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ABSTRACT 

Due to the continuous increase in global population, there is a demand for 

innovative and sustainable technology to improve food and nutritional security. 

Contamination, spoilage, and safety issues are caused by pathogenic microbes including 

bacteria, yeast, and mold. Aspergillus flavus is an opportunistic fungus that colonizes 

various field crops including legumes, cereal grains, tree nuts, and oilseeds. Infection by 

this fungus can occur pre-harvest or during post-harvest operations and storage of 

cottonseed and cottonseed meal. In addition to infecting of the cottonseed there is the 

subsequent production of mycotoxins which are toxic secondary metabolites, such as 

aflatoxins. Under ideal environmental conditions, warm temperatures and high humidity, 

A. flavus can produce large amounts of aflatoxins. Aflatoxins are not typically destroyed

by the post-harvest processes of contaminated cottonseed. Different methods have been 

used to remove aflatoxins from cottonseed meal, including biological controls, 

electromagnetic radiation, ozone fumigation, chemical control agents, and thermal 

treatments. However, many of these treatments negatively affect the nutritional content, 

flavor, color, texture. There is a need for alternative removal methods agricultural to better 

preserve quality and nutritional content of cottonseed meal.  

Through this work we were able to identify physical properties of fuzzy cottonseed 

inoculated with Aspergillus flavus and understand the effects of microbial load and 

moisture content. This can lead to future sort measures for cottonseed during the post-

harvest process. The results showed that sorting cottonseed based on physical appearance, 

dimensions, projected area, surface area, and density can help identify potentially infected 
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seeds. This work also measured the increase in aflatoxin levels throughout the post-harvest 

process of whole seed to cottonseed meal. The results showed that the difference in acid-

delinting and the use of the mechanical dehuller can affect the microbial load on 

cottonseed meal. The higher microbial load was associated with lower protein content and 

higher fat acidity levels. Lastly, the research identifies treatment parameters to maintain 

nutritional components of cottonseed meal. The use of Atmospheric Cold Plasma (ACP) 

to treat Aspergillus flavus infected cottonseed meal which maintained the cottonseed fat 

acidity levels, protein levels, and water activity levels. Overall, this research can be used 

in the post-harvest process for sorting, measuring aflatoxin levels, and possible treatment 

using ACP.  
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CHAPTER I 

INTRODUCTION AND OBJECTIVES 

Introduction 

Atmospheric cold plasma (ACP) is a promising technology that can reduce fungal 

growth, mycotoxin production, and pesticide residues in crops or harvested grains. ACP 

methods can have an advantage in agriculture due to low temperature operations and short 

processing time without inducing damage to crops, seeds, humans, and the environment 

(Ohta, 2016). (N. N. Misra, Yepez, Xu, & Keener, 2019). Fungal infection poses a threat 

to our food security due to toxin production, discoloration, off-flavor development, and 

spoilage of agricultural commodities (Filtenborg, Frisvad, & Thrane, 1996; Fisher et al., 

2012; Gamba et al., 2015). ACP is gaining interest in the food processing industry because 

its attractive qualities include rapid decontamination at ambient temperature and pressure 

conditions resulting in little changes to nutritional composition and food quality. Plasma 

is an ionized gas that has reactive gas species (RGS) such as atoms, molecules, electrons, 

ions which are then exposed to a metastable condition with a roughly zero charge (N. 

Misra, Yadav, Roopesh, & Jo, 2019). In-package plasma treatment is the localization of 

the aforementioned RGS wherein they contact with the product to be disinfected. Using 

the in-package cold-plasma technology allows for prevention of post-process plasma 

treating contamination (N. N. Misra, Pankaj, Segat, & Ishikawa, 2016). With the 

knowledge of the beneficial effects of post-harvest treatment systems, ACP has the 

potential to reduce cost, time, and labor of treatment of contaminated cottonseed and 

cottonseed meal. This project focuses on determining the effect of ACP on aflatoxin 
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infected cottonseed meal. Chapter two will serve as a review of the literature involving 

the production, utilization, spoilage of cottonseed and cottonseed meal along with 

mechanisms of the reactions associated with ACP. Chapter three, four, five covers the 

research and provides results that promote good post-harvest practices of cottonseed, 

understanding of aflatoxin levels during cottonseed processing, and the usage of a novel 

non-thermal treatment method. This thesis research can be followed by an upscaled ACP 

treatment system in order to treat mass quantities of cottonseed meal.  

Objectives 

The overall goal of this thesis research project was to identify improvements in the 

post-harvest process of A. flavus inoculated cottonseed including sorting methods, effect 

of processing on aflatoxin levels, and using ACP as a nonthermal treatment method.  

This was accomplished by the following objectives: 

1. Identify the differences between dimensions, projected area, sphericity, mass,

volume, particle density, and surface area distributions of healthy and aflatoxin-

inoculated cottonseed.

2. Quantify the increase in aflatoxin levels throughout post-harvest processing by

analyzing the whole seed and the ending cottonseed meal.

3. Develop atmospheric cold plasma treatment parameters and quantify microbial

load reduction in cottonseed meal.

Objective one, the identification of infected cottonseed by physical properties by 

determining the effects of microbial load, moisture content, and aflatoxin levels. The 

physical properties can be used for sorting practices during the postharvest process of 
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cottonseed. Objective two, the measurement of concentration increases in aflatoxin levels 

due to processing in cottonseed meal. This objective’s results can help with understanding 

when the best time to decontaminate infected cottonseed with a novel treatment system. 

Lastly, objective three, the treatment of cottonseed meal using ACP for decontamination. 
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CHAPTER II 

LITERATURE REVIEW 

Aspergillus flavus and Aflatoxin Contamination 

Aspergillus section Flavi is a group of saprophytic filamentous fungi that possess 

the ability to produce toxigenic secondary metabolites that can be harmful to human health 

(Carvajal-Campos et al., 2017). Aspergillus section Flavi is composed of 33 fungal species 

that are often found in soil and is capable of propagating asexually, sexually, and 

parasexually (Frisvad et al., 2019; Horn, Moore, & Carbone, 2009). Aspergillus flavus is 

an economically important fungal pathogen due to its production of aflatoxins in 

agricultural commodities (Ojiambo, Battilani, Cary, Blum, & Carbone, 2018). A. flavus is 

active between 10℃ and 45℃, and all stages of the infection cycle, from sporulation to 

host infection, can take place in this range, typically resulting in the production of 

mycotoxins known as aflatoxins (Sanchis & Cranfield, 2004). The growth of the 

opportunistic fungus, A. flavus, is optimal at high temperatures and at high relative 

humidity (above 85% rH) (Al-Shikli, A.Abdulrasool, & Al-Hiti, 2010). In addition to 

relative humidity, there are other factors that influence aflatoxin production such as 

growth stage, physiology, and grain composition (Ojiambo et al., 2018). A. flavus can 

produce aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2). AFB2 and AFG2 are 

not toxic, but AFB1 is the best-known naturally made carcinogen (Poor et al., 2017).  

Since aflatoxin is a naturally-occurring potent carcinogen, it is commonly known 

as an “unavoidable contaminant” and is difficult to completely eliminate from feeds such 

as cottonseed meal (Park & Stoloff, 1989). Chronic exposure to aflatoxin-contaminated 
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feed sources increase the risk of liver cancer and can suppress the immune system 

(Rapisarda et al., 2016). About 5 billion people globally are at risk of chronic exposure to 

aflatoxin due to the absence of regulatory limits in order to enforce established limits, or 

due to the lack of resources and technology (Strosnider et al., 2006). Aflatoxin action 

levels have been set in the U.S. by the Food and Drug Administration, based on the type 

of animal consuming the product and the use of the feeding animal (Mitchell, Bowers, 

Hurburgh, & Wu, 2016). For beef cattle, swine, and poultry the action level for aflatoxin 

is 300 parts per billion (ppb). However, dairy animals are held to a 20-ppb action level for 

feed products due to the probability of aflatoxins being transferred into the milk. 

(Kotinagu, Mohanamba, & Kumari, 2015). Cottonseed industry is a common feed source 

for dairy cows; therefore, aflatoxin contamination affects cotton farmers. The dairy 

industry being hindered because of rejected milk containing high aflatoxin levels and cows 

being quarantined due to aflatoxicosis is negatively affecting cottonseed farmers (Wu, Liu, 

& Bhatnagar, 2008).  

Many oilseed crops including legumes, peanuts, maize and cottonseed are 

associated with active A. flavus growth (Klich, 2007). Specifically, cottonseed contains 

several components that are fungal nutrients, including lipids, saccharides, and storage 

proteins (Mellon, Cotty, & Dowd, 2007). Higher aflatoxin levels increase during the pre- 

and post-harvest processing due to improper handling, processing, and storage. There are 

several pathways of fungal entrance into the seed. Cottonseed typically develops within a 

thick-walled boll (carpel), usually divided into four or five compartments (locules) (Figure 

1).  A. flavus can infect the nectaries (plant glands) of flowers, or insects can damage the 
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carpel walls of cottonseed, allowing fungal entrance (Goynes & Lee, 1989; Klich & 

Chimielewski, 1985).  

Figure 1. Image of cottonseed developing within a thick-walled boll divided into 4 

locules. Reprinted from (Goynes & Lee, 1989). 

The seed and fibers that grow within a given locule are called a lock, and the fungal 

infection in an open cotton boll is usually evidenced by the locks that go unfluffed and 

remain tight. The tight locks are caused by the weakening of the cotton fibers due to the 

exponential growth of A. flavus which causes problems throughout the milling process 

(Ashworth, Rice, McMeans, & M., 1971).  

Cottonseed Processing 

Typically, a ton of cottonseed produces around 1440 pounds of cottonseed meal 

and hulls, which ultimately is fed to livestock and poultry. Raw cottonseed is both food 
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and fiber and is made up of three parts: 1) linters, which are short fibers still connected to 

the seed; 2) hulls, the protective coating for the kernel; and 3) the protein and oil rich 

kernel. Products derived from a ton of cottonseed are as follows: meal (900lbs, 45%), hulls 

(27%), crude oil (16%), linters (8%), and waste (4%) (NCPA, 2020). The hulls for fiber, 

meal are sources of vegetable protein feed for animals, and linters are used as a chemical 

cellulose source in personal care products and high quality paper (Smith & Cothren, 1999). 

Before cottonseed is processed into oil and cottonseed meal, cotton fibers are 

removed from the seed during the ginning process, producing fuzzy cottonseed. The 

cottonseed sent to an oil mill usually uncleaned and containing small amounts of other 

plant materials including soil and dust. The removal of foreign material is done by using 

a magnetic force to remove metal, pneumatic separation to remove sticks and pods, and 

screening equipment to remove weed seeds, sand, and soil (Pighinelli & Gambetta, 2012). 

Following cottonseed cleaning, the short linter fibers are removed to maximize the oil 

extracted from the seed due to the absorption ability of the cellulose fibers. The delinting 

step is unique to cottonseed because the linters tend to be bulky and occupy space during 

the extraction of the oil (O'Brien, Jones, King, Wakelyn, & Wan, 2005). Chemicals such 

as sulfuric acid and mechanical machines have been used to remove linters. Chemical 

delinting is usually for replanting of cottonseed or research otherwise mechanical removal 

is for oil extraction. The use of sulfuric acid completely removes fibers and is costly.  

After removal of linters, the outer seed coat, known as the hull and rich in fiber 

and poor in oil and protein, needs to be removed. The removal of the hulls yields 

cottonseed meal with higher protein content (Kemper, 2005). The dehulling process 
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removes the lighter hull fraction by aspiration, agitation, and screening. A bar huller has 

a bar or knife-studded cylinder that rotates within another cylinder and the hulls are cut 

when they pass through the inner cylinder. The seed decorticator has two hardened steel 

rolls, both with longitudinal grooves. The seeds are fed into the decorticator and cut by 

the grooves and the difference in speed between the two rolls. The mechanical removal of 

seeds can lead to more broken and finer pieces which result in higher aflatoxin content 

when processing (Piedade et al., 2002). 

After dehulling, the kernels are reduced in size or flaked to facilitate oil removal. 

In order to enhance flaking, the material is heated to 90-110℃ to decrease the viscosity of 

the oil, resulting in good quality cake (Kemper, 2005). Cottonseed cake is the solid 

remaining after oil extraction. The flaking operation distorts the cottonseed cellular 

structure and facilitates separation of the material remaining (Pighinelli & Gambetta, 

2012). Cottonseed is flaked by passing between two crushing rolls, the cylindrical rollers 

rotate opposite of each other creating thinner flakes. The flakes are cooked which break 

down the cell wall, reduce oil viscosity, control moisture content, coagulate protein, 

inactivate enzymes, and detoxify bound gossypol is bound (Cherry, 1983). The flakes are 

poured into the top kettle, heated for a period of time (~120 minutes), and swept into the 

kettle below (O'Brien et al., 2005). As the flakes are placed into the bottom kettle, water 

is evaporated and removed by vents until the desired moisture content is reached for the 

oil pressing process (O'Brien et al., 2005).  

