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Abstract

Nonlinear optical (NLO) processes, such as second harmonic generation (SHG),

play an important role in modern optics, especially in laser-related science and

technology. They are at the core of a wide variety of applications ranging from

optoelectronics to medicine. Among the various NLO materials, insulators are

particularly important for second-order NLO properties. In particular, only

crystals which are non-centrosymmetric can display a non-zero second-order

NLO susceptibility. However, given the large number of requirements that a

material needs to meet in order to be a good nonlinear optical material, the

choice of compounds is drastically limited. Indeed, despite recent progress, a

systematic approach to design NLO materials is still lacking. In this work,

we conduct a first-principles high-throughput study on a large set of semicon-

ductors for which we computed the linear and nonlinear susceptibility using

Density Functional Perturbation Theory. For the linear optical properties, our

calculations confirm the general trend that the refractive index is roughly in-

versely proportional to the band gap. In order to explain the large spread in

the data distribution, we have found that two descriptors successfully describe

materials with relatively high refraction index: (i) a narrow distribution in en-

ergy of the optical transitions which brings the average optical gap close to the

direct band gap (ii) a large number of transitions around the band edge and/or

high dipole matrix elements. For non-centrosymmetric crystals, we perform

the calculation of the efficiency of SHG. We observe some materials with par-

ticularly high SHG, much stronger than the general relation with the linear

refraction index through Miller’s rule predicts. We relate the value of Miller’s

coefficient to geometric factors, i.e., how strongly the crystal deviates from a

centrosymmetric one. We also identified interesting materials that show high

optical responses for which it would be worth performing further analysis.
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Introduction

The beginning of the 21st century has been characterized by new

opportunities and challenges for material scientists. One of the

main steps in this direction was the discovery of graphene in 2004,

that was worth the Physics Nobel prize in 2010 to Andre Geim and

Konstantin Novoselov. The great potential of this material opened

a new highway for materials science and raised new questions to

the scientific community that somehow can be summarized with

the following: are the materials currently used in technological ap-

plications the best we can have? The question is, of course, much

deeper than it may seem. Materials are indeed technology enablers,

and the discovery and commercialization of advanced materials are

crucial to solving major challenges in technological innovation, eco-

nomic growth, and the environment.

In the attempt to address this question, in 2011 the Materials

Genome Initiative (MGI) was announced. This is an effort to in-

troduce new materials into commerce more quickly and at a lower

cost than it could be achieved by a purely experimental trial and

1
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error approach [14–16]. The MGI approach requires contributions

in three critical areas: computational tools, experimental tools, and

digital data. Focusing on the first critical area, the growing compu-

tational power at our disposition made it possible to combine first-

principles calculations with the high-throughout (HT) approach.

The combination of these two methods enabled the creation of

large databases of material properties that would be prohibitive

(in time and cost) for experimental measurements. By screening

those databases, new materials, targeting specific applications, can

be identified. Successful discoveries (i.e. predictions confirmed

in the lab) include materials for batteries, hydrogen production

and storage, thermoelectrics and photovoltaics (see, e.g., Refs. [17]

and [18]). Databases can also be analyzed using data mining tech-

niques, aiming at identifying trends that can give a further in-

sight into the comprehension of the materials properties, or even

make predictions for unknown compounds through Machine Learn-

ing (see, for example, Refs. [19] and [20]). As an obvious effect,

the MGI has made significant progress in predicting the structures

and properties of new functional materials through computational

simulation and modelling, since its inception [21].

We are just in the first decade of this scientific era that can bring

interesting developments in material science. Indeed, critical tech-

nologies such as energy production and utilization, microelectron-

ics, and catalysis await immediate materials solutions through the

discovery and development of higher performance photovoltaic (PV),

thermoelectric, energy storage, fuel cell, semiconductor, catalytic

materials and optical materials. The latter are the main focus of

this work. Important technology applications take benefit from

such materials, lead to innovations, for instance, in lasers, LCD,
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LED technologies. Somehow, we are quite often dealing with op-

tical materials in our daily lives, sometimes without even realizing

it. As a matter of fact, the development of technologies to which

optical materials are associated has permanently changed commu-

nications and human interactions.

Further, to highlight the growing interest of scientists in optical ma-

terials, it is worth to name a few recent events. Indeed, UNESCO

designated the year 2015 as the international Year of Light and

Light-Based Technologies. More recently (October 2018), Gérard

Mourou, Arthur Ashkin, and Donna Strickland, were awarded the

Physics Nobel prize for their groundbreaking inventions in the field

of laser physics, for the optical tweezers, their application to bio-

logical systems, and for their method of generating high-intensity,

ultra-short optical pulses.

The interest in high-performing optical materials continues to in-

crease in many sectors, going from the industry up to the academic

context. Indeed, despite the availability of high-performance com-

puter and advanced synthetic methods to control the structure of

the materials at the atomic structure, there are still several key

obstacles to overcome. One of the main reasons is that the op-

timization of new materials is quite complex and requires careful

evaluation of several factors. Among these factors, we have for in-

stance mechanical properties, thermal stability, and potential for

large-scale fabrication. Obviously, the cost of this process is also

another key factor to be evaluated.

However, as we have already stated, much progress has been done

lately to overcome the above mentioned limiting factors, pushing

forward the materials research. As a matter of fact, first-principles

approaches as Density Functional Theory (DFT) are being widely
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used nowadays. This has the additional benefit of accessing many

fundamental materials properties that can be difficult to obtain

experimentally. However, DFT is a theory built for the prediction of

the ground-state properties of the materials, and the calculation of

the excited state properties in crystals continues to be an active area

of research. One of the main problems is due to the limitations that

the current methods for the calculation of the optical response of

the materials suffer, both in the linear and in the nonlinear regime.

Indeed, at the present moment, methods that go beyond DFT, such

as many-body perturbation theory, for the calculation of the optical

response still need a large availability of computational resources.

This makes it prohibitive to calculate the optical properties for a

large set of materials. Furthermore, so far these methods have been

mostly used to deepen the experimental results rather than being

used to make predictions.

Another important role in this field is given by the interaction

through the exchange of data between computational predictions

and experimental results. In fact, knowing that certainly, the ex-

perimental validation is essential as a final confirmation of the qual-

ity of the optical materials, reliable and robust computational ap-

proaches can significantly improve and speed up the search of novel

materials, alleviating some of the key limiting factors.

Given all these considerations, contributions that can help mate-

rial design and accelerate the material discovery are really sought.

To this purpose, in this thesis, we show an high-throughput first-

principles study of optical materials. In this work, most of the

optical properties of materials are computed in the framework of

Density Functional Perturbation Theory (DFPT). Indeed, by merg-

ing DFT within perturbation theory, new quantities beyond the
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ground-state properties of the materials can be accessed. Consid-

ering thus an electric field as the external perturbation, we can

compute the response of the materials to such perturbation, in the

linear and nonlinear regime, at the static limit (ω = 0 eV). As

already stated, the success of DFT and DFPT stems from their

reliability and low computational cost. We then combined these

methodologies with the HT approach, calculating the optical re-

sponses for a large set of semiconductors. The analysis performed

on these materials are basically focused on two aspects: (i) the

search for novel optical materials, by screening, among the list of

materials we have computed, the property requirements that a ma-

terials should possess to be a good candidate, among the list of

materials we have computed and (ii) the analysis of the data trend

through data mining approaches that, giving a description of the

data distribution, can also give us further physical insight into the

comprehension of the investigated phenomena.

We then compute the linear optical properties, such as the refrac-

tive index, for more than 4000 semiconductors. Our calculated

data confirms the global inverse trend between this quantity and

the band gap of the materials. This inverse relationship has been

highlighted also in similar works [22, 23]. In their analysis, Petousis

et al. tried to fit various quantitative relationships between the re-

fractive index and the band gap to describe the data distribution.

However, due to the spread in the values of the refractive index for

a given band gap, it was not possible to establish such a quanti-

tative relation between these quantities. Furthermore, it is worth

mentioning that our calculated data constitute the largest dataset

of linear optical properties to date, to the best of our knowledge.
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Aiming at finding outlier materials that combine a high refrac-

tive index with a wide band gap, we found well known materi-

als (TiO2, LiNbO3, ...), already widely used for optical applica-

tions, and other materials, not yet considered for such applications

(Ti3PbO7, LiSi2N3, BeS, ...). By investigating the data trend of

the materials we found two descriptors: the average optical gap

and the effective frequency. The former can be determined directly

from the electronic structure of the compounds, but the latter can-

not. This calls for further analysis in order to obtain a predictive

model. Nonetheless, it turns out that the negative effect of a large

band gap on the refractive index can counterbalanced in two ways:

(i) by limiting the difference between the direct band gap and the

average optical gap which can be realized by a narrow distribution

in energy of the optical transitions and (ii) by increasing the effec-

tive frequency which can be achieved through either a high number

of transitions from the top of the valence band to the bottom of

the conduction or a high average probability for these transitions.

Focusing on oxides, we use our data to investigate how the chem-

istry influences this inverse relationship and rationalize why certain

classes of materials would perform better. This work has been pub-

lished in Physical Review Materials [24].

We select the non-centrosymmetric materials present in the linear

optical materials database, to start the screening of the nonlinear

optical materials aiming at computing their second order suscep-

tibility. At this stage, we have computed the nonlinear properties

for more than 400 semiconductors, which have been inserted in a

new database. This number is intended to increase in the future

and the database will be released for public consultation at a later

stage. We then investigate the relationship between the nonlinear

and linear optical properties of the materials. As suggested by the
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empirical Miller’s rule [10], compounds with high nonlinear optical

properties also show high response in the linear regime. However,

having a high response in the linear regime is not a sufficient con-

dition to have a high nonlinear response as well. From our analysis

of the data distribution, it turns out that the Miller’s coefficient,

that is the coefficient of proportionality between the nonlinear and

the linear susceptibility, is material dependent and that a particular

atomic distribution can favor the nonlinear process. These findings

will be further analyzed in future works.

Finally, we look at the distribution of materials considering the

nonlinear optical coefficient vs. the band gap. As in the case of the

linear optical properties, there is an inverse relationship between

these two quantities. Among the outliers that combine a wide band

gap with high nonlinear optical coefficients, we have found some of

the already mentioned nonlinear optical materials such as LiNbO3,

LiTaO3, and other well-known as KTiPO5 and TiPbO3. In contrast,

to the best of our knowledge, some of these outliers have not yet

been considered as nonlinear optical materials (as for instance PON,

B2O3, PbO, Sb2WO6, ..).

This manuscript is organized as follows:

• In the second chapter, the scientific and theoretical back-

ground is given. An overview of optical materials is given,

focusing then on the criteria that a material should have to

be a good optical material, followed by a theoretical overview

of these aspects.
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• In the third chapter the methods we used to compute the

structural, electronic, and optical properties are given. These

are the already mentioned DFT and DFPT. In the last part

of this section, an overview on high-throughput calculations

is given, focused mainly on the description of how DFT and

DFPT can be merged in such an approach.

• In the fourth chapter our results are shown and analyzed. Us-

ing the HT-DFPT approaches explained in the third chapter,

we initially built up a database containing more than 4000

materials, for which we stored the optical properties in the

linear regime. After this analysis, non-centrosymmetric ma-

terials have been extracted from the initial list of candidates,

to build a new set of data, for which we have computed the

nonlinear optical coefficients for more than 400 semiconduc-

tors.

• In chapter 5, we summarize our work and give an outlook to

future work in this field.



2

Linear and nonlinear optics:

Theoretical background

Optical materials are at the core of many technologies (e.g. lasers,

liquid-crystal displays, light-emitting diodes, ...) with applications

in many sectors (telecommunications, medicine, energy, transistors,

microelectronics, ...). Light-matter interaction at the atomic scale,

is a fundamental aspect for this class of materials. Improvement

and further developments of these technologies requires a thorough

comprehension of the underlying physical processes and how optical

properties are linked to the structure and the electronic structure of

the compounds. The possible range of phenomena can be generally

grouped into reflection, propagation, and transmission, that raise

of course different responses and different fields of application. The

improvement of the efficiency of available devices, or the develop-

ment of new technologies, has to go through the comprehension of

these aspects. The aim is that, if one can more readily accelerate

the rate at which basic condensed matter discoveries are made, then

9
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translation of such materials research into new technologies may be

more efficient.

In this chapter, all the fundamental aspects of optical materials are

given starting from a general overview. Then, the main ingredients

to describe optical materials are shown, starting from a classical

picture and going to a quantum mechanical description of the phe-

nomena, considering both the linear and nonlinear regime. Finally

a method to exploit phase-matching condition in bi-axial crystals

is shown.

2.1 Optical materials: An overview

Optical materials are all those materials used in the construction of

technological devices whose functioning is given by the alteration

of electromagnetic radiation. Interacting with these materials, pho-

tons can be reflected, they can propagate through the material, or

eventually they can be transmitted if the photons go across of the

material. In the case of propagation, many phenomena can occur

since photons can be either absorbed and converted to other forms

of energy, they can be refracted by changing direction and velocity

of propagation, or they can be simply randomly scattered in the

case of an opaque material.

Optical materials are essential for economic growth, enabling ad-

vanced manufacturing and many next generation innovative tech-

nologies. As shown in Fig. 2.1, taken from Ref. [1], optical mate-

rials are used in a variety of industries and engineering fields. In

communications, optical materials are critical for storing, transfer-

ring, and computing information, whereas in manufacturing they
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enable cutting, welding, and drilling of materials as well as precise

photolithography with features less than 200 nm. Optical mate-

rials continue today to be critical for a balanced energy portfolio,

in which they serve as the active elements in generation and con-

version technologies. These materials provide security and defense

applications as high-power direct energy weapons and laser guid-

ance; in health and medicine,they enable cancer detection, needle

less testing, and vision correction.

Figure 2.1: Fields of usage for technological applications of
optical materials (Taken from Ref. [1]).

To improve the performance of optoelectronic devices, the opti-

cal properties of the given materials have to be investigated. A

compilation of articles about recent developments of optoelectronic

devices can be found in Ref. [25]. The linear optical properties are

involved for example in solar cells, where the absorption of sunlight

is the first step in the energy conversion mechanism, and in LED,

where the radiative recombination leads to light emission.
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Effect Input Output

Second Harmonic Generation (SHG) ω 2ω
Sum Frequency Generation (SFG) ω1, ω2 ω1 + ω2

Difference Frequency Generation ω1, ω2 ω1 − ω2

Optical rectification ω 0
Down conversion ω ω1, ω2

Linear electro-optic effect ω, 0 ω

Table 2.1: Second order nonlinear optical phenomena. The
input column indicates the frequency of the light beam incident
on the nonlinear crystal for each effect. The output column
represents the frequency of the output beam. A frequency of
zero indicates a DC electric field.

As light with sufficient intensity propagates through a material,

the light-matter interaction results in nonlinear optical (NLO) ef-

fects that find utility in various frequency conversion technologies.

Table 2.1 illustrates several nonlinear processes that involve the

interaction of photons within a nonlinear crystal.

In this manuscript, we will focus on the phenomena of Second Har-

monic Generation (SHG). As it is well known, in a linear process, a

photon is absorbed at a frequency ω and is then re-emitted at the

same frequency. In SHG, new frequencies are created. Indeed, after

the absorption of a first photon, a virtual process happens in the

nonlinear material that is capable of absorbing another photon at

the same frequency, emitting then at double the frequency. These

processes are naively depicted in Fig. 2.2. The situation depicted

for SHG, where two photons with wavelength of 1064 nm, that is in

the infrared region of the spectrum, are absorbed, and one photon

is emitted at a wavelength of 532 nm, in the visible green region of

the spectrum is barely the mechanism that produces the green light
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in the green laser pointers nowadays used in conferences. The non-

linear material typically used to achieve this effect is the potassium

dihydrogenphosphate or KDP (KH2PO4).

Figure 2.2: Example of a linear and nonlinear (SHG) pro-
cesses.

Nonlinear effects need a strong laser source to be detected. Hence,

it is not a coincidence that the first observation came only in 1961

[26], just after the laser invention (1960) [27]. After these discover-

ies, and with the rapid growth of available laser sources, nonlinear

optics became a powerful tool in material research. Modern laser

relies nowadays on nonlinear optics. This is a sensitive tool to

probe inversion symmetry in materials, since the SHG mechanism

is active only in materials without an inversion symmetry (non-

centrosymmetric materials).

Because of this sensitivity, nonlinear response is an essential tool

to characterize and explore electronic and structural properties of

materials in condensed matter. As a straightforward example SHG

can be used to detect phase changing from centrosymmetric to non-

centrosymmetric phases of piezoelectrics, pyroelectrics, and ferro-

electrics. For instance, by looking at the SHG signal ferroelectric

BaTiO3 as a function of the temperature, it is possible to detect a

change of phase at around 120◦ C, through the disappearance of the
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SHG signal at higher temepratures. At that temperature, inversion

symmetry is restored in BaTiO3 crystal and it loses its ferroelectric

properties [28]. Further details on how to probe ferroelectrics tools

and related experimental techniques can be found in Ref. [29].

The general sensitivity of SHG has also recently been used to char-

acterize surfaces and interfaces. Indeed, SHG it is not only sensitive

to the symmetries of the sample, but also to the lattice orientation.

This idea has been recently applied by X. Yin et al. [2]. They

developed a nonlinear optical imaging technique to determine the

crystal orientations in 2D materials at a large scale. Their result

is reported in Fig. 2.3. The left side is the image of a single layer

of MoS2 investigated within linear optics, and on the right side the

same material is studied considering SHG techniques. It is clearly

evident that the different flakes and orientation are visible in the

SHG image. Nonlinear optics applications can range from opto-

Figure 2.3: On the left a linear optical image of layered
MoS2, on the right side the SHG image of the same material
(Readapted from Ref. [2])

electronics to biology. Just to cite an example, SHG microscopy

can be used to probe protein dynamics, as shown by Förderer [30].

This is done basically bounding a nonlinear nanocrystal to proteins.

SHG nanocrystals modify the light color when they interact with
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a strong light source, and thus they can be imaged by means of

the two-photon microscopy. By contrast, biological tissue do not

present any nonlinear response, thus the nonlinear signal is only

given by the nanocrystal. This allows scientists to visualize the

dynamic of proteins.

As reported in Ref. [1], inorganic compounds are the most useful

NLO materials for SHG. Their performance depends on

1. Lack of inversion symmetry;

2. Large linear and nonlinear optical coefficients;

3. Appropriate absorption edges;

4. Phase matchability;

5. Mechanical strength, high laser-damage threshold, optical ho-

mogeneity, and extent of facile growth.

Due to all the requirements that a material has to meet to be a

good nonlinear optical material, very few compounds have been

used so far in this field. It would be important to identify new

possible candidates. Of course, it has to be mentioned as well that,

while it is possible to compute some of these properties from a first-

principles point of view, others can currently be evaluated only after

the material is synthesized. High laser-damage threshold, optical

homogeneity, and extent of facile growth are examples of proper-

ties that cannot be checked by first-principles making it, of course,

difficult to predict and characterize materials. However, a compu-

tational approach that could be used to compute ascertain some

of these requirements would already help and speed up materials

research and discovery.
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The lack of NLO materials has been recently discussed by different

authors. In fact, looking at the infrared and ultraviolet region of

the electromagnetic spectrum, few materials that somehow satisfy

all the requirements are known nowadays. IR materials are partic-

ularly sought for organic and inorganic molecular sensing and for

medical surgery because of their small band gap and large nonlin-

ear optical coefficients. However, even if smaller band gaps should

bring to a large nonlinear optical coefficients, the price to pay is a

narrower transparency window and a lower damage threshold. Few

materials beyond the standard chalcopyrites AgGaS2 and ZnGeP2

find widespread use owing to low laser damage thresholds and two-

photon absorption (see Ref. [31] and references therein for further

details). The same situation is found on the other side of the elec-

tromagnetic spectrum, in the ultraviolet region. Technologically,

these materials are used in semiconducting manufacturing, photoli-

tography, laser systems, atto second pulse generation, and advanced

instrument development. Really few materials satisfy the required

conditions besides the well known β−BaB2O4. It is also worth to

mention that most of the materials found so far for applications

in the UV are beryllium-based, and given the toxicity of the lat-

ter, new chemically benign compounds are highly sought [32]. In

addition to the limitations already mentioned, here there is a prob-

lem related to the optical coefficients. Indeed, UV materials have

a large band gap (' 6 eV ) and this is a huge limitation because

of the inverse relationship that exists between the susceptibility, at

every order, and the band gap. Thus, a large band gap means small

optical coefficients.

From these observations, it is clear that models and approaches

that could help to circumvent these limitations are actively sought.

This is one of the key aspects of this thesis: given the range of
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usability of optical materials, it is nowadays fundamental to find a

way to accelerate materials discoveries and improve the existing de-

vices, or either develop new ones more efficient. From our side this

can be done by collecting materials properties from first-principles,

developing models and analyzing trends that can improve the com-

prehension of the behaviour of materials in a given circumstance.

An example of how the analysis of trends and models can help the

material research can be found in the field of catalysis. The latter

has relied for a long time on computing adsorbate energies that

are not complicated quantities to compute within first-principles

approaches. Thanks to models we could understand what inherent

features in the electronic structure drive these adsorption energies.

Following that spirit, it is now known that an important descrip-

tor for the adsorption energies in catalysis is the position of the d

bands, leading to great chemical and structural insight.

After this brief overview on optical materials, their usability, and

the necessity of finding new materials, we move now to the ingredi-

ents we need to get a good optical material, following the required

criteria. The guidelines for the extraction of physical optical prop-

erties as the susceptibility χ at the different orders is given, within

different approaches. After that, the phase-matching problem will

also be discussed. As already stated, this can only be the starting

point for searching for new optical materials, since other criteria

that the material must satisfy have to be investigated after the

material is synthesized.
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2.2 Linear and nonlinear optical

susceptibility

When a semiconductor interacts with an external electric field, a

series of oriented dipoles are created internally, generating an in-

ternal microscopic response of the material, that is the origin of

the macroscopic polarization. This situation is naively depicted in

Fig. 2.4. The polarization, also defined by the dipole moment per

unit volume, describes indeed how the system is affected by the

external electric field. Considering an homogeneous and isotropic

Figure 2.4: Creation of oriented dipoles inside a material that
interacts with an external electric field.

dielectric medium, the polarization is aligned with and proportional

to the electric field E :

P = χE (2.1)

where the proportionality coefficient χ is known as the electric sus-

ceptibility of the material. Assuming that the amplitude of the

incident electric field is much weaker than the atomic electric field

strength, we can rewrite the previous equation considering a Taylor
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expansion of the polarization:

Pi = P(0)
i +

∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk + ... (2.2)

where, P0
i is the spontaneous polarization of the material, typically

present in ferro-electric materials for example, and the next or-

ders give rise to the linear contribution (proportional to the electric

field), and the nonlinear contributions, for which the polarization

and the electric field are related by a nonlinear relationship. In the

rest of this thesis, we will generally refer to nonlinear processes con-

sidering the first nonlinear term present in Eq. (2.2), referring then

to the second order of the expansion. This term is at the origin of

phenomena as SHG. The knowledge of the material susceptibility is

the first step that we carry out in our screening procedure, since this

is the quantity related to the refractive index in the linear order,

and the SHG nonlinear coefficient considering the nonlinear term.

