(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization

$|||\mid$
International Bureau
(43) International Publication Date

11 October 2012 (11.10.2012)
WIPOIPCT

(10) International Publication Number WO 2012/138783 A3

(51) International Patent Classification:

C12Q 1/68 (2006.01)
(21) International Application Number:

PCT/US2012/032202
(22) International Filing Date

4 April 2012 (04.04.2012)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

61/471,601
4 April 2011 (04.04.2011)
61/472,165 $\quad 5$ April 2011 (05.04.2011)
61/610,349 13 March 2012 (13.03.2012)
(71) Applicant (for all designated States except US): NETHERLANDS CANCER INSTITUTE [NL/NL]; Plesmanlaan 121, 1066 CX Amsterdam (NL).
(72) Inventors; and
(75) Inventors/Applicants (for US only): BERNARDS, Rene [NL/NL]; c/o Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (NL). HUANG, Sidong [US/NL]; c/o Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (NL). HOLZEL, Michael [DE/NL]; c/o Netherlands Cancer Institute, Plesmanlaan 121, NL-1066 CX Amsterdam (NL).
(74) Agent: EHRHARD, Kathleen, N.; Frommer Lawrence \& Haug LLP, 745 Fifth Avenue, New York, NY 10151 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, $\mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}$, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published

- with international search report (Art. 21(3))
(54) Title: METHODS AND COMPOSITIONS FOR PREDICTING RESISTANCE TO ANTICANCER TREATMENT WITH PROTEIN KINASE INHIBITORS
(57) Abstract: The instant application provides methods

c
 and related compositions pertaining to the identification of resistance to anticancer treatment in a patient. In a particular embodiment, the invention provides biomarkers for the identification of resistance to anticancer treatment in a lung cancer patient, wherein a reduced expression of a MEDIATOR and/or SW1/SNF complex gene in the lung cancer cells of the patient indicates that the lung cancer cells in the patient may be resistant to treatment with a receptor tyrosine kinase inhibitor, such as gefitinib and/or erlotinib. In some embodiments, the invention relates to methods and related compositions for predicting resistance to anticancer treatment by detecting the expression levels of one or more TGF-beta pathway nucleic acids and/or proteins.

WO 2012/138783 A3 ||
(88) Date of publication of the international search report:

14 March 2013

TITLE OF THE INVENTION

METHODS AND COMPOSITIONS FOR PREDICTING RESISTANCE TO ANTICANCER TREATMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Application Serial No. 61/471,601 filed April 4, 2011 ; U.S. Provisional Application Serial No. 61/472,165, filed April 5, 2011 ; and U.S. Provisional Application Serial No. 61/610,349 filed March 13, 2012, which are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

The invention relates to the field of methods and related compositions for predicting resistance to anticancer treatment. In certain embodiments, the invention relates to the field of methods and related compositions for predicting resistance to anticancer treatment in a cancer patient by detecting a reduced expression level of a SWI/SNF complex and/or MEDIATOR complex and/or RAS-GAP gene and/or protein in one or more cancer cells of the patient. In other embodiments, the invention relates to the field of methods and related compositions for predicting resistance to anticancer treatment by detecting one or more inactivating mutations in a SWI/SNF complex and/or MEDIATOR complex and/or RASGAP gene. In some embodiments, the invention relates to the field of methods and related compositions for predicting resistance to anticancer treatment by detecting dysfunction and/or inactivity of one or more SWI/SNF complex and/or MEDIATOR complex and/or RAS-GAP proteins. In some embodiments, the invention relates to the field of methods and related compositions for predicting resistance to anticancer treatment by detecting the expression levels of one or more TGF-beta pathway nucleic acids and/or proteins.

BACKGROUND OF THE INVENTION

Activation of signaling pathways in cancer is often the result of genomic alterations (mutations, translocations, copy number gains and/or losses) in key components of these pathways. Cancer cells often depend on the continued presence of the signals that emanate from these genomic alterations and sudden inhibition frequently results in death of the cancer cells, a phenomenon coined "oncogene addiction" (Sharma and Settleman, 2007). The presence of specific changes in the genomes of cancer cells can therefore have strong
predictive value for responsiveness to therapies that target these mutations (Pao and Chmielecki).

Such drug response biomarkers are urgently needed for the rational selection of patients for these therapies, as their clinical benefit is often limited due to the fact that only a subset of patients responds. Considering the high cost of targeted therapeutics, response biomarkers are not only a clinical necessity, but also an economic requirement to keep the cost of cancer care in check by reducing the number of patients that receive expensive drugs without experiencing therapeutic benefit.

Lung cancer is a leading cause of cancer deaths worldwide and tobacco smoking remains the major risk factor. Genomic alterations of receptor tyrosine kinases are frequently found in non-small cell lung cancers, the predominant histological subtype, and are particularly enriched ($\sim 40 \%$) in non-smokers (Rudin et al., 2009). Lung cancers with activating mutations of the $E G F R$ (epidermal growth factor receptor) respond well to treatment with EGFR inhibitors (gefitinib and erlotinib) in the clinic and constitute the largest subgroup of patients ($\sim 10 \%-20 \%$) tractable for an effective tyrosine kinase inhibitor therapy (L̇ynch et al., 2004; Maemondo et al.; Rosell et al., 2009; Sharma et al., 2007). Recently, EML4-ALK translocations were identified in $-2 \%-5 \%$ of NSCLC providing a second promising molecular target for the treatment of NSCLC (Soda et al., 2007). The fusion of the N -terminal part of EML4 (echinoderm microtubule associated protein like 4) with the Cterminal kinase domain of ALK (anaplastic large cell lymphoma kinase) results in the stable dimerization and constitutive activation of the EML4-ALK fusion kinase. The dual tyrosine kinase inhibitor crizotinib potently inhibits ALK/MET and is currently evaluated in clinical trials. The first phase I study with crizotinib in EML4-ALK positive advanced NSCLC demonstrated remarkable activity (Kwak et al.).

Despite these encouraging clinical results, lung cancers with EGFR mutations or EML4-ALK translocations do not respond equally well to these inhibitors (primary resistance) ând all tumors develop resistance (acquired resistance) under prolonged treatment (Jackman et al.). Several acquired resistance mechanisms were identified in pre-clinical studies and also confirmed in specimens from relapsed patients that initially responded well to EGFR or ALK inhibitor treatment. Second site mutations of the EGFR. (EGFR ${ }^{\text {T790M }}$) and MET amplifications account for $\sim 50 \%$ of the cases of acquired resistance to EGFR inhibitors (Engelman et al., 2007; Hammerman et al., 2009; Kobayashi et al., 2005). The EGFR ${ }^{\text {T790M }}$ gatekeeper mutation prevents binding of the inhibitors to the kinase domain, but preserves the
activity of the kinase. The frequency of EML4-ALK second site mutations in relapsed tumors is currently unknown and was only found in a single case so far (Choi et al.).

Nevertheless, in a large number of cases the mechanism of resistance to EGFR or ALK inhibitors remains unknown and in particular the determinants of primary resistance are obscure. Understanding the relevant genes and signaling pathways that contribute to resistance of NSCLC cells to tyrosine kinase inhibitors might not only provide drug response markers to stratify treatment options, but might also delineate new therapeutic strategies to overcome the drug resistance.

Citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.

SUMMARY OF THE INVENTION

In certain embodiments, the invention provides a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) measuring expression levels of one or more SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins in the patient; and (b) comparing the expression levels of the one or more SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins in (a) with the expression levels of one or more reference SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins, wherein the one or more reference SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins are from a control sample, wherein a reduction in the expression of the one or more SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins in comparison to the one or more reference SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins is indicative of resistance to anticancer treatment in the patient.

In other embodiments, the invention provides a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) isolating nucleic acid from the patient, wherein the nucleic acid comprises one or more SWI/SNF complex and/or MEDIATOR complex DNA and/or RNA; and (b) analyzing the nucleic acid of (a) for the presence of one or more inactivating mutations in the SWI/SNF complex and/or MEDIATOR complex DNA and/or RNA, wherein the presence of one or more inactivating mutations in the one or more SWI/SNF complex and/or MEDIATOR complex DNA and/or RNA analyzed in (b) is indicative of resistance to anticancer treatment in the patient.

In some embodiments, the invention relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) isolating protein from the patient, wherein the protein comprises one or more SWI/SNF complex and/or MEDIATOR complex proteins (b) analyzing the activity of the one or more SWI/SNF complex and/or MEDIATOR complex proteins in (a); and (c) comparing the activity of the one or more SWI/SNF complex and/or MEDIATOR complex proteins in (b) with the activity of one or more reference SWI/SNF complex and/or MEDIATOR complex proteins, wherein a difference in activity of the one or more SWI/SNF complex and/or MEDIATOR complex proteins from (b) in comparison to the one or more SWI/SNF complex and/or MEDIATOR complex reference proteins in (c) is indicative of resistance to anticancer treatment in the patient.

In certain embodiments, the expression levels of one or more SWI/SNF complex nucleic acids (e.g., DNA, RNA) and/or proteins are measured.

In certain embodiments, the expression levels of one or more MEDIATOR complex nucleic acids (e.g., DNA, RNA) and/or proteins are measured.

In some embodiments, the invention provides a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) measuring expression levels of one or more RAS-GAP nucleic acid and/or proteins in the patient; and (b) comparing the expression levels of the one or more RAS-GAP nucleic acid and/or proteins in (a) with the expression levels of one or more reference RAS-GAP nucleic acid and/or proteins, wherein the one or more reference RAS-GAP nucleic acid and/or proteins are from a control sample, wherein a reduction in the expression of the one or more RAS-GAP nucleic acid and/or proteins in comparison to the one or more reference RÁSGAP nucleic acid and/or proteins is indicative of resistance to anticancer treatment in the patient.

In other embodiments, the invention provides a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) isolating nucleic acid from the patient, wherein the nucleic acid comprises one or more RASGAP DNA and/or RNA; and (b) analyzing the nucleic acid of (a) for the presence of one or more inactivating mutations in the RAS-GAP DNA and/or RNA, wherein the presence of one or more inactivating mutations in the one or more RAS-GAP DNA and/or RNA analyzed in (b) is indicative of resistance to anticancer treatment in the patient.

In yet other embodiments, the invention provides a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a)
isolating protein from the patient, wherein the protein comprises one or more RAS-GAP proteins; (b) analyzing the activity of the one or more RAS-GAP proteins in (a); and (c) comparing the activity of the one or more RAS-GAP proteins in (b) with the activity of one or more reference RAS-GAP proteins, wherein a difference in activity of the one or more RAS-GAP proteins from (b) in comparison to the one or more RAS-GAP reference proteins in (c) is indicative of resistance to anticancer treatment in the patient.

In some embodiments the expression levels of one or more RAS-GAP nucleic acids (e.g., DNA, RNA) are measured. In other embodiments, the expression levels of one or more RAS-GAP proteins are measured.

In some embodiments of the methods described herein for evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, the patient has lung cancer (e.g., non-small-cell lung cancer), breast cancer, ovarian cancer, lung cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, and/or lymphoma.

In some embodiments, the resistance to anticancer treatment is resistance to treatment with a receptor tyrosine kinase inhibitor. Examples of receptor tyrosine kinase inhibitors include gefitinib, erlotinib, EKB-569, lapatinib, CI-1033, cetuximab, panitumumab, PKI-166, AEE788, sunitinib, sorafenib, dasatinib, nilotinib, pazopanib, vandetaniv, cediranib, afatinib, motesanib, CUDC-101, imatinib mesylate, crizotinib, ASP-3026, LDK378, AF802, and CEP37440.

In some embodiments, the resistance to anticancer treatment is resistance to treatment with an inhibitor of ERK activation. In certain embodiments, the inhibitor of ERK activation inhibits a cellular protein that interacts directly with ERK. In other embodiments, the inhibitor of ERK activation inhibits a cellular protein that interacts indirectly with ERK. In yet other embodiments, the inhibitor of ERK activation is a receptor tyrosine kinase inhibitor.

Examples of SWI/SNF complex nucleic acids and/or proteins include ARIDIA, ARIDIB, ARID2, SMARCA2, SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCB1.

Examples of MEDIATOR complex nucleic acids and/or proteins include MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4, MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25,

MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED12L, and MED13L.

Examples of RAS-GAP nucleic acids and/or proteins include DAB2IP, NF1, and RASAL3.

In some embodiments, analyzing nucleic acid comprises sequencing the nucleic acid In other embodiments, analyzing nucleic acid comprises subjecting the nucleic acid to MLPA. In yet other embodiments, analyzing nucleic acid comprises subjecting the nucleic acid to CGH. In certain embodiments, analyzing nucleic acid comprises subjecting the nucleic acid to FISH.

In certain embodiments, an inactivating mutation is selected from the group consisting of: point mutations, translocations, amplifications, deletions, and hypomorphic mutations.

In certain embodiments, nucleic acid in a method of the invention comprises one or more SWI/SNF complex genes. In other embodiments, the nucleic acid comprises one or more MEDIATOR complex genes. In yet other embodiments, the nucleic acid comprises one or more RAS-GAP genes.

In certain embodiments, one or more SWI/SNF complex and/or MEDIATOR complex proteins analyzed are inactive. In further embodiments, the one or more SWI/SNF complex and/or MEDIATOR complex proteins are inactive due to one or more posttranslational modifications. In some embodiments, one or more RAS-GAP proteins analyzed are inactive. In further embodiments, the one or more RAS-GAP proteins are inactive due to one or more positranslational modifications

In some embodiments, the invention relates to a microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a SWI/SNF complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer.

In other embodiments, the invention relates to a microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer.

In some embodiments, the invention relates to a microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a SWI/SNF complex and/or MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer.

In other embodiments, the invention relates to a microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a RAS-GAP gene that is a marker for resistance to anticancer treatment in a patient that has cancer.

In certain embodiments, a microarray of the invention comprises a plurality of probes, wherein the plurality of probes is at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% of the probes on the microarray.

In certain embodiments, in a microarray of the invention, the SWI/SNF complex gene that is a marker for resistance to anticancer treatment is selected from the group consisting of ARID1A, ARID1B, ARID2, SMARCA2, SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCB1.

In other embodiments, in a microarray of the invention, the MEDIATOR complex gene that is a marker for resistance to anticancer treatment is selected from the group consisting of MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4, MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25, MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED13L, and MED12L.

In still other embodiments, in a microarray of the invention, the RAS-GAP gene is selected from the group consisting of: DAB2IP, NF1, and RASAL3.

In some embodiments, the invention relates to a kit, comprising at least one pair of primers specific for a SWI/SNF complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the SWI/SNF complex gene, and instructions for use.

In other embodiments, the invention relates to a kit, comprising at least one pair of primers specific for a MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the MEDIATOR complex gene, and instructions for use.

In some embodiments, the invention relates to a kit, comprising at least one pair of primers specific for a SWI/SNF complex and/or a MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the SWI/SNF complex and/or MEDIATOR complex gene, and instructions for use.

In other embodiments, the invention relates to a kit, comprising at least one pair of primers specific for a RAS-GAP gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the RAS-GAP gene, and instructions for use.

In certain embodiments, in a kit of the invention, the primers are specific for a SWI/SNF complex gene selected from the group consisting of ARID1A, ARID1B, ARID2, SMARCA2, SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCB1.

In certain embodiments, in a kit of the invention, the primers are specific for a MEDIATOR complex gene selected from the group consisting of MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4, MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25, MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED13L, and MED12L.

In certain embodiments, in a kit of the invention, the primers are specific for a RASGAP gene selected from the group consisting of: DAB2IP, NF1, and RASAL3

In certain embodiments, in a kit of the invention, the marker for resistance to anticancer treatment is a marker for resistance to a receptor tyrosine kinase inhibitor.

In certain embodiments, in a kit of the invention, the marker for resistance to anticancer treatment is a marker for resistance to an inhibitor of ERK activation. In some embodiments, the inhibitor of ERK activation inhibits a cellular protein that interacts directly with ERK. In some embodiments, the inhibitor of ERK activation inhibits a cellular protein that interacts indirectly with ERK. In other embodiments, the inhibitor of ERK activation is a receptor tyrosine kinase inhibitor.

In certain embodiments, the kit is a PCR kit. In other embodiments, the kit is an MLPA kit. In yet other embodiments, the kit is an RT-MLPA kit.

In some embodiments, the level of expression of one or more SWI/SNF complex and/or MEDIATOR complex and/or RAS-GAP genes in a method of the invention is measured by determination of their level of transcription, using a DNA array. In other embodiments, the level of expression of one or more SWI/SNF complex and/or MEDIATOR complex and/or RAS-GAP genes is measured by determination of their level of transcription, using quantitative RT-PCR.

In some embodiments the level of expression of one or more SWI/SNF complex and/or MEDIATOR complex and/or RAS-GAP genes in a method of the invention is
measured in a tumor sample from the patient. In certain further embodiments, the tumor sample is a lung tumor sample.

In some embodiments, the resistance to anticancer treatment is resistance to treatment with a B-RAF inhibitor. Examples of B-RAF inhibitors include CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC-2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.

In some embodiments, resistance to anticancer treatment is resistance to treatment with a MEK inhibitor. Examples of MEK inhibitors include CKI-27, RO-4987655, RO5126766, PD-0325901, WX-554, AZD-8330, G-573, RG-7167, SF-2626, GDC-0623, RO5068760, and AD-GL0001.

In certain embodiments, in a kit of the invention, the marker for resistance to anticancer treatment is a marker for resistance to treatment with a B-RAF inhibitor, In other embodiments, the marker for resistance to anticancer treatment is a marker for resistance to treatment with a MEK inhibitor.

In certain embodiments, in the methods of the invention, the expression levels of SWI/SNF and/or MEDIATOR complex or RAS-GAP nucleic acid and/or proteins are measured in one or moree cancer cells of the patient. In some embodiments, nucleic acid is isolated from one or more cancer cells of the patient. In other embodiments, protein is isolated from one or more cancer cells of the patient.

In certain embodiments, in a method of the invention, resistance to anticancer treatment in one or more cancer cells in a patient is primary resistance to anticancer treatment. In other embodiments, the resistance is secondary resistance to anticancer treatment.

In certain embodiments, the instant application relates to a method of treating resistance to one or more inhibitors of ERK activation in a patient in need thereof, comprising administering to the patient at least one inhibitor of the TGF-beta pathway in combination with the one or more inhibitors of ERK activation. In some embodiments, the inhibitor of ERK activation is selected from the group consisting of direct and indirect inhibitors of ERK activation. In certain embodiments, the direct inhibitor of ERK activation is a MEK inhibitor In certain embodiments, the indirect inhibitor of ERK activation is selected from the group consisting of RTK inhibitors, RAS inhibitors, and B-RAF inhibitors.

In some embodiments, the resistance to one or more inhibitors of ERK activation is primary resistance. In other embodiments, the resistance to one or more inhibitors of ERK activation is secondary resistance. In yet other embodiments, the resistance to one or more
inhibitors of ERK activation is evaluated and/or predicted according to a method as disclosed herein.

In other embodiments, the instant application relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) measuring expression levels of one or more TGF β pathway nucleic acid and/or proteins in the patient; and (b) comparing the expression levels of the one or more TGF β pathway nucleic acid and/or proteins in (a) with the expression levels of one or more reference TGF β pathway nucleic acid and/or proteins, wherein the one or more reference TGF β pathway nucleic acid and/or proteins are from a control sample, wherein an increase in the expression of the one or more TGFß pathway nucleic acid and/or proteins in comparison to the one or more reference TGF β pathway nucleic acid and/or proteins is indicative of resistance to anticancer treatment in the patient.

In yet other embodiments, the instant application relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) isolating nucleic acid from the patient, wherein the nucleic acid comprises one or more TGF β pathway DNA and/or RNA; and (b) analyzing the nucleic acid of (a) for the presence of one or more activating mutations in the TGFß pathway complex DNA and/or RNA, wherein the presence of one or more activating mutations in the one or more TGF β pathway DNA and/or RNA analyzed in (b) is indicative of resistance to anticancer treatment in the patient.

In some embodiments, the instant application relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising (a) isolating protein from the patient, wherein the protein comprises one or more TGF β pathway proteins; (b) analyzing the activity of the one or more TGFB pathway proteins in (a); and (c) comparing the activity of the one or more TGF β pathway proteins in (b) with the activity of one or more reference TGF β pathway proteins, wherein a difference in activity of the one or more TGF β pathway proteins from (b) in comparison to the one or more TGF β pathway reference proteins in (c) is indicative of resistance to anticancer treatment in the patient.

In certain embodiments, the instant application relates to a method of treating cancer in a patient in need thereof, comprising administering to the patient an inhibitor of ERK activation in combination with an inhibitor of TGF β pathway activation. In certain further embodiments, the cancer is selected from the group consisting of: liver cancer, lung cancer, breast cancer, ovarian cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma,
prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer, and lymphoma.

In certain embodiments, the inhibitor of ERK activation is selected from the group consisting of: RTK inhibitors, RAS inhibitors, B-RAF inhibitors, and MEK inhibitors. In a particular embodiment, the inhibitor of ERK activation is a MET inhibitor

In certain embodiments, the expression levels are measured of one or more of TGF β pathway nucleic acid that is a TGF β pathway target gene selected from the group consisting of: ALOX5AP, COL5A1, TAGLN, ANGPTL4, LGALSI, IL11, LBH, and COL4A1.

In some embodiments, the inhibitor of TGFß pathway activation is LY2157299. In certain embodiments, the inhibitor of TGF β pathway activation inhibits MED12/TGF β binding.

In some embodiments, inhibitor of ERK activation is crizotinib or gefitinib. In certain embodiments, the inhibitor of ERK activation inhibits MED12/TGF β binding

In some embodiments, the instant application relates to a method of identifying an inhibitor of ERK activation, comprising: measuring MED. $12 /$ TGF β binding in the presence and absence of a test compound, wherein a reduction in the amount of MED12/TGF β binding in the presence of the test compound in comparison to the absence of the test compound indicates an inhibitor of ERK activation has been identified.

In other embodiments, the instant application relates to a method of identifying an inhibitor of TGF β pathway activation, comprising: measuring MED12/TGF β binding in the presence and absence of a test compound, wherein a reduction in the amount of MED12/TGF β binding in the presence of the test compound in comparison to the absence of the test compound indicates an inhibitor of TGF β pathway activation has been identified.

In yet-other embodiments, the instant application relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising: (a) measuring expression levels of one or more MED12 nucleic acid and/or proteins in the patient; (b) measuring one or more markers of an EMT-like phenotype; and (c) comparing the expression levels of the one or more MED12 nucleic acid and/or proteins in (a) with the expression levels of one or more reference MED12 nucleic acid and/or proteins, wherein a reduction in the expression of the one or more MED12 nucleic acid and/or proteins in comparison to the one or more reference MEDi2 nucleic acid and/or proteins in (c) and wherein one or more markers are measured of an EMT-like phenotype in (b) is indicative of resistance to anticancer treatment in the patient.

In some embodiments, the nucleic acid in (a) is isolated from one or more cancer cells from the patient. In other embodiments, the protein in (a) is isolated from one or more cancer cells from the patient. In certain embodiments, the one or more markers of an EMT-like phenotype are measured in one or more cancer cells from the patient. In certain further embodiments, the cancer is selected from the group consisting of: liver cancer, lung cancer, breast cancer, ovarian cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer, and lymphoma. In a particular embodiment, the cancer is colorectal cancer.

In certain embodiments, the resistance to anticancer treatment is resistance to treatment with a MEK inhibitor. In further embodiments, the MEK inhibitor is selected from the group consisting of: CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD8330, G-573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001.

In some embodiments, the resistance to anticancer treatment is resistance to treatment with a B-RAF inhibitor. In certain further embodiments, the B-RAF inhibitor is selected from the group consisting of: CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL= 281, DCC-2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.

In some embodiments, the one or more markers of an EMT-like phenotype are selected from mesenchymal markers. In certain embodiments, the one or more mesenchymal markers are selected from vimentin and N -cadherin.

In other embodiments, the instant application relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising: (a) measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and (b) comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of one or more positive reference MEDI2KD signature nucleic acid and/or proteins, wherein if expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is similar to the one or more positive reference MED12KD signature nucleic acid and/or proteins, then resistance to anticancer treatment is indicated in the patient. In certain embodiments, the expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is about 2-fold, about 3 -fold, about 4 -fold, about 5 -fold, about 6 -fold, about 7 fold, about 8 -fold, about 9 -fold, or about 10 -fold greater or lesser than the one or more
positive reference MED12KD signature nucleic acid and/or proteins. In other embodiments, the expression of the one or more MEDI2KD signature nucleic acid and/or proteins in (a) is about the same as the one or more positive reference MEDI2KD signature nucleic acid and/or proteins.

In yet other embodiments, the instant application relates to a method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising: (a) measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and (b) comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of one or more negative reference MED12KD signature nucleic acid and/or proteins, wherein if expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is greater or lesser than the expression of the one or more negative reference MED12KD signature nucleic acid and/or proteins, then resistance to anticancer treatment is indicated in the patient. In some embodiments, the one or more cancer cells of the patient in (a) are from cancer cells of the patient after the anticancer treatment, and wherein the negative reference MED12KD signature nucleic acid and/or proteins are from one or more cancerous cells of the patient prior to the anticancer treatment. In certain embodiments, the expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is greater than or equal to about 1.2 fold higher or lower than the expression of the one or more negative reference. MED12KD signature nucleic acid and/or proteins.

In some embodiments, the one or more cancer cells of the patient in (a) are from one or more cancer cells of the patient prior to the anticancer treatment. In other embodiments, the one or more cancer cells of the patient in (a) are from one or more cancer cells of the patient after the anticancer treatment.

In certain embodiments, the negative reference MED12KD signature nucleic acid and/or proteins are from one or more non-cancerous cells of the patient. In some embodiments, the negative reference MED12KD signature nucleic acid and/or proteins are from one or more cells known to be sensitive to the anticancer treatment. In certain embodiments, the negative reference MED12KD signature nucleic acid and/or proteins is the average expression of the MED12KD signature nucleic acid and/or proteins in one or more tumor or cell line samples known to be sensitive to the anticancer treatment.

In some embodiments, the one or more MED $12{ }^{\mathrm{KD}}$ signature nucleic acids are upregulated nucleic acids. In certain embodiments, the upregulated nucleic acids are selected from the upregulated nucleic acids presented in Figure 37. In certain embodiments, the
upregulated nucleic acids are selected from the upregulated nucleic acids presented in Figure 40. In certain embodiments, the upregulated nucleic acids are selected from the upregulated nucleic acids presented in Figure 39.

In other embodiments, the one or more MED 12^{KD} signature nucleic acids are downregulated nucleic acids. In certain embodiments, the downregulated nucleic acids are selected from the downregulated nucleic acids presented in Figure 37. In certain embodiments, the downregulated nucleic acids are selected from the downregulated nucleic acids presented in Figure 40. In certain embodiments, the downregulated nucleic acids are selected from the downregulated nucleic acids presented in Figure 39.

In some embodiments, the resistance to anticancer treatment is resistance to treatment with a MEK inhibitor. In certain embodiments, the MEK inhibitor is selected from the group consisting of: CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001.

In some embodiments, the resistance to anticancer treatment is resistance to treatment with a B-RAF inhibitor. In certain embodiments, the B-RAF inhibitor is selected from the group consisting of: CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC-2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.

In certain embodiments, the cancer is selected from the group consisting of: liver cancer, lung cancer, breast cancer, ovarian cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer, and lymphoma.

In some embodiments, the instant application relates to a method of evaluating and/or predicting of resistance to anticancer treatment in a patient in need thereof, comprising: measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of (i) one or more MED12KD signature nucleic acid and/or proteins from cells known to be resistant to said anticancer treatment AND (ii) one or more MED12KD signature nucleic acid and/or proteins from cells known to be sensitive to said anticancer treatment, whereby the cancer cells of the patient are considered to be resistant if the difference in expression levels between the cells in (a) and the cells in (i) is smaller than the difference in expression levels between the cells in (a) and the cells in (ii).

In other embodiments, the instant application relates to a method of evaluating and/or predicting of resistance to anticancer treatment in a patient in need thereof, comprising measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of (i) one or more MED12KD signature nucleic acid and/or proteins from cells known to be resistant to said anticancer treatment AND (ii) one or more MED12KD signature nucleic acid and/or proteins from cells known to be sensitive to said anticancer treatment, whereby the cancer cells of the patient are considered to be sensitive if the difference in expression levels between the cells in (a) and the cells in (i) is greater than the difference in expression levels between the cells in (a) and the cells in (ii).

In yet other embodiments, the present application relates to a method of evaluating and/or predicting of resistance to anticancer treatment in a patient in need thereof, comprising measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the average expression levels of (i) one or more MED12KD signature nucleic acid and/or proteins taken from two or more cell samples, whereby the cancer cells of the patient are considered to be resistant if the difference in expression levels of the one or more MED12KD signature nucleic acid and/or proteins between the cells in (a) and the average expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (i) is greater than a factor 1.2.

These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the results of a genome-wide RNAi screen that identifies.MED12, ARIDIA and SMARCE1 as critical determinants of drug sensitivity to ALK inhibitors in EML4-ALK mutant NSCLC cells. (A) Schematic outline of the ALK inhibitor resistance barcode screen performed in H 3122 cells. Human shRNA library polyclonal virus was produced to infect H 3122 cells, which were then left untreated (control) or treated with 5 nM NVP-TAE684. After 4 weeks of selection, shRNA inserts from both populations were recovered, labeled and hybridized to DNA. (B) Analysis of the relative abundance of the recovered shRNA cassettes from ALK inhibitor barcode experiment. Averaged data from three independent experiments were normalized and $2 \log$ transformed. Among the 49 top
shRNA candidates ($\mathrm{M}>1.5$ and $\mathrm{A}>7$), two independent $\operatorname{sh} M E D / 2$, one $\operatorname{sh} A R I D I A$ and one shSMARCEI vectors were identified. (C) Individual shRNAs from the library targeting MED12, ARID1A and SMARCE1 confer resistance to ALK inhibitors. H3 122 cells expressing the empty vector pRS, control shGFP, shMEDI2\#I, shMED12\#2, $\operatorname{sh} A R I D 1 A$ or shSMARCE1, were left untreated for 2 weeks or treated with 300 nM Crizotinib or 2.5 nM NVP-TAE684 for 4 weeks, after which the cells were fixed, stained and photographed.

Figure 2. A genome-wide RNAi screen identifies MED12 as a critical determinant of drug response to tyrosine kinase inhibitors in NSCLCs
(A) Schematic outline of the crizotinib resistance barcode screen performed in. H3122 cells. NKI human shRNA library polyclonal virus was produced to infect H 3122 cells, which were then left untreated (control) or treated with 300 nM crizotinib for 14 or 28 days, respectively. After selection, shRNA inserts from both populations were recovered, labeled and hybridized to DNA oligonucleotide barcode arrays. (B) Analysis of the relative abundance of the recovered shRNA cassettes from crizotinib barcode experiment. Averaged data from three independent experiments were normalized and $2 \log$ transformed. Among the 43 top shRNA candidates ($\mathrm{M}>2$ and $\mathrm{A}>7$), two independent shMED12 vectors (in light gray at end of arrow points) were identified. (F to H) Suppression of MED12 also confers to EGFR inhibitors. F) Colony formation assay of PC9 cells expressing pLKO control or independent lentiviral shMED12 vectors (\#4 and \#5) were cultured in 50 nM gefitinib or 50 nM erlotinib. The cells were fixed, stained and photographed after 10 (untreated) or 28 days (treated). G) The level of knockdown of MED12 by each of the shRNAs was measured by examining the MED12 mRNA levels by qRT-PCR. Error bars denote SD. H) The level of knockdown of MED12 protein was measured by western blotting.

Figure 3 depicts that suppression of MED12 confers drug resistance to ALK inhibitors in EML4-ALK mutant NSCLC cells. (A) Validation of independent retroviral shRNAs (in pRS vector) targeting MED12 in H3122 cells. The functional phenotypes of non-overlapping shMED 12 vectors are indicated by the colony formation assay in 300 nM Crizotinib or 2.5 nM NVP-TAE684. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (ALK inhibitors treatment). (B and C) The knockdown ability of each of the shRNAs was measured by examining the MED 12 mRNA levels by qRT-PCR (B) and the MED12 protein levels by western blotting (C). Error bars denote standard deviation (SD). (D) Validation of independent lentiviral shRNAs (in pLKO vector) targeting

MED12. The functional phenotypes of non-overlapping shMED12 vectors are indicated by the colony formation assay in 300 nM Crizotinib or 2.5 nM NVP-TAE684. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (ALK inhibitors treatment). (E and F) The knockdown ability of each of the shRNAs was measured by examining the MED 12 mRNA levels by qRT -PCR (B) and the MED 12 protein levels by western blotting. Error bars denote standard deviation (SD).

Figure 4 shows that restoration of Med 12 reverses the resistance to ALK inhibitors driven by MED12 knockdown in EML4-ALK mutant NSCLC cells. (A) Ectopic expression of mouse Med12 re-sensitizes the MED12 knockdown cells to ALK inhibitors. H3122 cells expressing pLKO control or shMED12 vectors were retrovirally infected with viruses containing pMX or pMX-Med12, and were grown in the absence or presence of 300 nM Crizotinib or 2.5 nM NVP-TAE684. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (ALK inhibitors treatment). (B) The MED12/Med12 protein levels in H3122 cells (untreated) described in Figure 4A. (C and D) The endogenous MED12 mRNA (C) and the exogenous Med12 mRNA were measured by qRT-PCR.

Figure 5 shows that suppression of ARID1A or SMARCE1 confers drug resistance to ALK inhibitors in EML4-ALK mutant NSCLC cells. (A) Validation of independent retroviral shRNAs targeting ARID1A or SMARCE1 in H3122 cells. The functional phenotypes of non-overlapping shARID 1 A and shSMARCE1 vectors are indicated by the colony formation assay in 300 nM Crizotinib or 2.5 nM NVP-TAE684. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (ALK inhibitors treatment). (B and C) The knockdown ability of each of the shRNAs was measured by examining the ARIDIA mRNA levels by qRT-PCR (B) and the ARIDIA protein levels by western blotting (C). Error bars denote standard deviation (SD). (D and E) The knockdown ability of each of the shRNAs was measured by examining the SMARCEI mRNA levels by qRT-PCR (D) and the SMARCE1 protein levels by western blotting (E). Error bars denote standard deviation (SD).

Figure 6 shows that restoration of SMARCE1 reverses the resistance to ALK inhibitors driven by SMACRE1 knockd̉own in EML4-ALK mutant NSCLC cells. (A) Ectopic expression of SMARCE1-ND that cannot be targeted by shSMARCE1 vectors resensitizes the SMARCEI knockdown cells to ALK inhibitors. H3 122 cells expressing pRS

Abstract

control or shSMARCEI vectors were retrovirally infected with viruses containing pMX or pMX-SMARCEI-ND, and were grown in the absence or presence of 300 nM Crizotinib or 2.5 nM NVP-TAE684. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (ALK inhibitors treatment). (B) The SMARCE1 protein levels in H3122 cells (untreated) described in Figure 4A. (C and D) The endogenous SMARCE1 mRNA was measured by qRT-PCR using a 3' UTR specific primer set (C) and the total SMARCE1 mRNA was measured by qRT-PCR using an ORF specific primer set.

Figure 7 shows that restoration of Med 12 reverses the resistance to EGFR inhibitor driven by MED 12 knockdown in PC9 EGFR mutant cells. (A) Ectopic expression of mouse Med12 re-sensitizes the otherwise resistant MED12 knockdown cells to EGFR inhibitors. PC9 cells expressing pLKO control or shMED12 vectors were retrovirally infected with viruses containing pMX or $\mathrm{pMX}-$ Med12, and were grown in the absence or presence of 50 nM Gefitinib. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 3 weeks (EGFR inhibitor treatment). (B) The MED12/Med12 protein levels in PC9 cells (untreated) described in Figure 7A. (C and D) The endogenous MED12 mRNA (C) and the exogenous Med12 mRNA were measured by qRT-PCR.

Figure 8 shows that suppression of MED 12 confers drug resistance to EGFR inhibitors in H3255 EGFR mutant cells. (A) H3255 cells expressing shRNAs targeting MED12 are resistant to EGFR inhibitors. The functional phenotypes of shMED12 vectors are indicated by the colony formation assay in 25 nM Gefitnib or 25 nM Erlotinib. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (EGFR inhibitors treatment). (B) The knockdown ability of each of the shRNAs was measured by examining the MED 12 mRNA levels by qRT-PCR. Error bars denote standard deviation (SD).

Figure 9 shows that suppression of ARID1A confers drug resistance to EGFR and MET inhibitors in NSCLC cells with mutant EGFR or MET amplification. (A) PC9 cells expressing shRNAs targeting $A R I D I A$ are resistant to EGFR inhibitor. The functional phenotypes of shARIDIA vectors are indicated by the colony formation assay in 25 nM Gefitinib. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (EGFR inhibitor treatment). (B) The ARID1A mRNA levels for the cells described in Figure 9A were measured by qRT-PCR. Error bars denote standard deviation (SD). (C) H1993 cells expressing shRNAs targeting ARID1A are resistance to MET inhibitor. The
functional phenotypes of shARIDIA vectors are indicated by the colony formation assay in 200 nM Crizotinib. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (MET inhibitor treatment). (D) The ARIDIA mRNA levels for the cells described in Figure 9C were measured by qRT-PCR. Error bars denote standard deviation (SD).

Figure 10 shows that restoration of SMARCE1 reverses the resistance to EGFR inhibitor driven by SMACRE1 knockdown in PC9 EGFR mutant cells. (A) Ectopic expression of SMARCEI-ND that cannot be targeted by shSMARCEI vectors re-sensitizes the otherwise resistant SMARCE1 knockdown cells to EGFR inhibitor. PC9 cells expressing pRS control or shSMARCEI vectors were retrovirally infected with viruses containing pMX or pMX-SMARCEI-ND, and were grown in the absence or presence of 50 nM Gefitinib. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (EGFR inhibitor treatment). (B) The SMARCE1 protein levels in PC9 cells (untreated) described in Figure 10A. (C and D) The endogenous SMARCE1 mRNA was measured by qRT-PCR using a 3' UTR specific primer set (C) and the total SMARCEI mRNA was measured by qRT-PCR using an ORF specific primer set.

Figure 1.1 shows that restoration of SMARCE1 reverses the resistance to MET inhibitor driven by SMACRE1 knockdown in H1993. MET amplified cells. (A) Ectopic expression of SMARCE1-ND that cannot be targeted by shSMARCE1 vectors re-sensitizes the otherwise resistant SMARCEI knockdown cells to MET inhibitor. H1993 cells expressing pRS control or shSMARCEI vectors were retrovirally infected with viruses containing pMX or pMX-SMARCEI-ND, and were grown in the absence or presence of 200 nM Crizotinib. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (MET inhibitor treatment). (B) The SMARCE1 protein levels in H1993 cells (untreated) described in Figure 11A. (C and D) The endogenous SMARCEl mRNA was measured by qRT-PCR using a 3^{\prime} UTR specific primer set (C) and the total SMARCEI mRNA was measured by q RT-PCR using an ORF specific primer set.

Figure 12 shows that restoration of SMARCE1 reverses the resistance to MET inhibitor driven by SMACRE1 knockdown in EBCI MET amplified cells. (A) Ectopic expression of SMARCE1-ND that cannot be targeted by shSMARCEI vectors re-sensitizes the otherwise resistant SMARCE1 knockdown cells to MET inhibitor. EBCI cells expressing pRS control or shSMARCEI vectors were retrovirally infected with viruses containing pMX
or pMX-SMARCE1-ND, and were grown in the absence or presence of 200 nM Crizotinib. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (MET inhibitor treatment). (B) The SMARCE1 protein levels in H 1993 cells (untreated) described in Figure 12A. (C and D) The endogenous SMARCE1 mRNA was measured by qRT-PCR using a 3' UTR specific primer set (C) and the total SMARCE1 mRNA was measured by qRT-PCR using an ORF specific primer set.

Figure 13 depicts a RAS-GAP RNAi screen that identifies DAB2IP and NF1 as critical determinants of drug sensitivity to EGFR inhibitors in EGFR mutant NSCLC cells. PC9 cells expressing controls (pLKO or shGFP) or 14 pools of shRNA vectors targeting each RAS-GAP were grown in the absence or presence of 50 nM Gefitinib or Elortinib. Cells were then fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (EGFR inhibitors treatment).

Figure 14 shows that suppression of DAB2IP confers drug resistance to EGFR inhibitors in PC9 EGFR mutant cells. (A) Validation of independent shRNAs (in pLKO vector) targeting DABP2IP in PC9 cells. The functional phenotypes of non-overlapping $\operatorname{sh} D A B P 2 I P$ vectors are indicated by the colony formation assay in 50 nM Gefitinib or Elortinib. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (EGFR inhibitors treatment). (B) The knockdown ability of each of the shRNAs was measured by examining the $D A B 2 I P$ mRNA levels by qRT-PCR. Error bars denote standard deviation (SD). (C) Western blotting analysis of PC9 cells expressing controls (pLKO or sh $G F P$) or shRNAs targeting DAB2IP treated with vehicle control or 25 nM Gefitinib for 8 hours.

Figure 15 shows that suppression of NF1 confers drug resistance to EGFR inhibitors in PC9 EGFR mutant cells. (A) Validation of independent shRNAs (in pLKO vector) targeting NF1 in PC9 cells. The functional phenotypes of non-overlapping shNFl vectors are indicated by the colony formation assay in 50 nM Gefitinib or Elortinib. The cells were fixed, stained and photographed after 2 weeks (untreated) or 4 weeks (EGFR inhibitors treatment). (B and C) The knockdown ability of each of the shRNAs was measured by examining the NFI mRNA levels by qRT-PCR (B) and the NF1 protein levels by western blotting (C). Error bars denote standard deviation (SD).

Figure 16 shows that suppression of MED12 and SMARCE1 leads to elevated phospho-ERK. (A) MED 12^{KD} cells retain phospho-ERK levels in the presence of ALK inhibitor in EML4-ALK cells. H3122 cells expressing controls (pRS or shGFP) or shMED12 vectors were gown in the absence or presence of 20 nM NVP-TAE684 for 24 hours and the cell lysates were harvested for western blotting analysis. (B) $S M A R C E 1^{\mathrm{KD}}$ cells have elevated phospho-ERK in EML4-ALK cells. H3122 cells expressing controls (pRS or shGFP) or shSMARCE1 vectors were gown in the absence or presence of 20 nM NVPTAE684 for 24 hours and the cell lysates were harvested for western blotting analysis. (C) MED $12^{\text {KD }}$ cells have elevated phospho-ERK levels in EGFR mutant cells. PC9 cells expressing controls (pRS or shGFP) or shSMARCE1 vectors were gown in the absence or presence of 25 nM Gefitinib for 8 hours and the cell lysates were harvested for western blotting analysis

Figure 17 shows that MED12 suppression leads to ERK activation and confers multi-drug resistance in different cancer types (C and D) MED12 knockdown confers resistance to BRAF and MEK inhibitors in melanoma cells. C) BRAFV600E A375 cells expressing pLKO control or shMED12 vectors were cultured in the absence or presence of $2.5 \mu \mathrm{M}$ PLX4032 or $0.5 \mu \mathrm{M}$ AZD6244. The cells were fixed, stained and photographed after 10 (untreated) or 28 days (treated). D) MED12 suppression results in elevated level of p-ERK in melanoma cells. A375 cells expressing pLKO control or shMED12 vectors were grown in the absence or presence of $1 \mu \mathrm{M}$ PLX4032 or $0.5 \mu \mathrm{M}$ AZD6244 for 6 hours and the cell lysates were harvested for western blotting analysis. E-F) MED 12 knockdown confers resistance to MEK inhibitor in colorectal cancer cells. E) KRASV12 SK-CO-1 cells expressing pLKO control or shMED12 vectors were cultured in the absence or presence of $0.5 \mu \mathrm{M}$ AZD6244. The cells were fixed, stained and photographed after 14 (untreated) or 28 days (treated). F) MED12 suppression results in elevated level of p-ERK in colorectal cancer cells. SK-CO-1 cells expressing pLKO control or shMED 12 vectors were grown in the absence or presence of $1 \mu \mathrm{M}$ AZD6244 for 6 hours and the cell lysates were harvested for western blotting analysis. (G-H) Knockdown of MED12 confers resistance to multi-kinase inhibitor sorafenib in HCC Huh-7 cells. G) Colony formation assay of Huh-7 cells expressing pLKO control or shMED12 vectors (\#4 and \#5) were cultured in $2 \mu \mathrm{M}$ sorafenib. The cells were fixed, stained and photographed after 14 (untreated) or 21 days (treated). H) MED12 suppression results in elevated level of p-ERK in HCC cells. Huh-7 cells expressing pLKO
control or shMED12 vectors were grown in the absence or presence of $4 \mu \mathrm{M}$ sorafenib for 6 hours and the cell lysates were harvested for westem blotting analysis.

Figure 18 shows that MED12 suppression confers multi-drug resistance in additional cell lines of different cancer types (A-B) Knockdown of MED12 confers resistance to EGFR inhibitor in NSCLC H3255 (EGFRL858R) cells. A) Colony formation assay of H3255 cells expressing pLKO control or shMED12 vectors (\#4 and \#5) were cultured in 25 nM gefininib. The cells were fixed, stained and photographed after 14 (untreated) or 28 days (treated). B) The level of knockdown of MED12 by each of the shRNAs was measured by examining the MED 12 mRNA levels by qRT-PCR. Error bars denote SD. (C-D) knockdown of MED12 confers resistance to BRAF and MEK inhibitors in melanoma SK-MEL-28 (BRAFV600E) cells. C) Colony formation assay of SK-MEL-28 cells expressing pLKO control or shMED12 vectors (\#4 and \#5) were cultured in $5 \mu \mathrm{M}$ PLX4032 or $1 \mu \mathrm{M}$ AZD6244. The cells were fixed, stained and photographed after 14 (untreated) or 28 days (treated). D) The level of knockdown of MED12 by each of the shRNAs was measured by examining the MED12 mRNA levels by qRT-PCR. Error bars denote SD. (E-F) knockdown of MED12 confers resistance to BRAF and MEK inhibitors in CRC SW1417 (BRAFV600E) cells. E) Colony formation assay of SW141.7 cells expressing pLKO control or shMED12 vectors (\#4 and \#5) were cultured in $2 \mu \mathrm{M}$ PLX4032 or 150 nM AZD6244. The cells were fixed, stained and photographed after 14 (untreated) or 28 days (treated). F) The level of knockdown of MED12 by each of the shRNAs was measured by examining the MED12 mRNA levels by qRT-PCR. Error bars denote SD.

Figure 19 shows that suppression of MED12 confers drug resistance to BRAF and MEK inhibitors in A375 melanoma cells. A375 (BRAFV600E) melanoma cells expressing shRNAs targeting MED12 are resistance to BRAF and MEK inhibitors. The functional phenotypes of shMED 12 vectors are indicated by the colony formation assay in 5 uM PXL4720 or 12.5 nM PD-0325901. The cells were fixed, stained and photographed after 10 days (untreated) or 21 days (BARF and MEK inhibitors treatment).

Figure 20 shows that suppression of TGFßR2 restores the sensitivity to ALK inhibitors in MED 12^{KD} cells.

Figure 21 shows that $\operatorname{TGF} \beta$ signaling is required for the drug resistance driven by MED12 suppression A) Schematic outline of the "drop out" RNAi screen for kinases whose inhibition restores sensitivity to crizotinib in MED12KD cells. Human TRC kinome shRNA library polyclonal virus was produced to infect H3122 cells stably expressing shMED12\#3, which were then left untreated (control) or treated with 300 nM crizotinib for 10 days. After selection, shRNA inserts from both populations were recovered by PCR and identified by next generation sequencing. B) Representation of the relative abundance of the shRNA bar code sequences from the shRNA screen experiment depicted in panel A: The y-axis is enrichment (relative abundance of crizotinib treated/untreated) and x-axis is the intensity (average sequence:reads in untreated sample) of each shRNA. Among the 51 top shRNA candidates (more than 2.5 -fold depleted by crizotinib treatment and more than 200 reads in untreated as indicated by the red dash lines), two independent shTGF β R2 vectors (in lightgray near end of arrow points) were identified. C) Suppression of TGF β R2 restores the crizotinib sensitivity in MED12KD cells. Using lentiviral infection, pLKO control or two independent shTGF β R2 vectors were introduced into H 3122 control or MED12KD cells. After this, cells were cultured in the absence or presence of 300 nM crizotinib. The cells were fixed, stained and photographed after 14 (untreated) or 21 days (treated). D) The level of knockdown of TGF β R2 by each of the shRNAs was measured by examining the MED12 mRNA levels by qRT-PCR. Error bars denote SD.

Figure 22 shows that TGF β treatment confers resistance to ALK inhibitors in EML4-ALK NSCLC cells. Activation of TGF β signaling is sufficient to confer resistance to ALK inhibitors in EML4-ALK cells.

Figure 23 shows that TGF β treatment confers resistance to EGFR inhibitors in EGFR mutant NSCLC cells. Activation of TGF β signaling is sufficient to confer resistance to EGFR inhibitors.

Figure 24 shows that TGF β activation is sufficient to confer multi targeted drug resistance in different cancer types. Recombinant TGF β treatment leads to resistance to to crizotinib in H3122 cells (A), AZD6244 in SK-CO-1 cells (C) and PLX4032 and AZD6244 in A375 cells (D) in a TGF β-dosage dependent manner.

Figure 25 shows that MED 12^{KD} and TGF β treatment both lead to elevated phosphor-ERK.

Figure 26 shows that morphological changes in MED12 ${ }^{\mathrm{KD}}$ cells resemble those of TGFß.

Figure 27 shows that MED12KD cells morphologically resemble the cells treated with recombinant TGF β Photographs of Huh-7 (B) cells expressing pLKO control or shMED12 and the control cells treated with recombinant 50 pM of TGF β. Bar, $25 \mu \mathrm{~m}$.

Figure 28 is a microarray analysis showing up-regulation of TGF β target genes in MED 12^{KD} cells.

Figure 29 shows that MED12 suppresses TGF β sigṇaling by negatively regulating TGF β R2 (A-F) Downregulation of MED12 leads to induction of a panel of TGF β target genes and EMT marker genes. mRNA expression analysis by qRT-PCR of TGF β target genes ANGPTL4 (A), TAGLN (B), CYR61 (C) and CTGF (D) and EMT marker genes VIM (E) and CDH2 (F) in H3122 and PC9 cells expressing pLKO controls or shRNAs targeting MED12. Cells were cultured in normal condition without TGF β stimulation. Error bars denote SD. (G-H) MED12 suppression results in strong induction of TGF β R2 protein and SMAD2 phosphorylation. Western blot analysis of $\mathrm{H} 3122(\mathrm{G})$ and PC9 (H) cells expressing pLKO control or shMED12 vectors. HSP90 was used as a loading control. I) MED12 localizes to both nucleus and cytoplasm. Western blotting analysis of the nuclear and cytoplasmic fractions prepared from PC9 cells expressing control vector or shMED12 with or without 16 hours of 25 nM gefitinib treatment. Lamin A/C and SP1 were used as marker controls for nuclear fractions, while α-TUBULIN and HSP90 were used as controls for cytoplasmic fractions. J) MED12 is capable of physically interacting with TGF β R2. Western blotting analysis of coimmunoprecipitation experiments using Phoenix cells cotransfected with TGF β R2 and MED12 in a ratio of 5:1.

Figure 30 shows that MED12 suppresses TGF β signaling by negatively regulating TGF β receptor signaling in additional cell line models (A-F) Downregulation of MED12 leads to induction of a panel of TGF β target genes and EMT marker genes. mRNA expression analysis by qRT-PCR of TGF β target genes ANGPTL4 (A), TAGLN (B), CYR61 (C) and CTGF (D) and EMT marker genes VIM (E) and CDH2 (F) in A375, SK-CO-

1 and Huh-7 cells expressing pLKO controls or shMED12. Cells were cultured in normal condition without TGF β stimulation. Error bars denote SD. (G) mRNA levels of TGF β R2 in H3122, PC9, A375, SK-CO-1 and Huh-7 cells expressing pLKO control or shMED12 were documented by qRT-PCR. Error bars denote SD. (H-I) MED12 suppression results in strong induction of TGF β R2 protein and SMAD2 phosphorylation. Western blot analysis of A375 (H) and SK-CO-1 (I) cells expressing pLKO control or shMED12 vectors. α-TUBULIN was used as a loading control. J) MED12 localizes to both nucleus and cytoplasm. Western blotting analysis of the nuclear and cytoplasmic fractions prepared from H 3122 cells expressing control vector or shMED12 with or without 16 hours of 300 nM crizotinib treatment. Lamin A/C and SP1 were used as marker controls for nuclear fractions, while α TUBULIN and HSP90 were used as controls for cyctoplasmic fractions. K) Western blotting showing that MED12 knockdown leads to induction of mesenchymal markers Vimentin and N -cadherin in Huh-7 cells.

Figure 31 shows that activation of RAS/ERK pathway confers resistance to tyrosine kinase inhibitors in NSCLC cells.

Figure 32 is a table showing that SWI/SNF and MEDIATOR complexes regulate resistance to a variety of targeted cancer drugs.

Figure 33 shows that MED12KD signature overlaps with an EMT signature and predicts poor outcome in CRC and drug response to MEK inhibitors A) Genes that are frequently upregulated upon MED 12 knockdown from the MED12KD signature significantly overlap with a list of genes upregulated during EMT ($p=8.9 * 10-23$; see Experimental Procedures). $\mathrm{p}=$ hypergeometric p -value. B) Kaplan-Meier analysis of disease specific survival (DSS) for the cohort of 231 CRC. MED12KD gene signature was used to hierarchically cluster the 231 CRC tumors into a cluster with poor DSS (cluster 1, black (bottom) line) and one with significantly better DSS (cluster 2, gray (top) line). C) MED12KD signature predicts drug responses to MEK inhibitors in 152 cell lines of different cancer types harboring the matching RAS or RAF mutations. High expression of subsets of genes upregulated in the MED12KD signature is significantly associated with higher IC50s for all four MEK inhibitors in (AZD6244, $\mathrm{p}=0.009$; CI-1040, $\mathrm{p}=0.004$; PD-0325901, $\mathrm{p}=0.007$; RDEA119, $\mathrm{p}=0.013$). Across these gene sets, each cell line was scored for the percentage of times it had high expression of the gene as well as being resistant to the
inhibitor. The heatmap in the left panel of this figure depicts this percentage for each MEK inhibitor. The cell lines are sorted using hierarchical clustering for visualization. The middle and right panel depict the tissue type of the cell lines and their RAS/RAF mutation status.

Figure 34 shows that IC50 values for AZD6244 and expression levels for ZBED2 across the 152 RAF/RAS mutated lines.

The top panel represents a histogram of IC50 values for the MEK inhibitor, AZD6244, across the 152 cell lines. Below the histogram, the individual IC50 values are plotted using squares (sensitive cell lines) and circles (resistant cell lines). The panel on the left depicts the histogram for the expression levels of gene ZBED2. To the right of the histogram, the individual expression levels are plotted using plus signs (upregulated), crosses (normal expression) and stars (downregulated). The scatter plot depicts the IC50 values and gene expression for each cell line. In this case, there are significantly many cell lines that show resistance to AZD6244 and are upregulated for ZBED2. These cell lines are found in the top-right area of the scatter plot and are indicated by plus signs inside of circles. The MED12 knockdown signature contains a significantly large number of such genes indicating the potential predictive value of this signature.

Figure 35 shows that TGF β R inhibitor and TKIs synergize to suppress proliferation of MED $12{ }^{\text {KD }}$ NSCLC cells. A) Combination of TGFRR and ALK inhibitors synergistically inhibits growth of MED12KD NSCLC cells harboring EML4-ALK translocation. H3122 cells expressing pRS control or shMED12 vectors were cultured in the absence and the presence of $1 \mu \mathrm{M}$ LY2157299, 300 nM crizotinib, or the combination of $1 \mu \mathrm{M} \mathrm{LY} 2157299$ and 300 nM crizotinib. The cells were fixed, stained and photographed after 14 (untreated and LY2157299 alone) or 28 days (crizotinib alone and LY2157299 plus crizotinib).
B) Combination of TGFßR and EGFR inhibitors synergistically inhibits growth of MED12KD NSCLC cells harboring EGFR activating mutation. PC9 cells expressing pLKO control or shMED12 vectors were cultured in the absence and the presence of $1 \mu \mathrm{M}$ LY2157299, 100 nM gefitinib, or the combination of $1 \mu \mathrm{MLY} 2157299$ and 100 nM gefitinib. The cells were fixed, stained and photographed after 10 (untreated and LY2157299 alone) or 28 days (gefitinib alone and LY2157299 plus gefitinib).

Figure 36 is a table depicting kinases screened for kinases whose inhibition restores sensitivity to crizotinib in MEDI2KD cells. Listed are the gene symbols for the genes tested
in the "drop out" RNAi screen and the number of shRNAs for each gene present in the library.

Figure 37 is a table depicting MED12KD signature gene list. Listed are genes deregulated by MED12KD (>2 fold) in at least three out five cell lines (H3122, PC9, SK-CO- 1, A375 and Huh-7).

Figure 38 is a table depicting. EMT signature gene list. Listed are genes of an EMT signature that was created by combining published EMT expression signatures as described herein.

Figure 39 is a table depicting overlapping genes between MED12KD and EMT signatures. Listed are overlapping genes that are upregulated in both the MED12KD and EMT signatures.

Figure 40 is a table depicting MED12KD signature genes that are significantly associated with higher IC50s for MEK inhibitors in the 152 cell lines. Of the 237 genes that were upregulated by MED 12 KD as identified by RNA-Seq, Applicants could read the expression levels for 170 genes in these 152 cell lines that have activating mutations in RAS or BRAF. High expression of subsets of these 170 genes is significantly associated with higher IC50s for all four MEK. inhibitors in these cell lines.

Figure 41 is a table depicting 152 tumor cell lines used for the COSMIC Cell Line Panel Analysis. Listed are 152 COSMIC cell lines that have activating mutations in RAS or BRAF and their drug response data (IC50 values) to four MEK inhibitors.

DETAILED DESCRIPTION

The instant invention provides methods and related compositions pertaining to the identification of a tumor that will be resistant to treatment by a certain compound or class of compounds. In certain embodiments, the invention provides one or more markers for resistance to anticancer treatment in a patient. In some embodiments, the marker is a MEDIATOR complex and/or SWI/SNF complex gene.

Examples of MEDIATOR complex genes that may serve as a marker for resistance to anticancer treatment in a patient as described herein include MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4,

MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25, MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED13L, and MED12L (see e.g., MED12L Gene ID: 116931 available from the National Center for Biotechnology Information (NCBI) website). See, e.g., Malik, S, Roeder, RG, "The metazoan Mediator co- activator complex as an integrative hub for transcriptional regulation" Nat Rev Genet. (2010) 11(11):761-72.

Examples of SWI/SNF complex genes that may serve as a marker for resistance to anticancer treatment in a patient as described herein include ARID1A, ARID1B, ARID2, SMARCA2, SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCB1. See, e.g., Reisman, D et al. "The SWI/SNF complex and cancer" Oncogene. (2009) 28(14):1653-68.

In some embodiments, the invention provides methods whereby measurement of reduced expression of a MEDIATOR complex and/or SWI/SNF complex gene in one or more cancer cells of a patient identifies these cancer cells as cells that may be resistant to treatment by one or more receptor tyrosine kinase (RTK) inhibitors. RTKs are involved in a number of diverse physiological processes, including proliferation and differentiation, cell survival and metabolism, cell migration, and cell-cycle control (see, e.g., Lemmon, MA, Schlessinger, J"Cell Signaling by Receptor Tyrosine Kinases" Cell (2010) 141:1117-1134).

- In addition, an overview of non-small cell lung cancer signaling pathways may be found at www(dot)n-of-one(dot)com/cancer-news-info/egfr/ and the figure presented therein adapted from Herbst, et al. NEJM 2008.

Described herein is the use of a large-scale loss-of-function genetic screen to identify genes whose suppression can confer resistance to crizotinib in a NSCLC cell line harboring an EML4-ALK translocation. Applicants identify a key component of the transcriptional MEDIATOR complex, MED12, as a determinant of crizotinib response in NSCLC Remarkably, Applicants find that suppression of MED12 also confers resistance to a range of targeted cancer drugs in other cancer types as well, including colon cancer, melanoma and liver cancer. Applicants identify an unexpected activity of MED12 in regulating TGFß receptor signaling, as the major mechanism of drug resistance induction.

Applicants identify herein MED12 as a candidate biomarker of response to a range of targeted cancer drugs in a variety of cancer types through a previously unappreciated role of this protein in TGF β receptor signaling. MED12 is a component of the MEDIATOR transcriptional adapter complex that serves as a molecular bridge between the basal transcription machinery and its upstream activators (Conaway et al., 2005). More
specifically, MED12 is a subunit of the "kinase" module of the MEDIATOR complex, which also contains MED13, CYCLIN C and CDK8, whose gene sequence is amplified in some 50% of colon cancers (Firestein et al., 2008). The involvement of MEDIATOR components in responses to TKIs was unexpected, as most of the known genes that influence responses to TKIs involve components of signaling pathways that act downstream or in parallel of these receptors. Applicants reconcile this apparent discrepancy by demonstrating that part of MED12 also resides in the cytosol, where it interacts with the TGF β type II receptor to inhibit its activity. Consequently, downregulation of MED12 by RNAi strongly activates TGF β signaling, as evidenced by phosphorylation of SMAD2 and induction of many canonical TGF β target genes. Activation of TGF β signaling has been linked previously to activation of ERK signaling (reviewed by (Zhang, 2009)). Consistent with this, Applicants observed activation of ERK signaling by MED12 suppression, which persists in the presence of drugs like crizotinib, gefitinib, vemurafenib, seluteminib and sorafenib (Figures 17, 18 and data not shown), thus providing a rationale for why suppression of MED12 confers resistance to these drugs.

Applicants' data indicate that MED12 suppression also induces an EMT-like phenotype, as judged by the upregulation of the mesenchymal markers Vimentin and N cadherin (Figures 29 and 30) and the general overlap between genes that are regulated by MED12 ${ }^{\text {KD }}$ and known EMT signature genes (Figure 33A). Applicants' data are consistent with the findings of others, who also witnessed resistance to EGFR inhibitors in cell lines undergoing EMT (Coldren et al., 2006; Frederick et al., 2007; Fuchs et al., 2008; Rho et al., 2009; Thomson et al., 2005; Yao et al., 2010). In the clinic, EMT transformation was also seen in 3 out of 7 NSCLC patients who developed resistance to EGFR TKIs and did not have one of the well-established secondary EGFR mutations causing drug resistance (Sequist et al., 2011). In some embodiments, such patients have acquired EMT as a result of MED12 loss. For example, MED12 was recently shown to be mutated in some 70% of uterine leiomyomas (Makinen et al., 2011). Applicants note that these mutations are highly clustered in the second exon of MED12, raising the possibility that these mutations are not null alleles. Consistent with this, Applicants observe that MED12 suppression often confers a slowgrowth phenotype to cancer cells and that near-complete suppression of MED 12 is not tolerated by most cells (Figures 2F, 17C, 17G and data not shown). Thus, in some embodiments, suppression of MED12 may not confer a selective advantage in the absence of drug, but may only become a benefit to the cancer cells when undergoing drug selection pressure. Consistent with this, Applicants observed that PC9 NSCLC, A375 melanoma and

Huh-7 HCC cells are growth-inhibited by MED 12^{KD}, but this turns into a proliferative advantage when exposed to EGFR, BRAF or MEK inhibitors or the multikinase inhibitor sorafenib (Figures 2F, 17C and 17G). Therefore, in some embodiments, MED12 suppression may not be a marker of intrinsic drug resistance as its constitutive suppression could well be disadvantageous to the cancer cell, but it may be acquired during drug selection to resist the therapy. That cancer cells can transiently assume a reversible drug-tolerant state was recently shown by others (Sharma et al., 2010).

In certain embodiments, cancer cells that undergo an EMT-like process do so through suppression of MED12 expression. Investigation of this would require biopsies of tumors that have progressed following exposure to targeted therapies, which are very rare in today's clinical practice. Applicants' data show that the changes of gene expression triggered by MED12 suppression (through analysis of a set of MED $12{ }^{\text {KD }}$ signature genes) are prognostic for disease outcome in colon cancer (Figure 33B) and predictive for responses to MEK inhibitors in a large and heterogeneous cell line panel (Figure 33C). In both of these studies, the mRNA levels of MED12 alone did not predict prognosis or drug responses (data not shown). This may be because MED12 protein levels are primarily regulated at a posttranscriptional level in tumors or because of alterations in MED12 activity as a result of mutation, as seen in leiomyomas (Makinen et al., 2011). Nevertheless, it is clear from Applicants' studies that MED12 suppression triggers activation of TGF β signaling in tumors of lung, skin, liver and colon and results in an EMT-like phenotype associated with drug resistance. Applicants' data also demonstrate that inhibition of TGF β signaling with small molecule drugs can reverse resistance to targeted cancer drugs (Figure 35). Accordingly, in some embodiments, EMT arising during drug resistance development, as seen in NSCLC (Sequist et al., 2011), may be countered by combination with a TGF β antagonist, a notion that can readily be tested in the clinic.

In certain embodiments, identification of a reduced expression of a MEDIATOR complex and/or SWI/SNF complex gene in one or more cancer cells of a patient is indicative that the one or more cancer cells will be resistant to treatment by a compound or class of compounds, such as one or more receptor tyrosine kinase inhibitor compounds. Examples of RTK inhibitor compounds that cells expressing a reduced level of a MEDIATOR complex and/or SWI/SNF complex gene may be resistant to include gefitinib, erlotinib, EKB-569, lapatinib, CI-1033, cetuximab, panitumumab, PKI-166, AEE788, sunitinib, sorafenib, dasatinib, nilotinib, pazopanib, vandetaniv, cediranib, afatinib, motesanib, CUDC-101, and imatinib mesylate. Other RTK inhibitors that cells expressing a reduced level of a

MEDIATOR complex and/or SWI/SNF complex gene may be resistant to include the Alk-1 inhibitors crizotinib, ASP-3026, LDK378, AF802, and CEP37440.

