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Foreword

In Lewis Carroll’s Through the Looking-Glass, the Red Queen explained to Alice

the nature of Looking-Glass Land “Now, here, you see, it takes all the running you

can do, to keep in the same place.” Van Valen coined the “Red Queen” hypothesis

where populations have to “run” an evolutionary race in order to stay in the same

place, or else go extinct. Within our Digital Universe, we have a Digital Red Queen,

with a race between our ability to create masses of data and our ability to manage it

effectively and efficiently.

Over the last quarter of a century, we have both run this race with our work in the

corporate worlds of Google and Verizon, to the ivory towers of MIT and the

University of Washington. We were both extremely interested in the problems of

data integration at scale within ecosystems and have proposed approaches for doing

so. Naturally, we felt more than a little curious to see what Ed and his team had

produced.

In the decade since our original works on ecosystems and dataspaces, we have

seen new data management needs arise from the mass migration of applications from

batch processing paradigms to real-time processing. This sets the scene for the book

as it introduces “Real-time” dataspaces to enable data flows within ecosystems of

intelligent systems. Within these covers, you will find a technical vision, new

techniques, and deep insight for both theory and practice of dataspaces for real-

time data. The book brings us on a journey from the lab to the field by developing

new pioneering best-effort techniques for real-time data management and validates

their use within an excellent choice of an application domain, not just resource

management but specifically sustainability. This body of work illustrates how the

dataspace paradigm has evolved, and the transformative potential of leveraging data

ecosystems to drive value within intelligent systems. The work goes beyond a purely

technical perspective and exposes the critical social and organizational aspects of

managing data ecosystems for the collective benefit of the participants.

We are delighted to write this foreword to a book that will influence the thinking

on the design of data infrastructures as a key enabler of data ecosystems, intelligent

systems, and smart environments. It sets out a clear path for the design of data
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platforms based on dataspaces with support for best-effort real-time data processing

techniques. This impressive body of work illustrates the power that data-driven

systems have to improve the sustainability of our planet’s complex ecosystems,

both Natural and Digital.

MIT, Cambridge, MA, USA Michael L. Brodie

Facebook AI, Menlo Park, CA, USA

August 2019

Alon Halevy
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Preface

Around 2012 I started to investigate the potential of data-driven intelligent systems

for sustainability. I was (and still am) very motivated by the potential of the Internet

of Things (IoT), data analytics, and artificial intelligence to create intelligent systems

that can contribute to a sustainable society. As a computer scientist with a back-

ground in distributed systems and data management, I felt I could make a modest

contribution to the design and construction of these intelligent systems. There was

significant potential for data-driven and artificial intelligence techniques to power

intelligent systems for sustainability. However, for these approaches to be viable,

they would need to be cost-effective and deployable. Working with my industrial

collaborations, it was clear that a critical barrier to the adoption of intelligent systems

was, and still is, the high upfront costs associated with data sharing and integration.

For decades we have seen the consequences of data silos within Enterprises with

estimates of 50–80% of the costs of data projects going to data integration and

preparation activities. This limits large-scale data management projects to large

organisations that have the necessary expertise and resources. This needs to change

if we want a broad effort for sustainability that enables smaller stakeholders to

engage and leverage the value available in data.

Datafication driven by IoT-based digital infrastructure is leading to an ecosystem

of data which can be exploited to transform our world. Typically, IoT data has the

most value when it can be processed on-the-fly and with low-latency. However, the

current wave of datafication is leading to increasing “data silos.” In 2012, the IoT

was predicted to have 25 billion connected devices by 2020; current estimates are

now for over 75 billion connected devices by 2025. What was evident in 2012, and is

even more apparent today, is that we need a fundamental transformation in how we

manage the data ecosystem surrounding intelligent systems in smart environments.

Traditional approaches to data management will not be sufficient. We need a

paradigm shift as significant as the move to relational data management in the

1970s to provide an alternative to the current top-down, centralised models of data

management.

In the first two decades of the twenty-first century, a recognition emerged among

researchers and practitioners that a new class of information management and
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processing systems was needed to support diverse distributed real-time applications.

Michael Brodie has been a Prophet of the data integration challenges within eco-

systems where thousands of semantically heterogeneous databases need to be

managed and integrated collectively. These information ecosystems necessitate a

transformation in how data is managed and shared among intelligent systems.

Halevy, Franklin, and Maier recognised that in large-scale integration scenarios,

involving thousands of data sources (such as ecosystems), it is difficult and expen-

sive to obtain an upfront unifying schema across all sources. They introduced the

paradigm of Dataspaces that shifts the emphasis to providing support for the

co-existence of heterogeneous data that does not require a significant upfront

investment into a unifying schema. The concepts of ecosystems and dataspaces

were absorbing, and I was excited by the potential of “best-effort” approaches.

I felt there might be a possible connection to the Pareto Principle.

The Pareto Principle (or the 80/20 rule) has wide application in many areas from

economics and market analysis to business strategy, where it has been observed that

20% of the effort delivers 80% of the results. Within computer science, this principle

has been observed within many problems from fixing bugs to writing code. The

principle can help us to prioritise actions, for example, focus on the 20% of software

bugs that cause 80% of the system crashes. The power of the principle has always

fascinated me, and the dataspaces paradigm can unlock its power within the data

realm. The pay-as-you-go model allows participants in the dataspace to focus on

high-value data and tackle the “long tail” of data on an as-needed basis. This was the

genesis of this work.

This book explores the dataspace paradigm as an alternative best-effort approach

to data management with data ecosystems. It establishes the theoretical foundations

and principles of Real-time Linked Dataspaces as a data platform for intelligent

systems, and introduces a set of specialised best-effort techniques and models to

enable loose administrative proximity and semantic integration for managing and

processing events and streams.

Readers of this book will gain a detailed understanding of how the dataspace

paradigm is used to enable data ecosystems for intelligent systems within smart

environments. The reader is brought from establishing the fundamental theory and

the creation of new techniques needed for support services, to the experience gained

from delivering real-world intelligent systems for smart cities, buildings, energy,

water, and mobility.

The book is of interest to three key audiences. First are researchers and graduate

students in the fields of data management, big data, IoT, and intelligent systems with

interest in state-of-the-art techniques for approximate and best-effort approaches to

incremental data management. Second, the book provides useful insights to practi-

tioners that need to create advanced data management platforms for intelligent

systems, smart environments, and data ecosystems. Practitioners will learn about

designing incremental data management architectures and techniques that are

grounded in theory and informed by the experience of rigorous deployments within

real-world settings. Third, researchers and practitioners involved in interdisciplinary
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and transdisciplinary “Smart” projects will gain insights on the design and operation

of data-intensive socio-technical intelligent systems.

The book is structured as follows: Part I: Fundamentals and Concepts details the

motivation and core concepts of Real-time Linked Dataspaces. This part establishes

the need for an evolution of data management techniques to meet the challenges of

enabling a data ecosystem for intelligent systems within smart environments. It

details the fundamental concepts of Dataspaces and the need for specialisation for

processing dynamic real-time data. Part II: Data Support Services explores the

design and evaluation of critical services within the Real-time Linked Dataspace,

including catalog, entity management, query and search, data service discovery, and

human-in-the-loop. Part III: Stream and Event Processing Services details the

design and evaluation of the specialised techniques created for real-time support

services including complex event processing, event service composition, stream

dissemination, stream matching, and approximate semantic matching. Part IV:

Intelligent Systems and Applications explores the use of Real-time Linked

Dataspaces within real-world smart environments by demonstrating its role in

enabling intelligent water and energy management systems through the development

of IoT-enabled digital twins, enhanced user experience, and autonomic source

selection for advanced predictive analytics. Finally, Part V: Future Directions

details research challenges for dataspaces, data ecosystems, and intelligent systems.

Forward-thinking societies will see the provision of digital infrastructure as a

shared societal service in the same way as water, sanitation, and healthcare. With few

exceptions, our current large-scale data infrastructures are beyond the reach of small

organisations who cannot deal with the complexity of data management and the high

costs associated with data infrastructure. It is clear we desperately need new

approaches to support the complex data ecosystems our “smart” society is creating.

This vision demands a fundamental shift in how to design large-scale data ecosystem

infrastructure to unlock the power of a Pareto effect for data. I believe this book is a

step in that direction.

Galway, Ireland Edward Curry

October 2019
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Part I

Fundamentals and Concepts

The first part of this book details the motivation and core concepts of Real-time

Linked Dataspaces. This part establishes the need for an evolution of data manage-

ment techniques to meet the challenges of data ecosystems for intelligent systems. It

details the fundamental concepts of dataspaces and the need for a data platform for

intelligent systems within Internet of Things-based smart environments.



Chapter 1

Real-time Linked Dataspaces: A Data

Platform for Intelligent Systems Within
Internet of Things-Based Smart
Environments

Keywords Data platform · Intelligent systems · Internet of things · Data ecosystem ·

Smart environment · Dataspace

1.1 Introduction

Around 18,000 BCE, Paleolithic tribespeople marked notches into sticks, or bones,

to keep track of trading activity or supplies. The tribespeople would compare the

notches on their prehistoric data storage devices (their tally sticks) to make basic

calculations that would allow them to make predictions such as how long their food

supplies would last. From these early examples, we can trace a gradual evolution of

the ability of humans to store, analyse, and share information.

In the first decades of the twenty-first century, datafication is driving the trans-

formation of our everyday world, from the digitisation of traditional infrastructure

(smart energy, water, and mobility) to the revolution of industrial sectors (cyber-

physical systems, autonomous vehicles, and Industry 4.0), and changes to how our

society works (smart government and cities). The contemporary wave of datafication

is creating smart environments that are powered by digital technologies such as the

Internet of things, big data, and artificial intelligence. Within these smart environ-

ments, intelligent systems are creating data ecosystems with unprecedented levels of

real-time data about our world [1]. A recognition has emerged among researchers

and practitioners that a new class of information management and processing

systems is needed to support diverse distributed real-time data-intensive intelligent

systems. These applications necessitate a transformation in how data is managed and

shared among systems [2] and in how data can be processed on-the-fly and with

low-latency [3]. Both of these requirements are critical if we are to extract the

maximum value from the current wave of datafication, and both topics have a rich

body of ongoing work. However, there is a paucity of research on approaches that

tackle both of these requirements together for the large-scale sharing of real-

time data.

Real-time Linked Dataspaces (RLD) address this need by combining pay-as-you-

go data management with techniques for flexible data integration and real-time
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processing and query. This book establishes the foundations and principles of Real-

time Linked Dataspaces [4] as a data platform for intelligent systems within smart

environments. It investigates the “best-effort” approximate techniques needed to

process real-time data within the dataspace paradigm. The book details state-of-the-

art techniques from artificial intelligence, knowledge graphs, Internet of things, and

advanced stream and event processing to complement the dataspace approach to

effectively and efficiently manage and extract value from data within Internet of

things-based smart environments.

The remainder of this chapter is structured as follows: Sect. 1.2 begins by

establishing the foundations of Real-time Linked Dataspaces with an overview of

intelligent systems, smart environments, Internet of things, data ecosystems, and the

need for a data platform. Section 1.3 introduces the notion of a Real-time Linked

Dataspace and its role as a data platform for intelligent systems within smart

environments. An overview of the structure of the book is provided in Sect. 1.4,

with a summary in Sect. 1.5.

1.2 Foundations

As illustrated in Fig. 1.1, Real-time Linked Dataspaces lie at the intersection of the

fields of Data Management (data ecosystems, pay-as-you-go, knowledge graphs),

Distributed Systems (Internet of things, event and stream processing), Artificial

Intelligence (intelligent systems), and Ubiquitous Computing (smart environments).

These fields of computer science need to be brought together to enable break-

throughs not possible when the fields work in isolation. In this section, we examine

the recent developments in these fields with the rise in importance of data-intensive

techniques and the need to support data sharing between the ecosystems of

interconnected intelligent systems within Internet of Things (IoT)-based smart

environments.

Fig. 1.1 Foundations of Real-time Linked Dataspaces
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1.2.1 Intelligent Systems

Originating from the field of Artificial Intelligence (AI), intelligent systems are

revolutionising many industries and society, including transportation and logistics,

security, manufacturing, energy, healthcare, and agriculture, by providing the “built-

in” intelligence to improve efficiency, quality, and flexibility. An intelligent system

can gather, represent, reason, and interpret data. In doing so, it can learn, extract

patterns and meaning, derive new information, learn from experience, and identify

strategies and behaviours to act intelligently. Contemporary intelligent systems are

usually Internet-connected with an ability to communicate and collaborate with other

systems. Several definitions for intelligent systems exist with some of these captured

in Table 1.1.

Intelligent systems are complex and can be created using a wide range of techniques

from AI, machine learning (supervised, unsupervised, and reinforcement learning),

deep learning, computer vision, natural language processing, to complex event

processing, and knowledge graphs. The inspiration for the design of intelligent systems

is often drawn from ideas and concepts from nature’s problem-solving approaches

across a range of fields, including biology, cognitive science, and neuroscience which

results in many interdisciplinary relationships. The design and construction of intelli-

gent systems is a vibrant area of active research, which is the subject of many excellent

books. The focus of this book is to support the sharing of data between intelligent

systems within an IoT-enabled smart environment.

1.2.2 Smart Environments

Smart environments have evolved from the fields of ubiquitous and pervasive

computing that promote the idea of an information communication technology-

Table 1.1 Definitions of an Intelligent System

Definition References

“An intelligent system is one that uses artificial intelligence

(AI) techniques to offer important services (e.g., as a component of a

larger system) to allow integrated systems to perceive, reason, learn,

and act intelligently in the real world.”

ACM Transactions

on Intelligent Systems

and Technology

“Intelligent systems perform search and optimization along with learn-

ing capabilities.”

[5]

“Intelligent systems connect users to artificial intelligence (machine

learning) to achieve meaningful objectives. An intelligent system is one

in which the intelligence evolves and improves over time, particularly

when the intelligence improves by watching how users interact with the

system.”

[6]

“A system, which is based on approach(es), method(s) or technique

(s) of the artificial intelligence field to perform more accurate and

effective operations for solving the related problems.”

[7]
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enabled physical world. Mark Weiser defined a smart environment as “a physical

world that is richly and invisibly interwoven with sensors, actuators, displays, and

computational elements, embedded seamlessly in the everyday objects of our lives,

and connected through a continuous network” [8]. Several definitions for smart

environments are detailed in Table 1.2. These definitions illustrate the complexity

of the challenge associated with delivering a smart environment. Their realisation

needs contributions from several research fields to be brought together to deliver on

this vision, including distributed computing, mobile computing, location computing,

context-aware computing, wireless sensor networks, human–computer interaction,

ambient intelligence, and artificial intelligence.

In the past decade, smart environments have started to move from a research

vision to concrete manifestations in real-world deployments. As smart environments

are realised, they encounter a number of practical challenges, including the interop-

erability of diverse technology (e.g. legacy systems) [13], meeting the needs of

diverse stakeholders with very broad goals and expectations, and working within the

limited budgets available to invest in infrastructure. The understanding of these

challenges in more detail requires an understanding of how the IoT is enabling

real-time data processing within smart environments.

1.2.3 Internet of Things

A key driver in the development of smart environments is the convergence of

technologies such as the IoT and big data, which is driving the digitisation of

physical infrastructures with sensors, networks, and social capabilities [14]. The

vision of the IoT is a complicated proposition that requires end-to-end distributed

systems from the development of new electronic devices and embedded systems,

new forms of data processing to deal with the volume, variety, and velocity of data

Table 1.2 Definitions of a Smart Environment

Definition References

“On a physical world richly and invisibly interwoven with sensors, actuators,

displays, and computational elements, embedded seamlessly in the everyday objects

of our lives and connected through a continuous network.”

[8]

“An ecosystem of interacting objects, e.g. sensors, devices, appliances and embed-

ded systems in general, that have the capability to self-organize, to provide services

and manipulate/publish complex data.”

[9]

“A physical world interwoven with invisible sensors, actuators, displays, and

computational elements. These computing elements are generally embedded

seamlessly in everyday objects and networked to each other and beyond (the

internet, usually).”

[10]

“One that is able to acquire and apply knowledge about the environment and its

inhabitants in order to improve their experience in that environment.”

[11, 12]

6 1 Real-time Linked Dataspaces: A Data Platform for Intelligent Systems. . .



generated, to enhanced user experiences leveraging cognitive and behavioural

models with new data visualisation and interaction paradigms.

As the IoT enables the deployment of lower-cost sensors, we see more broad

adoption of IoT devices/sensors and gain more visibility (and data) into smart

environments. This results in high volume and high-velocity event streams from

smart environments that need to be processed. IoT-based smart environments

are also generating different types of data with an increase in the number of

multimedia devices deployed, such as vehicle and traffic cameras. The IoT is

driving the deployment of intelligent systems and creating new opportunity in

smart environments:

• Digital Twins: A digital replica of physical assets (car), processes (value-chain),

systems, or physical environments (building). The digital representation

(i.e. simulation modelling or data-driven model) provided by the digital twin

can be analysed to optimise the operation of the “physical twin”.

• Physical-Cyber-Social (PCS): A computing paradigm that supports a richer

human experience with a holistic data-rich view of the smart environment that

integrates, correlates, interprets, and provides contextually relevant abstractions

to humans [14].

• Mass Personalisation: More human-centric thinking in the design of systems

where users have growing expectations for highly personalised digital services

for the “Market of One”.

• Data Network Effects: As more systems/users join and contribute data to the

smart environment, a “network effect” can take place, resulting in the overall data

available becoming more valuable.

Within this context, we are interested in how data created within a smart envi-

ronment can be leveraged by intelligent systems, and how data can be easily shared

within the ecosystem of systems (new and old) and stakeholders.

1.2.4 Data Ecosystems

A Data Ecosystem is a socio-technical system enabling value to be extracted from

data value chains supported by interacting organisations and individuals [15]. Within

an ecosystem, data value chains are oriented to business and societal purposes. The

ecosystem can create the conditions for a marketplace competition among partici-

pants or enable collaboration among diverse, interconnected participants that depend

on each other for their mutual benefit.

The digital transformation is creating a data ecosystem with data on every aspect

of our world, spread across a range of intelligent systems. As illustrated in Fig. 1.2, a

smart environment enabled with IoT data, and contextual data sources, results in a

data-rich ecosystem of structured and unstructured data (e.g. images, video, audio,

and text) that can be exploited by data-driven intelligent systems.

1.2 Foundations 7



There is a need to bring together data from the multiple intelligent systems that

exist within the data ecosystem surrounding a smart environment. For example,

smart cities are showing how different systems within the city (e.g. energy and

transport) can collaborate to maximise the potential to optimise overall city opera-

tions. At the level of an individual, digital services can deliver a personalised and

seamless user experience by bringing together relevant user data from multiple

systems [16]. This requires a System of Systems (SoS) approach to connect systems

that cross organisational boundaries, come from various domains (e.g. finance,

manufacturing, facilities, IT, water, traffic, and waste) and operate at different levels

(e.g. region, district, neighbourhood, building, business function, individual).

Data ecosystems present new challenges to the design of intelligent systems and

SoS that require a rethink in how we should deal with the needs of large-scale, data-

rich smart environments. How can we support data sharing between intelligent

systems in a data ecosystem? What are the technical and non-technical barriers to

data sharing within the ecosystem? How can intelligent systems leverage their data

ecosystem to be “smarter”? Solving these problems is critical if we are to maximise

the potential of data-intensive intelligent systems [1].

1.2.5 Enabling Data Ecosystem for Intelligent Systems

Understanding the data management challenges in more detail requires an appreci-

ation of how the IoT is enabling smart environments. The range of IoT challenges

can be studied based on the three-layered framework by Atzori et al. [17] Layer 1—

Communication and Sensing; Layer 2—Middleware; and Layer 3—Users, Applica-

tions, & Analytics. At the data level, intelligent systems can benefit from leveraging
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Layer 4 – Intelligent Apps, Analy�cs, and Users
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(including legacy systems)

Predictive 

Analytics

Situation 
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Decision 

Support

Digital
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Learning
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Fig. 1.2 Four-layered framework to enable data ecosystems for intelligent systems within

IoT-based smart environments [4]
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data from multiple systems within the smart environment. However, many of the

data management and sharing activities are currently performed at the application

layer within IoT deployments. We elaborate a four-layered framework to enable data

ecosystems for intelligent systems within IoT-based smart environments that builds

on the work by Atzori et al. [17]. As illustrated in Fig. 1.2, we introduce a fourth

layer between the Middleware and Application layers to support data management

and sharing activities. The four-layered framework for enabling data ecosystems for

intelligent systems consists of:

• Layer 1—Communication and Sensing: An essential requirement is an infra-

structure of communication and sensing that maps the world of physical things

into the world of computationally processable data.

• Layer 2—Middleware: Middleware abstracts the application developers from

the underlying technologies. Data distribution, processing, and access to legacy

information systems take place at this layer.

• Layer 3—Data: There is a need to enable data management and sharing activ-

ities, including managing schema and entities, accessibility, access control, data

quality, and licensing take place at this layer.

• Layer 4—Intelligent Applications, Analytics, and Users: Users expect

IoT-based analytics and applications that present the data gathered and analysed

in an intuitive and user-friendly manner using new visualisations and user

experiences to ensure cognitive-friendly smart environments.

Our key addition is Layer 3—Data, which requires the development of data

infrastructure to support the sharing and management of data among systems in

the ecosystem. Platform approaches have proved successful in many areas of

technology, and the idea of large-scale “data” platforms are touted as a possible

next step. A data platform focuses on secure and trusted data sharing amongst a

group of participants (e.g. industrial consortiums sharing private or commercially

sensitive data) within a clear legal framework. Within a smart environment, a data

platform would support continuous, coordinated data flows, seamlessly moving data

among intelligent systems.

1.3 Real-time Linked Dataspaces

In this book, we advocate the use of the dataspace paradigm to support the sharing of

data between intelligent systems within IoT-enabled smart environments. The

dataspace approach recognises that in large-scale integration scenarios, involving

thousands of data sources, it is difficult and expensive to obtain an upfront unifying

schema across all sources [2]. Dataspaces are not a data integration approach [19];

they shift the emphasis to providing support for the co-existence of heterogeneous

data that does not require a significant upfront investment into a unifying schema.

Data is integrated on an “as-needed” basis with the labour-intensive aspects of data

integration postponed until they are required. Dataspaces reduce the initial effort

required to set up data integration by relying on automatic matching and mapping

1.3 Real-time Linked Dataspaces 9



generation techniques. This results in a loosely integrated set of data sources. When

tighter semantic integration is required, it can be achieved in an incremental “pay-as-

you-go” fashion by detailed mappings among the required data sources.

The Real-time Linked Dataspace (RLD) is a platform for data management for

intelligent systems within smart environments that combines the pay-as-you-go

paradigm of dataspaces, linked data, and knowledge graphs with entity-centric

real-time query capabilities [4]. In order to enable the dataspace principles to support

real-time data processing, we created a specialised dataspace support service for

loose administrative proximity and semantic integration for event and stream sys-

tems. This requirement forms the foundation of the techniques and models used to

process events and streams within RLD.

The RLD contains all the relevant information within a data ecosystem including

things, sensors, and data sources and has the responsibility for managing the

relationships among these participants. The RLD goes beyond a traditional

dataspace approach by supporting the management of entities within the data

ecosystem as first-class citizens along with data sources, and it extends the dataspace

support platform with real-time processing and querying capabilities. Figure 1.3

illustrates the architecture of the RLD with the following central concepts:

Catalog
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Index
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Analytics
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Digital
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Fig. 1.3 Real-time Linked Dataspace architecture [4]
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• Support Platform: Responsible for providing the functionalities and services

essential for managing the dataspace. Support services are grouped into data

services and stream and event services.

• Things/Sensors: Produce real-time data streams that need to be processed and

managed. Things in a smart environment range from connected personal devices

and sensors to connected cars and manufacturing equipment.

• Data Sources: Data can be available in a wide variety of formats and accessible

through different system interfaces. Some examples of data sources include

building management systems, energy and water management systems, personal

information systems, enterprise databases, weather forecasts, and (linked)

open data.

• Managed Entities: Actively managed entities within the data ecosystem, includ-

ing their relationship to participating things, data sources, and other entities in

the RLD.

• Intelligent Applications, Analytics, and Users: Interact with the RLD and

leverage its data and services to provide data analytics, decision support tools,

user interfaces, and data visualisations. Applications/users can query the RLD in

an entity-centric manner, while users can be enlisted in the curation of the data

and entities via the Human Task service.

The RLD has been used as a data platform to support the development of

intelligent applications within a range of IoT-based smart environments including

smart home, school, office building, university, and airport [16]. Within these

environments, a data platform needs to support a wide range of end-users with

different interests and priorities; from corporate managers looking for data to

improve the performance of their business to software engineers developing intelli-

gent applications for smart environments (see Fig. 1.4).

1.4 Book Overview

This book brings together the body of work on Real-time Linked Dataspaces and

structures it (as illustrated in Fig. 1.5) into four parts:

• The first part of the book details the motivation and core concepts of Real-time

Linked Dataspaces. This part explores the need for an evolution of data manage-

ment techniques to meet the challenges of data ecosystems for intelligent systems.

Chapters in part I cover knowledge sharing among intelligent systems in data

ecosystems, fundamentals of the dataspace approach to data management, and

introduce the Real-time Linked Dataspace concept and its role as a data

platform for intelligent systems within IoT-enabled smart environments.

1.4 Book Overview 11



• The second part of the book explores the essential data management support

services provided by the Real-time Linked Dataspace. Part II contains chapters

that detail data services, including catalog, entity management, query and search,

data discovery, and human tasks.

• The third part of the book explores advanced stream and event processing support

services for Real-time Linked Dataspaces. Chapters detail advanced techniques

for approximate and best-effort stream and event processing services for

dataspaces including quality of service, complex event processing, dissemination

of IoT streams, and approximate semantic event matching.

• The fourth part of the book explores the use of Real-time Linked Dataspaces

within real-world smart environments. The chapters in this part demonstrate the

role of the Real-time Linked Dataspace in enabling intelligent water and energy

management systems through the development of IoT-based digital twins and

intelligent applications, IoT-enhanced user experience, and autonomic source

selection for advanced predictive analytics.

• The final part of the book discusses what is required for the widespread adoption

of the Real-time Linked Dataspace approach and details a future research agenda

for dataspaces, data ecosystems, and intelligent systems.

Personalised Dashboards

Interactive Public Displays 

Alerts and Notifications

Fig. 1.4 Intelligent applications built using the Real-time Linked Dataspace [16]
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1.5 Summary

In this chapter, we have established the growing importance of intelligent systems as

our society undergoes a digital transformation. Internet of Things enabled smart

environments will generate vast amounts of data that create new opportunities for

intelligent systems. This book postulates the use of the dataspace data management

paradigm as the core of a data platform to enable data ecosystems for intelligent

systems.
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Chapter 2

Enabling Knowledge Flows in an Intelligent

Systems Data Ecosystem

Edward Curry and Adeboyega Ojo

Keywords Intelligent systems · Data ecosystem · Open systems · Digital twins ·

Internet of Things · Data platforms · Smart environment

2.1 Introduction

In data ecosystems, vast amounts of data move among actors within complex

information supply chains that can form in different ways around an organisation,

community technology platforms, and within or across sectors. This chapter

explores the role a data ecosystem can play in the design of intelligent systems to

support data-rich Internet of Things (IoT)-based smart environments. The chapter

examines different elements of an intelligent systems data ecosystem that are critical

to understanding the data management and sharing challenges they present.

In Sect. 2.2, we establish the foundations of an intelligent systems data

ecosystem and explore the increasing role data is playing in the design of intelligent

systems. Section 2.3 details the challenge to support the exchange of knowledge

within open systems in dynamic environments, with Sect. 2.4 outlining the

Knowledge Value Ecosystem (KVE) Framework to support knowledge sharing.

Sections 2.5, 2.6, and 2.7 explain the framework in more detail and how knowledge,

value, and ecosystem barriers are overcome. A pay-as-you-go iterative boundary

crossing process to overcome these barriers is discussed in Sect. 2.8. Section 2.9

details the requirements for data platforms to support the sharing of data

between intelligent systems within Internet of Things-based smart environments

and a summary is provided in Sect. 2.10.

2.2 Foundations

As we begin the third decade of the twenty-first century, we are at the beginning of a

great wave of convergence of enabling technologies from the Internet of Things

(IoT), 5G, high-performance computing, and edge computing to big data, cloud
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computing, and Artificial Intelligence (AI). Smart environments are generating

significant quantities of data from digital infrastructure that is driving a new wave

of data-driven intelligent systems. Over the last decade, the term “Big Data” was

used by different major players to label data with different attributes. The first

definition, by Doug Laney of META Group (later acquired by Gartner) defined

big data using a three-dimensional perspective: “Big data is high volume, high

velocity, and/or high variety information assets that require new forms of processing

to enable enhanced decision-making, insight discovery and process optimization”

[20]. Loukides [21] defines big data as “when the size of the data itself becomes part

of the problem and traditional techniques for working with data run out of steam.”

Jacobs [22] describes big data as “data whose size forces us to look beyond the tried-

and-true methods that are prevalent at that time”. Big data brings together a set of

data management challenges for working with data under new scales of size and

complexity. Many of these challenges are not new. What is new, however, are the

challenges raised by the specific characteristics of big data related to the three V’s:

• Volume (amount of data): Dealing with large scales of data within data processing

(e.g. healthcare and logistics)

• Velocity (speed of data): Dealing with streams of high-frequency incoming real-

time data (e.g. sensors and IoT devices)

• Variety (range of data types/sources): Dealing with data using differing syntactic

formats (e.g. spreadsheets, XML, DBMS), schemas, and semantic meanings

(e.g. Enterprise Data Integration).

The V’s of big data challenge the fundamentals of existing technical approaches

and require new forms of data processing to enable enhanced decision-making,

insight discovery, and process optimisation. As the big data field matured, other

V’s have been added, such as Veracity (documenting quality and uncertainty) and

Value. The value of data within a smart environment can be considered in the

context of the dynamics of knowledge-based organisations [23], where the processes

of decision-making and organisational action are dependent on the process of sense-

making and knowledge creation.

Through the generation and analysis of data from the smart environment, data-

driven systems are transforming our everyday world. From the digitisation of

traditional infrastructure (smart energy, water, and mobility), the revolution of

industrial sectors (smart autonomous cyber-physical systems, autonomous vehicles,

and Industry 4.0), to changes in how our society operates (smart government and

cities). At the other end of the scale, we see more human-centric thinking in our

systems where users have growing expectations for highly personalised digital

services for the “Market of One”.

The digital transformation is creating an ecosystem with data on every aspect of

our world spread across a range of information systems. Data ecosystems present

new challenges to the design of intelligent systems that require a reconsideration of

how we deal with the data management needs of large-scale, data-rich smart

environments. Intelligent systems need to support openness, flexibility, and

dynamicity [24] with the ability to deal with incremental change at minimum cost.
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To understand the emerging data management challenges, we explore the design of

intelligent systems within smart environments and the need to support knowledge

flows within data ecosystems.

2.2.1 Intelligent Systems Data Ecosystem

Within a data ecosystem, participants (individual or organisation) can create new

value that no single participant could achieve by itself [25]. A data ecosystem can

form in different ways, around an organisation, a community of interest (music), a

geographical location (city), or within or across industrial sectors (manufacturing,

pharmaceutical). In the context of a smart environment, the data ecosystem metaphor

is useful to understand the challenges faced with the cross-fertilisation and exchange

of knowledge from different intelligent systems within the environment.

A key challenge within the design of intelligent systems is the need to extract

valid and accurate insights from the data generated by a smart environment to make

useful and meaningful decisions for business and society. Figure 2.1 details the data

ecosystem for a connected autonomous vehicle where a community of interacting

information systems share and combine their data to provide a holistic functional

view of the car, passengers, city mobility, and service and infrastructure providers.

Data may be shared about the current operating conditions of the vehicle, traffic

flows, or context of the passengers (e.g. a family on holiday or a business executive

moving between meetings) to support real-time decision-making, personalised dig-

ital services, or data on past observations to improve learning processes.

An intelligent systems data ecosystem (see Fig. 2.2) describes a community of

interacting information systems that can share and combine their data to provide a
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functional view of the environment [1]. The ecosystem supports the flow of data

among systems, enabling the creation of data value chains to understand, optimise,

and reinvent processes that deliver insight to optimise the overall environment. In a

data value chain, information flow is described as a series of steps needed to generate

value and useful insights from data [15]. Systems within the ecosystem can also

come together to form a System of Systems.

2.2.2 System of Systems

The need for multiple intelligent systems within a smart environment to work

together is becoming a standard requirement. Sharing data among intelligent systems

is critical if we are to extract the maximum value from IoT-based smart environ-

ments. Smart cities are showing how different systems within the city (e.g. energy

and transport) can collaborate to maximise the potential to optimise overall city

operations [26]. Digital services are expected to deliver a personalised and seamless

user experience by bringing together relevant user data from multiple systems

[16]. Building these systems requires a System of Systems (SoS) approach to

connect systems that cross organisational boundaries, come from various domains,

(e.g. finance, manufacturing, facilities, IT, water, traffic, and waste) and operate at

different levels (e.g. region, district, neighbourhood, building, business function,

individual). The joint ISO/IEC/IEEE definition of an SoS is that it “brings together a

set of systems for a task that none of the systems can accomplish on its own. Each

constituent system keeps its management, goals, and resources while coordinating

within the SoS and adapting to meet SoS goals” [27]. Maier [28] identified a set of

characteristics to describe an SoS:
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• Operational Independence: Constituent systems can operate independently from

the SoS and other systems.

• Managerial Independence: Different entities manage the constituent systems.

• Geographic Distribution: Is the degree to which a system is widely spread or

localised.

• Evolutionary Development: The SoS, and its behaviour evolves, requiring

changes to system interfaces to be maintained and kept consistent.

• Emergent Behaviour: New emergent behaviour can be observed when the SoS

changes.

There are many systems engineering challenges in bringing together the constit-

uent systems into an SoS at the data, service, process, and organisational levels.

Many of the above characteristics of an SoS give us insights into the knowledge,

value, and ecosystem boundaries that exist in bringing an SoS together, and the

different types of interests possible at management and operational levels of systems.

At the data level, intelligent systems can benefit from leveraging data from the

availability of large volumes and variety of data and streams in the smart environ-

ment, which can be used to fuel intelligent, evidence-based decision-making.

2.2.3 From Deterministic to Probabilistic Decisions

in Intelligent Systems

When it comes to making decisions in intelligent systems, there are two general

approaches: deterministic (model-driven) and probabilistic (data-driven). A critical

difference between the approaches can be explored by considering the costs and

level of reliability and adaptability they provide within intelligent systems. There is a

tension between reliability, predictability, and cost [29]: usually the more depend-

able and reliable the intelligent system needs to be, the more cost is associated with

its development. Typically, we can see deterministic systems as reliable but with

high costs to develop and adapt, and probabilistic as low cost to build and adapt, but

less reliable. Take the example of the autonomous connected car, where we have the

strict requirements of safety-critical autonomous driving systems (where a failure

may lead to loss of life or serious personal injury) to the “good enough” requirements

of the infotainment systems (where a failure is acceptable and merely an inconve-

nience to the user).

Within early smart environments, the level of data available was limited due to

the high cost of digitisation. Sensors were expensive to purchase and install,

resulting in the prudent use of resources. Conventional intelligent systems typically

targeted “high-value” opportunities where the cost savings and benefits could justify

the high cost of investment needed. Often these would be safety- or mission-critical

systems that required higher levels of reliability. Due to the lack of sensor data and

the need for high levels of reliability, deterministic approaches were an obvious

choice for “conventional” intelligent systems. In this approach, the environment is
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optimised based on a formal deterministic model where a set of rules and/or

equations detail the decision logic for the intelligent system that is used to control

the activity in the environment efficiently and predictably. Adapting the intelligent

system to meet changes in the environment is a costly process as the model, and its

rules, need to be updated by expert systems engineers.

In the probabilistic approach, the core of the decision process is a statistical model

that has been learnt from an analysis of “training” data to “discover” the structure of

a decision model automatically from the observed data (e.g. driver behaviour). Thus,

a fundamental requirement of data-driven approaches is the need for data to fuel the

training of the algorithms. A lack of data, and training data, within a smart environ-

ment has limited the use of data-driven approaches.

As the IoT is enabling the deployment of lower-cost sensors, we are seeing more

extensive adoption of IoT devices/sensors and gaining more visibility (and data) into

smart environments. Smart environments are generating different types of data with

an increase in the number of multimedia devices deployed, such as vehicle and

traffic cameras. The emergence of the Internet of Multimedia Things (IoMT) is

resulting in large quantities of high-volume and high-velocity multimedia event

streams that need to be processed [30]. The result is a data-rich ecosystem of

structured and unstructured data (e.g. images, video, audio, and text) detailing the

smart environment that can be exploited by data-driven techniques. It is estimated

that a single connected car will upload about 25 gigabytes of data per hour, while a

vehicle fitted with an Autonomous Vehicle Imaging and Scanning system generates

and processes about 4 TB of data for every autonomous driving hour (https://www.

datamakespossible.com/evolution-autonomous-vehicle-ecosystem/).

The increased availability of data has opened the door for the use of data-driven

probabilistic models, and their use within smart environments is becoming more and

more commonplace for “good enough” scenarios. As a result, the conventional rule-

based approach is now being augmented with data-driven approaches that support

optimisations driven by machine learning, cognitive and AI techniques that are

opening new possibilities for the design of intelligent systems. For example, pedes-

trian detection is challenging to implement in a rule-based approach. However, deep

learning models for object detection and semantic segmentation using a dash-

mounted camera are highly effective at detecting pedestrians.

Intelligent systems can now adapt to changes in the environment by leveraging

the data generated in the environment within their learning process to improve

performance. If intelligent systems share data on their operational experiences, a

pool of data can be created to improve the overall learning processes of all the

systems, a form of collective AI through the “wisdom of the systems”. Because the

process is data-driven, it can be run and re-run at low cost. This critical role of data in

enabling adaptability and collective machine intelligence makes it a valuable

resource.

Within the context of smart environments, data-driven approaches have been

used to optimise the operation of infrastructure, such as the energy and transportation

systems [31]. However, the adoption of data-driven approaches is about to increase

significantly across a range of industries and sectors with the use of Digital Twins.
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2.2.4 Digital Twins

Within the business community, the metaphor of a “Digital Twin” is gaining

popularity as a way to explain the potential of IoT-enabled assets and smart environ-

ments [32]. A digital twin refers to a digital replica of a physical asset (car),

processes (value chain), system (transport), or physical environment (building).

As illustrated in Fig. 2.3, the digital twin provides a digital representation

(i.e. simulation model or data-driven model) that updates and changes as the

“physical twin” changes. The digital representation provided by the digital twin

can be analysed to optimise the operation of the physical twin.

Digital twins are constructed from multiple sources of data, including real-time

IoT sensors, historical sensor data, traditional information systems, and human input

from domain and industrial experts. With the use of advanced analytics, machine

learning, and AI techniques, the digital twin can learn the optimal operating condi-

tions of the physical twin and optimise the physical twins’ operations in areas such as

performance, maintenance, and user experience. One of the most promising outputs

from a digital twin analysis is the possibility to find root causes of potential

anomalies which can happen (prediction) and improve the physical process

(innovation).

Digital twins can range from human organs such as the heart and lungs to aircraft

engines and city-scale twins. For example, the SmartSantander smart city project has

deployed tens of thousands of IoT-connected sensor devices in large cities across
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Europe [33]. The sensing capabilities of these devices are wide-ranging, including

solar radiation, wind speed and direction, temperature, water flow, noise, traffic,

public transport, rainfall, and parking. The devices provide a digital representation of

the city, which enables visibility into city processes and operations to support

analysis and optimisation.

Datafication is creating an ecosystem of data on every aspect of our world spread

across a range of information systems. In order for digital twins and intelligent

systems to maximise the benefits from the resulting data ecosystems, we need to

rethink how we exchange knowledge among open intelligent systems in dynamic

environments.

2.3 Knowledge Exchange Between Open Intelligent

Systems in Dynamic Environments

The design of intelligent systems, especially ones enabled by IoT, has to accommo-

date the needs of dynamic environments, where system participants continuously

join and leave the environment. Vermesan et al. call this phenomenon “fluid

systems” that are continuously changing and adapting, “in IoT systems it is very

common to have nodes that join and leave the network spontaneously” [34]. This

dynamic nature puts constraints on the assumptions that can be made within the

design of intelligent systems and the assumption of having full understanding or

control over the systems in the environment. This has led to the need for “open”

intelligent systems which can adapt to their environment and learn from its interac-

tion with the changing dynamics of the environment and the different systems

operating within it.

While the term “open” has been frequently used in the literature to describe large-

scale distributed systems, for example, Ciliaet et al. [35], a broad consensus has not

been reached on its definition. Looking to the early works in system theory, we can

draw upon the definition commonly used in this field as a system that has external

interactions in the form of information, energy, or matter transfer through the system

boundary [36]. A boundary here separates the system from its environment. For

example, in biology, a cell exchanges chemicals with its environment through its

membrane, and thus, it is an open system from this perspective.

The concept of boundary objects is established in the literature on knowledge

sharing and reuse. Boundary objects are used to understand and coordinate the

interactions among actors with varying information and knowledge needs to estab-

lish a shared point of reference during interactions [37]. Carlile formulates sugges-

tions for managing knowledge across boundaries and provides the 3-T framework

for knowledge exchange across system boundaries within the area of organisation

science [37]. While Carlile’s framework focuses on the exchange of knowledge

between product development teams (the “systems” in this case), its foundations can

be traced back to the Shannon-Weaver model with implications for information
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systems. The 3-T framework defined the task of knowledge exchange as a task of

crossing three boundaries among systems: syntactic, semantic, and pragmatic. We

interpret these boundaries from Carlile for knowledge exchange among open sys-

tems in dynamic environments and extend them with new boundaries for value

exchange and ecosystem coordination.

In Fig. 2.4, the inverted pyramidal frustum shape shows the spectrum of tasks

between well-known and novel tasks that need to be undertaken to exchange

knowledge within an ecosystem. Systems A and B interact within this spectrum

with correspondence to boundary objects that exist at three levels:

• Knowledge Boundaries: Exist where differences and dependencies among sys-

tems exist at the semantic and the administrative levels. A common lexicon needs

to be developed to transfer and assess knowledge among systems in the classical

sense from Shannon [38]. However, as Shannon noted, a common lexicon may

not always be sufficient to share knowledge among systems. Distinct systems will

have differences and dependencies that are unclear with multiple possible inter-

pretations which create a semantic boundary to knowledge sharing. The admin-

istrative boundary describes how close or far in terms of control are the systems.

A close control means that many assumptions can hold concerning data manage-

ment guarantees (e.g. data consistency, availability, and quality), while a far

control refers to weaker or no guarantees. To cross the knowledge boundary, it

is necessary to develop common meanings to provide a means of sharing and

assessing knowledge at a boundary. This requires new agreements on the trans-

lation of each system to the commonly shared meaning and an agreed upon

protocol for access.

• Value Boundaries: Systems generally serve the interest of their participants, with

different systems serving the different interests of their users. Cultural,

organisational, and social interests can impede the sharing of knowledge among

systems. To overcome the value boundary, it is necessary to develop common
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interests among systems, and their participants, to provide sufficient motivation

for knowledge sharing. The value transformation necessary to create common

interests requires significant practical and political effort, and the value must be

propagated within the ecosystem.

• Ecosystem Boundaries: Ecosystems generally have different levels of

interdependence between systems in both the technical and management sense.

The ecosystem can create the conditions for a marketplace competition among

participants or enable collaboration among diverse, interconnected participants

that depend on each other for their mutual benefit. Another key factor is the

control of key data resources within the ecosystem. Who own the key data

resources? Is the data available to all participants in the ecosystem? Are there

commercial terms of use? A close ecosystem coordination framework would

provide clear answers to these questions, while loose coordination means less

predictability on the behaviour of participants within the data ecosystem. To

overcome ecosystem boundaries, it is necessary to understand and support the

social, political, organisational, and business changes needed for ecosystem

coordination.

The more open, distributed, and heterogeneous the environment becomes, the

more significant these boundaries become, especially the latter ones where openness

may introduce more novelty and uncertainty. Crossing boundaries requires mutual

agreements among participants, which implies cost. The need for mutual agreements

among participants adds to the technical issues an essential social dimension.

Overcoming the differences among systems generates costs to the systems involved

where domain-specific knowledge, as well as the common knowledge used, may

need to be transformed to share and assess knowledge among the systems

effectively.

There is an inherent need to design intelligent systems with the ability to scale and

cross system boundaries. To effectively cross the ecosystem boundary for multiple

systems within an open environment, each system must be able to represent current

and more novel forms of knowledge, learn about their consequences, and transform

their domain-specific knowledge accordingly. Intelligent systems within dynamic

environments need to support the “social” agreement needed to share knowledge

among them. We capture the capabilities needed to overcome knowledge sharing

barriers among intelligent systems in the KVE Framework.

2.4 Knowledge Value Ecosystem (KVE) Framework

In order to cross the three boundaries of sharing knowledge among open intelligent

systems in dynamic environments, we propose the Knowledge Value Ecosystem

(KVE) Framework (Fig. 2.5). The KVE Framework, an extension of the 3-Ts

Framework, tackles each boundary using the following capabilities:
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• Knowledge Transfer and Translation: Knowledge boundaries are crossed by

tackling administrative barriers using capabilities for the transfer of data using

open web standards for data publishing and sharing knowledge as linked data,

while semantic boundaries are crossed with capabilities to establishing common

meanings among intelligent systems using knowledge graphs (see Sect. 2.5.3).

Together, linked data and knowledge graphs can be used to support an incremen-

tal approach to reaching agreements on the transfer and translation of meaning

among multiple intelligent systems.

• Continuous and Shared Value Transformation: Value boundaries are crossed

with capabilities for transforming the interests of individual participants into

common interests within new shared data value chains. The shared data value

chain approach can provide a clear value proposition to support the political effort

necessary from both a business case and an organisational perspective. It is

important that the value created is continuously shared between participants

along the value chain to motivate their contribution and support the sustainability

of the data ecosystem.

• Ecosystem Governance and Collaboration: The nature of the ecosystem, the

participants, and their dynamics will affect the management strategies needed to

support the social, political, and organisational changes needed. Within a well-

functioning data ecosystem, the participants are efficiently and effectively col-

laborating to exchange knowledge to maximise value creation.

• Iterative Pay-As-You-Go Process: Typically, the process of crossing boundaries,

especially ecosystem boundaries, cannot be resolved with a single attempt.

It requires an Iterative Boundary Crossing Process which supports trial and

error in transforming complex knowledge across system boundaries. An iterative

approach can support a learning process to improve the boundary crossing
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capability. Dataspaces provide a pay-as-you-go approach to support incremental

data management within the ecosystem.

Within this approach, there is natural support between the different capabilities as

linked data can support the definition and sharing of knowledge graphs, which can

then both support the creation of value chains in a data ecosystem and motivate the

need for collaboration between participants. The first capabilities (knowledge trans-

fer and translation) can be captured in the technical design of a data platform. The

second (continuous and shared value transformation) requires a higher-level value

transformation among systems together with a cultural transformation of the stake-

holders to promote data sharing and creation of new data value chains among

systems. The purpose of the third capability (governance and collaboration) is to

gradually improve the overall operation of the ecosystem to maximise benefits for all

participants. Finally, the iterative boundary crossing process can support all the

capabilities to improve over time following a pay-as-you-go approach. The align-

ment of the boundaries, barriers, capabilities, and their implementation is detailed in

Table 2.1. We will now introduce each of these capabilities in more detail and

explore how they can be implemented within the design of a data platform to support

knowledge sharing among intelligent systems in a data ecosystem.

2.5 Knowledge: Transfer and Translation

In order to cross the knowledge boundaries of systems, two capabilities are needed:

transfer and translation. Within the KVE Framework, knowledge boundaries are

crossed by using an entity-centric model that establishes common meanings among

systems using knowledge graphs expressed using linked data.

Table 2.1 Boundaries, barriers, and capabilities within the KVE Framework and proposed imple-

mentation within a data platform

Boundary Barrier Capability Data platform implementation

Knowledge Administrative Transfer Linked data

Semantic Translation Knowledge graphs

Value Realisation Transformation Data value chains

Propagation Continuous and shared Value disciplines for data

networks

Ecosystem Resource control Governance Management strategies

Interdependence Collaboration Maximise value creation

Iterative boundary process Pay-as-you-go dataspaces
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2.5.1 Entity-Centric Data Integration

Data integration projects typically focus on one-off point-to-point integration solu-

tions among two or more systems in a customised but inflexible and non-reusable

manner—this limits both the information flow and its oversight among systems to

those that have been integrated. Entity-centric data integration takes a different form

to traditional schema-level integration within the relational model. The entity-centric

data integration model is based on global identifiers representing objects or concepts

that can be reused or reconciled among different datasets (or systems).

Entity-centric data integration facilitates the co-existence of different perspectives

and points of view of entities and a decentralised evolution of the data. At the same

time, the use of linked data vocabularies, and the specification of conceptual models

for a domain under the Resource Description Framework (RDF) model are used to

facilitate the interoperability and semantic integration among different datasets for

specific domains. This entity-centric integration of knowledge graphs using linked

data has a number of virtues to represent large, complex, and heterogeneous con-

ceptual models as detailed by [39–41]:

• Support for the representation of sparse data: RDF(S) is based on a graph data

model, which supports a sparse data model.

• Schema flexibility: RDF(S) datasets are schema-less and can evolve in a

decentralised manner.

• Represent and map to/from other data models: Data in a relational or in other

formats (e.g. CSV) can be represented and systematically mapped to RDF [42].

These characteristics make entity-centric knowledge graphs an ideal approach for

establishing a shared meaning among systems to cross knowledge boundaries. When

knowledge graphs are expressed using linked data, they can be created in a fashion

that allows two systems to be easily linked to each other on the information-level

(data) not the infrastructure-level (system) by focusing more on the conceptual

similarities (shared understanding). The combination of knowledge graphs and

linked data meets many of the FAIR data principles for data management (see

Sect. 2.8), including persistent identifiers, metadata, and open protocols. The

approach provides a means for translating knowledge across the knowledge bound-

aries among systems. It allows separate systems that were designed independently to

be later joined/linked at the edges, for interoperability to be added incrementally

when needed and where cost-effective, and for the meaning of data to be expressed

in a mixture of vocabularies.

2.5.2 Linked Data

In order to cross the administrative boundaries of systems to support data transfer,

we propose the use of linked data. Linked data leverages open protocols and W3C
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standards of the web architecture for sharing structured data on the web. The

fundamental concept of linked data is that data is created with the mindset that it

will be shared and reused by others. The objective is to expose the data within

existing systems but only link the data when it needs to be shared. Linked data

provides a decentralised incremental approach for information sharing based on the

creation of a global information space [43]. Linked data has the following

characteristics:

• Open: Linked data is accessible through a variety of applications because it is

expressed in open, non-proprietary syntactic format.

• Modular: Linked data can be combined (mashed-up) with any other pieces of

linked data. No planning is required to integrate two data sources if they both use

linked data standards.

• Scalable: It is easy to add and connect more linked data to existing linked data,

even when the terms and definitions that are used change over time.

Linked data uses standards, tools, and techniques from work on the semantic web

to facilitate sharing and reuse of data across domains. It primarily uses a graph-based

representation framework for structuring data and uses standard ontology languages

for defining the semantics of data. Ontologies (or vocabularies) provide a shared

understanding of concepts and entities within a domain of knowledge which sup-

ports automated processing for data using semantic web tools. Thus, the use of

linked data at the syntactic level can support the establishment of a common lexicon.

At the semantic level, it can also support the establishment of shared meanings.

Linked data when used together with the dataspace approach provides a frame-

work for a decentralised pay-as-you-go data integration with a standardised data

model representation providing a minimum level of integration and where Universal

Resource Identifiers (URIs) and the Domain Name Systems (DNS) provide a global-

level identification scheme, which facilitates the referencing of data entities among

different datasets. The RDF standard provides a common interoperable format and

model for data linking and sharing on the web. RDF is the basic machine-readable

representational format used to represent information. It is a general method for

encoding graph-based data that is self-describing, meaning that the labels of the

graph describe the data itself.

Linked data uses web standards in conjunction with four basic principles for

exposing, sharing, and connecting data. These principles are:

• Naming: Use of URIs as names to identify things such as a person, a building, a

device, an organisation, an event or even concepts such as risk exposure or energy

and water consumption, simplifies reuse and the integration of data.

• Access: Use of URIs based on HyperText Transfer Protocol (HTTP) so that

people can look up those names—URIs are used to retrieve data about objects

using standard web protocols. For an employee, this could be their organisation

and job classification, for an event, this may be its location time and attendance,

for a device, this may be its specification, availability, and price.
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• Format: When a URI is looked up (dereferenced) to retrieve data, it provides

useful information using a standardised format, ideally, in web standard formats

such as RDF.

• Contextualisation: Include links to other URIs so that more information can be

discovered. Retrieved data may link to other data, thus creating a data network;

for example, data about a product may link to all the components it is made of,

which may link to their supplier.

Using these technologies, we can support data transfer among intelligent systems

by using: (1) URIs to name things; (2) RDF for representing data; (3) Linked data

principles for publishing, linking, and integration; (4) Vocabularies to establish and

share understanding; and (5) Bottom-up incremental agreement.

2.5.3 Knowledge Graphs

Overcoming semantic boundaries among systems requires a common understanding

of meaning among systems for knowledge to be shared. Within the KVE Frame-

work, semantic boundaries are crossed by establishing common meanings among

systems using knowledge graphs expressed using linked data. Knowledge graphs

and linked data can be used to support an incremental approach to reaching agree-

ments on the translation of the meaning of knowledge among systems.

In 2012 Google coined the term “Knowledge Graph” to refer to their use of

information gathered from multiple sources to enrich their services, including search

engine results. The term has also been used to refer to Semantic Web knowledge

bases such as DBpedia or YAGO. As defined by Paulheim [44] a “knowledge graph

(1) mainly describes real-world entities and their interrelations, organised in a graph,

(2) defines possible classes and relations of entities in a schema, (3) allows for

potentially interrelating arbitrary entities with each other and (4) covers various

topical domains.” As illustrated in Fig. 2.6, a knowledge graph is just a set of entities

(e.g. Marie Curie and France), a set of relations between those entities’

(e.g. “knownFor” and “wasResidentOf”), and a set of facts (see Table 2.2). Facts

are the combination of the entities and relationships “Marie Curie, wasResidentOf,

France”. More formally, a knowledge graph is a tuple (E, R, G), where:

• E is a set of nodes, each representing an entity in the domain.

• R is a set of edge labels, each representing a predicate, or a semantic

relation type.

• G � E � R � E is a set of hsubject, predicate, objecti triples, denoting facts.

Knowledge graphs provide a flexible knowledge representation structure that can

describe entities and concepts that may come from multiple systems and domains,

and at varying levels of granularity. Knowledge graphs can be used to create large

knowledge bases (see Table 2.3). However, managing graphs of these sizes poses

several challenges regarding quality, coherence, performance, and interaction.
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Marie Curie

Pierre Curie

France

Paris

Female

7 Nov 1867

4 July 1934

Maria

Skłodowska

wasResidentOf

Radioactivity

Fig. 2.6 Example of a knowledge graph for Marie Curie

Table 2.2 Facts of the

knowledge graphs for Marie

Curie

Subject Predicate Object

Marie Curie hasGivenName Maria

Marie Curie hasFamilyName Skłodowska

Marie Curie hasGender Female

Marie Curie Spouse Pierre Curie

Marie Curie knownFor Radioactivity

Marie Curie wasBornOnDate 7 Nov 1867

Marie Curie wasResidentOf France

Marie Curie diedOnDate 4 July 1934

France hasCapital Paris

Table 2.3 Size of some schema-based knowledge bases [45]

Knowledge graph #of Entities # of Relation types # of Facts

Freebase 40 M 35,000 637 M

Wikidata 18 M 1632 66 M

DBpedia (en) 4.6 M 1367 538 M

YAGO2 9.8 M 114 447 M

Google Knowledge Graph 570 M 35,000 18,000 M
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2.5.4 Smart Environment Example

An example of an entity-centric knowledge graph expressed as linked data within the

context of a smart environment is illustrated in Fig. 2.7. Data and facts are specified

as statements and are expressed as atomic constructs of a subject, predicate, and

object, also known as a triple. The statement “Main Kitchen contains Coffee

Machine” is expressed in the triple format as:

Subject—“Main Kitchen”

Predicate—“contains”

Object—“Coffee Machine”

RDF is designed for use in web-scale decentralised knowledge graph data

models. For this reason, the statement parts need to be identified so that they can

be readily and easily reused. RDF uses URIs for identification, so by expressing the

previous statement in RDF it becomes:

http://data.deri.ie/rooms#r315

http://vocab.deri.ie/rooms#contains

http://water.deri.ie/devices#mr-coffee

URIs that describe the data can be uniformly used across systems, even if they

come from different sources. The knowledge graph structure of the linked data, as

illustrated in Fig. 2.7, easily supports optional parameters, and the evolution of parts

of the data structure does not affect any other related data. The relations are described

on a low-level; therefore, they combine (linking) pieces of data based on their

relation types, and not only on their representation.

rm:contains

foaf:name

water:consumptionsosa:platform

water:consumption

water:consumptionsosa:platform

rm:contains

“Main Kitchen” 83 L/d

40 L/d“Dishwasher” 16.5 L/d“Mr. Coffee”

h�p://data.deri.ie/rooms#r315

h�p://water.deri.ie/devices#mr-coffeeh�p://water.deri.ie/devices#dishwasher

energy:consumption

50 kWh

Fig. 2.7 Example of data linkage using URIs and RDF vocabularies in a smart environment

2.5 Knowledge: Transfer and Translation 31

http://data.deri.ie/rooms#r315
http://vocab.deri.ie/rooms#contains
http://water.deri.ie/devices#mr-coffee


The flexibility to represent data and to support different relationships is a key

benefit of linked data to support the sharing of data among systems. Linked data’s

use of vocabularies and ontologies is an important tool to establish shared meanings

among different systems incrementally. This capability is critical to cross knowledge

boundaries among systems with the use of knowledge graphs and entity-centric data

integration to support the translation of knowledge.

2.6 Value: Continuous and Shared

The next part of the KVE Framework tackles value boundaries by identifying the

common interests (data value chains) needed to support a value transformation for

systems to share knowledge.We explore value disciplines and data network effects and

how they can create new opportunities for the participants within the data ecosystem.

These value opportunities can be the source of common interest to motivate the social,

cultural, or business transformation needed to support knowledge exchange.

2.6.1 Value Disciplines

A value proposition is shaped by an underlying value discipline which describes

different ways an organisation or system can differentiate itself from competitors. A

strong value proposition can set the strategic focus that enables organisations or

systems to set its vision and objectives. It can then tailor its value disciplines to

match the need exactly. Treacy and Fred Wiersema [46] created a model to describe

three generic value disciplines: (1) Operational Excellence, (2) Product Leadership,

and (3) Customer Intimacy. The use of value disciplines has been explored in the

broader areas of digital value [47], but also more specific areas such as open data

[48]. Within the context of this work, we explore the use of data value disciplines to

understand the value opportunities that are possible from data within a data ecosys-

tem. The value of data within a smart environment can be considered in the context

of the dynamics of knowledge-based organisations [23], where the processes of

decision-making and organisational action are dependent on the process of sense-

making and knowledge creation. Based on existing work [46–48], we identify the

following three value disciplines for the participants (e.g. user, system, or organisa-

tion) of an intelligent systems data ecosystem:

• Utility: Tailors the value proposition to directly support the information needs of

the participants. The objectives and information requirements of the participants

should be defined to determine the usefulness of the data shared within the

ecosystem. The utility can be shared between or can be unique to each participant.

• Performance: Tailors the value proposition to match to the needs of the partici-

pants specifically for improving processes for operational excellence. This can
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result in greater efficiencies with associated cost avoidance. Participants with this

orientation aim to share data which support their primary performance objectives.

• User Intimacy: Tailors the value proposition to directly support the needs of users

within the environment by providing information to enhance personalised user

experiences and services.

2.6.2 Data Network Effects

A network effect is a positive effect described in economics and business where an

additional user of a product or service has a positive effect on the value of that

product/service to others. When a network effect is present, the value of the product

or service increases according to the number of others using it. Robert Metcalfe

popularised network effects (also called network externality or demand-side econ-

omies of scale) within the context of Ethernet as Metcalfe’s law [49]. Within the area

of data, network effects are starting to emerge, although in different forms, at both

the data ecosystem and data product/service levels.

At the ecosystem level, the network effect can be seen as more systems/users join

and contribute data to the data ecosystem; the overall data ecosystem becomes more

valuable for the different value disciplines, see Fig. 2.8. Initiatives such as smart cities

are showing howdifferent sectors (e.g. energy and transport) can share data tomaximise

the potential for optimisation and value return. Data network effects occur at the data

product/service level, where the data product/service becomes smarter (e.g. predictions,

recommendations, and personalisation) as it gets more data from other participants.