This is then a key quantity to investigate the optical coefficients of

the materials at the different orders.

In the next sections, a brief description of how to extract the sus-

ceptibility at linear and nonlinear order, considering a classical and

quantum mechanical approach, is given, focusing on some physical

aspects that can be extracted from these treatments. Extended

discussions can be found in the literature [33–36].

2.2.1 Classical picture:

The anharmonic oscillator

The interaction of an external electric field with a material pro-

duces an oscillation of the electrons. This oscillation around its
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equilibrium position gives rise to a dipole moment p(t) that will

change in time with an amplitude proportional to the motion of

the electrons. In classical mechanics, we can depict this oscillation

considering the anharmonic oscillator, described by the following

equation of motion

ẍ+ 2γẋ+ ω2
0x+ ax2 + bx3 + ... = −E(t)/m (2.3)

where ω0 is the resonant frequency of the electron, 2γẋ is the damp-

ing force, and E(t) is the applied electric field. The Taylor expansion

represents the different orders that contribute to the restoring force.

For the electric field, we consider a linearly polarized plane-wave in

the x direction that propagates along the z axis with a wave vector

k. This writes as

E(z, t) = A(ω)e−i(ωt−kz) + c.c.

= Ẽ(ω)e−iωt + c.c.
(2.4)

where A is the spatially slowly varying field amplitude, with Ẽ =

Ae−ikz, and c.c. indicates the complex conjugate (Ẽ(ω)∗ = Ẽ(−ω)).

At the first order of the perturbation, we have a steady state solu-

tion of the type:

x(1)(t) = c1(ω)e−i(ωt−kz) + c.c. (2.5)

where:

c1(ω) =
−A(ω)

(ω2
0 − ω2 − iγω)

(2.6)

As already stated, the macroscopic polarization can be defined as

the dipole moment per unit volume. Thus, if we have N atoms per

unit volume, the resonant polarization can be written as P = Np,
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giving as a result at the first order of the expansion:

P(1)(z, t) = −Nx(1)(t)

=
NA(ω)

ω2
0 − ω2 − 2iγω

e−i(ωt−kz) + c.c.
(2.7)

Comparing this equation to Eq. (2.2) we can finally write for the

first order susceptibility:

χ(1)(ω) =
N

(ω2
0 − ω2 − iγω)

(2.8)

In linear optics, a more familiar concept to describe the response of

materials with respect to an external electric field, is the dielectric

function ε(ω), that is related to the susceptibility in the following

way:

ε(ω) = 1 + 4πχ(1)(ω) (2.9)

The dielectric function is a complex quantity. Its real and imagi-

nary parts can be connected to the optical response of the material

whether it is transparent, refractive or conductive. For example, we

have for the calculation of the refractive index that this is related

to the dielectric function through the relationship

n(ω) =
1√
2

√
ε1(ω) +

√
ε1(ω)2 + ε2(ω)2 (2.10)

where ε1(ω) and ε2(ω) are the real and imaginary parts of ε(ω),

respectively.

At the second order, considering the case of SHG (see Fig. 2.2), the

steady state solution is given by

x(2)(t) = c2(2ω)e−2iωt (2.11)
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with

c2(2ω) =
−aA

(ω2
0 − 4ω2 − 4iωγ)(ω2

0 − ω2 − 2iωγ)2
(2.12)

In a similar way, the polarization at the second order is given by

P(2)(2ω) = −Nx(2)(2ω) (2.13)

extracting a nonlinear susceptibility of the form:

χ(2)(2ω, ω, ω) =
Na

(ω2
0 − 4ω2 − 4iωγ)(ω2

0 − ω2 − 2iωγ)2
(2.14)

At this point, it should be reminded that this model represents the

physical situation in which an atom that possesses a single reso-

nance frequency ω0 is immersed in an electric field at frequency ω.

For many aspects, such a model is not ideal to reproduce the be-

haviour of a solid immersed into an electric field. Indeed, first of all,

in a real system we have multiple resonance frequencies. Further, to

simplify the treatment, we considered the case of an isotropic dielec-

tric medium immersed in an monochromatic field. We could then

avoid the tensor notation. Further, within a classical approach, a

fundamental quantity such as the optical matrix elements of the

transition are not taken into account, since this is purely a quan-

tum mechanical quantity. However, this simplified model gives us

a good idea of the phenomena, since it corresponds to the physical

situation of electrons in a real material, because the actual poten-

tial well that the electrons feel is not perfectly parabolic, as in this

case.

Nonetheless, within this theoretical model, it is easy to show the

relationship between the nonlinear susceptibility and the linear one.
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The direct proportionality between these two quantities was previ-

ously deduced by Miller from empirical observations [10]. Actually,

for a long time, the anharmonic oscillator has been the only way to

prove this relationship from a theoretical point of view. This is ba-

sically the reason why one can think that a material that possesses

high linear optical properties, should also have high nonlinear opti-

cal properties. Following Ref. [33] we can see that it is possible to

rewrite Eq. (2.14), as a function of the linear one (Eq. (2.8)):

χ(2)(2ω, ω, ω) = ∆χ(1)(2ω)
[
χ(1)(ω)

]2
(2.15)

where ∆ is the Miller’s coefficient. In the case of the anharmonic

oscillator, this is given by ∆ = a
N

2, where the parameter a =
ω2
0

d
, and

d is the lattice constant. Since the majority of the materials initially

taken in consideration to investigate this relationship show some

peculiarity (e.g. GaSb, GaAs, InSb, GaP, ...), Miller’s coefficient

was thought to be roughly a constant for different materials, but

this has been demonstrated not to be exactly correct [37]. This

aspect will be further investigated in the next sections of this thesis.

In order to go beyond this model, we need to include quantum

effects. In the next sections we will then extract the susceptibility

from quantum theory. As already stated, the physical conclusions

will be drawn in a similar way to the classical one, but we will have

the natural inclusions of new contributions that can give us further

insights into the comprehension of the phenomena.

2.2.2 Quantum picture

In quantum mechanics, all the properties of the atomic system can

be described in terms of the atomic wave function Ψ(r, t) that is
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the solution of the time dependent Schrödinger equation:

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (2.16)

where Ĥ is the Hamiltonian describing the light-matter interaction

and can be written as

Ĥ = Ĥ0 + V̂ (t) (2.17)

where Ĥ0 is the free-atom Hamiltonian and V̂ (t) is the external

interacting potential. Including the proper form of the potential

that describes the interaction between the system and the exter-

nal perturbation, all the properties of the system can be accessed.

However, to obtain the susceptibility, we have to follow a different

approach than the previous one. Indeed, as we will also see in the

next chapter, only a few quantum mechanical problems have an ex-

act analytical solution. We then have to apply perturbation theory

to retrieve useful quantities in this case [38].

First of all, we consider the static case, in which no perturbations

are applied to the system. Since we deal with periodic systems, we

use Bloch states to represent energy eigenstates that assume the

following form:

Ψn(r, t) = un(r)e−iωnt (2.18)

where n is the band index. These eigenstates have to satisfy the

time-independent Schrödinger equation

Ĥ0un(r) = Enun(r) (2.19)

where En = ~ωn are the stationary eigenvalues, and have to be

chosen in such a way that they constitute a complete, orthonormal
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set satisfying the condition∫
u?mun dr = δmn (2.20)

The perturbed case can be extracted from the static one by ex-

panding these basis functions.

In the perturbative approach, we rewrite the Hamiltonian (2.17)

with

Ĥ = Ĥ0 + λV̂ (t) (2.21)

where λ ∈ [0, 1] characterize the strength of the perturbation. The

solution will be now expressed in terms of a power series in λ:

ψ(r, t) = ψ(0)(r, t) + λψ(1)(r, t) + λ2ψ(2)(r, t) + ... (2.22)

The set of equations to be solved can be now written as

i~
∂ψ(0)

∂t
= Ĥ0ψ

(0), (2.23a)

i~
∂ψ(N)

∂t
= Ĥ0ψ

(N) + V̂ ψ(N−1), N = 1, 2, 3, ... (2.23b)

At the zeroth order, the system is in its ground-state and the solu-

tion takes the form

ψ(0)(r, t) = ug(r)e−iEgt/~ (2.24)

Where g labels indeed the ground-state of the system. The N th-

order solution can be written by expanding the ground-state one:

ψ(N)(r, t) =
∑
l

a
(N)
l (t)ul(r)e−iωlt (2.25)
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where a
(N)
l (t) is the probability amplitude that the atom is in an

energy eigenstate l at the time t, to the N th-order of the pertur-

bation. Substituting this solution in Eq. (2.23b), we have that the

probability amplitude is given by a recursive system of equations

i~
∑
l

ȧ
(N)
l ul(r)e−iωlt =

∑
l

a
(N−1)
l V̂ ul(r)e−iωlt (2.26)

that can be further rewritten as

a(N)
m (t) =

1

i~
∑
l

∫ t

−∞
Vml(t

′)a
(N−1)
l (t′)eiωmlt

′
(2.27)

where ωml = ωm − ωl is the energy difference between the m and

l electronic state, and Vml = 〈um|V̂ |ul〉 =
∫
u?mV̂ ul dr is the ma-

trix element of the perturbed Hamiltonian. From Eq. (2.27), the

recursive nature of our set of equations is even more evident.

Finally, whatever form the perturbation external potential takes,

at the zeroth order case the probability amplitude is given by:

a
(0)
l = δlg (2.28)

This means of course that, without any perturbing term, the system

is in its ground-state. Switching on the perturbation with respect

to external field the potential can be written as

V̂ = −µ̂ · E(t) (2.29)

where µ̂ is the electric dipole moment operator of the interaction

that can be written considering the position operator:

µ̂ = −r̂(t) (2.30)
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Assuming the solution in Eq. (2.28), and solving the integral in

Eq. (2.27) we then have at the first order

a(1)
m (t) =

µmg · Ẽ(ω)

ωmg − ω − iγ
ei(ωmg−ω)t (2.31)

where the positive broadening γ → 0+ accounts for the causal be-

havior of the response. At the second order we have

a(2)
n (t) =

∑
m

[µnm · Ẽ(ω)][µmg · Ẽ(ω)]

(ωng − 2ω − iγ)(ωmg − ω − iγ)
ei(ωng−2ω)t (2.32)

where we have introduced the dipole transition moment, defined as

µml =

∫
u?mµ̂ul dr (2.33)

This quantity gives the probability that an electronic transition

from a state l to a state n will happen.

At this point, we can compute the susceptibility at the different

orders by considering the expectation value of the electric dipole

moment

〈p̃〉 = 〈ψ|µ̂|ψ〉 (2.34)

where the wave functions are given by the perturbation expansion

in Eq. (2.22) with λ = 1. The linear contribution to the expectation

value is given by

〈p̃(1)〉 =
〈
ψ(0)

∣∣µ̂∣∣ψ(1)
〉

+
〈
ψ(1)

∣∣µ̂∣∣ψ(0)
〉

(2.35)

Using Eqs. (2.24) and (2.26) we have:

〈p̃(1)〉 =
∑
m

(
µgm[µmg · Ẽ(ω)]

ωmg − ω
e−iωt

)
+ c.c. (2.36)
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Considering the linear polarization as P̃(1) = N〈p̃(1)〉, where N is

the density of electrons, we have then for the linear susceptibility

χ
(1)
ij (ω, ω) = N

∑
m

(
µigmµ

j
mg

ωmg − ω − iγ
+

)
+ c.c. (2.37)

The same procedure can be followed to get the second order non-

linear susceptibility, starting from the second order contribution to

the induced dipole moment per atom

〈p̃(1)〉 =
〈
ψ(0)

∣∣µ̂∣∣ψ(2)
〉

+
〈
ψ(1)

∣∣µ̂∣∣ψ(1)
〉

+
〈
ψ(2)

∣∣µ̂∣∣ψ(0)
〉

(2.38)

The second order susceptibility takes then the form

χ
(2)
ijk (2ω, ω, ω) =N

∑
mn

(
µignµ

j
nmµ

k
mg

(ωng − 2ω − iγ)(ωmg − ω − iγ)
+

µjgnµ
i
nmµ

k
mg

(ωng + ω + iγ)(ωmg − ω − iγ)
+

µjgnµ
k
nmµ

i
mg

(ωng + ω + iγ)(ωmg + 2ω + iγ)

) (2.39)

Finally, it is interesting to look at the similarities between the

second-order susceptibility derived within the two approaches. In

Eq. (2.14) the overall set of electronic transition is replaced by a

single frequency at ω0. Furthermore, all the electronic transitions

from ground state to an excited state of the system are in prin-

ciple possible. In Eq. (2.39), we have likely the same behaviour

at the denominator, where now multiple non-resonant frequencies

are taken in consideration. The main difference lies on the de-

nominator, in which the optical matrix elements of the transition

naturally appears in Eq. (2.39). As already stated, this is a fun-

damental contribution to the susceptibility, both at the linear and
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nonlinear regime, since, for example, transitions that are forbidden

by symmetry are suppressed by having a null value of the matrix

elements.

For the sake of the readability of this thesis, we limit our discus-

sion to the approach just proposed. The density matrix approach,

that is more general and can include also resonant processes such

as relaxation processes, is indeed more complicated from a mathe-

matical point of view. More details on these theories can be found

for example in the literature cited at the beginning of this section.

2.2.3 More on Miller’s rule

We have already introduced the Miller’s rule that relates the non-

linear optical susceptibility with the linear one for the case of ho-

mogeneous and isotropic dielectric media. More generally, this re-

lationship writes [10]

χ
(2)
ijk(2ω, ω, ω) = ∆ijkχ

(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω) (2.40)

where ∆ijk is the Miller’s coefficient already seen in Eq. (2.15).

From many points of view, having a confirmation on the validity of

this empirical rule could be of fundamental importance. Of course,

accessing the nonlinear susceptibility from the knowledge of the

linear one would be a great advantage both from an experimental

and computational point of view, because linear optical proper-

ties are much easier to calculate and analyze. The main message

we have from this empirical rule at this stage is that, by having

a material with a high linear coefficient, the chance to have high

nonlinear properties is quite high. It is anyway important to men-

tion that this is valid only if certain assumptions on the Miller’s
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coefficient are verified. Indeed, it is still debated if this quantity

can be assumed as a constant, and thus material independent. Of

course the comprehension of the main ingredients that constitute

the Miller’s coefficient would open the way to new comprehension of

the phenomena, and to new predictive power. This will be further

discussed in the results section.

An approach based on the quantum form of χ(2) was proposed by

Scandolo and Bassani [39]. They first derived a series of sum rules

that apply to the nonlinear susceptibility [40]

χ(2)(0, 0) =
2

π

∫ ∞
0

Imχ(2)(ω′, ω′)

ω′
dω′, (2.41)

∫ ∞
0

ωn Reχ(2)(ω, ω) dω = 0 (2.42)

with n = 0, 2, 4; ∫ ∞
0

ωm Imχ(2)(ω, ω) dω = 0 (2.43)

with m = 1, 3; and finally∫ ∞
0

ω5 Imχ
(2)
ijk(ω, ω) dω =

Nπ

16

〈
∂3V

∂xi∂xj∂xk

〉
0

(2.44)

where N is the density of electrons, V (x) is the external potential

experienced by the electrons, and the average, indicated by the an-

gle bracket, is performed in the ground-state of the system. Taking

as a starting point Eq. (2.39), they considered a simplified model

in which there is a single resonant frequency that approximates the

overall set of electronic transitions. Thus, using the sum rules in
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Eq. (2.41) to Eq. (2.44), they were able to show that

χ
(2)
ijk(ω, ω) = −

〈
∂3V

∂xi∂xj∂xk

〉
0

2N2
χ

(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω) (2.45)

Even more important for the sake of this work, they showed the the-

oretical validity of the Miller’s rule also in the static limit. Taking

indeed the limit ω → 0 we have

χ
(2)
ijk(0, 0) = −

〈
∂3V

∂xi∂xj∂xk

〉
0

2N2
χ

(1)
ii (0)χ

(1)
jj (0)χ

(1)
kk (0) (2.46)

It is evident anyway that one of the main results of their works is

the explicit expression of the Miller’s coefficient. As already stated,

this aspect will be further investigated in the results section, since

we believe that a better comprehension of such an empirical rule

can open new ways in the study of nonlinear optical properties of

semiconductors.

2.2.4 Symmetry properties of the

nonlinear susceptibility

To conclude the discussion on the second order susceptibility it is

worth discussing the symmetry properties of this quantity that is a

third rank tensor.

First of all, SHG effects are not possible in centrosymmetric crystals

for which all the elements of the tensor are identically null. Follow-

ing Ref. [33], this can be shown in an easy way. A centrosymmetric

crystal is basically a system where a centre of inversion exist. If we
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generate a nonlinear polarization in a centrosymmetric crystal con-

sidering a single applied field E , the components of the polarization

are:

P(2)
i (E) =

∑
j,k

χ
(2)
ijkEjEk (2.47)

Reversing the direction of the field, we have:

P(2)
i (−E) =

∑
j,k

χ
(2)
ijk(−Ej)(−Ek)

=
∑
j,k

χ
(2)
ijkEjEj = P

(2)
i (E)

(2.48)

Because of the Neumann’s principle [41], that states that the sym-

metry of a macroscopic property tensor of a material must at least

possess the symmetry of the point group of the material, since the

crystal has an inversion symmetry, we must obtain the same physi-

cal result by keeping the field in the original direction and rotating

by 180 degree the crystal. In terms of coordinates axes of the in-

verted crystal, all the components of E and P(2) change sign, and

therefore we have:

− P(2)
i =

∑
j,k

χ
(2)
ijk(−Ej)(−Ek) (2.49)

It is obvious that, the only solution that satisfies simultaneously

both equations is χ
(2)
ijk = 0 ∀ i, j, k. This shows that SHG, or more

generally, all the optical nonlinear phenomena that involve the sec-

ond order term of the susceptibility are forbidden in centrosymmet-

ric materials.

It has to be mentioned also that in literature the SHG tensor is

typically expressed by:

dijk =
1

2
χ

(2)
ijk (2.50)
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having then

Pi(2ω) =
∑
jk

∑
mn

2dijkEj(ω)Ek(ω) (2.51)

Symmetries are important especially because the number of inde-

pendent elements that describe the nonlinear interaction can be

drastically reduced. Indeed, if Kleinman’s symmetry condition is

valid, at small frequencies (ω → 0) the dijk tensor is symmetric in

its indices. This is always valid in the case of SHG (see Ref. [42]).

We can then contract the tensor following the notation:

jk: 11 22 33 23,32 31,13 12,21

l: 1 2 3 4 5 6

This reduces the number of independent elements from 27 to 18. If

we further look for the independent elements, then it is simple to

notice that not all them are independent. Indeed, just to give an

example

d12 = d122 = d212 = d26 (2.52)

Thus, in the case ω → 0, the independent elements of the SHG

susceptibility can be reduced to a maximum of 10 using the sym-

metry properties of the tensor. This is generally valid, but a further

reduction of the independent elements is still possible including the

symmetry of the crystal. All these considerations can be used to

express the response of a material through a scalar relationship that

writes

P(2ω) = 2deffE(ω)2 (2.53)

In each case, deff is obtained by evaluating the summation in

Eq. (2.47). Further details can be found in Refs. [34, 43]. In

our case, the effective nonlinear coefficient is calculated averag-

ing the response along the crystal axes and exploiting the point
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group symmetry of the system. This is done following the work of

Kurtz [44], where the general formula that holds for all the non-

centrosymmetric crystals is written as:

d2
eff =

19

105

∑
i

(diii)
2 +

13

105

∑
i 6=j

diiidijj

+
14

105

∑
i 6=j

(diij)
2 +

13

105

∑
ijk,cyclic

diijdjkk +
5

7
(dijk)

2
(2.54)

2.3 Phase matching properties

Introducing the optical materials, we mentioned the requirements

that a material needs to meet in order to be a good nonlinear optical

material. In the previous section, the first condition, that is the

derivation of the dij tensor has been discussed. Of course, this

represents a necessary but not sufficient condition. The next step

is the concept of phase-matching.

Nonlinear effects are typically small and we need a strong laser in-

tensity to study these phenomena. This will of course affect the

nonlinear energy conversion efficiency. Such a limitation can be

circumvented either having a long sample or by requiring that the

phases of the nonlinear waves generated throughout the whole crys-

tal are all the same so that the microscopical fields add together

coherently to enhance the efficiency, as naively depicted in Fig 2.6.

When this is achieved, we are in the so-called phase-matching con-

ditions. If the crystal is phase matched the power generated is large,

if not, only very little power is obtained. This means that we can

obtain large dij coefficients for a given material, but if this is not

phase matchable the SHG signal in output will be too small. For
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Figure 2.5: Sample of material containing N atomic dipoles.
Each dipole oscillates with a phase that is determined by the
phase of the incident field. The output beam is well defined if
the field radiated by each dipole add constructively.
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this purpose, we need to consider Maxwell equations as a starting

point, in order to derive the coupled wave equation that describes

the nonlinear process of SHG. The full derivation can be found for

Example in Refs. [33, 34]. For the sake of the readability of this

manuscript, here we just report the final quantity that we need to

discuss the phase-matching properties. This quantity is the inten-

sity of the generated wave at 2ω from the fundamental one at ω

and it can be written as:

I2ω =
2ω2d2

eff (Iω)2 L2

n(ω)2n(2ω)2
sinc2

(
∆kL

2

)
(2.55)

Here we are assuming that the fundamental light at ω has traveled

a distance L through the nonlinear material. The quantity ∆k is

called the momentum mismatch and is given by

∆k = k2ω − 2kω (2.56)

From Eq. (2.55), it is evident that the amplitude of the field is pro-

portional to the length of the sample, and ∆k. If we consider all

the remaining quantities as a constant, then the maximum inten-

sity is achieved when ∆k = 0, as shown in Fig 2.6. This is known
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as the perfect phase-matching condition. When this condition is

fulfilled, the individual atomic dipoles that constitute the material

system are properly phased so that the field emitted by each dipole

adds coherently in the forward direction. The total power radiated

by the ensemble of atomic dipoles thus scales as the square of the

number of atoms that participate. In Fig. 2.6, the dependency of

Figure 2.6: Representation of the sinc2 function.
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the intensity of the generated wave at 2ω is shown as a function of

the distance traveled in the material. The maximum is reached at

L = 0, and this function rapidly drops down to 0 at l = 2π/∆k.

