057	GSIRNGASF	12
3	PPTGVLSSL	11
9	SSLLLLVTI	11
21	ARKQCSEGR	11

#### PCT/US2004/001965

Ta B27	TableXXXII-V1-HLA- B2709-9mers-254P1D6B			
Foot	Each peptide is a portion of			
SEC	Each peptide is a portion of SEQ ID NO: 3; each start			
pos	ition is specified	, the		
length	of peptide is 9	amino		
acids	, and the end po och nentide is the	osition e start		
	osition plus eigh	e start nt.		
Pos	123456789	score		
56	DCTAACCDL	11		
104		11		
104		11		
100		11		
		14		
122	NRGSPSGIW			
137	IRKDLPFLG	11		
145	GKDWGLEEM	11		
155	EYSDDYREL	11		
197	SSVGDSPAV	11		
210	QQDPELHYL	11		
231	ERSVLLPLP	11		
240	TTPSSGEVL	11		
261	SNSSGKEVL	11		
287	VEKSPVLTV	11		
313	PSESTPSEL	11		
315	ESTPSELPI	11		
327	TAPRTVKEL	11		
339	AGDNLIITL	11		
346	TLPDNEVEL	11		
385	IKQGHKQTL	11		
394	NLSQLSVGL	11		
414	AFGEGFVNV	11		
422	VTVKPARRV	11		
437	VVSPQLQEI	11		
439				
440				
441	DECNIVEED	<u> </u>		
490	NOTTAND			
513				
533				
551	NUSSUDHQ	11		
558	QIVLYEWSL	11		
572	IGKHVVMQGV	11		
577	MQGVQTPYL	11		
591	QEGDYTFQL	11		
627	AVAGPDKEL	11		
636	IFPVESATL	11		

TableXXXI-V1-HLA- BZ709-9mers-254P1D6B           Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           POS         123456789         Score           1         655         IVFYHWEHV         111           655         IVFYHWEHV         111           1         685         QVGTYHFRL         111           1         773         SVALQLTNL         111           1         788         DGSDHSVAL         111           1         780         NLVEGVYTF         111           1         780         NLVEGVYTF         111           1         835         DTLVRQLAV         111           1         836         LVRQLAVL         111           1         833         AEVARNLHM         111           1         833         AEVARNLHM         111           1         833         AEVARNLHM         111           1         833         LSKEKADFL         111           1         833         LSKEKADFL         111           1         833         LSKEKADFL         111           1         960         TVLAFTLI	-	1				
f         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           e         Pos         123456789         Score           1         655         IVFYHWEHV         11           1         655         IVFYHWEHV         11           1         719         PRARAGGRH         11           1         773         SVALQLTNL         11           1         768         DGSDHSVAL         11           1         768         DGSDHSVAL         11           1         768         DGSDHSVAL         11           1         768         DGSDHSVAL         11           1         809         QPDPRKSGL         11           1         836         TLVRQLAVL         11           1         836         LSTVIVFV         11           1         836         ARNLHMRL         11           1         833         LSKEKADFL         11           1         833         LSKEKADFL         11           1         932         CSHLWMENL         11           1         932         CSHLWMENL         11 <td></td> <td></td> <td colspan="4">TableXXXII-V1-HLA- B2709-9mers-254P1D6B</td>			TableXXXII-V1-HLA- B2709-9mers-254P1D6B			
SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           POS         123456789         score           655         IVFYHWEHV         11           685         QVGTYHFRL         11           1         685         QVGTYHFRL         11           1         719         PRARAGGRH         11           1         773         SVALQLTNL         11           1         773         SVALQTNL         11           1         809         QPDPRKSGL         11           1         805         DILVRQLAVL         11           1         836         LSTVIVFYV         11           1         835         VARNLHMRL         11           1         836         ARNLHMRL         11           1         837         CSHRADFL         11           1         833         LSKEKADFL         11	of	:	Each peptide is a portion of			
Design of peptide is 9 aminol acids, and the end position for each peptide is the start position plus eight.           Pos         123456739         score           1         655         IVFYHWEHV         11           685         QVGTYHFRL         11           1         685         QVGTYHFRL         11           1         719         PRARAGGRH         11           1         773         SVALQITNL         11           1         773         SVALQITNL         11           1         780         NLVEGVYTF         11           1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         835         DTLVRQLAVL         11           1         836         TLVRQLAVL         11           1         855         QKIRAHSDL         11           1         833         AEVARNLHMRL         11           1         855         VARNLHMRL         11           1         855         VARNLHMRL         11           1         932         LSKEKADFL         11           1         933         LSKEKADFL         11           1<			SEQ   posi	ID NO: 3; each tion is specified	start	
acids, and the end position for each peptide is the start position plus eight.         Pos       123456789         acids, and the end position for each peptide is the start position plus eight.         Pos       123456789         score       655         II       655         II       655         II       655         II       655         III       719         PRARAGGRH       11         II       768         DGSDHSVAL       11         II       768         DGSDHSVAL       11         II       768         DGSDHSVAL       11         II       768         DGSDHSVAL       11         II       809         QPDPRKSGL       11         II       836         RLVRQLAVL       11         II       863         LSTVIVFYV	0		length	of peptide is 9	amino	
Image: Construct of the second period of sine start position plus eight.           Pos         123456789         score           655         IVFYHWEHV         11           1         685         QVGTYHFRL         11           1         719         PRARAGGRH         111           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         780         NLVEGVYTF         11           1         809         QPDRKSGL         11           1         809         QPDRKSGL         11           1         809         QPDRKSGL         11           1         809         QPDRKSGL         11           1         803         LSTVRQLAVL         11           1         803         LSTVRQLAVL         11           1         833         LSTVRQLAVL         11           1         833         LSTVRQLAVL         11           1         833         LSTVRQLAVL         11           1         833         LSTVRQLAVL         11           1         927 <t< td=""><td>1</td><td>- 19</td><td>acids</td><td>, and the end po</td><td>sition</td></t<>	1	- 19	acids	, and the end po	sition	
Pos         123456789         score           1         655         IVFYHWEHV         11           1         685         QVGTYHFRL         11           1         719         PRARAGGRH         11           1         768         DGSDHSVAL         11           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         809         QPDPRKSGL         11           1         805         DKLVEGVYTF         11           1         805         CKIRAHSDL         11           1         855         QKIRAHSDL         11           1         855         QKIRAHSDL         11           1         855         QKIRAHSDL         11           1         855         QKIRAHSDL         11           1         855         VARNLHMRL         11           1         855         VARNLHMRL         11           1         932         CSHLWMENL         11           1         933 </td <td></td> <td></td> <td>porea</td> <td>osition plus eigh</td> <td>e start t</td>			porea	osition plus eigh	e start t	
1         655         IVFYHWEHV         11           1         685         QVGTYHFRL         11           1         719         PRARAGGRH         11           1         768         DGSDHSVAL         11           1         768         DGSDHSVAL         11           1         773         SVALQLTNL         11           1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         835         DTLVRQLAV         11           1         836         TLVRQLAVL         11           1         836         LSTVIVFYV         11           1         833         AEVARNLHM         11           1         833         AEVARNLHMEL         11           1         833         LSKEKADFL         11           1         833         LSKEKADFL         11           1         932         LSKEKADFL         11           1         933         LSKEKADFL         11           1         933         LSKEKADFL         11           1			Pos	123456789	score	
1         685         QVGTYHFRL         11           1         719         PRARAGGRH         11           1         768         DGSDHSVAL         11           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         835         DTLVRQLAV         11           1         855         QKIRAHSDL         11           1         863         LSTVIVFYV         11           1         863         AEVARNLHM         11           1         863         AEVARNLHMEL         11           1         864         ARNLHMRLS         11           1         872         QSRPFFKVL         11           1         886         ARNLHMRLS         11           1         932         LSKEKADFL         11           1         948         GESNCEWSI         11           1	1		655	IVFYHWEHV	11	
1         719         PRARAGGRH         11           1         768         DGSDHSVAL         11           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         335         DTLVRQLAV         11           1         836         LSTVIVFYV         11           1         863         LSTVIVFYV         11           1         863         AEVARNLHM         11           1         865         VARNLHMRL         11           1         872         QSRPPFKVL         11           1         872         QSRPFKVL         11           1         872         QSRPFKVL         11           1         872         QSRPFKVL         11           1         873         AEVARNLHMRL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1	1		685	QVGTYHFRL	11	
1         768         DGSDHSVAL         11           1         773         SVALQLTNL         11           1         773         SVALQLTNL         11           1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         335         DTLVRQLAV         11           1         855         QKIRAHSDL         11           1         863         LSTVIVFYV         11           1         865         VARNLHMRL         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         927         TKRCICSHL         11           1         926         VLTGGFTWL         11           1	1		719	PRARAGGRH	11	
1         773         SVALQLTNL         11           1         730         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         835         DTLVRQLAV         11           1         836         TLVRQLAV         11           1         855         QKIRAHSDL         11           1         863         LSTVIVFYV         11           1         863         AEVARNLHM         11           1         863         AEVARNLHMRL         11           1         865         VARNLHMRLS         11           1         886         ARNLHMRLS         11           1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         948         GESNCEWSI         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         1005         ERMELRPKY         11           1         1005         IRNGASFSY         11           1 <td>1</td> <td></td> <td>768</td> <td>DGSDHSVAL</td> <td>11</td>	1		768	DGSDHSVAL	11	
1         780         NLVEGVYTF         11           1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         835         DTLVRQLAV         11           1         836         TLVRQLAVL         11           1         836         TLVRQLAVL         11           1         855         QKIRAHSDL         11           1         863         LSTVIVFYV         11           1         872         QSRPPFKVL         11           1         872         QSRPFKVL         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1	1		773	SVALQLTNL	11	
1         809         QPDPRKSGL         11           1         818         VELTLQVGV         11           1         335         DTLVRQLAV         11           1         336         TLVRQLAVL         11           1         355         QKIRAHSDL         11           1         855         QKIRAHSDL         11           1         863         LSTVIVFYV         11           1         863         AEVARNLHM         11           1         883         AEVARNLHM         11           1         885         VARNLHMRL         11           1         885         VARNLHMRL         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         9260         TVLAFTLIV         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1007         MELRPKYGI         11           1	1		780	NLVEGVYTF	11	
1         818         VELTLQVGV         11           1         335         DTLVRQLAV         11           1         336         TLVRQLAV         11           1         355         QKIRAHSDL         11           1         863         LSTVIVFYV         11           1         863         LSTVIVFYV         11           1         872         QSRPPFKVL         11           1         872         QSRPFKVL         11           1         872         QSRPFKVL         11           1         885         VARNLHMRL         11           1         885         VARNLHMRL         11           1         885         VARNLHMRLS         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1	1		809	QPDPRKSGL	11	
1         335         DTLVRQLAV         11           1         336         TLVRQLAV         11           1         355         QKIRAHSDL         11           1         363         LSTVIVFYV         11           1         363         LSTVIVFYV         11           1         363         LSTVIVFYV         11           1         863         AEVARNLHM         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         886         ARNLHMRLS         11           1         932         CSHLWMENL         11           1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1005         IRNGASFSY         11           1         1005         IRNGASFSY         11           1         1059         IRNGASFSY         11           1	1		818	VELTLQVGV	11	
1         336         TLVRQLAVL         11           1         955         QKIRAHSDL         11           1         363         LSTVIVFYV         11           1         872         QSRPPFKVL         11           1         872         QSRPPFKVL         11           1         872         QSRPFKVL         11           1         883         AEVARNLHM         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         1007         MELRPKYGI         11           1	1		835	DTLVRQLAV	11	
1         555         QKIRAHSDL         11           1         363         LSTVIVFYV         11           1         872         QSRPPFKVL         11           1         872         QSRPPFKVL         11           1         883         AEVARNLHM         11           1         885         VARNLHMRL         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         948         GESNCEWSI         11           1         948         GESNCEWSI         11           1         1007         MELRPKYGI         11           1	1		836	TLVRQLAVL	11	
1         363         LSTVIVFYV         11           1         872         QSRPPFKVL         11           1         883         AEVARNLHM         11           1         883         AEVARNLHM         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         926         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1059         IRNGASFSY         11           1	1		855	QKIRAHSDL	11	
1         872         QSRPPFKVL         11           1         883         AEVARNLHM         11           1         885         VARNLHMRL         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         926         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         10      11         <	1		863	LSTVIVFYV	11	
1         883         AEVARNLHM         11           1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         922         CSHLWMENL         11           1         948         GESNCEWSI         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         960         TVLAFTLIV         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         1045         KMERGNPKV         10           1         1059         IRNGASFSY         10           1         1059         IRNGASFSY         10           1	1		872	QSRPPFKVL	11	
1         885         VARNLHMRL         11           1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         932         CSHLWMENL         11           1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         960         TVLAFTLIV         11           1         960         TVLAFTLIV         11           1         960         TVLAFTLIV         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           1	1		883	AEVARNLHM	11	
1         886         ARNLHMRLS         11           1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         927         TKRCICSHL         11           1         922         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1005         ERMELRPKY         11           1         1005         IRNGASFSY         11           1         1059         IRNGASFSY         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         112         QLLDYGDMML         10      11	1		885	VARNLHMRL	11	
1         893         LSKEKADFL         11           1         927         TKRCICSHL         11           1         932         CSHLWMENL         11           1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         10           1         40         LETTRIM         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           1         112         QLLDYGDMML         10           1         113         LDYGDMML         10           1	1		886	ARNLHMRLS	11	
1         927         TKRCICSHL         11           1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         10           1         38         PNLETTRIM         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         112         QLLDYGDMML         10           1         113         LLDYGDMML         10      11	1		893	LSKEKADFL	11	
1         932         CSHLWMENL         11           1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1007         MELRPKYGI         11           1         1005         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           1         112         QLLDYGDMML         10           1         113         LDYGDMML         10           11         135         EDIRKDLPF         10           11         159         DYRELEKDL         10           11 <td>1</td> <td></td> <td>927</td> <td>TKRCICSHL</td> <td>11</td>	1		927	TKRCICSHL	11	
1         948         GESNCEWSI         11           1         960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         7         VLSSLLLLV         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           1         112         QLLDYGDMML         10           11         113         LLDYGDMML         10           11         135         EDIRKDLPF         10           11         159         DYRELEKDL         10           11         159         DYRELEKDL         10           11         239         PTTPSSGEV         10	1		932	CSHLWMENL	11	
960         TVLAFTLIV         11           960         TVLAFTLIV         11           1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         40         LETTRIM         10           11         40         LETTRIMRV         10           11         61         CCDLSSCDL         10           11         85         KENCEPKKM         10           11         113         LLDYGDMML         10           11         159         DYRELEKDL	1		948	GESNCEWSI	11	
1         968         VLTGGFTWL         11           1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           11         112         QLLDYGDMM         10           11         113         LLDYGDMML         10           11         135         EDIRKDLPF         10           11         159         DYRELEKDL         10           11         239         PTTPSSGEV         10	1		960	TVLAFTLIV	11	
1         1005         ERMELRPKY         11           1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         7         VLSSLLLLV         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           11         112         QLLDYGDMML         10           11         113         LLDYGDMML         10           11         1135         EDIRKDLPF         10           11         159         DYRELEKDL         10           11         159         DYRELEKDL         10           11         239         PTTPSSGEV         10	1		968	VLTGGFTWL	11	
1         1007         MELRPKYGI         11           1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         40         LETTRIM         10           1         40         LETTRIMRV         10           1         61         CCDLSSCDL         10           1         112         QLLDYGDMM         10           1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239	1		1005	ERMELRPKY	11	
1         1045         KMERGNPKV         11           1         1059         IRNGASFSY         11           1         4         PTGVLSSLL         10           1         7         VLSSLLLLV         10           1         7         VLSSLLLLV         10           1         38         PNLETTRIM         10           1         61         CCDLSSCDL         10           1         61         CCDLSSCDL         10           1         85         KENCEPKKM         10           1         112         QLLDYGDMM         10           1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         159         DYRELEKDL         10           1         239         PTTPSSGEV         10	1		1007	MELRPKYGI	11	
1       1059       IRNGASFSY       11         1       4       PTGVLSSLL       10         1       7       VLSSLLLV       10         1       7       VLSSLLLV       10         1       38       PNLETTRIM       10         1       40       LETTRIMRV       10         1       61       CCDLSSCDL       10         1       85       KENCEPKKM       10         1       112       QLLDYGDMM       10         1       113       LDYGDMML       10         1       135       EDIRKDLPF       10         1       159       DYRELEKDL       10         1       179       SAEYTDWGL       10         1       239       PTTPSSGEV       10	1		1045	KMERGNPKV	11	
1         4         PTGVLSSLL         10           1         7         VLSSLLLV         10           1         38         PNLETTRIM         10           1         40         LETTRIMRV         10           1         40         LETTRIMRV         10           1         61         CCDLSSCDL         10           1         85         KENCEPKKM         10           1         112         QLLDYGDMM         10           1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	11		1059	IRNGASFSY	11	
1         7         VLSSLLLV         10           38         PNLETTRIM         10           11         40         LETTRIMRV         10           11         61         CCDLSSCDL         10           11         85         KENCEPKKM         10           11         112         QLLDYGDMM         10           11         113         LLDYGDMML         10           11         135         EDIRKDLPF         10           11         159         DYRELEKDL         10           11         179         SAEYTDWGL         10           11         239         PTTPSSGEV         10	11		4	PTGVLSSLL	10	
1       38       PNLETTRIM       10         40       LETTRIMRV       10         1       61       CCDLSSCDL       10         1       61       CCDLSSCDL       10         1       85       KENCEPKKM       10         1       112       QLLDYGDMM       10         1       113       LLDYGDMML       10         1       135       EDIRKDLPF       10         1       159       DYRELEKDL       10         1       179       SAEYTDWGL       10         1       239       PTTPSSGEV       10	11		7	VLSSLLLLV	10	
1         40         LETTRIMRV         10           1         61         CCDLSSCDL         10           1         85         KENCEPKKM         10           1         112         QLLDYGDMM         10           1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	1		38	PNLETTRIM	10	
1         61         CCDLSSCDL         10           11         85         KENCEPKKM         10           11         112         QLLDYGDMM         10           11         113         LLDYGDMML         10           11         135         EDIRKDLPF         10           11         159         DYRELEKDL         10           11         179         SAEYTDWGL         10           11         239         PTTPSSGEV         10	1		40	LETTRIMRV	10	
1         85         KENCEPKKM         10           1         112         QLLDYGDMM         10           1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	11		61	CCDLSSCDL	10	
1         112         QLLDYGDMM         10           1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	1		85	KENCEPKKM	10	
1         113         LLDYGDMML         10           1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	11		112	QLLDYGDMM	10	
1         135         EDIRKDLPF         10           1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	11		113	LLDYGDMML	10	
1         159         DYRELEKDL         10           1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	1		135	EDIRKDLPF	10	
1         179         SAEYTDWGL         10           1         239         PTTPSSGEV         10	11		159	DYRELEKDL	10	
1 239 PTTPSSGEV 10	1		179	SAEYTDWGL	10	
	1		239	PTTPSSGEV	10	

[							
Ta B270	bleXXXII-V1-HL )9-9mers-254P1	A- D6B					
Each	nontida în a nord	ion of					
	ID NO: 3: each	etart					
nosi	SEQ ID NO: 3; each start						
lenath	length of pentide is 9 aminor						
acids	acids, and the end position						
for ea	ch peptide is the	e start					
p p	osition plus eigh	it.					
Pos	123456789	score					
272	SHSLPPASL	10					
337	VSAGDNLII	10					
344	IITLPDNEV	10					
407	VTVSSENAF	10					
458	QSTDDTEIV	10					
480	EKTSVDSPV	10					
493	NLDPGNYSF	10					
522	NNAVDYPPV	10					
540		10					
553	SSDDHOIVI	10					
582							
580							
607							
		10					
628	VAGPDKELI	10					
629	AGPDKELIF	10					
647	SSSSDDHGI	10					
730	VLPNNSITL	10					
//4	VALQLINLV	10					
777	QLTNLVEGV	10					
782	VEGVYTFHL	10					
798	ASDTDTATV	10					
829	LTEQRKDTL	10					
840	QLAVLLNVL	10					
846	NVLDSDIKV	10					
869	FYVQSRPPF	10					
877	FKVLKAAEV	10					
894	SKEKADFLL	10					
897	KADFLLFKV	10					
918	SGHGHCDPL	10					
933	SHLWMENLI	10					
961	VLAFTLIVL	10					
1001	MDEQERMEL	10					
1009	LRPKYGIKH	10					
1017	HRSTEHNSS	10					
1032	EFDSDODTI	10					
10/2	SREKMERGN						
1042	PKV/2MMC 2						
1001	1900000						
TableXXXI-V2-HLA-							
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------							
B2709-9mers-254P1D6B							
Each pentide is a portion							
of SEQ ID NO: 5; each							
start position is specified,							
the length of peptide is 9							
amino acids, and the end							
position for each peptide							
is the start position plus							
eignt.							
Pos 123456789 score							
7 EYADDYREL 11							
6 SEYADDYRE 5							
TableXXXI-V3-HLA-							
B2709-9mers-254P1D6B							
Each peptide is a portion							
of SEQ ID NO: 7; each							
start position is specified,							
the length of peptide is 9							
amino acids, and the end							
position for each peptide							
is the start position plus							
eight.							
Pos 123456789 score							
2 TRLGWPSPC 12							
3 RLGWPSPCC 5							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position provide is the start							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids. and the end position for each peptide is the start position plus eight.							
3 RLGWPSPCC 5 TableXXXI-V5-HLA-B2709- 9mers-254P1D6B Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight. Pos 1 2 3 4 5 6 7 8 9 [score]							
3 RLGWPSPCC     5       TableXXXI-V5-HLA-B2709- 9mers-254P1D6B       Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.       Pos     1 2 3 4 5 6 7 8 9 score       9     TFLGKDWGL							
3 RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9       score         9 TFLGKDWGL       12         3 DIBKDI TEI       11							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9       score         9       TFLGKDWGL       12         3       DIRKDLTFL       11							
3 RLGWPSPCC5TableXXXI-V5-HLA-B2709- 9mers-254P1D6BEach peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.Pos1 2 3 4 5 6 7 8 9 Score9 TFLGKDWGL12 3 DIRKDLTFL4 IRKDLTFLG11							
3RLGWPSPCC5TableXXXI-V5-HLA-B2709- 9mers-254P1D6BEach peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.Pos1 2 3 4 5 6 7 8 9 Score9TFLGKDWGL1230DIRKDLTFL1142EDIRKDLTF10							
3RLGWPSPCC5TableXXXI-V5-HLA-B2709- 9mers-254P1D6BEach peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids. and the end position for each peptide is the start position plus eight.Pos1 2 3 4 5 6 7 8 9 score9TFLGKDWGL1230DIRKDLTFL1142EDIRKDLTF1055RKDLTFLGK							
3RLGWPSPCC5TableXXXI-V5-HLA-B2709- 9mers-254P1D6BEach peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.Pos1 2 3 4 5 6 7 8 9 Score9TFLGKDWGL1230DIRKDLTFL1142EDIRKDLTF1055RKDLTFLGK5							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9       score         9       TFLGKDWGL       12         3       DIRKDLTFL       11         4       IRKDLTFLG       11         2       EDIRKDLTF       10         5       RKDLTFLGK       5							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0IRKDLTFL       11         2       EDIRKDLTF         10       5         RKDLTFLGK       5							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0       DIRKDLTFL         2       EDIRKDLTF         10       5         RKDLTFLGK       5							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0       TRKDLTFL         4       IRKDLTFLG         11       2         2       EDIRKDLTF         10       5         TableXXXII-V1-HLA- B4402-9mers-254P1D6B         Each peptide is a portion of							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0       RKDLTFL         2       EDIRKDLTF         10       5         7       RADLTFLGK         5       TableXXXII-V1-HLA- B4402-9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 3; each start							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0       RKDLTFL         2       EDIRKDLTF         10       5         7       RADLTFLGK         5       TableXXXII-V1-HLA- B4402-9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0       RKDLTFL         2       EDIRKDLTF         10       5         7       RABLATFLGK         5       TableXXXII-V1-HLA- B4402-9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9         Score       9         9       TFLGKDWGL         12       3         0       RKDLTFL         11       4         12       EDIRKDLTF         10       5         7       RADLTFLGK         5       TableXXXII-V1-HLA- B4402-9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is 9 amino							
3       RLGWPSPCC       5         TableXXXI-V5-HLA-B2709- 9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 9 amino acids. and the end position for each peptide is the start position plus eight.         Pos       1 2 3 4 5 6 7 8 9       score         9       TFLGKDWGL       12         3       DIRKDLTFL       11         4       IRKDLTFLG       11         2       EDIRKDLTF       10         5       RKDLTFLGK       5         TableXXXII-V1-HLA- B4402-9mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is 19 amino acids, and the end position							

Pos	123456789	score
180	AEYTDWGLL	25
895	KEKADFLLF	24
207	AETQQDPEL	23
591	QEGDYTFQL	23
-174	QEPRGSAEY	22
230	PERSVILPL	22
248	LEKEKASOL	22
364	VETTYNYEW	21
411	SENAEGEGE	21
782	VEGVYTEHI	21
937		21
330		20
909		20
0.19		20
1007		20
1007		
08		19
4/0		19
533		18
91	KKMGPIRSY	17
135	EDIRKDLPF	17
319	SELPISPTT	17
445	LTLPLTSAL	17
471	EEINGPFIE	17
554	SDDHQIVLY	17
721	ARAGGRHVL	17
723	AGGRHVLVL	17
872	QSRPPFKVL	17
92	KMGPIRSYL	16
94	GPIRSYLTF	16
133	SPEDIRKDL	16
210	QQDPELHYL	16
227	PKLPERSVL	16
274	SLPPASLEL	16
460	TDDTEIVSY	16
511		16
627		16
620		16
650		16
660		10
670		10
010		
862	DESTVIVEY	
1046	MERGNPKVS	16
40	LETTRIMRV	15
85	KENCEPKKM	15

⊤a B440	bleXXXII-V1-HL 02-9mers-254P1	.A- D6B
Each	peptide is a por	tion of
SEQ	ID NO: 3; each	start
lenath	n of peptide is 9	amino
acids	, and the end po	sition
for ea	ich peptide is the	e start
p	osition plus eign	t.
Pos	123456789	score
155	EYSDDYREL	15
219	NESASTPAP	15
221	SASTPAPKL	15
228	KLPERSVLL	15
327	TAPRTVKEL	15
349	DNEVELKAF	15
352	VELKAFVAP	15
_360	PAPPVETTY	15
373	NLISHPTDY	15
383	GEIKQGHKQ	15
390	KQTLNLSQL	15
437	VVSPQLQEL	15
443	QELTLPLTS	15
493	NLDPGNYSF	15
553	SSDDHQIVL	15
649	SSDDHGIVF	15
676	KAIATVTGL	15
730	VLPNNSITL	15
768	DGSDHSVAL	15
809	QPDPRKSGL	15
833	RKDTLVRQL	15
861	SDLSTVIVF	15
883	AEVARNLHM	15
954	WSIFYVTVL	15
987	TKIRKKTKY	15
1005	ERMEL RPKY	15
1057	GSIRNGASE	15
6	GVISSIIII	14
	SSULLVT	
	RIMRVSHTF	
62		
70		1/
197		
267		14
201	CHEIDDACI	4
212	OF CERTACE	
314	COTDOC D	14
315	ESTPSELP	
346	TLPDNEVEL	14

## PCT/US2004/001965

- ~

## WO 2004/067716

1	-			
	Та 844(	bleXXXII-V1-HL	A- D6B	
	Each	nentide is a nort	ion of	1
	SEQ	ID NO: 3; each	start	
	pos	ition is specified	the	
	length	of peptide is 9	amino	
	for ea	, and me end po	e start	· · · · · · ·
	р	osition plus eigh	t	
	Pos	123456789	score	
	_370	YEWNLISHP	14	
	424	VKPARRVNL	14	
	439	SPQLQELTL	14	
	463	TEIVSYHWE	14	
	479	EEKTSVDSP	14	
	483	SVDSPVLRL	14	
	_486	SPVLRLSNL	14	
	519	LIVNNAVDY	14	
	531	ANAGPNHTI	14	
	540	TLPQNSITL	14	
	589	AMQEGDYTF	14	
	619	PENNRPPVA	14	
	633	KELIFPVES	14	
	770	SDHSVALQL	14	
	814	KSGLVELTL	14	
	855	QKIRAHSDL	14	
	859	AHSDLSTVI	<b>1</b> 4	
	936	WMENLIQRY	14	
	938	ENLIQRYIW	14	
	956	IFYVTVLAF	14	
	965		14	
	1031	SEFDSDQDT	<u>1</u> 4	
	5	TGVLSSLLL	13	
	23	KQCSEGRTY	13	
	65	SSCDLAWWF	13	
	71	WWFEGRCYL	13	
	73	FEGRCYLVS	13	
	96	IRSYLTFVL	13	
	105	RPVQRPAQL	13	
	106	PVQRPAQLL	13	
	108	QRPAQLLDY	13	
	134	PEDIRKDLP	13	
	140	DLPFLGKDW	13	
	151	EEMSEYSDD	13	
	152	EMSEYSDDY	13	
	161	RELEKDLLQ	13	
	213	PELHYLNES	13	
	250	KEKASQLQE	13	

Та	bleXXXII-V1-HL	A-		
B44(	12-9mers-254P1	DOR		
Each	peptide is a port	tion of		
SEQ DOS	ID NO: 3; each	start		
lenath	of peptide is 9	amino		
acids	, and the end po	sition		
for ea	ich peptide is the	e start		. ,
p	osition plus eigh	t.		
Pos	123456789	score		
261	SNSSGKEVL	13		
266	KEVLMPSHS	13		
280	LELSSVTVE	13		
287	VEKSPVLTV	13		
333	KELTVSAGD	13		
394	NESOLSVGL	13		
305		13		
207		10		
397	QLSVGLTVF			
407	VIVSSENAF	13		
481	KTSVDSPVL	13		
570	SEGKHVVMQ	13		
681	VTGLQVGTY	13		
699	QGLSSTSTL	13		
713	KENNSPPRA	13		
745	DDQRIVSYL	13		
773	SVALQLTNL	13	1	
780	NLVEGVYTF	13		
818	VELTLQVGV	13		
836		13		
837		13	•	
840		12		
891		12		
907	RVD AGULL			
928	KRCIUSHLW	13		
952	CEWSIFYVI	13		
961	VLAFTLIVL	13		
967	IVLTGGFTW	13		
3	PPTGVLSSL	12		
26	SEGRTYSNA	12		
32	SNAVISPNL	12		
61	CCDLSSCDL	12		
64	LSSCDLAWW	12		
142	PELGKDWGI	12		
150		<u> </u>		
109				
160		12		
163		12		
209		12		
240	TTPSSGEVL	12		

TableXXXII-V1-HLA- B4402-9mers-254P1D6B           Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           Pos         123456789           Score         245           GEVLEKEKA         12           300         TEHSIPTPP           12         385           IKQGHKQTL         12           385         IKQGHKQTL         12           386         IKQGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           512         TNSTTAALI         12           513         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIKSGLVEL         12           830         VEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           933         SHLWMENLI<				
B4402-011013-2041         Dob           Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           POS         123456789         score           245         GEVLEKEKA         12           300         TEHSIPTPP         12           385         IKQGHKQTL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         GEGFVNVTV         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         GRKQTKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12      <	Fa B440	bleXXXII-V1-HL	A-	
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           Pos         123456789           Pos         123456789           245         GEVLEKEKA           2300         TEHSIPTPP           245         GEVLEKEKA           300         TEHSIPTPP           12         385           IKQGHKQTL         12           416         GEGFVNVTV           2416         GEGFVNVTV           2411         QLQELTLPL           12         12           441         QLQELTLPL           12         12           511         NQSSDDHQI           512         TNSTTAALI           12         636           IFPVESATL         12           636         IFPVESATL           637         QRIVSYLWI           12         12           638         VESATLDGS           12         12           830         TEQRKDTL           12         12           830         TEQRKDTLV           12         12           949         SKEKADFLL      <	0440		000	
Old ID NO. 9, odditi start           position is specified, the           length of peptide is 9 amino           acids, and the end position           for each peptide is the start           position plus eight.           Pos         123456789           245         GEVLEKEKA         12           300         TEHSIPTPP         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         QLQELTLPL         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           747         QRIVSYLWI         12           821         TLQVGVGQL         12           822         LTEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           933         SHLWMENLI         12           949	Each SEO	ID NO: 3: each	ion or	
length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.           Pos         123456789           245         GEVLEKEKA           245         GEVLEKEKA           2300         TEHSIPTPP           12         385           JMCGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         QLQELTLPL         12           512         TNSTTAALI         12           513         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           638         VAGPDKELI         12           639         VESATLDGS         12           747         QRIVSYLWI         12           821         TLQVGVGQL         12           821         TLQVGVGQL         12           830         TEQRKDTL         12           841         SKEKADFLL         12           906         LRVDTAGCL         12           918 <td>posi</td> <td>tion is specified</td> <td>the</td>	posi	tion is specified	the	
acids, and the end position for each peptide is the start position plus eight.           Pos         123456789           Score         245           GEVLEKEKA         12           300         TEHSIPTPP           12         385           IKQGHKQTL         12           387         QGHKQTLNL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           636         IFPVESATL         12           636         IFPVESATL         12           636         IFPVESATL         12           6379         QCXTPYLHL         12           638         VAGPDKELI         12           639         VESATLDGS         12           747         QRIVSYLWI         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           830         TEQRKDTL         12           830         TEQRKDTL         12      949         SKEKADFLL         12	length	of peptide is 9	amino	
for each peptide is the start position plus eight.           Pos         123456789         score           245         GEVLEKEKA         12           300         TEHSIPTPP         12           385         IKQGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         QLQELTLPL         12           441         QLQELTLPL         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         GRIVSYLWI         12           638         VAGPDKELI         12           639         VESATLDGS         12           747         QRIVSYLWI         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           822         LTEQRKDTL         12           830         TEQRKDTLV         12           849 <t< td=""><td>acids</td><td>, and the end po</td><td>sition</td></t<>	acids	, and the end po	sition	
position pills eight.           Pos         123456789         score           245         GEVLEKEKA         12           300         TEHSIPTPP         12           385         IKQGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         GLQELTLPL         12           441         QLQELTLPL         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           551         NQSSDDHQI         12           636         IFPVESATL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           820         LTEQRKDTL         12           830         TEQRKDTL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         1	for ea	ch peptide is the	e start	
POS         123436739         score           245         GEVLEKEKA         12           300         TEHSIPTPP         12           385         IKQGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         QLQELTLPL         12           441         QLQELTLPL         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           747         QRIVSYLWI         12           812         PRKSGLVEL         12           829         LTEQRKDTL         12           830         TEQRKDTLV         12           830         TEQRKDTLV         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950 <t< td=""><td>p Peel</td><td>400456790</td><td></td></t<>	p Peel	400456790		
240         GEVLENERA         12           300         TEHSIPTPP         12           385         IKQGHKQTLNL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           821         TLQVGVGQL         12           822         LTEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           958         V	POS		Score	
300         TEHSIPTPP         12           385         IKQGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           638         IFPVESATL         12           639         VESATLDGS         12           747         QRIVSYLWI         12           821         TLQVGVGQL         12           821         TLQVGVGQL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           968         VLT	245	GEVLEKEKA		
385         IKQGHKQTL         12           387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           511         NQSSDDHQI         12           579         GVQTPYLHL         12           638         VAGPDKELI         12           636         IFPVESATL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         VESATLDGS         12           747         ORIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNC	300	TEHSIPTPP	12	
387         QGHKQTLNL         12           416         GEGFVNVTV         12           441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           638         VAGPDKELI         12           636         IFPVESATL         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           829         LTEQRKDTL         12           830         TEQRKDTLV         12           830         TEQRKDTLV         12           948         SKEKADFLL         12           949         ESNCEWSIF         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           953         YVTVLAFTL         12           968         VL	385	IKQGHKQTL	12	
416         GEGFVNVTV         12           441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           628         VAGPDKELI         12           636         IFPVESATL         12           636         IFPVESATL         12           637         QRIVSYLWI         12           638         VESATLDGS         12           747         QRIVSYLWI         12           812         PRKSGLVEL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTLV         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           953         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020 <td< td=""><td>387</td><td>QGHKQTLNL</td><td>12</td></td<>	387	QGHKQTLNL	12	
441         QLQELTLPL         12           491         LSNLDPGNY         12           512         TNSTTAALI         12           551         NQSSDDHQI         12           579         GVQTPYLHL         12           628         VAGPDKELI         12           636         IFPVESATL         12           639         VESATLDGS         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           821         TLQVGVGQL         12           821         TLQVGVGQL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           953         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1002         DEQERMELR         12           1025	416	GEGFVNVTV	12	
491         LSNLDPGNY         12           512         TNSTTAALI         12           551         NQSSDDHQ         12           579         GVQTPYLHL         12           628         VAGPDKELI         12           636         IFPVESATL         12           639         VESATLDGS         12           747         QRIVSYLWI         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           821         TLQVGVGQL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1025         SLMVSESEF         12           1032 <td< td=""><td>441</td><td>QLQELTLPL</td><td>12</td></td<>	441	QLQELTLPL	12	
512         TNSTTAALI         12           551         NQSSDDHQI         12           559         GVQTPYLHL         12           628         VAGPDKELI         12           636         IFPVESATL         12           637         QRIVSYLWI         12           638         IFPVESATL         12           639         VESATLDGS         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         VVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1025	491	LSNLDPGNY	12	
551         NQSSDDHQI         12           579         GVQTPYLHL         12           628         VAGPDKELI         12           636         IFPVESATL         12           637         QRIVSYLWI         12           638         VESATLDGS         12           747         QRIVSYLWI         12           747         QRIVSYLWI         12           812         PRKSGLVEL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025 <td< td=""><td>512</td><td>TNSTTAALI</td><td>12</td></td<>	512	TNSTTAALI	12	
579         GVQTPYLHL         12           628         VAGPDKELI         12           636         IFPVESATL         12           639         VESATLDGS         12           747         QRIVSYLWI         12           747         QRIVSYLWI         12           747         QRIVSYLWI         12           741         QRIVSYLWI         12           742         PRKSGLVEL         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           953         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1025         SLMVSESEF         12           1032 <t< td=""><td>551</td><td>NQSSDDHQI</td><td>12</td></t<>	551	NQSSDDHQI	12	
628         VAGPDKELI         12           636         IFPVESATL         12           639         VESATLDGS         12           639         VESATLDGS         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1025         SLMVSESEF         12           1032         EFDSDQQ         12           1032         EFDSDQQTI         12	579	GVQTPYLHL	12	
636         IFPVESATL         12           639         VESATLDGS         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTLV         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQQTI         12	628	VAGPDKELI	12	
639         VESATLDGS         12           747         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           830         TEQRKDTL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQQTI         12	636	IFPVESATL	12	
747         QRIVSYLWI         12           778         LTNLVEGVY         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQQ         12           1032         EFDSDQQTI         12	639	VESATLDGS	12	
778         LTNLVEGVY         12           812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTLV         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQQTI         12	747	QRIVSYLWI	12	
812         PRKSGLVEL         12           821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTLV         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	778	LTNLVEGVY	12	
821         TLQVGVGQL         12           829         LTEQRKDTL         12           830         TEQRKDTL         12           894         SKEKADFLL         12           996         LRVDTAGCL         12           906         LRVDTAGCL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	812	PRKSGLVEL	12	
829         LTEQRKDTL         12           830         TEQRKDTLV         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	821	TLQVGVGQL	12	
830         TEQRKDTLV         12           894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIF         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	829	LTEQRKDTL	12	
894         SKEKADFLL         12           906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQQ         12	830	TEQRKDTLV	12	
906         LRVDTAGCL         12           918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	894	SKEKADFLL	12	
918         SGHGHCDPL         12           933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQQ         12	906	LRVDTAGCL	12	
933         SHLWMENLI         12           949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1032         EFDSDQ         12	918	SGHGHCDPL	12	
949         ESNCEWSIF         12           950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	933	SHLWMENLI	12	
950         SNCEWSIFY         12           958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	949	ESNCEWSIF	12	
958         YVTVLAFTL         12           968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	950	SNCEWSIFY	12	
968         VLTGGFTWL         12           1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	958	YVTVLAFTL	12	
1002         DEQERMELR         12           1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	968	VLTGGFTWL	12	
1004         QERMELRPK         12           1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	1002	DEQERMELR	12	
1020         TEHNSSLMV         12           1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	1004	QERMELRPK	12	
1025         SLMVSESEF         12           1029         SESEFDSDQ         12           1032         EFDSDQDTI         12	1020	TEHNSSLMV	12	
1029 SESEFDSDQ 12 1032 EFDSDQDTI 12	1025	SLMVSESEF	12	
1032 EFDSDQDTI 12	1029	SESEFDSDQ	12	
	1032	EFDSDQDTI	12	
1033 FDSDQDTIF 12	1033	FDSDQDTIF	12	
······				

TableXXXII-V2-HLA-
B4402-9mers-254P1D6B
Each peptide is a portion

#### PCT/US2004/001965

			ו ו			
Each	peptide is a por	tion of		Ta	bleXXXIIII-V1-H	
pos	ition is specified	the				ID0R
length	of peptide is 9	amino		Each	peptide is a port	tion of start
acids	, and the end po	osition		pos	ition is specified	, the
for ea	ich peptide is the	e start		lengti	of peptide is 9	amino
	122456790	n.		acids	, and the end po	sition
FUS		score		for ea	ion peptide is the	e start
204		24		Pos	123456789	score
324		23		699	OGLSSTST	17
<u> </u>	TROCTFUC	22		874	RPPEKVI KA	17
290		22			SSULLATI	
327		22		220		10
	HPIDYQGEI	22		225		10
495	DPGNYSFRL	22		275		
678	IATVTGLQV	22		339		10
774	VALQLTNLV	22		360		16
881	KAAEVARNL	22		400	VGLYVFKVI	16
628	VAGPDKELI	21		413	NAFGEGFVN	16
676	KAIATVTGL	21		430	VNLPPVAVV	16
720	RARAGGRHV	21		432	LPPVAVVSP	16
858	RAHSDLSTV	21		533	AGPNHTITL	16
897	KADFLLFKV	21		582	TPYLHLSAM	16
3	PPTGVLSSL	20		593	GDYTFQLKV	16
221	SASTPAPKL	20		637	FPVESATLD	16
567	GPGSEGKHV	20		809	QPDPRKSGL	16
722	RAGGRHVLV	20		846	NVLDSDIKV	16
811	DPRKSGLVE	20		875	PPFKVLKAA	16
226	APKLPERSV	19		900	FLLFKVLRV	16
277	PASLELSSV	19		962	LAFTLIVLT	16
439	SPQLQELTL	19		989	IRKKTKYTI	16
568	PGSEGKHVV	19		2	APPTGVLSS	15
608	QSTAVVTVL	19		5	TGVLSSLLL	15
849		19		28	GRTYSNAVI	15
970	TGGETWICL	19		121	LNRGSPSGI	15
133	SPEDIRKDI	18		129	IWGDSPEDI	15
447		18		212	DPELHYLNE	15
610				236	I PL PTTPSS	15
				306	TPPTSAAPS	15
010				317		15
123	AGGRHVLVL			258		15
768	DGSDHSVAL	18				
885	VARNLHMRL	18		401	GLIVENVIV	
924	DPLTKRCIC	18		455	PPVAVVSPQ	
27	EGRTYSNAV	17		49/	GNYSFRLTV	15
105	RPVQRPAQL	17		530	VANAGPNHT	15
179	SAEYTDWGL	17		541	LPQNSITLN	
486	SPVLRLSNL	17		626	VAVAGPDKE	15
523	NAVDYPPVA	17		687	GTYHFRLTV	15

	star	t position is spe	cified,	
	the	length of peptid	e is 9	
	amino acids, and the end			
•	position for each peptide			
	is t	he start position	plus	
*		eight.		
а. Алан 1973 г.	Pos	123456789	score	
	4	EMSEYADDY	14	
	7	EYADDYREL	14	
	3	FEMSEYADD	13	
	2		12	
	4			
	0	SETADUTRE		
	- 9	ADDYRELEK	6	
	Ta	ableXXXII-V3-H	LA-	
	B44	02-9mers-254P	1D6B	
1	Eac	h peptide is a p	ortion	
	of	SEQ ID NO: 7;	each	
	star	t position is spe	cified,	
	the	length of peptid		
	nos	ifion for each pr	e enu l	
	is t	he start position	plus	
		eight.		
	Pos	123456789	score	
	8	SPCCARKOC	5	
		LOWFSFCCA	4	
		WPSPCCARK	-4	
	7	PSPCCARKQ	4	
	2	TRLGWPSPC	3	
	5	GWPSPCCAR	3	
L	ل	·	<u> </u>	
F	Ta			
	B440	02-9mers-254P		
	Fach	pentide is a nor	tion of	
	SEQ	ID NO: 11: eacl	h start	
	pos	ition is specified	i, the	
1	ength	n of peptide is 9	amino	
	acids	, and the end p	osition	
1	for ea	ich peptide is th	e start	
	<u>р</u>	osition plus eigi	nt.	
ŀ	os	123456789	Score	
	2	EDIRKDLTF	18	
Ī	1	PEDIRKDLT	13	
l l	7	DLTELGKDW	12	
	÷	TELCKDWO		
l_	쁴	DIDUCT		
	3	DIRKDLTFL	11	
-				
ſ	Ta	bleXXXIIII-V1-H	ILA-	
	B51	01-9mers-254P	1D6B	

## PCT/US2004/001965

•· ·

# WO 2004/067716

Ta	heXXXIII-V1-H	Δ.
B510	)1-9mers-254P1	D6B
Each	peptide is a por	tion of
SEQ	ID NO: 3; each	start
200 Innel	non is specified	, ine aminoi
acids	, and the end po	sition
fòr ea	ich peptide is lhe	e start
	osition plus eigh	i.
Pos	123456789	score
701	LSSTSTLTV	15
731	LPNNSITLD	15
759	QSPAAGDVI	15
784	GVYTFHLRV	15
835	DTLVRQLAV	15
839	RQLAVLLNV	15
859	AHSDLSTVI	15
1	MAPPTGVLS	14
33	NAVISPNLE	14
69	LAWWFEGRC	14
94	GPIRSYLTF	14
99	YLTFVLRPV	14
205	VPAETQQDP	14
225	PAPKLPERS	14
287	VEKSPVLTV	14
290	SPVLTVTPG	14
337	VSAGDNLII	14
347	LPDNEVELK	14
359	APAPPVETT	14
387	QGHKQTLNL	14
415	FGEGFVNVT	14
416	GEGEVNVTV	14
426	PARRVNLPP	14
475	GPEIEEKTS	14
509		14
512		14
516		1/
527		14
524		14
031		14
007		14
624	PPVAVAGPD	14
667	SAVEMENID	14
709	VAVKKENNS	14
761	PAAGDVIDG	14
762	AAGDVIDGS	14
800	DTDTATVEV	14
841	LAVLLNVLD	14
933	SHLWMENLI	14

Tal B510	bleXXXIIII-V1-H	LA-	
Fach		000	
	peptide is a por	tion of	
	tion is specified	the	
lenğth	of peptide is 9	amino	
acids	, and the end po	osition	
forea	ich peptide is th	e start	
p p	osition plus eigh	nt.	
Pos	123456789	score	
981	CKRQKRTKI	14	
17	IAGCARKQC	13	
40	LETTRIMRV	13	
47	RVSHTFPVV	13	
88	CEPKKMGPI	13	
141	LPFLGKDWG	13	
159	DYRELEKDL	13	
175	EPRGSAFYT	13	
103	GAENSSVCD	13	
202		12	
202		40	
224	LIPAPALPER		
238	LETTESSGE	13	
270	MPSHSLPPA	13	
285	VTVEKSPVL	13	
310	SAAPSESTP	13	
312	APSESTPSE	13	
321	LPISPTTAP	13	
328	APRTVKELT	13	
336	TVSAGDNLI	13	
338	SAGDNLIIT	13	
362	PPVETTYNY	13	
396	SQLSVGLYV	13	
399		13	
417		12	
422			
425			
435	VAVVSPQLQ	13	
446	TLPLTSALI	13	
534	GPNHTITLP	13	
566	LGPGSEGKH	13	
623	RPPVAVAGP	13	
630	GPDKELIFP	13	
665	GPSAVEMEN	13	
673	NIDKAIATV	13	
728		12	
707		10	
13/			
803			
818	VELTLQVGV	L 13	

<u> </u>			
Tal B510	bleXXXIIII-V1-H 01-9mers-254P1	_A-   D6B	
Each	nontido is a port	lion of	
SEQ	ID NO: 3 each	start	
pos	ition is specified	the	
length	of peptide is 9	amino	
acids	, and the end po	sition	
ITOF 92	ion peptide is the	e start	
		ر ال	
POS	123430789	score	
910	TAGULLAUS	13	
918	SGHGHCDPL	13	
923	CDPLTKRCI	13	
954	WSIFYVTVL	13	
959	VTVLAFTLI	13	
960	TVLAFTLIV	13	
961	VLAFTLIVL	13	
1007	MELRPKYGI	13	
1010	RPKYGIKHR	13	
1050	NPKVSMNGS	13	
52	FPVVDCTAA	12	
68	TAACCDUSS	12	
82		12	
		12	
89	EPKKNGPIR	12	
116	YGDMMLNRG	12	
136	DIRKDLPFL	12	
169	QPSGKQEPR	12	
188	LPGSEGAFN	12	
240	TTPSSGEVL	12	
241	TPSSGEVLE	12	
248	LEKEKASQL	12	
279	SLELSSVTV	12	
304	IPTPPTSAA	12	
311	AAPSESTPS	12	
315	ESTREE PL	12	
220		40	
020	FRIVIELIV	12	
300	KAFVAPAPP	12	
361	APPVETTYN	12	
366	TTYNYEWNL	12	
367	TYNYEWNLI	12	
414	AFGEGFVNV	12	
451	SALIDGSQS	12	
457	SQSTDDTEI	12	
465	IVSYHWEEI	12	
510	GATNSTTAA	12	
513	NSTTAALIV	12	
528		12	
620	NACONUTIT	12	
032	NAGENHIII	12	

······································					
Ta B51	bleXXXIIII-V1-H	LA- ID6B			
Fach	nentida is a nor	tion of			
SEG	SEQ ID NO: 3: each start				
pos	position is specified, the				
lengti	n of peptide is 9	amino			
for ea	ch peptide is the	e start			
p	osition plus eigh	nt.			
Pos	123456789	score			
538	TITLPQNSI	12			
605	SRQQSTAVV	12			
655	IVFYHWEHV	12			
682	TGLQVGTYH	12			
718	PPRARAGGR	12			
741	SRSTDDQRI	12			
745	DDQRIVSYL	12			
747	QRIVSYLWI	12			
760	SPAAGDVID	12			
844	LLNVLDSDI	12			
863	LSTVIVFYV	12			
871	VQSRPPFKV	12			
893	LSKEKADFL	12			
898	ADFLLFKVL	12			
937	MENLIORYI	12			
1032	FEDSDODTI	12			
1051	PKVSMNGSL	12			
6	GVLSS				
7	VISSILLV	11			
20	CARKOCSEG	11			
56		11			
59					
95	PIRSYLTEV	11			
96					
100	RPAOLDYG	11			
125	SPSGIWGDS				
120					
150					
100					
100	HE I I DWGLL				
203	PATTOODDE				
206	PAETQQDPE				
227	PKLPERSVL				
264	SGKEVLMPS				
276	PPASLELSS	11			
280	LELSSVTVE	11			
307	PPTSAAPSE	11			
344	IITLPDNEV	11			
350	NEVELKAFV	11			

Ta B51	bleXXXIIII-V1-H	LA-	E
Each	nontido io o nor	s	
SEC	) ID NO: 3; each	start	 t
pos	ition is specified	, the	e e
llengt	1 of peptide is 9	amino	
for ea	and the end pa ach peptide is the	e start	
L F	osition plus eigh	nt.	F
Pos	123456789	score	
 385	IKQGHKQTL	11	
392	TLNLSQLSV	11	
455	DGSQSTDDT	11	
476	PFIEEKTSV	11	Γ
540	TLPQNSITL	11	E
551	NQSSDDHQI	11	HE
553	SSDDHQIVL	11	s
609	STAVVTVIV	11	t
631	PDKELIFPV	11	a
636	IFPVESATL	11	
645	DGSSSSDDH	11	
670	EMENIDKAI	11	P
717	SPPRARAGG	11	
730	VLPNNSITL	11	
739	DGSRSTDDQ	11	
757	DGQSPAAGD	11	
766	VIDGSDHSV	11	
798	ASDTDTATV	11	
814	KSGLVELTL	11	
816	GLVELTLQV	11	
830	TEQRKDTLV	11	Ľ
836	TLVRQLAVL	11	Ea S
840	QLAVLLNVL	11	
872	QSRPPFKVL	11	ler
877	FKVLKAAEV	11	for
882	AAEVARNLH	11	
901	LLFKVLRVD	11	Po
906	LRVDTAGCL	11	
951	NCEWSIFYV	11	
953	EWSIFYVTV	<u>11</u>	
958	YVTVLAFTL	11	
1013	YGIKHRSTE	11	T
1020	TEHNSSLMV	11	<u> </u>
1045	KMERGNPKV	11	Ea
1062	GASFSYCSK	11	l S
			lien

TableXXXIIII-V2-HLA	۱-
B5101-9mers-254P1D	6B

	Each peptide is a portion				
	of SEQ ID NO: 5; each				
	start position is specified,				
	the length of peptide is 9				
	ami	no acids, and th	e end		
	pos	sition for each pe	eptide		
	IS I	he start position	plus		
		eignt.			
	Pos	123456789	score		
	8	YADDYRELE	14		
	7	EYADDYREL	8		
	6	SEYADDYRE	6		
ł	L				
ſ					
	001	01-9mers-254P	ID0R		
	Eac	ch peptide is a p	ortion		
	of	SEQ ID NO: 7; e	each		
	star	t position is spe	cified,		
	the	length of peptid	e is 9		
	ami	no acids, and th	e end		
	pos	ition for each pe	ptide		
	is t	he start position	plus		
		eight.			
	Pos	123456789	score		
	4	LGWPSPCCA	11		
	6	WPSPCCARK	11		
	8	SPCCARKQC	11		
	11	CARKQCSEG	11		
	2	TRLGWPSPC	5		
	7	PSPCCARKO	5		
Į					
ſ					
	051	DIEXXXIIII-V5-H	ILA-		
		01-911ers-204P			
	Each	peptide is a por	tion of		
	SEG	10 NO: 11; eac	h start		
	pos tenet	suon is specified	i, the		
$\ $	engt ooid	ii or peptide is 9	amino		
	acids	s, anu me end po ach poptido lo ta	ostart		
$\ $	ure:	acti peptide is th	e start st		
F	<u>ا</u>	Joanon plus elgi	іі, Эг		
E	os	123456789	score		
	3	DIRKDLTFL	13		
ſ	9	TFLGKDWGL	11		
	6	KDLTFLGKD	6		
Ľ					

TableXXXIV-V1-HLA-A1-
10mers-254P1D6B
Each peptide is a portion of
SEQ ID NO: 3; each start
position is specified, the
length of peptide is 10 amino
acids, and the end position
for each peptide is the start
position plus nine.

