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DGM Introduction

The High-Order Method Modeling Environment (HOMME)

Horizontal Grid system (Cubed-Sphere)

Developed at NCAR and DOE labs.

HOMME hydrostatic framework is based on
cubed-sphere geometry (Sadourny, 1972).
Sepctral Element (SE) and discontinuous
Galerkin (DG) methods are used for spatial
discretization

Quasi-uniform rectangular mesh with local
refinement capability, well suited for SE, DG
or FV methods.

HOMME-SE variant is used in CAM
framework (CAM-SE) as a default dycore.
Explit time-stepping and proven petascale
capability (Dennis et al. 2012).

HOMME currently employs pressure-based
η-coordinates in the vertical with FD or VL
discretization .

Major Limitation: Hydrostatic model
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DGM Introduction

Non-Hydrostatic HOMME: Why do we need this?

Hydrostatic dynamics (d p/dz =−ρg) is not suitable or valid for horizontal resolution less
than 10 KM (1/8◦)

Simulate atmospheric dynamics at ultra high-resolution (global cloud-system resolving
model).

Resolve more processes, use less parameterizations.

Improved representation of climate
variability including extreme events

Toward exa-scale computing, more
accurate climate simulation

Major Challenges: Parallel efficient (local)
spatial discretization. Computationally
efficient time integration methods to
address the acoustic modes (sound
waves).
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DGM 3D Euler Equations

Toward a Non-Hydrostatic (NH) HOMME: Basic Design

The NH model development in HOMME
framework is named as the High-Order
Multiscale Atmopsheric Model
(“HOMAM”)

The dynamics is governed by 3D
compressible Euler/Navier-Stokes system
of equations, based on conservation of
mass, energy, momentum etc.

3D Compressible Euler system (flux-form) on a rotating sphere

∂ρ

∂ t
+∇ · (ρV) = 0

∂ρV
∂ t

+∇ · (ρV⊗V) = −∇p′− (ρ−ρ)gk

−2ρΩ×V+FM

∂ρθ

∂ t
+∇ · (ρθ V) = 0

∂ρqk

∂ t
+∇ · (ρ qkV) = 0

V = (u,v,w) 3D wind field, ρ air density, p
pressure, θ potential temperature, qk moisture
variables, Ω erath’s rotation rate, f Coriolis
term, FM diffusive fluxes and forcing etc.

Density ρ = ρ +ρ ′, and pressure p = p+ p′

such that the basic state follows hydrostatic
balance, ∂ p/∂ z =−ρg.
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DGM 3D Euler Equations

Compressible Euler System in Generalized Coordinates

The 3D compressible Euler system of equations on a rotating sphere in generalized
curvilinear coordinates (x1,x2,x3) can be written in tensor form (Warsi, 1992):

∂ρ

∂ t
+

1√
G

[
∂

∂x j (
√

Gρu j)

]
= 0 {Summation Implied}

∂ρui

∂ t
+

1√
G

[
∂

∂x j [
√

G(ρuiu j + pGi j)]

]
+Γ

i
jk(ρu juk + pG jk) = f

√
G(u1 G2i−u2 G1i)−ρgG3i

∂ρθ

∂ t
+

1√
G

[
∂

∂x j (
√

Gρθ u j)

]
= 0

∂ρq
∂ t

+
1√
G

[
∂

∂x j (
√

Gρqu j)

]
= 0

Where ui is contravariant wind field, Gi j metric tensor,
√

G = |Gi j|1/2 is the Jacobian of the
transform, Gi j = (Gi j)

−1, and i, j,k ∈ {1,2,3}. The associated Christoffel symbols (second
kind) are defined as

Γ
i
jk =

1
2

Gil
[

∂Gkl

∂x j +
∂G jl

∂xk −
∂Gk j

∂xl

]
ρ is the air density, q is the mixing ratio (passive tracer field).
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DGM 3D Euler Equations

Model Equations for the Cubed-Sphere Geometry

ΩΩS
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Equiangular central projection

Curvilinear horizontal coordinates (x1,x2)

6 patched domains, x1,x2 ∈ [−π/4,π/4]

“Cartesian-like” computational domains

Shallow (thin) atmosphere approximation makes the the spherical domain as a vertically
stacked cubed-sphere layers.

x3 = radius r+ height z, s.t z� r =⇒ (x1,x2,x3)→ (x1,x2,z)