There are four types of processing systems which are used to extract oil: (1) 

hydraulic press, (2) screw press, (3) prepress solvent extraction, and (4) direct solvent 
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extraction. Dehulled cotton seeds contain around 34% oil and are suitable for mechanical 

pressing because of the high amount of extractable oil (O'Brien et al., 2005). The chosen 

processing will result in various amounts of aflatoxin content remaining in the cottonseed 

cake. Hydraulic pressing was the earliest type of batch pressing for cottonseed oil 

extraction. The open presses are fed with seeds wrapped in cloths and the plates gradually 

squeeze the oil from the seeds. However, this process is labor intensive. The screw press 

is similar to the hydraulic press, but this system has both vertical and horizontal presses to 

maximize pressure (O'Brien et al., 2005). This system pressure is gradually applied to the 

flakes while a screw conveys them from the feed end to the discharge end of the expeller 

barrel. Direct solvent extractions  uses hexane, and the residual meal is heated to evaporate 

the solvent, which is collected and reused (Ziegler, Kadan, Freeman, & Spadaro, 1981). 

Solvent extraction yields about 11.5% more oil than a screw press , with less oil remaining 

in the cottonseed meal (O'Brien et al., 2005). The primary downside to this method is the 

use of hexane because of its classification as a Hazardous Air Pollutant (HAP) by the U.S. 

Environmental Protection Agency. The post-harvest process begins with whole fuzzy 

cottonseeds and ending with meal retrieval following oil extraction (Figure 2).   
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Figure 2. Cottonseed milling process from whole fuzzy seed to cottonseed meal. 

Damage to Cottonseed during Post-Harvest Processing 

Cottonseed contributes to almost 15% of farmers income from cotton (Jaime-

Garcia & Cotty, 2003). Cottonseed value can be reduced by aflatoxin contamination if the 

gin cannot sell to the dairy or beef farmers (Wu et al., 2008). Mechanical damage to 

cottonseed is a major cause of cottonseed quality problems which is due to the mechanical 

fiber pickers or the mechanical gin (Delouche, 1981). In storage, when a cracked 

cottonseed is exposed to a seed that has been infected and the ideal fungus growing 

conditions are met the cracked seed has a high susceptibility to be contaminated (Cotty, 

Howell, Bock, & Tellez, 1997). A previous research study looked into the effect of 

cottonseed moisture levels and seed feed rate during ginning on cottonseed damage due 

to the high moisture content and the associated fungal growth (Shaw & Franks, 1962). 
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Another study showed that seed damage increased with moisture content, with the largest 

increase in damage at seed moisture levels above 12% (Columbus & Mangialard, 1996).  

When contaminated seed is stored, A. flavus growth and consequent aflatoxin 

production primarily occur on the cottonseed kernel while some of the toxin is on the seed 

hulls (Ciegler, Kadis, & Ajl, 1973).  Higher moisture content causes higher relative 

humidity of the air infected seed will be stored which encourages more growth of A. flavus.  

Fungal invasion and decreased physical qualities are proportional to increases moisture 

content and length of storage (Robertson, Chapman, & Wilson, 1984). Cellular respiration 

occurs at a higher rate when there is more fungal growth which also contributes to higher 

moisture content. The product of water is a key product which this equation is below:  

𝐶6𝐻12𝑂6 +  𝑂2 →  𝐶𝑂2 + 𝐻2𝑂 + 𝑒𝑛𝑒𝑟𝑔𝑦 

During cellular respiration, sugar is broken down to carbon dioxide, water and 

Adenosine triphosphate (ATP). The ATP can then be used for fungal nutrition, 

metabolism, growth, and reproduction (Walker & White, 2018). The initial water content 

is low and increases as the growth of fungal species increases (Richards, 1927). Free fatty 

acids are also produced and lower the oil quality (Eckel, Borra, Lichtenstein, & Yin-

Piazza, 2007). Triglycerides are split by enzymes due to hydrolysis that result in the 

release of free fatty acids and the hydrolysis is dependent on temperature and moisture 

(Hammond, 2003). To limit the spread of aflatoxin, cottonseed must be stored at a 

moisture content of less than 10% (w.b) and dehulled seed should be stored at less than 

9% (w.b) (O'Brien et al., 2005). If the moisture content rises, then there is a need for drying 

the stored cottonseed and an air-cooling system is essential for the successful storage of 
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cottonseed. Not only does moisture content assist in the increase of aflatoxin levels, but 

the temperature is dependent on the ambient temperature and degree of ventilation in the 

storage area. Temperature should be kept below 60°F because optimal growth of aflatoxin 

is above 77°F when being stored (O'Brien et al., 2005). Cottonseed seed damage during 

harvesting, transportation, cleaning, and the ginning process can also assist in the spread 

of aflatoxin (Searcy et al., 2010). 

Atmospheric Cold Plasma 

Atmospheric cold plasma (ACP) is used in various different industries including 

textiles for the enhancement of product quality, durability, and improving bonding 

characteristics (Choudhary, Dey, Bhattacharyya, & Ghosh, 2018). ACP has also been used 

on odor emissions which tend to have negative effects on the surrounding and 

communities (Andersen, Feilberg, & Beukes, 2012). Beneficial effects have been shown 

in cancer treatment by eradicating cancer cells in-vitro without damaging the normal cells 

and significantly reduced tumor size in-vivo. ACP is a novel treatment system that is multi-

faceted and is showing promise in multiple fields (Keidar et al., 2013).  

 ACP has significantly impacted food production, agriculture, medicine, and 

environmental sectors (Bourke, Ziuzina, Boehm, Cullen, & Keener, 2018). ACP has been 

shown to have decontaminating effects on various microbial communities and minimal 

impact on food quality and the environment (Pankaj, Wan, & Keener, 2018). This novel 

non-thermal treatment technology has been shown to successfully inactivate a variety of 

microbes and inactivate mycotoxins on agricultural products such as sprout seeds, alfalfa 

seeds, carrots, cucumbers, pears, distillers wet grains, wheat grain, barley, and whole 
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peppercorns (Butscher, Loon, Waskow, Rohr, & Schuppler, 2016; Los et al., 2018; 

McClurkin-Moore, Ileleji, & Keener, 2017; Mošovská et al., 2018; Shi, Stroshine, & 

Ileleji, 2017; Wang et al., 2012). A research study’s results showed that there was a 99.3% 

reduction in the reduction of A. flavus and the aflatoxin content was decreased by 90% in 

ground nuts (Devi, Thirumdas, Sarangapani, Deshmukh, & Annapure, 2017). ACP has 

also been shown to disinfect A. flavus on beef jerky, brown rice cereal , maize, and 

hazelnuts (Dasan, Boyaci, & Mutlu, 2016; Haelim et al., 2016; Shi, Ileleji, Stroshine, 

Keener, & Jensen, 2017; Siciliano et al., 2016; Suhem, Matan, Nisoa, & Matan, 2013).  

In a recent study, higher resistance was reported in fungal spores compared to 

bacteria cells due to the difference in cytology, morphology, reproductive cycles, and 

growth (Dasan et al., 2016). The treatment is greatly affected by the physiochemical and 

physiological properties of cottonseed which include moisture content, protein 

concentration, nitrogen levels, germination, growth, and overall yield which creates 

reactive gas species (RGS). RGS react with microbes that may form on the infected 

commodity that results in the decontamination for a few hours post-treatment (Surowsky, 

Fischer, Schlueter, & Knorr, 2013). Detoxification of mycotoxin production has been 

shown to serve as a method to replace current inefficient mycotoxin removal strategies 

(Figure 3). Research shows that there are at least two different ways that ACP degrades 

aflatoxins (Shi, Cooper, Stroshine, Ileleji, & Keener, 2017). The first pathway is when a 

water molecule, hydrogen molecule, or aldehyde group is added to aflatoxin. This pathway 

relies on the hydrogen atom and hydroxyl radical which are made by the ACP system by 

the process of hydration and hydrogenation. The second pathway relies on the formation 
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of hydroxyl radical, hydrogen peroxide, and ozone which lead to epoxidation and 

oxidation. 

Figure 3. Two degradation pathways of aflatoxin B1 using atmospheric cold plasma: 

a) addition of hydorgen molecule or aldehyde group and b) epoxidation and

oxidation reactions. This figure was reprinted from (Shi, Cooper, et al., 2017).

There is potential that ACP can be used to treat A. flavus in cottonseed and decrease 

microbial load. There has been previous research that has used physical and chemical 

methods to decontaminate molds and mycotoxins in animal feeds. Heat, irradiation, and 

ultraviolet light have been shown to lower microbial growth and microbial loads (Doyle, 

Applebaum, Brackett, & Marth, 1982; Samarajeewa, Sen, Cohen, & Wei, 1990). 

Similarly, chemical treatments including chlorine, hydrogen peroxide, ozone, bisulfite, 

A B 
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ammonia, and other acids have been shown to have detoxifying effects (Dwarakanath, 

Rayner, Mann, & Dollear, 1967; Samarajeewa et al., 1990). Even though these treatments 

have been shown to decrease microbial load and mycotoxin levels, there is a considerable 

of deterioration in food quality (Holdsworth, 1997). The other nonthermal technologies, 

irradiation and high-pressure, are somewhat effective, but are time consuming and tedious 

during treatments (Devi et al., 2017). Using ACP can be an effective treatment in 

comparison to the aforementioned treatments, which can save time and cost. ACP can be 

an effective treatment for Aspergillus flavus in cottonseed.  

The treatment is greatly affected by the physiochemical and physiological 

parameters which include moisture content, protein concentration, nitrogen levels, 

germination, growth, and overall yield which creates antimicrobial species that react with 

any microbes that may be formed on the infected commodity that results in the 

decontamination for a few hours post-treatment (Surowsky et al., 2013). ACP can be 

induced in ambient conditions with the input of energy causing the neutral gases to ionize, 

this process can be done inside or outside of a package. The dielectric barrier discharges 

ionize the gases by applying a high voltage in an interdieletric space (N. Misra et al., 

2015). Reactive oxygen species (ROS) such as hydroxyl radicals, singlet oxygen 

molecules, superoxide anions, and ozone are responsible for the deactivation of microbes 

(Hiroshi et al., 2013). Barrier discharges are comprised between two electrodes at 

differential potentials, separated by dielectric materials. The prevention of an electric arc 

is due to the barrier limiting the electrodes current flow. The reaction mechanisms involve 



16 

the vibration, excitation, dissociation, attachment, and ionization of the molecular species 

by causing strong responses in the applied magnetic field (Fridman et al., 2008).  

There has a been little to no research studying the effects of ACP on cottonseed 

nutritional composition and microbial load. A. flavus has been inactivated using ACP and 

demonstrated to cause cell leakage and loss of viability (Suhem et al., 2013). Using ACP 

can also lead to the destruction of DNA and changes in cell morphology in fungal spores 

(N. Misra et al., 2019). The effects of plasma on fungi are shown in Figure 4.  

Figure 4. A summary of the effects of cold plasma species in fungal cells resulting in 

inactivation. This figure was reprinted from (N. Misra et al., 2019). 

Cottonseed is not currently packaged, but an upscaled treatment system can be 

constructed to treat larger quantities of infected cottonseed after the inoculated cottonseed 

from the healthy samples. The novel treatment can be upscaled and use in a large 
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processing facility for cottonseed. This research focuses on the laboratory scale of 

treatment within a bag, but the promising results shows the possible impacts on treating 

cottonseed by using a larger treatment container. Upscaling the ACP treatment would 

involve creating larger dielectric barriers, increase size of electrodes, and add the effect of 

gyration to ensure the surface of the cottonseed are exposed to the RGS between the 

barriers. After the cottonseed is identified as being contaminated, these cottonseeds can 

then be treated quickly, lost cost, and at high volumes. 
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CHAPTER III 

INCREASED MOISTURE CONTENT EFFECTS ON KEY PHYSICAL PROPERTIES 

OF FUZZY COTTONSEED; A MEASURED RESPONSE IN MICROBIAL 

ACTIVITY, COLOR, AND AFLATOXIN CONTENT 

Introduction 

Physical properties are important for proper design of machines and processes to 

harvest, handle, and store cottonseed (Udomkun et al., 2017). During the storage of 

cottonseed, abiotic factors, such as high humidity and ambient temperatures, are linked to 

fungal infection of cottonseed (Lillehoj, Wall, & Bowersm, 1987). When ideal conditions 

for Aspergillus flavus growth on cottonseed occur, discoloration, rotting, and development 

of off-odors and off-flavors. Changes in the physical properties of cottonseed can be used 

to monitor and detect this deterioration due to post-harvest fungal contamination and 

subsequent production of aflatoxin. 

Physical properties have been used for sorting clean from mycotoxin-contaminated 

stored grains and other high-value products such as cereals, maize, cocoa beans, and coffee 

beans (Karlovsky et al., 2016). Such physical properties include: dimensions, projected 

area, sphericity, mass, volume, density, and surface area, these properties may also be 

important in cottonseed processing. Size and sphericity affect cleaning and storage of 

cottonseed in seed bins. after the removal of fibers at cotton gins  (Shaw, 1962). The 

projected area of cottonseed affects drag force, which ultimately affects pneumatic 

conveying (Ashley, Thomas, Holt, & Valco, 2018). In the design of air ducts for 

cottonseed storage, cottonseed surface area must be considered to produce even airflow 
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throughout the aeration process (Groves & Bourland, 2010). Volume, mass, and density 

are important in the cleaning of undesirable products in cottonseed on oscillating chaffers 

(Azadzadeh, 2014). Likewise, color, moisture content and color analysis are often used to 

separate out spoiled grain which could lead to major quality issues in stored agricultural 

commodities including rice, wheat, and soybeans  (Champathi Gunathilake, Bhat, Singh, 

& Tharanga Kahandawala, 2019; Nadvornikova, Banout, Herak, & Verner, 2018; Ponce-

García, Ramírez-Wong, Escalante-Aburto, Torres-Chávez, & Serna-Saldivar, 2017). 

