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POPULAR SCIENCE SUMMARY OF THE THESIS 
The diversity of life on Earth is staggering with thousands of species existing. Whether they 

are single-celled organisms or complex multicellular ones like us, humans, all species share 

a common structural and functional unit, the cell. Each cell has its hereditary information 

stored in DNA. Being a polymer, DNA is made of monomeric nucleotides. A nucleotide 

consists of a nitrogen-containing base attached to a sugar molecule and a phosphate group. 

Four bases build up the DNA: adenine, thymine, cytosine and guanine or in short A, T, C and 

G. The sequence of these monomers forms a unique code which stores the information 

needed to compose different specialized proteins, similar to how a string of letters drawn 

from the alphabet composes different words in this thesis. The encoded composition of one 

protein together with the regulation of its expression level give rise to different cellular 

populations and distinct organisms.  

Previous studies have demonstrated that normal cellular processes produce reactive oxygen 

species (ROS) as a by-product. As their name implies, ROS are very reactive and can interact 

with DNA resulting in guanine (G) modification. Since modified guanines mess up with the 

correct sequence of the DNA code, they have to be efficiently eliminated to avoid genetic 

mutations. This is the role of a key DNA repair protein called OGG1. ROS and OGG1 have 

been found to be involved in inflammatory responses. In addition, the level of ROS has been 

reported to rise in cancer. This made us curious whether shutting down the activity of OGG1 

can cause cancer cell death or protect against inflammation. 

To address this question, we started by designing a compound that can bind to OGG1 and 

impairs its activity. Our efforts led to the development of TH5487 which we used to shut 

down the activity of OGG1 or in other words inhibit it. We studied the effect of TH5487 in 

cellular and mouse models of inflammation. Interestingly, we found that TH5487 had a 

notable anti-inflammatory effect by interfering with the role of OGG1 in inflammation. 

TH5487 dampened the inflammatory response by reducing the level of several proteins that 

typically exacerbate inflammation. Importantly, TH5487 was well-tolerated in mice and 

showed a protective effect against lung inflammation. This is a novel approach to treat 

inflammation by targeting a DNA repair enzyme. Thus, targeting OGG1 has the potential to 

be used as a new treatment strategy for different inflammatory conditions.  

We next examined the role of OGG1 in cancer and whether its inhibition can have anti-cancer 

effects. Our findings suggest that OGG1 makes an attractive target for treating cancer. We 



found that cells divide much slower when OGG1 is inhibited. More DNA damage is observed 

in those cells after TH5487 treatment. Notably, the division of normal cells was largely 

unaffected by TH5487. This selective action on cancer cells is desirable as it may lead to 

fewer side effects in normal healthy cells.  

One potential application for TH5487 is using it in combination with other anti-cancer 

treatments. Current chemotherapies and radiotherapies exert their anti-cancer effects by 

causing DNA damage, part of which is reparable by OGG1. One may envision that inhibiting 

OGG1 with TH5487 can be used as a combination therapy with other chemotherapies or 

radiotherapies to potentiate their anti-cancer effect. This remains to be tested in future 

research. 

Finally, we investigated the mode of action of another OGG1 binding compound, TH10785. 

We observed that TH10785 enhances the capacity of OGG1 to repair modified guanines 

acting as an activator. TH10785 introduces a novel activity not displayed by native OGG1. 

Since accumulation of modified guanines has been associated with aging, future research is 

recommended to examine if OGG1 activation can be beneficial in such scenario. Using 

compounds to introduce new enzymatic functions is a novel concept that can pave the way 

for many exciting therapeutic applications. 



 

 

ABSTRACT 
The production of reactive oxygen species (ROS) is increased in several pathological 

conditions including cancer and inflammation. Multiple lines of evidence suggest that ROS 

are involved in signaling events that promote tumorigenesis and inflammatory responses. If 

redox homeostasis is not maintained, high levels of ROS can induce oxidative DNA damage 

which is primarily repaired by base excision repair (BER). 8-oxoguanine DNA glycosylase 

1 (OGG1) is a key DNA glycosylase that eliminates 8-oxo-7,8-dihydroxyguanine (8-oxoG) 

when present opposite to cytosine in duplex DNA to initiate BER. Recently, there has been 

a great interest in targeting the DNA damage response as an anti-cancer approach. In this 

respect, OGG1 has gathered particular attention for its established role in BER in addition to 

its newly identified functions in modulating gene transcription. This has motivated this thesis 

work aiming at studying the validity of OGG1 as a drug target in clinically relevant treatment 

strategies for cancer and inflammation. 

In Paper I, we reported the development of TH5487, a potent pharmacologically active 

OGG1 inhibitor. In addition, we provided proof of concept that inhibiting OGG1 represents 

a novel anti-inflammatory strategy. We show that TH5487 engages with OGG1 reducing its 

activity and DNA binding capacity in in vitro assays. Notably, TH5487 impairs NF-κB 

binding to the promoter regions of proinflammatory cytokines. This results in suppression of 

proinflammatory gene expression in cells stimulated with tumor necrosis factor-alpha 

(TNF-α) or lipopolysaccharide (LPS). Importantly, we found that TH5487 is well-tolerated 

in vivo, where it reduces the expression of inflammatory mediators and perturbs neutrophil 

infiltration in mice lungs. Thus, targeting OGG1 can be a potential beneficial strategy to treat 

inflammatory conditions. 

In Paper II, we sought to characterize TH5487 regarding its effect on genomic 8-oxoG 

accumulation. Moreover, we studied OGG1 recruitment kinetics to regions of DNA damage 

as well as OGG1-chromatin dynamics after TH5487 treatment. We show that TH5487 

impairs the repair of potassium bromate induced 8-oxoG lesions and results in fewer 

incisions. The inhibitor treatment alters both OGG1 recruitment kinetics and OGG1-

chromatin binding as evident by the results of laser microirradiation experiments and 

fluorescence recovery after photobleaching (FRAP) assays respectively indicating that 

TH5487 interferes with OGG1 recruitment and activity in cells.  

Paper III validates OGG1 as a potential target for cancer therapy. We reported the crystal 

structure of human OGG1 in complex with TH5487 showing that the inhibitor targets the 



active site of OGG1. We found that TH5487 treatment is selectively toxic to a large panel of 

cancers cells but not to normal immortalized cells. We show that TH5487 treatment induces 

replication stress as demonstrated by accumulation of phosphorylated gH2AX in S-phase 

cells. Furthermore, it significantly reduces the replication fork speed. Importantly, TH5487 

treatment downregulates a set of DNA replication genes altering the cellular transcriptional 

profile which contributes to replication stress. TH5487 was not found to reduce tumor growth 

in xenograft mouse models, probably due to binding to serum albumin proteins. This warrants 

the development of new formulations with an improved pharmacokinetic profile. 

In Paper IV, we show that NEIL1 and NEIL2 can potentially compensate for OGG1 

inhibition. The recruitment of NEIL1—and to a lesser extent NEIL2—to sites of DNA 

damage is altered in TH5487-treated cells. In addition, NEIL1 and NEIL2 are more tightly 

bound to chromatin in oxidatively stressed cells after OGG1 depletion and inhibition. 

Importantly, we observe a higher level of genomic 8-oxoG lesions in NEIL1- and NEIL2- 

siRNA depleted cells treated with TH5478 suggesting a potential backup function for NEIL1 

and NEIL2 after OGG1 inhibition. 

In Paper V, we elucidated the mechanism of action of a small-molecule OGG1 activator in 

vitro and in cellulo. We demonstrated that in the presence of TH10785, OGG1 efficiently 

processes abasic sites by a new activity not found in native OGG1. Cells treated with 

TH10785 become more dependent on PNKP to complete the repair process. This novel 

concept of small-molecule activation paves the way to potentially establish new enzymatic 

functions in DNA repair enzymes, potentiate weak functions or recover lost ones through 

chemical intervention. 
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1 INTRODUCTION 

1.1 THREATS TO GENOMIC INTEGRITY 

Despite being the carrier of genetic information, DNA is far from being chemically stable. 

Several exogenous and endogenous factors constitute a threat to genomic integrity. Exposure 

to these factors gives rise to several DNA lesions which can impact cellular phenotype and 

cause dysfunction or disease if left unrepaired1 (Figure 1). 

 

Figure 1: Types of DNA lesions resulting from exposure to endogenous and exogenous sources of 
damage. Spontaneous hydrolysis of the N-glycosidic bond in DNA creates abasic sites. Deamination, 
mismatches due to replication errors and reaction with reactive species are also among sources of 
endogenous DNA damage. Exposure to ionizing radiation generates single- and double-strand breaks, 
whereas non-ionizing ultraviolet radiation can lead to the formation of pyrimidine dimers. Exposure to 
platinum compounds results in the formation of interstrand, intrastrand crosslinks and bulky adducts. 
Genotoxic agents such as benzo[a]pyrene, daunorubicin and actinomycin‑D act as DNA intercalating 
agents interfering with DNA replication and transcription. Reprinted with permission from Springer 
Nature, Helleday at al., 20141. 

1.1.1 Exogenous sources of DNA damage 

DNA is vulnerable to attack by several exogenous DNA damaging agents such as ultraviolet 

(UV) or ionizing radiation (IR), environmental chemicals and chemotherapeutic drugs. While 

exposure to non-ionizing ultraviolet radiation can lead to the formation of pyrimidine dimers, 

IR generates both DNA single-strand breaks (SSBs) and double-strand breaks (DSBs)2–5. 

Moreover, IR can indirectly induce DNA damage by generating reactive oxygen species 

(ROS) and reactive nitrogen species (RNS)6. Besides, several environmental mutagens 

contribute to DNA damage. For instance, Benzo[a]pyrene present in tobacco smoke and coal 

tar, is reported to induce DNA mutations. Its electrophilic diol epoxide metabolite intercalates 

in DNA and interacts with guanines eventually leading to G:C → T:A transversions7,8. Thus 

smoking can induce somatic mutations increasing the risk of lung cancer9. In addition, 

chemotherapeutics induce DNA damage via various modes of action. For example, exposure 
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to platinum compounds generates both interstrand and intrastrand crosslinks as well as bulky 

DNA-protein adducts10,11. Daunorubicin and actinomycin‑D act as DNA intercalating agents 

interfering with both DNA replication and transcription12. On the other hand, temozolomide, 

a chemotherapeutic agent used to treat glioblastoma multiforme, methylates guanines and 

adenines generating O6-methylguanine as a primary lesion in addition to N7-methylguanine 

and N3-methyladenine13. 

1.1.2 Endogenous sources of DNA damage 

Intriguingly, DNA is susceptible to damage caused by numerous endogenous events. DNA 

can undergo spontaneous decay. Spontaneous hydrolysis of the N-glycosidic bond in DNA 

gives rise to apurinic or apyrimidinic sites with depurination being more common than 

depyrimidation. It is estimated that this results in 10,000 abasic sites per human cell each 

day14,15. Such abasic sites can block DNA replication and transcription and generate single-

strand breaks (SSBs)16. Moreover, DNA is prone to spontaneous hydrolytic deamination. For 

example, deamination of cytosine in DNA generates uracil (U) which can result in mutagenic 

U:G mispairs15,17. Cytosine is also prone to enzymatic deamination by members of the 

apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family and activation-

induced deaminase (AID)18–20. Replicative DNA polymerases exhibit remarkable fidelity 

during DNA synthesis, nevertheless replication errors can occur resulting in mismatches21,22 

or misincorporation of uracil or ribonucleotides in DNA17,23,24. Furthermore, formaldehyde 

produced during metabolic processes such as amino acid metabolism and lipid peroxidation 

has been reported to react with adenine, guanine and cytosine generating N-hydroxymethyl 

DNA monoadducts in addition to inducing N-methylene crosslinks between adjacent 

purines25–27. DNA alkylation can occur endogenously due to the reaction of DNA with 

intracellular alkylating agents such as methyl donor S-adenosylmethionine28,29. Another 

notable cause of intrinsic DNA damage arises from interaction of DNA with reactive oxygen 

species (ROS) which will be further discussed in the next section.  

1.2 OXIDATIVE STRESS 

1.2.1 Reactive oxygen species 

Reactive oxygen species (ROS) represent a family of highly reactive species derived from 

oxygen. Various endogenous sources account for ROS production in cells such as 

mitochondria30, endoplasmic reticulum31, peroxisomes32, NADPH oxidase complexes of 

activated phagocytic cells33 (Figure 2). Exposure to a number of exogenous agents can also 

contribute to ROS production such as ultraviolet light, ionizing radiation, alcohol, smoking, 
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environmental pollutants and some drugs34. Generally, ROS can be classified into radical 

species and non-radical ones. Radicals include superoxide anion (O2∙–), hydroxyl radical 

(OH∙) and nitric oxide (NO∙), whereas non-radicals include hydrogen peroxide (H2O2), singlet 

oxygen (1O2), hypochlorus acid (HOCl), hypobromous acid (HOBr) and peroxynitrite 

(ONOO–) among others. Non-radicals can be involved in chemical reactions leading to the 

production of free radicals. Having an unpaired valence shell electron, free radicals tend to 

be highly reactive where they readily react with lipids, proteins and DNA35,36. ROS-mediated 

oxidation of DNA results in several oxidized DNA lesions, Apurinic/apyrimidinic sites (AP) 

in addition to strand breaks. This can block replication or result in miscoding events37,38. 

 
Figure 2: Schematic illustration of cellular ROS producers and scavengers. Reactive oxygen species 
(ROS) are produced from the mitochondrial electron transport chain (Mito-ETC), membrane-bound 
NAPDH oxidase enzymatic complexes (NOX) and endoplasmic reticulum (ER), shown in red. Superoxide 
(O2

–) is the primary ROS produced by the mitochondria due to one-electron reduction of molecular oxygen 
by electrons escaping the mitochondrial respiratory chain. Superoxide dismutases (SOD, shown in yellow) 
can quickly convert superoxide into hydrogen peroxide (H2O2). Catalase enzyme catalyzes the breakdown 
of hydrogen peroxide into oxygen and water. H2O2 can also be converted into hydroxyl radical (OH∙) in 
the presence of transition metals in what is referred to as Fenton reactions. Nitric oxide (NO∙) is another 
radical species produced by nitric oxide synthase (NOS). NO∙ can react with superoxide anion generating 
a reactive non-radical species, peroxynitrite (ONOO–). To overcome the deleterious effects of ROS, cells 
maintain redox homeostasis by regulating the process of ROS production and elimination. Several ROS 
scavengers (shown in green) are responsible for ROS elimination. GPX, glutathione peroxidase; GR, 
glutathione reductase; GRXo, oxidized glutaredoxin; GRXr, reduced glutaredoxin; GSHr, reduced 
glutathione; GSSG, oxidized glutathione; TRXo, oxidized thioredoxin; TRXr, reduced thioredoxin; XO, 
xanthine oxidase. Reprinted with permission from Springer Nature, Trachootham et al., 200939. 
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1.2.2 Oxidative stress and redox balance in cancer 

Under normal physiological conditions, ROS levels are maintained in homeostasis by 

keeping a balance between ROS producers and ROS scavengers39 (Figure 3). Multiple lines 

of evidence show that ROS are involved in several signaling pathways40. Loss of redox 

homeostasis has been implicated in several pathologies. Inflammation for instance is 

accompanied with high levels of ROS and has been associated with cancer progression41. 