Leveraging data network effects requires a learning process within the data produce/

service that uses advanced analytics to extract insights from the collected data. The data

network effect from cross-fertilisation of stakeholder and datasets from different sectors

is a crucial element for advancing the big data economy in Europe [15] and is critical to

support the value proposition of data ecosystems to their participants.

PerformanceUtility

Single

System

Ecosystem
(Data Network 

Effects)

Source 

of Data

Value Discipline

Holistic and 

long-tail insight 

across systems

Global optimisations

Holistic personalised

user journey across 

systems

System-level insight Local optimisations
Personalised

user journey

User Intimacy

Fig. 2.8 Value transformation opportunities across value disciplines at the single system and

ecosystem levels
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2.7 Ecosystem: Governance and Collaboration

In order to understand some of the “political” and organisational issues that occur at

ecosystem boundaries among systems, this section examines the work on business

ecosystems to see how governance and collaboration can support knowledge flows.

The section discusses data ecosystem coordination and the range of possible eco-

system design options.

2.7.1 From Ecology and Business to Data

The term Ecosystem was coined by Tansley in 1935 [50] to identify a basic ecological

unit comprising of both the environment and the organisms that use it. Within the

context of business, James F Moore [51–53] exploited the biological metaphor and

used the term to describe the business environment. Moore defined a business ecosys-

tem as an “economic community supported by a foundation of interacting organisations

and individuals” [53]. A strategy involving a company attempting to succeed alone has

proven to be limited regarding its capacity to create valuable products or services. It is

crucial that businesses collaborate among themselves to survive within a business

ecosystem [52, 54]. Innovation Ecosystems allow companies to create new value that

no company could achieve by itself [55]; often, the ecosystem is centred around the

technology platform or technology leadership of a focal firm.

The business ecosystem perspective is a more holistic way to look at the benefits

of collaboration among companies, or in the case of a smart environment, the

benefits of collaboration among systems. The ecosystem metaphor is, again, a useful

metaphor to describe the data within and surrounding a smart environment. A data

ecosystem is a socio-technical system enabling value to be extracted from data value

chains supported by interacting organisations and individuals [15]. Data ecosystems

can form in different ways around organisations, communities, technology plat-

forms, or within or across sectors. Data ecosystems exist within many industrial

sectors where vast amounts of data move among actors within complex information

supply chains. Sectors with established or emerging data ecosystems include

healthcare, finance [56], logistics, media, manufacturing, and pharmaceuticals.

In natural ecosystems, smart organisms control their energy. In business ecosys-

tems, a smart company manages information and its flows [57]. In data ecosystems, a

smart company extracts the maximum value from the available data. The ecosystem

can create the conditions for a marketplace competition among participants or enable

collaboration among diverse, interconnected participants that depend on each other for

their mutual benefit. Data ecosystems are useful for creating common interests among

systems that are needed for the value transformation required to share data. The benefits

of sharing and linking data across domains and industry sectors are becoming apparent

with the potential for new value opportunities on the Web of Data.

34 2 Enabling Knowledge Flows in an Intelligent Systems Data Ecosystem



2.7.2 The Web of Data: A Global Data Ecosystem

The web is moving from a medium for sharing documents to a medium that can also

be used to share data. Fuelled by the Open Data initiative, the emerging “Web of

Data” means easier access to data for users. Typically, open data is non-textual

material such as maps, genomes, chemical compounds, mathematical, and scientific

formulae. Open data can also include generalised business news, product informa-

tion, and financial data [56] available from an assortment of sources. Demands for

higher levels of transparency have resulted in Open Government initiatives that have

made available large numbers of statistical, financial, and economic datasets for

public consumption. A number of large-scale knowledge bases have been made

available from both private and not-for-profit initiatives, including Google Knowl-

edge Graph, DBpedia, and YAGO, to name a few. The LinkedIn Economic Graph

describes all the data on LinkedIn like companies, members, and jobs, to provide a

digital representation of the global economic activity with a focus on employment

opportunities. The Linked Open Data Cloud represents a large number of interlinked

RDF datasets within the broader ecosystem that is being actively used by industry,

government, and scientific communities [58]. The linked data cloud has been

growing in the past years and provides a foundation upon which applications can

be built. The Facebook Open Graph describes a rich object in a social graph,

simplifying the process of sharing social data on the web. The Schema.org imitative

was founded by Google, Microsoft, Yahoo, and Yandex to create shared vocabular-

ies through an open community process for publishing data. Schema.org vocabular-

ies can be used with many different encodings, including RDFa, Microdata, and

JSON-LD. These vocabularies cover entities, relations among entities and actions,

and can easily be extended through a well-documented extension model. Each of

these initiatives is part of a broader data ecosystem in the emerging Web of Data.

2.7.3 Ecosystem Coordination

Within the KVE Framework, the role of the data ecosystem and data value chains is

to support the value transformations necessary (social, cultural, value) to create new

common interests and value opportunities among intelligent systems. To achieve

this, it is necessary to understand and support the social, political, and organisational

changes needed for coordinating ecosystems. To understand the dynamics of an

intelligent systems data ecosystem we can look into the literature on System of

Systems [28] and Business Ecosystems [59] to enable us to understand the data

ecosystems that can exist [1]. In Fig. 2.9, we can see the different types of data

ecosystems that can form around intelligent systems within a smart environment.

Two critical criteria that influence the design of a data ecosystem and the relation-

ships among participants are:
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• Control of Key Data Resources: Who controls the essential data resources in the

data ecosystem? Does a single “Keystone” [57] actor control the key data

resources that all others depend on? Alternatively, is control of the critical data

resources spread across multiple actors in the data ecosystem?

• Participant Interdependence: The degree to which different participants in the

data ecosystem must interact and exchange data for performing their activities.

Reciprocal interdependence requires high levels of coordination among the

participants, while pooled interdependence enables loose coupling among

participants.

Drawing inspiration from the SoS classification by Maier [28] (including Virtual,

Collaborative, Acknowledged, and Directed) and the business ecosystem topology

by Koenig, we can (see Fig. 2.9) consider the different types of data ecosystems [1]

that may exist within a smart environment and the nature of the relationships among

the participants.

• Directed Data Ecosystems: Centrally controlled to fulfil a specific purpose.

Typically found within an organisation setting or following a keystone model.

Participants within a directed data ecosystem maintain an ability to operate

independently, but their normal operational mode is subordinated to the centrally

managed purpose of the data ecosystem.

• Acknowledged Data Ecosystems: Have defined objectives and pooled dedicated

resources. The constituent systems retain their independent ownership and objec-

tives. Changes in the data ecosystem are based on collaboration among the

distributed participants.

• Collaborative Data Ecosystems: Participants interact voluntarily to fulfil an

agreed-upon central purpose. The primary players collectively decide the means

of enforcing and maintaining standards among the federations of participants.

Directed 

Data Ecosystem

(Organisational)

PooledReciprocal

Decentralised

Centralised

Control of Key 

Data Resources

Type of Interdependence

Collaborative 

Data Ecosystem

(Federation) 

Virtual 

Data Ecosystem

(Coalition)

Acknowledged 

Data Ecosystem

(Distributed)

Fig. 2.9 Topology of data ecosystems [1]. Adapted from [59, 28]
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• Virtual Data Ecosystems: Have no central management authority and no centrally

agreed-upon purpose. Bottom-up coalitions of participants emerge from a virtual

data ecosystem to pool decentralised resources to achieve specific goals.

Within a well-functioning data ecosystem, the participants are efficiently and

effectively sharing across knowledge, value, and ecosystem boundaries. The nature

of the ecosystem and the systems and their dynamics will affect the design and

operation of the data ecosystem. To enable an intelligent systems data ecosystem, it

is clear we will need to rethink some of the fundamentals of current intelligent

system design approaches regarding governance, economics, and technical

approaches.

2.7.4 Data Ecosystem Design

Several ecosystem design characteristics are detailed in Table 2.4. It is worth

considering that multiple data ecosystems could exist at one time, and the operation

of a data ecosystem can change depending on the circumstances. Concerning the

design of intelligent systems, these design characteristics can affect the style of

infrastructure that is needed to support data sharing within the data ecosystem, from

data provided by a single dominant actor on their proprietary infrastructure, to a

community, pooling their data in a managed open source data platform.

Table 2.4 Data ecosystem design space

Design characteristics Solution design space

Governance Control Centralised Decentralised

Interdependence Reciprocal Pooled

Structure Authoritarian Democratic

Regulation None Enforceable

Independence Controlled Autonomous

Environment Stable Dynamic

Economic Model Pay Free/sharing

Connectivity Keystone Value network

Data market Single-sided Multi-sided

Collaboration Competition Cooperation

Technical Infrastructure Proprietary Open

Data availability Closed Open

Privacy Monitoring Privacy-protecting

Data formats Homogeneous Heterogeneous

Data services Exact Approximate
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2.8 Iterative Boundary Crossing Process: Pay-As-You-Go

The Iterative Boundary Crossing Processes follow a socio-technical approach to

accommodate iterations at crossing system boundaries. A key capability is the need

to support a flexible, iterative approach that facilitates incremental agreements and

investments among stakeholders. Pay-as-you-go data management approaches (such

as dataspaces) are needed for technical concerns, while data ecosystem supports are

needed to facilitate incremental transformations of political and organisational

concerns.

2.8.1 Dataspace Incremental Data Management

A dataspace is an emerging approach to data management that is distinct from

current approaches. The dataspace approach recognises that in large-scale integra-

tion scenarios, involving thousands of data sources, it is difficult and expensive to

obtain an upfront unifying schema across all sources [2]. Within the dataspace

paradigm, data management pushes the boundaries of traditional databases in two

main dimensions [2]: (1) Administrative Proximity, which describes how data

sources within a space of interest are close or far in terms of control; and (2) Semantic

Integration, which refers to the degree to which the data schemas within the data

management system are matched up. Dataspaces shift the emphasis to providing

support for the co-existence of heterogeneous data that does not require a significant

upfront investment into a unifying schema. Data is integrated on an “as-needed”

basis with the labour-intensive aspects of data integration postponed until they are

required. Dataspaces reduce the initial effort required to set up data integration by

relying on automatic matching and mapping generation techniques. This results in a

loosely integrated set of data sources. When tighter semantic integration is required,

it can be achieved in an incremental “pay-as-you-go” fashion by detailed mappings

among the required data sources. Dataspaces are described in further detail in

Chap. 3. We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as

a data platform for intelligent systems within smart environments. The RLD com-

bines the pay-as-you-go paradigm of dataspaces with linked data and real-time

stream and event processing capabilities to support a large-scale distributed hetero-

geneous collection of streams, events, and data sources [4].

The KVE Framework has outlined a high-level approach to support the exchange

of knowledge among intelligent systems within a data ecosystem. In order to realise

the sharing of knowledge between interconnected intelligent systems, there is a need

for a data platform.
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2.9 Data Platforms for Intelligent Systems Within

IoT-Based Smart Environment

Platform approaches have proved successful in many areas of technology [60], from

supporting transactions among buyers and sellers in marketplaces (e.g. Amazon),

innovation platforms which provide a foundation on which to develop complemen-

tary products or services (e.g. Windows), to integrated platforms which are a

combined transaction and innovation platform (e.g. Android and the Play Store).

The idea of large-scale “data” platforms have been touted as a possible next step

for the development of smart environments [1] and data ecosystems. An ecosystem

data platform would have to support continuous, coordinated data flows, seamlessly

moving data among intelligent systems. The design of infrastructure to support data

sharing and reuse is still an active area of research. In order to understand the general

requirements necessary to share data, we examine the “FAIR Data” principles [61]

that have been defined to support data reuse within the scientific community. Then,

to understand the specific data sharing requirements for an intelligent systems data

ecosystem, we examine the data management needs of five different IoT-based smart

environments.

2.9.1 FAIR Data Principles

In order to improve the data infrastructure supporting the reuse of research data, a

group of stakeholders from academia, industry, funding agencies, and research

publishers proposed a set of principles known as the FAIR Data Principles

[61]. The FAIR principles are Findability, Accessibility, Interoperability, and Reus-

ability with a detailed breakdown of the principles provided in Table 2.5. The

objective of the principles is to act as a set of guidelines to data producers and

publishers to maximise the reusability of research data. The FAIR principles are

designed to enable proper data management to support knowledge discovery and

innovation, and the subsequent data and knowledge integration and reuse. The

principles define the goals of good data management and stewardship practices to

improve its reusability. The principles can influence the design of algorithms, tools,

and workflows for research data. The broad application of the principles can lead to a

data research ecosystem that supports extracting maximum benefit from research

investments by ensuring transparency, reproducibility, and reusability. Within the

context of this work, we use the principles as a high-level guide for the design of a

data platform to support knowledge sharing between intelligent systems within a

smart environment.

2.9 Data Platforms for Intelligent Systems Within IoT-Based Smart Environment 39



2.9.2 Requirements Analysis

Over the past years, we have been involved in a number of projects [4, 18, 62, 63]

concerned with next-generation data platforms for intelligent systems within smart

environments. The smart environments focused on intelligent energy and water

management with varying sizes of data ecosystems. The five pilots are:

• Smart Airport: Linate airport in Milan represents large-scale commercial energy

and water consumer for use from washing activities, toilets, restaurants, and

irrigation, flight operations, to safety-critical infrastructure for emergency

response. Linate targets a variety of users, from the company’s employees

(including executives, operational managers, and technical staff), to passengers.

The variety of sensors used in the airport requires the management of heteroge-

neous events and their availability to applications in near-real-time. Significant

contextual data from the airport’s operational legacy systems is needed to process

the events for decision-making.

• Smart Office: The Insight Building was built in the 1990s without a building

management system and has been retrofitted with energy sensors. As typically in

an organisation, Insight has several information systems that run its operations,

including finance and enterprise resource planning, budgeting, and office IT

assets. These enterprise systems can help in identifying energy wastage and

promoting conservation actions within the office.

Table 2.5 FAIR guiding principles for scientific data management and stewardship [61]

To be findable

F1. (Meta)data is assigned a globally unique and persistent identifier

F2. Data is described with rich metadata (defined by R1 below)

F3. Metadata clearly and explicitly includes the identifier of the data it describes

F4. (Meta)data is registered or indexed in a searchable resource

To be accessible

A1. (Meta)data is retrievable by their identifier using a standardised communications protocol

A1.1 The protocol is open, free, and universally implementable

A1.2 The protocol allows for an authentication and authorisation procedure, where necessary

A2. Metadata is accessible, even when the data is no longer available

To be interoperable

I1. (Meta)data uses a formal, accessible, shared, and broadly applicable language for knowledge

representation

I2. (Meta)data uses vocabularies that follow FAIR principles

I3. (Meta)data includes qualified references to other (meta)data

To be reusable

R1. (Meta)data is richly described with a plurality of accurate and relevant attributes

R1.1. (Meta)data is released with a clear and accessible data usage license

R1.2. (Meta)data is associated with detailed provenance

R1.3. (Meta)data meets domain-relevant community standards
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• Smart Homes: The Municipality of Thermi in Greece provides a residential smart

water pilot with a representative sample of ten domestic residences. The target

users are the residents (both adults and children), municipality management, a

developer community for smart home “Apps,” research scientists, and the local

water utility. Data from IoT devices in each home needs to be managed in a near-

real-timemanner to provide feedback to users on their water consumption. Secure

sharing of data with both the research and developer community is needed.

• Mixed Use: The Engineering Building at NUI Galway in Ireland is a state-of-the-

art smart building with significant numbers of sensors and actuators. Target users

include academic staff, managers, technicians, researchers, and students. This

smart environment is designed to be a “living laboratory” where the building

itself is an interactive teaching tool where students can utilise data from the

environment in their projects and research works. Making data easily reusable

by occupants in the environment is an essential requirement.

• Smart School: Coláiste na Coiribe is a newly constructed Irish language second-

ary school. The school accommodates students aged between 12 and 18, together

with teaching and operational staff. The school has been fitted with a commercial

state-of-the-art building management system to manage its energy and water

consumption. A key challenge is to customise the communication of energy

and water data for the diverse range of school stakeholders.

For each of these five smart environments, a system analysis was performed to

identify the functional and non-functional information processing and sharing

requirements. These requirements complement the FAIR principles by including

concrete requirements for data processing, querying, and data ecosystem support,

including the need for iterative, incremental processes. The following common data

platform requirements were identified across the pilots [4]:

• Pay-As-You-Go Data Integration, Accessibility, and Sharing: Each smart envi-

ronment contains potentially thousands of data sources from sensors and things to

legacy information systems. Harnessing this data is critical to enabling the smart

environment. Challenges include the integration of multiple formats and seman-

tics, discoverability and access, and data re-use and sharing in a low-cost and

incremental manner [33, 64–67]. This high-level requirement can be broken

down into a set of technical requirements:

– Standard data syntax, semantics, and linkage: Facilitate integration and shar-

ing, ideally with open standards and non-proprietary approaches.

– Single-point data discoverability and accessibility:Allow the organisation and

access to datasets and metadata through a single location.

– Incremental data management: Enable a low barrier to entry and a pay-as-

you-go paradigm to minimise costs.

• Secure Access Control: Support data access rights to preserve the security of data

and privacy of users in the smart environment. Access control is needed at both

the level of the data source and at the level of the data item (i.e. entity-value).

2.9 Data Platforms for Intelligent Systems Within IoT-Based Smart Environment 41



• Real-time Data Processing and Historical Querying: Each environment requires

support for the real-time processing of data generated from sensors and things

within the environments. This requirement can be broken down into two technical

requirements:

– Real-time data processing: Including ingestion, aggregation, and pattern

detection within event streams originating from sensors and things in the

smart environment.

– Unified querying of real-time data and historical data: Provide applications

and end-users with a holistic queryable state of the smart environment at a

latency suitable for user interaction.

• Entity-Centric Data Views: Intelligent applications and end-users need to be able

to explore and query the data from an entity perspective, such as energy or water

usage in a specific building zone. The raw data generated by things (e.g. a smart

tap) within the environments often only report on the observed values of a

property (e.g. water consumption). Thus, the raw sensor/thing data may require

additional contextual information, such as the location of the sensor [64–66]. This

high-level requirement can be broken down into two technical requirements:

– Entity management: The storage, linkage, curation, and retrieval of entity data,

such as users, zones, and locations

– Event enrichment: Enhancement of sensor/things streams with contextual data

(e.g. entities) to make the stream data more encapsulated and useful in

downstream processing

The level of importance of these common data requirements varies within each

pilot as detailed in Table 2.6. Many other requirements were identified within the

smart environments, including interoperability of devices and network protocols,

user profiling, the resilience of remote sensors, and advanced privacy-preserving

analytics.

Table 2.6 Level of importance of common data platform requirements [4]

Requirements

Smart

Airport

Smart

Office

Smart

Home

Mixed

Use

Smart

School

Standard data syntax, semantics, and

linkage

High Medium Low Medium Medium

Single-point data discoverability and

accessibility

High Medium High High Medium

Incremental data management High High Low High Medium

Secure access control High High High High Medium

Real-time data processing High High Medium High High

Unified querying of real-time data and

historical data

High High High High High

Entity management High High Medium High Medium

Event enrichment High High High High Medium
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2.10 Summary

The digital transformation is creating a data ecosystem with data on every aspect of

our world spread across a range of information systems. Data ecosystems present

new challenges to the design of intelligent systems and System of Systems that

demands a reconsideration of how we deal with the needs of large-scale, data-rich

smart environments. In this chapter, we have explored the barriers to the sharing of

knowledge among intelligent systems within a smart environment and how they can

be overcome with the capabilities within the Knowledge Value Ecosystem (KVE)

Framework. The implementation of these capabilities was explored using linked

data, knowledge graphs, and data value chains, which provide solid foundations for

tackling system boundaries of knowledge exchange among systems. Finally, the

chapter examined the need for data platforms to support the sharing of data between

intelligent systems within a data ecosystem and identified common data platform

requirements.
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Chapter 3

Dataspaces: Fundamentals, Principles,

and Techniques

Keywords Dataspaces · Best-effort information · Approximation · Incremental data

management

3.1 Introduction

A dataspace is an emerging approach to data management which recognises that in

large-scale integration scenarios, involving thousands of data sources, it is difficult

and expensive to obtain an upfront unifying schema across all sources. Data is

integrated on an “as-needed” basis with the labour-intensive aspects of data integra-

tion postponed until they are required. Dataspaces reduce the initial effort required to

set up data integration by relying on automatic matching and mapping generation

techniques. This results in a loosely integrated set of data sources. When tighter

semantic integration is required, it can be achieved in an incremental “pay-as-you-

go” fashion by detailed mappings between the required data sources. This chapter

introduces dataspaces and the fundamentals of “best-effort” data management.

The chapter is structured as follows: Sect. 3.2 discusses big data and the challenge

of data integration with the long tail of data variety, Sect. 3.3 examines the cost of

data management, and Sect. 3.4 addresses the emerging trend of approximate, best-

effort and “Good Enough” approaches to data management. Section 3.5 provides a

detailed explanation of the fundamentals of dataspaces, including their principles

and a comparison to contemporary data management approaches. Section 3.6 covers

dataspace support platforms, support services, life cycle, and specific

implementations. Section 3.7 details the technical challenges for dataspaces, Sect.

3.8 sets out ongoing research challenges for dataspaces, and finally, a summary is

provided in Sect. 3.9.
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3.2 Big Data and the Long Tail of Data

The emergence of new platforms for decentralised data creation such as the Internet of

Things and edge computing, the increasing availability of open data on the web [68],

and the increasing number of data sources inside organisations [69] bring an unprece-

dented volume of data to bemanaged. In addition to copingwith the volume of data, data

consumers in the big data era need to cope with data variety where data is created under

different contexts and requirements [25]. Consuming data comes with the intrinsic cost

of repurposing, adapting, and ensuring data quality for its new context. Data at large

scales coming from distributed sources can be erroneous, inconsistent, and incomplete

for some users’ requirements. Jagadish et al. state that “Big Data increasingly includes

information provided by increasingly diverse sources, of varying reliability. Uncer-

tainty, errors, and missing values are endemic, and must be managed” [70].

The growth in the number of data sources and the increasing scope of information

systems leads to a long tail of data variety [71]. The long tail of data variety (see

Fig. 3.1) reflects the distribution of the frequency of use of conceptual elements: in a

large domain of interest few entities and attributes have a high frequency of use,

followed by a long tail distribution of entities and attributes which have lower

frequencies of use. While some concepts are central across many different areas,

most of the concepts are specific to a context. In the scientific domain, for example,

the long tail of scientific data [72] reflects the conceptual distribution of scientific data.

Traditional relational data management environments were focused on data that

mapped to popular business processes and were regular enough to fit into a relational

model. The long tail of data variety expresses the shift towards the expanding coverage

of data that must be managed; it is less frequently used, more decentralised, and less

Number of data sources, entities, attributesLow

High

Frequency 

of use

High

Limits of relational 

data representation

P
o

p
u

la
ri

ty
 /

 U
se

Fig. 3.1 The long tail of data variety. Adapted from [71]
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structured. Given this shift in the data landscape, there has been an evolution in the

information processing landscape to meet these new challenges. Big Data technologies

are moving towards supporting the long tail of data variety to enable consumers to have

a richer and more comprehensive model of their domain that they can search, query,

analyse, and navigate. However, managing this long tail of data comes with a cost.

3.3 The Changing Cost of Data Management

Historically, the construction of information systems and databases has evolved

following a model dependent on the cost of formalising a domain and the associated

value derived from the efficiency gain. Data management practices for organisations

have prioritised the formalisation (conceptualisation) of domains within a centralised

model with high levels of control, which have resulted in high data management

costs. Propelled by the growth of data and the increasing number of systems and

devices producing data, data management requirements are shifting towards the need

to cope with data which is generated in a decentralised manner [73, 74], data which

is intrinsically heterogeneous, and data with varying levels of structure and different

contexts. These trends are contributing to the long tail distribution of data variety.

According to Brodie and Liu [69]:

The consistency of all views of the same tuple leads the underlying belief in a single version

of the truth and the concept of a global schema. The dramatic success of relational

technology has propelled data modelling and management requirements beyond the model-

ling and processing capabilities of the relational technology. The phrase ‘single version of

the truth’ seems intuitively correct and may assure in a confusing world, but it is almost

entirely false in the real world. The underlying assumption of the relational world is not just

semantic homogeneity but also ontological homogeneity while in reality, semantic hetero-

geneity dominates. Data management vendors promote the ‘single version of truth’ assump-

tion as a highly desirable objective and something that their products can provide. Our

Digital Universe is no longer a semantically homogeneous set of a few databases but

Information Ecosystems of 100s or 1000s of semantically heterogeneous databases to be

managed and integrated collectively [69].

Franklin et al. [2] highlight that “in datamanagement scenarios today it is rarely the

case that all the data can be fit nicely into a conventional relational [database]”. Diving

deeper into the practical challenges of managing decentralised and heterogeneous data,

Franklin et al. [2] examine the problem along two problem dimensions (see Fig. 3.2):

• Administrative Proximity: Describes how data sources within a space of interest

are close or far in terms of control. A close control means that many assumptions

can hold concerning guarantees such as data quality and consistency, while a far

control refers to a loosely coupled environment and a lack of coordination on the

data sources within the data management system.

• Semantic Integration: Refers to the degree of how much the data schemas within

the data management system are matched up. That includes, for example, the

types, attributes, and names used within the data sources. On one end of the
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spectrum, all data conform to an agreed-upon schema, while on the other end of

the spectrum schema information is lacking. This dimension is relevant to how

much semantically rich querying can be done.

In this view, data management should be considered as a task that takes place in a

spectrum defined by these two dimensions. Within a Database Management System

(DBMS), administrative control and semantic homogeneity are key to the data

modelling, querying, and integration approaches that depend on the relational data

model. This results in a high upfront cost for DBMS, which only gets more

significant when dealing with the long tail of data, as illustrated in Fig. 3.3.
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• Web Search

• Enterprise portals
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• Data integration systems
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Fig. 3.2 Data management approaches. Adapted from [2]
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Fig. 3.3 Data management cost associated (administration and semantic) with increasing numbers

of schema and sources. Adapted from [71]
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The need to develop more effective and efficient approaches for dealing with

decentralised semantically heterogeneous environments is highlighted by the Lowell

Self-Assessment report [75], which is a roadmap for the future of research in the

database community: “A semantic heterogeneity solution capable of deployment at

Web scale remains elusive. At Web scale, this is infeasible, and query execution

must move to a probabilistic world of evidence accumulation and away from exact

answers. Therefore, one must perform information integration on-the-fly over per-

haps millions of information sources” [75].

3.4 Approximate, Best-Effort, and “Good Enough”

Information

Not every situation or decision requires information that is 100% fresh and accurate

[76], as many information consumers can efficiently work with information at a

lower threshold. A perfect result is not always necessary, while a lower-quality or

less-than-optimal result is sufficient [77]. By relaxing the need for computing to the

highest quality, approximate approaches can be used to improve the throughput and

response time of services.

Many applications that require data processing can tolerate a reduced quality in

the result of the data analysis. Consider the rise of “Recognition” applications, a new

class of popular mobile edge applications that range from recognising a single user’s

surroundings and augmenting it with information, advice, and decision support, to

analysing an array of images from traffic cameras within a smart city to manage

traffic. Recognition applications may have the possibility to trade off the accuracy of

analysis with the responsiveness and computation necessary for the analysis.

The Pareto Principle (or the 80/20 rule) has wide application in many areas from

economics and market analysis to business strategy, where it has been observed that

20% of the effort delivers 80% of the results. Within computer science, the principle

has been observed within many problems from fixing bugs to writing code. The

principle can help us to prioritise actions, for example, focus on the 20% of software

bugs that cause 80% of the system crashes. Data management approaches can take

advantage of the fact that many users and applications can tolerate approximate

results; a trade-off between exact and approximate results can minimise data inte-

gration costs and the response time (both network and compute), and maximise

throughput. Relaxing the need for maximum quality reduces the required data

integration and computation workload, enables a significant reduction of response

time, and increases throughput.

Approximate approaches can reduce semantic integration costs due to their ability

to deal with the uncertainties of semantics. Approximate approaches can operate in

environments with low-cost agreements on administration proximity and semantic

integration, and at the same time, achieve acceptable levels of precision and recall
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comparable to exact models. These characteristics make these approaches suitable

for tackling the long tail of data variety.

Approximate “good enough” approaches are distinguished by a matching model

that is not Boolean and supports one form or another of uncertainty, probability, or

ranking of the results. This gives the matching model more flexibility to deal with

data heterogeneity and thus, improves its ability to address lower levels of admin-

istrative control and semantic integration.

The classic relational paradigm defined the use of structured query languages

(such as SQL) as the primary mechanism for user–data interaction. SQL offers crisp

and accurate answers for relatively small numbers of homogeneous sources [76],

typically managed in a centralised and coordinated manner. Within the approximate

model, the underlying assumptions of user-data interaction and the use of structured

queries to cope with the long tail of data were revisited by [39, 76]:

From: Clean, semantically homogenous and centralised schema

To: Semantically heterogenous and decentralised schema

As schemas are managed in a decentralised way, different conceptualisations may

exist in the same schema. “We can no longer pretend to live in a clean world . . . .”

[76]. “Unless the reader of a message or document is specifically programmed for it,

there will likely be confusion. The meaning of the message, the interpretation of its

fields, and much more, will be subject to approximation and a loss of clarity.

Different companies, different countries, and even different regions within a country

have different understandings of data” [76].

From: Manual query-schema mapping

To: Automatic query-schema mapping

Most of the interaction with structured data is dependent on manual mapping

among elements of a structured query and schema elements. With the growth in the

schema-size and the number of available data sources, the cost associated with this

manual mapping process becomes prohibitive (see Fig. 3.3) requiring automated and

semi-automated query-mapping techniques.

From: Absolute precision/full recall in a single query

To: Relaxed precision/recall in multiple queries

As schemas grow and as users cross database boundaries, the cost associated with

building structured queries grows exponentially. In this scenario, the expectation of

getting a correct and complete answer in a single interaction should be exchanged by

approximate answers which are obtained through multiple interactions. As Helland

states [76] “Too much, too fast—you need to approximate.”

By creating data management approaches that utilise approximate and best-effort

techniques, it is possible to reduce the cost of dealing with the long tail of data

variety. Approximate approaches trade off administrative and integration costs with

reduced accuracy of results. “Best-Effort” thinking is at the core of the new

dataspace paradigm of data management (Fig. 3.4).
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3.5 Fundamentals of Dataspaces

A dataspace is an emerging approach to data management that is distinct from

current approaches. The dataspace approach recognises that in large-scale integra-

tion scenarios, involving thousands of data sources, it is difficult and expensive to

obtain an upfront unifying schema across all sources [2]. Dataspaces are not a data

integration approach [2]; they shift the emphasis to providing support for the

co-existence of heterogeneous data that does not require a significant upfront

investment into a unifying schema. Data is integrated on an “as-needed” basis

with the labour-intensive aspects of data integration postponed until they are

required. Dataspaces reduce the initial effort required to set up data integration by

relying on automatic matching and mapping generation techniques. This results in a

loosely integrated set of data sources. When tighter semantic integration is required,

it can be achieved in an incremental “pay-as-you-go” fashion by detailed mappings

among the required data sources. This section details the fundamentals of the

dataspace paradigm, including their core principles, comparison to existing

approaches, support platform, data services, life cycle, and research challenges.

3.5.1 Definition and Principles

First introduced by Franklin, Halvey, and Maier in 2005 [2], a dataspace can contain

all the data sources for an organisation regardless of its format, location, or model.
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Each data source (e.g. database, CSV, web service) in the dataspace is known as a

participant. The dataspace can model the relations (or associations) between data in

different participants. In its purest form, a dataspace is a set of participants and the

inter-relations between them [2]. The modelling of the dataspace can capture

different types of relations among participants, from the mapping of the schemas

between two participants to capturing that Participant A is a replica of Participant B.

The dataspace concept has gained traction with a number of different groups

exploring its usefulness for managing data from different domains and investigating

the design of support services. These works have provided a number of definitions

for a dataspace as captured in Table 3.1; most of these build on the initial concept

from [2].

Dataspaces, as a paradigm of data management, push the boundaries of traditional

databases along the dimensions of administrative proximity and semantic integra-

tion, as discussed in Sect. 3.3. Within a dataspace, data sources are not tightly

controlled, and full semantic integration is not guaranteed. Data management within

a dataspace is defined by different principles, as described by Halevy et al. [78]:

• A dataspace must deal with data and applications in a wide variety of formats

accessible through many systems with different interfaces. A dataspace is

required to support all the data rather than leaving some out because they do

not yet conform to a specific schema or data constraint.

Table 3.1 Definitions of a “Dataspace” from literature

Definition Source

“Dataspaces are not a data integration approach; rather, they are more of a data

co-existence approach. The goal of dataspace support is to provide base functionality

over all data sources, regardless of how integrated they are.”

[78]

“A dataspace system manages the large-scale heterogeneous collection of data distrib-

uted over various data sources in different formats. It addresses the structured, semi-

structured, and unstructured data in coordinated manner without presuming the semantic

integration among them.”

[79]

“to provide various of the benefits of classical data integration, but with reduced upfront

costs, combined with opportunities for incremental refinement, enabling a “pay-as-you-

go” approach.”

[80]

“enable agile data integration with much lower upfront and maintenance costs.” [81]

“A dataspace system processes data, with various formats, accessible through many

systems with different interfaces, such as relational, sequential, XML, RDF, etc. Unlike

data integration over DBMS, a dataspace system does not have full control on its data,

and gradually integrates data as necessary.”

[82]

“Dataspace Support Platforms envision data integration systems where the amount of

upfront effort is much smaller. The system should be able to bootstrap itself and provide

some useful services with no human intervention. Over time, through user feedback or

as sources are added and the data management needs become clearer, the system evolves

in a pay-as-you-go fashion.”

[83]

“Dataspace is defined as a set of participants and a set of relationships among them.” [84]
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• A dataspace must provide an integrated means of search, query, update, and

administration. The dataspace does not subsume participant data sources and is

not in full control of the data. The same data may also be accessible and

modifiable through an interface native to the system hosting the data.

• Queries to a dataspace may offer varying levels of service, and in some cases may

return best-effort or approximate answers. For example, when individual data

sources are unavailable, the best answers available are returned using the data

accessible at the time of the query.

• The dataspace must provide pathways to improve the integration among the data

sources in a “pay-as-you-go” fashion.

3.5.2 Comparison to Existing Approaches

Data sources in a dataspace co-exist, and co-evolve over time, and are not subsumed

by a rigid data management system. This is in stark contrast to the traditional data

management approach based on relational databases. A comparison of the dataspace

paradigm to traditional DBMS is provided in Table 3.2.

3.6 Dataspace Support Platform

The goal of a Dataspace Support Platform (DSP), as detailed in Fig. 3.5 [2], is to

provide a set of common related support services to all data sources within the

dataspace (e.g. keyword search). The DSP provides a base functionality needed for

data integration that enables developers to focus on application-specific challenges

instead of the common data integration tasks faced when working with multiple data

sources. To achieve this goal, the DSP must support all the data in the dataspace

requiring it to work, with a large variety of data formats and system interfaces. A

dataspace does not host data; the data resides in their native systems. As such, a

Table 3.2 DBMS vs. Dataspace. Adapted from [85]

DBMS Dataspace

Model Relational All

Formats Homogeneous Heterogeneous

Schema Schema first, data later Data first, schema later or never

Control Complete Partial

Leadership Top-down Top-down/Bottom up

Query Exact Approximate

Integration Upfront Incremental

Architecture Centralised Decentralised

Real-time data processing No Applicable
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dataspace is not in full control of the data and may only provide weak guarantees of

consistency and durability. When stronger guarantees are desired, more effort can be

put into making agreements among the various systems. To this end, a DSP must

provide tools to support the tighter integration of data in a pay-as-you-go manner. As

a result of the varying levels of data integration, the DSP offers varying levels of

service and often will only be able to provide best-effort or approximate results using

the data accessible at the time of the query [2].

3.6.1 Support Services

Services within a DSP need to support heterogeneous data types and multiple access

methods to participants within the dataspace. A core set of support services, as

identified by [2] are:

• Catalog: A catalog is an inventory of data elements from participants containing

basic information about each one, including source, name, location, size, creation

date, and owner. A catalog service can provide a basic browse interface across the

dataspace for users. The catalog is a core infrastructure that is used by other

dataspace support services.

• Search: Search is the primary mechanism used by end-users to deal with large

collections of unknown data. Search is based on a similarity analysis of data that

results in a ranked list of results relevant to an end-user’s keywords. The search

service should examine all the contents of a dataspace, including metadata.

Search interfaces within a DSP should support the interactive refinement of the
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results (e.g. facets) so that users can explore a dataset and incrementally improve

the search results. The process of refinement could result in a database-style

structured query.

• Query: The level of support for expressive queries will vary across participants in

the dataspace, as some will provide expressive query languages, while others will

only have limited interfaces for querying (e.g., web services). The query service

of a DSP needs to provide for (1) metadata queries to support the discovery of

data sources, (2) monitoring of data sources, (3) local storage and indexing to

support associations among participants, increase query expressivity on sources

with limited querying functionality, and improve data source availability.

• Discovery: It locates participants in the dataspace and supports the creation of

relationships among them in an incremental manner.

Not every participant in a dataspace will support all DSP functions. Thus, there

will be the need to extend data sources in various ways (e.g. search and query). This

requires the services to support dataspace participants in an incremental manner that

can be applied in real time to existing as well as new participants joining the

dataspace. The incremental nature of the support services is a core enabler of the

pay-as-you-go paradigm in dataspaces.

3.6.2 Life Cycle

Similar to any other data management approach, a dataspace has a life cycle of

operation. Hedeler et al. [80] have proposed a conceptual life cycle for dataspaces,

illustrated in Fig. 3.6, consisting of seven phases with transitions between phases. As

dataspaces can be used within different contexts, only a subset of the phases and

transitions in the life cycle may be relevant to a specific implementation or deploy-

ment. The key phases in the life cycle are:

Disband dataspace

Test/Evaluate dataspace

Maintain dataspace: 

React to changes in sources

Use dataspace: 

Search/query dataspace

Make  necessary changes

Ini�alise dataspace

Improve dataspace: 

Gather and react to feedback

Deploy dataspace

React to 

feedback
React to changes

in sources

Fig. 3.6 Conceptual life cycle of a dataspace [80]
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• Initialise: Identification of the data sources to be accessible within the dataspace

and the integration of those resources. Sub-phases can include identifying data

sources, designing integration schema, identifying matchings, deriving map-

pings, and deriving integration schemas.

• Test/Evaluate: Testing and evaluation of the dataspace before deployment.

• Deployment: Enabling access to the dataspace for users and applications, includ-

ing the deployment of the dataspace on its physical computing infrastructure.

• Use: Support users and applications accessing and using the dataspace, including

the search and query of sources in the dataspace.

• Maintain: Supporting changes to the participants in a dataspace, including adding

and removing a source.

• Improve: Improving the dataspace during its operation, including the integration

of participants. Explicit and implicit user feedback can be a key source of

improvement for the dataspace.

• Disband: Gracefully close the dataspace by removing the participants and free

resources.

As noted by [80], the phases Use, Maintain, and Improve are co-existing to

support the “pay-as-you-go” model of data management.

3.6.3 Implementations

The dataspace approach has been implemented using several different technology

stacks and used within a number of different contexts, including:

• Personal Dataspace: Focusing on the management of the information on a

person across various sources, from their desktop [86] and mobile devices to

their presence on social networks. Works include: iDM [87], SEMEX [88, 89],

iMeMeX [90, 91], CoreSpace [92], and PDSP [93].

• Scientific Dataspace: Working with distributed sources of scientific data includ-

ing astronomy data [94], biomedical data [81, 95], life sciences data with

ALADIN [96] and LinkedScales [97], and process materials with the Virtual

Data Space [98, 99].

• Enterprise/Industrial Dataspace: Targets the use of a dataspace to bring together

data from different organisations within the context of energy management [100],

air travel (Airbus Skywise), Industry 4.0 [101], or a digital library [102].

• Global/Web Dataspaces (Web of Data): Efforts at global or web-scale dataspaces

include PayGo [103] and OCTOPUS [104]. The use of linked data technologies

to publish data on the web is enabling the linkage of records in distinct databases

that can be viewed as a global dataspace [43]. They can have a multi-domain

nature such as the Linked Open Data Cloud [105], or a domain-specific purpose,

such as financial data [56].

• Software Development: The use of a dataspace to support software artefact

management [106].
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• Internet of Things/Smart Environment Dataspaces: Recent works have investi-

gated the use of dataspaces to support the Internet of Things or smart environ-

ments [4, 107] and the data they produce.

3.7 Dataspace Technical Challenges

The key technical challenges to realising a dataspace as identified by Halevy et al.

[78] centre around the need to answer queries, to introspect on the content of the

answers, and to leverage human interaction to enhance the semantic relationships

within a dataspace. In this section, we briefly summarise these challenges as detailed

by Halevy et al. [78].

3.7.1 Query Answering

In order to understand the fundamental challenges of querying a dataspace, we

briefly summarise modes in which we expect users to interact with a dataspace.

Participants and Relationships Dataspaces are modelled as a rich collection of

participants and relationships that contain all of the information relevant to a

particular organisation or entity regardless of its format, location, or data repository.

Queries Since multiple data models need to be supported within a dataspace,

queries will also come in a variety of languages; from keyword searchers to

structured forms and formal query languages. The dataspace support platform

needs to provide mechanisms for executing queries in different languages and return

results from all the relevant sources in the dataspace.

Answers Answers to queries within a dataspace follow a best-effort model which is

different from queries over traditional databases. Answers can come in the following

forms [78]:

• Ranked: A ranked set of answers to structured queries and/or keyword search.

Rankings may be based on different methods (e.g. relatedness, similarity) or

approximate matchings from different sources.

• Heterogeneous: Answers can come from different sources using different data

models and schemas.

• Sources as Answers: Answers can include pointers to sources where additional

answers can be found.

• Iterative: User query interaction follows an iterative approach with the user

posing a sequence of queries, each being a refinement or modification of the

previous query.

• Reflection: Completeness of the query coverage and its accuracy is included in the

answer.
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• In situ: Answers can be references to, rather than copies of, the data.

Query Answering model

In order to support the above query answering model, dataspaces need to overcome a

number of challenges [78].

Challenge 1: Develop a formal model for studying query answering in

dataspaces

• C1.1: Develop intuitive semantics for answering a query that takes into consid-

eration a sequence of earlier queries leading up to it.

• C1.2: Develop a formal model of information gathering tasks that include a

sequence of lower-level operations on a dataspace.

• C1.3: Develop algorithms that given a keyword query and a large collection of

data sources, will rank the data sources according to how likely they are to contain

the answer.

• C1.4: Develop methods for ranking answers that are obtained from multiple

heterogeneous sources (even when semantic mappings are not available).

Obtaining Answers

Within a dataspace, the answers to queries come from heterogeneous data that

may use different terms at both the schema level and the data level. Dataspaces

do not rely on semantic mappings, and even when mappings exist, they may be

partial or approximate. This poses a significant challenge to answering queries in

a dataspace [78].

Challenge 2: Develop methods for answering queries from multiple sources that

do not rely solely on applying a set of correct semantic mappings

• C2.1: Develop techniques for answering queries based on the following ideas, or

combinations thereof:

– Apply several approximate or uncertain mappings and compare the answers

obtained by each.

– Apply keyword search techniques to obtain some data or some constants that

can be used in instantiating mappings.

– Examine previous queries and answers obtained from data sources in the

dataspace and try to infer mappings between the data sources. Whenever we

have access to queries that span multiple data sources, try to infer from them

how the sources are related (e.g. the join attributes should provide some hint of

common domains).

• C2.2: Develop a formal model for approximate semantic mappings and for

measuring the accuracy of answers obtained with them.

• C2.3: Given two data sets that use the same terminology but for different data

models, develop automatic best-effort methods for translating a query over one

data set onto the other.
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3.7.2 Introspection

The data in a dataspace will be uncertain and often inconsistent. The uncertainty will

increase due to the best-effort query answering. Answers can be different, depending

on the level of latency and completeness within the dataspace. It is often the case that

inconsistencies lead to a very particular kind of uncertainty: which of a set of

conflicting data values is correct. Both uncertainty and inconsistency need to be

resolved, and lineage is often the only method available [78]. A dataspace needs to

be able to introspect about lineage, uncertainty, and inconsistency.

Lineage, Uncertainty, and Inconsistency

The challenge is for a dataspace to provide a single unified mechanism for modelling

uncertainty, inconsistency, and lineage [78].

Challenge 3: Develop formalisms that enable modelling uncertainty, inconsis-

tency, and lineage in a unified fashion.

• C3.1: Develop formalisms that capture uncertainty about common forms of

inconsistency in dataspaces.

• C3.2: Develop formalisms for representing and reasoning about external lineage.

• C3.3: Develop a general technique to extend any uncertainty formalism with

lineage and study the representational and computational advantages of doing so.

• C3.4: Develop formalisms where uncertainty can be attached to tuples in views

and view uncertainty can be used to derive uncertainty of other view tuples.

Finding the Right Answers

Given the challenges of lineage, uncertainty, and inconsistency of query answers in

the dataspace, it becomes necessary to determine a “good” answer. Candidate

answers can differ along multiple dimensions [78], including:

• Relevance to the query

• Certainty of the answer (or whether it contradicts another answer)

• Completeness and precision requested by the user

• Maximum latency required in answering the query

Challenge 4: Define metrics for comparing the quality of answers and answer

sets over dataspaces, and efficient query processing techniques.

• C4.1: Develop query-language extensions and their corresponding semantics that

enable specifying preferences on answer sets along the dimensions of complete-

ness and precision, certainty and inconsistency, lineage preferences and latency.

• C4.2: Define notions of query containment that take into consideration complete-

ness and precision, uncertainty and inconsistency and lineage of answers, and

efficient algorithms for computing containment.

• C4.3: Develop methods for efficient processing of queries over uncertain and

inconsistent data that conserve the external and internal lineage of the answers.

Study whether existing query processors can be leveraged for this goal.
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3.7.3 Reusing Human Attention

Every participant within a dataspace is provided with a basic level of service when

they join it. Over time the dataspace should evolve by forming tighter semantic

integration between participants as needed. One key mechanism to achieve this goal

is to leverage users’ attention as they interact with a dataspace. By analysing the

interaction of a user with different participants within the dataspace, we can gain

knowledge about the relationships between data sources [78].

Challenge 5: Develop methods that analyse users’ activities when interacting

with a dataspace and create additional meaningful relationships between sources in

a dataspace or other enhancements to the dataspace.

• C5.1: Develop techniques that examine collections of queries over data sources

and their results to build new mappings between disparate data sources.

• C5.2: Develop algorithms for grouping actions on a dataspace into tasks.

• C5.3: Develop facilities for explicit enhancement of dataspace information that

give a high return on the investment of human attention.

• C5.4: Develop a formal framework for learning from human attention in

dataspaces.

3.8 Dataspace Research Challenges

The dataspace approach to data management raises several research challenges that

need to be tackled to create effective and efficient DSPs. Research challenges

include:

• Data Models, Search, and Query: A dataspace needs to support the various data

models and the different query languages of the participants with varying levels

of query expressivity [2]. Research is needed to support a broad view of data

modelling [83, 97, 108, 109] and to enable querying over the heterogeneous data

models, from basic queries to context-based queries [110] and schema-agnostic

question answering systems [111]. There has been limited work on addressing the

requirements of real-time processing of events and streams and the investigation

of relevant support services for dataspaces.

• Discovery: A key challenge within a dataspace is to locate relevant participants in

the dataspace, identify relationships among participants, and improve the under-

standing of existing relationships among participants. [2, 107, 112, 113].

• Reusing Human Attention: The primary focus of research in this area looks to

capture “user attention” to support management in the dataspace [114–

117]. Leveraging user’s attention for improving integration in dataspaces is

considered an integral part of any dataspace application or platform

[2, 78]. Roomba [118] exploits user feedback for improving integration of

dataspaces using a decision-theoretic technique to quantify the desirability state
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of a dataspace. DSToolkit [81, 119] uses end-user feedback for annotating,

selecting and refining schema mappings, and for estimating the precision and

recall of query results in a dataspace. MOBS [120] focuses on collecting feedback

from many users to make a decision based on the combined result.

• Storage and Indexing: A key challenge for dataspaces is dealing with the

heterogeneity of storage and indexing mechanisms of the various participants to

create a uniformly indexed dataspace [2, 121]. Creating local storage and the

placement of data and indices for optimal performance within a wide-area

deployment are also active areas of research [122].

• Correctness Guarantees: Enabling access to a set of disparate data sources with

confidence is a crucial challenge for dataspaces. To achieve this, there are a

number of challenges in the quality of results, the effects and permanence of

updates, and varying levels of service [2, 123], in a heterogeneous, highly

autonomous environment.

• Theoretical Foundations: The concept of dataspaces opens several questions on

their theoretical foundation. There is a need for research on the formal under-

standing of data governance [1], data models, relations among participants, and

queries in a dataspace [2, 81].

3.9 Summary

In this chapter, we explored the challenges associated with data management and

integration in the era of big data. Within large-scale integration scenarios that

involve thousands of data sources, it is difficult and expensive to obtain an upfront

unifying schema across all sources due to the challenge posed by the long tail of data

variety. We detailed the dataspace paradigm as an emerging data management

approach that embraces the notion of “good enough” and best-effort approximations

as a means of data management. Data is integrated on an “as-needed” basis with the

labour-intensive aspects of data integration postponed until they are required.

Dataspaces reduce the initial effort required to set up data integration by relying

on automatic matching and mapping generation techniques. When tighter semantic

integration is required, it can be achieved in an incremental “pay-as-you-go” fashion

by detailed mappings among the required data sources. This chapter detailed the

fundamentals of the dataspace paradigm, including their core principles, comparison

to existing approaches, support platform, support services, life cycle, and research

challenges.
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Chapter 4

Fundamentals of Real-time Linked

Dataspaces

Keywords Data platform · Linked data · Stream processing · Event processing ·

Dataspaces · Internet of Things · Incremental data management

4.1 Introduction

Dataspaces can provide an approach to enable data management in smart environ-

ments that can help to overcome technical, conceptual, and social/organisational

barriers to information sharing. However, there has been limited work on the use of

dataspaces within smart environments and the necessary support services for real-

time events and data streams. This chapter introduces the Real-time Linked

Dataspace (RLD) as a data platform for intelligent systems within smart environ-

ments. The RLD combines the pay-as-you-go paradigm of dataspaces with linked

data, knowledge graphs, and (near) real-time processing capabilities. The RLD has

been specifically designed to support the sharing and processing of data between

intelligent systems within smart environments. We propose a set of specialised

dataspace support services to enable the requirements of loose administrative prox-

imity and semantic integration for event and stream systems. These requirements

form the foundation of the techniques and models used to process events and streams

within the RLD.

The chapter is structured as follows: event and stream processing for the Internet

of Things are discussed in Sect. 4.2, and the fundamentals of RLD are defined in

Sect. 4.3 including principles, comparison to existing dataspaces, and the main

components of the architecture. Section 4.4 details a principled approach to

pay-as-you-go data management and introduces the 5 star pay-as-you-go model

for RLD support services. Section 4.5 introduces the support platform for the

RLD, Sect. 4.6 discusses its suitability as a data platform for intelligent systems

within smart environments by comparison to similar platforms, and a summary is

provided in Sect. 4.7.
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4.2 Event and Stream Processing for the Internet of Things

At the end of the twentieth century and in the first decade of the twenty-first century,

a recognition emerged among researchers and practitioners that a new class of

information processing systems was needed. The need for the event processing

paradigm emerged from a range of diverse distributed applications that required

on-the-fly and low-latency processing of information items. Example applications

include environmental monitoring [124], stock market analysis [125], RFID-based

inventories [126], resource management (e.g. energy, water, mobility) in smart

environments [4], and security systems such as intrusion detection [127].

Smart environments have emerged in the form of smart cities, smart buildings,

smart energy, smart water, and smart mobility, all of which have large quantities of

real-time data that must be processed. The Internet of Things (IoT) is producing

events and streams that are generating significant quantities of data within smart

environments which are driving a new wave of data-driven intelligent systems that

can more effectively and efficiently manage resources while also providing

enhanced user experience.

The paradigms of event processing and stream processing have evolved through

the work of several communities, including active databases [128, 129], reactive

middleware [130–132], event-based software engineering [133, 134], and Message-

Oriented Middleware [135]. As these paradigms emerged, they created their own

communities around data stream management systems [136–139], event processing

systems [140, 141], Complex Event Processing [140], and Publish-Subscribe

[142, 143].

Cugola and Margara [139] complement this picture to justify a new umbrella

paradigm for a set of emerging systems where “timeliness and flow processing are

crucial” and call it the Information Flow Processing (IFP) Domain. Figure 4.1

presents an elaboration of Cugola and Margarita’s functional model and shows the

main functionalities of an IFP engine for single and complex event processing. In

event processing, data items that are shared in real-time are called events. An event

Fig. 4.1 The information flow processing model for single and complex event processing [144]
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can take the form of a sensor reading. Data sources which produce events are called

event producers. Users and software which are interested in an event, or set of

events, are called event consumers. An essential part of the event processing

paradigm is the matching mechanism between the events and the interests of event

consumers. This is similar to the concept of query processing in relational database

management systems, where events replace the concept of a data tuple, and sub-

scriptions or rules replace the concept of queries. In a specific family of event

processing, called stream processing, queries take the name of continuous queries

as they are evaluated continuously against moving data.

4.2.1 Timeliness and Real-time Processing

The concept of timeliness has been expressed in the literature using various terms

such as low latency [145, 146], high throughput [146, 147], low delay [148], and

real-time processing [3, 149]. All these terms, except real-time processing, can be

classified under the umbrella of fast computing. This term means that the system is

efficient in processing information items in a way that the ratio Value/Time is

maximised as detailed in Fig. 4.2.

Another perspective is that real-time processing includes the notion of executing

the information processing task within a time constraint, called a deadline

[150]. Timeliness, as described by Cugola and Margara [139], is more similar to
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the concept of fast computing. Technically, it can be measured by the related

concepts of latency and throughput:

• Latency is defined in this book as the total time required to process an information

item starting from its arrival to the processing agent until its completion.

• Throughput is the number of information items wholly processed within a

time unit.

Thus, real-time, whenever used in this book, means low latency, high throughput,

and processing as soon as the information items are available. Near-real-time

processing, when used, should also be taken to have this meaning. The ability to

quickly react to an event is a critical requirement within many real-world situations.

Systems that can provide data processing capabilities suitable for real-time informa-

tion need to be designed in a specific manner, Stonebraker et al. [3] suggest eight

requirements for an effective and efficient design:

• Rule 1—Keep the Data Moving: Process messages “in-stream” without the need

to store the message to perform an operation or sequence of operations.

• Rule 2—Query Using SQL on Streams: Support a high-level stream language

with built-in extensible stream-oriented primitives and operators.

• Rule 3—Handle Stream Imperfections: Built-in mechanisms to provide resiliency

against stream “imperfections” including delayed, missing, and out-of-order data

which occur in real-world data streams.

• Rule 4—Generate Predictable Outcomes: Guarantee predictable and repeatable

outcomes.

• Rule 5—Integrate Stored and Streaming Data: Ability to efficiently store, access,

and modify state information, and combine it with live streaming data.

• Rule 6—Guarantee Data Safety and Availability: Provide high availability and

integrity of the data maintained.

• Rule 7—Partition and Scale Applications Automatically: Ability to distribute

processing across multiple computing resources for incremental scalability.

• Rule 8—Process and Respond Instantaneously: Highly optimised, minimal-

overhead execution engine to deliver a real-time response.

4.3 Fundamentals of Real-time Linked Dataspaces

Real-time data sources are increasingly forming a significant portion of the data

generated in the world. This is in part due to increased adoption of the Internet of

Things and the use of sensors for improving data collection and monitoring of smart

environments, which enhance different aspects of our daily activities in smart

buildings, smart energy, smart cities, and others [1]. To support the interconnection

of intelligent systems in the data ecosystem that surrounds a smart environment,

there is a need to enable the sharing of knowledge among systems. A data platform

can provide a clear framework to support the sharing of data among a group of
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intelligent systems within a smart environment [1] (see Chap. 2). In this book, we

advocate the use of the dataspace paradigm within the design of data platforms to

enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management which recognises that

in large-scale integration scenarios, involving thousands of data sources, it is

difficult and expensive to obtain an upfront unifying schema across all sources

[2]. Within dataspaces, datasets co-exist but are not necessarily fully integrated or

homogeneous in their schematics and semantics. Instead, data is integrated on an

“as-needed” basis with the labour-intensive aspects of data integration postponed

until they are required. Dataspaces reduce the initial effort required to setup data

integration by relying on automatic matching and mapping generation techniques.

This results in a loosely integrated set of data sources. When tighter semantic

integration is required, it can be achieved in an incremental “pay-as-you-go” fashion

with more detailed mappings among the required data sources.

Within the dataspace paradigm, there has been limited work on addressing the

requirements of real-time processing of events and streams, and research into

relevant support services. The Real-time Linked Dataspace (RLD) has been created

as a data platform for intelligent systems within smart environments. The RLD

combines the pay-as-you-go paradigm of dataspaces with linked data, knowledge

graphs, and real-time stream and event processing capabilities to support large-scale

distributed heterogeneous collection of streams, events, and data sources [4]. This

work builds on past efforts to use dataspaces in Building Data Management [62],

Energy Data Management [100], and System of Systems [85]. The goal is to support

a principled approach to incremental real-time data management based on a set of

support services with tiered levels of support, to provide a unified entity-centric

query framework over real-time and historical data streams in a smart environment.

This section details the foundations of the Real-time Linked Dataspace approach

and describes how its architectural components meet the key requirements identified

for real-time information processing (as identified by Stonebraker et al. [3]) and data

platform for smart environments (as identified in Chap. 2).

4.3.1 Foundations

The Knowledge Value Ecosystem (KVE) framework (see Chap. 2) helps us to

understand the challenge with knowledge flows at different levels within data

ecosystems. At the knowledge exchange level, a data platform for a smart environ-

ment would need to overcome administrative and semantic barriers. Acknowledging

that the core challenges within dataspaces are lack of administrative proximity, and

loose semantic integration, the question becomes: how can we better tailor the

principles of dataspaces, to real-time data processing? To answer this question, we

look no further than the literature of the event processing paradigm itself. A core

principle in event processing is decoupling, which refers to the lack of explicit

agreements in order to increase scalability as defined by Eugster et al. [142]. Three
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main dimensions have been recognised in the event processing literature with respect

to decoupling:

• Space Decoupling, which means that event producers and consumers do not hold

identifiers (e.g. IP addresses) of each other.

• Time Decoupling, which means that event producers and consumers do not have

to be active at the same time.

• Synchronisation Decoupling, which means that event producers and consumers

do not block each other when exchanging events.

These dimensions can be classified within the “administrative proximity” aspect

of data management from Franklin et al. [2]. The decoupled nature of event-based

systems reduces their administrative proximity. However, in terms of semantic

integration, event-based systems currently require tight semantic integration.

Hasan and Curry [151] identified forms of semantic integration based on Carlile’s

framework within event-based systems:

• Syntactic Coupling: The amount of agreement among participants in the event

processing environment on the sharing and establishment of a common low-level

syntax. This view has been established by Shannon and Weaver [38] in their

communication theory, where syntax has the form of zeros and ones. They claim

that once such a syntax is shared, accurate communication can be ensured, and the

task becomes that of information processing rather than communication.

• Semantic Coupling: The amount of agreement among participants in the event

processing environment on the mappings among symbols used in event messages

and the meanings to which they refer.

Bringing both of these views together helps us to understand the challenge with

knowledge flows within data ecosystems. Here we build on the concept of

decoupling to meet the principles of dataspaces by Halevy et al. [78], as illustrated

in Fig. 4.3. Here we can see that within an RLD the main administrative issues are

around space, time, and synchronisation of interacting systems. While semantic

integration is centred on syntactic and semantic concerns, this requires a Real-

Time Linked Dataspace to support an event processing paradigm that supports

many formats of data, does not depend on schema agreement, and supports a best-

effort approximate and pay-as-you-go approach.

4.3.2 Definition and Principles

A Real-time Linked Dataspace is a specialised dataspace that manages and processes

the large-scale distributed heterogeneous collection of streams, events, and data

sources [4]. It manages the sources without presuming a pre-existing semantic

integration among them, uses linked data and knowledge graphs to coordinate the

dataspace, and operates under a 5 star model for “pay-as-you-go” data management

(see Sect. 4.4).
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The RLD adapts the dataspace principles as set out by Halevy et al. [78] to

describe the specific requirements within a real-time dataspace setting:

• A Real-time Linked Dataspace must deal with many different formats of streams

and events.

• A Real-time Linked Dataspace does not subsume the stream and event processing

engines; they still provide individual access via their native interfaces.

• Queries in the Real-time Linked Dataspace are provided on a best-effort and

approximate basis.

