(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau

$\geq 2 \quad| | \mid$

(10) International Publication Number WO 2018/176009 Al

(51) International Patent Classification:

C12N 15/11 (2006.01)
C12N 15/10 (2006.01)
(21) International Application Number:

PCT/US20 18/024208
(22) International Filing Date:

23 March 2018 (23.03.2018)
(25) Filing Language:
(26) Publication Language:

English
English
(30) Priority Data:

$62 / 475,830$	23 March $2017(23.03 .2017)$	US
$62 / 490,587$	26 April $2017(26.04 .2017)$	US
$62 / 511,934$	26 May 2017 26.05 .2017$)$	US
$62 / 551,951$	30 August $2017(30.08 .2017)$	US

(71) Applicant: PRESIDENT AND FELLOWS OF HARᄀ VARD COLLEGE [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US).
(72) Inventors: LIU, David, R.; 3 Whitman Circle, Lexington, MA 02420 (US). KOMOR, Alexis, Christine; 9135 Judicial Drive, \#3419, San Diego, CA 92122 (US). CHEN, Liwei; 86 Avon Street, Apt. 2, Somerville, MA 02143 (US). REES, Holly, A.; 34 Hawthorne Street, Somerville, MA 02144 (US).
(74) Agent: HEBERT, Alan, M.; Wolf, Greenfield \& Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US).
(81) Designated States (unless otherwise indicated, for every kind $o f$ national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(54) Title: NUCLEOBASE EDITORS COMPRISING NUCLEIC ACID PROGRAMMABLE DNA BINDING PROTEINS

FIGURE 152
(57) Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e. g., within the human genome. In some embodiments, fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cpf 1 or variants thereof, and nucleic acid editing proteins or protein domains, e. g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e. g., fusion proteins of a napDNAbp (e. g., CasX, CasY, Cpfl, C2cl, C2c2, C2C3, and Argonaute) and nucleic acid editing proteins or domains, are provided.
(84) Designated States (unless otherwise indicated, for every kind f regional protection available): ARIPO (BW, ${ }^{(B H}$, gm, KE, LR, LS, Mw, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, $\quad \mathrm{ZM}, \mathrm{ZW}$), Eurasian (AM, AZ, BY, \quad KG, $\quad \mathrm{KZ}, \quad \mathrm{RU}, \quad \mathrm{TJ}$, TM) \quad European (AL, $\quad \mathrm{AT}, \quad \mathrm{BE}, \quad \mathrm{BG}, \quad \mathrm{CH}, \quad \mathrm{CY}, \quad \mathrm{CZ}, \quad \mathrm{DE}, \quad \mathrm{DK}$, ee, es, fl, fr, gb, GR, hr, hu, ie, is, it, lt, lu, lv, MC, MK, MT, NL, No, PL, PT, RO, RS, SE, SI, SK, SM, tr). OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration $o f$ the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

NUCLEOBASE EDITORS COMPRISING NUCLEIC ACID PROGRAMMABLE DNA BINDING PROTEINS

BACKGROUND OF THE INVENTION

[0001] Targeted editing of nucleic acid sequences, for example, the targeted cleavage or the targeted introduction of a specific modification into genomic DNA, is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases. ${ }^{1}$ An ideal nucleic acid editing technology possesses three characteristics: (1) high efficiency of installing the desired modification; (2) minimal off-target activity; and (3) the ability to be programmed to edit precisely any site in a given nucleic acid, e.g., any site within the human genome. ${ }^{2}$ Current genome engineering tools, including engineered zinc finger nucleases (ZFNs), ${ }^{3}$ transcription activator like effector nucleases (TALENs), ${ }^{4}$ and most recently, the RNA-guided DNA endonuclease Cas 9,5 effect sequencespecific DNA cleavage in a genome. This programmable cleavage can result in mutation of the DNA at the cleavage site via non-homologous end joining (NHEJ) or replacement of the DNA surrounding the cleavage site via homology-directed repair (HDR). ${ }^{6.7}$
[0002] One drawback to the current technologies is that both NHEJ and HDR are stochastic processes that typically result in modest gene editing efficiencies as well as unwanted gene alterations that can compete with the desired alteration. ${ }^{8}$ Since many genetic diseases in principle can be treated by effecting a specific nucleotide change at a specific location in the genome (for example, a C to T change in a specific codon of a gene associated with a disease), ${ }^{9}$ the development of a programmable way to achieve such precision gene editing would represent both a powerful new research tool, as well as a potential new approach to gene editing-based human therapeutics.

SUMMARY OF THE INVENTION

[0003] Nucleic acid programmable DNA binding proteins (napDNAbp), such as the clustered regularly interspaced short palindromic repeat (CRISPR) system is a recently discovered prokaryotic adaptive immune system ${ }^{10}$ that has been modified to enable robust and general genome engineering in a variety of organisms and cell lines. ${ }^{11}$ CRISPR-Cas (CRISPR associated) systems are protein-RNA complexes that use an RNA molecule (sgRNA) as a guide to localize the complex to a target DNA sequence via base-pairing. ${ }^{12}$ In the natural systems, a Cas protein then acts as an endonuclease to cleave the targeted DNA sequence. ${ }^{13}$ The target DNA sequence must be both complementary to the sgRNA, and also contain a
"protospacer-adjacent motif (PAM) at the 3 '-end of the complementary region in order for the system to function. ${ }^{14}$
[0004] Among the known Cas proteins, S. pyogenes Cas9 has been mostly widely used as a tool for genome engineering. ${ }^{15}$ This Cas 9 protein is a large, multi-domain protein containing two distinct nuclease domains. Point mutations can be introduced into Cas9 to abolish nuclease activity, resulting in a dead Cas9 (dCas9) that still retains its ability to bind DNA in a sgRNA-programmed manner. ${ }^{16}$ In principle, when fused to another protein or domain, dCas9 can target that protein or domain to virtually any DNA sequence simply by co-expression with an appropriate sgRNA.
[0005] The potential of the dCas9 complex for genome engineering purposes is immense. Its unique ability to bring proteins to specific sites in a genome programmed by the sgRNA in theory can be developed into a variety of site-specific genome engineering tools beyond nucleases, including deaminases (e.g., cytidine deamianses), transcriptional activators, transcriptional repressors, histone-modifying proteins, integrases, and recombinases. ${ }^{11}$ Some of these potential applications have recently been implemented through dCas9 fusions with transcriptional activators to afford RNA-guided transcriptional activators, ${ }^{17,18}$ transcriptional repressors, ${ }^{16,19,20}$ and chromatin modification enzymes. ${ }^{21}$ Simple co-expression of these fusions with a variety of sgRNAs results in specific expression of the target genes. These seminal studies have paved the way for the design and construction of readily programmable sequence-specific effectors for the precise manipulation of genomes.
[0006] Some aspects of the disclosure are based on the recognition that certain configurations of a nucleic acid programmable DNA binding protein (napDNAbp), for example CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with a cytidine deaminase domain fused to the N-terminus of a napDNAbp via a linker was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. See, for example, Examples 3 and 4 below, which demonstrate that the fusion proteins, which are also referred to herein as base editors, generate less indels and more efficiently deaminate target nucleic acids than other base editors, such as base editors without a UGI domain. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with a cytidine deaminase domain fused to the N -terminus of napDNAbp via a linker perform base editing with higher efficiency and greatly improved product purity when the fusion protein is comprised of more than one UGI domain. See, for
example, Example 17, which demonstrates that a fusion protein (e.g., base editor) comprising two UGI domains generates less indels and more efficiently deaminates target nucleic acids than other base editors, such as those comprising one UGI domain.
[0007] In some embodiments, the fusion protein comprises: (i) a nucleic acid programmable DNA binding protein (napDNAbp); (ii) a cytidine deaminase domain; and (iii) a uracil glycosylase inhibitor (UGI) domain, where the napDNAbp is a CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein. In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a CasX protein. In some embodiments, the CasX protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 29 or 30. In some embodiments, the CasX protein comprises the amino acid sequence of SEQ ID NO: 29 or 30 .
[0008] In some embodiments, the fusion protein comprises: (i) a nucleic acid programmable DNA binding protein (napDNAbp); (ii) a cytidine deaminase domain; (iii) a first uracil glycosylase inhibitor (UGI) domain; and (iv) a second uracil glycosylase inhibitor (UGI) domain, wherein the napDNAbp is a Cas9, dCas9, or Cas9 nickase protein. In some embodiments, the napDNAbp is a dCas9 protein. In some embodiments, the napDNAbp is a CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein. In some embodiments, the dCas 9 protein is a S. pyogenes dCas 9 (SpCas 9 d). In some embodiments, the dCas 9 protein is a S. pyogenes dCas 9 harboring a D10A mutation. In some embodiments, the dCas9 protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 6 or 7. In some embodiments, the dCas 9 protein comprises the amino acid sequence of SEQ ID NO: 6 or 7. In some embodiments, the dCas9 protein is a S. aureus dCas9 (SaCas9d). In some embodiments, the dCas9 protein is a S. aureus dCas9 harboring a D10A mutation. In some embodiments, the dCas9 protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 33-36. In some embodiments, the dCas9 protein comprises the amino acid sequence of SEQ ID NO: 33-36.
[0009] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a CasY protein. In some embodiments, the CasY protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 31. In some embodiments, the CasY protein comprises the amino acid sequence of SEQ ID NO: 31.
[0010] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a Cpfl or Cpfl mutant protein. In some embodiments, the Cpfl or Cpfl mutant protein comprises an amino acid sequence that is at least 90% identical to any one of

SEQ ID NOs: 9-24. In some embodiments, the Cpfl or Cpf 1 mutant protein comprises the amino acid sequence of any one of SEQ ID NOs: 9-24.
[0011] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a C 2 cl protein. In some embodiments, the C 2 cl protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 26. In some embodiments, the C2cl protein comprises the amino acid sequence of SEQ ID NO: 26.
[0012] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a C2c2 protein. In some embodiments, the C2c2 protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 27. In some embodiments, the C2c2 protein comprises the amino acid sequence of SEQ ID NO: 27.
[0013] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a C2c3 protein. In some embodiments, the C2c3 protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 28. In some embodiments, the C2c3 protein comprises the amino acid sequence of SEQ ID NO: 28.
[0014] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is an Argonaute protein. In some embodiments, the Argonaute protein comprises an amino acid sequence that is at least 90% identical to SEQ ID NO: 25 . In some embodiments, the Argonaute protein comprises the amino acid sequence of SEQ ID NO: 25. [0015] Some aspects of the disclosure are based on the recognition that fusion proteins provided herein are capable of generating one or more mutations (e.g., a C to T mutation) without generating a large proportion of indels. In some embodiments, any of the fusion proteins (e.g., base editing proteins) provided herein generate less than 10% indels. In some embodiments, any of the fusion proteins (e.g., base editing proteins) provided herein generate less than $10 \%, 9 \%, 8 \%, 7 \%, 6 \%, 5.5 \%, 5 \%, 4.5 \%, 4 \%, 3.5 \%, 3 \%, 2.5 \%, 2 \%, 1.5 \%, 1 \%, 0.5 \%$, or 0.1% indels.
[0016] In some embodiments, the fusion protein comprises a napDNAbp and an apolipoprotein B mRNA-editing complex 1 (APOBECl) deaminase domain, where the deaminase domain is fused to the N -terminus of the napDNAbp domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604). In some embodiments, the napDNAbp comprises the amino acid sequence of any of the napDNAbp provided herein. In some embodiments, the deaminase is rat APOBECl (SEQ ID NO: 76). In some embodiments, the deaminase is human APOBECl (SEQ ID NO: 74). In some embodiments, the deaminase is pmCDAl (SEQ ID NO: 81). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 60). In some embodiments, the deaminase is a
human APOBEC3G variant of any one of (SEQ ID NOs: 82-84). In some embodiments, the fusion protein comprises a napDNAbp and an apolipoprotein B mRNA-editing complex 1 catalytic polypeptide-like 3G (APOBEC3G) deaminase domain, wherein the deaminase domain is fused to the N -terminus of the napDNAbp domain via a linker of any length or composition (e.g., an amino acid sequence, a peptide, a polymer, or a bond). In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604). In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGS ETPGTSESATPESSGGSSGGS (SEQ ID NO: 605).
[0017] In some embodiments, the fusion protein comprises a napDNAbp and a cytidine deaminase 1 (CDA1) deaminase domain, wherein the deaminase domain is fused to the N terminus of the napDNAbp domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604). In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGS ETPGTSESATPES SGGSSGGS (SEQ ID NO: 605). In some embodiments, the napDNAbp comprises the amino acid sequence of any of the napDNAbps provided herein.
[0018] In some embodiments, the fusion protein comprises a napDNAbp and an activationinduced cytidine deaminase (AID) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604). In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGS ETPGTSESATPES SGGSSGGS (SEQ ID NO: 605). In some embodiments, the napDNAbp comprises the amino acid sequence of any of the napDNAbps provided herein.
[0019] Some aspects of the disclosure are based on the recognition that certain configurations of a napDNAbp, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with an apolipoprotein B mRNAediting complex 1 (APOBEC1) deaminase domain fused to the N -terminus of a napDNAbp via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604) was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. In some embodiments, the fusion protein comprises a napDNAbp domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604).
[0020] Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within a subject's genome, e.g., a human's genome. In some embodiments, fusion proteins of napDNAbp (e.g., CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein) and deaminases or deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of napDNAbp and deaminases or deaminase domains, are provided.
[0021] Some aspects of this disclosure provide fusion proteins comprising a napDNAbp as provided herein that is fused to a second protein (e.g., an enzymatic domain such as a cytidine deaminase domain), thus forming a fusion protein. In some embodiments, the second protein comprises an enzymatic domain, or a binding domain. In some embodiments, the enzymatic domain is a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments, the enzymatic domain is a nucleic acid editing domain. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC 1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). It should be appreciated that the deaminase may be from any suitable organism (e.g., a human or a rat). In some embodiments, the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is rat APOBEC 1 (SEQ ID NO: 76). In some embodiments, the deaminase is human APOBEC 1 (SEQ ID NO: 74). In some embodiments, the deaminase is pmCDAl.
[0022] Some aspects of this disclosure provide fusion proteins comprising: (i) a CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein domain comprising the amino acid sequence of SEQ ID NO: 32; and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the napDNAbp via a linker comprising the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 604). In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 76). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 74). In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 5737. In some embodiments, the deaminase is pmCDAl (SEQ ID NO: 81). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 60). In some embodiments, the deaminase is a human APOBEC3G variant of any one of SEQ ID NOs: 82-84.
[0023] Other aspects of this disclosure relate to the recognition that fusion proteins comprising a deaminase domain, a napDNAbp domain and a uracil glycosylase inhibitor (UGI) domain demonstrate improved efficiency for deaminating target nucleotides in a nucleic acid molecule. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of $\mathrm{U}: \mathrm{G}$ heteroduplex DNA may be responsible for a decrease in nucleobase editing efficiency in cells. Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. As demonstrated herein, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Without wishing to be bound by any particular theory, base excision repair may be inhibited by molecules that bind the single strand, block the edited base, inhibit UGI, inhibit base excision repair, protect the edited base, and/or promote "fixing" of the non-edited strand, etc. Thus, this disclosure contemplates fusion proteins comprising a napDNAbp-cytidine deaminase domain that is fused to a UGI domain.
[0024] Further aspects of this disclosure relate to the recognition that fusion proteins comprising a deaminase domain, a napDNAbp domain, and more than one uracil glycosylase inhibitor (UGI) domain (e.g., one, two, three, four, five, or more UGI domains) demonstrate improved efficiency for deaminating target nucleotides in a nucleic acid molecule and/or improved nucleic acid product purity. Without wishing to be bound by any particular theory, the addition of a second UGI domain may substantially decrease the access of UDG to the $\mathrm{G}: \mathrm{U}$ base editing intermediate, thereby improving the efficiency of the base editing.
[0025] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An "indel", as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels.
[0026] In certain embodiments, any of the base editors provided herein are capable of generating a certain percentage of desired mutations. In some embodiments, the desired mutation is a C to T mutation. In some embodiments, the desired mutation is a C to A mutation, In some embodiments, the desired mutation is a C to G mutation. In some embodiments, any of the base editors provided herein are capable of generating at least 1% of desired mutations. In some embodiments, any of the base editors provided herein are capable of generating at least $1 \%, 2 \%, 3 \%, 4 \%, 5 \%, 10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 40 \%, 45 \%, 50 \%$, $60 \%, 70 \%, 80 \%, 90 \%, 95 \%$, or 99% of desired mutations.
[0027] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations.
[0028] In some embodiments, the deaminase domain of the fusion protein is fused to the N terminus of the napDNAbp domain. In some embodiments, the UGI domain is fused to the Cterminus of the napDNAbp domain. In some embodiments, the napDNAbp and the nucleic acid editing domain are fused via a linker. In some embodiments, the napDNAbp domain and the UGI domain are fused via a linker. In some embodiments, a second UGI domain is fused to the C-terminus of a first UGI domain. In some embodiments, the first UGI domain and the second UGI domain are fused via a linker.
[0029] In certain embodiments, linkers may be used to link any of the peptides or peptide domains of the invention. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polpeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond,
carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or hetero aliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may included funtionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.
[0030] In some embodiments, the linker comprises the amino acid sequence (GGGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 607), (G),, (SEQ ID NO: 608), (EAAAK),, (SEQ ID NO: 609), (GGS),, (SEQ ID NO:610), (SGGS),, (SEQ ID NO: 606), SGSETPGTSESATPES (SEQ ID NO: 604), (XP),, (SEQ ID NO: 611), SGGS(GGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 612),

SGGSSGGSSGS ETPGTSESATPES SGGSSGGS (SEQ ID NO: 605), or any combination thereof, wherein n is independently an integer between 1 and 30 , and X is any amino acid. In some embodiments, the linker comprises the amino acid sequence (GGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 610), wherein n is 1,3 , or 7 . In some embodiments, the linker comprises the amino acid sequence SGGS(GGS) $)_{\mathrm{n}}$ (SEQ ID NO: 612), wherein n is 2 . In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604). In some embodiments, the linker comprises the amino acid sequence

SGGSSGGSSGS ETPGTSESATPES SGGSSGGS (SEQ ID NO: 605).
[0031] In some embodiments, the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker sequence]-[napDNAbp]- [optional linker sequence]-[UGI]. In some embodiments, the fusion protein comprises the structure [nucleic acid editing domain][optional linker sequence]-[UGI]-[optional linker sequence]-[napDNAbp]; [UGI]-[optional
linker sequence]-[nucleic acid editing domain]-[optional linker sequence]-[napDNAbp]; [UGI]-[optional linker sequence]-[napDNAbp] -[optional linker sequence]-[nucleic acid editing domain]; [napDNAbp]-[optional linker sequence]-[UGI]-[optional linker sequence][nucleic acid editing domain]; [napDNAbp]-[optional linker sequence]-[nucleic acid editing domain]-[optional linker sequence]-[UGI]; or [nucleic acid editing domain]-[optional linker sequence]-[napDNAbp] -[optional linker sequence]-[first UGI]-[optional linker sequence][second UGI].
[0032] In some embodiments, the nucleic acid editing domain comprises a deaminase. In some embodiments, the nucleic acid editing domain comprises a deaminase. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC 1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, an APOBEC3H deaminase, or an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a cytidine deaminase 1 (CDA1). In some embodiments, the deaminase is a Lamprey CDA1 (pmCDAl) deaminase.
[0033] In some embodiments, the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is from a human. In some embodiments the deaminase is from a rat. In some embodiments, the deaminase is a rat APOBEC 1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 76). In some embodiments, the deaminase is a human APOBEC 1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 74). In some embodiments, the deaminase is pmCDAl (SEQ ID NO: 81). In some embodiments, the deaminase is human APOBEC 3G (SEQ ID NO: 60). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 82-84). In some embodiments, the deaminase is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 49-84.
[0034] In some embodiments, the UGI domain comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to SEQ ID NO: 134. In some
embodiments, the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 134.
[0035] Some aspects of this disclosure provide complexes comprising a napDNAbp fusion protein as provided herein, and a guide RNA bound to the napDNAbp.
[0036] Some aspects of this disclosure provide methods of using the napDNAbp, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with a napDNAbp or a fusion protein as provided herein and with a guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a napDNAbp, a napDNAbp fusion protein, or a napDNAbp or napDNAbp complex with a gRNA as provided herein.
[0037] Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a napDNAbp or a napDNAbp fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
[0038] Some aspects of this disclosure provide polynucleotides encoding a napDNAbp of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
[0039] Some aspects of this disclosure provide cells comprising a napDNAbp protein, a fusion protein, a nucleic acid molecule, and/or a vector as provided herein.
[0040] It should be appreciated that any of the fusion proteins provided herein that include a Cas9 domain (e.g. Cas9, nCas9, or dCas9) may be replaced with any of the napDNAbp provided herein, for example CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein.
[0041] The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.
[0042] The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other
embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] Figure 1 shows the deaminase activity of deaminases on single stranded DNA substrates. Single stranded DNA substrates using randomized PAM sequences (NNN PAM) were used as negative controls. Canonical PAM sequences used include the (NGG PAM).
[0044] Figure 2 shows the activity of Cas9:deaminase fusion proteins on single stranded DNA substrates.
[0045] Figure 3 illustrates double stranded DNA substrate binding by
Cas9:deaminase:sgRNA complexes.
[0046] Figure 4 illustrates a double stranded DNA deamination assay.
[0047] Figure 5 demonstrates that Cas9 fusions can target positions 3-11 of double-stranded DNA target sequences (numbered according to the schematic in Figure 5). Upper Gel: $1 \mu \mathrm{M}$ rAPOBECl-GGS-dCas9, 125 nM dsDNA, 1 equivalent sgRNA. Mid Gel: $1 \mu \mathrm{M}$ rAPOBECl(GGS) ${ }_{3}$ (SEQ ID NO: 610)-dCas9, 125 nM dsDNA, 1 equivalent sgRNA. Lower Gel: $1.85 \mu \mathrm{M}$ rAPOBECl-XTEN-dCas9, 125 nM dsDNA, 1 equivalent sgRNA.
[0048] Figure 6 demonstrates that the correct guide RNA, e.g., the correct sgRNA, is required for deaminase activity.
[0049] Figure 7 illustrates the mechanism of target DNA binding of in vivo target sequences by deaminase-dCas 9 :sgRNA complexes.
[0050] Figure 8 shows successful deamination of exemplary disease-associated target sequences.
[0051] Figure 9 shows in vitro $\mathrm{C} \rightarrow$ T editing efficiencies using His6-rAPOBECI-XTENdCas9.
[0052] Figure 10 shows $\mathrm{C} \rightarrow \mathrm{T}$ editing efficiencies in HEK293T cells is greatly enhanced by fusion with UGI.
[0053] Figures 11A to $\mathbf{1 1 C}$ show NBE1 mediates specific, guide RNA-programmed C to U conversion in vitro. Figure 11A: Nucleobase editing strategy. DNA with a target C at a locus specified by a guide RNA is bound by dCas9, which mediates the local denaturation of the DNA substrate. Cytidine deamination by a tethered APOBEC1 enzyme converts the target C to U . The resulting $\mathrm{G}: \mathrm{U}$ heteroduplex can be permanently converted to an $\mathrm{A}: T$ base pair following DNA replication or repair. If the U is in the template DNA strand, it will also result in an RNA transcript containing a G to A mutation following transcription. Figure 1IB:

Deamination assay showing an activity window of approximately five nucleotides. Following incubation of NBEl-sgRNA complexes with dsDNA substrates at $37^{\circ} \mathrm{C}$ for 2 h , the 5^{\prime} fluorophore-labeled DNA was isolated and incubated with USER enzyme (uracil DNA glycosylase and endonuclease VIII) at $37^{\circ} \mathrm{C}$ for 1 h to induce DNA cleavage at the site of any uracils. The resulting DNA was resolved on a denaturing polyacrylamide gel, and any fluorophore-linked strands were visualized. Each lane is labeled according to the position of the target C within the protospacer, or with "-" if no target C is present, counting the base distal from the PAM as position 1. Figure 11 C : Deaminase assay showing the sequence specificity and sgRNA-dependence of NBE1. The DNA substrate with a target C at position 7 was incubated with NBE1 as in Figure 1IB with either the correct sgRNA, a mismatched sgRNA, or no sgRNA. No C to U editing is observed with the mismatched sgRNA or with no sgRNA. The positive control sample contains a DNA sequence with a U synthetically incorporated at position 7 .
[0054] Figures 12A to 12B show effects of sequence context and target C position on nucleobase editing efficiency in vitro. Figure 12A: Effect of changing the sequence surrounding the target C on editing efficiency in vitro. The deamination yield of 80% of targeted strands (40% of total sequencing reads from both strands) for C_{7} in the protospacer sequence 5^{\prime}-TTATTTCGTGGATTTATTTA-3'(SEQ ID NO: 591) was defined as 1.0 , and the relative deamination efficiencies of substrates containing all possible single-base mutations at positions 1-6 and 8-13 are shown. Values and error bars reflect the mean and standard deviation of two or more independent biological replicates performed on different days. Figure 12B: Positional effect of each NC motif on editing efficiency in vitro. Each NC target motif was varied from positions 1 to 8 within the protospacer as indicated in the sequences shown on the right (the PAM shown in red, the protospacer plus one base 5 ' to the protospacer are also shown). The percentage of total sequence reads containing T at each of the numbered target C positions following incubation with NBE1 is shown in the graph. Note that the maximum possible deamination yield in vitro is 50% of total sequencing reads (100% of targeted strands). Values and error bars reflect the mean and standard deviation of two or three independent biological replicates performed on different days. Figure 12B depicts SEQ ID NOs: 619 through 626 from top to bottom, respectively.
[0055] Figures 13A to 13C show nucleobase editing in human cells. Figure 13A: Protospacer and PAM sequences of the six mammalian cell genomic loci targeted by nucleobase editors. Target Cs are indicated with subscripted numbers corresponding to their positions within the protospacer. Figure 13A depicts SEQ ID NOs: 127 through 132 from top
to bottom, respectively. Figure 13B: HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the six loci. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for NBE1, NBE2, and NBE3 at all six genomic loci, and for wt Cas9 with a donor HDR template at three of the six sites (EMX1, HEK293 site 3, and HEK293 site 4). Values and error bars reflect the mean and standard deviation of three independent biological replicates performed on different days. Figure 13C: Frequency of indel formation, calculated as described in the Methods, is shown following treatment of HEK293T cells with NBE2 and NBE3 for all six genomic loci, or with wt Cas9 and a single-stranded DNA template for HDR at three of the six sites (EMX1, HEK293 site 3, and HEK293 site 4). Values reflect the mean of at least three independent biological replicates performed on different days.
[0056] Figures 14A to $\mathbf{1 4 C}$ show NBE2- and NBE3-mediated correction of three diseaserelevant mutations in mammalian cells. For each site, the sequence of the protospacer is indicated to the right of the name of the mutation, with the PAM and the base responsible for the mutation indicated in bold with a subscripted number corresponding to its position within the protospacer. The amino acid sequence above each disease-associated allele is shown, together with the corrected amino acid sequence following nucleobase editing in red. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. Cells were nucleofected with plasmids encoding NBE2 or NBE3 and an appropriate sgRNA. Two days after nucleofection, genomic DNA was extracted and analyzed by HTS to assess pathogenic mutation correction. Figure 14A: The Alzheimer's diseaseassociated APOE4 allele is converted to APOE3' in mouse astrocytes by NBE3 in 11% of total reads (44% of nucleofected astrocytes). Two nearby Cs are also converted to Ts, but with no change to the predicted sequence of the resulting protein (SEQ ID NO: 627). Figure 14B The cancer-associated p53 N239D mutation is corrected by NBE2 in 11% of treated human lymphoma cells (12% of nucleofected cells) that are heterozygous for the mutation (SEQ ID NO: 628). Figure 14C The p53 Y163C mutation is corrected by NBE3 in 7.6% of nucleofected human breast cancer cells (SEQ ID NO: 629).
[0057] Figures 15A to 15D show effects of deaminase-dCas9 linker length and composition on nucleobase editing. Gel-based deaminase assay showing the deamination window of nucleobase editors with deaminase-Cas9 linkers of GGS (Figure 15A), (GGS) ${ }_{3}$ (SEQ ID NO: 610) (Figure 15B), XTEN (Figure 15C), or (GGS) ${ }_{7}$ (SEQ ID NO: 610) (Figure 15D).

Following incubation of $1.85 \mu \mathrm{M}$ editor-sgRNA complexes with 125 iiM dsDNA substrates at $37^{\circ} \mathrm{C}$ for 2 h , the dye-conjugated DNA was isolated and incubated with USER enzyme (uracil DNA glycosylase and endonuclease VIII) at $37{ }^{\circ} \mathrm{C}$ for an additional hour to cleave the DNA backbone at the site of any uracils. The resulting DNA was resolved on a denaturing polyacrylamide gel, and the dye-conjugated strand was imaged. Each lane is numbered according to the position of the target C within the protospacer, or with - if no target C is present. 8 U is a positive control sequence with a U synthetically incorporated at position 8 .
[0058] Figures 16A to 16B show NBE1 is capable of correcting disease-relevant mutations in vitro. Figure 16A: Protospacer and PAM sequences of seven disease-relevant mutations. The disease-associated target C in each case is indicated with a subscripted number reflecting its position within the protospacer. For all mutations except both APOE4 SNPs, the target C resides in the template (non-coding) strand. Figure 16A depicts SEQ ID NOs: 631 through 636 from top to bottom, respectively. Figure 16B: Deaminase assay showing each dsDNA oligonucleotide before (--) and after (+) incubation with NBE1, DNA isolation, and incubation with USER enzymes to cleave DNA at positions containing U. Positive control lanes from incubation of synthetic oligonucleotides containing U at various positions within the protospacer with USER enzymes are shown with the corresponding number indicating the position of the U .
[0059] Figure 17 shows processivity of NBE1. The protospacer and PAM of a 60-mer DNA oligonucleotide containing eight consecutive Cs is shown at the top. The oligonucleotide (125 iiM) was incubated with NBE1 ($2 \mu \mathrm{M}$) for 2 h at $37^{\circ} \mathrm{C}$. The DNA was isolated and analyzed by high-throughput sequencing. Shown are the percent of total reads for the most frequent nine sequences observed. The vast majority of edited strands (>93\%) have more than one C converted to T. This figure depicts SEQ ID NO: 309.
[0060] Figures $\mathbf{1 8 A}$ to $\mathbf{1 8 H}$ show the effect of fusing UGI to NBEl to generate NBE2.
Figure 18A: Protospacer and PAM sequences of the six mammalian cell genomic loci targeted with nucleobase editors. Editable Cs are indicated with labels corresponding to their positions within the protospacer. Figure 18A depicts SEQ ID NOs: 127 through 132 from top to bottom, respectively. Figures 18B to 18G: HEK293T cells were transfected with plasmids expressing NBEl, NBE2, or NBEl and UGI, and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the six loci. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for $\mathrm{NBEl}, \mathrm{NBEl}$ and UGI, and NBE2 at all six genomic loci. Figure 18H: C to T mutation rates at 510 Cs
surrounding the protospacers of interest for NBEl, NBEl plus UGI on a separate plasmid, NBE2, and untreated cells are shown. The data show the results of $3,000,000$ DNA sequencing reads from 1.5×106 cells. Values reflect the mean of at least two biological experiments conducted on different days.
[0061] Figure 19 shows nucleobase editing efficiencies of NBE2 in U20S and HEK293T cells. Cellular C to T conversion percentages by NBE2 are shown for each of the six targeted genomic loci in HEK293T cells and U20S cells. HEK293T cells were transfected using lipofectamine 2000, and U20S cells were nucleofected. U20S nucleofection efficiency was 74%. Three days after plasmid delivery, genomic DNA was extracted and analyzed for nucleobase editing at the six genomic loci by HTS. Values and error bars reflect the mean and standard deviation of at least two biological experiments done on different days.
[0062] Figure 20 shows nucleobase editing persists over multiple cell divisions. Cellular C to T conversion percentages by NBE2 are displayed at two genomic loci in HEK293T cells before and after passaging the cells. HEK293T cells were transfected using Lipofectamine 2000. Three days post transfection, the cells were harvested and split in half. One half was subjected to HTS analysis, and the other half was allowed to propagate for approximately five cell divisions, then harvested and subjected to HTS analysis.
[0063] Figure 21 shows genetic variants from ClinVar that can be corrected in principle by nucleobase editing. The NCBI ClinVar database of human genetic variations and their corresponding phenotypes ${ }^{68}$ was searched for genetic diseases that can be corrected by current nucleobase editing technologies. The results were filtered by imposing the successive restrictions listed on the left. The x-axis shows the number of occurrences satisfying that restriction and all above restrictions on a logarithmic scale.
[0064] Figure 22 shows in vitro identification of editable Cs in six genomic loci. Synthetic 80-mers with sequences matching six different genomic sites were incubated with NBE1 then analyzed for nucleobase editing via HTS. For each site, the sequence of the protospacer is indicated to the right of the name of the site, with the PAM highlighted in red. Underneath each sequence are the percentages of total DNA sequencing reads with the corresponding base. A target C was considered as "editable" if the in vitro conversion efficiency is $>10 \%$. Note that maximum yields are 50% of total DNA sequencing reads since the non-targeted strand is not a substrate for nucleobase editing. This figure depicts SEQ ID NOs: 127 through 132 from top to bottom, respectively.
[0065] Figure 23 shows activities of NBE1, NBE2, and NBE3 at EMX1 off-targets. HEK293T cells were transfected with plasmids expressing NBEl, NBE2, or NBE3 and a
sgRNA matching the EMX1 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus the top ten known Cas9 off-target loci for the EMX1 sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. EMX1 offtarget 5 locus did not amplify and is not shown. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 127, and 637 through 645 from top to bottom, respectively.
[0066] Figure 24 shows activities of NBE1, NBE2, and NBE3 at FANCF off-targets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the FANCF sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci for the FANCF sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 128 and 646 through 653 from top to bottom, respectively.
[0067] Figure 25 shows activities of NBE1, NBE2, and NBE3 at HEK293 site 2 off-targets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the HEK293 site 2 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci for the HEK293 site 2 sgRNA, as previously determined using the GUIDE-seq method ${ }^{55}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 129, 654, and 655 from top to bottom, respectively.
[0068] Figure 26 shows activities of NBE1, NBE2, and NBE3 at HEK293 site 3 off-targets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the HEK293 site 3 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci for the HEK293 site 3 sgRNA, as previously determined using the GUIDE-seq method. ${ }^{55}$ Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 130 and 656 through 660 from top to bottom, respectively.
[0069] Figure 27 shows activities of NBE1, NBE2, and NBE3 at HEK293 site 4 off-targets. HEK293T cells were transfected with plasmids expressing NBE1, NBE2, or NBE3 and a sgRNA matching the HEK293 site 4 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus the top ten known Cas9 off-target loci for the HEK293 site 4 sgRNA, as previously determined using the GUIDE-seq method. ${ }^{55}$ Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for NBE1, NBE2, and NBE3. On the far right are displayed the total number of sequencing reads reported for each sequence. This figure depicts SEQ ID NOs: 131 and 661 through 670 from top to bottom, respectively.
[0070] Figure 28 shows non-target C mutation rates. Shown here are the C to T mutation rates at 2,500 distinct cytosines surrounding the six on-target and 34 off-target loci tested, representing a total of $14,700,000$ sequence reads derived from approximately 1.8×106 cells.
[0071] Figures 29A to 29C show base editing in human cells. Figure 29A shows possible base editing outcomes in mammalian cells. Initial editing resulted in a U:G mismatch. Recognition and excision of the U by uracil DNA glycosylase (UDG) initiated base excision repair (BER), which lead to reversion to the C:G starting state. BER was impeded by BE2 and BE3, which inhibited UDG. The U:G mismatch was also processed by mismatch repair (MMR), which preferentially repaired the nicked strand of a mismatch. BE3 nicked the nonedited strand containing the G, favoring resolution of the $\mathrm{U}: \mathrm{G}$ mismatch to the desired $\mathrm{U}: \mathrm{A}$ or

T:A outcome. Figure 29B shows HEK293T cells treated as described in the Materials and Methods in the Examples below. The percentage of total DNA sequencing read with Ts at the target positions indicated show treatment with BE1, BE2, or BE3, or for treatment with wt Cas9 with a donor HDR template. Figure 29C shows frequency of indel formation following the treatment in Figure 29B. Values are listed in Figure 34. For Figures 29B and 29C, values and error bars reflect the mean and s.d. of three independent biological replicates performed on different days.
[0072] Figures 30A to 30B show BE3-mediated correction of two disease-relevant mutations in mammalian cells. The sequence of the protospacer is shown to the right of the mutation, with the PAM and the target base in red with a subscripted number indicating its position within the protospacer. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods. Figure 30A shows the Alzheimer's disease-associated APOE4 allele converted to APOE3r in mouse astrocytes by BE3 in 74.9% of total reads. Two nearby Cs were also converted to Ts , but with no change to the predicted sequence of the resulting protein. Identical treatment of these cells with wt Cas9 and donor ssDNA results in only 0.3% correction, with 26.1% indel formation. This figure depicts SEQ ID NOs: 671 and 627. Figure 30B shows the cancer associated p53 Y163C mutation corrected by BE3 in 7.6% of nucleofected human breast cancer cells with 0.7% indel formation. Identical treatment of these cells with wt Cas9 and donor ssDNA results in no mutation correction with 6.1% indel formation. This figure depicts SEQ ID NOs: 672 and 629.
[0073] Figure 31 shows activities of BE1, BE2, and BE3 at HEK293 site 2 off-targets. HEK293T cells were transfected with plasmids expressing BE1, BE2, or BE3 and a sgRNA matching the HEK293 site 2 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 and dCas9 offtarget loci for the HEK293 site 2 sgRNA, as previously determined by Joung and coworkers using the GUIDE-seq method (63), and Adli and coworkers using chromatin immunoprecipitation high-throughput sequencing (ChlP-seq) experiments (18). Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for BE1, BE2, and BE3. On the far right are displayed the total number of sequencing reads
reported, and the ChlP-seq signal intensity reported for each sequence. This figure depicts SEQ ID NOs: 129, 654, 655 and 673 to 677 from top to bottom, respectively.
[0074] Figure 32 shows activities of BEl, BE2, and BE3 at HEK293 site 3 off-targets. HEK293T cells were transfected with plasmids expressing BEl, BE2, or BE3 and a sgRNA matching the HEK293 site 3 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus all of the known Cas9 off-target loci and the top five known dCas9 off-target loci for the HEK293 site 3 sgRNA, as previously determined by Joung and coworkers using the GUIDE-seq method ${ }^{54}$, and using chromatin immunoprecipitation high-throughput sequencing (ChlP-seq) experiments ${ }^{61}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for BEl , BE 2 , and BE3. On the far right are displayed the total number of sequencing reads reported, and the ChlP-seq signal intensity reported for each sequence. This figure depicts SEQ ID NOs: 130, 656 to 660 and 678-682 from top to bottom, respectively.
[0075] Figure 33 shows activities of BEl, BE2, and BE3 at HEK293 site 4 off-targets. HEK293T cells were transfected with plasmids expressing BEl, BE2, or BE3 and a sgRNA matching the HEK293 site 4 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci, plus the top ten known Cas9 off-target loci and the top five known dCas9 off-target loci for the HEK293 site 4 sgRNA, as previously determined using the GUIDE-seq method ${ }^{54}$, and using chromatin immunoprecipitation highthroughput sequencing (ChlP-seq) experiments ${ }^{61}$. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for BE1, BE2, and BE3. On the far right are displayed the total number of sequencing reads reported, and the ChlP-seq signal intensity reported for each sequence. This figure depicts SEQ ID NOs: 131, 661 to 670 , 683 and 684 from top to bottom, respectively.
[0076] Figure 34 shows mutation rates of non-protospacer bases following BE3-mediated correction of the Alzheimer's disease-associated APOE4 allele to $A P O E 3 r$ in mouse astrocytes. The DNA sequence of the 50 bases on either side of the protospacer from Figure 30A and Figure 34B is shown with each base's position relative to the protospacer. The side of
the protospacer distal to the PAM is designated with positive numbers, while the side that includes the PAM is designated with negative numbers, with the PAM. Underneath each sequence are the percentages of total DNA sequencing reads with the corresponding base for untreated cells, for cells treated with BE3 and an sgRNA targeting the APOE4 C158R mutation, or for cells treated with BE3 and an sgRNA targeting the VEGFA locus. Neither BE3-treated sample resulted in mutation rates above those of untreated controls. This figure depicts SEQ ID NOs: 685 to 688 from top to bottom, respectively.
[0077] Figure 35 shows mutation rates of non-protospacer bases following BE3-mediated correction of the cancer-associated p53 Y163C mutation in HCC1954 human cells. The DNA sequence of the 50 bases on either side of the protospacer from Figure 30B and Figure 39Bis shown with each base's position relative to the protospacer. The side of the protospacer distal to the PAM is designated with positive numbers, while the side that includes the PAM is designated with negative numbers, with the PAM. Underneath each sequence are the percentages of total sequencing reads with the corresponding base for untreated cells, for cells treated with BE3 and an sgRNA targeting the TP53 Y163C mutation, or for cells treated with BE3 and an sgRNA targeting the VEGFA locus. Neither BE3-treated sample resulted in mutational rates above those of untreated controls. This figure depicts SEQ ID NOs: 689 to692 from top to bottom, respectively.
[0078] Figures 36A to $\mathbf{3 6 F}$ show the effects of deaminase, linker length, and linker composition on base editing. Figure 36A shows a gel-based deaminase assay showing activity of rAPOBECl, pmCDAl, hAID, hAPOBEC3G, rAPOBECl-GGS-dCas9, rAPOBECl(GGS) 3_{3} (SEQ ID NO: 610)-dCas9, and dCas9-(GGS) 3_{3} (SEQ ID NO: 610)-rAPOBECl on ssDNA. Enzymes were expressed in a mammalian cell lysate-derived in vitro transcriptiontranslation system and incubated with $1.8 \mu \mathrm{M}$ dye-conjugated ssDNA and USER enzyme (uracil DNA glycosylase and endonuclease VIII) at $37{ }^{\circ} \mathrm{C}$ for 2 hours. The resulting DNA was resolved on a denaturing polyacrylamide gel and imaged. The positive control is a sequence with a U synthetically incorporated at the same position as the target C . Figure 36B shows coomassie-stained denaturing PAGE gel of the expressed and purified proteins used in Figures 36C to 36F. Figures 36C to 36F show gel-based deaminase assay showing the deamination window of base editors with deaminase-Cas9 linkers of GGS (Figure 36C), (GGS) ${ }_{3}$ (SEQ ID NO: 610) (Figure 36D), XTEN (Figure 36E), or (GGS) ${ }_{7}$ (SEQ ID NO: 610) (Figure 36F). Following incubation of $1.85 \mu \mathrm{M}$ deaminase-dCas9 fusions complexed with sgRNA with 125 nM dsDNA substrates at $37^{\circ} \mathrm{C}$ for 2 hours, the dye-conjugated DNA was isolated and incubated with USER enzyme at $37^{\circ} \mathrm{C}$ for 1 hour to cleave the DNA backbone at the site of
any uracils. The resulting DNA was resolved on a denaturing polyacrylamide gel, and the dyeconjugated strand was imaged. Each lane is numbered according to the position of the target C within the protospacer, or with - if no target C is present. 8 U is a positive control sequence with a U synthetically incorporated at position 8 . .
[0079] Figures 37A to 37C show BEl base editing efficiencies are dramatically decreased in mammalian cells. Figure 37A Protospacer and PAM sequences of the six mammalian cell genomic loci targeted by base editors. Target Cs are indicated in red with subscripted numbers corresponding to their positions within the protospacer. Figure 37B shows synthetic 80 -mers with sequences matching six different genomic sites were incubated with BEl then analyzed for base editing by HTS. For each site, the sequence of the protospacer is indicated to the right of the name of the site, with the PAM. Underneath each sequence are the percentages of total DNA sequencing reads with the corresponding base. We considered a target C as "editable" if the in vitro conversion efficiency is $>10 \%$. Note that maximum yields are 50% of total DNA sequencing reads since the non-targeted strand is unaffected by BEl. Values are shown from a single experiment. Figure 37C shows HEK293T cells were transfected with plasmids expressing BEl and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the six loci. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for BEl at all six genomic loci. Values and error bars of all data from HEK293T cells reflect the mean and standard deviation of three independent biological replicates performed on different days. Figure 37A depicts SEQ ID NOs: 127 to 132 from top to bottom, respectively. Figure 37B depicts SEQ ID NOs: 127 to 132 from top to bottom, respectively.
[0080] Figure 38 shows base editing persists over multiple cell divisions. Cellular C to T conversion percentages by BE2 and BE3 are shown for HEK293 sites 3 and 4 in HEK293T cells before and after passaging the cells. HEK293T cells were nucleofected with plasmids expressing BE2 or BE3 and an sgRNA targeting HEK293 site 3 or 4. Three days after nucleofection, the cells were harvested and split in half. One half was subjected to HTS analysis, and the other half was allowed to propagate for approximately five cell divisions, then harvested and subjected to HTS analysis. Values and error bars reflect the mean and standard deviation of at least two biological experiments.
[0081] Figures 39A to 39C show non-target C/G mutation rates. Shown here are the C to T and G to A mutation rates at 2,500 distinct cytosines and guanines surrounding the six ontarget and 34 off-target loci tested, representing a total of $14,700,000$ sequence reads derived
from approximately 1.8×10^{6} cells. Figures 39A and 39B show cellular non-target C to T and G to A conversion percentages by $\mathrm{BE} 1, \mathrm{BE} 2$, and BE 3 are plotted individually against their positions relative to a protospacer for all 2,500 cytosines/guanines. The side of the protospacer distal to the PAM is designated with positive numbers, while the side that includes the PAM is designated with negative numbers. Figure 39C shows average non-target cellular C to T and G to A conversion percentages by BE1, BE2, and BE3 are shown, as well as the highest and lowest individual conversion percentages.
[0082] Figures 40A to 40B show additional data sets of BE3-mediated correction of two disease-relevant mutations in mammalian cells. For each site, the sequence of the protospacer is indicated to the right of the name of the mutation, with the PAM and the base responsible for the mutation indicated in red bold with a subscripted number corresponding to its position within the protospacer. The amino acid sequence above each disease-associated allele is shown, together with the corrected amino acid sequence following base editing. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. Cells were nucleofected with plasmids encoding BE3 and an appropriate sgRNA. Two days after nucleofection, genomic DNA was extracted from the nucleofected cells and analyzed by HTS to assess pathogenic mutation correction. Figure 40A shows the Alzheimer's diseaseassociated APOE4 allele is converted to APOE3r in mouse astrocytes by BE3 in 58.3% of total reads only when treated with the correct sgRNA. Two nearby Cs are also converted to Ts, but with no change to the predicted sequence of the resulting protein. Identical treatment of these cells with wt Cas9 and donor ssDNA results in 0.2% correction, with 26.7% indel formation. Figure 40B shows the cancer-associated p53 Y163C mutation is corrected by BE3 in 3.3% of nucleofected human breast cancer cells only when treated with the correct sgRNA. Identical treatment of these cells with wt Cas9 and donor ssDNA results in no detectable mutation correction with 8.0% indel formation. Figures 40A to 40B depict SEQ ID NOs: 671, 627, 672 and 629.
[0083] Figure 41 shows a schematic representation of an exemplary USER (Uracil-Specific Excision Reagent) Enzyme-based assay, which may be used to test the activity of various deaminases on single-stranded DNA (ssDNA) substrates.
[0084] Figure 42 is a schematic of the pmCDA-nCas9-UGI-NLS construct and its activity at the HeK-3 site relative to the base editor (rAPOBECl) and the negative control (untreated). This figure depicts SEQ ID NO: 693.
[0085] Figure 43 is a schematic of the pmCDAl-XTEN-nCas9-UGI-NLS construct and its activity at the HeK-3 site relative to the base editor (rAPOBECl) and the negative control (untreated). This figure depicts SEQ ID NO: 694.
[0086] Figure 44 shows the percent of total sequencing reads with target C converted to T using cytidine deaminases (CDA) or APOBEC.
[0087] Figure 45 shows the percent of total sequencing reads with target C converted to A using deaminases (CDA) or APOBEC.
[0088] Figure 46 shows the percent of total sequencing reads with target C converted to G using deaminases (CDA) or APOBEC.
[0089] Figure 47 is a schematic of the huAPOBEC3G-XTEN-nCas9-UGI-NLS construct and its activity at the HeK-2 site relative to a mutated form
(huAPOBEC3G*(D316R_D317R)-XTEN-nCas9-UGI-NLS, the base editor (rAPOBECl) and the negative control (untreated). This figure depicts SEQ ID NO: 695.
[0090] Figure 48 shows the schematic of the LacZ construct used in the selection assay of Example 7.
[0091] Figure 49 shows reversion data from different plasmids and constructs.
[0092] Figure 50 shows the verification of lacZ reversion and the purification of reverted clones.
[0093] Figure 51 is a schematic depicting a deamination selection plasmid used in Example 7.
[0094] Figure 52 shows the results of a chloramphenicol reversion assay (pmCDAl fusion).
[0095] Figures 53A to 53B demonstrated DNA correction induction of two constructs.
[0096] Figure 54 shows the results of a chloramphenicol reversion assay (huAPOBEC3G fusion).
[0097] Figure 55 shows the activities of BE3 and HF-BE3 at EMX1 off-targets. The sequences, from top to bottom, correspond to SEQ ID NOs: 127 and 637-645.
[0098] Figure 56 shows on-target base editing efficiencies of BE3 and HF-BE3.
[0099] Figure 57 is a graph demonstrating that mutations affect cytidine deamination with varying degrees. Combinations of mutations that each slightly impairs catalysis allow selective deamination at one position over others. The FANCF site was

GGAATC $6_{6} \mathrm{C}_{7} \mathrm{C}_{8}$ TTCiiTGCAGCACCTGG (SEQ ID NO: 128).
[00100] Figure 58 is a schematic depicting next generation base editors.
[00101] Figure 59 is a schematic illustrating new base editors made from Cas9 variants.
[00102] Figure 60 shows the base-edited percentage of different NGA PAM sites.
[00103] Figure 61 shows the base-edited percentage of cytidines using NGCG PAM EMX (VRER BE3) and the $\mathrm{CiTC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{ATC}_{8} \mathrm{ACi}_{0} \mathrm{ATCAACCGGT}$ (SEQ ID NO: 696) spacer.
[00104] Figure 62 shows the based-edited percentages resulting from different NNGRRT PAM sites.
[00105] Figure 63 shows the based-edited percentages resulting from different NNHRRT PAM sites.
[00106] Figures 64A to 64C show the base-edited percentages resulting from different TTTN PAM sites using Cpfl BE2. The spacers used were:

TTTCCTC ${ }_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{1} \mathrm{AC}_{11}$ AGGTAGAACAT (Figure 64A, SEQ ID NO: 697),
TTTCCiC ${ }_{2} \mathrm{TC}_{4} \mathrm{TGTC}_{8} \mathrm{C}_{9} \mathrm{ACiiACCCTCATCCTG} \mathrm{(Figure} \mathrm{64B} ,\mathrm{SEQ} \mathrm{ID} \mathrm{NO:} \mathrm{698)}$, TTTCCiC ${ }_{2} \mathrm{C}_{3} \mathrm{AGTC}_{7} \mathrm{C}_{8} \mathrm{TCioCiiACi}_{3} \mathrm{ACi}_{5} \mathrm{Ci}_{6} \mathrm{Ci}_{7}$ TGAAAC (Figure 64C, SEQ ID NO: 699). [00107] Figure 65 is a schematic depicting selective deamination as achieved through kinetic modulation of cytidine deaminase point mutagenesis.
[00108] Figure 66 is a graph showing the effect of various mutations on the deamination window probed in cell culture with multiple cytidines in the spacer. The spacer used was: ${\mathrm{TGC} 3 \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{TC}_{8} \mathrm{C}_{9} \mathrm{CioTCi}_{2}{\mathrm{Ci} 3 \mathrm{Ci}_{4} \mathrm{TGGCCC}} \text { (SEQ ID NO: 700). }}_{\text {. }}$
[00109] Figure 67 is a graph showing the effect of various mutations on the deamination window probed in cell culture with multiple cytidines in the spacer. The spacer used was: AGAGC $5_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C} 9 \mathrm{CioCiitCi}{ }_{3}$ AAAGAGA (SEQ ID NO: 701).
[00110] Figure 68 is a graph showing the effect of various mutations on the FANCF site with a limited number of cytidines. The spacer used was:

GGAATC $6_{6} \mathrm{C}_{7} \mathrm{C}_{8}$ TTCiiTGCAGCACCTGG (SEQ ID NO: 128). Note that the triple mutant (W90Y, R126E, R132E) preferentially edits the cytidine at the sixth position.
[00111] Figure 69 is a graph showing the effect of various mutations on the HEK3 site with a limited number of cytidines. The spacer used was: $\mathrm{GGCC}_{4} \mathrm{C}_{5}$ AGACTGAGCACGTGATGG (SEQ ID NO: 702). Note that the double and triple mutants preferentially edit the cytidine at the fifth position over the cytidine in the fourth position.
[00112] Figure 70 is a graph showing the effect of various mutations on the EMX1 site with a limited number of cytidines. The spacer used was:

GAGTC ${ }_{5} \mathrm{C}_{6}$ GAGCAGAAGAAGAAGGG (SEQ ID NO: 703). Note that the triple mutant only edits the cytidine at the fifth position, not the sixth.
[00113] Figure 71 is a graph showing the effect of various mutations on the HEK2 site with a limited number of cytidines. The spacer used was:
$\mathrm{GAAC}_{4} \mathrm{AC}_{6} \mathrm{AAAGCATAGACTGCGGG}$ (SEQ ID NO: 704).
[00114] Figure 72 shows on-target base editing efficiencies of BE3 and BE3 comprising mutations W90Y R132E in immortalized astrocytes.
[00115] Figure 73 depicts a schematic of three Cpfl fusion constructs.
[00116] Figures 74 shows a comparison of plasmid delivery of BE3 and HF-BE3 (EMX1, FANCF, and RNF2).
[00117] Figure 75 shows a comparison of plasmid delivery of BE3 and HF-BE3 (HEK3 and HEK 4).
[00118] Figure 76 shows off-target editing of EMX-1 at all 10 sites. This figure depicts SEQ ID NOs: 127 and 637-645
[00119] Figure 77 shows deaminase protein lipofection to HEK cells using a GAGTCCGAGCAGAAGAAGAAG (SEQ ID NO: 705) spacer. The EMX-1 on-target and EMX-1 off target site 2 were examined.
[00120] Figure 78 shows deaminase protein lipofection to HEK cells using a GGAATCCCTTCTGCAGCACCTGG (SEQ ID NO: 706) spacer. The FANCF on target and FANCF off target site 1 were examined.
[00121] Figure 79 shows deaminase protein lipofection to HEK cells using a GGCCCAGACTGAGCACGTGA (SEQ ID NO: 707) spacer. The HEK-3 on target site was examined.
[00122] Figure 80 shows deaminase protein lipofection to HEK cells using a GGCACTGCGGCTGGAGGTGGGGG (SEQ ID NO: 708) spacer. The HEK-4 on target, off target site 1 , site 3 , and site 4 .
[00123] Figure 81 shows the results of an in vitro assay for sgRNA activity for sgHR_13 (GTCAGGTCGAGGGTTCTGTC (SEQ ID NO: 709) spacer; C8 target: G51 to STOP), sgHR_14 (GGGCCGCAGTATCCTCACTC (SEQ ID NO: 710) spacer; C7 target; C7 target: Q68 to STOP), and sgHR_15 (CCGCCAGTCCCAGTACGGGA (SEQ ID NO: 711) spacer; CIO and CI 1 are targets: W239 or W237 to STOP).
[00124] Figure 82 shows the results of an in vitro assay for sgHR_17
(CAACCACTGCTCAAAGATGC (SEQ ID NO: 712) spacer; C4 and C5 are targets: W410 to STOP), and sgHR_16 (CTTCCAGGATGAGAACACAG (SEQ ID NO: 713) spacer; C4 and C5 are targets: W273 to STOP).
[00125] Figure 83 shows the direct injection of BE3 protein complexed with sgHR_13 in zebrafish embryos.
[00126] Figure 84 shows the direct injection of BE3 protein complexed with sgHR_16 in zebrafish embryos.
[00127] Figure 85 shows the direct injection of BE3 protein complexed with sgHR_17 in zebrafish embryos.
[00128] Figure 86 shows exemplary nucleic acid changes that may be made using base editors that are capable of making a cytosine to thymine change.
[00129] Figure 87 shows an illustration of apolipoprotein E (APOE) isoforms, demonstrating how a base editor (e.g., BE3) may be used to edit one APOE isoform (e.g., APOE4) into another APOE isoform (e.g., APOE3r) that is associated with a decreased risk of Alzheimer's disease.
[00130] Figure 88 shows base editing of APOE4 to APOE3r in mouse astrocytes. This figure depicts SEQ ID Nos: 671 and 627.
[00131] Figure 89 shows base editing of PRNP to cause early truncation of the protein at arginine residue 37. This figure depicts SEQ ID Nos: 577 and 714.
[00132] Figure 90 shows that knocking out UDG (which UGI inhibits) dramatically improves the cleanliness of efficiency of C to T base editing.
[00133] Figure 91 shows that use of a base editor with the nickase but without UGI leads to a mixture of outcomes, with very high indel rates.
[00134] Figures 92A to 92G show that SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 mediate efficient base editing at target sites containing non-NGG PAMs in human cells. Figure 92A shows base editor architectures using S. pyogenes and S. aureus Cas9. Figure 92B shows recently characterized Cas9 variants with alternate or relaxed PAM requirements. Figures 92C and 92D show HEK293T cells treated with the base editor variants shown as described in Example 12. The percentage of total DNA sequencing reads (with no enrichment for transfected cells) with C converted to T at the target positions indicated are shown. The PAM sequence of each target tested is shown below the X -axis. The charts show the results for SaBE3 and SaKKH-BE3 at genomic loci with NNGRRT PAMs (Figure 92C), SaBE3 and SaKKH-BE3 at genomic loci with NNNRRT PAMs (Figure 92D), VQR-BE3 and EQR-BE3 at genomic loci with NGAG PAMs (Figure 92E), and with NGAH PAMs (Figure 92F), and VRER-BE3 at genomic loci with NGCG PAMs (Figure 92G). Values and error bars reflect the mean and standard deviation of at least two biological replicates.
[00135] Figures 93A to 93C demonstrate that base editors with mutations in the cytidine deaminase domain exhibit narrowed editing windows. Figures 93A to 93C show HEK293T cells transfected with plasmids expressing mutant base editors and an appropriate sgRNA. Three days after transfection, genomic DNA was extracted and analyzed by high-throughput DNA sequencing at the indicated loci. The percentage of total DNA sequencing reads (without
enrichment for transfected cells) with C changed to T at the target positions indicated are shown for the EMX1 site (SEQ ID NO: 721), HEK293 site 3 (SEQ ID NO: 719), FANCF site (SEQ ID NO: 722), HEK293 site 2 (SEQ ID NO: 720), site A (SEQ ID NO: 715), and site B (SEQ ID NO: 718) loci. Figure 93A illustrates certain cytidine deaminase mutations which narrow the base editing window. See Figure 98 for the characterization of additional mutations. Figure 93B shows the effect of cytidine deaminase mutations which effect the editing window width on genomic loci. Combining beneficial mutations has an additive effect on narrowing the editing window. Figure 93C shows that YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 effect the product distribution of base editing, producing predominantly singlymodified products in contrast with BE3. Values and error bars reflect the mean and standard deviation of at least two biological replicates.
[00136] Figures 94A and 94B show genetic variants from ClinVar that in principle can be corrected by the base editors developed in this work. The NCBI ClinVar database of human genetic variations and their corresponding phenotypes was searched for genetic diseases that in theory can be corrected by base editing. Figure 94A demonstrates improvement in base editing targeting scope among all pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations in the ClinVar database through the use of base editors with altered PAM specificities. The white fractions denote the proportion of pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations accessible on the basis of the PAM requirements of either BE3, or BE3 together with the five modified-PAM base editors developed in this work. Figure 94B shows improvement in base editing targeting scope among all pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations in the ClinVar database through the use of base editors with narrowed activity windows. BE3 was assumed to edit Cs in positions $4-8$ with comparable efficiency as shown in Figures 93A to 93C. YEE-BE3 was assumed to edit with C5>C6>C7>others preference within its activity window. The white fractions denote the proportion of pathogenic $\mathrm{T} \rightarrow \mathrm{C}$ mutations that can be edited BE3 without comparable editing of other Cs (left), or that can be edited BE3 or YEE-BE3 without comparable editing of other Cs (right).
[00137] Figures 95A to 95B show the effect of truncated guide RNAs on base editing window width. HEK293T cells were transfected with plasmids expressing BE3 and sgRNAs of different 5' truncation lengths. The treated cells were analyzed as described in the Examples. Figure 95A shows protospacer and PAM sequence (top, SEQ ID NO: 715) and cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, at a site within the EMX1 genomic locus. At this site, the base editing window was altered through the use of a 17 -nt truncated gRNA.
Figure 95B shows protospacer and PAM sequences (top, SEQ ID NOs: 715 and 716) and
cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, at sites within the HEK site 3 and site 4 genomic loci. At these sites, no change in the base editing window was observed, but a linear decrease in editing efficiency for all substrate bases as the sgRNA is truncated was noted.
[00138] Figure 96 shows the effect of APOBECl-Cas9 linker lengths on base editing window width. HEK293T cells were transfected with plasmids expressing base editors with rAPOBECl-Cas9 linkers of XTEN, GGS, (GGS) ${ }_{3}$ (SEQ ID NO: 610), (GGS) 5_{5} (SEQ ID NO: 610), or (GGS) 7_{7} (SEQ ID NO: 610) and an sgRNA. The treated cells were analyzed as described in the Examples. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown for the various base editors with different linkers.
[00139] Figures 97A to 97C show the effect of rAPOBEC mutations on base editing window width. Figure 97C shows HEK293T cells transfected with plasmids expressing an sgRNA targeting either Site A or Site B and the BE3 point mutants indicated. The treated cells were analyzed as described in the Examples. All C's in the protospacer and within three basepairs of the protospacer are displayed and the cellular C to T conversion percentages are shown. The 'editing window widths', defined as the calculated number of nucleotides within which editing efficiency exceeds the half-maximal value, are displayed for all tested mutants.
[00140] Figure 98 shows the effect of APOBEC1 mutation son product distributions of base editing in mammalian cells. HEK293T cells were transfected with plasmids expressing BE3 or its mutants and an appropriate sgRNAs. The treated cells were analyzed as described in the Examples. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown (left). Percent of total sequencing reads containing the C to T conversion is shown on the right. The BE3 point mutants do not significantly affect base editing efficiencies at HEK site 4 , a site with only one target cytidine.
[00141] Figure 99 shows a comparison of on-target editing plasma delivery in BE3 and HFBE3.
[00142] Figure 100 shows a comparison of on-target editing in protein and plasma delivery of BE3.
[00143] Figure 101 shows a comparison of on-target editing in protein and plasma devliery of HF-BE3.
[00144] Figure 102 shows that both lipofection and installing HF mutations decrease offtarget deamination events. The diamond indicates no off targets were detected and the specificity ratio was set to 100 .
[00145] Figure 103 shows in vitro C to T editing on a synthetic substrate with Cs placed at even positions in the protospacer (NNNNTC ${ }_{2} \mathrm{TC}_{4} \mathrm{TC}_{6} \mathrm{TC}_{8} \mathrm{TCioTCi}_{2} \mathrm{TCi}_{4} \mathrm{TCi}_{6} \mathrm{TCi}_{8}{ }_{8} \mathrm{TC}_{2} \mathrm{oNGG}$, SEQ ID NO: 723).
[00146] Figure 104 shows in vitro C to T editing on a synthetic substrate with Cs placed at odd positions in the protospacer (NNNNTC $2_{2} \mathrm{TC}_{4} \mathrm{TC}_{6} \mathrm{TC}_{8} \mathrm{TCioTCi}_{2} \mathrm{TCi}_{4} \mathrm{TCi}_{6} \mathrm{TCi}_{8} \mathrm{TC}_{2} \mathrm{ONGG}$, SEQ ID NO: 723).
[00147] Figure 105 includes two graphs depicting the specificity ratio of base editing with plasmid vs. protein delivery.
[00148] Figures 106A to 106B shows BE3 activity on non-NGG PAM sites. HEK293T cells were transfected with plasmids expressing BE3 and appropriate sgRNA. The treated cells were analyzed as described in the Examples. Figure 106A shows BE3 activity on sites can be efficiently targeted by SaBE3 or SaKKH-BE3. BE3 shows low but significant activity on the NAG PAM. This figure depicts SEQ ID NOs: 728 and 729. Figure 106B shows BE3 has significantly reduced editing at sites with NGA or NGCG PAMs, in contrast to VQR-BE3 or VRER-BE3. This figure depicts SEQ ID NOs: 730 and 731.
[00149] Figures 107A to 107B show the effect of APOBEC1 mutations on VQR-BE3 and SaKKH-BE3. HEK293T cells were transfected with plasmids expressing VQR-BE3, SaKKHBE3 or its mutants and an appropriate sgRNAs. The treated cells were analyzed as described in the Examples below. Cellular C to T conversion percentages, defined as the percentage of total DNA sequencing reads with Ts at the target positions indicated, are shown. Figure 107A shows that the window-modulating mutations can be applied to VQR-BE3 to enable selective base editing at sites targetable by NGA PAM. This figure depicts SEQ ID NOs: 732 and 733. Figure 107B shows that, when applied to SaKKH-BE3, the mutations cause overall decrease in base editing efficiency without conferring base selectivity within the target window. This figure depicts SEQ ID NOs: 728 and 734.
[00150] Figure 108 shows a schematic representation of nucleotide editing. The following abbreviations are used: (MMR) - mismatch repair, (BE3 Nickase) - refers to base editor 3, which comprises a Cas9 nickase domain, (UGI) - uracil glycosylase inhibitor, (UDG) - uracil DNA glycosylase, (APOBEC) - refers to an APOBEC cytidine deaminase.
[00151] Figure 109 shows schematic representations of exemplary base editing constructs. The structural arrangement of base editing constructs is shown for BE3, BE4-pmCDA1, BE4-
hAID, BE4-3G, BE4-N, BE4-SSB, BE4-(GGS) ${ }_{3}$, BE4-XTEN, BE4-32aa, BE4-2xUGI, and BE4. Linkers are shown in grey (XTEN, SGGS (SEQ ID NO: 606), (GGS) ${ }_{3}$ (SEQ ID NO: 610), and 32aa). Deaminases are shown (rAPOBECl, pmCDAl, hAID, and hAPOBEC3G). Uracil DNA Glycosylase Inhibitor (UGI) is shown. Single-stranded DNA binding protein (SSB) is shown in purple. Cas9 nickase, dCas $9(\mathrm{~A} 840 \mathrm{H})$, is shown in red. Figure 109 also shows the following target sequences: EMX1, FANCF, HEK2, HEK3, HEK4, and RNF2. The amino acid sequences are indicated in SEQ ID NOs: 127-132 from top to bottom. The PAM sequences are the last three nucleotides. The target cytosine (C) is numbered and indicated in red.
[00152] Figure 110 shows the base editing results for the indicated base editing constructs (BE3, pmCDAl hAID, hAPOBEC3G, BE4-N, BE4-SSB, BE4-(GGS) ${ }_{3}$, BE-XTEN, BE432 aa , and $\mathrm{BE} 4-2 \mathrm{xUGI}$) on the targeted cytoine $\left(\mathrm{C}_{5}\right)$ of the EMXI sequence, GAGTCsCGAGCAGAAGAAGAAGGG (SEQ ID NO: 127). The total percentage of targeted cytosines $\left(\mathrm{C}_{5}\right)$ that were mutated is indicated for each base editing construct, under "C5". The total percentage of indels is indicated for each base editing construct, under "indel". The proportion of mutated cytosines that were mutated to an adenine (A), guanine (G), or thymine (T) are indicated for each base editing construct in the pie chart.
[00153] Figure 111 shows the base editing results for the indicated base editing constructs (BE3, pmCDAl hAID, hAPOBEC3G, BE4-N, BE4-SSB, BE4-(GGS) 3 , BE-XTEN, BE432 aa , and BE4-2xUGI) on the targeted cytoine $\left(\mathrm{C}_{8}\right)$ of the FANCF sequence, GGAATCCCsTTCTGCAGCACCTGG (SEQ ID NO: 128). The total percentage of targeted cytosines $\left(\mathrm{C}_{8}\right)$ that were mutated are indicated for each base editing construct, under " C_{8} ". The total percentage of indels are indicated for each base editing construct, under "indel". The proportion of mutated cytosines that were mutated to an adenine (A), guanine (G), or thymine (T) are indicated for each base editing construct in the pie chart.
[00154] Figure 112 shows the base editing results for the indicated base editing constructs (BE3, pmCDAl hAID, hAPOBEC3G, BE4-N, BE4-SSB, BE4-(GGS) ${ }_{3}$, BE-XTEN, BE432aa, and BE4-2xUGI) on the targeted cytoine $\left(\mathrm{C}_{6}\right)$ of the HEK2 sequence, GAACAC ${ }_{6}$ AAAGCATAGACTGCGGG (SEQ ID NO: 129). The total percentage of targeted cytosines $\left(\mathrm{C}_{6}\right)$ that were mutated are indicated for each base editing construct, under " C_{6} ". The total percentage of indels are indicated for each base editing construct, under "indel". The proportion of mutated cytosines that were mutated to an adenine (A), guanine (G), or thymine (T) are indicated for each base editing construct in the pie chart.
[00155] Figure 113 shows the base editing results for the indicated base editing constructs (BE3, pmCDAl hAID, hAPOBEC3G, BE4-N, BE4-SSB, BE4-(GGS) ${ }_{3}$, BE-XTEN, BE432aa, and BE4-2xUGI) on the targeted cytoine $\left(\mathrm{C}_{5}\right)$ of the HEK3 sequence, GGCCCsAGACTGAGCACGTGATGG (SEQ ID NO: 130). The total percentage of targeted cytosines $\left(\mathrm{C}_{5}\right)$ that were mutated are indicated for each base editing construct, under "C5.". The total percentage of indels are indicated for each base editing construct, under "indel". The proportion of mutated cytosines that were mutated to an adenine (A), guanine (G), or thymine (T) are indicated for each base editing construct in the pie chart.
[00156] Figure 114 shows the base editing results for the indicated base editing constructs (BE3, pmCDAl hAID, hAPOBEC3G, BE4-N, BE4-SSB, BE4-(GGS) 3 , BE-XTEN, BE432aa, and BE4-2xUGI) on the targeted cytoine $\left(\mathrm{C}_{5}\right)$ of the HEK4 sequence, GGCAC $_{5}$ TGCGGCTGGAGGTCCGGG (SEQ ID NO: 131). The total percentage of targeted cytosines $\left(\mathrm{C}_{5}\right)$ that were mutated are indicated for each base editing construct, under "C5.". The total percentage of indels are indicated for each base editing construct, under "indel". The proportion of mutated cytosines that were mutated to an adenine (A), guanine (G), or thymine (T) are indicated for each base editing construct in the pie chart.
[00157] Figure 115 shows the base editing results for the indicated base editing constructs (BE3, pmCDAl hAID, hAPOBEC3G, BE4-N, BE4-SSB, BE4-(GGS) 3 , BE-XTEN, BE432 aa , and $\mathrm{BE} 4-2 \mathrm{xUGI}$) on the targeted cytoine $\left(\mathrm{C}_{6}\right)$ of the RNF2 sequence, GTCATC ${ }_{6}$ TTAGTCATTACCTGAGG (SEQ ID NO: 132). The total percentage of targeted cytosines $\left(\mathrm{C}_{6}\right)$ that were mutated are indicated for each base editing construct, under " C_{6}. ." The total percentage of indels are indicated for each base editing construct, under "indel". The proportion of mutated cytosines that were mutated to an adenine (A), guanine (G), or thymine (T) are indicated for each base editing construct in the pie chart.
[00158] Figure 116 shows exemplary fluorescent labeled (Cy3 labeled) DNA constructs used to test for Cpfl mutants that nick the target strand. In the DNA construct of 1 , both the non-target strand (top strand) and target strand (bottom strand) are fluorescently labeled. In the DNA construct of 2, the non-target strand (top strand) is fluorescently labeled and the target strand (bottom strand) is not fluorescently labeled. In the DNA construct of 3 , the nontarget strand (top strand) is not fluorescently labeled and the target strand (bottom strand) is fluorescently labeled.
[00159] Figure 117 shows data demonstrating the ability of various Cpfl constructs (e.g., R836A, R1138A, wild-type) to cleave the target and non-target strands of the DNA constructs
shown in Figure 116 over the reaction time of either 30 minutes (30 min) or greater than two hours ($2 \mathrm{~h}+$).
[00160] Figure 118 shows data demonstrating that a base editor having the architecture, APOBEC-AsCpfl(R912A)-UGI is capable of editing C residues (e.g., of target sequences FANCF1, FANCF2, HEK3-3, and HEK3-4) having a window from the $7^{\text {th }}$ to the $11^{\text {th }}$ base of the target sequence. BG indicates background mutation levels (untreated). AsCpfl indicates AsCpfl only treated (control), APOBEC-AsCpfl(R912A)-UGI indicates a base editor containing a Cpfl that preferentially cuts the target strand, and APOBEC-AsCpfl(R1225A)UGI indicates a self-defeating base editor containing a Cpfl that cuts the non-target strand. The target sequences of FANCF1, FANCF2, HEK3-3, and HEK3-4 are as follows:

FANCF1 GCGGATGTTCCAATCAGTACGCA (SEQ ID NO: 724)
FANCF2 CGAGCTTCTGGCGGTCTCAAGCA (SEQ ID NO: 725)
HEK3-3 TGCTTCTCCAGCCCTGGCCTGG (SEQ ID NO: 726)
HEK3-4 AGACTGAGCACGTGATGGCAGAG (SEQ ID NO: 727)
[00161] Figure 119 shows a schematic representation of a base editor comprising a Cpfl protein (e.g., AsCpfl or LbCpfl). Different linker sequences (e.g., XTEN, GGS, (GGS) ${ }_{3}$ (SEQ ID NO: 610), $(\text { GGS })_{5}\left(\right.$ SEQ ID NO: 610), and $(G G S)_{7}$ (SEQ ID NO: 610)) were tested for the portion labeled "linker," results of which are shown in Figure 120.
[00162] Figure 120 shows data demonstrating the ability of the construct shown in Figure 119 to edit the C_{8} residue of the HEK3 site TGCTTCTC ${ }_{8}$ CAGCCCTGGCCTGG (SEQ ID NO: 592). Different linker sequences, which link the APOBEC domain to the Cpfl domain (e.g., LbCpfl(R836A) or AsCpfl (R912A)) were tested. Exemplary linkers that were tested include XTEN, GGS, $(\mathrm{GGS})_{3}\left(\right.$ SEQ ID NO: 610), $(\mathrm{GGS})_{5}\left(\mathrm{SEQ}\right.$ ID NO: 610), and $(\mathrm{GGS})_{7}(\mathrm{SEQ}$ ID NO: 610).
[00163] Figure 121 shows data demonstrating the ability of the construct shown in Figure 119, having the LbCpfl domain, to edit the C_{8} and C_{9} residues of the HEK3 TGCTTCTC ${ }_{8} \mathrm{C}_{9}$ AGCCCTGGCCTGG (SEQ ID NO: 592). Different linker sequences from a database maintained by the Centre of Integrative Bioinformatics VU, which link the APOBEC domain to the LbCpfl domain were tested. Exemplary linkers that were tested include lau7, lclk, lc20, lee8, lflz, lign, ljmc, 1sfe, 2ezx, and 2reb.
[00164] Figure 122 shows a schematic representation of the structure of AsCpfl, where the N and C termini are indicated.
[00165] Figure 123 shows a schematic representation of the structure of SpCas9, where the N and C termini are indicated.
[00166] Figure 124 shows a schematic representation of AsCpfl, where the red circle indicates the predicted area where the editing window is. The square indicates a helical region that may be obstructing APOBEC activity.
[00167] Figures 125A and 125B show engineering and in vitro characterization of a high fidelity base editor (HF-BE3). Figure 125A shows a schematic representation of HF-BE3. Point mutations introduced into BE3 to generate HF-BE3 are shown. The representation used PDB structures 4UN3 (Cas9), 4ROV (cytidine deaminase) and 1UGI (uracil DNA glycosylase inhibitor). Figure 125B shows in vitro deamination of synthetic substrates containing 'TC repeat protospacers. Values and error bars reflect mean and range of two independent replicates performed on different days.
[00168] Figures 126A to 126C show purification of base editor proteins. Figure 126A shows selection of optimal E. coli strain for base editor expression. After IPTG-induced protein expression for 16 h at $18^{\circ} \mathrm{C}$, crude cell lysate was analyzed for protein content. BL21 Star (DE3) (Thermo Fisher) cells showed the most promising post-expression levels of both BE3 and HF-BE3 and were used for expression of base editors. Figure 126B shows purification of expressed base editor proteins. Placing the His6 tag on the C-terminus of the base editors lead to production of a truncation product for both BE3 and HF-BE3 (lanes 1 and 2). Unexpectedly, this truncation product was removed by placing the His6 tag on the Nterminus of the protein (lanes 3-6). Inducing expression of base editors at a cell density of OD600 $=0.7$ (lanes 4-5), later than is optimal for Cas9 expression (OD600 $=0.4$) 1 , improves yield of base editor proteins. Purification was performed using a manual HisPur resin column followed by cation exchange FPLC (Akta). Figure 126C shows purified BE3 and HF-BE3. Different concentrations of purified BE3 and HF-BE3 were denatured using heat and LDS and loaded onto a polyacrylamide gel. Protein samples are representative of proteins used in this study. Gels in Figures 126A to 126C are BOLT Bis-Tris Plus 4-12\% polyacrylamide (Thermo Fisher). Electrophoresis and staining were performed as described in Methods.
[00169] Figures 127A to 127D show activity of a high fidelity base editor (HF-BE3) in human cells. Figures 127A to 127C show on- and off-target editing associated with plasmid transfection of BE3 and HF-BE3 was assayed using high-throughput sequencing of genomic DNA from HEK293T cells treated with sgRNAs targeting non-repetitive genomic loci EMX1 (Figure 127A), FANCF (Figure 127B), and HEK293 site 3 (Figure 127C). On- and off-target loci associated with each sgRNA are separated by a vertical line. Figure 127D shows on- and off-target editing associated with the highly repetitive sgRNA targeting VEGFA site 2. Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on
different days. For Figures 127A to 127C, stars indicate significant editing based on a comparison between the treated sample and an untreated control. $* \mathrm{p} \leq 0.05, * * \mathrm{p} \leq 0.01$ and *** $\mathrm{p} \leq 0.001$ (Student's two tailed t-test). For Figure 127D, asterisks are not shown since all treated samples displayed significant editing relative to the control. Individual p-values are listed in in Table 16.
[00170] Figures 128A to 128C show the effect of dosage of BE3 protein or plasmid on the efficiency of on-target and off-target base editing in cultured human cells. Figure 128A shows on-target editing efficiency at each of the four genomic loci was averaged across all edited cytosines in the activity window for each sgRNA. Values and error bars reflect mean \pm S.E.M of three independent biological replicates performed on different days. Figures 128B and 128C show on- and off-target editing at the EMX1 site arising from BE3 plasmid titration (Figure 128B) or BE3 protein titration (Figure 128C) in HEK293T cells. Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on different days.
[00171] Figures 129A to 129B show on-target:off-target base editing frequency ratios for plasmid and protein delivery of BE3 and HF-BE3. Base editing on-target:off-target specificity ratios were calculated by dividing the on-target editing percentage at a particular cytosine in the activity window by the off-target editing percentage at the corresponding cytosine for the indicated off-target locus (see Methods). When off-target editing was below the threshold of detection $(0.025 \%$ of sequencing reads), we set the off-target editing to the limit of detection (0.025%) and divided the on-target editing percentage by this upper limit. In these cases, denoted by , the specificity ratios shown represent lower limits. Specificity ratios are shown for non-repetitive sgRNAs FANCF, HEK 293 site 3, and FANCF (Figure 129A) and for the highly repetitive sgRNA VEGFA site 2 (Figure 129B). Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on different days.
[00172] Figures 130A to 130D show protein delivery of base editors into cultured human cells. Figures 130A to 130D show on- and off-target editing associated with RNP delivery of base editors complexed with sgRNAs targeting EMX1 (Figure 130A), FANCF (Figure 130B), HEK293 site 3 (Figure 130C) and VEGFA site 2 (Figure 130D). Off-target base editing was undetectable at all of the sequenced loci for non-repetitive sgRNAs. Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on different days. Stars indicate significant editing based on a comparison between the treated sample and an untreated control. $* \mathrm{p} \leq 0.05, * * \mathrm{p} \leq 0.01$ and ${ }^{* * *} \mathrm{p} \leq 0.001$ (Student's two tailed t -test).
[00173] Figures 131A to 131C show indel formation associated with base editing at genomic loci. Figure 131A shows indel frequency at on-target loci for VEGFA site 2, EMX1, FANCF, and HEK293 site 3 sgRNAs. Figure 131B shows the ratio of base editingdndel formation. The diamond $(*)$ indicates no indels were detected (no significant difference in indel frequency in the treated sample and in the untreated control). Figure 131C shows indels observed at the off-target loci associated with the on-target sites interrogated in Figure 131A. Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on different days.
[00174] Figures 132A to 132D show DNA-free in vivo base editing in zebrafish embryos and in the inner ear of live mice using RNP delivery of BE3. Figure 132A shows on-target genome editing in zebrafish harvested 4 days after injection of BE3 complexed with indicated sgRNA. Values and error bars reflect mean \pm s.d. of three injected and three control zebrafish. Controls were injected with BE3 complexed with an unrelated sgRNA. Figure 132B shows schematic showing in vivo injection of BE3: sgRNA complexes encapsulated into cationic lipid nanoparticles Figure 132C shows base editing of cytosine residues in the base editor window at the VEGFA site 2 genomic locus. Figure 132D shows on-target editing at each cytosine in the base editing window of the VEGFA site 2 target locus. Figure 132D (Figures 132C and 132D) shows values and error bars reflect mean \pm S.E.M. of three mice injected with sgRNA targeting VEGFA Site 2 , three uninjected mice and one mouse injected with unrelated sgRNA.
[00175] Figures 133A to 133E show on- and off-target base editing in murine NIH/3T3 cells. Figure 133A shows on-target base editing associated with the 'VEGFA site 2' sgRNA (See Figure 132E for sequences). The negative control corresponds to cells treated with plasmid encoding BE3 but no sgRNA. Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on different days. Figures 133B to 133E show off-target editing associated with this site was measured using high-throughput DNA sequencing at the top four predicted off-target loci for this sgRNA (sequences shown in Figure 132E). Figure 133B shows off-target 2, Figure 133C shows off-target 1, Figure 133D shows off-target 3, Figure 133E shows off-target 4. Values and error bars reflect mean \pm S.D. of three independent biological replicates performed on different days.
[00176] Figures 134A to 134B show off-target base editing and on-target indel analysis from in vzvo-edited murine tissue. Figure 134A shows editing plotted for each cytosine in the base editing window of off-target loci associated with VEGFA site 2. Figure 134B shows indel rates at the on-target base editor locus. Values and error bars reflect mean \pm S.E.M of three injected and three control mice.
[00177] Figures 135A to 135C show the effects on base editing product purity of knocking out UNG. Figure 135A shows HAP1 (UNG ${ }^{+}$) and HAP1 UNG ${ }^{-}$cells treated with BE3 as described in the Materials and Methods of Example 17. The product distribution among edited DNA sequencing reads (reads in which the target C is mutated) is shown. Figure 135B shows protospacers and PAM sequences of the genomic loci tested, with the target Cs analyzed in Figure 135A shown in red. Figure 135C shows the frequency of indel formation following treatment with BE3 in HAP1 cells or HAP1 UNG ${ }^{-}$cells. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00178] Figures 136A to 136D show the effects of multi-C base editing on product purity.
Figure 136A shows representative high-throughput sequencing data of untreated, BE3-treated, and AID-BE3-treated human HEK293T cells. The sequence of the protospacer is shown at the top, with the PAM and the target Cs in red with subscripted numbers indicating their position within the protospacer. Underneath each sequence are the percentages of total sequencing reads with the corresponding base. The relative percentage of target Cs that are cleanly edited to T rather than to non-T bases is much higher for AID-BE3-treated cells, which edits three Cs at this locus, than for BE3-treated cells, which edits only one C. Figure 136B shows HEK293T cells treated with BE3, CDA1-BE3, and AID-BE3 as described in the Materials and Methods of Example 17. The product distribution among edited DNA sequencing reads (reads in which the target C is mutated) is shown. Figure 136C shows protospacers and PAM sequences of genomic loci studied, with the target Cs that are analyzed in Figure 136B shown in red. Figure 136D shows the frequency of indel formation following the treatment shown in Figure 136A. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00179] Figures 137A to 137C show the effects on C-to-T editing efficiencies and product purities of changing the architecture of BE3. Figure 137Ashows protospacers and PAM sequences of genomic loci studied, with the target Cs in Figure 137C shown in purple and red, and the target Cs in Figure 137B shown in red. Figure 137Bshows HEK293T cells treated with BE3, SSB-BE3, N-UGI-BE3, and BE3-2xUGI as described in the Materials and Methods of Example 17. The product distribution among edited DNA sequencing reads (reads in which the target C is mutated) is shown for BE3, N-UGI-BE3, and BE3-2xUGI. Figure 137Cshows C-to-T base editing efficiencies. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00180] Figures 138A to 138D show the effects of linker length variation in BE3 on C-to-T editing efficiencies and product purities. Figure 138A shows the architecture of BE3, BE3C,

BE3D, and BE3E Figure 138B shows protospacers and PAM sequences of genomic loci studied, with the target Cs in Figure 138C shown in purple and red, and target Cs in Figure 138D shown in red. Figure 138C shows HEK293T cells treated with BE3, BE3C, BE3D, or BE3E as described in the Materials and Methods of Example 17. C-to-T base editing efficiencies are shown. Figure 138D shows the product distribution among edited DNA sequencing reads (reads in which the target C is mutated) for BE3, BE3C, BE3D, and BE3E. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00181] Figures 139A to 139D show BE4 increases base editing efficiency and product purities compared to BE3. Figure 139A shows the architectures of BE3, BE4, and TargetAID. Figure 139B shows protospacers and PAM sequences of genomic loci studied, with the target Cs in Figure 139C shown in purple and red, and the target Cs in Figure 139D shown in red. Figure 139C shows HEK293T cells treated with BE3, BE4, or Target-AID as described in the Materials and Methods of Example 17. C-to-T base editing efficiencies are shown.
Figure 139D shows the product distribution among edited DNA sequencing reads (reads in which the target C is mutated) for BE3 and BE4. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00182] Figures 140A to 140C show CDA1-BE3 and AID-BE3 edit Cs following target Gs more efficiently than BE3. Figure 140A shows protospacer and PAM sequences of genomic loci studied, with target Cs edited by BE3, CDA1-BE3, and AID-BE3 shown in red, and target Cs (following Gs) edited by CDA1-BE3 and AID-BE3 only shown in purple. Figure 140B shows HEK293T cells treated with BE3, CDA1-BE3, AID-BE3, or APOBEC3G-BE3 as described in the Materials and Methods of Example 17. C-to-T base editing efficiencies are shown. Figure 140C shows individual DNA sequencing reads from HEK293T cells that were treated with BE3, CDA1-BE3, or AID-BE3 targeting the HEK2 locus and binned according to the sequence of the protospacer and analyzed, revealing that $>85 \%$ of sequencing reads that have clean C to Tedits by CDA1-BE3 and AID-BE3 have both Cs edited to T (Figure 140C).
[00183] Figures 141A to 141C show uneven editing in sites with multiple editable Cs results in lower product purity. Figure 141A shows protospacers and PAM sequences of genomic loci studied, with the target Cs in Figure 141C shown in purple and red, and target Cs in Figure 141B shown in red. Figures 141B and 141C show HEK293T cells treated with BE3 as described in the Materials and Methods of Example 17. The product distribution among edited DNA sequencing reads (reads in which the target C is mutated) is shown. C to non-T editing is more frequent when editing efficiencies are unequal for two Cs within the
same locus. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00184] Figures 142A to 142D show base editing of multiple Cs results in higher base editing product purity. Figure 142A shows protospacers and PAM sequences of genomic loci studied, with the target Cs that are investigated in Figure 142B shown in red. Figure 142B shows HEK293T cells treated with BE3 or BE3B (which lacks UGI) as described in the Materials and Methods of Example 17. The product distribution among edited DNA sequencing reads (reads in which the target C is mutated) is shown. Figure 142C shows the HTS reads from HEK293T cells that were treated with BE3 or BE3B (which lacks UGI) targeting the HEK2 locus were binned according to the identity of the primary target C at position 6 . The resulting reads were then analyzed for the identity of the base at the secondary target C at position $4 . \mathrm{C}_{6}$ is more likely to be incorrectly edited to a non-T when there is only a single editing event in that read. Figure 142D shows the distribution of edited reads with A, G , and T at C 5 in cells treated with BE3 or BE3B targeting the HEK4 locus (a site with only a single editable C), illustrating that single G:U mismatches are processed via UNG-initiated base excision repair to give a mixture of products. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00185] Figure 143 shows base editing of multiple Cs results in higher base editing product purity at the HEK3 and RNF2 loci. DNA sequencing reads from HEK293T cells treated with BE3 or BE3B (without UGI) targeting the HEK3 and RNF2 loci were separated according to the identity of the base at the primary target C position (in red). The four groups of sequencing reads were then interrogated for the identity of the base at the secondary target C position (in purple). For BE3, when the primary target C (in red) is incorrectly edited to G , the secondary target C is more likely to remain C. Conversely, when the primary target C (in red) is converted to T , the secondary target C is more likely to also be edited to a T in the same sequencing read. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00186] Figures 144A to 144C show BE4 induces lower indel frequencies than BE3, and Target-AID exhibits similar product purities as CDA1-BE3. Figure 144A shows HEK293T cells treated with BE3, BE4, or Target-AID as described in the Materials and Methods of Example 17. The frequency of indel formation (see Materials and Methods of Example 17) is shown. Figure 144B shows HEK293T cells treated with CDA1-BE3 or Target-AID as described in the Materials and Methods of Example 17. The product distribution among edited DNA sequencing reads (reads in which the target C is mutated) is shown. Figure 144C shows
protospacers and PAM sequences of genomic loci studied, with the target Cs that are investigated in Figure 144B shown in red. Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00187] Figures 145A to 145C show SaBE4 exhibits increased base editing yields and product purities compared to SaBE3. Figure 145A shows HEK293T cells treated with SaBE3 and SaBE4 as described in the Materials and Methods of Example 17. The percentage of total DNA sequencing reads with Ts at the target positions indicated are shown. Figure 145B shows protospacers and PAM sequences of genomic loci studied, with the target Cs in Figure 145A shown in purple and red, with target Cs that are investigated in Figure 145C shown in red. Figure 145C shows the product distribution among edited DNA sequencing reads (reads in which the target C is mutated). Values and error bars reflect the mean \pm S.D. of three independent biological replicates performed on different days.
[00188] Figure 146 shows base editing outcomes from treatment with BE3, CDA1-BE3, AID-BE3, or APOBEC3G-BE3 at the EMX1 locus. The sequence of the protospacer is shown at the top, with the PAM and the target bases in red with a subscripted number indicating their positions within the protospacer. Underneath the sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods of Example 17. Values shown are from one representative experiment.
[00189] Figure 147 shows base editing outcomes from treatment with BE3, CDA1-BE3, AID-BE3, or APOBEC3 G-BE3 at the FANCF locus. The sequence of the protospacer is shown at the top, with the PAM and the target bases in red with a subscripted number indicating their positions within the protospacer. Underneath the sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods of Example 17. Values shown are from one representative experiment.
[00190] Figure 148 shows base editing outcomes from treatment with BE3, CDA1-BE3, AID-BE3, or APOBEC3G-BE3 at the HEK2 locus. The sequence of the protospacer is shown at the top, with the PAM and the target bases in red with a subscripted number indicating their positions within the protospacer. Underneath the sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods of Example 17. Values shown are from one representative experiment.
[00191] Figure 149 shows base editing outcomes from treatment with BE3, CDA1-BE3, AID-BE3, or APOBEC3G-BE3 at the HEK3 locus. The sequence of the protospacer is shown at the top, with the PAM and the target bases in red with a subscripted number indicating their positions within the protospacer. Underneath the sequence are the percentages of total
sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods of Example 17. Values shown are from one representative experiment.
[00192] Figure 150 shows base editing outcomes from treatment with BE3, CDA1-BE3, AID-BE3, or APOBEC3G-BE3 at the HEK4 locus. The sequence of the protospacer is shown at the top, with the PAM and the target bases in red with a subscripted number indicating their positions within the protospacer. Underneath the sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods of Example 17. Values shown are from one representative experiment.
[00193] Figure 151 shows base editing outcomes from treatment with BE3, CDA1-BE3, AID-BE3, or APOBEC3G-BE3 at the RNF2 locus. The sequence of the protospacer is shown at the top, with the PAM and the target bases in red with a subscripted number indicating their positions within the protospacer. Underneath the sequence are the percentages of total sequencing reads with the corresponding base. Cells were treated as described in the Materials and Methods of Example 17. Values shown are from one representative experiment.
[00194] Figure 152 shows a schematic of LBCpf 1 fusion constructs. Construct 10 has a domain arrangement of [Apobec]-[LbCpfl]-[UGI]-[UGI]; construct 11 has a domain arrangement of [Apobec]-[LbCpfl]-[UGI]; construct 12 has a domain arrangement of [UGI]-[Apobec]-[LbCpfl]; construct 13 has a domain arrangement of [Apobec]-[UGI]-[LbCpfl]; construct 14 has a domain arrangement of [LbCpfl]-[UGI]-[Apobec]; construct 15 has a domain arrangement of [LbCpfl]-[Apobec]-[UGI]. For each construct three different LbCpfl proteins were used (D/N/A, which refers to nuclease dead LbCpfl (D); LbCpfl nickase (N) and nuclease active LbCpfl (A)).
[00195] Figure 153 shows the percentage of C to T editing of six C residues in the EMX target TTTGTAC ${ }_{3}$ TTTGTC9C ${ }_{1}$ oTC $12 \mathrm{C}_{13}$ GGTTC ${ }_{18}$ TG (SEQ ID NO: 738) using a guide of 19 nucleotides in length, i.e., EMX19: TACTTTGTCCTCCGGTTCT (SEQ ID NO: 744). Editing was tested for several of the constructs shown in Figure 152.
[00196] Figure 154 shows the percentage of C to T editing of six C residues in the EMX target TTTGTAC ${ }_{3}$ TTTGTC9C ${ }_{10}$ oTC $12 \mathrm{C}_{13}$ GGTTC ${ }_{18}$ TG (SEQ ID NO: 738) using a guide of 18 nucleotides in length, i.e., EMX18: TACTTTGTCCTCCGGTTC (SEQ ID NO: 745). Editing was tested for several of the constructs shown in Figure 152.
[00197] Figure 155 shows the percentage of C to T editing of six C residues in the EMX target TTTGT AC ${ }_{3}$ TTTGTC9C ${ }_{1}$ oTC $12 \mathrm{C}_{13}$ GGTTC ${ }_{18}$ TG (SEQ ID NO: 738) using a guide of 17 nucleotides in length, i.e., EMX17: TACTTTGTCCTCCGGTT (SEQ ID NO: 746). Editing was tested for several of the constructs shown in Figure 152.
[00198] Figure 156 shows the percentage of C to T editing of eight C residues in the HEK2 target TTTCCiAGC $4 \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{GC}_{8} \mathrm{TGGCi}_{2} \mathrm{Ci}_{3} \mathrm{Ci}_{4}$ TGTAAA (SEQ ID NO: 739) using a guide of 23 nucleotides in length, i.e., Hek2_23: CAGCCCGCTGGCCCTGTAAAGGA (SEQ ID NO: 747). Editing was tested for several of the constructs shown in Figure 152.
[00199] Figure 157 shows the percentage of C to T editing of eight C residues in the HEK2 target TTTCCiAGC $4^{2} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{GC}_{8} \mathrm{TGGCi}_{2} \mathrm{Ci}_{3} \mathrm{Ci}_{4}$ TGTAAA (SEQ ID NO: 739) using a guide of 20 nucleotides in length, i.e., Hek2_20: CAGCCCGCTGGCCCTGTAAA (SEQ ID NO: 748). Editing was tested for several of the constructs shown in Figure 152.
[00200] Figure 158 shows the percentage of C to T editing of eight C residues in the HEK2 target TTTCCiAGC $4_{5} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{GC}_{8} \mathrm{TGGCi}_{2} \mathrm{Ci}_{3} \mathrm{Ci}_{4}$ TGTAAA (SEQ ID NO: 739) using a guide of 19 nucleotides in length, i.e., Hek2_19: CAGCCCGCTGGCCCTGTAA (SEQ ID NO: 749). Editing was tested for several of the constructs shown in Figure 152.
[00201] Figure 159 shows the percentage of C to T editing of eight C residues in the HEK2 target TTTCCiAGC $4 \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{GC}_{8} \mathrm{TGGCi}_{2} \mathrm{Ci}_{3} \mathrm{Ci}_{4}$ TGTAAA (SEQ ID NO: 739) using a guide of 18 nucleotides in length, i.e., Hek2_18: CAGCCCGCTGGCCCTGTA (SEQ ID NO: 750). Editing was tested for several of the constructs shown in Figure 152.
[00202] Figure 160 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 153.
[00203] Figure 161 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 154.
[00204] Figure 162 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 155.
[00205] Figure 163 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 156.
[00206] Figure 164 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 157.
[00207] Figure 165 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 158.
[00208] Figure 166 shows the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments depicted in figure 159 .