Furthermore, oncogene activation, metabolism alteration and mitochondrial dysfunction 

generate high levels of ROS in cancer cells42. ROS elevation has been reported to promote 

proliferation and metastasis of tumor cells43. However, this is thought to come at the cost of 

creating oxidative stress and causing oxidative damage to cellular macromolecules including 

DNA, lipids and proteins44.  

 

Figure 3: Redox balance in cancerous versus normal cells. Cells under normal physiological conditions 
maintain redox homeostasis by keeping a balance between generating and eliminating ROS. Normal cells 
can withstand some degree of exogenous ROS stress by using their antioxidant defence systems in order 
to keep the level of ROS below a certain toxic threshold (dotted line). Cancer cells adapt to their intrinsic 
high ROS levels by upregulating their antioxidant capacity to maintain the levels of ROS below the toxic 
threshold. Reprinted with permission from Springer Nature, Trachootham et al., 200939. 

In cancer, a vicious self-amplifying cycle of oxidative stress seems to exist. ROS generated 

from endogenous or exogenous sources can lead to oxidative DNA damage and genetic 

mutations. This in turn can drive genomic instability promoting tumorigenesis and resulting 

in oncogene activation, disruption of normal mitochondrial function and aberrant 

metabolism. Such events are known to further contribute to ROS production and 

subsequently induce more DNA damage (Figure 4).  
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Figure 4: Oxidative stress in cancer. Numerous factors contribute to ROS generation in cancer such as 
inflammation and hypoxia. ROS react with DNA resulting in oxidative DNA damage. Accumulation of 
oxidative lesions in cancer cells with compromised DNA repair capacity can result in genomic instability 
leading to oncogene activation, disruption of normal mitochondrial function and aberrant metabolism. 
Such events contribute to more ROS generation amplifying the oxidative stress in cancer. Reprinted with 
permission from Springer Nature, Trachootham et al., 200939. 

In order to survive this intrinsically high level of oxidative stress, cancer cells adapt and 

upregulate their antioxidant capacity39,43,45. Consequently, the overall redox balancing point 

is shifted upwards in cancer cells compared to normal ones (Figure 3). This implies that 

cancer cells may be selectively vulnerable to killing via inducing redox imbalance. This can 

be achieved either by inducing ROS production or by interfering with ROS elimination 

mechanisms39 (Figure 5).  Indeed, targeting antioxidants or other non-oncogene addiction 

enzymes has yielded promising preclinical results suggesting that this strategy may offer 

therapeutic selectivity in fighting cancer46–50.  

Although the notion that a diet rich in antioxidants fights cancer has deep roots in the public, 

numerous studies have indicated that antioxidants accelerate the tumor progression rather 

than inhibit it.51–54 This suggests that excessive accumulation of ROS in cancer cells can 

induce damage beyond repair to DNA and other cellular macromolecules and constitute a 

barrier to metastasis. As such, it is proposed that cancer cells might be dependent on pathways 

that repair oxidative DNA lesions or prevent their accumulation. This makes such pathways 

promising anti-cancer targets.  
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Figure 5: Strategies to therapeutically exploit oxidative stress in cancer. Since the redox dynamics are 
shifted in cancer cells towards more ROS generation and elimination, cancer cells are more dependent on 
their antioxidant buffering system. Accordingly, cancer cells are more vulnerable to oxidative stress-
inducing agents which can either act by generating more ROS or by interfering with the cellular ROS 
elimination systems. This may provide a strategy to selectively target cancer cells. 2-ME, 2-
methoxyestradiol; As2O3, arsenic trioxide; BSO, buthionine sulphoximine; GSH, glutathione; HMOX1, 
haem-oxygenase 1; MGd, motexafin gadolinium; Mito-ETC, mitochondrial electron transport chain; PEG-
ZnPP, pegylated zinc protoporphyrin; PEITC, phenethyl isothiocyanate; SOD, superoxide dismutase; Trx, 
thioredoxin. Reprinted with permission from Springer Nature, Trachootham et al., 200939. 

1.3 MUTAGENESIS CAUSED BY NUCLEOTIDE OXIDATION  

1.3.1 Oxidation of the free nucleotide pool 

The high reactivity of ROS results in oxidative DNA modifications which can drive 

mutagenesis and tumorigenesis15. Compared to chromatin-bound DNA, the vulnerability of 

the free nucleotide pool to oxidative damage is orders of magnitude higher55,56. Guanine in 

particular is readily oxidizable due to its low redox potential57,58. Numerous oxidation 

products are generated upon oxidation of guanine. Among these oxidation products, 8-oxo-

7,8-dihydroxyguanine (8-oxoG) is thought to be the most abundant and thus has been the one 

most extensively studied38,59–61. Besides, in vitro analysis has reported the formation of 

additional free nucleoside oxidation products upon reaction with ROS including 

2-hydroxydeoxyadenosine (2-OH-dA), 5-hydroxydeoxycytidine (5-OH-dC) in addition to 

5-formyldeoxyuridine (5-CHO-dU)62. Modified nucleotides can have mutagenic 

consequences if incorporated into DNA.   
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1.3.2 Incorporation of oxidized nucleotides into nucleic acid chains 

DNA polymerases can readily incorporate oxidized nucleotides into DNA during replication 

and repair63–65. Unmodified deoxyguanines adopt an anti confirmation allowing them to form 

a Watson-Crick base pair with cytidine. However, 8-oxoG favours adopting a syn 

confirmation to avoid steric repulsion between its carbonyl oxygen O8 and the deoxyribose 

sugar. In its syn conformation, 8-oxoG can form a Hoogsteen base pair with adenine (Figure 

6). This mispairing of 8-oxoG with adenine can result in  A:T → C:G transversion mutations 

if left unrepaired64,66,67. Comparably, incorporation of 2-hydroxy-2’-deoxyadenosine -5’-

triphosphate (2-OH-dATP) and 5-hydroxy-2’-deoxycytosine-5’-triphosphate (5-OH-dCTP) 

in both bacterial and human DNA can have mutagenic consequences by causing genetic 

transversions68–71. Moreover, oxidized nucleotides can be inserted into the growing mRNA 

by RNA polymerases leading to transcriptional errors72.  

 

Figure 6: 8-oxoguanine and its mutagenic base-pairing potential. 8-oxoguanine when adopting an anti 

conformation, forms a Watson-Crick base pair with cytidine. However, in its syn conformation, 

8-oxoguanine forms a Hoogsteen base pair with adenine resulting in a genetic transversion if left 

unrepaired. Reprinted with permission from Elsevier, Krahn et al., 200373. 

1.3.3 Nucleotide incorporation opposite to oxidized counterparts 

Although oxidation of free nucleotide pool is more prevalent than oxidation of nucleotides 

that have been already incorporated into DNA, the latter should also be considered as they 

can drive mutagenesis. dNTP incorporation opposite to 8-oxoG has been studied in vitro 

using eukaryotic DNA polymerases. Such process has been shown to be polymerase 

dependent. For instance, the human DNA polymerase β (Pol β) preferentially incorporates 

dCTP pairing it with 8-oxoG at a ratio of 4:1 relative to dATP incorporation, however human 

DNA polymerase α preferentially incorporates dATP opposite to 8-oxoG at a ratio of 200:1 

compared to dCTP incorporation74. dATP is also preferentially incorporated by DNA 
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polymerase δ opposite to 8-oxoG resulting in 8-oxoG:A mispair75. MUTYH and DNA 

polymerase λ have been shown to be involved in repairing this mispair75. 

From an evolutionary point of view, the lower promiscuity of DNA polymerases during 

nucleotide incorporation can be advantageous as it allows the cell to acquire new mutations 

and thus help it adapt to its environment67. Nevertheless, nucleotide misincorporation can 

drive mutagenesis and contribute to genomic instability. 

1.4 INFLAMMATION AND GENOMIC INSTABILITY 

Genomic instability is widely perceived as a key characteristic of cancer76,77. A growing body 

of evidence suggests that inflammation contributes to mutagenesis and thus to cancer 

development78–80. Both inflammation and genomic instability are regarded as enabling 

hallmarks that promote tumor development and facilitate the acquisition of core and 

emerging hallmarks of cancer80 (Figure 7). Inflammation is associated with the production 

of reactive oxygen species (ROS) and reactive nitrogen species (RNS) aiming at pathogen 

elimination. Being highly reactive, ROS and RNS can react with and inflict damage upon 

DNA. For instance, neutrophils and macrophages produce a range of ROS and RNS including 

superoxide, hydroxyl and nitrogen dioxide radicals, hydrogen peroxide, peroxynitrite anions 

and hypohalous acids81–83. In addition, proinflammatory cytokines released during 

inflammatory responses such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma 

(IFN-γ) induce intracellular production of ROS84–86. Furthermore, inflammation is involved 

in tumor initiation, growth and metastasis78–80. Numerous studies indicate that inflammation 

plays pro-tumorigenic roles by enriching the tumor microenvironment with (1) growth 

factors that promote tumor proliferation, (2) survival factors to resist cell death, (3) 

proangiogenic factors and extracellular matrix-modifying enzymes which promote 

angiogenesis and facilitate metastasis87–90. 
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Figure 7: Schematic illustration of the hallmarks of cancer. Inflammation and genomic instability can 

promote tumor development and are thus classified as enabling hallmarks80. Created with BioRender.com 

A complex relationship exists between inflammation and DNA damage. On one hand, 

inflammation contributes to DNA damage via the production of ROS and RNS. On the other 

hand, DNA damage aggravates inflammation in a positive feedback loop manner91 (Figure 

8). Poly (ADP-ribose) polymerase 1 (PARP1) represents one example for this relationship 

between inflammation and DNA damage. PARP1 is one of the first recruited factors that are 

involved in the DNA damage response (DDR) where it plays a key role in detecting DNA 

breaks and serves to recruit downstream DNA repair proteins92–95. Interestingly, PARP1 

activity has been shown to be implicated in inflammatory responses. PARP1 inhibition has 

been shown to attenuate inflammation in pancreas, brain, intestines and liver disease 

models96–99. Inhibiting PARP1 leads to lower infiltration of immune cells100,101,96 as well as 

lower expression of inflammatory cytokines101,96,102 and adhesion molecules96,102,103. 

Moreover, PARP1 inhibition has been demonstrated to downregulate the expression of 

inducible nitric oxide synthase (iNOS) whose activity is associated with exacerbating 

inflammation103,104. Through PARylation, PARP1 is able to modulate the activity of nuclear 

factor-kappa-light-chain enhancer of activated B cells (NF-κB), a major regulator of 

inflammatory responses105–108. 
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Figure 8: Schematic illustration of the intricate relationship between inflammation and DNA 

damage. Inflammation induces DNA damage via the production of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS). On the other hand, DNA damage aggravates inflammation in a positive 

feedback loop manner91. Created with BioRender.com 

Other than the role of PARP1, DNA damage can augment inflammation in several ways. 

8-oxoguanine DNA glycosylase 1 (OGG1), a key base excision repair enzyme facilitates the 

binding of NF-κB to its target DNA promoter sequences thereby enhancing the expression 

of proinflammatory cytokines109–111. Interestingly, ATM and ATR, vital players in the DNA 

damage response (DDR), have been demonstrated to promote NF-κB signaling resulting in 

increased cytokine expression112–116. Furthermore, genomic instability is often associated 

with the formation of micronuclei, which encapsulate lagging whole or fragmented 

chromosomes. Upon disruption of their nuclear envelope, micronuclei release their content 

DNA into the cytosol which can induce the expression of IFN-γ and IL-1β triggering an 

inflammatory response117–120. Cytosolic DNA activates the cyclic GMP–AMP synthase 

(cGAS)–stimulator of interferon genes (STING) pathway. Activation of the cGAS-STING 

pathway induces the expression of type I interferons triggering inflammation121,122. Due to 

the complex crosstalk between inflammation, DNA damage and repair processes, these 

pathways need to be well-regulated to maintain genomic integrity.  
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1.5 REPAIR OF 8-OXOGUANINE LESIONS 

Thousands of 8-oxoG lesions are estimated to be generated in a normal cell per every day123–

125. This figure is estimated to be 100-fold higher in cancer cells41,126. To overcome the 

mutagenic potential of oxidized guanines, cells have evolved to efficiently recognize such 

lesions and remove them. Three repair pathways act in concert to restrict the accumulation 

of 8-oxoG in human genome: preventative repair by MutT homolog 1 (MTH1), mismatch 

repair (MMR) and base excision repair (BER). While MTH1 targets oxidized guanines 

present in the nucleotide pool, 8-oxoguanine DNA glycosylase 1 (OGG1) and MutY 

homolog (MUTYH) act on nucleotides that have been incorporated into the DNA. OGG1 

targets 8-oxoG:C mispairs in DNA, whereas MUTYH recognizes and excises adenine in 

mispaired 8-oxoG:A127 (Figure 9). 

 

Figure 9: Different cellular repair mechanisms help the cells overcome the mutagenic potential of 
8-oxoguanine when present in the free nucleotide pool (left) and in duplex DNA (right). 
8-oxo-(d)GTP present in the free nucleotide pool (left) is hydrolyzed by MTH1 into the monophosphate 
form which prevents its incorporation into DNA. If 8-oxo-(d)GTP is erroneously incorporated into the 
nascent DNA strand opposite to adenine (A), MUTYH can recognize and excise the mis-incorporated A. 
A genetic mutation will arise from this attempted repair process. Otherwise, the correct base pair can be 
installed via the mismatch repair pathway (MMR). Excision of 8-oxoguanine in duplex DNA (right): 
OGG1 recognizes and excises 8-oxoG from duplex DNA when present opposite to cytosine initiating base 
excision repair (BER). If DNA replication proceeds before 8-oxoG excision, Adenine can be incorporated 
opposite to it by replicative DNA polymerases δ and ε. This mis-incorporated adenine can be excised by 
MUTYH allowing the correct base, cytosine, to be incorporated. If the cell fails to repair the 8-oxoG:A 
base pair before a second cycle of DNA replication, a G:C → T:A genetic transversion arises. Adapted 
from Krokan et al. 2013128. Reprinted with permission from Cold Spring Harbor Laboratory Press, Krokan 
and Bjørås, 2013128. 
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1.5.1 Preventative repair by MTH1 

The human mutT homolog 1 (MTH1), also known as NUDT1 (NUDIX type 1) is a member 

of the NUDIX (nucleoside diphosphate linked to moiety-X) superfamily of hydrolases. The 

human NUDIX family encompasses 22 members sharing a NUDIX box, a common motif of 

23-amino acids. NUDIX hydrolases catalyze the hydrolysis of nucleoside-like di- or 

triphosphates into their respective monophosphate form. MTH1 acts as a sanitation enzyme 

catalyzing the hydrolysis of 8-oxo-(d)GTP and 2-OH-(d)ATP into their respective 

monophosphate form thereby preventing their incorporation into DNA. In doing so, MTH1 

prevents potential downstream genetic transversions and helps maintain genomic 

integrity69,129–131. 

1.5.2 Mismatch repair  
The mismatch repair pathway (MMR) is involved in repairing DNA oxidative damage to a 

certain degree. Following replication, MMR factors recognize base mispairs on nascent DNA 

strand. MutSα, a heterodimer consisting of MSH2 and MSH6, corrects 2-OH-dATP 

mispairs132. Importantly, MutS Homolog 2 (MSH2), a key MMR factor, excises incorporated 

8-oxo-(d)GMP. MSH2 deficient cells show higher 8-oxoG levels in their DNA133. 