This is know as the coherence length lc and correspond to the dis-

tance where the SHG intensity drops to zero after propagating in

the material.

However, a perfect phase-matching condition is in general impossi-

ble to achieve in the case of SHG. Indeed, in such a case, the perfect

phase-matching condition translates into:

n(ω) = n(2ω) (2.57)
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This basically means that to achieve the phase-matching, the re-

fractive index value at the fundamental frequency needs to be the

same as the refractive index value at second harmonic frequency.

This is, of course, impossible to achieve because the refractive index

of loss-less materials shows an effect known as normal dispersion in

the range ω → 2ω, in which the refractive index is a growing func-

tion of the frequency.

However, it is still possible to achieve phase-matching, playing with

the variation of the refractive index. One can indeed produce a

change of the refractive index, if the crystal is birefringent, varying

the temperature or rotating the sample, for example. The main fo-

cus will be on the so-called angular phase-matching. This technique

involves the variation of the refractive index following a rotation of

the sample. This is one of the simplest technique to assess phase-

matching from a computational point of view. Other techniques,

such as temperature phase-matching or quasi-phase-matching are

also possible. These can be either used independently or combined

all together to overcome the different drawbacks that one can en-

counter. However, these other techniques would require more so-

phisticated calculations that are not in the interest of this project

at the moment. In the following section an overview on the angular

phase-matching is given. Further details about this method and

other above mentioned ones can be found in Refs. [33, 34].

2.3.1 Angular phase-matching

One technique to achieve the phase-matching condition is the an-

gular phase-matching. This methodology takes advantage of the

birefringent properties of uniaxial and bi-axial crystals, in which
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the light can experience different refractive indices depending on

the propagation direction with respect to the optic axis of the crys-

tal.

Considering the case of bi-axial crystals, in which there are two

optic axis, we can check if a material is phase matchable by looking

for a solution of the Fresnel equations for the fundamental wave

and the second harmonic one. As can be seen in Ref [45], this set

of equations can be written as:

k2
x

(n−2(ω)− n−2
x (ω))

+
k2
y

(n−2(ω)− n−2
y (ω))

+
k2
z

(n−2(ω)− n−2
z (ω))

= 0

(2.58)

k2
x

(n−2(2ω)− n−2
x (2ω))

+
k2
y

(n−2(2ω)− n−2
y (2ω))

+
k2
z

(n−2(2ω)− n−2
z (2ω))

= 0

(2.59)

where kx = sinθcosφ, ky = sinθsinφ, and kx = cosθ. The angle

θ is the angle between the wave normal and the z-axis, and φ is

the angle from the x axis in the x-y plane. nx(ω), ny(ω), nz(ω),

and nx(2ω), ny(2ω), nz(2ω) are the three principal refractive in-

dices of fundamental and harmonic waves, respectively. We can

then use this set of equations to look for the angles (θm, φm), the

so-called phase match angles, that satisfy the phase-matching con-

dition Eq. (2.57).
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Method: High-throughput ab-

initio materials properties

In the previous chapter we have introduced the theoretical frame-

work for the calculation of optical properties of materials. Accurate

and quantitative analysis of such properties is essential for the com-

prehension of the observed behaviour and optimization. From this

point of view, first-principles calculations have proven to be a very

powerful tool to explore the electronic and optical properties of ma-

terials. Density Functional Theory (DFT) [46, 47] provides a good

description of the electronic structure. Density Functional Pertur-

bation Theory (DFPT) [48, 49] is widely used to predict the linear

and nonlinear response (and related physical quantities) of peri-

odic systems when they are submitted to an external perturbation.

For instance, when considering the effect of a homogeneous elec-

tric field, DFPT allows one to compute the macroscopic dielectric

function and the second harmonic susceptibility in the static limit

39
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(ω = 0 eV ). The success of DFT and DFPT stems from their relia-

bility and low computational cost. As a result, first-principles calcu-

lations have recently been combined with a high-throughput (HT)

approach [17, 50] targeting the discovery of new materials. Indeed,

the combination of these two methods enables the creation of large

databases of materials properties that would be prohibitive (in time

and cost) for experimental measurements.

In this chapter the general aspects of DFT and DFPT will be given,

focusing on some relevant details for the purpose of this thesis.

Detailed discussions can be found in literature. In the last section

the HT approach combined with DFT and DFPT is then discussed.

3.1 Density Functional Theory:

A ground-state theory

The description of a system in Quantum mechanics is associated

with the resolution of the Schrödinger equation, here reported in

the most general form :

ĤΨ = EΨ (3.1)

where Ĥ represents the Hamiltonian operator, Ψ is the many-body

wave function of the quantum system, and E the energy level of the

system. The solution of such an equation gives information on the

ground-state of the system. However, it is known that Schrödinger

equation has an analytic solution only for a few rather simple cases

(harmonic oscillator, hydrogen atom, ...). Alternative resolutions

have been proposed for the problem of N interacting electrons. One
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of these approaches is based on a variational principle on the energy

for which, given a wave function Φ, that satisfies the appropriate

boundary conditions, then the expectation value represents an up-

per bound to the exact ground-state

E[Φ] ≤ 〈Φ| Ĥ |Φ〉
〈Φ|Φ〉

(3.2)

The equality holds only if Φ is the exact ground-state of the sys-

tem. Indeed, by definition, the ground-state energy of the system is

the smallest eigenvalue. In summary, to calculate the ground-state

energy E, we can minimize the functional E[Φ] with respect to all

states Φ. The value of this functional gives an upper bound to the

value of E, and even a relatively poor estimate of the ground-state

wave function gives a relatively good estimate of E. This variational

approach is at the base of the theories as the Hartree-Fock (HF)

theory [51] and the DFT [52]. These are the widest used methods in

computational physics and chemistry communities. The difference

between the two relies in the fact that while HF tries to solve this

problem reconstructing a trial many-body wave function via the

use of Slater determinants, in DFT this problem is reformulated in

such a way that the electronic energy is a functional of the density,

reducing significantly the degrees of freedom of the solution and the

complexity of the problem.

3.1.1 Theoretical basis

The Hamiltonian of N interacting electrons immerse in an external

potential Vext (such as the one generated by the ionic background)
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can be generally written as:

Ĥ = −
N∑
i

∇2

2
+

1

2

N∑
i 6=j

1

ri − rj
+ Vext (3.3)

where the first term represent the kinetic energy, the second term

is the repulsive Coulomb electron-electron energy with rij electrons

coordinates, and the third term represents the effect of the external

potential. At the base of Density Functional Theory (DFT) there is

the assumption that the entire system of interacting electrons can

be described just by the knowledge of the non-interacting system of

electrons. This is a crucial first distinction between DFT and other

previous theories. Indeed, considering for example the HF theory,

the solution of the problem of N interacting electrons goes through

the minimization w.r.t. a wave function of the form:

Ψel(r1, .., rN) (3.4)

This depends on 3N variables: three spatial directions for each of

the N electrons. Furthermore, this wave function is usually con-

structed considering the Slater determinant of the single electron

wave function and this does not allow us to treat the electronic

interactions in a correct way.

In DFT a crucial role is played by the electron density of the system

ρ(r) =

∫
|Ψel(r1, .., rN)|2 dr2.. drN (3.5)

The crucial point here is that we need to solve an equation that

depends only on the 3 spatial variables, whatever is the number of

electrons N . This significantly reduces the size of the problem we

have to solve.
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DFT is based on the two fundamental theorems from P. Hohenberg

and W. Kohn [46]:

• For each system of interacting particles in an external po-

tential Vext, this potential is uniquely determined from the

ground-state particle density ρ0(r)

• We can define a universal energy functional EHK [ρ] such that

for each external potential Vext

EHK = FHK [ρ(r)] +

∫
Vext(r)ρ(r) dr (3.6)

where FHK is a functional of the density and does not depend

on the external potential. For each Vext, the exact ground-

state energy follows from the minimization of EHK and the

density that minimize this quantity is the exact ground-state

density ρ0(r)

In few words the first theorem states that the ground-state density

ρ0(r) determines all the ground-state properties of the system, and

the second one gives us a variational principle to compute the EHK

functional.

The mathematical development of DFT is due to W. Kohn and L.

J. Sham [47]. Starting from a system of non-interacting particles

under the influence of an effective potential, and assuming that the

ground-state density of the non-interacting system of particles is

the same as the ground-state density of the real system. Such a

density can be written in the form

ρ(r) =
occ∑
i

|ϕi(r)|2 (3.7)
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where the sums runs over the occupied states and ϕi(r) are the

Kohn-Sham (KS) orbitals. Within this formalism, the kinetic en-

ergy term writes

T0[ρ] = −
occ∑
i

〈ϕi|
∇2

2
|ϕi〉 (3.8)

and the Hartree energy term, which represents the classical Coulom-

bian interaction between electrons, writes as

EH [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
d rd r′ (3.9)

Finally, the KS approach consists in expressing the energy func-

tional as:

EKS [ρ] = T0 [ρ] + EH [ρ] + Exc [ρ] +

∫
Vext(r)ρ(r) dr (3.10)

where Exc is the exchange-correlation functional. This is a purely

quantum quantity since it derives from Pauli principle and contains

all the correlations effects between electrons that are not included

in the kinetic and coulombian terms of the non-interacting system.

By applying the variational principle described in the second HK

theorem to the functional in Eq. (3.7) we can write

δEKS
δρ(r)

=
δT0

δρ(r)
+
δEH [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
+
δEext[ρ]

δρ(r)
(3.11)

where we are considering an orthonormal set of KS orbitals

〈ϕi|ϕj〉 = δij. From Eqs. (3.5) and (3.6) one gets

δρ(r)

δϕ∗i (r)
= ϕi(r),

δT0

δϕ∗i (r)
= − ~2

2m0

∇2ϕi(r) (3.12)
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Putting this information into Eq. (3.10) we can now define the so-

called Kohn-Sham equations(
−1

2
∇2 + VKS(r)

)
ϕi(r) = εiϕi(r) (3.13)

The term between parenthesis is the KS Hamiltonian. Eq. 3.13

can be seen as the single particle Schrödinger equation under the

action of an effective potential that includes the Hartree potential,

the exchange-correlation potential, and the external potential, that

can be thus written as

VKS(r) = VH(r) + Vxc(r) + Vext(r)

=

∫
ρ(r′)

|r− r′|
dr′ +

δExc[ρ]

δρ(r)
+ Vext(r)

(3.14)

We now have a set of equations that have an exact analytical deriva-

tion and will allow us to solve the problem of the interacting elec-

trons in an exact way. This is the main difference between DFT

and the wave functions methods, such as HF: DFT is in principle

an exact theory. Unfortunately one should know the exact form of

the exchange-correlation potential to correctly address this prob-

lem, and so far nobody was able to give a form to such potential.

Anyway, one can use approximations of this functional, that bring

to a self-consistent resolution of the KS equations.

There exist two well-known approximations for the

exchange-correlation functional:

• LDA (Local Density Approximation);

• GGA (Generalized Gradient Approximation).
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In the LDA approximation [47, 52] all the non local effects are ne-

glected, and only the value in a given point of the space defines the

contribution to that point to the Exc. This is generally expressed

as

ELDA
xc [ρ] =

∫
εhomxc [ρ(r)] ρ(r) dr (3.15)

where εhomxc is the exchange-correlation energy per electron of the

electron homogeneous gas with density ρ. The GGA approxima-

tion [52, 53] adds a term that considers the gradient of the electron

density in a given point in the space, such that the distribution

is not anymore homogeneous, taking somehow into account a non-

local contribution. This is typically expressed as

EGGA
xc [ρ] =

∫
εxc [ρ(r),∇ρ(r)] ρ(r) dr (3.16)

3.1.2 Practical use of DFT:

Basis sets and pseudopotentials

To solve Eq. (3.12) one needs to introduce a basis set. We can

indeed expand the KS wave function in a basis set {φi} such that

ϕ(r) =
∑
i

ciφi(r), (3.17)

where ci are the coefficients of the expansion. In the case of crystals,

a good choice for the basis set lies in plane waves because in this

way we can easily describe the periodicity of solids. Considering an

orthonormal basis set, we have

∑
i

(
〈φj| ĤKS |φi〉 − εδij

)
ci = 0. (3.18)
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In the case of one electron moving in an effective potential VKS(r)

that has the same periodicity of the crystal (VKS(r + R) = VKS(r),

where R is the lattice vector of the primitive cell), for the Bloch

theorem [54] we can write the wave function as

ϕn,k(r) = eik·run,k(r) (3.19)

where n is the band index, k is a point in the Brillouin Zone (BZ),

and un,k(r) is a function with the same periodicity of the lattice

such that (un,k(r + R)=un,k(r)). The inclusion of the plane waves

allows us to write the function un,k(r) as:

un,k =
∑
G

cn,k+Ge
iG·r, (3.20)

where cn,k+G are the expansion coefficients and G is the reciprocal

lattice vector. Combining Eq. (3.18) and Eq. (3.19) we finally have

ϕn,k(r) =
∑
G

cn,k+Ge
i(k+G)·r. (3.21)

However, there are two practical problems: the first one is related

to the fact that, in principle, this basis set involves an infinite sum

over G vectors. Once again, the use of plane waves helps us to solve

this problem in a straightforward way. Indeed these are solutions

of the non-interacting problem with kinetic energy of the form

T0 =
1

2
|k + G|2 (3.22)

The sum over the G vector is typically truncated in such a way

that we can take into account only solutions with energy smaller
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than a cut-off energy [52], defined as

Ecut =
1

2
G2
cut. (3.23)

The infinite sum reduces then to a finite sum of the form

ϕn,k(r) =
∑

|k+G|≤Gcut

cn,k+Ge
i(k+G)·r. (3.24)

The second problem is that the electronic wave function becomes

really oscillating when approaching the nuclei. To reproduce this

behaviour, we need a large number of plane waves. This problem

is solved by the use of pseudopotentials (see Fig. 3.1). The con-

cept of pseudopotentials is mainly based on the assumption that

the properties of a material depend mostly on the valence electrons

(frozen-core approximation). This is typically done in DFT calcula-

tions, where only the valence electrons are taken into account, and

the core electrons are included in the ionic potential. This allows

us to reduce the number of plane waves that have to be used.

A recent work in which the quality of pseudopotentials, considering

also a comparison with the so-called all-electron codes, can be found

in Ref. [55].

3.1.3 DFT problems

So far the general aspects of DFT have been described. We have

also mentioned that by knowing the exact exchange-correlation

functional many ground-state properties would have been computed

exactly.
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Figure 3.1: Schematic illus-
tration of all-electron (solid
lines) and pseudo-electron
(dashed lines) potentials and
their corresponding wave
functions. The radius at
which all-electron and pseudo-
electron values match is
designated rc (From ref. [3]).

Nowadays, DFT is widely used even without this knowledge, and

even wrongly sometimes (i.e., to compute non ground-state prop-

erties). This is mainly due to two reasons: the first one is that it

is computationally fast and easy to implement. The second reason,

that somehow bring us to the incorrect use of DFT, is that this is a

well-established theory. This means, that not only the theoretical

aspects are known, but also the limitations are well known [56].

Indeed, just to cite some common examples, it is known that DFT

tends to underestimate the band gap, as well as reaction barriers, it

is unable to describe localized electronic states etc. Since the band

gap problem and description of localized electrons is an issue that

somehow we experienced in this work, it is worth spending a few

words on that.

3.1.3.1 Band gap problem

Considering a system with N electrons, the band gap can be defined

as the difference between the largest addition energy and smallest

removal energy [57]. If we define the ionization energy as IE =

EN−EN−1, where EN is the energy of the system with N electrons,

and the electron affinity EA = EN+1 − EN , then for the band gap
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we have

Eg = EA− IE = EN+1 − EN−1 − 2EN . (3.25)

However, KS band gaps are strongly underestimated w.r.t. exper-

iments up to 50%. At this stage, it is worth to remember that

KS eigenvalues and eigenvectors are purely mathematical quanti-

ties without any physical meaning, but this is not an explanation

to this problem. The problem here is more deep, because it lies in

the dependence of the exact energy functional upon the number of

electrons and the inability of approximate functionals to reproduce

it.

For the sake of completeness, we also have to mention that DFT

being an independent particle approximation to the many-body in-

teracting problem, quantities as Coulomb screening are of course

wrong. To take into account this many-body interactions one should

extend the treatment to the many-body perturbation theory going

through the use of the GW methodology [58]. However, in this

thesis, we were not concerned about this aspect.

Another way to overcome this problem is the use of hybrid function-

als. In Fig. 3.2 we report the comparison of the experimental band

gap and the band gap computed with different hybrid function-

als [4]. The starting point of this approach is that the exchange-

correlation functional can be split in two contributions: the ex-

change contribution Ex, that takes into account the exact exchange

as considered in the HF theory, and the correlation functional Ec.

Hybrid functionals try to improve semi-locals functionals, such as

GGA and LDA, by adding explicit non-local properties of the elec-

tron density through a mixing of EDFT
x and EHF

x . The exact HF
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Figure 3.2: Calculated vs experimental band gaps for the func-
tionals studied in Ref. [4].

exchange in terms of KS orbitals, can be defined as:

EHF
x = −1

2

∑
k,n

∑
k′,n′

∫ ∫
ϕ∗k,n(r)ϕk′,n′(r)ϕ∗k′,n′(r)ϕk,n(r)

|r− r′|
(3.26)

Unfortunately, for periodic systems EHF
x converges very slowly with

distance. For this reason Heyd et al [59] proposed the separation

of this term into a long-range part and a short-range part, in which

only the short-range part is mixed:

Exc(µ, α) = αEHF,sr,µ
x +(1−α)EPBE,sr,µ

x +EPBE,lr,µ
x +EPBE

c . (3.27)

Here α and µ are screening parameters. This is the idea behind

the HSE hybrid functional. However it is worth mentioning that,

even if these functionals give a better prediction of certain phys-

ical properties than semi-local functionals, as the band gap, they

are computationally more expensive due to the bi-electron inte-

grals (see Eq. (3.26)). Indeed, hybrid functionals are currently only

implemented at ground-state (DFT) level. As a result, it is not
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possible to compute optical properties within Density Functional

Perturbation Theory using hybrid functionals. Furthermore, these

functionals are all parametrized and the value of the parameter it

is usually fitted to get the correct experimental value.

3.1.3.2 GGA+U

An other problem that is worth discussing is the difficulty of semi-

locals functionals in dealing with localized electrons such as d elec-

trons in transition metal oxides. Indeed, there is a tendency to over

delocalize electrons. This is mainly due to the non physical self-

interaction (see Eq. (3.9)) of the electrons, that cancels out for many

properties, but represents a huge issue when dealing with localized

states. Naturally, the combination of these two errors can bring to

totally wrong predictions. For instance, a small gap semiconductor

(Eg < 1.5 eV ) can be seen as a metal in DFT.

One popular and computationally cheap method to correct for this

self interaction error is to add a Hubbard U term to the KS Hamilto-

nian. This leads to the so-called LDA+U and GGA+U approaches.

Following the work proposed by Dudarev et al [60], the GGA+U

energy is given by

EGGA+U = EGGA +
U − J

2

∑
σ

[∑
m,m′

nσm,m′n
σ
m′,m

]
(3.28)

The matrix nσn,m is the occupation matrix for a d orbital. The U and

J parameters are respectively the on-site Coulomb and exchange

parameters. These two parameters are typically combined in one

effective U parameter (Ueff = U−J). In practice, the U value is seen

as a parameter that has to be calibrated to get an agreement with
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respect to experimental results, in analogy with the parameters

present in the hybrid functionals.

3.2 Density Functional Perturbation

Theory

DFT formalism gives access to the ground-state properties of the

system. However in this thesis we would like to investigate the

optical properties of the crystals. To do that, we have to perturb

the system from equilibrium applying a macroscopic electric field.

This perturbation is typically small, and hence it can be accounted

for via a perturbative approach. The interest in this methodol-

ogy lies essentially in the fact that many interesting quantities are

directly related to successive derivatives of the total energy with

respect to different perturbations. Indeed, in a more general per-

spective, it can be shown that by focusing on quantities associated

with first, and second order derivatives of the total energy with re-

spect to atomic position R, homogeneous strain ξ and homogeneous

electric field E , all the functional properties of interest can be de-

fined, namely forces F, stress tensor σ, polarization P, interatomic

force constants C, internal strain coupling parameter g, dynamical

Born effective charges Z∗, clamped-ion elastic constants c0 indirect

clamped-ion piezoelectric tensor e0, and optical dielectric tensor ε∞

[11].

Two approaches have been developed for casting DFT within per-

turbation theory: a Green function approach, proposed by Ba-

roni [61], and a variational approach, proposed by Gonze [62]. We
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E 1st-order 2nd-order
∂
∂R

∂
∂ξ

∂
∂E

∂
∂R

F C g Z∗
∂
∂ξ

σ g c0 e0

∂
∂E P Z∗ e0 ε∞

Table 3.1: Physical quantities related to the first and second
order derivatives of the total energy E (see Ref. [11]).

will briefly see both approaches and how DFPT can be used to de-

scribe optical responses. At this stage, it is worth mentioning that

DFPT being derived from a static theory, we can only access the

response in that limit (ω = 0 eV). Finally an extension of DFPT

based on the 2n+ 1 theorem is proposed for the calculation of the

third order derivative related to the SHG susceptibility [63, 64].

3.2.1 Greens function method

The basic ansatz of perturbation theory is that every quantity (wave

functions, energies, ...) can be written as a perturbation series. This

basically means that we can write any quantity as (X = H,Ei, ψi):

X(λ) = X(0) + λX(1) + λ2X(2) + ... (3.29)

where the expansion coefficients can be written as:

X(n) =
1

n!

dnX

dλn

∣∣∣∣
λ=0

(3.30)

.
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Starting from the KS Hamiltonian (see Eqs. (3.13) (3.14)) we can

use the perturbative approach to write:

HKS(λ) |ϕn(λ)〉 = εn(λ) |ϕn(λ)〉 . (3.31)

where all the quantities are already considered in the KS basis set.

