
COMPUTER SCIENCE & TECHNOLOGY:

COMPUTER PERFORIVIANCE
EVALUATION USERS GROUP

CPEUG
15th Meeting

NBS Special Publication 500-52

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 Ll.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

^Some divisions within the center are located at Boulder, CO 80303.

COMPUTER SCIENCE b TECHNOLOGY

Computer Performance Evaluation

Users Group (CPEUG)

Proceedings of the Fifteenth Meeting

held at San Diego, California

October 15-18, 1979

Editor:

James E. Weatherbee

Conference Host:

Naval Personnel Research

and Development Center

San Diego, California

Sponsored by

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Luther H. Hodges, Jr., Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued October 1979

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibiUty within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This pubhcation

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in the series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-52

Nat. Bur. Stand. (U.S.), Spec. Publ. 500-52, 240 pages (Oct. 1979)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 79-600123

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1979

For sale by the Superintendent of Documents, U.S. Government Printing Office

Washington, D.C. 20402- Price $6.50

Stock Number 003-003-02118-1

FOREWORD

Those of us involved in the many aspects of computer performance evaluation can
hardly think of doing our tasks without the knowledge and expertise gained at some com-

puter conference. For many of us some of the knowledge came from past CPEUG meetings,
and from papers published in CPEUG proceedings. A quick look at this year's program
will show, I am sure, that the 79 Conference will continue to broaden your knowledge
and expertise in CPE technology.

The theme of CPEUG 79 is "The Expanding Scope of CPE." For a few days, we will
stop, learn, listen, think, and discuss where we are, and where we are going with
performance technology. When we think about computer performance, such issues as

computer and network performance, tools and techniques, workload modeling and fore-
casting, benchmarking and simulation immediately come to mind. But other performance
issues are frequently overlooked. CPE in auditing — How management views CPE — CPE
and the human factors — CPE in systems design and software: these and other issues
and directions in computer performance evaluation are the focus on this year's con-
ference.

For better or worse, computing is now involved in every type of Government activ-
ity. Computers make decisions for management — they issue large sums of money — they
do clerical and auditing work and they even monitor other devices and machines. Every-
body is seeking for better performance tools while some are asking, what are the CPE
technician's responsibilities in these important areas? To help answer this question
we established the theme for the '79 Conference as our objective — to point out new
directions for our profession.

As we discuss the expanding scope of CPE during this year's conference you will see
that the "good old days" of the strictly technical hardware performance conferences are
gone. Performance management, improving productivity of people, programs, systems, and
software, along with evaluating and improving hardware performances — these are the

issues of today.

CPEUG was founded in 1971 by the United States Air Force. It is now sponsored by
the National Bureau of Standards as part of its mission to develop guidelines and

standards for improving the utilization and procurement of Federal ADP resources.
Fourteen prior conferences in eight years were held to promote more efficient and

effective performance of the Government's valuable computer resources.

We welcome you to CPEUG 79, and wish you an interesting and worthwhile experience
while you are here.

My sincere thanks go to the many people whose efforts have gone into bringing you
this fine conference, and especially to those who have dedicated their time, talent,

and effort to serve on the 79 Committee. Their names appear elsewhere in these pro-
ceedings .

Harry J. Mason, Jr.

Chairman, CPEUG
October, 1979

iii

PREFACE

The theme of this year's Conference, "The Expanding Scope of CPE," is more com-
pletely stated as "The Roles of CPE in an Expanding Technology." The consistent
reduction in the cost of semiconductor components is having a dramatic effect on com-
mercial computers. Small, fast, and cheap computer mainframes, together with high
bandwidth digital communications channels at moderate cost, make extensive use of dis-
tributed processing more attractive. Under these circumstances, there is increasing
debate in the ADP community concerning the continued economic viability of the large
central computer installation. This debate is important to CPE practitioners, as CPE
has been associated traditionally with large central computers. The economies of scale
achieved in other areas by large central computers have been applicable to CPE. Hard-
ware monitors, CPE software, and qualified analysts have been used most effectively
when their cost could be amortized over a large amount of equipment and a large base of

applications and customers. Similarly, some of the most impressive successes of CPE
have been efforts whose results could be magnified by frequency of use (such as opti-
mizing a critical loop in a low-level operating system module) or by number of affected
applications. How will CPE, traditionally associated with large central computers,
change in an era of smaller and cheaper hardware and improved digital communications?
The debate on this subject will likely continue for some time, and it is critical to

the discipline of CPE. One of CPEUG's lasting contributions may well be providing
forums for this debate (both formal and informal). The questions posed here are met
directly in this year's keynote address and keynote panel, and they are present in the
remainder of the program.

The technical program this year is divided into two major sections, corresponding
to two views of CPE. The first section of the program focuses on the application of

CPE to installation management, while the second section focuses on the methodologies
and tools of CPE as a technical discipline. In a sense, the first section addresses
goals or ends, while the second section addresses means. The session on Workload
Analysis and Capacity Planning forms a bridge between these major sections. The sub-
jects covered in this session are of increasing interest and concern to installation
managers, yet they require some very sophisticated technical methods.

The technical program this year can best be viewed in the context of the technical
programs of preceding Conferences. In this regard, I will note a few key areas of com-
parison. The session on CPE in Auditing is new, although individual papers and tutor-
ials on this subject have been presented at past Conferences. When viewed together,
the papers in the second section of the program display a continued and increasing
emphasis on rigorous and quantitative methodology in designing CPE experiments and in

analyzing the data from these experiments. Several papers reflect a growing concern
with the end user of computer services. In general, this year's program represents an
evolution based solidly on previous Conferences. If this observation can be applied to

the questions raised above, it suggests an evolution in the discipline of CPE to meet a

technology which often seems to be undergoing revolutionary change.

The technical program represented here is the work of many hands. The names asso-
ciated with these hands appear elsewhere in the Proceedings — members of the Confer-
ence Committee, session chairpersons, authors, and tutors. The Conference referees
merit special recognition. These individuals worked against almost impossible dead-
lines and contributed in a very important way to the overall quality of the technical
program.

John Bongiovanni g
Program Chairman

iv

ABSTRACT

The Proceedings record the papers that were presented at the Fifteenth Meeting of

the Computer Performance Evaluation Users Group (CPEUG 79) held October 15-18, 1979 in

San Diego, California. With the theme "The Expanding Scope of CPE," CPEUG 79 focused
on changes in CPE techniques that will occur in an era of increased use of distributed
processing techniques. The program was divided into two parallel sessions with one
session devoted to the presentation of technical papers on previously unpublished work
and the other devoted to tutorials and case studies. The technical papers fall into
one of two general categories, (1) application of CPE in installation management and

(2) methods and tools of CPE as a technical discipline, and are presented in the Pro-
ceedings in their entirety. Summaries of several of the tutorials and case studies
are also presented.

Key words: Computer performance evaluation; computer performance measurement; com-
puter performance prediction; computer system acquisition; conference proceedings;
CPEUG; CPE in auditing; installation management; hardware monitoring; on-line system
evaluation; prediction methods; queuing models; simulation; software monitoring;
workload definition.

The material contained herein is the viewpoint of the authors of specific papers.
Publication of their papers in this volume does not necessarily constitute an endorse-
ment by the Computer Performance Evaluation Users Group (CPEUG), or the National Bureau
of Standards. The material has been published in an effort to disseminate information
and to promote the state-of-the-art of computer performance measurement, simulation,
and evaluation.

CPEUG ADVISORY BOARD

Richard F. Dunlavey
National Bureau of Standards

Washington, DC

Dennis M. Gilbert
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

Dennis Conti
Sponsor Representative

National Bureau of Standards
Washington, DC

CONFERENCE COMMITTEE

CONFERENCE CHAIRMAN

PROGRAM CHAIRMAN

PUBLICATIONS CHAIRMAN

REGISTRATION AND ARRANGEMENTS

PUBLICITY CHAIRMAN

FINANCE CHAIRMAN

LOCAL HOST

Harry J. Mason, Jr.

U.S. General Accounting Office
Washington, DC

John J. Bongiovanni, Jr.

Air Force Data Services Center
Washington, DC

James E. Weatherbee
FEDSIM/MV
Washington, DC

Margaret Maulin
DOD Computer Institute
Washington, DC

Judith G. Abilock
The Mitre Corporation
McLean , VA

Carol B. Wilson
National Bureau of Standards
Gaithersburg, MD

Mark Underwood
Navy Personnel Research and

Development Center
San Diego, CA

REFEREES

Steve Dorman
United Airlines
San Francisco, CA

Larry Frazier
Air Force Data Systems Design Center

Montgomery, AL

Lloyd Hasche
Strategic Air Command

Omaha, NB

Steve Hunt
Headquarters Air Force

Washington, DC

James Mulford
International Computing Company

Dayton, OH

John Peterson
FEDS IM/AY

Washington, DC

Mitchell Spiegel
FEDSIM/NA

Washington, DC

TABLE OF CONTENTS

CPE IN AUDITING

DATA PROCESSING INFORMATION UTILIZATION - AN AUDIT
PERSPECTIVE
Michael J. Thibault
Defense Contract Audit Agency

AUDITING AN IMS SYSTEM
Capt C. L. Gausche
Air Force Data Services Center
William J. Schwinden
Boeing Computer Services Company

COMPUTER SYSTEMS ACQUISITION

SESSION OVERVIEW
Dennis Gilbert
Federal Computer Performance Evaluation
and Simulation Center

APPLICATIONS AND LIMITATIONS OF THE COST-VALUE TECHNIQUE
FOR COMPETITIVE COMPUTER SELECTION
Richard E. Barbour, Craig S. Harris,
James 0. Holcombe, and William C. Moncrief
Naval Postgraduate School

COMPUTER SELECTION: TO MEASURE OR NOT TO MEASURE
S. A. Mamrak
The Ohio State University

BENCHMARKING INTERACTIVE SYSTEMS: MODELING THE
APPLICATION
Christopher Sponner
The Mitre Corporation

INSTALLATION MANAGEMENT

SESSION OVERVIEW
Carol Wilson
National Bureau of Standards

METHODOLOGY FOR ESTABLISHING A COMPUTER PERFORMANCE MANAGEMENT
SYSTEM: A CASE STUDY
Geoffrey Goodman
International Computing Company

NAVAL LABORATORIES QUALITY OF SERVICE STANDARDS
Joseph S. Dodds
Naval Ocean Systems Center

Ix

TABLE OF CONTENTS (continued)

WORKLOAD ANALYSIS AND CAPACITY PLANNING

COMPUTER SYSTEM MIGRATION PLANNING THROUGH BENCHMARK
PERFORMANCE EVALUATION
Arabinda Mukherjee and Bruce A. Ketchledge
AT^T
Aridaman K. Jain
Bell Laboratories 89

AN OPTIMAL SAMPLE SIZE ALLOCATION SCHEME FOR
BENCHMARK DESIGN
Satish K. Tripathi, Karen D. Gordon, and
Ashok K. Agrawala
University of Maryland 105

COMPUTER WORKLOAD FORECASTING
James E. McNeece
Federal Bureau of Investigation 113

CPE EXPERIENCES

A SIMULATION MODEL OF JES OUTPUT PROCESSING
H. Pat Artis
Bell Laboratories 123

DESIGN FOR PERFORMANCE
Michael J. Kirrene
AVCO Financial Services
Mitchell G. Spiegel
Federal Computer Performance Evaluation and
Simulation Center 129

QUANTITATIVE METHODS IN CPE

SESSION OVERVIEW
Aridaman K. Jain
Bell Laboratories 143

THE APPLICATION OF CLUSTERING TECHNIQUES TO
COMPUTER PERFORMANCE MODELING
Thomas C. Hartrum and Jimmy W. Thompson
Air Force Institute of Technology 147

PERFORMANCE COMPARISON MEASURES FOR COMPUTER SYSTEMS
Ints Dzelzgalvis
International Business Machines 163

CPE TOOLS

EVENT DRIVEN CAPACITY PLANNING
Springer Cox
Digital Equipment Corporation 179

A FORTRAN SYNTHETIC PROGRAM FOR BENCHMARKING
Patricia M. Fleming and Andrew C. Rucks
U.S. Army Concepts Analysis Agency 193

z

TABLE OF CONTENTS (continued)

THE NBS NETWORK MEASUREMENT INSTRUMENT
Marshall D. Abrams
National Bureau of Standards 201

TUTORIALS AND CASE STUDIES

PERFORMANCE ANALYSIS OF A SATURATED SYSTEM:
A CASE STUDY
Nancy Lennon and Walter P. Bond, Jr.
Computer Science Corporation 215

TELEPROCESSING TRANSACTION THROUGHPUT PERFORMANCE
Bob Irwin
The Hartford 219

METHODOLOGY FOR PERFORMANCE EVALUATION AND
CAPACITY PLANNING
Arnold 0. Allen
IBM Systems Science Institute 227

BENCHMARKING WITH REMOTE TERMINAL EMULATION
Thomas F. Wyrick
Federal Computer Performance Evaluation
and Simulation Center
Raymond E. Youstra
International Business Machines 229

PLANNING AND IMPLEMENTING REMOTE TELEPROCESSING
SERVICES: MANAGEMENT PERSPECTIVES OF THE TSP
Capt Robert L. DeMichiell
U.S. Coast Guard Academy
LCDR Gerald L. Underwood
U.S. Coast Guard Research and Development Center 231

SELECTION AND EVALUATION OF INSTRUCTIONAL
TIMESHARING SERVICES (A TUTORIAL OUTLINE)
Richard T. Close and Raymond A. Kambeitz
U.S. Coast Guard Academy 233

TUTORIAL ON BENCHMARK CONSTRUCTION
Helen Letmanyi
National Bureau of Standards 235

USING ACCOUNTING LOG DATA IN PERFORMANCE ANALYSIS
James Bouhana
Purdue University 241

AN INFORMATIONAL MODEL FOR THE ADP MANAGER
Wayne Bennett
National Bureau of Standards 245

xl

CPE In Auditing

DATA PROCESSING INFORMATION UTILIZATION
AN AUDIT PERSPECTIVE

Michael J. Thibault

Defense Contract Audit Agency
San Francisco Region
San Francisco, CA

This paper outlines an audit approach used to evaluate ADP support
of the user population and covers subjects such as (i) measurement of
user satisfaction, (ii) data center responsiveness to user information
requirements, and (iii) distribution methods for computer based infor-
mation, i.e., on-line availe±>ility vs. hardcopy distribution. The
paper's intent is to show that audit disciplines can disclose user
needs. Specific review methods, seunpling criteria and actual audit
results are presented supporting this premise. Through user oriented
reviews non data processing professionals can be effective ADP
auditors.

1 . Introduction

One of the questions often facing the
Defense Contract Audit Agency auditor is
how to quickly and comprehensively deter-
mine the efficiency and effectiveness of
the ADP orgeuiization in light of the facts
that (i) many DCAA auditors have been pro-
fessionally educated as accounteuits rather
than data processors, and (ii) a large
majority of audit assignments are of short
duration without s\abstantial advance know-
ledge of the particulcu: ADP organization
being reviewed. It is the premise of this
paper that audit disciplines applied in a
user-oriented audit approach is one good
method for evaluating the strenghts and
weeiknesses of an ADP organization.

A definition of data processing per-
formance was recently presented by a top
authority in the ADP field as the "ability
to consistently meet user requirements."
In this context user-oriented reviews cer-
tainly merit consideration. It may be
helpful to visualize user-oriented reviews
as shown below where audit emphasis is on
the solid lines.

1 P?er
I

Input Preparation
and Handling

Data
Use [^Job_P£oce£si^n£

|]

I
Output I

~\ User

In essence a user oriented review pro-
vides the opportunity to develop an audit
opinion as to the efficiency and effect-
iveness of the data processing organiza-
tion without the need for specialized

3

knowledge to evaluate the data center
itself. Furthermore, there are increased
potential savings from such a review as
audit coverage is not limited to the data
center. DCAA's experience to date indi-
cates that identified savings for these
reviews are primarily in the user popula-
tion where ADP efficiencies result in

labor savings rather than equipment
savings. Therefore, a two pronged audit
approach, within the data center and out-
side the data center, is being advocated.
Within the data center are such areas as

equipment acquisition, performance mea-
surement and other installation perfor-
mance criteria. Outside the data center,
the subject of this paper, the emphasis is

placed on the end user and as a total will
be referred to as Data Processing Infor-
mation Utilization. From an audit view-
point we have divided Data Processing
Information Utilization into the three
following areas:

a. Report Utilization

b. Automation of Memual Tasks

c. On-line Information Requirements

Separating the audit into the three
areas shown will measure (i) user satis-
faction with existing system output
(Report Utilization), (ii) user satisfac-
tion with the systems development process
(Automation of Manual tasks), and (iii)

the manner in which ADP information is

being distributed to users (On-line Infor-
mation Requirements). While the above
titles and approaches are intentionally
simple, later examples will show that
often simple approaches result in complex
results.

2. Report Utilization

A survey of ADP report utilization is

usually the quickest method to identify
inadequate support provided to ADP users.
The following steps are useful in deter-
mining whether improvements are desirable.

2*1 Scunple ADP Reports

In most instances there will be a sum-
mary catalogue of available reports that
can be used as a basis for sampling. We
have found that interviews are more desir-
able them questionnaires because a user
who participated in system development
will be reluctant to provide negative com-
ments. However, during an interview it

will be obvious if the user cannot inter-

relate the report with the job function.
Suggested interview topics include:

2.1.1 Job Description

This may seem an unnecessary step but
is in fact one of the most important. A
key audit objective is to determine if

data processing reports efficiently and
effectively contribute to job accomplish-
ment. What are the day to day information
requirements for the user to be effective
in the job?

2.1.2 An Explanation of the Report
and its Purpose

If a user cannot effectively explain
the purpose and use of the data then its
value is questionable. "How is this data
used? Can you walk me through one of the
line items and explain how it assists you
in your job?" If a report isn't useful,
for whatever reason, chances are that
needed information is provided by another
system. . Where there are parallel informa-
tion systems, significant savings can
usually be attained by eliminating the
inefficient or unnecessary system.

2.1.3 Frequency of Reports

Information value is sometimes over-
rated. Reports received daily may only be
required weekly or monthly, thus freeing
valuable computer resources for other

priorities.

2.1.4 Report Distribution

Often a real need for data is identi-
fied but its distribution exceeds its use-
ful range. If a report is processed,
copied, and distributed to several users
and required by only a few then avoidable
costs are associated with this unnecessary
distribution.

2.1.5 Input Requirements

Substantial savings can be realized by
eliminating or reducing input or verifi-
cation requirements. For sampled reports,
user input should be defined and logically
evaluated. Unnecessary input results in

inefficient labor and equipment utiliza-
tion.

2.1.6 Report Output

User information
satisfied using less
such as microfiche.

needs can often be
expensive methods

4

2.1.7 Report Accuracy

Accuracy of data is critical for

objective user decision making. In addi-
tion, accuracy is an integral part of data
security.

2.2 Evaluate Internal Reviews

Most organizations require periodic
internal ADP evaluation. In several
instances we found that questionnaires are
distributed to users to determine the
quality of services provided. Effective-
ness of such reviews will affect the scope
of audit work.

2 . 3 Determine ADP Service
Request Procedures

It is essential that the users have
methods providing feedback to the data
centers. Most authoritative sources
recommend there be a centralized location
where user problems can be reported and
documented (user service desk) . This
source often contains a wealth of informa-
tion and will identify consistent
problems. Is this data summarized and
monitored to provide information for
corrective actions and have corrective
actions been taken?

2.5 Examples of Conditions Identified
During Initial Reviews

2.5.1 Unnecessary Input Requirements

ADP input was required from all trades
on all assemblies regardless of involve-
ment. Review disclosed that a large por-
tion of the time certain crafts did not
have work in a particular assembly. Modi-
fying ADP input requirements to exclude
input where no work was scheduled resulted
in reduced ADP input, verification and
file maintenance.

2.5.2 Report Distribution

Sample results showed that only six
percent of the ADP reports were unneces-
sary. However, eighteen percent of all

distributed copies were unnecessary.

2.5.3 Parallel Information Systems

Review disclosed similar and redundant
production performance management and
labor variance systems. Modified systems
resulted in greatly reduced ADP input,
verification and reporting while enhancing
available summary data.

2.5.4 Report Usefulness

2.4 Summarization of Results

Presentation of results can often be
clarified and enhanced by a summary
matrix. In addition, it will provide the

auditors with a better understanding of
whether problems are isolated or consis-
tently experienced. In the following
example, organizational areas with ADP
problems are annotated and would be
referenced to supporting documentation.
Consistent occurrence would indicate
overall ADP system problems rather than
isolated instances. For example, the lack
of timeliness is adversely affecting about
half the users and would indicate a need
for detailed evaluation of the cause of
this condition.

mnn acKewLE or si*mA«r cdmditiow

Computer based planning data were not

current and complete. As a result, a

parallel manual system was necessary to
furnish this data. Modifying report
structure and improving timeliness elimi-
nated the duplicate system.

2.5.5 Input Requirements

Performance reporting was required on
an exception basis. Analysis showed that
over fifty percent of reported items were

unchanged from prior periods. Excluding
unchanged items eliminated half of the
input requirements.

2.5.6 ADP Report Availability

Quality Assurance summary data was
automated and distributed to QA personnel
but not to production personnel. Distri-
buting this data to production personnel
enabled the contractor to eliminate the

manual record keeping necessary to log
quality assurance schedules and comple-
tions.

5

2.5.7 Report Timeliness

Production performance system reports,

scheduled for distribution by Monday P.M.,

were in fact not available until Thurs-
day. As a result, various crafts had to

manually summarize data for Tuesday/
Wednesday producton meetings.

2.5.8 Contractor Reviews

On a sample basis, an internal ADP
report utilization questionnaire was dis-

tributed to ADP users. Sample results
showed that over fifty percent of the

users requested data additions, deletions,
cancellations, and other changes. These
modifications were subsequently per-
formed. However, no further analysis was
scheduled. Based on audit recommenda-
tions, the contractor scheduled a compre-
hensive evaluation which resulted in sub-

stantial system improvements.

2.5.9 Report Frequency

Data processing support was provided
at a functional level by designated com-
puter interface personnel. Evaluation
showed that they were doing a good job of
providing necessary ADP support. However,
our sample of the end users disclosed that
the weekly distribution was too frequent
and that users unanimously agreed that bi-
weekly and monthly distribution would be
just as effective while reducing output by
half.

2.5.10 Report Output

Most output distribution was hard-
copy. Sample results disclosed that over
24 percent of the user population pre-
ferred microfiche due to lower cost, ease
of use and permanent storage advantages.

3. Automating Manual Tasks

In the rush to develop sophisticated
data systems, ongoing requirements for

file maintenance, data gathering and
analysis can be neglected. A survey or

sample of administrative responsibilities
will aid disclosure of potential adverse
conditions.

3.1 Define Work Areas or Job
Functions Having Extensive
Administrative Requirements

Administrative responsibilities are
often performed by non-administrative
personnel from other organization (i.e..

manufacturing) . Therefore a survey of
work areas using observations and/or
interviews will disclose total administra-
tive effort. As an example, at one loca-
tion a survey showed that 79 production
personnel were, in fact, performing
material related responsibilities.

3.2 Where Significant, Comprehensively
Evaluate Administrative Practices

This is usually done in the form of a
structured interview. Pertinent data
includes (i) ADP reports presently
received, (ii) primary record keeping-file
maintenance responsibilities, (iii) de-
sired information presently not received,
(iv) definition of staff assignments and
time required, and (v) suggested changes
or improvements that would improve job
performance.

3.3 Examples of Conditions Identified

3.3.1 Test Data Control

As part of the QA process, over 30
employees maintained compartment test
data. These data were summarized and
updated three times monthly; over half the

employee time was spent performing cleri-
cal functions. Automating test data and
placing them on-line enabled the contrac-

tor to eliminate those clerical tasks.

3.3.2 Material Requirements

Electrode requirements had historic-
ally been determined by applying a given
percentage factor to steel requirements.
This method often resulted in surpluses or
shortages. Stock status was acconplished
by periodic physical inventories and
manual record keeping. Status data was
usually outdated and resulted in either
(i) uneconomical local purchases, or (ii)

less efficient welding methods with other
electrodes. Automating material require-
ments responsibilities and developing
better status ing methods enabled the orga-
nization to substantially reduce surplus
and shortage conditions.

3.3.3 Personnel Qualifications

A good deal of manual effort was
devoted to maintaining welder qualifica-
tion data. Automating such data elimi-
nated most manual record keeping and file

maintenance

.

6

3.3.4 Engineering Status

Complex engineering personnel sta-
tusing was necessary to support various
program manpower requirements. Review
showed that up to forty similar systems
were maintained manually throughout the
organization. In addition, time lags in
distributing data from subtiers to higher
organizational levels resulted in exten-
sive reconciliation effort. Automating
engineering status activities eliminated
most manual preparation, copying and dis-
tributing while improving the timeliness
and accuracy of necessary data.

4, On-line Information Requirements

A key decision in todays ADP environ-
ment is the selection of best means to
distribute data processing information.
Many organizations presently make use of
on-line ADP information storage, retrieval
and system updating. We have found this
approach improves user support and satis-
faction. While there is no specific for-
mula for determining when an ADP system
can best be geared for on-line output as
opposed to hardcopy, an objective apprai-
sal of existing, planned and potential
systems will often disclose how the user
can best be supported. It is after such
an appraisal that technical considera-
tions, such as the correct system network,
will be most effective. Information deve-
loped by the auditor can then be provided
to systems analysts and other responsible
personnel and be included as part of the
overall systems development decision
making process. The auditor's objective
is to be assured that all the users needs
are being considered and are fully visible
to the ADP organization. The following
steps will assist in satisfying these
objectives.

4.1 Determine Existing ADP Configuration
and On-line Capability

Defining existing systems as well as
equipment limitations will enable the
auditor to limit the scope of review to
realizable on-line configurations.

4.2 Determine Current and Planned
On-Line Applications

Evaluating the current short and long
range plans will enable the auditor to
determine whether potential on-line appli-
cations are being effectively considered
as part of the systems development process.

4.3 Evaluate Existing On-Line
Applications

If these are current systems on-line a

survey of these systems should include:

a. Criteria used to place systems on-line

b. Qualitative and quantitative studies

c. Periodic system evaluations

d. Planned changes

e. User participation and satisfaction

(i) Frequency of use

(ii) Suggested modifications or
changes

(iii) Recommended additions

4.4 Survey of Sample Systems that
are Not On-line

Our experience to-date indicates that
after appropriate research, the primary
potential for payback lies with identify-
ing existing batch systems which can be
more economically placed on-line. We have
found two criteria which most often dis-
close whether a system should be placed
on-line.

4.4.1 Size of System Data Base and
Occurrence of Information Retrieval

Large data bases having high volumes
of data requests point towards the need
for on-line information retrieval. Re-
views to date have disclosed difficulties
in maintaining the accuracy and timeliness
of large dynamic batch systems. If infor-
mation developed during the report utili-
zation review indicates general user dis-
satisfaction with completeness and timeli-
ness of data, placing the system on-line
may eliminate those conditions.

4.4.2 Distribution and Documentation
of System Information

Batch information, initially developed
for limited applications, and subsequently
expanded and distributed to a wide variety
of end users, is susceptible of being
placed on-line. If a system is unwieldy,
data must often be supplemented by manual
record keeping, updating and distribu-
tion. In addition, if there are few docu-
mentation requirements, and informational
needs are for statusing and visibility

7

'such as material and scheduling informa-
tion) , on-line applications can result in

substantial administrative labor savings.
Savings generally include information
filing and maintenance, manual recording
of data changes between distributions and
information distribution costs.

4.5 Example of Conditions Identified

4.5.1 Material Inventory Status

Review disclosed instances where
material inventory data was logged and
maintained up to thirty times to provide
necessary material status visibility.
Lack of timeliness of the current batch
system was for the most part responsible.
Placing the material inventory system on-
line and interactively updating the data
base precluded most manual statusing and
saved significant manual labor.