In certain embodiments, identification of a reduced expression of a MEDIATOR complex and/or SWI/SNF complex gene in one or more cancer cells of a patient is indicative that the one or more cancer cells will be resistant to treatment by one or more ERK activation inhibitor compounds. Examples of ERK activation inhibitor compounds that cells expressing a reduced level of a MEDIATOR complex and/or SWI/SNF complex gene may be resistant to include compounds that inhibit the activity of a signaling protein upstream of ERK. Examples of signaling proteins upstream of ERK include MEK1, MEK2, A-RAF, B-RAF, RAF1, MOS, RTKs, and G-protein-coupled receptors. In certain embodiments, the compound that inhibits the activity of a signaling protein upstream of ERK inhibits a direct activator of ERK. Examples of direct ERK activators include MEK1 and MEK2. Examples of MEK inhibitors include CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G-573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001. In other embodiments, the compound that inhibits the activity of a signaling protein upstream of ERK inhibits an indirect activator of ERK. Examples of indirect ERK activators include A-RAF, B-RAF, RAF1RAF1, MOS, RTKs, and G-protein-coupled receptors. See, e.g., Roux, PP, Blenis, J "ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions" Microbiol Mol Biol Rev. (2004) 68(2):320-44. Examples of BRAF inhibitors include CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL281, DCC-2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.

In some embodiments, an inhibitor inhibits the wild-type version of a protein, such as wild-type B-RAF. In other embodiments, an inhibitor inhibits a mutant form of a protein, such as mutant B-RAF (e.g., V600E). In yet other embodiments, an inhibitor inhibits both the wild-type and mutant form of a protein (e.g., both wild-type B-RAF and B-RAF ${ }^{V 600 E}$).

In certain embodiments, identification of a reduced expression of a MEDIATOR complex and/or SWI/SNF complex gene in one or more cancer cells of a patient is indicative that the one or more cancer cells will be resistant to treatment by one or more compounds that are activators of one or more proteins that inactivate ERK. Examples of protein inactivators of ERK include phosphatases, such as the indirect inactivator of ERK, protein phosphatase 5 (PP5), which inactivates the ERK upstream activator, RAF1, by dephosphorylation.

In certain embodiments, the prognostic methods and compositions of the instant invention predict resistance to anticancer treatment to a combination of chemotherapeutic agents, wherein the at least two chemotherapeutic agents are administered at the same time
‘and/or sequentially. In further embodiments, the invention provides methods wherein a measurement of reduced expression of a MEDIATOR complex and/or SWISNF complex and/or RAS-GAP gene in one or more cancer cells of a tumor of a patient identifies the tumor as one that may be resistant to treatment by a combination of at least two ERK activation inhibitors. In other embodiments, the tumor is one that may be resistant to treatment by a combination of at least two compounds that activate one or more proteins upstream of ERK that inactivates ERK signaling.

In some embodiments, activation of the TGF- β (transforming grow factor beta) pathway rescues ERK activation in, for example, a cancer cell. Accordingly, in some embodiments, the prognostic methods and compositions of the instant invention provide methods and compositions wherein a measurement of reduced expression of a MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene in one or more cancer cells of a tumor of a patient identifies the tumor as one that may benefit from treatment with an inhibitor of the TGF β pathway (e.g., a TGF β inhibitor and/or inhibitor of one or more downstream signaling proteins in the TGF- β pathway) in combination with one or more ERK activation inhibitors. In other embodiments, the prognostic methods and compositions of the instant invention provide methods and compositions wherein a measurement of reduced expression of a MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene in one or more cancer cells of a tumor of a patient identifies the tumor as one that may benefit from treatment with an inhibitor of the TGF- β pathway in combination with one or more compounds that activate one or more proteins upstream of ERK that inactivates ERK signaling. In certain embodiments, the inhibitor of ERK activation is an RTK inhibitor. In other embodiments, the inhibitor of ERK activation is a B-RAF inhibitor. In yet other embodiments, the inhibitor of ERK activation is a MEK inhibitor. In still other embodiments, the inhibitor of ERK activation is a RAS inhibitor.

In other embodiments, the prognostic methods and compositions of the instant invention provide methods and compositions wherein a measurement of increased expression of a TGF β pathway gene in one or more cancer cells of a tumor of a patient identifies the tumor as one that may benefit from treatment with an inhibitor of the TGFB pathway (e.g., a TGF β inhibitor and/or inhibitor of one or more downstream signaling proteins in the TGF β pathway) in combination with one or more ERK activation inhibitors. In certain embodiments, the patient is one in need of treatment with an ERK activation inhibitor. In other embodiments, the patient is one in need of treatment with an inhibitor of a TGF β pathway gene or protein. In other embodiments, the prognostic methods and compositions of
the instant invention provide methods and compositions wherein a measurement of increased expression of a TGF β pathway gene in one or more cancer cells of a tumor of a patient identifies the tumor as one that may benefit from treatment with an inhibitor of the TGF β pathway in combination with one or more compounds that activate one or more proteins upstream of ERK that inactivates ERK signaling. In certain embodiments, the inhibitor of ERK activation is an RTK inhibitor. In other embodiments, the inhibitor of ERK activation is a B-RAF inhibitor. In yet other embodiments, the inhibitor of ERK activation is a MEK inhibitor. In still other embodiments, the inhibitor of ERK activation is a RAS inhibitor.

In other embodiments, the prognostic methods and compositions of the instant invention provide methods and compositions wherein a measurement of increased expression of a TGF β pathway gene in one or more cancer cells of a patient indicates the patient may be resistant to anticancer treatment. In other embodiments, the prognostic methods and compositions of the instant invention provide methods and compositions wherein a measurement of an activating mutation in a TGF β pathway gene in one or more cancer cells of a patient identifies the one or more cancer cells as cells that may be resistant to anticancer treatment.

In some embodiments, the invention provides methods and compositions for the treatment of primary and/or secondary resistance to one or more anticancer agents in a patient in need thereof, comprising administration of at least one inhibitor of the TGF β pathway in combination with the one or more anticancer agents to which primary and/or secondary resistance in the patient has developed. For example, in some embodiments, the invention relates to a method of treating secondary resistance to an inhibitor of ERK activation in a patient in need thereof, comprising administering to the patient at least one inhibitor of the TGF β pathway (e.g., a TGF β inhibitor) in combination with the inhibitor of ERK activation.

In certain embodiments, the invention provides methods and compositions related to a method of treating cancer in a patient in need thereof, comprising administering to the patient an inhibitor of ERK activation in combination with an inhibitor of TGF β pathway activation. In some embodiments, the patient is treated without determining whether the patient would be likely to be resistant to one or more of the ERK activation and/or TGF β pathway activation inhibitors.

In some embodiments, the markers of the instant invention enable the detection of resistance to anticancer treatment in a patient in combination with one or more known markers of hypersensitivity to a chemotherapeutic agent or class of agents. In certain embodiments, expression levels of one or more MEDIATOR complex and/or SWI/SNF
complex genes (e.g., MED12, SMARCE1, and/or ARIDA1) are measured in one or more cancer cells of a patient in combination with an array profile, such as a CGH (comparative genomic hybridization) array analysis.

In certain embodiments, the invention provides methods and compositions for identifying a cancer patient who would likely not benefit from a certain chemotherapeutic treatment. For example, an aspect of the invention is a method of screening cancer patients to determine those cancer patients more likely to benefit from a particular chemotherapy, such as RTK inhibitor chemotherapy, comprising obtaining a sample of genetic material from a tumor of the patient; and assaying for the presence of a genotype in the patient that is associated with resistance to the particular chemotherapy, the genotype characterized by an inactivating mutation in one or more MEDIATOR complex and/or SWI/SNF complex genes. In some embodiments, the genotype is further characterized by an inactivating mutation in one or more known markers for chemotherapeutic resistance. In some embodiments, the genetic material is nucleic acid that is characterized by a reduced expression (e.g., reduced mRNA levels) of one or more MEDIATOR complex and/or SWI/SNF complex genes. In further embodiments, reduced mRNA levels are assessed by the evaluating the corresponding cDNA.

In a particular embodiment, the instant invention provides methods and compositions for the identification of a lung cancer patient who would likely not benefit from RTK inhibitor chemotherapy (e.g., the patient will be recurrence-free for a period of time less than a patient undergoing the same chemotherapy). In some embodiments, the methods of the instant invention predict whether a chemotherapeutic agent or other compound is likely to be cytotoxic to one or more cancer cells.

Cancers for which the prognostic methods and compositions of the instant invention may provide predictive results for resistance to anticancer treatment include cancers such as breast cancer (e.g., BRCA-1 deficient, stage-III HER2-negative), ovarian cancer (e.g., BRCA-1 deficient, epithelial ovarian cancer), lung cancer (e.g., non-small-cell lung cancer or small cell lung cancer, metastatic non-small cell lung cancer), liver cancer (e.g., hepatocellular carcinoma), head and neck cancer (e.g., metastatic squamous cell carcinoma of the head and neck (SCCHN), squamous cell carcinoma, laryngeal cancer, hypopharyngeal cancer, oropharyngeal cancer, and oral cavity cancer), bladder cancer (e.g., transitional cell carcinoma of the bladder), and colorectal cancer (e.g., advanced (non-resectable locally advanced or metastatic) colorectal cancer). Other cancers for which the methods and compositions of the invention may provide predictive results for resistance to anticancer
treatment include cervical cancer (e.g., recurrent and stage IVB), mesothelioma, solid tumors (e.g., advanced solid tumors), renal cell carcinoma (e.g., advanced renal cell carcinoma), stomach cancer, sarcoma, prostate cancer (e.g., hormone refractory prostate cancer), melanoma, thyroid cancer (e.g., papillary thyroid cancer), brain cancer, adenocarcinoma, subependymal giant cell astrocytoma, endometrial cancer, glioma, glioblastoma, and other tumors that have metastasized to the brain, esophageal cancer, neuroblastoma, hematological cancers, and lymphoma.

In some embodiments, the cancer is one in which one or more RTK inhibitor drugs are employed either alone or in combination with other chemotherapeutic agents as a part of an anticancer treatment regimen. In other embodiments, the cancer is one in which one or more RTK inhibitor drugs are employed either alone or in combination with additional treatment regimens, such as surgical procedures, radiation, and/or other anticancer treatments. In certain embodiments, the cancer is one in which one or more RTK inhibitor agents are used as a first-line form of treatment. In yet other embodiments, the one or more RTK inhibitor drugs are employed in combination with an inhibitor of the TGF-beta pathway.

In certain embodiments, the instant invention relates to methods and compositions encompassing the detection of expression levels of a MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene in one or more cells of a subject. Typically, the subject is a human patient who has or is suspected of having at least one type of cancer, and the expression levels of the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene are detected in a sample of one or more cells, typically one or more tumor cells, from the human patient, which are then compared with the expression levels of the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene in a control sample. A control sample will generally be one in which the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene expression levels are known and correlated with resistance to anticancer treatment to a certain drug or group of drugs. In some embodiments, the control sample is one in which the MEDIATOR complex and/or SWI/SNF complex and/or RASGAP gene expression levels are known and correlated with a lack of resistance to anticancer treatment to a certain drug or group of drugs. In certain embodiments, the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene expression levels in one or more tumor cells of a patient are compared with the expression levels in one or more normal cells of the patient, wherein a reduced expression in the one or more tumor cells in comparison to the normal cells of the patient are predictive of resistance to anticancer treatment to a certain drug or group of drugs. In some embodiments, more than one control sample is used for
comparative purposes with the test sample from the subject. In certain embodiments, the expression levels of a MEDIATOR complex gene are detected. In other embodiments, the expression levels of a SWI/SNF complex gene are detected. In yet other embodiments, the expression levels of a RAS-GAP gene are detected.

In certain embodiments, the invention relates to a method for predicting a lung cancer patient's response to RTK inhibitor drug chemotherapy, such as gefitinib or erlotinib treatment. In some embodiments, the lung cancer patient has not yet received RTK inhibitor drug chemotherapy. In further embodiments, a sample of the lung cancer cells from the patient is analyzed for the levels of expression of a MEDIATOR complex and/or SWI/SNF complex gene, such as MED12, SMARCE1, and/or ARIDA1, and or a RAS-GAP gene, such as DAB2IP, NF1, and/or RASAL3. If expression levels of the MEDIATOR complex and/or SWI/SNF complex gene (e.g., MED12, SMARCE1, and/or ARIDA1) and/or RAS-GAP gene (e.g., DAB2IP, NF1, and/or RASAL3) are low compared to expression levels in normal lung tissue, then the lung cancer cells in the patient are likely resistant to RTK inhibitor anticancer treatment.

In certain embodiments, the expression level of the MEDIATOR complex and/orSWI/SNF complex gene, such as MED12, SMARCE1, and/or ARIDA1, and/or RAS-GAP gene, such as DAB2IP, NF1, and/or RASAL3 in cancer tissue is lower than the expression level of the gene in normal tissue. In predicting resistance to anticancer treatment of a tumor, cut-off levels of expression may be determined empirically for the subject cancer for which resistance to anticancer treatment is being assessed.

In other embodiments, the instant invention relates to methods and compositions encompassing the detection of one or more inactivating mutations in a MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP gene in one or more cells of a subject.
Typically, the subject is a human patient who has or is suspected of having at least one type of cancer, and the nucleic acid of the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP are isolated from a sample of one or more cells, typically one or more tumor cells, from the human patient, which are then compared with the nucleic acid of the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP in a control sample. A control sample will generally be one in which the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP nucleic acid sequences are known and correlated with resistance to anticancer treatment to a certain drug or group of drugs. In some embodiments, the control sample is one in which the MEDIATOR complex and/or SWI/SNF complex and/or RAS-GAP nucleic acid sequences are known and correlated with a lack of resistance to anticancer treatment to a
certain drug or group of drugs. In some embodiments, more than one control sample is used for comparative purposes with the test sample from the subject. In certain embodiments, the inactivating mutation is a point mutation. In some embodiments, the inactivating mutation is a hypomorphic mutation. In other embodiments, the inactivating mutation is a gene deletion. In yet other embodiments, the inactivating mutation is an amplification.

In some embodiments, the instant invention relates to methods and compositions encompassing evaluating the protein activity and/or sequence and/or posttranslational modification state of one or more RAS-GAP proteins and/or proteins in a MEDIATOR complex and/or SWI/SNF complex in one or more cells of a subject. Typically, the subject is a human patient who has or is suspected of having at least one type of cancer, and the RASGAP protein and/or protein of the MEDIATOR complex and/or SWI/SNF complex is isolated from a sample of one or more cells, typically one or more tumor cells, from the human patient, which are then compared with the RAS-GAP protein and/or protein of the MEDIATOR complex and/or SWI/SNF complex in a control sample. A control sample will generally be one in which the RAS-GAP protein and/or MEDIATOR complex and/or SWI/SNF complex protein sequences and/or activity and/or postranslational modification state are known and correlated with resistance to anticancer treatment to a certain drug or group of drugs. In some embodiments, the control sample is one in which the RAS-GAP protein and/or MEDIATOR complex and/or SWI/SNF complex protein sequences and/or activity and/or posttranslational modification state are known and correlated with a lack of resistance to anticancer treatment to a certain drug or group of drugs

Evaluation of protein activity includes assaying the enzymatic activity of the protein. In certain embodiments, the postranslational modification status of the protein is assessed. In further embodiments, one or more posttranslational modifications (or lack thereof) is associated with protein dysfunction, such as reduced enzymatic activity by the protein. In some embodiments, the RAS-GAP and/or MEDIATOR complex and/or SWI/SNF complex protein in one or more cells of a subject is dysfunctional, and this dysfunction is indicative of resistance to one or more anticancer treatments. Examples of protein dysfunction include reduced or no enzymatic and/or binding activity of the protein; reduced or no protein expression; and/or improper protein modification, such as phosphorylation that results in inactivity of the protein.

The terms "marker" and "biomarker" are used interchangeably herein and refer to a gene, protein, or fragment thereof, the expression or level or activity of which changes between certain conditions. Where the expression or level or activity of the gene, protein, or
fragment thereof correlates with a certain condition, the gene, protein, or fragment thereof is a marker for that condition.
"Resistant," "resistance," or "resistance to anticancer treatment" in the context of treatment of a cancer cell with a chemotherapeutic agent or other compound means that the chemotherapeutic agent or other compound is not likely to have an optimal effect on the cancer cell. In some embodiments, the compound is not likely to have any effect on the cancer cells. In certain embodiments, the effect of a compound on one or more cancer cells is reduced. In certain further embodiments, a tumor is likely to be less sensitive to a compound but not completely resistant to it. In certain embodiments, the compound is not likely to be cytotoxic to the cancer cell. In some embodiments, the compound is not cytotoxic to the cancer cell.

By "primary resistance" with regard to one or more cancer cells in a patient is meant cells that are naïve for anticancer treatment. For example, a tumor that demonstrates primary resistance to an anticancer treatment includes one that has never been treated with the anticancer drug or drugs but demonstrates or is predicted to demonstrate resistance to the anticancer drug or drugs once treatment has begun.

By "secondary resistance" with regard to one or more cancer cells in a patient is meant cells that have acquired resistance to an anticancer treatment. For example, a tumor that demonstrates secondary resistance to an anticancer treatment includes one that has been treated for a prolonged period of time with one or more anticancer drugs but resistance arises to the one or more anticancer drugs after treatment.

By "inactivating mutation" is meant a mutation in, for example, a nucleic acid that encodes a protein that is inactive. This includes, for example, mutations that result in the loss of protein expression and/or activity and includes genetic mutations such as point mutations, translocations, amplifications, deletions (including whole gene deletions), and hypomorphic mutations (e.g., where an altered gene product possesses a reduced level of activity or where the wild-type gene product is expressed at a reduced level). "Inactivating mutation" also includes biomarker dysfunctions due to post-translational protein regulation, for example, where a protein biomarker is inactive or exhibits impaired activity due to, for example, one or more posttranslational modifications, such as phosphorylation that results in protein inactivity.

The term "biomarker dysfunction" with regard to a protein or protein fragment refers to dysfunction of the protein or fragment thereof as a result of improper regulation at the postranslational level, such as, for example, phosphorylation that results in protein inactivity.

By "MEDIATOR complex gene" is meant any gene encoding for a protein of the MEDIATOR complex.

By "reference MEDIATOR complex gene" is meant a MEDIATOR complex gene in a control sample, e.g., a normal sample such as a non-cancerous tissue sample. Typically, the expression levels of a reference MEDIATOR complex gene serve as a reference for comparative purposes with the levels of expression of the same MEDIATOR complex gene in a different sample, typically a test sample, such as a lung tumor sample.

By "SWI/SNF complex gene" is meant any gene encoding for a protein of the SWI/SNF complex.

By "reference SWI/SNF complex gene" is meant a SWI/SNF complex gene in a control sample, e.g., a normal sample such as a non-cancerous tissue sample. Typically, the expression levels of a reference SWI/SNF complex gene serve as a reference for comparative purposes with the levels of expression of the same SWI/SNF complex gene in a different sample, typically a test sample, such as a lung tumor sample.

By "RAS-GAP gene" is meant any gene encoding for a RAS-GAP protein.
By "reference RAS-GAP gene" is meant a RAS-GAP gene in a control sample, e.g., a normal sample such as a non-cancerous tissue sample. Typically, the expression levels of a reference RAS-GAP gene serve as a reference for comparative purposes with the levels of expression of the same RAS-GAP gene in a different sample, typically a test sample, such as a lung tumor sample.

By "TGF β pathway gene" is meant any gene encoding for a protein in the TGF β signaling pathway.

By "TGF β pathway target gene" is meant any gene whose expression is regulated by TGF β signaling.

By "reference TGF β pathway gene" is meant a TGF β signaling pathway gene in a control sample, e.g., a normal sample such as a non-cancerous tissue sample. Typically, the expression levels of a reference TGF β pathway gene serve as a reference for comparative purposes with the levels of expression of the same TGF β pathway gene in a different sample, typically a test sample, such as a lung tumor sample.
$B y$ "MED12 ${ }^{\mathrm{KD}}$ signature" is meant the nucleic acid expression profile depicted in Figure 37. Figure 37 depicts the genes deregulated by MED12 ${ }^{\mathrm{KD}}$ (>2 fold) in at least three out of five cell lines used. The term "MED $12{ }^{\mathrm{KD}}$ signature" includes the 237 upregulated genes and 22 downregulated genes depicted in Figure 37, as well as any protein products of these genes.

By "positive reference MEDI2KD signature nucleic acid and/or proteins" is meant the nucleic acid expression profile of one or more genes depicted in Figure 37 in one or more independent control sample cells known to be resistant to an anticancer treatment, e.g., one or more cells of a cancer cell line or a tumor sample. Typically, the expression levels of a positive reference MED12KD signature gene serve as a reference for comparative purposes with the levels of expression of the same MED12KD signature gene in a different sample, typically a test sample, such as a lung tumor sample.

By "negative reference MED12KD signature nucleic acid and/or proteins" is meant the nucleic acid expression profile of one or more genes depicted in Figure 37 in one or more independent control sample cells know to be sensitive to an anticancer treatment, e.g., a normal sample such as a non-cancerous tissue sample. Typically, the expression levels of a negative reference MED12KD signature gene serve as a reference for comparative purposes with the levels of expression of the same MED12KD signature gene in a different sample, typically a test sample, such as a lung tumor sample. In some embodiments, the control sample cell is derived from a tumor sample from a patient prior to chemotherapeutic treatment. The control sample in these embodiments can serve as a reference for comparative purposes with the levels of expression of the same MED12KD signature gene in a different sample cell that is derived from a tumor sample from the patient after chemotherapeutic treatment. In other embodiments, the control sample is the average expression of the Figure 37 genes that is determined in a collection of tumor or cell line samples. The term "negative reference MED12KD signature" likewise includes the expression levels of a random set of genes in the test sample. In these embodiments, the random set of genes from the test sample, which may include one or more of the genes depicted in Figure 37, are used for comparative purposes with the expression levels of the genes depicted in Figure 37 in the test sample.

The term "EMT-like phenotype" refers to a partial epithelial-mesenchymal transition (EMT), leading to the induction of mesenchymal markers such as vimentin (VIM) and Ncadherin (CDH2), but not the loss of at least one epithelial marker, such as E-cadherin. As described herein, MED12 ${ }^{\mathrm{KD}}$ causes expression of the mesenchymal markers VIM and CDH2, indicating that an EMT-like process is initiated in MED12 ${ }^{\mathrm{KD}}$ cells.

By "interact directly" is meant that a protein or other molecular compound binds and/or enzymatically interacts with a target protein. For example, MEK1 interacts directly with ERK.

By "interact indirectly" is meant that a protein or other molecular compound binds and/or enzymatically interacts with a cellular protein or other molecular compound that may
itself interact with a second cellular protein and so forth until a final cellular protein interacts directly with a target protein. This includes any upstream activators of a target protein, such as ERK, in a signaling cascade, such as a receptor tyrosine kinase signaling cascade. Examples of proteins that interact indirectly with ERK include A-RAF, B-RAF, RAF1, MOS,

RTKs, and G-protein-coupled receptors.
By "similar" in the context of the expression of one or more nucleic acid and/or proteins is meant that the expression levels of one or more nucleic acid and/or proteins in one sample is the same as or about the same as the expression levels of the one or more nucleic acid and/or proteins in a second sample. In certain embodiments, the expression levels of a gene are the same (e.g., no measurable difference) between two different samples. In other embodiments, the expressidn levels of a gene are about the same (e.g., within experimental margins of error) between two different samples.

In various aspects, determination of a level of expression of nucleic acid and/or protein in a test sample that is the same, greater than, or less than that produced by the corresponding nucleic acid and/or protein in a positive reference MED12KD signature is indicative of resitence to anticancer treatment in the tumor from which the test sample was derived. Accordingly, in certain embodiments detection of signal intensity from a test sample that is the same, within experimentally acceptable margins of error, as the signal intensity produced by the positive reference MED12KD signature sample is sufficient to classify the tumor from which the test sample was produced as anticancer treatment resistant. In certain embodiments, detection of signal intensity from a test sample that is greater, within experimentally acceptable margins of error, than the signal intensity produced by the positive reference MED12KD signature sample is sufficient to classify the tumor from which the test sample was produced as anticancer treatment resistant. In certain embodiments, detection of signal intensity from a test sample that is less, within experimentally acceptable margins of error, than the signal intensity produced by the positive reference MED12KD signature sample is sufficient to classify the tumor from which the test sample was produced as anticancer treatment resistant.

In certain embodiments, the deviation of signal intensity of the test sample from the positive reference MED12KD signature sample is measured as a percent difference. In certain embodiments, a test sample is deemed to have produced a signal that is greater than the positive reference MED 12 KD signature sample if the signal intensity of the test sample measures at a level selected from: the signal intensity of the positive reference MED12KD signature sample greater than 1%; greater than 2%; greater than 5%; greater than 10%;
greater than 15%; greater than 20%; the greater than 25%; greater than 30%; greater than 35%; greater than 40%; greater than 45%; greater than 50%; greater than 55%; greater than 60%; greater than 65%; greater than 70%; greater than 75%; greater than 80%; greater than 85%; greater than 90%; greater than 95%; or greater than 100%.

In certain embodiments, a test sample is deemed to have produced a signal that is less than the positive reference MED12KD signature sample if the signal intensity of the test sample measures at a level selected from: the signal intensity of the reference sample less 1 $\%$; less 2%; less 5\%; less 10%; less 15%; less 20%; less 25%; less 30%; less 35%; less 40%; less 45%; less 50%; less 55%; less 60%; less 65%; less 70%; less 75%; less 80%; less 85%; less 90%; less 95%; or less 100% (or no signal produced by the test sample).

In certain embodiments, the deviation of signal intensity of the test sample from the positive reference MED12KD signature sample is measured as a -fold difference, or a difference based upon unit signal production. In certain embodiments, a test sample is deemed to have produced a signal that is greater than the positive reference MED12KD signature sample if the signal intensity of the test sample is selected from: two-fold greater than; three-fold greater than; four-fold greater than; five-fold greater than; six-fold greater than; seven-fold greater than; eight-fold greater than; nine-fold greater than; ten-fold greater; and more than ten-fold greater than the signal intensity of the positive reference MED12KD signature sample.

In certain embodiments, a test sample is deemed to have produced a signal that is less than the positive reference MED12KD signature sample if the signal intensity of the test sample is selected from: two-fold less than; three-fold less than; four-fold less than; five-fold less than; six-fold less than; seven-fold less than; eight-fold less than; nine-fold less than; tenfold less than; and greater than ten-fold less than the signal intensity of the positive reference MED12KD signature sample.

In certain embodiments where the expression of a nucleic acid and/or protein in a test sample is compared with the expression level of the same nucleic acid and/or protein in a positive reference MED12KD signature nucleic acid and/or protein sample, expression of the test sample nucleic acid and/or protein that is the same as (e.g:, no measureable difference) or greater than (e.g., more than 10 -fold greater than) the expression level of the nucleic acid and/or protein corresponding to an upregulated gene in the positive reference MED12KD signature, then resistance to anticancer treatment in the test sample is indicated.

In certain embodiments where the expression of a nucleic acid and/or protein in a test sample is compared with the expression level of the same nucleic acid and/or protein in a
positive reference MED12KD signature nucleic acid and/or protein, expression of the test sample nucleic acid and/or protein that is the same as (e.g., no measureable difference) or less than (e.g., more than 10 -fold less than) the expression level of the nucleic acid and/or protein corresponding to a downregulated gene in the positive reference MEDI2KD signature, then resistance to anticancer treatment in the test sample is indicated.

In various aspects, determination of a level of expression of nucleic acid and/or protein in a test sample that is greater than or less than that produced by the corresponding nucleic acid and/or protein in a negative reference MED12KD signature is indicative of resitence to anticancer treatment in the tumor from which the test sample was derived. Accordingly, in certain embodiments, detection of signal intensity from a test sample that is greater, within experimentally acceptable margins of error, than the signal intensity produced by the negative reference MED12KD signature sample is sufficient to classify the tumor from which the test sample was produced as anticancer treatment resistant. In certain embodiments, detection of signal intensity from a test sample that is less, within experimentally acceptable margins of error, than the signal intensity produced by the negative reference MEDI2KD signature sample is sufficient to classify the tumor from which the test sample was produced as anticancer treatment resistant.

In certain embodiments, the deviation of signal intensity of the test sample from the negative reference MED12KD signature sample is measured as a percent difference. In certain embodiments, a test sample is deemed to have produced a signal that is greater than the positive reference MED12KD signature sample if the signal intensity of the test sample measures at a level selected from: the signal intensity of the positive reference MED12KD signature sample greater than 1%, greater than 2%, greater than 5%; greater than 10%; greater than 15%; greater than 20%; the greater than 25%; greater than 30%; greater than 35%; greater than 40%; greater than 45%; greater than 50%; greater than 55%; greater than 60%; greater than 65%; greater than 70%; greater than 75%; greater than 80%; greater than 85%; greater than 90%; greater than 95%; or greater than 100%.

In certain embodiments, a test sample is deemed to have produced a signal that is less than the negative reference MED12KD signature sample if the signal intensity of the test sample measures at a level selected from: the signal intensity of the reference sample less 1%, less 2%, less 5%; less 10%; less 15%; less 20%; less 25%; less 30%; less 35%; less 40%; less 45%; less 50%; less 55%; less 60%; less 65%; less 70%; less 75%; less 80%; less 85%; less 90%; less 95%; or less 100% (or no signal produced by the test sample)

In certain embodiments, the deviation of signal intensity of the test sample from the negative reference MED12KD signature sample is measured as a -fold difference, or a difference based upon unit signal production. In certain embodiments, a test sample is deemed to have produced a signal that is greater than the negative reference MED12KD signature sample if the signal intensity of the test sample is selected from: one-fold greater than; one-and-half-fold greater than; two-fold greater than; three-fold greater than; four-fold greater than; five-fold greater than; six-fold greater than; seven-fold greater than; eight-fold greater than; nine-fold greater than; ten-fold greater; and more than ten-fold greater than the signal intensity of the negative reference MED12KD signature sample.

In certain embodiments, a test sample is deemed to have produced a signal that is less than the negative reference MED12KD signature sample if the signal intensity of the test sample is selected from: one-fold less than; one-and-half-fold less than; two-fold less than; three-fold less than; four-fold less than; five-fold less than; six-fold less than; seven-fold less than; eight-fold less than; nine-fold less than; ten-fold less than; and greater than ten-fold less than the signal intensity of the negative reference MED12KD signature sample.

In certain embodiments where the expression of a nucleic acid and/or protein in a test sample is compared with the expression level of the same nucleic acid and/or protein in a negative reference MED12KD signature nucleic acid and/or protein sample, expression of the test sample nucleic acid and/or protein that is greater than (e.g., more than 1.2 -fold greater than) the expression level of the nucleic acid and/or protein corresponding to an upregulated gene in the negative reference MED12KD signature, then resistance to anticancer treatment in the test sample is indicated.

In certain embodiments where the expression of a nucleic acid and/or protein in a test sample is compared with the expression level of the same nucleic acid and/or protein in a negative reference MEDI2KD signature nucleic acid and/or protein, expression of the test sample nucleic acid and/or protein that is less than (e.g., more than 1.2 -fold less than) the expression level of the nucleic acid and/or protein corresponding to a downregulated gene in the negative reference MED12KD signature, then resistance to anticancer treatment in the test sample is indicated.

As used herein, the terms "drug," "agent," and "compound," either alone or together with "chemotherapeutic" or "chemotherapy," encompass any composition of matter or mixture which provides some pharmacologic effect that can be demonstrated in-vivo or in vitro. This includes small molecules, antibodies, microbiologicals, vaccines, vitamins, and
other beneficial agents. As used herein, the terms further include any physiologically or pharmacologically active substance that produces a localized or systemic effect in a patient.

The term "nucleic acid" encompasses DNA, RNA (e.g., mRNA, tRNA), heteroduplexes, and synthetic molecules capable of encoding a polypeptide and includes all analogs and backbone substitutes such as PNA that one of ordinary skill in the art would recognize as capable of substituting for naturally occurring nucleotides and backbones thereof. Nucleic acids may be single stranded or double stranded, and may be chemical modifications. The terms "nucleic acid" and "polynucleotide" are used interchangeably. Because the genetic code is degenerate, more than one codon may be used to encode a particular amino acid, and the present compositions and methods encompass nucleotide sequences which encode a particular amino acid sequence.

Unless otherwise indicated, nucleic acids are written left to right in 5^{\prime} to 3^{\prime} orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively.
"Antisense" nucleic acids are DNA or RNA molecules that are complementary to at least a portion of a specific mRNA molecule (Weintraub, Scientific American 262 40, 1990). In the cell, the antisense nucleic acids hybridize to the corresponding mRNA, forming a double-stranded molecule. This interferes with the translation of the mRNA since the cell will not translate an mRNA that is double-stranded. Antisense oligomers of at least about 15 , about 20 , about 25 , about 30 , about 35 , about 40 , or of at least about 50 nucleotides are preferred, since they are easily synthesized and are less likely to cause non-specific interference with translation than larger molecules. The use of antisense methods to inhibit the in vitro translation of genes is well known in the art (Marcus-Sakura Anal. Biochem. 172: 289, 1998).

Short double-stranded RNAs (dsRNAs; typically <30 nucleotides) can be used to silence the expression of target genes in animals and animal cells. Upon introduction, the long dsRNAs enter the RNA interference (RNAi) pathway which involves the production of shorter (20-25 nucleotide) small interfering RNAs (siRNAs) and assembly of the siRNAs into RNA-induced silencing complexes (RISCs). The siRNA strands are then unwound to form activated RISCs, which cleave the target RNA. Double stranded RNA has been shown to be extremely effective in silencing a target RNA.

General methods of using antisense, ribozyme technology and RNAi technology, to control gene expression, or of gene therapy methods for expression of an exogenous gene in this manner are well known in the art. Each of these methods utilizes a system, such as a
vector, encoding either an antisense or ribozyme transcript. The term "RNAi" stands for RNA interference. This term is understood in the art to encompass technology using RNA molecules that can silence genes. See, for example, McManus, et al. Nature Reviews Genetics 3: 737, 2002. In this application, the term "RNAi" encompasses molecules such as small interfering or short interfering RNA (siRNA), small hairpin or short hairpin RNA (shRNA), microRNAs, and small temporal RNA (stRNA). Generally speaking, RNA interference results from the interaction of double-stranded RNA with genes.

The antisense oligonucleotides can be of any length; for example, in alternative aspects, the antisense oligonucleotides are between about 5 to 100 , about 10 to 80 , about 15 to 60 , about 18 to 40 . The optimal length can be determined by routine screening. The antisense oligonucleotides can be present at any concentration. The optimal concentration can be determined by routine screening. In certain embodiments, siRNA molecules are 12-28 nucleotides long, more preferably 15-25 nucleotides long, still more preferably 19-23 nucleotides long and most preferably 21-23 nucleotides long. In certain embodiments, preferred siRNA molecules are $12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2728$ or 29 nucleotides in length.

As used herein, the term "amino acid sequence" is synonymous with the terms "polypeptide," "protein," and "peptide," and are used interchangeably. Where such amino acid sequences exhibit activity, they may be referred to as an "enzyme." The conventional one-letter or three-letter code for amino acid residues are used herein.

As used herein, a "synthetic" molecule is produced by in vitro chemical or enzymatic synthesis rather than by an organism.

As used herein, the term "expression" refers to the process by which a polypeptide is produced based on the nucleic acid sequence of a gene. The process includes both transcription and translation. The term "expression" also includes the protein product of a translated mRNA. The term "expression" as it refers to protein includes both protein levels and protein activity (e.g., protein binding, enzymatic activity, etc.). The term "expression" also refers to the transcription of non-translated nucleic acid (e.g., non-coding mRNA).

A "gene" refers to the DNA segment encoding a polypeptide or RNA.
By "homolog" is meant an entity having a certain degree of identity with the subject amino acid sequences and the subject nucleotide sequences. As used herein, the term "homolog" covers identity with respect to structure and/or function, for example, the expression product of the resultant nucleotide sequence has the enzymatic activity of a subject amino acid sequence. With respect to sequence identity, preferably there is at least $70 \%, 75 \%, 80 \%, 81 \%$,
$82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%$, 98%, or even 99% sequence identity. These terms also encompass allelic variations of the sequences. The term, homolog, may apply to the relationship between genes separated by the event of speciation or to the relationship between genes separated by the event of genetic duplication.

Relative sequence identity can be determined by commercially available computer programs that can calculate \% identity between two or more sequences using any suitable algorithm for determining identity, using, for example, default parameters. A typical example of such a computer program is CLUSTAL. Advantageously, the BLAST algorithm is employed, with parameters set to default values. The BLAST algorithm is described in detail on the National Center for Biotechnology Information (NCBI) website.

The homologs of the peptides as provided herein typically have structural similarity with such peptides. A homolog of a polypeptide includes one or more conservative amino acid substitutions, which may be selected from the same or different members of the class to which the amino acid belongs.

In one embodiment, the sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

The present invention also encompasses conservative substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue with an alternative residue) that may occur e.g., like-for-like substitution such as basic for basic, acidic for acidic, polar for polar, etc. Non-conservative substitution may also occur e.g., from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine. Conservative substitutions that may be made are, for example, within the groups of basic amino acids (Arginine, Lysine and Histidine), acidic amino acids (glutamic acid and aspartic acid), aliphatic amino acids (Alanine, Valine,

Leucine, Isoleucine), polar amino acids (Glutamine, Asparagine, Serine, Threonine), aromatic amino acids (Phenylalanine, Tryptophan and Tyrosine), hydroxyl amino acids (Serine, Threonine), large amino acids (Phenylalanine and Tryptophan) and small amino acids (Glycine, Alanine).

The present invention employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA and immunology, which are within the capabilities of a person of ordinary skill in the art. Such techniques are explained in the literature. See, for example, J. Sambrook, E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Books 1-3, Cold Spring Harbor Laboratory Press; Ausubel, F. M. et al. (1995 and periodic supplements; Current Protocols in Molecular Biology, ch. 9, 13, and 16, John Wiley \& Sons, New York, N.Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, DNA Isolation and Sequencing: Essential Techniques, John Wiley \& Sons; M. J. Gait (Editor), 1984, Oligonucleotide Synthesis: A Practical Approach, Irl Press; and, D. M. J. Lilley and J. E. Dahlberg, 1992, Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press. Each of these general texts is herein incorporated by reference.

METHODS OF DETECTING EXPRESSION LEVELS

There are many methods known in the art for determining the genotype of a patient. Any method for determining genotype can be used for determining genotypes in the present invention. Such methods include, but are not limited to, amplimer sequencing, DNA sequencing, fluorescence spectroscopy, fluorescence resonance energy transfer (or "FRET")based hybridization analysis, high throughput screening, mass spectroscopy, nucleic acid hybridization, polymerase chain reaction (PCR), RFLP analysis and size chromatography (e.g., capillary or gel chromatography), all of which are well known to one of ordinary skill in the art.

Many methods of sequencing genomic DNA are known in the art, and any such method can be used, see for example Sambrook et al., Molecular Cloning; A Laboratorỳ Manual 2d ed. (1989). For example, a DNA fragment of interest can be amplified using the polymerase chain reaction or some other cyclic polymerase mediated amplification reaction. The amplified region of DNA can then be sequenced using any method known in the art. Advantageously, the nucleic acid sequencing is by automated methods (reviewed by Meldrum, Genome Res. September 2000;10(9):1288-303, the disclosure of which is incorporated by reference in its entirety), for example using a Beckman CEQ 8000 Genetic

Analysis System (Beckman Coulter Instruments, Inc.). Methods for sequencing nucleic acids include, but are not limited to, automated fluorescent DNA sequencing (see, e.g., Watts \& MacBeath, Methods Mol Biol. 2001;167:153-70 and MacBeath et al., Methods Mol Biol. 2001;167:119-52), capillary electrophoresis (see, e.g., Bosserhoff et al., Comb Chem High Throughput Screen. December 2000;3(6):455-66), DNA sequencing chips (see, e.g., Jain, Pharmacogenomics. August 2000;1(3):289-307), mass spectrometry (see, e.g., Yates, Trends Genet. January 2000;16(1):5-8), pyrosequencing (see, e.g., Ronaghi, Genome Res. January 2001;11(1):3-11), and ultrathin-layer gel electrophoresis (see, e.g., Guttman \& Ronai, Electrophoresis. December 2000; 21 (18):3952-64), the disclosures of which are hereby incorporated by reference in their entireties. The sequencing can also be done by any commercial company. Examples of such companies include, but are not limited to, the University of Georgia Molecular Genetics Instrumentation Facility (Athens, Ga.) or SeqWright DNA Technologies Services (Houston, Tex.).

Any one of the methods known in the art for amplification of DNA may be used, such as for example, the polymerase chain reaction (PCR), the ligase chain reaction (LCR) (Barany, F., Proc. Natl. Acad. Sci. (U.S.A.) 88:189-193 (1991)), the strand displacement assay (SDA), or the oligonucleotide ligation assay ("OLA") (Landegren, U. et al., Science 241:1077-1080 (1988)). Nickerson, D. A. et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990)). Other known nucleic acid amplification procedures, such as transcription-based amplification systems (Malek, L. T. et al., U.S. Pat. No. 5,130,238; Davey, C. et al., European Patent Application 329,822; Schuster et al., U.S. Pat. No. 5,169,766; Miller, H. I. et al., PCT Application W089/06700; Kwoh, D. et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:1173 (1989); Gingeras, T. R. et al., PCT Application W088/10315)), or isothermal amplification methods (Walker, G. T., et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:392-396 (1992)) may also be used.

To perform a cyclic polymerase mediated amplification reaction according to the present invention, the primers are hybridized or annealed to opposite strands of the target DNA, the temperature is then raised to permit the thermostable DNA polymerase to extend the primers and thus replicate the specific segment of DNA spanning the region between the two primers. Then the reaction is thermocycled so that at each cycle the amount of DNA representing the sequences between the two primers is doubled, and specific amplification of gene DNA sequences, if present, results.

Any of a variety of polymerases can be used in the present invention. For thermocyclic reactions, the polymerases are thermostable polymerases such as Taq, KlenTaq, Stoffel Fragment, Deep Vent, Tth, Pfu, Vent, and UITma, each of which are readily availáble from commercial sources. For non-thermocyclic reactions, and in certain thermocyclic reactions, the polymerase will often be one of many polymerases commonly used in the field, and commercially available, such as DNA pol 1, Klenow fragment, T7 DNA polymerase, and T4 DNA polymerase. Guidance for the use of such polymerases can readily be found in product literature and in general molecular biology guides.

Typically, the annealing of the primers to the target DNA sequence is carried out for about 2 minutes at about $37-55^{\circ} \mathrm{C}$, extension of the primer sequence by the polymerase enzyme (such as Taq polymerase) in the presence of nucleoside triphosphates is carried out for about 3 minutes at about $70-75^{\circ} \mathrm{C}$, and the denaturing step to release the extended primer is carried out for about 1 minute at about $90-95^{\circ} \mathrm{C}$. However, these parameters can be varied, and one of skill in the art would readily know how to adjust the temperature and time parameters of the reaction to achieve the desired results. For example, cycles may be as short as $10,8,6,5,4.5,4,2,1,0.5$ minutes or less.

Also, "two temperature" techniques can be used where the annealing and extension steps may both be carried out at the same temperature, typically between about $60-65^{\circ} \mathrm{C}$, thus reducing the length of each amplification cycle and resulting in a shorter assay time.

Typically, the reactions described herein are repeated until a detectable amount of product is generated. Often, such detectable amounts of product are between about 10 ng and about 100 ng , although larger quantities, e.g. $200 \mathrm{ng}, 500 \mathrm{ng}, 1 \mathrm{mg}$ or more can also, of course, be detected. In terms of concentration, the amount of detectable product can be from about $0.01 \mathrm{pmol}, 0.1 \mathrm{pmol}, 1 \mathrm{pmol}, 10 \mathrm{pmol}$, or more. Thus, the number of cycles of the reaction that are performed can be varied, the more cycles are performed, the more amplified product is produced. In certain embodiments, the reaction comprises $2,5,10,15,20,30,40$, 50 , or more cycles.

For example, the PCR reaction may be carried out using about 25-50 μ l samples containing about 0.01 to 1.0 ng of template amplification sequence, about 10 to 100 pmol of each generic primer, about 1.5 units of Taq DNA polymerase (Promega Corp.), about 0.2 mM dDATP, about 0.2 mM dCTP, about 0.2 mM dGTP, about 0.2 mM dTTP, about 15 mM MgCl. sub.2, about 10 mM Tris- HCl (pH 9.0), about 50 mM KCl , about $1 \mu \mathrm{~g} / \mathrm{ml}$ gelatin, and about $10 \mu \mathrm{l} / \mathrm{ml}$ Triton X-100 (Saiki, 1988).

Those of ordinary skill in the art are aware of the variety of nucleotides available for use in the cyclic polymerase mediated reactions. Typically, the nucleotides will consist at least in part of deoxynucleotide triphosphates (dNTPs), which are readily commercially available. Parameters for optimal use of dNTPs are also known to those of skill, and are described in the literature. In addition, a large number of nucleotide derivatives are known to those of skill and can be used in the present reaction. Such derivatives include fluorescently labeled nucleotides, allowing the detection of the product including such labeled nucleotides, as described below. Also included in this group are nucleotides that allow the sequencing of nucleic acids including such nucleotides, such as chain-terminating nucleotides, dideoxynucleotides and boronated nuclease-resistant nucleotides. Commercial kits containing the reagents most typically used for these methods of DNA sequencing are available and widely used. Other nucleotide analogs include nucleotides with bromo-, iodo-, or other modifying groups, which affect numerous properties of resulting nucleic acids including their antigenicity, their replicatability, their melting temperatures, their binding properties, etc. In addition, certain nucleotides include reactive side groups, such as sulfhydryl groups, amino groups, N-hydroxysuccinimidyl groups, that allow the further modification of nucleic acids comprising them.

In certain embodiments, oligonucleotides that can be used as primers to amplify specific nucleic acid sequences of a gene in cyclic polymerase-mediated amplification reactions, such as PCR reactions, consist of oligonucleotide fragments. Such fragments should be of sufficient length to enable specific annealing or hybridization to the nucleic acid sample. The sequences typically will be about 8 to about 44 nucleotides in length, but may be longer. Longer sequences, e.g., from about 14 to about 50, are advantageous for certain embodiments.

In embodiments where it is desired to amplify a fragment of DNA, primers having contiguous stretches of about $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23$, or 24 nucleotides from a gene sequence are contemplated.

As used herein, "hybridization" refers to the process by which one strand of nucleic acid base pairs with a complementary strand, as occurs during blot hybridization techniques and PCR techniques.

Whichever probe sequences and hybridization methods are used, one ordinarily skilled in the art can readily determine suitable hybridization conditions, such as temperature and chemical conditions. Such hybridization methods are well known in the art. For example, for applications requiring high selectivity, one will typically desire to employ
relatively stringent conditions for the hybridization reactions, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.10 M NaCl at temperatures of about $50^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$. Such high stringency conditions tolerate little, if any, mismatch between the probe and the template or target strand. It is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide. Other variations in hybridization reaction conditions are well known in the art (see for example, Sambrook et al., Molecular Cloning; A Laboratory Manual 2d ed. (1989)).

Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex, as taught, e.g., in Berger and Kimmel (1987, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol 152, Academic Press, San Diego CA), and confer a defined "stringency" as explained below.

Maximum stringency typically occurs at about $\mathrm{Tm}-5^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{C}\right.$ below the Tm of the probe); high stringency at about $5{ }^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ below Tm ; intermediate stringency at about 10 ${ }^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ below Tm ; and low stringency at about $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ below Tm . As will be understood by those of ordinary skill in the art, a maximum stringency hybridization can be used to identify or detect identical nucleotide sequences while an intermediate (or low) stringency hybridization can be used to identify or detect similar or related polynucleotide sequences.

In one aspect, the present invention employs nucleotide sequences that can hybridize to another nucleotide sequence under stringent conditions (e.g., $65^{\circ} \mathrm{C}$ and $0.1 \mathrm{xSSC}\{1 \mathrm{xSSC}$ $=0.15 \mathrm{M} \mathrm{NaCl}, 0.015 \mathrm{M} \mathrm{Na} 3$ Citrate pH 7.0). Where the nucleotide sequence is doublestranded, both strands of the duplex, either individually or in combination, may be employed by the present invention. Where the nucleotide sequence is single-stranded, it is to be understood that the complementary sequence of that nucleotide sequence is also included within the scope of the present invention.

Stringency of hybridization refers to conditions under which polynucleic acid hybrids are stable. Such conditions are evident to those of ordinary skill in the field. As known to those of ordinary skill in the art, the stability of hybrids is reflected in the melting temperature (Tm) of the hybrid which decreases approximately 1 to $1.5^{\circ} \mathrm{C}$ with every 1% decrease in sequence homology. In general, the stability of a hybrid is a function of sodium ion concentration and temperature. Typically, the hybridization reaction is performed under conditions of higher stringency, followed by washes of varying stringency.

As used herein, high stringency includes conditions that permit hybridization of only those nucleic acid sequences that form stable hybrids in $1 \mathrm{M} \mathrm{Na}+$ at $65-68^{\circ} \mathrm{C}$. High stringency conditions can be provided, for example, by hybridization in an aqueous solution containing 6x SSC, $5 x$ Denhardt's, 1 \% SDS (sodium dodecyl sulphate), $0.1 \mathrm{Na}+$ pyrophosphate and $0.1 \mathrm{mg} / \mathrm{ml}$ denatured salmon sperm DNA as non-specific competitor. Following hybridization, high stringency washing may be done in several steps, with a final wash (about 30 minutes) at the hybridization temperature in $0.2-0.1 x$ SSC, 0.1% SDS.

It is understood that these conditions may be adapted and duplicated using a variety of buffers, e.g., formamide-based buffers, and temperatures. Denhardt's solution and SSC are well known to those of ordinary skill in the art as are other suitable hybridization buffers (see, e.g., Sambrook, et al., eds. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York or Ausubel, et al., eds. (1990) Current Protocols in Molecular Biology, John Wiley \& Sons, Inc.). Optimal hybridization conditions are typically determined empirically, as the length and the GC content of the hybridizing pair also play a role.

Nucleic acid molecules that differ from the sequences of the primers and probes disclosed herein, are intended to be within the scope of the invention. Nucleic acid sequences that are complementary to these sequences, or that are hybridizable to the sequences described herein under conditions of standard or stringent hybridization, and also analogs and derivatives are also intended to be within the scope of the invention. Advantageously, such variations will differ from the sequences described herein by only a small number of nucleotides, for example by 1,2 , or 3 nucleotides.

Nucleic acid molecules corresponding to natural allelic variants, homologues (i.e., nucleic acids derived from other species), or other related sequences (e.g., paralogs) of the sequences described herein can be isolated based on their homology to the nucleic acids disclosed herein, for example by performing standard or stringent hybridization reactions using all or a portion of the known sequences as probes. Such methods for nucleic acid hybridization and cloning are well known in the art.

Similarly, a nucleic acid molecule detected in the methods of the invention may include only a fragment of the specific sequences described. Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids, a length sufficient to allow for specific hybridization of nucleic acid primers or probes, and are at most some portion less than a full-length sequence. Fragments may be derived from any contiguous portion of a nucleic acid sequence of choice. Derivatives and analogs may be full length or other than full
length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below.

Derivatives, analogs, homologues, and variants of the nucleic acids of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids of the invention, in various embodiments, by at least about $70 \%, 80 \%, 85 \%, 90 \%, 95 \%, 96 \%, 97 \%, 98 \%$, or even 99% identity over a nucleic acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art.

For the purposes of the present invention, sequence identity or homology is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical algorithms. A nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin \& Altschul, Proc. Natl. Acad. Sci. USA 1990;87: 2264-2268, modified as in Karlin \& Altschul, Proc. Natl. Acad. Sci. USA 1993;90: 5873-5877.

Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers \& Miller, CABIOS 1988;4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12 , and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson \& Lipman, Proc. Natl. Acad. Sci. USA 1988;85: 2444-2448.

Advantageous for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from $\mathrm{ftp}: / / \mathrm{blast} . w u s t l . e d u / b l a s t / e x e c u t a b l e s . ~ T h i s ~ p r o g r a m ~ i s ~ b a s e d ~ o n ~ W U-B L A S T ~ v e r s i o n ~ I .4, ~$ which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul \& Gish, 1996, Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et al., Journal of Molecular Biology 1990;215: 403-410; Gish \& States, 1993;Nature Genetics 3: 266-272; Karlin \& Altschul, 1993;Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).

In all search programs in the suite the gapped alignment routines are integral to the database search itself. Gapping can be turned off if desired. The default penalty (Q) for a
gap of length one is $\mathrm{Q}=9$ for proteins and BLASTP, and $\mathrm{Q}=10$ for BLASTN, but may be changed to any integer. The default per-residue penalty for extending a gap (R) is $\mathrm{R}=2$ for proteins and BLASTP, and $\mathrm{R}=10$ for BLASTN, but may be changed to any integer. Any combination of values for Q and R can be used in order to align sequences so as to maximize overlap and identity while minimizing sequence gaps. The default amino acid comparison matrix is BLOSUM62, but other amino acid comparison matrices such as PAM can be utilized.

Alternatively or additionally, the term "homology" or "identity", for instance, with respect to a nucleotide or amino acid sequence, can indicate a quantitative measure of homology between two sequences. The percent sequence homology can be calculated as ($\left.\mathrm{N}_{\text {ref }}-\mathrm{N}_{\text {dif }}\right)^{*} 100 /-\mathrm{N}_{\text {ref, }}$, wherein $\mathrm{N}_{\text {dif }}$ is the total number of non-identical residues in the two sequences when aligned and wherein $N_{\text {ref }}$ is the number of residues in one of the sequences. Hence, the DNA sequence AGTCAGTC will have a sequence identity of 75% with the sequence AATCAATC ($\mathrm{N} \mathrm{N}_{\text {ref }}=8 ; \mathrm{N} \mathrm{N}_{\mathrm{dif}}=2$). "Homology" or "identity" can refer to the number of positions with identical nucleotides or amino acids divided by the number of nucleotides or amino acids in the shorter of the two sequences wherein alignment of the two sequences can be determined in accordance with the Wilbur and Lipman algorithm (Wilbur \& Lipman, Proc Natl Acad Sci USA 1983;80:726, incorporated herein by reference), for instance, using a window size of 20 nucleotides, a word length of 4 nucleotides, and a gap penalty of 4 , and computer-assisted analysis and interpretation of the sequence data including alignment can be conveniently performed using commercially available programs (e.g., Intelligenetics.TM. Suite, Intelligenetics Inc. CA). When RNA sequences are said to be similar, or have a degree of sequence identity or homology with DNA sequences, thymidine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence. Thus, RNA sequences are within the scope of the invention and can be derived from DNA sequences, by thymidine (T) in the DNA sequence being considered equal to uracil (U) in RNA sequences. Without undue experimentation, the skilled artisan can consult with many other programs or references for determining percent homology.

In embodiments where expression of a particular gene is assessed by determining the expression of the protein product of the gene, any suitable assay for detecting protein levels and/or activity may be employed. For example, suitable protein activity assays include ubiquitination assays, kinase assays, protein-binding assays, DNA-binding and unwinding assays, and any other suitable assay for assessing the activity of the protein product of a translated gene according to the invention.

SAMPLING

In order to determine the genotype or expression level of a particular SWI/SNF complex and/or MEDIATOR complex gene of a patient according to the methods of the present invention, it may be necessary to obtain a sample of genomic DNA or RNA from that patient. That sample of genomic DNA or RNA may be obtained from a sample of tissue or cells taken from that patient.

A sample may comprise any clinically relevant tissue sample, such as a tumor biopsy or fine needle aspirate, hair (including roots), skin, buccal swabs, saliva, or a sample of bodily fluid, such as blood, plasma, serum, lymph, ascitic fluid, cystic fluid, urine or nipple exudate. The sample may be taken from a human, or, in a veterinary context, from nonhuman animals such as ruminants, horses, swine or sheep, or from domestic companion animals such as felines and canines.

The tissue sample may be marked with an identifying number or other indicia that relates the sample to the individual patient from which the sample was taken. The identity of the sample advantageously remains constant throughout the methods of the invention thereby guaranteeing the integrity and continuity of the sample during extraction and analysis. Alternatively, the indicia may be changed in a regular fashion that ensures that the data, and any other associated data, can be related back to the patient from whom the data was obtained. The amount/size of sample required is known to those ordinarily skilled in the art.

Generally, the tissue sample may be placed in a container that is labeled using a numbering system bearing a code corresponding to the patient. Accordingly, the genotype of a particular patient is easily traceable.

In one embodiment of the invention, a sampling device and/or container may be supplied to the physician. The sampling device advantageously takes a consistent and reproducible sample from individual patients while simultaneously avoiding any crosscontamination of tissue. Accordingly, the size and volume of sample tissues derived from individual patients would be consistent.

According to the present invention, a sample of genomic DNA or RNA is obtained from the tissue sample of the patient of interest. Whatever source of cells or tissue is used, a sufficient amount of cells must be obtained to provide a sufficient amount of DNA or RNA for analysis. This amount will be known or readily determinable by those ordinarily skilled in the art.

DNA or RNA is isolated from the tissue/cells by techniques known to those ordinarily skilled in the art (see, e.g., U.S. Pat. Nos. 6,548,256 and 5,989,431, Hirota et al., Jinrui Idengaku Zasshi. September 1989; 34(3):217-23 and John et al., Nucleic Acids Res. Jan. 25. 1991;19(2):408; the disclosures of which are incorporated by reference in their entireties). For example, high molecular weight DNA may be purified from cells or tissue using proteinase K extraction and ethanol precipitation. DNA may be extracted from a patient specimen using any other suitable methods known in the art.

In certain embodiments, target polynucleotide molecules are extracted from a sample taken from an individual afflicted with breast cancer. The sample may be collected in any clinically acceptable manner, but must be collected such that marker-derived polynucleotides (e.g., RNA) are preserved. mRNA or nucleic acids derived therefrom (e.g., cDNA or amplified DNA) are preferably labeled distinguishably from standard or control polynucleotide molecules, and both are simultaneously or independently hybridized to a microarray comprising one or more markers of resistance to anticancer treatment as described above. Alternatively, mRNA or nucleic acids derived therefrom may be labeled with the same label as the standard or control polynucleotide molecules, wherein the intensity of hybridization of each at a particular probe is compared.

Methods for preparing total and poly(A)+ RNA are well known and are described generally in Sambrook et al., MOLECULAR CLONING--A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989)) and Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vol. 2, Current Protocols Publishing, New York (1994)).

RNA may be isolated from eukaryotic cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein. Cells of interest include wild-type cells (i.e., non-cancerous), drug-exposed wild-type cells, tumor- or tumor-derived cells, modified cells, normal or tumor cell line cells, and drug-exposed modified cells.

Additional steps may be employed to remove DNA. Cell lysis may be accomplished with a nonionic detergent, followed by microcentrifugation to remove the nuclei and hence the bulk of the cellular DNA. In one embodiment, RNA is extracted from cells of the various types of interest using guanidinium thiocyanate lysis followed by CsCl centrifugation to separate the RNA from DNA (Chirgwin et al., Biochemistry 18:5294-5299 (1979)). Poly $(A)+$ RNA is selected by selection with oligo-dT cellulose (see Sambrook et al, MOLECULAR CLONING--A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989). Alternatively, separation of

RNA from DNA can be accomplished by organic extraction, for example, with hot phenol or phenol/chloroform/isoamyl alcohol.

If desired, RNase inhibitors may be added to the lysis buffer. Likewise, for certain cell types, it may be desirable to add a protein denaturation/digestion step to the protocol.

In certain embodiments, it is desirable to preferentially enrich mRNA with respect to other cellular RNAs, such as transfer RNA (tRNA) and ribosomal RNA (rRNA). Most mRNAs contain a poly (A) tail at their 3^{\prime} end. This allows them to be enriched by affinity chromatography, for example, using oligo(dT) or poly(U) coupled to a solid support, such as cellulose or Sephadex.TM. (see Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vol. 2, Current Protocols Publishing, New York (1994). Once bound, poly(A)+ mRNA is eluted from the affinity column using 2 mM EDTA/0.1\% SDS.

The sample of RNA can comprise a plurality of different mRNA molecules, each different mRNA molecule having a different nucleotide sequence. In a specific embodiment, the RNA sample is a mammalian RNA sample.

In a specific embodiment, total RNA or mRNA from cells are used in the methods of the invention. The source of the RNA can be cells of any animal, human, mammal, primate, non-human animal, dog, cat, mouse, rat, bird, yeast, eukaryote, etc. In specific embodiments, the method of the invention is used with a sample containing total mRNA or total RNA from 1×10^{6} cells or less. In another embodiment, proteins can be isolated from the foregoing sources, by methods known in the art, for use in expression analysis at the protein level.

In certain embodiments, expression of a biomarker according to the invention is measured using multiplex ligation-dependent probe amplification (MLPA) (see, e.g., WO $01 / 61033$ and Schouten, JP et al. (2002) "Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification" Nucleic Acids Res 30, e57) or reverse transcriptase MLPA (RT-MLPA) (see, e.g., Eldering, E et al. (2003) "Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signaling pathways" Nucleic Acids Res 31, el53). In RT-MLPA, mRNA is converted to cDNA by reverse transcriptase, followed by a normal MLPA reaction. In other embodiments, methylation-specific MLPA is employed to detect expression of a biomarker according to the instant invention (see, e.g., Nygren, AO et al. (2005) "Methylation-specific MLPA (MSMPLA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences" Nucleic Acids Res 33, 14:e128).

ARRAYS

As defined herein, a "nucleic acid array" refers to a plurality of unique nucleic acids (or "nucleic acid members") attached to a support where each of the nucleic acid members is attached to a support in a unique pre-selected region.

In one embodiment, the nucleic acid member attached to the surface of the support is DNA. In another embodiment, the nucleic acid member attached to the surface of the support is either cDNA or oligonucleotides. In another embodiment, the nucleic acid member attached to the surface of the support is cDNA synthesized by polymerase chain reaction (PCR). In another embodiment, sequences bound to the array can be an isolated oligonucleotide, cDNA, EST or PCR product corresponding to any biomarker of the invention total cellular RNA is applied to the array.

Array technology and the various techniques and applications associated with it is described generally in numerous textbooks and documents. These include Lemieux et al., 1998, Molecular Breeding 4, 277-289, Schena and Davis. Parallel Analysis with Biological Chips. in PCR Methods Manual (eds. M. Innis, D. Gelfand, J. Sninsky), Schena and Davis, 1999, Genes, Genomes and Chips. In.DNA Microarrays: A Practical Approach (ed. M. Schena), Oxford University Press, Oxford, UK, 1999), The Chipping Forecast (Nature Genetics special issue; January 1999 Supplement), Mark Schena (Ed.), Microarray Biochip Technology, (Eaton Publishing Company), Cortes, 2000, The Scientist 14[17]:25, Gwynne and Page, Microarray analysis: the next revolution in molecular biology, Science, 1999 August 6; and Eakins and Chu, 1999, Trends in Biotechnology, 17, 217-218.

Major applications for array technology include the identification of sequence (gene/gene mutation) and the determination of expression level (abundance) of genes. Gene expression profiling may make use of array technology, optionally in combination with proteomics techniques (Celis et al, 2000, FEBS Lett, 480(1):2-16; Lockhart and Winzeler, 2000, Nature 405(6788):827-836; Khan et al., 1999, 20(2):223-9). Other applications of array technology are also known in the art; for example, gene discovery, cancer research (Marx, 2000, Science 289: 1670-1672; Scherf, et al, 2000, Nat Genet;24(3):236-44; Ross et al, 2000, Nat Genet. 2000 Mar;24(3):227-35), SNP analysis (Wang et al, 1998, Science, 280(5366): 1077-82), drug discovery, pharmacogenomics, disease diagnosis (for example, utilising microfluidics devices: Chemical \& Engineering News, February 22, 1999, 77(8):2736), toxicology (Rockett and Dix (2000), Xenobiotica, 30(2):155-77; Afshari et al., 1999, Cancer Res1;59(19):4759-60) and toxicogenomics (a hybrid of functional genomics and molecular toxicology).

In general, any library may be arranged in an orderly manner into an array, by spatially separating the members of the library. Examples of suitable libraries for arraying include nucleic acid libraries (including DNA, cDNA, oligonucleotide, etc. libraries), peptide, polypeptide and protein libraries, as well as libraries comprising any molecules, such as ligand libraries, among others.

The samples (e.g., members of a library) are generally fixed or immobilized onto a solid phase, preferably a solid substrate, to limit diffusion and admixing of the samples. In particular, the libraries may be immobilized to a substantially planar solid phase, including membranes and non-porous substrates such as plastic and glass. Furthermore, the samples are preferably arranged in such a way that indexing (i.e., reference or access to a particular sample) is facilitated. Typically the samples are applied as spots in a grid formation. Common assay systems may be adapted for this purpose. For example, an array may be immobilized on the surface of a microplate, either with multiple samples in a well, or with a single sample in each well. Furthermore, the solid substrate may be a membrane, such as a nitrocellulose or nylon membrane (for example, membranes used in blotting experiments). Alternative substrates include glass, or silica-based substrates. Thus, the samples are immobilized by any suitable method known in the art, for example, by charge interactions, or by chemical coupling to the walls or bottom of the wells, or the surface of the membrane. Other means of arranging and fixing may be used, for example, pipetting, drop-touch, piezoelectric means, ink-jet and bubblejet technology, electrostatic application, etc. In the case of silicon-based chips, photolithography may be utilised to arrange and fix the samples on the chip.

The samples may be arranged by being "spotted" onto the solid substrate; this may be done by hand or by making use of robotics to deposit the sample. In general, arrays may be described as macroarrays or microarrays, the difference being the size of the sample spots. Macroarrays typically contain sample spot sizes of about 300 microns or larger and may be easily imaged by existing gel and blot scanners. The sample spot sizes in microarrays are typically less than 200 microns in diameter and these arrays usually contain thousands of spots. Thus, microarrays may require specialized robotics and imaging equipment, which may need to be custom made. Instrumentation is described generally in a review by Cortese, 2000, The Scientist 14[11]:26.