DEFINITIONS

[00209] As used herein and in the claims, the singular forms "a," "an," and "the" include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to "an agent" includes a single agent and a plurality of such agents.
[00210] The term "nucleic acid programmable DNA binding protein" or "napDNAbp" refers to a protein that associates with a nucleic acid (e.g., DNA or RNA), such as a guide nucleic $\operatorname{acid}(e . g ., g R N A)$, that guides the napDNAbp to a specific nucleic acid sequence, for example, by hybridinzing to the target nucleic acid sequence. For example, a Cas9 protein can associate with a guide RNA that guides the Cas9 protein to a specific DNA sequence is has complementary to the guide RNA. In some embodiments, the napDNAbp is a class 2 microbial CRISPR-Cas effector. In some embodiments, the napDNAbp is a Cas9 domain, for example, a nuclease active Cas9, a Cas9 nickase (nCas9), or a nuclease inactive Cas9 (dCas9). Examples of nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpfl, C2cl, C2c2, C2C3, and Argonaute. It should be appreciated, however, that nucleic acid programmable DNA binding proteins also include nucleic acid programmable proteins that bind RNA. For example, the napDNAbp may be associated with a nucleic acid that guides the napDNAbp to an RNA. Other nucleic acid programmable DNA binding proteins are also within the scope of this disclosure, though they may not be specifically described in this disclosure.
[00211] In some embodiments, the napDNAby is an "RNA-programmable nuclease" or "RNA-guided nuclease." The terms are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA(s) that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though "gRNA" is also used to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as a single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (i.e., directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. In some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821 (2012), the entire contents of which is incorporated herein by
reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S.S.N. 61/874,682, filed September 6, 2013, entitled "Switchable Cas9 Nucleases And Uses Thereof," and U.S. Provisional Patent Application, U.S.S.N. 61/874,746, filed September 6, 2013, entitled "Delivery System For Functional Nucleases," the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2), and may be referred to as an "extended gRNA." For example, an extended gRNA will bind two or more Cas 9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example, Cas9 (Csnl) from Streptococcuspyogenes (see, e.g., "Complete genome sequence of an M1 strain of Streptococcus pyogenes." Ferretti J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C , Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663 (2001); "CRISPR RNA maturation by transencoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma CM., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602607 (2011); and "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821 (2012), the entire contents of each of which are incorporated herein by reference.
[00212] In some embodiments, any of the sgRNAs provided herein comprise a sequence, e.g., a sgRNA backbone sequence that binds to a napDNAbp. For example sgRNAs have been described in Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-812; Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nature Methods, 10, 957-963; Li JF, Norville JE, Aach J, McCromack M, Zhang D, Bush J, Church GM, and Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotech, 31, 688-691; Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK (2013) Efficient in vivo genome editing using RNA-guided nucleases. Nat Biotechnol, 31, 227-229; Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex
genome engineering using CRIPSR/Cas systems. Science, 339, 819-823; Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNAguided endonuclease. Nat Biotechnol, 31, 230-232; Jinek MJ, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLIFE, 2:e00471; DiCarlo JE, Norville JE, Mali P, Rios, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucl Acids Res, 41, 4336-4343; Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, Haurwitz RE, Beisel CL, May AP, and Barrangou R (2014) Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell, 56, 333-339; the contents of each of which are incorporated herein by reference. In some embodiments, any of the gRNAs (e.g., sgRNAs) provided herin comprise the nucleic acid sequence of GTAATTTCTACTAAGTGTAGAT (SEQ ID NO: 741), wherein each of the Ts of SEQ ID NO: 741 are uracil (U), i.e., GUAAUUUCUACUAAGUGUAGAU, or the sequence

GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUG

 AAAAAGUGGCACCGAGUCGGUGCUUUUU-3' (SEQ ID NO: 618).[00213] Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to target, in principle, any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et $a h$, Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et ah, RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W.Y. et ah, Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et ah RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J.E. et ah, Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research (2013); Jiang, W. et ah, RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).
[00214] The term "Cas9" or "Cas9 nuclease" refers to an RNA-guided nuclease comprising a Cas 9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casnl nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable
elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed $3^{\prime}-5{ }^{\prime}$ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs ("sgRNA", or simply "gNRA") can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816821(2012), the entire contents of which is hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., "Complete genome sequence of an M1 strain of Streptococcus pyogenes." Ferretti et al., J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C , Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma CM., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(201 1); and "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas 9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, "The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems" (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive \{e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase.
[00215] A nuclease-inactivated Cas9 protein may interchangeably be referred to as a "dCas9" protein (for nuclease-"dead" Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al, Science. 337:816-821(2012); Qi et al, "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression" (2013) Cell. 28; 152(5): 1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas 9 is known to include two subdomains, the HNH nuclease subdomain and the RuvCl subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvCl subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas 9 . For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al, Science. 337:816-821(2012); Qi et al, Cell. 28; 152(5): 1173-83 (2013)). In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas 9 or fragments thereof are referred to as "Cas9 variants." A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have $1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,21,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38$, $39,40,41,42,43,44,45,46,47,48,49,50$ or more amino acid changes compared to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 \{e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.
[00216] In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least $100,150,200,250,300,350,400,450,500,550,600$, $650,700,750,800,850,900,950,1000,1050,1100,1150,1200,1250$, or at least 1300 amino acids in length. In some embodiments, wild type Cas9 corresponds to Cas9 from

Streptococcuspyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO: 1
(nucleotide); SEQ ID NO: 2 (amino acid)).
ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGG CGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAA TACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGGCAGT GGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATACA CGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGA AAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGAC AAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATC ATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGA TAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTG GTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAACTA TTTATCCAGTTGGTACAAATCTACAATCAATTATTTGAAGAAAACCCTATTAACGC AAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAAGACGA TTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAGAAATGGCTTGTTTGGGA ATCTCATTGCTTTGTCATTGGGATTGACCCCTAATTTTAAATCAAATTTTGATTTGG CAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAA TTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATT TATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATAGTGAAATAACTAAG GCTCCCCTATCAGCTTCAATGATTAAGCGCTACGATGAACATCATCAAGACTTGAC TCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTT TTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGA AGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAA TTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACA ACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGA CAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCT TGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTG CATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGT TGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATA AAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTATTTT ACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAGGGAATGCGAAAAC CAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACA AATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAAT GTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGC GCCTACCATGATTTGCTAAAAATTATTAAAGATAAAGATTTTTTGGATAATGAAG AAAATGAAGATATCTTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAGG GGGATGATTGAGGAAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGA TGAAACAGCTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTG ATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAAT CAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGACA TTTAAAGAAGATATTCAAAAAGCACAGGTGTCTGGACAAGGCCATAGTTTACATG AACAGATTGCTAACTTAGCTGGCAGTCCTGCTATTAAAAAAGGTATTTTACAGACT GTAAAAATTGTTGATGAACTGGTCAAAGTAATGGGGCATAAGCCAGAAAATATCG TTATTGAAATGGCACGTGAAAATCAGACAACTCAAAAGGGCCAGAAAAATTCGC

GAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAGTCAGATTC TTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTAT TATCTACAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTT TAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCATTAAAGACGATTCA ATAGACAATAAGGTACTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAACG TTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACTTCTAAA CGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGA GGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCG CCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATAC GATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAAT TAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAAT TACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAA GAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATG TTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATA TTTСТТТТАСТСТААТАТСАТGAACTTCTTCAAAACAGAAATTACACTTGCAAATG GAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGT CTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAA GTCAATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCA ATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATC CAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTT GCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTA GGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAG AAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATA TAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAA TTACAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTT AGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACA ATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGT GAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGC ATATAACAAACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCAT TTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAAC AATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCC ATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGT GACTGA (SEQ ID NO: 1)

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLADSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQIYNQLFEENPINASRVDAKAILS ARLS KSRRLENLIAQLPGEKR NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA AKNLSDAILLSDILRVNSEITKAPLS ASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF FDQS KNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEEVVDKGASAQSFIERMTNFD KNLPNEKVLPKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKGILQTVKIVDELVKVMGHKPENIVI EMARENOTTOKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN GRDMYVDQELDINRLSDYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEVV KKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKROLVETROITKHVA QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL

NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFF KTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPOVNIVKKTEVOTGG FSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKS KKLKSVK ELLGITIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGEL QKGNELALPS KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSK RVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYT STKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO:2)
(single underline: HNH domain; double underline: RuvC domain)
[00217] In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:3 (nucleotide) and/or SEQ ID NO: 4 (amino acid):

ATGGATAAAAAGTATTCTATTGGTTTAGACATCGGCACTAATTCCGTTGGATGGGC TGTCATAACCGATGAATACAAAGTACCTTCAAAGAAATTTAAGGTGTTGGGGAAC ACAGACCGTCATTCGATTAAAAAGAATCTTATCGGTGCCCTCCTATTCGATAGTGG CGAAACGGCAGAGGCGACTCGCCTGAAACGAACCGCTCGGAGAAGGTATACACG TCGCAAGAACCGAATATGTTACTTACAAGAAATTTTTAGCAATGAGATGGCCAAA GTTGACGATTCTTTCTTTCACCGTTTGGAAGAGTCCTTCCTTGTCGAAGAGGACAA GAAACATGAACGGCACCCCATCTTTGGAAACATAGTAGATGAGGTGGCATATCAT GAAAAGTACCCAACGATTTATCACCTCAGAAAAAAGCTAGTTGACTCAACTGATA AAGCGGACCTGAGGTTAATCTACTTGGCTCTTGCCCATATGATAAAGTTCCGTGGG CACTTTCTCATTGAGGGTGATCTAAATCCGGACAACTCGGATGTCGACAAACTGTT CATCCAGTTAGTACAAACCTATAATCAGTTGTTTGAAGAGAACCCTATAAATGCA AGTGGCGTGGATGCGAAGGCTATTCTTAGCGCCCGCCTCTCTAAATCCCGACGGC TAGAAAACCTGATCGCACAATTACCCGGAGAGAAGAAAAATGGGTTGTTCGGTAA CСTTATAGCGCTCTCACTAGGCCTGACACCAAATTTTAAGTCGAACTTCGACTTAG CTGAAGATGCCAAATTGCAGCTTAGTAAGGACACGTACGATGACGATCTCGACAA TCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTTTTGGCTGCCAAAAACC TTAGCGATGCAATCCTCCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAG GCGCCGTTATCCGCTTCAATGATCAAAAGGTACGATGAACATCACCAAGACTTGA САСТТСТСAAGGCCCTAGTCCGTCAGCAACTGCCTGAGAAATATAAGGAAATATT CTTTGATCAGTCGAAAAACGGGTACGCAGGTTATATTGACGGCGGAGCGAGTCAA GAGGAATTCTACAAGTTTATCAAACCCATATTAGAGAAGATGGATGGGACGGAAG AGTTGCTTGTAAAACTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTTCGA CAACGGTAGCATTCCACATCAAATCCACTTAGGCGAATTGCATGCTATACTTAGA AGGCAGGAGGATTTTTATCCGTTCCTCAAAGACAATCGTGAAAAGATTGAGAAAA TCСТАAССТTTCGCATACCTTACTATGTGGGACCCCTGGCCCGAGGGAACTCTCGG TTCGCATGGATGACAAGAAAGTCCGAAGAAACGATTACTCCATGGAATTTTGAGG AAGTTGTCGATAAAGGTGCGTCAGCTCAATCGTTCATCGAGAGGATGACCAACTT TGACAAGAATTTACCGAACGAAAAAGTATTGCCTAAGCACAGTTTACTTTACGAG TATTTCACAGTGTACAATGAACTCACGAAAGTTAAGTATGTCACTGAGGGCATGC GTAAACCCGCCTTTCTAAGCGGAGAACAGAAGAAAGCAATAGTAGATCTGTTATT CAAGACCAACCGCAAAGTGACAGTTAAGCAATTGAAAGAGGACTACTTTAAGAA AATTGAATGCTTCGATTCTGTCGAGATCTCCGGGGTAGAAGATCGATTTAATGCGT CACTTGGTACGTATCATGACCTCCTAAAGATAATTAAAGATAAGGACTTCCTGGA TAACGAAGAGAATGAAGATATCTTAGAAGATATAGTGTTGACTCTTACCCTCTTTG AAGATCGGGAAATGATTGAGGAAAGACTAAAAACATACGCTCACCTGTTCGACG ATAAGGTTATGAAACAGTTAAAGAGGCGTCGCTATACGGGCTGGGGACGATTGTC GCGGAAACTTATCAACGGGATAAGAGACAAGCAAAGTGGTAAAACTATTCTCGAT TTTCTAAAGAGCGACGGCTTCGCCAATAGGAACTTTATGCAGCTGATCCATGATG AСТСТTTAACCTTCAAAGAGGATATACAAAAGGCACAGGTTTCCGGACAAGGGGA

CTCATTGCACGAACATATTGCGAATCTTGCTGGTTCGCCAGCCATCAAAAAGGGC ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTCATGGGACGTCACA AACCGGAAAACATTGTAATCGAGATGGCACGCGAAAATCAAACGACTCAGAAGG GGCAAAAAAACAGTCGAGAGCGGATGAAGAGAATAGAAGAGGGTATTAAAGAA CTGGGCAGCCAGATCTTAAAGGAGCATCCTGTGGAAAATACCCAATTGCAGAACG AGAAACTTTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGA ACTGGACATAAACCGTTTATCTGATTACGACGTCGATCACATTGTACCCCAATCCT TTTTGAAGGACGATTCAATCGACAATAAAGTGCTTACACGCTCGGATAAGAACCG AGGGAAAAGTGACAATGTTCCAAGCGAGGAAGTCGTAAAGAAAATGAAGAACTA TTGGCGGCAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTCGATAACTTA ACTAAAGCTGAGAGGGGTGGCTTGTCTGAACTTGACAAGGCCGGATTTATTAAAC GTCAGCTCGTGGAAACCCGCCAAATCACAAAGCATGTTGCACAGATACTAGATTC CCGAATGAATACGAAATACGACGAGAACGATAAGCTGATTCGGGAAGTCAAAGT AATCACTTTAAAGTCAAAATTGGTGTCGGACTTCAGAAAGGATTTTCAATTCTATA AAGTTAGGGAGATAAATAACTACCACCATGCGCACGACGCTTATCTTAATGCCGT CGTAGGGACCGCACTCATTAAGAAATACCCGAAGCTAGAAAGTGAGTTTGTGTAT GGTGATTACAAAGTTTATGACGTCCGTAAGATGATCGCGAAAAGCGAACAGGAG ATAGGCAAGGCTACAGCCAAATACTTCTTTTATTCTAACATTATGAATTTCTTTAA GACGGAAATCACTCTGGCAAACGGAGAGATACGCAAACGACCTTTAATTGAAACC AATGGGGAGACAGGTGAAATCGTATGGGATAAGGGCCGGGACTTCGCGACGGTG AGAAAAGTTTTGTCCATGCCCCAAGTCAACATAGTAAAGAAAACTGAGGTGCAGA CCGGAGGGTTTTCAAAGGAATCGATTCTTCCAAAAAGGAATAGTGATAAGCTCAT CGCTCGTAAAAAGGACTGGGACCCGAAAAAGTACGGTGGCTTCGATAGCCCTACA GTTGCCTATTCTGTCCTAGTAGTGGCAAAAGTTGAGAAGGGAAAATCCAAGAAAC TGAAGTCAGTCAAAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCTTTTGA AAAGAACCCCATCGACTTCCTTGAGGCGAAAGGTTACAAGGAAGTAAAAAAGGA TCTCATAATTAAACTACCAAAGTATAGTCTGTTTGAGTTAGAAAATGGCCGAAAA CGGATGTTGGCTAGCGCCGGAGAGCTTCAAAAGGGGAACGAACTCGCACTACCGT CTAAATACGTGAATTTCCTGTATTTAGCGTCCCATTACGAGAAGTTGAAAGGTTCA CCTGAAGATAACGAACAGAAGCAACTTTTTGTTGAGCAGCACAAACATTATCTCG ACGAAATCATAGAGCAAATTTCGGAATTCAGTAAGAGAGTCATCCTAGCTGATGC CAATCTGGACAAAGTATTAAGCGCATACAACAAGCACAGGGATAAACCCATACGT GAGCAGGCGGAAAATATTATCCATTTGTTTACTCTTACCAACCTCGGCGCTCCAGC CGCATTCAAGTATTTTGACACAACGATAGATCGCAAACGATACACTTCTACCAAG GAGGTGCTAGACGCGACACTGATTCACCAATCCATCACGGGATTATATGAAACTC GGATAGATTTGTCACAGCTTGGGGGTGACGGATCCCCCAAGAAGAAGAGGAAAG TCTCGAGCGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTA CAAGGATGACGATGACAAGGCTGCAGGA (SEQ ID NO:3)

MDKKYSIGLAIGTNSVGWAVITDEYKVPS KKFKVLGNTDRHSIKKNLIGALLFDS GET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA AKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF FDQS KNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS

LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENOTTOKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKROLVETROITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO:4)
(single underline: HNH domain; double underline: RuvC domain)
[00218] In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 5 (nucleotide); and

Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 6 (amino acid).
ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGG CGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAA TACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGT GGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATACA CGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGA AAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGAC AAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATC ATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGA TAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTG GTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAACTA TTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCTATTAACGC AAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAAGACGA TTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGCTTATTTGGGA ATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTTTGATTTGG CAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAA TTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATT TATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAG GCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAAGACTTGAC TCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTT TTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGA AGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAA TTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACA ACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGA CAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCT TGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTG CATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGT TGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATA AAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTATTTT

ACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAATGCGAAAAC CAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACA AATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAAT GTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGT ACCTACCATGATTTGCTAAAAATTATTAAAGATAAAGATTTTTTGGATAATGAAG AAAATGAAGATATCTTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAGG GAGATGATTGAGGAAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGA TGAAACAGCTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTG ATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAAT CAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGACA TTTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTACATG AACATATTGCAAATTTAGCTGGTAGCCCTGCTATTAAAAAAGGTATTTTACAGACT GTAAAAGTTGTTGATGAATTGGTCAAAGTAATGGGGCGGCATAAGCCAGAAAATA TCGTTATTGAAATGGCACGTGAAAATCAGACAACTCAAAAGGGCCAGAAAAATTC GCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAGTCAGAT TCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCT ATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCG TTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATT CAATAGACAATAAGGTCTTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAA CGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACTTCTA AACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTGAACGTG GAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAAC TCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAA TACGATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTA AATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAAC AATTACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGAT TAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATG ATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAA ATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACACTTGCAA ATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAA TTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCC CCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGA GTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGG GATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGT GGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTT ACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTT TTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTA AATATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGG AGAATTACAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTA TATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAA AACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAAT CAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTA GTGCATATAACAAACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTA TTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATA

CAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCT TATCCATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAG GAGGTGACTGA (SEQ ID NO: 5)

MDKKYSIGLDIGTNS VGW AVITDEYKVPS KKFKVLGNTDRHS IKKNLIGALLFDS GET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA AKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF FDQS KNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIOKAOVSGOGDSLHEHIANLAGSPAIKKGILOTVKVVDELVKVMGRHKPENI VIEMARENOTTOKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGT ALIKKYPKLES EFVYGDYKVYDVRKMIAKS EOEIGKAT AKYFFYS NIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPOVNIVKKTEVOT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 6) (single underline: HNH domain; double underline: RuvC domain)
[00219] In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1), Listeria innocua (NCBI Ref: NP_472073.1), Campylobacterjejuni (NCBI Ref: YP_002344900.1) or Neisseria. meningitidis (NCBI Ref: YP_002342 100.1) or to a Cas9 from any of the organisms listed in Example 5.
[00220] In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas 9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease
activity. For example, in some embodiments, a dCas9 domain comprises D10A and/or H840A mutation.
dCas9 (D10A and H840A):

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDS

GETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKH ERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNS DVDKLFIQLVQT YNQLFEENPIN ASGVDAKAILS ARLS KSRRLENLIAQLPG EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAD LFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQS KNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEI SGVEDRFNAS LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKT Y AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQL IHDDSLTFKEDIQKAQVS GQG|DSLHEHIANLAGSPAIKKGILQT VKVVDELVKVMGRH| KPENIVIEMA [RENQTTQKGOKNSRERMKRIEEGIKELGSOILKEHPVENTOLONE KLYLYYLONGRDMYVDOELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNR GKSDNVPSEEVVKKMKNYWROLLNAKLITQRKFDNLTKAERG |GLSELDKAGFIK| RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVRI EINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKAT AKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQI VNIVKKTEVQT]GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK VEKGKS KKLKS VKELLGITIMERS SFEKNPIDFLE AKGYKEVKKDLIIKLPKYS LFELEN GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKH YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 7) (single underline: HNH domain; double underline: RuvC domain).
[00221] In some embodiments, the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided in SEQ ID NO: 6 , or at corresponding positions in any of the amino acid sequences provided in another Cas9 domain, such as any of the Cas9 proteins provided herein. Without wishing to be bound by any particular theory, the presence of the catalytic residue H 840 restores the acvitity of the Cas9 to cleave the non-edited (e.g., non-deaminated) strand containing a G opposite the targeted C. Restoration of H840 (e.g., from A840) does not result in the cleavage of the target strand containing the C. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a G to A change on the non-edited strand. A schematic representation of this process is shown in Figure 108. Briefly, the C of a $\mathrm{C}-\mathrm{G}$
basepair can be deaminated to a U by a deaminase, e.g., an APOBEC deamonase. Nicking the non-edited strand, having the G , facilitates removal of the G via mismatch repair mechanisms. UGI inhibits UDG, which prevents removal of the U.
[00222] In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H820, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvCl subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 6) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 6. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 6) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 6, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.
[00223] In some embodiments, Cas9 fusion proteins as provided herein comprise the fulllength amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a fulllength Cas 9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.
[00224] In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquis I (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref:

YP_820832.1); Listeria innoсиа (NCBI Ref: NP_472073.1); Campylobacterjejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_0023421 00.1).
[00225] The term "deaminase" or "deaminase domain," as used herein, refers to a protein or enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase domain, catalyzing the hydrolytic deamination of cytosine to uracil. In some embodiments, the deaminase or deaminase domain is a naturally-occuring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occuring deaminase from an organism, that does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occuring deaminase from an organism.
[00226] The term "effective amount," as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid editing domain \{e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nuclease, a deaminase, a recombinase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.
[00227] The term "linker," as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). A linker may be, for example, an amino acid sequence, a peptide, or a polymer of any length and compostion. In some embodiments, a linker joins a gRNA binding domain of an RNA-
programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of anucleic-acid editing protein. In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 1-100 amino acids in length, for example, $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$, $26,27,28,29,30,30-35,35-40,40-45,45-50,50-60,60-70,70-80,80-90,90-100,100-150$, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.
[00228] The term "mutation," as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
[00229] The terms "nucleic acid" and "nucleic acid molecule," as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, "nucleic acid" refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, "nucleic acid" refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms "oligonucleotide" and "polynucleotide" can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, "nucleic acid" encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring
nucleotides or nucleosides. Furthermore, the terms "nucleic acid," "DNA," "RNA," and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5^{\prime} to 3^{\prime} direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7deazaguanosine, 8 -oxoadenosine, 8 -oxoguanosine, 0 (6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and $5^{\prime}-\mathrm{N}$-phosphoramidite linkages).
[00230] The term "nucleic acid editing domain," as used herein refers to a protein or enzyme capable of making one or more modifications (e.g., deamination of a cytidine residue) to a nucleic acid (e.g., DNA or RNA). Exemplary nucleic acid editing domains include, but are not limited to a deaminase, a nuclease, a nickase, a recombinase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments the nucleic acid editing domain is a deaminase (e.g., a cytidine deaminase, such as an APOBEC or an AID deaminase).
[00231] The term "proliferative disease," as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.
[00232] The terms "protein," "peptide," and "polypeptide" are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a
protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term "fusion protein" as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (Cterminal) protein thus forming an "amino-terminal fusion protein" or a "carboxy-terminal fusion protein," respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas 9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.
[00233] The term "subject," as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a
genetically engineered non-human subject. The subject may be of either sex and at any stage of development.
[00234] The term "target site" refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase, (e.g., a dCas9deaminase fusion protein provided herein).
[00235] The terms "treatment," "treat," and "treating" refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms "treatment," "treat," and "treating" refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
[00236] The term "recombinant" as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.
[00237] The term "pharmaceutical composition," as used herein, refers to a composition that can be administrated to a subject in the context of treatment of a disease or disorder. In some embodiments, a pharmaceutical composition comprises an active ingredient, e.g., a nuclease or a nucleic acid encoding a nuclease, and a pharmaceutically acceptable excipient.
[00238] The term "base editor (BE)," or "nucleobase editor (NBE)," as used herein, refers to an agent comprising a polypeptide that is capable of making a modification to a base (e.g., A, T, C, G, or U) within a nucleic acid sequence (e.g., DNA or RNA). In some embodiments, the base editor is capable of deaminating a base within a nucleic acid. In some embodiments, the base editor is capable of deaminating a base within a DNA molecule. In some embodiments, the base editor is capable of deaminating an cytosine (C) in DNA. In some embodiments, the
base editor is a fusion protein comprising a nucleic acid programmable DNA binding protein (napDNAbp) fused to a cytidine deaminase domain. In some embodiments, the base editor comprises a Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a Cas9 nickase (nCas9) fused to an cytidine deaminase. In some embodiments, the base editor comprises a nuclease-inactive Cas9 (dCas9) fused to a cytidine deaminase. In some embodiments, the base editor is fused to an inhibitor of base excision repair, for example, a UGI domain. In some embodiments, the base editor comprises a CasX protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a CasY protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a Cpfl protein fused to a cytidine deaminase. In some embodiments, the base editor comprises aC 2 cl protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a C2c2 protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a C2c3 protein fused to a cytidine deaminase. In some embodiments, the base editor comprises an Argonaute protein fused to a cytidine deaminase.
[00239] The term "uracil glycosylase inhibitor" or "UGI," as used herein, refers to a protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme.
[00240] The term "Cas9 nickase," as used herein, refers to a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position H840 of SEQ ID NO: 6, or a corresponding mutation in another Cas9 domain, such as any of the Cas 9 proteins provided herein. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 8. Such a Cas9 nickase has an active HNH nuclease domain and is able to cleave the non-targeted strand of DNA, i.e., the strand bound by the gRNA. Further, such a Cas9 nickase has an inactive RuvC nuclease domain and is not able to cleave the targeted strand of the DNA, i.e., the strand where base editing is desired.
[00241] Exemplary Cas9 nickase (Cloning vector pPlatTET-gRNA2; Accession No. BAV54124).

MDKKYS IGLAIGTNSVGWAVITDEYKVPS KKFKVLGNTDRHS IKKNLIGALLFDS GET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA

AKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF FDQS KNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEEVVDKGASAQSFIERMTNFD KNLPNEKVLPKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 8)

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION [00242] Some aspects of this disclosure provide fusion proteins that comprise a domain capable of binding to a nucleotide sequence (e.g., a Cas9, or a Cpfl protein) and an enzyme domain, for example, a DNA-editing domain, such as, e.g., a deaminase domain. The deamination of a nucleobase by a deaminase can lead to a point mutation at the respective residue, which is referred to herein as nucleic acid editing. Fusion proteins comprising a Cas9 variant or domain and a DNA editing domain can thus be used for the targeted editing of nucleic acid sequences. Such fusion proteins are useful for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject. Typically, the Cas9 domain of the fusion proteins described herein does not have any nuclease activity but instead is a Cas9 fragment or
a dCas9 protein or domain. Other aspects of the invention provide fusion proteins that comprise (i) a domain capable of binding to a nucleic acid sequence (e.g., a Cas9, or a Cpfl protein); (ii) an enzyme domain, for example, a DNA-editing domain (e.g., a deaminase domain); and (iii) one or more uracil glycosylase inhibitor (UGI) domains. The presence of at least one UGI domain increases base editing efficiency compared to fusion proteins without a UGI domain. A fusion protein comprising two UGI domains further increases base editing efficiency and product purity compared to fusion proteins with one UGI domain or without a UGI domain. Methods for the use of Cas9 fusion proteins as described herein are also provided.

Nucleic acid programmable DNA binding proteins

[00243] Some aspects of the disclosure provide nucleic acid programmable DNA binding proteins, which may be used to guide a protein, such as a base editor, to a specific nucleic acid (e.g., DNA or RNA) sequence. It should be appreciated that any of the fusion proteins \{e.g., base editors) provided herein may include any nucleic acid programmable DNA binding protein (napDNAbp). For example, any of the fusion proteins described herein that include a Cas9 domain, can use another napDNAbp, such as CasX, CasY, Cpfl, C2cl, C2c2, C2c3, and Argonaute, in place of the Cas9 domain. Nucleic acid programmable DNA binding proteins include, without limitation, Cas9 \{e.g., dCas9 and nCas9), CasX, CasY, Cpfl, C2cl, C2c2, C2C3, and Argonaute. One example of a nucleic acid programmable DNA-binding protein that has a different PAM specificity than Cas9 is Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpfl). Similar to Cas9, Cpfl is also a class 2 CRISPR effector. It has been shown that Cpflmediates robust DNA interference with features distinct from Cas9. Cpfl is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN, or YTN). Moreover, Cpfl cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpfl -family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells. Cpfl proteins are known in the art and have been described previously, for example, Yamano et al., "Crystal structure of Cpfl in complex with guide RNA and target DNA." Cell (165) 2016, p. 949-962; the entire contents of which are incorporated herein by reference.
[00244] Also useful in the present compositions and methods are nuclease-inactive Cpfl (dCpfl) variants that may be used as a guide nucleotide sequence-programmable DNAbinding protein domain. The Cpfl protein has a RuvC-like endonuclease domain that is
similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N -terminal of Cpfl does not have the alpha-helical recognition lobe of Cas9. It was shown in Zetsche et al., Cell, 163, 759-771, 2015 (which is incorporated herein by reference) that, the RuvC-like domain of Cpfl is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpfl nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpfl (SEQ ID NO: inactivate Cpfl nuclease activity. In some embodiments, the dead Cpfl (dCpfl) comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 9. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions, that inactivate the RuvC domain of Cpfl, may be used in accordance with the present disclosure.
[00245] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a Cpfl protein. In some embodiments, the Cpfl protein is a Cpfl nickase (nCpfl). In some embodiments, the Cpfl protein is a nuclease inactive $\mathrm{Cpfl}(\mathrm{dCpfl})$. In some embodiments, the Cpfl , the nCpfl , or the dCpfl comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 9-24. In some embodiments, the dCpfl comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 9-16, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/ E1006A/D1255A in SEQ ID NO: 9. In some embodiments, the dCpf 1 protein comprises an amino acid sequence of any one SEQ ID NOs: 9-16. It should be appreciated that Cpfl from other species may also be used in accordance with the present disclosure.

Wild type Francisella novicida Cpfl (SEQ ID NO: 9) (D917, E1006, and D1255 are bolded and underlined)
MSIYQEFVNKYS LSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK

RKGINEYINLYS QQINDKTLKKYKMS VLFKQILSDTES KSFVID KLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKS SGANKFNDEINLLLKEKAND VHILS IDRGERHLA YYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTS KICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 9)

Francisella novicida Cpfl D917A (SEQ ID NO: 10) (A917, E1006, and D1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYS QQINDKTLKKYKMS VLFKQILSDTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF

ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKS SGANKFNDEINLLLKEKAND VHILS IARGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTSKICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 10)

Francisella novicida Cpfl E1006A (SEQ ID NO: 11) (D917, A1006, and D1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYSQQINDKTLKKYKMS VLFKQILS DTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFS AKS IKFYNPSEDILRIRNHS THTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKSSGANKFNDEINLLLKEKAND VHILS IDRGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTSKICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI

SPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 11)

Francisella novicida Cpfl D1255A (SEQ ID NO: 12) (D917, E1006, and A1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYSQQINDKTLKKYKMS VLFKQILS DTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFS AKSIKFYNPSEDILRIRNHS THTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKS SGANKFNDEINLLLKEKAND VHILS IDRGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTS KICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 12)

Francisella novicida Cpfl D917A/E1006A (SEQ ID NO: 13) (A917, A1006, and D1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY

FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYSQQINDKTLKKYKMS VLFKQILS DTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFS AKSIKFYNPSEDILRIRNHSTHTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKS SGANKFNDEINLLLKEKAND VHILS IARGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTSKICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 13)

Francisella novicida Cpfl D917A/D1255A (SEQ ID NO: 14) (A917, E1006, and A1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYSQQINDKTLKKYKMS VLFKQILS DTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN

KGEGYKKIVYKLLPGANKMLPKVFFS AKSIKFYNPSEDILRIRNHSTHTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKS SGANKFNDEINLLLKEKAND VHILS IARGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTSKICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 14)

Francisella novicida Cpfl E1006A/D1255A (SEQ ID NO: 15) (D917, A1006, and A1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYSQQINDKTLKKYKMS VLFKQILS DTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFS AKSIKFYNPSEDILRIRNHSTHTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS IS KHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKSSGANKFNDEINLLLKEKAND VHILS IDRGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTSKICPVTGFVNQLYPKYES VSKSQEFFS KFDK

ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 15)

Francisella novicida Cpfl D917A/E1006A/D1255A (SEQ ID NO: 16) (A917, A1006, and A 1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKD YKKAKQIIDKYHQ FFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKF KNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTY FKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKD LAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTK RKGINEYINLYSQQINDKTLKKYKMS VLFKQILS DTES KSFVIDKLEDDSDVVTTMQSF YEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIG TAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQC RFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQ TNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYS DEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKEN KGEGYKKIVYKLLPGANKMLPKVFFS AKSIKFYNPSEDILRIRNHSTHTKNGSPQKGY EKFEFNIEDCRKFIDFYKQS ISKHPEWKDFGFRFSDTQRYNS IDEFYREVENQGYKLTF ENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYK LNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHC PITINFKS SGANKFNDEINLLLKEKAND VHILS IARGERHLAYYTLVDGKGNIIKQDTFN IIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEY NAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAY QLTAPFETFKKMGKQTGIIYY VPAGFTSKICPVTGFVNQLYPKYES VSKSQEFFS KFDK ICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPT KELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLI SPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVI KNEEYFEFVQNRNN (SEQ ID NO: 16)
[00246] In some embodiments, the nucleic acid programmable DNA binding protein is a Cpfl protein from an Acidaminococcus species (AsCpfl). Cpfl proteins form Acidaminococcus species have been described previously and would be apparent to the skilled
artisan. Exemplary Acidaminococcus Cpfl proteins (AsCpfl) include, without limitation, any of the AsCpfl proteins provided herin
[00247] Wild-type AsCpfl- Residue R912 is indicated in bold underlining and residues 661667 are indicated in italics and underlining.

TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTY ADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTD AINKRHAEIYKGLFKAELFNGKVLKQLGT VTTTEHEN ALLRSFDKFTTYFS GFYENRK NVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEE VFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLP HRFIPLFKQILS DRNTLSFILEEFKSDEEVIQSFCKYKTLLRNEN VLETAEALFNELNS ID LTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINL QEIIS AAGKELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKS QLDSLLGLY HLLDWFAVDESNEVDPEFS ARLTGIKLEMEPS LSFYNKARNYATKKPYSVEKFKLNF QMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFD KMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK EPKKFQTAYA^TG^fi^GYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLG EYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWT GLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLY QELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAA NSPSKFNQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKK LDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK SKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGT QSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILH FKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYR DLYPANELIALLEEKGIVFRDGS NILPKLLENDDS HAIDTMVALIRSVLQMRNSNAATG EDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKL QNGISNQDWLAYIQELRN (SEQ ID NO: 17)
[00248] AsCpfl (R912A)- Residue A912 is indicated in bold underlining and residues 661667 are indicated in italics and underlining.
[00249] TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPII DRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIG RTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFS

GFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGI FVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDET AHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALF NELNS IDLTHIFISHKKLETIS SALCDHWDTLRN ALYERRISELTGKITKS AKEKVQRSL KHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQL DSLLGLYHLLDWFAVDESNEVDPEFS ARLTGIKLEMEPS LSFYNKARNYATKKPYSVE KFKLNFQMPTLAS GWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALS FEPTEK TSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYD LNNPEKEPKKFQTAYA^TG^fi^GYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSS QYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNL HTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKT PIPDTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPIT LNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGEANLIYITVIDSTGKILEQRSLNTIQQ FDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLE NLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDV KTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIEN HRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQM RNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHL KESKDLKLQNGISNQDWLAYIQELRN (SEQ ID NO: 19)
[00250] In some embodiments, the nucleic acid programmable DNA binding protein is a Cpf 1 protein from a Lachnospiraceae species (LbCpf 1). Cpf 1 proteins form Lachnospiraceae species have been described previously have been described previously and would be apparent to the skilled artisan. Exemplary Lachnospiraceae Cpfl proteins (LbCpfl) include, without limitation, any of the LbCpfl proteins provided herein.
[00251] In some embodiments, the LbCpfl is a nickase. In some embodiments, the LbCpfl nickase comprises an R836X mutant relative to SEQ ID NO: 18, wherein X is any amino acid except for R. In some embodiments, the LbCpfl nickase comprises R836A mutant relative to SEQ ID NO: 18. In some embodiments, the LbCpfl is a nuclease inactive LbCpfl (dLbCpfl). In some embodiments, the dLbCpfl comprises a D832X mutant relative to SEQ ID NO: 18, wherein X is any amino acid except for D . In some embodiments, the dLbCpfl comprises a D832A mutant relative to SEQ ID NO: 18. Additional dCpfl proteins have been described in the art, for example, in Li et al. "Base editing with a Cpfl-cytidine deaminase fusion" Nature

Biotechnology; March 2018 DOI: 10.1038/nbt.4102; the entire contents of which are incorporated herein by reference. In some embodiments, the dCpfl comprises 1,2 , or 3 of the point mutations D832A, E1006A, Dl 125A of the Cpfl described in Li et al.
[00252] Wild-type LbCpf 1 - Residues R836 and R1 138 is indicated in bold underlining. MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRY YLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYK SLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCIN ENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDV YNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYT SDEEVLEVFRNTLNKNS EIFS SIKKLEKLFKNFDE YSSAGIFVKNGPAIS TIS KDIFGEWN VIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEK LKEIIIQKVDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKA FFGEGKETNRDESFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQF MGGWDKDKETDYRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKL LPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDS ISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKL YMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEEL VVHPANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTE VRVLLKHDDNPYVIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHS LLDKKEKERFEARQNWTSffiNIKELKAGYISQVVHKICELVEKYDAVIALEDLNSGFK NSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFESFKSMST QNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALD YKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGIN YQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYD SRNYEAQENAILPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLE YAQTSVKH (SEQ ID NO: 18)
[00253] LbCpfl (R836A)- Residue A836 is indicated in bold underlining.
MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRY YLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYK SLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCIN ENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDV YNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYT

SDEEVLEVFRNTLNKNS EIFS SIKKLEKLFKNFDE YSSAGIFVKNGPAIS TIS KDIFGEWN VIRDKWNAEYDDIHLKKKA VVTEKYEDDRRKS FKKIGSFSLEQLQEYADADLSVVEK LKEIIIQKVDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKA FFGEGKETNRDESFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQF MGGWDKDKETDYRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKL LPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDS ISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKL YMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEEL VVHPANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTE VRVLLKHDDNPYVIGIDRGEANLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHS LLDKKEKERFEARQNWTSIENIKELKAGYISQVVHKICELVEKYDAVIALEDLNSGFK NSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFESFKSMST QNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALD YKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGIN YQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYD SRNYEAQENAILPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLE YAQTSVKH (SEQ ID NO: 20)
[00254] LbCpfl (Rl 138A)- Residue Al 138 is indicated in bold underlining. MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRY YLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYK SLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCIN ENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDV YNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYT SDEEVLEVFRNTLNKNS EIFS SIKKLEKLFKNFDE YSSAGIFVKNGPAIS TIS KDIFGEWN VIRDKWNAEYDDIHLKKKA VVTEKYEDDRRKS FKKIGSFSLEQLQEYADADLSVVEK LKEIIIQKVDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKA FFGEGKETNRDESFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQF MGGWDKDKETDYRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKL LPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDS ISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKL YMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEEL VVHPANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTE VRVLLKHDDNPYVIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHS

Abstract

LLDKKEKERFEARQNWTSffiNIKELKAGYISQVVHKICELVEKYDAVIALEDLNSGFK NSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFESFKSMST QNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALD YKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGIN YQQGDIRALLCEQSDKAFYSSFMALMSLMLQMANSITGRTDVDFLISPVKNSDGIFYD SRNYEAQENAILPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLE YAQTSVKH (SEQ ID NO: 21)

[00255] In some embodiments, the Cpfl protein is a crippled Cpf 1 protein. As used herein a "crippled Cpfl" protein is a Cpfl protein having diminished nuclease activity as compared to a wild-type Cpfl protein. In some embodiments, the crippled Cpfl protein preferentially cuts the target strand more efficiently than the non-target strand. For example, the Cpfl protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited resides. In some embodiments, the crippled Cpfl protein preferentially cuts the nontarget strand more efficiently than the target strand. For example, the Cpfl protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited does not reside. In some embodiments, the crippled Cpfl protein preferentially cuts the target strand at least 5% more efficiently than it cuts the non-target strand. In some embodiments, the crippled Cpfl protein preferentially cuts the target strand at least $5 \%, 10 \%$, $15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 90 \%$, or at least 100% more efficiently than it cuts the non-target strand.
[00256] In some embodiments, a crippled Cpfl protein is a non-naturally occurring Cpfl protein. In some embodiments, the crippled Cpfl protein comprises one or more mutations relative to a wild-type Cpfl protein. In some embodiments, the crippled Cpfl protein comprises $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 mutations relative to a wild-type Cpfl protein. In some embodiments, the crippled Cpfl protein comprises an R836A mutation mutation as set forth in SEQ ID NO: 18, or in a corresponding amino acid in another Cpfl protein. It should be appreciated that a Cpfl comprising a homologous residue (e.g., a corresponding amino acid) to R836A of SEQ ID NO: 18 could also be mutated to achieve similar results. In some embodiments, the crippled Cpfl protein comprises a R1 138A mutation as set forth in SEQ ID NO: 18, or in a corresponding amino acid in another Cpfl protein. In some embodiments, the crippled Cpfl protein comprises an R912A mutation mutation as set forth in SEQ ID NO: 17, or in a corresponding amino acid in another Cpfl protein. Without wishing to be bound by any particular theory, residue R836 of SEQ ID NO:

18 (LbCpf 1) and residue R912 of SEQ ID NO: 17 (AsCpf 1) are examples of corresponding (e.g., homologous) residues. For example, a portion of the alignment between SEQ ID NO: 17 and 18 shows that R912 and R836 are corresponding residues.

[00257] In some embodiments, any of the Cpfl proteins provided herein comprises one or more amino acid deletions. In some embodiments, any of the Cpfl proteins provided herein comprises $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 amino acid deletions. Without wishing to be bound by any particular theory, there is a helical region in Cpfl, which includes residues 661-667 of AsCpfl (SEQ ID NO: 17), that may obstruct the function of a deaminase (e.g., APOBEC) that is fused to the Cpfl. This region comprises the amino acid sequence KKTGDQK. Accordingly, aspects of the disclosure provide Cpfl proteins comprising mutations (e.g., deletions) that disrupt this helical region in Cpfl. In some embodiments, the Cpfl protein comprises one or more deletions of the following residues in SEQ ID NO: 17, or one or more corresponding deletions in another Cpfl protein: K661, K662, T663, G664, D665, Q666, and K667. In some embodiments, the Cpfl protein comprises a T663 and a D665 deletion in SEQ ID NO: 17, or corresponding deletions in another Cpfl protein. In some embodiments, the Cpfl protein comprises a K662,T663, D665, and Q666 deletion in SEQ ID NO: 17, or corresponding deletions in another Cpfl protein. In some embodiments, the Cpfl protein comprises a K661, K662, T663, D665, Q666 and K667 deletion in SEQ ID NO: 17, or corresponding deletions in another Cpfl protein.
[00258] AsCpfl (deleted T663 and D665)
TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTY ADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTD AINKRHAEIYKGLFKAELFNGKVLKQLGT VTTTEHENALLRSFDKFTTYFSGFYENRK NVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEE VFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLP HRFIPLFKQILS DRNTLSFILEEFKSDEEVIQSFCKYKTLLRNEN VLETAEALFNELNS ID LTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINL QEIIS AAGKELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKS QLDS LLGLY HLLDWFAVDESNEVDPEFS ARLTGIKLEMEPS LSFYNKARNYATKKPYSVEKFKLNF QMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFD

KMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK EPKKFQTA YAKKGQKGYRE ALCKWIDFTRDFLS KYTKTTS IDLS SLRPS SQYKDLGEY YAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGL FSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQE LYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANS PSKFNQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLD NREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSK RTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQS GFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFK MNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDL YPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGED YINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQN GISNQDWLA YIQELRN (SEQ ID NO: 22)
[00259] AsCpfl (deleted K662, T663, D665, and Q666) TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTY ADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTD AINKRHAEIYKGLFKAELFNGKVLKQLGT VTTTEHEN ALLRSFDKFTTYFS GFYENRK NVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEE VFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLP HRFIPLFKQILS DRNTLSFILEEFKSDEEVIQSFCKYKTLLRNEN VLETAEALFNELNS ID LTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINL QEIIS AAGKELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKS QLDSLLGLY HLLDWFAVDES NEVDPEFS ARLTGIKLEMEPS LSFYNKARNYATKKPYSVEKFKLNF QMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFD KMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK EPKKFQTA YAKGKGYRE ALCKWIDFTRDFLS KYTKTTS IDLS SLRPSSQYKDLGEYYA ELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFS PENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELY DYVNHRLS HDLSDEARALLPNVITKEVSHEIIKDRRFTS DKFFFHVPITLNYQAANSPS KFNQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDN REKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKR TGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQS GFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFK

MNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDL YPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGED YINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQN GISNQDWLA YIQELRN (SEQ ID NO: 23)
[00260] AsCpfl (deleted K661, K662, T663,D665, Q666, and K667)
TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTY ADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTD AINKRHAEIYKGLFKAELFNGKVLKQLGT VTTTEHENALLRSFDKFTTYFSGFYENRK NVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEE VFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLP HRFIPLFKQILS DRNTLSFILEEFKSDEEVIQSFCKYKTLLRNEN VLET AEALFNELNS ID LTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINL QEIIS AAGKELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKS QLDSLLGLY HLLDWFAVDESNEVDPEFS ARLTGIKLEMEPS LSFYNKARNYATKKPYSVEKFKLNF QMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFD KMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK EPKKFQTAYAGGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAEL NPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPE NLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYD YVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKF NQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNRE KERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTG IAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFL FYVPAPYTS KIDPLTGFVDPFVWKTIKNHES RKHFLEGFDFLHYD VKTGDFILHFKMN RNLSFQRGLPGFMPAWDrVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYP ANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYI NSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGIS NQDWLA YIQELRN (SEQ ID NO: 24)
[00261] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a nucleic acid programmable DNA binding protein that does not require a canonical (NGG) PAM sequence in the target sequence. In some embodiments, the napDNAbp is an Argonaute protein. One example of such a nucleic acid programmable DNA
binding protein is an Argonaute protein from Natronobacterium gregoryi (NgAgo). NgAgo is a ssDNA-guided endonuclease. NgAgo binds 5'-phosphorylated ssDNA of -24 nucleotides (gDNA) in length to guide it to a target site and makes DNA double-strand breaks at the gDNA site. In contrast to Cas 9 , the NgAgo-gDNA system does not require a protospaceradjacent motif (PAM). Using a nuclease inactive NgAgo (dNgAgo) can greatly expand the bases that may be targeted. The characterization and use of NgAgo have been described in Gao et al., Nat. Biotechnol., 2016 Jul;34(7):768-73. PubMed PMID: 27136078; Swarts et al., Nature 507(7491) (2014):258-61; and Swarts et al, Nucleic Acids Res. 43(10) (2015):5120-9, each of which is incorporated herein by reference. The sequence of Natronobacterium gregoryi Argonaute is provided in SEQ ID NO: 25.
[00262] In some embodiments, the napDNAbp is an Argonaute protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring Argonaute protein. In some embodiments, the napDNAbp is a naturally-occurring Argonaute protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NO: 25 . In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NO: 25.

Wild type Natronobacterium gregoryi Argonaute (SEQ ID NO: 25)
MTVIDLDSTTTADELTSGHTYDISVTLTGVYDNTDEQHPRMSLAFEQDNGERRYITLW KNTTPKDVFTYDYATGSTYIFTNIDYEVKDGYENLTATYQTTVENATAQEVGTTDED ETFAGGEPLDHHLDDALNETPDDAETESDSGHVMTSFASRDQLPEWTLHTYTLTATD GAKTDTEYARRTLAYTVRQELYTDHDAAPVATDGLMLLTPEPLGETPLDLDCGVRV EADETRTLDYTTAKDRLLARELVEEGLKRSLWDDYLVRGIDEVLSKEPVLTCDEFDL HERYDLSVEVGHSGRAYLHINFRHRFVPKLTLADIDDDNIYPGLRVKTTYRPRRGHIV WGLRDECATDSLNTLGNQSVVAYHRNNQTPINTDLLDAIEAADRRVVETRRQGHGD DAVSFPQELLA VEPNTHQIKQF ASDGFHQQARS KTRLSASRCSEKAQAFAERLDPVRL NGSTVEFSSEFFTGNNEQQLRLLYENGESVLTFRDGARGAHPDETFSKGIVNPPESFEV AVVLPEQQADTCKAQWDTMADLLNQAGAPPTRSETVQYDAFSSPESISLNVAGAIDP SEVDAAFVVLPPDQEGFADLASPTETYDELKKALANMGIYSQMAYFDRFRDAKIFYT RNVALGLLAAAGGVAFTTEHAMPGDADMFIGIDVSRSYPEDGASGQINIAATATAVY

Abstract

KDGTILGHSSTRPQLGEKLQSTDVRDIMKNAILGYQQVTGESPTHIVIHRDGFMNEDL DPATEFLNEQGVEYDIVEIRKQPQTRLLAVSDVQYDTPVKSIAAINQNEPRATVATFG APEYLATRDGGGLPRPIQIERVAGETDIETLTRQVYLLSQSHIQVHNSTARLPITTAYA DQASTHATKGYLVQTGAFESNVGFL (SEQ ID NO: 25)

[00263] In some embodiments, the napDNAbp is a prokaryotic homolog of an Argonaute protein. Prokaryotic homologs of Argonaute proteins are known and have been described, for example, in Makarova K., et al., "Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements", Biol. Direct. 2009 Aug 25;4:29. doi: 10.1186/1745-6150-4-29, is incorporated herein by reference. In some embodiments, the napDNAbp is a Marinitoga piezophila Argunaute (MpAgo) protein. The CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5'-phosphorylated guides. The 5' guides are used by all known Argonautes. The crystal structure of an MpAgo-RNA complex shows a guide strand binding site comprising residues that block 5' phosphate interactions. This data suggests the evolution of an Argonaute subclass with noncanonical specificity for a 5'hydroxylated guide. See, e.g., Kaya et al., "A bacterial Argonaute with noncanonical guide RNA specificity", Proc Natl Acad Sci U SA. 2016 Apr 12;113(15):4057-62, the entire contents of which are hereby incorporated by reference). It should be appreciated that other Argonaute proteins may be used in any of the fusion proteins \{e.g., base editors) described herein, for example, to guide a deaminase (e.g., cytidine deaminase) to a target nucleic acid (e.g., ssRNA).
[00264] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpfl, C2cl, C2c2, and C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. Cas9 and Cpfl are Class 2 effectors. In addition to Cas9 and Cpfl, three distinct Class 2 CRISPR-Cas systems (C2cl, C2c2, and C2c3) have been described by Shmakov et al., "Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems", Mol. Cell, 2015 Nov 5; 60(3): 385-397, the entire contents of which are herein incorporated by reference. Effectors of two of the systems, C2cl and C2c3, contain RuvC-like endonuclease domains related to Cpfl. A third system, C2c2 contains an effector with two predicted HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-
independent, unlike production of CRISPR RNA by C2cl. C2cl depends on both CRISPR RNA and tracrRNA for DNA cleavage. Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single-stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpfl. See, e.g., East-Seletsky, et al., "Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection", Nature, 2016 Oct 13;538(7624):270-273, the entire contents of which are hereby incorporated by reference. In vitro biochemical analysis of C2c2 in Leptotrichia shahii has shown that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave ssRNA targets carrying complementary protospacers. Catalytic residues in the two conserved HEPN domains mediate cleavage. Mutations in the catalytic residues generate catalytically inactive RNA-binding proteins. See e.g., Abudayyeh et al., "C2c2 is a single-component programmable RNAguided RNA-targeting CRISPR effector," Science, 2016 Aug 5; 353(6299), the entire contents of which are hereby incorporated by reference.
[00265] The crystal structure of Alicyclobaccillus acidoterrastris C2cl (AacC2cl) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See, e.g., Liu et al., "C2cl-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism", Mol. Cell, 2017 Jan 19;65(2):3 10-322, incorporated herein by reference. The crystal structure has also been reported for Alicyclobacillus acidoterrestris C2cl bound to target DNAs as ternary complexes. See, e.g., Yang et al., "PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease", Cell, 2016 Dec 15;167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC 2 cl , both with target and non-target DNA strands, have been captured independently positioned within a single RuvC catalytic pocket, with C2cl-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between C2cl ternary complexes and previously identified Cas9 and Cpfl counterparts demonstrate the diversity of mechanisms used by CRISPR-Cas9 systems.
[00266] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a C 2 cl , a C 2 c 2 , or a C 2 c 3 protein. In some embodiments, the napDNAbp is a C 2 cl protein. In some embodiments, the napDNAbp is a C2c2 protein. In some embodiments, the napDNAbp is a C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring C2cl,

C2c2, or C2c3 protein. In some embodiments, the napDNAbp is a naturally-occurring C2cl, C 2 c 2 , or C 2 c 3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 26-28. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 26-28. It should be appreciated that C2cl, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.

C2c 1 (uniprot.org/uniprot/T0D7 A2\#)
splT0D7A2IC2Cl_ALIAG CRISPR-associated endonuclease C2cl OS=Alicyclobacillus acidoterrestris (strain ATCC 49025 / DSM 3922 / CIP 106132 / NCIMB 13137 / GD3B) $\mathrm{GN}=\mathrm{c} 2 \mathrm{cl} \mathrm{PE}=1 \mathrm{SV}=1$

MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGD GEQECDKTAEECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGA KGDAQQIARKFLSPLADKDAVGGLGIAKAGNKPRWVRMREAGEPGWEEEKEKAETR KSADRTADVLRALADFGLKPLMRVYTDSEMSSVEWKPLRKGQAVRTWDRDMFQQA IERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQDMKEASP GLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDAEIKNVQRRNTRRFGS HDLFAKLAEPE YQALWRED ASFLTR YAVYNSILRKLNHAKMFATFTLPD ATAHPrWT RFDKLGGNLHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISMSEQLDN LLPRDPNEPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNVSV RVQSQSEARGERRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKLGSEGLLSG LRVMSVDLGLRTS ASISVFRVARKDELKPNS KGRVPFFFPIKGNDNLV AVHERSQLLK LPGETESKDLRAIREERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSWAKLIEQPVD AANHMTPDWREAFENELQKLKSLHGICSDKEWMDAVYESVRRVWRHMGKQVRDW RKDVRS GERPKIRGY AKDVVGGNS IEQIEYLERQYKFLKS WSFFGKVS GQVIRAEKGS RFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEE LSEYQFNNDRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDART GAPGIRCRRVPARCTQEHNPEPFPWWLNKFVVEHTLDACPLRADDLIPTGEGEIFVSPF SAEEGDFHQIHADLNAAQNLQQRLWSDFDISQIRLRCDWGEVDGELVLIPRLTGKRTA DSYSNKVFYTNTGVTYYERERGKKRRKVFAQEKLSEEEAELLVEADEAREKSVVLM RDPSGIINRGNWTRQKEFWSMVNQRIEGYLVKQIRSRVPLQDSACENTGDI (SEQ ID NO: 26)

C2c2 (uniprot.org/uniprot/P0DOC6)
>splP0DOC6IC2C2_LEPSD CRISPR-associated endoribonuclease C2c2 OS=Leptotrichia shahii (strain DSM 19757 / CCUG 47503 / CIP 107916 / JCM 16776 / LB37) GN=c2c2 PE=1 $\mathrm{SV}=1$
[00267] MGNLFGHKRWYEVRDKKDFKIKRKVKVKRNYDGNKYILNINENNNKEKID NNKFIRKYINYKKNDNILKEFTRKFHAGNILFKLKGKEGIIRIENNDDFLETEEVVLYIE AYGKSEKLKALGITKKKIIDEAIRQGITKDDKKIEIKRQENEEEIEIDIRDEYTNKTLNDC SIILRIIENDELETKKSIYEIFKNINMSLYKIIEKIIENETEKVFENRYYEEHLREKLLKDD KIDVILTNFMEIREKIKSNLEILGFVKFYLNVGGDKKKSKNKKMLVEKILNINVDLTVE DIADFVIKELEFWNITKRIEKVKKVNNEFLEKRRNRTYIKSYVLLDKHEKFKIERENKK DKIVKFFVENIKNNSIKEKIEKILAEFKIDELIKKLEKELKKGNCDTEIFGIFKKHYKVNF DSKKFSKKSDEEKELYKIIYRYLKGRIEKILVNEQKVRLKKMEKIEIEKILNESILSEKIL KRVKQYTLEHIMYLGKLRHNDIDMTTVNTDDFSRLHAKEELDLELITFFASTNMELN KIFSRENINNDENIDFFGGDREKNYVLDKKILNSKIKIIRDLDFIDNKNNITNNFIRKFTK IGTNERNRILHAISKERDLQGTQDDYNKVINIIQNLKISDEEVSKALNLDVVFKDKKNII TKINDIKISEENNNDIKYLPSFSKVLPEILNLYRNNPKNEPFDTIETEKIVLNALIYVNKE LYKKLILEDDLEENES KNIFLQELKKTLGNIDEIDENIIENYYKNAQIS ASKGNNKAIKK YQKKVIECYIGYLRKNYEELFDFSDFKMNIQEIKKQIKDINDNKTYERITVKTSDKTIVI NDDFEYIISIFALLNSNAVINKIRNRFFATSVWLNTSEYQNIIDILDEIMQLNTLRNECIT ENWNLNLEEFIQKMKEIEKDFDDFKIQTKKEIFNNYYEDIKNNILTEFKDDINGCDVLE KKLEKIVIFDDETKFEIDKKSNILQDEQRKLSNINKKDLKKKVDQYIKDKDQEIKSKIL CRIIFNSDFLKKYKKEIDNLIEDMESENENKFQEIYYPKERKNELYIYKKNLFLNIGNPN FDKIYGLISNDIKMADAKFLFNIDGKNIRKNKISEIDAILKNLNDKLNGYSKEYKEKYI KKLKENDDFFAKNIQNKNYKSFEKDYNRVSEYKKIRDLVEFNYLNKIESYLIDINWKL AIQMARFERDMHYIVNGLRELGIIKLSGYNTGISRAYPKRNGSDGFYTTTAYYKFFDE ESYKKFEKIC YGFGIDLS ENSEINKPENES IRNYISHFYIVRNPF ADYSIAEQIDRVSNLLS YSTRYNNSTYASVFEVFKKDVNLDYDELKKKFKLIGNNDILERLMKPKKVS VLELES YNSDYIKNLIIELLTKIENTNDTL (SEQ ID NO: 27)
[00268] C2c3, translated from >CEPX01008730.1 marine metagenome genome assembly TARA_037_MES_0. 1-0.22, contig TARA_037_MES_0.1-0.22_scaffold22115_1, whole genome shotgun sequence.
[00269] MRSNYHGGRNARQWRKQISGLARRTKETVFTYKFPLETDAAEIDFDKAVQ TYGIAEGVGHGSLIGLVCAFHLSGFRLFSKAGEAMAFRNRSRYPTDAFAEKLSAIMGI QLPTLSPEGLDLIFQSPPRSRDGIAPVWSENEVRNRLYTNWTGRGPANKPDEHLLEIAG EIAKQVFPKFGGWDDLASDPDKALAAADKYFQSQGDFPSIASLPAAHVILSPANSTVDF EGDYIAIDPAAETLLHQAVSRCAARLGRERPDLDQNKGPFVSSLQDALVSSQNNGLS WLFGVGFQHWKEKSPKELIDEYKVPADQHGAVTQVKSFVDAIPLNPLFDTTHYGEFR ASVAGKVRSWVANYWKRLLDLKSLLATTEFTLPESISDPKAVSLFSGLLVDPQGLKK VADSLPARLVSAEEAIDRLMGVGIPTAADIAQVERVADEIGAFIGQVQQFNNQVKQKL ENLQDADDEEFLKGLKIELPSGDKEPPAINRISGGAPDAAAEISELEEKLQRLLDARSE HFQTISEWAEENAVTLDPIAAMVELERLRLAERGATGDPEEYALRLLLQRIGRLANRV SPVSAGSIRELLKPVFMEEREFNLFFHNRLGS LYRSPYSTSRHQPFSIDVGKAKAIDWIA GLDQIS SDIEKALSGAGEALGDQLRDWINLAGFAIS QRLRGLPDTVPNALAQVRCPDD VRIPPLLAMLLEEDDIARDVCLKAFNLYVSAINGCLFGALREGFIVRTRFQRIGTDQIH YVPKDKAWEYPDRLNTAKGPINAAVSSDWIEKDGAVIKPVETVRNLSSTGFAGAGVS EYLVQAPHDWYTPLDLRDVAHLVTGLPVEKNITKLKRLTNRTAFRMVGASSFKTHLD SVLLSDKIKLGDFTIIIDQHYRQSVTYGGKVKISYEPERLQVEAAVPVVDTRDRTVPEP DTLFDHIVAIDLGERSVGFAVFDIKSCLRTGEVKPIHDNNGNPVVGTVAVPSIRRLMK AVRSHRRRRQPNQKVNQTYSTALQNYRENVIGDVCNRIDTLMERYNAFPVLEFQIKN FQAGAKQLEIVYGS (SEQ ID NO: 28)
[00270] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a Cas9 from archaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, the napDNAbp is CasX or CasY, which have been described in, for example, Burstein et al., "New CRISPR-Cas systems from uncultivated microbes." Cell Res. 2017 Feb 21. doi: 10.1038/cr.2017.21, which is incorporated herein by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp) and are within the scope of this disclosure.
[00271] In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a CasX or CasY protein. In some embodiments, the napDNAbp is a CasX protein. In some embodiments, the napDNAbp is a CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring CasX or Cas Y protein. In some embodiments, the napDNAbp is a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 29-31. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 29-31. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.

CasX (uniprot.org/uniprot/F0NN87; uniprot.org/uniprot/F0NH53)
>trlF0NN87IF0NN87_SULIH CRISPR-associated Casx protein OS=Sulfolobus islandicus (strain HVE10/4) GN=SiH_0402 PE=4 SV=1

MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEDAAAE RRGKAKKKKGEEGETTTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQVK ECEEVSAPSFVKPEFYEFGRS PGMVERTRRVKLE VEPHYLIIAAAGWVLTRLGKAK VS EGDYVGVNVFTPTRGILYSLIQNVNGIVPGIKPET AFGLWIARKVVSSVTNPNVSVVRI YTISDAVGQNPTTINGGFSIDLTKLLEKRYLLSERLEAIARNALSISSNMRERYIVLANY IYEYLTGSKRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG (SEQ ID NO: 29)
>trlF0NH53IF0NH53_SULIR CRISPR associated protein, Casx OS=Sulfolobus islandicus (strain REY15A) GN=SiRe_0771 PE=4 SV=1

MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEDAAAE RRGKAKKKKGEEGETTTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQVK ECEEVSAPSFVKPEFYKFGRSPGMVERTRRVKLEVEPHYLIMAAAGWVLTRLGKAKV SEGDYVGVNVFTPTRGILYS LIQNVNGIVPGIKPET AFGLWIARKVVSSVTNPNVSVVS IYTISDAVGQNPTTINGGFS IDLTKLLEKRDLLSERLEAIARN ALSISSNMRERYIVLAN

YIYEYLTGSKRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG (SEQ ID NO: 30)

CasY (ncbi.nlm.nih.gov/protein/APG80656. 1)
>APG80656.1 CRISPR-associated protein CasY [uncultured Parcubacteria group bacterium]
[00272] MSKRHPRIS GVKGYRLHAQRLEYTGKS GAMRTIKYPLYS SPS GGRTVPREIV SAINDDYVGLYGLSNFDDLYNAEKRNEEKVYSVLDFWYDCVQYGAVFS YTAPGLLK NVAEVRGGSYELTKTLKGSHLYDELQIDKVIKFLNKKEISRANGSLDKLKKDIIDCFK AEYRERHKDQCNKLADDIKNAKKDAGASLGERQKKLFRDFFGISEQSENDKPSFTNP LNLTCCLLPFDTVNNNRNRGEVLFNKLKEYAQKLDKNEGSLEMWEYIGIGNSGTAFS NFLGEGFLGRLRENKITELKKAMMDITDAWRGQEQEEELEKRLRILAALTIKLREPKF DNHWGGYRSDINGKLSSWLQNYINQTVKIKEDLKGHKKDLKKAKEMINRFGESDTK EEAVVSSLLESIEKIVPDDSADDEKPDIPAIAIYRRFLSDGRLTLNRFVQREDVQEALIK ERLEAEKKKKPKKRKKKSDAEDEKETIDFKELFPHLAKPLKLVPNFYGDSKRELYKK YKNAAIYTDALWKAVEKIYKSAFSSSLKNSFFDTDFDKDFFIKRLQKIFSVYRRFNTDK WKPrVKNSFAPYCDIVSLAENEVLYKPKQS RSRKSAAIDKNRVRLPSTENIAKAGIALA RELSVAGFDWKDLLKKEEHEEYIDLIELHKTALALLLAVTETQLDISALDFVENGTVK DFMKTRDGNLVLEGRFLEMFSQSIVFSELRGLAGLMSRKEFITRSAIQTMNGKQAELL YIPHEFQSAKITTPKEMSRAFLDLAPAEFATSLEPESLSEKSLLKLKQMRYYPHYFGYE LTRTGQGIDGGVAENALRLEKSPVKKREIKCKQYKTLGRGQNKIVLYVRSSYYQTQF LEWFLHRPKNVQTDVAVSGSFLIDEKKVKTRWNYDALTVALEPVSGSERVFVSQPFTI FPEKSAEEEGQRYLGIDIGEYGIAYTALEITGDSAKILDQNFISDPQLKTLREEVKGLKL DQRRGTFAMPSTKIARIRESLVHSLRNRIHHLALKHKAKIVYELEVSRFEEGKQKIKKV YATLKKADVYSEIDADKNLQTTVWGKLAVASEISASYTSQFCGACKKLWRAEMQVD ETITTQELIGTVRVIKGGTLIDAIKDFMRPPIFDENDTPFPKYRDFCDKHHISKKMRGNS CLFICPFCRANADADIQASQTIALLRYVKEEKKVEDYFERFRKLKNIKVLGQMKKI (SEQ ID NO: 31)

Cas9 domains of Nucleobase Editors

[00273] Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nucleasae inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, the Cas9 domain may be a Cas 9 domain that cuts both strands of a duplexed nucleic acid \{e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises any

Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has $1,2,3,4,5,6,7,8,9,10,11,12$, $13,14,15,16,17,18,19,20,21,22,21,24,25,26,27,28,29,30,31,32,33,34,35,36,37$, $38,39,40,41,42,43,44,45,46,47,48,49,50$, or more mutations compared to any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10 , at least 15 , at least 20 , at least 30 , at leat 40 , at least 50 , at least 60 , at least 70 , at least 80 , at least 90 , at least 100 , at least 150 , at least 200 , at least 250 , at least 300 , at least 350 , at least 400 , at least 500 , at least 600 , at least 700 , at least 800 , at least 900 , at least 1000 , at least 1100 , or at least 1200 identical contiguous amino acid residues as compared to any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein.
[00274] In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10X mutation and a H840X mutation of the amino acid sequence set forth in SEQ ID NO: 6, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 32 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).

MDKKYS IGLAIGTNS VGW AVITDEYKVPS KKFKVLGNTDRHS IKKNLIGALLFDS GET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA AKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF FDQS KNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS

IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LLYEYFTVYNELTK V KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLES EFVYGDYKVYDVRKMIAKS EQEIGKAT AKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 32; see, e.g., Qi et al, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5): 1173-83, the entire contents of which are incorporated herein by reference).
[00275] Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al, CAS 9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas 9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has $1,2,3,4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,21,24,25,26,27,28,29,30,31,32,33$, $34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50$ or more or more mutations
compared to any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10 , at least 15 , at least 20 , at least 30 , at leat 40 , at least 50 , at least 60 , at least 70 , at least 80 , at least 90 , at least 100 , at least 150 , at least 200 , at least 250 , at least 300 , at least 350 , at least 400 , at least 500 , at least 600 , at least 700 , at least 800 , at least 900 , at least 1000 , at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein.
[00276] In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas 9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas 9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840 of SEQ ID NO: 6, or a mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. For example, a Cas 9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 8. In some embodiments the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10 of SEQ ID NO: 6, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.

Cas9 Domains with Reduced PAM Exclusivity

[00277] Some aspects of the disclosure provide Cas9 domains that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion proteins provided herein may need to be placed at a precise location, for example where a
target base is placed within a 4 base region (e.g., a "deamination window"), which is approximately 15 bases upstream of the PAM. See Komor, A.C., et al., "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage" Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., "Engineered CRISPR-Cas9 nucleases with altered PAM specificities" Nature 523, 481485 (2015); and Kleinstiver, B. P., et al., "Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition" Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference.
[00278] In some embodiments, the Cas9 domain is a Cas9 domain from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas 9 (SaCas 9 d), or a SaCas 9 nickase (SaCas 9 n). In some embodiments, the SaCas 9 comprises the amino acid sequence SEQ ID NO: 33. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 33, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, wherein X is any amino acid except for N . In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 33, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the SaCas9 domain, the SaCas 9 d domain, or the SaCas 9 n domain can bind to a nucleic acid seuqnce having a non-canonical PAM. In some embodiments, the SaCas 9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a NNGRRT PAM sequence. In some embodiments, the SaCas9 domain comprises one or more of a E781X, a N967X, and a R1014X mutation of SEQ ID NO: 33, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 33, or one or more corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation of SEQ ID NO: 33, or corresponding mutations in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein.
[00279] In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 33-36. In some embodiments, the Cas 9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 33-36. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 33-36.

Exemplary SaCas9 sequence

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQR VKKLLFD YNLLTDHS ELS GINPYEARVKGLSQKLSEEEFS AALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSD YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEM LMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFK QKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLD QIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHT NDNQIAIFNRLKLVPKKVDLS QQKEIPTTLVDDFILS PVVKRSFIQSIKVINAIIKKYGLP NDIIIELAREKNSKDAQKMINEMQKRNRQTNERffiEIIRTTGKENAKYLIEKIKLHDMQ EGKCLYSLEAIPLEDLLNNPFN YEVDHIIPRS VSFDNSFNNKVLVKQEENS KKGNRTPF QYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVD TRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAED ALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI KDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLI NKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPV IKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDV IKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRI EVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKK G (SEQ ID NO: 33)

Residue N579 of SEQ ID NO: 33, which is underlined and in bold, may be mutated (e.g., to a A579) to yield a SaCas9 nickase.

Exemplary SaCas9d sequence

KRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQR VKKLLFDYNLLTDHSELS GINPYEARVKGLSQKLSEEEFS AALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSD YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEM LMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFK QKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLD QIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHT NDNQIAIFNRLKLVPKKVDLS QQKEIPTTLVDDFILS PVVKRSFIQSIKVINAIIKKYGLP NDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQ EGKCLYSLEAIPLEDLLNNPFN YEVDHIIPRS VSFDNSFNNKVLVKQEENS KKGNRTPF QYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVD TRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAED ALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI KDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLI NKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPV IKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDV IKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRI EVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKK G (SEQ ID NO: 34)

Residue D10 of SEQ ID NO: 34, which is underlined and in bold, may be mutated (e.g., to a A10) to yield a nuclease inactive $\operatorname{SaCas} 9 \mathrm{~d}$.

Exemplary SaCas9n sequence

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQR VKKLLFDYNLLTDHSELS GINPYEARVKGLSQKLSEEEFS AALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSD YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEM LMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFK QKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLD QIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHT NDNQIAIFNRLKLVPKKVDLS QQKEIPTTLVDDFILS PVVKRSFIQSIKVINAIIKKYGLP NDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQ EGKCLYSLEAIPLEDLLNNPFN YEVDHIIPRS VSFDNSFNNKVLVKQEE ASKKGNRTPF QYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVD

TRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAED ALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI KDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLI NKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPV IKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDV IKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRI EVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKK G (SEQ ID NO: 35).

Residue A579 of SEQ ID NO: 35, which can be mutated from N579 of SEQ ID NO: 33 to yield a SaCas9 nickase, is underlined and in bold.

Exemplary SaKKH Cas9

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR RRHRIQR VKKLLFD YNLLTDHS ELS GINPYEARVKGLSQKLSEEEFS AALLHLAKRRG VHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSD YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEM LMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFK QKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLD QIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHT NDNQIAIFNRLKLVPKKVDLS QQKEIPTTLVDDFILS PVVKRSFIQSIKVINAIIKKYGLP NDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQ EGKCLYSLEAIPLEDLLNNPFN YEVDHIIPRS VSFDNSFNNKVLVKQEE ASKKGNRTPF QYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVD TRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAED ALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI KDFKDYKYSHRVDKKPNPvZLINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLI NKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPV IKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDV IKKENYYEVNSKCYEEAKKLKKISNQAEFIASFY^NDLIKINGELYRVIGVNNDLLNRI EVNMIDIT YREYLENMNDKRPP $\underline{\boldsymbol{H} I I K T I A S K T Q S ~ I K K Y S T D I L G N L Y E V K S ~ K K H P Q I I K K ~}$ G (SEQ ID NO: 36).

Residue A579 of SEQ ID NO: 36, which can be mutated from N579 of SEQ ID NO: 36 to yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 of SEQ

ID NO: 36, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 36 to yield a SaKKH Cas 9 are underlined and in italics.
[00280] In some embodiments, the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas 9 domain is a nuclease active SpCas 9 , a nuclease inactive SpCas 9 (SpCas 9 d), or a SpCas9 nickase (SpCas 9 n). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 37. In some embodiments, the SpCas9 comprises a D9X mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, wherein X is any amino acid except for D . In some embodiments, the SpCas 9 comprises a D 9 A mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid seuqnce having a noncanonical PAM. In some embodiments, the SpCas 9 domain, the SpCas 9 d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or more of a D1 134X, a R1334X, and a T1336X mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas9 amino acid sequences as provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1 134E, R1334Q, and T1336R mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 37, or corresponding mutations in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the SpCas9 domain comprises one or more of a D1 134X, a R1334X, and a T1336X mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a Dl 134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the SpCas9 domain comprises a D1 134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 37, or corresponding mutations in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the SpCas9 domain comprises one or more of a D1 134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 37, or a
corresponding mutation in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 37, or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 37, or corresponding mutations in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein.
[00281] In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 37-41. In some embodiments, the Cas 9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 37-41. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 37-41.

Exemplary SpCas9

DKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAA KNLSDAILLSDILRVNTEITKAPLS ASMIKRYDEHHQDLTLLKALVRQQLPEK YKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH

VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 37)

Exemplary SpCas9n

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAA KNLSDAILLSDILRVNTEITKAPLS A SMIKRYDEHHQDLTLLKALVRQQLPEK YKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEEVVDKGASAQSFIERMTNFD KNLPNEKVLPKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 38)

Exemplary SpEQR Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAA KNLSDAILLSDILRVNTEITKAPLS ASMIKR YDEHHQDLTLLKALVRQQLPEK YKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLES EFVYGDYKVYDVRKMIAKS EQEIGKAT AKYFFYS NIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQ YRSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 39)

Residues El 134, Q1334, and R1336 of SEQ ID NO: 39, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 39 to yield a SpEQR Cas9, are underlined and in bold.

Exemplary SpVQR Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN

GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAA KNLSDAILLS DILRVNTEITKAPLS ASMIKR YDEHHQDLTLLKALVRQQLPEK YKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGT ALIKKYPKLES EFVYGDYKVYDVRKMIAKS EQEIGKAT AKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQ YRSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 40)

Residues VI 134, Q1334, and R1336 of SEQ ID NO: 40, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 40 to yield a SpVQR Cas9, are underlined and in bold.

Exemplary SpVRER Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAA KNLSDAILLS DILRVNTEITKAPLS ASMIKR YDEHHQDLTLLKALVRQQLPEK YKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED

RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGT ALIKKYPKLES EFVYGDYKVYDVRKMIAKS EQEIGKAT AKYFFYS NIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAR ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKE YRSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 41)

Residues VI 134, R1217, Q1334, and R1336 of SEQ ID NO: 41, which can be mutated from D1134, G1217, R1334, and T1336 of SEQ ID NO: 41 to yield a SpVRER Cas9, are underlined and in bold.
[00282] The following are exemplary fusion proteins (e.g., base editing proteins) capable of binding to a nucleic acid sequence having a non-canonical (e.g., a non-NGG) PAM sequence:

[^0]VTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIG VNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKS KKHPQIIKKGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYD ESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLS GGSPKKKRKV (SEQ ID NO: 42)

Exemplary SaKKH-BE3 (rAPOBECl-XTEN-SaCas9n-UGI-NLS)
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS ггWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQES GYCWRNFVNYSPSNEAHWPR YPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPG TSESATPESKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKR GARRLKRRRRHRIQR VKKLLFDYNLLTDHSELS GINPYEARVKGLS QKLSEEEFS AAL LHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRG SINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWK DIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEK FQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKE IIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINL ILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVIN AIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIE KIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEAS KKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKD FINRNLVDTRY ATRGLMNLLRS YFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFI TPHQIKHIKDFKDYKYSHRVDKKPNR^LINDTLYSTRKDDKGNTLIVNNLNGLYDKD NDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKY SKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKF VTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFY£NDLIKINGELYRVIG VNNDLLNRIEVNMIDITYREYLENMNDKRPP HIIKTIASKTQSIKKYSTDILGNLYEVKS KKHPQIIKKGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYD ESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLS GGSPKKKRKV (SEQ ID NO: 43)

Exemplary EQR-BE3 (rAPOBECl-XTEN-Cas9n-UGI-NLS)

MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS ггWFLSW SPCGECSRAITEFLSRYPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQES GYCWRNFVNYSPSNEAHWPR YPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPG TSESATPESDKKYSIGLAIGTNSVGWAVITDE YKVPS KKFKVLGNTDRHSIKKNLIGAL LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEE DKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGH FLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIA QLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP EKYKEIFFDQS KNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNF

MQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQN EKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNI VKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGF ESPTVAYSVLVVAKVEK GKS KKLKS VKELLGITIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKYS LFELENGRK RMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLD EIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF DTTIDRKOYflSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQL VIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDS NGENKIKMLS GGSPKKKRKV (SEQ ID NO: 44)

VQR-BE3 (rAPOBECl-XTEN-Cas9n-UGI-NLS)
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS ггWFLSW SPCGECSRAITEFLSRYPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQES GYCWRNFVNYSPSNEAHWPRYPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPG TSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPS KKFKVLGNTDRHSIKKNLIGAL LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEE DKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGH FLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIA QLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP EKYKEIFFDQS KNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNF MQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQN EKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNI VKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFySPTVAYSVLVVAKVEK GKS KKLKS VKELLGITIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKYS LFELENGRK RMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLD EIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF DTTIDRKOYflSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQL VIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDS NGENKIKMLS GGSPKKKRKV (SEQ ID NO: 45)

VRER-BE3 (rAPOBECI-XTEN-Cas9n-UGI-NLS)
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN

Abstract

KHVEVNFIEKFTTERYFCPNTRCS гт WFLSWSPCGECSRAITEFLSR YPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQES GYCWRNFVN YSPSNEAHWPR YPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPG TSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEE DKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGH FLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIA QLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP EKYKEIFFDQS KNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNF MQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQN EKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRG KSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNI VKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFySPTVAYSVLVVAKVEK GKS KKLKS VKELLGITIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKYS LFELENGRK RMLASAfIELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLD EIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF DTTIDRKEY^STKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQL VIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDS NGENKIKMLS GGSPKKKRKV (SEQ ID NO: 46)

High Fidelity Base Editors

[00283] Some aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain that has high fidelity. Additional aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain (e.g., a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, any of the Cas 9 fusion proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, wherein X is any amino acid. In some embodiments, any of the Cas 9 fusion proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence
provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 47. In some embodiments, the fusion protein comprises the amino acid sequence as set forth in SEQ ID NO: 48. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B.P., et al. "High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects." Nature 529, 490-495 (2016); and Slaymaker, I.M., et al. "Rationally engineered Cas9 nucleases with improved specificity." Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.
[00284] It should be appreciated that the base editors provided herein, for example, base editor 2 (BE2) or base editor 3 (BE3), may be converted into high fidelity base editors by modifying the Cas9 domain as described herein to generate high fidelity base editors, for example, high fidelity base editor 2 (HF-BE2) or high fidelity base editor 3 (HF-BE3). In some embodiments, base editor 2 (BE2) comprises a deaminase domain, a dCas9, and a UGI domain. In some embodiments, base editor 3 (BE3) comprises a deaminase domain, anCas9 domain and a UGI domain.

Cas9 domain where mutations relative to Cas9 of SEQ ID NO: 6 are shown in bold and underlines

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKK LVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAI LSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ IGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER MTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEE RLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSL TFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQ KGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVD HIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG

LSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVRE INNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNS DKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAK GYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQ KQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 47)

HF-BE3

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFT TERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQI MTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSC HYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTD RHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEED KKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLV KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIK DKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIR DKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTV KVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEK LYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDEN DKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGK SKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGN ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAY NKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLG GD (SEQ ID NO: 48)

Cas9fusion proteins

[00285] Any of the Cas9 domains \{e.g., a nuclease active Cas9 protein, a nuclease-inactive dCas9 protein, or a Cas9 nickase protein) disclosed herein may be fused to a second protein, thus fusion proteins provided herein comprise a Cas9 domain as provided herein and a second protein, or a "fusion partner'. In some embodiments, the second protein is fused to the N -
terminus of the Cas9 domain. However, in other embodiments, the second protein is fused to the C-terminus of the Cas 9 domain. In some embodiments, the second protein that is fused to the Cas 9 domain is a nucleic acid editing domain. In some embodiments, the Cas9 domain and the nucleic acid editing domain are fused via a linker, while in other embodiments the Cas9 domain and the nucleic acid editing domain are fused directly to one another. In some embodiments, the Cas9 domain and the nucleic acid editing domain are fused via a linker of any length or composition. For example, the linker may be a bond, one or more amino acids, a peptide, or a polymer, of any length and composition. In some embodiments, the linker comprises (GGGS),, (SEQ ID NO: 613), (GGGGS),, (SEQ ID NO: 607), (G),, (SEQ ID NO: 608), (EAAAK) ${ }_{\mathrm{n}}$ (SEQ ID NO: 609), (GGS),, (SEQ ID NO: 610), (SGGS),, (SEQ ID NO: 606), SGSETPGTSESATPES (SEQ ID NO: 604), SGGS(GGS) $_{\mathrm{n}}$ (SEQ ID NO: 612), SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 605), or (XP) ${ }_{n}$ (SEQ ID NO: 611) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30 , and wherein X is any amino acid. In some embodiments, the linker comprises a $(\mathrm{GGS})_{\mathrm{n}}$ motif, wherein n is 1,3 , or 7 . In some embodiments, the linker comprises a (GGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 610) motif, wherein n is $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, or 15 . In some embodiments, the linker comprises the amino acid sequence SGGS(GGS) $_{\mathrm{n}}$ (SEQ ID NO: 612), wherein n is $1,2,3,4,5,6,7,8,9$, or 10 . In some embodiments, the linker comprises the amino acid sequence $\operatorname{SGGS}(\mathrm{GGS})_{\mathrm{n}}$ (SEQ ID NO: 612), wherein n is 2 . In some embodiments, the linker comprises an amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 604), also referred to as the XTEN linker in the Examples). In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGS SGGS (SEQ ID NO: 605), also referred to as the 32 amino acid linker in the Examples. The length of the linker can influence the base to be edited, as illustrated in the Examples. For example, a linker of 3-amino-acid long (e.g., (GGS)i) may give a 2-5, 2-4, 2-3, 3-4 base editing window relative to the PAM sequence, while a 9-amino-acid linker (e.g., (GGS) ${ }_{3}$ (SEQ ID NO: 610)) may give a 2-6, 2-5, 2-4, 2-3, 3-6, 3-5, 3-4, 4-6, 4-5, 5-6 base editing window relative to the PAM sequence. A 16-amino-acid linker (e.g., the XTEN linker) may give a 2-7, 2-6, 2-5, 2-4, 2-3, 3-$7,3-6,3-5,3-4,4-7,4-6,4-5,5-7,5-6,6-7$ base window relative to the PAM sequence with exceptionally strong activity, and a 21 -amino-acid linker (e.g., (GGS) 7_{7} (SEQ ID NO: 610)) may give a 3-8, 3-7, 3-6, 3-5, 3-4, 4-8, 4-7, 4-6, 4-5, 5-8, 5-7, 5-6, 6-8, 6-7, 7-8 base editing window relative to the PAM sequence. The novel finding that varying linker length may allow the dCas9 fusion proteins of the disclosure to edit nucleobases different distances from the PAM sequence affords siginicant clinical importance, since a PAM sequence may be of
varying distance to the disease-causing mutation to be corrected in a gene. It is to be understood that the linker lengths described as examples here are not meant to be limiting.
[00286] In some embodiments, the second protein comprises an enzymatic domain. In some embodiments, the enzymatic domain is a nucleic acid editing domain. Such a nucleic acid editing domain may be, without limitation, a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, or an acetyltransferase. Non-limiting exemplary binding domains that may be used in accordance with this disclosure include transcriptional activator domains and transcriptional repressor domains.

Deaminase Domains

[00287] In some embodiments, second protein comprises a nucleic acid editing domain. In some embodiments, the nucleic acid editing domain can catalyze a C to U base change. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBECl deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a vertebrate deaminase. In some embodiments, the deaminase is an invertebrate deaminase. In some embodiments, the deaminase is a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse deaminase. In some embodiments, the deaminase is a human deaminase. In some embodiments, the deaminase is a rat deaminase, e.g., rAPOBECl. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). In some embodiments, the deaminase is a cytidine deaminase 1 (CDA1). In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDAl). In some embodiments, the deminase is a human APOBEC3G (SEQ ID NO: 60). In some embodiments, the deaminase is a fragment of the
human APOBEC3G (SEQ ID NO: 83). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 82). In some embodiments, the deaminase is a frantment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 60 (SEQ ID NO: 84).
[00288] In some embodiments, the nucleic acid editing domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 49-84. In some embodiments, the nucleic acid editing domain comprises the amino acid sequence of any one of SEQ ID NOs: 49-84.

Deaminase Domains that Modulate the Editing Window of Base Editors

[00289] Some aspects of the disclosure are based on the recognition that modulating the deaminase domain catalytic activity of any of the fusion proteins provided herein, for example by making point mutations in the deaminase domain, affect the processivity of the fusion proteins \{e.g., base editors). For example, mutations that reduce, but do not eliminate, the catalytic activity of a deaminase domain within a base editing fusion protein can make it less likely that the deaminase domain will catalyze the deamination of a residue adjacent to a target residue, thereby narrowing the deamination window. The ability to narrow the deaminataion window may prevent unwanted deamination of residues adjacent of specific target residues, which may decrease or prevent off-target effects.
[00290] In some embodiments, any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has reduced catalytic deaminase activity. In some embodiments, any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has a reduced catalytic deaminase activity as compared to an appropriate control. For example, the appropriate control may be the deaminase activity of the deaminase prior to introducing one or more mutations into the deaminase. In other embodiments, the appropriate control may be a wild-type deaminase. In some embodiments, the appropriate control is a wild-type apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the appropriate control is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, or an APOBEC3H deaminase. In some embodiments, the appropriate control is an activation induced deaminase (AID). In some embodiments, the
appropriate control is a cytidine deaminase 1 from Petromyzon marinm (pmCDAl). In some embodiments, the deaminse domain may be a deaminase domain that has at least 1%, at least 5%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at lest 70%, at least 80%, at least 90%, or at least 95% less catalytic deaminase activity as compared to an appropriate control.
[00291] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121X, H122X, R126X, R126X, R118X, W90X, W90X, and R132X of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase, wherin X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase.
[00292] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316X, D317X, R320X, R320X, R313X, W285X, W285X, R326X of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase, wherin X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase.
[00293] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a H121R and a H122Rmutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126A mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R118A mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90A
mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R132E mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R126E mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E and a R132E mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R132E mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y, R126E, and R132E mutation of rAPOBECl (SEQ ID NO: 76), or one or more corresponding mutations in another APOBEC deaminase.
[00294] In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a D316R and a D317R mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320A mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R313A mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285A mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in
another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R326E mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R320E mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E and a R326E mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R326E mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y, R320E, and R326E mutation of hAPOBEC3G (SEQ ID NO: 60), or one or more corresponding mutations in another APOBEC deaminase.
[00295] Some aspects of this disclosure provide fusion proteins comprising (i) a nucleaseinactive Cas9 domain; and (ii) a nucleic acid editing domain. In some embodiments, a nuclease-inactive Cas9 domain (dCas9), comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of a Cas9 as provided by any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, and comprises mutations that inactivate the nuclease activity of Cas9. Mutations that render the nuclease domains of Cas9 inactive are well-known in the art. For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvCl subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvCl subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations DIOA and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28;152(5): 1173-83 (2013)). In some embodiments, the dCas9 of this disclosure comprises a DIOA mutation of the amino acid sequence provided in SEQ ID NO: 6 , or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the dCas9 of this disclosure comprises a H840A mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as
any one of the Cas9 amino acid sequences as provided herein. In some embodiments, the dCas9 of this disclosure comprises both D10A and H840A mutations of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the Cas 9 further comprises a histidine residue at position 840 of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein. The presence of the catalytic residue H840 restores the acvitity of the Cas 9 to cleave the non-edited strand containing a G opposite the targeted C. Restoration of H840 does not result in the cleavage of the target strand containing the C. In some embodiments, the dCas9 comprises an amino acid sequence of SEQ ID NO: 32. It is to be understood that other mutations that inactivate the nuclease domains of Cas 9 may also be included in the dCas9 of this disclosure.
[00296] The Cas9 or dCas9 domains comprising the mutations disclosed herein, may be a full-length Cas 9 , or a fragment thereof. In some embodiments, proteins comprising Cas 9 , or fragments thereof, are referred to as "Cas9 variants." A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about $\mathbf{9 6 \%}$ identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to wild type Cas 9 . In some embodiments, the Cas 9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about $\mathbf{9 6 \%}$ identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas 9 , e.g., a Cas 9 comprising the amino acid sequence of SEQ ID NO: 6.
[00297] Any of the Cas9 fusion proteins of this disclosure may further comprise a nucleic acid editing domain (e.g., an enzyme that is capable of modifying nucleic acid, such as a deaminase). In some embodiments, the nucleic acid editing domain is a DNA-editing domain. In some embodiments, the nucleic acid editing domain has deaminase activity. In some embodiments, the nucleic acid editing domain comprises or consists of a deaminase or deaminase domain. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC 1 family deaminase.