Furthermore, mice deficient in MSH2 are reported to exhibit high levels of oxidized bases in 

their genomic DNA highlighting the role of MMR in protecting the genome against oxidative 

damage134. 

1.5.3 Base excision repair 

DNA is not only vulnerable to oxidation, but to deamination and alkylation as well generating 

a wide array of lesions14,15 (Figure 10). Although the generated DNA lesions do not 

significantly distort the DNA double helix, they need to be efficiently eliminated to maintain 

genomic integrity. Here comes the vital role of the base excision repair (BER) pathway, a 

conserved DNA repair pathway among the three domains of life: archaea, bacteria, and 

eukaryotes136,137. In fact, BER was first discovered in 1974 in Escherichia coli when Tomas 

Lindahl succeeded in purifying uracil DNA glycosylase (UNG) and described its role in 

excising deaminated cytosine, uracil, from DNA by cleaving the N-glycosidic bond between 

uracil and the deoxyribose moiety138. Enzymes that catalyze the cleavage of the N-glycosidic 

bond between a modified DNA base and the deoxyribose sugar are referred to as DNA 

glycosylases. DNA glycosylases are responsible for carrying out the first step in the BER 

pathway to repair a variety of DNA base lesions where each lesion is recognized by one or 

more glycosylases possessing overlapping substrate specificity128. 
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Figure 10: DNA base lesions and abasic sites commonly arising from oxidation, deamination and 
methylation. Reprinted with permission from Cold Spring Harbor Laboratory Press, Krokan and Bjørås, 
2013128. 

So far eleven DNA glycosylases have been identified in humans. Six of them are responsible 

for repairing DNA oxidative damage, four repair mispaired thymine and uracil lesions and 

one is devoted for alkylated DNA lesions in addition to deaminated purines (Table 1). DNA 

glycosylases can be classified according to their enzymatic activity as monofunctional or 

bifunctional. Glycosylases recognizing genomic uracil, thymine and alkylated DNA lesions 

belong to the monofunctional group where they cleave the N-glycosidic bond resulting in an 

apurinic/apyrimidinic site (AP-site), an abasic site. AP endonuclease (APE1) recognizes 

abasic sites and cleaves the DNA strand 5´ of the AP site resulting in a sugar moiety on the 

5´ end of the nick and hydroxyl group on the 3´ end. The latter forms a substrate for DNA 

polymerase β (Pol β). Pol β removes the sugar moiety through its phosphodiestrase activity 

and fills in the gap. Subsequently, ligation takes place by DNA ligase 1 or DNA ligase 3/ X-

ray repair cross-complementing protein 1 (XRCC1) scaffolding protein to seal the nick 

(Figure 11)128,139–142.  

Oxidative DNA lesions on the other hand are recognized and cleaved by bifunctional 

glycosylases which have an AP lyase activity in addition to its glycosylase activity. This 

lyase activity enables them to cleave the phosphodiester bond of the DNA backbone yielding 
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at the 3´ end of the nick either an α,β-unsaturatedaldehyde via β-elimination or a phosphate 

group via β,δ-elimination. β-elimination generates 5´-phosphate and a 3′-phospho-

α,β-unsaturated aldehyde (3´-PUA). APE1 efficiently removes the 3´-PUA generating a 

3´-hydroxyl group and enabling the polymerase to fill the nucleotide gap. On the other hand, 

β,δ-elimination generates a nucleotide gap with a 3´-phosphate group which can be removed 

by the phosphatase activity of polynucleotide kinase 3'-phosphatase (PNKP). The remaining 

steps of gap filling and ligation are the same as those outlined in the pathway initiated by 

monofunctional glycosylases128,141,143.This process of repairing a single nucleotide is referred 

to as short-patch BER and takes place in both proliferating and non-proliferating cells.  

Alternatively, long-patch BER occurs primarily in proliferating cells where a gap of at least 

2 nucleotides is generated and filled in. It often occurs due to inefficient removal of the sugar 

at the 5’ end of the nick. In long-patch BER, DNA polymerase δ/ε, proliferating cell nuclear 

antigen (PCNA) and flap endonuclease 1 (FEN1) are involved in the repair process in 

addition to the core factors of BER. Ligase 1 eventually carries out the ligation step128,144. 

Special focus will be given to OGG1 and NEIL glycosylases in the next section given their 

role in initiating the repair of a variety of oxidized DNA bases. 

At least two characteristic mutational signatures have been associated with defective BER 

suggesting a crucial role for BER in maintaining genomic integrity. Mouse embryonic 

fibroblasts with defective single-strand selective monofunctional uracil DNA glycosylase 1 

(SMUG1) display C:G → T:A transitions145. In addition, defective OGG1 has been 

associated with G:C → T:A transversions146 highlighting the role of BER in preventing 

mutagenesis. 
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Table 1: Human DNA glycosylases, their substrates and the phenotype resulting from glycosylase 
deficiency or mutation. 3-meA, 3-methyladenine; 3-meG, 3-methylguanine; 5-FU, 5-fluoruracil; 5-hC, 
5-hydroxycytosine; 5-hmU, 5-hydroxymethyluracil; 5-hU, 5-hydroxyuracil; 7-meG, 7-methylguanine; 
8-oxoG, 8-oxo-7,8-dihydroxyguanine; A, adenine; AAG, alkyladenine DNA glycosylase; AlkBH, human 
AlkB homolog; CSR, class switch recombination; DHU, dihydrouracil; ds, double-stranded; Fapy, 
formamidopyrimidine; FapyA, 4,6-diamino-5-formamidopyrimidine; FapyG, 2,6-diamino-4-hydroxy-5-
formamidopyrimidine; G, guanine; Gh, guanidinohydantoin; HIGM, hyper-IgM; Hx, hypoxanthine; MAP, 
MUTYH-associated polyposis; MBD4, methyl-CpG-binding domain protein 4; MED1, methyl-CpG 
binding endonuclease 1; MPG, N-methylpurine DNA glycosylase; MUTYH, MutY homolog; NEIL, 
endonuclease VIII-like; NTHL1, endonuclease III-like protein 1; OGG1, 8-oxoguanine DNA glycosylase 
1; SMUG1, single-strand selective monofunctional uracil DNA glycosylase 1; SHM, somatic 
hypermutation; Sp, spiroiminodihydantoin; ss, single-stranded; T, thymine; TDG, thymine DNA 
glycosylase; Tg, thymine glycol; U, uracil; UNG2, uracil DNA glycosylase 2; ϵA, 1, N6-ethenoadenine; 
ϵC, 3, N4-ethenocytosine. Adapted from Krokan et al. 2013128. Reprinted with permission from Cold 
Spring Harbor Laboratory Press, Krokan and Bjørås, 2013128. 

Enzyme  Substrates  
and (minor substrates) 

  

Mouse knockout  Human disease  

UNG2 
  

U, 5-FU in ss and dsDNA, 
U:A and U:G context 
(alloxan, 5-hydroxyuracil, 
isodialuric acid) 
  

Partial defect in CSR, skewed 
SHM, B-cell lymphomas.  

Complete defect in CSR, HIGM 
syndrome, infections, lymphoid 
hyperplasia. 
  

SMUG1  5-hmU, U:G > U:A > ssU, 
5-FU, εC in ss and dsDNA 

Viable and fertile. 
SMUG1/UNG/MSH triple 
knockouts show reduced 
longevity. 
  

Low SMUG1 expression is 
associated with poor prognosis of 
aggressive breast cancer147.  

TDG  U:G > T:G (5-hmU in 
dsDNA, 5-FU) 

Embryonic lethal. TDG has an 
epigenetic role in development. 
  

Unknown  

MBD4 
(MED1)  

U:G and T:G, 5-hmU in 
CpG context (εC, 5-FU in 
dsDNA) 
  

Viable and fertile, C to T 
transitions, intestinal neoplasia  

Mutated in carcinomas with 
microsatellite instability. 
  

MPG 
(AAG) 
  

3-meA, 7-meG, 3-meG, 
Hx, εA 
  

Viable and fertile. Triple 
knockouts of 
MPG/AlkBH2/AlkBH3 are 
hypersensitive to inflammatory 
bowel disease. 
  

Unknown 
  

OGG1 
  

8-oxoG:C, Fapy:C 
  

Viable and fertile,  
OGG1/MUTYH double 
knockouts are cancer prone. 
 
OGG1 activity is associated with 
CAG repeat expansion in 
Huntington’s disease mice 
models148. 
  

OGG1 R46Q variant exhibits a 
lower activity in renal cancers149,150. 
OGG1 S326C variant shows 
reduced enzymatic activity151,152. 
Conflicting results have been 
reported regarding its association 
with different cancer types153–161.  
 
OGG1 A53T and A288V variants 
display reduced catalytic activity 
and have been identified in brain 
tissues of Alzheimer’s disease 
patients and are thought to be related 
to the high level of oxidative DNA 
damage present in Alzheimer’s 
disease162. 
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Table 1: Continued 

Enzyme  Substrates  
and (minor substrates) 

  

Mouse knockout  Human disease  

MUTYH A opposite to 8-oxoG/C/G OGG1/MUTYH double 
knockouts are cancer prone. 

MUTYH variants are associated 
with colon polyposis in what is 
referred to as MUTYH-associated 
polyposis (MAP) syndrome. 
 
Colorectal cancer cells with 
defective MUTYH display a 
characteristic mutatoinal signature 
with prevalent G:C→T:A 
transversions 163,164. 
  

NTHL1  Tg, FapyG, 5-hC, 5-hU in 
dsDNA  

Viable and fertile.  
 
NTHL1/NEIL1 double 
knockouts are cancer prone. 

NTHL1 deficiency is associated 
with NTHL1-tumor syndrome 
characterized by a higher risk for 
colorectal polyposis, colorectral 
cancer and breast cancer. NTHL1 
deficiency results in a unique 
NTHL1-associated mutational 
signature165,166. 
  

NEIL1 
 

Tg, FapyG, FapyA, 8-
oxoG, 5-hU, DHU, Sp and 
Gh in ss and dsDNA 

Viable and normal at birth, but 
develop obesity after 7 months. 
NEIL1 knockout mice develop a 
metabolic syndrome 
characterized by obesity, fatty 
liver disease as well as 
dyslipidemia and a higher 
tendency for developing 
hyperinsulinemia167. 
 
 
NTHL1/NEIL1 double 
knockouts are cancer prone. 
 
 
 

Unknown 
 

NEIL2 Similar to NEIL1 
 
 
 

NEIL2 null mice accumulate 
DNA damage in actively 
transcribed DNA regions and 
elicit a stronger inflammatory 
response compared to wild-type 
counterparts168. 
 
Double NEIL1 and NEIL2 
knockout mice models do not 
dsiplay a high mutation 
frequency nor cancer 
predisposition169. 
 
 

Unknown 

NEIL3 
 

FapyG, FapyA, Sp and Gh 
in ssDNA 
 
 
 
 
 
 

Viable and fertile, but shows 
memory and learning deficit. 
 
Triple knockout mice models of 
NEIL1, NEIL2 and NEIL3 do not 
dsiplay high a mutation 
frequency nor are predisposed to  
cancer169. 
 
 

Unknown 
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Figure 11: Schematic illustration of the steps of the base excision repair pathway (BER) showing the 
involved DNA repair factors in short-patch and long-patch BER. Reprinted with permission from Cold 
Spring Harbor Laboratory Press, Krokan and Bjørås, 2013128. 
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1.6 OGG1  

The human 8-oxoguanine DNA glycosylase 1 (OGG1) gene lies on the short arm of 

chromosome 3 (3p26). Alternative splicing produces eight isoforms of human OGG1 

according to the National Center for Biotechnology Information (NCBI) with α-OGG1 

(OGG1 type 1a), and β-OGG1 (OGG1 type 2a) being the two major ones. The α-isoform (39 

kDa) is present mainly in the nucleus and consists of 345 amino acid residues, whereas β-

Ogg1 (47 kDa) localizes to the mitochondria and consists of 424 amino acids. Both isoforms 

share the first 316 amino acids which carry a mitochondrial targeting signal at amino acid 

residues 9–26. However, they significantly differ in their C-termini. α-OGG1 carries a 

dominant nuclear localization signal, whereas the β-isoform has an acidic/hydrophobic 

region at its C-terminus170 (Figure 12).  

 
Figure 12: Schematic illustration of the difference between the structure of the two major isoforms 
of human OGG1 (hOGG1). hOGG1-1a is a nuclear isoform that has a C-terminal nuclear localization 
signal (NLS). The main mitochondrial isoform is hOGG1-2a has an acidic and hydrophobic domain at its 
C-terminus. MTS, mitochondrial targeting signal, Oka et al., 2008171. Created with BioRender.com 

1.6.1 OGG1’s role in BER 

Being a bifunctional BER enzyme, OGG1 possesses a weak b-elimination-mediated AP lyase 

activity in addition to its glycosylase activity172. Following base excision with its glycosylase 

activity, OGG1 dissociates at a slow rate from its tightly bound abasic site product. This 

dissociation step is considered the rate limiting step in OGG1-initiated BER. OGG1 turnover 

is stimulated by the downstream APE1 which competes for abasic sites to which it has higher 

affinity than OGG1173. 
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By sliding on DNA in a random bi-directional pattern scanning for its substrate, OGG1 

recognizes and repairs mutagenic 8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapyG) when paired with cytosine in duplex DNA174–176. OGG1 

displays a characteristic helix–hairpin–helix structural motif followed by an extended loop 

rich in Glycine and Proline residues. The glycosylase catalytic activity requires two 

conserved residues: Asp 268 and Lys 249177,178. Lys 249 is essential for the nucleophilic 

attack on the C1´ of the deoxyribose sugar in order to excise the 8-oxoG base, whereas Asp 

268 stabilizes the ribose oxocarbenium cation intermediate formed during the initial base-

excision step179 (Figure 13). Upon OGG1 binding to the DNA, the DNA duplex is sharply 

bent in a ~70° kink where the oxidatively modified base, 8–oxoG, is flipped out and becomes 

stalked between Phe 319 and Cys 253 bringing it in close proximity to the catalytic amino 

acid residues. An Arginine residue, Arg 154, recognizes the cytosine base lying opposite to 

the 8-oxoG adding to substrate specificity149,177.            

 

Figure 13: Interaction of OGG1 glycosylase with 8-oxoguanine. (a) Overall structure of human OGG1 

(grey) in complex with DNA (blue). The 8-oxoguanine substrate lesion (red) is flipped out into OGG1’s 

active site. Illustration  prepared using 3D protein imaging180. (b) Close-up view of the active site of OGG1 

with extrahelically flipped 8-oxoG lesion. PDB, 2NOZ, Radom et al., 2007181. Adapted from Cold Spring 

Harbor Laboratory Press, Krokan and Bjørås, 2013128. 

Interestingly, mice lacking OGG1 are viable and fertile. Analysis of nuclear DNA extracted 

from the liver of 13–15-week-old OGG1 deficient mice shows that steady-state level of 

genomic 8-oxoG is 1.7–7-folds higher182,183. Initial studies showed that OGG1 null mice do 

not develop a pathological phenotype despite the higher load of genomic 8-oxoG183, however 

longer monitoring of OGG1 knockout mice indicated that lung tumors develop in those mice 
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1.5 years after birth182. Intriguingly, a dampened inflammatory response is observed OGG1 

null mice following Helicobacter pylori infection184 or upon treatment with proinflammatory 

agents185. 