The metric tensor associated with shallow atmosphere takes a simple form,

Gi j =

 Ĝ11 Ĝ12 0
Ĝ21 Ĝ22 0

0 0 1

 , Ĝi j =
r2

µ4 cos2 x1 cos2 x2

[
1+ tan2 x1 − tanx1 tanx2

− tanx1 tanx2 1+ tan2 x2

]
,

where i, j ∈ {1,2} and µ2 = 1+ tan2 x1 + tan2 x2. Jacobian
√

Gh ≡ |Gi j|1/2 = |Ĝi j|1/2
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DGM Vertical Grid

HOMAM: Vertical Grid System

Fig Courtesy: David Hall

Terrain-following height-based vertical z
coordinate.

Multiple options [e.g., Schär (2002),
Klemp (2011), SLEVE]

Vertical coordinate transformation
(Gal-Chen & Somerville, JCP 1975), is
currently adopted.

hs = hs(x1,x2) is the prescribed mountain profile and ztop is the top of the model domain

ζ = ztop
z−hs

ztop−hs
, z(ζ ) = hs(x1,x2)+ζ

ztop−hs

ztop
; hs ≤ z≤ ztop.

The Jacobian associated with the transform (x1,x2,z)→ (x1,x2,ζ ) is

√
Gv =

[
∂ z
∂ζ

]
(x1 ,x2)

= 1− hs(x1,x2)

ztop
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DGM Vertical Grid

HOMAM: Vertical Coordinate Transform, (x1,x2,z)→ (x1,x2,ζ )

The vertical ‘physical’ velocity w = dz/dt, in (x1,x2,z) system

Vertical velocity in the transformed (x1,x2,ζ ) system is u3 = w̃,

w̃ =
dζ

dt
,
√

Gvw̃ = w+
√

GvG13
v u1 +

√
GvG23

v u2,

where (u1,u2) contravariant wind vectors on the cubed-sphere surface.

Metric coefficients (Clark 1977, JCP)

√
Gv =

[
∂ z
∂ζ

]
(x1 ,x2)

,
√

GvG13
v ≡

[
∂hs

∂x1

]
(z)

(
ζ

ztop
−1
)
,
√

GvG23
v ≡

[
∂hs

∂x2

]
(z)

(
ζ

ztop
−1
)
.

The spacial derivates for an arbitrary scalar φ can be written in terms of the transformed
vertical ζ -coordinate as follows:

√
Gv

∂φ

∂ z
=

∂φ

∂ζ
,
√

Gv
∂φ

∂xi =
∂ (
√

Gvφ)

∂xi +
∂ (
√

GvGi3
v φ)

∂ζ
, i = 1,2.
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DGM 3D Transport

HOMAM: 3D Transport Equation

The transport equation in flux-from for a tracer variable q in 3D (x1,x2,z) coordinates can be
written as

∂ρq
∂ t

+
1√
Gh

[
∂

∂x1 (
√

Ghρqu1)+
∂

∂x2 (
√

Ghρqu2)+
∂

∂ z
(
√

Ghρqw)
]
= 0

Simplifications lead to logically “Cartesian-like” model equation. In computational
ζ -coordinate this reduces to (2D + 1D approach)

∂ψ

∂ t
+

∂ (ψu1)

∂x1 +
∂ (ψu2)

∂x2 =− ∂ (ψw̃)
∂ζ

,

where the pseudo density ψ =
√

Gρq, and
√

G =
√

Gh
√

Gv, is the “composite” Jacobian
which combines the time-independent horizontal (

√
Gh) and the vertical (

√
Gv) metric terms.

ρq is the conservative variable and w̃ = dζ/dt is the vertical velocity due to the coordinate
transformation.
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DGM 3D Euler

HOMAM: Governing Equations in (x1,x2,ζ ) system

Final form of the ‘perturbed’ Euler system in (x1,x2,ζ ) 3D Cubed-sphere

∂U
∂ t

+
∂F1

∂x1 +
∂F2

∂x2 +
∂F3

∂ζ
= S(U)⇒ ∂U

∂ t
+∇ ·F(U) = S(U)