Considering now the expansion of the Hamiltonian term, the wave

functions and the energies, we can write

H
(0)
KS

∣∣ϕ0
〉

+

λ
(
H

(0)
KS

∣∣ϕ1
〉

+H
(1)
KS)

∣∣ϕ0
〉)

+

λ2
(
H

(0)
KS

∣∣ϕ2
〉

+H
(1)
KS

∣∣ϕ1
〉

+H
(2)
KS

∣∣ϕ0
〉)

+ ... =

ε(0)
∣∣ϕ0
〉

+

λ
(
ε(0)
∣∣ϕ1
〉

+ ε(1))
∣∣ϕ0
〉)

+

λ2
(
ε(0)
∣∣ϕ2
〉

+ ε(1)
∣∣ϕ1
〉

+ ε(2)
∣∣ϕ0
〉)

+ ...

(3.32)

where the different perturbation orders are clear. It is worth men-

tioning that the normalization condition also has to be fulfilled

(〈ϕi(λ)|ϕi(λ)〉 = 1), leading to〈
ϕ0
i

∣∣∣ϕ(0)
i

〉
+

λ
(〈
ϕ0
i

∣∣∣ϕ(1)
i

〉
+
〈
ϕ1
i

∣∣∣ϕ(0)
i

〉)
+

λ2
(〈
ϕ0
i

∣∣∣ϕ(2)
i

〉
+
〈
ϕ1
i

∣∣∣ϕ(1)
i

〉
+
〈
ϕ2
i

∣∣∣ϕ(0)
i

〉)
+

... = 1

(3.33)
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In order for this to hold for any value if λ, we must have:〈
ϕ0
i

∣∣∣ϕ(0)
i

〉
= 1〈

ϕ0
i

∣∣∣ϕ(1)
i

〉
+
〈
ϕ1
i

∣∣∣ϕ(0)
i

〉
= 0〈

ϕ0
i

∣∣∣ϕ(2)
i

〉
+
〈
ϕ1
i

∣∣∣ϕ(1)
i

〉
+
〈
ϕ2
i

∣∣∣ϕ(0)
i

〉
= 0

...

(3.34)

Looking at the first-order corrections to the energies and the wave

functions we have

H
(0)
KS

∣∣∣ϕ(1)
i

〉
+H

(1)
KS

∣∣ϕ0
i

〉
= ε

(0)
i

∣∣∣ϕ(1)
i

〉
+ ε

(1)
i

∣∣∣ϕ(1)
i

〉
(3.35)

For the first-order corrections to the energies, we can recover the

Hellman-Feynman theorem

ε
(1)
i =

〈
ϕ

(0)
i

∣∣∣H(1)
KS

∣∣∣ϕ(0)
i

〉
. (3.36)

And, looking at the first-order corrections to the wave functions,

we recover the so called Sternheimer equation.(
H

(0)
KS − ε

(0)
i

) ∣∣∣ϕ(1)
i

〉
= −

(
H

(1)
KS − ε

(1)
i

) ∣∣∣ϕ(0)
i

〉
(3.37)

If we now express the 1st order wave function in terms of a combi-

nation of the 0th order ones in KS basis∣∣∣ϕ(1)
i

〉
=
∑
j

c
(1)
ij

∣∣∣ϕ(0)
j

〉
(3.38)

we have

c
(1)
ij =

〈
ϕ

(0)
j

∣∣∣H(1)
KS

∣∣∣ϕ(0)
i

〉
ε

(0)
j − ε

(0)
i

(3.39)
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These equations form a self-consistent set that must be solved in

order to determine the behaviour of the perturbed system. Look-

ing at the main DFT quantity, namely the electron density, and

neglecting the spin, at the first-order we have:

ρ(1)(r) = 2
N∑
i

∑
j 6=i

ϕ(0)∗
n (r)ϕ(0)∗

m (r)

〈
ϕ

(0)
m

∣∣∣H(1)
KS

∣∣∣ϕ(0)
n

〉
ε

(0)
n − ε(0)

m

(3.40)

The electron density only responds to perturbations that couple the

valence and conduction many-folds. To calculate the projection of

the first-order wave functions onto the conduction bands many-fold,

we can introduce the projector on the conduction states Pc defined

as

Pc =
∑
c

∣∣ϕ(0)
c

〉 〈
ϕ(0)
c

∣∣ = 1−
∑
v

∣∣ϕ(0)
v

〉 〈
ϕ(0)
v

∣∣ (3.41)

where the sum over v runs over the occupied (valence) states. In

this framework, the Sternheimer equation can be written as

Pc(HKS − ε0v)Pc
∣∣ϕ(1)

v

〉
= −PcH(1)

KS

∣∣ϕ0
v

〉
(3.42)

and we then have ∣∣ϕ(1)
v

〉
= GvHKS

∣∣ϕ0
v

〉
(3.43)

where Gv is the Green function operator projected onto the con-

duction bands

Gv =
∑
c

∣∣∣ϕ(0)
c

〉〈
ϕ

(0)
c

∣∣∣
(ε

(0)
v − ε(0)

c )
(3.44)

This method is also called Green’s function technique for dealing

with the Sternheimer equation. Solution of this linear problem

requires only the knowledge of the occupied (valence) states, due

to the projector, thus, even if the conductions states appear in

Eq. (3.44) they are never explicitly required.



Method 58

3.2.2 Variational approach

As we have already mentioned, the solution of the Schrödinger equa-

tion can be achieved by minimizing the total energy with respect

to the wave function. A similar approach can be used in pertur-

bation theory. This represents an alternative to the solution of the

Sternheimer equation, even though both bring to the same physical

results.

Minimization of the energy is possible through this variational ex-

pression

E(0) = min
ϕ
(0)
α

{
occ∑
α

〈
ϕ(0)
α

∣∣H(0)
KS

∣∣ϕ(0)
α

〉}
(3.45)

under the condition〈
ϕ(0)
α

∣∣∣ϕ(0)
β

〉
∀ α, β ∈ {occ} (3.46)

Expansion of the previous equation gives access to the perturbative

approach. The second order derivative of the energy and the first-

order wave function can be determined simultaneously through the

minimization of the following equation

E(2) = min
ϕ
(1)
α

{∑
α

[〈
ϕ(1)
α

∣∣ (HKS − εα)(0)
∣∣ϕ(1)

α

〉
+

〈
ϕ(0)
α

∣∣H(2)
KS

∣∣ϕ(0)
α

〉
+
〈
ϕ(0)
α

∣∣H(1)
KS

∣∣ϕ(1)
α

〉
+

+
〈
ϕ(1)
α

∣∣H(1)
KS

∣∣ϕ(0)
α

〉]} (3.47)

under the constraints:〈
ϕ(1)
α

∣∣∣ϕ(0)
β

〉
+
〈
ϕ(0)
α

∣∣∣ϕ(1)
β

〉
= 0 ∀ α, β ∈ {occ} (3.48)
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The variational approach basically translates into DFPT by con-

sidering the solution of the following equation:

E(2)
[
ϕ(0), ϕ(1)

]
=

occ∑
α

[〈
ϕ(1)
α

∣∣H(0)
KS − ε

(0)
α

∣∣ϕ(1)
α

〉
+

〈
ϕ(0)
α

∣∣V (2)
ext

∣∣ϕ(0)
α

〉
+
〈
ϕ(0)
α

∣∣V (1)
ext

∣∣ϕ(1)
α

〉
+〈

ϕ(0)
α

∣∣V (1)
hxc

∣∣ϕ(1)
α

〉
+
〈
ϕ(1)
α

∣∣V (1)
hxc

∣∣ϕ(0)
α

〉]
+

1

2

∫ ∫
Kxc(r, r

′)ρ(1)(r)ρ(1)(r′) dr dr′+

1

2

∫ ∫
ρ(1)(r)ρ(1)(r′) dr dr′

|r− r′|
+

1

2

d2Ehxc
dλ2

(3.49)

where the Kernel Kxc(r, r
′) is defined as

Kxc(r, r
′) =

δ2Exc[ρ
(0)]

δρ(r)δρ(r′)
(3.50)

and the first-order change in the wave function, ϕ
(1)
α are varied

under the constraint〈
ϕ(0)
α

∣∣∣ϕ(1)
β

〉
= 0 ∀ α, β ∈ {occ} (3.51)

Once again, both approaches are equivalent, leading to the same

physical results.

More interestingly, the perturbative approach gives access to fur-

ther energy derivatives. We can indeed derive two major variational

perturbation theorems [49]:
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• A variational principle can be exhibited for the even order of

the perturbations

E(2n) = min
ϕ(n)

{
Ẽ(λ)

[
n−1∑
i=0

λiϕ
(i)
0 + λnϕ(n)

]}2n

(3.52)

• The energy up to the order (2n+1) can be expressed through

an expression that requires only the knowledge of the wave

function up to the order n.

E(2n+1) = min
ϕ(n)

{
Ẽ(λ)

[
n∑
i=0

λiϕ
(i)
0

]}(2n+1)

(3.53)

the last of these theorems is known as the (2n+ 1) theorem and we

will see in the next section how this has played a crucial role in our

results.

3.3 Electric field perturbation

The response of a system to an external perturbation such as an

electric field is generally given by the susceptibility tensor, that is

the proportionality coefficient between the macroscopic polarization

and the electric field. The most general expression writes

P = χE (3.54)

As we have seen in Chap. 2, in a semiconductor the polarization

can be expressed as a Taylor expansion of the macroscopic electric

field

Pi = P 0
i +

∑
j

χ
(1)
ij Ej +

∑
j

χ
(2)
ijkEjEk + ... (3.55)



Method 61

Within DFT and its perturbative extension we have seen how to

compute the density ρ, the wave functions ϕ, and energies E at

different orders. Since nowadays these quantities are easy accessed

by many DFT codes (see for example [65–67]) it is interesting to see

how we can make a connection with the response of the materials,

and thus the susceptibility at the different orders.

3.3.1 Dielectric tensor

At the linear order of the perturbation of Eq.(3.55), the susceptibil-

ity is related to static dielectric function through the relationship

εαβ∞ = δαβ + 4πχαβ (3.56)

This can be also defined as [68]:

εαβ∞ = δαβ + 4π
∂Pα

∂Eβ
(3.57)

Here we are considering only the electronic contribution to the di-

electric tensor at clamped ions. However, there is a problem due to

the fact that the electric field is generally described by a potential

of the form

Vext = E · r (3.58)

that is neither lattice periodic nor bounded from below. However,

as can be seen in Sec. 3.2.1, we only need off-diagonal matrix ele-

ments, justifying the use of the following alternative expression

〈ϕm| r |ϕn〉 =
〈ϕm| [HKS, r] |ψn〉

εm − εn
∀ m 6= n (3.59)



Method 62

Now the quantity |ϕ̄αn〉 = Pcrα |ϕn〉 can be rewritten considering the

solution of a linear system

(HKS − εn) |ϕ̄αn〉 = Pc [HKS, rα] |ϕn〉 . (3.60)

Finally, the static dielectric tensor at clamped ions can be rewritten

as

ε∞αβ = δαβ −
16π

NΩ

∑
k

∑
v

〈
ϕ̄n

∣∣∣∣∂ϕm,k∂Eβ

〉
(3.61)

3.3.2 Second harmonic generation tensor

One of the most important achievements of the perturbative ap-

proach, at least for the sake of this manuscript, is that the deriva-

tives of the total energy can give us access to the properties of the

perturbed system we are interested in. Within this spirit, Dal Corso

et al. [63, 64] showed that extending this approach to higher order

derivatives is possible to compute the response of a system beyond

the linear regime. Indeed, we have that the second order suscepti-

bility χ(2) is related to the third order derivative of the total energy

w.r.t. the electric field perturbation. However, from the 2n+1 the-

orem (see Eq. (3.53)) we have that the latter can be computed just

by the knowledge of the response of the system at the first-order.

These are the same quantities necessary to compute the dielectric

tensor.

Following the notation in Ref. [69], the SHG susceptibility tensor

writes:

χ
(2)
ijk = − 3

Ω0

EEiEjEk (3.62)
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where

EEiEjEk =
1

6

∂3E

∂Ei∂Ej∂Ek

∣∣∣∣
Ei=0,Ej=0,Ek=0

(3.63)

The general expression of third order energy derivative w.r.t. the

electric field perturbation as implemented in the ABINIT [66] is the

following

ẼEiEjEk =
∑
α

[〈
ψEiα
∣∣ (T + Vext)

EjEk
∣∣ψ(0)

α

〉
+
〈
ψEiα
∣∣ (T + Vext + Vhxc)

Ej
∣∣ψEiα 〉

+
〈
ψ(0)
α

∣∣ (T + Vext)
EiEjEk

∣∣ψ(0)
α

〉
+
〈
ψ(0)
α

∣∣ (T + Vext)
EiEj
∣∣ψEkα 〉]

−
∑
α,β

Λ
Ej
βα

〈
ψEiα

∣∣∣ψEkβ 〉
+

1

6

∫
dr dr′ dr′′

δ3Ehxc[ρ
(0)]

δρ(r)δρ(r′)δρ(r′′)
ρEi(r)ρEj(r′)ρEk(r′′)

+
1

2

∫
dr dr′

d

dEj
δ2Ehxc[ρ

(0)]

δρ(r)δρ(r′)

∣∣∣∣
E=0

ρEi(r)ρEk(r′)

+
1

2

∫
dr

d2

dEidEk
δ2Ehxc[ρ

(0)]

δρ(r)

∣∣∣∣
E=0

ρEj(r)

+
1

6

d3Ehxc[ρ
(0)]

dEidEjdEk

∣∣∣∣
E=0

(3.64)

with

V
Ej
hxc =

∫
δ2Ehxc[ρ

(0)]

δρ(r)δρ(r′)
ρEj(r′)dr′ +

d

dEj
δEhxc[ρ

(0)]

δρ(r)

∣∣∣∣
E=0

(3.65)

and

Λ
Ej
βα =

〈
ψ

(0)
β

∣∣∣ (T + Vext + Vhxc)
Ej
∣∣ψ(0)

α

〉
(3.66)
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Defining EEiEjEk as the sum over permutations of the 3 perturba-

tions ẼEiEjEk we finally have

EEiEjEk =
1

6

(
ẼEiEjEk + ẼEiEkEj + ẼEjEiEk

+ẼEjEkEi + ẼEkEjEi + ẼEkEiEj
) (3.67)

Further details about the implementation and the analytic deriva-

tion of this quantities can be found in Ref. [69] and references

therein. Once again, it is worth to remember that, the general

expression of the SHG susceptibility tensor depends on the frequen-

cies of the optical electric field. Here we are computing the tensor

at ω = 0 eV and as a consequence the computed χ(2) satisfies the

Kleinman’s symmetry condition (see Sec. 2.2.4), which means that

it is symmetric under the permutation of the i, j, k index. In order

to obtain its frequency dependence, one would need either to apply

the formalism of the Time Dependent Functional Theory (TDDFT)

or to use expressions that involves a sum over excited states (see

for example Refs. [70, 71].

3.4 Automatization of the calculations:

the high-throughput approach

The development of efficient ab-initio software packages and the

constant increase of the computational power of modern supercom-

puter at our disposal opened a new approach in Material Science.

Many physical quantities are made nowadays accessible from first

principles. From this point of view, the success of DFT and DFPT
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stems from their reliability and low computational cost. As a re-

sult, first-principles calculations have recently been combined with

a high-throughput (HT) approach. The idea behind HT ab-initio

computing is to evaluate these properties for several thousands of

known or predicted compounds [17, 50]. The combination of these

two methods enables the creation of large databases with material

properties that would be prohibitive (in time and cost) for exper-

imental measurements. By screening those databases, new mate-

rials, targeting specific applications, can be identified. Success-

ful discoveries (i.e., prediction confirmed in the laboratory) include

materials for batteries, hydrogen production and storage, thermo-

electrics and photovoltaics (see, e.g., Refs. [17] and [18]). How-

ever, HT techniques have not only allowed to search for materials

candidates for a specific application. Indeed, Databases can be

also analyzed using data mining techniques, aiming at identifying

trends and limitations that can give a further insight into the com-

prehension of the materials properties, or even make predictions

for unknown compounds through Machine Learning (see, for exam-

ple, Refs. [19] and [20]). Before moving to large scale calculation

it is mandatory to implement a robust procedure to handle the

whole process and provide a reliable set of input parameters that

suits most of the possible cases considered. In this regard, it has

been shown how the validation of the results is an element of great

relevance when approaching the HT regime. Due to the amount

of data generated during high-throughput computational calcula-

tions, a careful storage of the data in a database is necessary. This

database stores information for each computed compound: initial

and relaxed crystal structures, chemical formula, total energy com-

puted DFT and DFPT parameters. Following this trend, several

open materials repository have been created containing a number of
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properties obtained from DFT calculations thanks to ad-hoc frame-

works developed to help the automation of the whole process (see,

e.g., Refs. [17] and [18]).

The response related to the first-order change in the wave function,

thus the second order derivative of the energy (see Table 3.1) can

be performed very efficiently using DFPT. Works in which DFPT

has been combined with HT has been recently presented (see for

example Refs. [22, 23, 72, 73]). In this perspective, the idea is

to extend the current quantities stored in the materials repository

beyond ground-state theory. As an example, the Materials Project

recently included in its repository quantities such as the phonon

bandstructure, static dielectric function, Born effective charges and

other quantities obtainable via DFPT.

In the next two sections the guidelines for the creation of two

databases based on DFPT calculations, and containing the optical

properties of materials are given. In the first one, the materials op-

tical properties in the linear regime, electronic and structural prop-

erties are computed via DFPT and DFT using the VASP [65] code.

In the second one, the nonlinear SHG tensor has been computed via

DFPT and the (2n + 1) theorem as implemented in ABINIT [69].

For reasons that will be clear soon, it is worth to mention that the

current implementation only supports LDA functionals.

3.4.1 Linear database

For the construction of the linear DB, we start from the relaxed

structures available in the Materials Project (MP) repository [74].

Their thermodynamical stability can be assessed by the energy

above hull Ehull [75, 76]: for a stable compound, Ehull = 0 meV/atom,
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and the stability decreases as Ehull increases. Here, we extract the

materials with Ehull ≤ 25 meV/atom [77]. We also include a few

exceptions (with Ehull > 25 meV/atom) already investigated pre-

viously in the literature for technological applications. Among all

the possible candidates, a set of 4040 semiconductors, for which

also electronic structural properties are present in the MP, has

been extracted. The 4040 selected materials cover a broad range

of chemistries (oxides, fluorides, sulfides, ...) with various compo-

sitions (binaries, ternaries, ...). However, a significant fraction of

those (3375 out of 4040) are oxides, since they show important

applications in many sectors (semiconductor industry, catalysts,

...) with an exceptionally broad range of electronic properties (see

Ref. [78]).

For all those structures, the static part of the refractive index ns is

computed in the framework of DFPT. All the calculations are per-

formed with the VASP software package [65], adopting the projec-

tor augmented wave (PAW) method [79], and using the Generalized

Gradient Approximation (GGA) for the exchange-correlation func-

tional as parameterized by Perdew, Burke, and Ernzerhoff (PBE) [53].

The workflow to handle the calculation is implemented in the Fire-

works package Ẇhen dealing with oxides including elements with

partially occupied d electrons (such as V, Cr, Mn, Fe, Co, Ni,

or Mo) a Hubbard-like Coulomb U term is added to the GGA

(GGA+U) [60] to correct the spurious GGA self-interaction en-

ergies, adopting the U values advised by the MP [80]. We use the

suggested value proposed from MP for the DFT static calculation

(density of 1000 points per reciprocal atoms) also for the k-point

sampling and the energy cut off. The JDOS of the materials are

calculated from the band structures available in the MP [81]. For

the band gap, we focus on the direct band gap, Ed
g , since optical



Method 68

processes are related to vertical transitions. Once again, it is worth

pointing out that DFT is known to underestimate the band gap

up to the 50% with respect to experiments (see for example Ref.

[82, 83]), while a tendency to overestimate ns is to be expected.

Further details on the validation of a similar workflow and on the

error of the refractive index computed via DFPT can be found in

Ref [22].

Finally, the results (dielectric function, refractive index, space groups,

etc.) are stored using the MongoDB database engine, a NoSQL

database program that favors the use of JSON-like documents [84].

These data are publicly available online in CSV (Comma Separated

Value) format (see Ref. [24]).

3.4.2 Nonlinear database

To compute the nonlinear SHG tensor dij, we used the open source

code ABINIT. The workflow for the HT calculation of the coef-

ficients have been implemented in the Abiflows package. The Py-

matgen and Abipy python packages are used to generate inputs and

analyze the results.

The theoretical framework that enables us to compute the dij ten-

sor has already been introduced in Sec. 3.3.2. However, it is worth

mentioning that in the ABINIT implementation available at the be-

ginning of our work (see Ref. [69]), this quantity was only accessible

by activating as well the calculation of the response of the material

with respect to atomic displacements, namely phonons. However,

perturbations that involve the atomic displacements can be much

more complex and heavy from a computational point of view. We

thus modified the implementation by including a new tag for the
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ABINIT variable nlflag (nlflag=3, see ABINIT documentation for

further details [85]). In this way we only computed the SHG tensor,

that is independent from the phonon perturbations and that is the

quantity in which we are mainly interested at this stage.

The screening of the 457 materials started from the initial list of

candidates contained in the linear DB (4040). The full screening

procedure is depicted in Fig. 3.3

Figure 3.3: Sketch of the screening procedure followed to build
up the database containing the nonlinear optical coefficients of
the semiconductors analyzed in this study.

Database with 
thousands of 
compounds 

       

excluded 
compounds

selected 
materials

candidates

Linear DB (DFPT) 
 Non Centrosymmetric

High ref. index and band gap
No Lan and Act compounds 

Nonlinear DB (SHG coefficients)

At this point is worth to remind that only materials with lack of

inversion symmetry show non zero SHG susceptibility. We then

extract a list of 824 non centrosymmetric candidates. A further

screening is based on discarding Lan-Act materials, reducing the

number to 695. The main reason is due to the lack of xc functionals

for these elements. At this stage, the materials that reached the
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required accuracy in all the calculation steps are then 457. In fact,

the calculation of the second order susceptibility tensor requires a

high accuracy for the calculation of the total energy (up to 10−22

Ha), wave functions (up to 10−22), and their derivatives with respect

to the external perturbation (up to 10−22 atomic unit). Such an

accuracy is difficult to achieve for some systems, such as magnetic

systems, that have been thus discarded from our analysis. Finally,

to optimize the materials search from an applied point of view, the

renormalization of the band gap has been computed so far to 369

out of the 457 within the HSE06 hybrid functional, as implemented

in VASP.