	Pos	1234567890	score	
	459	STDDTELVSY	33	
	553	SSDDHQIVLY	33	
	743	STDDQRIVSY	33	
	649	S <u>S</u> DDHG <u>I</u> VFY	31	
	173	K <u>Q</u> EPRG <u>S</u> AEY	29	
	208	ETQQDPELHY	27	
	107	VQRPAQLLDY	26	
the second second	1019	STEHNSSLMV	.25	
	894	S <u>K</u> EKAD <u>F</u> LLF	23	
	949	ESNCEWSIFY	23	
	986	R <u>T</u> KIRK <u>K</u> TKY	23	
	156	Y <u>S</u> DDYR <u>E</u> LEK	22	
	378	PIDYQGEIKQ	22	
	160	YRELEKDLLQ	20	
	359	A <u>P</u> APPV <u>E</u> TTY	20	
	769	G <u>S</u> DHSV <u>A</u> LQL	20	
	860	H <u>S</u> DLST <u>V</u> IVF	20	
	394	NLSQLSVGLY	19	
	554	SDDHQIVLYE	19	
	72	WFEGRCYLVS	18	
	182	YTDWGLLPGS	18	
	299	STEHSIPTPP	18	
	347	LPDNEVELKA	18	
	592	EGDYTFQLKV	18	
	800	DTATVEVQ	18	
	829	LTEQRKDTLV	18	
	882	A <u>A</u> EVAR <u>N</u> LHM	18	
	907	R <u>V</u> DTAG <u>C</u> LLK	18	
	1004	QERMEL <u>R</u> PKY	18	
	286	TVEKSPVLTV	17	
[	410	SSENAFGEGF	17	
	505	VIDSDGATNS	17	
	518	ALIVNNAVDY	17	
	569	G <u>S</u> EGKH <u>V</u> VMQ	17	
[	601	V <u>T</u> DSSR <u>Q</u> QST	17	
Į.	680	T <u>V</u> TGLQ <u>V</u> GTY	17	
[	-777	QLTNLVEGVY	- 17 -	
	792	V <u>T</u> DSQG <u>A</u> SDT	17	
	861	SDLSTVIVFY	17	
	1058	SIRNGASFSY	17	
	22	RKQCSEGRTY	16	
· [	69	LAWWFEGRCY	16	
	134	PEDIRKDLPF	16	
	190	GSEGAF <u>N</u> SSV	16	
1	210	QQDPELHYLN	16	

TableXXXIV-V1-HLA 10mers-254P1D6	-A1- B			
Each peptide is a port	- ion of			
position is specified,	start the			
length of peptide is 10	amino			
for each peptide is the	start			
Pos 1234567890	Score			
229 LPERSVLLPL	16			
249 EKEKASQLQE	16			
313 PSESTPSELP	16			
442 LOELTLPLTS	16			
490 RLSNLDPGNY	16			
507 DSDGATNSTT	16			
575 VVMQGVQTPY	16			
586 HLSAMQEGDY	16			
809 OPDPRKSGLV	16			
() <u></u> ,				
TableXXXIV-V2-HLA	A1-			
10mers-254P1D6B				
SEQ ID NO: 5; each start				
length of peptide is	tne    10			
amino acids, and the	end			
the start position plus	nine.			
Pos 1234567890 s	score			
	18			
	14			
10 ADDYRELEKD	13			
2 GLEEMSEYAD	11			
3 LEEMSEYADD	10			
10mers-254P1D6E				
Each peptide is a portio	on of			
position is specified, l	tart			
length of peptide is 1	0			
position for each peptic	le is			
the start position plus r	line.			
1 MTRLGWPSPC	core 6			
6 WPSPCCARKQ				

	7	PSPCCARKOC	5
	R	SPCCARKOCS	
	L		<u>الــــــــــــــــــــــــــــــــــــ</u>
	Ta	bleXXXIV-V5-HL4	-A1-
	Ľ	10mers-254P1D6	B
	Eac	h peptide is a por	tion of
	SE	Q ID NO: 11; each	start
<* - 1	l lena	h of peptide is 10	, the amino
	acids	, and the end pos	ition for
	ea	ch peptide is the	start
	Post I	1234567904	
	105		
	<u> </u>	INDLIFLOK	9
	T		<u>1</u>
		10mers-254P1D6	B
	Eac	h peptide is a port	ion of
	SE	Q ID NO: 3; each	start
	po	sition is specified,	the
	acid	is, and the end no	arrino   sition
	for e	each peptide is the	start
	L	position plus nine	
	Pos	1234567890	score
	635	LIFPVESATL	27
	343	LIITLPDNEV	25
	345	ITLPDNEVEL	24
	700	GLSSTSTLTV	24
	39	NLETTRIMRV	23
	112	QLLDY <u>G</u> DMML	23
	326	TTAPRTVKEL	23
	338	SAGDNLIITL	23
	677	AIATVTGLQV	23
	828	QLTEQRKDTL	23
	862	DLSTVIVFYV	23
	6	GVLSSLLLLV	22
	436	AVVSP <u>Q</u> LQEL	22
	539	ITLPQ <u>N</u> SITL	22
	576	VMQGVQTPYL	22
1	729	LVLPNNSITL	22
	820	LTLQV <u>G</u> VGQL	22
	836	TLVRQ <u>L</u> AVLL	22
	961	VLAFT <u>L</u> IVLT	22
	1000	NMDEQERMEL	22
	11	LLLLVTIAGC	21
			i

## PCT/US2004/001965

Tal 1	TableXXXV-V1-A0201-				
Each	peptide is a porti	on of			
SEC	SEQ ID NO: 3; each start				
l pos llenath	ittion is specified, of peptide is 10	aminol			
acide	s, and the end po	sition			
fore	ach peptide is the	start			
Poc	1234567890	score			
429	RV/NI PP\/A\/V	21			
441		21			
722	RAGGRHVI VI	21			
835		21			
843		21			
905		21			
7	VLSSLLLLVT	20			
45		20			
120	MLNRGSPSGI	20			
128	GIWGDSPEDI	20			
247	VLEKEKASQL	20			
278	ASLELSSVTV	20			
286	TVEKSPVLTV	20			
398	LSVGLYVEKV	20			
431	NLPPVAVVSP	20			
445		20			
692	RLTVKDQQGL	20			
775	ALQLTNLVEG	20			
797	GASDTDTATV	20			
857	IRAHSDLSTV	20			
892	RLSKEKADFL	20			
960	TVLAFTLIVL	20			
988	KIRKKIKYTI	20			
217	YLNESASTPA	19			
269	LMPSHSLPPA	19			
391	QTLNLSQLSV	19			
413	NAFGEGFVNV	19			
765	DVIDG <u>S</u> DHSV	19			
773	SVALQLTNLV	19			
776	LQLTNLVEGV	19			
901	LLFKVLRVDT	19			
1054	SMNGSIRNGA	19			
2	APPTG <u>V</u> LSSL	18			
8	LSSLLLLVTI	18			
12	LLLVTIAGCA	18			
34	AVISPNLETT	18			
98	SYLTFVLRPV	18			
228	KLPERSVLLP	18			

Table>	(XXV-V1-A02) ers-254P1D6	)1-
Each nei	otide is a porti	on of
SEQ ID	NO: 3; each :	start
position	n is specified,	the 📗
length of	peptide is 10 a	amino
for each	peptide is the	start
pos	ition plus nine	
Pos 1	234567890	score
274 SL	PPASLELS	18
295 V	[PGSTEHS]	18
516 TA	ALI <u>V</u> NNAV	18
532 N/	AGPNHTITL	18
560 VL	YEW <u>S</u> LGPG	18
606 RC	QSTAVVTV	18
627 A	VAGPDKELI	18
654 GI	VFY <u>H</u> WEHV	18
672 E	NIDKAIATV	18
721 AF	AGGRHVLV	18
817 L\	/ELTLQVGV	18
870 Y	/QSRPPFKV	18
950 St	VCEWSIFYV	18
967 IV	LTGGFTWL	18
94 G	PIRSYLTEV	17
273 H		17
355 K		17
357 F		17
393		17
423 T		17
444 E		17
452 A	LIDGSQSTD	17
510 G	ATNSTTAAL	17
511 A	TNSTTAALI	17
530 V	ANAGPNHTI	17
537		17
727 H	VLVLPNNSI	17
781	VEGVYTFHL	17
811 D	PRKSGLVEL	17
816 G	LVELTLQVG	17
839 R	QLAVLLNVL	17
848	.DSDIKVQKI	17
969	TGGFTWLCI	17
10061 R	MELRPKYGI	17
92  K	MGPIRSYLT	16
167	_OPSGKOFP	16
178 G	SAEYTOWGI	16
186 G	LLPGSFGAF	16
		<u></u>

**~~**~~

Tat	oleXXXV-V1-A020 Omers-254P1D6E	)1-	
Each	peptide is a porti	on of	
SEC	ID NO: 3; each s	start	
pos	ition is specified,	the 📗	
length	of peptide is 10 a	amino	
for e	s, and the end pos	start	
	position plus nine.		
Pos	1234567890	score	
187	LLPGSEGAFN	16	
209	TQQDPELHYL	16	
229	LPERSVLLPL	16	
284	SVTVEKSPVL	16	
312	APSESTPSEL	16	
334	ELTVSAGDNL	16	
384	EIKOGHKOTL	16	
400		16	
401	GLYVEKVTVS	16	
415	FGEGEVNVTV	16	
426		16	
482		16	
518		16	
585	ALMINAVDI	16	
000		10	
020	VAVAGEDREL		
0/5		10	
799	SDIDIAIVEV	16	
838	VRQLAVLLNV	16	
856	KIRAHSDLST	16	
879	VLKAAEVARN	16	
896	EKADF <u>L</u> LFKV	16	
899	DFLLFKVLRV	16	
900	FLLFK <u>V</u> LRVD	16	
939	NLIQRYIWDG	16	
955	SIFYV <u>T</u> VLAF	16	
959	VTVLA <u>F</u> TLIV	16	
965	TLIVL <u>T</u> GGFT	16	
1019	STEHN <u>S</u> SLMV	16	ļ
5	TGVLS <u>S</u> LLLL	15	1
10	SLLLL <u>V</u> TIAG	15	l
63	DLSSCDLAWW	15	
95	PIRSYLTFVL	15	
103	VLRPVQRPAQ	15	
149	GLEEMSFYSD	15	
154	SEYSDDYRE	15	
224			]
204			
200			
1 200	I ALALAJOINOD	101	1

- 4

## PCT/US2004/001965

TableXXXV-V1-A0201-			
Fash	umers-204F 1Dor		
SEQ ID NO: 3: each start			
pos	ition is specified,	the	
length	of peptide is 10 :	amino	
for ea	ach peptide is the	start	
	position plus nine	·	
Pos	1234567890	score	
268	VLMPSHSLPP	15	
276	PPASL <u>E</u> LSSV	15	
279	SLELSSVTVE	15	
303	SIPTP <u>P</u> TSAA	15	
328	APRTVKELTV	15	
335	LTVSA <u>G</u> DNLI	15	
346	TLPDN <u>E</u> VELK	15	
358	VAPAP <u>P</u> VETT	15	
392	TLNLS <u>Q</u> LSVG	15	
459	STDDTEIVSY	15	
464	EIVSYHWEEI	15	
488	VLRLSNLDPG	15	
515	TTAALIVNNA	15	
524	AVDYP <u>P</u> VANA	15	
630	GPDKELIFPV	15	
668	AVEMENIDKA	15	
720	RARAG <u>G</u> RHVL	15	
728	VLVLPNNSIT	15	
730	VLPNN <u>S</u> ITLD	15	
735	SITLDGSRST	15	
743	STDDQRIVSY	15	
752		15	
754	WIRDGQSPAA	15	
766	VIDGSDHSVA	15	
767	IDGSDHSVAL	15	
789	HLRVTDSQGA	15	
813	RKSGLVELTL	15	
815	SGLVELTLQV	15	
829	LTEQRKDTLV	15	
859	AHSDLSTVIV	15	4.
873	SRPPFKVLKA	15	
926	LTKRCICSHL	15	
934	HLWMENLIOR	15	
936	WMENLIORYI		
952		15	
26	SEGRTYSNAV		
31	YSNAVISPNI	14	
71	WWFEGRCYLV		
u ''		n '''	

	Tal	0mers-254P1D6E	)1- 3	
	Each	peptide is a porti	on of	
х. н. — А	SEC	2 ID NO: 3; each s	start	
	pos	ition is specified,	the	
	acids	s, and the end pos	sition	
	for ea	ach peptide is the	stạrt	
		position plus nine.		
	Pos	1234567890	score	
	91	KKMGPIRSYL	14	
	104	LRPVQ <u>R</u> PAQL	14	
	135		14	
	141			
	143	FLGKDWGLEE		
	179	SAEYT <u>D</u> WGLL	14	
	190	GSEGAENSSV	14	
	266	KEVLM <u>P</u> SHSL	14	
	323		14	
	366		14	
	389	HKQILNLSQL	14	
	394	NLSQL <u>S</u> VGLY	14	
	438	VSPQLQELIL	14	
	451	SALID <u>G</u> SQST	14	
	472	EINGPHEEK	14	
	475	GPFIEEKTSV	14	
	494	LDPGNYSFRL	14	
	502	RLTVTDSDGA	14	
	519	LIVNNAVDYP		
	540	TLPQN <u>S</u> ITLN	14	
	557	HQIVLYEWSL	• 14	· · ·
	584	YLHLS <u>A</u> MQEG	14	
	604	SSRQQSTAVV	14	
	617	VQPENNRPPV	14	
	662	HVRGP <u>S</u> AVEM	14	
	684	LQVGTYHFRL	14	
	702	SSTSTLTVAV	14	
	744	TDDQRIVSYL	14	
	772	HSVALQLTNL	14	
	784	GVŸTF <u>H</u> LRVT	14	
	821	TLQVG <u>V</u> GQLT	14	
	832	QRKDTLVRQL	14	
	840	QLAVLLNVLD	14	
	842	AVLLNVLDSD	14	
	845	LNVLDSDIKV	14	
	880	LKAAEVARNL	14	-
	913	CLLKCSGHGH	14	
	962	LAFTLIVLTG	14	

_

Tal	DIEXXXV-V1-A02	)1- 2
	Uners-204P (Dol	<u> </u>
Each	peptide is a porti	on of
	ition is specified	the
llength	of peptide is 10	amino
acids	s, and the end po	sition
for ea	ach peptide is the	start
	position plus nine	<u> </u>
Pos	1234567890	score
997	ILDNM <u>D</u> EQER	14
1031	SEFDS <u>D</u> QDTI	14
	MAPPT <u>G</u> VLSS	13
13	LLVTI <u>A</u> GCAR	13
35	VISPNLETTR	13
50	HTFPVVDCTA	13
60	ACCDLSSCDL	13
78	YLVSCPHKEN	13
110		
100	SUCDSDAVDA	
198	SVGDSPAVPA	13
206	PAETQQDPEL	13
223	STPAP <u>K</u> LPER	13
225	PAPKL <u>P</u> ERSV	13
227	PKLPERSVLL	13
238	LPTTP <u>S</u> SGEV	13
260	SSNSS <u>G</u> KEVL	13
281	ELSSVTVEKS	13
285	VTVEKSPVLT	13
336		13
337		13
352		13
205		10
395		10
403	YVFKVIVSSE	13
411	SENAF <u>G</u> EGFV	13
414	AFGEGEVNVT	13
421	NVTVK <u>P</u> ARRV	13
428	RRVNL <u>P</u> PVAV	13
485	DSPVLRLSNL	13
521	VNNAVDYPPV	13
547	TLNGNOSSDD	13
566		12
622		10
033	FUEDVERA	13
634	ELIFPVESAT	13
679	ATVTGLQVGT	13
705	STLTVAVKKE	13
778	LTNLV <u>E</u> GVYT	13
808	VQPDPRKSGL	13
844	LLNVLDSDIK	13

## PCT/US2004/001965

<b>-T</b>		04	
10mers-254P1D6B			
Fach poptide is a portion of			
SEC	SEQ ID NO 3: each start		
pos	sition is specified,	the	
lengt	n of peptide is 10	amino	
acide	s, and the end po	sition	
tor e	ach peptide is the	start	
	position plus nine		
Pos	1234567890	score	
847	VLDSDIKVQK	13	
884	EVARNLHMRL	13	
893	LSKEKADFLL	13	
897	KADFLLFKVL	13	
906	LRVDTAGCLL	13	
944	YIWDGESNCE	13	
956		13	
057		13	
050			
900			
1025	SLMVSESEFD	13	
1044	EKMER <u>G</u> NPKV	13	
Ta	ableXXXV-V2-HL	A-	
A02	201-10mers-254P	16B	
E an	1 2 12 4 1		
I Eau	ch peptide is a poi	rtion	
of	sh peptide is a poi SEQ ID NO: 5; ea	ach	
of	ch peptide is a point SEQ ID NO: 5; ea t position is speci	ftion fied,	
of star the l	The peptide is a point SEQ ID NO: 5; each t position is speci- length of peptide no acids, and the	rtion ach fied, is 10 end	
of star the l ami	The peptide is a point SEQ ID NO: 5; eact t position is speci- length of peptide no acids, and the tion for each pept	rtion ach fied, is 10 end ide is	
of star the l ami posit	th peptide is a point SEQ ID NO: 5; exit t position is speci- length of peptide no acids, and the tion for each pept start position plus	rtion ach fied, is 10 end ide is nine.	
of star the l ami posit the s	th peptide is a point SEQ ID NO: 5; exists of the position is speci- length of peptide no acids, and the tion for each pept start position plus 1234567890	rtion ach fied, is 10 end ide is nine. score	
of star the l ami posit the s Pos	th peptide is a point SEQ ID NO: 5; exists of the position is speci- length of peptide no acids, and the tion for each pept start position plus	rtion ach fied, is 10 end ide is nine. score	
of star the l ami posit the s Pos	th peptide is a poi SEQ ID NO: 5; et t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL	rtion ach fied, is 10 end ide is nine. Score	
of star the l ami posit the s Pos	ch peptide is a poi SEQ ID NO: 5; et t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD	rtion ach fied, is 10 end ide is nine. score 15 14	
of star the l ami posit the s Pos	th peptide is a point SEQ ID NO: 5; exit t position is speci- length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK	rtion ach fied, is 10 end ide is nine. score 15 14 10	
of star the I ami posit the s Pos 7 2 9	th peptide is a point SEQ ID NO: 5; exists t position is speci- length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYA	rtion fied, fied, is 10 end ide is nine. Score 15 14 10 8	
of star the l ami posit the s Pos 7 2 9 1 5	th peptide is a point SEQ ID NO: 5; exists t position is speci- length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYA EMSEYADDYR	rtion ach fied, is 10 end ide is nine. score 15 14 10 8 7	
of star the l ami posit the s Pos 7 2 9 1 5 10	h peptide is a poi SEQ ID NO: 5; ec t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYRELEK WGLEEMSEYA EMSEYADDYRELEKD	rtion ach fied, is 10 end ide is nine. Score 15 14 10 8 7	
of star the l ami posit the s Pos 7 2 9 1 5 10	h peptide is a poi SEQ ID NO: 5; ed t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEKD ADDYRELEKD	rtion ach fied, is 10 end ide is nine. score 15 14 10 8 7	
of star the l ami positi the s Pos 7 2 9 1 5 10	th peptide is a point SEQ ID NO: 5; exist t position is speci- length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYA EMSEYADDYR ADDYRELEKD	rtion ach fied, is 10 end ide is nine. score 15 14 10 8 7 7 7	
Pos Pos 10 10 10 10	th peptide is a poi SEQ ID NO: 5; ec t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD EMSEYADDYR ADDYRELEKD CADDYRELEKD	rtion ach fied, is 10 end ide is nine. score 15 14 10 8 7 7 7 7	
Pos Pos Pos T 1 1 5 10 10	h peptide is a por SEQ ID NO: 5; et t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD ADDYRELEKD ADDYRELEKD ableXXXV-V3-HL 201-10mers-254F	rtion ach fied, is 10 end ide is nine. score 15 14 10 8 7 7 7 7	
Pos Pos Pos T 1 5 10 10 10 5 5 10 10 5 5 10 10 10 5 5 10 10	h peptide is a por SEQ ID NO: 5; ex t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEKD YADDYRELEKD WGLEEMSEYA EMSEYADDYR ADDYRELEKD ableXXXV-V3-HL 201-10mers-254F n peptide is a port Q ID NO: 7; each	rtion ach fied, is 10 end ide is nine. Score 15 14 10 8 7 7 7 7 216B ion of start	
Pos position Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos	th peptide is a por SEQ ID NO: 5; ec t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA MGLEEMSEYA	rtion ach fied, is 10 end ide is nine. score 15 14 10 8 7 7 7 7 7 7	
of star the l ami posit the s Pos 7 2 9 1 2 9 1 10	h peptide is a por SEQ ID NO: 5; ec t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD YADDYRELEKD WGLEEMSEYA EMSEYADDYR ADDYRELEKD ableXXXV-V3-HL 201-10mers-254F n peptide is a por Q ID NO: 7; each sition is specified ngth of peptide is	A- A- A- A- A- A- A- A- A- A-	
of star the l ami posit the s Pos 7 2 9 1 2 9 1 5 10	h peptide is a por SEQ ID NO: 5; ec t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD YADDYRELEKD WGLEEMSEYA EMSEYADDYR ADDYRELEKD ableXXXV-V3-HL 201-10mers-254F n peptide is a port Q ID NO: 7; each sition is specified ing for each cach	Achine is 10 end ide is nine. score 15 14 10 8 77 7 14 10 8 77 7 14 10 77 14 10 10 14 10 10 14 10 14 10 14 10 14 14 14 14 14 14 14 14 14 14 14 14 14	
r call of star the l ami posit Pos 7 2 9 1 2 9 1 2 9 1 1 5 10	ch peptide is a poi SEQ ID NO: 5; ec t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD SEYADDYRELEK WGLEEMSEYAD YADDYRELEKD WGLEEMSEYA EMSEYADDYR ADDYRELEKD COLONCY, each sition is specified ngth of peptide is ino acids, and the tion for each pep	Ach fied, is 10 end ide is nine: score 15 14 10 8 7 7 7 A- 216B ion of start , the 10 e end ide is , nine:	
of star the l ami posit the s Pos 7 2 9 1 2 9 1 2 9 1 10 5 10 5 10 5 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	h peptide is a poi SEQ ID NO: 5; et t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD ADDYRELEKD ADDYRELEKD ADDYRELEKD ADDYRELEKD ableXXXV-V3-HL 201-10mers-254F n peptide is a port Q ID NO: 7; each sition is specified ino acids, and the tion for each pep start position plus	A- A- A- A- A- A- A- A- A- A-	
of star the l ami positi the s Pos 7 2 9 1 2 9 1 2 9 1 1 0 5 10 10 10 10 10 10 10 10 10 10 10 10 10	h peptide is a poi SEQ ID NO: 5; ee t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD ADDYRELEKD CADDYRELEKD CADDYRELEKD CADDYRELEKD CADDYRELEKD CADDYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD CADOYRELEKD	A- A- A- A- A- A- A- A- A- A-	
of star the l ami positites Pos 7 2 9 1 5 10 10 Eact SEC pos 10 Eact SEC pos 10 10 Eact SEC Pos 3	h peptide is a por SEQ ID NO: 5; et t position is speci length of peptide no acids, and the tion for each pept start position plus 1234567890 SEYADDYREL GLEEMSEYAD YADDYRELEK WGLEEMSEYAD WGLEEMSEYA EMSEYADDYR ADDYRELEKD ableXXXV-V3-HL 201-10mers-254F n peptide is a por Q ID NO: 7; each sition is specified ngth of peptide is ino acids, and the tion for each pep start position plus 1234567890 RLGWPSPCCA	A- A- A- A- A- A- A- A- A- A-	

.

ſ	TableXXXV-V5-HLA-A0201-				
F	Tomers-204P 16B				
	SE	Q	ID NO: 11: each	start	
	p	DS	ition is specified,	the	
	leng	th	of peptide is 10 a	amino	
	acias	s, : ac	and the end posit	ion for tart	
		ںد ا	position plus nine.		
	Pos	1	234567890	score	
	9		LTFLG <u>K</u> DWGL	18	
L	3		EDIRKDLTFL	13	
r					
	Tab	le)	XXXVI-V1-HLA-A	0203-	
			Differs-204P 1D6	5	
	SE	UII EG	D NO: 3: each	start	
	p	os	ition is specified,	the	
	leng	jth d	of peptide is 10	amino	
	for	08	s, and the end po: ach peptide is the	start	
		1	position plus nine	Juit	
	Pos	;	1234567890	score	
	5	1	TEPVVDCTAA	19	
	30	3	SIPTPPTSAA	19	
	50	9	D <u>G</u> ATNS <u>T</u> TAA	19	
	75	4	WIRDGQSPAA	19	
	87	4	R <u>P</u> PFKV <u>L</u> KAA	19	
	35	2	V <u>E</u> LKAF <u>V</u> APA	18	
	52	4	A <u>V</u> DYPP <u>V</u> ANA	18	
	62	0	E <u>N</u> NRPP <u>V</u> AVA	18	
	67	0	E <u>M</u> ENID <u>K</u> AIA	18	
	.71	4	E <u>N</u> NSPP <u>R</u> ARA	18	
	5	2	F <u>P</u> VVDC <u>T</u> AAC	17	
	30	4	I <u>P</u> TPPT <u>S</u> AAP	17	
	51	0	GATNST <u>T</u> AAL	17	
	75	5	I <u>R</u> DGQS <u>P</u> AAG	17	
	87	5	PPFKVLKAAE	17	
		9	S <u>S</u> LLLL <u>V</u> TIA	10	
	1	2	LLLVTIAGCA	10	
	2	5	CSEGRTYSNA	10	
	5	0	H <u>T</u> FPVV <u>D</u> CTA	10	
	6	1	CCDLSSCDLA	10	
	10	2	F <u>V</u> LRPV <u>Q</u> RPA	10	
	17	1	S <u>G</u> KQEP <u>R</u> GSA	10	
	18	5	W <u>G</u> LLPG <u>S</u> EGA	10	
	19	5	F <u>N</u> SSVG <u>D</u> SPA	10	
	19	8	S <u>V</u> GDSP <u>A</u> VPA	10	
	21	3	PELHYLNESA	10	
	21	7	YLNESASTPA	10	

TableXXXVI-V1-HLA-A0203-			
	Umers-254P1D6	<u> </u>	
Each	peptide is a porti	on of	
	Dosifion is specified the		
length	of peptide is 10	amino	
acide	s, and the end pos	sition	
tor ea	ach peptide is the	start	
POS	1234367890	score	
244	SGEVLEKERA	10	
269	LWPSHSLPPA	10	
302	H <u>SIPTPP</u> TSA	10	
319	<u>SELPISPTTA</u>	10	
330	RTVKELTVSA	10	
347	LPDNEVELKA	10	
350	N <u>E</u> VELK <u>A</u> FVA	10	
405	FKVTVSSENA	10	
418	<u>GFVNVTV</u> KPA	10	
427	ARRVNLPPVA	10	
443	QELTLPLTSA	10	
502		10	
508	SDGATNSTTA	10	
515		10	
522		10	
520			
602			
618			
622			
650			
660			
701			
712			
750			
753			
766	VIDGSD <u>H</u> SVA		
789	HLRVTDSQGA	10	
795	SQGASDIDTA	10	
833	RKDTLVRQLA	10	
850	SDIKVQKIRA	10	
873	S <u>R</u> PPFK <u>V</u> LKA	10	
877	FKVLKAAEVA	10	
889	L <u>H</u> MRLS <u>K</u> EKA	10	
902	L <u>F</u> KVLR <u>V</u> DTA	10	
954	WSIFYVTVLA	10	
1054	SMNGSIRNGA	10	
10	SLLLLVTIAG	9	
13		9	
26	SEGRTYSNAV	0	
		L	

.

Table 1	XXXVI-V1-HLA-A 0mers-254P1D6	0203- B	
Each	pentide is a norti	opiof	
SEC	2 ID NO: 3; each	start	
pos	sition is specified,	the	
lengti	of peptide is 10	amino	
for e	s, and the end po- ach pentide is the	sition	
	position plus nine	, 51011	
Pos	1234567890	score	
62	CDLSSCDLAW	9	
103	VLRPVQRPAQ	9	
172	<u>GK</u> QEPR <u>G</u> SAE	9	
186	GLLPGSEGAF	9	1
196	NSSVGDSPAV	9	
199	VGDSPAVPAE	9	
214	ELHYLNESAS	9	
218	LNESASTPAP	9	
245			
270			
320			
321		°	
3/18			
251			
250			
303			
400	KVIVSSENAF	9	
419	F <u>V</u> NVIV <u>K</u> PAR	9	
428	RRVNLPEVAV	9	
444	ELTLPLTSAL	9	
503	L <u>T</u> VTDS <u>D</u> GAT	9	
516	T <u>A</u> ALIV <u>N</u> NAV	9	-
523	NAVDYP <u>P</u> VAN	9	
525	VDYPPVANAG	9	
581	QTPYLHLSAM	9	
603	D <u>S</u> SRQQ <u>S</u> TAV	9	
619	P <u>E</u> NNRP <u>P</u> VAV	9	
621	N <u>N</u> RPPV <u>A</u> VAG	9	
634	ELIFPVESAT	9	
660	WEHVRGPSAV	9	
669	VEMENIDKAI	9	
671	MENIDKAIAT	9	
702	SSTSTLTVAV	9	
713	KENNSPPRAR	9	
715	NNSPPRARAG	9	
767			
790		0	
706			
00		9	
034	LVRQLAV	9	

	TableXXXVI-V1-HLA-A0203-	
	10mers-254P1D6B	
	Each peptide is a portion of	
	SEQ ID NO: 3; each start	
	position is specified, the	
	acids, and the end position	
ĺ	for each peptide is the start	
	position plus nine.	
	Pos 1234567890 score	
	890 HMRLSKERAD 9	
	955 <u>SIFYVTVLAF</u> 9	
	1055 MNGSIRNGAS 9	
,		
	TableXXXVI-V2-HLA-	
	A0203-10mers-254P1D6B	
	Each peptide is a portion of	
	SEQ ID NO: 5; each start	
	position is specified, the	
	amino acids and the end	
	position for each peptide is	
	the start position plus nine.	
	Pos 1234567890 score	
	1 WGLEEMSEYA 10	
	A0203-10more-254P1D6B	
	SEC ID NO: 7: each start	
	position is specified, the	
	length of peptide is 10	
	amino acids, and the end	
	position for each peptide is	
	Pos 123456/890 score	
	3 RLGWPSPCCA 10	
	4 LGWPSPCCAR 9	
	5 GWPSPCCARK 8	
	TableXXXVI-V5-HLA-	
	A0203-10mers-	
	254P1D6B	
	Pos 1234567890 score	
	No Results Found	

Tabl	eXXXVII-V1-HLA	-43-
1	Omers-254P1D6	B
Each	peptide is a port	ion of
SEQ ID NO: 3; each start		
pos	sition is specified,	the
acida	s, and the end po	sition
for e	ach peptide is the	start
	position plus nine	
Pos	1234567890	score
518	AL <u>IVNNA</u> VDY	29
847	VL <u>D</u> SD <u>IK</u> VQK	27
907	RVDTAGCLLK	27
397	QL <u>S</u> VG <u>LY</u> VFK	26
14	LV <u>T</u> IA <u>GC</u> ARK	24
452	ALIDG <u>SQ</u> STD	24
777	QL <u>T</u> NL <u>VE</u> GVY	24
878	KV <u>L</u> KA <u>AE</u> VAR	24
47	RVSHTFPVVD	23
490	RLSNLDPGNY	23
680	TV <u>T</u> GL <u>QV</u> GTY	23
791	RVTDSQGASD	23
1008	ELRPKYGIKH	23
429	RVNLPPVAVV	22
662	HVRGPSAVEM	22
872		22
186		21
346		21
504		21
677		21
856		21
904		21
1058		21
24		21
25		20
00		20
200		20
292		
472	EINGPFIEEK	
493	INL <u>D</u> PG <u>NY</u> SFR	20
655	IVFYHWEHVR	20
694	TVKDQQGLSS	20
805	TVEVQPDPRK	20
825	GVGQL <u>TE</u> QRK	20
836	TL <u>V</u> RQ <u>LA</u> VLL	20
844	LL <u>N</u> VL <u>DS</u> DIK	20
886	AR <u>N</u> LH <u>MR</u> LSK	20
888	NL <u>H</u> MR <u>LS</u> KEK	20
76	RCYLVSCPHK	19

TableXXXVII-V1-HLA-A3- 10mers-254P1D6B			
Each peptide is a portion of			
SEC	QID NO: 3; each	start `	
po: Ienati	n of peptide is 10	tne aminoi	
acid	s, and the end po	sition	
for e	ach peptide is the	start	
Pos	1234567890	Iscore	
108		10	
247	VI EKEKASOL	10	
357		10	
401		10	
423		19	
431			
565	SLGPGSFGKH	19	
586	HLSAMOFODY	19	
687	GTYHFRI TVK	19	
729		19	
865		19	
895	KEKADFLLFK	19	
913	CLLKCSGHGH	19	
13	LLVTIAGCAR	18	
103	VLRPVQRPAQ	18	
166	DLLQPSGKQE	18	
187	LLPGSEGAFN	18	
246	EVLEKEKASQ	18	
359	AP <u>A</u> PP <u>VE</u> TTY	18	
392	TLNLSQLSVG	18	
406	KV <u>T</u> VS <u>SE</u> NAF	18	
487	PVLRLSNLDP	18	
600	KV <u>T</u> DS <u>SR</u> QQS	18	
635	LI <u>F</u> PV <u>ES</u> ATL	18	
703	ST <u>S</u> TL <u>TV</u> AVK	18	
704	TSTLTVAVKK	18	
775	ALQLT <u>NL</u> VEG	18	
784	GVYTFHLRVT	18	
819	EL <u>T</u> LQ <u>VG</u> VGQ	18	
842	AVLLNVLDSD	18	
853	KVQKI <u>RA</u> HSD	18	
919	GHGHCDPLTK	18	
960	TVLAF <u>TL</u> IVL	18	
983	RQ <u>K</u> RT <u>KI</u> RKK	18	
988	KI <u>R</u> KK <u>TK</u> YTI	18	
1043	RE <u>K</u> ME <u>RG</u> NPK	18	
7	VL <u>S</u> SL <u>LL</u> LVT	17	
22	RKOCSEGRTY	17	

Tab 1	TableXXXVII-V1-HLA-A3- 10mers-254P1D6B		
Each SEC	Each peptide is a portion of SEQ ID NO: 3; each start		
lengtr acids	position is specified, the length of peptide is 10 amino acids, and the end position		
for e	ach peptide is the position plus nine	start :	
Pos	1234567890	score	
53	PV <u>V</u> DC <u>TA</u> ACC	17	
112	QLLDYGDMML	17	
120	MLNRG <u>SP</u> SGI	17	
137	IR <u>K</u> DL <u>PF</u> LGK	17	
228	KL <u>P</u> ER <u>SV</u> LLP	17	
279	SL <u>E</u> LS <u>SV</u> TVE	17	
286	TV <u>E</u> KS <u>PV</u> LTV	17	
324	SP <u>T</u> TA <u>PR</u> TVK	17	
353	ELKAF <u>VA</u> PAP	17	
394	NL <u>S</u> QL <u>SV</u> GLY	17	
446	TLPLT <u>SA</u> LID	17	
559	IVLYE <u>WS</u> LGP	17	
575	VV <u>M</u> QG <u>VQ</u> TPY	17	
614	TVIVQPENNR	17	
634	ELIFPVESAT	17	
700	GLSSTSTLTV	17	
710	AV <u>K</u> KE <u>NN</u> SPP	17	
766	VIDGSDHSVA	17	
828	QL <u>T</u> EQ <u>RK</u> DTL	17	
840	QLAVLLNVLD	17	
846	NVLDS <u>DI</u> KVQ	17	
892	RLSKEKADFL	17	
905	VL <u>R</u> VD <u>TA</u> GCL	17	
934	HL <u>W</u> ME <u>NL</u> IQR	17	
955	SI <u>F</u> YV <u>TV</u> LAF	17	
965	TL <u>IVLTG</u> GFT	17	
985	KR <u>T</u> KI <u>RK</u> KTK	17	
997	ILDNMDEQER	17	
11	LLLLVTIAGC	16	
12	LLLVTIAGCA	16	
44	RIMRV <u>SH</u> TFP	16	
106	PVQRPAQLLD	16	
143	FL <u>G</u> KD <u>WG</u> LEE	16	
219	NE <u>S</u> ASTPAPK	16	
234	VLLPLPTTPS	16	
268	VLMPSHSLPP	16	
280	LELSSVTVEK	16	
291	PVLTVTPGST	16	

Tab	leXXXVII-V1-HLA 10mers-254P1D6	-A3- B
Each	peptide is a port	ion of
SEC	QIDNO: 3; each	start
pos	sition is specified,	the
llengt	n of peptide is 10	amino
fore	s, and the end po ach peptide is the	sition
	position plus nine	h.
Pos	1234567890	score
331	TVKELTVSAG	16
351	EVELKAFVAP	16
399	SVGLYVFKVT	16
430	VNLPPVAVVS	16
524	AVDYPPVANA	16
560		16
598		16
627		10
672		
0/3		10
752	YLWIRDGQSP	10
/65	DVIDG <u>SD</u> HSV	16
780	NL <u>V</u> EG <u>VY</u> TFH	16
807	EVQPDPRKSG	16
837	LV <u>R</u> QL <u>AV</u> LLN	16
843	VLLNVLDSDI	16
879	VL <u>K</u> AA <u>EV</u> ARN	16
900	FL <u>L</u> FK <u>VL</u> RVD	16
925	PL <u>T</u> KR <u>CI</u> CSH	16
966	LI <u>V</u> LT <u>GG</u> FTW	16
967	IVLTGGFTWL	16
976	LCICCCKRQK	16
1007	MELRPKYGIK	16
6	GVLSSLLLLV	15
10	SLLLLVTIAG	15
16	TIAGCARKQC	15
95	PIRSYLTEVL	15
99		15
102		15
107		15
164	FKDI UPSCK	15
172		1.
204		10
204		(1) (1)
200		
257	ULUSSNSSGK	15
267	EVLMPSHSLP	15
284	SV <u>T</u> VE <u>KS</u> PVL	15
336	TV <u>S</u> AG <u>DN</u> LII	15
342	NL <u>I</u> IT <u>LP</u> DNE	15

Tab	eXXXVII-V1-HLA	-A3-
	Inters-204F TDO	
Each SEC	D NO: 3' each	start
pos	sition is specified,	the
length	of peptide is 10	amino
acide	s, and the end po	sition
lor e	ach peptide is the	start
Pos	1234567890	score
344	IITLPDNEVE	15
403	YVFKVTVSSE	15
416	GEGFVNVTVK	15
419	FVNVTVKPAR	15
444	ELTLPLTSAL	15
547	TLNGNQSSDD	15
616	IVQPENNRPP	15
624		15
642		15
816	GLVELTI OVG	15
817	LVELTLOVGV	15
884		15
901		15
961		15
41	ETTRIMRVSH	14
63	DLSSCDLAWW	14
156	YSDDYRELEK	14
214	ELHYLNESAS	14
274	SLPPASLELS	14
278	ASLELSSVTV	14
322		14
377	HPTDYQGEIK	14
459	STDDTEIVSY	14
488	VLRLSNLDPG	14
502	RLTVTDSDGA	14
558	QIVLYEWSLG	14
564	WSLGPGSFGK	14
574	HVVMOGVOTP	14
621	NNRPPVAVAG	14
683	GLQVGTYHFR	14
692		14
720	RARAGGRHVI	14
727	HVLVLPNNSI	14
728	VLVLPNNSIT	14
743	STDDORIVSY	14
830		14
851	DIKVQKIRAH	14
979	CCCKROKRTK	14
ليتنبق		L L

TableXXXVII-V1-HLA-A3- 10mers-254P1D6B
Each peptide is a portion of SEQ ID NO: 3: each start
position is specified, the
acids, and the end position
for each peptide is the start
Pos 1234567890 score
996 TILDNMDEQE 14
TableXXXVII-V2-HLA-A3- 10mers-254P1D6B
Each peptide is a portion
of SEQ ID NO: 5; each
the length of peptide is 10
amino acids, and the end
the start position plus nine.
Pos 1234567890 score
9 YADDY <u>RELEK 14</u>
4 FEMSEYADDY 9
7 SEYADDYREL 7
TableXXXVII-V3-HLA-A3- 10mers-254P1D6B
Each peptide is a portion of
position is specified, the
length of peptide is 10
position for each peptide is
the start position plus nine.
Pos 1234567890 score
5 GWPSPCCAR 13
1 MTRLGWPSPC 8
4 LGWPSPCCAR 8
10 CCARKQCSEG 7
10mers-254P1D6B
Each peptide is a portion of
position is specified, the
length of peptide is 10 amino
each peptide is the start
position plus nine.
Pos 1234567890 score

TableXXXVII-V5-HLA-A3- 10mers-254P1D6B         Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos[ 1 2 3 4 5 6 7 8 9 0] Score         2       PEDIRKDLTF         4       DIEKDLTFLG         11       8         7       KDLTFLGKDWG         8       DLTFLGKDWG         11       7         KDLTFLGKDW       8         TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1234567890         208       ETQQDPELHY         208       ETQQDPELHY         208       ETQUPELHY         208       ETQUPELHY         208       ETQUPELHY         680       TVTGLQVGTY         835       DTLVRQLAVL         84       EVARNLHMRL         8365       ETTYNYEWNL         743       STDDQRIVSY         25       765         765       DVIDGSDHSV         24       960         955       SIFYVTVLAF					
Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos[ 1 2 3 4 5 6 7 8 9 0] Score         2       PEDIRKDLTF         24       DIEKDLTFLG         11       B         7       KDLTFLGKDWG         8       DLTFLGKDWG         11       7         7       KDLTFLGKDW         8       DLTFLGKDWG         11       7         8       DLTFLGKDWG         11       7         8       DLTFLGKDW         8       BLTFLGKDW         8       DLTFLGKDW         8       DLTFLGKDW         8       Sach start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1234567890       score         208       ETQQDPELHY       29         680       TVTGLQVGTY       28         835       DTLVRQLAVL       28         884       EVARNLHMRL       28         365       ETTYNYEWNL       27         135       EDIRKDLPFL       26         459       STDDTEIVSY       25	Т	abl 1	eXXXVII-V5-HLA	-A3-	
Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Pos 1 2 3 4 5 6 7 8 9 0 Score 2 PEDIRKDLTF 12 4 DIEKDLTFLG 11 8 DLTFLGKDWG 11 7 KDLTFLGKDW 8 TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is 10 amino acids, and the end position for each peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Pos 1234567890 score 208 ETQQDPELHY 29 680 TVTGLQVGTY 28 835 DTLVRQLAVL 28 884 EVARNLHMRL 28 365 ETTYNYEWNL 27 436 AVVSPQLQEL 27 135 EDIRKDLPFL 26 459 STDDTEIVSY 25 765 DVIDGSDHSV 24 960 TVLAFTLIVL 24 246 EVLEKEKASQ 23 384 EIKQGHKQTL 23 384 EIKQGHKQTL 23 326 TTAPRTVKEL 22 807 EVQPDPRKSG 22 820 LTLQVGVGQL 22 953 EWSIFYVTVL 22 151 EEMSEYSDDY 21 267 EVLMPSHSLP 21 351 EVELKAFVAP 21 444 ELTLPLTSAL 21 485 DSPVLRLSNL 21 729 LVLPNNSITL 21 949 ESNCEWSIFY 21		Each postide is a postion of			
DEC ID NO: Thy catch start         position is specified, the         length of peptide is 10 amino         acids, and the end position for         each peptide is the start         position plus nine.         Pos         12 3 4 5 6 7 8 9 0         Score         2         PEDIRKDLTF         11         8         DLTFLGKDWG         11         7         KDLTFLGKDWG         11         7         Actor position is specified, the         length of peptide is 10 amino         acids, and the end position         for each peptide is the start         position plus nine.         Pos         1234567890         Score         208         ETQQDPELHY         680         TVTGLQVGTY         835         DTLVRQLAVL <td>La c</td> <td colspan="3">SEQ ID NO: 11: each start</td>	La c	SEQ ID NO: 11: each start			
Jength of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1 2 3 4 5 6 7 8 9 0         Score       2         PEDIRKDLTF       12         4       DIRKDLTFLG         11       8         DLTFLGKDWG       11         7       KDLTFLGKDW         8       DLTFLGKDW         8       DLTFLGKDWG         11       7         KDLTFLGKDW       8         TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1234567890         208       ETQQDPELHY         680       TVTGLQVGTY         835       DTLVRQLAVL         835       DTLVRQLAVL         836       ETTYNYEWNL         27       436         446       EVARNLHMRL         836       ETTYNYEWNL         27       35         765       DVIDGSDHSV         240       TVLAFTLIVL         246       EVEKKASQ         955       SIFYVTVLAF         326       TAPRTV		position is specified, the			
acids, and the end position for each peptide is the start position plus nine.         Pos       1 2 3 4 5 6 7 8 9 0         Score       2         PEDIRKDLTF       12         4       DIFKDLTFLG         11       7         KDLTFLGKDWG       11         7       KDLTFLGKDWG         8       DLTFLGKDWG         11       7         KDLTFLGKDW       8         TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1234567890         208       ETQQDPELHY         680       TVTGLQVGTY         835       DTLVRQLAVL         835       DTLVRQLAVL         8365       ETTYNYEWNL         27       436         436       AVVSPQLQEL         135       EDIRKDLPFL         26       743         743       STDDQRIVSY         25       765         765       DVIDGSDHSV         24       960         955       SIFYVTVLAF         326       TTAPRTVKEL <t< td=""><td>len</td><td colspan="3">length of peptide is 10 amino</td></t<>	len	length of peptide is 10 amino			
each peptide is the start position plus nine.           Pos         1 2 3 4 5 6 7 8 9 0           Score         2           PEDIRKDLTF         12           4         DIEKDLTFLG         11           8         DLTFLGKDWG         11           7         KDLTFLGKDWG         11           7         KDLTFLGKDW         8           TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB         8           Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.           Pos         1234567890         Score           208         ETQQDPELHY         29           680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           835         DTLVRQLAVL         28           84         EVARNLHMRL         28           365         ETTYNYEWNL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           326	acid	acids, and the end position for			
position plus nine.           Pos         1 2 3 4 5 6 7 8 9 0 score           2         PEDIRKDLTF         12           4         DIRKDLTFLG         11           8         DLTFLGKDWG         11           7         KDLTFLGKDW         8           TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB         8           Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.           Pos         1234567890         score           208         ETQQDPELHY         29           680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           835         DTLVRQLAVL         28           836         ETTYNYEWNL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQSHKQTL         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22 <t< td=""><td></td><td colspan="3">each peptide is the start</td></t<>		each peptide is the start			
PEDRKDLTF         12           2         PEDRKDLTF         12           4         DIRKDLTFLG         11           7         KDLTFLGKDWG         11           7         KDLTFLGKDWG         11           7         KDLTFLGKDWG         11           7         KDLTFLGKDWG         11           7         KDLTFLGKDW         8           TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB         Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.           Pos         1234567890         score           208         ETQQDPELHY         29           680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           836         ETTYNYEWNL         27           135         EDIRKDLPFL         26           459	Por	ן הון	234567800	Iscore	
Image: Project in the second			PEDIRKDLTF	12	
8       DLTFLGKDWG       11         7       KDLTFLGKDW       8         TableXXXVIII-V1-HLA-A26- 10mers-254P1DCB       Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1234567890       score         208       ETQQDPELHY       29         680       TVTGLQVGTY       28         835       DTLVRQLAVL       28         836       EVARNLHMRL       28         365       ETTYNYEWNL       27         436       AVVSPQLQEL       27         135       EDIRKDLPFL       26         459       STDDTEIVSY       25         765       DVIDGSDHSV       24         960       TVLAFTLIVL       24         246       EVLEKEKASQ       23         384       EIKQSHKQTL       23         326       TAPRTVKEL       22         807       EVQPDPRKSG       22         820 <t< td=""><td></td><td></td><td></td><td>11</td></t<>				11	
7       KDLTFLGKDW       8         TableXXXVIII-V1-HLA-A26-10mers-254P1D6B       Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.         Pos       1234567890       Score         208       ETQQDPELHY       29         680       TVTGLQVGTY       28         835       DTLVRQLAVL       28         84       EVARNLHMRL       28         365       ETTYNYEWNL       27         436       AVVSPQLQEL       27         135       EDIRKDLPFL       26         459       STDDTEIVSY       25         765       DVIDGSDHSV       24         960       TVLAFTLIVL       24         246       EVLEKEKASQ       23         384       EIKQGHKQTL       23         326       TTAPRTVKEL       22         807       EVQPDPRKSG       22         820       LTLQVGVGQL       22         953       EWSIFYVTVL       22         151       EEMSEYSDDY       21         244       ELTLPLTSAL       21         444       ELTLPLSAL       21         444 <t< td=""><td></td><td></td><td>DLTFLGKDWG</td><td>11</td></t<>			DLTFLGKDWG	11	
Table XXXVIII-V1-HLA-A26-10mers-254P1DCBEach peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.Pos1234567890Score208208ETQQDPELHY29680TVTGLQVGTY28835DTLVRQLAVL2884208ETTYNYEWINL27436AVVSPQLQEL27135EDIRKDLPFL266459STDDTEIVSY25765DVIDGSDHSV249607VLAFTLIVL24246EVLEKEKASQ23384EIKQ3HKQTL23326TTAPRTVKEL22807EVQPDPRKSG22807EVQPDPRKSG22953EWSIFYVTVL22151EEMSEYSDDY21244ELTLPLTSAL21444ELTLPLTSAL21949ESNCEWSIFY21			KDLTFLGKDW	8	
TableXXXVIII-V1-HLA-A26- 10mers-254P1D6BEach peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.Pos1234567890Score208208ETQQDPELHY29680TVTGLQVGTY28835DTLVRQLAVL28835DTLVRQLAVL28836ETTYNYEWNL27135EDIRKDLPFL264595765DVIDGSDHSV24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL24960TVLAFTLIVL25765DVIDGSDHSV26820LTLQVGVGQL22953EWSIFYVTVL22151EEMSEYSDDY21444ELTLPLTSAL21445DSPVLRLSNL21949ESNCEWSIFY21				<u> </u>	
10mers-254P1DGBEach peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.Pos1234567890 Score208ETQQDPELHY 29680TVTGLQVGTY 28835DTLVRQLAVL 28835DTLVRQLAVL 28835ETTYNYEWNL 27436AVVSPQLQEL 27135EDIRKDLPFL 26459STDDTEIVSY 25765DVIDGSDHSV 24960TVLAFTLIVL 24246EVLEKEKASQ 23384EIKQSHKQTL 23326TTAPRTVKEL 22807EVQPDPRKSG 22807EVQPDPRKSG 21267EVLMPSHSLP 21351EVELKAFVAP 21444ELTLPLTSAL 21499ESNCEWSIFY 21	Ta	ble	eXXXVIII-V1-HLA	-A26-	
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Pos 1234567890 score 208 ETQQDPELHY 29 680 TVTGLQVGTY 28 835 DTLVRQLAVL 28 884 EVARNLHMRL 28 365 ETTYNYEWNL 27 436 AVVSPQLQEL 27 135 EDIRKDLPFL 26 459 STDDTEIVSY 25 743 STDDQRIVSY 25 765 DVIDGSDHSV 24 960 TVLAFTLIVL 24 246 EVLEKEKASQ 23 384 EIKQGHKQTL 23 955 SIFYVTVLAF 23 326 TTAPRTVKEL 22 807 EVQPDPRKSG 22 820 LTLQVGVGQL 22 953 EWSIFYVTVL 22 151 EEMSEYSDDY 21 267 EVLMPSHSLP 21 351 EVELKAFVAP 21 444 ELTLPLTSAL 21 485 DSPVLRLSNL 21 729 LVLPNNSITL 21 949 ESNCEWSIFY 21	L	1	0mers-254P1D6	В	
SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Pos 1234567890 score 208 ETQQDPELHY 29 680 TVTGLQVGTY 28 835 DTLVRQLAVL 28 835 DTLVRQLAVL 28 884 EVARNLHMRL 28 365 ETTYNYEWNL 27 436 AVVSPQLQEL 27 135 EDIRKDLPFL 26 459 STDDTEIVSY 25 743 STDDQRIVSY 25 765 DVIDGSDHSV 24 960 TVLAFTLIVL 24 246 EVLEKEKASQ 23 384 EIKQ3HKQTL 23 955 SIFYVTVLAF 23 326 TTAPRTVKEL 22 807 EVQPDPRKSG 22 820 LTLQVGVGQL 22 953 EWSIFYVTVL 22 151 EEMSEYSDDY 21 267 EVLMPSHSLP 21 351 EVELKAFVAP 21 444 ELTLPLTSAL 21 485 DSPVLRLSNL 21 729 LVLPNNSITL 21 949 ESNCEWSIFY 21	E	ach	peptide is a port	ion of	
position is specified, thelength of peptide is 10 aminoacids, and the end positionfor each peptide is the startposition plus nine.Pos1234567890Score208ETQQDPELHY299680TVTGLQVGTY28835DTLVRQLAVL28884EVARNLHMRL28365ETTYNYEWNL271436AVVSPQLQEL271135EDIRKDLPFL266459STDDTEIVSY255743STDDQRIVSY255765DVIDGSDHSV24960TVLAFTLIVL246EVLEKEKASQ233384EIKQGHKQTL23326TTAPRTVKEL22807EVQPDPRKSG22953EWSIFYVTVL22151EEMSEYSDDY21267EVLMPSHSLP211351EVELKAFVAP21444ELTLPLTSAL211249ESNCEWSIFY21		SE(	QID NO: 3; each	start	
acids, and the end position for each peptide is the start position plus nine.           Pos         1234567890           208         ETQQDPELHY           209         ETQQDPELHY           208         ETQQDPELHY           208         ETQQDPELHY           208         ETQQDPELHY           208         ETQQDPELHY           208         ETQQDPELHY           209         680           TVTGLQVGTY         28           835         DTLVRQLAVL           884         EVARNLHMRL           884         EVARNLHMRL           365         ETTYNYEWNL           271         135           436         AVVSPQLQEL           135         EDIRKDLPFL           26         459           765         DVIDGSDHSV           24         960           7VLAFTLIVL         24           266         EVLEKEKASQ           384         EIKQ3HKQTL           326         TTAPRTVKEL           22         807           820         LTLQVGVGQL           22         953           820         LTLQVGVGQL           220         EVELKAFVAP <t< td=""><td>ler</td><td>909 Inth</td><td>n of peptide is 10</td><td>amino</td></t<>	ler	909 Inth	n of peptide is 10	amino	
for each peptide is the start position plus nine.           Pos         1234567890           Score         208           208         ETQQDPELHY           209         ETQQDPELHY           835         DTLVRQLAVL           835         DTLVRQLAVL           835         DTLVRQLAVL           365         ETTYNYEWNL           27         436           436         AVVSPQLQEL           135         EDIRKDLPFL           26         459           743         STDDQRIVSY           25         765           765         DVIDGSDHSV           246         EVLEKEKASQ           384         EIKQSHKQTL           326         TTAPRTVKEL           22         807           820         LTLQVGVGQL           953         EWSIFYVTVL           22         953           235         EVELKAFVAP           24         247           958         EWSIFYVTVL           220         LTLQVGVGQL           221         51           235         EVSIFYVTVL           24         247           953         EWSIFYVTVL <td>a</td> <td>oids</td> <td>s, and the end po</td> <td>sition</td>	a	oids	s, and the end po	sition	
position plus nine.           Pos         1234567890         score           208         ETQQDPELHY         29           680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           835         DTLVRQLAVL         28           835         DTLVRQLAVL         28           84         EVARNLHMRL         28           365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           820         LTLQVGVGQL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFV	fo	r e	ach peptide is the	start	
Pos         1234567890         score           208         ETQQDPELHY         29           680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           835         DTLVRQLAVL         28           864         EVARNLHMRL         28           365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           820         LTLQVGVGQL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21			position plus nine		
208         ETQQDPELHY         29           680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           884         EVARNLHMRL         28           365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           444         ELTLPLSNL         21	P	s	1234567890	score	
680         TVTGLQVGTY         28           835         DTLVRQLAVL         28           835         DTLVRQLAVL         28           884         EVARNLHMRL         28           365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	2	08	ETQQDPELHY	29	
835         DTLVRQLAVL         28           884         EVARNLHMRL         28           365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           355         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	6	80	TVTGLQVGTY	28	
884         EVARNLHMRL         28           365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	8	35	DTLVRQLAVL	28	
365         ETTYNYEWNL         27           436         AVVSPQLQEL         27           135         EDIRKDLPFL         26           459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           444         ELTLPLSNL         21           949         ESNCEWSIFY         21	8	84	EVARNLHMRL	28	
436       AVVSPQLQEL       27         135       EDIRKDLPFL       26         459       STDDTEIVSY       25         743       STDDQRIVSY       25         765       DVIDGSDHSV       24         960       TVLAFTLIVL       24         246       EVLEKEKASQ       23         384       EIKQ3HKQTL       23         955       SIFYVTVLAF       23         326       TTAPRTVKEL       22         807       EVQPDPRKSG       22         953       EWSIFYVTVL       22         151       EEMSEYSDDY       21         251       EVLEKAFVAP       21         444       ELTLPLTSAL       21         444       ELTLPLTSAL       21         485       DSPVLRLSNL       21         949       ESNCEWSIFY       21	3	65	ETTYNYEWNL	27	
135         EDIRKDLPFL         26           459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQSHKQTL         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	4	36	AVVSPQLQEL	27	
459         STDDTEIVSY         25           743         STDDQRIVSY         25           765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           444         ELTLPLTSAL         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	1	35	EDIRKDLPFL	26	
743       STDDQRIVSY       25         765       DVIDGSDHSV       24         960       TVLAFTLIVL       24         246       EVLEKEKASQ       23         384       EIKQGHKQTL       23         955       SIFYVTVLAF       23         326       TTAPRTVKEL       22         807       EVQPDPRKSG       22         953       EWSIFYVTVL       22         151       EEMSEYSDDY       21         267       EVLMPSHSLP       21         344       ELTLPLTSAL       21         444       ELTLPLTSAL       21         485       DSPVLRLSNL       21         949       ESNCEWSIFY       21	• 4	59	STDDTEIVSY	25	
765         DVIDGSDHSV         24           960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	7	43	STDDQRIVSY	25	
960         TVLAFTLIVL         24           246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	7	65	DVIDGSDHSV	24	
246         EVLEKEKASQ         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	9	60	TVLAFTLIVI	24	
384         EIKQGHKQTL         23           384         EIKQGHKQTL         23           955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           807         EVQPDPRKSG         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	2	46	EVLEKEKASO	23	
955         SIFYVTVLAF         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           820         LTLQVGVGQL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	2	84	FIKOGHKOTI	23	
326         TTAPRTVKEL         23           326         TTAPRTVKEL         22           807         EVQPDPRKSG         22           820         LTLQVGVGQL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21		55		23	
320         FLACKLYREL         22           807         EVQPDPRKSG         22           820         LTLQVGVGQL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           949         ESNCEWSIFY         21	2	26		23	
307         EVALUPERISG         22           820         LTLQVGVGQL         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21		40 07			
320[11:QVGVGQL]         22           953         EWSIFYVTVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	٥ ٥	20		22	
303         EWSIFYVIVL         22           151         EEMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21		20 5 1			
151         EMSEYSDDY         21           267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	9	03			
267         EVLMPSHSLP         21           351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21		51	ELMSEYSDDY	21	
351         EVELKAFVAP         21           444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21		67	EVLMPSHSLP		
444         ELTLPLTSAL         21           485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21		51	EVELKAFVAP		
485         DSPVLRLSNL         21           729         LVLPNNSITL         21           949         ESNCEWSIFY         21	4	44	ELTLPLTSAL		
729LVLPNNSITL21949ESNCEWSIFY21	4	85	DSPVLRLSNL	21	
949 ESNCEWSIFY 21	7	29	LVLPNNSITL	21	
	9	49	ESNCEWSIFY	21	

## PCT/US2004/001965

۰.

Table	XXXVIII-V1-HLA 10mers-254P1D6	-A26- B
Each peptide is a portion of		
SE(	UD NO: 3; each silion is specified	start
lengt	n of peptide is 10	amino
acid	s, and the end po	sition
	position plus nine	SIGN
Pos	1234567890	score
1038	DTIFSREKME	21
34	AVISPNLETT	20
41	ETTRIMRVSH	20
220	ESASTPAPKL	20
284	SVTVEKSPVL	20
334	ELTVSAGDNL	20
403	YVFKVTVSSE	20
406	KVTVSSENAF	20
423	TVKPARRVNL	20
480	EKTSVDSPVL	20
575	VVMQGVQTPY	20
672	ENIDKAIATV	20
675	DKAIATVTGL	20
800	DTDTATVEVQ	20
802	DTATVEVQPD	20
811	DPRKSGLVEL	20
865	TVIVFYVQSR	20
909	DTAGCLLKCS	20
147	DWGLEEMSEY	19
239	PTTPSSGEVL	19
331	TVKELTVSAG	19
464	EIVSYHWEEI	19
482	TSVDSPVLRL	19
539	ITLPQNSITL	19
574	HVVMQGVQTP	19
986	RTKIRKKTKY	19
1032	EFDSDQDTIF	19
5	TGVLSSLLLL	18
132	DSPEDIRKDL	18
159	DYRELEKDLL	18
472	EINGPFIEEK	18
611	AVVTVIVQPE	18
635	LIFPVESATL	18
781	LVEGVYTFHL	18
967	IVLTGGFTWL	18
4	PTGVLSSLLL	17
181	EYTDWGLLPG	17
286	TVEKSPVLTV	17

Table	eXXXVIII-V1-HLA 10mers-254P1D6	-A26- B	
Each	peptide is a port	- ion of	
SEQ ID NO: 3; each start			
position is specified, the			
length of peptide is 10 amino acids, and the end position			
for each peptide is the start			
	position plus nine		
Pos	1234567890	score	
345	ITLPDNEVEL	17	
851	DIKVQKIRAH	17	
926	LTKRCICSHL	17	
964	FTLIVLTGGF	17	
6	GVLSSLLLLV	16	
107	VQRPAQLLDY	16	
158	DDYRELEKDL	16	
281	ELSSVTVEKS	16	
315	ESTPSELPIS	16	
338	SAGDNLIITL	16	
462	DTEIVSYHWE	16	
483	SVDSPVI BLS	16	
553	SSDDHOIVLY	16	
595		16	
634		16	
640		16	
772		16	
786		16	
861		10	
808		10	
030			
1047			
1047			
0001		16	
29	RITSNAVISP	15	
53		15	
74	EGRCYLVSCP	15	
90	PKKMGPIRSY	15	
348	PDNEVELKAF	15	
394	NLSQLSVGLY	15	
417	EGFVNVTVKP	15	
471	EEINGPFIEE	15	
504	TVTDSDGATN	15	
614	TVIVQPENNR	15	
638	PVESATLDGS	15	
668	AVEMENIDKA	15	
694	TVKDQQGLSS	15	
783	EGVYTFHLRV	15	
837	LVRQLAVLLN	15	

. •

Table	TableXXXVIII-V1-HLA-A26-			
10mers-254P1D6B				
Each	peptide is a port	ion of		
	allo NO: 3; each	the		
lengti	n of peptide is 10	amino		
acida	s, and the end po	sition		
for e	ach peptide is the	start		
Pos	123/567890	Iscoro		
842		15		
846		15		
2	APPTGVI SSL			
42	TTRIMEVSHT			
43	TRIMRVSHTE			
50				
162	ELEKDULOPS	14		
209		14		
285	VTVEKSPVLT	14		
389	HKOTI NI SOL			
396	SOLSVGLYVE			
420				
503				
514				
518				
524		14		
579	GVOTPYLHIS	14		
581	QTPYLHLSAM	14		
609	STAVVTVIVQ	14		
620	ENNRPPVAVA	14		
655	IVFYHWEHVR	14		
661	EHVRGPSAVE	14		
705	STLTVAVKKE	14		
744	TDDQRIVSYL	14		
749	IVSYLWIRDG	14		
779	TNLVEGVYTE	14		
784	GVYTFHLRVT			
791	RVTDSQGASD	14		
804	ATVEVOPDPR	14		
823	QVGVGOLTEO			
831	EQRKDTLVRO	14		
832		14		
864	STVIVEYVOS	14		
867	IVFYVQSRPP			
906				
1003	FOERMELREN			
1008				
1000		14		

....