4.5.2 Industrial Relations Status

Substantial ADP hardcopy data was
being distributed to Industrial Relations
representatives throughout several divi-
sions and programs. Review showed that
about 85 percent of all data was received,
analyzed and used at eight locations.
Placing the data on-line through the use
of CRTs enabled the organization to elimi-
nate most hardcopy distribution while
saving substantial time previously ex-
pended by organizations in information
exchange

.

5. Summary

This papers intent was not to advocate
that internal reviews of data centers have
been misdirected. On the contrary they
are vitally necessary. But from an audit
viewpoint, the paper does advocate that if

one of the primary purposes of the audit
is to measure whether user needs are being
met, a user oriented approach is worth-
\^ile. Further, this approach does not
require years of data processing exper-
ience. In summary, a two step audit or
review approach may be desirable, inclu-
ding (i) a user oriented review measuring
user satisfaction with existing systems,
and (ii) a data center review which re-
flects the results of the user satisfac-
tion review.

AUDITING AN IMS SYSTEM

Capt. C. L. Gausche and W. J. Schwinden

Boeing Computer Services
P.O. Box 24346

Seattle, WA 98124

This paper provides a structured approach to data collection,
analysis , and reporting when conducting a performance audit of an
IBM Information Management System (IMS). Performance auditing,
analogous to the traditional definition of an operational audit,
is concerned with: verifying planned results of a change, developing
a current baseline, and reporting this data in management usable
terms. The approach of the paper is to provide the performance
auditor with information concerning: a performance auditing procedure,
various data collection tools, applications of performance analysis
techniques, and how gathered data and subsequent analysis can be
structured into a logical flow. The performance audit steps are
amplified by using a case study. A reporting format, used
extensively by Boeing Computer Services (BCS) Company, is also
included.

Key words: Auditing; capacity planning; computer performance
evaluation; Information Management System (IMS) ; management
reporting; performance analysis; structured approach.

1 . Introduction

In the operation of a data center
there are a number of questions that are of
prime interest; how efficiently are the
system resources being used? how close to
capacity are these resources being
operated? how effective is the data
security? are the computer center costs
adequately covered and equitably dis-
tributed? etc.

The purpose of a performance audit is
to address the first two questions:
resource usage efficiency and operating
capacity levels. Unlike a traditional
audit, which is concerned with fiscal
accovintability , the computer performance
audit is concerned with resource account-
ability. That is, how and to what extent
are the various computer resources (CPU,

memory, I/O devices, etc.) being used? As

a vehicle for presenting the concepts and
approaches, an audit of an IBM 370/168 pro-
cessing an IMS workload is used.

The techniques and approaches which
are used axe not limited to IMS systems or
even to on-line systems. These techniques
have been successfully applied to systems
running batch only, batch with TSO, and com-
bined batch, TSO and IMS.

The objectives of this paper are to
present a structured approach for auditing
a computer system and to provide a specific
application of the concepts and approaches.
The paper is organized in the following
manner

:

9

1. Introduction and overview

2. General discussion of computer
performance auditing

3. Data sources and data reduction
techniques

4. Procedure for conducting an

audit

5 . Case study

6. Summary, conclusions, and areas

for development.

2 . Concepts of Computer Audits

There are several approaches to the

auditing of computer systems. For the pur-

poses of this paper, auditing is defined as

the process of reviewing, verifying, capac-
itizing, recommending, and reporting. That
is , it is the process of reviewing the cur-
rent state of the system, verifying the re-
sults of any system changes, determining
system capacity levels, providing required
recommendations, and preparing the necessary
reports.

The review process is the prime func-
tion of the audit. In this process the

usage of the system and all of its compo-
nents are determined. In the verification
phase the quantification of any changes to

the system, such as additional hardware or
a new release of software, are made. Capac-
itizing is the process of determining the
capacity limits for each of the system com-
ponents and the per cent of capacity at
which each component is operating during a

given time frame. Specification of capacity
limits is usually obtained from other
sources; special studies, vendor data, pub-
lished papers , etc . The operating capacity
levels are obtained directly from collected
data. Recommendations are based on the
results of the previous processes . The
primary emphasis is to provide management
with the basis for effective decision making.
After these phases are completed, a report
to management presenting the findings and
recommendations is necessary. In tradi-
tional terminology , this complete process is

an operational audit.

The remainder of the paper discusses
the audit procedure in detail and provides
an illustrative case study.

3. Sources of Data and Data Analysis

Auditing an IMS system requires the

use of various data collection techniques.
The basic tools are software monitors, hard-
ware monitors, and accounting data. Soft-
ware monitors are used for obtaining de-
tailed data on the internal operations of
the system. First are IMS statistical
summary reports , such as Boole and
Babbage's Control/IMS. These reports pro-
vide information on transactions/hour,
transaction existence time, transaction
mix. Message Processing Region (MPR) usage,
and data base access (DL/1 calls) activities
(For the non-IMS oriented, an MPR is equiva-
lent to a batch job stream processor. Mes-
sages are processed serially by an MPR, but
a system can have a number of concurrently
operating MPRs .) A second source of infor-
mation is the Resource Measurement Facility
(RMF) . The types of information gained
from this report are paging rates , device
and channel busy percentages , IMS Control
Region Activity, and queueing activity.
This information complements hardware moni-
tor data or, in cases where hardware moni-
tors are not available, can be used alone.
The third type of software monitor is the

IMS DC monitor. Information from this moni-
tor is used to explore various I/O relation-
ships between IMS and Multiple Virtual
Storage (MVS) . Whereas other monitors can
be run continously, this monitor is run
for short time periods due to high overhead.

Hardware monitor data, although not
always available, is very useful because it

can monitor the system continuously without
inducing its own load. In addition, it can
continue running despite any system fail-
ures. Hardware monitor data is useful for
showing CPU and channel busy over a repre-
sentative week and finding peak hour in

terms of CPU busy. This data is also used
to validate various software monitor reports

Accounting data is useful in determin-
ing shift loading profiles. The profile is

expressed in terms of system components
(CPU, paging, I/O activity) or in terms of

a work unit, such as BCS's Computer Re-
source Unit (CRU) . A data reduction pro-
gram, such as BCS's SARA, greatly simpli-
fies the activity. The shift profile
identifies the weekly loading cycle and the
workload mix for each shift.

Data analysis utilizes three tools

:

statistical analysis, system modeling, and
graphic representations . The statistical
analysis consists of mean and standard de-
viations for the system variables , correla-

10

tion analysis between these variables, and,

where applicable, curve fitting techniques.

System modeling techniques frequently in-

volve queueing network models. In some

cases a single server queueing analysis may
be sufficient; however, as the perception of

the system becomes more detailed, more so-

phisticated models may be required. Al-
though graphic representation of data is

generally thought of as a reporting tool , it

is veiry useful as an analytical tool. The

graphic representation of shift loading is

extremely helpful in identifying peak
periods and trends.

4. Generalized Procedure

This section presents a structured
approach to conducting a performance audit.

A stjnactured approach assists the analyst in

separating the mechanical aspects of the
audit from the analysis. By identifying the
mechnical aspects, the audit can be con-
ducted in an efficient manner and develop-
ment of tools to automate these functions
is possible.

This structured approach separates the
auditing process into seven steps

:

(The first three steps are the review
and verifying processes presented in

Section 2 .

)

1. Define the hardware and software con-
figuration and operating environment.

2. Time-series analysis.

3. Cross-section analysis.

(The next two steps are the capacitiz-
ing process of an audit.)

4. Statistical analysis.

5. System modeling.

(The last processes are recommenaing
and reporting .

)

6. Recommendation formulation.

7. Report publication.

The first step in the audit is under-
standing the system configuration,
hardware, software, and operating environ-
ment. Hardware configuration consists of the
CPU, memory size, and quantity, capacity, and
interconnection of I/O devices. Software
configuration consists of the version of the
operating system, the version of IMS and

any unique patches or updates. Operating
environment identifies the reliability,
availability and service level requirements.
Reliability requirements specify how sensi-
tive the operation is to system outages.
Availability requirements define the hours
of operation, maintenance and service needs,
and any other factors that could influence
the available system time. Service level
requirements specify the level of service
expected by the user. Service levels are
determined by the workload mix: jobs/hour
for batch, response time for on-line appli-
cations, etc.

After the analyst has described the com-
plete system, the second step of the audit
begins. This step is concerned with looking
at the system over a period of time. In an

analytical sense , the independent variable is

time and the dependent variables are perform-
ance service levels.

For IMS, two measures are tracked and
plotted on a weekly and monthly basis; re-
sponse time and number of transactions per
hour. Both of these data elements are avail-
able from IMS Statistical reports . Changes
in configuration and capacity are super-
imposed on these charts so a complete pic-
ture of the long term workload is available.
After several audits a history of other per-
formance indicators can also be established.
A more detailed breakdown of these items is

contained in the case study.

The next step in the time-series analy-
sis is the narrowing of the perspective from

a long-term time-series approach to a general
performance interval. This interval is &

time period such as month-end closing for a

company accounting system, seasonal peak de-

mand periods and so forth. For the IMS ap-
plication a representative week was selected.
The interval is chosen by looking at three

sources of data; either the hardware or soft-
ware monitors, the IMS statistical sim-
mary report, and accounting data for the

months under study. Hardware or software
monitors supply the data for the studied
interval, i.e., CPU and channel utilization.

The IMS monitor provides transaction load

and response time statistics. Once a gen-

eral interval is identified, a shift profile
is developed showing the most used periods
and the composition of the workload.

Next in the sequence is the narrowing
of the perspective to a specific performance
interval. A specific performance interval
is also application dependent. It could be

average or peak day in the general interval,
prime or time critical shift for an on-line

11

operation, etc. For IMS a representative day
during the general internal was choosen. A
good method of showing usage for a represent-
ative day is by MPR. Each MPR is tracked by
hour of the day and graphed. Along with a
graph by MPR during the day, a graph of
transaction type is generated. Transaction
type data are contained in the IMS statisti-
cal sxommary report and each type has its

associated statistics. From this data the
following can be determined:

1. The most frequent transaction types in
terms of per cent of total transactions

.

(Generally, 20% of the transactions will
account for 80% of the work.)

2. For these transactions, the resource
utilizations in terms of MPR and DLl CPU
utilization, DL/1 calls, response time,
and the extent of MPR activity.

From the specific performance interval
a peak demand period is defined. This
period, generally a peak hour or shift de-
pending upon the application, is used to
determine the resources necessary to meet
the service level requirements. The peak
demand interval is used for the cross-
section analysis.

Step 3 in the audit process takes a
cross-section view of the data. Time-series
analysis can be thought of as a horizontal
view of the data. Cross-section data is then
a vertical cut with the time variable held
fixed. Information obtained from this analy-
sis includes resource usage, service times
and workload data.

Resource usage is the demand on CPU,

memory, and I/O devices during the peak hour.
CPU utilization during this period can be ob-
tained with either a hardware monitor or a

software monitor. Memory usage, however,
generally requires a software monitor such as

RMF. This analysis focuses on paging activ-
ity since paging reflects memory utilization.
I/O activity is broken into two catagories:
channel activity and device activity.
Channel activity is obtained from either
hardware or software monitors. Device utili-
zation is usually obtained from the software
monitors since device queueing activity is
also available.

Service times, in an IMS environment,
are a measure of MPR efficiency. The over-
all service time, for all MPRs combined, is

computed by multiplying MPR usage by the
sample interval time, usually 3600 seconds,
and then dividing by the total number of
transactions during the hour. The equation

is

:

^ _ MPR usage X interval seconds
s total transactions

Workload during peak hour is measured by
the number of transactions processed. Trans-
action mix is analyzed by looking at the
following set of transaction statistics

:

IMS CPU usage, DL/1 CPU usage, DL/1 calls,
memory paging, IWAITS, and EXCPS.

After the time dependent analysis has
been completed, the next step is to perform
the necessary statistical analysis . Up to
this pointy basic statistical analysis (mean,

standard deviation, regressions, etc.) have
been used to determine the representative
week and day. In this step, correlation
analysis and curve fitting techniques are
used. The process here is to determine the
relationship between service level indicators
and system resource usage. The con-
cern is whether service level indicators
(response time, etc.) are an adequate meas-
ure of resource usage. It is quite possible
that a service level indicator is not sensi-
tive to a critical resource. This effect is

common in a mixed workload environment, such
as batch and IMS . For example , a particular
disk drive may be saturated and have exces-
sive queueing, but IMS response time may be
well within specifications. The second con-
cern is to identify the critical system re-
source. The critical system resource is

that resource which would constrain the sys-
tem if the workload were to increase to ca-

pacity. This analysis leads into the next
step, system model application.

The fifth step in the audit procedure is

the application of a system model. In this
step there is a definite trade-off between
the amount of time expended in applying a

model and the degree of precision required.
In general, detail precision is not a re-

quirement. The fluctuations of the work-
load from day-to-day and the difficulty in

predicting future workloads soon negate even
the most detailed of systems models . Experi-
ence with IMS shows that a single server
queueing model is sufficiently precise for
auditing even though IMS is a complicated
multi-process, multiple server queueing
system.

The approach was to take the service
time , as calculated in Step 3 , to generate

an expected value for response time. The

equation is

:

t -

12

where^= (MPR usage) /No. MPR's

The equation was then scaled so that its

graph would indicate the related transaction
rate. A specific example is contained in the

case study

.

Several recommendations generally result
from the audit procedure. These recommenda-
tions should be structured so management can
make timely and cost effective decisions.

Thus, the sixth step in the audit process is

frequently the most complicated to analyze

,

the most intricate to quantify, and the most
difficult to costing. Whereas, in the capac-
itizing step a simple queueing model may
suffice , a detailed complicated model may be

required in order to fully analyze the alter-
natives. Alternatives will range from man-
agerial actions , to changes in hardware

,

software or operations , to acquisition of

new equipment. The initial problem is to de-
termine the right balance between the depth
of analysis required and the timeliness of
the audit. To answer this question is usual-
ly an iterative process between auditors,
analysts , and mcuiagement decision makers .

Possible alternatives must be discussed, re-
viewed, and filtered before a viable set is

selected for detailed analysis. The end-
product of this step should be a set of al-
ternatives, the cost and benefits of each
alternative and a specific recommendation.

The last step in the audit process is to

prepare a formal report. As with any docu-
mentation effort, it is disastrous to leave
this effort until last. The report should
be written as the audit progresses. Empha-
sis should be placed on the report since it

is the only effective and long-lasting means
for communicating the audit results.

There are various formats for the audit
report. The format developed is both work-
able for the analyst and acceptable by man-
agement. The outline for this format is:

Part 1 - Introduction
Part 2 - Summary of Findings and

Recommendations
Part 3 - System Description
Part 4 - Workload Profile
Part 5 - Detailed Analysis of Findings

mation on the environment by describing the
hardware configuration and software revision
levels. The Workload Profile is partitioned
into time-series and cross-section data. The
time-series analysis is used to identify
trends and to select peak periods of opera-
tion. The cross-section analysis is used to
quantify resource usage by analyzing peak
period system operation. The Detail
Analysis section provides support data for

the summarized findings and recommendations

.

It shows resource use and discusses any
unique areas considered important by manage-
ment or the auditor.

Figure 1. is a flowchart summarizing
the audit procedure. The five functions of
an audit are identified in the left-hand
column and the seven steps of the procedure
are indicated in the center column. As

with any procedure , strict application may
not be desired. However, the general appli-
cation insures an acceptable end product.
The structure increases the effectiveness of
the analyst and defines areas that can be

automated. For example, data reduction
necessary for selecting representative weeks
and days , construction of shift profiles

,

statistical analysis and modeling are all
candidates for automation.

Audit Procedure Flow Chart

Function Step Procedure

Rwlew Md vwtfy 1-D*fln«
coAflguratlon

CtpMlUiIng

Rtcofflmsndino

3—CrOit-iacUontl
snclytU

4-Slall(tlcal

•nalytit

«--M(M]>llna

C—Fo'rmulata

r*comni«nd«t)oAs

7—Roport
pubtiMtion

Slail

Define hardwsra and
•ottware contlguratlona

Analyze d^ta

Decide on
representaUva weak

Graph shirt profile

Decide on
rapresontaliva day

Graph usage by hour

Show top 20\ of

transactiona

Find peali hour

Obtain resource
usage information

Perform
|

etatistlcai analyela

Model ayetam

Prepare
|

recommendatlona
3

Q«n«rata report

Figure 1. Audit Procedure Flowchart

The Introduction provides such data as

reasons for and scope of the audit. The

Summary is an executive level review of the

report. Trend charts and other graphic
representations are used extensively in this

section. In the last part of the Sximmary

the recommendations are presented to manage-
ment. The System Description provides infor-

The next section is a case study that

presents a specific application of computer

performance audit concepts and techniques.

13

5. Case Study

In September of 1978, a 7th megabyte ol

storage was added to a 370/168 system opera-
ting IMS. The IMS system was used in a

large aircraft manufacturing environment for
production planning. One month after the
memory installation, an audit was conducted
to determine the impact on the transaction
processing capability in terms of trans-
action rate and response time. The follow-
ing case study is presented in sequence of
development rather than as presented in the
final audit report.

The first step in the audit defined the

hardware and software configurations . Fig-
ure 2 . is the diagram of the hardware con-
figuration at the time of the audit. The
software configuration consisted of:

MVS operation system. Release 3.7

JES2
MS Release 1.1.4 at PTF Level 3

The next step, time-series analysis,
started by reviewing the operation of the

system to-date . Figure 3 . is the historical
performance graph at the time of the audit.
The performance service level is defined as

a 15 second response time requirement for
80% of all transactions . The 80% require-
ment eliminates the occasional long trans-
action that tends to skew the total average
statistic. This chart shows that the system
was operating at capacity, 5700 transactions/
hour, prior to the addition of the memory.

The third step was to select a specific
week and then develop a shift profile. For
this application, the third week in October
was selected. Figure 4. is a graph of the
shift profile. Although the evening shift is

the busiest in terms of total CRUs , the prime
shift is the most critical because of the
stringent response time requirements. (Even-

ing shift processes Batch MPRs (BMPs) , which
update the same data bases as the on-line
transactions , but without the response time
requirement .

)

From the representative week a repre-
sentative day was selected. Figure 5. pre-
sents the total transactions by hour and by
MPR for the entire prime shift of the repre-
sentative day. The peak hour, 10 to 11 a.m.,
is easily identified. Although the peak hour
is in the morning, the peak sustained load
occurs in the afternoon.

The first step in the cross-section
analysis was to perform a transaction analy-
sis. Figure 6. is a graphic representation

of the analysis . These 15 transaction types
account for 76% of the total transactions
and 83% of the data base accesses (DL/1
calls)

.

The results of the cross-section analy-
sis of the performance statistics are pre-
sented in Figure 7. For comparison purposes,
performance statistics for six periods are
included

.

This completes the review and verify
function. Next is the capacitizing func-
tion with the first step being statistical
analysis

.

Statistical analysis began with the
data contained in Figure 7. The important
statistics are 80% response time values,
pages (SMF) , peak hour CPU, service time,
and pages/second (RMF) . The 80% response
time value identifies 'out-of-specification'
periods . The EXCPs/transaction and peak
hour CPU show that neither of these re-
source components were constrainted. The
service time values closely track the 80%
response time . The system constraint is
identified by comparing the pages (SMF)

with either service time or 80% response
time. A close look at pages/second (RMF)

shows that system paging reaches its capac-
ity at about 70 pages/second. Since paging
was running at 65 pages/second in October,
some capacity still remains . The next
statistical analysis technique was a cor-
relation analysis of system variable rela-
tionships. Figure 8. is a table of the
correlation analysis results. As expected,
the relationship between variables of
interest was very high.

The system modeling step immediately
followed the statistical analysis. Figure
9. is a graph of the system models for the
previous audit and this audit. The equa-
tions for a single server queueing model
are given on the graph. The equations were
developed using the transaction service
time , as given in the table in Figure 7

.

The equation is then scaled and plotted, as

in Figure 9. The data points on the plots
were obtained directly from the daily IMS

performance report. These values are the
80% response times for the average hour
during prime shift. Once the model is

plotted, the maximum capacity is determined
by graphing where , in terms of transactions/
hour, the 15 second limit is reached.

The last step was to update the
historical performance graph with the new
capacity level. Figure 10. is this graph
with the capacity level, after the 7th

14

^ 3830
333I/)3S0
440-449

370-168

H 7 HEG STORAGE

CHANNELS

8|7|6|5h|3|2rrR

(cbiiQ <i> fcS <i>

cow t UNIT 1/0

3a3i)
333X/33M
4E0-4£r

3830
333K/33SC
460-468

3830/ 333X
340-348

3830/3331
3EO-3tF

3830/3331
" 360-3«F^

Figure 2 . Hardware Configuration

§
^ (OOO
in

s

g ton

S
«»

8

CftfWlTT ' FORECflST—

'

80X RESPONSE TIME
STANDARD

1978 1979

Figure 3. IMS Historical Performance Oiart
Before Audit

15

Figure 4. IMS Production Shift Loading Profile

TIME OF DAY

Figure 5 . IMS Transactions By MPR By Hour

16

TRANSACTION TYPES

Figure 6. Percent of Total Transactions

IMS IMS IMS IMS IMS IMS
1.0.1 1.1.3 1.1.4 1.1.4 1.1.4 1.1.4
Jan, 77 Jun, 77 Dec, 77 Feb, 78 Apr, 78 Oct, 78

Transactions
Prime Shift 31,383 38,091 48,993 44,252 49,279 51,148
Peak Hour 4,400 4,460 5,444 4,917 5,778 7,575

Response Time
Average 23.0 sec 55.0 sec 9.4 sec 48,5 sec 32.8 sec 32.8 sec
80% 6.0 sec 8.0 sec 20.0 sec 14.0 sec 9.0 sec

Per Transaction
MPR CPU 47.4 ms 86.1 ms 84.3 ms 78.3 ms
DL/1 CPU 64.7 ms
DL/1 calls 33.8 32.8 34.7 24.2 22.6 24.7
Pages (SMF) 11.4 8.8 19.9 18.7 11.0
IWAITS 27.7 7.7 12.4
EXCPs 7.5 9.2 8.1
CRUs .128 .130 .110 .108 .105

IWAITs/DLl call 0.82 0.34 0.41
Peak Hour CPU 60.2% 75.1% 67.0% 80.5%
CPU sec/transaction 0.493 0.497 0.417 0.382
Total MPR Usage 2.65 1.51 2.15 3.02 2.67 3.66
Service Time 2.21 sec 1.33 sec 1.58 sec 2.21 sec 1.96 sec 1.79 sec
Pages/Sec (RMF) 71 65

Figure 7. IMS Performance Statistical Summary

17

IMS CPU
IMS DL/1
IMS CRU
RMF CPU
RMF EXCPS

IMS
CPU

1.000

0.993
0.876

IMS
DL/1

1.000
0.989

IMS
CRU

0.993
0.989
1.000

RMF
CPU

0.876

1.000
0.920

Figure 8. IMS Correlation Matrix

RMF
EXCP

0.920

1.000

jpOf^ 4000 ftpflft

TRANSACTIONS PER HOUR

Figure 9. IMS Transactions VRS 80% Response Time

^ BDO
tn

s

y Rao

z
s

b

8

TRwmrriON/HOUR
CflPflCITY FORECnST-

807: RESPONSE TIME
STANDARD

1978 1979

Figure 10. IMS Historical Performance Chart After Audit

18

megabyte of memory, at 7300 transactions/

hour.

Normally, this audit would contain a

recommendation to add more real memory to

the system. However, it was not made because

a system upgrade to a 370/3033 was planned

for the first quarter of 1979. The upgrade

was necessary to meet requirements for new
applications. Thus, the primary benefits

of this audit were to provide a better
understanding of the system and to establish

a baseline for determining improvements

achieved with the new system.

A final report was published with Figure

10, Historical Performance graph; Figure 8,

Statistical Summary Table , and Figure 9

,

System Model graph all included in the

Executive Summary

.

6. Conclusion

This paper has presented an overview
of computer auditing, a procedure for audit-
ing an IBM computer using IMS, and a case
study of one unique IMS system. It is im-

portant to note that while judgment is a
very important ingredient in auditing, a

standardized procedure provides the analys-c

with a stJTUctured environment. This environ-
ment encourages the analyst to spend more
time analyzing and making reliable recommen-
dations and comparatively less time search-
ing for an approach.

The point should be made that this is

not a textbook approach to auditing, but
rather an approach that has evolved from
actual experience. This approach has been
used for auditing two dissimilar IMS systems,
a VM/370 running CMS system, a special pur-
pose on-line manufacturing system which is

run on dual 370/168' s, and on a combined
batch, TSO, and IMS system. Although the
procedure has been used extensively, it is

not, and probably never will be, finalized.
It will continue to evolve as the systems
change and the analysis tools becom.e more
sophisticated.

The immediate needs are for automating
data reduction and for more system model
development. The automation effort concen-
trates on more rapid breakdown of RMF data
into graphic displays. The modeling efforts
fall into two catagories : better statisti-
cal models and more accurate queueing network
models. Statistical analysis improvements
concentrate on utilizing cluster analysis
and developing appropriate curve-fitting

techniques. A prime concern in queueing
network modeling is determining the trade-
offs between stochastic and operational
analysis models.

Finally, although additional information
could enhance the audit, it is functionally
complete. The greatest benefit of the basic
procedure is its structure - structure in
data collection, structure in data analysis,
and structure in data reporting.

References

[l] Boyse, John W. and Warn, David R.

,

"A Straightforward Model for Computer

Performance Prediction", Computing

Surveys, VII (June, 1975), pp. 73-93.

^2^ Bronner, LeeRoy, Capacity Planning; An

Introduction, IBM Technical Publication,

GGC22-9001, January, 1977.

[3] Ferrari , Domenico ,
Computer Systems

Performance Evaluation, Prentice-Hall,

New York, 1978.

[43 Ferrari, Domenico, "Workload

Characterization and Selection in

Computer Performance Measurement"

,

Computer, , July/August , 1972, pp. 18-24.

[5] Hughes, P.H. , and Moe, G.

,

"A Structured Approach to Computer

Performance Analysis", National

Computer Conference, 1973.

[_6'\ Svobodva, Liba, Computer Performance

Measurement and Evaluation Methods

:

Analysis and Applications, Elsevier

North-Holland, New York, 1976.

19

Computer Systems Acquisition

COMPUTER SYSTEMS ACQUISITION

Dennis M. Gilbert

Directorate of System Evaluation
Federal Computer Performance Evaluation and Simulation Center

Washington, DC 20330

The growing diversity, complexity, and
sophistication of ADP systems and the

increasing costs of total systems have
caused corresponding increases associated
with acquiring these systems. Spurred, in

part, by a series of Federal Regulations, a

recent parallel trend has been the growing
sophistication of the ADP System buyer.
There is a new awareness of the importance
of the fact that the user must state require-
ments so that they not only reflect actual
needs but also are in a form that the
vendor can understand and in a form such
that vendor responses can be evaluated
fairly.

To satisfy these needs, more vigorous
tools, techniques, and approaches than were
adequate a few short years ago are now
necessary. Questions of how to evaluate
interactive and distributed systems, how to
establish fair procedures which encourage
competition, and whether the evaluation
process is cost effective must be looked at
anew. In this session, we will examine a

set of quantitative approaches that addresses
these questions and the ADP acquisition
process.

This session's first paper, "Applica-
tions and Limitations of the Cost-Value
Technique for Competitive Computer Selection,"
by Barbour, Holcombe, Harris and Moncrief,
describes the Cost-Value technique —
presented by Joslin in Computer Selection
(1977) but still little known, little used,
little understood — and compares it with
other methods for evaluating vendor ADP
system proposals. The technique is demon-
strated using exercises from a recent
simulated DOD procurement and analysis
project at the Navy Postgraduate School.