Techniques for producing immobilized libraries of DNA molecules have been described in the art. Generally, most prior art methods described how to synthesize singlestranded nucleic acid molecule libraries, using for example masking techniques to build up
various permutations of sequences at the various discrete positions on the solid substrate. U.S. Patent No. 5,837,832 describes an improved method for producing DNA arrays immobilized to silicon substrates based on very large scale integration technology. In particular, U.S. Patent No. 5, 837,832 describes a strategy called "tiling" to synthesize specific sets of probes at spatially-defined locations on a substrate which may be used to produced the immobilized DNA libraries of the present invention. U.S. Patent No. 5,837,832 also provides references for earlier techniques that may also be used. Arrays may also be built using photo deposition chemistry.

To aid detection, labels are typically used - such as any readily detectable reporter, for example, a fluorescent, bioluminescent, phosphorescent, radioactive, etc. reporter. Labelling of probes and targets is also disclosed in Shalon et al., 1996, Genome Res 6(7):63945.

Examples of DNA arrays include where probe cDNA (500~5,000 bases long) is immobilized to a solid surface such as glass using robot spotting and exposed to a set of targets either separately or in a mixture. This method is widely considered as having been developed at Stanford University (Ekins and Chu, 1999, Trends in Biotechnology, 1999, 17, 217-218).

Another example of a DNA array is where an array of oligonucleotides (20-25-mer oligos, preferably, 40-60 mer oligos) or peptide nucleic acid (PNA) probes are synthesized either in situ (on-chip) or by conventional synthesis followed by on-chip immobilization. The array is exposed to labelled sample DNA, hybridized, and the identity/abundance of complementary sequences are determined. Such a DNA chip is sold by Affymetrix, Inc., under the GeneChip ${ }^{\circledR}$ trademark. Agilent and Nimblegen also provide suitable arrays (eg. genomic tiling arrays).

In other embodiments, high throughput DNA sequencing promises to become an affordable and more quantitative alternative for microarrays to analyze large collections of DNA sequences. Examples of high-throughput sequencing approaches are listed in E.Y. Chan, Mutation Reseach 573 (2005) 13-40 and include, but are not limited to, near-term sequencing approaches such as cycle-extension approaches, polymerase reading approaches and exonuclease sequencing, revolutionary sequencing approaches such as DNA scanning and nanopore sequencing and direct linear analysis. Examples of current high-throughput sequencing methods are 454 (pyro)sequencing, Solexa Genome Analysis System, Agencourt SOLiD sequencing method (Applied Biosystems), MS-PET sequencing (Ng et al., 2006, http://nar(dot)oxfordjournals(dot)org/cgi/content/full/34/l2/e84).

PROBES

As used herein, the term "probe" refers to a molecule (e.g., an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification), that is capable of hybridizing to another molecule of interest (e.g., another oligonucleotide). When probes are oligonucleotides they may be single-stranded or double-stranded. Probes are useful in the detection, identification and isolation of particular targets (e.g., gene sequences). As described herein, it is contemplated that probes used in the present invention may be labelled with a label so that is detectable in any detection system, including, but not limited to enzyme (e.g., ELISA, as well as enzymebased histochemical assays), fluorescent, radioactive, and luminescent systems.

With respect to arrays and microarrays, the term "probe" is used to refer to any hybridizable material that is affixed to the array for the purpose of detecting a nucleotide sequence that has hybridized to said probe. Preferably, these probes are 25-60 mers or longer.

The present invention further encompasses probes according to the present invention that are immobilized on a solid or flexible support, such as paper, nylon or other type of membrane, filter, chip, glass slide, microchips, microbeads, or any other such matrix, all of which are within the scope of this invention.

The primers and probes described herein may be readily prepared by, for example, directly synthesizing the fragment by chemical means or by introducing selected sequences into recombinant vectors for recombinant production. Methods for making a vector or recombinants or plasmid for amplification of the fragment either in vivo or in vitro can be any desired method, e.g., a method which is by or analogous to the methods disclosed in, or disclosed in documents cited in: U.S. Pat. Nos. 4,603,112; 4,769,330; 4,394,448; 4,722,848; 4,745,051; 4,769,331; 4,945,050; 5,494,807; 5,514,375; 5,744,140; 5,744,141; 5,756,103; 5,762,938; 5,766,599; 5,990,091; 5,174,993; 5,505,941; 5,338,683; 5,494,807; 5,591,639; $5,589,466 ; 5,677,178 ; 5,591,439 ; 5,552,143 ; 5,580,859 ; 6,130,066 ; 6,004,777 ; 6,130,066 ;$ $6,497,883 ; 6,464,984 ; 6,451,770 ; 6,391,314 ; 6,387,376 ; 6,376,473 ; 6,368,603 ; 6,348,196 ;$ 6,306,400; 6,228,846; 6,221,362; 6,217,883; 6,207,166; 6,207,165; 6,159,477; 6,153,199; $6,090,393 ; 6,074,649 ; 6,045,803 ; 6,033,670 ; 6,485,729 ; 6,103,526 ; 6,224,882 ; 6,312,682$ 6,348,450 and 6; 312,683; U.S. patent application Ser. No. 920,197, filed Oct. 16, 1986; WO 90/01543; W091/11525; WO 94/16716; WO 96/39491; WO 98/33510; EP 265785; EP 0370 573; Andreansky et al., Proc. Natl. Acad. Sci. USA 1996;93:11313-11318; Ballay et al.,

EMBO J. 1993;4:3861-65; Felgner et al., J. Biol. Chem. 1994;269:2550-2561; Frolov et al., Proc. Natl. Acad. Sci. USA 1996;93:11371-11377; Graham, Tibtech 1990;8:85-87; Grunhaus et al., Sem. Virol. 1992;3:237-52; Ju et al., Diabetologia 1998;41:736-739; Kitson et al., J. Virol. 1991;65:3068-3075; McClements et al., Proc. Natl. Acad. Sci. USA 1996;93:11414- 11420; Moss, Proc. Natl. Acad. Sci. USA 1996;93:11341-11348; Paoletti, Proc. Natl. Acad. Sci. USA 1996;93:11349-11353; Pennock et al., Mol. Cell. Biol. 1984;4:399-406; Richardson (Ed), Methods in Molecular Biology 1995;39, "Baculovirus Expression Protocols," Humana Press Inc.; Smith et al. (1983) Mol. Cell. Biol. 1983;3:2156-2165; Robertson et al., Proc. Natl. Acad. Sci. USA 1996;93:11334-11340; Robinson et al., Sem. Immunol. 1997;9:271; and Roizman, Proc. Natl. Acad. Sci. USA 1996;93:11307-11312. Strategies for probe design are described in WO95/11995, EP 717,113 and WO97/29212.

In order to generate data from array-based assays a signal is detected that signifies the presence of or absence of hybridization between a probe and a nucleotide sequence. The present invention further contemplates direct and indirect labelling techniques. For example, direct labelling incorporates fluorescent dyes directly into the nucleotide sequences that hybridize to the array-associated probes (e.g., dyes are incorporated into nucleotide sequence by enzymatic synthesis in the presence of labelled nucleotides or PCR primers). Direct labelling schemes yield strong hybridization signals, typically using families of fluorescent dyes with similar chemical structures and characteristics, and are simple to implement. In some embodiments comprising direct labelling of nucleic acids, cyanine or alexa analogs are utilized in multiple-fluor comparative array analyses. In other embodiments, indirect labelling schemes can be utilized to incorporate epitopes into the nucleic acids either prior to or after hybridization to the microarray probes. One or more staining procedures and reagents are used to label the hybridized complex (e.g., a fluorescent molecule that binds to the epitopes, thereby providing a fluorescent signal by virtue of the conjugation of dye molecule to the epitope of the hybridised species).

Oligonucleotide sequences used as probes according to the present invention may be labeled with a detectable moiety. Various labeling moieties are known in the art. Said moiety may be, for example, a radiolabel (e.g., 3H, 125I, 35S, 14C, 32P, etc.), detectable enzyme (e.g. horse radish peroxidase (HRP), alkaline phosphatase etc.), a fluorescent dye (e.g., fluorescein isothiocyanate, Texas red, rhodamine, Cy3, Cy5, Bodipy, Bodipy Far Red, Lucifer Yellow, Bodipy 630/650-X, Bodipy R6G-X and 5-CR 6G, and the like), a colorimetric label such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.), beads, or any other moiety capable of generating a detectable
signal such as a colorimetric, fluorescent, chemiluminescent or electrochemiluminescent (ECL) signal.

Probes may be labeled directly or indirectly with a detectable moiety, or synthesized to incorporate the detectable moiety. In one embodiment, a detectable label is incorporated into a nucleic acid during at least one cycle of a cyclic polymerase-mediated amplification reaction. For example, polymerases can be used to incorporate fluorescent nucleotides during the course of polymerase-mediated amplification reactions. Alternatively, fluorescent nucleotides may be incorporated during synthesis of nucleic acid primers or probes. To label an oligonucleotide with the fluorescent dye, one of conventionally-known labeling methods can be used (Nature Biotechnology, 14, 303-308, 1996; Applied and Environmental Microbiology, 63, 1143-1147, 1997; Nucleic Acids Research, 24, 4532-4535, 1996). An advantageous probe is one labeled with a fluorescent dye at the 3^{\prime} or 5 ' end and containing G or C as the base at the labeled end. If the 5^{\prime} end is labeled and the 3^{\prime} end is not labeled, the OH group on the C atom at the 3^{\prime}-position of the 3 ' end ribose or deoxyribose may be modified with a phosphate group or the like although no limitation is imposed in this respect.

Spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means can be used to detect such labels. The detection device and method may include, but is not limited to, optical imaging, electronic imaging, imaging with a CCD camera, integrated optical imaging, and mass spectrometry. Further, the amount of labeled or unlabeled probe bound to the target may be quantified. Such quantification may include statistical analysis. In other embodiments the detection may be via conductivity differences between concordant and discordant sites, by quenching, by fluorescence perturbation analysis, or by electron transport between donor and acceptor molecules.

In yet another embodiment, detection may be via energy transfer between molecules in the hybridization complexes in PCR or hybridization reactions, such as by fluorescence energy transfer (FET) or fluorescence resonance energy transfer (FRET). In FET and FRET methods, one or more nucleic acid probes are labeled with fluorescent molecules, one of which is able to act as an energy donor and the other of which is an energy acceptor molecule. These are sometimes known as a reporter molecule and a quencher molecule respectively. The donor molecule is excited with a specific wavelength of light for which it will normally exhibit a fluorescence emission wavelength. The acceptor molecule is also excited at this wavelength such that it can accept the emission energy of the donor molecule by a variety of distance-dependent energy transfer mechanisms. Generally the acceptor molecule accepts the emission energy of the donor molecule when they are in close proximity
(e.g., on the same, or a neighboring molecule). FET and FRET techniques are well known in the art. See for example U.S. Pat. Nos. $5,668,648,5,707,804,5,728,528,5,853,992$, and 5,869,255 (for a description of FRET dyes), Tyagi et al. Nature Biotech. vol. 14, p 303-8 (1996), and Tyagi et al., Nature Biotech. vol 16, p 49-53 (1998) (for a description of molecular beacons for FET), and Mergny et al. Nucleic Acid Res. vol 22, p 920-928, (1994) and Wolf et al. PNAS vol 85, p 8790-94 (1988) (for general descriptions and methods fir FET and FRET), each of which is hereby incorporated by reference.

The probes for use in an array of the invention may be greater than 40 nucleotides in length and may be isothermal.

In some embodiments, the probes, array of probes or set of probes will be immobilized on a support. Supports (e.g., solid supports) can be made of a variety of materials, such as glass, silica, plastic, nylon or nitrocellulose. Supports are preferably rigid and have a planar surface. Supports typically have from about 1-10,000,000 discrete spatially addressable regions, or cells. Supports having about $10-1,000,000$ or about $100-100,000$ or about $1000-100,000$ cells are common. The density of cells is typically at least about 1000 , $10,000,100,000$ or $1,000,000$ cells within a square centimeter. In some supports, all cells are occupied by pooled mixtures of probes or a set of probes. In other supports, some cells are occupied by pooled mixtures of probes or a set of probes, and other cells are occupied, at least to the degree of purity obtainable by synthesis methods, by a single type of oligonucleotide.

Arrays of probes or sets of probes may be synthesized in a step-by-step manner on a support or can be attached in presynthesized form. One method of synthesis is VLSIPS ${ }^{\text {TM }}$ (as described in U.S. 5,143,854 and EP 476,014), which entails the use of light to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays. Algorithms for design of masks to reduce the number of synthesis cycles are described in U.S. 5,571,639 and U.S. $5,593,839$. Arrays can also be synthesized in a combinatorial fashion by delivering monomers to cells of a support by mechanically constrained flowpaths, as described in EP 624,059 . Arrays can also be synthesized by spotting reagents on to a support using an ink jet printer (see, for example, EP 728,520).

DATA ANALYSIS

Data analysis is also an important part of an experiment involving arrays. The raw data from an array experiment typically are images, which need to be transformed into matrices - tables where rows represent, for example, genes, columns represent, for example,
various samples such as tissues or experimental conditions, and numbers in each cell for example characterize the expression of a particular sequence (for example, a second sequence that has ligated to the first (target) nucleotide sequence) in the particular sample. These matrices have to be analyzed further, if any knowledge about the underlying biological processes is to be extracted. Methods of data analysis (including supervised and unsupervised data analysis as well as bioinformatics approaches) are disclosed in Brazma and Vilo J (2000) FEBS Lett 480(1):17-24.

KITS

The materials for use in the methods of the present invention are ideally suited for preparation of kits. Oligonucleotides may be provided in containers that can be in any form, e.g., lyophilized, or in solution (e.g., a distilled water or buffered solution), etc. In one aspect of the present invention, there is provided a kit comprising a set of probes as described herein, an array and optionally one or more labels. In another aspect, there is provided an RT-MLPA kit comprising a set of reverse transcriptase primers as described herein, and appropriate ligases, buffers, and PCR primers. In the kits of the invention, a set of instructions will also typically be included.

The oligonucleotide primers and probes of the present invention have commercial applications in prognostic kits for the detection of the expression level of a gene, such as a MEDIATOR complex and/or SWI/SNF complex gene, in the tumor cells of a patient. A test kit according to the invention may comprise any of the oligonucleotide primers or probes according to the invention. Such a test kit may additionally comprise one or more reagents for use in cyclic polymerase mediated amplification reactions, such as DNA polymerases, nucleotides (dNTPs), buffers, and the like. A kit according to the invention may also include, for example, a lysing buffer for lysing cells contained in the specimen.

A test kit according to the invention may comprise a pair of oligonucleotide primers according to the invention and a probe comprising an oligonucleotide according to the invention. Advantageously, the kit further comprises additional means, such as reagents, for detecting or measuring the binding of the primers and probes of the present invention, and also ideally a positive and negative control.

The invention will now be further described by way of the following non-limiting examples.

EXAMPLE 1

Identification of MED12, ARID1A and SMARCE1 as molecular determinants of resistance to $\dot{A} L K$ inhibitors in an EML4-ALK positive NSCLC cell line using a shRNA barcode screen

The ALK inhibitors crizotinib and NVP-TAE684 potently inhibit the human NSCLC cell lines that harbor EML4-ALK translocations (Galkin et al., 2007; Koivunen et al., 2008; Soda et al., 2007). The NSCLC cell line H3122 carries the EML4-ALK translocation and is exquisitely sensitive to ALK inhibitors. To identify novel determinants of resistance to ALK inhibitors in NSCLC cell lines, Applicants performed a large-scale RNAi-based loss-offunction genetic screen using a collection of 24,000 short hairpin (shRNA) vectors targeting 8,000 human genes (Berns et al., 2004; Brummelkamp et al., 2002). Applicants used a barcoding technology to identify genes whose suppression causes resistance to ALK inhibitors (Brummelkamp et al., 2006; Holzel et al.). The entire shRNA library was introduced into H 3122 cells by retroviral infection and cells were plated at low density with or without ALK inhibitors (Figure 1A). After four weeks of incubation with ALK inhibitors and the emergence of resistant cell clones, genomic DNA was isolated from treated and untreated cultures. The stably integrated shRNA cassettes (19-mer bar code sequences) were recovered by PCR from genomic DNA. The relative abundance of individual shRNA vectors was quantified by hybridization of the PCR products to microarrays harboring all 24,000 barcode sequences. The barcode screen was carried out in triplicate and the combined results are shown in Figure 1B. Each dot in the M/A-plot represents one individual shRNA vector in the library. M- and A-values reflect relative enrichment and hybridization signal intensity. Reproducible outliers are generally located in the right upper corner. Low-intensity spots are prone to technical artifacts and thus unreliable. Therefore, Applicants restricted their candidate selection by applying M / A cut-off values of $M \geq 7,5$ and $A \geq 7,5$ as previously described (Holzel et al.). The identification of independent shRNAs against the same gene or single shRNAs targeting multiple components of the same complex or signaling pathway strongly suggest a genuine hit from the screen. Applying these filter criteria, Applicants identified shRNAs against the genes MEDI2, ARIDIA and SMARCEI.

MED12, ARIDIA and SMARCE1 are components of large multi-subunit Mediator and SWI/SNF complexes involved in transcriptional regulation and chromatin remodeling

The MED12 gene encodes for a component of the large mediator complex ($\sim 2 \mathrm{MDa}$) that contains at least 33 different subunits and associates with RNA polymerase II at the promoters of genes (Malik and Roeder). Thereby, the Mediator complex is involved in transcriptional regulation. Initially it was thought that the mediator complex is exclusively required for active transcription of genes, but recent studies suggest additional and broader roles in transcriptional regulation, such as epigenetic silencing. In particular, MED12 was implicated in contributing to silencing of neuronal genes in non-neuronal cells by the recruitment of the H3K9 histone methyltransferase EHMT2 (G9a) in a REST dependent manner (Ding et al., 2008). Interestingly, mutations in MED12 are causal for some rare mental retardation syndromes and aberrant gene regulation might contribute to the phenotypic manifestations of these diseases (Risheg et al., 2007; Schwartz et al., 2007). In general, only a few studies have addressed the specific function of individual components of the mediator complex.

ARID1A and SMARCE1 are both components of the SWI/SNF chromatinremodeling complex (Reisman et al., 2009). The SWI/SNF complex is also a large multisubunit complex that contains two mutual exclusive but non-redundant subunits with ATPase activity. The ATPases SMARCA2 (BRM1) and SMARCA4 (BRG1) are required for the ATP dependent re-positioning of histones within the chromatin. This ATP-dependent chromatin remodeling activity impacts diverse chromatin related biological processes such as gene transcription and DNA repair. The SWI/SNF complex is conserved throughout evolution from yeast to man. Hence, it is remarkable that several subunits of the SWI/SNF complex have been identified as tumor suppressors. Deletions of SMARCB1 (INII, BAF47) are found in malignant rhabdoid tumors, a highly aggressive childhood cancer (Versteege et al., 1998). Inactivating truncating mutations of ARID1A and PBRM1 were found in more than 50% and 40% of clear cell ovarian and renal cancer, respectively (Jones et al.; Varela et al.). SMARCA4 (BRG1) is frequently mutated in NSCLC cell lines, but also in primary tumors (Medina et al., 2008; Rodriguez-Nieto et al.). In conclusion, there is substantial evidence in the literature that specific components of the SWI/SNF complex function as tumor suppressors in a tumor type dependent manner, but the molecular basis of this selectivity remains unknown.

Validation of shRNA barcode screen results

To validate the results of their screen, Applicants individually introduced the respective knockdown vectors from the NKI shRNA library against MEDI2 (\#1 and \#2), ARID1A and SMARCE1 into H3122 cells by retroviral infections and confirmed that all four shRNA vectors confer resistance to the ALK inhibitors crizotinib and NVP-TAE684 in H3122 cells (Figure 1C). To rule out 'off-target' effects, a common problem in the field of RNAi screening, Applicants only consider a gene identified from the screen as a genuine hit, if at least two independent shRNAs suppress the expression of the target mRNA and also confer resistance to the ALK inhibitors (Echeverri et al., 2006). In particular, Applicants considered a gene identified in the screen as a genuine hit, if at least two independent shRNAs suppress the expression of the target and also confer crizotinib resistance. Only one gene fulfilled these criteria: MED12, encoding a component of the large MEDIATOR transcriptional adapter complex.

To validate MED12 as a gene whose suppression confers resistance to crizotinib, Applicants individually introduced the two MED12 shRNA vectors (\#1 and \#2) from the library and one newly generated shRNA (\#3) into H3122 cells by retroviral infection. Empty vector (pRS) or shRNA targeting GFP (shGFP) served as controls throughout the study. All three distinct MED12 knockdown vectors conferred resistance to both crizotinib and the second ALK inhibitor NVP-TAE684 in long-term colony formation assays (Figure 3A) and also efficiently suppressed MED12 mRNA and protein expression (Figures 3B, 3C). Similarly, expression of additional independent lentiviral shMED12 vectors (\#4 and \#5) in H3122 cells also conferred resistance to ALK inhibitors (Figure 4A-C and data not shown). Furthermore, reconstitution of Med 12 in MED12 knockdown (MED12KD) H3122 cells by introducing a RNAi-resistant mouse Med12 cDNA restored the sensitivity of these cells to ALK inhibition (Figure 4A).Applicants confirmed that the reconstituted MED12/Med 12 total proteins in MED12KD cells were at physiological levels similar to parental cells (Figure 4B), and that knockdown of human MED12 mRNA was maintained in cells expressing both human shMED12 vectors and the mouse Med 12 cDNA (Figure 4C, D). Together, these results validate MEDI2 as a genuine on target hit and establish its role in resistance to ALK inhibition.

Next, Applicants validated that ARIDIA and SMARCE1 are on-target hits causally involved in the resistance to ALK inhibitors. As Applicants have only identified single shRNAs (shARID1A\#1, shSMARCE1\#1) against these genes from the barcode screen, they generated additional non-overlapping shRNAs against ARIDIA and SMARCEI (shARIDIA\#2, shSMARCE1\#2) and introduced them into H3122 cells by retroviral infection.

The independent shRNAs recapitulated the resistance to ALK inhibitors (Figure 5A). It is noteworthy that knockdown of either ARIDIA or SMARCE1 impaired proliferation of H3122 cells in the absence of the inhibitors. Applicants confirmed the suppression of ARID1A and SMARCE1 mRNA und protein levels by qRT-PCR and immunoblotting (Figure 5B-5E). Again, these results show that $A R I D I A$ and SMARCE1 are genuine on-target hits from the screen.

Next, Applicants introduced silent mutations into a human SMARCE1 cDNA expression construct and thereby generated two separate shRNA resistant (non-degradable, ND) forms of SMARCE1 (SMARCEI-ND) that cannot be targeted by shSMARCEI\#1 and shSMARCE1\#2. H3122 cells stably infected with pRS, shSMARCEI\#1 or \#2 were superinfected with retroviral expression constructs encoding for the respective non-degradable forms of SMARCE1 or the pMx empty control vector. Reconstitution of SMARCE1 restored sensitivity of SMARCE1 knockdown cells to ALK inhibitors (Figure 6A). Applicants confirmed reconstituted SMARCE1 protein levels in SMARCE1 knockdown cells by immunoblotting using an SMARCE1 specific antibody, again achieving close to endogenous level of SMARCE1 (Figure 6B). Applicants also verified a persistent knockdown of the endogenous human SMARCE1 mRNA in cells expressing the non-degradable SMARCE1 cDNAs by qRT-PCR using a human SMARCE1 3'UTR specific primer pair (Figure 6C). In turn, Applicants also confirmed expression of the SMARCE1 cDNA using an open reading frame specific primer pair detecting endogenous and ectopic (total) SMARCE1 (Figure 6D) In summary, these experiments demonstrate that SMARCE1 is a genuine on-target hit from the ALK inhibitor shRNA resistance screen.

MED12, ARID1A and SMARCE1 are molecular determinants of resistance to tyrosine kinase inhibitors in multiple NSCLC cell lines

Next, Applicants addressed the context dependency of their findings by studying independent NSCLC cell lines. The RAS/PI3K signaling cascade is a common denominator of all activated tyrosine kinases in NSCLC such as the EGFR (Pao and Chmielecki). Therefore, Applicants hypothesized that loss of MED12, SMARCE1 and ARID1A might also confer resistance to other tyrosine kinase inhibitors in cell lines that harbor respective activating mutations or amplifications.

NSCLC with activating mutations of the EGFR can be effectively treated with the EGFR inhibitors gefitinib and erlotinib. Several NSCLC cell lines with EGFR mutations
(PC9, H3255) were identified that are exquisitely sensitive to gefitinib and erlotinib at low nanomolar concentrations. Applicants introduced MED12 specific shRNAs (shMED12_TRC\#3 and \#5) into PC9 cells (EGFR ${ }^{\text {delE746-A750 }}$). Suppression of MED12 rendered PC9 cells insensitive to the EGFR inhibitor gefitinib (Figure 7A, left panel). In addition, reconstitution of PC9 MED12-knockdown cells with the mouse Med 12 cDNA restored their sensitivity to gefitinib (Figure 7A, right panel). Using an antibody that recognizes human and mouse MED12/Med12, Applicants confirmed the suppression and restoration of MED12 protein level in the indicated PC9 cell lines by immunoblotting (Figure 7B). Applicants also verified persistent knockdown of endogenous MED12 by qRT-PCR using a human MED12 specific primer pair (Figure 7C). Likewise, Applicants controlled the ectopic expression of the mouse Med12 cDNA by qRT-PCR using a mouse Medl2 specific primer pair (Figure 7D). Furthermore, H3255 (EGFR ${ }^{\text {L858R }}$) cells were stably infected with three MED12 shRNA or control constructs (pRS and shGFP) and incubated with two EGFR inhibitors (gefitinib and erlotinib). Control cells were effectively eradicated, whereas shMED12 cells were insensitive to the treatment with the inhibitors (Figure 8A). Applicants confirmed suppression of MED12 by qRT-PCR (Figure 8B). In conclusion, Applicants demonstrated that loss of MED12 confers resistance to ALK and EGFR tyrosine kinase inhibitors in multiple NSCLC cell lines.

Next, Applicants asked whether ARID1A determines sensitivity to tyrosine kinase inhibitors in multiple NSCLC cell lines (context dependency). Applicants introduced the retroviral shRNA vectors against $A R I D I A$ (\#1 and \#2) or control vectors (pRS and shGFP) into PC9 (EGFR ${ }^{\text {delE746-A750 }}$) and H1993 (MET-amplified) cells (Figure 1A and 1C). Suppression of ARID1A conferred resistance to the EGFR inhibitor gefitinib and the MET inhibitor crizotinib in PC9 and H1993 cells, respectively. Knockdown of ARIDIA mRNA was confirmed by qRT-PCR (Figure 3B and 3D).

Now, Applicants addressed whether $S M A R C E 1$ is also determinant of tyrosine kinase inhibitor sensitivity in multiple NSCLC cell lines (context dependency). PC9 (EGFR ${ }^{\text {delE746- }}$ ${ }^{\text {A750 }}$, H1993 (MET-amplified) and EBC-1 (MET-amplified) cells were stably infected with the retroviral shRNA constructs pRS, shSMARCE1\#1 and \#2 and were treated with the EGFR inhibitor geftitinib (PC9) or MET inhibitor crizotinib (H1993, EBC1). In all cases, suppression of SMARCE1 conferred resistance to the respective inhibitors (Figure 10A, 11A and 12A, left panels). In parallel, the PC9, H1993 and EBC-1 cells expressing shSMARCE1\#1 and \#2 were infected with retroviral expression constructs encoding for the non-degradable forms of SMARCEI (SMARCE1-ND). Reconstitution of SMARCE1 restored
the sensitivity of SMARCE1-knockdown cells to the EGFR inhibitor geftitinib or MET inhibitor crizotinib (Figure 10A, 11A and 12A, right panels). Applicants confirmed reconstituted SMARCE1 protein levels in SMARCE1-knockdown cells by immunoblotting using an SMARCE1 specific antibody, again achieving close to endogenous level of SMARCE1 in most of the cases (Figure 10B, 11B and 12B). Applicants also verified a persistent knockdown of the endogenous human SMARCE1 mRNA in cells expressing the non-degradable SMARCEI cDNAs by qRT-PCR using a human SMARCEI 3'UTR specific primer pair (Figure 10C, 11C and 12C). In turn, Applicants also confirmed expression of the non-degradable SMARCE1 cDNAs using an open reading frame specific primer pair detecting endogenous and ectopic (total) SMARCE1 (Figure 10D, 11D and 12D). It has been shown that excess SMARCE1 protein is rapidly degraded by the proteasome, suggesting that SMARCE1 protein stability requires incorporation into the SWI/SNF complex. This finding is in line with Applicants' observations from the reconstitution experiments that the protein levels of the non-degradable forms SMARCE1 were close to endogenous SMARCE1 protein level despite a significant mRNA overexpression. In conclusion, SMARCEI is a determinant of resistance to tyrosine kinase inhibitors in multiple NSCLC cell lines.

The role of RAS-GAPs in the control of tyrosine kinase inhibitor sensitivity in NSCLC cell lines

Constitutive signaling from mutated receptor tyrosine kinases such EGFR leads to activation of the RAS small GTP-binding proteins (KRAS, HRAS, NRAS). In particular $K R A S$ is one of the most frequently mutated genes in a variety of cancers including NSCLC. RAS mutations impair the intrinsic GTPase activity and therefore prevent the conversion of active GTP-bound form into the inactive GDP-bound form (Karnoub and Weinberg, 2008). Introduction of constitutive active alleles of RAS in NSCLC cell lines renders the insensitive to tyrosine kinase inhibitors (data not shown). Therefore, inhibition of RAS is key mechanism of the efficacy of tyrosine kinase inhibitors. Applicants reasoned that direct negative regulators of RAS proteins might be critical determinants of sensitivity to tyrosine kinase inhibitors in NSCLC cell lines. The human genome encodes for 14 putative RASGTPase activating proteins (RAS-GAPs) that stimulate the GTPase activity of RAS proteins and promote the conversion of active GTP-loaded RAS into the inactive GDP-loaded form (Bernards, 2003). Applicants retrieved shRNAs covering the 14 putative human RAS-GAPs from the TRC shRNA collection and all shRNAs targeting the same gene were pooled
together. Applicants infected PC9 cells with the 14 RAS-GAP pools in addition to the control vectors pLKO and shGFP. The cells were plated at low density and treated with the two EGFR inhibitors gefitinib and erlotinib or left untreated (Figure 13). Several RAS-GAP pools conferred resistance to the EGFR inhibitors in the PC9 cell lines. Applicants observed the strongest resistance phenotype for the pool targeting the RAS-GAP DAB2IP. The pools directed against NF1 and RASAL3 also rendered the cells less sensitive to both EGFR inhibitors, whereas the pools targeting RASA2 exhibited inconsistent results.

First, Applicants focused on the RAS-GAPs DAB2IP and NF1. NF1 is bona-fide tumor suppressor mutated in several cancers and also causal for the hereditable disease neurofibromatosis type I, a benign tumor syndrome with strong predisposition to several malignant cancers (Cichowski and Jacks, 2001). DAP2IP plays an important role in prostate cancer and loss of its expression is associated with an aggressive metastatic disease (Min et al.). To validate the results of Applicants' focused shRNA mini-screen, Applicants individually introduced the five DAB2IP shRNAs from the TRC shRNA collection into PC9 cells (Figure 14A). Applicants noticed that shDAB2IP\#2 and to a lesser extent shDAB2IP\#5 exhibited toxicity. Applicants assume that this toxicity is unrelated to the suppression of DAB2IP, as shDAB2IP\#5 failed to induce a knockdown of DAB2IP. The two best shRNA vectors ($\mathrm{sh} D A B 2 I P \# 1$ and \#3) conferred resistance to the EGFR inhibitors gefitinib and erlotinib. Suppression of DAB2IP mRNA levels was confirmed by qRT-PCR (Figure 14B). Next, Applicants addressed whether loss of DAB2IP affects the activity of downstream signaling components of the RAS pathway, in particular the phosphorylation (activation) status of ERK. Total cell lysates were prepared from control and shDAB2IP cells (PC9) in the absence or presence of gefitinib (Figure 14C). Applicants confirmed suppression of DAB2IP protein level in shDAB2IP expressing cells. Consistent with the inhibition of RAS by RASGAPs, Applicants observed elevated levels of phospho-ERK in shDAB2IP cells indicating hyperactivation of downstream components of the RAS signaling cascade. Importantly, phosphorylation of ERK was maintained in shDAB2IP cells treated with gefitinib being in line with resistance to EGFR inhibitorș in the colony formation assays. Next, Applicants individually introduced the five $N F 1$ shRNA.s from the TRC shRNA collection into PC9 cells (Figure 15A). The two best shRNA vectors (shNFI\#2 and \#5) conferred resistance to the EGFR inhibitors gefitinib and erlotinib. Suppression of NF1 mRNA and protein levels was confirmed by qRT-PCR and immunoblotting (Figure 15B and 15C). Applicants' results show that the DAB2IP and NF1 are important determinant of sensitivity NSCLC cell to EGFR inhibitors.

Suppression of MED12 and SMARCE1 leads to activation of ERK signaling in NSCLC cells.

Given that loss of MED12 or SMARCE1 causes resistance to multiple tyrosine kinase components of receptor tyrosine kinase signaling is altered. ERK is a key downstream component and its phosphorylation status positively correlates with its activation that can be determined by specific antibodies against the phosphorylated form of ERK. H3 122 cells were infected with two independent controls shRNA vectors or shRNAs targeting either MED12 or SMARCE1 and confirmed loss of MED12 or SMARCE1 protein by immunoblotting (Figure 16A and B). The cells were also treated of left untreated with the ALK inhibitor NVPTAE684, to address the activation status of ERK in the presence or absence of the inhibitor. Interestingly, H3122 MED12 knockdown cells maintained higher levels of ERK phosphorylation in the presence of the inhibitor (Figure 16A). Loss of SMARCE1 resulted in an increased ERK activation even in the absence of the inhibitor and consistently maintained higher levels of phosphorylated ERK in the presence of NVP-TAE684 (Figure 16B). In conclusion, elevated activation of the key downstream component ERK upon suppression of MED12 or SMARCE1 is consistent with resistance to upstream inhibition by tyrosine kinase inhibitors. Further, Applicants could also show that loss of MED12 resulted in elevated levels of ERK phosphorylation and hence activation in PC9 cells (Figure 16C). Applicants conclude that MED12 and SMARCE1 regulate ERK activation in multiple NSCLC lung cancer cell lines. Accordingly, in certain embodiments, MED12 and/or SMARCE1 expression and/or mutation status is an important determinant of treatment responses to tyrosine kinase ${ }^{\cdot}$ inhibitors in the clinic.

MED12 loss leads to ERK activation and multi targeted-drug resistance in different cancer types

Applicants' finding that MED12 suppression confers resistance to both ALK and EGFR inhibitors in NSCLCs suggests that MED 12 might act on a critical pathway downstream of both ALK and EGFR. As pointed out above, RAS signaling is downstream of all activated RTKs in NSCLC (Pao and Chmielecki, 2010). Applicants first asked which components of the RAS pathway could cause resistance to RTK inhibition in H3122 and PC9 cells by expressing active alleles of these genes (Figure 31). As expected, activation of RAS signaling by expression of KRASV12 conferred resistance to upstream inhibition by TKIs
targeting ALK and EGFR (Figure 31). BRAFV600E and MEK-DD also conferred resistance to TKIs, but PIK3CAH1047R, RALAQ75L and RALBQ72L failed to do so in both cell systems used. These results indicate that activation of the RAS-RAF-MEK cascade is sufficient to cause resistance to ALK and EGFR inhibitors. Applicants therefore asked whether the activity of RAF-MEK-ERK is altered in MEDI2KD cells. Indeed, H3122 cells expressing shMED12 vectors maintained higher levels of phosphorylated ERK (p-ERK) in the presence of ALK inhibitor (Figure 17A). Similarly, knockdown of MED12 in PC9 and H3255 cells leads to higher levels of p-ERK in both absence and presence of EGFR inhibitors (Figure 17B and data not shown). These findings suggest that MED12 loss confers resistance to ALK and EGFR inhibitors in NSCLCs by enhancing ERK activation.

If suppression of MED12 leads to ERK activation, one would expect that MED12 loss might also confer resistance to other cancer drugs targeting the MAPKs upstream of ERK. The small molecule drug PLX4032 (vemurafenib) has proven to be very effective in the treatment of melanoma with BRAFV600E mutations and the MEK inhibitor AZD6244 (seluteminib) is being tested in the clinical trials for the treatment of several cancers. A375 melanoma cells harboring the BRAFV600E mutation are highly sensitive to PLX4032 and AZD6244. Consistent with Applicants' observations made in NSCLC models, Applicants found that suppression of MED12 in A375 cells caused ERK activation (Figure 17D) and conferred potent resistance to both PLX4032 and AZD6244 (Figure 17C). Similar results were obtained in an additional melanoma cell line SK-MEL-28 (Figure 18C, D). SK-CO-1 colorectal cancer (CRC) cells harbor a KRASV12 mutation and are highly sensitive to MEK inhibition by AZD6244. Knockdown of MED12 also resulted in activation of ERK (Figure 17F) and conferred resistance to AZD6244 in SKCO-1 cells (Figure 17E). Identical results were observed in the CRC cell line SW1417 harboring a BRAFV600E mutation (Figure 18E, F).

To extend their findings even further, Applicants asked whether MED12 also confers resistance to a class of multi-kinase inhibitors. Sorafenib targets multiple tyrosine kinases and RAF kinases and is used clinically to treat advanced renal cell carcinoma and hepatocellular carcinoma (HCC). HCC Huh-7 cells are sensitive to sorafenib, but became resistant after knockdown of MED12 (Figure 17G, H). Taken together, Applicants' data demonstrate that MED12 loss leads to ERK activation and confers resistance to a range of targeted cancer drugs that act upstream of the ERK kinases. Applicants also note that the effects of MED12 suppression appear to be mostly context-independent as its consequences are readily apparent in several major cancer types including NSCLC, melanoma, CRC and HCC.

Results melanoma:

Suppression of MED12 confers drug resistance to BRAF and MEK inhibitors in BRAF ${ }^{\text {V600E }}$ melanoma cells

As a first step in expanding Applicants' finding in NSCLC, they examined the potential role of MED12 in drug responses to BRAF and MEK inhibitors in BRAF ${ }^{\mathrm{V} 600 \mathrm{E}}$ melanomas where activation of ERK is a common feature of resistant tumors. Since MED12 knockdown leads to higher levels of ERK phosphorylation in NSCL'C cells, Applicants asked if MED12 is also critical for drug responses to BRAF and MEK inhibitors in BRAF ${ }^{\text {V600E }}$ melanoma cells. A375 ($\mathrm{BRAF}^{\mathrm{V} 600 \mathrm{E}}$) melanoma cells stably expressing the retroviral shRNA constructs pRS, shGFP, shSMARCE1\#1 and \#2 were treated with the BRAF ${ }^{\mathrm{V} 600 \mathrm{E}}$ inhibitor PLX4720 or MEK inhibitor PD-0325901. In all cases, suppression of MED12 conferred resistance to the respective inhibitors (Figure 19).

In addition, Applicants observed similar effects in the melanoma cell line, SK-MEL28, which expresses $\mathrm{BRAF}^{\mathrm{V} 600 \mathrm{E}}$. In particular, Applicants demonstrate that downregulation of MED12 induces resistance to the BRAF inhibitor, PLX 4032, in SK-MEL-28 cells.

References

Bernards, A. (2003). GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603, 47-82.
Berns, K., Hijmans, E.M., Mullenders, J., Brummelkamp, T.R., Velds, A., Heimerikx, M., Kerkhoven, R.M., Madiredjo, M., Nijkamp, W., Weigelt, B., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431437.

Brummelkamp, T.R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian'cells. Science 296, 550-553.

Brummelkamp, T.R., Fabius, A.W., Mullenders, J., Madiredjo, M., Velds, A., Kerkhoven, R.M., Bernards, R., and Beijersbergen, R.L. (2006). An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2, 202-206.

Choi, Y.L., Soda, M., Yamashita, Y., Ueno, T., Takashima, J., Nakajima, T., Yatabe, Y., Takeuchi, K., Hamada, T., Haruta, H., et al. (2010). EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363, 1734-1739.

Cichowski, K., and Jacks, T. (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593-604.

Ding, N., Zhou, H., Esteve, P.O., Chin, H.G., Kim, S., Xu, X., Joseph, S.M., Friez, M.J., Schwartz, C.E., Pradhan, S., et al. (2008). Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 31, 347-359. Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N., et al. (2006). Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3, 777-779.

Engelman, J.A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J.O., Lindeman, N., Gale, C.M., Zhao, X., Christensen, J., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043.

Galkin, A.V., Melnick, J.S., Kim, S., Hood, T.L., Li, N., Li, L., Xia, G., Steensma, R., Chopiuk, G., Jiang, J., et al. (2007). Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci U S A 104, 270-275.

Hammerman, P.S., Janne, P.A., and Johnson, B.E. (2009). Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Clin Cancer Res 15, 7502-7509.
Holzel, M., Huang, S., Koster, J., Ora, I., Lakeman, A., Caron, H., Nijkamp, W., Xie, J., Callens, T., Asgharzadeh, S., et al. (2010). NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 142, 218-229.
Jackman, D., Pao, W., Riely, G.J., Engelman, J.A., Kris, M.G., Janne, P.A., Lynch, T., Johnson, B.E., and Miller, V.A. (2010). Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 28, 357-360.

Jones, S., Wang, T.L., Shih Ie, M., Mao, T.L., Nakayama, K., Roden, R., Glas, R., Slamon, D., Diaz, L.A., Jr., Vogelstein, B., et al. (2010). Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228-231.
Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517-531.

Kobayashi, S., Boggon, T.J., Dayaram, T., Janne, P.A., Kocher, O., Meyerson, M., Johnson, B.E., Eck, M.J., Tenen, D.G., and Halmos, B. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352, 786-792.

Koivunen, J.P., Mermel, C., Zejnullahu, K., Murphy, C., Lifshits, E., Holmes, A.J., Choi, H.G., Kim, J., Chiang, D., Thomas, R., et al. (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14, 4275-4283.

Kwak, E.L., Bang, Y.J., Camidge, D.R., Shaw, A.T., Solomon, B., Maki, R.G., Ou, S.H., Dezube, B.J., Janne, P.A., Costa, D.B., et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363, 1693-1703.

Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 2129-2139.

Maemondo, M., Inoue, A., Kobayashi, K., Sugawara, S., Oizumi, S., Isobe, H., Gemma, A., Harada, M., Yoshizawa, H., Kinoshita, I., et al. (2010). Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362, 2380-2388.

Malik, S., and Roeder, R.G. (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11, 761-772.
Medina, P.P., Romero, O.A., Kohno, T., Montuenga, L.M., Pio, R., Yokota, J., and SanchezCespedes, M. (2008). Frequent BRGI/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29, 617-622.

Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S.K., Reczek, E.E., De Raedt, T., Guney, I., Strochlic, D.E., Macconaill, L.E., Beroukhim, R., et al. (2010). An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 16, 286-294.
Pao, W., and Chmielecki, J. (2010). Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10, 760-774.
Reisman, D., Glaros, S., and Thompson, E.A. (2009). The SWI/SNF complex and cancer. Oncogene 28, 1653-1668.

Risheg, H., Graham, J.M., Jr., Clark, R.D., Rogers, R.C., Opitz, J.M., Moeschler, J.B., Peiffer, A.P., May, M., Joseph, S.M., Jones, J.R., et al. (2007). A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet 39, 451-453.

Rodriguez-Nieto, S., Canada, A., Pros, E., Pinto, A.I., Torres-Lanzas, J., Lopez-Rios, F., Sanchez-Verde, L., Pisano, D.G., and Sanchez-Cespedes, M. (2010). Massive parallel DNA pyrosequencing analysis of the tumor suppressor BRGl/SMARCA4 in lung primary tumors. Hum Mutat.

Rosell, R., Moran, T., Queralt, C., Porta, R., Cardenal, F., Camps, C., Majem, M., LopezVivanco, G., Isla, D., Provencio, M., et al. (2009). Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361, 958-967.

Rudin, C.M., Avila-Tang, E., Harris, .C.C., Herman, J.G., Hirsch, F.R., Pao, W., Schwartz, A.G., Vahakangas, K.H., and Samet, J.M. (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res 15, 5646-5661.

Schwartz, C.E., Tarpey, P.S., Lubs, H.A., Verloes, A., May, M.M., Risheg, H., Friez, M.J.; Futreal, P.A., Edkins, S., Teague, J., et al. (2007). The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene. J Med Genet 44, 472-477.
Sharma, S.V., Bell, D.W., Settleman, J., and Haber, D.A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7, 169-181.

Sharma, S.V., and Settleman, J. (2007). Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes $\operatorname{Dev} 21,3214-3231$.

Soda, M.; Choi, Y.L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., Fujiwara, S., Watanabe, H., Kurashina, K., Hatanaka, H., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561-566.

Varela, I., Tarpey, P., Raine, K., Huang, D., Ong, C.K., Stephens, P., Davies, H., Jones, D., Lin, M.L., Teague, J., et al. (2011). Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539-542.

Versteege, I., Sevenet, N., Lange, J., Rousseau-Merck, M.F., Ambros, P., Handgretinger, R., Aurias, A., and Delattre, O. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203-206.

Experimental Procedures

shRNA Barcode Screen

The human NKI shRNA library and the barcode screen were performed as described (Berns et al., 2004; Brummelkamp et al., 2006). Additional details can be found at http://www(dot)screeninc(dot)nki(dot)nl.

Cell Proliferation Assays

Single cell suspensions of the lung cancer cell lines were seeded into 6 -well plates (2×10^{4} cells/well) and cultured both in the absence and presence of the ALK inhibitors. At the endpoints of colony formation assays, cells were fixed with formaldehyde, stained with
crystal violet ($0,1 \% \mathrm{w} / \mathrm{v}$) and photographed. All relevant assays were performed independently at least three times. All knockdown and overexpression experiments were done by retroviral or lentiviral infections.

Cell Culture and Viral Transduction
H3122, PC9, H1993, EBC-1, H3255, SK-CO-1, and SW1417 cells were cultured in RPMI with 8\% heat-inactivated fetal bovine serum, penicillin and streptomycin at $5 \% \mathrm{CO}_{2}$. 293T, Phoenix cells, A375, SK-MEL-28, and Huh-7 cells were cultured in DMEM with 8\% heat-inactivated fetal bovine serum, penicillin and streptomycin at $5 \% \mathrm{CO}_{2}$. Subclones of each NSCLC cell line expressing the murine ecotropic receptor were generated and used for all experiments shown. Retroviral infections were performed using Phoenix cells as producers of retroviral supernatants using 2.5-3 $\mu \mathrm{g}$ of plasmid DNA as described (http://www(dot)stanford(dot)edu/group/nolan/retroviral systems/phx(dot)html). 293 T cells were used as producers of lentiviral supernatants by co-transfecting $3^{\text {rd }}$ generation lentiviral packaging constructs ($2 \mu \mathrm{~g}$ of plasmid DNA) along with the pLKO shRNA vectors ($2 \mu \mathrm{~g}$ of plasmid DNA). For transfections of 293 T cells, Applicants seeded 1.8×10^{6} cells in a 6 -well dish in the morning and transfected the cells 6-8 hours later. For transfections of Phoenix cells, Applicants seeded 1.0×10^{6} cells in a 6 -well dish in the morning and transfected the cells 6-8 hours later. Cells were refreshed the next day in the morning and afternoon. Viral supernatant was harvested the day thereafter for infections of the target cells. The calcium phosphate method was used for the transfection of Phoenix and 293T cells. Infected NSCLC cells were selected for successful retroviral integration using $2 \mu \mathrm{~g} / \mathrm{ml}$ of puromycin.

Reagents and Antibodies

Crizotinib (S1068), NVP-TAE648 (S1108), gefitinib (S1025), erlotinib (S1023), PLX4032 (S1267) and AZD6244 (S1008) were purchased from Selleck Chemicals. TRC human genome-wide shRNA collection (TRC-Hs1.0) was purchased from Open Biosystems (Huntsville, USA). Further information is available at http://www(dot)broad(dot)mit(dot)edu/genome bio/trc/rnai(dot)html. Antibody against MED12 (A300-774A), SMARCE1 (A300-810A), DAB2IP (A302-439A) and NF1 (A300140A) was from Bethyl Laboratories; antibody against Vimentin (RV202) was from Abcam; antibody against N-cadherin (ab18203) was from Cell Signaling; antibodies against NF1 (SC67), HSP90 (H-114), p-ERK (E-4), ERK1 (C-16), ERK2 (C-14), CDK8 (D-9), Lamin A/C (636), SP1 (PEP2) and α-TUBULIN (H-183) were from Santa Cruz Biotechnology; The
antibody against ARID1A (H00008289-M01) was from Abnova. A mixture of ERK1 and ERK2 antibodies was used for detection of total ERK.

Plasmids

All retroviral shRNA vectors were generated by ligating synthetic oligonucleotides (Invitrogen) against the target genes into in the pRetroSuper (pRS) retroviral vector as described (Brummelkamp et al., 2002). The following RNAi target sequences were used for this study.

shGFP	GCTGACCCTGAAGTTCATC
shMED121\#1	GTACCATGACTCCAATGAG
shMED12\#2	GGAAGAGGTGTTTGGGTAC
shMED12\#3	GGAGGAACTGCTTGTGCAC
shARID1A\#1	GGGGTGAGCTGCAACAAAG
shARID1A\#2	AGGAGAAGCTGATCAGTAA
shSMARCE1\#1	GGAGAACCGTACATGAGCA
shSMARCE1\#2	GGAAGAAAGTCGACAGAGA

All lentiviral shRNA vectors (TRCN number) were retrieved from the arrayed human TRC shRNA library. Additional information about the shRNA vectors can be found at http://www.broadinstitute.org/rnai/public/clone/search using the TRCN number.

pLKO_control		No hairpin insert
shGFP		GCAAGCTGACCCTGAAGTTCA
shMED12_TRC\#1	TRCN0000018574	GCAGCATTATTGCAGAGAAAT
shMED12_TRC\#2	TRCN0000018575	GCTGTTCTCAAGGCTGTGTTT
shMED12_TRC\#3	TRCN0000018576	CGGGTACTTCATACTTTGGAA
shMED12_TRC\#4	TRCN0000018577	GCAGTTCATCTTCGACCTCAT
shMED12_TRC\#5	TRCN0000018578	GCAGAGAAATTACGTTGTAAT
shNF1_TRC\#1	TRCN0000039713	CCATGTTGTAATGCTGCACTT
shNF1_TRC\#2	TRCN0000039714	GCCAACCTTAACCTTTCTAAT
shNF1_TRC\#3	TRCN0000039715	CCTCACAACAACCAACACTTT
shNF1_TRC\#4	TRCN0000039716	CCTGACACTTACAACAGTCAA
shNF1_TRC\#5	TRCN00000039717	GCTGGCAGTTTCAAACGTAAT
shDAB2IP_TRC\#1	TRCN00000001457	GTAATGTAACTATCTCACCTA
$\operatorname{shDAB2IP_ TRC\# 2~}$	TRCN0000001458	GACTCCAAACAGAAGATCATT

shDAB2IP_TRC\#3	TRCN0000001459	GAGTTCATCAAAGCGCTGTAT
shDAB2IP_TRC\#4	TRCN0000001460	CTGCAAGACTATCAACTCCTA
$\operatorname{shDAB2IP_ TRC\# 5~}$	TRCN0000001461	GCACATCACTAACCACTACCT

shTGFßR2\#1, TRCN00000000830;
shTGFßR2\#2, TRCN0000010445.

The mouse MedI2 expression constructs were generated by the following steps:
1), An linker containing first 89 bp of Med 12 open reading frame (ORF) and multiple restriction sites was cloned into pcDNA3.1(+) vector by NheI and BamHI restriction sites and was sequence verified; The oligo sequences of the top strand for the linker is

CTAGCTCGAGTCGACCATGGCGGCTTTCGGGATCTTGAGCTATGAACACCGACCC

 CTGAAGCGGCTGCGGCTGGGGCCTCCCGATGTGTACCCTCAG and the bottom strand is
GATCCTGAGGGTACACATCGGGAGGCCCCAGCCGCAGCCGCTTCAGGGGTCGGT

 GTTCATAGCTCAAGATCCCGAAAGCCGCCATGGTCGACTCGAG.2), A PCR fragment of partial Med 12 (from 89 to 1777 bp) was generated using a forward primer
(CAGGATCCCAAACAGAAGGAGGATGAACTGACGGCTTTGAATGTAA), a reverse primer (TGGGAGAAGACATCATGTCG) and a Med12 partial cDNA as the template (IMAGE id: 6830443); This PCR fragment was then cloned into the pcDNA3.1(+)-Med12 (first 89 bp) vector described in step 1 by BamHI and EcoRI restriction sites and was sequence verified. Note that a silence mutation (A to G) at 81 bp of Med/2 ORF was introduced in the forward PCR primer to generate BamHI site in the PCR fragment.
3), An EcoRI/NotI fragment (containing from 1778 to 6573 bp of Med12 ORF) from the Med12 partial cDNA (IMAGE id: 6830443) was cloned into the pcDNA3.1(+)-Med12 (first 1777 bp) described above by EcoRI and NotI restriction sites to generate the pcDNA3.1(+)-Med12 (full-length).
4), The XhoI/NotI fragment containing the full-length MedI 2 ORF from pcDNA3.1 $(+)-M e d 12$ was then cloned into the retroviral expression vector pMX-IRESblasticidine using the XhoI and NotI restriction sites.

The human SMARCE1 expression construct and the non-degradable (ND) forms of were generated by PCR amplifying SMARCEI from H3 122 cDNA using the following
primers:
Forward, GTACGAATTCCACCATGTCAAAAAGACCATCTTATGC;
Reverse, GAATAAGTGTTGCCTTGTTTTGTGCTCGAGACTG. The fragment was cloned into the retroviral expression vector pMX-IRES-blasticidine using the EcoRI and XhoI restriction sites in the multiple cloning site and sequence verified. The SMARCE1-ND that is resistant against shSMARCE1\#1 was generated by site directed mutagenesis using the following primer pair:
Forward, GCATGGAGAAAGGAGAGCCATATATGAGCATTCAGCCTG; Reverse, CAGGCTGAATGCTCATATATGGCTCTCCTTTCTCCATGC.

hMED12_QPCR_Forward	GCTGGTGCACATAGCCACT
hMED12_QPCR_Reverse	TACTCCAGCCAGCCTTACCA
mMed12_QPCR_Forward	TCAGGCAGTGGGATTACAATGA
mMedI2_QPCR_Reverse	TCCAGGGCGTATTTTCTCAAAAC
hSMARCE1_QPCR_Forward	CGGCTTATCTGGTGGCTTT
hSMARCE1_QPCR_Reverse	AACAACTACAGGCTGGGAGG
hSMARCE1_3'UTR_QPCR_Forward	GGCTTTTGGACCATTTAGCA
hSMARCE1_3'UTR_QPCR_Reverse	GAGGCTTTCAGCAGTTGAGG
hARIDIA_QPCR_Forward	CCAACAAAGGAGCCACCAC
hARIDIA_QPCR_Reverse	TCTTGCCCATCTGATCCATT
hDAB2IP_QPCR_Forward	AGCGAGACTCCTTCAGCCTC
hDAB2IP_QPCR_Reverse	GACCGCAACCACAGCTTC

TGFßR2_Forward, GCACGTTCAGAAGTCGGTTA; TGFßR2_Reverse, TCTGGTTGTCACAGGTGGAA; ANGPTL4_Forward, GGAACAGCTCCTGGCAATC; ANGPTL4_Reverse,

GCACCTAGACCATGAGGTGG;
TAGLN_Forward, GTCCGAACCCAGACACAAGT; TAGLN_Reverse, CTCATGCCATAGGAAGGACC;
CYR61_Forward,GCTGGAATGCAACTTCGG; CYR61_Reverse, CCCGTTTTGGTAGATTCTGG;
CTGF_Forward, TACCAATGACAACGCCTCCT; CTGF_Reverse, TGGAGATTTTGGGAGTACGG;
VIM_Forward, CTTCAGAGAGAGGAAGCCGA; VIM_Reverse, . ATTCCACTTTGCGTTCAAGG;
CDH2_Forward, CCACCTTAAAATCTGCAGGC; CDH2_Reverse, GTGCATGAAGGACAGCCTCT.

References

Berns, K., Hijmans, E.M., Mullenders, J., Brummelkamp, T.R., Velds, A., Heimerikx, M., Kerkhoven, R.M., Madiredjo, M., Nijkamp, W., Weigelt, B., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431437.

Brummelkamp, T.R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-553.
Brummelkamp, T.R., Fabius, A.W., Mullenders, J., Madiredjo, M., Velds, A., Kerkhoven, R.M., Bernards, R., and Beijersbergen, R.L. (2006). An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2, 202-206.

TGF β signaling is required for drug resistance caused by MED 12 loss

The studies described herein show that suppression of MED12 leads to ERK activation and thus confers what in some embodiments is a "multi targeted-drug resistance" phenotype. To gain further mechanistic insights, Applicants set out to screen a lentiviral shRNA library representing the full complement of 518 human kinases (the "kinome", (Manning et al., 2002)) and 17 additional kinase-related genes (Figure 36) for genes whose inhibition restores sensitivity to ALK inhibitors in MED12 ${ }^{\text {KD }}$ cells. This "drop out" screen is the inverse of the resistance screen shown in Fig. 2A,B, as here Applicants select for shRNAs that are depleted upon drug treatment rather than enriched. H3122 cells stably expressing shMED 12 were infected with the lentiviral kinome shRNA collection and cultured in the presence or absence of crizotinib for 10 days. After this, the relative abundance of shRNA vectors was determined by next generation sequencing of the bar code identifiers present in each shRNA vector (Figure 21A). To prioritize the candidates for study, Applicants arbitrarily considered only shRNA vectors that had been sequenced at least 200 times and which were depleted at least 2.5 fold by the drug treatment. Only very few of the 3388 shRNA vectors in the library met this stringent selection criterion (Figure 21B). Among these candidates, only one gene, transforming growth factor beta receptor II (TGF β R2), was represented by two independent shRNA vectors that met the selection criterion. This suggested that suppression of TGF β R2 synergizes with ALK inhibition in MED12 ${ }^{\text {KD }}$ cells. To validate this finding, Applicants infected the same MED $12{ }^{\text {KD }} \mathrm{H} 3122$ cells with each of these two shTGFBR2 vectors (both of which reduced TGFßR2 levels (Figure 21 D)) and cultured these cells with or without crizotinib for two weeks. Inhibition of TGF β R2 did not significantly affect proliferation of the parental or MED $12{ }^{\mathrm{KD}}$ cells in the absence of crizotinib (Figure 21C). In contrast, suppression of TGFßR2 in combination with ALK inhibitor caused a marked inhibition of proliferation only in MED $12{ }^{\mathrm{KD}}$ cells (Figure 21C). These findings indicate that suppression of TGF β R2 re-sensitizes the MED $12{ }^{\mathrm{KD}}$ cells to ALK inhibitors and suggest that TGF β signaling is required for the drug resistance driven by MED12 loss.

TGFB activation is sufficient to confer resistance to multiple targeted drugs in different cancer types

Next, Applicants asked whether activation of TGF β signaling alone is sufficient to cause resistance to the cancer drugs studied above. In the absence of exogenous TGF β, proliferation of the H3122 cells was greatly inhibited by crizotinib. In contrast, cells treated with TGF β in combination with crizotinib continued to proliferate in a TGF β-dosage dependent manner (Fig. 4A). These data indicate that TGF β activation, similar to suppression of MED12, is sufficient to confer resistant to ALK inhibitors in EML4-ALK positive NSCLCs. Interestingly, H3122 cells treated with recombinant TGF β had a similar large and flat cell morphology as MED12 ${ }^{\mathrm{KD}}$ cells, which was not seen in parental cells (Figure 26A). Similar morphological observations were seen in other cell types (Figure 26B and data not shown).

Recombinant TGF β treatment also conferred resistance to EGFR inhibitors in PC9 and H3255.NSCLC cells (Figure 24B and data not shown). Similarly, treatment of TGF β resulted in a dosage dependent resistance to AZD6244 and PLX4032 in SK-CO-1 CRC cells and A375 melanoma cells (Figure 24C, D). In some cells, such as A375 and Huh-7 cells, (Figure 24D and data not shown), recombinant TGF β treatment alone resulted in growth inhibition, but clearly became beneficial for proliferation when cells were cultured in the presence of targeted cancer drugs, mimicking the effects of MED12 knock down in the same cells (Figure 17C, G). Collectively, these results demonstrate that activation of TGF β signaling is sufficient to confer resistance to multiple targeted cancer drugs in the same cancer types in which MED12 ${ }^{\text {KD }}$ also confers drug resistance.

MED12 loss activates TGF β signaling by elevating TGF β R2 protein levels

The fact that TGF β signaling is required for the drug resistance driven by MED12 suppression and that activation of TGF β signaling phenocopies MED 12^{KD} in mediating drug resistance suggested that MED12 can act as a suppressor of TGF β signaling. Applicants explored this possibility by studying differential gene expression by unbiased transcriptome sequencing analysis using next generation sequencing (RNA-Seq) for the same panel of cells lines tested above (H3122, PC9, SK-CO-1, A375 and Huh-7), for both the parental cells and multiple MED12 ${ }^{\mathrm{KD}}$ derivatives thereof. The genes deregulated by MED12 ${ }^{\mathrm{KD}}$ (>2 fold) in at least three out of five cell lines used are listed in Figure 37 and are referred to as MED12 ${ }^{\text {KD }}$ signature genes henceforth (237 genes up- and 22 genes downregulated). Strikingly, many of these genes are bona fide TGF β targets. To confirm these observations, Applicants first
examined mRNA expression levels of a panel of TGF β target genes, including ANGPTL4, TAGLN, CYR61, CTGF, SERPINE1 and CDKN1A in both H3122 and PC9 cells by qRTPCR (Figure 29A to 29D and data not shown). In agreement with Applicants' RNA-Seq data, all of these TGF β target genes were significantly induced upon MED $12{ }^{\text {KD }}$ in these NSCLC cells. Applicants also observed induction of these TGF β target genes upon MED12 ${ }^{\mathrm{KD}}$ in many cell lines of other tumor types, including melanoma A375 and SK-MEL-28, CRC SK-CO-1 and SW1417 and HCC Huh-7 (Figure 30A to 30D and data not shown). It is wellestablished that TGF β induces an epithelial-mesenchymal transition (EMT), leading to the induction of several mesenchymal markers such as Vimentin (VIM) and N-cadherin (CDH2) (Thiery et al., 2009). Importantly, MED 12^{KD} also caused expression of the mesenchymal markers VIM and CDH2, indicating that an EMT-like process is initiated in MED $12{ }^{\mathrm{KD}}$ cells (Figure 29E-F and Figure 30E-F). Accordingly, the protein products of these mesenchymalspecific genes such as Vimentin and N -cadherin were also detected in MED12 ${ }^{\mathrm{KD}}$ cells by Western blotting (Figure 30I and data not shown). Expression of the epithelial marker Ecadherin (CDH1) was not lost in MED12 ${ }^{\mathrm{KD}}$ cells (data not shown), suggesting that MED12 ${ }^{\mathrm{KD}}$ induces a partial EMT. Together, these unbiased gene expression studies support the notion that MED12 is a suppressor of TGF β signaling in a wide range of cancer types and that its loss activates TGF β signaling.

To further elucidate the molecular mechanism by which MED12 suppresses TGF β signaling, Applicants studied the effect of knockdown of MED12 on expression and activation of key components of the TGF β signaling pathway. Strikingly, Applicants found that suppression of MED12 resulted in a strong induction of TGFßR2 protein levels in H3122 and PC9 cells (Figure 29G, H). Consistently, SMAD2, the key mediator for TGF β target gene activation, was activated as indicated by a strong increase in SMAD2 phosphorylation upon MED12 knockdown. Similar results were also obtained in A375 melanoma, in SK-CO-1 CRC cells and other cancer cell lines, indicating that this interplay between MED12KD and TGF β signaling is conserved across different tumor types (Figure 30H-I and data not shown).

Since MED12 is part of the MEDIATOR transcriptional complex that functions in the nucleus, Applicants assumed that MED12 would act on TGF β R2 through a transcriptional step. However, there was only a marginal increase of TGF β R2 mRNA upon MED12 knockdown (Figure 30G), suggesting that MED12 suppresses TGF β R2 in a posttranscriptional manner. To investigate this, Applicants first determined the subcellular localization of MED12. Applicants carried out nuclear and cytoplasmic fractionation of PC9 cells expressing control vector or shMED12, followed by western blotting (Figure 291).

Lamin A/C and SP1 were used as marker controls for nuclear fractions, while α-TUBULIN and HSP90 were used as controls for cytoplasmic fractions. Abundant nuclear MED12 was detected, in agreement with its known function in a transcriptional complex. Unexpectedly, a significant quantity of MED12 was also present in the cytoplasmic fraction. Applicants confirmed that the cytoplasmic MED12 signal was genuine as it was greatly reduced in the lysate from MED12 ${ }^{\mathrm{KD}}$ cells. Cytoplasmic MED12 was also seen in H3122 cells (Figure 30J). Interestingly, no significant cytoplasmic CDK8 was detected, another subunit of the MEDIATOR kinase module with which MED12 is known to associate closely. This suggested that cytoplasmic MED12 might have a second function, independent of its role in the MEDIATOR complex.

The observation of the cytoplasmic localization of MED12 prompted Applicants to examine a potential physical interaction between MED12 and TGF β R2. Since low expression of endogenous TGF β Rs in most cell types hinders the study of physical interaction with TGFßRs, Applicants performed co-immunoprecipitation experiments using Phoenix cells cotransfected with TGFßR2 and MED12. As indicated in Figure 29J, TGFßR2 coimmunoprecipitated with MED12 and conversely MED12 co-immunoprecipitated with TGF β R2, indicating that MED12 interacts physically with TGF β R2. Thus, in certain embodiments, MED12 is a critical suppressor of TGFß signaling by negatively regulating TGF β R2 and this effect is mediated in certain embodiments by a novel cytoplasmic function of MED12 in complex with TGFßR2. Hence, without being bound to theory, this finding provides an explanation why MED12 suppression leads to activation of TGF β signaling.