## PCT/US2004/001965

___

_____

## WO 2004/067716

TableXXXVIII-V2-HL	A-
Each peptide is a portion	
SEQ ID NO: 5; each s	tart
length of peptide is f	
amino acids, and the	end
the start position plus r	ine.
Pos 1234567890 s	core
4 EEMSEYADDY	21
5 EMSEYADDYR	12
8 EYADDYRELE	11
	A26
10mers-254P1D6E	3
Each peptide is a portio	on of
SEQ ID NO: 7; each s	tart
length of peptide is	10
amino acids, and the i	end Ne is i
the start position plus r	nine.
Pos 1234567890 s	core
1 MTRLGWPSPC	9
TableXXXV/III-V5-HLA-	A26-
10mers-254P1D6E	
Each peptide is a portio	on of
position is specified, t	ihe
length of peptide is 10 a	imino
each peptide is the sl	art
position plus nine.	
Pos 1234567890	score
	26
	20
TableXXXIX-V1-HLA-B	0702-
10mers-254P1D6E	
Each peptide is a portion SEQ ID NO: 3: each s	on of l

SEC	JID NO: 3; each	start			
pos	sition is specified,	the			
length of peptide is 10 amino					
acids	s, and the end po	sition			
for each peptide is the start					
position plus nine.					
Pos	Pos 1234567890 score				

811	DPRKSGLVEL	25
226	APKLPERSVL	24
312	APSESTPSEL	24
229	LPERSVLLPL	23

Table	TableXXXIX-V1-HLA-B0702- 10mers-254P1D6B			
Each	Each postida is a partian of			
SEQ ID NO: 3: each start				
DOS	sition is specified.	the		
length of peptide is 10 amino				
acids, and the end position				
for each peptide is the start				
	position plus nine			
Pos	1234567890	score		
2	APPTGVLSSL	22		
3	PPTGVLSSLL	22		
328	APRTVKELTV	22		
433	PPVAVVSPQL	22		
105	RPVQRPAQLL	21		
141	LPFLGKDWGL	20		
317	TPSELPISPT	19		
347	LPDNEVELKA	19		
630	GPDKELIFPV	19		
665	GPSAVEMENI	19		
94		18		
495		18		
567	GPGSEGKHW	18		
618		18		
722		10		
000		10		
009		18		
		10		
37	SPINLET IR INI	11		
2/0	PPASLELSSV			
4/5	GPFIEEKISV			
813	RKSGLVELTL	17		
238	LPTIPSSGEV	10		
/20	KARAGGRHVL	16		
953	EWSIFYVTVL	16		
1050	NPKVSMNGSI	16		
91	KKMGPIRSYL	15		
169	QPSGKQEPRG	15		
175	EPRGSAEYTD	15		
241	TPSSGEVLEK	15		
359	APAPPVETTY	15		
386	KQGHKQTLNL	15		
425	KPARRVNLPP	15		
767	IDGSDHSVAL	15		
892	RLSKEKADFL	15		
95	PIRSYLTFVL	14		
125	SPSGIWGDSP	14		
270	MPSHSLPPAS	14		
304	IPTPPTSAAP	14		

Table	TableXXXIX-V1-HLA-B0702-			
10mers-254P1D6B				
Eacr	Each peptide is a portion of SEQ ID NO: 3: each start			
	sition is specified.	the		
lengtl	length of peptide is 10 amino			
acid	s, and the end po	sition		
for e	ach peptide is the	start		
	1024567800			
PUS	1234007690	score		
345		14		
423	IVKPARRVNL	14		
440	PQLQELTLPL	14		
534	GPNHTITLPQ	14		
576	VMQGVQTPYL	14		
871	VQSRPPFKVL	14		
897	KADFLLFKVL	14		
4	PTGVLSSLLL	13		
52	FPVVDCTAAC	13		
70	AWWFEGRCYL	13		
135	EDIRKDLPFL	13		
220	ESASTPAPKL	13		
227	PKLPERSVLL	13		
273	HSLPPASLEL	13		
275	LPPASLELSS	13		
321	LPISPTTAPR	13		
324	SPTTAPRTVK	13		
326	TTAPRTVKEL	13		
361	APPVETTYNY	13		
444	ELTLPLTSAL	13		
480	EKTSVDSPVL	13		
482	TSVDSPVLRL	13		
510	GATNSTTAAL	13		
532	NAGPNHTITL	13		
541	LPQNSITLNG	13		
552	QSSDDHQIVL	13		
590	MQEGDYTFQL	13		
637	FPVESATLDG	13		
675	DKAIATVTGL	13		
718	PPRARAGGRH	13		
721	ARAGGRHVLV	13		
731	LPNNSITLDG	13		
760	SPAAGDVIDG	13		
769	GSDHSVALQL	13		
781	LVEGVYTFHL	13		
839	RQLAVLLNVL	13		
859	AHSDLSTVIV	13		
875	PPFKVLKAAE	13		

	Table 1	XXXIX-V1-HLA-B 0mers-254P1D6	0702- 3	
	Each	peptide is a porti	on of	
	SEC	QID NO: 3; each :	start	
	lengt	of peptide is 10	amino	
	acids	s, and the end pos	sition	
	for e	ach peptide is the position plus nine	start	
	Pos	1234567890	score	
	931	ICSHLWMENL	13	
	967	IVLTGGFTWL	13	
	989	IRKKTKYTIL	13	
	5	TGVLSSLLLL	12	
	31	YSNAVISPNL	12	
	60	ACCDLSSCDL	12	
	82	CPHKENCEPK	12	
	89	EPKKMGPIRS	12	
	109	RPAQLLDYGD	12	
	159	DYRELEKDLL	12	
	202	SPAVPAETQQ	12	
	205	VPAETQQDPE	12	
	224	TPAPKLPERS	12	
	231	ERSVLLPLPT	12	
	239	PTTPSSGEVL	12	
	284	SVTVEKSPVL	12	
	290	SPVLTVTPGS	12	
	393	LNLSQLSVGL	12	
	427	ARRVNLPPVA	12	
	432	LPPVAVVSPQ	12	
	436	AVVSPQLQEL	12	
	438	VSPQLQELTL	12	
	494	LDPGNYSFRL	12	
	528	PPVANAGPNH	12	
	531	ANAGPNHTIT	12	
	539	ITLPQNSITL	12	
	578	QGVQTPYLHL	12	
	623	RPPVAVAGPD	12	
	624	PPVAVAGPDK	12	
	635	LIFPVESATL	12	
	662	HVRGPSAVEM	12	
	684	LQVGTYHFRL	12	
	698	QQGLSSTSTL	12	
	744	TDDQRIVSYL	12	
	772	HSVALQLTNL	12	
	835	DTLVRQLAVL	12	
	836	TLVRQLAVLL	12	
•	856	KIRAHSDLST	12	

TableXXXIX-V1-HLA-P	
10mers-254P1D6	0702- B
Foot postida is a set	
SEQ ID NO: 3; each	start
position is specified,	the
length of peptide is 10	amino
acids, and the end po	sition
nor each pepilde is ine	start
880 LKAAEVADNI	score
	12
905 VLRVDTAGCL	12
917 CSGHGHCDPL	12
960 TVLAFTLIVL	12
1000 NMDEQERMEL	12
1017 HRSTEHNSSL	12
1046 MERGNPKVSM	12
TableXXXIX-V2-HL	A-
B0702-10mers-254P1	D6B
Each peptide is a port	ion of
SEQ ID NO: 5; each	start
position is specified,	the
length of peptide is	10 and
i position for each nent	ide is
the start position plus	nine.
Pos 1234567890	score
7 SEYADDYREL	11
	111
1 WGLEEMSEYA	6
1 WGLEEMSEYA	6
1 WGLEEMSEYA	6 .A-
1 WGLEEMSEYA TableXXXIX-V3-HL B0702-10mers-254P	6 A- 1D6B
1       WGLEEMSEYA         TableXXXIX-V3-HL       B0702-10mers-254P'         Each peptide is a port	A- ID6B
1       WGLEEMSEYA         TableXXXIX-V3-HL         B0702-10mers-254P'         Each peptide is a port         SEQ ID NO: 7; each	A- 1D6B ion of start
1       WGLEEMSEYA         TableXXXIX-V3-HL         B0702-10mers-254P'         Each peptide is a port         SEQ ID NO: 7; each         position is specified,	A- 1D6B ion of start the
1       WGLEEMSEYA         TableXXXIX-V3-HL         B0702-10mers-254P'         Each peptide is a port         SEQ ID NO: 7; each         position is specified,         length of peptide is         ength of peptide is	A- ID6B ion of start the 10
1       WGLEEMSEYA         TableXXXIX-V3-HL       B0702-10mers-254P'         Each peptide is a port       SEQ ID NO: 7; each         position is specified,       length of peptide is         amino acids, and the       position for each pact	A- ID6B ion of start the 10 end ide is
1       WGLEEMSEYA         TableXXXIX-V3-HL       B0702-10mers-254P'         Each peptide is a port       SEQ ID NO: 7; each         position is specified,       length of peptide is         amino acids, and the       position for each peptide is         position for each peptide is the start position plus       start position plus	A- ID6B ion of start the 10 end ide is pine
1       WGLEEMSEYA         TableXXXIX-V3-HL       B0702-10mers-254P'         Each peptide is a port       SEQ ID NO: 7; each         position is specified,       length of peptide is         amino acids, and the       position for each peptide is         position for each peptide is       amino acids, and the         position for each peptide is       amino acids, and the         position for each peptide is       amino acids, and the	A- ID6B ion of start the 10 end ide is nine.
1 WGLEEMSEYA TableXXXIX-V3-HL B0702-10mers-254P Each peptide is a port SEQ ID NO: 7; each position is specified, length of peptide is amino acids, and the position for each pept the start position plus Pos 1234567890	A- ID6B ion of start the 10 end ide is nine. score
1 WGLEEMSEYA TableXXXIX-V3-HL B0702-10mers-254P Each peptide is a port SEQ ID NO: 7; each position is specified, length of peptide is amino acids, and the position for each pept the start position plus Pos 1234567890 6 WPSPCCARKQ	A- ID6B ion of start the 10 end ide is nine. score 13
1       WGLEEMSEYA         TableXXXIX-V3-HL       B0702-10mers-254P'         Each peptide is a port       SEQ ID NO: 7; each         position is specified,       length of peptide is         amino acids, and the       position for each peptide is         amino acids, and the       position for each peptide is         Pos       1234567890         6       WPSPCCARKQ         8       SPCCARKQCS	A- ID6B ion of start the 10 end ide is nine. Score 13 10
1       WGLEEMSEYA         TableXXXIX-V3-HL         B0702-10mers-254P'         Each peptide is a port         SEQ ID NO: 7; each         position is specified,         length of peptide is         amino acids, and the         position for each pept         the start position plus         Pos       1234567890         6       WPSPCCARKQ         8       SPCCARKQCS         3       RLGWPSPCCA	A- 1D6B ion of start the end ide is nine. score 13 10 8
1 WGLEEMSEYA TableXXXIX-V3-HL B0702-10mers-254P Each peptide is a port SEQ ID NO: 7; each position is specified, length of peptide is amino acids, and the position for each pept the start position plus Pos 1234567890 6 WPSPCCARKQ 8 SPCCARKQCS 3 RLGWPSPCCA	A- ID6B ion of start the 10 end ide is nine. score 13 10 8
1       WGLEEMSEYA         TableXXXIX-V3-HL       B0702-10mers-254P'         Each peptide is a port       SEQ ID NO: 7; each         position is specified,       length of peptide is         amino acids, and the       position for each peptide         position for each peptide is a mino acids, and the       position for each peptide         Pos       1234567890         6       WPSPCCARKQ         8       SPCCARKQCS         3       RLGWPSPCCA	A- 1D6B ion of start the 10 end ide is nine. score 13 10 8 30702- B

	Fach pentide is a portion	on of
	SEO ID NO: 11: each s	start
	nosition is specified 1	
	position is specified, i	mina
	eide and the and neet	on for
la	uus, anu me enu positi	
·	each peptide is the st	art
· JL	position plus nine.	
- IP	os 1234567890	score
		16
<u> </u>		
· · · ·	3 EDIRKDLTFL	13
	9 LTFLGKDWGL	10
L		្រឹ
	TableXL-V1-HLA-B0	8-
	10mers-254P1D6F	3
	Pos 1234567890 sc	ore
	NoPosultoFound	
	InorresultsFound.	
	TableXL-V2-HLA-B0	8-
	10mers-254P1D6F	3
	Pos 1234567890 sc	ore
	NoPesulisFound	
	Nonesulisi ounu.	
	TableXL-V3-HLA-B0	8-
	10mers-254P1D6E	3
	Pos 1234567890 sc	ore
	NoResultsFound	
	TableXL-V5-HLA-B0	8-
	10mers-254P1D6E	3
	1234567890 sc	ore
	NoResultsFound.	
	L	
		]
	I ableXLI-V1-HLA-	
	B1510-10mers-	11
	254P1D6B	
	Dog 1224567000	
	1234307890 SC	ure
	NoResultsFound.	
	[ <del>]</del>	1
	T-61-14 (11/0 1)	]
	TableXLI-V2-HLA-	·
	B1510-10mers-	
	254P1D6B	
		_]
		=
	Pos 1234567890 sc	ore
	NoResultsFound	
	L	







15	ADDYRELEKDLLQPS	29		
4	KDWGLEEMSEYADDY	14		
5	DWGLEEMSEYADDYR	14		
Ti	ableXLVI-V3-HLA-DRB1-0	101-		
	15mers-254P1D6B			
Ead	h peptide is a portion of S	EQID		
	NO: 7; each start position	is		
sp	ecified, the length of pepti	deis		
	15 amino acids, and the e	nd		
pos	ition for each peptide is th	e start		
	position plus fourteen.			
Pos	123456789012345	score		
1	MTRLGWPSPCCARKQ	22		
Ę	PCCARKQCSEGRTYS	18		
3	RLGWPSPCCARKQCS	10		
4	LGWPSPCCARKQCSE	10		
Ta	ableXLVI-V5-HLA-DRB1-0	101-		
	15mers-254P1D6B			
Ead	ch peptide is a portion of S	EQ ID		
NO: 11; each start position is specified				
the length of peptide is 15 amino acids				

and	the end position for each pep	tide is
L	the start position plus fourteer	<u>1.</u>
Pos	123456789012345	score
11	RKDLTFLGKDWGLEE	19
7	PEDIRKDLTFLGKDW	18
14	LTFLGKDWGLEEMSE	18
5	DSPEDIRKDLTFLGK	11
8	EDIRKDLTFLGKDWG	11
12	KDLTFLGKDWGLEEM	11
13	DLTFLGKDWGLEEMS	10
15	TFLGKDWGLEEMSEY	10
3	WGDSPEDIRKDLTFL	g
6	SPEDIRKDLTFLGKD	g
10	IRKDLTFLGKDWGLE	g

TableXLVII-V1-HLA-DRB1-0301-		
15MERS-254P1D6B		
Each peptide is a portion of SE	QID	
NO: 3; each start position is	s	
specified, the length of peptide	is 15	
amino acids, and the end position	on for	
each peptide is the start posit	tion	
plus lourteen.		
Pos 123456789012345	score	
184 DWGLLPGSEGAFNSS	29	
903 FKVLRVDTAGCLLKC	29	
343 LIITLPDNEVELKAF	28	
404 VFKVTVSSENAFGEG	28	

D
5
or
re
28
28
28
27
27
26
26
26
26
26
25
25
24
24
24
23
23
23
22
22
22
21
21
21
21
21
21
21
21
21
21
20
20
20
20
20
20
20 20 20 20

TableXLVII-V1-HLA-DRB1-0301- 15MERS-254P1D6B			
Each	Each peptide is a portion of SEQ ID		
	NO: 3; each start position is		
amino	acids, and the end posit	ion for	
ead	h peptide is the start posi plus fourteen.	ition	
Pos	123456789012345	score	
.876	PFKVLKAAEVARNLH	20	
888	NLHMRLSKEKADFLL	20	
953	EWSIFYVTVLAFTLI	20	
958	YVTVLAFTLIVLTGG	20	
62	CDLSSCDLAWWFEGR	19	
101	TFVLRPVQRPAQLLD	19	
152	EMSEYSDDYRELEKD	19	
165	KDLLQPSGKQEPRGS	19	
245	GEVLEKEKASQLQEQ	19	
435	VAVVSPQLQELTLPL	19	
488	VLRLSNLDPGNYSFR	19	
563	EWSLGPGSEGKHVVM	19	
598	QLKVTDSSRQQSTAV	19	
613	VTVIVQPENNRPPVA	19	
678	IATVTGLQVGTYHFR	19	
706	TLTVAVKKENNSPPR	19	
788	FHLRVTDSQGASDTD	19	
815	SGLVELTLQVGVGQL	19	
838	VRQLAVLLNVLDSDI	19	
882	AAEVARNLHMRLSKE	19	
889	LHMRLSKEKADFLLF	19	
890	HMRLSKEKADFLLFK	19	
941	IQRYIWDGESNCEWS	19	
975	WLCICCCKRQKRTKI	19	
1024	SSLMVSESEFDSDQD	19	
1056	NGSIRNGASFSYCSK	19	
33	NAVISPNLETTRIMR	18	
97	RSYLTFVLRPVQRPA	18	
100	LTFVLRPVQRPAQLL	18	
104	LRPVQRPAQLLDYGD	18	
 147	DWGLEEMSEYSDDYR	18	
157	SDDYRELEKDLLQPS	18	
342	NLIITLPDNEVELKA	18	
450	TSALIDGSQSTDDTE	18	
536	NHTITLPQNSITLNG	18	
574	HVVMQGVQTPYLHLS	18	
588	SAMQEGDYTFQLKVT	18	
632	DKELIFPVESATLDG	18	
646	GSSSSDDHGIVFYHW	18	

#### PCT/US2004/001965

 

 TableXLVII-V2HLA-DRB1-0301-15mers-254P1D6B

 Each peptide is a portion of SEQ ID NO: 5; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

123456789012345

15 ADDYRELEKDLLQPS

11 MSEYADDYRELEKDL

14 YADDYRELEKDLLQP

8 LEEMSEYADDYRELE

3 GKDWGLEEMSEYADD

7 GLEEMSEYADDYREL

 

 TableXLVII-V3HLA-DRB1-0301-15mers-254P1D6B

 Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

123456789012345

1 MTRLGWPSPCCARKQ

10 CCARKQCSEGRTYSN

6 WPSPCCARKQCSEGR

7 PSPCCARKQCSEGRT

5 GWPSPCCARKQCSEG

 

 TableXLVII-V5HLA-DRB1-0301-15mers-254P1D6B

 Each peptide is a portion of SEQ ID

 NO: 11; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

 Pos
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

score

18

17

15

11

10

9

score

11

8

7

7

6

25 23

21

18

11

Pos

Pos

Tat	bleXLVII-V1-HLA-DRB1-0	301-
L	15MERS-254P1D6B	
Each	n peptide is a portion of Sl	EQ ID
spec	ified, the length of peptide	e is 15
amin	o acids, and the end posit	ion for
ead	ch peptide is the start pos plus fourteen.	ition
Pos	123456789012345	score
691	FRLTVKDQQGLSSTS	18
726	RHVLVLPNNSITLDG	18
751	SYLWIRDGQSPAAGD	18
779	TNLVEGVYTFHLRVT	18
899	DFLLFKVLRVDTAGC	18
996	TILDNMDEQERMELR	18
1002	DEQERMELRPKYGIK	18
1004	QERMELRPKYGIKHR	18
1022	HNSSLMVSESEFDSD	18
1037	QDTIFSREKMERGNP	18
77	CYLVSCPHKENCEPK	17
138	RKDLPFLGKDWGLEE	17
153	MSEYSDDYRELEKDL	17
202	SPAVPAETQQDPELH	17
212	DPELHYLNESASTPA	17
224	TPAPKLPERSVLLPL	17
334	ELTVSAGDNLIITLP	17
417	EGFVNVTVKPARRVN	17
456	GSQSTDDTEIVSYHW	17
490	RLSNLDPGNYSFRLT	17
610	TAVVTVIVQPENNRP	17
614	TVIVQPENNRPPVAV	17
625	PVAVAGPDKELIFPV	17
668	AVEMENIDKAIATVT	17
704	TSTLTVAVKKENNSP	17
708	TVAVKKENNSPPRAR	17
740	GSRSTDDQRIVSYLW	17
823	QVGVGQLTEQRKDTL	17
864	STVIVFYVQSRPPFK	17
984	QKRTKIRKKTKYTIL	17
986	RTKIRKKTKYTILDN	17
995	YTILDNMDEQERMEL	17
1052	KVSMNGSIRNGASFS	17
4	PTGVLSSLLLLVTIA	16
_14	LVTIAGCARKQCSEG	16
66	SCDLAWWFEGRCYLV	16
258	EQSSNSSGKEVLMPS	16
361	APPVETTYNYEWNLI	16
363	PVETTYNYEWNLISH	16

Tat	DIeXLVII-V1-HLA-DRB1-0 15MERS-254P1D6B	301-		
Each	peptide is a portion of S	EQID		
1	NO: 3; each start position	is Lis 15		
amin	o acids, and the end posit	ion for		
ea	ch peptide is the start pos	ition		
	plus fourteen.			
Pos	123456789012345	score		
374	LISHPTDYQGEIKQG	16		
463	TEIVSYHWEEINGPF	16		
653	HGIVFYHWEHVRGPS	16		
688	TYHFRLTVKDQQGLS	16		
/18	PPRARAGGRHVLVLP	16		
739	DGSRSTDDQRIVSYL	16		
934	HLWMENLIQRYIWDG	16		
68	DLAWWFEGRCYLVSC	15		
156	YSDDYRELEKDLLQP	15		
265	GKEVLMPSHSLPPAS	15		
357		15		
436	AVVSPQLQELTLPLT	15		
466	VSYHWEEINGPFIEE	15		
555	DDHQIVLYEWSLGPG	15		
81 <b>1</b>	1 DPRKSGLVELTLQVG 15			
8	8 LSSLLLLVTIAGCAR 14			
9	SSLLLLVTIAGCARK	14		
89	EPKKMGPIRSYLTFV	14		
226	APKLPERSVLLPLPT	14		
231	ERSVLLPLPTTPSSG	14		
232	RSVLLPLPTTPSSGE	14		
449	LTSALIDGSQSTDDT	14		
556	DHQIVLYEWSLGPGS	14		
572	GKHVVMQGVQTPYLH	14		
771	DHSVALQLTNLVEGV	14		
806	VEVQPDPRKSGLVEL	14		
843	VLLNVLDSDIKVQKI	14		
1015	IKHRSTEHNSSLMVS	14		
1309XLVII-V2HLA-DRB1-0301- 15mers-254P1D6B				
Each peptide is a portion of SEQ ID				
NO: 5; each start position is				
specified, the length of peptide is				
position for each peptide is the start				
position plus fourteen.				
Pos	123456789012345	score		
5	DWGLEEMSEYADDYR	19		

14	3	WGDSPEDIRKDLTFL	1
	7	PEDIRKDLTFLGKDW	Ĺ
1-	14	LTFLGKDWGLEEMSE	1
	11	RKDLTFLGKDWGLEE	
ם ג	13	DLTFLGKDWGLEEMS	[ ]
is			
start		ableXLVIII-V1-HLA-DR1-040 15mers-254P1D6B	1-
ore	Ea	ch peptide is a portion of SEC NO: 3; each start position is	D ID
40	II SDE	ecified, the length of peptide is	s 15

NO: 3; each start position is
specified, the length of peptide is 15
amino acids, and the end position for
each peplide is the start position
plus fourteen.

10 EMSEYADDYRELEKD

18

## PCT/US2004/001965

# WO 2004/067716

	Pos	123456789012345	score
	68	DLAWWFEGRCYLVSC	28
	365	ETTYNYEWNLISHPT	28
	751	SYLWIRDGQSPAAGD	28
	90	PKKMGPIRSYLTFVL	26
	97	RSYLTFVLRPVQRPA	26
	101	TFVLRPVQRPAQLLD	26
	232	RSVLLPLPTTPSSGE	26
	282	LSSVTVEKSPVLTVT	26
	421	NVTVKPARRVNLPPV	26
	574	HVVMQGVQTPYLHLS	26
	610	TAVVTVIVQPENNRP	26
	633	KELIFPVESATLDGS	26
	725	GRHVLVLPNNSITLD	26
	733	NNSITLDGSRSTDDQ	26
	779	TNLVEGVYTFHLRVT	26
	842	AVLLNVLDSDIKVQK	26
	899	DFLLFKVLRVDTAGC	26
	934	HLWMENLIQRYIWDG	26
•	28	GRTYSNAVISPNLET	22
	49	SHTFPVVDCTAACCD	22
	96	IRSYLTFVLRPVQRP	22
	153	MSEYSDDYRELEKDL	22
	157	SDDYRELEKDLLQPS	22
	369	NYEWNLISHPTDYQG	22
	402	LYVFKVTVSSENAFG	22
	416	GEGFVNVTVKPARRV	22
	467	SYHWEEINGPFIEEK	22
	474	NGPFIEEKTSVDSPV	22
	524	AVDYPEVANAGENHT	22
	657	FYHWEHVRGPSAVEM	22
	749	IVSYLWIRDGQSPAA	22
	874	RPPFKVLKAAEVARN	22
	897	KADFLLFKVLRVDTA	22
	900	FLLFKVLRVDTAGCL	22
	943	RYIWDGESNCEWSIF	22
	951	NCEWSIFYVTVLAFT	22
	955	SIFYVTVLAFTLIVL	22
	992	KTKYTILDNMDEQER	22
	5	TGVLSSLLLLVTIAG	20
	8	LSSLLLLVTIAGCAR	20
	12	LLLVTIAGCARKQCS	20
	42	TTRIMRVSHTFPVVD	20
	43	TRIMRVSHTFPVVDC	20
	76	RCYLVSCPHKENCEP	20
	93	MGPIRSYLTFVLRPV	20
	ليب		

TableXLVIII-V1-HLA-DR1-0401- 15mers-254P1D6B		
Each	peptide is a portion of SI	EQID
N	IO: 3; each start position	is
speci	fied, the length of peptide	is 15
eac	ch peptide is the start position	ition
	plus fourteen.	
Pos	123456789012345	score
100	LTFVLRPVQRPAQLL	20
126	PSGIWGDSPEDIRKD	20
160	YRELEKDLLQPSGKQ	20
202	SPAVPAETQQDPELH	20
212	DPELHYLNESASTPA	20
215	LHYLNESASTPAPKL	20
233	SVLLPLFTTPSSGEV	20
245	GEVLEKEKASQLQEQ	20
253	ASQLQEQSSNSSGKE	20
272	SHSLPPASLELSSVT	20
279	SLELSSVTVEKSPVL	20
289	KSPVLTVTPGSTEHS	20
292	VLTVTPGSTEHSIPT	20
301	EHSIPTPPTSAAPSE	20
334	ELTVSAGDNLIITLP	20
341		20
355	KAFVAPAPPVETTYN	20
371	EWNLISHPTDYOGE	20
399	SVGLYVEKVTVSSEN	20
432	LPPVAVVSPQLQELT	20
435		20
439	SPOLOFI TI PLTSAL	20
442		20
446		20
485	DSPVI BI SNI DPGNY	20
500	SERI TVTDSDGATNS	20
527		20
536		20
543		20
557		20
506		20
500		20
080		
626		
030		
000		20
668		20
671	MENIDKAIATVTGLQ	20
675	DKAIATVTGLQVGTY	20
698	QQGLSSTSTLTVAVK	20

Tat	TableXLVIII-V1-HLA-DR1-0401- 15mers-254P1D6B				
Each	Each peptide is a portion of SEQ ID				
	NO: 3; each start position is				
amino	acids, and the end posit	ion for			
eac	h peptide is the start pos	ition			
	plus fourteen.				
Pos	123456789012345	score			
704	TSTLTVAVKKENNSP	20			
708	TVAVKKENNSPPRAR	20			
726	RHVLVLPNNSITLDG	20			
727	HVLVLPNNSITLDGS	20			
752	YLWIRDGQSPAAGDV	20			
764	GDVIDGSDHSVALQL	20			
771	DHSVALQLTNLVEGV	20			
782	VEGVYTFHLRVTDSQ	20			
787	TFHLRVTDSQGASDT	20			
805	TVEVQPDPRKSGLVE	20			
815	SGLVELTLQVGVGQL	20			
823	QVGVGQLTEQRKDTL	20			
835	DTLVRQLAVLLNVLD	20			
838	VRQLAVLLNVLDSDI	20			
841	LAVLLNVLDSDIKVQ	20			
845	LNVLDSDIKVQKIRA	20			
860	HSDLSTVIVFYVQSR	20			
865	TVIVFYVQSRPPFKV	20			
877	FKVLKAAEVARNLHM	20			
882	AAEVARNLHMRLSKE	20			
890	HMRLSKEKADFLLFK	20			
902		20			
903		20			
905		20			
956		20			
958		20			
963		20			
		20			
1024	SSI MUSESEEDSDOD	20			
1050		20			
1050		20			
1052	MADDICVLSSILLAY	20			
	ADDIGVICOLLUT				
	APROCECOTYCNIA				
	BTYCHAU CON ISNAV				
29					
		L <u>18</u>			
35	VISPNLETTRIMRVS	18			
58	TAACCDLSSCDLAWW	18			
130	WGDSPEDIRKDLPFL	18			

•

## PCT/US2004/001965

.

TableXLVIII-V1-HLA-DR1-0401-	
15mers-254P1D6B	ĺ
Each peptide is a portion of SEQ ID	ŀ
specified, the length of peptide is 15	
amino acids, and the end position for	
each peptide is the start position	
Pos 123456789012345 score	
146 KDWGLEEMSEYSDDY 18	
169 QPSGKQEPRGSAEYI 18	
188 LPGSEGAFNSSVGDS 18	
208 ETQQDFELHYLNESA 18	
225 PAPKLPERSVLLPLP 18	
252 KASQLQEQSSNSSGK 18	
275 LPPASLELSSVTVEK 18	
276 PPASLELSSVTVEKS 18	
295 VTPGSTEHSIPTPPT 18	
298 GSTEHSIPTPPTSAA 18	
306 TPPTSAAPSESTPSE 18	
322 PISPTTAPRTVKELT 18	
328 APRTVKELTVSAGDN 18	
358 VAPAPPVETTYNYEW 18	
368 YNYEWNLISHPTDYQ 18	
374 LISHPTDYQGEIKQG 18	
379 TDYQGEIKQGHKQTL 18	
389 HKQTLNLSQLSVGLY 18	
403 YVFKVTVSSENAFGE 18	
413 NAFGEGEVNVTVKPA 18	
431 NLPPVAVVSPQLQEL 18	
438 VSPQLQELTLPLTSA   18	
443 QELTLPLTSALIDGS 18	
550 GNQSSDDHQIVLYEW 18	
5/UISEGKHVVMQGVQTPY	
588 SAMQEGDYTFQLKVT 18	
597 FQLKVTDSSRQQSTA 18	
606 RQQSTAVVTVIVQPE 18	
639 VESATLDGSSSSDDH 18	
645 DGSSSSDDHGIVFYH 18	
691 FRLTVKDQQGLSSTS 18	

Tat	bleXLVIII-V1-HLA-DR1-04 15mers-254P1D6B	101-
Each	peptide is a portion of St	
NO: 3; each start position is		
specified, the length of peptide is 15		
eac	ch peptide is the start posi-	ition
	plus fourteen.	
Pos	123456789012345	score
695	VKDQQGLSSTSTLTV	18
739	DGSRSTDDQRIVSYL	18
740	GSRSTDDQRIVSYLW	18
762	AAGDVIDGSDHSVAL	18
765	DVIDGSDHSVALQLT	18
769	GSDHSVALQLTNLVE	18
788	FHLRVTDSQGASDTD	18
813	RKSGLVELTLQVGVG	18
825	GVGQLTEQRKDTLVR	18
831	EQRKDTLVRQLAVLL	18
832	QRKDTLVRQLAVLLN	18
853	KVQKIRAHSDLSTVI	18
856	KIRAHSDLSTVIVFY	18
857	IRAHSDLSTVIVFYV	18
880	LKAAEVARNLHMRLS	18
957	FYVTVLAFTLIVLTG	18
996	TILDNMDEQERMELR	18
1009	LRPKYGIKHRSTEHN	18
1015	IKHRSTEHNSSLMVS	18
1034	DSDQDTIFSREKMER	18
1035	SDQDTIFSREKMERG	18
1053	VSMNGSIRNGASFSY	18
400	VGLYVFKVTVSSENA	17
594	DYTFQLKVTDSSRQQ	17
785	VYTFHLRVTDSQGAS	17
69	LAWWFEGRCYLVSCP	16
145	GKDWGLEEMSEYSDD	16
182	YTDWGLLPGSEGAFN	16
214	ELHYLNESASTPAPK	16
378	PTDYQGEIKOGHKOT	16
412		
465		
408		
550	IVI YEWSI GDGSEOK	
504	OTRVI HI SAMOFORY	
001		
034	CINEVUMEUNDORS	
054	GIVETHWEHVRGPSA	16
655	IVE YHWEHVRGPSAV	16
688	IYHFRLTVKDQQGLS	16

	TableXLVIII-V1-HLA-DR1-0401-			
	15mers-254P1D6B			
	Each peptide is a portion of SEQ ID NO: 3; each start position is			
	specified, the length of peptide is 15			
	amino	acids, and the end posit	ion for	
	ead	n peptide is the start pos plus fourleen	llion	
	Pos	123456789012345	sonra	
	783		16	
	866	VIVEYVOSRPPEKVI	16	
	867	IVEYVQSBPPEKVLK	16	
	941		16	
	954	WSIFYVTVI AFTLIV	16	
	961		16	
	970	TGGFTWLCICCCKRO	16	
	972	GFTWLCICCCKROKR	16	
	1030	ESEFDSDQDTIFSRF	16	
	1038	DTIFSREKMERGNPK	16	
	475	GPFIEEKTSVDSPVI	15	
	690	HFRLTVKDQQGLSST	15	
	886	ARNLHMRLSKEKADF	15	
	1012	KYGIKHRSTEHNSSL	15	
	4	PTGVLSSLLLLVTIA	14	
	9	SSLLLLVTIAGCARK	14	
	10	SLLLLVTIAGCARKQ	14	
	11	LLLLVTIAGCARKQC	14	
	14	LVTIAGCARKQCSEG	14	
	32	SNAVISPNLETTRIM	14	
	37	SPNLETTRIMRVSHT	14	
	104	LRPVQRPAQLLDYGD.	14	
	110	PAQLLDYGDMMLNRG	14	
:	111	AQLLDYGDMMLNRGS	14	
	116	YGDMMLNRGSPSGIW	14	
	118	DMMLNRGSPSGIWGD	14	
	134	PEDIRKDLPFLGKDW	14	
	138	RKDLPFLGKDWGLEE	14	
	141	LPFLGKDWGLEEMSE	14	
	185	WGLLPGSEGAFNSSV	14	
	196	NSSVGDSPAVPAETQ	14	
	235	LLPLPTTPSSGEVLE	14	
	265	GKEVLMPSHSLPPAS	14	
	266	KEVLMPSHSLPPASL	14	
	267	EVLMPSHSLPPASLE	14	
	284	SVTVEKSPVLTVTPG	14	
	318	PSELPISPTTAPRTV	14	
	320	ELPISPTTAPRTVKE	14	
	329	PRTVKELTVSAGDNL	14	
-				

Tal	bleXLVIII-V1-HLA-DR1-04	01-	
Each	peptide is a portion of SE	ם ס	
1	IO: 3; each start position i	is	
speci	fied, the length of peptide	is 15	
amino	o acids, and the end position of the start p	ion for tion	l
ça	plus fourteen.	uun	ĺ
Pos	123456789012345	score	
332	VKELTVSAGDNLIIT	14	ļ
342	NLIITLPDNEVELKA	14	
344	IITLPDNEVELKAFV	14	
351	EVELKAFVAPAPPVE	14	1
361	APPVETTYNYEWNLI	14	
382	QGEIKQGHKQTLNLS	14	
392	TLNLSQLSVGLYVFK	14	
395	LSQLSVGLYVFKVTV	14	
397	QLSVGLYVFKVTVSS	14	
401	GLYVFKVTVSSENAF	14	
406	KVTVSSENAFGEGFV	14	
427	ARRVNLPPVAVVSPQ	14	
429	RVNLPPVAVVSPQLQ	14	
434	PVAVVSPQLQELTLP	14	
450	TSALIDGSQSTDDTE	14	
451	SALIDGSQSTDDTEI	14	
462	DTEIVSYHWEEINGP	14	
463	TEIVSYHWEEINGPF	14	
470	WEEINGPFIEEKTSV	14	
481	KTSVDSPVLRLSNLD	14	
488	VLRLSNLDPGNYSFR	14	
502	RLTVTDSDGATNSTT	14	
518	ALIVNNAVDYPPVAN	14	
522	NNAVDYPPVANAGPN	14	
538	TITLPQNSITLNGNQ	14	
545	SITLNGNQSSDDHQI	14	
573	KHVVMQGVQTPYLHL	14	
577	MQGVQTPYLHLSAMQ	14	
587	LSAMQEGDYTFQLKV	14	
609	STAVVTVIVQPENNR	14	.
613	VTVIVQPENNRPPVA	14	
623	RPPVAVAGPDKELIF	14	
625	PVAVAGPDKELIFPV	14	
632	DKELIFPVESATLDG	14	
641	SATLDGSSSSDDHGI	14	
652	DHGIVFYHWEHVRGP	14	
660	WEHVRGPSAVEMENI	14	
678	IATVTGLQVGTYHFR	14	l İ
683	GLQVGTYHFRLTVKD	14	ĺ

Table	TableXLVIII-V1-HLA-DR1-0401-		
Each p	Each peptide is a portion of SEQ ID		
NO: 3; each start position is			
amino a	cids, and the end positi	ion for	
each	peptide is the start posi	ition	
	plus fourteen.		
Pos	123456789012345	score	
692 F		14	
		44	
703 7		14	
	ALQUINEVODDBRKSCI	14	
814 k		14	
817		14	
819 F		14	
821 T		14	
826 V	GOI TEORKDTI VRO	14	
834	(DTLVRQLAVLLNVL	14	
844		14	
851	DIKVQKIRAHSDLST	14	
854	VQKIRAHSDLSTVIV	14	
863	LSTVIVFYVQSRPPF	14	
864	STVIVFYVQSRPPFK	14	
876 F	PFKVLKAAEVARNLH	14	
912 0	CLLKCSGHGHCDPL	14	
928 H	RCICSHLWMENLIQ	14	
932 0	SHLWMENLIQRYIW	14	
942 C	RYIWDGESNCEWSI	14	
953	EWSIFYVTVLAFTLI	14	
959	VTVLAFTLIVLTGGF	14	
965	TLIVLTGGFTWLCIC	14	
966	LIVLTGGFTWLCICC	14	
973 F	TWLCICCCKRQKRT	14	
975 \	WLCICCCKRQKRTKI	14	
1023 🗅	ISSLMVSESEFDSDQ	14	
1043 R	EKMERGNPKVSMNG	14	
1056 NGSIRNGASFSYCSK 14			
TableXLVIII-V2-HLA-DR1-0401-			
15mers-254P1D6B			
Each peptide is a portion of SEQ ID NO: 5: each start position is			
specif	specified, the length of peptide is		
15 a	amino acids, and the er	nd	
position for each peptide is the start position plus fourteen.			

<b>n</b> -					
		Pos	123456789012345	score	
		_ 11	MSEYADDYRELEKDL	22	
		15	ADDYRELEKDLLQPS	22	
		4	KDWGLEEMSEYADDY	18	
		3	GKDWGLEEMSEYADD	16	
	a s	10	EMSEYADDYRELEKD	12	
		14	YADDYRELEKDLLQP	12	
				L	
		Ta	bleXLVIII-V3-HLA-DR1-0	401-	
		L	15mers-254P1D6B		
		Each peptide is a portion of SEQ ID			
			NO: 7; each start position is		
		specified, the length of peptide is			
		posi	tion for each peptide is th	e start	
		position plus fourteen.			
		Pos	123456789012345	score	
ĺ		3	RLGWPSPCCARKQCS	16	
ĺ		1	MTRLGWPSPCCARKQ	14	
ĺ		6	WPSPCCARKQCSEGR	12	
н					

	TableXLVIII-V5-HLA-DR1-0401- 15mers-254P1D6B			
Ea NO: the and	Each peptide is a portion of SEQ ID NO: 11; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.			
Pos	123456789012345	score		
7	PEDIRKDLTFLGKDW	20		
3	WGDSPEDIRKDLTFL	18		
11	11 RKDLTFLGKDWGLEE 14			
14	14 LTFLGKDWGLEEMSE 14			
4	4 GDSPEDIRKDLTFLG 12			
8	EDIRKDLTFLGKDWG	12		

TableXLIX-V1-HLA-DRB1-1101- 15mers-254P162B					
Each speci amino eao	Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.				
Pos	123456789012345 score				
668	AVEMENIDKAIATVT	27			
42	42 TTRIMRVSHTFPVVD 2				
138	138 RKDLPFLGKDWGLEE 26				
654	654 GIVFYHWEHVRGPSA 20				
961 VLAFTLIVLTGGFTW 2					
157	SDDYRELEKDLLQPS	25			

Tat	TableXLIX-V1-HLA-DRB1-1101-		
Fact	nonicia-204F 102D		
Laur	VO: 3; each start position i	s	
spec	ified, the length of peptide	is 15	
amino	o acids, and the end positi	on for	
eau	plus fourteen.	lon	
Pos	123456789012345	score	
113		24	
369	NYEWNI ISHPTDYOG	24	
49		27	
97	RSYLTEVI REVORPA	23	
831		20	
		20	
192		20	
102	PROCEVUE/CONCERNATION	22	
442		44	
604		22	
024	AVDYPPVANAGPNHI		
598	QLKVTDSSRQQSTAV	22	
657	FYHWEHVRGPSAVEM	22	
749	IVSYLWIRDGQSPAA	22	
848	LDSDIKVQKIRAHSD	22	
131	GDSPEDIRKDLPFLG	21	
265	GKEVLMPSHSLPPAS	21	
764	GDVIDGSDHSVALQL	21	
887	RNLHMRLSKEKADFL	21	
899	DFLLFKVLRVDTAGC	21	
8	LSSLLLLVTIAGCAR	20	
101	TFVLRPVQRPAQLLD	20	
115	DYGDMMLNRGSPSGI	20	
165	KDLLQPSGKQEPRGS	20	
592	EGDYTFQLKVTDSSR	20	
688	TYHFRLTVKDQQGLS	20	
783	EGVYTFHLRVTDSQG	20	
805	TVEVQPDPRKSGLVE	20	
865	TVIVFYVQSRPPFKV	20	
908	VDTAGCLLKCSGHGH	20	
1040	IFSREKMERGNFKVS	20	
1052	KVSMNGSIRNGASFS	20	
153	MSEYSDDYRELEKDL	19	
279	SLELSSVTVFKSPVI	19	
704	TSTLTVAVKKENNSP	19	
747		10	
814	KSGLVELTLOVGVGO	10	
866		19	
89		19	
00		10	
ฮฮ	LITVLKEVQKPAQL	10	

Tat	TableXLIX-V1-HLA-DRB1-1101- 15mers-254P162B		
Each	Each peptide is a portion of SEQ ID		
spec	vO: 3; each start position ified, the length of pentide	is is 15	
amino	o acids, and the end positi	ion for	
ead	ch peptide is the start posi plus fourteen.	ition	
Pos	123456789012345	score	
179	SAEYTDWGLLPGSEG	18	
192	EGAFNSSVGDSPAVP	18	
212	DPELHYLNESASTPA	18	
232	RSVLLPLPTTPSSGE	18	
329	PRTVKELTVSAGDNL	18	
378	PTDYQGEIKQGHKQT	18	
400	VGLYVFKVTVSSENA	18	
429	RVNLPPVAVVSPQLQ	18	
485	DSPVLRLSNLDPGNY	18	
594	DYTFQLKVTDSSRQQ	18	
970	TGGFTWLCICCCKRQ	18	
992	KTKYTILDNMDEQER	18	
1010	RPKYGIKHRSTEHNS	18	
1038	DTIFSREKMERGNPK	18	
70	AWWFEGRCYLVSCPH	17	
365	ETTYNYEWNLISHPT	17	
417	EGFVNVTVKPARRVN	17	
610	TAVVTVIVQPENNRP	17	
655	IVFYHWEHVRGPSAV	17	
740	GSRSTDDQRIVSYLW	17	
775	ALQLTNLVEGVYTFH	17	
874	RPPFKVLKAAEVARN	17	
972	GFTWLCICCCKRQKR	17	
39	NLETTRIMRVSHTFP	16	
214	ELHYLNESASTPAPK	16	
367	TYNYEWNLISHPTDY	16	
465	IVSYHWEEINGPFIE	16	
467	SYHWEEINGPFIEEK	16	
481	KTSVDSPVLRLSNLD	16	
559	IVLYEWSLGPGSEGK	16	
561	LYEWSLGPGSEGKHV	16	
578	QGVQTPYLHLSAMQE	16	
581	QTPYLHLSAMQEGDY	16	
656	VFYHWEHVRGPSAVE	16	
712	KKENNSPPRARAGGR	16	
751	SYLWIRDGQSPAAGD	16	
826	VGQLTEQRKDTLVRQ	16	
864	STVIVFYVQSRPPFK	16	
882	AAEVARNLHMRLSKE	16	

			1
Tat	DeXLIX-V1-HLA-DRB1-11 15mers-254P162B	101-	
Each	Pentide is a partian of St		
NO: 3: each start position is			
speci	ified, the length of peptide	is 15	
amino	acids, and the end posit	ion for	
ead	n peptide is the start pos	ition	
Pos	123/567890123/5	score	
896		16	
955		16	
056			
083		16	
1008	FLEPKYGIKHRSTEH	10	
1000		10	
100		15	
20/			
500			
625			
872			
870			
079			
920			
935		15	
970			
1009			
1037	QUTIFSREKMERGNP		
14		14	
15	VIIAGCARKQCSEGR		
21	ARKQCSEGRTYSNAV	14	
76	RCYLVSCPHKENCEP	14	
77	CYLVSCPHKENCEPK	14	
83	PHKENCEPKKMGPIR	14	
84	HKENCEPKKMGPIRS	14	
87	NCEPKKMGPIRSYLT	14	
169	QPSGKQEPRGSAEYT	14	
244	SGEVLEKEKASQLQE	14	
281	ELSSVTVEKSPVLTV	14	
292	VLTVTPGSTEHSIPT	14	
351	EVELKAFVAPAPPVE	14	
382	QGEIKQGHKQTLNLS	14	
398	LSVGLYVFKVTVSSE	14	
399	SVGLYVFKVTVSSEN	14	
421	NVTVKPARRVNLPPV	14	
432	LPPVAVVSPQLQELT	14	
446	TLPLTSALIDGSQST	14	
482	TSVDSPVLRLSNLDP	14	
518	ALIVNNAVDYPPVAN	14	
543	QNSITLNGNQSSDDH	14	
		لنصب	

## PCT/US2004/001965

	specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.				
	Pos	123456789012345	score		
	15	ADDYRELEKDLLQPS	25		
	11	MSEYADDYRELEKDL	19		
	5	DWGLEEMSEYADDYR	12		
-	TableXLIX-V3-HLA-DRB1-1101- 15mers-254P162B				

	15mers-254P162B					
Eac	n peptide is a portion of S	EQ ID				
	NO: 7; each start position	is				
spec	ified, the length of peptide	e is 15				
am	ino acids, and the end pos	Sition				
	auti peptide is the start pu	SILION				
	plus tourteen,					
Pos	123456789012345	score				
6	WPSPCCARKQCSEGR	14				
1	1 MTRLGWPSPCCARKQ					
3	RLGWPSPCCARKQCS	12				
5	GWPSPCCARKQCSEG	8				

8 SPCCARKQCSEGRTY

6

	ableXLIX-V5-HLA-DRB1-110 15mers-254P162B	)1-
Ea NO: the l and	ch peptide is a portion of SEC 11; each start position is spe ength of peptide is 15 amino the end position for each pep the start position plus fourteer	ຊ ID cified, acids, tide is າ.
Pos	123456789012345	score
11	RKDLTFLGKDWGLEE	28
4	GDSPEDIRKDLTFLG	15
7	PEDIRKDLTFLGKDW	13

TableXLIX-V1-HLA-DRB1-1101-				
	15mers-254P162B			
Each	peptide is a portion of St IO: 3: each start position	EQ ID is		
speci	fied, the length of peptide	is 15		
amino	acids, and the end posit	ion fòr		
ead	h peptide is the start posi-	tion		
Pos	123456789012345	score		
348	PDNEVELKAFVAPAP	13		
390	KQTLNLSQLSVGLYV	13		
392	TLNLSQLSVGLYVFK	13		
401	GLYVFKVTVSSENAF	13		
402	LYVFKVTVSSENAFG	13		
439	SPQLQELTLPLTSAL	13		
497	GNYSFRLTVTDSDGA	13		
556	DHQIVLYEWSLGPGS	13		
577	MQGVQTPYLHLSAMQ	13		
593	GDYTFQLKVTDSSRQ	13		
614	TVIVQPENNRPPVAV	13		
633	KELIFPVESATLDGS	13		
666	PSAVEMENIDKAIAT	13		
706	TLTVAVKKENNSPPR	13		
725	GRHVLVLPNNSITLD	13		
784	GVYTFHLRVTDSQGA	13		
787	TFHLRVTDSQGASDT	13		
816	GLVELTLQVGVGQLT	13		
835	DTLVRQLAVLLNVLD	13		
934	HLWMENLIQRYIWDG	13		
953	EWSIFYVTVLAFTLI	13		
954	WSIFYVTVLAFTLIV	13		
960	TVLAFTLIVLTGGFT	13		
963	AFTLIVLTGGFTWLC	13		
1043	REKMERGNPKVSMNG	13		
(				
∏⊺ab	bleXLIX-V2-HLA-DRB1-1	101-		
	Tomers-254P162B			

Tab	TableXLIX-V1-HLA-DRB1-1101-			
Each	pentide is a portion of SE			
Laon N	IO: 3; each start position i	is		
speci	fied, the length of peptide	is 15		
amino	acids, and the end position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start position of the start pos	ion for		
	plus fourteen.			
Pos	123456789012345	score		
613	VTVIVQPEŇNRPPVA	14		
678	IATVTGLQVGTYHFR	14		
705	STLTVAVKKENNSPP	14		
714	ENNSPPRARAGGRHV	14		
732	PNNSITLDGSRSTDD	14		
823	QVGVGQLTEQRKDTL	14		
838	VRQLAVLLNVLDSDI	14		
842	AVLLNVLDSDIKVQK	14		
845	LNVLDSDIKVQKIRA	14		
850	SDIKVQKIRAHSDLS	14		
883	AEVARNLHMRLSKEK	14		
912	GCLLKCSGHGHCDPL	14		
914	LLKCSGHGHCDPLTK	14		
986	RTKIRKKTKYTILDN	14		
998	LDNMDEQERMELRPK	14		
1004	QERMELRPKYGIKHR	14		
1014	GIKHRSTEHNSSLMV	14		
5	TGVLSSLLLLVTIAG	13		
7	VLSSLLLLVTIAGCA	13		
10	SLLLLVTIAGCARKQ	13		
90	PKKMGPIRSYLTFVL	13		
96	IRSYLTFVLRPVQRP	13		
114	LDYGDMMLNRGSPSG	13		
134	PEDIRKDLPFLGKDW	13		
226	APKLPERSVLLPLPT	13		
228	KLPERSVLLPLPTTP	13		
263	SSGKEVLMPSHSLPP	13		
272	SHSLPPASLELSSVT	13		
287	VEKSPVLTVTPGSTE	13		
337	VSAGDNLIITLPDNE	13		

Each peptide is a portion of SEQ ID NO: 5; each start position is

#### PCT/US2004/001965

#### Table L: Protein Characteristics of 254P1D6B

	Bioinformatic Program	URL	Outcome
ORF	ORF finder	, ,	3216 bp
Protein length	· • •		1072 aa
Transmembrane			
region	TM Pred	http://www.ch.embnet.org/	TM Helix AA 954-981
	НММТор	http://www.enzim.hu/hmmtop/	TM Helix AA 956-980
	Sosui	http://www.genome.ad.jp/SOSui/	TM Helix AA 957-979
	TMHMM	http://www.cbs.dtu.dk/services/TMHMM	TM Helix AA 956-978
Signal Peptide	Signal P	http://www.cbs.dtu.dk/services/SignalP/	Yes signal peptide
pl	pl/MW tool	http://www.expasy.ch/tools/	pl 5.34
Molecular weight	pl/MW tool	http://www.expasy.ch/tools/	1.17
•			46% Plasma Membrane
			10% endoplasmic
Localization	PSORT	http://psort.nlbb.ac.jp/	reticulum
			33.3% Golgi
			33.3% Endoplasmic
			reticulum
			22.2% Plasma Membrane
			11.1% extracellular,
	PSORT	http://psort.nibb.ac.jp/	including cell wall
			I YA transposon protein
NA- VC-	Disales	http://www.hladia.fb.aca.aca/	PKU Duvetkienin einnetune
MOUIS	BIOCKS	ntip://www.blocks.incrc.org/	Purothionin signature
	Repeats	http://dove.embi-heidelberg.de/	No Repeats

Table LI. Exon compositions of 254P1D6B

Exon No.	Start position	End position	Length
1	1	406	406
2	407	566	160
3	567	1312	746
4	1313	1505	193
5	1506	1604	99
6	1605	1702	98
7	1703	1790	88
8	1791	1883	93
9	1884	2016	133
10	2017	2245	229
11	2246	2369	124
12	2370	2502	133
13	2503	2651	149
14	2652	2803	152
15	2804	2942	139
16	2943	3102	160
17	3103	3245	143
18	3246	3368	123
19	3369	3459	91
20	3460	3551	92
21	3552	6791	3240

#### Table LII. Nucleotide sequence of transcript variant 254P1D6B v.3 (SEQ ID NO: 269)

gctgccgcgggcggtgggcggggatcccccgggggtgcaaccttgctccacctgtgctgc60cctcggcgggcctggctggccccgcgcagagcggggggggcgctgctgtcactgccgga120ggtgagagcgcagcagtagcttcagcctgtcttgggctggctcctgtg120ggtgagagcgcagcagtagcttcagcctgtcttgggctggctccttgg180ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac240agcaggtgcggcgcggaggtgtgtgtgtgtgtgtctgtgtgtgtgtgtg300taagacctgcgatgacgacgaggaggaacaagtgggacggccacaggtac360cagcaacgcatggggcgagcttcagtgtcgccacaggtacggtatctact420

teccarager	cotggoogag	aaataggaaa	apagagagaga	agtaggeagg	000000000000	400
acaaaadtad	aatcraracr	Costaratta	gagggtagtt	agtaggtagg	cualaccea	. 480
acaaaaytay	accegagacy	Coolgagies	agaagttett	gaggeeaaat	ctggctccta	540
aaaaacatca	aaggaagett	gcaccaaact	ctcttcaggg	cogcotcaga	agcctgccat	600
cacccactgt	gtggtgcaca	atggcgcccc	ccacayytyt	gctctcttca	ttgetgetge	660
tggtgacaat	tgcagtttgc	ttatggtgga	tgcactcatg	gcaaaaaaaat	cactggtgag	720
catcatttaa	gaagacccat	gactagactg	ggctggccga	gcccatgttg	tgcccgtaag	780
cagtgcageg	aggggaggac	atattccaat	gcagtcattt	cacctaactt	ggaaaccacc	840
agaatcatgo	gggtgtetca	Cacctteeet	atcatagact	acacatacata	ttaatataa	040
ctateceaact	atascotaac	ctaataatta	geogeoguee	geuoggeege	eegeegeegee	900
0000000000000	actatacage	ceggeggeee	gagggeegee	geraeerger	yagetgeece	960
cacaaayaya	accycyayee	caagaagatg	ggccccatca	ggtcttatct	cacttttgtg	1020
creeggeerg	ttcagaggec	tgcacagetg	ctggactatg	gggacatgat	gctgaacagg	1080
ggeteecet	cgggggatctg	ggggggactca	cctgaggata	tcagaaagga	cttgcccttt	1140
ctaggcaaag	attggggcct	agaggagatg	tctgagtact	cagatgacta	ccgggagetg	1200
gagaaggacc	tcttgcaacc	Cagtggcaag	caggageeca	gagggagtgc	cgagtacacg	1260
gactggggcc	tactgccggg	Cagegagggg	geetteaact	cctctattaa	agacagtect	1320
gcggtgccag	cqqaqacqca	gcaggaccct	gagetceatt	acctgaatga	atcaacttca	1380
accetucee	caaaacteee	tgagagaadt	atattactte	cottaccasa	tactocotot	1440
tcagagaga	tattaasass	agagagagt	gegeegeeee	Courgeogae	Lactocator	1440
totaggagagg	ogettatat	agaaaayyot	Leteagerse	aggaacaate	cagcaacage	1500
Locygaaaag	agglictaat	geetteecat	agtetteete	cggcaagcet	ggageteage	1560
tcagtcaccg	tggagaaaag	cccagtgctc	acagtcaccc	cggggagtac	agagcacage	1620
atcccaacac	ctcccactag	cgcagccccc	tctgagtcca	ccccatctga	gctacccata	1680
tctcctacca	ctgctcccag	gacagtgaaa	gaacttacgg	tatcggctgg	agataaccta	1740
attataactt	tacccgacaa	tgaagttgaa	ctgaaggcct	ttgttgcgcc	agegecacet	1800
gtagaaacaa	cctacaacta	tgaatggaat	ttaataagee	accccacada	ctaccaaddt	1860
gaaataaaac	aaqqacacaa	gcaaactett	aacctctctc	aattatcoat	conacttat	1920
gtetteaaag	teactottte	tagtgaaaac	geetttagaa	aaggatttgt	caatotcact	1980
gttaagcetg	ccagaagagt	caacctocca	cctatagcag	ttatttctcc	ccaactorcaa	2040
gageteactt	tacctttac	atcagesete	attgatggag	accessored	agatastast	2040
gapatagtga	attatcatta	gceagecete	accyacyyca	testatore	ayatyatact	2100
gaaacagega	gecuccuccy	gyaayaaata	aacygycccc	lualayaaya	gaagacttca	2160
gutgatitut	cogcollacy		CELGAECCEG	gtaactatag	tttcaggttg	2220
actyctatay	accogyacgy	ayccactaac	tetacaaetg	cagecetaat	agtgaacaat	2280
getgtggaet	acccaccagt	tgetaatgea	ggaccaaatc	acaccataac	tttgccccaa	2340
aactccatca	ctttgaatgg	aaaccagagc	agtgacgatc	accagattgt	cctctatgag	2400
tggtccctgg	gtcctgggag	tgagggcaaa	catgtggtca	tgcagggagt	acagacgeca	2460
taccttcatt	tatctgcaat	gcaggaagga	gattatacat	ttcagctgaa	ggtgacagat	2520
tcttcaaggc	aacagtctac	tgctgtggtg	actgtgattg	tecageetga	aaacaataga	2580
cctccagtgg	ctgtggccgg	ccctgataaa	gagetgatet	toccagtgga	aagtgctacc	2640
ctggatggga	gcagcagcag	cgatgaccac	agcattatet	tctaccacto	ggagcacgtc	2700
agaggcccca	gtgcagtgga	gatggaaaat	attoacaaao	caatagooad	tataactaat	2760
ctccaggtgg	ggacctacca	cttccattta	acagtgaaag	accadcaddd	actoaccado	2820
acqtccaccc	teactgrage	tatasaasa	raaaataata	atectocea	accogageage	2020
agtagcagac	atottottot	acttoccaat	aatteentte	gttttag	agecegggee	2000
actgatgacg	acgeeettgt	geeceecaat	tactteatta	ctctggatgg	LLCaayyLCL	2940
aacgatgatee	taagaatege	gecceacery	uggattegggg	auggeeagag	tecageaget	3000
ggugucgeca	utgatggstt	Lyaccacayi	gradererae	agettaegaa	tetggtggag	3060
gggguguaca	CLLCCacte	gcgagtcacc	gacagtcagg	gggeetegga	cacagacact	3120
gccactgtgg	aagtgcagcc	agaccctagg	aagagtggcc	tggtggagct	gacccigcag	3180
gttggtgttg	ggcagctgac	agagcagcgg	aaggacaccc	ttgtgaggca	gctggctgtg	3240
ctgctgaacg	tgctggactc	ggacattaag	gtccagaaga	ttcgggccca	ctcggatctc	3300
agcaccgtga	ttgtgtttta	tgtacagage	aggccgcctt	tcaaggttct	caaagctgct	3360
gaagtggccc	gaaatctgca	catgcggctc	tcaaaggaga	aggetgaett	cttqcttttc	3420
aaggtcttga	gggttgatac	agcaggttgc	cttctgaagt	gttctggcca	tggtcactgc	3480
gaccccctca	caaagcgctg	cattractet	cacttatoga	tagagaacct	tatacagogt	3540
tatatctoog	atggagagag	caactotoad	togagtatat	totatotoac	antattaact	3600
tttactctta	ttatactaac	aggaggtttc	acttaactet	acatotacta	agegeeggee	3660
Casasaaaaa	ctasastcad	aggaggtttt		teaterster	cuycaaaaya	3660
Cancasagas	taassatasa	gaaaaaaaaa	adycacacca	loolggataa	catggatgaa	3720
taggaaayaa	tygaactyay	ycccaatat	ggcatcaage	accgaagcac	agagcacaac	3780
Coagoolga	cggtateega	gtctgagttt	gacagtgace	aggacacaat	cttcageega	3840
gaaaagatgg	agagagggaa	tccaaaggtt	tccatgaatg	gttccatcag	aaatggagct	3900
tcottcagtt	attgctcaaa	ggacagataa	tggcgcagtt	cattgtaaag	tggaaggacc	3960
ccttgaatec	aagaccagtc	agtgggagtt	acagcacaaa	acccactctt	ttagaatagt	4020
tcattgacct	tettecceag	tgggttagat	gtgtatcccc	acgtactaaa	agaccggttt	4080
ttgaaggcac	aaaacaaaaa	ctttgctctt	ttaactgaga	tgcttqttaa	tagaaataaa	4140
ggctgggtaa	aactctaagg	tatatactta	aaagaqtttt	gagtttttgt	agetggcaca	4200
atctcatatt	aaagatgaac	aacgatttct	atctgtagaa	cottagagaa	ngtgaatgaa	4260
acaaggtttt	aaaaaqqqat	gatttctotc	ttagcogetg	tgattgcctc	taannaacan	4220
cattctasac	acquittete	ttotaggaco	tacaatcaaa	taactatata	tattaaaata	1200
acttatotaa	asaacscaaa	cratctataa	anntacada	tottacotat	agonnentt	4300
ctatactasc	aacsscacta	deacactace	~ggcacgyay	aattttt	aycadyCttt	4440
atcaataaca	off the state	ctctchange	adjucted	ggcosttaat	LOUGTGOLAT	4500
adaatootot	totacce	anagaa	aycaycegtt	yyccattcaa	yagctaagga	4560
-youcoylal	cocaayyact	yayycaatag	aaaygggagg	ayyagcttaa	rgccgtgcag	4620

	gttgaaggta	gcattgtaac	attatctttt	ctttctctaa	gaaaaactac	actgactcct	4680
	ctcggtgttg	tttagcagta	tagtteteta	atgtaaacgg	atecccagtt	tacattaaat	4740
	gcaatagaag	tgattaattc	attaagcatt	tattatgttc	tgtaggetgt	gcgtttggac	4800
	tgecatagat	agggataacg	actcagcaat	tgtgtatata	ttccaaaact	ctgaaataca	4860
	gtcagtctta	acttggatgg	cgtggttatg	atactctggt	ccccgacagg	tactttccaa	4920
1	aataacttga	catagatgta	ttcacttcat	atgtttaaaa	atacatttaa	gtttttctac	4980
	cgaataaatc	ttatttcaaa	catgaaagac	aattaaaaca	ttcccaccca	caaagcagta	5040
	ctecegagea	attaactgga	gttaattgta	gcctgctacg	ttgactggtt	cagggtagtt	5100
	ccccatccac	ccttggtcct	gaggetggtg	gccttggtgg	tgcccttggc	atttttgtg	5160
	ggaagattag	aatgagagat	agaaccagtg	ttgtggtacc	aagtgtgagc	acacctaaac	5220
	aatatcctgt	tgcacaatgc	tttttaaca	catgggaaaa	ctaggaatgc	attgctgatg	5280
	aagaagcaag	gtatttaaac	accagggcag	gagtgccaga	gaaaatgttt	ccccatgggt	5340
	tcttaaaaaa	aattcagctt	ttaggtgctt	ttgtcatctc	ccggagtatt	catcctcatg	5400
	ggaccatett	atttttactt	attgtaattt	actggggaaa	ggcagaacta	aaaagtgtgt	5460
	cattttattt	ttaaaataat	tgctttgctt	atgcctacac	tttctgtata	actagecaat	5520
	tcaatactgt	ctatagtgtt	agaaggaaaa	tgtgatttt	ttttttaac	cagtattgag	5580
	cttcataagc	ctagaatctg	ccttatcagg	tgaccagggt	tatggttgtt	tgcatgcaaa	5640
	tgtgaatttc	tggcataggg	gacagcagcc	caaatgtaaa	gtcatcgggc	gtaatgagga	5700
	agaagggagt	gaacatttac	cgctttatgt	acataacata	tgcagtttac	atactcattt	5760
	gatccttata	atcaaccttg	aagaggagat	actateatte	ttatgttgca	gatagecete	5820
	tgaaggeeea	gagaggttaa	gtaactteee	agaggtcatg	gccaagaagt	agtggctcca	5880
	agaactgaat	gcaaattttt	taaactgtag	agttctgctt	tccactaaac	aaagaactcc	5940
	tgccttgatg	gatggagggc	aaattctggt	ggaacttttg	ggccacctga	aagttctatt	6000
	cccaggacta	agaggaattt	cttttaatgg	atccagagag	ccaaggtcag	agggagagat	6060
	ggcctgcata	gtctcctgtg	gatcacaccc	gggccacccc	tccctctagg	tttacagtgg	6120
	acttettetg	cecstectec	ttttctgtcc	ttggccatct	cagcetggee	tototgatec	6180
	ttccatcaca	gaaggatctt	gaatctctgg	gaaatcaaac	atcacagtag	tgatcagaaa	6240
	gtgagtcctg	tcttgtcacc	ccatttctca	tcagaacaaa	gcacgagatg	gaatgaccaa	6300
	ccagcattct	tcatggtgga	ctgcttatca	ttgaggatet	ttgggagata	aagcacgcta	6360
	agagctctgg	acagagaaaa	acaggeeeta	gaatatggga	gtgggtgttt	gtagggctca	6420
	taggctaaca	agcactttag	ttgctggttt	acattcaatg	aaggaggatt	catacccatg	6480
	gcattacaag	gctaagcatg	tgtatgacta	aggaactatc	tgaaaaacat	gcagcaaggt	6540
	aagaaaatgt	accactcaac	aagccagtga	tgccaccttt	tgtgcgcggg	gaggagagtg	6600
	actaccattg	ttttttgtgt	gacaaagcta	tcatggacia	ttttaatctt	ggttttattg	6660
	cttaaaatat	attattttc	cctaigtgtt	gacaaggtat	ttctaatatc	acactattaa	6720
	atatatgcac	taatctaaat	aaaggtgtct	gtattttctg	taatgettat	ttttaggggg	6780
	aaatttgttt	tctttatgct	tcagggtaga	gggattccct	tgagtatagg	tcagcaaact	6840
	ctggcctgca	gcctgtgtgt	gcacgececa	tgagcogaaa	agtgggtctt	atgttttcaa	6900
	atggttaaaa	ataaataaaa	aaatttgaaa	catgtgaact	atatgacatt	cagatttgtg	6960
	ttcataaata	aagttttatt	ggaacatatc	с			6991