While the technique was found to be superior
to others being examined and worthy of

consideration, the study nonetheless iden-
tified difficulties in implementing the
methodology in a real market environment.

Significant costs and technological and
administrative complexities are associated
with the computer selection process. It

would be of much practical help to the
buyer to determine which information will
contribute to the selection process and
what costs and values are associated with
that information. In the second paper of

this session, "Computer Selection: To

Measure or Not to Measure," Mamrak explores
the applicability of statistical decision
theory to aid the buyer in making such cost
effectiveness decisions. The paper clarifies
such concepts as "mandatory," "desirable,"
"measurable," and "non-measurable" as
applied to performance evaluation criteria.
The author shows that the economic question
of whether to measure the proposed system
or not is only applicable to desirable and

measurable criteria; other categories
either must be measured or cannot be

measured

.

In the third paper, Spooner complements
his previous efforts with "Benchmarking
Interactive Systems: Modeling the Applica-
tion." He describes a modeling complex
under development which permits the bench-
marking of clusters of multiple minis
proposed by multiple vendors. The complex
consists of: synthetic code written in a

higher order language representing the

application, the proposed hardware and
software, a vendor developed "Vendor
Interface Package (VIP)," and a separate
benchmark driver. A specific methodology

23

for defining "Natural Flows" and resource
consumption is presented. The author
describes the flexibility of the technique
to allow for varying levels of detail and
varying vendor options. The author contend
that the flexibility, while imperfect, is

less unfair than the available alternatives

Following the presentations, authors
will participate in a panel discussion on
computer system acquisition. Panelists
will be asked to identify areas in which
additional quantification tools could aid
in the acquisition process. They will be
asked to comment on the relative applic-
ability of their approaches to Federal
Government and non-Government environments.
They will also be asked to address how
their approaches facilitate or constrain
the specification of user requirements and
how the approaches contribute to a satis-
factory user/ADP interface.

APPLICATIONS AND LIMITATIONS OF THE COST-VALUE
TECHNIQUE FOR COMPETETIVE COMPUTER SELECTION

Richard E. Barbour, Jr. Craig S. Harris
James 0. Holcombe Wm. C. Monorief

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93940

The cost-value technique, as proposed by E. 0. Joslin in Computer
Selection , was investigated in a simulated DOD system procurement
exercise. The cost-value technique was found to be favorable over
less formalized and rigorous approaches such as specification fulfill-
ment, cost only, cost-effectiveness selection, etc. The cost-value
method requires detailed research on the part of both the decision-
maker and the end user into the needs and intended applications of

the system prior to issuance of a Request for Proposals (RFP) . They
must analyze and define all aspects of system applications and seg-
regate these into mandatory and desirable features, assigning a

dollar value to each. With a more thorough definition of system
requirements, the system proposals are driven more by the purchaser's
needs than by "marketing assumptions" made to enhance the vendor's
product. In order for any system to be considered for selection under
this method, the system must meet all mandatory features. Qualifying
systems are then judged on the basis of their cost-value relative
standing in meeting the desirable features. This approach provides to

all vendors the criteria for selection, thus establishing a fair
and competitive basis for system proposals. Proposal relevancy is

therefore encouraged with respect to organizational needs. The selec-
tion experiment showed that employing the cost-value technique in a

real market environment was subject to several difficulties not common
to other techniques. The problems encountered and the limitations of

the technique will be discussed in the context of competitive computer
procurement

.

Key words: Computer evaluation; computer performance; computer pro-
curement; computers; computer selection; cost-value; cost-value
technique; EDP selection; evaluation methodology; performance evalua-
tion; procurement.

1 . Introduction

From an industry which was once dominat-
ed by one supplier (IBM) and one buyer (the
Federal Government) the electronic data pro-
cessing (EDP) market in America has become
extremely competitive. In 1978, Datapro
Research Corporation published information
profiles of 925 companies that offered EDP

products and services [1] . With such a
varied range of equipment from vrtiich to

choose, the data processing manager of today
faces an incredible dilemma attempting to
select a suite of hardware that best meets

Figures in brackets indicate the
literature references at the end of this
paper.

25

the organization's processing needs, "The

people who sell computers are specialists.

Not only are they specialists in computing

and data processing; they are specialists in

selling and the presentation of their wares,

and in the associated negotiations on commer-
cial and contractual terms. In the very

least they are specialists in the sense that

selling is their job and they do it all the

time.

The people who buy computers, even when
they are themselves professionals in comput-
ing, are rarely equally specialized, or

trained in buying" [2],

The suppliers' representatives are sel-
ling all the time, whereas a data processing
activity may only acquire upgraded or addi-

tional hardware once every 8-10 years in

the government sector [3]. "The unfortunate
results of this unequal contest are only too
easy to see. In countless computer installa-
tions it has come to be accepted that no con-
figuration as proposed by the supplier will
ever do the required work and that the custo-
mer will have practically no redress. The

typical pattern of supplier and prospective
customer exchanges leaves a great deal of the
initiative with suppliers" [2],

Ultimately during the EDP selection pro-
cess there comes a time when the data pro-
cessing manager must evaluate the vendors'
submitted proposals and select the one system
in which the organization's capital is to be
invested. Unless the manager has taken ade-
quate measures to dominate the procurement,
and to aggressively evaluate the proposed
systems, the final selection decision may be
a faulty one. The buyer must be able to
evaluate the system exclusive of the market-
ing bias.

Traditionally there have been several
evaluation methodologies employed in select-
ing one hardware item over another in a com-
petitve procurement. The methods include
sole source, overall impression of the ven-
dor, cost only (low bidder), weighted scor-
ing, cost-effectiveness ratio, and others.
One technique which has not been widely pub-
lished is the cost-value technique. This
technique was employed in a simulated EDP
procurement and analysis project and was
found to greatly facilitate the buyer's con-
trol over the competitive procurement pro-
cess. The purpose and scope of this paper is
to describe the cost-value technique and to
demonstrate its use, since there exists very
litte literature on the subject and the po-
tential of the technique with respect to EDP
equipment selection is perceived to be signi-
ficant .

2. Background

The cost-value technique was developed

as a selection methodology which translates a

set of specifications for a desired computer

system into two fundamental categories: man-

datory and desirable features. By definition

mandatory features are those items that are

essential to the implementation of the

activity's needs and objectives. Desirable
features are only those items which would
make the completion of the activity's mission
easier. Hence, a proposal will receive no
consideration if it fails to meet any one of
the mandatory requirements. The absence of
some desirable feature from a vendor's propo-
sal would invoke some penalty, however, it

would continue to be considered in the pro-
cess of selecting the most advantageous pro-

posal. This enables a procuring activity to
validate and objectively choose among several
vendor proposals. The technique was intro-
duced in this context by Joslin [4]. The
cost-value technique is superior to other
selection methodologies because it examines
both mandatory and desirable features, estab-
lishes understandable relative values between
these items and simultaneously incorporates
system life costing into the decision pro-
cess. Other commonly used evaluation tech-
niques such as "cost-only" and "weighted-
scoring" do not provide these facilities
(without extensive and awkward modifica-
tions) ,

The cost-value technique combines the
simplicity of the cost-only technique with
the realism of the weighted-scoring tech-
nique. The result is a technique superior to

both. It is superior to the cost-only tech-
nique in that it considers the relative merit
of the elements of a proposed system in addi-
tion to viewing the overall cost of the sys-
tem and its ability to meet the mandatory re-
quirements. It is superior to the weighted-
scoring technique in that it establishes
meaningful relationships between the items of
value and the system's cost while at the same
time incorporating system life costing.

This technique and several others were
OTployed as part of a simulated DoD procure-
ment and analysis project at the Naval Post-
graduate School. One purpose of the project
was to evaluate alternative computing systems
designed to satisfy specific requirements
(described in Figure 1). Seven teams
analyzed alternative computer systems, using
different evaluation techniques in selecting
their final computer system.

The teams' selections were evaluated pri-
marily on the quality of system design, the
ability of their selected system to meet

26

1. Main purpose - scientific processing (numeric floating
point calculations) . This processing would consist
of an average of 40 jobs/day (standard deviation =8),
each job averaging 6 x 10**8 floating point operations
(standard deviation = 1 x 10**8). These jobs would have
small main manory requirement (average 30 Kbytes/ job,

standard deviation =15 Kbytes) and I/O would be negligible.
2. Secondary purpose - data base handling. Data base

management routines would be run on an average of four

times per day (standard deviation = 1) to update four

data bases which the system would maintain on line
(1 update/data base/day). Each update requires creation
of a backup copy on removable media. The average size
of the data bases was 5 Mbytes (standard deviation =2.5
Mbytes),

3. A normal supportive/development system was
required, capable of time-shared operation with less
than 8 terminals. Hardcopy output was required, and a

graphics capability was highly desirable. An operating
system was needed to support the described job mix along
with providing a reasonable number of utilities, assemblers,
and language processors.

4. The initial budget request is $125,000.

Figure 1. Full System Specifications

the stated system requirements, and the qual-
ity of the selection technique employed. The
teams were competitive in their challenging
of evaluation techniques and design features.
Evaluation techniques used by other teams in-
eluded sole source, cost-only, overall im-

pression, and weighted scoring. At the con-
clusion of the experiment, a joint meeting of
all teams was held to discuss and evaluate
the various methodologies used. The cost-
value technique, under fire, was found to be
substantially superior to other selection
methods utilized.

Vfhile the cost-value selection technique
was noted to be superior, other methodologies
employed are briefly described below for con-
trast ,

2, 1 Sole Source

This methodology will be required in
some applications due to a single vendor pos-
sessing the required piece of equipment or
software capability. On the other hand, the
typical reason encountered in applying this
method, software compatability, may not be a
valid justification for remaining with a sin-
gle vendor. Software conversion and esta-
blished vendor relationships should not nor-
mally be the driving selection criterion of
the system,

2,2 Overall Impression

Two of the groups' techniques boiled
down to subjective judgement. Their feelings

as to the good or bad points of each indivi-
dual proposal swayed their decision. In

short, the administrators took a vote on the
technical merits.

2.3 Cost-only (or "low-bid")

Two other groups' selection methodology
resulted in determining which vendor's system
could perform the job and selecting the

cheapest one. Note, however, that often a

small price differential can result in a sys-
tem which can far out perform the low bid
system.

2.4 Weighted-scoring

Although the group using this technique
attempted to preassign points to items re-
quired and desired, no meaningful relation-
ships between points awarded for performance
and points awarded for low cost existed. The
group's selected system, based upon the pro-
posal that earned the most points, was open
to challenge with respect to several aspects,

2.5 Cost/effectiveness Ratio

This evaluation technique, although not
specifically utilized by any of the competing
groups is still generally used throughout DoD
activities. This evaluation technique is
really a subcategory of the weighted-scoring
technique, except that here, by dividing the
cost category by the effectiveness category,
the user can select systems with the lowest
ratio of cost

27

Vendor A Vendor B

a. System cost System 1 System 2 System 3

site preparation —
transportation/ installation 1,500
training 2,000 2,000 o Oil n3,040
equipment 147,605 159,395 159,197
maintenance contract 73,800 79,700 63,680

total cost 223,405 241 ,095 227,417
b. system value

graphics —

-

19,500
space -.

—

software 25,000 25,000 25,000
equipment interface 10,000 10,000 lU , UUU

vendor support 1 , 875 1 ,875 3,750
equipment delivery 6,000 6,000 lU, UUU

total value 42,875 42,875 68,250

c. total cost value
system costs $22J , 405 $241 , 095 $227,417
system value 42,875 42,875 68,250

system cost value 180,530 198,220 159,167
over 5 year life span

Figure 2. Cost-value Summary

to effectiveness. This technique suffers
from the same deficiency as the weighted-
scoring method in that the establishment of a

meaningful relationship between cost and ef-
fectiveness is quite difficult, as is the ac-
tual definition of "effectiveness".

3. Theory of Cost Value Defined

The cost-value technique recognizes the
necessity for comparatively evaluating the

desirable features offered by various comput-
er systems which meet certain minimum system
performance standards. The ability of the
proposed systems to perform the functions
specified as mandatory requirements are not
evaluated, but are validated. If it is found
that a vendor's system cannot meet the
minimum levels of performance, the proposal
is eliminated from further consideration. At

this point it is possible to compare desir-
able features offered in the proposals to
determine whether the claimed desirable
features are important in themselves or are
mere incidental elements. For example, a

60-nanosecond memory and a 1 , 000-cards-per-
minute card reader are not important in them-
selves. More important and desirable than
the specific operating characteristics of
these devices is how these features affect
the overall performance of the system. The
value of every desirable feature which is
considered to be important must be studied.

One distinguishing feature of the cost-
value technique is the assignment of value
(in dollars) to the desirable features. By
assigning a value to the desirable features,
a common denominator is defined vriiich allows
all useful features offered to be compared.
These comparisons are relative to each other
and not to the total cost of the system.
Although the values assigned to the various
desirable features will be a function of the
requirements for the system to be procured, a

value, when realistically assigned, can be
understood, examined, discussed, (and modi-
fied if necessary) independently of all oth-
ers.

The cost-value technique takes the total
cost of a proposed system as quoted by the
vendor and then deducts from it the total
value of all the desirable features included
in that proposal. The difference represents
the derived cost of satisfying the mandatory
requirements stated in the specification
package. The system having the lowest
derived cost for satisfying the mandatory re-
quirements becomes the system selected, since
the values of the desirable features offered
were taken into consideration in calculating
the derived cost.

In the cost-value technique, the propo-
sals are scored or ranked by a method re-
ferred to as the cost-value accounting
scheme. Actually, this is cost and value ac-

28

counting, since some of the values and costs
used, although stated in dollar terms, may
not involve actual expenditures. (Figure 2

illustrates such an accounting scheme,)

This ranking could also be looked at

from a value-to-cost ratio basis. The
results will be the same if value is con-
sidered in its full sense as value of manda-
tory requirements plus the value of the
desirable features offered, and cost is con-
sidered to be the total cost for the package
over the estimated life of the system.

U. Using the Cost Value Technique.

4.1, Determining values

To avoid any bias or appearance of bias
on the part of the selecting/purchasing
agent, the appraisal of desirable features
should be completed as an intregal part of
the development of the RFP in order to be
fair to the vendors and users alike. The
cost-value technique's approach to the desir-
able features (those likely to be offered by
the vendors above and beyond the mandatory
requirements) is to appraise them determining
whether they are worthy of inclusion in the
evaluation, and if so, determining the dollar
value of these features. Full participation
(if possible) of the end user in this process
is extremely valuable. Where the criteria
are not available at RFP time, vendors have
no alternatives but to make assumptions as to
what is needed . These assumptions may or may
not be valid.

By pre-establishing the mandatory re-
quirements and desirable features, all con-
cerned know the "rules of the game," i.e. the
criteria upon which selection will be based.
Thus the user and the vendor are aware of
what to expect from one another upon review-
ing final proposals.

The procuring/ selecting agent must take
the lead in the value determination process.
Although the end users generally understand
their technical problems better than the ad-
ministrator, they sometimes have a myopic
view of the value of systems and tend to
"want everything". Hence, they alone may not
be able to accurately and independently as-
sess the value of each of the desirable
features. Some fiscal guidance is usually
required

.

A simple listing of features which may
be considered as desirable must first be es-
tablished. Values are then assigned to those
items vrtiich are of importance to the system's

anticipated operation. Figures 3 and 4 con-
tain sample listings of these features which
one might consider at this point in the pro-
cess.

4,2 Evaluation Templates

The value of a desirable feature may be
established independently of the proposals
for predetermined ranges which are created to
show value for varying amounts of each of the
desirable features being evaluated. These
predetermined ideas of worth may be referred
to as "evaluation templates". Evaluation
templates incorporate two generalized cost-
value concepts which form the basis for as-
signing a value to a particular desired
characteristic

,

The first concept is that of establish-
ing limits. Assessing the value of any given
item is a difficult task. The logical start-
ing place is the cost of the item. If the
item is competitively available, its value
should never greatly exceed its market cost.
For example, a utility costing $3000 should
be valued at approximately that amount or

less if it is categorized as a desirable
feature. If the cost of having a mathemati-
cal subroutine written by a software consult-
ing group is $10,000, it would be reasonable
for a user with little use for this
subroutine to establish a value of only $500
for its availability. If on the other hand,
only one vendor can supply a critical
subroutine, its value is almost indeter-
minate. However, this case should not arise
in cost-value assessment for two reasons:

1. If the item is critical, it should
be listed as a mandatory requirement and
should not require value assessment.

2. If the item is critical and can be

procured from only one vendor, then the full
selection should have been handled as a

sole-source procurement, again making value
assessment unnecessary.

The second concept is that of diminish-
ing values. The prevailing thought behind
most evaluation templates created is that, as
more of an item becomes available, the incre-
mental benefit from inclusion of additional
units of that item decreases.

These evaluation templates are the prac-
tical criteria employed by the selection
group in assessing the relative worth of par-
ticular desirable chacteristics. Techniques
used to develop these templates run the en-

tire spectrum from simple ratios of cost-vs-
expansion to in-depth statistical analysis of
job loads and/or turn-around times.

29

1 . Costs
One-time costs

Site preparation
Electrical

Air conditioning (cooling, heating, and humidity control)

Power supply (including all wiring)

Space for equipment
Facilities (walls, ceiling, painting, draperies)

False flooring (including bracings)
Equipment installation
Equipment transportation
Vendor support

Personnel (analysts, programmers, operators, instructors)
Training (including transportation, living costs)

Existing programs
Backup facilities
Machine time (checkout)
Documentation
Program and data conversion

Continuing costs
Procurement of computer system equipment (falls in one-time

costs category if system is purchased)
Central processor and associated equipment (console, floating

point option, real time option, etc.)

Peripheral computer equipment: on-line or off-line
(remote-inquiry device, card reader, printer, etc.)

Auxiliary equipment
Keypunch machines and other data-creating devices
Printers, sorters, collators, etc.

Operation and manitenance of all electrical equipment
Personnel (manager, analysts, programmers, operators, etc.)
Program development
Supplies (magnetic tape, printer paper, cards, etc.)
Indirect cost for space used

2. Vendor's support of system
Program assistance

development, writing, converting, emulation training,
analysts, programmers, operators, managers, users

Maintenance offered
backup availability
program testing
hours, shift schedules, location
existing software maintenance plans
operating system maintenance plans

schedulers, I/O control, memory allocation, etc.
sort, merge, system simulators or emulators,
COBOL, FORTRAN, report generator, etc.

documentation
personnel loaned

analysts, progranmiers, operators, users

Figure 3- Costs and Vendor Support [5]

30

1. Equipment characteristics
Speed
Time required to complete applications specified
Instructions

add time (fixed and floating)
multiply time (fixed and floating)
divide time (fixed and floating)
move
other instructions

Peripheral equipment
printer (lines per minute)
card reader (cards per minute)
card punch (cards per minute)
magnetic tape units (characters per second)
ias (characters per second, average)
other equipment (through all other peripheral equipment

listed)
Capacity

storage capacity of main memory (core)
storage capacity of immediate-access storage (ias)
storage capacity of magnetic tape
characters per printed line

Compatibility
program, tapes, cards

Reliability
error detection, error correction techniques, mean time to

failure, etc., redundant components
Special features

memory lockout, parallel processing

2. Expansion potential
Slack time (amount of available free time on each piece of equipment)

central processor, magnetic tapes, immediate access stroage,
card punch, printer, remote terminals, etc. (through all other
equipment offered)

Maximum expansion (number of units that can be added to system)
magnetic tapes, immediate access storage, card punch, printer,
etc. (through all other system equipment offered), extra core,
disk drives

Compatible equipment
larger processors
higher performance units

Figure 4. Desirable Features - Equipment Characteristics and Expansion Potential [5]

4.3. Determining Cost

All cost items must be considered in the
evaluation. Items such as the cost of sup-
plies or personnel may prove to be nondif-
ferentiating in a given selection, but they
should be included for the sake of complete-
ness.

Treating cost items as one-time costs or
continuing costs is a matter of cataloging.
The following rules must govern any proper
treatment of cost items:

1 . The costs must be spread propor-
tionately over the expected life of the sys-
tem.

2, The system costs should reflect the

costs of any planned system expansion.
Costs should be called out for individu-

al items (except when the entire system is to
be purchased as a package) . No cost items
should be duplicated. That is, the system
should not be charged twice for the same
equipment or service. For example, if a card
reader is used both online and offline, its
full cost should not be shown twice. Program
development costs should be handled similiar-
ly-

Wherever possible, equipment charac-
teristics should be measured in terms of sys-
tem performance (time, capacity, etc.). This
determines the system's cost and responsive-
ness and shows any room for expansion within

31

that system's boundaries.

The following are some general rules
with regard to cost-value technique applica-
tions.

1. The user's value figure for the
desirable features should be independent of
vendor pricing except that values should not
exceed market price.

2. In some cases, the vendor may not be
able to give cost figures for supplying ser-
vice or equipment equal to some of the
levels/specifications desired, due to lack of
facilities. In other cases, it might be

practical only for the vendor himself to pro-
vide the service. In such cases, the cost
value of such a service must be determined
individually, and may be considerably higher
than the costs charged by any other vendor.
The higher cost value should then be the
base

.

3. The value of the desirable features
should reflect the user's judgement as to the
items' relative operational utility.

All items being evaluated should be
explicitly identified as mandatory or desir-
able with appropiate cost and/or value as-
sessments.

5. Each item must be evaluated individu-
ally in the context of mandatory or desirable
and the impact it contributes toward the
overall system.

6. At the outset of the evaluation the
expected useful life of the system must be
stated. Subsequent evaluation of all manda-
tory and desirable features should then re-
flect this planned life and/or anticipated
expansion in the cost/value accounting
scheme.

The circumstances of the selection of a
given computer system determine the specific
items to which prospective evaluators will
apply the cost-value technique. The methods
described herein for determining cost and
values are by no means the only methods that
might be used. The key point is to apply
the cost-value technique with the end user in

mind.

5. An Example of Cost Value Selection

In the simulated DoD procurement (see
Figure 1 for full system specifications), the
cost-value technique was employed to stratify
the processing demands into the two major ca-
tegories of mandatory and desirable features.

5. 1 Mandatory features

1 . The proposed system must be capable
of accomodating a daily scientific processing
workload of 2.44 x 10«»10 floating point
operations on an average day and 3-08 x

10»*11 on a worst case day. Associated with
these floating point operations would be
overhead instructions in the amount of 9.76 x
10»»10 and 1.23 x 10**12 for the average and
worst case days respectively. These figures
represent a 95% confidence interval about the
workload mean .

2. The proposed system must accomodate
the daily data management workload of:

(a) maintaining approximately 40 megabytes
of data base on line for query by the
time-sharing terminals.
(b) maintenance of data bases by daily
transaction postings. It was estimated
that each record contained 150 bytes of
data and that 100,000 instruction execu-
tions were required per record update.
Also, backup copies of updated data bases
were required on removable media.

3. The proposed system must be compat-
able with FORTRAN IV.

4. The proposed system must have a

support/development system capable of time-
sharing operation on 3 - 7 terminals.

5. Hardcopy output is required.

5.2 Desirable features

1. Terminal and/or hardcopy graphics ca-
pability is desired.

2. Mainframe, mass storage devices, and
operator's console should fit within 150

square feet of floor space.

3. Data bases should be supported by a

data base management system.

4. Tape interface for entry of the data
base update transations is desired.

Four studies were shown by Stone
[6] that attempted to determine the aver-
age instruction mix of scientific pro-
grams. The study conducted by Arbuckle
(69) yielded the highest percentage of
the four studies for floating point cal-
culations, that percentage being 17.1$.

In order to provide additional computing
power in the system being designed, an
assumption was made that 20% of each
scientific program would consist of
floating point calculations. Given that
assumption, the remaining 80$ of each
program would be overhead (loa, sto,

etc) . The 20% floating point portion of
the programs was subdivided into the per-
centages of 70$ add/subtract, 20$ multi-
ply, and 10$ divide.

32

5. Purchase cost should be in the
$100,000 to $200,000,

range

6. Desire to have 100 hours of program
test time on hardware made available by the

vendor.

7. Desire delivery schedule such that
installation could be completed within 180

days.

Resource constraints on the simulated
procurement experiment precluded considering
all relevant factors discussed in Figures 3

and 4. Only the most important factors are
shown.

5.3 Evaluation Templates
for Desirable Features

The presence or absence of these desired
features in a vendor's proposal was incor-
porated into simple evaluation templates in

the following manner.

1. Graphics Capability- If a proposal
included the graphics feature, $19,500 would
be deducted from the vendor's quote thus
enhancing the competitiveness of the bid.
This amount represents the cost of a graphics
terminal with a microprocessor device which
would be incurred if a separate contract,
was required for the acquisition of this ca-
pability.

2. Space Available- If additional space
is required for hardware installation, a
negative value charge would be assessed and
added to the quote. This penalty charge
would consist of $5,000 for the removal of
one structural wall and $80/ square foot for

each additional square foot of floor space
needed

.

3. Data Base Management- The value of a

record management software package was deter-
mined to be $25,000. This amount would be
deducted from any vendor's quote if the pro-
posal included that capability.

U. Tape Interface Capability- The daily
data base update transactions would be re-
ceived on tape. If the proposed system could
not accept the tape input and data conversion
to another medium was required, a cost of
$50/tape would be incurred. For lack of this
tape interface capability, a penalty of
$5,000 would be assessed and added to the
vendor's quote,

5. Equipment Delivery- The cost-value of
early delivery was determined by the costs
which would be incurred in leasing computa-
tional services if the desired installation

deadline could not be met, or the savings
that would result from early delivery. The
following schedule applies:

Positive
values
(to be sub-
tracted from
proposal)

Delivery Date Value
0-30 days 10,000

31-60 days 8,000
61-90 days 6, 000
91-120 days 4,000
121-150 days 2,000
151-180 days -0-

181-190 days -5,000
191-210 days -10,000
211-240 days -15,000
241 + days -20,000

Negative
values
(to be added
to proposal)

6. Vendor Support during Program Test
Time- 100 hours of machine time was desired
for program compatability testing and debug-
ging. The value assigned to this hardware
time was set at $50/hour for predelivery time
and $25/ hour for post-delivery time. A max-
imum ceiling of $5000 was established. Pro-

posals offering this machine time would have
quotations reduced by the appropriate amount.

5.4 Costs

Costs would be computed on an additive
basis over the estimated life of the system,
considering both one-time and continuing
costs. The system with the least cost would
be considered the most desirable. The cost
items that would constitute factors in this
determination were:

equipment cost based on 5 year life
- maintenance costs over 5 year life.
- vendor support of the system.
- site preparation costs,

equipment installation charges,
equipment transportation charges.

- any other differentiating cost items.

With the mandatory and desirable features
now identified, segregated, valued, and docu-
mented, vendors were contacted and presented
requests for proposals (RFP's). Briefings
were held with each vendor in order to

thoroughly describe the system requirements,
all aspects of the intended environment, and

the method by which the individual proposals
would be competitively evaluated under the
cost-value technique.