In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). Some nucleic-acid editing domains as well as Cas9 fusion proteins including such domains are described in detail herein. Additional suitable nucleic acid editing domains will be apparent to the skilled artisan based on this disclosure and knowledge in the field.
[00298] Some aspects of the disclosure provide a fusion protein comprising a Cas9 domain fused to a nucleic acid editing domain, wherein the nucleic acid editing domain is fused to the N-terminus of the Cas9 domain. In some embodiments, the Cas9 domain and the nucleic acid editing-editing domain are fused via a linker. In some embodiments, the linker comprises a (GGGS) $\mathbf{n}_{\mathbf{n}}$ (SEQ ID NO: 613), a (GGGGS),, (SEQ ID NO: 607), a (G),, (SEQ ID NO: 608), an (EAAAK) $)_{\mathrm{n}}$ (SEQ ID NO: 609), a (GGS),, (SEQ ID NO: 610), (SGGS),, (SEQ ID NO: 606), an SGSETPGTSESATPES (SEQ ID NO: 604) motif (see, e.g., Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas 9 to Fokl nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP) ${ }_{n}$ (SEQ ID NO: 611) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30 . In some embodiments, n is independently 1 , $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29$, or 30 , or, if more than one linker or more than one linker motif is present, any combination thereof. In some embodiments, the linker comprises a (GGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 610) motif, wherein n is $1,2,3,4,5,6,7,8,9,10,11,12,13,14$ or 15 . In some embodiments, the linker comprises a (GGS) $)_{\mathrm{n}}$ (SEQ ID NO: 610) motif, wherein n is 1,3 , or 7 . In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604). Additional suitable linker motifs and linker configurations will be apparent to those of skill in the art. In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10): 1357-69, the entire contents of which are incorporated herein by reference. Additional suitable linker sequences will be apparent to those of skill in the art based on the instant disclosure. In some embodiments, the general architecture of exemplary Cas 9 fusion proteins provided herein comprises the structure:
$\left[\mathrm{NH}_{2}\right]$-[nucleic acid editing domain]-[Cas9]-[COOH] or $\left[\mathrm{NH}_{2}\right]$-[nucleic acid editing domain]-[linker]-[Cas9]-[COOH],
wherein NH_{2} is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein.
[00299] The fusion proteins of the present disclosure may comprise one or more additional features. For example, in some embodiments, the fusion protein comprises a nuclear
localization sequence (NLS). In some embodiments, the NLS of the fusion protein is localized between the nucleic acid editing domain and the Cas9 domain. In some embodiments, the NLS of the fusion protein is localized C-terminal to the Cas9 domain.
[00300] Other exemplary features that may be present are localization sequences, such as cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable protein tags provided herein include, but are not limited to, biotin carboxylase carrier protein (BCCP) tags, myc-tags, calmodulintags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-S-transferase (GST)tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art. In some embodiments, the fusion protein comprises one or more His tags.
[00301] In some embodiments, the nucleic acid editing domain is a deaminase. For example, in some embodiments, the general architecture of exemplary Cas9 fusion proteins with a deaminase domain comprises the structure:

$$
\begin{gathered}
{\left[\mathrm{NH}_{2}\right]-[\mathrm{NLS}]-[\text { deaminase }]-[\mathrm{Cas} 9]-[\mathrm{COOH}]} \\
{\left[\mathrm{NH}_{2}\right]-[\mathrm{Cas} 9]-[\text { deaminase }]-[\mathrm{COOH}]} \\
{\left[\mathrm{NH}_{2}\right]-[\text { deaminase }]-[\mathrm{Cas} 9]-[\mathrm{COOH}], \text { or }} \\
{\left[\mathrm{NH}_{2}\right]-[\text { deaminase }]-[\text { Cas } 9]-[\mathrm{NLS}]-[\mathrm{COOH}]}
\end{gathered}
$$

wherein NLS is a nuclear localization sequence, NH_{2} is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank et al., PCT/EP2000/01 1690, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 614) or MDSLLMNRRKFLYQFKNVRW AKGRRET YLC (SEQ ID NO: 615). In some embodiments, a linker is inserted between the Cas9 and the deaminase. In some embodiments, the NLS is located C-terminal of the Cas9 domain. In some embodiments, the NLS is located N-terminal of the Cas9 domain. In some embodiments, the NLS is located between the deaminase and the Cas9 domain. In some embodiments, the NLS is located N-terminal of the deaminase domain. In some embodiments, the NLS is located C-terminal of the deaminase domain.
[00302] One exemplary suitable type of nucleic acid editing domain is a cytidine deaminase, for example, of the APOBEC family. The apolipoprotein B mRNA-editing complex (APOBEC) family of cytidine deaminase enzymes encompasses eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner. ${ }^{29}$ One family member, activationinduced cytidine deaminase (AID), is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion. ${ }^{30}$ The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA. ${ }^{31}$ These proteins all require a Zn^{2+}-coordinating motif (His-X-Glu-X23_26-Pro-Cys-X2_-4-Cys; SEQ ID NO: 616) and bound water molecule for catalytic activity. The Glu residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular "hotspot", ranging from WRC (W is A or T, R is A or G) for hAID, to TTC for hAPOBEC3F. ${ }^{32}$ A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprised of a five-stranded β-sheet core flanked by six a-helices, which is believed to be conserved across the entire family. ${ }^{33}$ The active center loops have been shown to be responsible for both ssDNA binding and in determining "hotspot" identity. ${ }^{34}$ Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting. ${ }^{35}$
[00303] Some aspects of this disclosure relate to the recognition that the activity of cytidine deaminase enzymes such as APOBEC enzymes can be directed to a specific site in genomic DNA. Without wishing to be bound by any particular theory, advantages of using Cas9 as a recognition agent include (1) the sequence specificity of Cas9 can be easily altered by simply changing the sgRNA sequence; and (2) Cas9 binds to its target sequence by denaturing the dsDNA, resulting in a stretch of DNA that is single-stranded and therefore a viable substrate for the deaminase. It should be understood that other catalytic domains, or catalytic domains from other deaminases, can also be used to generate fusion proteins with Cas9, and that the disclosure is not limited in this regard.
[00304] Some aspects of this disclosure are based on the recognition that Cas9:deaminase fusion proteins can efficiently deaminate nucleotides at positions 3-11 according to the numbering scheme in Figure 3. In view of the results provided herein regarding the nucleotides that can be targeted by Cas9:deaminase fusion proteins, a person of skill in the art will be able to design suitable guide RNAs to target the fusion proteins to a target sequence that comprises a nucleotide to be deaminated.
[00305] In some embodiments, the deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., AID) and the Cas9 domain can be employed (e.g., ranging from very flexible linkers of the form (GGGGS),, (SEQ ID NO: 607), (GGS),,(SEQ ID NO: 610), and (G),, (SEQ ID NO: 608) to more rigid linkers of the form (EAAAK) $)_{\mathrm{n}}$ (SEQ ID NO: 609), (SGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 606), SGSETPGTSESATPES (SEQ ID NO: 604) (see, e.g., Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas 9 to Fokl nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference) and (XP) ${ }_{\mathrm{n}}$ (SEQ ID NO: 611) $)^{36}$ in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, the linker comprises a $(G G S))_{n}$ (SEQ ID NO: 610) motif, wherein n is 1,3 , or 7 . In some embodiments, the linker comprises a (an SGSETPGTSESATPES (SEQ ID NO: 604) motif.
[00306] Some exemplary suitable nucleic-acid editing domains, e.g., deaminases and deaminase domains, that can be fused to Cas9 domains according to aspects of this disclosure are provided below. It should be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localization sequence, without nuclear export signal, cytoplasmic localizing signal).
[00307] Human AID:
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENS VRLSROLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 49)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00308] Mouse AID:
MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIGIMTFKDYFYCWNTFVENRERTFKAWEGLHENS VRLTROLRRILLPLYEVDDLRDAFRMLGF (SEQ ID NO: 51)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00309] Dog AID:

LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENREKTFKAWEGLHENS VRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 52)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00310] Bovine AID:
MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGCH VELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTARL YFCDKERKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENS VRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 53)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00311] Rat:AID:MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRW LRPAATQDPVSPPRS LLMKQRKFLYHFKN VRW AKGRHET YLCYVVKRRDS ATSFSLD FGYLRNKSGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGN PNLSLRIFTARLTGWGALPAGLMSPARPSDYFYCWNTFV ENHERTFKAWEGLHENSV RLSRRLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 54)
(underline: nuclear localization sequence; double underline: nuclear export signal)
[00312] Mouse APOBEC-3:
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVS LHHGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMS WSPCFECAEQIVRFLAT HHNLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGR RFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICLTKGLPETRFCVEGRRMD PLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQ HAE/ LFLDKIRSMELSQWITCYLTWSPCPNCAWQLAAFKRORPOLILmYTSRLYFFiWKRPFQ KGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIIS RRTQRRLRRIKES WGLQDLVNDFGNLQLGPPMS (SEQ ID NO: 55)
(italic: nucleic acid editing domain)
[00313] Rat APOBEC-3:
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVSL miGVFKNKONmAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLAT HHNLSLDIFSSRLYNIRDPENQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGR RFRPWKKLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICLTKGLPETRFCVERRRVH LLSEEEFYSQFYNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKGCLLSEKGKQ HAE/ LFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRORPOULmYTSRLYFFiWKRPFQ KGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIIS RRTQRRLHRIKES WGLQDLVNDFGNLQLGPPMS (SEQ ID NO: 56)
(italic: nucleic acid editing domain)
[00314] Rhesus macaque APOBEC-3G:
MVEPMDPRTFVSNFNNRPILS GLNTVWLCCEVKTKDPS GPPLDAKIFQGKVYS KAKY HPEMRFLRWFHKWROLHHDQEYKVTWYVSWSPCTRCA NSVATFLA KOPKVTLTIFVAR LYYFWKPDYQQALRILCQKRGGPHATMKIMNYNEFQDCWNKFVDGRGKPFKPRNN LPKHYTLLQATLGELLRHLMDPGTFTSNFNNKPWVSGQHETYLCYKVERLHNDTWV PLNQHRGFLRNQAPNinGFPKGRHAELCFLDLIPFWKLDGQQYRVTCFTSWSPCFSCAQ EMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYCWDTF VDRQGRPFQPWDGLDEHS QALSGRLRAI (SEQ ID NO: 57)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00315] Chimpanzee APOBEC-3G:
MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQ VYSKLKYHPEMRFFHWFSKWRKLHRDOEYEVTWYISWSPCTKCTROyATFLAEOPKVT LTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRELF EPWNNLPKYYILLHIMLGEILRHSMDPPTFTSNFNNELWVRGRHETYLCYEVERLHND TWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLHQDYRVTCFTSWSPC FSCAQEMAKFISNNKHVSLCIFAARIYDDQGRC QEGLRTLAKAGAKISIMTYSEFKHC WDTFVDHQGCPFQPWDGLEEHS QALS GRLRAILQNQGN (SEQ ID NO: 58)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00316] Green monkey APOBEC-3G:
MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKL
YPEAKDHPEMKFLHWFRKWROLHRDQEYEVTWYVSWSPCTRCA NSVA TFLAEDPKVTL TIFVARLYYFWKPDYQQALRILCQERGGPHATMKIMNYNEFQHCWNEFVDGQGKPF KPRKNLPKHYTLLHATLGELLRHVMDPGTFTSNFNNKPWVSGQRETYLCYKVERSH NOTWVLLNQHRGFLRNQAPORHGFPKGRHAELCFLDLIPFWKLDDQQYRVTCFTSWSP CFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNYSEFE YCWDTFVDRQGRPFQPWDGLDEHS QALSGRLRAI (SEQ ID NO: 59)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00317] Human APOBEC-3G:
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQ VYS ELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVT LTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRELF EPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERMHN DTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSP

CFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHC WDTFVDHQGCPFQPWDGLDEHS QDLS GRLRAILQNQEN (SEQ ID NO: 60)
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)
[00318] Human APOBEC-3F:
MKPHFRNTVERMYRDTFS YNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQ VYSQPEHHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAERPNVTL TIS AARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFV YSEGQPFMPWY KFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRKAYGRNESWLCFTMEVVKH HSPVSWKRGVERNQVOPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCPECAGE VAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCWENF VYNDDEPFKPWKGLKYNFLFLDS KLQEILE (SEQ ID NO: 61)
(italic: nucleic acid editing domain)
[00319] Human APOBEC-3B:
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRG QVYFKPQYHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSERPNVT LTISAARLYYYWERDYRRALCRLSQAGARVTIMDYEEFAYCWENFVYNEGQQFMPW YKFDENYAFLHRTLKEILRYLMDPDTFTFNFNNDPLVLRRRQTYLCYEVERLDNGTW VLMOQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSW GCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFEYC WDTFVYRQGCPFQPWDGLEEHS QALS GRLRAILQNQGN (SEQ ID NO: 62)
(italic: nucleic acid editing domain)
[00320] Rat APOBEC-3B:
MQPQGLGPNAGMGPVCLGCSHRRPYSPIRNPLKKLYQQTFYFHFKNVRYAWGRKNN FLCYEVNGMDCALPVPLRQGVFRKQGHIHAELCFIYWFHDKVLRVLSPMEEFKVTW YMSWSPCSKCAEQVARFLAAHRNLSLAIFSSRLYYYLRNPNYQQKLCRLIQEGVHVA AMDLPEFKKCWNKFVDNDGQPFRPWMRLRINFSFYDCKLQEIFSRMNLLREDVFYLQ FNNSHRVKPVQNRYYRRKS YLCYQLERANGQEPLKG YLLYKKGEQHVEILFLEKMR SMELSQVRITCYLTWSPCPNCARQLAAFKKDHPDLILRIYTSRLYFYWRKKFQKGLCT LWRSGIHVDVMDLPQFADCWTNFVNPQRPFRPWNELEKNSWRIQRRLRRIKESWGL (SEQ ID NO: 63)
[00321] Bovine APOBEC-3B:
DGWEVAFRSGTVLKAGVLGVSMTEGWAGSGHPGQGACVWTPGTRNTMNLLREVLF KQQFGNQPRVPAPYYRRKTYLCYQLKQRNDLTLDRGCFRNKKQRHAEIRFIDKINSL DLNPSQSYKIICYITWSPCPNCANELVNFITRNNHLKLEIFASRLYFHWIKSFKMGLQD

LQNAGISVAVMTHTEFEDCWEQFVDNQSRPFQPWDKLEQ YSASIRRRLQRILT API (SEQ ID NO: 64)
[00322] Chimpanzee APOBEC-3B:
MNPQIRNPMEWMYQRTFYYNFENEPILYGRSYTWLCYEVKIRRGHSNLLWDTGVFR GQMYSQPEHHAEMCFLSWFCGNQLSAYKCFQITWFVSWTPCPDCVAKLAKFLAEHP NVTLTISAARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFVYNEGQPF MPWYKFDDNYAFLHRTLKEIIRHLMDPDTFTFNFNNDPLVLRRHQTYLCYEVERLDN GTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISW SPCFSWGCAGQVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTY DEFEYCWDTFV YRQGCPFQPWDGLEEHS QALS GRLRAILQVRAS SLCMVPHRPPPPP QSPGPCLPLCSEPPLGSLLPTGRPAPSLPFLLTASFSFPPPASLPPLPSLSLSPGHLPVPSF HSLTSCSIQPPCS SRIRETEGW ASVSKEGRDLG (SEQ ID NO: 65)
[00323] Human APOBEC-3C:
MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFR NQVOSETHCHAERCFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEFLARHSNVN LTIFTARLY YFQYPCYQEGLRSLSQEGVAVEIMDYEDFKYCWENFVYNDNEPFKPWK GLKTNFRLLKRRLRESLQ (SEQ ID NO: 66)
(italic: nucleic acid editing domain)
[00324] Gorilla APOBEC3C:
MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFR NQVOSETHCHAERCFLSWFCDDILSPNTNYQVTWYTSWSPCPECAGEVAEFLARHSNVN LTIFTARLYYFQDTDYQEGLRSLSQEGVAVKIMDYKDFKYCWENFVYNDDEPFKPW KGLKYNFRFLKRRLQEILE (SEQ ID NO: 67)
(italic: nucleic acid editing domain)
[00325] Human APOBEC-3A:
MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLHN QAKNLLCGEYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAGEVRAFLQE NTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFKHCWDTFVDHQGCP FQPWDGLDEHS QALS GRLRAILQNQGN (SEQ ID NO: 68)
(italic: nucleic acid editing domain)
[00326] Rhesus macaque APOBEC-3A:
MDGSPASRPRHLMDPNTFTFNFNNDLSVRGRHQTYLCYEVERLDNGTWVPMDERRG FLCNKAKNVPCGOYGCHVELRFLCEVPSWQLDPAQTYRVTWFISWSPCFRRGCAGQVR

VFLQENKHVRLRIFAARIYDYDPLYQEALRTLRDAGAQVSIMTYEEFKHCWDTFVDR QGRPFQPWDGLDEHS QALS GRLRAILQNQGN (SEQ ID NO: 69)
(italic: nucleic acid editing domain)
[00327] Bovine APOBEC-3A:
MDEYTFTENFNNQGWPSKTYLCYEMERLDGDATIPLDEYKGFVRNKGLDQPEKPC H AELYFLGKIHS WNLDRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHIS LHILAS RIYTHN RFGCHQS GLCELQAAGARITIMTFEDFKHC WETFVDHKGKPFQPWEGLNVKS QALCT ELQAILKTQQN (SEQ ID NO: 70)
(italic: nucleic acid editing domain)
[00328] Human APOBEC-3H:
MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKC HAE/C FINEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVOF1KAHOHLNLG1FASRLYYHWCK PQQKGLRLLC GSQVPVEVMGFPKF ADCWENF VDHEKPLS FNP YKMLEELD KNSRAIK RRLERIKIPGVRAQGRYMDILCDAEV (SEQ ID NO: 71)
(italic: nucleic acid editing domain)
[00329] Rhesus macaque APOBEC-3H:
MALLT AKTFS LQFNNKRRVNKP YYPRKALLC YQLTPQNGS TPTRGHLKNKKKDH AEI RFINKIKS MGLDETQC YQVTC YLTWS PCPS CAGELVDFIKAHRHLNLRIF ASRLYYHW RPNYQEGLLLLCGSQVPVEVMGLPEFTDCWENFVDHKEPPSFNPSEKLEELDKNSQAI KRRLERIKS RSVDVLENGLRS LQLGP VTPS SSIRNS R (SEQ ID NO: 72)
[00330] Human APOBEC-3D:
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRG PVLPKRQSNHRQEVYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVVK VTKFLAEHPNVTLTISAARLYYYRDRDWRWVLLRLHKAGARVKIMDYEDFAYCWE NFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAMYPHIFYFHFKNLLKACGRN ESWLCFTMEVTKHHSAVFRKRGVFRNQVDPETHC HAERCFLSWFCDD/LSPNTNYEVT WYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKI MGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ (SEQ ID NO: 73)
(italic: nucleic acid editing domain)
[00331] Human APOBEC- 1:
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNT TNH VEVNFIKKFTS ERDFHPS MSCSITWFLS W SPCWECS QAIREFLS RHPG VTLVIY VA RLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPP

LWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIHPS VAWR (SEQ ID NO: 74)
[00332] Mouse APOBEC-1:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNT SNHVEVNFLEKFTTER YFRPNTRCS ггWFLSW SPCGECSRAITEFLS RHPYVTLFIYIAR LYHHTDQRNRQGLRDLISSGVTIQIMTEQEYCYCWRNFVNYPPSNEAYWPRYPHLWV KLYVLELYCIILGLPPCLKILRRKQPQLTFFTITLQTCHYQRIPPHLLWATGLK (SEQ ID NO: 75)
[00333] Rat APOBEC- 1 :
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS ггWFLSWSPCGECSRAITEFLSR YPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQES GYCWRNFVNYSPSNEAHWPRYPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 76)
[00334] Human APOBEC-2:
MAQKEEAAVATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRN VE

YSSGRNKTFLCYVVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILPAFDPALRY NVTWYVSSSPCAACADRIIKTLS KTKNLRLLILVGRLFMWEEPEIQ AALKKLKEAGCK LRIMKPQDFEYVWQNFVEQEEGESKAFQPWEDIQENFLYYEEKLADILK (SEQ ID NO: 77)
[00335] Mouse APOBEC-2:
MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRN VEYS SGRNKTFLCYVVEVQS KGGQAQATQGYLEDEHAGAHAEE AFFNTILPAFDPAL KYNVTWYVSSSPCAACADRILKTLS KTKNLRLLILVSRLFMWEEPEVQAALKKLKEA GCKLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK (SEQ ID NO: 78)
[00336] Rat APOBEC-2:
MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRN VEYS SGRNKTFLCYVVEAQSKGGQVQATQGYLEDEHAGAHAEE AFFNTILPAFDPAL KYNVTWYVSSSPCAACADRILKTLS KTKNLRLLILVSRLFMWEEPEVQAALKKLKEA GCKLRIMKPQDFEYLWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK (SEQ ID NO: 79)
[00337] Bovine APOBEC-2:

MAQKEEAAAAAEPASQNGEEVENLEDPEKLKELIELPPFEIVTGERLPAHYFKFQFRN VE

YSSGRNKTFLCYVVEAQSKGGQVQASRGYLEDEHATNHAEEAFFNSIMPTFDP ALRY MVTWYVSSSPCAACADRIVKTLNKTKNLRLLILVGRLFMWEEPEIQAALRKLKEAGC RLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK (SEQ ID NO: 80)
[00338] Petromyzon marinus CDA1 (pmCDAl)
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKP QSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGN GHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQL NENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV (SEQ ID NO: 81)
[00339] Human APOBEC3G D3 16R_D3 17R
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQ VYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPK VTLTIFVARLYYFWDPD YQEALRSLCQKRDGPRATMKIMN YDEFQHCWS KFVYSQR ELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERM HNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFT SW SPCFSCAQEMAKFIS KNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISIMTYSE FKHCWDTFVDHQGCPFQPWDGLDEHS QDLS GRLRAILQNQEN (SEQ ID NO: 82)
[00340] Human APOBEC3G chain A
MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGF LEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIF TARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEH SQDLS GRLRAILQ (SEQ ID NO: 83)
[00341] Human APOBEC3G chain A D120R_D121R
MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGF LEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIF TARIYRRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEH SQDLS GRLRAILQ (SEQ ID NO: 84)
[00342] In some embodiments, fusion proteins as provided herein comprise the full-length amino acid of a nucleic acid editing enzyme, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length sequence of a nucleic acid editing enzyme, but only a fragment thereof. For example, in some
embodiments, a fusion protein provided herein comprises a Cas9 domain and a fragment of a nucleic acid editing enzyme, e.g., wherein the fragment comprises a nucleic acid editing domain. Exemplary amino acid sequences of nucleic acid editing domains are shown in the sequences above as italicized letters, and additional suitable sequences of such domains will be apparent to those of skill in the art.
[00343] Additional suitable nucleic-acid editing enzyme sequences, e.g., deaminase enzyme and domain sequences, that can be used according to aspects of this invention, e.g., that can be fused to a nuclease-inactive Cas9 domain, will be apparent to those of skill in the art based on this disclosure. In some embodiments, such additional enzyme sequences include deaminase enzyme or deaminase domain sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar to the sequences provided herein. Additional suitable Cas9 domains, variants, and sequences will also be apparent to those of skill in the art. Examples of such additional suitable Cas9 domains include, but are not limited to, D10A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (see, e.g., Prashant et al, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838 the entire contents of which are incorporated herein by reference). In some embodiments, the Cas 9 comprises a histidine residue at position 840 of the amino acid sequence provided in SEQ ID NO: 6 , or a corresponding mutation in any Cas 9 protein, such as any one of the Cas9 amino acid sequences as provided herein. The presence of the catalytic residue H 840 restores the acvitity of the Cas 9 to cleave the non-edited strand containing a G opposite the targeted C. Restoration of H840 does not result in the cleavage of the target strand containing the C .
[00344] Additional suitable strategies for generating fusion proteins comprising a Cas9 domain and a deaminase domain will be apparent to those of skill in the art based on this disclosure in combination with the general knowledge in the art. Suitable strategies for generating fusion proteins according to aspects of this disclosure using linkers or without the use of linkers will also be apparent to those of skill in the art in view of the instant disclosure and the knowledge in the art. For example, Gilbert et al., CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, showed that Cterminal fusions of Cas9 with VP64 using 2 NLS's as a linker (SPKKKRKVEAS, SEQ ID NO: 617), can be employed for transcriptional activation. Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, reported that C-terminal fusions with VP64
without linker can be employed for transcriptional activation. And Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, reported that C-terminal fusions with VP64 using a Gly ${ }_{4}$ Ser (SEQ ID NO: 613) linker can be used as transcriptional activators. Recently, dCas9- Fokl nuclease fusions have successfully been generated and exhibit improved enzymatic specificity as compared to the parental Cas9 enzyme (In Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 57782, and in Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMJX>: 24770325 a

SGSETPGTSESATPES (SEQ ID NO: 604) or a GGGGS (SEQ ID NO: 607) linker was used in FokI-dCas9 fusion proteins, respectively).
[00345] Some aspects of this disclosure provide fusion proteins comprising (i) a Cas9 enzyme or domain (e.g., a first protein); and (ii) a nucleic acid-editing enzyme or domain (e.g., a second protein). In some aspects, the fusion proteins provided herein further include (iii) a programmable DNA-binding protein, for example, a zinc-finger domain, a TALE, or a second Cas9 protein (e.g., a third protein). Without wishing to be bound by any particular theory, fusing a programmable DNA-binding protein (e.g., a second Cas9 protein) to a fusion protein comprising (i) a Cas9 enzyme or domain (e.g., a first protein); and (ii) a nucleic acid-editing enzyme or domain (e.g., a second protein) may be useful for improving specificity of the fusion protein to a target nucleic acid sequence, or for improving specificity or binding affinity of the fusion protein to bind target nucleic acid sequence that does not contain a canonical PAM (NGG) sequence. In some embodiments, the third protein is a Cas9 protein (e.g, a second Cas9 protein). In some embodiments, the third protein is any of the Cas9 proteins provided herein. In some embodiments, the third protein is fused to the fusion protein N terminal to the Cas9 protein (e.g., the first protein). In some embodiments, the third protein is fused to the fusion protein C-terminal to the Cas9 protein (e.g., the first protein). In some embodiments, the Cas9 domain (e.g., the first protein) and the third protein (e.g., a second Cas9 protein) are fused via a linker (e.g., a second linker). In some embodiments, the linker comprises a (GGGGS),, (SEQ ID NO: 607), a (G),, (SEQ ID NO: 608), an (EAAAK),, (SEQ ID NO: 609), a (GGS),, (SEQ ID NO: 610), (SGGS),, (SEQ ID NO: 606), a

SGSETPGTSESATPES (SEQ ID NO: 604), a SGGS(GGS) n (SEQ ID NO: 612), a
SGGSSGGSSGS ETPGTS ESATPES SGGSSGGS (SEQ ID NO: 605), or an (XP) ${ }_{\mathrm{n}}$ (SEQ ID
NO: 611) motif, or a combination of any of these, wherein n is independently an integer
between 1 and 30. In some embodiments, the general architecture of exemplary napDNAbp fusion proteins provided herein comprises the structure:
[NH2]-[nucleic acid-editing enzyme or domain]-[napDNAbp] -[third protein]-[COOH]; [NH2]-[third protein]-[napDNAbp] -[nucleic acid-editing enzyme or domain]-[COOH];
[NH2]-[napDNAbp]-[nucleic acid-editing enzyme or domain] -[third protein]-[COOH];
[NH2]-[third protein]-[nucleic acid-editing enzyme or domain]-[napDNAbp]-[COOH];
[NH2]-[UGI]- [nucleic acid-editing enzyme or domain]- napDNAbp] -[third protein]-[COOH];
[NH2]-[UGI]- [third protein] -[napDNAbp]-[nucleic acid-editing enzyme or domain]-[COOH];
[NH2]-[UGI]- [napDNAbp]-[nucleic acid-editing enzyme or domain] -[third protein]-[COOH];
[NH2]-[UGI]- [third protein]-[nucleic acid-editing enzyme or domain]-[napDNAbp] -[COOH];
[NH2]-[nucleic acid-editing enzyme or domain]-[napDNAbp] -[third protein]-[UGI]-[COOH];
[NH2]-[third protein]-[napDNAbp] -[nucleic acid-editing enzyme or domain]-[UGI]-[COOH];
[NH2]-[NapDNAbp]-[nucleic acid-editing enzyme or domain] -[third protein]-[UGI]-[COOH]; [NH2]- [third protein]-[nucleic acid-editing enzyme or domain]-[NapDNAbp] -[UGI]-[COOH]; or
[NH2]-[nucleic acid-editing enzyme or domain]-[NapDNAbp] -[first UGI domain]-[second UGI domain]-[COOH];
wherein NH 2 is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein. In some embodiments, the "]-[" used in the general architecture above indicates the presence of an optional linker sequence. In other examples, the general architecture of exemplary NapDNAbp fusion proteins provided herein comprises the structure: [NH2]-[nucleic acid-editing enzyme or domain]-[NapDNAbp]-[second NapDNAbp protein][COOH];
[NH2]-[second NapDNAbp protein]-[NapDNAbp]-[nucleic acid-editing enzyme or domain][COOH];
[NH2]-[NapDNAbp]-[nucleic acid-editing enzyme or domain]-[second NapDNAbp protein][COOH];
[NH2]-[second NapDNAbp protein]-[nucleic acid-editing enzyme or domain]-[NapDNAbp][COOH];
[NH2]-[UGI]-[nucleic acid-editing enzyme or domain]-[NapDNAbp]-[second NapDNAbp protein]-[COOH],
[NH2]-[UGI]-[second NapDNAbp protein]-[NapDNAbp]-[nucleic acid-editing enzyme or domain]-[COOH];
[NH2]-[UGI]-[NapDNAbp]-[nucleic acid-editing enzyme or domain]-[second NapDNAbp protein]-[COOH];
[NH2]-[UGI]-[second NapDNAbp protein]-[nucleic acid-editing enzyme or domain][NapDNAbpHCOOH];
[NH2]-[nucleic acid-editing enzyme or domain]-[NapDNAbp]-[second NapDNAbp protein]-[UGI]-[COOH];
[NH2]-[second NapDNAbp protein]-[NapDNAbp]-[nucleic acid-editing enzyme or domain]-[UGI]-[COOH];
[NH2]-[NapDNAbp]-[nucleic acid-editing enzyme or domain]-[second NapDNAbp protein]-[UGI]-[COOH]; or
[NH2]-[second NapDNAbp protein]-[nucleic acid-editing enzyme or domain]-[NapDNAbp]-[UGI]-[COOH];
wherein $\mathrm{N} 3 / 4$ is the N -terminus of the fusion protein, and COOH is the C -terminus of the fusion protein. In some embodiments, the "]-[" used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the second NapDNAbp is a dCas9 protein. In some examples, the general architecture of exemplary Cas9 fusion proteins provided herein comprises a structure as shown in Figure 3. It should be appreciated that any of the proteins provided in any of the general architectures of exemplary Cas9 fusion proteins may be connected by one or more of the linkers provided herein. In some embodiments, the linkers are the same. In some embodiments, the linkers are different. In some embodiments, one or more of the proteins provided in any of the general architectures of exemplary Cas9 fusion proteins are not fused via a linker. In some embodiments, the fusion proteins further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N -terminus of the third protein. In some embodiments, the NLS is fused to the C-terminus of the third protein. In some embodiments, the NLS is fused to the N-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N -terminus of the nucleic acid-editing enzyme or domain. In some embodiments, the NLS is fused to the C-terminus of the nucleic acid-editing enzyme or domain. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is
fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusioin protein without a linker

Uracil glycosylase inhibitorfusion proteins

[00346] Some aspects of the disclosure relate to fusion proteins that comprise a uracil glycosylase inhibitor (UGI) domain. In some embodiments, any of the fusion proteins provided herein that comprise a Cas9 domain (e.g., a nuclease active Cas9 domain, a nuclease inactive dCas9 domain, or a Cas9 nickase) may be further fused to a UGI domain either directly or via a linker. Some aspects of this disclosure provide deaminase-dCas9 fusion proteins, deaminase-nuclease active Cas9 fusion proteins and deaminase-Cas9 nickase fusion proteins with increased nucleobase editing efficiency. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of $U: G$ heteroduplex DNA may be responsible for the decrease in nucleobase editing efficiency in cells. For example, uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. As demonstrated in the Examples below, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Thus, this disclosure contemplates a fusion protein comprising dCas9-nucleic acid editing domain futher fused to a UGI domain. This disclosure also contemplates a fusion protein comprising a Cas9 nickase-nucleic acid editing domain further fused to a UGI domain. It should be understood that the use of a UGI domain may increase the editing efficiency of a nucleic acid editing domain that is capable of catalyzing a C to U change. For example, fusion proteins comprising a UGI domain may be more efficient in deaminating C residues. In some embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[UGI];
[deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[dCas9];
[UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[dCas9];
[UGI]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[deaminase];
[dCas9]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[UGI];
[dCas9]-[optional linker sequence]-[UGI]-[optional linker sequence]-[deaminase]; [deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[first UGI][optional linker sequence]-[second UGI];
[deaminase]-[optional linker sequence]-[first UGI]-[optional linker seqeunce]-[second UGI]-[optional linker sequence]-[dCas9];
[first UGI]-[optional linker sequence]-[second UGI]-[optional linker sequence]-
[deaminase]-[optional linker sequence]-[dCas9];
[first UGI]-[optional linker sequence]-[second UGi]- [optional linker sequence]-[dCas9]-[optional linker sequence]-[deaminase];
[dCas9]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[first UGI][optional linker sequence]-[second UGI]; or
[dCas9]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI]-[optional linker sequence]-[deaminase].
[00347] In other embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence][UGI];
[deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9 nickase] ;
[UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[Cas9 nickase];
[UGI]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence][deaminase];
[Cas9 nickase]-[optional linker sequence]-[deaminase]-[optional linker sequence][UGI]; [Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence][deaminase]
[deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI];
[deaminase]-[optional linker sequence]-[first UGI]-[optional linker seqeunce]-[second UGI]-[optional linker sequence]-[Cas9 nickase];
[first UGI]-[optional linker sequence] -[second UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[Cas9 nickase];
[first UGI]-[optional linker sequence]-[second UGi]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[deaminase];
[Cas9 nickase]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI]; or
[Cas9 nickase]-[optional linker sequence]-[first UGI]-[optional linker sequence][second UGI]-[optional linker sequence]-[deaminase].
[00348] It should be appreciated that any of the fusion proteins described above may be comprised of (i) a nucleic acid programmable DNA binding protein (napDNAbp); (ii) a cytidine deaminase domain; and (iii) two or more UGI domains, wherein the two or more UGI
domains may be adjacent (e.g., [first UGI]-[second UGI], wherein "-" is an optional linker) to one another in the construct, or the two or more UGI domains may be separated by the napDNAbp of (i) and/or the cytidine deaminase domain of (ii) (e.g., [first UGI]-[deaminase][second UGI], [first UGI]-[napDNAbp]-[second UGI], [first UGI]-[deaminase]- [napDNAbp] [second UGI], ect., wherein "-" is an optional linker).
[00349] In another aspect, the fusion protein comprises: (i) a Cas9 enzyme or domain; (ii) a nucleic acid-editing enzyme or domain (e.g., a second protein) (e.g., a cytidine deaminase domain); (iii) a first uracil glycosylase inhibitor domain (UGI) (e.g., a third protein); and (iv) a second uracil glycosylase inhibitor domain (UGI) (e.g., a fourth protein). The first and second uracil glycosylase inhibitor domains (UGIs) may be the same or different. In some embodiments, the Cas 9 domain (e.g., the first protein) and the deaminase (e.g., the second protein) are fused via a linker. In some embodiments, the Cas9 domain is fused to the Cterminus of the deaminase. In some embodiments, the Cas9 protein (e.g., the first protein) and the first UGI domain (e.g., the third protein) are fused via a linker (e.g., a second linker). In some embodiments, the first UGI domain is fused to the C-terminus of the Cas9 protein. In some embodiments, the first UGI domain (e.g., the third protein) and the second UGI domain (e.g., the forth protein) are fused via a linker (e.g., a third linker). In some embodiments, the second UGI domain is fused to the C-terminus of the first UGI domain. In some embodiments, the linker comprises a (GGGGS) ${ }_{\mathrm{n}}$ (SEQ ID NO: 607), a (G) $)_{\mathrm{n}}$ (SEQ ID NO: 608), an (EAAAK),, (SEQ ID NO: 609), a (GGS),, (SEQ ID NO: 610), (SGGS),, (SEQ ID NO: 606), a SGSETPGTSESATPES (SEQ ID NO: 604), a SGGS(GGS),,(SEQ ID NO: 612), a SGGSSGGSSGS ETPGTS ESATPES SGGSSGGS (SEQ ID NO: 605), or an (XP) ${ }_{n}$ (SEQ ID NO: 611) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, the first linker comprises an amino acid sequence of 1-50 amino acids. In some embodiments, the first linker comprises an amino acid sequence of $1-40$ amino acids. In some embodiments, the first linker comprises an amino acid sequence of 1-35 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 1-30 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 1-20 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 10-20 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 30-40 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 14,16 , or 18 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 16 amino acids. In some embodiments, the first linker comprises an amino acid sequence of 30,32 , or 34 amino acids. In some embodiments, the first linker
comprises an amino acid sequence of 32 amino acids. In some embodiments, the first linker comprises a SGSETPGTSESATPES (SEQ ID NO: 604) motif. In some embodiments, the first linker comprises a SGGSSGGSSGS ETPGTSESATPES SGGSSGGS (SEQ ID NO: 605) motif. In some embodiments, the second linker comprises comprises an amino acid sequence of 1-50 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 1-40 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 1-35 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 1-30 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 1-20 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 2-20 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 2-10 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 10-20 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 2,4 , or 6 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 7,9 , or 11 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 14,16 , or 18 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 4 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 9 amino acids. In some embodiments, the second linker comprises an amino acid sequence of 16 amino acids. In some embodiments, the second linker comprises a (SGGS) ${ }_{n}$ (SEQ ID NO: 606) motif, wherein n is an integer between 1 and 30 , inclusive. In some embodiments, the second linker comprises a (SGGS) ${ }_{n}$ (SEQ ID NO: 606) motif, wherein n is 1 . In some embodiments, the second linker comprises a SGGS(GGS) ${ }_{n}$ (SEQ ID NO: 612) motif, wherein n is an integer between 1 and 30 , inclusive. In some embodiments, the second linker comprises a $\operatorname{SGGS}_{(G G S)}{ }_{n}$ (SEQ ID NO: 612) motif, wherein n is 2 . In some embodiments, the third linker comprises comprises an amino acid sequence of 1-50 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 1-40 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 1-35 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 1-30 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 1-20 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 2-20 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 2-10 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 10-20 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 2,4 , or 6 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 7, 9,
or 11 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 14,16 , or 18 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 4 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 9 amino acids. In some embodiments, the third linker comprises an amino acid sequence of 16 amino acids. In some embodiments, the third linker comprises a (SGGS) ${ }_{n}$ (SEQ ID NO: 606) motif, wherein n is an integer between 1 and 30, inclusive. In some embodiments, the third linker comprises a (SGGS) $)_{\mathrm{n}}$ (SEQ ID NO: 606) motif, wherein n is 1 . In some embodiments, the third linker comprises a $\left.\operatorname{SGGS}_{(G G S}\right)_{n}$ (SEQ ID NO: 612)motif, wherein n is an integer between 1 and 30 , inclusive. In some embodiments, the third linker

[00350] In some embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[first UGI][optional linker sequence]-[second UGI];
[deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI]; or
[deaminase]-[optional linker sequence]-[Cas9]-[optional linker sequence]-[first UGI][optional linker sequence]-[second UGI].
[00351] In another aspect, the fusion protein comprises: (i) a Cas9 enzyme or domain; (ii) a nucleic acid-editing enzyme or domain (e.g., a second protein) (e.g., a cytidine deaminase domain); (iii) more than two uracil glycosylase inhibitor (UGI) domains.
[00352] In some embodiments, the fusion proteins provided herein do not comprise a linker sequence. In some embodiments, one or both of the optional linker sequences are present. In some embodiments, one, two, or three of the optional linker sequences are present.
[00353] In some embodiments, the "-" used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the fusion proteins comprising a UGI further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N -terminus of the fusion protein. In some embodiments, the NLS is fused to the Cterminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the deaminase. In some embodiments,
the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the N -terminus of the second Cas9. In some embodiments, the NLS is fused to the Cterminus of the second Cas9. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusioin protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. In some embodiments, the NLS comprises an amino acid sequence as set forth in SEQ ID NO: 614or SEQ ID NO: 615.
[00354] In some embodiments, a UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 134. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 134. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 134. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 134 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 134. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as "UGI variants." A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 134. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 134. In some embodiments, the UGI comprises the following amino acid sequence:
>splP14739IUNGI_BPPB2 Uracil-DNA glycosylase inhibitor
MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTS
DAPEYKPWALVIQDSNGENKIKML (SEQ ID NO: 134)
[00355] Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264: 11631171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of each are incorporated herein by reference.
[00356] It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. Additionally, any proteins that block or inhibit base-excision repair as also within the scope of this disclosure. In some embodiments, the fusion proteins described herein comprise one UGI domain. In some emobidments, the fusion proteins described herein comprise more than one UGI domain. In some embodiments, the fusion proteins described herein comprise two UGI domains. In some embodiments, the fusion proteins described herein comprise more than two UGI domains. In some embodiments, a protein that binds DNA is used. In another embodiment, a substitute for UGI is used. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Erwinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 135). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNAglycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 136). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically
inactive UDG comprises the amino acid sequence (SEQ ID NO: 137). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that is homologous to any one of SEQ ID NOs: 135-137 or 143-148. In some embodiments, a uracil glycosylase inhibitor is a protein that is at least 50% identical, at least 55% identical at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 98% identical, at least 99% identical, or at least 99.5% identical to any one of SEQ ID NOs: 135-137 or 143-148.

Erwinia tasmaniensis SSB (themostable single-stranded DNA binding protein) MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETKEKTEWH RVVLFGKLAEVAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTTEVVVNVGGTMQ MLGGRSQGGGASAGGQNGGSNNGWGQPQQPQGGNQFSGGAQQQARPQQQPQQNN APANNEPPIDFDDDIP (SEQ ID NO: 135)

UdgX (binds to Uracil in DNA but does not excise)
MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMIGEQPG DKEDLAGLPFVGPAGRLLDRALEAADIDRDALYVTNAVKHFKFTRAAGGKRRIHKTP SRTEVVACRPWLIAEMTSVEPDVVVLLGATAAKALLGNDFRVTQHRGEVLHVDDVP GDPALVATVHPS SLLRGPKEERES AFAGLVDDLRV AADVRP (SEQ ID NO: 136)

UDG (catalytically inactive human UDG, binds to Uracil in DNA but does not excise) MIGQKTLYS FFSPSPARKRH APSPEPAVQGTGVAGVPEES GDAAAIPAKKAP AGQEEP GTPPSSPLSAEQLDRIQRNKAAALLRLAARNVPVGFGESWKKHLSGEFGKPYFIKLMG FVAEERKHYTVYPPPHQVFTWTQMCDIKDVKVVILGQEPYHGPNQAHGLCFSVQRPV PPPPSLENIYKELSTDIEDFVHPGHGDLSGWAKQGVLLLNAVLTVRAHQANSHKERG WEQFTD AVVSWLNQNS NGLVFLLWGS YAQKKGS AIDRKRHH VLQTAHPSPLSVYRG FFGCRHFS KTNELLQKS GKKPIDWKEL (SEQ ID NO: 137)
[00357] Additional single-stranded DNA binding proteins that can be used as a UGI are shown below. It should be appreciated that other single-stranded binding proteins may be used as a UGI, for example those described in Dickey TH, Altschuler SE, Wuttke DS. Single-
stranded DNA-binding proteins :multiple domains for multiple functions. Structure. 2013 Jul 2;21(7): 1074-84.
doi: 10.1016/j.str.2013.05.013. Review.; Marceau AH. Functions of single-strand DNAbinding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi:
10. 1007/978-1-62703-032-8_1.; Mijakovic, Ivan, et al ; Bacterial single-stranded DNAbinding proteins are phosphorylated on tyrosine. Nucleic Acids Res 2006; 34 (5): 1588-1596. doi: 10.1093/nar/gkj514; Mumtsidu E, Makhov AM, Konarev PV, Svergun DI, Griffith JD, Tucker PA. Structural features of the single-stranded DNA-binding protein of EpsteinBarrvirus. J Struct Biol. 2008 Feb;161(2):172-87. Epub 2007 Nov 1; Nowak M, Olszewski M, Spibida M, Kur J. Characterization of single-strandedDNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobactercryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and

Photobacterium profundum. BMC Microbiol. 2014 Apr 14;14:91. doi: 10.1186/1471-2180-1491; Tone T, Takeuchi A, Makino O. Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage $\Phi 29$ is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. Epub 2012 Dec 7; Wold. REPLICATION PROTEIN A:A Heterotrimeric, Single-Stranded DNA-Binding Protein Required for Eukaryotic DNA Metabolism. Annual Review of Biochem. 1997; 66:61-92. doi: 10.1146/annurev.biochem.66.1.61; Wu Y, Lu J, Kang T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). 2016 Jul;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub 2016 May 23. Review; the entire contents of each are hereby incorporated by reference.
mtSSB - SSBP1 single stranded DNA binding protein 1 [Homo sapiens (human)] (UniProtKB: Q04837; NP_001243439.1)
MFRRPVLQVLRQFVRHESETTTSLVLERSLNRVHLLGRVGQDPVLRQVEGKNPVTIFS LATNEM WRS GDSEVYQLGDVSQKTTWHRIS VFRPGLRDVAYQYVKKGS RIYLEGKI DYGEYMDKNNVRRQATTIIADNIIFLSDQTKEKE (SEQ ID NO: 138)

STNSSDNIYTMINPVPPGGSRSNFPMGPGSDGPMGGMGGMEPHHMNGSLGSGDIDGL PKNS PNNIS GISNPPGTPRDDGELGGNFLHS FQNDN Y SPSMTMS V (SEQ ID NO: 139)

Abstract

RPA 1 - Replication protein A 70 kDa DNA-binding subunit (UniProtKB: P27694; NCBI Ref: NM_002945.3) MVGQLSEGAIAAIMQKGDTNIKPILQVINIRPITTGNSPPRYRLLMSDGLNTLSSFMLAT QLNPLVEEEQLS SNCVCQIHRFIVNTLKD GRRVVILMELE VLKS AEAVGVKIGNP VPY NE GLGQPQVAPPAPAASPAASSRPQPQNGS SGMGSTVS KAYGASKTFGKAAGPSLSHTS GGTQS KVVPIAS LTPYQS KWTIC ARVTNKS QIRTWS NSRGEGKLFS LELVDES GEIR AT AFNEQVDKFFPLIEVNKVYYFSKGTLKIANKQFTAVKNDYEMTFNNETSVMPCEDDH HLPTVQFDFTGIDDLENKSKDSLVDIIGICKSYEDATKITVRSNNREVAKRNIYLMDTS GKVVTATLWGEDADKFDGSRQPVLAIKGARVSDFGGRSLSVLSSSTIIANPDIPEAYKL RGWFDAEGQALDGVSISDLKSGGVGGSNTNWKTLYEVKSENLGQGDKPDYFSSVAT VVYLRKENCMYQACPTQDCNKKVIDQQNGLYRCEKCDTEFPNFKYRMILSVNIADFQ ENQWVTCFQESAEAILGQNAAYLGELKDKNEQAFEEVFQNANFRSFIFRVRVKVETY NDESRIKATVMDVKPVDYRE YGRRLVMS IRRS ALM (SEQ ID NO: 140)


```
RPA 2 - Replication protein A 32 kDa subunit (UniProtKB: P15927; NCBI Ref: NM_002946)
MWNS GFES YGS SSYGGAGGYTQS PGGFGS PAPS QAEKKSRARAQHIVPCTIS QLLS AT LVDEVFRIGNVEISQVTIVGIIRHAEKAPTNIVYKIDDMTAAPMDVRQWVDTDDTSSE NTVVPPETYVKVAGHLRSFQNKKSLVAFKIMPLEDMNEFTTHILEVINAHMVLSKAN SQPSAGRAPISNPGMSEAGNFGGNSFMPANGLTVAQNQVLNLIKACPRPEGLNFQDL KNQLKHMS VSSIKQAVDFLS NEGHIYS TVDDDHFKS TDAE (SEQ ID NO: 141)
```

```
RPA 3-Replication protein A 14 kDa subunit (UniProtKB: P35244; NCBI Ref:
NM_002947.4)
MVDMMDLPRSRINAGMLAQFIDKPVCFVGRLEKIHPTGKMFILSDGEGKNGTIELMEP
LDEEISGIVEVVGRVTAKATILCTSYVQFKEDSHPFDLGLYNEAVKIIHDFPQFYPLGIV
QH
D (SEQ ID NO: 142)
```


Bacterial single-stranded DNA-binding proteins:

ssbA - single-stranded DNA-binding protein [Bacillus subtilis subsp. subtilis str. 168] (UniProtKB: P37455; NCBI Ref:)

MLNRVVLVGR LTKDPELRYT PNGAAVATFT LAVNRTFTNQ SGEREADFIN CVTWRRQAEN VANFLKKGSL AGVDGRLQTR NYENQQGQRV FVTEVQAESV QFLEPKNGGG SGSGGYNEGN SGGGQYFGGG QNDNPFGGNQ NNQRRNQGNS FNDDPFANDG KPIDISDDDLPF (SEQ ID NO: 143)

Single-stranded DNA-binding protein 2 [Streptomyces coelicolor A3(2)] (UniProtKB: Q9X8U3; NCBI Ref: NP_628093.1)

MAGETVITVVGNLVDDPELRFTPSGAAVAKFRVASTPRTFDRQTNEWKDGESLFLTC SVWRQ AAENVAESLQRGMR VIVQGRLKQRS YEDREG VKRTVYELDVDEVGASLRS A TAKVTKTSGQGRGGQGGYGGGGGGQGGGGWGGGPGGGQQGGGAPADDPWATGG APAGGQQGGGGQGGGGWGGGSGGGGGYSDEPPF (SEQ ID NO: 144)

Single-stranded DNA-binding protein [Streptococcus pneumoniae R6] (UniProtKB: P66855; NCBI Ref: NP_358988.1)

MINNVVLVGRMTRDAELRYTPSNVAVATFTLAVNRTFKSQNGEREADFINVVMWRQ QAENLANWAKKGSLIGVTGRIQTRSYDNQQGQRVYVTEVVAENFQMLESRSVREGH TGGAYSAPTANYSAPTNS VPDFSRNENPFG ATNPLDIS DDDLPF (SEQ ID NO: 145)

Viral single-stranded DNA-binding proteins:
Single-stranded DNA-binding protein [Human alphaherpesvirus 1] (UniProtKB: P04296; NCBI Ref: YP_009137104.1)

METKPKTATTIKVPPGPLGYVYARACPSEGIELLALLSARSGDSDVAVAPLVVGLTVE SGFEANVAVVVGSRTTGLGGT AVSLKLTPS HYSSSVYVFHGGRHLDPS TQAPNLTRL CERARRHFGFSDYTPRPGDLKHETTGEALCERLGLDPDRALLYLVVTEGFKEAVCINN TFLHLGGSDKVTIGGAEVHRIPVYPLQLFMPDFSRVIAEPFNANHRSIGENFTYPLPFFN RPLNRLLFEAVVGPAAVALRCRNVDAVARAAAHLAFDENHEGAALPADITFTAFEAS QGKTPRGGRDGGGKGPAGGFEQRLASVMAGDAALALESIVSMAVFDEPPTDISAWPL FEGQDTAAARANAVGAYLARAAGLVGAMVFSTNSALHLTEVDDAGPADPKDHSKPS FYRFFLVPGTHVAANPQVDREGHVVPGFEGRPTAPLVGGTQEFAGEHLAMLCGFSPA LLAKMLFYLERCDGGVIVGRQEMDVFRYVADSNQTDVPCNLCTFDTRHACVHTTLM RLRARHPKF ASAARGAIGVFGTMNS MYSDCDVLGNYAAFS ALKRADGSETARTIMQ ETYRAATERVMAELETLQYVDQAVPTAMGRLETIITNREALHTVVNNVRQVVDREV EQLMRNLVEGRNFKFRDGLGEANHAMSLTLDPYACGPCPLLQLLGRRSNLAVYQDL ALSQCHGVFAGQSVEGRNFRNQFQPVLRRRVMDMFNNGFLSAKTLTVALSEGAAIC APSLTAGQT APAES SFEGDVARVTLGFPKELRVKS RVLFAGASANASEAAKARV ASL QSAYQKPDKRVDILLGPLGFLLKQFHAAIFPNGKPPGSNQPNPQWFWTALQRNQLPA RLLS REDIETIAFIKKFS LDYGAINFINLAPNN VSELAMYYMANQILR YCDHS TYFINTL TAIIAGS RRPPS VQAAAAWSAQGGAGLEAGARALMD AVDAHPGAWTSMFASCNLLR PVMAARPMVVLGLSISKYYGMAGNDRVFQAGNWASLMGGKNACPLLIFDRTRKFVL ACPR AGFVC AASSLGGGAHES SLCEQLRGIIS EGGAAV ASSVFVATVKSLGPRTQQLQI EDWLALLEDE YLSEEMMELT ARALERGNGE WSTDAALEVAHEAEALVSQLGNAGE VFNFGDFGCEDDNATPFGGPGAPGPAFAGRKRAFHGDDPFGEGPPDKKGDLTLDML (SEQ ID NO: 146)

Single-stranded DNA-binding protein from Bacillus virus phi29 (UniProtKB: Q38504.1; NCBI Ref: YP_002004532.1)

MENTNIVKATFDTETLEGQIKIFNAQTGGGQSFKNLPDGTIIEANAIAQYKQVSDTYGD AKEETVTTIFAADGSLYSAIS KTVAEAASDLIDLVTRHKLETFKVKV VQGTS SKGNVF FSLQLSL (SEQ ID NO: 147)

Single stranded DNA binding protein [Burkholderia virus DC1] (UniProtKB: I6NRL7; NCBI Ref: YP_006589943.1)

MASVNKVILVGNLGADPETRYLPSGDAISNIRLATTDRYKDKASGEMKESTEWHRVS FFGRLAEIVDEYLRKGAPVYIEGRIRTRKWQDNAGQDRYTTEIVAEKMQMLGDRRDG GERQQRAPQQQQQRTQRNGYADATGRAQPSQRPAAGGGFDEMDDDIPF (SEQ ID NO: 148)

[00358] In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC 1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the demianse is a rat APOBEC1 (SEQ ID NO: 74). In some embodiments, the deminase is a human APOBEC 1 (SEQ ID No: 76). In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDAl). In some embodiments, the deminase is a human APOBEC3G (SEQ ID NO: 60). In some embodiments, the deaminase is a fragment of the human APOBEC3G (SEQ ID NO: 83). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 82). In some embodiments, the deaminase is a frantment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 60 (SEQ ID NO: 84).
[00359] In some embodiments, the linker comprises a (GGGS) ${ }_{n}$ (SEQ ID NO: 613), (GGGGS) $_{\mathrm{n}}$ (SEQ ID NO: 607), a (G),, (SEQ ID NO: 608), an (EAAAK),, (SEQ ID NO: 609), a (GGS),, (SEQ ID NO: 610), an SGSETPGTSESATPES (SEQ ID NO: 604), or an (XP) ${ }_{\mathrm{n}}$ (SEQ ID NO: 611) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30 .
[00360] Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264: 11631171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997);

Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al, Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of which are incorporated herein by reference. In some embodiments, the optional linker comprises a $(\mathrm{GGS})_{\mathrm{n}}($ SEQ ID NO: 610) motif, wherein n is $1,2,3,4,5,6,7,8,9,19,11,12$, $13,14,15,16,17,18,19$, or 20 . In some embodiments, the optional linker comprises a (GGS) ${ }_{n}$ (SEQ ID NO: 610) motif, wherein n is 1,3 , or 7 . In some embodiments, the optional linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 604), which is also referred to as the XTEN linker in the Examples.
[00361] In some embodiments, a Cas9 nickase may further facilitate the removal of a base on the non-edited strand in an organism whose genome is edited in vivo. The Cas9 nickase, as described herein, may comprise a D10A mutation in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. In some embodiments, the Cas9 nickase of this disclosure may comprise a histidine at mutation 840 of SEQ ID NO: 6 , or a corresponding residue in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein. Such fusion proteins comprising the Cas9 nickase, can cleave a single strand of the target DNA sequence, e.g., the strand that is not being edited. Without wishing to be bound by any particular theory, this cleavage may inhibit mis-match repair mechanisms that reverse a C to U edit made by the deaminase.

Cas9 complexes with guide RNAs

[00362] Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA bound to a Cas9 domain (e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase) of fusion protein.
[00363] In some embodiments, the guide RNA is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is $15,16,17,18,19,20,21,22,23,24,25$, $26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49$, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15,16 , $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$, or 40 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3^{\prime} end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the guide RNA is complementary to a sequence associated with a disease or disorder.

Methods of using Cas9fusion proteins

[00364] Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with any of the the Cas9 proteins or fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with at least one gRNA as provided herein. In some embodiments, the 3^{\prime} end of the target sequence is not immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3^{\prime} end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.
[00365] In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the Cas9 protein, the Cas9 fusion protein, or the complex results in a correction of the point mutation. In some embodiments, the target DNA sequence comprises a $\mathrm{T} \rightarrow \mathrm{C}$ point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder. In some embodiments, the target DNA sequence encodes a protein and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon. In some embodiments, the deamination of the mutant C results in a change of the amino acid
encoded by the mutant codon. In some embodiments, the deamination of the mutant C results in the codon encoding the wild-type amino acid. In some embodiments, the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder. In some embodiments, the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), desminrelated myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB 1 protein, a mutant HRAS protein, or a mutant p53 protein.
[00366] Some embodiments provide methods for using the Cas9 DNA editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a Cas9 DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.
[00367] In some embodiments, the purpose of the methods provide herein is to restore the function of a dysfunctional gene via genome editing. The Cas9 deaminase fusion proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the fusion proteins provided herein, e.g., the fusion proteins comprising a Cas9 domain and a nucleic acid deaminase domain can be used to correct any single point T -> C or A -> G mutation. In the first case, deamination of the mutant C back to U corrects the mutation, and in the latter case, deamination of the C that is base-paired with the mutant G , followed by a round of replication, corrects the mutation.
[00368] An exemplary disease-relevant mutation that can be corrected by the provided fusion proteins in vitro or in vivo is the H1047R (A3140G) polymorphism in the PI3KCA protein. The phosphoinositide-3-kinase, catalytic alpha subunit (PI3KCA) protein acts to phosphorylate the 3-OH group of the inositol ring of phosphatidylinositol. The PI3KCA gene has been found to be mutated in many different carcinomas, and thus it is considered to be a potent oncogene. ${ }^{37}$ In fact, the A3140G mutation is present in several NCI-60 cancer cell lines, such as, for example, the HCT116, SKOV3, and T47D cell lines, which are readily available from the American Type Culture Collection (ATCC). ${ }^{38}$
[00369] In some embodiments, a cell carrying a mutation to be corrected, e.g., a cell carrying a point mutation, e.g., an A3140G point mutation in exon 20 of the PI3KCA gene, resulting in a H1047R substitution in the PI3KCA protein, is contacted with an expression construct encoding a Cas9 deaminase fusion protein and an appropriately designed sgRNA targeting the fusion protein to the respective mutation site in the encoding PI3KCA gene. Control experiments can be performed where the sgRNAs are designed to target the fusion enzymes to non-C residues that are within the PI3KCA gene. Genomic DNA of the treated cells can be extracted, and the relevant sequence of the PI3KCA genes PCR amplified and sequenced to assess the activities of the fusion proteins in human cell culture.
[00370] It will be understood that the example of correcting point mutations in PI3KCA is provided for illustration purposes and is not meant to limit the instant disclosure. The skilled artisan will understand that the instantly disclosed DNA-editing fusion proteins can be used to correct other point mutations and mutations associated with other cancers and with diseases other than cancer including other proliferative diseases.
[00371] The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of Cas9 and deaminase enzymes or domains also have applications in "reverse" gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating Trp (TGG), Gin (CAA and CAG), or Arg (CGA) residues to premature stop codons (TAA, TAG, TGA) can be used to abolish protein function in vitro, ex vivo, or in vivo. [00372] The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a Cas 9 DNA editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a PI3KCA point mutation as described above, an effective amount of a Cas9
deaminase fusion protein that corrects the point mutation or introduces a deactivating mutation into the disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect. [00373] The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation, cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria - e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., McDonald et al, Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS) - e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK) - e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 (T>C mutation) - see, e.g., Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic
obstructive pulmonary disease (COPD) - e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of aiantitrypsin or residue 78 in the unprocessed form or a homologous residue ($\mathrm{T}>\mathrm{C}$ mutation) see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number POlOll in the UNIPROT database; Charcot-Marie-Toot disease type $4 \mathrm{~J}-e . g$., isoleucine to threonine mutation at position 41 or a homologous residue in FIG4 (T>C mutation) - see, e.g., Lenk et al., PLoS Genetics. 2011; 7: el002104; neuroblastoma (NB) - e.g., leucine to proline mutation at position 197 or a homologous residue in Caspase-9 (T>C mutation) - see, e.g., Kundu et al., 3 Biotech. 2013, 3:225-234; von Willebrand disease (vWD) - e.g., cysteine to arginine mutation at position 509 or a homologous residue in the processed form of von Willebrand factor, or at position 1272 or a homologous residue in the unprocessed form of von Willebrand factor (T>C mutation) - see, e.g., Lavergne et al., Br. J. Haematol. 1992, see also accession number P04275 in the UNIPROT database; 82: 66-72; myotonia congenital - e.g., cysteine to arginine mutation at position 277 or a homologous residue in the muscle chloride channel gene CLCN1 (T>C mutation) - see, e.g., Weinberger et al, The J. of Physiology. 2012; 590: 34493464; hereditary renal amyloidosis - e.g., stop codon to arginine mutation at position 78 or a homologous residue in the processed form of apolipoprotein All or at position 101 or a homologous residue in the unprocessed form ($\mathrm{T}>\mathrm{C}$ mutation) - see, e.g., Yazaki et al., Kidney Int. 2003; 64: 11-16; dilated cardiomyopathy (DCM) - e.g., tryptophan to Arginine mutation at position 148 or a homologous residue in the FOXD4 gene ($\mathrm{T}>\mathrm{C}$ mutation), see, e.g., Minoretti et. al., Int. J. of Mol. Med. 2007; 19: 369-372; hereditary lymphedema - e.g., histidine to arginine mutation at position 1035 or a homologous residue in VEGFR3 tyrosine kinase (A>G mutation), see, e.g., Irrthum et al., Am. J. Hum. Genet. 2000; 67: 295-301; familial Alzheimer's disease - e.g., isoleucine to valine mutation at position 143 or a homologous residue in presenilinl (A>G mutation), see, e.g., Gallo et. al., J. Alzheimer's disease. 2011; 25: 425-431; Prion disease - e.g., methionine to valine mutation at position 129 or a homologous residue in prion protein (A>G mutation) - see, e.g., Lewis et. al., J. of General Virology. 2006; 87: 2443-2449; chronic infantile neurologic cutaneous articular syndrome (CINCA) - e.g., Tyrosine to Cysteine mutation at position 570 or a homologous residue in cryopyrin (A>G mutation) - see, e.g., Fujisawa et. al. Blood. 2007; 109: 2903-2911; and desmin-related myopathy (DRM) - e.g., arginine to glycine mutation at position 120 or a homologous residue in $\alpha \beta$ crystallin (A>G mutation) - see, e.g., Kumar et al., J. Biol. Chem. 1999; 274: 24137-24141. The entire contents of all references and database entries is incorporated herein by reference.
[00374] It will be apparent to those of skill in the art that in order to target a Cas9:nucleic acid editing enzyme/domain fusion protein as disclosed herein to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the Cas9:nucleic acid editing enzyme/domain fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. In some embodiments, the guide RNA comprises a structure 5'-[guide sequence]guuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu u-3' (SEQ ID NO: 618), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific target sequences are provided below.

Base Editor Efficiency

[00375] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An "indel", as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is greater than 1:1. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is at least $1.5: 1$, at least $2: 1$, at least $2.5: 1$, at least $3: 1$, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at
least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least $15: 1$, at least $20: 1$, at least $25: 1$, at least $30: 1$, at least $40: 1$, at least $50: 1$, at least 100:1, at least 200:1, at least 300:1, at least $400: 1$, at least $500: 1$, at least $600: 1$, at least $700: 1$, at least $800: 1$, at least $900: 1$, or at least $1000: 1$, or more. The number of intended mutations and indels may be determined using any suitable method, for example the methods used in the below Examples.
[00376] In some embodiments, the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid. In some embodiments, the region is at a nucleotide targeted by a base editor or a region within $2,3,4,5,6,7,8,9$, or 10 nucleotides of a nucleotide targeted by a base editor. In some embodiments, any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%. The number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor. In some embodiments, an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.
[00377] Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations. In some embodiments, a intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to generate the intended mutation. In some embodiments, the intended mutation is a mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a point mutation that generates a stop codon, for example, a premature stop codon within the coding region of a gene. In some embodiments, the intended mutation
is a mutation that eliminates a stop codon. In some embodiments, the intended mutation is a mutation that alters the splicing of a gene. In some embodiments, the intended mutation is a mutation that alters the regulatory sequence of a gene (e.g., a gene promotor or gene repressor). In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is greater than 1:1. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least $5: 1$, at least $5.5: 1$, at least $6: 1$, at least $6.5: 1$, at least $7: 1$, at least $7.5: 1$, at least $8: 1$, at least $10: 1$, at least $12: 1$, at least $15: 1$, at least $20: 1$, at least $25: 1$, at least $30: 1$, at least $40: 1$, at least $50: 1$, at least 100:1, at least $150: 1$, at least 200:1, at least $250: 1$, at least $500: 1$, or at least 1000:1, or more. It should be appreciated that the character sties of the base editors described in the "Base Editor Efficiency" section, herein, may be applied to any of the fusion proteins, or methods of using the fusion proteins provided herein.

Methodsfor Editing Nucleic Acids

[00378] Some aspects of the disclosure provide methods for editing a nucleic acid. In some embodiments, the method is a method for editing a nucleobase of a nucleic acid (e.g., a base pair of a double-stranded DNA sequence). In some embodiments, the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor (e.g., a Cas9 domain fused to a cytidine deaminase domain) and a guide nucleic acid (e.g., gRNA), wherein the target region comprises a targeted nucleobase pair, b) inducing strand separation of said target region, c)converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, and d) cutting no more than one strand of said target region, where a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase; and the method results in less than 20% indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, the first nucleobase is a cytosine. In some embodiments, the second nucleobase is a deaminated cytosine, or a uracil. In some embodiments, the third nucleobase is a guanine. In some embodiments, the fourth nucleobase is an adenine. In some embodiments, the first nucleobase is a cytosine, the second nucleobase is a deaminated cytosine, or a uracil, the third nucleobase is a guanine, and the fourth nucleobase is an
adenine. In some embodiments, the method results in less than $19 \%, 18 \%, 16 \%, 14 \%, 12 \%$, $10 \%, 8 \%, 6 \%, 4 \%, 2 \%, 1 \%, 0.5 \%, 0.2 \%$, or less than 0.1% indel formation. In some embodiments, the method further comprises replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair (e.g., C:G -> T:A). In some embodiments, the fifth nucleobase is a thymine. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least $10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, or 50% of the intended basepaires are edited.
[00379] In some embodiments, the ratio of intended products to unintended products in the target nucleotide is at least $2: 1,5: 1,10: 1,20: 1,30: 1,40: 1,50: 1,60: 1,70: 1,80: 1,90: 1$, 100: 1 , or 200: 1 , or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than $1: 1,10: 1,50: 1,100: 1,500: 1$, or $1000: 1$, or more. In some embodiments, the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the base editor comprises a Cas9 domain. In some embodiments, the first base is cytosine, and the second base is not a G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the first base is cytosine. In some embodiments, the second base is not a G, C, A, or T . In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base escision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the base editor comprises UGI activity. In some embodiments, the base editor comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, $7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, linker is $10,11,12,13,14,15,16,17,18,19$, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1 10 nucleotides. In some embodiments, the target window is $1-9,1-8,1-7,1-6,1-5,1-4,1-3,1-$

2 , or 1 nucleotides in length. In some embodiments, the target window is $1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides in length. In some embodiments, the intended edited base pair is within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the method is performed using any of the base editors provided herein. In some embodiments, a target windo is a deamination window
[00380] In some embodiments, the disclosure provides methods for editing a nucleotide. In some embodiments, the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence. In some embodiments, the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) cutting no more than one strand of said target region, wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase, and the second nucleobase is replaced with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited basepair, wherein the efficiency of generating the intended edited basepair is at least 5%. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least $10 \%, 15 \%, 20 \%, 25 \%$, $30 \%, 35 \%, 40 \%, 45 \%$, or 50% of the intended basepaires are edited. In some embodiments, the method causes less than $19 \%, 18 \%, 16 \%, 14 \%, 12 \%, 10 \%, 8 \%, 6 \%, 4 \%, 2 \%, 1 \%, 0.5 \%$, 0.2%, or less than 0.1% indel formation. In some embodiments, the ratio of intended product to unintended products at the target nucleotide is at least $2: 1,5: 1,10: 1,20: 1,30: 1,40: 1,50: 1$, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than $1: 1,10: 1,50: 1,100: 1,500: 1$, or $1000: 1$, or more. In some embodiments, the cut single strand is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the first base is cytosine. In some embodiments, the second nucleobase is not $\mathrm{G}, \mathrm{C}, \mathrm{A}$, or T . In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base escision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the nucleobase editor comprises UGI activity. In some embodiments, the nucleobase edit comprises nickase activity. In some embodiments, the intended edited basepair is upstream of
a PAM site. In some embodiments, the intended edited base pair is $1,2,3,4,5,6,7,8,9,10$, $11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, the linker is $10,11,12,13,14,15,16,17,18,19$, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-$5,1-4,1-3,1-2$, or 1 nucleotides in length. In some embodiments, the target window is $1,2,3$, $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides in length. In some embodiments, the intended edited base pair occurs within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the nucleobase editor is any one of the base editors provided herein.

Pharmaceutical compositions

[00381] In some embodiments, any of the fusion proteins, gRNAs, and/or complexes described herein are provided as part of a pharmaceutical composition. In some embodiments, the pharmaceutical composition comprises any of the fusion proteins provided herein. In some embodiments, the pharmaceutical composition comprises any of the complexes provided herein. In some embodiments, the pharmaceutical composition comprises a ribonucleoprotein complex comprising an RNA-guided nuclease (e.g., Cas9) that forms a complex with a gRNA and a cationic lipid. In some embodiments pharmaceutical composition comprises a gRNA, a nucleic acid programmable DNA binding protein, a cationic lipid, and a pharmaceutically acceptable excipient. Pharmaceutical compositions may optionally comprise one or more additional therapeutically active substances.
[00382] In some embodiments, compositions provided herein are administered to a subject, for example, to a human subject, in order to effect a targeted genomic modification within the subject. In some embodiments, cells are obtained from the subject and contacted with a any of the pharmaceutical compositions provided herein. In some embodiments, cells removed from a subject and contacted ex vivo with a pharmaceutical composition are re-introduced into the
subject, optionally after the desired genomic modification has been effected or detected in the cells. Methods of delivering pharmaceutical compositions comprising nucleases are known, and are described, for example, in U.S. Pat. Nos. 6,453,242; 6,503,717; 6,534,261; 6,599,692; $6,607,882 ; 6,689,558 ; 6,824,978 ; 6,933,113 ; 6,979,539 ; 7,013,219$; and 7,163,824, the disclosures of all of which are incorporated by reference herein in their entireties. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals or organisms of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, domesticated animals, pets, and commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.
[00383] Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient(s) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.
[00384] Pharmaceutical formulations may additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, $21^{\text {st }}$ Edition, A. R. Gennaro (Lippincott, Williams \& Wilkins, Baltimore, MD, 2006; incorporated in its entirety herein by reference) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. See also PCT application PCT/US2010/055131 (Publication number WO201 1053982 A8, filed Nov. 2, 2010), incorporated in its entirety herein by reference, for additional suitable methods, reagents, excipients and solvents for producing pharmaceutical compositions comprising a nuclease. Except insofar as any conventional excipient medium is incompatible
with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure. [00385] In some embodiments, compositions in accordance with the present invention may be used for treatment of any of a variety of diseases, disorders, and/or conditions, including but not limited to one or more of the following: autoimmune disorders (e.g. diabetes, lupus, multiple sclerosis, psoriasis, rheumatoid arthritis); inflammatory disorders (e.g. arthritis, pelvic inflammatory disease); infectious diseases (e.g. viral infections (e.g., HIV, HCV, RSV), bacterial infections, fungal infections, sepsis); neurological disorders (e.g. Alzheimer's disease, Huntington's disease; autism; Duchenne muscular dystrophy); cardiovascular disorders (e.g. atherosclerosis, hypercholesterolemia, thrombosis, clotting disorders, angiogenic disorders such as macular degeneration); proliferative disorders (e.g. cancer, benign neoplasms); respiratory disorders (e.g. chronic obstructive pulmonary disease); digestive disorders (e.g. inflammatory bowel disease, ulcers); musculoskeletal disorders (e.g. fibromyalgia, arthritis); endocrine, metabolic, and nutritional disorders (e.g. diabetes, osteoporosis); urological disorders (e.g. renal disease); psychological disorders (e.g. depression, schizophrenia); skin disorders (e.g. wounds, eczema); blood and lymphatic disorders (e.g. anemia, hemophilia); etc.

Kits, vectors, cells
[00386] Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
[00387] Some aspects of this disclosure provide polynucleotides encoding a Cas9 protein of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
[00388] Some aspects of this disclosure provide cells comprising a Cas9 protein, a fusion protein, a nucleic acid molecule encoding the fusion protein, a complex comprise the Cas9 protein and the gRNA, and/or a vector as provided herein.
[00389] The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.

EXAMPLES

EXAMPLE 1: Cas9 Deaminase Fusion Proteins

[00390] A number of Cas9:Deaminase fusion proteins were generated and deaminase activity of the generated fusions was characterized. The following deaminases were tested:

Human AID (hAID):
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPYLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENS VRLSRQLRRILLPLYEVDDLRDAFRTLGLLD (SEQ ID NO: 49)

Human AID-DC (hAID-DC, truncated version of hAID with 7-fold increased activity): MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENS VRLSRQLRRILL (SEQ ID NO: 50)

Rat APOBEC1 (rAPOBECl):
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS гт WFLSW SPCGECSRAITEFLSRYPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPR YPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 76)

Human APOBEC1 (hAPOBECl)
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNT TNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVA RLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPP LWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIH PSVAWR (SEQ ID NO: 74)

Petromyzon marinus (Lamprey) CDA1 (pmCDAl):
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKP QSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGN GHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQL NENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV (SEQ ID NO: 81)

Human APOBEC3G (hAPOBEC3G):
MELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVT LTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKTMNYDEFQHCWSKFVYSQRELF EPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERMHN

DTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSW SPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFK HCWDTFVDHQGCPFQPWDGLDEHS QDLS GRLRAILQNQEN (SEQ ID NO: 60)

[00391] Deaminase Activity on ssDNA. A USER (Uracil-Specific Excision Reagent) Enzyme-based assay for deamination was employed to test the activity of various deaminases on single-stranded DNA (ssDNA) substrates. USER Enzyme was obtained from New England Biolabs. An ssDNA substrate was provided with a target cytosine residue at different positions. Deamination of the ssDNA cytosine target residue results in conversion of the target cytosine to a uracil. The USER Enzyme excises the uracil base and cleaves the ssDNA backbone at that position, cutting the ssDNA substrate into two shorter fragments of DNA. In some assays, the ssDNA substrate is labeled on one end with a dye, e.g., with a $5^{\prime} \mathrm{Cy} 3$ label (the $*$ in the scheme below). Upon deamination, excision, and cleavage of the strand, the substrate can be subjected to electrophoresis, and the substrate and any fragment released from it can be visualized by detecting the label. Where Cy5 is images, only the fragment with the label will be visible via imaging.
[00392] In one USER Enzyme assay, ssDNA substrates were used that matched the target sequences of the various deaminases tested. Expression cassettes encoding the deaminases tested were inserted into a CMV backbone plasmid that has been used previously in the lab (Addgene plasmid 52970). The deaminase proteins were expressed using a TNT Quick Coupled Transcription/Translation System (Promega) according to the manufacturers recommendations. After 90 min of incubation, 5 mL of lysate was incubated with 5' Cy3labeled ssDNA substrate and 1 unit of USER Enzyme (NEB) for 3 hours. The DNA was resolved on a 10% TBE PAGE gel and the DNA was imaged using Cy-dye imaging. A schematic reparesentation of the USER Enzyme assay is shown in Figure 41.
[00393] Figure 1 shows the deaminase activity of the tested deaminases on ssDNA substrates, such as Doench 1, Doench 2, G7' and VEGF Target 2. The rAPOBECl enzyme exhibited a substantial amount of deamination on the single-stranded DNA substrate with a canonical NGG PAM, but not with a negative control non-canonical NNN PAM. Cas9 fusion proteins with APOBEC family deaminases were generated. The following fusion architectures were constructed and tested on ssDNA:
rAPQBEC 1-GGS-dCas 9 primary sequence

LYVLELYCnLGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKpGSKKY SIGLAIGTNSVGWA VITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEA TRL KRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNI VDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFG NLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSK NG YA G YIDGGA SQEEF YKFIKPILEKMDGTEELL VKLNREDLLRKQRTFDNGSIPHQI HLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETI TP WNFEE W DKGA SA QSFIERMTNFDKNLPNEKVLPKHSLL YE YFTVYNELTKVKYV TEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFN ASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDK VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLT FKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKWDELVKVMGRHKPENIVI EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN GRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEW KKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNA WGTALIKKYPKLESEFVYGD YKVYDVRKMIAKSEQEIGKA TAKYFF YSNIMNFFKTEI TLANGEIRKRPLIETNGETGEIVWDKGRDFA TVRKVLSMPQVNIVKKTE VQTGGFSKE SILPKRNSDKLIARKKD WDPKKYGGFDSPTVA YS VL WAKVEKGKSKKLKS VKELLGIT IMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVL DATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 149)
rAPQBEC 1-(GGSh-dCas9 primary sequence
MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS $г$ WFLS W SPCGECSRAITEFLS RYPHVTLFIYIARL YHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK|GGSGGSG|【GS $\backslash M D K K Y S I G L A I G T N S V G W A V I T D E Y K V P S K K F K V L G N T D R H S I K K N L I G \overline{A L L F D S G}$ ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGD LNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLF LAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKE IFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMT RKSEETITPWNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNEL TKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKED YFKKIECFDS VEISG VEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLI HDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLY LYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNV PSEEWKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIT KHVAQILDSRMNTKYDENDKLIREVKVITLKSKL VSDFRKDFQF YKVREINNYHHAH DAYLNAWGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIM

NFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVA YS VL WAKVEKGKSKKLKS VKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF SKR VILADANLDKVLSA YNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 150)
rfCas9-lGGSl-rAPOBECl
DKKYSIGLAIGTNS VG WA VITDE YKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL VEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLA QIGDQ YADLFLAA KNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK SEETITPWNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTK VKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVE DRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHL FDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHD DSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKWDELVKVMGRHKPE NIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYY LQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSE EVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VA QILDSRMNTKYDENDKLIRE VKVITLKSKL VSDFRKDFQF YKVREINNYHHAHDA Y LNAWGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFF KTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGG FSKESILPKRNSDKLIA RKKD WDPKKYGGFDSPTVA YS VL WAKVEKGKSKKLKS VKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR VILADANLDKVLSA YNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR YTS TKEVLDATLIHOSITGLYETRIDLSOLGGDPGSMSSKTGPV A YOPTLRRRIEPHEFEVF FDPRELRKETCLLYEINWGGRHS IWRHTS QNTNKHVE VNFIEKFTTERYFCPNTRCS $\quad \Gamma$ WFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMT EQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQL TFFTIALQSCHYQRLPPHILWATGLK
(SEQ ID NO: 151)
dCas 9 - GGS $_{3}$-rAPOBEC 1
DKKYSIGLAIGTNS VG WA VITDE YKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLA QIGDQ YADLFLAA KNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK SEETITPWNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTK VKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVE

DRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHL FDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHD DSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKWDELVKVMGRHKPE NIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYY LQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSE EVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH VA QILDSRMNTKYDENDKLIRE VKVITLKSKL VSDFRKDFQF YKVREINNYHHAHDA Y LNAWGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFF KTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGG FSKESILPKRNSDKLIA RKKD WDPKKYGGFDSPTVA YSVL WAKVEKGKSKKLKS VKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR VILADANLDKVLSA YNKHRDKPIREQAEN IIHLFTLTNLG APAAFKYFDTTIDRKR YTS TKEVLDA TLIH QSI TGL YE TRIDLSQLGGDGGSGGS GGSIMS SETGPVA VDPTLRRRIEP HEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTTERYFCP NTRCS ггWFLS W SPCGECSRAITEFLS RYPHVTLFIYIARLYHH ADPRNRQGLRDLIS SG VTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNIL RRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 152)
rAPQBEC $1-p$ KTEN $+d C a s 9$ primary sequence
MSSETGPVA VDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS $Г Г W F L S ~ W S P C G E C S R A I T E F L S ~ R Y P H V T L F I Y I A R L ~$ YHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGl TSESA TPESp KKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEED KKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHF LIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIA QLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGD QYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS RFA WMTRKSEE TITP WNFEE W DKGA SA QSFIERMTNFDKNLPNEKVLPKHSLL YE Y FTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF DSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEE RLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKWDELVK VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL QNEKL YL YYLQNGRDMYVDQELDINRLSD YD VDAIVPQSFLKDDSIDNKVLTRSDKNR GKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN NYHHAHDA YLNA WGTALIKKYPKLESEFVYGD YKVYD VRKMIAKSEQEIGKA TAKYF FYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIV KKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLWAKVEKGK SKKLKS VKELLGITIMERSSFEKNPIDFLEAKG YKE VKKDLIIKLPKYSLFELENGRKR MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEI IEQISEFSKR VILADANLDKVLSA YNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFD TTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 153)
[00394] Figure 2 shows that the N-terminal deaminase fusions showed significant activity on the single stranded DNA substrates. For this reason, only the N -terminal architecture was chosen for further experiments.
[00395] Figure 3 illustrates double stranded DNA substrate binding by deaminase-
dCas9:sgRNA complexes. A number of double stranded deaminase substrate sequences were generated. The sequences are provided below. The structures according to Figure 3 are identified in these sequences (36bp: underlined, sgRNA target sequence: bold; PAM: boxed; 21bp: italicized). All substrates were labeled with a 5 '-Cy3 label:

2:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGTCCCGCGGATTTATTTATTTA MV3GATGACCTCTGGATCCATGGAC-y (SEQ ID NO: 85)
3:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCTTCCGCGGATTTATTTATTT MV3GATGACCTCTGGATCCATGGAC-y (SEQ ID NO: 86)
4:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTTCCGCGGATTTATTTATT ATGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 87)
5:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTCCGCGGATTTATTTAT $\boldsymbol{l}^{\wedge} \boldsymbol{G} \boldsymbol{G A} \boldsymbol{T G A C C T C T G G A T C C A T G G A C - y}$ (SEQ ID NO: 88) 6:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTCCGCGGATTTATTTA TTGQATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 89)
7:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTTATTCCGCGGATTTATTT
$\boldsymbol{M}^{\boldsymbol{\wedge} \boldsymbol{G} \boldsymbol{G}} \boldsymbol{A T G A C C T C T G G A T C C A T G G A C - \boldsymbol { y }}$ (SEQ ID NO: 90)
8:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTCCGCGGATTTATT TUXKMTGACCTCTGGATCCATGGAC-y (SEQ ID NO: 91)
9:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTATTCCGCGGATTTAT $\boldsymbol{l}^{\wedge} \overline{\overline{G G A}} \boldsymbol{T G A C C T C T G G A T C C A T G G A C - y}$ (SEQ ID NO: 92)
10:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATATTCCGCGGATTT ATTGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 93)
11:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTATATTCCGCGGATT TATGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 94)
12:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTTATTATATTCCGCGGAT TTTGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 95)
13:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTATATTCCGCGGA TTTGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 96)
14:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCTATTATTATATTCCGCGG ATTGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 97)
15:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTATTATTACCGCG GATGGATGACCTCTGGATCCATGGAC-3' (SEQ ID NO: 98)
18:GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTATTATTATTACCG
JJGGATGACCTCTGGATCCATGGAC-y (SEQ ID NO: 99)
"-":
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGTAATATTAATTTATTTATTTAATT
UGATGACCTCTGGATCCATGGAC-y (SEQ ID NO: 100)
8U:GTAGGTAGTTAGGATGAATGGAAGGTTGGTGTAGATTATTATCUGCGGATTTAT TGGATGACCTCTGGATCCATGGACAT-3' (SEQ ID NO: 101)

[^1]sequence specified here. In the case of " 8 U ", there is a " G " opposite the U .
[00396] Figure 4 shows the results of a double stranded DNA Deamination Assay. The fusions were expressed and purified with an N-terminal His6 tag via both Ni-NTA and sepharose chromatography. In order to assess deamination on dsDNA substrates, the various dsDNA substrates shown on the previous slide were incubated at a $1: 8 \mathrm{dsDNA}:$ fusion protein ratio and incubated at $37^{\circ} \mathrm{C}$ for 2 hours. Once the dCas9 portion of the fusion binds to the DNA it blocks access of the USER enzyme to the DNA. Therefore, the fusion proteins were denatured following the incubation and the dsDNA was purified on a spin column, followed by incubation for 45 min with the USER Enzyme and resolution of the resulting DNA substrate and substrate fragments on a 10% TBE-urea gel.
[00397] Figure 5 demonstrates that Cas9 fusions can target positions 3-11 of doublestranded DNA target sequences (numbered according to the schematic in Figure 3). Upper Gel: $1 \mu \mathrm{M}$ rAPOBECl-GGS-dCas 9 , 125 nM dsDNA, 1 eq sgRNA. Mid Gel: $1 \mu \mathrm{M}$ rAPOBECl-(GGS) ${ }_{3}$-dCas9, 125 nM dsDNA, 1 eq sgRNA. Lower Gel: $1.85 \mu \mathrm{M}$ rAPOBECl-XTEN-dCas9, 125 nM dsDNA, 1 eq sgRNA. Based on the data from these gels, positions 3-11 (according to the numbering in Figure 3) are sufficiently exposed to the activity of the deaminase to be targeted by the fusion proteins tested. Access of the deaminase to other positions is most likely blocked by the dCas 9 protein.
[00398] The data further indicates that a linker of only 3 amino acids (GGS) is not optimal for allowing the deaminase to access the single stranded portion of the DNA. The 9 amino acid linker $\left[(\mathrm{GGS})_{3}\right]$ (SEQ ID NO: 610) and the more structured 16 amino acid linker (XTEN) allow for more efficient deamination.
[00399] Figure 6 demonstrates that the correct guide RNA, e.g., the correct sgRNA, is required for deaminase activity. The gel shows that fusing the deaminase to dCas9, the deaminase enzyme becomes sequence specific (e.g., using the fusion with an eGFP sgRNA results in no deamination), and also confers the capacity to the deaminase to deaminate dsDNA. The native substrate of the deaminase enzyme is ssDNA, and no deamination occurred when no sgRNA was added. This is consistent with reported knowledge that APOBEC deaminase by itself does not deaminate dsDNA. The data indicates that Cas 9 opens the double-stranded DNA helix within a short window, exposing single-stranded DNA that is then accessible to the APOBEC deaminase for cytidine deamination. The sgRNA sequences used are provided below. sequences (36bp: underlined, sgRNA target sequence: bold; PAM: boxed; 2 lbp: italicized)

DNA sequence 8:

```
5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCCATTATTCCGCGGATTTATT
ITiGGATGACCTCTGGATCCATGGAC-y (SEQ ID NO: 102)
Correct sgRNA sequence (partial 3' sequence):
5'-AUUAUUCCGCGGAUUUAUUUGUUUUAGAGCUAG...-3' (SEQ ID NO:103)
eGFP sgRNA sequence (partial 3'-sequence):
5'-CGUAGGCCAGGGUGGUCACGGUUUUAGAGCUAG ...-3' (SEQ ID NO:104)
```


EXAMPLE 2: Deamination of DNA target sequence

[00400] Exemplary deamination targets. The dCas9:deaminase fusion proteins described herein can be delivered to a cell in vitro or ex vivo or to a subject in vivo and can be used to effect C to T or G to A transitions when the target nucleotide is in positions 3-11 with respect to a PAM. Exemplary deamination targets include, without limitation, the following: CCR5 truncations: any of the codons encoding Q93, Q102, Q186, R225, W86, or $\mathbf{Q 2 6 1}$ of CCR5 can be deaminated to generate a STOP codon, which results in a nonfunctional truncation of CCR5 with applications in HIV treatment. APOE4 mutations: mutant codons encoding C11R and C57R mutant APOE4 proteins can be deaminated to revert to the wild-type amino acid with applications in Alzheimer's treatment. eGFP truncations: any of the codons encoding Q158, Q184, Q185 can be deaminated to generate a STOP codon, or the codon encoding M1 can be deaminated to encode I, all of which result in loss of eGFP fluorescence, with applications in reporter systems. eGFP restoration: a mutant codon encoding T65A or Y66C mutant GFP, which does not exhibit substantial fluorescence, can be deaminated to restore the wild-type amino acid and confer fluorescence. PIK3CA mutation: a mutant codon encoding K111E mutant PIK3CA can be deaminated to restore the wild-type amino acid residue with applications in cancer. CTNNB 1 mutation: a mutant codon encoding T41A mutant CTNNB 1 can be deaminated to restore the wild-type amino acid residue with applications in cancer. HRAS mutation: a mutant codon encoding Q61R mutant HRAS can be deaminated to restore the wild-type amino acid residue with applications in cancer. P53 mutations: any of the mutant codons encoding Y163C, Y236C, or N239D mutant p53 can be deaminated to encode the wild type amino acid sequence with applications in cancer.
The feasibility of deaminating these target sequences in double- stranded DNA is demonstrated in Figures 7 and 8. Figure 7 illustrates the mechanism of target DNA binding of in vivo target sequences by deaminase-dCas9:sgRNA complexes.
[00401] Figure 8 shows successful deamination of exemplary disease-associated target sequences. Upper Gel: CCR5 Q93: coding strand target in pos. 10 (potential off-targets at positions $2,5,6,8,9$) CCR5 Q102: coding strand target in pos. 9 (potential off-targets at positions 1, 12, 14); CCR5 Q186: coding strand target in pos. 9 (potential off-targets at positions $1, \mathbf{5}, 15$); CCR5 R225: coding strand target in pos. 6 (no potential off-targets); eGFP Q158: coding strand target in pos. 5 (potential off-targets at positions 1, 13, 16); eGFP Q184 /185: coding strand target in pos. 4 and 7 (potential off-targets at positions $3,12,14,15,16$, 17, 18); eGFP Ml:template strand target in pos. 12 (potential off-targets at positions $2, \mathbf{3}, 7,9$, 11) (targets positions 7 and 9 to small degree); eGFP T65A: template strand target in pos. 7 (potential off-targets at positions 1, 8, 17); PIK3CAK111E: template strand target in pos. 2 (potential off-targets at positions $\mathbf{5 , 8}, 10,16,17$); PIK3CAK111E: template strand target in pos. 13 (potential off-targets at positions 11, 16, 19) X. Lower Gel: CCR5 W86: template strand target in pos. 2 and 3 (potential off-targets at positions 1, 13) X;APOE4 CllR: coding strand target in pos. 11 (potential off-targets at positions 7, 13, 16, 17); APOE4 C57R: coding strand target in pos. 5) (potential off-targets at positions 7, 8, 12); eGFP Y66C: template strand target in pos. 11 (potential off-targets at positions $1,4,6,8,9,16$); eGFP Y66C: template strand target in pos. 3 (potential off-targets at positions 1, 8, 17); CCR5 Q261: coding strand target in pos. 10 (potential off-targets at positions $3, \mathbf{5}, \mathbf{6}, 9,18$); CTNNB 1 T41A: template strand target in pos. 7 (potential off-targets at positions 1, 13, 15, 16) X; HRAS Q61R: template strand target in pos. 6 (potential off-targets at positions $1,2,4,5,9,10,13$); p53 Y163C: template strand target in pos. 6 (potential off-targets at positions 2, 13, 14); p53 Y236C: template strand target in pos. 8 (potential off-targets at positions 2, 4); p53 N239D: template strand target in pos. 4 (potential off-targets at positions 6,8). Exemplary DNA sequences of disease targets are provided below (PAMs (5'-NGG-3') and target positions are boxed):

CCR5 Q93: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAACTATGCTGCCGCC
C|AGTGGGACTYTGG|AAATACAATGTGTCAACTCTT-y (SEQ ID NO: 105) CCR5 Q102: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAAATACAATGTGT
C|AACTCTTGACAGGGGCTCTATTTTA TA GGCTTCTTC-3' (SEQ ID NO: 106) CCR5 Q186: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATTTTCCATACAGT
[C|AGTATCAATTC|TGG|AAGAATTTCCA GA CATTAAAG G-3' (SEQ ID NO: 107) CCR5 R225: 5'-Су3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGCTTCGGTGTgGA
AATGA GAA GAA G|AGG|CACA GGGCTGTGA GGCTTATC-3' (SEQ ID NO: 108)

CCR5 W86: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGTGAGCggAGAAGG
GGAC A GTA A GA AGG|AAAAA CA GGTCA GA GATGGCC-3, (SEQ ID NO: 109) CCR5 Q261: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATCCTGAACACCTT
CCAGGAATTCTTTGGICCTGAATAATTGCAGTAGCTC-3' (SEQ ID NO: 110)
APOE4 C11R: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGACATGGAGGAC
GTGCGCGGCCGCC厂GGTGCAGTACCGCGGCGAGGTGC-3' (SEQ ID NO: 111) APOE4 C57R: 5’-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACTGCAGAAGCGC
C'IGGCAGTGTACC AGG $C C G G G G C C C G C G A G G G C G C C G-3 \prime$ (SEQ ID NO: 112)
eGFP Q158: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGCCGACAAGCAGA
AGAACGGCATCA \mid AGG $T G A A C T T C A A G A T C C G C C A C A-3 '$ (SEQ ID NO: 113)
eGFP Q184/185: 5'-Cy3-GTAGGTAGTTAGGATGAATGGAAGGTTGGTAACCACTAC|
AGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCC-3' (SEQ ID NO: 114)
eGFP M1: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACCTCGCCCTTGCTCA
CCATCTCGAGTCGGCCGCCAGTGTGATGGATATCT-3' (SEQ ID NO: 115)
eGFP T65A: 5’-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACACGCGTAGGCCA
GGGTGGTCACG|AGG|GTGGGCCAGGGCACGGGCAGC-3'(SEQ ID NO: 116)
eGFP Y66C: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAAGCACTGCACTC
CGCAGGTCAGGGTGGTCACGAGGGTTGGCCAGGGCA-3'(SEQ ID NO: 117)
eGFP Y66C: 5’-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACACTCCGCAGGTC
AGGGTGGTCACG AGGGTTGGCCAGGGCACGGGCAGG-3' (SEQ ID NO: 118) PIK3CA K111E: 5’-Cy3-GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGGATCTCTTC
TTCACGGTTGCCTACTGGTTCAATTACTTTTAAAAATGG-3' (SEQ ID NO: 119)
PIK3CA K111E: 5’-Cy3-GTAGGTAGTTAGGATGAATGGAAGGTTGGTATTCTCGATTG
AGGATCTCTTCTTCACGG|TTGCCTACTGGTTCAATTACT-3' (SEQ ID NO: 120)
CTNNB1 T41A: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAGGAGCTGTGG
CAGTGGCACCAGAATGGATTCCAGAGTCCAGGTAAGAC-3' (SEQ ID NO: 121)
HRAS Q61R: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGTACTCCTCCCGG
CCGGCGGTATCC|AGGATGTCCAACAGGCACGTCTCC-3' (SEQ ID NO: 122)
p53 Y163C: 5'-Сy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATGACTGCTTGgAG
ATGGCCATGGCG |CGG|ACGCGGGrGCCGGGCGGGGGr-3' (SEQ ID NO: 123)
p53 Y236C: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACTGTTACACATGg
AGTTGTAGTGGA |rGG|TGGTACAGrCAGAGCCAACCr-3' (SEQ ID NO: 124)
p53 N239D: 5'-Cy3-
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGGAACTGTgACAC
atgTAGTTGTAG |TGG|ArGGrGG7ACAGrCAGAGCCA-3' (SEQ ID NO: 125)

EXAMPLE 3: Uracil Glycosylase Inhibitor Fusion Improves Deamination Efficiency
[00402] Direct programmable nucleobase editing efficiencies in mammalian cells by
dCas9:deaminase fusion proteins can be improved significantly by fusing a uracil glycosylase inhibitor (UGI) to the dCas9:deaminase fusion protein.
[00403] Figure 9 shows in vitro $\mathrm{C} \rightarrow$ T editing efficiencies in human HEK293 cells using rAPOBECl-XTEN-dCas9:
rAPOBEC 1-XTEN-dCas9 $-N L S$ primary sequence
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLY HHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRL YVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTS ESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF pSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK1 HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIE $\overline{\text { GDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPl }}$ GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAl pLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFl pNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMl TRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNE LTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLI] HDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLl YYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNV PSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIj TKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH| pAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNI] MNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV1 QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLl KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQIS EFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDR1 KRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD|SGGSP^^^y (SEQ ID NO: 126)

Protospacer sequences were as follows:
EMX1: $\quad 5^{\prime}-$ GAGTC $_{5}$ C GAGC $_{6}$ AGAAGAAGAA GGG -3^{\prime} (SEQ ID NO: 127)
FANCF: $\quad 5^{\prime}-$ GGAATC $_{6} \mathbf{C}_{7} \mathbf{C}_{\mathbf{8}}$ TTC $\mathbf{1 1}^{11}$ TGCAGCACCTGG -3^{\prime} (SEQ ID NO: 128)
HEK293 site $2: 5^{\prime}-$ GAAC $_{4}$ AC $_{6}$ AAAGC $\mathbf{1 1}^{\text {ATAGACTGCGGG - }}{ }^{\prime}$ (SEQ ID NO: 129)
HEK293 site 3: 5'- GGC \mathbf{C}_{4} C $_{5}$ AGAC $_{9}$ TGAGCACGTGATGG - 3^{\prime} (SEQ ID NO: 130)

HEK293 site 4: 5'- GGC $\mathbf{3 A C}_{5}$ TGC $_{\mathbf{8}} \mathrm{GGC}_{11}$ TGGAGGTGG $\overline{\mathrm{GGG}}-3^{\prime}$ (SEQ ID NO: 735)
RNF2: $\quad 5^{\prime}-$ GTC $_{3}$ ATC $_{6}$ TTAGTCATTACCTG AGG -3' (SEQ ID NO: 132)
*PAMs are boxed, C residues within target window (positions 3-11) are numbered and bolded.
[00404] Figure 10 demonstrates that $\mathrm{C} \rightarrow \mathrm{T}$ editing efficiencies on the same protospacer sequences in HEK293T cells are greatly enhanced when a UGI domain is fused to the rAPOBECl:dCas9 fusion protein.
rAPOBEC 1 -XTEN- $\bar{\wedge}$ Cas9j-UGI-NLS primary sequence
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLY HHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRL YVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTS ESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF PSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKI HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIE GDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPl GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAl pLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFl pNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMl TRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNE LTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLI] HDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYI] YYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNV PSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIj TKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH| pAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNI] MNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVl QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLl KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQIS EFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDR1 KRYTSTKE VLD ATLIHQS ITGLYETRIDLS QLGGD|S GGSTNLSDIIEKETGKQLVIQESI LMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE NKIKMLS GGSPKKKRKV (SEQ ID NO: 133)
[00405] The percentages in Figures 9 and 10 are shown from sequencing both strands of the target sequence. Because only one of the strands is a substrate for deamination, the maximum possible deamination value in this assay is 50%. Accordingly, the deamination efficiency is
double the percentages shown in the tables. E.g., a value of 50% relates to deamination of 100% of double-stranded target sequences.

When a uracil glycosylase inhibitor (UGI) was fused to the dCas9:deaminase fusion protein (e.g., rAPOBECl-XTEN-dCas9-[UGI]-NLS), a significant increase in editing efficiency in cells was observed. This result indicates that in mammalian cells, the DNA repair machinery that cuts out the uracil base in a U:G base pair is a rate-limiting process in DNA editing. Tethering UGI to the dVas9deaminase fusion proteins greatly increases editing yields.
[00406] Without UGI, typical editing efficiencies in human cells were in the $-2-14 \%$ yield range (Figure 9 and Figure 10, "XTEN" entries). With UGI (Figure 10, "UGI" entries) the editing was observed in the $-6-40 \%$ range. Using a UGI fusion is thus more efficient than the current alternative method of correcting point mutations via HDR, which also creates an excess of indels in addition to correcting the point mutation. No indels resulting from treatment with the cas9:deaminase:UGI fusions were observed.