# Table LIII. Nucleotide sequence alignment of 254P1D6B v.1 (SEQ ID NO: 270) and 254P1D6B v.3 (SEQ ID NO: 271)

Score = 781 bits (406), Expect = 0.0Identities = 406/406 (100%) Strand = Plus / Plus

Query:	1	gctgccgcggcggtgggcgggggatccccccgggggtgcaaccttgctccacctgtgctgc	60
Sbjct:	1	getgeegeggggggtgggggggggggggggggggggggg	60
Query:	51	cctcggcgggcctggctcgccccgcgcagagcggcggcggcgctcgct	120
Sbjct:	51	cctcggcgggcctggctggcccgcgcgcggcggcggcgctcgctgtcactgccgga	120
Query:	121	ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgctcctctgg	180
Sbjct:	121	ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgctcctctgg	180
Query:	181	ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac	240
Sbjct:	181	ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac	240
Query:	241	agcaggtgcgcgcgcgagggtgtgaacgtgtgtgtgtgtg	300
Sbjct:	241	agcaggtgcgcgcgcgcgagggtgtgaacgtgtgtgtgtg	300

# PCT/US2004/001965

## WO 2004/067716

Query:	301	taagacctgcgatgacgacgaggaggaacaagtgggacggcgagtgatgctcagggccag	360
Sbjct:	301	taagacctgcgatgacgacgaggaggaacaagtgggacgggggggg	360
Query:	361	Cagcaacgcatggggggggggttcagtgtcgccagcagtgaccacag 406	
Sbjct:	361	cagcaacgcatgggggggggggttcagtgtcgccagcagtgaccacag 406	
Score = 3	314 bit	s (163), Expect = 2e-81Identities = 165/166 (99%) Strand = Plus / Plus	
Ouerv:	405		464
Shirt.	514		572
50 <b>)</b> (().	Jar	hyttettynyyteanatetyyttettaaanatattaaayyaayettyCaCCaaactoto	575
Query:	465	ttcagggccgcctcagaagcctgccatcacccactgtgtggtgcacaatggcgcccccca	524
Sbjct:	574	<pre>Hillillillillillillillillillillillillill</pre>	633
Query:	525	caggtgtgctctcttcattgctgctgctggtgacaattgcaggttg 570	
Sbjct:	634	caggtgtgctctcttcattgctgctgctggtgacaattgcagtttg 679	
Score = 1	.197e	+04 bits (6225), Expect = 0.0Identities = 6225/6225 (100%) Strand = Plus / Plus	
Query:	567	gttgtgcccgtaagcagtgcagcgaggggggggacatattccaatgcagtcatttcaccta	626
Sbict:	767		826
			020
Query:	627	acttggaaaccaccagaatcatgcgggtgtctcacaccttccctgtcgtagactgcacgg	686
Sbjct:	827	aCttggaaaccaccagaatcatgcgggtgtetcacacettecetgtegtagactgcacgg	886
Query:	687	Ccgcttgctgtgacctgtccagctgtgacctggtcgtggttcgagggccgctgctacc	746
Sbjct:	987	ccgcttgctgtgacctgtccagctgtgacctggcctggtggttcgagggccgctgctacc	946
	_		
Query:	747	tggtgagetgeeceeaaaagagaaetgtgageeeaagaagatgggeeeeateaggtett 	806
Sbjct:	947	tggtgagetgeeceecaaagagaaetgtgageecaagaagatgggeeceateaggtett	1006
Overve	207		0.5.5
Query.			800
Sbjet:	1007	atotoasttttgtgstcoggootgttoagaggootgcacagotgotggactatggggaca	1066
Query:	867	tgatgetgaacaggggetccccctcggggatetgggggggetcacctgaggatateagaa	926
Shict	1067		1126
objec.	1007		1120
Query:	927	aggacttgccctttctaggcaaagattggggcctagaggagatgtctgagtactcagatg	986
Sbjct:	1127	(	1186
- ·			
Query:	987	actaccgggagctggagaaggacctcttgcaacccagtggcaagcaggagcccagaggga	1046
Sbjct:	1187	actaccgggagetggagaaggacctettgeaacceagtggeaageaggageccagaggga	1246

Query:	1047	gtgccgagtacacggactggggcctactgccgggcagcgagggggccttcaactcctctg	1106
Sbjct:	1247	gtgccgagtacacggacLggggcctactgccgggcagcgagggggccttcaactcctctg	1306
Query:	1107	ttggagacagtcctgcggtgccagcggagacgcaggaccctgagctccattacctga	1166
Sbjct:	1307	ttggagacagteetgeggtgeeageggagaegeageaggaeeetgageteeattaeetga	1366
Query:	1167	atgagtcggcttcaacccctgccccaaaactccctgagagaagtgtgttgcttcccttgc	1226
Sbjct:	1367	atgagtoggetteaaccectgecceaaacteectgagagaagtgtgttgetteecttge	1426
Query:	1227	cgactactccatcttcaggagaggtgttggagaaagaaaaggcttctcagctccaggaac	1286
Sbjct:	1427	cgactactccatcttcaggagaggtgttggagaaagaaaaggcttctcagctccaggaac	1486
Query:	1287	$a {\tt a} {\tt t} c {\tt c} {\tt a} {\tt c} {\tt a} {\tt c} $	1346
Sbjct:	1487	aatccagcaacagctctggaaaagaggttctaatgccttcccatagtcttcctccggcaa	1546
Query:	1347	gcctggagctcagctcagtcaccgtggagaaaagcccagtgctcacagtcaccccgggga	1406
Sbjct:	1547	gcclggagetcagctcagtcaccgtggagaaaagcccagtgctcacagtcaccccgggga	1606
Query:	1407	gtacagagcacagcatcccaacacctcccactagcgcagccccctctgagtccaccccat	1466
Sbjct:	1607	gtacagagcacagcatcccaacacctcccactagcgcagccccctctgagtccaccccat	1666
Query:	1467	ctgagctacccatatctcctaccactgctcccaggacagtgaaagaacttacggtatcgg	1526
Sbjct:	1667	ctgagctacccatatctcctaccactgctcccaggacagtgaaagaacttacggtatcgg	1726
Query:	1527	ctggagataacctaattataactttacccgacaatgaagttgaactgaaggcctttgttg	1586
Sbjct:	1727	ctggagataacctaattataactttacccgacaatgaagttgaactgaaggcctttgttg	1786
Query:	1587	cgccagcgccacctgtagaaacaacctacaactatgaatggaatttaataagccaccca	1646
Sbjct:	1787	cgccagcgccacctgtagaaacaacctacaactatgaatggaatttaataagccacccca	1846
Query:	1647	cagactaccaaggtgaaataaaacaaggacacaagcaaactettaacetetetaattgt	1706
Sbjct:	1847	cagactaccaaggtgaaataaaacaaggacacaagcaaactcttaacctctctcaattgt	1906
Query:	1707	ccgtcggactttatgtcttcaaagtcactgtttctagtgaaaacgcctttggagaaggat	1766
Sbjct:	1907	ccgtcggactttatgtcttcaaagtcactgtttctagtgaaaacgcctttggagaaggat	1966
Query:	1767	ttgtcaatgtcactgttaagcctgccagaagagtcaacctgccacctgtagcagttgttt	1826
Sbjct:	1967	ttgtcaatgtcactgttaagcctgccagaagagtcaacctgccacctgtagcagttgttt	2026
Ouerve	1807		1886
Sbict:	2027	11111111111111111111111111111111111111	2086

Query:	1887	gtacagatgatactgaaatagtgagttatcattgggaagaaataaacgggcccttcatag 1946
Sbjct:	2087	UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Query:	1947	aagagaagacttcagttgactctcccgtcttacgcttgtctaaccttgatcctggtaact 2006
Sbjct:	2147	aagagaagacttcagttgactctcccgtcltacgcttgtctaaccttgatcctggtaact 2206
Query:	2007	atagtttcaggttgactgttacagactcggacggagccactaactctacaactgcagccc 2066
Sbjct:	2207	atagtttcaggttgactgttacagactcggacggagccactaactctacaactgcagccc 2266
Query:	2067	taatagtgaacaatgctgtggactacccaccagttgctaatgcaggaccaaatcacacca 2126
Sbjct:	2267	taatagtgaacaatgctgtggactacccaccagttgctaatgcaggaccaaatcacacca 2326
Query:	2127	taactttgccccaaaactccatcactttgaatggaaaccagagcagtgacgatcaccaga 2186
Sbjct:	2327	taactttgccccaaaactccatcactttgaatggaaaccagagcagtgacgatcaccaga 2386
Query:	2187	ttgtcctctatgagtggtccctggggtcctgggagtgagggcaaacatgtggtcatgcagg 2246
Sbjct:	2387	ttgtcctctatgagtggtccctgggtcctgggagtgagggcaaacatgtggtcatgcagg 2446
Query:	2247	gagtacagacgccataccttcatttatctgcaatgcaggaagga
Sbjct:	2447	gagtacagacgccataccttcatttatctgcaatgcaggaagga
Query:	2307	tgaaggtgacagattetteaaggeaacagtetaetgetgtggtgaetgtgattgteeage 2366
Sbjct:	2507	tgaaggtgacagattetteaaggeaacagtetaetgetgtggtgaetgtgattgteeage 2566
Query:	2367	ctgaaaacaatagacctccagtggctgtggccggccctgataaagagctgatcttcccag 2426
Sbjct:	2567	ctgaaaacaatagacctccagtggctgtggccggccctgataaagagctgatcttcccag 2626
Query:	2427	tggaaagtgetaeeetggatgggageageageagegatgaeeaeggeattgtettetaee 2486 
Sbjct:	2627	tggaaagtgctaccctggatgggggggcagcagcggtgaccacggcattgtcttctacc 2686
Query:	2487	actgggagcacgtcagaggccccagtgcagtggagatggaaaatattgacaaagcaatag 2546
Sbjct:	2687	actgggagcacgtcagaggccccagtgcagtggagatggaaaatattgacaaagcaatag 2746
Query:	2547	ccactgtgactggtctccaggtgggggacctaccacttccgtttgacagtgaaagaccagc 2606
Sbjct:	2747	ccactgtgactggtctccaggtggggacctaccacttccgtttgacagtgaaagaccage 2806
Query:	2607	agggactgagcagcacgtccacctcactgtggctgtgaagaaggaaataatagtcctc 2666
Sbjct:	2807	agggactgagcagcacgtccaccctcactgtggctgtgaagaaggaaataatagtcctc 2866
Query:	2667	CcagagCccgggctggtggcagacatgttcttgtgcttcccaataattccattactttgg 2726
Sbjct:	2867	ccagagcccgggctggtggcagacatgttcttgtgcttcccaataattccattactttgg 2926

Query:	2727	${\tt atggttcaaggtctactgatgaccaaagaattgtgtcctatctgtggatccgggatggcc}$	2786
Sbjct:	2927	atggttcaaggtctactgatgaccaaagaattgtgtcctatctgtggatccgggatggcc	2986
Query:	2787	agagtccagcagctggagatgtcatcgatggctctgaccacagtgtgggctctgcagctta	2846
Sbjct:	2987	agagtCCagCagctggagatgtcatcgatggetctgaccacagtgtggetctgcagetta	3046
Query:	2847	cgaatctggtggagggggtgtacactttccacttgcgagtcaccgacagtcagggggcct	2906
Sbjct:	3047	cgaatctggtggagggggtgtacactttccacttgcgagtcaccgacagtcaggggggcct	3106
Query:	2907	CggacaCagaCactgccactgtggaagtgcagccagaccctaggaagagtggcctggtgg	2966
Sbjct:	3107	cggacacagacactgccactgtggaagtgcagccagaccctaggaagagtggcctggtgg	3166
Query:	2967	agctgaccctgcaggttggtgttgggcagctgacagagcagcggaaggacacccttgtga	3026
Sbjct:	3167	agetgaccetgeaggttggtgttgggeagetgacagageaggaeaccettgtga	3226
Query:	3027	ggcagetggctgtgctgetgaacgtgetggacteggacattaaggtecagaagatteggg	3086
Sbjct:	3227	ggcagetggetgtgetgetgaacgtgetggaeteggaeattaaggteeagaagatteggg	3286
Query:	3087	cccactcggatctcagcaccgtgattgtgttttatgtacagagcaggccgcctttcaagg	3146
Sbjct:	3287	cccactcggatetcagcaccgtgattgtgttttatgtacagagcaggccgcctttcaagg	3346
Query:	3147	ttetcaaagetgetgaagtggeeegaaatetgeacatgeggeteteaaaggagaaggetg	3206
Sbjct:	3347	ttotcaaagetgetgaagtggeeegaaatetgeacatgeggeteteaaaggagaaggetg	3406
Query:	3207	acttcttgcttttcaaggtcttgagggttgatacagcaggttgccttctgaagtgttctg	3266
Sbjct:	3407	acttettgetttteaaggtettgagggttgatacageaggttgeettetgaagtgttetg	3466
Query:	3267	gccatggtcactgcgaccccctcacaaagcgctgcatttgctctcacttatggatgg	3326
Sbjct:	3467	gccatggtcactgcgaccccctcacaaagcgctgcatttgctctcacttatggatgg	3526
Query:	3327	accttatacagcgttatatctgggatggagagagcaactgtgagtggagtatattctatg	3386
Sbjct:	3527	accttatacagcgttatatctgggatggagaggagcaactgtgagtggagtatattctatg	3586
Query:	3387	tgacagtgttggcttttactcttattgtgctaacaggaggtttcacttggctttgcatct	3446
Sbjct:	3587	tgacagtgttggcttttactcttattgtgctaacaggaggtttcacttggctttgcatct	3646
Query:	3447	gctgctgcaaaagacaaaaaggactaaaatcaggaaaaaaacaaagtacaccatcctgg	3506
Sbjct:	3647	gctgctgcaaaagacaaaaaggactaaaatcaggaaaaaaaa	3706
Query:	3507	ataacatggatgaacaggaaagaatggaactgaggcccaaatatggtatcaagcaccgaa	3566
Sbjct:	3707	ataacatggatgaacaggaaagaatggaactgaggcccaaatatggtatcaagcaccgaa	3766

Quer <u>w</u> :	3567	gcacagagcacaactccagcctgatggtatccgagtctgagtttgacagtgaccaggaca	3626
Sbjct:	3767	gcacagagcacaactccagcctgatggtatccgagtctgagtttgacagtgaccaggaca	3826
Query:	3627	caatcttcagccgagaaaagatggagagagggaatccaaaggtttccatgaatggttcca	3686
Sbjct:	3827	caatcttcagccgagaaaagatggagagaggggaatccaaaggtttccatgaatggttcca	3886
Query:	3687	tcagaaatggagetteetteagttattgeteaaaggacagataatggegeagtteattgt	3746
Sbjct:	3887	tcagaaatggagcttccttcagttattgctcaaaggacagataatggcgcagttcattgt	3946
Query:	3747	aaagtggaaggaccccttgaatccaagaccagtcagtgggggttacagcacaaaacccac	3806
Sbjct:	3947	aaagtggaaggaccccttgaatccaagaccagtcagtgggagttacagcacaaaacccac	4006
Query:	3807	tottttagaatagttcattgacottottocccagtgggttagatgtgtatcoccacgtac	3866
Sbjct:	4007	tettttagaatagttcattgacettetteeccagtgggttagatgtgtateeccaegtae	4066
Query:	3867	taaaagaccggtttttgaaggcacaaaacaaaactttgctcttttaactgagatgcttg	3926
Sbjct:	4067	taaaagaccggtttttgaaggcacaaaacaaaactttgctcttttaactgagatgcttg	4126
Query:	3927	ttaatagaaataaaggctgggtaaaactctaaggtatatacttaaaagagttttgagttt	3986
Sbjct:	4127	ttaatagaaataaaggotgggtaaaactotaaggtatataottaaaagagttttgagttt	4186
Query:	3987	ttgtagctggcacaatctcatattaaagatgaacaacgatttctatctgtagaaccttag	4046
Sbjct:	4187	ttgtagctggcacaatctcatattaaagatgaacaacgatttctatctgtagaaccttag	4246
Query:	4047	agaaggtgaatgaaacaaggttttaaaaagggatgatttctgtcttagccgctgtgattg	4106
Sbjct:	4247	agaaggtgaatgaaacaaggttttaaaaagggatgatttctgtcttagccgctgtgattg	4306
Query:	4107	cctctaaggaacagcattctaaacacggtttctcttgtaggacctgcagtcagatggctg	4166
Sbjct:	4307	cctctaaggaacagcattctaaacacggtttctcttgtaggacctgcagtcagatggctg	4366
Query:	4167	tgtatgttaaaatagcttgtctaagaggcacgggccatctgtggaggtacggagtcttgc	4226
Sbjct:	4367	tgtatgttaaaatagcttgtctaagaggcacgggccatctgtggaggtacggagtcttgc	4426
Query:	4227	atgtagcaagetttetgtgetgaeggcaacaetegcaeagtgecaageeeteetggtttt	4286
Sbjct:	4427	atgtagcaagetttetgtgetgaeggeaacaetegeacagtgeeaageeeteetggtttt	4486
Query:	4287	taattetgtgetatgteaatggeagtttteateteteteaagaaageagetgttggeeat	4346
Sbjct:	4487	taattetgtgetatgteaatggeagtttteateteteaagaaageagetgttggeeat	4546
Query:	4347	tcaagagctaaggaagaatcgtattctaaggactgaggcaatagaaaggggaggaggagc	4406
Sbjct:	4547	tcaagagctaaggaagaatcgtattctaaggactgaggcaatagaaaggggaggaggaggag	4606

Query:	4407	ttaatgccgtgcaggttgaaggtagcattgtaacattatcttttctttc	4466
Sbjct:	4607	ttaatgccgtgcaggttgaaggtagcattgtaacattatcttttctttc	4666
Query:	4467	ctacactgactcctctcggtgttgtttagcagtatagttctctaatgtaaacggatcccc	4526
Sbjct:	4667	ctacactgactcctctcggtgttgtttagcagtatagttctctaatgtaaacggatcccc	4726
Query:	4527	agtttacattaaatgcaatagaagtgattaattcattaagcatttattatgttctgtagg	4586
Sbjct:	4727	agtttacattaaatgcaatagaagtgattaattcattaagcatttattatgttctgtagg	4786
Query:	4587	ctgtgcgtblggactgccatagatagggataacgactcagcaattgtgtatatattccaa	4646
Sbjct:	4787	ctgtgcgtttggactgccatagatagggataacgactcagcaattgtgtatatattccaa	4846
Query:	4647	aactetgaaatacagteagtettaacttggatggegtggttatgatactetggteeeega	4706
Sbjct:	4847	aactotgaaatacagtcagtottaacttggatggcgtggttatgatactotggtocooga	4906
Query:	4707	caggtactttccaaaataacttgacatagatgtattcacttcatatgtttaaaaatacat	4766
Sbjct:	4907	caggtactttccaaaataacttgacatagatgtattcacttcatatgtttaaaaatacat	4966
Query:	4767	ttaagtttttctaccgaataaatcttatttcaaacatgaaagacaattaaaacattccca	4826
Sbjct:	4967	ttaagtttttctaccgaalaaatcttatttcaaacatgaaagacaattaaaacattccca	5026
Query:	4827	cccacaagcagtactcccgagcaattaactggagttaattgtagcctgctacgttgact	4886
Sbjct:	5027	cccacaaagcagtactcccgagcaattaactggagttaattgtagcctgctacgttgact	5086
Query:	4887	ggttcagggtagttccccatccacccttggtcctgaggctggtggccttggtggtgccct	4946
Sbjct:	5087	ggttcagggtagttccccatccacccttggtcctgaggctggtggccttggtggtgccct	5146
Query:	4947	tggcattttttgtgggaagattagaatgagagatagaaccagtgttgtggtaccaagtgt   :	5006
Sbjct:	5147	tggcattttttgtgggaagattagaatgagagatagaaccagtgttgtggtaccaagtgt	5206
Query:	5007	gagcacacctaaacaatatcctgttgcacaatgcttttttaacacatgggaaaactagga   :	5066
Sbjct:	5207	gagcacacctaaacaatatcctgttgcacaatgcttttttaacacatgggaaaactagga	5266
Query:	5067	atgcattgctgatgaagaagcaaggtatt:aaacaccagggcaggagtgccagagaaaat	5126
Sbjct:	5267	atgcattgctgatgaagaagcaaggtatttaaacaccagggcaggagtgccagagaaaat	5326
Query:	5127	gtttccccatgggttcttaaaaaaattcagcttttaggtgcttttgtcatctcccggag	5186
Sbjct:	5327	gtttccccatgggttcttaaaaaaattcagcttttaggtgcttttgtcatctcccggag	5386
Query:	5187	tattcatcctcatgggaccatcttattttacttattgtaatttactggggaaaggcaga	5246
Sbjct:	5387	tattcatcctcatgggaccatcttatttttacttattgtaatttactggggaaaggcaga	5446

Query:	5247	actaaaaagtgtgtcattttatttttaaaataattgctttgcttatgcctacactttctg	5306
Sbjct:	5447		5506
Query: Shjct:	5307 5507	tataactagccaattcaatactgtctatagtgttagaaggaaaatgtgatttttttt	5366 5566
Query:	5367	taaccagtattgagetteataageetagaatetgeettateaggtgaeeagggttatggt	5426
Sbjct:	5567		5626
Query:	5427	tgtttgcatgcaaatgtgaatttctggcataggggacagcagcccaaatgtaaagtcatc	5486
Sbjct:	5627		5686
Query:	5487	gggcgtaatgaggaagaagggagtgaacatttaccgctttatgtacataacatatgcagt	5546
Sbjct:	5687		5746
Query:	5547	ttacatactcatttgatccttataatcaaccttgaagaggagatactatcattcttatgt	5606
Sbjct:	5747		5806
Query:	5607	tgcagatagccctctgaaggcccagagaggttaagtaacttcccagaggtcatggccaag	5666
Sbjct:	5807		5866
Query:	5667	aagtagtggeteeaagaactgaatgeaaattttttaaactgtagagttetgettteeaet	5726
Sbjct:	5867		5926
Query:	5727	aaacaaagaactcctgccttgatggatggagggcaaattctggtggaacttttgggccac	5786
Sbjct:	5927		5986
Query:	5787	ctgaaagttctattcccaggactaagaggaatttcttttaatggatccagagagccaagg	5846
Sbjct:	5987	]	6046
Query: Sbjct:	5847 6047	tcagagggagagatggcctgcatagtctcctgtggatcacacccgggccacccctccct	5906 6106
Query:	5907	taggtttacagtggacttettetgeeeeteetettetgteettggeeateteageet	5966
Sbjct:	6107		6166
Query:	5967	ggcotototgatoottooatoacagaaggatottgaatototgggaaatoaaacatoaca	6026
Sbjct:	6167		6226
Query: Sbjct:	6027 6227	gtagtgatcagaaagtgagtcetgtettgteacecealteteateagaacaaageaega	6086 6286

Query:	6087	gatggaatgaccaaccagcattetteatggtggaetgettateattgaggatetttggga	6146
Sbjet:	6287	gatggaatgaccaaccagcattcttcatggtggactgcttatcattgaggatctttggga	6346
Query:	6147	gataaagcacgctaagagctctggacagagaaaaacaggccctagaatatgggagtgggt	6206
Sbjct:	6347	gataaagcacgctaagagctctggacagagaaaaacaggccctagaatatgggagtgggt	6406
Query:	6207	gtttgtagggctcataggctaacaagcactttagttgctggtttacattcaatgaaggag	6266
Sbjct:	6407	gtttgtagggctcataggctaacaagcactttagttgctggtttacattcaatgaaggag	6466
Query:	6267	gattcatacccatggcattacaaggctaagcatgtgtatgactaaggaactatctgaaaa	6326
Sbjct:	6467	gattcatacccatggcattacaaggctaagcatgtgtatgactaaggaactatctgaaaa	6526
Query:	6327	acatgcagcaaggtaagaaaatgtaccactcaacaagccagtgatgccacctttgtgcg	6386
Sbjct:	6527	acatgcagcaaggtaagaaaatgtaccactcaacaagccagtgatgccaccttttgtgcg	6586
Query:	6387	cggggaggagagtgactaccattgttttttgtgtgacaaagctatcatggactattttaa	6446
Sbjet:	6587	cggggaggagagtgactaccattgttttttgtgtgacaaagctatcatggactattttaa	6646
Query:	6447	tottggttttattgottaaaatatattattttooctatgtgttgacaaggtatttotaa	6506
Sbjct:	6647	tottggttttattgottaaaatatattattttccotatgtgttgacaaggtatttotaa	6706
Query:	6507	tatcacactattaaatatatgcactaatctaaataaaggtgtctgtattttctgtaatgc	6566
Sbjct:	6707	tatcacactattaaatatatgcactaatctaaataaaggtgtctgtattttctgtaatgc	6766
Query:	6567	ttatttttagggggaaatttgtttttttatgcttcagggtagagggattcccttgagta	6626
Sbjct:	6767	ttatttttagggggaaatttgttttctttatgcttcagggtagagggattcccttgagta	6826
Query:	6627	taggtcagcaactctggcctgcagcctgtgtgtgcccgccc	6686
Sbjct:	6827	taggtcagcaaactctggcctgcagcctçtgtgtgcacgcccatgagccgaaaagtggg	6386
Query:	6687	tettatgtttteaaatggttaaaaataaataaaaaaatttgaaacatgtgaactatatga	6746
Sbjct:	6887	tcttatgttttcaaatggttaaaaataaataaaaaaatttgaaacatgtgaactatatga	5946
Query:	6747	cattcagatttgtgttcataaataagttttattggaacatatcc 6791	
Sbjct:	6947	cattcagatttgtgttcataaataaagttttattggaacatatcc 6991	

Table LIV . Peptide sequences of protein coded by 254P1D6B v.3 (SEQ ID NO: 272)

MTRLGWPSPCCARKQCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDL60AWWFEGRCYLVSCPHKENCEPKKMGPIRSYLTFVLRPVQRPAQLLDYGDMMLNRGSPSGI120WGDSPEDIRKDLPFLGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDWGLLP180GSEGAFNSSVGDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLPLPTTPSSGEVLE240KEKASQLQEQSSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTPT300SAAPSESTPSELPISPTTAPRTVKELTVSAGDNLIITLPDNEVELKAFVAPAPPVETTYN360YEWNLISHPTDYQGEIKQGHKQTLNLSQLSVGLYVFKVTVSSENAFGEGFVNVTVKPARR420VNLPFVAVVSPQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFIEEKTSVDSFVL480

RLSNI GNQSS TAVVT EMENJ VLPNN LRVTE SDIKV TAGCI TAGCI TAGCFI ESEFE Table and 2 Score	LDPGNY SDDHQI VVIVQP DKAIA ISITLD DSQGAS /QKIRA LKCSG WLCIC DSDQDT LV. Ami 54P1D6 = 2124 h	SFRLTVTDSD       GATNSTTAAL       IVNNAVDYPP       VANAGPNHTI       TLPQNSITLN       5         VLYEWSLGPG       SEGKHVVMQG       VQTPYLHLSA       MQEGDYTFQL       KVTDSSRQQS       6         ENNRPPVAVA       GPDKELIFPV       ESATLDGSSS       SDDHGIVFYH       WEHVRGPSAV       6         TVTGLQVGTY       HFRLTVKDQQ       GLSSTSTLV       AVKKENNSPP       RARAGGRINUL       7         GSRSTDDQRI       VSYLWIRDGQ       SPAAGDVIDG       SDHSVALQLT       NLVEGVYTFH       7         DTDTATVEVQ       PDPRKSGLVE       LTLQVGVQQL       TEQRKDTLVR       QLAVLLNVLD       8         HSDLSTVIVF       YVQSRPPFKV       LKAAEVARNL       HMRLSKEKAD       FLLFKVLRVD       9         HGHCDPLTKR       CICSHLWMEN       LIQRYIWDGE       SNCEWSIFYV       TVLAFTLIVL       9         CKRQKRTKI       RKKTKYTILD       NMDEQERMEL       RPKYGIKHRS       TEHNSSLMVS       10         IFSREKMERG       NPKVSMNGSI       RNGASFSYCS       KDR       10         NO acid sequence alignment of 254P1D6B v.1 (SEQ ID NO: 273)       8       v.3 (SEQ ID NO: 274)       100%)       Positives = 1053/1053 (100%)       10%)	40 60 20 80 40 60 900 960 963
V.1:	20	CARKQCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYL CARKQCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYL	79
V.3:	11	CARKQCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYL	70
V.1:	80	VSCPHKENCEPKKMGPIRSYLTFVLRPVQRPAQLLDYGDMMLNRGSPSGIWGDSPEDIRK	139
V.3:	71	VSCFARENCEPKKMGPIRSINFFURFVQRFAQLEDIGDMMENRGSPSGIWGDSPEDIRK VSCPHKENCEPKKMGPIRSYLTFVLRPVQRFAQLEDIGDMMENRGSPSGIWGDSPEDIRK	130
V.1:	140	DLPFLGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDWGLLPGSEGAFNSSV	199
v.3:	131	DLPFLGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDWGLLPGSEGAFNSSV DLPFLGKDWGLEEMSEYSDDYRELEKDLLQPSGKQEPRGSAEYTDWGLLPGSEGAFNSSV	190
V.1:.	200	GDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLPLPTTPSSGEVLEKEKASQLQEQ	259
V.3:	191	GDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLPLPTTPSSGEVLEKEKASQLQEQ GDSPAVPAETQQDPELHYLNESASTPAPKLPERSVLLPLPTTPSSGEVLEKEKASQLQEQ	250
V.1:	260	SSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTPPTSAAPSESTPS	319
V.3:	251	SSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTPPTSAAPSESTPS SSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTPPTSAAPSESTPS	310
V.1:	320	ELPISPTTAPRTVKELTVSAGDNLIITLPDNEVELKAFVAPAPPVETTYNYEWNLISHPT	379
v.3:	311	ELFISFTTAFRTVKELTVSAGDNLIITLPDNEVELKAFVAPAPPVETTYNYEWNLISHPT ELFISFTTAFRTVKELTVSAGDNLIITLPDNEVELKAFVAPAPPVETTYNYEWNLISHPT	370
V.1:	380	DYQGEIKQGHKQTLNLSQLSVGLYVFKVTVSSENAFGEGFVNVTVKPARRVNLPPVAVVS	439
V.3:	371	DYQGEIKQGHKQTLNLSQLSVGLYVFKVTVSSENAFGEGFVNVTVKPARRVNLPPVAVVS DYQGEIKQGHKQTLNLSQLSVGLYVFKVTVSSENAFGEGFVNVTVKPARRVNLPPVAVVS	430
V.1:	440	PQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFIEEKTSVDSPVLRLSNLDPGNY	499
V.3:	431	PQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFIEEKTSVDSFVLRLSNLDPGNY PQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFIEEKTSVDSFVLRLSNLDPGNY	490
V.1:	500	SFRLTVTOSDGATNSTTAALIVNNAVDYPPVANAGPNHTITLPQNSITLNSNQSSDDHQI	559
V.3:	491	SFRLTVTDSDGATNSTTAALIVNNAVDYPPVANAGPNHTITLPQNSITLNGNQSSDDHQI SFRLTVTDSDGATNSTTAALIVNNAVDYPPVANAGPNHTITLPQNSITLNGNQSSDDHQI	550
V.1:	560	VLYEWSLGPGSEGKHVVMQGVQTPYLHLSAMQEGDYTFQLKVTDSSRQQSTAVVTVIVQP	619
v.3:	551	VLYEWSLGPGSEGKHVVMQGVQTPYLHLSAMQEGDYTFQLKVTDSSRQQSTAVVTVIVQP VLYEWSLGPGSEGKHVVMQGVQTPYLHLSAMQEGDYTFQLKVTDSSRQQSTAVVTVIVQP	610
V.1:	620	ENNRPPVAVAGPDKELIFPVESATLDGSSSSDDHGIVFYHWEHVRGPSAVEMENIDKAIA	679
V.3:	611	ENNRPPVAVAGPDKELIFPVESATLDGSSSSDDHGIVFYHWEHVRGPSAVEMENIDKAIA ENNRPPVAVAGPDKELIFPVESATLDGSSSSDDHGIVFYHWEHVRGPSAVEMENIDKAIA	670
V.1:	680	TVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVKKENNSPPRARAGGRHVLVLPNNSITLD	739
V.3:	671	TVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVKKENNSPFRARAGGRHVLVLPNNSITLD TVTGLQVGTYHFRLTVKDQQGLSSTSTLTVAVKKENNSPFRARAGGRHVLVLPNNSITLD	730
V.1.	740		700
v	731	GSRSTDDQRIVSYLWIRDGQSPAAGDVIDGSDHSVALQLTNLVEGVIFHLRVTDSQGAS GSRSTDDQRIVSYLWIRDGQSPAAGDVIDGSDHSVALQLTNLVEGVYFHLRVTDSQGAS	700
v.J:	000 101	CONCLEDENT OF PATCOCCULATION OF A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DOT AND A DO	190
<b>х • Т !</b>	000	DTDTATVEVQEDFRKSGLVELTLQVGVGQDTEQRKDTLVRQLAVLENVLDSDIKVQKIRA DTDTATVEVQPDFRKSGLVELTLQVGVGQDTEQRKDTLVRQLAVLENVLDSDIKVQKIRA	002

## PCT/US2004/001965

.

•

V.3:	791	DTDTATVEVQPDPRKSGLVELTLQVGVGQLTEQRKDTLVRQLAVLLNVLDSDIKVQKIRA	850
V.1:	860	HSDLSTVIVFYVQSRPPFKVLKAAEVARNLHMRLSKEKADFLLFKVLRVDTAGCLLKCSG	919
V.3:	851	HSDLSTVIVFYVQSRPPFKVLKAAEVARNLHMRLSKEKADFLLFKVLRVDTAGCLLKCSG	910
V.1:	920	HGHCDPLTKRCICSHLWMENLIORYIWDGESNCEWSIFYVTVLAFTLIVLTGGFTWLCIC HCHCDPLTKRCICSHLWMENLIOPYIMCESNCEWSIFYVTVLAFTLIVLTGGFTWLCIC	979
V.3:	911	HGHCDPLTKRCICSHLWMENLIQRYIWDGESNCEWSIFYVVVLAFTLIVLTGGFTWLCIC	970
V.1:	980	CCKRQKRTKIRKKTKYTILDNMDEQERMELRPKYGIKHRSTEHNSSLMVSESEFDSDQDT	1039
V.3:	971	CCKRQKSTKIRKKTKYTILDNMDEQERMELRPKYGIKHSSTEHNSSLMYSESEFDSDQDT CCKRQKSTKIRKKTKYTILDNMDEQERMELRPKYGIKHSSTEHNSSLMYSESEFDSDQDT	1030
V.1;	1040	IFSREKMERGNPKVSMNGSIRNGASFSYCSKDR 1072	
v.3:	1031	IFSREKMERGNPRVSMNGSIRNGASFSYCSKDR IFSREKMERGNPKVSMNGSIRNGASFSYCSKDR 1063	
### THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated polynucleotide that encodes a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7.

5

2. The polynucleotide of claim 1, wherein the polynucleotide sequence comprises the sequence of

(a) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730;

10 (b) SEQ ID NO:4, from nucleotide residue number 512 to nucleotide residue number 3730;

(c) SEQ ID NO:6, from nucleotide residue number 739 to nucleotide residue number 3930;

(d) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue15 number 3730, wherein the cytosine at position 286 is replaced by guanine;

(e) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the guanine at position 2347 is replaced by adenine;

(f) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the cytosine at position 3762 is replaced by thymine;

20 (g) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the adenine at position 3772 is replaced by guanine;

(h) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the cytosine at position 3955 is replaced by thymine;

(i) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residuenumber 3730, wherein the cytosine at position 4096 is replaced by thymine;

(j) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the guanine at position 4415 is replaced by adenine;

(k) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the guanine at position 4419 is replaced by adenine;

30

(1) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the adenine at position 4539 is replaced by guanine;

(m) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the guanine at position 4614 is replaced by thymine;

(n) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residuenumber 3730, wherein the guanine at position 5184 is replaced by cytosine;

5

(o) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the thymine at position 5528 is replaced by guanine;

(p) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the guanine at position 5641 is replaced by adenine;

(q) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the thymine at position 6221 is replaced by cytosine; or

(r) SEQ ID NO:2, from nucleotide residue number 512 to nucleotide residue number 3730, wherein the guanine at position 6223 is replaced by adenine.

10 3. A recombinant expression vector comprising a polynucleotide of claim 1 or 2.

4. A host cell that contains an expression vector of claim 3.

An isolated protein comprising the amino acid sequence of SEQ ID NO:3, SEQ
 ID NO:5, or SEQ ID NO:7.

6. A process for producing the protein of claim 5 comprising culturing a host cell of claim 4 under conditions sufficient for the production of the protein.

20 7. An antibody or fragment thereof that immunospecifically binds to an epitope on the protein of claim 5.

8. The antibody or fragment thereof of claim 7, which is monoclonal.

25 9. The antibody or fragment thereof of claim 7 or claim 8, which is conjugated with a cytotoxic agent.

10. The antibody or fragment thereof of claim 9, wherein the cytotoxic agent is selected from the group consisting of radioactive isotopes, chemotherapeutic agents and30 toxins.

11. The antibody or fragment thereof of any one of claims 7 to 10, wherein the antibody or fragment thereof further comprises a pharmaceutically acceptable carrier.

35 12. A hybridoma that produces an antibody of claim 8.

13. A method for detecting the presence of a protein or a polynucleotide in a test sample comprising:

contacting the sample with an antibody or a probe, respectively, that specifically binds to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5,
5 SEQ ID NO:7, or SEQ ID NO:11, or the polynucleotide of claim 1, respectively; and

detecting binding of protein or polynucleotide, respectively, in the sample thereto.

14. The method of claim 13, wherein the method comprises comparing an amount10 of binding of the antibody or the probe that specifically binds to the protein or the polynucleotide to the presence of the protein or the polynucleotide in a corresponding normal sample.

15. The method of claim 14, wherein the presence of elevated polynucleotide orprotein in the test sample relative to the normal tissue sample provides an indication of the presence of cancer.

16. The method of claim 15, wherein the cancer is selected from the group consisting of prostate cancer, lung cancer, ovarian cancer, breast cancer, and pancreatic20 cancer.

17. A method of inhibiting growth of a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said method comprising providing an effective amount of an antibody
25 according to any one of claims 7 to 11 to the cell, whereby the growth of the cell is inhibited.

18. A method of delivering a cytotoxic agent to a cell expressing a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7,
30 or SEQ ID NO:11, said method comprising providing an effective amount of an antibody according to any one of claims 7 to 11 to the cell.

A method of inducing an immune response to a protein comprising the amino acid sequence of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, said
 method comprising: providing a protein epitope; contacting the epitope with an

immune system T cell or B cell, whereby the immune system T cell or B cell is induced.

20. Use of an epitope from a protein comprising the amino acid sequence of SEQ ID
5 NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11, for the preparation of a medicament to induce a T cell or B cell immune response in a subject.

21. Use of an antibody according to any one of claims 7-11 in the manufacture of a medicament for inhibiting growth of a cell expressing a protein comprising the amino
acid sequence of SEQ ID:NO:3, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:11.

#### WO 2004/067716

·· .

#### PCT/US2004/001965

### Figure 1: 254P1D6B SSH sequence of 186 nucleotides (SEQ ID NO: 1).

1GATCCACAGA TAGGACACAA TTCTTTGGTC ATCAGTAGAC CTTGAACCAT CCAAAGTAAT61GGAATTATTG GGAAGCACAA GAACATGTCT GCCACCAGCC CGGGCTCTGG GAGGACTATT121ATTTTCCTTC TTCACAGCCA CAGTGAGGGT GGACGTGCTG CTCAGTCCCT GCTGGTCTTT181TACTGTCAAA CGGAAGTGGT AGGTCCCCAC CTGGAGACCA GTCACAGTGG CTATTGCTTT241GTCAATATTT TCCATCTCCA CTGCACTGGG GCCTCTGACG TGCT

Figure 2:

Figure 2A. The cDNA (SEQ ID NO.: 2) and amino acid sequence (SEQ ID NO.: 3) of 254P1D6B v.1 clone LCP-3. The start methionine is underlined. The open reading frame extends from nucleic acid 512-3730 including the stop codon.

121 ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgctcctctcg 181 ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac 301 taagacctgcgatgacgacgaggaggaacaagtgggacggcgagtgatgctcagggccag 361 cagcaacgcatggggcgagcttcagtgtcgccagcagtgaccacagttcttgaggccaaa 421 totggotoctaaaaaacatcaaaggaagettgcaccaaactotottcagggoogcotcag 1 MAPPTGVLSS  $\tt 481 \ aagcotgccatcacccactgtgtggtgcacaATGGCGCCCCCACAGGTGTGCTCTTC$ 11 L L L V T I A G C A R K Q C S E G R T 541 ATTGCTGCTGCTGGTGACAATTGCAGGTTGTGCCCGTAAGCAGTGCAGCGAGGGGAGGAC 31 SNAVISPNLETTRIMRVSH Y 601 ATATTCCAATGCAGTCATTTCACCTAACTTGGAAACCACCAGAATCATGCGGGTGTCTCA 51 T F P V V D C T A A C C D L S S C D L A 661 CACCTTCCCTGTCGTAGACTGCACGGCCGCTTGCTGTGACCTGTCCAGCTGTGACCTGGC 71 W W F E G R C Y L V S C P H K E N C E P 721 CTGGTGGTTCGAGGGCCGCTGCTACCTGGTGAGCTGCCCCCACAAAGAGAACTGTGAGCC 91 K K M G P I R S Y L T F V L R P V Q R P 781 CAAGAAGATGGGCCCCATCAGGTCTTATCTCACTTTTGTGCTCCGGCCTGTTCAGAGGCC 111 A Q L L D Y G D M M L N R G S P S G I 841 TGCACAGCTGCTGGACTATGGGGACATGATGCTGAACAGGGGCTCCCCCTCGGGGATCTG 131 G D S P E D I R K D L P F L G K D W G L 901 GGGGGACTCACCTGAGGATATCAGAAAGGACTTGMCCTTTCTAGGCAAAGATTGGGGCCT E E M S E Y S D D Y R E L E K D L L Q P 151 961 AGAGGAGATGTCTGAGTACKCAGATGACTACCGGGAGCTGGAGAAGGACCTCTTGCAACC S G K Q E P R G S A E Y T O W G L L P G 171 1021 CAGTGGCAAGCAGGAGCCCAGAGGGAGTGCCGAGTACACGGACTGGGGGCCTACTGCCGGG 191 SEGAFNSSVGDSPAVPAETQ 1081 CAGCGAGGGGGCCTTCAACTCCTCTGTTGGAGACAGTCCTGCGGTGCCAGCGGAGACGCA 211 Q D P E L H Y L N E S A S T P A P K L P 1141 GCAGGACCCTGAGCTCCATTACCTGAATGAGTCGGCTTCAACCCCTGCCCCAAAACTCCC ERSVLLPLPTTPSSGEVLEK 231 1201 TGAGAGAAGTGTGTTGCTTCCCTTGCCGACTACTCCATCTTCAGGAGAGGTGTTGGAGAA 251 E K A S Q L Q E Q S S N S S G K E V L M 1261 AGAAAAGGCTTCTCAGCTCCAGGAACAATCCAGCAACAGCTCTGGAAAAGAGGTTCTAAT P S H S L P P A S L E L S S V T V E K S 271 1321 GCCTTCCCATAGTCTTCCTCCGGCAAGCCTGGAGCTCAGCTCAGTCACCGTGGAGAAAAG

291 PVLTVTPGSTEHSIPTPPTS 311 A A P S E S T P S E L P I S P T T A P R 1441 CGCAGCCCCCTCTGAGTCCACCCCATCTGAGCTACCCATATCTCCTACCACTGCTCCCAG 331 TVKELTVSAGDNLIITLPDN 1501 GACAGTGAAAGAACTTACGGTATCGGCTGGAGATAACCTAATTATAACTTTACCCCGACAA 351 E V E L K A F V A P A P P V E T T Y N Y 1561 TGAAGTTGAACTGAAGGCCTTTGTTGCGCCAGCGCCACCTGTAGAAACAACCTACAACTA 371 E W N L I S H P T D Y Q G E I K Q G H K 1621 TGAATGGAATTTAATAAGCCACCCCACAGACTACCAAGGTGAAATAAAACAAGGACACAA 391 Q T L N L S Q L S V G L Y V F K V T V S 1681 GCAAACTCTTAACCTCTCTCAATTGTCCGTCGGACTTTATGTCTTCAAAGTCACTGTTTC 411 SENAFGEGFVNVTVKPARRV 1741 TAGTGAAAACGCCTTTGGAGAAGGATTTGTCAATGTCACTGTTAAGCCTGCCAGAAGAGT 431 N L P P V A V V S P Q L Q E L T L P L T 1801 CAACCTGCCACCTGTAGCAGTTGTTTCTCCCCCAACTGCAAGAGCTCACTTTGCCTTTGAC 451 SALIDGSQSTDDTEIVSYHW 1861 GTCAGCCCTCATTGATGGCAGCCAAAGTACAGATGATACTGAAATAGTGAGTTATCATTG 471 E E I N G P F I E E K T S V D S P V L R 1921 GGAAGAAATAAACGGGCCCTTCATAGAAGAGAAGACTTCAGTTGACTCTCCCGTCTTACG 491 L S N L D P G N Y S F R L T V T D S D G 1981 CTTGTCTAACCTTGATCCTGGTAACTATAGTTTCAGGTTGACTGTTACAGACTCGGACGG 511 A T N S T T A A L I V N N A V D Y P P V 2041 AGCCACTAACTCTACAACTGCAGCCCTAATAGTGAACAATGCTGTGGACTACCCACCAGT 531 A N A G P N H T I T L P Q N S I T L N G 2101 TGCTAATGCAGGACCAAATCACACCATAACTTTGCCCCCAAAACTCCATCACTTTGAATGG 551 N Q S S D D H Q I V L Y E W S L G P G S 2161 AAACCAGAGCAGTGACGATCACCAGATTGTCCTCTATGAGTGGTCCCTGGGTCCTGGGAG 571 E G K H V V M Q G V Q T P Y L H L S A M 2221 TGAGGGCAAACATGTGGTCATGCAGGGAGTACAGACGCCATACCTTCATTTATCTGCAAT 591 Q E G D Y T F Q L K V T D S S R Q Q S T 2281 GCAGGAAGGAGATTATACATTTCAGCTGAAGGTGACAGATTCTTCAAGGCAACAGTCTAC 611 A V V T V I V Q P E N N R P P V A V A G 2341 TGCTGTRGTGACTGTGATTGTCCAGCCTGAAAACAATAGACCTCCAGTGGCCTGTGGCCGG 631 PDKELIFPVESATLDGSSSS 2401 CCCTGATAAAGAGCTGATCTTCCCAGTGGAAAGTGCTACCCTGGATGGGAGCAGCAGCAG 651 D D H G I V F Y H W E H V R G P S A V E 2461 CGATGACCACGGCATTGTCTTCTACCACTGGGAGCACGTCAGAGGCCCCAGTGCAGTGGA 671 MENIDKAIATVTGLOVGTYH 2521 GATGGAAAATATTGACAAAGCAATAGCCACTGTGACTGGTCTCCAGGTGGGGGACCTACCA 691 F R L T V K D Q Q G L S S T S T L T V A 2581 CTTCCGTTTGACAGTGAAAGACCAGCAGGGACTGAGCAGCACGTCCACCCTCACTGTGGC

711 V K K E N N S P P R A R A G G R H V L V 2641 TGTGAAGAAGGAAAATAATAGTCCTCCCAGAGCCCGGGCTGGTGGCAGACATGTTCTTGT 731 L P N N S I T L D G S R S T D D Q R I V 2701 GCTTCCCAATAATTCCATTACTTTGGATGGTTCAAGGTCTACTGATGACCAAAGAATTGT 751 SYLWIRDGQSPAAGDVIDGS 2761 GTCCTATCTGTGGATCCGGGATGGCCAGAGTCCAGCAGCTGGAGATGTCATCGATGGCTC 771 D H S V A L Q L T N L V E G V Y T F H L 2821 TGACCACAGTGTGGCTCTGCAGCTTACGAATCTGGTGGAGGGGGTGTACACTTTCCACTT 791 R V T D S Q G A S D T D T A T V E V Q P 2881 GCGAGTCACCGACAGTCAGGGGGGCCTCGGACACAGACACTGCCACTGTGGAAGTGCAGCC 811 D P R K Š G L V E L T L Q V G V G Q L T 2941 AGACCCTAGGAAGAGTGGCCTGGTGGAGCTGACCCTGCAGGTTGGTGTTGGGCAGCTGAC 831 E Q R K D T L V R Q L A V L L N V L D S 3001 AGAGCAGCGGAAGGACACCCTTGTGAGGCAGCTGGCTGTGCTGCTGAACGTGCTGGACTC 851 DIKVQKIRAHSDLSTVIVFY 3061 GGACATTAAGGTCCAGAAGATTCGGGCCCACTCGGATCTCAGCACCGTGATTGTGTTTTA 871 V Q S R P P F K V L K A A E V A R N L H 3121 TGTACAGAGCAGGCCGCCTTTCAAGGTTCTCAAAGCTGCTGAAGTGGCCCCGAAATCTGCA 891 M R L S K E K A D F L L F K V L R V D T 3181 CATGCGSCTCTCAAAGGAGAAGGCTGACTTCTTGCTTTTCAAGGTCTTCAGGGTTGATAC 911 A G C L L K C S G H G H C D P L T K R 3241 AGCAGGTTGCCTTCTGAAGTGTTCTGGCCATGGTCACTGCGACCCCCTCACAAAGCGCTG 931 I C S H L W M E N L I Q R Y I W D G E S 3301 CATTTGCTCTCACTTATGGATGGAGAACCTTATACAGCGTTATATCTGGGATGGAGAGAG 951 N C E W S I F Y V T V L A F T L I V L T 3361 CAACTGTGAGTGGAGTATATTCTATGTGACAGTGTTGGCTTTTACTCTTATTGTGCTAAC 971 G G F T W L C I C C C K R Q K R T K I R 3421 AGGAGGTTTCACTTGGCTTTGCATCTGCTGCTGCAAAAGGACAAAAAGGACTAAAATCAG 991 K K T K Y T I L D N M D E Q E R M E I R 3481 GAAAAAAAAAAGTACACCATCCTGGATAACATGGATGAACAGGAAAGAATGGAACTGAG 1011 PKYGIKHRSTEHNSSLMVSE 3541 GCCCAAATATGGTATCAAGCACCGAAGCACAGAGCACAACTCCAGCCTGATGGTATCCGA 1031 SEFDSDQDTIFSREKMERGN 3601 GTCTGAGTTTGACAGTGACCAGGACACAATCTTCAGCCGAGAAAAGATGGAGAGAGGGAA 1051 PKVSMNGSIRNGASFSYCSK 1071 D R * 3721 GGACAGATAAtggcgcagttcattgtaaagtggaaggacccyttgaatccargaccagtc 3781 agtgggagttacagcacaaaacccactcttttagaatagttcattgaccttcttccccag 

4/38

3901 ctttgctcttttaactgagatgcttgttaatagaaataaaggctgggtaaaactytaagg 3961 tatatacttaaaagagttttgagtttttgtagctggcacaatctcatattaaagatgaac

4021	aacgatttctatctgtagaaccttagagaaggtgaatgaa
4081	gatttctgtcttagcygctgtgattgcctctaaggaacagcattctaaacacggtttctc
4141	ttgtaggacctgcagtcagatggctgtgtatgttaaaatagcttgtctaagaggcacggg
4201	ccatctgtggaggtacggagtcttgcatgtagcaagctttctgtgctgacggcaacactc
4261	gcacagtgccaagccctcctggtttttaattctgtgctatgtcaatggcagttttcatct
4321	ctctcaagaaagcagctgttggccattcaagagctaaggaacaatcgtattctaaggact
4381	gaggcaatagaaaggggggggggggggggttaatgccrtgcaggttgaaggtagcattgtaac
4441	attatettttettetetaagaaaaactacaetgaeteeteeggtgttgtttageagta
4501	tagttetetaatgtaaacrgatecceagtttacattaartgeaatagaagtgattaatte
4561	attaagcatttattatgttctgtaggctgtgcgtttggactgccatagatag
4621	acteageaattgtgtatatattccaaaactetgaaatacagteagtettaaettggatgg
4681	cgtggttatgatactctggtccccgacaggtactttccaaaataacttgacatagatgta
4741	${\tt ttcacttcatatgtttaaaaatacatttaagtttttctaccgaataaatcttatttcaaa$
4801	catgaaagacaattaaaacattcccacccacaaagcagtactcccgagcaattaactgga
4861	${\tt gttaattgtagectgctacgttgactggttcagggtagttccccatccacccttggtcct}$
4921	gaggetggtggcettggtggtgeeettggeatttttttgtgggaagattagaatgagagat
4981	agaaccagtgttgtggtaccaagtgtgagcacacctaaacaatatectgtigcacaatge
5041	$\tt ttttttaacacatgggaaaactaggaatgcattgctgatgaagaagcaaggtatttaaac$
5101	accagggcaggagtgccagagaaaatgtttccccatgggttcttaaaaaaaa
5161	${\tt ttaggtgcttttgtcatctcccgsagtattcatcctcatgggaccatcttatttttactt}$
5221	$\verb+attgtaatttactggggaaaggcagaactaaaagtgtgtcattttattttaaaataat$
5281	${\tt tgctttgcttatgcctacactttctgtataactagccaattcaatactgtctatagtgtt}$
5341	agaaggaaaatgtgattttttttttaaccagtattgagcttcataagcctagaatctg
5401	$\verb"ccttatcaggtgaccagggttatggttgtttgcatgcaaatgtgaatttctggcataggg"$
5461	gacagcagcccaaatgtaaagtcatcgggcgtaatgaggaagaagggagtgaacatttac
5521	$\tt cgctttakgtacataacatatgcagtttacatactcatttgatccttataatcaaccttg$
5581	aagaggagatactatcattcttatgttgcagatagccctctgaaggcccagagaggttaa
5641	rtaacttcccagaggtcatggccaagaagtagtggctccaagaactgaatgcaaattttt
5701	${\tt taaactgtagagttctgctttccactaaacaaagaactcctgccttgatggatg$
5761	aaattotggtggaacttttgggccacctgaaagttotattoccaggactaagaggaattt
5821	cttttaatggatccagagagccaaggtcagagggagagatggcctgcatagtctcctgtg
5881	${\tt gatcacacccgggccacccctcctctaggtttacagtggacttcttctgcccctcctcc}$
5941	ttttetgteettggeeateteageetggeetetetgateetteeateaeagaaggatett
6001	gastetetgggaaateaaacateacagtagtgateagaaagtgagteetgtettgteace
6061	ccatttotcatcagaacaaagcacgagatggaatgaccaaccagcattottcatggtgga
6121	ctgottatcattgaggatctttgggagataaagcacgctaagaggtctggacagagaaaa
6181	acaggccctagaatatgggagtgggtgtttgtagggctcayargctaacaagcactttag
6241	$\tt ttgctggtttacattcaatgaaggaggattcatacccatggcattacaaggctaagcatg$
6301	tgtatgactaaggaactatctgaaaaacatgcagcaaggtaagaaaatgtaccactcaac
6361	aagccagtgatgccaccttttgtgcgcggggaggagagtgactaccattgttttttgtgt
6421	${\tt gacaaagctatcatggactattttaatcttggttttattgcttaaaatatattattttc}$
6481	cctatgtgttgacaaggtatttctaatatcacactattaaatatatgcactaatctaaat

#### WO 2004/067716

Figure 2B. The cDNA (SEQ ID NO.: 4) and amino acid sequence (SEQ ID NO.: 5) of 254P1D6B v.2. The start methionine is underlined. The open reading frame extends from nucleic acid 512-3730 including the stop codon.