Two vendors formally replied to the RFP,

providing a total of three systems that met
all the mandatory features and many of the
desirable features. Figure 5 is a tabular
simmary of the bid proposals submitted by
these two companies and represents an item-
ized listing of the cost elements in the ven-
dors' proposals. Figure 2 itemizes the value
credits granted as a result of the vendor
providing desirable features in addition to

33

Vendor A system 1 system 2

package: 88,900 101,000
cpu, memory, disk drive, disk controller,
tape drive, tape controller, operator's console,
operating system & software, battery backup
system, cabinets & assembly hardware

add-on disk drive 18,000 19,000
multiplexor 2,310 2,310
crt terminals (6) 11,400 11,400
terminal cables

25 feet (3) 180 180

100 feet (3) 360 360
line printer 11,800 11,800
array processor

cpu 1 1 , 900 1 1 , 900

memory 9,700 9,700
software 2,500 2,500
communications and software interface 3,850 3,850

subtotal 160,900 174,000
less discounts 13,295 14,605

total hardware cost $147,605 $159,395
training 2,000 2,000
maintenance (approx, 10%

hardware purchase cost/year 73,800 79,700
for 5 years)

Vendor B system 3

cpu 64,000
peripheral interface 4,120
disk drive 33,000
tape drive 10,550
line printer 4,950
asynchronous I/O controller 4,020
crt terminals (6) 12,060
operating system & support software 800
array processor

cpu 11,900
memory 9,700
software 800
communications and software interface 3,850

battery backup system 980
graphics terminal 9,900
graphics software 1,700
cabinets & assembly hardware 1,450
subtotal 173,780
less discount 14,583

total hardware cost $159,197
training 3,040
maintenance (79,600 less 20%
(approx, 10% of for 5 yr contract) 63,680
hardware cost/yr)

Figure 5. Vendor Bid Proposals

meeting the mandatory features. The net to-
tal value amount was then applied to the to-
tal cost quotations from the vendors. Figure
2 depicts the adjusted vendor bids, or
derived cost as described in Section 3, after

applying the cost-value model

.

In sum, the vendor bids were validated
and evaluated for mandatory and desirable
features. The mandatory features were vali-

34

dated by estimating the time required (in-

stead of benchmarking) for scientific and

data base workloads. The desirable features

were evaluated for accuracy and completeness.
Applying the cost-value technique resulted in

Vendor B having the lowest cost-value derived
cost, and, as a result, was chosen the

winner

.

6. Merits of the Cost-value Technique

While implementing the cost-value tech-
nique in the competitive environment of the
simulation, certain elements of the process
highlighted themselves as having considerable
merit. The most noteworthy was the manner in

which this technique forces one to refine
system requirements more carefully than in

other selection techniques. Most other pro-
curement methods leave areas of ambiguity in
the total system requirements and concentrate
only on areas of interest to the user. For
example system cost, processing capability,
etc., are often covered in unequal levels of
detail. As a result of incomplete require-
ments definition, the vendors then have the
liberty of proposing a much wider variety of
systems, emphasizing more strongly those as-
pects in which their systems excel. The
marketing assumption of "what is required"
may or may not yield the system that is real-
ly needed. The cost-value technique requires
intimate awareness of acceptable system per-
formance criteria independent of the market-
ing environment of the computer industry. By
prior determination of the mandatory and
desirable features developed from the user's
inputs, the specifications of the system are
designed such that the best proposed system
is the most strongly rewarded. This prepara-
tion makes the buyer a better "shopper" and,
therefore, produces a system much better
tailored to the needs of the users.

Also in this process, life cycle costs
are explored. In examining these costs,
lease/purchase decisions are facilitated and
system growth margins per dollar cost can be
ccanpared. Managerial accounting models
(internal rate of return, net present value,
etc.) may be utilized to ensure the system
will be efficient and effective for the or-
ganization.

The selecting/purchasing agent is
forced to choose a system very close to vrtiat

the user actually wants. All too often a
buyer is presented with only minimum system
specifications. If the buyer then procures a
system that merely meets minimum specifica-
tions, the user's true needs may not be met.

The cost-value technique has a further
beneficial impact upon vendor's responses.

Once the vendors understand the contents of
the RFP, they know exactly which systems are
capable of meeting the mandatory items. They
then tailor the potential systems to maximize
their cost- value ratings. The "openness" of
the selection method is appealing. Most of
the sales personnel of the companies are not
familiar with the cost-value technique, so

some education is often required.

Clearly the authors found many favorable
attributes of the cost- value technique as a

system selection methodology. However, there
are some limitations to the technique that
should be discussed. Some are unique to this
method vrtiile others are common to most
methods commonly employed today.

7. Limitations of the Cost Value Technique

The first difficulty encountered was the
determination of the mandatory and desirable
features and the dollar-values that should be
assigned to the desirable category.

Joslin [4] gives good examples of the
boundary limits of the dollar-values for the
desirable features, but it is the buyer vrtio

must ultimately assign a dollar-value to each
feature. The more desirable a feature, the
higher the value, but the actual value as-
signment is up to the buyer. If this subjec-
tivity leads one away from the true market
value of a commodity or service, then the
financial creditability of the model may fall
prey to a disgruntled vendor if his system is

not selected.

Another problem noted in using the

cost-value technique is that of determining a

vendor's reputation for quality and service.
This factor could be significant during the

life of the system, especially with respect
to hardware service changes and software up-
dates and requires considerable scrutiny.
The vendor's reputation was not considered as

a mandatory or desirable feature in the ex-

periment described above and was only super-
ficially viewed. The final determination was
subjective as to the vendor's reputation for

service and quality. Even though the cost-
value technique was not applied in evaluating
the vendor's reputation for service and qual-
ity in the experiment, the following ap-
proaches might be pursued. Check user
responses to Dataoro Reports on Minicomputers
[7] vendor/ equipment surveys. Interview
knowledgeable people currently using the

equipment to get first hand information con-
cerning the hardware and the vendor's indus-
try wide reputation. If there are several
installations of the proposed machine, a

maintenance/reliability data base already ex-

ists. Hence, vendors who are typically re-

35

luctant to divulge this data, may do so if
enough pressure is applied. The vendor repu-
tation problem is more difficult for small
peripheral companies. Usually there is a

price break for plug compatible devices.
However, their service and reliability factor
is much harder to evaluate. There may also
be a hardware interface problem. The small
vendor's reputation may be determined only by
talking to actual users and getting firm re-
liability data. For example, in the simulat-
ed experiment selecting an arithmetic proces-
sor required evaluation of smaller vendors.

The next area of concern that was en-
countered has been briefly mentioned. Most
of the vendor sales personnel contacted did
not understand this selection technique. The
level of understanding ranged from "never
heard of it" to "never actually used it",

therefore, if one is to pursue this technique
in today's market it is encumbent upon the
buyer to properly educate (or at least in-
form) the vendors with repsect to this
method. Even then, the selecting/purchasing
agent should anticipate receiving some propo-
sals which may be developed in part on misin-
treptations. Time permitting, the vendor
should be contacted and allowed to correct
the proposal following further explanation.

The technique does not fully explain how
one goes about designing an integrated system
combining the equipment of one vendor with
that of another. This problem is not unique
to this acquisition methodology,, but is
universal with all selection methods. This
problem is projected to be ever increasing,
particularly in view of the exponentially ex-
panding peripheral hardware market. Specifi-
cally, during the selection simulation, prob-
lems were encountered in the selection of the
various graphic units, array and floating
point processors, and terminals. "Off-the-
shelf" package systems were proposed that met
the stated requirements, even though some of
the component subsystems were barely capable
of meeting specifications, while others in
the package were an "over-kill". Although it
would have been desirable to purchase each
individual element of the system from the
firm who specifically met the requirements,
it was found that the price breaks afforded
by purchasing the package systems from a sin-
gle vendor made distributed purchases cost
prohibitive. This shortcoming of the cost-
value model is intensified as the system
under consideration increases in size. There
are many variables to be considered in trying
to formulate a guideline to apply in this
case: different cost-values, how maintenance
contracts may be effected, how splitting up
the package may effect the "package price",
whether the units are compatible, the costs

of interface hardware and software in terms
of dollars and performance degradation, and

others. These questions must be examined in

detail when attempting to "mix a system".

8. Conclusions

The authors found in the academic appli-
cation of the cost-value technique a tool
which is felt to be superior to other metho-
dologies for system selection. Although cer-
tain shortcomings of the model were noted,

these deficiencies did not outweigh nor
necessarily counter the advantages of the
cost-value technique. The technique has been
presented to create an awareness of the model
and to demonsrtate its applicability to the
current environment. Through the highlight-
ing of the merits and deficiencies of this
technique, it is anticipated that the buyer
may better predict possible problem areas and
formulate plausible alternatives should he

desire to employ this model. The ultimate
goal, of course, is the selection of optimal
systems.

The authors would like to acknowledge the en-
couragement and support of Dr. Lyle A. Cox,

References

t 1] Datapro 70. The EDP Buyer's Guide. Da-

tapro Research Corp,, vol. 3, McGraw-
Hill Co., Chicago, July 1978.

[2] McQuaker, R. J., Computer Choice ,

North-Holland Publishing Co., Amster-
dam, 1978.

[3] U. S. President's Reorganization Pro-
ject, National Security Team Report,
Federal Data Processing Reorganization
Study, October, 1978.

[4] Joslin, E. 0., Computer Selection .

Technology Press Inc., Fairfax Station,
Va,, 1977.

[5] Bayraktar, A. N., Computer Selection
and Evaluation, master's thesis, U. S.

Naval Postgraduate School, Monterey,
Ca., 1978.

[6] Stone, H. S. , Introduction to Computer
Architecture , Science Research Associ-
ates, Inc., Chicago, 1975,

[7] Datapro Reports on Minicomputers, Da-
tapro Research Corp., McGraw- Hill Co.,

Chicago, 1979.

36

COMPUTER SELECTION: TO MEASURE OR NOT TO MEASURE

S. A. Mamrak

The Ohio State University
Columbus, Ohio 43210

Measurement phases of a computer selection process are costly and
time-consuming. A decision must be made prior to measurement whether
the data obtained will be worth more to the decision maker than the cost
of conducting the measurement experiment. This paper illustrates how
statistical decision theory can be applied to answer that cost/value
question.

Key Words: Computer measurement; computer procurement; computer
selection; decision theory.

1.0 Introduction

The selection of a computer system or
service is a complicated process with many
different evaluation phases. Mandatory
performance criteria must be assessed,
followed by desirable performance criteria.
Further the criteria may be measurable (such
as a certain turnaround time for processing
a benchmark workload) or nonmeasurabl e (such
as possession of a certain compiler).

Nonmeasurabl e criteria, either mandatory
or desirable, are relatively inexpensive to

evaluate. Typically they require an answer
to a question like "Does the computer system
have a text editor?" or "Can the computer
system be delivered before January 1, 1980?"

Measurable criteria, on the other hand, are
typically expensive to evaluate, requiring
sophisticated measurement equipment and the
time and talents of skilled personnel.

Because of the high cost of obtaining
measurement data, it is important to

determine under what circumstances measure-
ment phases of a selection process should in

fact be executed. The question is one of
cost versus value: will the data resulting
from a measurement experiment be worth more
to the decision maker than the cost of
obtaining the data. This is a fundamental
question addressed by statistical decision

theory. The purpose of this paper is to

illustrate how decision theory can be

applied to the measurement question in a

computer selection process.

2,0 Background

A previously developed model of the

computer selection process is presented in

Figure 1 [AME79] . A sequence is illustrated
in which classes of selection criteria should

be applied in the process of choosing the

best alternative computer system.

Initially, criteria must be defined
which state what is meant by best. These
criteria can be categorized in two ways.

They are either measurable or nonmeasurable

and they are either mandatory or uesirable.

Thus, the selection criteria can be classified
as Mandatory Nonmeasurable (MN)

, Mandatory
Measurable (MM), Desirable Nonmeasurable (DN),

and Desirable Measureable (DM). Examples of

these criteria are presented in Table 1.

The sequence of applying the selection
criteria is composed of three phases. The

application of MN criteria in Phase I is

managed easily, since each alternative
either does or does not have the required

characteristics. Phase II, which further
reduces the number of alternatives,
involves the application of MM criteria.

37

ALL ALTERMATr/E Ca-?UTER SY3TB'.S

©©©© ...©

>^ >^ >|r >^

BEST SYSTBl

FIGURE 1. Model of the Computer Selection Process

Experiments are conducted on the alterna-
tives which survived Phase I and the per-
formance of each is documented. For each
MM criterion, measurements are gathered
from every system and a decision is made as
to whether or not the criterion is satis-
fied. Failure to satisfy a single MM
criterion results in an alternative's
el imination.

Finally, determination of the best
alternative is made in Phase III. This
stage is separated into two parts. Phase IIIA

for the application of DN criteria and Phase
IIIB for the application of DM criteria. For

DM criteria, data are collected from each
alternative being evaluated and compared.
On the basis of relative performance with
respect to the DN and DM criteria, an

38

Table 1. Examples of Performance Criteria

Example

naiiUa Lur y
Nonmeasurable

1. The system must be fully delivered and operational
no later than September 1, 1979.

2. Timesharing service must include FORTRAN, Basic, Lisp,
SNOBOL and editing facilities.

nanud torjr

Measurable
1. The mean-time-to-failure for a specific one month

period must be greater than 4 hours.

2. 95% of all trivial command response times must be

less than 1 second.

Desirable
noniueasuraD i e

1. It Is desirable that the system include Pascal and
COBOL facilities.

2. It Is desired that the system provide a text editing
capability.

Desirable
Measurable

1. It Is desired that the system provide a mean
turnaround time for the benchmark run of 5 minutes
or less.

2. It is desired that 95* of all trivial command response
times be 0.5 seconds or less.

alternative is selected as the best. Inherent
in the application of Phase III selection
criteria is the notion of "preference,"
Alternative systems must be evaluated with
respect to various desirable criteria and
assigned values over a preference range.
These values must then be summarized to form
a single composite preference measure for
each system.

Basically, there have been two lines of
approach for deriving global preference
measures for competing computer systems,
excluding an ad hoc technique of "eye-balling"
the data in some intuitive way (see TIM73 for
a complete discussion). The first of these is
a "preference scoring" approach, also called
"scoring systems" or "weighted factor methods,"
and the second is a "cost-value" technique.
The primary difference between the two
approaches is the time in the decision-making
process at which cost is considered. In the
first approach a global performance indicator
is obtained for each alternative system and
then performance/cost pairs are used to make

the final selection. In a cost-value
approach, cost is the sole basic preference
measure applied to each criterion under con-
sideration.

The preference scoring approach is in

general held to be too formal to model the
process it represents. It requires too many
decisions of too exact a nature. Given a

set of performance criteria for selection,
an analyst must first weigh the subjective
importance of each performance criterion
relative to the others. At the same time,
a range of possible values must be assigned
to each criterion, from minimally accept-
able to most desirable. Then, each system
under study must be evaluated with respect
to each criterion, and based on the evalua-
tion, assigned a suitable value within the
prescribed range. For non-measurement
data, this assignment is purely subjective.
Finally, global value measures are derived,
to be combined with cost to form value/cost
preference pairs for each system. The
selection of the best system is then made
by examining the value/cost pairs.

39

The cost-value approach, credited mainly
to Joslin [JOS77], is free from most of the
disadvantages of the preference scoring
approach and is more widely accepted.
Basically, a dollar value is placed on each
measurable and non-measurable desirable
criterion. Any system meeting a performance
criterion is credited with its corresponding
dollar value, relative to the degree to which
the criterion is met. The total credits for
a system are subtracted from the total cost
and the system with the lowest price is
selected as the best. An example of a final
cost-value accounting table is presented in

Figure 2. Total costs and total values of
each contending system were calculated and
cost minus value figures (last line in the
Figure) were obtained. According to the
Joslin method, the computer system proposed
by Vender Y/\ would be selected.

The nature of the measurement question
in computer selection can be clarified by

reference to Figure 2. The only measurable
criteria evaluated in that study was run time
for the benchmark workload. Values were
assigned as shown in the Figure, based on

measurement results. The question is: was

it necessary to evaluate workload run time,

a rather expensive and lengthy process, or
could the correct selection have been made
without this information?

It should be noted that only desirable
criteria are assigned values in the Joslin
scheme. Meeting mandatory requirements
enables a system to be entered into the
cost-value competition. So, the question to

measure or not applies only to desirable,
measurable criteria, since all mandatory
measurable criteria must be evaluated.

3.0 Statistical Decision Theory

The decision problem addressed by

statistical decision theory is of the same

form as the measurement question in computer
selection. The decision problem (see RAI61
for a more extensive discussion) is con-
cerned with the logical analysis of choice
among courses of action when

1) the consequences of any course
of action will depend upon the
"state of the world"

COST-VALUE ACCOUNTING TABLE

Items Vendor X Vendor Ya Vendor Yb Vendor 2

Cost

Site preparation $ $ $ $ 2,000

Transportation and installatian

Vendor support

Operating personnel

and conversion
310,000 268,000 268,000 241,000

Equipment and maintenance 359,900 493,000 652,700 753,100

Total cost 669,900 761,000 920,700 996,100

Value

Workload $ 27,750 $ 95,800 $ 95,800 $128,500

Equipment exponsion 75,800 125,500

Sort/merge 80,000 100,000 100,000 100,000

Automatic debug 60,000

PERT 10,000 10,000 20,000

On-site maintenonce 40,000 40,000 40,000

Program test time 10,000 25,000 25,000 25,000

Program support 40,000 40,000 40,000 40,000

Equipment delivery 50,000 10,000 10,000 -30,000

Space available - 7,000

Totol value of

desirable features
200,750 320,800 395,800 508,500

Cost of basic requirements 469,150 440.200 524,900 487,600

FIGURE 2. Cost-value Accounting Table [JOS77, p. 210].

40

2) the true state is as yet unknown

3) it is possible at a cost to obtain
additional information about the

state

Analogously, the computer selection problem
is concerned with choosing among alternative
computer systems where

1) the consequence of choosing an

alternative system will depend upon
the characteristics of the contend-
ing systems

2) the true characteristics are as yet
unknown

3) it is possible at a cost to perform
measurement experiments to obtain
additional information about system
characteristics

Further assumptions about the decision
problem are that the choice has been con-
fined to a well-defined set of contenders
and that the decision maker will incorpo-
rate basic preferences concerning conse-
quences and basic judgments concerning the

state of the world in the decision making
process. A more precise statement and

analysis of the decision problem is pre-
sented in the remainder of this section
and an illustrative sample application in a

computer selection is presented in section
4.0.

3.1 The Basic Data

It is assumed that the decision maker
can specify the following data defining the
decision problem.

1. Space of terminal choices (or acts):

C = {c}. The decision maker wishes to make
a single choice from some domain C of

potential choices.

2. State space: S = {s}. The decision
maker believes that the consequence of

making a choice c depends on some "state of

the world" (or computer system) whose
behavior cannot be predicted with certainty.
Each potential system will be labelled by an

s with domain S.

3. Family of experiments: E = {e}. To

obtain further information on the importance
to be attached to each s in S, the decision
maker may select a single experiment e from
the family E of potential experiments.

4. Sample space: Z = {z}. Each potential
outcome of a potential experiment e will

be labelled by a z with domain Z.

5. Utility Evaluation: u (e,z,c,s). The
decision maker assignes a utility u(e>z>c,s)
to performing a particular e, observing a

particular z, making a particular choice c

and then finding that a particular s obtains.
The evaluation u takes account of the costs
of experimentation as well as the conse-
quences of the final choice.

6. Probability Assessment: Ps,z/e on S X Z.

For every e in E the decision maker directly
or indirectly assigns a joint probability
measure P5,z/e ^° Cartesian product space
S X Z, which will be called the possibility

space. The joint measure determines four
other probability measures:

a) The marginal measure Ps on the state
space S. This is a measure the decision
maker would assign to s prior to knowing the

outcome of experiment e. In a computer
selection problem, this would be an assign-
ment of a probability to each s in S that it

was in fact the best computer system.

b) The conditional measure Pz/e,s
the sample space Z for given e and s. In a

computer selection decision this is an

assignment of a probability of an outcome z,

given that experiment e was performed on

system s.

c) The marginal measure P^/e on the
sample space Z for a given e but unspecified

s. In a computer selection decision this is

an assignement of a probability of an outcome
z, given that an experiment e was performed.

d) The conditional measure Pg/z on the

state space S for a given e and z; the con-

dition e is suppressed because the relevant

aspects of e will be expressed as a part of

z. This is a measure the decision maker
would assign posterior to knowing the out-

come z of experiment e. In a computer
selection decision, this is an assignment
of a probability of computer system s being

the best computer system, given outcome z.

3.2 Assessment of Probability Measures

For any given e, there are several

methods for assigning the complete set of

measures just defined. In a computer
selection decision it is most likely that

a decision maker will be able to assign
marginal measures Pg ("a" above) based on

past experience, judgment and information

about already collected nonmeasurabl

e

criteria. In addition, assuming the

measurement experiments will be conducted

using valid statistical techniques.

41

[AME79,MAM77,MAM79] , the decision maker will

also be able to assign conditional measures

''z/e,s above), the probability of a

given outcome, given an experiment e on s.

From these assignments the marginal measures
on Z ("c" above) and the conditional measures
on S ("d" above) can be computed, as will be
illustrated below.

The assignment of marginal measures,
Pg, is one which requires basic judgements
on the part of the decision maker concerning
which system is in fact the best, given all

the evidence accumulated up to this point.

The evidence may be objective, such as the
current ranking of the systems based on

evaluation of all nonmeasurable criteria.
It may be subjective, such as a feeling
that one system is indeed better than all

the others, and it may be some combination
of subjective and objective pieces of data.
At this point in the decision, the decision
maker is called upon to make explicit the
nature of the evidence being used to assign
the Ps measures.

3.3 The Decision Tree

Given E, Z, C, S, u and Ps,z/e' the
general decision problem is: how should the
decision maker choose an e and then, having
observed z, make a choice c, in such a way
as to maximize the expected utility. This
problem can be represented by a decision
tree as shown in Figure 3. In that figure,
the decision maker selects ei in E and

"chance" selects Zj in Z, according to the

measure Pz/e- Then in step 3, the decision
maker selects c|< in C and chance selects
s I in S according to the measure Ps/z- The
result is that the decision maker receives
u(e,z,c,s) as a payoff.

In computer selection, when the decision
is whether to measure or not, the decision
tree is more appropriately analyzed using
"backwards induction" rather than the forward
analysis described above. Instead of starting
by asking which experiment e the decision
maker should choose at step 1, the decision
maker starts by asking which choice c would
be made in step 3 if a particular experi-
ment e already has been performed with an

observed outcome z. The difficulty with
this approach is that, since the system s

which will be chosen is still unknown, the
utilities of the various possible choices
are uncertain. This difficulty can be
resolved by treating the utility of any c

for a given (e,z) as a random variable
u(e,z,c,'^) and applying the operator Eg/z
which takes the expected value of u(e,z,c,'^)
with respect to the conditional measure

P5/2. Thus at step 3, looking forward, the

decision maker must compute

u*(e,z,c) = Es/zu(e,z,c,'s)

.

Moving backward to step 2, since the
decision maker wants to maximize the
expected utility, then faced with a given
{e,z) at step 2, the choice c should be made
for which u*(e,z,c) is the greatest. Since
the decision maker is free to make any
choice c, the utility of entering step 3 with
history (e,z) and the choice c still to make
is

u*(e,z) = maxcU*(e,z,c)

.

Thus, u*(e,z) needs to be computed for all

possible (e,z), and then the initial choice
of an experiment can proceed.

At this point, step 1, the utilities of

each possible experiment e are uncertain
because the outcomes z are unknown. This
difficulty is resolved in exactly the same
way it was resolved when a choice c had to

be made in step 3 without certain knowledge
of s. Thus, the utility of any z for a giv^^n

e can be treated as a random variable u*(e,z)
and the operator Ez/e can be applied. So

u*(e) = Ee/z u*(e,z)

where Eg/z is applied with respect to the
marginal measure Pz/e-

The decision maker wishes to choose the

e for which u*(e) is the greatest and there-
fore, the utility of being at step 1 with the
choice e to make is

u* = maxg u*(e) =

maxg Ez/e "^^x
^ Es/2u(e,z ,c ,s)

.

The various steps and sample calculations are

illustrated in the example application below.

4,0 Computer Selection Example

The cost-value data presented in Figure

2 will be used as the basis for a sample
application of decision theory to the
question of whether or not to perform a

measurement experiment in a computer
selection process. The table of Figure 2

will be modified however, as shown in

Figure 4, to present cost-value results for

the evaluation of nonmeasurable criteria
only. Essentially, this change required
eliminating the "workload" value entry line
from the table in Figure 2, since that is

the only measurable criterion shown. If a

computer selection were done based on the

nonmeasurable data, the system of Vendor X

would be chosen. Assume a value table has

42

STEP:

CHOICES

:

MEASURE:

u(e,z c,s)

FIGURE 3. A Decision Tree

been appropriately determined for workload
performance as is presented in Figure 5.

Further, it is known that the cost of con-
ducting the experiment is $10,000. The
decision to be made at this point is

whether to conduct a measurement experiment
(run and measure the benchmark workload) or
not.

The maximum possible value to be gained
by any system from conducting the experi-
ment is $60,000 (see Figure 5). A gain of
a $60,000 value to the system of either
Vendor Yg or Vendor Z will still not cause
it to be selected, so these two systems can
be eliminated from the competition at this
point and the workload obviously need not
be run on them. However, the "Cost of Basic
Requirements" figures for Vendors X and Y/\

are within $60,000 of one another, so that
it is possible that an experiment might
reverse their ranking. The decision theory
developed in section 3.0 can now be applied.

Table 2 presents the possible choices in

this situation. Tables 3-6 present the
various required probability measures. The
values in Table 3 are obtained from the
probability statements associated with the
particular statistical procedure used to
collect and analyze the experimental data.

For example, one entry in Table 3 indicates
that if the experiment is performed and if

si is in fact the right choice, then it is

85% certain that zi will be the outcome of
the experiment. The values in Table 4 are
estimates of the probability that a given
system is in fact the best one (has true
lowest cost). In Table 4 the probabilities
show that the decision maker believes the

two systems are equally likely to be the
best. This could be construed as the

"fairest" assignment of probabilities, or

could reflect the judgement of the decision
maker that in fact the two contending
systems are closely matched overall.

The values in Tables 5 and 6 are derived
from the values in Tables 3 and 4. In Table

5, the joint measure on S X Z is derived by

computing for each s and z, ^z/q s
* ^s-

'^^^

marginal measure on Z is then obtained by

summing the joint measures for each z. Table
6 contains conditional measures on S. Here

Ps/z = (Pz/e,s • Ps)/Pz/e-

The decision tree for this data is pre-
sented in Figure 6. The probability assign-
ments to the various branches were taken from
Tables 3-6. The utilities were computed
using knowledge of the cost difference
between the systems of Vendor Y/\ and Vendor

43

i itjM T7'CXTF\r\'D VVhNDUK A vhNUUK 1

.

A
ViiJNUUK I

B
V£j1nJJUK L

Total Cost $669,900 $761,000 $920,700 $996,100

Total Value of Desirable
Features (Nqnmeasurable)

$173,000 $225,000 $300,000 $380,000

Cost of Basic Requirements

I

$496,900 $536,000 $620,700 $616,100

FIGURE 4. Cost-Value Table Based on Nonmeasurable Criteria

Hours Required
Value

to Process

50 $ 0

40 30,000

30 60,000

FIGURE 5. Value Table for Workload Run

44

TABLE 2. Possible Choices

SPACE ELEMENTS INTERPRETATION

Choose system of vendor X

Choose system of vendor

"2

System of vendor X has the true
lowest cost

System of vendor has the true
lowest cost

Do not experiment

Experiment (run the workload)

Outcome of e^ (a dummy)

Outcome of more favorable to

Outcome of e^ more favorable to

TABLE 3. Conditional Measures on Z (P^/e s^

e
0

^1
L

^1 ^1 ^2

1.0 1.0 .0 .0

\ .0 .0 .85 .15

^2 .0 .0 .15 .85

TABLE 4. Marginal Measures on S (P)

.5

.5

45

TABLE 5. Marginal Measures on Z (P ,)z/e

Joint
on S

^1

Measure
X Z

^2

•

Marginal
Measure on

.0 .0 .0

.425 .075 .5

.075 .425 .5^2

p , = p . • p
z/s z/e,s s

TABLE 6. Conditional Measures on S (P ,)
s/ z

"l ^2

^0 .5 .5

.85 .15

^2 .15 .85

P
/

p _ z/e
• P

, s s

s/z P
z/e

46

19,550

19,550

1.