For the calculation of the dij tensor we select the 457 pre-relaxed

structures from the MP. The workflow implemented in Abipy and

Abiflows is organized as follows: We first use self-consistent and

non self-consistent DFT calculations to compute the wave function

and the density. The following step consists in running DFPT sim-

ulations to obtain the second order derivatives of the energy w.r.t.

the electric field. This is basically achieved in two steps: the cal-

culation of the derivative of the wave-function w.r.t. their wave

vector, and the calculation of the derivative of the first order wave

function w.r.t. the applied external electric field. If the calcula-

tions are completed correctly and high accuracy is reached, the set

of derivatives is then used in the last step that involves the calcula-

tion of the third order derivative w.r.t. the electric field to obtain

the dij tensor. This workflow is outlined in Fig. 3.4 and is part of

a more general DFPT workflow that has been implemented in the

python packages already mentioned, which allows to access all the

quantities that can be computed in the framework of DFPT.

For this work, we used the LDA xc functionals [86]. We then
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Figure 3.4: Schematic overview of the work flow implemented
to compute the SHG tensor for the 457 semiconductors.

have chosen the Norm-Conserving pseudopotentials available in the

PseudoDojo [87]. The cutoff was chosen independently for each ma-

terial according to the values suggested in the PseudoDojo. These

pseudopotentials and cutoff have been carefully tested w.r.t. all

electron codes. For the sampling of the Brillouin Zone, conver-

gence is achieved for a density of 3000 points per reciprocal atom

(using a grid that respects the symmetry of the system) .For the

few materials for which experimental data are available in the liter-

ature the converged results are in pretty good agreement with the

experimental measurements (in a range between 10% and 15 %).

Finally the results are stored in the Mongo DB database engine.

Even though the only new quantity, w.r.t. the linear DB, is the

SHG tensor, we stored many of the physical quantities that were

previously computed to check the consistency between the two im-

plementations.





4

Results: Linear and nonlin-

ear material databases

In the second chapter of this thesis, we have introduced the theo-

retical framework and the optical properties we want to deal with.

In the third chapter, DFT and DFPT have been introduced as a

way to compute the optical materials properties, and we also intro-

duced how these approaches can be merged with the HT technique

in order to generate a large set of data.

In what follows our results are presented. In the first part, we show

the analysis of the linear optical properties for the 4040 compounds.

The main focus for this part will be on materials with both high

refractive index and band gap. However, these two properties are

typically described by an inverse correlation with high refractive

index appearing in small gap materials and vice-versa. Our data

confirm the general inverse trend between refractive index and band

gap but interesting outliers are also identified. The data are then

analyzed via data mining to obtain a descriptive model that can

73
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help in the comprehension of the data distribution. This work has

been published in Physical Review Materials [24].

In the second part we show a database containing more than 400

semiconductors, screened out from the first DB, for which we com-

pute the SHG susceptibility tensor. The analysis of the latter can

open different perspectives: from the data mining comprehension

of the data distribution, to the analysis including machine learning

model, passing through an extension of the computed quantities

that would be helpful from the point of view of materials discovery.

4.1 Linear optical materials database

We investigate the relationship between the refractive index and

the band gap using a first-principles HT approach relying on DFT

and DFPT. Our aim is to provide a statistical, “data driven”, anal-

ysis based on a large set of 4040 semiconductors. Calculated data

confirm the global inverse trend between those two properties, as

recently discussed in similar works [22, 23, 88]. However, there is

also a wide spread of the data around this general tendency, point-

ing out some outliers with both relatively high refractive index and

wide band gap among which well-known materials (TiO2, LiNbO3,

...), already widely used for optical applications, and other mate-

rials, not yet considered for such applications (Ti3PbO7, LiSi2N3,

BeS, ...). By mapping all the compounds onto a two-state system,

a simple model is derived some descriptors of which can be accessed

from the electronic structure. The density of states (DOS) at the

valence and conduction band edges as well as the effective masses

of those bands are found to play a critical role for achieving a high

refractive index and a wide band gap simultaneously. Indeed, the
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availability of a large number of weakly dispersive states for op-

tical transitions can partly counterbalance the inverse relationship

between the refractive index and the band gap. Based on these con-

siderations, we focus on the 3375 oxides present in the data set. We

examine these materials in terms of their chemistry and pinpoint

the most interesting ones. Before proceeding with the analysis of

Figure 4.1: Calculated data points (refractive index ns vs.
band gap Edg ) for the 4040 materials considered here represented
by grey circles. The blue line represents a guide line to indicate
the inverse relationship between these two quantities.
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the results, it is useful to take a look at our raw data in Fig. 4.1.

Starting from Eq. (2.10), the inverse relationship between the re-

fractive index and the band gap it is already evident. Indeed, the

imaginary part of the dielectric function can be written as [89]

ε2(ω) =
4π2

ω2

∑
v,c

∫
BZ

2dk

(2π)3
| ê ·Mcv(k) |2

× δ(εc(k)− εv(k)− ω) (4.1)
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where ê is the polarization vector in the direction of the electric

field and Mcv(k) is the dipole matrix element for a transition from

a valence state εv(k) to a conduction state εc(k). The imaginary

part written in this form, that is anyway obtainable considering the

quantum approach discussed in Sec. 2.2.2, will be useful to have

direct connection with the joint density of states (JDOS) in what

follows. The real part of the dielectric function and the imaginary

part are related through the Kramers-Kronig relation

ε1(ω) = 1 +
2

π
P

∫ ∞
0

ω′ε2(ω′)

ω′2 − ω2
dω′ (4.2)

where P indicates the principal part of the integral. We have then

for the real part of the dielectric function

ε1(ω) = 1 + 8π
∑
v,c

∫
BZ

2dk

(2π)3

| ê ·Mcv(k) |2

εc(k)− εv(k)

1

(εc(k)− εv(k))2 − ω2

(4.3)

From these considerations, the inverse relationship between refrac-

tive index (see Eq. 2.10) and band gap is clear, but it is as well clear

that there is a large spread of the points around the blue curve in

Fig. 4.1, used as a guideline and it is also evident that the band

gap is not a sufficient quantity to properly describe the data trend.

4.1.1 Global trend

Various models have been proposed in the literature to describe the

inverse relationship between the refractive index and the band gap.
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In Fig. 4.2, the models proposed by Ravindra et al. [5] (green line):

ns = 4.084− 0.62Ed
g ,

Moss [6] (red line):

ns =

(
95

Ed
g

)1/4

,

Hervé and Vandamme [7] (cyan line):

ns =

√
1 +

(
13.6

Ed
g + 3.47

)2

,

Reddy and Anjaneyulu [8] (magenta line):

ns =

(
154

Ed
g − 0.365

)1/4

,

and Kumar and Singh [9] (yellow line):

ns = 3.3668
(
Ed
g

)−0.32234

are superimposed on our calculated data. A detailed discussion

of these models can be found in Ref. [90]. It is clear that none

of them follow closely the trend of the data (their mean absolute

errors (MAE) range from 0.42 to 0.91) nor do they account for the

wide spread of the points. It should however be mentioned that all

these models were built up using a small set of experimental data

points (≤ 100).
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Figure 4.2: Comparison of the calculated data points (refrac-
tive index ns vs. band gap Edg ) with various well-known empir-
ical and semi-empirical models [5–9]. The data points for the
4040 materials considered here are represented by grey circles,
while the models are indicated by solid lines.

For these reasons, we build a new model to describe the data, start-

ing from the basic relationship between refractive index and dielec-

tric function, that in the static case writes

ns =
√
ε1s. (4.4)

Here the subscript s represents the static limit (ω = 0 eV). In the

static limit, Eq. (4.2) becomes:

ε1s = 1 +
2

π

∫ ∞
0

ε2(ω)

ω
dω. (4.5)

In principle, the above integral has to be taken from zero to infinity.

In practice, a typical ε2(ω) spectrum usually reveals well-separated



Results 79

peak regions, with little overlap, due to different absorption pro-

cesses. Therefore, one can set an upper frequency limit ωmax which

is high enough compared to the optical absorption processes of in-

terest here, but small compared to other ones. In this work, ωmax

is defined in such a way that:(∫ ωmax

0

ε2(ω)

ω
dω

/∫ ∞
0

ε2(ω)

ω
dω

)
≥ 99%. (4.6)

As already stated in the previous chapter, the value of ε1s and hence

ns can be directly calculated using DFPT at low computational

cost [48, 61, 68, 91, 92]. Indeed, conduction states do not need to be

taken into account in contrast with the sum over states formulation

within the random-phase approximation [93, 94]. The drawback of

the DFPT approach is that only the static limit of the dielectric

function is computed and hence the frequency dependence is not

available. This can be partly circumvented as follows. We first

introduce the JDOS:

j(ω) =
∑
v,c

∫
BZ

2dk

(2π)3
δ(εc(k)− εv(k)− ω), (4.7)

which can easily be obtained from DFT calculations of the elec-

tronic band structure. We note its similarity with Eq. (4.1). As a

result, we define a frequency-dependent transition probability k(ω)

such that:

ε2(ω) =
4π2

ω2
k(ω)j(ω). (4.8)

We note that, if the matrix elements | ê ·Mcv(k) |2 were all equal

to a constant K, we would simply have k(ω) = K. In Fig. 4.3,

we show, as an example, a comparison between the frequency-

dependent transition probability k(ω) and the constant value K

for a real material. Consequently, a simple approximation for the
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Figure 4.3: Comparison of the frequency-dependent transition
probability k(ω)/ω2 and its constant value K/ω2 obtained from
Eq. (4.10) for a real material (TiO2, mp-2657). In the inset the
comparison is given for k(ω) and K. All functions are shown in
a frequency range [2, ωmax], with ωmax equal to 14 eV for this
material.

imaginary part of the dielectric function can be obtained as [89]:

ε̃2(ω) = 4π2K
j(ω)

ω2
. (4.9)

The value of K is determined such that ε̃2(ω) also satisfies the

Kramers-Kronig relation given by Eq. (4.5). This is strictly equiv-

alent to defining K as a weighted average of k(ω) as follows:

K =

∫ ωmax

0

k(ω)
j(ω)

ω3
dω

/∫ ωmax

0

j(ω)

ω3
dω (4.10)

A comparison of ε2(ω) with ε̃2(ω) is given in Fig. 4.4. Using this

approximation for the imaginary part of the dielectric function,
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Figure 4.4: Comparison of the imaginary part of (a) the dielec-
tric function ε2(ω) and (b) ε2(ω)/ω considering the two method-
ologies of calculation for a real material (TiO2, mp-2657). The
red curves are obtained averaging the diagonal components of
the DFT imaginary part of the dielectric function (Eq. (4.1)).
The black curves are obtained via a renormalization of the j(ω)
(Eq. (4.9)).

Eq. (4.5) can be rewritten as follows:

ε1s = 1 +
2

π

∫ ωmax

0

ε̃2(ω)

ω
dω

= 1 + 8πK

∫ ωmax

0

j(ω)

ω3
dω. (4.11)

Introducing the integral of the JDOS J , we further define the ef-

fective frequency ωeff:

ωeff =

(
2

π

∫ ωmax

0

ω2ε̃2(ω) dω

) 1
3

=

(
8πK

∫ ωmax

0

j(ω) dω

) 1
3

= (8πKJ)
1
3 (4.12)
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and the average optical gap ωg:

ωg =

(∫ ωmax

0

ω2ε̃2(ω) dω

/∫ ωmax

0

ε̃2(ω)

ω
dω

) 1
3

=

(∫ ωmax

0

j(ω) dω

/∫ ωmax

0

j(ω)

ω3
dω

) 1
3

. (4.13)

Finally, we can thus write:

n2
s = ε1s = 1 +

(
ωeff

ωg

)3

. (4.14)

The model resulting from the present study is reported in Fig. 4.5.

It captures the trend better than all previous models (MAE=0.33

considering ωeff = 12.10 eV, calculated by fitting Eq.(4.14) in the

last square sense) and the spread in the data can be accounted for

through the parameter ωeff.

In our model we thus map each material onto the simplest system

that one can think of for describing optical transitions: a two-state

(E1, E2) system with a transition characterized by (i) an energy

ωg = E2−E1, (ii) a probability K, and (iii) a degeneracy factor J =

n1n2, where n1 (resp. n2) is the degeneracy of the state E1 (resp.

E2). In the mapping procedure, which is schematically illustrated

in the left panel of Fig. 4.6, ωg is obtained as the weighted average of

the transitions contributing to the optical properties (it will hence

be referred to as the average optical gap). J is simply the integral

of j(ω), the corresponding joint density of states (JDOS), and K is

the average probability of those transitions.
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Figure 4.5: Comparison of the calculated first-principles data
points (refractive index ns vs. band gap Edg ) with the model
described by Eq. (4.18). The data points for the 4040 materials
considered here are represented by grey circles, while the models
are indicated by solid lines. Different values of the parameter
ωeff have been considered, accounting for the spread in the data
points.

As can be seen from Fig. 4.6, the average optical band gap ωg is

related to the direct band gap Ed
g by:

ωg = Ed
g + ∆. (4.15)

The value of ∆ is material dependent since it is influenced by the

dispersion of the valence and conduction bands involved in the tran-

sition and their distribution in energy and, indirectly, by the direct

band gap Ed
g as shown in Fig. 4.7.

The calculated values of ωg (see Eq. 4.13) and Ed
g , achieved via

ab-initio computations, are shown in Fig. 4.8 for all the materials
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Figure 4.6: (Left panel) Schematic illustration of the map-
ping procedure from the electronic structure [band structure
and DOS in solid black lines] is replaced by a two-state system
(E1, E2 in dashed blue lines). (Right panel) Optical functions
j(ω), the JDOS, and j(ω)/ω3. The direct band gap Edg and the
average optical gap ωg are indicated by green and blue dotted
lines, respectively. The difference ∆ between ωg and Edg is also
reported in light green. The optical function j(ω)/ω3 is used to
determine the upper frequency limit ωmax for the optical absorp-
tion processes, as indicated by the red dotted line. The integral
of j(ω) up to ωmax leads to the value of J , the degeneracy factor
of the transitions between the two states.

considered here.

We can describe the relationship between the quantities in Eq. (4.15)

by the following equation (see Appendix A for a more detailed de-

scription):

ωg = Ed
g + α +

β

Ed
g

(4.16)

where α=6.74 eV and β=-1.19 eV2. However, we note that there

is a wide spread of the data around the interpolated value (which

translates into a quite large MAE of 1.20 eV for the fit).

This can be traced back to the dependence of ωg on the width of

the JDOS (see Fig. A.2) or, in other words, distribution in energy

of the transitions. The simplest physical quantity that can account
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Figure 4.7: Schematic illustration of the dependence of the
average optical gap ωg on the width of the JDOS j(ω). Start-
ing from a two-state system (a) with flat bands for which ωg
coincides with the direct band gap Edg and j(ω) is a Dirac peak,
the graphs shows how ωg is affected by (b) the dispersion of
the bands which increases the width of the JDOS, (c) the band
distribution in energy when new flat bands are added leading
to new Dirac peaks in j(ω), and (d) the combination of both.

for this is the inverse effective mass of the transition [95] defined by

1

µ
=

1

m∗v
+

1

m∗c
(4.17)

where m∗v and m∗c are respectively the effective mass of the valence

and conduction states averaged over the three possible directions.

The details of the calculation of m∗v and m∗c are given in Refs. [81,

96]. By coloring the data points according to 1/µ in Fig. 4.8, we

note that the larger µ (the smaller the dispersion of the bands),

the smaller ωg. To improve the visualization, the full set of data

has been split according to the values of 1/µ. For each panel,

the dashed line represents Eq. (4.16) with the the coefficients α

and β reported above, and the the colored lines represent the same

equation by fitting those coefficient considering each subset of data.

The remaining spread in the data (other than the one coming from

µ) is difficult to quantify by a simple physical quantity. Part of
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it can probably be attributed to the distribution of the bands in

energy.
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Figure 4.8: Calculated values of the average optical gap ωg
as a function of the direct band gap Edg (both in eV) for the
4040 materials considered in this study, split considering the
different values of the effective mass 1/µ. In each panel, the
dashed black line corresponds to ωg = Edg + 6.74 − 1.19/Edg
which was obtained by fitting all the data, while the colored line
is obtained considering only the data in the subset represented
in the panel.

In principle, α and β in Eq. (4.16) depend on the width of the

JDOS. In practice, in the rest of the paper we assume α and β as

constants, i.e. considering the fit calculated on the overall set of

data (α=6.74 eV and β=-1.19 eV2) to ease the discussion and the

analysis.

Combining Eqs. (4.14) and (4.16), we obtain a direct relationship

between the average static refractive index ns and the direct band

gap Ed
g :

ns =

√√√√1 +
ω3

eff(
Ed
g + α + β

Edg

)3 (4.18)
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Figure 4.9: Calculated values of the static refractive index ns
as a function of the direct band gap Edg for the 4040 materials
considered in this study, split considering the different values
of the effective frequency ωeff. The solid lines correspond to
Eq. (4.18) using the the same values of ωeff reported in Fig. 4.5.

which can be compared to all the calculated data, as shown in

Fig. 4.9. Here, the full set of data has been split according to the

values of ωeff for a better visualization. This quantity has been com-

puted by reverting Eq. (4.14). In each panel, the colored lines were

obtained using the values of ωeff indicated in Fig. 4.5. Globally, the

data follow the trend of Eq. (4.18) as represented by these lines,

confirming the inverse relationship between refractive index and

band gap. The agreement is quite good given the approximations

that are being made for the fit of ωg as a function of Ed
g . In par-

ticular, the points with large (respectively, small) effective masses

can fall significantly above (respectively, below) the corresponding

curve (given that the latter is obtained for an average value of the

effective mass).
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From our analysis, it is clear that the effective frequency ωeff (com-

bining the integral of the JDOS J and the average transition prob-

ability K) and the effective mass µ (as well as the distribution in

energy of the bands) play a key role in counterbalancing the effect

of the band gap on the refractive index. The former is the numer-

ator of the fraction appearing in Eq. (4.18), so the larger ωeff the

higher ns. The latter acts on the denominator by limiting the dif-

ference between the direct band gap and the average optical gap:

the larger µ, the smaller ωg and hence the higher ns.

At this stage, we would like to emphasize that the model that we

propose in Eq. (4.18) is not predictive. Indeed, while ωg can be

determined directly from the electronic structure of the compounds,

ωeff (and more precisely K) cannot. We leave it for another study

to analyze whether machine learning might help to overcome this

limitation.

4.1.2 Outliers

As far as the combination of high refractive index and high band

gap is concerned, the most interesting materials are those lying

above the curve corresponding to the value ωeff=12.10 eV, calcu-

lated by fitting in the last square sense Eq. (4.18) to the full set

of our data. Such materials have either a large value of ωeff (i.e.

following the general trend of the curves) or of µ (i.e. due to the

spread of the data). Among those, we found various compounds

commonly used for optical devices, a few examples of which are

reported in Table 4.1. In contrast, to the best of our knowledge,

some of these outliers have not yet been considered as optical ma-

terials (for instance, Ti3PbO7, LiSi2N3, BeS, ...). In Appendix E
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we provide various tables with the 10 materials with the highest

refractive index for a given direct band gap range.

Having a high value of the refractive index, for the compounds

listed in Table 4.1 we also expect a high response in the nonlinear

regime. This aspect, based on the Miller’s empirical rule [10], will

be further analyzed in the next section. In particular, LiTaO3,

LiNbO3, LiB3O5, and BaB2O4 are known to have high nonlinear

second order coefficients. They are thus commonly used for Second

Harmonic Generation (SHG), to convert the incoming light from

UV, or even deep UV, to the visible spectral range (see for example

Refs. [32, 33]). In contrast, both TiO2 phases (anatase and rutile)

are centro-symmetric and they do not show any response at the

second order. But, because of their refractive index, they have been

recently investigated as optical switching devices and waveguides

(see for example Refs. [97–99]).

4.1.3 Trend in oxides

As we have already stated, most of the compounds in the DB are

oxides (3375 out of 4040). These are important compounds be-

cause they show important applications in many sectors with an

exceptionally broad range of electronic properties (see for instance

Ref. [78]) We focus on the chemical composition and the electronic

structure of the materials making the connection with the optical

properties of the 3375 oxides.

To properly describe the data distribution, we introduced the effec-

tive frequency ωeff that is related to both J and K (see Fig. D.1).

Although both these quantities are important to obtain the correct

ωeff for each material, only J can be deduced from the electronic
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structure of the compounds. This is the main reason why our model

cannot be predictive. To the best of our knowledge, there is no way

to predict the probability transition K just considering the band

structure. Systematic correlations between K and materials prop-

erties are still under investigations. This an interesting aspect for

which it would be worth performing also some machine learning

analysis.

In order to analyze the trend in terms of their chemistry, the com-

pounds are organized in four different classes: two groups of tran-

sition metal oxides (TMOs), lanthanide oxides, and main-group

oxides. Materials with actinide elements are not taken in account

in our analysis. These classes are created as follows: the groups of

the TMOs include compounds in which there is at least one TM

element with the d shell not completely filled and no lanthanide el-

ements. The lanthanide oxides class contains compounds in which

there is at least one lanthanide element, but no TM elements (747).

Finally, the remaining oxides that do not contain any of the above

mentioned elements are included in the main-group. The TMOs

have been further split in two groups considering not only the TM

element but also its oxidation state [100]. In the first group, the

d shell of the TM element is empty (e.g. V5+) and therefore the

electronic transitions from the top of the valence to the bottom of

the conduction states are expected to be from the O 2p to the TM

d-orbitals (671). In the second group, the TM d shell is partially

filled (e.g. V4+, V3+) and thus the transitions are expected to be

from the TM filled d states to the empty ones (303). Finally, all

the compounds that contain TM elements in which the d shell is

completely filled (e.g. Zn2+, Cu+) are included in the main group

(1520).
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For each class, the probability density function is computed for

the distribution of the refractive index as function of the band gap

via a Kernel-Density Estimation (KDE) using a Gaussian kernel

(see Ref. [101] for further details). In Fig. 4.10, we only represent

each class by an ellipse that contains the main data distributions

and is obtained as follows. Its center is located at the average

value of the direct gap and refractive index for the corresponding

distribution. The orientation and lengths of its axes are determined

using principal component analysis for the materials which belong

to the region with a density larger than 75%. The curve reported

in the figure is obtained from Eq. (4.18) using ωeff = 12.10 eV . As

we already stated, materials falling above this curve are the most

interesting ones.

The importance of the flatness of the bands at the edges of the va-

lence and conduction bands has already been underlined in Ref. [23].