61 cctcggcgggcctggctggccccgcgcagagcggcggcgcgcctcgctgtcactgccgga 121 ggtgagagcgcagcagtagcttcagcctgtcttgggcttggtccagattcgctcctctgg 181 ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac 301 taagacctgcgatgacgacgaggaggaacaagtgggacggccagtgatgctcagggccag 361 cagcaacgcatggggcgagettcagtgtegecagcagtgaccacagttettgaggccaaa 421 tetggetectaaaaaacatcaaaggaagettgcaccaaactetettcagggeegeeteag 1 MAPPTGVLSS 481 aagootgocatcaccocctgtgtgggtgcacaATGGCGCCCCCACAGGTGTGCTCTCTC 11 L L L V T I A G C A R K Q C S E G R Ţ 31 Y S N A V I S P N L E T T R I M R V S H 601 ATATTCCAATGCAGTCATTTCACCTAACTTGGAAACCACCAGAATCATGCGGGTGTCTCA 51 T F P V V D C T A A C C D L S S C D L A 661 CACCTTCCCTGTCGTAGACTGCACGGCCGCCTGCTGTGACCTGTCCAGCTGTGACCTGGC 71 W W F E G R C Y L V S C P H K E N C E P 721 CTGGTGGTTCGAGGGCCGCTGCTACCTGGTGAGCTGCCCCCACAAAGAGAACTGTGAGCC 91 K K M G P I R S Y L T F V L R P V Q R P 781 CAAGAAGATGGGCCCCATCAGGTCTTATCTCACTTTTGTGCTCCGGCCTGTTCAGAGGCC 111 A Q L L D Y G D M M L N R G S P S G I W 841 TGCACAGCTGCTGGACTATGGGGGACATGATGCTGAACAGGGGCTCCCCCTCGGGGATCTG 131 G D S P E D I R K D L P F L G K D W G L 901 GGGGGACTCACCTGAGGATATCAGAAAGGACTTGCCCTTTCIAGGCAAAGATTGGGGGCCT 151 E E M S E Y A D D Y R E L E K C L L O P 961 AGAGGAGATGTCTGAGTACGCAGATGACTACCGGGGAGCTGGAGAAGGACCTCTTGCAACC 171 S G K Q E P R G S A E Y T D W G L L P G 1021 CAGTGGCAAGCAGGAGCCCAGAGGGAGTGCCGAGTACACGGACTGGGGGCCTACTGCCGGG 191 SEGAFNSSVGDSPAVPAETO 1081 CAGCGAGGGGGCCTTCAACTCCTCTGTTGGAGACAGTCCTGCGGTGCCAGCGGAGACGCA 211 Q D P E L H Y L N E S A S T P A P K L P 1141 GCAGGACCCTGAGCTCCATTACCTGAATGAGTCGGCTTCAACCCCTGCCCCAAAACTCCC 231 E R S V L L P L P T T P S S G E V L E K

1201 TGAGAGAAGTGTGTTGCTTCCCTTGCCGACTACTCCATCTTCAGGAGAGGTGTTGGAGAA 251 E K A S Q L Q E Q S S N S S G K E V L M 1261 AGAAAAGGCTTCTCAGCTCCAGGAACAATCCAGCAACAGCTCTGGAAAAGAGGTTCTAAT 271 F S H S L P P A S L E L S S V T V E K S 1321 GCCTTCCCATAGTCTTCCTCCGGCAAGCCTGGAGCTCAGCTCAGTCACCGTGGAGAAAAG 291 PVLTVTPGSTEHSIPTPPTS 1381 CCCAGTGCTCACAGTCACCCCGGGGAGTACAGAGCACAGCATCCCAACACCTCCCACTAG 311 A A P S E S T P S E L P I S P T T A P R 1441 CGCAGCCCCCTCTGAGTCCACCCCATCTGAGCTACCCATATCTCCTACCACTGCTCCCAG 331 T V K E L T V S A G D N L I I T L P D N 1501 GACAGTGAAAGAACTTACGGTATCGGCTGGAGATAACCTAATTATAACTTTACCCGACAA 351 E V E L K A F V A P A P P V E T T Y N Y 1561 TGAAGTTGAACTGAAGGCCTTTGTTGCGCCAGCGCCACCTGTAGAAACAACCTACAACTA 371 E W N L I S H P T D Y Q G E I K Q G H K 1621 TGAATGGAATTTAATAAGCCACCCCACAGACTACCAAGGTGAAATAAAACAAGGACACAA 391 Q T L N L S Q L S V G L Y V F K V T V S 1681 GCAAACTCTTAACCTCTCTCAATTGTCCGTCGGACTTTATGTCTTCAAAGTCACTGTTTC 411 S E N A F G E G F V N V T V K P A R R V 1741 TAGTGAAAACGCCTTTGGAGAAGGATTTGTCAATGTCACTGTTAAGCCTGCCAGAAGAGT 431 N L P P V A V V S P Q L Q E L T L P L T 1801 CAACCTGCCACCTGTAGCAGTTGTTTCTCCCCCAACTGCAAGAGCTCACTTTGCCTTTGAC 451 S A L I D G S Q S T D O T E I V S Y H W 1861 GTCAGCCCTCATTGATGGCAGCCAAAGTACAGATGATACTGAAATAGTGAGTTATCATTG 471 E E I N G P F I E E K T S V D S P V L R 1921 GGAAGAAATAAACGGGCCCTTCATAGAAGAGAAGACTTCAGTTGACTCTCCCGTCTTACG 491 L S N L D P G N Y S F R L T V T D S D G 1981 CTTGTCTAACCTTGATCCTGGTAACTATAGTTTCAGGTTGACTGTTACAGACTCGGACGG 511 A T N S T T A A L I V N N A V D Y P P V 2041 AGCCACTAACTCTACAACTGCAGCCCTAATAGTGAACAATGCTGTGGACTACCCACCAGT 531 ANAGPNHTITLPONSITLNG 2101 TGCTAATGCAGGACCAAATCACACCATAACTTTGCCCCCAAAACTCCATCACTTTGAATGG 551 N Q S S D D H Q I V L Y E W S L G P G S 2161 AAACCAGAGCAGTGACGATCACCAGATTGTCCTCTATGAGTGGTCCCTCGGGTCCTGGGAG 571 E G K H V V M Q G V Q T P Y L H L S A M 2221 TGAGGGCAAACATGTGGTCATGCAGGGAGTACAGACGCCATACCTTCATTTATCTGCAAT 591 Q E G D Y T F Q L K V T D S S R Q Q S T 2281 GCAGGAAGGAGATTATACATTTCAGCTGAAGGTGACAGATTCTTCAAGGCAACAGTCTAC 611 A V V T V I V Q P E N N R P P V A V A G 2341 TGCTGTAGTGACTGTGATTGTCCAGCCTGAAAACAATAGACCTCCAGTGGCTGTGGCCGG 631 P D K E L I F P V E S A T L D G S S S S 2401 CCCTGATAAAGAGCTGATCTTCCCAGTGGAAAGTGCTACCCTGGATGGGAGCAGCAGCAG 651 D D H G I V F Y H W E H V R G P S A V E

2461 CGATGACCACGGCATTGTCTTCTACCACTGGGAGCACGTCAGAGGCCCCACTGCAGTGGA 671 M E N I D K A I A T V T G L Q V G T Y H 2521 GATGGAAAATATTGACAAAGCAATAGCCACTGTGACTGGTCTCCAGGTGGGGACCTACCA 691 F R L T V K D O O G L S S T S T L T V A 2581 CTTCCGTTTGACAGTGAAAGACCAGCAGGGACTGAGCAGCACGTCCACCCTCACTGTGGC 711 V K K E N N S P P R A R A G G R H V L V 2641 TGTGAAGAAGGAAAATAATAGTCCTCCCAGAGCCCGGGCTGGTGGCAGACATGTTCTTGT 731 L P N N S I T L D G S R S T D D Q R I V 2701 GCTTCCCAATAATTCCATTACTTTGGATGGTTCAAGGTCTACTGATGACCAAAGAATTGT 751 SYLWIRDGQSPAAGDVIDGS 2761 GTCCTATCTGTGGATCCGGGATGGCCAGAGTCCAGCAGCTGGAGATGTCATCGATGGCTC 771 D H S V A L Q L T N L V E G V Y T F H L 2821 TGACCACAGTGTGGCTCTGCAGCTTACGAATCTGGTGGAGGGGGGTGTACACTTTCCACTT 791 R V T D S Q G A S D T D T A T V E V Q P 2881 GCCAGTCACCGACAGTCAGGGGGGCCTCGGACACAGACACTGCCACTGTGGAAGTGCAGCC 811 D P R K S G L V E L T L Q V G V G Q L T 2941 AGACCCTAGGAAGAGTGGCCTGGTGGAGCTGACCCTGCAGGTTGGTGTTGGGCAGCTGAC 831 E Q R K D T L V R Q L A V L L N V L D S 3001 AGAGCAGCGGAAGGACACCCTTGTGAGGCAGCTGGCTGTGCTGCTGAACGTGCTGGACTC 851 DIKVQKIRAHSDLSTVIVFY 3061 GGACATTAAGGTCCAGAAGATTCGGGGCCCACTCGGATCTCAGCACCGTGATTGTGTTTTA 871 V Q S R P P F K V L K A A E V A R N L H 3121 TGTACAGAGCAGGCCGCCTTTCAAGGTTCTCAAAGCTGCTGAAGTGGCCCGAAATCTGCA 891 M R L S K E K A D F L L F K V L R V D T 3181 CATGCGGCTCTCAAAGGAGAAGGCTGACTTCTTGCTTTTCAAGGTCTTGAGGGTTGATAC 911 A G C L L K C S G H G H C D P L T K R C 3241 AGCAGGTTGCCTTCTGAAGTGTTCTGGCCATGGTCACTGCGACCCCCTCACAAAGCGCTG 931 I C S H L W M E N L I Q R Y I W D G E S 3301 CATTTGCTCTCACTTATGGATGGAGAACCTTATACAGCGTTATATCTGGGATGGAGAGAG 951 N C E W S I F Y V T V L A F T L I V L T 3361 CAACTGTGAGTGGAGTAGTATATTCTATGTGACAGTGTTGGCTTTTACTCTTATTGTGCTAAC 971 G G F T W L C I C C C K R Q K R T K I R 3421 AGGAGGTTTCACTTGGCTTTGCATCTGCTGCTGCAAAAGACAAAAAGGACTAAAATCAG 991 K K T K Y T I L D N M D E Q E R M E L R 3481 GAAAAAAAAAAGTACACCATCCTGGATAACATGGATGAACAGGAAAGAATGGAACTGAG 1011 PKYGIKHRSTEHNSSLMVSE 3541 GCCCAAATATGGTATCAAGCACCGAAGCACAGAGCACAACTCCAGCCTGATGGTATCCGA 1031 SEFDSDQDTIFSREKMERGN 1051 PKVSMNGSIRNGASFSYCSK 1071 D R *

#### WO 2004/067716

3721	GGACAGATAAtggcgcagttcattgtaaagtggaaggaccccttgaatccaagaccagtc
3781	agtgggagttacagcacaaaacccactcttttagaatagttcattgaccttcttccccag
3841	tgggttagatgtgtatececacgtactaaaagaceggtttetgaaggcacaaaacaaa
3901	ctttgctcttttaactgagatgcttgttaatagaaataaaggctgggtaaaactctaagg
3961	tatatacttaaaagagttttgagtttttgtagctggcacaatctcatattaaagatgaac
4021	aacgatttctatctgtagaaccttagagaaggtgaatgaa
4081	gatttctgtcttagccgctgtgattgcctctaaggaacagcattctaaacacggtttctc
4141	ttgtaggacctgcagtcagatggctgtgtatgttaaaatagcttgtctaagaggcacggg
4201	ccatctgtggaggtacggagtcttgcatgtagcaagctttctgtgctgacggcaacactc
4261	gcacagtgccaagccctcctggtttttaattctgtgctatgtcaatggcagttttcatct
4321	ctctcaagaaagcagctgttggccattcaagagctaaggaagaatcgtattctaaggact
4381	gaggcaatagaaaggggaggaggagcttaatgccgtgcaggttgaaggtagcattgtaac
4441	attatetttettetetaagaaaaaetaeaetgaeteeteteggtgttgtttageagta
4501	tagttetetaatgtaaacggateeccagtttacattaaatgcaatagaagtgattaatte
4561	attaagcatttattatgttctgtaggctgtgcgtttggactgccatagatag
4621	actcagcaattgtgtatatattccaaaactctgaaatacagtcagt
4681	cgtggttatgatactctggtccccgacaggtactttccaaaataacttgacatagatgta
4741	${\tt ttcacttcatatgtttaaaaatacatttaagtttttctaccgaataaatcttatttcaaa}$
4801	catgaaagacaattaaaacattcccacccacaaagcagtactcccgagcaattaactgga
4861	${\tt gttaattgtagcctgctacgttgactggttcagggtagttccccatccacccttggtcct}$
4921	gaggctggtggccttggtggtgcccttggcattttttgtgggaagattagaatgagagat
4981	a gaac cagt gt t gt g g t a c c a a g t g t g a g c a c a c c t a a c a a t a t c c t g t t g c a c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c a c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a a t g c c a t g c c a a t g c c a a t g c c a t t g c c a t t g c c a t t g c c a t t g c c a t t g c
5041	$\tt ttttttaacacatgggaaaactaggaatgcattgctgatgaagaagcaaggtatttaaac$
5101	$\verb+accagggcaggagtgccagagaaaatgtttccccatgggttcttaaaaaaattcagctt$
5161	$\tt ttaggtgcttttgtcatctcccggagtattcatcctcatgggaccatcttatttttactt$
5221	$\verb+attgtaatttactggggaaaggcagaactaaaagtgtgtcalttatttttaaaataat$
5281	${\tt tgctttgcttatgcctacactttctgtataactagccaattcaatactgtctatagtgtt}$
5341	agaaggaaaatgtgattttttttttttaaccagtattgagcttcataagcctagaatctg
5401	$\verb"ccttatcaggtgaccagggttatggttgtttgcatgcaaatgtgaatttctggcataggg"$
5461	gacagcagcccaaatgtaaagtcatcgggcgtaatgaggaagaagggagtgaacatttac
5521	$\tt cgctttatgtacataacatatgcagtttacatactcatttgatccttataatcaaccttg$
5581	aagaggagatactatcattcttatgttgcagatagccctctgaaggcccagagaggttaa
5641	$\verb gtaacttcccagaggtcatggccaagaagtagtggctccaagaactgaatgcaaattttt  $
5701	${\tt taaactgtagagttctgctttccactaaacaaagaactcctgccttgatggatg$
5761	aaattotggtggaacttttgggccacctgaaagttotattoccaggactaagaggaattt
5821	$\tt cttttaatggatccagagagccaaggtcagagggagagatggcctgcatagtctcctgtg$
5881	gateacacccgggccacccctcctaggtttacagtggactccttctgcccctcctcc
5941	ttttctgtccttggccatctcagcctggcctctctgatccttccatcacagaaggatctt
6001	gaatetetgggaaateaaacateacagtagtgateagaaagtgagteetgtettgteace
6061	ccatttctcatcagaacaaagcacgagatggaatgaccaacca
6121	ctgcttatcattgaggatctttgggagataaagcacgctaagagctctggacagagaaaa
6181	acaggccctagaatatgggagtggtgtttgtagggctcataggctaacaagcactttag

Figure 2C. The cDNA (SEQ ID NO.: 6) and amino acid sequence (SEQ ID NO.: 7) of 254P1D6B v.3. The start methionine is underlined. The open reading frame extends from nucleic acid 739-3930 including the stop codon.

61 cctcggcgggcctggctggccccgcgcagagcggcggcgcctcgctgtcactgccgga 121 ggtgagagegeageagtagetteageetgtettgggettggteeagattegeteetetgg 181 ggctacgtcccggggaagaggaagcgaggattttgctggggtggggctgtacctcttaac 301 taagacctgcgatgacgacgaggaggaacaagtgggacggcgagtgatgctcagggccag 361 cagcaacgcatggggcgagcttcagtgtcgccagcagtgaccacaggtacggtatctact 481 acaaaagtagaatcgagacgccctgagttcagaagttcttgaggccaaatctggctccta 541 aaaaacatcaaaggaagettgeaceaaactetetteagggeegeeteagaageetgeeat 601 cacccactgtgtggtgcacaatggcgccccccacaggtgtgctctcttcattgctgctgc 661 tggtgacaattgcagtttgcttatggtggatgcactcatggcaaaaaaatcactggtgag 1 M T R L G W P S P C C A R K 721 catcatttaagaagacccATGACTAGACTGGGCTGGCCGAGCCCATGTTGFGCCCGTAAG 15 Q C S E G R T Y S N A V I S P N L E T T 781 CAGTGCAGCGAGGGGGGGGGGGGACATATTCCAATGCAGTCATTTCACCTAACTT3GAAACCACC 35 R I M R V S H T F P V V D C T A A C C D 841 AGAATCATGCGGGTGTCTCACACCTTCCCTGTCGTAGACTGCACGGCCGCTTGCTGTGAC 55 L S S C D L A W W F E G R C Y L V S C P 901 CTGTCCAGCTGTGACCTGGCCTGGTGGTTCGAGGGCCGCTGCTACCTGGTSAGCTGCCCC 75 H K E N C E P K K M G P I R S Y L T F V 961 CACAAAGAGAACTGTGAGCCCAAGAAGATGGGCCCCATCAGGTCTTATCTCACTTTTGTG 95 L R P V Q R P A Q L L D Y G D M M L N R 1021 CTCCGGCCTGTTCAGAGGCCTGCACAGCTGCTGGACTATGGGGACATGATGCTGAACAGG 115 G S P S G I W G D S P E D I R K D L P F 1081 GGCTCCCCCTCGGGGATCTGGGGGGGCTCACCTGAGGATATCAGAAAGGACTTGCCCTTT 135 L G K D W G L E E M S E Y S D D Y R E L 1141 CTAGGCAAAGATTGGGGGCCTAGAGGAGATGTCTGAGTACTCAGATGACTACCGGGAGCTG

155 E K D L L Q P S G K Q E P R G S A E Y T 1201 GAGAAGGACCTCTTGCAACCCAGTGGCAAGCAGGAGCCCAGAGGGAGTGCCGAGTACACG 175 D W G L L P G S E G A F N S S V G D S P 1261 GACTGGGGCCTACTGCCGGGCAGCGAGGGGGGCCTTCAACTCCTCTGTTGGAGACAGTCCT 195 A V P A E T Q Q D P E L H Y L N E S A S 1321 GCGGTGCCAGCGGAGACGCAGCAGGACCCTGAGCTCCAFTACCTGAATGAGTCGGCTTCA 215 T P A P K L P E R S V L L P L P T T P S 1381 ACCCCTGCCCCAAAACTCCCTGAGAGAAGTGTGTTGCTTCCCTTGCCGACTACTCCATCT 235 S G E V L E K E K A S Q L Q E Q S S N S 1441 TCAGGAGAGGTGTTGGAGAAAGGAAAGGCTTCTCAGCTCCAGGAACAATCCAGCAACAGC 255 S G K E V L M P S H S L P P A S L E L S 1501 TCTGGAAAAGAGGTTCTAATGCCTTCCCATAGTCTTCCTCCGGCAAGCCTGGAGCTCAGC 275 S V T V E K S P V L T V T P G S T E H S 1561 TCAGTCACCGTGGAGAAAAGCCCAGTGCTCACAGTCACCCCGGGGAGTACAGAGCACAGC 295 I P T P P T S A A P S E S T P S E L P I 1621 ATCCCAACACCTCCCACTAGCGCAGCCCCCTCTGAGTCCACCCCATCTGAGCTACCCATA 315 S P T T A P R T V K E L T V S A G D N L 1681 TCTCCTACCACTGCTCCCAGGACAGTGAAAGAACTTACGGTATCGGCTGGAGATAACCTA 335 I T L P D N E V E L K A F V A P A P P 1741 ATTATAACTTTACCCGACAATGAAGTTGAACTGAAGGCCTTTGTTGCGCCAGCGCCACCT 355 V E T T Y N Y E W N L I S H P T D Y Q G 1801 GTAGAAACAACCTACAACTATGAATGGAATTTAATAAGCCACCCCACAGACTACCAAGGT 375 E I K Q G H K Q T L N L S Q L S V G L Y 1861 GAAATAAAACAAGGACACAAGCAAACTCTTAACCTCTCTCAATTGTCCGTCGGACTTTAT 395 V F K V T V S S E N A F G E G F V N V T 1921 GTCTTCAAAGTCACTGTTTCTAGTGAAAACGCCTTTGGAGAAGGATTTGTCAATGTCACT 415 V K P A R R V N L P P V A V V S P Q L Q 1981 GTTAAGCCTGCCAGAAGAGTCAACCTGCCACCTGTAGCAGTTGTTTCTCCCCAACTGCAA 435 E L T L P L T S A L I D G S Q S T D D T 2041 GAGCTCACTTTGCCTTTGACGTCAGCCCTCATTGATGGCAGCCAAAGTACAGATGATACT 455 E I V S Y H W E E I N G P F I E E K T S 2101 GAAATAGTGAGTTATCATTGGGAAGAAATAAACGGGCCCTTCATAGAAGAGAAGACTTCA 475 V D S P V L R L S N L D P G N Y S F R L 2161 GTTGACTCTCCCGTCTTACGCTTGTCTAACCTTGATCCTGGTAACTATAGTTTCAGGTTG 495 T V T D S D G A T N S T T A A L I V N N 2221 ACTGTTACAGACTCGGACGGAGCCACTAACTCTACAACTGCAGCCCTAATAGTGAACAAT 515 A V D Y P P V A N A G P N H T I T L P Q 2281 GCTGTGGACTACCCACCAGTTGCTAATGCAGGACCAAATCACACCATAACTTTGCCCCCAA 535 N S I T L N G N O S S C D H O I V L Y E 2341 AACTCCATCACTTTGAATGGAAACCAGAGCAGTGACGATCACCAGATTGTCCTCTATGAG 555 W S L G P G S E G K H V V M Q G V Q T P 2401 TGGTCCCTGGGTCCTGGGAGTGAGGGCAAACATGTGGTCATGCAGGGAGTACAGACGCCA

575 Y L H L S A M Q E G D Y T F Q L K V T D 2461 TACCTTCATTTATCTGCAATGCAGGAAGGAGATTATACATTTCAGCTGAAGGTGACAGAT 595 S R Q Q S T A V V T V I V Q P E N N R 2521 TCTTCAAGGCAACAGTCTACTGCTGTGGTGACTGTGATTGTCCAGCCTGAAAACAATAGA 615 P P V A V A G P D K E L I F P V E S A T 2581 CCTCCAGTGGCIGTGGCCGGCCCTGATAAAGAGCTGATCTTCCCAGTGGAAAGTGCTACC 635 L D G S S S S D D H G I V F Y H W E H V 2641 CTGGATGGGAGCAGCAGCAGCGATGACCACGGCATTGTCTTCTACCACTGGGAGCACGTC 655 R G P S A V E M E N I D K A I A T V T G 2701 AGAGGCCCCAGTGCAGTGGAGATGGAAAATATTGACAAAGCAATAGCCACTGTGACTGGT 675 L Q V G T Y H F R L T V K D Q Q G L S S 2761 CTCCAGGTGGGGGACCTACCACTTCCGTTTGACAGTGAAAGACCAGCAGGGACTGAGCAGC 695 T S T L T V A V K K E N N S P P R A R A 2821 ACGTCCACCCTCACTGTGGCTGTGAAGAAGGAAAATAATAGTCCTCCCAGAGCCCGGGCT 715 G G R H V L V L P N N S I T L O G S R S 2881 GGTGGCAGACATGTTCTTGTGCTTCCCAATAATTCCATTACTTTGGATGGTTCAAGGTCT 735 T D D Q R I V S Y L W I R D G Q S P A A 2941 ACTGATGACCAAAGAATTGTGTCCTATCTGTGGATCCGGGATGGCCAGAGTCCAGCAGCT 755 G D V I D G S D H S V A L O L T N L V E 3001 GGAGATGTCATCGATGGCTCTGACCACAGTGTGGCTCTGCAGCTTACGAATCTGGTGGAG 775 G V Y T F H L R V T D S O G A S D T D T 3061 GGGGTGTACACTTTCCACTTGCGAGTCACCGACAGTCAGGGGGGCCTCGGACACAGACACT 795 A T V E V Q P D P R K S G L V E L T L Q 3121 GCCACTGTGGAAGTGCAGCCAGACCCTAGGAAGAGTGGCCTGGTGGAGCTGACCCTGCAG 815 V G V G Q L T E Q R K D T L V R Q L A V 835 L N V L D S D I K V Q K I R A H S D L 3241 CTGCTGAACGTGCTGGACTCGGACATTAAGGTCCAGAAGATTCGGGCCCACTCGGATCTC 855 S T V I V F Y V Q S R P P F K V L K A 3301 AGCACCGTGATTGTGTTTTATGTACAGAGCAGGCCGCCTTTCAAGGTTCTCAAAGCTGCT 875 E V A R N L H M R L S K E K A D F L L F 3361 GAAGTGGCCCGAAATCTGCACATGCGGCTCTCAAAGGAGAAG3CTGACTTCTTGCTTTTC 895 K V L R V D T A G C L L K C S G H G H C 3421 AAGGTCTTGAGGGTTGATACAGCAGGTTGCCTTCTGAAGTGTICTGGCCATGGTCACTGC 915 D P L T K R C I C S H L W M E N L I Q R 935 Y I W D.G E S N C E W S I F Y V T V L A 3541 TATATCTGGGATGGAGAGAGAGCAACTGTGAGTGGAGTATATTCTATGTGACAGTGTTGGCT 955 F T L I V L T G G F T W L C I C C C K R 3601 TTTACTCTTATTGTGCTAACAGGAGGTTTCACTTGGCTTTGCATCTGCTGCTGCAAAAGA 975 Q K R T K I R K K T K Y T I L D N M D E 3661 CAAAAAAGGACTAAAATCAGGAAAAAAAACAAAGTACACCATCCTGGATAACATGGATGAA

995 Q E R M E L R P K Y G I K H R S T E H N 3721 CAGGAAAGAATGGAACTGAGGCCCCAAATATGGTATCAAGCACCGAAGCACAGAGCACAAAC 1015 S L M V S E S E F D S D Q D T I F S R 3781 TCCAGCCTGATGGTATCCGAGTCTGAGTTTGACAGTGACCAGGACACAATCTTCAGCCGA 1035 E K M E R G N P K V S M N G S I R N G A 3841 GAAAAGATGGAGAGAGGGAATCCAAAGGTTTCCATGATGGTTCCATCAGAAATGGAGCT 1055 S F S Y C S K D R * 3901 TCCTTCAGTTATTGCTCAAAGGACAGATAAtggcgcagttcattgtaaagtggaaggacc 3961 cottgaatecaagaccagtcagtgggagttacagcacaaaacccactcttttagaatagt 4021 toattgacottottcocccagtgggttagatgtgtatcocccacgtactaaaagaccggttt 4081 ttgaaggcacaaaaaaaaaatttgctcttttaactgagatgcttgttaatagaaataaa 4141 ggctgggtaaaactctaaggtatatacttaaaagagttttgagttttgtagctggcaca 4261 acaaggtttlaaaaagggatgatttctgtcttagccgctgtgattgcctctaaggaacag 4321 cattetaaacaeggtttetettgtaggaeetgeagteagatggetgtgtatgttaaaata 4381 gcttgtctaagaggcacgggccatctgtggaggtacggagtcttgcatgtagcaagcttt 4441 ctgtgctgacggcaacactcgcacagtgccaagccctcctggtttttaattctgtgctat 4501 gtcaatggcagttttcatctctccaagaaagcagctgttggccattcaagagctaagga 4621 gttgaaggtagcattgtaacattatettttettettaagaaaaactacactgagteet 4681 ctcgqtqttqtttagcagtatagttetetaatgtaaacggateceeagtttacattaaat 4741 gcaatagaagtqattaattcattaaqcatttattattattgttctqtaqgctgtqcgtttqqac 4801 tgccatagatagggataacgactcagcaattgtgtatatattccaaaactctgaaataca 4861 gtcagtcttaacttggatggcgtggttatgatactctggtccccgacaggtactttccaa 4921 aataacttgacatagatgtattcacttcatatgtttaaaaatacatttaagtttttctac 4981 cgaataaatettattteaaacatgaaagacaattaaaacatteeccacceacaageagta 5041 ctcccgagcaattaactggagttaattgtagcctgctacgttgactggttcagggtagtt 5101 ccccatccacccttggtcctgaggctggtggccttggtggtgcccttggcatttttgtg 5161 ggaagattagaatgagagatagaaccagtgttgtggtaccaagtgtgagcacacctaaac 5221 aatatcctgttgcacaatgcttttttaacacatgggaaaactaggaatgcattgctgatg 5281 aagaagcaaggtatttaaacaccagggcaggagtgccagagaaaatgtttccccatgggt 5341 tottaaaaaaattcagettttaggtgcttttgtcatctcccggagtattcatcctcatg 5401~ggaccatcttatttttacttattgtaatttactggggaaaggcagaactaaaaagtgtgt5461 cattttatttttaaaataattgctttgcttatgcctacactttctgtataactagccaat 5581 cttcataagectagaatetgeettateaggtgaceagggttatggttgttzgeatgeaaa 5641 tgtgaatttctggcataggggacagcagcccaaatgtaaagtcatcgggcgtaatgagga 5701 agaagggagtgaacatttaccgctttatgtacataacatatgcagtttacatactcattt 5761 gateettataateaacettgaagaggagataetateattettatgttgcagatageeete 5821 tgaaggcccagagaggttaagtaacttcccagaggtcatggccaagaagtagtggctcca 5881 agaactgaatgcaaattttttaaactgtagagttctgctttccactaaacaaagaactcc 5941 tgccttgatggatggagggcaaattctggtggaacttttgggccacctgaaagttctatt

#### WO 2004/067716

6001	$\verb cccaggactaagaggaatttcttttaatggatccagagagccaaggtcagagggagagat  $
6061	ggcctgcatagtctcctgtggatcacacccgggccacccctcctctaggtttacagtgg
6121	$a \verb+cttcttctgccctcctccttttctgtccttggccatctcagcctggcctctctgatcc$
6181	${\tt ttccatcacagaaggatcttgaatctctgggaaatcaaacatcacagtagtgatcagaaa}$
6241	gtgagtcctgtcttgtcaccccatttctcatcagaacaaagcacgagatggaatgaccaa
6301	$\verb ccagcattcttcatggtggactgcttatcattgaggatctttggggagataaagcacgcta  $
6361	agagetetggacagagaaaaacaggeeetagaatatgggagtggtgtttgtagggetea
6421	${\tt taggetaacaagcactttagttgetggtttacattcaatgaaggaggattcatacccatg$
6481	$\verb"gcattacaaggctaagcatgtgtatgactaaggaactatctgaaaaacatgcagcaaggt"$
6541	${\tt aagaaaatgtaccactcaacaagccagtgatgccaccttttgtgcgcgggggggg$
6601	$a \verb+ctaccattgttttttgtgtgacaaagctatcatggactattttaatcttggttttattg$
6661	$\tt cttaaaatatattatttttccctatgtgttgacaaggtatttctaatatcacactattaa$
6721	$\tt atatatgcactaatctaaataaaggtgtctgtattttctgtaatgcttatttttaggggg$
6781	$\tt aaatttgttttctttatgcttcagggtagagggattcccttgagtataggtcagcaaact$
6841	$\tt ctggcctgcagcctgtgtgtgcacgccccatgagcccaaaagtgggtcttatgttttcaa$
6901	$\tt atggttaaaaataaataaaaaatttgaaacatgtgaactatatgacattcagatttgtg$
6961	ttcataaataaagttttattggaacatatcc

**Figure 2D. 254P1D6B v.4 through v.20, SNP variants of 254P1D6B v.1.** The 254P1D6B v.4 through v.20 proteins have 1072 amino acids. Variants 254P1D6B v.4 through v.20 are variants with single nucleotide difference from 254P1D6B v.1. 254P1D6B v.5 and v.6 proteins differ from 254P1D6B v.1 by one amino acid. 254P1D6B v.4 and v.7 through v.20 proteins code for the same protein as v.1. Though these SNP variants are shown separately, they can also occur in any combinations and in any of the transcript variants listed above in Figure 2A, Figure 2B and Figure 2C.

Variant	Nucleic acid position.	Nucleic Acid Variation	Amine Acid Position	Amino Acid Variation
254P1D6B v.4	286	C/G	Silent variant	<u> </u>
254P1D6B v.5	935	C/A	142	P=>T
254P1D6B v.6 (Identical AA as v.2)	980	T/G	157	S=>A
254P1D6B v.7	2347	G/A	Silent variant	
254P1D6B v.8	3762	СЛТ	Silent variant	
254P1D6B v.9	3772	A/G	Silent variant	
254P1D6B v.10	3955	С/Т	Silent variant	
254P1D6B v.11	4096	С/Т	Silent variant	
254P1D6B v.12	4415	G/A	Silent variant	
254P1D6B v.13	4519	G/A	Silent variant	
254P1D6B v.14	4539	A/G	Silent variant	

#### WO 2004/067716

Variant	Nucleic acid position	Nucleic Acid Variation	Amino Acid Amino Acid Position Variation
254P1D6B v.15	4614	G/T	Silent variant
254P1D6B v.16	5184	G/Ċ	Silent variant
254P1D6B v.17	5528	T/G	Silent variant
254P1D6B v.18	5641	G/A	Silent variant
254P1D6B v.19	6221	T/C	Silent variant
254P1D6B v.20	6223	G/A	Silent variant _

#### Figure 3:

Figure 3A. Amino acid sequence 254P1D6B v.1 clone LCP-3 (SEQ ID NO.: 8). The 254P1D6B v.1 clone LCP-3 protein has 1072 amino acids.

1	MAPPTGVLSS	LLLLVTIAGC	ARKQCSEGRT	YSNAVISPNL	ETTRIMRVSH	TFPVVDCTAA	
61	CCDLSSCDLA	WWFEGRCYLV	SCPHKENCEP	KKMGPIRSYL	TFVLRPVQRP	AQLLDYGDMM	
121	LNRGSPSGIW	GDSPEDIRKD	LPFLGKDWGL	EEMSEYSDDY	RELEKDLLQP	SGKQEPRGSA	
181	EYTDWGLLFG	SEGAFNSSVG	DSPAVPAETQ	QDPELHYLNE	SASTPAPKLP	ERSVLLPLPT	
241	TESSGEVLEK	EKASQLQEQS	SNSSGKEVLM	PSHSLPPASL	ELSSVTVEKS	PVLTVTPGST	
301	EHSIPTPPTS	AAPSESTPSE	LPISPTTAPR	TVKELTVSAG	DNLIITLPDN	EVELKAFVAP	
361	APPVETTYNY	EWNLISHPTD	YQGEIKQGHK	QTLNLSQLSV	GLYVFKVTVS	SENAFGEGFV	
421	NVTVKPARRV	NLPPVAVVSP	QLQELTLFLT	SALIDGSQST	DDTEIVSYHW	EEINGPFIEE	
481	KTSVDSPVLR	LSNLDPGNYS	FRLTVTDSDG	ATNSTTAALI	VNNAVDYPPV	ANAGPNHTIT	
541	LPQNSITLNG	NQSSDDHQIV	LYEWSLGPGS	EGKEVVMQGV	QTPYLHLSAM	QEGDYTFQLK	
601	VTDSSRQQST	AVVTVIVQPE	NNRPPVAVAG	PDKETILbA	SATLDGSSSS	DDHGIVFYHW	
661	EHVRGPSAVE	MENIDKAIAT	VTGLQVGTYH	FRLTVKDQÇG	LSSTSTLTVA	VKKENNSPPR	
721	ARAGGRHVLV	LPNNSITLDG	SRSTDDQRIV	SYLWIRDGCS	PAAGDVIDGS	DHSVALQLTN	
781	LVEGVYTFHL	RVTDSQGASD	TDTATVEVQP	DPRKSGLVEL	TLQVGVGQLT	EQRKDTLVRQ	
841	LAVLLNVLDS	DIKVQKIRAH	SDLSTVIVFY	VQSRPPFKVL	KAAEVARNLH	MRLSKEKADF	
901	LLFKVLRVDT	AGCLLKCSGH	GHCDPLTKRC	ICSHLWMENL	IQRYIWDGES	NCEWSIFYVT	
961	VLAFTLIVLT	GGFTWLCICC	CKRQKRTKIR	KKTKYTILEN	MDEQERMELR	PKYGIKHRST	
1021	EHNSSLMVSE	SEFDSDQDTI	FSREKMERGN	PKVSMNGSIR	NGASFSYCSK	DR	

#### Figure 3B. Amino acid sequence 254P1D6B v.2 (SEQ ID NO.: 9). The 254P1D6B v.2 protein has 1072 amino acids.

1	MAPPTGVLSS	LLLLVTIAGC	ARKQCSEGRT	YSNAVISPNL	ETTRIMRVSH	TFPVVDCTAA
61	CCDLSSCDLA	WWFEGRCYLV	SCPHKENCEP	KKMGPIRSYL	TFVLRPVQRP	AQLLDYGDMM
121	LNRGSPSGIW	GDSPEDIRKD	LPFLGKDWGL	EEMSEYADDY	RELEKDLLQP	SGKQEPRGSA
181	EYTDWGLLPG	SEGAFNSSVG	DSPAVPAETQ	QDPELHYLNE	SASTPAPKLP	ERSVLLPLPT
241	TPSSGEVLEK	EKASQLQEQS	SNSSGKEVLM	PSHSLPPASL	ELSSVTVEKS	PVLTVTPGST
301	EHSIPTPPTS	AAPSESTPSE	LPISPTTAPR	TVKELTVSAG	DNLIITLPDN	EVELKAFVAP
361	APPVETTYNY	EWNLISHPTD	YQGEIKQGHK	QTLNLSQLSV	GLYVFKVTVS	SENAFGEGFV
421	NVTVKPARRV	NLPPVAVVSP	QLQELTLPLT	SALIDGSQST	DDTEIVSYHW	EEINGPFIEE
481	KTSVDSPVLE	LSNLDPGNYS	FRLTVTDSDG	ATNSTTAALI	VNNAVDYPPV	ANAGPNHTIT
541	LPQNSITLNG	NQSSDDHQIV	LYEWSLGPGS	EGKHVVMQGV	QTPYLHLSAM	QEGEYTFQLK
601	VTDSSRQQST	AVVTVIVQPE	NNRPPVAVAG	PDKELIFPVE	SATLDGSSSS	DDHGIVFYHW
661	EHVRGPSAVE	MENIDKAIAT	VTGLQVGTYH	FRLTVKDQQG	LSSTSTLTVA	VKKENNSPPR
721	ARAGGRHVLV	LPNNSITLDG	SRSTDDQRIV	SYLWIRDGQS	PAAGDVIDGS	DHSVALQLTN
781	LVEGVYTFHL	RVTDSQGASD	TDTATVEVQP	DPRKSGLVEL	TLQVGVGQLT	EQRKDTLVRQ
841	LAVLLNVLDS	DIKVQKIRAH	SDLSTVIVFY	VQSRPPFKVL	KAAEVARNLH	MRLSKEKADF
901	LLFKVLRVDT	AGCLLKCSGH	GHCDPLTKRC	ICSHLWMENL	IQRYIWDGES	NCEWSIFYVT

961 VLAFTLIVLT GGFTWLCICC CKRQKRTKIR KKTKYTILDN MDEQERMELR PKYGIKHRST 1021 EHNSSLMVSE SEFDSDQDTI FSREKMERGN PKVSMNGSIR NGASFSYCSK DR

Figure 3C. Amino acid sequence 254P1D6B v.3 (SEQ ID NO: 10). The 254P1D6B v.3 protein has 1063 amino acids.

1 MTRLGWPSPC CARKQCSEGR TYSNAVISPN LETTRIMRVS HTFPVVDCTA ACCDLSSCDL 61 AWWFEGRCYL VSCPHKENCE PKKMGPIRSY LTFVLRPVQR PAQLLDYGDM MLNRGSPSGI 121 WGDSPEDIRK DLPFLGKDWG LEEMSEYSDD YRELEKDLLQ PSGKQEPRGS AEYTDWGLLP 181 GSEGAFNSSV GDSPAVPAET QQDPELHYLN ESASTPAPKL PERSVLLPLF TTPSSGEVLE 241 KEKASQLQEQ SSNSSGKEVL MPSHSLPPAS LELSSVTVEK SPVLTVTPGS TEHSIPTPPT 301 SAAPSESTPS ELPISPTTAP RTVKELTVSA GDNLIITLPD NEVELKAFVA PAPEVETTYN 361 YEWNLISHPT DYQGEIKQGH KQTLNLSQLS VGLYVFKVTV SSENAFGEGF VNVTVKPARR 421 VNLPPVAVVS PQLQELTLPL TSALIDGSQS TODTEIVSYH WEEINGPFIE EKTSVDSPVL 481 RLSNLDPGNY SFRLTVTDSD GATNSTTAAL IVNNAVDYPF VANAGPNHTI TLPONSITLN 541 GNQSSDDHQI VLYEWSLGPG SEGKHVVMQG VQTPYLHLSA MOEGDYTFOL KVTDSSROOS 601 TAVVTVIVQP ENNRPPVAVA GPDKELIFPV ESATLDGSSS SDDHGIVFYH WEHVRGPSAV 661 EMENIDKAIA TVTGLQVGTY HFRLTVKDQQ GLSSTSTLTV AVKKENNSPP RARAGGRHVL 721 VLPNNSITLD GSRSTDDQRI VSYLWIRDGQ SPAAGDVIDG SDHSVALQLT NLVEGVYTFH 781 LRVTDSQGAS DTDTATVEVQ PDPRKSGLVE LTLQVGVGQL TEQRKDTLVR QLAVLLNVLD 841 SDIKVQKIRA HSDLSTVIVF YVQSRPPFKV LKAAEVARNL HMRLSKEKAD FLLFKVLRVD 901 TAGCLLKCSG HGHCDPLTKR CICSHLWMEN LIQRYIWDGE SNCEWSIFYV TVLAFTLIVL 961 TGGFTWLCIC CCKRQKRTKI RKKTKYTILD NMDEOERMEL RPKYGIKHRS TEHNSSLMVS 1021 ESEFDSDODT IFSREKMERG NPKVSMNGSI RNGASFSYCS KDR

Figure 3D. Amino acid sequence 254P1D6B v.5 (SEQ ID NO: 11). The 254P1D6B v.5 protein has 1072 amino acids.

1 MAPPTGVLSS LLLLVTIAGC ARKOCSEGRT YSNAVISPNL ETTRIMRVSH TFPVVDCTAA 61 CCDLSSCDLA WWFEGRCYLV SCPHKENCEP KKMGPIRSYL TFVLRPVQRP AQLLDYGDMM 121 LNRGSPSGIW GDSPEDIRKD LTFLGKDWGL EEMSEYSDDY RELEKDLLOP SGKOEPRGSA 181 EYTDWGLLPG SEGAFNSSVG DSPAVPAETQ QDPELHYLNE SASTEAPKLP ERSVLLPLPT 241 TPSSGEVLEK EKASQLQEQS SNSSGKEVLM PSHSLPPASL ELSSVTVEKS PVLTVTPGST 301 EHSIPTPPTS AAPSESTPSE LPISPTTAPR TVKELTVSAG DNLIITLPDN EVELKAFVAP 361 APPVETTYNY EWNLISHPTD YQGEIKQGHK QTLNLSQLSV GLYVFKVTVS SENAFGEGFV 421 NVTVKPARRV NLPPVAVVSP QLQELTLPLT SALIDGSQST DDTEIVSYHW BEINGPFIEE 481 KTSVDSPVLR LSNLDPGNYS FRLTVTDSDG ATNSTTAALI VNNAVDYPPV ANAGPNHTIT 541 LPQNSITLNG NQSSDDHQIV LYEWSLGPGS EGKHVVMQGV QTPYLHLSAM OEGDYTFOLK 601 VTDSSRQQST AVVTVIVQPE NNRPFVAVAG PDKELIFPVE SATLDGSSSS DDHGIVFYHW 661 EHVRGPSAVE MENIDKAIAT VTGLQVGTYH FRLTVKDQQG LSSTSTLTVA VKKENNSPPR 721 ARAGGRHVLV LENNSITLDG SRSTDDQRIV SYLWIRDGQS PAAGDVIDGS DHSVALQLTN 781 LVEGVYTFHL RVTDSQGASD TDTATVEVQP DPRKSGLVEL TLQVGVGQLT EQRKDTLVRQ 841 LAVLLNVLDS DIKVQKIRAH SDLSTVIVFY VQSRPPFKVL KAAEVARNLH MRLSKEKADF 901 LLFKVLRVDT AGCLLKCSGH GHCDPLTKRC ICSHLWMENL IQRYIWDGES NCEWSIFYVT

ì

961 VLAFTLIVLT GGFTWLCICC CKRQKRTKIR KKTKYTILDN MDEQERMELR PKYGIKHRST 1021 EHNSSLMVSE SEFDSDQDTI FSREKMERGN PKVSMNGSIR NGASFSYCSK DR

Figure 3E. Amino acid sequence 254P1D6B v.6 (SEQ ID NO: 12). The 254P1D6B v.6 protein has 1072 amino acids.

1	MAPPTGVLSS	LLLLVTIAGC	ARKQCSEGRT	YSNAVISPNL	ETTRIMRVSH	TFPVVDCTAA
61	CCDLSSCDLA	WWFEGRCYLV	SCPHKENCEP	KKMGPIRSYL	TFVLRPVQRP	AQLLDYGDMM
121	LNRGSPSGIW	GDSFEDIRKD	LPFLGKDWGL	EEMSEYADDY	RELEKDILQP	SGKQEPRGSA
181	EYTDWGLLPG	SEGAFNSSVG	DSPAVPAETQ	QDPELHYLNE	SASTPAPKLP	ERSVLLPLPT
241	TPSSGEVLEK	EKASQLQEQS	SNSSGKEVLM	PSHSLPPASL	ELSSVTVEKS	PVLTVTPGST
301	EHSIPTPPTS	AAPSESTPSE	LPISPTTAPR	TVKELTVSAG	DNLIITJPDN	EVELKAFVAP
361	APPVETTYNY	EWNLISHPTD	YQGEIKQGHK	QTLNLSQLSV	GLYVFKVTVS	SENAFGEGFV
421	NVTVKPARRV	NLPPVAVVSP	QLQELTLPLT	SALIDGSQST	DDTEIVSYHW	EEINGPFIEE
481	KTSVDSPVLR	LSNLDPGNYS	FRLTVTDSDG	ATNSTTAALI	VNNAVDYPPV	ANAGPNHTIT
541	LPQNSITLNG	NQSSDDHQIV	LYEWSLGPGS	EGKEVVMQCV	QTPYLHLSAM	QEGDYTFQLK
601	VTDSSRQQST	AVVTVIVQPE	NNRPPVAVAG	PDKELIFPVE	SATLDGSSSS	DDHGIVFYHW
661	EHVRGPSAVE	MENIDKAIAT	VTGLQVGTYH	FRLTVKDQÇG	LSSTSTLTVA	VKKENNSPPR
721	ARAGGRHVLV	LPNNSITLDG	SRSTDDQRIV	SYLWIRDGÇS	PAAGDVIDGS	DHSVALQLTN
781	LVEGVYTFHL	RVTDSQGASD	TDTATVEVQP	DPRKSGLVEL	TLQVGVGQLT	EQRKDTLVRQ
841	LAVLLNVLDS	DIKVQKIRAH	SDLSTVIVFY	VQSRPPFKVL	KAAEVARNLH	MRLSKEKADF
901	LLFKVLRVDT	AGCLLKCSGH	GHCDPLTKRC	ICSHLWMENL	IQRYIWDGES	NCEWSIFYVT
961	VLAFTLIVLT	GGFTWLCICC	CKRQKRTKIR	KKTKYTILCN	MDEQERMELR	PKYGIKHRST
1021	EHNSSLMVSE	SEFDSDQDTI	FSREKMERGN	PKVSMNGSIR	NGASFSYCSK	DR

# Figure 5: 254P1D6B variant 1 Hydrophilicity profile (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)



Figure 6: 254P1D6B variant 1 Hydropathicity Profile (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)



20/38

# Figure 7: 254P1D6B variant 1 % Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)







# Figure 9: 254P1D6B variant 1 Beta-turn Profile (Deleage, G., Roux B. 1987.

Protein Engineering 1:289-294)









## Figure 11











Figure 12 (con'd)

### Figure 13: Secondary structure prediction of 254P1D6B variant 1

13A 10 20 30 40 50 60 70 80 1 MAPPTGVLSSLLLLVTIAGCARKQCSEGRTYSNAVISPNLETTRIMRVSHTFPVVDCTAACCDLSSCDLAWWFEGRCYLV SCPHKENCEPKKMGPIRSYLTFVLRPVORPAOLLDYGDMMLNRGSPSGIWGDSPEDIRKDLPFLGKDWGLEEMSEYSDDY RelekdllqpsgkqeprgsaeytdwgllpgsegafnssvgdspavpaetqqdpelhylnesastpapklpersvllplptTPSSGEVLEKEKASQLQEQSSNSSGKEVLMPSHSLPPASLELSSVTVEKSPVLTVTPGSTEHSIPTPPTSAAPSESTPSE LPISPTTAPRTVKELTVSAGDNLIITLPDNEVELKAFVAPAPPVETTYNYEWNLISHPTDYQGEIKQGHKQTLNLSQLSV GLYVFKVTVSSENAFGEGFVNVTVKPARRVNLPPVAVVSPQLQELTLPLTSALIDGSQSTDDTEIVSYHWEEINGPFIEE KTSVDSPVLRLSNLDPGNYSFRLTVTDSDGATNSTTAALIVNNAVDYPPVANAGPNHTITLPQNSITLNGNQSSDDHQIV 

> Alpha helix(h): 18.19% Extended strand (e): 24.81% Random coil(c): 57.00%

# Secondary structure prediction of 254P1D6B variant 1 (continued)

	570	580	590	600	610	620	630	640
	í	1	l	1	1	I		
LYE	WSLGPGSEGKHV	VMQGVQTPYI	HLSAMQEGDY	TFQLKVTDS	SRQQSTAVVTV	/IVQPENNRPE	VAVÁGPDKEL	IFPVE
eee	ecccccccee	eeeccccche	eeehccccc	eeeeccccc	cccceeeeee	eeeccccccc	eeecccccee	eeec
SAT	LDGSSSSDDHGI	VFYHWEHVRO	PSAVEMENIC	KAIATVTGL	<u>O</u> VGTYHFRLTV	/KDQQGLSSTS	TLTVAVKKEN	NSPPR
cċc	ccccccccee	eeeeeccccc	ccchhhhhhh	hhhhhccce	ecceeeeee	ecccccccc	eeeeeeccc	ccccc
ARA	GGRHVLVLPNNS	ITLDGSRSTE	DQRIVSYLWI	RDGQSPAAGI	DVIDGSDHSVA	LQLTNLVEGV	YTFHLRVTDS	QGASD
ccc	ccceeeeecccc	eeeccccccc	cceeeeeeee	ccccccccc	ccccccchee	ehhhhhhhch	eeeeeeccc	ccccc
TDT.	ATVEVQPDPRKS	GLVELTLQVO	VGQLTEQRKD	TLVRQLAVLI	NVLDSDIKVÇ	KIRAHSDLST	VIVFYVQSRP	PFKVL
ccc	ceeeeccccccc	cheeeeeec	ccccchhhhh	հհհհհհհհ	hhhcccchhh	hehhccccce	eeeeeecccc	cchhh
KAA	EVARNLHMRLSKI	EKADFLLFKV	LRVDTAGCLL	KCSGHGHCDE	LTKRCICSHL	WMENLIQRYI	WDGESNCEWS	IFYVT
hhhi	հհհհհհհհհհհ	nhhhhhheh	eeecccceee	ecccccccc	cchhhhhhh	հհհհհհհհհ	.ecccccchhhl	hhhhh
VLA	FTLIVLTGGFTWI	LCICCCKRQK	RTKIRKKTKY	TILDNMDEQE	RMELRPKYGI	KHRSTEHNSS	LMVSESEFDSI	DQDTI
hhe	eeeeeecccceee	eeeecccch	cchcccccce	eeecccchhh	hhhaacaace	eeecccccce	eeecccccc	chhhh
FSRI	EKMERGNPKVSM	NGSIRNGASE	SYCSKDR					
ohhi	hhhooppoor							

ehhhhhccccceecccccccceeecccc

Alpha helix(h): 18.19% Extended strand (e): 24.81% Random coil(c): 57.00%





WO 2004/067716

PCT/US2004/001965




1 transmembrane domain predicted

## Figure 14A 254P1D6B Expression by RT-PCR

M = Marker

34/38

### 1) Vital Pool 1

- (Kidney, Liver, Lung)
- 2) Vital Pool 2
  - (Colon, Pancreas, Stomach)
- 3) Normal Lung
- 4) Lung Cancer Pool
- 5) Ovary Cancer Pool
- 5) Pancreas cancer Pool



**Figure 14B** Expression of 254P1D6B in Normal Human Tissues and Ovarian Cancer Patient Specimens



# Figure 15 Expression of 254P1D6B in Normal Tissues



1. Heart

- 2. Brain
- 3. Placenta
- 4. Lung
- 5. Liver
- 6. Skeletal Muscle
- 7. Kidney
- 8. Pancreas



- Spleen
   Thymus
   Prostate
   Testis
- 5. Uterus
- 6. Small Intestine
- 7. Colon
- 8. Leukocytes

Panel#	Pathology	Grade	Expression
1	Normal		
2	A427 Cell line		and the second second second second second second second second second second second second second second second
3	Adeno	3	
4	Adeno	1	
5	Adeno	IB	
6	Adeno	IB	
7	Adeno	IIIA	
8	Adeno	IIIA	
9	Adeno	Mod Diff	
10	Adeno	Mod Diff	
11	Adeno		
12	Bronchioalv.	IA	
· 13	Large Cell	1	
14	Large Cell	IIB	
15	Large Cell	IIIA	
16	Large Cell	IV	
17	Papillary		
18	Papillary	IB	
19	Papillary	IV	
20	Small Cell	1	
21	Small Cell	1	
22	Small Cell	1	
23	Small Cell	IIB	
24	Squamous	IB	
25	Squamous	IB	
26	Squamous	IB	
27	Squamous	IIB	- The start state of states of the state of the state of the state of the state of the state of the state of the
28	Squamous	IIB	
29	Squamous	IIIA	
30	Squamous	IIIA	
31	Squamous		
32	Squamous		
33	Squamous		[

No Expression
Low Expression
High expression



38/38

SEQUENCE LISTING <110> Agensys, Inc. Raitano, Arthur B. Jakobovits, Aya Challita-Eid, Pia M. Ge, Wangmao Faris, Mary Steven B. Kanner Juan J. Perez-Villar <120> Nucleic Acids and Corresponding Proteins Entitled 254P1D6B Useful in Treatment and Detection of Cancer <130> 51158-20081.40 <150> US60/442,526 <151> 2003-01-24 <160> 277 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 284 <212> DNA <213> Homo sapiens <400> 1 gatecacaga taggacacaa ttetttggte ateagtagae ettgaaceat ecaaagtaat 60 ggaattattg ggaagcacaa gaacatgtet gecaecagee egggetetgg gaggaetatt 120 attitectic ticacageea cagtgagggt ggacgtgetg cicagteeet getgetettt 180 tactgtcaaa cggaagtggt aggtccccac ctggagacca gtcacagtgg ctattgcttt 240 gtcaatattt tccatctcca ctgcactggg gcctctgacg tgct 284 <210> 2 <211> 6791 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (512) ... (3730) <221> misc_feature <222> 286 <223> s = g or c <221> misc_feature <222> 935 <223 > m = c or a<221> misc feature <222> 980 <223 > k = t or g<221> misc_feature <222> 2347 <223> r = g or a

<221> misc_feature <222> 3762

#### WO 2004/067716

<223> "y = c or t <221> misc_feature <222> (0)...(0) <223> Pos: 3772; r = a or q <221> misc feature <222> (0)...(0) <223> Pos: 3955; y = c or t <221> misc_feature <222> (0)...(0) <223> Pos: 4096; y = c or t <221> misc feature <222> (0)...(0) <223> Pos: 4415; r = q or a <221> misc feature <222> (0)...(0) <223> Pos: 4519; r = g or a <221> misc feature <222> (0)...(0) <223> Pos: 4539; r = a or q <221> misc feature <222> (0)...(0) <223> Pos: 4614; k = t or q<221> misc feature <222> (0)...(0) <223> Pos: 5184; s = g or c <221> misc_feature <222> (0)...(0) <223> Pos: 5528; k = t or q <221> misc feature <222> (0)...(0) <223> Pos: 5641; r = g or a <221> misc feature <222> (0)...(0) <223> Pos: 6221; y = t or c <221> misc feature <222> (0)...(0) <223> Pos: 6223; r = g or a <400> 2 getgeegegg geggtgggeg gggateeeee gggggtgeaa eettgeteea eetgtgetge 60 ceteggeggg cetggetgge ceegegeaga geggeggegg egetegetgt caetgeegga 120 ggtgagagcg cagcagtagc ttcagcctgt cttgggcttg gtccagattc gctcctctgg 180 ggctacgtcc cgggggaagag gaagcgagga ttttgctggg gtggggctgt acctettaac 240 agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtgt tgtgtstgtg tgtgtgtgtg 300 taagacetge gatgaegaeg aggaggaaca agtgggaegg egagtgatge teagggeeag 360 cagcaacgca tggggcgage tteagtgteg ceageagtga ceaeagttet tgaggeeaaa 420 totggeteet aaaaaacate aaaggaaget tgeaceaaae tetetteagg geegeeteag 480 aageetgeea teacecaetg tgtggtgeae a atg geg eee eee aggt gtg 532 Met Ala Pro Pro Thr Gly Val 1 5

ctc tct tca ttg ctg ctg gtg aca att gca ggt tgt gcc cgt aag 580

Leu	Ser	Ser 10	Leu	Leü	Leü	Leu	Val 15	Thr	Ile	Ala	Gly	Cys 20	Ala	Arg	Lys	
cag Gln	tgc Cys 25	agc Ser	gag Glu	glà aaa	agg Arg	aca Thr 30	tat Tyr	tcc Ser	aat Asn	gca Ala	gtc Val 35	att Ilc	tca Ser	cct Pro	aac Asn	628
ttg Leu 40	gaa Glu	acc Thr	acc Thr	aga Arg	atc Ile 45	atg Met	cgg Arg	gtg Val	tct Ser	cac His 50	acc Thr	ttc Phe	cct Pro	gtc Val	gta Val 55	676
gac Asp	tgc Cys	acg Thr	gcc Ala	gct Ala 60	tge Cys	tgt Cys	gac Asp	ctg Leu	tcc Ser 65	agc Ser	tgt Cys	gac Asp	ctg Leu	gcc Ala 70	tgg Trp	724
tgg Trp	t:c Phe	gag Glu	ggc Gly 75	cgc Arg	tgc Cys	tac Tyr	ctg Leu	gtg Val 80	agc Ser	tgc Cys	ccc Pro	cac His	aaa Lys 85	gag Glu	aac Asn	772
tgt Cys	gag Glu	ccc Pro 90	aag Lys	aag Lys	atg Met	ggc Gly	ccc Pro 95	atc Ile	agg Arg	tct Ser	tat Tyr	ctc Leu 100	act Thr	ttt Phe	gtg Val	820
ctc Leu	cgg Arg 105	cct Pro	gtt Val	cag Gln	agg Arg	cct Pro 110	gca Ala	cag Gln	ctg Leu	ctg Leu	gac Asp 115	tat Tyr	ggg Gly	gac Asp	atg Met	868
atg Met 120	ctg Leu	aac Asn	agg Arg	ggc Cly	tac Ser 125	ccc Pro	tcg Ser	GJλ ā3ā	atc Ile	tgg Trp 130	dlà aaa	gac Asp	tca Ser	cct Pro	gag Glu 135	916
gat Asp	atc Ile	<b>aga</b> Arg	aag Lys	gac Asp 140	ttg Leu	mcc Xaa	ttt Phe	cta Leu	ggc Gly 145	aaa Lys	gat Asp	tgg Trp	ggc Gly	cta Leu 150	gag Glu	964
gag Glu	atg Met	tct Ser	gag Glu 155	tac Tyr	kca Xaa	gat Asp	gac Asp	tac Tyr 160	cgg Arg	gag Glu	ctg Leu	gag Glu	aag Lys 165	gac Asp	ctc Leu	1012
ttg Leu	caa Gln	ccc Pro 170	agt Ser	gjc ggc	aag Lys	cag Gln	gag Glu 175	ccc Pro	aga Arg	g3ð Glλ	agt Ser	gcc Ala 180	gag Glu	tac Tyr	acg Thr	1060
gac Asp	tgg Trp 185	gjå gåc	cta Leu	ctg Leu	ccg Pro	ggc Gly 190	agc Ser	gag Glu	д1У ааа	gcc Ala	ttc Phe 195	aac Asn	tcc Ser	tct Ser	gtt Val	1108
gga Gly 200	gac Asp	agt Ser	cct Pro	gcg Ala	gtg Val 205	cca Pro	gcg Ala	gag Glu	acg Thr	cag Gln 210	cag Gln	gac Asp	cct Pro	gag Glu	ctc Leu 215	1156
cat His	tac Tyr	ctg Leu	aat Asn	gag Glu 220	tcg Ser	gct Ala	tca Ser	acc Thr	cct Pro 225	gcc Ala	cca Pro	aaa Lys	ctc Leu	cct Pro 230	gag Glu	1204
aga Arg	agt Ser	gtg Val	ttg Leu 235	ctt Leu	ccc Pro	ttg Leu	ccg Pro	act Thr 240	act Thr	cca Pro	tct Ser	tca Ser	gga Gly 245	gag Glu	gtg Val	1252
ttg Leu	gag Glu	aaa Lys 250	gaa Glu	aag Lys	gct Ala	tct Ser	cag Gln 255	ctc Leu	cag Gln	gaa Glu	caa Gln	tcc Ser 260	agc Ser	aac Asn	agc Ser	1300
tct	gga	aaa	gag	gtt	cta	atg	cct	tcc	cat	agt	ctt	cct	ccg	gca	agc	1348