'0

35,550«

550

-19,550

35,550

.85

,15

-45,550

- 6,45(

,15

.85

sc 3,550
,15

,85

49,550

-10,450

-49,550

10,450

44,550

-15,450

-54,550

5,450

44,550

-15,450

-54,550

5,450

z/e si 2

FIGURE 6. Decision Tree for Computer Selection (Example 1)

4 7

X from Figure 4 ($536,000 - $496,900 =

$39,100), the range of possible values
assigned to each system as a result of a

measurement experiment ($0 - $60,000), and

the cost of the experiment ($10,000). For

example u(eQ, Zq, Cj, Sj) is the utility of

not performing the experiment, choosing the
system of vendor X, and having that system
in fact be the correct choice. The utility
was calculated by averaging the maximum gain
in this case ($39,100 + $60,000 = $99,100,
since there already exists a $39,100
difference between the two systems and the
best possible outcome of the experiment if

in fact the system of vendor X is best, is

that it will be assigned a value of $60,000
while the system of vendor Y will be
assigned a value of $0) with the minimum
gain in this case ($L since that's the
least difference recognizable between the
two systems). Thus

u(eo, Zq, ci, si)
=

1 + 99,100
49,550.

A second example, to clarify the
utility calculations, is the calculation for

u(ei, zj, C][, S2). This is the utility
associated with performing the experiment
and choosing the system of vendor X as a

result of the experiment, when in fact the
system of vendor was the best choice.
This utility was computed by averaging the

maximum loss in this case ($20,900 + $10,000
= $30,900, since the worst that could happen
if in fact the system of vendor Y/\ is best

is that it should have been credited with a

value of $60,000 and the system of vendor X

with $0, which leaves a difference between
the systems of $496,900 -$476,000 = $20,900,
plus the cost of having conducted the experi-

ment which is $10,000) with the minimum loss

($1, since this is again the smallest recog-
nizable difference between the systems).
Thus,

u(ei, zi, ci, S2) =

_(30,90CLtJ,) = . 15,450.

As an example of the calculations for

the utilities u*(e,z,c):

u*(eo, Zq, C2) =

u(eo, ZQ, C2, si)Ps^/2Q +

u(eo, Zq, C2, S2)Ps2/zo "

-49,550(.5) + 10,450(.5) = -19,550

Having computed all the u*(e,z,c) the u*(e,z)

can be computed, for example, as

u*(ei, Z2) = max{u*(ei, Z2, ci),

u*(ei, Z2, C2)}

= max {-6,450,-3,550}

= -3,550.

The calculation of the u*(e) is illustrated
by

u*(ei) = u*(ei, Zi)Pzj/e^ +

u*(ei, Z2)Pz2/ei

= 35,550(.5) + -3,550(.5)

= 16,000.

Finally, u* is computed as

u* = max{u*(eo), u*(ei)}

= max {19,550, 16,000}

= 19,550.

The optimal course of action is thus to use

Bq. That is, don't experiment and choose
the system of vendor X.

The results derived from the analysis
of the decision tree depend critically upon

the initial probabilities Pg and the utilities

assigned by the decision maker. If in this

case, for instance, the decision maker
judged that it was more likely that the system
of vendor Y/\ was in fact the best, the original

Ps values might have been assigned as Pg^ ^ .25

Ps2 = -75. As can be seen from the data in

Tables 7-10 and the associated decision tree

in Figure 7, the decision not to experiment
would have been reversed.

5.0 Conclusions

The decision maker in a computer

selection process needs assistance in de-

ciding to measure or not, since computer

measurement is an expensive and time-

consuming activity. Statistical decision
theory provides a formal analysis tool for

making this decision. It allows the

decision maker to incorporate all relevant
information obtained up to the decision
point, including information about system
rankings based on nonmeasurable performance
criteria. The cost of the experiment and

the expected gain from performing it can

also be explicitly incorporated into the

48

TABLE 7. Conditional Measures on Z (P ,)z/e,s'

^0 ^1

^1 "1 ^2

1.0 1.0 ,0 .0

.0 .0 .85 .15

.0 .0 .15 .85

TABLE 8. Marginal Measures on S (P)

s P
s

^1 .25

^2 .75

49

TABLE 9. Marginal Measures on Z (P ,)

Joint Measure Marginal
on S X Z Measure on Z

^1 "2 (^z/e>

.0 .0 .0

.21 .11 .32

.04 .64 .68

P , = P • P
z/s z/e,s s

TABLE 10. Conditional Measures on S (P ,)s/z

"l "2

^0 .75

z^ . 66 .34

Z2 .06 .94

P ,

p _ z/e
• P

, s s

s/

z

P
/z/e

50

4,550

1.0.

4,550
1 .75

,25

-4,550

,75

24,150

49,550

-10,450

-49,550

-10,450

44,550

24,150
,66

^35,150

-15,450

-54,550

,68

-11,850
LI .94

5,450

44,550

-15,450

1,850

J, 850
,06

.94

-54,450

5,450

FIGURE 7. Decision Tree for Computer Selection (Example 2)

51

process. Thus, decision theory provides a

means for determining if in fact the cost of
obtaining the data is less than its value in

the decision making process.

6.0 References

AME79 Amer, P. D. , Experimental Design for
Computer Comparison and Selection ,

Ph.D. Dissertation, Department of
Computer and Information Science, The
Ohio State University, March 1979.

J0S77 Joslin, E. 0., Computer Selection ,

The Technology Press Incorporated,
Fairfax Station, Virginia, 1977.

MAM77 Mamrak, S. A. and P. A. DeRuyter,
"Statistical Methods for Comparison
of Computer Services," Computer ,

Vol. 10, No. 11, November 1977,

pp. 32-39.

MAM79 Mamrak, S. A. and P. D. Amer, A

Methodology for the Selection of

Interactive Computer Services , NBS

Special Publication 500-44, National

Bureau of Standards, Washington, D.C.,
January 1979.

RAI61 Raiffa, H. and R. Schlaifer, Applied
Statistical Decision Theory , Graduate
School of Business Administration,
Harvard University, Boston,
Massachusetts, 1961.

TIM73 Timmreck, E. M. , "Computer Selection
Methodology," Computing Surveys ,

Vol. 5, No. 4, December 1973,

pp. 200-222.

52

BENCHMARKING INTERACTIVE SYSTEMS:
MODELING THE APPLICATION

Christopher R. Spooner

The MITRE Corporation, McLean, VA

A benchmarking methodology has been developed that applies to com-
petitive procurements for dedicated interactive applications, where the
hardware and at least some of the operating system are to be off-the-
shelf, but where a suitable implementation of the application does not
yet exist. The methodology was developed by The MITRE Corporation
under the sponsorship of the Federal Aviation Administration (Contract
DOT-FA79WA-4184) . It consists of preparing a model of the proposed
application in the form of a set of modules of synthetic code, and re-
quiring each of the competing vendors to run the model on his proposed
system. The vendor provides two items: a package that interfaces his

operating system to the buyer-provided model, and a separate benchmark
driver (hardware plus software). The driver reads artificial messages
off a buyer-provided scenario tape and delivers them in real-time.
Having time-stamped the corresponding responses, it writes them to an
output tape for subsequent analysis. The model is written in a very
high level language, from which it is translated automatically by soft-
ware into High Order Language for delivery to vendors.

This paper describes the modeling of the application. The model
is not intended to measure the vendor's design or programming skills,
but it must drive the hardware in approximately the same manner as would
his eventual implementation. It must do this for all competing configura-
tions, even though none of them are known when the benchmark is being
developed. After briefly summarizing the overall benchmark approach,
the paper shows how the application is modeled in terms of abstract
components whose implementation can be vendor-dependent, with a top-
down approach being taken to the functional requirements for the appli-
cation. Relevent considerations are discussed in the text of the paper.

Key words: Benchmarking; distributed processing; interactive systems;

kernels; modeling; computer performance measurement; real-time; simula-
tion; synthetic programs.

1. Introduction

It has been recognized for some time
that benchmarking interactive systems is

considerably more difficult than bench-
marking batch systems. A benchmark has
been developed for the following situation.
Competitive bids are being invited for a

dedicated interactive system. Both uhe
hardware, which is to be a cluster of

loosely coupled mini-computers, and at least

the essential nucleus of the operating sys-
tem, are to be off-the-shelf. The applica-
tion will be written by the successful bidder

after the contract is awarded, but the hard-

ware and the nucleus of the operating system
are to be benchmarked before contract award.

Reference [1] presents an overview of the

techniques that have been developed for

benchmarking under these circumstances.

53

After summarizing the overview, this paper

develops one aspect of the methodology,

namely the modeling of the proposed appli-

cation.

2. Overview of the Benchmarking Approach

The procurement to which the new meth-

odology is being applied is for the auto-

mation of the Flight Service Stations of

the Federal Aviation Administration. Ven-

dors compete to supply off-the-shelf hard-

ware and to develop the application soft-

ware. A key element in the automation is

the set of 20 Flight Service Data Processing

Systems (FSDPSs) , each of which provides an

interactive service to over a hundred ter-

minals in its area, for weather briefings

and for the filing of flight plans. It was

expected that some 4 to 16 mini-computers

(depending on size) would be required for

each of the 20 configurations, and that on

the order of half a million bytes of soft-

ware would be needed. The proposed off-the-

shelf FSDPS configurations will be bench-

marked, together with at least a nucleus

of off-the-shelf operating system. The

application will be written subsequently

in FORTRAN or COBOL (referred to collec-

tively as High Order Language, or "HOL")

,

at vendor choice. There are several partial

prototypes from which one can gain some

understanding of the subsequent application.

To establish performance, there are two

quite different approaches that we can con-

sider, namely modeling and measurement.

In our case the hardware and the operating

system cannot be modeled because the buyer

does not know in advance what will be bid.

However, being off-the-shelf, they can be

measured, provided that they can be driven

as the intended application will drive them.

The application software, on the other hand,

cannot be measured because it does not yet

exist in suitable form; but by studying the

specifications and the partial prototypes

the buyer is able to model it. The solution

is therefore to model the application, but

in the form of a set of programs that can

be run in real-time on the system being

benchmarked, so that the performance of the

system can be measured. The programs are

"synthetic" in that their purpose is to

impose the modeled resource requirements

rather than to perform the application

functions. A combination like this of

modeling and measurement is not, by itself,

new; the challenge here is how to implement

it for the case where yet-to-be-designed
application software spans a yet -to-be-known

distributed configuration of yet-to-be-

identified hardware.

Figure 1 shows an overview of the bench-
mark. It will be seen that the following
components interact at benchmark run time.
The buyer-provided model of the application,
which has been delivered in the vendor's
choice of HOL, runs under the hardware and
operating system (or nucleus thereof) that
are provided off-the-shelf by the vendor.
Between them lies a vendor-developed package
known as the Vendor Interface Package (VIP)

,

which allows the model to present a vendor-
independent interface. The VIP acts as a
"sub-executive" or "application executive"
to schedule the individual actions of the
model, thus enabling the vendor to control
the running of the model, so that it can
reflect the way his eventual application
might best run.

The model is driven in real-time by
synthetic messages from a Benchmark Driver,
which is a separate processor outside the

configuration being benchmarked; and it

returns synthetic responses to this driver.
The driver in turn obtains the messages from
a buyer-provided scenario tape and it de-
livers each one at the time specified on
that tape. It time-stamps the responses and
writes them to another tape for later
analysis

.

Producing the software for this kind of
benchmark can present the buyer with a for-
midable problem. Reference [2] describes
the solution to this problem, which was to

write all the buyer-provided benchmark soft-
ware in the same very high order language,
and to use an automated code-production
system to translate the source into standard
HOLs.

3. The Structure of the Model

Clearly, the validity of this bench-
marking methodology depends on how well the
model replicates the strains on the under-
lying system that the eventual implementation
will impose. The model is written so that
the vendor can control the way that it runs
on his system, and much of the flexibility
for this control lies in the way the model
is constructed, so it would be useful first
to describe the structure.

3.1 Overview of the Structure

Figure 2 shows a much simplified model
as a set of pieces of code, each of which
represents a necessary area of the applica-
tion. Clearly, any eventual software design
must include code for each of these areas.
Moreover, each transaction that enters the

54

system will need to visit particular areas;

and some, at least, of these areas will
need to be visited in a specific order.

The transactions therefore can be modeled
as following specific major routes through

these pieces of code. However, the model

does not have to stipulate where the code

should reside (in which processor, etc.),

nor does it specify the relative rates of

progress for transactions that are func-
tionally independent of each other. This

latitude immediately gives some of the flex-
ibility for representing different design
approaches

.

Each of the pieces of code models its

real-life counterpart by requesting resources
(CPU, code-space, I/O, and data areas). With
some procurements the sequence of requests
could be driven by stochastic algorithms
within each piece of code. However, we are
considering here the type of application

AFTERWARDS

-

Buyer

Figure 1. Overview of Benchmark

55

where the actions of the individual pieces
are closely dependent on each other, and
where the measurement of interest, namely
response time, corresponds to a sequence
of actions that may span the entire appli-
cation. In such a situation, it is simpler
to have an input-driven model; hence from
a top-level viewpoint the model is seen to

be driven by the contents of the synthetic
input messages. Each message contains
coded data that directs its path through
the model and determines the resource re-
quests that are to be generated along the

route.

At a finer level of detail one can

regard the model and the VIP as a partner-
ship, each driving the other. The VIP is

driven by requests from the model, referred
to as VIP Service Requests (VSRs) . Some of
these VSRs request resources, while others
indicate which parts of the model are cur-
rently eligible to execute. The VIP in turn
decides (or lets the operating system decide)
when the resource requests shall be honored,
and which of the eligible parts of the model
shall run next. After servicing each VSR,
the VIP initiates the execution of the

selected part of the model. The model is

entirely dependent on the VIP for all ex-
ternal services; this gives the VIP the
opportunity to control the running of the
model and thereby tailor it to suit the

architecture of the configuration.

Figure 2. The Model of the Application

56

It is Important that we select the

right kind of component with which to build
the model. Suppose, for example, that the

model were to be expressed explicitly in

terms of individual disk transfers. Not

only would such a model arbitrarily elimi-
nate vendors proposing other storage media
but, more subtly, it would prejudge how the

medium is to be used. Clearly we have to

find "abstract" components that express what
is essential for the application without
committing the model to any particular hard-
ware configuration or software design phi-
losophy ; and the components must be such

that each vendor can implement them for the
benchmark in a way that is appropriate to
his system.

Four types of abstract components were
adopted. The model has to contain code and

data areas; and it will be seen below that

two types of data area are needed. One more
type of component is needed, to express the
potential parallelism within the model.
Since the implementation of these four com-
ponents, in common practice, varies from
system to system, with little agreement on

exact terminology, we have to describe them
in abstract terms and leave the reader to

relate them to any implementation he is

familiar with.

3.2 Code

The functions of the application are
decomposed into areas which are modeled as

pieces of code referred to as "cells". Each
cell is designed to consume a calibrated
amount of CPU-time, and to occupy a cali-
brated amount of memory space. Part of this
modeled time and space is taken up con^
trolling the running of the model, the rest

being made up by synthetic code. The FAA
model uses some 110 cells during the period
in which response times are being measured.

In the default case, every transfer of
control from one cell to another goes via
the VIP. The "GoToCell" VSR provides the
VIP with the opportunity both to distribute
the cells across processors and to schedule
their execution.

While the cell is the unit of code for
modeling, the unit of code that is delivered
to the vendor for compilation is the
"module". Normally, there would be one cell
to each module; but, if the vendor decides
that excessive use of the "GoToCell" VSR
would impose unrealistic overheads, he can
request that cells be combined (in any com-
bination of his own choosing) into multi-
cell modules. The vendor is free to compile

the modules as reentrant, serially reusable,
or neither; as resident in Main Store, or
brought into memory either deliberately or

by demand paging; and to duplicate any
module in any number of processors. Apart
from some simple and obvious restrictions
after an interrupt, the VIP is permitted,
whenever it returns control to the model,
to select any copy (in any processor) of
any module that contains the required cell.

3.3 Natural Flows

Whereas the code of the model is

divided into cells, the flow of execution is

divided into potentially parallel "Natural
Flows" of action. This latter division is

the comer-stone of the modeling approach,
and it reflects the importance placed on

order of execution, both in the under-
standing and in the implementation of real-
time systems. A Natural Flow is defined as

a sequence of actions that is driven by data
from one or more specific sources, where for
any given set of data the sequence is pre-
determined. The sources of data are indi-
vidual input ports, the system timer, and
other Natural Flows. For example, the

sequence for a given terminal is, at the
grossest level, the endless loop "read,
interpret, do it, reply, read, . . .".

Just as individual programs run
asynchronously, and potentially in parallel,
in a multi-programming environment, so do

the Natural Flows in the model. Natural
Flows are not entirely asynchronous, how-
ever, for at specific points they deliber-
ately coordinate with each other; this

represents the functional coordination con-
straints that are implicit in the functions
to be performed. Data-base discipline pro-
vides an example of such a functional
coordination constraint, \diich is modeled
by not allowing one Natural Flow to read a

specific record while another Natural Flow
is writing to it. Other than at these
functional coordination points, which are

clearly identified in the model, the Natural
Flows of the model are independent of each

other. In other words, they can be entirely
asynchronous one to another except where it

is specified otherwise.

In an actual implementation, the
Natural Flows will also constrain each other
in another way, referred to as implementa-
tion constraints: for example, when they

compete for the same physical resource.
However, these implementation constraints
will vary from vendor to vendor, so they
have no place in the benchmark model. The

model is expressed in terms of Natural

57

Flows, together with specific functional
coordination constraints, because this is a

simple and convenient way to express the
essential minimum constraints implicit in

the specifications. The VIP and the
operating system will impose the implementa-
tion constraints.

Clearly an actual implementation will
not necessarily be structured around the
Natural Flows identified in the model, but
because the Natural Flows represent the
minimum necessary synchronization, they
will be present in any implementation, how-
ever disguised. In practice, the scheduling
of the implementation will be in terms of
functions (the Natural Flows will be inter-
spersed frequently with each other) , or
short-lived tasks (each can map to a phase
in the career of a Natural Flow) , or perma-
nent

,
free-running tasks (each can map

exactly to a Natural Flow). Thus the
Natural Flow is conceptually what many,
though by no means all, mean by tasks or
processes; but a new term helps to avoid
confusion when the mapping is not one-to^-

one.

In the FAA model there are some 150

permanent Natural Flows. Most of them are
dedicated one-to-one to terminals or other
logical input sources, while the remaining
few represent service operations that need
not be performed in-line with the requesting
Natural Flow (for example, a service Natural
Flow oversees the spooled output to a device
used by many Natural Flows). As will be
seen, the vendor can also define temporary
Natural Flows in places where further
parallelism might benefit him (for example,
to stack up a queue of reads from disk).

3.4 Permanent Memory

Two properties of a data area are of

interest here: whether it must survive
system failures, and when it is to be
accessed. Permanent Memory models data
areas that must be recoverable after a

system failure but need not be accessible to

the individual instructions from the CPU,

whereas Working Space models those that must
be directly accessible to the CPU but need
not survive failures. Deliberate copying
between the two is modeled. However, if

Permanent Memory on a particular system is

accessible to the CPU, and it can be shown
that this does not impair the recoverability
of the material, then the modeled copies can
be omitted on that system.

Modeling for recovery after system
failure was regarded as important in the

case of the FAA model, hence the emphasis on

copying to Permanent Memory. Recovery it-

self is not being benchmarked, but the model
imposes the run-time strains caused by the
laying of adequate recovery trails.

The use of Permanent Memory is divided
into "files", which are subdivided into
"records". This represents a logical
division of the data, the record being the

unit of data that the model requests. These
logical divisions need not correspond to the

organization of data that will be used
subsequently, in the actual implementation,
nor to the way that the material is

physically arranged during the benchmark
run

.

The data base in the FAA model consists
of some 45 files. Data base requirements
for this application are relatively simple,
so a logical division into files and records
is both natural, and unlikely to bias the
model in favor of any particular style of

implementation. This will not be true in

all procurements; in some, the expression
of the data base in modeling terms would
need considerable care.

3.5 Working Space

Working Space models the working areas
that are not local to a cell. For example,

in the case of FORTRAN it models COMMON,
together with any internal arrays that hold
data that is passed to and from other cells.

It can be implemented as permanently or

dynamically allocated space either in Main
Store or in Backing Store (disk, etc.); in

the latter case it must be brought into Main
Store when it is being used.

Each piece of Working Space is

"attached" to one or more Natural Flows; it

is never regarded as associated with a cell.

Thus, when several Natural Flows request

sole access to the same Working Space, it is

the Natural Flows that are blocked, not the

cells from which the requests were issued.

Typically, however, a Working Space remains
associated with the Natural Flow that

requested its creation in the first place,
and is never attached to any other Natural
Flow. For example, each user-terminal has

a Natural Flow dedicated to it, and a

Working Space attached to this Natural Flow
models the administrative data that per-

tains to the status of that terminal. This

Working Space is visible to any cell (or

instance of execution of that cell, in the

reentrant case) while but only while that

Natural Flow is using the cell (or instance

of execution). Thus the continuity of a

58

Natural Flow (many of which can use the same
cell) is defined by the presence of the

Working Spaces that are currently attached
to it. In this sense the Natural Flow is a

flow of data being operated upon by

successive cells of code.

Though the model dictates when Working
Spaces are to be allocated, and what size

they are to be, the VIP has considerable
freedom as to how they are implemented. In

particular, the model informs the VIP in

advance whether it will alter the data, or

only read it, or neither for the time being.

Moreover, when Working Spaces are to be

visible to the model, the VIP is free to

decide where in the model's address space
they shall appear. However, one has to be

careful not to let one's concern for

generality lead to the VIP itself imposing
an unrealistic load on the system. There-
fore an important consideration when
planning the details is to allow the VIP to

remain simple. For example, the properties
of excessive and of dynamically changing
size, which might be awkward to implement on

some systems, are confined to one Working
Space per Natural Flow, leaving the majority
of Working Spaces relatively simple to

allocate efficiently.

3.6 The Interface with the VIP

Since the VIP plays the role of

operating system to the model, one would
expect the VSRs to have the appearance of

procedure calls. However, it was found that
reversing the normal call-return pattern
gives the VIP more flexibility to influence
the course of execution. Thus the model
appears to the VIP as a set of procedures:
the VIP calls the model, not the other way
around. A VSR is a return from a procedure
call, while the completion of that VSR is

the occasion of a fresh procedure call to
the model. The return links for procedure
calls between cells of the model are handled
by the model. The result of these arrange-
ments is to make it simple for the VIP zo

switch Natural Flows whenever it is called
by a VSR. It does not have to disentangle
itself from stacks of return-links.

Basically the task of the VIP is to

administer the status of each Natural Flow.

For each, separately, it has to implement
the continuing loop "call module, service
VSR, call module, . . .". Except at func-
tional coordination points , these loops are

independent of each other, and there is

great variety in the way they can be over-
lapped in real-time. How the 150 or so

loops are superimposed represents an

important part of making the model behave in

the kind of way that one would expect from
the vendor's eventual implementation.

Since each vendor designs his own VIP,
the structure of each VIP is vendor-
dependent, thus providing part of the
flexibility for mapping the model to differ-
ent kinds of operating-system environments.
In particular, a vendor can implement his
VIP as several cooperating copies, or in-
stances: one per CPU, for example, or one
per multi-CPU processor.

4. The Approach to Modeling

Having introduced suitable building-
blocks for modeling, we now consider how to

use them to model a particular application.

4.1 The Objective

The methodology developed here consists
of a set of techniques, which should not be
confused with the policy that will determine
their use. The same tools can be used,
albeit in slightly different ways, to serve
a variety of purposes. If the techniques
described here are being used to provide a

design monitoring tool for use with a single
vendor, for example, then clearly one will
try to model that vendor's software design
as closely as is practicable. On the other
hand, if the purpose is to compare competing
vendors, none of whom have yet contracted to

design the software, then one's objective is

different

.

This paper addresses the case where the

purpose of the benchmark is to measure the

capacity of the hardware and the operating
system, and not the vendor's skill at

designing and programming. In other words,
we assume here that for benchmarking pur-
poses these skills need not be considered
as dominant factors. Our object in modeling
the application is to impose approximately
the same kind of load on the system as would
a design that is appropriate for Che archi-
tecture of that system. We do not neces-
sarily have to model in detail a design that

does not yet exist ; we only have to postu-
late an appropriate and competent design.

4.2 The General Approach

The general approach to modeling is to

consider the functional requirements of the

application in a top-down manner. In this

way, one can identify the major flows of

control (the Natural Flows), and the major
areas for which code will be required. Sim-

ilarly one can identify the major data areas

59

Following through on the top-down ap-
proach, in the case of code, the major areas
are successively decomposed into smaller
areas. At each level of decomposition, the

areas of function can be represented as
equivalent units of model-code; and the de-
composition continues until we arrive at a

set of code-units that can run on each
vendor's system, and which each vendor can
configure to represent the way he intends to

drive his hardware. These code-units are
the cells of the model.

Figure 3 is adapted from the source
listing of the FAA model, and shows one of

the cells that model a weather briefing.
This cell, which is used by the Natural
Flows dedicated to user terminals, explic-
itly models the use of code-space and CPU-
usage, and then returns to the cell that
called it. Implied at this level of pre-
sentation are references to the currently
attached Working Spaces, and a VSR
"GoToCell" at the end. The code-production
system referred to earlier automatically
translates cells in this very high level
source into HOL units (procedures, sub-
routines, etc., as appropriate) for delivery

to vendors.

cell WindCompu tat ions

CodeLength 200 CodeUnits
UseCPU 5000 CPUUnits
EndOfCell

Figure 3. A Simple Cell
(adapted from FAA model)

Some further modeling is sometimes
appropriate, within the cell, for in many
cases one can identify a necessary order of

internal operations. Figure 4 shows an
excerpt from one of the cells that model
the analysis, or "route conversion," of a

proposed flight plan and it illustrates
the operations within that cell. VSRs
are identified by comments in the left-hand
margin of the form "VIO]" and references
(usually procedure calls) to other cells
of the model by comments of the form "plO]."
Notice how the behavior of the model is

directed by parameters carried by the

transactions in the input scenario.

CodeLength 50 CodeUnits

unless ConvertingRouteElementsInParallel,
V2] AcquireWorkingSpace WorkArea#2, WorkAreaForRouteConversion words

with ThisElement, from 1, to ScenarioDirectedZ/RouteElements
if ConvertingRouteElementsInParallel

,

V20]p31] SpawnTemporarily StartingAt RouteElementsInParallel

,

WithCopyOf WorkArea#l, PlusDataWord ThisElement

else
P32] ConvertElement ThisElement

UseCPU 500 CPUUnits
end else

end with

if ConvertingRouteElementsInParallel
loop ScenarioDirectedZ/RouteElements times

V17] AwaitProd receiving RecordArea
UseCPU 500 CPUUnits

V5] ReleaseWorkingSpace RecordArea
end loop

end if

Figure 4. Modeling within a Cell (adapted from FAA model)

60

It will be noticed that the model takes
the form of a skeleton design that is

fleshed in by synthetic code instead of by

the detailed logic of the implementation.
The approach to designing the model is in-

deed somewhat similar to that for designing
the real implementation. However, there is

a difference in emphasis. The objective is

not a single design, as such, but an object
that encompasses all reasonable ways that

the design could be done. Not only must one

pause at each point to consider the variety
of possible design approaches, but one must

consider the question in reference to a wide
range of machine architectures. If the
buyer is willing to contract to vendors who
offer to advance the state of the art, it

would indeed be difficult to consider all
possible approaches, for some of them may
not be invented yet. Fortunately, most pro-
curements are sized on the assumption that
only well-established design approaches will
be used.