A MED12KD gene signature has features of EMT and is both prognostic and predictive

As described above, MED12 suppression leads to activation of TGF β signaling and expression of mesenchymal markers, suggestive of a partial EMT-like process. Recently, EMT has been identified as a program in human CRC that correlates with poor prognosis (Loboda et al., 2011). Applicants therefore asked whether MED 12 ${ }^{\mathrm{KD}}$ indeed induces an EMT-like process and whether the processes induced by MED $12{ }^{\mathrm{KD}}$ are likewise associated with poor survival in CRC.

Applicants first compared the 237 genes that were upregulated in the MED12 ${ }^{\mathrm{KD}}$ signature (as described herein; Figure 37) to the 229 genes upregulated in a more general EMT signature (see Figure 38). Applicants found a significant overlap of 31 genes in both signatures ($\mathrm{p}=8.9^{*} 10-23$; Figure 33A and Figure 39).This result further supports the notion that MED12 loss initiates a partial EMT. There was no overlap between the 22 genes
downregulated in the MED12 ${ }^{\mathrm{KD}}$ signature and the genes downregulated in the EMT signature, most likely due to the small number of genes. Next, Applicants asked whether genes that are deregulated after MED12 knockdown predict survival in CRC. Hierarchical clustering of a set of 231 CRC tumor samples using the MED12 ${ }^{\mathrm{KD}}$ signature genes led to the identification of two subsets of tumors having significantly different disease-specific survival (Figure 33B). These results indicate that the processes induced by MED12 ${ }^{\text {KD }}$ result in a poor survival in CRC patients.

To further substantiate Applicants' finding that MED12 suppression confers resistance to cancer drugs targeting the MEK-ERK pathway downstream of RTKs, Applicants asked if the MED 12^{KD} signature could predict responses to MEK inhibitors in a large and heterogeneous panel of cancer cell lines of different tissue types. Since MEK inhibitors are currently being evaluated for the treatment of tumors having activating mutations in RAS or BRAF, Applicants focused their studies on 152 tumor cell lines harboring either RAS or BRAF mutations for whom the IC50 values of four different MEK inhibitors and gene expression patterns have been determined (Figure 41). Of the 237 genes that were up-regulated by MED 12^{KD} as identified by RNA-Seq, Applicants could read the expression levels for 170 genes in these 152 cell lines (Figure 40). Applicants found that high expression of these 170 genes is significantly associated with higher IC50s for all four MEK inhibitors in these cell lines (AZD6244, $\mathrm{p}=0.009$; CI-1040, $\mathrm{p}=0.004$; PD-0325901, $\mathrm{p}=0.007$; RDEA119, $\mathrm{p}=0.013$; Figure 33C and Figure 40). The analysis of one of these genes, ZBED2, is shown as an example in Figure 34). Thus, the group of genes that is upregulated following MED $12{ }^{\mathrm{KD}}$ can predict response to MEK inhibitors in a very heterogeneous panel of cancer cell lines, consistent with the notion that MED12 acts independent of cellular context to influence cancer drug responses (Figure 33C).

TGFBR inhibitor and TKIs synergize to suppress proliferation of MEDI2KD NSCLC cells
Applicants have demonstrated that TGF β activation by either MED 12 loss or recombinant TGF β stimulation confers resistance to multiple targeted cancer drugs in a range of cancer types. It is therefore of potential clinical relevance to explore new treatment strategies to target drug resistant tumors having acquired elevated TGF β signaling. Since inhibition of TGFBR2 by RNAi re-sensitized MED12 ${ }^{\text {KD }}$ NSCLC cells to TKIs (Figure 21 and data not shown), Applicants reasoned that TGF β R inhibitors would synergize with TKIs to inhibit MED $12{ }^{\mathrm{KD}}$ NSCLC cells.

To test this concept, Applicants cultured control or MED12 ${ }^{\text {KD }} \mathrm{H} 3122$ cells in the absence and the presence of crizotinib, the TGF β R inhibitor LY2157299 or the combination of crizotinib and LY2 157299 (Figure 35A). LY2157299 is a small molecule inhibitor targeting both TGF β R land TGF β R2, and is currently being evaluated in clinical trials for the treatment of several cancer types. Consistent with Applicants' previous data, crizotinib alone potently inhibited the proliferation of the control, but not of the MED12 ${ }^{\text {KD }}$ cells. LY2 157299 monotherapy had little effect on all cells. However, strong synergy was seen when crizotinib was combined with LY2157299, consistent with the notion derived from the RNAi experiment that TGF β R2 inhibition restored the sensitivity of MED 12^{KD} cells to crizotinib. Importantly, the same synergistic response was also obtained when LY2157299 was combined with gefitinib to suppress proliferation of MED12KD PC9 cells (Figure 35B) Thus, in certain embodiments, the combination of TGF β R inhibitors and TKIs is a strategy for treating tumors with elevated TGFß signaling.

Experimental Procedures

Pooled "dropout" shRNA Screen
A Kinome shRNA library targeting the full complement of 518 human kinases and 17 kinaserelated genes was constructed from the TRC human genome-wide shRNA collection (TRCHsl.0). The Kinome library was used to generate pools of lentiviral shRNA to infect H3122 cells stably expressing shMED12. Cells were cultured in the presence or absence of crizotinib. Massive parallel sequencing was applied to determine the abundance of shRNA in cells. shRNAs prioritized for further analysis were selected by the fold of depletion by crizotinib treatment.

Long-term Cell Proliferation Assays

Cells were seeded into 6 -well plates ($2-5 \times 104$ cells/well) and cultured both in the absence and presence of drugs as indicated. More details are described in Huang et al., 2009 (Huang et al.,2009). All knockdown and overexpression experiments were done by retroviral or lentiviral infection. All relevant assays were performed independently at least three times.

Gene expression and statistical analysis
Transcriptome sequencing analysis of cell lines were performed using RNA-Seq. To rule out "off-target" effects, Applicants considered genes that are significantly deregulated in the same direction by two independent shMED12 vectors. The MED12KD gene signature
was then assembled containing genes that were more than 2 folds up- or downregulated upon MED12 knock-down in at least three out of five cell lines. This signature was employed to hierarchically cluster a dataset consisting of gene expression data for 231 which CRC tumor samples. Differences in disease specific survival were determined using the Kaplan-Meier statistics.

EMT signature

An EMT signature was created by combining EMT expression signatures published by Taube et al. (Taube et al., 2010) and Loboda et al. (Loboda et al., 2011), and from the SABiosciences EMT PCR array (SABiosciences, Frederick, MD). All genes were annotated as down- or upregulated during EMT according to the source. Genes with annotation of conflicting expression changes in several sources were excluded. All gene symbols were translated to probe set identifiers.

COSMIC Cell Line Panel Analysis

Drug response data (IC50 values) and gene expression levels were obtained from COSMIC (Forbes et al., 2010) for 152 cell lines that have activating mutations in RAS or BRAF. The IC50 values were classified as sensitive or resistant and gene expression levels were classified as normal, up- or downregulated. For each pair of a gene and a MEK inhibitor an overlap enrichment test was applied to evaluate if significantly many cell lines were both upregulated for the gene and resistant to the MEK inhibitor. The number of significant associations within in the MED12 signature gene set was counted and compared to 100,000 randomly drawn sets of the same size and variance distribution to evaluate the significance of the MED12 signature.

Nuclear and Cytoplasmic Fractionation
Subcellular fractionation experiments were performed according manufacture protocol using the NE-PER Nuclear and Cytoplasmic Extraction Kit (78835) purchased from Thermo Scientific.
-
shRNA "Dropout" Screen With a Custom TRC Kinome Library
Lentiviral plasmids (pLKO.1) encoding shRNA that target kinome candidates were listed in Figure 36. The kinome library consists of 7 plasmids pools (TK1-TK7).
Lentiviral supernatants were generated as described at
http://www(dot)broadinstitute(dot)org/rnai/public/resources/protocols. H3122 cells stably expressing shMED $12 \# 3$ were infected separately by the 7 virus pools (Multiplicity Of Infection of 1). Cells were then pooled and plated at 300,000 cells per 15 cm dish in absence or presence of 300 nM crizotinib (5 dishes for each condition) and the medium was refreshed twice per week for 10 days. Genomic DNA was isolated as described (Brummelkamp et al., 2006). shRNA inserts were retrieved from 8ug genomic DNA by PCR amplification (PCR1 and PCR2, see below for primer information) using the following conditions: (1) $98^{\circ} \mathrm{C}, 30 \mathrm{~s}$; (2) $98^{\circ} \mathrm{C}, 10 \mathrm{~s}$; (3) $60^{\circ} \mathrm{C}, 20 \mathrm{~s}$; (4) $72^{\circ} \mathrm{C}, 1 \mathrm{~min}$; (5) to step2, 15 cycles; (6) $72{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (7) 4 ${ }^{\circ} \mathrm{C}$. Indexes and adaptors for deep sequencing (Illumina) were incorporated into PCR primers. 2.5 ul PCR1 products were used as templates for PCR2 reaction. PCR products were purified using Qiagen PCR purification Kit according to the manufacturer manual. Sample quantification is performed by BioAnalyzer to ensure samples generated at different conditions were pooled at the same molar ratio before analyzed by Illumina genome analyzer.
shRNA stem sequence was segregated from each sequencing reads and aligned to TRC library. The matched reads were counted and the counts were transformed to abundance that was assigned to the corresponding shRNA.
Primers used are as follows:
PCR1_Untreated replicate\#1_Forward,
ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGATCCTTGTGGAAAGGACGA
AACACCGG; PCR1_Untreated replicate\#2_Forward, ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGCTACTTGTGGAAAGGACGA AACACCGG; PCR1_PLX treated replicate\#1_Forward, ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTAGCCCTTGTGGAAAGGACGA AACACCGG; PCR1_PLX treated replicate\#l_Forward, ACACTCTTTCCCTACACGACGCTCTTCCGATCTTACAAGCTTGTGGAAAGGACGA AACACCGG; PCR1_Reverse (P7_pLKO1_r), CAAGCAGAAGACGGCATACGAGATTTCTTTCCCCTGCACTGTACCC PCR2_Forward, AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA TCT: PCR2_Reverse (P5_IlluSeq), CAAGCAGAAGACGGCATACGAGAT.

RNA-Seq Gene Expression Analysis

Total mRNA of each sample was converted into a library of template molecules suitable for subsequent cluster generation using the reagents provided in the Illumina ${ }^{\circledR}$ TruSeq ${ }^{\text {TM }}$ RNA Sample Preparation Kit, following the manufacture protocol. Sequence reads were generated using Illumina HiSeq 2000 with TruSeqTM v3 reagent kits and software. The reads (between 20-45 million 50 bp paired-end reads per sample) were mapped to the human reference genome (build 37) using TopHat (v. 1.3.1, (Trapnell et al., 2009)), which allows to span exon-exon splice junctions. The open-source tool HTSeq-count (v. 0.5.3p3), available from EMBL, was then used to generate a list of the total number of uniquely mapped reads (between 16-33 million pairs of reads per sample) for each gene that is present in the provided Gene Transfer Format (GTF) file.

In order to determine which genes are differentially expressed between samples, the R package DEGseq (Wang et al., 2010) was used, which takes the output of HTSeq-count as input. The method used to identify differentially expressed genes is the MA-plot-based method with technical Replicates (MATR), which makes use of the presence of technical replicates. The genes that have no expression for all samples in the comparison were discarded from the dataset. The expression levels of all remaining genes in the dataset were added with 1 in order to avoid negative values after $\log 2$ transformation. Normalization for the number of reads is performed within this method and the cut off for differentially expressed genes is based on a p-value of 0.05 .

Gene Expression Statistical analysis

Gene expression datasets GSE14333 (Jorissen et al., 2009), GSE17536 and GSE17537 (Smith et al., 2010) were downloaded from the Gene Expression Omnibus (Barrett et al., 2011).

Duplicated samples in GSE14333 and GSE17536 were removed from GSE 14333 resulting in a final dataset comprising 389 tumor samples. Expression data were first normalized together using the RMA method as implemented in the affy package (Gautier et al., 2004) for R/Bioconductor (Gentleman et al., 2004) and then mean-centered separately for each dataset. The hclust method was employed for hierarchically clustering the samples based on MED12KD and Pearson correlation distance. The survival and Design packages were used for performing a Kaplan-Meier survival time analysis and plotting survival curves, respectively.

COSMIC Cell Line Panel Analysis

The predictive value of the MED 12 knockdown signature was assessed using the Catalogue Of Somatic Mutations In Cancer (COSMIC), which is part of the Cancer Genome Project (CGP) (Forbes et al., 2010). From COSMIC Applicants collected the IC50 values of four MEK inhibitors (AZD6244, CI-1040, PD-0325901 and RDEA119) for 152 cell lines that have a mutation in KRAS, HRAS, NRAS and/or BRAF. For these cell lines Applicants also obtained gene expression levels for 11354 genes from COSMIC.

The IC50 values across the 152 cell lines for each MEK inhibitor were discretized into "sensitive" and "resistant" using a simple discretization strategy. Briefly, if the distribution of IC50 values was not unimodal (using Hartigan's dip test (Hartigan and Hartigan, 1985), $\mathrm{p}<0.05$), a two component Gaussian mixture model was used to assign the cell lines to the sensitive or resistant category. Otherwise, an outlier detection strategy was used to call the cell lines that are far to the left of the bulk of the data (i.e., low IC50 values) as sensitive and the others as resistant. Overall, about 18% of the cell lines were called sensitive for each of the MEK inhibitors.

The same strategy was used to discretize the expression levels of each gene into "downregulated", "normal", and "upregulated." In this case, either a two or three component mixture model was used for multimodal distributions (using the BIC to choose the number of components), and for unimodal distributions the outlier scheme called cell lines to the right of the bulk (i.e. high expression levels) as upregulated and those to the left (i.e. low expression levels) as downregulated.

Next, for each pairing of a gene and a MEK inhibitor a simple enrichment test (i.e. hypergeometric test) was applied to evaluate if significantly many cell lines were both upregulated for the gene and resistant to the MEK inhibitor. For the four MEK inhibitors, AZD6244, CI-1040, PD-0325901 and RDEA119, Applicants respectively detected 474, 807, 856 and 681 genes at $p<0.05$.

Applicants evaluated whether there was an overrepresentation of the MED12 signature genes in these sets of genes. Of the 237 genes upregulated after MED12 knockdown, 170 are part of the gene expression set of COSMIC. Of the 22 genes downregulated after MED12 knockdown, only 12 are present in the gene expression set. Because the latter set is very small, Applicants decided to focus only on the set of 170 upregulated genes. In these 170 genes, and the four MEK inhibitors, AZD6244, CI-1040, PD0325901 and RDEA1 19, Applicants detected 22, 36, 35, and 26 genes at $\mathrm{p}<0.05$, respectively. Seven genes were found in all of the four groups. The association of gene
expression with response to AZD6244 for one of these genes, ZBED2, is depicted in Figure 34.

In order to determine the statistical significance of the number of genes in the MED12 signature whose gene expression was found to be associated with each of the inhibitors, Applicants compared these numbers to what would be expected under the null hypothesis. More specifically, Applicants randomly drew 100,000 sets of 170 genes with the same distribution of expression variance across the dataset as the 170 MED 12 upregulated signature genes. Applicants computed a permutation test p-value, which indicates the fraction of times (out of 100,000) that the randomly drawn gene set showed more significantly associated genes than the 170 MED12 signature genes. These p-values are $0.009,0.004$, 0.007 and 0.013 for AZD6244, CI-1040, PD-0325901 and RDEA119, respectively. These numbers are found in Figure 33C and in the main text

Applicants observed that the variance of genes in the MED12 signature was higher than the average for the complete expression dataset. Applicants focused on random gene sets with the same
variance distribution, since genes with no or low variance across the dataset can never be significantly associated with the varying IC50 values, and should therefore not be part of the random gene sets.

Having thus described in detail embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.

Each patent, patent application, and publication cited or described in the present application is hereby incorporated by reference in its entirety as if each individual patent, patent application, or publication was specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

1. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) measuring expression levels of one or more SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins in the patient; and
(b) comparing the expression levels of the one or more SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins in (a) with the expression levels of one or more reference SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins, wherein the one or more reference SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins are from a control sample, wherein a reduction in the expression of the one or more SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins in comparison to the one or more reference SWI/SNF complex and/or MEDIATOR complex nucleic acid and/or proteins is indicative of resistance to anticancer treatment in the patient.
2. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) isolating nucleic acid from the patient, wherein the nucleic acid comprises one or more SWI/SNF complex and/or MEDIATOR complex DNA and/or RNA; and
(b) analyzing the nucleic acid of (a) for the presence of one or more inactivating mutations in the SWI/SNF complex and/or MEDIATOR complex DNA and/or RNA, wherein the presence of one or more inactivating mutations in the one or more SWI/SNF complex and/or MEDIATOR complex DNA and/or RNA analyzed in (b) is indicative of resistance to anticancer treatment in the patient.
3. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) isolating protein from the patient, wherein the protein comprises one or more SWI/SNF complex and/or MEDIATOR complex proteins;
(b) analyzing the activity of the one or more SWI/SNF complex and/or MEDIATOR complex proteins in (a); and
(c) comparing the activity of the one or more SWI/SNF complex and/or MEDIATOR
complex proteins in (b) with the activity of one or more reference SWI/SNF complex and/or MEDIATOR complex proteins,
wherein a difference in activity of the one or more SWI/SNF complex and/or MEDIATOR complex proteins from (b) in comparison to the one or more SWI/SNF complex and/or MEDIATOR complex reference proteins in (c) is indicative of resistance to anticancer treatment in the patient.
4. The method of claim l, wherein the expression levels of one or more SWI/SNF complex nucleic acids and/or proteins are measured in (a).
5. The method of claim 4, wherein the expression levels of one or more SWI/SNF complex DNA are measured in (a).
6. The method of claim 4, wherein the expression levels of one or more SWI/SNF complex RNA are measured in (a).
7. The method of claim 4, wherein the expression levels of one or more SWI/SNF complex proteins are measured in (a).
8. The method of claim 1, wherein the expression levels of one or more MEDIATOR complex nucleic acids and/or proteins are measured in (a).
9. The method of claim 8, wherein the expression levels of one or more MEDIATOR complex DNA are measured in (a).
10. The method of claim 8, wherein the expression levels of one or more MEDIATOR complex RNA are measured in (a).
11. The method of claim 8, wherein the expression levels of one or more MEDIATOR complex proteins are measured in (a).
12. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) measuring expression levels of one or more RAS-GAP nucleic acid and/or proteins in the patient; and
(b) comparing the expression levels of the one or more RAS-GAP nucleic acid and/or proteins in (a) with the expression levels of one or more reference RAS-GAP nucleic acid and/or proteins, wherein the one or more reference RAS-GAP nucleic acid and/or proteins are from a control sample,
wherein a reduction in the expression of the one or more RAS-GAP nucleic acid and/or proteins in comparison to the one or more reference RAS-GAP nucleic acid and/or proteins is indicative of resistance to anticancer treatment in the patient.
13. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) isolating nucleic acid from the patient, wherein the nucleic acid comprises one or more RAS-GAP DNA and/or RNA; and
(b) analyzing the nucleic acid of (a) for the presence of one or more inactivating mutations in the RAS-GAP DNA and/or RNA,
wherein the presence of one or more inactivating mutations in the one or more RAS-GAP DNA and/or RNA analyzed in (b) is indicative of resistance to anticancer treatment in the patient.
14. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) isolating protein from the patient, wherein the protein comprises one or more RAS-GAP proteins;
(b) analyzing the activity of the one or more RAS-GAP proteins in (a); and
(c) comparing the activity of the one or more RAS-GAP proteins in (b) with the activity of one or more reference RAS-GAP proteins, wherein a difference in activity of the one or more RAS-GAP proteins from (b) in comparison to the one or more RAS-GAP reference proteins in (c) is indicative of resistance to anticancer treatment in the patient.
15. The method of claim 12, wherein the expression levels of one or more RAS-GAP nucleic acids are measured in (a).
16. The method of claim 15, wherein the expression levels of RAS-GAP DNA are measured in (a).
17. The method of claim 15, wherein the expression levels of RAS-GAP RNA are measured in (a).
18. The method of claim 12, wherein the expression levels of one or more RAS-GAP proteins are measured in (a).
19. The method of any of claims 1-3 and 12-14, wherein the patient has liver cancer, lung cancer, breast cancer, ovarian cancer, lung cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer and/or lymphoma.
20. The method of any of claims 1-3 and 12-14, wherein the resistance to anticancer treatment is resistance to treatment with a receptor tyrosine kinase inhibitor.
21. The method of claim 20, wherein the receptor tyrosine kinase inhibitor is selected from the group consisting of: gefitinib, erlotinib, EKB-569, lapatinib, CI-1033, cetuximab, panitumumab, PKI-166, AEE788, sunitinib, sorafenib, dasatinib, nilotinib, pazopanib, vandetaniv, cediranib, afatinib, motesanib, CUDC-101, imatinib mesylate, crizotinib, ASP3026, LDK378, AF802, and CEP37440.
22. The method of any of claims 1-3 and 12-14, wherein the resistance to anticancer treatment is resistance to treatment with an inhibitor of ERK activation.
23. The method of claim 22, wherein the inhibitor of ERK activation inhibits a cellular protein that interacts directly with ERK.
24. The method of claim 22, wherein the inhibitor of ERK activation inhibits a cellular protein that interacts indirectly with ERK.
25. The method of claim 22, wherein the inhibitor of ERK activation is a receptor tyrosine kinase inhibitor.
26. The method of any of claims $1-3$, wherein the SWI/SNF complex nucleic acid and/or protein is selected from the group consisting of: ARID1A, ARID1B, ARID2, SMARCA2, SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCB1.
27. The method of claim 26, wherein the SWI/SNF complex nucleic acid and/or protein is selected from the group consisting of: ARIDIA and SMARCEI.
28. The method of any of claims $1-3$, wherein the MEDIATOR complex nucleic acid and/or protein is selected from the group consisting of: MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4, MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25, MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED12L, and MED13L.
29. The method of claim 28, wherein the MEDIATOR complex nucleic acid and/or protein is selected from the group consisting of: CycC, CDK8, MED12, MED12L, MED13, and MED13L.
30. The method of claim 29, wherein the MEDIATOR complex nucleic acid and/or protein is MED12.
31. The method of any of claims 12-14, wherein the RAS-GAP is selected from the group consisting of: DAB2IP, NF1, and RASAL3.
32. The method of claim 19 , wherein the patient has lung cancer.
33. The method of claim 32, wherein the lung cancer is non-small cell lung cancer.
34. The method of claim 19, wherein the patient has melanoma.
35. The method of claim 2 or 13, wherein analyzing the nucleic acid in (b) comprises sequencing the nucleic acid.
36. The method of any of claims 1,2 , or 13 , wherein analyzing the nucleic acid in (b) comprises subjecting the nucleic acid to MLPA.
37. The method of claim 2 or 13 , wherein analyzing the nucleic acid in (b) comprises subjecting the nucleic acid to CGH.
38. The method of claim 2 or 13 , wherein analyzing the nucleic acid in (b) comprises subjecting the nucleic acid to FISH.
39. The method of claim 2 or 13 , wherein the inactivating mutation is selected from the group consisting of: point mutations, translocations, amplifications, deletions, and hypomorphic mutations.
40. The method of claim 2, wherein the nucleic acid of (a) comprises one or more SWUSNF complex genes.
41. The method of claim 2, wherein the nucleic acid of (a) comprises one or more MEDIATOR complex genes.
42. The method of claim 13, wherein the nucleic acid of (a) comprises one or more RASGAP genes.
43. The method of claim 3, wherein the one or more SWI/SNF complex and/or MEDIATOR complex proteins are inactive.
44. The method of claim 43, wherein the one or more SWI/SNF complex and/or MEDIATOR complex proteins are inactive due to one or more posttranslational modifications.
45. The method of claim 14, wherein the one or more RAS-GAP proteins are inactive.
46. The method of claim 45, wherein the one or more RAS-GAP proteins are inactive due to one or more posttranslational modifications
47. A microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a SWI/SNF complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer.
48. A microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer.
49. A microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a SWI/SNF complex and/or MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer.
50. A microarray comprising a plurality of polynucleotide probes each complementary and hybridizable to a sequence in a different gene that is a RAS-GAP gene that is a marker for resistance to anticancer treatment in a patient that has cancer.
51. The microarray of any of claims 47-50, wherein the plurality of probes is at least 70 $\%$, at least 80%, at least 90%, at least 95%, or at least 98% of the probes on the microarray.
52. The microarray of claim 47 or 49 , wherein the SWI/SNF complex gene that is a marker for resistance to anticancer treatment is selected from the group consisting of ARID1A, ARID1B, ARID2, SMARCA2, SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCBI.
53. The microarray of claim 48 or 49 , wherein the MEDIATOR complex gene that is a marker for resistance to anticancer treatment is selected from the group consisting of MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4, MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25, MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED13L, and MED12L.
54. The microarray of claim 50 , wherein the R.AS-GAP gene is selected from the group consisting of: DAB2IP, NF1, and RASAL3.
55. A kit, comprising at least one pair of primers specific for a SWI/SNF complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the SWI/SNF complex gene, and instructions for use.
56. A kit, comprising at least one pair of primers specific for a MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the MEDIATOR complex gene, and instructions for use.
57. A kit, comprising at least one pair of primers specific for a SWI/SNF complex and/or a MEDIATOR complex gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the SWI/SNF complex and/or MEDIATOR complex gene, and instructions for use.
58. A kit, comprising at least one pair of primers specific for a RAS-GAP gene that is a marker for resistance to anticancer treatment in a patient that has cancer, at least one reagent for amplification of the RAS-GAP gene, and instructions for use.
59. The kit of claim 55 or 57, wherein the primers are specific for a SWI/SNF complex gene selected from the group consisting of ARID1A, ARIDIB, ARID2, SMARCA2,

SMARCA4, PBRM1, SMARCC2, SMARCC1, SMARCD1, SMARCD2, SMARCD3, SMARCE1, ACTL6A, ACTL6B, and SMARCB1.
60. The kit of claim 56 or 57 , wherein the primers are specific for a MEDIATOR complex gene selected from the group consisting of MED22, MED11, MED17, MED20, MED30, MED19, MED18, MED8, MED6, MED28, MED9, MED21, MED4, MED7, MED31, MED10, MED1, MED26, MED2, MED3, MED25, MED23, MED5, MED14, MED16, MED15, CycC, CDK8, MED13, MED12, MED13L, and MED12L.
61. The kit of claim 58, wherein the primers are specific for a RAS-GAP gene selected from the group consisting of: DAB2IP, NF1, and RASAL3.
62. The kit of any of claims 55-58, wherein the marker for resistance to anticancer treatment is a marker for resistance to a receptor tyrosine kinase inhibitor.
63. The kit of claim 62, wherein the receptor tyrosine kinase inhibitor is selected from the group consisting of: gefitinib, erlotinib, EKB-569, lapatinib, CI-1033, cetuximab, panitumumab, PKI-166, AEE788, sunitinib, sorafenib, dasatinib, nilotinib, pazopanib, vandetaniv, cediranib, afatinib, motesanib, CUDC-101, imatinib mesylate, crizotinib, ASP3026, LDK378, AF802, and CEP37440.
64. The kit of any of claims 55-58, wherein the marker for resistance to anticancer treatment is a marker for resistance to an inhibitor of ERK activation.
65. The method of claim 64, wherein the inhibitor of ERK activation inhibits a cellular protein that interacts directly with ERK.
66. The method of claim 64, wherein the inhibitor of ERK activation inhibits a cellular protein that interacts indirectly with ERK.
67. The method of claim 64, wherein the inhibitor of ERK activation is a receptor tyrosine kinase inhibitor.
68. The kit of any of claims $55-58$, wherein the kit is a PCR kit.
69. The kit of any of claims 55-58, wherein the kit is an MLPA kit.
70. The kit of any of claims $55-58$, wherein the kit is an RT-MLPA kit.
71. The method of claim 1, wherein the level of expression of one or more SWI/SNF complex and/or MEDIATOR complex genes is measured by determination of their level of transcription, using a DNA array.
72. The method of claim 1 , wherein the level of expression of one or more SWI/SNF complex and/or MEDIATOR complex genes is measured by determination of their level of transcription, using quantitative RT-PCR.
73. The method of claim 1, wherein the level of expression of one or more SWI/SNF complex and/or MEDIATOR complex genes is measured in a tumor sample from the patient.
74. The method of claim 12, wherein the level of expression of one or more RAS-GAP genes is measured by determination of their level of transcription, using a DNA array.
75. The method of claim 12, wherein the level of expression of one or more RAS-GAP genes is measured by determination of their level of transcription, using quantitative RTPCR.
76. The method of claim 12, wherein the level of expression of one or more RAS-GAP genes is measured in a tumor sample from the patient.
77. The method of claim 73 or claim 76, wherein the tumor sample is a lung tumor sample.
78. The method of any of claims 1-3, 12-14, and 30, wherein the resistance to anticancer treatment is resistance to treatment with a B-RAF inhibitor.
79. The method of claim 78, wherein the B-RAF inhibitor is selected from the group consisting of: CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.
80. The method of any of claims 1-3,12-14, and 30, wherein the resistance to anticancer treatment is resistance to treatment with a MEK inhibitor.
81. The method of claim 80, wherein the MEK inhibitor is selected from the group consisting of: CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001.
82. The kit of any of claims 55-58, wherein the marker for resistance to anticancer treatment is a marker for resistance to treatment with a B-RAF inhibitor.
83. The kit of claim 82, wherein the B-RAF inhibitor is selected from the group consisting of: CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.
84. The kit of any of claims 55-58, wherein the marker for resistance to anticancer treatment is a marker for resistance to treatment with a MEK inhibitor.
85. The kit of claim 84, wherein the MEK inhibitor is selected from the group consisting of: CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G-573, RG7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001.
86. The method of claim 1 or claim 12, wherein expression levels of SWI/SNF and/or MEDIATOR complex or RAS-GAP nucleic acid and/or proteins are measured in one or more cancer cells of the patient.
87. The method of claim 2 or claim 13, wherein the nucleic acid in (a) is isolated from one or more cancer cells from the patient.
88. The method of claim 3 or claim 14, wherein the protein in (a) is isolated from one or more cancer cells from the patient.
89. The method of claim 86 , wherein the resistance is primary resistance to anticancer treatment.
90. The method of claim 86 , wherein the resistance is secondary resistance to anticancer treatment.
91. The method of claim 87, wherein the resistance is primary resistance to anticancer treatment.
92. The method of claim 87, wherein the resistance is secondary resistance to anticancer treatment.
93. The method of claim 88 , wherein the resistance is primary resistance to anticancer treatment.
94. The method of claim 88 , wherein the resistance is secondary resistance to anticancer treatment.
95. A method of treating resistance to one or more inhibitors of ERK activation in a patient in need thereof; comprising administering to the patient at least one inhibitor of the TGF-beta pathway in combination with the one or more inhibitors of ERK activation.
96. The method of claim 95, wherein the inhibitor of ERK activation is selected from the group consisting of direct and indirect inhibitors of ERK activation.
97. The method of claim 96, wherein the direct inhibitor of ERK activation is a MEK inhibitor.
98. The method of claim 96, wherein the indirect inhibitor of ERK activation is selected from the group consisting of RTK inhibitors, RAS inhibitors, and B-RAF inhibitors.
99. The method of claim 95, wherein the resistance to one or more inhibitors of ERK activation is primary resistance.
100. The method of claim 95, wherein the resistance to one or more inhibitors of ERK activation is secondary resistance.
101. The method of claim 95, wherein the resistance to one or more inhibitors of ERK activation is evaluated and/or predicted according to a method of any of claims 1-3 and 1214.
102. A method of evaluating:and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) measuring expression levels of one or more TGF β pathway nucleic acid and/or proteins in the patient; and
(b) comparing the expression levels of the one or more TGF β pathway nucleic acid and/or proteins in (a) with the expression levels of one or more reference TGF β pathway nucleic acid and/or proteins, wherein the one or more reference TGF β pathway nucleic acid and/or proteins are from a control sample, wherein an increase in the expression of the one or more TGF β pathway nucleic acid and/or proteins in comparison to the one or more reference TGF β pathway nucleic acid and/or proteins is indicative of resistance to anticancer treatment in the patient.
103. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) isolating nucleic acid from the patient, wherein the nucleic acid comprises one or more TGFß pathway DNA and/or RNA; and
(b) analyzing the nucleic acid of (a) for the presence of one or more activating mutations in the TGF β pathway complex DNA and/or RNA,
wherein the presence of one or more activating mutations in the one or more TGF β pathway DNA and/or RNA analyzed in (b) is indicative of resistance to anticancer treatment in the patient.
104. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) isolating protein from the patient, wherein the protein comprises one or more TGF β pathway proteins;
(b) analyzing the activity of the one or more TGF β pathway proteins in (a); and
(c) comparing the activity of the one or more TGF β pathway proteins in (b) with the activity of one or more reference TGF β pathway proteins, wherein a difference in activity of the one or more TGF β pathway proteins from (b) in comparison to the one or more TGF β pathway reference proteins in (c) is indicative of resistance to anticancer treatment in the patient.
105. A method of treating cancer in a patient in need thereof, comprising administering to the patient an inhibitor of ERK activation in combination with an inhibitor of TGF β pathway activation.
106. The method of claim 105, wherein the cancer is selected from the group consisting of: liver cancer, lung cancer, breast cancer, ovarian cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer, and lymphoma.
107. The method of claim 105, wherein the inhibitor of ERK activation is selected from the group consisting of: RTK inhibitors, RAS inhibitors, B-RAF inhibitors, and MEK inhibitors.
108. The method of claim 107, wherein the inhibitor of ERK activation is a MET inhibitor.
109. The method of claim 102, wherein the expression levels are measured of one or more of TGF β pathway nucleic acid is a TGF β pathway target gene selected from the group consisting of: ALOX5AP, COL5A1, TAGLN, ANGPTL4, LGALS1, IL11, LBH, and COL4A1.
110. The method of claim 95 or 105 , wherein the inhibitor of TGF β pathway activation is LY2157299.
111. The method of claim 110, wherein the inhibitor of ERK activation is crizotinib or gefitinib.
112. The method of claim 95 or 105 , wherein the inhibitor of TGF β pathway activation inhibits MEDI2/TGF β binding.
113. A method of identifying an inhibitor of ERK activation, comprising:
measuring MED $12 /$ TGF β binding in the presence and absence of a test compound, wherein a reduction in the amount of MED12/TGF β binding in the presence of the test compound in comparison to the absence of the test compound indicates an inhibitor of ERK activation has been identified.
114. A method of identifying an inhibitor of TGF β pathway activation, comprising: measuring MED12/TGF β binding in the presence and absence of a test compound, wherein a reduction in the amount of MED12/TGF β binding in the presence of the test compound in comparison to the absence of the test compound indicates an inhibitor of TGF β pathway activation has been identified.
115. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) measuring expression levels of one or more MED12 nucleic acid and/or proteins in the patient;
(b) measuring one or more markers of an EMT-like phenotype; and
(c) comparing the expression levels of the one or more MEDI2 nucleic acid and/or proteins in (a) with the expression levels of one or more reference MED12 nucleic acid and/or proteins, wherein a reduction in the expression of the one or more MED12 nucleic acid and/or proteins in comparison to the one or more reference MED12 nucleic acid and/or proteins in (c) and wherein one or more markers are measured of an EMT-like phenotype in (b) is indicative of resistance to anticancer treatment in the patient.
116. The method of claim 115, wherein the resistance to anticancer treatment is resistance to treatment with a MEK inhibitor.
117. The method of claim 116, wherein the MEK inhibitor is selected from the group consisting of: CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001
118. The method of claim 115, wherein the resistance to anticancer treatment is resistance to treatment with a B-RAF inhibitor.
119. The method of claim 118, wherein the B-RAF inhibitor is selected from the group consisting of: CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.
120. The method of claim 115, wherein the nucleic acid in (a) is isolated from one or more cancer cells from the patient.
121. The method of claim 115, wherein the protein in (a) is isolated from one or more cancer cells from the patient.
122. The method of claim 115, wherein the one or more markers of an EMT-like phenotype are measured in one or more cancer cells from the patient.
123. The method of any of claims 120-122, wherein the cancer is selected from the group consisting of: liver cancer, lung cancer, breast cancer, ovarian cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer, and lymphoma.
124. The method of claim 123, wherein the cancer is colorectal cancer.
125. The method of claim 115, wherein the one or more markers of an EMT-like phenotype are selected from mesenchymal markers.
126. The method of claim 125 , wherein the one or more mesenchymal markers are selected from vimentin and N -cadherin.
127. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and
(b) comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of one or more positive reference MEDI2KD signature nucleic acid and/or proteins, wherein if expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is similar to the one or more positive reference MED12KD signature nucleic acid and/or proteins, then resistance to anticancer treatment is indicated in the patient.
128. A method of evaluating and/or predicting resistance to anticancer treatment in a patient in need thereof, comprising:
(a) measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and
(b) comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of one or more negative reference MED12KD signature nucleic acid and/or proteins, wherein if expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is greater or lesser than the expression of the one or more negative reference MED12KD signature nucleic acid and/or proteins, then resistance to anticancer treatment is indicated in the patient.
129. The method of claims 127 or 128 , wherein the one or more cancer cells of the patient in (a) are from one or more cancer cells of the patient prior to the anticancer treatment.
130. The method of claims 127 or 128 , wherein the one or more cancer cells of the patient in (a) are from one or more cancer cells of the patient after the anticancer treatment.
131. The method of claim 128, wherein the negative reference MED12KD signature nucleic acid and/or proteins are from one or more non-cancerous cells of the patient.
132. The method of claim 128, wherein the negative reference MED 12 KD signature nucleic acid and/or proteins are from one or more cells known to be sensitive to the anticancer treatment.
133. The method of claim 128, wherein the one or more cancer cells of the patient in (a) are from cancer cells of the patient after the anticancer treatment, and wherein the negative reference MED12KD signature nucleic acid and/or proteins are from one or more cancerous cells of the patient prior to the anticancer treatment.
134. The method of claim 128, wherein the negative reference MED12KD signature nucleic acid and/or proteins is the average expression of the MED12KD signature nucleic acid and/or proteins in one or more tumor or cell line samples known to be sensitive to the anticancer treatment.
135. The method of claim 127, wherein the expression of the one or more MEDI2KD signature nucleic acid and/or proteins in (a) is about 2 -fold, about 3 -fold, about 4 -fold, about 5 -fold, about 6 -fold, about 7 -fold, about 8 -fold, about 9 -fold, or about 10 -fold greater or lesser than the one or more positive reference MED12KD signature nucleic acid and/or proteins.
136. The method of claim 127, wherein the expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is about the same as the one or more positive reference MED12KD signature nucleic acid and/or proteins.
137. The method of claim 128, wherein the expression of the one or more MED12KD signature nucleic acid and/or proteins in (a) is greater than or equal to about 1.2 fold higher or lower than the expression of the one or more negative reference MEDI2KD signature nucleic acid and/or proteins.
138. The method of claim 127, wherein the one or more MED12 ${ }^{\mathrm{KD}}$ signature nucleic acids are upregulated nucleic acids.
139. The method of claim 138, wherein the upregulated nucleic acids are selected from the upregulated nucleic acids presented in Figure 37.
140. The method of claim 138, wherein the upregulated nucleic acids are selected from the upregulated nucleic acids presented in Figure 40.
141. The method of claim 138, wherein the upregulated nucleic acids are selected from the upregulated nucleic acids presented in Figure 39.
142. The method of claim 127, wherein the one or more MED12 ${ }^{\mathrm{KD}}$ signature nucleic acids are downregulated nucleic acids.
143. The method of claim 142, wherein the downregulated nucleic acids are selected from the downregulated nucleic acids presented in Figure 37.
144. The method of claim 142, wherein the downregulated nucleic acids are selected from the downregulated nucleic acids presented in Figure 40.
145. The method of claim 142, wherein the downregulated nucleic acids are selected from the downregulated nucleic acids presented in Figure 39.
146. The method of claim 127 or claim 128, wherein the resistance to anticancer treatment is resistance to treatment with a MEK inhibitor.
147. The method of claim 146, wherein the MEK inhibitor is selected from the group consisting of: CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001.
148. The method of claim 127 or claim 128, wherein the resistance to anticancer treatment is resistance to treatment with a B-RAF inhibitor.
149. The method of claim 148, wherein the B-RAF inhibitor is selected from the group consisting of: CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC2036, GDC-0879, AZ628, and antibody fragment EphB4/Raf inhibitors.
150. The method of claim 127or claim 128, wherein the cancer is selected from the group consisting of: liver cancer, lung cancer, breast cancer, ovarian cancer, head and neck cancer, bladder cancer, colorectal cancer, cervical cancer, mesothelioma, solid tumors, renal cell carcinoma, stomach cancer, sarcoma, prostate cancer, melanoma, thyroid cancer, brain cancer, adenocarcinoma, glioma, glioblastoma, esophageal cancer, neuroblastoma, subependymal giant cell astrocytoma, endometrial cancer, a hematological cancer, and lymphoma.
151. A method of evaluating and/or predicting of resistance to anticancer treatment in a patient in need thereof, comprising:
measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and
comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of (i) one or more MED12KD signature nucleic acid and/or proteins from cells known to be resistant to said anticancer treatment AND (ii) one or more MED12KD signature nucleic acid and/or proteins from cells known to be sensitive to said anticancer treatment,
whereby the cancer cells of the patient are considered to be resistant if the difference in expression leveis between the cells in (a) and the cells in (i) is smaller than the difference in expression levels between the cells in (a) and the cells in (ii).
152. A method of evaluating and/or predicting of resistance to anticancer treatment in a patient in need thereof, comprising:
measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and
comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the expression levels of (i) one or more MED12KD signature nucleic acid and/or proteins from cells known to be resistant to said anticancer treatment AND (ii) one or more MED12KD signature nucleic acid and/or proteins from cells known to be sensitive to said anticancer treatment,
whereby the cancer cells of the patient are considered to be sensitive if the difference in expression levels between the cells in (a) and the cells in (i) is greater than the difference in expression levels between the cells in (a) and the cells in (ii).
153. A method of evaluating and/or predicting of resistance to anticancer treatment in a patient in need thereof, comprising:
measuring expression levels of one or more MED12KD signature nucleic acid and/or proteins in one or more cancer cells of the patient; and
comparing the expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (a) with the average expression levels of (i) one or more MED12KD signature nucleic acid and/or proteins taken from two or more cell samples,
whereby the cancer cells of the patient are considered to be resistant if the difference in expression levels of the one or more MED12KD signature nucleic acid and/or proteins between the cells in (a) and the average expression levels of the one or more MED12KD signature nucleic acid and/or proteins in (i) is greater than a factor 1.2.
154. The method of claim 95 or 105 , wherein the inhibitor of ERK activation inhibits MED12/TGF β binding.

Eig 1

\mathfrak{k}

Fin 2

B

F

G

H

D

E

H3122 cells

1964
A

B

c

D

A

8

0

c

ε

H3n2 cells
Fig 6
A

8

C

D

Fix 7

A

2

Fig 9

PCs cells

Fig 10

Fig 11

Fig 12
siog 13

pCo cells

A

ξ^{ξ}

0

A
pCO cells
Fig 15

5

0

Fig 16
H3122 cells

POQ cells
C

Fig 17

Fig 18
A

E

8

D

F

Fig 19

Fis 21
A

8

0

0

$\%$

登㭡23

Fg 24
A

登馀25

PCO (KGFwbele746AT50)
$\stackrel{\leftrightarrow}{\sim}$

Fig 27

8

Muino

䇣德 28

Fig 29

$$
\begin{aligned}
& \text { H } \\
& \operatorname{sens}
\end{aligned}
$$

Fig 30

A
$\dot{8}$
ABCrs．

E
7 sen

AFB

ρ

\qquad

E

＊
〇ががと

ig 31

发	$\frac{8}{8} \rightarrow \frac{3}{3}$
	$\frac{2}{z}-x-s$

緮筫 32

\％asen		©encer鲎斯		S幾綡C会 	絞刻1\％
ALK	Crizotinib	NSCLC	$\%$	4	\％
EGFR	Erlotinib	NSCLC	\％	$\%$	4
MET	Crizotinib	NSCLC	4	\％	Na，
BRAF	PLX4032	Melanoma	等氞．	匂口．	$*$
MEK	AZD6244	Melanoma	教気。	N．D．	4

Fig 34

Fis 35
※

8

Fig． 36

HCNC	Unicene	Oligo	Tre Kinorse	HGNC	Uniciene	Oligo	TrC kimme
Symbos	3d	11）	poci 120 ctio	Simbol	ld	131	Poos $12 \mathrm{ect10}$
PDK 3	Hs．65E190	TRONOOODN002S	4	［3：13PRTg	Tis． 59848.5	TRENOTORUOHAS4	\％
P0＜3	Hs．058390	TRCNSODOOUC2CiO	\＃i		36．598475	TRONOHOUOOCOSS	\％1
［）K3		TRENOSOS000262	\＃：	ESPR2	146.4719		4
ACVRL	He．59：026	TaCNoonorouss4	\＃3	BM：R2？	Hestiole	JRCNMS00064st	41
Acurle	He．593026	TRCN00000tO－35＇s	81	BMPR2	Hs．471319	TKCNOMNOCOMSE	al
ACVRL．	HS 595026	TRCN0006000357	± 1	8MP122	3／5．471139	The vocmentiss	\％
13\％	H3，199484	Trsvoronoun359	41	BMPR2	8is． 47 ll \％	TREW60ncountio	4.
BTK	H． 159484	TRC	il	BUPIB	\＄1．6．31699	TRCNOKCH000；61	19
日rk	Hs． 155493	TRCN000060036 1	4	Buma	Hs 601699	TREvorsiou00462	＊：
Cobs	Hesssin	IRCNHOUCOUSE2	4 ）	EUsms	\＄15．63509	TRCNnOmonecti3	¢
CDM_{3}	H69557\％	TRCNOODO000363	\＆：	801313	1s．63：099	TRS：300：0020464	4
CDEA	H2．0557\％	Tecroi：00000364	41	Bumis	Hes． 630099	TREN0000000463	＊
Formi	125，5；3063	TRCCN000000367	41	CAMK28	Hs 351887	TRCN0700\％00465	$\times 1$
EGER2	15．533683	TRCK0000000368	Ni	CANIKJP	M．35i887	TRCNOW00000467	\cdots
GGFR2	¢is． 53368 \％	TROAMOCOOO363	43	CAMist	Ms． 351887	T7CC：900000046\％	43
Forez	Hs 533683	rravimencoe3\％		CAvkri3	（1） 351487	SCNOU00200463	71
EORR3	［19． 1420		41	CAASK2E	H5s 351887	M2CN090000470	¢1
BGERE	H5．3420	TRCNOOD0050374	\＃1	CAMK2O	1：5：141：4	TRCN0000060471	\＆1
orcyid	H8．59210	TRC： 0000000375	\＃1	CAsk2	45．184194	3xCNOOOnostir 72	si
Oucyas	tis． 6 22：09	Sircnjum000378	71	CGMK？	H5．134114	TRCNOOWU00433	41
IVSR	Fis 655744	TECNOU000300380	41		Bs i443：4	TRCNONOOM004．94	$\stackrel{1}{1}$
Nisk	14．459244	TRCNWODN0038：	的：	CAMKZD	Jis． 154.14	TRCNOW000004\％	4.
jak3	S16．515247	Tresoour000383	＊：	CADiK20	H5：32304s	trennognouedzó	\％
$3 \mathrm{AK3}$	135．515297	TECNO000006385	43	CAMK2G	13s 52360 s	TRCND00000047？	＂1
SAKS	13． 51524 ？		\％	Cnskzo	\＄5．5．53045	TRCNOO0000047	＋1
SAKS	14．5．515247	TRCN0000w387	3	Camkz	Hs． 523045	TRCOU000000479	41
KIT	X4．479754	Treavbou00338	\＃1	Cankig	H5．523045	3RCN0000000：80	41
Kir	Hs 475753	SRCNOW0G60389	＊	COK3：	Hs．700756	YRCNOOCMOOU48	41
xTr	Hes．47975：	TRCNOO00000390	＊1	com？	H．70676	TRC，	8．1
kit	Hs．ix975	TRCO300000n391	41	CDK3	H5 706786	TRCN0006000485	41
X：T	H25． 479758	TKEN000000392	H1	CDK3	Hs．70s？\％	3 CNOOOO 000484	81
MET	tis． 132960°	TRENOj00000383	4	Cosk	H．179882		\＆i
AET	Hs． 13296	TRCNOD000039	\＃	CDE6	H5． 119882		¢！
MET	Hs． 3 32nse	TRCSucoocrosis	8 ：	CDK6	H5．319882	3RCNomeos5435	\cdots
Mer	His 331966	TRCNOO00000305	4 ：	CDKS	Hs． 119882	Erelasciono s\％	73：
MET	Hs 13296\％		4	COKS	H0．119882	ERCNDOUN00488	－
P＇ikcil	H519617？	TRCMO000000：398	＊ 1	CDK8	HS 382306	TRCN000600048\％	6
PHKGZ	is 19617\％	TRCNOC0005543	\％：	CDKS	HSs． 382306	IRCNOOU000089	4
pheges	Sis 1061\％	JRavrougoonse	4.1	cria	H． 380356	Tiecivoormomas）	＊ 1
PYKSS？	Es 19607\％		\cdots	Come	54， 382306	TRCN0000004492	41
PHKG2	Hs：9617\％	TKCramonocer 4	41	Cuk	tis． 382300		7 ：
met	Hs 350321		4，	CDK9	Ts． 150923		41
RET	Bis． 350321	TRCNCOOPCOMAO	； 3	CDK9	：fs． $1504{ }^{\text {d }} 3$	TRCN0000030495	ai
RET	［15 354321	Trevoloocoersu	48	CDK9	Hs $35: 123$	TRCN00060）AO6	41
Rier	［35．350321	TRCNa06000020s	＋1	CDK ${ }^{\text {c }}$	Hs． 150823	TrCNOCODCOSAD7	\＆
RET	13s 35032	TRCNOMOMCO40S	＊	CJK9	H5 150423	TRCNOM006004 ${ }^{3}$	－1
STKく	145．5：5005	TRCNOM0000407	4	çam：	1iS． 24529	TRennecrioucays	＊
STKil	Hs Stsors	TRCNM00060488	i3：	C．mel	185．20529	Trenamoghowso	4
STKli	Hs．53500s	FIRCN0000000409	＊：	CHEX	3s．24529	TCNOCOORMSO：	： 3
STKS！	Hs 515005	Treivoseote	＊：	CHEK	H． 26520	TREMmomousind	$\therefore 1$
STK13	His． 515005	TRCN00CRODO4 11	31	ChHek	185．24529	TRCN00000005：3	\＃1
trk	His． 19640		31	CHEK	fes． 198908	TRCN0：000035\％	41
\％	4s． 89640	TREN0000000415	＋1	chle	His． 198958	TRCNOOCOUOSSS	4
TEx	Rs． 89600	TRCNGochoreald	41	CHK	169．98788	TRCiNowadocosos	＊：
TEK	bis． 80.640	TRCN000gsous 45	43	CTUK	M6198988	TRCNOOU000050？	41
Tek	14．8．8340	TRENOHOUS004： 0	＊i	© ${ }^{\text {ajk }}$	H1， 988598		$\because 1$
FGFR：	H5． 664887	TRCNOGOOCOMS：17	A：	MA！kia	： 3.485273	TRC NOCR0000509	41
FGFRX	［35 264888 ？	3RCNi00000n0938	$* 1$	MAPN：4	1×6485233	TRCS0030000S10	4！
mars	Hc． 204887	Trenooonouty	31	MAPK1s	Fis． 485233	TrCa 0000000512	43
EGFP？	He 264887	TRCNODOUS00420	＊i	MAPK13	464852：33．	TRCN0000005：2	4
GGER1	Hs． 204887	IRCNODMOA0CS2：	＊） 1	Mspti4	14.485233	TRCNOUOONCOS ${ }^{3}$	81
icrix	［is． 543 i20		31	OCkS	\％fs． 68.444 ：	TRCWCHOOOCOS14	\＃1
16818	Hes． 643120		4		75．683449：	YRCNugordooesis	$4)$
OETR	F9， 643120	Tracomoubust	4：	i） DCB	iss 683 ¢4，	Trenowootensto	4
GFIR	8， 0.83120	Thisuous 0000425	61	DGKO	$5 \mathrm{~F}, 682449$	TRC．2000006S17	＊）
OFIK	3is． 643120	TRCNOMO0000：125	4	OOKG	IS5ssis49：	Prenomousonst8	4
NpR2	H5 38518		＊	DAPK3	Ss．6336\％	TRCNMOUGSSA26	31
NPR？	Xis．78．538	TRCNOH00ncose8	\％	DAFK3	Bs．6．3：Ss	TRCNomomeosis	81
SPR／2	Ws 7858	TRCN0050g00：29	3！	D． 13×3	Y5．63：844	TrCNubroncioszo	4
APR2	Hs 73518	Treminosenatzo	43	GAPK	fis． 631544	BrCrascueossil	61
\％AP7	Hege 24565	TRCND00000436	di	DAPK3	is 618184	TE\％N0：0030052\％	${ }^{2}$
ZAP\％	H5．23436\％	Tricnoonosjoci 37	＊	BYRKU	As．78609	TRCN0000：000523	＊！
XAPYO	fis 2 ：45：63	TRCNMO300：04，${ }^{\text {a }}$	＊ 1	DYRKUA	35.719263	TRCN00000005 4	$4!$
7AP70	Ws 234569	rrenoleocond 3	\＃1	OYRKIA	：15．719268	TRCNOHOORO0525	${ }^{4}$
ZAP70	ics． 234569	TKCNOSOOOG0443	st	DYRKIA	Hs 719269	TRCNOOCWH00520	＊：
ACVR1	515470316		41	DYRESA	153.719269	TRCNDOMOO：05\％？	か！
ACVR：	5：9770316	TRCN00900004 22	13	18\％	Ms， $7 \times 02 ?$	YRENOCHODOCS2R	i ：
ACVE1	H5 478316	TRCADEOM00443	41	ERN：	Hs 7000）	TrCNOO00300529	13，
ABCl	H2． 43 ） 088	TRCNOMODOX079？	＊ 1	ERN：	Hs．705027	TRCWV000000530	4
ACV3R：	Eis． 4×0316	TRCCVORCOOSO424	¢ 1	ERIN：	Hs． 700027	TRCNONOOOCOS3：	$8!$
aOk：	18.870315	TRC：00000004d5	id	ERNI	fis 760027	TRCNOW0nobiz	＊
ncyrat	：1s． 174273	TRCN0000044：	51	GUCYEF	H3．12307\％	TRCNonomecss	4
AcV？28	Hs： 174273	rRCNODCOUCDALS	81	aucyer	H5， 123078	TRCMOPOCNGOS34	8
ACVR2B	H9， 374273	TRCN000006440	\％	Quccres	H15 1230374	trenomadeciss	\％1
SWMR18	15s． 59840 s	TRCAN000000433	4	Gucyz	His． 223074		\％1
BMPK1S	As． 598475		8	becyes	Ye 323078	TRC＇ROUNOHES3？	\％
BMPRR13	K3．538475	Thenorsourats：	4.	IRAE：	H5． 512319	TRCNOMOHOSS：？	＊

HONC Symben	Inicene id	$\begin{aligned} & \text { oligo } \\ & 11 \end{aligned}$	TRC Kinome Pow 1200:ij	HGNG Symbo:	Unigene is	$\begin{aligned} & 0: 180 \\ & 30 \end{aligned}$	TrOKinome Pool 120 c !
1RAK:	$M_{3.522819}$	TKCNOOUOOOS54	it	FGER4	He. 165350		\%
[kAF!	\%s.s278:\%	TRCNMOLmosss	\#!	MT:	Ms.659360	TRCNOMSNDEAS	4
\{Rak]	4s. 32385	Trendonoous46	41	ET:	Hs. 654360	Treciosodocues	4
imAK1	3is Si23:9	trenianougoest	*	HLT:	Rsis. 594360	Trcnonevaions	$\cdots 1$
iR, $\mathrm{K}^{\text {a }}$	H2,449207	Treneobovousas	* 1	FLT	149.659360	TRCNoccouteras	\cdots
R0, 2	456. 64×2387	TRCNOOOOOCNS49	31	Elit	H6, 646017		\%1
[2AK2	Hs 849207		41	ELT4	8s.540917	TRCNOUODSNO63:	13
1RSK2	Bs 449202	rticnomomioss:	\# 1	Fize	:1s 64597\%	TRCNOOOO0008\%36	al
nctrja	स5, 170:79	Trenoicmonoss?	* 1	Finid	3.646917	TRCNH000090633	\%1
actras	Ms.32017s	TRC30006003S3;	\%	FLT4	Hs. 645917	treanjoradousso	a)
AClR2,	8s. 470174	tackumounoiss:	\#1	STK2.	1s 508534	TRCNOMODOUGA	*
Acveza	His.770144	trenoonmouss	1	stras	ris. 5038514	trCNochocoebar	* 1
ADRBK:		trenomacooss?	\#1	Stw	sis. $50851 / 4$	TRCM \% 000006 cis 13	*
AOREK:	8is. 83636	Trepecmonoss.	*	StK24	BS. 508514	TRCNOU00000644	*:
ADRESK:	\%39.89636	incnogrouvess	*1	STK24	175. 508514	trenacomejoris	"1
AOKBK	Hs: 83336	1RCNo000003s0	* 1	OYRK	H3:164267	trenadiounogu	:1
八02B31	H2,83696	TRCNiLCOOCOSS	1	DYRK3	fis 164267		4
AK72	Fis. 631535	trenimou003s52	4	Dyrk3	H: 642307	TRCNO00050SS4\%	2)
AKT2	13.636535	TRCNO000000563	\#	DY:K5	If 16320\%		3
AMm	4s.6.71535	TRCN0000000564	3	DYRKK2	Pis. 173135	Trcnococou06	$\because 1$
AKT2	Hs.6.61595	trivonjoutosos	$\stackrel{1}{*}$	OYRK?	4 F .173135	TRCN:DOnC002ss	31
八кт2	Hig.ti31535	TRCNOOCGOOSG6	4 \%	OYRKz	its 173135	trenatiolonies?	\%
aras	His. 64654 :	TrCNicomenosby	\# 1	: PYkK2	Les crabis	trenomioiches,	\cdots
APAF	iss 46641	TRON0K00c00568	\#1	DYRK2	H5.192135	tremeorgodigs 4	"
ARAE	Hes. 466046	raconoteodoose9	i!	cimpka	135.2518822		S:
aram	16.94664]	tringoooctos ${ }^{\text {co }}$	*	aldika	is. TiSE 22	TRCNO:03000656	\#
AKAF	Hs.aciold	TRC: 0000000573	\% 3	Alfich	Hs.250882	TrCh O00030065 7	\% 1
AXL	(5: 59.9097%		\because	Actika	He.250:822	treanoubucos58	oi
Ax1.	16. Sople 70	TRCNOOOOMOST3	* 1	CDCAzera		MRCNODOnicasis.	:
AXL	Fig. 590970	¢RCumevocosia	\#1	cochrapx	Hs. 35433	TRCNODOCOSOCisf	:
A SL_{2}	H5s. 5×3970	TRCNH00:006575	* 1	Criceizis.	768.35:33	trevoluogicha	¢!
AXX	his $59(8070$	Trenocoedses ${ }^{\text {a }}$	A1	CDCizPa	H19.354,73	TRCN(200000052	b
Cancs	13s. 997203	tre Novolwhes?	*	CDCa281\%	415.35433	TRCN0000000663	\#:
CAMK4.	Hes 391269	rrcmuonvoesis	81	Mimpar	H5s. 655750	Thanmonocicseis	\#
CAMK4	Mis 591269		43	M 4 P4K3	H6.655750	TRCNOODOUSO665	-
camk	4s.591269	TRCNOU300:1005 80	*	MAEtM3	(is. $635 ; 50$	TRCWgocinoucts	43
CAMKA	H6. 593269	TRCNOOUOCHOS:	*	MAPqK3	36.6s5750	TRONOSOCLOS667	\%
OLC 2	H.153 3 4862	TRCTic000000s82	\# ${ }^{\text {a }}$	DCEKZ	Ws. 50245%	TRCNOKNOLSAEE	*i
cocz	415:33456\%	TRCNOMOU003583	:	DGKZ	(is. 502 c ,		k 1
COCZ	1\%3.344062	trevecosbeess 4	41	OGKz	H5. 5026611	therwoms00070	\#1
$C D C 2$	Mes 334.462	TRCP0000000ss	H1	()GK1)	ifs 4716%		ह1
Cras	H: 3 3 34562	TRCutionoonas 8 \%	13	nokd	He.4?:67s	TRCNOROECNT	\cdots
Cuk?	\%s. 19192	TRENOCOOCUS 67	4	boke			* 1
CDE	is 19192		4	00k:	dasylats		il
COK2	Hs 19192	TRCNODCOMFOS8	41	buk	Hes 476675		ir
¢ок2	Kis. 19192	TRCNCOU0000590	\#1	CAMK	H5.6588\%		:
COK2	Fsichise		4	CAMK)		TRCNOOOCCOS6"?	$3!$
com?	[15. 184298	TrCNogioucioss?	*:	Caskl	13. 434475	Prevonounsstio	\%
CDK\%	Hs. 184288	TRCN 0000000593	$\#$:	csmi	Hesta4875	trenimonobegza	\%
CDK\%	Fia. 3842%	T2CNH0060005\%	\%	Cames	F\% 5.934475	3RCNOOOOON0\%:	\#1
Cok	H5. 1842.98	Ti<CNomonuosg	$2{ }^{2}$	MADEAPKS	fis.4390\%	TKCNOCOGOCOLS\%	* 1
CIJ\%	स's. 18 \%298	Trencocomass\%	*	mapmats	Esti3903	TRC Mocansou68	$\# 1$
centid	He.6.3172s	TRCP600000303\%	*1	MAPKAPKS	H2.4:3903	TRCN00000600682	M
C3NK ${ }^{\text {Co }}$	Fis.631725	TrCmoncouotss	4	MAPKSPKS	Fis. 1 1300	TREN0000004083	3
cskior	H2031725	Irenojonconss	31	MAFKAPKS		TRENOSOOH00584	4
Csink!	iscosi72s	trenobionjosio	\cdots	Como	18.6\%9917		$* 1$
Csink (1)	[15.63:23s	TRENOODO006050:	43	C0350	Hegeste		\% 1
CSNKIE	He.474833	TRCN0000000662	\%	COBA	45.64) 3 \% 7	trcenobujomas	31
csinie	Rs. 474833	trenocouosis:27	¢ 1	CDK30	Brovicil7	Trenowemme8\%	a
CSNKIE	His. 479833	Tuenovoolvor63	\#1	Cide 30	\$15.6997\%		4
CSAKTE	His.474839	TrCNocounasna	\% 1	CASK	Ms.675984		*
CSSKIE	H.1.374883	TRCNM004000653	\#1	CASK	H5.495984	TRCNOODOOOSO;	${ }^{3}$
CSNK2al	His 645056	Trendyodenout	1	CASK	is 495084	TRCNOCDOOOOM (t)?	\%
CSNK2A.	73s. 6141056		\#:	CASK	His. 495984	Trengoromesis	*:
CSNK2at	tis. 544056	trenotmoisesos	$\stackrel{1}{2}$	CASK	H5.99598\%	TRCNuCOHOOCSOM4	*
CNM2A	Hs 64.056		\#1	StKlo	Hs. 153003	TRCNOCODOCOUS	\%
cinkza!	45.554056	trenojummúle	$\# 1$	STKis	83: 153003	TRCNOCOODOU696	"
CSNKSA	His. 0 ;405s	Trenogousbeb	\#1	STKIG	ifs. 1530% \%		4 :
SN:2A	14s 6 \$4056	rRCNOOCOUCO6:2	(1)	5xk: 5	H5. 1533003	ircingousouves	4 :
csik2at	Hs. 6 saose		1	STKio	Hk 15300,	7:	3
CSNKza;	Le. 644056	trexuchemotem	\#1	cichas	His.233552.	TRCvacocomote	k:
CSNKzai	T3544056	trenoconochis	* 1	cencas	:15.233552		ti
ODR:	its. 631888	TRETE0000006664	\#	CDCZ3	45 233552	TRCNO009000702	\#
30383	Fts. 631988	EREN00005s436	81	coczas	Hs 233552	Reneso0060703	8
DOR 1	H563488	TREN0000000:5h	83	cdizls	H2, 234553		*
mea		trewoononosis	41	RPPK	Fis 51.9842	T3CN0000600705	41
Rrib3	Hs. 18859	TRCNCOOH00s639	4	RIPK.	Bis 519842	Trenoundou0\%0s	4
ER383		Trevecumontie	8.	R3pk!	Jis, 519882		\$1
R1393	Fis. 18888	TRCNCODOUSO62	4	R19\%!	Fis 519842	Trenoobemores	*!
EREB			, 1	R(fK)	Fis. Sl9342	TRCN0000000709	;
R8333	lis. 18868 ?	TRCN0000000623	$3 i$	DYRKs	His. 139590	TRCN00n0000730	31
\%	His 76.6	TRCNOU00000624	\dot{s}^{3}	DYRK¢	He.ty95\%	-revocooniorli	41
ES	xis. 76.36	ThCN000000023	± 3	DYRK\%	Ms.439530	TrCNoworion7	4
18	[is 7636	TRCHegsodueb76	4	PYRKA	H5. 43959	TRCY 0 O00000713	"!
ns	Hs. 2636	TRCNOC05000627	4	Prema	H5.1590i4	TRCRGOSG0050719	${ }^{1}$
C7\%4	ds. 155050	TRENOC06000628	0	Prpas	Hs. 59014	trewoobenempe	*
Prid	Ms.16ses\%	TRENM080:0629	43	PRPP48	Hs. 158034	TRCNOD000072	4,