U =
√

G


ρ ′

ρu1

ρu2

ρw
(ρθ)′

 , F1 =
√

G


ρu1

ρu1u1 + p′G11
h

ρu2u1 + p′G21
h

ρwu1

ρθu1

 F2 =
√

G


ρu2

ρu1u2 + p′G12
h

ρu2u2 + p′G22
h

ρwu2

ρθu2



F3 =
√

G


ρw̃

ρu1w̃+G13
v p′

ρu2w̃+G23
v p′

ρww̃+ p′/
√

Gv
ρθ w̃

 , S(U) =
√

G


0√

Gh ρ f (u1G21−u2G11)−M1
Γ√

Gh ρ f (u1G22−u2G12)−M2
Γ

−ρ ′g
0


Note: M1

Γ
,M2

Γ
are geometric terms associated with cubed-sphere topology, they have no

vertical dependence for shallow atmosphere approximation.
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DGM 2D+1D Grid

Computational Domain (Horizontal)

k+1

kx
y

z

Ωi,j,k

Dimensional split approach: The computational domain D is decomposed into 2D + 1D.
Independent DG discretization for horizontal (x1,x2) cubed-sphere surfaces, and vertical (ζ )
direction.

Cubed-sphere panel is tiled with non-overlapping Ne×Ne elements, each with Np×Np Gauss
quadrature points. This is a standard setup in HOMME framework.

Horizontal elements are stacked in the vertical direction, which forms the 3D grid system.
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DGM 2D+1D Grid

Computational Domain (Vertical)

HOMAM Grid Structure

hs

Z

x

ζ

x

u,v, ρ !

!

!

u,v,

u,v,

ρ

ρ

w

w

w

w
Horizontal GLL Vertical GL Vertical FV

The vertical grid line z or ζ is partitioned into Vnel 1D elements, each with Ng Gauss points.
This is a major design change in HOMME/CAM framework.

Currently Gauss-Legendre (GL) quadrature elements are used in the vertical, which define
independent vertical levels with optimal accuracy.

Total degrees-of-freedom (dof) is 6N2
e N2

p×VnelNg.

Other possibilities: High-order FV discretization (WENO, Multi-Moment etc.)
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DGM DG 2D

DG Methods in 2D Cartesian Geometry

2D Scalar conservation law:

∂U
∂ t

+∇ ·F(U) = S(U), in (0,T )×D ; ∀(x1,x2) ∈D ,

where U =U(x1,x2, t), ∇≡ (∂/∂x1,∂/∂x2), F = (F,G) is the flux function, and S is the source term.

Ω

Ω

Ω Ω

Ω

i,j i+1,ji-1,j

i,j+1

i,j-1

∪Domain D = Ω i,j

Element

The domain D is partitioned into
non-overlapping elements Ωi j

Element edges are discontinuous

Problem is locally solved on each element Ωi j
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DGM DG 2D

DG-2D Spatial Discretization for an Element Ωe in D

Approximate solution Uh belongs to a vector space Vh of polynomials PN(Ωe).

The Galerkin formulation: Multiplication of the basic equation by a test function ϕh ∈ Vh and
integration over an element Ωe with boundary Γe,∫

Ωe

[
∂Uh

∂ t
+∇ ·F(Uh)−S(Uh)

]
ϕhdΩ

Weak Galerkin formulation : Integration by parts (Green’s theorem) yields:

∂

∂ t

∫
Ωe

Uh ϕh dΩ−
∫

Ωe
F(Uh) · ∇ϕh dΩ +

∫
Γe

F(Uh) ·~nϕh dΓ =
∫

Ωe
S(Uh)ϕhdΩ

Γ

Ω
n
→

e

e

Element

The analytic flux F(Uh) ·~n must be replaced by a
numerical flux such as the local Lax-Friedrichs
(Rusanov) Flux:

F(Uh)·~n=
1
2
[
(F(U−h )+F(U+

h )) ·~n−α(U+
h −U−h )

]
.