EXAMPLE 4: Direct, programmable conversion of a target nucleotide in genomic DNA without double-stranded DNA cleavage
[00407] Current genome-editing technologies introduce double-stranded DNA breaks at a target locus of interest as the first step to gene correction. ${ }^{39 \cdot 40}$ Although most genetic diseases arise from mutation of a single nucleobase to a different nucleobase, current approaches to revert such changes are very inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus as a consequence of the cellular response to double-stranded DNA breaks. ${ }^{39,40}$ Reported herein is the development of nucleobase editing, a new strategy for genome editing that enables the direct conversion of one target nucleobase into another in a programmable manner, without requiring double-stranded DNA backbone cleavage. Fusions of CRISPR/Cas9 were engineered and the cytidine deaminase enzyme APOBEC1 that retain the ability to be programmed with a guide RNA, do not induce doublestranded DNA breaks, and mediate the direct conversion of cytidine to uracil, thereby effecting a $\mathrm{C} \rightarrow \mathrm{T}$ (or $\mathrm{G} \rightarrow \mathrm{A}$) substitution following DNA replication, DNA repair, or transcription if the template strand is targeted. The resulting "nucleobase editors" convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease in vitro. In four transformed human and murine cell lines, second- and third-generation nucleobase editors that fuse uracil glycosylase inhibitor (UGI), and that use a Cas9 nickase targeting the non-edited strand, respectively, can
overcome the cellular DNA repair response to nucleobase editing, resulting in permanent correction of up to 37% or ($-15-75 \%$) of total cellular DNA in human cells with minimal (typically $\leq 1 \%$) indel formation. In contrast, canonical Cas9-mediated HDR on the same targets yielded an average of 0.7% correction with 4% indel formation. Nucleobase editors were used to revert two oncogenic $p 53$ mutations into wild-type alleles in human breast cancer and lymphoma cells, and to convert an Alzheimer's Disease associated Arg codon in ApoE4 into a non-disease-associated Cys codon in mouse astrocytes. Base editing expands the scope and efficiency of genome editing of point mutations.
[00408] The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive immune system that has been adapted to mediate genome engineering in a variety of organisms and cell lines. ${ }^{41}$ CRISPR/Cas9 protein-RNA complexes localize to a target DNA sequence through base pairing with a guide RNA, and natively create a DNA double-stranded break (DSB) at the locus specified by the guide RNA. In response to DSBs, endogenous DNA repair processes mostly result in random insertions or deletions (indels) at the site of DNA cleavage through non-homologous end joining (NHEJ). In the presence of a homologous DNA template, the DNA surrounding the cleavage site can be replaced through homology-directed repair (HDR). When simple disruption of a disease-associated gene is sufficient (for example, to treat some gain-of-function diseases), targeted DNA cleavage followed by indel formation can be effective. For most known genetic diseases, however, correction of a point mutation in the target locus, rather than stochastic disruption of the gene, is needed to address or study the underlying cause of the disease. ${ }^{68}$
[00409] Motivated by this need, researchers have invested intense effort to increase the efficiency of HDR and suppress NHEJ. For example, a small-molecule inhibitor of ligase IV, an essential enzyme in the NHEJ pathway, has been shown to increase HDR efficiency. ${ }^{42,43}$ However, this strategy is challenging in post-mitotic cells, which typically down-regulate HDR, and its therapeutic relevance is limited by the potential risks of inhibiting ligase IV in non-target cells. Enhanced HDR efficiency can also be achieved by the timed delivery of Cas9-guide RNA complexes into chemically synchronized cells, as HDR efficiency is highly cell-cycle dependent. ${ }^{44}$ Such an approach, however, is limited to research applications in cell culture since synchronizing cells is highly disruptive. Despite these developments, current strategies to replace point mutations using HDR in most contexts are very inefficient (typically -0.1 to 5%), ${ }^{42.43 .45 .46 .75}$ especially in unmodified, non-dividing cells. In addition, HDR competes with NHEJ during the resolution of double-stranded breaks, and indels are generally more abundant outcomes than gene replacement. These observations highlight the need to
develop alternative approaches to install specific modifications in genomic DNA that do not rely on creating double-stranded DNA breaks. A small-molecule inhibitor of ligase IV, an essential enzyme in the NHEJ pathway, has been shown to increase HDR efficiency. ${ }^{42,43}$ However, this strategy is challenging in post-mitotic cells, which typically down-regulate HDR, and its therapeutic relevance is limited by the potential risks of inhibiting ligase IV in non-target cells. Enhanced HDR efficiency can also be achieved by the timed delivery of Cas9-guide RNA complexes into chemically synchronized cells, as HDR efficiency is highly cell-cycle dependent. ${ }^{44}$ Such an approach, however, is limited to research applications in cell culture since synchronizing cells is highly disruptive. In some cases, it is possible to design HDR templates such that the product of successful HDR contains mutations in the PAM sequence and therefore is no longer a substrate for subsequent Cas9 modification, increasing the overall yield of HDR products, ${ }^{75}$ although such an approach imposes constraints on the product sequences. Recently, this strategy has been coupled to the use of ssDNA donors that are complementary to the non-target strand and high-efficiency ribonucleoprotein (RNP) delivery to substantially increase the efficiency of HDR, but even in these cases the ratio of HDR to NHEJ outcomes is relatively low (<2). ${ }^{83}$
[00410] It was envisioned that direct catalysis of the conversion of one nucleobase to another at a programmable target locus without requiring DNA backbone cleavage could increase the efficiency of gene correction relative to HDR without introducing undesired random indels at the locus of interest. Catalytically dead Cas9 (dCas9), which contains AsplOAla and His840Ala mutations that inactivate its nuclease activity, retains its ability to bind DNA in a guide RNA-programmed manner but does not cleave the DNA backbone. ${ }^{16,47}$ In principle, conjugation of dCas9 with an enzymatic or chemical catalyst that mediates the direct conversion of one nucleobase to another could enable RNA-programmed nucleobase editing. The deamination of cytosine (C) is catalyzed by cytidine deaminases ${ }^{29}$ and results in uracil (U), which has the base pairing properties of thymine (T). dCas9 was fused to cytidine deaminase enzymes in order to test their ability to convert C to U at a guide RNA-specified DNA locus. Most known cytidine deaminases operate on RNA, and the few examples that are known to accept DNA require single-stranded DNA. ${ }^{48}$ Recent studies on the dCas9-target DNA complex reveal that at least nine nucleotides of the displaced DNA strand are unpaired upon formation of the Cas9:guide RNA:DNA "R-loop" complex. ${ }^{12}$ Indeed, in the structure of the Cas9 R- loop complex the first 11 nucleotides of the protospacer on the displaced DNA strand are disordered, suggesting that their movement is not highly restricted. ${ }^{76}$ It has also been speculated that Cas9 nickase-induced mutations at cytosines in the non-template strand might
arise from their accessibility by cellular cytidine deaminase enzymes. ${ }^{77}$ Recent studies on the dCas9-target DNA complex have revealed that at least 26 bases on the non-template strand are unpaired when Cas9 binds to its target DNA sequence. ${ }^{49}$ It was reasoned that a subset of this stretch of single-stranded DNA in the R-loop might serve as a substrate for a dCas9-tethered cytidine deaminase to effect direct, programmable conversion of C to U in DNA (Figure 11A). [00411] Four different cytidine deaminase enzymes (hAID, hAPOBEC3G, rAPOBEC 1 , and pmCDAl) were expressed in a mammalian cell lysate-derived in vitro transcription-translation system and evaluated for ssDNA deamination. Of the four enzymes, rAPOBEC 1 showed the highest deaminase activity under the tested conditions and was chosen for dCas9 fusion experiments (Figure 36A). Although appending rAPOBEC 1 to the C-terminus of dCas9 abolishes deaminase activity, fusion to the N -terminus of dCas 9 preserves deaminase activity on ssDNA at a level comparable to that of the unfused enzyme. Four rAPOBEC 1-dCas9 fusions were expressed and purified with linkers of different length and composition (Figure 36B), and evaluated each fusion for single guide RNA (sgRNA)-programmed dsDNA deamination in vitro (Figures 11A to 11C and Figures 15A to 15D).
[00412] Efficient, sequence-specific, sgRNA-dependent C to U conversion was observed in vitro (Figures 11A to 11C). Conversion efficiency was greatest using rAPOBEC 1-dCas9 linkers over nine amino acids in length. The number of positions susceptible to deamination (the deamination "activity window") increases with linker length was extended from three to 21 amino acids (Figures 36C to 36F15A to 15D). The 16 -residue XTEN linker ${ }^{50}$ was found to offer a promising balance between these two characteristics, with an efficient deamination window of approximately five nucleotides, from positions 4 to 8 within the protospacer, counting the end distal to the protospacer-adjacent motif (PAM) as position 1. The rAPOBEC 1-XTEN-dCas9 protein served as the first-generation nucleobase editor (NBEI). [00413] Elected were seven mutations relevant to human disease that in theory could be corrected by C to T nucleobase editing, synthesized double- stranded DNA 80-mers of the corresponding sequences, and assessed the ability of NBEl to correct these mutations in vitro (Figures 16A to 16B). NBEl yielded products consistent with efficient editing of the target C, or of at least one C within the activity window when multiple Cs were present, in six of these seven targets in vitro, with an average apparent editing efficiency of 44% (Figures 16A to 16B). In the three cases in which multiple Cs were present within the deamination window, evidence of deamination of some or all of these cytosines was observed. In only one of the seven cases tested were substantial yields of edited product observed (Figures 16A to 16B).

Although the preferred sequence context for APOBEC1 substrates is reported to be CC or $\mathrm{TC},{ }^{51}$ it was anticipated that the increased effective molarity of the deaminase and its singlestranded DNA substrate mediated by dCas9 binding to the target locus may relax this restriction. To illuminate the sequence context generality of NBEl, its ability to edit a 60 -mer double-stranded DNA oligonucleotide containing a single fixed C at position 7 within the protospacer was assayed, as well as all 36 singly mutated variants in which protospacer bases 1-6 and 8-13 were individually varied to each of the other three bases. Each of these 37 sequences were treated with $1.9 \mu \mathrm{M}$ NBEl, $1.9 \mu \mathrm{M}$ of the corresponding sgRNA, and 125 nM DNA for 2 h , similar to standard conditions for in vitro Cas9 assays ${ }^{52}$. High-throughput DNA sequencing (HTS) revealed 50 to 80% C to U conversion of targeted strands (25 to 40% of total sequence reads arising from both DNA strands, one of which is not a substrate for NBEl) (Figure 12A). The nucleotides surrounding the target C had little effect on editing efficiency was independent of sequence context unless the base immediately 5^{\prime} of the target C is a G , in which case editing efficiency was substantially lower (Figures 12A to 12B). NBEl activity in vitro was assessed on all four NC motifs at positions 1 through 8 within the protospacer (Figures 12A to 12B). In general, NBEl activity on substrates was observed to follow the order $\mathrm{TC} \geq \mathrm{CC} \geq \mathrm{AC}>\mathrm{GC}$, with maximum editing efficiency achieved when the target C is at or near position 7. In addition, it was observed that the nucleobase editor is highly processive, and will efficiently convert most of all Cs to Us on the same DNA strand within the 5-base activity window (Figure 17).
[00414] While BE1 efficiently processes substrates in a test tube, in cells a tree of possible DNA repair outcomes determines the fate of the initial U:G product of base editing (Figure 29A). To test the effectiveness of nucleobase editing in human cells, NBEl codon usage was optimized for mammalian expression, appended a C-terminal nuclear localization sequence (NLS) ${ }^{53}$ and assayed its ability to convert C to T in human cells on 14 C in six well-studied target sites throughout the human genome (Figure 37A). ${ }^{54}$ The editable Cs were confirmed within each protospacer in vitro by incubating NBEl with synthetic 80-mers that correspond to the six different genomic sites, followed by HTS (Figures 13A to 13C, Figure 29B and Figure 25). Next, HEK293T cells were transfected with plasmids encoding NBEl and one of the six target sgRNAs, allowed three days for nucleobase editing to occur, extracted genomic DNA from the cells, and analyzed the loci by HTS. Although C to T editing in cells at the target locus was observed for all six cases, the efficiency of nucleobase editing was 1.1% to 6.3% or $0.8 \%-7.7 \%$ of total DNA sequences (corresponding to 2.2% to 12.6% of targeted strands), a 6.3 -fold to 37 -fold or 5 -fold to 36 -fold decrease in efficiency compared to that of
in vitro nucleobase editing (Figures 13A to 13C, Figure 29B and Figure 25). It was observed that some base editing outside of the typical window of positions 4 to 8 when the substrate C is preceded by a T , which we attribute to the unusually high activity of APOBEC1 for TC substrates. ${ }^{48}$
[00415] It was asked whether the cellular DNA repair response to the presence of $U: G$ heteroduplex DNA was responsible for the large decrease in nucleobase editing efficiency in cells (Figure 29A). Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells and initiates base excision repair (BER), with reversion of the U:G pair to a C:G pair as the most common outcome (Figure 29A). ${ }^{55}$ Uracil DNA glycosylase inhibitor (UGI), an 83residue protein from B. subtilis bacteriophage PBS1, potently blocks human UDG activity $\left(\mathrm{IC}_{50}=12 \mathrm{pM}\right) .{ }^{56}$ UGI was fused to the C-terminus of NBEl to create the second-generation nucleobase editor NBE2 and repeated editing assays on all six genomic loci. Editing efficiencies in human cells were on average 3-fold higher with NBE2 than with NBEl, resulting in gene conversion efficiencies of up to 22.8% of total DNA sequenced (up to 45.6% of targeted strands) (Figures 13A to 13C and Figure 29B). To test base editing in human cells, BE1 codon usage was optimized for mammalian expression and appended a C-terminal nuclear localization sequence (NLS). ${ }^{53}$
[00416] Similar editing efficiencies were observed when a separate plasmid overexpressing UGI was co-transfected with NBEl (Figures 18A to 18H). However, while the direct fusion of UGI to NBEl resulted in no significant increase in C to T mutations at monitored non-targeted genomic locations, overexpression of unfused UGI detectably increased the frequency of C to T mutations elsewhere in the genome (Figures 18A to 18H). The generality of NBE2-mediated nucleobase editing was confirmed by assessing editing efficiencies on the same six genomic targets in U20S cells, and observed similar results with those in HEK293T cells (Figure 19). Importantly, NBE2 typically did not result in any detectable indels (Figure 13C and Figure 29C), consistent with the known mechanistic dependence of NHEJ on double-stranded DNA breaks. ${ }^{57,78}$ Together, these results indicate that conjugating UGI to NBEl can greatly increase the efficiency of nucleobase editing in human cells.
[00417] The permanence of nucleobase editing in human cells was confirmed by monitoring editing efficiencies over multiple cell divisions in HEK293T cells at two of the tested genomic loci. Genomic DNA was harvested at two time points: three days after transfection with plasmids expressing NBE2 and appropriate sgRNAs, and after passaging the cells and growing them for four additional days (approximately five subsequent cell divisions). No significant change in editing efficiency was observed between the non-passaged cells (editing observed in
4.6% to 6.6% of targeted strands for three different target Cs) and passaged cells (editing observed in 4.6% to 6.4% of targeted strands for the same three target Cs), confirming that the nucleobase edits became permanent following cell division (Figure 20). Indels will on rare occasion arise from the processing of $\mathrm{U}: \mathrm{G}$ lesions by cellular repair processes, which involve single-strand break intermediates that are known to lead to indels. ${ }^{84}$ Given that several hundred endogenous U:G lesions are generated every day per human cell from spontaneous cytidine deaminase, ${ }^{85}$ it was anticipate that the total indel frequency from U:G lesion repair is unlikely to increase from BE1 or BE2 activity at a single target locus.
[00418] To further increase the efficiency of nucleobase editing in cells, it was anticipated that nicking the non-edited strand may result in a smaller fraction of edited Us being removed by the cell, since eukaryotic mismatch repair machinery uses strand discontinuity to direct DNA repair to any broken strand of a mismatched duplex (Figure 29A). ${ }^{58,79,80}$ The catalytic His residue was restored at position 840 in the Cas9 HNH domain, ${ }^{47.59}$ resulting in the thirdgeneration nucleobase editor NBE3 that nicks the non-edited strand containing a G opposite the targeted C , but does not cleave the target strand containing the C . Because NBE3 still contains the AsplOAla mutation in Cas9, it does not induce double-stranded DNA cleavage. This strategy of nicking the non-edited strand augmented nucleobase editing efficiency in human cells by an additional 1.4 - to 4.8 -fold relative to NBE2, resulting in up to 36.3% of total DNA sequences containing the targeted C to T conversion on the same six human genomic targets in HEK293T cells (Figures 13A to 13C and Figure 29B). Importantly, only a small frequency of indels, averaging 0.8% (ranging from 0.2% to 1.6% for the six different loci), was observed from NBE3 treatment (Figure 13C, Figure 29C, and Figure 34). In contrast, when cells were treated with wild-type Cas9, sgRNA, and a single-stranded DNA donor template to mediate HDR at three of these loci C to T conversion efficiencies averaging only 0.7% were observed, with much higher relative indel formation averaging 3.9\% (Figures 13A to 13C and Figure 29C). The ratio of allele conversion to NHEJ outcomes averaged $>1,000$ for BE2, 23 for BE3, and 0.17 for wild-type Cas9 (Fig. 3c). We confirmed the permanence of base editing in human cells by monitoring editing efficiencies over multiple cell divisions in HEK293T cells at the HEK293 site 3 and 4 genomic loci (Figure 38). These results collectively establish that nucleobase editing can effect much more efficient targeted single-base editing in human cells than Cas9-mediated HDR, and with much less (NBE3) or no (NBE2) indel formation.
[00419] Next, the off-target activity of NBE1, NBE2, and NBE3 in human cells was evaluated. The off-target activities of Cas9, dCas9, and Cas9 nickase have been extensively
studied (Figures 23 to 24 and 31 to 33). ${ }^{5460-62}$ Because the sequence preference of rAPOBECl has been shown to be independent of DNA bases more than one base from the target $\mathrm{C},{ }^{6^{3}}$ consistent with the sequence context independence observed in Figures 12A to 12B, it was assumed that potential off-target activity of nucleobase editors arises from off-target Cas9 binding. Since only a fraction of Cas9 off-target sites will have a C within the active window for nucleobase editing, off-target nucleobase editing sites should be a subset of the off-target sites of canonical Cas9 variants. For each of the six sites studied, the top ten known Cas9 offtarget loci in human cells that were previously determined using the GUIDE-seq method were sequenced (Figures 23 to 27 and 31 to 33). ${ }^{54^{\prime} 61}$ Detectable off-target nucleobase editing at only a subset (16/34, 47\% for NBE1 and NBE2, and 17/34, 50\% for NBE3) of known dCas9 offtarget loci was observed. In all cases, the off-target base-editing substrates contained a C within the five-base target window. In general, off-target C to T conversion paralleled offtarget Cas9 nuclease-mediated genome modification frequencies (Figures 23 to 27). Also monitored were C to T conversions at 2,500 distinct cytosines surrounding the six on-target and 34 off-target loci tested, representing a total of $14,700,000$ sequence reads derived from approximately 1.8×10^{6} cells, and observed no detectable increase in C to T conversions at any of these other sites upon NBE1, NBE2, or NBE3 treatment compared to that of untreated cells (Figure 28). Taken together, these findings suggest that off-target substrates of nucleobase editors include a subset of Cas9 off-target substrates, and that nucleobase editors in human cells do not induce untargeted C to T conversion throughout the genome at levels that can be detected by the methods used here. No substantial change was observed in editing efficiency between non-passaged HEK293T cells (editing observed in 1.8% to 2.6% of sequenced strands for the three target Cs with BE2, and 6.2% to 14.3% with BE3) and cells that had undergone approximately five cell divisions after base editing (editing observed in 1.9% to 2.3% of sequenced strands for the same target Cs with BE2, and 6.4% to 14.5% with BE3), confirming that base edits in these cells are durable (Extended Data Fig. 6).
[00420] Finally, the potential of nucleobase editing to correct three disease-relevant mutations in mammalian cells was tested. The apolipoprotein E gene variant APOE4 encodes two Arg residues at amino acid positions 112 and 158, and is the largest and most common genetic risk factor for late-onset Alzheimer's disease. ${ }^{64} \mathrm{ApoE}$ variants with Cys residues in positions 112 or 158, including APOE2 (Cysl12/Cys158), APOE3 (Cysl12/Arg158), and APOE3' (Argl12/Cys158) have been shown ${ }^{65}$ or are presumed ${ }^{81}$ to confer substantially lower Alzheimer's disease risk than APOE4. Encouraged by the ability of NBEl to convert APOE4 to APOE3' in vitro (Figures 16A to 16B), this conversion was attempted in immortalized
mouse astrocytes in which the endogenous murine $A P O E$ gene has been replaced by human APOE4 (Taconic). DNA encoding NBE3 and an appropriate sgRNA was delivered into these astrocytes by nucleofection (nucleofection efficiency of 25%), extracted genomic DNA from all treated cells two days later, and measured editing efficiency by HTS. Conversion of Arg158 to Cys158 was observed in $58-75 \%$ of total DNA sequencing reads (44% of nucleofected astrocytes) (Figures 14A to 14C and Figures 30A). Also observed was 36-50\% editing of total DNA at the third position of codon 158 and $38-55 \%$ editing of total DNA at the first position of Leu 159 , as expected since all three of these Cs are within the active nucleobase editing window. However, neither of the other two $\mathrm{C} \rightarrow \mathrm{T}$ conversions results in a change in the amino acid sequence of the ApoE3' protein since both TGC and TGT encode Cys, and both CTG and TTG encode Leu. From > 1,500,000 sequencing reads derived from $1 \mathrm{xlO}{ }^{6}$ cells evidence of 1.7% indels at the targeted locus following NBE3 treatment was observed (Figure 35). In contrast, identical treatment of astrocytes with wt Cas9 and donor ssDNA resulted in 0.1-0.3\% APOE4 correction and 26-40\% indels at the targeted locus, efficiencies consistent with previous reports of single-base correction using Cas9 and HDR ${ }^{45175}$ (Figure 30A and Figure 40A). Astrocytes treated identically but with an sgRNA targeting the VEGFA locus displayed no evidence of APOE4 base editing (Figure 34 and Figure 40A). These results demonstrate how nucleobase editors can effect precise, single-amino acid changes in the coding sequence of a protein as the major product of editing, even when their processivity results in more than one nucleotide change in genomic DNA. The off-target activities of Cas 9 , dCas 9 , and Cas 9 nickase have been extensively studied. ${ }^{544^{\prime}}{ }^{60-62}$ In general, off-target C to T conversions by BE1, BE2, and BE3 paralleled off-target Cas9 nucleasemediated genome modification frequencies.
[00421] The dominant-negative p53 mutations Tyrl63Cys and Asn239Asp are strongly associated with several types of cancer. ${ }^{66-67}$ Both of these mutations can be corrected by a C to T conversion on the template strand (Figures 16A to 16B). A human breast cancer cell line homozygous for the p53 Tyrl63Cys mutation (HCC1954 cells) was nucleofected with DNA encoding NBE3 and an sgRNA programmed to correct Tyrl63Cys. Because the nucleofection efficiency of HCC1954 cells was < 10%, a plasmid expressing IRFP was co-nucleofected into these cells to enable isolation of nucleofected cells by fluorescence-activated cell sorting two days after treatment. HTS of genomic DNA revealed correction of the Tyrl63Cys mutation in 7.6% of nucleofected HCC1954 cells (Figure 30B and Figure 40A to 40B). Also nucleofected was a human lymphoma cell line that is heterozygous for p53 Asn239Asp (ST486 cells) with DNA encoding NBE2 and an sgRNA programmed to correct Asn239Asp with 92%
nucleofection efficiency). Correction of the Asn239Asp mutation was observed in 11% of treated ST486 cells (12% of nucleofected ST486 cells). Consistent with the findings in HEK cells, no indels were observed from the treatment of ST486 cells with NBE2, and 0.6% indel formation from the treatment of HCC1954 cells with NBE3. No other DNA changes within at least 50 base pairs of both sides of the protospacer were detected at frequencies above that of untreated controls out of $>2,000,000$ sequencing reads derived from 2×10^{5} cells (Figures 14 A to 14 C , Figure 30B). These results collectively represent the conversion of three diseaseassociated alleles in genomic DNA into their wild-type forms with an efficiency and lack of other genome modification events that is, to our knowledge, not currently achievable using other methods.
[00422] To illuminate the potential relevance of nucleobase editors to address human genetic diseases, the NCBI ClinVar database ${ }^{68}$ was searched for known genetic diseases that could in principle be corrected by this approach. ClinVar was filtered by first examining only single nucleotide polymorphisms (SNPs), then removing any nonpathogenic variants. Out of the 24,670 pathogenic SNPs, 3,956 are caused by either a T to C, or an A to G, substitution. This list was further filtered to only include variants with a nearby NGG PAM that would position the SNP within the deamination activity window, resulting in 1,089 clinically relevant pathogenic gene variants that could in principle be corrected by the nucleobase editors described here (Figure 21).
[00423] In some embodiments, any of the base editors provided herein may be used to treat a disease or disorder. For example, any base editors provided herein may be used to correct one or more mutations associated with any of the diseases or disorders provided herein. Exemplary diseases or disorders that may be treated include, without limitation, 3Methylglutaconic aciduria type 2,46 ,XY gonadal dysgenesis, 4-Alphahydroxyphenylpyruvate hydroxylase deficiency, 6-pyruvoyl-tetrahydropterin synthase deficiency, achromatopsia, Acid-labile subunit deficiency, Acrodysostosis, acroerythrokeratoderma, ACTH resistance, ACTH-independent macronodular adrenal hyperplasia, Activated PI3K-delta syndrome, Acute intermittent porphyria, Acute myeloid leukemia, Adams-Oliver syndrome $1 / 5 / 6$, Adenylosuccinate lyase deficiency, Adrenoleukodystrophy, Adult neuronal ceroid lipofuscinosis, Adult onset ataxia with oculomotor apraxia, Advanced sleep phase syndrome, Age-related macular degeneration, Alagille syndrome, Alexander disease, Allan-Herndon-Dudley syndrome, Alport syndrome, X-linked recessive, Alternating hemiplegia of childhood, Alveolar capillary dysplasia with misalignment of pulmonary veins, Amelogenesis imperfecta, Amyloidogenic transthyretin
amyloidosis, Amyotrophic lateral sclerosis, Anemia (nonspherocytic hemolytic, due to G6PD deficiency), Anemia (sideroblastic, pyridoxine-refractory, autosomal recessive), Anonychia, Antithrombin III deficiency, Aortic aneurysm, Aplastic anemia, Apolipoprotein C2 deficiency, Apparent mineralocorticoid excess, Aromatase deficiency, Arrhythmogenic right ventricular cardiomyopathy, Familial hypertrophic cardiomyopathy, Hypertrophic cardiomyopathy, Arthrogryposis multiplex congenital, Aspartylglycosaminuria, Asphyxiating thoracic dystrophy, Ataxia with vitamin E deficiency, Ataxia (spastic), Atrial fibrillation, Atrial septal defect, atypical hemolytic-uremic syndrome, autosomal dominant CD11C+/CD1C+ dendritic cell deficiency, Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions, Baraitser-Winter syndrome, Bartter syndrome, Basa ganglia calcification, Beckwith-Wiedemann syndrome, Benign familial neonatal seizures, Benign scapuloperoneal muscular dystrophy, Bernard Soulier syndrome, Beta thalassemia intermedia, Beta-Dmannosidosis, Bietti crystalline corneoretinal dystrophy, Bile acid malabsorption, Biotinidase deficiency, Borjeson-Forssman-Lehmann syndrome, Boucher Neuhauser syndrome, BowenConradi syndrome, Brachydactyly, Brown-Vialetto-Van laere syndrome, Brugada syndrome, Cardiac arrhythmia, Cardiofaciocutaneous syndrome, Cardiomyopathy, Carnevale syndrome, Carnitine palmitoyltransferase II deficiency, Carpenter syndrome, Cataract, Catecholaminergic polymorphic ventricular tachycardia, Central core disease, Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency, Cerebral autosomal dominant arteriopathy, Cerebro-oculo-facio-skeletal syndrome, Ceroid lipofuscinosis, Charcot-Marie-Tooth disease, Cholestanol storage disease, Chondrocalcinosis, Chondrodysplasia, Chronic progressive multiple sclerosis, Coenzyme Q10 deficiency, Cohen syndrome, Combined deficiency of factor V and factor VIII, Combined immunodeficiency, Combined oxidative phosphorylation deficiency, Combined partial 17-alpha-hydroxylase/17,20- lyase deficiency, Complement factor d deficiency, Complete combined 17-alpha- hydroxylase/ 17,20-lyase deficiency, Conerod dystrophy, Congenital contractural arachnodactyly, Congenital disorder of glycosylation, Congenital lipomatous overgrowth, Neoplasm of ovary, PIK3CA Related Overgrowth Spectrum, Congenital long QT syndrome, Congenital muscular dystrophy, Congenital muscular hypertrophy-cerebral syndrome, Congenital myasthenic syndrome, Congenital myopathy with fiber type disproportion, Eichsfeld type congenital muscular dystrophy, Congenital stationary night blindness, Corneal dystrophy, Cornelia de Lange syndrome, Craniometaphyseal dysplasia, Crigler Najjar syndrome, Crouzon syndrome, Cutis laxa with osteodystrophy, Cyanosis, Cystic fibrosis, Cystinosis, Cytochrome-c oxidase deficiency, Mitochondrial complex I deficiency, D-2-hydroxyglutaric aciduria, Danon disease, Deafness
with labyrinthine aplasia microtia and microdontia (LAMM), Deafness, Deficiency of acetylCoA acetyltransferase, Deficiency of ferroxidase, Deficiency of UDPglucose-hexose-1phosphate uridylyltransferase, Dejerine-Sottas disease, Desbuquois syndrome, DFNA, Diabetes mellitus type 2, Diabetes-deafness syndrome, Diamond-Blackfan anemia, Diastrophic dysplasia, Dihydropteridine reductase deficiency, Dihydropyrimidinase deficiency, Dilated cardiomyopathy, Disseminated atypical mycobacterial infection, Distal arthrogryposis, Distal hereditary motor neuronopathy, Donnai Barrow syndrome, Duchenne muscular dystrophy, Becker muscular dystrophy, Dyschromatosis universalis hereditaria, Dyskeratosis congenital, Dystonia, Early infantile epileptic encephalopathy, Ehlers-Danlos syndrome, Eichsfeld type congenital muscular dystrophy, Emery-Dreifuss muscular dystrophy, Enamel-renal syndrome, Epidermolysis bullosa dystrophica inversa, Epidermolysis bullosa herpetiformis, Epilepsy, Episodic ataxia, Erythrokeratodermia variabilis, Erythropoietic protoporphyria, Exercise intolerance, Exudative vitreoretinopathy, Fabry disease, Factor V deficiency, Factor VII deficiency, Factor xiii deficiency, Familial adenomatous polyposis, breast cancer, ovarian cancer, cold urticarial, chronic infantile neurological, cutaneous and articular syndrome, hemiplegic migraine, hypercholesterolemia, hypertrophic cardiomyopathy, hypoalphalipoproteinemia, hypokalemia-hypomagnesemia, juvenile gout, hyperlipoproteinemia, visceral amyloidosis, hypophosphatemic vitamin D refractory rickets, FG syndrome, Fibrosis of extraocular muscles, Finnish congenital nephrotic syndrome, focal epilepsy, Focal segmental glomerulosclerosis, Frontonasal dysplasia, Frontotemporal dementia, Fructose-biphosphatase deficiency, Gamstorp-Wohlfart syndrome, Ganglioside sialidase deficiency, GATA-1-related thrombocytopenia, Gaucher disease, Giant axonal neuropathy, Glanzmann thrombasthenia, Glomerulocystic kidney disease, Glomerulopathy, Glucocorticoid resistance, Glucose-6-phosphate transport defect, Glutaric aciduria, Glycogen storage disease, Gorlin syndrome, Holoprosencephaly, GRACILE syndrome, Haemorrhagic telangiectasia, Hemochromatosis, Hemoglobin H disease, Hemolytic anemia, Hemophagocytic lymphohistiocytosis, Carcinoma of colon, Myhre syndrome, leukoencephalopathy, Hereditary factor IX deficiency disease, Hereditary factor VIII deficiency disease, Hereditary factor XI deficiency disease, Hereditary fructosuria, Hereditary Nonpolyposis Colorectal Neoplasm, Hereditary pancreatitis, Hereditary pyropoikilocytosis, Elliptocytosis, Heterotaxy, Heterotopia, Histiocytic medullary reticulosis, Histiocytosislymphadenopathy plus syndrome, HNSHA due to aldolase A deficiency, Holocarboxylase synthetase deficiency, Homocysteinemia, Howel-Evans syndrome, Hydatidiform mole, Hypercalciuric hypercalcemia, Hyperimmunoglobulin D, Mevalonic aciduria,

Hyperinsulinemic hypoglycemia, Hyperkalemic Periodic Paralysis, Paramyotonia congenita of von Eulenburg, Hyperlipoproteinemia, Hypermanganesemia, Hypermethioninemia, Hyperphosphatasemia, Hypertension, hypomagnesemia, Hypobetalipoproteinemia, Hypocalcemia, Hypogonadotropic hypogonadism, Hypogonadotropic hypogonadism, Hypohidrotic ectodermal dysplasia, Hyper-IgM immunodeficiency, Hypohidrotic X-linked ectodermal dysplasia, Hypomagnesemia, Hypoparathyroidism, Idiopathic fibrosing alveolitis, Immunodeficiency, Immunoglobulin A deficiency, Infantile hypophosphatasia, Infantile Parkinsonism-dystonia, Insulin-dependent diabetes mellitus, Intermediate maple syrup urine disease, Ischiopatellar dysplasia, Islet cell hyperplasia, Isolated growth hormone deficiency, Isolated lutropin deficiency, Isovaleric acidemia, Joubert syndrome, Juvenile polyposis syndrome, Juvenile retinoschisis, Kallmann syndrome, Kartagener syndrome, KugelbergWelander disease, Lattice corneal dystrophy, Leber congenital amaurosis, Leber optic atrophy, Left ventricular noncompaction, Leigh disease, Mitochondrial complex I deficiency, Leprechaunism syndrome, Arthrogryposis, Anterior horn cell disease, Leukocyte adhesion deficiency, Leukodystrophy, Leukoencephalopathy, Ovarioleukodystrophy, L-ferritin deficiency, Li-Fraumeni syndrome, Limb-girdle muscular dystrophy- dystroglycanopathy, Loeys-Dietz syndrome, Long QT syndrome, Macrocephaly/autism syndrome, Macular corneal dystrophy, Macular dystrophy, Malignant hyperthermia susceptibility, Malignant tumor of prostate, Maple syrup urine disease, Marden Walker like syndrome, Marfan syndrome, Marie Unna hereditary hypotrichosis, Mast cell disease, Meconium ileus, Medium-chain acylcoenzyme A dehydrogenase deficiency, Melnick-Fraser syndrome, Mental retardation, Merosin deficient congenital muscular dystrophy, Mesothelioma, Metachromatic leukodystrophy, Metaphyseal chondrodysplasia, Methemoglobinemia, methylmalonic aciduria, homocystinuria, Microcephaly, chorioretinopathy, lymphedema, Microphthalmia, Mild non-PKU hyperphenylalanemia, Mitchell-Riley syndrome, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency, Mitochondrial complex I deficiency, Mitochondrial complex III deficiency, Mitochondrial myopathy, Mucolipidosis III, Mucopolysaccharidosis, Multiple sulfatase deficiency, Myasthenic syndrome, Mycobacterium tuberculosis, Myeloperoxidase deficiency, Myhre syndrome, Myoclonic epilepsy, Myofibrillar myopathy, Myoglobinuria, Myopathy, Myopia, Myotonia congenital, Navajo neurohepatopathy, Nemaline myopathy, Neoplasm of stomach, Nephrogenic diabetes insipidus, Nephronophthisis, Nephrotic syndrome, Neurofibromatosis, Neutral lipid storage disease, Niemann-Pick disease, Non-ketotic hyperglycinemia, Noonan syndrome, Noonan syndromelike disorder, Norum disease, Macular degeneration, N-terminal acetyltransferase deficiency,

Oculocutaneous albinism, Oculodentodigital dysplasia, Ohdo syndrome, Optic nerve aplasia, Ornithine carbamoyltransferase deficiency, Orofaciodigital syndrome, Osteogenesis imperfecta, Osteopetrosis, Ovarian dysgenesis, Pachyonychia, Palmoplantar keratoderma, nonepidermolytic, Papillon-Lef\xc3\xa8vre syndrome, Haim-Munk syndrome, Periodontitis, Peeling skin syndrome, Pendred syndrome, Peroxisomal fatty acyl-coa reductase 1 disorder, Peroxisome biogenesis disorder, Pfeiffer syndrome, Phenylketonuria, Phenylketonuria, Hyperphenylalaninemia, non- PKU, Pituitary hormone deficiency, Pityriasis rubra pilaris, Polyarteritis nodosa, Polycystic kidney disease, Polycystic lipomembranous osteodysplasia, Polymicrogyria, Pontocerebellar hypoplasia, Porokeratosis, Posterior column ataxia, Primary erythromelalgia, hyperoxaluria, Progressive familial intrahepatic cholestasis, Progressive pseudorheumatoid dysplasia, Propionic acidemia, Pseudohermaphroditism, Pseudohypoaldosteronism, Pseudoxanthoma elasticum-like disorder, Purine-nucleoside phosphorylase deficiency, Pyridoxal 5-phosphate-dependent epilepsy, Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia, skeletal dysplasia, Reticular dysgenesis, Retinitis pigmentosa, Usher syndrome, Retinoblastoma, Retinopathy, RRM2B -related mitochondrial disease, Rubinstein-Taybi syndrome, Schnyder crystalline corneal dystrophy, Sebaceous tumor, Severe congenital neutropenia, Severe myoclonic epilepsy in infancy, Severe X-linked myotubular myopathy, onychodysplasia, facial dysmorphism, hypotrichosis, Short-rib thoracic dysplasia, Sialic acid storage disease, Sialidosis, Sideroblastic anemia, Small fiber neuropathy, Smith-Magenis syndrome, Sorsby fundus dystrophy, Spastic ataxia, Spastic paraplegia, Spermatogenic failure, Spherocytosis, Sphingomyelin/cholesterol lipidosis, Spinocerebellar ataxia, Split-hand/foot malformation, Spondyloepimetaphyseal dysplasia, Platyspondylic lethal skeletal dysplasia, Squamous cell carcinoma of the head and neck, Stargardt disease, Sucrase-isomaltase deficiency, Sudden infant death syndrome, Supravalvar aortic stenosis, Surfactant metabolism dysfunction, Tangier disease, Tatton-Brown-rahman syndrome, Thoracic aortic aneurysms and aortic dissections, Thrombophilia, Thyroid hormone resistance, TNF receptor-associated periodic fever syndrome (TRAPS), Tooth agenesis, Torsades de pointes, Transposition of great arteries, Treacher Collins syndrome, Tuberous sclerosis syndrome, Tyrosinase-negative oculocutaneous albinism, Tyrosinase-positive oculocutaneous albinism, Tyrosinemia, UDPglucose-4-epimerase deficiency, Ullrich congenital muscular dystrophy, Bethlem myopathy Usher syndrome, UV-sensitive syndrome, Van der Woude syndrome, popliteal pterygium syndrome, Very long chain acyl-CoA dehydrogenase deficiency, Vesicoureteral reflux, Vitreoretinochoroidopathy, Von Hippel-Lindau syndrome, von Willebrand disease, Waardenburg syndrome, Warsaw breakage syndrome, WFSI -Related

Disorders, Wilson disease, Xeroderma pigmentosum, X-linked agammaglobulinemia, Xlinked hereditary motor and sensory neuropathy, X-linked severe combined immunodeficiency, and Zellweger syndrome.
[00424] The development of nucleobase editing advances both the scope and effectiveness of genome editing. The nucleobase editors described here offer researchers a choice of editing with virtually no indel formation (NBE2), or more efficient editing with a low frequency (here, typically $\leq 1 \%$) of indel formation (NBE3). That the product of base editing is, by definition, no longer a substrate likely contributes to editing efficiency by preventing subsequent product transformation, which can hamper traditional Cas9 applications. By removing the reliance on double-stranded DNA cleavage and stochastic DNA repair processes that vary greatly by cell state and cell type, nucleobase editing has the potential to expand the type of genome modifications that can be cleanly installed, the efficiency of these modifications, and the type of cells that are amenable to editing. It is likely that recent engineered Cas 9 variants ${ }^{69,70,82}$ or delivery methods ${ }^{71}$ with improved DNA specificity, as well as Cas9 variants with altered PAM specificities, ${ }^{72}$ can be integrated into this strategy to provide additional nucleobase editors with improved DNA specificity or that can target an even wider range of disease-associated mutations. These findings also suggest that engineering additional fusions of dCas9 with enzymes that catalyze additional nucleobase transformations will increase the fraction of the possible DNA base changes that can be made through nucleobase editing. These results also suggest architectures for the fusion of other DNAmodifying enzymes, including methylases and demathylases, that mau enable additional types of programmable genome and epigenome base editing.

Materials and Methods

[00425] Cloning. DNA sequences of all constructs and primers used in this paper are listed in the Supplementary Sequences. Plasmids containing genes encoding NBE1, NBE2, and NBE3 will be available from Addgene. PCR was performed using VeraSeq ULtra DNA polymerase (Enzymatics), or Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). NBE plasmids were constructed using USER cloning (New England Biolabs). Deaminase genes were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies), and Cas9 genes were obtained from previously reported plasmids. ${ }^{18}$ Deaminase and fusion genes were cloned into pCMV (mammalian codon-optimized) or pET28b (E. coli codon-optimized) backbones. sgRNA expression plasmids were constructed using site-
directed mutagenesis. Briefly, the primers listed in the Supplementary Sequences were 5' phosphorylated using T4 Polynucleotide Kinase (New England Biolabs) according to the manufacturer's instructions. Next, PCR was performed using Q5 Hot Start High-Fidelity Polymerase (New England Biolabs) with the phosphorylated primers and the plasmid pFYF1320 (EGFP sgRNA expression plasmid) as a template according to the manufacturer's instructions. PCR products were incubated with Dpnl (20 U, New England Biolabs) at $37{ }^{\circ} \mathrm{C}$ for 1 h , purified on a QIAprep spin column (Qiagen), and ligated using QuickLigase (New England Biolabs) according to the manufacturer's instructions. DNA vector amplification was carried out using Machl competent cells (ThermoFisher Scientific).
[00426] In vitro deaminase assay on ssDNA. Sequences of all ssDNA substrates are listed in the Supplementary Sequences. All Cy3-labelled substrates were obtained from Integrated DNA Technologies (IDT). Deaminases were expressed in vitro using the TNT T7 Quick Coupled Transcription/Translation Kit (Promega) according to the manufacturer' s instructions using $1 \mu \mathrm{~g}$ of plasmid. Following protein expression, $5 \mu \mathrm{~L}$ of lysate was combined with $35 \mu \mathrm{~L}$ of ssDNA $(1.8 \mu \mathrm{M})$ and USER enzyme (1 unit) in CutSmart buffer (New England Biolabs) (50 mM potassium acetate, 29 mM Trisacetate, 10 mM magnesium acetate, $100 \mathrm{ug} / \mathrm{mL}$ BSA, pH 7.9) and incubated at $37^{\circ} \mathrm{C}$ for 2 h . Cleaved U-containing substrates were resolved from full-length unmodified substrates on a 10% TBE-urea gel (Bio-Rad).
[00427] Expression and purification of $\mathbf{H i s}_{\mathbf{6}}$-rAPOBECl-linker-dCas9 fusions. E. Coli BL21 STAR (DE3)-competent cells (ThermoFisher Scientific) were transformed with plasmids encoding pET28b-His ${ }_{6}$-rAPOBEC-linker-dCas9 with GGS, (GGS) ${ }_{3}$, (SEQ ID NO: 610) XTEN, or (GGS) 7_{7} (SEQ ID NO: 610) linkers. The resulting expression strains were grown overnight in Luria-Bertani (LB) broth containing $100 \mu \mathrm{~g} / \mathrm{mL}$ of kanamycin at $37{ }^{\circ} \mathrm{C}$. The cells were diluted 1:100 into the same growth medium and grown at $37^{\circ} \mathrm{C}$ to $\mathrm{OD}_{6}{ }^{\circ}{ }^{\circ}=$ -0.6 . The culture was cooled to $4{ }^{\circ} \mathrm{C}$ over a period of 2 h , and isopropyl - β-D-1thiogalactopyranoside (IPTG) was added at 0.5 mM to induce protein expression. After -16 h , the cells were collected by centrifugation at $4,000 \mathrm{~g}$ and resuspended in lysis buffer (50 mM tris(hydroxymethyl)-amiiiomethane (Tris)- $\mathrm{HCl}, \mathrm{pH} 7.0,1 \mathrm{M} \mathrm{NaCi}, 20 \%$ glycerol, 10 mM tris(2-carboxyethyl)phosphine (TCEP, Soltec Ventures)). The cells were lysed by sonication (20 s pulse-on, 20 s pulse-off for 8 min total at 6 W output) and the lysate supernatant was isolated following centrifugation at $25,000 \mathrm{~g}$ for 15 min . The lysate was incubated with HisPur nickel-nitriloacetic acid (nickel-NTA) resin (ThermoFisher Scientific) at $4{ }^{\circ} \mathrm{C}$ for 1 h to capture the His-tagged fusion protein. The resin was transferred to a column and washed with 40 mL of lysis buffer. The His-tagged fusion protein was eluted in lysis buffer supplemented
with $285 \mathrm{n}_{1} \mathrm{M}$ imidazole, and concentrated by ultrafiltration (Amicon-Millipore, $100-\mathrm{kDa}$ molecular weight cut-off) to 1 mL total volume. The protein was diluted to 20 mL in low-salt purification buffer containing 50 mM tris(hydroxymeiliyl)-aminomeihane (Tris)- $\mathrm{HCl}, \mathrm{pH} 7.0$, $0.1 \mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 10 mM TCEP and loaded onto SP Sepharose Fast Flow resin (GE Life Sciences). The resin was washed with 40 mL of this low-salt buffer, and the protein eluted with 5 mL of activity buffer containing 50 mM ti s (hydroxymethyl)-aminomethaxe (Tris)- $\mathrm{HCl}, \mathrm{pH} 7.0,0.5 \mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 10 mM TCEP. The eluted proteins were quantified on a SDSPAGE gel.
[00428] In vitro transcription of sgRNAs. Linear DNA fragments containing the T7 promoter followed by the 20-bp sgRNA target sequence were transcribed in vitro using the primers listed in the Supplementary Sequences with the TranscriptAid T7 High Yield Transcription Kit (ThermoFisher Scientific) according to the manufacturer's instructions. sgRNA products were purified using the MEGAclear Kit (ThermoFisher Scientific) according to the manufacturer's instructions and quantified by UV absorbance.
[00429] Preparation of Cy3-conjugated dsDNA substrates. Sequences of 80-nucleotide unlabeled strands are listed in the Supplementary Sequences and were ordered as PAGEpurified oligonucleotides from IDT. The 25 -nt Cy3-labeled primer listed in the Supplementary Sequences is complementary to the 3 ' end of each 80 -nt substrate. This primer was ordered as an HPLC-purified oligonucleotide from IDT. To generate the Cy3-labeled dsDNA substrates, the $80-\mathrm{nt}$ strands (5 pL of a $100 \mu \mathrm{M}$ solution) were combined with the Cy3-labeled primer (5 $\mu \mathrm{L}$ of a 100 pM solution) in NEBuffer $2(38.25 \mathrm{pL}$ of a $50 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mMTris-HCl}, 10$ $\mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, pH 7.9 solution, New England Biolabs) with dNTPs (0.75 pL of a 100 mM solution) and heated to $95^{\circ} \mathrm{C}$ for 5 min , followed by a gradual cooling to $45^{\circ} \mathrm{C}$ at a rate of $0.1^{\circ} \mathrm{C} / \mathrm{s}$. After this annealing period, Klenow exo^{-}(5 U , New England Biolabs) was added and the reaction was incubated at $37^{\circ} \mathrm{C}$ for 1 h . The solution was diluted with Buffer PB (250 pL , Qiagen) and isopropanol (50 pL) and purified on a QIAprep spin column (Qiagen), eluting with 50 pL of Tris buffer.
[00430] Deaminase assay on dsDNA. The purified fusion protein (20 pL of 1.9 pM in activity buffer) was combined with 1 equivalent of appropriate sgRNA and incubated at ambient temperature for 5 min . The Cy3-labeled dsDNA substrate was added to final concentration of 125 nM and the resulting solution was incubated at $37^{\circ} \mathrm{C}$ for 2 h . The dsDNA was separated from the fusion by the addition of Buffer PB (100 pL, Qiagen) and isopropanol (25 pL) and purified on a EconoSpin micro spin column (Epoch Life Science), eluting with 20 pL of CutSmart buffer (New England Biolabs). USER enzyme (1 U , New

England Biolabs) was added to the purified, edited dsDNA and incubated at $37{ }^{\circ} \mathrm{C}$ for 1 h . The Cy3-labeled strand was fully denatured from its complement by combining $5 \mu \mathrm{i}$, of the reaction solution with $15 \mu \mathrm{I}$, of a DMSO-based loading buffer (5 mM Tris, 0.5 mM EDTA, 12.5% glycerol, 0.02% bromophenol blue, 0.02% xylene cyan, 80% DMSO). The full-length C-containing substrate was separated from any cleaved, U-containing edited substrates on a 10% TBE-urea gel (Bio-Rad) and imaged on a GE Amersham Typhoon imager.
[00431] Preparation of in vitro-edited dsDNA for high-throughput sequencing (HTS).
The oligonucleotides listed in the Supplementary Sequences were obtained from IDT. Complementary sequences were combined ($5 \mu i ̈$, of a $100 \mu \mathrm{M}$ solution) in Tris buffer and annealed by heating to $95^{\circ} \mathrm{C}$ for 5 min , followed by a gradual cooling to $45^{\circ} \mathrm{C}$ at a rate of 0.1 ${ }^{\circ} \mathrm{C} /$ s to generate $60-\mathrm{bp}$ dsDNA substrates. Purified fusion protein ($20 \mu \mathrm{i}$, of $1.9 \mu \mathrm{M}$ in activity buffer) was combined with 1 equivalent of appropriate sgRNA and incubated at ambient temperature for 5 min . The $60-\mathrm{mer}$ dsDNA substrate was added to final concentration of 125 nM and the resulting solution was incubated at $37^{\circ} \mathrm{C}$ for 2 h . The dsDNA was separated from the fusion by the addition of Buffer PB ($100 \mu \mathrm{~L}$, Qiagen) and isopropanol $(25 \mu \mathrm{~L})$ and purified on a EconoSpin micro spin column (Epoch Life Science), eluting with $20 \mu \mathrm{i}$, of Tris buffer. The resulting edited DNA ($1 \mu \mathrm{~L}$ was used as a template) was amplified by PCR using the HTS primer pairs specified in the Supplementary Sequences and VeraSeq Ultra (Enzymatics) according to the manufacturer's instructions with 13 cycles of amplification. PCR reaction products were purified using RapidTips (Diffinity Genomics), and the purified DNA was amplified by PCR with primers containing sequencing adapters, purified, and sequenced on a MiSeq high-throughput DNA sequencer (Illumina) as previously described. ${ }^{73}$
[00432] Cell culture. HEK293T (ATCC CRL-3216), U20S (ATCC-HTB-96) and ST486 cells (ATCC) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with 10% (v / v) fetal bovine serum (FBS) and penicillin/streptomycin (lx, Amresco), at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{C}_{2}$. HCC 1954 cells (ATCC CRL2338) were maintained in RPMI-1640 medium (ThennoFisher Scientific) supplemented as described above. Immortalized rat astrocytes containing the ApoE4 isoform of the APOE gene (Taconic Biosciences) were cultured in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThennoFisher Scientific) supplemented with 10% (v/v) fetal bovine serum (FBS) and 200 $\mu \mathrm{g} / \mathrm{mL}$ Geneticin (ThermoFisher Scientific).
[00433] Transfections. HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately 85% confluency. Briefly, 750 ng of NBE and 250 ng of sgRNA expression plasmids were transfected using 1.5μ in Lipofectamine

2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol. Astrocytes, U20S, HCC1954, HEK293T and ST486 cells were transfected using appropriate AMAXA NUCLEOFECTOR ${ }^{\mathrm{TM}}$ II programs according to manufacturer's instructions. 40 ng of infrared RFP (Addgene plasmid 45457) ${ }^{74}$ was added to the nucleofection solution to assess nucleofection efficiencies in these cell lines. For astrocytes, U20S, and ST486 cells, nucleofection efficiencies were $25 \%, 74 \%$, and 92%, respectively. For HCC1954 cells, nucleofection efficiency was $<10 \%$. Therefore, following trypsinization, the HCC1954 cells were filtered through a 40 micron strainer (Fisher Scientific), and the nucleofected HCC1954 cells were collected on a Beckman Coulter MoFlo XDP Cell Sorter using the iRFP signal (abs 643 nm , em 670 nm). The other cells were used without enrichment of nucleofected cells.
[00434] High-throughput DNA sequencing of genomic DNA samples. Transfected cells were harvested after 3 d and the genomic DNA was isolated using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. On-target and off-target genomic regions of interest were amplified by PCR with flanking HTS primer pairs listed in the Supplementary Sequences. PCR amplification was carried out with Phusion high-fidelity DNA polymerase (ThermoFisher) according to the manufacturer's instructions using 5 ng of genomic DNA as a template. Cycle numbers were determined separately for each primer pair as to ensure the reaction was stopped in the linear range of amplification (30, 28, 28, 28, 32, and 32 cycles for EMX1, FANCF, HEK293 site 2, HEK293 site 3, HEK293 site 4, and RNF2 primers, respectively). PCR products were purified using RapidTips (Diffinity Genomics). Purified DNA was amplified by PCR with primers containing sequencing adaptors. The products were gel-purified and quantified using the QUANT-IT ${ }^{\text {TM }}$ PicoGreen dsDNA Assay Kit (ThermoFisher) and KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described. ${ }^{73}$
[00435] Data analysis. Sequencing reads were automatically demultiplexed using MiSeq Reporter (Illumina), and individual FASTQ files were analyzed with a custom Matlab script provided in the Supplementary Notes. Each read was pairwise aligned to the appropriate reference sequence using the Smith-Waterman algorithm. Base calls with a Q-score below 31 were replaced with N 's and were thus excluded in calculating nucleotide frequencies. This treatment yields an expected MiSeq base-calling error rate of approximately 1 in 1,000 . Aligned sequences in which the read and reference sequence contained no gaps were stored in an alignment table from which base frequencies could be tabulated for each locus.
[00436] Indel frequencies were quantified with a custom Matlab script shown in the Supplementary Notes using previously described criteria ${ }^{71}$. Sequencing reads were scanned for exact matches to two $10-\mathrm{bp}$ sequences that flank both sides of a window in which indels might occur. If no exact matches were located, the read was excluded from analysis. If the length of this indel window exactly matched the reference sequence the read was classified as not containing an indel. If the indel window was two or more bases longer or shorter than the reference sequence, then the sequencing read was classified as an insertion or deletion, respectively.
[00437] All publications, patents, patent applications, publication, and database entries (e.g., sequence database entries) mentioned herein, e.g., in the Background, Summary, Detailed Description, Examples, and/or References sections, are hereby incorporated by reference in their entirety as if each individual publication, patent, patent application, publication, and database entry was specifically and individually incorporated herein by reference. In case of conflict, the present application, including any definitions herein, will control.

Supplementary Sequences

[00438] Primers used for generating sgRNA transfection plasmids. rev_sgRNA_plasmid was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 187-196 appear from top to bottom below, respectively.

rev__sgRNA_plasmsd	GGTGTTTCGTCCTTTCCACAAG
fwd_p53_Yı63C	GCTTGCAGATGGCCATGGCGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd._p53_N23QD	TGTCACACATGTAGTTGTAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd._APOE4_C158R	GAAGCGCCTGGCAGTGTACCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd._EMX1	GAGTCCGAGCAGAAGAAGAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd_FANCF	GGAATCCCTTCTGCAGCACCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd._HEK293_2	GAACACAAAGCATAGACTGCG TTTTAGAG CTAGAAATAGCAAGTTAAAATAAG GG
fwd._HEK293_3	GGCCCAGACTGAGCACGTGAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd._HEK293_4	GGCACTGCGGCTGGAGGTGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
fwd_RNF2	GTCATCTTAGTC ATTAC CTGGTTTTAGAGCTAG AAATAGCAAGTTAAAATAAGGC

[00439] Sequences of all ssDNA substrates used in in vitro deaminase assays. SEQ ID NOs: 197-199 appear from top to bottom below, respectively.

rAPOBEC 1 substrate hAiD/pmCD A 1 substrate hAPGBECSG substrate
Cy3-ATTATTATTATTCCGCGGATTT ATTTATTTATTTATTTATTT Су3-ATTATTATTATTAGCTATTTATTTATTTATTTATTTATTT Су3-ATTATTATTATTCCCGGATTTATTTATTTATTTATTTATTT

[00440] Primers used for generating PCR products to serve as substrates for T7 transcription of sgRNAs for gel-based deaminase assay. rev_gRNA_T7 was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 200-223 appear from top to bottom below, respectively.

rev_SgRNA_T7	AAAAAAAGCACCGACTCGGTG
fuc_sgRNA. T7_dsDNA_2	TAATACGACTCACTATAGGCCGGGGATTTATTTATTTAAGTTTTAGAGCTAGAAATAGCA
fad_sgRNA. T7_dsDNA_3	TAATACGAGTCACTATAGGTCCGCGGATTTATTTATTTAGTTTTAGAGCTAGAAATAGCA
fvvd_sgRNA. .T7_dsDNA_4	TAATACGACTCACTATAGGTTCCGCGGATTTATTTATTAGTTTTAGAGCTAGAAATAGCA
Fos_SgRNA_TI_dsDNA_ 5	TAATACGACTCACTATAGGATTCCGCGGATTTATTTATTGTTTTAGAGCTAGAAATAGCA
frod_sgRNA., T7_dsDNA_ 8	TAATACGACTCACTATAGGTATTCCGCGGATTTATTTATGTTTTAGAGCTAGAAATAGCA
fvis_sgRNA._ ${ }^{\text {7 }}$ _dsDNA_7	TAATACGACTCACTATAGGTTATTCCGCGGATTTATTTAGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA. T7_dsDNA_8	TAATACGACTCACTATAGGATTATTCCGCGGATTTATTTGTTTTAGAGCTAGAAATAGCA
fvvd_sgP.NA,_17_dsDNA_9	TAATACGACTCACTATAGGTATTATTGCGCGGATTTATTGTTTTAGAGCTAGAAATAGCA
1Svd_sgRNA._ ${ }^{\text {7 }}$ _dsDNA_1 0	TAATACGACTCACTATAGGATTATTATCCGCGGATTTATGTTTTAGAGCTAGAAATAGCA
F*d_sgRNA_T7_dsDNA_1	TAATACGACTCACTATAGGTATTATATTCCGCGGATTTAGTTTTAGAGCTAGAAATAGCA
fvid_sgRNA_T7_dsDNA_12	TAATACGAGTCACTATAGGTTATTATATTCCGCGGATTTGTTTTAGAGCTAGAAATAGCA
frd_sgRNA_T7_dsDNA_13	TAATACGACTCACTATAGGATTATTATATTCCGCGGATTGTTTTAGAGCTAGAAATAGCA
f-vd_sg RNA_77_dsDNA_1 4	'FAATACGACTCACTATAGGTATTATTATATTCCGCGGATGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_dsDNA_15	rAATACGACTCACTATAGGATTATTATTATTACCGCGGAGTTTTAGAGCTAGAAATAGCA
f..vci_sg RNA_77_dsDNA_1 8	*FAATACGACTCACTATAGGATTATTATTATTATTACCGCGTTTTAGAGCTAGAAATAGCA
f3/4d_sgRNA_77_dsDN A_noC: fwd saRNA T7 dsDNA	FAATACGACTCACTATAGGATATTAATTTATTTATTTAAGTTFTAGAGCTAGAAATAGCA
APOE4_G1:2R	'FAATACGACTCACTATAGGGGAGGACGTGCGCGGCCGCCGTTTTAGAGCTAGAAATAGCA
frii_sgRNA_77_dsDNA_ APOE4_C1 5SR	FAATACGACTCACTATAGGGAAGCGCCTGGCAGFGTACCGTTTTAGAGCTAGAAATAGCA
!wd_sg RNA_77_dsDN A_ CTNNB1_T41A	'FAATACGACTCACTATAGGCTGTGGCAGTGGCACCAGAAGTTTTAGAGCTAGAAATAGCA
f..vci_sgRNA_77_dsDN A_ HRAS_66定	「FAATACGACTCACTATAGGCCTCCCGGCCGGGGGTATCCGTTTTAGAGCTAGAAATAGCA
ftvd_sg RNA_T7_dsDN A_ 53_Y163C	-FAATACGACTCACTATAGGGCTTGCAGATGGCCATGGCGGTTTTAGAGCTAGAAATAGCA
f-vd_sg RNA_T7_dsDN A_ 53_Y236C	-FAATACGACTGACTATAGGACACATGCAGTTGTAGTGGAGTTTTAGAGCTAGAAATAGCA
$\begin{aligned} & \text { f«3/4_sciRNA_T7_dsDNA_ } \\ & \text { 53_N239D } \end{aligned}$	FAATACGACTCACTATAGGTGTCACACATGTAGTTGTAGGTTTTAGAGCFAGAAATAGCA

[00441] Sequences of 80-nucleotide unlabeled strands and Cy3-labeled universal primer used in gel-based dsDNA deaminase assays. SEQ ID NOs: 224-248 appear from top to bottom below, respectively.

[00442] Primers used for generating PCR products to serve as substrates for T7 transcription of sgRNAs for high-throughput sequencing. rev_gRNA_T7 (above) was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 249-300 appear from top to bottom below, respectively.

Abstract

f（vin＿sgRNA＿T7＿HTS＿base fo＇d＿sgN．NA＿T？＿HTS＿A fivd＿sgRiNA＿T7＿HTS＿ C Frid＿sgRENA＿T7＿HTS＿1G fivisgRenA＿T7＿HT5＿2A が d＿sgRNA＿T？＿HTS＿2C ：${ }^{*} v d$＿sg RNA＿77＿H7S＿2G Fa＿sgriva＿TB＿HTS＿3T fy：si＿sgRNA＿T？＿HTS＿3C fv，＇d＿3gRNA＿T？＿HTS＿3G wd＿sgR：NA＿T7＿HTS＿4A FiNd＿sgRNA＿T7＿HTS＿4C fwd＿sgRedA＿T？＿HTS＿4G fvvd＿5gRNA＿T7＿HTS＿5A ．．．vd＿sgRNA＿T7＿HTS＿5C f．vd＿sgR：SA＿T7＿HTS＿5G f＞vd＿sgRMA＿T7＿HTS＿5A f＊＇d＿sgRNA＿T7＿HTS＿5C ？vvd＿sgRNA＿T7＿HTS＿SG ford＿sgRenA＿T7＿HTS＿8A f \＆d sgFNA＿T7＿HTS＿ET fwd＿sgRNA＿T7＿HTS＿EC fwd＿sgRN A＿T7＿H 7S＿． 9 A fwd＿sgRNA＿T7＿HTS＿9C ftvd＿sgRNA＿T7＿HTS＿SG fwd＿seRnA＿T7＿HTS＿：0A A＊＊＊i＿sgRNA＿T7＿H7S＿10T s：d＿sgRNA＿77＿HTS＿！OC f，vid＿sgrwA＿T7＿HTS＿．in fwd＿sgRNA＿T7＿HTS＿． 117 f＊：d＿sgRNA＿T7＿HTS＿． 1 ；C $\mathrm{f}_{\mathrm{*}}$ d＿sgRNA＿77＿HTS． 12 T fwd＿sgRNA＿77＿HTS＿． 12 C

TAA．TACGACTCACTATAGGTTATTTCGTGGATI－7AT7TAG†Ti＋AGAGC $\overline{\boldsymbol{i} A G A A A T A G C A ~}$ 7AA7ACGACTCACTATAGGATATT TAATACGACTCACTA7AGGGTATTTCG7GGAT ГTATITAGTTTTAGAGCTAGAAATAGCA 7AA TAGGAC7C AC7A7AGG7AAT77C Gテ̄GGA77TA77 TAG1－！T］AGAGCTAGAAATAG CA 7AA7 ACGAC7C AC7A7 AGG7C A777 CGTGGAT ГTATTTAG－SiTTAGAGCTAGAAATAGCA 7AA7 ACGACTCACTATAGGTG ATTTC G7G GAT ГTATTTAG，TTTAGAGCTAGAAATAGCA 7AATACGAC7CACTA7AGG77TT77CG7GGA77 TATT 7AG Ti゙MAGAGCTAGAAA7．AGCA TAA7ACGAC7CAC7A7AGG77C777CG7GGA777A77 TAG TTHGAGCTAGAAATAGCA fAA7ACGAC7CACTA7AGG7TGTTTCGTGgaTTTA7TTAGT！TTAGAGCTAGAAATAGCA 7AA7ACGAC7CAC7A7AGG77AA77CG7GGA71 I7A77TAG TTYTAGAGCTAGAAATAGCA TAATACGAC7CACTATAGGTTACTTCGTGGAT＂ГTATITAG $\ddagger T T A G A G C+A G A A A T A G C A$ 7AA7ACGAC7CAC7A7AGG77AG77CG7GGA7＂ГТАТ ！T AG＋！－！＋AGAGCTAGAAA＋AGCA 7AA7ACGAC7CAC7A7AGG77A7A7CG7GGA71 rTATTTAG sitiliagAGCTAGAAATAGCA 7AA7ACGAC7CAC7A7AGG77A7C7CG7GGAT I7A71TAG－TTTAGAGC＋AGAAATAGCA 7AA7AC GAC7C AC7A7AG G77 A7G7C G7G GAT rTATTTAGTTT TAGAGCTAGAAATAGCA 7AATACGACTCAC7A7AGGTTATTACG7GGA7TTAT7 TAG トririAGAGCTAGAAATAGCA TAATACGAC7C ACTA7AGG7TATTC CG7G GAT ГTATTTAG ！！！TTAGAGCTAGAAATAGCA 7AA7ACGAC7CAC7A7AGG77A77GCG7GGAT ГTAT1TAGTTTT AGAGCTAGAAATAGCA 7AATACGAC7C AC7A7 AGGTTATTTG CTGGAT ГTAT TTAGTT77AGAGC7AGAAA7AGCA 7AATACGAC7CAC7ATAGGTTAT7TCGCGGA7 7TA7T TAG7TTTAGAGCTAGAAA7AGCA 7AATAGGAC7C ACTATAGG77A 777CGGGGA77 TATTAGTHAGCTAGAAATAGCA 7AA7ACGAC7CAC7A7AGG77A777CG7AGA777A7T T AGTTTTAGAGCT AGAAATAGCA 7AATAC GAC7C AC7A7AG GTTATTTC GT7GAT ГTATTTAG 7AA7ACGAC7CAC7A7AGG77A777CG7CGA7＂Г7AT！TAG－STAGAGCTAGAAATAGCA TAATACGACTCACTATAGGTTATTTCGTGAAT ГTAT1TAG TiTHGAGCTAGAAATAGCA TAATACGACTGAC7A7 AGG77ATTHCGTGTAT1：7ATTTAG777TAGAGCTAG AAATAGCA TAATAC GAC7C ACTA7AG GTTATTTC GTGC ATTTATHTAG＋TAGAGCTAGAAATAGCA TAATACGACTCACTATAGGTTATTTCGTGGC THT THATTHAGAGTAGAAATAGCA

fwd_sgRNA_T7_HTS_	12G	TAATACGACTCACTATAGGTTATTTCGTGGGTTTATTTAGTTTTAGAGCTAGAAATAGCA
fad_sgrina_T7_HTS_	3 3 A	TAATACGACTCACTATAGGTTATTTCGTGGAATTA7TTAGTTTTAGAGCTAGAAATAGCA
fWd_sgRNA_77_H7S_	13C	7 AATACGACTCACTATAGGTTATTTCGTGG ACTTATTT AGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_HTS_	36	TAATACGACTCACTATAGGTTATTTCGTGGAGTTATTTAGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_77_HTS_ muitic		TAATACGACTCACTATAGGTTCCCCCCCCGATTTATTTAGTTTTAGAGCTAGAAATAGCA
fvd_sgRNA_T7_HTS_ TCGCACCC_O6S		TAATACGACTCACTATAGGCGCACCCGTGGATTTATTTAG7TTTAGAGCTAGAAATAGCA
fWd_sgRNA_77_HT3_ CCTCGCAC _O6d		TAATACGACTCACTATAGGCTCGCACGTGGATTTATTTAGTTTTAGAGCTAGAAATAGCA
fWd_sgRNA_77_HTS_ ACCCTCGC_odd		TAATACGACTCACTATAGGCCCTCGCGTGGATTTATTTAGTTTTAGAGCTAGAAATAGCA
ivd_sgRNA_T7_HTS_ GCACCCTC_的*		TAATACGACTCACTATAGGCACCCTCGTGGATTTATTTAGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_HTS_ TCGCACCC_even		TAATACGACTCACTATAGGTCGCACCCGTGGATTTATTAGTTTTAGAGCTAGAAATAGCA
fod_sgR准A_T7_HTS_ CCTCGCAC _ever		TAATACGACTCACTATAGGCCTCGCACGTGGATTTATTAGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_HTS ACCCTCGC_sven		TAATACGACTCACTATAGGACCCTCGCGTGGATTTATTAGTTTTAGAGCTAGAAATAGCA
fWd_sgRNA_77_HT3. GCACCCTC_ever:		TAATACGACTCACTATAGGGCACCCTCGTGGATTTATTAGTTTTAGAGCTAGAAATAGCA
$\begin{aligned} & \text { fwósgrN } \\ & \text { Efvix } \end{aligned}$		TAATACGA CTCAC7 ATAGG GAGTCC GAG CAGAAGAAGAAGTTTTAGAGCTAGA AATAGCA
$\begin{aligned} & \text { Wo_sgFNA_77_HTS_} \\ & \text { FANCF } \end{aligned}$		TAATACGACTCACTATAGGGGAATCCCTTCTGCAGCACCGTTT7AGAGCTAGAAATAGCA
fwd_sgRNA_T7_H7S_ HEK2 93 _s ǐE2		7AA7ACGACTCACTA7AGGGAACACAAAGCATAGACTGCGT7T7AGAGCTAGAAATAGCA
fwd_sgRNA_T7_HTS_ HEK2 S3_s ste3		7AA7ACGACTCACTA7AGGGGCCCAGAC7GAGCACGTGAG7T7TAGAGCTAGAAA7AGCA
fwd_sgRNA_T7_HTS _ HE 253 _site4		TAATACGACTCACTATAGGGGCACTGCGGCTGGAGGTGG3T7TTAGAGCTAGAAATAGCA
```FWd_sgRNA_T7_HTS _ RNF2```		T^ATACGACTCAC7 ATAGG GTCATC7T AG7C ATTACCTG GTTTTAGAGCTAGAAATAGCA

[00443] Sequences of in vitro-edited dsDNA for high-throughput sequencing (HTS). Shown are the sequences of edited strands. Reverse complements of all sequences shown were also obtained. dsDNA substrates were obtained by annealing complementary strands as described in Materials and Methods. Oligonucleotides representing the EMX1, FANCF, HEK293 site 2, HEK293 site 3, HEK293 site 4, and RNF2 loci were originally designed for use in the gel-based deaminase assay and therefore have the same 25 -nt sequence on their 5'ends (matching that of the Cy3-primer). SEQ ID NOs: 301-352 appear from top to bottom below, respectively.

ACGTAAACGGCGACAAGTTCTTATTTCGTGGATT\}ATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCATATTTCGTGGATTTATTTATGGCATCTTCTTC AAGGACG ACGTAAACGGCCACAAGTTCCTATTTCGTGGATTTATTTATGGCATCTTCTTCA,AGGACG ACGTAAACGGCCACAAGTTCGTATTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTAATTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTCATTTCGTGGATTTATTTATGGCATCTTCTTC AAGGACG ACGTAAACGGCCACAAGTTCTGATTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTTTTTCGTGGATTTATTTATGGعATCTTCTTC\&AGGACG ACGTAAACGGCCACAAGTTCTTCTTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTGTTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTAATTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTACTTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTAGTTCGTGGATTTATTTATGGCATCTTCTTCA 3/6GACG ACGTAAACGGCCACAAGTTCTTATATCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATCTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATGTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTACGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTCCGTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTGCGTGGATTTATTT ATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCATGGATTTATTT ATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCTTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCCTGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGAGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGCGGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGGGGATTTATTTATGGCATCTTCTTC.AAGGACG ACGTAAAC GGCCACAAGTTC TTATTTCGTAGATTTATTTATGGCATCTTCTTC AAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGTTGATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAAC GGCCACAAGTTCTTATTTCGTC GATTTATTTATGGCATC TTCTTC AAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGTGAATTTATTTATGGC ATCTTCTTCAAG GACG ACGTAAACGGCCACAAGTTCTTATTTCGTGTATTTATTTATGGCATCTTCTTCAAGGACG ACGTAAACGGCCACAAGTTCTTATTTCGTGCATTTATTT ATGGCATCTTCTTCAAGGACG

\$2T	ACGTAAACG GCCACAAGTTC TTATTTC GTG GTTTTPATTT ATG GCATCTTCTTC AAGGACG
12C	ACGTAAACGGCCACAAGTTCTTATTTCGTGGCTTTATTTATGGCATCTTCTTCAAGGACG
12 G	ACGTAAACGGCCACAAGTTCTTATTTCGTGGGT7TATTTATGGCATCTTCTTCAAGGACG
33 A	ACGTAAACGGCCACAAGTTC TTATTTC GTG GAATTATTT ATG GCATC TTCTTC AAGGACG
3C	ACGTAAACGGCCACAAGTTCTTATTTCGTGGACTTATTTATGGCATCTTCTTC.AAGGACG
3G	ACGTAAACGGCCACAAGTTCTTATTTCGTGGAGTTATTTATGGCATCTTCTTCAAGGACG
muitic	ACGTAAACGGCCACAAGTTCTTCCCCCCCCGATTTATTTATGGCATCTTCTTCAAGGACG
TCGCACCC origi	ACGTAAACGGCCACAAGTTTCGCACCCGTGGATTTATTTATGGCATCTTCTTCAAGGACG
CCTCGCAC_ode	ACGTAAACGGCCACAAGTTCCTCGCACGTGGATTTATTTATGGCATCTTCTTCAAGGACG
ACCCTCGC_odd	ACGTAA ACGGCCACAAGTT ACCC TCGCGTG GATTT ATTT ATGGCATCTT CTTC AAG GACG
GCACCCTCjJdd	ACGTAAACGGCCACAAGTTGCACCCTCGTGGATTTATTTATGGCATCTTCTTCAAGGACG
TCGCACCC _even	ACGTAAACGGCCACAAGTATTCGCACCCGTGGATTTATTATGGCATCTTCTTCAAGGACG
CCTCGCAC _even	ACGTAAACGGCCACAAGTATCCTCGCACGTGGATTTATTATGGCATCTTCTTCAAGGACG
ACCCTCGC_even	ACGT AAAC GGCCA CAAGTATACC CTC GCGTG GATTTATTATGGC ATCTTCTTC AAGGACG
GCACCCTC _8ven	ACGTAAACGGCCACAAGTATGCACCCTCGTGGATTTATTATGGCATCTTCTTCAAGGACG
EMX1_Ioviltro	GTAGGTAGTTAGGATGAATGGMGGTTGGTAGGCCTGAGTCCGAGCAGAAGAAGAAGGGCTCCCATCACATCAACCGGTG
FANCFJ nvitro	GTAGGTAGTTAGGATGAATGGA GGTTGGTACTCATGGAATCiCTTCTGCAGCACCTGGATCGC TTTTECGAGCTTCTGG
HEK293_s!te2. invstro	GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAACTGGAACACASAGCATAGACTGCGGGGCGGGCCAGCCTGAATAGCTG
HEK2S3_S:te3. inviirs	GTAGGTAGTTAGGATGAATGGAAGGITGGTACTTGGGGCCCAGACTGAGCACGTGATGGCAGAGGAAAGGAAGCCCTGCT
HEK293_s!te4_. invito	GTAGGTAGTTAGGATGAATGGAAGGTTGGTACCGGTGGCACTGCGGOTGGAGGTGGGGGTTAAAGCGGAGACTCTGGTGC
RNF2_inviiro	GTAGGTAGTTAGGATGAATGGAAGGTTGGTATGGC AGTCATCTTAGTCATTACCTGAGGTGTTCGTT GTAACTCATATAA

[00444] Primers for HTS of in vitro edited dsDNA. SEQ ID NOs: 353-361 appear from top to bottom below, respectively.

	ACACTC-TTTCC-CTACACGACGCTCTTCCGATCTNNNNACGTAAACGGCCACAA
rev_invitro_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCGTCCTTGAAGAAGATGC
f.vdj $\mathrm{n}_{\psi} \mathrm{tf}_{\mathrm{f}_{-}} \mathrm{HEKJ}$ afget 3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTAGGTAGTTAGGATGAATGGAA
rev_ENM X [! nviiro	TGGAGTTCAGACGTGTGCTCTTCCGATCTCACCGGTTGATGTGATGG
rev_FANCF_invitro	TGGAGTTCAGACGTGTGCTCTTCCGATCTCCAGAAGCTCGGAAAAGC
rev_HEK2S3_3ite2_imviire	TGGAGTTCAGACGTGTGCTCTTCCGATCTCAGCTATTCAGGCTGGC
	TGGAGTTCAGA.CGTGTGCTCTTCCGATCTAG CAGGGCTTCCTTTC
rev_HEK293_Sfis4 _invitro	TGGAGTTCAGACGTGTGCTCTTCCGATCTGCACCAGAGTCTCCG
rev_RNF2_invitfo	TGGAGTTCAGACGTGTGCTCTTCCGATCTTTATATGAGTTACAACGAACACC

[00445] Primers for HTS of on-target and off-target sites from all mammalian cell culture experiements. SEQ ID NOs: 362-469 appear from top to bottom below, respectively.

frindesix 1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCAGCTCAGCCTGAGTGTTGA
rev_ENM: HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCTCGTGGGTTTGTGGTTGC
fwd_FANCF_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCATTGCAGAGAGGCGTATCA
rev_FANCF_HT5	TGGAG7TCAGACGTGTGCTCTTCCGATCTGGGGTCCCAGGTGC7GAC
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCAGCCCCATCTGTCAAACT
rev_HEK293_site2_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTTGAATGGATTCCTTGGAAACAATGA
fwel_HEK2S3_site3_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNATGTGGGCTGCCTAQAAAGG
rev_HEK2S3_site3_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCCCAGCCAAACTTGTCAACC
f,vd_HEX2S3_site4_ST3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGAACCCAGGTAGCCAGAGAC
rev_HEM2S3_S:ts4_Hr3	TGGAGTTCAGACGTGTGCTCTTCCGATCTTCCTTTCAACCCGAACGGAG
$\mathrm{f}^{*} \mathrm{Vd}$ _RNF2_HTS	
fsv_RNF2_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGTTTTCATGTTCTAAAAATGTATCCCA
	ACACTCTTTCCCTACACGACGCTCTTCCGATCTONNNTACAGTACTCCCCTGCCCTC
rev_p53_Y163C_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATGTGCTGCTCACCATCGCTATCT
f*d_p53_N23SD_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCTCATCTTGGGCCTGTGTT
rev_p53_323SE_HT3	tGGagttcagackightactcttccgatctaAatcgatai.gagatgagcc
fwd_APOE4_C 15SR_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGCGGACATGGAGGACGTG
rev_APOE4_C158R_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTTCCACCAGGGGCCC
fwd_EMX 'i_off1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTGCCCAATCATTGATGCTTTT
rev_EMx:_off_HTS	TGGAGTTCAG ACGTGTGCTCTTCC GATCTAGAAAC ATTTACCATAGACTATCAC CT
nivd_EsidX1_off2_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAGTAGCCTCTTTCTCAATGTGC
rev_EMK:_ofi?_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGCTTTCACAAGGATGCAGTCT
frod_Esf1_offl_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGAGCTAGACTCCGAGGGGA
fev_EsmX ¢_ofin_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTTCCTCGTCCTGCTCTCACTT
fuvd_EMX :_onti_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAGAGGCTGAAGAGGAAGACCA
rev_EMX : off ${ }_{-}$HTS	TGGAGTTCAGACG TGTG CTCTTCC GATCTG GC $¢$ CAGCT GTGCA.7TCTAT


AVd_EMSX_Offe_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCAAGAGGGCCAA.GTCCTG
rev_EMX1_oBS_HTS	TGGAGTTCAGACGTGTGCTCTTGCGATCTCAGCGAGGAGTGACAGCC
fwd_EMX1_of?_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNHNCACTCCACCTGATCTCGGGG
fev_ENSX ¢ off7_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGGAG GAGGGAGGGAGCAG
ANd_EMX1_of3_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNACCACAAATGCCCAAGAGAC
fex_ENSX_offs_HTS	TGGAGTTCAGACGTGTGCTCT7CCGATCTGACACAGTCAAGGGCCGG
F.od_EMX:_of S_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCCACCTTTGAGGAGGCAAA
gev_EMXX1_off	TGGAGTTCAGACGTGTGCTCTTCCGATCTTTCCATCTGAGAAGAGAGTGGT
Fwol_EMX1_of?10_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTCATACCTTGGCCCTTCCT
rev_EMX1_off10_HTS	TGGA.GTTCAGACGTGTGCTCTTCCGATCTTCCCTAGGCCCACACCAG
ftvd_FANCF_off1 _HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAACCCACTGAAGAAGCAGGG
fev_FANCF_off1_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGGTGCTTAATCCGGCTCCAT
fwd_FANCF_ofl2_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCnviNNNTCCAGTGTTTCCATCCCGAA
rev_FANCF_off2_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCCTCTGACCTCCACAACTCT
fwo_FANCF_cff3_HTS	AСAСTСTTTCCCTACACGACGCTCTTCCGATCTNNNNCTGGGTACAGTTCTGCGTGT
rev_FANCF_of3_HTS	TGGAGTTCAGACGTGTGCTCTTGCGATCTTCACTCTGAGCATCGCCAAG
Frd_FANCF_off4_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNHNGGTTTAGAGCCAGTGAACTAGAG
rev_FANCF_O<4_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGCAAGACAAAATCCTCTTTATACTTTG
fwel_FANCF_口S5_H;5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTN^HNGGGAGGGGACGGCCTTAC
rsv_FANCF_oif5_hTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTCTGGGGAACATGGC
Fed_FANCF_offe_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNMTCCTGGTTAAGAGCATGGGC
fev_FANCF_offS_HT3	TGGAGTTCAGACGTGTGCTCTTCCGATCTGATTGAGTCCCCACAGCACA
Fid_FANㅇ﹎﹎off7_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCAGTGTTTCCCATCCCCAA
rev_FANCF_off7_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTTGACCTCCACAACTGGAAAAT
fvid_FANCF_off8_HTS	ACACTC7TTCCCTACACGACGCTCTTCCGATCTNNNNGCTTCCAGACCCACCTGAAG
\% $/ 44 i$	TGGAGTTCAGACGTGTGCTCTTCCGATCTACCGAGGAAAATTGCTTGTCG
fra_HEK2S3_sise2_3ff1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTGTGGAGAGTGAGTAAGCCA
rev_HEK233_site2_off1_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTACGGTAGGATGATTTCAGGCA
fad_HEK2S3_site2_cff2_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNMNNCACAAAGCAGTGTAGCTCAGG
fev_HEK2S3_site2_cff2_H7S	TGGAGTTCAGACGTGTGCTCTTCCGATCTTTTTTGGTACTCGAGTGTTATTCAG
f-vs_HEX2S3_site3_off1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTCCCCTGTTGACCTGGAGAA
fev_HEK2S3_site3_off1_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCACTGTACTTGCCCTGACCA
fwd_HEK293_site3_ctit2_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNf-f!TGGTGTTGACAGGGAGCAA
rev_H EK2S3_site3_off2_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCTGAGATGTGGGCAGAAGGG
twd_HEK233_site3_o?.J3_HTS	ACAC7C7TTCCC7ACACGACGC7C77CCGA7C7NNNN7GAGAGGGAACAGAAGGGC7
fev_HEK2S3_site3_off3_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGTCCAAAGGCCCAAGAACCT
Whi_HEX233_siie3_off4_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTCCTAGCACTTTGGAAGGTCG
e v_HEK233_3ite3_off4_H7S	TGGAGTTCAGACGTGTGCTCTTCCGATCTGCTCATCTTAATCTGCTCAGCC
Avo_HEK293_ske3_off_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAAAGGAGCAGCTCTTCCTGG
fev_HEK2S3_sites_offs_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGTCTGCACCATCTCCCACAA

fwd_HEK2S3_sists_oS1_HTS :Ev_HEK2S3_Site4_offi_HTS ftvd_HEK293_sits4_off2_HTS rev_HEK2S3_ste4_off2_HTS fvid_HEK2S3_stie4_off3_HTS rev_HEK233_site4_sff3_HTS f)f_HEK2S3_site4_O《4_HTS r³/4_HEK2S3_S!te4_a<4_HTS \}Wd_HEK2S3_s: e4_of5_HTS rev_HEK233_site4_cff5_HTS ftvd_HEK2S3_sit64_of»_HTS fsv_tt EK2\%3_3ise4_off5_HTS
 revJ HEK233_Site4_git7_H7S fwci_HEK233_st164_offo_HTS rev_HEK293_sife4_offs_HTS fixe_HEN233_site4_ofs_HTS rev_HE $2 S 3 _$Site__ofe_HTS *Nd_HEK233_site4_OH:O_HTS rev_HEK253_site4_offiO_HTS fwd_HEK2_CHP._off1._HTS rev._HEK2_Ch!P_.Off!_HTS fwd _HEK2_ChIP._off2._HTS Yev HEK2_CHBP_off2_HTS fad_HEK2_ChiP _ofin_HTS rev : H LK 2 ChP oft HTS fudifek2_chs_off_HTS rev_HEK2_CHP_ORA_HTS f $\mathrm{NS}_{2}$ _HEK2 _Ch!P_off5_HTS rev HEk 2 Cisp of 5 HTS fwd._HEK3._Ch!P._Offi._HTS rev._HEK3_Ch!P_.offi_HTS fwd._HEK3._ChiP._off2 _HTS rev_HEK3_Chip. _off2_HTS fivd._HEK3 _ChiP _off3._HTS rev_HEK3_ChIP_offa_HTS fwd._HEK3._ChiP _off4._HTS rev._HEK3_ChiP. _cff4_HTS fwd _HEK3 _Ch!P _Qff6_HTS rev_HEK3 _Chip _off5_HTS

ACACTCTTTCCCTACACGACeCTCTTCCGATCniN^GGCATSSCTTCTGAGACTCA TGGAGTTCAGACGTGTGCTCTTCCGATCTGTCTCCCTTGCACTCCCTGTCTTT ACACTCTTTCCCTACACGACGCTCTTCCeATCTNNNNTTTGGCAATGGAGGCATTSG TGGAGTTCAGACGTGTGCTCTTCCGATCTGAASAGGCTGCCCATGAGAG ACACTCTTTCCCTTACACGACGCTCTTCCGATCTNNNNGGTCTGAGGCTCGAATCCTG TGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGGCCTCCATATCCCTG ACACTCrrTTCCCTACACGACGCTCTTCCGATCTNN^-nTTCCACCAGAACTCAGCCC tGGAGTTCAGACGTGTGCTCTTCCGATCTCCTCGGTTCCTCCACAACAC AC^CTCTTTCCCTAaACGACGCTCTTCCGATCTNNNNCACGGGAAGGACAGGAGAAC tganattcagacgtatactcttccgatctacagaggaggaatanagcag ACACTCTTTCCCTACACGACGCTCTTCCGATCT^NNNGCACGGGAGATGGCTTATGT TGGAGTTCAGACGTGTGCTCTTCCGATCTCACA7C-CTCACTGTGCCACT ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTCAGTCTCGGCCCCTCA tGGAGTTCAGACGTGTGCTCTTCCGATCTGCCACTGTAAAGCTCTTGGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTr^JNNAGGGTAGAGGGACAGAGCTG tgGagttcagacgigigcticttccgatctgaaccccacatagtcagtac ACACTCTTTCCCTACACGACGCTCTTCCGATCTNMNNGCTGTCAGCCCTATCTCCATC tgGagttcagacgigiacticttccaatcttgagcaittagaacagagac ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGCAGCGGAGGAGGTAGATTG tGGagttcagacgigigctcttccGatctctcagtacctagagicccaa ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGACAGGCTCAGGAAAGCTGT tgGagttcagacgtatactcttccaatctacacaigcctttctccagag ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAATAGGGGGTGAGACTGGGG tGGAGTTCAGACGT6TGCTCTTCCGATCTGCCTCAGACGAGACTTGAGG ACACTCTTTCCCTACACGACGGTCTTCCGATCTONNNGGCGAGCAGGAAAGGAATGT tGGAGTTCAGACGTGTGCTCTTCCGATCTTGACTGCACCTGTAGCCATG ACACTCTTTCGCTACACGACGCTCTTCCGATCTNNNNTCAAGGAAATCACCCTGCCC TGGAGTTCAGACGTGTGCTCTTGCGATCTAACTTCCTTGGTOTGCAGCT ACACTCTTTCCCTACACGACGCTCTTCCGATCTMNNNATGGGCTCAGCTACGTCATG tgGagttcagacgtatgatcttccgatctantagcagtgtgatgagcai ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCGCACATCCCTTGTCTCTCT tgGagttc agac gtgit ctgitc cgatctctactgg agcac acc ccaig ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTGGGTCACGTAGCTTTGGTC tgGagttcagacgigtactcttccaatcttgatgaccatgtacaictan ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACTACGTGCCAGCTCAGG TGGAGTTCAGACGTGTGCTCTTCCGATCTACCTCCCCTCCTCACTAACC ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGCCTCAGCTCCATTTCCTGT TGGAGTTCAGACGTGTGCTCTTCCGATCTAAGCTTTATGGCACCAGGGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGAGCTCAGCATTAGCAGGCT tGGAGTTCAGACGTGTGCTCTTCCGATCTTTCCTGGCTTTCCGATTCCC