This means that the presence of d and f-orbitals can be helpful. In-

deed, the most interesting compounds (i.e. those located mostly

above this curve) come from the first group of TMOs and the lan-

thanide oxides, in which those orbitals are present close to the VBM

and CBM. These are the most suitable for applications that require

both a wide band gap and a high refractive index. This is especially

true for applications for which the absorption edge is at the limit of

the visible region (experimental Ed
g∼3 eV). For applications in the

UV (experimental Ed
g∼6 eV), the compounds in the main group of

elements reveal to be the most promising.

In the following subsections, we describe the peculiarities of the four

different classes, focusing on a typical example for each of them.

For the four representative materials, we focus on the electronic

structure and on a brief description of the optical functions j(ω),
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and j(ω)/ω3. We also highlight the different relevant quantities

(Ed
g , ωg, and ωeff).

Before proceeding with the discussion of the different classes, it is

worth stressing again that the electronic structures used in this

study are taken directly from the Materials Project repository.

They have been obtained in the framework of DFT using the PBE

exchange-correlation functional, that is known to underestimate the

band gap with respect to experiments.

Ed
g  (eV)

n s

1 2 3 4 5 61.0

2.5

2.0

1.5 TMs with
partially filled

d shell Main-group elements

TMs with
empty d shell 

Lanthanides 

Figure 4.10: Static refractive index ns as a function of the
direct band gap Edg for the four classes of materials (first and
second groups of TMOs in red, and blue respectively, main-
group elements in green, lanthanides in orange) considered in
this study. Each class is represented by an ellipse (see text)
indicating the main distribution of the materials that belong
to this class. The solid line correspond to Eq. (4.18) with
ωeff=12.10 eV.

4.1.3.1 TMOs with empty d shell (1st group)

Many materials from this class are of high technological interest as

dielectrics and as lenses for optical devices both in the linear and

nonlinear regime [78].
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As can be seen in Fig. 4.11, the materials from this class show a

relatively high value for both the refractive index and the band gap.

Figure 4.11: Static refractive index ns as a function of the
direct band gap Edg for the TMOs with empty d shell (1st group)
(671 materials). The solid line corresponds to Eq. (4.18) with
ωeff=12.10 eV. The probability density function is computed in
the distribution for the refractive index as a function of the band
gap via a Kernel-Density Estimation (KDE) using a Gaussian
kernel. The darker region represents the higher value for the
distribution density.

TiO2 is a typical material of this group. For this compound, the Ti

oxidation state is +4 (empty d shell). This binary oxide compound

still generates great interest for the construction of optical devices

(see for example Refs. [102, 103]). It is indeed one of the materials

with the highest value of the refractive index, while retaining a

high transparency throughout the visible region. The electronic

structure and the optical functions for the rutile phase (mp-2657)

are shown in Fig. 4.15(a). These are representative of those for

other known TiO2 phases (anatase, brookite, and monoclinic) and

for other compounds in this class (e.g. ZrO2, V2O5, LiNbO3, ...).
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In all these materials, the bands at the valence and conduction

edges are quite flat. The main contribution to the top valence

states originates from the O 2p-orbitals, while that to the bottom

conduction bands comes from the d-orbitals of the transition metal

(Ti 3d in the case of TiO2). The flat nature of the bands at the

edge of the band structure in this material can also be appreciated

looking at the different values of the effective masses (m∗v=2.53,

m∗c=1.00, µ=0.72). As a consequence the DOS is actually quite

high at the band edges. This leads to an important j(ω) originat-

ing from the transitions from the O 2p-orbitals to the transition

metal d orbitals, and hence to a large value of J . Further, these

materials have a wide band gap that arises mainly from electron

repulsion effects [104, 105]. This translates into a high refractive

index (ns=2.85).

In summary, for transition metals oxides from the first group, the

wide band gap (which pushes the refractive index downwards) is

compensated by a large number of available transitions from the

top of the valence band to bottom of the conduction bands due to

both the flatness of the band structure and to the high density of

states at the band edges. These materials are thus very interesting

candidates for further investigations.

4.1.3.2 TMOs with partially filled d shell (2nd group)

In general, TMOs from the second group have a smaller gap than

those from the first group. This obviously pushes their refractive

index upwards. However, contrary to the first group of TMOs, the

majority of the data fall below the curve (see Fig. 4.12).
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Figure 4.12: Static refractive index ns as a function of the di-
rect band gap Edg for the TMOs with partially filled d shell (2nd

group) (303 materials). The solid line corresponds to Eq. (4.18)
with ωeff=12.10 eV. The probability density function is com-
puted in the distribution for the refractive index as a function
of the band gap via a Kernel-Density Estimation (KDE) using a
Gaussian kernel. The darker region represents the higher value
for the distribution density.

These materials could be considered good candidates for optical

applications that require a moderate transparency (e.g. in the vis-

ible range) and a high refractive index. We focus on Cr2O3 (mp-

19399) as an illustrative example with features common to other

compounds of this class (e.g. PtO2, NiO...). In this case the Cr

oxidation state is +3 (partially filled d shell). Chromium oxides

are widely used in many sectors such as, for example, catalysis,

solar energy applications, and others (further information can be

found in Ref. [106]). Since this material shows a magnetic order-

ing, in Fig. 4.15(b) is reported its electronic structure for both spin

components separately, and the optical functions resulting from the

combination of both of them. The bands at the edge of the band

structure (spin up component) show a flat nature. This is further

emphasized looking at the values of the effective masses (m∗v=4.29,

m∗c=2.53, µ=1.59). At the bottom of conduction states (spin up



Results 97

component), as in the previous case, the main contribution comes

from the d-orbitals of the TM (Cr 3d in the case of Cr2O3). One

of the main difference lies in the contribution of the d-orbitals in

the valence states, leading to a more hybridized character. The

presence of an important amount of d states both at the top of

the valence and at the bottom of the conduction leads to a de-

crease of the band gap with respect to the TMOs with empty d

shell [104, 105]. Due to the flatness of the bands, the DOS at the

edge of the band structure is quite high giving an important j(ω).

However, in this case, the JDOS gives a more broad spectrum with

respect to the TiO2 case, leading to larger values of both ωg and

ωeff, and a slightly smaller value of the refractive index for Cr2O3

(ns=2.51).

In summary, the main difference with respect to the first group of

TMOs lies in the valence bands in which there is a strong contri-

bution from the d-orbitals. So, despite their lower gap, the TMOs

from the second group show a similar refractive index.

As a final remark, it is worth to mentioning that, for this class of

materials, DFT is known to predict wrong band gap and dispersion

due to the presence of partially filled d-orbitals. To this purpose,

as mentioned in Sec. 3.4.1, a Hubbard-like Coulomb U term was

added (GGA+U) [60, 80].

4.1.3.3 Main-group oxides

The main-group oxides show a higher diversity than the other classes.

Indeed in this class we can find oxides that contain elements such as

Zn, Cd and Hg in their oxidation state +2 such that they have a full

d shell in valence, as well as Si, Ge, etc. Although the compounds
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in this class show a common behavior in terms of their electronic

structure, due to the diversity of the materials their band gaps

display a more important spread, as can be seen in Fig. 4.13.

Figure 4.13: Static refractive index ns as a function of the
direct band gap Edg for the main-group oxides (1520 materials).
The solid line corresponds to Eq. (4.18) with ωeff=12.10 eV. The
probability density function is computed in the distribution for
the refractive index as a function of the band gap via a Kernel-
Density Estimation (KDE) using a Gaussian kernel. The darker
region represents the higher value for the distribution density.

Most of the materials belonging to this class are commonly used

as insulators. A prototypical example of this class SiO2. This

material is used for many devices and one of the most known ap-

plications is found in the amorphous silica phase, used for optical

fibers [107]. The electronic structure and the optical functions for

the β-cristobalite I 4̄2d tetragonal form (mp-546794) are shown in

Fig 4.15(d). Here, as in the case of the first group of transition met-

als oxides, O 2p states lead to quite flat valence bands and increase

the DOS at the valence edge. In contrast, the conduction bands are

very dispersive, showing almost a free-electron like parabolic char-

acter which directly translates into the values of the effective masses

(m∗v=4.15, m∗c=0.56, µ=0.49). This results in a small contribution
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to the DOS at the bottom of the conduction states. Consequently,

the JDOS j(ω) [Fig. 4.15(c)] does not show any clear peak close to

the absorption edge and the refractive index is quite low (ns=1.48).

Indeed the value of J for this material is smaller than the one of

both the representative candidates previously described. Further-

more, compared to the other cases, the value of ωg is much higher

than that of Ed
g (ωg > 2Ed

g ), and it is much closer to ωeff.

4.1.3.4 Lanthanide oxides

Lanthanide oxides tend to have a wide band gap, while still show-

ing a high refractive index (see Fig. 4.14). The oxides contained

Figure 4.14: Static refractive index ns as a function of the
direct band gap Edg for the lanthanide oxides (747 materials).
The solid line corresponds to Eq. (4.18) with ωeff=12.10 eV. The
probability density function is computed in the distribution for
the refractive index as a function of the band gap via a Kernel-
Density Estimation (KDE) using a Gaussian kernel. The darker
region represents the higher value for the distribution density.

in this class have common features with the TMOs with empty d

shell. Indeed, the two respective ellipses are almost superimposed

on each other in Fig. 4.10. As an illustrative example, we have
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chosen Nd2O3 (mp-1045). These compounds are typically known

because they show good luminescence properties and they can be

used as fluorescent materials in lighting applications (more infor-

mation can be found in Ref. [108]). Looking at the electronic struc-

ture, the flat nature of the bands can be appreciated at the top of

the valence states coming mainly from the O 2p-orbitals. At the

bottom of the conduction states, there is a slightly more disper-

sive behavior that comes mainly from the d-orbitals (Nd 4d in the

case of Nd2O3). This is also evident looking at the values of the

effective mass (m∗v=6.81, m∗c=0.53, µ=0.50). As a result, the DOS

at the top of the valence is quite important (as in the case of the

1st group of TMOs), but the slightly more dispersive nature of the

bands at the bottom of the conduction leads to a less pronounced

DOS. Anyway, j(ω) shows a pretty well-defined peak centered at

around ωg. The large availability of states for an electronic tran-

sition from valence to conduction turns into a large value of ωeff,

leading to reasonably high value of the refractive index (ns=2.06).

All these considerations show the similarity between this class of

oxides and the 1st group of TMOs, and explain why the refractive

index remains high in despite the wide band gap.

Finally, we would like to emphasize that the results for the lan-

thanide oxides need to be taken with great caution. Indeed, it is

not a simple task to accurately compute materials with f electrons

from first principles relying on pseudopotentials. In many cases,

these electrons are frozen in the core, which may lead to a lack of

accuracy.
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Figure 4.15: Electronic structure [band structure and density
of states (DOS)] and optical functions [j(ω) and j(ω)/ω3 in ar-
bitrary units] for (a) TiO2, (b) Cr2O3, (c) SiO2, and (d) Nd2O3.
The direct band gap Edg , average optical gap ωg, effective fre-
quency ωeff, and upper limit of integration ωmax are indicated
by green, blue, orange, and red dotted lines. The four materi-
als have been selected as representatives of the first and second
groups of TMOs, the main-group oxides, and lanthanide oxides,
respectively. For Cr2O3 (which shows a magnetic ordering), the
electronic structure of both spin components are reported sep-
arately (the spin down component is indicated by the use of
lighter colors and dashed lines) while the optical functions are
the sum of both of them.
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4.2 Nonlinear optical materials

database

By selecting the non-centrosymmetric materials present in the lin-

ear optical materials DB (see Sec. 3.4.2), we built up a new set of

824 compounds aiming at calculating their second order suscepti-

bility. At this stage, we have computed the nonlinear properties

for 457 materials, which have been inserted in a new database.

This number is intended to increase in the future. The analysis

of this nonlinear optical materials DB is mainly focused on two as-

pects: (ii) a descriptive model that can characterize the trend of the

materials distribution, in analogy with what we have done for the

analysis of the linear DB; (ii) a method that can improve the screen-

ing procedure to accelerate materials discovery. In both cases, the

analysis is carried out considering one material as an example to

start our investigation. Our plan is to expand this analysis to the

whole dataset. Two different distributions of the 457 materials are

shown in Fig. 4.16. In the panel (a), the nonlinear effective coef-

ficient deff , computed as described in Eq. (2.54), is plotted versus

the direct band gap Ed
g , with the refractive index ns indicated by

the color of the data points. In the panel (b), the nonlinear effec-

tive coefficient deff is plotted as a function of the refractive index

ns, coloring the data points as a function of the direct band gap

Ed
g . In the panel (a), the dashed line indicates the proportionality

relation between the nonlinear and the linear optical coefficient, as

described by the Miller’s rule written in the form

deff ∝ δn6
s (4.19)
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where δ is the Miller’s coefficient which is taken to be constant

and equal to 0.05 pm/V. Assuming that this empirical rule is valid,

the large spread in the data distribution around the dashed line

shows that the Miller’s coefficient cannot be materials independent,

as already stated in Sec. 2.2.3. Further, it is also evident that a

large linear optical coefficients is not a sufficient condition to have

a large response also in the nonlinear regime. To this purpose,

further analyses on the Miller’s coefficient have to be carried out

to identify a physical descriptor that can help us to understand the

data distribution, hence leading to a further comprehension of the

phenomena of the SHG. This aspect will be reported in Sec. 4.2.1,

taking as example LiNbO3, a well-known material in the field of

nonlinear optics.

In panel (b) of Fig. 4.16, the dependency of the nonlinear coefficient

as a function of the direct band gap is shown. The dashed line is

used as a guide to highlight the inverse relationship between these

two quantities. Once again, assuming the validity of the Miller’s

rule, and given the descriptive model of Eq. (4.18), it is straightfor-

ward to assume that there is a proportionality given by the following

relationship

deff ∝
1

(Ed
g )9

(4.20)

between the nonlinear coefficient deff and the band gap Ed
g . How-

ever, to the best of our knowledge, this relationship has been ad-

dressed in the literature only by few authors (see, for instance,

Ref. [109]). As it is evident, also in this case there is a large spread

in the data distribution. However, in the framework of this thesis,

Fig. 4.16(b) will be only used for screening purpose, thus we will

focus on the search for good nonlinear optical materials.
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Figure 4.16: (a) Calculated values of the nonlinear effective
coefficient deff as a function of the refractive index ns for the
457 materials considered in this study. The color of the data
points represents the direct band gap Edg . The dashed line indi-
cates the proportionality between nonlinear and linear optical
properties as predicted by Miller [10]. (b) Calculated values of
the nonlinear effective coefficient deff as a function of the di-
rect band gap Edg for the 457 materials considered in this study.
The color of the data points indicates the refractive index ns.
The dashed line represents the inverse proportionality relation
between nonlinear effective deff coefficient and the direct band
gap Edg .

Regarding the spread, it is however worth mentioning that, given

the form of the Miller’s rule as written in Eq. (2.40), one can ex-

pect that a quantity such as the band gap can be inserted in the

analysis through the linear susceptibility. Based on the model that

describes the relationship between the nonlinear and the linear op-

tical properties, a model that relates the nonlinear properties to the
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band gap can be deduced as a natural consequence.

4.2.1 Global trend

The comprehension of Miller’s rule, and hence of the contribution of

the Miller’s coefficient δ, has attracted particular interest since its

deduction. As we have already shown, this plays an important role

for a proper description of this relationship. This would make it

possible to determine the nonlinear optical properties of a material

just from the linear ones, that are more easily accessible both from

a first-principles and an experimental point of view.

To this purpose, here we mention the work of Levine [110] and

Bell [111]. Although they had used slightly different models, they

arrived at the same conclusion for which the nonlinear susceptibility

can be related to the anharmonic motion of the bond-charge of the

system. Further details about bond-charge models can be found,

for instance, in Ref. [112]. However, to the best of our knowledge,

these models have been applied only to the relatively simple case

of binary compounds.

The Miller’s coefficient can be naively seen as the coefficient of pro-

portionality between the linear and the nonlinear optical properties.

By rewriting Eq. (4.19), and considering the relationship between

the refractive index and the dielectric function in the static limit

(see Eq. (4.4)) we can compute the Miller’s coefficient for each ma-

terial as

δ =
deff

ε3
s

(4.21)

For the different materials in our data set, the distribution of the

nonlinear coefficient deff as a function of the Miller’s coefficient δ is
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shown in Fig. 4.17. Based on these data points, δ takes values in the

range [0, 2] pm/V. This indicates, once again, that this quantity is

material dependent. It is interesting to look at the compounds with
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Figure 4.17: Calculated values of the nonlinear effective coef-
ficient deff as a function of the Miller’s coefficient computed as
reported in Eq. (4.21).

δ > 1 pm/V. Some of them are reported in Table 4.2. By looking at

the structure of these compounds, some similarity can be found, as

for instance, the fact that these compounds are layered materials

(see Fig. 4.18). This is a further confirmation that a particular

atomic distribution can favor the nonlinear process. This finding

will be further analyzed in future works.

There is another crucial aspect that has to be taken into account,

namely the symmetry of the system. Indeed, the first condition

needed to have a nonlinear optical response is that the system has

to be non-centrosymmetric. In other words, the Miller’s coefficient

is null in the case of centrosymmetric materials.
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Formula MP-id ns deff δ
K2S3 mp-7667 2.07 62.72 2.07
PtF4 mp-8943 2.17 60.35 1.19

Rb2S3 mp-7446 2.02 53.60 1.03
SBr mp-28099 2.11 41.98 1.82

ClO3 mp-22869 2.01 30.64 1.15

Table 4.2: Materials with a Miller’s coefficient δ larger than
1 pm/V. The chemical formula, MP identification (MP-id), av-
erage refractive index ns, nonlinear effective coefficient deff (in
pm/V), and the Miller’s coefficient δ (in pm/V) are shown for
each material.

(a)

(e)

(d)(c)

(b)

Figure 4.18: Structures of the compounds in Table 4.2. (a)
K2S3; (b) PtF4; (c) Rb2S3; (d) SBr; (e) ClO3

Having all these considerations in mind, we start our analysis con-

sidering, as an example, the case of Lithium Niobate (LNB) in its
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d31 d32

This work 29.45 7.76
Experiment 25.2 4.6
Previous calculation 30.21 8.01

Table 4.3: Independent elements of the SHG dij tensor, com-
pared with experimental results [12], and a previous theoretical
work [13]. The data are presented in absolute value. The ex-
perimental values are measured at a wavelength of 1064 µm.

ferro and para-electric phases. In both phases, LNB has a trigo-

nal crystal system, and it is thus a uniaxial optical crystal. The

ferroelectric phase is widely known in the field of nonlinear optics

because of its broad range of applications and its high response in

the linear and nonlinear regime (ns = 2.35, deff = 16.50 pm/V),

while having a quite large band gap (Ed
g = 3.41 eV using PBE [53]

xc functional, Ed
g = 4.77 eV using HSE [59] xc functional). Indeed,

it has been used, for instance, as a modulator for optical fibers [113]

and holographic applications [114]. At a temperature of 1480 K, a

phase change occurs in this material: below this temperature LNB

is ferroelectric, while it is paraelectric above this critical temper-

ature [115]. Being non-centrosymmetric, the ferroelectric phase is

the only one that is SHG active. Since it is widely used, many

experimental data are available for comparison with our calculated

results. This is summarized in Table 4.3, showing a pretty good

agreement.

The paraelectric phase is instead centrosymmetric, and does not

show any nonlinear optical effect at the second order. Yet, it is

interesting to compare these two phases, since they have similar

structural parameters. In both cases, we have 10 atoms (2 niobium

atoms, 2 lithium atoms, 6 oxygen atoms) in the unit cell and the

values of the lattice parameters are also pretty similar. The only
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difference lies, of course, in the space group, that is R3c for the

ferroelectric phase, and R-3c for the paraelectric phase.

We then started our analysis considering the two structures stored

in the MP repository. As already explained in Sec. 3.4.2, the calcu-

lation of the dij is possible only considering LDA xc functionals [86,

87], at the current level of the implementation in ABINIT [69]. We

then execute a structural relaxation for these two phases. Some

information as the lattice parameters, the lattice angles, and band

gap, computed considering such a functional can be found in Ta-

ble 4.4

The atomic structure it is shown in Fig. 4.19 for both phases. The

niobium atoms (green) are at the center of an octahedron formed

by six oxygen atoms (red). In the paraelectric phase (panel (a)),

where indeed we have the inversion symmetry, the Nb atoms are

exactly at the center of these octahedra, while in the ferroelectric

phase (panel (b)) the octahedra are distorted, and the Nb atoms are

not located at their centers, breaking then the inversion symmetry.

Looking at the lithium atoms (blue), they are at the center of a

planar triangle formed by 3 O atoms for the paraelectric phase.

After the phase change, the Li atoms are immersed in octahedra

formed by six O atoms. As in the Nb, the octahedra are distorted

and the Li atoms are not located at their centers.

The atomic positions of the two phases are also reported in Ta-

ble 4.5, in which the 3rd column represents the distance between

the position of each atom from its centrosymmetric configuration

to the non-centrosymmetric one (and vice-versa). There is a small

displacement of the Nb atoms, while the largest displacement is

given by the two Li atoms and there is a moderate displacement for

the O atoms. In fact, as already discussed, there is a change of the
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Paraelectric phase Ferroelectric phase
Material-id mp-3731 mp-552588

Crystal system Trigonal Trigonal
Space group R-3c R3c
Point group -3m 3m

a(Å) 5.1221 5.0649
c(Å) 5.3989 5.4173

α(degree) 61.6819 62.1293
γ(degree) 60.00 60.00

Band gap (eV) 2.67 3.50

Table 4.4: Structural parameters of LiNbO3 considering its
ferroelectic and paraelectric phase.

atomic environment in which the Li atoms are immersed going from

the centrosymmetric to the non-centrosymmetric configuration.

(a) (b)

Figure 4.19: Atomic structure of LiNbO3. (a) Para-
electric (centrosymmetric) phase; (b) Ferroelectrics (non-
centrosymmetric) phase. In both panels, the Nb atoms are
colored in green, the O atoms in red, and the Li atoms in blue.