HENC	Unicone	Oifg	TRC Kinome	HGMC	Unisene	Oligo	TRC Kinome
Symbol	1 c ．	10	Pooi 200010	Symbor	d	［ 1	Fool 1200 ：10
Prome	3：15 59004；	TREN0000600722	／31	DMPK	Bis cisis9	TRCNODOOLOUB：	\＃ 1
Priple	$45: 59014$	TRCNOPDO000723	41	DMPE	Hs 631596	Trevecuoniosit	发
COKL2	H．SS Si6s	tresivionodiezza	4	EPLS：	His． $160{ }^{\text {che }}$	TRCN0000003817	\％
CDKk 2	［\％ 593698	TRCNOSOOOS0725	4	EPFEB	Hs．ingosz	TRCNomoteess1\％	＊：
CDKL2	His． 51698	TrCNococsioniz	\＃	Ethibl	\％3． 16999	TKCN000000esis	4
Cosk． 2	（13．591698	tranocosuinze	＊	TRPBEE	Jis． 16092		4
C\％12	H5 591698	TRCN0000000728	\％	EPsfel	H6：416092	TRCEN00060008821	＊
RYSG6i32	H： 534345	TRCN0000000729	41	GSK33	8is．44573\％	RecN0600000622	＊ 1
mese6ki32	1．t． 5.54845	Trcinou0000073i	\＃1	CSK38	3is． 345733	FRCNOO6000883	＊
mapjkia	Fes． 30418.7	TRCNCODOC00731	A	OSK38	His 645733	trencouiliouesz．	＊ 1
WAP3K14	45． 404389	Trenfoutedems	＊	OK38	His．445733	TRCPrateogi85s2	i
MASBK） 4	13s． 40.183	TRCNOU0003：173	4	LMix	33s．647095	FRCMO000000\％26	＊
misbix 14	HS 404183	then	4	mak	Br．6i70as	TRCNOOM0）：055\％	$\times 1$
BRSK？	H6．17684s		\checkmark ：	MAAFKL	H5．133655	TRCNOOUCOSS428	＊
grske	Hes 1 90819	trexamom000736	4	MAFK！	H5．172605	TRCNOCOOU001827	4
3 3， 5×2	Hs． 170319	TRCN0006000737	4 ${ }^{\text {a }}$	MAPK：3	\％is． 17885 S	TRCNODCOU00828	＊
33：562	36，：70819	trenociobcootzis	\％ 1	Matekis	Hs． 138695	TRC10000060829	4 ：
BRSK2	Hs．z70sis	trenolameghis）	di	torbez	ifs． 82028	TRCR ${ }^{\text {P }}$ C0000083\％	4
［ NK （	Ris． 203420	TRCMuOxiomina	＊	TGfibiz	H5． 82028	TREN0000000833	＊
TNK：	4s． 203920	TKCNOOMOCOM 2	\＃3	Mram	H5． 82028	TRCNOCOOH00832	${ }^{11}$
उНki	1H． 203220		\％	TCOBP2	Fss 82028	CRCNOUOOSP3：3	42
TNK）	14． 201320	TRENODE0000744	$8:$	TOEBR2	He． 82028		H：
C6，	Ms． 584748	TrCisoumberas	4：	Viki	His． 675 s ：	TrCu000100085	（1）
C1K	7is． 884748	trenojutious 746	${ }^{1}$	［2K1	H5． 9706 ：	TREN0000060830	i 1
civa	［7s 584748	Tricnecourion\％4	（1）	WLis	139．4706	CRCNogioutiosiy	＊ 1
clus	13．58：748	TRC：0000：00\％48	81	ULK．	H5，47\％61		31
clx	11．588743	zRem：0nowoso 349	31	ULK：	H5 570ul	Trenomecous39	＊
Clk2	H5． 73886	trewocheorerso	\＃1	GRKS	3 x 538 x 5		\because
Cuk	H5， 73.386		31	GRKS	H． 5234685	TRCNOOROCOSS：	4
cex？	H． 73486		31	ORES	H5． 524625	tranguecuasa	\because
CLS2	F18．73986	TRClawotenots	＊ 1	cirks	45.524635	PrCNDU00500323	$4:$
c1． S^{2}	715．73086	Trevobmonots：	4	PRKCE	Its． 880331	menoubuisus 46	\cdots
CLK	Hs．433732	Trenomojonisi	＊	PRKCCE	He．580351		シ1
Clki	Hs． 473732	tracroubinomets	4	PRKCE	Ps． 5803 s \％	TRCN0000000884	21
crsi	159．93732	trenorsonicise．	＊	MAizk 4	4\％350228	Trencouborestis	4.
CLX	H5． 633732	Trencocoocu075	＂：	NSAPAM	is 300428	TRCNamendes30	\because
ciki	［15433732	trenoriouoent58	！	\％AP3K	He． 390428	TRCN00500 0851	0 ：
PLis	Hs 632415		＊	MAP3K4	Hs． 394428	Trcnoteobueds	4
PEM！	Hs．632445		＊	Cixcasip	is． 654634	TRENOHOOSOOES53	＊
PLK3	E3． 6324.5	TRCNOLOSOOO\％ 1	41	CDC： 32 EPM	Ins cs：463：4	TRCNOMOOUC85．4	3
ple3	H5．6324is	ORCNobs0360076\％	＊ 1	COC4 42 PPB	86，654634	7RCH600n0008ss	\％
R．K．	H8： 6.32415	TRCNOO00000763	21	COC42APE	Ms 5154634	recnotovouoss	＊！
deka	4，50725	IRCH0000060\％64	4	FRKAAS	15．43322	TRCN0060000885	4
dокв	4.567255	trevoricumots	4	FRKAAL	Hs． 433122		$\because 1$
00 kB	H5 567295	trendodomajobis	\＃ 1	Prkati	H4， 33322	TRCNE00000ess9	41
Doka	Hs． 567255	TRCN0060066767	5	PRKAM：	Hs． 43322	TRencouocos860	A）
DGKE	\％8．56725s	TRCNGOB000076s	H	Prkafi	Hs．43：22	TRCNOCOOCobrs	H！
Prx2a	148599：322	teengouorombes	4	mberch	）15：306178	TRCW0000008：3	9
pTK2a	i3s． 491322		！	MERTK	H2， 306878	TRCV0000000864	4
9 Mcz	Hs 49：322	tranagobamil	4	MERTK	${ }_{4} \mathrm{H} .906078$	TRCNOMS0038ss	3 ：
HeT3	Heso\％ 5 \％ 0^{3}	TRCNGCOUSU07\％	${ }^{4} 1$	Mekrk	is smatrs	TRCNutipownsio	\＃1
Flict	H／530750	trenonecobuty	i1	My2	H． $398: 5 \%$	TRCW0，${ }^{\text {a }}$（R00085 7	31
SLT3	（15．507590	3mabowlours	4	PLK2	His． 39 H ［57	TRCNODOOOOSS8	4
AIRKB	835． 492658	TRCNOMOSE0775	${ }^{*}$	Pt．kz	Ms． 3985157	TRENODCOSOO8939	\％
AULRKB	Hs 442658		＊ 3	\＃K2	：3s 398157	TRCNMOMmers ${ }^{\text {a }}$	4
Aukjes	1：0．4472383	TRCN：000000778	${ }^{4} 3$	TRiO	14．130031		：
Al：RKs	M5．9425s8	trenobodounge	3	Trics	45． 130631	Trcncoconourt？	＂
STK\73	i3s 82235	9revoroceseness	＊ 1	7810	iss 1306171	Trencoombog？	3
STKı	Hs． 88297	TRCT： 6000000781	41	510	Bs． 130031	1REN0000030874	4
sskiza	H5． 88297	Trenmogioune	4	IRAK3		TRCN0030060875	N1
nik	Eis 634469	TRCN00000078i	\％	1Rak3	H5s． 369225	YRCNCOOCJ0087\％	＊ 1
ALK	His． 554469	Thenciosiours．	\％	flak	13 s 969265	Trivomisement	4，
A．LK	375． $55 ; 489$	TRCN600000786	a	D，AK3	\％5．359265	TRengove030878	3
dux	Fis 654469		\because	IRAK3	${ }^{185.359365}$	TRCNOOODOO6879	\％
Al．		ticnojobleomiss	\％ 1	Lasts	R3s． 78580	Trcenomenorsis	$\stackrel{1}{4}$
Ais3． 3	S6． 631048	TRCN0000090789	4	UATS2	Ns． 78980	Tramenounes	4
Abli	Mis． 431048		43	bass			
BMMPR1A			\＃	Lass	33,78860 415.7596%		\％
SMPRIA	Hs 524677	TRCNOCOOSOLG79s	4 ：	${ }_{\text {che }}^{\text {CATSL }}$	Hs． 4.390092	TRC．whersmousisis	\％
Bmpria	H3， 524847	TRCN0000200796	a 4 4	PRK3R4	Ws． $3: 50.32$ He． 249032		：
Badprea Buphe	$1 \times .524477$ $M .524477$		4 4 4		485．199032	TRCenoccomensi	\＃
RU3：	His． 469049	TRCNCOODOUSE0	¢	P6Jxd	is． 140032	trendogenoibi8	4
Bual	सi． $46 \% \% 49$	prenooucouesol	4	いK2	M9．168762		\square
H031	13s 668549	TRCM003 0000882	${ }^{1}$	－K2	His． 6187762	TKCNOOOD 00080	＊：
csk	：19．77793	Trentouccuobin	4	ER2	H2， 1688762	irncongovers：	\％
CSK	4is．77793	Trenowasionsea	＊	W2	H6． 1688769	TrCNiomaneess？	4
CSK	75 77793	treveodenju3s	i：	Skx			4，
CSK	：1s27703	TrChootmiosp	＊	SLK	H15． 591922 Fs． 591922	TmCNOCOONOB9S	31
Csemigige			$\stackrel{3}{*}$	SLEM	${ }_{4}$	Tricrioujouvess	＊1
CSNEicios	885． 129206	TRCxM0000080s	\％	sisk	\％15． 5191922		$* 2$
Csikkios	Its． 129290	TrCavoioncosio	41	Suk	\％ S 591922	Tramoducheg 98	\＃ 2
c．ameris	34．2．29206\％		\％	nuakl	its．？ 7917	Trensuabessis	4.
D\SPK	His． 63159%	TRCNMOCOUSG32	71	vuakl	457923！		$\stackrel{3}{2}$
OMPK	Hs 631596	TRCNOCHOLOOS13	$\stackrel{4}{4}$	nUAR	4s？${ }_{\text {cter }}$	Trex	\％
¢MPM	Ms． 0.31596	trcnumbucish	1	muant	He？	Th．．．	

HCiNC	シng＜ere	Oligo	TROKinome	HGNC	UsilGene	Oligo	TRC Kinome
Symbol	If	（1）	Pool 120010	Symbol	1 d	10	Poni 120010
NUSRK：	\％s．39917	TRCNOLOMUCS0．3	\＃）	PASK	12s 397891	TRCNOOOCumbes	42
VRK3	（4，43330		\＃2	MApk	H5．48437：	TRCOUOCOOMSO3	＊ 2
VRK？	Fs． 943330	－rice	42	MAPK9	Hs． 584371	TRCNODODOU1014	N_{2}
YRK；	Hs．413330	Tre wornouss：2	\％$\%$	MAPKS	iss 4 Sty ${ }^{\text {d }}$	TRCNOOONOL1015	\％ 2
BM1P2K	Hs．3Assi	TRCNOOG0010913	42	MAPK9	H543437i	TRCNORCBmembis	$\ddot{\square}$
BMP2K	Sis 846559	TRENOOOCOOGO14	$\checkmark 2$	minekjo	H3，125503	TRENKOCOMOLD	$\stackrel{*}{6}$
bulsek	Ys．istss，	The NOOOODOQS 15	$\% 2$	ASPKilo	（35．125s03	TRCNOG00001018	42
EMTP2F：	Hs．346553	TRCH000000996	\＃2	Mapxio	Ws 125503	TRCN0000006119	± 2
BMAF2K	tis lincoss：	3RCN00000009：7	12	MAF＜10	Hes．25s：3	TREvicobe01020	$* 2$
W：NE！	His 209894	TRCN000ngos918	\＃2	MAPK10	\％ 5 S． 325503	TRC：OCOHCO102］	82
WNK：	H5：79594	Tisenovudiols ${ }^{\text {a }}$	8 C	AXL．	Hs． 59097 e	TRCE 0100001637	42
WNET	4 H .709898	TRCF0000 0 Jes 20	52	AXI，	Hs 590970	TRCNCOROMOIBAB	42
whet	is 703894	TRCNOOCOOOOS3：	\％ 2	AXL	H5．5909\％	TRENOOCOOA1039	42
RNiASEL	H5． 5385.15	TRENOHCOU0933	\＄2	AXL．	\＄8．580970	TRCNOSG003030	42
anased	3－6．513545	TRCNO000000924	${ }_{6} 2$	AXi．	iss 5989%	PRCNOK00005041	42
RNASEI，	He． 138515	TRCFioumuloses	＊ 2	MAPKS	17s．1382］：	Tronoormbiolos	i 2
RHASEL	Kis． 518535	TRCPM006000926	42	Minexs	H6：3820	TRENUODEG10：6	${ }^{2} 2$
TEK8	Hs 44stes		82	Mages	Hs．i382il	3RCT000）2001057	82
NEKS	HS .448488	TRCNOTH00g00929	42	HSE1	4s．：59130	TKCNOH000010s4	42
NEKS	H5， 148468	TRCNOECON00s3n	42	R4E1	Hs 159330	TRENOROUSORO65	9
NEK：	M0．448568	TRCNOODO00093：	42	RAFI	H5：59130	TRCNEOL0061260	82
MYEX？	8is． 36092	Trenoc00000932	\＄2	K．AF！	Hs． 159130		H2
MYEF2	iss 86092	TRONOM0006933	\＃ 2	Ras	＊is． 15033 j	TRCNCDOM00：06s	42
MYLX	Hs 4\％\％37s	TRCNOODONGGSES	12	Mapar\％	He 533754	SRCNODO001974	42
SAYK	H6． 677375	TRCGOM00000936	\％2	Mriplk	H5．531784	TRCNOOS0061089	42
MYE	－is． 473305	TRCNOMStivods3	$* 2$	PRKC\％	Y4． 20 ¢25s	TRCSMowivilis	82
SRAR	Hs 76244	TRCNOC00000s38	82	PREく\％	14， 89825.5	FRCNOON0201270	42
SRM	Hs． 26245	TRCNOUSO：100939	\％ 2	pracz	Hs 996255	Yrcenocuote 2225	42
SRM		IRCNH000060040	12	PRKC\％	H6．4062S	TRCNOOOSOL222	${ }^{7} 2$
SRavi	Fis． 76244	Trinocomeng	$\cdots 2$	SRPK？	Nis 4 crisit	TRCNO005001230	42
SRM	Hs 962.44	TRONOCOCOHS4？	t2	SRi＇k3	6s．44386！	TRENOMOHO123：	il 2
MABY9	135．886．372	TRCNOS00000643	42	NPR2	1 K .25518	Treveosoget312	$\therefore 2$
MAPK9	－5．4843\％	TRCNGOKOOMO：924	＊？	NPR2	Hs． 78518	TRCircouecol：3	\％？
MAFK̇g	［SS．s8637］	Trentorioneisas	12	N？M2	H5．785：8	TRC：N0600001314	＊ 2
AMPK？	iss． 884371	TKCNC00000846．	12	SPR2	\％is． 78518	TKCNOHOSOLI3IS	72
MAPKS	Ws． 884371	TRCNCOM000947	\＃ 2	P6， 3	its 300483	TRCNODCOCO1324	\＃2
NEく2	3．153704	TRCN0000000948	$* 2$		H5．300485	Tachousou0：322	42
NEK2	Ha 5 S3\％ 4	TRCwoocsoubisu	＊？	ONV3	4×301485	$\because \mathrm{ZCNGOOGOOS} 373$	82
NEK：	\％s． 153704	Trenotocuoelso	42	HKN；	P12300485	TrCNCGO6001324	42
SUEK？	Hs 159704	TRCNOONOMOSS	42	$\operatorname{COCAREA}$	W\％．35433	TRCNOCJO001330	\％
NEK2	is 153704	Trevosionmogsz	42	COC423PA	If．3．583．	TRCNO000903332	32
rcsi	H3．1041	TRC：V600000093：	$\leqslant 2$	CDCA2B4A	645．35433	TRCNOAOJ001333	${ }^{*}$ ？
ROS：	Hs 1041	TRCN0000009s：	${ }_{2}$	CDC42EPA．	Ais． 35433	SRCNOMOU001332	＊ 2
ROSS	8s．109！	Trmatcoconess	42	bilitas	149283613	TRCNM300gni3as	\＄2
ROS 1	Msio4	Thevoooustous5	4%	Effids	14， 28.663	TRCN0060003．34	42
mos：	Hs． 1045	TRCM00000ci00s 7	$\% 2$	EPrias	Y1s． 28.3613		42
3 K	צ5． 700355	TECTSOOMNCOSO8	42	BMAA8	4 Hs 283613	TRC： $000000: 348$	${ }^{2}$
！ K	42s． 700355	TRCNOSOMStegs	42	EPEAA	H5．283613	TRCN00060：349	42
RK	Hs 2063s	BHCS00000209 0	\％ 2	CLKA	H5．606557	TRC＊D000001350	42
以K	its． 00655	TRCNO3000309\％	¢ 2	Cika	Hs．40s5s	ERCNOKNOMOS 352	${ }^{\circ} 2$
ILK	Hs． 706355	TRCNO000000972．	42	Cix4	Hs．4065s？	TRON0000n30605	\＃2
STXBAA	Bs 708489	TRCNOMOO000573	$\because 2$	MAPK？	40． 15036	TREvorogol3s4	42
Stkira	Hs？ 09.889		42	Mspk	8 Br 350.30	TRCNDMOLO61？	$\stackrel{3}{3}$
stigis	lis 700489		\＃2	Mapk 7	8 8s． $150: 36$	Trenoromousss	± 2
STKita	14． 709489	TRCN0000000976	42	DGK¢	Ws 5504.37	TRCN0000001357	42
ROCK2	HS 59660	rackoumjory？	42	DGKM	H5 659437		42
ROCK2	Hs Sys600	ThCN0000g009？8	12	Dokn	Hs 6590437	TRC\％ 20000031339	哏？
ROCK2	115S 581650	TRCW0000000979	42		As．650437	TRexionomessa	42
ROCK2	HS：593eise	TRCNOOCOOS0980	\＃2	Sck	Hs 2821：3	TRCNOODOOS：362	${ }^{-2}$
ROCK2	H／1s31600	T80： 0 de0000［98］	itz	SLK：	Ifs 282113	TRENG000001303	$\mathrm{E}_{2} 2$
wipkl	1is． 3×0277	TRCN0000hO298：	\％2	STK！	Hs． 282113	TRCN0000001354	42
DAPX：	18， 380277	TRCN0000000 483	62	SIR1	Hs． 282113	TRCNO000003365	\％
DAPKS	$3 \mathrm{~F}, 380277$	TRCNLODOCOOS84	42	51 c	1s 282613	THCNEDOOTO！3E6	$\# 2$
DAPK	Hs． 380277	jRCNT0000003935	H2	CRKO	45.235116	TRCNOOSSOOL367	42 42 42
Gak4	fis 32959	TECNOM03600386	42	GRK\％	Yas． 35316		42
ORK4	Hs 329.59	TRCNOC00006387	$6^{2} 2$	O及K5	135235136	TRCNOOM901369	42
GRKA	H． 3295	TRCN0002moious	42	ERKACA	Hs． 61030	TRCN0060001378	42
GRK4	H532959	TRCNO600000989	± 2	PMKACA	16.631630	TRCSESH0013372	42
GRK	Fis 32359	TRCEVOSOCOOLSO	$* 2$	PRKACA	14.631630	TRCNOCOOO015\％3	62
MAPP3KS	\％ss 185486	TRCNOODOOS099：	42	MAPX4	8 s .433728	TRCNOU00001376	4 ？
MAPIKS	Hs． 186486	TRCP50050000992	12	MAPKA	Hs． 43372 S	Theroccouote 38	42
TAPSK5	Hs． 186886	TrCmbormbeny	$\stackrel{*}{2}$	EF2AKI	He 319736	TRCNOOCOM138：	42
WAP3kS	Fis 386885	TRCrioconcooges	± 2	E $¢ 82, \mathrm{~K} 1$	H5s 719136	WCNBOOOMDISB2	42
MAPSKS	Hes． 188486	TBENCHMG00）S	$\$ 2$	ERT？AKI	Hs 719136 tosi 1409%		\％
PRKO：	13s．654535	TRCWOM30conos\％	42	WPSCKA	Fsi 14905\％		42
PRSG	Hs．6Sasso	TKCN00000090：	± 2	RPSSKN！	1as， 1.9955		42
Prkci	313．6S45s0		${ }^{2}$	8956kA	Bs． 180857		42 42
PKく0	$48.6545 \% 6$	TRCNOCOOS5432	42 42 42	RPSGKA	1ini 144957 His 514688	TRCN000000：388	$\times 2$
NAPSK12	Hs，713539	TrCanocoungiss	42	MAP2k4 SAPK	his 514681 TS S 51408 t	TRCNDOUOOS 3%	42
MAP3EM2	Hs．76354	TRCNDOOKNGA00	123	बAPIK NAP2K		TRCNOOUCOOITS	\％
MAPSXAZ	Hs 733535	TREN006000：001 TRC＇00000：002	\＄2	MAPPK		TRCNKOOOOSOS2	12
MAPPK：2	Fs．713539 Ls．713539		－	Mapher	Bis．534685	TRCNLORUOOS3 3	＋ 2
Madj3 ${ }_{\text {Mask }}$	Hes． 3135.9 Jrs $3973 \% 1$	TRCN0009001004	\％2	R：＇S6343	Hs 44sj8？	TRCNOROOCOI394	k^{2}
p．ask	H5．357895	TRCN000000100S	＊ 2	KPSEKA 3	H5．445387	TRCNDCNOOOL39	12
EASK	Hs 397831		42	RPSSKAS	H6645387	TRCNDR0000139s	＊2．
PASE	Hs 39789！	Trceronponjont	＂2	RPSGFM3	H5S44538？	TRCNO600003S97	${ }^{3} 2$

have	Chigene	Oligo	TRC Knome	HGNC	Vsricime	Oligo	TRC X Cinome
Symboi	Id	10	Prollsuch0	Symbol	10	iD	Pout120010
OPSSN．3	H5．645387	TRCNO000003398	$\# 2$	TR	Iis．498649	TRCNOCOOOSS429	2
Efr3pis3	6s． 591880	TREN0 00001399	42	$7 \times \mathrm{K}$	Fis．790：59	TRCN00000157\％	$\% 2$
ESFAAS	35． 59 ； 519	TRCNOOOOSOEISOO	42	Tхк	［is 470606	TRCN0000003580	\＄2
Eiprais	Fs． 391585	TRCN（10） 0001401	$\square 2$	©ARK2	Hs． 567261	YRCNMOSNOLS8：	12
giplax	Hs 591589	TRCNOCOGOS3 402	12	N入RK2	Hes 567261	TREN00MOESS：	\％ 2
Ell 2 AK 3	is SM1s89	TREN000：0014：3	N_{2}	MARK？	Fim 50720］	TRCNOOS0001583	$\stackrel{1}{ }$
ERBE4	13，390729	YRENOSOOVOL4C7	42	WARK2	315．56726：	TRCN0006001584	32
ERBEA	Y¢． 390729	TRCN0050001508	$\stackrel{1}{2}$	MARE2	Bss 667265	jrenomendorss	\＃2．
ERBB4	Ms 390229	TRCN00060 1409	\＄2	OXSR1	13s 475970	PRCND00060：s87	12
Erciss	Eis 390\％29	TXC： 600016410	82	OXSR	14．475970	TRCN000000：S88	$\$_{3} 2$
PRKD3	Hs 560075	TRCNOOOOM， 42	42	OXSET	Lis．$\$ 75978$	－IRCN（ioniohisie	42
RRK03	He 6x02is？	TRONOnOOLIO：114	12	CSEJR	13s 586219	TRexicouju0us50	＊2
PrNu？	Us．6sens	Thenoogoocis：	42	CSF3R	Hs 588229	TRCN00000159：	H2
［iJR？	48.593883	TKCN：00000134：8	42	Esfip	He 58 c 2 19	TRCN00000］1592	42
ODR 2	its 593833	TRCN0000001419	$\because 2$	fGr	F3s． 4.422	3RCHV000001593	H2
DOR2	3s 593873	TRCNM000001420	42	FOR	ts． $\mathrm{S}_{4} 22$	KCNOO000：504	42
DER2	F6． 593833	：RC：Nobutail42！	122	FGR	Hs 1422	aticnowionotss	42
FOOERA	［is． 78635	TRCNO（0）000：422	42	\％${ }_{\text {Ci }}$	Yis． 1422	TRCNOCSOON：96	42
bOGCRA	［4． 74515	TRCNOOOOCOMA24	42	FGR	H5：3422	TRCNCOD00日1597	$\cdots 2$
KALRN	He 8004	TRCN0000008127	02	1．CK	135．470627	TRCNO0C0001598	H2
KAition	3 Sc 8 sin 4	TRCNOU00001428	$\because 2$	LCK	H5s 370627	TRCNOU006015\％	ψ_{2}
KALRN	Fis． 800 d	TRC：00000091423	$\% 2$	LCK	H5．4700\％	fircnumodissi34	42
Kaldis	Hs． 8004	Treamouncol430	\＄2	LCK	H5．47ch27	TRCN0060in：000	82
ShlRN	His 8004	TRCNOOOCOOLS32	$\geqslant 2$	いいK	cis． 470627	TRCNEOSROO1E日	48
TESK2	H5． 593499	finchmalout433	$\because 2$	TEE	Hs 78824	IRCNOCOOCOO：502	\％
TESK2	Hs． 591399	TRCNGOMCJias	\＄2	TEE：	its 788824	TRCNOOCRO1603	$\because 2$
TESK）	135．59499	TREAO00：003435	\＄2	TE：	K15． 78324	TRCNDOOMEO1604	42
ARBP：	HS 5158876	Tizenologoundy	12	\％ m	H5． 7882.4	TRCNO2000036as	＊？
NRET	Ws． 515876	TRCNOU00301439	¢ 2	TE！	Hs 78824	Trencalogeloce	$\stackrel{*}{2}$
NRBP ${ }^{\text {a }}$	H0． 515876	TRCNOOn00：1440	$\because 2$	YES：	15．146：48	Thenemedotion	\＃ 7
： $\mathrm{PBP}^{\text {P }}$	H5． 515896	TRENBLODODI4．4．	12	YES\％	Hs：194：48	TRCN60：60E1608	\cdots
3：AOK2	Hs 29 ¢623	TRCNOOO：0001442	\％ 2	YES	［3s．1941s	TREM000000160	42
YAOK2	Ks． 291623	TRCNOMOMOISAS	82	YES：	H5．194148	IRCNOCODOOLSH	＊ 2
faosi	H5． 29.628	TRCNOORNDOLAS	¢ 2	YES！	312194148		42
Cankic	H5 19906\％	TRCMOOUROMIAES	4．2	AKTE	415．49820\％．	TRCNO000001612	＂2
CAMKIC	Es． 193008	TRCN000000145	42	AXTY	4sis． 988202	TRCMOEDODO1613	\＃2
CAMES	14． 999068	TRCNOOgOOO1454	4%	1×33	153 498292	TREN000000LEAS	＊2？
CAJIKIG		TRCTM（000031456	$\stackrel{1}{2}$	Akr？	H5．494202	TRCN00000006615	＊2
MAF2KS	8is．14398	TREN0000003466	42	$A \times T 3$	H5． 998292	TRCN00）	12
dinpzes	Fis 1141998	TRCN000000146\％	32	FTK2	Hs 195482	TRCNOODSOE1617	文 2
Mapzes	Hs 134198	TRCNOOOCDSAS	42	Prk？	115．395882	TRENODOCDelots	－2
：NEK3	He， 09598	TaCNO00300：478	31.2	Pr^{2}	Hs 395482	TRCN0300001619	$\because 2$
NEKJ	14．460989	TRENGDOEOMS ${ }^{\text {a }}$ ？	$\because 2$	FHK^{2}	65s 395482	TRSN0000001620	42
NEK3	Hs． 409989	TRCNOP0000147	72	ME2．	H5．39548i	TRCN00000362］	${ }^{2} 2$
POK，	K¢470633	TRENabouoleng	il 2	STKA	Hs 472338	TRCN0000001522	42
POK	Bs 47063	TRCN000000149？	\％$\%$	STK	\％s． 472838	TRENDOLOO0：62．	42
CRK：	cha 103501	TRCN000000：480	＋is	Stk	Xis．e72838	TREN0000003524	42
GRK：	Ms． 103303	TRCKV006000：487	${ }_{\mathrm{H} 2}$	Sis\％	13s． 772488	TRCWiouconis\％	42
A 3_{3} ；	［3s．930，${ }^{\text {a }} 8$	TRCNDLOCOLHES	82	STK4	15s 472438	TRCN0：0000163	82
ASLI	3s．4310：8	EREvalicunolsois	42	Pidy	H6：71926\％	TRCN000000127	82
ABC！	H．4．31048	TRC1000501502	42	PIM？	H3．719294．	TREN000000368	\％ 2
PPKG\％	His． 570833	TRCAOOU0003S07	42	Pind	8s 719203	Trexnoumbiozy	122
PRAG2	Its． 590833	TRCNO00000：509	42	Pas2	H5，719294	TREA000000：630	82
PRKG2	Hs 570833	Thevoovoosis：0	82	PIM？	16.719294	Thasonnoon：63：	42
YRKCS	Hs： 9085	TRCNOO00391515	\％？	MAPBX！	［is． 9542.4	TRCN600009：63\％	42
SQK2	43.300853	TRCNMOO00：518	A？	NAPSK1	6， 95424	JRCNMOCH00：633	± 2
Sok	19．300863	TRCM0000001520	12	MA34K3	73595324	brencouvonis．	42
TAON3	H5． 63420	TREND0060ES2T	\＃ 2	MAP4ki	15．954．4	TRENO200001635	$d 2$
TAOKJ	Hs． 584×20	TRCNO60090152．8	d？	Winguk	His． 95424	RRCNOCDO901636	$\stackrel{2}{2}$
TAOK3	H59．640420	TRCNEOJionsis29	$\wedge 2$	AEELK	Hs 18.4335	TRCNOC00003642	＊ 2
venk3	H ≤ 9.92423	TrCa0000003531	$\because 2$	MELK	Hs．184339	YRENOUODN016．13	02
Wenk3	Hs．92423	TKiNN3000001532	42	M ${ }_{\text {MLK }}$	186：184339	TRCNOOMOCS64	＊2
WiNK3	（15：32423	TRCNO000001534	il 2	MELK	H． 154339	TRCCHODCOClors	43
TRiBI	Hs 4441）${ }^{\text {a }}$ \％	TRCNOOT0001s35	72	MELX	H5 189739	7RCN000006t646	$\$ 2$
CRIE	H5 644947	TRCLDocesorsisk	42	KOR	Its． 47935	TRCNBOROS：685	H2
TR183	I3S．64494\％	TKCNOW0001537	\＃2	KOR	Hessjonso	TRCN0000001686	± 2
TR：S	［15． 4249977	TRCN00800101538	${ }^{*} 2$	KIJR	Hs， 79756	TRCN0000001687	＊2
SOkl9\％	Hs． 491686	TRCNOU0000：540	＊ 2	Snk	ds． 479756	TRCV10003036888	$\stackrel{3}{*}$
Sokig	He．ates646	TRCNOMOOOB： 52	42	KR	His 479756	RRCNOMOOUOL589	42
SGK 396	45．49］E46	TKCNCOOCO1543	82	PRXACA	Y5．63：630	TRCN000000！ 39	± 2
Cspeld	H5 63725	T：200000000：5s	\＃ 2	PRREACA	96．631630	TRC．jugoeg0165：	42
CSAX：D	135631725	TRCNiogoogisja	＊ 2	PRKACA．	12s．631630	TRENOROOUSG52	42
Mapse7	Ks．79192．	TRCMOOMOOISS：	42	PREACA	Us 63：630	TRCNOCOOOES6S3	42
－APSY\％	13.10192	JRCNO30000195s	32	bpaxad	16．631630	TRCN0000003684	42
Mд®3人7	His． 739192	TPCNOB0G0158	12	NES4	5s．631923	TrCN000603164S	42
MAPBET	Hs 719192	TRONOOS0003S ${ }^{\text {a }}$	8.2		835631921	TRCNONOLON1696	42
MAPSK7	Hs 7 ln 98		8？	NEK：	ifs 63） 21	TRCN0000001637	42
MARKa	M6．35828	TRCN000400：564	2	NEK3	Me631923	TRCNH000b31648	42
MARK3	4， 15888	jRCvoncouelsos	± 2	REK4	（1s63192\％	TRENOC00001699	${ }^{*} 2$
MAPKG	435．211847	TKENO000001568	\＃ 2	weer	13s．249493	TRENONOONTOU	42
NAPPRS	13541884？	iressouncoiscos	12	WEE：	His 289443		42
MAPk 6	H5．41：84\％	TRCR 0200001570	$\underline{\square}$	Wec：	Fis $2+9443$	TRENGMODS：702	42
קYK	Ms． $5 \$ 4562$	3R0：0000001573	\cdots	WES	\＆5 340440	TRCNUSH0067ti3	42
3＂3：	Hs 550.562	THONO00000 S74	42	M08	Hs 24944．	TRCNCOMOSO178	42
RYK	Hs．j54562	TRCWmomoss	42	MOS	49.533432	TRENCOOOOSTOS	\％ 2
KYX	H6．53：502．	TREN00：001576	42	Nicis	4s．33．3\％	TRCNM00000176	42
fxk	His．a79689	TRCN000000：577	\％ 2	PSKi3：	Ets 513683	TrcN000000198	± 2

FICNC	Unigene	Oligo	T CC Kinone	dinc	Unicienc	Gigo	TRC Kinome
Symbol	dd	ID	Pool)20cto	Symbes	ld	(1)	Pool 120010
2Skus	35. 513683	TRCN0000007769	42	Coke 0	cis.69017\%	TRE:400600:82\%	42
PSK1II	H5:533083	TRCNOOCOO1710	H2	Caxio	8 S 690177	TRENGTOOROE22	\$2
PSKH?	$54: 513633$		42	COK 10	$\mathrm{H} \times 69917$	TRON000000:823	\#?
psexil	6is. 5 ? 3083	TRCNsoumen712	\$ 2	ACVRIC	His. 5 S29ij	TRCNH50000G1824	¢ 2
RAGE	As. 10819	TRCN0000037is	12	ACVRIC	Hs. 562908	TRCN000SG01825	*2
TACE	Ms.ims39	Crenodoteelia	\%	Actric:	Hs. 562901	IRCN0000001826	$\pi 2$
SAGE	Fis. 104139	trenoseneuizis	< 2	ACVPIO	H5. 582901	TRCCivontwor827	42
RAGE	14.104199	TRCNOOSOU313	* 2	ACurio	Hs. 663901	TRCN0003018\%	42
KAcre	is. 104189	TRCN040000)717	H2	MAPSK/	8×330073	TRENC000s01829	\% $\%$
DAPK2	ris 237886	TRCNOODOUN:715	$\because 3$	MAPAKS	36.715073	THCN0300cs830	83
DARE?	15.237880	TRCPMOMC01719	42	MAP4 ${ }^{\text {cis }}$	49.79007?	TRENOOS000183!	83
OAPk 2	\%s. 237886	3RCSNOOD:001720	42	MAIS K_{3}	ks. 17×073	3RC: 0000001832	42
DAPK2	\% 7 S 237880		?	CSNKIE	17s.474833	Therem000021837	*)
DAPX:	He 237885	TRCN0000001322	$\stackrel{4}{4}$	CSNKIE	355.424833	TRCNOODOMO1835	± 3
NEKG	His. 397071	TRCW00060] 23	42	CS*K $1:$	8is. 174833	TRCN000U0C1836	\% ${ }^{3}$
NEKS	fis. 19707 l	TRCNOSOMOOH24	\# 2	$\operatorname{csin} \times 1{ }^{\text {ceser }}$	Hs.athbs	tranorocoot837	43
NEKG	nstyope	Trenonoubly	42	Csinke	H5,474833	TRCNOMy00:838	83
NEKG	He.18707?	trcivogomelzas	\$2	MYLK3	4. 130865	TRENH0n00;842	4
NEKS	H6.19707	TRC: 80000001727	${ }^{2} 2$	MYEX3	H4. 330465	TRCNOOHON:843	43
Mas?	\{as jus:83	TRCNOMOOMS33	82	NYLK3	195:130165	TRCNOOMOCOEAS	H3
MASt2	Hs. 319881	TREN00000017S4	42	MY,	Hs. 3.30405	TRCNCOC000:82S	4
MAST2	1s 3194\%1	Th Come0tolias	± 2	MYEX	H5. 330465		43
Mrasiz	35.3is4a	TRC: 0000001736	$\$ 2$	TAOK?	:3s 291623	TrCMcu0000ise	83
srxe	H5 2.4979	TRC MOM:001742	72	3AOK2	:1s.291523	TicNeogovols3	d:
STYK	Hs 24979	TREN0000001743	2	TAOKZ	- 4.291623	TRCNOON00393S	\% 3
Sirke:	is 249\%9	Cranombiomita	*?	TAOX:	He. 291629	TRCN000000935	43
Steki	F6. 26979	7RCW006001745	82	TS.OK2	4s 291023	3RCNO00000436	it 3
STYK1	14824970	TRCNN000001746	\$2	Mapkio	Hs. $125 s \mathrm{cos}$	TRCS0000001932	di 3
PAKG	135.513645	TRON0000061747	\#2	MAPK: 0	H8.32sser		43
AKF6	HS Si3sas	TRCNOCCOB01748	\$2	Mapkio	Hs. 125500	Trenoton00193:	43
PakS	H9.513645	TPCaOCoceras	${ }^{\circ} 2$	Maskio	Hs 125503	TKEVS00000190	* 3
PAKG	Hfs 51.3645	TxComb000 750	${ }^{1} 2$? APK ! 0	14.125503	TRCNOOG000194:	73
PAXE	Fs. 513645	Treckownombis	[22	AAK	H. 468878	TRCN0000001942	43
CAMKID	Exs.09s5?	\%RCvouconolis	H2	AAK!	fis. 458878	Frchujoloussy	43
CAMKID	Hs.6S9517	TRCN:00000175?	42	AAK:	14.158878	TRCNOOCOHO154	183
Cainklo	45.659517		42	ARK:	Hs. 4088 ?	TRCN000001945	43
(amkt)	[35650537		E?	AAK:	fs 6688%	TRCNCOOOCOM 46	43
CPlint	Hs. 653284	TRCNOOU00076s	${ }^{2}$	PRKD2	Hs 466987	TRCNODEC001947	${ }^{4} 3$
Ephat	H5.653234	TRCNOOSCOH759	82	PRED2	Hs.46698?	TRCNSOSCOSS948	$\stackrel{+}{3}$
mbitc	Hs. 553244	TKCNOTOW01770	42	PRKD?	Mis.4stig ${ }^{\text {a }}$	TRCNM0000 0 OTO	*3
EPFAS	\%s 553244	THCNOCOMO日S7,	¢ 2	PRKi32	is. 456987	Trenconcorl949	23
EPGMis:	H5,437008	TREK00000	H_{2}	MRKDE	159,403987	T3CN0000001030	43
EMP ${ }^{\text {ch }}$	H0.4370.0	TRCN00c000 1773	"2	SNRK	H5,4750.5.	TRCW000000395	43
5.jprest	fis. 437008		42	SNEK	Hs. 776052	TrCNOONDOM952	13
EPYMA	kis. 430008	TRONOH000157s	si_{2}	Sillk	is 4% Sns2	ORCNGOOHOS95:	\%
Qarss	H5. 36697	TRES0000097\%	42	Shak	Hs. 4760 S 2	TRCN0000003954	\$3
datsi	185.716497		42	SNRK	H3,975052	7RCN400000195s	03
detsis	Hs.16697	T8CN090000:778	\%2	Awitha	156659889	TkCNomomates?	n3
\{nas]	isc 76697	Tramonounatio	\$2	ASMHR2	H5.659889	TRCNOOOCOOLS58	$\because 3$
LATSS	H5: 316097	TKC. 00000003880	32	AHEL2	H5.659889	TRCNON0003 359	4
Prate	415309788	3RCNOOOCO1281	42	Avikr?	895.659889	TRCNO000001900	43
PRKX	19s. 390788	TRENOMOU0:78.	*	NEK\:	85s.657335	TRCN000000!0:1	
PRKX	515.390788		42	NEKH	H.657335	TzCN0000001953	+ 3
ERKX	Hs. 390788	TRCW600003784	42	NEKT	Fis 24119	trenouviouress	4
MAK	H59.446:25	TRCNUCM001785	* 3	NE<7	Bs. 2 E : 9	Trenambiolss 7	43
MAN	8S446:25	TRenommaltiz6	* 2	AEKT	Bszails	TRCN0N0001968	43
MAX	Fsistol25	T2Cw00000017s?	$\# 2$	NEX	H6.34319	TRCE0ccotios 969	3
PRKCO	Hs 4985%	TRON000003?90	42	NES?	Fis 2499	TRCNOOROLEDO	43
PRKCO	1s.4Ses?	treasou0000179:	12	OClK	H5 396683	TRCNOU000Ctso	* 3
PRECO.	His. 4985	TRENOOODOO 792	12	DELX2	Hes 993613	TRCN00!00619\%	${ }^{1} 3$
ERXCQ	\%is. 988570	TRCNOU00391793	32	DCLR	58.591687	TRES0005003972	43
PRECQ	15.408570	TRCNOO00001799	42	CLK	[is. 591683	TrCNDOOCKR1973	$\times 3$
CRKRS	\%/9.416108	TKCNmOHOOR995	42	DCLER	fis 591683	TRCNMomotaz	43
CREXS	Hs.4i6:08	38CNOCOO001700	42	CAviki	Rs. 3417	TRCNO000001980	i'3
CRYPS	(is. 15 Srio8	TRCNOOOORO:797	H2	Cavickl	H6. 8.817	TRENONOCOL981	43
CRKES	Hi 466	TRCN0005001708	4%	CAREX:	Es.all?	TRCV $1000000: 982$	43
ORKく	3.1836608	T800060000120	\# 2	CAMKK:	[ss S417	TRECN000012083	is 3
PXK	Fis 190544	TRENO000501100	* 2	CANIKK	95.3417	TRCN0000001584,	* 3
PXK	3:5 150s 34	TRCN0090001801	42	CSNK2AI	\% 5, mil40s	JRCNCOOCOO1985	43
Exk	3s 500548	TRCSOOCOOM 302	82	CSNR2A1	H's 044035	TRCN000000:986	43
FXK	Hs. 300544	Trcvocionos ${ }^{\text {a }}$	42	CSNK2AI	345.644056	TRCK000000:1987	83
3x\%	Nis. 190344	TRCNO000501804	$\# 2$	MAP3K30	H5, 406747	1RCNGOS000:988	*3
9BK	E3s.109748	TRCNOONOOSB6S	42	MAPSK1id	[is. 46674 ,	TRCNG000001989	43
OEK	His 104741	Trcevo0000n3806	42	MAP3KJO	3s 4669743	TRLN000006990	37
PEK	Hessears:	Tranotomiose\%	+2	Maspecio	\%29.46574.	TKCaU0000n;on?	*3
PSK	H5 104741	TRCNOC00001808	H2	NTK<	45.406293	TRCNOCOMCOI932	${ }^{4}$
ACVR:B	8s. 438938	TRCM 10000003810	\#2	NTRX1	31.405293	mRCNOONOU1993	35
ACVEIS	Hs 4 4339:8	TRENDinonocis!	¢ 2	NTRK3	Fis.40629?	TRe'No00tiou309\%	43
ACYYRES	H5.438518	TrCNOOOOD18:2	42	NTRK1	Ms. 406293	TKCrenoveniogs	43
ACvRIB	\%1s. 438938	TRCN0050001833	H2	STRE:	3s.406293	TRCNOUOCHO1996	43
ACVRis	Ws 438318	TKCN00000 [s!	± 2	q005RS	1s 50006\%	TRED000003 93	¢ 3
STx+3	Ms.thl 68	Tecrioceoolsis	$\% 2$	3)	Hs 509067	TRCNG000001938	H_{3}
ETK40	Hs.471768	TRCNH000091816	42	PDOEK	35 50\%367	TRENOCOSON109\%	43
STK40	\$15.472768	TRCNU000001812	43	Pocjera	15.509057	TRCN006ccozdeo	43
STK40	158572788	TRCN0000001818	4	Pagme	1ss.50)067	TRCNOOCOO2003	43
STK4	S6. 471768	TRCNO600301839	* 2.	Patace	Hs.487325	TRCNOCOOOO2602	43
SOK10	\&: 6 699:7?	TRCN000001820	12	PRKACE	[6, 487825	TRO30000002003	43

HGNC．	Cnicue	Gligo	TRC Kinome	HGNC	UniGcme	O！go	TRC Xinome
Symbei	14	iD	Pool $120 \mathrm{ct10}$	Symbel	Id	1 D	now 120cil0
PRKACB	Hs． 187325	TRCOU600002004	43	DVx\％13	138 130588	TRCN0000002334	$* 3$
PRKAくろ	His $\$ 87325$	TRCN0000003006	＋3	DYRK13	Fis． 33028	TECNO 300002145	43
CDKLS	1／5659859	Trenguorbezos：	63	DYRK：${ }^{\text {P }}$	H5 3sunsk	TRCNEOSOU214	43
combis	H3．659851	1RCNi000000201：	43	DYRKİ	Hs． 130988	TRCNOOOOR2192	13
CDKLS	H5，65985	TRCNOOJ0032013	\＆ 3	DYRKIS	Hs． 130888	TKCNOCODO）2：37	43
CDJLS	4s． 5 S28s：	TaCO0000002014	${ }^{2} 3$	delki	Hs． 5073.55	TUCNOOSOOQ2148	18
C0x15	13s 65985	TRCN0030022015	43	DCLE	His． 50775		${ }^{*} 3$
Ephró	19． 380089	TRCN0000902096	4.5	DCKK	ts somiss	TREMMO0002146	$\bigcirc 3$
EPFtas	He380089	mencombode	［3	DClk 3	fis sorys	TRCNOOA002247	$\square \mathrm{I}$
geyme	135 380089	TRCNOC00022018	$0 \cdot 3$	OCLK	Hs．5077ss	TRCNOOCHO2，${ }^{\text {S }}$	＊ 3
alcyzc	\＆s S 524278	TRCNOSOSO02019	83	GAK	15 36\％ 50%	TRCNGOOCOO2154	43
Gencrac	145． 524278	TECNM00202020	43	GAK	858360507	Trenconconz：ss	4%
	His． 528278	TRENO000002021	8	0， 0.3 k	Hs 36：507	TRCN0000002：56	${ }^{4} 3$
Oucyai	－15． $52+278$	TRCNGOCOOC2022	＊3	QAK	Hs． 36960%	TRCNGCSOOU2 157	枵
Gucyze	115．524278	TKCNOOOOOO2023	43	OAK	H5． 369607	TRCNu000002158	83
ROR	HS 654491	TRENOCOOGO2024	43	ROCE：	\＄15． 306307	TRCNOON002159	43
ROET	H9，654491	trenooracozo25	43	Rocsi	15s 306307	TRCNOOODOVI60	47
ROR！	Hosmsial	tresocuounte2s	73	ROCK1	3s 306307	Thencodoter 161	\＃3
RORI	（is． 654391	TRCN000000202）	3	KO\％K：	Hs 30630%	TREN0NOUU2162	4.3
ROR1	Hs 654991	$38 \mathrm{CN} \times 400002028$	＊3	ROCK1	H5． 306307	IRCN0006002：53	93
A ${ }^{\text {che }}$	Hs 1594\％	TRCN0000002029	4 y	MUSK	His． 521653	TRCEOS00002：04	13
A 312	18． 159477	TRCx 1000002030	$\stackrel{+}{4}$	Mcsx	His．521653	TREN0000002165	17
ABE2	15． 159472	TRCN0000002031	H3	Muss	36．521653	TRCSN000602100	23
ABS． 2	H5． 55947%	TRCNOOO0002032	73	MUSE	Sis x2l6s3	TRCNOOU0002167	\＃3
A3L 2	315 159472	TRCNOOOCSO2m3	43	PPKKAR2	As，437039	3RCNGiOOOS7308	43
ADREK2	H2． $55 \% 994$	TRCN004006：03．3	\＃3	PRKA． 52	Hs ta 7039	TRCCNOCTOOU2 369	43
ADREK2	Qis．657，54	$38 C \times 1600002035$	${ }^{4} 3$	PRKA ${ }^{\text {PR }}$	115． 437039	TRCN0000002170	tis
ADK382	Hestiona	TKCrgatiouzus6	43	PRYAA？	Es 4.437039	TKCN0000002173	43
入orbkz	H6．657494	cirenoucioncrus？	03	PRKNAZ	14.437039		43
TNKZ	H18．5：8513	TRCNOOROOO2038	\cdots	STK3	H．4923．33	TREX0000002：73	13
Jeka	IHs 57851.3	TRCN00000n20is	\＄3	STK3	\％s．482333	TK0\％ 0000000174	＊ 3
TNK2	Ifs．5is513	recencoulom20．40	$\% 3$	Stks	Hs 492333	TRCNOJ00002175	43
TNX2	Fts． 518513	TRCNOOOH6204：	\＃3	5163	（1s．4）2333	PRCNOCOCOO23S	43
TM\％	HS． 518513		43	STK3	H． 5.402333	TRONOCN0002177	$\because 3$
Mide 3 K 2	$4 \mathrm{c} .1 \times 5605$	TRCN0000002043	63	TrROS	175． 381282	TXCNOCOGLD 178	43
MAPBK2	16．19560s	TRCNOM0000204．4	43	TYRO3	fis 381282	TRCN000600279	\＃ 3
MAP3K2	Is lis60s	TRCNC00000204S	43	TYRO3		TRENODONOO2：SO	\＃3
MAP3K2	Is 143505	THCNCOODO22：47	43	TVROS	Hs 381242		\％3
STKBAL	His． 184523	TRCN00000020ss	H3	MAEm：	Yis． 300451	TRCNOM0M02187	83
stciss\％．	H．3siss\％	trencoorone	43	maidks	－15．13049t	TRCN0000002188	＊ 3
STh3si，	4．s． 184523	YRenocoono 205	43	MAP4K5	33 s 130593	TRCNO（x）C002189	43
STK 38.	has lets23	Traciomenonzoss	43	MAP4kS	［1s． 13049 ！	Travou0002330	43
stru38i	Ef． 184533	Tre reonerenos？	（i） 3	NAPME	H3．330：93	TRCN0000002：9！	＊3
12，MK4	Fis 13845		\＆ 3	TrNisum	Es smoiks	TRCN0000002192	43
Niz	Fis． 208759	FRCAG00：100306？	33	TNNi3k	Hs 480095	TRENOMOHC2：27	A3
NLK	3s 208\％59	Thenegneouers	43	TNNISK	3fetamess	TRCN0000002194	6
NTK	3.15208759	TRCN0000602069	43	Tumak	\％ 5.480085	TRCE 600002195	83
NiK	H3．208759		＊3	TNNSK	Fis 480085	TRCNOMONO2134	\％3
NLK	（15．205759）	TKCN0000002071	43	MYO3A	his 662630	TRCE 0000002137	$\therefore 3$
ST833	Hs selsis	TRCN00900c20？	\％	MYOSN	Hs．cos2030	TRENGOMOR2158	83
5 ck 33	Hesiels33	TRC＊ 000000002079	$\because 3$	MYO3A	（is 662630	TRCAMOX6：002：99	83
STKく3	He Soi8．33	TRCN0000002080	43	：ro3A	Hs 692630	TRENOCOHCO2200	43
STK33	Hs 301833	Treasobicozos：	43	SRYO3A	Hs 6626630	TRCNOOCH02201	4 s
srezs	13．100257	TRCNOOC0002093	\％ 3	CHK4	$\mathrm{H}_{5} . \mathrm{s} 56192$	TRCN0000002202	13
ST8．5	He 100595	TRCN0600h02092	43	unki	Hs：cis619\％	TRCHijumene	H_{3}
57×35	H19．1000．57	Trenaonopozes 3	${ }^{13}$	UR3：	85656198	TRCNOCDOOO2204	\＃3
stk3s	He 1 cooss	TRCNienosomater	73	ULK4	815650102	TRCND， 00002205	43
Stris	His． 200057	Trencuorouzess	43	UKK4	is 6.55192	TrCNOMOSO220	\％ 3
Prrkz	ks． 3887 ！	SRCNecouno2090	± 3	TSSx3	Hs． 512763	TRCNSOHOMS20？	\＆ 3
ye3k2	His． 348711	Tronccocousios：	＊3	5SSC3	45． 532763	3RCN00000g320s	43
Prex 2	His． 348751	TRCNU0000020）s	\＃3	TSsk	Hs 512763	TRCNOpoucezzas	± 3
PFTK ${ }^{\text {a }}$	Fis 3 F87 11	Trenodowosiosi	43	TSSk3	Hess 512703	RCCN（x）docaz30	43
GETK	Ifs 348716		43	15.5×3	Hs． 512763	TRCOOO00002231	43
SOK2	Hs 300863	TRONOG00002130	＊ 3	MADK15	fs 498169	TRCS 6500002 LS	43
3¢K2	3．5．300803	TRS：M600 000215	93	CCRK	！ 3 S 523274	RRCNODOH022：5	＋3
scik：	Mis． $300 \% 53$	TRENCOOMOR212	43	Cers	15．5222\％4	TRCNOGOOOO22：6	33
Sok 2	Ex 300 c 43	Thenooscou2118	$\times 3$	$\cos x$	fis 32×274	PRCN0000002217	83
PAK：	1s 538530	TRCW00ngomaila	43	OCRK	iss 522i74	TRCNOOOOSO22：4	43
P．Sk2	Hes． 59530	TRCN0000022：1s	43	DAIK	H563：853	TRCNOOCOOO2220	\％
PAK2	His．si8530		d 3	MATK	H5： 631845	TRCNNOOOCO222：	$\stackrel{4}{3}$
PAK2	His． 58550	TRCN000000217	73	WATK	Hs 631845	TSCNOOOSCO2222	43
PAK2	HS 318530	TRCX0000012138	＊ 3	MSATK	ys．ximes	TECNOOOROO2223	43
PIKJC2B	3s． 107487	TRCN0000022119	＊ 3	PAX：	bs 43514	TRCE0000，02224	43
PIK3C23	H． 49743	TECE0000002120	43	PAK	Hs．3ss714	TRCas 600002225	33
Р）КЗС28	S¢S 997487	3 RCN 0000002121	43	PAR：	Hs． 335714	rrenourond 2225	${ }^{6} \hat{3}$
$0187 C 28$	15． 497487	TRCNOUOOS 52122	¢ 3	FAXE	Fis $435 ? 14$	TACNOCCOUOZ2\％7	83
yik3C28	1s 4978R？	TPCNOODN002123	43	Fikscze	Hs． 675343	T3CO00606502228	43
3RKD！	H9．508999	TRC：+0 Coconolis	43	PIK3C2A	K5．175363	TRCN0000062229	${ }^{83}$
PRKO	H：5．50r99\％	TKCNOLORSE2：25	43	963cza	Ys． 175343	TRENU000002230	$4{ }^{4}$
PRKD 1	B3．508599	TRCNOW00002126	43	Bxtcya	Ss 175343	TRCN000000223s	43 83
PRKD：	1s 508999	TRCOOOU0092127	43	Pik 362 A	Hs． 175383	TRCWOU00e02232	73 43
PRKD	Hesusses	TRCPamounczisy	4	CCK	Fis． 3270	TRCNGOOLC022：3	43 43
VRK：	54.422602	TSCNDOOOR2329	43	60x	3s 1270	TRCNOLOHOQ2234	43 43
VRK1	H5s 422654	TRCNi $\times 200002130$	$\stackrel{*}{*}$	GCX	HS 1270 16.1270	TRCNOMOU502835 TRCNOOM0223s	＋3
URKI	Hs， 3226 s ？	TRCNOROORO2151	43	CCR	\％ 6.1270 ¢8． 1270	TRCNG00900223s	43
VRKI YRK1	－	TKCNOONOOO21S2 $3 H C N 0: 00: 02133$	87 83 8	GCK NTRK2	Hs． 12.784312		\＃3

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mcsioc \& cuscene \& Ofigo \& TRC Kinome \& 11GNC \& UniGeac \& Oligo \& TRC Kinome

\hline Symiol \& （d） \& 3 \& Pool：2ecno \& Symbol \& ifs \& 15 \& pont $120 \mathrm{ct10}$

\hline NTEPS2 \& Eis．494312 \& TRCNOSouca 213 \& 83 \& Sumer \& 35 98378 \& TRCN0000022336 \& ＊ 3

\hline YYSMK？ \& 1ss．9843？ 2 \& TRCNOOOOOS2244 \& \＄ 3 \& Pik3c3G \& Is． 22500 \& TRCNOO0009233： \& 13

\hline NTRK2 \& Wf． 944312 \& TRCN000000224．5 \& 43 \& P1K3C2C \& Hs． 22500 \& TBLCNGOMOO2338 \& \＃3

\hline NTRE2 \& 16．49431？ \& TRCN0000002246 \& 83 \& P107C2G \& 8is 22500 \& TKCNOOVOCO333 \& d 3

\hline TESK \& \％8． 708036 \& TRCNOOOOS0224？ \& ＊ 3 \& P193C2G \& bs． 22500 \& TKCNOG00：50234 \& 13

\hline TESK1 \& 3s． 708096 \& TRCNOOCHCL2288 \& 43 \& P3K3Cla \& 14： 22500 \& SRENOCOOO2234 \& \％ 9

\hline resk \& Hs． 768090 \& TRCNOOMSOO2249 \& 43 \& MAF3KG \& Fs， 194684 \& RCN0000052343 \& 13

\hline TESK： \& He． 708096 \& Tecnencoue2．2s \& 43 \& MAPEKG \& Lis 1946434 \& TRCNOH03002344 \& $* 3$

\hline TESK： \& H8． $70 \% 080$ \& TRCNOOOOOM2251 \& \％ \& MAP3k \& 36．1936984 \& TRCNOOOOMO23：5 \& 43

\hline WNK \& 35．654356 \& TRCNOASROU2252 \& 43 \& MAP3K6 \& Hs． 6 906 64 \& TRENOONOM23：S \& 45

\hline Wrok \& is 654838 \& TRCNOHOUORZ2S： \& 13 \& FeR \& 4s． 22.4872 \& TRCNCOOLOOX3s\％ \& 43

\hline WNE2 \& Ms．654856 \& TRCN0000002254 \& 43 \& FEK \& 8s 22.1472 \& TRENCS00002348 \& 43

\hline W＇NK＂ \& fes． 254856 \& TRCNGOUOO2255 \& \％ \& EER \& Hs． 221472 \& TRCNOOH0002339 \& 43

\hline wivez \& H．s． 654856 \& TRCNUOKOOU22S6 \& \％${ }^{3}$ \& cer \& Hs．22：472 \& TRCN： 1000002358 \& 43

\hline R：PE3 \& ：1／$\%$ 5855i \& TRCNOCOOCOL25？ \& 43 \& EER \& H5．221472 \& ERCW00600：351 \& 43

\hline RIPK3 \& E． 25858 s \& Tacnocounoz2ss \& 43 \& TLK： \& H5．415078 \& TRENOCOOS0236！ \& \＄3

\hline R1PK3 \& H5．26855 \& TRCN0000302259 \& H3 \& TLK2 \& Hs．445078 \& TRCN0日gogneze？ \& 43

\hline RSPK \& H5 26855 \& TRCREW6002260 \& ＋3 \& TEK2 \& Kis． 945078 \& TRCN00000：323s \& 43

\hline Ripk3 \& Es．2685s \& 3RCNOOOOOZ26： \& 43 \& TKKz \& K15．645073 \& TRCOMOO0002354 \& 43

\hline RPPGKAA \& H5，368193 \& TrCNow000226\％ \& ＊3 \& rum \& Hestisti8 \& TRENOCOOOM2363 \& 83

\hline RPSSKAÓ \& Hs：368653 \& FRCNODCOOO226．3 \& 43 \& PFTK \& 15s． 4.30782 \& TRCN0000002336 \& \＄3

\hline RPSOKAS \& H9． 368853 \& TRCNOUORO22364 \& 43 \& PFTK！ \& 515.430752 \& $7 \mathrm{TCNOOU0062367}$ \& \％

\hline ROSSKAO \& Ks． 268153 \& TRC30060022065 \& ＊ 3 \& Pryki \& Ts． 9309742 \& TRC60000002368 \& ＊ 3

\hline RPSSFACOL \& 11868373 \& TRCNOS0000：206 \& 43 \& ［EXS \& His 330752 \& TRCNOS00002369 \& 43

\hline ilmk \& Ws． 109437 \& TRCNOOOOSO2267 \& 43 \& PTFKS \& K．430742 \& T8EN0000002370 \& 43

\hline 1戈 \& 56： 0094.37 \& TRCN0000022268 \& ＊3 \& PLK4 \& 36．172052 \& Tiscruotanuzill \& 43

\hline H HNK \& Hs ： 09437 \& 12CN0000002269 \& \＃ 3 \& ELKA \& Hs： 72058 \& IRCNODONQSt 72 \& 83

\hline Sunk \& Hs 100437 \& TRCN005002270 \& i 3 \& PLK＇4 \& （is： 12052 \& TECNOU00003333 \& ${ }^{2} 3$

\hline STK323 \& is ！ 33040 2 \& TRCNO000602222 \& （ii 3 \& P） \& Hs ：72052 \& TrONOMACOC2J34 \& 13

\hline STK328 \& 85.133062 \& TRCN00000022\％ \& 83 \& PLK4 \& 415． 172052 \& \& 43

\hline 8TK328 \& Hs 33.3002 \& TRCciconout 276 \& 43 \& COKLS \& 85．1058：8 \& TRCNum000s3376 \& 4

\hline $5 \mathrm{~T} \times 3233$ \& Hs 1330022 \& TRCNOOOOO22275 \& 43 \& CDKLL3 \& Hs 10 S818 \& TRENFOOOO2337\％ \& 43

\hline STK32\％ \& Hs． 1330 cz \& T：CNODONCO2236 \& \％ 3 \& COKin \& Hs． 305818 \& TRCNOOMONS22778 \& 43

\hline MASts． \& He． 27696 \& TRCNOMODJ22T \& ＊3 \& cokes \& Hs．305818 \& TRCNO000002379 \& $\ddot{\square}$

\hline MSSTE． \& Hs 276905 \& TRCN0060802278 \& ＊ 3 \& COKLS \& fis． 705518 \& TRCNOMNOU2380 \& ${ }^{*} 3$

\hline MASIL \& Hs 276905 \& YKCNOU000272\％ \& 13 \& Scyl 3 \& H5：435500 \& TRCNOS00602386 \& 4

\hline Ms．stl \& Hs．2\％690s \& TRCSVOCOOO228： \& 43 \& Scre \& ifs 435560 \& CRENC000002387 \& 43

\hline Masti． \& Hs 2766935 \& TRCN006c002\％8 \& 6_{3} \& Scriz \& ［16． 335560 \& Trenceoonn 389 \& ＊ 3

\hline MAPKAPKL \& 155．635560 \& TRC：H00000in 222 \& －3 \& SCY\％ \& 6s： 435580 \& TRENCODSLO2399 \& 43

\hline MAPKAPK2 \& Bs．643660 \& TKCNE000002287 \& 43 \& YSK\％ \& Hs 559385 \& YRCN：0000002391 \& 43

\hline MNPKAbN2 \& 15s．643．666 \& TiPCNOC0002288 \& 43 \& YSK4 \& 158．65939\％ \& TRCN00000izzs， \& 14

\hline MAP？ $\mathrm{MaPK}^{\text {a }}$ \& His． 643566 \& TRCNum0002285 \& 18 \& 5384 \& \％iscosess \& TRCNA060002393 \& in

\hline MAPKAEB2 \& Hs：643566 \& TRCN0000002286 \& 43 \& YSK4 \& Hs 559395 \& \& 43

\hline NEK10 \& His S06）is \& TECN0000022．87 \& 43 \& YSK4 \& 14 s .659395 \& \& 12
4
4

\hline NEKIG \& 12．506115 \& TRCNOOOMOE228． \& 4 \& QRSK \& 15．18208i \& TRCRNOOCOOM23sc \& 4

\hline Hekio \& fes．506115 \& TRCNOUSOOM2289 \& 43 \& EKSK1 \& Hs． 182081 \& RRCNiCOMOO2．3：\％ \& ${ }^{*} 3$

\hline N（Kic \& צis． 506115 \& TRC20005032290 \& 143 \& 36SK： \& 3s 13208！ \& recencomonozize \& 43

\hline －EK 30 \& Hescolis \& TRCN0001002293 \& \％3 \& BRSK \& H5． 182085 \& TRCN000002399 \& H

\hline pose：3， \& 13548880 \& TRONatocool293 \& ＊3 3 \& BRSK \& 3：15．38\％083 \& TRCNUCOUO2200 \& 43
+3
$*$

\hline BOKKL \& Hes． 408801 \& TECN000doze9 \& 4is \& MYOS3 \& As． 67.1000 \& TRCN0000002401 \& 43

\hline b－Ik！ \& 4.468801 \& TRCMM0in00220， \& 83 \& Mrose \& As．571900 \& TRCNOOOOOU2402 \& \＃3

\hline PDTK：L \& 915．86850 \& TRC：N0：\％WM22\％ \& \％3 \& MYO3E \& Hssision \& TRCN0008002403 \& 43

\hline PDKil． \& Hs．468801 \& recse000022．96 \& ［i3 \& MYOJS \& H56671900 \& TRCNOU00002404 \& ${ }_{4}{ }^{3}$

\hline C．AMKK2 \& Hs 297343 \& TRCVM000002297 \& 63 \& MYOEB \& Gis 671900 \& TRCN00000022035 \& 43

\hline CAMAKK？ \& Hs $20 \% 1343$ \& TRCNOMOMU2398 \& 43 \& ORK7 \& F＇s 680is \& TRCN（400002406 \& 43

\hline ChGKK2 \& Es． 297343 \& TRCNOM0000229 \& 43 \& CRK： \& If 6socs \& Theneveonrico？ \& 43

\hline CAMKK2 \& 4s． 297343 \& 18CN0006002300 \& $\because 3$ \& GRK？ \& 82.580658 \& TRC 20000002408 \& 4

\hline CAMREK2 \& 15． 29573 \& YRCNCOOSEO2SO！ \& 43 \& CR27 \& \＄5．6800654 \& TRCN0000002019 \& ＊ 3

\hline ANKK！ \& Hs 448473 \& TEMN000002：02 \& \＄3 \& Eciesion \& Is 657973 \& TRCNOODOOR210 \& 43

\hline ANKぐ \& H3． 24.493 \& IRCNOOSOOM2303 \& \＄3． \& M．j2stras \& Hs 6s 9973 \& TRENOOSU02414 \& 4：3

\hline A以及 $\times 1$ \& 13． 348473 \& TRCNOCMOUU230： \& 43 \& Flizsiono \& H56657973 \& \& 13
A 3

\hline MikF3k3 \& －is 29282 \& TRCNOCOOXO2905 \& 43 \& Flusseot \& 815657973
36364432 \& \& 83
4.3

\hline Nail 3 K 3 \& Hs 29282 \& TRCNOMOMA2306 \& 83 \& TSSE4 \& 63：3i＋432 \& YRQN03003：024：4 \& 43

\hline map3k \& Fis． 29238 \& T3C\％ 2000022307 \& 43 \& TSEK4 \& ifs 314432
Hs． 314532 \& TRCNOOOC：024！5 \& 43
43
83

\hline WAPSK： \& 455.2282 \& TRCNOOCOOC2SOE \& ＊3 \& TSSK4 \& H5． 314132
$8: 531432$ \& \& 83
83

\hline NTKK3 \& Hs 410069 \& TKCNOSSOSO2309 \& $* 3$
\sim

3 \& TSSK \& Es5 344422 \& TRCNO0000247 \& 8
4
4

\hline Wrrxa
STRK3 \& iss 410969
is． 410969 \& \& \& AKH \& \& \& 43
4
4

\hline NTRK3 \& Ms． 410069 \& TRCNGOOU0033：2 \& 43 \& FYH \& His 700657 \& \& \％3

\hline Nrkk \& H5． 410969 \& TRCNOGOCOR23：3 \& 13 \& GYA \& 85 390558 \& Fecrucouonjors \& $\stackrel{*}{*}$

\hline PDK2 \& Hs 256056 \& TREN000002314 \& $+3$ \& Mn \& K． 390567 \& TRCN000003303 \& 43

\hline Pok2 \& J＋5 256667 \& TRCNidCOOO2315 \& 33 \& YYN \& H／ 3905058 \& TREVC000063191 \& \％

\hline PGK2 \& M8． 25665 ？ \& TRCNOOCO002316 \& 43 \& APK1 \& 85 207538 \& TRCMO60：603172 \& 43
43

\hline Ox2 \& \％is 25605% \& TRCNODOM 2317 \& 43 \& 3AK1 \& Ys． 207538 \& TRCNOMO）033103 \& 43

\hline ponkz \& Hs 256606 \& TRCNOOOOHO2318 \& ± 3 \& $3 A \times 1$ \& is 200578 \& TRCNOM0003：04 \& 183

\hline PRECO \& isc 631504 \& RRONOUCOO62332 \& \＃： \& sakt \& Hes．207538
Hs 5：3973 \& TRCN000300s：6S \& 63
43

\hline gRKCC \& H6．631504 \& IRCN0000002325 \& 73 \& Nista \& Hs． $5: 7573$
Hs． 517973 \& TRSNDOM003106 \& 43

\hline praco \& Fis 631564 \& TRCNEOOK02320 \& ＊3 \& MST：R
Mistir \& Hs． 517973
$\mathrm{Hs.517973}$ \& TRCN03000103167 \& 73
43

\hline PRKCO \& is 637564 \& TRCX 0 0600032．32？ \& 43
43
4 \& MSTIR
MSTIR \& Hs．517073
$\mathrm{Ms.5!7973}$ \& TRCNOOMO03188 \& 43
43

\hline MAPEX \& 16． $18 \leqslant 4 \leqslant 2$ \& TRC60000002323 \& 43 \& NSTIR
MST1R \& Ms． $5!7973$
Hs $5>7973$ \& \& 4.