Two studies showed correlations between multiple physical properties in fuzzy 

and delinted cottonseed. The first study showed a linear relationship between moisture 

content and cottonseed dimensions, sphericity, 1000 seed mass, projected area, and true 

density (Ozarslan, 2002). Manimehalai and Viswanathan (2006) demonstrated that the 

individual mass of a cottonseed affects similar physical properties in fuzzy cottonseed 

(Manimehalai & Viswanathan, 2006). The results mirrored the previous study, as mass 

positively correlated with increased dimensions, sphericity, 1000 seed mass, projected 

area, particle density, and volume. These studies showed the importance of physical 

properties in processing delinted and fuzzy cottonseed. Higher microbial load can change 

various physical properties such as mass, density, aflatoxin content, and cottonseed 

appearance in cottonseed (Koltun, Gardner, Dollear, & Rayner, 1973). The study showed 

that aflatoxin content increased with decreasing seed density. However, no explanation 

for this relationship was given.  

Cateye fluorescence, yellow-greenish fluorescence observed in the linters, was 

used in another study to determine the relationship between density, aflatoxin 
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contamination, and physical appearance under a long-wave ultraviolet light. Lower 

density was associated with higher aflatoxin content, but the results were not discussed. 

From this study, sorting of ginned fuzzy cottonseed was ineffective due to seeds having 

cateye fluorescence, but no aflatoxin contamination  (Lee, Cucullu, Pons, & Russell, 

1977). The previous studies suggest that sorting cottonseeds by a few physical properties, 

such as physical appearance and mass, would not be successful. However, the use of 

multiple physical properties for sorting may be promising. There is no research correlating 

multiple physical properties and aflatoxin levels in cottonseed. 

Previous research has shown that sorting corn by size and density can result in an 

84% reduction of aflatoxin by removing the fine material (Shi, Stroshine, et al., 2017). In 

fact, cleaning and sorting of other agricultural commodities before storage can lead to 

better storage techniques by removing smaller kernels and fine materials (Ojiambo et al., 

2018). In fact, best practices are to clean and sort agricultural commodities that are 

susceptible to contamination before storage by removing smaller kernels and fine 

materials because this improves aflatoxin management practices (Ojiambo et al., 2018). 

A better understanding of cottonseed physical properties and their relationship to 

aflatoxin and moisture content is needed, which can lead to more efficient postharvest 

sorting operations. This information is especially important for designing equipment to 

handle fuzzy cottonseed during the postharvest processing of cottonseed (Figure 2). 

Currently, the only sorting involved in the processing of cottonseed is the removal of 

unwanted material such as sticks and dirt during cleaning. With the intention to combat 

the negative economic impact of aflatoxin contamination of cottonseed, this study 
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explored the usage of physical properties to sort cottonseed prior to processing. Specific 

objectives for this study were to: 1) determine the differences between dimensions, 

projected area, sphericity, mass, volume, particle density, and surface area distributions of 

healthy and contaminated cottonseed, 2) determine the effects of physical properties on 

aflatoxin levels, 3) understand the effect of moisture content of cottonseed on aflatoxin 

levels. The conclusions from this study can be applied to develop techniques to reduce 

aflatoxin contamination of cottonseed during post-harvest sorting operations. 

Methods and Material 

Clean fuzzy cottonseed was obtained from the Cotton Gin Lab on Texas A&M 

University’s campus. Initially, the moisture content was determined by oven drying three 

5 gram (g) samples of cottonseed at 105 ± 2 ℃ for 14.5 hours (Griffin Jr, 1980). The initial 

moisture content of the seeds sampled was determined to be 8.3% (d.b.). There was a total 

of three groups which included an experimental group and two control sample groups. 

Each group had 350 grams (g) of fuzzy cottonseed and were labeled as the following: 1) 

clean (control), 2) wetted (control), 3) inoculated (experimental). A concentration of 

9.6× 104 CFU/g of Aspergillus flavus (Carolina Biological Supply Company, Burlington,

NC) was concentrated into Triton X-100 solution and Aflatoxin B1 (150 ppb) dissolved in 

DMSO (Aflatoxin B1 5MG, Sigma Aldrich, Darmstadt, Germany) A. Flavus and aflatoxin 

B1 was added to the inoculated by spraying then mixing every 30 minutes for 3 hours. 

The same amount of water was added to the wetted cottonseed sample. Both the 

inoculated and wetted sample group were thoroughly mixed every 30 minutes for 3 hours. 
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Cottonseed samples at the desired moisture content of 25% were prepared by using the 

following equation (Izli, 2015):  

𝑄 =  
𝑊𝑖 (𝑀𝑓 −𝑀𝑖 )

100−𝑀𝑓

where Q is the mass of the water added (g), Wi the initial mass of the sample (g), Mi the 

initial moisture content of the sample (% d.b.), and Mf is the final moisture content of the 

sample (% d.b.). The inoculated and wetted sample were placed in the freezer at 5℃ for 7 

days to allow for uptake of water and limit the microbial growth without the influence of 

humidity and temperature. The inoculated and wetted cottonseed sample were then placed 

in a relative humidity and temperature chamber (Percival Scientific, Inc., Perry, IA) at 

25℃ and 85% relative humidity (rh) for 21 days which ensured that any presence of 

toxigenic A. flavus had the opportunity to produce additional aflatoxins  (Ellis, Smith, 

Simpson, Ramaswamy, & Doyon, 1994b). Fifty random seeds were taken from the 

control, wetted, and inoculated sample and examined for the experimental physical 

properties. 

To measure aflatoxin levels the Envirologix Aflatoxin Flex kit (Envirologix Inc., 

Portland, ME)) was used for this experiment. The Envirologix Aflatoxin Flex kit is 

approved by the Association of Official Analytical Chemists (AOAC) and the Grain 

Elevator and Processing Society (GEAPS). Twenty-five grams of cottonseed was removed 

from the clean, wetted, and inoculated was ground and tested in triplicates. The ground 

cottonseed was combined with 100 milliliters (ml) of 50% ethanol and the elution buffer 

pouch of the Envirologix kit. The sample was vigorously shaken for two minutes and 

filtered with an approved filter. 100µl of the liquid was obtained and added to 100µl of 
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the Envirologix kit’s DB5 buffer. A test strip was added for 5 minutes and the color change 

of the test strip was determined by the Envirologix system color scanner, which has a 

minimum detection threshold of 1ppb (QuickScan, Envirologix Inc., Portland, ME). 

Plate counts were used to assess microbial growth. A. flavus was counted by 

identifying the fungus in color and growth stages.  Immediately after removing the wetted 

and inoculated cottonseed sample from the relative humidity and temperature chamber, 

5g from all three groups were removed and placed in a sterile 15ml tube with 8.3 ml of 

0.05% Triton X 100 solution. The samples were then shaken for 2 minutes. For the control, 

uninoculated, and inoculated groups, 100 µL of the wash was plated onto 100 mm × 15 

mm sterile petri dishes containing Potato Dextrose Agar (Sigma Aldrich, Merck KGaA, 

Darmstadt, Germany). Three replicates from each group were prepared and plated. After 

7 days of incubation at 25°C, colony forming units (CFUs) per ml were counted to 

compare microbial growth of different treatments. Growth curves were developed by 

plotting the mean colony diameters (mm) of the diluted samples against 72 hours of 

incubation time to estimate logistic regression of the growth curves. The logistic growth 

model equation used: 

𝑑𝑁

𝑑𝑡
= 𝑟𝑚𝑎𝑥(

𝐾 − 𝑁

𝐾
)𝑁 

Where rmax is the growth rate, K is the carrying capacity, and N is the population size 

currently present. This model was chosen because of the limited growth capability and 

resources which result in which result in the lag phase, exponential phase, and the death 

phase. 
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To evaluate the color differences between the samples a HunterLab Labscan XE 

spectrocolorimeter (Hunter Associates Laboratory, Inc., Reston, VA) was used with a port 

size of 10.1 mm and a view area of 6.35 mm. The Hunter L, a, b is a uniform color scale 

that plots the differences in points in the color space which is organized in a cube form. 

The L axis represents the darkest black at L=0 and brightest white at L=100. The a axis 

represents green and red, with green correlating to the negative direction and red in the 

positive direction. The b axis represents blue and yellow, with blue correlating to the 

negative direction and yellow in the positive direction. The colorimeter was calibrated 

before each measurement, using black and white color tiles. Color of the cottonseed was 

assessed as a possible way to sort infected cottonseed. Three readings for each sample 

were tested with the colorimeter.  

Physical Properties 

Major, minor, and intermediate diameters were measured by a digital caliper to the 

nearest 0.1 mm. A total of 50 seeds were randomly selected and characterized individually 

from each of the cottonseed sample groups. The sphericity was calculated by using the 

equation: 

𝑆 =
(𝐿𝑊𝑇)

1
3

𝐿

where: S is the sphericity, the major, minor, and intermediate diameters are length (L), 

width (W), and thickness (T) respectively (Ozarslan, 2002). 

Projected area 

Using the relationship suggested by Manimehalai et al. (2006), the projected area 

of cottonseed was calculated by:  
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𝐴 =
𝜋𝐿𝐿1

4

𝐿1 =
𝐿+𝑊

2

where A is the projected area in mm2, L is the length of the seed, and L1 is the average of 

length and width in mm. The same 50 seed dimensions from the previous section were 

used to calculate the projected area.  

The surface area was calculated by modeling the cotton seed as a cone with a 

hemispherical base with the diameters obtained previously (Hodson, 1920). The shape 

was used due to the nonuniform, conical shape, of cottonseed makes it difficult to measure 

the surface area. Since there is no exact equation for calculating the surface area of a 

cottonseed, the following equation was designed specifically for this work to model the 

shape (Hodson, 1920):  

𝑆𝐴𝑆 = 4𝜋 (
𝑊

2
)

2

𝑆𝐴𝐶 = 𝜋 (
𝑊

2
) 𝑙  

𝑆𝐴𝑆+𝐶 = 4𝜋 (
𝑊

2
)

2

+ 𝜋 (
𝑊

2
) √(𝐿 −

𝑊

2
)

2

+ (
𝑊

2
)
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where: SAS is the surface area of the sphere, SAC is the surface area of the cone, SAS+C is 

the surface area of the cone with a hemispherical base, and 𝑙 is the length of the cone 

(Figure 5). Figure 5 is a sketch of the modeled shape, combining the cone and 

hemispherical base, next to the sketch of a cottonseed.  
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Figure 5. Sketch of surface area of the modeled shape for cottonseed as a cone with 

a hemispherical base. This figure was adapted  (Ritchie, Bednarz, Jost, & Brown, 

2007). 

A pycnometer (Micromeritics, USA; Model AccuPyc 1330) determined the 

volume of individual cottonseed in order to calculate the density, helium was used as a fill 

for the empty spaces in the pycnometer around the cottonseed. The same individual seed 

mass was measured an electronic balance of .001g accuracy (American Weigh, USA; 

Mode GEMNI-20). These properties were measured in triplicates and averaged.  

Statistical Analysis 

Statistical analyses were performed using Origin software (OriginLab, 

Northhampton MA). The one-way ANOVA was used to determine if the treatment effect 

was significant.  A Shapiro-Wilk test was performed to determine if the sample data was 

drawn from a normally distributed population. Tukey’s test was used to compare means. 

A 5% level of significance was used for all statistical tests.  

𝐹 =
Σ𝑛𝑗(𝑋�̅� − �̅�)

2
/(𝑘 − 1)

ΣΣ(�̅� − 𝑋�̅�)
2

/(𝑁 − 𝑘)

Where F is the degrees of freedom, nj is the sample size, jth group, 𝑋�̅� is the sample mean

in the jth group, and �̅� is the overall mean. 
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𝑊 =
(∑ 𝑎𝑖𝑥(𝑖))𝑛

𝑖=1
2

(∑ 𝑥𝑖 − �̅�)𝑛
𝑖=1

2

Where xi is the order random sample values and ai are constants generated from the 

covariances, variance, and means of the sample from a normally distributed sample.  

𝐻𝑆𝐷 =  
𝑀𝑖 − 𝑀𝑗

√
𝑀𝑆𝑤

𝑛ℎ

Where Mi – Mj is the difference between the pair of the means to calculate this Mi should 

be larger than Mj. MSw is the mean square within, the n is the number in the group.  

Results and Discussion 

Seed Appearance, Moisture Content, Microbial Analysis, and Aflatoxin Levels 

The Hunter L,a,b analysis analyzed the color of the cottonseed sample groups 

before testing physical parameters (Table 1). After averaging values, the cottonseed 

appeared to be either a white, green, or black color indicating a difference in appearance 

between the three sample groups. The control cottonseed had higher L values, which 

correlated to a whiter sample. This control cottonseed should have a whiter color, as the 

linters from the cotton are white and microbial degradation was not expected with these 

samples. The wetted sample that was placed in the relative humidity temperature chamber 

had negative a value, indicating the sample had a green tint. The green tint indicates 

microbiological growth on the surface of the cottonseed. This would be expected since the 

wetted sample was stored at a temperature and humidity which would encourage microbial 

growth. The inoculated sample had L values that were lower than the control and wetted 

sample, indicating a greyish color as L spans the white to black spectrum. This darker  
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color can be attributed to the presence of microbes. 

Table 1. The average Hunter Lab XE scanner values of Cottonseed Samples.  a,b = 

significant at 𝜶 = 𝟎. 𝟎𝟓. 