By interpolating between these two structures, we generated 4 in-

termediate structures depicted in Fig. 4.20. It is interesting to look

at the 1st step (moving the atoms from the centrosymmetric to the

non-centrosymmetric configuration) in panel (a). This represents
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Ferroelectric phase Paraelectric phase d
Li1 0.2500, 0.2500, 0.2500 0.2177, 0.2177, 0.3470 0.5868
Li2 0.7500, 0.7500, 0.7500 0.7177, 0.7177, 0.8470 0.6133

Nb1 0.5000, 0.5000, 0.5000 0.5013, 0.5013, 0.4962 0.0332
Nb2 1.0000, 1.0000, -0.0001 1.0013, 1.0013, -0.0038 0.0743
O1 0.1253, 0.3747, 0.7500 0.1328, 0.3931, 0.6925 0.3078
O2 0.2500, 0.8747, 0.2500 0.2815, 0.8931, 0.1925 0.3423
O3 0.3747, 0.7500, 0.7500 0.3931, 0.7815, 0.6925 0.3277
O4 0.6253, 0.2500, 0.2500 0.6328, 0.2815, 0.1925 0.3395
O5 0.7500, 0.1253, 0.7500 0.7815, 0.1328, 0.6925 0.3212
O6 0.8747, 0.6253, 0.2500 0.8931, 0.6328, 0.1925 0.3099

Table 4.5: Atomic position of LiNbO3 in fractional coordinates
considering its paraelectric and ferroelectic phase. The third
column represents the distance (in Å) between each atom in the
two configurations.

the first structure for which the inversion symmetry is broken, and

the system is then SHG active. In this structure, the inversion sym-

metry is broken from the displacement of the NB and Li atoms, that

are not anymore at the center of the environment made of the O

atoms. However, the Li atoms are still surrounded by 3 O atoms.

Looking at the second step (panel (b)) the Li atoms make additional

bonds with the O atoms, and they are immersed in an octahedron

formed by the latter. As it is evident, at this step the Li atoms

are quite far from the center of the octahedra and approaches their

center only in the further steps (panels (c) and (d)), reaching the

equilibrium position when the system is in its ferroelectric phase.

However, we have already discussed that even in this configuration

the Li atoms are not located at the center of the octahedra.

We have then in total 6 structures for which we are interested in

the variation of the optical properties in the linear and nonlinear

regime. These results are shown in Fig. 4.21. Of course, the cen-

trosymmetric structure corresponds to the paraelectric phase and
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(a)

(d)(c)

(b)

Figure 4.20: Intermediate LNB structures obtained by inter-
polating the atomic positions from its paraelectric configuration
to the ferroelectric one. In each panel, the Nb atoms are col-
ored in green, the O atoms in red, and the Li atoms in blue.
Panel (a) represents the first atomic displacement from the cen-
trosymmetric configuration for which the inversion symmetry is
broken. Here Nb and Li atoms are not anymore at the center
of the environment formed by the O atoms. In panel (b), the
atomic displacement produces a change in the environment in
which the Li atoms are immersed, and they make additional
bonds with the O atoms. They are immersed now in octahedra
formed by 6 O atoms, in which the Li atoms are not at the
center. In panel (c) and (d), the atomic environment does not
change anymore, but yet there is an atomic displacement that
leads to further deformation of the octahedra.
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the non-centrosymmetric one to the ferroelectric phase. In panel
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Figure 4.21: (a)Nonlinear optical properties for the differ-
ent structural steps in LiNbO3, going from a paraelectric (cen-
trosymmetric) to a ferroelectric (non-centrosymmetric) atomic
configuration. The blue dots represent the d33 element of the
SHG tensor while the oranges correspond to the nonlinear effec-
tive coefficient deff . (b)Linear optical properties for the differ-
ent structural steps in LiNbO3, going from a paraelectric (cen-
trosymmetric) to a ferroelectric (non-centrosymmetric) atomic
configuration. The blue dots represent the ε11 element of the di-
electric tensor while the oranges correspond to the ε33 element.
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(a), the variation of the nonlinear optical coefficient deff (orange

points) and the d33 (blue points) tensor element is shown as a func-

tion of the structural steps. As expected, going from the centrosym-

metric to the non-centrosymmetric configuration, the nonlinear co-

efficients increase. It is even more interesting to take look at the

behavior of the linear optical coefficients as a function of the struc-

tural steps. In Fig 4.21 the variation of the tensor elements of the

dielectric function ε11 (in blue) and ε33 are shown. In both cases,

the linear optical properties decrease going from the centrosymmet-

ric to the non-centrosymmetric configuration. This is, in principle,

in contrast with the Miller’s rule. These observations, are summa-

rized in Fig. 4.22, where the non linear coefficient as a function of

the linear one is plotted for each structural step. However, given

5.6 5.8 6.0 6.2 6.4 6.6 6.8
ε33

0

5
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25

30

d 3
3 (

pm
\V

)

Non-Centrosymmetric phase

Centrosymmetric phase

Figure 4.22: d33 component of the SHG tensor as a function
of the ε33 component for the different structural steps in LNB.

the inverse dependency of the refractive index w.r.t. the band gap,

a decrease of the linear optical properties can be expected (See

Fig. 4.23).
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Figure 4.23: Direct band gap (Edg in eV) variation as a func-
tion of the different structural steps in LNB.

Indeed, as shown in Fig. 4.24, going from the paraelectric phase (in

red) to the ferroelectric one (in blue), there is an increase of the

band gap. This is due to a change in the electronic band structure,

in which the bands at the edge of the conduction states become

flatter, having then an opening of the band gap. The electronic

structural properties for all the 6 structures derived are given in

Appendx G. Anyway, as already mentioned, this is an aspect that

explains the behavior of the linear optical coefficients, but not the

one of the nonlinear optical coefficients.

By investigating the variation of the Miller’s coefficient, we can see

that there is an increase of this quantity going from the centrosym-

metric to the non-centrosymmetric configuration (Fig. 4.25). In the

case of the d33 coefficient (blue points), this increase seems to be

linear w.r.t. the structural steps, while in the case of deff (orange

points) there is still an increase, but it is now less pronounced.
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Figure 4.24: Electronic band structure of LNB. In red it is
indicated the paraelectric phase, while the blue lines indicate
the ferroelectric configuration.
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Figure 4.25: Variation of the Miller’s coefficient, computed as
reported in Eq. (4.21), as a function of the structural steps for
the d33 tensor element (blue dots), and for the effective nonlinear
coefficient deff (orange dots).
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In summary, starting from a centrosymmetric configuration and by

moving the atoms from their position, in such a way that we can

reach the non-centrosymmetric configuration, there is a significant

change in the value of the Miller’s coefficient δ, that generates an

increase of the nonlinear optical coefficients. Looking at the differ-

ent structural steps, we have highlighted the change of the atomic

environment in which the Li atoms are immersed.

In our opinion, this is another clear evidence of the importance of

the Miller’s coefficient, that cannot be considered material inde-

pendent. Further, all these considerations suggest that a physical

descriptor that can explain the data distribution and thus the vari-

ation of the Miller’s coefficient has to be searched in the structural

features of the compounds. In our future plans, we also have in

mind to validate the relationship proposed by Scandolo and Bas-

sani (see Eq. (2.46)) [39] to compute the Miller’s coefficient in the

form

χ
(2)
ijk(0, 0) = −

〈
∂3V

∂xixjxk

〉
0

2N2
χ

(1)
ii (0)χ

(1)
jj (0)χ

(1)
kk (0) (4.22)

as already showed in Chap. 2. We remind that N is the density

of electrons and V (x) is the external potential experienced by the

electrons, where the average, indicated by the angle bracket, is

performed in the ground state of the system. From our conclusions,

we expect that by computing the Miller’s coefficient by the means

of the derivative of the external potential, we will have the same

trend as in Fig. 4.25. If this is, this approach can be easily extended

to all the materials contained in the DB, since this quantity is in

principle obtainable from the ground-state of the system.
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4.2.2 Outliers

One of the main purposes of building DBs containing materials

properties is that by screening those DBs, we can find new optimal

candidates for a particular application. This aspect, at least from

an introductory point of view, will be the main focus of this last

section.

So far, by screening the list of non-centrosymmetric materials, we

have computed the linear and nonlinear optical coefficients for more

than 400 materials. At this point, it is interesting to look at the

outliers, meaning materials with large nonlinear coefficient deff and

large band gap Ed
g , as we have done in Sec. 4.1.2. As a matter of

fact, we have retrieved the known materials already discussed in

that section, such as LiTaO3, and LiNbO3. An update of Table 4.1,

in which the nonlinear effective coefficient deff for these materials

and other materials mentioned in this thesis such as KH2PO4 and

TiPbO3 is shown in Table 4.6. As already stated in the previous

section, LiNbO3 is confirmed as a material with large linear and

nonlinear coefficients. In contrast, to the best of our knowledge,

some of these outliers have not yet been considered as NLO (as for

instance PON, B2O3, PbO, Sb2WO6, ..).

However, by looking at the requirements that a material should

satisfy to be a good nonlinear optical material (see Sec. 2.1), we do

not have enough information to investigate the quality of a NLO

material at this stage.

Indeed, as a first criterion, depending on the particular application

for which our material is made, the appropriate absorption edge

should be achieved. To this purpose, it is worth reminding, once

again, that DFT tends to underestimate the band gap up to 50%.
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Formula MP-id ns Ed
g deff

PbTiO3 mp-20459 2.63 2.79 23.19
KNbO3 mp-7375 2.28 3.12 19.95
LiNbO3 mp-3731 2.33 3.41 16.56
LiTaO3 mp-3666 2.25 3.71 8.79

KH2PO4 mp-6268 1.87 3.05 6.41
BaB2O4 mp-5730 1.69 4.85 2.07

KH2PO4 mp-696752 1.52 5.64 0.29

Table 4.6: List of known NLO outliers . The chemical formula,
MP identification (MP-id), average refractive index, direct band
gap Edg (in eV), and the nonlinear effective coefficient deff (in
pm/V) are shown for each material.

This means that the band gap should be corrected to get a more

reliable set of data. This has been performed for a set of 369 mate-

rials, by means of the HSE hybrid functional [59] (see Sec. 3.1.3.1).

The result of this correction is shown in Fig. 4.26.

To improve the comparison, both GGA (red points) and HSE (blue

points) data are shown. It is evident, as expected, that there is

blue-shift, that opens the materials band gap. Being materials de-

pendent, this shift is not constant.

Furthermore, in our DFPT calculation, the impact of the phase-

matching angle is ignored. For a given material, if the requirement

of phase-matching is not satisfied, the effective value of the non-

linear optical coefficients can be drastically reduced, affecting the

quality of the NLO crystal.

A further improvement would be given thus by exploring if there is

a set of angles for which the materials in our DB satisfy the phase-

matching condition (see Sec. 2.3). For the purpose of including

phase-matching parameters, we selected a material from our DB,

and we show the approach we are using to perform on this analysis.
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Figure 4.26: Calculated values of the nonlinear effective coef-
ficient deff as a function of the direct band gap Edg , computed in
the GGA approximation (red points), and HSE approximation
(blue points).

As a material candidate we consider here Phosphate OxiNitride

(PON, mp-753671). This compound has an orthorhombic unit cell.

It is a biaxial crystal which belongs to the space group I212121

(point group 222). For this material, we have computed a value

ns = 1.79 of the refractive index with a moderate birefringence

(∆s = 0.10), and deff = 1.68 pm/V for the nonlinear optical coeffi-

cient. For the band gap, we have Ed
g = 5.51 eV using the PBE xc

functional[53], that becomes Ed
g = 6.76 eV when HSE [59] is used

instead. This means that, if this material satisfied all the possible

criteria, it would be a good candidate for the application that need

deep UV NLO materials.

As reported in Ref. [32], these materials are of particular inter-

est from both academic and technological standpoints, finding ap-

plications in the semiconductor manufacturing, laser systems, and
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attosecond pulse generation, for instance. A good NLO material

should possess the following requirements:

• Wide UV transparency range (Eg > 6.2 eV);

• Large SHG coefficients (compared to the d36 = 0.39 pm/V of

KH2PO4).

• Moderate birefringence (∆ns 0.07 − 0.10) to achieve phase-

matching in the deep UV

In addition to these requirements, chemical stability and resistance

to laser damage are required. Anyway, these further requirements,

combined with the fact that large high optical quality crystals have

to be grown, are requirements that have to be tested in the experi-

ments as a last confirmation about the quality of the NLO material.

PON seems then to satisfy the first requirements that an NLO ma-

terial should possess.

PON has recently attracted some new interest also from an exper-

imental point of view, because of its similarity with silica (SiO2),

to which it is isosteric. This similarity, was already highlighted by

Léger at the end of the 90’s [116]. Silica is one of the most stud-

ied materials because of its unique properties and the vast range

of applications, that cover nonlinear optical phenomena as well,

and because of the wide variety of crystal structures known for this

compound. Baumann et al. [117, 118], recently found new possible

crystalline structures for PON, and, as reported in their work, the

number of possible structure types for PON could even exceed that

for SiO2, because of the ability of nitride ions to connect with more

than two neighboring P(O,N)4 tetrahedra.
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Figure 4.27: Atomic structure of PON, considering a (3×3×3)
supercell. The P atoms are colored in yellow, the O atoms are
in red, and the N atoms are colored in green.

Looking indeed at the structure of PON, shown in Fig. 4.27, we

have six atoms in the unit cell: 2 phosphorous atoms (yellow),

2 nitrogen atoms (green), and 2 oxygen atoms (red). As in the

structure of silica, where the silicon atom is surrounded by 4 Oxygen

atoms forming a tetrahedron, in PON, the P atoms are immersed

in a tetrahedron formed by the 2 O atoms and the 2 N atoms.

Furthermore, it is interesting to take a look at Table 4.7, where the

refractive index and the nonlinear effective coefficient computed

in our framework for PON and two well-known silica phases are

reported. From our data, PON has indeed a higher linear and

nonlinear response than silica.

Before moving to the calculation of the phase match angle, there
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Figure 4.28: Atomic structure of PON, considering a (2×2×2)
supercell. The P atoms are colored in yellow, the O atoms are
in red, and the N atoms are colored in green.

is another point that is worth clarifing. Indeed, as also reported

in Baumann’s works, this material shows a disorder in its struc-

ture at the level of the arrangement of the oxygen and nitrogen

atoms. This is somehow a limitation, because while from our cal-

culated data this material falls into a non-centrosymmetric space

group, the disorder can bring it to another space group that is cen-

trosymmetric. The partial occupation of the sites (1/2 O, 1/2 N) is

reported in Fig. 4.28. Starting from this cristobalite phase (space
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Formula MP-id ns deff

PON mp-753671 1.79 1.79
SiO2 (α-quartz) mp-6930 1.55 0.31

SiO2 (cristobalite) mp-7000 1.55 0.29

Table 4.7: Effective nonlinear coefficient deff (in pm/V) and
average refractive index ns for phosphorous oxynitride, α-quartz
silica, and cristobalite silica. The data are taken from the cal-
culation stored in our database.

group I42d), present in the Inorganic Crystal Structure Database

(ICSD) [119], we derived 9 possible structures that include all the

possible O-N ordering. These are shown in Fig. 4.29.

In each structure, the P atoms are immersed in the tetrahedron

formed by the O and N atoms. Further information on these struc-

tures is given in Table 4.8. In column 4, the DFT total energies

are shown. The difference in the total energy between all the de-

rived structures is small, confirming the disorder in the ordering

of N and O atoms. In columns 4 and 5, the linear and nonlinear

optical properties are shown, respectively. We find then that all

the 9 structures are non-centrosymmetric, showing a response in

the nonlinear regime. Further, the average value of the nonlinear

effective coefficient for the 9 structures is deff = 1.65 pm/V, that is

pretty close to the data in our DB (deff = 1.68 eV).

Finally, we move to the analysis of the phase match (PM) parame-

ters, for PON. As already discussed, the phase-matching condition

n(2ω) = n(ω) is impossible to achieve. However, playing with

the birefringence properties of the materials, it is still possible to

achieve angular phase-matching. To compute PM angles, we follow

the approach of Ref. [45] briefly described in Sec. 2.3.1. In order to

get the refractive index in an extended frequency range we need to

compute the dielectric function, as described in Eq. (2.10).
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(a)

(i)(h)(g)

(f)(e)(d)

(c)(b)

Figure 4.29: Structure of phosphorous oxynitride considering
all the possible O-N arrangements. These structures are derived
starting from the orthorhombic structure of PON (Fig. 4.27)
stored in our DB. For each structure, the P atoms are colored
in yellow, the O atoms are in red, and the N atoms are colored
in green. (a) Orthorhombic (I); (b) Monoclinic (I); (c) Mono-
clinic (II); (d) Monoclinic (III); (e) Triclinic (I); (f) Triclinic (II);
(g) Monoclinic (IV); (h) Tetragonal; (i) Orthorhombic (II);

At this stage, for the calculation of the dielectric function we used

the so-called Independent Particle Approximation (IPA), or Sum-

Over-States approach (see, for instance, Ref. [120]). This basically

means that the evaluation of the imaginary part of the dielectric

function is given by a form similar to Eq. (4.1). Within this ap-

proach, the energy transitions and matrix elements are taken from
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DFT calculations of the electronic structure. To compensate the

well-known systematic underestimation of the band gap, a scissor

operator, calculated in order to match the HSE band gap, is con-

sidered. Furthermore, local-field and many-body effects are not

taken into account in this case [121]. Convergence studies have

been conducted for the important parameters such as the k-point

sampling and the number of unoccupied bands. In Fig. 4.30, the

different components of the real and imaginary part of the dielectric

function are shown.

The convergence of the different parameters should not to be un-

derestimated, because a small change in the value of the refractive

index could produce a large change in the calculated PM angles.

This is in line with good practice in HT calculations: when screen-

ing good materials, thus decreasing their number, the computa-

tional requirements on the parameters have to be quite stringent,

to improve the prediction power. This is basically why, at this

stage, we limit our calculation to the IPA case. As a matter of fact,

even with the computational power available today, techniques such

as the Random Phase Approximation and Bethe-Salpeter are still

prohibitive for a large set of materials. However, once a good NLO

candidate has been individuated in the DB, the calculation of the

dielectric function within these approaches can be useful as a fur-

ther confirmation of our results.

The refractive index of PON is shown in Fig. 4.31. To compute

the PM properties, we have to check the fundamental and second

harmonic value of the refractive index at that point. In this case,

we consider for the fundamental light an energy of 1.17 eV, that

corresponds to a wavelengths of 1064 nm and is indicated with a

green dashed line, and the second harmonic value of 2.33 eV, that
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Figure 4.30: Real and imaginary part of the dielectric function
of PON as a function of the frequency ((a) x component, (b) y
component, (c) z component).

corresponds to a wavelength of 532 nm and is indicated with a red

dashed line. These are typical wavelength of interest for optical

applications. Of course, the same approach can be used as well

with other values of the frequencies.

The results for type I and type II are shown in Fig. 4.32. Type I

phase-matching means that, for instance, in SHG the two funda-

mental beams have the same polarization, perpendicular to that of

the generated wave. Conversely, in Type II phase-matching, the

two fundamental beams have different polarization directions [33].

For particular combinations of the angles (θm, φm), the so-called

Phase match angles, phase-matching is achieved in the PON crystal.

For us, all these considerations, are a confirmation of PON as a good

NLO optical material. However, once again, the final confirmation
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Figure 4.31: Refractive index of PON as a function of the
frequency ((a) x component, (b) y component, (c) z component).
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Figure 4.32: Type I and Type II phase match angles for PON.
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is up to the experimental analysis. As a final consideration, we

want to remark that the inclusion of the phase match angles for

each material in our DB, will help us to continue the screening of

materials for the search of a good NLO material.
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Conclusions and future works

In this thesis, we have investigated the optical properties of semi-

conductors in the linear and in the nonlinear regime. We have

combined Density Functional Perturbation Theory with the high-

throughput computational approach to construct large databases

containing the optical material properties such as the refractive

index in the linear regime, and the nonlinear Second Harmonic

Generation coefficient in the nonlinear regime.

After an overview on optical materials and the requirements that

such materials need to meet in order to be high-performing optical

materials, Density Functional Theory and Density Functional Per-

turbation Theory have been reviewed as methods to compute struc-

tural, electronic, and optical properties of materials. The combina-

tion of these two first-principles methods with the high-throughput

approach has enabled us to compute the material properties for a

large set of semiconductors. We then created two databases: one

containing more than 4000 semiconductors in which the linear opti-

cal properties have been stored, and a second one containing at this
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stage more than 400 semiconductors, for which the nonlinear opti-

cal properties have been computed. The discussion of the results

has been carried out separately for these two sets of data.

The initial list of candidates has been selected among the com-

pounds present in the Materials Project repository, for which we

collected materials properties such as structural properties (atomic

positions, space group, ...) and electronic structural properties

(band structures, density of states, ...). In the first part, we have

computed the electronic and optical properties of 4040 semiconduc-

tors, calculating their band gap Ed
g and static refractive index ns in

the framework of density functional theory and density functional

perturbation theory. Our data confirm the inverse relationship be-

tween ns and Ed
g , but outliers are identified that combine a wide

band gap with a high refractive index. Some of these are well-known

optical materials (e.g. TiO2, LiNbO3, ...) while others have never

been considered in this framework to the best of our knowledge

(e.g., Ti3PbO7, LiSi2N3, BeS, ...).

Beyond the simple screening of a computational materials database

to search for compounds with certain properties, the large amount

of data provided through high-throughput computations can also be

used to better understand the factors governing important material

properties.

Thus, by mapping all the compounds onto a two-state system, two

main descriptors are identified: the average optical gap and the

effective frequency. While the former can be deduced directly from

the electronic structure, the latter cannot. This limits the predictive

power of our model and calls for further analysis (e.g., using a

machine-learning approach). However, the model highlights that

the decrease of ns with Ed
g can be partly counterbalanced by a
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high number and density of available transitions from the top of

the valence band to the bottom of the conduction band. This is

directly related to the density of states at the edges of those bands

and to the effective mass of such states.

By considering the compounds based on their chemical composi-

tion, we have then extracted some common features that can be

useful in achieving a wide band gap dielectric. We have found that

materials belonging to the first class of transition metal oxides and

lanthanide oxides are the most promising ones for optical applica-

tions that require a wide band gap and a high refractive index.

The material database containing the linear optical materials prop-

erties served as a starting point to collect the optical properties in

the nonlinear regime. We extracted 824 non-centrosymmetric ma-

terials out of the list of the 4040. The Second Harmonic Generation

coefficient deff has been then computed so far for 457 semiconduc-

tors via DFPT and the (2n + 1) theorem. For the sake of conve-

nience, the screening procedure indicated at the end of Chap. 3, is

reported again here in Fig. 5.1.

Inspired by the Miller’s rule, that relates the nonlinear optical sus-

ceptibility with the linear one, we were interested in the relationship

between the deff and ns. The explanation of such an empirical rule

is of fundamental importance. Indeed, this would make it possi-

ble to determine the nonlinear optical properties of material just

from the linear ones, that are more easily accessible both from a

first-principles and an experimental point of view. From our data,

we can confirm that materials with a high nonlinear coefficient also

have a high refractive index. However, having a high response in

the linear regime is not a sufficient condition to have a high nonlin-

ear response as well. If we thus assume the validity of Miller’s rule,
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Figure 5.1: Sketch of the screening procedure followed to build
up the database containing the nonlinear optical coefficients of
the semiconductors analyzed in this study.