\hline NAP2k： \& 15，14544\％ \& TRCN0000002329 \& 43 \& MST1R
PRKCS \& His 517973
Is． 460355 \& Trenooren3if \& 4.
43

\hline Ma？${ }^{\text {ki }}$ \& Fis． 145482 \& T：RCV01000t02330 \& 43 \& PRKCCs
PRKC\％ \& Hs 460355
His． 60355 \& \& it 3

\hline MAP2X： \& Hs 145442 \& TrCenombeoz33i \& 43 \& PRKCA
gRKCB \& H3，4603
H5 860.155 \& \& ＋3
+3

\hline UAE2K1 \& Its． 145442 \& Trewouvone $3: 2$ \& 43 \& PRKCCB
PRKCD \& H8， 860.155
Hs 460355 \& \& 43

\hline AURKC： \& 45.98398 \& TRCN0000002．133 \& 43
43 \& YRKCR
YYK2 \& Rs． 4600355 \& TRCNm000003320 \& 8

\hline ACRKC
AURXC \& 8． 988388
is 943388 \& \& 43 \& YYK2
YKZ \& \& TrCNOOOO203121 \& 8

\hline
\end{tabular}

BGNC	Unicrane	Oligo	TRC Kimone	HSNC	Uncene	Oligo	TRC Kincme
Symbol	ki	（i）	Puni 120010	Symbol	13	in	Poos 120040
rYKz	38．753：6	TRCN0000003222	\＃3	LTPM	Hs． 201918	TRENOH00j0：30．	$\# 3$
1Y大	Hs．75s：6	TRCNOMO0003123	$* 3$	H1P83	1 ls 201918	TRCNO000003356	43
YYK2	\％ss 75si6	TRecmounemsiz4	0	HIPN3	H．s． 201918	TRCN600000325\％	＊ 3
STK：0	Hs． 719134	Thervoumersias	＊ 3	WIPXC	Hs 2019 is	YRCNOHOJOO3254	\％ 3
STKIC	Hs．79134	crenowomosiso	18	$3 \mathrm{PS6KC3}$	its S914：5	TRCNOH0030325，	＊3
Stkio	415．709334	TRCNOOD0043137	＊ 3	RPSGKC：	Hs． 59146	TRCNOOMOH23250	83
S：kio	is 719134	TECN0000063i38	¢ 3	RFP6KC：	Hs． 591765	TRCN000j00726	43
sixjo	Hs 719834	rrencombuas39	43	RPSEKC：	B3591415	TRCNCORCS03：62	＊ 3
cue2¢	Hs 719158	TRCNicocosi3340	4.3	zak	Hs， 4 S．l4 451	TRENC0000032064	号 3
CIC2Le	Hstrvise		43	ZAK	Fis． 34046 ？	TRCN0000003267	H3
CDCzils	His 719138	TRC：0000003192	\cdots	zAK	H5， 444451	TRCNOOLO03268	\＃ 3
CDCXLS	15s．719138	Fiacnovodec3143	43	str 3	H5． 309767	TrCenopoobe327．	43
Coci21\％	6s，719138	TRCN：0060003314	\％ 3	STE3：	Iss 309767	TYCN00000032？	${ }^{*} 3$
I．TK	H2，43448：	TREWOORO0U3154	is	STK31	H：309757	TRCNOORSEDa2\％	12
LTK	Hes3bs8！	3rennoooctalis	43	SIK31	Fis 309767	TRC： 00000003277	73
LTK	\｛35 $\$ 3.448$ ！	Tricnowneonss	13	Stes	8s 30576 ？	TECNO00000327R	\％3
LTK	［5．434．481	TRCvice0003159	43	URIMK：	Hs 2.17810	TRCNOOLOOM3230	${ }^{*} 3$
pusckn	1e． 469642	TRCNS000063158	33	Unimk	H6： 127360	TRCNOOCOO3231	¢ 3
RPS6＊B1	Fs． 403602	iRCN0000003159	\＃3	LHMK：	His． 327310	TRCN0000003232	N 3
RYSOKE1	4s． 463642	TRCSO00003160	43	URARK；	Bs． 137910	TRCNOOOOOO3283	\＄3
RPSGK（3）	35，403642	TRCNOMOOU03101	：3	RAC：	If： 413812	TRCNOU0000486＇	$\stackrel{3}{3}$
Resaki3	$\mathrm{H}_{3} .467812$	TRCROOOM003162	03	RACl	K8． 813812	TRCH0001004870	a
SYK	Fis 37172：	TRCND000005：63	\＃3	RaCl	\｛25， 413512	TRE：0000004831	N4
SYK	Hs． 371720	TRCNOCOOCO3： 6 a	13	RACd	6s．413812	TRCNOOOOCO4372	4
SYK	Hs． 371720	TRCNODO0003165	4	Cis：${ }^{\text {c }}$	319643：20		14
SYK	145．3F3？20	TRCNOOCOO3160	＋ 3	103：R	145643：20	TRENDOM005112	$4:$
SYK	$\mathrm{H}_{2} .371720$	TRCN0000003167	43	MgFis	415643：20	TKCNCOOOLOS：13	4
coct	Fis． 53357%	TRCNOG00003164	\％ 7	10Fid	Hs 643：20	TRCNROOOOES：14	$\% 4$
CDO	19． 533573	TRCNOge0003169	$\times 3$	16Fip．	H5：543120	TRCNOOMOMAS ils	M4，
CDO	Hs S 53573	TRCNOOOOOB3170	43	KFIR	His mbine	3RCNm0000es3：	44
COCl	H，53：15\％	3RCN0005003173	43	1SFSK	H5，643120	Rraveroones 173	14
CDC7	$46.53 .3 \%$ \％	TRCNOC006337\％	43	cifla	Hs 643120	fuckoubous 1：8	为 4
1．102	B6： 656213	Thrcemsominsiz7	43	trkap	Hs 20395%	TRCNMORODSSE！	43
3ヵK2	H5 655233	TRCNOCOU06s is	\％ 3	TRRAP	15．203952	IRCN000000536\％	44
3AK2	Hs． 5562 9 3	TRCM000003319	43	－23AP	Hs 263092		44
Sosk 2	E4．056213	TRCN0000003180	\＃3	TRRAO	Hs． 203052	THCNOOCOOS：S5	4
IAK2	H5：556213	ERCNO0030338：	＊3	R1O43	Ms． 719109	TRCNSOROCOE4IS	84
\％3ki	HS S0587\％	TRCN0000053182	\＄3	210＊3	7s． 719109	TECNG00000S419	4.
TRK	H0． 50.98 m	TRCP0000003183	＋3	H0K3	Hs 719109	Tricncouonos 220	\％${ }^{2}$
［3x：	Hs 50：$\%$ \％ 4	TKCNOU00003184．	89	R1OK3	H5．75109	72060000055631	4
T8K：	iss soss74	TRCN000003185	83	RiOK3	Hs， 719105	JRCN30G000salz	47
Tisk	Hs 505874	TRCV0000003：86	\＃3	F14k8	H5632865	IRCNOCOOOOSIS\％	\cdots
SNSRR	Ms． 243138	TRCN0000003187	4	PiskB	tis 532455	TRCN0000005 54	分4
WSRRK	（i） 248138	TRCNOMO003188	43	P：$¢ \mathrm{~KB}$	115 5 32965	TRC＇ 50000005694	\＃ 4
mSkR	Es． 248138	TRCNOU00603189	＜ 3	Proke	815． 532405	TRCNY00000 665	34
SMSRR	15.248 .38	TRCNGM0003：90	43	Pl4K8	H59632465	TRCN060005690	4
RPPG213439．3	1484424\％	TRCALCOU003i9：	\＃3	PRKCl	H6． 37815	TRCCN0000060037	\％ $\begin{gathered}\text { a } \\ i \\ \text { i }\end{gathered}$
Reg－2t3mss	H5．4942．6 7	Fickounoousor	43	PRKCl	13，47815）	TRCMOMOMOSOES	34
RP6z：3\％191	Fis．49424］	T302000009393	43	PRKCl	（\％s．47819\％	TRCN0000006035	\＃ 4
$8!6.2333!9.1$	13s 38.2387	TRCknoguos3ios	た3	PRKCl	135478159	TRCNODOOGOSG40	44
REG213839．1	13． 341247	TRCN0000003195	43	Prkcl	318.478199	TRCNOOCOOKSA	44
$1 \mathrm{~m} \times \times 2$	Hs．397365	TRENOUCOUNS201．	4	CSNKIA	4 4 .712555	TRCNB00inobot？	\％4
\％PK2	BS． 397405	TPCVM000003203	8	CSNKIA：	45 7 72.255	TRCN6000006045	
EitPk：	12s． 397465	treinolooliz203	63	CSEKIA：	Hs． 712555	TRCNOQSOOV6 2 2 4	\％ 4
Brek 2	KS．397665	TRCN10000003224	43	CsskJa：	re．tiziss	TrCnmocombers	${ }_{4}$
videk2	M， 497513	JRCVG00003205	\＃3	COKM，	H5079830		＊
NCAK2	（is． 497512	3RCN0030003206	＊ 3	CDKL	518679430	TRCNOCOOCO6070	\％4
NLAK\％	Hs 497532	ERCN6000010769	43	CaM 1	Hs 678430	ThCNOOODO06071 TRCAOU0006072	14 84 84
NUAK3	18s．49\％s 12	TRCN0000003207	43	cokld			64 64 84
NTiAK2	fis 497512	TRCNOBODOO3208	13 8.3	CDK1．	Fis 679830 Hs 524488	TRCNOCOOCO6073 TRCN000006078	¢2
KIAAIBE4	Fs． 547779	TRCNOWNSU3209	83 83	DOKA	Hs 524488 $H 8.524 .888$	TRCN0600066073 TRCN0G00060］9	4. 4 8
XiAAJPME	15s 547779	TREFSOOOOOC32：0	73	DGAKA	H5，		\＄8
KRAAB804	Hs 547779	TRCN0000302211 TRCN000067212	43	boke	Mo 224488 Hs 524488	TRCNOj0000608i	8 \％
KLASA 804 KLAA $30-5$	H3， $54 \% 779$ $H 5.547 \% 9$	TRCN00000C3212 TRCN 000003213	4. 4.3 4.	DOKA	Hes． 2.4488 Hs 239514	RRCN0000ge6s3	\％ 4
PSEH？	Hssesol 36	TRCNOOCOOUS23	43	DCEKE	Hs 230514	TRCNO00006093	\＄4．
HSKH2	Is scmors		43	boke	8 s .239514	TRCNMOGMOGOB5	${ }^{\mathrm{N}} 4$
$\mathrm{V}_{5} \mathrm{CH} \mathrm{l}$	HE．680135	T8C：V00000032．6	\％ 3	OCRE：	615．239514	TRCN000000085	\％4
PSkHE	หัs．680］36	T3CN000000323？	＜ 3	DCES	Hs 239512	TRCNOU00066087	84
PSKH2	Tis． 680436	TRCNODOOM3238	43	Jok	H5． 242947	TRC？N006006023	＊ 4
ISSK2	：35．6940\％0	TRCN0000003219	4.	UGK	Yis． 2 S29047	TRCNONCROCN089	44
TSSN3	H． 694070	TRCN0000603220	43	DGKI	Tis． 92947	TRCNOMO（ 406000	± 4
rssin：	Hs．694070	SRCNOUKOHO322	＊ 3	DCK	源242347	TRCN6000\％06091	48
TSSK2	1s．683070	TRCNGOR0303222	43	DSKQ	Fis． 584858	TRCNM00006002	＊ 4
TSK2	tsc 693070	TRCNOOODCO3223	43	WOKO	His 584858 Brs 586858	TRCN002006093	4
Mukh	H． 310878	TECNOUOOTO3224	± 3	Deko	Hs 584858	TRCN0000606094 TRO． 000006095	48 14 4
MEK6．	H5． 119878	YRCNOOSOCRS22S	43	ロGKQ	H5．584858 Kis． 515032	TRC， 4000006095 TRC $\because 00000060 \%$	24
MLKL．	Kis． 119878	TRCNOn0003225	73 4 4 4	MKNK MKNK2	Ris．j15032 His 515052	TRCN00000060\％	4
NLEK1	153119878	TRCNOODOOS227	43 43	KKNK2 AKKN：2	Hesis032 Hs．5 5032	TRCN000000s077 TRCN10000660）S	48
MLKL	Hi．1．19878	TRCNOOOVO03228	43 83	ASKN： MKind	H5．5：5032 His $5: 5032$	TRCNOOOU0060 ${ }^{\text {a }}$	\％
TTEx3	\％ 1 s． 659886	Circhoou0093230	43	MKing	His 515032		\％ 48
Thek	Es． 059846	TRENOSG0063232	43 48	KKNK Mapkin	ds 515032 $18.4326+2$	TRENOM00R06145	－ 4
9 AK3	14s． 656789	TRCNO600003242	43 43		15.432642 45.32642	TRCNOM0010614S	24 ± 4
PAK3	Hs． 656780° kis． 650789	YRCN00300103343 TRCN000000324，	\＃3	PMAPK 12 MAFKI2		TRCNO0000c6：47	\％
SRK3	17s． 5585789	TRCNOOLDOO3245	\＃3	MAPKi2	3s 432642	TRONOSO0006i4s	4.4
	H2， 6567	TKCNOCNOJO3246	＊3	MAPK12	Ts．432642	TRCNDOMOM： 449	12.

GONC	Unigene	Oligo	Trackinome	Hovic	Criciene	Oligo	TRC Kinnse
Symbol	id	i2）	Foos 120010	Symbo	Kd	15	Poul120ctio
MAPK 3	iss 86	TRC：N000NOS：So	\＃4．	BRAF	Is 55060 ！	TRCN0000006292	W 4
MAPK	H． 8.85	TRCNOO6000615．	＊ 4	BRAF	Fis． 55000 ？	TRCN00600623	F
MAPK	H5．88）	BRCN00060nt52．	＜ 4	PRKCH	Hs．33793\％	trevioushers	4.4
SAPEAPK3	159．235521	TRECT0000006：S3	44	PRKCH	Ess． 333907	TRENGO06006293：	4
MAPKAPK	6s． 234.521	TRCN06000063S4	44	Pakcis	Hs 333907	TRCNO600006290	84
MAPKABKT	He．254521	TRCNu0COSOLSS	44	frxem	He 333967	TRCNOO00006297	24
Mapkapls	He 2\％4S23		84	PRECH	Hs．33907	TRCNOOCOO62．98	48
KApK大边	Es． 2.345%	TRCaObogogis	s． 4	BPDT	Bs．482500	Tkersoseorab303	14
MAP3k］	Hs， 653654	Trenowouotise	± 4	BRD ${ }^{\text {a }}$	［55．482520	TRCNOCP000304	84
MAP3K1	Hs． 6.535 S 4	TrCNoitcigetis？	44	BRES	H15．482520	irevamiouesios	18.
MAP3K：	E13．05．is．5；	TRENGOCOCL6150	H． 4	BRDT	His． 482520	TRCMEDOLOE6305	34
Mn¢3k：	W5．653654	TRCNOCOHOC615：	$\geqslant 1$	BRDT	Hs． 482520	TRCN0000006307	＊
（Amp3k	He 6536354	TRCNOSOOCOOSS2	\％ 4	BRCD？	Hs 75243	TRCv0030006308	44
Piskai	H5． 715328	TRCivocioleoc201	44	ERD2	6is 75243	TRCMJ000606309	44
prikel	Hs 715728	TRCNOOCOOUS202	＊ 4	6Ri）2	［15 75233	TRCNOOLEM33：0	44
fexcil	H15．715728	TRCNOOOCOOL203	\＃1．	3REO2	is． 25243		44
PRKCi）	Hs． 715728	TRCNOC0000 204	tis	BRD2	Ms 75243	TRCN0000006332	14
Pbicce		CRON0000006205	P4	CH	Hs．ligsos	TRCNOMRNCOS313	f 4
CDCze	E15，709182	TRENOCOsose 200°	84	Crs	Es 11059\％	TRCN0000j06314	${ }^{4} 4$
cocoliz	fis． 309182	TREN000000207	\％ 4	0 O	Dis 110984	raciogouseosis	\＃4
CDCPL？	Hs 709183	TRCNOCOUOS209	4	Cf	HE：195\％	TRCNDODOOC6316	\＃4
C3M 2 L .2	H5，709482	Trevojencus203	\＃ 4	CTS	H3．3058	TRCN000M006S17	\＃ 4
$\operatorname{coc} 21.2$	His． 709 cs ？	TRCNMOMOEsiz：	＊ 4	FASTK	Hs．6n7094	7RENOMOSOO633＊	； 4
EEF2K	Hs， 498892	TRCN000000622：	4	EASTK	15．647003		\％ 48 k
EEF2K	its．498892	SRCNOOOMUG22\％	44	Faste	H5．647094		6.4 +4
EFF 2 K	35 \＄$\$ 98992$	YPC， 0000000623	R 4	FASTK	H5s．647094	SRCNGOOMOM6322	\％4
EEF2K	F59．498852	TREX0000076224	54	iCk	S5 417022	\％RCN0000000323	14
צESCK	Yes．956822	TRCNGM0NO6E225	44	3CK	Hs 41702	TRCNOU00005：34	$\hat{*}$
Espl		TRCNMW0002225	4	108	H5417032．	TRCNH00：00632\％	\％ 4
HSPI	13s．133535	FROS000000622？	± 4	36	Ls． 17002	YRCNOCOO60．532\％	44
NS81	115．1385：4	TRCNOOXV006239	8；	18	195．417022	TRCNOOCOCO6727	44
KSR）	H3．13353s	TRCNSOOOOL230	\％ 3	MARK？	Fs．407800	TREN0000606330	74.
MKNK？	H1．371594	TRCNOnOOLC6231	\％${ }^{3}$	MARK：	His 997800	Trecinourani3］	44
NKwiks	H5 37159\％	TRCNOU00300232	H4	NARK：	Rs 597806	TECNOG3006332	\％${ }^{4}$
ANKNK1	He．371594	TRCN00000062：3	4	：Crke	1s $45 \$ 402$	TECNOOCOO60333	＊ 4
MKNiK：	83s． 375984	TRCNOSDOOC6234	44	PCTX	H0．445402．	TRCNN00）（\％）：6335	4：
pructi	kis． 37785	TRCN00000062．35	V14	PCTR3	145.445402	TRCrovorio6330	4. 4 4
pkurit	14s． 77788	TRC F 00000075276	81	Rersy	Hs 445402	TRCNOCMMC633\％	詮
Matil	14．77783	TRCN00000623？	44	PRK\％	Hs． 632237	TRCNGON0：3634	N4
MSNK1	tis．4634］	TRCNOMOMO623\％	44	PRKX	Hs． 390788	TRCN000x 0 S 46	N4 $\%$
manel	lis 643317	TRCN000000623）	64	RiPK2	8 c .10375	TRCNOFOOU6335	\％4
Misidi	：15．443417	FBCNOOMSNSTO	84	RIPK2	Hs losess	TRONGONBO634，	14
PCoze	119．500313	TRCW100000 243	4.	Reper	H8．10s？${ }^{\text {ches }}$	TRCN000msesso	04
SCTK2	$418 \operatorname{sen} 415$	TRCNOOSOO2iz42	$x+$	KIPK2	4s． 10375	TRCNOHOH0E3S	4
PCTK2	［3s．506435	TRENOCOON06235	54	R：S6kris	4s．719：31		\％4
PCTK2	HS Sou645	TRCNOM00002S4	$\$ 9$	Prssitas	His 71963		4
CTK2	3is．schals	：RCNGOOOOO6265	34	RPSOKAA	Fs． 719131	7RChigoogndozs4	48
Pl．k！	H5． 592044	TRENOSOMOES2．46	$\leqslant 4$	RPS6：522	fis 719331		\＃ 4
PCK3	13． 592949	TRCNOCO000824？	Hi4	TIK	1 ss ： 69810		4
：1k：	H． 5.502045	67C：80000002248	14	TKk	His 609846		$* 4$ 46
Pi．ki	Sis． 292049	TRCNOOC000624y	44	Eux	P15 A9573\％	TRCNHOMi0ng3s9	\＃4 4
PAKz	Es S 518533	3RCNOj00006Ss？	44	BMAX	16.495731 35995731		is
PsAR	Ws 518530	TRCN0080006251	14 $\# 4$.	BPAX BMX	$3 s \times 95731$ $\times 5.49573]$	THRCNOOC006631	－4
PAR2	Hs 518530	RRCN0060066252	\＃4，	BMX gMX	Y5．49573］ 	TRCWhoucout ${ }^{\text {TRENS }}$	N4 4 4
3AX2	Fis． 514530	TRCHOMOSOC2S	4.4 3.4 8.4	MiMX FKl	45.495731 3595900	TRCNJ000006363	＋4
PAK2	H5． 38530	TKCNo0000023st	$\stackrel{4}{4}$	FK1R	H5 95990 H． 95950		\％ H．
PRXDC	Hes． 491688	TRENONOMOE625s	4.4 $\$ 4$ 4	FKLik FXLR	H． 35950 i．1s． 95950 （1）	TRCN0000006384	N4 k
preix	ks 401682 38.401682		\％ \％ 4 4	FXLR PKLR	1.15 .95990 14.9990	TRCNOON0006386	31
PRicoc	18.501682	TReNOSMON0625\％	44 44 4	PKLR	H293940 Hs 93930	TRENoconoos 387	44
PRKTC	15． 991682	TRCNGOMBO62s3	\％ 4	EREEAI	Hs 898939	TREN000006598	\＃ 4
PJRKDC	fis 491582	THCNOMOUC6259	8.4 4.4 8.	Epras	$\mathrm{M}_{5} 889839$	TRCNOCuCueg39	4
POK1	Hs 470633	TRCNOOOXOO6260	44	Eprear	H5s 39839	TRCN0， 00040510 y	4
FDK：	Ins． 470633	TRCNO00 ${ }^{\text {rRCNOOS }}$	44	Eprial	Hs 898.19 Hs 89839	TRCN000060sse2	\％ 4
PDC1 PDK1	His． 4706.37 $H / 47063$	TRCNOOOOJ06262 TRCNOOOUSER253	44 3 4 4	Ersial	Hs 89839 $3 \mathrm{~s}, 172 \mathrm{siog}$	TRCN000630832	\％4
¢DR4	：4s 8364	TRCN00\％006620\％	4.	EPFin2	Mis． 171589	TRENOMO006403	＂4
POK4	W3．8364	IRCNMOO00025	4	EPEiA2	His 171596	TRCN0\％00064y	4.
PDK4	\％2．8303	TRCN0000006260	14．4	Exibas	Ws．：3364？	TRCN000006403	${ }^{*} 4$
PDKA	3s． 5364	TREN000000626？	24	EPHA3	H5， 323642	Tresolecougalo	84
STR2S	H5 516807	TRCNOOSOCOE 269	\＄4．	EPHA3	8：5． 2.2364%	rscena	14 $i 4$ 4
STK23	Hs S1680\％	TRCNOW0GCOE220	${ }^{4} 4$	Epfias	［5s． 235622		4.4 4.
scens	H5 516807	TKCNO00000527	tid	Episis	1 T .654492	TR2CNOOLOOHEA13	\％
STK2S	Es． 51080%	CRCNOOOLO6S2．	4%	EPHAS	His． 65×492		48 年 4
STK25	135． 5168017	TRCW0002006273	\％4	Epras	is 654.492 Rs： $6 \sin 4.92$		年 4.
SRIPK	58．285192	TRCN0000006274	\％ 4	EPBAS	his 654492 36.651492		48
Supkn	स5，285197	3RCNOecunora3s	\％ 4	EPRISAS	36.659472 \＆is． 73862	TRCNOWC006418	等
SRPK2	Hs 285197	TRCN00000R6776	48			TRCNOMCOOS419	
SRPK2 SRPK2	iss 235197	7RCS000000627\％	18 84 84	EPPAAT EDPAA？	is 73982 Hes． 73962	TRCNOMCOMSAL	如
TAPS	16.285197 Hs． 153500	TRCNV0000006284	8.4 $\$ 4$	Eplar	\％：s．73052	TrCaycosooneit 21	4.
TAF3	4 Hs 158560	TRCN0006006235	4	Eptarz	Ins 523329	TRCNODOCOO6422	Ni ti 4
TAFs	Hs 158560	TRCNM00ROOR286，	64	E14B2	Hs 523329 H5 223124	TRCN000 TRCOUE423	H． 4.4 4
TAPs	Yis． 158500 ［is 158500		\％	Eplibl	Hfs． 513124 Hs． 523329		44 34
	［40 158550	TRCN0000006288	34		RS 523329 His 523329	Tircnoosocueste	E＇4
SRAF	ARS5006		44 44	CP\＆B83	Fis 23313 Fis． 298	TRCNS00800：9127	${ }_{4}$
B3AAF BRAF	Hessinos 36559008		\＃4	Eprife3	Frs 2785 Hs .3913	TRCNOT0：906428	\％

MGiNC	Uniciene	Oligo	SRC Knome	HGNO	Uniferne	Oligo	TRC Kinome
Symbol	36	ID	Wool l2oc：0	Symbol	1 d	D	Poot 12actio
TPE233	H8． 2913	TRCNOOOOMO429	＋ 4	PAK？	\＄5532599	TRGNOQ00007103	4%
EPGEM	His． 2913	ircnobuodosasy	4.4	PAK；	13．32539	TKCNOOUCOO7109	84
Prk？	Hs． 90572	TRCN0000006431	4.	PAK 7	37.32 .539		44
Cix\％	：3s．61572	TRC：00000nadjs	44	PAK\％	H3．32539	TRCNOCU00NH113	31
PTK7	Ifs bus 72	TRCNO000906434	\％ 4	SCYL	As．238839	TRENO60000722	＊ 4
F\％\％	185．50572	TRCNOGOOVOS435	14	SCYL	Rs 338839	TKCNOOMOKn 122	$\# 4$
STM 36	ह1s 471408	TiCNuOU000；986	14	scye．	His 238839	SRCONO00007124．	\％ 4
ST336	Hs．$\$ 71404$	TRCNi00000069\％	\％ 4	SCYi．	Yis．23883\％	TRSCimuckutizs	44
STK30\％		Trcaiancoe00985	i4	SCYL	Lis 238839	TRCN0000607120	14
	Yis． 4 ？ 4 cou	Trevmeme69w	＋4． 4	STK32：	15．585009	TROv006006n 2 ？	H4
cucal2	［is 709182	TRCivoou0006s52	44.	STK32A	（18．58506s	TRCMm00con ${ }^{\text {a }}$	$\beta 4$
c．0e232	135 709182	TrCN0060006sy．	4.4	57632A	13， 585069	TRONOMOGM7I2S	44
CDC2L3	its． 709182	TRCNOONOOOS995	\＄ 4	STK32A	125.585069	TRCNCOSNOO713	84
Hepss	H．74， 63	THCNOU506：00996	\＄ 4	STK3IA	H．585069	TRCN：0日fion7131	84
Hipks	H5．79303	TRCN0000060）	4.4	RIPK4	H5．517310	TRCNOOMA0071：2	24
Mrek 4	His 75363	SRCN000000：298：	\＃ 4	R！？${ }^{\text {R4 }}$	fis． 517310	3RCNOOSOH2733	48
［33PK4	Ifs． 79363	T： $2 \times \mathrm{NOL00060693}$	34	RIPN4	Fs． 517310	TRCNOOROCO7：34	\＄4
WiPK4	＋6．72363	TACNO0000n000	44	RTPX	Hissmso	TRCN000d00735	＋4
M1P2K2	Ys． $465 \times 32 \%$	TRCN00：30nerons	H：	REK4	845517310	Trenmomore：36	cs
A 1 A 02×2	3s．46562？	TKCNG006007007	3	TRIB：	\％s．46731	TRCN00003071．42	\％ 4
Mazax2	Hs． 465627	Triendicarcorois	ii 4	TIBAS	H54．4725：	Thenconotaids	84
WNX：	mis． 105.48 s	TRCNOMOOP07020	＊ 4	TRIB2	； 35.46775	TRON00060：7144	\＄4
WNK＊	Ms． 305442	TRCNOODODOTM	4．	TREB	（19．46375	TRCNOOCOOO 71.5	44
WNK 4	Es．10stas	TRCN0000007072	04	TRIS2	16，46775！	TRCN0000007146	4
WNas，	34． 105848	5RCNOOMOCOT023	\％4	SCYM 2	Hs．sobat	TRCNOOCOO3714？	\％ 4
SSAKIAS．	Hfs 5 \｛239\}	T3C10060027034	＊＊	Scyiz	Yis 50648：	TRCM0000007348	84
CSNKIAIS	\％5 51289%	TRO30050000225	74	SCylz	Ms． 506481	TRCEN06000714s	\％${ }^{\text {a }}$
CSNKIAIL	HS．5i2897	TRCM0006007026	14	$3 \mathrm{SCL2}$	Hs 506481	TRONO00009750	H4
CSMRK1A：L	13． 532897	TRCNO000097027	\＃ 4	SCYL？	F（5．506．98）	TRCNDomoctis	4
CST：KAAS	68.512897	TRCN0000007028	E4	MARKS	Dis． 34314	TRCI，0000007156	\％
1RR3）	Hs． 607918	TRCN0060037038	4 F	MARK 4	Hs H 4314	TRCNOMS0：07157	34
\RRK！	359607938	TsCNDOMOCu7039	$\because 4$	SARKA	K． 34714	TRCNicomolis8	44
LRRX	30407918	TECNOKOO007040	$\times 4$	MARK4	ME34314	TRCN（0000007159	\＄4
\R2x）		Theveonemolo	\＃ 4	SAKM	15．34314	TREN0000007160	03
STK3ze	Fis 169002	Trentioucour ${ }^{\text {a }}$	\％ 4	Hip Cl	तs． 53236	TRCNOOOVOU7E15	184
STkize	Hs 869002	TRCNGOOROB7045	4.	HPRE！	H5．532363	TRCX 2000000715 ？	＊ 4
STK3zC	Ws 469002	TRCNDCODEOTRess	4	Hi\＃k）	He 532367	TRENOOOW067163	s 4
STRADA	1s． 514402	TECNCG00007097	6：1	E：PK：	Es． 532367	TRCEV00006C7164	\％ 4
Strada	Ye． $5: 4402$	TRCN20000003048	41	ImPK	Hs 512363		44
STRAOA	H5 Stwor	TRCN3s0006704s	H ${ }_{\text {N }}$	NPR1	H9．60330	TRCNOODOUT326	84
straide	HS． 51.4402	TRCN00004070s：	14	Nok	His．4903；	TREN0000007327	4.
Sreabs	His 514402	TRCN000000705	＊ 4	Mipl	H5．490330	TRSNODOUS0？328	4.4
yase	M6．3078\％1	TRCNS（x）30007052	14	NPRS	Hs． 400330	THCNGOOOVO7 29	\％${ }^{\text {a }}$
PASK	fis 39789：	treemonoubyosy	$\times 4$	ADCK4	1（5） 30712	IRCNSOCOOO7330	＊ 4
PASK	15：397891	Trendoorcomos	di4	AOCK	\％5． 330712	TRCNOOOCOO73：	4 4，
fask	35 397891	－PRCN0006G0765s	44	ADCK	\％s． 130712	YQCN0000603332	8
TLE ${ }^{\text {ren }}$	Yis 719165	TrCNOMOCOYOS6	314	Asckit	11． 13012	TRCNHODOOD334	84
TEK！	［15．99153	TRCN000007057	4.4	cos	11533456\％	TRCNOC00007S2？	4.4
TLKı	Bis 7：9163	crevojoob07ess	＊ 4	CDC2	6ss $334 \leq 62$	PRCNOOOOOD724	44
THK1	Hspsica	TRCNOOCOUOTOSA	4.	CDCL	Hs 334562		＊ 4
TKK	H2，719363	TRCN0060007060	44	ClOC	H5，33，462	TRCun000089\％	\＃ 4
KSR2	H5． 258886	TRCN90000： 7061	4．4	cuc\％	Hs 354562	TRENOCOD009727	43
KSR？	18． 175836	TRCN0N00007052	44	mstik 4	Es， 127830	TREVOROCNOS902	\＃4．
KSR2	35，375836	TrCNegocuorocs	\＄4．	TılMz8	$15.45 \% 408$	TRCNOONOM 1398	8.
SRPK 3	3－15：0486s	TRCKK00000706？	$1 / 4$	T13 1228	Ha， 307402	TRCNUNCW：8000	i 4
SR3P3	H5： 04465	TRCNO0000670s8	\％ 4	TRAMEB	His． 167408	TRCNOHOOS：3001	$8 / 8$
Micca 2：05	Hizesss	JRCN000000\％059	4.4	TRIA128	Mis． 467408	TRCEN000］：800\％	4.
MGicat 205	13s 25885	TRCVi010e0070\％	$n 1$	14 ak 13	1s 507564	TRCNOONO0：189is	0.8
aGicazês	415.25815	Thevo00000707：	44	M KKB	H6．59765s	TRCN00000：89：6	＋ 4
Stikabi	8 8，65\％3：8	TRCNGOS6007072：	$1 / 4$	Ki3k	Hs 597654	TrCNOMOOU189：	84
STRADS	10：652338	TRCN000000703	＊ 4	（KBKB	Bs 59764%	TRCN000088918	\because
stmade	：is652338	CPCYY000007074	\＃＊	UEKB	HS $59766{ }^{\text {a }}$	TRENOMBCOI8939	\＃ 4
SrRaD	H5．6523．88	TrCNOONODCNOE	44	TEC	45.429676	3RCNDOOHO：95S9	${ }_{4}^{4.4}$
STRAER	H5 652328	TRCNOCugud7e\％	$\stackrel{1}{4}$	TEC	1s 479673	TKCN00000！9560］	4
BCFI610s	H3，292986	TRCNOMON007Cim	84	TEL	iss． 479670	TRCN00000195S1	＋4
MSCi6169	Bs． 292986	TRCNOLO0003078	\％ 4	TEC	Hs 479690	TRCNOCOCO19562	$\stackrel{8}{4}$
A	19.292988	TrCnoodechers	44	TE	4s．879670	TRCNM00019563	04
MCC16：60	54.202986	TRCN0900007080	ti4	ij 4 KA	！3s 5294.38	TRENGOOOR2150	84
MCC 36169	Yis． 292980°	Trcnoouls 7081	84	Plaka	H． 520438	TRCN300C021200	44
RFSBkt！	（15．416488	TRCN0060007082	34	Plika	M15．529838	TRCNH006021201	48
－${ }^{\text {PSGKLJ }}$	\＃5． 414481	TRCN以6000070b3	44	PI4KA	13s． 2204388	TRCN0000621202	± 4
\％psexid．	H5，9438）	TKCNOMONOYOS：	＊ 4	9\％MN	11 s 529438	TRCNDV00621203	84
RPS6KL	HS 3 亿448	TRCNOU00507085	± 4	TRMD2	14.490287	TRCN00000332S	\％ 4
RPSSGK．	H5 81448 ！	TRCNOCOODO67086	4.	TRIM24	Hs 190287	TRCNQ000023280	6.4 48
WEK8	H5448168	TRENG0n00087087	$\# 4$	TRiN24	Hs， 4×288	TR2CNOLOOM21261	4
NEK8	H4．148968	TKCN0000007088	${ }^{1} 4$.	TRM24	ifs 400287	Tren 000023202 TR $W 000002363$	84
NEK\＄	H．9488488	TiCCNOCOCOOT089	${ }^{*} 4$	crumer	W．42025\％	TRFW000k21203	84 84
NEKB	H． 458468	TRCNOU00002990	is	aros	45522472	TRONOEOO421374	42
NEKS	16． 188468	－TCNa0000070：3	\％ 74	BRD2	Hs 532472	TRCN0000221375	44
Prak	Es：38917？	TRCN0000007097	4．4	BRDS	H． 522472	TRC \％ 20000231376	44 44
P（NX）	F： 1889 ？	TECNobeou07098	$d=$	BRCJ	H5 522472		\％ 4
Pivis 1	ts 389171	TREN00600070\％9	14	ERD3	Hs 520472	TRCN000V21378 IRCW000002134	4.4
Punct	14．38917］	TRCN0000007：3：	4.4	ephaid	Hs． 1284.35 fis． 12943 S		4
MAsms：3	1s， 655068	TRCNOOOVOCJO4	6．	EPHAlO	His． 129435 H／ 129435		4. 74
MAP3Ki3	Tis． 656069	TRCNDM060710s	\＄4	EPTMAO	Rs． 129435 Hs． 2×135	TRCN003022：387	it 4
	is． 655009 fis． 32539	TRCR 200007106 TSCNOU000707	H4 H 4	EPGA 60 ALPA			48 84

MGNC	UniGene	Ohigo	TRC kinome	HCNC	Unicene	Otige	TRC Kinome
Symbel	16	1 D	pooi 120ct：0	Symbol	16	is	Ponil2octe
ATPK2	F1：628i52	TRCNOOSOMSTSO	44	Cabcs	Ye 1882 Cl	TRCN6010023SES	就
AlSK？	45．628152	TRCNR（0002， 1393	4 S	CABCl	Fis． 18291	TRENOOOCO23StS	24
A PP S 2	is 688152	TRCN0000021392	\pm	cabcl	1s． 11894	TRCN0000021506	4.4
ALPR2	E4．028152	TRCNOM0021：S	44	CABCI	Hs． 58.84	TrCavenionz：son	＊ 4
NRE3？	［34． 521926	TRCND090021399	94	CABCI	Yes．1482s	TRC：10000021508	4
N4PMP\％	35 521926	TRCNO900323490	44	RTSOKAA	Hs 105384	TRCNOMO0021564	48
NRBP2	is 521926	TROCNOOOS2：40：	44	3PSEKA4	Hs 105584	TRCN0N002：515	4
NREP2	18.523920	TRCVM000021402	＊ 4	RPSOKAI	Hs loss84	TRCNOOOCO21517	184
NRBP？	135 52.9285	ircnuocue21403	H4	RPS6KA；	125． 1055884	TRCHHOLCO2IS：8	4 44
MiP3K： 5	Es 713701	TKCNOTOU02110：	84	CDEL4	13.403201	TRENCOOCO2：519	44
DiApasis	lis． 713701	TRCNOMCOO2105	4	COKL 4	Hs． 403201	17RON0060021521	4
MAP3K1S	\％9．713\％	TRCN000002：406	14	COKI．${ }^{\text {cos }}$	1 H .403201	TRCNGODRO21521	4
	45.713701	Trenumbenzian	H．4	Cloklez	His． 903200	IRCN0000021592	$4{ }^{4}$
MAESKIS	4s． 713701	JRCNMONCO2：368	\＃ 4	CDKES	Yis 503201	TRC： N 0000021523	45
CEkS	6s 6\％2149	TRCNOTOOS23409	44	GSC2	His 534059	TRCNOOOOS2 5129	\％ 5
NEX：	H． 68214%	TRCN0000214iO	4	GSSi2	Ifs 514059	TrCNDOSO022：S33	名5
vecs＇	199672144	TRCNOOCOO2131：	\＄4	MAST？	Kis． 227488	TRCNOANCO2 5 St	is
NEKK	\＄5． 672144	frengocomilil	44	MAST：	Ms．22\％489	TxCNDCOLO21546	45
AEKS	fis． 572194	TRONOOC002：313	44	MAST3	H． 227483	TREN0000621547	＝ 5
EPHA6	i3s 6.53244		14	PTKG	14：51：33	TRCNOOMNG21549	is
З3HAS	He．653248	TRC $\$ 10000021416$	184	PTK6	Husi133	TRCAOOUSO2IS50	A 5
EP\％ta	F15． 553244	TRCNGODIOC2：17\％	${ }^{1} 4$	？rko	Hs 51133	ORCNOSOM021551	145
EPris6	188．6357．4	TRCNESAOCOL41：	48	P9K6	3is． 51313	TRCN0000021552	25
33804	Hs：87363		4	PRK6	F\％S 5133		45
3RD4	Hes：157763	TRCN000023425	施，	［Cla 3	Hs 631907	TRENDOORO2 2 St	45
BRO4	H5．187263	Prenob00021420	H3	DCEX	6s 6 621907	TRENO20002535	45
FRD4	4s．18\％76s	Treve000021．27	$\times 4$	BCLK	Hs 6.71207	\＄RCNOM10021550	45
［3R3）	1s 18776	Trenoodenzaz	74	crix 3	bs sinme	TRCN00mozes？	48 45
Ern 2	W8． 592041	TRCNOOOO2 3238	12	18：20？	tis． 312804	TRCN：000002155\％	45
PRN2	Y5．59204t	3 KCNQ	\％ 4	TRPM，	H15．512894	TRCN0\％0092：501	7.5 3.5
ERNZ	Hs．s92：41	TRENO5P3021433	4.4	MAPZET	14 S 502878	TRCNMPOM2：SG	4
ERNZ	ass 920045	T：3CNOC000．i43．	\＃4	MAPBK11	H5，507872 4.502872	TRRW0rgontis6	4
EXST	iti． 592041	TRCNOOCOO21433	＋4，		Ass． 502872 Bs $5028 \% 2$	TKCriow	45
AASK AASK	Mis Stes\％s Eis 514075	TRCNGOSGO234．44	4.4 64	NAPAK！	Bs $5028 \% 2$	Tremonoti 21568	\＃．${ }^{\text {H．}}$
AMTK	h，5145？	TRCN0000021436	4	PNCK	14．93686\％	TRCN0000021569	ES 5
AATK	H51，5\％	TRC＇N0C00021437	Q 3	PVCK．	Hs：43668？	TRCNOOVO221570	45
BAAST	Yis．4S6182	TRCNOC00021435	i4 4	NEK：	Hs 481181	PRCN0000025580	45
Masis	I1s． 405184	TResomeno2144	14	NEX：	He． 381 ： 51	TRCN（003003：S8：	45
Masti	\＃s．450184	－TRCN000002iss：	$\bigcirc 4$	NEK	Hs $481: 81$	TRCN0006021582	73
diAs：	3．15， 166184	TRCP Y00000214S2	44	NEK1	Hs 48.188	TRCNOCOO221583	45
MSST3	Hs：460：84	TRCNOPMO021．44\％	4	TRPM6	H8：273225	TRCNW0003221584	85 85
givipria	13．52．an7？	TRCN000002：466	3	TRPMS	Fs． 272225	TRCNMOOMO21585	$\begin{array}{r}85 \\ \hdashline 5\end{array}$
BMPRLIA	3－5． 524.477	TRCNCOOCO2I4s\％	2	3RPME	8s， 232225	TRCN0000021587	8.5 4.5
SmPRIA	36．529．4\％	TRCNGON0023448	\cdots	TRPAK	315272275	Thrammog2158	45 45
MAST4	155．59545\％	Trenoonchi449	44	CLK 2	18.73985	TRCN000021591	± 5
MASTA	（is． 595458	TRENCOODO2 1450	＂	CKR2	15.73986	TRCNonotenssis	18 45 45
MAETM	15 595458	TRCNOOC00214S2	44	OBSEN	H5．650939	TKCNOSOU02159	45 45 is
Masma	Hs 595458	TRCN000021433	\＄4	Oasca	is 6.56598		\＃5
IRRK2	Fis． 1876.36	TRCNOM0021459	\＃	ossin	If．is6993	TRC．NCOSOD2160	\％ 5
LURK2	Lis． $18 \% 636$	TRENOW0021560	\％ 4	OBSCN	－15．65694）	TRCNOOOS023602	＊ 5
CRRE2	［2s． 187.635	TRCN000022：40！	\＃ 4	OBSCA	Hs 656509	TRCNG00002150	45 45
LRKK2	Hs：287636	TRCSELCO0021462	4.	TRIN33	Hs 26837 1.26357		＋5
$1.3 R \times 2$.	35．：8\％6：6	TRCMCOOCO\％ 4 \＄3	44	TR1M33	He 26837		4）
cous	Hs． $64 \% 078$	TREN00002 2186	\％ 4	TRiv33	Hs 26337 13×268.7		45
cors	Fis． 6,47078	Trevercoollats	4.4 14	TREN33 TRMO3	18.268 .77 4 s 26837	TRON000022000	is 5
Coks	Hs 6470\％	TRCNH000021460	14	ROR：	195． 65449 ）	ORCNDOCKO2215：	4 S
CDKs	31s． 647678	TRCNG00002］43	14 14	ROR1	H5， 654901	TRCN00000221s	43
CEKS	Fs． 647078	Thenv030032．1869	＊ 4	RORI	45． 5540491	TECNOAGOU2215？	45
coeq2815	H： 293590	TR（400602）	84	RORI	315.653493	IRCCNOCOH22258	is ${ }^{\text {is }}$
cocsibecs	H28． 293590	TRCNOKO002 14%	\％ 4	PRKACS	Y4． 58029	TRCEmocanz23s4	${ }^{5} 5$
COCA2BPG	\＄15． 293990	TRCNOUUV／26473	＜4 4	YRKACS	Fis． 158621	TKCN00000223s5	is
AEXK	G19692H2S	rizenocion21／34	8 4	PKRKACS		TRCNOOOOM22s？	it 5
ALPX：	H5 E52825	TSCH20000214\％	4.4 4.4	plkaic ¢SR2	Hf． 218029 H5： 258380	TRCN00060225\％	45
$\triangle L P K$ APK	Hes 5.52825 Ho． 652825	TRCMosob021476	\％	COR2	Ps 382300	TRCNOOOO23204	45
APK AlPK）	$1-2.052825$ \％is． 652825		4.8 84	3P．SK． 1	1s． 142081	TPCN000012640：	45
ADCKS	W5．753974	TRCNOCDOO21450	4	CSNK2A：	H5．044056	TRCN000062762？	＊ 3
ADCK5	\＄5 $2333 \% 8$	CRCinoono 23.83	4 A	wapisks	Is． 713701	TRCNOOOOC32582	0.5
inces	16s．283374	TRCNOOOOR21482	34	PlkjRS	H5278001	TRCNOGOCSES3269	45
nocxs	H5．28334	TRENOOCOO21483	44	PKJes	He 278091	TRCN0006033270	4.5
mitcz	4s 200925	TRCNO000n23444	4.	PKARS	Els． 278001	Trenomsous324	\＃ 2
EMTE	15.207456	TRCNOOONO2385	\＃4	P13300			＋5
LARES	H5．207420	TRCNOCOOH214SS	\＃4．	E1K3C） Yik 369	Hs 58845 l Hs．5S34s	TRCNOOOOO 1327 \％	4.5
，MTKK3	fis 207426	TRCNMOMO32ism？	4	PIK3CB	Ms．si8451	TRCivoroczj278	\＃S
LSTK3	Hs． 207426	TRCNOOO0021488	\％	PIKico	Ms． 32942	TENO：00053：27\％	its
MAPSK9 MAAFSKG	175.593542 4.9593592	TRCN0000）（21494 TRCN000 21495	\％ 3 3	P？ 3 3CS	18.329812	RRCNOASas 33280	ds
MAF3k9	\}s, 593542	（RCNOMOK）21406	42	PinsCl	51.32942	RRCNO00003928；	－s
MAPSK9	R 5 S 593512	JRCNOOC0021697	74	Prk3ce	¢1s 22942	TRCNO：00033282	45
MAF3KS	：4s． 5935.12	TRE：N000002：408	44	P：R3CG	H5，33842	TRCN0000033283 TRCW 000073289	＋1－5
600k：	Hesisis208	TRCN000002：890	4.4	PRE3R1 PRSE1	38.152225 4.132225		65 45
A 1 cex	His 413208	TRCN000002：500	4.4 84		\％3s．13220	YRCNOU0003 2386	45
ADCX	H6413208	IRCNOU0002150］ TRCNOOOO21502	64 $i 4$	PiK\％R	Ws． is 22 z	TRCN000033328？	i， 5
ADCEL	H5， 13208 12.513203	TRCNOOOO21502	4． 4.	DKibl	$4 \mathrm{H}, 32225$	TRCN0000033288	45

YGNC	UniGeme	Ofigo	TRCKMomi	HGNC	UnGGene	Ohes	TRCK：none
Symbof	14	$11)$	Pow 1200：0	Symbol	Id	10	Pool 12000
P：KSR 3	H3．65338\％	TRCNOT00033288	± 5	TM	Hs 178602	TRCN000033748：	4is
MX3R3	fis 655387	TRCNOM003sedo	\＃ 5	TTN	His 134602	TRCN0000037882	\％ 5
Pバ3方	We 565387	TRCN000003320	\＃ 5	TTN	fis． 134002	TRCN000037183	45
P6303	Hs 65s38？	TPCNM00003325：	$4 \leq$	NRK	Is 209s2\％	Sthenocoou33789	\％ 4
PIC3R 3	xis． 655387	TRCC0000032293	\＃S	NRK	His 209527	TRCN0030037490	is
MET	is． 332906	TRCNOOU00：361\％	4s	N！	113， 20092%	TRCN0006037491	45
MET	Hs 13.966	TRCNOCOOOS 6200	if	NRK	15． 209527	TRCN0000037592	＊ 5
suts	Hs． 132006	Techoo00036201	45	NRX	5k 20952%	TREN0200937\％ 3	\％ 5
MEC	H5，132886	TRCNMOCOOT6202	＊ 5	S）K？	318.26988		\＃ 5
MET	［1s． 132966	7RCN0000036203	\＃ 5	StK2	H5 269328	TREN0000037495	＊ 5
SPHK1	［is． 8800 ！	TRCNOOCDO3OSSA	＊ 5	StS：2	His． 269128	TRCNCOOH037496	45
whykl	Hes． 88.061	TRCNOO00036965	it 5	SiP2	H5 269128	TRCN000033？${ }^{\text {S }}$ ？	\％${ }^{5}$
SPHK1	Fis． 6806 ：	TRCN0000036956	45	Six	ifs 269123	TRCN0030037498	＊S
SPHK	Kis．08068	RKNOLOOO36967	\％ 5	TAFS．	\＄6． 591085	TRONUOCOO37809	45
Sexic2	：3s． 528805	TRCNOM00036972	4	TAFIS．	Hs 591086	TRCNO（k）OG37500	25
SPYM：	iscs 538086	TRCN0060036973	± 5	CAFL	Hf Sciole	YRCNOMOESTSS1	4
SBK：	1 H .97337	TRCN00：001730\％	\＃ 5	TAPLL	ris． 590080	TRCNOONOC3YSO3	45
SEK	515．9\％837	TRCCN0060037396	18	KHOL 2	Eis 27021		$\stackrel{*}{ }{ }^{\text {a }}$
SEK	H5． 97837	3RENOS00637397	45	PJOK2	13s $200 \% 1$	TRCN0006S7505	45
（ 88 \％	$3 \mathrm{is.97837}$	T8cromsm37398	is	RTOK2	14．27021	TRCNCOON23750\％	is
RIOK：	H：S 437474	TRCN0000033S9\％	is 5	810 Kz	515．2021		45
R1OM	\％s． 437374	TRCN：001037400	45	K30K2	［13． 27021	RECN000037508	45
RIOK 3	Hs 4373874	TRON000003 401	2 5	PJPKS	HS． 6874	TRCN0000037509	4
EIOK3	Hs． 437474	TRONCROOG3？403	Fs	RIPK5	Ms．68\％	t3Cciogogoarsio	is
TRIE3	Hs． 516826	TKCNOODOOTh4	\％ 5	kipss	Ms．6874	TREN000003751：	¢ 5
TkIE3	Hs． 516826	TRCNOODOOS740S	± 5	RIPKS	8 c ¢ 688 c	TRCNOM0003TS12	45
\％R！ 13	\｛3s． 516826	3RCNOLOU037406	\％ 5	RJPKS	Hs 6：974	TRCNOCOOO37513	45
T8133	45.516826	TRENOM00337507	45	TNIK	H3：34024	TKCN0000037534	iv 5
1 2133	H5．510826	TRCNMO0037448	\＆ 5	TNIK	His 34024	1RSN000037515	＊5
SMS1	\％is 880379	TRCNSNOS037409	\％${ }^{5}$	TNIK	Ins 34024	TRCNODOOOS 7 S 6	it 5
SMGL	13． 460179	TRCNOCOOO3）410	45	INIX	17534024	TRONO000037537	45
Stuctis	H6． 4601%	TRCNOMn01337411	\％ 5	TNIK	His． 3 acies	TRCN00800375 8	45
simes	15．450179	TRCNOC000374：2	＊ 5	Trsakk	As． 440263	TRCNOHOCOS7519	45
Smos	H489198	TRCMOOO003\％4：3	\％ 5	TPs3RK	Hs 410263	YRCNOOOOU37520	\＃ 5
Sms	Ts 530181	TRCNBMOM37：96	\＃ 5	TPSTRK	His． 440263	TRCN0060037521	± 5
PM3	Hs． 530381	TRCN000033\％：6	$* 5$	TPS3RK	H5 1443203	TRCN（02HO37522	45
！M 13	He5．3033］	TRCNOORO03\％41？	45	resakk	Hs： 610283	IRCNOCGOOS7523	\％
ULK	P3s． 313034	TRCN000003741s	45	TAOK	6s．64175s	TRCNOCOOS37328	＊
い．K：	is 5，513034	THCNO（0003742：1	is 5	ThOkt	14．633 ${ }^{\text {S }}$	T3CN000minses	＊ 5
Lus3	Hs 513036	TRCNOO0003742！	－ 5	TAOK！	H5．6sits8	TRC\％00003？${ }^{\text {a }}$	95
3，	Ifs S 5083	TIRCNO000032422	is	JAOX：	85.631588	TRENOKOCO3TS27	${ }^{4}$
U2．K3	11s． 515034	TRCNOCO0037423	45	TACK：	Hs．6312ss	TRCN0000337528	45
PRAGmin	Hs．657573	TrCNousiouthat	\＃ 5	SçKig	$\mathrm{Nog.508542}$		\＄5
PRAOMS	456536\％	TKCNOCOOO3722S	\＄ 5	SGKA93	Hs． 408512	TREA0063037530	45
Pracmid	isc657673	TRCNOM00037226	FS	SCK49；	his． 408542	TRCNCOOOO3153	35
PRACMMS	Hs． 657673	TRCM 60000.37827	\＃s	SOK． 93	Hs 4088542	TECNOQ0037532	\＃5
PRAGMIN	His． 65763	ZRCNOMOMO3／428	13	30×49	H5 4085542	TRCNOOOOO37533	85
SHES	48．216\％	3KCN000003742\％	\＄ 5	Tras）	Hs． 485436	TRCNGO6OM3753	7\％
Stres	15s． 21539	Trevona03， 5370	${ }^{4} 5$	mi33\％1	i3s 485436	TRCNOOLOOSTSS5	4
SPEG	H5． 2 ！639	TRCO（00003743：	ds	TTBK1	He． 485436	TREN00000393\％	45
spec	（is． 2 ：633	TKCNOU00037432	HS	Toxi	H3， 685335	TRCN000003TSE8	$\pi{ }^{2}$
SPEG	135 26.639	TRC．NOU0003733	\％ 5	P44＜28	13s 191701	TRCNOCOCOS 5883	45
C9armb	tis 159448	TRCN0000027434	4is	H4K2S	Hs．191701	RRCNO060037585	45
CParig	－15．159448	TRGADO00037435	45	P1422：3	If 19170 ）	TRCNOSO）90375B5	45
C90r960	［1s． 159448	TRENOCOOOS7．35	＊ 5	114k23	Ms．19：703	TRCNOCOMb， 7587	4 4
Csorex	ifs 15.548 ss		ES	P13K2B	13s 19：700	TREN0：00063758\％	4
C9CPMo	Hes． 359448	TRCN0000037438	45	H1922A	Ms 25300	RRN000003764	85
SGN259	Ms．95R？	TRCNiono0 ${ }^{\prime}$ \％ 439	\％ 5	Placka	16．25：00	TRCNOCCOUS3760s	35
Sck2s9	64． 6587	TRETNODOOS7430	His	PldX2A	Hs 25300	TREN0005037606	45
SOK209	Hs 9585	TRCNOSCOO37471	\＃s	PaC2A	Hs． 25300	PRCNG300033763	45
\＄9k269	Hs． 3 S8？	TRCNOOCOC3T412	45	Pl4k ${ }^{\text {a }}$	H5：25300	TRCNO60037608	4.5
sckzog	H69987	TRCH006003743	A 5	CERK	Y5． 200668	TRCN0000037624	\％${ }^{5}$
diYtくí4	¢15．127830	TRCNOCOOO37444	\＃ 5	CEKK	Bis． 200658	TKCNOtwo 37885	＊ 5
Mraks	Hs．127830	Farnomoungias	H5	CERK	3 s 200608	TRCN03000376S5	45
MYIK． 4	Hs． 127830	ThCroojou37496	AS	CERK	1 Ac 2006088	TRCCN0000037687	45
MYIEx	H5． 327830	TREN000N337477	± 5	CERK	Fis． 209658	TRCNOK00．39688	45
BYLKS	Fs． 127830	TRCNOOOV037448	25	$\mathrm{PK3C3}$		TPCNOU005779	\％ 6
KiAROn9	Hs 80i85		से 5	PKく3	BS 468971	TRCNNOU6037795	＊ 4.5
Kilarugs．	H5．107431	TRENC0030．37450	45	Prac3	Hs． 464971	TRCN0M0337796	＊ 5
KiAn0999	He．16745：	TRC：M4000037451	45	Pix3Cs	IS SAG4971	TKCNOCOBO37797	${ }^{2} 5$
KiAAOSOS	Hs．187459	TRCNOOCOO37952	its	Picies	Hs 264971	TRCNOCOOCS7798	14
100046048	fis． 532676	THCN00003745S	\＄s	Masts	31． 595458		\＃5
TSSK；	1ss 3：4492	treniouno ${ }^{\text {aras9 }}$	45	MAS：4	16.59545 H	3RCNH009037875	\％ 4
TSSxa	Is 315432	TrCNOOOM3 37400	45	MAStic	His 595458	TRCNOG00037870	\％${ }^{2}$
TSEK4	85.314838	3RCNOOK203746：	ds	MAST，	i3s 59\％5458	TRCN000023？877	\％ 45
TSSK4	H5．314832	Yeckionchejos62	45	Mast＇	H5．5n5458	TRCNOOSOS．7878	\＄5
SSSK4	Hs 319432	TRK心 600003743	75	SRC：	Fis 105659	TRCNU0NOSSise	13
TSSKis	As． 701555	TRCNONOQ037406	45	SRC	iss 195659	TRCNOb00i38151	$* 5$ +5 S
Isskis	45．7015s5	TRCN00000378GM	± 5	SRC	\％105659		A S is
TSSKIR	Hs 701553	Trciohion 3is6？	85	SRC：	H5 395659 its 36743 ？		\＄5
ISSKIS	［15 70 ：535	TECN0000037458	4.5 4.5	ATM	iss 36743 ？ He 367437	TRENOGO0038654 TRENO0003386S	45 85 85
texis	15：330223	TRCN00000374sy	${ }^{1} 5$	ATM：	Hs 367437 H5． 267437	TRCNO00003865 TRONOOOH7865	$* 5$ 05
TExi4	Fs．3x229		45	ASM	Hs．967s3？	TREN0T003386S5	45
TEXi4	Hs 39023		45	A． CN	415． 367437		\％ 5
TEX 14	15：300221	TRCN0030037472	165	ASN： MAFK15	H5．367437		\％
Mrim	18,33802 45.3360%		25 8.5	MAPKK	H5．393：69	TRCNO000038660	45

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline HGNC \& Unicue \& Oligo \& TRCELnome \& HGNC \& Unicrome \& Oligo \& FRC Kinome \\
\hline Symbo? \& Ic \& 10 \& Pool 12000 \& Symbol \& 1.6 \& 15 \& Pool inowis \\
\hline MAPK15 \& its. 993168 \& TRCNOH00038463 \& 45 \& EREBE \& [1s 34.5353 \& TRCNOOMOSS8.29 \& 45 \\
\hline CsNXiciz \& Hs.653905 \& TRCN0000038669 \& 45 \& ERBB2 \& Bs 446352 \& TRCNOUDO3SE80 \& WS \\
\hline CSNRMO2 \& Hs. 651905 \& 7RC:N00500386\% \& as \& ER8B2 \& He440352 \& TRCN0000G39881 \& * 5 \\
\hline CSEK 102 \& Hs. 651905 \& TRENH0003S671 \& 35 \& AKT? \& 48.398232 \& TRCNOCOOO39888 \& * 5 \\
\hline Csincig? \& His. 651905 \& TRCN00003 3672 \& 35 \& AKis \& He 498382 \& TKCNO(000030888 \& 45 \\
\hline CSNKIGI \& \& TRCNO000i3867\% \& H2 5 \& AKT3 \& Es. 498292 \& TREN0000039390 \& \% \\
\hline MSDR \& \%1s 338207 \& TRC:N0060038674 \& 45 \& AKT3 \& Hs. 498292 \& TRCN000603989: \& 4.5 \\
\hline STROR \& H5. \(33820 \%\) \& TKCN0005038675 \& 45 \& AKT \& Y: 4.498292 \& TRCN00000398s2 \& AS \\
\hline MTOR \& is 383820? \& TRONOOOU038G76 \& 45 \& Abs \({ }^{\text {a }}\) \& Sis. 43104 R \& TRCMMODOOSO88\% \& 15 \\
\hline Mror \& Hs. 338207 \& TRCN000003867\% \& +5 \& ABLI \& Sts 431048 \& TRON0000039899 \& 25 \\
\hline Mror \& He. 3382 y \% \& TRC3, 0000033678 \& \% 5 \& ABLI \& H 5.431045 \& TRCNOOOCO39000 \& \# 5 \\
\hline GSK3A \& 8s s6,5828 \& -18CPV000038579 \& 45 \& ABE3 \& H5, 310948 \& TRCTOONOO3930 \& * 5 \\
\hline CSE3a \& Hs.460828 \& TKCN0000038580 \& 45 \& ABLI \& Hs 831048 \& TRCN0600039902 \& \% 5 \\
\hline csisa \& Hs. 166828 \& TRCNOHOCLI3808 \& * 5 \& PTK3K \({ }^{\text {P }}\) \& Hs. 132225 \& TRCNO000039903 \& its \\
\hline Ciskica \& H5.456828 \& TRCNACCOO38582 \& ds \& PIK3R \& 173,32205 \& TRCN 18060039364 \& 125 \\
\hline CSK3a \& Fis. 4 ¢ 6828 \& TRCNOL10038683 \& \% 5 \& PIK3R: \& Yis 62225 \& TRCTOOOOU39905 \& Ns \\
\hline pioses \& 3s 8.5701 \& TRENOOOCO39603 \& \#5 \& PIR3R1 \& Ws. 132725 \& TRCNOJOOO3P906 \& 45 \\
\hline PRKBCA \& 15.85703 \& TRCNOB00.039604 \& *'s \& अ¢321 \& is. \(3.322 \% 5\) \& TRCNEO60039907 \& \(\pm 5\) \\
\hline ?130: \& 36.85701 \& TRCNOMCOSSOOS \& is 5 \& MAP2k4 \& H3 5!4681 \& TRCN00300?9913 \& : 5 \\
\hline PIK3CA \& H2.85701 \& TRCNOCO0039606 \& \% 5 \& MAPFL4 \& H5,5:46is1 \& JRCam000399:5 \& 45 \\
\hline PIK3C* \& Hs.95\%0 \& TRC? \({ }^{600003950 \% ~}\) \& 45 \& NAPREK \& 1ts 54681 \& TRCN0000339917 \& 45 \\
\hline ATR \& Hs.27?9 \& TRCNOG000396!3 \& \# 5 \& CBEK? \& 14 293303 \& TRCNOOOOOS994, \& 45 \\
\hline ATR \& 14.271891 \& TRCNOCOMzoö:4 \& \# 5 \& CHEK? \& Hs. 29.363 \& TRC. H O000039935 \& \(\stackrel{H}{5}\) \\
\hline \(A R\) \& 45.27:791 \& \& -5 \& CHEK2 \& fs:291363 \& TRCAEMORO39946 \& 45 \\
\hline ATR \& Hs.27239 \& Trecmou00396: \& * 5 \& Cimek \& : \(25,29: 363\) \& TRCNOOOOSS94\% \& \(\stackrel{4}{4}\) \\
\hline ATR \& Hs.2\%) \& \& 45 \& ATM \& Hs, 367437 \& TRCNin)0063\%94 \& \% 8 \\
\hline EOFR \& 14s. 488293 \& TRENOOLO3g.os 3 \& 45 \& STM \& H8.3674.37 \& TRCNC0:O039349 \& 4. 5 \\
\hline corr \& Hs. 984293 \& TRCN0050039633 \& * 5 \& Ami \& Hs. 367437 \& mCNGONCO39950 \& R
85
85 \\
\hline BCER \& 4s. 888.293 \& 3ROX000039635 \& is \& ATB \& Fs. 367437 \& 3RCNOCOUSj995: \& \$5 \\
\hline ECPR \& is 588293 \& TRCNOUH3039636 \& 45 \& ATM \& Hes. \(38 \% \mathrm{c} 37\) \& TRCNOMOO39352 \& 45 \\
\hline ESTH \& \(18.48 \times 2 \% 3\) \& Tacnono00339637 \& + 5 \& COK2 \& 34s:9192 \& TRCNOOO6039098 \& 45 \\
\hline igsta \& 14.6.62130 \& TREN000039674 \& \& Ciokz \& 4s. 19192 \& TREN0000039959 \& 4 \\
\hline Y\%1R. \& H5.043320 \& TRCNOOU003567\% \& 4.5 \& CDK2 \& Hs:15192 \& \& 4is \\
\hline Crijs \& : is 643120 \& TRCNC000U39676 \& \(\cdots 5\) \& cose \& H. 12192 \& TRENOMON3926: \& is \\
\hline ?¢83K2 \& He371344 \& TRONOOS0039583 \& \# 5 \& COM2 \& His. 19192 \& TRCAM00103F952 \& \% 8 \\
\hline PIE3P2 \& Hs 371348 \& TRCNONOOO3S6RS \& * 5 \& \& is 6315.35 \& TRCN0000039968 \& 45 \\
\hline PIKJR2 \& 6s 371344 \& Trovanomjyüs \& \#5 \& AKT2 \& Mas. 631535 \& TRCNOOUCO39170 \& \(\stackrel{5}{5}\) \\
\hline PIK3n2 \& ivs. 371384 \& YRCNOKOU3:087 \& * 5 \& AKr2 \& k!5.631535 \& TRENOCOU0039971 \& \% \\
\hline ER:3B4 \& H5. 390729 \& TRCN0000033685 \& \% 5 \& AKT2 \& Hs. 631535 \& TRCN0000039072 \& * \% \\
\hline ERSR4 \& Ys. 3 S0729 \& TRON000cio390is: \& * 5 \& mkscb \& Hs 23, 38818 \& TRCNOC0033578 \& \#5 \\
\hline Ener4. \& 8is. \(39 n \% 29\) \& TRCNOOC039692 \& ifs \& P183C8 \& H5.238818 \& TRCNOCH0G3907 \({ }^{\text {a }}\) \& \(i 5\)
is \\
\hline Mrist \& 2s 46574 \& TRCN0000639698 \& 45 \& PR2cs \& M53,239818 \& TREN000033993 \& ¢ 4 \\
\hline inse \& [s 46574 \& TRCNOM0033969 \& \% 5 \& PKSCE \& 135 233 \% 38 \& ORCNO00003908: \& \% 5 \\
\hline [NSR \& H5.659754 \& TRCNOCom3970 \& 15 \& GSkSB \& H5.445)33 \& TRCN0000639\%98 \& 45 \\
\hline NSR \& H1465744 \& TRCNUCOOO3970i \& \# 5 \& CSK3B \& Ws. 44.5733 \& TRCN0000679999 \& 115 \\
\hline MSR \& His \(46.57 \% 4\) \& TRCNOOCO0339702 \& \#5 \& cricio \& 54.445733 \& TRCN(600RO4000 \& 45 \\
\hline ALT3 \& H5 507550 \& TRCNOUCOH9703 \& its \& 65813 \& Bis. \(45 \mathrm{~S} \mathrm{\%} 3 \mathrm{3}\) \& BRCNOCOOOH9001 \& 45 \\
\hline ELT \& 14: \(50 \% 590\) \& TRCivonomates \& * 5 \& OSK33 \& Hs. 415733 \& TRCNOCOOCOMOCO2 \& \(4{ }^{4}\) \\
\hline M3 \& 145.507598 \& \& \(\pm 5\) \& TOFSR2 \& He. 82028 \& TRCNOLCOOAOCOS \& \#5 \\
\hline [2] \& [15.507500 \& JRCN0000639707 \& \(\boldsymbol{\theta} \mathrm{S}\) \& TGYR2 \& 1:5. 82028 \& TRENGOCJO4060 \& 45 \\
\hline C0\%6 \& fis 119832 \& TSMNOOC639743 \& 45 \& Sickrz \& His 32028 \& TRCNOUVO40010 \& Us \\
\hline CDK6 \& H. \(1598 \% 2\) \& TRCNV000639749 \& A 5 \& SOFBR2 \& 15c, 82022 \& TRCNOO60340031 \& 45 \\
\hline cide 6 \& 125. 190883 \& IRCNGOORO39745 \& 45 \& fararz \& H6. 82028 \& TRCR CO 000040212 \& *S \\
\hline CDK: \& Hs. 119882 \& TRCNOCOOCS 9746 \& it 5 \& REP \& H5. 350321 \& TKCNPOOM40025 \& 43 \\
\hline COSS \& Hs. 198882 \& TRON0400331747 \& * 4 \& Rer \& 3) 350521 \& \& 43 \\
\hline Resokal \& 175.149957 \& TRR 0000039754 \& \$5 \& Reat \& W1.39321 \& \& is \\
\hline 2PSSKA3 \& H6: 449857 \& TRCN00003975 \& \% 4 \& MEET \& 715.132964
453 \& TRCN0000040043
RRCM \(000 C 40043\) \& \begin{tabular}{l}
45 \\
is \\
\hline
\end{tabular} \\
\hline QPSEKA \& 5is i45957 \& \& \% 4 \& MET \& \(H 5322866\)
1s 132066 \& Rrcnoorcader \& 25
45 \\
\hline GSK3A \& 6is. 60828 \& TRCN00000.3976.7 \& 45
45 \& Mkici \& ifs 152006 \& irckueuos 40046 \& 45 \\
\hline GEK3A \& İs \(\mathbf{4} 668888\) \& TRCNMounse 764 \& 45
45 \& Mici
MET \& its 152966
Hes. \(132 \mathrm{Sa6}\) \& TrCN0000640947 \& +is \\
\hline (SEK3A. \& 13. \(4668 \% 8\) \& TRCN006339\%65 \& 45 \& MET \& Fis. 132568 \& TRCN000040064 \& \(* 5\)
45 \\
\hline cisksa \& \(\mathrm{H}_{5} .466828\) \& TRCNMOM039766 \& 45 \& ERE日3 \& Hs 118888 \& Trenowousosid \& 45 \\
\hline CSK3A \& 4s 8 cinse 2 \& TRCNOOOOSS975\% \& it 5 \& ERBB3 \& Fis. 118881 \& \& 4.3
4.5 \\
\hline TGEAR \& Hs 494622 \& EbCN0600639\%23 \& A5 \& ERbs3 \& \& \& 4.