Table 2. The averages of the microbial load, moisture content, and aflatoxin levels in 

the control, and inoculated sample. a,b = significant at 𝜶 = 𝟎. 𝟎𝟓 

After the 21 days of storage, moisture content was 8.29%, 25.9%, and 48.9% (d.b.) 

for the control, wetted, and inoculated sample, respectively (Table 2). The wetted and 

inoculated sample were initially stored with the same moisture content, but the values 

changed over time. The inoculated sample had significantly higher microbial growth in 

comparison to the wetted and control sample. A 4-log and 10 log-difference of microbial 

growth compared to wetted and control sample, respectively (Table 2). 

The moisture content was higher in the inoculated sample because of the larger 

microbial load actively growing on the sample during storage. The significant increase of 

growth is indicative to the available moisture in the sample, therefore decreasing moisture 

in storage can lead to a less hospitable environment for the microbial growth to occur. 

Similar studies with stored rice, maize, sorghum, chestnuts, and distillers wet grains show 

Hunter L,a,b Measurements 

Cottonseed Sample L a b 

Control 46.9a 1.46 a 6.86 

Wetted 40.6a -0.3 b 6.74 

Inoculated 23.7b 1.42 a 5.64 

Cottonseed 

Sample 

Microbial Load 

(CFU/ml) 

Moisture Content, 

(%d.b.) 

Aflatoxin Level 

(ppb) 

Control 1.5× 104 𝑎 8.29 % 0.00 

Wetted 1.2× 108 𝑎 25.9% 0.00 

Inoculated 6.7× 1014 𝑏 48.9% >380
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that moisture content plays a large role in encouraging the growth of Aspergillus flavus 

and the subsequent mycotoxin production in stored grains (Aydin, Aksu, & Gunsen, 2011; 

McClurkin & Ileleji, 2015; Mpuchane, Taligoola, Gashe, & Matsheka, 1997; Prencipe et 

al., 2018).  

Aflatoxin levels were only detected in the inoculated sample. The results showed 

aflatoxin levels of 0 ppb, 0 ppb, and above 380 ppb for the control, wetted, and inoculated 

sample, respectively (Table 2). The inoculated sample tested above the FDA action level 

of 20 ppb. The difference between the control and the inoculated sample results will be 

used in the determination of the effect of aflatoxin on the cottonseed sample and the 

resulting understanding of sorting of seed based on moisture content and the culmination 

of physical properties in this work. 

Microbial Growth Analysis and Modeling 

The logistics growth model showed that there was a significantly slower growth 

rate in the control cottonseed sample. The inoculated sample had a faster growth rate when 

compared to wetted sample was due to the higher population size present on the inoculated 

sample. The R-squared (R2) values indicate the accuracy of the primary model developed 

with the R2 values being 0.99, 0.96, and 0.94 for the control, wetted, and inoculated 

sample, respectively. The R-squared (R2) values indicate the accuracy of the primary 

model developed with the R2 values being 0.99, 0.96, and 0.94 for the control, wetted and 

inoculated sample, respectively. 

The higher values represent smaller differences between the observed data and 

predicted values. As can be seen in Figure 6, the larger initial population size caused the 
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rate to be faster the carrying capacity to be at a higher microbial load. There were limited 

resources such as PDA and space available on the plate the death of the fungal cells 

plateaued The A. flavus concentration in the inoculated sample was significantly higher 

than the other two sample groups which resulted in an increased amount of growth 

occurring. This means that there is less intraspecific competition occurring which allow 

for more population sustainability. A study verified that there is an inverse relationship 

between final community size and inoculum dilution (Franklin, Garland, Bolster, & Mills, 

2001).  

Figure 6. The modeling of predicted values in the microbial growth over 72 hours. 
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Seed Dimensions and Sphericity 

The average major, minor, and intermediate diameter was larger as microbial 

growth increased. The increase of growth contributed to higher moisture content resulting 

in the swelling of the seed. The intake of water in to the intercellular spaces of the 

cottonseed caused the dimensions to get larger. Similar to previous studies, this study 

shows that there is a positive correlation between moisture content and size dimensions 

which was reported by Ozarslan (2002) for delinted cottonseed and for rice  (Kibar & 

Ozturk, 2008; Ozarslan, 2002). The sphericity of the seed was not significantly different 

between the sample groups (Table 3, Figure 7d). This result suggests that the roundness 

of the cottonseed would not be useful in identifying infected seeds for sorting methods 

during processing.  

The Shapiro-Wilk test indicated that cottonseed major, intermediate, and minor 

diameters were normally distributed.  The growth of A. flavus did not have an impact on 

the sphericity and the shape of cottonseed was not significantly different between the three 

cottonseed groups. These results show that the dimensions alone cannot indicate that the 

seed is infected or not. If the cotton ginner can identify the variety of cottonseed and adjust 

machinery for the desired seeds because cottonseed varies in size, then an implementation 

of sorting can be successful by adjusting for the typical size for the specific variety. Sieves 

can help with separating by size of seed and this results from this research suggest larger 

sized seeds can indicate a high moisture content.  

High moisture is associated with higher microbial growth, which may lead to 

subsequent mycotoxin production. The combination of seed dimensions, moisture content, 
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and color can indicate the susceptibility of cottonseed being infected. Similar to 

Nahiemien et al. (2006), we found that values of the sphericity in fuzzy cottonseed were 

not significantly different with respect to sample groups tested. However, Shi et al. (2017) 

reported sphericity being statistically significant between moldy and healthy corn kernels.  

A. flavus did not have a significant impact on cottonseed because of the consumption of

the fungus is mostly occurring inside the hull which allowed for the seed shape to stay the 

same. Unlike the cottonseed, A. flavus consumption on a corn is on the whole exposed 

kernel which significantly changes the shape. 

In Figure 7, the mean and the distribution of seed size in the control, wetted and 

the inoculated sample groups are shown. For this specific cottonseed variety, the seed with 

a major diameter exceeding 10.1 mm could be considered infected and removed from the 

process stream (Figure 7a). If the contaminated seed lot is poorly sampled and gets to the 

oil milling facility, then there is a need to be able to separate some and larger seed with 

high moisture content may be infected. Adding in a sorting step based on dimensions can 

help eliminate potential infected cottonseed. The point at which the distribution of the 

control and wetted sample overlap in size indicates an ideal threshold for determining if 

the cottonseed is contaminated.  The major diameter distributions for the two samples 

intersects around 9.2 mm. Anything above 9.2 mm should be removed from the sample 

due to the possibility of additional cottonseed being contaminated. Similar results were 

found with the minor diameter, with infected seeds being larger than 4.9 mm. The 

intermediate diameter threshold was 5.2 mm (Figure 7b and 7c). Figure 7d shows overlap 
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of the control and inoculated cottonseed samples, also indicating there was no significant 

difference in sphericity between the two groups. 

Figure 7. Distribution results showing differences in control, wetted, inoculated 

sample on major diameter (a), minor diameter (b), intermediate diameter (c), and 

sphericity (d). 

A B 

D C 
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Table 3. The average measurements of the dimensions, sphericity, mass, volume, 

density, surface areas, and projected area for the control, wetted, and inoculated 

sample groups. a,b,c = significant at 𝜶 = 𝟎. 𝟎𝟓 

Projected Area 

The average projected area increased with the increase in microbial load. The 

projected area was calculated from the measured diameters. The increase in the 

cottonseed’s dimensions due to the swelling of the seed which increased the projected 

area. At the 0.05 level, the population means were different, indicating the possibility of 

sorting seeds during pneumatic conveying of the seed (Table 3).  Cottonseed projected 

area was normally distributed. Similar results were shown for bare and fuzzy cottonseed, 

legume seeds, and spinach seeds (Altuntas & Demirtola, 2007; Kilickanm A., Ucer, & 

Yalcin, 2010; Ozarslan, 2002). Determining design parameters for cleaning and separating 

agricultural products is essential for processing cottonseed (Ramesh et al., 2015). The 

inoculated sample has a large distribution for projected area (41mm to 72mm). This value 

could be used to determine if the sample is contaminated with potentially toxigenic fungal 

Treatment 

Physical Properties Control Wetted Inoculated F Value Prob>F 

Major Diameter (mm) 8.3 a 8.9 b 9.8 c 94.23 4.595E-27 

Intermediate Diameter 

(mm) 
4.7 a 5.0 b 5.6 c 50.31 

2.266E-17 

Minor Diameter (mm) 4.2 a 4.6 b 4.9 c 38.03 4.445E-14 

Sphericity 0.66 0.66 0.65 0.510 0.6013 

Projected Area (mm2) 40.53 a 47.09 b 56.72 c 107.6 1.641E-29 

Surface Area (mm2)  234.4 a 302.8 b 368.4 c 66.57 2.598E-21 

Mass (g) 0.094 a 0.106 b 0.106 b 4.175 0.017 

Volume (cm3) 0.066 a 0.067 a 0.080 b 9.308 1.562E-4 

Density (g/cm3)  1.433 a 1.592 b 1.321 c 106.7 2.382E-29 
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species. The distribution of the projected area of the seeds showed that for this cottonseed, 

a projected area greater than 47 mm2 could be considered infected (Figure 8a).  

Figure 8. Distribution results showing significant differences in control and 

inoculated sample on projected area (a) and surface area (b). 

Surface Area 

Similar to projected area, surface area is dependent on the cottonseed dimensions. 

As the dimensions increased due to microbial growth and increased seed swelling the 

surface area also increased in size. Surface area is not used in sorting, but it has potential 

to be used with estimating with machine vision. Few studies have calculated the surface 

area of cottonseed. However, we noted the surface area increased with the increase of A. 

flavus growth. Surface area was normally distributed, and treatment means were 

significantly different. Any cottonseed larger than 300 mm2 should be considered infected 

(Figure 8b).  

A B 
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Individual Seed Mass, Volume, and Density 

The average individual seed mass was different, but differences were small (Table 

3). Individual seed mass did not increase between wetted and inoculated samples even 

though there was a difference in moisture content and microbial load (Table 3). The 

Shapiro-Wilk test showed that the data from the control and wetted sample groups for the 

volume and mass were drawn from a normally distributed population.  However, the 

inoculated sample for the mass and volume was not from a normally distributed 

population. At the 0.05 level, the control’s mass was significantly different from the other 

two cottonseed sample groups. This result indicates that there is not a possibility of sorting 

cottonseed based on mass alone similar to results from the study by Cucullu (1977). Table 

3 indicates that there were differences between the distribution of wetted and inoculated 

samples, but not as significant as other physical properties. Similar results were reported 

for bare cottonseed and flax seed (Coşkuner & Karababa, 2007; Ozarslan, 2002). The 

inoculated samples have a wide distribution of seed mass (Figure 9a). The majority of the 

sample mass for the inoculated samples were within the same range as the control samples, 

below 0.115 g. When a sample mass is greater than 0.115 g it should be rejected as it is 

likely that it is contaminated with A. flavus and aflatoxin that will proliferate in storage, 

leading to major quality issues. 

Similar results were seen for seed volume, since this property is dependent on seed 

dimensions. With regards to density, the control, wetted, and inoculated sample groups 

were all from a normally distributed population. The density decreased with the increase 

in microbial load. In the inoculated sample, A. flavus breaks down the protein-rich kernel 
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inside the hull (Koltun 1973).  The significant difference between the inoculated and 

wetted sample suggest that with the addition of A. flavus the density of the cottonseed 

changed. Even though there were similarities in mass there was consumption of the kernel 

that decreased the kernel density significantly. The fungal consumption of the kernel led 

to the increased production of aflatoxin in the inoculated samples. The distribution of the 

cottonseed’s density showed that any cottonseed below 1.4 g/cm3 would have to be 

removed by sorting to decrease the chance of future contamination (Figure 9c). 

Figure 9. Distribution results showing significant differences in control and 

inoculated sample on mass (a), volume (b), and density (c). 

A B 

C 

(g
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Conclusions 

This study shows the potential of separating according to physical properties 

cottonseed that can be indicative to microbial load and aflatoxin contamination. Infected 

cottonseeds could be identified based on physical appearance, dimensions, projected area, 

surface area, or density mass, volume, and sphericity of the seed would likely not be useful 

because there were no significant differences between the samples when aflatoxin was 

introduced. Sorting based on the physical properties could lead to cleaner and healthier 

feed and allow for the infected seeds to be treated for future use in animal feed production 

or harvesting. By identifying the differences in physical properties of cottonseed samples 

with high microbial levels and aflatoxin above the FDA action levels, can also provide for 

better storage conditions by sorting out infected cottonseed, reducing the instances in 

storage. The addition of moisture and aflatoxin increased the presence of microbial 

communities after 21 days of storage at 25℃ with 85% rH in the inoculated sample. Future 

work from this group will focus on treatment methods to reduce microbial contamination 

and aflatoxin levels in cottonseed. A recommendation for future studies is to determine 

what effect A. flavus has on cottonseed quality, for example, nutritional composition or 

tensile strength of the seed. Future studies can lead to understanding the impact of the A. 

flavus of cottonseed physical properties.to make Cottonseed sorting can be more feasible 

in addition to the other physical properties that were examined in this research study. 



CHAPTER IV 

INCREASE IN AFLATOXIN LEVELS DURING COTTONSEED PROCESSING 

Introduction 

Typically, a ton of cottonseed produces around 1440 pounds of cottonseed meal 

and hulls which ultimately is fed to dairy and beef cattle. Aflatoxin-infected cottonseed 

can have negative changes in the odor, taste, appearance, and nutritional value (Goldblatt, 

1968). Cottonseed provides a good supply of protein, fat, and fiber that is ideal for 

livestock rations (Osborne & Mendel, 1917). The largest market for cottonseed meal, the 

dairy industry, is negatively affected by aflatoxin contaminated animal meal (Wu et al., 

2008). Aflatoxin levels are tested to ensure the animal feed is  within the action levels 

recommended by the U.S. Food and Drug Administration (FDA Compliance Guide, 

2019).   