α is the upper bound on the absolute value of
eigenvalues of the flux Jacobian F′(U); usually
α is the local max speed of the system.
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DGM DG 2D

DG Method: Nodal Spatial Discretization

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

4th Degree Lagrange Basis Functions

x

h
(x

)

GLGLL
(-1,-1)

(1,1)

(-1,-1)

(1,1)

Every element Ωe is mapped onto a unique reference element [−1,1]2, with local coordinates
(ξ ,η) ∈ [−1,1].
Gauss-Lobatto-Legendre (GLL) or Gauss-Legendre (GL) type 2D quadrature grid.
The nodal basis set {hi(ξ )∗h j(η)} contains tensor-product of Lagrange polynomials hi(ξ ),

hi(ξ )|GLL =
(ξ 2−1)P′N(ξ )

N(N +1)PN(ξi)(ξ −ξi)
OR hi(ξ )|GL =

PN+1(ξ )

P′N+1(ξi)(ξ −ξi)
,

where PN(ξ ) is the Nth degree Legendre polynomial.
Integrations are simplified by the quadrature rule and discrete orthogonality:∫ 1

−1
f (ξ )dξ ≈

N

∑
n=0

wn f (ξn);
∫ 1

−1
hi(ξ )h j(ξ ) = wiδi j,

where wn are the weights associated with GLL or GL quadrature.
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DGM DG 2D

DG Method: Explicit Time Stepping

The approximate solution and test functions are expressed in terms of basis function:

Uh(ξ ,η) =
N

∑
i=0

N

∑
j=0

Ui j hi(ξ )h j(η) for −1≤ ξ ,η ≤ 1

Final form for the discretization leads to ODEs:

∂U
∂ t

+∇ ·F(U) = S(U) ⇒ d
dt

Uh(t) = L (Uh)

Strong Stability Preserving third-order Runge-Kutta (SSP-RK) scheme (Gottlieb et al.,
SIAM Review, 2001)

U (1) = Un +∆tL (Un)

U (2) =
3
4

Un +
1
4

U (1)+
1
4

∆tL (U (1))

Un+1 =
1
3

Un +
2
3

U (2)+
2
3

∆tL (U (2)).

where the superscripts n and n+1 denote time levels t and t +∆t, respectively

CFL for the DG scheme is estimated to be 1/(2N +1), where N is the degree of the
polynomial (Cockburn and Shu, 1989).
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DGM DG 2D

2D NH Model: [Computational examples]

In the transformed (x,ζ ) coordinates, the Euler 2D system becomes:

∂

∂ t


√

Gρ ′√
Gρu√
Gρw√

G(ρθ)′

+ ∂

∂x


√

Gρu√
G(ρu2 + p′)√

Gρuw√
Gρuθ

+ ∂

∂ζ


√

Gρw̃√
G(ρuw̃+G13 p′)√

Gρww̃+ p′√
Gρw̃θ

=


0
0

−
√

Gρ ′g
0

 .
Where the metric terms (Jacobians) and new vertical velocity w̃ are

√
G =

dz
dζ

,G13 =
dζ

dx
; w̃ =

dζ

dt
=

1√
G
(w+

√
GG13 u)

The metric terms are time-independent. [Bao, Kloefkorn & Nair (MWR, 2015)]

Decompose ρ, θ and p as the sum of a mean-state (.) and perturbation (.)′ such that
ρ = ρ +ρ ′, θ = θ +θ ′, p = p+ p′, (ρθ) = ρθ +(ρθ)′. The mean-state maintains hydrostatic

balance d p
dz =−ρg.

Alternative formulations are also possible [e.g., Schär (2002), Klemp (2011)] for ζ , but the
system of equations remains in flux-from.

∂U
∂ t

+∇ ·F(U) = S(U), U = [
√

Gρ
′,
√

Gρu,
√

Gρw,
√

G(ρθ)′]T
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DGM HEVI

Time Stepping Challenges for the ODE system

For the resulting ODE systems:
dUh

dt
= L(Uh), t ∈ (0, tT )

where L is the DG spatial discretization operator.

Options & Challenges

Large aspect ratio between horizontal and vertical grid spacing imposes stringent CFL
restriction (∆x : ∆z = 1 : 100)

Explicit time integration efficient and easy to implement.
Stringent CFL constraint ⇒ tiny ∆t, limited practical value.

C∆t
h̄

<
1

2N +1
, h̄ = min{∆x,∆z}

Implicit time integration: Unconditionally stable but generally expensive to solve for a 3D
model.

Horizontally Explicit and Vertically Implicit (HEVI). Particularly useful for 3D NH modeling

Practical approach: Split Explicit (e.g. WRF, MPAS, NICAM)
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DGM HEVI

DG-NH Time Stepping with HEVI (Strang-type Split)

Solve the ODE dU/dt = L(U) system, where U = (
√

Gρ ′,
√

Gρu1,ρu2,
√

Gρw,
√

G(ρθ)′)T .