```
fyd_HEK4_ChiP_off1_HTS
rev_HEK4_C\IP_offi_HTS
fwd_HEK4_Ch !P_off3_HTS
rev_HEK4_Chip_off3_HTS
```

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTGCAATTGGAGGAGGAGCT TGGAGTTCAGACGTGTGCTCTTCCGATCTCACCAGCTACAGGCAGAACA AСАСТСТТТСССТАСАСGACGCTCTTCCGATCTNNNNCCTACCCCCAACACAGATGG TGGAGTTCAGACGTGTGCTCTTCCGATCTCCACACAACTCAGGTCCTCC
[00446] Sequences of single-stranded oligonucleotide donor templates (ssODNs) used in HDR studies.

EMX1 sense (SEQ ID NO: 470)
TCATCTGTGCCCCTCCCTCCCTGGCCCAGGTGAAGGTGTGGTTCCAGAACCGGAGGACAAAGTACA AACGGCAGAAGCTGGAGGAGGAAGGGCCTGAGTTTGAGCAGAAGAAGAAGGGCTCCCATCACATC AACCGGTGGGGCATTGCCACGAAGCAGGCCAATGGGGAGGACATCGATGTCACCTCCAATGACTAG GGT

EMX1 antisense (SEQ ID NO: 471)
ACCCTAGTCATTGGAGGTGACATCGATGTCCTCCCCATTGGCCTGCTTCGTGGCAATGCGCCACCG GTTGATGTGATGGGAGCCCTTCTTCTTCTGCTCAAACTCAGGCCCTTCCTCCTCCAGCTTCTGCCGT TTGTACTTTGTCCTCCGGTTCTGGAACCACACCTTCACCTGGGCCAGGGAGGGAGGGGCACAGATG

A
HEK293 site 3 sense (SEQ ID NO: 472)
CATGCAATTAGTCTATTTCTGCTGCAAGTAAGCATGCATTTGTAGGCTTGATGCTTTTTTTCTGCTTCT CCAGCCCTGGCCTGGGTCAATCCTTGGGGCTTAGACTGAGCACGTGATGGCAGAGGAAAGGAAGC CCTGCTTCCTCCAGAGGGCGTCGCAGGACAGCTTTTCCTAGACAGGGGCTAGTATGTGCAGCTCCT HEK293 site 3 antisense (SEQ ID NO: 473)

AGGAGCTGCACATACTAGCCCCTGTCTAGGAAAAGCTGTCCTGCGACGCCCTCTGGAGGAAGCAGG GCTTCCTTTCCTGTGCCATCACGTGCTCAGTCTAAGCCCCAAGGATTGACCCAGGCCAGGGCTGGA GMGCAGAAAAAAAGCATCAAGCCTACAAATGCATGCTTACTTGCAGCAGAAATAGACTAATTGCATG

HEK site 4 sense (SEQ ID NO: 474)
GGCTGACAAAGGCCGGGCTGGGTGGAAGGAAGGGAGGAAGGGCGAGGCAGAGGGTCCAAAGCAG GATGACAGGCAGGGGCACCGCGGCGCCCCGGTGGCATTGCGGCTGGAGGTGGGGGTTAAAGCGG AGACTCTGGTGCTGTGTGACTACAGTGGGGGCCCTGCCCTCTCTGAGCCCCCGCCTCCAGGCCTGT GTGTGT

HEK site 4 antisense (SEQ ID NO: 475)
ACACACACAGGCCTGGAGGCGGGGGCTCAGAGAGGGCAGGGCCCCCACTGTAGTCACACAGCACC AGAGTCTCCGCTTTAACCCCCACCTCCAGCCGCAATGCCACCGGGGCGCCGCGGTGCCCCTGCCT GTCATCCTGCTTTGGACCCTCTGCCTCGCCCTTCCTCCCTTCCTTCCACCCAGCCCGGCCTTTGTCA GCC

APOE4 sense (SEQ ID NO: 476)
AGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCG CGATGCCGATGACCTGCAGAAGTGCCTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCGAG CGCGGCCTCAGCGCCATCCGCGAGCGCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCG CCACTGT

APOE4 antisense (SEQ ID NO: 477)

ACAGTGGCGGCCCGCACGCGGCCCTGTTCCACCAGGGGCCCCAGGCGCTCGCGGATGGCGCTGA GGCCGCGCTCGGCGCCCTCGCGGGCCCCGGCCTGGTACACTGCCAGGCACTTCTGCAGGTCATCG GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCT CGGTGCT
p53 Y163C sense (SEQ ID NO: 478)
ACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGA TTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACATGAC GGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGAGCAGCTGGGGC TG
p53 Y163C antisense (SEQ ID NO: 479)
CAGCCCCAGCTGCTCACCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACAACCTC CGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGG AATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGG AGT
[00447] Deaminase gene gBlocks Gene Fragments
hAlD (SEQ ID NO: 169)
rAPOBECl (mammalian)(SEQ ID NO: 170)
CATCCTTGGTACCGAGCTCGGATCCAGCCACCATGAGCTCAGAGACTGGCCCAGTGGCTGTGGA .ee CCACATTGAGACGGCGGATCGAGCCCCATGAGTTTGAGGTATTCTTCGATCCGAGAGAGCTCCGCA AGGAGACCTGCCTGCTTTACGAAATTAATTGGGGGGGCCGGCACTCCATTTGGCGACATACATCACA GAACACTAACAAGCACGTCGAAGTCAACTTCATCGAGAAGTTCACGACAGAAAGATATTTCTGTCCG AACACAAGGTGCAGCATTACCTGGTTTCTCAGCTGGAGCCCATGCGGCGAATGTAGTAGGGCCATC ACTGAATTCCTGTC.AAGGTATCCCCACGTCACTCTGTTTATTTACATCGCAAGGCTGTACCACCACGC TGACCCCCGCAATCGACAAGGCCTGCGGGATTTGATCTCTTCAGGTGTGACTATCCAAATTATGACT GAGCAGGAGTCAGGATACTGCTGGAGAAACTTTGTGAATTATAGCCCGAGTAATGAAGCCCACTGG CCTAGGTATCCCCATCTGTGGGTACGACTGTACGTTCTTGAACTGTACTGCATCATACTGGGCCTGC CTCCTTGTCTCAACATTCTGAGAAGGAAGCAGCCACAGCTGACATTCTTTACCATCGCTCTTCAGTCT TGTCATTACCAGCGACTGCCCCCACACATTCTCTGGGCCACCGGGTTGAAATGAGCGGCCGCTCGA TTGGTTTGGTGTGGCTCTAA
$p m C D A l$ (SEQ ID NO: 171)
CATCCTTGGTACCGAGCTCGGATCCAGCCACCATGACAGACGCTGAATATGTTAGGATCCATGAAAA ACTGGATATCTATACATTTAAGAAGCAGTTCTTCAATAACAAAAAGTCAGTATCTCACAGATGCTATGT CCTGTTCGAACTCAAGAGAAGAGGAGAAAGGCGGGCCTGTTTCTGGGGGTACGCGGTTAATA.AACC CCAGTCCGGGACCGAGAGGGGGATTCACGCCGAGATCTTTTCAATTAGGAAGGTTGAAGAGTATCT TCGCGACAATCCCGGTCAGTTCACAATTAACTGGTACAGCTCCTGGAGCCCTTGCGCTGATTGCGCC GAGAAAATACTCGAATGGTACAACCAGGAGTTGAGAGGCAATGGCCACACTCTCAAGATTTGGGCTT GCMGCTTTACTACGAGAAGAACGCGAGAAATCAGATTGGCTTGTGGAACCTCAGGGACAACGGGG TCGGGTTGAATGTTATGGTGTCCGAACATTACCAGTGCTGTAGAAAGATCTTCATTCAGTCCAGTCAC AATCAGCTGAACGAGAACAGATGGCTGGAGAAAACACTGAAACGGGCAGAGAAAAGGCGCTCAGAG CTGAGTATCATGATCCAGGTCAAAATCCTGCATACAACCAAAAGCCCGGCTGTATAAGCGGCCGCTC GATTGGTTTGGTGTGGCTCTAA
haPOBEC3G (SEQ ID NO: 172)

GATCCTTGGTACCGAGCTCGGATCCAGGCACCATGGAGCTGAAGTATCACCCTGAGATGGGGTTTTT CCACTGGTTTAGTAAGTGGCGCAAACTTCATCGGGATCAGGAGTATGAAGTGACCTGGTATATCTCT TGGTCTCCCTGCACAAMTGTACACGCGACATGGGCACATTTCTGGCCGAGGATCCAAAGGTGACG CTCACAATCTTTGTGGCCCGCCTGTATTATTTCTGGGACCCGGATTATCAGGAGGCACTTAGGTCAT TGTGCCA.AAAGCGCGACGGACCACGGGCGACTATGAAAATCATGAATTATGACGAATTCCAGCATTG CTGGAGTAAGTTTGTGTACAGCCAGCGGGAGCTGTTCGAGCCCTGGAACAATCTTCCCAAGTACTAC ATACTGCTTCACATTATGTTGGGGGAGATCCTTCGGCACTCTATGGATCCTCCTACCTTTACGTTTAA CTTTAATAATGAGCCTTGGGTTCGCGGGCGCCATGAAACCTATTTGTGCTACGAGGTCGAGCGGATG CATAATGATACGTGGGTCCTGCTGAATCAGAGGAGGGGGTTTCTGTGTAACCAGGCTCCACATAAAC ATGGATTTCTCGAGGGGCGGCACGCCGMCTGTGTTTCCTTGATGTGATACCTTTCTGGAAGCTCGA CCTTGATCAAGATTACAGGGTGACGTGTTTCACCTCCTGGTCACCCTGCTTCAGTTGCGCCCAAGAG ATGGCTAAATTTATCAGTAAGAACAAGCATGTGTCCCTCTGTATTTTTACAGCCAGAATTTATGATGAC CAGGGCCGGTGCCAGGAGGGGCTGCGGACACTCGCTGAGGCGGGCGCGAAGATCAGCATAATGA CATACTCCGAATTCAAACACTGTTGGGACACTTTTGTGGACCACCAGGGCTGCCCATTTCAGCCGTG GGATGGGCTCGACGAACATAGTCAGGATCTCTCAGGCCGGCTGCGAGCCATATTGCAGAACCAGGA GAATTAGGCGGCCGCTCGATTGGTTTGGTGTGGCTCTAA
raPOBECl(E. Coli) (SEQ ID NO: 173)
GGCCGGGGATTCTAGAMTAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGATGTCTTCTGAAA CCGGTCCGGTTGCGGTTGACCCGACCCTGCGTCGTCGTATCGAACCGCACGAATTCGAAGTTTTCT TCGACCCGCGTGAACfTGCGTAAAGAAACCTGCCTGCTGTACGAAATCAACTGGGGTGGTCGTCACT CTATCTGGCGTCACACCTCTCAGAACAGCAACAAACACGTTGAAGTTAACTTCATCGAAAAATTCACC ACCGAACGTTACTTCTGCCCGAACACCCGTTGCTCTATCACCTGGTTCCTGTCTTGGTCTCCGTGCG GTGAATGCTCTCGTGCGATCACCGAATTCCTGTCTCGTTACCCGCACGTTACCGTGTTCATCTACATC GCGCGTCTGT ACCACCACGCGG ACCCG CGTAACCGTC AGGGTCTGCGTG ACCTG ATCTCTTCTGGT GTTACCATCCAGATCATGACCGAACAGGAATCTGGTTACTGCTGGCGTAACTTCGTTAACTACTCTCC GTCTAACGAAGCGCACTGGCCGCGTTACCCGCACCTGTGGGTTCGTCTGTACGTTCTGGAACTGTA CTGCATCATCCTGGGTCTGCCGCCGTGCCTGAACATCCTGCGTCGTAAACAGCCGCAGCTGACCTT

CTTCACCATCGCGCTGCAGTCTTGCCACTACCAGCGTCTGCCGCCGCACATCCTGTGGGCGACCGG TCTGAAAGGTGGTAGTGGAGGGAGCGGCGGTTCAATGGATAAGAAATAC

## [00448] Amino Acid Sequences of NBE1, NBE2, and NBE3.

NBE1 for E. Coli expression ( $\mathrm{His}_{6}$-rAPOBECl-XTEN-dCas9) (SEQ ID NO: 154)
MGSSHHHHHHMSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLIYEINWGGRHSIWRHTSQNTN KHVEVNF!EKFTTERYFCPNTRCSfTWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGL RDL!SSGVTiQ!MTEQESGYCWRNFVNYSPSNEAHWPRYPHLVWRLYVLELYCfiLGLPPCLN!LRRKQPQ LTFFTiALQSCHYQRLPPHiLWATGLKSGSETPGTSESATPESDKKYSiGLAiGTNSVGVVAVITDEYKVPSK KFKVLGNTDRHSiKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRiCYLQEIFSNEMAKVDDSFFHRL EESFLVEEDK|KHERHPiFGNiVDEVAYHEKYPTiYHLRKKLVDSTDKADLRLIYLALAHy!KFRGHFL!EGDL NPDNSDVDKLF!!QLVQTYNQLFEENPiNASGVDAKA!LSARLSKSRRLENUAQLPGEKKNGLFGNLIALSL GLTPNFKSNFDLAEOAKLQLSKDTYDDDLDNLLAQ!GDQYADLFLAAKNLSDA!LLSDILRVNTEITKAPLSA SMIKRYDEHHQDLTliKALVRQQLPEKYKE!FFDQSKNGYAGYIDGGASQEEFYKFIKP!LEKMDGTEELL VKLNREDLLRKQRTFDNGS!PHQiHLGELHAILRRQEDFYPFLKDNREKIEK!LTFRIPYYVGPLARGNSRF AWMTRKSEETITPWNFEEWDKGASAQSFIERMTNFDiWLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKK!ECFDSVEISGVEDRFNASLGTYHDLLK!tKDK DFLDNEENEDILEDIVLTLTLFEDREMiEERLKTY'AHLFDDKVMKQLKRRRYTGWGRLSRKLSNGIRDKQS GKTILDFLKSDGFANRNFMGLIHDDSLTFKEDIQKAQVSGQGDSLHEHiANLAGSPAiKKGILQTVKVVDEL VKVMGRHKPENJVIEMARENQTTQKGQKNSRERMKRIEEGiKELGSQILKEHPVENTQLQNEKLYLYYLQ NGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDS1DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQL LNAKLITQRKFDNLTKAERGGLSELDKAGFiKRQLVETRQITKHVAQILDSRIVINTKYDENDKLIREVKViTLK SKLVSDFRKDFQR'KVREiNNYHHAHDAYLNAVVGTALiKK>'PKLESEFVYGDYK\A'DVRKMIAKSEQEiG
 GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLWAKVEKGKSKKLKSVKELLGITiMERSS FEKNPiDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKL KGSPEDNEQKQLFVEQHKHYLDEHEQ!SEFSKRViLADANLDKVLSAYNKHRDKP!REQAEN!IHLFTLTNL GAPAAFKYFDTTIDRKRYTSTKEVLDATLiHQS!TGLYETRIDLSQLGGDSGGSPKKKRKV

NBE1 for Mammalian expression (rAPOBECl-XTEN-dCas9-NLS) (SEQ ID NO: 155)

MSSETGPVAVDPTLRRRiEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF TTERYFCPNTRCSITWFLSWSPCGECSRA!TEFLSRYPHVTLFIYiARLYHHADPRNRQGLRDLISSGVT!Q IMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYC!ILGLPPCLNiLRRKQPQLTFFTIALQSC HYQRLPPHiLWATGLKSGSETPGTSESATPESDKKYSIGLAtGTNSVGWAVITDEYKVPSKKFKVLGNTDR HStKKNL!GALLFDSGETAEAI $+3 / 4$ LKRTARRRYTRRKNR!CYLQEiFSNEMAKVDDSFFHRLEESFLVEEDKK HERHP!FGN!VDEVAYHEKYPT!YHLRKKLVDSTDKADLRLiYLALAHM!KFRGHFLIEGDLNPDN!SDVDKLF IQLVQTYNQLFEENPiNASGVDAKA!LSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSHFDL AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDA!LLSD!LRVNTEITKAPLSASMIKRYDEHHQ DLTLLKALVRQQLPEKYKEiFFDQSKNGYAGYiDGGASQEEFYKFSKPiLEKMDGTEELLVKLNREDLLRKQ RTFDNGSIPHQ!HLGELHA!LRRQEDFYPFLKDNREK!EKILTFRIPYYVGPLARGNSRFAWfv!TRKSEETITP WNFEEVVDKGASAQSFSERMTNFDKNLPNEKVLPKHSLLYEYFTV^'NELTKVKYVTEGMRKPAFLSGEQ KKAiVDLLFKTNRKVTVKQLKEDYFKKECFDSVEISGVEDRFNASLGTYHDLLKiikDKDFLDNEENEDILE D!VLTLTLFEDREMiEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLING!RDKQSGKT!LDFLKSDGFA NRNFMQLIHDDSLTFKEDiQKAQVSGQGDSLHEHiANLAGSPAfKKGILQTVKVVDELVKVMGRHKPENiVI EMARENQTTQKGQKNSRERMKRiEEG!KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDI NRLSDYDVDAiVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEWKKMKNYWRQLLNAKLITQRKFDNL TKAERGGLSELDKAGF!KRQLVETRQiTKHVAQiLDSRMNTKYDENDKLIREVKV!TLKSKLVSDFRKDFQF YKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNiM NFFKTE!TLANGEiRKRPLiETNGETGEiVWDKGRDFAWRKVLSMPQVNIVKKTEVQTGGFSKES!LPKRN SDKL!ARKKDWDPKKYGGFDSPTVAYSVLWAKVEKGKSKKLKSVKELLGiTiMERSSFEKNPIDFLEAKG YKEVKKDLiIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQL FVEQHKHYLDESIEQiSEFSKRVILADANLDKVLSAYHKHRDKPiREQAEN!IHLFTLTiNLGAPAAFKYFDTTI DRKRYTSTKEVLDATLSHQS!TGLYETRIQLSQLGGDSGGSPKKKRKV

Alternative NBE1 for Mammalian expression with human APOBEC1 (hAPOBEC 1-XTEN-
dCas9-NLS) (SEQ ID NO: 158)
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNT TNHVEVNFIKKFTS ERDFHPS MSCSITWFLS W SPCWECS QAIREFLS RHPGVTLVIYVA RLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPP LWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIHPS VAWRGS ETPGTS ESATPESDKKYS IGLAIGTNS VGW AVITDE YKVPS KKFKVLGNTDR HSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFH RLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLS KSRRLENLIAQLPGEKKNGLFGNLIALS LGLTPNFKS NFDLAED AKLQLS KDTYDDDL DNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTL LKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYV GPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLP KHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKE DYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLF EDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTV

KVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKE HPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNK VLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSEL DKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKD FQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAY SVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQL FVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSrrGLYETRIDLSQLGGDSGGSPKKK RKV

NBE2 (rAPOBECl-XTEN-dCas9-UGI-NLS) (SEQ ID NO: 156)


#### Abstract

MSSETGPVAVDPTLRRREPHEFEVFFDPRELRKETCLLYESNWGGRHSIWRHTSQNTNKHVEVNFiEKF TTERYFCPNTRCSSTWFLSWSPCGECSRA!TEFLSRYPHVTLF!YiARLYHHADPRNRQGLRDLISSGVT!Q jMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSC HYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSiGLA!GTNSVGWAVITOEYKVPSKKFKVLGNTDR HSIKKNL!GALLFDSGETAEATRLKRTARRRYTHRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNiVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL!YLALAHMIKFRGHFLIEGDLNPDNSDVDKLF iQLVQTYNQLFEENPiNASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL AEDAKLQLSKDTYDDDLDNLLAQiGDQYADLFLAAKNLSDAILLSD!LRWITEJTKAPLSASMIKRYDEHHQ DLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEEi-LVKLNREDLLRKQ RTFDNGSfPHQIHLGELHAiLRRQEDFYPFLKDNREK!EKILTFRIPYYVGPLARGNSRFAWMTRKSEET!TP WNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQ KKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEfSGVEDRFNASLGTYHDLLKi!KDKDFLDNEENEDiLE DIVLTLTLFEDREMiEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTiLDFLKSDGFA NRNFMQLiHDDSLTFKEDiQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKWDELVKVMGRHKPENIVI EMARENQTTQKGQKNSRERMKRIEEGiKELGSQtLXEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDI NRLSDYDVDAIVPQSFLKDDSiDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKL!TQRKFDNL TKAERGGLSELDKAGFIKRQLVETRQ!TKHVAQiLDSRMNTKYDENDKLIREVKViTLKSKLVSDFRKDFQF YKVREINNYHHAHDAYLNAWGTALIKKYPKLESEFWGDYKVYDVRKMIAKSEQE!GKATAKYFFYSNfM NFFKTEITLANGEIRKRPUETNGETGEiVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRN SDKL!ARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG!TiMERSSFEKNPIDFLEAKG YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQL FVEQHKHYLDEHEQiSEFSKRViLADAN!LDKVLSAYNKHRDKPiREQAENliHLFTLTNLGAPAAFKYFDTTI DRKRYTSTKEVLDATLiHQSiTGLYETRiDLSQLGGDSGGSTNLSDiiEKETGKQLViQESiLMLPEEVEEVIG NKPESDILVHTAYDESTDENVMLLTSDAPEYKPVVALV!QDSNGENKIKMLSGGSPKKKRKV


NBE3 (rAPOBECl-XTEN-Cas9n-UGI-NLS) (SEQ ID NO: 157)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHS!VVRHTSQNTNKHVEVNFiEKF TTERYFCPNTRCSiTWFLSVVSPCGECSRA!TEFLSRYPHVTLF!YiARLYHHADPRNRQGLRDLISSGVT!Q iMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYC!!LGLPPCLN!LRRKQPQLTFFTIALQSC HYQRLPPHfLWATGLKSGSETPGTSESATPESDKKYS!GLAIGTNSVGWAVITDE\'KVPSKKFKVLGNTDR HSiKKNLiGALLFDSGETAEATRLKRTARRRYTRRKNRSCYLQEIFSNEfvIAKVDDSFFHRLEESFLVEEDKK HERHP!FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLtYLALAHM!KFRGHFLIEGDLNPDNSDVDKLF IQLVQTYNQLFEENPINASGVT>AKAiLSARLSKSRRL£NUAQLPGEKKNGLFGNLiALSLGLTPNFKSNFDL AEDAKLQLSKDTYDDDLDNLLAQiGDQYADLFLAAKMLSDAILLSD!LRVNTEITKAPLSASMIKRYDEHHQ DLTLLKALVRQQLPEKYKE!FFDQSKNGYAGYiDGGASQEEFYKFiKPiLEKMDGTEELLVKLNREDLLRKQ RTFDNGS!PHQ!HLGELHALLRRQEDFYPFLKDNREKIEKILTFR!PYYVGPLARGNSRFAWMTRKSEET!TP WNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQ KKAIVDLLFKTNRKVTVKQLKEDYFKK!ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILE D!VLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLING!RDKQSGKTILDFLKSDGFA NRNFMQLfHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGSLQWKWDELVKVMGRHKPENIVt EMARENQTTQKGQ!WSRERMKRiEEGiKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDI
 TKAERGGLSELDKAGFIKRQLVETRQiTKHVAQiLDSRMNTKYDENDKLiREVKVITLKSKLVSDFRKDFQF YKVREtNNYHHAHDAYLNAWGTALiKKYPKLESEFVYGDYKVYDVRKMIAKSEQE!GKATAKYFFYSNIM NFFKTE!TLANGEIRKRPLIETNGETGEIW/DKGRDFATVRKVLSMPQVNiVKKTEVQTGGFSKESiLPKRN SDKliARKKDWDPKKYGGFDSPTVAYSVLWAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKG YKEVKKDLHKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQL FVEQHKHYLDE!iEQ!SEFSKRVILADANLDKVISAYNKHRDKPiREQAENIIHLFTLTNLGAPAAFKYFDTTi DRKRYTSTKEVLDATLfHQS!TGLYETRIDLSQLGGDSGGSTNLSDiiEKETGKQLVIQESiLMLPEEVEEVIG NKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALViQDSNGENKiKMLSGGSPKKKRKV
pmCDAl-XTEN-dCas9-UGI (bacteria) (SEQ ID NO: 159)
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKP QSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGN GHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQL NENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSETPGTSESATPESDKKYSI GLAIGTNS VGW AVITDE YKVPS KKFKVLGNTDRHS IKKNLIG ALLFDS GETAEATRLK RTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVD EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVD KLFIQLVQT YNQLFEENPIN ASGVDAKAILS ARLS KSRRLENLIAQLPGEKKNGLFGNL IALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSD AILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKN GYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITP WNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE GMRKPAFLS GEQKKAIVDLLFKTNRKVT VKQLKED YFKKIECFDS VEISGVEDRFNAS LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMK QLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAR ENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDM YVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKM KNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDS RMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVV GTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGI TIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVL DATLIHQS ITGLYETRIDLS QLGGDS GGSMTNLSDIIEKETGKQLVIQES ILMLPEEVEE VIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML
pmCDAl-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID NO: 160)
MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKP QSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGN GHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQL NENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSETPGTSESATPESDKKYSI GLAIGTNS VGW AVITDE YKVPS KKFKVLGNTDRHS IKKNLIGALLFDS GETAEATRLK RTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVD EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVD KLFIQLVQT YNQLFEENPIN ASGVDAKAILS ARLS KSRRLENLIAQLPGEKKNGLFGNL IALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSD AILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKN GYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITP WNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE GMRKPAFLS GEQKKAIVDLLFKTNRKVT VKQLKED YFKKIECFDS VEISGVEDRFNAS LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMK QLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAR ENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDM YVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKM KNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDS RMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVV GTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGI TIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVL DATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVI GNKPES DILVHT AYDES TDEN VMLLTS DAPEYKPW ALVIQDS NGENKIKMLS GGSPK KKRKV
huAPOBEC3G-XTEN-dCas9-UGI (bacteria) (SEQ ID NO: 161)
MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGF LEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIF TARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEH SQDLS GRLRAILQS GSETPGTS ESATPESDKKYS IGLAIGTNS VGW AVITDEYKVPS KK FKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEM AKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDK ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVD AKAILS ARLS KSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQL SKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQS KNGYAGYIDGGAS QEEFYKFIKPILEKM DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK ILTFRIPYYVGPLARGNS RFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFDK NLPNEKVLPKHS LLYEYFTVYNELTKVKYVTEGMRKPAFLS GEQKKAIVDLLFKTNR KVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDIL EDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK

QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQS FLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVW DKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKY GGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKE VKKDLIIKLPKYS LFELENGRKRMLAS AGELQKGNELALPS KYVNFLYLAS HYEKLK GSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQ AENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQL GGDSGGSMTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDE NVMLLTSDAPEYKPWALVIQDSNGENKIKML
huAPOBEC3G-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID NO: 162)
MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGF LEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIF TARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEH SQDLS GRLRAILQS GSETPGTSESATPESDKKYS IGLAIGTNS VGW AVITDEYKVPS KK FKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEM AKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDK ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVD AKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQL SKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQS KNGYAGYIDGGAS QEEFYKFIKPILEKM DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK ILTFRIPYYVGPLARGNS RFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFDK NLPNEKVLPKHS LLYEYFTVYNELTKVKYVTEGMRKPAFLS GEQKKAIVDLLFKTNR KVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDIL EDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQS FLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVW DKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKY GGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKE VKKDLIIKLPKYS LFELENGRKRMLAS AGELQKGNELALPS KYVNFLYLAS HYEKLK GSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQ AENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQL GGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDEN VMLLTS DAPE YKPW ALVIQDS NGENKIKMLS GGSPKKKRKV
huAPOBEC3G (D316R_D317R)-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID
NO: 163)

MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGF LEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIF TARIYRRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEH SQDLS GRLRAILQS GSETPGTS ESATPESDKKYS IGLAIGTNS VGWAVITDEYKVPS KK FKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEM AKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDK ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVD AKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQL SKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGAS QEEFYKFIKPILEKM DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK ILTFRIPYYVGPLARGNS RFAWMTRKSEETITPWNFEEVVDKG ASAQSFIERMTNFDK NLPNEKVLPKHS LLYEYFTVYNELTKVKYVTEGMRKPAFLS GEQKKAIVDLLFKTNR KVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDIL EDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGLRDK QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQS FLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLLREVKVITLK SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGELRKRPLIETNGETGEIVW DKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKY GGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPLOFLEAKGYKE VKKDLIIKLPKYS LFELENGRKRMLAS AGELQKGNELALPS KYVNFLYLAS HYEKLK GSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQ AENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQL GGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDEN VMLLTSDAPE YKPW ALVIQDS NGENKIKMLS GGSPKKKRKV
[00449] Base Calling Matlab Script
WTnuc='GCGGACATGGAGGACGTGCGCGGCCGCCTGGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCG GCCAGA

GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGC CGATGAC

CTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATC CGCGAGCG CCTGGGGCCCCTGGTGGAACAG'(SEQ ID NO: 164);
\%cycle through fastq files for different samples files=dir('*.fastq');
for $\mathrm{d}=1: 20$
filename=files(d).name;
\%read fastq file
[header,seqs,qscore]=fastqread(filename);
seqsLength $=$ length(seqs); $\quad$ \% number of sequences seqsFile=
strrep(filename,'. fastq',"); $\%$ trims off .fastq
\%create a directory with the same name as fastq file ifexist(seqsFile,'dir'); error('Directory already exists. Please rename or move it before moving on.'); end
mkdir(seqsFile); $\quad$ \% make directory
\% AIN is a matrix of the nucleotide alignment window=l :wtLength;
sBLength = length(seqs);
\% number of sequences
$\%$ counts number of skips nSkips $=0$;
ALN=repmat(' ',[sB Length wtLength] );
\% iterate through each sequencing read for $i=1$ :sBLength
\%If you only have forward read fastq files leave as is
\%If you have R1 foward and R2 is reverse fastq files uncomment the
\%next four lines of code and the subsequent end statement
$\% \quad$ ifmod $(\mathrm{d}, 2)==0$;
$\% \quad$ reverse $=$ seqrcomplement(seqs $\{i\})$;
\% [score,alignment, start]=
swalign(reverse, WTnuc, Alphabet', 'NT');
\% else
[score, alignment,start]=swalign(seqs\{i\},WTnuc,' Alphabet', 'NT');
\% end
\% length of the sequencing read len=
length(alignment(3,:));
$\%$ if there is a gap in the alignment , skip $=1$ and we will
$\%$ throw away the entire read skip $=0$;
for $\mathrm{j}=1$ :len
if (alignment( $3, \mathrm{j}$ ) == '-' п alignment $(1, \mathrm{j})==$ '-') skip = 1 ;
break;
end
\%in addition if the qscore for any given base in the read is
\%below 31 the nucleotide is turned into an N (fastq qscores that are not letters)
ifisletter(qscore $\{\mathrm{i}\}(\operatorname{start}(1)+\mathrm{j}-1))$ else
$\operatorname{alignment}(1, \mathrm{j})=\mathrm{N}$;
end
end
if skip $=0$ \& \& len>10
$\operatorname{ALN}(\mathrm{i}, \quad \operatorname{start}(2):(\operatorname{start}(2)+$ length(alignment)$)-\mathrm{l}))=$ alignment(1,.:);
end
\% with the alignment matrices we can simply tally up the occurrences of
\% each nucleotide at each column in the alignment these
\% tallies ignore bases annotated as N
\% due to low qscores
TallyNTD=zeros(5,wtLength); fori= 1:wtLength

TallyNTD(:,i)=[sum(ALN(:,i)=='A.),sum(ALN(:,i)==,C),sum(ALN(:,i)==,G),sum(A
$\mathrm{LN}(:, \mathrm{i})=={ }^{\prime} \mathrm{T}$ '),sum (ALN(:,i)=='N')];
end
\% we then save these tally matrices in the respective folder for
\% further processing
save(strcat(seqsFile,7TallyNTD'), 'TallyNTD'); dlmwrite(strcat(seqsFile, '/TallyNTD.txt'), TallyNTD, 'precision', '\%.3f', 'newline', 'pc'); end

## [00450] INDEL Detection Matlab Script

WTnuc='GCGGACATGGAGGACGTGCGCGGCCGCCTGGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGC
CAGA
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCG
ATGAC
CTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGC
GAGCG CCTGGGGCCCCTGGTGG AACAG'(SEQ ID NO: 164);
\%cycle through fastq files for different samples files=dir('*.fastq');
\%specify start and width of indel window as well as length of each flank indelstart=154;
width=30; flank=10;
for $\mathrm{d}=1: 3$
filename=files(d).name;
\%read fastq file
[header,seqs,qscore]=fastqread(filename);
seqsLength $=$ length(seqs); $\quad$ \% number of sequences seqsFile
=strcat(strrep(filename,'. fastq', "),'_INDELS');
\%create a directory with the same name as fastq file+_INDELS ifexist(seqsFile,'dir');
error('Directory already exists. Please rename or move it before moving on.');
end
mkdir(seqsFile); $\quad$ \% make directory
wtLength $=$ length $($ WTnuc $) ; \quad$ \% length of wildtype sequence sBLength $=$
length(seqs); $\%$ number of sequences
\% initialize counters and cell arrays
nSkips $=0$; notINDEL=0;
ins=\{ \};
dels=\{ \}; Numlns=0;
NumDels=0;
\% iterate through each sequencing read for $\mathrm{i}=1$ :sBLength
\%search for 10BP sequences that should flank both sides of the "INDEL WINDOW" windowstart=strfind(seqs \{i \},WTnuc(indelstart-flank:indelstart));
windowend=strfind(seqs \{i \},WTnuc(indelstart+width:indelstart+width+flank
));
\%if the flanks are found proceed
iflength $($ windowstart $)==1 \& \&$ length $($ windowend $)==1$
\%if the sequence length matches the INDEL window length save as \% not INDEL
if windowend-windowstart==width+flank notINDEL=notINDEL+1 ;
$\%$ if the sequence is two or more bases longer than the INDEL
\%window length save as an Insertion
elseif windowend-windowstart>=width+flank+2 NumIns=NumIns+ 1;
ins \{Numlns \}=seqs \{i\};
\%if the sequence is two or more bases shorter than the INDEL
\%window length save as a Deletion
elseif windowend-windowstart<=width+flank-2 NumDels=NumDels+1;
dels $\{$ NumDels $\}=$ seqs $\{i\}$;
$\%$ keep track of skipped sequences that are either one base
\%shorter or longer than the INDEL window width else
nSkips=nSkips+ 1 ;
end
$\%$ keep track of skipped sequences that do not possess matching flank
\%sequences else
nSkips=nSkips+ 1 ;
end
end
fid=fopen(s trcat(seqsFile, 7summary.txt'), 'wt');
fprintf(fid, 'Skipped reads \%iln not INDEL \%iln Insertions \%iln Deletions \%i\n', [nSkips, notlNDEL, Numlns, NumDels]); fclose(fid);
save(strcat(seqsFile,'/nSkips'),'nSkips'); save(strcat(seqsFile,7notINDEL'),'notINDEL');
save(strcat(seqsFile,7NumIns'), 'Numlns'); save(strcat(seqsFile,'/NumDels'),'NumDels');
save(strcat(seqsFile, '/dels'), 'dels');
C = dels;
fid = fopen(strcat(seqsFile, '/dels.txt'), 'wt'); fprintf(fid, "'\%s"\n', C \{: \}); fclose(fid);
save(strcat(seqsFile,'/ins'),'ins'); $\quad \mathrm{C}=\mathrm{ins}$;
fid = fopen(strcat(seqsFile, '/ins.txt'), 'wt'); fprintf(fid, "'\%s" ${ }^{\prime}$ ', C \{: \});
fclose(fid);
end

## EXAMPLE 5: Cas9 variant sequences

[00451] The disclosure provides Cas9 variants, for example Cas9 proteins from one or more organisms, which may comprise one or more mutations \{e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterek, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, is mutated to an A. In some embodiments, the H 840 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding residue in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas 9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, is mutated to any amino acid residue, except for H . In some embodiments, the H 840 residue of the amino acid sequence provided in SEQ ID NO: 6 , or a corresponding mutation in any Cas9 protein, such as any one of the Cas 9 amino acid sequences as provided herein, is mutated to an
A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 6 , or a corresponding residue in any Cas9 protein, such as any one of the Cas9 amino acid sequences as provided herein, is a $D$.
[00452] A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 6 or SEQ ID NO: 567 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT(accessible at stva.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties $-11,-1$; End-Gap penalties $-5,-1$. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.
[00453] An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (SI): SEQ ID NO: 567 IWP_010922251I gi 499224711 Itype II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 568 IWP_039695303 Igi 746743737 Itype II CRISPR RNAguided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 569 I WP_045635197 Igi 782887988 Itype II CRISPR RNA-guided endonuclease Cas9
[Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 570 I5AXW_A Igi 924443546 I Staphylococcus aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in SI and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.

```
51 1 - MDKK-YSIGLD*IGTNSVGWAVITDEYKVP SKKFKVLGNTDRHS IKKNLI- GALLFDSG-ETAEATRLKRTARRRYT }7
52 1 - MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLL GALLFDSG-ETAEATRLKRTARRRYT }7
53 1 - M-KKGYSIGLD*IGTNSVGFAVITDDYKVP SKKMKVLGNTDKKRFIKKNLI- GALLFDEG-TTAEARRLKRTARRRYT }7
541 GSHMKRNYILGLD*IGITSVGYGII- DYET___________________DVIDAGVRLFKEANVENNEGRRSKRGARRLKRR 61
5174 RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL 153
5275 RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTFDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL 154
5374 RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL 153
```




52	861	SIDNRVLTSSAKNRGKSDDVPSLDIVRARK 3 ³EWVRLYKSGLISKRKFDN	-LTKAERG GL-TEAD -----KAGFIKRQLV]
53	853	SLDNRVLTSSKDNRGKSDNVPSIEWOKRK $3 / 4$ WOOLLDSKLISERKFNN	-LTKAERG GL-DERD------KVGFIKRQLVI
54	571	SFNNKVLVKOEEASKKGNRTPFOYLSSSDSKISYETFKKHILNLAKGK	KKTKKE YLLEERDINRFSVQKDFINRNLV


51	923	\|ETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAWGTALIKKYP	1002
52	933	\|ETRQITKHVAQILDARFNTEHDENDKVIRDVKVITLKSNLVSQFRKDFEFYKVREINDYHHAHDAYLNAWGTALLKKYP	1012
53	925	\|ETRQITKHVAQILDARYNTEVNEKDKKNRTVKIITLKSNLVSNFRKEFRLYKVREINDYHHAHDAYLNAWAKAILKKYP	1004
	651	IDTRYATRGLMNLLRSYFRVN---------NLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIA-	712

511003 KLESEFVYGDYKVYDVRKMIAKSEQ--EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG-- 1077
521013 KLASEFVYGEYKKYDIRKF ITNSSD-----KATAKYFFYSNLMNFFKTKVKYADGTVFERPIIETNAD-GEIAWNKQ--- 1083
S4 713 NADFIFKENKKLDKAKKVMENQM------------------------------EEKQAESMPEIETEQEYKEIFITPHQIKI 764

1078	QT\|GGFSKESILPKRNSDKLIARKKD ---WDPKKYGGFDSPTVAYSVLWAKV	1149
521084	IDFEKVRKVLSYPQVNIVKKVETQT GGFSKESILPKGDSDKLIPRKTKKVYWDTKKYGGFDSPTVAYSVFWADV	1158
531082	-KDFAIIKKVLSLPQVNIVKKREVQT _ GGFSKESILPKGNSDKLIPRKTKDILLDTTKYGGFDSPVIAYSILLIADI	115
54765	\|HIKDFKDYKYSHRVDKKPNRELINDTLYST ${ }^{\text {RKDDKGNTLIVNNLNGLYDKDNDKL _----KKLIN-KSP ----EKLLMYH }}$	835





SI	1366	GGD	1368
S 2	1370	GEE	1372
S3	1368	GED	1370
S 4	1056	G-	1056

[00454] The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas 9 sequence variants, including, but not limited to Cas 9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference
sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 567-570 (e.g., SI, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 6 that correspond to the residues identified in SEQ ID NOs: 567-570 by an asterisk are referred to herein as "homologous" or "corresponding" residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 6 herein, e.g., mutations of residues 10 , and 840 in SEQ ID NO: 6, are referred to herein as "homologous" or "corresponding" mutations. For example, the mutations corresponding to the DIOA mutation in SEQ ID NO: 6 or S 1 (SEQ ID NO: 567) for the four aligned sequences above are D1 1A for S2, DIOA for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 6 or SI (SEQ ID NO: 567) are H850A for S2, H842A for S3, and H560A for S4.

## EXAMPLE 6: Next Generation C to T Editors

[00455] Other familes of cytidine deaminases as alterantives to base etitor 3 (BE3) constructs were examined. The different C to T editors were developed to have a narrow or different editing window, alternate sequence specificity to expand targetable substrates, and to have higher activity.
[00456] Using the methods described in Example 4, the pmCDAl (cytidine deaminase 1 from Petromyzon marinus) activity at the HeK-3 site is evaluated (Figure 42). The pmCDA1 -nCas9-UGI-NLS (nCas9 indicates the Cas9 nickase described herein) construct is active on some sites (e.g., the C bases on the complementary strand at position $9,5,4$, and 3 ) that are not accessible with rAPOBECl (BE3).
[00457] The pmCDAl activity at the HeK-2 site is given in Figure 43. The pmCDAl-XTEN-nCas9-UGI-NLS construct is active on sites adjacent to "G," while rAPOBECl analog (BE3 construct) has low activity on "C"s that are adjacent to "G"s, e.g., the C base at position 11 on the complementary strand.
[00458] The percent of total sequencing reads with target $C$ converted to $T$ (Figure 44), C converted to A (Figure 45), and C converted to G (Figure 46) are shown for CDA and APOBECl (the BE3 construct).
[00459] The huAPOBEC3G activity at the HeK-2 site is shown in Figure 47. Two constructs were used: huAPOBEC3G-XTEN-nCas9-UGI-NLS and huAPOBEC3G*(D316R_D317R)-XTEN-nCas9-UGI-NLS. The huAPOBEC3G-XTEN-nCas9-UGI-NLS construct has different sequence specificity than rAPOBECl (BE3), as shown in Figure 47, the editing window appears narrow, as indicated by APOBEC3G's descreased activity at position 4 compared to APOBECl. Mutations made in huAPOBEC3G (D316R and D317R) increased ssDNA binding and resulted in an observable effect on expanding the sites which were edited (compare APOBEC3G with APOBEC3G_RR in Figure 47). Mutations were chosen based on APOBEC3G crystal structure, see: Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implication. Nature. (2008); 121-4, the entire contents of which are incorporated herein by reference.

## EXAMPLE 7: pmCDAl/huAPOBEC3G/rAPOBECl work in E.coli

[00460] LacZ selection optimization for the A to I conversion was performed using a bacterial strain with lacZ encoded on the F plasmid. A critical glutamic acid residue was mutated (e.g., GAG to GGG, Glu to Gly mutation) so that G to A by a cytidine deaminase would restore lacZ activity (Figure 48). Strain CC102 was selected for the selection assay. APOBECl and CDA constructs were used in a selection assay to optimize G to A conversion.
[00461] To evaluate the the effect of copy number of the plasmids encoding the deaminase constructs on lacZ reversion frequency, the CDA and APOBECl deaminases were cloned into 4 plasmids with different replication origins (hence different copy numbers), SC101, CloDF3, RSF1030, and PUC (copy number: PUC $>$ RSF1030>CloDF3>SC101) and placed under an inducible promoter. The plasmids were individually transformed into E. coli cells harboring F plasmid containing the mutated LacZ gene. The expression of the deaminases were induced and LacZ activity was detected for each construct (Figure 49). As shown in Figure 49, CDA exhibited significantly higher activity than APOBECl in all instances, regardless of the plasmid copy number the deaminases were cloned in. Further, In terms of the copy number, the
deaminase activity was positively correlated with the copy number of the plasmid they are cloned in, i.e., PUC> CloDF3>SC101.
[00462] LacZ reversions were confirmed by sequencing of the genomic DNA at the lacZ locus. To obtain the genomic DNA containing the corrected LacZ gene, cells were grown media containg X-gal, where cells having LacZ activity form blue colonies. Blue colonies were selected and grown in minimial media containing lactose. The cells were spun down, washed, and replated on minimal media plates (lactose). The blue colony at the highest dilution was then selected, and its genomic DNA was sequenced at the lacZ locus (Figure 50).
[00463] A chloramphenicol reversion assay was designed to test the activity of different cytidine deaminases (e.g., CDA, and APOBEC1). A plasmid harboring a mutant CATl gene which confers chloramphenicol resistance to bacteria is constructed with RSF1030 as the replication origin. The mutant CATl gene encodings a CATl protein that has a H195R (CAC to CGC) mutation, rendering the protein inactive (Figure 51). Deamination of the C base-paired to the G base in the CGC codon would convert the codon back to a CAC codon, restoring the activity of the protein. As shown in Figure 52, CDA outperforms rAPOBEC in E. coli in restoring the acitivyt of the chloramphenicol reisitance gene. The minimum inhibitory concentration (MIC) of chlor in S1030 with the selection plasmid (pNMG_ch_5) was approximately $1 \mu \mathrm{~g} / \mathrm{mL}$. Both rAPOBEC-XTEN-dCas9-UGI and CDA-XTEN-dCas9-UGI induced DNA correction on the selection plasmid (Figure 53).
[00464] Next, the huAPOBEC3G-XTEN-dCas9-UGI protein was tested in the same assay. Interestingly, huAPOBEC3G-XTEN-dCas9-UGI exhibited different sequence specificity than the rAPOBEC 1-XTEN-dCas9-UGI fusion protein. Only position 8 was edited with APOBEC3G-XTEN-dCas9-UGI fusion, as compared to the rAPOBEC H-XTEN-dCas9UGIfusion (in which positions 3, 6, and 8 were edited) (Figure 54).

## EXAMPLE 8: C to T Base Editors with Less Off Target Editing

[00465] Current base editing technologies allow for the sequence-specific conversion of a C:G base pair into a T:A base pair in genomic DNA. This is done via the direct catalytic conversion of cytosine to uracil by a cytidine deaminase enzyme and thus, unlike traditional genome editing technologies, does not introduce double-stranded DNA breaks (DSBs) into the DNA as a first step. See, Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016),
"Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage." Nature 533, 420-424; the entire contents of which are incorporated by reference herein. Instead, catalytically dead SpCas9 (dCas9) or a SpCas9 nickase (dCas9(A840H)) is tethered to a cytidine deaminase enzyme such as rAPOBECl, pmCDAl, or hAPOBEC3G. The genomic locus of interest is encoded by an sgRNA, and DNA binding and local denaturation is facilitated by the dCas9 portion of the fusion. However, just as wt dCas9 and wt Cas9 exhibit off-target DNA binding and cleavage, current base editors also exhibit C to T editing at Cas9 offtarget loci, which limits their therapeutic usefulness.
[00466] It has been reported that the introduction of just three to four mutations into SpCas9 that neutralize nonspecific electrostatic interactions between the protein and the sugar-phosphate backbone of its target DNA, increases the DNA binding specificity of SpCas9. See, Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., and Joung, J.K. (2016) "High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects." Nature 529, 490-495; and Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F. (2015) "Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88; the entire contents of each are hereby incorporated by reference herein. Four reported neutralizing mutations were therefore incorporated into the initially reported base editor BE3 (SEQ ID NO: 48), and found that off-target $C$ to $T$ editing of this enzyme is also drastically reduced (Figure 55), with no decrease in on-target editing (Figure 56).
[00467] As shown in Figure 55, HEK293T cells were transfected with plasmids expressing BE3 or HF-BE3 and a sgRNA matching the EMX1 sequence using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target locus, plus the top ten known Cas9 off-target loci for the EMX1 sgRNA, as previously determined by Joung and coworkers using the GUIDE-seq method. See Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C , Iafrate, A J., Le, L.P., et al. (2015) "GUIDE-seq enables genomewide profiling of off-target cleavage by CRISPR-Cas nucleases." Nat Biotech 33, 187-197; the entire contents of which are incorporated by reference herein. EMX1 off-target 5 locus did not amplify and is not shown. Sequences of the on-target and off-target protospacers and protospacer adjacent motifs (PAMs) are displayed (Figure 55). Cellular C to T conversion percentages,
defined as the percentage of total DNA sequencing reads with T at each position of an original C within the protospacer, are shown for BE3 and HF-BE3.
[00468] In Figure 56, HEK293T cells were transfected with plasmids expressing BE3 or HF-
BE3 and sgRNAs matching the genomic loci indicated using Lipofectamine 2000. Three days after transfection, genomic DNA was extracted, amplified by PCR, and analyzed by highthroughput DNA sequencing at the on-target loci. The percentage of total DNA sequencing reads with all four bases at the target Cs within each protospacer are shown for treatment with BE3 or HF-BE3 (Figure 56). Frequencies of indel formation are shown as well.
[00469] Primary Protein Sequence of HF-BE3 (SEQ ID NO: 48):


#### Abstract

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV VDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFM ALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG GLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESD ILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV


## EXAMPLE 9: Development of Base Editors that Use Cas9 Variants and Modulation of the Base

## Editor Processivity to Increase the Target Range and Precision of the Base Editing Technology

[00470] Unlike traditional genome editing platforms, base editing technology allows precise single nucleotide changes in the DNA without inducing double-stranded breaks(DSBs). See, Komor, A. C. et al. Nature 533, 420-424 (2016). The current generation of base editor uses the NGG PAM exclusively. This limits its ability to edit desired bases within the genome, as the base editor needs to be placed at a precise location where the target base is placed within a 4-
base region (the 'deamination window'), approximately 15 bases upstream of the PAM. See, Komor, A. C. et al. Nature 533, 420-424 (2016). Moreover, due to the high processivity of cytidine deaminase, the base editor may convert all cytidines within its deamination window into thymidines, which could induce amino acid changes other than the one desired by the researcher. See, Komor, A. C. et al. Nature 533, 420-424 (2016).

Expanding the scope of base editing through the development of base editors with Cas9 variants
[00471] Cas9 homologs and other RNA-guided DNA binders that have different PAM specificities were incorporated into the base editor architecture. See, Kleinstiver, B. P. et al. Nature 523, 481-485 (2015); Kleinstiver, B. P. et al. Nature Biotechnology 33, 1293-1298 (2015); and Zetsche, B. et al. Cell 163, 759-771 (2015); the entire contents of each are incorporated by reference herein. Furthermore, innovations that have broadened the PAM specificities of various Cas9 proteins were also incorporated to expand the target reach of the base editor even more. See, Kleinstiver, B. P. et al. Nature 523, 481-485 (2015); and Kleinstiver, B.P.et al. Nature Biotechnology 33, 1293-1298 (2015). The current palette of base editors is summarized in Table 4.

Table 4. New base editors made from Cas9 Variants

Sxexies	*	Sase Exay Hexme	
	\ , \%/	乡\}	
	M	M	
<	\#\#\#\#		
\# \#	M $4 \times 2 \times 4$	\# 4.2	
4. suremis?		M"乡. \& dxw: 38	Tswhes 4 st $\mu$

## Modulating base editor's processivity through site-directed mutagenesis of rAPOBECl

[00472] It was reasoned that the processivity of the base editor could be modulated by making point mutations in the deaminase enzyme. The incorporatation of mutations that slightly reduce the catalytic activity of deaminase in which the base editor could still catalyze on average one round of cytidine deamination but was unlikely to access and catalyze another deamination
within the relevant timescale were pursued. In effect, the resulting base editor would have a narrower deamination window.
[00473] rAPOBECl mutations probed in this work are listed in Table 5. Some of the mutations resulted in slight apparent impairment of rAPOBECl catalysis, which manifested as preferential editing of one cytidine over another when multiple cytidines are found within the deamination window. Combining some of these mutations had an additive effect, allowing the base editor to discriminate substrate cytidines with higher stringency. Some of the double mutants and the triple mutant allowed selective editing of one cytidine among multiple cytidines that are right next to one another (Figure 57).

Table 5.rAPOBECl Point Mutations Investigated


## Base Editor PAM Expansion and Processivity Modulation

[00474] The next generation of base editors were designed to expand editable cytidines in the genome by using other RNA-guided DNA binders (Figure 58). Using a NGG PAM only allows for a single target within the "window" whereas the use of multiple different PAMs allows for Cas9 to be positioned anywhere to effect selective deamination. A variety of new base editors have been created from Cas9 variants (Figure 59 and Table 4). Different PAM sites (NGA, Figure 60; NGCG, Figure 61; NNGRRT, Figure 62; and NNHRRT, Figure 63) were explored. Selective deamination was successfully achieved through kinetic modulation of cytidine deaminase point mutagenesis (Figure 65 and Table 5).
[00475] The effect of various mutations on the deamination window was then investigated in cell culture using spacers with multiple cytidines (Figures 66 and 67).
[00476] Further, the effect of various mutations on different genomic sites with limited numbers of cytidines was examined (Figures 68 to 71). It was found that approximately one cytidine will be edited within the deamination windown in the spacer, while the rest of the cytidines will be left intact. Overall, the preference for editing is as follows: $\mathrm{C}_{6}>\mathrm{C} 5$ » $\mathrm{C}_{7} \approx \mathrm{C}_{4}$.

## Base Editing Using Cpfl

[00477] Cpfl, a Cas9 homolog, can be obtained as AsCpfl, LbCpfl, or from any other species. Schematics of fusion constructs, including BE2 and BE3 equivalents, are shown in Figure 73. The BE2 equivalent uses catalytically inactive Cpf2 enzyme (dCpfl) instead of Cas9, while the BE3 equivalent includes the Cpfl mutant, which nicks the target strand. The bottom schematic depicts different fusion architectures to combine the two innovations illustrated above it (Figure 73). The base editing results of HEK293T cell TTTN PAM sites using Cpfl BE2 were examined with different spacers (Figures 64A to 64C). In some embodiments, Cpfl may be used in place of a Cas9 domain in any of the base editors provided herein. In some embodiments, the Cpfl is a protein that is at lesst $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 98 \%, 99 \%$, or $99.5 \%$ identical to SEQ ID NO 9.

Full Protein Sequence of Cpfl (SEQ ID NO: 9):
MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNI IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFK RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL DYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ NRNN

EXAMPLE 10: Increased Fidelity of Base Editing
[00478] Examining the difference between plasmid delivery of BE3 and HF-BE3, it was found that the two edit on-target loci with comparable efficiency (Figures 74 and 75). However, HFBE3 edited off-target loci much less than BE3, meaning that HF-BE3 has a much higher DNA specificity than BE3 (Figure 76). Deaminase protein lipofection to HEK cells demonstrated that protein delivery of BE3 results in comparable on-target activity, but much better specificity, than plasmid DNA delivery of BE3. Using improved transfection procedures and better plasmids $(\mathrm{n}=2)$, the experiment used the following conditions: protein delivery was 125 nM Cas9:sgRNA complex, plasmid delivery was 750 ng BE3/HF-BE3 plasmid + 250ng sgRNA plasmid, and lipofection was with $1.5 \mu \mathrm{~L}$ of Lipofectamine 2000 per well. EMX- 1 off target site 2 and FANCF off-target site 1 showed the most off-target editing with BE3, compared to all of the offtargets assayed (Figures 77 and 78), while HEK-3 showed no significant editing at off-targets for any of the delivery methods (Figure 79). HEK-4 shows some C-to-G editing on at the on-target site, while its off-target sites 1,3 , and 4 showed the most off-target editing of all the assayed sites (Figure 80).

## Delivery of BE3 Protein via Micro-injection to Zebrafish

[00479] TYR guide RNAs were tested in an in vitro assay for sgRNA activity (Figures 81 and 82). The \% HTS reads shows how many C residues were converted to T residues during a 2 h incubation with purified BE3 protein and PCR of the resulting product. Experiments used an 80mer synthetic DNA substate with the target deamination site in 60bp of its genomic context. This is not the same as \% edited DNA strands because only one strand was nicked, so the product is not amplified by PCR. The proportion of HTS reads edited is equal to $\mathrm{x} /(2-\mathrm{x})$, where $x$ is the actual proportion of THS reads edited. For $60 \%$ editing, the actual proportion of bases edited is $75 \%$. "Off target" is represents BE3 incubated with the same DNA substrate, while bound to an off-target sgRNA. It was found sgRNAs sgRH_13, sgHR_17, and possibly sgHR_16 appeared to be promising targets for in vivo injection experiments.
[00480] The delivery of BE3 protein in was tested in vivo in zebrafish. Zebrafish embryos ( $n=16-24$ ) were injected with either scramled sgRNA, sgHR_13, sgHR_16, or sgHR_17 and purified BE3. Three embryos from each condition were analyzed independently (single embryo) and for each condition, all of the injected embryos were pooled and sequenced as a pool. The results are shown in Figures 83 to 85 .

## EXAMPLE 11: Uses of Base Editors to Treat Disease

[00481] Base editors or complexes provided herein (e.g., BE3) may be used to modify nucleic acids. For example, base editors may be used to change a cytosine to a thymine in a nucleic acid (e.g., DNA). Such changes may be made to, inter alia, alter the amino acid sequence of a protein, to destroy or create a start codon, to create a stop codon, to distupt splicing donors, to disrupt splicing acceptors or edit regulatory sequences. Examples of possible nucleotide changes are shown in Figure 86.
[00482] Base editors or complexes provided herein (e.g., BE3) may be used to edit an isoform of Apolipoprotein E in a subject. For example, an Apolipoprotein E isoform may be edited to yield an isoform associated with a lower risk of developing Alzheimer's disease. Apolipoprotein E has four isoforms that differ at amino acids 112 and 158. APOE4 is the largest and most common genetic risk factor for late-onset Alzheimer's disease. Arginine residue 158 of APOE4, encoded by the nucleic acid sequence CGC, may be changed to a cysteine by using a base editor (e.g., BE3) to change the CGC nucleic acid sequence to TGC, which encodes cysteine at residue 158. This change yields an APOE3r isoform, which is associated with lower Alzheimer's disease risk. See Figure 87.
[00483] It was tested whether base editor BE3 could be used to edit APOE4 to APOE3r in mouse astrocytes (Figure 88). APOE 4 mouse astrocytes were nucleofected with Cas $9+$ template or BE3, targeting the nucleic acid encoding Arginine 158 of APOE4. The Cas $9+$ template yielded only $0.3 \%$ editing with $26 \%$ indels, while BE3 yielded $75 \%$ editing with 5\% indels. Two additional base-edited cytosines are silent and do not yield changes to the amino acid sequence (Figure 88).
[00484] Base editors or complexes provided herein may be used to treat prion protein diseases such as Creutzfeldt-Jakob disease and fatal familial insomnia, for example, by introducing mutations into a PRNP gene. Reverting PRNP mutations may not yield therapeutic results, and intels in PRNP may be pathogenic. Accordingly, it was tested whether PRNP could be mutated using base editors (e.g., BE3) to introduce a premature stop codon in the PRNP gene. BE3, associated with its guide RNA, was introduced into HEK cells or glioblastoma cells and was capable of editing the PRNP gene to change the encoded arginine at residue 37 to a stop codon. BE3 yielded $41 \%$ editing (Figure 89).
[00485] Additional genes that may be edited include the following: APOE editing of Arg 112 and Arg 158 to treat increased Alzheimer's risk; APP editing of Ala 673 to decrease Alzheimer's risk; $P R N P$ editing of $\operatorname{Arg} 37$ to treat fatal familial insomnia and other prion protein diseases; $D M D$ editing of the exons 23 and 51 splice sites to treat Duchenne muscular dystrophy; FTO editing of intron 1 to treat obesity risk; PDS editing of exon 8 to treat Pendred syndrome (genetic deafness); TMC1 editing of exon 8 to treat congenital hearing loss; CYBB editing of various patient-relevant mutations to treat chronic granulomatous disease. Additional diseases that may be treated using the base editors provided herein are shown in Table 6, below.
[00486] UGI also plays a key role. Knocking out UDG (which UGI inhibits) was shown to dramatically improve the cleanliness and efficiency of C to T base editing (Figure 90). Furthermore, base editors with nickase and without UGI were shown to produce a mixture of outcomes, with very high indel rates (Figure 91).

## EXAMPLE 12: Expanding the Targeting Scope of Base Editing

[00487] Base editing is a new approach to genome editing that uses a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair to induce programmable, single-nucleotide $\mathrm{C}-\wedge \mathrm{T}$ (or G-^A) changes in DNA without generating double-strand DNA breaks, without requiring a donor DNA template, and without inducing an excess of stochastic insertions and deletions ${ }^{1}$. The development of five new C-^T (or G-^A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing by 2.5 -fold are described herein. Additionally, new base editors containing mutated cytidine deaminase domains that narrow the width of the apparent editing window from approximately 5 nucleotides to 1 or 2 nucleotides were engineered, enabling the discrimination of neighboring C nucleotides that would previously be edited with comparable efficiency. Together, these developments substantially increase the targeting scope of base editing.
[00488] CRISPR-Cas9 nucleases have been widely used to mediate targeted genome editing ${ }^{2}$. In most genome editing applications, Cas9 forms a complex with a single guide RNA (sgRNA) and induces a double-stranded DNA break (DSB) at the target site specified by the sgRNA sequence. Cells primarily respond to this DSB through the non-homologuous end-joining (NHEJ) repair pathway, which results in stochastic insertions or deletions (indels) that can cause
frameshift mutations that disrupt the gene. In the presence of a donor DNA template with a high degree of homology to the sequences flanking the DSB, gene correction can be achieved through an alternative pathway known as homology directed repair (HDR). ${ }^{3,4}$ Unfortunately, under most non-perturbative conditions HDR is inefficient, dependent on cell state and cell type, and dominated by a larger frequency of indels. ${ }^{3 \cdot 4}$ As most of the known genetic variations associated with human disease are point mutations ${ }^{5}$, methods that can more efficiently and cleanly make precise point mutations are needed.
[00489] Base editing, which enables targeted replacement of a C:G base pair with a T :A base pair in a programmable manner without inducing DSBs ${ }^{1}$, has been recently described. Base editing uses a fusion protein between a catalytically inactivated (dCas9) or nickase form of Streptococcus pyogenes Cas9 (SpCas9), a cytidine deaminase such as APOBEC1, and an inhibitor of base excision repair such as uracil glycosylase inhibitor (UGI) to convert cytidines into uridines within a five-nucleotide window specified by the sgRNA. ${ }^{1}$ The third-generation base editor, BE3, converts C:G base pairs to T:A base pairs, including disease-relevant point mutations, in a variety of cell lines with higher efficiency and lower indel frequency than what can be achieved using other genome editing methods ${ }^{1}$. Subsequent studies have validated the deaminase-dCas 9 fusion approach in a variety of settings ${ }^{677}$.
[00490] Efficient editing by BE3 requires the presence of an NGG PAM that places the target C within a five-nucleotide window near the PAM-distal end of the protospacer (positions 4-8, counting the PAM as positions 21-23 ${ }^{1}$. This PAM requirement substantially limits the number of sites in the human genome that can be efficiently targeted by BE3, as many sites of interest lack an NGG 13- to 17- nucleotides downstream of the target C. Moreover, the high activity and processivity of BE3 results in conversion of all Cs within the editing window to Ts, which can potentially introduce undesired changes to the target locus. Herein, new C:G to T:A base editors that address both of these limitations are described.
[00491] It was thought that any Cas9 homolog that binds DNA and forms an "R-loop" complex ${ }^{8}$ containing a single-stranded DNA bubble could in principle be converted into a base editor. These new base editors would expand the number of targetable loci by allowing nonNGG PAM sites to be edited. The Cas9 homolog from Staphylococcus aureus (SaCas9) is considerably smaller than SpCas9 (1053 vs. 1368 residues), can mediate efficient genome editing in mammalian cells, and requires an NNGRRT PAM ${ }^{9}$. SpCas9 was replaced with SaCas9 in BE3
to generate SaBE3 and transfected HEK293T cells with plasmids encoding SaBE3 and sgRNAs targeting six human genomic loci (Figures 92A and 92B). After 3 d , the genomic loci were subjected to high-throughput DNA sequencing (HTS) to quantify base editing efficiency. SaBE3 enabled C to T base editing of target Cs at a variety of genomic sites in human cells, with very high conversion efficiencies (approximately $50-75 \%$ of total DNA sequences converted from C to T , without enrichment for transfected cells) arising from targeting Cs at positions 6-11. The efficiency of SaBE3 on NNGRRT-containing target sites in general exceeded that of BE3 on NGG-containing target sites ${ }^{1}$. Perhaps due to its higher average efficiency, SaBE3 can also result in detectable base editing at target Cs at positions outside of the canonical BE3 activity window (Figure 92C). In comparison, BE3 showed significantly reduced editing under the same conditions $(0-11 \%)$, in accordance with the known SpCas9 PAM preference (Figure 106A) ${ }^{10}$. These data show that SaBE3 can facilitate very efficient base editing at sites not accessible to BE3.
[00492] The targeting range of base editors was further expanded by applying recently engineered Cas9 variants that expand or alter PAM specificities. Joung and coworkers recently reported three SpCas9 mutants that accept NGA (VQR-Cas9), NGAG (EQR-Cas9), or NGCG(VRER-Cas9) PAM sequences ${ }^{11}$. In addition, Joung and coworkers engineered a SaCas9 variant containing three mutations (SaKKH-Cas9) that relax its PAM requirement to NNNRRT ${ }^{12}$. The SpCas9 portion of BE3 was replaced with these four Cas9 variants to produce VQR-BE3, EQR-BE3, VRER-BE3, and SaKKH-BE3, which target NNNRRT, NGA, NGAG, and NGCG PAMs respectively. HEK293T cells were transfected with plasmids encoding these constructs and sgRNAs targeting six genomic loci for each new base editor, and measured C to T base conversions using HTS.
[00493] SaKKH-BE3 edited sites with NNNRRT PAMs with efficiencies up to $62 \%$ of treated, non-enriched cells (Figure 92D). As expected, SaBE3 was unable to efficiently edit targets containing PAMs that were NNNHRRT (where $\mathrm{H}=\mathrm{A}, \mathrm{C}$, or T ) (Figure 92D). VQR-BE3, EQRBE3, and VRER-BE3 exhibited more modest, but still substantial base editing efficiencies of up to $50 \%$ of treated, non-enriched cells at genomic loci with the expected PAM requirements with an editing window similar to that of BE3 (Figures 92E and 92F). Base editing efficiencies of VQR-BE3, EQR-BE3, and VRER-BE3 in general closely paralleled the reported PAM requirements of the corresponding Cas9 nucleases; for example, EQR-BE3 was unable to
efficiently edit targets containing NGAH PAM sequences (Figure 92F). In contrast, BE3 was unable to edit sites with NGA or NGCG PAMs efficiently (0-3\%), likely due to its PAM restrictions (Figure 106B).
[00494] Collectively, the properties of SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 establish that base editors exhibit a modularity that facilitates their ability to exploit Cas9 homologs and engineered variants.
[00495] Next, base editors with altered activity window widths were developed. All Cs within the activity window of BE3 can be efficiently converted to Ts ${ }^{1}$. The ability to modulate the width of this window would be useful in cases in which it is important to edit only a subset of Cs present in the BE3 activity window.
[00496] The length of the linker between APOBEC1 and dCas9 was previously observed to modulate the number of bases that are accessible by APOBEC1 in vitro ${ }^{1}$. In HEK293T cells, however, varying the linker length did not significantly modulate the width of the editing window, suggesting that in the complex cellular milieu, the relative orientation and flexibility of dCas9 and the cytidine deaminase are not strongly determined by linker length (Figure 96). Next, it was thought that truncating the 5 ' end of the sgRNA might narrow the base editing window by reducing the length of single-stranded DNA accessible to the deaminase upon formation of the RNA-DNA heteroduplex. HEK293T cells were co-transfected with plasmids encoding BE3 and $\operatorname{sgRNAs}$ of different spacer lengths targeting a locus with multiple Cs in the editing window. No consistent changes in the width of base editing when using truncated sgRNAs with 17 - to 19base spacers were observed (Figures 95A to 95C). Truncating the sgRNA spacer to fewer than 17 bases resulted in large losses in activity (Figure 95A).
[00497] As an alternative approach, it was thought that mutations to the deaminase domain might narrow the width of the editing window through multiple possible mechanisms. First, some mutations may alter substrate binding, the conformation of bound DNA, or substrate accessibility to the active site in ways that reduce tolerance for non-optimal presentation of a C to the deaminase active site. Second, because the high activity of APOBEC1 likely contributes to the deamination of multiple Cs per DNA binding event, ${ }^{1,13,14}$ mutations that reduce the catalytic efficiency of the deaminase domain of a base editor might prevent it from catalyzing successive rounds of deamination before dissociating from the DNA. Once any C:G to T:A editing event has taken place, the sgRNA no longer perfectly matches the target DNA sequence
and re-binding of the base editor to the target locus should be less favorable. Both strategies were tested in an effort to discover new base editors that distinguish among multiple cytidines within the original editing window.
[00498] Given the absence of an available APOBEC1 structure, several mutations previously reported to modulate the catalytic activity of APOBEC3G, a cytidine deaminase from the same family that shares $42 \%$ sequence similarity of its active site-containing domain to that of APOBEC1, were identified ${ }^{15}$. Corresponding APOBEC1 mutations were incorporated into BE3 and evaluated their effect on base editing efficiency and editing window width in HEK293T cells at two C-rich genomic sites containing Cs at positions $3,4,5,6,8,9,10,12,13$, and 14 (site A ); or containing Cs at positions $5,6,7,8,9,10,11$, and 13 (site B).
[00499] The APOBEC 1 mutations R 118A and W90A each led to dramatic loss of base editing efficiency (Figure 97C). R132E led to a general decrease in editing efficiency but did not change the substantially narrow the shape of the editing window (Figure 97C). In contrast, several mutations that narrowed the width of the editing window while maintaining substantial editing efficiency were found (Figures 93A and 97C). The "editing window width" was defined to represent the artificially calculated window width within which editing efficiency exceeds the half-maximal value for that target. The editing window width of BE3 for the two C -rich genomic sites tested was 5.0 (site A) and 6.1 (site B) nucleotides.
[00500] R126 in APOBEC 1 is predicted to interact with the phosphate backbone of ssDNA ${ }^{13}$. Previous studies have shown that introducing the corresponding mutation into APOBEC3G decreased catalysis by at least 5 -fold ${ }^{14}$. Interestingly, when introduced into APOBEC 1 in BE3, R126A and R126E increased or maintained activity relative to BE3 at the most strongly edited positions (C5, C6, and C7), while decreasing editing activity at other positions (Figures 93A and 97C). Each of these two mutations therefore narrowed the width of the editing window at site $A$ and site B to 4.4 and 3.4 nucleotides (R126A), or to 4.2 and 3.1 nucleotides (R126E), respectively (Figures 93A and97C).
[00501] W90 in APOBEC 1 (corresponding to W285 in APOBEC3G) is predicted to form a hydrophobic pocket in the APOBEC3G active site and assist in substrate binding ${ }^{13}$. Mutating this residue to Ala abrogated APOBEC3G's catalytic activity ${ }^{13}$. In BE3, W90A almost completely abrogated base editing efficiency (Figure 97C). In contrast, it was found that W90Y only modestly decreased base editing activity while narrowing the editing window width at site A and
site B to 3.8 and 4.9 nucleotides, respectively (Figure 93A). These results demonstrate that mutations to the cytidine deaminase domain can narrow the activity window width of the corresponding base editors.
[00502] W90Y, R126E, and R132E, the three mutations that narrowed the editing window without drastically reducing base editing activity, were combined into doubly and triply mutated base editors. The double mutant W90Y+R126E resulted in a base editor (YE1-BE3) with BE3like maximal editing efficiencies, but substantially narrowed editing window width (width at site A and site $\mathrm{B}=2.9$ and 3.0 nucleotides, respectively (Figure 93A). The W90Y + R132E base editor (YE2-BE3) exhibited modestly lower editing efficiencies (averaging 1.4-fold lower maximal editing yields across the five sites tested compared with BE3), and also substantially narrowed editing window width (width at site A and site $\mathrm{B}=2.7$ and 2.8 nucleotides, respectively) (Figure 97C). The R126E+R132E double mutant (EE-BE3) showed similar maximal editing efficiencies and editing window width as YE2-BE3 (Figure 97C). The triple mutant W90Y+R126E+R132E (YEE-BE3) exhibited 2.0 -fold lower average maximal editing yields but very little editing beyond the C6 position and an editing window width of 2.1 and 1.4 nucleotides for site A and site B, respectively (Figure 97C). These data taken together indicate that mutations in the cytidine deaminase domain can strongly affect editing window widths, in some cases with minimal or only modest effects on editing efficiency.
[00503] The base editing outcomes of BE3, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 were further compared in HEK293T cells targeting four well-studied human genomic sites that contain multiple Cs within the BE3 activity window ${ }^{1}$. These target loci contained target Cs at positions 4 and 5 (HEK site 3), positions 4 and 6 (HEK site 2), positions 5 and 6 (EMXI), or positions $6,7,8$, and 11 (FANCF). BE3 exhibited little (< 1.2 -fold) preference for editing any Cs within the position 4-8 activity window. In contrast, YE1-BE3, exhibited a 1.3 -fold preference for editing C5 over C4 (HEK site 3), 2.6-fold preference for C6 over C4 (HEK site 2), 2.0-fold preference for C 5 over C 6 (EMXI), and 1.5 -fold preference for C 6 over C 7 (FANCF) (Figure 93B). YE2-BE3 and EE-BE3 exhibited somewhat greater positional specificity (narrower activity window) than YE1-BE3, averaging 2.4 -fold preference for editing C5 over C4 (HEK site 3), 9.5 -fold preference for C 6 over C 4 (HEK site 2 ), 2.9 -fold preference for C 5 over C 6 (EMXI), and 2.6 -fold preference for C7 over C6 (FANCF) (Figure 93B). YEE-BE3 showed the greatest positional selectivity, with a 2.9 -fold preference for editing C5 over C4 (HEK site 3), 29.7-fold
preference for C 6 over C 4 (HEK site 2), 7.9-fold preference for C 5 over C6 (EMX1), and 7.9fold preference for C7 over C6 (FANCF) (Figure 93B). The findings establish that mutant base editors can discriminate between adjacent Cs , even when both nucleotides are within the BE3 editing window.
[00504] The product distributions of these four mutants and BE3 were further analyzed by HTS to evaluate their apparent processivity. BE3 generated predominantly T4-T5 (HEK site 3), T4-T6 (HEK site 2), and T5-T6 (EMX1) products in treated HEK293T cells, resulting in, on average, 7.4 -fold more products containing two Ts , than products containing a single T . In contrast, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 showed substantially higher preferences for singly edited C4-T5, C4-T6, and T5-C6 products (Figure 93C). YE1-BE3 yielded products with an average single-T to double-T product ratio of 1.4. YE2-BE3 and EE-BE3 yielded products with an average single-T to double-T product ratio of 4.3 and 5.1, respectively (Figure 93C). Consistent with the above results, the YEE-BE3 triple mutant favored single-T products by an average of 14.3 -fold across the three genomic loci. (Figure 93C). For the target site in which only one C is within the target window (HEK site 4, at position C5), all four mutants exhibited comparable editing efficiencies as BE3 (Figure 98). These findings indicate that these BE3 mutants have decreased apparent processivity and can favor the conversion of only a single C at target sites containing multiple Cs within the BE3 editing window. These data also suggest a positional preference of $\mathrm{C} 5>\mathrm{C} 6>\mathrm{C} 7 \approx \mathrm{C} 4$ for these mutant base editors, although this preference could differ depending on the target sequence.
[00505] The window-modulating mutations in APOBEC1 were applied to VQR-BE3, allowing selective base editing of substrates at sites targeted by NGA PAM (Figure 107A). However, when these mutations were applied to SaKKH-BE3, a linear decrease in base editing efficiency was observed without the improvement in substrate selectivity, suggesting a different kinetic equilibrium and substrate accessibility of this base editor than those of BE3 and its variants (Figure 107B).
[00506] The five base editors with altered PAM specificities described in this study together increase the number of disease-associated mutations in the ClinVar database that can in principle be corrected by base editing by 2.5 -fold (Figures 94A and 94B). Similarly, the development of base editors with narrowed editing windows approximately doubles the fraction of ClinVar entries with a properly positioned NGG PAM that can be corrected by base editing without
comparable modification of a non-target C (from 31\% for BE3 to 59\% for YEE-BE3) (Figures 94A and 94B).
[00507] In summary, the targeting scope of base editing was substantially expanded by developing base editors that use Cas 9 variants with different PAM specificities, and by developing a collection of deaminase mutants with varying editing window widths. In theory, base editing should be possible using other programmable DNA-binding proteins (such as Cpfl ${ }^{16}$ ) that create a bubble of single-stranded DNA that can serve as a substrate for a single-strand-specific nucleotide deaminase enzyme.

Materials and Methods
[00508] Cloning. PCR was performed using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). Plasmids for BE and sgRNA were constructed using USER cloning (New England Biolabs), obtained from previously reported plasmids ${ }^{1}$. DNA vector amplification was carried out using NEB lObeta competent cells (New England Biolabs).
[00509] Cell culture. HEK293T (ATCC CRL-3216) were cultured in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with $10 \%$ ( $\mathrm{v} / \mathrm{v}$ ) fetal bovine serum (FBS), at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{C}_{2}$. Immortalized rat astrocytes containing the ApoE4 isoform of the APOE gene (Taconic Biosciences) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher Scientific) supplemented with $10 \%$ ( $\mathrm{v} / \mathrm{v}$ ) fetal bovine serum (FBS) and $200 \mu \mathrm{~g} / \mathrm{mL}$ Geneticin (ThermoFisher Scientific).
[00510] Transfections. HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately $85 \%$ confluency. 750 ng of BE and 250 ng of sgRNA expression plasmids were transfected using $1.5 \mu i ̈$ of Lipofectamine 2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol.
[00511] High-throughput DNA sequencing of genomic DNA samples. Transfected cells were harvested after 3 d and the genomic DNA was isolated using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. Genomic regions of interest were amplified by PCR with flanking HTS primer pairs listed in the Supplementary Sequences. PCR amplification was carried out with Phusion hot-start II DNA polymerase (ThermoFisher) according to the manufacturer's instructions. PCR products were purified using RapidTips (Diffinity Genomics). Secondary PCR was performed to attach sequencing adaptors. The products were gel-purified and quantified using the KAPA Library

Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described ${ }^{1}$.
[00512] Data analysis. Nucleotide frequencies were assessed using a previously described MATLAB script ${ }^{1}$. Briefly, the reads were aligned to the reference sequence via the SmithWaterman algorithm. Base calls with Q-scores below 30 were replaced with a placeholder nucleotide ( N ). This quality threshold results in nucleotide frequencies with an expected theoretical error rate of 1 in 1000.
[00513] Analyses of base editing processivity were performed using a custom python script. This program trims sequencing reads to the 20 nucleotide protospacer sequence as determined by a perfect match for the 7 nucleotide sequences that should flank the target site. These targets were then consolidated and sorted by abundance to assess the frequency of base editing products.
[00514] Bioinformatic analysis of the ClinVar database of human disease-associated mutations was performed in a manner similar to that previously described but with small adjustments ${ }^{1}$. These adjustments enable the identification of targets with PAMs of customizable length and sequence. In addition, this improved script includes a priority ranking of target C positions (C5 $>\mathrm{C} 6>\mathrm{C} 7>\mathrm{C} 8 \approx \mathrm{C} 4$ ), thus enabling the identification of target sites in which the on-target C is either the only cytosine within the window or is placed at a position with higher predicted editing efficiency than any off-target C within the editing window.

## References for Example 12

1 Komor, A.C.et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).
2 Sander, J. D. \& Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology 32, 347-355 (2014).
3 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
4 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281-2308 (2013).
5 Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862-D868 (2015).
6 Nishida, K.et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729-1-8 (2016).
7 Ma, Y.et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods doi: 10.1038/nmeth. 4027 (2016).
8 Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-71 (2016).

9 Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
10 Zhang, Y. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci. Rep. 4, (2014).
11 Kleinstiver, B. P. et. al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
12 Kleinstiver, B.P. et. al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293-1298 (2015).
13 Holden, L. G. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 452, 121-124 (2008).
14 Chen, K.-M. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452, 116-119 (2008).
15 Harris, R.S., Petersen-Mahrt, S. K. \& Neuberger, M. S. RNA Editing Enzyme APOBECl and Some of Its Homologs Can Act as DNA Mutators. Molecular Cell 10, 1247-1253 (2002).

16 Zetsche, B. et al. Cpfl Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163, 759-771 (2015).

## EXAMPLE 13

[00515] Using improved transfection procedures and better plasmids, biological replicates ( $\mathrm{n}=3$ ) were used to install the four HF mutations into the Cas9 portion of BE3. The muations do not significantly effect on-targeting editing with plasmid delivery (Figure 99). At the tested concentration, BE3 protein delivery works; however, the on-target editing is lower than for plasmid delivery (Figure 100). Protein delivery of BE3 with the HF mutations installed reduces on-targeting ediing efficiency but still yields some edited cells (Figure 101).
[00516] Both lipofection and installing HF mutations were shown to decrease off-target deamination events. For the four sites shown in Figure 102, the off-target sitest (OT) with the highest GUIDE-Seq reads and deamination events were assayed (Komor et al., Nature, 2016). The specificity ratio was calculated by dividing the off-target editing by the on-target editing at the closest corresponding C. In cases where off-target editing was not detectable, the ratio was set to 100 . Thus, a higher specificity ratio indicates a more specific construct. BE3 plasmid delivery showed much higher off-target/on-target editing than protein delivery of BE3, plasmid delivery of HF-BE3, or protein delivery of HF-BE3 (Figures 102 and 105).
[00517] Purified proteins HF-BE3 and BE3 were analyzed in vitro for their capabilities to convert C to T residues at different positions in the spacer with the most permissive motif. Both

BE3 and HF-BE3 proteins were found to have the same "window" for base editing (Figures 103 and 104).
[00518] A list of the disease targets is given in Table 8. The base to be edited in Table 8 is indicated in bold and underlined.

Table 8. Base Editor Disease Targets

GENE	DISEASE	SPACER	$\begin{aligned} & \hline \text { SEQ } \\ & \text { ID NO } \\ & \hline \end{aligned}$	PAM	EDITOR	DEFECT	CELL
RB1	$\begin{aligned} & \text { RETINOBLA } \\ & \text { STOMA } \end{aligned}$	AATCTAGTAAATAA ATTGATGT	571	AAAA GT	$\begin{aligned} & \text { SAKKH- } \\ & \text { BE3 } \\ & \hline \end{aligned}$	SPLICING IMPAIRMENT	J82
PTEN	CANCER	$\begin{aligned} & \text { GACCAACGGCTAAG } \\ & \text { TGAAGA } \\ & \hline \end{aligned}$	572	TGA	$\begin{aligned} & \text { VQR- } \\ & \text { BE3 } \\ & \hline \end{aligned}$	W111R	$\begin{aligned} & \mathrm{MC11} \\ & 6 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { PIK3C } \\ & \text { A } \end{aligned}$	CANCER	$\begin{aligned} & \text { TCCTTTCTTCACGGT } \\ & \text { TGCCT } \end{aligned}$	573	$\begin{aligned} & \text { ACTG } \\ & \text { GT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SAKKH- } \\ & \text { BE3 } \end{aligned}$	K111R	$\begin{aligned} & \hline \text { CRL- } \\ & 5853 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { PIK3C } \\ & \text { A } \\ & \hline \end{aligned}$	CANCER	$\begin{aligned} & \text { CTCCTGCTCAGTGAT } \\ & \text { TTCAG } \end{aligned}$	574	AGA	$\begin{aligned} & \text { VQR- } \\ & \text { BE3 } \\ & \hline \end{aligned}$	Q546R	$\begin{aligned} & \hline \text { CRL- } \\ & 2505 \\ & \hline \end{aligned}$
TP53	CANCER	$\begin{aligned} & \text { TGTCACACATGTAGT } \\ & \text { TGTAG } \end{aligned}$	575	TGG	$\begin{aligned} & \text { YEE- } \\ & \text { BE3 } \end{aligned}$	N239D	$\begin{aligned} & \text { SNU4 } \\ & 75 \\ & \hline \end{aligned}$
HRAS	CANCER	CCTCCCGGCCGGCGG TATCC	576	AGG	$\begin{aligned} & \text { YEE- } \\ & \text { BE3 } \end{aligned}$	Q61R	$\begin{aligned} & \hline \mathrm{MC} / \mathrm{C} \\ & \mathrm{AR} \\ & \hline \end{aligned}$

Table 6. Exemplary diseases that may be treated using base editors. The protospacer and PAM sequences (SEQ ID NOS: 577-589) are shown in the sgRNA (PAM) column. The PAM sequence is shown in parentheses and with the base to be edited indicated by underlining.

Disease target	gene symbol	Base changed	sgRNA (PAM)	Base editor
Prion disease	PRNP	R37*	GGCAGCCGATACCCGGGGCA(GGG)	BE3
			GGGCAGCCGATACCCGGGGC(AGG)	
Pendred syndrome	SIc26a4	c. 91 9-2A>G	TTATTGTCCGAAATAAAAGA(AGA)	BE3
			ATTGTCCGAAATAAAAGAAG(AGG)	(VQR
			TTGTCCGAAATAAAAGAAGA(GGA)	SaCas9)
			GTCCGAAATAAAAGAAGAGGAAAA(AAT)	
			GTCCGAAATAAAAGAAGAGGAAAAA(ATT)	
Congenital deafness	Tmc1	c. $545 \mathrm{~A}>\mathrm{G}$	CAGGAAGCACGAGGCCACTG(AGG)	BE3
			AACAGGAAGCACGAGGCCAC(TGA)	YE-BE3
			AGGAAGCACGAGGCCACTGA(GGA)	YEE-BE3
Acquired deafness	SNHL	S33F	TTGGATTCTGGAATCCATTC(TGG)	BE3
Alzheimer's Disease	APP	A673T	TCTGCATCCATCTTCACTTC(AGA)	BE3 VQR
Niemann-Pick Disease Type C	NPC1	11061 T	CTTACAGCCAGTAATGTCAC(CGA)	BE3 VQR

EXAMPLE 14: Testing Base Editing Constructs
[00519] Several base editing constructs, including BE3, BE4-pmCDA1, BE4-hAID, BE4-3G, BE4-N, BE4-SSB, BE4-(GGS) ${ }_{3}$, BE4-XTEN, BE4-32aa, BE4-2xUGI, and BE4 were tested for their ability to edit a cytosine (C) residue within different target sequences \{i.e., EMX1, FANCF, HEK2, HEK3, HEK4, and RNF2). For example, it was tested whether these constructs were capable of producing a C to T mutation. Schematic representations of the base editing constructs are shown in Figure 109. The target sequences tested are also shown in Figure 109 with the targeted cytosine numbered and indicated in red.
[00520] The following amino acid sequences were used in the base editing constructs of this example:

## UGI:

TNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAP EYKPWALVIQDSNGENKIKML (SEQ ID NO: 736)

## rAPOBECI:

SSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHA DPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLEL YCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK (SEQ ID NO: 737) pmCDAI:

MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQ SGTERGIH AEIFS IRKVEEYLRDNPGQFTINW YSSWSPC ADC AEKILEWYNQELRGNGHT LKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENR WLEKTLKRAEKRRS ELSIMIQVKILHTTKS PAV (SEQ ID NO: 81)
hAID:
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHV ELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFC EDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSR QLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 49)

## hAPOBEC3G:

MELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTL TIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWS KFVYSQRELFEP WNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTW VLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSC AQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTF VDHQGCPFQPWDGLDEHS QDLSGRLRAILQNQEN (SEQ ID NO: 60)

## SSB (single-stranded DNA binding protein):

ASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTEWHRV VLFGKLAEVASEYLRKGSQVYIEGQLRTRKWTDQSGQDRYTTEVVVNVGGTMQMLGG RQGGGAPAGGNIGGGQPQGGWGQPQQPQGGNQFSGGAQSRPQQSAPAAPSNEPPMDF DDDIPF (SEQ ID NO: 590)

## Linker Sequences:

XTEN:
SGSETPGTSESATPES (SEQ ID NO: 604)
32aa:
SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 605)
SGGS:
SGGS (SEQ ID NO: 606)
(GGS) $\mathbf{B}^{\text {: }}$
GGSGGSGGS (SEQ ID NO: 610)
[00521] The amino acid sequences of the constructs shown in Figure 109 are set forth below:
[00522] BE3:
MSSETGPVAVDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC Sгт WFLSWSPCGECSRAITEFLS RYPHVTLFIYIARLYHH ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESAT PESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDN

SDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLF GNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE LHAILRRQEDF YPFLKDNREKIEKILTFRIP YYVGPLARGNS RFAWMTRKS EETITPWNFE EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDL LKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYT GWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLI TQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVY GDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK KYGGFDS PTVAYSVLVVAKVEKGKS KKLKS VKELLGITIMERS SFEKNPIDFLE AKGYK EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKG SPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAE NIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDS GGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTS DAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 174)

## BE4-pmCDAl:

[00523] MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGY AVNKPQSGTERGIHAEIFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQEL RGNGHTLKIWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQ LNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSETPGTSESATPESDKKYSIG LAIGTNS VGW AVITDE YKVPS KKFKVLGNTDRHS IKKNLIGALLFD SGETAEATRLKRT A RRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAY HEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQL

VQTYNQLFEENPIN ASGVDAKAILS ARLS KSRRLENLIAQLPGEKKNGLFGNLIALS LGLT PNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGA SQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS IPHQIHLGELHAILRRQED FYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASA QSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKK AIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRK LINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIA NLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVP QSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSK LVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVR KMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF ATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTV AYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLP KYSLFELENGRKRML ASAGELQKGNELALPS KYVNFLYLAS HYEKLKGS PEDNEQKQL FVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNL GAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIE KETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWA LVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 175)

## [00524] BE4-hAID:

MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHV ELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFC EDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSR QLRRILLPLYE VDDLRD AFRTLGLS GSETPGTS ESATPESDKKYS IGLAIGTNS VGW AVIT DEYKVPS KKFKVLGNTDRHS IKKNLIGALLFDS GETAEATRLKRTARRRYTRRKNRIC Y LQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKK LVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI

NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQS KNGYAGYIDGG ASQEEFYKFIKPILE KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE KILTFRIP YYVGPLARGNS RFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFDKN LPNEKVLPKHS LLYE YFTVYNELTKVKYVTEGMRKPAFLS GEQKKAIVDLLFKTNRKVT VKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVL TLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT VKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA GFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQV NIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK GKS KKLKS VKELLGITIMERS SFEKNPIDFLE AKGYKEVKKDLIIKLPKYS LFELENGRKR MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIE QISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESIL MLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIK MLSGGSPKKKRKV (SEQ ID NO: 176)

## [00525] BE4-3G:

MELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTL TIFVARLY YFWDPD YQEALRSLCQKRDGPRATMKIMNYDEFQHCWS KFVYSQRELFEP WNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTW VLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSC AQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTF VDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQENSGSETPGTSESATPESDKKYSIGLAI GTNS VGW AVITDEYKVPS KKFKVLGNTDRHS IKKNLIGALLFDS GETAEATRLKRTARR

RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHE KYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQ TYNQLFEENPIN ASGVDAKAILS ARLS KSRRLENLIAQLPGEKKNGLFGNLIALS LGLTPN FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQ EEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFY PFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV DLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDN EENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLIN GIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLA GSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEG IKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAE RGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVS DFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATV RKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYS VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYS LFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVE QHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAP AAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKET GKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVI QDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 177)

## [00526] BE4-N:

MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSD APEYKPWALVIQDSNGENKIKMLGGSSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKE TCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGE CSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNF VNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQ

RLPPHILW ATGLKS GSETPGTSESATPESDKKYS IGLAIGTNS VGW AVITDEYKVPS KKF KVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAK VDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLR LIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDD DLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLT LLKALVRQQLPEKYKEIFFDQS KNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLVKL NREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPL ARGNSRFAWMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFD KNLPNEKVLPKHS LL YEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEE RLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN FMQLIHDDS LTFKEDIQKAQVS GQGDSLHEHIANLAGSPAIKKGILQT VKVVDELVKVM GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKL YLYYLQNGRDM YVDQELDINRLS DYDVDHI VPQSFLKDDS IDNKVLTRS DKNRGKS DN VPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIT KHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDA YLNAVVGTALIKKYPKLES EFVYGDYKVYDVRKMIAKS EQEIGKAT AKYFFYSNIMNFF KTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS KESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELL GITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA TLIHQS ITGLYETRIDLS QLGGDS GGSPKKKRKV (SEQ ID NO: 178)

## [00527] BE4-SSB:

MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC SггWFLS WSPCGECSRAITEFLS RYPHVTLFIYIARLYHH ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESAT PESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGET

AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDN SDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLF GNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE LHAILRRQEDF YPFLKDNREKIEKILTFRIP YYVGPLARGNS RFAWMTRKS EETITPWNFE EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDL LKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYT GWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLI TQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVY GDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK KYGGFDSPTVAYSVLVVAKVEKGKS KKLKSVKELLGITIMERS SFEKNPIDFLE AKGYK EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKG SPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAE NIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDS GGSGGSGGSASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEM KEQTEWHRVVLFGKLAEVASEYLRKGSQVYIEGQLRTRKWTDQSGQDRYTTEVVVNV GGTMQMLGGRQGGGAPAGGNIGGGQPQGGWGQPQQPQGGNQFSGGAQSRPQQSAPA APSNEPPMDFDDDIPFS GGSPKKKRKV (SEQ ID NO: 179)