• The Real-time Linked Dataspace must provide pathways to improve the integra-

tion among the data sources, including streams and events, in a pay-as-you-go

fashion.

In order to enable these principles to support real-time data processing, we

propose a set of specialised dataspace support services to enable the requirements

of loose administrative proximity and semantic integration for event and stream

systems. Loose coupling of event processing systems on the semantic dimension

reflects a low cost to define and maintain rules concerning the use of terms, and a low

cost to building and agreeing on the event semantic model. This requirement forms

the foundation of the techniques and models used to process events and streams

within the Real-time Linked Dataspace.

Knowledge

Sys. A Sys. B

Itera�ve Boundary Crossing Process

Administra�ve

Space

Time

Synchroniza�on

Value

Ecosystems

Seman�c

Seman�cs

Syntac�c

Fig. 4.3 Dimensions of

decoupling for knowledge

flows between event-based

systems based on the KVE

framework

4.3 Fundamentals of Real-time Linked Dataspaces 69



4.3.3 Comparison

While the initial vision of dataspaces encompassed the notion of support for data

streams, the details of how to specifically handle streams within a dataspace were not

covered in depth. The RLD goes beyond a traditional dataspace approach [2] by

supporting the management of entities within the dataspace as first-class citizens

along with data sources, and it extends the dataspace support platform with real-time

processing and querying capabilities for streams and events as detailed in Table 4.1.

4.3.4 Architecture

The RLD contains all the relevant information within a data ecosystem, including

things, sensors, and data sources and has the responsibility for managing the

relationships among these participants. Figure 4.4 illustrates the architecture of the

RLD with the following main concepts:

Table 4.1 Comparison of DBMS, Dataspace, and a Real-time Linked Dataspace

DBMS Dataspace

Real-time

Linked

Dataspace

Data management requirements

Model Relational All All

Formats Homogeneous Heterogeneous Heterogeneous

Schema Schema first,

data later

Data first, schema

later or never

Data first,

schema later or

never

Control Complete Partial Partial

Leadership Top-down Top-down/Bottom-up Distributed

Query Exact Approximate Approximate

Integration Upfront Incremental Incremental

Architecture Centralised Decentralised Distributed

Data processing None None Real-time and

batch

processing

Real-time requirements

Rule 1: Keep the data moving No Possible Yes

Rule 2: High-level stream language No Possible Yes

Rule 3: Handle stream imperfections Difficult Possible Yes

Rule 4: Predictable outcome Difficult Possible Possible

Rule 5: High availability Possible Possible Possible

Rule 6: Stored and streamed data No Possible Yes

Rule 7: Distribution and scalability Possible Possible Possible

Rule 8: Instantaneous response Possible Possible Yes
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• Support Platform: Responsible for providing the functionalities and services

essential for managing the dataspace. Support services are grouped into data

services and stream and event services.

• Things/Sensors: Produce real-time data streams that need to be processed and

managed. Things in a smart environment range from connected devices, energy,

and water sensors, to connected cars and manufacturing equipment.

• Data Sources: Available in a wide variety of formats and accessible through

different systems interfaces. Example data sources include building management

systems, energy and water management systems, passenger information systems,

financial data, weather, and (linked) open datasets.

• Managed Entities: Actively managed entities (e.g. people, equipment, buildings)

within the data ecosystem, including their relationship to participating things,

data sources, and other entities in the RLD.

• Intelligent Applications, Analytics, and Users: Interact with the RLD and lever-

age its data and services to provide data analytics, decision support tools, user

interfaces, and data visualisations. Applications/Users can query the RLD in an

entity-centric manner, while users can be enlisted in the curation of the data and

entities via the Human Task service.

Catalog
Search and 

Query

Human 

Tasks

Entity-Centric

Index

Predictive 

Analytics

Situation 

Awareness 
Decision 

Support

Intelligent Apps,  

Analytics, & Users

Support Platform

Data Services

Stream & Event 

Services

Things / 

Sensors

Data Sources

Managed

Entities

Access 

Control
Entity

Digital

Twin

Machine 

Learning

Users

Data Ecosystem

Complex Event 

Processing

Stream 

Dissemination

Semantic 

Approximation

Real-time Linked Dataspace

Fig. 4.4 Real-time Linked Dataspace architecture
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4.4 A Principled Approach to Pay-As-You-Go Data

Management

Within the RLD, the pay-as-you-go approach to data management is complemented

with a principled tiered approach to the design of support services where an increase

in the level of active data management has a corresponding increase in the associated

effort [4]. This tiered approach to data management provides flexibility by reducing

the initial effort and barriers to joining the dataspace. The tiers for the RLD are a

specialisation of the 5 stars scheme defined by Tim Berners-Lee for publishing open

data on the web [43].

4.4.1 TBL’s 5 Star Data

The W3C Linking Open Data (LOD) project started in 2007 and began publishing

datasets under open licenses and following the linked data principles. To encourage

people to publish linked data, the inventor of the web and the initiator of the linked

data paradigm, Tim Berners-Lee, proposed a 5 star rating system [41]. The rating

system (see Fig. 4.5) helps data publishers to evaluate how much their datasets

conform to the linked data principles. The first star is to make data available on the

web, with each additional star corresponding to increased reusability and interoper-

ability of the published data as more of the principles of linked data are followed.

Available on the Web in any format with an open licence

Available as machine-readable structured data

(e.g. text document vs. image scan)

As 3 star, plus use of open standard from W3C (RDF; 

SPARQL) to iden�fy things

All of the above, plus links to other relevant data to

provide context

As 2 star, plus non-proprietary format

(e.g. CSV instead of excel)

Fig. 4.5 Tim Berners-Lee’s 5 star rating system [41]

72 4 Fundamentals of Real-time Linked Dataspaces



4.4.2 5 Star Pay-As-You-Go Model for Dataspace Services

In contrast to the classical one-time integration of datasets that causes a significant

upfront overhead, the RLD adopts a principled pay-as-you-go paradigm for

supporting an incremental approach to data management. At the foundation of the

approach is the principle that the publisher of the data is responsible for paying the

cost of joining the dataspace. This pragmatic decision allows the RLD to grow and

enhance gradually with participants joining or leaving the dataspace at any time. The

next principle is that data is managed following a tiered approach, where an increase

in the level of active data management has a corresponding increase in associated

costs.

The tiered approach to data management provides flexibility by reducing the

initial cost and barriers to joining the dataspace. The tiers are described using a

specialisation of the 5 star scheme defined by Tim Berners-Lee. The original star

scheme has been extended to consider the level of integration of the data sources

with the support services of a dataspace. At the minimum level, a data source needs

to be made available with a dataspace. Over time, the level of integration with the

support services can be improved in an incremental manner on an as-needed basis.

The more the investment made to integrate with the support services, the better is the

integration achievable in the dataspace. The 5 star pay-as-you-go model for the RLD

is illustrated in Fig. 4.6. The five tiers are:

1 Star Basic: The participant is published in the dataspace with limited or no

integration with support services.

2 Stars Machine-readable: The participant is publishing data in a machine-

readable format. This enables services to provide a minimal level of

support with basic functionality (e.g. browsing) where available basic

interfaces are exposed.

3 Stars Basic integration: The use of a non-proprietary format enables support

services to provide essential services at the data-item/entity level with

support for simple functionality (e.g. keyword search).

LowHigh

Near

Far

Administra�ve 

Proximity

Seman�c Integra�on

Full Seman�c Integra�on, 

Search, and Query

Advanced Integra�on

Basic Integra�on

Machine-readable

Basic

Fig. 4.6 The 5 star pay-as-you-go model of a Real-time Linked Dataspace
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4 Stars Advanced integration: The participant is integrated with most support

service features (e.g. structured queries) with an awareness of its

relationships to other participants with basic support for federation.

5 Stars Full semantic integration, search, and query: The participant is fully

integrated into the support services (e.g. question answering) and linked to

relevant participants. It plays its full role in the global view of the

dataspace.

4.5 Support Platform

The RLD-Support Platform (RLD-SP) provides a set of core services to support

intelligent application developers and data scientists with a base functionality when

working with sources in the RLD. Each of the services in the RLD-SP has been

designed to follow the pay-as-you-go paradigm to support varying levels of service

offerings to the participants in the dataspace. Two categories of support services

have been developed, one targeting core data management and the other focuses on

support for streams and events. This section details these services and their tiered

levels of support as detailed in Table 4.2.

4.5.1 Data Services

The RLD-SP provides a set of enhanced data support services to enable all partic-

ipants in the dataspace to get setup and running with a low overhead. These support

services are built on the core support services defined by Franklin et al. and extended

to follow the entity-centric data management approach of knowledge graphs [2]. The

services have been designed to include support for linked data and follow the 5 star

pay-as-you-go model. Examples of data services include the catalog, entity manage-

ment, search and query, and data service discovery. Part II of this book further

explores these data services.

4.5.2 Stream and Event Processing Services

The RLD supports real-time data processing with support services that follow the

data management philosophy of dataspaces. The RLD-SP provides support services

to handle the processing of streaming and event data tackling issues including entity-

centric queries, complex event processing, stream dissemination, and semantic

approximation. The goal of these services is to support participants in the RLD to

get setup and running with a low overhead for administrative setup costs

(e.g. establishing data agreements, service selection, and composition). Part III of

this book further explores the stream and event support services.
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4.6 Suitability as a Data Platform for Intelligent Systems

Within IoT-Based Smart Environments

The RLD has been used as a data platform to support the development of intelligent

systems and applications within a range of smart environments including smart

home, school, office building, university, and airport [16]. Within these environ-

ments, a data platform needs to support a wide range of end-users with different

interests and priorities from corporate managers looking for data to improve the

performance of their business to software engineers developing applications for the

smart environment (see Fig. 4.7). Intelligent systems and applications developed

using the RLD are discussed in detail in part IV of this book. In this section, we

examine the suitability of the RLD as a data platform for a smart environment.

4.6.1 Common Data Platform Requirements

The goal of the RLD is to support a principled approach to incremental real-time data

management based on a set of services with tiered levels of support within a smart

Personalised Dashboards

Interac�ve Public Displays 

Alerts and No�fica�ons

Fig. 4.7 Intelligent systems and applications built using the Real-time Linked Dataspace [16]
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environment. The FAIR principles (Findability, Accessibility, Interoperability, and

Reusability) are designed to enable good data management to support knowledge

discovery and innovation, and the subsequent data and knowledge integration and

reuse [61]. The principles are described further in Chap. 2. Within the context of this

work, the principles can serve as a high-level guide for the design of a data platform

to support knowledge sharing within a smart environment.

Section 2.4 identified a set of common data management requirements for a data

platform. The common data platform requirements are [4]:

• Standard Data Syntax, Semantics, and Linkage: Facilitate integration and shar-

ing, ideally with open standards and non-proprietary approaches.

• Single-Point Data Discoverability and Accessibility: Allow the organisation and

access to datasets and metadata through a single location.

• Incremental Data Management: Enable a low barrier to entry and a pay-as-you-

go paradigm to minimise costs.

• Secure Access Control: Support data access rights to preserve the security of data

and privacy of users in the smart environment. Access control is needed at both

the level of the data source and at the level of the data item (i.e. entity-value).

• Real-time Data Processing: Including ingestion, aggregation, and pattern detec-

tion within event streams originating from sensors and things in the smart

environment.

• Unified Querying of Real-time Data and Historical Data: Provide applications

and end-users with a holistic queryable state of the smart environment at a latency

suitable for user interaction.

• Entity Management: The storage, linkage, curation, and retrieval of entity data,

such as users, zones, and locations.

• Event Enrichment: Enhancement of sensor/things streams with contextual data

(e.g. entities) to make the stream data more encapsulated and useful in down-

stream processing.

These requirements can be used to survey the capabilities of existing approaches

for data platforms within a smart environment and to highlight the main contribution

of the RLD.

4.6.2 Related Work

The CityPulse [65] project provides a distributed system for semantic discovery, data

analytics, and interpretation of large-scale and near-real-time Internet of Things data

and social media data streams [14]. In addition to providing unified views of the data,

CityPulse also provides data analytics modules that perform intelligent data aggre-

gation, event detection, quality assessment, contextual filtering, and decision
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support. CityPulse supports open standards for semantics, real-time stream

processing, and entity management. However, no support exists for single-point

data access, a pay-as-you-go data management paradigm, unified views over real-

time and historical data, security, and event streams enrichment.

The OpenIoT [66] platform enables the semantic interoperability of IoT services

in the cloud through the use of the W3C Semantic Sensor Networks (SSN) ontology

[152], which provides a common standards-based model for representing physical

and virtual sensors. OpenIoT provides middleware for uniform access to IoT data

and support for the development and deployment of IoT applications. OpenIoT

supports open standards for semantics, real-time stream processing, security, and

entity management. However, it lacks support for single-point data access, a pay-as-

you-go data management paradigm, unified views over live and historical data, and

event streams enrichment.

The SmartSantander project developed the City Data and Analytics Platform

(CiDAP) [33], a centralised platform to access data generated from multiple hetero-

geneous sensors installed in a city. The platform can deal with historical data and

near real-time information in an architecture like Lambda. CiDAP provides limited

support for data management beyond the low-level sensor streams and pushes these

concerns to the application-level. The result is applications duplicating common data

management functionalities. SmartSantander follows open standards for semantics,

single-point data access, security, real-time stream processing, and partial unified

queries over streams and datasets. However, it lacks support for an incremental data

management paradigm, entity management, or event streams enrichment.

The Spitfire [64] project uses semantic technologies to provide a uniform way to

search, interpret, and transform sensor data. Spitfire works towards a Semantic Web

of Things, by providing abstractions for things, basic services for search and

annotation, as well as by integrating sensors and things into the LOD cloud. Spitfire

adopts semantic web standards for describing data, partial secure access control,

entity management, and event enrichment. It does not support single-point access for

data, incremental data management, real-time data processing, or unified queries for

real-time and legacy data.

ThingStore [153] provides a “marketplace” for IoT applications development

with the ability to deploy and host them. The platform provides support for event

detection, service discovery, an Event Query Language, together with event notifi-

cation and management. The architecture of ThingStore is a computation hub to

connect things, software, and end-users. ThingStore supports secure and real-time

data processing. However, it lacks support for open standards to describe data,

single-point access for data, entity management and event enrichment, incremental

data management, and unified queries for real-time and legacy data.

From the analysis in Table 4.3, we note that existing data platforms support

semantic descriptions of data according to open standards such as semantic web and

linked data. However, they lack an incremental data management paradigm and do
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not support a single access point to discover and access datasets. Most data platforms

address the real-time processing of data but do not provide unified access to it along

with historical data. Half of the data platforms provide some support for entity

management. However, streams are not typically enriched with contextual data.

Based on the analysis of the requirements identified we could see there is a clear

need for an incremental pay-as-you-go data management, a single point of data/

stream access, support for entity-centric views of real-time and historical data, and

streams enrichment for better entity-centric and contextual data retrieval.

4.7 Summary

Real-time Linked Dataspaces (RLD) enable data ecosystems for intelligent systems

within Internet of Things-based smart environments by providing a principled

approach to the incremental management of stream events that can reduce the

technical and conceptual barriers to information sharing. This chapter introduces

the Real-time Linked Dataspace that combines the pay-as-you-go paradigm of

dataspaces and linked data with real-time search and query capabilities. The chapter

details the fundamentals of the RLD and its basis in the stream and event processing,

Table 4.3 Comparison of related frameworks to common data platform requirements [4]

Requirements

City

pulse

[65]

Open

IOT

[66]

SmartSantander

[33]

Spitfire

[64]

ThingStore

[153]

Real-time

Linked

Dataspace

Standard data syntax,

semantics, and

linkage

Yes Yes Partial Yes No Yes

Single-point data

discoverability and

accessibility

No No Partial No No Yes

Incremental data

management

No No No No No Yes

Secure access control No Yes Yes Partial Partial Yes

Real-time data

processing

Yes Yes Yes No Yes Yes

Unified querying of

real-time data and

historical data

No No Partial No No Yes

Entity management Partial Yes No Yes No Yes

Event enrichment No No No Partial No Yes
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and dataspace communities. The design of the RLD is detailed, including the main

components of the architecture, the 5 star model for pay-as-you-go support services

including services for streams, events, and data. Finally, a high-level overview of the

suitability of the RLD for a data platform is provided with a comparison to related

platforms.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons licence, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.
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Part II

Data Support Services

Part II of this book explores the critical data management support services within

Real-time Linked Dataspaces, including catalogs, entity management, query and

search, data service discovery, and human-in-the-loop tasks.



Chapter 5

Data Support Services for Real-time

Linked Dataspaces

Keywords Dataspaces · Incremental data management · Data services

5.1 Introduction

The objective of a Real-time Linked Dataspace is to support a real-time response

from intelligent systems to situations of interest when a set of events take place

within a smart environment. In addition to the obvious need for real-time data

processing support services, there is also the need for the fundamental data support

services one would expect in a dataspace support platform. This part of the book

discusses the enhanced data support services developed for the Real-time Linked

Dataspace to support data management for intelligent systems within smart envi-

ronments. The goal of these services is to support a real-time dataspace system to get

up and running with a low overhead for administrative setup costs (e.g. catalog,

entity management, search and query, and data service discovery). Each of the

support services has been specifically designed for and evaluated within Internet

of Things-based smart environments. This chapter provides a high-level overview

of the data support services discussed in Part II and details their tiered service

levels. This chapter is structured as follows: Sect. 5.2 provides a brief overview

of the pay-as-you-go data support services covered in this part of the book,

while Sect. 5.3 details how the services support the 5 star scheme. A summary is

provided in Sect. 5.4.

5.2 Pay-As-You-Go Data Support Services for Real-time

Linked Dataspaces

The adoption of the Internet of Things (IoT)-enabled smart environments is

empowering data-driven systems that are transforming our everyday world. To

support the interconnection of intelligent systems in the data ecosystem that
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surrounds a smart environment, there is a need to enable the sharing of data among

intelligent systems. A data platform can provide a clear framework to support the

sharing of data among a group of intelligent systems within a smart environment [1]

(see Chap. 2). In this book, we advocate the use of the dataspace paradigm within the

design of data platforms to enable data ecosystems for intelligent systems.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support large-scale distributed

heterogeneous collection of streams, events, and data sources [4]. At the foundation

of the pay-as-you-go approach to data integration is the idea that the owners of the

data sources are responsible for the incremental improvement in the integration and

quality of data available in the dataspace. The needs of the user drive incremental

improvements over time. This pragmatic approach allows the dataspace to grow and

enhance gradually with data sources or streams joining or leaving at any time. In

order to reduce the burden on data source owners and users of the RLD, a support

platform with a number of data support services is provided.

The design of the support services needs to conform to the principles of RLDs.

The RLD principles specialise the dataspace principles as set out by Halevy et al.

[78] to describe the specific requirements within a real-time dataspace setting:

• A Real-time Linked Dataspace must deal with many different formats of streams

and events.

• A Real-time Linked Dataspace does not subsume the stream and event processing

engines; they still provide individual access via their native interfaces.

• Queries in the Real-time Linked Dataspace are provided on a best-effort and

approximate basis.

• The Real-time Linked Dataspace must provide pathways to improve the integra-

tion among the data sources, including streams and events, in a pay-as-you-go

fashion.

The data services provided by RLD (Fig. 5.1) are:

Data Support 

Services

Catalog
Search and 

Query

Data Service 

Discovery
Human Tasks

S h dh d D t S iD t S

FCA Service 

Descriptions

Data 

Mgmt.

Task 

Assignment

S D t T kTEntity 

Management

Best 

Effort

Schema 

Agnostic

B t S h

Fig. 5.1 Data services provided by the real-time linked dataspace
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• Catalog: The catalog service plays a crucial role by providing information about

participating data sources in the dataspace. Within the catalog, all datasets and

entities are declared along with relevant metadata.

• Entity Management: The Entity Management Service (EMS) manages informa-

tion about the entities (e.g. real-world objects) in the dataspace. The EMS is an

essential service for decision-making applications that rely on accurate entity

information.

• Search and Query: The Search and Query services help developers, data scien-

tists, and users to find relevant data sources within the dataspace.

• Data Service Discovery: Efficiently describing and organising data sources in

dataspaces is essential. The Data Service Discovery Service organises and

indexes data sources based on their capabilities.

• Human Tasks: The Human Task service is concerned with the collaborative

aspect of data management within the dataspace by enabling small data manage-

ment tasks (e.g. data quality and enrichment) to be distributed among users in

the smart environment. The Human Task service can also engage participants

in citizen actuation tasks within the smart environment.

An essential requirement for intelligent systems within a smart environment is to

support the querying of real-time data streams. Within the RLD this is achieved by

several support services for processing streams and events which are covered in Part

III of this book. In the remainder of this part of the book, we detail the above data

support services and focus on how they enable data management in the RLD. Each

of these services has been designed to follow the RLD principles and to offer tiered

service-levels following the 5 star pay-as-you-go model from Chap. 3.

5.3 5 Star Pay-As-You-Go Levels for Data Services

The 5 star scheme details the level of integration of the data sources with the support

services of a dataspace. At the 1 star level, a data source needs to be made available

with the dataspace. Over time, the level of integration with the support services can

be improved in an incremental manner on an as-needed basis. The more the

investment is made to integrate with the support services, the better is the integration

achievable in the dataspace. The different service tiers of the RLD data support

services are detailed in Table 5.1.

5.4 Summary

This chapter provides an overview of the enhanced data support services developed

for the Real-time Linked Dataspace to enable intelligent systems within IoT-based

smart environments. The goal of these services is to support Real-time Linked
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Dataspaces to get up and running within a smart environment with a low overhead

for administrative setup costs (e.g. catalog, entity management, search and query,

and data service discovery). The services follow the 5 star pay-as-you-go model for

tiered services.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons licence, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.
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Chapter 6

Catalog and Entity Management Service

for Internet of Things-Based Smart

Environments

Umair ul Hassan, Adegboyega Ojo, and Edward Curry

Keywords Entity management · Knowledge graphs · Data catalog · Dataspace ·

Internet of Things · Smart environments

6.1 Introduction

A fundamental requirement for intelligent decision-making within a smart environ-

ment is the availability of information about entities and their schemas across

multiple data sources and intelligent systems. This chapter first discusses how this

requirement is addressed with the help of catalogs in dataspaces; it then details how

entity data can be more effectively managed within a dataspace (and for its users)

with the use of an entity management service. Dataspaces provide a data

co-existence approach to overcome problems in current data integration systems in

a pay-as-you-go manner. The idea is to bootstrap the integration with automated

integration, followed by incremental improvement of entity consolidation and

related data quality. The catalog and entity management services are core services

needed to support the incremental data management approach of dataspaces. We

provide an analysis of existing data catalogs that can provide different forms of

search, query, and browse functionality over datasets and their descriptions. In order

to cover the entity requirements, the catalog service is complemented with an entity

management service that is concerned with the management of information about

entities.

The chapter is organised as follows. Section 6.2 introduces the important role of

entity data. Section 6.3 lists the key requirements and challenges of implementing a

catalog and entity service in a dataspace. Section 6.4 examines existing catalogs as

described in the literature. Section 6.5 details the implementation of a catalog in the

dataspace, with Sect. 6.6 detailing the entity management service. Section 6.7 details

the access control service, while Sect. 6.8 describes how a data source joins the

dataspace. Finally, Sect. 6.9 summarises the chapter.
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6.2 Working with Entity Data

Within a smart environment, analytical and operational activities of intelligent

systems revolve around entities of interest. For example, within intelligent energy

systems, energy consuming entities (i.e. electrical devices, lights, heating units) are

the main entities of interest whereas products and customers are the primary entities

for intelligent marketing systems. Typically, in a smart environment, the information

about core entities is spread across data silos, including inventory systems and

customer relationship systems. Consolidation of this information is known to be

among the top priorities of data managers [154]. However, successful integration of

information requires overcoming the heterogeneity of data that exists at various

levels of detail [155]. Consider the example of a marketing analyst who is preparing

a report on a set of company products. For this purpose, the analyst has some data

available in a spreadsheet on their local computer that needs to be consolidated with

data available in the company’s billing system. The first challenge in such consol-

idation exists at the information representation level due to different data formats and

semantics of data models used for describing the products. Once both datasets have

been converted to a common format and schema, the analyst will need to perform

four actions: (1) discover mapping relationship between attributes of product

schemas in the spreadsheet and billing system; (2) determine equivalence relation-

ships among products stored in both data sources; (3) merge the values of mapped

attributes for equivalent products to generate a consolidated dataset; and (4) clean the

resultant dataset for redundant or conflicting attribute values.

There are several process-oriented methodologies and technical tools available to

minimise the manual effort required to achieve the analyst’s data integration and data

quality workflow. However, a fundamental requirement of integration is the avail-

ability of exact information about entities and their schemas across multiple data

sources. This chapter first discusses how this requirement is addressed with the help

of a catalog in a dataspace, it then details how entity data can be more effectively

managed within a dataspace (and for its users) with the use of an entity management

service.

6.3 Catalog and Entity Service Requirements for Real-time

Linked Dataspaces

Driven by the adoption of the Internet of Things (IoT), smart environments are

enabling data-driven intelligent systems that are transforming our everyday world,

from the digitisation of traditional infrastructure (smart energy, water, and mobility),

the revolution of industrial sectors (smart autonomous cyber-physical systems,

autonomous vehicles, and Industry 4.0), to changes in how our society operates

(smart government and cities). To support the interconnection of intelligent systems

in the data ecosystem that surrounds a smart environment, there is a need to enable

the sharing of data among intelligent systems.
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6.3.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management that recognises that in

large-scale integration scenarios, involving thousands of data sources, it is difficult

and expensive to obtain an upfront unifying schema across all sources [2]. Within

dataspaces, datasets co-exist but are not necessarily fully integrated or homogeneous

in their schematics and semantics. Instead, data is integrated on an “as-needed” basis

with the labour-intensive aspects of data integration postponed until they are

required. Dataspaces reduce the initial effort required to set up data integration by

relying on automatic matching and mapping generation techniques. This results in a

loosely integrated set of data sources. When tighter semantic integration is required,

it can be achieved in an incremental “pay-as-you-go” fashion by detailed mappings

among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support large-scale distributed

heterogeneous collection of streams, events, and data sources [4].

6.3.2 Requirements

To further support data integration and quality, an RLD must hold information about

its participant data sources irrespective of whether they contain primarily static

datasets or produce streams of highly dynamic data [19, 156]. Among the primary

support services of a dataspace, the catalog service is responsible for managing

detailed descriptions of all the data sources that form a dataspace [78]. At a basic

level, the descriptions must contain information such as the owner, creation date,

type of the data, and semantic information about the data source. At a more detailed

level, the catalog must also describe the schema of a data source, the query

endpoints, the accuracy of data, access licenses, and privacy requirements. Besides

descriptions of individual data sources, the dataspace should also maintain descrip-

tions of relationships between data sources in appropriate forms such as bipartite

mappings, dependency graphs, or textual descriptions. The catalog must be able to

accommodate a large number of data sources; support varying levels of descriptions

about data sources and their relationships, and should make descriptions available in

both human and machine-readable formats.

The catalog service plays a crucial role in providing information services for

participants in the dataspace, including search, browse, and query services. The
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catalog should also maintain, wherever possible, a basic entity management service

in the form of an inventory of the core entities of interest that includes details on

their identifier, type, creation date, core attributes, and associated data source. The

catalog can then support simple queries that can be used to answer questions

about the presence or absence of an entity in a data source or determine which

source contains information on a particular entity. Furthermore, assigning canonical

identifiers to entities supports data integration and enrichment as part of stream

processing algorithms.

The following primary requirements for a catalog and Entity Management Ser-

vice (EMS) are needed to support the incremental data management approach of

dataspaces:

• Data Source Registry and Metadata: The requirement to provide a registry for

both static and dynamic data sources as well as their descriptions.

• Entity Registry and Metadata: The requirement to provide a registry for

entities and their descriptions.

• Machine-Readable Metadata: The requirement to store and provide metadata

about data sources and entities in machine-readable formats using open standards

such as JavaScript Object Notation (JSON) and Resource Description Framework

(RDF).

• HTTP-Based Access: The requirement to allow HTTP access to data source and

entity descriptions.

• Schema Mappings: The capability to define mappings between schema

elements.

• Entity Mappings: The capability to define mappings between entities.

• Semantic Linkage: The capability to define semantic relationships and linkages

among schema elements and entities.

In addition to the above primary requirements, the following secondary require-

ments are important for the successful and sustained use of the catalog and an EMS:

• Search and Browse Interface: The requirement to provide a user interface over

the catalog and EMS, which allows searching and browsing over all the elements

stored.

• Authentication and Authorisation: The requirement to verify the credentials of

users and applications accessing the catalog and EMS which can limit access to

sources/entities based on access policies or rules.

• Data Protection and Licensing: The requirement to fulfill the privacy and

confidentiality requirements of data owners and providing licensing information

on the use of data.

• Keyword Queries: The requirement to support keyword-based queries over all

the data stored in the catalog and EMS.

• Provenance Tracking: The requirement of tracking lineage of changes made to

the catalog and EMS by users and applications.
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6.4 Analysis of Existing Data Catalogs

This section provides a short analysis of some existing software and platforms that

can be used for implementing data catalogs. The objective of this analysis is to

provide a high-level overview of these software packages and their coverage of

primary and secondary requirements identified in the previous section. This analysis

focuses on a selected list of open-source software while readers are directed towards

relevant industry reports to assess proprietary software [157]. In terms of data

management, most commercial data catalogs have been developed over existing

Master Data Management (MDM) solutions of software vendors. This shift from

MDM to data catalogs is primarily driven by the concept of data lakes, which is an

industry term used to refer to a loose collection of heterogeneous data assets in

enterprises.

Table 6.1 lists the open-source software included in the analysis. QuiltData

allows the creation and sharing of data packages using Python. The Comprehensive

Knowledge Archive Network (CKAN) is primarily designed for implementing data

portals for organisations that publish and share data. CKAN is widely used by public

sector organisations and governments to publish open datasets. Dataverse is a

web-based platform for data preservation and citation developed at Harvard Univer-

sity. It is primarily used to create a citable reference to a dataset that can be used in

publications.

Similarly, the DSpace platform is designed to serve as a repository of digital

assets, including multimedia, documents, and datasets. Another software for sharing

and preserving research outputs is Zenodo, developed and maintained by CERN. By

comparison, the Kylo project form Teradata is designed from a data integration

perspective that includes a metadata registry for data sources. The difference

between Kylo and other software is evident by the fact that Kylo has been developed

by an industry leader where other software primarily originate from academia.

A quick analysis of Table 6.2 reveals that most of the open-source software is

limited to addressing the requirements of maintaining a data registry and providing

machine-readable access to metadata through HTTP. Most of the catalogs do not

address the requirement to manage entity information and the need to provide

mappings between schemas and entities. All of the catalogs, except CKAN and

Kylo, provide a registry of datasets that are stored internally by the software. On the

other hand, both CKAN and Kylo also register external data sources, thus addressing

Table 6.1 Existing open-source software for data catalogs

Open-source software URL License

QuiltData https://github.com/quiltdata/quilt Apache

CKAN https://github.com/ckan/ckan AGPL

Dataverse https://github.com/IQSS/dataverse Apache

DSpace https://github.com/DSpace/DSpace BSD

Zenodo https://github.com/zenodo/zenodo GPL

Kylo (Teradata) https://github.com/Teradata/kylo Apache

6.4 Analysis of Existing Data Catalogs 93

https://github.com/quiltdata/quilt
https://github.com/ckan/ckan
https://github.com/IQSS/dataverse
https://github.com/DSpace/DSpace
https://github.com/zenodo/zenodo
https://github.com/Teradata/kylo


T
a
b
le
6
.2

O
v
er
v
ie
w

o
f
re
q
u
ir
em

en
ts
co
v
er
ag
e
o
f
o
p
en
-s
o
u
rc
e
d
at
a
ca
ta
lo
g
s

R
eq
u
ir
em

en
ts

P
ri
m
ar
y

S
ec
o
n
d
ar
y

D
at
a
so
u
rc
e

re
g
is
tr
y
an
d

m
et
ad
at
a

E
n
ti
ty

re
g
is
tr
y

an
d

m
et
ad
at
a

M
ac
h
in
e-

re
ad
ab
le

m
et
ad
at
a

H
T
T
P
-

b
as
ed

ac
ce
ss

S
ch
em

a

m
ap
p
in
g
s

E
n
ti
ty

m
ap
p
in
g
s

S
em

an
ti
c

li
n
k
ag
e

S
ea
rc
h

an
d

b
ro
w
se

in
te
rf
ac
e

A
u
th
en
ti
ca
ti
o
n

an
d

au
th
o
ri
sa
ti
o
n

D
at
a

p
ro
te
ct
io
n

an
d

li
ce
n
si
n
g

K
ey
w
o
rd

q
u
er
ie
s

P
ro
v
en
an
ce

tr
ac
k
in
g

Q
u
il
tD
at
a

+
–

+
+
+

–
–

–
+

+
+

–
+
+

+

C
K
A
N

+
+

–
+
+

+
+

–
–

–
+
+

+
+

+
+
+

+

D
at
av
er
se

+
–

+
+
+

–
–

–
+
+

+
+

+
+
+

+

D
S
p
ac
e

+
–

+
+
+

–
–

–
+
+

+
+

+
+

+

Z
en
o
d
o

+
–

+
+
+

–
–

–
+
+

+
+

+
+
+

+

K
y
lo

+
+

–
+

+
+

+
–

–
+
+

+
+

+
+

+
+
re
q
u
ir
em

en
t
is
w
el
l
co
v
er
ed

+
re
q
u
ir
em

en
t
is
p
ar
ti
al
ly

co
v
er
ed

–
re
q
u
ir
em

en
t
is
n
o
t
co
v
er
ed

94 6 Catalog and Entity Management Service for Internet of Things-Based. . .



a key requirement of a catalog in a dataspace. In terms of machine-readable data, all

catalogs provide access to the metadata in JSON format, and CKAN provides data in

RDF format.

In terms of secondary requirements, all data catalogs address the requirements

with almost full coverage. However, data protection and provenance tracking

requirements are only partially addressed by all software. Data protection and

licensing requirements are mainly addressed by associating licenses with datasets

or data sources in the catalog. Provenance tracking is only limited to the changes

made to the metadata instead of the dataset or data source.

6.5 Catalog Service

Based on the coverage of the primary and secondary requirements identified, CKAN

was chosen as the base software to create the catalog service for the RLD. The

catalog extends the CKAN portal with the additional functionally necessary to cover

the primary requirements for the RLD. The catalog service provides a registry of the

following:

• Datasets: A dataset contains contextual information about a building or a thing

within a smart environment, real-time sensors data, enterprise data (e.g. customer

data, enterprise resource planning systems), or open data such as weather

forecast data.

• Entities: An entity defines a concrete instance of a concept within the smart

environment (e.g. a sensor or a water outlet). The catalog tracks critical entities in

the smart environment and links them with the datasets and streams that contain

further information about the entities. Metadata about an entity includes the

identifier, entity type, and associated datasets.

• Users and Groups: Individual users can include data managers, data analysts,

and business users who might belong to one or more groups divided along

organisational structures or projects.

• Applications: Applications are the descriptions of software and services that

utilise the dataspace and its services. For example, mobile applications, public

displays, data services, analytic tools, web applications, and interactive

dashboards.

6.5.1 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to data management that

reduces the initial cost and barriers to joining the dataspace. When tighter integration

into the dataspace is required, it can be achieved incrementally by following the

service tiers defined. The incremental nature of the support services is a core enabler
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of the pay-as-you-go paradigm in dataspaces. The tiers of service provision provided

by the catalog in the RLD follows the 5 star pay-as-you-go model (detailed in

Chap. 4). The level of service provided by the catalog increases as follows:

1 Star Registry: A simple registry of datasets and streams, only pointing to the

interfaces available for access.

2 Stars Metadata: Describing datasets and streams in terms of schema and

entities in a non-machine-readable format (e.g. PDF document).

3 Stars Machine-readable: Machine-readable metadata and simple equivalence

mappings between dataset schemas to facilitate queries across the

dataspace.

4 Stars Relationships: Relations among schemas and concepts across the

dataspace.

5 Stars Semantic Mapping: Semantic mappings and relationships among

domains of different datasets; thus, supporting reasoning and schema

agnostic queries.

The main requirement not covered by CKAN was the need for more advanced

support for entity management within the RLD (e.g. entity registry, schema and

entity mapping, and semantic linkage). In order to cover these entity requirements,

the catalog service in the RLD is complemented with an entity management service

that is concerned with the management of information about entities.

6.6 Entity Management Service

Managing information about the critical entities in a smart environment is an

essential requirement for intelligent decision-making applications that rely on accu-

rate entity information. Similar to MDM, there have been efforts to develop

web-scale authoritative sources of information about entities, for example, Freebase

[158] and DBpedia [159]. These efforts followed a decentralised model of data

creation and management, where the objective was to create a knowledge base. A

similar authoritative source of entity information within a dataspace would signifi-

cantly improve the experience of working with entity data.

Fundamental to the RLD approach is to treat entities as first-class citizens

(as illustrated in Fig. 6.1) in the dataspace, which is achieved by using entity-

centric knowledge graphs and support from the EMS. The EMS is concerned with

the maintenance of information about entities within the smart environment and

together with the catalog service acts as the canonical source of entity (meta)data.

The EMS facilitates sharing and reusing of entity data within the RLD using (1) a

knowledge-graph entity representation framework for structuring entity data and

(2) standard ontology languages for defining the semantics of data [160]. Ontologies,

also referred to as vocabularies, provide a shared understanding of concepts and

entities within a domain of knowledge which supports automated processing for data

using reasoning algorithms.
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The relationship of entities across data sources and intelligent systems in a

smart environment can quickly become complicated due to the barriers of sharing

knowledge among intelligent systems. This is a significant challenge within tradi-

tional data integration approaches and the use of linked data and knowledge graph

techniques that leverage open protocols and W3C that can support the crossing of

knowledge boundaries when sharing data among intelligent systems.

The EMS leverages the principles of linked data from Tim Berners-Lee (see

Chap. 2) [41] and adapts them to the management of entities. Thus, the EMS has the

following “Linked Entity” principles:

• Naming: Each managed entity within the EMS is identified using a Uniform

Resource Identifier (URI). Managed entities can be a person, a building, a device,

an organisation, an event or even concepts such as risk exposure or energy and

water consumption.

• Access: Each managed entity within the EMS can be accessed via an HTTP-

based URI which can be used to retrieve detailed entity data.

• Format: When an entity URI is looked up (i.e. dereferenced) to retrieve entity

data, useful information about the entity is provided using open-standard formats

such as RDF or JSON-LD.

Fig. 6.1 Example of managed entities in the Entity Management Service [4]
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• Contextualisation: Entity data includes URIs to other entities so that more

information can be discovered on-the-fly. Referencing other entities, through

URIs, thus creates a knowledge graph that could be traversed by automated

software to discover and link information with the dataspace.

6.6.1 Pay-As-You-Go Service Levels

Similar to the tiered approach used by the catalog, the level of active entity

management follows the 5 star pay-as-you-go model of the RLD. The entity

management service has the following levels of incremental support:

1 Star No Service: Entities are not managed.

2 Stars Documented: Entity descriptions (e.g. schema and identifiers) are

documented in a non-machine-readable format (e.g. PDF document).

3 Stars Source-level: Machine-readable entity at the source-level.

4 Stars Multi-source Mapping: Canonical identifiers for entities in the dataspace

and mapping across sources.

5 Stars Entity Knowledge Graphs: Entities are semantically linked to other

related entities, data, and streams across the dataspace to create a

knowledge graph.

6.6.2 Entity Example

The EMS follows the incremental dataspace philosophy; in practice, you only

connect data sources related to an entity on an as-needed basis. The approach

encourages that entities should be as minimal as possible to achieve the desired

results. Figure 6.2 describes a minimal data model for entities in one of the smart

water pilots.

The key entities of the data model and the sources they originate from are:

• Sensor:Measures the flow of water and generates a stream of data to calculate the

water consumption levels of the area covered by the sensor (from the Internet of

Things Platform).

• Observation: The sensor output including the units and rate of measurement

(from the Internet of Things Platform).

• Outlet: Information on the actual physical water outlet is necessary for analysis

and decision-making. It is possible that a single sensor might be installed for a set

of outlets. In such cases, a cumulative assessment of water consumption is needed

(outlet description crowdsourced using human task service).

• Location: Information on the associated spatial locations serviced by the water

pipe (from Building Management System).

• User Group: Each sensor is associated with a set of users who have permission to

access the data (from Enterprise Access Control). The access control service

leverages this information.
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6.7 Access Control Service

The access control service ensures secure access to the data sources defined in the

catalog. Access is managed by defining access roles for applications/users to the data

source/entity that are declared in the catalog. The access control service is an

intermediary between the applications/users and the dataspace by using the catalog

as a reference to verify access for applications/users to the actual data sources. The

advantage of this approach is to keep the applications/user’s profiles centrally

managed by the catalog under the governance of the dataspace managers. Within

the pilot deployments, we defined three types of roles for access control:

(1) dataspace managers, (2) application developers/data scientists, and (3) end-users.

To simplify the process of securely querying data sources, the access control service

offers a secure query service to applications. As illustrated in Fig. 6.3, the workflow

of an application using the secure query capability of the access control service and

the roles of the users are as follows1:
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Fig. 6.2 Minimal data model for entities in an intelligent water management system [4]

1Demo Video available at this link: https://www.youtube.com/watch?v¼KukUd5VCheY
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1. The user connects to the application (App1).

2. The application maps the user ID to its profile and access as the secure query

service via an identification token (API Key).

3. The query service verifies the application ID and its API Key and checks that it

has the right to access the data source (e.g. dataset or an entity).

4. Authorisation results are sent back to the query service.

5. If the user is authorised, the query service gets the data from the source.

6. Results from the data source are sent back to the query service.

7. The query service sends the data to the application.

8. The application returns the data to the user (e.g. via a UI or a file).

6.7.1 Pay-As-You-Go Service Levels

In terms of tiered levels of support for the access control service, this is defined by

the capability to increasingly limit access to more fine-grained levels within a data

source. The access control service has the following levels of service:

1 Star No Service: The access control service does not manage the source.

2 Stars Coarse-grained: Access is limited to the user at the dataset level.

3 Stars Fine-grained: Access is limited to users at the entity level with the use of

the secure query service.
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Fig. 6.3 Query workflow using the access control service [4]
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4 Stars Data Anonymisation: Access to sanitised data for privacy protection.

(Not supported in pilots).

5 Stars Usage Control: Usage of the data is controlled as it moves around the

dataspace. (Note: This functionality is not currently implemented).

6.8 Joining the Real-time Linked Dataspace

The RLD is composed of multiple data sources, including real-time sensor streams,

historical databases, large textfiles, and spreadsheets. TheRLDadopts a pattern inwhich

the publisher of the data is responsible for paying the cost of joining the dataspace. This is

a pragmatic decision as it allows the dataspace to grow and enhance gradually. For a data

source to become a part of the dataspace, it must be discoverable and must conform to at

least the first star rating of the RLD. The registration process entails detailing the

metadata of the source, which helps users of the catalog in locating and using the data

source. A seven-step approach has been defined for including a data source into the RLD

(see Fig. 6.4). The seven steps are Register, Extract/Access, Transform, Load, Enrich,

Map, and Monitor (RETLEMM). Some of the steps are optional and depend on the

capability of the data source to meet requirements around machine-readable data and

query & search capabilities and interfaces. The RETLEMM steps are:

• Register: A new data source joining the dataspace would require it to be

registered in the dataspace catalog. The registration means that the catalog

contains an entry describing the data source at a minimum regarding type, access,

and format. Completion of this step will give the data source a rating of one star

and the data source is considered part of the dataspace since it can be accessed and
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Fig. 6.4 RETLEMM process for a data source to join the RLD
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used. Further optional information about the data source can include the physical

address of files, a query interface/endpoint, additional metadata, and entity data.

• Extract/Access: The second step of the process is to allow access to the data from

the data source in a machine-readable format; this will rate the source as a

minimum of 2 stars. How data is accessed depends on the data source; for simple

sources with limited capability (e.g. Excel), the data may need to be extracted. For

more sophisticated data sources (e.g. database), the data may be accessible via a

query interface. To demonstrate all the process steps in this example (see

Fig. 6.4), it is assumed that information is extracted in the form of CSV files.

The use of an open format will move it to 3 stars.

• Transform: Given the CSV representation, the next step is to convert the data

into an appropriate format for publishing. A simple semi-automated process for

transforming the CSV files to RDF files is possible using tools such as Microsoft

Excel and OpenRefine. A similar process can be used to perform an on-the-fly

transformation of the results of a database query (see Adapters below). This step

moves the data towards 4 stars.

• Load: Once the data has been converted and represented in the RDF format, the

next step is to store it in an appropriate data store. For this step, any general-purpose

RDF store may be used. However, it is necessary for the RDF store to have the

necessary publishing, querying, and search functionalities to support applications.

This step is not necessary where the data source has a queryable interface and

results can be transformed into on-the-fly RDF. The data is now 4 stars.

• Enrich: The above steps are enough to support analytical and decision support

applications. Nevertheless, it is desirable to enhance the metadata with additional

information such as links to related entities in other datasets. This optional step

adds contextual information to achieve the overall entity-centric vision of the

RLD. The data will move towards 5 stars.

• Map: Similar to the enrich step, the schema and entities of a data source may be

mapped to other data sources and entities in the catalog. This facilitates integra-

tion and deduplication of classes and entities. Also, it allows the automated

processing of data collected from multiple datasets using advanced reasoning

and schema agnostic query tools. The data will now be 5 stars.

• Monitoring: It is not unusual for a data source to change or update its definitions

and attributes. These changes can introduce data quality issues and errors which

can affect the performance of the dataspace. The RLD utilises a simple monitor-

ing process to check for changes in data sources in terms of availability and data

quality.

When a data source joins the dataspace, the RETLEMM process can be

performed manually by the data source owners with the help of the dataspace

support services. However, the Extract, Transform, and Load (ETL) steps can be

automated to speed up the process. Automation is desirable for large-scale historical

data and real-time metering data. In the following, we discuss the two alternatives for

automation:

• Adapters: Adapters can be considered a non-materialised view of a data source.

They encode the ETL process in the form of mappings between the source data
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format and the target data format. In the case of a historical database, the data

resides in the source, and the ETL is performed on-the-fly every time queries are

posted on a non-materialised view. In the case of a real-time data stream, the ETL

is performed on-the-fly as data is generated by the streaming source.

• Scheduled Jobs: This form of the ETL process is performed either once for a

large static database or periodically for a large dynamic database. It is a common

activity among existing data warehouse implementations.

6.9 Summary

This chapter underlines the need for a catalog service for successful implementation

of Real-time Linked Dataspaces. Specifically, it is established that the catalog should

not only serve as a registry of data sources in a dataspace but also provide an entity

management service. Based on a set of requirements identified for the catalog, a

short analysis of existing open-source software is provided to assess their coverage

of requirements. The design of the catalog and entity management service for the

Real-time Linked Dataspace is detailed including aspects such as tiered services

levels, entity modelling, access control, and the process for a data source to join the

dataspace using the catalog and entity management service.
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Chapter 7

Querying and Searching Heterogeneous
Knowledge Graphs in Real-time Linked
Dataspaces

André Freitas, Seán O’Riáin, and Edward Curry

Keywords Knowledge graphs · Query processing · Data search · Best-effort ·

Dataspace

7.1 Introduction

As the volume and variety of data sources within a dataspace grow, it becomes a

semantically heterogeneous and distributed environment; this presents a significant

challenge to querying the dataspace. Approaches used for querying siloed databases

fail within large dataspaces because users do not have an a priori understanding of all

the available datasets. This chapter investigates the main challenges in constructing

query and search services for knowledge graphs within a linked dataspace. Search

and query services within a linked dataspace do not follow a one-size-fits-all

approach and utilise a range of different techniques to support different characteris-

tics of data sources and user needs.

This chapter is structured as follows: Section 7.2 explores the difference between

querying and searching knowledge graphs in a Real-time Linked Dataspace and

details the high-level functionality needed by the search and query service.

Section 7.3 introduces search and query over dataspaces, discusses the challenges

with data heterogeneity in a dataspace, and identifies the core requirement for the

search and query service. State-of-the-art analysis of existing approaches to

searching and querying is provided in Sect. 7.4. Section 7.5 details an analysis of

the emerging design features for creating schema-agnostics query mechanisms, and

the chapter concludes in Sect. 7.6.
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7.2 Querying and Searching in Real-time Linked

Dataspaces

Driven by the adoption of the Internet of Things (IoT), smart environments are

enabling data-driven intelligent systems that are transforming our everyday world,

from the digitisation of traditional infrastructure (smart energy, water and mobility),

the revolution of industrial sectors (smart autonomous cyber-physical systems,

autonomous vehicles, and Industry 4.0), to changes in how our society operates

(smart government and cities). To support the interconnection of intelligent systems

in the data ecosystem that surrounds a smart environment, there is a need to enable

the sharing of data among intelligent systems.

7.2.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management that is distinct from

current approaches. The dataspace approach recognises that in large-scale integra-

tion scenarios, involving thousands of data sources, it is difficult and expensive to

obtain an upfront unifying schema across all sources [2]. Within dataspaces, datasets

co-exist but are not necessarily fully integrated or homogeneous in their schematics

and semantics. Instead, data is integrated on an as-needed basis with the labour-

intensive aspects of data integration postponed until they are required. Dataspaces

reduce the initial effort required to set up data integration by relying on automatic

matching and mapping generation techniques. This results in a loosely integrated set

of data sources. When tighter semantic integration is required, it can be achieved in

an incremental pay-as-you-go fashion by detailed mappings among the required data

sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data and real-time stream and

event processing capabilities to support a large-scale distributed heterogeneous

collection of streams, events, and data sources [4]. In this chapter, we focus on the

search and query support services of the RLD.

Dataspaces assume that the querying capability of the participants in the

dataspace is not equal, and they do not assume the support of any specific standards

to support data sharing. By building on web (URIs and HTTP) and semantic web

standards (such as the Resource Description Framework and RDF Schema [RDFS]),

and vocabularies, RLD can effectively reduce barriers to data publication, consump-

tion, and reuse within a dataspace. Participants in a linked dataspace expose their
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data as Knowledge Graphs (KGs), which can be interlinked and integrated with

other datasets, creating an interlinked dataspace.

RLDs and generic dataspaces share more commonalities than differences, and the

analysis provided in this chapter is relevant to both. In this chapter, the scope of the

search and query service is mainly focused on non-streaming data sources with the

search and query of live data streams discussed in Part III of this book. The

discussion in this chapter builds on our earlier analysis of querying heterogeneous

linked data sources [111] by contextualising the challenges within Real-time Linked

Dataspaces [4].

7.2.2 Knowledge Graphs

Knowledge graphs pose challenges inherent to querying highly heterogeneous and

distributed data. To query, data users must first be aware of which datasets poten-

tially contain the data they want and what data model describes these datasets, before

using this information to create structured queries. This query paradigm is deeply

attached to the traditional perspective of structured queries over databases and does

not suit the heterogeneity, distributiveness, or scale we expect from the datasets and

KGs within a linked dataspace. It is impractical to expect users to have a previous

understanding of the structure and location of datasets within the linked dataspace.

Letting users expressively query relationships in the data while abstracting them

from the underlying data model is a fundamental problem for massive data con-

sumption, which, if not addressed, will limit the utility of dataspaces for consumers.

Consider a journalist compiling a list of facts regarding public personalities and

their family connections. The journalist can express his or her information needs as

natural language queries, such as “Who are the children of Marie Curie married to?”

Document search engines cannot currently provide a level of query interpretation

that could point directly to the final answer. With a traditional search engine, the

journalist must navigate through the links and read the content of each candidate

page the search engine returns.

The information that can answer this query may be available in the linked

dataspace. However, to access it, users must know the location and structure of

relevant datasets and the syntax of the query language. There exists a semantic gap

between the user’s information need, which is expressed in a generic natural

language query and the data representation in the target dataset. The query’s terms

and structure differ from the data representation in the dataset. The provision of

intuitive and flexible query mechanisms that can approximate users from an

unconstrained amount of data represents a fundamental challenge of querying

knowledge graphs in a linked dataspace.
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7.2.3 Searching Versus Querying

Query mechanism for structured data which supports data consumers with expres-

sive queries (queries which can make use of the conceptual structure behind the

database and the supported database operations) and abstracts them away from the

representation (being schema-agnostic) is an active research challenge.

The simplicity and intuitiveness of search engine interfaces, where users search

the web using keyword queries, was a crucial element in the widespread adoption of

web search engines and in the process of maximising the value of the information

available on the web. On the other side of the spectrum, from the perspective of

structured/semi-structured data consumption, users expect precise and expressive

queries. In this scenario, most users query data with the help of structured query

languages such as SQL or SPARQL. In a large-scale data scenario, structured query

approaches do not thoroughly address all search and query usability requirements

from all categories of users (such as being accessible to casual users and supporting

lower query construction times for expert users).

With the web, users have recognised search to be a first-class activity. The search

paradigm used in the web, however, cannot be directly transported for querying

structured data. Keyword search over data does not provide the desired expressivity,

while traditional structured query mechanisms have poor usability. Query expres-

sivity and usability are two dimensions of database querying which define trade-off

behaviour. Different categories of query/search approaches have emerged, targeting

the trade-off between usability and expressivity (see Fig. 7.1) and have achieved

some level of success.

Keyword 
search

Expressivity

Entity-
centric

Usability

… Structure 
search

SPARQL 
/ SQL

Fig. 7.1 The expressivity–usability trade-off for querying over structured data. The green dots

indicate that an ideal query mechanism must provide both high expressivity and high usability

[111]. Adapted from [161]
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7.2.4 Search and Query Service Pay-As-You-Go Service

Levels

The objective of the Search and Query service is to help developers, data scientists,

and users to find relevant datasets within the dataspace. Users can navigate the

dataspace by entities (if supported), or by performing a search or query on the

datasets. A key challenge in developing search and query services over heteroge-

neous sources in a dataspace is the expressivity–usability trade-off. An ideal

dataspace query mechanism must provide both high expressivity and high usability.

As data sources are more tightly integrated into the dataspace, and move towards

forming a knowledge graph, the search and query service can offer more sophisti-

cated functionality.

Dataspace support services follow a tiered approach to data management that

reduces the initial cost and barriers to joining the dataspace. When tighter integration

into the dataspace is required, it can be achieved incrementally by following the

service tiers defined. The incremental nature of the support services is a core enabler

of the pay-as-you-go paradigm in dataspaces. The functionality of the search and

query service follows the five star pay-as-you-go model (detailed in Chap. 4) of the

RLD. The search and query service offers the following levels of functionality:

1 Star Browsing: Browsing of the datasets available in the dataspace catalog.

2 Stars Keyword Search: Basic keyword search of the sources within the

dataspace.

3 Stars Structure Search: A structured search is when the dataset has been

indexed by the search service to enable entity-centric searches over the

data and structure of the dataset.

4 Stars Structured Queries: Structured queries are possible where the data

source supports a SPARQL interface, or the data source has been loaded

into the local RDF store of the query service. In order to write a structured

query (which can be entity-centric), the user must understand the

underlying schema of the data.

5 Stars Schema-Agnostic Question Answering: A best-effort entity-centric

natural language interface to the dataspaces knowledge graph that allows

users to ask questions without understanding the underlying schema.

The provision of search and query services within a linked dataspace does not

follow a one-size-fits-all approach with a range of different techniques used to

support the different characteristics of the data sources and user needs. Running

queries over heterogeneous data sources is a particularly challenging proposition that

is an active area of research. The two initial levels, Browsing and Keyword search,

are well-understood techniques that have readily available solutions. The third level

is structured queries where keyword queries’ expressivity is enhanced to include the

structure of the data. This is achieved by extending existing inverted list indexes to

represent structural information present in datasets. The next level is structured

queries where SPARQL query support is provided over data sources via endpoints
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on the data source or by importing data into the local RDF store. These approaches

are suited to creating queries over homogenous and well-formed schemas that the

user understands. Working with heterogeneous sources at large scales requires a

different approach with the ability for the query mechanism to be agnostic to the

underlying diverse schemas. At the high-end of the search and querying service for

the RLD is schema-agnostic question answering over the interlinked knowledge

graph that simplifies user–data interaction. A famous example of this emerging style

of data interaction is the IBM Watson Question Answering (QA) system which

competed in the television game show Jeopardy or the Apple Siri virtual assistant.

7.3 Search and Query over Heterogeneous Data

The vocabulary problem for databases is a consequence of data heterogeneity [162],

that is, the multiple realisations in which data can be represented. Even if given the

same task, different database designers can materialise the same domain into a

database using different lexical expressions, conceptualisations, data models, data

formats, or record granularities [162]. This intrinsic variability in the construction of

a database defines a fundamental level of data heterogeneity between different

databases.

Similarly, there is an intrinsic heterogeneity between a specific data representa-

tion and the data consumer’s mental representation of a domain. If asked to mate-

rialise their information needs as free queries (e.g. using natural language), data

consumers would be likely to use different terms and structures in the query

formulation, a fact which is supported by Furnas et al. [163]. The intrinsic hetero-

geneity is mediated by the role of phenomena intrinsic to natural languages such as

synonymy, ambiguity, and vagueness. The vocabulary problem is a concrete

instance of the syntactic and semantic barriers in the knowledge boundaries identi-

fied in the Knowledge Value Ecosystem (KVE) Framework that exist when sharing

knowledge among systems. These boundaries to knowledge sharing are discussed in

more detail in Chap. 2.

7.3.1 Data Heterogeneity

Data heterogeneity becomes a more immediate concern as users start to query data/

KGs from different datasets built by independent parties. This is the scenario faced

by dataspaces (and Knowledge Graphs) where one starts to move from a centralised

schema and data model (where data is integrated under a single representation

model) to a decentralised scenario where data from different schemas and data

models are brought together into a different data consumption context [2, 74]. The

concept of data heterogeneity can be examined within different dimensions:
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• Conceptual Model Heterogeneity:Different domains can be conceptualised using

different abstractions and lexical expressions, which are dependent on the

intended use behind the database and the background of the individuals model-

ling the domain (the KVE knowledge boundary). Given a modelling task with a

minimum level of complexity, it is unlikely that two independent parties will

generate identical conceptual models [162, 163]. Semantic heterogeneity emerges

as a central concern in a dataspace when, data from multiple datasets, developed

by different third-parties, need to be accessed and processed in a different context.

Conceptual model heterogeneity includes distinct classes of differences which

define the conceptual gap.

• Format Heterogeneity: Covers different formatting assumptions for values. This

dimension covers the notational and measurement units’ differences. Examples of

value types dependent on data format are currency, numerical values, and date-

time values. Abbreviations and acronyms are also included in this category.

• Data Model Heterogeneity: Data models provide the syntactical model in which

different data objects are represented. Different data sources can be represented

using different data models (the KVE knowledge boundary). Examples of data

models include the relational model RDF and eXtensible Markup Language

(XML), among others.

The three data heterogeneity dimensions are orthogonal and impact the reconcil-

iation of model dimensions between different databases/KGs and the ability of users

to query a data source. The more significant the gap between the two models (data,

format or conceptual), the larger is the cost of querying or data integration.

The abstraction of users from the conceptual database model is intrinsically

connected with the provision of a principled semantic matching mechanism to

cross the conceptual gap between the user query and the data representation.

Query mechanisms with the ability to automatically bridge the gap between the

user and database conceptual models are described as schema-agnostic or

vocabulary-independent queries. A motivational scenario example is introduced

below.

7.3.2 Motivational Scenario

Suppose a user has an information need expressed as the natural language query

‘Who are the children of Marie Curie married to?’ (Fig. 7.2). The person has access

to different databases/KGs within a dataspace which contain data that can help to

address the information need. However, the data representations inside the target

databases do not match the vocabulary and structure of the natural language query.

Figure 7.2 depicts an example of the semantic gap between the example user

query and possible representations for the knowledge graphs supporting answers for

the query. In (a), ‘child’ and ‘married to’ in the query map to ‘Child’ and ‘Spouse’ in

the knowledge graph; in (b), these query terms map to ‘motherOf’ and ‘wifeOf’
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respectively; while in (c), the query information related to ‘child’ is given by the

predicate ’numberOfKids’ representing an aggregation in (c), not fully mapped to

the query information need.

To address query-data alignments, it is necessary to provide a query mechanism

which can support a semantic matching which copes with the semantic gap between

the user query and the knowledge graph representation.

7.3.3 Core Requirements for Search and Query

The dimensions of semantic heterogeneity are at the centre of the search and query

challenge within dataspaces and addressing them directly can define the semantic

matching requirements to provide robust search and query mechanisms. However, in

addition to the requirements related to the semantic matching, search and query

approaches need to satisfy requirements common to all search and query mecha-

nisms. These requirements are used as qualitative dimensions to evaluate the effec-

tiveness of search and query approaches:

• High Usability and Low Query Construction Time: Support for a simple and

intuitive interface for experts and casual users.

• High Expressivity: Queries referencing structural elements and constraints in the

dataset (relationships, paths) should be supported, as well as operations over the

data (e.g. aggregations, conditions).