A number of OGG1 polymorphic variants have been identified186. In renal cancers, OGG1 

R46Q exhibits a lower enzymatic activity150,187. In addition, OGG1 variants A53T and 

A288V have been identified in brain tissues of Alzheimer’s disease patients showing a 

reduced catalytic activity. Those variants are thought to be related to the high level of 

oxidative DNA damage observed in Alzheimer’s disease162. OGG1 S326C has also been 

characterized in numerous studies. This variant is associated with lower enzymatic activity 

where the extra cysteine residue is involved in disulfide bond formation and promotes OGG1 

dimerization151,152. Epidemiological studies have reported conflicting results regarding 

whether OGG1 S326C is associated with a higher cancer risk. Several studies have 

highlighted an association between this variant and different cancer types153–157 however, 

others have reported the absence of such association158–161. These contradicting results 

prompt further investigation. 

1.6.2 Regulation of OGG1’s activity 

OGG1’s enzymatic activity is regulated via protein–protein interactions. For instance, APE1 

stimulates OGG1’s lyase activity in in vitro assays173,188. In addition, it stimulates the release 

of OGG1 from AP sites bypassing the AP lyase activity of OGG1 which enables the cells to 

avoid a potentially rate limiting step189. XRCC1 is another interacting partner that stimulates 

OGG1190,191. Moreover, PARP1 interacts with OGG1 where OGG1 stimulates the 

PARylation activity of PARP1. However, this leads to a reduction in the BER activity of 

OGG1192. Furthermore, OGG1 is subject to a number of posttranslational modifications that 

modulates its activity such acetylation193–195, phosphorylation196,197 and O-GlcNAcylation198.  

Paradoxically, OGG1’s BER activity is reported to be impaired under conditions of oxidative 

stress but restored after normalizing the cellular redox status. This was attributed to the 

oxidation and S-nitrosylation of OGG1’s cysteine residues199–202. This reversible reduction 

in OGG1’s activity was associated with an increase in ROS levels intracellularly and 

accumulation of 8-oxoG at the promoter regions of several genes suggesting a new role for 

8-oxoG and OGG1 in transcriptional regulation. 
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1.6.3 Roles of OGG1 beyond BER 

1.6.3.1 OGG1’s role in transcription regulation 

Mounting evidence suggests that OGG1 contributes to transcription regulation. Recent 

findings suggest that 8-oxoG is not only a premutagenic lesion but serves as an epigenetic 

mark to regulate gene expression203,204. In line with this, several proinflammatory genes have 

promoter regions rich in GC bases which are readily oxidizable under conditions of oxidative 

stress109. Although transcription factors and DNA repair enzymes are suggested to compete 

on binding to promoter regions harbouring oxidative damage205, it has been shown that 

OGG1 contributes to transcription factors recruitment and transcription machinery assembly. 

For instance, OGG1-DNA interaction upstream of the consensus motif of NF-κB facilitates 

NF-κB binding. This in turn enhances the expression of NF-κB target proinflammatory genes 

upon inducing inflammation with tumor necrosis factor-alpha (TNF-α)109,111,110. This finding 

likely accounts for the reduced inflammatory response seen in OGG1 null mice184,185. 

Besides, promoter regions of highly transcribed genes are rich in G-quadruplex (G4) 

structural motifs. G-quadruplex formation in promoters has been associated with enhanced 

transcription206. One example is the vascular endothelial growth factor (VEGF) gene, whose 

promoter region is known to harbour G4207 and 8-oxoG lesions208. OGG1-mediated base 

excision of 8-oxoG located in potential G-quadruplex–forming sequences (PQS) in 

promoter-coding strands of VEGF unmasks the PQS. This enables DNA to change its 

conformation and adopt a G4 fold resulting in higher transcription204. A similar effect has 

also been reported for NTHL1 gene204. On the contrary, 8-oxoG lesions present in telomeres 

have been observed to destabilize telomeric G4 structures. This enhances telomerase 

accessibility promoting telomere elongation209 and suggesting a role for 8-oxoG in telomere 

maintenance. 

1.6.3.2 OGG1’s role in signaling 

In addition to its role in modulating transcription, OGG1 is reported to be involved in cellular 

signaling pathways. It has been shown that the excised 8-oxoG base in complex with OGG1 

activates Ras signaling by acting as a guanine exchange factor (GEF). Ras activation 

consequently induces gene expression via mitogen-activated protein kinase (MAPK) 

signaling210. OGG1 in complex with 8-oxoG has also been reported to physically interact 

with and activate small GTPases Rac1211 and Rho212 which then activate different 

downstream cellular pathways. This widens the scope of OGG1’s functions beyond its 

conventional role in BER and opens up new exciting applications for targeting OGG1.  
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1.7 NEIL GLYCOSYLASES 

The redox potential of 8-oxoG is lower than that of guanine making 8-oxoG markedly 

sensitive to further oxidation generating hydantoin lesions213–215. Such lesions are recognized 

and excised by the Nei endonuclease VIII–like family of DNA glycosylases (NEIL)216–219. 

Three human NEIL enzymes have been discovered: NEIL1, NEIL2 and NEIL3 displaying a 

broad substrate specificity against oxidized pyrimidines (Table 1). After base excision, 

NEIL3 incises the resulting AP site with a low efficiency via β-elimination216,220. On the other 

hand, NEIL1 and NEIL2 glycosylases robustly incise the DNA backbone via β,δ-elimination 

giving rise to a nucleotide gap flanked by 5´-phosphate and a 3′-phospho-α,β-unsaturated 

aldehyde (3´-PUA). The 3´-phosphate group of the 3´-PUA is removed by the phosphatase 

activity of the bifunctional enzyme polynucleotide kinase 3´-phosphatase (PNKP). After the 

nucleotide gap is processed by PNKP, a DNA polymerase incorporates a new nucleotide to 

fill in the gap and finally the nick is sealed by a DNA ligase221,222,128. 

1.7.1 NEIL1 glycosylase 

Although 8-oxoG is not a major substrate for NEIL glycosylases, its further oxidation 

products, spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) are efficiently targeted 

by all three NEIL enzymes216–219. Nevertheless, in vitro assays show that NEIL1 weakly 

excises 8-oxoG in models for clustered lesions when 8-oxoG is present as the third or fourth 

nucleotide 5’-upstream of a single-strand break223. In addition to Sp and Gh, NEIL1 excises 

FapyA, FapyG, thymine glycol and 5-hydroxyuracil224,225. DNA lesions present in bubble, 

bulge, and single-stranded DNA (ssDNA) can be targeted by NEIL1 but at a lower rate 

compared to double-stranded DNA (dsDNA)224,226.  

NEIL1 expression is induced during the S-phase of cell cycle suggesting that it plays a role 

in repairing replication-associated DNA damage227. In accordance with this, NEIL1 was 

reported to contribute to pre-replicative BER of oxidized DNA bases located on ssDNA 

template at the replication fork228. In such context, NEIL1 was observed to only bind to the 

lesion but not to excise it, which prevents generating toxic double-strand breaks (DSBs). This 

in turn obstructs the replication fork progression. The fork would then regress to allow the 

lesion repair228,229.  

Beside its role in pre-replicative BER, NEIL1 excises DNA inter-strand crosslinks230–232 as 

well as hydantoin lesions in G-quadruplex motifs in promoter and telomeric sequences, and 

hence can potentially contribute to gene regulation and telomere maintenance233,234. 

Interestingly, acetylated NEIL1 preferentially binds to actively transcribed genomic 



 
 

  
 

23 

sequences in addition to transcription start sites of weakly-transcribed genes whose 

overexpression is associated with poor prognosis in cancer. This enrichment was found to 

correlate with a low mutation rate suggesting that NEIL1 protects against oxidative damage 

of transcription start sites235.  

NEIL1 depletion sensitizes cells to ionizing radiation (IR) indicating that it is involved in 

repairing IR-induced DNA damage236. Interestingly, homozygous and heterozygous NEIL1 

deficient mice are viable but develop fatty liver disease, obesity, dyslipidemia and a higher 

tendency for hyperinsulinemia suggesting a potential metabolic function for NEIL1167. 

1.7.2 NEIL2 glycosylase 

NEIL1 and NEIL2 share a common set of substrate DNA lesions. Both can recognize and 

excise FapyA, FapyG, thymine glycol and 5-hydroxyuracil in single-stranded, duplex and 

bubble-structure oligonucleotides as well as Gh and Sp, the oxidation products of 8-oxoG. In 

addition, NEIL2 has been reported to possess some activity towards 8-oxoG in in vitro 

assays221. Similar to NEIL1 and NEIL3, NEIL2 excises damaged bases in promoter 

quadruplex structures which may facilitate transcription initiation233. NEIL2 seems to act as 

a backup for NEIL1 where it has been shown to contribute to pre-replicative BER repair of 

oxidized DNA lesions in NEIL1-depleted cells228.  

Notably, NEIL2 is thought to play a role in transcription-coupled BER. It has been shown to 

associate with RNA polymerase II on actively transcribed genes but not on silent ones. 

Consistently, cells deficient in NEIL2 exhibited more DNA damage in active genes relative 

to silent ones237. In agreement with this finding, NEIL2 null mice accumulate DNA oxidative 

damage in actively transcribed genomic regions. Besides, mouse embryonic fibroblasts 

derived from NEIL2 null mice show more chromosomal abnormalities and telomere loss than 

those derived from wild type mice (WT). Intriguingly, NEIL2 deficiency resulted in a 

stronger inflammatory response in that mouse model suggesting that NEIL2 potentially plays 

a protective role against inflammation168. 

1.7.3 NEIL3 glycosylase 

NEIL3 possesses a glycosylase activity towards Sp, Gh, thymine glycol, FapyA and 

FapyG216,219. Moreover, it contributes to unhooking inter-strand crosslinks induced by 

psoralen or generated from abasic sites232,238,239. NEIL3 displays a tightly regulated 

expression pattern with high levels detected in highly proliferative cells such as embryonic 

stem cells, neural progenitor cells, murine hematopoietic cells in addition to cancer cells240–
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243. NEIL3 has been shown to maintain telomere integrity by repairing oxidative damage in 

telomeric DNA during the S-phase of cell cycle244. In addition, NEIL3 can recognize its 

substrate lesions in promoter and telomeric G-quadruplex DNA structure233,234.  

NEIL3 appears to play a role in preventing autoimmunity since NEIL3 deficiency is 

associated with high levels of autoantibodies245. NEIL3 null mice show reduced proliferation 

capacity of neural stem/progenitor cells resulting in learning and memory impairment246. 

Accordingly, NEIL3 is thought to play a role in protecting proliferating cells and neural 

progenitor cells against oxidative DNA damage. 

1.8 OVERLAPPING ROLES OF BER FACTORS 

Mice knockout studies have shed the light on the overlapping functions of BER proteins. In 

general, mice lacking a single DNA glycosylase show remarkable resilience against the loss 

of the glycosylase activity247. With the exception of thymine DNA glycosylase whose loss is 

embryonically lethal248, mice deficient in a single glycosylase are viable and only display a 

slightly elevated mutation frequency without a clear pathological phenotype249. This may be 

explained in light of the overlapping substrate specificity of BER factors (Table 1) in addition 

to overlap between BER and other repair pathways. In contrast to single knockouts, double 

or triple knockout mouse models usually display a stronger phenotype. For example, mice 

lacking both OGG1 and MUTYH are noticed to be highly prone to cancer with shortened life 

spans250. Similarly, double NTHL1 and NEIL1 knockout mice develop lung and liver tumors 

at a higher incidence than each of the single knockout251. Surprisingly NEIL1 and NEIL2 

double knockout mice as well as NEIL1, NEIL2 and NEIL3 triple knockout mice display no 

elevated mutation frequency nor higher cancer predisposition169. 

Despite the apparent overlapping substrate specificity in in vitro assays, BER glycosylases 

have been well-conserved in eukaryotes during evolution. This selective pressure to conserve 

them suggests that they may have specialized distinguishable activities in cells. For instance, 

such activity might be specific to certain phases of the cell cycle252, or during embryonic 

development248 or might be specific to certain genomic regions such as actively transcribed 

or silent genes237, replication forks228,229 or telomeres244. Accordingly, targeting one BER 

factor might still have a pharmacological effect despite the presence of other apparently 

redundant BER factors as the latter might repair the DNA damage with suboptimal efficiency 

or at a suboptimal time or can lead to an inefficient downstream processing of the BER 

intermediates253. For instance, four BER glycosylases have been reported to eliminate 5-

fluoruracil (5-FU) from DNA in addition to MMR254. However, cells are sufficiently 
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sensitized to fluoropyrimidines after targeting only one factor255–257. Nevertheless, the 

overlapping functions of BER glycosylases need to be carefully considered on attempting to 

pharmacologically target a single BER glycosylase. 

1.9 TARGETING BER, A PROMISING APPROACH FOR CANCER 
THERAPY 

Given the vital role BER plays in maintaining genomic integrity by eliminating DNA 

oxidative damage and considering the high levels of ROS in cancer cells, targeting BER is 

viewed as a promising potential anti-cancer approach. Targeting BER is anticipated to be of 

relevance to cancer therapy via three different approaches: (a) synthetic lethality approach in 

cancers cells where additional DNA repair pathways are impaired253 (b) sensitization to 

endogenous high oxidative stress in cancer cells, or (c) sensitization to exogenously 

administered chemotherapy and radiotherapy (Figure 14).  

 

Figure 14: Schematic illustration of potential strategies of targeting BER as an anti-cancer 
approach. Three strategies can potentially result in different outcomes in normal cells (blue) versus cancer 
cells (grey) upon targeting base excision repair (BER), Visnes et al., 2018253. Created with BioRender.com 
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1.9.1 Sensitization to co-administered chemotherapy or radiotherapy 

Another strategy where targeting BER might prove beneficial is to sensitize cancer cells to 

chemotherapy or radiotherapy. Irradiation as well as classical chemotherapeutics work by 

inducing DNA damage. However, they tend to affect all dividing cells leading to a broad 

range of side effects. Decreasing the administered dose of radio- or chemotherapy may spare 

the patients from these toxic side effects but will be accompanied by a lower efficacy. This 

issue can potentially be addressed by concomitant BER targeting. Several studies have 

demonstrated that knocking down some BER components strongly sensitize cancer cells to 

chemotherapy and radiotherapy. BER inhibitors are thought to have a similar effect. 

Surprisingly, overexpressing some BER factors have also resulted in a similar hypersensitive 

phenotype258. This might seem paradoxical but can be explained when considering the nature 

of the DNA intermediates formed when these BER factors are overexpressed. For example, 

overexpressing a certain BER factor might generate a lot of abasic sites. The resultant high 

load of AP sites might overwhelm the BER capacity and generate toxic DNA strand breaks 

resulting in a hypersensitive phenotype258.  

It is well-established that irradiation results in higher levels of ROS and induces a multitude 

of DNA lesions including oxidative DNA lesions and DNA strand breaks259–261. Since the 

former are typically eliminated by BER, it becomes evident that manipulating the status of 

BER in irradiated cells can affect the outcome of irradiation. For example, OGG1 protects 

against radiation-induced DNA damage in human leukemia cells. Cells expressing a mutant 

OGG1 version exhibit a severe G2/M arrest and eventually more apoptosis after irradiation 

compared to cell expressing wild type OGG1262. 