```
[00528] BE4-(GGS) 3:
```

MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC SггWFLSWSPCGECSRAITEFLS RYPHVTLFIYIARLYHH ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL

ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESAT PESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDN SDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLF GNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE LHAILRRQEDF YPFLKDNREKIEKILTFRIP YYVGPLARGNS RFAWMTRKS EETITPWNFE EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDL LKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYT GWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLI TQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVY GDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK KYGGFDSPTVAYSVLVVAKVEKGKS KKLKSVKELLGITIMERS SFEKNPIDFLE AKGYK EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKG SPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAE NIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDS GGSGGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDEN VMLLTS DAPEYKPW ALVIQDS NGENKIKMLS GGSPKKKRKV (SEQ ID NO: 180)
[00529] BE4-XTEN:
MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC SггWFLSWSPCGECSRAITEFLS RYPHVTLFIYIARLYHH ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL

ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESAT PESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDN SDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLF GNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE LHAILRRQEDF YPFLKDNREKIEKILTFRIP YYVGPLARGNS RFAWMTRKS EETITPWNFE EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDL LKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYT GWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLI TQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVY GDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK KYGGFDSPTVAYSVLVVAKVEKGKS KKLKSVKELLGITIMERS SFEKNPIDFLE AKGYK EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKG SPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAE NIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDS GSETPGTSESATPESTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDE STDENVMLLTSDAPEYKPW ALVIQDSNGENKIKMLS GGSPKKKRKV (SEQ ID NO: 181)
[00530] BE4-32aa:
MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC SггWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHH ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL

ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKS GGSSGGS SGSET PGTSESATPES SGGS SGGSDKKYSIGLAIGTNS VGW AVITDE YKVPS KKFKVLGNTDRHS IKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLE ESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMI KFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRL ENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQI GDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ LPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFDKNLPNEK VLPKHS LLYEYFTVYN ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHL FDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN GRDMYVDQELDINRLS DYDVDHIVPQS FLKDDS IDNKVLTRS DKNRGKS DNVPSEEVV KKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQIL DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVV GTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLA NGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPK RNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMER SSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSK YVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI TGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILV HTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 182)

## [00531] BE4-2XUGI:

MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC SггWFLSWSPCGECSRAITEFLS RYPHVTLFIYIARLYHH

ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESAT PESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGET AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPI FGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDN SDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLF GNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE LHAILRRQEDF YPFLKDNREKIEKILTFRIP YYVGPLARGNS RFAWMTRKS EETITPWNFE EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDL LKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYT GWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLI TQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVY GDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK KYGGFDSPTVAYSVLVVAKVEKGKS KKLKSVKELLGITIMERS SFEKNPIDFLE AKGYK EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKG SPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAE NIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDS GGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTS DAPEYKPWALVIQDSNGENKIKMLSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIG NKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKR KV (SEQ ID NO: 183)

MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRC SггWFLSWSPCGECSRAITEFLS RYPHVTLFIYIARLYHH ADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVL ELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKS GGSSGGS SGSET PGTSESATPES SGGSSGGSDKKYSIGLAIGTNS VGWAVITDEYKVPS KKFKVLGNTDRHS IKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLE ESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMI KFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRL ENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQI GDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ LPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKS EETITPWNFEE VVDKGASAQSFIERMTNFDKNLPNEK VLPKHSLLYEYFTVYN ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHL FDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENI VIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN GRDMYVDQELDINRLS DYDVDHIVPQS FLKDDS IDNKVLTRS DKNRGKS DNVPSEEVV KKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQIL DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVV GTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLA NGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPK RNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMER SSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSK YVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI TGLYETRIDLS QLGGDS GGS GGS GGSTNLSDIIEKETGKQLVIQES ILMLPEEVEE VIGNKP ESDILVHT AYDES TDEN VMLLTS DAPEYKPW ALVIQDS NGENKIKMLS GGSGGSGGS TN LSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEY KPWALVIQDSNGENKIKMLSGGSPKKKRKV (SEQ ID NO: 184)
[00533] The ability of the base editing constructs of Figure 109 to mutate target cytosine residues of EMX1, FANCF, HEK2, HEK3, HEK4, and RNF2 are shown in Figures 110-115. The percentage of target cytosines edited (including the proportion of C residues that are mutated to a T, A, or G), as well as the \% of indels generated, are shown in Figures 110-115. The percentage of target cytosines edited were calculated using the following formula: 100-[\% of sequencing reads with C]. The pie charts of Figures 110-1 15 show the distribution of reads with the various bases indicated, meaning that looking at all of the base edited reads (reads that have a nucleotide other than a C at the base indicated), what percentage of those have $\mathrm{A}, \mathrm{G}$, or T .

Tables 9-14, below, show the values of the mutation percentages that are indicated by in the pie charts of Figures 110-115.
[00534] The C to non-T editing observed is likely due to UDG (uracil DNA glycosylase). For example, once the C is converted to the uracil intermediate, UDG can convert it to an abasic site. This abasic site is then processed by other endogenous enzymes and ultimately leads to indels or other bases (such as G or A ) replacing the C . We have shown that in UDG knock-out cell lines show increased C to T editing with little to no indels at all.

TABLE 9 EMX1

EMX1		$\mathbf{c}_{5}$
BE3	A	$\mathbf{1 . 9 \%}$
	C	$\mathbf{5 1 . 9 \%}$
	G	$\mathbf{6 . 0 \%}$
	T	$\mathbf{4 0 . 3 \%}$
	pmCDAI	A
	$\mathbf{0 . 2 \%}$	
	C	$\mathbf{8 8 . 9 \%}$
	G	$\mathbf{0 . 8 \%}$
	T	$\mathbf{1 0 . 0 \%}$
	A	$\mathbf{0 . 3 \%}$
	C	$\mathbf{8 3 . 6 \%}$
	G	$\mathbf{0 . 6 \%}$
	T	$\mathbf{1 5 . 4 \%}$
	hAPOBEC3G	A
	$\mathbf{0 . 0 \%}$	
	C	$\mathbf{9 8 . 9 \%}$


	G	0.2\%
	T	1.0\%
BE4-N	A	1.4\%
	C	85.6\%
	G	3.5\%
	T	9.5\%
EMX1		
BE4-SSB	A	0.3\%
	C	96.7\%
	G	0.7\%
	T	2.3\%
BE4-(GGS) 3	A	1.7\%
	C	36.8\%
	G	4.1\%
	T	57.4\%
BE4-XTEN	A	2.1\%
	C	45.7\%
	G	5.1\%
	T	47.1\%
BE4-32aa	A	1.6\%
	C	46.3\%
	G	4.6\%
	T	47.5\%
BE4-2XUGI	A	0.6\%
	C	60.2\%
	G	1.9\%
	T	37.3\%

TABLE 10 FANCF

FANCF		$\mathrm{C}_{8}$
BE3	A	$1.6 \%$
	C	$74.4 \%$
	G	$0.7 \%$
	T	$23.3 \%$
pmCDAl	A	$0.5 \%$
	C	$88.8 \%$
	G	$0.3 \%$
	T	$10.3 \%$


hAI D	A	0.3\%
	C	89.6\%
	G	0.2\%
	T	9.9\%
hAPOBEC3G	A	2.1\%
	C	75.4\%
	G	10.4\%
	T	12.1\%
BE4-N	A	1.8\%
	C	83.5\%
	G	0.6\%
	T	14.2\%
BE4-SSB	A	0.3\%
	C	97.1\%
	G	0.1\%
	T	2.6\%
BE4-(GGS) 3	A	2.3\%
	C	45.7\%
	G	1.4\%
	T	50.6\%
BE4-XTEN	A	1.1\%
	C	56.3\%
	G	0.4\%
	T	42.1\%
BE4-32aa	A	1.2\%
	C	70.0\%
	G	0.6\%
	T	28.2\%
BE4-2XUGI	A	0.9\%
	C	57.8\%
	G	1.1\%
	T	40.2\%

TABLE 11 HEK2

HEK2		$\mathrm{C}_{6}$
BE3	A	$0.9 \%$


	C	28.2\%
	G	52.9\%
	T	18.1\%
pmCDAI	A	1.8\%
	C	73.5\%
	G	3.5\%
	T	21.2\%
hAID	A	2.1\%
	C	56.9\%
	G	7.7\%
	T	33.3\%
hAPOBEC3G	A	0.1\%
	C	86.5\%
	G	9.9\%
	T	3.5\%
BE4-N	A	1.0\%
	C	37.6\%
	G	57.0\%
	T	4.4\%
BE4-SSB	A	0.2\%
	C	78.4\%
	G	20.0\%
	T	1.4\%
BE4-(GGS) 3	A	0.6\%
	C	11.1\%
	G	40.6\%
	T	47.7\%
BE4-XTEN	A	1.2\%
	C	24.8\%
	G	44.6\%
	T	29.4\%
BE4-32aa	A	1.1\%
	C	26.3\%
	G	41.8\%
	T	30.7\%
BE4-2XUGI	A	0.8\%


	C	$37.0 \%$
	G	$21.6 \%$
	T	$40.6 \%$

TABLE 12 HEK3

HEK3		$\mathrm{C}_{5}$
BE3	A	2.23\%
	C	38.06\%
	G	12.77\%
	T	46.95\%
pmCDAI	A	0.21\%
	C	76.57\%
	G	0.12\%
	T	23.09\%
hAI D	A	0.28\%
	C	60.23\%
	G	1.03\%
	T	38.45\%
hAP0BEC3G	A	3.11\%
	C	33.89\%
	G	28.59\%
	T	34.41\%
BE4-N	A	2.6\%
	C	64.1\%
	G	13.5\%
	T	19.8\%
BE4-SSB	A	0.4\%
	C	92.9\%
	G	2.8\%
	T	3.9\%
BE4-(GGS) 3	A	1.3\%
	C	9.9\%
	G	7.9\%
	T	80.8\%
BE4-XTEN	A	2.3\%
	C	15.9\%
	G	12.2\%


	T	$69.6 \%$
BE4-32aa	A	$1.3 \%$
	C	$14.9 \%$
	G	$9.9 \%$
	T	$73.9 \%$
BE4-2XUGI	A	$0.6 \%$
	C	$23.4 \%$
	G	$3.8 \%$
	T	$72.2 \%$

TABLE 13 HEK4

HEK4		$\mathrm{C}_{5}$
BE3	A	8.40\%
	C	41.89\%
	G	24.54\%
	T	25.17\%
pmCDAI	A	0.50\%
	C	87.53\%
	G	0.01\%
	T	11.95\%
hAID	A	0.93\%
	C	71.32\%
	G	0.69\%
	T	27.06\%
hAP0BEC3G	A	0.12\%
	C	99.37\%
	G	0.35\%
	T	0.16\%
BE4-N	A	7.3\%
	C	56.6\%
	G	25.7\%
	T	10.3\%
BE4-SSB	A	2.1\%
	C	86.8\%
	G	5.8\%
	T	5.2\%


BE4-(GGS) $_{3}$	A	$6.7 \%$
	C	$13.0 \%$
	G	$19.8 \%$
	T	$60.5 \%$
BE4-XTEN	A	$7.5 \%$
	C	$19.7 \%$
	G	$25.4 \%$
	T	$47.4 \%$
BE4-32aa	A	$7.9 \%$
	C	$21.8 \%$
	G	$25.1 \%$
	T	$45.3 \%$
BE4-2XUGI	A	$3.4 \%$
	C	$22.2 \%$
	G	$12.4 \%$
	T	$62.0 \%$

TABLE 14 RNF2

RN F2		$\mathrm{C}_{6}$
BE3	A	$2.46 \%$
	C	$46.65 \%$
	G	$19.87 \%$
	T	$31.03 \%$
pmCDAI	A	$0.60 \%$
	C	$83.52 \%$
	G	$1.33 \%$
	T	$14.55 \%$
	A	$0.36 \%$
	C	$75.03 \%$
	G	$3.20 \%$
	T	$21.40 \%$
hAP0BEC3G	A	$0.10 \%$
	C	$86.60 \%$
	G	$3.70 \%$
	T	$9.59 \%$
BE4-N	A	$5.1 \%$
	C	$50.0 \%$


	G	28.8\%
	T	16.2\%
BE4-SSB	A	1.1\%
	C	89.9\%
	G	4.9\%
	T	4.1\%
BE4-(GGS) 3	A	2.0\%
	C	23.0\%
	G	14.0\%
	T	61.0\%
BE4-XTEN	A	2.6\%
	C	32.4\%
	G	16.0\%
	T	49.0\%
BE4-32aa	A	2.2\%
	C	29.2\%
	G	18.5\%
	T	50.0\%
BE4-2XUGI	A	0.7\%
	C	45.0\%
	G	6.5\%
	T	47.8\%

EXAMPLE 15: Base Editors Comprising a Cpfl Nickase that Cleaves the Targeted Strand.
[00535] As discussed above, nucleic acid programmable DNA binding proteins (napDNAbp) of any of the fusion proteins provided herein may be a Cpfl protein. In some embodiments, the Cpfl protein is a Cpfl nickase (nCpfl). Cpfl nickases, for example, a Cpfl nickase (R1225A in AsCpfl; and R1 138A in LbCpfl) that cleaves the non-target strand have been described in Yamano et al., "Crystal structure of Cpfl in complex with guide RNA and target DNA." Cell (165) 2016, p. 949-962; the entire contents of which is hereby incorporated by reference.

However, a nickase (e.g., a Cpfl nickase of a base editor protein) that cleaves the target strand is expected to improve base editing efficiency.
[00536] A fluorescent labeled DNA was used to identify a Cpfl mutant that preferentially nicks the target strand, rather than the non-target strand (see Figure 116). In Figure 116, the top
strand of DNA constructs $1-3$, is the non-target strand and the bottom strand is the target strand. An in vitro assay is carried out using wild-type LbCpfl, R836A (LbCpfl), and R1138A (LbCpfl). R836A (LbCpfl) appears to be a "crippled" nickase, meaning it cuts the target strand more efficiently than the non-target strand. As shown in Figure 117, the non-target strand is uncut, no fluorescent 350 piece is observed. After two hours, both strands are cut. Differing intensities suggest more target strands are cut than non-target strands.

## Establishing a Base Editing Window with AsCpl -BE3

[00537] Base editing proteins (e.g., BE3 (SpCas9-BE3)) having LbCpfl(R836A) or $\operatorname{AsCpfl}(\mathrm{R} 912 \mathrm{~A})$ as the napDNAbp were shown to edit bases at low efficiency $(0.1 \%$ to $0.4 \%)$. A base editor with a AsCpfl (R912A) napDNAbp more efficiently mutated a target C at EMX1, FANCF, HEK3 and HEK4 sites. The editing window of the constructs tested appears to be from the $7^{\text {th }}$ base to the $11^{\text {th }}$ base. The numbers are consistent with the trend with BE3 having highest numbers and self-defeating BE (i.e., APOBEC-AsCpfl(R1225A)-UGI, which cleaves the nontarget strand) having lower ones. See Figure 118 Positive control with Cas9-BE3 on EMX1: 5$6 \%$. Indel values for $\mathrm{AsCpfl}:>20 \%$. R912 in AsCpfl is conserved across many members of the Cpf 1 family. The corresponding residue in LbCpfl is R836, which is believed to be a "crippled" nickase when the R is mutated to an A .

## Optimization of Cpf1-BE (Linkers)

[00538] Indel data suggests that Cpfl can access DNA target sites. Thus, optimization of Cpfl base editing proteins has focusd on specific APOBEC proteins, linkers, and/or UGI domains. The construct shown in Figure 119 was tested, with varying linkers using both LbCpfl (R836A) and AsCpfl (R912A). In short, different linker sequences (i.e., XTEN, GGS, (GGS) ${ }_{3}$ (SEQ ID NO: 610), $(\text { GGS })_{5}\left(\right.$ SEQ ID NO: 610), and $(G G S)_{7}($ SEQ ID NO: 610)) between the APOBEC and Cpfl domain (e.g., AsCpfl or LbCpfl) were tested. See Figure 120. The constructs were tested for their ability to mutate the $\mathrm{C}_{8}$ residue of the HEK3 site, which is

TGCTTCTCsCAGCCCTGGCCTGG (SEQ ID NO: 592). Editing levels for base editing proteins with AsCpfl reached to over $1 \%$, while base editing proteins with LbCpfl showed a comparative reduction in base editing efficiency. As shown in Figure 121, linkers from a database maintained by the Centre of Integrative Bioinformatics VU did not show as significant
an improvement as GGS-type linkers for AsCpfl-BE3. The linkers shown in Figure 121 are shown below:

[00539]	PDB_code	Length (la)	Sequence
[00540]	lau7A_1	10	KRRTTISIAA (SEQ ID NO: 593)
[00541]	lclkA_-1	19	ALVFYREYIGPvLKQIKFKF (SEQ ID NO: 594)
[00542]	lc20A_1	14	LPIMAKSVLDLYEL (SEQ ID NO: 595)
[00543]	lee8A_-1	5	LLRLG (SEQ ID NO: 596)
[00544]	lflzA_ 1	15	TDKEINPVVKENIEW (SEQ ID NO: 597)
[00545]	$\underline{\operatorname{lign}} \mathrm{A}_{-} 1$	8	PPSIKRKF (SEQ ID NO: 598)
[00546]	ljmcA__1	9	LPTVQFDFT (SEQ ID NO: 599)
[00547]	1sfe_1	14	LPLDIRGTAFQQQV (SEQ ID NO: 600)
[00548]	2ezx_1	8	AYVVLGQF (SEQ ID NO: 601)
[00549]	2reb_1	8	INFYGELV (SEQ ID NO: 602)

## Optimization of Cpfl-BE (Orientations)

[00550] Cas9 has a stretch of amino acids between the C and N termini (see red square, Figure 123) while AsCpfl does not (see Figure 122). Moreover, AsCpfl has a shorter distance between the N and C termini. These observations indicate potential interference between APOBEC (on N terminus) and UGI (on C terminus) through which UGI may hinder APOBEC access to the nontarget strand. One solution is to move APOBEC and UGI onto the same terminus, either N or C . Accordingly, constructs having the architecture NLS-UGI-APOBEC-XTEN-AsCpfl; UGI-APOBEC-XTEN-AsCpfl-NLS; and AsCpfl -XTEN-APOBEC-NLS will be tested.

## Optimization of Cpfl-BE (Internal Truncation)

[00551] There is no known crystal structure of Cpfl in which the non-target strand is resolved (see Figure 124, cyan). It is believed that the editing window should lie within the red circle as shown in Figure 124. There is a helical region (see square in Figure 124) that may be obstructing APOBEC. This region comprises the amino acid sequence $\mathrm{K}(661) \mathrm{KTGDQK}(667)$ (SEQ ID NO: 603).
[00552] To test the whether the removal of two, four or six residues improves base editing efficiency, experiments were conducted with a base editor having a AsCpfl(R912A) napDNAbp, using HEK3 as the target site. Editing levels increase to approximately $2.6 \%$ - a 6 -fold increase from controll levels when T663 and D665 are deleted (see Table 7, below). The construct used in this experiment was APOBEC-XTEN-AsCpfl(R912A)-SGGS-UGI
Table 7

Deletions	Editing at C8	Editing at C9
T663, D665	$2.59 \%$	$1.29 \%$
K662, T663, D665, Q666	$0.15 \%$	$0.15 \%$
K661, K662, T663, D665,   Q666, K667	$0.22 \%$	$0.21 \%$

## REFERENCES

1. Humbert O, Davis L, Maizels N. Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol. 2012; 47(3):264-81. PMID: 22530743.
2. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012; 16(3-4):268-77. PMID: 22819644.
3. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 1l(9):636-46. PMID: 20717154.
4. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1):49-55. PMID: 23169466.
5. Charpentier E, Doudna JA. Biotechnology: Rewriting a genome. Nature. 2013; 495, (7439):50-1. PMID: 23467164.
6. Pan Y, Xia L, Li AS, Zhang X, Sirois P, Zhang J, Li K. Biological and biomedical applications of engineered nucleases. Mol Biotechnol. 2013; 55(1):54-62. PMID: 23089945. 7. De Souza, N. Primer: genome editing with engineered nucleases. Nat Methods. 2012; 9(1):27. PMID: 22312638.
7. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, CoUingwood TN. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 2008; 105(15):5809-14. PMID: 18359850.
8. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley

GQ, Lander ES. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999; 22(3):231-8. PMID: 10391209.
10. Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6): 1565-75. PMID: 11952905.
11. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013; 10(10):957-63. PMID: 24076990.
12. Jore MM, Lundgren M, van Duijin E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Shou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011; 18(5):529-36. PMID: 21460843.
13. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327(5962): 167-70. PMID: 20056882.
14. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482(7385):331-8. PMID: 22337052.
15. Gasiunas G, Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. 2013; 21(1 1):562-7. PMID: 24095303. 16. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA.

Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5): 1173-83. PMID: 23452860.
17. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013; 10(10):973-6. PMID: 23892895.
18. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8. PMID: 23907171.
19. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51. PMID: 23849981.
20. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013; 8(1 1):2180-96. PMID: 24136345.
21. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-6. PMID: 23287722.
22. Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. 1996; 273(5280): 1386-9. PMID: 8703073.
23. Tagalakis AD, Owen JS, Simons JP. Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. 2005; 71(2):140-4. PMID: 15791601. 24. Ray A, Langer M. Homologous recombination: ends as the means. Trends Plant Sci. 2002; 7(10):435-40. PMID 12399177.
25. Britt AB, May GD. Re-engineering plant gene targeting. Trends Plant Sci. 2003; 8(2):905. PMID: 12597876.
26. Vagner V, Ehrlich SD. Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. 1988; 170(9):3978-82. PMID: 3137211.
27. Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004; 32(12):3683-8. PMID: 15252152.
28. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007; 25(11): 1298-306. PMID: 17965707.
29. Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008; 9(6):229. PMID: 18598372.
30. Reynaud CA, Aoufouchi S, Faili A, Weill JC. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. 2003; 4(7):631-8.
31. Bhagwat AS. DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). 2004; 3(1):85-9. PMID: 14697763.
32. Navaratnam N, Sarwar R. An overview of cytidine deaminases. Int J Hematol. 2006; 83(3): 195-200. PMID: 16720547.
33. Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. 2008; 456(7218): 121-4. PMID: 18849968.
34. Chelico L, Pham P, Petruska J, Goodman MF. Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. 2009; 284(41). 27761-5. PMID: 19684020.
35. Pham P, Bransteitter R, Goodman MF. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. 2005; 44(8):2703-15. PMID 15723516.
36. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10): 1357-69. PMID: 23026637.
37. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005; 24(8): 1477-80. PMID: 15608678.
38. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironenko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Solomon H, Stephens P, Teaque J, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Reinhold W, Weinstein JN, Stratton MR, Futreal PA, Wooster R. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 2006; 5(11):2606-12. PMJX>: 17088437.
39. Cox, D.B., Piatt, R.J. \& Zhang, F. Therapeutic genome editing: prospects and challenges. Nature medicine 21, 121-131, doi:10.1038/nm. 3793 (2015).
40. Hilton, I.B.\& Gersbach, C.A.Enabling functional genomics with genome engineering. Genome researchlZ, 1442-1455, doi: 10.1101/gr. 190124. 115 (2015).
41. Sander, J.D.\& Joung, J.K.CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology 32, 347-355, doi: $10.1038 / n b t .2842$ (2014).
42. Maruyama, T.et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature biotechnology 33, 538542, doi:10.1038/nbt. 3190 (2015).
43. Chu, V.T.et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature biotechnology 33, 543-548, doi:10.1038/nbt. 3198 (2015).
44. Lin, S., Staahl, B.T., Alia, R. K. \& Doudna, J. A.Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766, doi:10.7554/eLife. 04766 (2014).
45. Cong, L.et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, doi:10.1126/science. 1231143 (2013).
46. Rong, Z., Zhu, S., Xu, Y.\& Fu, X. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein \& cell 5, 258-260, doi: 10. 1007/s 13238-014-0032-5 (2014).
47. Jinek, M.et al. A Programmable Dual-RNA-Guided DNA Endonuc lease in Adaptive Bacterial Immunity. Science 337, 816-821, doi: 10. 1126/science. 1225829 (2012).
48. Harris, R.S., Petersen-Mahrt, S.K.\& Neuberger, M.S.RNA Editing Enzyme APOBECl and Some of Its Homologs Can Act as DNA Mutators. Molecular Cell 10, 12471253 (2002).
49. Jinek, M.et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997, doi: 10.1 126/science. 1247997 (2014).
50. Schellenberger, V.et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nature biotechnology 27, 1186-1 190, doi:10.1038/nbt. 1588 (2009).
51. Saraconi, G., Severi, F., Sala, C , Mattiuz, G. \& Conticello, S. G. The RNA editing enzyme APOBECl induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome biology 15, 417- (2014).
52. Anders, C , Niewoehner, O., Duerst, A. \& Jinek, M. Structural basis of PAMdependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573, doi:10.1038/naturel3579 (2014).
53. Cong, L.et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
54. Tsai, S.Q.et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR- Cas nucleases. Nature biotechnology 33, 187-197, doi:10.1038/nbt. 3117 (2015).
55. Kunz, C , Saito, Y. \& Schar, P.DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cellular and molecular life sciences : CMLS 66, 1021-1038, doi: 10. 1007/sOOO 18-009- 8739-9 (2009).
56. D., M.C.et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701-708 (1995).
57. Caldecott, K. W. Single-strand break repair and genetic disease. Nature reviews. Genetics 9, 619-631, doi:10.1038/nrg2380(2008).
58. Fukui, K.DNA mismatch repair in eukaryotes and bacteria. Journal of nucleic acids 2010, doi:10.4061/2010/260512 (2010).
59. Gasiunas, G., Barrangou, R., Horvath, P. \& Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109, E2579-E2586, doi: 10. 1073/pnas. 1208507109 (2012).
60. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191, doi:10.1038/nature14299 (2015).
61. Kuscu, C , Arslan, S., Singh, R., Thorpe, J. \& Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature biotechnology 32, 677-683, doi: 10. 1038/nbt. 2916 (2014).
62. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature biotechnology 32, 670-676, doi: 10. 1038/nbt. 2889 (2014).
63. Beale, R.C.L.et al. Comparison of the Differential Context-dependence of DNA Deamination by APOBEC Enzymes: Correlation with Mutation Spectra in Vivo. Journal of Molecular Biology 337, 585-596, doi:10.1016/j.jmb.2004.01.046 (2004).
64. Kim, J., Basak, J. M. \& Holtzman, D.M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303, doi: 10. 1016/j.neuron.2009.06.026 (2009).
65. Liu, C.C , Kanekiyo, T., Xu, H. \& Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature reviews. Neurology 9, 106-118, doi:10.1038/nrneurol.2012.263 (2013).
66. Sjoblom, T.et al. The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science 314, 268-274, doi: 10. 1126/science. 1133427 (2006).
67. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400-404, doi: 10. 1038/naturel 1017 (2012).
68. Landrum, M.J.et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Research, doi:10.1093/nar/gkvl222 (2015).
69. Slaymaker, I. M.et al. Rationally engineered Cas9 nucleases with improved specificity. Science, doi:10.1126/science.aad5227 (2015).
70. Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J. A. \& Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nature chemical biology 11, 316-318, doi:10.1038/nchembio. 1793 (2015).
71. Zuris, J. A.et al. Cationic lipid-mediated delivery of proteins enables efficient proteinbased genome editing in vitro and in vivo. Nature biotechnology 33, 73-80, doi:10.1038/nbt. 3081 (2015).
72. Kleinstiver, B.P.et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 48 1-485, doi: 10. 1038/naturel 4592 (2015).
73. Pattanayak, V.et al. High-throughput profiling of off-target DNA cleavage reveals RNA- programmed Cas9 nuclease specificity. Nature Biotechnology 31, 839-843, doi:10.1038/nbt. 2673 (2013).
74. Shcherbakova, D.M.\& Verkhusha, V.V.Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods 10,751-754, doi:10.1038/nmeth. 2521 (2013).
75. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281-2308, doi:10.1038/nprot.2013.143 (2013).
76. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, doi:10.1126/science.aad8282 (2016).
77. Tsai, S. Q. et al. Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing. Nat Biotech 32, 569-576, doi:10.1038/nbt. 2908 (2014).
78. Lieber, M. R., Ma, Y., Pannicke, U. \& Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4, 712-720 (2003).
79. Heller, R.C. \& Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7, 932-943 (2006).
80. Pluciennik, A. et al. PCNA function in the activation and strand direction of MutLa endonuclease in mismatch repair. Proceedings of the National Academy of Sciences of the United States of America 107, 16066-16071, doi: 10. 1073/pnas. 1010662107 (2010).
81. Seripa, D. et al. The missing ApoE allele. Annals of human genetics 71, 496-500, doi: 10.1 111/j. 1469-1809.2006.00344.x (2007).
82. Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495, doi:10.1038/naturel6526 (2016).
83. Richardson, C.D., Ray, G. J., DeWitt, M. A., Curie, G. L. \& Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotech 34, 339-344, doi:10.1038/nbt. 3481 (2016).
84. Simonelli, V., Narciso, L., Dogliotti, E. \& Fortini, P. Base excision repair intermediates are mutagenic in mammalian cells. Nucleic acids research 33, 4404-4411, doi:10.1093/nar/gki749 (2005).
85. Barnes, D. E. \& Lindahl, T. Repair and Genetic Consequences of Endogenous DNA Base Damage in Mammalian Cells. Annual Review of Genetics 38, 445-476, doi:doi:10.1146/annurev.genet.38.072902.092448 (2004).

EXAMPLE 16: Improving DNA specificity and applicability of base editing through protein engineering and protein delivery
[00553] Base editing, a genome editing approach that enables the programmable conversion of one base pair into another without double-stranded DNA cleavage, excess stochastic insertions and deletions, or dependence on homology-directed repair was developed. The application of base editing is limited by off-target activity and reliance on intracellular DNA delivery. Here two advances are described that address these limitations. First, off-target base editing has been reduced by installing mutations into the third-generation base editor (BE3) to generate a highfidelity base editor (HF-BE3). Next, BE3 and HF-BE3 are purified and delivered as ribonucleoprotein (RNP) complexes into mammalian cells, establishing DNA-free base editing. RNP delivery of BE3 confers higher specificity even than plasmid transfection of HF-BE3, while maintaining comparable on-target editing levels. Finally, these advances are applied to deliver BE3 RNPs into both zebrafish embryos and the inner ear of live mice to achieve specific, DNAfree base editing in vivo.

## Introduction

[00554] Traditional genome editing agents introduce double-stranded DNA breaks (DSBs) as the first step of genome editing ${ }^{1-4}$. Cells respond to DSBs primarily through non-homologous end joining (NHEJ), resulting in stochastic insertions or deletions (indels) at the cleavage site ${ }^{1.5}$. To generate more precise changes in genomic DNA, homology-directed repair (HDR) can be used to replace the genomic DNA surrounding the cleavage site with that of an exogenously supplied DNA donor template ${ }^{6-8}$. Unfortunately, HDR is typically accompanied by an excess of indels resulting from competing NHEJ and is limited primarily to mitotic cells. In addition, most genome editing methods rely on delivery of exogenous plasmid or viral DNA into mammalian cells followed by intracellular expression of the agent ${ }^{9=12}$. These delivery methods result in
continuous, uncontrolled Cas 9 and sgRNA expression even after the on-target locus has been edited, increasing the opportunity for genome editing at off-target loci ${ }^{1,13}$.
[00555] Base editing, a different approach to genome editing that enables the direct, programmable, targeted conversion of a $\mathrm{C}: \mathrm{G}$ base pair to a T :A base pair, was recently described ${ }^{3,14}$. The third-generation base editor, BE3, contains in a single protein ( $i$ a catalytically impaired Cas9 that opens a small single-stranded DNA bubble at a guide RNAspecified locus, (ii) a tethered single-strand-specific cytidine deaminase that converts C to U within a window of approximately five nucleotides in the single-stranded DNA bubble, (iii) a uracil glycosylase inhibitor (UGI) that inhibits base excision repair, thereby improving the efficiency and product selectivity of base editing, and (iv) nickase activity to manipulate cellular mismatch repair into replacing the G-containing DNA strand. The combination of these components enables efficient and permanent C to T (or G to A ) conversion in mammalian cells with minimal indel formation. Since prefiously reported ${ }^{14}$, other researchers have confirmed the ability of this strategy and related approaches to facilitate Cas9-directed C to T conversion in mammalian cells ${ }^{15-17}$ and in plants ${ }^{18}$.
[00556] Here, two advances that greatly improve the DNA specificity of base editing and that allow base editing in vitro and in vivo without supplying exogenous DNA, which has been associated with a risk of recombination with the host genome and cytotoxicity, are described ${ }^{18,19}$. First, a mutant form of BE3 incorporating mutations known to decrease the DNA affinity of Cas $9^{20}$ that reduces off-target editing events with only a modest decrease in on-target editing activity is engineered. Next, it is revealed that lipid-mediated delivery of base editor proteins complexed with guide RNA results in even larger specificity enhancements with no apparent reduction in on-target base editing compared to plasmid DNA delivery. Delivery of base editors as RNPs typically reduces off-target editing to below measurable levels, even for a notoriously promiscuous guide RNA that targets a highly repetitive genomic DNA sequence, in cultured human and mouse cells. These advances enable highly specific, DNA-free in vivo base editing in mice and zebrafish to be demonstrated.

## Results

Engineering a high-fidelity base editor
[00557] Cas9 nucleases and their associated fusion constructs have been shown to bind and cleave DNA at off-target genomic loci ${ }^{21=24}$. Joung and coworkers developed HF-Cas9, a highfidelity SpCas9 variant containing four point mutations (N497A, R661A, Q695A, Q926A) that were designed to eliminate non-specific interactions between Cas9 and the phosphate backbone of the DNA target strand (Fig. 125A) ${ }^{20}$ consistent with the previous abrogation of non-specific DNA interactions in TALENs that greatly increased their DNA cleavage specificity ${ }^{25}$. Since base editors operate on the non-target strand within the single-stranded DNA bubble created by Cas9 ${ }^{14}$ it can be hypothesized that introducing these four point mutations from HF-Cas9 into BE3 to generate "HF-BE3" might reduce off-target base editing without altering its base conversion capabilities (Figs. 125A and 125C).
[00558] Plasmids encoding BE3 and HF-BE3 as His $_{6}$-tagged proteins were overexpressed in $E$. coli and purified first by nickel affinity chromatography and then by cation exchange chromatography (Figs. 126A-126B). Following extensive optimization of expression and purification conditions, BE3 and HF-BE3 protein can be routinely produced at a yield of $\sim 2 \mathrm{mg}$ per liter of culture media (Figs. 126A-126C).
[00559] The purified base editor proteins were used to compare base editing efficiency and the width of the editing window of HF-BE3 and BE3 biochemically. In vitro C to U conversion efficiencies were measured in a synthetic dsDNA 79-mer with a protospacer comprised of TC repeats. The target dsDNA ( 250 nM ) was incubated with BE3:sgRNA or HF-BE3:sgRNA (2 $\mu \mathrm{M})$ for 30 min at $37^{\circ} \mathrm{C}$. After incubation, the edited DNA was amplified using a uracil-tolerant polymerase and sequenced by high-throughput DNA sequencing (HTS). Comparable editing efficiencies and activity window widths were observed for HF-BE3 and BE3 in vitro (Fig. 125B). These findings indicate that introduction of the high-fidelity mutations into BE3 does not compromise inherent on-target base editing efficiency or change the width of the editing window of the resulting HF-BE3 protein in vitro.

## HF-BE3 enhances editing specificityfollowing DNA transfection

[00560] Next, base editing efficiencies, specificities, and editing window widths of BE3 and HF-BE3 were compared in mammalian cells following plasmid DNA transfection. Four wellstudied endogenous genomic loci (HEK293 site 3, FANCF, EMX1 and VEGFA site 2) were chosen to interrogate on- and off-target base editing in mammalian cells ${ }^{14,24}$. VEGFA site 2 is
highly repetitive, containing 14 Cs out of 20 protospacer nucleotides, and is associated with notoriously high rate of known off-target genome editing ${ }^{20,22,24,26}$. This site was chosen to be included because it poses a formidable specificity challenge. In contrast with most nucleasebased genome editing applications, base editing relies on the precise location of the protospacer to place the target nucleotide within the editing window and usually little or no flexibility in the choice of guide RNA is available. Therefore, the development of base editors with enhanced specificities even for highly repetitive, promiscuous sgRNA targets is crucial ${ }^{3,14}$.
[00561] The on-target locus and known off-target loci were amplified by PCR and analyzed by HTS following plasmid transfection ${ }^{24}$ with each of the four base editor: sgRNA pairs. On-target editing in HEK293T cells for these four endogenous genomic loci was slightly reduced by introduction of the HF mutations; editing averaged $29+5 \%$ with BE3, and $21+3 \%$ (mean $\pm$ s.e.m. for $\mathrm{n}=3$ biological replicates) for HF-BE3 (Figs. 127A-127D, 128A).
[00562] For each of the three standard, non-repetitive target sites (HEK293 site 3, FANCF, and EMX1), the three most frequently modified off-target loci that contain a C within the editing window from the off-target loci previously reported to be modified from treatment with Cas9 and the same guide RNA were examined (Table 15$)^{24}$. When cells were transfected with BE3 plasmid, C-^T conversion across the nine most frequently modified Cas9 off-target loci for HEK293 site 3, FANCF, and EMX1 averaged $1.1+0.3 \%$ (Figs. 127A-C; mean $\pm$ s.d. for $\mathrm{n}=3$ biological replicates). Installation of the HF mutations reduced the absolute level of mean offtarget editing by 37 -fold to $0.03+0.005 \%$, with only one instance of measureable off-target $\mathrm{C}-\wedge \mathrm{T}$ conversion (Fig. 127A; EMX1 C 5 at off-target 1).

Site	Sequence	SEQ ID NO	GUI DE-Seq count
i EMX1 on-target	GAGTQCGAGCAGAAGAAGAAGGG	480	4,521
i EMX1 off-target 1	\GAGTCTAAGCAGAAGAAGAAGAG	481	1,445
EMX1 off-target 2	\GAGGC ${ }_{5} \mathrm{C}_{6} \mathrm{GAGCAGAAGAAAGACGG}^{\text {a }}$	482	700
i EMX1 off-target 3	$\mathrm{GAGTC}_{5} \mathrm{C}_{6}$ TAGCAGGAGAAGAAGAG	483	390
HEK293 site 3 on-target	\ GGCC $\mathbf{4}_{\mathbf{5}} \mathbf{S}_{\mathbf{5}} \mathbf{A G A C T G A G C A C G T G A T G G}$	484	2,074
i HEK293 site 3 off-target 1	i $\mathrm{CACC}_{4} \mathrm{C}_{5} \mathrm{AGACTGAGCACGTGCTGG}^{\text {a }}$	485	327


j HEK293 site 3 off-target 2	\ $\mathrm{GACAC}_{5} \mathrm{AGACTGGGGCACGTGAGGG}^{\text {a }}$	486	306
1HEK293 site 3 off-target 3	$\$ AGCTC $_{5}$ AGACTGAGCAAGTGAGGG $^{\text {a }}$	487	136
iVEGFA site 2 on-target	$\mathrm{GAC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{TC}_{9} \mathrm{CioACCCCGCCTCC}^{2}$ jGG	488	540
VEGFA site 2 off-target 1	iCTAC $4_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{TC}_{9} \mathrm{CioACCCCGCCTCCG}$   G	489	1,925
iVEGFA site 2 off-target 2	$\mathrm{ATTC}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{ACCCCGCCTCAG}^{2}$	490	1,549
VEGFA site 2 off-target 3	1 $\mathrm{ACAC}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{CioACCCCGCCTCA}$ jGG	491	1,178
iVEGFA site 2 off-target 4	$\begin{aligned} & \mathrm{TGC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{CiOACCCCACCTCT}^{\text {GG }} \end{aligned}$	492	1,107
jFANCF on-target	\ GGAATC $_{6} \mathrm{C}_{7} \mathrm{C}_{8}$ TTC,,TGCAGCACCTGG	493	4,816
iFANCF off-target 1	\ GGAAC $_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}$ GTC,,TGCAGCACCAG jG	494	2,099
iFANCF off-target 2	$\backslash$ GGAGTC $_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{TCioC}^{2}$,,TACAGCACCAG G	495	524
jFANCF off-target 3	$\underset{j}{\mathfrak{j}} \frac{\mathrm{AGAGGC}}{6}-\mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \text { TC,,TGCAGCACCAG }$	496	150

Table 15: Protospacer and PAM sequences for the on- and off-target human genomic loci studied in this work. The off-target sites were chosen based on their GUIDE-Seq read count ${ }^{45}$. Cytosines within the editing window for a particular sgRNA are numbered. The PAM sequence is shown in bold. Protospacer bases in off-target loci that differ from their respective on-target loci have been underlined. For genomic sequences interrogated in murine samples, see Figure 132E.
[00563] To characterize HF-BE3 specificity on an extremely challenging site, BE3 and HFBE3 off-target activity when targeting the highly repetitive VEGFA site 2 locus was compared. BE3 treatment lead to an average of $15+5 \%$ editing of cytosines located in the activity windows of the four tested off-target sites associated with this sgRNA (all average values quoted in this paragraph represent mean $\pm$ s.d. for $\mathrm{n}=3$ biological replicates). In contrast, HF-BE3 lead to a 3fold reduction in absolute off-target editing (5.0+2.3\%) at the same off-target sites (Fig. 127D). When compared to transfection of BE3, HF-BE3 significantly (p $<0.05$, two-tailed Student's t test) reduced off-target editing at 27 of the 57 cytosines located at off-target loci (Table 16), while HF-BE3 treatment lead to a significant reduction (p < 0.05 two-tailed Student's t test) in on-target editing at only 3 of 16 the interrogated on-target cytosine residues.


Table 16: $P$-values for differences in base editing under different treatment conditions at all loci evaluated in this study. p-values were calculated using the Student's two tailed t-test as described
in the Materials and Methods. When the p -value indicated a significant difference ( $\mathrm{p}<0.05$ ), the corresponding entry has been highlighted.
[00564] In addition to considering the differences between absolute editing at off-target loci, the on-target:off-target editing specificity ratio was also calculated by dividing the observed ontarget efficiency by the off-target efficiency (Figs. 129A-129B). This metric takes into account any reduction in on-target editing associated with installation of the HF-mutations, and is useful for applications sensitive to both the efficiency and specificity of base editing. Off-target editing by HF-BE3 was below the detection limit of high-throughput sequencing for several off-target loci. For these cases, a conservative off-target editing efficiency equal to the upper limit of detection was assumed ( $0.025 \%$ C-^T conversion; see Methods). Based on this analysis, the average improvement in specificity ratio upon installation of the HF mutations across all 34 target cytosines examined herein was 19 -fold, when plasmid delivery of the two constructs was performed. These results collectively establish that for non-repetitive sites (Fig. 129A) as well as a highly repetitive site (Fig. 129B), HF-BE3 results in substantially enhanced base editing specificity with only a modest reduction in on-target editing efficiency compared to BE3.

## RNP delivery ofBE3 enables DNA-free base editing

[00565] Next, the ability of BE3 in DNA-free, RNP form to mediate base editing when directly delivered into cultured human cells was studied. It has recently been established that cationic lipid reagents can potently deliver negatively charged proteins or protein: nucleic acid complexes into mammalian cells including ribonucleoprotein (RNP) complexes and that RNP delivery can substantially reduce off-target genome editing ${ }^{27-29}$
[00566] The commercially available cationic lipid Lipofectamine 2000 was combined with either purified BE3 protein or HF-BE3 protein after pre-complexation with a guide RNA targeting the EMX1, HEK293 site 3, FANCF, or VEGFA site 2 locus and the resulting lipid:RNP complexes were incubated with HEK293T cells. After 72 h , genomic DNA was harvested and on-target and off-target base editing was analyzed by high-throughput DNA sequencing. As with all Cas9-based technologies, substantial variations were observed in editing efficiency at different genomic loci (Figs. 127 and 130). To display trends associated with in on-
target editing efficiency between different treatments, mean on-target base editing efficiencies were calculated at the four tested loci (Fig. 128A). Protein delivery of BE3 ( 200 nM ) lead to ontarget editing efficiencies comparable to those observed with plasmid transfection ( $26+4 \%$ vs. $29+5 \%$ respectively; mean $\pm$ s.e.m. for $n=3$ biological replicates; Fig. 128A).
[00567] In contrast, protein delivery of HF-BE3 reduced on-target editing compared to protein delivery of BE3 at the four genomic loci studied (average editing efficiency of $13+3 \%$ vs. $26+4 \%$, respectively; mean $\pm$ s.e.m. for $n=3$ biological replicates; Fig. 128A). Since HF-BE3 and BE3 have comparable editing efficiencies in a test tube (Fig. 125B) and editing is only slightly reduced when HF-BE3 is expressed from plasmids in HEK293T cells (Fig. 127A-D), it is tempting to speculate that the decreased efficiency of editing from HF-BE3 protein delivery may be a result of decreased HF-BE3 stability in mammalian cells. Lower stability could be offset by continual expression from a plasmid, but not following one-time protein delivery. This observation is consistent with a recent report of reduced on-target indel formation with purified HF-Cas9 compared to purified Cas9 when nucleofected into CD34+ hematopoietic stem and progenitor cells ${ }^{30}$. While this work was in review, Kim et al demonstrated RNP delivery of BE3 into mouse embryos using electroporation ${ }^{31}$. To the best of the inventors' knowledge, the present approach is the first DNA-free technique capable of generating precise changes to individual nucleotides in mammalian cells without electroporation, which has limited in vivo therapeutic relevance.

## RNP delivery of base editors greatly enhances DNA specificity

[00568] Importantly, while RNP delivery of BE3 and HF-BE3 led to substantial on-target base editing, no instances of measurable base editing ( $<0.025 \%$ ) were observed at any of the nine tested off-target loci associated with EMX1, FANCF and HEK293 site 3, (Figs. 130A-130C). In contrast, plasmid delivery of BE3 lead to an average of $1.1+0.3 \%$ (mean $\pm$ s.d. for $\mathrm{n}=3$ biological replicates) off-editing across all sequenced cytosines within the base editing activity window, and detectable off-target editing at 11 of 16 off-target cytosines located at these nine off-target loci (Figs. 127A-127D). At off-target loci of the three non-repetitive loci tested, BE3 protein delivery lead to a 26 -fold higher average specificity ratio than that of plasmid delivery (Fig. 127A). These results reveal that RNP delivery of base editors dramatically increases the DNA specificity of base editing.
[00569] Protein delivery of either BE3 or HF-BE3 also resulted in greatly improved base editing specificity at the highly promiscuous VEGFA site 2 locus compared to plasmid delivery of either BE3 or HF-BE3 (compare Figs. 127 and 130; see Table 16). Absolute frequencies of base editing at the off-target loci associated with this site were reduced upon protein delivery at least 10 -fold for both BE3 (plasmid delivery: $15+4 \%$ off-target editing; protein delivery: $1.3+0.4 \%$ off-target editing; all values in this paragraph represent mean $\pm$ s.d. for $\mathrm{n}=3$ biological replicates) and HF-BE3 (plasmid delivery: $5+2 \%$ off-target editing; protein delivery: $0.5+0.1 \%$ off-target editing). Across all four studied loci, base editing specificity ratios for on-target:offtarget editing increased an average of 66 -fold for protein delivery of BE3 compared with plasmid delivery of BE3 (Fig. 129). Collectively, these results reveal that for both repetitive and nonrepetitive target sites, RNP versus DNA delivery is a stronger determinant of base editing specificity than the presence or absence of the high-fidelity Cas 9 mutations.
[00570] Neither introduction of the HF mutations nor delivery method substantially altered the low indel rates associated with base editing. Indel frequencies at all on-target loci across all treatment conditions in this study remained low (typically $\leq 5 \%$; Fig. 131 A), and the editingdndel ratio remained higher in all cases tested (typically $\geq 10$-fold; Fig. 13 IB) than in previous studies using optimized HDR protocols ${ }^{30,32,33}$. For non-repetitive sgRNAs, very few indels were observed at off-target loci (Fig. 131C), although it is noted that plasmid delivery of BE3 generated up to $5 \%$ indels for off-target loci associated with VEGFA site 2 (Fig. 131C). [00571] Taken together, these results establish that protein delivery of base editors maintains on-target base editing efficiency and greatly enhances editing specificity relative to delivery of plasmid DNA.

## RNP delivery decouples on- and off-target editing

[00572] Given the striking enhancement of base editing specificity associated with protein delivery of BE3, it was investigated if this improvement was a result of a reduction in the total quantity of active genome editing agent delivered into the cell. Using the sgRNA targeting EMX1, a dose response study for plasmid (Fig. 128B) and protein delivery (Fig. 128C) was performed. To maximize transfection efficiency between treatment conditions, the volume of Lipofectamine 2000 was $1.5 \mu \mathrm{i}$, for all tests, and the base editor protein:sgRNA molar ratio was maintained at 1:1.1 for protein delivery. For plasmid delivery, a mass ratio of sgRNA
plasmid:BE3 plasmid of 1:3 (molar ratio -1:1) and $1.5 \mu \mathrm{i}$, of Lipofectamine 2000 were used. Off-target base editing was observed under all conditions tested for plasmid delivery (Fig. 128B), but virtually no off-target editing under all protein delivery conditions tested (Fig. 128C).
[00573] Linear regression analysis was performed to assess the relationship between on- and off-target editing for plasmid and protein delivery. For plasmid delivery, off-target editing was closely associated with on-target editing rates $\left(\mathrm{R}^{2}=0.95, p=0.0012\right.$ for non-zero slope, F -test), whereas there was no significant association between off-target and on-target editing using protein delivery ( $\mathrm{R}^{2}=0.078, p=0.59$ for non-zero slope, F-test).
[00574] These data indicate that protein delivery of base editors offers an inherent specificity advantage that is independent of dosage. Together with the previous observations ${ }^{29,34}$, these findings support a model in which the higher DNA specificity of base editing from protein delivery compared to DNA delivery arises from the ability of protein delivery to avoid extended exposure of the genome to base editors, thereby minimizing the opportunity of base editors to process off-target loci after on-target loci have already been modified.

## DNA-free base editing in zebrafish and mice

[00575] The above observations suggested the promise of protein delivery of BE3 to maintain on-target base editing while eliminating detectable off-target base editing. It was therefore tested whether protein delivery of BE3 could be used to generate specific point mutations in zebrafish by injecting BE3:sgRNA complexes targeting the tyrosinase locus into fertilized zebrafish embryos. Genomic DNA was harvested from the resultant zebrafish larvae 4 days post-injection and measured base editing and indel frequencies by high-throughput sequencing (Fig. 132A). Two of the three BE3:sgRNA complexes tested induced substantial point mutations in vivo (TYR1: $\mathrm{C}_{3} \rightarrow \mathrm{~T}_{3} 5.3+1.8 \%$, TYR2: $\mathrm{C}_{4} \rightarrow \mathrm{~T}_{4} 4.3+2.1 \%$; mean $\pm$ s.d. of $\mathrm{n}=3$ injected embryos; Fig. 132A). Sequences of zebrafish loci are listed in Table 17.

		Murine Samples from NH 3 R3 cell	
Sample Description	Y 2 Amplicon	Sample Description	1 1 $\quad 2 \quad 33$ Amplicon
Protein, BE3	2372566295609151593911 VEGFA On Target	Plasmid, el3	16641 102216 A6361 ${ }^{\text {a }}$ ( Target VEGFA (Mus)
Protelin, HF-BE3	3834480 389874 383467 VEGFA On Target	Plesmid, Hf-EE3	889330 P 126545 ) 100993 On Target VEGFA (Mus)
Plasmid, BE3	31521312808991 3356688 V VGFA On Target	Protein, BE3	88998\% 816971 51124, On Target VEGFA (Mus)
Plasmid, HF-BE3	196323 251965 3692011VEGFA On Target	Protein, HF-bE3	
Control		Control	18767 \% 38666 585s85:On Target VEGFA (Mus)
Prote in, BE3	192800 26472 2 24799 FANCF Off Target Site \#1	Plasmid, be3	174782 167504 1825655 CFD OH Target 1
Protein, HF-GE3	36383) 30007 ( 39193 FANCF Off Target Site \#1	Plasmid, Hf-8E3	167120:182520) 192389:CFD Off Target 1
Plasmid, EE 3	355800292557 222433FANCF Off Target Site \#1	Protein, $B$ E3	230568:212605 138144.CFD Off Target 1
Plasmic, Hf-ge3	40371	Protein, HF-BE3	228668 211457 183370.CFD Off Target 1
Control		Control	171738:191117 20879 CFD Off target 1
Protein, BE3	82978 124689 (83840 VEGFA Oft Target Site \#1	Plasmid, bez	$206475 ; 227332$ 2060893CFD off Target 2
Protein, HF-BE3		Plasmid, Hf-Be3	
Plasmid, 8 E3		Prote in, BE 3	21599592757542499693 CFD off Target 2
Plasmid, HF-BE3	1141876 98876 122353 VVEGA Oft Target Site \#1	Prote in, HF-BE3	$250918: 272063$ 241059\%CFD CH Target 2
Control	76854 90547 88271 Vegfa Off Target Site \#1	Control	193760.17595924696 flfD Off Target 2
Protein, BE3	14514 25515 19325 VegFa OH Target Site \#2	Plasmid, bez	603881126278 - 7328 \% CFD Off Target 3
Protein, HF-BE3	2467842436315311 VEGFA Off Target Site \#2	Plasmid, Hf-be3	89045 ; 128508) 5178 CFD Cff Target 3
Plasmid, BE3	16945519918810225 VEGFA OHt Ta rget Ste \#2	Protein, BE3	167195:330046) 11163 ${ }^{\text {c }}$ CFD OH Target 3
Plasmid, HF-BE3	12.200 14769 [17797 VEGFA Off Target Ste \#2	Protein, HF-BE3	_.32120:3093522. .10393.3 CFD Off Target 3
Control	8739813648 ) 78188 VEGFA Off Target Ste \#2	Control	83204:176939]. 5661 SCD Off Target 3
Protein, 8E3	179241116931739090 V=GFA Oft Ta ret Ste \#3	Plasmid, Be3	192846; 1137099 171078 ${ }^{\text {a }}$ CFD Off Target 4
Protein, HF-BE3		Plas mid, HF-BE3	205601:151434 188943\%CDD Off Target 4
Plasmid, BE3	2084768291370 155430 VEGFA Off Target Ste \#3	Protein, BE3	218194:18199332083983CFD Off Target 4
Plasmid, HF-BE3	1171741540333199152 V VGFA Off Target Ste \#3	Protein, HF-8E3	211966 148976 188888CFD Oft Target 4
Control	119263 U170436 1216866 VEGFA Off Target Ste \#3	Control	183933: 130318\} 197476 CFPD Off Target 4
Protein, BE3	2377.99\% 262947 \1853711 VEGFA Off Target Site \#4		Mouse. Cochlea Samples
Protein, HF-BE3	$3313253 \mathbf{3} 33699$ 244922 VEGFA Off Target Site \#4		Replicate
Plasmid, ${ }^{\text {e }}$ \%	$23309423303162^{234421} \mathbf{V E G F A}$ Off Target Site \#4	Sample Description	2 Amplicon
Plasmid, hf-be3	170958 ¢ 160091140693 VVEGFA Off Target Site \#4	Stria vascularies	37889:205706, 62091) ${ }^{\text {On Target (VEGFA) }}$
Contral	1586911148720 137270 VEGFA Off Target Site H4	Organ of Corti	148447:175004 29075 \% On Target (VEGFA)
Protein, BE3	286844 282374 43315 HEK3 On Target	Modiolus	188806:181382 612669 On Target (VEGFA)
Protein, HF-be3	493001.42576 .57690 HEK3 On Target	Uninjected control	228222:241979 272759:
Plasmid, BE3	55008555813 , 54310 HEK3 On Target	Stria vascularies	44457:244487, 4 446466:CFD Off Target 1
Plasmid, HF-be3	55199.11384 . 76596 HEK On Target	Organ of Corti	136335: 118318, 34747: 3 CFD off Target 1
Control	\%3741 428888 48524 Hek3 On Target	Modiolus	67176:209543/ 68699\% CFD Off target 1
Protein, BE3	104822:181782 (161090-HEK3 Off Target Site \# 1	Unirjected control	343100; 342717/379015\%CFD off Target 1
Protein, HF-GE3	20458011755611177303 HEK3 Off Target Site \# 1	stria vascularies	72962; 319883 2657933CFD off Target 2
Plasmid, 8 e3	178584152264206863 HEK3 Off Target Site \# 1	Organ of Corti	198456:131430, 605303 CFD Off Target 2
Plasmid, HF-BE3	1912974138425 160789 HEK3 OHT Target Site \# 1	Mociolus	
Control	19030319000611900516 Hex3 Off Target Site \# 1	Uninjected control	399138:3459665483920 CFD OH Target 2
Protein, BE3	$1460899 . .51113135015$ Hek3 off Target Site \# 2	Stria vascularies	8325: 80322) 142556: CFD off Target 3
Protein, Hf-bE3		Organ of Corti	81014. 45976 . . 1810.3 CFD Oft Target 3
Plasmid, BE3		Mociolus	9928. 75555 , 113419CDD OH Target 3
Plasmid, HF-BE3	371077 123642142562 Hek3 Oft Target Site \# 2	Uninjected control	399138:345965 483920 CFD Off Target 3
Control	130322 134545 141833 HEK3 Off Target S Ste \#2	Stria vascularies	$23219433977705^{540543} 3$ CFD Off Target 4
Protein, BE3	14505817153388161837 Heк3 Off Ta rget Site \# 3	Organ of Coti	313472 285302 176872 CFD Off Target 4
Protein, HF-BE3	2123371789938179887 Hek3 OH Target Site \#3	Modiolus	230105:371399 258142 CFD OH Target 4
Plasmid, BE3	186452 1665000 80441\} HEK3 Off Target Site \#3	Uninjected control	524503:637946]624709 ScF Off Target 4
Plasmid, HF-BE3			zebrafish samples...
Control			
Protein, BE3	419866 61678 678890 FAnCF On Target	Treated zebratisn	72355 ¢ 494988181061 TYR 1
Protein, HF-BE3	41057 \% 58850 86411 FANCF On Target	Scrambled sgRNA	107919: 98502 9 924298TVR 1
Plasmid, ${ }^{\text {E }}$ 3	39114 48875 70074 FANCF On Target	Treated zebratish	514341488014.41547 TYR 2
Plasmid, HF-BE3	41617 ¢566 38 75718 Fancf On Target	Scrambled sgrina	61466 [ 62374) 66765 TVR 2
control	68852 5.59422 31265 fancf on Target	Treated zebrafish	6487] 57247.758837 TY 3
Protein, BE3	113462 80529 (191344/)FANCF Off Target Site \# 1	Scrambled sgrina	64596: 71234 , 75624:TYR 3
Prote in, HF-gE3	2026621233981203024 FANCF Off Target Site \# 1	Mouse Cochl	lea Samples - treated with unrealated sgRNA
Plasmid, BE3 $^{\text {a }}$	208912202044 107234/FANCF Off Target Site \# 1		Sample
Plasmid, HF-gE3	8664941139899, 86807 FANCF Off Target Site 11		Stria, Contil/Modiolus Amplicon
Control	92255 723866 56661 FANCF Of Target Site \# 1		537459249767389274 On Target (VEGFA)
Protein, be3	96271117442 84374 $\quad$ AnCF Off Target Site \# 2		
Protein, HF-GE3	1056244102312 105343:FANCF Off Target Site \# 2		
Plasmid, BE3			
Plasmid, HF-EE3	308966. 697887.83184 F AnCF Off Target Site \# 2		
Control	99986/100344100659 FANCF Off Target Site \# 2		
Protein, BE3			
Protein, HF-BE3	71858875553		
Plasmicd, Be3	609800573600		
Plasmid, Hf-8E3	68316 34659 885718 FFANCF Off Target 5ite \#3		
Control	496855.57388 6 60418FFANCF Oft Target Ste \#3		
Protein, 8E3			
Protein, HF-BE3			
Plasmid, bez	$70817.8 .827364 .75706\}$ Em $\times 1$ On Target		
Plasmid, HF-BE3	770388 71123 \% 78511 EEM $\times 1$ On Target		
Control	62183 485574 68439jEM $\times 1$ On Target		
Protein, BE3	1659058257565 [1428888EMM 10 ttarget Site \# 1		
Protein, HF-BE3	1483396151300 130712\}EMX 10 ff Target Site \# 1		
Plasmid, BE3	1019501032261203004 EMX 1 Off Target Site \# 1		
Plasmid, HF-BE3	16796911751933 97010 EMX 10 Off Trget Site \# 1		
Control	1014761150435 [102327\}EMX 10 Of Target Ste \# 1		
Protein, BE3	13673821234381118711 EMX 10 Of Target Site \# 2		
Protein, HF-BE3	12341311261141109375.5 EmX 10 ff Target Site \# 2		
Plasmid, EE3	85576: 86600169592 EMX 1 Off Target Site \# 2		
Plas mid, HF-GE3	1403171445738137050 Emx 10 ff Target Site \# 2		
Control	84818:125139 85454)EMX 10 Off Target Site \#2		
Protein, BE3	11940. 36593 24946: M M 1 Off Target Site \#3		
Protein, HF-BE3			
Plasmid, BE3	324200. 21547 , 14659 EMX1 Off Target site \#3		
Plasmid, HF-EE3	31427. 16592 17385 EMX1 off Target Site \#3		
Control	17385\} 28128, 32717:EMX1 Off Target Site \#3		

Table 17: Number of HTS reads that align to the reference sequence and pass the quality filters described in Materials and Methods.
[00576] Finally, these developments were applied to achieve DNA-free, high-specificity base editing in mice. To maximize the likelihood of observing on- and off-target base editing in vivo, the highly repetitive sgRNA targeting VEGFA site 2 was used; conveniently, the murine and human genomes are identical at this target site.
[00577] Using cultured murine NIH/3T3 cells, it was confirmed that BE3 protein delivery yielded efficient on-target base editing at this locus $34+11 \%$ (Fig. 133A; all editing percentages in this paragraph represent mean $\pm$ s.d. for $\mathrm{n}=3$ biological replicates). The Cutting Frequency Determinant (CFD) algorithm ${ }^{29,34}$ was used to predict off-target loci in the mouse genome associated with the VEGFA site 2 sgRNA (Table 18). Using cultured NIH/3T3 cells, it was confirmed that two of the top four predicted off-target loci are indeed modified by plasmid delivery of BE3 in cultured murine cells (CFD off-target locus 1, 9+5\% editing; and CFD offtarget locus 4, 3+2\% editing; Fig. 133B-133E). Consistent with the results from human cells, protein delivery of BE3 reduced off-target editing to levels similar to that of negative controls (Figs. 133C and 133E). The mean base editing specificity ratio for CFD off-target loci 1 and 4 increased from $28+13$ for plasmid delivery of BE3 to $\geq 780+300$ for protein delivery of BE3 (values represent mean $\pm$ s.e.m.; $\mathrm{n}=3$ biological replicates).

Site	Sequence	SEQ ID   NO	CFD score	Description of locus
On-target	GACCCCCTCCACCCCGCCTCCGG	497		VEGFA site 2
Off-target 1	TCCCCCCTCCACCCCACCTCCGG	498	0.7857	intergenic:mmu-mir-21c-   Nrp1/Mir1903
Off-target 2	TGCCCACCTCACCCCGCCTCTGG	499	0.65	intron:Vipr1
Off-target 3	GCCCCTCCCAACCCCACCTCTGG	500	0.6323	intron:Nos1ap
Off-target 4	CACCCCCCTCACCCCGCCTCAGG	501	0.625	intergenic:Unc5b-mmu-mir-   6408

Table 18: Protospacer and PAM sequences for the predicted off-target loci in the mouse genome associated with the VEGFA site 2 sgRNA. CFD scores ${ }^{46}$ were calculated using CRISPOR ${ }^{47}$. Positions in the off-target protospacers that differ from the on-target sequence are underlined.
[00578] To establish DNA-free base editing in mice, BE3: sgRNA complexes were combined with Lipofectamine 2000 (Fig. 132B) and intracochlear injections were performed into mouse pups at P1-P2. Injected cochlear tissues were harvested 3-4 days post-injection and micro-
dissected into 5-7 samples per cochlear region. Control cochlea from uninjected mice were harvested simultaneously. Genomic DNA was extracted from the harvested tissue, amplified by qPCR to late-exponential phase, and subjected to high-throughput DNA sequencing to measure C-^T conversion. Although it is impossible to quantitate base editing efficiency among treated cells because it is not possible to retrieve DNA exclusively from cells exposed to base editor protein, unambiguous base editing was observed from tissue in three regions of the cochlea: the basal end of the organ of Corti, the stria vascularis and the modiolus (Figs. 132C-132D). No significant indel formation was detected in treated tissue samples (< $0.1 \%$ indels; Fig. 134B).
[00579] The percentage of cochlear cells containing target C-^T conversion (Fig. 132C) was significantly lower than that observed in treated NIH/3T3 cells in culture (Fig. 133A), consistent with the highly localized nature of lipid-based protein delivery and the inability to isolate DNA exclusively from cells exposed to base editor. Nonetheless, local delivery offers key advantages for accessible applications, including control over which cell types are edited, and ease of preparation and administration.
[00580] Finally, off-target editing following intracochlear injection of BE3:sgRNA:lipid complexes was analyzed. Analysis of all four predicted off-target loci, including the confirmed off-target sites CFD locus 1 and CFD locus 4, in genomic DNA from the cochlear tissue of mice injected with the BE3:VEGFA site 2 sgRNA:lipid complex revealed no detectable $\mathrm{C}-\wedge \mathrm{T}$ conversion or indel formation above that observed in untreated controls samples for any of the off-target loci tested (Fig. 134A).
[00581] Together, these in vivo base editing results establish a virus-free, DNA-free strategy for the precise conversion of individual nucleotides in the genomic DNA of animals with high DNA sequence specificity.

## Discussion

[00582] The strategies developed and implemented in this study expand the utility and applicability of base editing by removing or reducing off-target base editing and establishing a DNA-free delivery method that supports in vivo base editing. Protein delivery improves base editing specificity in human and murine cells compared with plasmid delivery of the same constructs (Figs. 137, 130, and 133), and enables specific base editing in zebrafish and in the mouse cochlea (Fig. 132).
[00583] A high-fidelity base editor was generated by installing into BE3 mutations known to enhance the DNA specificity of Cas $9^{20}$. The installation of these mutations into Cas9 was reported to result in undetectable indel formation at off target loci associated with non-repetitive sgRNAs, including the EMX1 locus interrogated here (Fig. 127A) ${ }^{20}$. The specificity enhancements observed in HF-BE3, while substantial, were more modest; HF-BE3 exhibited detectable off-target base editing at both repetitive and non-repetitive loci when delivered as plasmid DNA into mammalian cells (Figs. 127A, 127D, 133C, and 133E). It is tempting to speculate that this specificity enhancement difference may arise from the fact that base editing, unlike Cas9-mediated indel formation, does not require DNA cleavage but only necessitates DNA-binding and R-loop formation ${ }^{14}$, and some of the enhanced specificity of HF-Cas9 may arise from impaired DNA cleavage at already-bound off-target loci.
[00584] In a second attempt to reduce off-target base editing, it was demonstrated that RNP delivery of base editors leads to decoupling of on- and off- target editing (Fig. 128B-128C). RNP delivery ablated off-target editing at non-repetitive sites while maintaining on-target editing comparable to plasmid delivery (Fig. 130A-130C and 128A), and greatly reduced off-target editing even at the highly repetitive VEGFA site 2 (Fig. 130D). RNP delivery of base editors may be especially useful for in vivo editing applications in which cellular dosage is typically difficult to control or characterize.
[00585] RNP delivery of Cas9 coupled with delivery of a donor DNA template has previously been used to perform HDR-based genome editing in mammalian cells. These approaches, however, remain limited by low efficiency, cell-state dependence, and indel formation efficiencies typically exceeding those of desired HDR outcomes, especially for point mutation correction ${ }^{29,30,32,35}$ DNA-free base editing, in contrast, generates a substantial excess of edited product relative to stochastic indels both in vivo and in cells (Fig. 132A, 134A, and 134B). To the best of the inventors' knowledge, RNP delivery of base editors represents the first strategy for generating specific and precise modifications to genomic DNA without requiring exogenous DNA.

## Methods

## Cloning ofplasmids

[00586] The plasmids in this study were generated by USER cloning. Phusion U Hot Start polymerase (Thermo Fisher) was used to install point mutations and construct protein expression plasmids from previously reported constructs ${ }^{36}$. Protein sequences are listed in the Supplementary Information, and plasmids for expression of BE3 and HF-BE3 are available from Addgene.

## Expression and purification ofBE3 and HF-BE3

[00587] BL21 Star (DE3)-competent E. coli cells were transformed with plasmids encoding the bacterial codon optimized base editors with a His ${ }_{6}$ N-terminal purification tag. A single colony was grown overnight in Luria-Bertani (LB) broth containing $50 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ kanamycin at $37{ }^{\circ} \mathrm{C}$. The cells were diluted $1: 200$ into 2 L of the same media and grown at $37{ }^{\circ} \mathrm{C}$ until $\mathrm{OD}_{600}=0.70-$ 0.75. The cultures were incubated on ice for 60 min and protein expression was induced with 0.5 mM isopropyl -P-D-l-thiogalactopyranoside (IPTG, GoldBio). Expression was sustained for 1416 h with shaking at $18{ }^{\circ} \mathrm{C}$. The subsequent purification steps were carried out at $4^{\circ} \mathrm{C}$. Cells were collected by centrifugation at $6,000 g$ for 20 min and resuspended in cell collection buffer ( 100 mM tris(hydroxymethyl)-aminomethane (Tris)- $\mathrm{HCl}, \mathrm{pH} 8.0,1 \mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 5 mM tris(2-carboxyethyl)phosphine (TCEP; GoldBio), 0.4 mM phenylmethane sulfonyl fluoride (PMSF; Sigma Aldrich) and 1 cOmplete, EDTA-free protease inhibitor pellet (Roche) per 50 mL buffer used). Cells were lysed by sonication ( 6 min total, 3 s on, 3 s off) and the lysate cleared by centrifugation at $25,000 \quad g(20 \mathrm{~min})$.
[00588] The cleared lysate was incubated with His-Pur nickel nitriloacetic acid (nickel-NT A) resin ( 1 mL resin per litre of culture, Thermo Fisher) with rotation at $4{ }^{\circ} \mathrm{C}$ for $60-90 \mathrm{~min}$. The resin was washed with 20 column volumes of cell collection buffer before bound protein was eluted with elution buffer ( $(100 \mathrm{mM}$ tris(hydroxymethyl)-aminomethane (Tris)- $\mathrm{HCl}, \mathrm{pH} 8.0,0.5$ $\mathrm{M} \mathrm{NaCl}, 20 \%$ glycerol, 5 mM tris (2-carboxyethyl) phosphine (TCEP; GoldBio), 200 mM imidazole). The resulting protein fraction was further purified on a 5 mL Hi-Trap HP SP (GE Healthcare) cation exchange column using an Akta Pure FPLC. Protein-containing fractions were concentrated using a column with a $100,000 \mathrm{kDa}$ cutoff (Millipore) centrifuged at $3,000 \mathrm{~g}$ and the concentrated solution was sterile filtered through an $.22 \mu \mathrm{~m}$ PVDF membrane (Millipore).
[00589] After sterile filtration, proteins were quantified with Reducing Agent Compatible Bicinchoninic acid (BCA) assay (Pierce Biotechnology), snap-frozen in liquid nitrogen and stored in aliquots at $-80^{\circ} \mathrm{C}$. Sequences of expressed proteins are listed in Supplementary Note 2.

## In vitro transcription ofsgRNA

[00590] Linear DNA fragments containing the T7 RNA polymerase promoter sequence upstream of the desired 20 bp sgRNA protospacer and the sgRNA backbone were generated by PCR (Q5 Hot Start MasterMix, New England Biolabs) using primers as listed in the Supplementary Information and concentrated on minelute columns (Qiagen). sgRNA was transcribed with the HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs) at 16 ${ }^{\circ} \mathrm{C}$ for $14-16 \mathrm{~h}$ with $1 \mu \mathrm{~g}$ of linear template per $20 \mu \mathrm{i}$, reaction. sgRNA was purified using the MEGAClear Transcription Clean Up Kit (Thermo Fisher), according to the manufacturer's instructions. Purified sgRNAs were stored in aliquots at $-80^{\circ} \mathrm{C}$.

## In vitro deamination assays

[00591] Sequences of DNA oligonucleotides used as templates for the in vitro deamination assay are shown in Supplementary Note 3. All oligonucleotides were purchased from IDT. Single-stranded oligonucleotides synthesized with complementary sequences were combined (5 $\mu \mathrm{L}$ of a $100 \mu \mathrm{M}$ solution) in Tris buffer pH 8.0 and annealed by heating to $95^{\circ} \mathrm{C}$ for 5 min , followed by a gradual cooling to $37^{\circ} \mathrm{C}$ at a rate of $0.1^{\circ} \mathrm{C}$ second ${ }^{-1}$ to generate 79 base pair (bp) dsDNA substrates. Freshly thawed base-editor proteins ( $2 \mu \mathrm{M}$ final concentration in a $10 \mu \mathrm{~L}$ reaction volume) were complexed with the indicated $\operatorname{sgRNA}$ ( $2.2 \mu \mathrm{M}$ final concentration) in Reaction Buffer ( 20 mM HEPES $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{KC1}, 0.5 \mathrm{mM}$ DTT, 0.1 mM EDTA, 10 mM $\left.\mathrm{MgCl}_{2}\right)^{37}$ for five minutes at room temperature. Annealed dsDNA substrates were then added to a final concentration of 250 nM . The reaction proceeded for 30 min at $37^{\circ} \mathrm{C}$ before protein denaturation was performed by heating for 5 min at $99^{\circ} \mathrm{C}$. Addition of PB buffer (Qiagen, 100 $\mu \mathrm{L}$ ) and isopropanol ( $25 \mu \mathrm{~L}$ ) ensured protein was dissociated from the substrate DNA. DNA was purified with Minelute columns (Qiagen) and the resulting products amplified to the top of the linear range with 15 cycles of qPCR ( 12 ng input DNA, $50 \mu \mathrm{~L}$ reaction volume) using a U tolerant polymerase (Phusion U Hot Start, ThermoFisher) and primers as listed in the Supplementary Information. Amplified DNA was purified using RapidTip2 (Diffinity Genomics)
and barcoded with a second round of PCR ( 8 cycles, 5 ng input) before being prepared for sequencing on an Illumina MiSeq as described below.

## Purification and sequencing of genomic DNA

[00592] Genomic DNA was isolated using Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. For the first PCR, DNA was amplified to the top of the linear range using Q5 Hot Start DNA Polymerase (NEB), according to the manufacturer's instructions but with the addition of $3 \%$ DMSO and SYBR Gold Nucleic Acid Stain (Thermo Fisher). For all amplicons, the PCR protocol used was an initial heating step of 2 min at $98{ }^{\circ} \mathrm{C}$ followed by an optimized number of amplification cycles $\left(12 \mathrm{~s}\right.$ at $98^{\circ} \mathrm{C}, 25 \mathrm{~s}$ at $61^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $72{ }^{\circ} \mathrm{C}$. For zebrafish and for transfected cell samples, 30 ng of input DNA was used in a $50 \mu \mathrm{i}$, reaction, for cochlear samples 20 ng was used in a $25 \mu і ̈$, reaction. qPCR was performed to determine the optimal cycle number for each amplicon. Amplified DNA was purified using RapidTip2 (Diffinity Genomics) and barcoded with a further PCR (8 cycles, 5 ng input). The unique forward and reverse primers used in the first-round PCR contained a constant region 5' to the annealing region, (forward: 5'-
ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN-3' (SEQ ID NO: 502), reverse: 5'-TGGAGTTCAGACGTGTGCTCTTCCGATCT-3'(SEQ ID NO: 503)) which facilitated binding of barcoding primers to amplified DNA for a second-round PCR.
[00593] The second-round PCR used primers with three regions: a 5 ' constant region allowing the amplicon to bind to the Illumina flow cell (italicized), an 8-base barcoding region (X), and a $3^{\prime}$ constant region allowing the barcoding primer to bind to the first-round PCR amplicon (in bold). Examples of primer sequences are:
forward: 5'-
AATGATACGGCGACCACCGAGATCTACACXXXXXXXXACACTCTTTCССТАСАСGAC
-3' (SEQ ID NO: 504)
reverse: 5'-
CAAGCAGAAGACGGCATACGAGATXXXXXXXGTGACTGGAGTTCAGACGTGTGC
TCTTC -3' (SEQ ID NO: 505)
[00594] Sequencing adapters and dual-barcoding sequences are based on the TruSeq Indexing Adapters (Illumina). Barcoded samples were pooled and purified by gel extraction (Qiagen), and
then purified using Ampure beads (Beckman Coulter) before quantification using the Qubit dsDNA HS Kit (Thermo Fisher) and qPCR (KAPA BioSystems) according to the manufacturer's instructions. Sequencing of pooled samples was performed using a single-end read from 180-250 bases (depending on the amplicon size) on the MiSeq (Illumina) according to the manufacturer's instructions.
[00595] Sequences of oligonucleotides used for PCR amplification are shown in Supplementary Note 3. All oligonucleotides were obtained from IDT. The optimized number of PCR cycles for each amplicon in this study are as follows: VEGFA site 2 human genomic DNA (annealing temperature was $61^{\circ} \mathrm{C}$ for 25 seconds for all extension steps): on-target: 29 cycles, off-target \#1: 32 cycles, off-target \#2: 28 cycles, off-target \#3: 27 cycles, off-target \#4: 27 cycles, VEGFA site 2 murine genomic DNA: on-target: 31 cycles, off-targets \#1, \#2, \#3 and \#4: 31 cycles. HEK293 site 3: off-targets \#1: 29 cycles, off-target \#2: 28 cycles, off-target \#3: 28 cycles. FANCF off-target \#1: 29 cycles, off-target \#2: 28 cycles, off-target 3:28 cycles. EMX1 off-targets \#1, \#2 and \#3: 28 cycles. TYR1, TYR2 and TYR3 sgRNAs for amplification of zebrafish DNA: 32 cycles. Optimized protocols for the on-target amplification of the EMX1, FANCF, and HEK293 site 3 loci were followed as previously described ${ }^{14}$.

## Analysis and alignment of genomic DNA sequencing reads

[00596] Sequencing reads were analyzed as previously described ${ }^{14}$. In brief, sequencing reads were demultiplexed using MiSeq Reporter (Illumina), and individual FASTQ files were analyzed with a previously reported custom Matlab script ${ }^{14}$. Reads were aligned to the reference sequence using the Smith-Waterman algorithm. Base calls with Q-scores below 30 were replaced with a placeholder nucleotide ( N ). This quality threshold results in nucleotide frequencies with an expected error rate of 1 in 1,000 . Indel frequencies were quantified with a previously published custom Matlab script which counts indels which occurring in a 30 -base window around the nCas9 cleavage site and are a minimum of 2-base insertions or deletions ${ }^{14}$. Indels were defined as detectable if there was a significant difference (Student's two-tailed t -test, $p<0.05$ ) between indel formation in the treated sample and untreated control.
[00597] For one of the sequenced amplicons, CFD off-target \#3, associated with VEGFA site 2 $\operatorname{sgRNA}$ in the murine genome, it was not possible to accurately measure indel formation. The protospacer at this locus is directly preceded by 12 guanine bases, which makes PCR and high-
throughput sequencing of this site prone to random insertion or deletions; deletion rates as high as $20 \%$ of sequencing reads were observed in multiple independent untreated control samples. Since no significant base editing was detected at this off-target locus under any treatment conditions (Fig. 132 andl33), it is suspected that indel formation is also negligible at this locus. [00598] A phred.II Q30 score corresponds to an estimated $99.9 \%$ accuracy in basecalling ${ }^{38}$. A $0.1 \%$ probability of incorrect base calling at a given position corresponds to a lower limit for base calling of $0.1 / 4=0.025 \%$ if it is assumed base call errors are randomly distributed across the four bases. C-^T editing percentages that fell beneath this threshold were classified as undetectable. Spontaneous deamination ${ }^{39}$ or polymerase error during PCR can also introduce artefactual $\mathrm{C}-\wedge \mathrm{T}$ edits. In order to distinguish base editor-induced $\mathrm{C}-\wedge \mathrm{T}$ editing from artefactual C-^T editing rates, untreated control cells were sequenced for each amplicon and it was calculated whether the $\mathrm{C}-\wedge \mathrm{T}$ editing under a particular condition was statistically significant using the Student's two-tailed t -test with $p<0.05$ as the threshold. Off-target sites with statistically significant editing rates $>0.025 \%$ were considered measureable. The number of aligned and quality filtered reads for each sample has been included in Table 17.

## Statistical analyses of genomic DNA sequence alignments

[00599] Unless otherwise noted, mean values cited throughout the main text are representative of $n>3$ independent biological replicates and the mean $\pm$ standard deviation has been stated.
[00600] The statistical analysis of the high-throughput sequencing data displayed in Figs. 2 and 3 was performed by comparing on- and off-target editing percentages in treated samples to any editing measured in a negative control sample (untreated). The Student's two-tailed t test was used, and individual $/ \wedge$-values are shown in Table 16. ${ }^{*} p \leq 0.05$, ${ }^{* *} p \leq 0.01$ and $* * * p \leq 0.001$. When editing was below the detection limit $(0.025 \%)$, significance was not calculated; all untreated control samples showed undetectable editing.
[00601] For Fig. 128A, mean on-target base editing was calculated by averaging editing of cytosines in the base editing activity window ( $\mathrm{C}_{4}-\mathrm{C}_{8}$ for HEK293 site 3 and EMX1, $\mathrm{C}_{4}-\mathrm{C}_{9}$ for FANCF and VEGFA site 2).
[00602] To account for sgRNA-dependent differences in base editing activity, the a base editingdndel ratio was calculated (Fig. 130B). This ratio was generated by dividing the percentage of HTS reads with a C-^T conversion (averaged across the base editing window for
each site) by the percentage of HTS reads containing an indel. As described above, if the offtarget editing for a particular locus was below the limit of detection it was conservatively assumed the estimated upper bound of the detection method ( $0.025 \%$ ) for the purpose of calculating specificity ratios.

## Data analysis of in vitro edited DNA

[00603] Sequencing reads were automatically demultiplexed using MiSeq Reporter (Illumina.). Quality filtering was performed using the online package usegalaxy.org ${ }^{40}$. Individual bases with an Illumina quality score less than or equal to 30 were converted to the placeholder nucleotide ' N ' using FASTQ Groomer followed by FASTA Masker ${ }^{41}$. The resulting quality-filtered FASTQ files were subsequently analysed with a custom python script provided in Supplementary Note 1. Sequencing reads were scanned for exact matches to two 14-base sequences that flank both sides of the target DNA sequence. If no exact matches were found, the read was excluded from analysis. If both 14-base sequences were located and the length of the sequence between them was equal to the expected protospacer length ( 20 bases), the protospacer sequence found between the flanking regions was saved and the bases called by high-throughput sequencing at each site within the protospacer were tallied.

## Cell culture

[00604] Both HEK293T (ATCC CRL-3216) and NIH/3T3 (ATCC CRL- 1658) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with $10 \%$ (v/v) fetal bovine serum (FBS), at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{C} 0_{2}$. Cells were obtained from ATCC and were authenticated and verified to be free of mycoplasma by ATCC upon purchase.

## Plasmid transfection of base editors into HEK293T cells

[00605] HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) in antibiotic free medium and transfected at approximately $70 \%$ confluency. Unless otherwise noted, 750 ng of BE and 250 ng of sgRNA expression plasmids were transfected using $1.5 \mu \mathrm{ir}$ of Lipofectamine 2000 (Thermo Fisher) per well according to the manufacturer's protocol.

Protein transfection of base editors into HEK293T cells
[00606] HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) in $250 \mu$ ï , antibiotic free medium and transfected at approximately $70 \%$ confluency. Base editor protein and was incubated with 1.1X molar excess of the necessary sgRNA at room temperature for 5 min . The complex was then incubated with $1.5 \mu \mathrm{i}$, Lipofectamine 2000 (Thermo Fisher) and transfected according to the manufacturer's protocol for plasmid delivery. Unless otherwise noted, BE protein was added to a final concentration of 200 nM (based on a total well volume of $275 \mu \mathrm{~L}$ ).

## Plasmid transfection of base editors into NIH/3T3 cells

[00607] NIH/3T3 cells were seeded on 48-well collagen-coated BioCoat plates (Corning) in antibiotic-free DMEM medium and transfected at approximately $75 \%$ confluency. Unless otherwise noted, 600 ng of BE and 200 ng of sgRNA expression plasmids were transfected using $1.4 \mu \mathrm{~L}$ of Lipofectamine 3000 with $1 \mu \mathrm{~L}$ of P3000 reagent (Thermo Fisher) per well according to the manufacturer's protocol.

## Protein transfection of base editors into NIH/3T3 cells

[00608] NIH/3T3 cells were seeded on 48-well collagen-coated BioCoat plates (Corning) in antibiotic free DMEM medium and transfected at approximately $75 \%$ confluency. Base editor proteins were incubated with 1.1-fold molar excess of the indicated sgRNA at $25^{\circ} \mathrm{C}$ for 5 min . The complex was then incubated with $1.4 \mu \mathrm{~L}$ Lipofectamine 3000 (Thermo Fisher) and transfected according to the manufacturer's protocol for plasmid delivery. P3000 reagent was not used because its addition lead to protein precipitation and a reduction in base editing efficiency. Unless otherwise noted, BE protein was added to a final concentration of 400 nM (based on a total well volume of $275 \mu \mathrm{~L}$ ).

## Intracochlear delivery ofBE3 protein: guide RNA encapsulated in cationic lipid

[00609] All animal experiments were approved by the Institutional Animal Care and the Use Committee of the Massachusetts Eye and Ear Infirmary. Intracochlear delivery was performed in P1-P2 mice of a mixed genetic background as described previously ${ }^{42}$. Mice were anesthetized by lowering body temperature before the surgical procedure. A postauricular incision was made
near the right ear, and the bulla was lifted to expose the cochlea. BE3 protein ( $57.7 \mu \mathrm{M}$ ) was precomplexed with the sgRNA $(100 \mu \mathrm{M})$ in a 1:1.1 molar ratio and then mixed with Lipofectamine 2000 (Thermo Fisher) in a $1: 1$ volumetric ratio. The resulting solution (1.2-1.5 $\mu \mathrm{L}$ ) was injected with a glass pipette (end diameter, $5 \mu \eta$ ) through the cochlear capsule into scala media at the cochear basal turn that attached to a nanoliter micropump (WPI, UMP3 + Micro4 + NanoFil) at the rate of $250 \mathrm{~nL} \mathrm{~min}^{-1}$. After injection, the incision was closed and the mice were brought onto a heating pad to recover. After 3-4 days, the cochlea of mouse was dissected into the organ of Corti, stria vascularis, and modiolus. Each tissue was further micro-dissected into between 5 and 7 separate pieces and DNA extraction was performed separately for each sample, followed by high-throughput sequencing as described above. The data presented in Fig. 132 and Fig. 134 show sequencing data resulting from extraction of one micro-dissected sample for each cochlear region.

## Microinjection ofBE3 protein: guide RNA into zebrafish embryo

[00610] Zebrafish (Tuebingen strain) were maintained under standard conditions in compliance with internal regulatory review at Boston Children's Hospital. One-cell stage zebrafish embryos were injected with approximately 2 nL of BE3 protein pre-complexed with the appropriate sgRNA or an unrelated sgRNA control in a 1:1 molar ratio ( $4.5 \mu \mathrm{M}$ final concentration). Four days post-fertilization, DNA was extracted from larvae as previously described ${ }^{43}$ in 50 mM NaOH for 30 minutes at $95^{\circ} \mathrm{C}$ and the resulting solution was neutralized with Tris-HCl. Genomic DNA was quantified, amplified by PCR, and sequenced as described above.

## Protein gel analyses

[00611] All protein gels shown were precast 4-12\% polyacrylamide Bis-Tris Plus (Thermo Fisher). They were run in MOPS buffer (Thermo Fisher) at 180 V for 50 min . Samples were prepared for loading by heating to $99^{\circ} \mathrm{C}$ in 100 mM DTT and IX lithium dodecyl sulfate (LDS) Sample Buffer for denaturation (Thermo Fisher) for 10 min . Gels were stained using Instant Blue Protein Stain (Expedion) according to manufacturer's instructions.
[00612] For cell lysate analysis, 2 niL of post-induction overnight culture was pelleted at $15,000 g$ before lysis in $100 \mu \mathrm{i}$, B-PER (Thermo Fisher) according to the manufacturer's instructions.

## Data Availability

[00613] High-throughput sequencing data that support the findings of this study have been deposited in the NCBI Sequence Read Archive database under Accession Number SRP097884. Plasmids encoding HF-BE3 and BE3 for protein expression, as well as HF-BE3 for mammalian expression, are available from Addgene with Accession IDs 87439 (pCMV~HF-BE3). 87438 (pET42b-HF-BE3), 87437 (pET42b-BE3).

## References

1 Cox, D. B., Piatt, R. J. \& Zhang, F. Therapeutic genome editing: prospects and challenges. Nature medicine 21, 121-131, doi:10.1038/nm. 3793 (2015).
2 Doudna, J. A. \& Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096, doi: 10.1126/science. 1258096 (2014).
3 Komor, A.C , Badran, A.H.\& Liu, D. R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 168, 20-36, doi:10.1016/j.cell.2016.10.044 (2017).
4 Sander, J. D. \& Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology 32, 347-355, doi:10.1038/nbt. 2842 (2014).
5 Hilton, I. B. \& Gersbach, C. A. Enabling functional genomics with genome engineering. Genome Res 25, 1442-1455, doi: 10. 1101/gr. 190124.115 (2015).
6 Wyman, C. \& Kanaar, R. DNA double-strand break repair: all's well that ends well. Annual review of genetics 40, 363-383, doi: 10.1146/annurev.genet.40. 110405.090451 (2006).
7 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-2308, doi:10.1038/nprot.2013.143 (2013).
8 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, doi: 10. 1126/science. 1231143 (2013).
9 Bodles-Brakhop, A. M., Heller, R.\& Draghia-Akli, R. Electroporation for the Delivery of DNA-based Vaccines and Immunotherapeutics: Current Clinical Developments. Mol Ther 17, 585-592, doi:10.1038/mt.2009.5 (2009).
10 Kay, M. A., Glorioso, J. C. \& Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature medicine 7, 33-40, doi:Doi 10.1038/83324 (2001).

11 Midoux, P., Pichon, C , Yaouanc, J. J. \& Jaffres, P. A. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Brit J Pharmacol 157, 166-178, doi:10.1111/j.1476-5381.2009.00288.x (2009).

12 Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature biotechnology 32, 551-553, doi:10.1038/nbt0914-952d (2014).

13 Hu, J. H., Davis, K. M. \& Liu, D. R. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell chemical biology 23, 57-73, doi:10.1016/j.chembiol.2015. 12.009 (2016).
14 Komor, A. C , Kim, Y. B., Packer, M. S., Zuris, J. A. \& Liu, D. R. Programmable editing of a target base in genomic DNA without double- stranded DNA cleavage. Nature 533, 420-424, doi:10.1038/naturel7946 (2016).
15 Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature methods 13, 1036-1042, doi:10.1038/nmeth. 4038 (2016).
16 Ma, Y.et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature methods 13, 1029-1035, doi: 10.1038/nmeth. 4027 (2016).

17 Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729, doi:10.1126/science.aaf8729 (2016).
18 Li, J., Sun, Y., Du, J., Zhao, Y. \& Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant In Press, doi:10.1016/j.molp.2016.12.001 (2016).

19 Koyama, S., Ishii, K. J., Coban, C. \& Akira, S. Innate immune response to viral infection. Cytokine 43, 336-341, doi:10.1016/j.cyto.2008.07.009 (2008).
20 Kleinstiver, B.P.et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495, doi:10.1038/naturel6526 (2016).
21 Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology 31, 827-832, doi:10.1038/nbt. 2647 (2013).
22 Fu, Y.F.et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature biotechnology 31, 822-826, doi:10.1038/nbt. 2623 (2013).
23 Pattanayak, V.et al. High-throughput profiling of off-target DNA cleavage reveals RNAprogrammed Cas9 nuclease specificity. Nature biotechnology 31, 839-843, doi:10.1038/nbt. 2673 (2013).

24 Tsai, S. Q.et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature biotechnology 33, 187-197, doi:10.1038/nbt. 3117 (2015).
25 Guilinger, J. P.et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nature methods 11, 429-435, doi:10.1038/nmeth. 2845 (2014).
26 Singh, R., Kuscu, C , Quinlan, A., Qi, Y. J. \& Adli, M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic acids research 43, 677-683, doi:ARTN el 18
10.1093/nar/gkv575 (2015).

27 Liang, X. Q. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208, 44-53, doi:10.1016/j.jbiotec.2015.04.024 (2015).
28 Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 113, 2868-2873, doi: 10. 1073/pnas. 1520244113 (2016).
29 Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient proteinbased genome editing in vitro and in vivo. Nature biotechnology 33, 73-80,
doi:10.1038/nbt. 3081 (2015).

30 DeWitt, M. A. et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8, 360ral34,
doi:10.1126/scitranslmed.aaf9336 (2016).
31 Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nature biotechnology, doi:10.1038/nbt. 3816 (2017).
32 Richardson, C.D., Ray, G. J., DeWitt, M. A., Curie, G. L. \& Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature biotechnology 34, 339-344, doi:10.1038/nbt. 3481 (2016).
33 Lin, Y. C. et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nature communications 5, 4767, doi:10.1038/ncomms5767 (2014).
34 Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. \& Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 11, 316-318, doi:10.1038/Nchembio. 1793 (2015).
35 Lin, S., Staahl, B., Alia, R. K. \& Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, e04766, doi:10.7554/eLife. 04766 (2014).
36 Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize offtarget effects of CRISPR-Cas9. Nature biotechnology 34, 184-191, doi:10.1038/nbt. 3437 (2016).
37 Jinek, M. et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816-821, doi: 10. 1126/science. 1225829 (2012).
38 Ewing, B. \& Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8, 186-194 (1998).
39 Liu, M. \& Schatz, D. G. Balancing AID and DNA repair during somatic hypermutation. Trends in immunology 30, 173-181, doi:10.1016/j.it.2009.01.007 (2009).
40 Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research 44, W3-W10, doi:10.1093/nar/gkw343 (2016).
41 Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783-1785, doi:10.1093/bioinformatics/btq281 (2010).
$42 \mathrm{Hu}, \mathrm{L} . \mathrm{X}$. et al. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice. J Neurosci 36, 9479-9489, doi:10.1523/Jneurosci.2447-15.2016 (2016).

43 Meeker, N. D., Hutchinson, S. A., Ho, L. \& Trede, N. S. Method for isolation of PCRready genomic DNA from zebrafish tissues. Biotechniques 43, 610, 612, 614 (2007).
44 Zuris, J.A. et al. Cationic lipid-mediated delivery of proteins enables efficient proteinbased genome editing in vitro and in vivo. Nature biotechnology 33, 73-80 (2015).
45 Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature biotechnology 33, 187-197 (2015).
46 Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize offtarget effects of CRISPR-Cas9. Nature biotechnology 34, 184-191 (2016).
47 Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17, 148 (2016).

## Supplementary Information

## Supplementary Note 1: Python script used to analyze quality-filtered in vitro-edited DNA.