The top-down approach implies ignoring
detail and concentrating on the essentials
of the broad picture. The functional speci-
fications will no doubt dwell heavily on de-
tails such as those of the man-machine
Interface. These are irrelevent to sizing,
for one is looking for the broad movement of
data, and the major requirements for code
and CPU. As an example in the FAA applica-
tion, a number of message types are speci-
fied as being input by users. For the

corresponding model, a number of input types
are used, each of which represents the
transactions that lead to a particular
pattern of internal loads. The classifica-
tion of transactions into benchmark input
types is therefore resource-oriented, as

opposed to the function-oriented classifi-
cation into message types in the specifi-
cations; and the correspondence between
specified message types and benchmark input
types is not necessarily one-to-one.

4.3 Vendor Options

Whenever one descends a level of de-
tail, and divides a single unit into several
pieces, one is making design decisions.
Sooner or later, one will make decisions
that are biased towards or against one kind
of architecture, or one kind of design
approach. At such points, one has to con-
sider whether the various possibilities are
allowable in a sizing exercise; if two or
more possibilities are indeed allowable,
then a "vendor option" is inserted into the
model at that point. The model is pro-
grammed to behave in any of several ways,
depending on the setting of a switch. Each

vendor elects how the switch will be set in

his version, and the code-production system
mentioned earlier takes care of translating
his setting into the HOL that he receives.

In the FAA application, a simple exam-
ple of an option is provided by incoming
data from radar sites, which can be pro-
cessed by hardware or by software. A
vendor option allows for the simulation of

a small or a large amount of CPU-use, and
the vendor who proposes the extra hardware
may have the switch set to reflect low CPU-
use. Other options allow for spawning
(creating) the temporary Natural Flows men-
tioned earlier, at points where extra
parallelism might better reflect the power
of some architectures. Figure 4 includes
an example of this: if the option is taken,
then a Natural Flow obeying the code in this
cell will spawn a set of temporary Natural
Flows. Having done so, the "parent" Natural
Flow will wait in this cell for each off-
spring to return the results of its calcula-
tions. The offspring does this with a coor-
dination signal that carries with it a

Working Space called "RecordArea."

4.4 Miscellaneous Considerations

In some areas of the model, a decision
may have to be made as to which side of the

VIP-model interface a particular feature
should lie. Should it be modeled, or should
the VIP or the operating system be expected
to provide it? In the FAA case, the

question arose with data base management,
with the spooling of output to other
computers , and with the scheduling of events

where the schedule must survive system
failures. The answer depends on two factors

whether it is reasonable to expect all

vendors to have the feature available off-
the-shelf, and how reliable the off-the-
shelf feature is likely to be. If the buyer
is unwilling to trust the reliability of

what the vendors may offer at benchmark time

then it is better to model that feature, for

though the benchmark is not a test of

functionality per se, it does seek to esta-

blish that there is enough hardware to

support proper implementations for all

functions

.

The VIP has to schedule the model in-

telligently, as would the "application
executive" in the real implementation. In-

telligent scheduling requires a cooperative
interface between application and executive;
so a consideration when designing the model
is to arrive at a VIP-model interface that

is helpful to the VIP in this respect.

61

Various practical considerations make
it an advantage to keep the logic in the
model simple; hence as much as possible of

the decision making should be placed in the

program that runs beforehand, off-line, pro-
ducing the scenario load-tape. The param-
eters in the load tape can thus reflect pre-
viously-run statistical programs and direct
the model in simple terms such as "read 5

records from file 7". Only where the
modeled input message is too short to con-
tain the instructions must the model make
its own decisions.

5. Quantifying the Model

So far we have considered the structure
of the model. The components in this struc-
ture now have to be sized. The code, the
data areas, and the CPU usage in the model
each represent specific functions, so each
needs to be quantified. The quantification
of code-length and CPU-usage raises inter-
esting questions that we can briefly review
here. It is intended that these questions
will be discussed further in a later paper.

Since the real code of the eventual
application is not yet available, we repre-
sent it in the first instance by a Sample
Program composed of HOL code that is typical
of the application code that will have to be

written later. In the FAA case it was
decided that one program (that is, one for

each allowable HOL) could reasonably typify
the whole of the application, in respect of

both code-length and CPU-usage. In other
applications one might consider using a

blend of Sample Programs, where one Sample
Program, for example, represents typical
computation, and another the character-
manipulation, and so on.

5.1 Sizing the Model

This step of the new benchmarking
methodology, namely the sizing of the model,

corresponds closely in many ways to tradi-
tional methods of sizing new computers.
Traditionally, the estimated requirements
for code space and CPU, etc. , are the end-
product of sizing. The new methodology also
uses these estimates, but it takes them as

input data and places them in the system
context where they belong. With earlier
generations of computers, one assumed pro-
gramming of average competence, and speci-
fied to the vendor the raw power that one
wished to have available for the proposed
applications. With the new methodology we
do the same, but at the level of the indi-
vidual cell. We ignore the vendor's claims
about his programmers , and specify the raw

power that we wish to have effectively
available for the function that each indi-
vidual cell represents. The system itself
is then used to extrapolate from cell power
to system power. Cell sizing involves esti-
mating and here, as before, the proportion
of guesswork to scientific derivation de-
pends on the supporting evidence that can be
brought to bear.

It is important to be clear what each
sizing quantity represents. Code-length
sizing must represent several elements:
actual code, constant data, and those vari-
ables that are not modeled as Working Spaces.

It should also distinguish between data
locations that are written to and those that

are not. The CPU-usage must cover actual
instruction-obeying, and waits (such as the
demand-loading of cache memories) where the
system cannot make use of the idle time.

However, it must not include the time for

any I/O, since the effect of these waits is

taken care of in the overall benchmarking
approach. For example, on a paged machine
we wish to reproduce, per cell, address
spaces that correspond to those for a compe-
tent real implementation, and with the same

use of the CPU. How these address spaces
are maneuvered, and how the CPU is allocated

to them, is a function of the underlying
system, and this applies equally to model

and to real implementation. Reference [3]

contains an interesting discussion of some
of the considerations that apply to this

step of the benchmark.

The sizing of the model has to be pre-

sented in vendor-independent terms. It

would be tempting to use the Sample Program
as the unit of measurement (both for code-

length and for CPU-usage) . A cell which is

sized as 2 units of space and 3 units of

CPU-usage, for example, would then be
delivered to vendors containing 2 copies of

the Sample Program, and logic to initiate 3

executions of a Sample Program, Unfortu-
nately, we cannot do this. Any Sample Pro-
gram which makes a serious attempt to be
typical is most unlikely to be small, so

one would be calibrating cells in fractions

of a unit. Another difficulty will appear
shortly

,

We therefore have to take a more in-

volved approach. We start by arbitrarily
choosing a reference machine, and we define
vendor-independent units in terms of it (for

example 100 microseconds, and 100 bytes, on

that machine) . To the vendor these are

abstract units: see Figures 3 and 4 (where

the numbers are for illustration only). To

convert time and space in abstract units, to

62

time and space on a particular vendor's
system, we run the Sample Program on that
system. By comparing time and space, there,
with time and space on the reference
machine, we obtain a multiplying factor for

each that is valid for typical application
code. Thus we can derive the actual time
and space that should be set aside for each
cell on the vendor's machine. Notice that

this procedure takes into account the

efficiency of the code produced by his
compiler.

5.2 Reproducing the Sizing

We now have to arrange that the HOL
model that is delivered to each vendor will
compile into code that uses this required
time and space. The delivered model con-
tains two types of code: benchmark
machinery (the logic of the benchmark) and
synthetic padding, which between them must
use the correct time and space. It is the
presence of the benchmark machinery (which

is unlikely to consist of typical applica-
tion code) that rules out using the Sample
Package for the synthetic padding. We need
a common basis for comparing application
code with machinery code; and actual time
and space on the vendor's system provides
the most satisfactory comparison. Time and
space for the benchmark machinery are there-
fore measured on each vendor's system and
subtracted from the target sizes for the
cells, to give the time and space that must
be made up by the padding.

The synthetic padding consists of HOL
"kernels" (that is, small units of code
designed for the express purpose of repro-
ducing CPU-usage or code-length, see [4]);
and the time and space that these will use,
when compiled, is also measured for each
competing system. The kernels must have
the following properties. They must not be
optimized out by the vendor's compiler; in

those cells for which it has been possible
to postulate a pattern of address-
referencing, they must make references
according to that pattern; they must enable
one to reproduce whatever proportion of
code-space, fixed data, and variable data
that has been determined for each cell; and
either the effect of cache memory must be
the same when they are measured and when
they are used, or the effect when they are
used must be determinable. Once the
kernels have been measured on the vendor's
hardware, one can calculate how many of
each must be inserted into each cell and
how many times each should be exercised.
The automated code-production system takes

care of the calculations and the insertion
of kernels.

6 . Summary

The new benchmarking methodology
measures the performance of hardware and
operating system by running on it a buyer-
provided model of the intended application.
The model is input-driven, and consists of
synthetic programs that the vendor can dis-
tribute and schedule as he wishes. To do
this he is allowed to provide a package that
interfaces the model to his operating
system. The two principal problem areas
concern the modeling of the application (the

subject of this paper) and the production
of versions to send to vendors (which was
solved by using an automated code-production
system)

.

The application has to be modeled in a

manner that is flexible enough to represent
design approaches for a wide range of archi-
tectures that will not be identified until
later. The solution is to identify abstract
components that can be implemented by the
vendor in vendor-dependent ways ; and to

design the model in terms of these compo-
nents, with a top-down approach to the func-
tions of the application. Wherever alterna-
tive design approaches appear valid, and the

choice of approach can significantly affect

the pattern of resource requirements, a

vendor option is built into the model.

Having used these techniques to model one

particular application, one's subjective
reaction is that they are powerful and could
be used for a variety of applications. It

would be helpful to gain more experience
with them so that the breadth of their
applicability can be explored.

References

[1] Spooner, C. R.
,
Benchmarking Inter-

active Systems, proc. Summer Computer
Simulation Conference , Toronto,
July 1979, pp 791-798.

12] Spooner, C. R. ,
Benchmarking Inter-

active Systems: Producing the Soft-

ware, to be published in proc. Con-

ference on Simulation, Measurement and
Modeling of Computer Systems

,
Boulder,

August 1979.

[3] Williams, J. N. , Construction and Use
of a General Purpose Synthetic Program
for an Interactive Benchmark on Demand
Paged Systems, proc, 1977 x\nnual Con-

ference , ACM, pp 459-465.

63

Buchholtz, W. , A Synthetic Job for
Measuring System Performance, IBM
Systems Journal , Vol 8, No 4, pp 309-

318, 1969.

65

INSTALLAriON MANAGEMENT

Carol B. Wilson

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D.C. 20234

The principal goal of any ADP
installation should be to serve its
organization by meeting the computing
needs of its user population at the
least cost. Installation management
encompasses all of the functions
which an ADP installation manager
performs in optimizing his
installation resources to the user
workload to meet this goal. A

computer performance management
program aids the manager in this task
by-providing quantitative data for
many of the installation management
functions in an orderly and timely
manner. Computer performance
evaluation supplies the tools and
techniques needed to capture the data
and to optimize the installation
resources

.

In this session, we have papers
concerned with several areas in which
computer performance management
support installation management. The
first and last presentations are
concerned with an overall view of CPM
with respect to the needs of the
manager. The second paper deals with
an organization's efforts to plan,
provide, and ensure specific user
service levels. The third paper
discusses how measures for control,
planning, and accountability were
designed into a heterogenous
distributed processing environment.

M etno dol ogy for Est ablishing Comput er
Perfo rmance Mana gement presents a

top-down approach to designing a CPM
program to meet the needs of ADP
managers in a heterogenous environ-
ment. Technical considerations are
delayed until objectives are defined
which lead to the specific needs and
capabilities for the CPM program
being developed. A phased
implementation approach is then used
wnere available tools are installed
first and then the gaps between their
capabilities and the needs of the CPM
program are filled by locally
developed means.

Naval Labo ra torie s - User Qua 1 i ty o

f

Ser v ice S tan da rds discusses the
activities of the Naval Laboratory
Computing Committee, a group of Naval
R and D laboratories, to define
measures of service for availability,
turnaround time for various sizes of
jobs, and interactive processing that
could be used by all of their
facilities. The sizes of jobs for
turnaround time are calibrated by a

synthetic benchmark and are related
to the cost of processing. The
service levels for the interactive
measures are validated by a standard
scenario.

67

Network Cont rol an d Compu ter Systems
Agoountabil, ity describes work done to
design a terminal interface unit for
each node of a multi-vendor, "after
the fact" network. The objectives of
the design included making provisions
for controlling the growth of the
network, for ensuring the security of
processing, for accountability of use
(including small, special-purpose
computers with no accounting systems
of their own), for identifying
cross-system usage patterns, and for
providing performance data to
automatically generate utilization
and planning reports.

An Ipf o_ritiai.tAO-rial Mode l for tka A DP
Manager is an oral presentation
concerning the work underway at the
National Bureau of Standards to
determine the informational
requirements of the ADP manager which
could be supported by a CPM program.
The talk discusses installation
management models which are being
used to develop a list of measures.
A workshop session on this same topic
will be held later in the conference.

68

METHODOLOGY FOR ESTABLISHING A COMPUTER PERFORMANCE MANAGEMENT SYSTEM:
A CASE STUDY

Geoffrey H. Goodman

International Computing Company
Dayton, Ohio 45431

The first steps in establishing a computer performance management
system are critical to success. Lack of attention to organizational
and management needs are as likely to lead to failure as lack of
attention to technical details. This paper presents a methodological
framework which is intended to assist those who are establishing
a CPM capability. Techniques are suggested to enable the individual
to assess the needs of his or her own organization, and to design
a performance management system to meet those needs.

Key words: Performance Management System (PMS)
; needs; capabilities;

methodology.

1. Introduction

The methodology described below was
developed as part of a contract to design
a computer performance management system
(PMS) for a Federal government organization.
The specifications of this PMS are uniquely
suited to the computer environment for

which it was designed. However, the
methodology which was used could be applied
in nearly any organization which was con-
templating establishing a PMS.

The mission of our client organization
is to perform engineering analysis of

military hardware, using data from several
external organizations. Different
directorates are responsible for different
sorts of analysis, and the types of data
processing support provided to them varies
accordingly. Some organizational elements
are responsible for scientific and

engineering analysis which relies heavily
upon on-line computational services, while
others concerned with reduction of raw
data and production of finished reports
are heavy users of batch processing service.

Until recently, each engineering directorate
owned and operated its own computers. In

all, twenty-four computers of various
manufacturers are in operation, ranging
from UNIVAC 1110 and IBM 360-65 mainframes

to special purpose microcomputers. In 1978,

a Directorate of Data Services was formed
and was given responsibility for all data
processing resources in the organization.
As the new Directorate of Data Services
began the task of consolidating its resources,

the need for some form of centralized per-
formance monitoring system was recognized.
We received the task of designing such a

system and developing a plan for its

implementation.

2. Clarifying Basic Objectives

The requirement which we received called

for the design of a "performance measurement"
system. While this document expressed a

requirement to measure and report certain
performance characteristics, the basic
objectives of the system were not stated.

Our first step was to discuss the require-
ment with our primary point of contact,

the Systems Engineering Division, to

determine what the objectives were.

Computer performance evaluation was not

a new concept to the organization, we were
told. Since as early as 1974 performance
measurements had been carried out in order

to identify and correct performance
deficiencies of individual computers. The

individual CPE efforts associated with the

69

larger mainframes were generally perceived
as having been successful, and no serious
problems in the efficiency of individual
computers were identified to us. However,

because of the previous decentralization
of responsibility for computer systems,

there was no management information system
which provided a clear grasp of the data
processing system as a whole. Top level

ADP management was uncomfortable with the

dearth of historical data and the lack of
appropriate measurements to support decisions
concerning allocation and acquisition of

ADP resources. Once this need had been
properly articulated, it was apparent that

a new management information capability
would have to be designed, while the

existing CPE capability would still be

needed to support the requirement for

tuning individual systems. The objective

of our task was now understood to be the

design of a performance management system
(PMS) which would satisfy the needs of

ADP managers.

3. Establishing Responsibility
for the Performance Management
System

Establishing organizational responsi-

bility for a performance management system

is one of the critical decisions which must

be made. In this case, responsibility
for CPM had already been placed, and was
therefore beyond the scope of our analysis.

Responsibility had been placed with the

Quality Assurance Branch of the Systems
Engineering Division. This branch is

concerned with establishing standards and

procedures for ADP systems, and for pro-

viding management information concerning
the use of ADP resources. The Quality

Assurance Branch therefore was responsible
for working with us and monitoring our

efforts. Although we had no control over

the decision, we feel that the decision to

place responsibility for the PMS in the

hands of the Quality Assurance Branch is a

proper one. It is essential that the

organizational element responsible for the

PMS be more attuned to the needs of manage-
ment than to strictly technical factors

of systems tuning. Nonetheless, the

decision to place responsibility for the

PMS with the Quality Assurance Branch
creates the potential for coordination
problems. The Systems Software Branch
had had, and maintains, the responsibility
for CPE efforts required for system tuning.

The Computer Operations Branch actually
runs the software which is used for
performance measurement. It is clear

that creating and maintaining the proper
communications and spirit of cooperation
between these three organization elements
is critical to the establishment of the PMS.

4. Gaining Management Support for a

Top-Down Design Approach

Because of the technical complexity of

designing a CPM system for such a hetero-
geneous computer environment and the necess-
ity of showing some progress in a relatively
short time, there was some temptation to

immediately begin to tackle technical aspects
of the problem. Since CPE tools were
already available, one possible course of

action was to begin to patch those together

to somehow produce the management information
which was needed. We soon realized that
premature involvement in technical details

would endanger the success of our entire
effort.

We felt that the only effective approach

to the design problem would be to begin
with a detailed assessment of the informa-

tion requirements for such a system. In

order to do this, we briefed the Technical
Director and Director of the Directorate
of Data Services on our recommended approach.

In the briefing, we characterized this

approach as a "top-down" design, which would
begin with definition of requirements and

work toward an implementable design which
would fulfill them. The alternative "bottom-

up" approach, we cautioned, could result in

a design which was technically workable but

which failed to address the (still undefined)

management information requirements of the

organization. We then presented our plans

to survey the personnel who would be using
the CPM information, in order to define the

objectives of the PMS in detail. Gaining
management support for this approach proved

beneficial in two ways: it relieved pressure
to begin work on technical details before
requirements were assessed; and it provided

us full access to managers within the

Directorate of Data Services who were able

to provide insights on their requirements
for the PMS.

5. Separating Needs From Capabilities

Our plan to survey personnel who would

use the PMS became our primary means of

determining requirements, or needs. We

decided that during the early part of our

analysis, needs and capabilities should be

separated. If discussion of needs and

capabilities was allowed to intermingle,

the result would be a statement of needs

which we knew could be satisfied. Valid

70

requirements which could not immediately be
matched with a capability would perhaps not
be stated by the people we surveyed. By

separating analysis of needs and capabilities
we also lessened the risk that we would
ignore stated needs because we had a pre-
conceived idea of a capability to be

provided. Another advantage to this approach
is that the task could be broken into two

independent efforts. The person or people
assessing the requirements for the PMS

need not necessarily be the same people to
evaluate the available capabilities.
Although we did not employ this kind of
division of effort, it was useful to be
able to jump from one portion of the task
to the other when progress on the first
portion was unavoidably slowed down.

6. Designing and Conducting a Survey

to Determine CPM Needs

The challenge of surveying managers on
their CPM needs is to get them to provide
specific ideas and opinions on the measure-
ments to be used. We decided that the
best method of doing this was to create a

"straw man" set of CPM measures, and
encourage additional ideas and constructive
criticism from the people we surveyed.
We began by collecting a list of differeni^

performance measures from various sources.
Our final list contained 101 different
measures. Similar types of measures were
aggregated into categories, without any
preconceived scheme of what categories
ought to emerge from the process. The
categories thus created were Timeliness,
Accuracy, Cost, Reliability, Utilization
and Productivity. Representative measures
which we felt would be useful were
selected for each category. In all, 31

measures were selected for use in the CPM
survey. The survey was divided into six
parts, one for each category of measure.

Two useful sources of CPM measures were
General Services Administration, Management
Guidance for Developing and Installing an
ADP Performance Management Program (2) and
Sardo and Gotthardt, Meaningful Data
Processing Performance Measures for

Management (3)

2
Our efforts to categorize performance

measures were influenced by the work of

Phillip Howard and Barry Stevens. Therefore,
the use of their categories (timeliness,
accuracy, cost, and reliability), while not
preconceived, was not coincidental. The

categories of utilization and productivity
were created to categorize other measures
which we encountered.

Each section was introduced by a short
statement of the purpose of the measurement
category (see Figure 1 for an example).

RELIABILITY

Purpose: To determine the degree
to which processing time is lost
as a result of ADP equipment failure.
Some measures identify the specific
hardware responsible for the failure.

Figure 1. Introduction to a

Performance Management Category

Following this, the individual measures were
presented (see Figure 2). Under the name

RELIABILITY MEASURES

MACHINE/DEVICE
RELIABILITY INDEX
BY DEVICE/COMPON-
ENT BY MACHINE

ON-LINE RELIABILITY
INDEX BY MACHINE

DOWN TIME(UNSKED)
BY DEVICE/COMPON-
ENT BY MACHINE

SITE FAILURES BY
MACHINE

SITE FAILURE DOWN-
TIME BY MACHINE

BOTTOM QUARTILE
ADPE BY DEVICE/
COMPONENT

MEAN TIME TO
FAILURE BY MACHINE

100%x

Scheduled Time-
Unsked Downtime
Scheduled Time

100%x

Scheduled On-Line
Time-Unsked
Downtime
Scheduled On-Line
Time

^ Unscheduled Down-
Time During Period

Nr. of failures due to

environmental problems,
(e.g. , power, air
conditioning) during
the period

Time doiro due to

environmental
problems during
the period

Identification of ADPE
which has been in the

bottom 25% in reliabil-
ity (based on downtime)
for more than one

consecutive period

Time Operable Be-
^ fore Failure

Nr. of Failures
During Period

Figure 2. Examples of Measures
Presented in the CPM Survey

71

of each measure, some idea of how it is to

be applied is provided. For example,
data may be gathered at the device/com-
ponent level, and aggregated at the machine
(individual computer system) level. Opposite
the name of each measure is a brief descrip-
tion of the derivation of each measure.
Since these measures were chosen to stimulate
discussion, only simple mathematical
expressions were used. Where managers were
interested in more sophisticated measures,
they indicated their needs during the

discussion. Ample time was provided to
discuss the CPM measures. Interviews ranged
from 45 minutes to Ih hours in length.

To provide some structure to the survey
we asked each person interviewed to provide
his/her general impression of each of the

measures proposed, in one of the following
forms

:

1. Interviewee does not feel that this

measure should be used (because it

is misleading, inaccurate, etc.).

2. Measure may be useful for others, but
does not meet this interviewee's
needs

.

3. Interviewee presently uses this measure
or its functional equivalent.

4. Interviewee would like to use this
measure, but the capability is unavail-
able to him.

This technique was used to attempt to dis-
cover the specific information needs of

the ADP managers we interviewed. We did
not attempt to identify a single set of

measurements which would be equally useful
to managers having very different responsi-
bilities (e.g., software development, com-

puter operations and requirements analysis)

.

Instead we looked for patterns of needs which
would suggest the structure of a system to

provide different groups of management
reports to different users.

7. Documenting CPM Needs

In our experience, the process of

documenting the performance management
information needs of the organization has
proved to be one of the most important steps
in designing a PMS. The "needs" end of the

two-pronged needs/capability design approach
culminates in a "CPM Needs Document." The

document which we produced contained three
major sections: the assumptions we had
made, the information needs identified,
and the design requirements for a system

to fulfill these needs. After any omissions
or errors have been corrected, this document
becomes the "design target" for the PMS.

7.1 Design Assumptions and Constraints

The first section of our CPM Needs
Document identified the assumptions and
constraints which we would apply in
designing the PMS. The first assumption
was that the objective of the system was to

provide management information to support
allocation of and planning for computer
systems, rather than technical information
needed for system tuning. We also made
the assumption, on the grounds of cost and
development time, that commercially-availa-
ble software would be used wherever possible
in preference to custom designed software.
We identified the constraint that our
initial CPM effort would measure only
currently operational systems (i.e. measure-
ment of systems under development was to

be deferred) . Finally we made the very
important assumption that there was a

commitment to "do the do-able." Given a

spectrum of measurement techniques which
range from rather simple to extremely
difficult and costly, we assumed that the
organization would maintain a commitment to

implementing those techniques which were
feasible to them.

7.2 Findings of the CPM Survey

The second section of the CPM Needs
Document summarized the findings of the

CPM survey. The first six parts of this

section each summarized the needs expressed
by the interviewees in each of the six
categories of measurements. An assessment

of the value of different sorts of measures,
including especially those suggested by the

interviewees, was provided for each category.
In the seventh part of this section,
different patterns of needs were analyzed
and described. Our findings were summarized
in the matrix shown in Figure 3. Top ADP
management expressed an interest in measures
of utilization which could be used for

capacity planning purposes. High interest
was also expressed in the most visible
category of user service measures — time-

liness. Less interest than we had antici-
pated was expressed by ADP management in

measures of cost. We felt that this was
because ADP management did not wish to

embark on a cost charge-back scheme at

this time, and preferred that we did not

pursue this objective to the detriment of

other performance measures.

Other parts of the ADP organization

72

having similar CPM needs were grouped

together. The Computer Operations Branch
and Operating Systems Software Branch
expressed similar interest in categories
of measures which reflected how effectively
they were accomplishing the task of keeping
the system in operation, and at a high rate
of throughput — the categories of timeli-

ness, accuracy, reliability and utilization.

T A C R U p

I C 0 E T R

M C s L I 0
E U T I L D

L R A I u
I A B Z c

N C I A T

E Y L T I

S I I V
S T 0 I

Y N T

Y

ADP Management X X

Systems Engineering X X X X

Quality Assurance X X X

Requirements X X X

Computer Operations X X X X X

Systems Software X X X X

Operations Support X X X

Applications Software X X X

X = significant utility
perceived

Figure 3. Perceived Usefulness of

Performance Measurement Categories

The two branches of the Systems Engin-
eering Division, the Requirements Branch

and Quality Assurance Branch had fairly
similar requirements. But although both

branches were quite interested in "utili-
zation" we found that they were looking

at it from different perspectives. The

Quality Assurance Branch tended to look
at utilization from the standpoint of

resources consumed by a particular applica-
tion — a resource management perspective.

The Requirements Branch was more concerned
about utilization from a hardware component

or machine standpoint — a capacity plan-
ning perspective.

The Applications Software and Operations
Support Branches expressed interests in
performance data which reflected their roles
in measures of timeliness, accuracy, and
utilization (from the standpoint of resources
consumed by a specific application) . The
data system users outside the Directorate of

Data Services were not included in the CPM
survey at this time. If they had been, we
would expect their needs to be much like
those expressed by the Applications Software
and Operations Support Branches.

We were surprised to find out that none
of the interviewees expressed a strong
interest in measures of productivity, since
measurements in this category provide the

types of data typically used by managers to

guage the efficiency of their organizations.
Further discussion in this area indicated
that most managers already had information
which they considered necessary to track
the productivity of their organizations,
and they were wary of establishing new
measures in the context of a computer
performance management system.

7.3 Design Requirements

In the third section of the CPM Needs
Document we stated the requirements of a

PMS to fulfill the needs which had
been identified. These requirements were
stated in a general manner, but with
sufficient specificity to provide objectives
for design of the PMS. We identified
six requirements to be met by the PMS.

1. Objective-directed Performance
Standards

.

2. Management by Control Limits

3. Historical and Trend Analysis

4. Traceability of Resources

5. Cross-system Comparability

6. Flexible Report Generation.

The first two design requirements were

general enough in nature to accomodate

nearly any kind of performance measurement
capability. The last four requirements,

which related more directly to needs stated

during the CPM survey, began to suggest the

use of certain types of CPM tools in

preference to others.