Several BER components can also affect the cellular response to DNA crosslinking agents 

psoralen and cisplatin. On one hand, psoralen-induced monoadducts are recognized and 

repaired by NEIL1. HeLa cells become hypersensitive to psoralen after depleting NEIL1 

and/or APE1263. In addition, NEIL1 and NEIL3 are reported to contribute to repairing bulky 

psoralen-induced inter-strand cross-links238,264,265. On the other hand, cisplatin treatment is 

known to generate ROS as well as DNA mono-adducts, intra-strand and inter-strand cross-

links266. Accordingly, the status of UNG, Pol β and APE1 influence cisplatin 

cytotoxicity267,268,269. NTHL1 is another promising candidate to potentiate cisplatin 

cytotoxicity since its depletion re-sensitizes the otherwise cisplatin-resistant tumor cells270. 

This motivates developing BER inhibitors considering their promising potential applications. 
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1.9.2 Synthetic lethality approach 

Synthetic lethality is a term that refers to cell death upon simultaneous perturbation of two 

genes, whereas each of which alone does not result in loss of viability (Figure 15). Such 

perturbation can occur via a genetic mutation, RNA-interference or via pharmacologically 

inhibiting the protein product of the gene271. There is some degree of overlap in DNA repair 

pathways where some pathways can compensate for others. This concept can be exploited to 

specifically target cancer cells deficient in a certain repair pathway by inhibiting a 

compensatory one. Normal cells are not affected since the initial repair pathway in question 

is functional there271. PARP1 inhibition in homologous recombination deficient cells is an 

extensively studied example of synthetic lethality272,273. Although it is not a core component 

of BER274, PARP1 is a key player in single-strand break repair and prevents the formation of 

excessive SSBs during BER275–279. PARP inhibitors (e.g., Olaparib, Niraparib, Rucaparib and 

Talazoparib) are approved by the Food and Drug Administration (FDA) and European 

Medicine Agency (EMA) for the treatment of ovarian, breast or pancreatic cancer patients 

with somatic and/or germline BRCA1 or BRCA2 gene mutation. Moreover, clinical trials to 

evaluate combination therapies with other anti-cancer drugs are ongoing280–282.  

Advances made to RNA interference and the CRISPR–Cas9 technology has facilitated large-

scale screening efforts aiming at determining synthetic lethal interaction partners. APE1 is 

another promising candidate to induce synthetic lethality in cancer cells. Synthetic lethality 

was observed upon APE1 inhibition in cells deficient in Ataxia telangiectasia mutated (ATM) 

or concomitantly treated with inhibitors of ATM or DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs)283.  

In addition to exploiting tumor specific mutations, synthetic lethal interactions might rely on 

intrinsic conditions of the tumors such as metabolic alterations, hypoxia or elevation in ROS 

in what is referred to as conditional synthetic lethality271. This broadens the concept of 

synthetic lethality and opens new avenues for specifically targeting cancer cells. 
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Figure 15: Schematic illustration for the principle of synthetic lethality. Cells can tolerate 
pharmacological inhibition or mutation of either gene A or gene B alone (a). Concomitant loss of gene A 
and B results in cell death whether it is caused by double mutation (b) or by inhibiting the protein product 
of gene B in cells with mutant gene A (c). Mutation is depicted as a star shape. Viable cells are represented 
by circles whereas inviable cells are represented by irregular shaped ones, O’Neil et al., 2017271. Created 
with BioRender.com 

1.9.3 Sensitization to endogenous stress in cancer cells  

Cancer cells exhibit high levels of ROS owing to a number of factors such as mitochondrial 

dysfunction, aberrant metabolism, oncogene expression, cross-talk with tumor-infiltrating 

immune cells among others43. This might be exploited in a conditional synthetic lethality 

approach. Being one of the most abundant DNA oxidative lesions60,61,125, MTH1, MUTYH 

and OGG1 function in concert to cope with the high load of 8-oxoG253. 

Several lines of evidence highlights MTH1’s role in protecting cancer cells against oncogene-

induced oxidative stress284–287. A number of small-molecule MTH1 inhibitors have been 

reported with varying degrees of cytotoxic efficacy. While some MTH1 inhibitors display a 

potent anti-cancer profile288–290, others were reported to have no anti-cancer effect despite 

strong target engagement291. The effect of MTH1 inhibitors remains to be further 

mechanistically characterized, however reported data suggest that the cytotoxic effect of 

some MTH1 inhibitors is associated with inducing mitotic arrest292 and 8-oxoG accumulation 

in DNA as detected by immunostaining and modified comet assays290. MTH1 inhibitors 
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which fail to trigger mitotic arrest and subsequent accumulation of genomic 8-oxoG lesions, 

did not display an anti-cancer effect290. Since 8-oxoG is a major substrate for BER, one might 

rationalize that inhibiting BER can enhance MTH1 inhibitors’ cancer killing ability. 

Accordingly, inhibitors of OGG1 or MUTYH, which act downstream of MTH1, can 

potentially be used to kill oxidatively stressed cancer cells alone or together with MTH1 

inhibitors. In support of this hypothesis, cell proliferation was found to be impaired in 

pancreatic cancer cells after knocking down MUTYH293. In addition, depleting MTH1 and 

MUTYH, alone or in combination induced apoptosis in a mismatch repair defective T-cell 

Acute lymphoblastic leukemia (T-ALL) cell line294. Moreover, OGG1 overexpression 

prevents senescence in Ras-transformed cells295 suggesting that targeting OGG1 might 

interfere with cancer cell proliferation.  

Taken together, these findings imply that targeting BER glycosylases may be a promising 

strategy to therapeutically exploit the augmented ROS production in cancer. This prompted 

us to seek developing small molecules that can modulate OGG1’s activity.  
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2 DOCTORAL THESIS 

2.1 RESEARCH AIMS 
 
The base excision repair pathway is an evolutionary conserved pathway responsible for 

eliminating oxidized, alkylated and deaminated bases to maintain genomic integrity. OGG1 

is the major glycosylase responsible for the recognition and excision of 8-oxoG, one of the 

most frequent oxidative DNA lesions140,296. OGG1’s functions are not confined to DNA 

repair, but extend to transcription regulation and signaling297. The overall aim of this thesis 

is to evaluate the therapeutic potential of modulating the activity of OGG1 in cancer and 

inflammation models via small-molecule intervention. 

The specific aims of the thesis are: 

• Characterize TH5487, an in-house developed small-molecule inhibitor that targets 

OGG1’s active site. 

• Study whether inhibiting OGG1 alleviate inflammation by suppressing 

proinflammatory cytokine expression.  

• Examine whether NEIL1 or NEIL2 glycosylases compensate for OGG1 loss of 

function after OGG1 inhibtion. 

• Evaluate OGG1’s potential as an anti-cancer target and describe the effect of OGG1 

inhibitor on cell proliferation and accumulation of DNA damage. 

• Characterize a small-molecule OGG1 activator that allows OGG1 to acquire a novel 

enzymatic function not shown by native OGG1.  

The component papers of this thesis addressed those specific aims by tackling the following 

posed research questions: 

Paper I: 

• Can biochemical, target engagement and cellular profiling identify potent small- 

molecule inhibitors for OGG1 glycosylase? 

• Does TH5487, the hit molecule engage with OGG1 impairing its ability to bind to its 

DNA substrate lesions? 

• Can TH5487 treatment impair NF-κB binding to guanine-rich proinflammatory gene 

promoter regions? 

• Does OGG1 inhibition with TH5487 downregulate the expression of 

proinflammatory genes in cellulo and in vivo?  
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• Does OGG1 inhibition affect the immune cell infiltration in mouse models of 

inflammation? 

Paper II: 

• Does OGG1 inhibition result in accumulation of genomic 8-oxoG after inducing 

oxidative stress? 

• How does TH5487 affect OGG1 free nuclear mobility and OGG1-chromatin binding? 

• Does TH5487 treatment alter OGG1 recruitment kinetics to regions of DNA damage? 

• What is the effect of OGG1 inhibition on generating DNA strand breaks? 

Paper III: 

• What is the therapeutic potential of OGG1 as an anti-cancer target? 

• Does TH5487 selectively suppress cancer cell growth? 

• Does TH5487 treatment induce replication stress?  

• What is the mechanism behind the TH5487-induced proliferation arrest? 

• Is TH5487 active in vivo? Can TH5487 treatment inhibit the growth of xenografts 

tumors in mice? 

Paper IV: 

• Does TH5487 target NEIL glycosylases? 

• Does TH5487 alter the recruitment kinetics of NEIL1 or NEIL2 to laser-induced 

DNA damage regions? 

• Is NEIL1- or NEIL2 -chromatin binding affected in oxidatively stressed cells after 

depleting or inhibiting OGG1? 

• Do more genomic 8-oxoG lesions accumulate in NEIL1-or NEIL2-depleted cells after 

TH5487 treatment? 

Paper V: 

• How does TH10785 affect the activtiy of OGG1 in in vitro biochemical assays?  

• What is the effect of TH10785 on OGG1’s AP lyase activity? 

• What are the reaction products generated after TH10785 treatment?  

• Does TH10785 target OGG1’s active site? 

• Does TH10785 affect OGG1-chomatin binding? 

• Do cells become more dependent on PNKP after TH10785 treatment to complete the 

BER pathway? 
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2.2 METHODOLOGY 
Multidisciplinary methods were used in the component papers of this doctoral thesis. Those 

methods allowed us to address our research questions from different angles including, 

medicinal chemistry, biochemistry, structural biology, molecular biology and pharmacology. 

A thorough description of all the methods used in this doctoral project is available in the 

individual component publications and manuscript of this thesis. Special focus will be given 

to discussing key methods and ethical considerations here. 

2.2.1 Differential scanning fluorimetry (DSF) 
Studying protein-inhibitor interactions is a fundamental objective in preclinical drug 

development projects. Thermal shift assays (TSA) such as differential scanning fluorimetry 

(DSF) and cellular thermal shift assays (CETSA) are widely used methods to evaluate target 

engagement. Thermal shift assays are based on the principle that ligand binding can enhance the 

protein’s thermal stability against denaturation and are thus used to assess whether the ligand 

targets the protein of interest298. 

In DSF, protein unfolding is monitored over a temperature gradient in the presence of 

specialized fluorescent dyes such as SYPRO orange which nonspecifically bind to 

hydrophobic residues of the protein emitting fluorescence. By increasing the temperature, the 

protein starts to unfold exposing its hydrophobic interior. Being accessible to the dye, 

SYPRO orange binds to the protein’s hydrophobic core and emits detectable fluorescence. 

Further elevation in the temperature leads to protein aggregation and dye dissociation. 

Plotting changes in fluorescence as a function of increasing temperature gives a sigmoidal 

curve from which information about the melting temperature (Tm) can be extracted (Figure 

16). By comparing the thermal stability of a native protein to that incubated with a putative 

ligand, one can assess the shift in the melting temperatures (ΔTm) and subsequently evaluate 

target engagement299.  

Among the virtues of DSF is its simplicity, short assay running time and compatibility with 

high-throughput screening of chemical compound libraries. However, it comes with some 

limitations. First, it requires the purification of large amounts of the protein of interest. This 

might be difficult or expensive to achieve. Moreover, since DSF assay is performed using 

purified proteins, it is inherently artificial in nature and lacks the relevant cellular 

environment298. One also needs to check for autofluorescence of the tested compounds. In 

addition, if the investigated compound can bind to both the native and unfolded form of the 
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protein, the calculated ΔTm might be small resulting in underestimating the compound’s 

target engagement ability300. 

 

Figure 16: Schematic illustration for the principle of differential scanning fluorimetry (DSF). DSF 

is used to evaluate target engagement by monitoring protein unfolding over a temperature gradient in the 

presence of a specialized dye that binds to the protein’s hydrophobic residues. Ligand binding stabilizes 

the protein against thermal denaturation resulting in a higher melting temperature (Tm). Created with 

BioRender.com 

2.2.2 Laser microirradiation and live cell imaging  
A multitude of DNA repair factors are involved in the DNA damage response (DDR) to 

signal the presence of DNA damage and to initiate the relevant repair pathway. Fluorescence 

microscopy has provided significant insights into how different DNA repair factors are 

recruited to DNA damage regions to initiate the DDR after inducing global DNA damage 

using ionizing radiation or chemotherapeutics. However, using such global DNA damaging 

agents may not be optimum if the recruitment kinetics of DNA repair factors are to be 

evaluated. Furthermore, examining fixed cells does not allow to study the dynamic changes 

that occurs in live cells over time. Thanks to advancements made in confocal microscopy, 

better understanding of DNA damage inducing laser systems and fluorescent labelling, laser 

microirradiation has become a powerful tool to study DNA repair pathways in live cells. 

For live cell imaging, one needs to generate a cell line expressing the DNA repair factor of 

interest fused to a fluorescent tag. Laser microirradiation is performed using a confocal 

microscope equipped with an integrated laser source and an environmental chamber to 
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control the CO2% and temperature. Targeted DNA damage is induced at sub-micron 

pre-defined regions in the cell nucleus using laser microirradiation (Figure 17). This makes 

it possible to analyze the coordinated steps of DNA repair temporally and spatially at single-

cell resolution providing valuable insights into the kinetics of DNA repair factor recruitment 

and dissociation at sites of DNA damage.  

 

Figure 17: Schematic illustration for the principle of laser microirradiation. A cell line expressing 
the protein of interest fused with a fluorescent tag (e.g., GFP, green fluorescent protein) is generated. 
Sensitizing agents such as Hoechst 33342 or 5-Bromo-2′-deoxyuridine (BrdU) may be employed. Laser 
microirradiation is performed using a confocal microscope equipped with an integrated laser source and 
an environmental chamber to control the CO2% and temperature. Targeted DNA damage is induced at 
sub-micron pre-defined nuclear regions. Fluorescence at the irradiated region is recorded and plotted 
against time to study the recruitment kinetics of the protein of interest to regions of laser-induced DNA 
damage. Created with BioRender.com 

Fusing the fluorescent tag at the N-or C-terminus might affect the activity of the protein of 

interest especially if the active site is located close to one of these ends. Accordingly, one 

needs to carefully plan the plasmid construction and assess the activity of the tagged protein.  

Using laser to induce DNA damage may result in a variety of DNA damage lesion types 

rather than a single one including UV-induced photolesions, oxidative DNA damage, single 

strand breaks and double strand breaks among others301. Thus, several parameters must be 

controlled for laser microirradiation experiments. The laser wavelength being used can 

influence the type of DNA lesions being generated. Moreover, the laser source input power 

affects the complexity of the induced DNA damage.  One also needs to consider if sensitizing 
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agents such as Hoechst 33342, or 5-Bromo-2′-deoxyuridine (BrdU) are to be used or not. 

Using such photosensitizers may allow DNA damage induction at lower laser powers 

resulting in a lower cellular phototoxicity. However, photosensitizers may result in DNA 

damage on their own affecting the cell cycle and the chromatin structure. This can lead to 

undesired effects that need to be taken into account when planning the experiment301–303.  