NobelPrizeWinnerA

Semantic Gap

Marie Curie

:type

Possible Data Representations

Information Need: Who are the children of Marie Curie married to?

Marie Curie

2

B CMarie Curie

Henry R. Labouisse

Ève Curie

Irène Joliot-Curie

:motherOf

:motherOf :wifeOf
:type

:numberOfKids

Frédéric Joliot-Curie

:wifeOf

Frédéric Joliot-Curie

Irène Joliot-Curie

:Spouse

:Child

Henry R. Labouisse

Ève Curie

:Spouse

:Child

Scientist

Fig. 7.2 Example of user information requirement expressed as a natural language query and

possible knowledge graph representations in different conceptual models
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• Accurate and Comprehensive Semantic Matching: Ability to provide a principled

semantic matching addressing all the dimensions of the semantic heterogeneity

problem (abstraction, conceptual, compositional, functional) with high precision

and recall.

• Low Setup and Maintenance Effort: Easily transportable across datasets/knowl-

edge graphs without significant manual adaptation effort. The query mechanism

should be able to work under an open domain and across multiple domains.

Databases should be indexed with a minimum level of manual adaptations in the

construction of supporting semantic resources used in the semantic matching.

• Interactive Search and Low Query-Execution Time: Minimisation of user inter-

action/feedback effort in the query process. Users should get answers with

interactive response times for most of the queries. An interactive query execution

time is contrasted with a batch query execution time (seconds vs. minutes).

• High Scalability: The query approach should scale to large datasets/knowledge

graphs both in query execution and indexing construction time.

With a clear understanding of the challenges and requirements that need to be

overcome, we now examine state-of-the-art approaches for searching and querying

heterogeneous data.

7.4 State-of-the-Art Analysis

Three high-level categories of approaches for querying heterogeneous data within

dataspaces exist: (1) approaches employing strategies inherited from the Information

Retrieval (IR) space in which keyword search is mixed with elements from structure

queries, (2) approaches focusing on natural language queries, and (3) structured

SPARQL queries over distributed datasets. Leveraging existing work [111] we focus

on the usability and semantic matching problems, thus analysing approaches from

the first two categories.

7.4.1 Information Retrieval Approaches

We can categorise IR approaches according to the index type, which includes entity-

centric search approaches and structure search approaches. Although both types

provide hybrid search interfaces that merge keyword search with dataset structure

elements, only structure search targets indexing strategies focus on addressing the

expressivity–usability trade-off at the index construction level.

Entity-Centric Search

Entity-centric approaches let users search for entities (instances and classes) in

datasets, employing Vector Space Model (VSM) variations to index those entities.

Existing approaches range from less expressive queries, based on keyword search
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over textual information associated with the dataset entities, to star-shaped queries

and hybrid queries (i.e. queries mixing keyword search, and structured queries

centred on an entity).

The Semantic Web Search Engine (SWSE) is a search and query service that

implements an architecture with components for crawling, integrating, indexing,

querying, and navigating over multiple data sources [164]. The system architecture’s

main components include query processing, ranking, an index manager, and an

internal data store (YARS2), which focuses on scalability issues to enable federated

queries over linked data. SWSE uses an approach called ReConRank to rank entities

[164]; this approach adapts the PageRank algorithm to work over RDF datasets,

propagating dataset-level scores—computed from interlinking patterns—to data-

level entities. The Scalable Authoritative OWL Reasoner (SAOR) provides an

RDFS and a partial Web Ontology Language (OWL) reasoning engine to address

scalability issues [164]. SAOR applies reasoning only on dataset fragments

supported by an authoritative ontological definition.

Sindice is a search and query service for the linked data web that ranks entities

according to the incidence of keywords associated with them [165]. It uses a node-

labelled tree model to represent the relationship among datasets, entities, attributes,

and values. Similar to SWSE, Sindice provides a comprehensive entity-centric

search and indexing approach. Figure 7.3 depicts Sindice’s architecture.

The SPARK [166] approach provides a ranking solution for translating keyword-

based queries to low complexity SPARQL queries, targeting low complexity RDF

datasets. The SPARK is based on three basic steps: term mapping, query graph

construction, and query ranking.

Entity-centric search approaches have developed comprehensive data manage-

ment strategies for linked data on the web, providing the infrastructure for managing

the complete crawl–index–search cycle. These approaches also developed services

complementary to the entity-centric search process that let users either visually

explore (via Visinav [164] and Sigma [165]) or execute full structured SPARQL

queries over the crawled data. Entity-centric approaches avoid significant changes in
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Fig. 7.3 High-level architecture components for Sindice (entity-centric search) [111]
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standard indexing strategies, inheriting index and search optimisation mechanisms

present in existing VSM frameworks. These approaches have avoided tackling the

expressivity–usability trade-off by aggregating multiple query interfaces; in practice,

to execute expressive queries, users must be aware of the vocabularies behind the

datasets. Also, most entity-centric approaches have only limited evaluation in terms

of the search result quality.

Structure Search

Structure search engines improve keyword queries’ expressivity, extending existing

inverted list indexes to represent structural information present in datasets. The main

difference between entity-centric search and structure search is that the latter

improves query expressivity with support from the extended index.

The search engine Semplore [167] uses a hybrid query formalism that combines a

keyword search with structured queries (i.e. a subset of SPARQL). Semplore uses

position-based indexing to index relations and join triples. It relies on three types of

inverted indexes: keyword, concept, and relation. Semplore also explores user

feedback strategies for improving search, providing a faceted and navigational

interface. Figure 7.4 depicts Semplore’s high-level architecture. Xin Dong and

Alon Halevy propose an approach for indexing triples to enable queries that combine

keywords and dataset structure elements [168]. To provide a more flexible semantic

matching, the authors propose four structured index types based on the introduction

of additional structural information and semantic enrichment in the inverted lists.

Taxonomies associated with the dataset vocabularies are used as a semantic enrich-

ment strategy.

Structure search approaches target the expressivity–usability trade-off by modi-

fying and extending traditional inverted index structures. They introduce a limited

level of semantic matching by considering the terminology-level information present

in datasets or by enriching the index with related terms using WordNet. No com-

prehensive evaluation of the search results’ quality exists, making it unclear how

these approaches perform in addressing the expressivity–usability trade-off.
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Fig. 7.4 High-level architecture components for Semplore (structure search) [111]
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7.4.2 Natural Language Approaches

Approaches in the literature based on natural language queries target query mech-

anisms with high usability and expressivity. Although some approaches focus on the

question answering (QA) problem, in which, similar to databases, precise answers

are expected as the output. Others focus on a best-effort scenario that returns a

ranked list of results.

Question Answering

The investigation of QA systems focuses on the problem of allowing users to query

data using natural language queries. As opposed to IR techniques’ best-effort nature,

QA systems target crisp answers, as with structured queries over databases. Work on

QA approaches investigates the interpretation of users’ information requirement that

is expressed as natural language queries, applying Natural Language Processing

(NLP) techniques to parse queries and match them with dataset structures. Substan-

tial research efforts have focused on this problem. We look at two works on open

domain linked data.

PowerAqua is a QA system that uses PowerMap, a hybrid matching algorithm

comprising terminology-level and structural schema-matching techniques with the

assistance of large-scale ontological or lexical resources [169]. In addition to the

ontology structure, PowerMap uses WordNet-based similarity approaches as a

semantic approximation strategy.

Exploring user interaction techniques, FREyA is a QA system that employs

feedback and clarification dialogs to resolve ambiguities and improve the domain

lexicon with users’ help [170]. Compared to PowerAqua, FREyA delegates a large

part of the semantic matching and disambiguation process to users. User feedback

enriches the semantic matching process by allowing manual entries of query-

vocabulary mappings. Figure 7.5 depicts FREyA’s high-level architecture.

TBSL [172] exploits both natural language and information retrieval techniques

and explores corpus-based patterns to support schema-agnosticism. TBSL relies on

parsing the user question to produce a query template. The core rationale behind the

approach is that the linguistic structure of a question together with well-defined

expressions in the context of QA over structured data (such as more than and the
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Fig. 7.5 High-level architecture components for FREyA (question answering) [111]
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most) define a domain-independent structure for the query, which then needs to be

filled in with domain-specific vocabulary elements.

Compared to IR-based approaches, QA approaches aim toward more sophisti-

cated semantic matching techniques because they target queries with high expres-

sivity and do not assume users are aware of the dataset representations (high

usability). In contrast to entity-centric and structure search approaches, QA systems

have a strong tradition of evaluating the quality of results and have concentrated less

on performance and scalability issues. Traditionally, QA approaches have focused

on limited semantic matching (WordNet-based) strategies, making them unable to

cope with high levels of heterogeneity. Most QA approaches apply limited semantic

matching techniques (e.g. synonymic, taxonomic similarity) for matching query

terms to dataset terms. Also, they depend on resources that are manually created

(WordNet) and difficult to expand across different domains.

Best-Effort Natural Language Interfaces

More recent approaches aim to merge natural language queries’ expressivity and

usability with IR models’ scalability and best-effort nature, targeting a best-effort

natural language search mechanism. As in QA systems, users can still enter full

natural language queries; however, instead of targeting crisp answers, these

approaches return an approximate ranked list of results.

The Treo natural language query mechanism for linked data uses semantic

relatedness measures derived from Wikipedia to match query terms to dataset

terms [171]. The use of semantic relatedness measures allows the quantification of

the semantic proximity between two terms, using semantic information which is

embedded in large textual resources available on the web such as Wikipedia.

Wikipedia-based semantic relatedness measures address previous limitations of

WordNet-based semantic matching. Treo’s approach combines entity search,

spreading activation search, and semantic relatedness to navigate over the linked

data/knowledge graph, semantically matching the parsed user query to the data

representation in the datasets. Figure 7.6 depicts Treo’s components.

The principles of the Treo approach are generalised by constructing a distribu-

tional semantic space (T-Space) for linked datasets [121]. The T-Space is built using

a distributional semantic model based on statistical semantic information derived

from Wikipedia. This model enables flexible semantic matching in the search
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process. The definition of the T-Space provides a principled representation of

datasets focused on addressing the expressivity–usability trade-off.

7.4.3 Discussion

Table 7.1 lists how each category addresses the key requirements for search and

query over heterogeneous knowledge graph within a linked dataspace. The practical

relevance of a search and query mechanism lies in the fact that structured data is a

fundamental component of data sources where the effort associated with accessing

this structured data is still significant and heavily mediated by database experts. The

dissolution of the expressiveness/usability trade-off is the goal of schema-agnostic

query approaches (see Fig. 7.7) that provide a semantic matching approach which

enables the alignment or semantic mapping of the data consumer’s query to the

database conceptual model elements. Based on the analysis in Table 7.1, we can see

that the Treo approach meets most of the requirements identified. Best-effort natural

language search approaches provide a robust semantic matching approach. How-

ever, they relax expectations in terms of query results, delegating the results’ final

assessment to end users.
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7.5 Design Features for Schema-Agnostic Queries

Leveraging existing work [111] we analysed the current approaches to determine the

design features present in search and query mechanisms over heterogeneous data to

determine the key features needed for a knowledge graph query mechanism for

RLDs. The result of this analysis is presented in Table 7.2, where we can see five key

design features emerging as clear trends for the creation of search and query services

over heterogeneous knowledge graphs [111].

Query Type Entity-centric search, keyword-based search, natural language

queries, and structured SPARQL queries represent complementary search and

query services that might suit users in different tasks and purposes. Search and

query platforms should explore this complementary aspect regarding heterogeneous

data to enable users to switch among different search and query strategies. SWSE

and Sindice explore this trend; however, the availability of natural language queries

is a key feature not present in these systems. As part of the search and query features,

users should be able to explore, understand, and refine search results by relying on

navigational, browsing, and filtering capabilities integrated into the process (this

functionality is present in SWSE, Sindice, and Semplore).

For many years, the difficulties associated with the hard constraints of the

question answering problem have overshadowed the potential for applying NLP

techniques for queries. NLP has developed a large set of techniques and tools for

parsing and analysing users’ information needs expressed as natural language

queries. Different flavours of syntactic parsers, morphological analysers, and

named entity recognition techniques are widely and effectively employed in QA

systems and natural language search interfaces (e.g. PowerAqua, FREyA, Treo, and

Treo T-Space). Recently, the efficacy of NLP techniques was demonstrated in the

IBMWatson system [174], which outperformed a human contestant in a “Jeopardy”

challenge. Watson heavily leverages standard NLP techniques to build a complex

information extraction and search pipeline. Search and query mechanisms can

explore NLP techniques to provide expressive and intuitive query interfaces.

Disambiguation The presence of ambiguity and incomplete information is intrinsic

to the search and query process. As already explored in systems such as FREyA and

Semplore, user feedback can help resolve ambiguities, enrich an application’s

semantic model, and filter and post-process results. Providing a supporting context

around the answers can help users assess the data’s correctness. In the Treo

approach, the path in the dataset generated during the querying process provides

contextual information for users. A best-effort approach can live together with

database operations, such as aggregations, via data filtering mechanisms that let

users remove incorrect entries from the results (e.g. using the associated type

information).

Ranking In “If You Have Too Much Data, then ‘Good Enough’ Is Good Enough”

[76], Pat Helland summarises the mindset shift that must occur in heterogeneous and

distributed data environments, where many still expect the accurate and crisp results
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typical for siloed databases. This trade-off is discussed in more detail in Chap. 3. The

challenge of building query solutions with high usability and expressivity in a

dataspace is coping with the data’s semantic heterogeneity; this demands to relax

our expectations of the results into a best-effort solution. Ranked lists of results in

which users can assess those results’ suitability are widely used in document search

engines; web users have been extensively exposed to this approach and are thus

familiar with best-effort search models. However, although document search engines

can potentially return a long list of candidate documents, the best-effort query

[171, 175] and ranking [176, 177] mechanisms for dataspaces should leverage the

structure and types present in the data to target more concise answer sets. A number

of dataspace search and query approaches leverage associations and relations to rank

results [87, 168, 178–180].

Semantic Approximation The difficulty in effectively providing a robust semantic

matching solution has been associated with a level of semantic interpretation that

depends on fundamental and hard problems in artificial intelligence, such as

common-sense knowledge representation and reasoning. Dataspace query

approaches have considered both synonyms [181] and similarity [182] within the

matching process. Recently, distributional semantic approaches have emerged as

solutions to provide robust semantic matching by leveraging the use of semantic

information embedded in large amounts of web corpora.

Distributional semantic models assume that the context surrounding a given word

in a text provides essential information about its meaning [183]. Distributional

semantics focus on constructing a semantic representation of a word based on the

statistical distribution of word co-occurrence in texts. The availability of high-

volume and comprehensive web corpora has made distributional semantic models

a promising approach for building and representing meaning. However, the simpli-

fication of distributional semantic models implies some constraints on its use as a

semantic representation. Distributional semantic models are suitable for computing

semantic relatedness, which can act as a best-effort solution for providing robust

semantic matching solutions for linked data queries (present in the Treo T-Space

system).

Supporting Knowledge Bases/Linguistic Resources The availability of large

amounts of unstructured text and structured data on the web can help to bootstrap

a level of semantic interpretation based on available open and domain-specific

knowledge. It is possible to address the volume of unstructured text corpora neces-

sary to build distributional semantic models by using comprehensive knowledge

sources available on the web, such as Wikipedia (present in the Treo and Treo

T-Space systems). In addition, it is possible to use the semantically rich entity

structure of data sources such as DBpedia (http://dbpedia.org), YAGO (www.mpi-

inf.mpg.de/yago-naga/yago/), and Freebase (www.freebase.com) as a general-

purpose entity and entity typing system that can easily integrate to the target datasets

to provide a minimum level of structured common-sense knowledge, and which can

later be used to improve semantic interpretation and tractability. RDF’s standardised

graph-based format facilitates the reuse and integration of existing data sources into

target datasets.
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7.6 Summary

The emergence of heterogeneous and distributed data environments such as the web

of data, knowledge graphs, and dataspaces, in contrast to small controlled schema

databases, fundamentally shifts how users search and query data. Approaches used

for searching and querying siloed databases fail within these large-scale heteroge-

neous data environments because users do not have an a priori understanding of all

the available datasets. This chapter investigates the main challenges in constructing a

query and search service for knowledge graphs within a dataspace. The search and

query services within a dataspace do not follow a one-size-fits-all approach and

utilise a range of different techniques from keyword search to structured queries and

question answering to support different characteristics of data sources, and user

needs in the dataspace. Our analysis of the state of the art shows that existing

approaches based on IR and natural language query interfaces have complementary

design features, which, if combined, can provide schema-agnostics solutions to

the usability and semantic matching challenges of querying large-scale

heterogeneous data.
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Chapter 8

Enhancing the Discovery of Internet

of Things-Based Data Services in Real-time

Linked Dataspaces

Wassim Derguech, Edward Curry, and Sami Bhiri

Keywords Sensor indexing · Service discovery · Formal concept analysis ·

Dataspaces · Intelligent systems · Internet of Things

8.1 Introduction

A dataspace is an emerging data management approach used to tackle heterogeneous

data integration in an incremental manner. Data sources that are participants in a

dataspace can be of various types such as online services, open datasets, sensors, and

smart devices. Given the dynamicity of dataspaces and the diversity of their data

sources and user requirements, finding appropriate sources of data can be challeng-

ing for users. Thus, it is important to describe and organise data sources in the

dataspace efficiently. In this chapter, we present an approach for organising and

indexing data services based on their semantic descriptions and using a feature-

oriented model. We apply Formal Concept Analysis for organising and indexing the

descriptions of sensor-based data services. We have experimented and validated the

approach in a real-world smart environment which has been retrofitted with Internet

of Things-based sensors observing energy, temperature, motion, and light.

The chapter is structured as follows. Section 8.2 explores the need for discovery

of data services within dataspaces. Section 8.3 provides an overview of existing

semantic approaches to service discovery. Section 8.4 sets out the theoretical

foundations of Formal Concept Analysis and shows how it can be applied to

indexing Internet of Things-based data services based on their capabilities using a

concept lattice. It then shows how the concept lattice can be used to discover sensors

and relationships between sensor properties. Section 8.5 reports on a smart environ-

ment intelligent system validation of the discovery approach. Finally, Sect. 8.6

draws conclusions and details of future work.
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8.2 Discovery of Data Services in Real-time Linked

Dataspaces

With the trend of Industry 4.0 [184], the advent of the Internet of Things (IoT) [185],

and the decreasing costs and increasing capabilities of sensors and smart devices,

modern businesses are integrating more and more real-time data into their business

processes [186]. New challenges facing modern business processes include the

dynamic and efficient discovery of resources such as data sources and services

[185]. Indeed, many business processes rely on IoT sensor data to provide the

necessary business intelligence and insight to support decision-making. With the

rapid adoption of IoT devices and sensors, the number of available sources for real-

time data has risen. A key challenge for intelligent systems within IoT-based smart

environments is to discover and select appropriate sources of real-time data.

8.2.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems. A dataspace is an

emerging approach to data management which recognises that in large-scale inte-

gration scenarios, involving thousands of data sources, it is difficult and expensive to

obtain an upfront unifying schema across all sources [2]. Within dataspaces, datasets

co-exist but are not necessarily fully integrated or homogeneous in their schematics

and semantics. Instead, data is integrated on an as-needed basis with the labour-

intensive aspects of data integration postponed until they are required. Dataspaces

reduce the initial effort required to set up data integration by relying on automatic

matching and mapping generation techniques. This results in a loosely integrated set

of data sources. When tighter semantic integration is required, it can be achieved in

an incremental pay-as-you-go fashion by detailed mappings among the required data

sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support a large-scale distributed

heterogeneous collection of streams, events, and data sources [4].

8.2.2 Data Service Discovery

Within an RLD, creating explicit links between sensors-based data service descrip-

tions helps to discover similar data services and consequently facilitate balancing
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observations from one sensor to the other. A possible use case can be a smart

building within an energy management application where a decision support

model is used to control the supply and demand of energy. A principal source of

information used for decision support models within smart buildings is sensors. An

efficient decision support model in such a context requires that the sensor data

provided is correct and timely. However, faults may occur at any time. For example,

a sensor may become unresponsive or start to produce low-quality data. In these

cases, the discovery support service should provide suggestions for alternative

sources of data. This can be quickly implemented if sensors are adequately described

and organised in a semantically enriched and linked manner.

In our past work, we have investigated the use of Formal Concept Analysis (FCA)

[187] to better organise a repository of services’ descriptions in order to make their

discovery more efficient [188]. In this chapter, we revisit this work to contextualise it

within the dataspace paradigm.

8.3 Semantic Approaches for Service Discovery

Several existing works use semantic technologies and related solutions for the

indexing and discovery of services based on their semantic descriptions [189–

192]. A key challenge with using these tools for service discovery in highly dynamic

and interactive environments, such as IoT-based smart environments, is their cost in

terms of computational resources. The high computational costs of some solutions

[189, 190] are their dependency on reasoning within the discovery algorithms, a

time-consuming task. Other solutions [192] try to resolve this issue by providing

off-line indexing mechanisms for reducing the time complexity of discovery algo-

rithms. However, given the dynamicity of smart environments, the diversity of their

features and user requirements, reconstructing the entire indexing structure is chal-

lenging within medium and large-scale environments. Therefore, indexing/

organising capabilities to enhance their discovery is required.

This section examines approaches that propose to use indexing structures for

enhancing the discovery of IoT data services (e.g. a sensor) in a given repository

(e.g. a dataspace). For each of the approaches analysed, we consider the following

two key requirements:

• Requirement 1—Ontology-based Discovery: Searching resources should rely on

concepts from domain ontologies used in their descriptions without relying on

keyword extraction from textual descriptions [193]. Relying on extracting key-

words from unstructured textual descriptions can lead to inconsistent results

[194]. This requirement was elicited from the following works: [193, 195], and

from Semantic Web Services Models: WSMO [196] and OWL-S [197].

• Requirement 2—Time Performance: Searching for a service or a business process

can often rely upon reasoning, which makes the discovery very slow [191]. The

second requirement is a low-latency response within large repositories of services
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or business processes. This requirement was elicited from the following works:

[190–192].

Using these requirements, we analyse related work in terms of their indexing

mechanism, underlying service description language, and limitations.

8.3.1 Inheritance Between OWL-S Services

The discovery of semantic web services is challenging within large repositories due

to costly reasoning operations. One solution to this problem is to introduce inheri-

tance between OWL-S services [198]. Their specification denotes the possibility to

define service profiles’ hierarchies similar to object-oriented inheritances. Inheri-

tance relationships between services are proposed to find service substitutes by

exploring services that are higher in the hierarchy. Similar to object-oriented con-

cepts, a sub-service may be used to substitute its super-service for automated,

dynamic service discovery and composition [198]. Inheritance is also useful for

creating new service profiles as a subclass of an existing profile. This makes the new

service inherit the properties defined in the superclass profile. Other approaches

[189] propose to capture such hierarchies in a visual editor for an OWL-S service

description editor without discussing how these hierarchies can be created.

Introducing inheritance was a natural choice to enhance service discovery oper-

ation [198]. Services and relations are defined in the OWL language, and conse-

quently, fulfils Requirement 1—Ontology-based discovery. However, little research

has been carried out to determine inheritance between web services [199]; conse-

quently, we cannot further comment on Requirement 2—Time performance.

8.3.2 Topic Extraction and Formal Concept Analysis

The work carried out by Aznag et al. [190] investigated the use of formal concept

analysis as an indexing tool using topics extracted from service descriptions using

SA-WSDL. Starting from a set of service descriptions, their algorithm converts them

into a “service transaction matrix” that captures for each service the relevant textual

concepts used in its description. This matrix is further refined with probabilistic

clustering of the textual concept in order to extract a set of topics. The result of this

analysis generates the correlated topic model that holds for each service and the

topics it belongs to, with specific probabilities. In the work, formal concept analysis

is used exclusively for clustering the extracted topics to make discovery easier when

using a concept lattice. The use of formal concept analysis in this approach is due to

its broad adoption as a well-established mathematical theory of concepts and concept

hierarchies, which makes the service discovery much easier [190].

128 8 Enhancing the Discovery of Internet of Things-Based Data Services in. . .



Topics used in the concept lattice are textual concepts that are extracted from the

textual description of services, and consequently, this approach does not fulfil

Requirement 1—Ontology-based discovery. Concerning Requirement 2—Time per-

formance, the authors did not perform any evaluation of the time required to create

the cluster of services. Nevertheless, they indicate that the query response time varies

between 300 and 3000 ms with a test collection of 1088 services. Given that the

discovery operation using formal concept analysis is a simple tree parsing operation,

it has a linear complexity depending on the number of concepts in the created lattice

(tree). Furthermore, in formal concept analysis, the creation of the concept lattice is

the most expensive operation [200]. Thus, this can lead to the conclusion that the

construction time of the entire cluster could be in the order of seconds.

8.3.3 Reasoning-Based Matching

Srinivasan et al. [192] looked into enhancing the indexing of a UDDI registry of

services described in OWL-S during the service advertisement phase. Assuming that

services are described using predefined ontologies, they use a matching degree

between inputs and outputs of services. The matching uses concepts from the service

description ontologies in order to identify a correct clustering of service descriptions

into predefined ontological clusters similar to the North American Industry Classi-

fication System (NAICS) [201].

Requirement 1—Ontology-based discovery is fulfilled, as this approach relies

exclusively on clusters that are constructed from hierarchical ontological concepts

similar to NAICS [201]. However, the problem with this approach is that it relies

heavily on reasoning and pre-computing information required for the search request,

which is costly (Requirement 2—Time performance). The authors have confirmed

this limitation through the performance evaluations that they carried out. The

OWLS/UDDI approach takes more than 4000 ms for inserting 50 advertisements

into the registry, which was 6–7 times slower than using a classical UDDI approach.

However, the authors argue that this time is not very important as the advertisement

operation can be done off-line and more time can be saved during the discovery

phase without giving any quantifications.

8.3.4 Numerical Encoding of Ontological Concepts

Mokhtar et al. [191] optimise the indexing of service descriptions by avoiding

semantic reasoning and by using a numeric coding scheme, a widely adopted method

for enhancing the performance of ontology processing. They propose that a service

registry can be clustered using a predefined ontology or taxonomy such as NAICS
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[201] or UNSPSC [202], where an interval of numbers encodes each ontological

concept. These intervals are defined using a linear inverse exponential function in a

way where one interval can be contained in another one without overlap, creating a

subscription relation. For example, to model sub-concept relations between Wi-Fi

andWireless, Wi-Fi can be coded by the interval [0, 0.1] and Wireless by the interval

[0, 1] (i.e. [0, 0.1] is contained in [0, 1]). One can add to this example another

concept, Bluetooth, that is, a sub-concept of Wireless by assigning the interval [0.2,

0.3] to Bluetooth (such that [0.2, 0.3] is contained in [0, 1], where [0, 0.1] and [0.2,

0.3] do not overlap).

Similar to [192], the authors of [191] rely exclusively on clusters that are

constructed from hierarchical ontological concepts similar to NAICS [201]. Conse-

quently, Requirement 1—Ontology-based discovery is fulfilled.

Concerning Requirement 2—Time performance, and compared to the perfor-

mance of the work by Srinivasan et al. [192], Mokhtar et al. [191] achieve better

results as the required time for encoding and advertisement does not exceed 450 ms

for 50 service descriptions. This performance is achieved with the assumption that

the used ontologies for service classification are encoded. Similarly, the reasoning

operation is reduced to a comparison of codes/intervals. In this case, to infer that a

concept c1 subsumes another concept c2, one needs to evaluate if their

corresponding encoding interval of c1 is contained in the encoding interval of c2.

This restricts the system to use classification ontologies that do not frequently

evolve. Otherwise, service advertisements and requests need to check and update

their encoding intervals periodically.

Similarly, Binder et al. [203] looked into encoding techniques to create hierar-

chies of service descriptions. Here the authors used the Generalised Search Tree

algorithm [204] for organising service descriptions. This technique provides efficient

search in the order of milliseconds over 10,000 entities. The main limitation of this

approach is the complexity of maintaining this indexing structure: a new entry

requires around 3 s for updating the tree [191].

8.3.5 Discussion

In summary, most of the analysed approaches rely on indexing service descriptions

using existing taxonomies such as the North American Industry Classification

System (NAICS) [201], UNSPSC [202], or the MIT Process Handbook

[205]. This supports the idea of using ontologies as a common conceptualisation

and shared understanding among service providers, registry hosts, and service

requesters. However, the use of these ontologies makes the indexing heavily reliant

on reasoning, a task that can be costly. The literature proposes multiple techniques

that either used reasoning or proposed alternative solutions.
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The analysis is summarised in Table 8.1. The key findings are:

• Indexing or clustering of service descriptions using ontologies is widely adopted

[190–192].

• Maintainability of the indexing structure is critical to the applicability of the

proposed approach [191, 192].

• The benefits of reusing existing techniques such as FCA for creating or

maintaining the indexing structure is widely accepted [190].

8.4 Formal Concept Analysis for Organizing IoT Data

Service Descriptions

In our past work, we have investigated the use of Formal Concept Analysis [187] to

better organise a repository of service descriptions in order to make their discovery

more efficient [188]. In this section, we revisit this work to contextualise it within the

dataspace paradigm. We start by defining the theoretical foundations of FCA while

applying it to IoT sensor data service descriptions.

FCA is a technique that has evolved from mathematical lattice theory and has

been used for data analysis across several domains, such as organising web search

Table 8.1 Comparative analysis of capability indexing approaches

Approach

R1: Ontology-

based discovery R2: Time performance Limitations

Inheritance between

OWL-S services [189]

Not fulfilled N/A No clear methodology

on how a hierarchy is

created.

Topic extraction and

formal concept analysis

[190]

Fulfilled Size: 1088 services,

query response time

between 300 ms and

3000 ms

Topic extraction and

correlations are based

on a probabilistic sys-

tem.

Solution needs further

optimisations.

FCA is exclusively used

for topic clustering.

Reasoning-based

matchmaking [192]

Fulfilled Size: 50 services, index

construction + adver-

tisement time: ~4 s

Service advertisement

operation is costly and

heavily relying on

reasoning.

Numerical encoding of

ontological concepts

and codes comparison

[191]

Fulfilled Size: 100 services,

index construction +

advertisement time:

~500 ms

Requires periodic

updates of the codes of

the clustering ontology.

Slow registry mainte-

nance for large

repositories.
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results into concepts based on common topics, gene expression data analysis,

information retrieval, and understanding and analysis of source codes [206]. FCA

helps in identifying meaningful relationships within a set of objects that share

common attributes. It also provides a theoretical model to build from a formal

context a partially ordered structure called a concept lattice.

8.4.1 Definition: Formal Context

A formal context FC is a triplet<X,Y,R>, where X and Y are non-empty sets and R�

X � Y is a binary relation between X and Y.

For a formal context FC, elements x 2 X are referred to as objects and elements y

2 Y are called attributes. <x,y> 2 R denotes that the object x has the attribute y.

In this work, the formal context is defined via the set of sensor data services as

well as their respective descriptions. Table 8.2 will be used in this section as a

running example that describes the relationships between the objects (i.e. sensors

1–5 represented by the table rows: X ¼{Sensor 1, Sensor 2, Sensor 3, Sensor

4, Sensor 5}) and their descriptions (i.e. attributes represented by the table columns:

Y ¼{Active, Storage Option, Digital Display, Accessible}, in Table 8.2). This

example considers the following four attributes:

• Active: Indicates if the sensor is in operation

• Storage Option: Indicates if the sensor can store data

• Digital Display: Indicates if the sensor is equipped with a digital display for

displaying the data.

• Accessible: Indicates if the sensor is located in an accessible area

Another fundamental concept in FCA is the Formal Concept.

8.4.2 Definition: Formal Concept

A formal concept in <X,Y,R> is a pair <E,I> of E � X (called extent) and I � Y

(called intent) such that Att(E) ¼ I and Obj(I) ¼ E. Att(E) is an operator that assigns

subsets of X to subsets of Y, such that Att(E) is the set of all attributes shared by all

Table 8.2 Data table with binary attributes for sensor-based data services [188]

Objects Active Storage option Digital display Accessible

Sensor 1 X X X X

Sensor 2 X X X

Sensor 3 X X X

Sensor 4 X X X

Sensor 5 X
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objects from E. Obj(I) is an operator that assigns subsets of Y to subsets of X, such

that Obj(I) is the set of all objects sharing all the attributes from I.

From this definition, one can conclude that a concept C ¼ <E,I> is created by

getting objects from E sharing the same attributes from I. For example, the shaded

rectangle in Table 8.2 represents a formal concept<E_1,I_1>¼<{Sensor 1, Sensor

2, Sensor 3, Sensor 4}, {Digital Display, Accessible}> because Att(E_1) ¼ {Digital

Display, Accessible} and Obj(I_1)¼{Sensor 1, Sensor 2, Sensor 3, Sensor 4}.

From a formal context FC ¼ <X,Y,I>, one can deduce a set of formal concepts

that can be ordered with respect to a sub-concept ordering.

8.4.3 Definition: Sub-concept Ordering

Having two formal concepts <E_1,I_1> and <E_2,I_2> from FC ¼ <X,Y,R>,

<E_1,I_1> � <E_2,I_2> iff E_1 � E_2 (iff I_2 � I_1).

Let us consider the following formal concepts from the example in Table 8.2:

<E_1,I_1> ¼ <{Sensor 1, Sensor 2, Sensor 3, Sensor 4}, {Digital Display,

Accessible}>

<E_2,I_2> ¼ <{Sensor 1, Sensor 2, Sensor 4}, {Digital Display, Accessible}>

<E_3,I_3> ¼ <{Sensor 1, Sensor 2}, {Active, Digital Display, Accessible}>

<E_4,I_4> ¼ <{Sensor 1, Sensor 2, Sensor 5}, {Active}>

Then

<E_3,I_3> � <E_1,I_1>, <E_3,I_3> � <E_2,I_2>, <E_3,I_3> � <E_4,I_4>

and <E_2,I_2> � <E_1,I_1>.

The set of ordered formal concepts derived from a formal context is called a

concept lattice, which is another important notion in FCA. A concept lattice can be

represented as a graph such as the one depicted in Fig. 8.1 (created using Conexp

Ac�ve

Accessible

Digital Display

Storage Op�on

Sensor 4

Sensor 3

Sensor 2

Sensor 5

Sensor 1

Fig. 8.1 Concept lattice of

the example in Table 8.2

[188]
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[207]). In this figure, the concept extent near the bottom of the lattice contains only

Sensor 1 since the corresponding intent is related to the most significant number of

attributes. The top concept contains all the sensors, and its intent corresponds to no

attribute. This makes the concept less attractive as it allows for all possible combi-

nations of attributes.

In this example, we considered only binary attributes (i.e. either the object has or

does not have that attribute). However, in real settings, when describing services,

there are also multi-valued attributes that need to be transformed into a binary

attribute through a scaling operation. For details about the process, we refer the

reader to our publication, which details the scaling operation applied for this

example [188].

This concept lattice is an indexing structure; it allows the organisation of sensor-

based data services descriptions in a tree. This structure captures the explicit

relations between formal concepts. This is useful to discover data services that

share similar attributes. For example, if one of the sensors is not active anymore, it

is possible to use one of the other sensors in its equivalence class or discover sensors

that share its attributes. Furthermore, the presence of the explicit sub-concept

relationship between concepts allows the discovery of additional knowledge

among the objects’ attributes that are analysed (i.e. sensor attributes). Indeed, as

depicted in Fig. 8.1, one can discover implications such as: every sensor that has a

“Storage Option” is also “Accessible” and has a “Digital Display”. In other words:

“Storage Option” implies “Accessible” and “Digital Display”. Algorithms for

knowledge discovery and implications have been presented in previous work [188].

It is important to note that the use of FCA permits the creation of a concept lattice

uniformly. In other words, it always creates the same structure with the same input

objects. This has the advantage of creating a deterministic discovery algorithm, as

there is no need to use any heuristic for parsing this indexing structure. This chapter

focuses mainly on the creation of the concept lattice and the study of its applicability

for indexing a set of IoT sensor data service capabilities in a dataspace. In the next

section, we use FCA in a real-world intelligent system setting for organising data

service descriptions for a smart environment.

8.5 IoT-Enabled Smart Environment Use Case

This section illustrates a smart environment use case using a set of real-world IoT

sensors deployed using the RLD where energy-related data is made available and

interlinked to support intelligent system decision-making and ultimately improve

energy consumption behaviour [100]. The RLD has been realised within a number of

smart environments from smart homes to smart airports as detailed in Chap. 14. The

data from the smart environments is provided by real-time data sources such as IoT

sensors as well as relatively static background knowledge such as the building plan

and occupancy.
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In this section, we examine an intelligent system for energy management within a

smart building pilot where there are various sources of power consumption, includ-

ing heating, ventilation, and air conditioning (HVAC) systems, lights, and electronic

devices. The building has been retrofitted with energy sensors to monitor the

consumption of power. In total, there are over 50 fixed energy consumption sensors

covering office space, a cafe, a data centre, kitchens, conference and meeting rooms,

a computing museum along with over 20 mobile sensors for devices, light, temper-

ature, and motion detection.

A building-specific deployment of the RLD has been presented in [62] with a

sensor network-based situation awareness scenario presented in [208]. In total, this

work used a total number of 78 sensors. The resulting IoT sensor data services are

described via the following set of attributes:

• Active: This attribute reports whether the sensor is in operation.

• Observed Phenomenon: We have four observed phenomena, which are “energy

and power consumption”, “motion”, “light”, and “temperature”. This attribute is a

multi-valued attribute that needs to be scaled.

• Protocol: This attribute indicates the protocol used by the sensor. We have in our

selection of sensors two possible protocols: UDP used by electricity and power

consumption sensors and CoAP used by other sensors. This is a multi-valued

attribute that has to be scaled.

• Electricity Phases: This attribute reports on the electricity phases used by the

sensor; we have two options: three-phases and one-phase sensors. Again, this is a

multi-valued attribute that has to be scaled.

• Location: Even though this attribute is not an intrinsic property of the sensor, we

have used it because it is important information that is required for processing the

data provided by the sensor. This is also a multi-valued attribute that enumerates

the locations of the sensors, for example, 1st floor: west wing, ground floor:

canteen, which needs to be scaled.

All the sensor data service capabilities were automatically generated from a

tabular file containing the original descriptions that were manually checked. Manu-

ally checking RDF descriptions was possible as the number of sensors used was

limited. We have not carried out any evaluation of the developed RDF parser,

because it is custom made for the dataset and conceptual model. The correctness

of the algorithm we applied for the RDF parser is out of the scope of this chapter;

however, the data has been manually verified after parsing and scaling.

The resulting concept lattice from Conexp [207] is depicted in Fig. 8.2. The top

concept in this lattice represents the set of all active sensors<{Sensor 1, Sensor 2, ...

Sensor 78}, {Active}>. This formal concept contains in its extent all the sensors of

the dataset because they are all active. One can see in this concept lattice several

formal concepts that represent the set of motion sensors <{Sensor 61,... Sensor 66},

{OP: Motion}>, the formal concept for temperature sensors <{Sensor 67,... Sensor

72}, {OP: Temperature}> and the light sensors <{Sensor 73,... Sensor 78}, {OP:

Light}>. These three formal concepts are sub-concepts of the concept <{Sensor
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61, ... Sensor 78}, {1st Floor:East Wing}>. This helps to infer that all motion,

temperature, and light sensors are in the same location (1st Floor: East Wing).

The focus of this work is on applying FCA in smart environments where the

number of concepts does not exceed 1000. In such settings, the maximum construc-

tion time reaches only 25 ms [188]. Even though the main criticism towards using

FCA, in this case, is the fact of reconstructing the concept lattice for any change in

the environment (e.g. a new sensor, change in a sensor attribute), this remains

acceptable with such low construction time.

Comparing the efficiency of the approach with respect to the approaches analysed

in Sect. 8.3, we refer to Table 8.3. Each line of this table recalls the approach used,

the indexing mechanisms, and the time performance as indicated by the authors in

their papers. The table shows clearly that our approach outperforms the others

because it does not use any reasoning for indexing the set of input capabilities.

Active

1st floor: East Wing

PO: Light

PO: Temperature

PO: Motion

PO: Power & Energy Consumption

UDP

3-Phase

1-Phase

Ground Floor: Reception Area

Ground Floor: Canteen

Main Incoming Feed

2nd Floor: West Wing

1st floor: West Wing

Ground Floor: East Wing

Ground Floor: West Wing

Ground Floor: South Wing

1st floor: South Wing

2nd floor: South Wing

Lift Room

Air Con

Fig. 8.2 Concept lattice of the smart office use case [188]

Table 8.3 Comparing time performances of indexing approaches

Indexing mechanism Time performance

Inheritance between OWL-S services [189] N/A

Topic extraction and FCA [190] Size: 1088 services, query response time

between 300 and 3000 ms

Reasoning-based matchmaking [192] Size: 50 services, index construction + adver-

tisement time: �4 s

Numerical encoding of ontological concepts and

codes comparison [191]

Size: 100 services, index construction +

advertisement time: �500 ms

Capabilities indexing using FCA [188] Size: 1000 capabilities, index construction +

parsing time: �25 ms
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8.6 Conclusions and Future Work

In this chapter, we discussed the use of Formal Concept Analysis (FCA) for indexing

data sources, more specifically, IoT sensor data services in the context of dataspaces.

Each of the data sources/services is described using a capability model capturing its

functional and non-functional features. We use these descriptions for indexing the

sensors using FCA, and the resulting indexing structure (called a concept lattice)

which can support several use cases (e.g. the discovery of a replacement sensor).

In formal concept analysis, a formal context considers only single-valued attri-

butes. In the case of multi-valued attributes, a scaling operation is required for

transforming them into multiple single-valued attributes. In this chapter, we used

only simple types of service capabilities that can be easily scaled from multi-valued

to single-valued attributes. However, the model permits the modelling of complex

values such as range and conditional values. Investigating scaling operations for

covering these complex attribute types is required in order to consider them in the

indexing approach using FCA.

Furthermore, a major concern in using FCA is its application for the analysis and

indexing of large numbers of data services. FCA is known to be a memory and

compute heavy technique [209]. In small-scale scenarios such as the use case in this

chapter, the performance factor can be ignored as the computation time can be

insignificant. However, in very large-scale deployments, this approach would ulti-

mately fail because the time required to identify the concepts and create the lattice

may be several hours. Incremental concept lattice creation can help in this direction.

Indeed, FCA researchers [210] propose a concept lattice creation algorithm that has a

quadratic worst-case time complexity in terms of the number of concepts, which

could be leveraged in future work.
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Chapter 9

Human-in-the-Loop Tasks for Data

Management, Citizen Sensing,

and Actuation in Smart Environments

Umair ul Hassan and Edward Curry

Keywords Human-in-the-loop · Crowdsourcing · Citizen sensing · Task routing ·

Smart environments · Dataspaces · Smart environments

9.1 Introduction

Humans are playing critical roles in the management of data at large scales, through

activities including schema building, matching data elements, resolving conflicts,

and ranking results. The application of human-in-the-loop within intelligent systems

in smart environments presents challenges in the areas of programming paradigms,

execution methods, and task design. This chapter examines current human-in-the-

loop approaches for data management tasks, including data integration, data collec-

tion (e.g. citizen sensing), and query refinement. A comparison of approaches

(Augmented Algorithms, Declarative Programming, and Stand-alone Platforms)

that can enable human tasks within data management is presented. The chapter

also covers spatial tasks where users within the smart environment are requested to

take physical actions in the environment in the form of citizen actuation.

This chapter discusses the design of the human task service and its use within

intelligent applications in the Real-time Linked Dataspace (RLD). The rest of this

chapter is organised as follows: the concept of the “Wisdom of the Crowds” and

crowdsourcing is explained in Sect. 9.2. Section 9.3 examines the challenges to

enable crowdsourcing, including issues with task design, task assignment, and user

incentivisation. Section 9.4 introduces existing approaches to utilising humans-in-

the-loop with comparisons provided in Sect. 9.5. Section 9.6 discusses the human

task service of the RLD with emphasis on service-levels, applications, data

processing pipeline, data model, and task routing. The chapter concludes with a

summary in Sect. 9.7.
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9.2 The Wisdom of the Crowds

Crowdsourcing has emerged as a powerful paradigm for solving complex problems

at a large scale with the help of a group of people [211–213]. The rapid development

of web technologies has made it possible for millions of online users to participate in

collective efforts or “crowds” formed in response to open calls. People can contrib-

ute by performing tasks such as collecting photos, transcribing audio, classifying

images, and classifying items [211]. The notion of “wisdom of crowds” advocates

that potentially large groups of non-experts can solve complex problems usually

considered to be solvable only by experts.

Crowdsourcing has been applied to develop prediction markets, design innova-

tive solutions, and support knowledge generation, with the help of dedicated col-

laboration platforms such as Wikipedia or online workers to perform micro-tasks

through marketplaces such as Amazon Mechanical Turk (AMT). Crowdsourcing

would seem like a natural fit to be applied for supporting collaborative data man-

agement at large scales where human intelligence can complement machine com-

putation to achieve higher-quality results and capitalise on the domain knowledge of

the crowd. The suitability of crowdsourcing for solving complex problems has been

demonstrated through several research and industrial projects [214, 215]. In a similar

direction, the database research community has started to develop tools and tech-

niques to ease the development efforts required to allow algorithmic access to

crowds [216, 217].

While crowdsourcing focuses on combining the effort of a group of human

contributors, human computation is a paradigm that focuses on an algorithmic

approach towards harnessing human affordances [218, 219]. In practice, human

computation can leverage crowdsourcing by asking a large number of people to

perform specific computational tasks. Quinn and Bederson [218] define human

computation based on two aspects of the problem at hand: first, it must follow the

general paradigm of computation so that it can be solved by computers alone

someday, and second, a computer controls the computational process. Finally,

both of these mechanisms can be used to implement human-in-the-loop approaches

where both human and machine intelligence are leveraged together. A common

example of a human-in-the-loop system is to create machine learning models where

humans are directly involved in training, tuning, and testing data for a machine

learning algorithm. Crowd correct inaccuracies in machine predictions, thereby

increasing accuracy, which results in a higher quality of results. Another common

case is to include humans within the feedback-loop of automated decision-making or

control systems system.

To demonstrate the application of human-in-the-loop and crowdsourcing, con-

sider the example of an analyst who wants to prepare a list of craft shows, fairs, and

festivals ranked according to variety. Instead of searching on the web and sifting

through a plethora of websites, the analyst decides to crowdsource this data collec-

tion activity. After defining the required attributes of data, such as name, city, URL,

and craft variety, the analyst posts a task on AmazonMechanical Turk. Once the data
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collection tasks are complete, the analyst tries to de-duplicate entries with the help of

a state-of-the-art algorithm. The algorithm is supplemented with the de-duplication

performed by an expert to achieve high-quality results by enabling human tasks.

Within the context of data management, human tasks have been demonstrated in

different stages of data processing pipeline including the collection and enrichment

of data, mapping and matching between schema and records, and feedback and

refinement of the results of data quality algorithms.

Within the physical world, crowdsourcing techniques can be used to go beyond

data management tasks to ask users to perform real-world “citizen actuation” tasks

where users are requested to perform tasks to make a physical change in the

environment [220]. The key to enabling the range of human-in-the-loop tasks is

the use of a platform to manage your crowd of users.

9.2.1 Crowdsourcing Platform

A crowdsourcing system, in general, has three types of interacting agents: requesters,

workers, and platform. Each of these agents is described as follows:

• Requesters: Submit tasks to the platform that need to be performed by the crowd.

Apart from humans, the requester can also be another application that needs

human services for performing its functionality. Requesters are interested in

maximising their utility, which is defined in terms of the quality of task perfor-

mance and the associated costs. Note that the notion of quality and costs can vary

between types of tasks and the application domain.

• Workers: Members of the crowd who are willing to perform tasks. Workers can

vary in terms of their reliability of performed tasks and the incentive they expect

for the work. The worker is interested in maximising their utility, which is defined

in terms of the effort they exert and the value they gain from performing tasks.

• Platform: Serves as the mediator between requesters and workers; therefore,

providing the interaction mechanism between both agents. It defines the mode of

exchange for tasks, results, feedback, and incentives. A third-party platform

provider is interested in maximising the value gained from the use of the software

and its functionality. Furthermore, it is in the interest of platform managers to

promote the long-term use of their platform.

Figure 9.1 highlights the sequence of interactions between these agents. (1) The

requester submits tasks to the platform, which allows filtering of workers based on

their characteristics or categories. (2) The tasks are assigned to the appropriate

workers. (3) The workers perform the tasks and submit the responses to the platform.

The platform assembles the results of crowdsourcing by aggregating and filtering the

responses depending on the application domain. (4) The results are sent back to the

requesters and (5) feedback on the performance of the workers is shared with the

worker assignment component.
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The next section provides a short overview of technical challenges that are

required to be addressed for enabling human tasks within smart environments.

9.3 Challenges of Enabling Crowdsourcing

The challenges of crowdsourcing entail considerations that are fundamental to

enabling contributions from human participants in a smart environment. Law and

Ahn [219] provide a detailed overview of human computation in general and its

associated challenges, and Li et al. [222] provide a more specific review of the

literature on crowdsourcing and data management.

Task Specification The first step towards enabling human-in-the-loop is to define

the human tasks in terms of input, expected output, and constraints such as condi-

tions for success and time limits. The flexibility of formalisms used for task

specification varies among the existing research proposals from declarative methods

to algorithmic code [223]. The specification of human tasks also depends on the

systems responsible for their execution. For instance, an organisation can deploy a

web-based API for allowing different services and applications to access human task

services uniformly. Besides the basic specification of a task, additional details can

include the details of the composition of a complex task into small tasks and their

execution in a workflow [224].

Interaction Mechanism Interaction between a human and a human-in-the-loop

process requires appropriate user interfaces on a variety of user devices to support

the process. It is difficult to design one user interface that fits the requirements of all

the various kinds of human tasks [225]. In this regard, existing approaches focus on

generating task-specific user interfaces on-the-fly or using templates for different

tasks [219]. Besides the design of the element to be presented on a device’s screen,

there are other factors of interaction mechanism that require careful consideration.

For instance, how users will be notified when new tasks need their attention or what

interaction mechanisms exist for users looking to perform available tasks. Human

WorkersRequesters

Crowdsourcing Platform

Worker

Assignment & Filtering

Response 

Aggregation & Filtering

1) Submit tasks

4) Receive results

5) Feedback

2) Assign tasks

3) Submit responses

Fig. 9.1 An overview of a typical interaction between agents in a crowdsourcing scenario [221]
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tasks can also be crowdsourced if the number of tasks is sufficiently large, and when

the human roles have been defined to perform certain types of tasks. The choice of a

crowdsourcing platform requires a trade-off between ease of implementation versus

control over worker behaviour. Due to the limited choice of commercial

crowdsourcing platforms, most of the existing research prototypes use Amazon

Mechanical Turk for crowdsourcing micro-tasks [226]; however, there have been

some research projects that also utilised open source platforms such as

PyBossa [227].

Task Assignment Managing different types of tasks and assigning them to appro-

priate people is a fundamental challenge of crowdsourcing. The most straightfor-

ward approach, as followed by the majority of commercial crowdsourcing platforms,

is to allow people to self-assign tasks by searching and browsing through appropriate

user interfaces [211]. The alternative approach is to actively make assignment

decisions algorithmically, an approach which is better suited for the objectives of

human computation [211]. However, the random assignment of tasks to users may

not be an effective strategy in domain-specific tasks. For example, domain experts

are more suited to accomplish knowledge-intensive tasks that require specific exper-

tise, which may not be available among users of general crowdsourcing platforms

[228, 229]. In addition to expertise, the reliability [230] of people in performing

tasks, and their physical location [212], can be taken into consideration when

matching tasks with workers.

Result Aggregation The uncertainty of the correctness of results generated by

human computers is an important challenge for enabling human tasks. A well-

known solution to this challenge is to employ multiple human computers to perform

the same task to ensure the quality of the results. Due to the limited availability of

ground truth, the core challenge is to determine whether to accept or reject results

generated by a human computer. If we accept results from multiple humans, then the

challenge becomes one of how to combine them to generate an aggregated result.

Existing approaches to data aggregation from crowdsourced human tasks range from

expectation-maximisation algorithms [231] to probabilistic graphical models [232].

Incentives Mechanisms Motivating people to participate in human tasks is a

challenge for system developers and researchers [233]. Although the accessibility

problem has been alleviated due to the plethora of communication tools available for

interacting with users over the Internet, the benefit of performing small units of work

can be insignificant for the majority of users. The design of appropriate incentive

mechanisms is an active area of research in human-in-the-loop and crowdsourcing.

While monetary rewards are shown to be most effective in attracting the attention of

people [233], other possible solutions include gamification [234] and altruistic

motivations [235].

Latency Issues Machines and humans differ in the speed of work they can perform

in a limited amount of time, which raises the issues of latency in human tasks. The

availability of people who have the required knowledge or skill set for a task can also

become a bottleneck, requiring changes to computational execution plans [236–
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238]. Some efforts have shown that people can be paid to create pools of available

crowd workers on-demand [239, 240]; such approaches can be used to support the

crowdsourcing of low-latency data [241].

9.4 Approaches to Human-in-the-Loop

This section provides an overview of the human-in-the-loop approaches that have

been organised into three high-level categories depending on their specialisation of

database operations and generality of supporting different human tasks. Some

representative examples of existing research are provided for each approach to

illustrate the range of applications of human tasks in databases and integration

systems.

9.4.1 Augmented Algorithms and Operators

The primary idea of augmented algorithms and operators is to support the data

transformation and analytical algorithms with human intelligence. Existing solutions

in this category range from database operators (e.g. joins, sorts, skylines) to data

integration processes (e.g. schema matching, entity resolution) to data quality

updates (e.g. missing values, dependency resolution) [217]. For unstructured data,

the algorithmic approaches support natural language processing in activities such as

entity extraction and language translation [242]. For multimedia, human computa-

tion has been shown to complement a wide range of pattern recognition and

machines learning algorithms [231].

Augmented algorithms have been used within dataspaces and databases for

feedback-based refinement for data integration. For instance, Roomba is an iterative

approach for matching data elements in a dataspace, which solicits human feedback

on potential matches [118]. DSToolKit refines schema mappings by asking users to

indicate the relevance of query results generated by possible mappings [243]. FICSR

generates data constraints from possible schema alignments through an exploration

process with the help of experts [244]. Van Keulen and de Keijzer proposed to

iteratively reduce the number of possible alternatives in probabilistic data integration

processes by soliciting user feedback on ranked query results [245].

The subjective nature of data quality also requires human validation in the data

cleaning process. For instance, the GDR system takes a decision-theoretic approach

for guiding database repairs through human feedback, and it employs active learning

to capture human knowledge for further reduction of user workload [246]. The

KATARA system leverages human computation to repair data in a table using a

knowledge base [247]. The CrowdAidRepair system combines rules-based and

crowd-based data repairing approaches interactively [248].

144 9 Human-in-the-Loop Tasks for Data Management, Citizen Sensing, and. . .



9.4.2 Declarative Programming

Declarative approaches focus on using human computation with the help of well-

defined data operations. This approach facilitates independence with respect to the

platform used to access human services with the flexibility to access such services

within query or programming languages. Extending existing query languages, such

as SQL, helps to minimise the learning curve associated with programming human

computation. For instance, Deco [223], Qurk [249], and CrowdDB [250] extend

SQL to provide database services on top of crowdsourcing platforms. Qurk uses

user-defined functions to crowdsource relational comparisons and missing data.

Likewise, CrowdDB introduces new SQL keywords to do the same. CrowdDB

also allows data collection by defining annotations for columns and tables. Deco

focuses on data collection with crowds through the definition of data fetch and

resolution rules. Deco separates logical and physical tables to retain crowdsourced

raw data. By contrast, hLog is a declarative language to specify human computation

during the execution of information extraction and integration programs [251]. hLog

extends Datalog with rules to specify details of the required human efforts in

information extraction and integration programs. hLog also maintains provenance

information to distinguish between crowd-generated versus computer-generated

data. The Event Crowd [241] is a hybrid crowd-enabled event processing engine

that uses five event crowd operators (Annotate, Rank, Verify, Rate, and Match) that

are domain and language independent and can be used by any event processing

framework. These operators encapsulate the complexities to deal with crowd

workers and allow developers/data scientists to define an event–crowd hybrid

workflow.

9.4.3 Generalised Stand-alone Platforms

This category of approaches focuses on building platforms with human-in-the-loop

functionality, thus providing human intelligence services to other applications in a

dataspace. These approaches do not depend on external platforms for human ser-

vices as compared to previous approaches. For examples, Freebase was a web-based

knowledge base that aimed to describe world entities with the help of

crowdsourcing. It was supported by a human computation platform called RABj,

which allowed users to distribute specific tasks to communities of paid or

volunteering humans [252]. RABj provided a programmable interface for access

to its human services such as entity matching. The DB-Wiki platform was designed

to support collaborative data management with versioning and provenance

tracking [253].
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9.5 Comparison of Existing Approaches

This section compares how existing approaches to human-in-the-loop address the

challenges of human tasks and crowdsourcing. Table 9.1 presents a summary. It

should be noted that this is a high-level comparative analysis and is not exhaustive in

terms of coverage of state-of-the-art literature.

Task Specification The complexity of task specification options available increases

from augmented algorithms to platforms. Augmented algorithms tend to solve a

specific problem within a dataspace with the help of human-in-the-loop techniques;

therefore, human tasks are specified using general programming languages. As a

result, there is limited agreement on formalisms for task specification among existing

research proposals. Declarative approaches use a variety of methods to specify

human tasks. The Deco [223] and CrowdDB [250] systems define query languages

that extend SQL with new keywords to execute human tasks; additionally, both

proposals provide details for query processors that support the execution of new

keywords using human processors. By comparison, the Qurk system implemented

multiple database operators over a crowdsourcing platform using user-defined

functions in SQL. Platforms generally provide RESTful APIs along with their

specialised task description models to allow programmable access to human intel-

ligence services [228, 252]; other applications have also developed specialised

plugins for existing applications to specify human tasks [251, 254].

Table 9.1 Specific techniques employed by data management approaches for addressing the

primary challenges of human-in-the-loop approaches

Augmented algorithms

Declarative

programming Platforms

Task specification Custom functions Query language

extensions

User-defined

functions

RESTful APIs

Descriptive

languages

Interaction

mechanisms

Task templates

External platform

Task templates

Custom UI

Task assignment Online optimisation Search & browse

UI

Task

recommendation

Result aggregation Majority votingExpectation

maximisation

Majority voting

Incentive

mechanisms

Cost Optimisation Cost Optimisation Leaderboards

Personal Scores

Volunteering

Auctions

Posted Prices

Latency issues Retainer pools

Straggler mitigation

Pool maintenance

Active learning

Tasks batching

Response limits

Dynamic

programming

146 9 Human-in-the-Loop Tasks for Data Management, Citizen Sensing, and. . .



Interaction Mechanisms Augmented algorithms either delegate interaction mech-

anisms, with human computers, to external platforms [248] or design custom user

interfaces for each human task [244]. Declarative programming approaches use

pre-defined templates to define the user interface of different tasks [249] or auto-

matically generate elements of the user interface from generic templates [250]. Plat-

forms provide task templates, and their associated interfaces [213, 254], or have

customised the user interface of existing applications to accommodate human

tasks [252].

Task Assignment The task assignment strategies for augmented algorithms vary a

lot. Some proposals leave the assignment problem to the external platform, while

other proposals actively address the assignment problem using online optimisation

approaches such as primal-dual and multi-armed bandit models [230]. By compar-

ison, declarative programming approaches for human computation do not directly

address the assignment problem; instead, an external platform is used to assign tasks

to human computers. Most platforms provide appropriate user interfaces to users for

searching and browsing tasks themselves. These user interfaces are complemented

with recommendation algorithms based on user profiles [115, 252]. For instance,

RABj utilised spatial locality to recommend tasks by matching the current task with

the previous history of workers [252], and [255] uses a cost-based algorithm to

reduce the travel cost with dynamic task assignment in spatial crowdsourcing.

Result Aggregation At the basic level, the use of majority voting for aggregating

results of a task from multiple human computers or crowd workers is standard

practice [115, 252, 254]. More advanced algorithms employed expectation

maximisation based methods to estimate the reliability of workers jointly and

generate aggregated results [231]. When dealing with low-quality output, RABj

employs voting, and a task escalation strategy that promotes the task to experts for

review [252].

Analysis of approaches indicates that the evaluation of the algorithmic

approaches is based on incremental improvement over time. On the other hand,

declarative and application approaches mostly focus on describing the usefulness of

human tasks while describing crowd behaviour. This underlines the lack of standard

evaluation methods across approaches, even if they target similar data management

problems. Understandably, all of the approaches are based on the relational data

model except for Roomba, CAMEE, and RABj, which represent data in graph

models [118, 228, 252].