4

\hline TGOPBRS \& 15.494622 \& TREN0006039\%74
TRCN00000397\% \& \& \& \& TRCN000edotoidy \& 45

\hline TCFBR2,
COPRER \& $1 / 9.494622$
15.494622. \& TRCNOOU0039?75
TRCNOH0039776 \& \% 4 \& R¢SSKA
RFSOKA3 \& Hs 485387
WS 453387 \& TRCEVO000040144 \& 45

\hline TGGEER \& His 4946220 \& TRENesconspro; \& 45 \& RpSGKA3 \& 36.443387 \& TRCN(x)00401:S \& 45

\hline PTSK: \& 125 470833 \& IRCinocrmon97rs \& 45 \& RPSOKAS \& (is. 4453887 \& TRCatoocedeldir \& ${ }^{*}$

\hline sok! \& \%5.476033 \& 7RCN0006039775 \& \#s \& RPSCESA3 \& Eis 445387 \& TRCN00006S 16% \& 185

\hline PDK1 \& Ms.47063? \& TECN0000039\%81 \& *is \& 868: \& Ks. 36.5669 \& Trcmorecanclsa \& NS

\hline DSK \& Ss 470633 \& TRCN0000037742 \& 45 \& B1,
P13! \& 15. 4696.39
15.46904\% \& \& H
AS

\hline Mok \& Es. 338207 \& YRCX 9000039783 \& 45 \& Bea33 \& H5. 469049
His. 469549 \& \& AS

\hline Mrop \& H5 338207 \& TRCNOBCHOS9784 \& 45
$\$ 5$
$\$ 3$ \& 6U3: \& His 360849
3.500078 \& TRCLOM000040173 \& 75
45

\hline Ninor \& 65398207 \& TRCN060003978S
TrCN000039786 \& *s \& SSSK \& fss:0078 \& Trevamom049174 \& NS

\hline MTOR \& HS,3382m \& TRCN0000039788
TKCN00003978 \& \#
\# \& Sciki \& Hs siong 8 \& Trecompoctolis \& \%s

\hline MTOR \& 154,33820\% \& TKCN00000.39787
TRCNO000039793 \& $\# 5$
45 \& SGKi \& ifs.510078 \& \& $\because 5$

\hline AK^{2} \& Fis. 525027 \& TRCNCO00039793 \& 45
45 \& Siokl \& irs. $5: 50078$ \& TRCNODOMQ4a:77 \& \% 25

\hline AKT3 \& His. 525682 \& CRCNOMOU33:988 \& \#
is \& Sost \& is. 510075
ins. \& TRCNOG06045099 \& 45

\hline AKTi \& 15, 525522 \& TRCNECOO039736 \& H5
$\# 5$ \& ROS:
ROSS \& lis 100%, \& TRCNOCOOU45102 \& 45

\hline AETL \& İs 525622 \& YRC:N1CG6039797 \& $* 5$
4.5 \& CO. \& \& YRCN0000045973 \& HS

\hline Crax \& Yis 24529 \& SRCN0 20003985 ? \& 4.5
45 \& CIT \& ${ }^{2+5,119594}$ \& TRCNOO004\% 5 \% \& H 5

\hline CHEK] \& Hs 24829 \& TRCNOHOY035854 \& 4.5
4.5 \& $\mathrm{Cr}^{\text {ch }}$ \& \& \& 45

\hline Cliekl \& His 24525 \& TRCN0060079855 \& 45 \& Crim \& Hs. 115504 \& TRCN0000\% 5 S\% \& $4{ }^{4}$

\hline CHEK! \& 46.24529
$14.24 \leq 29$ \& Trentougio39ss
TRCN00003985? \& \#3 \& SiRM \& iss. 76244 \& TRCN0000045? 28 \& + 5

\hline CIEN \& 3/5. 24 ± 29
16.466352 \& TRCNonctosys \& 45
85 \& SREM \& 135.762.4 \& tReveroubls ${ }^{\text {a }}$: \& 45

\hline
\end{tabular}

Hitc	linicame	Sigu	TRC Kinome	HCNC	Unibien	Ogo	TBC Rinorre
Symbor	1 d	i	Poes l2merto	Symbol	id	II）	800， 220050
SRin	815． 76244	TRCNSOM0045732	\＃，S	AC．TR2	iss 719274	Tricmopoos：386，	± 6
PRMI	Hs．86170	TRCN：00404673．	\％ 5	ACTRZ	Hs．\％19274	TRCNOOUOR3S6S	15
Pim 1	（is $81: \%$	TRCNOU00046795	65	Mass	His． 2274889	TRCN0003173）	\＃6
Piva	H3．81170	TRCNODCOSAETOS	45	MASTI	H5 227489	TRCN0000；13SE？	146
PMM	H8．81379	TRC：\％000004879？	\％ 5	MAST1	Hs． 227489	TRCN000613933．	\＄6
Ros：	（15．3043	TKCNOM0047！ 4	45	MASTI	F0， 227989 $H 5 \leqslant 2748 \%$	ThCN0000－13575	\％ 6
izos：	Hs luvi	TRCNODOUA47175	$\# 5$ is \％	Mas ${ }^{\text {Mat }}$	Fis． 592040	rscovorem 17474	\％ 6
NLK	Hs 208739	7arnemensti 9148	85	PLK：	Hs 5920.49	Craveon 1749\％	\％
NK	85． 208759	TRCNOOMOU49149	4	PLK！	3 ts 59204 s	TRCNW00：17450	${ }^{2} 6$
： $2 \times$	\％ 3 2（18759	TRCSNO60049150	4is	PLKI	153．392049	3RCNOM0： 1 ！ 7653	16
NLSK	Hs 208\％ 29	TRCNO0005915：	145 45	CRES	isk 538625	TRCN00001：8898	\％ 6
NiLK	H6．208？${ }^{\text {9 }}$	TRCN00000s9152	15 45	CRXS		Trewo000121092	46
AT？	Fis． 231793	TRCNCOOOOS23\％ 3	45	YES？	H5134148	FRCNO00012＞063	4.6
ATR	（s． 271798	TaCN0605052397	\＃3	Yes：	Ms 194148	ThCN000121064	46
BMP3N	H5．146551	TREN00000526：5	\＄5	YESi	Us 194188	TRCN0060：21：65	is 5
8MPRK	Hs．in6ss：	SRCCN000035：2616	is	Yest	3 36． 394148	TRCNM00012106ib	is
P） 4 CiA	48.529438	TRCN5000052624	${ }^{*} \mathrm{~S}$	Yter		TRCNSOOS：21087	
PW8．4	815．529438	TREN0000952S25	\＄ 5	EGFR	Ms．4882\％	TRCvocosiz 105 s ．	＋68
Scris	［16．50cris	TRCNOG00057848	is	Wbrk	8．s． 4882.91	TRCN00001210S8	H6
scyes	His Scosidi	TRCNOMOOS 784%	45	EOFR	154．488293	TRGE00012100\％	26 $\times 6$
Scye2	25：50648i	TRCNOU0以1857850	35	ECiFR	its 68829.3 His． 88829.9	1RCNOOOO 121071	\＆s
SCSte	Eis． 006481	TRC\％000005785：	＊ 5	pre		TRCNGOOS2：072	H6
$5 \mathrm{CY2} 2$	13．5． 5008481	JRCNOMO0057852	＊ 5	Plsi	tis 592149	YRCNOSOC 21073	46
Scyla	iss 506481.	TRCNOODOGS7883	75	PLK：	BS 592043		$1{ }^{4} 6$
seyce	W5． 506481	TRCN000005？ 884	$\cdots \mathrm{s}$	PLKi	155．542049	TRCN0000121074	10
SCYL 2	Ha． 066383	TRCN0000057885	H2	PLXI	H5． 532049	Rennimobizley	＊ 0
SCYL2	4is．$\times 06481$	TRCN0000057885	\＃s	MK4	H5：17205\％	：KCNJORD210\％	76
SCYL	Hs． 238839	TRCNOUOOLS7843	45	Plk	ids ：720s	Tricnowaizmor	\％ 10
Scys．	Hs． 238839	TRCN00606？ 20.4	－S	PLE4	H6．17205？	TRCROUNOL21079	80
SCYis	His． 238839	TRENOUOMSOSLS	6	PLX4	fls． 172052	TRCROSOUT？WRO	＋2．
Scem	Hs． 2.88839	TRCNOOOKO57946	45	PLSC	H5． 772052	3RCNOCOOL2108：	13
SCM，	12 238885	TRCN0000s 7547	\＃3	DOR：	Hs 6319888	TRCNOOOU21SS2	
RAGE	Hs 10413）		ds	DDET	Hs．63isex	TECK0000：2188，	${ }^{4} 6$
3nob？	Hsion19	TRONONODE2660	$\stackrel{4}{4}$	ODR！	819．531988	Thenamous3：08．	86
Nage	Fis．：0419	TRC．30000062sel	＊ 5	ODR：	H5631988	TRCNMan32，${ }^{\text {CRS }}$	9
R．sis\％	He． 1043 \％	TKCNOJojueutiol	\＃S	DOK	1156310948	TRCNONOH21086	\＃
A\％R	is 271791	TRCNO00063218	\＃ 15	M5s	Hs． 132966	Thesmout2lias	\pm
	Hs．2\％1791	－RCN（000063219	85	MES	Hs． 132866	trancounlioss	\％
ATR	is 271793	TRCNOROSUS3220	is 5	Nim	H5．132006	TRCN000123089	46
ATR	［19 235793	TRSNOKMOn32？	45	MEY	ids 132066	TREN000）2505：	86
Crixsr3	83， 555917		\＄5	SEET	Hs 172066	TRCN000：210S！	46
CNKS\％	Hs．555937	trevorsongirs 4	4 s	ROCK	Hs．306307	TROW6000：21092	K6
OvKSR2	HSSS5917	TRCHNOU39077895	$\mu \mathrm{s}$	Rock：	155306307	TRCNomol21093	46
CuksR2	H3s． 555917	Trenooudo ${ }^{\text {P8\％}}$	45	Rexcs：	Ts． 3006307	TRCN000121093	ifs
CNKSR2	Ex． 5559 \％	TRCN0000673837	\＃5	ROCER	H0， 0603%	Trenowh 2 ？ces	± 6
Cobry	［12 26484%	TRCN006007813	＊S	K00 21	Yis． 30630%	Trcaigooul21096	＊ 6
п．K？	Hs． 168762	TRCNOODOM 7495	4.5	ABL：	tis 431048	TRCNOGOU12103？	H6
U2K\％	Hs． 168702	TKCNOMOOFBMO	43	ABLT	ifs 431048	TECNOM0012：39\％	is 6
EiCこのK\％	8： 6566073	TRCVMOOMO2649	45	A532］	Hs． 61048	TRCW600012109S	（26）
S1F2AK＊	W5．0560：3	TRCY00400；8651	से 5	ABL	H5 831048	YRCNOOOOS21100	WS
B1F2AK4	M， $0.5660 \% 3$	TRCNGEO078652	45	Ascl	Ss．43：488	TRCNOC00：21：01	76
Plikd	42520438	TRCN000008588	is 5	PGFR1	18， 264887	TRCNDCOOL21：92	j\％6 6
0.14 KA	\＆15 529,385	XRCNOOCOO 78689	45	FGFRI	133．26488：	YRCesicose21103	± 6
FSAXA	His 529438	TRCN0000078691	\＄． 5	men	13s． 2044887	TkCNot00121104	45
AAK	145． 458878	TRCNU000082349	＊ 5	FGRR1	ts． 264887	TRCNOG00：21305	46
ADSt	H5． 654878	TRON000008z350	46	Forki	16.204817	TRCNU000：27100	46
AXKl	\％5． 768878	menotorosi3s	46	TXR	Hs 319689	TRCNOMOR	86
AnK3	Bs 4086788	TRCNOM00082352	46	TXX	\％15． 4796569	TRCN000032：109	8%
dascn	As 656099	TKCN0000H2398	46	txk	－15． 4×9669	ThCN000012110	126
OSSCN	H25569 ${ }^{\text {a }}$	78CN0000082400	\＃6	TX：		Trexpojel2ill	\％ 6
OBSCN	H5 CS6909	TREN0000682401	46	TRE	95． 78524	TRCNONUT2l：I2	\＃ 6
Suct	Hs．46030	TrCNOOOOUS24：1	28	fiEl	Bis 788 \％ 4	TREN000：2113	46
C9orstar	Fis 159448	TRCN0000082448	\％0＇	TE1	Hs． 28824	Tremorene ${ }^{\text {a }}$	46
Chorths	Tis． 1.59418		40	กี．	His． 78824	IRChioun：\％！	86
CSorty	Nis． 159444 Ws． 159846	TRCNOOOHO824S5	\％ 36	TIE	13s．78824	TRCN0009：21： 6	\＃ 6
cranmo	Hs．13s488		76	00\％2	Hs S93833	TRCNOMBP12：17	＊6
H1］	H5，651360	TRCN00008256S	46	30022	K． 507833	TRCNDMalisis	\＃6
PLT	itississo	TRCNOCOO082567	116	0022	H5． 393833	TRCN00092］189	4
CREKL	Has． 29136 J	THCN0000082610	46	DER2	Es． 593833	Truedoontale	d
CHEK	885． 291363	Chicnocoonk $63 i$	\＃ 6	linse	Wis． 465774	TRCN0：0012123	，
CHEK2	4s 291303	TRCN0000083632	3 3	MNSR	36.165744	TRCENOCOMI21124	46
mK3CA	［3 85701	TRCOM000082S．24	46	INSK	Fis 46574.	TRCOROMOL2：125	$\bigcirc 6$
PIK3CA	His． 85701	TRCNOL0008？ 225	＊ 6	1NSK	81s．4657，4	TRCNOPOO32：326	\％
PIK3CA	H5．85701	TREX0000082627	$* 6$	\％rs	Hs 305482	Crinampor21127	45
ATR	3s， 2 ）17st	TROnaC06083933	76	Y\％\％	16：395：82	TRCNGO00：2128	${ }^{6} 6$
ATR	Hs． 271791	TRCNOCOOOS3903	46	RTN？	¢is 39E482	7RENGOO0121139	46
$A T R$	18273701	TKCN000083506	± 6	Fix2	Hs 3954．4？	7ummoevi2130	46
ATR	88.271791	TRCN000008：907	\cdots	TMK2	15 395482	Fravougryli31	86
A $\mathrm{S}^{2} \mathrm{~S} \mathrm{BK} 2$	Es 637484	TRC＊0000084008	46	IS：1R	H5． 635320	TRCNnomat2112	\％ 0
me3a 6	Hezesses	TRCN0006107180	146	IGFIR	Lis 5：33120	TRCNOOOL2133	\＃6
PIKSRE	H：255809	TRCNOMOG10318：	136	IOFIR	15． 643120	TRCNOOSOL21：34	46
PIK 3 RG	Hs． 255809	TRENOOM010718：	＋	MEFR	H5．643123	TRCNM0D0121335	46
MK3R6	Hs 2558809	TRCNOOM610783	14	JCF：R	H5．643120	Trcene00121136	45
I！Y3R6	His． 255809	TxCNimonjonisa	46	［RAX］	H5 5228：9	Tronocge：2137	it 5
Actrz	H5． 719274	T：RCNOMOU 338 Sa	4.	3RASI	14.522819	TRCNbobel21138	ko
ACtra	Hs．7392\％	TRENOVOT13852	± 6	［RAK1	M3， 322810	TkCNucou：21：35	9

HGNC	Unigene	amb	TRC Kinume	Honc	Enicene	Olige	YRC Kinome
Symbol	$1{ }^{1}$	[1]	Pool 1200:10	Symbol	10	(1)	Pool:200t10
mak:	365,522819	TRenojogizil4o	46	Yes 1	\%s.3044!	TRCNOOCO12:386	* 6
IRAK	H.522889	TRONOg90121141	* 6	MET	135.3325065	Treyosou32i247	46
, AK3		TRCNOOHOL21142	80	MET	Hs.132\%06	TRCNGU000121245	${ }^{46}$
SAK?	13. 207538	TRCNROOS12:143	\#6	MCH	H. 1337966		\%
JAK:	H:207538	TRevocosizil4	${ }^{\text {it }}$ \%	MET	415.132966	TREN0000;22250	46
SAKK:	186,207538	TRCNOU0012114S	46	A MET	is. $13 \times 2 \mathrm{ctio}$	trenonobizizs:	36
Jaxi	\%13.207535	ThCNDODEL21146	${ }^{4} 6$	MSTIR	Hs. 517973		46
NISTIR	H65:93?3	TRCN0000123147	46	MST:R	Hs S17073	Thenvogoizids	x 6
mstir	H5SSize73	TKCNDOOTi23148	46	MSTE?	(8s5)7974	TRCN0600i232S4	$4{ }^{4}$
MSTIR	46. 517973	TRCNOOOU32649	${ }^{*} 6^{6}$	mstir	His. 512073	TRendouel2125	\% :
Mstik	¢5. 317973		20	MSTLR	His. 517073	Tracrousol2izs	$\# 6$
MSTR	His Sily	trencooulilis	46	Sixa	M8.1720:2	TrCNeoselizest	76
MSTI?	Ms. 517573	trencounkus9	46	FiK4	H5. 172052	TRCNG000121238	* 6
MSTJR	H.1. S. 19973	tracnococizilos	${ }^{4} 8$	PLK4	Hs. 172052	3RCNOC00121259	45
mestir	His. 517973	Trenemorzabi	*6	PLKa	Hs 12.508	TRCNOdodi2126]	\%6
O2St	(s.če31983	TRCNHOOM2:1162	76	PLK4	M5.372052	TRCNOROE21261	$\stackrel{3}{80}$
[12>]	:3s. 631988	TRCN0000021:53	46	i3sk2	His. 593838.3	RCNGSiOO123202	St
DDR1	its. $63: 988$	1RCNODO03218OS	\#is	DOR2	If 5958883	Trcnojem121263	46
DORI	H8.6.33R8	TRCNOWSI2116	46	DPR2	Ms 5938383	TRCN008012:26\%	\%68
A $\mathrm{BL}^{\text {a }}$	(35,4310:48	tretiocool2:68	46	ODK?	H6.995833	TRENOOSCLI266	86
A BL $^{\text {d }}$	Bs. 431048	TRCMHOCM12169	$4{ }^{4}$	318	\%15.78824	Trennowibzi2h	$4{ }^{4}$
ABL:	16. 531048	TRCNOSOU12:3\%	\# 6	912t	Hs 78828 \%	TRCNOOSOSL2128\%	\# 6
Ders	H5. 593833	arenotmonain	3.6	TIE1	Hs 788824	TRCNocosk2125\%	46
DOES	\%s. 39383%	ORCNendolzias	46	TE:	Bis \%xi24	TRCNEDS12127\%	86
ODR2	H5. 593833	TRCNOOOOL21174	$\%{ }^{\circ}$		6\%.7882.	TRCNO500!2120	48
DijR?	i4s,593833	TRENOb0032 ll?	36	NKく	[3s. 207538	TRCNO:00121272	45
Dokz	K5. 5938833	trenionolzals	${ }^{3} 6$	1AKi	ME.207538	TRCNCOSO121274	\#8
mk	His.479635	Trenou00123177	\# 6	dikl	Hs 207538	TRCNOOOO123275	46
[xK	8* 478069	TRCNun0512:378	16	Mak	\% $2 \mathrm{~s}, 207338$	TRCNH090321276	86
Tak	W, 499560	\%revou0012179	*6	AELS	F15.371048	TrCcioneliziz7	46
trk	14.478569	TROV0000121:80	$4{ }^{\text {s }}$	ABI. ${ }^{\text {a }}$	H5, 313048	TRCNGO0022:278	\% 6
sxk	\%SATSE69	TRCNGOSO32ile	\$ 5	ABSIL	1. 4310018	TRCwomble 1279	46
-CibR	H5 2644887	TRCMOSOS:23:82	40	A.BLI	Ifs. 431098		46
PGFR1	19.264887	TKENOOOB2218?	"6	ABL:	Ms. $43: 048$	recromenitas:	\%6
fgirs:	Hs. 264889	TRCNODO22:385	46	Msk	Ws. 465744	TRCN0000121282	\%
FGFR:	Fise 281888	TRCNO000121186	86	MSSk	H. 4.465746	TRCNi0\%m232K3	\%
73E1	83 \% 78824	TRCNOLind: 2136	\# 6	INSR	Sis 465448	TRCNOJOO121288	75
TEE	6s. 788×4	TKCNioum 213 BH	16	INSR	Hs. 465974	TRCN0000121286	45
Tra	1\% 78824	cravociminils	45	TXK	Hesmis6rs	TRCCV00013:28?	* 8
T1E	M5.78529	Trenoooth:19	06	rxe		TRCNOOU0121288	46
GFiR	15.643120	RCNOO6021102	46	Txk	Rs. 479800°	TRCN0600121289,	\%6
cimik	135603120	ERCN000022103	\$ 6	rxx	As. 479639	rickough ${ }^{\text {a }}$ (293	46
167ix	H5s.643220	trenosoun2l2s	85	TKK	H9.479669	TECNOUOL2129	1:6
yofir	185. 643120	T3C:N003012:40	* 6	OSR:	fis. 63198%	TRCNGM001222m	${ }^{46}$
P.E.K4	H5. 122052	TRCNuOU012:198	$4{ }^{4}$	mpR:	His. 631988	PrCNomouniz	86
PLK4	Es. 1720 S\%	\%CCucoun2119	1%	DDE ${ }^{\text {a }}$	H:63128S	TRENOMOD22584	36
PLS	[s. 17265 ?	trenocoun 2200	\%\% 6	DOR:	Hfs.e3198\%	Trcruocot2i29	46
MLK		Trevoilobl2zel	3^{3}	OLR	M5.63988	TRC:80000\% 31395	45
EGFR	15.488293	TRONOOM12, 202	"6	igsin	Sis 64.3123	TRCNGOOS 212397	00
EGER	Hs. 882293	TRCNOOCOL2 2203	\%6	GGFR	Hs 6693120	Trenogoin 2,288	\%
kofr	18.488293)	TrCNODOOS2120.4	$\ddot{*}$	1cis: $\mathrm{B}^{\text {d }}$	He.663120		86
ECima	$1 \mathrm{k}, 485293$	TRCNOMC0:21205	36	ligik		TRCEDOOS121350	*
EOFP.	46.9852:3	ExCN000012120	46	1GFIR		TRCNOf100123303	\%
Prg2	Fis. 735482	TRCNOMOO23207	\#6	IRAK	${ }^{1 / 13,522819}$		46
PTK2	45395:882	TRCN0000321209	36	1RAK:	His. 522819	TRCH000012:30,	${ }^{\text {\# }}$
PTK2	1s. 3854442	Tracrobociziz;		RRAK:	B85 522889	PrCamonde3363	45
saki	H9.207538	TRCNOGO012:212	26	iRスK:	318522819	TRCNOU0012306	46
JAK)	Ms. 207538	TRCNOGOOL121213	jig	fornt	14.264887	Prevorebz30\%	\%6
JMES	H2s. 273538	TRCNOXOSI2124	36	FGFR	H5.264887	TRCN:002123368	8
inki	Hs.20?538	xacnowourims	8	FGra	\%s. 26488%		
JAX	\%fs.207538	TRCvosienti216	76	Fome		trenvoinizilm	\#s
ASR			\#6	ESOR		TREN000:2033:3	"\%
SNSR	${ }_{\text {Hs }}$	racroontize:	-S	Rocks	:3s.306307	rrenogionh1si4	A's
ASER	1-5 5465989	crecrememal2zo	46	ROCK1	Hs 306309	Trevoublizats	"16
INSR	25.465974	Tremonow 21224	\% 3	ROCKI	Hi.306307	TRCNu03018536	4.8
12.en		TRCHG60012122	* 6	PTK2	HS.795482	irceiouenis!	86
PINI	[15. 592045	trenugagize:23	\% 76	cTK2	73. 3954882		* 6
PLK?	ix. 592040	TRCNOMOL12:234	* 5	?TE2	\%is 3934852	TRCxomerzish	86
84.83	H5 5\% 2049	Rencerolil23	16	maz		TRC.vodo	46
yes	Fis 198148	2xesocou:21227	* 6	PTK?			46
yes!	Bse 1947488	Tranomasizize	$\stackrel{1}{6}$	PLK)	H5S. 592049	Trckembene	\%80
YESI	Hs .194148 $H 5.94688$		106 3.6	PLKi	34.8 .5920889 75.592089		18
YES!	445.24313	TRCemont 1231	* 6	PLN	765 SS2049	Trenocobiaj3	96
M5:	6s.32965	TKCNOMOOS2:232	\% 6	PK:	H5S592049	TRCNOH0:12328	\#6
ME:	Sa 12996	-	46	Egra	H15.488293	TRCSN06012327	86
	His. 132960	TSClivemen 21234	\% 0	EGFs			88
MET	\%is. 132966	TRC*SOOS321235	\#6	EGFR	3.15.488293		\% 8
SRAK,	53.52819 Hs $5: 52819$	Trcyecoel2:237	$* 6$ 46	EGFR EqER	15.488293 is.48829	TRCN0060123331	868
RRAX	H.5.522819	TRCN000021239	4	vos	135 5133432	Trenaiogi36162	is
:RAK;	[15.5\%\%	TRC:N020:21240	*O	MOS	His 533432	trenajobissior	46
yes:	H5. $1 / 4145$	380000021242	46	mos	His. 33.362	TRCNHOOLI359?	30
Yes:	Fs 154148	TRCNGOCOM23243	76	Mos	46.533432 1.5172060	TRCNOOby 3 3914	186 46
Yes:	Hs. 193148		$8{ }^{\circ}$	NEF		TRCNiccoiol35690	48
	1+55.3943/8	TRCOM0022124	4.6	MEt	As.132064		

HONC	UniCone	Cligo	TRO Kinune	HONC．	Unigene	Oligo	TRC Kinome
Symbor	$1 d$	ii）	Pood $1200 t 0$	Symtoi	id	（15）	Pcol 200110
MET	His． 132966		185	CSFIR	H． 586219	JRCN00000：064S	0
ME：	fls： 32956	TRCN0000134872	＊ 5	CsFR	H5，586219	TRSN000001083	＋6
NET	15．132960	TRENOU00137\％18	45	Mas	H5，533：32	TRCTV00030 lices	＊ 6
CHEKI	8is． 24529	TKCNOUOO138395	46	MOS	¢is． 53.9432	TRC＊：0000610048	46
APSM	7is． 468878	1rchiociol 27601	± 6	PsuSk	［35． 521653	TRCNOOMOG10583	\＃6
SOK2	Hs． 300803	TRCWHOWL2788	46	TYROS	Hs．3aler2	Tricnobeoni0644	＊s
SCK2	1s．？ 200808	YRCNOOCO！30926	45	CMEX	14，6．15179	TRCN0000010 36	4.
Sek？	34，30086．3	＇RENOOOD22S 6	46	CAMK2	Hs，444179	TRCN00000！0637	46
WEE：	H5．24944）	TrCubotolss739	dis	Latra	15．4841\％	MCNOOMOB6S3	26
MKink	85． 331598	TRCSSOOSO 43885	48	imites	1 F 5.440178	TrCN00000jos3a	46
PKNK	Hs 371594	TRCNOCOM122766	46	L．WTK2	Ms． 344179	trenoomothes5	＊6
EREV2	Hs 592004		46	Mastz	45339481	trexoeocoiotso	46
AEL2	H5．1594？2	TRC\％$\% 000140 \% 19$	46	3 RaK4	14s， 128509	TPCA 06000030679	あ゙ 6
3 3	Fs． 558348	Trenoovoliogr：	Sis	CSNKicl	ris． 646508	TRCNOCOO010607	\＄0
SAPRK10	Hs． 125503	TRENOMOM，490SA	46	CSMKICI	Hs．c46508	TRCNOODOOL0666	$\$ 6$
$\therefore \mathrm{AK}$	His 599363	TRCNOO00： 93828	H6	CSNK：G1	13．Stisce	TRCN00000105！0	46
ACF	12.699361	IRCNOOMOIS3242	＊6	CSNK：G：	： T .646508	TRCNOOMMICSU18	46
AGK	ris cis93s：	menomolszig：	186	CSAKIG：	P5．646508	TRCN000001600	＊6
DOK	Tis． 399354	TRCN0001s3540	＊6	Cokli	45．099127	TRCM00000160．53	N6
ASK	Hs 6993 ia	TRCNOMOLS2II	46	BYRKIS	Hs 713268	TKCNoononocli	Sis
NEX：	Hs 481181	TPCN0000：5s\％36	40	DYKK：A	14s．719269	TRCNOOOCOT061？	136
MApSK3	3．f5．29282	TRCN000155402	± 0	D＇mkiA	3．5． 719269	12RCN0000010035	＋6
Cl．K2	［5． 33986	Trengoosssogs	\＃ 6	OMnxis	H59 79269	TRC．20004010513	$\times 2$
ACVRiA	4is：591026	TRCNobocioiosto	\％ 6	DVRXIA	Eis． 719250	tecmmogolosis	46
CIDK 4	Ais．95577	TRCNOOOCJ：05\％	\＃6	CSNKID	tis 031725	38CN00000］ 0630	\＃ 6
Hofer	Hs 1420	TRCN00000：052：	\＄6	SGK2	14． 300803		86
（uC\％21）	H5． $59 \% 109$	Trenooneolose？	80	CSNKZA：	if 6.44056	TRCH0000010672	46
INSR	Ms．665744	JRCN00060105\％3	－ 4	csukza！	Fs． 6.35056	TRCNOOCOOTOST3	16
COK	$8 \mathrm{sin} 96 \% 06$	Thenomocios25	： 6	JAXI	13s 207598	Tronoon00：0760	46
IRAKE	H3．449207	TRCN0000610．527	${ }^{4} 6$	MAPSK：	15.29282	Thenciooelors2	80
OtS	Hs．efese	TRC：Viocoulos28	\＃${ }^{\text {\％}}$	PRKCB	12s．460355	TRCN000010761	46
FES	His． 7636	Presoinoutics2	46	Prick	Us 60.564	Trscronocilith	\％ 0
GCF\％	Hs 66 ESSo	THENOU000：03s	\＃6	ACREC	Hs． 98338	TRCN0006010084	40
GGFRS	iss． 165950		＋5	INSRR	H2488138	TRCNDODSO 10% S	（i） 6
CSK38	75．4．4．8733	3REm0000105s	06	Hipk？	His． 19746.5	TRCNSOOOC L076	4.6
LCAS $]$	43：647035	TRCN000060SS	46	GRK 7	Hs 650654	1rentioj0030096	46
［iNK］	\％s．64703s	YRCN00002T05S3	18	TSSk4	14s 314632	flackogoonluges	\＃ 66
MAPK13	Hs 178095	TRENOOUOICSSS	46	\＆NKK？	E6．448473	TRCN00000106\％	$\ddot{0}$
DYRK3	fis 164267	Trecmejoulese？	$\% 6$	Doki	Hs．58485\％	YRCNOMOCIC99，	46
AUEKS	His． 250822	TRCNDOD0010533	46	CSNK：A	H5s 732555		40
MAP4K3	\＄18555750	TREN03000 0534	16	POKI	Ws． 47063	Tfevoumblian？	$N 6$
DGKZ	He Sin 2468	TEC20000010535	48	MAPPK	54．85：	PRCW00000109\％	i6
DCK	Hs． 50246 i	TRCN00006：0536	＊ 6	Mapks	H5．86：	Tr Ca ：00000 00908	76
RPS6ABE	Hs． 534345	TRCNOODEOTOST9	46	TTK	Hs 103880	TKCNGCOOM1 1012	\％ 5
Ressisj32．	Ifs． 534345	Tre nounoiciosso	46	TTK	ds． 109840	FrCNODOCOLİ：	＊ 6
QPSOEEZ	H5：534345		96	Praver	Hs．7\％s：	IRCNOMOMOI30．3	86
HSPP3K34	：1s．turnes	TRENCOROOIOSA2	136	EXMYT	Hs．7n783	FRCN0006013032	86
PTFiz3	H5．49132？	TRCN0000010544	＊ 6	EPTIAT	bis 73952	RESY0000110ts	46
F゙＜	Hs． 491322	TRCN0000010sts	－ 3	Epres	Hs． 2933	FRCN0006 1020	86
Fits	Bs． 5035%	frevoscmososa	－26	DGK1	His． 242947	TRENG006010094	86
AURK日	Hs．452658	TRCN00000：0547	\＄0	PLKI	8is．592049	TRENOKM H0： 1006	＊6
srkita	15．8829：	Trenovosolos48	46		－35．945417	TRCNOO00： 10005	96
RUB！	Hs． 86% ¢9		8	MINK：	Hs．443417	TRCNOOMO： 1004	is
CShkios	（is． 123206	MRCN0000030550	H6	RPSSKA2	F1s．79131	TRCCHEOMOS：050	＋6
STKI？A	145 709488	TRCNOVOOSOS 6	$\stackrel{5}{6}$	SRPK3	4s． 104865	TRCNDOOC01506\％	4＊
MAFIK？	159．53175	Trcnoocoio rosay	46	SRPK ${ }^{\text {a }}$	is． 10.4805	TRCN006031365	176
MAP2K？	165．531754	TRCNGSM0：0585	46	PASK	W： 397893	YRCN000001：065	\％6
MAFPK	\％s． 531784	TRENOL00010288．	do	HAP2R？	Fis．365527	TRCW0000 1：06？	\＃ 6
ORKS	Hes s2：4625	TaCN00000：0s57	\＃ 6	M022mos	Hs．2i845	TRCNOEOM01008	45
NAPIKA	35.350478	TRCN0000010558	± 6	MGC4210s	his． 25845	TRENOROOH1059．	\＃6
CDC4213 3	Hfs． 654634	TrCNOOUSOLOS5	46	STK32C	His． 369002	TRCNOOOOD 1065	\％ 6
Puta	H5 398357	3RCNOOLOLS500	110	RPSESA＊	He． 205584	TRCNOEA0235：	＊6
TRIO	Fis 13003：	TRCNOC00010S01	＊ 6	MASTE	Fis． 227488	TRCNMOOCO21549	a 6
9fize 6	His． 149055	TRC60000010562	＋${ }_{\text {c }}$	TEP的	Hs． 512854	TRCNO00002：560	$4{ }^{4}$
VRN3	178.482330	TRCNOOCOOLOSE3	¢6	ALPKS	36439183	Trcicoucozis2s	$\ddot{\square}$
NEKS	K5． 4.48468	TRCNMOCOCROS64	is	Eprajo	815．129435	TRCNTOUCO2：88	$4{ }^{\circ}$
MYtK2	45．85092	CRCN0000： 0366	40	ADCKS	195， 283394	TRCN：00：02：479	46
MYEX	Hs．477375	TRCN0000030SE8	96	ERYA． 6	：3s．653243	TPCNOOOCLSAIS	06
	659．477375	TRCMG000010507	\％ 6	CDCszbis	H5． 293590	TRCNCuOQUS 4%	16
Mapks	10．138218	TKCN000010S80	36	AATK	Kis．5145？		36
Mripks	Res． 188215	ThCv0000010581	iis	PRKACS	Bis． 158029	TRCNOOO00223：5	46
GRK6	8s． 235135		\％ 6	Pera	is 530981	TRencuocesadis	46
OMK6	4， 2.35136	TRCN00060．0ets	A 6	PiNs	155．53038	TREN500905743	4.6
MARKG	15． 35828		46	KiAnoser	H2s． 367451	ERCNOOUROS 453	85
MAPSK！${ }^{\text {a }}$	（is． 466743	TRCNOKOU30674	86	TEX14	Bs 39022 i	TRENOU00332473	43
PRKISCA	Ess． 631630	TRCNOO60010020	\％ 5	TSEKle	Hs． 70.585	TRCNOOROA57865	45
WAPKG	13s 911884	JRCNHODMO10．32	45	MAPKIS	H5．493：69	TRCSN0000こ8662	85
ORK1	H5． 103501	TRCNOOD010624	36	NAPRIS	Fis． 485159	TRONOOOj38665	\＄6
N K 2	45．78518	TREN0600010003	\＄5	Thatic	315.591086	TRCN000033：502	30
EPHE4	F3s． 4370008	TRCW000001065	16	SBKI	\＄129733\％	TRCN00G00：17395	16
EPfibg	H5，380089	TRCNOCOOC106\％	46	RET	85 750321	TKCNANOOL40C24	36
SPLUBS	Hs． 38008%	Trenomerosoat	86	AKT2	45．6．11535	TRCNOOUS30969	8
ROR2	14.88255	TRCN0000：0825	H6	A＜m？	Fis misas		76
PRKX	7： 3 ． $300 \% 88$	TRCNOU4001065\％	76	EREA3	4s． 118681	TRENGXOCOLOITO	\％ 6
OXSR！	trs 875370	TRCNOMGOICE43	it 6	MAP2K4	（15． 514681	MRC：W000039515	\％6
Asta	H5¢ 431048	TRON0000010620	is 6	ELT^{3}	Hs Sichseo	TRCN0700039704	46
ASRBK2	Ms．657．54	SRC， 0000010678	46	ERBR2	H5．440352．	TK06060003988	\％ 2

SGENC	Gnicrue	Oligo	TRC Kisome	FiCNS	Whicuc	Oigo	TKC Xinome
Symbol	3d	10	Poo： 1200170	Symben	k	10	Pool 1200610
AKT：	H＇s． 525622	TRCNOOON039795	\＃ 6	gTK	8 Es 159494	Treckobjoxen93	88
ERISAS	H5．390729	TRON0000039690	46	B3TK．	65s． 159404	TRENG000005936	4s
SRM	7is． 76244	TRCNaruous 219	$\% 6$	Brk	His． 158324	TRCNMSOHOUF937	46
5 RW	Es． 76244		\＄6．	BY	Hs sos49d	TRCNORNOOUSSS	46
pinka	Ts 5 29438	TRCN0000es362	is	Bre		TRCNOOOOMOS939	$8{ }^{6}$
？ x 3 cos	Hes． 58451	TREN0000：54858	\＃ 5	CGEK	His． 24529	TRCN0000009S42	46
9 M 3 CD	Hs．Stus．5］	\＃RCriou00sst262	\＃s	CHEK）	Hs． 24589	TRENG000009946	46
Sciylz	iss $506: 81$	TRCWOODCOS788？	$* 6$	CHEK ${ }^{\text {ch }}$	Hs 28529	TRCNu00000947	4
COCA2BPA	H5． 35433	TRCNODSi072628	\＃6	CHERS	He． 24529	TRCMnen（m0） 48	87
ABL2	H8159472		96	idike	His．esjaty．	TRENOODODS9 ${ }^{\text {S }}$	\square_{6} ？
ATR	453．72179！	TREN0000：83504	$\cdots 6$	Doka	fis． 683845 \％	TRCN000000\％9S］	87
ABL：	Hs．43104\％	TRCNOODOO10249	${ }^{*} 6$	DOKC：	135653649：	TRCNO000009SS2	\％
AKT2	12s．63：335	TRCNOCONOCOR19	15	DCKG	ME．683429：	TRCNOOOOMO20 3	$4 ?$
$\mathrm{AK「Z}^{2}$	res． 631535	TRCAOMOUOER26	s\％	DCKO	120833949：	TRCNRODCMOSt3	87
AKT3	H3．498292	TRCNEOMOPOES	$\times 6$	Dapk 3	3 Sc 631404	TRENC000609544	92
AKTS	¢\％ 5.938292	TRCNDOCSR10292	H8	DAPK 3	15，631844	YRCN0000003sers	\＃7
A7s；	fis 367437	TRCNOOODO：029y	76	DAPK	H5， 33184	TRCCNOOUCO9\％54	47
ATR	1s 271791	TRCN0000010300	36	DAPE3	His． 631848	TRCRC000009958	\＃7
ATR	H5， 271798	TRENCNOCDIO30\％	\％ 6	DAPK3	Ms 631848	TRENOnOCOG7gs9	$4 ?$
ATR	H5，231091	TRENOOGO 10302	\＄6	CAIMK4	Hs． 59126	TRCNMO0600960	\％ 7
fids	H5 4600605	TRCRKOC00010307	46	CAMK	Hs． 591209	THCN006006936	＊ 7
B＜EI	Es． $46 \% 649$	TRCN000001030：	\＃6	CAMK	fis． 581269	TRCS3000009\％2	＊ 7
BUE1	its． 809549	TRCN0000010309	16	CAMK：	Hs． 581269	TRCNOOU000993	47
CHEKT	Hs 24529	TRCN0000039820	315	CAmika	Hs． 591263	Thenobectiogss	37
CSEK	Fis． 24529	TRESV1000000982？	46	CSNKIE	H6．47，1833	Trenouokjoge	47
CHEK1	1352\％529	TRCNOWSOOSS828	\％ 5	Csment	Hs．474833	TRCNOUOOMOSS	$\stackrel{\%}{7}$
CHEK2	kjs 51363	TRCNOMOCh10312	H6	CSNK：3	Es 478833	TREN5006009ss	87
ciex：	Hs 291563	TRENOS00103：3	＊ 5	CSNKIE	\％s．44833	TRCN80000099s7	＊ 7
Cimek	H5．2ots 62	TRCCOOD：00103：4	－ 5^{5}	CSNK：	Hs 24833	T3RCN0000009066	\cdots
EUFR	Fs．589293	TSCNOOCOO10329	\＄ 6	HCK	H15 555210		\＄i
9．5k3	Hs， 4 ES828	TKCN000010339	4	HCK	3is． 53526	TRENOOCOOOPK68	47
SSK3A	3s． 5066 F 28	TRCNOSNOO：034	\％ 6	WCK	Tis 655210	Tirckeremouger	47
cisk3	Hs．445733	TRONOMOUSSSE4	＊6	HCN	Hs 655210	TRENOONOOOSO\％	87
65838	M5． 445733		＊ 6	\％：\％	Hs．ossel0	TRCN00600207	4.
！：RR132	（is． 447635%	TrCevocilolial	\％ 6	istapal	Hs． 57332	Trecracudougstz	47
ER1302	Wis 445 St ？	5RCVO000e10342	46	MAPKL	Hs： 51738	TREN0000009\％7\％	17
EROS2	HS．445352	ERCNOLCOO 10.343	45	MEAKI！	H5． 57732	TRCNOOLCOOSY\％	87
CR8 37	H5．1！858］	TRCVM00000103：	\＄0	MAPETS	Hs． 178695	TRCENOU0009］78	87
ERBB3	Hs 118681	TKE：N0060015327	76	MAPLE 3	31． 178609	TRENOTOR009970	37
ER1383	Sts 188581	TRCNOC000028S	46	MAPK：3	Hs ：78650	TRSNOCOSOP980	\％
ERREA	HS 39072.9	TRCNOM00003836	＊ 6	NIAPK：3	He：78695	TRCNOEOUSH28i	0%
ERBES	Kis 320729	Incheonov 18328	46	MAPKI3	Esm780．5	TRCENOCOU095TS	87
ER1313s	His．sentis	TREN0600010345	46	MSP2S3	Hs 513012	TRCNOOCOODS9\％4	47
IGFIK	Hsodilze	TKCNOC00018332	86	Maprez	1 s S 514012		47
SFFle	His 043120	TRCN00000303s	46	Maper3	56.514012	TECNOCOOOP985	＊ 7
MES	E52． 132965	1RCNOOU5009850	46	NAP283	Ms． 514012	Treniondunsisio	87
MET	Fis 13296\％	Trenemodeogss！	46	MAPEEO	Hs 463978	TRENOCOOS 9087	87
ME\％	Fis 132965	Trenoweonusz	\＃6	MAP？K6	315463975	7RCNOC0000308	\％
Pak3R2	13．27014	TRCNm000：8339	\＄6 6	mapeno	－16． 63978	TRC6000004938\％	8%
P：KOR2	1．3．371344	TRCNOOPD010402	86	M．3．P2K6	Hs． 463978	TRCNM00000s9\％	87
gracm	45．85701	TRCNMOOROKI4SO	43	MAPIKS	Hs． 663978	TRENMS03009931	\％ 7
PIKBCA	HS．65791	TRCNOMCOC10407	46	mec	H： 17750	TRCN（0）00c992	47
TK3C）	Hs．2398：8	TRCNOC00002859	46	TEC	Hs． 179670	TRCNOUCOHSOEZ	起
P1K3C8	Hs 239818	TRCNOC00618340	＊ 6	TEC	tis． 479670	TKCNOOOOOO983	37
ग¢30゙』	315．239814	Treavenoogs	$\# 6$	TEC	Is 479670	TRCNOOCOOO9984	47
［DE！	4， 9,976633	3kCNOOCOO100 5	it 6	TEO	515479670	TRCN000003393	W7
90\％1	is． 470633	TKCNouposesl4	86	TXK	Hs． 47966%	TRENG00006Pg	87
QET	Hs． 350321	TRCNOOCOU30423	46	¢ \times K	Fis． 679660		$* 7$ 87
RET	138.350373	TRCismmanos ${ }^{\text {a }}$	56	ス入K	3567906		${ }^{7} 7$
RES	Fis． 350321	TKCNOOOO009864	46	CAMK1	\％s． 434875		62 $\times 8$ 87
R4S6kA3	Es． 130957	TRCNOjow 10425	46	CAPMS	16． 3 348\％		k \％ 7
RISUKA	HS 199957	TRCNOODOO30427	146	CAMR：	75.43487 .5 H5 434875	Trcnovope	\％？
R3S KkA 3	His 445？8？	ERC．N6060010428	＊6	Cank：	His 434875 Hi 434875		87 67
Restisais	165945387 is 510078	TRCA 606016429 TRCN0000010432	46 106	CAMK	Hs 4.34875 Ha ？ 2793	TRCNONOOJO99\％ TRCNO000099\％\％	8.7 $* 7$
SGKS	5is．510078	TRCNOU06010432 TRCN000030965	186 106	CSK	Ha 73793 His． 77793		\％ 7
SCOK	Hs 510078		\＄80	CSK	Wis． 77793 Ws． 77903		$\stackrel{7}{4}$
GK：	His 510078	TRCNOU002986？	86	csk		TRCNOC000：100\％\％	－7
TGFER		TRCNOOO90：644］	86 46	CSK		TRCNH000，000\％	＊${ }^{1}$
TCimers		TRCNOOCOO10343 TiRCNOOOOU 10443	46 46	vinpucs	4 t .432455	3RCNucompleolo	$4)$
COFBR2	Hs 82028	rrensosoejerst	48	ASABSKS	1ss． 432453	TRCNOSO00：j011	47
rgask	3． 51028		86	MAP3EZ	8s． 432.453	Trevobiobiocis	37
corgr？	Hs．82093	TRES0000012446	46	MAF3K8	［6．632453	TRCN00000ioens	4
$\mathrm{Ci} k$ ？	His． 19192	TRCNRJOUO：0169	16	MAPSKS	Hs．43245？	TrCNOCOOUROOL4	\％ 7
CDK2	Es．1902	TRCNOBNSS：OETO	E6	YES	Its 6 cis 8	TRENCDSChmect	77 $\# 7$
conk	His 10192	ERCNOUSO0：047：	46	YES1	HELIS414．	TRCNOOROGIGNOS	＊ 7
CDKi	Hs．sss．7	TRCNDPOLOL672	46	YESI	its． 194148		47 87
CDK4	3s．0s57？	TRENi0000018364	46	YES3	if 194148 Ws 194148		d？
CDK4	Fises\％\％	TREN0000009376	$\stackrel{8}{86}$	YES	Hs 194i48 Hs 5 Sh348		8
CDK＇t	Hs． 119882	TRC：0000c09877	86	MX	KS 558348 45.558 .148		8 8 8
cokg	14.114882	TRCN0000009878	\％6	ITK	\＄15．558148	TRCNODOC01002！	87 $\% 7$
COKS	H5．1！3882	TKCN0606h3043	35 3		H5 558388 $H 5.58348$	IRCN00060：3022 TRCN000030023	\％
Majuska	Hs Slias		\＄5		$H / 5.588348$ $H / s .239818$	TRCNOOCOH0023	$\stackrel{1}{*}$
Mafeks	Hs 519681	ORCNNONOC 10．4V6	14 14 14	F1K3C8 $3>X 3 C B$	H／s．2398：8 Hs $2398: 5$	TRCN0000000022	47
H23	Yis， 507590	TRCN0A0000986	15	$1 \mathrm{PL3C8}$	Sis 2398： H： $2: 98: 8$	TREx00000：0025	47 87
	45.507590 $3 / 507500$		146 46	fuscs	Hits．2．98：8 H22308：3	TRCNOROOCIOM］	47

gCiNC	incione	Qizo	TRCKirsome	SGNC	UnGene	Otgo	TKC Kinome
Symbol	4	10	Prol 120 c 10	Symbol	ic	10	pool 1200110
8， 3 Cl 3	13， 239318	TRCK（0，100，0018	$* 7$	BCKOK	155513520	7RCNOMOH1019\％	\％$\%$
PRKOS	：18．654596	TrCionocolooze	47	PAK4	［i5：2047	TRON000001019\％	17
PRK（il	45．6sasst	TRCN00020 10030	is	PRKi	Efs． 2044 ？	TRCBS0000 10：98	87
PRXCOI	Als 654556	3RCNO000610031	$8 ; 7$	：ak4	i3s 2 Cu4 4	TRCN0000：3599	＊？
PRK0 ${ }^{\text {P }}$	4， $5 \mathbf{6} 54556$	TRON00：90310032	H 7	PAK1	His． 20447	TRONOODOURO2CJ	i）
prkol	15.654556		47	PAKA	15.20 .47	TRMNOOOSV23：	\＆ 7
IKRK	59．521045	Tinevombolmes	［i］	FRKCD	Hs 1553		\＆？
W区KE	51532．045	TRCNOMODO10035	37	PKKCS	Hs 155342	TRCNOC00163	¢？
x CBHE	Hs 32.1045	2RCN00000300s6	17	गпkce	H8．15034？	TREN0000010394	47
IKBKE	15.326545	TK＜N00000 10037	47	PRKCD	H5． $5 \leq 352$	TRCN0000010203	1%
SKBKE	16.321045	TRCNOOUOOthe2；	\％ 7	Vekz	Fis 6 ¢ $6 \% 03$	TRC：N00000s0304	${ }^{4} 7$
MAPK1	H5．431850	Treckeomolious	17	MRK2	Hs66570s	720×10000010205	$\pi \%$
MAPKI	$4 \mathrm{H}, 431850$	TRCN0000030039	8 ？	VRぐ2	85，6ains	TRCNOOOSi10206	87
MAEK：	Hs．a318s\％	TRCN0006\％ 040	87	YRK2	H5．666703	TREND000010207	67
MAPK：	H5．43：850	TRCNB00001004	\＃\％	VRKE	4 Hs 666703	TKCN00000102018	4 ？
MAPLE	155．43i8s5	TRSNODO00．0030	± 7	Crgek 2	Hs 291363	trenachoolazog	\％？
MAPK 4	575．855293		27	CHEKT	Rs，291363	TRENODO0020210	7%
MAPK19	He 485235	TRCN0000010032	47	CHER？	15.291363	TRCN000003023：	$4 ?$
MAIPCl	Hs． 185233	Treisoonemooss	47	Chieco	A15．29136．4．	Revemoolez22	${ }^{4} 7$
MAPkil4	H5． 485233	rrenoorougoss	\＃＇	Citex 2	\％ss 291363	1RCNGOQGO10213	¢ 7
Piken	He：9619	TRCNOCOStess	$4 ?$	Sik38	Bs 4095\％8	TrCNOGCOLO214	$\theta 7$
Prikgz	（3s． 196177	TRCW00c0030日Cs	47	Scks	Hs 409578	7RCNOOOCO10215	47
PHKCL 2	iss 158177	－Rrcastuonicois	47	STK38	Hayussis	TRCNectwiones	± 7
をukc：	Ws．106177	TRCNOC0COLOS59	\＆）	uspe8	Fs 40009s		＊）
CDK6	H3．1986？	＇mRCNODOGCJOE81	8%	HSPBE	Hs． 400095	TRENOOCOL0215	＊ 7
C，OK6	His． 18882	TRCNOOCOU30082	\＆	HSPER	Hy 200008	TRCNOOOCD：02！9	4%
Cobrs	Hs． 119882	TRCNMOMOO 101074	\＃	HEPP88	Yis 400075	TRCN000601022？	47
BLK	1s 148591	TRCvocoonl007s	4%	\＃1F2天＜	Hs 719136	TRCND009010229	47
13．2．	Hs． 140059 ！	TRCN0000310083	\＃？	BFZAK：	H5 7×2136	Tisencoovol0230．	47
3LX	Hs．30850］	TRCNOCOTSHOSS	$\cdots 7$	EF2AK1	Hs．769136	TRCN0000010231	47
HLK	Bis． 146891	TRCNOODOMS08？	47	EPVAN：	Hs 769136	TRCW000010252	4
mones	3s ${ }^{2} 1988$	TRCN0007010084	\＃？	EMzAK1	Hs 7\％913s	TRCNO0000102．73	47
ODR1	H5 611988	TRC 10000010025	47	VRK3	Hs． 443338	YRCNOU0001023：	47
URRI	K2． 631988	CREN00001100S4	$k 7$	VRK3	18．44330\％	PlCCN0g00；0235	is 7
rR	175．89426	JrCN000310095	＊ 7	VRKJ	H5，463330	TRCN0090010236	37
mpk	15s． 89.926	TRCNOOUCO10096	H7	VRES	fis $\$ 63330$	TRCN0．0nmide28	87
FRK	H5．894？6	TKCNBMOnO！004	4 3	LiM62	Ws．474596	TRCNOMOE10237	47
FRK	－is 80.426	TRCNOW03000\％	\＃ 7	LDMK2	H5．47：596		47
IYN	H3．699153	TRCNOOCMOSD： 0 ！	37	1 NER	15． 474506	TRENO0000102A1	47
SW	fis． 699154	Treveodoniola	＊ 7	Limk	Hs． 4×4596	ORCN0000 10242 ．	47
IYN	His． 6993 S4	TRCNMOM00l0：S	\％ 7	SET	13s 35032：	TRCNOOROE：0238	47
KN	\％5699134	TRCNGT0S010：06	47	REE	kos 36820	TRCNDOOO10234	it
i．Y）	Ms， 6 gri．sh	TRCN000003010\％	＜ 9	RET	Hs 3sit321	TRC：N0：0010248	\％
Pimi	H5 81170	TRC：m000101：	47	ker	\％ 3 S 350.72 i	TRCNSE00010232	\＄ 7
PIM：	HS 81570	Trenootaniolis	47	CNMXX	Hs 145156	7RCW00001025：	47
gimi	1658170	JRCNDOCHIGSI	47	CANTKY	Hs．145！56	TrCN00000：0254	37
Pruil	Hes． 31170	TRCNOC000 0312	47	CsMKV	H15．J45156	TRCN00000：025s	4 ？
PM	Sts． 51190	TRCNONOCiz10：10	47	canky	Es．14sis6	TRCNOEOJC10256	8
FrKez	H1949625s	TRCN：OOOC16：20	4%	cask	tis 645156	TRCNOOMOCT325\％	47
Precte	［35 49625s	TKCN0000010112	$x 7$	Cricl	Ks． 496008	racvopounozss	$\# \%$
PRKCZ	Hs． 496255	Ticenouognorl3	43	PCK：	25，496068	ERCNa0001025s	\％
PRKCZ	185.496255	TPCN0：000101：4	\＃ 7	PCTKI	Ts． 990058	TRCNOONOO10249	22
Prkez：	Hes 102255		\＃？	CSKi	13．495068	RECNEOM30182S	8%
S\％ki9	\｛35 6567731	TRCNOMOSOLOS49	\＃$\%$	PCTK	isc． 4 \％06s	SREN00000103S：	7%
STX19	145054371	34CNere0：016335	$\# ?$	OCK	F－18．1270	ERCNOOCOC102E？	7
STKi9	Exs． 65437 ！	FRCN00310：140	H？	OKK	85．1270	TRCN00060：0208	$F ?$
STK：9	He． 65437 ？	TRCN0000330151	\＄ 7	OCK	Ris． 1270	5RCX0000606\％	H？
Skio	tis． 654371	TRONOCDOOSTSS	17	GCK	He． 272	TRC Nomedolozo	＊ 7
	H888297	TREN0GOOJ80：SA	37	MAPKT	Hasisol36	TRCSOOOCOHO26	＊${ }^{\text {？}}$
stKisb	35．88297	TRCNOMO00103S	\＄7	MAPK＇	Fis． 5013 s	TRCCHitictoler 262	\＃ 7
STKI78	He 88297	IRCXM000010156	47	MAPK 7	Hs 5 50138	TRCN00000102？	37
¢2176	15． 88297	TRCN000g010157	\％ 7	MAPK	Hs．50：36	TRCN：006030275	4
STK175	Hs． 58297	3RCNmTODCLDSE	＊？	MAPK9	Yis 88.3 ？	TRCN0000010276	47
ackria	35 41389818	TRCNOD000：GIS	47	MAgrig	\＄1s． 8984371	TRCNOCOLELE27\％	47
ACvis	15． 938918	TRCNSOCNDiota	47	Mapks	［ S 4 48437］	fremoleon 10275	47
Acturi3	Yis．238913	TRCNOCOw 10151	17	SJAPK＇	35.484373	TheN0000330279	37
ACVRS	14．638918	TKCNOOCSOLOBS	＊	MAPKY	185.484391	TRCNMOM0010280	\＆7
EPKMA	313\％1218	rracnotionoiolss	\＆ 7	SCik2	Bis 30CEs 3	YRCCpoosoraiz：	？
cerian	f．1s． 371218	TRCNOOSOE10162	7	30×2	H． 300863	TRCN000033may	47
Crss4	Hes， 311218		4	50 K	His． 3008863	T3CCN0060010273	\＃7
	8 s ¢ 371218	TRCN000001015s	\＃ 7	Sck2	Hs． 3008803	TrCNMAN00202\％	37
AKT：	Hs 525622		\＃ 7	Sukz	\％is 30085	TRCVM0000：0282	177
AKTI	1 c 5 S 25622	TRCN0000510163	\dot{B}^{7}	CANK2N	Fs．710391	TRCNMNOOLE2S3	$\stackrel{7}{7}$
AkT！	Hess 5622	TRCS00900：017	＊ 7	CAME2A	Hs． 7638%	SRCRN005061078	${ }^{4} 7$
AKT	1 3.525522	TRCN0000010174	17%	CARMKAA	5s \％16301	T8Csib00010285	87
CCK	43s．470627	TRCNOOQ010175	$4 ?$	Camkras	ts 718391	TRCN0609039286	
LCK	8534062？	TRCNDOCG30176	\％ 7	lmb	His．647035	TISCN06000042S	87 47
LCK	＋6， 47627	TRCNONONGSB：	4	PRKCS	145．58035	FRCProbnccosas	＂；
Lit	120 370627	TXCN009010178	\because ？	WNK！	Hs 78989\％	TRCNOOH0COS2？	\＄ 7
AKT3	Hs． 498292	TRCN00003ss 37	8.	WYLK2	Bis． 50092	TRCNOJODOOSS34	4%
A ST	H5 4×8292	ThCNoonossols：	4	SRPR	He．t． 386	TRRCWombers23	¢\％
AKT3	H4．498202	TRCN0060010185	47	SRPK1		TRCNGOMSenzs：	4？
AXT3	415．494252	7xCenoowholila	${ }^{+} 7$	CiK4	iss．4065s？	TGCNOGOEOESS	\％$\%$
AKM	8is． 498792		$\stackrel{5}{4}$	Clk	iss．406s57	Trecrogomerss	＊ 4.
BCKDK	125 513520	Crcheroudjesa	4	DCikr	1is． 65983%	TRCR 2000031360	4.
SCKOK	Wes． 513580	TECN0000016：92	＊7	PRKACA	83631630	SCNB00060 370	3
3CKDK	Y6．5：3520	T8CN0000 10195	\cdots	NAMPK4	His． 439728	TREN000001377	$\% 7$