2.2.3 Fluorescence recovery after photobleaching (FRAP) 
Fluorescence recovery after photobleaching (FRAP) is an advanced microscopy technique 

used to study the mobility of fluorescently tagged proteins in single living cells. FRAP 

experiments can provide information about the diffusion kinetics of the DNA repair factor of 

interest and whether it is freely mobile, or chromatin bound.  Since it entitles live imaging, a 

cell line expressing the fluorescently tagged protein of interest needs to be established.  

A FRAP experiment typically begins with irreversibly photobleaching a pre-defined nuclear 

region using a focused laser beam of high intensity. This creates a relatively darker region in 

the otherwise fluorescent specimen. Subsequently, fluorescent molecules diffuse from the 

surrounding non-bleached region into the bleached area resulting in fluorescence recovery 

(Figure 18). By plotting the fluorescence changes that occur over time in the bleached area, 

one can determine how much the mobile fraction is based on the initial and final fluorescence 

intensities. From this plot, more information can be extracted to describe the speed of 

fluorescence recovery such as the time needed to reach the maximal fluorescence intensity 

(Tmax) and the time needed to recover half the maximal plateau fluorescence intensity (T1/2 

or half-life)304.  

FRAP is more suitable for adhesive cell lines. Suspension cell lines can be used after cell 

attachment to the surface of culture dishes coated with poly-L-lysine for instance. Living 

cells often move during the course of the experiment. Thus, it is recommended to compensate 

for this by using an appropriate alignment algorithm. In addition, bleaching may occur over 

time during the experiment. Accordingly, the overall loss in fluorescence must be accounted 

for when analyzing the FRAP data304.  
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Figure 18: Schematic illustration for the principle of fluorescence recovery after photobleaching 

(FRAP). A cell line expressing the protein of interest fused with a fluorescent tag (e.g., GFP, green 

fluorescent protein) is generated. FRAP is performed using a confocal microscope equipped with an 

integrated laser source and an environmental chamber to control the CO2% and temperature. A pre-defined 

nuclear region is irreversibly photobleached using a focused laser beam of high intensity. Fluorescent 

molecules diffuse from the surrounding non-bleached region into the bleached area resulting in 

fluorescence recovery. Monitoring the fluorescence intensity of the bleached region over time provides 

insights into how mobile the protein of interest is. Created with BioRender.com 

2.2.4 Ethical considerations 
In vivo animal experiments described in papers I and III were done in compliance with the 

ethical guidelines and approved by the regional Ethical Review Committee in Stockholm 

(ethical permit N89/14). In vivo inflammation experiments described in paper I were done at 

the University of Texas Medical Branch (UTMB) in accordance with ethical guidelines of 

the National Institute of Health (NIH), as well as NIH Guide for Care and Use of 

Experimental Animals and approved by UTMB’s Animal Care and Use Committee (approval 

no. 0807044C –2013-2018). In paper III, we included experiments that were done using 

blood samples obtained from healthy donors after signing an appropriate informed consent. 

This was approved by the Ethical Review Committee at the Fuenlabrada University Hospital, 

Madrid, Spain.  No ethical permits were required for papers II, IV and V since experiments 

reported there were done using established cancer cell lines.  
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2.3 RESULTS 

2.3.1 Paper I: Development of a potent small-molecule inhibitor of OGG1 
reveals that targeting OGG1 suppresses the expression of 
proinflammatory cytokines 

Due to the polarity of their binding pocket, targeting DNA-binding proteins with small-

molecule inhibitors has been considered a challenging task305,306. DNA glycosylases were 

often regarded as almost undruggable targets. This was true for OGG1 until potent small-

molecule inhibitors for OGG1 were developed by our work in Paper I as well as by others307 

around the same time. In Paper I, we reported the development of TH5487, a potent 

pharmacologically active OGG1 inhibitor. In addition, we provided proof of concept that 

inhibiting OGG1 may represent a novel anti-inflammatory strategy. 

In Paper I, a fluorescence-based high-throughput biochemical assay was used to screen a 

library of 17,940 compounds. A hit molecule was identified with a median inhibitory 

concentration (IC50) in the low micromolar range (8.6 µM). Further hit expansion efforts led 

to the development of TH5487, a potent OGG1 inhibitor with an IC50 of 342 nM. To evaluate 

target engagement, we performed differential scanning fluorimetry (DSF) and cellular thermal 

shift assay (CETSA). TH5487 treatment was found to stabilize OGG1 against thermal 

denaturation in vitro and in cellular context as well. Structural biology experiments helped 

determine the binding site for the developed series of inhibitors. The X-ray crystal structure of 

murine OGG1 in complex with TH5675, a more soluble analog of TH5487, was resolved 

indicating that the molecule binds to OGG1’s active site. Electrophoretic mobility shift assays 

showed that TH5487 hinders the binding of OGG1 to its substrate lesion in vitro in a dose-

dependent manner validating OGG1 inhibition. In line with this, FRAP assays performed using 

Jurkat A3 acute lymphoblastic leukemia T-cells expressing OGG1-GFP showed that TH5487 

treatment results in higher nuclear mobility of OGG1. This suggests that TH5487 treatment 

impairs OGG1 binding to its oxidized DNA substrate lesions in cellulo. Notably, more genomic 

8-oxoG lesions accumulated in cells pre-challenged with potassium bromate (KBrO3) upon 

treatment with TH5487, as detected by liquid chromatography–tandem mass spectrometry (LC-

MS/MS) further confirming OGG1 inhibition. 

Multiple lines of evidence suggest that OGG1 has a broader scope of functions than its originally 

identified role in BER. It has been reported that upon induction of an inflammatory response 

OGG1 plays a role in mediating transcription of inflammatory cytokines by binding to 8-oxoG 

in gene promoter regions and facilitating the binding of NF-κB, a major transcriptional 
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regulator of inflammatory responses109–111. This prompted us to examine whether OGG1 

inhibition with TH5487 downregulates the expression of proinflammatory cytokines. To test 

this, the expression of a panel of proinflammatory cytokines, C-C and C-X-C chemokines 

was profiled in murine airway epithelial cells (MLE 12) and human small-airway epithelial 

cells (hSAECs) stimulated with tumor necrosis factor-alpha (TNF-α) and lipopolysaccharide 

(LPS). TH5487 treatment decreased the expression of proinflammatory cytokines and 

chemokines in a dose-dependent manner. Mechanistically, chromatin immunoprecipitation 

demonstrated that TH5487 reduces OGG1 binding to gene promoter regions of 

proinflammatory cytokines. The consequential downstream binding of NF-κB to the same 

regions was also reduced in cells stimulated with TNF-α and treated with TH5487. 

To evaluate its potential anti-inflammatory role in vivo, mice were stimulated intranasally 

with TNF-α to induce an inflammatory response. TH5487 was administered intraperitoneally 

prior to the TNF-α challenge in a prophylactic setup as well as post the exposure to TNF-α. 

Long-term TH5487 administration was well-tolerated in mice as they showed no change in 

body weight nor in the level of different haematological and serum parameters after TH5487 

injection. While the expression of several proinflammatory cytokines and chemokines was 

strongly induced by TNF-α, it was suppressed in the mice group treated with TH5487. This 

was translated into lower recruitment of neutrophils and suppressed lung inflammation 

indicating that TH5487 is active in vivo in both inhibiting inflammation and alleviating 

ongoing inflammatory responses.  

In conclusion, we identified in Paper I TH5487, a potent OGG1 inhibitor. We show that 

TH5487 inhibits OGG1’s activity and impairs OGG1-DNA binding in in vitro assays. 

TH5487 engages with OGG1 in thermal shift assays. Notably, TH5487 impairs NF-κB 

binding to the promoter regions of proinflammatory cytokines. This results in suppressing 

proinflammatory gene expression in TNF-α and LPS stimulated cells. Importantly, TH5487 

is well-tolerated in mice. TH5487 shows anti-inflammatory effects in vivo such as reducing 

the expression of inflammatory mediators and perturbing neutrophil infiltration. Thus, 

targeting OGG1 can be a potential beneficial strategy to treat inflammatory conditions. 
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2.3.2 Paper II: Characterizing the effect of TH5487 on OGG1-chromatin 
dynamics, OGG1 recruitment kinetics and double strand breaks   

In Paper II, our goal was to further characterize TH5487 regarding its effect on 8-oxoG 

accumulation, OGG1 recruitment kinetics to regions of DNA damage as well as on OGG1-

chromatin dynamics. To this end, we employed U2OS osteosarcoma cell line as a solid tumor 

cell line in our experiments to complement our findings that have been reported in paper I 

using the hematological T lymphocyte leukemia cell line, Jurkat A3. In Paper II, DNA 

damage was induced globally using potassium bromate as well as locally in laser 

microirradiation experiments.  

To assess the level of genomic 8-oxoG, we performed immunofluorescence experiments 

using an antibody against 8-oxoG. OGG1 inhibition resulted in more 8-oxoG accumulation 

in cells that have been pre-challenged with potassium bromate. We next established a U2OS 

cell line with stable expression of OGG1-GFP to be used in live imaging experiments. FRAP 

assays show that potassium bromate treatment induced a reduction in OGG1 nuclear mobility 

likely due to introducing oxidative DNA damage to which OGG1 bound. Interestingly, 

OGG1 regained its nuclear mobility in TH5487-treated cells that have been exposed to 

potassium bromate indicating that TH5487 impairs OGG1 binding to its substrate DNA 

lesions in living cells. In line with this observation, OGG1-GFP was found to be loosely 

bound to chromatin in an in situ extraction assay following TH5487 treatment.  

To evaluate OGG1 recruitment kinetics, DNA damage was locally induced in laser 

microirradiation experiments and OGG1-GFP recruitment to the sites of laser-induced 

damage was monitored as a function of time. Inhibiting OGG1 with TH5487 led to lower 

recruitment of OGG1-GFP to sites of DNA damage in living cells providing additional 

evidence that TH5487 indeed interferes with OGG1-chromatin dynamics. Furthermore, less 

gH2AX was detected in cells concomitantly treated with TH5487 and potassium bromate or 

menadione as oxidizing agents. This effect was TH5487 concentration-dependent suggesting 

that TH5487 impairs OGG1’s catalytic activity resulting in fewer incisions. 

In summary, our findings in Paper II sheds light on the consequences of OGG1 inhibition 

using TH5487. We show that TH5487 impairs the repair of potassium bromate induced 

8-oxoG lesions and results in fewer incisions using immunostaining assays. Furthermore, the 

inhibitor treatment alters both OGG1 recruitment kinetics and chromatin binding dynamics 

as evident by the results of laser microirradiation experiments and FRAP assays respectively. 
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2.3.3 Paper III: Investigating the potential of TH5487 for cancer therapy 

Genomic instability is regarded as one of the hallmarks of cancer76,80. Multiple factors 

contribute to the inherent high level of DNA damage displayed in cancer cells. On one hand, 

oncogene expression induces replication stress and contributes to oxidative DNA damage by 

disrupting redox homeostasis39,308. On the other hand, cancer cells are characterized by 

impaired DNA repair capacity309,310. Consequently, targeting the DNA damage response 

(DDR) can be therapeutically exploited as an attractive strategy to target cancer cells311. In 

this study, we examined whether targeting OGG1 has an anti-cancer therapeutic potential. 

Since Ras oncogene expression has been reported to generate ROS and oxidative DNA 

damage312,313, we used in Paper III isogenic BJ fibroblasts immortalized by expressing 

human telomerase reverse transcriptase (hTERT) and transformed or not with SV40 large T 

antigen and HRAS G12V314, as a model  to validate OGG1 as an anti-cancer target. Knocking 

down OGG1 with siRNA significantly reduced the cellular viability and clonogenic 

formation ability of the oncogene-expressing cells despite being well-tolerated in the 

immortalized non-transformed cells. Similarly, slower proliferation was observed upon 

depleting OGG1 in A3 acute lymphoblastic leukemia T-cells using doxycycline-inducible 

small hairpin RNA (shRNA) constructs targeting OGG1. Importantly, in vivo experiments 

involving mouse xenografts of A3 cells harbouring the same shRNA construct and luciferase 

showed tumor size regression and enhanced survival after OGG1 depletion. These data 

suggest that OGG1 plays a protective role against oncogene-induced stress in cancer cells 

grown both in vitro and in vivo validating OGG1 as a potential anti-cancer target.  

Resolving the X-ray crystal structure of human OGG1 in complex with TH5487 confirmed 

that the molecule targets OGG1’s active site. A π-stacking interaction was observed between 

the benzimidazolone core of TH5487 and His270 in addition to lipophilic interactions with 

the exo-site residues, Leu323 and Ile152. The amino group of the latter also forms a hydrogen 

bond with the carbonyl oxygen of TH5487.  In addition, a water-mediated interaction was 

observed between the bromine atom of the inhibitor and Ser326. Notably, TH5487 binding 

induces a conformational change in OGG1. TH5487-bound OGG1 adopts a closed 

conformation which makes it inaccessible to its normal substrate DNA lesions.     

We next evaluated the cellular viability of a large panel of cancer and normal cell lines. While 

TH5487 was well-tolerated by normal cells, it suppressed the growth of a broad range of 

cancer cells of different tissues of origin. The proliferative defect observed after OGG1 

inhibition appears to be reversible since releasing TH5487 pre-treated cells into fresh medium 
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enables the cells to resume division suggesting that TH5487 induces a cytostatic effect rather 

than a cytotoxic one. Surprisingly, quantification of genomic 8-oxoG lesions by LC-MS/MS 

did not reveal a major increase in the lesion level after TH5487 treatment although OGG1 

substrate lesions were detected in modified comet assay. OGG1 inhibition was found to 

induce replication stress as evident by accumulation of gH2AX during the S-phase in addition 

to a notable reduction in replication fork speed which likely accounts for the observed 

proliferation arrest. 

To further investigate the mechanism behind TH5487-induced replication stress, RNA 

sequencing was performed for A3 cells after TH5487 or dimethyl sulfoxide (DMSO) 

treatment. Interestingly, a “DNA replication” signature was among the most downregulated 

gene sets as identified by enrichment analysis of the differential gene expression profile. This 

downregulation may not be explained by changes in the cell cycle distribution since 

replicating cells in S-phase were not excluded from the examined cell population. Among 

the downregulated genes are those encoding for the MCM2–7 complex. The promoter of 

MCM4, a DNA replication licensing factor contains one or more binding motifs for SP1 

transcription factor according to the eukaryotic promoter database. It has been reported that 

OGG1 is involved in the recruitment of SP1 to its binding motifs in promoter regions109. This 

prompted us to assess the level of oxidative DNA damage at the SP1 binding motif in MCM4 

promoter after OGG1 inhibition. We observed more oxidative DNA damage in this region 

after TH5487 treatment. This was associated with a mild but significant reduction in the 

expression level of MCM4 mRNA. These data suggest that TH5487 downregulates the 

expression of several DNA replication genes altering the cellular transcriptional profile 

which contributes to replication stress.  

To test if TH5487 suppresses the proliferation of tumor cells in vivo, A3 tumor xenografts 

were monitored in mice after oral TH5487 administration. The tumor growth was not 

suppressed after TH5487 treatment. This is likely explained by the undetectable target 

engagement in CETSA assays on cells derived from the xenografts. Since serum protein 

binding affects drug bioavailability, we examined whether the TH5487 has a high affinity to 

albumin. Indeed, in vitro biochemical assay showed that TH5487 loses its efficacy after being 

incubated with bovine serum albumin suggesting that albumin strongly competes with OGG1 

for the inhibitor molecule. This highlights the need for developing new formulations with a 

better pharmacokinetics profile to effectively target cancer in vivo. 
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In conclusion, our results in Paper III validates OGG1 a potential anti-cancer target. We 

reported structural insights on how TH5487 interacts with the active site of human OGG1. 