Uncertainty reduction methods are required to improve the quality of outputs

generated through human tasks. Active learning uses machine learning in combina-

tion with human tasks to generate high-quality results [246]. Providing positive or

negative feedback to crowd workers can also improve their future contributions

[243, 245]. Provenance information of human-generated data updates can help

decide the quality of data [251]. Filtering workers based on their demographical or

other characteristics can help reduce spamming [249]. Use of resolution rules for

conflicting data updates generated by different workers helps in maintaining high-
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quality data [223]. Classifying a worker according to the system’s trust in them

reduces uncertainty across worker population [254].

Incentive Mechanisms The motivation of people to participate in human tasks

directly depends on the incentive’s mechanism. Both augmented algorithms and

declarative programming focus on cost optimisation for human tasks based on

rewards. In this regard, the existing approaches have employed a variety of dynamic

pricing strategies to minimise costs or control budget [223, 249, 250]. Platforms

have employed a wide variety of incentive mechanisms such as leaderboards [252],

individual scores [252], posted prices [252, 254], volunteering [228, 252, 254], and

auctions [222].

Latency Issues Latency issues are addressed through optimisation and heuristics.

Latency management approaches for augmented algorithms include creating a

retainer pool of pre-fetched workers from external platforms which are shown to

have generated data collection results in seconds [239]. The retainer pool approach

was further improved using optimisation and active learning [236] and has been

applied to work with event systems [241]. Existing proposals for latency issues in

declarative programming include batching a group of tasks together, which can

reduce the time required to complete individual tasks [249], imposing limits on the

time given to crowd workers [249], or employing dynamic programming to mini-

mise latency [237, 238].

9.6 Human Task Service for Real-time Linked Dataspaces

Real-time data sources are increasingly forming a significant portion of the data

generated in the world. This is in part due to increased adoption of the Internet of

Things and the use of sensors for improved data collection and monitoring of smart

environments which enhance different aspects of our daily activities in smart

buildings, smart energy, smart cities, and others [1]. To support the interconnection

of intelligent systems in the data ecosystem that surrounds a smart environment,

there is a need to enable the sharing of data among intelligent systems.

9.6.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management that recognises that in

large-scale integration scenarios, involving thousands of data sources, it is difficult

and expensive to obtain an upfront unifying schema across all sources [2]. Within

dataspaces, datasets co-exist but are not necessarily fully integrated or homogeneous
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in their schematics and semantics. Instead, data is integrated on an as-needed basis

with the labour-intensive aspects of data integration postponed until they are

required. Dataspaces reduce the initial effort required to set up data integration by

relying on automatic matching and mapping generation techniques. This results in a

loosely integrated set of data sources. When tighter semantic integration is required,

it can be achieved in an incremental pay-as-you-go fashion by detailed mappings

among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support a large-scale distributed

heterogeneous collection of streams, events, and data sources [4]. Within this

section, we focus on the human task support service of the RLD.

9.6.2 Human Task Service

The human task service is concerned with providing humans-in-the-loop services to

applications within the RLD. The service supports both virtual tasks (data manage-

ment) and physical tasks (citizen serving) within the smart environment. Collabora-

tive data management [115] within the RLD is enabled by distributing small data

management tasks among willing users in the smart environment [221, 256]. The

inclusion of users in the data management process not only helps in managing data

but may help in building user trust and a sense of ownership of the dataspace.

Figure 9.2 shows a simple architecture for the human task service that includes a

Task Management component which provides middleware for access to the users in

the smart environment. Task management is decoupled from the data management

for encapsulation. The core functions of the task management are: (1) Task Assign-

ment: matching between tasks and users in the smart environment [256] based on

characteristics of tasks or the specific requirements of tasks in terms of human

capabilities [115, 221], and (2) Quality assurance to ensure truthful and correct

responses of tasks.

9.6.3 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to data management that

reduces the initial cost and barriers to joining the dataspace. When tighter integration

into the dataspace is required, it can be achieved incrementally by following the

service tiers defined. The incremental nature of the support services is a core enabler

of the pay-as-you-go paradigm in dataspaces. The functionality of the human task

service follows the 5 Star pay-as-you-go model (detailed in Chap. 4) of the RLD.

The human task service has the following levels of incremental support:
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1 Star No Service: No human tasks are used.

2 Stars Schema: Tasks are used to map schemas among sources.

3 Stars Entity: Tasks are used to map entities among sources.

4 Stars Enrichment: Tasks are used to enrich entities with contextual data.

5 Stars Data Quality: Tasks are used to improve the quality of data

(e.g. verification).

9.6.4 Applications of Human Task Service

The Human Task service may be called by applications using the RLD, or by other

support services within the RLD support platform. The following four categories of

human tasks are fundamental in supporting the data processing pipeline in the RLD.

Human Task Service

Users

DatasetsThings / Sensors

Applications

Task 

Management

Tasks

Catalog 
(Entities)

Data 
Rules

Data 

Management

Dataspace Participants

Predictive 

Analytics

Situation 

Awareness 

Decision

Support

Digital

Twin

Machine

Learning

Fig. 9.2 Overview of the human task service for Real-time Linked Dataspace [4]
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• Collection and Enrichment: These types of tasks involve provisioning of data

related to entities of interest in a dataspace by humans. A good illustrative

example of the service in action is human tasks for entity enrichment

[256]. Based on their knowledge and understanding of the environment, users

can help to enrich important entities in the dataspace. Figure 9.3a shows an

example enrichment task that is associated with an IoT device (e.g. CoAP sensor).

The human task can be retrieved by scanning the QR code on the device with a

mobile phone or tablet device. The task is retrieved from the human task service,

and the user is asked a set of simple questions about the surroundings of the

sensor to enrich the description of the entity in a smart building (e.g. Fig. 9.3b:

what are the features of the room where the sensor is located?). Similar human

tasks for data enrichment can be used across different forms of media in a

dataspace, (e.g. image or video annotation).

• Mapping andMatching: Finding or verifying mappings among data elements of

schemas and entities is another fundamental task of data integration in a dataspace

that is suitable for human-in-the-loop and crowdsourcing. For example,

crowdsourcing is successful in aligning ontologies in the biomedical domain

[257]. A set of generalised solutions for entity resolution and matching have

been proposed where they exploit human tasks to generate accurate results [258–

261].

• Operator Evaluation: Human tasks for supporting the evaluation of database

operators allow manipulation and analysis over data-in-motion and data-at-rest.

This includes standard databases’ operators and queries such as sort, join, and

rank. For instance, human-powered evaluation of such database operators has

been demonstrated for sorting [249] and skyline queries [262].

• Feedback and Refinement: In addition to the above human tasks, a more general

set of tasks involve supporting algorithms for improvement of data quality

processes, analytical models, and data transformation processes based on

Fig. 9.3 Examples of a human task to enrich entities. (a) Sensor metadata enrichment. (b) Entity

enrichment (e.g. room features) [4]
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feedback provided on subjective correctness or relevance of results generated by

data management algorithms in the dataspace. This can range from verifying data

repairs [263] to entity recognition in natural language processing [242], to

providing labelled data for machine learning algorithms [264].

• Citizen Actuation: Moving to more physical tasks, citizen actuation tasks are

formally defined as the activation of a human being as the mechanism by which a

control system acts upon the environment [220]. These tasks request users to

complete a physical action in the environment, such as closing a window or

turning off a light. Citizen actuation tasks can take place in small-scale smart

environments, like a neighbourhood/community, to medium and large-scale

environments, such as a city. We envisage citizen actuation as forming part of

the design process of future smart devices and environments as a method to keep

users engaged with their surroundings [265].

9.6.5 Data Processing Pipeline

The general pipeline for data processing in the RLD can be captured in the following

four steps:

• Data Definition: The first step is to define the semantics and schematics of

information to be processed and analysed. At the schema level, this includes

the definition of concepts, entities, and their relationships, as well as specific

attributes of entities. While basic semantics can be specified in the form of simple

vocabularies and constraints, a more detailed semantic representation may require

formal ontologies. Within the RLD, the catalog and entity management service

(see Chap. 6) is used to maintain entity metadata.

• Data Collection: Where data acquisition is needed, the required data is collected

from users by manual entry or automated tools. For example, filling out online

forms, mobile applications, and entering data to a specific spreadsheet are all

methods of manual data collection.

• Data Integration and Quality: Given that a dataspace spans multiple datasets

and data sources, integration of data is a fundamental task in dataspaces that

involves overcoming semantic and schematic heterogeneities of different datasets

in order to present a common view of real-world entities. Data integration is

performed in conjunction with data quality improvement, which can involve

matching and de-duplication of schema elements and individual entities.

• Data Analysis and Visualisation: Users and applications pose analytical, and

visualisation queries over integrated, high-quality data. Such queries are either

used for creating a specific machine learning and statistical model or for serving

data through appropriate graphical interfaces on different devices as required for

decision-making and analysis.

Humans participate in nearly all stages of this pipeline assuming different roles

and expertise such as administrators, data entry operators, integration developers,

data analysts/scientists. Data administration includes but is not limited to access

control, data serialisation, query management, replication, and fault tolerance. A
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considerable amount of research has been dedicated to the automation of data

processing pipelines. However, automation solutions suffer from accuracy issues

and produce uncertain results, thus requiring constant human supervision.

9.6.6 Task Data Model for Micro-tasks and Users

We used the Semantically Linked Users and Actions (SLUA) ontology for modelling

micro-tasks and users [266] within the human task service. Figure 9.4 outlines the

main classes and properties in the SLUA ontology.

The main classes of the ontology are:

• Action: Represents a specific act that is performed by the members of the crowd.

An action can be cognitive or physical. For example, the comparison of two

images involves a cognitive action from the user.

• Task:Defines the unit of work resulting in the desired outcome that is assigned to

the members of the crowd. A task may require one or more actions to produce the

outcome. Therefore, a task at the lowest level is composed of actions. The Task

class has a composition relationship with itself because complex tasks can be

broken down into small, simple tasks.

• User: The class that describes the human contributor in crowdsourcing. The user

serves as an intelligent agent that can perform actions for the successful comple-

tion of assigned tasks.

• Reward: Associated with a task as the incentive for human contribution.

• Capability: Defines the human characteristics that are necessary for performing a

task. For instance, one system might specify a user’s location capability, while

another system utilises this description to assign tasks relevant to the same location.

Reward

Action

Capability

User Task

offersearns

includesperforms

requirespossesses

Location Skill Knowledge Ability Availability

Reputation Money Fun Altruism Learning

subClassOf

subClassOf

Fig. 9.4 The SLUA ontology for micro-tasks and users
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The main properties of the SLUA ontology used by the human task service are

described below:

• Domain: A domain definition applies to most of the classes defined above. This

property can be helpful for domain-specific algorithms. A common categorisation

system could be used to specify domains in general crowdsourcing systems.

However, for specific areas, purpose-built taxonomies can be more effective.

• Offers: This property defines the relationship of Reward with Task. For example,

some tasks might be rewarded with money. By comparison, a user who is

interested in a particular reward can be described with the “earns” property.

• Requires: A Task can define requirements of one or more human capabilities

using this property. In contrast, a User can be described by having similar

capabilities using the “possesses” property.

• Includes: A Task can define one or more actions that a User performs for

generating the desired outcome of a task.

• isPartOf: A complex Task can be decomposed into small manageable tasks.

Therefore, this property helps in describing the composition relationship between

tasks.

• hasDeadline: This property can be used to specify the time limitations of a Task,

which is specifically important for real-time systems employing crowds.

• isConnectedWith: In the context of social networks, users are connected with

other users through various relations. This property captures the network structure

of users to enable social network based analysis of actions and users. For

example, the network structure can be exploited to recommend actions to neigh-

bour nodes in a network.

9.6.7 Spatial Task Assignment in Smart Environments

A major challenge in spatial crowdsourcing is to assign reliable workers to nearby

tasks. The goal of such a task assignment process is to maximise the task completion

in the face of uncertainty. This process is further complicated when tasks arrivals are

dynamic, and worker reliability is unknown. Effective assignment of tasks to

appropriate users at the right time is critical to dynamic smart environments.

Therefore, information about a user’s location and availability are required to assign

tasks related to devices and “Things” around them. There are a variety of methods

for sourcing the location and availability information of users. In the human task

service, we use a mixture of pull and push methods for sourcing a participant’s

location for making assignment decisions.

Task Pull The linkage between physical sensing devices and tasks is made with the

help of Quick Response (QR) codes. Figure 9.5 illustrates an example of a QR code

attached to a sensor. Each QR code represents an encoded URL for the sensor tasks.

Resolving the URL through a browser renders the tasks associated with the sensor.

The pull-based assignment is suited for situations where the information about

sensors and users is not available.
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Task Push The tasks can be actively pushed to users in situations where the

location and availability information of users is available (see Fig. 9.6). To achieve

this, the human task service keeps track of the sensor location information submitted

by users and then pushes tasks that require the description of the surroundings of a

sensor to nearby users.

Whether the pull or push method is used for assignment depends on the data

management objective of the task. Therefore, the data management component must

specify the assignment method for tasks, as well as the requirements in terms of

human capabilities [213, 266]. Given a set of workers and their associated locations,

we employ a graph-based approach to calculate their distance from the task location

(see Fig. 9.7). Subsequently, the distance vector is used to optimise the assignment

of a task to the appropriate worker. The optimisation objective is maximising the

success rate of task completion. For this purpose, we employ an online assignment

approach that aims to assign tasks to the best users while also learning about their

task acceptance behaviour.

We developed a task assignment algorithm based on the multi-armed bandit

model [267] as illustrated in Fig. 9.8. Our task assignment algorithm proceeds in

the following manner.

• The algorithm considers the current task and the current pool of workers together

with the distance vector. The vector contains the distance variables defined

according to the task and worker locations.

• The algorithm chooses a worker and assigns the current task to them, based on the

above information and the observed history of the previous assignments.

Task 

Management
Data 

Management

Tasks

1. Task Descrip�on

2. Task URL

3. QR Code

4. QR Scan

5. Task Request

2a. Task

6. Task Content

Fig. 9.5 Example of a pull-based approach to task routing in a smart environment
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• For each assignment, the algorithm waits for the response, which depends on the

current task and the chosen worker. If the worker performs the task before the

expiry time, then the completed task counter is updated for the worker.

The algorithm improves its worker selection strategy based on the new observed

history of the assigned tasks. The algorithm does not observe any information from

the workers that are not chosen for the assignment.

Task 

Management

Data 

Management

Tasks

1. Task Descrip�on

2. Task URL

4. Task

Request

2a. Task

5. Task 

Content

3. Task 

No�fica�on

6. Task 

No�fica�on

Fig. 9.6 Example of a push-based approach to task routing in a smart environment
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Fig. 9.7 Hierarchical approach to a capability-based approach to matching the location of task

and user
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Within larger smart environments, the routing problem becomes more complex,

and the assignment algorithms need to be more sophisticated. Consider the situation

where a requester is interested in collecting high-quality and representative photos of

disaster-hit areas in a country. The locations of interest are spread across the country.

The requester designs a task for each location and is interested in the coverage of all

locations with high-quality results. Figure 9.9 illustrates such a scenario on a map.

Number of tasks Number of users

Success
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Assignment Variable

Objec�ve

Func�on

Constraints

Start

Wait for new task
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Observe 

features of task 

and available 

users
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success for all users
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Choose best 

user j* for 

ej*  is largest

Observe response 

from chosen user 
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Update belief state  

μj*

(a) (b)

Fig. 9.8 Assignment algorithm. (a) Optimised task assignment using dynamic programming. (b)

Multi-armed bandit approach for learning

Fig. 9.9 Example of spatial crowdsourcing on the map of Haiti after the 2010 earthquake. A new

spatial task (in blue) requests recent photos of a building at the indicated location [221]
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In large-scale deployments, the human task service uses a task assignment

approach that combines a bi-objective optimisation with combinatorial multi-

armed bandits. We formulate an online optimisation problem to maximise task

reliability and minimise travel costs in spatial crowdsourcing. With the use of the

Distance-Reliability Ratio (DRR) algorithm based on combinatorial fractional pro-

gramming, we can reduce travel costs by 80% while maximising reliability when

compared to existing algorithms [255]. The DRR algorithm has been extended for

the scenario where worker reliabilities are unknown by using an interval estimation

heuristic to approximate worker reliabilities. Experimental results demonstrate that

the approach achieves high reliability in the face of uncertainty.

9.7 Summary

This chapter provides an introduction to the use of human-in-the-loop and

crowdsourcing in intelligent systems within smart environments, where it can be

used for virtual tasks (e.g. data management) and physical tasks (e.g. citizen actu-

ation). The use of human-in-the-loop approaches offers exciting opportunities for

utilising human processing in making sense of the data deluge and in interacting with

the physical environment. However, it requires new ways of thinking about algo-

rithms and platforms while being aware of information security, privacy, and worker

exploitation issues. Within the Real-time Linked Dataspace, we have created a

Human Task Service as part of the support platform. The purpose of the service is

to offer human-in-the-loop support to applications within the dataspace. This chapter

presented the design of the human task service and its use within human-in-the-loop

applications in a smart environment, its data processing pipeline, data model, and

task routing mechanisms.
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Part III

Stream and Event Processing Services

The third part of this book explores new techniques to support approximate and best-

effort stream and event processing services for Real-time Linked Dataspaces, which

support loose semantic integration and administrative proximity. This part contains

chapters covering complex event processing, event service composition, stream

dissemination, stream matching, and approximate semantic matching.



Chapter 10

Stream and Event Processing Services

for Real-time Linked Dataspaces

Keywords Stream processing · Event processing · Real-time query · Entity-centric ·

Lambda architecture

10.1 Introduction

The goal of Real-time Linked Dataspaces is to support a real-time response from

intelligent systems to situations of interest within a smart environment by providing

data processing support services that follow the data management philosophy of

dataspaces and meet the requirements of real-time data processing. This part of the

book details support services to process streaming and event data which support

loose semantic integration and administrative proximity. Support services include

entity-centric queries, complex event processing, stream dissemination, and seman-

tic matching for heterogeneous events. The goal of these services is to support a real-

time linked dataspace to get setup and running with a low overhead for administra-

tive and semantic integration costs (e.g. establishing data agreements, service selec-

tion, and service composition).

Section 10.2 of this chapter lays out pay-as-you-go services in the context of

event and stream processing. Section 10.3 details the entity-centric real-time query

service, including its architecture, service-levels, and service performance, and the

chapter concludes with a summary in Sect. 10.4.

10.2 Pay-As-You-Go Services for Event and Stream

Processing in Real-time Linked Dataspaces

To support the interconnection of intelligent systems in the data ecosystem that

surrounds a smart environment, there is a need to enable the sharing of data among

systems. A data platform can provide a clear framework to support the sharing of

data among a group of intelligent systems within a smart environment [1] (see
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Chap. 2). In this book, we advocate the use of the dataspace paradigm within the

design of data platforms to enable data ecosystems for intelligent systems.

Dynamic data from sensors and IoT devices comprise a significant portion of data

generated in a smart environment. Responding to this trend requires a data platform

to provide specific support services designed to work with real-time data sources.

These services must keep with the dataspace philosophy; thus, they must co-exist,

and co-evolve over time, and ensure a rigid data management approach does not

subsume the source systems. Within the dataspace paradigm, data management

pushes the boundaries of traditional databases in two main dimensions [2]:

(1) Administrative Proximity: which describes how data sources within a space of

interest are close or far in terms of control, and (2) Semantic Integration: which refers

to the degree to which the data schemas within the data management system are

matched up.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data and real-time stream and

event processing capabilities to support a large-scale distributed heterogeneous

collection of streams, events, and data sources [4]. The RLD follows a set of

principles to describe the specific requirements within a real-time setting:

• An RLD must deal with many different formats of streams and events.

• An RLD does not subsume the stream and event processing engines; they still

provide individual access via their native interfaces.

• Queries in the RLD are provided on a best-effort and approximate basis.

• The RLD must provide pathways to improve the integration between the data

sources, including streams and events, in a pay-as-you-go fashion.

In order to enable these principles to support real-time data processing for events

and streams, we explore new techniques to support approximate and best-effort

stream and event processing services within an RLD-Support Platform (RLD-SP).

The RLD-SP services support many formats of data, do not depend on prior-

agreement for composition or dissemination, and provide a best-effort quality of

service and approximate answers using a pay-as-you-go approach. As shown in

Fig. 10.1, the stream and event processing services provided by the RLD-SP are:

• Entity-Centric Index: The entity-centric index enables unified queries across

live streams, historical streams, and entity data to enable full entity-centric views

of the current and past state of the smart environment.

• Stream Dissemination: A key challenge for an RLD-SP is to disseminate events

and streams to relevant data consumers efficiently. The dataspace must facilitate

machine-to-machine communications to build an efficient stream dissemination

system for a smart environment.

• Complex Event Processing: The individual and compositions of event services

within a smart environment can have different quality-of-service levels (e.g.

latency, accuracy, reliability). An RLD-SP must support quality-of-service

aware complex event service compositions to maximise the level of service

available.
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• Approximation: RLD-SP needs to be able to support the processing of hetero-

geneous events. Semantic event matchers are one approach to handle data

heterogeneity within real-time events when few or no prior-agreements exist.

Each of these support services is designed following a tiered model for service

provision. This means that it can provide incremental support for participants in the

RLD in a “pay-as-you-go” fashion. Table 10.1 identifies possible service-tiers

available from each service aligned to the RLD 5 Star pay-as-you-go model. It

should be noted that not all service-tiers have been implemented within each service.

Rather, the implementation of the support services also follows an incremental

approach with service-tiers developed on an as-needed basis based on the actual

requirements of the different smart environments. In this light, Table 10.1 also serves

as a roadmap for the development of each service capturing future work for some

services.

In the remainder of this part of the book, we detail the above support services and

focus on their role in supporting real-time data processing in dataspaces. Each
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Fig. 10.1 Support for stream and event processing in the Real-time Linked Dataspace

Table 10.1 Pay-as-you-go stream and event support services in the RLD-SP [4]
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chapter details the instantiation of a support service and its evaluation. The remain-

der of this chapter describes the entity-centric real-time query service.

10.3 Entity-Centric Real-time Query Service

An essential requirement in a smart environment is the querying of real-time data

streams. Within the RLD [4], this is achieved by the entity-centric real-time query

service that enables unified queries across live streams, historical streams, and entity

data to enable full entity-centric views of the current and past state of the smart

environment. This section first discusses the Lambda Architecture and then details

how it has been extended to support entity-centric real-time queries.

10.3.1 Lambda Architecture

The Lambda Architecture is a frequently used Big Data processing architecture,

which realises that both real-time and historical data analytics are crucial to support

data analysis within smart environments. Rather than using two different systems for

processing real-time data and historical data, the Lambda Architecture [268] allows

seamless ingestion and processing of live and historical streaming data within a

single architecture, as illustrated in Fig. 10.2.

Streams of events can be sourced from a variety of systems such as sensors,

database logs, and website logs. All data entering the system is processed by both the

batch layer and the speed layer. The batch layer pre-computes batch views of the

stored raw data. The serving layer indexes the batch views for low-latency fast-

access queries by applications. The speed layer deals with high-velocity updates by

providing real-time append-only views of recent data. Queries are answered by

merging results from both batch views (data-at-rest) and real-time views (data-in-

motion). The Lambda Architecture has proved very useful for data management

within smart environments [33].

Speed layer

Batch layer

All Data

Serving layer

Data Streams

Precomputed 

Views

Batch View

Batch View

Stream Processing Realtime View

Query

Fig. 10.2 The three layers of the Lambda Architecture
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10.3.2 Entity-Centric Real-time Query Service

In terms of real-time data processing, the Lambda approach meets many of the data

management requirements for intelligent system data ecosystems defined in Chap. 2.

However, Lambda does not natively support the inclusion of entity and contextual

data within the indexing and querying process. This means that applications need to

maintain the relationship between the Lambda index and the entities in the dataspace

by themselves. Ideally, an entity-centric real-time query service would be provided

by the RLD-SP to remove the need for applications to manage the entity/stream

relationship.

To meet this requirement, we designed an extension of the Lambda Architecture

that includes the addition of an entity layer for the indexing of entity data alongside

historical and live streams. The approach enables the serving layer to provide

merged views across all three layers, removing the need for applications to maintain

the entity/stream relationships. The entity-centric real-time query service is part of

the RLD-SP and is tightly integrated with other support services such as the catalog,

entity management, and access control services.

Figure 10.3 illustrates the design of the entity-centric real-time query service. The

main components are:

– Entity Data (Catalog): Provides entity data from the catalog and entity man-

agement services.

– Data Streams: Produced by the “things” and sensors within the smart

environment.

– Batch Layer: Provides batch-based processing for accurate, but delayed views of

historical data.

– Speed Layer: Provides real-time processing for data with low-latency processing

requirements. Streams in the speed layer are not stored but processed on-the-fly to

guarantee low-latency approximate views of the data to complement the older
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views achieved by the batch layer. The speed layer provides several support

services for processing event data, such as approximate event matching and event

enrichment.

– Entity Layer: Provides a view of the managed entities within the RLD working

closely with the catalog and entity management service.

– Serving Layer: Provides applications and users with a single entity-centric query

interface for data access and query. This layer transparently splits queries to the

batch, speed, and entity layers, and combines pre-computed views over the three

layers.

– Query: Request for entity-centric views from applications, analytics, and users.

10.3.3 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to data management that

reduces the initial cost and barriers to joining the dataspace. When tighter integration

into the dataspace is required, it can be achieved incrementally by following the

service tiers defined. The incremental nature of the support services is a core enabler

of the pay-as-you-go paradigm in dataspaces. The tiers of service provision provided

by the entity-centric real-time query service in the RLD follows the 5 Star pay-as-

you-go model (detailed in Chap. 4). The service has the following tiered-levels of

support:

1 Star No Service: Streams are not managed in the service.

2 Stars Basic Processing: Basic real-time stream processing in the speed

layer only.

3 Stars Historical Views: Streams are stored in the batch layer for historical

views.

4 Stars Enrichment: Streams are enriched with context and entity data from the

catalog and entity management service.

5 Stars Entity-Centric: Streams are processed in all three layers to provide entity-

centric real-time queries.

The unified entity-centric views provided by the service proved to be beneficial to

developers/data scientists using the RLD; a performance assessment of the service is

provided in the next section.

10.3.4 Service Performance

A key contribution of a real-time linked dataspace support platform is the entity-

centric real-time query service for the RLD. The query latency for the service was

evaluated within each environment to ensure it could support interactive user

querying [269, 270]. We evaluated seven common queries within the developed

applications to determine the level of query interactivity of the service. Table 10.2
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presents these results based on the average of five runs of each query. Most queries

have an “instantaneous response” of under 0.1 seconds, and all queries are respon-

sive under 1 second, which is needed for “good navigation” [270]. This initial

evaluation demonstrates the suitability of the query service for serving intelligent

applications within smart environments.

10.4 Summary

The chapter provides a high-level overview of the real-time data processing support

services within Real-time Linked Dataspaces (RLDs). Each service follows the

pay-as-you-go data management philosophy of dataspaces. The goal of the services

is to support an RLD to get setup and running with a low overhead for administrative

and semantic integration costs (e.g. establishing data agreements, service selection,

and service composition). This requires us to explore new techniques to support

approximate and best-effort stream and event processing services which support

loose semantic integration and administrative proximity. Specialised support ser-

vices include complex event processing, event service composition, stream dissem-

ination, stream matching, and approximate semantic matching. The chapter details

the entity-centric real-time query service, including its architecture and service

performance.
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Table 10.2 Query latency (seconds) of entity-centric real-time query service [4]

Query type

Airport

A

Mixed use

A Home A School A

Airport

B

Mixed use

B

timeBoundary 0.266415 0.076204 0.078805 0.076004 0.080605 0.078605

dataSourceMetadata 0.091405 0.078005 0.080805 0.153609 0.137808 0.092205

segmentMetadata 0.073804 0.084405 0.074004 0.140008 0.077405 0.077604

Search 0.162609 0.142808 0.085805 0.076404 0.136808 0.204812

Timeseries 0.072404 0.080005 0.077204 0.072404 0.134008 0.083605

groupBy 0.073404 0.078205 0.075604 0.081605 0.078605 0.072204

topN 0.078405 0.086805 0.072604 0.073004 0.077804 0.076604
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Chapter 11

Quality of Service-Aware Complex Event

Service Composition in Real-time Linked

Dataspaces

Feng Gao and Edward Curry

Keywords Complex event processing · Quality-of-service · Modelling · Service

composition · Dataspaces · Internet of Things

11.1 Introduction

The proliferation of sensor devices and services along with the advances in event

processing brings many new opportunities as well as challenges for intelligent

systems. It is now possible to provide, analyse, and react upon real-time, complex

events in smart environments. When existing event services do not provide such

complex events directly, an event service composition may be required. However, it

is difficult to determine which event service candidates (or service compositions)

best suit users’ and applications’ quality-of-service requirements. A sub-optimal

service composition may lead to inaccurate event detection and lack of system

robustness. In this chapter, we address these issues by first providing a Quality-of-

Service (QoS) aggregation schema for complex event service compositions, and then

developing a genetic algorithm to create near-optimal event service compositions

efficiently. The approach is evaluated with both real sensor data collected via

Internet of Things services and synthesised datasets.

The chapter is organised as follows: Sect. 11.2 introduces the technical aspects of

complex event processing within dataspaces, including the design of the service,

pay-as-you-go service levels, and its life cycle. Section 11.3 presents the Quality-of-

Service (QoS) model we use and the QoS aggregation rules we define. Section 11.4

presents the heuristic that enables QoS-aware event service compositions based on

Genetic Algorithms. Section 11.5 evaluates the proposed approach. Section 11.6

discusses related works in QoS-aware service planning, and Sect. 11.7 concludes

and details future work.
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11.2 Complex Event Processing in Real-time Linked

Dataspaces

Real-time data sources are increasingly forming a significant portion of the data

generated in the world. This is in part due to increased adoption of the Internet of

Things (IoT) and the use of sensors for improved data collection and monitoring of

smart environments, which enhance different aspects of our daily activities in smart

buildings, smart energy, smart cities, and others [1]. To support the interconnection

of intelligent systems in the data ecosystem that surrounds a smart environment,

there is a need to enable the sharing of data among intelligent systems.

11.2.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management which recognises that

in large-scale integration scenarios, involving thousands of data sources, it is

difficult and expensive to obtain an upfront unifying schema across all sources

[2]. Within dataspaces, datasets co-exist but are not necessarily fully integrated or

homogeneous in their schematics and semantics. Instead, data is integrated on an

as-needed basis with the labour-intensive aspects of data integration postponed until

they are required. Dataspaces reduce the initial effort required to set up data

integration by relying on automatic matching and mapping generation techniques.

This results in a loosely integrated set of data sources. When tighter semantic

integration is required, it can be achieved in an incremental pay-as-you-go fashion

by detailed mappings among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support a large-scale distributed

heterogeneous collection of streams, events, and data sources [4]. In this chapter, we

focus on the complex event processing support service of the RLD.

11.2.2 Complex Event Processing

Complex Event Processing (CEP) detects composed/complex events from real-time

data streams according to predefined Event Patterns. It is a key enabling technology

for smart cities [271], due to the inherent dynamicity of data and applications.
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However, within a dataspace [19], there is a multitude of heterogeneous event

sources to be discovered and integrated [272]. This poses a classic source selection

problem where it is crucial to determine which event services should be used and

how to compose them to match non-functional requirements defined by users or

applications [273]. The problem of source selection for dataspaces is also tackled in

Chap. 15.

Consider an intelligent travel-planning system using traffic sensors deployed in a

city, for example, traffic sensors in the city of Aarhus, Denmark, as shown in

Fig. 11.1. The events produced by the sensors are all made available in a dataspace

for smart city data. A user (say “Alice”) might need to plan her trip based on the

current traffic condition and would like to keep monitoring the traffic during her

travel. Her request may form an event request with an event pattern shown as an

Event Syntax Tree (EST) in Fig. 11.2. Another user (say “Bob”) might need to deploy

a long-term event request monitoring the traffic condition in his neighbourhood, and

thus form a similar event request. In both cases, multiple sensors are involved, their

observations are aggregated to produce complex events with coarse-grained infor-

mation, and the users may have non-functional requirements for those events, for

example, having an accuracy above some threshold or a latency below a specific

value. Moreover, one complex event might be useful for different event requests,

that is, complex events are reusable. Thus, addressing the users’ functional and

non-functional requirements efficiently and effectively in this context needs to

Fig. 11.1 Traffic sensors in Aarhus City
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consider the combinations of different event sources in the dataspace as well as

reusing events on different abstraction levels.

11.2.3 CEP Service Design

The design of the CEP Service within the RLD [4] is based on our existing work in

this area, including [123, 274–276], which is brought together in this chapter. In

[275], CEP applications are provided as reusable services called Complex Event

Services (CESs), and the reusability of those event services is determined by

examining event patterns. Event services can thus collaborate in a distributed,

cross-platform environment, creating an Event Service Network as shown in

Fig. 11.3.

Qa outputs: sum(estimated_time_on_segment); (loc.lat, loc.long);
Qa

GFB ECLoc

AND

Fig. 11.2 Traffic planning event request for Alice [274]
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Within the RLD the complex event service composition problem is supported by

the use of a specialised service to aid in event service composition.

11.2.4 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to data management that

reduces the initial cost and barriers to joining the dataspace. When tighter integration

into the dataspace is required, it can be achieved incrementally by following the

service tiers defined. The incremental nature of the support services is a core enabler

of the pay-as-you-go paradigm in dataspaces. The functionality of the complex event

processing service follows the 5 Star pay-as-you-go model (detailed in Chap. 4) of

the RLD. The complex event processing service has the following tiered-levels of

support:

1 Star No service: No complex event processing is supported.

2 Stars Single-service: Event patterns are identified within a single stream.

3 Stars Multi-service: Event patterns can be composed of multiple event services.

4 Stars QoS-aware: Quality-of-Service (QoS) aware service composition of event

services.

5 Stars Context-aware: Context-aware event processing with the use of knowl-

edge from the dataspace.

In this chapter, we detail the implementation of the CES for the RLD with the aim

to enable a QoS-aware event service composition and optimisation.

11.2.5 Event Service Life Cycle

In order to understand the problem of realising event service composition and

optimisation, we analyse the different activities related to event services from their

creation to termination. We identify the following five key activities in the life cycle

of event services, as depicted in Fig. 11.4:

0. Service Description: The static description of the service metadata is created and

stored in the service repository. Describing services and storing the descriptions is

a preliminary step for any service requests to be realised by the described

services.

1. Request Definition: An event service consumer identifies the requirements on the

interested complex events (as well as the services that deliver the events) and

specifies those requirements in an event service request.

2. Planning: An agent receives a consumer’s request and matches it against service

descriptions in the service repository. If direct matches are found, the matching

service descriptions are retrieved, and the matching process ends. Otherwise,
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existing event services are composed to fulfil the requirements, and composition

plans are derived.

3. Deployment and Execution: An agent establishes connections between the event

service consumer and providers by subscribing to event services (for the con-

sumer) based on a composition plan, then it starts the event detection

(if necessary) and messaging process.

4. Adaptation: An agent monitors the status of the service execution to find irregular

states. When irregular states are detected, the planning activity is invoked to

create new composition plans and/or service subscriptions. If the irregular states

occur too often, it may suggest that the service request needs to be re-designed.

We consider efficient and effective management of the event service life cycle

having the following three basic requirements:

• User-Centric Event Request Definition: The event requests should reflect each

individual user’s requirements or constraints on both Functional Properties

(FP) and Non-Functional Properties (NFP) of complex events. Users should be

able to specify different events they are interested in by specifying FP, for

example, event type and pattern. Additional to FP, it is very likely that different

users may have different sets of preferences for the NFPs: some may ask for

accurate results while others may ask for more timely notifications. The

implemented event services should be capable of tackling these requirements

and constraints.

• Automatic Event Service Planning: The service planning activity should be able

to automatically discover and compose CESs according to users’ functional and

non-functional requirements. Planning based on the functional aspects requires

comparing the semantic equivalence of event patterns, while planning based on

the non-functional aspects requires calculating and comparing the composition

plans with regard to the QoS parameters. To fully benefit from automatic imple-

mentation and enable an on-demand event service implementation, the automatic

planning should be efficient to be carried out at run-time.

0: Service 

Description
2: Planning

4: Adaptation

3: Deployment 

& Execution

1: Request 

Definition

Fig. 11.4 Life cycle of an event service [276]
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• Automatic Event Service Implementation: The deployment of the composition

plans should also be automatic to facilitate automatic execution. The adaptation

activity should have the ability to automatically detect service failures or con-

straint violations according to users’ requirements at run-time and make appro-

priate adjustments, including re-compose and re-deploy composition plans, to

adapt to changes. The adaptation process should be efficient to minimise infor-

mation loss and maximise the performance of the event services over time.

Within the RLD, the complex event service composition problem is supported by

the use of a specialised service to aid in event service composition. Two issues

should be considered in the design of the CES: QoS aggregation and composition

efficiency. The QoS aggregation for a complex event service relies on how its

member event services are correlated and composed. The aggregation rules are

inherently different from conventional web services. Efficiency becomes an issue

when the complex event consists of many primitive events, and each primitive event

detection task can be achieved by multiple event services. We address both issues by

(1) creating QoS aggregation rules and utility functions to estimate and assess QoS

for event service compositions, and (2) enabling efficient event service compositions

and optimisation regarding QoS constraints and preferences based on Genetic

Algorithms.

11.3 QoS Model and Aggregation Schema

To have a comprehensive approach for QoS-aware event service composition and

optimisation within a dataspace, we need an objective function. In this section, we

first discuss the relevant QoS dimensions for event services. Then, we briefly explain

how we aggregate them in an event service composition and how we derive the event

QoS utility as our objective function.

11.3.1 QoS Properties of Event Services

For an event service (or event service composition), its overall QoS can be discussed

on several dimensions. In this work, we consider QoS attributes from [65] that are

relevant for QoS propagation and aggregation, including:

• Latency (L): Describes the delay in time for an event transmitted by the

servicePrice (P): Describes the monetary costs for an event service.

• Energy Consumption (Eng): Describes the energy costs for an event service.

• Network Consumption (Net): Describes the usage of a network of an event

service, measured by messages consumed per unit time.

• Availability (Ava): Describes the possibility (in percentages) of an event service

being accessible.

11.3 QoS Model and Aggregation Schema 175



• Completeness (C): Describes the completeness (in percentages) of events deliv-

ered by an event service.

• Accuracy (Acc): Describes the possibility (in percentages) of getting correct event

messages.

• Security (S): Describes the security levels (higher numerical value indicates

higher security levels).

By the above definition, a quality vector Q ¼ <L, P, Eng, Net, Ava, C, Acc,

S > can be specified to indicate the QoS performance of an event service in eight

dimensions.

11.3.2 QoS Aggregation and Utility Function

The QoS performance of an event service composition is influenced by three factors:

Service Infrastructure, Composition Pattern, and Event Engine. The Service Infra-

structure refers to computational hardware, service Input/Output (I/O) implementa-

tion, and the physical network connection; it determines the inherent I/O

performance of a service. The Composition Pattern refers to the way that the

member event services are correlated, expressed in event patterns. The internal

implementation of the Event Engine also has an impact on the QoS. Table 11.1

summarises how the different QoS parameters of an event service composition are

calculated based on these three factors. In this chapter, we do not elaborate on the

impact of service infrastructure or event engine but focus on the QoS aggregation

over the composition pattern, that is, how different QoS dimensions propagate over

different event service correlations, which is summarised in Table 11.2. We apply

Table 11.1 Overall Quality of Service calculation [274]

Dimensions

QoS symbols

Overall QoS calculation

Service

infrastructure

Composition

pattern

Event

engine

Latency Li Lc Le L ¼ Li + Lc + Le

Price Pi Pc – P ¼ Pi + Pc

Energy Engi Engc Enge Eng ¼ Engi + Engc + Enge

Network

consumption

– Netc – Net ¼ Netc

Availability Avai Avac – Ava ¼ Avai � Avac

Completeness Ci Cc Ce C ¼ Ci � Cc � Ce

Accuracy Acci Accc Acce Acc ¼ Acci �Accc � Acce

Security Si Sc – S ¼ min(Si, Sc)

176 11 Quality of Service-ware Complex Event Service Composition. . .



the rules in Table 11.2 from leaves to the root of a composition pattern to derive the

overall QoS step-by-step. We refer readers to [275] for a more thorough explanation

of Tables 11.1 and 11.2.

11.3.3 Event QoS Utility Function

Given a quality vector of an event service composition Q¼<L, P, Eng, Net, Ava, C,

Acc, S > representing the service QoS capability, we denote q as one of the eight

quality dimensions in the vector, O(q) as the theoretical optimum value (e.g. for

latency the optimum value is 0 s) in the quality dimension of q, C(q) as the user-

defined value specifying the hard constraints (i.e. worst acceptable value, e.g. 1 s for

latency) on the dimension, and 0�W(q)� 1 as the weighting function of the quality

metric, representing users’ preferences (e.g. W(L) ¼ 1 means latency is very

important for the user and W(L) ¼ 0 means latency is irrelevant for the user).

Furthermore, we distinguish between QoS properties with positive or negative

tendency: Q ¼ Q+[ Q�, where Q+ ¼ {Ava, C, Acc, S} is the set of properties

with the positive tendency (larger values the better), and Q� ¼ {L, P, Eng, Net} is

the set of properties with the negative tendency (smaller values the better). The QoS

utility U is derived by: ¼
P

qi2Qþ

W qið Þ ∙ qi�C qið Þð Þ
O qið Þ�C qið Þ �

P
qj2Q�

W qjð Þ ∙ qj�O qjð Þð Þ
C qjð Þ�O qj:ð Þ

Table 11.2 Quality of Service aggregation rules based on composition patterns [274]

QoS dimensions for event

service ℰ Aggregation rules Applicable event operators

Pc(ℰ)
P

e2E ice

Pc eð Þ And, Or, Sequence,

Repetition

Engc(ℰ)
P

e2E ice

Engc eð Þ And, Or, Sequence,

Repetition

Netc(ℰ)
P

e2E ice

Cc eð Þ ∙ f eð Þ And, Or, Sequence,

Repetition

Avac(ℰ)
Q

e2E ice

Avac eð Þ And, Or, Sequence,

Repetition

Accc(ℰ)
Q

e2E ice

Accc eð Þ And, Or, Sequence,

Repetition

Sc(ℰ) min Sc eð Þ j e 2 E icef g And, Or, Sequence,

Repetition

Lc(ℰ) Lc eð Þ, e is the last event in Edse Sequence, Repetition

avg Lc eð Þ j e 2 Edsef g And, Or

Cc(ℰ) min Cc eð Þ ∙ f eð Þ j e2Edsef g
card Eð Þ ∙ f Eð Þ

And, Sequence, Repetition

max Cc eð Þ�f eð Þ j e2Edsef g
card Eð Þ ∙ f Eð Þ

Or
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According to the above equation, the best event service composition should have

the maximum utility U. A normalised utility with values between [0,1] can be

derived using the function U ¼ UþjQ�jð Þ= jQþj þ jQ�jð Þ.

11.4 Genetic Algorithm for QoS-Aware Event Service

Composition Optimisation

Event service composition is inherently an NP-hard problem; hence, we propose a

Genetic Algorithm (GA) to find a near-optimal solution in a reasonable time.

Typically, a GA-based search iterates the process of population initialisation, select,

crossover, and mutation to maximise the “fitness” (QoS utility introduced in Sect.

11.3.3) of the solutions in each generation.

11.4.1 Population Initialisation

During population initialisation, we generate individual composition plans as Con-

crete Composition Plans (CCPs). CCPs are event patterns with specific event service

correlations and service bindings for the implementation of event service composi-

tions, that is, each CCP is an individual solution for the event service composition

problem. CCPs are generated from Abstract Composition Plans (ACPs), which are

composition plans without service bindings. ACPs come from the event service

composition request; we mark the reusable nodes in the requested event pattern

(as shown in Fig. 11.5) by identifying isomorphic sub-graphs (as in [275]). Then, by

enumerating all combinations of the implementation of the sub-patterns with reus-

able nodes as roots, we can list all ACPs. Finally, we pick a random subset of ACPs

and generate a set of CCPs by binding event services.
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GCB C

AND

GCB

OR

blk

blk

B

C

type=road 

block

Loc=B,C,G

type=traffic

loc=segment_B

type=traffic

loc=segment_C

Event Service 2

Event Service 1

Event Service 3
Event 

Service 4
type=congestion

loc=B,C,G

reusable on 

SEQ

Query: Qb

reusable 

on B

reusable 

on C

reusable 

on event

Fig. 11.5 Marking the re-usable nodes [274]
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11.4.2 Genetic Encodings for Concrete Composition Plans

Individuals (CCPs) in the population need to be genetically encoded to represent

their various characteristics (composition patterns). Conventionally, web service

compositions are encoded with a sequence of service identifiers, the index of each

service identifier correlates it to the specific service task in the composition. We

follow this principle and encode each leaf in a CCP with an event service identifier in

tree traversal order. However, since the event syntax tree is partially ordered, the

position or index of the event service identifier is insufficient to represent its

corresponding task.

Moreover, ancestor operators of the leaf nodes can help with identifying the role

of the leaf nodes in the CCPs. Therefore, global identifiers are assigned to all the

nodes in the CCPs, and a leaf node in a CCP is encoded with a string of node

identifiers as a prefix representing the path of its ancestors and a service identifier

indicating service binding for the leaf, as shown in Fig. 11.6. For example, a gene for

the leaf node “n13” in P2 is encoded as a string with the prefix “n10n11” and a

service ID for the traffic service candidate for road segment B, that is, “es3”; hence

the full encoding of n13 is <n10n11,es3>. The complete set of encodings for every

gene constitutes the chromosome of P2.

11.4.3 Crossover and Mutation Operations

After the population initialisation and encoding, the algorithm iterates the cycle of

select, crossover, and mutation to find optimal solutions. The selection is trivial;

individuals with better finesses (i.e. QoS utility) are more likely to be chosen to

reproduce. In the following, we explain the details on the crossover, mutation, and

elitism operations designed for GA-based event service composition.
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evt
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Fig. 11.6 Example of genetic encodings and crossover [274]
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11.4.3.1 Crossover

To ensure that the crossover operation produces valid child generations, parents

must only exchange genes representing the same part of their functionalities, that is,

the same (sub-) event detection task, specified by semantically equivalent event

patterns. An example of crossover is illustrated in Fig. 11.6. Given two genetically

encoded parent CCPs P1 and P2, the event pattern specified in the query Q and the

Event Reusability Hierarchy (ERH),1 the crossover algorithm takes the following

steps to produce the children:

1. Pick a leaf node l1 randomly from P1; create the node type prefix ntp1 from the

genetic encoding of P1, that is, code1, as follows: replace each node ID in the

prefix of code1 with the operator type.

2. For each leaf l1 in P2, create the node type prefix ntp2 from code2 (i.e. encodings

for l2) and compare it with ntp1. If ntp1¼ ntp2 and the event semantics of l1 and l2
are equivalent, that is, they are merged into the same node in the ERH, then mark

l1, l2 as the crossover points n1, n2. If ntp1¼ ntp2 but the pattern of l1 is reusable to

l2 or l2 is reusable to l1, then search back on code1, code2 until the cross points n1,

n2 are found on code1, code2 such that T(n1) ¼
:
T(n2), that is, the sub-patterns of

P1, P2 with n1, n2 as the root node of the Event Syntax Tree (EST) of the

sub-patterns are semantically equivalent.

3. If ntp1 is an extension of ntp2, for example, ntp1¼ (And;Or;Seq), ntp2¼ (And;Or)

and the pattern of l1 is reusable to l2 in the ERH, then search back on code1 and try

to find n1 such that the sub-pattern with EST T(n1) is equivalent to l2. If such n1 is

found, mark l2 as n2.

4. If ntp2 is an extension of ntp1, do the same as step 3 and try to find the cross point

n2 in code2.

5. Whenever the cross points n1, n2 are marked in the previous steps, stop the

iteration. If n1 or n2 is the root node, return P1, P2 as they were. Otherwise,

swap the sub-trees in P1, P2 whose roots are n1, n2 (and therefore the relevant

genes), resulting in two new CCPs.

11.4.3.2 Mutation and Elitism

We apply a Mutation operation (with a certain possibility called mutation rate) after

each crossover. The mutation operation randomly changes the composition plan for

a leaf node in a CCP. The result of the mutation could be a different service binding

for the leaf or replacing the leaf node with a new composition using the leaf node as

an event request.

1An ERH is a DAG with nodes representing event patterns and edges representing the reusable

relations, we introduce the ERH in our previous work in [123].
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We apply an Elitism operation after each selection of a generation and add an

exact copy of the best individual from the previous generation. Elitism allows us to

ensure the best individual will survive over multiple generations.

11.5 Evaluation

In this section, we present the evaluation results of the proposed approaches. We put

our experiments in the context of an intelligent travel-planning system using both

real and synthetic sensor datasets for the city of Aarhus. In this scenario, a user will

select a travel route and make an event request which tries to continuously monitor

the traffic condition using the sensors deployed along the route that are available in

the dataspace. The evaluation has two parts: in the first part, we analyse in detail the

performance of the GA. In the second part, we demonstrate the usefulness of the QoS

aggregation rules. All experiments are carried out on a machine with a 2.53 GHz duo

core CPU and 4 GB 1067 MHz memory. Experiment results are an average of

30 iterations.

11.5.1 Part 1: Performance of the Genetic Algorithm

In this part of the evaluation, we compare the QoS utility derived by Brute-Force

(BF) enumeration and the developed GA. Then, we test the scalability of the

GA. Finally, we analyse the impact of different GA parameters and provide guide-

lines to identify optimal GA parameter settings.

11.5.1.1 Datasets

Open Data Aarhus (ODAA) is a public platform that publishes sensor data and

metadata about the city of Aarhus. Currently, there are 449 pairs of traffic sensors in

ODAA. Each pair is deployed on one street segment for one direction and reports the

traffic conditions on the street segment. These traffic sensors are used in the

experiments to answer requests on travel planning. We also include some other

sensors in our dataset that might be used in traffic monitoring and travel planning, for

example, air pollution sensors and weather sensors. These sensors are not relevant to

requests like Alice’s (i.e. denoted Qa in Fig. 11.2) or Bob’s (denoted Qb), that is,

they are noise to queries like Qa and Qb (but could be used in other travel-related

queries). In total, we use 900 real sensors from ODAA, in which about half of them

are noise. We denote this dataset sensor repository R0.

Each sensor in R0 is annotated with a simulated random quality vector <L,

Acc, C, S>, where L 2 [0 ms, 300 ms], Acc, C 2 [50%, 100%], S 2 [1, 5], and

frequency f 2 [0.2 Hz, 1 Hz]. We do not model price or energy consumption in the

11.5 Evaluation 181



experiments because their aggregation rules are similar to network consumption. For

similar reasons, we also do not model availability. To test the algorithms on a larger

scale, we further increase the size of the sensor repository by adding N functionally

equivalent sensors to each sensor in R0 with a random quality vector, resulting in the

nine different repositories as shown in Table 11.3. In the experiments, we use a loose

constraint to enlarge the search space, and we set all QoS weights to 1.0. The queries

used in the experiments are summarised in Table 11.4.

11.5.1.2 QoS Utility Results and Scalability

In this set of experiments, we first demonstrate the usefulness of the GA by

comparing it to a BF algorithm and a random pick approach. Figure 11.7 shows

the experimental results for composing Qa over R3 to R9 (R1 and R2 are not tested

here because their solution spaces are too small for GA), where Qa has six service

nodes and one operator. A more complicated variant of Qa with eight service nodes

and four operators is also tested, denoted Q0
a.

The best utility obtained by the GA is the highest utility of the individual in the

last generation before the GA stops. In the current implementation, the GA is

stopped when the current population size is less than five or the difference between

the best and the average utility in the generation is less than 0.01, that is, the

evolution has converged. Given the best utility from BF Ubf, best utility from GA

Uga, and the random utility of the dataset Urand}, we calculate the degree of

optimisation as d ¼ (Uga � Urand)/(Ubf � Urand). From the results in Fig. 11.7, we

can see that the average is d ¼ 89.35% for Qa and Q0
a. In some cases, the BF

algorithm fails to complete, for example, Qa over R8 and R9, because of memory

limits (heap size set to 1024 MB). We can see that for smaller repositories, d is more

significant. This is because, under the same GA settings (initial population size:

200, crossover rate: 95%, mutation rate: 3%), the GA has a higher chance of finding

the global optimum during the evolution when the solution space is small, and the

Table 11.3 Simulated sensor repositories [274]

R1 R2 R3 R4 R5 R6 R7 R8 R9

N 1 2 3 4 5 6 7 8 9

Total size 1800 2700 3600 4500 5400 6300 7200 8100 9000

Table 11.4 Queries used in experiments [274]

Query Description Nodes

Qa Alice’s query on estimated travel time on the

route

1 AND, 6 streams

Qb Bob’s query on traffic condition 1 AND, 1 OR, 4 streams

Q0
a A variant of Qa with more nodes 1 AND, 3 random operators,

8 streams

Q0
b A variant of Qb with more nodes 1 AND, 1 OR, 10 streams
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elitism method described in Sect. 11.4.3 makes sure that, if found, the global

optimum “survives” till the end of evolution, for example, in the GA results for Qa

over R3 and R4 in Fig. 11.7.

It is evident that a BF approach for QoS optimisation is not scalable because of

the NP-hard nature of the problem. We analyse the scalability of the GA using

different repository sizes, query sizes (total number of event operator nodes and

event service nodes in the query), as well as different number of CESs in the Event

Reusability Hierarchy (ERH).

From the results in Fig. 11.8a, we can see that the composition time of Qa grows

linearly for GA when the size of the repository increases. To test the GA perfor-

mance with different query sizes using different operators, we use the EST of Qb as a

base and replace its leaf nodes with randomly created sub-trees (invalid ESTs

excluded). Then we test the GA convergence time of these queries over R5. Results

from Fig. 11.8b indicate that the GA execution time increases linearly regarding the

query size.

In order to test the scalability over a different number of CESs in the ERH (called

ERH size), we deploy 10–100 random Complex Event Services (CESs) to R5,

resulting in ten new repositories. We test the GA on a query created in the previous

step (denoted Q0
b) with the size of 12 nodes (two operators, ten sensor services) and

record the execution time in Fig. 11.8c. To ensure each CES could be used in the

composition plan, all CESs added are sub-patterns of Q0
b. From the results, we can

see that although the increment of the average execution time is generally linear, in

some rare test instances there are “spikes”, such as the maximum execution time for

ERHs of size 40 and 80. After analysing the results of those cases, we found that

most (over 90%) of the time is spent on population initialisation, and the complexity

of the ERH causes this, that is, the number of edges considered during ACP creation.

Fig. 11.7 QoS utilities of BF, GA, and random pick [274]
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11.5.1.3 Fine-Tuning the Parameters

In the experiments above, a fixed set of settings is used as the GA parameters,

including crossover rate, mutation rate, and population size. To find good settings of

the GA in our given problem domain, we fine-tune the mutation rate, population

size, and crossover rate based on the default setting used above. We change one

parameter value at a time while keeping other parameters unchanged.

In order to determine the effect of the parameter tuning, we define a Cost-

Effectiveness score (i.e. CE-score) as follows: given the random pick utility of a

dataset Urand, we have the final utility derived by GA Uga and the number of

milliseconds taken for the GA to converge tga, CE-score ¼ (Uga � Urand) � 105/tga.

We test two queries Qa, Q
0
b over two new repositories R0

5, R
0
9, which are R5 and R9
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Fig. 11.8 (a) GA scalability over repository size, (b) GA scalability over EP size, (c) GA

scalability over ERH size [274]
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with 50 and 100 additional CESs, respectively. Hence, we have four test combina-

tions on both simple and complex queries and repositories. The results of fine-tuning

the mutation rate, population size and crossover rate are shown in Fig. 11.9a–c.

From the results in Fig. 11.9a, we can see that the optimal mutation rate is quite

small for all tests, that is, from 0% to 0.4%. Results in Fig. 11.9b indicate that for

smaller solutions spaces such as Qa over R
0
5 and R0

9, the optimal initial population

size is smaller, that is, with 60 individuals in the initial population. For more

complicated queries and larger repositories, using a larger population size, for

example, 100, is more cost-efficient. Results from Fig. 11.9c indicate that for Qa

over R0
5, the optimal crossover rate is 35% because the global optimum is easier to

achieve, and more crossover operations bring additional overhead. However, for

more complicated queries and repositories, a higher crossover rate, for example,

from 90% to 100%, is desired. It is worth noticing that in the results from Fig. 11.9b

and c, the changes in the score for Q0
b over R

0
9 is not significant. This is because the

GA spends much more time trying to initiate the population, making the cost-

effectiveness score small and the differences moderate.

In the previous experiments, we use the selection policy such that every individ-

ual is chosen to reproduce once (except for the elite whose copy is also in the next-

generation). This will ensure the population will get smaller as the evolution pro-

gresses and the GA will converge quickly. This is desirable in our case because the
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algorithm is executed at run-time and is time sensitive. However, it is also possible to

allow an individual to reproduce multiple times and keep a fixed population size

during evolution.

To compare the differences of having a fixed or flexible population size, we show

the average utility (of Q0
b over R0

9) over the generations in Fig. 11.10. The results

show that the number of generations for flexible population sizes is similar, while

larger sizes achieve higher utilities. Also, the duration of generations in fixed

population sizes is quite different: for a fixed population size of 60, the GA

converges in about 60 generations; and for the size of 100, it lasts more than

100 generations. Larger sizes also produce better results in a fixed population, but

it is much slower, and the utilities are lower than those obtained from flexible

populations. In summary, we can confirm that using a flexible population size is

better than a fixed population size for the GA described in this section.

11.5.2 Part 2: Validation of QoS Aggregation Rules

In this part of the evaluation, we show how the QoS aggregation works in a

simulated environment.

Fig. 11.10 Average utility using flexible (“p ¼ x”) and fixed (“pf ¼ x”) population size [274]
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11.5.2.1 Datasets and Experiment Settings

To demonstrate the effect of QoS aggregation and optimisation, we generate two

composition plans CP1 and CP2 with the GA for Qa over R0
9 using the same

constraints specified in Sect. 11.5.1. CP1 is optimised for latency, with the weight

of latency set to 1.0 and other QoS weights set to 0.1; while CP2 is optimised for

network consumption, with the weight of network consumption set to 1.0 and others

set to 0.1. The reason we generate one plan to reduce the latency and the other to

reduce network consumption is that the resulting plans are quite different in struc-

ture, as shown in Fig. 11.11.

When the two composition plans are generated, we transform the composition

plans into stream reasoning queries (e.g., C-SPARQL query). We evaluate the

queries over the traffic data streams produced by ODAA sensors. According to the

composition plan and the event service descriptions involved in the plans, we

simulate the QoS of the event services on a local test machine, that is, we create

artificial delays, wrong and lost messages according to the QoS specifications in

event service descriptions, and set the sensor update frequency as the frequency

annotated (so as to affect the messages consumed by the query engine). Security is

annotated but not simulated, because the aggregation rule for security is trivial, that

is, estimated to be the lowest security level. Notice that the simulated quality is the

Service Infrastructure quality. We observe the results and the query performance

over these simulated streams and compare it with the QoS estimation using the rules

in Tables 11.1 and 11.2, to see the differences between the practical quality of the

composed event streams and the theoretical quality as per our estimation.

11.5.2.2 Simulation Results

The results of the comparison between the theoretical and simulated quality of the

event service composition are shown in Table 11.5. The first column is the quality

dimensions of the two composition plans; the second column is the computed quality

values based on the aggregation rules defined in Table 11.2. These rules consider the

AND

G1F1B1 E1C1Loc1

AND

G2F2B2 E2C2

AND

ESLoc2

sum(estimated_time_on_segment)
sum(estimated_time_on_segment)

ES

Composition Plan #1 (CP1): optimised for latency.

Urand1=0.413, U1=0.524
Composition Plan #2 (CP2): optimised for bandwidth composition.

Urand2=0.416, U2=0.483

Fig. 11.11 Composition plans for Qa under different weight vectors [274]
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Composition Pattern of the query as well as the Service Infrastructure quality of the

composed services. We denote this quality QoS. However, this is not the end-to-end

QoS, because the quality of the event stream engine needs to be considered. To get

the stream engine performance we deploy the queries with optimal Service Infra-

structure quality, that is, no artificial delay, mistake, or message loss, and we record

the quality of query executions in the third column. We denote this engine quality

QoSee. The simulated end-to-end quality is recorded in the fourth column, denoted

QoSs. We calculate the theoretical end-to-end quality based on QoS and QoSee using

Table 11.1. Notice that the Service Infrastructure qualities of the queries themselves

are not considered since we do not measure the results provided to external service

consumers. Instead, the quality measurement stops at the point when query results

are generated. We denote this theoretical end-to-end quality QoSt and calculate the

deviation d ¼ (QoSs /QoSt) � 1, which is recorded in the last column. From the

results we can see that the GA is highly effective in optimising latency for CP1 and

network consumption for CP2: the latency of the former is 1/7 of the latter and event

messages consumed by the latter are less than 1/8 of the former.