For the dry-grind process for dried distillers’ grains and solubles (DDGS), studies 

have shown that mycotoxin accumulation can increase up to three times in the co-products 

(Bennett & Richard, 1996; Bothast, Bennett, Vancauwenberge, & Richard, 1992; Murthy 

et al., 2005; Wu & Munkvold, 2008a). Throughout the postharvest processing of 

cottonseed, aflatoxin levels mostly likely increase when the whole cottonseed is milled 

into cottonseed meal and the toxin is now highly concentrated. Aflatoxin contamination 

can be a problem in crushing cottonseed due to infected cottonseeds’ susceptibility to 

breakage, further contamination of end products, and toxicity to the consumer.   

The cottonseed crushing process consists of cleaning, delinting, hull removal, 

kernel flaking, oil extraction, and meal formation. Cleaning consists of removing materials 

39 
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such as leaves, stems, and dirt. Delinting either uses acid for complete removal of linters, 

or is mechanically done, leaving the remaining percent by weight is 1-2% (Holt et al., 

2017). If the cottonseed is being used only for oil and meal, seed is mechanically delinted, 

which is less dangerous for workers because there are no hazardous chemicals used 

(Delouche, 1986). After the seed is delinted, the hulls and kernels are separated by friction 

and sieves. If the cottonseed is being used only for oil and meal, seed is mechanically 

delinted, which is less dangerous for workers because there are no hazardous chemicals 

used (Delouche, 1986). After the seed is delinted, the hulls and kernels are separated by 

friction and sieves.  

The hulls may be blended with cottonseed meal which offer advantages in 

transportation, ease of handling, and protein content (Blasi & Drouillard, 2002). In 

industry, the hulls and kernels are sold separately as well. Following dehulling, the kernels 

are flaked (flattened) and then the flakes are placed in a solvent for the extraction of the 

oil. The use of extrusion, applying high heat and pressure following oil extraction can 

decrease aflatoxin levels by 50%, with the increase in passes through the extruder (Buser 

& Abbas, 2001). After four passes through the extruder, aflatoxin levels decreased by 23% 

each pass. Even though there was a decrease in aflatoxins, valuable time was wasted by 

increasing the number of passes, high aflatoxin levels were still present. The are many 

reports on using extrusion to reduce aflatoxin levels in cottonseed meal, but many of the 

processes are conflicting in  the optimal pressure and heat needed during extrusion (Buser, 

1999). There is a need to accurately see how much of an increase in aflatoxin levels can 

occur when processing cottonseed. This information leads to accurately determining how 
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much aflatoxin will be present after processing. The meal can then be treated using to 

reduce aflatoxin levels based on the starting amount without the need for multiple passes 

through an extruder.  

Other than meal, cottonseed can be processed for the use of planting for the next 

harvest season. There is a great importance in having seed that can easily flow through 

planting machinery because fuzzy seeds can result in clumping throughout the planting 

process which results in the use of sulfuric acid to delint the seeds (The Encyclopedia of 

Seeds: Science, Technology and Uses, 2006). The remaining cottonseed not being used 

for replanting will be used for meal. Previous research has shown the impact of mechanical 

processing on aflatoxin levels, no research has been shown on how acid delinting will 

affect aflatoxin levels.  

Typically, cottonseed meal is tested for crude protein, fat acidity, and aflatoxin 

levels. Cottonseed meal has similar protein degradability to soybean meal and is important 

for muscle growth in cattle. Fat acidity levels are measured because it serves as an 

indication of quality loss due to cottonseed deterioration (White, 2000). Proper storage 

and reduction of moisture content usually contribute to lower fat acidity levels. Previous 

studies have shown a positive correlation between aflatoxin levels and free fatty acid 

content (Bulaong & Dharmaputra, 2002). Fat acidity levels increase because of the 

breakdown of fats by A. flavus. 

Evaluating the concentrated amount in cottonseed meal can help in predicting if 

cottonseed meal will be below FDA action levels. Understanding the effect of acid 

delinting on cottonseed aflatoxin levels can show impact of different processing methods. 
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There have been no studies that measure the increase of aflatoxin levels when concentrated 

to cottonseed meal. This study quantifies the increase in aflatoxin concentration 

throughout crushing based on properties of the whole cottonseed. The objectives of the 

research was to 1) quantify the increase in aflatoxin levels throughout the post-harvest 

processing by analyzing the whole seed and the ending cottonseed meal, 2) record the 

differences in aflatoxin levels and microbial load in different cottonseed processing, and 

3) observe the changes in fat acidity levels and crude protein content in aflatoxin infected

cottonseed. 

Materials and Methods 

Clean fuzzy cottonseed was obtained from the Cotton Gin Lab on Texas A&M 

University campus. For this study, 3 kg of cottonseed was stored at ambient temperature. 

Initially, the moisture content was determined by oven drying three 5g samples of 

cottonseed at 105 ± 2 ℃ for 14.5 hours (Griffin Jr, 1980). The initial moisture content of 

the seeds sampled was determined to be 7.9% (d.b.). The cottonseed was separated into 

two 250 grams of fuzzy cottonseed that would be mechanically and acid delinted which 

each included control, uninoculated (16.3%), and the aflatoxin inoculated (21.9%) sample 

group. A concentration of 9.6× 104 CFU/g of Aspergillus flavus (Carolina Biological

Supply Company, Burlington, NC) was concentrated into Triton X-100 solution and 

Aflatoxin B1 (150 ppb) dissolved in DMSO (Aflatoxin B1 5MG, Sigma Aldrich, 

Darmstadt, Germany) A. Flavus and aflatoxin B1 was added to the inoculated sample by 

spraying then mixing every 30 minutes for 3 hours. 
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The uninoculated and inoculated sample were then placed in the relative humidity 

and temperature chamber (Percival Scientific, Inc., Perry, IA) at 25℃ with 85% relative 

humidity (rh) for 21 days which ensured that any presence of toxigenic Aspergillus flavus 

had the opportunity to metabolize into aflatoxin (Ellis, Smith, Simpson, Ramaswamy, & 

Doyon, 1994a).  

Acid and Mechanical Delinting Process 

 In a 100ml beaker, 75ml of dilute 10% sulfuric acid and a Triton X-1003

(surfactant), at .15% by volume was added to the acid to ensure complete wetting of the 

fuzzy cottonseed for acid delinting. One hundred grams of fuzzy cottonseed of each 

sample group was placed in sterile stainless-steel bowls with the acid solution and stirred 

for three minutes with a wooden spoon. The acid was then neutralized by 100 ml 1:1 

sodium bicarbonate/water solution and washed 4 times with deionized water. Following 

delinting, seeds were dried in an oven for 4-6 hours at 105 ± 2 ℃.  

One hundred grams of fuzzy cottonseed of each sample group was dehulled in a 

rice dehuller to get mechanically delinted and dehulled cottonseed. The processing rate 

was 20g/min and the products of the dehulling were separated by using a size 30 sieve 

(0.600 mm openings). The acid delinted cottonseed was dehulled by hand. 

After the hulls, kernels, and fuzz were separated for each process, the kernels were 

flaked in order to maximize oil extraction. A modified barley mill was used to flake the 

seed (Figure 10). After the flaking process, the flakes were cooked at 190 °F (87.8 °C) for 

120 minutes (O'Brien et al., 2005).  
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Figure 10. The modified barley mill was used to flake the whole kernels.  

Meal Retrieval from Oil Extraction 

For oil extraction, 375 ml of 95% ethanol was added to 25.0g of flaked cottonseed 

meats, corresponding to a solvent to solid ratio of 15:1 (Saxena, Sharma, & Sambi, 2011). 

The flaked kernels and extraction solvent were stored at 4 C for 24 hours. The oil solvents 

were filtered out of the solids and the meal was placed in the oven at 105 ± 2 ℃ for 2 

hours. 

Microbial Analysis 

The number of colonies was counted for each sample group to measure the colony 

forming units (CFUs). Immediately after removing the wetted and inoculated sample from 

relative humidity and temperature chamber, 5g from each sample group was removed and 

placed in a sterile 15ml tube with 8.3 ml of 0.05% Triton X-100 solution. The samples 

were then shaken for 2 minutes. For each sample group, 100 µL of the wash was plated 
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onto 100 mm × 15 mm sterile Petri-dishes containing Potato Dextrose Agar (Sigma-

Aldrich, Merck KGaA, Darmstadt, Germany). Three replicates for each sample group 

were prepared and plated.  

Aflatoxin Levels 

To measure aflatoxin levels the Envirologix Aflatoxin Flex kit (Envirologix Inc., 

Portland, ME)) was purchased and used for this experiment. The Envirologix Aflatoxin 

Flex kit is approved by the Association of Official Analytical Chemists (AOAC) and the 

Grain Elevator and Processing Society (GEAPS). Twenty-five grams of cottonseed was 

removed from each sample group, ground and tested in triplicate. The ground cottonseed 

was combined with 100ml of 50% ethanol and the elution buffer pouch. After the sample 

was vigorously shaken for 2 minutes and filtered with an approved coffee filter, 100µl of 

the liquid was obtained and added to 100µl of the Envirologix kit’s DB5 buffer. A test 

strip was added for 5 minutes and the color change of the test strip was determined by the 

Envirologix system color scanner with the minimum detection of 1ppb (QuickScan, 

Envirologix Inc., Portland, ME). The whole fuzzy cottonseed and the meal were analyzed 

for control, uninoculated, and inoculated sample groups. 

Protein and Fat Acidity Analysis 

Protein content was determined by combustion. Each cottonseed sample group was 

analyzed three times. The whole fuzzy cottonseed seed and meal was weighed (∼2 mg) 

and analyzed for nitrogen on an Elementar vario MICRO analyzer (St. Joseph, MI). 

Oxygen was used for quantitative combustion via injection. The combustion tube 

temperature was 1,100℃, reduction tube temperature was 800℃, and the temperature of 
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the Temperature Programmed Desorption (TPD) trap column was 59℃. A conversion 

factor of 5.3 was used to convert nitrogen into protein, derived from reported cottonseed 

meal amino acid profiles (Jones, 1931).  

Fat Acidity values were measured by titration according to AACC standards 02-

02 (AACC, 1995) and expressed as the milligrams of potassium hydroxide (KOH) 

required to neutralize the free fatty acids from 100 g of cottonseed (mgKOH/100g). The 

method involved extracting free fatty acids from milled cottonseed using purified toluene 

and titrating with a CO2 free standard solution of 0.0178N KOH. The reported titration 

values are an average of the three replications for each sample group. 

Statistical Analysis 

Statistical analyses were performed using Origin software (OriginLab, 

Northhampton MA). One-way ANOVA, Shapiro-Wilks, and Tukey Test was used to 

statistically analyze sample groups to determine the differences in means and the 

normality of the data between the control, wetted, and inoculated sample groups. The one-

way ANOVA statistically analyzed if the groups had significantly different means when 

the p-value is smaller than 0.05.  

𝐹 =
Σ𝑛𝑗(𝑋�̅� − �̅�)

2
/(𝑘 − 1)

ΣΣ(�̅� − 𝑋�̅�)
2

/(𝑁 − 𝑘)

Where F is the degrees of freedom, nj is the sample size, jth group, 𝑋�̅� is the sample mean

in the jth group, and �̅� is the overall mean. 
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The Shapiro-Wilk determines if the sample data has been drawn from a normally 

distributed population. 

𝑊 =
(∑ 𝑎𝑖𝑥(𝑖))𝑛

𝑖=1
2

(∑ 𝑥𝑖 − �̅�)𝑛
𝑖=1

2

Where xi is the order random sample values and ai are constants generated from the 

covariances, variance, and means of the sample from a normally distributed sample. The 

Tukey Test compares the means and signifies if the sample groups are significantly 

different from each other.  

𝐻𝑆𝐷 =  
𝑀𝑖 − 𝑀𝑗

√
𝑀𝑆𝑤

𝑛ℎ

Where Mi – Mj is the difference between the pair of the means to calculate this Mi 

should be larger than Mj. MSw is the mean square within, the n is the number in the group. 

Results and Discussion 

Microbial Load 

The mean values of CFU’s of the acid-delinted whole seed were 70, 1.3× 103, and

7.0× 105 CFU/ml for the control, uninoculated, and inoculated sample groups,

respectively. The mean values of the mechanically-delinted whole seed which were 66, 

1.7× 103, and 7.3× 105  CFU/ml for the control, uninoculated, and inoculated sample

groups, respectively. The CFU initial population size was similar in each sample group 

for the two different delinting processes, so differences in microbial counts is due to the 

treatments. The inoculated whole cottonseed samples were significantly different from the 

other two whole seed sample groups for both processes. The acid-delinted inoculated 
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whole seed was also significantly different than the mechanical-delinted whole cottonseed 

sample. 

The mean of colony forming units for acid-delinted cottonseed meal had the 

averages of 2.6× 103 CFU/ml, 3.5× 105 CFU/ml, and 5.16× 109CFU/ml for the control,

uninoculated, and inoculated cottonseed meal sample. There was a 2-log increase in the 

control and uninoculated whole cottonseed to the cottonseed meal. There was a 4-log 

increase in the inoculated sample group when the whole seed was milled into cottonseed 

meal (Figure 11). Since the colony forming units were higher in the inoculated sample 

initially it was to be expected that the meal would be higher than the control and 

uninoculated sample groups. 