TH5487 treatment is selectively toxic to a large panel of cancer cells but not to normal 

immortalized cells. OGG1 inhibition induces replication stress as demonstrated by 

accumulation of gH2AX in S-phase cells. Importantly, TH5487 significantly reduces the 

replication fork speed. Moreover, TH5487 treatment downregulates a set of DNA replication 

genes altering the cellular transcriptional profile. Taken together, our findings suggest that 

OGG1 inhibition is a potential promising approach to target cancer cells. 

2.3.4 Paper IV: Identifying potential backup repair pathways that may 
compensate for OGG1 inhibition 

BER glycosylases show overlapping substrate specificity to some degree. This explains why 

knockout mice lacking a single glycosylase are viable and show no evident disease phenotype 

with exception to thymine DNA glycosylase whose deficiency results in embryonic 

lethality128,249. Since 8-oxoG lesions are readily oxidizable to spiroiminodihydantoin (Sp) 

and guanidinohydantoin (Gh) which are primarily recognized and excised by NEIL 

glycosylases, we were curious whether NEIL1 or NEIL2 can compensate for OGG1 

inhibition. Although 8-oxoG is not one of their major substrates, both NEIL1 and NEIL2 

have been reported to possess some activity towards this lesion in in vitro assays221,223.  

First, we excluded an off-target binding of TH5487 to NEIL1. No thermal stabilization of 

NEIL1 was detected in DSF assays upon incubation with TH5487. We then performed laser 

microirradiation experiments using U2OS cells stably expressing NEIL1-GFP or 

NEIL2-GFP to study NEIL1/2 recruitment kinetics. While an increased and prolonged 

recruitment of NEIL1-GFP to sites of laser-induced DNA damage was observed, NEIL-2 

recruitment in OGG1 inhibitor treated cells was similar to that observed in control cells. 

However, NEIL2 accumulation at sites of DNA damage in TH5487-treated cells was more 

prolonged suggesting that NEIL1 and —to a lesser extent— NEIL2 are potentially recruited 

as backup for OGG1. 

FRAP assays show that NEIL1-GFP nuclear mobility becomes lower after treating U2OS 

cells with TH5487 and menadione, an oxidizing agent known to induce the formation of 

8-oxoG171. Consistently, NEIL1-chromatin binding increases after TH5487 treatment as 

shown by the results of an in situ extraction assay. Importantly, this chromatin retention 

occurs in a TH5487 dose-dependent manner.  



 
 

  
 

43 

To exclude the possibility that the observed phenotypes are due to an off-target effect of 

TH5487, we knocked down OGG1 with siRNA in cells expressing NEIL1-GFP or 

NEIL2-GFP and challenged them with menadione to induce oxidative stress. 

Immunostaining results suggested that OGG1 depletion in oxidatively stressed cells results 

in the accumulation of genomic 8-oxoG lesions. In addition, more retention of NEIL1-GFP 

and NEIL2-GFP at the chromatin was observed in those cells after in situ extraction 

suggesting that NEIL1 and NEIL2 may play a backup role to repair the accumulated oxidized 

guanine lesions following OGG1 depletion.  

Interestingly, the cellular viability of NEIL1- or NEIL2- siRNA knockdown cells after 

TH5487 treatment is slightly improved. This may be explained by the reduced incisions 

detected in those cells by staining for gH2AX which highlights that role of NEIL1 and NEIL2 

in initiating BER of oxidized guanines. Notably, co-treatment of NEIL1- and NEIL2- depleted 

cells with menadione and TH5487 resulted in accumulation of more 8-oxoG lesions in DNA. 

In summary, our work in Paper IV supports a potential backup role for NEIL1 and NEIL2 

glycosylases in OGG1 inhibitor treated cells. This is supported by the altered recruitment of 

NEIL1—and to a lesser extent—NEIL2 in TH5487-treated cells. FRAP and in situ extraction 

assays reveal that NEIL1 and NEIL2 are more tightly bound to chromatin in oxidatively 

stressed cells after OGG1 depletion and inhibition. Furthermore, the high level of genomic 

8-oxoG lesions observed in siRNA NEIL1- and NEIL2-depleted cells after treatment with 

TH5478 and menadione suggests that NEIL1 and NEIL2 potentially compensate for OGG1 

inhibition.  

2.3.5 Paper V: Characterization of a small-molecule activator of OGG1   

Having a fundamental role in repairing one of the most prevalent DNA lesions, OGG1 makes 

an attractive target for drug development. Small-molecule OGG1 inhibitors have been 

recently developed by us315 and others307 and showed promising potential applications in 

inflammation and cancer315–318. Interestingly, the scope of chemical entities targeting OGG1 

is not confined to inhibitors. Recently, small-molecule activators of OGG1 have been 

reported further expanding the range of potential applications of modulating OGG1 

activity319,320. In Paper V, we sought to investigate the mechanism of action of a class of 

small-molecule OGG1 activators.  

Among a set of previously reported small-molecule OGG1 activators319, TH10785 was found 

to strongly engage with OGG1 in DSF assay protecting it against thermal denaturation. To 
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assess the effect of TH10875 on OGG1 activity, we performed an in vitro fluorescence-based 

biochemical assay and followed the reaction progression. An enhancement in the reaction 

rate was observed in a TH10785 dose-dependent manner, with a maximal activity detected 

at 6.25 µM TH10785 corresponding to 4-folds of that obtained with DMSO. However, 

further increasing the concentration of the activator reduced the reaction rate progressively 

back to the control levels resulting in a bell-shaped activity profile.  

Human OGG1 crystal structure in complex with TH10785 indicated that the molecule binds 

OGG1’s active site. The activity of OGG1 active site mutants was not affected by TH10785 

suggesting that it is critical for TH10785 to bind OGG1’s active site to infleunce its 

biochemical activity. Molecular dynamic simulations based on the resolved crystal structure 

suggest a fast desorption of TH10785 from OGG1’s surface. In line with this, studying 

TH10785 binding to OGG1 in a competitive fluorescence polarization assay supported a low 

affinity of TH10785 to OGG1. In living cells, CETSA confirmed that TH10785 modestly 

stabilizes OGG1 against thermal denaturation. Laser microirradiation experiments showed 

that TH10785 treatment resulted in an increased recruitment of OGG1-GFP to regions of 

DNA damage. Moreover, potassium bromate-induced oxidative damage in telomeric regions 

was repaired faster in cells treated with TH10785. Furthermore, FRAP assays showed that 

TH10785 treatment results in higher OGG1-GFP nuclear mobility in cells pre-challenged 

with potassium bromate, suggesting a faster dissociation of OGG1 from oxidized DNA and 

hence faster completion of BER.  

Finally, we hypothesized that simultaneous treatment with TH10785 and PNKP inhibition 

will result in accumulation of a DNA 3´-phosphate intermediate. Since the nick lacks a 

3´-OH, neither DNA polymerases nor ligases would further process this 3´-phosphate 

intermediate resulting in accumulation of DNA strand breaks. To test our hypothesis, we co-

treated U2OS cells with TH10785 and PNKP inhibitor and assessed the levels of gH2AX and 

53BP1 as markers for activated DNA damage response. Indeed, such co-treatment resulted 

in higher levels of gH2AX and 53BP1 as detected by immunofluorescence indicating that 

TH10785 treatment generates a DNA 3´-phosphate intermediate which requires the 

phosphatase activity of PNKP to be further processed. 

In conclusion, we elucidated the mechanism of action of a small-molecule OGG1 activator 

in Paper V both in vitro and in cellulo. In the presence of TH10875, cells appear to be less 

dependent on APE1, and more dependent on PNKP to complete the repair process. OGG1 

activation may have potential implications in conditions characterized by high levels of ROS 
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such as inflammation, cancer and aging among others. This novel concept of small-molecule 

activation opens new avenues to potentially establish new enzymatic functions in DNA repair 

enzymes, potentiate weak functions or recover lost ones through chemical intervention. 

2.4 DISCUSSION AND FUTURE PERSPECTIVES 

2.4.1 Drugging OGG1 glycosylase with small-molecule modulators 

Each human cell is estimated to encounter approximately 70,000 DNA lesions per day124. 

8-oxoG is among the most abundant lesions due to the low redox potential of guanine60,61. 

More oxidative DNA damage is generally induced in cancer due to oncogenic signaling, 

mitochondrial dysfunction, or aberrant metabolism. Oxidative stress is also involved in the 

pathogenesis of inflammation41. 8-oxoG has been the focus of extensive research efforts due 

to its abundancy and mutagenic properties. OGG1 is the major glycosylase that initiates BER 

of 8-oxoG. Having a well-characterized role in BER, OGG1 might make an attractive target 

for drug development.  

No potent OGG1 inhibitors have been reported until very recently. DNA glycosylases were 

often viewed as almost undruggable targets. Targeting DNA-, RNA- and carbohydrate- 

binding proteins with small molecules has been described by Hajduk et al. as a challenging 

task because of the polar or charged nature of their binding pocket305,306. This turns out not to 

be valid for human DNA glycosylases since computational assessment of their druggability by 

Michel et al. reveals that those enzymes have high druggability scores and are indeed 

druggable321.  

Previous attempts to develop OGG1 inhibitors showed moderate success. Donley et al. 

identified five inhibitors from a high-throughput screen322. The identified inhibitors were 

hydrazide-containing molecules. They impaired the formation of Schiff base during OGG1-

mediated catalysis. However, the molecules did not hinder OGG1 binding to 8-oxoG-

containing substrates. Results reported by Donley et al.322 suggest that the developed 

molecules inhibit both the glycosylase and the AP lyase activity of OGG1. However, it is 

more likely that the hydrazide inhibitors interfere with the AP lyase activity only. This is 

supported by the clear reduction in OGG1-induced strand cleavage of AP-site containing 

substrate and Schiff base inhibition after the compound treatment322. In line with this, in 

Paper I we did not observe any target engagement in the DSF assay upon incubating OGG1 

with O8, one of the hydrazide inhibitors developed by Donley et al.322. Moreover, a reduced 

APE1 activity on an AP-site containing substrate pre-treated with O8 was detected in Paper 
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I suggesting that OGG1 might not be the sole target of O8. Nevertheless, the work of Donley 

et al.322 helped pave the way towards more potent OGG1 inhibitors by establishing relevant 

screening and validation assays. 

Recently, drug development efforts succeeded in developing more potent small-molecule 

inhibitors targeting OGG1307,315. In Paper I, we reported the development of TH5487, a 

potent small-molecule active site inhibitor of OGG1. TH5487 binds OGG1 in in vitro 

electrophoretic mobility shift assays hindering its binding to its DNA substrate lesion. 

Differential scanning fluorimetry (DSF) assays validate target engagement demonstrating 

that TH5487 stabilizes OGG1 in vitro protecting it against thermal denaturation. 

Consistently, cellular thermal shift assays (CETSA) confirmed target engagement in cells. In 

line with this, hydrogen-deuterium exchange mass spectrometry suggests that TH5487 

targets the active site pocket of OGG1. 

More structural insights were obtained from the crystal structure of mouse OGG1 in complex 

with TH5675, a more soluble analogue of TH5487, reported in Paper I. X-ray 

crystallography demonstrates that the molecule indeed targets OGG1’s active site. This was 

further confirmed by resolving the crystal structure of human OGG1 in complex with 

TH5487 in Paper III. The resolved crystal structure showed that TH5487 binds OGG1’s 

active site albeit in a different orientation than that of the 8-oxoG substrate. Importantly, 

human OGG1 conformation changes upon binding to TH5487 where it adopts a closed 

conformation which makes OGG1 active site inaccessible to its DNA substrate lesions. This 

may explain the increased nuclear OGG1 mobility detected in FRAP assays in Paper I and 

Paper II as well as the reduced OGG1-chromatin binding observed in in situ extraction 

assays reported in Paper II. Interestingly, Tahara et al. have recently reported dual inhibitors 

of MTH1 and OGG1 expanding the available portfolio of OGG1 inhibitors and adding a new 

tool to explore the role of both MTH1 and OGG1 in maintaining genomic integrity323. 

In Paper V, we provided additional proof of the druggability of OGG1. In this paper, we 

studied the mechanism of action of TH10785, a small-molecule activator of OGG1. Target 

engagement was confirmed by DSF. Importantly, the crystal structures of both mouse and 

human OGG1 in complex with TH10785 were solved where the molecule was found to bind 

OGG1’s active site. Some similarities were observed between TH5487 and TH10785 binding 

orientation. For instance, the cyclohexane ring of TH10785 occupies a deep hydrophobic site 

of OGG1 flanked by Cys253, Leu256 and Met257 in a position similar to that of TH5487. 

This suggests that TH10785 binds to the active site as TH5487, albeit the two molecules have 
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a different mechanism of action. OGG1 activation may have potential implications in 

telomere maintenance, protecting against senescence and aging. 

In conclusion, our work validates OGG1 as a druggable glycosylase either by small-molecule 

inhibitors (Paper I, Paper II and Paper III) or by small-molecule activators (Paper V). This 

provides the research community with new pharmacological tools to study OGG1’s role in BER 

and beyond. Modulating the activity of OGG1 with small molecules can have several potential 

applications in pathologies where OGG1 is involved such as cancer or inflammation. 

2.4.2 OGG1 inhibition as a strategy for treating inflammation 

Despite its mutagenicity, human promoter regions are rich in GC content. Mounting evidence 

suggests that 8-oxoG is not only a mutagenic lesion but can serve as an epigenetic mark to 

regulate gene transcription203,324. A genome-wide analysis reported by Saxonov et al. 

classifies 72% of human gene promoters as regions of high GC content325. Furthermore, 

genes located in genomic regions with high GC content tend to be actively transcribed326. In 

inflammatory conditions, ROS-mediated signaling is involved in regulating the expression 

of proinflammatory genes327–329. Notably, the consensus binding motifs of transcription 

factors NF-κB and specificity factor (Sp1), major orchestrators of inflammatory responses, 

are rich in guanines330,331. In addition, OGG1 deficient mice show a dampened inflammatory 

response and a reduced chemokine and cytokine expression after being challenged with H. 

pylori or lipopolysaccharide (LPS)184,185. These observations suggested that OGG1 may play 

an atypical role in regulating gene transcription. Indeed, mounting evidence indicates that 

OGG1 and 8-oxoG are involved in modulating gene expression332,333,208,111,203,204.  

In Paper I, we hypothesized that OGG1 inhibition with TH5487 can have anti-inflammatory 

effects. In accordance with our hypothesis, human embryonic kidney (HEK) 293T deficient 

in OGG1 displayed lower expression of chemokine C-X-C motif ligand 1 (CXCL1) after 

TNF-α stimulation. This is in line with a similar phenotype reported previously after siRNA-

mediated depletion of OGG1 in mice airway epithelium, where lower levels of 

proinflammatory cytokines were detected after stimulation with a pollen extract allergen or 

TNF-α109,334. Importantly, TH5487 reduced CXCL1 expression following exposure to TNF-α 

in wild-type HEK 293T cells but not in OGG1 knockout cells suggesting that the observed 

phenotype is due to OGG1 inhibition and not the result of an off-target effect of TH5487.  