The spatial DG discretization corresponding to L(U) is split into horizontal (H) and vertical
(V ) components, s.t. L(U) = LH(U)+LV (U)

U1 := Uh(t),
d
dt

U1 = LH(U1) in (t, t +∆t/2]

U2 := U1(t +∆t/2),
d
dt

U2 = LV (U2) in (t, t +∆t],

U3 := U2(t +∆t),
d
dt

U3 = LH(U3) in (t +∆t/2, t +∆t],

and Uh(t +∆t) = U3(t +∆t).

Possible options are is to perform “H−V −H” sequence of operations and “V −H−V ”
sequence.

The vertical part may be solved implicitly with DIRK (Diagonally Implicit Runge-Kutta;
Durran, 2010).

HEVI may be viewed as an IMEX Runge-Kutta (RK) method (Giraldo et al. 2009)

For the implicit solver:
inner linear solver uses Jacobian-Free GMRES.
It usually takes 1 or 2 iterations for the outer Newton solver.
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DG-2DNH IGW Results

2D Inertia Gravity Wave: Convergence Study

HEVI-DG: Convergence with large aspect ratio (1 : 100)

The evolution of a potential
temperature perturbation θ ′ (K) in
a channel having periodic lateral
and no-flux top/bottom boundary
conditions. [Skamarock & Klemp
(1994) ]

∆x = 100∆z, i.e., 100 times larger ∆t
for HEVI-DG

Difference field θ ′ is O(10−5).

2nd-order temporal convergence.
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DG-2DNH Mountain Wave Tests

Schär High Mountain: HEVI vs Explicit

Mountain with extreme elevation h0 = 750 m (slope 55%)
To test the robustness of HEVI as opposed to explicit RK [Bao, Kloefkorn & Nair, 2015]

−10 −5 0 5 10
0

0.5

1

1.5

2

x(km)

z(
km

)

(d) Schär High Mountain Grid

x (km)

z
 (

k
m

)

(e) HEVI: Vertical Wind w (m/s) at 1800s

 

 

−10 0 10
0

1

2

3

4

5

6

7

8

−6

−5

−4

−3

−2

−1

0

1

2

3

4

x (km)

z
 (

k
m

)

(f) SSP−RK3: Vertical Wind w (m/s) at 1800s

 

 

−10 0 10
0

1

2

3

4

5

6

7

8

−6

−5

−4

−3

−2

−1

0

1

2

3

4

Ram Nair (rnair@ucar.edu) High-Order Multiscale Atmospheric Model AIAA-2016, 06/15/2016 21 / 30



The 3D Model HOMAM

3D Advection Test: “Hadley-like” Meridional Circulation

DCMIP: Dynamical Core Model
Intercomparison Project (Kent et
al. (2014, QJRMS))

DCMIP-12: the flow reverses itself
halfway through the simulation and
returns the tracers to their initial
position.

The exact solution is known at the
end of the run (1 day).

HOMAM setup for 1◦ L60:
Ne = 30, Np = 4 (GLL);
Vnel = 15; Ng = 4 (GL),
∆t = 60 s, 1 day simulation.

HEVI, HEVE and Full (un-split) produce visually identical results.
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The 3D Model HOMAM

3D Advection Test (DCMIP-12): Convergence Study

Vertical Levels (# of grid points)
36 60 120

L 2 e
rro

r n
or

m

10-3

10-2

10-1

100 Hadley test-case: Normalized errors
HEVI
HEVE
FULL
O(2)
O(3)

Horiz. resolution (degree)
0.512

L 2 e
rro

r n
or

m

10-3

10-2

10-1

100 Hadley test-case: Normalized errors
HEVI
HEVE
FULL
O(1)
O(2)

Table: Convergence Rate: DCMIP, Kent et al. (2014), Hall et al (2015) Average convergence rate for the
normalized error norms for the Hadley test (DCMIP test 1-2) computed using resolutions 2◦,1◦,0.5◦ horizontal,
and respectively with 30,60,120 vertical levels.