Similarly, the colony forming units for the mechanically-delinted cottonseed meal 

had the averages of 2.9× 103 CFU/ml, 4.5× 107 CFU/ml, and 1.48× 1010 CFU/ml.

Similar to the acid-delinted control sample, there was a 2-log increase from the control 

whole cottonseed to the cottonseed meal. From these results we can conclude, that at 

minimum there will be a 2-log increase in microbial growth when cottonseed is being 

processed. There was a 4-log increase in the mechanical-delinted wetted sample. This 

indicates that the acid affected the microbial growth, but did not completely stop the 

microbial growth of A. flavus. There was a 5-log increase in the inoculated whole 

cottonseed to the cottonseed meal. The increase between the uninoculated and the 

inoculated sample was different due to the higher initial concentration of A. flavus being 

added to the inoculated sample. 
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In figure 11, there was a 10-log difference from the mechanical delinted control 

whole seed sample to the inoculated mechanical delinted cottonseed meal. The Shapiro-

Wilk test showed that for the acid delinted whole seed, mechanical delinted whole seed, 

acid delinted cottonseed meal, and the mechanical delinted cottonseed meal all showed 

that the data was significantly drawn from a normally distributed population for the 

control, wetted, and inoculated sample groups. At a 5% level of significance, the 

inoculated cottonseed meal was significantly different for each sample group for both 

delinting processes. The delinted whole seed for both processes were significantly 

different than the meal in for the control, uninoculated, and inoculated sample group.  The 

conclusions from the difference in microbial load in cottonseed sample groups indicates 

at minimal the cottonseed farmer should expect a minimum of a 2-fold increase in 

microbial growth in samples.  
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Figure 11. The average colony forming units for the acid-delinted and mechanical 

delinted whole seed (WS) and meal for the control (C), uninoculated (U), and 

inoculated (I) sample groups. 

These results are similar to a previous research study studying the effects of the 

milling process on the microbial load of products milled from various wheat varieties 

(Sabillón Galeas, 2014). There was an increase in mold by 0.74 log CFU/g, indicating the 

impact of processing and the concentrated microbial growth. Another study showed an 

increase of microbial load yam flour in Nigeria. This research did not only show that there 

was increase in microbial load throughout the milling process, but there was a significantly 

higher microbial count in the commercial milled product versus the laboratory milling 

process (Somorin, Bankole, Omemu, & Atanda, 2011). Even though this research 

experiment focused on laboratory-scale milling processes, commercial milling will likely 

affect the microbial count on cottonseed. 
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Aflatoxin Levels 

No aflatoxin was found in the control or uninoculated sample, which was expected 

since they were not intentionally inoculated. There was aflatoxin detected in the inoculated 

whole seed and meal. There was a 3-fold increase in aflatoxin content in the acid-delinted 

seed compared to the 4-fold increase that occurred in the mechanical-delinted meal (Figure 

12). Consistent with microbial count data, there was higher aflatoxin level in cottonseed 

meal that was mechanical-delinted. The sulfuric acid eliminated some of the aflatoxin 

content and microbial load, but not entirely. The mechanical-delinted samples had fuzz in 

the meal, which could have aflatoxins attached to the fibers, leading to an increase in 

concentration. 

With the inoculated sample, for both delinting methods, the hulls had a lower 

concentration of aflatoxin, compared to the kernels. Similar results were found in peanut 

kernels, aflatoxin contamination was present in the hulls when the peanuts were machine 

processed (Blankenship, Cole, Sanders, & Hill, 1984). Aflatoxin levels were shown 

previously to be higher in the kernels than the hulls, with meats containing 10,200 ppb, 

compared to 390-ppb  in the cottonseed hulls (Whitten, 1970). These similar results show 

that the removal of hulls does not completely eliminate aflatoxin contamination and the 

remaining meal concentration will still be more concentrated. In this laboratory 

experiments, the hull material has been shown to be less of a consumable substrate for 

Aspergillus flavus, but there are still aflatoxins present on the hulls. The inoculated 

cottonseed kernels had higher values than the hulls. Aflatoxins are higher in the meal when 
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compared to whole kernels because the aflatoxins wont dissolve until the kernel is crushed. 

These results can have impact on detoxification practices by showing the best time to treat 

infected cottonseeds after the crushing process has taken place. Similar to distiller’s grains, 

the processing of cottonseed can lead to an increase aflatoxin concentration. A processing 

diagram was developed and adapted from previous research showing the modeling of 

mycotoxins in ethanol co-products (Figure 12) (Wu & Munkvold, 2008b). This model can 

be further researched by an economist to analyze the loss of feed and animals due to 

aflatoxin infected cottonseed meal. 

Figure 12. The aflatoxin content in the acid delinted and mechanical delinted whole 

cottonseed and cottonseed meal. The inoculated sample’s hulls and kernels were also 

tested.  
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Figure 13. Factors influencing economic impacts on livestock industry of aflatoxins 

in cottonseed. This figure was adapted from distiller’s grains article (Wu & 

Munkvold, 2008b) 

Protein Levels 

As expected, the protein content became more concentrated during the milling 

process. The acid-delinted whole seed average protein content levels were 20 %, 19%, and 

13% for the control, uninoculated, and the inoculated samples, respectively. Similarly, the 

average protein content was 22%, 19%, 13% in the mechanical delinted whole cottonseed 

for the control, uninoculated, and the inoculated samples, respectively. The protein content 

decreased due to the presence of microbes on the uninoculated sample and A. flavus on 

the inoculated sample. The consumption of the kernels occurred which resulted in 

differences in the protein content among the three sample groups. The protein content loss 

was greater in the inoculated sample because there was a higher concentration of microbes, 

compared to the uninoculated sample. protein concentration can increase the microbial 

load in oilseeds (Mellon & Cotty, 1998; Stuart, 1940). When the ANOVA test was run at 

level 0.05 there was a significant difference in population means (Prob>F, 3.060E-33).  
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The protein content increased in the acid delinted meal which was 38%, 27%, and 

18% for the control, uninoculated, and inoculated sample groups, respectively. Similarly, 

the mechanical delinted meal increased in protein content resulting in 35%, 28%, and 26% 

from the control, uninoculated and inoculated sample groups. There was higher 

concentration in the mechanical delinted inoculated group which was unexpected. In 

Figure 14, the distribution of the mechanical delinted meal protein content was and this 

result suggests that an increase in aflatoxin content and microbial load may cause more 

variability in protein content within a sample. This result indicates the importance of 

sampling variation which has been shown to be the largest area for determining 

mycotoxins with food commodities (Coker et al., 1995). Studies have shown skewed 

results in large amounts of feed when sampling due to the distribution of aflatoxins among 

the sample (Mallmann et al., 2014). There was a decrease in protein content in the meal 

when the microbial load was increased (Figure 14). There was little effect observed from 

the different delinting processes and the change in protein content was due to the presence 

of microbial growth. Cottonseed meal serves as an ideal substrate for Aspergillus flavus 

digestion.  
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Figure 14. The average protein content for the acid delinted and mechanical delinted 

whole seed and meal for the control, uninoculated, and inoculated sample groups. 

Fat Acidity Levels 

The fat acidity levels decreased during the milling process due to the oil being 

extracted. The acid delinted whole cottonseed average free fatty acid content levels were 

1.16%, 2.4%, and 9.1% for the control, uninoculated, and the inoculated samples, 

respectively (Figure 15). Similarly, in the mechanical delinted whole cottonseed the 

average free fatty acid content was 1.23%, 3.13%, 11.63% for the control, uninoculated, 

and the inoculated samples, respectively. The fat acidity levels were higher in the sample 

groups that had higher microbial growth. The fat acidity levels decreased when whole 

cottonseed was milled. The acid-delinted meal had fat acidity levels 0.83%, 1.36%, and 
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2.50% for the control, uninoculated, and inoculated sample groups, respectively. 

Similarly, the mechanically-delinted meal increased in fat acidity levels resulting in 

0.80%, 1.63%, and 2.86% from the control, uninoculated and inoculated sample groups. 

In Figure 15, the differences in fat acidity levels were due to the presence of microbial 

growth. A. flavus has been shown to be a lipase-producing species which can contribute 

to the deterioration of agricultural products with high lipid concentrations (Sarıyar & 

Heperkan, 2003).  

This increase in fat acidity levels in the meal with higher microbial load has also 

been observed in hazelnuts, corn, wheat, peanuts, and soybeans (Liu et al., 2016; Sarıyar 

& Heperkan, 2003). There was little effect observed from the different delinting process 

and the change in fat acidity levels was due to the presence of microbial growth. When 

the ANOVA test was run at level 0.05 there was a significate difference in population 

means (Prob>F, 2.262E-5). The Shapiro-Wilk test showed that the data from was drawn 

from a normally distributed population. Previous research has shown that higher microbial 

load have been shown to have a positive correlation protein levels and fat acidity levels in 

rapeseed (Stepien, Wojtkowiak, & Pietrzak-Fiecko, 2017). 
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Figure 15. The average fat acidity levels for the acid-delinted and mechanical-

delinted whole seed and meal for the control, uninoculated, and inoculated sample 

groups. 

Conclusions 

This research shows the effects of microbial growth and aflatoxin content on 

nutritional components, free fatty acids and protein levels, of cottonseed. Similar to other 

studies on grains, the protein content and fat acidity levels were affected due to the 

presence of microbes, including A. flavus. When aflatoxin levels and microbial 

concentration increased, there was a decrease in protein content in the cottonseed meal 

and an increase in fat acidity levels. There were also significant differences in the effects 

of acid-delinting and mechanical-delinting and its effect on aflatoxin content and 
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microbial growth. Acid-delinted cottonseed meal had lower microbial load than the 

mechanical-delinted cottonseed meal. Higher microbial load contributed to lower protein 

concentration and higher fat acidity levels. These nutritional components were changed 

because the microbial growth played a role in consuming the cottonseed meal. Future 

studies can look at the effect of commercial processing of cottonseed meal to determine if 

there is more growth associated with large production-scale equipment. This study 

represents a starting point for determining changes in microbial load and aflatoxin levels 

throughout processing.  
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CHAPTER V 

HIGH VOLTAGE ATMOSPHERIC COLD PLASMA TREATMENT EFFECTS ON 

MICROBIAL LOAD ON COTTONSEED MEAL 

Introduction 

Contamination of cottonseed with aflatoxins can lead to economic losses because 

availability for oil production and utilization as a feed is reduced. For cotton production, 

growing seasons with high rain totals often come with high aflatoxin levels. Aflatoxins 

are mycotoxins produced by the common fungi, Aspergillus flavus, under specific 

temperature and moisture conditions (Filazi & Tansel, 2013). Improper storage of 

cottonseed can lead to increased microbial and insect activity, thereby reducing quality of 

the product (Hams & Ayres, 1977; Kumar & Kalita, 2017; Pitt & Hocking, 2009). 

Aflatoxin B1 is categorized as a group I carcinogen by the World Health Organization 

(Marchese et al., 2018). The amount of aflatoxin content in cottonseed used as a feed has 

a direct impact on livestock through acute toxicity, reduced growth rates and weight, and 

immunosuppression at low doses (Park, 2002). Better management and treatment practices 

will allow us to protect our cottonseed supply from post-harvest losses due to aflatoxin 

contamination. One strategy is to identify treatment methods that can reduce mycotoxins 

and microbiological species.  

There is a need to set up control and treatment methods for post-harvest protection 

to reduce the risk of spreading aflatoxin content within the cottonseed feed. There have 

been previous treatments which include thermal, chemical, and biological treatments for 
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A. flavus and the subsequent production of aflatoxin. Thermal inactivation of microbial

and mycotoxin production are done by boiling the infected seeds in aqueous solutions 

(Park, 2002). Even though aflatoxins are typically destroyed in the process, there are 

studies that show that the A. flavus spores restart developing because of the acidification 

of the cottonseed product (Price & Jorgensen, 1985). Chemical treatments including 

ammoniation have been shown to alter the effects of A. flavus, but there is an increase in 

meal toxicity in dairy cattle (Smalley & Bicknell, 1982). Biological treatments, including 

atoxigenic strains of A. flavus were created to block to infection of the toxigenic strain of 

A. flavus. A study showed that an atoxigenic strain, NRRL 35739, had slower growth

which did not allow for it to out compete the toxigenic strain (Pennerman, Yin, Bennett, 

& Hua, 2019). There are other atoxigenic strains that work well, but in the long term there 

is still mold development occurring which can have a negative impact during storage. 

Other non-thermal treatments such as ozone have been shown to be effective, but it can 

have treatment effects on chemical components (Pandiselvam et al., 2019). Ozone is 

considered as a toxic air pollutant and can cause problems in the human respiratory tract 

(Mudway & Kelley, 2000).  In comparison, Atmospheric Cold Plasma (ACP) is not 

expected to have a negative effect on nutritional quality of food, although one challenge 

in the food industry is upscaling the system (Mandal, Singh, & Pratap Singh, 2018). There 

are few commercialized cold plasma treatment systems, although there are many patented 

designs (Weltmann et al., 2018). 

The non-thermal, chemical free treatment has shown great potential on a laboratory 

scale and combines UV radiation, ozone, free radicals, charged particles, oxygen radicals, 
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and other reactive gas species (Lacombe et al., 2015). ACP is created by a dielectric barrier 

discharge (DBD) at high voltage and low amperage between two electrodes separated by 

insulating dielectric barriers (Pankaj et al., 2014).  In-package treatments have been used 

with the DBD to inactivate spoilage microorganisms (N. N. Misra et al., 2016). 

