

Function Diagram

Connection Terminals
Terminal designation Signal description A1, A2, A3, A4, A5, A6 Auxiliary voltage UH L Connection for monitored IT-systems PE Connection for protective conductor PT1, PT2 Connection for external test button LT1, LT2 Connection for external reset X5, (LT1) Connections for manual and auto reset: X5/LT1 bridged: Manual reset X5/LT1 not bridged: Hysteresis function X3, X4 Connection for external indicating instrument 11, 12, 14 Alarm signal relay (1 changeover contact)

- According to IEC/EN 61557-8
- For single- and 3-phase AC-voltage systems
- Fixed response value R_{AN}
- Closed circuit operation
- Programmable for:
- Manual reset (bridge X5 - LT1)
- Automatic reset (without bridge)
- Reset button LT1
- Test button to check the function of the device
- External test and reset buttons can be connected
- LED indicators
- 1 changeover contact
- External connection of indicating instrument possible
- Frontside $96 \times 96 \mathrm{~mm}$

Approvals and Markings

Applications

Monitoring of the resistance to earth in ungrounded single- and 3-phasevoltage systems.

Indicators	
LED chain:	Displays actual resistance to ground On, when resistance above response
Green LED:	value On, when ground fault
Red LED:	

Notes

When monitoring 3-phase IT systems it is sufficient to connect the insulation monitor only to one phase. The 3-phases have a low resistive connection (approx. 3-5 Ω) via the feeding transormer. So failures that occure in the non-connected phases will also be detectet.

In one voltage system only one Insulation monitor must be connected. This has to be observed when coupling voltage system.

The insulation monitor EH 5878 is designed to monitor single- and 3-phasevoltage systems. Overlayed DC voltage does not damage the instrument but may change the conditions in the measuring circuit.

Line capacitance C_{E} to ground does not influence the insulation measurement, as the measurement is made with DC-voltage. It is possible that the reaction time in the case of insulation fault gets longer corresponding to the time constant $\mathrm{R}_{\mathrm{E}}{ }^{*} \mathrm{C}_{\mathrm{E}}$.

The auxiliary supply can be connected to a separate auxiliary supply or to the monitored voltage system. The range of the auxiliary supply input has to be observed.