Ser'	'GIŸ 265	Lýs	Glu	Va⊥	Leu	Met 270	Pro	Ser	His	Ser	Leu 275	Pro	Pro	Ala	Ser	
ctg Leu 280	gag Glu	ctc Leu	agc Ser	tca Ser	gtc Val 285	acc Thr	gtg Val	gag Glu	aaa Lys	agc Ser 290	cca Pro	gtg Val	ctc Leu	aca Thr	gtc Val 295	1396
acc Thr	ccg Pro	ддд ддд	agt Ser	aca Thr 300	gag Glu	cac His	agc Ser	atc Ile	cca Pro 305	aca Thr	cct Pro	ccc Pro	act Thr	agc Ser 310	gca Ala	1444
gcc Ala	ccc Pro	tct Ser	gag Glu 315	tcc Ser	acc Thr	cca Pro	tct Ser	gag Glu 320	cta Leu	ccc Pro	ata Ile	tct Ser	cct Pro 325	acc Thr	act Thr	1492
gct Ala	ccc Pro	agg Arg 330	aca Thr	gtg Val	aaa Lys	gaa Glu	ctt Leu 335	acg Thr	gta Val	tcg Ser	gct Ala	gga Gly 340	gat Asp	aac Asn	cta Leu	1540
att Ile	ata Ile 345	act Thr	tta Leu	ccc Pro	gac Asp	aat Asn 350	gaa Glu	gtt Val	gaa Glu	ctg Leu	aag Lys 355	gcc Ala	ttt Phe	gtt Val	gcg Ala	1588
cca Pro 360	gcg Ala	cca Pro	cct Pro	gta Val	gaa Glu 365	aca Thr	acc Thr	tac Tyr	aac Asn	tat Tyr 370	gaa Glu	tgg Trp	aat Asn	tta Leu	ata Ile 375	1636
agc Ser	cac His	ccc Pro	aca Thr	gac Asp 380	tac Tyr	caa Gln	ggt Gly	gaa Glu	ata Ile 385	aaa Lys	caa Gln	gga Gly	cac His	aag Lys 390	caa Gln	1684
act Thr	ctt Leu	aac Asn	ctc Leu 395	tct Ser	caa Gln	ttg Leu	tcc Ser	gtc Val 400	gga Gly	ctt Leu	tat Tyr	gtc Val	ttc Phe 405	aaa Lys	gtc Val	1732
act Thr	gtt Val	tct Ser 410	agt Ser	gaa Glu	aac Asn	gcc Ala	ttt Phe 415	gga Gly	gaa Glu	gga Gly	ttt Phe	gtc Val 420	aat Asn	gtc Val	act Thr	1780
gtt Val	aag Lys 425	cct Pro	gcc Ala	aga Arg	aga Arg	gtc Val 430	aac Asn	ctg Leu	cca Pro	cct Pro	gta Val 435	gca Ala	gtt Val	gtt Val	tct Ser	1828
ccc Pro 440	caa Gln	ctg Leu	caa Gln	gag Glu	ctc Leu 445	act Thr	ttg Leu	cct Pro	ttg Leu	acg Thr 450	tca Ser	gcc Ala	ctc Leu	att Ile	gat Asp 455	1876
ggc Gly	agc Ser	caa Gln	agt Ser	aca Thr 460	gat Asp	gat Asp	act Thr	gaa Glu	ata Ile 465	gtg Val	agt Ser	tat Tyr	cat His	tgg Trp 470	gaa Glu	1924
gaa Glu	ata Ile	aac Asn	999 Gly 475	ccc Pro	ttc Phe	ata Ile	gaa Glu	gag Glu 480	aag Lys	act Thr	tca Ser	gtt Val	gac Asp 485	tct Ser	ccc Pro	1972
gtc Val	tta Leu	cgc Arg 490	ttg Leu	tct Ser	aac Asn	ctt Leu	gat Asp 495	cct Pro	ggt Gly	aac Asn	tat Tyr	agt Ser 500	ttc Phe	agg Arg	ttg Leu	2020
act Thr	gtt Val 505	aca Thr	gac Asp	tcg Ser	gac Asp	gga Gly 510	gcc Ala	act Thr	aac Asn	tct Ser	aca Thr 515	act Thr	gca Ala	gcc Ala	cta Leu	2068
ata	gtg	aac	aat	gct	gtg	gac	tac	cca	cca	gtt	gct	aat	gca	gga	cca	2116

Ile [°] 520	Val	Asn	Asn	Ala	Val 525	Asp	Tyr	Pro	Pro	Val 530	Ala	Asn	Ala	Glγ	Pro 535	
aat Asn	cac His	acc Thr	ata Ile	act Thr 540	ttg Leu	ccc Pro	caa Gln	aac Asn	tcc Ser 545	atc Ile	act Thr	ttg Leu	aat Asn	gga Gly 550	aac Asn	2164
cag Gln	agc Ser	agt Ser	gac Asp 555	gat Asp	cac Hìs	cag Gln	att Ile	gtc Val 560	ctc Leu	tat Tyr	gag Glu	tgg Trp	tcc Ser 565	ctg Leu	ggt Gly	2212
cct Pro	ggg Gly	agt Ser 570	gag Glu	ggc Gly	aaa Lys	cat His	gtg Val 575	gtc Val	atg Met	cag Gln	gga Gly	gta Val 580	cag Gln	acg Thr	cca Pro	2260
tac Tyr	ctt Leu 535	cat His	tta Leu	tct Ser	gca Ala	atg Met 590	cag Gln	gaa Glu	gga Gly	gat Asp	tat Tyr 595	aca Thr	ttt Phe	cag Gln	ctg Leu	2308
aag Lys 600	gtg Val	aca Thr	gat Asp	tct Ser	tca Ser 605	agg Arg	caa Gln	cag Gln	tct Ser	act Thr 610	gct Ala	gtr Xaa	gtg Val	act Thr	gtg Val 615	2356
att Ile	gtc Val	cag Gln	cct Pro	gaa Glu 620	aac Asn	aat Asn	aga Arg	cct Pro	cca Pro 625	gtg Val	gct Ala	gtg Val	gcc Ala	ggc Gly 630	cct Pro	2404
gat Asp	aaa Lys	gag Glu	ctg Leu 635	atc Ile	ttc Phe	cca Pro	gtg Val	gaa Glu 640	agt Ser	gct Ala	acc Thr	ctg Leu	gat Asp 645	ggg ggg	agc Ser	2452
agc Ser	agc Ser	agc Ser 650	gat Asp	gac Asp	cac His	ggc Gly	att Ile 655	gtc Val	ttc Phe	tac Tyr	cac His	tgg Trp 660	gag Glu	cac His	gtc Val	2500
aga Arg	ggc Gly 665	ccc Pro	agt Ser	gca Ala	gtg Val	gag Glu 670	atg Met	gaa Glu	aat Asn	att Ile	gac Asp 675	aaa Lys	gca Ala	ata Ile	gcc Ala	2548
act Thr 680	gtg Val	act Thr	ggt Gly	ctc Leu	cag Gln 685	gtg Val	с1 ^λ ааа	acc Thr	tac Tyr	cac His 690	ttc Phe	cgt Arg	ttg Leu	aca Thr	gtg Val 695	2596
aaa Lys	gac Asp	cag Gln	cag Gln	gga Gly 700	ctg Leu	agc Ser	agc Ser	acg Thr	tcc Ser 705	acc Thr	ctc Leu	act Thr	gtg Val	gct Ala 710	gtg Val	2644
aag Lys	aag Lys	gaa Glu	aat Asn 715	aat Asn	agt Ser	cct Pro	ccc Pro	aga Arg 720	gcc Ala	cgg Arg	gct Ala	ggt Gly	ggc Gly 725	aga Arg	cat His	2692
gtt Val	ctt Leu	gtg Val 730	ctt Leu	ccc Pro	aat Asn	aat Asn	tcc Ser 735	att Ile	act Thr	ttg Leu	gat Asp	ggt Gly 740	tca Ser	agg Arg	tct Ser	2740
act Thr	gat Asp 745	gac Asp	caa Gln	aga Arg	att Ile	gtg Val 750	tcc Ser	tat Tyr	ctg Leu	tgg Trp	atc Ile 755	cgg Arg	gat Asp	ggc Gly	cag Glr	2783
agt Ser 760	cca Pro	gca Ala	gct Ala	gga Gly	gat Asp 765	gtc Val	atc Ile	gat Asp	ggc Gly	tct Ser 770	gac Asp	cac His	agt Ser	gtg Val	gct Ala 775	2835
ctg	cag	ctt	acg	aat	ctg	gtg	gag	aaa	gtg	tac	act	ttc	cac	ttg	cga	2884

Leu Gln I	Leu Thr	Asn Leu 780	Val Gl	ı Gly	Val 785	Tyr	Thr	Phe	His	Leu 790	Arg	
gtc acc g Val Thr A	gac agt Asp Ser 795	cag ggg Gln Gly	gcc tc Ala Se	g gac r Asp 800	aca Thr	gac Asp	act Thr	gcc Ala	act Thr 805	gtg Val	gaa Glu	2932
gtg cag d Val Gln 1 {	cca gac Pro Asp 810	cct agg Pro Arg	aag ag Lys Se 81	t ggc r Gly 5	ctg Leu	gtg Val	gag Glu	ctg Leu 820	acc Thr	ctg Leu	cag Gln	2980
gtt ggt g Val Gly W 825	gtt ggg Val Gly	cag ctg Gln Leu	aca ga Thr Gl 830	g cag u Gln	cgg Arg	aag Lys	gac Asp 835	acc Thr	ctt Leu	gtg Val	agg Arg	3028
cag ctg g Gln Leu A 840	gct gtg Ala Val	ctg ctg Lcu Leu 845	aac gt Asn Va	g ctg l Leu	gac Asp	tcg Ser 850	gac Asp	att Ile	aag Lys	gtc Val	cag Gln 855	3076
aag att d Lys Ile A	cgg gcc Arg Ala	cac tcg His Ser 860	gat ct Asp Le	c agc u Ser	acc Thr 865	gtg Val	att Ile	gtg Val	ttt Phe	tat Tyr 870	gta Val	3124
cag agc a Gln Ser A	agg ccg Arg Pro 875	cct ttc Pro Phe	aag gt Lys Va	t ctc l Leu 880	aaa Lys	gct Ala	gct Ala	gaa Glu	gtg Val 885	gcc Ala	cga Arg	3172
aat ctg d Asn Leu H 8	cac atg His Mct 890	cgg ctc Arg Leu	tca aa Ser Ly 89	g gag s Glu 5	aag Lys	gct Ala	gac Asp	ttc Phe 900	ttg Leu	ctt Leu	ttc Phe	3220
aag gto t Lys Val I 905	ttg agg Leu Arg	gtt gat Val Asp	aca gc Thr Al 910	a ggt a Gly	tgc Cys	ctt Leu	ctg Leu 915	aag Lys	tgt Cys	tct Ser	ggc Gly	3268
cat ggt d His Gly H 920	cac tgc His Cys	gac ccc Asp Pro 925	ctc ac Leu Th	a aag r Lys	cgc Arg	tgc Cys 930	att Ile	tgc Cys	tct Ser	cac His	tta Leu 935	3316
tgg atg o Trp Met (	gag aac 3lu Asn	ctt ata Leu Ile 940	cag cg Gln Ar	t tat g Tyr	atc Ile 945	tgg Trp	gat Asp	gga Gly	gag Glu	agc Ser 950	aac Asn	3364
tgt gag t Cys Glu 1	tgg agt Irp Ser 955	ata ttc Ile Phe	tat gt Tyr'Va	g aca l Thr 960	gtg Val	ttg Leu	gct Ala	ttt Phe	act Thr 965	ctt Leu	att Ile	3412
gtg cta a Val Leu 1 9	aca gga Thr Gly 970	ggt ttc Gly Phe	act tg Thr Tr 97	g ctt 9 Leu 5	tgc Cys	atc Ile	tgc Cys	tgc Cys 980	tgc Cys	aaa Lys	aga Arg	3460
caa aaa a Gln Lys A 985	agg act Arg Thr	aaa atc Lys Ile	agg aa Arg Ly 990	a aaa s Lys	aca Thr	aag Lys	tac Tyr 999	acc Thr 5	atc Ile	ctg Leu	gat Asp	3508
aac atg <u>c</u> Asn Met <i>A</i> 1000	gat gaa Asp Glu	cag gaa Gln Glu 1009	aga at Arg Me 5	y gaa t Glu	ctg Leu	agg Arg 101(	ccc Pro D	aaa Lys	tat Tyr	ggt Gly	atc Ile 1015	3556
aag cac d Lys His A	cga agc Arg Ser	aca gag Thr Glu 1020	cac aa His As	c tcc n Ser	agc Ser 1029	ctg Leu 5	atg Met	gta Val	tcc Ser	gag Glu 103(	tct Ser )	3604
gag ttt g	yac agt	gac cag	gac ac	a atc	ttc	agc	cga	gaa	aag	atg	gag	3652

 Glu
 Phe
 Asp
 Ser
 Asp
 Glu
 Åsp
 Thr
 Ile
 Phe
 Ser
 Arg
 Glu
 Lys
 Met
 Glu
 1045

 aga
 ggg
 aat
 cca
 aag
 gtt
 tcc
 atg
 gat
 ggt
 tcc
 atg
 ggt
 fcc
  fcc
 fcc
 <td

tggaaggace cyttgaatee argaceagte agtgggagtt acageacaaa acceactett 3810 ttagaatagt tcattgacct tcttccccag tgggttagat gtgtatcccc acgtactaaa 3870 agaccggttt ttgaaggcac aaaacaaaaa ctttgctctt ttaactgaga tgcttgttaa 3930 tagaaataaa ggctgggtaa aactytaagg tatatactta aaagagtttt gagtttttgt 3990 agetggeaca ateteatatt aaagatgaac aacgatttet atetgtagaa eettagagaa 4050 ggtgaatgaa acaaggtttt aaaaagggat gatttctgtc ttagcygctg tgattgcctc 4110 taaggaacag cattetaaac acggtttete ttgtaggace tgcagtcaga tggetgtgta 4170 tgttaaaata gcttgtctaa gaggcacggg ccatctgtgg aggtacggag tcttgcatgt 4230 agcaagettt etgtgetgae ggcaacaete geacagtgee aageeeteet ggtttttaat 4290 tetgtgetat gtcaatggea gtttteatet eteteaagaa ageagetgtt ggeeatteaa 4350 gagctaagga agaatcgtat totaaggact gaggcaatag aaaggggagg aggagottaa 4410 tgccrtgcag gttgaaggta gcattgtaac attatctttt ctttctctaa gaaaaactac 4470 actgactcct ctcggtgttg tttagcagta tagttctcta atgtaaacrg atccccagtt 4530 tacattaart gcaatagaag tgattaattc attaagcatt tattatgttc tgtaggctgt 4590 gcqtttggac tgccatagat aggkataacg actcagcaat tgtgtatata ttccaaaact 4650 ctgaaataca gtcagtctta acttggatgg cgtggttatg atactctggt ccccgacagg 4710 tactttccaa aataacttga catagatgta ttcacttcat atgtttaaaa atacatttaa 4770 gtttttctac cgaataaatc tlatttcaaa catgaaagac aattaaaaca ttcccaccca 4830 caaagcagta ctcccgagca attaactgga gttaattgta gcctgctacg ttgactggtt 4890 cagggtagtt ccccatccac ccttggtcct gaggctggtg gccttggtgg tgcccttggc 4950 attttttgtg ggaagattag aatgagagat agaaccagtg ttgtggtacc aagtgtgagc 5010 acacctaaac aatateetgt tgeacaatge ttttttaaca catgggaaaa etaggaatge 5070 attgetgatg aagaagcaag gtatttaaac accagggcag gagtgecaga gaaaatgttt 5130 ccccatgggt tettaaaaaa aattcagett ttaggtgett ttgtcatete ccgsagtatt 5190 catecteatg ggaceatett attttaett attgtaattt actgggggaaa ggeagaaeta 5250 aaaagtgtgt cattttattt ttaaaataat tgetttgett atgeetacae tttetgtata 5310 actagccaat tcaatactgt ctatagtgtt agaaggaaaa tgtgattttt tttttttaac 5370 cagtattgag cttcataage ctagaatctg ccttatcagg tgaccagggt tatggttgtt 5430 tgcatgcaaa tgtgaattte tggcataggg gacagcagee caaatgtaaa gteateggge 5490 gtaatgagga agaagggagt gaacatttac cgctttakgt acataacata tgcagtttac 5550 atactcattt gatccttata atcaaccttg aagaggagat actatcattc ttatgttgca 5610 gatagecete tgaaggeeca gagaggttaa rtaactteec agaggteatg geeaagaagt 5670 agtggeteea agaactgaat geaaattttt taaactgtag agttetgett teeactaaac 5730 aaagaactcc tgccttgatg gatggagggc aaattctggt ggaacttttg ggccacctga 5790 aagttetatt eccaggaeta agaggaattt ettttaatgg ateeagagag ecaaggteag 5850 agggagagat ggcctgcata gtctcctgtg gatcacaccc gggccacccc tccctctagg 5910 ttlacagtgg acttettetg eccetected ttttetgtee ttggecatet cageetggee 5970 tetetgatee tteeateaca gaaggatett gaatetetgg gaaateaaae ateacagtag 6030 tgatcagaaa gtgagteetg tettgteace ceatttetea teagaacaaa geaegagatg 6090 gaatgaccaa ccagcattet teatggtgga etgettatea ttgaggatet ttgggagata 6150 aagcacgcta agagctctgg acagagaaaa acaggcccta gaatatggga gtgggtgttt 6210 gtagggetca yargetaaca ageaetttag ttgetggttt acatteaatg aaggaggatt 6270 catacccatg gcattacaag gctaagcatg tgtatgacta aggaactatc tgaaaaacat 6330 gcagcaaggt aagaaaatgt accactcaac aagccagtga tgccaccttt tgtgcgcggg 6390 gaggagagtg actaccattg ttttttgtgt gacaaagcta tcatggacta ttttaatctt 6450 ggttttattg cttaaaatat attatttttc cctatgtgtt gacaaggtat ttctaatatc 6510 acactattaa atatatgcac taatctaaat aaaggtgtct gtattttctg taatgcttat 6570 ttttaggggg aaatttgttt tetttatget teagggtaga gggatteeet tgagtatagg 6630 tcagcaaact ctggcctgca gcctgtgtgt gcacgcccca tgagccgaaa agtgggtctt 6690 atgttttcaa atggttaaaa ataaataaaa aaatttgaaa catgtgaact atatgacatt 6750 cagatttgtg ttcataaata aagttttatt ggaacatatc c 6791

<210> 3

WO 2004/067716

<211> 1072 <212> PRT <213> Homo sapiens <220> <221> VARIANT <222> 142 <223> Xaa = any amino acid <221> VARIANT <222> 157 <223> Xaa = any amino acid <221> VARIANT <222> 612 <223> Xaa = any amino acid <400>3Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr 1 5 10 15 Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser 20 25 30 Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val 35 40 45 Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu 50 55 60 Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val 65 70 75 80 Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile 85 90 95 Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln 100 105 110Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly 115 120 125 Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Xaa Phe Leu 130 135 140 Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Xaa Asp Asp Tyr 145 150 155 160 Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro 165 170 175 Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu 180 185 190 Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu 195 200 205 Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr 210 215 220 Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr 225 230 235 240 Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu 245 250 255 Gln Clu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser 260 265 270 His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu 275 280 285 Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile 290 295 300 Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu 305 315 310 320 Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr 325 330 335 Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val 340 345 350 Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr 355 360 365

Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu 470 475 Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro 490 495 Cly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn 535 540 Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val 570 575 Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Xaa Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Fhe Pro Val Glu 530 635 Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu 665 670 Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile 725 730 735 Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu 

Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu 885 890 895 Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly 900 905 910 Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys 915 920 925 Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr 930 935 940 Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr 945 950 955 960 Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu 965 970 975 Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys 980 985 990 Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu 995 1000 1005 Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser 1010 1015 1020 Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1025 1030 1035 1040 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1045 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 1060 1065 1070 <210> 4 <211> 6791 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (512) ... (3730) <400>4getgeegegg geggtgggeg gggateeeee gggggtgeaa dettgeteea detgtgetge 60 ecteggeggg cetggetgge eeegegeaga geggeggegg egetegetgt caetgeegga 120 ggtgagageg cageagtage tteageetgt ettgggettg gteeagatte geteetetgg 180 ggetacgtee eggggaagag gaagegagga ttttgetggg gtggggetgt acetettaae 240 agcaggtgeg egegegaggg tgtgaaegtg tgtgtgtgtg tgtgtetgtg tgtgtgtgtgg 300 taagacetge gatgaegaeg aggaggaaca agtgggaegg egagtgatge teagggeeag 360 cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacagttct tgaggccaaa 420 totggeteet aaaaaaacate aaaggaaget tgeaceaaae tetetteagg geegeeteag 480 aageetgeea teacceactg tgtggtgeac a atg geg eee eee aca ggt gtg 532 Met Ala Pro Pro Thr Gly Val 1 ctc tct tca ttg ctg ctg ctg gtg aca att gca ggt tgt gcc cgt aag 580 Leu Ser Ser Leu Leu Leu Val Thr Ile Ala Gly Cys Ala Arg Lys 10 15 20 cag tgc agc gag ggg agg aca tat tcc aat gca gtc att tca cct aac 628 Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser Pro Asn 25 30 35 ttg gaa acc acc aga atc atg cgg gtg tct cac acc ttc cct gtc gta 676 Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val 40 45 50 55 gac tge acg gee get tge tgt gac etg tee age tgt gae etg gee tgg 724 Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp 60 65 70

-

#### WO 2004/067716

.

tgg Trp	ttc Phe	gag Glu	ggc Gly 75	cgc Arg	tgc Cys	tac Tyr	ctg Leu	gtg Val 80	agc Ser	tgc Cys	ccc Pro	cac His	aaa Lys 85	gag Glu	aac Asn	772
tgt Cys	gag Glu	ccc Pro 90	aag Lys	aag Lys	atg Met	ggc gjy	acc Pro 95	atc Ile	agg Arg	tct Ser	tat Tyr	ctc Leu 100	act Thr	ttt Phe	gtg Val	820
ctc Leu	cgg Arg 105	cct Pro	gtt Val	cag Gln	agg Arg	cct Pro 110	gca Ala	cag Gln	ctg Leu	ctg Leu	gac Asp 115	tat Tyr	gly ggg	gac Asp	atg Met	868
atg Met 120	ctg Leu	aac Asn	agg Arg	ggc Gly	tcc Ser 125	ccc Pro	tcg Ser	д1 ^у ааа	atc Ile	tgg Trp 130	GJÀ âââ	gac Asp	tca Ser	cct Pro	gag Glu 135	916
gat Asp	atc Ile	aga Arg	aag Lys	gac Asp 140	ttg Leu	ccc Pro	ttt Phe	cta Leu	ggc Gly 145	aaa Lys	gat Asp	tgg Trp	ggc Gly	cta Leu 150	gag Glu	964
gag Glu	atg Met	tct Ser	gag Glu 155	tac Tyr	gca Ala	gat Asp	gac Asp	tac Tyr 160	cgg Arg	gag Glu	ctg Leu	gag Glu	aag Lys 165	gac Asp	ctc Leu	1012
ttg Leu	caa Gln	ccc Pro 170	agt Ser	ggc Gly	aag Lys	cag Gln	gag Glu 175	ccc Pro	aga Arg	617 833	agt Ser	gcc Ala 180	gag Glu	tac Tyr	acg Thr	1060
gac Asp	tgg Trp 185	ggc Gly	cta Leu	ctg Leu	ccg Pro	ggc Gly 190	agc Ser	gag Glu	д1У ааа	gcc Ala	ttc Phe 195	aac Asn	tcc Ser	tct Ser	gtt Val	1108
gga Gly 200	gac Asp	agt Ser	cct Pro	gcg Ala	gtg Val 205	cca Pro	gcg Ala	gag Glu	acg Thr	cag Gln 210	cag Gln	gac Asp	cct Pro	gag Glu	ctc Leu 215	1156
cat His	tac Tyr	ctg Leu	aat Asn	gag Glu 220	tcg Ser	gct Ala	tca Ser	acc Thr	cct Pro 225	gcc Ala	cca Pro	aaa Lys	ctc Leu	cct Pro 230	gag Glu	1204
aga Arg	agt Ser	gtg Val	ttg Leu 235	ctt Leu	ccc Pro	ttg Leu	ccg Pro	act Thr 240	act Thr	cca Pro	tct Ser	tca Ser	gga Gly 245	gag Glu	gtg Val	1252
ttg Leu	gag Glu	aaa Lys 250	gaa Glu	aag Lys	gct Ala	tct Ser	cag Gln 255	ctc Leu	cag Gln	gaa Glu	caa Gln	tcc Ser 260	agc Ser	aac Asn	agc Ser	1300
tct Ser	gga Gly 265	aaa Lys	gag Glu	gtt Val	cta Leu	atg Met 270	cct Pro	tcc Ser	cat His	agt Ser	ctt Leu 275	cct Pro	ccg Pro	gca Ala	agc Ser	1348
ctg Leu 280	gag Glu	ctc Leu	agc Ser	tca Ser	gtc Val 285	acc Thr	gtg Val	gag Glu	aaa Lys	agc Ser 290	cca Pro	gtg Val	ctc Leu	aca Thr	gtc Val 295	1396
acc Thr	ccg Pro	gjå aaa	agt Ser	aca Thr 300	gag Glu	cac His	agc Ser	atc Ile	cca Pro 305	aca Thr	cct Pro	ccc Pro	act Thr	agc Ser 310	gca Ala	1444
gcc Ala	ecc Pro	tct Ser	gag Glu 315	tcc Ser	acc Thr	cca Pro	tct Ser	gag Glu 320	cta Leu	ccc Pro	ata Ile	tct Ser	cct Pro 325	acc Thr	act Thr	1492

#### WO 2004/067716

#### PCT/US2004/001965

gct Ala	ccc Pro	agg Arg 330	aca Thr	gtg Val	aaa Lys	gaa Glu	ctt Leu 335	acg Thr	gta Val	tcg Ser	gct Ala	gga Gly 340	gat Asp	aac Asn	cta Leu	1540
att Ile	ata Ile 345	act Thr	tta Leu	ecc Pro	gac Asp	aat Asn 350	gaa Glu	gtt Val	gaa Glu	ctg Leu	aag Lys 355	gcc Ala	ttt Phe	gtt Val	gcg Ala	1588
cca Pro 360	gcg Ala	cca Pro	cct Pro	gta Val	gaa Glu 365	aca Thr	acc Thr	tac Tyr	aac Asn	tat Tyr 370	gaa Glu	tgg Trp	aat Asn	tta Leu	ata Ile 375	1636
agc Ser	cac His	ccc Pro	aca Thr	gac Asp 380	tac Tyr	caa Gln	ggt Gly	gaa Glu	ata Ile 385	aaa Lys	caa Gln	gga Gly	cac His	aag Lys 390	caa Gln	1684
act Thr	ctt Leu	aac Asn	ctc Leu 395	tct Ser	caa Gln	ttg Leu	tcc Ser	gtc Val 400	gga Gly	ctt Leu	tat Tyr	gtc Val	ttc Phe 405	aaa Lys	gtc Val	1732
act Thr	gtt Val	tct Ser 410	agt Ser	gaa Glu	aac Asn	gcc Ala	ttt Phe 415	gga Gly	gaa Glu	gga Gly	ttt Phe	gtc Val 420	aat Asn	gtc Val	act Thr	1780
gtt Val	aag Lys 425	cct Pro	gcc Ala	aga Arg	aga Arg	gtc Val 430	aac Asn	ctg Leu	cca Pro	cct Pro	gta Val 435	gca Ala	gtt Val	gtt Val	tct Ser	1828
ccc Pro 440	caa Gln	ctg Leu	caa Gln	gag Glu	ctc Leu 445	act Thr	ttg Leu	cct Pro	ttg Leu	acg Thr 450	tca Ser	gcc Ala	ctc Leu	att Ile	gat Asp 455	1876
ggc ggc	agc Ser	caa Gln	agt Ser	aca Thr 460	gat Asp	gat Asp	act Thr	gaa Glu	ata Ile 465	gtg Val	agt Ser	tat Tyr	cat His	tgg Trp 470	gaa Glu	1924
gaa Glu	ata Ile	aac Asn	999 Gly 475	ccc Pro	ttc Phe	ata Ile	gaa Glu	gag Glu 480	aag Lys	act Thr	tca Ser	gtt Val	gac Asp 485	tct Ser	ccc Pro	1972
gtc Val	tta Leu	cgc Arg 490	ttg Leu	tct Ser	aac Asn	ctt Leu	gat Asp 495	cct Pro	ggt Gly	aac Asn	tat Tyr	agt Ser 500	ttc Phe	agg Arg	ttg Leu	2020
act Thr	gtt Val 505	aca Thr	gac Asp	tcg Ser	gac Asp	gga Gly 510	gcc Ala	act Thr	aac Asn	tct Ser	aca Thr 515	act Thr	gca Ala	gcc Ala	cta Leu	2063
ata Ile 520	gtg Val	aac Asn	aat Asn	gct Ala	gtg Val 525	gac Asp	tac Tyr	cca Pro	cca Pro	gtt Val 530	gct Ala	aat Asn	gca Ala	gga Gly	cca Pro 535	2115
aat Asn	cac His	acc Thr	ata Ile	act Thr 540	ttg Leu	ccc Pro	caa Gln	aac Asn	tcc Ser 545	atc Ile	act Thr	ttg Leu	aat Asn	gga Gly 550	aac Asn	2164
cag Gln	agc Ser	agt Ser	gac Asp 555	gat Asp	cac His	cag Gln	att Ile	gtc Val 560	ctc Leu	tat Tyr	gag Glu	tgg Trp	tcc Ser 565	ctg Leu	ggt Gly	2212
cct Pro	сј <i></i> 333	agt Ser 570	gag Glu	ggc Gly	aaa Lys	cat His	gtg Val 575	gtc Val	atg Met	cag Gln	gga Gly	gta Val 580	cag Gln	acg Thr	cca Pro	2260

•

#### WO 2004/067716

tac Tyr	ctt Leu 585	cat His	tta Leu	tct Ser	gca Ala	atg Met 590	cag Gln	gaa Glu	gga Gly	gat Asp	tat Tyr 595	aca Thr	ttt Phe	cag Gln	ctg Leu	2308
aag Lys 600	gtg Val	aca Thr	gat Asp	tct Ser	tca Ser 605	agg Arg	caa Gln	cag Gln	tct Ser	act Thr 610	gct Ala	gta Val	gtg Val	act Thr	gtg Val 615	2356
att Ile	gtc Val	cag Gln	cct Pro	gaa Glu 620	aac Asn	aat Asn	aga Arg	cct Pro	cca Pro 625	gtg Val	gct Ala	gtg Val	gcc Ala	ggc Gly 630	cct Pro	2404
gat Asp	aaa Lys	gag Glu	ctg Leu 635	atc Ile	ttc Phe	cca Pro	gtg Val	gaa Glu 640	agt Ser	gct Ala	acc Thr	ctg Leu	gat Asp 645	ely aaa	agc Ser	2452
agc Ser	agc Ser	agc Ser 650	gat Asp	gac Asp	cac His	ggc Gly	att Ile 655	gtc Val	ttc Phe	tac Tyr	cac His	tgg Trp 660	gag Glu	cac His	gtc Val	2500
aga Arg	ggc Gly 665	ccc Pro	agt Ser	gca Ala	gtg Val	gag Glu 670	atg Met	gaa Glu	aat Asn	att Ile	gac Asp 675	aaa Lys	gca Ala	ata Ile	gcc Ala	2548
act Thr 680	gtg Val	act Thr	ggt Gly	ctc Leu	cag Gln 685	gtg Val	GlÀ ââã	acc Thr	tac Tyr	cac His 690	ttc Phe	cgt Arg	ttg Leu	aca Thr	gtg Val 695	2596
aaa Lys	gac Asp	cag Gln	cag Gln	gga Gly 700	ctg Leu	agc Ser	agc Ser	acg Thr	tee Ser 705	acc Thr	ctc Leu	act Thr	gtg Val	gct Ala 710	gtg Val	2544
aag Lys	aag Lys	gaa Glu	aat Asn 715	aat Asn	agt Ser	cct Pro	ccc Pro	aga Arg 720	gcc Ala	cgg Arg	gct Ala	ggt Gly	ggc Gly 725	aga Arg	cat His	2692
gtt Val	ctt Leu	gtg Val 730	ctt Leu	ccc Pro	aat Asn	aat Asn	tcc Ser 735	att Ile	act Thr	ttg Leu	gat Asp	ggt Gly 740	tca Ser	agg Arg	tct Ser	2740
act Thr	gat Asp 745	gac Asp	caa Gln	aga Arg	att Ile	gtg Val 750	tcc Ser	tat Tyr	ctg Leu	tgg Trp	atc Ile 755	cgg Arg	gat Asp	ggc Gly	cag Gln	2788
agt Ser 760	cca Pro	gca Ala	gct Ala	gga Gly	gat Asp 765	gtc Val	atc Ile	gat Asp	ggc Gly	tct Ser 770	gac Asp	cac His	agt Ser	gtg Val	gct Ala 775	2836
ctg Leu	cag Gln	ctt Leu	acg Thr	aat Asn 780	ctg Leu	gtg Val	gag Glu	gjà djà	gtg Val 785	tac Tyr	act Thr	ttc Phe	cac His	ttg Leu 790	cga Arg	2884
gtc Val	acc Thr	gac Asp	agt Ser 795	cag Gln	glà aaa	gcc Ala	tcg Ser	gac Asp 800	aca Thr	gac Asp	act Thr	gcc Ala	act Thr 805	gtg Val	gaa Glu	2932
gtg Val	cag Gln	cca Pro 810	gac Asp	cct Pro	agg Arg	aag Lys	agt Ser 815	ggc Gly	ctg Leu	gtg Val	gag Glu	ctg Leu 820	acc Thr	ctg Leu	cag Gln	2980
gtt Val	ggt Gly 825	gtt Val	GJλ aaa	cag Gln	ctg Leu	aca Thr 830	gag Glu	cag Gln	cgg Arg	aag Lys	gac Asp 835	acc Thr	ctt Leu	gtg Val	agg Arg	3028

#### WO 2004/067716

cag Gln 840	ctg Leu	gct Ala	gtg Val	ctg Leu	ctg Leu 845	aac Asn	gtg Val	ctg Leu	gac Asp	tcg Ser 850	gac Asp	att Ile	aag Lys	gtc Val	cag Gln 855	3076
aag Lys	att Ile	cgg Arg	gcc Ala	cac His 860	tcg Ser	gat Asp	ctc Leu	agc Ser	acc Thr 865	gtg Val	att Ile	gtg Val	ttt Phe	tat Tyr 870	gta Val	3124
cag Gln	agc Ser	agg Arg	ccg Pro 875	cct Pro	ttc Phe	aag Lys	gtt Val	ctc Leu 880	aaa Lys	gct Ala	gct Ala	gaa Glu	gtg Val 885	gcc Ala	cga Arg	3172
aat Asn	ctg Leu	cac His 890	atg Met	cgg Arg	ctc Leu	tca Ser	aag Lys 895	gag Glu	aag Lys	gct Ala	gac Asp	ttc Phe 900	ttg Leu	ctt Leu	ttc Phe	3220
aag Lys	gtc Val 905	ttg Leu	agg Arg	gtt Val	gat Asp	aca Thr 910	gca Ala	ggt Gly	tgc Cys	ctt Leu	ctg Leu 915	aag Lys	tgt Cys	tct Ser	ggc Gly	3268
cat His 920	ggt Gly	cac His	tgc Cys	gac Asp	ccc Pro 925	ctc Leu	aca Thr	aag Lys	cgc Arg	tgc Cys 930	att Ile	tgc Cys	tct Ser	cac His	tta Leu 935	3316
tgg Trp	atg Met	gag Glu	aac Asn	ctt Leu 940	ata Ile	cag Gln	cgt Arg	tat Tyr	atc Ile 945	tgg Trp	gat Asp	gga Gly	gag Glu _,	agc Ser 950	aac Asn	3354
tgt Cys	gag Glu	tgg Trp	agt Ser 955	ata Ile	ttc Phe	tat Tyr	gtg Val	aca Thr 960	gtg Val	ttg Leu	gct Ala	ttt Phe	act Thr 965	ctt Leu	att Ile	3412
gtg Val	cta Leu	aca Thr 970	gga Gly	ggt Gly	ttc Phe	act Thr	tgg Trp 975	ctt Leu	tgc Cys	atc Ile	tgc Cys	tgc Cys 980	tgc Cys	aaa Lys	aga Arg	3450
caa Gln	aaa Lys 985	agg Arg 5	act Thr	aaa Lys	atc Ile	agg Arg 990	aaa Lys	aaa Lys	aca Thr	aag Lys	tac Tyr 999	acc Thr	atc Ile	ctg Leu	gat Asp	3508
aac Asn 100	atg Met D	gat Asp	gaa Glu	cag Gln	gaa Glu 1005	aga Arg	atg Met	gaa Glu	ctg Leu	agg Arg 101(	ccc Pro )	aaa Lys	tat Tyr	ggt Gly	atc Ile 1015	3556
aag Lys	cac His	cga Arg	agc Ser	aca Thr 1020	gag Glu	cac His	aac Asn	tcc Ser	agc Ser 1025	ctg Leu 5	atg Met	gta Val	tcc Ser	gag Glu 103(	tct Ser )	3604
gag Glu	ttt Phe	gac Asp	agt Ser 1039	gac Asp ;	cag Gln	gac Asp	aca Thr	atc Ile 1040	ttc Phe	agc Ser	cga Arg	gaa Glu	aag Lys 1045	atg Met	gag Glu	3652
aga Arg	61À 833	aat Asn 1050	cca Pro )	aag Lys	gtt Val	tcc Ser	atg Met 1055	aat Asn	ggt Gly	tcc Ser	atc Ile	aga Arg 106(	aat Asn )	gga Gl.y	gct Ala	3700
tcc Ser	ttc Phe 1069	agt Ser 5	tat Tyr	tgc Cys	tca Ser	aag Lys 1070	gac Asp	aga Arg	taa *	tggo	gcag	rtt d	attg	Itaaa	ıa	3750
tgga ttag agad taga	aagga jaata coggt aaata	acc d agt t tt t aaa g	ctto catt tgaa ggcto	jaato gaco iggca iggta	cc aa ct to ac aa aa aa	igaco ittoc iaaca ictot	agto ccag aaaa aagg	agt g tgg u ctt g tat	ggga gtta tgct atac	igtt igat ctt tta	acag gtgt ttaa aaag	icaca atco ictga iagtt	aa a cc a iga t tt g	iccca icgta igctt jagtt	actett actaaa gttaa stttgt	3810 3870 3930 3990

agetggeaca	ateteatatt	aaagatgaac	aacgatttct	atctgtagaa	ccttagagaa	4050
ggtgaatgaa	acaaggtttt	aaaaagggat	gatttctgtc	ttagccgctg	tgattgeete	4110
taaggaacag	cattctaaac	acggtttctc	ttgtaggacc	tgcagtcaga	tggctgtgta	4170
tgttaaaata	gcttgtctaa	gaggcacggg	ccatctgtgg	aggtacggag	tettgeatgt	4230
agcaagcttt	ctgtgctgac	ggcaacactc	gcacagtgcc	aagccctcct	ggtttttaat	4290
tctgtgctat	gtcaatggca	gttttcatct	ctctcaagaa	agcagctgtt	ggccattcaa	4350
gagctaagga	agaatcgtat	tctaaggact	gaggcaatag	aaaggggagg	aggagettaa	4410
tgccgtgcag	gttgaaggta	gcattgtaac	attatctttt	ctttctctaa	gaaaaactac	4470
actgactcct	ctcggtgttg	tttagcagta	tagttctcta	atgtaaacgg	atccccagtt	4530
tacattaaat	gcaatagaag	tgattaattc	attaagcatt	tattatgttc	tgtaggctgt	4590
gcgtttggac	tgccatagat	agggataacg	actcagcaat	tgtgtatata	ttccaaaact	4650
ctgaaataca	gtcagtctta	acttggatgg	cgtggttatg	atactctggt	ccccgacagg	4710
tactttccaa	aataacttga	catagatgta	ttcacttcat	atgtttaaaa	atacatttaa	4770
gtttttttac	cgaataaatc	ttatttcaaa	catgaaagac	aattaaaaca	ttcccaccca	4830
caaagcagta	ctcccgagca	attaactgga	gttaattgta	gcctgctacg	ttgactggtt	4890
cagggtagtt	ccccatccac	cettggteet	gaggetggtg	gccttggtgg	tgeeettgge	4950
atttttgtg	ggaagattag	aatgagagat	agaaccagtg	ttgtggtacc	aagtgtgagc	5010
acacccaaac	aatateetge	tgcacaatgc	tttttaaca	catgggaaaa	ctaggaatgc	5070
accyccyatg	aagaagcaag	gtatttaaac	accagggcag	gagtgccaga	gaaaatgttt	5130
ceccacyggt	tettaaaaaa	aatteagett	ttaggtgctt	ttgtcatctc	ccggagtatt	5190
accellary	ggaccalctt	atterate	attgtaattt	actggggaaa	ggcagaacta	5250
adaagugugu	tapptpatat	ctataataat	tgetttgett	atgectacae	tttctgtata	5310
cartattrac	cttcatactyc	ctacagegee	agaaggaaaa	tgtgatttt	ttttttaac	5370
tagtattgag	tatappttta	tagastaga	CCLCatCagg	tgaccagggt	tatggttgtt	5430
ataataaaa	agaaggaagt	regecataggg	gacagcagce	caaatgtaaa	gtcatcgggc	5490
atactrattt	gatecttata	atcaacctto	agagagaga	acataacata	tgcagtttac	5550
gatageete	tgaaggeeca	gagaggttaa	ataacttooc	actateatte	claugutgea	5610
aqtqqctcca	agaactgaat	gcaaatttt	taaactotag	agtectact	facactaage	5070
aaaqaactcc	tgccttgatg	gatagagag	aaatteteet	agetettta	aggaaggataa	5750
aagttetatt	cccaqqacta	agaggaattt	cttttaatgg	atcragage	ggetacttga	5950
agggagagat	qqcctqcata	ateteetata	gatcacaccc	aaaccacccc	tccctctag	5910
tttacagtgg	acttettetq	cccctcctcc	ttttctatcc	ttggccatct	cagectage	5970
tetetgatee	ttccatcaca	qaaqqatctt	qaatetetqq	gaaatcaaac	atcacagtag	6030
tgatcagaaa	gtgagtcctg	tettqtcace	ccatttctca	tcagaacaaa	acacgagatg	6090
gaatgaccaa	ccagcattct	tcatggtgga	ctgcttatca	ttgaggatct	ttqqqaqata	6150
aagcacgcta	agagetetgq	acagagaaaa	acaqqcccta	gaatatggga	ataatattt	6210
gtagggctca	taggetaaca	agcactttag	ttgetggttt	acattcaatq	aaqqaqqatt	6270
catacccatg	gcattacaag	getaageatg	tgtatgacta	aggaactatc	tgaaaaacat	6330
gcagcaaggt	aagaaaatgt	accactcaac	aagccagtga	tgccaccttt	tatacacaaa	6390
gaggagagtg	actaccattg	ttttttgtgt	gacaaagcta	tcatqqacta	ttttaatctt	6450
ggttttattg	cttaaaatat	attattttc	cctatgtgtt	gacaaggtat	ttctaatatc	6510
acactattaa	atatatgcac	taatctaaat	aaaggtgtct	gtatttctq	taatqcttat	6570
ttttaggggg	aaatttgttt	tctttatgct	tcagggtaga	gggattccct	tgagtatagg	6630
tcagcaaact	ctggcctgca	gcctgtgtgt	gcacgcccca	tgagccgaaa	agtgggtctt	6690
atgttttcaa	atggttaaaa	ataaataaaa	aaatttgaaa	catqtqaact	atatgacatt	6750
cagatttgtg	ttcataaata	aagttttatt	ggaacatatc	c	2	6791
<210> 5						
<211> 1072						
<212> PRT						
<213> Homo	sapiens					
<400> 5						
Met Ala Pro	o Pro Thr G	ly Val Leu	Ser Ser Leu	Leu Leu Le	u Val Thr	
1	5		10		15	
Ile Ala Gl	Y Cys Ala A	rg Lys Gln	Cys Ser Glu	Gly Arg Th	r Tyr Ser	
_	20		25		-	
Asn Ala Val	l Ile Ser P	ro Asn Leu	Glu Thr Thr	Arg Ile Me	t Arg Val	
35		40		45	-	
Ser His Th	r Phe Pro V	al Val Asp	Cys Thr Ala	Ala Cys Cy	s Asp Leu	
50 Som Gov G		55	-	60		
ser ser Cys	s Asp Leu A	La Trp Trp	Phe Glu Gly	Arg Cys Ty	r Leu Val	
66		1	76		00	

Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Cln Leu 245 250 255 Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu 375 380 Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu 425 430 Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu 470 475 Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro 485 490 Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val 550 555 Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu 

Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val 650 655 Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Aia Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Cly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Ary Asn Leu His Met Arg Leu Ser Lys Glu 890 895 Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly 905 910 Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1045 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 

<210> 6 <211> 6991

٣

WO 2004/067716

<212 <213	> DN > Ho	JA Dmo s	sapie	ens												
<220 <221 <222	)> .> CI !> (7	)S 739).	(3	930)												
<400 getg cete ggtg gget agea taage tee acaa aaaa cace tggt cate	<pre>&gt; 6 geoge ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggoog ggo</pre>	299 0 1999 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 19900 0 19900 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1990 0 1	Jeggt setge sagge sgggg satge setgg aatge aatge jeggg tegg tegg gaage	gggg getgg gaggg gaggg gega gega gega ge	g gg gg ct gg ct gg gg gg gg gg at ac gg tt ac gg tt ac gg tt ac gg tt ac gg tt ac gg tt ac gg ct ac gg ct ac gg ct ac gg ct ac gg ct ac gg cc ac gg r>ac g	gato cgc cago gago cago cago cacta acta act act act act act	accec geaga gagga gaaca ggtcg ggaaca ggtcca accec gtgga accec gtgga accec gtgga accec gtgga accec gtgga accec gtgga accec gtgga accec gagga gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaaca gaac gaac gaac gaa gaa	ggg gcg ctt gct gct gct gct gct gc gc gc gc gc gc gc gc gc gc gc gc gc	ggtg gggg gggg gggg gggg gggg gggg ggg	Icaa JCGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGG JCGGGG JCGGG JCGGG JCGGGG JCGGGGGGGG	cctt gtcc gtgt cgag ccac agta gag ccac gccac gccac gccac gccac gccac gccac gccac gccac	agete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete aggete agg	eca o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o est o	cctgt gctcc cgtgt ccagg ggtat ccagg ggtat ccagg cgtat ccagg cca cggtat ccagg cca cggtat ccagg cca c cgtgt ccagt ccagt cca c cca c c c c c c c c c c c c c c	gotgo iccgga itctgg ittaac iggodg iccaal iccaal igocaa igocaa iggodga iggtgag tgt Cys	60 120 240 300 420 480 540 660 720 771
gcc Ala	cgt Arg	aag Lys	cag Gln 15	tgc Cys	agc Ser	gag Glu	glà dlà	agg Arg 20	aca Thr	tat Tyr	tcc Ser	aat Asn	gca Ala 25	gtc Val	att Ile	819
tca Ser	cct Pro	aac Asn 30	ttg Leu	gaa Glu	acc Thr	acc Thr	aga Arg 35	atc Ile	atg Met	cgg Arg	gtg Val	tct Ser 40	cac His	acc Thr	ttc Phe	867
cct Pro	gtc Val 45	gta Val	gac Asp	tgc Cys	acg Thr	gcc Ala 50	gct Ala	tgc Cys	tgt Cys	gac Asp	ctg Leu 55	tcc Ser	agc Ser	tgt Cys	gac Asp	915
ctg Leu 60	gcc Ala	tgg Trp	tgg Trp	ttc Phe	gag Glu 65	ggc Gly	cgc Arg	t.gc Cys	tac Tyr	ctg Leu 70	gtg Val	agc Ser	tgc Cys	ccc Pro	cac His 75	963
aaa Lys	gag Glu	aac Asn	tgt Cys	gag Glu 80	ccc Pro	aag Lys	aag Lys	atg Met	ggc Gly 85	ccc Pro	atc Ile	agg Arg	tct Ser	tat Tyr 90	ctc Leu	1011
act Thr	ttt Phe	gtg Val	ctc Leu 95	cgg Arg	cct Pro	gtt Val	cag Gln	agg Arg 100	cct Pro	gca Ala	cag Gln	ctg Leu	ctg Leu 105	gac Asp	tat Tyr	1059
01y 999	gac Asp	atg Met 110	atg Met	ctg Leu	aac Asn	agg Arg	ggc Gly 115	tcc Ser	ccc Pro	tcg Ser	сј ааа	atc Ile 120	tgg Trp	ejà aaa	gac Asp	1107
tca Ser	cct Pro 125	gag Glu	gat Asp	atc Ile	aga Arg	aag Lys 130	gac Asp	ttg Leu	ccc Pro	ttt Phe	cta Leu 135	ggc Gly	aaa Lys	gat Asp	tgg Trp	1155
ggc Gly 140	cta Leu	gag Glu	gag Glu	atg Met	tct Ser 145	gag Glu	tac Tyr	tca Ser	gat Asp	gac Asp 150	tac Tyr	cgg Arg	gag Glu	ctg Leu	gag Glu 155	1203
aag Lys	gac Asp	ctc Leu	ttg Leu	caa Gln 160	ccc Pro	agt Ser	ggc Gly	aag Lys	cag Gln 165	gag Glu	ccc Pro	aga Arg	ely aaa	agt Ser 170	gcc Ala	1251

gag Glu	tac Tyr	acg Thr	gac Asp 175	tgg Trp	gge Gly	cta Leu	ctg Leu	ccg Pro 180	ggc Gly	agc Ser	gag Glu	ggg Gly	gcc Ala 185	ttc Phe	aac Asn	1299
tcc Ser	tct Ser	gtt Val 190	gga Gly	gac Asp	agt Ser	cct Pro	gcg Ala 195	gtg Val	cca Pro	gcg Ala	gag Glu	acg Thr 200	cag Gln	cag Gln	gac Asp	1347
cct Pro	gag Glu 205	ctc Leu	cat His	tac Tyr	ctg Leu	aat Asn 210	gag Glu	tcg Ser	gct Ala	tca Ser	acc Thr 215	cct Pro	gcc Ala	cca Pro	aaa Lys	1395
ctc Leu 220	cct Pro	gag Glu	aga Arg	agt Ser	gtg Val 225	ttg Leu	ctt Leu	ccc Pro	ttg Leu	ccg Pro 230	act Thr	act Thr	cca Pro	tct Ser	tca Ser 235	1443
gga Gly	gag Glu	gtg Val	ttg Leu	gag Glu 240	aaa Lys	gaa Glu	aag Lys	gct Ala	tct Ser 245	cag Gln	ctc Leu	cag Gln	gaa Glu	caa Gln 250	tcc Ser	1491
agc Ser	aac Asn	agc Ser	tct Ser 255	gga Gly	aaa Lys	gag Glu	gtt Val	cta Leu 260	atg Met	cct Pro	tcc Ser	cat His	agt Ser 265	ctt Leu	cct Pro	1539
ccg Pro	gca Ala	agc Ser 270	ctg Leu	gag Glu	ctc Leu	agc Ser	tca Ser 275	gtc Val	acc Thr	gtg Val	gag Glu	aaa Lys 280	agc Ser	cca Pro	gtg Val	1587
ctc Leu	aca Thr 235	gtc Val	acc Thr	ccg Pro	gjà aaa	agt Ser 290	aca Thr	gag Glu	cac His	agc Ser	atc Ile 295	cca Pro	aca Thr	cct Pro	ccc Pro	1635
act Thr 300	agc Ser	gca Ala	gcc Ala	ccc Pro	tct Ser 305	gag Glu	tcc Ser	acc Thr	cca Pro	tct Ser 310	gag Glu	cta Leu	ccc Pro	ata Ile	tct Ser 315	1683
cct Pro	acc Thr	act Thr	gct Ala	ccc Pro 320	agg Arg	aca Thr	gtg Val	aaa Lys	gaa Glu 325	ctt Leu	acg Thr	gta Val	tcg Ser	gct Ala 330	gga Gly	1731
gat Asp	aac Asn	cta Leu	att Ile 335	ata Ile	act Thr	tta Leu	ccc Pro	gac Asp 340	aat Asn	gaa Glu	gtt Val	gaa Glu	ctg Leu 345	aag Lys	gcc Ala	1779
ttt Phe	gtt Val	gcg Ala 350	cca Pro	gcg Ala	cca Pro	cct Pro	gta Val 355	gaa Glu	aca Thr	acc Thr	tac Tyr	aac Asn 360	tat Tyr	gaa Glu	tgg Trp	1827
aat Asn	tta Leu 355	ata Ile	agc Ser	cac His	ccc Pro	aca Thr 370	gac Asp	tac Tyr	caa Gln	ggt Gly	gaa Glu 375	ata Ile	aaa Lys	caa Gln	gga Gly	1875
cac His 380	aag Lys	caa Gln	act Thr	ctt Leu	aac Asn 385	ctc Leu	tct Ser	caa Gln	ttg Leu	tcc Ser 390	gtc Val	gga Gly	ctt Leu	tat Tyr	gtc Val 395	1923
ttc Phe	aaa Lys	gtc Val	act Thr	gtt Val 400	tct Ser	agt Ser	gaa Glu	aac Asn	gcc Ala 405	ttt Phe	gga Gly	gaa Glu	gga Gly	ttt Phe 410	gtc Val	1971
aat Asn	gtc Val	act Thr	gtt Val 415	aag Lys	cct Pro	gcc Ala	aga Arg	aga Arg 420	gtc Val	aac Asn	ctg Leu	cca Pro	cct Pro 425	gta Val	gca Ala	2019