We can also see that the deviations of latency and accuracy are moderate for both

plans. However, the completeness estimation deviates about 15–18% from the actual

completeness. For the network consumption in CP1, the estimation is quite accurate,

that is, about 5% more than the actual consumption. However, the network con-

sumption for CP2 deviates from the estimated value by about 13.51%. The difference

is caused by the unexpected drop in C-SPARQL query completeness when a CES

with imperfect completeness is reused in CP2, which suggests that an accurate

completeness estimation of the service could help improve the estimation of the

network consumption for event service compositions using the service.

Table 11.5 Validation for QoS aggregation and estimation [274]

Composition

pattern Event engine

End-to-end

simulated

End-to-end

deviations

Plan 1

(CP1)

Latency 40 ms 604 ms 673 ms +4.50%

Accuracy 50.04% 100% 51.43% +2.78%

Completeness 87.99% 97.62% 72.71% �14.89%

Network consumption 4.05 msg/s 4.05 msg/s 3.84 msg/s �5.19%

Plan 2

(CP2)

Latency 280 ms 1852 ms 2328 ms +9.19%

Accuracy 53.10% 100% 51.09% �3.79%

Completeness 87.82% 73.18% 46.31% �17.96%

Network consumption 0.37 msg/s 0.40 msg/s 0.32 msg/s �13.51%
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11.6 Related Work

In general, Dataspaces follow a “best-effort” model for data management which can

be seen as providing varying Quality of Service levels; this is evident in the area of

search and querying with different mechanisms for indexing and federated queries

[2, 121, 122]. In this section, we discuss the state-of-the-art in QoS-aware service

composition as well as on-demand event/stream processing.

11.6.1 QoS-Aware Service Composition

QoS models and aggregation rules for conventional web services have been

discussed in [273, 277]. In this work, we extract some QoS properties from existing

work and define a similar utility function. However, QoS aggregation in complex

event services is different: the calculation of aggregated QoS depends on the

correlations among member event services, while the impact of event engine per-

formance also needs to be considered. Therefore, a set of new aggregation rules are

developed in this work. GA-based service composition and optimisation have been

explored previously in [273, 278, 279]. However, they only cater for Input, Output,

Precondition, and Effect (IOPE) based service compositions. For composing com-

plex event services, a pattern-based reuse mechanism is required [275].

11.6.2 On-Demand Event/Stream Processing

Our work is not the first attempt that combines Service-Oriented Architectures

(SOA) with Complex Event Processing to achieve on-demand event processing.

Event-driven SOA has been discussed in [280, 281]. However, they only use CEP to

trigger sub-sequential services. SARI [282] uses IOPE-based service matchmaking

for event services, but it has limited matchmaking capability for logical AND and

OR correlations.

A unified event query semantics is essential for a cross-platform and on-demand

event processing [283]. EVA extends the semantic framework proposed by [284]

and provides a transformation mechanism from EVA to target CEP query languages,

but the transformation adaptation happens before run-time, and an on-demand event

processing at run-time is not realised. RSQ-QL [283] is a recent unified RDF Stream

Processing (RSF) query language that in theory supports event processing and

existing RSP engines. However, it has yet to be implemented with a concrete engine.

Semantic Web Service inspired semantic streams [285] uses a prolog-based

reasoning system to discover relevant data streams. It provides support for both

functional and non-functional requirements, but the matchmaking still depends on

the stream types. H2O [286] proposes a hybrid processing mechanism for long-term
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(coarse-grained) and real-time (fine-grained) queries, the former type of query can

provide partial results for the latter. However, it limits the expressiveness of real-

time queries. Dyknow [287] leverages C-SPARQL as its RSP engine and facilitates

on-demand semantic data stream discovery using stream metadata annotations.

However, Dyknow does not support complex event streams.

11.7 Summary and Future Work

In this chapter, we detail the design of a dataspace support service for the compo-

sition of a complex event service. The service uses a GA-based approach to find

optimised event service compositions within a dataspace. A QoS aggregation

schema is proposed to calculate the overall QoS for an event service composition

based on correlations of member event services. A QoS utility function is defined

based on the QoS model and serves as the objective function in the GA. Our

algorithm is evaluated with both real and synthetic sensor data streams within an

intelligent travel-planning system. Results show that we can achieve about 89%

optimal results in seconds. We also provide experimental results on fine-tuning GA

parameters to further improve the algorithm. Finally, we use experiments to validate

our QoS aggregation schema, and the results indicate that our QoS aggregation and

estimation do not deviate far from the actual QoS.

We are considering the following future directions. Firstly, we will explore rule-

based event service composition as a more general approach for integrating various

event services. The GA-based approach proposed in this work is an ad hoc solution

in the sense that it relies on the event pattern semantics. Changing the event

semantics might introduce significant revisions of the composition algorithm.

Using a rule-based composition algorithm, on the other hand, can easily cope with

various event semantics. Secondly, we will explore the distributed stream processing

mechanisms for RDF streams and find efficient means to support dynamic reasoning

in a distributed manner.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons licence, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.
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Chapter 12

Dissemination of Internet of Things Streams

in a Real-time Linked Dataspace

Yongrui Qin, Quan Z. Sheng, and Edward Curry

Keywords Linked data · Event processing · Stream dissemination · Event

matching · Dataspaces · Internet of Things

12.1 Introduction

The Internet of Things (IoT) envisions smart objects and intelligent systems

collecting and sharing data on a global scale to enable smart environments. One

challenging data management issue is how to disseminate data to relevant consumers

efficiently. This chapter leverages semantic technologies, such as linked data, which

can facilitate machine-to-machine communications to build an efficient stream

dissemination system for Semantic IoT. The system integrates linked data streams

generated from various collectors and disseminates matched data to relevant con-

sumers based on user queries registered in the system. We design two new data

structures to suit the needs of high-performance linked data stream dissemination in

the following two scenarios: (1) stream dissemination in point-to-point systems; and

(2) stream dissemination in wireless broadcast systems. The evaluation of the

approaches using real-world datasets shows that they can disseminate linked data

streams more efficiently than existing techniques.

This chapter is structured as follows: Sect. 12.2 introduces the data management

challenges of the IoT from the perspective of dataspaces. The design of the stream

dissemination services is covered in Sect. 12.3. Section 12.4 discusses point-to-point

linked data stream dissemination, and wireless broadcast is discussed in Sect. 12.5.

Experimental evaluation of linked stream dissemination in the contexts of both

point-to-point and wireless broadcast is discussed in Sect. 12.6. Section 12.7 dis-

cusses related work, with Sect. 12.8 summarising and highlighting future work.
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12.2 Internet of Things: A Dataspace Perspective

The Internet of Things (IoT) aims to connect everyday objects, such as coats, shoes,

watches, ovens, washing machines, bikes, cars, even humans, plants, animals, and

changing environments, to the Internet to enable communications/interactions

between these objects [288]. The goal of IoT is to enable computers to see, hear,

and sense the real world. In the era of IoT, it is envisioned that smart objects and

intelligent systems collect and share data on a global scale via the Internet.

In IoT, connecting all the things that people care about in the world becomes

possible. All these Internet-connected things will produce vast scales of data in real

time. Smart environments, leveraging IoT, are enabling data-driven intelligent systems

that are transforming our everydayworld, from the digitisation of traditional infrastruc-

ture (smart energy, water, and mobility) [289], the revolution of industrial sectors

(smart autonomous cyber-physical systems, autonomous vehicles, and Industry 4.0),

to changes in how our society operates (smart government and cities) [1]. Some

promising IoT applications in future smart cities include resource management issues

[290], effective urban street-parking management for reducing traffic congestion and

fuel consumption [31, 291], efficient ways to distribute drinking water, assisting

tracking and recovering stolen property [288], energy management [16], and so on.

On the Internet, the primary data producers and consumers are human beings.

However, in the IoT, the main actors become Things, which means things are the

main data producers and consumers. Therefore, in the context of the IoT, addressable

and interconnected things, instead of humans, act as the primary data producers, as

well as the primary data consumers. Intelligent systems will be able to learn and gain

information and knowledge to solve real-world problems directly with the data fed

from things. As a goal, intelligent systems within a smart environment enabled by

IoT technologies will be able to sense and react to the real world for humans.

To make the potential of IoT a reality, we need to manage and process data

efficiently and effectively, which will require new approaches to data management.

Given the scale of data generated in IoT, topics such as distributed processing, real-

time data stream analytics, and event processing are all critical. We may need to

revisit these areas to improve upon existing technologies for applications in IoT scale

[292, 293].

12.2.1 Real-time Linked Dataspaces

To support the interconnection of intelligent systems in the data ecosystem that

surrounds an IoT-based smart environment, there is a need to enable the sharing of

data among systems. A data platform can provide a clear framework to support the

sharing of data among a group of intelligent systems within a smart environment [1]

(see Chap. 2). In this book, we advocate the use of the dataspace paradigm within the

design of data platforms to enable data ecosystems for intelligent systems.
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A dataspace is an emerging approach to data management that is distinct from

current approaches. The dataspace approach recognises that in large-scale integration

scenarios, involving thousands of data sources, it is difficult and expensive to obtain an

upfront unifying schema across all sources [2].Within dataspaces, datasets co-exist but

are not necessarily fully integrated or homogeneous in their schematics and semantics.

Instead, data is integrated on an as-needed basis with the labour-intensive aspects of

data integration postponed until they are required. Dataspaces reduce the initial effort

required to set up data integration by relying on automatic matching and mapping

generation techniques. This results in a loosely integrated set of data sources. When

tighter semantic integration is required, it can be achieved in an incremental pay-as-

you-go fashion by detailed mappings among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data/knowledge graphs and real-

time stream and event processing capabilities to support a large-scale distributed

heterogeneous collection of streams, events, and data sources [4].

Within the IoT, semantic technologies such as linked data, which aim to facilitate

machine-to-machine communications, are playing an increasingly important role

[294]. Linked data is part of a growing trend towards highly distributed systems,

with thousands or potentially millions of independent sources providing structured

data. These data sources can be managed within a dataspace for a smart environment.

Due to a large amount of data produced within an IoT-based smart environment by

different things, challenges exist with disseminating relevant data to multiple mobile

data consumers in an efficient manner.

12.3 Stream Dissemination Service

The design of the stream dissemination service within the Real-time Linked

Dataspace is based on our existing work in this area, including [122, 295, 296],

which is brought together in this chapter and contextualised for use within the

dataspace paradigm.

Figure 12.1 shows an overview of the RLD in a smart city scenario. We assume

that data generated by all kinds of things will be represented in the form of linked

data streams using the Resource Description Framework (RDF) and are managed

within a dataspace. In Semantic IoT, the Semantic Sensor Network Ontology (SSN,

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn) can be used to model sensing data.

Our service consists of two components: the matching component and the index

construction component. Data consumers (humans and smart things in the city) can

register their interests as user queries in the system. Then the index construction

component will construct an index for all the user queries. The matching component

will then evaluate incoming linked data streams against the constructed index to

match triples with user queries efficiently. Finally, the system will disseminate

matched data to relevant data consumers for further processing.
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It is important to efficiently disseminate the most relevant data from IoT-based

smart environments for the effective utilisation of the information streams. To this

end, the Real-time Linked Dataspace supports data dissemination with a dedicated

support service. The service uses two efficient data stream dissemination methods

for semantic IoT enabled by linked data and semantic technologies.

• Point-to-Point Stream Dissemination: Supports the retrieval of relevant data from

the deluge of the IoT data, which can then facilitate the extraction of useful

information. The system first integrates the data generated from various data

collectors. Then it transforms all the data to linked data streams (in RDF format,

http://www.w3.org/RDF/). Meanwhile, data consumers can register their interest

in the form of Basic Graph Patterns (BGPs, http://www.w3.org/TR/rdf-sparql-

query/) in the system. Based on these BGPs, the system disseminates matched

linked data to relevant users.

• Stream Dissemination by Wireless Broadcasting: Supports the massive number

of mobile users in IoT-based smart environments. As the batteries of smart

objects are often limited, an efficient way to reduce energy consumption and

lower access latency is imperative. This can be achieved by designing effective

and efficient air indexes for broadcasting linked data on air. We introduce a novel

method by adopting 3D Hilbert curve mappings [297] for all the points converted

from RDF triples. These mappings transform the 3D points into a sequence of

one-dimensional points, which are suitable for efficient sequential access on air.

12.3.1 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to data management that

reduces the initial cost and barriers to joining the dataspace. When tighter integration

into the dataspace is required, it can be achieved incrementally by following the

service tiers defined. The incremental nature of the support services is a core enabler

of the pay-as-you-go paradigm in dataspaces. The functionality of the stream

dissemination service follows the 5 Star pay-as-you-go model (detailed in

Things/Sensors Linked Data Dissemination Service Consumers

Data 

Dissemination

Data 

Subscription

Matching

Index  Construction

Real-time Linked Dataspace

Fig. 12.1 Overview of linked data stream dissemination service [295]
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Chap. 4) of the RLD. It should be noted that currently, the stream dissemination

service only supports events in linked data format. The stream dissemination service

has the following tiered-levels of support:

1 Star No Service: No stream dissemination is supported.

2 Stars No Service: No stream dissemination is supported.

3 Stars Point-to-Point: Basic dissemination of streams between two points based

on a simple matching of event sources using BGP. Services handle the

transformation of streams to linked data at this level.

4 Stars Wireless Broadcast: Air indexes for broadcasting linked data within the

smart environment.

5 Stars Complex Patterns:More expressive queries for complex event detection,

in collaboration with the CEP service.

After receiving relevant data, users can further make use of the data to extract

information for their purposes, such as environment monitoring, event detection,

complex event processing, and so on. However, wewill not discuss the data processing

at the user side as this is the subject of Part IV of this book; in this chapter, we focus on

how to match many BGPs against linked data streams efficiently.

12.4 Point-to-Point Linked Data Stream Dissemination

To disseminate high-quality information and provide high-performance matching

services to data consumers (or subscribers) within a dataspace, we aim to design a

system that will not return false-negative matched results. Therefore, we investigate

pattern matching in this chapter. Pattern matching performs individual component

matching between RDF triples and BGPs. It does not consider semantic relatedness

between an RDF triple and a BGP (see Chap. 13 for semantic matching approaches). It

may return false-positive matching results, but not false-negative ones. Recent works

on pattern matching include linked data stream processing [298] and stream reasoning

[299]. However, since these solutions are designed for optimisations of individual

query evaluations, they are not suitable for processing many concurrent queries.

User Queries Basic Graph Patterns (BGPs) are adopted as user queries in our

system. BGPs are sets of triple patterns. The possible triple patterns in a BGP are:

(1) (#s, #p, #o), (2) (?s, #p, #o), (3) (#s, ?p, #o), (4) (#s, #p, ?o), (5) (?s, ?p, #o), (6) (?s,

#p, ?o), (7) (#s, ?p, ?o), and (8) (?s, ?p, ?o). Here, ? denotes a variable, while # denotes a

constant. Similar to data summaries [300], we apply hash functions (there are many

different hash functions that are suitable for this purpose. For more details, please refer

to [300]) to map these patterns into numerical values.

An example of pattern matching is that pattern (?s, :is, :Student) will match triple

(:James, :is, :Student) but will not match (:James, :is, :PhDStudent). Other types of

matching include match estimation and semantic matching, both of which may
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return false-negative results. Again, take pattern (?s, :is, :Student) as an example. In

match estimation, the main task is to estimate which dataset matches pattern (?s, :is, :

Student) the best by using some summarisation techniques among multiple datasets

[300] to avoid querying all known datasets directly. In contrast, semantic matching

will match semantically related triples compared to a specified pattern [151]. For

example, pattern (?s, :is, :Student) may match (:James, :is, :PhDStudent) since the

term:Student in the pattern is semantically related to :PhDStudent in the triple.

Representations of Queries and Triples In our linked data stream dissemination

system, when the user queries (in the form of BGPs) are registered, all queries will be

transformed into numerical values. The reason for this is that the comparisons

between numbers are faster than strings. Note that we will have three numbers for

the three components in a query as described above. Then a suitable index will be

constructed for efficient evaluation between linked data streams and user queries.

Before matching starts, RDF triples in the data streams will be mapped into numer-

ical values. Then, these numerically represented triples will be matched with BGPs

represented as numerical values in the constructed indexes.

12.4.1 TP-Automata for Pattern Matching

Automata techniques have been adopted to process XML-based data streams

[301]. They are based on languages with SQL-like syntaxes, and relational database

execution models adapted to process streaming data. In our system, to support

pattern matching, we apply automata to match each individual component of a triple

with its counterparts of a BGP efficiently, which we call Triple Pattern automata

(TP-automata).

Firstly, as mentioned, operating on numbers is more efficient than operating on

strings. Note that when we map BGPs into numerical values, we treat variables in a

BGP as a universal match indicator represented by “?”. This indicator will be

mapped into a fixed and unique numerical value but not the whole range of a specific

coordinate axis. This unique numerical value will be treated differently as well later

in the triple evaluation process.

Figure 12.2 depicts the construction process of TP-automata. Firstly, user queries

will be transformed into triple pattern state machines, as shown in the middle of

Fig. 12.2. As can be seen from the figure, each triple state machine contains an initial

state, two internal states, one final state, and three transitions. In the figure, the first

circle of a state machine represents the initial state, the next two circles represent the

two internal states, and the doubled circle represents the final state. The three arrows

associated with conditions are three transitions between different states. Similar to

[301], these state machines can be combined into one machine by exploiting shared
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common states with the same transitions. The combined machine, TP-automata, is

shown on the right of Fig. 12.2. The shaded circles represent combined states.

To perform pattern matching over TP-automata, triples in the linked data stream

will be first mapped into numerical values. For example, suppose a triple (s, p, o) is

mapped into a 3D point (a, b, c). The system will match it against TP-automata in the

following process. It first checks the initial state of TP-automata and looks for state

transitions with the condition a or condition ?. Following the state transitions, state

1 and state 2 become the currently active states at the same time. It then looks for

state transitions with condition b or ? from state 1 and state 2. Following the

transitions, state 3 and state 4 become active states. Finally, following transitions

with condition c or ? from state 3 and state 4, two final states, state 5 and state 7, are

reached. By checking both final states, the system returns {q1, q2, q4} as the

matching results. It should be noted that q3: (a, b, d) will not match the input triple

(a, b, c) as its object component’s pattern is d, which does not match with c. The

matching process stops if and only if all current active states are final states or states

with no satisfied transition.

12.5 Linked Data Stream Dissemination via Wireless

Broadcast

In a wireless data broadcast system, there is a base station that pre-processes data

before it broadcasts the data on the wireless channel. If mobile clients have registered

an interest in some data on the server, they can listen to the wireless channel and

download the data. All mobile clients can share the wireless channel. In this way, the

broadcast system could be able to serve an arbitrary number of mobile clients

simultaneously.

For clients to efficiently locate data of interest, air indexing techniques are used to

facilitate the searching of data on air. Air indexes usually are lightweight and concise

summaries of the data to be broadcast. Based on air indexes, mobile clients within

a b c

? b c

a b d

a b c

{q1}

{q2}

{q3}

{q4}

Q1: (a, b, c)

Q2: (?, b, c)

Q3: (a, b, d)

Q4: (a, b, c)
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a
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Fig. 12.2 Query index structure: TP-automata [295]

12.5 Linked Data Stream Dissemination via Wireless Broadcast 197



the communication range of the base station can evaluate their queries directly and

then locate requested data on the wireless channel.

Similar to the existing work in data broadcast, we use access latency and tuning

time as the primary performance metrics [302]. Access latency refers to the time

elapsed between the moment when a query is formed, and the client starts listening to

the server, to the moment when all requested data has been received. Tuning time

refers to the period that a client must stay active to complete a query.

12.5.1 The Mapping Between Triples and 3D Points

Existing lightweight data summaries (e.g. [300, 303]) have proven to be effective to

index linked data. However, they are not suitable in a wireless broadcast system. To

develop a new index structure for broadcasting linked data, similar to data summa-

ries, we choose to use hash functions to map RDF triples into numerical values.

These numerical values can be regarded as coordinates in a 3D space. Precisely,

given a hash function F, a triple (s, p, o) can be mapped into a 3D point (F (s), F (p),

F (o)). We call such a point mapped from a triple a data point to differentiate it from

other points in the 3D space. Using this approach, a set of RDF triples can be mapped

into a set of 3D data points.

BGPs are again used [303] to represent queries in our system. Like RDF triple

mappings, a single BGP containing only one RDF triple pattern can be mapped into

a point, a line, or a plane in a 3D space, or even the whole 3D space, depending on

the number of variables in the triple pattern. The possible triple patterns in a BGP

are: (1) (#s, #p, #o), (2) (?s, #p, #o), (3) (#s, ?p, #o), (4) (#s, #p, ?o), (5) (?s, ?p, #o),

(6) (?s, #p, ?o), (7) (#s, ?p, ?o), and (8) (?s, ?p, ?o). Here, ? denotes a variable while #

denotes a constant. Clearly, pattern 1 can be mapped into a 3D data point. Patterns

2 to 4 can be mapped into lines in the 3D space and patterns 5 to 7 can be mapped

into planes. It should be noted that we do not consider pattern 8 in this approach, as it

will be mapped into the whole 3D space and requires a traversal of all the data points

in the whole 3D space, where air indexing is not required.

12.5.2 3D Hilbert Curve Index

A space-filling curve in D dimensions is a continuous, surjective mapping between

one-dimensional space and D-dimensional space. A Hilbert curve is an example of a

space-filling curve. It generally has good locality properties [297] and can efficiently

support matching against BGPs with variables that can be mapped into lines or

planes. Hence, the Hilbert curve is adopted as the foundation of our indexing

method.
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Mapping 3D Points to One-Dimensional Points To simplify our discussion, we

use a 2D Hilbert curve to illustrate our ideas, which can then be generalised to 3D

Hilbert curves. Figure 12.3 shows 2D Hilbert curves for order 1 and 2, that is, H1 and

H2, respectively. Note that, a K order Hilbert curve, denoted as HK, passes all centre

points of 2KD subdividing squares (or hypercubes) in a D-dimensional space. In

Fig. 12.3a, each centre point of a subdividing square in 2D space is assigned a Hilbert

value, which can be regarded as a one-dimensional point. Note that, the mapping

between centre points and Hilbert values are bijective, which means for a given Hilbert

curve, we can freely convert between centre points and Hilbert values in constant time.

From Fig. 12.3b, we can see that high-order Hilbert curves can be easily derived

using transformation from low-order Hilbert curves like the one shown in Fig. 12.3b.

To derive H2 from H1, in Fig. 12.3b, the 2D space is divided into 2D (D ¼ 2 in this

case) sub-regions, where each sub-region contains an H1. After rotating the lower

two H1 curves, an H2 Hilbert curve is derived (see Fig. 12.3c). Since H1 has

22 subdividing squares, H2 has entirely subdividing squares.

Figure 12.4 presents an example of a 3D Hilbert curve of order 1. Higher-order

3D Hilbert curves can be derived using a similar process. To accommodate a larger

3D data space, that is, the hashing space for RDF triples, we need to utilise higher-

order 3D Hilbert curves. We can quickly check that a K order 3D Hilbert curve can

have up to 23 � K data points. In other words, when mapping to a K order 3D

Hilbert curve, all RDF triples will be mapped into at most 23 � K data points (also

centre points of hypercubes) in a 3D space.

Indexing One-Dimensional Points on Air After mapping 3D points into

one-dimensional points using 3D Hilbert curves, we can utilise B+-trees to index

one-dimensional points on a 3D Hilbert curve. An example is depicted in Fig. 12.5.

Each one-dimensional point in the leaf nodes contains a pointer to a real triple that

will be broadcast on the wireless channel. Such B+-trees can be serialised and

broadcasted on the linear wireless channel as air indexes for the linked data on the

air in the form of data packets. We adjust the fan-out of a B+-tree according to the

packet capacity of the wireless channel so that a complete node of a B+-tree can fit in

a packet. After downloading a part (e.g. a few packets) of an air index, mobile clients

 
 

(a) (b) (c)

Fig. 12.3 2D Hilbert curves of order 1 and 2. (a) H1, (b) H1 to H2, (c) H2
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can then evaluate their queries (i.e. BGPs) against the partial index, determine which

remaining index packets should be further retrieved, and finally compute the broad-

cast time of matched triples after all necessary index information has been acquired.

Evaluating Queries Against an Air Index In the query evaluation process, one

challenging issue is how to match a one-dimensional point against BGPs. As

mentioned previously, BGPs could be mapped into a point, a line, or a plane in a

3D space. In order to match BGPs with data points in the 3D space, we need to

transform one-dimensional points in B+-tree based air indexes into 3D points. We

then examine whether such 3D points fall into the subspace defined by a BGP. If yes,

RDF triples pointed to by these points match the BGP. Otherwise, they do not match.

Query Evaluation Example Suppose a triple (a, b, c) can be hashed as

(112, 31, 92) in a 3D space and its Hilbert value is 1137. Now suppose a mobile

client issues a BGP (a, b, ?o). This BGP can be converted into a 3D line (112, 31, ?).

After receiving Hilbert value 1137 from the air index, the mobile client firstly

converts it back into a 3D point (112, 31, 92) and then it finds that this point falls

on the 3D line defined by its BGP. Then the client knows the triple pointed to by

Hilbert value 1137 is of its interest. As mentioned earlier, the conversion between a

Hilbert value and a 3D point can be calculated in a constant time given a Hilbert

curve of order K (here, K is a constant).

Reducing Search Space One issue needs to be addressed in the above query

evaluation process: how to reduce the search space of Hilbert values indexed by B

+-trees, thereby leading to fewer index packets required to download for query

Fig. 12.4 3D Hilbert curve

of order 1

8

Pointers to Triples on Air

12

0 51 8 119 12 1513

Fig. 12.5 B+-tree for some

points on a Hilbert curve
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evaluation. Given an air index like the one shown in Fig. 12.5, the root node has

three child nodes. Based on the Hilbert values in the root node, we need to determine

which child node would contain triples that may match a given BGP. We observe

that each child node contains multiple Hilbert values, and the range of these values

can be easily computed from the root node. For example, the value ranges of the

three child nodes are [0, 8], [8, 12], and [12, HMAX] (here HMAX refers to the

maximum Hilbert value of a Hilbert curve). For each value range, we have two

bounding Hilbert values.

To reduce the search space, we compute the minimal sub-region defined by a

lower-order Hilbert curve that covers the range defined by both bounding Hilbert

values (see Fig. 12.6, where two dash lines represent two BGPs). If the minimal

sub-region intersects with the sub-space (i.e. a line) defined by a BGP, the child node

with the value range may contain triples that match that BGP. Otherwise, no triples

in the child node will match that BGP. The example shown in Fig. 12.6 illustrates a

minimal sub-region for the value range [8, 12]. We can see that two BGPs that are

represented as two dash lines have no intersections with it. So, we can infer that no

triples pointed to by the second child node (triples whose Hilbert values are 8, 9, and

11) in Fig. 12.5 will match the two BGPs shown as two dash lines in Fig. 12.6.

12.6 Experimental Evaluation

12.6.1 Evaluation of Point-to-Point Linked Stream

Dissemination

The dataset used in this experiment was generated in a smart office pilot, as

discussed in Chap. 14 [100]. The energy readings were collected from August

4, 2014, to August 19, 2014. In total, there are around 6.2 million triples in the

dataset. An event example is depicted in Table 12.1.
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As an initial work, we used simple BGPs (i.e., single triple patterns) as queries in

the experiment. We can simulate the join queries by letting data subscribers issue

multiple simple BGPs. However, we leave extending our system to support complex

BGPs or join queries as our future work. We randomly generated BGPs using the

seven patterns mentioned in Sect. 12.4 based on our dataset. We did not consider the

pattern (?s, ?p, ?o) in our experiment as it requires every triple in the linked data

stream. In such a case, no query index is needed. We generated 10,000 queries to

100,000 queries.

We evaluated the performance of our approach in terms of Average Construction

Time (in milliseconds) of the indexes and Average Throughput (number of triples

per second). We implemented hash-based TP-automata (i.e. we map triples and

queries into numerical values and denote such method as HashMat in the following

figures) and string-based TP-automata (i.e. we use triples and queries as is and

denote this method as StringMat in the following figures). We compared HashMat

and StringMat with state-of-the-art pattern matching technique, CQELS [298]

(https://code.google.com/p/cqels/), which is also designed for linked data streams.

We examined the matching quality of the hash-based TP-automata as well. All

methods were implemented on Java Platform Standard Edition 7 running on Linux

(Ubuntu 12.10, 64-bit Operating System), with quad-core CPU@2.20GHz and 4 GB

memory. We ran each experiment 10 times and reported their average experimental

results.

The performance of pattern matching on TP-automata is presented in Fig. 12.7.

Average construction time is compared in Fig. 12.7a. The construction times for

both hash-based TP-automata and string-based TP-automata are similar to each other

in most settings. For more significant numbers of queries, such as 75k and 100k

queries, the construction of string-based indexes takes a slightly longer time. Usu-

ally, the construction can be completed within a few hundred milliseconds. How-

ever, the construction time of CQELS takes much longer, which usually requires

around ten thousand milliseconds.

Table 12.1 An event example [295]

@prefix do: <http://energy.deri.ie/ontology#> 

@prefix dr: <http://../deri/deri rooms#>

:event1026fd7b0e5a 

:event1026fd7b0e5a 

:event1026fd7b0e5a 

:event1026fd7b0e5a

:event1026fd7b0e5a 

:event1026fd7b0e5a 

:event1026fd7b0e5a

events:PowerConsumptionEvent .

do:platform .

dr:Room01 .

dr:building01 .

:usage9739ccddc76d .

"facilities" .

:timedb2c06100b33 .

:usage9739ccddc76d 

a 

do:consumer 

do:consumerType 

do:consumerLocation 

do:powerUsage 

do:consumerDepartment 

do:atTime 

a dul:Amount .

:usage9739ccddc76d do:hasDataValue 171.87 .

:usage9739ccddc76d do:isClassifiedBy dr:watt .

:timedb2c06100b33 a do:Instant .

:timedb2c06100b33 do:inDDateTime "2014−08−12T18:17:18" .
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Throughput performance of pattern matching is depicted in Fig. 12.7b. It shows

some substantial differences between CQELS and TP-automata based approaches

(HashMat and StringMat). Generally, HashMat and StringMat can achieve through-

put at the speed of nearly a million triples per second and are about four orders of

magnitude faster than CQELS. The main reason for this is that CQELS is a much

more comprehensive system focusing on optimising evaluation of queries with

complex operators and semantics but not on the evaluation of a large set of

concurrent and straightforward queries over linked data streams. In this regard, our

approach can also be adapted to complement CQELS for dealing with our linked

data stream dissemination scenario. Regarding HashMat and StringMat, in most

cases, HashMat achieves about twice the throughput speed compared with

StringMat.

Finally, we investigated the matching quality of hash-based TP-automata

(HashMat) via Precision, Recall, and F1 Score. This is because collisions are difficult

to avoid in any hash-based approaches, and false-positives exist in hash-based

TP-automata, which affects matching quality. Specifically, we investigated Precision

and F1 Score when the Recall is 100% since we observe that the matching quality of

HashMat is already excellent in such cases. As can be seen in Table 12.2, the

Precision and F1 Score are 100% when the number of queries is 10k or 25k. For

more significant numbers of queries (e.g. 50k, 75k, and 100k), both Precision and F1
Score are still higher than 99.99950%. This demonstrates that HashMat provides a

very high matching quality.

Fig. 12.7 Performance on pattern matching. (a) Average construction time. (b) Average through-

put [295]

Table 12.2 Matching quality

of HashMat when the recall is

100%

Queries Recall (%) Precision (%) F1 Score (%)

10k 100 100 100

25k 100 100 100

50k 100 99.99975 99.99987

75k 100 99.99982 99.99991

100k 100 99.99960 99.99980
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12.6.2 Evaluation on Linked Stream Dissemination via

Wireless Broadcast

The dataset used in this experiment is a subset of the current version of the English

DBpedia.1 It contains resources of type dbpedia-owl:Event. Each event is a triple of

the form<eventURI, rdf:type, dbpedia-owl:Event>. An example of an event URI is

http://dbpedia.org/resource/Battle_of_Brentford_(1642). There are approximately

400,100 triples in the dataset.

As an initial work, we used simple BGPs as queries in the experiment, and we

leave extending our system to support complex BGPs or join queries as our future

work. We randomly generated BGPs using the seven patterns mentioned in Sect.

12.5.1 based on our dataset. We generated 100,000 queries and reported the average

experimental results.

We compared our B+-tree HC (Hilbert Curve) indexes with traditional R-tree

indexes, which can be used to index 3D points directly. In the experiment, we varied

the packet capacity of the wireless broadcast channel from 128 bytes to 2048 bytes.

For each packet capacity setting, we assigned appropriate fan out and leaf order

parameters for R-trees and B+-trees to ensure that each packet was able to accom-

modate a complete node of a tree.

Figure 12.8a shows the comparisons of the access latency and Fig. 12.8b shows the

comparisons of the tuning time. From the figure, we can identify that the HC-based

index outperforms the R-tree based index. The reason for this is twofold: firstly, by

using our novel search algorithm, the search space of the HC-based index is smaller

than the R-tree-based index; secondly, the size of each index entry for the HC-based

index is smaller than the R-tree-based index. This result confirms the effectiveness and

efficiency of our search algorithm and HC-based indexing technique.

The percentage of index tuning time is presented in Fig. 12.9a. Here, we define

the percentage of index tuning time as the ratio between the index tuning time

(caused by downloading necessary parts of the index on air) and the total tuning time

(the sum of index tuning time and content tuning time). This metric is a good

indicator of the effectiveness and efficiency of an index. The lower the percentage

we get, the better is the effectiveness we can achieve. Figure 12.9a shows that the

HC-based index has a much lower percentage of index tuning time when compared

with the R-tree-based index. To be specific, the percentage of index tuning time of

the HC-based index is below 20% under different packet capacities while that of the

R-tree-based index is above 60%.

The index sizes are compared in Fig. 12.9b. We can see that the number of packets

required to accommodate the whole index for HC-based index is only about half of

that for R-tree-based index. The main reason is that the R-tree index must store 3D

points in its nodes while the HC-based index only stores one-dimensional points.

1http://downloads.dbpedia.org/3.8/en/

204 12 Dissemination of Internet of Things Streams in a Real-time Linked Dataspace

http://dbpedia.org/resource/Battle_of_Brentford_(1642)
http://downloads.dbpedia.org/3.8/en/


12.7 Related Work

12.7.1 Matching

Recent work on data summaries on linked data [300] transform RDF triples into a

numerical space. Then data summaries are built upon numerical data instead of

strings, as summarising numbers is more efficient than summarising strings. To

transform triples into numbers, hash functions are applied to the individual compo-

nents (s, p, o) of triples. Thus, a derived triple of numbers can be considered as a 3D

point. In this way, a set of RDF triples can be mapped into a set of points in a 3D

Fig. 12.8 Performance evaluation for (a) access latency and (b) tuning time

Fig. 12.9 Performance evaluation for (a) index tuning time and (b) index size
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space. To facilitate query processing over data summaries, a spatial index named

QTree [300], which is evolved from standard R-trees [304], is adopted as the basic

index. Data summaries are designed for indexing various linked data sources and

used for identifying relevant sources for a given query.

However, data summaries are not suitable for our linked data stream dissemina-

tion systems. Firstly, techniques on data summaries, such as QTree, do not consider

variables in the BGPs but only RDF triples with concrete strings. Further, since data

summaries are concise and imprecise representations of data sources [300], they

provide match estimation. Hence, query evaluation on them would return false-

negative results, which is not allowed in our system.

Semantic matching has also been studied, which aims to match semantically

related RDF triples against BGPs. It may provide false-positive match results but not

a false-negative. Both approximate event matching [151] and thematic event

processing [272] apply semantic matching. Similarly, all these techniques will return

false-negative matching results, which are not allowed in our approach.

Moreover, existing work on pattern matching, such as stream reasoning [299] and

linked data stream processing [298], does not support large-scale query evaluation

but focuses on the evaluation of a single query or a small number of parallel queries

over the streaming linked data. Therefore, the issue of supporting pattern matching

over a large number of BGPs against linked data streams remains open.

12.7.2 Wireless Broadcast

In order to support efficient query processing among a large number of data sources,

relevant sources that can better answer the queries should be identified first, and then

the queries are evaluated on them. Lightweight data summaries on linked data [300]

have been investigated to determine relevant sources to use during query evaluation.

However, these techniques are mainly designed for random access in memory or on

disk, and thus they cannot be applied in a wireless broadcast system directly, where

only linear access is allowed.

The work of CkNN (Continuous k Nearest Neighbor) query processing on air

[305] has introduced indexes and search algorithms for continuous kNN queries in

2D spaces. It uses a similar technique discussed in this chapter to index moving

objects modelled in 2D spaces. Their work differs from this work as their main goal

is to support continuous kNN queries in 2D spaces, while the main goal of this

chapter is to support queries on linked data broadcast in a wireless channel.

Our work differs from the CkNN query processing in the following aspects:

(1) CkNN query processing is for CkNN queries while our work aims at processing

Basic Graph Patterns (BGPs) on linked data; (2) the search algorithms are different

as query evaluation for CkNN queries, and BGPs is different; (3) the indexing space

is different as CkNN query processing only considers 2D space but our work

considers 3D space; (4) finally, our work can be extended to support more complex
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queries on linked data broadcast in a wireless channel while CkNN query processing

aims to handle variants of NN queries.

12.8 Summary and Future Work

In this chapter, we have leveraged semantic technologies, such as linked data, to

build an efficient stream dissemination system for semantic IoT within smart envi-

ronments. We present the design of the stream dissemination support service for a

dataspace based on two new data structures to suit the needs of high-performance

linked data stream dissemination in (1) point-to-point systems; and (2) wireless

broadcast systems.

In order to efficiently match a large number of BGPs against linked data streams,

we have proposed TP-automata, an automata-based method designed for efficient

pattern matching. In our evaluation, we show that TP-automata can disseminate

linked data within the dataspace at the speed of nearly one million triples per second

with 100,000 registered user queries and is several orders of magnitude faster in

terms of both index construction time and throughput compared with the state-of-

the-art technique. Further, using hash-based TP-automata, the throughput is doubled

compared with string-based TP-automata with high matching quality.

We have proposed an effective and efficient air indexing method, HC-Index, for

broadcasting linked data on air, which can be used in data sharing among a large

number of mobile, smart objects, and intelligent systems in an IoT-based smart

environment. Our method is based on 3D Hilbert curve mappings. Firstly, we map

RDF triples into points in a 3D space and then adopt 3D Hilbert curve mappings to

convert all the 3D points into one-dimensional points. We build B+-trees upon these

one-dimensional points and serialise these trees to accommodate them on the linear

wireless channels. An efficient search algorithm has been devised to facilitate query

processing over the linked data on air. We have conducted experiments and com-

pared our method with the traditional R-tree-based spatial indexing method. Our

method has shown better performance over the R-tree-based method in various

aspects, including access latency, tuning time, and index size.

Future work includes supporting more complex user queries, such as join queries;

and supporting semantic matching in a hashing space with the use of Locality-

Sensitive Hashing (LSH) techniques [306] that help to map semantically related data

together. Both directions will enable the linked data stream dissemination system to

provide better semantic richness and to support data consumption needs more

accurately, which is a critical issue in the IoT. We will also consider the challenges

of matching and dissemination of multimedia events [30] within smart

environments.
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Chapter 13

Approximate Semantic Event Processing

in Real-time Linked Dataspaces

Souleiman Hasan and Edward Curry

Keywords Event processing · Semantic matching · Best-effort · Internet of things ·

Dataspaces

13.1 Introduction

Within dataspaces, data sources are not necessarily fully integrated or homogeneous

in their schematics and semantics. For dataspaces to support a real-time response to

situations of interest when a set of events take place, for example from sensor

readings, there is a need for a principled approach to tackling data heterogeneity

within real-time data processing. In this chapter, we detail techniques for developing

dataspace support services for dealing with the semantic heterogeneity of real-

time data.

In the following sections, we build upon the discussion so far in this book and

focus on best-effort semantic matching for real-time data processing in dataspaces

(Sect. 13.2). In Sect. 13.3, we discuss an approximate semantic matching service for

real-time data processing in dataspaces, represented by the approximate semantic

and thematic event processing models. The elements of the approach are detailed in

Sect. 13.4. Then, in Sect. 13.5, we discuss an instantiation of these event processing

models, with their evaluation in Sect. 13.6. We finish with an analysis of related

work in Sect. 13.7, and then conclude the chapter in Sect. 13.8.

13.2 Approximate Event Matching in Real-time Linked

Dataspaces

Real-time data sources are increasingly forming a significant portion of the data

generated in dataspaces. This in part is due to increased adoption of the Internet of

Things (IoT) and the use of sensors for improved data collection and monitoring of
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daily activities in smart buildings, smart energy, smart cities, and others. In this

section, we explore the concepts of dataspaces and event processing to understand

data management challenges in dataspaces with real-time data sources. We then

introduce the approximate semantic event matching services to address the challenge

of semantic matching of heterogeneous events. The design of the service is based on

our existing work in approximate semantic event matching, including [151, 272,

307, 308], which is brought together in this chapter and contextualised for use within

the dataspace paradigm.

13.2.1 Real-time Linked Dataspaces

Driven by the adoption of the IoT, smart environments are enabling data-driven

intelligent systems that are transforming our everyday world, from the digitisation of

traditional infrastructure (smart energy, water, and mobility), the revolution of

industrial sectors (smart autonomous cyber-physical systems, autonomous vehicles,

and Industry 4.0), to changes in how our society operates (smart government and

cities). To support the interconnection of intelligent systems in the data ecosystem

that surrounds a smart environment, there is a need to enable the sharing of data

among systems. A data platform can provide a clear framework to support the

sharing of data among a group of intelligent systems within a smart environment

[1] (see Chap. 2). In this book, we advocate the use of the dataspace paradigm within

the design of data platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management which recognises that

in large-scale integration scenarios, involving thousands of data sources, it is

difficult and expensive to obtain an upfront unifying schema across all sources

[2]. The dataspace paradigm pushes the boundaries of traditional data management

approaches in two main dimensions [2]: Administrative Proximity, which describes

how data sources within a space of interest are close or far in terms of control; and

Semantic Integration, which refers to the degree to which the data schemas within

the data management system are matched up. These dimensions form part of the

three boundaries (knowledge, value, and ecosystem from the Knowledge Value

Ecosystem (KVE) Framework) that need to be crossed in order for knowledge

exchange to occur among systems within a data ecosystem (see Chap. 2 for further

discussion on this topic).

Within dataspaces, data sources are not necessarily fully integrated or homoge-

neous in their schematics and semantics. Instead, data is integrated on an as-needed

basis with the labour-intensive aspects of data integration postponed until they are

required. Dataspaces reduce the initial effort required to set up data integration by

relying on automatic matching and mapping generation techniques. This results in a

loosely integrated set of data sources. When tighter semantic integration is required,
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it can be achieved in an incremental pay-as-you-go fashion by detailed mappings

among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support a large-scale distributed

heterogeneous collection of streams, events, and data sources [4]. In order to

understand the requirements of real-time data processing, we will explore the

event processing paradigm [139].

13.2.2 Event Processing

In event processing, data items that are shared within the dataspace in real time are

called events. Data sources which produce events are called event producers. Users

and software which are interested in an event, or set of events, are called event

consumers. For example, in a smart building, there can be IoT-based data sources

which produce information continuously, such as energy consumption sensors and

motion detection sensors within an office. Data items produced by such sensors are

the events. The sensor is the event producer. A building manager may be interested

in situations where a light in an office is left on while the office is unoccupied. In this

example, the building manager and the software representation of their interest (the

event query) would be the event consumer.

Thus, an essential part of the event processing paradigm is the matching mech-

anism between the events and the interests of event consumers. This is similar to the

concept of query processing in relational database management systems, where

events replace the concept of a data tuple, and subscriptions or rules replace the

concept of queries. In a specific family of event processing systems, called stream

processing, queries take the name of continuous queries as they are evaluated

continuously against data.

In terms of crossing system boundaries for data sharing, the decoupled nature of

event-based systems reduces their administrative proximity. However, in terms of

semantic integration, event-based systems currently require tight semantic integra-

tion [151]. Acknowledging that the challenges to dataspaces such as loose admin-

istrative proximity and loose semantic integration can face real-time data sources, the

question becomes: how can we support the loose administrative proximity and

semantic coupling within real-time data processing? To answer this question, we

look no further than the literature of the event processing paradigm itself. A core

principle in event processing is decoupling, which refers to the lack of explicit

agreements in order to increase scalability as defined by Eugster et al. [142]. Three
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main dimensions have been recognised in the event processing literature concerning

decoupling, as illustrated in Fig. 13.1:

• Space Decoupling: Which means that event producers and consumers do not hold

addresses, such as IPs, of each other.

• Time Decoupling: Which means that event producers and consumers do not have

to be active at the same time.

• Synchronisation Decoupling: Which means that event producers and consumers

do not block each other when exchanging events.

We build on the concept of decoupling to meet the principles of Real-time Linked

Dataspaces as detailed in Chap. 4, that is, an event processing paradigm that supports

many formats of data, does not depend on schema agreement, and supports a best-

effort approximate and pay-as-you-go approach. We identify this as a new dimen-

sion for event processing systems which we call loose semantic coupling.

13.3 The Approximate Semantic Matching Service

Loose coupling of event processing systems on the semantic dimension reflects a

low cost to define and maintain rules concerning the use of terms, and a low cost for

building and agreeing on the event semantic model. This requirement forms the

foundation of our semantic matching models and their enabling elements, as

discussed in the remainder of this chapter.

13.3.1 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to datamanagement that reduces the

initial cost and barriers to joining the dataspace. When tighter integration into the

dataspace is required, it can be achieved incrementally by following the service tiers

Approximate Semantic Event Processing

Things/Sensors Event Consumers

Sys. A Sys. B

Event Processing

Space

Time

Synchronisation

Semantics

type, a�ributes, values

Fig. 13.1 The decoupling dimensions of event processing (Adapted from [151])
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defined. The incremental nature of the support services is a core enabler of the pay-as-

you-go paradigm in dataspaces. The semanticmatchingmodels have been usedwithin an

approximate semantic event processing support service within the RLD. The functional-

ity of the service follows the 5 Star pay-as-you-gomodel (detailed inChap. 4) of theRLD.

The approximation semantic matching service has the following tiered-levels of support:

1 Star No Service: No semantic matching is supported.

2 Stars Semantic Matching: Approximate semantic matching at the attribute-

value of events and subscriptions.

3 Stars Thematic Matching: Thematic matching of events with the use of theme

tags to more accurately describe events in a low-cost manner.

4 Stars Entity-Centric: Event matching is performed over entity-centric event

graphs (e.g. RDF).

5 Stars Context-Aware: Context-aware semantic matching of events with the use

of external knowledge from the dataspace.

13.3.2 Semantic Matching Models

The main semantic matching models and elements of the approach are presented,

with respect to the event flow model presented by Cugola and Margara in [139]. The

core components of an event engine in their model are the event Receiver, the

Decider, the Producer, and the event Forwarder. Event Sources, Consumers, and

Users interact with the engine through protocols and condition/action Rules. Fig-

ure 13.2 presents an elaboration of Cugola and Margara’s model with additional

models and elements for approximate semantic event processing. Two models form

the basis for the approach: (I) the approximate event matching model, and (II) the

thematic event matching model, which are outlined in the following sections.

13.3.3 Model I: The Approximate Event Matching Model

This model extends the current event processing paradigm through the following:

• Event processing rules are equipped with the tilde � semantic approximation

operator so users can express their delegation to the event engine to match similar,

or related, event terms, to the term used in a subscription. The background

semantic model for approximation is a statistical model built from

co-occurrences of terms in a large corpus of plain text documents. For instance,

the following subscription tells the event engine to match it to events generated

with device equal to ‘laptop’ or similar terms and to match the value “room 112”

with the term ‘office’ or related terms such as ‘room’ or ‘zone’.
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ftype ¼ increased energy usage event,

device ¼ laptop � ,

office �¼ room 112g

• The single event matcher is equipped with matching and mapping algorithms to

detect events semantically relevant to approximate subscriptions. For instance, let

an event of increased energy consumption be represented as follows:

ftype : increased energy consumption event,

measurement unit : kilowatt‐hour,

device : computer,

office : room 112g

The most probable mapping, or the top�1 mapping, of this event to the

previous subscription is generated as a probable scored result. It can be described

as follows:

σ
� ¼ f type ¼ increased energy consumption eventð

$ type : increased energy usage eventÞ,

device �¼ laptop �$ device : computerð Þ,

office ¼ room 112 $ office : room112ð Þg

• The complex pattern matcher can then perform probabilistic reasoning to deduce

the probabilities of occurrences of the derived events in the action parts of the

complex rules.

Event 

Consumers

Event 

Consumers

Things / 

Sensors

Fig. 13.2 Models and elements in the approximate semantic event processing model
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13.3.4 Model II: The Thematic Event Matching Model

This model suggests associating free tags that describe the themes of types, attributes,

and values in events and subscriptions, in order to clarify their meanings. For instance,

the previous increased energy consumption event is associated with tags as follows:

appliances, buildingf g

These tags help disambiguate the meaning of terms in the event such as ‘energy’

and ‘office’ and move them closer to the energy management domain in smart

buildings. Thematic events can more easily cross semantic boundaries as (1) they

free users from needing a prior semantic top-down agreement, and (2) they carry

approximations of events’ meanings composed of payloads and theme tags which,

when combined, carry less semantic ambiguities. An approximate matcher exploits

the associated thematic tags to improve the quality of its uncertain matching of

events and subscriptions.

13.4 Elements for Approximate Semantic Matching

of Events

The approach can be conceptually decomposed into three main elements, as outlined

in the following sections and illustrated in Fig. 13.2.

13.4.1 Elm 1: Sub-symbolic Distributional Event Semantics

This element stems from the need for loosening the semantic coupling between event

producers and consumers. If semantic coupling can be quantified by the number of

mappings between symbols, that is, terms, and meanings, then a semantic model that

condenses these mappings can be particularly useful. Ontological models require

granular agreements on the symbol-meaning mappings, which is proportional to the

number of symbols. However, distributional vector space semantics leverage the statis-

tics of terms co-occurrence in a large corpus to establish semantics [309]. For instance,

the terms ‘power’ and ‘electricity’ would frequently co-appear in an energy manage-

ment domain corpus. Thus, they can be assumed to be related, and this can be leveraged

within energy event matching. Using such a model leaves event producers and con-

sumers to loosely agree on the corpus as a representative of their common knowledge

and decrease the need for granular agreements on every individual term of the domain.
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13.4.2 Elm 2: Free Event Tagging

This element stems from the need to enable event processing within a loosely

coupled model to effectively and efficiently allow users to adapt the conveyed

events’ meanings in different domains and situations. Free tagging of events and

subscriptions do not introduce any coupling components between participants, in

contrast to the case of top-down fixed taxonomies. This element builds on the

success of free tagging, known as folksonomies, within social media research

[310]. For instance, the term ‘energy’ when used in an event tagged by the tags

{‘building’, ‘appliance’} helps the matcher distinguish the meaning of ‘energy’ and

associate it with the domain of power management, rather than associating it with the

domain of sport or diet, for example. When used to process IoT events, free tagging

can create “Thingsonomies” as a way to support the discovery and use of events

from Things [308].

13.4.3 Elm 3: Approximation

This element stems from the realisation that loosening the coupling between event

producers and consumers at the semantic and pragmatic levels introduces uncer-

tainties to the engine. Uncertainty results from not exactly knowing which event’s

tuples shall be mapped to which subscription’s tuples. For instance, with the loose

agreements on terms’ semantics, there are various possible mappings between an

event and a subscription such as:

σ1 ¼ f device ¼ laptop $ device : computerð Þ,

room ¼ room 112 $ office : room 112ð Þg

σ2 ¼ f device ¼ laptop $ office : room 112ð Þ,

room ¼ room 112 $ device : computerð Þg

Each mapping has a different probability which reflects the uncertainty of the

matching. Approximation at the core of the event processing engine can tackle

uncertainties and complement the elements mentioned earlier.

13.4.4 Elements Within the Event Flow Functional Model

The main elements of the approach can be unified and placed into the event

processing functional model illustrated in Fig. 13.2 as follows:
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• Elm1—Sub-symbolic Distributional Event Semantics: The actual distributional

semantic model could be built outside of the event processing engine by indexing

a textual corpus. The resulting model forms the basis to compare any two strings

in events and subscriptions, as they get decoded into their vector representations.

Vectors form the basis for distance and similarity measures.

• Elm2—Free Event Tagging: Events are flowing from event sources, and subscrip-

tions get tagged by users before they are considered for matching. Users use free tags

to enhance events and subscriptions and improve their interpretation by the matcher.

• Elm3—Approximation: Events are matched in the decider against subscriptions.

The decider is now approximate, and the result of matching is represented by scored

events (Elm3-Scored) which signify their relevance to each subscription. The

decider makes use of the semantic model and the tags when matching the events.

13.5 Instantiation

The instantiation of the models requires a concrete model for the events, the

subscription language, and the matching model, as discussed in the following

sections.

13.5.1 Events

The most elaborate event model is the instantiation of the thematic event model,

which is based on an attribute-value model. Each event is a pair of sets: a set of

theme tags and a set of tuples. Each theme tag is a single word or a multi-word term.

Each tuple consists of an attribute-value pair. No two distinct tuples can have the

same attribute. An example energy consumption event is represented as follows:

energy, appliances,buildingf g,ð

ftype : increased energy consumption event,

measurement unit : kilowatt‐hour,

device : computer,

office : room 112gÞ

The formal definition of the event model is as follows: let E be the set of all

events, let TH be the set of all possible theme tags, and let A and V be the sets of

possible attributes and values respectively. Let AV be the set of possible attribute-

value pairs, that is, tuples, such that AV¼ {(a, v): a 2 A ^ v 2 V}. An event e 2 E is a

pair (th, av) such that th � TH and av � AV are the set of theme tags and the set of

tuples, respectively.
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13.5.2 Subscriptions

Each subscription is a pair of two sets: a set of theme tags and a set of conjunctive

attribute-value predicates. Each theme tag is a single word or a multi-word term.

Each predicate uses the equality operator to signify exact equality or the tilde

operator for approximate equality when indicated. Other Boolean and numeric

operators such as !¼,>, and< are kept out of the language for the sake of discourse

simplicity. Each predicate consists of an attribute, a value, and specifications of the

semantic approximation for the attribute and the value. The most notable feature of

the language is the tilde � operator that helps specify the approximation for an

attribute/value when it follows it. An example subscription to energy usage events is

as follows:

power, computersf g,ð

ftype ¼ increased energy usage event � ,

device �¼ laptop � ,

office ¼ room 112gÞ

The author of the subscription specifies that the device can be a ‘laptop’, or

something related semantically to ‘laptop’. The subscription also states that the

attribute ‘device’ itself can be semantically relaxed. However, it states that the

event’s ‘office’ must be exactly ‘room 112’.

The formal definition of the language model is as follows: let S be the set of

subscriptions, let TH be the set of all possible theme tags, and let A and V be the sets

of possible attributes and values, respectively, which can be used in a subscription.

Typically, there are no restrictions on A or V, and the user is free to use any term or

combination of terms. Each predicate is a quadruple which consists of the attribute,

the value, and whether or not the attribute/value is approximated. Let P be the set of

possible predicates, thus P ¼ {p: p ¼ (a, v, appa, appv) 2 A � V � {0, 1}2}. A

subscription s 2 S is a pair (th, pr) where th� TH and pr� P are the set of theme tags

and the set of predicates, respectively. The degree of approximation is the proportion

of relaxed attributes and values. An exact subscription has 0% degree of

approximation.

13.5.3 Matching

The matching model is illustrated in Fig. 13.3. An approximate semantic single

event matcher M decides on the semantic relevance, or mapping, between a sub-

scription s and an event e based on the semantic mapping between attribute-value

predicates of s and attribute-value tuples of e. The model is detailed in [151, 272].

An example mapping between the event and the approximate subscription

described above is as follows:
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σ ¼ f type ¼ increased energy consumption eventð

$ type : increased energy usage eventÞ,

device �¼ laptop �$ device : computerð Þ,

office ¼ room 112 $ office : room 112ð Þg

M works in two modes: the top-1 mode that decides on the most probable

mapping between s and e, and the top-k mode which decides on the top-k probable

mappings to be used later for complex event processing.

The formal definition of matching is as follows: let C ¼ s � e be the set of all

possible correspondences between predicates of s and tuples of e. 8c ¼ ( p,

t) 2 C ) p 2 s ^ t 2 e. Σ ¼ 2C is the power set of C and represents all the possible

mappings between s and e. There are exactly n correspondences in any valid

mapping σ where n is the number of predicates in the subscription s.

For any valid mapping σ, a probability function quantifies the probability of every

predicate-tuple correspondence ( p, t) 2 σ such as (device ¼ laptop� $ device:

computer). There also exists a probability function that quantifies the probability of

the overall mapping σ, among other possible mappings. Both functions form prob-

ability spaces P
σ
and P.

In the basic approximate semantic matching model, the semantic relatedness is

directly calculated from vector representations of terms as suggested by the distri-

butional semantic model. In the thematic model, probabilities are calculated based

on the combined similarity matrix that is based on the thematic pairwise attributes or

values semantic relatedness scores. Thematic semantic relatedness measure uses the

tags to project and adjust the vector representations of words in a parametric vector

space model before calculating their similarity as illustrated in Fig. 13.3 and detailed

in [272].
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Fig. 13.3 The matching model (Adapted from [272])
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13.6 Evaluation and Discussion

To evaluate the models, an evaluation event set of 50,000 events has been seman-

tically expanded out of seed event sets from actual deployments of IoT intelligent

systems for smart city, energy management, building, and relevant datasets, to

evaluate the approximate semantic event matching model as detailed in [151]. Sim-

ilarly, 14,743 events were generated to evaluate the thematic event matching model

as detailed in [272].

Evaluation metrics can be classified into two categories: effectiveness and effi-

ciency metrics [311]. Effectiveness metrics measure the quality of event matching. A

fundamental requirement is the existence of a ground truth which divides events into

relevant and irrelevant with respect to each approximate subscription. Precision,

Recall, and combined F1Score have been used for effectiveness evaluation. The

metric used for evaluating time efficiency is the matcher’s Throughput defined as

Throughput ¼ (Number of processed events)/(Time unit).

Additionally, to measure the loosening in the semantic coupling, we use two

measures: alternative number of exact subscription rules that would be needed in a

semantically coupled model, and the degree of approximation used in the approx-

imate subscriptions. In the thematic model, the number of tags used is also consid-

ered. These measures are compared to the exact matching model’s numbers, which

would typically have many exact subscription rules that have zero degrees of

approximation because of the direct coupling.

13.6.1 Evaluation of the Approximate Semantic Event

Matching Model

The efficiency evaluation aims to compare the throughput of the approximate

semantic matching model against an exact matching model based on query rewrit-

ing. Given a set of approximate subscriptions, each approximate subscription can be

rewritten as a set of conjunctive statements in the Esper event engine, each of which

is a set of attribute-value pairs resulting by replacing the approximate parts of a

subscription with related terms from the WordNet dictionary. The ground truth’s

thesaurus is Merriam-Webster [312].

The experiment was conducted with ten sets of 10�100 approximate subscrip-

tions of 50% degree of approximation using Explicit Semantic Analysis (ESA) as a

semantic relatedness [313] measure. Figure 13.4 shows that the approximate matcher

delivers 94–97% matching quality, which is higher than the 89–92% delivered by

the WordNet-based rewriting approach equipped with exact matching. The rewriting

approach outperforms the approximate model in throughput when the pairwise

semantic relatedness scores are calculated at run-time. However, the approximate

matcher based on pre-computed esa scores outperforms in throughput with around

91,000 events/s compared to around 19,100 events/s on average.
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Finally, to achieve the 100% of F1Score and the throughput of an exact matcher,

there is a need to write manually all the possible rules that are equivalent to the

approximate rules. To quantify this situation, we measure how many exact rules are

required to compensate for approximate rules given that the rewriting is done with

the ground truth thesaurus, which is Merriam-Webster. This showed that about

74,000 exact rules are needed to cover all events compared to a maximum of only

100 rules for the approximate matcher. Thus, the exact matcher is a non-feasible

solution in highly semantically heterogeneous environments.

13.6.2 Evaluation of the Thematic Event Matching Model

To evaluate the thematic approach, we compare it with non-thematic approximate

semantic event processing described above. A large event set is generated with a

specific theme as well as a set of subscriptions which assume no semantic agree-

ments and 100% degree of approximation. The thematic matcher is compared with

the non-thematic matcher when various theme tags are used.

The baseline matcher achieves 62% of F1Score and a throughput of 202 events/s

averaged over five runs which represent its worst case due to full approximation of

the subscription by using the � operator on all subscription’s predicates.

Each cell in Fig. 13.5 represents the average F1Score of the sample of five

sub-experiments, each of which uses a different combination of events and sub-

scriptions themes tags. For instance, the sub-experiments of the cell in the second

column and tenth row from the bottom left, all use two terms to describe the theme of

an event, and ten terms to describe a subscriptions theme, and the event theme terms

set is a subset of the subscription theme terms set.