```
 from __future__ import print_function
 from future import division
 import Bio #This will import the BioPython suite
 from Bio import SeqIO #Necessary to read/write sequence handles
 from Bio.Seq import Seq
 import OS
 import collections
 import CSV
 inputfile = "please_specify_your_input_f ile_here_containing_f iltered_reads" #specify th
filenames that contain sequences
 filenames = []
 for file in os.listdir(inputf ile) :
 if file.endswith(".fastqsanger") :
 filenames. append(file)
 spacer = []
 list_of_filenames = []
 for file in filenames:
 site = {}
 output = open(file + ".txt", "w")
 list_of_filenames.append(file + ".txt") #allows calling of the txt files that come
 fastq files later
 for rec in SeqIO. parse(file, "fastq"):
 splitl=rec.seq.tostring().split("GTTCGCGGCGATCG") #14-
pair constant_region_bef ore_protospacer
 if len(splitl)>=2:
 split2=splitl [1].split ("TGGATCGCCTGGCA") #14-
pairc constant_region_after_protospacer
 site=split2[0]
 if len(site)==20:
 output.write(site + "\n")
 BASES = 'ATGCN '
 UNRECOGNIZED = 'X'
 BASE_SEPERATOR = dict(zip(BASES, ',", \\eta'))
 a_index = 0
 t_index = 1
 g_index = 2
 c_index = 3
 n_index = 4
 def get_counts_by_column(base, count, library):
 current_count = library [count]
 if base == 'A' :
 current_count[a_index] += 1
 elif base == 'T' :
 current_count[t_index] += 1
 elif base == 'G' :
 current_count[g_index] += 1
 elif base == 'C':
 current_count[c_index] += 1
 elif base == 'N':
 current_count[n_index] += 1
```