BCNC	UsiGene	Ofigo	TRC．K Mume
Symbo！	18	15	How 320ch：
EREAKA	H2．719136		i4？
RPSSKAL	Ms．3409st	TRCWhCOR001385	\％
ERB134	［is． 300729	TrCNG00060143：	H． 7
1Rくか3	his 6 6075？	TRCN0R6000：413	47
3 OLR ？	Ke．5938．73	TRC：NOOOCOOL417	87
PDGPRA	Hetaís	TRCN0000001425	\＃7
TES 2	Hs． 5914%	TRCN0030001436	＊
吝33P1	i3s 5：5876	TRCN（60）	$* 7$
TAOK2	15．291623	CRCNOCONOC5483	47
TAURi2	H5．230623	TACNOO0COM 146	97
MAPZKS	［15．14198	TRCW0000014Es	号 7
PDK1	\％s 430633	TKCN0000日STS	\＃？
Pakl	！ns 570633	TRCN0002003479	47
PWK1	Hs． 476633	（3）CNONOU0848：	4.7
PAX：	Hens．7e4	TRENOOD0031S8！	＊${ }^{\text {\％}}$
PAK：	Hs．a3sind	TRCNGOUCOT1482	${ }^{4} 7$
BARI	8is． 43.5714	TRCN0000001483	\％ 7
Maki	1．s．435？ 1.	TRCNOC0\％\％）485	＂${ }^{2}$
ROR2	136．9825s	TRCS000001593	77
RrsGkas	H15．51022\％	TRCNOOCO001495	\＃？
RPSGKAS	Fis S3022．	TKC： 10000001.197	$\cdots ?$
ABIX	Hs． 431048	TRCND006S001501	$\otimes 7$
\％Rくc？	His． 570832	TRCN000000 508	47
S10\％3	Ws．644720	ThCNORCOOUS 525	i\％
TAOKS	H5 685420	TRCN0000001526	H？
MARYO	4 4 .35828	Tresonomossi\％	4
MAEKE	Hs $6: 1367$	TRCS（0）00001573	47
TXK	15．4730369	TRC：N0006015？8	3
EPifao	15．653254	3RCW60\％ 000767	4
MAK	Fis． $946: 25$	TKCROURO0U3748	47
PAK	8s 604% \％	Tirnoajoucisoy	if 7
AsMER2	3＇5．59889	TRCNOODODO：9Sa	87
NEKI：	1．5．657376	IRCNOOMOHO1962	si？
AEAS	His．657330	TRCNMODC003 64	47
SEX	！1s． 537.36	TRCNMO000965	47
	H5493109	TROMSH0002212	47
SAAPK15	H． 393168	TRC．0039022213	4%
WATK	Ms 631845	TRCN00000022：9．	47
FASTK	85 64．7654	TRCNCO00006320．	47
R！PK2	Ins mimes	TRCNOO0050636\％	\＃ 7
APR	3． 4900330	TRCNCOMOOD72S	42
ALOK3	fis． 459387	TRC：NDOM002：524	17
TRP\％ 7	Hs 5：289，	TRCNOOOMO215E2	\％ 7
TRPssy	HS S32894	TRENOROOLISS3	\＆ 7
Pater	İs． 436067	TRCNCOSOROS？	${ }_{6} 7$
PRECK	H． 48650%	RCTN0006215\％	$* 7$
PNCK	H5， 3 S6e67	TRCNOOUN21393	$\# \%$
TRPMG	44.372225		4 ？
Clk 2	3s 79850．	TRCN060002 590	＊
Clat	15． 23985	TRC： $4000002: 52$	\＃ 7
CDCA2BPA	H5． 3 ¢433	TRCA（RX） 222979	\＆
3 P3RS	Fs． 27890 ：	SRCNOKOC33272	＊7
PIK3CD	Hs 518451	TRCNODM0332？	＊ 7
TENS3F	is 430085	TRCN0COOS3580\％	4 ？
SPGKi	Hessou：	TRCNOOMOTES 5	＊）
16Fia	185.6413129	TKCNOTH03967？	47
PKB 2 2	H5．3713：34	Trenowhersisis	i7
Pinst	315．83：70	TRCNOC00046793	ה 7
PAK，	ds 656789	TRCW000003？ 99	4.7
PAKS	14．5．5sioss	TRCN00004）SE：	A 7
PAK3	Fis 656789	TRON000047593	47
Phik	3：s．is6\％8？	TRCNOK0004756	$\dot{*}$
Pdi3	Is 656789	TRENOOCODS2597	43
KAERN	Is． 3004	TRCWOMOS 8208	47
YALRS	H 5.8001	TECNOC00488209	47
KAlRN	Hs．8004	TRCNOC00948210	47
KALRK	13， 8004	TRCNOOM0048232	＊ 7
BER．	H5， 27379	TRENOOU0S2394	\％
ATR	14.271793	TRCNOOCOOS2395	$\square 7$
ATR	\＆：5 27 \％791	TRCNOOOOUS2J96	27
Prikes	Ins 529.138	TRCNOU00s2023	9？
Erakz	1s．474596	TRCOMOMCOS2SED	\cdots
P（kJob	24．5ibast	TRCNC00005 260	\cdots
TアK2	Ms．659a45	TRCNOn0006：2787	＊？
Rafie	is lavis	TRCNOODOOS2698	8 ？
ATR	ds．27379：	TRCNU0COO63222	47
CATSI	16． 716697	TRCN0000073273	\＃\％
CASM10）	P18．6595？	TRCNON0074123	\％？
P！ 9 KA	（1s．329438	TRCM006078690	87
8）肬A	！ $1.5 \% 9+38$	TRCW000078692	49
AAK：	F4， 608878	TRCNm000s2348	87
DUR2	H5．59．3433	TrCNOOMS21：21	27

Fig． 37

Enscmos	Heste．	Regciation umon
Geac ID	symbol	MEDR knockatom
ENSGGOCOO003989	SICTA2	down
ENSODOno0069482	GAL	doun
ENSOUOHOD10042	DTX4	dower
ENSC00000S30600	H 39	down
ENSCOOOOOL135069	PSATS	down
EXSOCMOOOL36557	MYC：	dowiz
ENSCOU000138029	CGREE：	demi
ENSGOMOO0143333	RCSi6	cioun
EnSGOCOO163050	Abev3	doum
ENSGOOOOOS 64362	TERT	downs
ENSG00000 76387	HSDIIR2．	dontr
ENSGOOOOO？7882］	MEMS2	cown：
ENSCOOO00184634	MHDI？	dowis
125SC00000184950	M， B	cown
ENSGOOC00188883	K1RQ2	deus：
ENSGOON00195167	O110r92	down
ENSCOOH002：5182	MUCSAC	down
ENSO00000224837		down
ENSCOU000226942	119RP3	dewn
ExSG0000023078？		down
ENSG000032．32495		down
HNSO60000253810		boun
ENSSSOMOOOO5238	KIAA1539	up
ENSG000000058884	SGA3	up
ExSCGO000010304	W边	\％
ENSC00000011422	PLAUR	up
ENSGOOC000013364	MYG	up
EMSG00000014257	$A C P P$	u；
ENSOKOCOCO：4914	MrMRI：	up
ENSGOUCOK 18525	ATGA2	up
ENSSCOUCOO223：71	CRAMDIB	up
E145600000024422	EHO2	UF
	VMs	up
ENS600000035862	TEMP2	up
ENSCEOOMOOX1982	TNC	（ij）
ENSG0000004932．3	LTBP1	40
ENSGOOROOOS0163	DKと3	up
ENSGOOOOOOS3747	［AMA3	up
ENSG000060．6558	TRAF？	up
ENSC000000．57704	TMCCS	up
5niscou000058085	SAMC？	up
EESCOOOOOOSO140	STYK1	4
ENSCOOXCOOOSS34	MY：K	4
ENiSCOOUOOO67798	NAV3	up
ENSC0000（0）70？78	PTPN21	$\mathrm{sip}^{\text {d }}$
ENSG00000074527	NTa4	$1 p$
	TXK	up
ENSCOOODOOO75223	SEM A S C	up
ENSOOCOO007S392	RABAL？	so
ENSC0000007546：	CACNGA	：0
ENSG0000007664！	PAOl	（i）
ENSCOOSOO26\％06	MCAM	up
ENSOM000007880．4	TPSHNT2	up
RNSCO0000079385	¢E\＆CAM1	43）
ENSCOOOOOX 2031	PTRRA	43
ENSCOOPOMO84636	col． 6 A：	up
EvS000009035063	CDS ${ }^{\text {c }}$	up
ENSGCOOOOOS5117	COE2	10
ENSG000C0086730	CAT2	up
ENSO0000087674	PTHLH	40
ENSCO0000088538	DOCK3	up
ENSCOOONOS8854．	C200r9194	up
ENSSO0000001880	ccoseso	4%
ENSG00000092929	UnC13）	We
ENSGOOOCO00．752	12．1］	ug
ENSCOUOKN1000y？	16AIS1	up
ENSC00001003：1	PDCFEB	up
6SS60000010084：	KLAND24	up
ENSCOOCOM101335	NYis	ur：
ENSCOOCOOS 02205	TMMPI	4 p
ENSC00000103647	COKO2B	4i）
ENSCOOOCOOS0： 324		uj
ENSGOO000105339	OENNDS	（1）
EvScou000105096	TMESSOL	up

Ensemb：	HGNi	Regubatom uon
Gene 10	simbol	NEDI2 know－
ENSCO0000105974	CAV？	3
ENSG00000106360	SERPINEI	un
EnSGOOOJO106868	SUSE	up）
SASSOUOV00108793	CNBMAPI	Lip
SNSC00000109472	CPW	up
ENSG06000：11348	ARHGDIS	up
ENSC：00000131735	COLP2A）	Up
EvSG00000131913	FAM658	up
ENS 60000013070	I BE CO	LP
ENS 00000113578	SCFE	up
ENSCOUCOOSH013	Ancisiza	UF
ENSGOU0N011415	R日P1	4 p
ENSGOOOOO114529	C3orts？	（2）
ENSCOO0001i4854	TNANCI	us
EYSCOMOOOH25380．	EEEMP1	up
ENSC60000115590	M1R2	up
ENSOOOCOLISmt		（i）
ENSCOOCOO：15828	Qect	40
ExSCOOOO） 16263	QSOK	u）
ENSG00000115703	NSFZ	up
ENSCOC00］ 16962	NW	uj）
EnSOO0000117220	CBP？	up
ENSG000001：3223	CBP？	up：
ENS600000118523	CTGF	up
EASCOMCuO118898	PPL	up，
ENSC00000：23240	OPTN	up
ENSGOOOON23342	Minpl9	u）
E：SCOU000123843	CABPB	4y
ENSCO000312：16	WEDC 3	的？
ENSCOOOXOU24762	CDKjiA	48
ENSO20000125148	NiT2A	co
ENSCOOO00325775	SDCBP？	up
ENSGU0000 2732 S	13ES3？	up
ENSG00000012？561	SYNGR3	up
ENSGOODU0127920	GNGH	42，
ENSG00000128487	SPECE：	up
ENSCOOMOO：28S10	6 PR 4	4
ENSG00000：28591	SLNC	up
ENSCOU0000128849	CONL	ap
EV＇SG0000012\％220	CDS8	［ip？
WiSSCo0000131015	13．3m2	up
ENSGOC00013771	MAF｜B	up
ENSCOOOOO132334	गTPRE	4）
ENSC60000013235	CAdelo	up
ENSCOOOCOO132535	i） $\mathrm{Cl}^{\text {a }} 4$	（u）
ENSG0000133121	STARDI3	1 p
ENSGO000） 33805	AMPb？	40
kNSCG00000333816	NiJCALZ	up
ENSGOOC00：34668	SPOCD！	up）
ENSCOOCOOO：35U4Z	ANXA！	\％）
NSCOOOO0135536	Micali	40，
ENSCOOOUO135678	CPM	4p
ENSGG0000135342	FAM：29A	up
ExSG00000136378	ADAMTST	up
ENSGOMOOOT 35542	（AAJN：S	（ip）
ENSSCOOUOL37593	PM	up
ENSGOO00033709	POUR 3	ur
ENSGOOOM 13823	6pR87	45
ENSGU0000：38356	A 3×1	（12）
ENSG0000238411	SECOW	（ii）
EvS6000001384i3	AP：TE	－
ENSGOOWO38732	ANXA3	s
ENSGOOOOO138829	FBN 2	0
ERSSOO0000139044	BSCALAT3	uj
ENSGOOOOOO139112	Gagaraply	up
ENSCH0000640545	A1EGE8	（1）
ExSGOC000140622	SGFbli：	\％p
ExSC0000： 40950	KMA1605	up
ENS 30000142227	EMPJ	up
ENSG00000142871		4 ${ }^{2}$
ENSSOOROO142910	TWAGL：	up
ENSC00000143127	TCABIO	4 p
ENSCOOODO143369	ECM1	$1{ }^{1}$
ENSGOSOOOM13669	LYST	U

Ensembl	AGNC	Regulation tipon	Ensemb:	BONC	Reguation upor
Gene ID	symboi	MEOL2 knowk dow	Gene in	symboi	MEDTE Knock-down
	WNrea	up	Ensicieoteos 77694	NAALADI\%	up
ENSOOOONO:4465:	CSRNP!	$4{ }^{1}$	ENsGO0000:77839	PCDIPS	up
Enscionoli4ncs	Stac	10.	ENS000000:78038	AlStel	up
ENSOODOCOS48810	COLBA:	uj	ENSGO00001796:4	Artia	up
ENSGO000014482!	Mryis	LF	ENSCOCOOO18:458	TMEMASA	up)
ENSCO0000147852	VEDLR	up	enschoiocor8:652	ATges	ขก
ENSCOOCOOM 49593	tagin	up	EiNSC000001825s8	SATBi	us
ENSOCOMO0150722	FSP:RIC	us	ENStornocis 270 S	cierfic	เp
ENscoumanisu782	13.38	(ip)	ENSGOOCOO!S3044	ABAT	up
ENSGOOOOO152104	PTPM14	- 0	Enscioucooi85557	socs 3	up
ENSCOOCOOTS2137	HSP138	up	E, $\mathrm{SGG00000185567}$	ABNAK2	up
ENSGOUOCO152777	SPCOCK	up	ENSGOOUMO: 86594	cliontel	un
Enscomojols2503	trim3s	up)	ENSC00000186684	CYpzed	up
ENSC00000152689	Rasgrp3	4. ${ }^{\text {a }}$	Evsconnour ${ }^{\text {a }}$	TH514	up
ERSGOVODOI53071	DABZ	4 p	Enscomomels80:5	S10043	(1)
ENis 900000153208	MERTK	u)	ENSGODCOM:88042	ARLAC	up
ENSOODOOM153294	OPRIIS	(u)	ENSSOOOCOI88:33	COLAAS	up
ENSCG00000istors	AnkRİ29	4F	ENSCCOUDODI38304	361.	us
ENSG00030:55918	raetle	up	ENSGOOOOO 95188	CTSE	up
ENSCCOOU00157064	NMEAT2	up	ENSCOM0019s352	coss	(1)
ENSCr0000015812	KDH:	us	ENSCOM000196878	LAMES	up
ENSCOOO00158246	FAM468	up	Evarconool97461	PDGFA	inp
ENSCOOOOO150469	BRSK1	up	ENSGCO000198796	ALPK2	12 p
ENSCOCOOOL6;038	megas	We	ENSGOOOUO2:03780	FANK1	ur
ENSGG6000162545	CPMER2N:	4 L	ENSGOOOC0204525	filat	in
ENSCOOCOO162543	AKNADS	up	ENSGOOMGCZO4540	PSORSICI	4 p
Esiscoumotr26:5	OBP2	up	FiNSGO0000205413	Samdy	U
Evsciolowol62840	Mrim	up	ENSO00000213626	\}.kis	up
ENSGOONOO:G3235	TGEA	4 p	Enscoom00213949	HGA	up
Enscou000163346	juxipl	up	ENSGOOO00215038	COL2sA1.	up
Ensgiouonoi63395	chan	up	EMSCOC000221866	ELXNA4	up
ENSCOOOOO263037	Perceklez	up	ENSCSUCO02222009	ETBDIg	4
EkSSCOOOU0163898	lem	up	Evsgooosoz27825	Stesatar	up
ENSC00000163975	MER2	\%	ENSCOOOOO229056		u)
Enscrionocital7	iTCs 2	Lip	EixSG0000022,1745	HAB 3	is
ENSCOOM00:642S	S2RL1	\%	ENSCG600023547!		18
ENSGCHOMD 6 6465	DCBLDI	ω^{μ}	Eascomounis6043	crso	mp
ENEGCOOCOIG4520	RAETE	us			
E4SC00000164932	CTHRC.	ue			
ENSCOOOU0304549	OEM	up			
ENSG00000165046	LeTM2	11 p			
ExScoorcool 65124	SVEFS	ap			
ENSG00000166311	Sidple	4			
ENSGO0000166301	SERMIS:	3			
ENSGOTOH0366446	CSYLZ	0			
WSGCOOCOOL 66920	Cl5oria	0			
ENSGO0000367065	dosemis	up			
ENSGO0000167552	mbaia	sp			
ENSGOCOM016760:	AXI.	uF			
ENSCOOOODI67/67	xariso	(\%)			
ENS 600000167772	ANGPTL4	up			
ENSCONOC0169972	abca	up			
ENSc000001680:6	TRANK:	up			
ENSGOODDO108487	BMPI	40			
ENSCGO0000168685	LLTR	un			
ESSG00000160184	MN:	up			
ESG000000369213	Mgib	up			
2iSCO00601695S3	Cilch	4 p			
Fasccoooth170537	TMCl	up			
Ens50000:70558	CDM2.	up			
NSOCOH00271522	PTGERA	us			
ENSGOOU00121680	Plexpos	up			
ESSCOOOOCO17982	Swxpo	up			
ESSOD0060172478	czersa	(ip)			
ascounanl2602.	R2an	\%			
NSSC0000:72738.	TMENT217	(1)			
ENSG00000173257	SNCO	up			
ENSGODC00173705	Susus	up			
ENS600001:3706	HEGi	up			
ENSCOOC00374500	GCET 2	up			
easco0000776014	TU365	up			
NSGO0000176:33	Claras	u?			
ENSCOU000173469	PTEF	\%			
ENSG00000177494	2BES2	up			

Fig. 38

Enseribl
Sene D
ENSGO0000005243
ENSG00000006118
ENSGOUTCOOU6638
ENSCDOOCOL146S
ENSCOUOOCO: 3297
ENSCN000001954\%
ENSGOOOOOK22267
ENiSG0ch00002602S
ENSC00000038427
ENSG00000349323
ENSG0,000050165
ENSCOOU000059804
ENSCOOOOOn65308
ENSC000000657798
ENSC00000071282
ENSC00000031967
ENSG00000077782
ENSG00006073942
ENSGU000078098
ENS600000078114
EWSCu\%00080\%89
ENSGO000008.7245
ENSG00000092959
ENSCOKOOOM92250
ENSCOM0010009?
ENSGOOU0U300146
ENSGOOOOOROOLS
ENSC00000100985
ENS 00000101335
ERSGOOMOO:01955
ENSCiCOCon 102265
ENSE00000103485
ENSGO0000104323
5,NSCO200010513\%
ENS(300000) ${ }^{\text {es }} 270$
ENSG00000:08928
EUSOU000106333
SivSCu0000126360
ENS60000010869
ENSOOOOCO100099
ENSGCCOM2109544
ENST00000111186
ENSOOOOOO1:1799
ENSCOU000112183
ENSOOU000112180
ENSGO00030112236
ENSOGO000132769
ENSC000001:292
ENSO000001:3083
FASCOOOCOL13140
EN3000000113657
ENSGOOC00:34251
ENSG0006013 450
ENS 500000116998
ENSCOOO00115:09
ERSO00000135414
EvSC00000115648
ENSGO0000155935
ENSGOUC00:16332
ERSOOM00 15774
ENSGOOOOL16982
ENSCOOOOU117,52
ENSG60000118995
ENSGGOmmo! 85.53
ENSGOOOC01:9242
ENSく300000119683
ENSC00000120658
ENSCSOOOOO122.254
Ensconoloi2269
ESSCOU00012270\%
ENSG00000122786
ENSCOOOOC222862

Ensembl	HGTC	Dixution ofreanation
Gene fr	ssmboi	during EMT
ENSGKOOOT22870	BrCCl	up
EVSGOMOOS23080	CDKN2C	up
ENS O00000123416	TMBABB	up
Exiscoocos 23496	MS3RA2	up
ENSFMOOHOO123630	JnFArpe	(13)
ENSGOOOO0224212	Pris	up
ESSO00000124216	SNAll	up
EASGO000012494?	ATENAK	up
ENSCOOMOO125354	SEPT6	up
ENSO0000.25384	PTCEER2	up
ExSCOOOOM126860	EV22R	ar
EnS60900n!26942	ARMEX	4
ENSCOm00127863	Tinfestis	up
ENSCO0000127920	GNCI!	us
ENSG000001286S	CHN:	us
ENSTOONO136270	ATExi3	u)
ENSOOOOK6130635	COLSP3	us
ENSC00000 310.6	AKA? 2	49
ENSCOO500131378	र以TN1	4 p
ENSG00009:31459	(\%)	up
ENSO00000:31711	MAPJR	20
ENSGOOOOn 32929	YOPDC3	up
ENSGODO00133110	costin	up
ENS60000013332	Starois	up
ENSCi60000133937	GSC	บр
ENS(S)COCO534824	FArs?	14
ENSO20000134980	CSortil	up
ENSOU0000:351:	78×3	U
ENS (r000)0,35905	OOCK:	:
ENS6000013620S	TASS	tp
ENSG0000013671?	BIN!	up
EVSG0c000135859	ANCOPT2	up
ENSCOOOOO13656\%	ENGP2	up
ENSGOOOOO137941	'rlut	up
ENSCOOOCO138356	AOX1	un
ENSC00000i38448	MGAV	sip
ENSC00000138675	COES	up
ENSGOOOC0138685	ECEZ	u
Enscoucuol39278	Gi.fPR:	up
ExSt00000312002	EBINS	ip
1 NSCO 000014046	TPMS	up
ENSG00000140682	TGFBilk	up
ENSGOO000143931:	CivTM 3	up
ENSCOKO001:0937	Chn:	u)
ExScomoun141753	Comeip 4	up
ENSGOOOU0142156	COLSAl	42
ENSCOONOCTA22\%	EME3	4)
ENSCOOO00142494	SLC47A1	(4)
ENSGOOOCO143196	DPT	U
ENS600000143343	ROL	(i)
BNSO60000543363	UCMS	(1)
ENSG00000:435:5	ATPSEZ	up
ENS 000000143653	SCCPD	49
ENSOOOOOO:54218	AEF3	up
ENSCOOOOOS44642	QBSMS	up
ENSCOOOOJ145431	PWSC	up
Eirsconcoun 1466%,	SHBP3	lip
EvSC000nos 47027	TMEMA 7	(12)
ENSGOONOC147065	MS:	lip
ENSC00000138566	ZER:	u)
ExSGu6000348677	ANKRO!	0
ENSGOOMDOI4SE9:	CACSN	up
ENS 300000149208	MMP?	us
ENSODOU002:S2022	15193	Sj
ENSCN0000152377	SPOCK:	up
H2SCOOOOOL5307:	i) AB2	120
ExSmonoubs397s	3S3STSA:	up
ENSG0000015402?	AKS	49
EnScogeour 50096	MH:	40
ENSCOOMO 54734	ALAMSSI	up
ENSC00000357168	NREI	UP\%
Enscionoces57350	ST3Gial2	\%

Enseand	3 BiNC	Directon of reguthion	Ensemb?	HONC	Direction of regulation
Gene 11)	symbot	during me	Geneil	symbol	during EmT
ENSGOOOC0:57613	CRES3L:	up	ENSGOOO00197043	AXXAG	up
ENSGOUCOO158:56	MRAS	up	ENSC00000:97959	VPS)3A	us
ENSCOOOODIS916	SiCl	if	ENSG0000019797\%	ELOVL2	up
ENSC00000601638	ITGAS	40	ENSGOULOOTQ8053	Smpe	up
ENSGOK000152007	PPAP2B	up	EVSC00000198755	Cl.25D2	n
ENSCKOOMO102545	CAMK2NS	4	ENSCO00000198796	ALEK2	up
ENSCOO000:52514	NEXN	up	ENSGOOOOO204262	COLSA2	dp
ENSO00000162616	Dinsfes	(\%)	ENSGG0000205426	KRT81	(ij)
ENSC00000162733	DDR2	un	ENSCOOD002:1448	D102	up
ENSC000201634.30	fStld	up	ENSGOOOCN240694	Prindez	up
ENSGOOCOOC:63453	10 Pap 7	(s)	ENSCOUOO241637.	TMEFFl	up
EMSG000001635S1	1 ym 3	4)	ESSSCO0000249992	Tivandis8	4
ENSGOOOO164176	EOLL	up	ENSG00000251349	CSOSTO-TMEEF	up
ENSTG00000:64047	STEAP:	un	ENSCO0000002.58\%	HS3Siy	diown
ENSG0000016:602	COLAA2	up	ENSGU0000000555	TC22	己oym
ENSS900000164741	DLCl	up	ENSCN000001:34	SYT7	down
ENSG00000160033	EIRRA	Us	ENSCOO0000: 2257	ACPP	down
ENSGOMNO166073	GPR176	(3)	ENSCOOOOCO21355	SERPENBS	down
ENSSOOCOO166086	daint	up	ENSCOOOOO22036	RJTCl:	down
ENSGO0000:6017	FEN	40	ENS600000027075	PRKCH	doum
ENSC00000166302	TUB	up	ENSCOOU000035:15	SHSYL	dimen
EvSCOCB00156780	Cigoras	up	ENSOOUODOO3906S	CDH:	down
ENSEOMOU 166831	RESMSS?	4 p	ENSCOOOOOO49283	EPN3	dom
ENSSO00600166923	GKEM	4	ExSG00005052344	Pass 8	coinn
ENSCOOMOL6\%S?	THBAA	up	EvSoocouos 3747	LABEA3	down
ENSG0000016750:	AXL	$u p$	E2SC00000053085	I ALMC.	domm
	MS.M'S	40_{0}	ENS 000000058404	CAMESE	down
ENSOOUCOOL684S?	3iva	up	ENSG0000006203	CDPO	Sown
ENSGOMOOO168542	Col3Al	up	EASCOOMOOO4270	ATPic2	dew
ENSOCOCOOL69554	2F82	4F	EiSGGOOODO063361	ERB33	doms
ENSG00000169604	ANTMRI	9	ExSG0nnonoestis	COL, ${ }^{\text {CAI }}$	dow
ENSG00000168945	2FPM 2	(9)	ENSCOOOOOO664ES	FGM?	\%erm
ENS ${ }^{\circ} 0000170558$	CDH2	us	E\%SC0000006807\%	FGIPK 3	down
ENSGOOCOM170830	PPMO	up	ENSCN0000669764	PLA2S:0	dewn
ENSOOOC00517096:	WAS2	up	Evsconcocozors	PTPY3	down
ENS 600000171408	PDE78	(1)	ENSOO0000070:90	DAPPS	diown
ENSG00000 72260	NEGR1	us	ENSC000000076770	AVBNE 3	doyers
EVSG00000173058	BNC2	(1)	ENSCDOD00077238	DAR	dous:
ENSCOO06017370	SUSDS	(1)	ENSCOU000083307	CKM. 2	down
ENSG0000:73706	MECA	u)	EnSSG00000085300	SNXIO	down:
ERSCOOC00179093	MSTi3	up	EvSCOOMO0086.548	coacamb	dowa
ENSG00000:75745	MR2i:	ap	ENSC000000865\%	FAT2	doun
ENSG00000175692	FOXC\%	up	EnSSCOU00087:28	TASPRSSISE	dewn
SNSODO06017669\%	BON:	(1j)	ESS $6000008 \% 916$	SLC6, ${ }^{\text {S }} 4$	down
Enscuonnos7\%311	2FTE338	up	ENSC00000088726	Them40	Sovirs
ENSG00200777469	grRF	up	ENSGOOMONSO?56	Pxycs	domm
ERSCOO000177707	PVed 3	W\%	EnHSCiOOOOO095203	EPB411.48	town
ENSG00010:79242	CDHA	(1)	ENSCO0000095585	BNK	Rown
ENSGOM000179981	TSUTM	19	ENS6000000966\%	GSP	down
CNSG00000181104	F2R	up	EMSC00500)9920:	48313M	down
ENSGuccootaizs7	4P:S2	19	EMSCOCOM0098812	caorth	dowe
ENSCOMOOO182326	Cls	3 \%	ENSCOOOM 00200	B:K	down
ENSCOOMOCO182492	BON	!p	ENSGOD2001006:8	PPPDEZ	down
EMSGOOM00182636	NWN	up	ENSGOU000101433	WFDC2	down
ENSC300600182752	EAPPA	up	ENSG00000101670	LIPC	Cow;
ENS 001000183093	SmCO	up	ENSCOONOO:02879	CORO:A	cowni
ENSOU0000183633	FAMIOIB	up	ENSGUOO00102890	ELMO3	coun
TNSGOCOOO:83722	LHEP	Hj	ENSCOUOCNOTO3089	FA 2 S	doun
ENSC00000883853	KIRREL	up	ENSCODDO0:03460	10×3	cowar
EMSGO00000184304	PRKDS	up	ENSC00000103534	Tives	down
EvSCOU000184838	ERRIG	3	ENSG00060104267	CA 2	down
ENSCOMMM1850\%	FikTz	4	ENSOCNOO104290	F\%D3	dowi
ENSCCOOOOIE5483	SORI	3 y	ENSCOOOOO1044:9	SLDRG	down
RVSG0000135569	SNAB	up.	ENSLiOOOOU104722	NEFM	down
LNEG600000:86047	DIEC7	up	ENS CrCo00010s357	MYH:4	Snw
ENSG00000186310	NAP13	4)	ENSGOCMOO105388	CBACAMS	(10) 3
ENSGOOCOO:874\%8	COLAAS	up	ENSGOnt00105699	LSR	coms
ENSC00000156159	FAT4	13 p	ENSGOOOU0305825	THSL2	dusen
ENSG00000196363	NumTll	up	EMSCOOMO56597:	CAVE	down
ENSGC0000196549	MME	up	EvSc.00000100537	TSPAN:3	dess\%
ENSG000009661:	MMP?	up	ENSGOOO001070:4	RLN2	dewT
ENSG00000106528	TST	4i2	ENSG00060107159	CAS	down

Ensembl	HCNG	Direction ofregutation	Ensembl	HONC	Direction of megwatin
(jane ji)	symbo:	cusing Evar	Gene 1 D	symbol	during EMT
EATSOCOOOL08479	GR:K:	cown	ENS 500000137843	PAKG	down
Enscournojo9255	NMU	down	ENSOOOCOO:3822]	Cr928	down
ENSKj00000103452	INPP4B	dows:	ENSCJOOCOO138670	RASGEFIB	down
ENSG0000010966i	Slczas	Sown	ENSCCOOOO138772	ANXA3	Gumy
ENSCOMOODI10723	Expais	down	ENSOC0000139055	ERP27	dowis
Exsconou0111012	CYp27B1	dever	ENSC00000340297	CCNO3	down
ENSGOOCOU111359	SCNNTA	வn\%\%	ENSCO0000140832	Marveld3	down
ENSG00000111348	ARLGOSIS	downs	ENSCOOOOOO141404	ONAR.	doum
ENSSG0000011:863	Cforfigs	down	ENSGOOOMO142675	CNXSS	dun?
ENEGO000 12378	PEKP	cinum	ENSGOU000143126	CELSR2	dow?
enscoovecl13070	SBEGF	dow?	ENSOOOCOO143217	EVRI. 4	down
	POLR3G	down	ENSG00000143375	CGN	dows
ENSCOOCOO133430	IRS4	down	EvSEOn00064342	ANXAS	
ENSGOOFOE1, 3645	WWCl	clows	ENSCOMKO143546	Sucuar	dima
ENSE00000135221	TGES	down	ERGCN000014355S	S!00A7	down
ENSGOOOCO115330	GALNTS	down	ENSGOMOOO144452	ABCAl 2	down
ENSGOOMO1:5:57	cicime	down	ENS 600000149681	STAC	doun:
ENSG000nnis6\%4:	RCS2	down	ENSGC0000143103	ILPR	down
ENSC60000117407	ARTA	doinn	ENEGOMOMO145335	SFCA	down
ENSGO0000117472	TSPANL	down:	ESSODC000:46192	FGD2	corm
ENSS0000177595	3 HF 6	downt	ER:SOUOOOM146904	EPrat	domm
ENSSJ000001:7E76		down	EKSCOOM00:47676	Mlal2	down
ENSOOOOOM IR7SS	SPPl	diown	ENSG(M)000) 47689	FAMS3A	down
SNS 600000118898	PP1	down	ExScingorul48346	SCN2	dawn
EKSCu00001389\%	CCNB2	down	ENSC00000148871	Cl0orfil6	down
ENSGOOOOM19411	BSPRY	down	ENS600000149300	C1lors3.	dows
ENSG600001207S6	PLS:	down	ENSG00000149418	STi4	cioms
ENSG0000012:742	clab	down	ENSOOJ000150054	MPP7	40w
ENSG00000124102	313	down	ENSCR0000150782	U.18	dowis
ENSCOOW00124107	SLPI	Sbum	BiNSGO0000!51150	ANK?	down
ENSCOUNOO125338	1 SB	down	ENSGO0000is17!S	TMEX453	dowr
ENSG50000012573:	S4203A	down	ERSGU000015:514	DST	down
ENSG00000:25850	OVOL2	down	ENSGODOCO152?66	ANKRD22	down
ENSCOOOOO127954	Sreash	down	ENSCOOU000152939	MARYELD2	delin:
ENSG00009128422	Krrit	downs	ENSGOOCKOU153292	Cokne	dows
ENSGODMOM128833	MYOSC	Sown	ENSU0000154556	SORES2	down
ENSCOU000129354	APIM2	down	ENS 300000154639	CXADR	down
E2SC00000329451	KLKl0	dowis	ENS 600000154889	NPFPE1	comm
ENSCOOOOn:29.455	KIK8	down	ENSCOOCOUO1SS066	PROM2	SDM\%
ENSC0000012966\%	STBDE 2	down	ENSiCnoonors67:1	MAPK13	Sowns
ERSSK0000130768	SMEDL3E	Soum	ENS ${ }^{10} 000055799 ?$	KRTCAP3	down
ENSG00000130823	SLCSAB	cown	ENSGOOCO015832	XDH	down
ENSGOOC201324)	JTGB4	down	ENSCOOU00158709	Flk	down
STSCOOOUOC1326\%	RPDES	down	ERSC00002:39165	CAB	doun
ENSCOOORD 132746	ALDHSB?	domat	ENSG00000:612, ${ }^{\text {a }}$	OMKN	down
ENSCOH000:33135	Sxil28	down	ENSGC0000) 62069	CCOCOF 3 DeNND2D	down
ENSOOUC001337:0	Splik	down	ENSG000001627\%7	DENND20	comi comn
ENS 50000013740	ERE5	down	ENSSOU0C00163032	y-ina:	bok?
EvSOOU000133985	TTCB	cown	ENSSO00000:63209	SPRK3	dowes
ENSS 30000134358 ENSC0000134327	VTCN] GRESZ.	coman	ENSG000001632:	ARUSAPZ5	dewn
ENSGOOOOO131353	\%st	down	InSOmon0) 615220	Slôas	down
ESSSOOCOO134703	HOOR3	down	ENSGOROSO163347	CLidN	down
ENSCCu000134755	bsca	dums	ENSCO0000163302	Clormos	down
ENS 500000$) 34757$	1)Sc3	dowis	ENSC00030163435	cis	down
ENSCO0000065373	EH\%	Sows:	ENSCOCOOUO163624	CDS	down
ENSCOOOMO135374	U155	down	EndSccocools 3993	Slocr MStre	down
ENSGC0000135378	PRRC4	down	ENSG00000163078	MSTMR	doxn
LNSOOOO00135423	OLS S 2	down	Exiscouocolesios	CASEF	down
ErSG00000135525	MAPT	doven	ENSCOC0001653:40	Fis!	down
ENSC00000r35750	KCNKI	coms	ENSG00000165272	Appe	down
ENSGOOOOO: 36155 ENSOOOOOU:36:67	SCEL	densm	ENSO00000165507	Cloonto	domm
ENS 600009135237	RAPGEFS	down	ENSO00000165591	FABiV2	down
ENSC0000013E689	Wink	down	ENSCOOOODV166145	SPM?	down
15NSCOOM00336943	CTSL2	down	ENSCOOGOO16632:	צ60ris	Sown
ENS 500000137269	YKRC1	down	ENSCOO000:6641S	WDKTz	down
ENSG00000137440	EGEBP1.	dous:	EMSG00000167306	MYOS3	dowit
ENSGOOROM137648	TMPRSS4	down	ENSCEU030167008 ENSC0000367642	Spany	down
ENBS300000137699	TRIVR29	down		K2K5	duss?
ENSC00000 37709	PCJEF3	down		KLKG	dosm
ENSG00000137747	fmpirssi3	down	EASG0000010775	KLKO	dosm

Ensembl	BGNC	Direction or reutation	Ensembl	HCNC	Direction of requation
Cene il	symbel	during EMT	Gene IB	symbo:	Uiming Emi
ENSG00000368308	$30 \mathrm{KRg} \mathrm{\%}$	down			
ENSCOU0001686\%2	FAiv848	com:			
ENSG00000168.74	RPNT	ciswn			
ENSE000000109035	KLK?	down			
ENTSGOOK0169403	PTAFR	down			
ENSCJOOOCO169469	SPRR:E	down			
ENSCO0000168474	SPRRIA	down			
ENSCOJOROI71004	$1366{ }^{2} 2$	dows			
ENSCOOOOO171126	FUls	down			
ENSG0000012:345	KRT15	draver			
ENSO00000171346	KRTIS	down			
EVSC00000133156	AHOD	nown			
ENS 600000173467	AGR3	dawn			
ENSGOOOCOO:73801	3 UP	down			
ENSCOUOCOO174469	CNTNAFZ	dowt			
ENSSO00000174567	GOLTAA	down			
ENSCO00001?4953	PlT	doun			
ENSC00001753:5	CsT6	dows			
E, $250000001733: 8$	GRCMD2	dows			
ENSCSOOO:0:76153	GPXZ	comer			
ENSGOU0k0:175193	SNPEP	down			
ERSSC0\% 200176532	PRE15	dowrs			
ENSCOONOO17665	BYOTD	down			
2NSGOM0017095	VUC20	down			
ERS500000577494	ZEED2	Sown			
ENSC00000378078	STAP2	dorm			
ENSC00000:28126	Tred	coum			
EN5600002178750	STXIC	doum			
5xiccouonn 9178	TMEEVI25	drom			
1256500000779593	ALOXISE	down			
ENSGOC000179913	g3cnrs	down			
ENSGOO000184\%58	08244	down			
ENSGO0000018188S	CLJN\%	comm			
ENSGOOOOM82307	TELEMSOE	downs			
ENSGO0000182795	Cionnle	doun			
EN5600000184254	ADDHAS	dows			
FNSOOOP00:84363	PKP3	down			
ENSGOn000185]31	FAMLIOC	down			
ENSC30000184916	3ncs	dosm			
ENSCOMOOO:85478	KRrgls	doun			
ENSCOW0018608:	< $2 T 5$	divw:			
ENSCOOCOO2, 86832	KRTi6	dow:			
ENSGOOCOOSS6847	KRTiA	dowt			
ENSG00000187098	STME	dowa			
ERSSO00000188910	Cm83	down			
Wnscoon0 189163	CLDNA	down			
ENSCr0COU0189334	SIODAs	down			
ENSCNOOOOS 96878	LADAB3	duwn			
ENSGO000197279	2NE165	down			
ENSO0N000197632	SERPSNE 2	down			
ERISCOOU000197322	OCLA	down			
ENSCOOnO0198088	NUPS2Cl.	down			
ENSEOCH00398125	M18	Sowt			
ENSG00000108729	PGFigl4C	comm			
ENSCOU000520607S	SERPINB5	down			
ENSCOMOOU216490	[133	down			
Eirsconcon227184	typer	cown			
ERSE(x)00236761	CThors	cown			
ENSG60000241484	ARMGAP8	dosurs			
ENSG00000248105	SRRS-AREFCAIS	down			
ENSG00000 $2+3437$	NATF	down			
ENSCOOOOO253313	Ciors20	down			

Fig. 39

Ensembl Gene 10	HGNC symbol
ENSG00000026025	ViM
ENSG000000349323	ETPP1
ENSG000000501E5	DKK3
ENSG00000067798	NAV3
ENSG00000100097	LGAKS:
ENSGO0000101335	MYL9
ENSG00000102265	TMEP1
ENSG00006106366	SERPINE1
ENSO00000111799	COL12A1
ENSG00000116062	Niot
ENSG00000118523	CTGF
ENSG00000127920	GNG11
ENSG00000131711	MAP1E
ENSGO0000133121	Stardib
ENSG00000138356	AOX1
ENSG00000:10582	TGFB\#\%
ENSG00000142227	ENP3
ENSGO0000143369	ECM1
ENS00000014859	TAGLN
ENSG00000152377	SPOCK
ENSGO000015307?	פA82
ENSG00000151638	ITGAS
ENSG00000162.545	CANKK2N1
ENSGO0000167552	Tu8A1A
ENSG00000167601	AXL
ENSG00000t68487	BMP1
ENSG00000170558	COH 2
ENSGO000017370S	Susps
ENSG00000173706	HES
ENSG00000177469	gTRF
ENSG00000198796	ALPK2

Fig 40

Gene in MEO32 signature	Association with drug response (P-vaiue, $\beta<0.05$ is yellow)			
Name	A206244	$\mathrm{Cl}-1040$	PD-0325901	RDEA119
KIAA1539	1	1	1	1
105	0.03572412 .4	0.103698283	0.007204722	0.009072613
plaur	0.446193324	0.048543765	0.006589257	0.044106887
MVP	1	1	0.052034101	0.062512513
ACPP	1	1	1	1
MTMRIL	0.262248423	0.028000689	0.079666143	1
Atplaz	i	0.1 .51826534	0.149859652	0.356086828
EHD2	1	0.170807202	1	0.522001041
VIM	1	1	1	3
TIMP2	1	1	1	1
TNC	1	1	1	1
TBPP1	1	1	1	0.266201043
OKK3	1	0.321853846	1	0.3414711 .62
LAMAB	1	i.	0.014662379	0.019795538
TRAFE	1	1	1]
LAMC2	0.016993644	0.008295492	0.000611194	0.006561606
STYK1	0.003520393	1,49332E-05	1	3.33448E-05
NAV3	1	0.292703449	0.172931222	1
PTPN21.	3	1	1	1
TXK	1	3	0.389754146	0.446949305
SEMA3C	1	1	1	1
RASAL2	1	$\underline{1}$	1	1
CACNG4	0.025096835	0.00435873	0.008543368	0.053280351
MCAM	1	1	2	1.
CEACAM1	0.4845612	3.	1	1
PTPRH	0.27541157	1	1	1
COLAEAS	1	i	1	1
Cos3	1	1	1	1
CO82	0.138766892	1	0.042179701	1
AAT^{2}	1	1.	x	1.
gThins	1	000660059	0.079666149	0.235948164
DOCKS	0.205715804	0.292703449	0.149859652	0.356086828
1611	1	0.048543765	1	0.522001042
1 GALS	1	1	1	1
80GFS	0.338787391	0.040583181	1	0.429566594
KIAAO247	0.030605372	0.051187805	0.010861253	0.014236686
MYIS	0.151030068	1	1	0.24950523
TlMP1	1	I	3	1
CORO2B	1	1	1	1
DENND3	1	1	1	1
TMEM591.	1	3	1	1
CAV1	0.373022246	0.182523483	0.057669502	0.076692102
SERPINEX	1	0.053779364	0.149859652	0.182544376
CNTMAPS	1	1	3	1
CPE	0.119650932	0.032660408	0.189043444	0.230289617

ARHGDIE	1	1	1	
FAM658	1	1	1	
HBEGE	0.000478029	0.002602582	0.001849879	0.016019705
FGF?	0.373107019	λ	1	
AMOTL2	0.067224767	1	0.032822032	
C3ors2	3.	1	1	3
TNNCS	1.	0.023109239	0.046251047	1
EFEMP1	1	0.251579737	0.124236635	0.06335743
11192	1	0.015990557	1	1
Find	0.153467922	0049145657	0.064009429	0.076002792
QPCT	1	1	1	1
Q50×2	1	1	1	3
NCF?	1	1	1	1
N101	1	1	1	1
G8p1	0.052598892	0.170807202	0.1291713	0.050071089
CTGF	0.044994363	0.173839749	0.010861253	0.014236586
PPL	0.010914915	0.023109238	1	0.060071 .089
OPm	0.05424316	0.000863155	0001883394	0.002527713
Mmple	0.009433593	0.173839749	0.017347047	0.091369695
CARPE	0.007028343	0.028000689	0.001849879	0.060071089
COKN1A	1	1	1	1
MTEA	1	0.173635305	0.090117004	0.108352 .379
SYNGR3	0.408976565	1	1	0.182544376
GNGIJ	1	1	I	λ
FINC	1	0.012660408	0.094440033	1
ULBP2	0.087147026	0.084371681	0.02269635	1
MAP18	1	1.	1	1
PTPRE	1	3	3.	1
Of: 6	1	0.338938111	1.	0.507874212
STARO13	1	1	3	1
AMPD3	1	1	1	0.053280351
Micalz	1	1	1	1
ANXA3	1	0.072909769	0.140239592	0.159171422
MICAl1	1	1	1	1
CPM	1	1	1	1
FAM128A	1	1	1	1
ADAMTST	0.526955497	1	0.346235657	1
PIM	0.052598392	0002100778	1	0.024350312
POU2F3	0.32802469	1	0.326197735	0.370611324
GPR87	0.025216974	0.31027043	0.005776881	0.008259465
AOX1	1	1	i	1
APH1B	1	1	1	χ
ANXA3	1	1	$\stackrel{i}{2}$	2
FBN2	1	1	1	1
GABARAPLI	${ }^{1}$	1	1	1
MFGES	3	1	1	1
rorbill	0.101299971	0.329261914	3	0.264010855

KIA, 1609	1	1	1	I
EMP3	1	1	1	$\underline{1}$
CYfi6s	0.21221505	0.08094553	0.017347047	0.022158519
TENAGL	0.030509022	0.004178214	0.001412054	0.002068793
ITGAR10	3	3	3	1
ECM1	1.	2	1	1
EYST	1	l	.	1
STAC	1	1	ξ	1
COLBA3	0.446193324	1	0.094518292	0.116528901
MYHES	1	1	0.177729452	0.208818964
VIOLR	1	1	1	1
TAGLR	0.025216974	1.	0.025637552	1.
138	1	1	1	3.
PTPNIA	0.373107019	1	1	1
HSPB8	1	1	1	3
SPOCK1	0.306180792	2	0.354028137	0.230289617
TRIM36	1	1	1	0.356086828
RASGRY 3	3	I	1	1
DAB2	1	1	3	λ
MERTK	0.380917105	1	0.273989769	0.32175975
NMMAT2	0.005605272	0000951068	0.004521321	0.028633774
XOK	0.05424316	0.173839749	0.013754481	0.017796117
TGGAS	1	1	1	1
CAMK2N1	1	0.051187805	0.090117004	0.108352379
GBP2	0.205755804	0.323544668	0.172931222	0.392092059
TGFA	0.035724124	$?$	3	1
PBX391	1	1	1	3
MF\|?	1	1	2	1
ITGA2	0.180917105	0.098390417	0.02269635	0.029817575
F2RLI	1	1	$\hat{1}$	1
GEM	1	0.236284356	0.172931222	1
SVEPI	1	0.023660762	1	1
SMBPD	1	1	3	1
SERPINBS	2	0.473344876	3	\pm
TUBALA	7	3	1	1
2×1	0.05424316	0.00436873	0.013754481	0.017798117
ANGFTM 4	1	0.061206117	i	1
ABCAS	0.306180792	0.001267027	0.011700942	0.016019705
TRANK2	1.	1	1	1
BMPI	1	3.	1	1
H7\%	0.008776445	0.236288956	0.001073038	0.001595687
MN]	0.073972718	0.015990657	0.014652379	0.019795538
RAg38	0.114825388	0.011539537	0.010854269	0.03 .5534432
Clucs	0.020748485	0.031508258	0.002728276	0.05335743
TMVC.	0.24225212	0.028868468	1	0.022158515
COH2	1	3	1	1.
PTGER4	1	1	1	1

SYNPO	0.180917105	1	0110744577	0.138384661
c2orf54	0.04406121	0.098390417	0.1291713	0.159341814
Rnd 1	0.119650932	0.040583181	0.1291713	0.158341814
SNCG	0.065142784	0.173839749	0.021788406	0.108352379
Susos	1	\%	1	1
Hegi	0.205715804	0.113885033	0.306746327	0.356086828
TU886	0.153467922	0.032850482	0.078401465	0.092022499
Ptrf	1	i	1	1
ZBED2	0.030509021	0.006071083	0.000811713	0.008259465
AlS2Cl	0.04406123	0.001267027	0.002812797	0.003433595
ARLIA	0.020748485	1	0.003521056	0.023500731
TMEMA5A	1	1	0.30646622	3
SATB1	3	1	1	1
Clorfic 6	0.085589832	0.002668745	0.021748723	0.030913619
\{BAT	0.27541157	3	0.243416981	0.484177886
socs3	0.077931677	1	2	1
A ANAK2.	0.391899113	0.001911241	0.052034301	0.052512513
clitor991	1	1	1	3
THSOA	3	3	1	1
S100A3	3	1	1	1
AREAC	0.003674744	0.023660762	0.000810819	0.053280351
COL4AS	0.595498204	0.473344876	1	1.
SELE	0.180917105	1	1	1
CTSE	3	1	1	.
cDS	1	$\underline{3}$	1	1
LAMB3	0.06251439	0.131989423	0.02269635	0.099469007
POGFA	1	1	1	1
SAMDS	0.205715804	1	0.056802001	0.084490204
[BH	1	1	0.426853709	1
TGGAL	1]	1	1
crso	1	1	1	0.235948164

Fig. 41

Celline		1650 vajues				Giene muations			
Name	CTP	$\begin{aligned} & \mathrm{A} Z D 62 \\ & 44 \end{aligned}$	1540	$\begin{aligned} & 17 \\ & 0325091 \end{aligned}$	$\begin{aligned} & \text { ROSGI } \\ & 19 \end{aligned}$	BRAF	KRAS	HRAS	NRAS
A 673	Soctissue	4978	2.095	1.572	3.683	I	0	0	0
C040-829	Skin		0.5663	-1.597	0.5201	1	0	0	0
COR-L23	Wung	1383	1.356	0.3081	1003	0	\square	\bigcirc	0
NC. C 2367	Lung	2354	2.695	-1371	0182	0	0	0	1
NC-12030	Lung		2.622	1.059	1973	0	1	0	0
NCH2 ${ }^{\text {a }}$	Lisig	3.835	1.876	. 6.4983	0.8265	0	I	0	0
SK-XAS	CNS	-2.374	0.05726	-4803	-3102	0	0	0	1
NC1-81299	\},usig	4.517	2.848	-1718	2.637	0	0	3	I
NCl/ 12087	Lung	0.323	1341	-2.315	0.3503	I	0	0	1
UMLUC-3	giarder		2.308	1843	3.195	0	1	0	0
NCL-42?	Lumg	3282	1.063	0.6038	3.748	0	3	0	6
Calu-5	finig	1.885	1521	0.6091	2.698	0	1	0	0
NCIM359	lung	3585	2.045	$-2,072$	3	0	1	0	0
NCl-fl/g2	Lung	3113	2.253	0.2987	0.8857	0	!	0	0
mparal	pencreas	1257	1.31	-2078	001680	0	,	0	0
M $14-\mathrm{PaCa}-2$	pracras:	0.122	1.091	-277	1042	0	1	0	0
Sicp-77	Tung	4073	5.77	0.094	0133	0	1	0	0
NCl-HOO27	Sine		2.842			0	1	0	0
SCLH293	Lumg	-6.2846	0.2849	-3.066	0.9257	0	3	3	0
Swgoo	luns		4.123	T. 38.	5475	0	1	0	0
BR42-1T	apyer nerchigestive tract	2.907	2.829	0.415	S35	1	0	\bigcirc	0
$\begin{aligned} & \mathrm{CPSOMHJ} \\ & \mathrm{~B} \end{aligned}$	Sxin	2063	-1.736	-5.403	-3.837	!	0	0	0
CP6-AEL	Skin		-05167			\bigcirc	9	3	?
Svsot	3.ung		1856			0	0	1	0
KP. 4	gumeress		2.864	04961	3386	0	1	1	0
K「S 40	upper turedigeshe tract	3.907	2900	0.197	1.227	0	\square	0	0
$\begin{aligned} & 11325: 8 \\ & \text { MEL } \end{aligned}$	Skin	-2.375	03275	4.496	-2.548	0	0	3	1
$18373 \text { ME }$	Skin		2435			0	0	0	1
M21-PC	pancreas	1.206	3248	-1.032	0.3052	0]	0	0
M27-me	Skin	1.47	-167	-3.513	9.9 .98 .93	1	0	i	0
CAPAN-1	pancreas	4.678	2563	-0.3तl	1.458	0	!	0	0
एलडm	(\%)met	0.07473	1.927	122	0.6337	0	\}	0	0
HComs	Of mact		4.876			0	1	0	0
32.60	Brood	-3.20S	-3.1998	4.124	. 3662	0	3	0	I
NCTH23	Lung	3.783	2.768	1.533	1.969	0	1	0	\bigcirc
KCM $\mathrm{Ma6}$	Lust	1008	3.674	-1.94	0.8256	0	!	0	0
A549	L.urig	1.573	0.676	-4.828	-2157	0	I	0	0
CRFCEM	Biouci	5.35	2356	2.972	6208	3	?	0	0
Sk-NSEL.28	Skin!		T187	-6537	-2.192	1	0	0	0
SK-MEL-2	Skim	0.5044	0.4594	-3.34!	-2.286	3	0	\bigcirc	1
MOLT 4	Bloud	3403	4.77	0.646	53	0	0	6	$!$
SOARMS 231	Breast	171	\%.453	4808	\%相	I	1	0	0

SW020	OItrect	. 192	0.1396	4233	-267	0	1	0	0
RPMI-3226	Blood	0271	3.369	. 1087	1.53	0	1	0	0
OVCAR-S	Osary		1.797			0	1	0	0
Hop-52	biong		3.019			\bigcirc	$!$	0	0
COXIMVI	Skin	-0.1389	0.582	3243	. 0.7422	1	0	0	0
M:4	Skim	-3.29	-1.869	-5.57.	-3.575	3	0	0	\bigcirc
UACC-62	Skin	5.195	6.452	1.235	6.049	1	0	0	0
UACC-257	Skin	-1.332	0.02906	-4.243	-2729	1	\bigcirc	D	0
AGS	Gitmet	0105	1.97	9891	$\because 1415$	9	1	0	0
A2058	Skin		0.5167	- 0.81	1.325	1	9	0	0
A37S	Skin		0.4632	-5882	-2,128	1	0	0	0
697	H10061	1.824	13	2.636	3.841	0	0	0	1
ACN	CNS	0.50\%/4	1.553	-4,49	-2.719	1	0	0	0
color80	Skin		2222			1	0	0	0
0010.741	Glmact	-1.632	1054	4827	004502	!	\bigcirc	0	0
0040-679	Skin	-1085	-112	4.65	-1.88	1	0	0	0
CtP-232	CNS	-5.820	-3.5!6	-7.534	-5.312	0	0	0	I
CFPAC 1	pancreas	2.005	3118	00.8254	2025	0	I	0	0
CA1. 62	Oner	0.435	02034	-2.282	-0.3906	0	1	0	0
0816	Eiocs	5,554	3.398	3018	6.157	0	0	0	I
C3?	Skis	-2.32	-1.64	-5.064	-2.877	$!$	0	0	0
$\begin{aligned} & \text { DBIRG } \\ & \text { OSMG } \end{aligned}$	cks	2225	2233	0.4173	4.205	I	3	0	0
0064785	Breast	1.122		-5628	-3328	I'	0	0	0
ETM	Ondact	0.627	1.283	-2345	0.2443	0	1	0	0
0-361	S<\%		. 126			1	0	0	0
GCl	Sofetissue	1292	2.583	2.56	4.387	1	0	0	0
M $1 \mathrm{BM} \cdot \mathrm{MY}$ -	Biood		2.856			0	0	0	\square
bec.	Uterus	5622	5713	2133	3.886	0	1	0	0
maval	Skin		-10.5522			1	0	0	T
4T-1680	Soft tissue	0.8877	1.104	. 2.477	-0.6269	0	0	0	1
हTV!07	Clader	4.513	52.5	1.484	3.612	0	0	0	1
MT-144	Skim	-2.629	0.061	4.726	203	\square	B	0	0
Нucct	(i) tract	0.2612	0.935	- 3.33	0.08974	0	T	0	0
MS. 1	Ski 1	2.118	3.831	-1.02	1.605	1	0	0	0
TGYMEST	Skip		-0.4613			1	0	0	0
KE. 37	Bood	5652	2.39	3.02	5.723	0	0	0	!
KMOE-2	31002		161			0	\cdots	0	I
Hup. ${ }^{\text {a }}$	pancreas	7.555	1.719	-2.516	1701	0	T	0	0
GPS ${ }^{\text {d }}$	Os isact	1.572	0.0386	1.062	3.978	0	1	0	0
K6-10.19	Brader	5252	1.158	-1.329	4.025	0	0	0	!
Lovo	Gl tact	0.05979	0.3958	-2.717	0.3301	0	I	0	0
L3.123	Gilltaci	1.319	2.351	-0.59\%	0.549	0	3	0	0
LS-41N	G) tract	2362	03378	- 305	-68819	!	0	0	6
L3-513	at mact	0.3343	03882	-2.169	-0.8842)	1	0	0
IU-99A	Kung	5.061	1788	. 6.631	1.47	0	1	0	0

Mat-250	Skin	-1.969	- 274	-4,664	-3.224	1	0	0	0
MEL-JUSO	Skin		1.524			i)	\bigcirc	!	1
NCiSNU3	Onract	0.5913	-0.2647	-2.33i	0.735	0	!	0	0
NuC-6	CNS	3.454	3.253	0.691	0.68	1	0	0	0
NOMOT	310005	-3.435	-1347	-6.164	- 1.989	0	1	0	0
NCl-174?	Gitract	-1.051	1.563	-3.38	0.04337	0	1	0	0
NCl-thl	Ling	1.493	3.145	0.3645	3.455	0	\cdots	0	0
ACi-fi3s8	Jong		0.08947	-1.16!	2.691	0	$!$	0	0
Natmens	lung	2577	1.631	1758	4.397	0	1	3	0
NCHME573	Jung	1.55	2.363	05801	: 781	0	1	\bigcirc	0
OMS-76	CNS		0.4218			0	0	0	!
fi2	Blood	0.1829	-0.5027	2.73	0.5863	0	0	1	1
PA-i	Oxaiy	4814	2.76	2104	5.259	0	0	0	:
SCM	Gitract	0.7	0.2073	-3055	-1.987	0	1	0	0
R!)	Soft tissue	1516	0.9025	2089	1214	0	0	0	1
RKO	Sl hax:	-1.402	221	-2.58	0.3469	1	0	0	0
KY/hat	Skin	-1.279	0.01832	- 7.376	-368	-	0	0	0
SH-4	Skirs		0.3505			1	0	0	0
SK HEP-1	Othe:	0827	\%97	1.762	0.8688	1	0	0	Ü
ЗK-2U-1	7.4mg	1327	293	-1.26	2.446	0	1	0	0
SKMES 1	Skim		01979			T	3	0	0
SK-MET-3	Skin	0.6064		-0.5469	09418	1	0	0	0
SK-MEL 2 ?	Skin		1.082	-0.03023	697	i	0	0	0
SK-NTEL 30	Skin	-0.2261	1.92	0.2876	2.494	0	0	0	1
Satch38	Othe:	3059	2959	0.153	2792	0	0	0	1
Smb-C2S	Otract	2.87	2.415	-0,5852	2.07	0	1	0	0
SW1116	Stmat	1.904	0.454 !	2786	15\%	\bigcirc	1	0	0
SW14.7	Glitact	1.015	2.261	-48153	1.762	i	0	0	0
SW3463	Gl tract	4.43	0.3185	-1.285	1436	i	-	0	0
SW626	Oxay		1.08			0	T	0	0
SW837	Gltact		2409	02591	2.772	0	1	0	0
SW372	Solt tissue	0.2673	4.408	-9,485	-0.2346	1	0	0	0
SWias	Gitrait	3.095	3.8	0.9221	168	0	1	0	0
SW982	Sut tissic	2.975	28%	05018	-0.2337	1	0	5	0
TS4	ब1730	5.32 L	5.965	2.929	4682	0	1	0	0
$\begin{aligned} & \mathrm{KBCIITK} \\ & \hline \end{aligned}$	(3) Eact	2.213	2.788	-1142	655	0	1	6	0
VM-Cus.1	Bladier	1396	3.271	-0.8.26	, 313	0	0	$!$	0
WM-is	SKin	-1.329	-6.7272	3.037	0.8586	1	0	0	3
YAPC	pancruas	3.955	5.047	3177	3.339	0	1	0	0
PSN:		1.006	-0.0455	-3.261	-1.628	0	I	0	0
C010675	Simace	0.5067	2664	-1.74	0.3534	0	1	0	0
0010.668	Ling	4.165	5388	123	2.605	0	1	0	0
ASP-1	parcrals	-1:143	1.647	3.086	0.08245	0	$!$	8	0
IAMMI	Mmg		3538			0	!	0	D
CA	Other	3199	3,363	0.04142	2.759	0	0	0	$!$

RPM1.7953	Skin	2159	1541	-1.182	-03108	!	0	0	0
SW690	pancrees	1.394	2.523	-0.02852	2054	0	1	0	0
Cipan:2	panceras	3.626	2723	-1324	4381	0	!	0	0
A:019	Skin	-1.417	-1559	-4 468	2.961	1	0	0	0
SETC-905	Bladder	0.8748	1043	-2.047	0.3296	0	0	0	1
GAK	Skini	0.5507	0.1816	2701	-05825	0	0	0	!
AM 38	CNS	5.152	2.68	0.3405	2423	I	0	0	0
85050	Onher		4507			1	0	0	0
BC.ap	Other	0.7337	1733	2043	0.7375	1	0	13	0
ImC-C3	Other	1.532	-0.7758	-5119	-2.119	?	0	0	0
K 5	Ofter		-08277			1	0	0	0
L-363	8.000	2651	1013	2.314	3043	0	3	0	1
MMACSF	Skisi		2.225			!	0	0	0
MFHi:o	Sohtissue		5.66			0	0	0	1
PANC-03-37	pa:cicas	1484	1198	4532	-0.2798	0	1	0	0
PANC-38-3	pancreas	4.446	3.369	0321	4.662	0	I	6	0
PANC-1005	pancreas	5.772	1.886	0.0387	4.21	0	1	0	0
HAL-0!	31.006	0.5493	4553	-0.8032	2867	0	0	0	1
LA W-6	CNS	1.035	1485	20.278	0605	0	?	0	0
M 2 2-MEL	Skin	0.937	0.7456	-3.34	-1.144	0	0	0	1