Fig. 13.4 The approximate semantic event matcher results. (a) Effectiveness. (b) Efficiency [151]
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Figure 13.5 shows that thematic matching outperforms the non-thematic

matching in F1Score for more than 70% of combinations with scores 62–85% and

an average of 71% versus 62% for the baseline. Thematic matching performs worse

when the number of thematic tags is very small, for example, using just one term as a

theme tag. The performance is worst in the bottom triangular half of the figure with

F1Score widely ranging from 4% to 62%. Larger themes for subscriptions quickly

improve the effectiveness as opposed to the opposite effect by event themes. This

reflects the asymmetric relationship between the many heterogeneous events versus

fewer subscriptions. Thus, more terms are needed in subscription themes to discrim-

inate relevant events.

Figure 13.6 shows the average throughput for each combination of events and

subscriptions theme tags. It suggests that the thematic approach outperforms the

non-thematic matcher for more than 92% of the sub-experiments, with a throughput

of 202–838 and an average of 320 versus 202 events/s. The improved throughput is

due to the thematic filtering of the space during the thematic projection phase, which

saves time during the semantic relatedness calculation.

The results show that the thematic approach is limited when users can provide

only a small number of tags for subscriptions, and when hard real-time deadlines are

required. Otherwise, the results suggest that the use of fewer terms to describe

events, around 2–7, and more to describe subscriptions, around 2–15, can achieve

a good matching quality and throughput together with low error rates. This is

concentrated in the middle to the upper left side of Figs. 13.5 and 13.6. The

Fig. 13.5 Effectiveness evaluation of the thematic event matcher [272]
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evaluation data indicates that events and subscriptions need to be associated with

only a few thematic tags.

13.7 State-of-the-Art Analysis

The event processing literature related to approximate semantic event matching can

be classified into five major classes:

• Content-Based Event Processing: In content-based event processing, event

sources and consumers use the same event types, attributes, and values without

any additional description of meaning external to the rules and events. The

principal works in this category are those by Carzaniga et al. [314] (SIENA),

Eugster et al. [315], and Fiege et al. [316] (Rebeca). Such approaches are effective

with the timely matching and routing of events, but they assume an implicit

agreement on the semantics of events outside of the event engine, which is a type

of semantic coupling that does not scale in heterogeneous environments.

• Concept-Based Event Processing: In this category, participants can use different

terms and values and still expect matchers to be able to match them correctly

thanks to explicit knowledge representations such as thesauri and ontologies that

encode semantic relationships between terms. The principal works in this cate-

gory are those by Petrovic et al. [317] (S-ToPSS), Wang et al. [318] (OPS), Zeng

and Lei [319], and Blair et al. [320] (CONNECT). Given agreements on explicit

Fig. 13.6 Efficiency evaluation of the thematic event matcher [272]
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models, efficient and effective detection of positive and negative matchings can

be achieved. Nonetheless, agreements on explicit models may become an

unfeasible task to achieve due to high levels of heterogeneity at large scales.

• Approximate Event Processing: Approaches in this category are distinguished by

a matching model that is not Boolean. The principal works in this category are

those by Zhang and Ye [321] (FOMatch), Liu and Jacobsen [322, 323]

(A-TOPSS), and Wasserkrug et al. [324]. These approaches reduce semantic

coupling due to their ability to deal with the uncertainties of users about seman-

tics. Time efficiency is high, but effectiveness is lower due to the approximate

model, which allows some false-positive/-negatives to occur.

• Query-Based Fusion: Approaches in this category adopt declarative languages

similar to SQL. These languages support operators of semantics like relational

join. They enable semantic description and matching of events as well as the

fusion of streams of events with background context data. The principal works in

this category are those by Arasu et al. [325] (CQL), Teymourian et al. [326],

Le-Phuoc et al. [298] (CQELS), and Anicic et al. [299] (EP-SPARQL). These

approaches are like concept-based models in that they assume an explicit model

of semantics which might be hard to agree on.

• Semantic and Context Transformation: Approaches in this category handle

events individually and perform a set of transformations on them to move from

one semantic model to another. The principal works in this category are those by

Freudenreich et al. [327] (ACTrESS), and Cilia et al. [328, 329] (CREAM).

These approaches consider semantics to have one nature and impact on event

matching. They are effective and efficient in matching. Nonetheless, semantic

models that depend on ontologies and conversion functions require agreements

which form a coupled mode that limits scalability in heterogeneous

environments.

The literature analysis shows that related approaches are mainly based on sym-

bolic semantics, exact matching, and ad hoc domain specificity, which generally

requires agreements that are difficult to achieve in highly distributed and open

environments such as smart environments.

13.8 Summary and Future Work

This chapter discusses the approximate semantic event processing model in answer

to the requirement of loose semantic coupling, which is necessary to adopt the

principles of dataspaces to real-time data. We found that to meet this requirement,

the event processing paradigm needs to be enhanced with additional elements such

as: sub-symbolic distributional semantics, free event tagging, and approximation.

We showed that these elements could transform the event matcher into an approx-

imate semantic matcher with a probabilistic model. The resulting approximate and

thematic matchers provide an effective matching quality and efficient time
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performance, and most importantly, they require minimal upfront agreements among

event producers and consumers on event semantics.

Future directions would include the development of the approximate matcher to

encompass new event and subscription models beyond attribute-value models, and

the extension of subscription languages with numeric operators such as less-than and

greater-than operators. An interesting direction is the extension of the thematic

matching model to other unstructured event types such as images and videos,

which would imply opportunities for new intelligent applications in real-time

dataspaces of unstructured data [30].
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Part IV

Intelligent Systems and Applications

The fourth part of this book explores the use of Real-time Linked Dataspaces within

real-world smart environments by demonstrating its role in enabling intelligent water

and energy management systems. This part includes chapters on the development of

Internet of Things (IoT)-enabled digital twins and intelligent applications, IoT-

enhanced user experience, and autonomic source selection for advanced predictive

analytics.



Chapter 14

Enabling Intelligent Systems, Applications,

and Analytics for Smart Environments

Using Real-time Linked Dataspaces

Keywords Dataspaces · Intelligent systems · Energy management · Water

management · Smart building · Smart airport · Smart home · Smart environments

14.1 Introduction

The design of next-generation smart environments poses significant technical chal-

lenges with data management, data integration, and real-time processing of dynamic

data, and non-technical challenges such as engaging end-users and supporting

cultural and organisational changes. Real-time Linked Dataspaces (RLD) are data

platforms designed explicitly to tackle these challenges. In this chapter, we provide

an overview of how a Real-time Linked Dataspace enables the creation of intelligent

systems within several smart environments to demonstrate and evaluate their

effectiveness.

This chapter is structured as follows; it begins in Sect. 14.2 with a discussion of

the challenges to delivering intelligent energy and water management systems.

Section 14.3 introduces Real-time Linked Dataspaces. Section 14.4 details the

real-world pilots where the dataspace approach was deployed and evaluated, includ-

ing an overview of the different user groups involved in each pilot. Section 14.5

details the different types of intelligent applications that were developed using the

dataspace, and the chapter concludes in Sect. 14.6.

14.2 Intelligent Energy and Water Management

There is a significant opportunity to accelerate the use of intelligent systems to

improve energy and water resource management and conservation by analysing,

designing, and implementing intelligent systems to increase demand and supply
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efficiency. To manage energy and water holistically within a smart environment, it is

essential to use decision support tools that present meaningful and contextual

information about usage, price, and availability of energy and water intuitively and

interactively to users. Users will need different forms of information to manage their

energy and water consumption, from home users managing their personal water

usage, business users managing the water consumption of their commercial activi-

ties, to municipalities managing regional distribution and consumption at the level of

a city or a region. To develop intelligent applications for these diverse users, it is

necessary to leverage knowledge from several different domains including metering

(household, neighbourhood), water collection and catchment management, energy

generation, environmental impacts, water quality, distribution networks, end-user

feedback, occupancy patterns, and meteorological data. The design of next-

generation intelligent energy and water management systems poses significant

technical challenges with data management, data integration, and real-time

processing of dynamic data, and non-technical challenges such as engaging

end-users and supporting cultural and organisational changes (see Chap. 2). To

support the interconnection of intelligent systems in the data ecosystem that sur-

rounds a smart environment, there is a need to enable the sharing of data among

systems.

14.3 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management that recognises that in

large-scale integration scenarios, involving thousands of data sources, it is difficult

and expensive to obtain an upfront unifying schema across all sources [2]. Within

dataspaces, datasets co-exist but are not necessarily fully integrated or homogeneous

in their schematics and semantics. Instead, data is integrated on an as-needed basis

with the labour-intensive aspects of data integration postponed until they are

required. Dataspaces reduce the initial effort required to set up data integration by

relying on automatic matching and mapping generation techniques. This results in a

loosely integrated set of data sources. When tighter semantic integration is required,

it can be achieved in an incremental pay-as-you-go fashion by detailed mappings

among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data and real-time stream and

event processing capabilities to support a large-scale distributed heterogeneous

collection of streams, events, and data sources [4]. To validate the RLD approach,
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it has been used in the development of intelligent applications and decision support

for five smart energy and water environments. The remainder of this chapter details

these pilots.

14.4 Smart Environment Pilot Deployments

Over the past number of years, we have been involved in a number of projects

[18, 62, 63] concerned with investigating the use of a Real-time Linked Dataspace as

a data platform for intelligent systems within smart environments, specifically

targeting intelligent systems for smart energy and water management. As detailed

in Fig. 14.1, the five pilot smart environments are Airport, Office, Home, Mixed Use

and School.

14.4.1 Smart Airport (Linate, Milan)

Linate Airport represents large-scale commercial energy and water consumers with

mixed water use from washing activities, toilets, restaurants, flight operations, to

safety critical infrastructure for emergency response. The intelligent systems and

applications in Linate target a variety of users in a business environment (including
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executives, operational managers, and technical staff), each one having a specific

role in the company’s structure. Apart from the company’s employees, applications

also target the airport passengers representing the public. Multiple legacy building

management systems are in use across the different buildings. The variety of sensors

used in the airport require the management of heterogeneous events and their

availability to applications in near-real-time. Significant contextual data from the

airport’s operational systems are needed to process the events for decision-making,

presenting significant challenges with legacy data integration and access control.

14.4.2 Smart Office (Galway, Ireland)

The Insight Building hosts approximately 130 staff in a dedicated building with

2190 m2 of space, comprising offices, open plan workspaces, a 90-seat conference

room, four meeting rooms, three kitchens, one air-conditioned data centre, and a

30-person café. The building was built in the 1990s and did not employ a building

management system or an energy management system. The building has been

retrofitted with energy sensors and a simple energy management system. As typi-

cally in an organisation, Insight has several information systems that run its opera-

tions, including finance and enterprise resource planning, budgeting, and Office IT

assets. These enterprise systems can help in identifying energy wastage and promote

conservation actions.

14.4.3 Smart Homes (Municipality of Thermi, Greece)

The Municipality of Thermi in Greece provides a residential smart water pilot

constituting a representative sample of ten domestic residences with different pro-

files. The target audience of smart home water applications are the resident adults

and children. Other interested users include the municipality management and a

developer community for smart home “Apps”, research scientists, and the local

water utility. Data from Internet of Things (IoT) devices in each home needs to be

managed in a near-real-time manner to provide feedback to users on their water

consumption. Sensor data needs to be enriched and linked to entities describing the

households’ water outlets. Securely sharing datasets with both the research and the

developer community was an essential requirement.

14.4.4 Mixed Use (Galway, Ireland)

The Engineering Building at NUI Galway is a state-of-the-art smart building with

large quantities of sensors and actuators for its management. This smart environment

is designed to be a “living laboratory” where the building itself is an interactive
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teaching tool. The building includes lecture halls, classrooms, offices, laboratory

facilities, café, showers, and bathrooms. Intelligent energy and water applications

target staff members, managers, technicians, researchers, and students. As with the

smart home example, the requirement to make data easily reusable by occupants in

the environment is an important requirement. Also, staff members are interested in

understanding usage behaviours and detecting saving opportunities, and students are

interested in visualising the building consumption and utilising data from the

environment in their projects and research works.

14.4.5 Smart School (Galway, Ireland)

Coláiste na Coiribe is an Irish language secondary school that has been constructed

in 2015 at a suburban location in Galway City in Ireland. It includes classrooms,

offices, sports halls, and associated toilet and shower facilities. The school accom-

modates students aged 12 to 18 years, together with teaching and operational staff.

The school has been fitted with a commercial state-of-the-art building management

system to manage its energy and water consumption. An essential requirement in this

environment is to customise the communication of water and energy data for the

diverse range of school stakeholders.

14.4.6 Target Users Groups

Smart environments can engage a wide range of end-users with different interests

and priorities, from corporate managers looking to improve the performance of their

business to school children who want to explore and learn more about sustainability

and their effects on the environment. The target users across the five pilot smart

environments (as illustrated in Fig. 14.2) are:

• Building Managers and Operations Staff: Managers, technicians, and engineers

as well as other staff members with responsibility for the operations of buildings.

These are adult users that have an advanced level of education and are highly

skilled.

• Passengers: Passengers that range from business travellers to a variety of casual

travellers from different age groups, from kids to adults.

• Corporate Staff: Office and administration staff that are found in a typical

organisation. These adults are often highly educated and skilled

(e.g. administration, HR, marketing, and sales), but not in the technical area of

energy and water management.

• Families: Family units with potentially multiple generations in one home, includ-

ing children, young adults, adults, parents, and grandparents.
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• Teaching Staff: Teaching staff at both university and school levels looking to use

the smart environment as a teaching aid within their classes.

• University Students: Undergraduate and research students are interested in under-

standing their environment and using the data in their projects and research

works. The age groups of this group range from young adults to adults.

• School Students: School students ranging from kids to young adults.

• Data Scientists: Leverage algorithms and machine learning to extract knowledge

and insights from data in the smart environment.

• Researchers: Advanced users who want to analyse the data from the smart

environment within their discipline specific (i.e. architecture, cognative science)

research projects.

• Application Developers: Software and application developers who want to create

intelligent applications (including data analytics) for the users within the pilots.

14.5 Enabling Intelligent Systems, Applications,

and Analytics for Smart Environments

Within a smart environment, data platforms such as Real-time Linked Dataspaces

(RLD) [4] are valuable for application developers and data scientists as they consti-

tute a one-stop shop of all the data required for building their intelligent applications

or analytics: open data, enterprise data, and sensor data. RLD include public or

private data sources that can be used to drive innovations and new solutions within

Smart School

CnaC School in 

Galway, Ireland

Mixed Use

Galway, Ireland

Building 

Manager

University Students

Smart Airport

Milan Linate, 

Italy

Corporate 

Staff

Passengers

Smart Homes

Municipality of 

Thermi, Greece

Smart Office

Galway, Ireland

Families

Operational 

Staff

Researchers
Application 

Developers

Teaching Staff School Students

Data 

Scientist

Fig. 14.2 Target user groups across different pilot sites
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the smart environment. In this part of the book (see Fig. 14.3), we examine the use of

the RLD to provide source selection for real-time predictive analytics, personalised

applications for users, and enhanced user experiences for intelligent systems within

smart environments.

• Predictive Analytics: A data platform giving access to IoT and open data sources

is particularly promising when creating real-time predictive data analytics for

decision support within intelligent systems. The main challenge here is the

dynamic selection of sources from the dataspace to support predictive analytics.

In this context, we are interested in the study of automatic source selection for

prediction models in the energy domain using open data and IoT. Chapter 15

presents an autonomic computing inspired approach to source selection for

training deep neural networks and machine learning algorithms within the RLD.

• Intelligent Applications and Digital Twins: A key challenge in delivering smart

environments is creating effective applications for end-users with new digital

infrastructures within the environment. In Chap. 16, we reflect on the experience

of using the RLD for developing over 25 different IoT-based intelligent applica-

tions and digital twins within five different smart environments, from Airports to

Schools. The goal of these has been to engage users within intelligent systems to

increase water and energy awareness, management, and conservation. The overall

design philosophy of the intelligent applications and digital twins has been

guided using Boyd’s “OODA Loop” for decision-making.

• User Experience: Creating a compelling user experience within a smart environ-

ment (from smart buildings to smart cities) is an essential factor to success. In

Chap. 17, we reflect on our experience of developing IoT-based intelligent

applications using the RLD where the goal has been to engage a wide range of

users (from building managers to business travellers) to increase water and energy

awareness, management, and conservation. The design of the experience is

defined using an IoT enhanced model for user experience. The user journey

within the smart environment is supported by leveraging the Transtheoretical

Model of behaviour change to influence a person’s attitude positively towards

sustainable behaviour.
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14.6 Summary

The design of next-generation smart environments poses significant technical chal-

lenges with data management, data integration, and real-time processing of dynamic

data, and non-technical challenges such as engaging end-users and supporting

cultural and organisational changes. Real-time Linked Dataspaces (RLD) are data

platforms designed explicitly to tackle these challenges. In this chapter, we provide

an overview of how an RLD enables the creation of intelligent systems within a

number of smart environments to demonstrate and evaluate their effectiveness to

deliver intelligent energy and water management systems. Real-world pilots for

smart office, home, school, and airport were introduced together with the different

user groups involved in the pilots. Finally, the role of the RLD in enabling intelligent

applications for the smart environment from predictive analytics, personalised appli-

cations, to enhanced user experience, is introduced.
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Chapter 15

Autonomic Source Selection for Real-time

Predictive Analytics Using the Internet

of Things and Open Data

Ninad Arabekar, Wassim Derguech, Eanna Burke, and Edward Curry

Keywords Source selection · Predictive analytics · Autonomic computing ·

Decision support · Internet of Things · Open data · Dataspaces

15.1 Introduction

Real-time predictive data analytics is a very important tool for effective decision

support within intelligent systems. When making decisions using data, it is critical to

use the most appropriate data. When creating predictive analytics, the selection of

data sources is important as the quality of the sources influences the accuracy of the

predictive model. Within a smart environment, a dataspace is valuable for data

scientists as it provides a one-stop shop of all the data required for creating their

analytical models: enterprise data, Internet of Things (IoT), sensor data, and open

data. However, the increase in the number of data sources presents a challenge in

selecting the most appropriate data source to use. The co-existence approach of

dataspaces results in them containing much more data sources than within traditional

data management approaches. This means that the need to perform source selection

is an ongoing activity; as the dataspace is incrementally improved, sources will need

to be re-examined to determine their suitability for tasks. We propose an autonomic

source selection service for predictive analytics for intelligent systems within a smart

environment. This service has been evaluated in real-world settings using a Real-

time Linked Dataspace for energy predictions using IoT sensor data and open

weather data.

The chapter is structured as follows: Discussion in Sect. 15.2 details the chal-

lenges of source selection for analytics. Section 15.3 provides an overview of the

autonomic source selection approach, including its architecture and the suitability of

prediction models. Section 15.4 details the source selection workflow and the criteria

for reselection. In Sect. 15.5 we explore the source selection service together with

machine learning models in two real-world intelligent systems. The chapter con-

cludes with a summary in Sect. 15.6.
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15.2 Source Selection for Analytics in Dataspaces

Real-time data sources are increasingly forming a significant portion of the data

generated in smart environments. This in part is due to increased adoption of the

Internet of Things (IoT) and the use of sensors for improved data collection and

monitoring of daily activities in smart buildings, smart homes, smart cities, and

others. In this section, we explore the need for new data support services to deal with

the increased number of data sources and the resulting challenge of selecting the

most appropriate real-time data source for building predictive models within intel-

ligent systems.

15.2.1 Real-time Linked Dataspaces

To support the interconnection of intelligent systems in the data ecosystem that

surrounds a smart environment, there is a need to enable the sharing of data among

intelligent systems. A data platform can provide a clear framework to support the

sharing of data among a group of intelligent systems within a smart environment [1]

(see Chap. 2). In this book, we advocate the use of the dataspace paradigm within the

design of data platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach which recognises that in large-scale inte-

gration scenarios, involving thousands of data sources, it is difficult and expensive to

obtain an upfront unifying schema across all sources [2]. Within dataspaces, data

sources co-exist and are not necessarily fully integrated or homogeneous in their

schematics and semantics. Instead, data is integrated on an as-needed basis with the

labour-intensive aspects of data integration postponed until they are required.

Dataspaces reduce the initial effort required to set up data integration by relying

on automatic matching and mapping generation techniques. This results in a loosely

integrated set of data sources. When tighter semantic integration is required, it can be

achieved in an incremental pay-as-you-go fashion by detailed mappings among the

required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data and real-time stream and

event processing capabilities to support a large-scale distributed heterogeneous

collection of streams, events, and data sources [4]. In this chapter, we focus on the

source selection support service of the RLD. The selection of the correct data source

is an important challenge in a dataspace. As the dataspace is incrementally improved,

sources will need to be re-examined to determine their suitability for tasks. In

Chap. 11, we explored the challenges of selecting event services based on their

quality of service. In this chapter, we look at the classic source selection problem for

creating predictive models from real-time stream analytics.
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15.2.2 Internet of Things Source Selection Challenges

A multitude of Internet-connected devices generating data can quickly become

infeasible to cope with. In a traditional data analytics scenario, decisions were driven

by insights from information queried over statically stored tabular/relational data.

However, with the increasing use of IoT devices, various business domains, gov-

ernments (e.g. cities), and citizens can unlock the value of low-level data from sensor

devices. Much of this data is now available as open data for public use. Choosing the

right data source is an important part of effective decision-making within intelligent

systems.

Optimal decisions can be made if only the most appropriate data streams are used

within the decision-making process and predictive models [31]. However, it is

seldom possible to manually decide in advance on the appropriate data sources for

a specific application in a real-time big data streaming environment. Once decisions

are made using data, it becomes crucial that the best quality data is used. Thus, it is

imperative that data-driven decision models are built upon data streams that provide

accurate and precise predictions while being tolerant of faults. Data quality issues in

data-driven decision-making in critical domains can have disastrous consequences.

The importance of source selection can be evident in intelligent systems which

involve heavy presence of IoT sensors:

• Autonomous Vehicles: Semi/fully autonomous vehicles depend on IoT data

streams for emergency roadside assistance, and real-time traffic alerts. The choice

of right data streams can help these vehicles decide the best course of action.

However, the selection of anomalous speed/direction/proximity sensors could

result in accidents.

• Wind Farm Energy Generation:Multiple IoT sources from wind turbines, as well

as open data sources for weather conditions and forecasts, need to be consulted to

build efficient prediction models for wind farms [330]. However, defective

sensors monitoring parts of power-generating turbines could lead to failure in

maintaining the optimum performance.

• Building Energy Management: By leveraging the IoT sensors within a smart

building, it is possible to predict the energy use of a smart building based on the

weather forecast and the usage patterns of the building [25]. However, an error in

the temperature monitoring system of a building could lead to wastage of fuel

required for heating.

Another aspect that compounds the source selection dilemma for intelligent

systems is the dynamic nature of data sources within an IoT-based smart environ-

ment. For example, given the task of real-time predictive modelling over high-

velocity data streams, source selection is required to be quick, responsive, and

autonomous in behaviour.

The problem of data source selection within a dataspace essentially boils down to

identifying the most appropriate data streams that can be harnessed to build useful

data models for descriptive as well as predictive analytics. The accuracy of these
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predictive models forms the basis of selection criteria for the underlying data stream

sources. Thus, a suitable approach is expected to be efficient and effective in the

following aspects of the source selection problem:

• Accuracy: Use of machine learning models to achieve high accuracy.

• Low Maintenance: Source selection is autonomous, robust, and fault tolerant.

• Highly Scalable: Ability to withstand fluctuations in the number of data sources,

data volume, or velocity.

• Enrich Quality Metadata: Update the quality of service of a data source, based on

its performance for productive tasks.

15.3 Autonomic Source Selection Service for Real-time

Predictive Analytics

The selection of data sources is important as the data from the sources influences the

results of predictive analytics. In order to design our source selection service, we

studied the available literature. In a 2011 review of trust in networked datasets [331],

the authors noted that the process of selecting a data source is subjective based on the

needs of the consumer. A conventional method for selecting a dataset to answer a

query is to examine the metadata associated with the data source, for example, size of

the dataset, date and frequency of updates [332]. Another method for determining

correct information is to establish a consensus from several sources [331].

The co-existence approach of dataspaces results in them containing much more

data sources than within traditional data management approaches. This means that

the need to perform source selection is an ongoing activity; as the dataspace is

incrementally improved, sources will need to be re-examined to determine their

suitability for tasks. This constant change in dataspaces can be accompanied by rapid

changes in data quality, which in turn affects their predictive power. Within the

context of IoT, the scale of the data has increased, and for real-time predictive

analytics, it is imperative that source selection should occur with minimum manual

intervention. In order to meet these requirements, the source selection service of the

RLD leverages techniques from autonomic computing to make the process as

independent and self-managed as possible.

15.3.1 Autonomic Source Selection

Autonomic computing systems are being developed to cope with large and increas-

ingly complex systems. Autonomic systems can manage themselves when given

high-level objectives from administrators by freeing them from low-level tasks

[333]. The idea is to reduce the system operation and maintenance time to the

minimum possible and allow the system to run at the best of its abilities. The four
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pillars of an autonomic system (see Table 15.1) are self-configuration, self-optimi-

sation, self-healing, and self-protection [334].

The selection service is designed to follow the principles of autonomic systems.

The design of the selection service supports three of the four autonomic principles

(self-protecting is not supported). The approach selects the data source by evaluating

the results of the predictive analytics to determine the data source with the best

results [335]. The approach maintains and improves the quality of the predictions

over time while being self-managing [334]:

• Self-configuration:

– Automatic installation and initiation: The source selection service can be

installed into any prediction approach, and it automatically starts being useful

with minimal intervention by a skilled worker.

– Generalisable: There should be a low configuration effort to adapt the service

to another prediction model to encourage re-use.

• Self-optimisation:

– Select the best data sources: The service chooses the best sources of data to

make the best possible predictions.

– Adapt to changes in the operation of the environments: The predictions should

react to changes in the operational phase, for example, expansion or contrac-

tion of a workforce or extensions/renovations to a building. Thus, source

selection needs to adapt to operational changes.

– Low user interaction: The service should continue working with no

supervision.

• Self-healing:

– Transparent failover of a data source: In the case of a failure of a data source

(e.g. a weather station malfunction), the service should continue to make the

best-effort prediction using an alternative data source so that agents dependent

on it can continue to operate.

Table 15.1 Four pillars of an autonomic system [333]

Trait Explanation

Self-

configuring

An autonomic application/system should be able to configure and reconfigure

itself under varying and unpredictable conditions.

Self-

optimising

An autonomic application/system should be able to detect suboptimal behaviours

and optimise itself to improve its execution.

Self-healing An autonomic application/system should be able to detect and recover from

potential problems and continue to function smoothly.

Self-

protecting

An autonomic application/system should be capable of detecting and protecting

its resources from both internal and external attack and maintaining overall

system security and integrity.
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– Maintain high-quality predictions: Predictions must remain accurate as poor

predictions may cause consumers of the data to make wrong decisions.

– Timely identification of faults: Faulty data sources (e.g. a damaged sensor)

should be identified quickly so that an alternative data source can be used.

15.3.2 Architecture

The autonomic source selection service is designed according to the architecture

depicted in Fig. 15.1. The service is part of the support services within the RLD,

which is used to support the management of the data sources. The autonomic service

is designed following the MAPE-K control loop from IBM [336] that consists of

stages for Monitoring, Analyses, Planning, and Execution, all sharing a common

Knowledge base.

Within the source selection service, these stages perform the following activities:

• Monitor: The monitor samples the outputs of the predictive models and stores the

prediction for later comparison with the actual values. It is also responsible for
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Fig. 15.1 Autonomic source selection service following the MAPE-K control loop
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observing any changes to the sources in the dataspace, such as new sources

joining or updates to existing sources.

• Analyse: The main objective of this stage is to compare the predictions from the

models with the actual readings to generate an error percentage, which is then

used to determine the quality of the predictions. We use the Mean Absolute

Percentage Error (MAPE) and Root Mean Squared Error (RMSE) as error

indicators. The analysis is run at regular intervals to determine how well the

models are performing.

• Plan: The planning stage is responsible for deciding when to select the sources

used for prediction. Planning involves building many predictive models, which is

costly and time-consuming, so trade-offs should be made between the frequency

of reselections and maintaining the best prediction model possible. We suggest

using hard limits of 15 min and 1 month for the upper and lower bounds of the

reselect interval, but the specific interval should be kept dynamic. This planning

activity builds a prediction model from the best available sources in the RLD.

• Execute: Updates the sources and prediction models that are using the source

selection service within the dataspaces.

• Knowledge Base: The knowledge base is used to store and share data (e.g. source/

model performance, and error rates) between the different stages in the MAPE-K.

15.3.3 Prediction Models

We identified a set of requirements for choosing the right machine learning algo-

rithm for the prediction models [335]. These requirements are listed below in

descending order, from highest to lowest priority:

• Accuracy: The model should generate accurate predictions.

• Fast Model Generation: The model should be quickly generated.

• Efficient with Minimal Data: The model should be able to be deployed and

quickly make accurate predictions. This requires the service to not overfit to the

training set and result in drastically incorrect predictions.

• Supports Nominal and Numeric Inputs: Both nominal and numeric data will be

used as inputs and need to be handled by the prediction model.

• Generalisation Outside of the Available Training Data: This is important as the

prediction model will be used in a real-time scenario where data encountered will

often be outside the range of data in the training set.

• Low Configuration:Minimal configurations effort required for a portable service.

• Low Pre-processing of Data: Pre-processing of the data does not require a skilled

user. This is often automated when using a software suite.

• Insights into Factors Influencing Prediction: Dependency analysis is generated

for user information and understanding.
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Concerning these requirements, we carried out a comparison of the common

machine learning algorithms found in the literature in order to understand their

utility. The comparison is shown in Table 15.2.

The source selector needs to be scalable and efficient in its operation. The

technical challenges this service faces are memory use, processing time, and latency.

As the service generates multiple prediction models using training sets that poten-

tially can span a considerable time, it is required to drop references to datasets as

soon as they are not needed, so garbage collection to free memory can take place.

Table 15.2 Comparison of machine learning algorithms [335]

Multiple

linear

regression

Artificial neural

network

Regression

tree

Kernel

regression

analysis

Support

vector

machines

Insight into

input

importance

Yes No (sensitivity

analysis possible

[337])

Yes (tree

shows

which vari-

ables are

important)

Yes Yes

Overfitting

prevention

Not prone to

over fitting

Methods

available

Pruning to

stop

overfitting

may be

required

Not prone to

overfitting

Not prone to

overfitting

Ease of

implementation

Simple Requires manual

tuning of nodes

and layers

Simple to

understand

and

implement

Moderate Moderate—

optimisation

exist

Computational

cost

Low Typically, high.

Depends on

training function

Low Depends on

training

function

High on

large data,

scales O(n2)

to O(n3)

(adaptations

available

[338])

Other benefits Simple and

quick

De facto solution

for regression on

non-linear data

Extensive

literature

Simple and

quick

Works well

outside of

training data

range

Works well

outside of

training data

Disadvantages Poor with

non-linear

relationships

Prediction out-

side of training

data can be dras-

tically incorrect

(corrections

exist for this)

Unimportant

inputs may

worsen

predictions

Predictions

not in con-

tinuous

range-

binned

values

Needs

normalising

of input data

Needs

normalising

of input data
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The processing time should be kept low by selecting sources with a greedy-type

method. Evaluation of data sources is initially done over a large number of sources

with small datasets, and it changes to a more comprehensive evaluation for fewer

sources. As such, effort spent on poor data sources is reduced. Latency (from queries

to a remote data store) is addressed by only querying the source for data that is

necessary and by reducing duplicate queries where possible.

15.4 Autonomic Source Selection Workflow

The workflow for autonomic source selection service has two definitive stages:

(1) initial model training with historical data, and (2) evaluation with real-time

data streams. Both stages play an essential role in ensuring that the best data source

from the dataspace is utilised for efficiently performing predictive model over real-

time data streams.

Stage 1: Initial Model Training with Historical Data To forecast with real-time

data streams, it is crucial that these models are tuned finely for different data sources

as well as predictive algorithms are used. This stage aims at learning the optimum

value of hyperparameters using various combinations of data streams and machine

learning algorithms. The training happens with a significant number of historical

observations accumulated over a considerable period. A large sample size helps in

reducing bias (overfitting) while training the predictive models.

Stage 2: Evaluation with Real-time Data Streams Once the different predictive

models are trained with optimum hyperparameters over multiple data streams, the

same models are used for forecasting by using the real-time data feed. The models

mostly try to predict the dependent values as close as possible to the observed ones.

So, in the case of a classification problem, the F1 score would be the primary metric

of evaluation. Also, specificity, recall, precision, or sensitivity might be considered

depending on the type of classification task at hand. In the case of a regression task,

the models are evaluated based on minimising the prediction error quantified with

Root Mean Square Error (RMSE) and variance score. The data sources are then

considered in increasing order of their RMSE scores (for regression) or decreasing

order of F1 scores (for classification). The top-performing data source model is

selected dynamically for predicting the outcome of real-time data streams.

15.4.1 4-Step Workflow

Figure 15.2 is a step-wise representation of the autonomic source selection method-

ology. The essence of the approach is involving historical observations in learning

about the quality of data source qualities and using machine learning to define their

predictive power. These steps are elaborated below:
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• Step 1—Autonomous Data Procurement and Pre-processing: Attributes from the

different sources (e.g. wind speed, wind direction, temperature) within the RLD

are accumulated from different data streams for a period (e.g. 24 h). Since data

sources and streams can serve data in different formats, an ETL (extract, load,

transform) pipeline may need to be set up to collect and standardise it autono-

mously (see Chap. 6 for further details on normalising data sources in the RLD).

The next part of the pre-processing is to aggregate and normalise the data. Data

collected from multiple sources during the same period needs to be merged and

used as features. Any data generated in the same duration from the prediction

Normalised Data

ML models
Hyperparameter tuning

Trained predic�ve model

Query latest updates 
from data streams

Compute RMSE and R2

Update knowledge base with 
model and source performance 

Predict with best model 
and evaluate

Error 
decreases?

No

Yes

1. Repeat a�er 30 minutes
2. If error increases, retrain all 

predic�ve models and update 
record of their performances

• Predic�on occurs every 
X interval over streaming 
data

• Keep track of data 
source quality and 
update knowledge base

Step 1

Step 2

Step 3

Step 4

• Ini�al model trained over 
(sta�c) accumulated data

Things / Sensors

Dataspace Par�cipants

Datasets

Pre-processing

Fig. 15.2 Workflow for autonomic source selection
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target would need to be included here to serve as dependent variables explained

by the features. This consolidated data would be aggregated on an interval basis

to evaluate the predictive power of different sources during different times of the

day. Since sources could return data reflecting similar conditions in the smart

environment, collinearity between different features would be observed. This

would help in detecting multi-collinearity issues in regression modelling of the

prediction target. Also, relevant features (e.g. wind speed/direction/temperature)

from different sources would be identified.

• Step 2—Model Training (Hyperparameter tuning for ML models): The aggre-

gated data is now split in a 90:10 ratio with the 10% allocated for testing. The

predictive models are trained, tested, and cross-validated to obtain different

values of RMSE with an array of hyperparameter values for the Neural Network.

Hyperparameters for which the lowest RMSE is observed after tenfold stratified

cross-validation would be retained for predictive modelling with real-time

streaming data.

• Step 3—Model Evaluation (Iterative model evaluation with subsets of data

sources): RMSE and Mean Absolute Error (MAE) are calculated as a mean of

relevant values obtained from cross-validation over the trained model. A subset of

the data source with the least RMSE and MAE are retained, and others discarded.

In subsequent iterations, other data sources are considered along with best

performing one, to check if the error is minimised further. The adjusted coeffi-

cient of determination (Adj. R2) which measures explained variance (while

penalising the addition of new explanatory variables) would be taken into

account. New data sources will be considered if RMSE and MAE are decreasing

and adj. R2 increases. The subset of data streams that minimise the error while

maximising the explained variance is chosen as an optimum set of data sources

initially. The performance evaluation of the models and data sources is stored in

the knowledge base for future analysis.

• Step 4—Dynamic Source (Re)selection: It is possible that data streams return

erroneous data or fail at a certain point in time. To counter such a situation, the

service would build predictive models over a suitable time window for the

prediction timeframe (e.g. 30 min for energy predictions) to check the RMSE

and Adj. R2 scores. In case the performance dips below a certain threshold, other

data streams would be considered for building the model. If the performance

metrics show improvement with new data sources, the original malfunctioning

data stream would be replaced.

15.4.2 Reselection Triggers

The criteria for the reselection of a source from the dataspace are shown in

Table 15.3 and discussed further below.
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Timed Error Check This is done by checking the recent performance against the

expected performance of the prediction model. This check is for long-term trends in

the dataset. Error checks are less costly than builds, so they happen on a more

frequent basis than timed builds. The error check becomes more frequent every time

the error returned is too high and less frequent when the error found is under the

acceptable threshold. Changeable conditions make it check more often to include the

newest and most relevant data and prevent data ageing. The error check is for 25% of

the time the prediction model is in place so that the newest data is given high priority.

The error check uses Student’s t-distribution to determine when the mean-error is

too high. It does this by checking that the average error is lower than a threshold

computed using: Threshold ¼ (expectedMAPE) + 0.674 � (standard deviation).

During the evaluation of source selection service, we found that this equation

corresponds to a 75% one-tailed test, that is, 75% of predictions should be lower than

this error %. The 0.674 figure is valid for more than 120 data instances, which

corresponds to 30 h of data. For example, if the mean-error is 7.819% and the

standard deviation of the error is 6.411%, the threshold would be: Thresh-

old ¼ (7.819) + 0.674�(6.411) ¼ 12.14.

Timed Build This is for the initial implementation phase of the service. It addresses

the potential for improvement of the prediction model, whereas the error checking

prevents degradation of the quality of predictions. The time interval begins at 15 min

and increases by 50% every time a reselect flag is sent due to the time interval being

exceeded. The time interval between reselections is reset if a reselect message is sent

due to an error check or a new source detected.

High Error Detected It checks for deteriorations in the quality of the predictions

such as a failure of a data source or any other error. This uses the previous formula,

with 10% of the time the prediction model in place: Threshold ¼ (expected

MAPE) + 2�(standard deviation).

Table 15.3 Autonomic source reselection criteria [335]

Reselection

trigger Reasoning Mechanism

Autonomic

characteristic

Timed error

checks.

Checking if the prediction

model has become less

accurate.

Query the internal error

knowledge base for the

sources being used.

Self-optimising

Self-healing.

Timed builds.

(regardless of

errors)

Data collected may allow a

more accurate prediction

model than the current one.

Send flag to reselect. Self-optimising.

Very high error

in the incoming

stream.

May indicate a failure in a

sensor or data source.

Short-term error check. Self-healing.

New source

event received.

New source may be more

accurate than existing

sources.

Send flag to reselect. Self-configuring

Self-optimising.
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New Source Detected This is activated if a listener picks up an observation from a

new source. This adds the source to the pool of available options sooner than

otherwise waiting for the reselect cycle, and it would be beneficial if a new dataset

were added to the triple store in bulk with the addition of a new source.

15.5 Evaluation Within Intelligent Systems

The autonomic source selection service has been evaluated within two different real-

world intelligent systems in the energy domain: (1) Wind Farm Energy Prediction,

and (2) Building Energy Use Prediction. Both intelligent systems involved building

predictive models using both IoT streams and managing open data within a Real-

time Linked Dataspace.

15.5.1 Wind Farm Energy Prediction (Belgium)

Wind power forecasting methods can be used to plan unit commitment, scheduling,

and dispatch, and maximise profit by electricity traders [339]. We experiment with

the utility of our source selection approach by selecting optimum data streams from

multiple weather sources near the wind farms to predict the power generated.

Predicting wind power while selecting the best from multiple weather data sources

is an interesting challenge. The main set of features determining the wind energy

generation is the weather conditions prevailing in the surrounding region. This

useful information can be obtained from the data streams from weather stations in

the vicinity. However, given the transient nature of this data, relying only on a single

source can be potentially detrimental for consistently forecasting highly accurate

power values.

The availability of real-time open streams on power generated from wind farms

posed an initial problem. However, “Elia”, one of the key electricity transmission

system operators in Belgium, does a commendable job of publishing wind energy

data frequently throughout the day via REST services as well as downloadable CSV

extracts. We considered the weather updates released by the stations located in a

10 km radius range of this wind farm. As seen in Fig. 15.3, we have Elia-connected

offshore wind farms (A) and four weather stations (B–E) located in the nearby

coastal towns of Ostend, Zeebrugge, Middelkerke, and Knokke Heist. We performed

a set of experiments with the source selection service choosing the best weather

station to predict the output of the wind farm.

The results of experiments with different periodic prediction windows are

summarised in Table 15.4. Although the trends in generated power seem to match

perfectly with the wind speed recorded about 6 h ago, it is observed that the 1 h

prediction window is the best indicator of power that would be generated from wind.
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Using the 1 h window size, multiple models are trained with combinations of

relevant machine learning algorithms and weather data sources. Upon training the

models, they are evaluated with RMSE and variance score metrics. The sources

being transient are trained with algorithms that work well with regression tasks once

the models are initially fitted with data; that is, the models fitted with an entire year of

data are stored, and when a new weather observation is available on the data stream,

they are used to predict the power that would be generated.

The best performing models are highlighted in Table 15.5. The performance is

determined based on a low RMSE and a high variance score. The results achieved

prove the effectiveness of autonomic source selection service. However, there are

some limitations to the approach. For example, our experiments dealt with small

volumes of low-latency weather streams. In this intelligent system, the serial training

and testing process for the predictive models did not pose any significant perfor-

mance issues. However, we envisage some performance degradation with high-

velocity streams. Also, the approach relies on the data source being described in

the catalog with the necessary metadata for their autonomous discovery. However,

the source metadata may not pre-exist in some cases, and they would need to be

created.

(A) Offshore Wind Farms

Weather Stations

(B)

(C)

(D)

(E)

Fig. 15.3 Locations of weather stations and wind farms

Table 15.4 Source selection with periodic windows

Metric 1 Hour 2 Hours 4 Hours 6 Hours

RMSE 177.15 195.84 207.7 228.54

Variance score 0.66 0.57 0.52 0.44

Correlation (Wind speed ~ power) 0.74 0.72 0.66 0.60
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15.5.2 Building Energy Prediction (Galway, Ireland)

The second intelligent system is at the Smart Building pilot at the Insight Centre at

NUI Galway, Ireland. The building has been retrofitted with energy sensors to

monitor the consumption of power within the building, including the consumption

of devices, light, and heating. All the information from the building is managed

within an RLD [100].

The first experiment investigates the accuracy of the service after the initial

installation, that is, with no historical weather or electrical power data. Errors in

the predictions versus the actual power readings are observed over time (errors for

the 3, 6, and 12 hour-ahead predictions). Four machine learning algorithms in

WEKA [340] were tested for short (1 week) and long-term datasets (5 weeks). The

datasets were for the building’s main incoming power and the weather observations

of the NUI Galway weather station. For both datasets, the training set comprised of

66% of the available data and the remainder was used as the test set for evaluation.

The datasets used for the testing contained the same attributes as the implemented

model, that is, 15 min averages of power reading, time, the day of the week,

temperature, pressure, humidity, wind speed, and wind direction. The datasets

were randomised, and each experiment was performed three times, with average

values taken. Unless stated, all configurations (see Table 15.6) are the defaults

chosen by developers of the WEKA library ver. 3.7.3.

The results of the evaluation of the machine learning algorithm using short- and

long-term datasets are shown in Tables 15.7 and 15.8, respectively. We notice from

these tables that the Neural Networks, though more accurate, were far slower than

the other two learning algorithms, and were not used in the service. The Linear

Regression and Sequential Minimal Optimisation Regression (SMOReg) took

approximately the same amount of time, with Linear Regression being more accu-

rate. This may be due to the homogeneity of the summer dataset not presenting

non-linear trends. For the implemented service, SMOReg was chosen due to the

documented ability to handle non-linear data outside of the training set well, despite

the inferior results from testing. The Artificial Neural Networks (ANNs) were

Table 15.5 Summary of predictive model performance over 1-year data

Weather data sources (Weather stations locations)

Zeebrugge

(data source 1)

Middelkerke

(data source 2)

Ostend (data

source 3)

Knokke (data

source 4)

Algorithm RMSE Var. RMSE Var. RMSE Var. RMSE Var.

Linear regression 181.58 0.65 185.79 0.63 181.18 0.64 220.92 0.47

Support vector machine 183.58 0.64 196.17 0.59 186.09 0.62 196.87 0.58

Artificial neural network 158.57 0.73 202.94 0.56 168.39 0.69 223.73 0.46

Decision tree 182.72 0.64 206.45 0.54 175.83 0.66 210.19 0.52

Ensemble (GBR) 180.41 0.65 229.23 0.44 168.03 0.69 184.45 0.63

Ensemble (AdaBoost) 187.51 0.62 217.73 0.49 211.71 0.50 218.22 0.49
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initially experimented on hourly power and weather readings for three months from

October to December, where different combinations of hidden nodes were tested.

During this testing, the second hidden layer with ten nodes was found to improve the

RMSE by 1% over the single layer ANN. This improvement did not carry over to the

more granular data in the real service, where adding the second hidden layer

decreased the accuracy of the service.

15.6 Summary

In this chapter, we detail an autonomic source selection service for a dataspace to

support the evaluation of real-time data streams for predictive analytics. The source

selection service is designed using the principles of an autonomic system to reduce

the administrative overhead. The service was developed and tested on two real-

Table 15.6 Algorithm configurations in WEKA for testing [335]

Config

number Configuration settings

Config 1 SMOReg. The WEKA implementation of a support vector machine for regression

Config 2 One hidden layer backpropagation ANN with default WEKA values

Config 3 Two hidden layer backpropagation ANN with default WEKA hidden layer one

and ten nodes in hidden layer two

Config 4 Linear regression. Default WEKA implementation for multiple linear regression

Table 15.7 Machine learning testing results for 1 week [Dataset size ¼ 672, training data

size ¼ 443, test data size ¼ 229] [335]

Mean absolute

error (kW) RMSE (kW) Time (s)

Correlation

coefficient

Config 1 (SMOReg) 5.3638 6.9759 0.851 0.6233

Config 2 (1 Layer ANN) 2.7606 3.6242 47.004 0.9158

Config 3 (2 Layer ANN) 3.0473 4.1506 50.842 0.8961

Config 4 (Linear

Regression)

4.8586 5.9283 0.759 0.7396

Table 15.8 Machine learning testing results for 5 weeks [Dataset size ¼ 3298, training data

size ¼ 2176, test data size ¼ 1122] [335]

Mean absolute error

(kW)

RMSE

(kW)

Time

(s)

Correlation

coefficient

Config 1 (SMOReg) 4.6755 6.5965 32.4 0.8054

Config 2 (1 Layer ANN) 3.3332 4.5841 229.7 0.9162

Config 3 (2 Layer ANN) 3.7566 4.7279 247.0 0.9221

Config 4 (Linear

Regression)

4.7579 6.0173 2.4 0.8396
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world intelligent applications in the energy domain. The evaluation shows that the

service was effective in supporting the choice of source and machine learning

technique most appropriate to build predictive models in the energy domain.
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16.1 Introduction

Smart environments have emerged in the form of smart cities, smart buildings, smart

energy, smart water, and smart mobility. A key challenge in delivering smart

environments is creating intelligent applications for end-users using the new digital

infrastructures within the environment. In this chapter, we reflect on the experience

of developing Internet of Things-based digital twins and intelligent applications

within five different smart environments from an airport to a school. The goal has

been to engage users within Internet of Things (IoT)-enabled smart environments to

increase water and energy awareness, management, and conservation. The chapter

covers the role of a Real-time Linked Dataspace to enable the creation of digital

twins, and an evaluation of intelligent applications.

The chapter starts in Sect. 16.2 with a description of Digital Twins and the role

that Boyd’s OODA Loop can play in their realisation. Creating digital twins and

intelligent application using a Real-time Linked Dataspace is detailed in Sect. 16.3.

The results from the smart energy and water pilots are detailed in Sect. 16.4.

Section 16.5 discusses experiences and lessons learnt, and the chapter concludes

in Sect. 16.6.
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16.2 Digital Twins and Intelligent Applications

with a Real-time Linked Dataspace

Driven by the adoption of the Internet of Things (IoT), smart environments are

enabling data-driven intelligent systems that are transforming our everyday world,

from the digitisation of traditional infrastructure (smart energy, water, and mobility),

the revolution of industrial sectors (smart autonomous cyber-physical systems,

autonomous vehicles, and Industry 4.0), to changes in how our society operates

(smart government and cities). To support the interconnection of intelligent systems

in the data ecosystem that surrounds a smart environment, there is a need to enable

the sharing of data among systems.

16.2.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among

a group of intelligent systems within a smart environment [1] (see Chap. 2). In this

book, we advocate the use of the dataspace paradigm within the design of data

platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management which recognises that

in large-scale integration scenarios, involving thousands of data sources, it is

difficult and expensive to obtain an upfront unifying schema across all sources

[2]. Within dataspaces, datasets co-exist but are not necessarily fully integrated or

homogeneous in their schematics and semantics. Instead, data is integrated on an as-

needed basis with the labour-intensive aspects of data integration postponed until

they are required. Dataspaces reduce the initial effort required to set up data

integration by relying on automatic matching and mapping generation techniques.

This results in a loosely integrated set of data sources. When tighter semantic

integration is required, it can be achieved in an incremental pay-as-you-go fashion

by detailed mappings among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data

platform for intelligent systems within smart environments. The RLD combines the

pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-

time stream and event processing capabilities to support a large-scale distributed

heterogeneous collection of streams, events, and data sources [4].

16.2.2 Digital Twins

Within the business community [32], the metaphor of a “Digital Twin” is gaining

popularity as a way to explain the potential of IoT-based assets and smart environ-

ments. A digital twin refers to a digital replica of physical assets (car), processes
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(value-chain), system, or physical environment (building). The digital representation

provided by the digital twin can be analysed to optimise the operation of the

“physical twin”. The digital twin provides a digital representation (Fig. 16.1)

(i.e. simulation model, data-driven model) that updates and changes as the physical

twin changes. Digital twins can provide digital representations ranging from human

organs such as the heart and lungs to aircraft engines and city-scale twins. For

example, the SmartSantander smart city project has deployed tens of thousands of

Internet-connected sensor devices in large cities across Europe [33]. The sensing

capabilities of these devices are wide-ranging, including solar radiation, wind speed

and direction, temperature, water flow, noise, traffic, public transport, rainfall,

parking, and others. The devices provide a digital representation of the state of the

real world, in the case of SmartSantander a digital representation of the city, enabling

visibility into processes and operations of the city that can be analysed and

optimised.

With the use of advanced analytics and artificial intelligence techniques, the

digital twin can learn the optimal operating conditions of the physical twin and

optimise the physical twins’ operations in areas such as performance, maintenance,

and user experience. One of the most promising outputs from such an analysis is the

possibility to find root-causes of potential anomalies which can happen (prediction)

and improve the physical process (innovation).

Digital twins are a sophisticated example of a cyber-physical system which is

constructed from multiple sources of data including real-time IoT sensors, historical

Real World Digital World

Sensors Orient

DecideActuators Act

Observe

D idA t t

Physical Twin
(Asset-centric)

Digital Twin
(System-centric)

Fig. 16.1 A digital twin provides a digital representation which can be analysed to optimise the

operation of the “physical twin”
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sensor data, traditional information systems, and human-in-the-loop input from

human operators and domain and industrial experts. The core of a digital twin

requires a holistic and systematic approach to data management and decision-

making; at the heart of a digital twin is an OODA Loop.

16.2.3 The OODA Loop

John Boyd hypothesised that individuals and organisations undergo a continuous

cycle of interaction with their environment. Boyd developed the “OODA Loop”

[341] as a decision process by which an entity (either an individual or an organisa-

tion) reacts to an event by breaking the decision cycle down to four interrelated and

overlapping processes through which one cycles continuously: Observe, Orient,

Decide, and Act (OODA). Boyd initially applied the OODA Loop to military

operations, and it was later applied to enterprise operations. More recently, it has

been considered as an approach for processing observations within cyber-physical

systems [14]. In this latter context, we apply the OODA Loop as a high-level design

guide for intelligent energy and water systems within smart environments. As

illustrated in Fig. 16.2, the four OODA processes applied to an intelligent application

within a smart environment are:

• Observation: The gathering of data from the smart environment to understand its

state.

• Orientation: The analysis and synthesis of data to form an assessment of the

circumstances within the smart environment. Moving from data to information,

knowledge, and insights.

• Decision: Consideration of the options to determine an appropriate course of

action. The goal is to optimise the operation of the smart environment. The use of

predictive modelling can play a significant role here.

• Action: The physical execution of decisions via actuation (both automated and

human). Once the result of the action is observed, the loop starts over.

Orient Decide

ActObserve

Smart Environment

Fig. 16.2 Boyd’s OODA

Loop [341] applied to

intelligent applications

within a smart environment
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16.3 Enabling OODA for Digital Twins and Intelligent

Applications

As shown in Fig. 16.3, and detailed in [4], we use the OODA Loop to align the

different development phases of digital twins and intelligent applications with the

relevant RLD support services.

16.3.1 Observation

The RLD support services facilitate the observation phase by minimising the

required effort for a data source to join the RLD. Support services such as the

Catalog, Access Control Service (see Chap. 6), and the Search and Query Service

(Chap. 10) are the primary services that enable the collection of data sources and IoT

data and the maintainability of its associated metadata. The incremental approach of

the RLD made it easier to gradually improve the collection of observations from the

smart environment by adding a new sensor, thing, or dataset to the RLD. The 5 star

Real- me Linked Dataspace

DatasetsThings / Sensors

IoT-enabled Digital Twins and 

En ty Management Service

Catalog & 

Access Control 

Service

Personal DashboardPublic Dashboards

Decision Analy cs and 

Machine Learning

No fica ons Apps

Alerts

Search & Query 

Service

En ty-Centric 

Real-Time Query 

Service
Complex Event 

Processing Service

Digital Twin

Human Task Service

Human Task 

Service

Orient Decide

ActObserve

IoT-enabled Digital TwTT ins and 

ActObser

DecideOrient

ve

Intelligent Applica ons

Fig. 16.3 Role of RLD and its support services across the phases of the OODA Loop [4]
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pay-as-you-go model for data management (see Chap. 4 for more details) was useful

for specifying and planning the level of service needed for each data source.

The human task service enables the engagement of users in maintaining a high-

quality catalog of managed entities. Active participation of users in a smart envi-

ronment improves their engagement and sense of ownership while supporting a

higher accuracy of data maintained by the dataspace. In one of our pilot deployments

we noticed a direct benefit of using the human task service for the collaborative

management of the entities in the environment to provide a more accurate and rich

understanding of the environment’s state [256].

16.3.2 Orientation

The primary objective of the orientation phase is to support situational awareness of

the smart environment. The real-time query services (see Chap. 10) enable users to

understand the current and historical state of the smart environment. The Entity

Management Service (EMS) builds awareness regarding the entities in the environ-

ment through entity linking and enrichment (which can be supported by the Human

Task Service). Together with the real-time query services, the EMS provides entity-

centric views of the smart environment and reduces the overall effort to integrate

entity data from different real-time streams and contextual data sources.

Within all the pilots, a key goal is to increase the visibility, understanding, and

awareness of energy and water use. Using the RLD support services, we can build

dashboards to provide situational awareness for users with targeted information on

energy and water consumption. Within the different pilots, this is manifested in a

variety of ways and at different time frames, from informing the residents in their

smart home as they live their day, supporting the detailed analysis required by

building managers and operational staff, to brief encounters with “frequent-flyer”

passengers as they pass through the airport. User orientation in the pilots was driven

by public displays, interactive touchscreen displays and tablet applications (see

Fig. 16.4). These user interfaces communicate current and historical energy and

water usage within the environment, convey information about the importance of

energy and water, tips on how to improve consumption, and games to calculate the

users’ footprint in real-time. The displays are also personalised to target different

users by using appropriate metaphors to communicate relevant messages to them.

The intelligent applications in the orientation phase make extensive use of real-time,

historical, and contextual data sources to enhance the user experience (see Chap. 17).

16.3.3 Decision

Once users have built a certain level of awareness regarding the energy or water

consumption of their environment, they can use their expertise to start taking
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decisions towards more sustainable behaviours. In the decision phase, a critical

aspect of the dashboards is to provide users with targeted information on usage,

goal setting, targets for conservation, and tips to improve their consumption behav-

iour. This is where decision-making takes place. For example, managers can define

consumption thresholds to serve as sources of “alerts”, notifying them of excessive

usage, goals attained, or the detection of a possible fault (e.g. Complex Event

Processing Service, see Chap. 11). Developing decision support applications relies

on the entity-centric real-time query service to analyse data from the environment,

interpret it, and decide on the appropriate course of action.

A specific example of decision support is the Water Retention Time Observer

application (see Fig. 16.5) that determines the amount of time drinking water resides

in water pipes and creates alerts in case of potential issues. In public spaces, drinking

water quality is a significant concern for building managers: is the water safe to

drink? Currently, this can be managed by selecting a popular location to place the

drinking water fountains to ensure people are always using them, thus ensuring that

freshwater is always flowing through the pipes. However, in some public buildings,

drinking water fountains can remain unused during long holidays and weekends.

Consequently, drinking water can reside for extended periods in the pipes. In this

context, the water retention time observer can assist building managers by providing

timely notifications regarding low water quality in drinking water pipes. This is

achieved by creating a simple digital twin of the water network to detect inactivity in

specific measurement points in the water network and sending a notification if

(a) (b)

(d)

(c)

(e)

Fig. 16.4 Public interactive displays and personalised dashboards: (a) Smart office, (b) Smart

building, (c) Smart school, (d) Smart airport, (e) Smart building
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stagnant water is detected. Within this digital twin, we aimed to enable notification to

attract users’ attention only when necessary. This was a key lesson from our work to

enhance user experience, which is discussed further in Chap. 17.

16.3.4 Action

Intelligent applications in the action phase of the OODA Loop help users in smart

environments meet their goals for energy and water consumption by taking appro-

priate actions. The complex event processing service of the RLD is used to express

these goals as a set of rules which can generate alerts and suggested preventive

actions. Actions are then communicated to the users in the smart environment using

an appropriate mean of communication: emails, notifications on the dashboards,

messages on smart devices, and human tasks.

The occupants of the environment can participate in taking energy or water

saving actions. In the smart building pilot, we implemented a collective energy

management system where the RLD was used for the identification of energy-saving

tasks. The tasks were routed to the building occupants using the human task service

(see Chap. 9) to take energy conservation actions such as turning off the light in

empty rooms or closing a window when an air conditioner is on in a room.

Figure 16.6 shows an example of these “Citizen” actuation tasks.

The role of a building manager is a demanding one that often has personnel

working in the field. An anytime-anywhere notification mechanism was needed

for managers. To minimise the search friction between actionable information and

users, a well-designed notifications system is needed. The wearable info-centre

application was developed to enable notification through the wearable technology

for high-priority alerts. Figure 16.7 shows an example notification using the wear-

able info-centre.

Fig. 16.5 Water retention time observer: (a) Observation rules. (b) Active alarms
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16.4 Smart Energy and Water Pilots

This section presents the results and insights gained from deploying the RLD and

intelligent applications in the smart environments described in Chap. 14. Each pilot

followed a similar methodology for design, deployment, and evaluation [63]. In this

section, we detail the energy and water savings achieved in the pilots, the perfor-

mance of the human task services in engaging users to save energy, and a set of

experiences and lessons learnt from deploying the RLD in the pilots.

Fig. 16.6 Example of citizen actuation tasks within the smart environment

Fig. 16.7 Example notifications within the smart environment
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16.4.1 Energy and Water Savings

During the initial period of the pilots, energy and water metering data was collected

from existing monitoring systems to establish baselines for consumption across the

pilots. During the control period, the users within the pilots had access to the data

generated by the metering infrastructure system through traditional information

systems (e.g. building management systems, and basic public dashboards within

the airport, office building, and school). The data collection period for each pilot

spanned between 6 and 16 months, which also included a range of user interventions

such as pre-surveys, focus groups, interviews, and feedback cycles. The RLD was

used to develop intelligent energy and water systems and decision support analytics

across the pilot smart environments. Table 16.1 details the characteristics of the

pilots during the study period, the number of events generated in the environment,

the number of intelligent applications/twins deployed, and savings achieved in terms

of energy and water. In terms of energy and water savings, the RLD supports these

impacts in three fundamental ways:

• Connecting data across silos provided “big picture” entity-centric views of the

resource consumption within the smart environments. These views made it easier

for the users within the smart environments (e.g. building managers) to identify

waste and efficiency opportunities as the data produced within the environment

was structured and organised around real-world entities. Entity-centric views

were the basis of the digital twins created.