Challenging murine airway epithelial cells (MLE 12) with TNF-α induced the expression of 

large panel of proinflammatory cytokines as well as C-C and C-X-C chemokines. OGG1 

inhibition with TH5487 suppressed the expression of the same inflammatory cytokines and 
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chemokines. The effect was noted to be TH5487 dose-dependent. Besides, similar 

observations were made after inducing an inflammatory response with LPS. Consistently, 

SU268, a structurally different OGG1 inhibitor reported by Tahara et al.307, dampened 

cytokine expression in MLE 12 cells supporting OGG1’s role in regulating proinflammatory 

gene transcription. Furthermore, TH5487 had comparable effects in human small-airway 

epithelial cells (hSAECs) exposed to TNF-α and LPS, where it suppressed the expression of 

C-X-C and C-C chemokines, as well as TNF and interleukin 6.  

Mechanistically, TH5487 treatment reduced OGG1-chromatin binding in A3 cells as shown 

in FRAP assays reported in Paper I. A comparable effect was observed in FRAP assays and 

in situ extraction assays in Paper II in U2OS cells treated with TH5487 suggesting that 

TH5487 impairs OGG1-DNA binding. In addition, lower recruitment of OGG1 and NF-κB 

to promoter regions of proinflammatory cytokines was observed in Paper I in TNF-α 

stimulated cells treated with TH5487. This is in consistent with previous studies showing that 

OGG1-DNA interactions facilitate NF-κB binding to its response elements promoting the 

expression of NF-κB target genes109,111,110. The observed lower expression of 

proinflammatory cytokines in Paper I is attributed to lower NF-κB binding to the regulatory 

regions of the cytokines as a consequence of lower OGG1 recruitment. This is further 

supported our data showing that O8, an OGG1 inhibitor previously reported by Donley et 

al.322, neither impaired OGG1 binding to its substrate DNA lesion nor affected gene 

transcription. TH5487 treatment did not inhibit the phosphorylation of RelA subunit of 

NF-κB excluding a direct effect of the inhibitor on NF-κB activity. 

In vivo experiments reported in Paper I show that TH5487 is well-tolerated in mice. 

Proinflammatory cytokine expression was suppressed in TNF-α intranasally challenged mice 

when TH5487 was administered prophylactically. This was translated into reduced lung 

inflammation and lower neutrophil infiltration. When TH5487 was administered after 

stimulation with TNF-α, lower neutrophil count was observed in mice airways suggesting 

that the inhibitor interrupts ongoing inflammatory responses. In line with our findings, OGG1 

inhibitor SU268 has been reported to suppress inflammatory responses and improve survival 

of mice during Pseudomonas aeruginosa infection demonstrating that OGG1 inhibition can 

have favourable anti-inflammatory effects335. 

Numerous inflammatory conditions are currently treated with corticosteroids systemically 

and topically336,337. Using OGG1 inhibitors as an anti-inflammatory strategy can have some 

advantages over steroids. While topically administered steroids might cause skin atrophy and 
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mucocutaneous infections as side effects338, long-term oral administration of steroids can 

result in osteoporosis, hyperglycaemia, adrenal suppression and immunosuppression337,339. 

Although long-term administration of TH5487 is yet to be examined, it is unlikely to cause 

similar side effects since it has a different mechanism of action. By suppressing the 

expression of a wide array of proinflammatory cytokines, OGG1 inhibition might show 

higher efficacy. Furthermore, OGG1 inhibitors may result in a favourable anti-inflammatory 

effect when administered prophylactically. One potential side effect of using OGG1 

inhibitors might be inducing mutagenesis arising from G:C → T:A transversions. This needs 

to be carefully examined in future research.  

Taken together, our findings in Paper I indicates that OGG1 plays a key role in regulating 

gene transcription in inflammatory conditions. We provided proof of concept that inhibiting 

OGG1 can have broader implications beyond BER. We introduced to the scientific 

community a novel class of potent and selective OGG1 inhibitors that possess a promising 

anti-inflammatory potential. Future research is recommended to further characterize the 

efficacy and safety of OGG1 inhibitors in different inflammatory disease models. 

2.4.3 Targeting OGG1 as an anti-cancer approach 

Production of reactive oxygen species (ROS) is inherently augmented in cancer cells due to 

a number of factors including oncogene expression such as MYC and RAS, increased 

metabolic rate and mitochondrial dysfunction312,340,313,43,39. Such oxidative stress results in 

accumulation of oxidative DNA lesions in cancer cells341,342. 8-oxoguanine lesions, the major 

substrate for OGG1, are among the most abundant oxidative lesions343,124,125. This prompted 

us to investigate whether OGG1 inhibitor, TH5487, exerts an anti-cancer effect.  

In Paper III, we validated OGG1 as a potential anti-cancer target. Knocking down OGG1 

with siRNA affected cell viability and colony formation of oncogene-expressing cells but not 

immortalized ones. Similarly, shRNA-mediated depletion of OGG1 affected A3 cancer cell 

proliferation in vitro and in vivo. Importantly, OGG1 inhibition with TH5487 impaired the 

cellular proliferation of a broad panel of cancer cells belonging to different tissues of origin 

but was well-tolerated by normal immortalized cells. This observed therapeutic window can 

have favourable implications as it may allow to specifically target cancer cells or reduce toxic 

side effects in normal healthy cells. The viability effects reported in Paper III might 

highlight a potential cancer cell addiction to a functional OGG1 which may be the reason 

why OGG1 knockout mice are mostly cancer free344. This may also explain the relative low 
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frequency of C → A mutation signature in human tumor cells despite the role of oxidative 

stress in promoting tumorigenesis345. 

One method to evaluate the efficacy of OGG1 small-molecule modulators is to assess the 

level of 8-oxoG. The level of 8-oxoguanine has been suggested as a prognostic biomarker for 

cancer risk or as well as a predictive biomarker for sensitivity to cancer therapy346–349. 

However, absolute quantification of 8-oxoguanine proves challenging from a technical point 

of view350–353. To reach a more conclusive picture regarding the level of 8-oxoG, it is 

recommended to combine different detection methods. Accordingly, we examined the level 

8-oxoG using distinct methods namely: LC-MS/MS (Paper I and Paper III), 

immunostaining (Paper II, Paper IV and Paper V), modified comet assay (Paper III and 

Paper V) and qPCR-based assay (Paper III and Paper V). Inducing oxidative stress with 

oxidizing agents such as potassium bromate354,355 and menadione171 has been reported to 

drive the formation of oxidized guanine lesions. Challenging cells with such agents prior to 

or together with TH5487 shows that the inhibitor treatment impairs the repair of genomic 

8-oxoG lesions as detected by LC-MS/MS and immunostaining (Paper I, Paper II, Paper 

IV, and Paper V). This is in agreement with the results of the in vitro biochemical activity 

assay reported in Paper I demonstrating a lower activity of OGG1 after TH5487 treatment. 

In addition, it is supported by the lower OGG1 recruitment to laser-induced DNA damage 

regions observed in Paper II after TH5487 treatment.  

Unexpectedly, the absolute level of 8-oxoG remained close to the background level in A3 

cells after treatment with TH5487 alone as detected by LC-MS/MS although modified comet 

assay did reveal more strand breaks after incubation with purified OGG1 (Paper III). This 

suggests that OGG1 substrates other than 8-oxoG might be accumulating and become 

detectable using the modified comet assay. Accordingly, TH5487-induced proliferation 

defect might be—at least partly—not a direct consequence of 8-oxoG accumulation in DNA 

questioning how applicable it is to employ the total level of 8-oxoG as a biomarker in cancer 

research. 8-oxoG has been reported to be enriched in certain genomic regions rather than 

having a random distribution in the genome. For instance, the promoter regions as well as 5´- 

and 3´-untranslated regions of murine embryonic fibroblasts (MEF) and human non-

tumorigenic epithelial breast cells (MCF10A) are rich in 8-oxoG356–358. This enrichment was 

significantly increased after knocking out OGG1356. In line with this, more 8-oxoG lesions 

were detected in the SP1-binding motif at the promoter regions of MCM4, a DNA replication 

licensing factor. Since irrelevant or misleading results might be obtained after measuring the 
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level of 8-oxoG in the entire genome359, studying of 8-oxoG enrichment at certain genomic 

regions using sensitive methods is recommended. 

Several observations were reported in Paper III explaining the TH5487-induced 

proliferation arrest. Gene expression profiling of TH5487-treated A3 cells revealed 

downregulation of DNA replication genes. This contributed to replication stress, which 

manifested as gH2AX accumulation in S-phase cells. Furthermore, replication fork 

progression was markedly impaired in TH5487-treated cells suggesting that OGG1 inhibition 

induces replication stress. The proliferation arrest induced by OGG1 inhibition or depletion 

was observed to be reversible as the cells resumed normal division after replacing the cell 

culture medium with a fresh one. This suggests that TH5487 is cytostatic rather than 

cytotoxic. 

OGG1 inhibitors might offer some degree of selectivity in targeting cancer cells since there 

was a large therapeutic window observed when determining the median effective 

concentration (EC50) of TH5487 in cancer cell lines and non-transformed cells. This is likely 

due to the high level of replication and oxidative stress encountered in cancer cells39,360. This 

selectivity might offer an advantage over typical chemotherapeutics and thus can potentially 

lead to fewer adverse effects by sparing normal cells. 

Cytostatic drugs might not be effective as monotherapy. Accordingly, TH5487 might be 

combined with other anti-cancer drugs. In this regard, a synergistic effect has been observed 

between TH5487 and methotrexate318. This is explained in light of the ability of methotrexate 

to induce ROS production361–363. Radiotherapy as well as some classical chemotherapeutics 

such as platinum drugs and anthracyclines are reported to induce oxidative stress and 

oxidative DNA lesions364–367. Consequently, one might rationalize that combining those 

therapies with TH5487 might have a favourable anti-cancer outcome. The same might be 

expected on combining TH5487 with MTH1 inhibitors as some inhibitors which belong to 

the latter group have been shown to induce mitotic arrest and 8-oxoG accumulation in 

DNA49,290,292. Whether such combinations are beneficial remains to be validated in future 

research. Combining OGG1 inhibitors with radio- or chemotherapeutics can have a potential 

synergistic outcome. By impairing the repair of the induced DNA damage, OGG1 inhibitors 

may potentiate the effect of the combined DNA damaging agent. However, one needs to 

carefully consider dose-limiting toxicities that may arise from such combinations. 

BER glycosylases have some degree of overlapping substrate specificity128,247. While 8-oxoG 

is not the major substrate for NEIL1 and NEIL2 glycosylases, Parsons et al.223 and Wallace 
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et al.221 reported a weak activity for NEIL1 and NEIL2 respectively, towards this lesion. In 

Paper IV, we observed an increased recruitment of NEIL1 to laser-induced DNA damage 

regions as well as prolonged accumulation of NEIL2 at those sites in U2OS cells treated with 

TH5487. Besides, NEIL1- and NEIL2-chromatin binding increased after OGG1 inhibition or 

depletion. Notably, the level of genomic 8-oxoG increased in NEIL1- and NEIL2- depleted 

cells. Taken together, our results suggest a compensatory role for NEIL1 and NEIL2 upon 

functional loss of OGG1. This might have implications on the efficacy of OGG1 inhibitors 

especially in tumors with high expression levels of NEIL1 or NEIL2.  

To our knowledge, no role for NEIL1 or NEIL2 glycosylases in transcription regulation have 

been identified so far. By acting on Sp and Gh lesions generated upon further oxidation of 

8-oxoG, it is not likely that NEIL glycosylases may compensate for OGG1’s role in 

mediating the transcription of proinflammatory mediators and hence the backup role of 

NEIL1/2 was not observed in Paper I. Furthermore, this backup role was not observed in 

Paper III which might reflect a suboptimal efficiency of NEIL1 or NEIL2 in repairing the 

accumulated damage. Alternatively, the compensatory function of NEIL glycosylases might 

be accompanied with inefficient processing of the downstream BER intermediates. 

Furthermore, the compensatory role of NEIL1 or NEIL2 might have been undetectable in 

Paper III owing to the low level of genomic 8-oxoG lesions detected by LC-MS/MS in A3 

cells following TH5487 treatment.  

Pharmacokinetic profiling of TH5487 in Paper I reveals that the molecule is well-tolerated 

in mice. However, oral administration of TH5487 in subcutaneous A3 xenograft mice in 

Paper III did not result in xenograft growth arrest. No target engagement was observed in 

the xenograft cells. Binding to serum album proteins can be—at least partly—the reason 

behind the non-detectable target engagement and hence the absent in vivo efficacy. The 

absorption, distribution, metabolism, and excretion (ADME) profile of TH5487 reported in 

Paper I reveals very high plasma protein binding. In line with this, OGG1 inhibition in vitro 

was significantly reduced after incubating TH5487 with bovine serum albumin proteins 

suggesting that the molecule has high affinity to albumin proteins. This was not observed in 

in vivo experiments reported in Paper I where the molecule was administered 

intraperitoneally. New formulations with improved pharmacokinetic properties are thus 

needed to be able to effectively target cancer cells via systemic administration. Alternatively, 

TH5487 in vivo efficacy should be evaluated preclinically in different mouse models using 

different routes of drug administration. 
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2.4.4 Concluding remarks 

OGG1-initiated base excision repair has been the focus of a great number of studies, yet there 

is still a pressing need to improve our understanding of the function of OGG1, particularly 

regarding its role in tumor cells as well as how it modulates gene transcription. In this thesis, 

we evaluate the therapeutic potential of modulating the activity of OGG1 in cancer and 

inflammation models via small-molecule intervention. We report the development of 

TH5487, a potent active site inhibitor of OGG1. We show that OGG1 inhibition is a 

promising anti-inflammatory strategy that results in the downregulation of a broad panel of 

proinflammatory cytokines. Furthermore, we provide evidence that OGG1 inhibition induces 

replication stress and proliferation arrest in cancer cells and thus suggests OGG1 as a novel 

anti-cancer target. Moreover, we characterize TH10785, a small-molecule OGG1 activator 

that introduces a novel enzymatic function not reported in native OGG1. 

As for the future of OGG1 inhibitors, characterization of the anti-inflammatory effect of 

TH5487 in preclinical models of inflammation other than LPS- and TNF-α induced lung 

inflammation is currently being sought. Importantly, we are currently working towards 

optimizing the ADME properties of OGG1 inhibitors particularly their solubility and affinity 

to plasma proteins to enhance their target engagement in vivo. This is to be followed up by 

evaluating the tolerability and efficacy of the new optimized compounds in in vivo cancer 

models. Identifying synergistic combination partners for OGG1 inhibitors may help bring 

them closer to the clinic. 

Of particular interest is investigating the effect of the OGG1 activator in in vivo 

physiologically relevant models. For instance, enhancing the activity OGG1 after TH10785 

treatment might prove beneficial in repairing aging-associated DNA damage. Ongoing 

medicinal chemistry efforts are directed towards developing more potent OGG1 activators. 

Using small molecules to introduce new biological functions in existing enzymes could 

potentially also be applicable to many other proteins and therefore could open up a whole 

new area of drug discovery. 

TH5487 and TH10785 represent potent small-molecule OGG1 modulators that can be 

employed to manipulate OGG1 activity and uncover new OGG1 biology in physiologically 

relevant context.  
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