Polypropylene is a polymer food packaging product that is low density, low cost, and has 

a high melting point(Pankaj & Keener, 2017). Food packaging materials are used in order 

to protect commodities from deterioration, damage or outside contamination (Pankaj et 

al., 2014). The combination of commodity, packaging and fill, which includes air, O2, 

CO2, N2, or He, can help decrease microbial load (Connolly et al., 2013).  

Antimicrobial effects occur through direct attack on microbial structures, such as 

cellular envelopes, DNA, and proteins (Colagar, Sohbatzadeh, Mirzanejhad, & Omran, 

2010; Dasan et al., 2016; Selcuk, Oksuz, & Basaran, 2008; Song et al., 2009). Gases within 

the plasma field are ionized, producing reactive gas species capable of sterilization (Figure 

16). ACP has proven to be effective in treating Aspergillus spp. in hazelnuts, peanuts, 

pistachios, tomato seeds, wheat, barley, oat, rye, maize and lentils (McClurkin-Moore et 

al., 2017; Surowsky et al., 2013). The use of ACP provides a novel way to continuously 

treat cottonseed meal to protect the commodity from Aspergillus flavus which lead to post-

harvest loss. ACP is not only a surface decontaminate; it has been shown to penetrate into 

tomato seeds (Zhou, Huang, Yang, & Chen, 2011). The potential of ACP is promising to 

decontaminate infected cottonseed. 
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Figure 16. Dielectric barrier ACP system (Photo by Jessica Rae Spence). 

There has been scarce economic analysis, but a few have shown that the 

technology can be affordable when atmospheric air is used instead of expensive Nobel 

gases. The inclusion of equipment design and recurrent cost (power and inducer gas) will 

help estimate the operational cost (Muhammad et al., 2018).The rise in wattage consumed 

from the laboratory scale to industrial scale will be in regards to the size and capacity of 

the plasma equipment being used. The plasma system has been estimated to have the cost 

of power consumption in kWh as $0.05. Implying that for every 1000 hours of operation, 

approximately $4500 for the electricity cost (Niemira, 2012). Sorting infected seeds prior 

to treatment can help decrease the amount of cottonseed that need to be treated so the cost 

for cottonseed post-harvest treatment is feasible for decreasing microbial load. 

Electrode

Discharge 

Dielectric Barrier 
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The objectives of this research were to 1) determine treatment parameters for using 

ACP to treat in-packaged cottonseed meal samples and 2) observe the effects of ACP on 

physical changes of cottonseed meal including fat acidity levels, crude protein levels, 

microbial load, and water activity of 28 days. This research can be implemented on a larger 

scale with minimal operation cost for cottonseed processors. The treatment should 

implement gyration and larger scale dielectric barriers to increase the discharge area. The 

movement will allow for the cottonseed meal surfaces can be treated.  

Materials and Methods 

Raw Material 

Clean, mechanically-delinted cottonseed was obtained from the United Ag-El 

Campo site. For this study, 30 kg of cottonseed was stored at ambient temperature. 

Initially, the moisture content was determined by oven drying three 5g of cottonseed at 

105 ± 2 ℃ for 14.5 hours (Griffin Jr, 1980). The initial moisture content of the seeds was 

8.3% d.b. The sample was milled by using a commercial hammer mill with a processing 

rate of 15kg/h (Great Wall Instruments, N.A.) 

Plasma Operating Parameters 

The dielectric barrier system used an AC Dielectric Test set, model number 

6CP120/60.75 (Phenix Technologies, Accident, MD). The output voltage could be varied 

from 0-70 kilovolts with 125 milliamperes current output.  

Packaging Description and Treatment Parameters 

A polypropylene bag with the dimensions of 9.5 in. by 10 in. was filled with 150g 

of cottonseed meal. The bag was filled with modified atmospheric packaging (MAP) gas 
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(5% C2, 65% O2, 30% N2) until the bag reached a height of 30 mm. The bag was then 

sealed and placed between the dielectric barriers, which had a gap of 50.0 mm.   

In order to test the efficacy of the ACP system, the use of methylene blue 

discoloration. Methylene Blue decolorization was used to quantify ionizing species 

produced during the treatments using ACP. Methylene Blue is an indicator of the oxidation 

effect occurring within the packaged sample (Ehrampoush, Moussavi, Ghaneian, Rahimi, 

& Ahmadian, 2011). The importance of this test shows the greatest discoloration 

percentage which correlates to the most effect voltage and time to treat the commodity. In 

addition to the methylene blue test, the initial testing parameters including voltage and 

time were determined by treating 5 g of Aspergillus flavus inoculated cottonseed meal 

with 50 kV for 3 minutes, 50 kV for 5 minutes, 70 kV for 1 minute, 70 kV for 3 minutes, 

and 70 kV for 5 minutes. The testing was done in triplicates, a total of 15 treatments and 

the samples were stored for 24 hours in 4℃. The treatments were then washed and 

observed for microbial growth. 

Product Characteristics 

Three sample groups were prepared which included the control, inoculated, and 

ACP-treated meal. A concentration of 1.18× 105 CFU/g of Aspergillus flavus (Carolina

Biological Supply Company, Burlington, NC) was concentrated into Triton X-100 

solution and Aflatoxin B1 (250 ppb) dissolved in DMSO (Aflatoxin B1 5MG, Sigma 

Aldrich, Darmstadt, Germany) A. Flavus and aflatoxin B1 was added to the inoculated 

and ACP-treated 5 kg sample group by spraying then mixing every 30 minutes for 3 hours. 

The inoculated and ACP treated sample groups were placed in the relative humidity and 
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temperature chamber (Percival Scientific, Inc., Perry, IA) at 25℃ with 85% relative 

humidity (rH) for 21 days which ensured that any presence of toxigenic Aspergillus flavus 

had the opportunity to produce aflatoxin (Ellis, et. al., 1994). Triplicates were done for 

each sample group tested. The samples were treated and stored for 28 days in the freezer, 

outside, and in a control environment. 

Microbial analysis 

Colony forming units (CFUs) were measured on day 1, day 7, day 14, day 21, and 

day 28 at 37℃ with 85% relative humidity (rH), outside at varying temperatures and 

relative humidity, and in the freezer at -23 ℃ with 47% relative humidity (Appendix A). 

at the same time each testing day, 5g from each sample group was removed and placed in 

a sterile 15ml tube with 8.3 ml of 0.05% Triton X-100 solution. The samples were then 

shaken for 2 minutes. For each sample group, 100 µL of the wash was plated onto 100 

mm × 15 mm sterile Petri-dishes containing Potato Dextrose Agar (Sigma-Aldrich, Merck 

KGaA, Darmstadt, Germany). Three samples for each treatment combination? were 

prepared and plated.  

Fat Acidity, Water Activity, and Protein Levels 

Water activity was calculated by using a water activity meter (CNYST-160, Lu’an, 

China). The range of readings of 0~1.0 aw and ± 0.02 aw accuracy. This measurement 

reflects the amount of free water in food, stability of food, and the likelihood of microbial 

growth that could negatively affect food quality.  

Protein content was determined by combustion. A sample of meal from each 

experimental run was weighed (∼150 mg) into a tin foil and was analyzed for nitrogen on 
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an Elementar vario MICRO analyzer (St. Joseph, MI). A conversion factor of 5.3 was used 

to convert nitrogen into protein, as this value was found to agree with values derived from 

reported cottonseed meal amino acid profiles. 

Fat acidity values were measured by titration according to AACC standards 02-01 

and 02-03 (AACC, 1995) and expressed as the milligrams of potassium hydroxide (KOH) 

required to neutralize the free fatty acids from 100 g of cottonseed (mgKOH/100g). The 

method involved extracting free fatty acids from milled DWGS using purified toluene and 

titrating with a CO2 free standard solution of 0.0178N KOH. The reported titration values 

are an average of the three replicates. 

Statistical Analysis 

Statistical analyses were performed using Origin software (OriginLab, 

Northhampton MA). Two-way ANOVA was used to statistically analyze sample groups 

to determine the differences in means between aflatoxin treatments and storage conditions. 

A significance level of 0.05 was used. Where the sum of squares of the main effect A, 

effect B, and interaction effect.  

The Tukey Test compares the means and signifies if the sample groups are 

significantly different from each other.  

𝐻𝑆𝐷 =  
𝑀𝑖 − 𝑀𝑗

√
𝑀𝑆𝑤

𝑛ℎ

Where Mi – Mj is the difference between the pair of the means to calculate this Mi 

should be larger than Mj. MSw is the mean square within, the n is the number in the sample. 
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Results and Discussion 

Testing Parameters 

The methylene blue sample results had the highest percentage of discoloration in 

the 1 minute at 70 kV, 3 minutes at 70 kV, and 5 minutes at 70 kV (Figure 17).  

Figure 17. Methylene Blue decolorization after ACP treatment system at 20 kV for 

various times: 1, 3, 5 minutes; 50 kV for various times: 1, 3, 5 minutes; 70 kV for 

various times: 1, 3, 5 minutes. 

Table 4 shows the reduction in microbial count and percent discoloration of 

Methylene Blue.  The treatment parameter was chosen to treat the remainder of the 

inoculated cottonseed sample group. The best treatment parameters were 70 kV for 3 

minutes due to the highest microbial load reduction and percent discoloration of 

Methylene Blue. 

20 V, 1 min 

20 V, 3 min 

20 V, 5 min 

50 V, 1 min 

50 V, 3 min 

50 V, 5 min 

70 V, 1 min 

70 V, 3 min 

70 V, 5 min 
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Table 4. Analysis of CFU values for the tested treatment parameters with MAP gas. 

n = 3, three replicates per treatment  

The value in parenthesis is the standard deviation. 

Microbial Load Reduction 

The control group had lower microbial growth over time compared to the 

inoculated and the ACP treated sample groups (table 5). The microbial growth increased 

overtime and there was a higher microbial load in the inoculated sample. More growth 

occurred in the relative humidity chamber and outside than the freezer. The relative 

humidity chamber had higher values of microbial load due to the optimal environmental 

parameters that encouraged growth of Aspergillus flavus. The outside temperature varied 

from 2.61℃ to 25℃, and relative humidity ranged from 77% to 99% (Appendix A).   

Freezer conditions were not favorable for growth. In the relative humidity chamber, the 

inoculated sample had a 0.20 log increase and the ACP-treated sample had a 0.11 decrease 

from day 0 to day 28. Over 28 days, the inoculated sample had a 1.88 log increase and the 

ACP-treated samples had a log reduction of 1.40 in comparison to the inoculated sample. 

Over 28 days, the control sample outside had a microbial load increase of 0.32. In 

comparison the inoculated sample microbial load increased by 1.27 over 28 days and the 

ACP treated sample had a reduction of 1.02. The increase in growth over 28 days for all 

Sample Microbial Count 

(Log10CFU/g) 

Log 

Reduction 

% discoloration of 

Methylene Blue 

Control 4.18(0.07) 0 N/A 

50 kV, 3 min. 1.79(0.06) 2.39 46.68 

50 kV, 5 min. 1.56(0.09) 2.62 72.07 

70 kV, 1 min. 1.41(0.04) 2.77 95.73 

70 kV, 3 min 1.35(0.06) 2.83 99.68 

70 kV, 5 min. 1.51(0.06) 2.67 98.47 
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of the samples was due to the high relative humidity and optimal temperatures that 

encouraged microbial growth. In comparison to the constant temperature and relative 

humidity in the chamber encouraged more growth in the inoculated sample and the ACP 

treated sample group over 28 days. The freezer did not have an increase in growth over 28 

days due to the cold temperatures and low relative humidity which did not encourage 

growth of microbes.  

Results for A. flavus reduction in hazelnuts showed a 4.4 log reduction when the 

cold plasma technology was treated for 30 minutes (Sen, Onal-Ulusoy, & Mutlu, 2019). 

Other studies showed a 2.5 log reduction of Aspergillus flavus on red peppers when treated 

for 30 minutes and a 1.45 log reduction in groundnuts when treated at 24 minutes (Devi 

et al., 2017; Kim, Lee, & Min, 2014). The results from this current study showed the 

effectiveness of using ACP for reducing Aspergillus flavus concentration in cottonseed. 

There was a statistically significant main effect interaction of storage conditions on the 

protein values F (2, 402) = 9.727, p = 7.51× 10−5. There was a statistically significant

main effect interaction of sample group on the protein values F (2, 402) = 20.15, p = 

4.63× 10−9. Appendix B shows ANOVA test results on the effect of storage conditions

and sample groups on protein content. Appendix B shows ANOVA test results on the 

microbial load. 
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Table 5. Average values of CFU/ml over 28 days in the control, inoculated, and 

ACP treated sample groups. 

n = 3, three replicates per treatment 

The value after ± is the standard deviation. 

 Protein Content 

Protein levels decreased over time in all of the different storage conditions (Table 

6). Over 28 days, the control sample had a 26.2% decrease in the relative humidity 

chamber, 19.5% decrease outside, and a negligible decrease in the freezer. microbial 

growth played a large role in the degradation of the protein content available in the meal. 