#### WO 2004/067716

gtt Val	gtt Val	tct Ser 430	ccc Pro	caa Gln	ctg Leu	caa Gln	gag Glu 435	ctc Leu	act Thr	ttg Leu	cct Pro	ttg Leu 440	acg Thr	tca Ser	gcc Ala	2067
ctc Leu	att Ile 445	gat Asp	ggc Gly	agc Ser	caa Gln	agt Ser 450	aca Thr	gat Asp	gat Asp	act Thr	gaa Glu 455	ata Ile	gtg Val	agt Ser	tat Tyr	2115
cat His 460	tgg Trp	gaa Glu	gaa Glu	ata Ile	aac Asn 465	<u>е</u> ју ааа	ccc Pro	ttc Phe	ata Ile	gaa Glu 470	gag Glu	aag Lys	act Thr	tca Ser	gtt Val 475	2163
gac Asp	tct Ser	ccc Pro	gtc Val	tta Leu 480	cgc Arg	ttg Leu	tct Ser	aac Asn	ctt Leu 485	gat Asp	cct Pro	ggt Gly	aac Asn	tat Tyr 490	agt Ser	2211
ttc Phe	agg Arg	ttg Leu	act Thr 495	gtt Val	aca Thr	gac Asp	tcg Ser	gac Asp 500	gga Gly	gcc Ala	act Thr	aac Asn	tct Ser 505	aca Thr	act Thr	2259
gca Ala	gcc Ala	cta Leu 510	ata Ile	gtg Val	aac Asn	aat Asn	gct Ala 515	gtg Val	gac Asp	tac Tyr	cca Pro	cca Pro 520	gtt Val	gct Ala	aat Asn	2307
gca Ala	gga Gly 525	cca P <b>ro</b>	aat Asn	cac His	acc Thr	ata Ile 530	act Thr	ttg Leu	ccc Pro	caa Gln	aac Asn 535	tcc Ser	atc Ile	act Thr	ttg Leu	2355
aat Asn 540	gga Gly	aac Asn	cag Gln	agc Ser	agt Ser 545	gac Asp	gat Asp	cac His	cag Gln	att Ile 550	gtc Val	ctc Leu	tat Tyr	gag Glu	tgg Trp 555	2403
tcc Ser	ctg Leu	ggt Gly	cct Pro	999 Gly 560	agt Ser	gag Glu	ggc Gly	aaa Lys	cat His 565	gtg Val	gtc Val	atg Met	cag Gln	gga Gly 570	gta Val	2451
cag Gln	acg Thr	cca Pro	tac Tyr 575	ctt Leu	cat His	tta Leu	tct Ser	gca Ala 580	atg Met	cag Gln	gaa Glu	gga Gly	gat Asp 585	tat Tyr	aca Thr	2499
ttt Phe	cag Gln	ctg Leu 590	aag Lys	gtg Val	aca Thr	gat Asp	tct Ser 595	tca Ser	agg Arg	caa Gln	cag Gln	tct Ser 600	act Thr	gct Ala	gtg Val	2547
gtg Val	act Thr 605	gtg Val	att Ile	gtc Val	cag Gln	cct Pro 610	gaa Glu	aac Asn	aat Asn	aga Arg	cct Pro 615	cca Pro	gtg Val	gct Ala	gtg Val	2595
gcc Ala 620	ggc Gly	cct Pro	gat Asp	aaa Lys	gag Glu 625	ctg Leu	atc Ile	ttc Phe	cca Pro	gtg Val 630	gaa Glu	agt Ser	gct Ala	acc Thr	ctg Leu 635	2643
gat Asp	ς⊺λ aaa	agc Ser	agc Ser	agc Ser 640	agc Ser	gat Asp	gac Asp	cac His	ggc Gly 645	att Ile	gtc Val	ttc Phe	tac Tyr	cac His 650	tgg Trp	2691
gag Glu	cac His	gtc Val	aga Arg 655	ggc Gly	ccc Pro	agt Ser	gca Ala	gtg Val 660	gag Glu	atg Met	gaa Glu	aat Asn	att Ile 665	gac Asp	aaa Lys	2739
gca Ala	ata Ile	gcc Ala 670	act Thr	gtg Val	act Thr	ggt Gly	ctc Leu 675	cag Gln	gtg Val	elà aaa	acc Thr	tac Tyr 680	cac His	ttc Phe	cgt Arg	2787

ttg Leu	aca Thr 685	gtg Val	aaa Lys	gac Asp	cag Gln	cag Gln 690	gga Gly	ctg Leu	agc Ser	agc Ser	acg Thr 695	tcc Ser	acc Thr	ctċ Leu	act Thr	2835
gtg Val 700	gct Ala	gtg Val	aag Lys	aag Lys	gaa Glu 705	aat Asn	aat Asn	agt Ser	cct Pro	ccc Pro 710	aga Arg	gcc Ala	cgg Arg	gct Ala	ggt Gly 715	2883
ggc Gly	aga Arg	cat His	gtt Val	ctt Leu 720	gtg Val	ctt Leu	ccc Pro	aat Asn	aat Asn 725	tcc Ser	att Ile	act Thr	ttg Leu	gat Asp 730	ggt Gly	2931
tca Ser	agg Arg	tct Ser	act Thr 735	gat Asp	gac Asp	caa Gln	aga Arg	att Ile 740	gtg Val	tcc Ser	tat Tyr	ctg Leu	tgg Trp 745	atc Ile	cgg Arg	2979
gat Asp	ggc Gly	cag Gln 750	agt Ser	cca Pro	gca Ala	gct Ala	gga Gly 755	gat Asp	gtc Val	atc Ile	gat Asp	ggc Gly 760	tct Ser	gac Asp	cac His	3027
agt Ser	gtg Val 765	gct Ala	ctg Leu	cag Gln	ctt Leu	acg Thr 770	aat Asn	ctg Leu	gtg Val	gag Glu	999 Gly 775	gtg Val	tac Tyr	act Thr	ttc Phe	3075
cac His 780	ttg Leu	cga Arg	gtc Val	acc Thr	gac Asp 785	agt Ser	cag Gln	glà aaa	gcc Ala	tcg Ser 790	дас Азр	aca Thr	gac Asp	act Thr	gcc Ala 795	3123
act Thr	gtg Val	gaa Glu	gtg Val	cag Gln 800	cca Pro	gac Asp	cct Pro	agg Arg	aag Lys 805	agt Ser	ggc Gly	ctg Leu	gtg Val	gag Glu 810	ctg Leu	3171
acc Thr	ctg Leu	cag Gln	gtt Val 815	ggt Gly	gtt Val	933 993	cag Gln	ctg Leu 820	aca Thr	gag Glu	cag Gln	cgg Arg	aag Lys 825	gac Asp	acc Thr	3219
ctt Leu	gtg Val	agg Arg 830	cag Gln	ctg Leu	gct Ala	gtg Val	ctg Leu 835	ctg Leu	aac Asn	gtg Val	ctg Leu	gac Asp 840	tcg Ser	gac Asp	att Ile	3267
aag Lys	gtc Val 845	cag Gln	aag Lys	att Ile	cgg Arg	gcc Ala 850	cac His	tcg Ser	gat Asp	ctc Leu	agc Ser 855	acc Thr	gtg Val	att Ile	gtg Val	3315
ttt Phe 860	tat Tyr	gta Val	cag Gln	agc Ser	agg Arg 865	ccg Pro	cct Pro	ttc Phe	aag Lys	gtt Val 870	ctc Leu	aaa Lys	gct Ala	gct Ala	gaa Glu 875	3363
gtg Val	gcc Ala	cga Arg	aat Asn	ctg Leu 880	cac His	atg Met	cgg Arg	ctc Leu	tca Ser 885	aag Lys	gag Glu	aag Lys	gct Ala	gac Asp 890	ttc Phe	3411
ttg Leu	ctt Leu	ttc Phe	aag Lys 895	gtc Val	ttg Leu	agg Arg	gtt Val	gat Asp 900	aca Thr	gca Ala	ggt Gly	tgc Cys	ctt Leu 905	ctg Leu	aag Lys	3459
tgt Cys	tct Ser	ggc Gly 910	cat His	ggt Gly	cac His	tgc Cys	gac Asp 915	ccc Pro	ctc Leu	aca Thr	aag Lys	cgc Arg 920	tgc Cys	att Ile	tgc Cys	3507
tct Ser	cac His 925	tta Leu	tgg Trp	atg Met	gag Glu	aac Asn 930	ctt Leu	ata Ile	cag Gln	cgt Arg	tat Tyr 935	atc Ile	tgg Trp	gat Asp	gga Gly	3555

gag Glu 940	agc Ser	aac Asn	tgt Cys	gag Glu	tgg Trp 945	agt Ser	ata Ile	ttc Phe	tat Tyr	gtg Val 950	aca Thr	gtg Val	ttg Leu	gct Ala	ttt Phe 955	3603
act Thr	ctt Leu	att Ile	gtg Val	cta Leu 960	aca Thr	gga Gly	ggt Gly	ttc Phe	act Thr 965	tgg Trp	ctt Leu	tgc Cys	atc Ile	tgc Cys 970	tgc Cys	3651
tgc Cys	aaa Lys	aga Arg	caa Gln 975	aaa Lys	agg Arg	act Thr	aaa Lys	atc Ile 980	agg Arg	aaa Lys	aaa Lys	aca Thr	aag Lys 985	tac Tyr	acc Thr	3699
atc Ile	ctg Leu	gat Asp 99	aac Asn 0	atg Met	gat Asp	gaa Glu	cag Gln 995	gaa Glu ;	aga Arg	atg Met	gaa Glu	ctg Leu 1000	agg Arg	ccc Pro	aaa Lys	3747
tat Tyr	ggt Gly 1909	atc Ile 5	aag Lys	cac His	cga Arg	agc Ser 101(	aca Thr )	gag Glu	cac His	aac Asn	tcc Ser 1019	agc Ser 5	ctg Leu	atg Met	gta Val	3795
tcc Ser 1020	gag Glu )	tct Ser	gag Glu	ttt Phe	gac Asp 1029	agt Ser 5	gac Asp	cag Gln	gac Asp	aca Thr 1030	atc Ile	ttc Fhe	agc Ser	cga Arg	gaa Glu 1035	3843
aag Lys	atg Met	gag Glu	aga Arg	999 Gly 1040	aat Asn )	cca Pro	aag Lys	gtt Val	tcc Ser 1049	atg Met	aat Asn	ggt Gly	tcc Ser	atc Ile 1050	aga Arg )	3891
aat Asn	gga Gly	gct Ala	tcc Ser 1059	ttc Phe 5	agt Ser	tat Tyr	tgc Cys	tca Ser 1050	aag Lys D	gac Asp	aga Arg	taa *	tgg	cgcaq	gtt	3940
catt	gtaa	ag	tggaa	aggad	c c	cttga	aatco	: aad	qacca	aqtc	aqto	aqqa	att	acaq	cacaaa	4000
acco	cacto	ett	ttaga	aatag	yt to	catt	gacct	tci	ttcc	ccag	tggg	gttag	gat	gtgta	atecce	4060
acgi	acta	aaa	agaco	cggtt	t t	tgaag	ggcad	: aaa	aacaa	aaaa	ctt	get	ctt	ttaa	tgaga	4120
tgci	tgtt	caa	tagaa	aataa	aa gg	getge	ggtaa	a aa	ctcta	aagg	tata	atac	tta	aaaga	agtttt	4180
gagt	tttt	gt	aget	ggcad	ca at	toto	atatt	: aaa	agato	gaac	aaco	gatt	tct	atct	gtagaa	4240
cett	agag	jaa	ggtga	aatga	aa ad	caago	gtttt	aaa	aaago	ggat	gati	tctq	gtc	ttag	ccgctg	4300
tgai	tgco	etc	taage	gaaca	ag ca	attel	caaad	a acç	ggtti	cata	ttgl	Lagga	acc	tgcag	gtcaga	4360
tgge	crgte	gta .at	tgtta	aaaat	ta go	sttgi	ctaa	a gag	ggca	2999	ccat	ctg	tgg	aggta	acggag	4420
aati	tht	at	total	ageta	t u	tgigi	- agai	s gga	ttta:	acte	gca	cage	gee	aagco	cctcct	4480
adco	atto	caa	gaget	caado	ia ad	raato	ratat	t ge	Faad	ract	aaa	rcaai	Jaa Faa	ageay	JULYLL	4540
agga	agett	caa	tgccd	qtqca	iq qi	ttga	aggta	a qca	attq	taac	atta	atct	ttt	cttt	stetaa	4660
gaaa	aact	ac	actga	actco	ct d	taggi	gtt	y tti	tagca	agta	tagi	tat	cta	atgta	aaacgg	4720
atco	ccag	gtt	tacai	ctaaa	at go	caata	agaag	g tga	attaa	attc	atta	age	att	tatta	atgttc	4780
tgta	agget	gt	gcgti	tgga	ic to	gccal	tagat	age	ggata	aacg	acto	cagea	aat	tgtgl	tatata	4840
CCCC	caaaa	act	ctgaa	aatao	ca gi	tcagi	totta	a ac	ttgga	atgg	cgt	ggtta	atg	ataci	tctggt	4900
ata	-gace rattr	iyy Taa	attt	-tata	a de	acaa	ctga	a car	caga	cgta	CECa		cat	atgti	ttaaaa	4960
ttc	caco	ca	caaaa	acaat	a c	Jaaco	aaaco Tagoo	a ati	taaci	tada	atta	jaadg	yac nta	aacta	aaaaca	5020
ttga	actgo	gtt	caqq	gtaqt	t c	cccat	tcca		ttaal	tcct	gad	acta	ata	accht	taataa	5140
tgc	ctt	Jgc	attt	ttgi	g g	gaaga	attad	7 aa	tqaqa	aqat	aqaa	acca	ata	ttata	antacc	5200
aagt	gtga	agc	acaco	ctaaa	ac aa	atato	cctg	tg	caca	atgc	ttt	tta	aca	catgo	ggaaaa	5260
cta	ggaat	gd	attgo	stgat	ig aa	agaag	gcaag	g gta	attt	aaac	acca	agggi	cag	gagt	gccaga	5320
gaaa	atg	tt	cccca	atggg	gt to	cttaa	aaaaa	a aa	ttca	gctt	ttag	ggtg	ctt	ttgt	catete	5380
ccgg	Jagta	aてた マナ つ	catco	ctcat	a da	gacca	atct	ati	ttti	actt	atte	gtaa	ttt	actg	gggaaa	5440
ttt	iyaa( itata	ata	aaddg actad	Jrdra Jrdra	JC Ca at ta	aucti nacti	acto		aaaal	Laat	Egel	ttg	CTT	atgc	Ctacac	5500
ttt	ttta	aac	cagt	atto	ad ci	ttcal	taad	t ct	agaal	tota	aya cc+i	ayya -ato:	aaa a00	tgega tgega	auuttt.	555V
tate	gtto	gtt	tgcal	tgcaa	aa to	ataa	attt	ta	gcat	aqqa	gaca	agca	~∋9	caaat	tataaa	5680
gtca	atogo	ggc	gtaal	gage	ya ag	gaage	ggagi	: ga	acat	ttac	cgcl	tta	tgt	acata	aacata	5740
tgea	agtt	cac	atact	catt	t ga	atco	ttata	a at	caac	cttg	aaga	agga	gat	acta	tcattc	5800
1.1	+ +	rca	gatad	recet	to to	raad	acces	a da	aaaa	ttaa	qta	actt	ccc	adad	ataata	5960

WO 2004/067716

gecaagaagt agtggeteea agaactgaat geaaattttt taaaetgtag agttetgett 5920 tecactaaac aaagaactee tgeettgatg gatggaggge aaattetggt ggaacttttg 5980 ggccacctga aagttetatt eccaggacta agaggaattt ettttaatgg atceagagag 6040 ccaaggtcag agggagagat ggcetgeata gteteetgtg gateacacee gggeeaceee 6100 teoctetagg tttacagtgg acttettetg eccetectee ttttetgtee ttggecatet 6160 cageetggee tetetgatee ttecateaca gaaggatett gaatetetgg gaaateaaac 6220 atcacagtag tgatcagaaa gtgagteetg tettgteace ceatteteta teagaacaaa 6280 gcacgagatg gaatgaccaa ccagcattet teatggtgga etgettatea ttgaggatet 6340 ttgggagata aagcacgcta agagctetgg acagagaaaa acaggeeeta gaatatggga 6400 gtgggtgttt gtagggetea taggetaaca ageaetttag ttgetggttt acatteaatq 6460 aaggaggatt catacceatg geattacaag getaageatg tgtatgacta aggaactate 6520 tgaaaaacat gcagcaaggt aagaaaatgt accactcaac aagccagtga tgccaccttt 6580 tgtgcgcggg gaggagagtg actaccattg ttttttgtgt gacaaagcta tcatggacta 6640 ttttaatett ggttttattg ettaaaatat attattttte eetatgtgtt gacaaggtat 6700 ttotaatato acactattaa atatatgoao taatotaaat aaaggtgtot gtattttotg 6760 taatgettat ttttaggggg aaatttgttt tetttatget teagggtaga gggatteeet 6820 tgagtatagg teageaaact etggeetgea geetgtgtgt geaegeebea tgageegaaa 6880 agtgggtett atgtttteaa atggttaaaa ataaataaaa aaatttgaaa catgtgaact 6940 atatgacatt cagatttgtg ttcataaata aagttttatt ggaacatatc c 6991 <210> 7 <211> 1063 <212> PRT <213> Homo sapiens <400> 7 Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys 1 5 10 15 Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser Pro Asn Leu Glu 20 25 30 Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val Asp Cys 35 40 45 Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe 50 55 60 Glu Gly Arg Cys Tyr Leu Val Ser Cys Pro His Lys Glu Asn Cys Glu 65 70 75 80 Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg 85 90 95 Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu 100 105 110 Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile 115 120 125 Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met 130 135 140 Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln 145 150 155 160 Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser Ala Glu Tyr Thr Asp Trp 165 170 175 Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe Asn Ser Ser Val Gly Asp 180 185 190 Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr 195 200 205 Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser 210 215 220 Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu Val Leu Glu 225 230 235 240 Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser Ser Asn Ser Ser Gly 245 250 255 Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu 260 265 270 Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro 275 280 285 Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro 290 295 300

Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp . 735 Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln . 790 Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly 

24/92

Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser 850 855 Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met 915 920 Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Lys Arg Gln Lys 965 970 Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met 980 985 990 Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His 995 1000 Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe 1010 1015 1020 Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg Glu Lys Met Glu Arg Gly 1025 1030 1035 Asn Pro Lys Val Ser Met Asn Gly Ser Ile Arg Asn Gly Ala Ser Phe 1045 1050 Ser Tyr Cys Ser Lys Asp Arg <210> 8 <211> 1072 <212> PRT <213> Homo sapiens <400>8Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Val Thr Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser 3.0 Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro 

25/92

Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu

Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser 260 265 His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr 

Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu 885 890 895 Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys 985 990 Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Clu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser 1015 1020 Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1030 1035 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1045 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg <210> 9 <211> 1072 <212> PRT <213> Homo sapiens <400>9

Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Val Thr Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr Fhe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val 

,

Ser	Cys	Pro	His	Lүз 85	Glu	Asn	Cys	Glu	Pro 90	Lys	Lys	Met	Gly	Pro 95	Ile
Arg	Ser	Tyr	Leu 100	Thr	Phe	Val	Leu	Arg 105	Pro	Val	Gln	Arg	Pro 110	Ala	Gln
Leu	Leu	Asp 115	Tyr	Gly	Asp	Met	Met 120	Leu	Asn	Arg	Gly	Ser 125	Pro	Ser	Gly
Ile	Trp 130	Gly	Asp	Ser	Pro	Glu 135	Asp	Ile	Arg	Lys	Asp 140	Leu	Pro	Phe	Leu
Gly 145	Lys	Asp	Trp	Gly	Leu 150	Glu	Glu	Met	Ser	Glu 155	Tyr	Ala	Asp	Asp	Tyr 160
Arg	Glu	Leu	Glu	Lys 165	Asp	Leu	Leu	Gln	Pro 170	Ser	Gly	Lys	Gln	Glu 175	Pro
Arg	GLY	Ser	Ala 130	Glu	Tyr	Thr	Asp	Trp 185	Gly	Leu	Leu	Pro	Gly 190	Ser	Glu
GLY	Ala	195	Asn	Ser	Ser	Val	GLY 200	Asp	Ser	Pro	Ala	Val 205	Pro	Ala	Glu
Dro	210	GIN	Asp	Pro	GIU	215	HIS	Tyr	Leu	Asn	GIU 220	Ser	Ala	Ser	Thr
225 Thr	Pro	Ser	Бет	Glv	230 Glu	Val	Ary	alu	Val	235 Glu	Leu	Pro	Leu	Pro	Inr 240 Lou
Gln	Glu	Gln	Ser	245 Ser	Asn	Ser	Ser	Glv	250 Lvs	Glu	Val	Len	Met	255 Pro	Ser
цłа	Com	Τ	260		×7-			265			~ ~ ~		270		
HIS	ser	цец 275 Дже	Pro	Pro	Ala	ser	Leu 280	Glu	Leu	Ser	Ser	Val 285	Thr	Val	GLu
цуз	290	Pro	vai	Deu	Thr	295	Thr	Pro	GIY	ser	300	GLU	His	Ser	ile
305	TIT	Pro	Pro	Tur	310	AIa	ALS.	Pro	ser	G1u 315	Ser	Thr	Pro	Ser	GLU 320
Leu	Pro	Ile	Ser	Pro 325	Thr	Thr	Ala	Pro	Arg 330	Thr	Val	Lys	Glu	Leu 335	Thr
Val	Ser	Ala	Gly 340	Asp	Asn	Leu	Ile	Ile 345	Thr	Leu	Pro	Asp	Asn 350	Glu	Val
GIU	Leu	Lys 355	Ala	Phe	Val	Aia	Pro 360	Ala	Pro	Pro	Val	Glu 365	Thr	Thr	Tyr
ASI	191 370	GIU	urp	Asn	Leu	11e 375	Ser	Hls	Pro	Thr	Asp 380	Tyr	GIn	GΙΥ	GIu
11e 385	Lys -	Gln	Gly	His	Lys 390	Gln	Thr	Leu	Asn	Leu 395	Ser	Gln	Leu	Ser	Val 400
GIY Glw	Leu	Tyr	val	Phe 405	Lys	vai	Thr	Val	Ser 410	Ser	Glu	Asn	Ala	Phe 415	Gly
Bro	Bro	val	vai 420	Asn	val	Inr	Val	Lуs 425	Pro	Ala	Arg	Arg	Val 430	Asn	Leu
F10	<b>F10</b>	435	AIA	vat	va⊥	Sel	440	GTU	ьец	GIU	GIU	цец 445	unr	Leu	Pro
Leu	450	ser	Ala	Leu	11e	455	GIY	Ser	GIn	Ser	Thr 460	Asp	Asp	Thr	Glu
465	val	ser	Tyr	H1S	470	GIU	GIU	ile	Asn	G1y 475	Pro	Phe	Ile	Glu	G1u 480
Lys	Inr	ser	vai	485	Ser	Pro	va⊥	Leu	Arg 490	Leu	Ser	Asn	Leu	Asp 495	Pro
GIY	Asn	Tyr	Ser 500	Phe	Arg	Leu	Thr	Val 505	Thr	Asp	Ser	Asp	Gly 510	Ala	Thr
ASI	ser	1917 515	Thr	Ala	Ala	Leu	11e 520	Val	Asn	Asn	Ala	Va± 525	Asp	Tyr	Pro
rro	vai 530	ата	ASN	Ala	GIY	935 235	Asn	HIS	Thr	⊥1e	Thr 540	Leu	Pro	Gln	Asn
545	тте	TUL	ьeu	Asn	ыу 550	Asn	GIN	Ser	ser	ASP 555	Asp	His	GIn	Шe	val 560
Leu	Tyr	Glu	Trp	Ser 565	Leu	Gly	Pro	Gly	Ser 570	Glu	Gly	Lys	His	Val. 575	Val
Met	Gln	Gly	Val 580	Gln	Thr	Pro	Tyr	Leu 585	His	Leu	Ser	Ala	Met 590	Gln	Glu

Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp 76C Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu 84C Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Glr. Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu 1000 1005 Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1030 1035 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 

<210> 10 <211> 1063 <212> PRT <213> Homo sapiens

<400	)> 10	)														
Met 1	Thr	Arg	Ъeu	Gly 5	тгр	Pro	Ser	Pro	Cys 10	Cys	Ala	Arg	Lys	Gln 15	Cys	
Ser	Glu	Gly	Arg 20	Thr	Tyr	Ser	Asn	Ala 25	Val	Ile	Ser	Pro	Asn 30	Leu	Glu	
Thr	Thr	Arg 35	Ile	Met	Arg	Val	Ser 40	His	Thr	Phe	Pro	Val 45	Val	Asp	Cys	
Thr	Ala 50	Ala	Cys	Суз	Asp	Leu 55	Ser	Ser	Cys	Asp	Leu 60	Ala	Trp	Trp	Phe	
Glu 65	Gly	Arg	Cys	Tyr	Leu 70	Val	Ser	Cys	Pro	His 75	Lys	Glu	Asn	Cys	Glu 80	
Pro	Ъуз	Lys	Met	Gly 85	Pro	Ile	Arg	Ser	Tyr 90	Leu	Thr	Phe	Val	Leu 95	Arg	
Pro	Val	Gln	Arg 100	Pro	Ala	Gln	Leu	Leu 1.05	Aab	Tyr	Gly	Asp	Met 110	Met	Leu	
Asn	Arg	Gly 115	Ser	Pro	Ser	Gly	Il∈ 120	Trp	Gly	Asb	Ser	Pro 125	Glu	Asp	Ile	
Arg	Lys 130	Asp	Leu	Pro	Phe	Leu 135	Gly	Lys	Asp	Trp	Gly 140	Leu	Glu	Glu	Met	
Ser 145	Glu	Tyr	Ser	Aab	Asp 150	Tyr	Arg	Glu	Leu	Glu 155	Lys	Asp	Leu	Leu	Gln 160	
Pro	Ser	G1y	Lys	Gln 165	Glu	Pro	Arg	Gly	Ser 170	Ala	Glu	Tyr	Thr	Asp 175	Trp	
GIΥ	Leu	Leu	Pro 180	Gly	Ser	Glu	Gly	Ala 185	Phe	Asn	Ser	Ser	Val 190	Gly	Asp	
ser	Pro	A1a 195	val	Pro	Ala	Glu	Thr 200	Gln	Gln	Asp	Pro	Glu 205	Leu	His	Tyr	
Leu	Asn 210	Giù	ser	Ala	Ser	Thr 215	Pro	Ala	Pro	Lys	Leu 220	Pro	Glu	Arg	Ser	
225	Leu	ьeu	Pro	Leu	Pro 230	Thr	Thr	Pro	Ser	Ser 235	GIУ	Glu	Val	Leu	Glu 240	
Lys	Glu	Lys	Ala -	Ser 245	Gln	Leu	Glr.	Glu	Gln 250	Ser	Ser	Asn	Ser	Ser 255	Gly	
гле	GLU	vai	Leu 260	Met	Pro	Ser	His	Ser 265	Leu	Pro	Pro	Ala	Ser 270	Leu	Glu	
Leu	ser	Ser 275	val	Thr	val	Glu	Lys 280	Ser	Pro	Val	Leu	Thr 285	Val	Thr	Pro	
GIY	290	Thr	GLU	HIS	ser	11e 295	Pro	Thr	Pro	Pro	Thr 300	Ser	Ala	Ala	Pro	
305	Gru	ser	Inr	Pro	310	GIU	Leu	Pro	TTe	315	Pro	Thr	Thr	Ala	Pro 320	
Arg	Thr	Val	Lys	Glu 325	Leu	Thr	Val	Ser	Ala 330	Gly	Asp	Asn	Leu	Ile 335	Ile	
Thr	Leu	Pro	Asp 340	Asn	Glu	Val	Glu	Leu 345	Lys	Ala	Phe	Val	Ala 350	Pro	Ala	
Pro	Pro	Val 355	Glu	Thr	Thr	Tyr	Asn 360	Tyr	Glu	Trp	Asn	Leu 365	Ile	Ser	His	
Pro	Thr 370	Asp	Tyr	Gln	Gly	Glu 375	Ile	Lys	Gln	Gly	His 380	Lys	Gln	Thr	Leu	
Asn 385	Leu	Ser	Gln	Leu	Ser	Val	Gly	Leu	Tyr	Val	Phe	Lys	Val	Thr	Val	
Ser	Ser	Glu	Asn	Ala 405	Phe	Gly	Glu	Gly	Phe 410	Val	Asn	Val	Thr	Val	400 Lys	
Pro	Ala	Arg	Arg 420	Val	Asn	Leu	Pro	Pro 425	Val	Ala	Val	Val	Ser 430	Pro	Gln	
Leu	Gln	Glu 435	Leu	Thr	Leu	Pro	Leu 440	Thr	Ser	Ala	Leu	Ile 445	Asp	Gly	Ser	
Gln	Ser 450	Thr	Asp	Asp	Thr	Glu 455	Ile	Val	Ser	Tyr	His 460	Trp	Glu	Glu	Ile	
Asn 465	Gly	Pro	Phe	Ile	Glu 470	Glu	Lys	Thr	Ser	Val 475	Asp	Ser	Pro	Val	Leu 480	

30/92
Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Fro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser 64C Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu 705 710 Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu \$30 Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu Thr Cly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met 

Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg Glu Lys Met Glu Arg Gly 1030 1035 Asn Pro Lys Val Ser Met Asn Gly Ser Ile Arg Asn Gly Ala Ser Phe . 1045 Ser Tyr Cys Ser Lys Asp Arg <210> 11 <211> 1072 <212> PRT <213> Homo sapiens <400> 11 Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Leu Val Thr Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser 3.0 Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Thr Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro 170 175 Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu 185 190 Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr 235 240 Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu 275 280 Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr 

Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro 440 445 Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr 505 510 Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val 570 575 Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile 725 730 Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu 

33/92

Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu 885 890 895 Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly 905 900 910 Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys 915 92.0 925 Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr 930 . 935 94.0 Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr 945 950 955 960 Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu 965 970 975 Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys 980 985 990 Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu 1000 1005 995 Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser 1010 1015 1020 Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1025 1030 1035 1040 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1045 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 1060 1065 1070 <210> 12 <211> 1072 <212> PRT <213> Homo sapiens <400> 12 Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Val Thr 1 5 10 15 Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser 20 25 30 Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val 35 40 45 Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu 50 55 60 Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val 70 75 65 80 Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile 85 90 95 Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln 100 105 110 Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly 120 125 115 Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu 130 135 140 Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr 150 145 155 160 Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro 170 165 175 Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu 180 185 190 Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu 195 200 205 Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr 210 215 220 Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr 225 230 235 240 Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu

250

255

245

Gln	Glu	Gln	Ser 260	Ser	Asn	Ser	Ser	Gly 265	Lys	Glu	Val	Leu	Met 270	Pro	Ser
His	Ser	Leu 275	Pro	Pro	Ala	Ser	Leu 280	Glu	Leu	Ser	Ser	Val 285	Thr	Val	Glu
Lys	Ser 290	Pro	Val	Leu	Thr	Val 295	Thr	Pro	Gly	Ser	Thr 300	Glu	His	Ser	Ile
Pro 305	Thr	Pro	Pro	Thr	Ser 310	Ala	Ala	Pro	Ser	Glu 315	Ser	Thr	Pro	Ser	Glu 320
Leu	Pro	Ile	Ser	Pro 325	Thr	Thr	Ala	Pro	Arg 330	Thr	Val	Lys	Glu	Leu 335	Thr
Val	Ser	Ala	Gly 340	Asp	Asn	Leu	Ile	Ile 345	Thr	Leu	Pro	Asp	Asn 350	Glu	Val
Glu	Leu	Lys 355	Ala	Phe	Val	Ala	Pro 360	Ala	Pro	Fro	Val	Glu 365	Thr	Thr	Tyr
Asn	Tyr 370	Glu	Trp	Asn	Leu	Ile 375	Ser	His	Pro	Thr	Asp 380	Tyr	Gln	Gly	Glu
11e 385	Lys -	GIn	GIY	His	Lys 390	Gin	Thr	Leu	Asn	Leu 395	Ser	Gin	Leu	Ser	Val 400
GIY	Leu	Tyr	Val	Phe 405	Lys	Val	Thr	Val	Ser 410	Ser	Glu	Asn	Ala	Phe 415	Gly
GIU	GIY	Phe	Va1 420	Asn	Val	Thr	Val	Lys 425	Pro	A⊥a	Arg	Arg	Val 430	Asn	Leu
Pro	Pro	Val 435	Ala Dl-	val	val	Ser	Pro 440	Gin	Leu	Gin	Glu	Leu 445	Thr	Leu	Pro
Leu	450	Ser	Ата	Leu	11e	455	GIY	ser	Gin	ser	460	Asp	Asp	rnr	GLU
465	Val	Ser	TÀT	H1S	11p 470	GIU	Unl	TTe	ASI	475	Pro	Pne	тте	GIU	480 Date
Gly	7 an	Jer	Cor	485 Dbo	Ser Arc	PIO	vai	val	490	Leu	Ser	Asn	Clv	495	Thr
Acn	Cor	Thr	500 Thr	nl-	ALG	Leu		505 Vol	Jun	Asp	JU-	wal	510	Tur	Dre
Pro	Val	515	Zen	Ala	Gly	Bro	520	Var	Thr	Tlo	Thr	525	pro Ash	L Y L	Acn
Ser	530 Tle	Thr	T.eu	Ara	Gly	535 Agn	Gln	Ser	Ser	Aen	540 Agn	ніе	Gln	TIA	Val
545				-	550	A.5.11	UTII	DCL	. OCT	555	чэр	1115		110	560
Leu	Tyr	Giu	Trp	Ser 565	Leu	Gly	Pro	Gly	Ser 570	Glu	GLY	Lys	His	Val 575	Va⊥
Met	GIn	GIY	Va1 580	Gin	Thr	Pro	Tyr	Leu 585	Ilis	Leu	Ser	Ala	Met 590	Gin	Glu
GIY	Asp	1yr 595	Thr	Phe	GIn	Leu	Lуз 600	Val	Thr	Asp	Ser	Ser 605	Arg	Gin	GIn
Ser	610	Ala	vai	vai	Thr	Val 615	lle New	val	GIN	Pro	G1u 620	Asn	Asn	Arg	Pro
625	vai	ALA	var	ALA	630	PIO	Азр	цув	Gru	Бец 635	TTE	Pile	PIO	Val	640
Ser	Ala	Thr	Leu	Asp 645	Gly	Ser	Ser	Ser	Ser 650	Asp	Asp	His	Gly	Ile 655	Val
Phe	Tyr	His	Trp 660	Glu	His	Val	Arg	Gly 665	Pro	Ser	Ala	Val	Glu 670	Met	Glu
Asn	Ile	Asp 675	Lys	Ala	Ile	Ala	Thr 680	Val	Thr	Gly	Leu	Gln 685	. Val	Gly	Thr
Tyr	His 690	Phe	Arg	Leu	Thr	Val 695	Lys	Asp	Gln	. Gln	Gly 700	Leu	Ser	Ser	Thr
Ser 705	Thr	Leu	Thr	Val	Ala 710	Val	Lys	Lys	Glu	Asn 715	. Asn	Ser	Prc	Pro	Arg 720
Ala	Arg	Ala	Gly	Gly 725	Arg	His	Val	Leu	Val 730	Leu	. Pro	Asn	Asn	. Ser 735	Ile
Thr	Leu	Asp	Gly 740	Ser	Arg	Ser	Thr	Asp 745	Asp	Gln	. Arg	Ile	• Val 750	Ser	Tyr
Leu	Trp	Ile 755	Arg	Asp	Gly	Gln	Ser 760	Pro	Ala	Ala	. Gly	Asp 765	) Val ;	Ile	Asp

Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly 770 775 780 Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp 785 790 795 800 Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly 805 810 815 Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln - 830 820 825 Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu 835 840 845 Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser 850 855 860 Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu 865 870 875 880 Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu 885 890 895 Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly 900 905 910 Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys 915 920 925 Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr 930 935 940 Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Fhe Tyr Val Thr 945 950 955 960 Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu 965 970 975 Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys 985 980 990 Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu 995 1000 1005 Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser 1010 1015 1020 Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1025 1030 1035 1040 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1045 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 1060 1065 1070 <210> 13 <211> 14 <212> PRT

<213> tetanus toxoid <400> 13 Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu 1 5

<210> 14 <211> 21 <212> PRT <213> Plasmodium falciparum

<400> 14 Asp Ile Glu Lys Lys Ile Ala Lys Met Glu Lys Ala Ser Ser Val Phe 1 5 10 15 Asn Val Val Asn Ser 20

10

<210> 15 <211> 16

## WO 2004/067716

<212> PRT <213> Streptococcus <400> 15 Gly Ala Val Asp Ser Ile Leu Gly Gly Val Ala Thr Tyr Gly Ala Ala 1 5 10 15 <210> 16 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> pan-DR-binding epitope <221> VARIANT <222> 1, 13 <223> Xaa = D-alanine or L-alanine <221> VARIANT <222> 3 <223> Xaa = cyclohexylalanine, phenylalanine, or tyrosine <400> 16 Xaa Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Xaa 1 5 10 <210> 17 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> cDNA synthesis primer <400> 17 ttttgatcaa gctt 14 <210> 18 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 18 ctaatacgac tcactatagg getegagegg cegeeeggge ag 42 <210> 19 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 19 gatectgeec gg 12 <210> 20

WO 2004/067716

<211> 40 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 20 gtaatacgac toactatagg goagogtggt ogoggoogag	40
<210> 21 <211> 10 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
	10
<2105 22 <2115 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Filmer	
<400> 22	
clatacgac teactatagg ge	22
<210> 23	
<211> 22 <212> DND	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 23	
tegageggee geeegggeag ga	22
<210> 24	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 24 agcgtggtcg cggccgagga	20
<210> 25	
<211> 25 <2125 DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 25	
atatogoogo gotogtogto gacaa	25

<210> 26 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 26 agecacaege ageteattgt agaaqq <210> 27 <21.1> 24 <212> DNA <213> Artificial Sequence <220> <223> Flag Tag <400> 27 gattacaagg atgacgacga taag <210> 28 <211> 4 <212> PRT <213> Homo sapiens <400> 28 Asn Ser Ser Val 1 <210> 29 <211> 4 <212> PRT <213> Homo sapiens <400> 29 Asn Glu Ser Ala 1 <210> 30 <211> 4 <212> PRT <213> Homo sapiens <400> 30 Asn Ser Ser Gly 1 <210> 31 <211> 4 <212> PRT <213> Homo sapiens <400> 31 Asn Leu Ser Gln 1

<210> 32

PCT/US2004/001965

26

24

.

## PCT/US2004/001965

<211> 4 <212> PRT <213> Homo sapiens <400> 32 Asn Val Thr Val 1 <210> 33 <211> 4 <212> PRT <213> Homo sapiens <400> 33 Asn Tyr Ser Phe 1 <210> 34 <211> 4 <212> PRT <213> Homo sapiens <400> 34 Asn Ser Thr Thr 1 <210> 35 <211> 4 <212> PRT <213> Homo sapiens <400> 35 Asn His Thr Ile 1 <210> 36 <211> 4 <212> PRT <213> Homo sapiens <400> 36 Asn Gln Ser Ser ī <210> 37 <211> 4 <212> PRT <213> Homo sapiens <400> 37 Asn Asn Ser Pro 1 <210> 38 <211> 4 <212> PRT <213> Homo sapiens

•

.

<400> 38 Asn Asn Ser Ile 1 <210> 39 <211> 4 <212> PRT <213> Homo sapiens <400> 39 Asn Ser Ser Leu 1 <210> 40 <211> 4 <212> PRT <213> Homo sapiens <400> 40 Asn Gly Ser Ile 1 <210> 41 <211> 12 <212> PRT <213> Homo sapiens <400> 41 Glu Glu Met Ser Clu Tyr Ser Asp Asp Tyr Arg Glu 1 5 10 <210> 42 <211> 11 <212> PRT <213> Homo sapiens <400> 42 Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys 1 5 10 <210> 43 <211> 16 <212> PRT <213> Homo sapiens <400> 43 Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His 1 5 10 15 . <210> 44 <211> 9 <212> PRT <213> Homo sapiens <400> 44 Thr Gly Val Leu Ser Ser Leu Leu Leu 1 5

WO 2004/067716

# PCT/US2004/001965

<210> 45 <211> 9 <212> PRT <213> Homo sapiens <400> 45 Gly Val Leu Ser Ser Leu Leu Leu 1 5 <210> 46 <211> 9 <212> PRT <213> Homo sapiens <400> 46 Arg Lys Gln Cys Ser Glu Gly Arg Thr 1 5 <210> 47 <211> 9 <212> PRT <213> Homo sapiens <400> 47 Gly Arg Thr Tyr Ser Asn Ala Val Ile 1 5 <210> 48 <211> 9 <212> PRT <213> Homo sapiens <400> 48 Asn Ala Val Ile Ser Pro Asn Leu Glu 1 5 <210> 49 <211> 9 <212> PRT <213> Homo sapiens <400> 49 Ile Met Arg Val Ser His Thr Phe Pro 1 5 <210> 50 <211> 9 <212> PRT <213> Homo sapiens <400> 50 Cys Cys Asp Leu Ser Ser Cys Asp Leu 1 5 <210> 51 <211> 9 <212> PRT

.

# WO 2004/067716

<213> Homo sapiens <400> 51 Cys Asp Leu Ser Ser Cys Asp Leu Ala 5 1 <210> 52 <211> 9 <212> PRT <213> Homo sapiens <400> 52 Cys Tyr Leu Val Ser Cys Pro His Lys 1 5 <210> 53 <211> 9 <212> PRT <213> Homo sapiens <400> 53 Gly Pro Ile Arg Ser Tyr Leu Thr Phe 1 5 <210> 54 <211> 9 <212> PRT <213> Homo sapiens <400> 54 Leu Asn Arg Gly Ser Pro Ser Gly Ile 1 5 <210> 55 <211> 9 <212> PRT <213> Homo sapiens <400> 55 Arg Gly Ser Pro Ser Gly Ile Trp Gly 1 5 <210> 56 <211> 9 <212> PRT <213> Homo sapiens <400> 56 Ile Trp Gly Asp Ser Pro Glu Asp Ile 1 5 <210> 57 <211> 9 <212> PRT <213> Homo sapiens <400> 57 Leu Glu Glu Met Ser Glu Tyr Ser Asp

.

.

### WO 2004/067716

5

1

<210> 58 <211> 9 <212> PRT <213> Homo sapiens <400> 58 Met Ser Glu Tyr Ser Asp Asp Tyr Arg 1 5 <210> 59 <211> 9 <212> PRT <213> Homo sapiens <400> 59 Leu Leu Gln Pro Ser Gly Lys Gln Glu 1 5 <210> 60 <211> 9 <212> PRT <213> Homo sapiens <400> 60 Glu Pro Arg Gly Ser Ala Glu Tyr Thr 1 5 <210> 61 <211> 9 <212> PRT <213> Homo sapiens <400> 61 Leu Leu Pro Gly Ser Glu Gly Ala Phe 1 5 <210> 62 <211> 9 <212> PRT <213> Homo sapiens <400> 62 Gly Ala Phe Asn Ser Ser Val Gly Asp 1 5 <210> 63 <211> 9 <212> PRT <213> Homo sapiens <400> 63 Ala Phe Asn Ser Ser Val Gly Asp Ser 1 5 <210> 64

44/92

#### PCT/US2004/001965

<211> 9 <212> PRT <213> Homo sapiens <400> 64 Ser Val Gly Asp Ser Pro Ala Val Pro 5 1 <210> 65 <211> 9 <212> PRT <213> Homo sapiens <400> 65 Tyr Leu Asn Glu Ser Ala Ser Thr Pro 5 1 <210> 66 <211> 9 <212> PRT <213> Homo sapiens <400> 66 Asn Glu Ser Ala Ser Thr Pro Ala Pro 1 5 <210> 67 <211> 9 <212> PRT <213> Homo sapiens <400> 67 Leu Pro Glu Arg Ser Val Leu Leu Pro - 5 1 <210> 68 <211> 9 <212> PRT <213> Homo sapiens <400> 68 Pro Thr Thr Pro Ser Ser Gly Glu Val 1 5 <210> 69 <211> 9 <212> PRT <213> Homo sapiens <400> 69 Thr Thr Pro Ser Ser Gly Glu Val Leu 1 5 <210> 70 <211> 9 <212> PRT <213> Homo sapiens

## WO 2004/067716

<400> 70 Lys Glu Lys Ala Ser Gln Leu Gln Glu 1 5 <210> 71 <211> 9 <212> PRT <213> Homo sapiens <400> 71 Ser Ser Asn Ser Ser Gly Lys Glu Val 1 5 <210> 72 <211> 9 <212> PRT <213> Homo sapiens <400> 72 Val Leu Met Pro Ser His Ser Leu Pro 1 5 <210> 73 <211> 9 <212> PRT <213> Homo sapiens <400> 73 Met Pro Ser His Ser Leu Pro Pro Ala 1 5 <210> 74 <211> 9 <212> PRT <213> Homo sapiens <400> 74 Leu Pro Pro Ala Ser Leu Glu Leu Ser 1 5 <210> 75 <211> 9 <212> PRT <213> Homo sapiens <400> 75 Ser Leu Glu Leu Ser Ser Val Thr Val 1 5 <210> 76 <211> 9 <212> PRT <213> Homo sapiens <400> 76 Leu Glu Leu Ser Ser Val Thr Val Glu 1 5

### PCT/US2004/001965

.

<210> 77 <211> 9 <212> PRT <213> Homo sapiens <400> 77 Thr Val Glu Lys Ser Pro Val Leu Thr 5 1 <210> 78 <211> 9 <212> PRT <213> Homo sapiens <400> 78 Val Thr Pro Gly Ser Thr Glu His Ser 1 5 <210> 79 <211> 9 <212> PRT <213> Homo sapiens <400> 79 Ser Thr Glu His Ser Ile Pro Thr Pro 1 5 <210> 80 <211> 9 <212> PRT <213> Homo sapiens <400> 80 Thr Pro Pro Thr Ser Ala Ala Pro Ser 1 5 <210> 81 <211> 9 <212> PRT <213> Homo sapiens <400> 81 Ser Ala Ala Pro Ser Glu Ser Thr Pro 1 5 <210> 82 <211> 9 <212> PRT <213> Homo sapiens <400> 82 Ala Pro Ser Glu Ser Thr Pro Ser Glu 1 5 <210> 83 <211> 9 <212> PRT

# WO 2004/067716

<213> Homo sapiens <400> 83 Glu Ser Thr Pro Ser Glu Leu Pro Ile 1 5 <210> 84 <211> 9 <212> PRT <213> Homo sapiens <400> 84 Glu Leu Pro Ile Ser Pro Thr Thr Ala 1 5 <210> 85 <211> 9 <212> PRT <213> Homo sapiens <400> 85 Glu Leu Thr Val Ser Ala Gly Asp Asn 1 5 <210> 86 <211> 9 <212> PRT <213> Homo sapiens <400> 86 Trp Asn Leu Ile Ser His Pro Thr Asp 1 5 <210> 87 <211> 9 <212> PRT <213> Homo sapiens <400> 87 Thr Leu Asn Leu Ser Gln Leu Ser Val 1 5 <210> 88 <211> 9 <212> PRT <213> Homo sapiens <400> 88 Leu Ser Gln Leu Ser Val Gly Leu Tyr 1 5 <210> 89 <211> 9 <212> PRT <213> Homo sapiens <400> 89 Lys Val Thr Val Ser Ser Glu Asn Ala

PCT/US2004/001965

.

1 5 <210> 90 <211> 9 <212> PRT <213> Homo sapiens <400> 90 Val Thr Val Ser Ser Glu Asn Ala Phe 1 5 <210> 91 <211> 9 <212> PRT <213> Homo sapiens <400> 91 Val Ala Val Val Ser Pro Gln Leu Gln 1 5 <210> 92 <211> 9 <212> PRT <213> Homo sapiens <400> 92 Leu Pro Leu Thr Ser Ala Leu Ile Asp 1 5 <210> 93 <211> 9 <212> PRT <213> Homo sapiens <400> 93 Leu Ile Asp Gly Ser Gln Ser Thr Asp 1 5 <210> 94 <211> 9 <212> PRT <213> Homo sapiens <400> 94 Asp Gly Ser Gln Ser Thr Asp Asp Thr 1 5 <210> 95 <211> 9 <212> PRT <213> Homo sapiens <400> 95 Thr Glu Ile Val Ser Tyr His Trp Glu 1 5

<210> 96

#### PCT/US2004/001965

<211> 9 <212> PRT <213> Homo sapiens <400> 96 ı. Glu Glu Lys Thr Ser Val Asp Ser Pro 1 5 . <210> 97 <211> 9 <212> PRT <213> Homo sapiens <400> 97 Thr Ser Val Asp Ser Pro Val Leu Arg 1 5 <210> 98 <211> 9 <212> PRT <213> Homo sapiens <400> 98 Val Leu Arg Leu Ser Asn Leu Asp Pro 1 5 <210> 99 <211> 9 <212> PRT <213> Homo sapiens <400> 99 Pro Gly Asn Tyr Ser Phe Arg Leu Thr 1 5 <210> 100 <211> 9 <212> PRT <213> Homo sapiens <400> 100 Thr Val Thr Asp Ser Asp Gly Ala Thr 1 5 <210> 101 <211> 9 <212> PRT <213> Homo sapiens <400> 101 Gly Ala Thr Asn Ser Thr Thr Ala Ala 1 5 <210> 102 <211> 9 <212> PRT <213> Homo sapiens

.

## WO 2004/067716

<400> 102 Leu Pro Gln Asn Ser Ile Thr Leu Asn 1 5 <210> 103 <211> 9 <212> PRT <213> Homo sapiens <400> 103 Asn Gly Asn Gln Ser Ser Asp Asp His 1 5 <210> 104 <211> 9 <212> PRT <213> Homo sapiens <400> 104 Gly Asn Gln Ser Ser Asp Asp His Gln 1 5 <210> 105 <211> 9 <212> PRT <213> Homo sapiens <400> 105 Leu Tyr Glu Trp Ser Leu Gly Pro Gly 1 5 <210> 106 <211> 9 <212> PRT <213> Homo sapiens <400> 106 Leu Gly Pro Gly Ser Glu Gly Lys His 1 5 <210> 107 <211> 9 <212> PRT <213> Homo sapiens <400> 107 Tyr Leu His Leu Ser Ala Met Gln Glu 1 5 <210> 108 <211> 9 <212> PRT <213> Homo sapiens <400> 108 Lys Val Thr Asp Ser Ser Arg Gln Gln 1 5

.

# WO 2004/067716

<210> 109 <211> 9 <212> PRT <213> Homo sapiens <400> 109 Val Thr Asp Ser Ser Arg Gln Gln Ser 1 5 <210> 110 <211> 9 <212> PRT <213> Homo sapiens <400> 110 Ser Arg Gln Gln Ser Thr Ala Val Val 1 5 <210> 111 <211> 9 <212> PRT <213> Homo sapiens <400> 111 Phe Pro Val Glu Ser Ala Thr Leu Asp 1 5 <210> 112 <211> 9 <212> PRT <213> Homo sapiens <400> 112 Thr Leu Asp Gly Ser Ser Ser Asp 1 5 <210> 113 <211> 9 <212> PRT <213> Homo sapiens <400> 113 Leu Asp Gly Ser Ser Ser Ser Asp Asp 1 5 <210> 114 <211> 9 <212> PRT <213> Homo sapiens <400> 114 Asp Gly Ser Ser Ser Ser Asp His 1 5 <210> 115 <211> 9 <212> PRT

.

# WO 2004/067716

<213> Homo sapiens <400> 115 Gly Ser Ser Ser Ser Asp Asp His Gly 1 5 <210> 116 <211> 9 <212> PRT <213> Homo sapiens <400> 116 Val Arg Gly Pro Ser Ala Val Glu Met 5 1 <210> 117 <211> 9 <212> PRT <213> Homo sapiens <400> 117 Gln Gln Gly Leu Ser Ser Thr Ser Thr 1 5 <210> 118 <211> 9 <212> PRT <213> Homo sapiens <400> 118 Gln Gly Leu Ser Ser Thr Ser Thr Leu 1 5 <210> 119 <211> 9 <212> PRT <213> Homo sapiens <400> 119 Leu Ser Ser Thr Ser Thr Leu Thr Val 1 5 <210> 120 <211> 9 <212> PRT <213> Homo sapiens <400> 120 Lys Glu Asn Asn Ser Pro Pro Arg Ala 1 5 <210> 121 <211> 9 <212> PRT <213> Homo sapiens <400> 121 Leu Pro Asn Asn Ser Ile Thr Leu Asp

t

.

.

#### WO 2004/067716

1 5 <210> 122 <211> 9 <212> PRT <213> Homo sapiens <400> 122 Thr Leu Asp Gly Ser Arg Ser Thr Asp 1 5 <210> 123 <211> 9 <212> PRT <213> Homo sapiens <400> 123 Asp Gly Ser Arg Ser Thr Asp Asp Gln - 5 1 <210> 124 <211> 9 <212> PRT <213> Homo sapiens <400> 124 Gln Arg Ile Val Ser Tyr Leu Trp Ile 1 5 <210> 125 <211> 9 <212> PRT <213> Homo sapiens <400> 125 Arg Asp Gly Gln Ser Pro Ala Ala Gly 1. 5 <210> 126 <211> 9 <212> PRT <213> Homo sapiens <400> 126 Val Ile Asp Gly Ser Asp His Ser Val 1 5 <210> 127 <211> 9 <212> PRT <213> Homo sapiens <400> 127 Gly Ser Asp His Ser Val Ala Leu Gln 1 5 <210> 128

.

### WO 2004/067716

<211> 9 <212> PRT <213> Homo sapiens <400> 128 Arg Val Thr Asp Ser Gln Gly Ala Ser 5 1 <210> 129 <211> 9 <212> PRT <213 > Homo sapiens <400> 129 Ser Gln Gly Ala Ser Asp Thr Asp Thr 1 5 <210> 130 <211> 9 <212> PRT <213> Homo sapiens <400> 130 Asp Pro Arg Lys Ser Gly Leu Val Glu 1 5 <210> 131 <211> 9 <212> PRT <213> Homo sapiens <400> 131 Asn Val Leu Asp Ser Asp Ile Lys Val 1 5 <210> 132 <211> 9 <212> PRT <213> Homo sapiens <400> 132 Ile Arg Ala His Ser Asp Leu Ser Thr 1 5 <210> 133 <211> 9 <212> PRT <213> Homo sapiens <400> 133 His Ser Asp Leu Ser Thr Val Ile Val 1 5 <210> 134 <211> 9 <212> PRT <213> Homo sapiens

.

## WO 2004/067716

<400> 134 Phe Tyr Val Gln Ser Arg Pro Pro Phe 1 5 <210> 135 <211> 9 <212> PRT <213> Homo sapiens <400> 135 His Met Arg Leu Ser Lys Glu Lys Ala 1 5 <210> 136 <211> 9 <212> PRT <213> Homo sapiens <400> 136 Leu Leu Lys Cys Ser Gly His Gly His 1 5 <210> 137 <211> 9 <212> PRT <213> Homo sapiens <400> 137 Arg Cys Ile Cys Ser His Leu Trp Met 1 5 <210> 138 <211> 9 <212> PRT <213> Homo sapiens <400> 138 Trp Asp Gly Glu Ser Asn Cys Glu Trp 1 5 <210> 139 <211> 9 <212> PRT <213> Homo sapiens <400> 139 Asn Cys Glu Trp Ser Ile Phe Tyr Val 1 5 <210> 140 <211> 9 <212> PRT <213> Homo sapiens <400> 140 Ile Lys His Arg Ser Thr Glu His Asn 1 5

.

### WO 2004/067716

<210> 141 <211> 9 <212> PRT <213> Homo sapiens <400> 141 Thr Glu His Asn Ser Ser Leu Met Val 1 5 <210> 142 <211> 9 <212> PRT <213> Homo sapiens <400> 142 Glu His Asn Ser Ser Leu Met Val Ser 5 1 <210> 143 <211> 9 <212> PRT <213> Homo sapiens <400> 143 Ser Leu Met Val Ser Glu Ser Glu Phe 1 5 <210> 144 <211> 9 <212> PRT <213> Homo sapiens <400> 144 Met Val Ser Glu Ser Glu Phe Asp Ser 1 5 <210> 145 <211> 9 <212> PRT <213> Homo sapiens <400> 145 Ser Glu Phe Asp Ser Asp Gln Asp Thr 1 5 <210> 146 <211> 9 <212> PRT <213> Homo sapiens <400> 146 Asp Thr Ile Phe Ser Arg Glu Lys Met 1 5 <210> 147 <211> 9 <212> PRT

# WO 2004/067716

<213> Homo sapiens <400> 147 Asn Pro Lys Val Ser Met Asn Gly Ser 1 5 <210> 148 <211> 9 <212> PRT <213> Homo sapiens <400> 148 Ser Met As<br/>n Gly Ser Ile Arg As<br/>n Gly $% f(x) \in \mathbb{R}^{n}$ 1 5 <210> 149 <211> 9 <212> PRT <213> Homo sapiens <400> 149 Arg Asn Gly Ala Ser Phe Ser Tyr Cys 1 5 <210> 150 <211> 9 <212> PRT <213> Homo sapiens . <400> 150 Gly Ala Ser Phe Ser Tyr Cys Ser Lys 1 5 <210> 151 <211> 8 <212> PRT <213 > Homo sapiens <400> 151 Phe Ser Tyr Cys Ser Lys Asp Arg 1 5 <210> 152 <211> 9 <212> PRT <213> Homo sapiens <400> 152 Met Ala Pro Pro Thr Gly Val Leu Ser 1 5 <210> 153 <211> 9 <212> PRT <213> Homo sapiens <400> 153 Leu Leu Val Thr Ile Ala Gly Cys

5

1

PCT/US2004/001965

<210> 154 <211> 9 <212> PRT <213> Homo sapiens <400> 154 Ser Glu Gly Arg Thr Tyr Ser Asn Ala 1 5 <210> 155 <211> 9 <212> PRT <213> Homo sapiens <400> 155 Pro Asn Leu Glu Thr Thr Arg Ile Met 5 1 <210> 156 <2:11> 9 <212> PRT <213> Homo sapiens <400> 156 Asn Leu Glu Thr Thr Arg Ile Met Arg 1 5 <210> 157 <211> 9 <212> PRT <213> Homo sapiens <400> 157 Arg Val Ser His Thr Phe Pro Val Val 5 1 <210> 158 <211> 9 <212> PRT <213> Homo sapiens <400> 158 Val Val Asp Cys Thr Ala Ala Cys Cys 1 5 <210> 159 <211> 9 <212> PRT <213> Homo sapiens <400> 159 Arg Ser Tyr Leu Thr Phe Val Leu Arg 1 5 .

<210> 160

.

## WO 2004/067716

<211> 9 <212> PRT <213> Homo sapiens <400> 160 Ser Ala Glu Tyr Thr Asp Trp Gly Leu 1 5 <210> 161 <211> 9 <212> PRT <213> Homo sapiens <400> 161 Val Pro Ala Glu Thr Gln Gln Asp Pro 1 5 <210> 162 <211> 9 <212> PRT <213> Homo sapiens <400> 162 Glu Ser Ala Ser Thr Pro Ala Pro Lys l 5 <210> 163 <211> 9 <212> PRT <213> Homo sapiens <400> 163 Leu Pro Leu Pro Thr Thr Pro Ser Ser 1 5 <210> 164 <211> 9 <212> PRT <213> Homo sapiens <400> 164 Pro Leu Pro Thr Thr Pro Ser Ser Gly 1 5 <210> 165 <211> 9 <212> PRT <213> Homo sapiens <400> 165 Leu Ser Ser Val Thr Val Glu Lys Ser 1 5 <210> 166 <211> 9 <212> PRT <213> Homo sapiens

### PCT/US2004/001965

<400> 166 Ser Pro Val Leu Thr Val Thr Pro Gly 1 5 <210> 167 <211> 9 <212> PRT <213> Homo sapiens <400> 167 Val Leu Thr Val Thr Pro Gly Ser Thr 1 5 <210> 168 <211> 9 <212> PRT <213> Homo sapiens <400> 168 Thr Pro Gly Ser Thr Glu His Ser Ile 1 5 <210> 169 <211> 9 <212> PRT <213> Homo sapiens <400> 169 His Ser Ile Pro Thr Pro Pro Thr Ser 1 5 <210> 170 <211> 9 <212> PRT <213> Homo sapiens <400> 170 Pro Thr Pro Pro Thr Ser Ala Ala Pro 1 5 <210> 171 <211> 9 <212> PRT <213> Homo sapiens <400> 171 Pro Ser Glu Ser Thr Pro Ser Glu Leu 1 5 <210> 172 <211> 9 <212> PRT <213> Homo sapiens <400> 172 Pro Ile Ser Pro Thr Thr Ala Pro Arg 1 5

### WO 2004/067716

<210> 173 <211> 9 <212> PRT <213> Homo sapiens <400> 173 Ile Ser Pro Thr Thr Ala Pro Arg Thr 1 5 <210> 174 <211> 9 <212> PRT <213> Homo sapiens <400> 174 Thr Ala Pro Arg Thr Val Lys Glu Leu 1 5 <210> 175 <211> 9 <212> PRT <213> Homo sapiens <400> 175 Val Lys Glu Leu Thr Val Ser Ala Gly 1 5 <210> 176 <211> 9 <212> PRT <213> Homo sapiens <400> 176 Asn Leu Ile Ile Thr Leu Pro Asp Asn 1 5 <210> 177 <211> 9 <212> PRT <213> Homo sapiens <400> 177 Pro Pro Val Glu Thr Thr Tyr Asn Tyr 1 5 <210> 178 <211> 9 <212> PRT <213> Homo sapiens <400> 178 Pro Val Glu Thr Thr Tyr Asn Tyr Glu 1 5 <210> 179 <211> 9 <212> PRT

.

# WO 2004/067716

<213> Homo sapiens <400>.179 Ile Ser His Pro Thr Asp Tyr Gln Gly 7 5 <210> 180 <211> 9 <212> PRT <213 > Homo sapiens <400> 180 Gly His Lys Gln Thr Leu Asn Leu Ser 1 5 <210> 181 <211> 9 <212> PRT <213> Homo sapiens <400> 181 Val Phe Lys Val Thr Val Ser Ser Glu 1 5 <210> 182 <211> 9 <212> PRT <213> Homo sapiens <400> 182 Phe Val Asn Val Thr Val Lys Pro Ala 1 5 <210> 183 <211> 9 <212> PRT <213> Homo sapiens <400> 183 Leu Gln Glu Leu Thr Leu Pro Leu Thr 1 5 <210> 184 <211> 9 <212> PRT <213> Homo sapiens <400> 184 Thr Leu Pro Leu Thr Ser Ala Leu Ile 1 5 <210> 185 <211> 9 <212> PRT <213> Homo sapiens <400> 185 Gly Ser Gln Ser Thr Asp Asp Thr Glu

PCT/US2004/001965

5 1 <210> 186 <211> 9 <212> PRT <213> Homo sapiens <400> 186 Ser Thr Asp Asp Thr Glu Ile Val Ser 1 5 <210> 187 <211> 9 <212> PRT <213> Homo sapiens <400> 187 Ile Glu Glu Lys Thr Ser Val Asp Ser 5 1 <210> 188 <211> 9 <212> PRT <213> Homo sapiens <400> 188 Arg Leu Thr Val Thr Asp Ser Asp Gly 1 5 <210> 189 <211> 9 <212> PRT <213> Homo sapiens <400> 189 Ser Asp Gly Ala Thr Asn Ser Thr Thr 1 5 <210> 190 <211> 9 <212> PRT <213> Homo sapiens <400> 190 Ala Thr Asn Ser Thr Thr Ala Ala Leu 1 5 <210> 191 <211> 9 <212> PRT <213> Homo sapiens <400> 191 Thr Asn Ser Thr Thr Ala Ala Leu Ile l 5 <210> 192

.

## WO 2004/067716

<211> 9 <212> PRT <213> Homo sapiens <400> 192 Gly Pro Asn His Thr Ile Thr Leu Pro 5 1 <210> 193 <211> 9 <212> PRT <213> Homo sapiens <400> 193 Asn His Thr Ile Thr Leu Pro Gln Asn 1 5 <210> 194 <211> 9 <212> PRT <213> Homo sapiens <400> 194 Gln Asn Ser Ile Thr Leu Asn Gly Asn 1 5 <210> 195 <211> 9 <212> PRT <213> Homo sapien <400> 195 Gln Gly Val Gln Thr Pro Tyr Leu His 1 5 <210> 196 <211> 9 <212> PRT <213> Homo sapiens <400> 196 Glu Gly Asp Tyr Thr Phe Gln Leu Lys 1 5 <210> 197 <211> 9 <212> PRT <213> Homo sapiens <400> 197 Gln Leu Lys Val Thr Asp Ser Ser Arg 1 5 <210> 198 <211> 9 <212> PRT <213> Homo sapiens

## WO 2004/067716

<400> 198 Arg Gln Gln Ser Thr Ala Val Val Thr 5 1 <210> 199 <211> 9 <212> PRT <213> Homo sapiens <400> 199 Thr Ala Val Val Thr Val Ile Val Gln 1 5 <210> 200 <211> 9 <212> PRT <213> Homo sapiens <400> 200 Val Glu Ser Ala Thr Leu Asp Gly Ser 1 5 <210> 201 <211> 9 <212> PRT <213> Homo sapiens <400> 201 Lys Ala Ile Ala Thr Val Thr Gly Leu 5 1 <210> 202 <211> 9 <212> PRT <213> Homo sapiens <400> 202 Ile Ala Thr Val Thr Gly Leu Gln Val 1 5 <210> 203 <211> 9 <212> PRT <213> Homo sapiens <400> 203 Leu Gln Val Gly Thr Tyr His Phe Arg 1 5 <210> 204 <211> 9 <212> PRT <213> Homo sapiens <400> 204 His Phe Arg Leu Thr Val Lys Asp Gln 1 5
# WO 2004/067716

<210> 205 <211> 9 <212> PRT <213> Homo sapiens <400> 205 Gly Leu Ser Ser Thr Ser Thr Leu Thr 1 5 <210> 206 <211> 9 <212> PRT <213> Homo sapiens <400> 206 Ser Ser Thr Ser Thr Leu Thr Val Ala 1 5 <210> 207 <211> 9 <212> PRT <213> Homo sapiens <400> 207 Thr Ser Thr Leu Thr Val Ala Val Lys 1 5 <210> 208 <211> 9 <212> PRT <213> Homo sapiens <400> 208 Asn Asn Ser Ile Thr Leu Asp Gly Ser 1 5 <210> 209 <211> 9 <212> PRT <213> Homo sapiens <400> 209 Gly Ser Arg Ser Thr Asp Asp Gln Arg 1 5 <210> 210 <211> 9 <212> PRT <213> Homo sapiens <400> 210 Ala Leu Gln Leu Thr Asn Leu Val Glu 1 5 <210> 211 <211> 9 <212> PRT

.