73

7.3.1 Objective-directed Performance
Standards

By objective-directed performance stan-
dards we meant standards of service to be
provided to the user of the ADP system. Not
all the categories we proposed in the CPM
survey are equally applicable to measuring
service provided to the user. The categories
of Utilization and Productivity are more
process-directed. Our view is that measures
of utilization and productivity are useful
for capacity planning or cost analysis,
but that objective-directed (or service-
oriented) measures are more useful as

performance standards.-^

7.3.2 Management by Control Limits

Our second requirement was for manage-
ment by control limits. This means that

for every performance standard, a minimum
acceptable performance is established as

the preliminary control limit. When the

preliminary control limit is breached,

it provides management with some early
warning to allow action to be taken before
the critical control limit is violated. (1)

Most of the people interviewed felt that
establishing control limits was a good idea,

but some expressed doubt about whether we
would succeed in establishing them through

negotiated agreement between the user organi-
zation and the ADP organization (the way

it should ideally be accomplished).

7.3.3 Historical and Trend Analysis

Most of the interviewees expressed a

lot of interest in our third requirement,
historical and trend analysis. The organi-

zation had suffered in the past for lack of

adequate information on the performance
history of its systems. Adequate answers
to increasingly frequent questions from
higher echelons of the Federal government
were sometimes difficult to come by. In

addition to the need for historical data

to answer questions from management, such
data is needed in order to carry out the

objective of management by control limits.

Without a historical data base it is diffi-

cult to assess performance trends relative
to established control limits.

7.3.4 Traceability of Resources

Most of the interviewees in the CPM
survey expressed an interest in being
able to trace computer resources consumed

See Thomas Bell, Computer Performance
Management Through Control Limits for a

discussion of objective-directed and process-
directed controls, (1).

74

back to a specific organizational element,
to a functional area (which might be part of

an organizational element or an aggregate of
elements) , or to a particular computer appli-
cation. Our statement of a requirement for
"traceability of resources" meant that the
consumption of resources could be looked at

by different managers from the different
perspectives just described.

7.3.5 Cross-System Comparability

In the extremely heterogeneous computer
environment in this organization, the
requirement to compare dissimilar systems
was one of the most important goals. Ideally,
we wanted to be able to produce performance
statistics which presented a valid compari-
son, and to provide the comparison of

different systems in a single succinct report.

7.3.6 Flexible Report Generation

The final requirement was for the

flexible report generation. We learned
through the CPM survey that there was a

wide variety of CPM information needs within
the organization. Different groups of

reports would have to be provided to differ-

ent managers. We also knew that the CPM
system would have to respond to the needs

of ad hoc studies which are frequently
conducted. A flexible means of report
generation would also provide additional
choice in the types of measurements that we
could use. We felt that this was particu-
larly important in a heterogeneous system
environment. "Canned" sets of performance
measurements in off-the-shelf CPM tools
might not provide the means of valid compari-

son of different systems. A flexible
report generator would provide the means to

easily develop custom reports, based upon
measurement algorithms which we developed.

8. Evaluation of Available CPM Tools

Concurrently with the analysis just
described, conducted a preliminary
evaluation of commercially-available CPM

tools which might be relevant to our needs.

The usually heterogeneous systems environ-

ment significantly reduced the number of

options open to us. At minimum we needed

CPM tools to measure the performance of

IBM 360, UNIVAC 1110, DECSYSTEM 10, and

PDP-11/70 systems. After this preliminary
evaluation of available tools, only a hand-

ful of possibilities were available.^ Had

^The EDP Performance Management Hand-

book, Volume 2: Tools and Techniques (5)

was used to provide an initial inventory of

commercially available performance measure-

ment tools.

we been concerned with measuring the per-
formance of a homogeneous environment for

which many CPM tools exist (e.g., IBM 370),
we would have had to develop the evaluation
methodology for this stage much more fully.

9. Designing an Initial Operational
Capability Based on Available
Tools

At this point, for the first time in

the design process, we formally brought
together the pieces which had been inten-
tionally separated in the analysis phase.
The capabilities of relevant CPM tools
were compared with the requirement stated
in the CPM Needs Document. We began by
considering CPM tools in three basic
classes: software monitors, hardware
monitors and job accounting systems.

9.1 Software Monitors

Software monitors were determined to be
least useful for our purposes. The over-
head required to run a software monitor
continuously, as would be required to create
a historical data base, would be significant.
An even more severe problem would be coping
with the massive amount of data which would
be produced. But the basic problem was the

fact that software monitors would not pro-
vide succinct answers to the questions
being asked by upper level management, which
were typically concerned with the resources
allocated and consumed by different organi-
zations and applications, and the available
capacities of various systems to absorb
new applications. This was an area in which
the organization had had experience. Soft-

ware monitors were available on several
systems and had been used success-
fully in the past for trouble-shooting and
system tuning. However, they had not proved
useful for providing the required information
to management.

9.2 Hardware Monitors

Hardware monitors had the attractive
characteristic of being usable on the wide
variety of computers in this systems envir-
onment. They were unique in their ability
to provide fully comparable measurements for

different machines, which was one of our
selection criteria. Unfortunately, they
were deficient in meeting other objectives.
In order to provide the sort of historical
data we wanted, hardware monitors would
have to be hooked up continuously to a

number of computers. This would be very
expensive relative to other options. A
more serious limitation was the inability

of hardware monitors to provide information
on the resources consumed by individual
organizational elements and applications.
This was one of our primary objectives.
Combination hardware and software monitoring
tools, which might have provided an attractive
capability, were not available for the mix
of systems we needed to measure.

9.3 Job Accounting Systems

Job accounting systems had the capa-
bility to provide the required management
information relating resource utilization to
organizational elements and applications.
The relatively low acquisition and operating
costs and low system overhead were also
attractive. However, the objective of

comparability of measurements was not met.

Job accounting systems use the measure-
ments output to system log records, however,
they may have been calculated. For manage-
ment applications, this deficiency is

partially offset by the fact that some
measures can be made comparable by express-
ing them as dollar values. Based on the

results of our CPM Survey, a job accounting
system met our needs most directly.

At this point, our choice had narrowed
down to two possibilities. Both were job
accounting systems which could be used on

more than one of our major mainframe types.
Based on a comparison of these two tools
with the requirements which we had identified,
we recommended the procurement of one of

these. The data base associated with this

system provided a good basis for historical
and trend analysis. The design of this data
base made it possible to integrate informa-
tion from other computers' system logs or

from manually generated data. This charac-
teristic made it possible to extend the capa-
bilities of this system to monitor the

performance of computers for which CPM tools
were not readily available.

10. Define System Enhancements to

Fill the Gap Between Initial
Operational Capability and

Desired Capability

It came as no surprise to find that a

number of the needs stated in the CPM Needs
Document could not be fulfilled by the

initial operational capability which we had
conceptualized. To define this gap with
some precision, our client asked us to

provide an inventory of the specific measures
and performance data which are desired (based

on the CPM Needs Document). This document
can be used as a baseline against which to

75

evaluate present capabilities and projected
enhancements. We have already identified
areas of shortfalls which will require
additional work. For example, the measures
of timeliness which are available are in-
adequate, and certain measures of the
accuracy and utilization categories will
require some custom design work. At this
stage, we found that it was useful to have
stated (and gotten confirmation of) some
of the assumptions stated in the CPM Needs
Document. The most important is probably
the commitment to "do the do-able." As
unfulfilled needs are recognized, there
may be a temptation for some people to

waiver in their commitment to take those
first important steps. Another temptation
may be to suggest a massive software design
effort to "do it right" from scratch.
Individuals succumbing to this temptation
need to be reminded of the assumption that
the use of available software should be
maximized, and why that assumption was
made. Aside from the problem of the cost
of custom designing such software (which
is likely to be exorbitant), a decision to

go the custom software route puts off
management's access to CPM information for

a significant period, perhaps years. Using
the documentation of CPM requirements as a

guide, it is possible to begin a CPM
program with the best available off-the-
shelf technology and then systematically
improve it until it approaches full
satisfaction of the organization's needs.

11. Conclusions

During the initial design phases of

the performance management system dis-

cussed here, we took certain actions which
we recommend as part of the methodology
for an organization comtemplating establish-
ing a performance management system. In

summary, these actions are:

1. Clarify the basic objectives of

the design effort. Understand
the basic differences between
resource management and system
tuning objectives and determine
which is to be pursued.

2. Gain top-level management
support for a top-down approach
to designing the PMS. This
support will facilitate getting
the information needed to design
an effective PMS.

3. Establish organizational responsi-
bility for the PMS. Define re-

sponibilities for developing,

7

operating, and analyzing output
from the system.

4. Perform separate analysis of needs
and capabilities. To intermingle
these prematurely will result in
stating only those needs which
can easily be satisified.

5. Conduct a survey to determine the
CPM information needs of managers
within the organization. Use
individual interviews to insure
maximum exchange of information.

6. Write a CPM Needs Document to

express the objectives of the

PMS to be designed. Assumptions
and conclusions should be clearly
identified. Have the CPM Needs
Document formally accepted as an

official statement of requirements,
even if it takes more than one
try to do it.

7. Design an initial capability based
on the commercially available
CPM tools which best meet your
stated needs. Avoid the tempta-
tion to try to custom design your

own system until you have had
some experience working with an
operational PMS.

8. Design system enhancements to

fill the gap between the initial
operational capability and

desired capability. Gaining
experience with the initial
operational system should provide
significant insights which will
become design considerations for

system enhancements.

References

(1) Bell, Thomas E. ,
"Computer Performance

Management", in Management and
Evaluation of Computer Performance ,

Computer Measurement Group, Inc., 1978.

(2) General Services Administration,
Management Guidance for Developing
and Installing an ADP Performance
Management Program , 1978.

(3) Gotthardt, David W. and Sardo, Victor M.

,

"Meaningful Data Processing Performance

Measures for Management", in Management

and Evaluation of Computer Performance ,

Computer Measurement Group, Inc., 1978.

(4) Howard, Phillip C. , and Stevens, Barry
A. , The EPF Performance Management
Handbook, Volume 1: Audit and Control

,

Applied Computer Research, 1978.

(5) Howard, Phillip C. , The EPF Performance
Management Handbook, Volume 2: Tools
and Techniques ,

Applied Computer
Research, 1978.

(6) National Bureau of Standards, Guide-
line on Computer Performance Management:
an Introduction , 1977.

77

NAVAL LABORATORIES' QUALITY OF SERVICE STANDARDS

Joseph S. Dodds

Engineering and Computer Sciences Directorate
U.S. Naval Ocean Systems Center

San Diego, CA 92152

This paper summarizes the objectives, history and status of user

quality of service standards that are being developed by the Naval
Laboratories for their general purpose computer centers. The problem
includes social, economic and technical challenges. Standards must be
relevant to the users, non-competitive with other evaluation processes,
economically applied and consistent among the different computer
architectures installed at each Laboratory. Each standard currently
being used will be presented along with the rationale for the standard.

Key words: Availability standards; batch processing; calibration programs;
computer standards; interactive processing; quality of service; response

time; turnaround time.

1 . Background

General purpose (GP) computer centers at

each Laboratory operate much like a service
bureau, providing batch and interactive
service to users from many different disci-
plines and charging each user for the services
he receives. The GP manager is faced with the

task of balancing capacity to meet the needs
of the community, and of acquiring compilers,

data base management systems, engineering
aids and a host of other software packages
needed to support his diverse customer base.
Each Lab has established one or more "user

groups" to work with the GP manager in

analyzing requirements and evaluating the

performance of the GP center. These intra-
Lab groups have existed since the early
sixties and have proved most valuable for the

relationship between local computer service
suppliers and their users.

In the late sixties it also became
apparent that many issues that appeared to

be local issues were common to all Naval Labs,
so about ten years ago the Naval Laboratories
formed an interlaboratory computer committee,
the NLCC (Naval Laboratories Computer
Committee) . The interests of the NLCC have
ranged from review and recommendations on

proposed Federal controls of computers to

development of an interlaboratory computer
network. One of the high interest items on

the agenda of the NLCC has been the develop-
ment of computer quality of service standards,

standards that address the types and levels
of GP computer service the Labs should be

supplying its scientific, engineering and
management community.

In the early 1970' s a draft set of
service standards was distributed for review
and comment. The standards were written
from a user's point of view, attempting to

articulate standards that would be meaning-
ful to users, set rational expectation
levels, and be simple and direct enough for

a user to determine whether or not he had
been served within limits of the standards.
This user orientation needs to be clearly
understood. Unlike the highly internalized
concerns usually associated with performance
monitoring, e.g., concerns with the physical
management and fine tuning of a system's
I/O, memory, CPU, disk access, the NLCC
Quality of Service Standards attempt to

address the end result as seen by a engineer.

79

programmer or scientist who is using the

computer as a tool.

The 1970 draft set of standards included
standards for availability, batch turnaround

time, interactive response time and keypunch
service times. The draft also recommended a

series of good management practices for

control of a systems hardware/software con-

figurations, analysis of user community needs
and establishment of computer systems advisory

groups made up of users and suppliers of

computer services. The concepts were well
received by NLCC. Members concurred in the

recommended management practices. They
agreed that the times given for batch turn-

around and for interactive response stated
rational and desirable goals, and they

further agreed to put the draft standards
into practice at their Laboratories.

Practice rapidly revealed one serious

flaw - measurement of performance varied.
Laboratories with IBM equipment measured per-

formance one way. Those with UNIVAC equip-
ment another, and CDC a third and so cn and so

on. Although the standards aimed for uni-
formity across Laboratories, the heterogene-

ous array of computer systems appeared to

work against the objective of commonality and

uniformity.

To remedy this flaw the NLCC reconsti-
tuted its Quality of Service Standards Sub-
committee in 1977. The subcommittee was
tasked to recommend actions, new standards or

techniques that would bring uniformity and
commonality to the measurment and interpreta-
tion of User Quality of Service Standards.

The balance of this paper will detail the

results of the committee work up to May of

1979 and describe tasks that are still under-
way to evaluate and validate the committee's
recommendations

.

To keep the reader from misconstruing
the scope or intent of the standards,
remember that these standards are experi-
mental and being tested by the Naval Labs for

the Naval Labs.

2. Batch Turnaround Standards

Before stating the batch turnaround
standard we need to define the terms job,

turnaround time, job size and priority. The
following discussion also provides some in-
sight on why the definitions were selected.

In this day of comprehensive and flexi-

ble operating systems, multi and parallel
processing, and interfaces between streams
of programs that may diverge on funding, user

population or submittal sequences, the mean-
ing of "a job" can differ greatly. Since all
comparisons of performance to standards are
based on the concept of a job, agreement on
a single meaning is essential. A job is,

therefore, used in the standards to mean one
task or group of tasks that are identified
as a single unit of work against which re-
source utilization is collected and uniquely
identified.

Operating of remote sites serviced by a

Naval Laboratory Computer Center is usually
the responsibility of a separate chain of

command. The central site is without author-
ity to direct when the remote site will
accept a completed job. Hence, the standards
include the caveat that the turnaround period
terminates when remote batch terminals are
informed that files are ready for trans-
mission.

The standard's definition of turnaround
time is: The lapsed time between reading
the job's last system directive and either:

1. Outputting the last line of data, or

2. In cases of remote output sites,

informing the site that all output
data is ready.

Turnaround time is also dependent on the

amount of work that must be done to transform
inputs into outputs. The amount of work de-
fines job size, a term that is also descrip-
tive of a user's general perception of the

computer resources applied to a job. Each
Laboratory was certainly familiar with such
a concept. Operating systems incorporate
some job size descriptors that are useful
for scheduling job streams. The question is

how to establish job sizes in such a way that

jobs of a given size run on say a CDC 6600

will turn out to be classified the same way
when executed on a UNIVAC 1100?

The general principle that standards
must be acceptable to the community to which
they apply affected the definition of turn-
around time. Standards that are perceived
as excessively burdensome, cost more to apply
than they are worth, or in other ways fail to

gain concensus may as well remain unstated.
A NLCC turnaround time standard based on
portal-to-portal, input counter to output bin
would have exemplified this principle. One
or two Naval Labs do collect counter to bin
time data; most do not and were opposed to

collecting counter to bin data. The machine
measured turnaround time, therefore, was
adopted as a workable and acceptable
definition.

80

The key to this problem in the turn-

around standard lies in a calibration
program. The calibration program is an

arbitrary program, (See Figure 1) , reads

an arbitrary number of records, R, performs

the computations an arbitrary number of

times, N, and prints an arbitrary number of

lines L. Reference [1] provided the original

structure for the Calibration Program and

Exhibit A is a listing of the program as

currently written for the NLCC standards.

When run as a Calibration Program two

combinations of values are inserted for R,

N and L. Resource utilization data and the

cost data are then collected for each

combination.

The results of the run with the lower

set of values (R = 11,700, N = 827,000,

L = 10) establishes the lower boundary (Al)

of a medium size job the combination of

higher values (R = 25,070, N = 1,722,000,

L = 10) establishes the upper boundary (Au)

of a medium size job in terms of that speci-

fic computer center. A^ and A^ are expressed

as Work Units (WU) . One WU equals one dollar

of charges at normal priority.

Results of the calibration program are

used to establish job size. Small jobs are
those with WU's less than Al, Medium jobs

are those that have WU's ranging from A^ to

Ay, Large jobs have WU's greater than Ay. A
user can refer to the tail sheet of his out-

put, compute his time in the system, immedi-

ately read the cost (WU) and determine
whether or not that job had been processed
within Standard turnaround time.

The Calibration Program concept assumes:

a. That the Naval Laboratory computer
centers operate much as a commercial service,

that is, costs are recovered by charging
users on an "as used basis". Cost and cost

recovery are targeted to produce a zero
balance. Production during a given period of

X number of WU's charged at the base priority
rate should defray all costs for that period.

b. Classification of job size is,

therefore, independent of computer capacity.

c. Three job sizes are sufficiently
discriminating for user verification of the

quality of his service.

d. Work Units equate to resources used.

A word needs to be said about the repeat-
ability of turnaround time for a particular
job. It is well known that job run times

vairy as system workloads vary. There is

little variation, however, in accounting of
resources used. A job, therefore, that is

close to the Al or Ay boundary may when run
one time be processed within the stipulated
time, and when run again be outside, either
above or below the stipulated time. A "90%

of all jobs" phrase was introduced to com-
pensate for the phenomenon of run time
variations and also to allow for those jobs
which utilize the system resources in an
unusual manner, causing them to severely
bias the cost/turnaround time algorithm.

Another factor, in addition to job size,

that impacts turnaround time is the user
requested priority for his job. While the
computer center manager is concerned with
the cost and productiveness of his computer
system, the project manager is concerned
with the productiveness of his people and
the totality of his costs. The scaled
priority response times and costs gives the

project manager an opportunity to balance
his production needs and financial resources.
He can use the NLCC standard as an input for
making his trade-offs and as a means of

evaluating the service he receives.

Satisfying a request for high priority
handling of a job can degrade the \TU pro-
duction potential. The higher the priority
of the job, the more jobs that are temporar-
ily set to one side, the greater the impact

on production. Hence, higher rates are
usually charged for high priorities, compen-

sating for the impact on overall system
throughput. The opposite is true for jobs

running at low priority.

The experimental batch turnaround
standard can now be stated completely.

2.1 Definitions

A Job is a single task or group of

tasks that are identified as a single

unit of work against which resource
utilization is collected and uniquely
identified.

Turnaround Time is the lapsed time
between reading the job's last system
directive and either:

1. Outputting the last line of data, or

2. In cases of remote output sites,

informing the site that all output
data is ready.

The Calibration Program is a set of

program and program data used to

establish the lower and upper limits

81

of computer resources used on medium
size jobs. Figure 1 provides a

listing of the calibration program.

The Normal Priority is selected by
management of a computer site as the

priority that will be used for deter-
mining the normal and adjusted turn-

around time standards described in

paragraph (c).

Work Units (WU) are the computer
resources for which utilization data
is recorded during the initiation,

processing and termination of a job

and from which user billings are

generated. One WU equals one dollar

of charges at normal priority.

WUj is the sum of the Work Units

applied to job j.

2.2 Measuring Job Size

The lower and upper boundaries for a

Medium size job are determined at each site

by the Calibration Program; Al is Lower
Boundary of Medium Job; Ay is the Upper
Boundary. Job size categories will be:

Small, where WU < Aj_

Medium, where Aj^ < WUj < Ay

Large, where WUj > Ay

2.3 Turnaround Standards

Ninety percent (90%) of all jobs within
the three job size categories shall have
the following turnaround times under Normal
priority during all periods of scheduled
availability

:

Small - 45 minutes or less

Medium - 120 minutes or less

Large - 360 minutes or less

When a priority is offered at a special
rate, the following adjustments shall be
made to turnaround times.

1. For step increases in rates, turn-
around times will be . 75P of the

Normal priority computed to the
nearest tenth of an hour, expressed
in minutes . (p = one tenth of the
percentage change in rate relative
to the normal rate)

.

2. For step decreases in rates, turn-
around time will be 1 + p of the
Normal priority.

3. Examples of medium job size:

Priority Rate Change „ Minutes JTurnaround

Highest + 20% 66

Higher + 10% 90

Normal 0 120

Lower - 10% 240

Lowest - 20% 360

3. Interactive Response
Time Standards

The batch processing standards are
stated in a way which permits a user to
directly determine whether or not his job

was done within the stipulated time. The
same is not true for interactive standards.
The determination as to whether or not the
response of a system is meeting the inter-
active standards will not be directly
available to the user. His feedback on
performance will be in the form of reports
and statistics prepared from data collected
at one terminal location that includes a

specially designed Interactive Measurement
Tool (IMT) that executes scenarios and
records the computer response for each
scenario action.

The IMT will run in a half duplex mode,
timing responses to the nearest tenth of a

second, and simulating user think time delays
and typing speeds. Table 1 contains the
experimental standard scenario plus the
expected response times for each event in

the scenario. The solicit response means
that the computer is ready for the next
input. In practice, the representation of

that event may vary from computer system to

computer system.

These NLCC standards are fairly
straightfoirward. The definitions of terms
and contents are based largely on earlier
studies performed by the National Bureau of

Standards [2] [3].

3.1 Interactive Standards

Response Time for interactive or con-
versational users is defined as the time
interval between the pressing of the last
key of the user's input message to the

display of the first character that responds
directly to the user's request.

82

c HLCC STANDASDS COMMITTEE CALIBRATIOll E>ROCKAMS VERSION JUNE 1978. SYN 0001
c ANSI FORTRAN VERSIOtI OCTOBER 1977. NORA H. TATU3R, DTNSRDC STN 0004
c VERSION 1.1 7AR. 1978 PREVENT OVER OPTIHIZATIOM OF KERNEL SYNU 1

c STNTHETIC FROCRAH FOR JOB STREAM SIMULATION AND tlMINC COItFARISONS. SYN 0005
c MODIFIO) FROM FL/I FROCRAIl, P. S6, PROCEEDINGS OF FALL JOLNT STN 0006
c COMPUTER CONFQlENCEt 1971. STN 0007
c INPUT PARAMETEHS VART THE COMPUTE TIME AND I/O TIME. STN 0008
c R NO. OF RECORDS TO BE PROCESSED IN EACH FILE. AT LEAST 1 RECORD STN 0009
c WILL BE DONE. SYN 0010
c N • TOTAL NO. OF TIMES TO EXECUTE COMPUTE KERNEL. SYN 0011
c L TOTAL NO. OF LINES TO PRINT SYN 0012
c LFR "NO. OF LINES TO PRINT FOR EACH RECORD PROCESSED (UP TO L)

.

SYN 0013
INTEGER C. CHECK, OUTl .OirT2tOUT3,OUT49P.R STN 0014
DIMENSION MDATA(5) STN 0015
DATA 11DATA(2) .MDATA(3) ,MDATA(4) tMDATA(S) /1 , 1, 1 (1/ STN 0016

c LOGICAL TAPE UNITS SYN 0017
0UT1"8 SYN 0018
0UT2*2 SYN 0019
ODT3"3 SYN 0020
OUT4^ STN 0021
C 5 SYN 0022
P • 6 SYN 0023

c INITIALIZATION STN 0024
CEECKK) SYN 0025
L"l STN 0026
LIN£S*0 SYN 0027
LPR-1 SYN 0028
NREFS-O SYN 0029

c TO CONTROL PRINTING BT INPUT PARAMETERS L AND LPR, CHANGE SYN 0030
THE READ CARD BELOW TO READ(C.61) R.N.L.LPR. FORMAT IS OK. SYN 0031

R£AD(C,61) R. N SYN 0032
61 FORMAT(SIIO) SYN 0033

ir(R.LE.O) S-l SYN 0034

IF(N.LT.O) H-O SYN 0035
WRITE(P,60) R. N SYN 0036

60 FOR.>1AI(10H1STN 1.1— .IIO.IOH RECORDS, .IIO.ITH COMPUTE KERNELS.) SYNll 2

C CREATE A FILE SYN 0038
DO SO J 1, R SYN 0039

MKEy-J SYN 0040
MDATA(1)-J SYN 0041

MCHECK-CHECK+J SYN 0042
MSUM • J - I SYNll 3

80 URITE(onT4,61) KKET.MSUH.MCHECK.HDATA SYN 0044
ENDFILE 0UT4 SYN 0045
REWIND 0UT4 SYN 0046

C THE OVERALL NUMBER OF COMPUTE KERNELS IS LIMITED TO N BT THE NREPS SYN 0047

C COUNTER AND IS DISTRIBUTED OVER TPE I/O RECORDS AS FOLLOWS— SYN 0048
c FOR N.GE.R. THE KERNEL IS DONE N/R f 1 TIMES PER RECORD. SYN 0049

c FOR N.LT.R. 2 TIMES PER RECORD. SYN 0050

c FOR N - 0. NONE. N IS PREVENTED FROM BEING NEGATIVE. SY!) 0051

LIM - (N-«)/R +3 SYN 0052

c MAIN LOOP SYN 0053
DO 5 LI - 1, R SYN 0054

READ(0UT4.61) MKET.MSUM.MCHECK.MDATA SYN 0055
IF(NREPS.GE.N) CO TO 82 STN 0056

c CARD STM 37 REMOVED IN STN 1.1 SYNll 7

c CONFUTE KERNEL SYN 0058

L2 - 1 SYN 0059

2 L2 - L2+1
C CALL A USER FUNCTION TO PREVENT UNWANTED OPTIMIZATION. SYNll 8

RN - F(FL0AT(L2)) SYNll 4

tlDATA(l)-SQRT(RN) SYN 006

HDATA(2)«EXP(RN/1.E1S) SYN 0061

MDAIA(4)-L1-H.2 SYNll 5

MDATA(3)>L2 SYN 0064
MSUH<iHSmH-l SYN 0065

MCHECK-LIM /L2 SYNll 6

NREPS-NREPS-t-1 SYN 0067
IF(LIM.CT.L2) GO TO 2 SYN 0068

82 WRITE(0UT1,61) MKET.MSUH.HCHECX.MDAXA SYN 0069
WRITE(OITI2.61) MKET.MSUM.MCHECK.MDATA SYN 0070
WRITE (0UI3, 61) MXEY.MSUH.HCHECK.MDATA SYN 0071

IF(LINES.CE.L) CO TO i SYN 0072

C LINE PRINTER LOOP. DONE OHLT ONCE IN STANDARD VERSION. SYN 0073

DO 4 K • 1. LPR SYN 0074

WRITE(P.61) HCHECK,MDAXA(S),K,LINES,NREPS SYN 0075
4 LINES - LINES 1 SYN 0076

5 CONTINUE STN 0077

WRITE(F,61) MKET.MSUM.MCHECK.MDATA SYN 0078
REWIND OOTl SYN 0079

REWIND 0UT2 SYN 0080

REWIND 0UT3 STN 0081

REWIND 0UT4 SYN 0082

STOP 77 SYN 0083

END SYN 0084

STOR.IS F

FUNCTION F(X) SYNUF 1

C DUMilT FUNCTION TO PREVENT UNWANTED OPTIMIZATION. SYNllF
F - X sr.uiF 2

RETURi; SYNllF 3

END SYNUr 4

Figure 1. Calibration Programs

83

PL, C/2

W Q
W Z
PS O
O

Q W
Pi W
< -^

w
CO

O H
CO WW >
Pi w o

CO
o
CO

u
0)
i-t

o
IS

u

x: c

in CO

u
•H M-l

fl< O

u
(Uu
o
<d

u
nj 60
jr c
o -H

M
4-1 U
tn w
)-4

•H IM
o

c
OJ

a
0)

&.