A similarly decrease occurred in the inoculated and the ACP treated sample groups. The 

inoculated sample group had the lowest starting protein content amount and decreased by 

43.9%, 20.28% and a negligible amount in the relative humidity chamber, outside, and in 

the freezer, respectively. The ACP-treated sample decreased by 6.8%, 9.8%, and a 

negligible amount in the relative humidity chamber, outside, and in the freezer, 

respectively. The treatment had an effect on the inoculated and ACP treated sample 

Log10(CFU/ml) 

Sample Temperature Day 1 Day 7 Day 14 Day 21 Day 28 

Control RH/T 2.91±2.03 2.67±2.41  2.88±2.47  2.93±2.03  3.49±3.24  

Control Outside 2.69±1.79  2.98±2.39  2.77±2.29  2.76±2.18  3.01±2.67  

Control Freezer 2.36±1.57  2.45±1.98  2.45±1.75  2.42±2.12  2.43±2.00  

Inoculated RH/T 3.11±2.20  3.30±2.63  3.38±2.79  3.17±2.60  4.79±4.32 

Inoculated Outside 3.42±2.94  3.40±3.19  3.40±2.98  3.91±3.21 4.28±4.00 

Inoculated Freezer 2.66±2.15  2.75±2.03  2.77±2.02  2.67±1.75  2.68±2.02  

ACP RH/T 2.80±2.11  2.66±2.33  2.67±2.10  3.17±3.08  3.39±2.84 

ACP Outside 2.85±1.90  2.66±2.37  2.70±1.95  2.91±1.99  3.25±3.12  

ACP Freezer 1.89±1.11  2.22±2.19  2.61±2.16  2.33±1.77  2.10±2.07  
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groups. The ACP treatment showed to preserve the protein content over 28 days even 

though there was a slight decrease in the content it was still higher than the sample that 

was inoculated.  ACP treatment can maintain protein content, that is valued by the 

livestock producers feeding cottonseed products. Similar effects of ACP on protein 

content have been shown in mango flour, radish sprouts, and wheat (Abidin, Rukunudin, 

Zaaba, & Wan Omar, 2018; Kim et al., 2014; Saberi, Modarres-Sanavy, Zare, & Ghomi, 

2018). There was a statistically significant main effect interaction of storage conditions on 

the protein values F (2, 44) = 3.868, p = .0300. There was a statistically significant main 

effect interaction of sample group on the protein values F (2, 44) = 7.844, p = 0.001. 

Appendix B shows ANOVA test results on the effect of storage conditions and sample 

groups on protein content. 

Table 6. Average values of protein levels over 28 days in the control, inoculated, 

and ACP treated sample groups. 

n = 3, three replicates per treatment  

The value after ± is the standard deviation. 

Fat Acidity 

Fat acidity levels increased over 28 days due to microbial growth in all the sample 

groups (Table 7). The increase in fat acidity values are due to improper storage, mold 

Protein Content 

Sample Temperature Day 1 Day 7 Day 14 Day 21 Day 28 

Control RH/T 34.2±0.82  30.5±0.79  29.2±0.81  26.3±0.80  25.2±0.79  

Control Outside 30.2±0.42  27.6±0.45  28.1±0.44  30.6±0.54  24.3±0.40  

Control Freezer 38.7±0.22  31.2±0.21  30.7±0.24  32.7±0.22  30.5±0.21  

Inoculated RH/T 28.9±1.49  28.3±1.54  24.6±1.44  21.4±1.40   16.2±1.34  

Inoculated Outside 28.1±1.08  30.0±1.22  30.2±1.18  24.4±1.04  22.4±1.11  

Inoculated  Freezer 31.1±0.36  29.9±0.43  27.7±0.32  26.3±0.41  27.4±0.39  

ACP RH/T 30.9±0.44  31.9±0.43  31.9±0.42  28.4±0.36  28.8±0.37  

ACP Outside 30.7±0.40  31.9±0.38  33.4±0.39  28.1±0.44  27.7±0.48  

ACP Freezer 30.6±0.27  32.6±0.28  31.1±0.32  32.4±0.30  29.0±0.29  
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growth, and high respiratory activity (Becker, 2008). The highest fat acidity values were 

associated with the inoculated samples which showed an increase 18.0%, 15.1%, and a 

negligible increase for the relative humidity chamber, outside, and freezer conditions. 

There were lower levels associated with the ACP treated samples which had 11.9% 

increase in the relative humidity chamber, a decrease in 4.4% in the outside condition, and 

a negligible change in the freezer. There is limited data on the effect of Aspergillus flavus 

on the fatty acid composition in cottonseed. In distiller’s wet grain solubles there will be 

about three times higher fungal concentration than that of corn due to the presences of 

microbial growth and deterioration (McClurkin-Moore, 2015).  

ACP treatment can prevent further degradation from occurring in the cottonseed 

sample when Aspergillus flavus is present and does not cause an increase in fat acidity 

values. Similar results have been seen in white grape juice, mandarins, and melons 

(Pankaj, Wan, Colonna, & Keener, 2017; Tappi et al., 2016; Won, Lee, & Min, 2017). 

controlling the fat acidity levels can limit the amount of deterioration in cottonseed meal 

stored in undesirable conditions, promoting a longer safe storage period for the cottonseed. 

There was a statistically significant main effect interaction of storage conditions on the 

protein values F (2, 44) = 8.506, p = 9.43× 10−4. There was a statistically significant main

effect interaction of sample group on the protein values F (2, 44) = 1051, p = 1.17× 10−32.

Appendix B shows ANOVA test results on the effect of storage conditions and sample 

groups on fat acidity levels. 
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Fat Acidity 

Sample Temperature Day 1 Day 7 Day 14 Day 21 Day 28 

Control RH/T 4.3 4 4.2 4.4 4.7 

Control Outside 4 4.3 3.9 3.9 4.4 

Control Freezer 3.5 3.6 3.7 3.7 3.9 

Inoculated RH/T 13.3 13.4 13.7 15.3 15.7 

Inoculated Outside 13.2 13.5 13.5 13.8 15.2 

Inoculated  Freezer 13.2 13.1 13.2 13.3 13.2 

ACP RH/T 8.4 7.2 7.5 8.9 9.4 

ACP Outside 8.3 7.3 7.5 7.9 8.1 

ACP Freezer 7.3 7.4 7.5 7.4 7.2 

Table 7. Average values of fat acidity levels over 28 days in the control, inoculated, 

and ACP treated sample groups. 

Water Activity 

Water activity increased in all of the sample groups throughout the 28-day storage 

time (Table 8). Over 28 days, the control sample there was an increase of 28.6%, 20.37%, 

and 9.1% increase in the relative humidity chamber, outside, and freezer storage 

temperatures. In comparison there was a 14.46%, 17.5%, and negligible increase in the 

relative humidity temperature chamber, outside, and freezer storage temperatures. The 

ACP treated group had an increase of 6.06%, decrease in 7%, and a negligible change in 

the relative humidity temperature chamber, outside, and freezer conditions.  

The ACP-treated samples had a smaller increase in water activity, corresponding 

to a decrease in A. flavus growth within the samples. The control and inoculated samples 

had higher increase of growth due to the higher microbial load. The ACP treatment has 

limited the increase in water activity which preserves the cottonseed more when it is being 

stored because microbial growth was limited. This shows the importance of drying 

samples even after treatment to ensure the limit of A. flavus growth. Water activity 

correlates with mold growth in storage (Peleg M., Corradini M G., & D., 2015). There was 



a statistically significant main effect interaction of storage conditions on the protein values 

F (2, 44) = 229.8, p = 3.16× 10−21. There was a statistically significant main effect

interaction of sample group on the protein values F (2, 44) = 61.83, p = 2.26× 10−12.

Appendix B shows ANOVA test results on the effect of storage conditions and sample 

groups on water activity levels. 

Table 8. Average values of water activity levels over 28 days in the control, 

untreated, and ACP treated sample groups. 

n = 3, three replicates per treatment  

The value after ± is the standard deviation. 

Conclusions 

The research shows the impact of ACP on decreasing the microbial load on 

Aspergillus flavus on infected cottonseed meal. The research showed that ACP had a 

significant microbial load reduction in the optimal growing temperatures. This non-

thermal treatment also allowed for the preservation of the protein content, fa acidity 

levels, and water activity compared to the untreated sample. This novel treatment can 

serve as a possible treatment for whole cottonseed and cottonseed meal. This treatment 

uses reactive oxygen species to decrease the microbial load on a variety of commodities. 
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Water Activity 

Sample Temperature Day 1 Day 7 Day 14 Day 21 Day 28 

Control RH/T 0.63±0.03 0.68±0.04 0.72±0.03 0.76±0.02 0.81±0.03 

Control Outside 0.54±0.04 0.54±0.03 0.56±0.05 0.58±0.03 0.65±0.04 

Control Freezer 0.44±0.01 0.46±0.01 0.47±0.02 0.44±0.01 0.48±0.01 

Untreated  RH/T 0.83±0.08 0.85±0.07 0.86±0.09 0.93±0.10 0.95±0.90 

Untreated  Outside 0.8±0.06 0.85±0.06 0.86±0.04 0.92±0.05 0.94±0.05 

Untreated  Freezer 0.46±0.02 0.47±0.01 0.44±0.01 0.45±0.02 0.46±0.02 

ACP RH/T 0.66±0.04 0.67±0.05 0.66±0.08 0.73±0.09 0.7±0.06 

ACP Outside 0.7±0.04 0.68±0.05 0.64±0.03 0.67±0.04 0.65±0.06 

ACP Freezer 0.48±0.01 0.48±0.01 0.48±0.01 0.46±0.02 0.45±0.02 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

This research can help the cottonseed industry with decontaminating and 

eliminating A. flavus and aflatoxins from cottonseed. The first objective results can be 

used for sorting cottonseed based on physical parameters such as density, dimensions, 

surface area, and projected area. Instead of using just a singular physical property, using 

a culmination of properties can be more effective in separating infected seed from healthy 

cottonseed. There are currently no sorting efforts that happen in cottonseed processing, 

but implementing a sorting practice can help decrease A. flavus and aflatoxin content. A 

recommendation from this objective would be to incorporate aeration in order to separate 

cottonseed based on density or use a density gravity table. Lower density and high 

moisture content can be associated with high levels of aflatoxin above the FDA action 

levels.  

Objective two results conclude that during processing of cottonseed, contaminated 

meal will at least increase by twice the amount in the starting whole cottonseed. There is 

potential to use this process to understand when the best time to treat cottonseed during 

after separating based on physical properties. The recommendation would design a system 

that can penetrate whole fuzzy cottonseed and doesn’t slow down processing time. 

Objective three results conclude that ACP has the potential to be used to decontaminate 

infected cottonseed meal. Additional research can be done to optimize treatment times, 

gas composition, voltage levels, and packaging depth to successfully alleviate A. flavus 

growth and aflatoxin. Longer exposure time to ACP can lead to greater decontamination. 
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Even though there aren’t a lot of commercialized systems to treat cottonseed, bit a design 

can be developed and patented. Using larger dielectric barriers can help treat larger sample 

sizes and gyration can help with RGS to treat the surface and penetrate the cottonseed hull. 

Economic analysis would help with understanding how much cottonseed can be processed 

with system because typically a cottonseed ginner would process almost 60 bales an hour. 

A specialized design can lead to decontaminating infected cottonseed.  

Overall, cottonseed is an agricultural commodity that has potential to be used as 

cooking oil, animal feed, animal roughage, and biodiesel. Cottonseed has an economic 

impact and is negatively affected by A. flavus contamination which optimal environmental 

conditions are met. Implementing sorting and a treatment system can lead to decreasing 

cottonseed contamination.  
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APPENDIX A 

TEMPERATURE AND RERLATIVE HUMIDITY SENSOR READINGS 

Figure 18. The outside sesor readings for the outside temperature readings.  

Figure 19. The outside sesor readings for the outside relative humidity readings. 
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APPENDIX B 

ANOVA RESULTS 

Table 9. ANOVA test results for microbial growth. 

Table 10. ANOVA test results for protein levels. 

Table 11. ANOVA test results for fat acidity levels. 

DF Sum of Squares Mean Square F-Value P-Value

Temperature 2 1.727× 109 8.635 × 108 10.31 4.308 × 10−5

Sample 2 3.573× 109 1.789 × 109 21.34 1.588 × 10−9

Interaction 4 2.344× 109 5.860 × 108 6.998 1.888 × 10−5

Model 8 7.648 × 109 9.560 × 108 11.42 11.35 × 10−14

Error 394 3.299× 1010 8.373 × 107 -- -- 

Corrected 

Total 402 4.064 × 1010 -- -- -- 

DF Sum of Squares Mean Square F-Value P-Value

Temperature 2 74.00 37.00 3.868 0.0301 

Sample 2 150.1 75.05 7.844 0.0015 

Interaction 4 42.54 10.63 1.112 0.3661 

Model 8 266.6 33.33 3.484 0.0045 

Error 36 344.4 9.567 -- -- 

Corrected 

Total 44 611.0 -- -- -- 

DF Sum of Squares Mean Square F-Value P-Value

Temperature 2 5.852 2.926 8.506 9.431 × 10−4

Sample 2 723.2 361.6 1051 1.179 × 10−32

Interaction 4 0.270 0.0676 0.196 0.9387 

Model 8 729.4 91.17 265.0 1.288 × 10−29

Error 36 12.38 0.344 -- -- 

Corrected 

Total 44 741.75 -- -- -- 
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Table 12. ANOVA test results for water activity levels. 

DF Sum of Squares Mean Square F-Value P-Value

Temperature 2 0.768 0.384 229.8 3.165× 10−21

Sample 2 0.207 0.103 61.84 2.266 × 10−12

Interaction 4 0.014 0.035 21.39 4.187 × 10−9

Model 8 1.118 0.140 83.61 6.403 × 10−21

Error 36 0.060 0.002 -- -- 

Corrected 

Total 44 1.178 -- -- -- 