.

# WO 2004/067716

<213 > Homo sapiens <400> 211 Glu Gly Val Tyr Thr Phe His Leu Arg 1 5 · <210> 212 <211> 9 <212> PRT <213> Homo sapiens <400> 212 His Leu Arg Val Thr Asp Ser Gln Gly 5 1 <210> 213 <211> 9 <212> PRT <213> Homo sapiens <400> 213 Gly Ala Ser Asp Thr Asp Thr Ala Thr 1 5 <210> 214 <211> 9 <212> PRT <213> Homo sapiens <400> 214 Ser Asp Thr Asp Thr Ala Thr Val Glu 1 5 <210> 215 <211> 9 <212> PRT <213> Homo sapiens <400> 215 Thr Asp Thr Ala Thr Val Glu Val Gln 1 5 <210> 216 <211> 9 <212> PRT <213> Homo sapiens <400> 216 Leu Val Glu Leu Thr Leu Gln Val Gly 1 5 <210> 217 <211> 9 <212> PRT <213> Homo sapiens <400> 217 Val Gly Gln Leu Thr Glu Gln Arg Lys

## WO 2004/067716

5

1

<210> 218 <211> 9 <212> PRT <213> Homo sapiens <400> 218 Gln Arg Lys Asp Thr Leu Val Arg Gln 1 5 <210> 219 <211> 9 <212> PRT <213> Homo sapiens <400> 219 Ser Asp Leu Ser Thr Val Ile Val Phe 1 5 <210> 220 <211> 9 <212> PRT <213> Homo sapiens <400> 220 Leu Arg Val Asp Thr Ala Gly Cys Leu 1 5 <210> 221 <211> 9 <212> PRT <213> Homo sapiens <400> 221 Cys Asp Pro Leu Thr Lys Arg Cys Ile 1 5 <210> 222 <211> 9 <212> PRT <213> Homo sapiens <400> 222 Ile Phe Tyr Val Thr Val Leu Ala Phe 1 5 <210> 223 <211> 9 <212> PRT <213> Homo sapiens <400> 223 Val Leu Ala Phe Thr Leu Ile Val Leu 1 5 <210> 224

.

## WO 2004/067716

<211> 9 <212> PRT <213> Homo sapiens <400> 224 Leu Ile Val Leu Thr Gly Gly Phe Thr 1 5 <210> 225 <211> 9 <212> PRT <213> Homo sapiens <400> 225 Thr Gly Gly Phe Thr Trp Leu Cys Ile 1 5 <210> 226 <211> 9 <212> PRT <213> Homo sapiens <400> 226 Arg Gln Lys Arg Thr Lys Ile Arg Lys 1 5 <210> 227 <211> 9 <212> PRT <213> Homo sapiens <400> 227 Ile Arg Lys Lys Thr Lys Tyr Thr Ile 1 5 <210> 228 <211> 9 <212> PRT <213> Homo sapiens <400> 228 Lys Thr Lys Tyr Thr Ile Leu Asp Asn 1 5 <210> 229 <211> 9 <212> PRT <213> Homo sapiens <400> 229 Lys His Arg Ser Thr Glu His Asn Ser 1 5 <210> 230 <211> 9 <212> PRT <213> Homo sapiens

,

# WO 2004/067716

<400> 230 Ser Asp Gln Asp Thr Ile Phe Ser Arg 1 5 <210> 231 <211> 9 <212> PRT <213> Homo sapiens <400> 231 Glu Gly Arg Thr Tyr Ser Asn Ala Val 1 5 <210> 232 <211> 9 <212> PRT <213> Homo sapiens <400> 232 Glu Cly Arg Cys Tyr Leu Val Ser Cys 5 1 <210> 233 <211> 9 <212> PRT <213> Homo sapiens <400> 233 Pro Ile Arg Ser Tyr Leu Thr Phe Val 5 1 <210> 234 <211> 9 <212> PRT <213> Homo sapiens <400> 234 Gln Leu Leu Asp Tyr Gly Asp Met Met 5 1 <210> 235 <211> 9 <212> PRT <213> Homo sapiens <400> 235 Glu Met Ser Glu Tyr Ser Asp Asp Tyr 1 5 <210> 236 <211> 9 <212> PRT <213> Homo sapiens <400> 236 Tyr Ser Asp Asp Tyr Arg Glu Leu Glu 1 5

.

#### WO 2004/067716

<210> 237 <211> 9 <212> PRT <213> Homo sapiens <400> 237 Gly Ser Ala Glu Tyr Thr Asp Trp Gly 1 5 <210> 238 <211> 9 <212> PRT <213> Homo sapiens <400> 238 Pro Glu Leu His Tyr Leu Asn Glu Ser 5 1 <210> 239 <211> 9 <212> PRT <213> Homo sapiens <400> 239 Val Glu Thr Thr Tyr Asn Tyr Glu Trp ŝ 1 <210> 240 <211> 9 <212> PRT <213> Homo sapiens <400> 240 Thr Thr Tyr Asn Tyr Glu Trp Asn Leu 5 1 <210> 241 <211> 9 <212> PRT <213> Homo sapiens <400> 241 His Pro Thr Asp Tyr Gln Gly Glu Ile 1 5 <210> 242 <211> 9 <212> PRT <213> Homo sapiens <400> 242 Ser Val Gly Leu Tyr Val Phe Lys Val 1 5 <210> 243 <211> 9 <212> PRT

.

# WO 2004/067716

<213> Homo sapiens <400> 243 Glu Ile Val Ser Tyr His Trp Glu Glu l 5 <210> 244 <211> 9 <212> PRT <213> Homo sapiens <400> 244 Asp Pro Gly Asn Tyr Ser Phe Arg Leu 1 5 <210> 245 <211> 9 <212> PRT <213> Homo sapiens <400> 245 Asn Ala Val Asp Tyr Pro Pro Val Ala 1 5 <210> 246 <211> 9 <212> PRT <213> Homo sapiens <400> 246 Gln Ile Val Leu Tyr Glu Trp Ser Leu 1 5 <210> 247 <211> 9 <212> PRT <213> Homo sapiens <400> 247 Val Gln Thr Pro Tyr Leu His Leu Ser 1 5 <210> 248 <211> 9 <212> PRT <213> Homo sapiens <400> 248 Gln Glu Gly Asp Tyr Thr Phe Gln Leu 1 5 <210> 249 <211> 9 <212> PRT <213> Homo sapiens <400> 249 Gly Ile Val Phe Tyr His Trp Glu His

#### WO 2004/067716

PCT/US2004/001965

5 1 <210> 250 <211> 9 <212> PRT <213> Homo sapiens <400> 250 Gln Val Gly Thr Tyr His Phe Arg Leu S 1 <210> 251 <211> 9 <212> PRT <213> Homo sapiens <400> 251 Arg Ile Val Ser Tyr Leu Trp Ile Arg 1 5 <210> 252 <211> 9 <212> PRT <213> Homo sapiens <400> 252 Val Glu Gly Val Tyr Thr Phe His Leu 5 1 <210> 253 <211> 9 <212> PRT <213> Homo sapiens <400> 253 Val Ile Val Phe Tyr Val Gln Ser Arg 1 5 <210> 254 <211> 9 <212> PRT <213> Homo sapiens <400> 254 Leu Ile Gln Arg Tyr Ile Trp Asp Gly 1 5 <210> 255 <211> 9 <212> PRT <213> Homo sapiens <400> 255 Trp Ser Ile Phe Tyr Val Thr Val Leu 5 1 <210> 256

#### WO 2004/067716

<211> 9 <212> PRT <213> Homo sapiens <400> 256 Lys Lys Thr Lys Tyr Thr Ile Leu Asp 1 5 <210> 257 <211> 9 <212> PRT <213> Homo sapiens <400>257Leu Arg Pro Lys Tyr Gly Ile Lys His 1 5 <210> 258 <211> 9 <212> PRT <213> Homo sapiens <400> 258 Ala Ser Phe Ser Tyr Cys Ser Lys Asp 5 1 <210> 259 <211> 1072 <212> PRT <213> Homo sapiens <400> 259 Met Ala Pro Pro Thr Gly Val Leu Ser Ser Leu Leu Leu Val Thr 10 1 5 15 Ile Ala Gly Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser 25 30 20 Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val 35 40 45 Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu 50 55 60 Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val 65 70 75 80 Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile 85 90 95 Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln 100 105 110 Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly 115 120 125 Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu 130 135 140Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr 145 150 155 160 Arg 3lu Leu Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro 165 170 175 Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu 185 190 180 Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu 195 200 205 Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr 220 210 215 Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Fro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val 550 555 Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser 'Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg 715 720 Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr

76/92

740 745 750 Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp 760 765 755 Glv Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly 770 775 780 Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp 785 790 795 80C Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly 805 810 815 Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln 820 825 830 Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu 835 840 845 Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser 850 855 860 Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu 870 875 865 880 Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu 885 890 895 Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly 900 905 910 Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys 915 920 925 Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr 930 935 940 Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr 945 950 955 960 Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu 965 970 975 Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys 980 985 990 Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu 995 1000 1005 Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser 1010 1015 1020 Ser Leu Met Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile 1025 1030 1035 1040 Phe Ser Arg Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn 1045 1050 1055 Gly Ser Ile Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg 1060 1065 1070 <210> 260 <211> 17 <212> PRT <213> Homo sapiens <400> 260 Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr Arg Glu Leu Glu 1 5 10 Lys <210> 261 <211> 19 <212> PRT <213> Homo sapiens <400> 261 Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp Asp Tyr Arg Glu Leu 1 5 10 15 Glu Lys Asp

#### WO 2004/067716

<210> 262 <211> 29 <212> PRT <213> Homo sapiens <400> 262 Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ala Asp 5 10 15 1 Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Gln Pro Ser 20 25 <210> 263 <211> 18 <212> PRT <213> Homo sapiens <400> 263 Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys 1 5 Ser Glu 10 15 Ser Glu <210> 264 <211> 19 <212> PRT <213> Homo sapiens <400> 264 Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys 1 5 10 15 Ser Glu Gly <210> 265 <211> 24 <212> PRT <213> Homo sapiens <400> 265 Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys 1 5 10 15 Ser Glu Gly Arg Thr Tyr Ser Asn 20 <210> 266 <211> 17 <212> PRT <213> Homo sapiens <400> 266 Pro Glu Asp Ile Arg Lys Asp Leu Thr Phe Leu Gly Lys Asp Trp Gly 1 5 10 15 Leu

<210> 267

#### WO 2004/067716

<211> 19 <212> PRT <213> Homo sapiens <400> 267 Ser Fro Glu Asp Ile Arg Lys Asp Leu Thr Phe Leu Gly Lys Asp Trp 5 10 1 15 Gly Leu Glu <210> 268 <211> 29 <212> PRT <213> Homo sapiens <400> 268 Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Thr Phe 1 10 5 15 Leu Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr 20 25 <210> 269 <211> 6991 <212> DNA <213> Homo sapiens <4005 269 getgeegegg geggtgggeg gggateceee gggggtgeaa eettgeteea eetgtgetge 60 cotoggoggg cotggotgge coogcgoaga goggoggogg cgotogotgt cactgoogga 120 ggtgagageg cageagtage tteageetgt ettgggettg gteeagatte geteetetgg 180 ggctacgtcc cggggaagag gaagcgagga ttttgctggg gtggggctgt acctcttaac 240 ageaggtgeg egegegaggg tgtgaaegtg tgtgtgtgtg tgtgtetgtg tgtgtgtgtg 300 taagacetge gatgacgacg aggaggaaca agtggggacgg egagtgatge teagggeeag 360 cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacaggtac ggtatctact 420 teccagageg cetggeegag aaataggaaa gagggeagee agtaggeagg ceaataceea 480 acaaaagtag aatogagacg cootgagtto agaagttott gaggocaaat otggotoota 540 aaaaacatca aaggaagctt gcaccaaact ctcttcaggg ccgcctcaga agcctgccat 600 cacccactgt gtggtgcaca atggcgcccc ccacaggtgt gctctcttca ttgctgctgc 660 tggtgacaat tgcagtttgc ttatggtgga tgcactcatg gcaaaaaaat cactggtgag 720 catcatttaa gaagacccat gactagactg ggctggccga gcccatgttg tgcccgtaag 780 cagtgcagcg agggggggac atattccaat gcagtcattt cacctaactt ggaaaccacc 840 agaatcatge gggtgtetea cacetteest gtegtagaet geaeggeege ttgetgtgae 900 ctgtccaget gtgacetgge etggtggtte gagggeeget getaeetggt gagetgeece 960 cacaaagaga actgtgagcc caagaagatg ggccccatca ggtcttatct cacttttgtg 1020 ctccggcctg ttcagaggcc tgcacagctg ctggactatg gggacatgat gctgaacagg 1080 ggeteceeet eggggatetg gggggaetea eetgaggata teagaaagga ettgeeett 1140 ctaggcaaag attggggcct agaggagatg totgagtact cagatgacta cogggagctg 1200 gagaaggacc tettgeaacc cagtggeaag caggageeca gagggagtge egagtacaeg 1260 gactgggggcc tactgccggg cagcgagggg gccttcaact cctctgttgg agacagtcct 1320 geggtgecag eggagaegea geaggaeeet gageteeatt acetgaatga gteggettea 1380 accortgoco caaaacteee tgagagaagt gtgttgette eettgeegae tacteeatet 1440 tcaggagagg tgttggagaa agaaaaggct tctcagctcc aggaacaatc cagcaacagc 1500 totggaaaag aggttetaat geetteecat agtetteete eggeaageet ggageteage 1560 tcagtcaccg tggagaaaag cccagtgctc acagtcaccc cggggagtac agagcacagc 1620 atoccaacac eteccaetag egeageeece tetgagteea ecceatetga getacceata 1680 totoctacca ctgctcccag gacagtgaaa gaacttacgg tatcggctgg agataaccta 1740 attalaactt tacccgacaa tgaagttgaa ctgaaggeet ttgttgegee agegeeacet 1800 gtagaaacaa cctacaacta tgaatggaat ttaataagcc accccacaga ctaccaaggt 1860 gaaalaaaac aaggacacaa gcaaactett aacetetete aattgteegt eggaetttat 1920 gtet:caaag teactgttte tagtgaaaac geetttggag aaggatttgt caatgteact 1980 gttaageetg ceagaagagt caacetgeea cetgtageag ttgtttetee ceaactgeaa 2040 gageteactt tgeetttgae gteageeete attgatggea geeaaagtae agatgataet 2100

gaaatagtga	gttatcattg	ggaagaaata	aacqqqccct	tcatagaaga	qaaqacttca	2160
gttgactctc	ccgtcttacg	cttgtctaac	cttgatectg	gtaactatag	tttcaggttg	2220
actgttacag	actcggacgg	agccactaac	tctacaacto	cagccctaat	aqtqaacaat	2280
gctgtggact	acccaccagt	tgctaatgca	qqaccaaatc	acaccataac	tttgccccaa	2340
aactccatca	ctttgaatgg	aaaccagagc	aqtgacgatc	accagattot	cetetateag	2400
tggtccctgg	gtcctgggag	tgagggcaaa	catgtggtca	tacagagagat	acagacgeca	2460
taccttcatt	tatctgcaat	qcaqqaaqqa	gattatacat	ttcagctgaa	ggtgacagat	2520
tetteaagge	aacagtctac	tactataata	actgtgattg	tecagectga	aaacaatagaa	2580
cctccaqtqq	ctataaccaa	ccctgataaa	gagetgatet	toccagtoga	aagtgctacc	2540
ctagataga	acaacaacaa	cgatgaccac	gacattatet	tetaccacto	aagegeedee	2010
agaggcccca	atacaataaa	gatggaaaat	attoacaaad	Castagodad	tataactoat	2700
ctccaggtgg	ggacctacca	ettecattta	acagtgaaag	accargectac	actgagggg	2/00
acotccaccc	tcactataac	tataaaaaaa	Gaaaataata	atcatcacag	accgagcagt	2020
aataacaaac	atattettat	actteceast	aattaata	gttttcccag	ayceeyyyee	2880
actgatgacc	aaagaattgt	gtectateta	tanteara	etteggatgg	treaggeet	2940
adagatatas	tcatactc	traccact	cygarceyyy	acygooayay	tecageager	3000
ggagacgeca	ctttccactt	ggazgazga	grggererge	agettaegaa	cccggcgcggag	3060
gggggggtgtata	apatagaaga	gegageeace	gacagteagg	gggeetegga	Cacagacact	3120
attactatta	aagugeagee	agacccctagg	aagagtggcc	tggtggaget	gaccctgcag	3180
gteggegeeg	ggeagergae	agageagegg	aaggacaccc	ttgtgaggea	getggetgtg	3240
agaagaataa	tyctygaete	ggacattaag	gtccagaaga	ttcgggccca	ctcggatete	3300
agcaccycya	reset	lglacagage	aggeegeett	tcaaggttct	caaagetget	3360
gaagtygeee	gaaatetgea	catgeggete	tcaaaggaga	aggetgaett	cttgcttttc	3420
aaggtettga	gggttgatac	agcaggttgc	cttctgaagt	gttctggcca	tggtcactgc	3480
gaccccccca	caaagegetg	catttgetet	cacttatgga	tggagaacct	tatacagcgt	3540
tatatetggg	atggagagag	caactgtgag	tggagtatat	tctatgtgac	agtgttggct	3600
tttactctta	ttgtgctaac	aggaggtttc	acttggcttt	gcatctgctg	ctgcaaaaga	3660
caaaaaagga	ctaaaatcag	gaaaaaaaca	aagtacacca	tcctggataa	catggatgaa	3720
caggaaagaa	tggaactgag	gcccaaatat	ggtatcaagc	accgaagcac	agagcacaac	3780
tccagcctga	tggtatccga	gtctgagttt	gacagtgacc	aggacacaat	cttcagccga	3840
gaaaagatgg	agagagggaa	tccaaaggtt	tccatgaatg	gttccatcag	aaatggaget	3900
tccttcagtt	attgetcaaa	ggacagataa	tggcgcagtt	cattgtaaag	tggaaggacc	3960
ccttgaatcc	aagaccagtc	agtgggagtt	acagcacaaa	acccactctt	ttagaatagt	4020
tcattgacct	tcttccccag	tgggttagat	gtgtatcccc	acgtactaaa	agaccggttt	4080
ttgaaggcac	aaaacaaaaa	ctttgctctt	ttaactgaga	tgcttgttaa	tagaaataaa	4140
ggctgggtaa	aactctaagg	tatatactta	aaagagtttt	gagtttttgt	agctggcaca	4200
ateteatatt	aaagatgaac	aacgatttct	atctgtagaa	ccttagagaa	ggtgaatgaa	4260
acaaggtttt	aaaaagggat	gatttetgte	ttagccgctg	tgattgcctc	taaggaacag	4320
cattctaaac	acggtttctc	ttgtaggacc	tgcagtcaga	tggctgtgta	tgttaaaata	4380
gcttgtctaa	gaggeacggg	ccatctgtgg	aggtacggag	tettgcatgt	agcaagcttt	4440
ctgtgctgac	ggcaacactc	gcacagtgcc	aagccctcct	ggtttttaat	tetqtqctat	4500
gtcaatggca	gttttcatct	ctctcaagaa	agcagetgtt	ggccattcaa	qaqctaaqqa	4560
agaatcgtat	tctaaggact	gaggcaatag	aaaqqqqaqq	aqqaqcttaa	taccatacaa	4620
gttgaaggta	gcattgtaac	attatettt	ctttctctaa	qaaaaactac	actgactcct	4680
ctcggtgttg	tttagcagta	taqttctcta	atgtaaacgg	atccccagtt	tacattacat	4740
gcaatagaag	tgattaattc	attaaqcatt	tattatattc	tatagactat	acatttagac	4800
tgccatagat	agggataacg	actcaqcaat	tqtqtatata	ttccaaaact	ctgaaateca	4860
gtcagtctta	acttggatgg	catagttata	atactctoot	cccccacaca	tactttccaa	4920
aataacttga	catagatgta	ttcacttcat	atotttaaaa	atacatttaa	atttttctac	4980
cqaataaatc	ttatttcaaa	Catgaaagag	aattaaaaca	ttcccaccca	geececta	5040
ctccccacca	attaactoga	gttaattgta	acctactaca	ttaactaatt	cadagtagta	5100
ccccatccac	cettgateet	gaggetogta	accttactac	tacattaa	atttttata	5100
qqaaqattaq	aatgagagat	agaaddagtg	ttataatacc	aatataaaa	accounting	5160
aatateetat	tocacaatoo	ttttttaaca	catogoggedee	atogogage	atacciaaac	5220
aagaaggaag	geucuaege	accadadaa	actagaaaa	Claygaatge	allyclyalg	5280
tottasaaaa	aattranctt	ttagetgety	ttatastata	yaaaaugttt	ouccatgggt	5340
agaccatett	attttagett	attotaatte	actogram	Coggagtatt	catectcatg	5400
Cattttatt	ttaaantant	tootttoott	accyyyyaaa	ygcagaacta	aaaagtgtgt	5460
traatactot	ctataaladt	lyciligett	augoctadad	uttetgtata	actagecaat	5520
Cttostasac	dtacagigit	ayaayyaada	tangettet	LEEEEEtaac	cagtattgag	5580
tataaattta	togather	Contactagg	Lyaccagggt	catggttgtt	tgcatgcaaa	5640
agaagggaact	cyycataggg	yacagcagcc	caaatgtaaa	gtcatcgggc	gtaatgagga	5700
ayaayyyayt	yaacattac	egettatgt	acataacata	tgcagtttac	atactcattt	5760
tapparente	accaaccttg	aagaggagat	actatcattc	ttatgttgca	gatagecete	5820
Lyaaggccca	yagaggttaa	gtaactteee	agaggtcatg	gccaagaagt	agtggctcca	5880
ayaactgaat	ycaaattttt	caaactgtag	agttctgctt	tccactaaac	aaagaactcc	5940

tgccttgatg cccaggacta ggcctgcata acttettetg ttccateaca gtgagteetg ccagcattet aggctateg taggetaaca gcattacaag aagaaaatgt actaecattg ettaaaatat atatageac	gatggagggc agaggaattt gtotoctgtg cocotoctoc gaaggatott tottgtoaco toatggtgga acagagaaaa agcactttag gctaagcatg accactoaac ttttttgtgt attattttc	aaattetggt ettttaatgg gateacaece ttttetgtee gaatetetgg ceatteetea etgettatea acaggeeta ttgetggttt tgratgaeta aageeaggta gacaaageta eetatgtgtt	ggaacttttg atccagagag gggccacccc ttggccatct gaaatcaaac tcagaacaaa ttgaggatct gaatatggg acattcaatg aggaactatc tgccaccttt tcatggacta gacaaggtat gacaaggtat	ggccacctga ccaaggtcag tccctctagg cagcctggcc atcacagtag gcacgagatg ttgggagata gtgggtgttt aaggaggatt tgaaaaacat tgtgcgcggg ttttaatctt ttctaatatc	aagttctatt agggagagat tttacagtgg tctctgatcc tgatcagaaa gaatgaccaa aagcacgcta gtagggctca catacccatg gcagcaaggt gaggagagtg ggttttattg acactattaa	6000 6060 6120 6180 6240 6300 6420 6480 6540 6660 6660 6720 6780
aaatttgttt	tetttatget	tcagggtaga	gggattccct	tgagtatagg	tcagcaaact	6840
ctggcctgca	gcctgtgtgt	gcacgcccca	tgagccgaaa	agtgggtctt	atgttttcaa	6900 COCO
atggttaaaa	acaaacaaaa	aaatttgaaa	catgtgaact	atatgacatt	cagatttgtg	6960 6991
eccataata	adgettetate	ggaacacatt	C			0771
.210. 270						
<210> 270						
<212> DNA						
<213> Homo	sapiens					
<400> 270	agatagaa	~~~~		aattaataaa	aatataataa	60
gergeegegg	catagataga	gggalddddd	gggggggggaa	castcastat	cactaccara	120
dataadadaa	caggatage	ttcacctct	cttogactta	gtccagattc	actectetaa	180
ggcgagageg	cadaasadsa	desacusada	ttttactara	atagaactat	acctcttaac	240
adcadataca	cacacasaaa	tatasacata	tatatatata	tatatetata	tatatatata	300
taagacctgc	aataacaaca	aggaggaaada	agtaggagag	cgagtgatgc	tcagggcgcgg	360
cagcaacoca	taggggggggg	ttcactotco	ccagcagtga	ccacagagtt	cttgaggcca	42C
aatctqqctc	ctaaaaaaca	tcaaaqqaaq	cttgcaccaa	actctcttca	qqqccqcctc	48C
aqaaqcctqc	catcacccac	tatataatac	acaatqqcqc	cccccacaqq	tqtqctcict	54C
tcattgctgc	tgctggtgac	aattqcaqqt	tggttgtgcc	cqtaaqcaqt	gcagcgaggg	600
gaggacatat	tccaatgcag	tcatttcacc	taacttggaa	accaccagaa	tcatgcgggt	660
gtctcacacc	ttccctgtcg	tagactgcac	ggccgcttgc	tgtgacctgt	ccagctgtga	720
cetggeetgg	tggttcgagg	gccgctgcta	cctggtgagc	tgeccccaca	aagagaactg	780
tgagcccaag	aagatgggcc	ccatcaggtc	ttatctcact	tttgtgctcc	ggeetgttea	840
gaggcctgca	cagctgctgg	actatgggga	catgatgctg	aacaggggct	ccccctcggg	900
gatctggggg	gactcacctg	aggatatcag	aaaggacttg	ccctttctag	gcaaagattg	960
gggcctagag	gagatgtctg	agtactcaga	tgactaccgg	gagctggaga	aggacctctt	1020
gcaacccagt	ggcaagcagg	agcccagagg	gagtgccgag	tacacggact	ggggcctact	1080
gccgggcagc	gagggggcct	teaacteete	tgttggagac	agtcctgcgg	tgccagcgga	1140
gacgcagcag	gaccetgage	tccattacct	gaatgagtcg	getteaacce	ctgccccaaa	1200
actccctgag	agaagtgtgt	tgetteeett	gccgactact	ccatcttcag	gagaggtgtt	1260
ggagaaagaa	aaggettete	agetecagga	acaatccago	aacagetetg	gaaaagaggt	1320
tetaatgeet	teccatagie	tteeteegge	aageetggag	ctcagetcag	teacegtgga	1440
gaaaageeea	grgereadag	ceaceeeggg	gagtacagag	cacageatee	caacacetee	1440
taccagegea	gececcesg	ttaccet	accegagera		taactttage	1560
cracaatraa	attasetas	aggeettat	tacaccagae	. aacctataa	aaacaaccta	1620
caactatgaa	taaatttaa	taageeeeege	- cacacactac		taaacaada	1680
acacaadcaa	actettaace	teteteaatt	atcontone	. ctttatatot	tcaaagtcac	1740
tgtttctagt	gaaaacgcot	ttggagaago	atttatcaat	atcactatta	agectacead	1800
aagagtcaac	ctgccaccho	tagcauttor	ttctcccaa	l ctgcaadada	tcactttacc	1860
tttqacqtca	qccctcatto	atqqcaqcca	aagtacagat	; qatactgaaa	tagtgagtta	1920
tcattqqqaa	gaaataaaco	ggcccttcat	agaagagaac	acttcagttg	actctcccqt	1980
cttacgette	tctaacctto	atcctggtaa	ctatagttto	aggttgactq	ttacagacíc	2040
ggacggagco	actaactcta	caactgcago	cctaatagto	aacaatgctq	tggactaccc	2100
accagttgct	aatgcaggad	caaatcacad	cataacttt	g ccccaaaact	ccatcacttt	2150
gaatggaaac	cagagcagt	acgatcacca	a gattgtcctd	: tatgagtggt	ccctgggtcc	2220

<b>.</b>						
tgggagtgag	ggcaaacatg	tggtcatgca	gggagtacag	acgccatacc	ttcatttatc	2280
tgcaatgcag	gaaggagatt	atacatttca	gctgaaggtg	acagattett	caaggcaaca	2340
gtctactgct	gtggtgactg	tgattgtcca	gootgaaaac	aatagacctc	caqtqqctqt	2400
ggcccgccct	gataaagagc	tgatcttccc	aqtqqaaaqt	actacctor	atgggaggag	2460
cagcagcgat	gaccacqqca	ttatcttcta	ccactoorad	racatcadad	accesates	2520
actocacato	gaaaatatta	acaaadaat	aggagggggg	atgetatag	geeeeagege	2520
atagenatta	gaadacaccg	tonangeaac	agecaetyty	adiggioloc	agguggggab	2580
tuturatul	Cyclegaeag	Lyaaayacca	gcagggactg	ageageaege	ccaccetcac	2640
rgrggergrg	aagaaggaaa	ataatagtcc	teccagagee	cgggctggtg	gcagacatgt	2700
tettgtgett	cccaataatt	ccattacttt	ggatggttca	aggtctactg	atgaccaaag	2760
aattgtgtcc	tatctgtgga	tccgggatgg	ccagagtcca	gcagctggag	atgtcatcga	2820
tggctctgac	cacagtgtgg	ctctgcaget	tacgaatetg	gtggaggggg	tgtacacttt	2880
ccacttgcga	gtcaccgaca	gtcagggggc	ctcggacaca	gacactgcca	ctgtggaagt	2940
gcagccagac	cctaggaaga	gtggcctgqt	ggagetgace	ctgcacgttg	qtqttqqqca	3000
gctgacagag	cageggaagg	acaccettqt	gagggaggtg	actatactac	tgaacgtget	3060
qqactcqqac	attaaqqtcc	agaagattcg	gaccactca	gatetcagea	ccataattat	3120
gttttatgta	cagagcaggg	cacettraa	gotteteaaa	actactasea	tagaaaaa	2100
tetgeacatg	caactetcaa	addadaaddd	tracttette	getgetgaag	tattacaaat	3100
tastagaga	agttagatta	tanatatta	taraabaab	cutucaayy	LULUGAYYYL	3240
rgacacagea	baatataaat	tgaagtgtte	Lygeeatggt	cactgcgace	CCCCCacaaa	3300
gegetgeatt	Lycicicaet	cauggatgga	gaacettata	cagegttata	tctgggatgg	3360
agagagcaac	tgtgagtgga	gratatteta	tgtgacagtg	ttggctttta	ctcttattgt	3420
getaacagga	ggtttcactt	ggctttgcat	ctgctgctgc	aaaagacaaa	aaaggactaa	3480
aatcaggaaa	aaaacaaagt	acaccatcct	ggataacatg	gatgaacagg	aaagaatgga	3540
actgaggccc	aaatatggta	tcaagcaccg	aagcacagag	cacaacteca	gcctgatggt	3600
atccgagtct	gagtttgaca	gtgaccagga	cacaatette	agccgagaaa	agatggagag	3660
agggaatcca	aaggtttcca	tgaatggttc	catcagaaat	ggagetteet	tcaqttattq	3720
ctcaaaggac	agataatggc	gcagttcatt	gtaaagtgga	aqqacccctt	qaatccaaqa	3780
ccaqtcaqtq	qqaqttacaq	cacaaaaccc	actetttag	aatagttcat	tgaccttctt	3840
ccccagtaga	ttagatgtgt	atccccacgt	actaaaagac	contttta	adddacaaaa	3010
caaaaacttt	getetttaa	ctracatoct	tattaataaa	aataaaaat	aggeaeaaa	3000
ctaacctata	tacttabbog	acttttaact	tettataga	aacaaagycc	gggLaaaaCL	3960
atgaagaagg	otttatatat	agettegage	cccgcagoc	ggcacaatet	catattaaag	4020
acgaacaacy		gragaacert	agagaaggeg	aatgaaacaa	ggttttaaaa	4080
agggatgatt	Lorgrottag	ccgctgtgat	tgeetetaag	gaacagcatt	ctaaacacgg	4140
tttetettgt	aggacetgea	gtcagatggc	tgtgtatgtt	aaaatagett	gtctaagagg	4200
cacgggccat	ctgtggaggt	acggagtett	gcatgtagca	agetttetgt	gctgacggca	4260
acactcgcac	agtgccaagc	cctcctggtt	tttaattctg	tgctatgtca	atggcagttt	4320
tcatctctct	caagaaagca	gctgttggcc	attcaagagc	taaggaagaa	togtattota	4380
aggactgagg	caatagaaag	gggaggagga	gettaatgee	gtgcaggttg	aaggtagcat	4440
tgtaacatta	tetttett	ctctaagaaa	aactacactg	actcctctcq	qtqttqtta	4500
gcagtatagt	tetetaatgt	aaacqqatcc	ccaqtttaca	ttaaatgcaa	tagaagtgat	4560
taattcatta	agcatttatt	atattctata	gactatacat	ttogactocc	atagataggg	4620
ataacgactc	agcaattgtg	tatatattcc	aaaactctga	aatacaqtca	atettaaett	4580
agatagoata	gttatgatac	tetaateece	gacaggtact	ttccaaaata	acttracata	4740
gatgtattca	cttcatatot	ttaaaaatac	atttaadttt	ttatagagaa	topotata	4200
ttcaaacato	aaagagaatt	ccaaaatac	acceaageee	Clocaddyaa	LaalCttat	4300
actoracter	attataatt	aaaacattee	Caucuada	geagradiee	cgagcaatta	4860
actggagtta	attgtageet	getaegtega	cuggutcagg	gtagttcccc	atccaccett	4920
gglucuyagg	ciggiggeee	tggtggtgcc	cttggcattr.	tttgtgggaa	gattagaatg	4980
agagatagaa	ccagtgttgt	ggtaccaagt	gtgagcacac	ctaaacaata	tcctgttgca	5040
caatgetttt	ttaacacatg	ggaaaactag	gaatgcattg	ctgatgaaga	agcaaggtat	5100
ttaaacacca	gggcaggagt	gccagagaaa	atgtttcccc	atgggttctt	aaaaaaatt	5160
cagcttttag	gtgettttgt	cateteeegg	agtattcatc	ctcatgggac	catcttattt	5220
ttacttattg	taatttactg	gggaaaggca	gaactaaaaa	gtgtgtcatt	ttattttaa	5280
aataattgct	ttgettatge	ctacactttc	tgtataacta	gccaattcaa	tactgtctat	5340
agtgttagaa	qqaaaatqtq	atttttttt	tttaaccast	attgagette	ataageetag	5400
aatctgcctt	atcaggtgac	cagggttatg	attattaca	tacaaatata	aatttctgg	5160
ataggggaga	acaacccase	tataaaatca	tegggedeged	taaaaaaaa	aaaataaaa	5100
attraccoct	ttatotacet	aaratatar	atttacatac	tastttast	gggagtgadC	5520
accttopace	nnanatanta	tasttattat	attacate:	coactigate	GLIALAAUCA	5580
anttanatan	ggagatatta	abash	guuguagaca	ycccuctgaa	ygeeeagaga	5540
yyrradyrdd	cuccecagag	yccacggeea	agaagtagtg	gctccaagaa	ctgaatgcaa	5700
accollada	cigcagaget	CEGCEECCA	ctaaacaaag	aacteetgee	ttgatggatg	5760
yayggcaaat	tctggtggaa	cttttgggcc	acctgaaagt	tctattccca	ggactaagag	5820
gaatttettt	taatggatee	agagagccaa	ggtcagaggg	agagatggcc	tgcatagtct	5880
cctgtggatc	acacccgggc	cacccctccc	tctaggttta	cagtggactt	cttctgcccc	5940
tcctccttt	ctgtccttgg	ccatctcagc	ctggcctctc	tgateettee	atcacagaag	6000
gatcttgaat	ctctgggaaa	tcaaacatca	cagtagtgat	cagaaagtga	gtcctgtctt	6060
				· – –	-	

#### WO 2004/067716

#### PCT/US2004/001965

gtcaccccat ttotcatcag aacaaagcac gagatggaat gaccaaccag cattottcat 6120 ggtggactgc ttatcattga ggatctttgg gagataaagc acgctaagag ctctggacag 6180 agaaaaacag geeetagaat atgggagtgg gtgtttgtag ggeteatagg etaacaagea 6240 ctttagttgc tggtttacat tcaatgaagg aggattcata cccatggcat tacaaggcta 6300 agcatgtgta tgactaagga actatetgaa aaacatgeag caaqqtaaga aaatgtaeea 6360 ctcaacaagc cagtgatgcc accttttgtg cgcggggagg agagtgacta ccattgtttt 6420 ttgtgtgaca aagctatcat ggactatttt aatcttggtt ttattgctta aaatatatta 6480 tttttcccta tgtgttgaca aggtatttct aatatcacac tattaaatat atgcactaat 6540 ctaaataaag gtgtctgtat tttctgtaat gcttattttt agggggaaat ttgttttctt 6600 tatgetteag ggtagaggga tteeettgag tataggteag caaactetgg cetgeageet 6660 gtgtgtgcac gccccatgag ccgaaaagtg ggtcttatgt tttcaaatqq ttaaaaataa 6720 ataaaaaaat ttgaaacatg tgaactatat gacattcaga tttgtgttca taaataaagt 6780 tttattqqaa catatcc 6797 <210> 271 <211> 6797 <212> DNA <213> Homo sapiens <400> 271 getgeegegg geggtgggeg gggateeee gggggtgeaa cettgeteea cetgtgetge 60 ceteggeggg cetggetgge ecegegeaga geggeggegg egetegetgt caetgeegga 120 ggtgagageg cagcagtage tteageetgt ettgggettg gteeagatte geteetetgg 180 ggetacgtee eggggaagag gaagegagga ttttgetggg gtggggetgt acetettaae 240 agcaggtgcg cgcgcgaggg tgtgaacgtg tgtgtgtgtg tgtgtctgtg tgtgtgtgtgtg 300 taagacetge gatgaegaeg aggaggaaca agtgggaegg egagtgatge teagggeeag 360 cagcaacgca tggggcgagc ttcagtgtcg ccagcagtga ccacagagtt cttgaggcca 420 aatetggete etaaaaaaca teaaaggaag ettgeaceaa actetettea gggeegeete 480 agaageetge cateaceeae tgtgtggtge acaatggege eeeccacagg tgtgetetet 540 tcattgetge tgetggtgae aattgeagtt tggttgtgee egtaageagt geagegaggg 600 gaggacatat tecaatgeag teattteace taaettggaa aceaceagaa teatgegggt 660 gtotcacace tteeetgteg tagaetgeae ggeegettge tgtgaeetgt ceagetgtga 720 cetggeetgg tggttegagg geegetgeta eetggtgage tgeeeeeaa aagagaactg 780 tgageceaag aagatgggee ceateaggte ttateteaet tttgtgetee ggeetgttea 840 gaggeetgea cagetgetgg actatgggga catgatgetg aacagggget eccecteggg 900 gatetggggg gacteacetg aggatateag aaaggaettg ecettetag geaaagattg 960 gggeetagag gagatgtetg agtacteaga tgactacegg gagetggaga aggacetett 1020 gcaacccagt ggcaagcagg agcccagagg gagtgccgag tacacggact ggggcctact 1080 geogggeage gagggggeet teaacteete tgttggagae agteetgegg tgeeagegga 1140 gacgcagcag gaccetgage tecattacet gaatgagteg getteaacee etgececaaa 1200 acteeetgag agaagtgtgt tgetteeett geegaetaet eeatetteag gagaggtgtt 1260 ggagaaagaa aaggettete ageteeagga acaateeage aacagetetg gaaaagaggt 1320 totaatgoot toocatagto ttootcoggo aagootggag otcageteag toaccgtgga 1380 gaaaageeea gtgeteacag teaceeeggg gagtacagag cacageatee caacacetee 1440 cactagegea geocectetg agtecacece atetgageta cecatatete etaceaetge 1500 teecaggaca gigaaagaac tiacggiate ggeiggagat aacetaatta taacttiace 1560 cgacaatgaa gttgaactga aggeetttgt tgegeeageg ceacetgtag aaacaaceta 1620 caactatgaa tggaatttaa taagccaccc cacagactac caaggtgaaa taaaacaagg 1680 acacaagcaa actettaace teteteaatt gteegtegga etttatgtet teaaagteae 1740 tgtttetagt gaaaacgeet ttggagaagg atttgteaat gteactgtta ageetgeeag 1800 aagagtcaac ctgccacctg tagcagttgt ttctccccaa ctgcaagagc tcactttgcc 1860 tttgacgtca gccctcattg atggcagcca aagtacagat gatactgaaa tagtgagtta 1920 cttacgettg tetaacettg atcetggtaa etatagttte aggttgaetg ttacagaete 2040 ggacggagee actaacteta caactgeage ectaatagtg aacaatgetg tggactaeee 2100 accagttget aatgeaggae caaateacae cataaetttg eeccaaaaet ceateaettt 2160 gaatggaaac cagagcagtg acgatcacca gattgtcctc tatgagtggt ccctgggtcc 2220 tgggagtgag ggcaaacatg tggtcatgca gggagtacag acgccatacc ttcatttatc 2280 tgcaatgcag gaaggagatt atacatttca gctgaaggtg acagattett caaggcaaca 2340 gtotactgot gtggtgactg tgattgtoca gootgaaaac aatagacoto cagtggotgt 2400 ggccggccct gataaagagc tgatcttccc agtggaaagt gctaccctgg atgggagcag 2460 cagcagegat gaccaeggea ttgtetteta ceaetgggag caegteagag geeceagtge 2520

•

agtggagatg	gaaaatattg	acaaagcaat	agecactgtq	actggtctcc	aggtggggac	2580
ctaccacttc	cgtttgacag	tgaaagacca	gcagggactg	agcagcacgt	ccaccctcac	2640
tgtggctgtg	aagaaggaaa	ataataqtcc	teccagagee	cagactagta	gcagacatgt	2700
tcttgtgctt	cccaataatt	ccattacttt	qqatqqttca	aggtetactg	atgaccasag	2760
aattgtgtcc	tatctgtgga	teegggatgg	ccagagtcca	qcaqctqqaq	atgtcatcga	2820
tggctctgac	cacagtgtgg	ctctgcagct	tacqaatctg	atagagggg	tgtacacttt	2880
ccacttgcga	qtcaccqaca	gtcagggggg	ctcqqacaca	gacactgcca	ctatagaagt	2940
gcagccagac	cctaggaaga	ataacctaat	quadctuacc	ctgcaggttg	atattaaaca	3000
actaacaaaa	caqcqqaaqq	acaccottot	dadacaacta	actatactac	tgaargtgct	3060
ggactcggac	attaaggtcc	agaagattcg	gaccoactica	gatetcarca	ccataettat	3120
gttttatgta	cadadcaddd	cocctttcaa	ggttctcaaa	actactasea	taaccasaa	3180
tetgcacatg	cogctctcaa	aggaggagggg	tgacttetta	cttttcaaco	tettgagget	3240
tgatacagca	agttacctte	tgaagtgttc	taaccataat	cactocoacc	ccctcacaaa	3300
acactacatt	tgeteteact	tatggatgge	gaccttata	caccettata	tetecataa	3360
agagaggaac	tataataa	atatatteta	tatascacta	tragetttt	atattattat	3300
agagageaac	agtttcagtt	gratatica	etactactor	anggetttea	clociality	3420
antragga	gguudaatt	agenticat	cuguugu	aaaayaCaaa	aaaggactaa	3480
actaggaaa	aaaacaaagu	tanaganaga	ggalaadalg	gaugaacagg	aaagaatgga	3540
attgaggttt	aaatatyyta	ctaaycaccy	aaycacayay	cacaacceca	geetgatggt	3600
accegageet	gagettgada	gugaccagga	cacaatette	ageegagaaa	agatggagag	3660
ayyyaattea	aayytticca	igaalggete	catcagaaat	ggagetteet	teagttattg	3720
clcaaaggac	agataatggc	gcagttcatt	gtaaagtgga	aggacccctt	gaatecaaga	3780
ccagtcagtg	ggagttacag	cacaaaaccc	actetttag	aatagttcat	tgaccttett	3840
ccccagtggg	ttagatgtgt	atecceacgt	actaaaagac	cggtttttga	aggcacaaaa	3900
caaaaacttt	getetttaa	ctgagatgct	tgttaataga	aataaaggct	gggtaaaact	3960
ctaaggtata	tacttaaaag	agttttgagt	ttttgtagct	ggcacaatct	catattaaag	4020
atgaacaacg	atttctatct	gtagaacctt	agagaaggtg	aatgaaacaa	ggttttaaaa	4080
agggatgatt	tctgtcttag	ccgctgtgat	tgcctctaag	gaacagcatt	ctaaacacgg	4140
tttctcttgt	aggacctgca	gtcagatggc	tgtgtatgtt	aaaatagctt	gtctaagagg	4200
cacgggccat	ctgtggaggt	acggagtett	gcatgtagca	agetttetgt	gctgacggca	4260
acactcgcac	agtgccaagc	cctcctggtt	tttaattctg	tgctatgtca	atggcagttt	4320
tcatctctct	caagaaagca	gctgttggcc	attcaagagc	taaggaagaa	tcgtattcta	4380
aggactgagg	caatagaaag	gggaggagga	gcttaatgcc	gtgcaggttg	aaggtagcat	4440
tgtaacatta	tctttcttt	ctctaagaaa	aactacactg	actcctctcg	gtgttgttta	4500
gcagtatagt	tctctaatgt	aaacggatcc	ccagtttaca	ttaaatgcaa	tagaagtgat	4560
taattcatta	agcatttatt	atgttctgta	ggctgtgcgt	ttggactgcc	atagataggg	4520
ataacgactc	agcaattgtg	tatatattcc	aaaactctga	aatacagtca	gtcttaactt	4580
ggatggcgtg	gttatgatac	tetggteece	gacaggtact	ttccaaaata	acttgacata	4740
gatgtattca	cttcatatgt	ttaaaaatac	atttaagttt	ttctaccgaa	taaatcttat	4800
ttcaaacatg	aaagacaatt	aaaacattcc	cacccacaaa	gcagtactcc	cgagcaatta	4860
actggagtta	attgtagcct	gctacgttga	ctggttcagg	gtagttcccc	atccaccett	4920
ggtootgagg	ctggtggcct	tggtggtgcc	cttggcattt	tttgtgggaa	gattagaatg	4980
agagatagaa	ceagtgttgt	ggtaccaagt	gtgagcacac	ctaaacaata	tectqttqca	5040
caatgctttt	ttaacacatg	ggaaaactag	gaatgcattg	ctgatgaaga	aqcaaqqtat	5100
ttaaacacca	gggcaggagt	qccaqaaaa	atgtttcccc	atgggttctt	aaaaaaaatt	5160
cagettttag	gtgettttgt	catctcccqq	agtattcatc	ctcatogoac	catcttattt	5220
ttacttattg	taatttactq	qqqaaaqqca	gaactaaaaa	atatatcatt	ttattttaa	5260
aataattqct	ttgettatge	ctacactttc	totataacta	gccaattcaa	tactotctat	5340
agtgttagaa	qqaaaatqtq	attttttt	tttaaccagt	attgagette	ataageetag	5400
aatctgcctt	atcaggtgac	cagggttatg	attatttaca	tacaaatata	aatttctggc	5460
ataggggaga	gcagcccaaa	totaaagtca	fcddddafaa	trarrarra	dddagfasad	5520
atttaccoct	ttatgtacat	aacatatoca	atttacatac	tcatttgatc	cttataarca	5520
accttgaaga	ggagatacta	tcattcttat	gttgcagata	geetetgate	GGGGGGGGGGG	5640
oottaadtaa	cttrocecara	atcataacca	adaadtadta	geteeegaa	ggeeeagaga	5040
atttttaaa	ctatagagtt	ctactttaca	ctasacaaca	getectagaa	tratacto	5700
nannnesset	tetaataaaa	atttaaaaa	acctonnet	tatattaga	ccyacyyatg	5700
aatttatt	taataastaa	agagaggggg	actigadagt	ngagateer-	ggaccaagag	5820
actatacata	aaaagaaaaa	agagagucaa	egecayaygg	ayayatggcc		5880
teeteettt	atatactta	auduteec	ctracetet	caytygactt	UCCCTGCCCC	5940
astattarst	atatazzzzzz	tancetta	olygeetete	Lgateettee	atcacagaag	6000
gatottyaat	ttotugggaaa	LCABACATCA	cagtagtgat	cagaaagtga	greergrett	6060
yccacccat	LICECATCAG	aacaaagcac	gagatggaat	gaccaaccag	cattetteat	6120
yyuggactgc	ttatcattga	ggatettgg	gagataaagc	acgctaagag	ctctggacag	6180
agaaaaacag	gccctagaat	atgggagtgg	gtgtttgtag	ggctcatagg	ctaacaagca	6240
CECTAGETEC	tggtttacat	tcaatgaagg	aggattcata	cccatggcat	tacaaggota	6300
agcatgtgta	tgactaagga	actatctgaa	aaacatgcag	caaggtaaga	aaatgtacca	6360

#### WO 2004/067716

#### PCT/US2004/001965

ctcaacaagc cagtgatgcc accttttgtg cgcggggagg agagtgacta ccattgtttt 6420 ttgtgtgaca aagctatcat ggactatttt aatcttggtt ttattgctta aaatatatta 6480 tttttcccta tgtgttgaca aggtatttct aatatcacac tattaaatat atgcactaat 6540 ctaaataaag gtgtctgtat tttctgtaat gcttattttt agggggaaat ttgttttctt 6600 tatgetteag ggtagaggga tteeettgag tataggteag caaactetgg cetgeageet 6660 gtgtgtgcac gccccatgag ccgaaaagtg ggtcttatgt tttcaaatgg ttaaaaataa 6720 ataaaaaaat ttgaaacatg tgaactatat gacattcaga tttgtgttca taaataaagt 6783 tttattggaa cátatcc <210> 272 <211> 1063 <212> PRT <213> Homo sapiens <400>272Met Thr Arg Leu Gly Trp Pro Ser Pro Cys Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser Pro Asn Leu Glu 3.0 Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu Glu Lys Asp Leu Leu Glr. Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Scr Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu

Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phc Arg Leu Thr Val 4 9 5 Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly 550 555 Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu 565 570 His Leu Ser Ala Met Gln Glu Gly Asp Tyr Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val 595 600 Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val 660 [°] 665 Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys 690 695 Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Glr Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu 82.0 Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val

885 890 895 Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly 900 905 910 His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met 915 920 925 Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu 930 935 940 Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu 950 955 945 960 Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Lys Arg Gln Lys 965 970 975 Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met 980 985 990 Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His 995 1000 1005 Arg Ser Thr Glu His Asn Ser Ser Leu Met Val Ser Glu Ser Glu Phe 1010 1015 1020 Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg Glu Lys Met Glu Arg Gly 1025 1030 **103**5 1040 Asn Pro Lys Val Ser Met Asn Gly Ser Ile Arg Asn Gly Ala Ser Phe 1045 1050 1055 Ser Tyr Cys Ser Lys Asp Arg 1060 <210> 273 <211> 1053 <212> PRT <213> Homo sapiens <400> 273 Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val 1 5 10 15 Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr 20 25 3.0 Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys 35 40 45 Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val Ser Cys Prc 50 - 55 60 His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr 70 75 65 80 Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp 85 90 95 Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly 100 105 110Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp 115 120 125 Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu 1.3.0 135 140 Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser 145 150 155 160 Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe 165 170 175 Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Glr. 185 180 190 Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro 195 200 205 Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser 210 215 220 Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln 225 230 235 240 Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu 245 250 -255 Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro

Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys 325 330 Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Phe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe 390 395 Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr His Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser 450 455 Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr 515 520 Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr 565 570 Thr Fhe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr  $\operatorname{Leu}$  Asp Gly Ser Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His 630 635 Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr

88/92

Ala Thr Val Glu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu 790 795 Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Phe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu 885 890 Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile 900 905 Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp 915 920 Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala 930 935 Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Met 995 1000 1005 Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg 1010 1015 1020 Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn Gly Ser Ile 1025 1030 1035 Arg Asn Gly Ala Ser Phe Ser Tyr Cys Ser Lys Asp Arg <210> 274 <211> 1053 <212> PRT <213> Homo sapiens <400>274Cys Ala Arg Lys Gln Cys Ser Glu Gly Arg Thr Tyr Ser Asn Ala Val Ile Ser Pro Asn Leu Glu Thr Thr Arg Ile Met Arg Val Ser His Thr Phe Pro Val Val Asp Cys Thr Ala Ala Cys Cys Asp Leu Ser Ser Cys Asp Leu Ala Trp Trp Phe Glu Gly Arg Cys Tyr Leu Val Ser Cys Pro His Lys Glu Asn Cys Glu Pro Lys Lys Met Gly Pro Ile Arg Ser Tyr Leu Thr Phe Val Leu Arg Pro Val Gln Arg Pro Ala Gln Leu Leu Asp Tyr Gly Asp Met Met Leu Asn Arg Gly Ser Pro Ser Gly Ile Trp Gly Asp Ser Pro Glu Asp Ile Arg Lys Asp Leu Pro Phe Leu Gly Lys Asp 

89/92

Trp Gly Leu Glu Glu Met Ser Glu Tyr Ser Asp Asp Tyr Arg Glu Leu

Glu Lys Asp Leu Leu Gln Pro Ser Gly Lys Gln Glu Pro Arg Gly Ser

Ala Glu Tyr Thr Asp Trp Gly Leu Leu Pro Gly Ser Glu Gly Ala Phe

Asn Ser Ser Val Gly Asp Ser Pro Ala Val Pro Ala Glu Thr Gln Gln Asp Pro Glu Leu His Tyr Leu Asn Glu Ser Ala Ser Thr Pro Ala Pro Lys Leu Pro Glu Arg Ser Val Leu Leu Pro Leu Pro Thr Thr Pro Ser Ser Gly Glu Val Leu Glu Lys Glu Lys Ala Ser Gln Leu Gln Glu Gln Ser Ser Asn Ser Ser Gly Lys Glu Val Leu Met Pro Ser His Ser Leu Pro Pro Ala Ser Leu Glu Leu Ser Ser Val Thr Val Glu Lys Ser Pro Val Leu Thr Val Thr Pro Gly Ser Thr Glu His Ser Ile Pro Thr Pro Pro Thr Ser Ala Ala Pro Ser Glu Ser Thr Pro Ser Glu Leu Pro Ile Ser Pro Thr Thr Ala Pro Arg Thr Val Lys Glu Leu Thr Val Ser Ala - 315 Gly Asp Asn Leu Ile Ile Thr Leu Pro Asp Asn Glu Val Glu Leu Lys Ala Phe Val Ala Pro Ala Pro Pro Val Glu Thr Thr Tyr Asn Tyr Glu Trp Asn Leu Ile Ser His Pro Thr Asp Tyr Gln Gly Glu Ile Lys Gln Gly His Lys Gln Thr Leu Asn Leu Ser Gln Leu Ser Val Gly Leu Tyr Val Fhe Lys Val Thr Val Ser Ser Glu Asn Ala Phe Gly Glu Gly Phe Val Asn Val Thr Val Lys Pro Ala Arg Arg Val Asn Leu Pro Pro Val Ala Val Ser Pro Gln Leu Gln Glu Leu Thr Leu Pro Leu Thr Ser Ala Leu Ile Asp Gly Ser Gln Ser Thr Asp Asp Thr Glu Ile Val Ser Tyr Eis Trp Glu Glu Ile Asn Gly Pro Phe Ile Glu Glu Lys Thr Ser Val Asp Ser Pro Val Leu Arg Leu Ser Asn Leu Asp Pro Gly Asn Tyr 475 480 Ser Phe Arg Leu Thr Val Thr Asp Ser Asp Gly Ala Thr Asn Ser Thr Thr Ala Ala Leu Ile Val Asn Asn Ala Val Asp Tyr Pro Pro Val Ala 505 510 Asn Ala Gly Pro Asn His Thr Ile Thr Leu Pro Gln Asn Ser Ile Thr Leu Asn Gly Asn Gln Ser Ser Asp Asp His Gln Ile Val Leu Tyr Glu 535 540 Trp Ser Leu Gly Pro Gly Ser Glu Gly Lys His Val Val Met Gln Gly 550 555 Val Gln Thr Pro Tyr Leu His Leu Ser Ala Met Gln Glu Gly Asp Tyr 565 570 Thr Phe Gln Leu Lys Val Thr Asp Ser Ser Arg Gln Gln Ser Thr Ala 585 590 Val Val Thr Val Ile Val Gln Pro Glu Asn Asn Arg Pro Pro Val Ala Val Ala Gly Pro Asp Lys Glu Leu Ile Phe Pro Val Glu Ser Ala Thr Leu Asp Gly Ser Ser Ser Asp Asp His Gly Ile Val Phe Tyr His Trp Glu His Val Arg Gly Pro Ser Ala Val Glu Met Glu Asn Ile Asp Lys Ala Ile Ala Thr Val Thr Gly Leu Gln Val Gly Thr Tyr His Phe Arg Leu Thr Val Lys Asp Gln Gln Gly Leu Ser Ser Thr Ser Thr Leu

90/92

Thr Val Ala Val Lys Lys Glu Asn Asn Ser Pro Pro Arg Ala Arg Ala Gly Gly Arg His Val Leu Val Leu Pro Asn Asn Ser Ile Thr Leu Asp Gly Ser Arg Ser Thr Asp Asp Gln Arg Ile Val Ser Tyr Leu Trp Ile 725 730 Arg Asp Gly Gln Ser Pro Ala Ala Gly Asp Val Ile Asp Gly Ser Asp His Ser Val Ala Leu Gln Leu Thr Asn Leu Val Glu Gly Val Tyr Thr Phe His Leu Arg Val Thr Asp Ser Gln Gly Ala Ser Asp Thr Asp Thr Ala Thr Val Clu Val Gln Pro Asp Pro Arg Lys Ser Gly Leu Val Glu Leu Thr Leu Gln Val Gly Val Gly Gln Leu Thr Glu Gln Arg Lys Asp Thr Leu Val Arg Gln Leu Ala Val Leu Leu Asn Val Leu Asp Ser Asp Ile Lys Val Gln Lys Ile Arg Ala His Ser Asp Leu Ser Thr Val Ile Val Fhe Tyr Val Gln Ser Arg Pro Pro Phe Lys Val Leu Lys Ala Ala Glu Val Ala Arg Asn Leu His Met Arg Leu Ser Lys Glu Lys Ala Asp Phe Leu Leu Phe Lys Val Leu Arg Val Asp Thr Ala Gly Cys Leu Leu Lys Cys Ser Gly His Gly His Cys Asp Pro Leu Thr Lys Arg Cys Ile Cys Ser His Leu Trp Met Glu Asn Leu Ile Gln Arg Tyr Ile Trp Asp Gly Glu Ser Asn Cys Glu Trp Ser Ile Phe Tyr Val Thr Val Leu Ala Phe Thr Leu Ile Val Leu Thr Gly Gly Phe Thr Trp Leu Cys Ile Cys Cys Cys Lys Arg Gln Lys Arg Thr Lys Ile Arg Lys Lys Thr Lys Tyr Thr Ile Leu Asp Asn Met Asp Glu Gln Glu Arg Met Glu Leu Arg Pro Lys Tyr Gly Ile Lys His Arg Ser Thr Glu His Asn Ser Ser Leu Met 995 1000 1005 Val Ser Glu Ser Glu Phe Asp Ser Asp Gln Asp Thr Ile Phe Ser Arg 1010 1015 1020 Glu Lys Met Glu Arg Gly Asn Pro Lys Val Ser Met Asn Gly Ser Ile Arg Asn Gly Ala Ser Phe Scr Tyr Cys Ser Lys Asp Arg 

<210> 275 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 275 aattctccga acgtgtcacg ttt <210> 276 <211> 24 <212> DNA <213> Artificial Sequence

# WO 2004/067716

<220> <223> Primer <400> 276 aagggacgaa gacgaacacu uctt <210> 277 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer

<400> 277 aactgaagac ctgaagacaa taa 24

23