Database with 
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compounds 
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materials
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Linear DB (DFPT) 
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High ref. index and band gap
No Lan and Act compounds 

Nonlinear DB (SHG coefficients)

further investigation of the Miller’s coefficient assumes a crucial

part in the comprehension of the data distribution.

In order to find descriptors that explain the variation of the Miller’s

coefficient we considered Lithium Niobate, a well-known material

in nonlinear optics. This material, as confirmed from our results,

is one of the materials with the largest nonlinear coefficients in our

data collection, namely, an outlier, having also a rather large band

gap. Furthermore, this material shows two phases: a ferroelec-

tric one, that is non-centrosymmetric, and thus Second Harmonic

Generation (SHG) active, and a paraelectric phase that, being cen-

trosymmetric, does not have any response in the nonlinear regime.

While there are many similarities in the structures of these two

phases, like the same number of atoms in the unit cell and the
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same crystal geometry, the atomic environments change going from

one structure to the other.

Interpolating between the atomic positions of the centrosymmetric

phase of Lithium Niobate and the non-centrosymmetric one we gen-

erated 6 intermediate structures for which we studied the variation

of the optical coefficients as a function of the structural steps. This

result is, in principle, in contrast with the Miller’s rule. Indeed,

by moving the atoms from their centrosymmetric configuration to

the non-centrosymmetric one, as expected, we obtain an increase

of the nonlinear optical coefficient deff , while the refractive index

is decreasing. Although the decrease of the linear properties can

be explained by looking at the band structure of the two phases,

also making a connection with the descriptive model discussed for

the comprehension of the data distribution in the linear database,

the increase of the nonlinear coefficient cannot be explained. By

looking then at the Miller’s coefficient, we have an increase in this

quantity, that explains the behavior of deff . We can conclude then,

from our data, that the Miller’s coefficient is material dependent,

and has a high impact in the explanation of the data distribution,

following the empirical Miller’s rule.

As a future perspective, we think that it would be interesting to

compute the Miller’s coefficient in the form proposed by Scandolo

and Bassani which only involves the calculation of the third deriva-

tive of the external potential and the calculation of the linear sus-

ceptibilities (see Eq. (2.46)). From our conclusions, we expect that

by computing the Millers coefficient by the means of the derivative

of the external potential, we will have the same trend as in Fig.

4.24. If this is the case, this approach can be easily extended to all

the materials contained in the DB, since this quantity is in principle



Conclusions 136

obtainable from the ground-state of the system, giving us further

insight in the comprehension of the phenomena.

The last part of this thesis is focused on the description of a method

for the search of new optimal candidates for nonlinear optical ap-

plications. By looking then at the distributions of materials con-

sidering the nonlinear effective coefficient deff vs. the band gap Ed
g ,

the expected inverse relationship is found. Having in mind the well-

known band gap underestimation coming from Density Functional

Theory calculations, we corrected the band gap by means of the

HSE hybrid functional. Among the outliers that combine a wide

band gap with high nonlinear optical coefficients, some of these are

well-known compounds (e.g. LiNbO3, LiTaO3, KTiPO5). In con-

trast, to the best of our knowledge, some of these outliers have not

yet been considered as nonlinear optical materials (as for instance

PON, B2O3, PbO, Sb2WO6, ..).

We considered then Phosphorous OxyNitride (PON) as an inter-

esting example. From our calculation, this material looks indeed

an interesting nonlinear optical material candidate for applications

that fall in the deep-UV region of the electromagnetic spectrum. To

further improve the quality of our material search, we computed the

phase match angles for this material. Indeed, as highlighted many

times, the nonlinear efficiency can be drastically reduced if the ma-

terials do not satisfy the phase-matching condition. Since phase-

matching can be achieved by playing with the birefringence prop-

erties of the materials, we computed the refractive index of PON in

the framework of the Independent Particle Approximations, aiming

at calculating the phase match angles. We have found that for par-

ticular combinations of the angles (θm , φm ), the so-called phase

match angles, phase-matching is achieved in a PON crystal.
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Knowing that the final confirmation is only given after the experi-

mental analysis, we think that phosphorous oxynitride could be a

good candidate, as an optical material, to be further investigated

in the future.

It is worth stressing that our conclusions are inferred merely from

statistical considerations. Such approaches can help in the under-

standing and construction of optical devices in a wide range of

applications. Of course, for the final goal of speeding up and im-

proving the material optimization process, the interaction through

the exchange of data between the computational predictions and

experimental results, which has the final word about the confirma-

tion of the performances of the material, plays a key role.

For the future, our intentions are to increase the number of materi-

als contained in our databases and to extend the range of properties

stored for each material. Moreover, given the large amount of data

generated, it would be interesting to apply machine learning tech-

niques to generate predictive models of the optical properties of

materials, and further improve the comprehension of optical phe-

nomena. Finally it would be interesting to continue the investiga-

tion of the optical properties of the interesting candidates through

methods that go beyond Density Functional Theory, such as many-

body perturbation theory for instance, for which nowadays the cal-

culation of Second Harmonic Generation spectra is also available.

This would, of course, improve the material comprehension and

would also be helpful to further support the experimental analy-

sis because most of the experimental measurements are typically

done at common communication wavelengths (i.e. around 800 nm

or 1500nm).
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We believe that the design process of optical materials will greatly

benefit from the work proposed in this thesis. The most impactful

subsequent steps to be undertaken should be:

• Miller’s rule investigation

• Increase the information for each material contained in the

databases in order to improve the material screening proce-

dure

• Systematic approach to investigate angular phase matching

• Test machine learning techniques to further investigate the

dataset at our disposal with the materials response in the

linear and nonlinear optical regime

• Extend the analysis considering the frequency dependence of

the susceptibility, at least for the most interesting materials
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A

Hints about the relationship

between ωg and Edg

The relationship between the average optical gap ωg and the direct

band gap Ed
g can formally be deduced from Eq. (4.13), which only

involves the JDOS j(ω). However, the form of j(ω) is often com-

plex, which makes it impossible to solve the equation analytically.

Here, the solution is first derived for a simple model JDOS:

j(ω) =


− 6

(2σ)3
(ω − Ed

g )
(
ω − (Ed

g + 2σ)
)

for Ed
g ≤ ω ≤ Ed

g + 2σ

0 elsewhere

(A.1)

This corresponds to a JDOS showing a single symmetric parabolic

peak with a width σ (see Model 1 in Fig. A.1(a)). The analytic

solution of Eq. (4.13) for this model JDOS is given by:

ω3
g = −4

3
σ3

[
ln

(
Ed
g + 2σ

Ed
g

)
−

2σ(Ed
g + σ)

Ed
g (Ed

g + 2σ)

]−1

(A.2)
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Figure A.1: (a) JDOS models (see text) and (b) corresponding
relation between the average optical gap ωg and ωg-E

d
g (in eV)

from Eq. (4.13). All models show the same trend which can be
fitted using Eq. (A.3). The results obtained by truncating the
development to n=1 (as in Eq. 4.16) are represented for Models
2, 3, and 4 using dotted, dashed, dot-dashed lines, respectively.

Using the properties of the logarithm and its Taylor expansion, we

can finally write:

ωg = Ed
g +

∞∑
n=0

cn(σ)

(Ed
g )n

(A.3)

where the coefficients cn(σ) are functions of the width σ. By trun-

cating the development to n=1, we find Eq. (4.16).

Next, more complex JDOS models are considered. Model 2 consists

of a skew normal distribution:

j(ω) =
A

σ
√

2π
e−

(ω−µ)2

2σ2

{
1 + erf

[
γ(ω − µ)

σ
√

2

]}
(A.4)

where A, µ, σ, and γ are the amplitude, the position, the width, and

the skewness of the peak, respectively. Models 3 and 4 are obtained

by summing two and three such skew normal distributions.

For all models, an analytic solution of Eq. (4.13) is out of reach but

ωg can be computed numerically for different values of the peak

position in order to determine its dependence with respect to Ed
g .

In all cases, it is found that the solution has the form of Eq. (A.3)

and that its truncation to n=1 provides a good approximation (see

Fig. A.1(b)).
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Figure A.2: Splitting of the ωg-E
d
g data points considering

the different ranges of the width σ. For each panel, the dashed
black line corresponds to ωg = Edg + 6.85− 1.68/Edg which was
obtained by fitting all the data, while the colored lines are ob-
tained considering only the data in the subset represented in
the panel.

Furthermore, playing with the parameters, we confirm that, just

like for Model 1, the coefficients cn(σ) in Eq. (A.3) clearly depend

on the width σ. These findings suggest that Eq. (A.3) truncated to

n=1 could be used for any JDOS. This is illustrated in Fig. A.2 for

all our calculated data. The dependence of the coefficients cn(σ)

on the width σ has been highlighted by splitting the data into 6

groups according to the width of the real JDOS σ (computed as

the difference between the mean value of the JDOS and the direct

gap). This width depends on the dispersion of the bands, hence on

the effective mass, and their distribution in energy, as illustrated in

Fig. 4.7. This justifies the use of Eq. (4.16).





B

Comparison of the ns-E
d
g mod-

els

As already mentioned, different empirical or semi-empirical models

have been proposed for the expected inverse relationship between

the refractive index ns and the direct band gap Ed
g . A review of

such models was recently proposed by Tripathy [90]. In Fig. B.1, we

report the distributions of the absolute errors on the refractive index

for various explicit functions of the direct band gap Ed
g compared

to the DFPT computed data for the 4040 materials.

We consider various descriptors of the distribution of the absolute

errors: the mean absolute error (MAE), the 25th, 50th, 75th per-

centiles (P25, P50, and P75, respectively). All of them indicate that

our new model describes the calculated DFPT data better than the

previously proposed ones.
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Figure B.1: Distribution of the absolute errors on the refrac-
tive index (for various explicit function of the direct band gap
Edg vs. DFPT) for the 4040 materials. Our model (a) is com-
pared to some well known empirical and semiempirical rela-
tions: (b) Ravindra et al. [5], (c) Moss [6], (d) Hervé and Van-
damme [7], (d) Reddy and Anjaneyulu [8], and (e) Kumar and
Singh [9]. For all the models, the mean absolute error (MAE),
the 25th, 50th, 75th percentiles (P25, P50, and P75) are indi-
cated.



C

Comparison with the Penn

Model

The model presented here can directly be connected to the so-called

Penn model in which the static refractive index is given by the

following equation:

n2
s = ε1s = 1 +

(
ωp
ωg

)2

, (C.1)

where ωp is the Drude plasma frequency which is defined through

the f-sum rule: ∫ ∞
0

ωε2(ω)dω =
π

2
ω2
p. (C.2)

Introducing the imaginary part of the dielectric function given by

Eq. (4.9) into Eq. (C.2) we then obtain:

ω2
p = 8πK

∫ ∞
0

j(ω)

ω
dω. (C.3)
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If we now consider the two-state system previously introduced,

whose JDOS is given by j(ω) = Jδ(ω − ωg), the resulting plasma

frequency is simply given by:

ω2
p =

8πKJ

ωg
=
ω3

eff

ωg
. (C.4)

The two expressions for the static refractive index given by Eq. (4.14)

and Eq. (C.1) are thus strictly equivalent. Consequently, the model

presented in this study is closely related to Penn model. Our model

has, however, an important advantage over Penn model for analyz-

ing the data in that the effective frequency ωeff is clearly indepen-

dent of the average optical gap ωg (it only depends on the integral

of the JDOS J and the average transition probability K), while the

plasma frequency ωp is not.



D

Average transition probabil-

ity vs. integral of the JDOS

From Eq. (4.12) we have that ωeff is related to the product of the

average transition probability K and the integral of the JDOS J .

In Fig. D.1, we show the distribution of all our data points as a

function of these two quantities (shown in a logarithmic scale for

sake of clarity). The data points have been colored according to

ωeff. Though K is smaller than 1 for the vast majority of materials,

both K and J impact the value of ωeff.
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Figure D.1: Calculated values of the average transition prob-
ability K and integral of the JDOS J computed up to a fre-
quency ωmax for the complete dataset of materials. The data
are reported as solid circles the color of which refers to the value
of ωeff as indicated in the color bar.



E

Tables of compounds

In this section, we provide various tables with the 10 materials with

the highest refractive index for a given direct band gap range. In

each table the chemical formula, MP identification (mp-id), average

refractive index (ns), diagonal components of the refractive index

tensor (n1, n2, n3), direct band gap in eV (Ed
g ), the effective fre-

quency in eV (ωeff), the average optical gap in eV (ωg) and the

average effective mass of the transitions µ are shown. The com-

pounds are sorted by the value of the average refractive index.
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F

Importance of the exchange-

correlation functional

It is clear that the exchange-correlation (XC) functional will affect

the electronic structure (the band gap and, possibly, the band dis-

persion) and the optical properties. Here, we analyze how using

HSE instead of PBE changes the calculated value of ωg for the top

materials in the Tables E.1-E.6. To this end, in Fig. F.1, we com-

pare the JDOS j(ω) and j(ω)/ω3 computed with computed with

both XC functionals. Obviously, the PBE gaps are smaller than

the HSE ones so a scissor ∆ was applied to the PBE electronic

structure in order to match the HSE gap. A comparison of the av-

erage gap ωg computed with PBE+∆HSE and HSE for the selected

materials is also shown in Table F.1. For each material the value

of the ∆HSE scissor operator is reported. Looking at the different

ωg values one can see that there is a small difference considering

the two XC functionals, with an absolute error ranging from 0.15

to 1.09 eV.
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Figure F.1: Optical functions j(ω) and j(ω)/ω3 computed
with PBE+∆HSE and HSE for the top materials in the Ta-
bles E.1-E.6.

Table F.1: Comparison of the ωg values (in eV) computed
considering PBE+∆HSE and HSE for the top materials in the
Tables E.1-E.6. For each material also the value of the scissor
operator ∆HSE (in eV) is reported.

Formula MP-id ∆HSE ωg (PBE+∆HSE) ωg (HSE)
TePb mp-19717 0.54 7.09 6.00
TiO2 mp-34688 1.57 7.73 8.00
ZrSO mp-3519 1.30 8.24 8.39
ZrO2 mp-755089 1.84 10.52 10.75
BeS mp-422 1.26 12.41 12.64

BeAl2O4 mp-3081 2.25 16.59 16.79



G

LiNbO3: Electronic structures

In this section, we provide the electronic structure for the 6 differ-

ent stuctures of LiNbO3 (see Sec. 4.2.1). For each structure, the

electronic band structure and the projected density of states (DOS)

is given.
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Figure G.1: Electronic structural information of LiNbO3 in
its centrosymmetric phase (Fig. 4.19(a)).
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Figure G.2: Electronic structural information of LiNbO3 af-
ter a first displacement of the atoms from its centrosymmetric
positions (Fig. 4.20(a)).



Appendix 164

Γ L QB1 Γ X Q F P1 L P
Wave Vector

−4

−2

0

2

4

6

E
−

E f
(e

V)

Figure G.3: Electronic structural information of LiNbO3 after
a second displacement of the atoms from its centrosymmetric
positions (Fig. 4.20(b)).
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Figure G.4: Electronic structural information of LiNbO3 af-
ter a third displacement of the atoms from its centrosymmetric
positions (Fig. 4.20(c)).
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Figure G.5: Electronic structural information of LiNbO3 after
a fourth displacement of the atoms from its centrosymmetric
positions (Fig. 4.20(d)).
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Figure G.6: Electronic structural information of LiNbO3 in
its non-centrosymmetric phase (Fig. 4.19(b)).
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[71] Eleonora Luppi, Hannes Hübener, and Valérie Véniard.

Ab initio second-order nonlinear optics in solids: Second-

harmonic generation spectroscopy from time-dependent

density-functional theory. Phys. Rev. B, 82:235201, Dec

2010. doi: 10.1103/PhysRevB.82.235201. URL https://

link.aps.org/doi/10.1103/PhysRevB.82.235201.

https://doi.org/10.1088 2F1361-648x 2Faa8f79
http://link.aps.org/doi/10.1103/PhysRevB.43.7231
http://link.aps.org/doi/10.1103/PhysRevB.43.7231
https://link.aps.org/doi/10.1103/PhysRevB.71.125107
https://link.aps.org/doi/10.1103/PhysRevB.71.125107
https://link.aps.org/doi/10.1103/PhysRevB.53.10751
https://link.aps.org/doi/10.1103/PhysRevB.53.10751
https://link.aps.org/doi/10.1103/PhysRevB.82.235201
https://link.aps.org/doi/10.1103/PhysRevB.82.235201


Bibliography 183

[72] Guido Petretto, Xavier Gonze, Geoffroy Hautier, and

Gian-Marco Rignanese. Convergence and pitfalls of den-

sity functional perturbation theory phonons calculations

from a high-throughput perspective. Computational Ma-

terials Science, 144:331 – 337, 2018. ISSN 0927-

0256. doi: https://doi.org/10.1016/j.commatsci.2017.12.040.

URL http://www.sciencedirect.com/science/article/

pii/S0927025617307243.

[73] Guido Petretto, Shyam Dwaraknath, Henrique P.C. Miranda,

Donald Winston, Matteo Giantomassi, Michiel J. van Set-

ten, Xavier Gonze Kristin A. Persson, Geoffroy Hautier, and

Gian-Marco Rignanese. High-throughput density-functional

perturbation theory phonons for inorganic materials. Sci-

entific Data, 5:180065, 2018. doi: https://doi.org/10.1038/

sdata.2018.65.

[74] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,

S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder,

and K. A. Persson. The materials project: A materials

genome approach to accelerating materials innovation. APL

Mater., 1(1):011002, 2013. ISSN 2166532X. doi: 10.1063/1.

4812323. URL http://link.aip.org/link/AMPADS/v1/i1/

p011002/s1&Agg=doi.

[75] S. P. Ong, W. Lei, B. Kang, and G. Ceder. LiFePO2 phase

diagram from first principles calculations. Chem. Mater., 20

(5):1798–1807, 2008. doi: 10.1021/cm702327g. URL http:

//dx.doi.org/10.1021/cm702327g.

http://www.sciencedirect.com/science/article/pii/S0927025617307243
http://www.sciencedirect.com/science/article/pii/S0927025617307243
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi
http://dx.doi.org/10.1021/cm702327g
http://dx.doi.org/10.1021/cm702327g


Bibliography 184

[76] H. Chen, G. Hautier, A. Jain, C. Moore, K. Byoungwoo,

R. Doe, L. Wu, Y. Zhu, Y. Tang, and G. Ceder. Car-

bonophosphates: A new family of cathode materials for li-

ion batteries identified computationally. Chem. Mater., 24

(11):2009–2016, 2012. doi: 10.1021/cm203243x. URL http:

//dx.doi.org/10.1021/cm203243x.

[77] Geoffroy Hautier, Shyue Ping Ong, Anubhav Jain, Charles J.

Moore, and Gerbrand Ceder. Accuracy of density functional

theory in predicting formation energies of ternary oxides from

binary oxides and its implication on phase stability. Phys.

Rev. B, 85(15):155208, April 2012. ISSN 1098-0121, 1550-

235X. doi: 10.1103/physrevb.85.155208. URL http://dx.

doi.org/10.1103/physrevb.85.155208.

[78] P. A. Cox. Transition Metal Oxides: An Introduction to Their

Electronic Structure and Properties. Oxford, 2010.
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[116] J. M. Léger, J. Haines, C. Chateau, G. Bocquillon, M. W.

Schmidt, S. Hull, F. Gorelli, A. Lesauze, and R. Marchand.

Phosphorus oxynitride PON, a silica analogue: structure and

https://link.aps.org/doi/10.1103/PhysRevB.6.516
https://link.aps.org/doi/10.1103/PhysRevB.6.516
https://link.aps.org/doi/10.1103/PhysRev.168.905
https://link.aps.org/doi/10.1103/PhysRev.168.905
https://science.sciencemag.org/content/282/5391/1089
https://science.sciencemag.org/content/282/5391/1089
https://link.aps.org/doi/10.1103/PhysRevB.65.214302
https://link.aps.org/doi/10.1103/PhysRevB.65.214302


Bibliography 191

compression of the cristobalite-like phase; P–T phase dia-

gram. Physics and Chemistry of Minerals, 28(6):388–398, Jul

2001. ISSN 1432-2021. doi: 10.1007/s002690100161. URL

https://doi.org/10.1007/s002690100161.

[117] Dominik Baumann, Robin Niklaus, and Wolfgang Schnick.

A high-pressure polymorph of phosphorus oxonitride with

the coesite structure. Angewandte Chemie International

Edition, 54(14):4388–4391, 2015. doi: 10.1002/anie.

201410526. URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/anie.201410526.

[118] Dominik Baumann, Stefan J. Sedlmaier, and Wolfgang

Schnick. An unprecedented AB2 tetrahedra network

structure type in a high-pressure phase of phosphorus

oxonitride (PON). Angewandte Chemie International

Edition, 51(19):4707–4709, 2012. doi: 10.1002/anie.

201200811. URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/anie.201200811.

[119] Mariette Hellenbrandt. The Inorganic Crystal Struc-

ture Database (ICSD) – Present and future. Crys-

tallography Reviews, 10(1):17–22, 2004. doi: 10.1080/

08893110410001664882. URL https://doi.org/10.1080/

08893110410001664882.

[120] S. Sharma and C. Ambrosch-Draxl. Second-harmonic opti-

cal response from first principles. Physica Scripta, T109:128,

2004. doi: 10.1238/physica.topical.109a00128. URL https:

//doi.org/10.12382Fphysica.topical.109a00128.

https://doi.org/10.1007/s002690100161
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201410526
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201410526
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201200811
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201200811
https://doi.org/10.1080/08893110410001664882
https://doi.org/10.1080/08893110410001664882
https://doi.org/10.1238 2Fphysica.topical.109a00128
https://doi.org/10.1238 2Fphysica.topical.109a00128


Bibliography 192

[121] M. Rohlfing and S. G. Louie. Electron-hole excitations and

optical spectra from first principles. Phys. Rev. B, 62:4927–

4944, 2000. doi: 10.1103/PhysRevB.62.4927. URL http:

//link.aps.org/doi/10.1103/PhysRevB.62.4927.

http://link.aps.org/doi/10.1103/PhysRevB.62.4927
http://link.aps.org/doi/10.1103/PhysRevB.62.4927