```
55. def dna_counts(list_of_sequences, sample):
 first_oligo = list_of_sequences[0]
 for i in range (len(first_oligo)) :
 sample. append ([0,0, 0,0,0])
 for j in range(len(first_oligo)):
 for i in range(len(list_of_sequences)):
 get_counts_by_column(list_of_sequences[i] [j], j, libname)
for file in list_of_filenames :
 spacer_list = open(file).read().splitlines()
 output2=[]
 dna_counts(spacer_list, output2)
 with open(file + ".csv", "wb") as f :
 writer = csv.writer(f)
 writer.writerows(output2)
```


## Supplementary Note 2: Sequences of proteins used in this study

## Protein sequence of expressed BE3

MGSSHHHHHHSSETGPVAVDPTLRRRI EPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGL RDLISSGVTIQIMTEQESGYCW RNFVNYSPSNEAHWPRYPHLWVRLYVLELYCI ILGLPPCLNILRRKQPQ LTFFTIALQSCHYQRLPPH ILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSK KFKVLGNTDRHSIKKNLIGALLFDSG ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL EESFLVEEDKKH ERHPIFGNIVDEVAYH EKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI EGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG EKKNGLFGNLIALSL GLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSA SMIKRYDEHHQDLTLLKALVRQQLPEKYKEI FFDQSKNGYAGYI DGGASQEEFYKFIKPILEKMDGTEELL VKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKI EKILTFRIPYYVG PLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE GMRKPAFLSG EQKKAIVDLLFKTNRKVTVKQLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKI IKDK DFLDNEENEDILEDIVLTLTLFEDREMI EERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLING IRDKQS GKTILDFLKSDG FANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKG ILQTVKVVDEL VKVMG RHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH PVENTQLQNEKLYLYYLQ NGRDMYVDQELDIN RLSDYDVDHIVPQSFLKDDSI DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQL LNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG KATAKYFFYSNIMNFFKTEITLANG EIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GGFSKESILPKRNSDKLIARKKDWDPKKYGG FDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSS FEKN PIDFLEAKGYKEVKKDLI IKLPKYSLFELENG RKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKL KGSPEDNEQKQLFVEQHKHYLDEI IEQISEFSKRVILADANLDKVLSAYNKH RDKPIREQAENIIHLFTLTNL GAPAAFKYFDTTI DRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGG DSGGSTNLSDIIEKETGKQLVIQE SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNG ENKIKMLSGGSPKK KRKV (SEQ ID NO: 185)

## Protein sequence of expressed HF-BE3

MGSSHHHHHHSSETGPVAVDPTLRRRI EPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNK HVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGL RDLISSGVTIQIMTEQESGYCW RNFVNYSPSNEAHWPRYPHLWVRLYVLELYCI ILGLPPCLNILRRKQPQ LTFFTIALQSCHYQRLPPH ILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSK KFKVLGNTDRHSIKKNLIGALLFDSG ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL

EESFLVEEDKKH ERH PIFGNIVDEVAYH EKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI EGDL NPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG EKKNGLFGNLIALSL GLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSA SMIKRYDEHHQDLTLLKALVRQQLPEKYKEI FFDQSKNGYAGYI DGGASQEEFYKFIKPILEKMDGTEELL VKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKI EKILTFRIPYYVG PLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE GMRKPAFLSG EQKKAIVDLLFKTNRKVTVKQLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKI IKDK DFLDNEENEDILEDIVLTLTLFEDREMI EERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGI RDKQS GKTILDFLKSDG FANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLH EHIANLAGSPAIKKGILQTVKVVDEL VKVMG RHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH PVENTQLQNEKLYLYYLQ NGRDMYVDQELDIN RLSDYDVDHIVPQSFLKDDSI DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQL LNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLI REVKVITLK SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG KATAKYFFYSNIMNFFKTEITLANG EIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT GG FSKESILPKRNSDKLIARKKDWDPKKYGG FDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG ITIMERSS FEKN PIDFLEAKGYKEVKKDLI IKLPKYSLFELENG RKRMLASAG ELQKGNELALPSKYVNFLYLASHYEKL KGSPEDNEQKQLFVEQHKHYLDEI IEQISEFSKRVILADANLDKVLSAYNKH RDKPIREQAENIIHLFTLTNL GAPAAFKYFDTTI DRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGG DSGGSTNLSDIIEKETGKQLVIQE SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNG ENKIKMLSGGSPKK KRKV (SEQ ID NO: 186)

Supplementary Note 3: Sequences of oligonucleotides used in the present study

Unpublished Primers used to amplify off target genomic DNA for HTS in human cells (SEQ ID NOS: 506-51 3)	
fwd_VEGFA_site2_off_target_1_human	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTCCTACAAGTAACAGTCCAAGAA
rev_VEGFA_site2_off_target_1_hu man	TGGAGTTCAGACGTGTGCTCTTCCGATCTTTCTGCAACTTAACTTACGTGAAA
fwd_VEGFA_site2_off_target_2_human	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNACCAAGCCCATTTGTCCAGG
rev_VEGFA_site2_off_target_2_human	TGGAGTTCAGACGTGTGCTCTTCCGATCTTCCTTCTTTTTGAGCTTTGGGC
fwd_VEGFA_site2_off_target_3_human	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTCCATACCAGCAGCAGTTCC
rev_VEGFA_site2_off_target_3_human	TGGAGTTCAGACGTGTGCTCTTCCGATCTCTCACCTCAGCTCCTGCAC
fwd_VEGFA_site2_off_target_4_human	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCCACTGATTCTACACCATGGT
rev_VEGFA_site2_off_target_4_hu man	TGGAGTTCAGACGTGTGCTCTTCCGATCTGGAGTTCCCAACCTTTTTGACA
Other primers (for off target sites associated with HEK_3, EMX1, FANCF) were previously published	

Primers used to amplify off target genomic DNA for HTS in murine cells (SEQ ID NOS: 514-521)

fwd_VEGFA_site2_off_target_1_murine	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTGGCTGGAGATTCAGAGACAC
rev_VEGFA_site2_off_target_1_murine	TGGAGTTCAGACGTGTGCTCTTCCGATCTCTGCCCCTTCTGACACACATAC
fwd_VEGFA_site2_off_target_2_murine	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNACCCCTCAAGGCTTGACATTTC
rev_VEGFA_site2_off_target_2_murine	TGGAGTTCAGACGTGTGCTCTTCCGATCTTGAAAAGTTGGGAGAGGGGATG
fwd_VEGFA_site2_off_target_3_murine	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTTTGTACCCCAGTCCCCTCATC
rev_VEGFA_site2_off_target_3_murine	TGGAGTTCAGACGTGTGCTCTTCCGATCTTGAAGTTACGGGGATGTCACTTG
fwd_VEGFA_site2_off_target_4_murine	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTTAACATCCAGTCTCCCAAACACA
rev_VEGFA_site2_off_target_4_murine	TGGAGTTCAGACGTGTGCTCTTCCGATCTACACACACACACTACTAGGACA

Primers used to amplify on target genomic DNA for HTS in murine cells (SEQ ID NOS: 522-523)
fwd_VEGFA_site2_on_target_murine
rev_VEGFA_site2_on_target_murine

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCGCTACTACGGAGCGAGAAG TGGAGTTCAGACGTGTGCTCTTCCGATCTACAGGGGCAAAGTGAGTGAC

Primers used for generating PCR products to serve as substrates for T7 transcription of sgRNAs (SEQ ID NOS: 524-529)
rev_sgRNA_T7: used in all cases
fwd_sg RNA_T7_E MX1
fwd_sgRNA_T7_FANCF

AAAAAAAGCACCGACTCGGTGCCAC

TAATACGACTCACTATAGGGAGTCCGAGCAGAAGAAGAAGTTTTAGAGCTAGAAATAGCA
TAATACGACTCACTATAGGGGAATCCCTTCTGCAGCACCGTTTTAGAGCTAGAAATAGCA

fwd_sgRNA_T7_HEK_site_3	TAATACGACTCACTATAGGGGCCCAGACTGAGCACGTGAGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_VEGFA_site_2	TAATACGACTCACTATAG GACCCCCTCCACCCCGCCTCGTTTTAGAGCTAGAAATAGCA
fwd_sgRNA_T7_TC_repeat_in_vitro	TAATACGACTCACTATAGGTCTCTCTCTCTCTCTCTCTCGTTTTAGAGCTAGAAATAGCA

Primers used for generating sgRNA transfection plasmids (SEQ ID NOS: 530-531)

The pFYF1320 plasmid was used as template as previously described (Komor et al). The sequence of other sgRNA plasmids was previously reported
rev_sgRNA_plasmid GGTGTTTCGTCCTTTCCACAAG
fwd_VEGFA_site_2 GACCCCCTCCACCCCGCCTCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC

Seguences of ssDNA substrates used in in vitro deaminase assays (SEQ ID NOS: 532-533) ACGTAAACGGCCACAAGTTCGCGGCGATCGTCTCTCTCTCTCTCTCTCTCTGGATCGCCTGGCATCTTC
fwd_TC_repeat_substrate TTCAAGGACG

CGTCCTTGAAGAAGATGCCAGGCGATCCAGAGAGAGAGAGAGAGAGAGACGATCGCCGCGAACTTGT
rev_TC_repeat_substrate GGCCGTTTACGT

Previously published primers used to amplify off target genomic DNA for HTS in human cells (SEQ ID NOS: 534-557)	
fwd_EMX1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCAGCTCAGCCTGAGTGTTGA
rev_EMX1_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCTCGTGGGTTTGTGGTTGC
fwd_FANCF_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCATTGCAGAGAGGCGTATCA
rev_FANCF_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGGGGTCCCAGGTGCTGAC
fwd_HEK293_site3_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNATGTGGGCTGCCTAGAAAGG
rev_HEK293_site3_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCCCAGCCAAACTTGTCAACC
fwd_EMX1_off1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAGTAGCCTCTTTCTCAATGTGC
rev_EMX1_off1_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGCTTTCACAAGGATGCAGTCT
fwd_EMX1_off2_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGAGCTAGACTCCGAGGGGA
rev_EMX1_off2_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTTCCTCGTCCTGCTCTCACTT
fwd_EMX1_off3_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAGAGGCTGAAGAGGAAGACCA
rev_EMX1_off3_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGGCCCAGCTGTGCATTCTAT
fwd_FANCF_off 1_HTS	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAACCCACTGAAGAAGCAGGG
rev_FANCF_off1_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTGGTGCTTAATCCGGCTCCAT
fwd_FANCF_off2_HTS	ACACTCTTTCCCTACACGACGCTCTTCCG ATCTNNNNTCCAGTGTTTCCATCCCG AA
rev_FANCF_off2_HTS	TGGAGTTCAGACGTGTGCTCTTCCGATCTCCTCTGACCTCCACAACTCT

fwd_FANCF_off3_HTS
rev_FANCF_off3_HTS
fwd_HEK293_site3_off1_HTS
rev_HEK293_site3_off1_HTS
fwd_HEK293_site3_off2_HTS
rev_HEK293_site3_off2_HTS
fwd_HEK293_site3_off3_HTS
rev_HEK293_site3_off3_HTS

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTGGGTACAGTTCTGCGTGT TGGAGTTCAGACGTGTGCTCTTCCGATCTTCACTCTGAGCATCGCCAAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTCCCCTGTTGACCTGGAGAA TGGAGTTCAGACGTGTGCTCTTCCGATCTCACTGTACTTGCCCTGACCA ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTTGGTGTTGACAGGGAGCAA

TGGAGTTCAGACGTGTGCTCTTCCGATCTCTGAGATGTGGGCAGAAGGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTGAGAGGGAACAGAAGGGCT TGGAGTTCAGACGTGTGCTCTTCCGATCTGTCCAAAGGCCCAAGAACCT

Primers used to amplify on target genomic DNA for HTS in zebrafish (SEQ ID NOS: 558-563)
fwd_TYR1_zebrafish ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTTCCCCCGAGTCTGCACCT
rev_TYR1_zebrafish TGGAGTTCAGACGTGTGCTCTTCCGATCTCGAACTTGCATTCGCCGCAA
fwd_TYR2_zebrafish ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTTCTGCCTTGGCATCGGGTG
rev_TYR2_zebrafish TGGAGTTCAGACGTGTGCTCTTCCGATCTCACCATACCGCCCCTAGAACTAACATTC
fwd_TYR3_zebrafish ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNACAACTGCTTTCCATGGTGTGT
rev_TYR3_zebrafish TGGAGTTCAGACGTGTGCTCTTCCGATCTTCCCAGGGCTTTCGTGGAGA

Site	Sequence	SEQ ID NO
TYR1	GTC $_{3}$ AGGTC $_{8}$ GAGGGTTCTGTCAGG	564
TYR2	CTTC $_{4} \mathrm{C}_{5}$ AGGATGAGAACACAGAGG	565
TYR3	CAAC $_{4} \mathrm{C}_{5}$ AC $_{7}$ TGCTCAAAGATGCTGG	566

Supplementary Table 1. Protospacer and PAM sequences for the zebrafish genomic loci studied in this work.

## EXAMPLE 17: C:G-to-T:A Base Editors with Higher Efficiency and Product Purity

[00614] Base editing is the programmable conversion of target $\mathrm{C}: \mathrm{G}$ base pairs to T :A base pairs without inducing double-stranded DNA breaks or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases (1). The third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms (2-13). The product distribution of base editing-the frequency with which
the target $\mathrm{C}: \mathrm{G}$ base pair is converted to mixtures of undesired byproducts, along with the desired T:A product—varies in a target site-dependent manner (2, 3, 6-8). Here we characterize determinants of base editing outcomes in human cells, and establish that the formation of undesired products is dependent on uracil N -glycosylase (UNG), and is more likely to occur at target sites containing only a single C within the base editing activity window. The constructs CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences, were engineered. Additionally, a fourth-generation S. pyogenes Cas9-derived base editor (BE4) that more efficiently blocks access of UNG to base-edited intermediates was also engineered. Compared with BE3, BE4 increases by approximately $50 \%$ the efficiency of $\mathrm{C}: \mathrm{G}$ to $\mathrm{T}: \mathrm{A}$ base editing, while halving the frequency of undesired byproducts. These improvements were also applied to yield a $S$. aureus Cas9-derived BE4 (SaBE4), which is substantially smaller than BE4 and has an alternative targeting scope.

## Introduction

[00615] Traditional genome editing methods introduce a double-stranded DNA break (DSB) at a genomic target locus (14). The cellular response to a DSB lesion primarily proceeds through nonhomologous end joining (NHEJ) and related processes (15). Although NHEJ usually rejoins the two ends flanking the DSB, under typical genome editing conditions DSBs are continuously reintroduced, eventually resulting in the accumulation of insertions and deletions (indels) or translocations at the site of the DSB and disruption of the corresponding genomic locus (16). Actively dividing cells can also respond to DSBs by initiating homology-directed repair (HDR) in the presence of a donor DNA template containing homology to the regions surrounding the DSB, which allows researchers to more precisely and predictably manipulate genomes than is possible through NHEJ (17). HDR-dependent genome editing is limited by low efficiency arising from competition with NHEJ outcomes, and from the dependence of HDR on mitosis (18).
[00616] The development of base editing, which enables the direct, irreversible conversion of a C:G base pair to a T:A base pair in a programmable manner without requiring HDR or the introduction of a DSB, has been reported (1). Base editors consist of a single-stranded DNAspecific cytidine deaminase enzyme tethered to a catalytically impaired Cas9 protein and a base excision repair inhibitor ( $1,4,9,10$ ). The Cas9 variant binds a genomic locus of interest, programmed by a corresponding guide RNA. Formation of the protein :RNA:DNA ternary "Rloop" complex (19) exposes a small ( $\sim 5-n t$ ) window of single-stranded DNA that serves as a
substrate for the tethered cytidine deaminase enzyme. Any cytidines within this window are hydrolytically deaminated to uracils, resulting in G:U intermediates.
[00617] Base excision repair (BER) is the cell's primary response to G:U mismatches and is initiated by excision of the uracil by uracil N -glycosylase (UNG)(20). In an effort to protect the edited G:U intermediate from excision by UNG, an 83-amino acid uracil glycosylase inhibitor (UGI) was fused directly to the C-terminus of catalytically dead Cas9 (dCas9) (1). To manipulate cellular DNA mismatch repair systems into preferentially replacing the G in the $\mathrm{G}: \mathrm{U}$ mismatch with an A, the Ala 840 amino acid in dCas9 was reverted to His, enabling the Cas9 protein to nick the DNA strand opposite the newly formed uracil, resulting in much more efficient conversion of the $\mathrm{G}: \mathrm{U}$ intermediate to desired $\mathrm{A}: \mathrm{U}$ and $\mathrm{A}: T$ products (1). Combining these two engineering efforts resulted in BE3, a single protein consisting of a three-part fusion of the APOBEC1 cytidine deaminase enzyme tethered through a 16-amino acid linker to S.pyogenes dCas $9(\mathrm{~A} 840 \mathrm{H})$, which is covalently linked to UGI through a 4 -amino acid linker(1). BE3 and related base editors have now been employed for a wide variety of applications including plant genome editing, in vivo mammalian genome editing, targeted mutagenesis, and knockout studies (2-13). The scope of base editing has been recenelty expanded by reporting BE3 variants with altered PAM requirements (4), narrowed editing windows (4), reduced off-target editing (10), and small molecule dependence (21).
[00618] At some loci, base editors such as BE3 give rise to undesired byproducts in which the target C:G base pair is converted into a G:C or A:T base pair, rather than the desired T:A product ( $2,3,6-8$ ). Here we illuminate determinants of base editing product purity, and establish that UNG activity is required for the formation of undesired byproducts. It has been determined that blocking UNG access to the uracil intermediate is especially crucial for target loci in which a single C is within the editing window in order to minimize undesired products. Fourth-generation base editors, BE4 and SaBE4, that perform base editing with higher efficiency and greatly improved product purity compared to previously described base editors including BE3 were engineered.

## Results

UNG activity is requiredfor byproductformation
[00619] Undesired base editing byproducts may arise during base excision repair due to the formation and error-prone resolution of abasic sites within the uracil-containing DNA strand. To
determine if the product purity of base editing in cells lacking uracile N -glycosylase (UNG) improves, HAPl cells (a haploid human cell line) and HAPl UNG ${ }^{-}$cells were nucelofected with plasmids encoding BE3 and sgRNAs targeting the EMX1, FANCF, HEK2, HEK3, HEK4, or $R N F 2$ loci (see Figure 135B for target sequences). Three days post-nucleofection, genomic DNA was extracted and the target loci were amplified by PCR and analyzed by high-throughput DNA sequencing (HTS). Base editing product purity is defined as the percent of edited sequencing reads (reads in which the target C has been converted to $\mathrm{A}, \mathrm{G}$, or T ) in which the target C is edited to a T. The base editing product purity of BE3-treated HAPl cells averaged 68 $\pm 6 \%$ (mean $\pm$ S.D. for $n=3$ biological replicates) across 12 target Cs in the six loci. In HAPl UNG $^{-}$cells, all 12 target Cs tested were base edited with product purities $>98 \%$ (Figure 135A). In addition, indel frequencies at all six tested loci decreased 7 - to 100 -fold upon UNG knockout (Figure 135C). These data strongly implicate UNG activity as necessary for undesired product formation during base editing, consistent with a model in which abasic site formation and subsequent base excision repair with error-prone polymerases leads to randomization of the target nucleotide and occasional strand breaks that result in indels.

## Targets with multiple editable Cs exhibit higherproduct purity

[00620] Base editing efficiency by BE3 can be lower for some (but not all) target Cs that are immediately downstream of a $G(1)$, consistent with the known sequence preference of APOBEC1 (22) (Figure 136A). In an effort to efficiently edit such targets, BE3 variants in which replaced the APOBEC1 deaminase was replaced with CDA1 (to generate CDA1-BE3), AID (to generate AID-BE3), or APOBEC3G (to generate APOBEC3G-BE3), three singlestranded DNA-specific cytidine deaminase enzymes with different sequence preferences, were generated (23). HEK293T cells were transfected with plasmids encoding these BE3 variants and sgRNAs targeting the EMX1, FANCF, HEK2, HEK3, HEK4, or RNF2 loci. Three days posttransfection, genomic DNA was extracted and the target loci were amplified by PCR and assessed for base editing using HTS. More efficient editing of target Cs that immediately follow a G was observed with CDA1-BE3 and AID-BE3 compared to BE3 (Figure 136A, Figures 140A-D, and Figures 146-151). In general, CDA1-BE3 and AID-BE3 exhibited lower editing efficiencies than BE3 at target Cs that do not follow a G (Figures 140A-D). In contrast, APOBEC3G-BE3 exhibited unpredictable sequence preferences, with overall lower yields of C-
to-T editing compared to BE3. These findings suggest that CDA1-BE3 and AID-BE3 may offer higher editing efficiencies over BE3 for some target $5^{\prime}$-GC-3' sequences.
[00621] While analyzing these data, it was noted that the product purities of CDA1-BE3 and AID-BE3 were typically higher than those of BE3 at those sites for which CDA1-BE3 and AIDBE3 edited more Cs than BE3 (Figures 136A-D). For example, at the HEK4 locus, BE3 edits only a single C efficiently (the C not preceded by a G) but both CDA1-BE3 and AID-BE3 edit three Cs (Figures 140A-C). The product purity of BE3 at this locus is $50 \pm 7 \%$ (mean $\pm$ S.D. for $\mathrm{n}=3$ biological replicates), while the product purity of CDA1-BE3 and AID-BE3 are $97 \pm 2 \%$ and $93 \pm 2 \%$, respectively. Moreover, $E M X l$ and $F A N C F$, edited by BE3 with product purities of $84 \pm 3 \%$ and $91 \pm 2 \%$, respectively, contain multiple Cs that are edited with comparable efficiency (Figure S2), while HEK2 and RNF2, edited by BE3 with much lower product purities of $28 \pm 3 \%$ and $64 \pm 3 \%$, respectively, contain multiple Cs that are edited with unequal efficiencies (Figures 141A-C). CDA1-BE3 and AID-BE3, which edit both Cs within the HEK2 locus with comparable efficiencies, exhibit much higher product purities at this locus ( $85 \pm 5 \%$ and $81 \pm 4 \%$, respectively) (Figures 136A-D and Figure 140C). The possibility that at the $H E K 2$ and RNF2 sites the multiple Cs are initially converted to Us by BE3 with comparable efficiency and then processed with different efficiencies by DNA repair systems was ruled out. Given this, similar product distributions would be expected when these sites were treated with BE3 versus CDA1-BE3 or AID-BE3, rather than the different product distributions observed (Figure 136B and Figures 146-151). Instead, an isolated G:U may be more readily processed by UNG than clusters of G:U lesions. It is possible that the processivity of the cytidine deaminase domain in BE3 $(1,24)$ may increase the residence time of BE3 at loci containing multiple editable Cs, thereby blocking access by UNG more effectively than at loci containing a single editable C.
[00622] The relationship between product purity, the number of edited Cs in individual sequencing reads, and UNG activity was further analyzed. To reveal the fate of base edited DNA in the absence of explicit UNG inhibition, the UGI component of BE3 was removed to generate BE3B. HEK293T cells were transfected with plasmids encoding BE3 or BE3B and sgRNAs targeting the EMXl, FANCF, HEK2, HEK3, HEK4, or RNF2 loci. As expected given the role of UNG in diversifying base editing outcomes established above, the product purities at all target

Cs greatly decreased in BE3B-treated DNA compared with BE3-treated DNA, with the fraction of editing products containing non-Ts increasing by an average of $\mathbf{1 . 8} \pm \mathbf{0} .4$-fold (Figure 142B). [00623] Individual DNA sequencing reads from HEK293T cells treated with sgRNAs targeting the multi-C sites $H E K 2, H E K 3$, and $R N F 2$ and either BE3 or BE3B were analyzed. For each site, the primary target C was designated as the nucleotide modified most efficiently. Across all three sites, an average of $\mathbf{8 0} \pm \mathbf{1 0 \%}$ of sequencing reads that contained an undesired C to non-T edit of the primary target $C$ exhibited only that single base editing event (Figures 142A-D and Figure 143). In contrast, across the same three multi-C sites, a much lower average of $32 \pm 4 \%$ of sequencing reads containing a clean C-to-T edit of the primary target C exhibited only that single clean base editing event (Figures 142A-D and Figure 143). In addition, the distribution of products for BE3B-treated HEK4 DNA, a site that contains only one C within the editing window, roughly follows the ratio of 1:3:1 for $A: G: T$ (Figure 143D). These observations collectively indicate that when a single cytidine in a given target is converted to $U$ in the absence of UGI, it is processed efficiently by UNG-initiated BER to give a mixture of products.
[00624] These data are consistent with a model in which clustered $\mathrm{G}: \mathrm{U}$ mismatches are processed differently than isolated $\mathrm{G}: \mathrm{U}$ mismatches, and are more likely to produce clean C -to-T edits. When only a single C-to-T editing event is desired, the above observations suggest that UNG inhibition is critical to minimize undesired byproducts. However, when performing targeted random mutagenesis using dCas9-deaminase fusions, such as with TAM(8) and CRISPR-X(2), the above observations suggest that target sites with only a single editable C will maximize product mixtures.

## Optimization ofBE3 architecturefor improvedproduct purity

[00625] The UGI component of BE3 was replaced with a single-stranded DNA binding (SSB) protein to yield SSB-BE3, such that SSB may block the uracil-containing ssDNA portion of the R-loop from being accessed by UNG. Large decreases in base editing efficiency by SSB-BE3 were observed, with all seven Cs across the four sites exhibiting an average of only $\mathbf{1 . 9} \pm \mathbf{0 . 5 \%}$ C-to-T conversion (Figure 137C).
[00626] Since the relative positioning of APOBEC, UGI, and UNG during steps that determine base editing outcomes are not known, UGI was relocated to the N-terminus of BE3 (N-UGIBE3) in an effort to improve UNG inhibition. Moving UGI to the N-terminus of BE3 resulted in
an average decrease in C-to-T editing percentages across all seven tested target Cs of $2.3 \pm 0.6$ fold compared to BE3 (Figure 137C), and a decrease in overall product purity at all four sites compared to BE3 averaging $2.2 \pm 0.5$-fold (Figure 137B).
[00627] In contrast, appending an additional copy of UGI to the C-terminus of BE3 (BE32 xUGI ) resulted in large increases in product purities relative to BE3 and C-to-T editing percentages comparable to those of BE3. Non-T editing products decreased an average of $2.2 \pm$ 0.8 -fold across the four loci tested (Figure 137B). These observations suggest that addition of a second copy of UGI substantially decreases the access of UNG to the G:U base editing intermediate, thereby greatly improving product purity.
[00628] Because the above experiments also revealed the sensitivity of base editing outcomes to the architecture of the components, next we optimized the linkers between BE3 components to further increase product purities and editing efficiencies. We varied the rAPOBECldCas9(A840H) linker from 16 amino acids (BE3) to 32 amino acids (BE3C) and the dCas9(A840H)-UGI linker from 4 (BE3) to 9 (BE3D) to 16 amino acids (BE3E, Figure 138A). Non-T product formation on average decreased $1.3 \pm 0.1$-fold when the dCas9(A840H)-UGI linker was nine amino acid residues in length (BE3D) instead of four amino acids (BE3) (Figure 138D), with no apparent differences in C-to-T editing efficiencies (Figure 138C). Increasing the rAPOBECl-dCas9(A840H) linker from 16 amino acids (BE3) to 32 amino acids (BE3C) elevated C-to-T editing efficiencies an average of $1.2 \pm 0.1$-fold at the HEK2 locus (Figure 138C). This locus was previously the most unevenly edited multi-C site tested (Figures 141AC), and extending this linker led to a reduction in preferential editing of C 6 over C 4 (the ratio of the percentage of sequencing reads that are edited at C 6 to that of C 4 ) from $2.6 \pm 0.2$-fold to 1.8 $\pm 0.1$-fold. We reasoned that this longer linker may allow the deaminase better access to the ssDNA in the R-loop and result in more uniform deamination when multiple target Cs are present in the base editing window. BE3C also exhibited comparable or improved base editing efficiencies and product purities at the other loci tested (Figures 138C-D).

BE4, a C:G to T:A base editor with enhanced efficiency and product purity
[00629] The base editor construct BE4 was engineered by combining all three improvements-extending the rAPOBECl-dCas9 linker to 32 amino acids, extending the dCas9-UGI linker to 9 amino acids, and appending a second copy of UGI to the C-terminus of
the construct with another 9-amino acid linker. Target-AID, an alternative base editor construct reported by Nishida et. al. (9), was also cloned into the same plasmid backbone as BE4.
HEK293T cells were transfected with plasmids encoding BE3, BE4, or Target-AID and sgRNAs targeting the EMX1, FANCF, HEK2, HEK3, HEK4, or RNF2 loci. Three days post transfection, genomic DNA was extracted and the target loci were amplified by PCR and analyzed by HTS. An average increase in C-to-T editing efficiencies of $1.5 \pm 0.3$-fold across all twelve edited Cs for BE4 relative to BE3 was observed (Figure 139C). Although the average efficiency of C-to-T editing for Target-AID at the same positions analyzed was $1.5 \pm 0.5$-fold lower than that of BE3 and $2.1 \pm 0.5$-fold lower than that of BE4, it is important to note that Target-AID, which uses the CDA1 deaminase, appears to have an editing window shifted relative to BE3 and BE4, with optimal editing around positions C3 and C4 (Figure 139C). This shifted editing window makes comparisons of efficiency and product purity between Target-AID and BE3 or BE4 difficult because a given target C could lie in more optimal or less optimal position within the different editing windows, even when using the same guide RNA.
[00630] In addition to greater C-to-T editing efficiency, BE4 also exhibited substantially improved product purities relative to BE 3 at all genomic loci tested, with an average decrease in non-T product formation of $2.3 \pm 0.3$-fold (Figurel39D). As expected from further impeding base excision repair, which can lead to indels (25), decreases in indel rates averaging $2.3 \pm 1.1$ fold across all six loci following BE4 treatment compared to BE3 were also observed (Figures $\mathbf{1 4 4 A} \mathbf{- C}$ ). Taken together, these results indicate that BE4 offers high efficiencies of C-to-T editing, high product purities, and low indel formation rates at all loci tested.
[00631] The BE4 improvements wereintegrated with S. aureus Cas9 (26) to generate SaBE4, which replaces the S.pyogenes dCas 9 (A840H) with the smaller S. aureus dCas 9 (A580N) and can access different targets due to its alternative PAM requirements. HEK293T cells were transfected with plasmids encoding SaBE3 (4) or SaBE4 and sgRNAs targeting the FANCF, HEK3, or HEK4 loci. Consistent with the results comparing BE4 and BE3, we observed an average increase in C-to-T editing efficiencies of $1.4 \pm 0.2$-fold across all ten edited Cs for SaBE4 relative to SaBE3 (Figure 145A), with a $1.8 \pm 0.5$-fold average decrease in undesired non-T editing products (Figure 145B). These results indicate that the gains in base editing efficiency and product purity that arise from the BE4 enhancements also apply to base editors derived from other Cas9 homologs.

## Materials and Methods

## Cloning ofplasmids

[00632] All plasmids in this study were generated by USER cloning using Phusion U Hot Start polymerase (Thermo Fisher). Deaminase and SSB genes were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies), and Target-AID was obtained from Addgene (plasmid \# 79620). Protein sequences are listed in the Supplementary Notes.

## Cell culture

[00633] HEK293T (ATCC CRL-3216) cells were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with $10 \%$ ( $\mathrm{v} / \mathrm{v}$ ) fetal bovine serum (FBS), at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{C}_{2}$. HAP1 (Horizon Discovery C631) and HAP1 $U N G^{-}$(Horizon Discovery HZGHC001531c012) were maintained in Iscove' s Modified Dulbecco' s Medium plus GlutaMax (ThermoFisher Scientific) supplemented with $10 \%$ (v/v) fetal bovine serum (FBS), at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

## Transfections

[00634] HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately $75 \%$ confluency. Briefly, 750 ng of BE and 250 ng of sgRNA expression plasmids were transfected using $1.5 \mu \mathrm{~L}$ of Lipofectamine 2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol.
[00635] HAP1 and HAP1 $U N G^{-}$cells were nucleofected using the SE Cell Line 4DNucleofector ${ }^{\mathrm{TM}} \mathrm{X}$ Kit S (Lonza) according to the manufacturer's protocol. Briefly, $4 \times 10^{5}$ cells were nucleofected with 300 ng of BE and 100 ng of sgRNA expression plasmids using the 4DNucleofector ${ }^{\mathrm{TM}}$ program DZ-1 13.

High-throughput DNA sequencing of genomic DNA samples
[00636] Transfected cells were harvested after 3 days and the genomic DNA was isolated by incubating cells in lysis buffer ( 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,0.05 \% \mathrm{SDS}, 25 \mu \mathrm{~g} / \mathrm{mL}$ proteinase K ) at $37{ }^{\circ} \mathrm{C}$ for 1 hr followed by $80^{\circ} \mathrm{C}$ for 30 min . Genomic regions of interest were amplified by PCR with flanking HTS primer pairs as previously described $(6,1)$. PCR amplification was
carried out with Phusion high-fidelity DNA polymerase (ThermoFisher) according to the manufacturer's instructions and as previously described. Purified DNA was amplified by PCR with primers containing sequencing adaptors. The products were gel-purified and quantified using the QuantiT ${ }^{\text {TM }}$ PicoGreen dsDNA Assay Kit (ThermoFisher) and KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described.

## Data analysis

[00637] Sequencing reads were automatically demultiplexed using MiSeq Reporter (Illumina), and individual FASTQ files were analyzed with a custom Matlab script as previously described (1). Each read was pairwise aligned to the appropriate reference sequence using the SmithWaterman algorithm. Base calls with a Q-score below 31 were replaced with Ns and were thus excluded in calculating nucleotide frequencies. This treatment yields an expected MiSeq basecalling error rate of approximately 1 in 1,000 . Aligned sequences in which the read and reference sequence contained no gaps were stored in an alignment table from which base frequencies could be tabulated for each locus.
[00638] Indel frequencies were quantified with the previously described Matlab script (5, 6, 1). Briefly, sequencing reads were scanned for exact matches to two $10-\mathrm{bp}$ sequences that flank both sides of a window in which indels might occur. If no exact matches were located, the read was excluded from analysis. If the length of this indel window exactly matched the reference sequence the read was classified as not containing an indel. If the indel window was two or more bases longer or shorter than the reference sequence, then the sequencing read was classified as an insertion or deletion, respectively.
[00639] In order to evaluate interdependency (linkage disequilibrium) between the base editing outcomes at the multiple target cytidines within an editing window, target site sequences from BE treated cells were analyzed by a custom Python script (Supplementary Note 1). Briefly, sequencing reads were scanned for exact matches to two 7-bp sequences that flank each side of the protospacer. If the intervening region was not exactly $20-\mathrm{bp}$, then it was excluded further analysis. The protospacer sequences were further filtered into four groups based upon the identity of the nucleotide at the position with the most non-T editing outcomes (the primary
target C). For each of these four groups as well as the entire pool, the nucleotide abundance at each of the 20 positions within the protospacer were tallied.

EXAMPLE 18: Base Editors Comprising an LbCpfl (nuclease dead, nuclease active, and nickase).
[00640] As discussed above, nucleic acid programmable DNA binding proteins (napDNAbp) of any of the fusion proteins provided herein may be an LbCpfl protein. In some embodiments, the LbCpfl protein is nuclease inactive, nuclease active, or an LbCpfl nickase. Several constructs of fusion proteins comprising forms of LbCpfl were tested for their ability to make C to T edits in different target sequences. A schematic representation of the constructs tested is shown in Figure 152. Construct 10 has a domain arrangement of [Apobec]-[LbCpfl]-[UGI][UGI]; construct 11 has a domain arrangement of [Apobec]-[LbCpfl]-[UGI]; construct 12 has a domain arrangement of [UGI]-[Apobec]-[LbCpfl]; construct 13 has a domain arrangement of [Apobec]-[UGI]-[LbCpfl]; construct 14 has a domain arrangement of [LbCpfl]-[UGI][Apobec]; construct 15 has a domain arrangement of [LbCpfl ]-[Apobec]-[UGI]. For each construct three different LbCpfl proteins were used (D/N/A, which refers to nuclease dead LbCpfl (D); LbCpfl nickase (N) and nuclease active LbCpfl (A)). For each of these constructs, the linkers linking the domains are shown below, where XTEN refers to the XTEN linker having the sequence SGSETPGTSESATPES (SEQ ID NO: 604), and BPNLS refers to the nuclear localization sequence having the sequence KRTADGSEFEPKKKRKV (SEQ ID NO: 740). Constructs are shown from N-terminus (left) to C-terminus (right).

Construct 10: Apobec-SGGSSGGSXr ENSGGSSGGS-LbCpfl-SGGSGGSGGS -UGI-

## SGGSGGSGGS-UGI-SGGS-BPNLS

Construct 11: Apobec-SGGSSGGSXr ENSGGSSGGS-LbCpfl-SGGSGGSGGS -UGI-

## SGGS-BPNLS

Construct 12: UGI-SGGSGGSGGS-Apobec-SGGSSGGSXTWSGGSSGGS-LbCpfl-

## SGGS-BPNLS

Construct 13: Apobec-SGGSGGSGGS-UGI-SGGSSGGSXTWSGGSSGGS-LbCpfl-

## SGGS-BPNLS

Construct 14: LbCpfl-SGGSGGSGGS-UGI-SGGSGGSGGS-Apobec-SGGS-BPNLS
Construct 15: LbCpfl-SGGSGGSGGS-Apobec-SGGSGGSGGS-UGI-SGGS-BPNLS
[00641] The common guide backbone (sgRNA) used in the experiments is GTAATTTCTACTAAGTGTAGAT (SEQ ID NO: 741)[guide sequence]TTTTTTTT, wherein each of the Ts of SEQ ID NO: 741 are uracil (U), and where the guide sequence that targets the construct to a specific nucleotide sequence is shown between brackts. In some embodiments, any of the constructs provided herein are complexed with a sgRNA that comprises the backbone sequence of GTAATTTCTACTAAGTGTAGAT(SEQ ID NO: 741), wherein each of the Ts of SEQ ID NO: 741 are uracil (U). In some embodiments, any of the guide RNAs provided herein comprise a guide sequence comprising $14,15,16,17,18,19,20,21,22,23,24,25,26,27,28$, 29 , or 30 nucleotides that are perfectly complementary to a sequence, e.g., a target DNA sequence. In the experiments performed, the guide sequences tested are shown below:

EMX23: TACTTTGTCCTCCGGTTCTGGAA (SEQ ID NO: 742)
EMX20: TACTTTGTCCTCCGGTTCTG (SEQ ID NO: 743)
EMX19: TACTTTGTCCTCCGGTTCT (SEQ ID NO: 744)
EMX18: TACTTTGTCCTCCGGTTC (SEQ ID NO: 745)
EMX17: TACTTTGTCCTCCGGTT (SEQ ID NO: 746)
Hek2_23: CAGCCCGCTGGCCCTGTAAAGGA (SEQ ID NO: 747)
Hek2_20: CAGCCCGCTGGCCCTGTAAA (SEQ ID NO: 748)
Hek2_19: CAGCCCGCTGGCCCTGTAA (SEQ ID NO: 749)
Hek2_18: CAGCCCGCTGGCCCTGTA (SEQ ID NO: 750)
Hek2_17: CAGCCCGCTGGCCCTGT (SEQ ID NO: 751)
[00642] The data demonstrating the C to T base pair editing percentage using various constructs and target sequences is shown in figures 153-159, and the editing percentage values (after adjustment based on indel count), and the percentage of indels for the experiments are shown in figures 160-166.

## Supplementary Sequences

[00643] Amino Acid Sequences of CDA1-BE3, AID-BE3, BE4, and SaBE4 fusion proteins. CDA1-XTEN- dCas9-UGI-NLS primary sequence (CDA1-BE3):

[^2]VPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIF SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDST DKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQL SKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYD EHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGT EELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRI PYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEK VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQL KEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLF EDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKS DGFANRNFMQLIHDDS LTFKEDIQKAQ VSGQGDSLHEHIANLAGS PAIKKGILQTVKVV DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVEN TQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSD KNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYF FYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKK TEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSK KLKS VKELLGITIMERS SFEKNPIDFLE AKGYKEVKKDLIIKLPKYS LFELENGRKRMLAS AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKOLVIOESILMLP
EEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIK MLSGGSPKKKRKV (SEQ ID NO: 165)
$\underline{\mathrm{AH}}$-XTEN-dCas9-UGI-NLS primary sequence (AID-BE3):
MDSLLMNRRKFLYOFKNVRWAKGRRETYLCYWKRRDSA TSFSLDFGYLRNKNGCHVELLFL RYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRKAEPE GLRRLHRAGVOIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSROLRRILLPLYEVD $D L^{\wedge} \mathrm{DAF}^{\wedge} \mathrm{rLGLSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKV}$ LGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSA RLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDD LDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTL LKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLN REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA RGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLY EYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEER LKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNF MQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMG RHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLY

LYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNV PSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAY LNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS EQEIGKATAKYFFYS NIMNFFK TEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGI TIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDAT LIHQSITGLYETRIDLS QLGGDS GGSTNLSDIIEKETGKQLVIQESILMLPEE VEEVIGN KPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIODSNGENKIKMLSGGSP $K K K$ $R K V$ (SEQ ID NO: 166)
$r A P O B E C l$-linker-dCas9-UGI-UGI-NLS primary sequence (BE4):
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSONTNKHVE VNFIEKFTTERYFCPNTR CSITWFLSWSPCGECSRAITEFLSR YPHVTLFIYIARLYHHADPRNR OGLRDLISSGVTIOIMTEOESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPC LNILRRKOPOLTFFTIALOSCHYORLPPHILWATGLKSGGSSGGSSGSETPGTSESATPESS GGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFL AAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPH QIHLGELH AILRRQEDF YPFLKDNREKIEKILTFRIP YYVGPLARGNS RFAWMTRKS EETI TPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLS GEQKKAIVDLLFKTNRKVT VKQLKED YFKKIECFDS VEISGVEDRFNASL GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKA QVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTT QKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQL LNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKL ESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKK DWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLE AKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHY EKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ LGGDSGGS GGS GGSTNLSDIIEKETGKQLVIQESILMLPEE VEEVIGNKPESDILVHTA YDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGGSGGS77VL5D HEK ETGKOLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWAL VIQDSNGENKIKMLSGGSPKKKRK (SEQ ID NO: 167)
$r A P O B E C l$-linker-SaCas9d-UGI-UGI-NLS primary sequence (SaBE4):
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSONTNKHVE
VNFIEKFTTERYFCPNTR CSITWFLSWSPCGECSRAITEFLSR YPHVTLFIYIARLYHHADPRNR
OGLRDLISSGVTIOIMTEOESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPC
LNILRRKOPOLTFFTIALOSCHYORLPPHILWATGLKSGGSSGGSSGSETPGTSESATPESS
GGSSGGSGKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
RRLKRRRRHRIQR VKKLLFD YNLLTDHS ELS GINPYEARVKGLSQKLSEEEFS AALLHLA
KRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFK
TSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYE
MLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQ
KKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIA
KILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQ
IAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIEL
AREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFN YEVDHIIPRS VSFDNSFNNKVLVKQEENS KKGNRTPFQ YLS SSDSK
ISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMN
LLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKE
WKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVD
KKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDP
QTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLD
ITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEA
KKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMND
KRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKGGSPKKKRKVSSDYKDHDG
DYKDHDID YKDDDDKS GGS GGSGGSTNLSDIIEKETGKQLVIQESILMLPEE VEEVIG
NKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGG
SGGS TNLSDIIEKETGKQL VIQESILMLPEE VEE VIGNKPESDIL VHTA YDESTDENVMLL
TSDA $\overline{\text { PE YKPWALVIQDSNGENKIKMLS GGSPKKKRKV (SEQ ID NO: 168) }}$

## References for Example 17

1. A. C. Komor, Y. B. Kim, M.S.Packer, J. A. Zuris, D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).
2. G. T. Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 13, 1036-1042 (2016).
3. K. Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35, 435-437 (2017).
4. Y. B. Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35, 371-376 (2017).
5. C. Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Meth advance online publication, (2017).
6. J. Li, Y. Sun, J. Du, Y. Zhao, L. Xia, Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant 10, 526-529 (2017).
7. Y.Lu, J. K. Zhu, Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant 10, 523-525 (2017).
8. Y. Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13, 1029-1035 (2016).
9. K. Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, (2016).
10. H. A. Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 8, 15790 (2017).
11. L. Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun 7, 13330 (2016).
12. Y.Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438-440 (2017).
13. Z. Shimatani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotech 35, 441-443 (2017).
14. A.C. Komor, A. H. Badran, D.R.Liu, CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 168, 20-36 (2017).
15. A. J. Davis, D. J. Chen, DNA double strand break repair via non-homologous endjoining. Translational cancer research 2, 130-143 (2013).
16. M. M. Vilenchik, A. G. Knudson, Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proceedings of the National Academy of Sciences 100, 12871-12876 (2003).
17. F. Liang, M. Han, P. J. Romanienko, M. Jasin, Homology-directed repair is a major doublestrand break repair pathway in mammalian cells. Proceedings of the National Academy of Sciences 95, 5172-5177 (1998).
18. Y. Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Scientific Reports 6, 23549 (2016).
19. M. M. Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18, 529-536 (2011).
20. L.H.Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutation Research/DNA Repair 460, 165-181 (2000).
21. W.Tang, J. H. Hu, D. R.Liu, Aptazyme-embedded guide RNAs enable ligandresponsive genome editing and transcriptional activation. 8, 15939 (2017).
22. G. Saraconi, F. Severi, C. Sala, G. Mattiuz, S. G. Conticello, The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biology 15, 417 (2014).
23. R. M. Kohli et al., Local Sequence Targeting in the AID/APOBEC Family Differentially Impacts Retroviral Restriction and Antibody Diversification. Journal of Biological Chemistry 285, 40956-40964 (2010).
24. L. Chelico, P. Pham, M.F. Goodman, Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philosophical Transactions of the Royal Society B:

Biological Sciences 364, 583-593 (2009).
25. E. A. Kouzminova, A. Kuzminov, Patterns of chromosomal fragmentation due to uracilDNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Molecular Microbiology 68, 202-215 (2008).
26. F. A. Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
27. F.d.A.di Fagagna, G. R. Weller, A. J. Doherty, S.P. Jackson, The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Reports 4, 47-52 (2003).
28. C. Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. eLife 2, e01222 (2013).

## EQUIVALENTS AND SCOPE

[00644] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.
[00645] Articles such as "a," "an," and "the" may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include "or" between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes "or" between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
[00646] It is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
[00647] Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term "comprising" is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
[00648] Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.
In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.

## CLAIMS

What is claimed is:

1. A fusion protein comprising: (i) a nucleic acid programmable DNA binding protein (napDNAbp); (ii) a cytidine deaminase domain; and (iii) a uracil glycosylase inhibitor (UGI) domain, wherein the napDNAbp is a CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute protein.
2. The fusion protein of claim 1, wherein the fusion protein comprises two, three, four, or five UGI domains
3. The fusion protein of claim 1 or 2 , wherein the nucleic acid programmable DNA binding protein (napDNAbp) is a CasX protein.
4. The fusion protein of claim 3, wherein the CasX protein comprises
(i) an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 29 or 30; or
(ii) the amino acid sequence of SEQ ID NO: 29 or 30 .
5. The fusion protein of claim 1 or 2, wherein the nucleic acid programmable DNA binding protein (napDNAbp) is a CasY protein.
6. The fusion protein of claim 5, wherein the CasY protein comprises an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 31 .
7. The fusion protein of claim 5 or 6 , wherin the CasY protein comprises the amino acid sequence of SEQ ID NO: 31.
8. The fusion protein of claim 1 or 2 , wherein the nucleic acid programmable DNA binding protein (napDNAbp) is a Cpfl or Cpfl mutant protein.
9. The fusion protein of claim 8, wherein the Cpf 1 or Cpf 1 mutant protein comprises an amino acid sequence that is at least $90 \%$ identical to any one of SEQ ID NOs: 9-16.
10. The fusion protein of claim 8 or 9 , wherin the Cpf 1 or Cpfl mutant protein comprises the amino acid sequence of any one of SEQ ID NOs: 9-16.
11. The fusion protein of claim 1 or 2 , wherein the nucleic acid programmable DNA binding protein (napDNAbp) is a C2cl protein.
12. The fusion protein of claim 11 , wherein the C 2 cl protein comprises an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 26.
13. The fusion protein of claim 11 or 12 , wherin the C 2 cl protein comprises the amino acid sequence of SEQ ID NO: 26.
14. The fusion protein of claim 1 or 2 , wherein the nucleic acid programmable DNA binding protein (napDNAbp) is a C2c2 protein.
15. The fusion protein of claim 14 , wherein the C 2 c 2 protein comprises an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 27.
16. The fusion protein of claim 14 or 15 , wherin the C 2 c 2 protein comprises the amino acid sequence of SEQ ID NO: 27.
17. The fusion protein of claim 1 or 2 , wherein the nucleic acid programmable DNA binding protein (napDNAbp) is a C2c3 protein.
18. The fusion protein of claim 17 , wherein the C 2 c 3 protein comprises an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 28.
19. The fusion protein of claim 17 or 18 , wherin the C 2 c 3 protein comprises the amino acid sequence of SEQ ID NO: 28.
20. The fusion protein of claim 1 or 2 , wherein the nucleic acid programmable DNA binding protein (napDNAbp) is an Argonaute protein.
21. The fusion protein of claim 20, wherein the Argonaute protein comprises an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 25.
22. The fusion protein of claim 20 or 21, wherin the Argonaute protein comprises the amino acid sequence of SEQ ID NO: 25.
23. The fusion protein of any one of claims 1-22, wherein the cytidine deaminase domain is a deaminase from the apolipoprotein $B$ mRNA-editing complex (APOBEC) family deaminase.
24. The fusion protein of claim 23, wherein the APOBEC family deaminase is selected from the group consisting of APOBECl deaminase, APOBEC2 deaminase, APOBEC3A deaminase, APOBEC 3B deaminase, APOBEC 3C deaminase, APOBEC 3D deaminase, APOBEC 3F deaminase, APOBEC3G deaminase, and APOBEC3H deaminase.
25. The fusion protein of any one of claims 1-24, wherein the cytidine deaminase domain comprises an amino acid sequence that is at least $85 \%$ identical to an amino acid sequence of SEQ ID NO: 49-84.
26. The fusion protein of any one of claims 1-25, wherein the cytidine deaminase domain comprises an amino acid sequence of SEQ ID NO: 49-84.
27. The fusion protein of any one of claims 1-22, wherein the cytidine deaminase domain is a rat APOBECl (rAPOBECl) deaminase comprising one or more mutations selected from the group consisting of W90Y, R126E, and R132E of SEQ ID NO: 76, or one or more corresponding mutations in another APOBEC deaminase.
28. The fusion protein of any one of claims 1-22, wherein the cytidine deaminase domain is a human APOBECl (hAPOBECl) deaminase comprising one or more mutations selected from the group consisting of W90Y, Q126E, and R132E of SEQ ID NO: 74, or one or more corresponding mutations in another APOBEC deaminase.
29. The fusion protein of any one of claims $1-22$, wherein the cytidine deaminase domain is a human APOBEC3G (hAPOBEC3G) deaminase comprising one or more mutations selected from the group consisting of W285Y, R320E, and R326E of SEQ ID NO: 60, or one or more corresponding mutations in another APOBEC deaminase.
30. The fusion protein of any one of claims 1-22, wherein the cytidine deaminase domain is an activation-induced deaminase (AID).
31. The fusion protein of any one of claims 1-22, wherein the cytidine deaminase domain is a cytidine deaminase 1 from Petromyzon marinus ( pmCDAl ).
32. The fusion protein of any one of claims 1-31, wherein the UGI domain comprises a domain capable if inhibiting UDG activity.
33. The fusion protein of any one of claims 1-32, wherein the UGI domain comprises an amino acid sequence that is at least $85 \%$ identical to SEQ ID NO: 134.
34. The fusion protein of any one of claims 132, wherein the UGI domain comprises an amino acid sequence as set forth in SEQ ID NO: 134.
35. The fusion protein of any one of claims 1-33, wherein the fusion protein comprises the structure:
$\mathrm{NH}_{2}$-[cytidine deaminase domain]-[napDNAbp]- [UGI domain]-COOH;
$\mathrm{NH}_{2}$-[cytidine deaminase domain]-[napDNAbp]-[UGI]-[UGI]-COOH;
$\mathrm{NH}_{2}$-[cytidine deaminase domain]-[napDNAbp]-[UGI]-COOH;
$\mathrm{NH}_{2}$-[UGI]-[Apobec]-[napDNAbp]-COOH;
$\mathrm{NH}_{2}$-[cytidine deaminase domain]-[UGI]-[napDNAbp]-COOH;
$\mathrm{NH}_{2}-[$ napDNAbp] -[UGI]-[cytidine deaminase domain]-COOH; or
$\mathrm{NH}_{2}$-[napDNAbp] -[cytidine deaminase domain]-[UGI] - $\mathrm{COOH} ;$
wherein each instance of "-" comprises an optional linker.
36. The fusion protein of any one of claims 34, wherein the cytidine deaminase domain of (ii) and the napDNAbp domain of (i) are linked via a linker comprising the amino acid sequence (GGGS),, (SEQ ID NO: 613), (GGGGS),, (SEQ ID NO: 607), (G),, (SEQ ID NO: 608), (EAAAK) ${ }_{\mathrm{n}}$ (SEQ ID NO: 609), (GGS),, (SEQ ID NO: 610), (SGGS),, (SEQ ID NO: 606), SGSETPGTSESATPES (SEQ ID NO: 604), or (XP) ${ }_{\mathrm{n}}$ (SEQ ID NO: 611) motif, or a combination thereof, wherein ${ }_{\mathrm{n}}$ is independently an integer between 1 and 30 , inclusive, and wherein X is any amino acid.
37. The fusion protein of any one of claims 1-35, wherein the cytidine deaminase domain of (ii) and the napDNAbp of (i) are linked via a linker comprising the amino acid sequence: SGSETPGTSESATPES (SEQ ID NO: 604).
38. The fusion protein of any one of claims 1-36 further comprising a nuclear localization sequence (NLS).
39. The fusion protein of claim 37, wherein the NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 614), MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 615), or KRTADGSEFEPKKKRKV (SEQ ID NO: 740)
40. The fusion protein of claim 37 or 38 , wherein the fusion protein comprises the structure: $\mathrm{NH}_{2}$-[cytidine deaminase domain] -[napDNAbp] -[UGI domain] -[NLS] -COOH, and wherein each instance of "-" comprises an optional linker.
41. The fusion protein of any one of claims 37-39, wherein the UGI domain and the NLS are linked via a linker comprising the amino acid sequence: SGGS (SEQ ID NO: 606), or wherein
the napDNAbp and the UGI domain are linked via a linker comprising the amino acid sequence: SGGS (SEQ ID NO: 606).

41 A complex comprising the fusion protein of any one of claims 1-40 and a guide RNA bound to the napDNAbp of the fusion protein.
42. A method comprising contacting a nucleic acid molecule with the fusion protein of any one of claims 1-40 and a guide RNA, wherein the guide RNA comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence in the genome of an organism and comprises a target base pair.
43. The method of claim 42 , wherein the target base pair comprises a T to C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder.
44. The method of claim 42 or 43 , wherein the contacting results in less than $20 \%$ indel formation upon base editing.
45. The method of any one of claims $42-44$, wherein the contacting results in at least $2: 1$ intended to unintended product upon base editing.
46. A complex comprising the fusion protein of anyone of claims 1-40, and an RNA bound to the napDNAbp.
47. The complex of claim 46, wherein the RNA is a guide RNA (gRNA).
48. The complex of claim 46, wherein the RNA is a non-coding RNA, and/or wherein the RNA comprises the amino acid sequence of SEQ ID NO: 741, wherein each of the Ts of SEQ ID NO: 741 are uracil (U).
49. The complex of claim 46, wherein the RNA is a microRNA (miRNA).
50. The complex of claim 46, wherein the RNA is a small interfering RNA (siRNA).
51. The complex of claim 46, wherein the RNA is a Piwi-interacting RNA (piRNA).
52. The complex of any one of claims 46-51, wherein the RNA is from 10-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence.
53. The complex of claim 52 , wherein the RNA is $10,11,12,13,14,15,16,17,18,19,20$, $21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46$, $47,48,49$, or 50 nucleotides long.
54. The complex of any one of claims 46-53, wherein the RNA comprises a sequence of 15 , $16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$, or 40 contiguous nucleotides that is complementary to a target sequence.
55. The complex of any one of claims 46-54, wherein the target sequence is a DNA sequence.
56. The complex of any one of claims 46-54, wherein the target sequence is a RNA sequence.
57. The complex of claim 55, wherein the target sequence is in the genome of an organism.
58. The complex of claim 56, wherein the target sequence is transcribed from the genome of an organism.
59. The complex of claim 57 or 58 , wherein the organism is a prokaryote.
60. The complex of claim 59, wherein the prokaryote is bacteria.
61. The complex of claim 57 or 58 , wherein the organism is a eukaryote.
62. The complex of claim 61, wherein the organism is a plant.
63. The complex of claim 61, wherein the organism is a vertebrate.
64. The complex of claim 63, wherein the vertebrate is a mammal.
65. The complex of claim 64 , wherein the mammal is a mouse or rat.
66. The complex of claim 64, wherein the mammal is human.
67. A method comprising contacting a nucleic acid molecule with the complex of any one of claims 46-66.
68. The method of claim 67, wherein the nucleic acid is DNA.
69. The method of claim 68 , wherein the nucleic acid is double-stranded DNA.
70. The method of claim 67, wherein the nucleic acid is RNA.
71. The method of claim 70, wherein the RNA is mRNA.
72. The method of any one of claims 67-71, wherein the nucleic acid comprises a target sequence associated with a disease or disorder.
73. The method of claim 72, wherein the target sequence comprises a point mutation associated with a disease or disorder.
74. The method of claim 73, wherein the activity of the fusion protein, or the complex results in a correction of the point mutation.
75. The method of any one of claims 73-74, wherein the target sequence comprises a T to C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder.
76. The method of claim 75, wherein the target sequence encodes a protein, and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to a wild-type codon.
77. The method of claim 75 or 76 , wherein the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon.
78. The method of claim 75 or 76 , wherein the deamination of the mutant C results in the codon encoding a wild-type amino acid.
79. The method of any one of claims 67-78, wherein the contacting is performed in vivo in a subject.
80. The method of any one of claims 67-78, wherein the contacting is performed in vitro.
81. The method of claim 79, wherein the subject has been diagnosed with a disease or disorder.
82. The method of any one of claims 72-82, wherein the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA),
desmin-related myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB 1 protein, a mutant HRAS protein, or a mutant p53 protein.
83. A kit comprising a nucleic acid construct, comprising
(a) a nucleic acid sequence encoding the fusion protein of any one of claims 1-40; and
(b) a heterologous promoter that drives expression of the sequence of (a).
84. The kit of claim 83, further comprising an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
85. A polynucleotide encoding the fusion protein of any one of claims 1-40.
86. A vector comprising a polynucleotide of claim 85.
87. The vector of claim 86 , wherein the vector comprises a heterologous promoter driving expression of the polynucleotide.
88. A cell comprising the fusion protein of any one of claims 1-40.
89. A cell comprising the complex of any of claims 46-66.
90. A cell comprising the nucleic acid molecule encoding the fusion protein of any one of claims 1-40.
91. A method for producing a ribonucleoprotein (RNP) complex, the method comprising: (i) complexing a base editor protein with an RNA in an aqueous solution, thereby forming a complex comprising the base editor and the RNA in the aqueous solution; and
(ii) contacting the complex of (i) with a cationic lipid.
92. The method of claim 91, wherein the base editor protein and the RNA of (i) are complexed at a molar ratio from 1:1 to 1:1.5.
93. The method of claim 91 or 92 , wherein the base editor protein and the RNA of (i) are complexed at a molar ratio from 1:1.05 to 1:1.2.
94. The method of any one of claims 91-93, wherein the base editor protein and the RNA of (i) are complexed at a molar ratio of about 1:1.1.
95. The method of any one of claims 91-94, wherein the base editor protein and the RNA of (i) are complexed at a molar ratio of 1:1.1.
96. The method of any one of claims 91-95, wherein the base editor protein is in the aqueous solution at a concentration from $10 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$.
97. The method of any one of claims 91-96, wherein the base editor protein is in the aqueous solution at a concentration from $20 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$.
98. The method of any one of claims 91-97, wherein the base editor protein is in the aqueous solution at a concentration from $30 \mu \mathrm{M}$ and $40 \mu \mathrm{M}$.
99. The method of any one of claims 91-98, wherein the base editor protein is in the aqueous solution at a concentration from $11 \mu \mathrm{M}$ and $110 \mu \mathrm{M}$.
100. The method of any one of claims 91-99, wherein the base editor protein is in the aqueous solution at a concentration from $22 \mu \mathrm{M}$ and $55 \mu \mathrm{M}$.
101. The method of any one of claims 91-100, wherein the base editor protein is in the aqueous solution at a concentration from $33 \mu \mathrm{M}$ and $44 \mu \mathrm{M}$.
102. The method of any one of claims 91-101, wherein the RNA is a sgRNA.
103. The method of any one of claims 91-102, wherein the complex in the aqueous solution of (i) is contacted with the cationic lipid of (ii) at a volumetric ratio that is from 1:2 to 2:1.
104. The method of any one of claims 91-103, wherein the complex in the aqueous solution of (i) is contacted with the cationic lipid of (ii) at a volumetric ratio that is from 1:1.5 to 1.5:1.
105. The method of any one of claims 91-104, wherein the complex in the aqueous solution of (i) is contacted with the cationic lipid of (ii) at a volumetric ratio that is from 1:1.2 to 1.2:1.
106. The method of any one of claims 91-105, wherein the complex in the aqueous solution of (i) is contacted with the cationic lipid of (ii) at a volumetric ratio that is from 1:1.1 to 1.1:1.
107. The method of any one of claims 91-106, wherein the complex in the aqueous solution of (i) is contacted with the cationic lipid of (ii) at a volumetric ratio that is about 1:1.
108. The method of any one of claims 91-107, wherein the complex in the aqueous solution of (i) is contacted with the cationic lipid of (ii) at a volumetric ratio that is 1:1.
109. The method of any one of claims 91-108, wherein the cationic lipid is Lipofectamine®.
110. The method of claim 109, wherein the Lipofectamine ${ }^{\circledR}$ is selected from the group consisting of Lipofectamine ${ }^{\circledR}$ 2000, Lipofectamine ${ }^{\circledR} 3000$, Lipofectamine ${ }^{\circledR}$ ® MessengerMAX, Lipofectamine ${ }^{\circledR}$ LTX, and Lipofectamine $®$ RNAiMAX.
111. The method of any one of claims 91-1 10, wherein the base editor is the fusion protein of any one of claims 1-40.
112. The method of any one of claim 91-111, wherein the complex of (i) is the complex of any one of claims 46-66.
113. A pharmaceutical composition produced by the method of any one of claims 91-112.
114. A pharmaceutical composition comprising the fusion protein of any one of claims 1-40.
115. A pharmaceutical composition comprising the complex of claim 41.
116. A pharmaceutical composition comprising the complex of any one of claims 46-66.
117. The pharmaceutical composition of any one of claims 113-116 further comprising a pharmaceutically acceptable excipient.
118. A method for purifying a base editor protein, the method comprising:
(i) expressing the base editor protein in a cell, wherein the base editor protein comprises an affinity tag;
(ii) lysing the cell of (i), thereby generating a lysate; and
(iii) subjecting the lysate to affinity chromatography, thereby producing an eluent comprising a purified base editor protein.
119. The method of claim 118, wherein the cell is a bacterial cell.
120. The method of claim 119, wherein the bacterial cell is an E. coli cell.
121. The method of claim 120 , wherein the $E$. coli cell is a BL21 DE3 competent cell.
122. The method of any one of claims 118-121, wherein the affinity tag is a polyhistidine tag.
123. The method of any one of claims 118-122, wherein step (iii) comprises contacting the lysate of (ii) with a nickel-NTA resin, wherein the base editor protein is bound to the nickelNTA resin.
124. The method of claim 123, wherein the method further comprises
(iv) eluting the base editor protein from the nickel-NTA resin, thereby generating an eluent comprising the base editor protein.
125. The method of any one of claims 118-124, wherein the eluent comprising the base editor protein is subjected to cation exchange chromatography.
126. The method of claim 125, wherein the cation exchange chromatography comprises contacting the eluent comprising the base editor protein with a cation exchange column.
127. A method comprising delivering the fusion protein of any one of claims 1-40, the complex of claim 41 , the complex of any one of claims 46-66, or the pharmaceutical composition of any one of claims 113-1 17 to the inner ear of a subject.
128. The method of claim 127 comprising delivering the fusion protein of any one of claims 140 , the complex of claim 41 , the complex of any one of claims 46-66, or the pharmaceutical composition of any one of claims 113-1 17 to the cochlea of the subject.
129. The method of claim 127 or 128 , wherein the fusion protein of any one of claims 1-40, the complex of claim 41 , the complex of any one of claims 46-66, or the pharmaceutical composition of any one of claims 113-1 17 is injected into the inner ear of the subject.
130. The method of any one of claims 127-129, wherein the fusion protein of any one of claims $1-40$, the complex of claim 41 , the complex of any one of claims $46-66$, or the pharmaceutical composition of any one of claims 113-117 is injected into the cochlea of the subject.
131. The method of any one of claims 127-130, further comprising making a postauricular incision into the ear of the subject.
132. A method comprising delivering the fusion protein of any one of claims $1-40$, the complex of claim 41, the complex of any one of claims 46-66, or the pharmaceutical composition of any one of claims 113-1 17 to a zebrafish embryo.
133. The method of claim 132, wherein the fusion protein of any one of claims 1-40, the complex of claim 41, the complex of any one of claims 46-66, or the pharmaceutical composition of any one of claims 113-1 17 is injected into the zebrafish embryo at the one-cell stage.
134. The method of claim 132 or 133, wherein the fusion protein of any one of claims 1-40, the complex of claim 41, the complex of any one of claims 46-66, or the pharmaceutical composition of any one of claims 113-1 17 is injected into the zebrafish embryo at the two-cello, four-cell, eight-cell, or sixteen-cell stage.
135. The method of any one of claims 132-134, wherein between 0.5 nmol and 50 nmol of base editor protein complexed with a gRNA is injected into the zebrafish embryo.
136. The method of any one of claims 132-135, wherein between 2 nmol and 30 nmol of base editor protein complexed with a gRNA is injected into the zebrafish embryo.
137. A fusion protein comprising: (i) a nucleic acid programmable DNA binding protein (napDNAbp); (ii) a cytidine deaminase domain; (iii) a first uracil glycosylase inhibitor (UGI) domain; and (iv) a second uracil glycosylase inhibitor (UGI) domain.
138. The fusion protein of claim 137, wherein the nucleic acid programmable DNA binding protein (napDNAbp) is is a CasX, CasY, Cpfl, Cpfl nickase, dCpfl, C2cl, C2c2, C2c3, Cas9, dCas9, Cas9 nickase or Argonaute protein.
139. The fusion protein of claim 138, wherein the dCas9 protein comprises an amino acid sequence that is at least $90 \%$ identical to SEQ ID NO: 6 or 7 .
140. The fusion protein of claim 137 or 138, wherein the dCas9 protein comprises the amino acid sequence of SEQ ID NO: 7.
141. The fusion protein of claim 138, wherein the dCas 9 protein is a nuclease inactive Staphylococcus aureus Cas9 (SaCas9d) protein.
142. The fusion protein of claim 141, wherein the SaCas9d protein comprises an amino acid sequence that is at least $85 \%, 90 \%, 95 \%$, or $98 \%$ identical to SEQ ID NO: 33-36.
143. The fusion protein of claim 141 or 142 , wherein the SaCas 9 d protein comprises the amino acid sequence of SEQ ID NO: 34.
144. The fusion protein of any one of claims 137-143, wherein the cytidine deaminase domain is a deaminase from the apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
145. The fusion protein of claim 144, wherein the APOBEC family deaminase is selected from the group consisting of APOBECl deaminase, APOBEC2 deaminase, APOBEC3A deaminase, APOBEC 3B deaminase, APOBEC 3C deaminase, APOBEC 3D deaminase, APOBEC 3F deaminase, APOBEC3G deaminase, and APOBEC3H deaminase.
146. The fusion protein of any one of claims 137-145, wherein the cytidine deaminase domain comprises an amino acid sequence that is at least $85 \%, 90 \%, 95 \%$, or $98 \%$ identical to an amino acid sequence of SEQ ID NO: 49-84.
147. The fusion protein of any one of claims 137-146, wherein the cytidine deaminase domain comprises an amino acid sequence of SEQ ID NO: 49-84.
148. The fusion protein of any one of claims 137-143, wherein the cytidine deaminase domain is an activation-induced deaminase (AID).
149. The fusion protein of any one of claims 137-143, wherein the cytidine deaminase domain is a cytidine deaminase 1 (CDA1).
150. The fusion protein of any one of claims 137-149, wherein the UGI domain comprises a domain capable of inhibiting UDG activity.
151. The fusion protein of any one of claims 137-150, wherein the UGI domain comprises an amino acid sequence that is at least $85 \%, 90 \%, 95 \%$, or $98 \%$ identical to SEQ ID NO: 134 .
152. The fusion protein of any one of claims 137-150, wherein the UGI domain comprises an amino acid sequence as set forth in SEQ ID NO: 134.
153. The fusion protein of any one of claims 137-152, wherein the fusion protein comprises the structure:
$\mathrm{NH}_{2}$-[cytidine deaminase domain] -[napDNAbp] -[first UGI domain]-[second UGI domain]- COOH ;
$\mathrm{NH}_{2}$-[first UGI domain] -[second UGI domain] -[cytidine deaminase domain]-[napDNAbp]-COOH;
$\mathrm{NH}_{2}$-[napDNAbp] -[cytidine deaminase domain] -[first UGI domain] -[second UGI domain] - COOH ; or
$\mathrm{NH}_{2}$-[first UGI domain] -[second UGI domain] -[napDNAbp] -[cytidine deaminase domain]- COOH ;
wherein each instance of "-" comprises an optional linker.
154. The fusion protein of any one of claims 153 , wherein the cytidine deaminase domain and the napDNAbp domain are linked via a linker comprising the amino acid sequence (GGGS) ${ }_{n}$ (SEQ ID NO: 613), (GGGGS),, (SEQ ID NO: 607), (G),, (SEQ ID NO: 608), (EAAAK) ${ }_{\mathrm{n}}$ (SEQ ID NO: 609), (GGS) $)_{\mathrm{n}}\left(\right.$ SEQ ID NO: 610), $(\text { SGGS })_{\mathrm{n}}($ SEQ ID NO: 606), SGSETPGTSESATPES (SEQ ID NO: 604), SGGS(GGS),,(SEQ ID NO: 612),
SGGSSGGSSGS ETPGTS ESATPES SGGSSGGS (SEQ ID NO: 605), or (XP) $)_{\mathrm{n}}$ (SEQ ID NO:
611) motif, or a combination thereof, wherein $n$ is independently an integer between 1 and 30 , inclusive, and X is any amino acid.
155. The fusion protein of any one of claims 137-154, wherein the cytidine deaminase domain and the napDNAbp are linked via a linker comprising the amino acid sequence:
SGGSSGGSSGS ETPGTS ESATPES SGGSSGGS (SEQ ID NO: 605).
156. The fusion protein of any one of claims 137-154, wherein the napDNAbp and the first UGI domain are linked via a linker comprising the amino acid sequence: $\operatorname{SGGS}_{(G G S)}{ }_{n}$ (SEQ ID NO: 612), wherein n is 2 .
157. The fusion protein of any one of claims 137-154, wherein the first UGI domain and the second UGI domain are linked via a linker comprising the amino acid sequence: $\operatorname{SGGS}(\mathrm{GGS})_{n}$ (SEQ ID NO: 612), wherein n is 2 .
158. The fusion protein of any one of claims 137-157 further comprising a nuclear localization sequence (NLS).
159. The fusion protein of claim 158, wherein the NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 614) or KRTADGSEFEPKKKRKV (SEQ ID NO: 740).
160. The fusion protein of claim 158 or 159 , wherein the fusion protein comprises the structure:
[ $\mathrm{N}^{3} / 4$ ]- [cytidine deaminase domain] -[napDNAbp] -[first UGI domain] -[second UGI domain]-[NLS]-[COOH], and each instance of "-" comprises an optional linker.
161. The fusion protein of any one of claims 158-160, wherein the fusion protein comprises the structure:
[cytidine deaminase domain] -[dCas9]- [first UGI domain]-[second UGI domain] -[NLS], and each instance of "-" comprises an optional linker.
162. The fusion protein of any one of claims 160-161, wherein the second UGI domain and the NLS are linked via a linker comprising the amino acid sequence: SGGS (SEQ ID NO: 606).
163. A complex comprising the fusion protein of any one of claims 137-162 and a guide RNA bound to the napDNAbp of the fusion protein.
164. A method comprising contacting a nucleic acid molecule with the fusion protein of any one of claims 137-162 and a guide RNA, wherein the guide RNA comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence in the genome of an organism and comprises a target base pair.
165. The method of claim 164, wherein the target base pair comprises a T to C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder.
166. The method of claim 164 or 165 , wherein the contacting results in less than $20 \%$ indel formation upon base editing.
167. The method of claim 164 or 165 , wherein the target sequence comprises a point mutation associated with a disease or disorder.
168. The method of any one of claims 164-167, wherein the activity of the fusion protein, or the complex results in a correction of the point mutation.
169. The method of any one of claims 164-165, wherein the target sequence comprises a T to C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder.
170. The method of claim 169 , wherein the target sequence encodes a protein, and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to a wild-type codon.
171. The method of claim 169 or 170 , wherein the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon.
172. The method of claim 169 or 170 , wherein the deamination of the mutant C results in the codon encoding a wild-type amino acid.
173. The method of any one of claims 164-172, wherein the contacting is performed in vivo in a subject.
174. The method of any one of claims 164-172, wherein the contacting is performed in vitro.
175. The method of claim 173, wherein the subject has been diagnosed with a disease or disorder.
176. A method for editing a nucleobase pair of a double- stranded DNA sequence, the method comprising:
contacting a target region of the double- stranded DNA sequence with a complex comprising a nucleobase editor and a guide nucleic acid, wherein the target region comprises a target nucleobase pair;
inducing strand separation of said target region;
converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase; and
cutting no more than one strand of said target region;
wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase;
wherein the method causes less than $20 \%$ indel formation in the double-stranded DNA sequence; and
wherein the nucleobase editor comprises CasX, CasY, Cpfl, C2cl, C2c2, C2c3, or Argonaute.
177. The method of claim 176, wherein the method causes less than $19 \%, 18 \%, 17 \%, 16 \%$, $15 \%, 14 \%, 13 \%, 12 \%, 11 \%, 10 \%, 9 \%, 8 \%, 7 \%, 6 \%, 5 \%, 4 \%, 3 \%, 2 \%$, or $1 \%$ indel formation.
178. The method of claim 176 , further comprising replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair.
179. The method of claim 178, wherein the efficiency of generating the intended edited base pair is at least $5 \%$.
180. The method of claim 179 , wherein the efficiency is at least $10 \%, 20 \%, 30 \%, 40 \%$, or $50 \%$.
181. The method of claim 178 , wherein the ratio of intended edited basepairs to unintended edited basepairs is $2: 1,3: 1,4: 1,5: 1,6: 1,7: 1$, or $8: 1$.
182. The method of claim 178, wherein the ratio of intended edited basepairs to indel formation is from 2:1 through 1000:1.
183. The method of claim 176, wherein the cut single strand is hybridized to the guide nucleic acid.
184. The method of claim 176, wherein the cut single strand is opposite to the strand comprising the first nucleobase.
185. The method of claim 176, wherein said first base is cytosine.
186. The method of claim 176, wherein the second nucleobase is a non-standard nucleobase.
187. The method of claim 176 , wherein the second nucleobase is other than $G, C, A$, or $T$.
188. The method of claim 176, wherein said second base is uracil.
189. The method of claim 176, wherein the nucleobase editor comprises UGI activity.
190. The method of claim 176, wherein the nucleobase editor comprises a UGI domain.
191. The method of claim 176, wherein the nucleobase editor comprises two UGI domains.
192. The method of claim 176, wherein the nucleobase editor comprises nickase activity.
193. The method of claim 178, wherein the intended edited base pair is upstream of a PAM site.
194. The method of claim 193, wherein the intended edited base pair is $1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides upstream of the PAM site.
195. The method of claim 178, wherein the intended edited base pair is downstream of a PAM site.
196. The method of claim 195, wherein the intended edited base pair is $1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15,16,17,18,19$, or 20 nucleotides downstream stream of the PAM site.
197. The method of claim 176, wherein the method does not require a canonical PAM site.
198. The method of claim 176, wherein the nucleobase editor comprises a linker.
199. The method of claim 198, wherein the linker is 1-25 amino acids in length.
200. The method of claim 198, wherein the linker is 5-20 amino acids in length.
201. The method of claim 198 , wherein the linker is $10,11,12,13,14,15,16,17,18,19$, or 20 amino acids in length.
202. The method of claim 178 , wherein the target region comprises a target window, wherein the target window comprises the target nucleobase pair.
203. The method of claim 202, wherein the target window comprises 1-10 nucleotides.
204. The method of claim 202 , wherein the target window is $1-9,1-8,1-7,1-6,1-5,1-4,1-3$, $1-2$, or 1 nucleotides in length.
205. The method of claim 202 , wherein the target window is $1,2,3,4,5,6,7,8,9,10,11,12$, $13,14,15,16,17,18,19$, or 20 nucleotides in length.
206. The method of claim 202-205, wherein the intended edited base pair occurs within the target window.
207. The method of claim 202-206, wherein the target window comprises the intended edited base pair.

1/208


FIGURE 1


FIGURE 2


FIGURE 3

FIGURE 4


FIGURE 5



FIGURE 7

[^3]

FIGURE 8

EMX1		$\mathrm{C}_{5}$	$\mathrm{C}_{6}$	$\mathrm{C}_{10}$
0 UM XTEN	A	0.1\%	0.1\%	0.1\%
	C	99.8\%	99.8\%	99.8\%
	G	0.0\%	0.0\%	0.1\%
	T	0.0\%	0.1\%	0.0\%
1.85 UM XTEN	A	0.1\%	0.0\%	0.1\%
	C	60.4\%	61.0\%	99.1\%
	G	0.0\%	0.0\%	0.1\%
	T	39.5\%	39.0\%	0.7\%


FANCF		$C_{6}$	$C_{7}$	$C_{8}$	$C_{11}$
0 uM XTEN	$A$	$0.1 \%$	$0.1 \%$	$0.1 \%$	$0.1 \%$
	$C$	$99.8 \%$	$99.8 \%$	$99.9 \%$	$99.9 \%$
	$G$	$0.0 \%$	$0.1 \%$	$0.0 \%$	$0.0 \%$
	$T$	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$
	1.85 UM XTEN	$A$	$0.1 \%$	$0.1 \%$	$0.1 \%$
	$C$	$0.1 \%$			
	$C$	$63.9 \%$	$64.7 \%$	$65.0 \%$	$72.6 \%$
	$G$	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$
	$T$	$36.0 \%$	$35.1 \%$	$34.9 \%$	$27.3 \%$


HEK293 site 2		$\mathrm{C}_{4}$	$\mathrm{C}_{6}$	$\mathrm{C}_{11}$	HEK293 site 3		$\mathrm{C}_{3}$	$\mathrm{C}_{4}$	$\mathrm{C}_{5}$	$\mathrm{C}_{9}$
0 UM XTEN	A	0.1\%	0.1\%	0.1\%	0 uM XTEN	A	0.1\%	0.1\%	0.0\%	0.1\%
	C	99.9\%	99.9\%	99.9\%		C	99.8\%	99.9\%	99.9\%	99.9\%
	G	0.0\%	0.0\%	0.0\%		G	0.0\%	0.0\%	0.0\%	0.0\%
	T	0.0\%	0.0\%	0.1\%		T	0.1\%	0.0\%	0.0\%	0.0\%
1.85 UM XTEN	A	0.1\%	0.1\%	0.1\%	1.85 UM XTEN	A	0.1\%	0.1\%	0.0\%	0.1\%
	C	80.6\%	76.9\%	99.6\%		C	92.2\%	74.8\%	71.5\%	96.6\%
	G	0.0\%	0.0\%	0.0\%		G	0.0\%	0.0\%	0.0\%	0.0\%
	T	19.3\%	22.9\%	0.3\%		T	7.7\%	25.1\%	28.5\%	3.3\%


HEK293 site 4		$\mathrm{C}_{3}$	$\mathrm{C}_{5}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$
0 UM XTEN	A	0.1\%	0.0\%	0.1\%	0.0\%
	C	99.8\%	99.9\%	99.8\%	99.9\%
	G	0.0\%	0.0\%	0.0\%	0.0\%
	T	0.0\%	0.0\%	0.1\%	0.0\%
1.85 UM XTEN	A	0.1\%	0.1\%	0.1\%	0.1\%
	C	98.8\%	60.1\%	97.0\%	99.4\%
	G	0.0\%	0.0\%	0.0\%	0.0\%
	T	1.1\%	39.8\%	2.9\%	0.5\%


RNF2		$\mathrm{C}_{3}$	$\mathrm{C}_{6}$
0 UM XTEN	A	0.1\%	0.0\%
	C	99.9\%	99.9\%
	G	0.0\%	0.0\%
	T	0.0\%	0.0\%
1.85 UM XTEN	A	0.1\%	0.0\%
	C	59.1\%	57.8\%
	G	0.0\%	0.0\%
	T	40.8\%	42.1\%

FIGURE 9

EMX1		$\mathrm{C}_{5}$	$\mathrm{C}_{6}$	$\mathrm{C}_{10}$
untreated	A	0.0\%	0.0\%	0.0\%
	C	99.5\%	99.7\%	100.0\%
	G	0.0\%	0.1\%	0.0\%
	T	0.5\%	0.2\%	0.0\%
XTEN	A	0.7\%	0.5\%	0.0\%
	C	93.5\%	95.8\%	100.0\%
	G	2.1\%	0.3\%	0.0\%
	T	3.6\%	3.3\%	0.0\%
XTEN-UGI	A	0.2\%	0.0\%	0.0\%
	C	81.8\%	82.5\%	100.0\%
	G	0.6\%	0.3\%	0.0\%
	T	17.4\%	17.1\%	0.0\%


FANCF		$\mathrm{C}_{6}$	$\mathrm{C}_{7}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$
untreated	A	0.0\%	0.0\%	0.2\%	0.1\%
	C	99.9\%	99.8\%	99.8\%	99.9\%
	G	0.0\%	0.0\%	0.0\%	0.0\%
	T	0.1\%	0.1\%	0.0\%	0.0\%
XTEN	A	0.3\%	0.1\%	0.0\%	0.0\%
	C	98.1\%	99.2\%	99.0\%	99.8\%
	G	0.4\%	0.0\%	0.0\%	0.0\%
	T	1.2\%	0.7\%	1.0\%	0.2\%
XTEN-UGI	A	0.0\%	0.0\%	0.1\%	0.0\%
	C	93.2\%	93.5\%	93.4\%	98.2\%
	G	0.0\%	0.0\%	0.0\%	0.0\%
	T	6.7\%	6.5\%	6.5\%	1.8\%


HEK293 site 2		$\mathrm{C}_{4}$	$\mathrm{C}_{6}$	$\mathrm{C}_{11}$
untreated	A	0.3\%	0.2\%	0.2\%
	C	99.7\%	99.7\%	99.7\%
	G	0.0\%	0.0\%	0.0\%
	T	0.0\%	0.0\%	0.0\%
XTEN	A	0.3\%	0.3\%	0.3\%
	C	99.7\%	99.4\%	99.7\%
	G	0.0\%	0.3\%	0.0\%
	T	0.0\%	0.0\%	0.0\%
XTEN-UGI	A	0.3\%	0.2\%	0.2\%
	C	98.8\%	98.2\%	99.8\%
	G	0.0\%	0.3\%	0.0\%
	T	0.9\%	1.3\%	0.0\%


HEK293 site 2		$\mathrm{C}_{3}$	$\mathrm{C}_{4}$	$\mathrm{C}_{5}$	$\mathrm{C}_{9}$
untreated	A	0.0\%	0.0\%	0.0\%	0.0\%
	C	100.0\%	100.0\%	100.0\%	99.9\%
	G	0.0\%	0.0\%	0.0\%	0.0\%
	T	0.0\%	0.0\%	0.0\%	0.1\%
XTEN	A	0.0\%	0.6\%	0.3\%	0.1\%
	C	100.0\%	95.8\%	95.8\%	99.2\%
	G	0.0\%	0.2\%	0.7\%	0.4\%
	T	0.0\%	3.4\%	3.2\%	0.3\%
XTEN-UGI	A	0.0\%	0.3\%	0.3\%	0.0\%
	C	96.8\%	83.0\%	79.2\%	98.5\%
	G	0.0\%	0.0\%	1.1\%	0.2\%
	T	3.2\%	16.8\%	19.4\%	1.3\%


HEK293 site 4		$\mathrm{C}_{3}$	$\mathrm{C}_{5}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$
untreated	A	0.0\%	0.4\%	0.0\%	0.0\%
	C	99.8\%	97.6\%	99.9\%	100.0\%
	G	0.0\%	1.0\%	0.0\%	0.0\%
	T	0.2\%	1.0\%	0.0\%	0.0\%
XTEN	A	0.0\%	1.1\%	0.0\%	0.0\%
	C	99.6\%	92.2\%	99.9\%	100.0\%
	G	0.0\%	2.2\%	0.0\%	0.0\%
	T	0.4\%	4.5\%	0.0\%	0.0\%
XTEN-UGI	A	0.0\%	0.5\%	0.0\%	0.0\%
	C	99.4\%	86.7\%	99.1\%	100.0\%
	G	0.0\%	1.8\%	0.0\%	0.0\%
	T	0.6\%	11.0\%	0.9\%	0.0\%


RNF2		$\mathrm{C}_{3}$	$\mathrm{C}_{6}$
untreated	A	0.0\%	0.0\%
	C	99.9\%	99.5\%
	G	0.0\%	0.2\%
	T	0.0\%	0.3\%
XTEN	A	0.0\%	0.0\%
	C	99.8\%	99.3\%
	G	0.0\%	0.2\%
	T	0.2\%	0.5\%
XTEN-UGI	A	0.0\%	0.0\%
	C	99.6\%	99.1\%
	G	0.0\%	0.4\%
	T	0.4\%	0.5\%

FIGURE 10



FIGURE 11B


FIGURE 11C


FIGURE 12B

EMX1:	GAGTC $5_{5} \mathrm{C}_{6}$ GAGCAGAAGAAGAAGGG
FANCF:	$\mathrm{GGAATC}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{TTC}_{11}$ TGCAGCACCTGG
HEK293 site 2:	$\mathrm{GAAC}_{4} \mathrm{AC}_{6} \mathrm{AAAGCATAGACTGCGGG}^{\text {a }}$
HEK293 site 3:	$\mathrm{GGCC}_{4} \mathrm{C}_{5}$ AGACTGAGCACGTGATGG
HEK293 site 4:	$\mathrm{GGCAC}_{5} \mathrm{TGCGGCTGGAGGTCCGGG}^{\text {G }}$
RNF2:	$\mathrm{GTC}_{3} \mathrm{ATC}_{6}$ TTAGTC $_{12} \mathrm{ATTACCTGAGG}^{\text {a }}$

FIGUIRE 13A

16/208


17/208


FIGURE 13C

FIGURE 14A

		Ag			Ab			U81			Ala			钣			Cstry			lys			
TPJYY63	C	Q	C	C	6	C	C	A	T	6	G	C	C	A	T	C	I	$\mathrm{G}_{1}$	C	A	A	G	C
A	00	00	00	0.0	0.	00	00	\％＜	00	0.0	0.3	00	00	\％	0.0	00	00	\％	\＃0	纹速	\％	0.0	00
C	\＃ink	K－	00	\＃kis	00	\％ L ／	シisk	00	00	00	009	\％\％	人4，	00	00	（1）	00	0.4	\ikis	0.0	00	03	\％isis
6	00	00	\％	0 0	\％\％	00	00	08	00	\％	恼 \％	00	00	00	00	00	00	\％ \＆	00	60	00	\％kik	00
T	00	00	00	0.0	00	60	00	00	－i＜	0.1	001	0.	00	00	\iks．	00	リנ\％	0.1	00	00	0.0	009	00



FIGURE 15A


FIGURE 15B
$\begin{array}{lllllllllllllllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 18 & -\end{array}$


FIGURE 15C


FIGURE 15D

APOE4 Cys112Arg:
APOE4 Cys158Arg:
CTNNB 1 Thr 4 Ala:
HRAS GIn6tArg:
p53 Tyr163Cys:
p53 Tyr236Cys:
p53Asn239Asp:

5-GGAGGACGTGC GCGGCCGCCTGG $^{\text {GCG }}$
5-GAACC ${ }_{5}$ GCCTGGCAGTGTACCAGQ
5-CTGTGGCAGTGGCACCAGAATGQ
$5-\mathrm{CCTCCC}_{6}$ GGCCGGCGGTATCCAGG
5-GCTIGC $A G A T G G C C A T G G C G G G G$
5 -ACACATGC AGTTGTAGTGGATGQ
5-TGTC,ACACATGTAGTIGTAGTGQ
FIGURE 16A

FIGURE 16B

Protospacer and PAM sequence: 5.TTCCCCCCCCGATTTATTTATEQ. ${ }^{3}$

Sequence	$\%$ of total reads
CCCCCCCC	62.4
TTTMTCC	18.2
TTTTTTC	13.4
TMTTTT	3.3
TCCCCCCC	0.8
CCCCTTCC	0.3
CCCTTTCC	0.3
TTTTCCC	0.3
CCCCTCCC	0.3

FIGURE 17


FIGURE 18A

EMX1	$\mathrm{C}_{5}$	$\mathrm{C}_{6}$
NBE1	$6.2 \%$	$6.5 \%$
NBE1+UGI	$9.7 \%$	$10.1 \%$
NBE2	$8.0 \%$	$8.7 \%$

FIGURE 18B

FANCF	$\mathrm{C}_{5}$	$\mathrm{C}_{7}$	$\mathrm{C}_{0}$	$\mathrm{C}_{10}$
NBE1	$3.7 \%$	$3.2 \%$	$3.4 \%$	$2.4 \%$
NBE1+UGI	$7.5 \%$	$7.6 \%$	$7.5 \%$	$1.6 \%$
NBE2	$4.7 \%$	$4.6 \%$	$4.6 \%$	$0.8 \%$

FIGURE 18C

HEK293 site 2	$\mathrm{C}_{4}$	$\mathrm{C}_{8}$
NBE 1	$0.4 \%$	$0.4 \%$
NBE $1+\mathrm{UGI}$	$1.6 \%$	$2.6 \%$
NBE2	$3.4 \%$	$5.9 \%$

FIGURE 18D

22/208

HEK293 site 3	$\mathrm{C}_{4}$	$\mathrm{C}_{5}$
NBE1	$2.0 \%$	$1.9 \%$
NBE1 + UG1	$6.5 \%$	$6.7 \%$
NBE2	$10.0 \%$	$12.5 \%$

FIGURE 18E

HEK293 site 4	$\mathrm{C}_{5}$
NBE1	$1.4 \%$
NBE + UGI	$5.4 \%$
NBE2	$8.2 \%$

FIGURE 18F


FIGURE 18G

Non-protospacer Cs	C	T
untreated	$99.93 \%$	$0.03 \%$
NBE1	$99.95 \%$	$0.03 \%$
NBE1 + UGI	$99.91 \%$	$0.06 \%$
NBE2	$99.92 \%$	$0.04 \%$

23/208




FIGURE 21

Emx		G	A	G	T	05	6	G	A	G	C	A	G	A	A	G	A	A	G	A	A	\％	0	0
	A	02	\＆\％	01	01	01	00	03	ISM	0.1	0	4\％	02	4is	Wय	03	\4\％	4\％	0.2	＊\＄	4\％	01	0.2	02
	c	00	00	00	0.0	厄i4	¢）．	0.0	00	00	SW\％	00	00	00	0.2	06	03	00	003	00	20	00	00	00
	G	Wis	00	\％s	00	60	00	34\％	00	\＄\％	0.1	00	\％\％／	00	00	乡1．	00	00	－\％	00	03	\％is	\％	Y／
	T	01	00	00	W\％	乡乡	\％＂	0.0	00	00	07	00	00	00	00	01	00	0.3	00	00	00	00	00	00
FANCF		G	$\bigcirc$	A	A	T	$\mathrm{C8}$	C 7	C 8	7	T	011	T	$g$	C	A	6	C	A	6	c	，	c	0
	A	01	02	M！	ms．	00	01	09	01	00	01	01	01	01	01	）	62	02	\％）	03	03	01	03	04
	C	00	00	01	0.1	00	\％）	4．	W：	0.0	00	\％	00	00	\％4．	0.1	00	\＄\％	4.9	\％s	S\％	00	00	00
	G	ses	\％	00	00	00	00	00	00	00.	00	00	00	\％	02	06	4\％．	02	10.0	al	80	00	\％s	4．4．
	T	01	01	00	0.0	\％s：	\％）	§／．		W\％	\＄4	\％ l \％	39\％	0．）	8.3	00	0.3	00	00	00	00	sis	0.1	0.1
HEKCM She 2		6	A	A	C 4	A	C6	A	A	A	$G$	C	A	T	A	$G$	A	0	T	6	C	$\Leftrightarrow$	6	0
\％ 850 NWBE	A	01	IUs！	4．	01	4II	01	3乡	WII！	4）	$0 \cdot$	01	SWI	00	\％	02	M1：\％	01	0.6	B3	0	01	0.2	02
	C	00	00	01	W\％	00	\％\％＂	00	00	00	60	\％\％	00	00	0.1	00	60	\＄9．	00	00	93．	00	00	00
	5	\％	00	00	00	00	00	00	00	00	¢）	0.0	00	01	00	S\％	03	00	00	\％s．	00	4	\＄3．	4
	T	01	00	00	3）	00	\％	00	80	00	03	03	08	4\％	80	03	b0	00	4．	0.0	0.1	00	03	00
Hek293 sine 3		0	G	0	$\mathrm{C}_{4}$	c	A	0	A	0	T	6	A	6	0	A	C	6	？	6	A	T	6	6
	A	0.2	01	01	0.1	00	92．	0.2	\％ 4	01	0.0	0.2	3\％	0.1	0.1	M0．	9	0.1	00	0.2	\％\％	00	0.1	0.1
	C	00	00	\％\％	\％閏	\％乡	00	00	00	\＄\％	00	00	00	00	\％	00	乡＂	00	00	00	13	00	00	00
	6	\％）	¢＜	00	00	00	0.0	¢\％	00	00	00	\％3	00	4is	00	00	03	\＄93	00	：	00	00	\％	\M
	T	01	0.1	7.7		\％\％	00	00	00	33	9	0.1	0.0	06	0.1	08	0.2	00	4\％	00	0.0	\％is	00	00

## FIGURE 22

HEKO3 Slle 3		$G$	6	C	$\mathrm{Cl}_{4}$	C	A	6	A	C	T	6	A	6	C	A	C	G	T	5	A	？	\％	0
	$A$	02	0.1	0.1	0.1	00	9）	02	sy	0.	00	02	8	0.1	0.1	U15	01	0.1	00	02	）	00	01	0.1
	c	00	00	\＄2s	T4	\％\＄	00	00	00	\＄	00	00	00	00	\＄＞	©0	4	00	00	00	13	00	00	00
	G	4\％	4i\％	00	00	00	00	9	00	00	00	9	00	S\％	00	00	00	4y	00	\＄\％	00	00	\＄	4is
	T	0 ）	0.1	77	\＄4．	\％\＄	00	010	00	33	4\％	01	00	00	Q）	00	02	00	St	00	00	【イ\％	00	00


HEKOS sile 4		$G$	6	0	A	C5	T	$G$	0	6	0	0	T	6	6	A	Q	6	T	3	6	\％	\％	\％
165 What	A	03	0.2	01	O	01	00	02	01	02	0.2	01	00	03	0.5	S	01	0.1	00	01	01	01	02	12
	c	00	00	\＄\％	00	\＄乡	06	00	\％）	00	00	צ1）	00	00	00	00	00	00	00	00	00	00	00	00
	G	9	\＄1／	00	00	00	00	4．	00	Sis	99.	00	00	St1	44	00	4	98	01	S	4	4	93	4＂
	T	00	01	11	60	\％	İs	0.1	29	00	01	05	¢	30	01	00	00	00	94	00	01	0.1	00	00


P6F2		$G$	T	C3	A	\％	C6	T	T	A	G	T	C 2	A	T	1	A	c	C	$T$	6	A	0	6
1850，$\times$ WE 1	A	01	60	01	9	00	00	00	00	43	0.	08	01	St	00	00	S4	0.1	00	00	0.1	S\％	00	00
	C	00	00	41	00	00	4\％	00	0.0	01	00	00	\％	00	00	00	0.1	4＂	S 4	00	0 B	14	00	00
	6	93	0.1	00	00	00	00	0 B	00	00	\％\％	00	00	00	00	00	00	00	00	00	4\％	00	94	94
	T	00	\％	\％	00	WII	\％	WII	䜌	00	01	4i	30.4	00	UII	3	00	00	00	4\％	0.1	00	0.1	06

GWDE-seq counts

EMX 1 on taget
mbegled
NBE1
WBE2
NBE 3
Enx offarge 1
unteated
NBE1
NBE2
NBE 3
EMXI off target 2
nineated
NEE
悪

8

$G$	$A$	$G$	$G$	0	$C$	$G$	$A$	$G$	$C$	$A$	$G$	$A$	$A$	$G$	$A$	$A$	$A$	$G$	$A$	$C$	$G$	$G$


$\stackrel{\Phi}{\infty}$
$\stackrel{8}{6}^{28 / 208}$
FIGURE 23 (CONTINUED)

等


Exal of twel？
EWh of byge ？
wherted
NEE
NEE
NBE

气㐅

 Wheated
NEE！
NBEZ
NBE3

8


60

Enx chatarget of


路


GWOE-SEQ coums



FANCF OF target ? Matezed
NBE
NBE2
NBE

FANOF Dn target mbezed
NBE
NDE 2
NBE

荡


FANCF of haget 2


NBET
NEF
둘
384
 untresten

NBE
NBE
NBES
FANCF OH Wayet 4


FIGURE 24
쁠
焽
N
w

G	G	A	T	T	G	C	C	A	T	C	C	G	C	A	G	C	A	O	C	F	G	G



6	$G$	A	G	$T$	0	c	C	$T$	a	0	₹	A	0	A	$G$	6	$A$	c	0	A	G	$G$
					80	03	08		03	00			00			00	00		0			
					0.8	0.0	00		0.0	0.0			80			0.0		00	0.8			
					00	00	0.0		00	00			00			00		0.0	0.0			
					0.5	0.5	05		03	日．			8.0			0.0		00	00			


6	6	A	0	I	a	c	c	T	c	6	T	9	a	A	G	a	A	c	0	T	$G$	A
					80	00	08		03	0.3			08			0 B		00	0.0			
					00	0.0	00		0.0	00			0.0			0.0		00	08			
					14	05	0.5		04	0.5			00			00		0.0	0.0			
					0.1	0.1	30		$0 \cdot 3$	00			00			0.0		00	BS			

FAMCF © $\begin{gathered}\text { tharget } \\ 5\end{gathered}$
㟧
湈
FANCF offlargets

FANCF Dif target ？ Wheated
NEE
NBE
NEES
FANCF Cifthyet untreated NEE

FIGURE 24 （CONTINUED）

32／208
GMDE－seq cark

HEK ste $20 n \mathrm{amget}$	$G$	A	A	0	A	0	A	A	A	6	0	A	T	A	3	${ }^{\text {A }}$	0	T	6	0	6	3	6
unterted				0.0		00					0.0						00			0.6			
NBE				48		23					00						0.0			0.0			
NBE2				\％\＃		良紬					0.0						00			0.9			
NBE3				玄幺		k k					00						0.0			0.1			
HEX side 2 of hagel	6	A	A	C	A	C	A	4	\}	$Q$	C	A	T	A	$\bigcirc$	A	1	1	Q	¢	C	6	$\bigcirc$
unbetad				0.0		00					00									8.	00		
NBE				0.0		00					0.1									B．	02		
NBE2				0.0		34					00									B．	90		
WES3				8.2		06					00									0.1	00		
HEx sie 20 tharg 2	A	A	A	0	A	T	A	A	A	0	C	A	T	A	9	A	C	T	$\theta$	G	A	A	A
nntertad				0.0							0.0						90			0.3			
NET				80							00						00			80			
NEE2				0.0							0.0						30			0.9			
NEE3				80							00						00			0.6			

FIGURE 25
GWE-seq counk
 33/208

HEK side 3 cmazget	G	G	0	6	0	A	0	A	0	T	G	A	6	6	A.	c	6	T	G	A	$T$	9	6
untrated			0	0.1	0.3				00					03		00							
NBE:			0.1	4.	4.3				0.0					03		0.0							
NBEE2			3.	\%	4				0.0					00		0.0							
			0.5		乡,				0.5					20		0.2							
HEK cite 3 offlarge:	6	4	$c$	$\dot{c}$	6	A	Q	A	6	$T$	G	A	9	$\sigma$	A	c	Q	$T$	$G$	6	$T$	\%	G
unteated	0.0		00	00	00				00					00		0.0				00			
MBE $\square^{1}$	80		08	00	®3				00					20		00				80			
WEE2	0.0		00	0.0	00				0.0					00		0.0				00			
\% EBE S	0.0		03	0.0	0.0				00					23		0.0				03			
	6	A	c	A	0	A	0	A	0	$T$	6	6	0	0	A.	6	6	$T$	G	A	6	6	0
unsezted			0.8		8.9				0.0					83		0.8							
NEEA			00		00				00					90		0.0							
NBE2			0.0		0.0				00					80		00							
KBE 3			38		08				00					03		0.0							
HEK ske 3 ofllayet 3	A	$G$	$\bigcirc$	$T$	c	A	$G$	A	6	T	G	A	9	c	A	A	6	T	6	A	9	G	6
ancerted			0.0		0.0				0.0					83									
NEEf			30		08				0.					00									
MEE2			00		0.0				0.0					30									
NBE 3			0.0		0.9				0.0					0.0									
HEK ste 3 oft arge 4	A	Q	A	$\varepsilon$	$\bigcirc$	A	G	A	8	$T$	G	A	6	0	A	A	6	A	6	A	8	8	6
mutated				0.0	8.5				00					20									
NBEE				0.0	60				00					01									
NBET2				00	08				00					00									
MBE3				0.0	8.0				0.0					3.3									
HEK shes offarget 5	6	A	g	c	0	A	0	A.	$\stackrel{A}{ }$	$T$	6	A	9	0	A.	c	6	$T$	6	A	6	9	0
untrated				00	05									03		0.0							
MaEs:				0.0	00									20		0.0							
NBEE2				0.0	6.									00		0.0							
WEE3				0.0	¢0						RE			20		00							

ChDE-seg couns





FIGURE 27

FIGURE 27 (CONTINUED)

Non-protospacer Cs	$\mathrm{C}(\%)$	$\mathrm{T}(\%)$
untreated	99.94	0.04
NBE1	99.92	0.05
NBE2	99.92	0.05
NBE3	99.94	0.03

FIGURE 28


FIGURE 29A


FIGURE 29C

39/208


FIGURE 30A

untretated			Ag			43			Het			A3			118			O			Ls			Tadal \％
TP59Y163C	8	6	6	C	0	$C$	6	A	1	9	9	0	C	A	1	0	T	3	0	A	A	6	0	06
4	00	0.0	010	00	00	09	00	\％ 1 y	0.0	010	0.1	00	00	W10	00	00	00	00	00	Sus	S\％	00	0.0	
0	\＄11）	5\％	00	待	00	\％	II	00	00	00	00	M1	IM	0.0	00	\＄5\％	00	00	\％11	00	00	00	Lis	
0	00	00	\％M5	00	\％	03	00	$0{ }^{0}$	00	MI！	49m	00	010	00	00	00	00	\％	00	00	00	\％19	00	
$?$	00	00	00	00	00	Q	00	0	\％019	00	00	00	010	00	\％is	00	\％iV	00	0 0n	00	00	00	00	
EEftreted			Ag			As			St			A ${ }_{3}$			15			4			Ys			Indy
TP53Y163C	S	0	6	C	6	C	6	A	1	6	6	0	c	A	$T$	6	7	（3）	C	A	4	6	6	0.7
A	00	00	01	00	0.1	010	00	4y	00	01	0.1	00	00	SM	01	00	00	30	00	SI	U！	01	00	
8	\＃4）	\＄10	00	\＃\＄3	00	\％	Sis	00	00	01	00	\＄\％	\＄	00	¢t	\％\％	0 t	04	\％I	01	00	01	\％m	
Q	00	00	\＃\＃1	01	\％：	01	00	00	00	\％乡＂	94\％	00	00	00	00	00	00		00	00	00	\％	00	
T	00	00	00	01	00	00	00	00	5im	01	00	0.1	00	00	\％iv	00	\＄0\％	0.1	00	00	00	00	00	
			Arg			A名			Mat			却			嗗			\％ 4			W			ntater
5603Y100	C	C	6	C	6	C	C	A	1	6	6	C	C	A	1	C	7	\％	C	A	A	6	C	61
A	00	0.0	00	04	06	0	00	\＄1	0.0	00	00	00	0 O	SIS	00	00	00	00	00	S\％	WIM	00	00	
Q	\＄1\％	WS	00	4\％	00	U＂	Sil	00	00	00	00	MII	\％	00	00	\＄0	00	00	\％	00	00	00	\％	
6	00	00	\％\％	00	Win	03	0.0	$0 \hat{0}$	00	W\％	\％s	00	00	00	00	00	03	\＄is	0.0	00	Q0	\％19	00	
T	00	0.3	00	06	0.0	0 0	0.	$0 \hat{0}$	E\％	06	00	06	0.0	0.0	\＄	00	\＄\％	00	010	00	0.0	$0 \hat{0}$	00	


HEK site 2 on target	G	A	A	$c$	A	C	A	A	A	6	C	A	T	A	6	A	C	T	G	0	G	G	6
untreated				0.0		0.0					0.0						0.0			0.0			
BEI				48		29					0.0						0.0			0.0			
8E2				\％\％		玄很					0.0						0.0			0.0			
8E3				倠		4／4					0.0						00			0.1			
HEK sive 2 GUIDE－sed off farget	G	A	A	$\bigcirc$	A	6	A	A	$T$	$G$	0	A	T	A	G	A	T	T	$G$	0	6	G	G
untreated				0.0		0.0					0.0									0.1	0.0		
8E3				0.0		0.0					0.1									0.1	0.2		
8E2				0.0		0.4					0.0									0.1	0.0		
8 E 3				0.2		0.6					0.0									0.1	0.0		
HEK she 2 GUDE－seg off target 2	A	A	A	0	A	$T$	A	$A$	A	$G$	C	A	T	A	$G$	A	C	T	G	C	A	A	A
unkeated				0.0							0.0						0.0			0.0			
BE				0.0							0.0						0.0			0.0			
8E2				0.0							0.0						0.0			0.0			
853				0.0							0.0						0.0			0.0			
HEK site 2 ChiP－seg off target ：	$T$	$\bigcirc$	A	©	G	6	T	6	A	Q	C	A	$T$	A	6	A	0	7	$G$	0	0	$G$	6
untreated		0.0									0.0						0.0			0.0	0.0		
8E 3		0.0									0.0						0.0			0.1	0.0		
8 E 2		0.0									0.0						0.0			0.1	0.0		
8E3		0.0									0.0						0.0			0.1	0.0		

FIGURE 31
g

HEK site 2 ChP－seq

untreated
出
y
BE3

## －

HEK ste 2 Chip－s
ontang
untreated
荡
BE3
HEK site 2 Chif－seg
of targel 4 untreated
$8=8$
298
1.8
\＆
HEK site 2 Chip－seq of target 5 unireated
背
荡
$\begin{array}{lll}\mathrm{BE} 2 & 0.0 & 0.0 \\ \mathrm{BE} 3 & 0.0 & 0.0\end{array}$ $0.0 \quad 0.0$ $\underset{2}{2}$
0.0

$A$	0	$T$	$G$	0	$T$	$G$	$G$
0.0	0.0						
0.0		0.0					
0.0		0.0					
0.0		0.0					



FIGURE 31 （CONTINUED）

GWEE－sa4 country ChiP－sea

9	$G$	0	C	0	A	$G$	A	$\varsigma$	1	6	$\stackrel{A}{1}$	9	6	A	C	6	T	G	A	T	G	Q
		0.1	6）	0.1				00					00		0.0							
		0.1	4	4				68					00		00							
		3.	\％					00					60		00							
		0.5		童䊽				\％5					0.0		0.2							

HEl 3 施 $30 n$ aryet ambeated俞

 off axget： wrixeated

BE
BEZ
SES

## BES

HEK side 3 GraOE－5es


HEK side SGMOE－SE on taye 3

BEA
$8 E 2$
EE3
HER Six S GODDE－sea off bage 4
wheater
N
等
8
8
5
m





FIGURE 32 (CONTINUED)
SEK Ste 3 Gune-sex
oft laget 5



HEK Sise 3 ChP-sea
3 target 2
whreated
$\mathrm{BE}:$
BE
ED
HEK sixe 3 Cup-sed

HEK site 3 CuF-seg
 HEX she 3 chipsed
of taget 5 uftreated

	6	6	6	A	6	？	G	¢	0	O	0	T	0	6	A	6	6	T	$G$	G	3	6	6
\}utuearea			60		9.9			$0:$			0.5												
gEs			00		®． 4			¢．			0.0												
EE2			0		\％\％\％			6.			00												
EE3			15					10			0.0												
	？	G	C	A	8	7	6	0	0	G	0	G	G	S	A	5	O	A	g	G	\}	G	G
matreater			08		0.0			6.8			00	08											
8E1			00		05			0.1				0.0											
8 E 2			93		32			83			0.5	00											
8E3			32					33			0.5	0.5											
	\％	$G$	$c$	T	$G$	T	6	C	9	5	$\%$	$\bar{\square}$	9	c	A	G	6	$\Theta$	G	6	T	6	0
wherext			95		0.5			8			0.0												
BEI			06		06			8.1			ab												
8E2			0.9		0.4			0.			0.3												
2E3			0.6		33			9．			0.8												
HEK site 4 GuIE－sed ch target 3	6	6	0	A	6	G	A	$\bigcirc$	5	5	0	里	G	$\sigma$	A	6	G	T	G	5	5	6	G
，wheated			96		03			00			0.8												
BE1			8.1		\＃\＃\＃目			40			0.8												
EE2			00		\％			39			00												
EES			96		乡k			18			0.1												
coltarye 4	G	$G$	0	A	T	$\infty$	A	0	$G$	$G$	0	I	6	6	A	6	G	T	3	6	A	$G$	$G$
unceated			60					90			0.5												
EEf			20			1．2		03			00												
EE2			95			53		27			00												
EES			32			良良		3.			0.0												

46/208


## 47/208

$\$$


FIGURE 33 (CONTINUED)
APOE4
MbETEd



$\qquad$


$48 / 2$
$=$
\＃






 015 H




APOE4
Hpreates






 49/20

3






























TPE
Mratat

A	6	\%	9	85	0	4.	3	0	40		A:			A5			63	40	60		12			






51/208

















 FIGURE 35 (CONTINUED)


FIGURE 36A


FIGURE 36B


FIGURE 36C


FIGURE 36E


FIGURE 36F


FIGURE 37A

54/208



FIGURE 37C


FIGURE 38

57/208
$\forall / \perp$ 이 рәみәлиоэ $9 / \bigcirc$ дәכedsoloıd-uou पұ! М spead


FIGURE 39A

FIGURE 39B
viveato
 $\infty$ $\Leftrightarrow$ $\Leftrightarrow 8 \%$ 3

## 

## 

		6䁖			䍅			L 4			A嘘			V1			T3			G\％			606\％	
	¢	A	\＆	6	6	6	0	$\bigcirc$	7	$\bigcirc$	6	¢	\＆	Q	1	8	T	\＆	6	¢	\％	今	\％	06
A	08	统：	䜌㐫	（1）	03	03	410	06	乡6	鲑	60	60	䊽糹：	60	04	\％	¢	§	31	09		0	06	
6	04	0	60	80	縕	06	乡k！	絃＊	¢ 6	60．	00		\％	60	60	\＄0	匌	01	玄级	乡幺＊＊	08	\＄3\％	\＄0	
6	\＃乡 kk	惑	08		諸	\＃kiks	U18	溈	96	\＃kisk	䜌㐫	¢8	8		\％f	\％絃荗	\％	\％ิ	01	缞	08	乡iki）	交㐫，	
7	W0	Q	名	0 O	（3）	\％	K人	0		\＄	旬	¢	Q	0ी		\＄1	§幺幺幺）	06	0	明	6\％	\＄1．	\％	
			㱛			46			娬			A 4			V ${ }^{\text {\％}}$			W			S無			60 \％\％
AMOEACTM K	\％	\％	S	$\theta$	6	0	6	$\xi$	\％	8	¢	C		S	1	8	1	\＆	8	$\xi$	＊	8	\％	46
A	01		杪，	06	00	06	41	$0 \%$	\％	\％$\%$	00	60		00	\％0	\％	$0 \%$	㐫䊽	3	$0 \%$	姟㐫	\＃3．	06	
6	0 鳥	\＄3	32		納	06	縕的	\＃脑及	嗗	K 1	02	絃	结	0 A	12	3		$3 \%$	\％\％\％	緼	\？	\＄3．	60	
6	\％\％\％	06	戎	§単家	30	§伓\％	0.	00	\％		良\％	40	6.	§幺k＊	14	妙＊	92	\％	0	06	88		§幺夊＊	
管	02	06	解	0.	08	6\％	（1）	1）	§姐家	誯	3t	包	Q．	\｛\}	§玄家	\＄4		43	3	06	\％8		00	





2




FIGURE 41

63/208


§


IAPOBEC1



## 65/208




66/208

fAPOBECI
A
C
G
T



$\longrightarrow$| Strain used to develop selection assay |
| :---: |
| Constructs used: APOBEC1 and CDA |

FIGURE 48

69／208


FIGURE 49

origin of replication: ClODF3
effect of copy number on lacZ reversion

FIGURE 49 (CONTINUED)

lacZ locus partially purified (CDA plasmid) partially corrected



FIGURE 51


Row 1: CDA-dCas9 + selection plasmid (chlors)
Row 2: CDA-dCas9 + pos. control selection (chlor ${ }^{\text {P }}$ )

Row 3: $\mathrm{APOBEC}-\mathrm{dCas} 9+$ selection plasmid (chlors)

Row 4: rAPOBEC-dCas9 + pos. control selection (chlor ${ }^{\text {B }}$ )
FIGURE 52
rAPOBEC-XTEN-dCas9-UGI on 8 ug/mL chlor

CDA-XTEN-dCas9-UGI: survival on $8 \mathrm{ug} / \mathrm{mL}$ chloramphenicol

FIGURE 53B

FIGURE 54

77／208

Emid ontarge	6	A	6	I	c	C	6	A	6	C	A	6	A	A	6	A	A	6	A	A	6	3	6
mbeated					340	$0 \pm 1$				40													
EE3						4				$0 \pm 0$													
					絲娃文	級寺				$0 \times 1$													
ExXt offlaget 1	6	A	6	1	1	A	$G$	A	6	c	A	6	A	A	6	A	A	6	A	A	A	6	6
urteated										$0 \pm 0$													
EE3										$0 \pm 0$													
HE－8E3										$0 \pm 0$													
Etix off taget 2	6	A	6	1	0	T	A	A	6	C	A	6	A	A	6	A	A	6	A	A	6	A	6
uneested					$0 \pm 0$					40													
EDS					圭䜌					40													
4F－8E					$17 \pm 03$					$0 \pm 0$													
Exkl afflaget？	6	A	6	6	c	C	G	A	Q	C	A	Q	A	A	6	A	A	A	6	A	C	8	G
urleated					$0 \pm 0$	$0 \pm 0$				$4 \pm 1$													
8E\％					－＜	\％				$02 \pm$													
4F－8E3					$0 \pm 0$	$0 \pm 0$				140													
Eldi offlaget 4	6	A	6	1	0	0	7	A	6	0	A	6	6	A	6	A	A	6	A	A	0	A	6
mineated					$0 \pm 1$	$1 \pm 0$				$0 \pm 0$													
8E3					13411	$13 \pm 0$				$0 \pm 0$													
HF－8E3					$01 \pm 0$	0.240				$0 \pm 0$													

FIGURE 55

78/208


FIGURE 55 (CONTINUED)

EmXi		$\mathrm{C}_{3}$	$\mathrm{C}_{6}$	$\mathrm{C}_{12}$	indel \％
untreated	A	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$
	C	94：3：\％	94．⿰幺幺𠃌．	99\％等：	
	G	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	
	$T$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	


FARCF		$\mathrm{C}_{6}$	$\mathrm{C}_{7}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$	indel \％
unireated	A	$0 \pm 0$				
	C		\％\％\％\％	\％乡：3：\％	M\％\％\％	
	G	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	
	T	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	


BE3	A	$1.3 \pm 0.1$	$0.7 \pm 0.2$	$0 \pm 0$	$2.6 \pm 0.3$
	C	51\％ 4	5serek	98．$=$ ．	$2.6 \pm 0.3$
	G	$4 \pm 0.7$	$1.9 \pm 0.4$	$0 \pm 0$	
	T	4 $\%$ \％	418\％®4	$0 \pm 0$	


HF EE3	A	$1.5 \pm 07$	$0.5 \pm 0.1$	$0 \pm 0$	$1 \pm 0.1$
	C	4 8： 25	498：6s	95．	
	G	$4.2 \pm 12$	$0.6 \pm 0.2$	$0 \pm 0$	
	T	493，40	4\％usos	$0 \pm 0$	


HF BE3	A	$0.9 \pm 0.2$	$2 \pm 0.4$	$0.9 \pm 0.2$	$0.4 \pm 0$	$5.9 \pm 07$
	C	535＊ 84	5 \％s\％$\%$	830 08	8\％\％\％s	
	G	$1.4 \pm 0.2$	$0.6 \pm 0$	$0.5 \pm 0.1$	$0.3 \pm 0$	
	$T$	4，		3\％3，03	$14.4 \pm 2.2$	


RNF2		$\mathrm{C}_{3}$	$\mathrm{C}_{6}$	$\mathrm{C}_{12}$	indel \％
untreated	A	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$
	C	\％s：\％	¢SS．s：	99\％过	
	G	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	
	T	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	


BE3	A	$0.4 \pm 0$	$1.5 \pm 0.2$	$0.1 \pm 0$	$2.3 \pm 0.3$
	C	\％esm\％	43＋0		
	G	$0 \pm 0$	$128 \pm 2.4$	$0.1 \pm 0$	
	T	\％\％s\％\％	4）＝\％	$4.6 \pm 0.2$	


HF BE3	A	$0 \pm 0$	$0.2 \pm 0$	$0 \pm 0$	$0.5 \pm 0.1$
	C	\％\％－．．8	9．4．3\％	4．4．\％．	
	G	$0 \pm 0$	$2.4 \pm 0.5$	$0 \pm 0$	
	T	23－4．		$4.5 \pm 0.1$	


HEK3		$\mathrm{C}_{6}$	$C_{7}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$	indel \％
intreated	A	$0 \pm 0$				
	C	53\％s：3	\％乡乡：\％	99．4．s	乡4\％\％	
	G	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	
	$T$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	


BE3	A	$0 \pm 0$	$1.6 \pm 0.2$	$1.5 \pm 0.3$	$0.2 \pm 0$	$2.7 \pm 0.4$
	C	\％乡\％\％	4Be\％s\％	408．0\％	9\％\％：－	
	G	$0 \pm 0$	$1.4 \pm 0.2$	$10.5 \pm 1.2$	$0.3 \pm 0$	
	$T$	$1.1 \pm 0.2$			$0.7 \pm 0.1$	


HF BE3	A	$0 \pm 0$	$0.8 \pm 0.2$	$1.1 \pm 0.3$	$0.4 \pm 0$	$4.1 \pm 0.7$
	C	3－3\％\％＂	W\％\％\％	S\％Msess		
	G	$0 \pm 0$	$0.9 \pm 0.2$	$6.1 \pm 1.1$	$0.7 \pm 0.2$	
	$T$	$2 \pm 0.4$		2\％ $2 \times 2$	$2.7 \pm 0.2$	


HEK4		$\mathrm{C}_{6}$	$\mathrm{C}_{7}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$	indel \％
untreated	A	$0 \pm 0$				
	C	rsas：	अ，＜s\％	49． 4 and	\＄9：3＊	
	G	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	
	$T$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	


BE3	A	$0 \pm 0$	$5.4 \pm 1.3$	$0 \pm 0$	$0 \pm 0$	$3 \pm 0.7$
	C	㘶\％．	$4 \% 3 \pm 2$		乡s\％s\％	
	G	$0 \pm 0$	$181 \pm 23$	$0 \pm 0$	$0 \pm 0$	
	$T$	$1.1 \pm 0.1$		$0.9 \pm 0.1$	$0.1 \pm 0$	


HF BE3	A	$0 \pm 0$	$5.2 \pm 0.8$	$0 \pm 0$	$0 \pm 0$	$1.3 \pm 0$
	C	2s：4．4．	35\％\％ 2 \％	4． 5 \％．4．	99\％s＊：	
	G	$0 \pm 0$	$16 \pm 28$	$0 \pm 0$	$0 \pm 0$	
	T	$0.2 \pm 0$	4\＃\＃	$1.3 \pm 0.1$	$0 \pm 0$	

FIGURE 56

81/208


Genomic DNA


FIGURE 58


FIGURE 59

FIGURE 60

## NGCG PAM EMX (VRER BE3)



FIGURE 62

FIGURE 63

86/208


FIGURE 64A


FIGURE 64B


FIGURE 64C

FIGURE 65

FIGURE 66


90/208

FIGURE 68

FIGURE 69

FIGURE 70

93/208

FIGURE 71
BE3

BE3		Lys			Arg $\rightarrow$ Cys			Leu $\rightarrow$ Lew			Aa			Tyr			Gln			$c$
Base	G	A	A	G	$c$	G	$c$	c	7	G	G	c	A	G	T	G	$T$	A	c	
A	0.2	99.9	99.8	0.0	1.0	0.1	1.8	1.2	0.0	0.0	0.1	0.1	99.8	0.0	0.0	0.1	0.1	99.9	0.1	0.0
c	0.0	0.0	0.1	0.0	38.1	0.0	49.8	52.3	0.0	0.0	0.0	99.7	0.1	0.0	0.1	0.0	0.0	0.0	99.9	99.9
6	99.8	0.0	0.0	99.9	1.8	99.8	1.3	0.7	0.1	99.9	99,8	0.0	0.1	99.9	0.1	99.9	0.1	0.0	0.0	0.0
T	0.0	0.0	0.1	0.1	59.2	0.1	47.0	45.8	99.9	0.1	0.1	0.2	0.0	0.0	99.8	0.0	99.8	0.0	0.1	0.1
BE3 W90Y R132E		Lys			Arg $\rightarrow$ Cys			Leu $\rightarrow$ Leu			Ala			Tyr			Gin			
Base	G	A	A	G	c	G	c	C	7	G	G	C	A	G	T	G	T	A	c	$c$
A	0.0	99.9	99.9	0.0	0.5	0.1	0.3	0.1	0.0	0.0	0.0	0.1	99.8	0.0	0.0	0.0	0.1	99.9	0.1	0.0
c	0.0	0.0	0.0	0.1	78.0	0.0	94.8	98.9	0.0	0.0	0.0	99.8	0.1	0.0	0.0	0.0	0.0	0.0	99.9	99.9
G	100.0	0.0	0.0	99.9	0.5	99.9	0.1	0.1	0.0	99.9	99,9	0.0	0.1	100.0	0.1	99.9	0.0	0.0	0.0	0.0
$T$	0.0	0.0	0.0	0.0	21.0	0.0	4.8	0.9	99.9	0.0	0.0	0.1	0.0	0.0	99.8	0.0	99.9	0.0	0.0	0.0

95/208


FIGURE 73
BE3:

HF-BE3:

EMX1	$\mathrm{C}_{3}$	$\mathrm{C}_{6}$	$C_{12}$	indel\%
untreated	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$
	$99.9 \pm 0$	$99.9 \pm 0$	$99.9 \pm 0$	
	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	
	$0 \pm 0$	$0 \pm 0$	$0 \pm 0$	



| BE3 | $A$ | $0.8 \pm 0.1$ | $1.2 \pm 0.3$ | $1.2 \pm 0.1$ | $0.2 \pm 0.1$ | $5.8 \pm 0.9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



numbers are $\mu \pm \sigma$ from three independent replicates


BE3	A	$0 \pm 0$	$1.6 \pm 0.2$	$1.5 \pm 0.3$	$0.2 \pm 0$	$2.7 \pm 0.4$		
	C	$98.7 \pm 0.2$	$48.6 \pm 5.4$	$40.8 \pm 6.7$	$98.6 \pm 0.1$			
	G	$0 \pm 0$	$1.4 \pm 0.2$	$10.5 \pm 1.2$	$0.3 \pm 0$			
	T	$1.1 \pm 0.2$	$48.2 \pm 4.9$	$47 \pm 5.2$	$0.7 \pm 0.1$			


BE3	A	$0 \pm 0$	$5.4 \pm 1.3$	$0 \pm 0$	$0 \pm 0$	$3 \pm 0.7$
	C	$98.7 \pm 0$	$44.5 \pm 8.2$	$98.9 \pm 0$	$99.8 \pm 0$	
	G	$0 \pm 0$	$18.1 \pm 2.3$	$0 \pm 0$	$0 \pm 0$	
	T	$1.1 \pm 0.1$	$31.9 \pm 4.8$	$0.9 \pm 0.1$	$0.1 \pm 0$	



FIGURE 75

FIGURE 76

EMX1 off target 6	G	A	G	T	C	C	G	G	G	A	A	G	G		A	G	A	A	G	A	A	A	G	G
untreated					$0 \pm 0$	$0 \pm 0$																		
BE3					$0.4 \pm 0$	$0.4 \pm 0$																		
HF-EE3					$0 \pm 0$	$0 \pm 0$																		
EMX1 off target7	G	A	G	C	C	G	G	A	G	C	A	G	A		A	G	A	A	G	G	A	G	G	G
untreated				$0 \pm 0$	$0 \pm 0$					$0 \pm 0$														
BE3				$0 \pm 0$	$0 \pm 0$					$0 \pm 0$														
HF-BE3				$0 \pm 0$	$0 \pm 0$					$0 \pm 0$														
EMX1 off target 8	A	A	G	T	C	C	G	A	G	G	A	G	A		G	G	A	A	G	A	A	A	G	G
untreated					$0 \pm 0$	$0 \pm 0$																		
BE3					$0 \pm 0$	$0 \pm 0$																		
HF-BE3					$0 \pm 0$	$0 \pm 0$																		
EMX1 off target9	G	A	A	T	C	C	A	A	G	C	A	G	G		A	G	A	A	G	A	A	G	G	A
untreated					$0 \pm 0$	$0 \pm 0$				$0 \pm 0$														
BE3					$0.1 \pm 0$	$0.1 \pm 0$				$0 \pm 0$														
HF-EE3					$0 \pm 0$	$0 \pm 0$				$0 \pm 0$														
EMX1 of target 10	A	C	G	T	C	T	G	A	G	C	A	G	A		A	G	A	A	G	A	A	T	G	G
untreated		$0 \pm 0$			$0 \pm 0$					$0 \pm 0$														
BE3		$0 \pm 0$			$1.5 \pm 0.1$					$0 \pm 0$														
HF-BE3		$0 \pm 0$			$1.1 \pm 0.2$					$0 \pm 0$														

FIGURE 76 (CONTINUED)


EMX-1 Off Target Site 2


FIGURE 77

101/208

FANCF on target


FIGURE 78

## HEK-3 on target



FIGURE 79

103/208
HEK-4 on target


FIGURE 80

104/208
HEK-4 Off Target Site 3



FIGURE 80 (CONTINUED)

105/208




FIGURE 81


FIGURE 82

107/208
sghr_ 13


FIGURE 83
sgHR 16


Treatmens
FIGURE 84

108/208

## sgHR 17



FIGURE 85

## Possible Changes Using $C \rightarrow T$ Base Editors



FIGURE 86
Base Editing APOE4 to APOE3r


FIGURE 87 untreated
ADDE4CIS8R
A
$C$
$G$
$C$ untreated
APOE 4 C158R
A
C
$G$
G untreated
APCEACI68R
A
C
G
C untreated
APCEACI68R
A
C
G
C

	Ls			放診			Leu			4 Cb			val			Wr			\% ${ }^{\text {a }}$			indel\%	
G	A	A	G	\%	G	c	C	T	G	G	c	A.	9	I	9	T	A	6	C	A	G	6	0.8
00	1000	000	00	00	00	00	06	00	00	$0 \%$	00	1000	00	00	00	00	two 0	00	00	W000	0.3	00	
00	03	00	0.5	1000	0.3	1000	1000	00	00	00	1000	$0 \cdot 6$	00	00	03	00	00	1000	1000	00	00	00	
60]	60	00	100.	00	600.	00	00	03	1000	1000	08	0 O	1600	Q0	160.3	¢0	[0]	00	60	10	909	1000	
03	bis	80	60	00	60	06	¢0	1008	00	00	80	0.0	00		80	1000	00	00	00	00	00	00	

$$
60 \quad 60
$$

$$
00
$$

$$
13 \quad 00
$$

111/208

$$
0806
$$

$$
\text { 6) } 41
$$

$$
\begin{aligned}
& \text { indel\% }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
1 \\
9 \\
0 \\
4 \\
48 \mathrm{CO} \\
80 \mathrm{H}+6
\end{array}
\end{aligned}
$$

BE3-treated	61						縎彦 + \%ox			Tyr			Pro			64			Clu				
PRNPR37X	6	6	C	A	6	$\mathrm{C}_{7}$	$\mathrm{C}_{8}$	G	A	T	A	C	0	C	G	6	G	6	0	A	\%	9	8
A	0.0	00	01	1000	0.0	11	03	0.1	\$000	00	100.0	0.0	00	0.0	00	00	00	00	00	1000	00	0.0	0.0
0	0.0	0.0	98.9	0.0	0.0	54.9	57.8	00	00	00	00	98.8	99.8	1000	0.0	00	00	00	1000	0.0	00	0.0	0.0
G	100.0	1000	00	00	1000	2.1	06	09.9	00	00	00	0.0	00	00	1000	1000	1000	1000	00	00	1000	000	1000
$T$	00	00	1.1	0.0	0.0	41.9	41.2	0.0	0.0	1000	00	0.2	0.2	0.0	0.0	00	00	00	00	0.0	00	0.0	00

FIGURE 89


FANCF-parental		$\mathrm{C}_{6}$	$\mathrm{C}_{7}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$	indel \%
untreated	A	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.03 \%$
	C	$99.9 \%$	$99.9 \%$	$99.9 \%$	$99.9 \%$	
	G	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	
	T	$0.1 \%$	$0.1 \%$	$0.1 \%$	$0.0 \%$	



BE2	A	$0.3 \%$	$0.4 \%$	$0.2 \%$	$0.0 \%$	$0.25 \%$
	C	$95.3 \%$	$97.3 \%$	$97.6 \%$	$99.8 \%$	
	G	$0.4 \%$	$0.1 \%$	$0.0 \%$	$0.0 \%$	
	T	$4.0 \%$	$2.3 \%$	$2.1 \%$	$0.1 \%$	


BE3	A	$2.4 \%$	$3.2 \%$	$2.2 \%$	$0.9 \%$	$18.88 \%$
	C	$60.3 \%$	$72.6 \%$	$73.8 \%$	$86.6 \%$	
	G	$1.2 \%$	$0.6 \%$	$0.4 \%$	$0.3 \%$	
	T	$36.2 \%$	$23.6 \%$	$23.5 \%$	$12.3 \%$	

FIGURE 90 (CONTINUED)

115/208

HEK3-UDG KO		$\mathrm{C}_{3}$	$\mathrm{C}_{4}$	$\mathrm{C}_{5}$	$\mathrm{C}_{9}$	indel \%
untreated	A	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.00 \%$
	C	$100.0 \%$	$100.0 \%$	$100.0 \%$	$100.0 \%$	
	G	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	
	T	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	



FIGURE 90 (CONTINUED)

HEK4-UDG K0		$\mathrm{C}_{3}$	$\mathrm{C}_{5}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$	indel $\%$
untreated	A	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.00 \%$
	C	$100.0 \%$	$100.0 \%$	$99.9 \%$	$100.0 \%$	
	G	$0.0 \%$	$0.0 \%$	$0.0 \%$	$0.0 \%$	
	T	$0.0 \%$	$0.0 \%$	$0.1 \%$	$0.0 \%$	


FIGURE 90 (CONTINUED)

FIGURE 91


HEK3		$\mathrm{C}_{6}$	$\mathrm{C}_{7}$	$\mathrm{C}_{8}$	$\mathrm{C}_{11}$	indel \%
untreated	A	$0 \pm 0$ $0 \pm 0$ $0 \pm 0$ $0 \pm 0$   $99.9 \pm 0$ $99.9 \pm 0$ $99.9 \pm 0$ $99.9 \pm 0$   $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ $0 \pm 0$   $0 \pm 0$ $0 \pm 0$ $0 \pm 0$ $0 \pm 0$				$0 \pm 0$
	C					
	G					
	T					



BE 3 B	A	$0.1 \pm 0$	$4.9 \pm 0.8$	$3.8 \pm 0.8$	$0.8 \pm 0.1$
	$7.7 \pm 1$				
	C	$99.4 \pm 0.1$	$57.6 \pm 6.3$	$44.4 \pm 8.4$	$97.7 \pm 0.3$
	G	$0 \pm 0$	$3.3 \pm 0.7$	$21.2 \pm 2.8$	$0.7 \pm 0.1$
		$0.4 \pm 0.1$	$33.9 \pm 4.7$	$30.4 \pm 4.7$	$0.6 \pm 0$

FIGURE 91 (CONTINUED)


FIGURE 92A

Species	PAM	Base editor	Reference
S.   pyogenes	NGG	BE3	Wild-type
	NGA	VQR, EQR BE3	Ref \#7
	NGCG	VRER BE3	Ref\#7
S. aureus	NNGRRT	SaBE3	Wild-type
	NNNRRT	SaKKHBE3	Ref\#8

FIGURE 92B


FIGURE 92C


FIGURE 92D


FIGURE 92E


FIGURE 92F

FIGURE 92G

FIGURE 93A


spear Gulouenbes peroyo みoosed




FIGURE 94A


FIGURE 94B




FIGURE 95B

EMX1
$\mathrm{TGC}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{TC}_{8} \mathrm{C}_{8} \mathrm{C}_{10} \mathrm{TC}_{12} \mathrm{C}_{13} \mathrm{C}_{14}$ TGGCCCAGG


FIGURE 96


FIGURE 97A

APOBEC1   mutation	APOBEC3G   mutation	Reference
R126A	R320A	$\# 9,10$
R126E	R320E	$\# 9,10$
W90A	W285A	$\# 9,10$
W90Y	W285Y	This work
R132E	R326E	This work

FIGURE 97B







$60 \%$
$50 \%$
$40 \%$
$30 \%$
$20 \%$
$10 \%$
$0 \%$
site $B$
AGAGC $C_{5} C_{6} C_{7} C_{8} C_{9} C_{10} C_{91} \mathrm{TC}_{33} A A A G A G A G G G$



FIGURE 97C


Editing window width

	Site A	Site B		Site A	Site B
BE3 WT	5.0	6.1	W90Y	3.8	4.9
H121/122R	4.2	7.4	R132E	4.0	3.0
R126A	4.4	3.4	W90Y R126E	2.9	3.0
R126E	4.2	3.1	R126E R132E	2.9	3.0
R118A	2.4	3.6	W90Y R132E	2.7	2.8
W90A	2.5	1.1	W90Y R126E R132E	2.1	1.4

FIGURE 97C (CONTINUED)

FIGURE 98


FIGURE 99

Comparison of on-target acimg.


FIGURE 100


FIGURE 101
EMX-1 OT2C5
EMX-1 OT3 C5 $>15$
90810 1-XWコ
fancforics
FANCF OTIC6
FANCF OTYC7
FANCFOTIC8
FANCF OT1 C11
HEK4 OT1 C5 $\rightarrow$ TS
HEK4 OT1 C8 $>$ T8
HEK4 OT3 C5->T5
HEK4 OT3 C8 $>58$
HEK4 OT4 C5 $>$ T5
HEK4 OT4 C8->T8

FIGURE 102


FIGURE 103

In vitro $C \rightarrow T$ editing on synthetic substrate with Cs placed at odd positions in protospacer


FIGURE 104


FIGURE 105

FIGURE 106A

142/208


FIGURE 106B


FIGURE 107A



FIGURE 108

FIGURE 109

147/208


FIGURE 110


148／208

图 图（
鹵
图

FIGURE 111


149／208


FIGURE 112


150/208


FIGURE 113


151/208

FIGURE 114

152/208


苗 (\%)


FIGURE 115

\&

※ \% ㅃ..


## 153/208



Top strand: non-target strand; Bottom strand: target strand

FIGURE 116


FIGURE 117

BG -background; R912A - B E 3 ; R1225A -self-defeating BE (nicks non-target strand)

## FIGURE 118


FIGURE 121



FIGURE 123


FIGURE 124


FIGURE 125A


FIGURE 125B

159/208

Fratem	C359	SEs	HE-SE3	58	HF-EES	ESS	HFESS
Ecoliceltype	Ruseta	Eoseta	Roseta	El 21 Star	B $2+$ Star	Rusetta pLys	Rosent puss



FIGURE 126A

Promi	HFEES	EE 3	HF-EES	EES	HFEES	BE3	Cas9	Case
Hastay	N-trm	Nemm	Gtam	Gtam:	C-term	Ctem	N-term	N-tam
incoction O0\%	0.7	0.7	13.4	0.7	0.7	0.4	0.4	13.4
Publestion mebod	$\begin{aligned} & \text { Nose } \\ & \text { resin } \\ & \text { FPr } \end{aligned}$	Nick: resn: FPIC	Nom resm: + FPIC	$\begin{gathered} \text { Whal } \\ \operatorname{sesin}- \\ \text { FPEC } \end{gathered}$	FPLC	Nosel sesia FFIC	Nose resin	Nocst resin + FPIC



FIGURE 126B

160/208


FIGURE 126C


EMX On-zarget : GAGTO_GAGCAGAAGAAGAAMMO
EMX1 off-target $1:$ GAGTCTAAGCAGAAGAAGAAGAG
EMX1 offtarget 2 : GAGG\%, GAGCAGAAGAAAGAOWO
EMXI off-target 3: GAGTCYTAGCAGGAGAAGAASAS
FIGURE 127A

161/208


FIGURE 127B


HEK293 site 3 on-targe: GCCシs.AGACTGAGCACGTGATOM
HEK283 ste 3 off-arget 1 CACO. AGACTGAGCACGTGCTGO
HEK293 site 3 of-target 2: GACAC AGACTGGECACGTGAOOB
HEK293 site 3 off-iarget 3: AGCTO AGACTGAGCABGTGAOCS
FIGURE 127C


FIGURE 127D


FIGURE 128A


FIGURE 128B


FIGURE 128C

164/208


FIGURE 129A


FIGURE 129B

165/208


EAX 1 on-target : GAGTO-GAGCAGAAGAAGAACSS
EMX1 off-target 1: GAGTOTAAGCAGAAGAAGAAGAN
EMX 1 offtarget $2:$ GAGGO OGAGCAGAAGAAAGACB
EMX1 offtarget 3: GAGTO, TAGCAGGAGAAGAAGAO
FIGURE 130A


FANCF on-arget GGAATC, TTE, TGCAGCACCOQ
FANOF offirget 1: GGAABNEGGTE TGCAGCAOCACO
FANCF off-iaget 2: GGAGTESMTM. TACAGCACCACO
FANCF off-arget 3: AGAGG, $2, T M$ TOCAGCACCAGO
FIGURE 130B

166/208


HEK293 site 3 on-taget GCOC. AGACTGAGCACGTGATGO
HEK2 33 site 3 of-target $1:$ CACC MGACTGAGCACGTGCTGO
HEK293 site 3 off-arget 2 : GACAAGACTGGGCACGTGAMCO
HEK293 site 3 offtrget 3: AGCTOAGACTGAGCAAGTGAOCG
FIGURE 130C


FIGURE 130D


FIGURE 131A


FIGURE 131B


FIGURE 131C


TYRI:GTEAGGTOGAGGGTCTGTCACG
TYR2: CTT. $\quad$ AGGATGAGAACACAGACO

FIGURE 132A

169/208


FIGURE 132B


VEGFA site 2 : GACY, $\mathrm{M}_{4} \mathrm{ME}_{4}$ ACCCCGCCTCCOC
FIGURE 132C

170/208


FIGURE 132D


FIGURE 133A

171/208


FIGURE 133B


FIGURE 133C

172/208


FIGURE 133D


FIGURE 133E


FIGURE 134A


FIGURE 134B

174/208


FIGURE 135A

EMXI: GAGTCCOAGCAGAAQAAGAAOXQ
FANCF: GGAACCOTTTGCAGCACCTOQ
HEK2: GAACACAAAGCATAQACTGGCOQ
HEKS: GQCGOAGACTOAGCACGTGATOC
HEK4: GGCAGTGCGGCTGGAGGTCOQ\&
FNF2: GTGATETTAGTCATTACGTGAOQ
FIGURE 135B


FIGURE 135C

HEK4		G	6	0	A	\％	T	6	\％	$G$	$G$	C	T	6	6	A	6	6	T	6	G	6	6	6
untreated	A	0.0	0.1	00	\％s\％\％	00	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	，	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0
	C	0.0	00	す10．3	0.0	－1\％	00	00	\％\％：	0.0	0.0	\％\％．	0.0	0.0	0.0	01	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
	C	\％8\％	\％4\％	00	0.0	0.0	00	サシ\％\％	0.0	\％	\％ O \％	0.0	0.0	\％0\％）	－＜\％	00	\＃\％｜3	Wा\％\％	04	58x	\％乡\％	家：\％	\％\％	W\％
	I	80	00	00	00	0.0	\％\％\％	20	00	0.0	00	00	\％乡乡	00	00	00	00	03	\％\％	0.1	00	0.0	0.0	00
8 g 3	A	0	0.0	01	\％${ }^{\text {a }}$	8.4	0.1	． 0	0.1	．	：	30	0	00	00	\＄2\％	00	00	0.0	0.0	00	0.0	90	0.0
	$\bigcirc$	0.0	00	\＄\％	0.0	\％k	0.0	0.0	\＄4．	00	0.0	乡乡\％	0.9	0.0	0.0	0.1	0.0	0.3	0.0	00	0.0	0.0	00	0.0
	G	＊）	\％\％	0.0	0.0	24．	00	\％\％\％	0.0	\％\％	\％从＊	0.0	0.0	4\％0\％	\％．	01	\％\％\％	\％	0.0	乡\％	யौड	\％：\％	\％	\％．
	T	00	00	0.9	00	\％ 2	\％\％	00	0.5	0.0	00	02	\％i\％	0.0	00	00	00	90	\％）	00	00	0.0	0.0	0.0
AD－8E3	A	0.3	0.4	0.3	\％es：	0.9	0.0	0.0	0.9	0.0	0.0	0.1	0.0	0.0	0.0	¢人s．	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	c	0.0	00	4．	0.0	\％\％\％	0.0	0.0	8\％\％	0.0	0.0	9\％．\％	0.1	0.0	0.0	02	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0
	¢	\％）：	乡\％	0.1	0.0	07	00	\％\％	0.1	\％	\％｜\％\％	9.0	0.0	乡\％＂	\＄1\％	00	\％\％	\％リ\％	0.2	49\％	\％\％\％	\％ivi	【イ\％	\％\％
	T	00	00	\％\％	00	び\＃\＃	\％	00	143．	00	0.0	20	\％\＆	0.0	00	00	00	0.0	乡：	00	00	0.0	0.0	0.1

176/208


FIGURE 136B

> HEK2 GACACAAAGCATAGAGTGCGCO
> HEKB: GGCCEAGACTGAGCACGTGATSQ
> HEKA: GGCAMTGCGGCTGGAGGTCCGQQ
> RNF2. GTCATGTAGTGATHACCTGAGQ
> FIGURE 136C


FIGURE 136D

HEK2: GAACACAAAGCATAGACTCCCQQ HEKS GGCB, AGACTGAGCACGTGATCO HEKA: GGCAMTGCGGCTGGAGGTCGGQ@ RNF2: GTCATETTAGTGATTACOTGAGM

FIGURE 137A


FIGURE 137B

178/208



FIGURE 138A

HEK2: GAACABAAAGCATAGACTGCPCQ
HEKS GGC\& CAGACTGAGCACGTGATQ
HEK4: GGCAMTGGGGCTGGAGGTCGGQG
RNF2. GTEATETTAGTCATTACCTGAQQ

FIGURE 138B


180/208


FIGURE 138D


FIGURE 139A

EMX: GAGT@@GAGCAGAAGAAGAAGCQ
FANCF: GGAATC_CTICTGCAGCACCTGQ
HEK2: GAACACAAAGCATAGACTGCCOQ
HEKS: GGCO, AGACTGAGGACGTGATGQ
HEK4: GGCAल TGCGGCTGGAGGTCCGCB
RNF2: GTGATCTTAGTCATACCTGAGQ

FIGURE 139B


FIGURE 139C


FIGURE 139D

EMX1: GAGTCEGAGCAGAAGAAGAAGGO
FANCF: GGAATYGYTTCTGCAGCACCTOQ
HEK2. GAAA․ AAAGCATAGACTGCGGO
HEKS: GGC^लAGACTGAGCACGTGATGS
HEK4: GGCACTGCGGCTGGAGGTCCOG®
RNF2: GTलATल TTAGTCATTACCTGAGQ
FIGURE 140A


FIGURE 140B

Percent of cleanly edited reads with given sequence

HEK2 protospacer sequence	8E3	CDA1-BE3	AD-BE3
QAATAT AAAGCATAGACTGCQGQ	$77 \pm 1$	$88 \pm 2$	$92 \pm 2$
GAACATAAAGCATAGACTGCOGG	$23 \pm 1$	$5 \pm 1$	$4 \pm 1$
GAATACAAAGCATAGACTGCGGG	$0 \pm 0$	$7 \pm 2$	$4 \pm 2$

FIGURE 140C

EMX	GAGTEsGAGCAGAAGAAGAACG\%
FANCF:	
HEKR	GAACACGAAGCATAGACTGCOQQ
HEKS	
HEKA:	GGCAMSGCGGCTGGAGGTCCO¢¢
PNF2.	GTEATCTTAGTCATTACCTGAC以

FIGURE 141A


FIGURE 141B


## HEK2 GAA․ ACAAAGCATAGACTGCGOX HEKS: GGCC_AGACTGAGCACGTGATGQ HEK4: GGCAMTGCGGCTGGAGGTCCGOQ RNF2: GTCATCTHAGTCATACCTGAGO

 FIGURE 142A

FIGURE 142B



FIGURE 142C

HEK4: GGCAC TGCGGCTGGAGGTCCOCO


BE3B:
s-A $19 \pm 1 \%$
$(37 \pm 15 \%$ of $\mathrm{e}=\mathrm{G} 61 \pm 3 \%$ totalreads) $\approx=T 20 \pm 2 \%$

$$
\begin{aligned}
& \text { BE3: Ss-A } 10 \pm 4 \% \\
& \left(50 \pm 9 \% \text { of } \mathrm{s}_{5}=\mathrm{G} 30 \pm 4 \%\right. \\
& \text { totalreads) s-T } 50 \pm 8 \%
\end{aligned}
$$

FIGURE 142D

188/208

	Rnf2:	GT¢AMMAGTCATACCTGACS			
	\%, edted to		", edited	\%	
PE3E:	$\mathrm{C}_{8}=\mathrm{C}$	$53 \pm 3 \%$	EE38:	$\mathrm{C}_{2}=$	$85 \pm 2 \%$
$\begin{aligned} & \text { Yot } 1 \% \text { of } \\ & \text { total reads } \end{aligned}$	$0_{3}=$ edited	$47 \pm 3 \%$	$\begin{aligned} & \{30 \pm \% \% \text { of } \\ & \text { total reacs) } \end{aligned}$	$\mathrm{c}_{3}=\mathrm{edtad}$	15土2\%
BE3	$\mathrm{C}_{2}=\mathrm{C}$	$37 \pm 3 \%$	EES:	$\mathrm{C}_{8}=\mathrm{C}$	$88 \pm 1$ \%
$\begin{aligned} & \{20 \pm 2 \% \text { ot } \\ & \text { total reads } \end{aligned}$	$\mathrm{c}_{\mathrm{s}}=\mathrm{echited}$	$63 \pm 3 \%$	$\begin{aligned} & (16+2 \% \text { of } \\ & \text { lotal reads }) \end{aligned}$	$c_{\text {eredied }}$	12土 $1 \%$



189/208


FIGURE 144A


FIGURE 144B

$$
\begin{aligned}
& \text { EAXT: GAGT®CGAGCAGAAGAAGAAQQS } \\
& \text { FANCF GQAATCECTTCTGCAGCACCTGQ } \\
& \text { HEK2. GAACACAAAGCATAGACTGCGOC } \\
& \text { HEKS GGCGEACACTGAGCACGTGATCO } \\
& \text { HEKA: GGGAMTGCGGCTGGAGGTCCGQQ } \\
& \text { مNF2: GTCATलTRGTCATTACCTGAG® }
\end{aligned}
$$

190/208


FIGURE 145A
FANCF: GATGTMEAATC AGTACGCACACASY

HEK32: ACGTGCTMAGT, TGGGCCCCAAGQAY
HEKA: GTGGCAMTGCGGCTGOAGCT6CWCOY
FIGURE 145B


FIGURE 145C

191/208

EMX 7		G	A	G	T			6	A	6			G	A	A	G			$\bigcirc$		A		6	
untreated	A	0.0	99\%3.	${ }^{0.0}$	0.0		0	O		${ }^{0.0}$		A	O	(97		0.0					A	0.0	0	
	c							0	0.0	90,	$\underline{000}$	0.0	-0.09	0.0 0.0	${ }_{0}^{0.0}$	100\%	- $\begin{aligned} & 0.0 \\ & 0.0\end{aligned}$	-0.0	$\bigcirc$	0.1 0.0	0	0.9	0	
	$\stackrel{+}{\top}$	0.0	0.1 0.0	-1009 0	-1009	0.0 0.0	0.0 0.0	0.0	0.0 0.0	${ }_{0} 0$	${ }_{0}^{0.0}$	0.0	0.0	0.0	0.0	0.0	${ }_{0.0}^{0.0}$	0.0	0.0	0.0	${ }_{0}^{0.0}$	,	0.0	0.0
${ }^{\text {BE3 }}$		0.0	W003.	0.0	0.0	20	0.8	0.0	96:	0.0		198	0.0	\%1000	1003	0.0	3100	1000.	0.0	36	\%os\%	0.0	0.0	
	$c$										100													
	G	no	0.0	\%100		30		a.	0.0	somas.	0.0	0.0	mos.	0.0	0.0			0.0			0.0			
		0.0	0.0	0.0	18000	22	24.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0		
CDA1-8E3		0.1	\% 80				0.0		399			\% $10 \times 1$	0.0	160.9.	1008		\%00\%			\%0x\%				
	$c$	0.0	0	${ }_{9}^{0.0}$	0.0	${ }_{0} 8$	${ }_{01}^{238}$	S9\%	0	)98	0		993	0.0.				0		$0.0$	0	toc:		
	$\stackrel{\text { ¢ }}{\text { T }}$	${ }_{0}^{99.0}$	0.0	- 0.9	T1009	$\stackrel{0.4}{78}$	${ }_{7} 0.1$	${ }_{0} 8.0$	0.0.0	${ }_{0} 0$	1.4	${ }_{0}^{0.0}$	${ }^{99.0}$	0.0 0.0	0.0 0.0	180.0.	0.0 0.0	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$0.0$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	0.0 0.0	0.0		
AD-BE3																								
	${ }^{\text {c }}$	0.0	0.	0.0	0.0	${ }^{39}$	8582	0.	0.8	0.3			0.3	0.0									0.	
	G	99.	0.0	\%983		0.7	0.0	937	0.8	30:8	0.3	0.0	937	0.0	0.0	18003.	0.0	0.0	cao	0.0	0.0	10060		
	T	0.0	0.0	0.0	100.3.	13.4	4.6	0.0	0.8	0.0	5.1	0.0	0.0	0.0	,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0
			7308											1808			100\%			3600				
	$\begin{gathered} c \\ 6 \end{gathered}$	0.0																						
	$\underline{6}$	3906	0.0	-18038	Di00	0.2 1.0	2.3 8.9	$\frac{389}{0.0}$	0.0 0.0	wors.	$0.0$	${ }_{0.0}^{0.0}$	1000	$0.0$	0.0	$\begin{gathered} 160.0 \\ 0.0 \end{gathered}$	$0.0$	0.0	oors	$0.0$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	100\%	poras.	

192/208

FANCF		$G$	G	A	A	T	c	\%	c	$T$	T	\%	T	G	0	A	$G$	C	A	c	c	T	6	$\sigma$
untreated	A	0.1	0.0	91060	\% 60	0.0	0.0	00	0.0	0.0	0.0	0.0	0.3	0.0	0.0	100\%	0.0	0.0	100\%	0.0	0.0	0.0	0.0	0.0
	c	0.0	0.0	0.0	0.0	0.0	\%100.0	1030	\$1000\%	0.0	0.0	1000	0.3	0.0	\%000	0.0	0.0	100.0.	0.0	\%10\%	1000	0.0	0.0	0.0
	G	098	1000.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	\% 000 .	0.0	0.0	1000.	0.0	0.0	0.0	0.0	0.0	\% 1000	1000
	T	0.0	0.0	0.0	0.0	100\%	0.0	0.0	0.0	100\%	10068	0.0	0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1060.0.	0.0	0.0
BE3	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	0.1 0.0	1000 0.0		0.0 0.0	$10$	$14$	14.4.	0.0 0.0	0.0 0.0	$0.2$	0.3 0.0	0.0 0.0	$0.0$	1006	0.0 0.0	$\begin{array}{r} 0.0 \\ 1000 . \end{array}$	$100 \%$ 0.0	0.00	$0.0$	0.0 0.0	$\begin{aligned} & 0.0 \\ & 00 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
	G	1000	90\% 9 ,	0.0	0.0	0.0	0.4	0.8	0.9	0.0	0.0	0.1	0.0	1000	0.0	0.0	1000	0.0	0.0	0.0	0.0	0.0	S90\%	1000.
	T	0.0	0.0	0.0	0.0	\%1006	20	42	23.4	T00	000	109	000	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	\$1060.	0.0	0.0
CDA1-BE3															0.0	100\%			100.0.	0.0				
	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.0 \end{aligned}$	0.1 0.0	- 0.0	0	0.0 0.0	-80\%	\%\% 0		- 0.0	0.0	\% $\%$ \%	. 0.0	0.0		0.0	0.1 0.0	\%980.	0.0	\% 1000	1000	0.0 0.0	$\begin{aligned} & 0.1 \\ & 0.0 \end{aligned}$	0.1 0.0
	G	\%0969	90\%	0.0	0.0	0.0	0.1	03	0.2	0.0	0.0	0.0	0.0	Q0.9:	0.0	0.0	\%989:	0.0	0.0	0.0	0.0	0.0	990	E0.9
	T	0.0	0.0	0.0	0.0	0000	17.2	156	147	\% 80	100\%	2.6	\$000	0.0	0.3	0.0	0.0	0.2	0.0	0.0	0.0	1000.	0.0	0.0
AID-BE3	A	0.0	0.0	\%6. ${ }^{\text {a }}$	S\%8.	0.1	02	06	0.3	0.0	0.0	0.0	0.0	0.1	0.0	98.	0.1	0.1	1000	0.0	0.0	0.0	0.1	0.1
	c	0.0	0.0	0.0	0.0	0.0	\%\%\%	\% 0		. 0.0	0.0	\% 0 \%\%	0.0	0.0	\% \% \%	0.0	0.0	\% \%\% 0	0.0	\% 80	100\%	0.0	00	0.0
	G	\%09\%	\%\%\%	0.0	0.0	0.0	0.8	0.5	0.4	0.0	0.0	0.0	0.0	\%80.s.	0.0	0.0	\%99\%	0.0	0.0	0.0	0.0	0.0	\% \% \%	80s
	T	0.0	0.0	0.0	0.0	988.	85\%	380	127	$100 \%$	1800	3.2	8000	0.0	1.2	0.0	0.0	2.9	0.0	0.1	0.0	\% 8060	00	0.0
$\begin{gathered} \text { APOBEC3G- } \\ \text { BE3 } \end{gathered}$	A	0.0	0.0	\% 100	\%0\%	0.0	0.0	2.9	1.7	0.0	0.0	0.0	0.0	0.0	0.0	100\%	0.1	0.0	100\%	0.0	0.0	0.0	0.0	0.1
	c	0.0	0.0	0.0	0.0	0.0	\% 8 \%os.	\%\%\%\%\%	\%6\%\%	300	0.0	\% 9 988,	0.0	0.0	\%90\%	0.0	0.0	10000	0.0	\%06\%	100.0.	0.0	0.0	0.0
	G	1000	\$0\%	0.0	0.0	0.0	0.3	1.6	108	0.0	0.0	0.0	0.0	\% 000	0.0	0.0	\%009	0.0	0.0	0.0	0.0	0.0	\% 000	609
	T	0.0	0.0	0.0	0.0	\% $80 \%$	3.6	242\%	19.2	180	180\%\%	0.1	\$1000.	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	\%1806\%	0.0	0.0

FIGURE 147

HEK2		G	A	A	9	A	c	A	A	A	G	$a$	A	$T$	A	c	A	c	T	G	c	\%	6	0
untreated	A	0.0	1600	1000.	00	1008	00	\% 600	\%60\%	com.	0.0	00	300\%.	0.	100\%	0.0	\%00\%	0.0	0.0	0.0	00	0.0	0.0	0.0
	c	0.0	0.0	0.0	1000	0.0	\%99\%	00	0.0	0.0	0.0	\%os	0.0	0.0	0.0	0.0	0.0	1000	0.0	0.0	98:	0.0	0.0	0.0
	G	100.0.	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	\%)	0.0	0.0	0.0	0.0	\%00.	0.0	0.0	0.0	1000	0.0	ss:	\$00.	100\%.
	T	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	00	0.0	0.0	0.0	)100\%	0.0	0.0	0.0	0.0	\% $80 \%$ \%	0.0	0.1	0.0	0.0	0.0
BE3	A	0.1	160\%	1600	1.3	\%\%	0.7	\% 6	\%\%	6.6.	0.0	0.0	\%e\%	0.0	\%60\%	0.0	\%60.	0.1	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	\%	0.0	\%	0.0	0.0	0.0	0.0	\$9\%	0.0	0.0	0.0	0.0	0.0	\$9\%	0.0	0.0	100\%	0.0	0.0	00
	G	995.	0.0	0.0	0.9	0.1	Si	0.0	00	0.0	400.3.	0.0	0.0	0.0	0.0	T000	0.0	0.0	0.0	T800 0	0.0	Toued	¢9\%	T000.
	T	0.0	0.0	0.0	172	0.0	14.8.	0.0	0.0	0.0	0.0	0.1	0.0	1\%	0.0	0.0	0.0	0.2	160\%	0.0	0.0	0.0	0.0	0.0
CDA1-BE3	A	0.0	\%99\%	$99 \%$	96	9\%\%	1.8	660	\%ow	604.	0.0	0.2	\% 19	0.0	\% $100 \times$	0.0	\% 100	0.0	0.0	0.0	0.0	0.0	0.0	
	C	0.0	0.0	0.0	¢	0.0	\% ${ }^{\text {3\% }}$	0.0	0.0	0.0	0.0	80\%	0.0	0.0	0.0	0.0	0.0	100.	0.0	0.0	99\%	0.0	0.0	0.0
	G	1800.	0.0	0.1	0.3	0.1	35	0.0	00	0.0	\%00	0.3	0.0	0.0	0.0	1000	0.0	0.0	0.0	\%ose	0.0	+6ec	18000	\%o\%e
	T	0.0	0.0	0.0	1938	0.0	312	0.0	0.0	0.0	0.0	8.8	0.0	) 0	0.0	0.0	0.0	0.0	\%00\%	0.0	0.1	0.0	0.0	0.0
BE3		0.0	s9\%	\%0.9	69	90:S\%	12	00	600\%	60\%.	0.0	0.2	160\%	0.0	\%ome	0.0	\%600	0.1	0.0	0.0	0.0	0.0	0.0	0.0
	c	0.0	0.0	0.0	§\%\%\%\#	0.0	\%	0.0	0.0	0.0	0.0	\%83**	0.0	0.0	0.0	0.0	0.0	896\%	0.0	0.0	\$98.	0.0	0.0	0.0
	G	$8 \mathrm{~B}, 5$	0.0	0.1	0.7	0.1	6.1	0.0	0.0	0.0	s98	0.6	0.0	0.0	0.0	W0\%	0.0	0.0	0.0	100\%	0.0	100\%	T308	1008
	T	0.1	0.1	0.0	\%\%	0.0	\%4\%	0.0	00	0.0	0.1	15.5	0.0	\% 1000	00	0.0	00	0.2	929\%	0.0	0.2	0.0	0.0	0.0
$\begin{gathered} \text { APOBEC3G- } \\ \text { BE } \end{gathered}$				1000	0.1	100\%	0.1	4080	100\%	\%os\%			180	0.0	106\%	0.0	108\%	0.0	0.0	0.0	0.0	0.0	0.0	
	${ }_{\text {c }}^{\text {c }}$	0.0	0.0	0.0	\%18.	0.0	\%	00	0.0	0.0	0.0	sa:	0.0	0.0	0.0	0.0	0.0	100.0.	0.0	0.0	9\%9\%	0.0	0.0	0.0
	6	100\%.	0.0	0.0	0.1	0.0	59	0.0	0.0	0.0	\%80.0.	0.0	0.0	00	0.0	1003\%	0.0	0.0	0.0	\% 1000	00	180\%9	100 O	
	T	0.0	0.0	0.0	2.0	0.0	13.7	0.0	0.0	0.0	0.0	0.0	0.0	\%0.3.	0.0	0.0	0.0	0.0	\%o\%.	0.0	0.1	0.0	0.0	0.0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline HEK3 \& \& G \& G \& 6 \& $\cdots$ \& \& A \& G \& A \& \& T \& 6 \& \& 6 \& c \& \& \& 6 \& \& , \& A \& $\because$ \& \& <br>
\hline \multirow[t]{3}{*}{untreated} \& ${ }_{\text {A }}^{\text {c }}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.1}$ \& ${ }^{0.0}$ \& 0.0
898

0 \& \% 0.0 \& \%98. \& ${ }_{0}^{0.0}$ \& 2a \& Sode \& 00
00
00 \& ${ }_{00}^{0.0}$ \& ${ }_{0}^{9.3}$ \& ${ }_{0}^{0.0}$ \& - 0.000 \& \& $\xrightarrow{0.0} 8$ \& 0 \& 0.0 \& 0.0 \& 93. \& 0 \& ${ }^{0} 0$ \& 0.1 <br>
\hline \& ${ }^{\text {c }}$ \& \& \& \& \& 988 \& 0.0 \& \& -0.0 \& \& 0 \& \& - 0 \& \& \& 0.0 \& \& \& 00 \& \& - 0 \& \& \& \% <br>
\hline \& $\stackrel{\square}{\text { i }}$ \& 0.0 \& ${ }^{39.0}$ \& $\stackrel{0.0}{0.0}$ \& 0.0
0.0 \& 0.1 \& ${ }_{0}^{0.0}$ \& 0.0 \& 0.0 \& ( 0.0 \& 100 \& ${ }_{0} 0.0$ \& ${ }_{0}^{0.0}$ \& 0.0 \& 0 \& 0.0
0.0 \& 0.0 \& 0.0 \& 10000 \& 0.0 \& 0.0 \& 6080 \& 0.0 \& 0.0 <br>
\hline \multirow[t]{4}{*}{вE3} \& A \& 0.0 \& 0.0 \& 0.0 \& 0.8 \& \& \%oo \& 0.0 \& \$00 \& 0.4 \& 0.0 \& 0.0 \& \%080 \& 0.2 \& \& \& \& 0.0 \& 0.0 \& 0.0 \& \%060 \& 0.0 \& 0.0 \& <br>
\hline \& c \& 0 \& \& \& \& \& \& \& \& ses\% \& \& \& \& \& \& \& \& \& 0.0 \& \& \& \& \& <br>
\hline \& G \& 100: \& 900. \& \& 0.4 \& 89 \& 0.0 \& Mos. \& 0.0 \& 0 \& $\bigcirc$ \& coos \& 0.0 \& 3083 \& \& 0.0 \& \& roid \& 0.0 \& Ho:0 \& \& \& \& <br>
\hline \& T \& 0.0 \& 0.0 \& 1.3 \& 13 \& 312 \& 0.0 \& 0.0 \& 0.0 \& 0.7 \& 89. \& 0.8 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.3 \& 0.0 \& 800: \& 0.0 \& 0.0 \& 808 \& 0.1 \& 0.0 <br>
\hline \multirow[t]{3}{*}{CDA1-EE3} \& A \& 0.1 \& 0.0 \& \& \& \& Moxic \& 0.0 \& \% ${ }^{\text {sig }}$ \& 0.4 \& 0.0 \& 0.0 \& হ9 \& 0.0 \& \& 1808 \& \& 0.0 \& 0.0 \& 0.0 \& \& \& \& <br>

\hline \& $$
\stackrel{c}{G}
$$ \& 388 \& 1000: \& \& \& \& ${ }_{0}^{0.0}$ \& \% 500 Cl \& 0.0

0.0 \& ${ }_{0} 0.3$ \& -0.00 \& S9: \& 0.0
0.0 \& \%000. \& ${ }_{0} 9.0$ \&  \& ${ }_{0}^{100}$ \& 98. \& 0.0 \& Sis \&  \& 0.0 \& 0.0
88. \& 98. <br>
\hline \& $\stackrel{+}{T}$ \& 0.1 \& 0.0 \& 19:8 \& ${ }^{23} 5$ \& 24.4 \& ${ }_{0.0}^{0.0}$ \& ${ }_{0} 0$ \& 0.0 \& ${ }_{8.3}^{0.3}$ \& H00.8 \& 93: \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& S\% 8 \& \& 0.0 \& \%000 \& , \& 0.0 <br>
\hline \multirow[t]{4}{*}{AID-EE3} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& c \& 0.0 \& 0.0 \& \% \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 0.0 \& \& \& \& \& 0.0 <br>
\hline \& ¢ \& s98 \& \$97 \& \& 0.4 \& 1.9 \& 0.0 \& 10. ${ }^{\text {w }}$ \& 0.0 \& 12 \& 00 \& cord \& 0.0 \& Hocay \& 0.0 \& 0.0 \& 0.0 \& 8090 \& \& 90: \& 0.0 \& 0.0 \& cor \& <br>
\hline \& T \& 0.0 \& 0.0 \&  \& ${ }_{235}$ \& \& 0.0 \& 0.0 \& 0.0 \& 10.6 \& 180 \& \& 0.0 \& 0.0 \& 1.1 \& 0.0 \& 0.2 \& 0.0 \& cove \& \& 0.0 \& S090 \& \& 0.0 <br>
\hline \multirow[t]{3}{*}{$\underset{\substack{\text { APOBEC3G- } \\ \text { BE3 }}}{ }$} \& \& \& \& \& \& \& 1000 \& \& 9090 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& c \& 0 \& 0.0 \& \%99.9 \& 8s\% \& (3) \& 0.0 \& \& \& \& \& \& 0.0 \& \& 300\% \& 0.0 \& 3008 \& \& 0.0 \& \& 0.0 \& \& \& 0.0 <br>
\hline \& $\stackrel{\text { ¢ }}{\text { T }}$ \& 400:9 \& Sas \& 0.0 \& ${ }_{11.4}^{1.4}$ \& 3.5 \& 0.0 \& Mras. \& 0.0 \& 0.0 \& 0.0 \& core \& 0.0 \& $\xrightarrow{3003}$ \& 0.0 \& 0.0
0.0 \& 0.0 \& $\stackrel{1080}{0.0}$ \& ${ }^{0.0}$ \& ${ }_{0}$ \& ${ }_{0}^{0.0}$ \& \%0.0. \& coas \& cera <br>
\hline
\end{tabular}



RNF2		G	$T$	$\ldots$	A	T	ctir	T	T	A	G	T	3	G	T	T	A	c	C	T	G	4	0	\%
untreated	A	0.0	0.0	0.0	1606	00	0.0	0.0	0.0	\%60\%	0.0	0.0	0.0	1000	0.0	0.0	\%6000	0.0	0.0	0.0	0.0	100\%	0.0	0.0
	c	0.0	0.0	\%09\%	0.0	0.0	\%0\%	0.0	0.0	0.0	00	0.0	1000	0.0	0.0	0.0	0.0	11000	1000	0.0	00	0.0	00	00
	G	1000\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0.	0.0	10000	1000
	T	0.0	1000.	0.1	0.0	\%1000.	0.0	\%060	1000 .	0.0	0.0	1000.	0.0	0.0	800\%	1000.	0.0	0.0	0.0	8008.	0.0	0.0	0.0	0.0


BE3	A	0.0	0.0	0.3	98	0.1	1.6	0.1	0.0	\%000	0.0	0.0	0.1	11000	0.0	0.0	\%0000\%	0.0	0.0	0.0	0.0	1000	0.0	0.0
	c	0.0	0.0	\% 8 的*	0.0	00	\%	0.0	0.0	00	0.0	0.0	\% \%e\%em.	0.0	0.0	0.0	0.0	80\%	99\%\%	0.0	00	0.0	00	00
	G	S90.	0.0	0.0	0.0	00	12.6	0.0	0.0	0.0	4100\%:	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	90. $\%$,	0.0	Ss\%	1000.
	T	0.0	1000	18.6	0.0	\% 808	203	98\%	1000	0.0	0.0	1000	3.3	0.0	8000	60.0	0.0	0.0	0.1	\%000	0.0	0.0	0.0	0.0
CDA1-BE3	A	0.0	0.0	0.3	$100 \%$	0.0	03	0.0	0.0	1000	0.0	0.0	0.0	1000	0.0	0.0	1000.	0.0	0.0	0.0	0.0	1000	0.0	0.0
	C	0.0	0.0	\% ¢\%	0.0	0.0	\%	0.0	0.0	0.0	0.0	0.0	\% \%ever	0.0	0.0	0.0	0.0	\%89	90:	0.0	00	0.0	0.0	00
	G	1000	0.0	0.0	0.0	00	0.4	00	0.0	0.0	100\%	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$100 \%$	0.0	180\%	$100 \%$
	T	0.0	\%000.	116	0.0	\%00e.	13.5	100\%	1006	0.0	0.0	180:0.0.	0.9	0.0	100.	100\%	0.0	0.1	0.1	4000	0.0	0.0	0.0	0.0
AID-BE3	A	0.0	0.0	0.1	$100 \%$	0.1	0.1	0.0	0.0	\% $0 \%$ \%	\% 0.0	0.0	0.0	$100 \%$	0.0	0.0	\% 00.	\% 0.0	0.0	0.0	0.0	100\%.	0.0	0.0
	c	0.0	0.0	\% \%\%\%	0.0	0.0	\% ${ }^{\text {\% }}$ \%	0.0	0.0	0.0	0.0	0.0	\% 80.8	0.0	0.0	0.0	0.0	\% $98 \%$	9080	0.0	0.0	0.0	0.0	00
	G	1000.	00	00	0.0	00	32	00	00	0.0	\%900\%	00	0.0	0.0	00	0.0	0.0	0.1	0.0	0.0	\%09\%\%	0.0	\%00\%	1000.
	T	0.0	\%1080.	7.2	0.0	\%89\%	152	\% 1000	, 18080	. 0.0	0.0	880	0.1	0.0	\% 10001	8, 180.	0.0	1.2	0.2	\%100\%	0.0	0.0	0.0	0.0


$\begin{gathered} \text { APOBEC3G- } \\ \text { BE3 } \end{gathered}$	A	0.0	0.0	0.0	1000\%	0.0	0.0	0.0	0.0	1000\%	0.0	0.0	0.0	1000	0.0	0.0	\$000.	00	0.0	0.0	0.0	\%1000\%	0.0	0.0
	c	0.0	0.0	\% $\%$ ¢	0.0	0.0		0.0	0.0	0.0	0.0	0.0	\%o\%os	0.0	0.0	0.0	0.0	\% 9 S\%	90.0.m.	0.0	0.0	0.0	0.0	0.0
	G	, 0000	0.0	0.0	0.0	00	3.4	0.0	0.0	0.0	\%90\%	00	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	\%9\%\%	0.0	\%1000\%	1000.
	T	0.0	1000	1.8	0.0	\% 000	13.8	0000	1806	0.0	0.0	1000	0.2	0.0	\%1006	¢00.0.	0.0	0.2	0.2	18000	0.0	0.0	0.0	0.0


FIGURE 152

198/208
EMX Length 19


FIGURE 153

EMX Length 18
TTMTAC $\mathrm{C}_{3}$ TTGTC $\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{TC}_{32} \mathrm{C}_{13}$ GGTTC $_{38}$ TG


FIGURE 154

EMX Length 17
TTTAC $\mathrm{C}_{3}$ TTGGTC $\mathrm{C}_{8} \mathrm{C}_{10} \mathrm{C}_{12} \mathrm{C}_{13}$ GGTTC $_{38}$ TG


FIGURE 155

HEK2 Length 23


(*Data not obtained)
FIGURE 156


FIGURE 157

201/208
HEK2 Length 19


(Data not obtamed)

FIGURE 158

HEK2 Length 18


(*Data not obtained)

FIGURE 159
EMX 19

	10_D	10_N	10_A	11_D	11_N	11_A	13_D	13_N	13_A	14_D	14_A	15_N	15_A
C3	0.025	0.039	2.662	0.012	0.013	0.041	0.02	0.013	0.012	0.033	0.012	0.02	0.021
C9	20.899	13.15	10.456	27.535	18.921	13.072	19.043	1.591	3.638	29.39	14.271	20.95	13.924
C10	20.226	10.784	5.206	26.909	16.026	6.748	18.445	1.266	2.658	28.933	2.934	13.039	3.051
C12	20.453	11.385	9.095	26.849	16.893	9.983	18.589	1.437	3.127	29.165	8.695	18.597	9.07
C13	6.39	3.396	1.085	8.946	4.126	1.3	6.317	0.257	0.659	18.973	0.547	3.247	0.8
C18	4.757	2.603	2.013	5.304	3.233	1.914	2.805	0.235	0.367	4.302	0.992	1.848	0.994
indels (\%)	0.028979	6.0862	28.9183	0.038623	9.8557	28.6068	0.94296	1.4573	3.78	0.024623	27.6872	13.0741	31.3295
C3	0.02499276	0.03662638	1.89219485	0.01199537	0.01171876	0.02927121	0.01981141	0.01281055	0.0115464	0.03299187	0.00867754	0.01738518	0.01442081
C9	20.8929437	12.3496647	7.43230255	27.5243652	17.056203	9.3325191	18.8634321	1.56781436	3.5004836	29.3827633	10.3197597	18.2109761	9.56168042
C10	20.2201387	10.1276642	3.7005133	26.8986069	14.4465255	4.81761314	18.271071	1.24755058	2.5575276	28.9258758	2.12165755	11.3342681	2.09513696
C12	20.4470729	10.6920861	6.46488062	26.8386301	15.2280766	7.12718316	18.4137132	1.4160586	3.0087994	29.1578187	6.28759796	16.1656096	6.22841435
C13	6.38814824	3.18931265	0.77123645	8.94254479	3.71935382	0.9281116	6.25743322	0.25325474	0.6340898	18.9683283	0.39555102	2.82248397	0.549364
C18	4.75562147	2.44457621	1.43087462	5.30195144	2.91436522	1.36646585	2.77854997	0.23157535	0.3531274	4.30094072	0.71734298	1.60639063	0.68258477

EMX 18

	10_D	10_N	10_A	11_D	11_N	11_A	13_D	13_N	13_A	14_D	14_A	15_N	15_A
C3	0.023	0.008	0.032	0.044	0.035	0.016	0.03	0.016	0.016	0.018	0.02	0.017	0.01
C9	21.333	13.606	10.333	27.294	17.216	14.646	22.315	1.297	5.485	29.094	14.566	21.847	13.66
C10	20.865	11.831	5.528	26.409	15.041	6.931	21.548	0.932	4.309	28.456	2.996	13.762	3.337
C12	20.773	12.165	7.147	26.572	16.178	10.157	21.839	1.202	5.059	28.937	10.88	19.625	9.359
C13	6.538	3.591	0.848	8.562	4.096	1.387	7.426	0.129	0.729	18.993	0.945	3.353	0.809
C18	5.174	2.54	1.788	5.313	3.146	2.196	3.443	0.243	0.565	4.517	0.647	2.03	1.154

203/208
FIGURE 161
EMX 17

	10_D	10_N	10_A	11_D	11_N	11_A	13_D	13_N	13_A	14_D	14_A	15_N	15_A
C3	0.016	0.014	0.044	0.012	0.018	0.012	0.013	0.016	0.03	0.014	0.011	0.016	0.005
C9	12.742	6.895	2.862	17.142	10.77	5.941	10.177	1.471	3.395	18.719	11.13	11.103	11.493
C10	11.901	6.427	2.199	16.385	10.277	5.064	9.741	1.393	3.216	18.206	8.1	10.086	7.747
C12	11.548	6.014	1.916	15.933	9.872	4.041	9.468	1.287	2.986	18.492	9.847	10.751	10.523
C13	1.993	0.768	0.252	2.696	1.357	0.599	1.155	0.083	0.285	10.532	0.971	3.674	1.082
C18	1.457	0.613	0.361	1.471	0.987	0.773	0.667	0.043	0.245	1.978	0.729	0.545	0.621
indels (\%)	0.017245	0.052423	1.7787	0.025203	0.11499	2.7876	0.14938	0.019738	0.041079	0.04713	4.2923	0.37931	6.7995
C3	0.01599724	0.01399266	0.04321737	0.01199698	0.0179793	0.01166549	0.01298058	0.01599684	0.02998768	0.0139934	0.01052785	0.01593931	0.00466003
C9	12.7398026	6.89138543	2.81109361	17.1376797	10.7576156	5.77538868	10.1617976	1.47070965	3.39360537	18.7101777	10.652267	11.0608852	10.7115335
C10	11.8989477	6.42363077	2.15988639	16.3808705	10.2651825	4.92283594	9.72644889	1.39272505	3.2146789	18.1974195	7.7523237	10.0477428	7.22024274
C12	11.5460085	6.01084728	1.88192011	15.9289844	9.86064819	3.92835308	9.4538567	1.28674597	2.98477338	18.4832847	9.42433722	10.7102204	9.80748862
C13	1.99265631	0.76759739	0.24751768	2.69532053	1.35543959	0.58230228	1.15327466	0.08298362	0.28488292	10.5270363	0.92932177	3.66006415	1.00842941
C18	1.45674874	0.61267865	0.35457889	1.47062926	0.98586505	0.75145185	0.66600364	0.04299151	0.24489936	1.97706777	0.69770913	0.54293276	0.57877511

205/208

	10_D	10_N	10_A	11_D	11_N	11_A	13 D	13_N	13_A	14_D	14_A	15N	15_A
C1	0.042	0.021	0	0.039	0.084	0	0.045	0.07	0.04	0.045	0.056	0.057	0
C 4	0.016	0.018	0	0.023	0.013	0	0.027	0.022	0.016	0.035	0.008	0.016	0
C5	0.031	0.018	0	0.037	0.052	0	0.048	0.021	0.044	0.047	0.157	0.017	0
C6	0.064	0.045	0	0.064	0.02	0	0.077	0.068	0.051	0.078	0.032	0.08	0
C8	12.758	2.444	0	19.198	3.66	0	14.134	0.423	2.22	22.158	0.977	7.763	0
C12	1.418	0.291	0	2.281	0.446	0	2.163	0.101	0.21	6.745	0.235	0.809	0
C13	3.282	0.603	0	5.021	1.121	0	5.713	0.042	0.308	8.933	0.599	0.921	0
C14	2.898	0.641	0	4.719	1.38	0	5.614	0.096	0.38	8.268	1.066	0.746	0

FIGURE 163

	10_D	10_N	10_A	11_D	11_N	11_A	13_D	13_N	13_A	14_D	14_A	15_N	15_A
C1	0.024	0.051	0	0.036	0.116	0.126	0.035	0.022	0.042	0.032	0.02	0.133	0
C4	0.054	0.023	0	0.026	0.011	0.01	0.019	0.019	0.011	0.025	0.016	0.016	0
C5	0.033	0.017	0	0.051	0.054	0.048	0.046	0.02	0.029	0.035	0.075	0.043	0
C6	0.096	0.083	0	0.058	0.032	0.022	0.055	0.016	0.047	0.139	0.166	0.083	0
C8	19.339	9.265	0	23.342	13.199	1.173	17.974	3.225	7.353	32.768	2.835	20.891	0
C12	1.402	0.551	0	1.491	1.036	0.713	1.68	0.188	0.471	8.549	0.3	2.967	0
C13	2.377	1.409	0	2.974	2.174	2.814	3.043	0.356	0.895	10.654	1.81	3.81	0
C14	2.129	1.545	0	2.604	2.523	5.582	3.076	0.316	0.955	8.964	4.97	3.086	0

206/208

indels (\%)	0.10237	3.2815	24.3902	0.10375	4.3674	66.4779	1.8097	1.6132	3.0719	0.093678	63.4082	5.4543	
C1	0.02397543	0.04932644	0	0.03596265	0.11093382	0.04223785	0.03436661	0.0216451	0.0407098	0.03197002	0.00731836	0.12574578	0
C4	0.05394472	0.02224526	0	0.02597303	0.01051959	0.00335221	0.01865616	0.01869349	0.01066209	0.02497658	0.00585469	0.01512731	0
C5	0.03296622	0.01644215	0	0.05094709	0.0516416	0.01609061	0.04516754	0.01967736	0.02810915	0.03496721	0.02744385	0.04065465	0
C6	0.09590172	0.08027636	0	0.05793983	0.03060243	0.00737486	0.05400467	0.01574189	0.04555621	0.13886979	0.06074239	0.07847293	0
C8	19.3192027	8.96096903	0	23.3177827	12.6225469	0.39321423	17.6487245	3.1729743	7.12712319	32.7373036	1.03737753	19.7515422	0
C12	1.40056477	0.53291894	0	1.48945309	0.99075374	0.23901257	1.64959704	0.18496718	0.45653135	8.54099147	0.1097754	2.80517092	0
C13	2.37456667	1.36276367	0	2.97091448	2.07905272	0.94331189	2.98793083	0.35025701	0.8675065	10.6440195	0.66231158	3.60219117	0
C14	2.12682054	1.49430083	0	2.60129835	2.4128105	1.87120362	3.02033363	0.31090229	0.92566336	8.9556027	1.81861246	2.9176803	0

Hek2 19

	10_D	10_N	10_A	11_D	11_N	11_A	13_D	13_N	13_A	14_D	14_A	15_N	15_A
C1	0.072	0.031	0	0.039	0.062	0.406	0.023	0.019	0.025	0.06	0.224	0.04	0
C4	0.034	0.019	0	0.021	0.06	0.018	0.039	0.033	0.025	0.012	0.009	0.008	0
C5	0.03	0.037	0	0.044	0.045	0.027	0.018	0.031	0.033	0.024	0.021	0.012	0
C6	0.053	0.066	0	0.042	0.071	0.164	0.033	0.031	0.046	0.098	0.117	0.034	0
C8	21.611	11.001	0	25.556	18.67	6.38	18.944	4.272	10.143	33.441	15.227	25.017	0
C12	1.049	0.704	0	1.345	1.022	1.548	1.154	0.195	0.489	6.54	1.177	6.539	0
C13	1.914	1.39	0	2.629	1.819	5.23	2.301	0.253	0.881	8.065	1.823	7.452	0
C14	1.545	1.212	0	2.238	1.761	9.623	1.98	0.151	0.975	6.517	4.174	6.365	0
indels (\%)	0.056704	0.17936		0.04541	0.43984	50.2032	0.61981	0.18691	0.22381	0.14694	45.816	0.52493	
C1	0.07195917	0.0309444	0	0.03898229	0.0617273	0.20217501	0.02285744	0.01896449	0.02494405	0.05991184	0.12137216	0.03979003	0
C4	0.03398072	0.01896592	0	0.02099046	0.0597361	0.00896342	0.03875827	0.03293832	0.02494405	0.01198237	0.00487656	0.00795801	0
C5	0.02998299	0.03693364	0	0.04398002	0.04480207	0.01344514	0.01788843	0.03094206	0.03292614	0.02396473	0.01137864	0.01193701	0
C6	0.05296995	0.06588162	0	0.04198093	0.07068771	0.08166675	0.03279546	0.03094206	0.04589705	0.097856	0.06339528	0.03382152	0
C8	21.5987457	10.9812686	0	25.544395	18.5878819	3.17703584	18.8265832	4.2640152	10.120299	33.3918618	8.25059768	24.8856783	0
C12	1.04840518	0.70273731	0	1.34438924	1.01750484	0.77085446	1.14684739	0.19463553	0.48790557	6.53039012	0.63774568	6.50467483	0
C13	1.91291469	1.3875069	0	2.62780617	1.81099931	2.60437264	2.28673817	0.25252712	0.87902823	8.05314929	0.98777432	7.41288222	0
C14	1.54412392	1.20982616	0	2.23698372	1.75325442	4.79194606	1.96772776	0.15071777	0.97281785	6.50742392	2.26164016	6.33158821	0


	10_D	10_N	10_A	11_D	11_N	11_A	13_D	13_N	13_A	14_D	14_A	15_N	15_A
C1	0.037	0.027	0	0.035	0.041	0.315	0.039	0.034	0.034	0.028	0.125	0.074	0
C4	0.014	0.016	0	0.007	0.018	0.017	0.018	0.038	0.019	0.014	0.021	0.035	0
C5	0.052	0.018	0	0.051	0.034	0.045	0.033	0.039	0.022	0.014	0.088	0.035	0
C6	0.056	0.035	0	0.032	0.08	0.047	0.082	0.051	0.07	0.081	0.208	0.107	0
C8	16.035	10.427	0	25.298	19.509	14.808	15.991	5.043	10.926	33.064	28.458	29.702	0
C12	0.571	0.503	0	0.802	1.161	1.138	0.513	0.228	0.317	5.485	1.471	7.611	0
C13	1.12	0.903	0	1.607	1.869	2.299	0.803	0.315	0.709	5.902	1.741	8.752	0
C14	0.877	0.819	0	1.132	1.609	3.468	0.751	0.375	0.636	4.806	2.316	7.414	0
indels (\%)	0.076858	0.17892		0.048785	0.13947	11.5608	0.14868	0.1177	0.076621	0.23744	9.8678	0.50485	
C1	0.03697156	0.02695169	0	0.03498293	0.04094282	0.27858348	0.03894201	0.03395998	0.03397395	0.02793352	0.11266525	0.07362641	0
C4	0.01398924	0.01597137	0	0.00699659	0.0179749	0.01503466	0.01797324	0.03795527	0.01898544	0.01396676	0.01892776	0.0348233	0
C5	0.05196003	0.01796779	0	0.05097512	0.03395258	0.03979764	0.03295094	0.0389541	0.02198314	0.01396676	0.07931634	0.0348233	0
C6	0.05595696	0.03493738	0	0.03198439	0.07988842	0.04156642	0.08187808	0.05093997	0.06994637	0.08080767	0.18747498	0.10645981	0
C8	16.0226758	10.408344	0	25.2856584	19.4817908	13.0960767	15.9672246	5.03706439	10.9176284	32.9854928	25.6498215	29.5520495	0
C12	0.57056114	0.50210003	0	0.80160874	1.15938075	1.0064381	0.51223727	0.22773164	0.31675711	5.47197642	1.32584466	7.57257587	0
C13	1.11913919	0.90138435	0	1.60621603	1.86639331	2.03321721	0.8018061	0.31462925	0.70845676	5.88798629	1.5692016	8.70781553	0
C14	0.87632596	0.81753465	0	1.13144775	1.60675593	3.06707146	0.74988341	0.37455863	0.63551269	4.79458863	2.08746175	7.37657042	0


CLASSIFICATION OF SUBJECT MATTER		
INV.	C12N15/11	C12N15/10
ADD.		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbolsi)
C12N


Document	n searched other than minimum documentation to the extent that such documents a	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal , BIOSIS, WPI Data, EMBASE		
C. Documents considered to be relevant		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
$Y$	ALEXIS C. KOMOR ET AL: "Programmable editing of a target base in genomi c DNA wi thout doubl e-stranded DNA cleavage" , NATURE,   vol . 533, no. 7603,   20 Apri I 2016 (2016-04-20) , pages 420-424, XP055343871,   GB   ISSN : 0028-0836, DOI: 10. 1038/naturel7946 the whole document	$\begin{aligned} & 1,3-26, \\ & 31-90, \\ & 114-117, \\ & 127-136, \\ & 176-190, \\ & 192-207 \end{aligned}$

X Further documents are listed in the continuation of Box $C$.
$X$ See patent family annex.

* Special categories of cited documents :
" A " document defining the general state of the art which is not considered
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand date and not in conflict with the application but to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) orwhich is cited to establish the publication date of another citation or other special reason (as specified)
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
document referring to an oral disclosure, use, exhibition or other document of particular relevance; the claimed invention cannot means
"P" document published prior to the international filing date but later than the priority date claimed considered to involve an inventive step when the document is combined with one or more other such docu
being obvious to a person skilled in the art

Date of the actual completion of the international search	Date of mailing of the international search report
8 June 2018	$23 / 08 / 2018$
Name and mailing address of the ISA/   European Patent Office, P.B. 5818 Patentlaan 2   NL - 2280 HV Rijswijk   Tel. (+31-70) 340-2040,   Fax: $(+31-70) 340-3016$	Authorized officer

" $\&$ " document member of the same patent family

Form PCT/ISA/210 (second sheet) (April 2005)

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	- \& ALEXIS C. KOMOR ET AL: "Programmable edi ting of a target base in genomi c DNA wi thout doubl e-stranded DNA cleavage" , NATURE,   vol . 533, no. 7603,   20 Apri । 2016 (2016-04-20) , pages 420-424, XP055481330,   GB   ISSN: 0Q28-Q836, DOI: 10. 1038/naturel7946 the whole document	$\begin{aligned} & 1,3-26, \\ & 31-90, \\ & 114-117, \\ & 127-136, \\ & 176-190, \\ & 192-207 \end{aligned}$
A	PLOSKY BRIAN S.: "CRISPR-medi ated base edi ting wi thout DNA doubl e-strand breaks" MOLECULAR CELL,   vol . 62, no. 4, 19 May 2016 (2016-05-19)   pages 477-478, XP029552452,   ISSN: 1097-2765, DOI:   10. 1016/J .MOLCEL. 2016.05 . 006   the whole document	176
$Y$	SERGEY SHMAKOV ET AL. : "Di scovery and functi onal characteri zati on of diverse class 2 CRISPR-Cas systems" ,   MOLECULAR CELL,   vol . 60, no. 3 ,   1 November 2015 (2015-11-01) , pages 385-397, XP055482679 ,   AMSTERDAM, NL   ISSN: 1097-2765, DOI :   10. 1016/j .mol cel . 2015 . 10.008   the whole document	$\begin{aligned} & 1,8-19, \\ & 23-26, \\ & 31-90, \\ & 114-117, \\ & 127-136, \\ & 176-190, \\ & 192-207 \end{aligned}$
A	LEWIS KEVIN M. AND AI LONG KE: "Bui Idi ng the class 2 CRISPR-Cas arsenal ", MOLECULAR CELL, ELSEVIER, AMSTERDAM, NL, vol . 65, no. 3,   2 February 2017 (2017-02-02) , pages 377-379, XP029906286,   ISSN: 1097-2765, DOI :   10. 1016/J .MOLCEL. 2017.01 .024   the whole document	8-19
Y	DAVID BURSTEIN ET AL. : "New CRISPR-Cas systems from uncul tivated mi crobes" , NATURE,   vol . 542, no. 7640,   22 December 2016 (2016-12-22) , pages 237-241, XP055480893 ,   GB   ISSN: 0028-0836, DOI : 10. 1038/nature21059 the whole document	$\begin{aligned} & 1,3-7, \\ & 23-26, \\ & 31-90, \\ & 114-117, \\ & 127-136, \\ & 176-190, \\ & 192-207 \end{aligned}$

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	HUI YaNG and dinshaw J. PATEL: "New CRISPR-Cas systems di scovered" CELL RESEARCH - XIBAO YANJIU,   vol . 27, no. 3,   21 February 2017 (2017-02-21) , pages 313-314, XP055481126,   GB, CN   ISSN: 1001-0602, DOI : 10. 1038/cr. 2017 . 21 the whole document	3-7
Y	EMINE KAYA ET AL.: "A bacteri al Argonaute with noncanoni cal gui de RNA speci ficity" proceedings of the NATIONAL AcAdemy of SCI ENCES,   vol . 113, no. 15,   30 March 2016 (2016-03-30) , pages   4057-4062 , XP055387813,   US   ISSN: 0027-8424, DOI:   10. 1073/pnas . 1524385113   the whole document	$\begin{aligned} & 1,20-26, \\ & 31-90, \\ & 114-117, \\ & 127-136, \\ & 176-190, \\ & 192-207 \end{aligned}$
Y	-\& EMINE KAYA ET AL: "A bacterial Argonaute with noncanoni cal guide RNA speci ficity" ,   proceedings of the National academy of SCI ENCES,   vol . 113, no. 15,   30 March 2016 (2016-03-30) , pages   4057-4062 , XP055482683,   us   ISSN: 0027-8424, DOI:   10. 1073/pnas . 1524385113   the whole document	$\begin{aligned} & 1,20-26, \\ & 31-90, \\ & 114-117, \\ & 127-136, \\ & 176-190, \\ & 192-207 \end{aligned}$
A	KOMOR ALEXIS C. ET AL.: "CRISPR-based technologi es for the mani pulation of eukaryoti c genomes" ,   CELL, CELL PRESS, AMSTERDAM, NL,   vol . 168, no. 1,   17 November 2016 (2016-11-17) , pages   20-36, XP029882172,   ISSN: 0092-8674, DOI :   10. 1016/J . CELL.2O16. 10.O44   the whole document	1
A	Y BI LL KIM ET AL.: " Increasi ng the genome-targeti ng scope and preci sion of base editing with engi neered Cas9-cyti dine deami nase fusi ons" ,   NATURE BIOTECHNOLOGY,   vol . 35, no. 4,   13 February 2017 (2017-02-13) , pages 371-376, XP055481436,   ISSN: 1087-0156, DOI : 10. 1038/nbt. 3803 the whole document	1

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Category ${ }^{\text {P }}$	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	- \& Y BI LL KIM ET AL: " Increasing the genome-targeti ng scope and preci sion of base editing with engi neered Cas9-cyti dine deami nase fusi ons" ,   NATURE BIOTECHNOLOGY,   vol . 35, no. 4,   13 February 2017 (2017-02-13) , pages 371-376, XP055481438,   ISSN: 1087-0156, DOI : 10. 1038/nbt. 3803 the whole document	1
A	K. NISHIDA ET AL.: "Targeted nucl eoti de editing using hybrid prokaryoti $c$ and vertebrate adapti ve immune systems" , SCI ENCE,   vol . 353, no. 6305,   4 August 2016 (2016-08-04) , pages aaf8729-aaf8729, XP055482712,   US   ISSN: 0036-8075, DOI :   10. 1126/science.aaf8729   the whole document	1
A	- \& K. NISHIDA ET AL.: "Targeted nucleotide edi ting usi ng hybri $d$ prokaryoti $c$ and vertebrate adapti ve immune systems"   SCI ENCE,   vol . 353 , no. 6305,   4 August 2016 (2016-08-04) , pages aaf8729-aaf8729, XP055482712, US   ISSN: 0036-8075, DOI :   10. 1126/science.aaf8729   the whole document	1
A	Wo 2013/188037 A2 (AGI LENT TECHNOLOGI ES, INC. [US]) 19 December 2013 (2013-12-19) Cl aim 12 the whole document	49-51
A	YUAN ZONG ET AL.: "Preci se base editing in rice, wheat and maize with a Cas9-cyti dine deaminase fusion" , NATURE BIOTECHNOLOGY,   vol . 35, no. 5,   27 February 2017 (2017-02-27) , pages 438-440, XP055479337,   US   ISSN: 1087-0156, DOI : 10. 1038/nbt. 3811 the whole document	62

INTERNATIONAL SEARCH REPORT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	- \& YUAN ZONG ET AL: "Preci se base edi ting in rice, wheat and maize with a Cas9-cyti dine deaminase fusion" NATURE BIOTECHNOLOGY,   vol . 35, no. 5,   27 February 2017 (2017-02-27) , pages 438-440, XP055482699 ,   US   ISSN: 1087-0156, DOI: 10. 1038/nbt. 3811 the whole document	62
A	KYOUNGMI KIM ET AL.: "Hi ghly effi cient RNA-guided base edi ting in mouse embryos" , NATURE BIOTECHNOLOGY,   vol . 35, no. 5,   27 February 2017 (2017-02-27) , pages 435-437, XP055479394, US   ISSN: 1087-0156, DOI: 10. 1038/nbt. 3816 the whole document	65
A	- \& KYOUNGMI KIM ET AL: "Highly effi cient RNA-guided base edi ting in mouse embryos" , NATURE BIOTECHNOLOGY,   vol . 35, no. 5,   27 February 2017 (2017-02-27) , pages 435-437, XP055482711,   US   ISSN: 1087-0156, DOI : 10. 1038/nbt . 3816 the whole document	65
A	wo 2016/069910 AI (MASSACHUSETTS EYE \& EAR INFI RMARY [US] ) 6 May 2016 (2016-05-06) the whole document	127-131
A	KÜRY SÉBASTIEN ET AL.: "De novo di sruption of the proteasome regul atory subuni $t$ PSMD12 causes a syndromi c neurodevel opmental di sorder" ,   AMERICAN JOURNAL OF HUMAN GENETICS, AMERICAN SOCI ETY OF HUMAN GENETICS, CHICAGO, IL, US,   vol . 100, no. 2,   26 January 2017 (2017-01-26) , pages 352-363, XP055482689 ,   ISSN: 0002-9297, DOI :   10. 1016/J .AJHG.2017.01.003   the whole document	132-136
$\mathrm{X}, \mathrm{P}$	wo 2017/070632 A2 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE [US])   27 Apri I 2017 (2017-04-27)   the whole document	1

Form PCT/ISA/210 (continuation of second sheet) (April 2005)


## Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2. $\square$ Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
see addi tional sheet
1.As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. $\square$ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3.As only some of the required additional search fees were timely paid by the applicant, this international search report covers ' only those claims for which fees were paid, specifically claims Nos.:
4. $\underline{T_{V} I}$ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-90, 114-116, 137-207 (completely) ; 117, 127-136(partial ly)

Remark on Protest

> The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This Internati onal Searchi ng Authori ty found multiple (groups of) inventi ons in thi s internati onal appl icati on, as fol lows:

1. Cl aims: 1-90, 114-116, 137-207 (compl etely) ; 117, 127-136(parti al ly)

A fusi on protei n compri sing: (i) a nucl ei c aci d programmable DNA bindi ng protei n (napDNAbp); (ii) a cyti dine deaminase domain; and (iii) a uraci I glycosyl ase inhi bi tor (UGI) domain, wherei $n$ the napDNAbp is a CasX, CasY, Cpf1, C2cl, C 2 c 2 , C 2 c 3 , or Argonaute protei n .
A method for editing a nucl eobase pai $r$ of a double-stranded DNA sequence, the method compri sing:
contacti ng a target regi on of the doubl e-stranded DNA sequence with a complex compri sing a nucl eobase edi tor and a gui de nucl eic aci $d$, wherei $n$ the target regi on compri ses a target nucl eobase pai $r$;
induci ng strand separati on of said target regi on; converti ng a first nucl eobase of said target nucl eobase pair in a single strand of the target regi on to a second nucl eobase; and
cutti ng no more than one strand of said target regi on; wherei $n$ a thi $r d$ nucl eobase complementary to the first nucl eobase base is repl aced by a fourth nucl eobase complementary to the second nucl eobase; wherei $n$ the method causes less than $20 \%$ indel formati on in the doubl e-stranded DNA sequence; and wherei $n$ the nucl eobase edi tor compri ses CasX, CasY, Cpf1, C2cl, C2c2, C2c3, or Argonaute.
Products, methods and pharmaceuti cal compositions rel ated thereto.
2. Cl aims : 91-113 (compl etely) ; 117, 127-136 (part ial ly)

A method for produci ng a ribonucl eoprotei n (RNP) complex, the method compri sing:
(i) complexi $n g$ a base edi tor protei $n$ with an RNA in an aqueous sol uti on, thereby formi ng a complex compri sing the base edi tor and the RNA in the aqueous sol uti on; and (ii) contacti ng the complex of (i) with a cati onic lipid. Methods and pharmaceuti cal compositions rel ated thereto.
3. cl aims: 118-126

A method for puri fyi ng a base edi tor protei n , the method compri sing:
(i) expressi ng the base edi tor protei n in a cel I, wherei n the base edi tor protei $n$ compri ses an affi nity tag;
(ii) lysi ng the cell of (i), thereby generati ng a lysate; and
(iii) subjecti ng the lysate to affi nity chromatography, thereby produci ng an el uent compri sing a puri fied base edi tor protei $n$.

NTERNATIONAL SEARCH REPORT
Information on patent family members
PCT/US2018/024208

Patent document cited in search report		Publication date		Patent family member(s)		$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$
wo 2013188037	A2	19-12-2013	us	2013330778	AI	12-12-2013
			Wo	2013188037	A2	19-12-2013
wo 2016069910	AI	06-05-2016	EP	3212221	AI	06-09-2017
			EP	3212770	AI	06-09-2017
			US	2017247672	AI	31-08-2017
			us	2017340754	AI	30-11-2017
			wo	2016069910	AI	06-05-2016
			wo	2016069912	AI	06-05-2016
wo 2017070632	A2	27-04-2017	AU	2016342380	AI	10-05-2018
			CA	3002827	AI	27-04-2017
			EP	3365356	A2	29-08-2018
			EP	3365357	A2	29-08-2018
			KR	20180069898	A	25-06-2018
			SG	11201803173V	A	30-05-2018
			us	2017121693	AI	04-05-2017
			wo	2017070632	A2	27-04-2017
			W0	2017070633	A2	27-04-2017
wo 2018039438	AI	01-03-2018	NON			


[^0]:    Exemplary SaBE3 (rAPOBECl-XTEN-SaCas9n-UGI-NLS)
    MSSETGPVA VDPTLRRRIEPHEFE VFFDPRELRKETCLLYEINWGGRHS IWRHTS QNTN KHVEVNFIEKFTTERYFCPNTRCS гт WFLSWSPCGECSRAITEFLS RYPHVTLFIYIARL YHHADPRNRQGLRDLIS SGVTIQIMTEQES GYCWRNFVN YSPSNEAHWPR YPHLWVR LYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPG TSESATPESKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKR GARRLKRRRRHRIQR VKKLLFD YNLLTDHS ELS GINPYEAR VKGLS QKLSEEEFS AAL LHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRG SINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWK DIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEK FQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKE IIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINL ILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVIN AIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIE KIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEAS KKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKD FINRNLVDTRY ATRGLMNLLRS YFRVNNLD VKVKS INGGFTS FLRRKWKFKKERNKG YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFI TPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKD NDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKY SKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKF

[^1]:    *In all substrates except for " 8 U ", the top strand in Figure 3 is the complement of the

[^2]:    MTDAEYVRIHEKLDIYTFKKOFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTE RGIHAEIFSIRKVEEYLRDNPGOFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACK LYYEKNARNOIGLWNLRDNGVGLNVMVSEHYOCCRKIFIOSSHNOLNENRWLEKTLKRAEKR RSELSIMIOVKILHTTKSPA VSGSETPGTSESATPES DKKYSIGLAIGTNSVGWAVITDEYK

[^3]:    8/208