• The pay-as-you-go approach was useful for building the business case and getting

“buy-in” from users by enabling quick wins to demonstrate the benefit of the

approach. These early wins that demonstrated energy and water savings encour-

aged non-technical business users to engage with the project and system more

Table 16.1 Summary of the impact of intelligent energy and water systems in smart environments

[4]

Pilot

site Location

Study

period

Events

per

year

Intelligent

applications/

twins deployed

Actual

savings

measured

Estimated

annual

savings

Smart

Airport

Linate Airport,

Italy

10 months ~11.5

million

8 2954 m3

3013 kg

CO2

54,000 m3

55,080 kg

CO2

Smart

Office

Insight, Ireland 6 months ~8

million

4 24%

energy

reduction

–

Smart

Homes

Thermi, Greece 16 months ~2.3

million

11 30% water

reduction

–

Mixed

Use

Engineering

Building, NUI

Galway

16 months ~36

million

8 174 m3

177 kg

CO2

8089 m3

8251 kg

CO2

Smart

School

Coláiste na

Coiribe, Ireland

12 months ~1

million

5 2179 m3

2223 kg

CO2

9306 m3

9492 kg

CO2
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actively. The project team could build a business case around intelligent appli-

cations/digital twins and decision support tools that would reduce resource usage

and its associated economic costs. The savings identified can be used to justify the

necessary investment needed in data integration.

• The RLD enabled highly specialised decision analytics and digital twins that

provided action and notification alerts for each of the pilot smart environments,

including leak detection, fault detection, and abnormal usage patterns. These

alerts and notifications were crucial for building managers and operational staff

who do not have time to study and analyse the data generated in the smart

environment.

16.4.2 Human Task Service Evaluation

To determine the effectiveness of the human task service of the RLD within a smart

environment, we performed two types of human tasks in the smart office pilot: (1) an

entity enrichment data management task, and (2) a citizen actuation task for energy

savings.

16.4.2.1 Human Task for Entity Enrichment

This experiment focuses on a data management task that requires the user to enrich

the description of an entity by collecting location information on sensors within the

smart environment. Accurate location data is needed by the energy management

system to make appropriate recommendations about temperature control and energy

usage in the monitored building. We do not assume this metadata on sensor

locations, and room characteristics are available at the start of the experiment. This

situation simulates the case when it is difficult to gather all metadata upfront, or the

metadata becomes invalid due to changes in the environment. The objective of the

experiment was to use human tasks to enrich the sensor entities in the RLD with the

support of building occupants.

The occupants of the building were contacted through email to participate in the

experiment. If they consented, they were asked to look for sensors around them in

the building and to scan a QR code on the sensors using their mobile phones. This

would resolve the URL associated with the QR code in a web browser, where they

would then be asked to perform a relevant task. This action connects the user to the

human task service within the RLD and enables the linkage between human tasks

and physical sensors. Once the participant submits the location of the sensor,

additional tasks are pushed to them to collect further metadata about the surrounding

environment. Three tasks collect information about lights, heaters, and windows in

the room. The collected data is then used to enrich the description of the sensor and

room entities in the EMS.

The evaluation is based on the comparison of occupant-contributed metadata

versus gold-standard data. The gold-standard data was created manually by studying
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the physical space. Table 16.2 shows the accuracy of data submitted by occupants of

the building within 5 h of sending the invitation email to the building occupants. The

reported accuracy is based on the data submitted by the first few participants for each

sensor and room. The human task service achieved more than 80% accuracy in

describing the sensors and rooms within 5 h. The accuracy could be increased if the

results from multiple users are used to verify the accuracy of the contributions.

16.4.2.2 Human Actuation for Energy Savings

The second evaluation of the human task service focuses on tasks for humans to save

energy by performing citizen actuation [265]. When the energy management system

detects an abnormal energy usage in a room in the building (i.e. high energy use for

both the time of day and room status [booked for a meeting or not]), a notification via

Twitter is sent to an appropriate user to request the user to check on the issue. This is

the actuation request. Often the cause of the energy consumption abnormality is due

to a light or equipment (e.g. projector or air conditioning) being left on in an empty

room. This interaction between the user and the human task service, together with

the relevant energy sensor readings, is illustrated in Fig. 16.8.

Within the smart office pilot, we collected data over a 32-week control period.

Weekend data was removed from the experiment, as the users would not be on site.

Fifteen volunteers were selected for the experiment. For each request, one volunteer

was chosen at random to receive the request. The results of the experiment are

illustrated in Fig. 16.9 with the max, min, median, and average energy consumption

for the control and actuation days. Overall, the results show that the energy usage on

average declined compared to the control during the weeks (experimental weeks)

users received actuation requests and completed the actions of turning off electrical

components. The average saving was 0.503 kWh, when compared to the average

energy used in the control weeks of 1.93 kWh. This equates to a decrease in energy

usage by 26%. Each actuation week’s energy usage was equal to or lower in value to

the lowest control week apart from 1 week (which, compared to the other control

weeks, was lower).

Table 16.2 Description and results of entity enrichment tasks against the gold-standard data [256]

Task Description

Assignment

method Accuracy

Sensor

location

This task requires participants to specify the loca-

tion of the sensor.

Task pull based on

the QR code.

85.71%

Room

lights

This task asks participants to specify the number

of fluorescent lights installed in the room.

Task push based on

person location.

100%

Room

heaters

This task asks participants to specify the number

of heaters in the room.

Task push based on

person location.

83.33%

Room

windows

This task asks participants to specify the number

of windows in the room.

Task push based on

person location.

100%
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Fig. 16.8 Citizen actuation task using the human task service of the RLD [220]

Fig. 16.9 Daily energy usage—the average, max, min, and median of the control period and

actuation period [220]
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16.5 Experiences and Lessons Learnt

Based on a reflection of our experience of using the RLD in the pilot environments,

the following lessons were identified as key learnings to inform the design of future

digital twins and intelligent applications for smart environments using the RLD [4].

Developer Education Across the pilots, we worked with a diverse set of develop-

ment teams with different backgrounds, from embedded devices to web front-ends.

The dataspace concept was new to most of them, and they were accustomed to

working in an environment where they have full-control with the expectation of

exact results. Also, the store-and-query culture is more common among developers

and users. The processing of data on-the-fly and detecting only data that is of interest

in real time, without storage in most cases, can be challenging (aka. event

processing) for some developers to understand. Embracing the dataspace took time

and required us to demonstrate both the benefits and limitations of the paradigm.

Developer education was critical to the adoption of the dataspace. Workshops and

tutorials held at pilot sites proved to be an effective mechanism of engaging

developers to educate them on the capabilities of the platform and the dataspace

data management approach.

Incremental Data Management Can Support Agile Software Development The

project teams for each pilot operated using an agile software development method-

ology. The incremental approach of the dataspace and the use of the event-based

paradigm were efficient during the design and development phase. The RLD enabled

the teams to work at a pace suitable to the stakeholders and data owners involved.

The RLD allowed the project team to include new data sources during a develop-

ment iteration, or to increase the level of integration of an existing source. The

decoupling achieved via the catalog and the use of events and streams removed

dependencies between parties. It enabled the project teams to work with participants

in the pilots in an incremental manner where we could quickly demonstrate value

with a low upfront investment in data integration. As the pilots progressed, more and

more data became available in the RLD enabling the creation of sophisticated data-

intensive intelligent applications, digital twins, and analytics.

Build the Business Case for Data-Driven Innovation It is important to clearly

articulate the business case for the RLD to justify the necessary investment in data

infrastructure. Within our pilots, we discovered a strong business case for data-

driven innovation by justifying the investment based on the resulting cost savings

achieved due to improving resource efficiency (e.g. energy and water savings). A

key challenge was to bring together the different stakeholders in the pilots to support

and deliver the project. For example, the IT organisations had the data, but the

savings resulting from the system benefit the operations teams of the organisations

(e.g. water and energy). Thus, operations have a clear motivation to invest, but IT

does not. By bringing these stakeholders together, we were able to build a holistic

business case.
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Integration with Legacy Data Is a Significant Cost in Smart

Environments While sensors and connected devices are an essential source of

data in a smart environment, they are not the only source of data necessary to

make an environment “smart”. In our pilots, a considerable number of different

legacy data sources needed to be integrated to collect the information necessary to

make informed and intelligent decisions. While the RLD provided an effective

incremental approach that integrates legacy data at a minimum cost, it is not a silver

bullet to data integration costs in smart environments and the cost of integrating with

legacy data should not be underestimated. This is of relevance within enterprise

settings where the non-technical challenges (e.g. sharing data among departments)

can be as significant as the technical ones. See Chap. 2 for further discussion on these

challenges.

The 5 Star Pay-As-You-Go Model Simplified Communication with Non-

technical Users The 5 star pay-as-you-go model for data management (see

Chap. 4 for more details) was particularly useful regarding communicating both

enhanced functionality and the additional costs of tighter integration with the RLD

support services. Within the pilots, it was common to integrate data to the 3 star level

on most services. The investment to bring a source to 4 and 5 stars was only made for

core datasets within a pilot, and not for each service. Interestingly, many datasets that

were initially identified in the early design phases as of high importance (e.g. sensor

specifications, detailed infrastructure schematics) remained at the 1 star level as they

were not needed by the final applications developed. This resulted in significant

savings by avoiding unnecessary integration costs. Within the commercial pilots

where more legacy data was available, the 5 star model supported the articulation of

the business case for the investments necessary to include data sources and the level

of their integration in the dataspace.

A Secure Canonical Source for Entity Data Simplifies Application

Development Programmable access to the catalog by enabling queries over the

machine-readable metadata and entities was crucial to facilitate application devel-

opment in the dataspace. The role of the catalog and EMS as a canonical source for

identifiers for entities was critical to managing the entities in the dataspace. Dem-

onstrating the secure query capability of the access control service was essential to

get “buy-in” and build trust with the pilot data owners. For example, the sensor data

within the domestic pilot was sensitive, and we needed to assure the residents it was

secured so that only privileged users could access their sensor data.

Data Quality with Things and Sensors Is Challenging in an Operational

Environment Data quality challenges are further complicated as participating

data sources, and things within the RLD are not under its full control. Data quality

issues included incorrect file formats, incorrect timestamps, unusual sensor usage

values, multiple and conflicting values, and missing data. Specifically, concerning

the timestamps, the different time zones of pilot sites in different countries posed a

challenge, as well as the time changes due to Daylight Saving Time. Keeping raw

data where possible, allowed these issues to be addressed and for the analysis to be

rerun with the data quality issues resolved. Finally, physical access to the
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infrastructure can be a significant challenge within operational environments. Within

the Linate airport pilot, the infrastructure was often underground within secured

parts of the airport. One cannot rely on having physical access to restart or update

infrastructure. As a result, the system design must be fault tolerant and adapt to

operating conditions.

Working with Three Pipelines Adds Overhead The complexity of maintaining

the RLDs’ three different processing pipelines (the batch, real time, entity layers of

the entity-centric query services, see Chap. 10) was challenging concerning the

engineering and operational overhead involved. Diagnosing problems and faults

required the workflow of all pipelines to be checked for issues, and this can increase

the time needed to resolve a problem. A possible future direction is to look at end-to-

end exactly-once stream processing technologies (Kappa Architectures). However, the

highly decentralised nature of a smart environment and the lack of end-to-end control

within dataspaces may not be suitable to the additional coordination/control overhead

of exactly-once stream processing approaches. This is an area of future work.

16.6 Summary

In this chapter, we reflect on the experience of developing different IoT-based

intelligent applications and digital twins within five different smart environments,

from Airport to Schools, where the goal has been to engage users within IoT-based

intelligent systems to increase water and energy awareness, management, and

conservation. The overall design philosophy has been guided using Boyd’s

“OODA Loop” for decision-making. The chapter detailed the role of a Real-time

Linked Dataspace and its support services to enable the creation of intelligent

applications and digital twins. The effectiveness of intelligent applications and

digital twins within the pilots is evaluated to determine the level of savings achiev-

able. The evaluation identified significant savings within the evaluation period at all

the pilot sites. Finally, we reflected on our experiences using the RLD and captured

these as a set of lessons learnt.
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Chapter 17

A Model for Internet of Things Enhanced

User Experience in Smart Environments

Edward Curry, Willem Fabritius, Souleiman Hasan,

Christos Kouroupetroglou, Umair ul Hassan, and Wassim Derguech

Keywords User experience design · Transtheoretical Model · Behaviour change ·

Internet of Things · Energy management · Water management · Dataspaces

17.1 Introduction

Smart environments have emerged in the form of smart cities, smart buildings, smart

energy, smart water, and smart mobility [24], where the Internet of Things (IoT)-

based infrastructure can support the efficient use of resources within the environment

(e.g. water, energy, and waste) [289]. To this end, smart environments can engage a

wide range of end users with different interests and priorities, from corporate

managers looking to improve the performance of their business to school children

who want to explore and learn more about the world around them. Creating a

compelling user experience within a smart environment (from smart buildings to

smart cities) is an essential factor to success. In this chapter, we reflect on our

experience of developing intelligent applications using a Real-time Linked

Dataspace within a smart airport, office, home, mixed-use, and school, where the

goal has been to engage a wide range of users (from building managers to business

travellers) to increase water and energy awareness, management, and conservation.

This chapter explores the use of a Real-time Linked Dataspace in the context of

delivering enhanced user experiences. Section 17.2 details a model for delivering an

Internet of Things (IoT)-enhanced user experience within a smart environment. The

use of the Transtheoretical Model of behaviour change to guide a user’s journey to

improve their sustainability is explained in Sect. 17.3. Section 17.4 details specific

intelligent applications that were developed using the dataspace to support users on

their journey guided by the Transtheoretical Model. Section 17.5 details the user

study and the results achieved in the pilots. The chapter ends with lessons learnt from

our experiences in the pilot deployments in Sect. 17.6 and a summary in Sect. 17.7.
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17.2 A Model for Internet of Things Enhanced User

Experience

A key challenge in delivering smart environments is creating a compelling user

experience with new digital infrastructures within the environment. We assess this

challenge within the Physical-Cyber-Social (PCS) computing paradigm [14] that

supports a richer human experience with a holistic data-rich view of smart environ-

ments that integrate, correlate, interpret, and provide contextually relevant abstrac-

tions to humans. Building useful Internet of Things (IoT) applications for smart

environments requires the combination of technology, techniques, and skills from

multiple disciplines, including electronic engineering, data engineering, and data

science, to user experience design and behavioural science.

In Chap. 16, we used theObserve,Orient,Decide, and Act (OODA) decision loop

to provide a framework to structure the different types of data management support

that intelligent applications needed from the dataspace. In this chapter, we take a

user-centric perspective of a smart environment that builds on our previous work

[16] by formalising the model and providing enhanced details on the intelligent

applications created. In Fig. 17.1, we illustrate a model to structure the landscape that

Internet of 

Things-

Enhanced 

User 

Experience 

Digitalisation
(Internet of Things & Big Data)

Human-Computer Interaction

Smart Environment

(User Experience Design & 

Behavioural Models)

Physical Cyber Social

Fig. 17.1 A model for IoT-enhanced user experience
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is broken down into two parts, one with a focus on Digitalisation of the Environment

using IoT and Big Data, and the other on Human–Computer Interaction (HCI), with

a focus on the users’ journeys using behavioural models and user experience

design [16].

17.2.1 Digitalisation: IoT and Big Data

The digitalisation side of the model is primarily focused on (Monitoring and

Analysis) using IoT platforms and Big Data processing infrastructure that collects

and analyses the data from the smart environment. It is essential to follow a

systematic approach to information gathering, analysis, visualisation, and decision-

making within a smart environment. This data can then be used within data analytics

and decision support (e.g. predictive and perspective analytics, and simulations) that

support the Performance and Optimisation of the smart environment (e.g. reduced

energy or water usage) [31]. These are common steps used in the creation of digital

twins, as discussed in Chap. 16.

17.2.2 Human–Computer Interaction: IoT-Enhanced User

Experience and Behavioural Models

The Human–Computer Interaction (HCI) side is where we look at how the data and

insights generated from the digitalisation side can be used to provide a seamless,

personalised IoT-enhanced user experience; providing the right data to the right

users at the right time. The key activities on this side of the model look to increase

User Awareness using targeted information delivery via personalised usage dash-

boards and task-oriented applications.User Engagement with the smart environment

is through alerts, notifications, or spatial tasks where users are requested to take

physical actions in the environment in the form of citizen actuation [265].

When designing intelligent applications for humans, it is important to consider

well-established guidelines and best practices for HCI. For example, within the

context of intelligent energy and water management, it is necessary to study the

design of conservation interventions in the workplace, user preferences for informa-

tion visualisations, and the psychology of persuasion and motivation (among others).

We will now detail how this model can be used to develop IoT-enhanced user

experience for intelligent energy and water systems.
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17.3 An IoT-Enhanced Journey for Smart Energy

and Water

There is a significant opportunity to improve energy and water resource management

and conservation by analysing, designing, and implementing intelligent systems to

increase demand and supply efficiency. To manage energy and water holistically

within a smart environment, it is essential to use decision support tools that present

meaningful and contextual information about usage, price, and availability of energy

and water intuitively and interactively to users. Smart environments by leveraging

IoT can support the development of intelligent applications for efficient and effective

management of the resource within the environment. Users will need different

information to manage their energy and water consumption, from home users

managing their personal water usage, business users managing the water consump-

tion of their commercial activities, to municipalities managing regional distribution

and consumption at the level of a city or a region. To deliver a completing user

experience for these diverse users, it is necessary to leverage knowledge from several

different sources, from IoT-based devices to contextual data sources (including

environmental impacts, water quality, energy usage, end-user feedback, occupancy

patterns, and meteorological data). This mass of data needs to be analysed to extract

insights which then must be packaged within a set of personalised applications,

designed within the context of a holistic user journey for the targeted user.

Over the past years, we have been involved in a number of projects [18, 62, 63]

concerned with investigating the use of next-generation information platforms for

smart environments, specifically targeting intelligent energy and water management

systems. The five pilot smart environments are detailed in Chap. 14. Within these

projects, we have developed user applications following the IoT-enhanced model of

user experiences detailed in the previous section (Sect. 17.2). Within our pilots, the

model was implemented using a Real-time Linked Dataspace for the digital-side and

behaviour change theories for the HCI-side (see Fig. 17.2).

17.3.1 Digital: Real-time Linked Dataspace

To manage a resource sustainably, it is essential to follow a systematic approach to

information gathering, analysis, visualisation, and decision-making. Critical to suc-

cessful resource management is the visualisation of that data, and its use in decision-

making to reduce consumption. Intelligent systems and decision support tools need

to present meaningful and contextual information about usage, price, and availability

in an intuitive and interactive manner. This requires a data platform that is capable of

bringing together multiple dynamic and contextual data sources from the smart

environment [1] (see Chap. 2). In this book, we advocate the use of the dataspace

paradigm in the design of data platforms to support data ecosystems for intelligent

systems.
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A dataspace is a data management approach that recognises that in large-scale

integration scenarios, involving thousands of data sources, it is difficult and expen-

sive to obtain an upfront unifying schema across all sources [2]. We have created the

Real-time Linked Dataspace (RLD) as a data platform for intelligent systems within

smart environments. The RLD combines the pay-as-you-go paradigm of dataspaces

with linked data, knowledge graphs and real-time stream and event processing

capabilities to support a large-scale distributed heterogeneous collection of streams,

events, and data sources [4]. The RLD has support services specifically designed to

support the management and processing of data from IoT-based smart environments

and further details on the RLD is available in Chap. 4.

17.3.2 HCI: A User’s Journey to Sustainability Using

the Transtheoretical Model

A key aspect of reducing water and energy usage is increasing user awareness about

of their resource usage and changing their consumption behaviour. At the core of the

HCI-side of the model, we leverage behaviour change theories. The central
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Fig. 17.2 A model for IoT-enhanced user experience. Adapted from [16]
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assumption behind attitudinal theories of behaviour change is that by influencing a

person’s attitude positively towards a behaviour, they will subsequently act it out.

The 40-year history of Environmental Psychology research has provided a wealth

of theoretical models and best practices for influencing sustainable behaviour. What

remains a substantial challenge for designers in the HCI community, however, is the

translation of these theories into useful and engaging experiences that have the

potential to influence behaviour in a meaningful and long-lasting way. Many

eco-feedback designs researched within the HCI community have lacked a theoret-

ical connection to established psychological theory (from a recent review, it was less

than half of the papers surveyed [342]).

17.3.2.1 Transtheoretical Model

As a framework with which to bridge multiple strands of behaviour change theory,

the Transtheoretical Model (TTM) can be used as a guiding heuristic for the high-

level design of the user experience. Developed by Prochaska et al. [343, 344], the

TTM describes the “stages of change” a person goes through when modifying their

behaviour. The model has been developed and applied primarily within the field of

healthcare, for example, in exercise and addiction treatment. The TTM has also been

researched as a framework for energy feedback technology design [345]. Below is a

list of the TTM stages:

• Pre-contemplation (“Not Ready”): User is unaware that their behaviour is

problematic.

• Contemplation (“Getting Ready”): User is aware of the problem and the desired

behaviour change with an understanding of the pros and cons of their continued

actions.

• Preparation (“Ready”): User intends to take action in the immediate future and

may begin taking small steps towards behaviour change.

• Action (“Doing”): User is undertaking the desired behaviour.

• Maintenance (“Check”): User works to sustain the desired behaviour change.

We use the TTM within the HCI side of our model to help identify user

informational needs and appropriate persuasion strategies at each stage of change,

acting as a guiding design heuristic. It should be noted that other models of

behaviour change could also be considered, including the Behaviour Change

Model (BCM) for sustainability by Geller [346]. BCM can be described as more

focused on user behaviours and needs and is specific to the sustainability context.

The TTM was preferred due to its perspective from the user’s personal experience,

which was useful in considering the user journey. Some applications focused on

social influence and gamification strategies, and the TTM was seen as being more

flexible when guiding design decisions outside of those aspects focused on

sustainability.
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17.3.2.2 User Journey

Using the TTM, we defined the user journey scenarios, as illustrated in Fig. 17.3.

This strategy helps to consider the activities of users at multiple stages of engage-

ment with intelligent energy and water systems. The user’s journey map is:

• User is unaware of the problem (Pre-contemplation): Create awareness about the

issue. Highlight social norms, and the benefits of changing behaviour. Ensure a

balanced argument and limited detail.

Example intervention:

– Receive an email invitation:

“As an office worker, I want to receive information about how I can participate in

the new energy and water saving initiative within my workplace.”

• User is aware of the problem and the desired behaviour change (Contemplation):

Make a case for using the system. Appeal to values, and use persuasion strategies

such as loss aversion, cognitive dissonance, and foot in the door technique.

Example intervention:

– Visit the promotional page:

“As an office worker, I want to learn what the system does and how it can benefit

my organisation and me.”

Fig. 17.3 Stages of behaviour change in the Transtheoretical Model aligned with interventions
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• User intends to take action (Preparation): Help users plan for change. Implement

persuasion strategies such as goal setting and commitment. Provide support

through mentoring.

Example intervention:

– First-time access to the dashboard:

“As an office worker, I want to learn how to use the website and start saving

energy within my workplace.”

• User practices the desired behaviour (Action): Provide timely feedback and

positive reinforcement for targeted actions. Encourage intrinsic motivation

through personalisation.

Example interventions:

– Automatically assigning tasks to optimise energy usage:

“As an office worker, I want to perform tasks assigned by the system so that I can

help save energy in my building.”

– Automatically assigning tasks to monitor the environment:

“As an office worker, I want to help the system in monitoring my building

environment so that it can make better decisions about energy saving.”

– Automatically assign tasks to maintain occupant comfort:

“As an office worker, I want to use the system to monitor my building temper-

ature, to help maintain a comfortable working environment.”

• User works to sustain the behaviour change (Maintenance): Help users form new

habits. Use reminders and feedback towards goals. Encourage mentoring of

others and keep journals.

Example interventions:

– View energy consumption feedback:

“As an office worker, I want to use the system to monitor the energy consumption

of my room and see the effect of my energy saving actions.”

– View competition feedback:

“As an office worker, I want to use the system to monitor my personal and team’s

progress within the energy saving competition.”

– Suggest a new energy saving goal:

“As an office worker, I want to use the system to share new ways of saving energy

with my co-workers.”

• Relapse: Relapse between stages can happen at any time.

278 17 A Model for Internet of Things Enhanced User Experience in Smart Environments



17.4 TTM Intelligent Applications

Across the five pilot sites, we developed 25 different intelligent applications to

support users to optimise resource usage from highly technical leakage detection

applications for building managers, to the personal dashboard for office workers and

children at home and at school. The process started with design examples of

conservation systems within the HCI literature [342] and the commercial sector.

User experience tests helped improve the final designs and revealed a high level of

engagement from the users. To illustrate this process, we present the intelligent

applications developed for the Smart Office Pilot in Galway.

In this pilot, the intelligent system was called SENSE, and it focused on the

management of energy within the smart office, mainly targeting the office workers of

the building. The following user interfaces were designed for SENSE users to

support all the use case intervention scenarios described in the previous section,

which follow the stages outlined in the TTM [343]. The three primary SENSE user

interfaces we will detail are:

• Promotional Homepage: An information resource for describing the SENSE

system.

• Dashboard Tour: A tour page providing a walk-through of the SENSE

dashboard.

• SENSE Dashboard: A web application consisting of four sections, including

Energy overview, Personal status summary, Community participation, and Tasks.

Each of these user interfaces supports the user journey identified in Sect. 17.3, by

providing personalised and relevant information to the user. Table 17.1 details the

five stages of the TTM aligned with the user journey together with suggested

interventions [345] and the applications we developed for each stage.

17.4.1 Promotional Homepage

The promotional homepage serves as an informational resource, helping new users

to learn about the SENSE system (see Fig. 17.4). Through its design and the

information provided, it seeks to establish credibility with the user and gain their

trust, helping to bring users from the contemplation stage to the preparation stage of

the TTM-based user journey. Design techniques used to establish credibility follow

the guidelines outlined by Fogg [347]. The homepage aims to answer common

questions new users may have such as: What is SENSE about? What can I do with

SENSE? How does it work? What should I do next?

The homepage is limited to providing a general overview of the SENSE system

when a user would like to learn more about how to engage with the site; they are

encouraged to login and take a tour of the SENSE dashboard. For returning users, the

homepage serves as a login portal, with easy access to the login dialogue provided.
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Table 17.1 Stages of behaviour change in the Transtheoretical Model aligned with interventions.

The five stages of the Transtheoretical Model are used to define a user journey for smart energy and

water environments. Adapted from [16]

TTM stage User journey User-centric intervention [345]

SENSE

applications

Pre-

contemplation

User is unaware of the

problem

Create awareness about the issue.

Highlight social norms, and the

benefits of changing behaviour.

Ensure a balanced argument and

limited detail.

–Public dash-

board

–Newsletters

Contemplation User is aware of the

problem and the desired

behaviour change

Make a case for using the system.

Appeal to values, use persuasion

strategies such as loss aversion,

cognitive dissonance, and foot in

the door technique.

–Personalised

dashboard

Preparation User intends to take

action

Help users plan for change.

Implement persuasion strategies

such as goal setting and commit-

ment. Provide support through

mentoring.

–Personalised

dashboards

–Tour

–Goals

Action User practices the desired

behaviour

Provide timely feedback and

positive reinforcement for

targeted actions. Encourage

intrinsic motivation through

personalisation.

–Personalised

dashboards

–Alerts Tasks

–Guides,

–Rewards

Maintenance User works to sustain the

behaviour change

Help users form new habits. Use

reminders and feedback towards

goals. Encourage mentoring of

others, keep journals. Relapse

between stages can happen at

any time.

–User activity

–Rankings

–Performance

feedback and

reminders

Fig. 17.4 The homepage top panel with a purpose statement and login button
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17.4.2 Dashboard Tour

The tour section aims to provide users with a brief overview of the SENSE

dashboard. It supports the user in the preparation stage of the TTM-based user

journey by providing a walk-through of each section, intending to help users to

understand the building energy consumption and personal status feedback provided

(see Fig. 17.5). The content of the tour includes:

• Understanding the meaning of personal energy consumption feedback in the My

Status section.

• Interpreting and interacting with the building overview visualisation in the

Energy section.

• The game mechanics underlying the Energy Saving competition

• Using task guides for performing energy saving (citizen actuation) and room

inspection tasks.

The tour supports multiple modes of interaction to progress through the presen-

tation, including mouse clicking the slide or using the keyboard arrow keys, space

bar, or enter key. These interaction channels ensure that users do not spend signif-

icant time learning new interactions for a likely one-time activity. To allow for the

use of the entire screen when presenting information, the visible controls are

minimal arrows confined to the bottom-right corner of the screen.

Fig. 17.5 Tour describing the interaction with the building energy overview
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17.4.3 Sense Dashboard

The SENSE Dashboard plans an important role for multiple stages of the user

journey from contemplation and preparation to action and maintenance. The dash-

board consists of four sections, including Energy Overview, Personal Status Sum-

mary, Community Participation, and Tasks.

17.4.3.1 Energy Overview

The energy overview section grew out of user requirements for detailed energy

consumption reporting. Requirements outlined by users for displaying the energy

data included:

• Showing a breakdown of energy consumption by building occupants, location,

and devices.

• The ability to monitor energy consumption over specific time intervals (e.g. 1

day, 1 week).

• Showing trends and highlighting abnormal energy consumption to building

occupants.

• Displaying energy consumption metrics in Kilowatt Hours, CO2, and Euros.

These requirements are primarily following the user research regarding prefer-

ences for energy information visualisations in the workplace [348, 349]. The energy

overview section provides three perspectives on energy use within a building, each

seeking to answer specific questions, examples of which are:

• People-centric (e.g. personal activity, teams):

– How am I doing compared to others?

– When is my energy consumption the highest?

– Which is the best performing team in the building?

• Location-centric (e.g. desk, room, floor, building):

– Which rooms are the most significant consumers/problem areas?

– How does my room compare to other rooms?

• Device-centric (e.g. lighting, heating, sockets):

– What device is consuming the most energy in my room? When does this

occur?

– Which devices are causing energy waste problems in my building?

To this end, several visualisations were researched to answer the questions

outlined above. The primary challenge for selecting a visualisation was its ability

to display a wide variety of information in a condensed area while still maintaining

ease of learning. After consideration, the zoomable Treemap visualisation design
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(see Fig. 17.6) was chosen. The Treemap design, originally developed by Ben

Schneiderman [350], follows the Visual Information Seeking Mantra, described as

“providing an overview first, support zoom and filter interactions and provide details

on demand” [351]. The design has gained broader appeal in recent years and has

been recommended as a promising solution for displaying energy consumption

trends [349].

17.4.3.2 Personal Status Summary

The personal status summary page provides a personalised overview of the user’s

relationship with energy and their engagement in the SENSE system, including

personalised feedback about the user’s energy consumption, the status of their

room, the current tasks assigned to them and the activity occurring within their

work community (see Fig. 17.7). The personal status summary is central to the action

and maintenance stages of the TTM-based user journey.

The panel in Fig. 17.8a compares the user’s personal energy consumption to that

of their colleagues, utilising the Social Proof strategy outlined by Cialdini [352]. The

financial cost of the user’s personal energy consumption is contrasted with that of the

average person in the building. Costs are aggregated over a calendar month, allowing

users to track their progress while also having a normative influence (Social Proof

[352]). Visual feedback is alternated depending on the status of this comparison. For

example, if the user’s consumption is higher, their personal energy bar is coloured

red and the face displayed beside their name is given a neutral expression. When

consumption is below average, the colour is green, and a smiling expression is used.

These indicators invoke Social Norms which are both descriptive (showing mone-

tary values) and injunctive (showing moral judgement through facial expressions)

Fig. 17.6 Energy consumption Treemap visualisation
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[352]. It is important to note that negative facial expression is not used due to

observations made by [353] when using this feedback strategy, where complaints

were received from customers.

The prominence and proximity of the user’s name and photo aim to highlight that

the energy consumption recorded is a personal reflection of themselves within their

organisation. This can trigger cognitive dissonance [354] when a user’s personal

image of being environmentally conscious does not match with the message

portrayed. Also, the prominence of the team name appeals to the user’s sense of

relatedness, a strategy for establishing Intrinsic Motivation [355].

The task notification panel in Fig. 17.8b is the most important section of the

Personal Status summary. This panel serves as a call to action for users to perform

tasks, and it employs a variety of techniques to attract their attention. Firstly, when a

Fig. 17.7 Personal status summary

(a) (b) 

 

Fig. 17.8 (a) Personal energy consumption panel (b) Task notification panel
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task is available, the panel uses a flashing animation to attract attention. This type of

visualisation creates a strong response [356] and should be used sparingly; therefore,

after 5 s, the animation ceases. Secondly, the expiry time is highlighted to the user

with a countdown clock animation. This indicates the limited window of opportunity

for the user to perform the task, employing the strategy of Scarcity [352]. Finally, the

use of “labelling” feedback appeals to the user’s sense of identity (“Be an

Eco-Hero”) [357] eliciting desirable associations of eco-friendliness (Biospheric

values [358]). This message could equally be adapted to elicit associations of

being a team player (Altruistic) or money saver (Egoistic), depending on the

user’s personal values [358].

17.4.3.3 Community Participation

The community participation section (see Fig. 17.9) is important for the maintenance

stage of the TTM-based user journey as it provides a platform on which to run

energy saving competitions among teams in the workplace. The interface uses a

“points, badges and leaderboard” system (commonly known as the PBL

gamification strategy [359]). By appealing to the user’s sense of competence,

autonomy, and relatedness, intrinsic motivation can be increased, encouraging

users to participate in an activity for their own inherent pleasure (e.g. the fun factor)

[355]. For example, by encouraging users to form teams and engage in friendly

competition with their co-workers, a sense of relatedness is created [355].

Extrinsic motivators are also involved, such as a user’s desire for rewards and

status [360]. We will now explore three key panels in this section for daily goals,

team competitions, and rewards.

Fig. 17.9 Community participation section
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Daily Goals Panel This panel [see Fig. 17.10a] allows users to publicly commit to

energy saving goals, which is shown to be an effective motivation strategy [361–

365]. The goals listed address common issues of energy waste in office environ-

ments; activities that are generally easy to perform and accepted as “best practices”

[366]. By committing to a goal, users earn points which help to improve their

personal score and team rankings. Users are required to visit the website daily to

make these commitments, helping to drive traffic to the website and serving as a

reminder. Participants can submit new goal suggestions via the email link at the

bottom-right of the panel. Allowing users to select and suggest their own goals

appeals to the users’ sense of autonomy, an essential factor in intrinsic motivations

[355]. The goals’ written format utilises the Implementation Intentions strategy

[367], whereby anticipated situational cues are used as an anchor to trigger the

desired behaviour [368] (e.g. “When I leave the office I will turn off my computer

and monitor”).

The names of other users who have committed to a goal are displayed within the

goals panel, encouraging influence through the social proof strategy [352]. Also, the

knowledge that the users’ own commitments will be made public, increases the

likelihood of compliance with the stated goals, by appealing to their desire to show

the consistency of character within their peer group [352].

Team Competition Rankings Panel The team rankings panel [see Fig. 17.10b]

allows users to receive feedback on their team’s status within the energy saving

competition, appealing to a user’s competitive nature and desire for status [360]. By

focusing on team level rankings, users are not singled out by their peers in terms of

performance, which was a significant concern highlighted in the user research

conducted by Foster et al. [369]. Comparative feedback among teams has been

shown to be effective in previous research on workplace energy consumption

reduction [370]. Displaying a set time limit for the competition using a calendar

utilises the Scarcity principle [352] for user motivation.

Fig. 17.10 (a) Daily goals panel, (b) Team competition rankings panel, (c) Rewards panel
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Rewards Panel Competitions are shown to appeal more strongly to certain per-

sonality types as well as personal achievements to others (e.g. using Bartle’s

Character Theory this maps to Killers and Achievers, respectively [371]). Providing

rewards such as points and badges [see Fig. 17.10c] can appeal to these types, with a

sense of achievement coming from level progression as opposed to outperforming

other players [360]. The level progress bar [see Fig. 17.10c] allows users to receive

immediate feedback on their progress, appealing to a user’s sense of competence

[355] and providing positive re-enforcement [372] (Fogg’s Conditioning principle

[373]).

17.4.3.4 Tasks

Two types of tasks are available in the smart office pilot: (1) data management tasks

and (2) citizen actuation tasks for energy savings. These tasks are implemented using

the human task service of the RLD. Further details on this service are available in

Chap. 9, and an example of an energy saving task is provided later in this chapter and

also in Chap. 16.

The tasks interface is arguably the most important section in the dashboard,

helping to guide user actions to solve energy waste problems directly as part of the

action stage of the user journey. The interface utilises Fogg’s Suggestion and

Tunnelling principles [373], by prompting users and providing task instructions to

guide them through the task. The task instructions include a building map for

identifying the location of the task (Fig. 17.11), a task instruction gallery with a

step-by-step walk-through of how to perform a task (Fig. 17.12) and form inputs

describing the data required for collection (Fig. 17.13).

Fig. 17.11 Energy saving task description
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17.5 User Study

This section presents the results from deploying the model for IoT-enhanced user

experience in the smart environments described in Chap. 14. In this section, we

detail the methodology used within each pilot, the energy and water savings

achieved in the pilots, and the changes in user awareness at the pilots.

Fig. 17.12 Occupant comfort task instruction gallery

Fig. 17.13 Room inspection task form
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17.5.1 Methodology

In general, the pilots followed a similar methodology for the design, deployment,

and evaluation of the system. The high-level research methodology followed during

the evaluation of the deployed intelligent systems is summarised in Table 17.2.

During the initial period of the pilots, metering data was collected from existing

systems to establish baselines across all pilots. During the control period, the users

within the pilots had access to the data generated by the metering infrastructure

system through traditional information systems (e.g. Building Management System,

and basic public dashboards within the airports, office building, and school). The

data collection period for each pilot spanned between 6 and 16 months, which also

included a range of user interventions such as pre-surveys, focus groups, interviews,

Table 17.2 Research methodology for pilot sites. Adapted from [16]

Pilot

Site Location Users

Study

period Baseline Method

Smart

Airport

Linate Airport,

Italy

Corporate

users

Passengers

10 months Pre-study water

and energy

usage

Passenger survey

User trials

Staff

questionnaires

Smart

Office

Insight, Ireland 150 Office

workers

6 months Average energy

usage

User study

(11 participants)

Field study

(6 participants)

User trials (4–6

participants)

Smart

Homes

Thermi, Greece Domestic

users

Utility

providers

16 months Manually

recorded

monthly water

usage

Preliminary

questionnaires

(8 participants)

Focus groups

Interviews

Mixed

Use

National Univer-

sity of Ireland

Galway, Ireland

University

students

Staff &

management

Public

16 months Pre-study water

and energy

usage

Pre-intervention

survey (110 par-

ticipants)

User trials and

feedback cycles

Post-intervention

survey

(110 participants)

Smart

School

Coláiste na

Coiribe, Galway,

Ireland

School stu-

dents

Staff &

management

Public

12 months Pre-study water

and energy

usage

Awareness ques-

tionnaire

(150 participants)

User trials and

feedback cycles

Post-intervention

survey

(70 participants)
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and feedback cycles. The user experience evaluation included usability testing,

usability field study, and user trials.

17.5.2 Impact

The RLD supported the development of more than 25 intelligent applications

following the model for IoT-enhanced user experience to serve diverse user groups

in five smart environments and provided relevant data for effective data analytics to

raise awareness and detect faults. The energy and water saving opportunities iden-

tified at the different pilot sites and their estimations in terms of costs and CO2

emissions (see Table 17.3) were significant and convinced building managers and

users to take actions and to further expand the approach to other areas (e.g. expand

the smart airport pilot to Malpensa Airport).

In terms of increasing user awareness, the goal of the pilot applications was to

provide personalised and actionable information about energy and water consump-

tion and availability to individual users intuitively and effectively at a time scale

relevant for decision-making. Access to this information helped increase end-user

awareness and improved energy and water consumption. As detailed in Table 17.3,

the level of user awareness was increased at four out of five pilot sites. In the mixed-

use site where there was no increase in awareness, the pre-intervention surveys

indicate that the sample populations exhibited a moderately high level of awareness.

Post-intervention awareness surveys were found to be statistically insignificant due

to the high baseline level of awareness. Since pre-intervention surveys already

indicated a high level of awareness, small differences that might or might not have

occurred would have been difficult to capture.

Table 17.3 Impacts on energy and water saving and user awareness for pilot sites. Adapted from

[16]

Pilot

Site

Actual savings

measured

Estimated

annual savings User awareness

Smart

Airport

2954 m3

3013 kg CO2

54,000 m3

55,080 kg CO2

Increases awareness of the problem

Increase of responsibility and Personal norms

Smart

Office

23.86% energy

use reduction

– Increased awareness of usage

Smart

Homes

30% water use

reduction

– Increased awareness of usage

Mixed

Use

174 m3

177 kg CO2

8089 m3

8251 kg CO2

Limited increase (high existing awareness

baseline)

Smart

School

2179 m3

2223 kg CO2

9306 m3

9492 kg CO2

Increased awareness in teachers

Increased awareness of junior students

Limited increase in senior students (high

existing awareness baseline)
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17.6 Insights and Experience Gained

Based on a reflection of our experience across the pilot sites, the following lessons

were identified as key learnings on developing IoT-enhanced user experiences. They

can be used to inform the design of the user experience of future intelligent

applications within smart environments.

Minimise Cognitive Overload with Clear and Focused Applications

and Visualisations Within the pilots, it was shown that participants preferred

applications and visualisations that had a low cognitive load. Complex applications

with full functionality were demanding for users to learn and understand. Users

wanted simple (often single purpose) applications over more elaborate multi-purpose

ones. We recommended that visualisations and applications be tested early and often

to ensure they are easily understood (matching the target users’ mental model), and

serving the information needs and goals of the target users [374, 375]. Strategies that

can be employed to achieve more natural cognition include providing a simplified

core message with the ability for users to dig deeper on demand (Progressive

Disclosure [374]), harnessing the user’s prior experience with design conventions

(Consistency [374]) and conceptual knowledge (Priming [374]).

Understand Your Users’ Needs and Their Journey When designing intelligent

applications, consider users and their stage on the journey. Customising the appli-

cations to support a specific task or action helped to capture their interest and

increase engagement. Within our pilots, we delivered 100 “personalised” versions

of the 25 different intelligent applications to meet the specific needs of users. For

example, building managers operate daily in the “Action” phase of the TTM and are

interested in applications with concise messages that help them take immediate

actions. Technicians were more interested in task-oriented applications with detailed

consumption charts for a dedicated analysis and identification of potential issues in

the system. At the other extreme, airport passengers, parents, and kids at the “(pre-)

contemplation” phase with a more casual interest wanted applications to help them

explore the smart environment to learn more about it.

Social Influence and Interaction are Strong Motivators Social influence was

shown to be a strong motivator, which is consistent with observations found in the

environmental psychology literature, particularly in the workplace [376]. The use of

gamification with leaderboards and social benchmarking was effective in the pilots

with users enjoying the friendly rivalry and social interaction with peers. However,

the critical question remains if this strategy can maintain user interest in the long

term? One answer may lie in the theory of intrinsic motivation, in which behaviours

are performed for their inherent pleasure and are, therefore, more durable [374].

Close the Feedback Loop with Personalisation Within the pilots, users had a

strong desire to have responsive feedback regarding the impact of their energy and

water saving actions, allowing them to track their progress in a closed feedback loop

[374]. This strategy appeals to the user’s desire for control or mastery, increasing
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their intrinsic motivation [355]. This feedback was shown to be of most interest

when presented as “people-centric”, reporting on the participant’s personal perfor-

mance (including a comparison to others) and the performance of teams in the

competition.

Bring Your “Humans-in-the-Loop” of the Smart Environment Users can

engage in IoT environments from various perspectives: (1) The user-as-a-consumer

where a water or energy management environment collects data on the user con-

sumption and communicates it with them to trigger a behaviour change. (2) The

user-as-a-sensor [377], where users can enhance the IoT environment with an image

or report on noise or temperature. And (3) the user-as-an-actuator [220], where the

user is asked by an IoT platform to take action in the physical world, such as closing

a window, based on data collected on temperature drop in winter.

A direct consequence of the human-in-the-loop approach is a sense of ownership,

among users, towards the system, leading towards more accurate information and

better collaborative management [378]. Figure 17.14 shows an example of an

Fig. 17.14 Example of an actuation task for collaborative energy management. Chrome applica-

tion task list page (left) and task detail page (right)
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actuation task that requires a user to change the state of the building for energy

saving. First, the tasks are generated based on the observed state of the building

(e.g. an empty room with lights turned on, or a window open in a room with AC on)

through motion and light sensors. Then, it is routed to an occupant in the building

who is within the vicinity of the room. The task is also contextualised to provide the

required information for performing the task, as well as the associated rewards.

Based on our experience, tasks with short deadlines need to be pushed to users

through real-time communication channels (e.g. instant messages); otherwise, tasks

can be presented through an appropriate search and browse interface. While some

tasks might get users’ attention due to their altruistic nature, proper incentives need

to be designed and implemented for sustainable participation of users over time

(e.g. leaderboards, badges, rewards).

Careful Use of Targeted Alerts and Notifications Information overload in

IoT-based systems can overwhelm users. To minimise the search friction between

actionable information and users, a well-designed notifications system is needed.

Emerging technologies and practices in user experience show that notifications will

probably play a much more significant role in IoT-based systems [379]. Within the

pilots, we aimed to enable notification to attract users’ attention only when neces-

sary—furthermore, the notifications needed to deliver actionable information to

users. For example, building managers wanted alerts on faults and optimisation

opportunities. They had little interest in exploring charts of usage data, often

commenting they do not have time to analyse data to gain any insights. In the

pilot evaluations, it was found that the frequency of fault alert notifications must be

carefully considered. Overwhelming recipients with notifications of potential faults

were found to be counter-productive, leading to a potential disregarding of alert

messages.

17.7 Summary

Creating a compelling user experience within a smart environment (from smart

buildings to smart cities) is an essential factor to success. In this chapter, we

introduce a model for Internet of Things (IoT)-enhanced user experience for smart

environments. The model is broken down into two parts, one with a focus on

Digitalisation of the Environment using IoT and Big Data, and the other on

Human–Computer Interaction (HCI), with a focus on the users’ journeys using

behavioural models and user experience design. We use the model to develop a

journey for users within the context of intelligent energy and water systems using the

Transtheoretical Model as a guiding heuristic for the high-level user experience

design. Several applications were built following the Transtheoretical Model of

behaviour change to guide a user’s journey to improve their sustainability. The

chapter detailed our experience of developing IoT-based intelligent applications

within a smart home, school, office building, university, and airport, where the
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goal was to engage a wide range of users (from building managers to business

travellers) to increase water and energy awareness, management, and conservation.

The Real-time Linked Dataspace simplified the process of developing these

personalised applications by supporting the gathering of data from different sources

in the smart environment.
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Part V

Future Directions

The final part of this book considers what is required for the widespread adoption of

the dataspaces approach within data ecosystems and details a future research agenda

for dataspaces, data ecosystems, and intelligent systems.



Chapter 18

Future Research Directions for Dataspaces,

Data Ecosystems, and Intelligent Systems

Keywords Dataspaces · Data ecosystems · Intelligent systems · Research

challenges · Technology adoption · Trusted data sharing · Governance · Incremental

systems engineering · Human-centricity

18.1 Introduction

As we move toward 2030, today’s computing paradigms such as data-intensive

computing (Big Data), Open Data [380], Knowledge Graphs, Machine Learning,

Large-Scale Distributed Systems [381], Internet of Things (IoT), Physical-Cyber-

Social Computing [14], Service-Oriented [382], and Cloud/Edge Computing [383]

will be the foundations to the realisation of the vision of intelligent systems. In fact,

real-world intelligent systems are being enabled by a combination of these para-

digms using a mixture of architectures (centralised, decentralised, and a combination

of both) and infrastructures such as Middleware and IoT platforms to support the

development of intelligent systems and applications [13, 67, 295, 384].

This chapter begins in Sect. 18.2 with an examination of what is required for the

widespread adoption of the dataspace approach. Next, in Sect. 18.3 the chapter

explores the research landscape towards 2030 by identifying the principal research

directions for the dataspaces, data ecosystems, and intelligent systems, including

large-scale decentralised support services, multimedia/knowledge-intensive event

processing, trusted data sharing, data governance, and economic models, evolving

intelligent systems engineering and cognitive adaptability, and finally the path

towards human-centric systems. The chapter finishes with a summary in Sect. 18.4.
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18.2 Dataspaces: From Proof-of-Concept to Widespread

Adoption

Our vision for the intelligent systems of 2030 is that they will be a significant part of

a dynamic global data ecosystem where vast amounts of data can move among actors

within complex information supply chains [1, 25]. Users, applications, and machines

will still need to leverage these data flows to optimise physical and virtual systems in

the areas of economy, environment, energy, water, waste, people (intellectual

endowment and engagement), built environment, mobility (transportation), and

public spaces [385, 386]. We believe dataspaces will be a crucial technology

platform, enabling users to harness the data from the global data ecosystem. In

order to deliver the potential of dataspaces, the wide-scale diffusion of the technol-

ogy is necessary. The literature on the diffusion of innovations and technology

adoption [387] can assist in understanding how this could happen.

In their study of technology change, Anderson and Tushman [388] argue that

technology progresses in a series of cycles, hinging on technological discontinuity

followed by a design competition which results in the emergence of a dominant

design. According to Anderson and Tushman, the dominant design is never in the

same form as the first discontinuity, and it is not on the leading edge of technology; it

bundles features to meet the requirements of most of the market. Once a dominant

design emerges, organisations often cease to invest in learning alternative designs

and instead focus on developing competencies related to the dominant design.

Understanding these cycles and patterns can indicate as to the trends in the data

management domain and the potential to improve the adoption of the dataspace

paradigm. The first wave of dataspace initiatives [2, 87, 179] can be seen as a large-

scale design competition consisting of Proof-of-Concept projects that explored the

potential for dataspaces within specific data management use cases. The goal was to

understand the requirements, explore the design space, and discover the boundaries

of the many different support services needed to enable the dataspace data manage-

ment paradigm. The early dataspaces were designed and developed by world-leading

researchers and required high levels of expertise. The defining characteristics of

many projects in this wave was a focus on the experimental design together with a

pilot deployment (e.g. biomedical, energy [100], personal [87, 88, 91, 92]) to meet

specific data management requirements.

The second wave of dataspace initiatives, now underway [4, 101], is focusing

more on general deployments of dataspaces beyond the specific initial use cases to

drive broader adoption. The key challenge in this wave is the need to identify the

dominant design needed to support the requirements of mass-market adoption. The

innovation adoption literature can again guide dataspace researchers in improving

the uptake of their technology. The likelihood of an innovation being adopted can be

increased if it possesses specific key characteristics [389]. The following criteria

have been adapted from [389] for the context of a dataspace within a data ecosystem:
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• Relative Advantage: Enabling a better functioning data ecosystem and usage of

data within the ecosystem.

• Compatibility: The degree to which a dataspace is consistent with existing

stakeholder values, or interests, and usage context.

• Complexity: The degree of difficulty involved in implementing the dataspace and

communicating benefits to stakeholders.

• Trialability: The degree to which experimentation is possible with a dataspace.

• Cost Efficiency and Feasibility: Concerning existing comparable data manage-

ment practices.

• Evidence: The availability of research evidence and practical efficacy of a

dataspace.

• Risk: Level of risk associated with the implementation and adoption of a

dataspace.

Dataspaces will need to possess a number of these characteristics if they are to be

successfully adopted within the general data management domain. This sets out a

clear research direction for next-generation dataspaces.

18.3 Research Directions

Dataspaces are a relatively new research area that brings together several other areas

in computer science and other disciplines. We now discuss research areas [1, 4]

which are essential to enabling the next-generation of dataspaces, data ecosystems,

and intelligent systems (see Fig. 18.1). Research is needed to overcome many

challenges, including decentralised support services, support for multimedia data,

trusted data sharing, governance and economic models, incremental systems engi-

neering, and human-centricity.

18.3.1 Large-Scale Decentralised Support Services

As dataspaces are deployed at larger scales, it will be necessary to create enhanced

support services, to scale entity management, and to minimise the cost of operation

for these deployments [4]. Challenges include:

• Enhanced Supported Services: Many enhancements are possible for support

services of dataspaces including the use of natural language interfaces to improve

user experience [390], decentralised support services for large-scale deployments

[391], and privacy-by-design [392] approaches to support the ever-increasing

amount of personal information captured in intelligent systems.

• Scaling Entity Management: Within larger-scale deployments, it will be neces-

sary to enhance the entity management services to support both the increase in

entities, data, and users. Ranking and summarisation need to be query- and
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activity-relevant [86], with relevant facts, but at the same time diverse to cater for

a wide range of information/conceptualisation need. A trade-off between

processing time and expressiveness is necessary. Furthermore, there is significant

potential for extensive usage of large-scale crowdsourcing for “human-in-the-

loop” data management and curation [71, 117].

• Maintenance and Operation Cost: As the size of deployment increases, it will be

necessary to investigate new techniques to improve the performance of

dataspaces in terms of the maintenance and operational costs of the support

platform within large-scale deployments (e.g. city-level) [26].

18.3.2 Multimedia/Knowledge-Intensive Event Processing

As multimedia streams become more pervasive with the Internet of Multimedia

Things (IoMT), it will be necessary for dataspaces to provide specific support

services to process and manage these streams. New techniques and approaches

will be needed for:

• Support Services for Multimedia Data: As multimedia data becomes more

common in data ecosystems through the IoMT, there will be a direct need for

appropriate support services within dataspaces. There is an opportunity to
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leverage advances in deep learning for image processing (e.g. object detection)

[30], which can be the basis of dataspace support services for rich content types

including text and multimedia streams.

• Placement of Multimedia Data and Workloads: The increased computing

resources needed to process, and extract multimedia data will pose challenges

for existing techniques for processing and data placement. This will require

dataspace support services to consider the simultaneous training and processing

of multimedia streams, taking into consideration the geospatial and temporal

characteristics of smart environments.

• Adaptive Training of Classifiers: To effectively process multimedia data,

dataspaces will need to be able to assemble the appropriate classifiers to extract

features from multimedia content based on the needs of users of the dataspace at

runtime. The training of classifiers needs to be adaptable to the changing require-

ments of data ecosystems. There is a need to support transfer learning among

intelligent systems and for collective efforts to build pre-trained models for

datasets and to bootstrap dataspace support services. Finally, distributed

approaches to training classifiers are needed to maximise the available resources

from the cloud to the edge of the network.

• Complex Multimedia Event Processing: To detect patterns from multimedia

streams within a dataspace, it will be necessary to investigate new techniques

for complex multimedia event processing. Challenges include defining the lan-

guage to express the complexity of the event patterns and the content of the event,

optimisation techniques to improve system performance for event detection over

computationally intensive multimedia streams, and methods to train models over

incoming media streams for new unseen queries in lack of available training data.

18.3.3 Trusted Data Sharing

There is a need to enable the trusted sharing of data among organisations, people,

and systems. This will pose significant challenges for:

• Trusted Platforms: A trusted data platform focuses on the secure data sharing

among a group of participants (e.g. industrial consortiums sharing private or

commercially sensitive data) within a clear legal framework. An ecosystem data

platform would have to be infrastructure agnostic and must support continuous,

coordinated data flows, seamlessly moving data among systems [1]. Data

exchange could be based on models for monetisation or reciprocity. Data plat-

forms can create possibilities for smaller organisations and even individual

developers to get access to large volumes of data, enabling them to explore

their potential. Trusted platforms open many research areas for dataspaces,

including data discovery, curation, linking, synchronisation, standardisation,

and decentralisation [25].
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• Usage Control: The challenges with data sharing go beyond technical issues to

issues of data ownership, privacy, business models, smart contracts, and licensing

and authorised reuse by third parties. The control paradigm for shared data must

shift from today’s access control to usage control, and dataspaces will need to

support both of these usage control for both organisations and individuals.

• Personal Dataspaces: There is a need for personal dataspaces for the manage-

ment of the data of the individual. Personal dataspaces will need to respect the

relevant legislation for personal data (e.g. General Data Protection Regulation)

and allow an individual to remain in control of their personal data and its use.

Personal dataspaces will need to balance the need for privacy with the benefits of

analytics and handle this trade-off based on the preferences of the individual.

Techniques for preserving privacy for metadata, query privacy, and privacy-

preserving integration of independent data sources will all be needed in next-

generation dataspaces.

• Industrial Dataspaces: The sharing of data among commercial organisations will

also increase. Industrial dataspaces [101] will be needed to facilitate the trusted

and secure sharing and trading of commercial data among collaborating organi-

sations. These platforms will need to provide support services that enable a data

marketplace that facilitates the automated licensing of data exchanged among

organisations and the enforcement of legal rights and appropriation of remuner-

ation to the original data owners.

18.3.4 Ecosystem Governance and Economic Models

For mass collaboration to take place within data ecosystems, we need to overcome

the challenges of dealing with large-scale agreements among potentially decoupled

interacting parties [1]. New approaches will be needed for:

• Decentralised Data Governance: Research is needed on decentralised data gov-

ernance models for data ecosystems that support collaboration and fully consider

ethical, legal, and privacy concerns. Data governance within a data ecosystem

must recognise data ownership, sovereignty, and regulation while supporting

economic models for the sustainability of the data ecosystem [1]. A range of

decentralised governance approaches may guide a data ecosystem from author-

itarian to democratic, including majority voting, reputation models (e.g. eBay),

proxy-voting, and dynamic governance (e.g. sociocracy: circles and double

linking) [393]. Dataspaces will need to enforce these data governance models

automatically.

• Economic Models: Economic model may be used as an incentivisation factor

within governance models including support for “data-vote exchange” models

(pay for votes with data), and economic models for peer-to-peer systems

[394, 395]. The sharing and exchange of data within dataspaces could also be

based on models for monetisation or reciprocity. Data platforms can create
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possibilities for smaller organisations and even individual developers to get

access to large volumes of data, enabling them to explore their potential [1].

18.3.5 Incremental Intelligent Systems Engineering:

Cognitive Adaptability

The design of adaptive intelligent systems will need to consider the implication of

operating within a smart environment and its associated data ecosystem [1]. This will

pose significant challenges for systems engineering:

• Pay-As-You-Go Systems: The boundaries of systems will be fluid and will change

and evolve at run-time to adapt to the context of the current situation. However,

we must consider the cost of system participation, and support “pay-as-you-go”

approaches at both the system and data levels [1]. How can the pay-as-you-go

approach of dataspaces be extended to the design of incremental and evolving

systems? How can we integrate systems on an “as-needed” basis with the labour-

intensive aspects of system integration postponed until they are required?

• Cognitive Adaptability: Work on evolving systems engineering [29] will need to

consider the inclusion of data-driven probabilistic techniques that can provide

“Cognitive Adaptability” to help intelligent systems adapt to changes in the

environment that were unknown at design-time by enriching the control-loop

with observational data from the environment. Intelligent system designers will

need to consider the varying levels of accuracy offered by data-driven

approaches, providing best-effort or approximate results using the data accessible

at the time [1]. How can we mix deterministic and statistical approaches in the

design of intelligent systems? How can we test and verify these systems? There is

a need to support transfer learning among intelligent systems and for joint efforts

to build pre-trained models for system adaptability. Dataspaces can play a role in

supporting these collective efforts.

18.3.6 Towards Human-Centric Systems

Currently, intelligent systems make critical decisions in highly engineered systems

(e.g. autopilots) where users receive specialised training to interact with them

(e.g. pilots). As we move forward, intelligent systems will be making both critical

and lifestyle decisions: from the course of treatment for a critical illness, safely

driving a car, to choosing what takeout to order and the temperature of our shower

[1]. This will pose specific challenges in the design of human-centric systems:

• Explainable Artificial Intelligence and Data Provenance: Data-driven decision

approaches (including Cognitive and AI-based techniques) will need to provide
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explanations and evidence to support their decisions and guarantees for the

decisions they recommend. How can we trust the large-scale, data-driven

decision-making provided by dataspace-powered AI platforms? This will require

a greater need for provenance support within dataspaces to support the audit trail

necessary to justify a data-driven decision [396].

• Human-in-the-Loop: The role of users in intelligent systems will not be a passive

one. Users are a critical part of socio-technical systems, and we need to consider

more ways of including the “Human in the Loop” within future intelligent

systems. Active participation of users can improve their engagement and sense

of ownership of the system. Indeed, active involvement of the user could be a

condition for them granting access and usage of their private data. Research is

needed to give trust in algorithms and data, in the trusted co-evolution between

humans and AI-based systems, and in the legal, ethical, and privacy issues

associated with making data-driven critical decisions [1].

18.4 Summary

This chapter examined what is required for the widespread adoption of the dataspace

approach. The chapter then explored the future research landscape by identifying the

principal research directions for the dataspaces, data ecosystems, and intelligent

systems including large-scale decentralised support services, multimedia/knowl-

edge-intensive event processing, trusted data sharing, data governance and economic

models, evolving systems engineering and cognitive adaptability, and finally the

path towards human-centric systems.
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