Technical Data		Technical Data	
Auxiliary Crcuit		Housing:	Thermoplastic with V0 behaveior according to UL subject 94
Auxiliary voltage $\mathrm{U}_{\mathbf{H}}$:	AC 24, 42, 110, 230, 400 V or AC 24, 42, 230, 400, 500 V	Vibration resistance:	Amplitude 0.35 mm frequency 10 ... 55 Hz , IEC/EN 60068-2-6
Voltage range:	0.8 ... 1.2 U	Climate resistance:	20/060 / 04 IEC/EN 60068-1
Frequency range:	$40 \ldots 400 \mathrm{~Hz}$	Terminal designation:	EN 50005
Nominal consumption:	Approx. 4 VA	Wire connection	
Measuring Circuit		Cross section:	$1 \times 2.5 \mathrm{~mm}^{2}$ starr/flexibel DIN 46228-1/-2/-3/-4
		Stripping length:	7 mm
Nominal voltage U_{N} :	AC $0 \ldots 500 \mathrm{~V}$	Wire fixing:	Srew terminals with removable
Voltage range:	0 ... $1.15 \mathrm{U}_{\mathrm{N}}$		terminal strips
Frequency range:	40 ... 60 Hz	Fixing torque:	0.6 Nm
Response value $\mathrm{R}_{\text {AN }}$:	$50 \mathrm{k} \Omega$, others on request	Mounting:	Flush mounting
Setting R_{AN} :	Fixed	Weight:	790 g
Internal test resistor:	$10 \mathrm{k} \Omega$		
Internal AC resistance:	$>400 \mathrm{k} \Omega$	Dimensions	
Internal DC resistance:	$>30 \mathrm{k} \Omega$		
Measuring voltage:	DC 15 V	Width x height x depth:	$96 \times 96 \times 111.5 \mathrm{~mm}$
Max. measuring current $(\mathrm{RE}=0):$	$<0.5 \mathrm{~mA}$	Panel cut-out:	$92^{+0.8} \times 92^{+0.8} \mathrm{~mm}$
Max. permissible noise		Standard Type	
DC voltage:	DC 250 V		
Operate delay		EH 5878.05 AC 24, 42, 110,	$30,400 \mathrm{~V} 50 \mathrm{k} \Omega$
At $\mathrm{R}_{\text {AN }}=50 \mathrm{k} \Omega$, $\mathrm{CE}=1 \mu \mathrm{~F}$		Article number:	0033168
R_{E} from ∞ to $0.9 \mathrm{R}_{\text {AN }}$:	< 0.6 s	- Output:	1 Wechsler
R_{E} from ∞ to $0 \mathrm{k} \Omega$:	<0.25 s	- Auxiliary voltage U_{H} :	AC 24, 42, 110, 230, 400 V
Hysteresis		- Response value $\mathrm{R}_{\text {AN }}$:	50 k ת
At $\mathrm{R}_{\text {AN }}=50 \mathrm{k} \Omega$:	Approx. 8 \%	- Frontside	$96 \times 96 \mathrm{~mm}$
Response inaccuracy			
At $\mathrm{R}_{\text {AN }}=50 \mathrm{k} \Omega$:	$\pm 15 \%+1.5 \mathrm{k} \Omega \quad$ IEC 61557-8		
	ambient temperature $-5 \ldots 50^{\circ} \mathrm{C}$,	Accessories	
Phase failure bridging:	> 60 ms	EH 5861/002:	Indicating instrument degree of protection: IP 52
Output			Article number: 0030616
Contacts:	1 changeover contact		The indicating device EH5861 is external-
Max. switching voltage:	AC 250 V	1!	ly connected to the insulation monitor and
Thermal current $\mathrm{I}_{\text {th }}$:	3 A		shows the actual insulation resistance of
Switching capacity			the voltage systems to ground.
To AC 15			Dimensions:
NO contact:	3 A / AC 230 V IEC/EN 60947-5-1		Width x height x depth
NC contact:	$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60947-5-1		$96 \times 96 \times 52$
Electrical life			
At AC $250 \mathrm{~V}, 8 \mathrm{~A}, \cos \varphi=1$:	$>3 \times 10^{5}$ switch. cycl. IEC/EN 60947-5-1		
Short circuit strength max. fuse rating:	$3 \mathrm{AgG} / \mathrm{gL}$ IEC/EN 60947-5-1		
Mechanical life:	$\geq 30 \times 10^{6}$ switching cycles		
General Data			
Operating mode: Temperature range	Continuous operation		
Operation:	$-20 \ldots+60^{\circ} \mathrm{C}$		
Storage:	$-25 \ldots+70^{\circ} \mathrm{C}$		
Altitude:	<2000 m		
Clearance and creepage distances			
Rated impulse voltage / pollution degree:	$4 \mathrm{kV} / 2 \quad$ IEC 60664-1		
Insulation test voltage			
Routine test:	AC 2.5 kV ; 1 s		
EMC			
Electrostatic discharge (ESD):	8 kV (air) IEC/EN 61000-4-2		
HF irradiation			
80 MHz ... 1 GHz :	$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3		
$1 \mathrm{GHz} . . .2 .5 \mathrm{GHz}$:	$3 \mathrm{~V} / \mathrm{m}$ IEC/EN 61000-4-3		
2.5 GHz ... 2.7 GHz :	$1 \mathrm{~V} / \mathrm{m}$ IEC/EN 61000-4-3		
Fast transients:	2 kV IEC/EN 61000-4-4		
Surge voltages			
Between			
wires for power supply:	1 kV IEC/EN 61000-4-5		
Between wire and ground:	2 kV IEC/EN 61000-4-5		
HF-wire guided:	10 V IEC/EN 61000-4-6		
Interference suppression:	Limit value class B EN 55011		
Degree of protection			
Housing:	IP 40 IEC/EN 60529		
Terminals:	IP 20 IEC/EN 60529		

Connection Examples

A1/A2: AC 24 or 24 V
A1/A3: AC 42 or 42 V
A1/A4: AC 110 or 230 V
A1/A5: AC 230 or 400 V
A1/A6: AC 400 or 500 V