Errors/Models: Mcore CAM-FV ENDGame CAM-SE HOMAM
`1 2.22 1.93 2.18 2.27 2.62
`2 1.94 1.84 1.83 2.12 2.43
`∞ 1.64 1.66 1.14 1.68 2.16
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The 3D Model HOMAM

3D Advection: Flow Over Rough Orography (DCMIP-13)

Figure: Schematic for DCMIP-13 test initial condition (Figure courtesy: David Hall)

A series of steep concentric ring-shaped mountain ranges forms the terrain. The prescribed
flow field is a constant solid-body rotation (Kent et al., 2014).

The tracer field q is given by three thin vertically stacked cloud-like patches (non-smooth)
which circumnavigate the globe and return to their initial positions after 12 days.
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The 3D Model HOMAM

HOMAM: 3D Advection, Flow Over Rough Orography
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HOMAM setup for 1◦ L120:
Ne = 30, Np = 4 (GLL);
Vnel = 30; Ng = 4 (GL),
∆t = 6s, 12 day simulation.

Error MCore CAM-SE HOMAM
Norm 1◦L120 1◦L120 1◦L120
`1 0.83 0.65 0.78
`2 0.55 0.27 0.50
`∞ 0.73 0.75 0.76

[Kent et. al. (2014); Hall et al. (2016)]

Vertical cross-sections along the equator for the tracer field q = q4 for the DCMIP test

The results are simulated with HOMAM using the HEVE/HEVI scheme at a horizontal
resolution of 1◦, 60 vertical levels, and ∆t = 12s.
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The 3D Model HOMAM

HOMAM: Nonhydrostatic Mountain Waves Over Rough Orography

To study the impact of orography on an atmosphere at rest.

DCMIP Test 2-1: NH mountain waves over a 3D Schär-type Mountain on a reduced planet,
u′ after 3600s

The radius of the Earth is reduced by a factor of 500 and Coriolis effect is neglected.

Horizontal Resolution 2◦, 60 vertical levels (Ne = 20,Np = 4,Ng = 4), ∆t = 0.20s.

HOMAM correctly simulates the NH mountain wave propagation.
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The 3D Model HOMAM

3D Nonhydrstatic Gravity Waves: DCMIP 3-1 Test

NH Gravity Wave test (DCMIP-31) on a reduced planet (X = 125), θ ′ after 3600s
Ne = 25,Np = 4,Ng = 4 (∆x≈ ∆z≈ 1 km), ∆t = 0.25s
The initial state is hydrostatically balanced and in gradient-wind balance.
An overlaid potential temperature perturbation triggers the evolution of gravity waves.

Figure: Screenshot of 3D IGW wave (Blaise et al.,
2015)
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The 3D Model HOMAM

DCMIP 3-1 Test: Varying the number of vertical levels

Fix the horizontal resolution to 1 km. Vary the number of vertical levels such that
∆x/∆z = 1,2,5.
For HEVI-Strang, we use the same ∆t = 0.25 s, not affected by the vertical resolution.
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The 3D Model Scalabilty

3D Nonhydrstatic Gravity Waves: HEVI vs Explicit

Table: Timing results of HEVI-Strang and SSP-RK3

RK scheme ∆x/∆z Vertical Levels ∆t Computing Time
SSP-RK3 1 12 0.25 s 91.0 s

HEVI-Strang 12 0.25 s 167.0 s (1.85)
SSP-RK3 2 24 0.125 s 356.0 s

HEVI-Strang 24 0.25 s 349.0 s (0.98)
SSP-RK3 5 60 0.05 s 2297.0 s

HEVI-Strang 60 0.25 s 1234.0 s (0.53)

HEVI maintains the parallel scalability of HOMAM
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Figure: Strong Scaling
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The 3D Model Summary

Summary

Discontinuous Galerkin Method (DGM)

DGM with moderate order (third or fourth) is an excellent choice for atmospheric modeling,
which addresses:

1 Local and global conservation with geometric flexibility on spherical grids. High-order accuracy and
computational efficiency

2 Maintains the high parallel efficiency of HOMME framework

The operator-split HEVI approach avoids stringent CFL restriction associated with vertical
discretization, for NH model based on DG methods.

The HEVI convergence shows a second-order accuracy with smooth scalar field.

Early results with the 3D global NH model (HOMAM, split and un-split) are promising, and
it performs well under benchmark test cases.

Current & Future Research:

Extending HOMAM in CAM-SE framework and validating with DCMIP-2016 benchmark
tests

More efficient time integration schemes are desirable for practical climate simulations.
Possible approaches: Multi-rate time integration in HEVI framework

Thank You!
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