Q
e
01

o
n)

cx
cn

>

o

0)

>-l

-a
c
(13

C

3

4=

3
cj

OJ

X
(U

c

0)

T3 4-1

nS -H
o -o

OJ

M O
H ZM OU M

W W H
(l4 O. U
CO O <

-a

fl4

II

I

0) oMO
n) I

J= Iu -

o
OJ 4-1 H
O 0)

c W
01 «
3 -a o
cr u
0) o M
CO s w u U

H
p cn

O tT3 W COu H
< w < w >^

c o H W Ph
1—

1
1—

1

H M Pi M o
CO ^ < U CJ

Ki
OHM
QU

<

/ 84

(U

3
C

C
ou

mM
zo ^
P4 CO
CO OM ZS ou
q uW CO< ^ CM m CO

1 ON
iH

< s

of of of

M (U u (U M to
0) 60 <u 60 Oi 4-1

CO 4J CO 4J CO 4J CO< (J (0 u CO U
CO 0] to CD toM u 0) >-l (U M 60H M S (0 e to C

CO

s
>H

CO 4-1 u u u u CJ

§
4J 4-1 u o 4J

OT z •H <0 •H •H •H cO H U u u u 4-1 M 4-1 u U U 4-1 3
Pi PU Z •H •H •H •H w 60 (0 60 •rl •H •H to OU CO ui iH rH 1-1 O l-l o rH rH rH * CJw > O o o o •H M •H o O O •H oS u CO CO CO CO P. p. CO CO CO to

ôu

•o
c

0) CO
rH
•H (0 0)

M-l (0 •o
(U o
M
P.

u

n) O. 4-1

3 o
o CO 0)

P. >— •l-l

§ o 0) (U

§
.-1 C 4-1 uH 3 3M (U O. W iH CJ uH > S CO •H Oi <uO O -H 3 X X< CO « 0) w

U OSM O

U ^
U U
PL< PL,

CO O

01
4J
(U
rH
tu

1-5

11

OO

z

H

Z

CO
z

^—

\

O
4)

SON

rH

e
•H RAM

o o
o o 4J Bw c et:

CO <a o PU
HM o ITT Ev e
o fn /—

s

M M H z 4J

o .J f« to V ' zM M
LA <

pe M
Q w <a

o M
c21-3 V ' H

CO

3 V
M S
4J 4-1

^ <U

u
CO ou B
(U /-V

> >a-

w
4J u
to 3
<u o
p. MH
<u
pc: in

E
o

O l-l

•H tt-i ^
U 4-1

to to CO

C 4J o
0) to x:

CO o
<U 4J

s
0)

CO

e
to

H

4-> to^ C
4J tH

> 0)

01 4-1

1^
Pu
o
z
o

85

A standard Scenario Is a predefined
sequence of events describing user Initiated
commands, system reponses and the standard
response times for each event and for the

total scenario. (Table 1 provides a

description of the Standard Scenario)

.

Ninety percent (90%) of the actual
interactive response times for each event in

a standard scenario shall equal or better the

standard response time. Ninety percent (90%)

of the active executions of a scenario shall

be completed within the standard elapsed time.

Comparison of a system to the above
standards shall be determined by collecting
data on a full scenario during every hour of

prime shift over five working days. That is:

ten samples per day, 50 samples in all.

4. Availability

There are two standards for availability.

One for availability during periods when most
of the users are at work and are asking for

service, the Prime Hours, and the second for

all other scheduled service times, the Non-

Prime Hours. The differentiation was made
to emphasize the need for superior system
performance during the heavy demand periods.

Heavy periods not only represent times when
most users are trying to get their work done
but also periods that seem most commonly
afflicted by unscheduled interruptions.

The scope of the down time period covers

the user's perception of availability not the

perception of hardware maintenance personnel

or system maintenance programmers. Partial
degradation of a system (e.g. loss of a

printer or tape drive or some memory) that

does not completely close down the system is

not included in the computation of availabi-
lity. The impact of partial degradation will

be reflected in the ability of the GP center
to meet the batch and interactive standards.

4.1 Availability Standards

Prime hours are the 8-1/2 hour period
designated by each Laboratory as its

standard first shift plus one and one-half

hours at the end of the first shift. Total
prime hours equal ten (10)

,

Non-prime hours are all the hours
scheduled for support of general users

less the ten (10) prime hours.

Down time is the lapsed time that a

computer system is down during either Prime

or Non-prime hours. Being down means that

no useful work can be performed for general

users. Down time ends when system hardware
and software recover is complete.

Availability equals one minus down time
during a scheduled period divided by the

hours in that period.

T
A = 1 -

Ĥ

Prime hours availability shall be 98%.

Non-prime hours availability shall be 90%.

5. Conclusion

Recall that the NLCC Quality of Service
Standards are still experimental and being
tried only by participating Naval Laboratory
Centers. Still in progress are tasks for:

a. Delivery of system reports that
will convey to users how well a

given computer center has per-
formed in comparison with the
standards.

b. Validation that the standards do
indeed describe servicing attri-
butes that users class as important
and that the measures for each
attribute are reasonable.

While there is much left to be done
perhaps even to the extent of throwing out
some ideas and introducing new ones, the

NLCC Quality of Service Standards are filling
a previous void by providing a baseline for

the continued evaluation and development of
user oriented standards.

References

[1] Wood, D. C, Forman, E. H., Throughput
Measurement Using a Synthetic Job
Stream, AFIPS Conference Proceedings ,

Volume 39, 1971 Fall Joint Computer
Conference, pp. 51-55.

[2] Abrams, M. D., Cotton, I. W.,

Watkins, S. W., Rosenthal, R., and
Rippy, D., The NBS Network Measurement
System, IEEE Transactions on
Communications, October 1977,

pp. 1189-1198.

[3] Watkins, S. W., Abrams, M. D., Survey
of Remote Terminal Emulators,
NBS Special Publication 500-4

,

April 1977.

86

87

COMPUTER SYSTEM MIGRATION PLANNING THROUGH
BENCHMARK PERFORMANCE EVALUATION

Arabinda Mukherjee
AT&T

Piscataway, NJ

Aridaman K. Jain
Bell Laboratories

Holmdel, NJ

and

Bruce A. Ketchledge
AT&T

Piscataway, NJ

ABSTRACT

This paper presents the development of a program which provides
guidelines for migration from an IBM l68-3 to an IBM 3033- This
program, based on the Bell System 3033 benchmark performance data,
consists of analytical and empirical models. The benchmark consisted
of several real and synthetic job streams, which were run on the
168-3 and the 3033 under an MVS Operating System. The migration
guidelines are in terms of (i) key 3033 system performance measures,
(ii) gross configioration tuning information, and (iii) execution
times for batch job steps. Furthermore, a component of this program
can be used as a capacity planning aid for an existing 3033 system.

1. Introduction

In March 1977, IBM announced the 3033
processor, a member of the System/370 series
at the high end of the performance scale.

An integral component of the 3033 processor
is the System/370 Extended Facility. This

facility, when supported by the MVS/SE
(System Extensions) program product, improves
the performance of MVS. The 3033 processor
was initially advertised as being capable
of an instruction execution rate of 1.6 to

1.8 times that of a 168-3 processor. In
May 1977, representatives of several Bell
System entities agreed to conduct a joint

3033 benchmark to assess its potential in

the Bell System. The on-site portion of the
benchmark began on February 20, 1978, and
ended on April 8, 1978.

The objectives of the benchmark study
were to:

a. develop guidelines for migration from
an IBM l68-3 to an IBM 3033, includ-
ing the development of internal-'- and
external^ performance ratios, and

b. obtain planning data for selected
applications

.

This paper presents the development of

a program for migration planning from a

"""The ratio of l68-3 total CPU active
time to 3033 total CPU active time for a

given job stream.

%he ratio of l68-3 elasped time to 3033
elapsed time for a given job stream.

89

168-3 to a 3033 for batch environment. This
program can also be used as a capacity plan-
ning aid for an existing 3033 system. Sec-
tion 2 of this paper contains a discussion
f the benchmark test plan, including the
xperimental design. A detailed description
f the migration planning program is pre-
ented in Section 3. The data analysis and
evelopment of empirical as well as analyti-
al models, which are components of the
ligration planning program, are presented in

lection U. Section 5 contains a siimmary.

2, Benchmark Test Plan

Five applications (A-D,F), which consist
3f one or more job streams, were used to
iccomplish the benchmark objectives. Work-
load type, program type, language and number
of job streams for each of these applications
are given in Table 1. These applications
were used to carry out a set of general
experiments described in Section 2.1. Addi-
tionally, Application F was used to conduct
a series of special experiments described in

Section 2.2.

2.1 General Experiments

The sequence of experiments for each
application was as follows:

a. Perform multiple runs for a given job
stream on the l68-3 processor to

establish a base of comparison (the

l68-3 base experiment),

b. run the same job stream on the 3033/SE
processor by using the same hardware
configuration as was used on the
168-3 (the 3033/SE unt\ined experiment),

c. run the same job stream again on the
3033/SE processor as in (b) but after
elimination of obvious system bottle-
necks 3 (the 3033/SE tuned experiment),
and

d. repeat the "3033/SE tuned experiment"
on an identical configiiration as in

(c) with the 3033 processor without
the SE feature (the 3033 experiment)
for Applications A-D.

Elimination of bottlenecks consisted of
one or more of the following:

(i) an increase in the number of
initiators

,

(ii) an increase in the number of I/O

devices, and

(iii) data set placement changes.

In the case of Application F, there are 15
job streams (defined in Table 5). In order
to conduct the experiment under extreme
conditions, four of these job streams, which
consist of the largest percentage of an
individual activity, were used in the above
sequence of experiments.

The performance measurement data, which
are used for the migration planning

'
program,

are s\immarized in Table 2 for Applications
A-D and in Table 3 for Application F. These
performance data are used to build the inter-
nal performance ratio models and the differ-
ence performance ratio model which are
described in Section k.

2.2 Application F Experiments

The objective of Application F experi-
ments was to describe job step execution
time as a function of the state of the
system in terms of: (i) level of CPU
activity (CPU utilization), (ii) level of
I/O activity (start I/O per second), and
(iii) level of paging activity (total PAGING/
second), iinder certain conditions^.

Four tasks, which can be characterized
as CPU boiind (TASK l), l/O bound (TASK 2),
PAGE bound (TASK 3), and balanced (TASK k)

were used to create the 15 job streams.
TASK h requires the least amount of resources
and does moderate amount of CPU, I/O, and
PAGING activity. Tasks 1 and 2 were created
from Task k by increasing CPU and I/O acti-
vity, respectively. Task 3 was created from
Task k by increasing both CPU and Paging
activity. The number of Mrect Access
Storage D_evice (DASD) files, total number of

executions of Execute Channel Program (EXCP),
CPU seconds, and EXCP/CPU second for each of
these tasks are given in Table h. The com-
position of the 15 job streams is given in

Table 5. These compositions were developed
to cover as wide a range of system state

variables (i.e., CPU utilization, SIC rate
and paging rate) as possible.

Each job stream consisted of 60 job

steps. The execution sequence of the tasks
was generated at random based on their

These conditions are:

(i) all job steps have the same dis-
patching priority,

(ii) all I/O is confined to 3330 (Mod.

I and II) and/or 3350 type devices,

and

(iii) I/O load is equally distributed
among the DSAD devices.

90

composition in the job stream. A sunmiary of

the performance data for the 15 job streams

in Application F is given in Table 6. These
performance data were used to build the job
step execution time models, which are de-

scribed in Section k.

3. Migration Planning Program

Detailed analysis (see Section k) of
the benchmark performance data has led to

the development of a migration planning pro-
gram called the 3033 /PLAN. An additional
feature of the program is that it can be used
as a capacity planning aid for an existing

3033 for pxire batch environments.

Migration planning guidelines from the
168-3 to the 3033 are given in terms of the
following predicted 3033 performance measures:

(i) Problem Program, Supervisor State,
and Total CPU utilization,

(ii) SIO rate/second,

(iii) internal and external performance
ratios compared to the l68-3 CPU,

and

(iv) execution times of batch job steps
in the 3033 environment.

Additionally, the program develops tuning
guidelines for the 3033 environment in terms
of the number of initiators and the number
of DASD devices to make effective use of the
faster processor.

For an existing 3033, the program can
be used as a capacity planning aid in terms
of the execution times of batch job steps
for projected 3033 CPU utilization, SIO, and
PAGING rates. Optionally, prior to its use
as a capacity planning aid, the program can
be used to tune the 3033 system.

3.1 Scope

The scope of the program is defined by
the following:

(i) The program is limited to single
processor configurations only.

(ii) The program is valid for MVS/batch
environment only.

(iii) As a capacity planning aid, the
program is limited to prediction
of execution times of batch job
steps having equal priority and
all I/O confined to 3330 and/or

33_50 type devices.

(iv) The 3033 total paging rate, which
is required in the estimation of
the execution times of batch job
steps, is derived by multiplying
the l68-3 total paging rate by
3.5^. An accurate estimate of the
total 3033 paging rate is beyond
the scope of this program.

(v) For the 3033, unrealistic execution
times of batch job steps may result
when the SIO rate/second is higher
than l60 and/or the paging rate/
second is higher than kO

.

(vi) The I/O configuration is limited
to 3330 (Mod. I and II) and 3350
type devices. During the optimi-
zation process, only 3330 type
devices are added to eliminate
device bottlenecks.

3.2 Assumptions

The migration planning program is based
on the following assumptions:

(i) the computer system is in a steady
state condition,

(ii) the I/O load is equally distributed
among the disk drives, and

(iii) the working set size (or the
average real memory owned) is

approximately equal to 300K bytes
for all job steps.

3.3 Detailed Description

3033/PLAN makes use of both empirical
and analytical models. 3033/PLAN, written
in FORTRAN, is self-prompting for ease of

use and is driven by a simple set of input
parameters which are easily available from
standard measurement tools and accounting
packages. This program produces simple

output and as mentioned earlier, it can be
used in two different ways:

(i) as a migration planning aid through
the use of l68-3 system performance
and job step data, and

(ii) as a capacity planning aid for an

existing 3033 through the use of

projected 3033 system performance
and job step data.

The empirical and analytical models, which

^This is the average ratio of the 3033

paging rate to the l68-3 paging rate observed
in this study.

91

are used in 3033/PLAN, are described in
Section k.

3.3.1 Migration Planning Aid

Figure 1 shows a gross level system flow
for the 3033 Migration Planning Aid program
in terms of input, process, and output. A
flow chart of both migration planning and
capacity planning algorithms is shown in
Figure 2. The individual steps of the migra-
tion planning algorithm are presented below
in more detail than in Figure 2:

(a) Read l68-3 system performance and
job step data.

(b) Calculate the seconds during a one
hour interval for (i) l68-3 total
CPU, (ii) 168-3 Problem Program (PP)

CPU, and (iii) l68-3 Supervisor State
(SS) CPU from their respective per-
cent utilizations.

(c) Estimate superivsor state ratio^ and
problem program ratio"^ by using the
SRATIO and PRATIO models (Section k)

respectively.

(d) Calculate 3033/SE PP CPU seconds by
dividing l68-3 PP CPU seconds by PP
ratio estimated in Step (c).

(e) Calculate 3033/SE SS CPU seconds by
dividing l68-3 SS CPU seconds by SS

ratio estimated in Step (c).

(f) Calculate total 3033/SE CPU seconds
by adding 3033/SE SS CPU seconds and
3033/SE PP CPU seconds.

(g) Calculate internal performance ratio
by dividing total l68-3 CPU seconds
by total 3033/SE CPU seconds.

(h) Use the analytical model AJmOD
(Section h) to estimate 3033/SE
CPU utilization from the n\mber of
initiators and the number of DASD
devices in the l68-3 configiiration,

the SIO per l68-3 CPU second, the
ratio of SS CPU seconds to PP CPU
seconds for 3033, and the PP ratio.
This CPU utilization represents the

'Supervisor state ratio = 168-3 SS CPU
seconds/3033
(SE) SS CPU
seconds

.

Problem program ratio = l68-3 PP CPU
seconds/3033
(SE) PP CPU
seconds

.

case when only the l68-3 CPU is

replaced with a 3033/SE CPU (i.e.,
no other change in the l68-3)

.

(i) Calculate 3033/SE job stream elapsed
time from 3033/SE CPU utilization
and total CPU seconds. Calculate PP
and SS CPU utilization from 3033/SE
PP and SS CPU seconds and job stream
elapsed times

.

(j) Calculate external performance ratio
by dividing the 168-3 job stream
elapsed time of one hour by 3033/SE
job stream elapsed time. Also,
calculate SlO/second for the 3033/SE
from SIO per l68-3 CPU second, 3033/
SE CPU utilization and internal
performance ratio. For 3033/SE
system, go to step (m).

(k) Estimate the difference in the
internal performance ratios between
3033/SE and 3033/NON-SE from l68-3
SS percent and l68-3 SIO rate per
second by using the empirical model
SEMOD (Section k) . Calculate 3033/
NON-SE internal performance ratio by
subtracting the above difference
from the 3033/SE internal performance
ratio.

(1) Estimate 3033/NON-SE performance by
using Steps (h), (i) and (j).

(m) Estimate execution times of job

steps by using the empirical model
APPLANI68 (Section h)-

(n) Estimate average device utilization
by using the analytical model DEVUT
(Section k)

.

(o) Go to Step r if 3033 (SE or NON-SE)
CPU utilization is at least 85
percent and average device utiliza-
tion is at most hO percent.

(p) If device utilization is greater
than UO percent, add two 3330
devices. Recalculate CPU and device
utilizations and go to Step (o).

(q) Add two initiators. Recalculate CPU

device utilizations and go to Step

(.0).

(r) If initiators or devices are added
to the original configuration, re-
calculate execution times of job
steps by using APPLANI68 from the

3033 tuned system performance data
and 168-3 job step data.

92

(s) stop,

3.3.2 Capacity Planning Aid

The program input can "be either current
or projected 3033 (SE or NON-SE) system
performance and job step data. The program
can "be used to either tune the system first

(if the system is not tuned properly) and

then predict execution times of job steps in

the tuned environment or predict execution
times of job steps directly without any
tuning.

Figure 3 shows a gross level system
flow in terms of input, process and output.

A detailed flow chart of the algorithm is

incorporated in Figure 2. The individual
steps in the algorithm are presented below:

(a) Read 3033 (SE or NON-SE) system
performance data and job step data.

(b) Use^ Steps (n), (o), (p), (q), and
(r) of Section 3.3.1 to develop the
tuning guidelines and the job step
execution times if the t\ining option
is elected. If the tuning option is

not chosen, then go to Step (c) below.

(c) Use the system performance and job
step data from the above steps to
estimate execution times of batch job
steps by calling the APPLAK3033 model.

(d) Stop.

k. Data Analysis and Model Development

The migration planning program discussed
in Section 3 consists of empirical and
analytical models developed from benchmark
performance data and classical queueing
theory. This section presents the data
analysis, which led to the development of the
empirical models, and a brief description of
each empirical and analytical model.

h.l Internal Performance Ratio Models

The internal performance ratio is the
ratio of l68-3 total CPU time to 3033 total
CPU time for a given job stream. The primary
objective of the internal performance ratio
models was to map l68-3 total CPU time to

3033 (SE or NON-SE) total CPU time based on
168-3 system performance measures. Two
models which accomplish this objective, the
supervisor state ratio model (SRATIO) and the
Problem Program ratio model (PRATIO), are
discussed in this section.

In Step (r) of Section 3.3-1, use
APPLAN3033 instead of APPLANI68.

The data needed for the fitting of
Internal performance ratio models are given
in Tables 2 and 3. These tables show that
the ratio of internal performance of a 3033/
SE processor to that of a l68-3 processor
ranged from I.65 to 2.29 in the problem
program state and from 2.33 to 3.02 in the
supervisor state. It may be recalled that
the overall ratio was initially advertised
to be between 1.6 and 1.8.

k.1.1 SRATIO

Let SRATIO. = the ratio of supervisory
state time in l68-3 to
supervisory state time in
3033/SE for job stream i,

and SIC. = l68-3 start I/O rate per
"' second for job stream i.

Several regression models were explored to

describe SRATIO as a function of SIO. The
following linear model explains about 86

percent of the variation in SRATIO:

SRATIO. = 3.227 - O.Ol888(SIO.

)

^ ? (1)
+0.00010(SI0.) .

1

The adequacy of the above model was
examined through the techniques of analysis
of variance and residual plots. Analysis
of variance showed that the fitted regres-
sion coefficients in Model (l) are statisti-
cally significant. An examination of some
residual plots did not reveal any unusual
patterns. The statistical significance of

the fitted regression coefficients and the
lack of unusual patterns in the residual
plots support the adequacy of Model (l). In

the subsequent sections an empirical model
is referred to as adequate, when similar
examination through the techniques of

analysis of variance and residual plots
yields similar results.

U.1.2 PRATIO

Let PRATIO. = the ratio of problem pro-
gram CPU seconds in I68-

3 to problem program CPU

seconds in 3033/SE for

job stream i,

and MIPS. = l68-3 Millions of

Instructions Per Second
for job stream i.

PRATIO was fomd to be highly correlated
with MIPS. The following linear regression
model explains about 90 percent of the

93

variability in PRATIO:

PRATIO. = 2.682 - 0.228
1

(MIPS^) .2)

As in the case of Model (l). Model (2) was
foxind to be adequate.

1+.2 CPU Utilization Model

CPU utilization (3033/SE and 3033/NON-
SE) is required for the computation of the
external performance ratio and the tuning of
the 3033 system. Here, a closed queueing
network approach is used to derive an
expression for CPU utilization. This expres-
sion is referred to as the ANMOD model in
Section 3.

The characterization of the computer
system as a network of queues is given below:

a. The CPU is represented as an M/M/l
queue [l]^ whose service rate equals
the SIC rate per CPU second.

b. Each I/O device is represented as
single M/M/1 queue whose average
service time was set to kO milli-
seconds (for 3330 type devices) or

33 milliseconds (for 3350 type devices).
I/O activity is assumed to be evenly
distributed over the devices.

c. Each program is represented as a trans-
action. The number of transactions
was set equal to the number of initia-
tors. The transactions (programs)

alternately visit the CPU and I/O
servers. Within a single program, CPU
and I/O activity do not overlap.

The steady state solution of the queueing
network is obtained by the use of a formula
for the delay at an infinite calling popula-
tion server with a suitable modification [2].

The resulting expression for 3033 CPU utili-
zation is given below:

^C 2a 2a
(3)

where

= CPU utilization on the 3033.
C

^J[l+6+(l6+I-6)/D],

b = 1 + + X(l6+I-6)

,

c = AI,

x = X
I = Nmber of initiators,

= SIO rate per CPU second,

6 = Supervisor overhead

_ Supervisor State CPU seconds
Problem Program CPU seconds '

- Assiomed device service rate

[25 for 3330 type device

[30 for 3350 type device,

D = Number of I/O devices.

i+.3 Difference Performance Ratio Model

The difference performance ratio,
denoted by SEMOD, is the difference in the
internal performance ratios of the 3033/SE
and the 3b33/NON-SE. SEMOD is modeled as a

function of two variables: (i) % CPU time
in supervisor state on the l68-3 and (ii)

start I/O issued per second on the 168-3-

The CPU time in the problem program
state on a 3033 processor is not affected
by the presence or absence of the SE feature.
However, the CPU time in the supervisor
state on a 3033 processor is reduced by the
installation of the SE feature.

W. W. Everett of Bell Laboratories [3]
has fitted the following model to describe
the difference in the internal performance
ratio between 3033/SE and 3033/NON-SE:

SEMOD. = -0.0UT2 + 0.00131 (SIO.)
1 1

+0.00092 (SS),
i

where SS. is ^ CPU time in supervisor state
1

on the 168-3 for job stream i, SIO' is start

I/O issued per second on the l68-3 for Job

stream i, and SEMOD is defined above. Model

(1+) was found to be an adequate fit.

Job Step Execution Time Models

Two models, one for migration planning

based on l68-3 Job step data and the other

one for capacity planning based on 3033 Job

Niimbers in brackets indicate the refer-
ences at the end of this paper.

94

step data, are discussed in this section.

Both of these models are developed from
Application F data.

k.k.l APPLMI68 for Migration Planning

Several regression models were fitted to
describe execution time per l68-3 CPU second
as functions of l68-3 job step data and
estimated 3033 system performance measures.
In these models, a job step is characterized
by (i) EXCP per 168-3 CPU second and (ii) a

qualitative measure of page reference charac-
terisitics. 3033 system performance data
consisted of (i) % CPU utilization, (ii) SIO

per second, and (iii) total PAGING rate. The
following model was foiond to be adequate:

APPLANl68^^ = -36 . 76 + 0 . U169 (CPUTIZ J

)

+ 0.2413(SI0 J - 0.02l6(PAGRAT^

)

+ 0. ll+8l(EXCP.) + 1.2012 (PAGING.)
1 1

- 0.0U2i+(EXCP^)(PAGING^)

+ 0.0002U)42(SI0^)(EXCP^)

- 0.0027T(CPUTIZ)(SIO.), (5)

where i = task n\jmber, i = 1,2,3,^;

j = Application F job stream number,

j = 1,2,. ..,15;

APPLANI68. . = execution timer per l68-3 CPU
1

1

second for task i in job stream

j;

CPUTIZ. = ^ CPU utilization for 3033 for

job stream j ;

SIO. = SIO per second for 3033 for
job stream j ;

PAGRAT . = total paging rate for 3033 for

job stream j;

EXCB. = number of EXCP per l68-3 CPU
second for task i;

PAGING. =a qualitative measure of paging
derived from the average real
memory owned for task i in
168-3.

The above model explains about 97 per-
cent of the variability in APPLANI68 and it

was found to be adequate. The predicted
value of APPLANI68 is multiplied by the job
step CPU time to estimate the job step
execution time.

^.^.2 Model for Capacity Planning Aid

Section H.U.I discussed a model to
estimate the execution time per l68-3 CPU
second. This section discusses a model,
which provides an estimate of the job step
execution time per 3033 CPU second. The
model described here can be used as an aid
for capacity planning. Several regression
models were fitted and the following model
was found to be adequate:

APPLAN3033. . = -11 .2h + 0 . 8896(CPUTIZ .

)

+ 0. 5081 (SIO.)- 0.0^*63 (PAGRAT.)
J J

+ 0.1350(EXCP.) + 2.7097(PAGING.

)

1 1

- 0. Oli+li|(EXCP.)(PAGING.)

1 1

+ 0.000286U(SI0 J(EXCP.)

J ^ (6)
- 0.0059(CPUTIZ.) (SIO.),

where i = task number, i = 1,2,3,^;

j = Application F job stream
number, j = 1,2, ... ,15;

APPLAN3033. . = execution time per 3033 CPU
i 1 second for task i in job stream

j

;

CPUTIZ j , SIOj , and PAGRAT . are the same as

in Model (5);

EXCP. = Number of EXCP per 3033 CPU
1

^
second for task 1;

PAGING. = a qualitative meas\are of paging
derived from the average real
memory owned for task i in 3033.

Model (6) explains about 96 percent of the
variability in APPLAN3033.

I4.5 Device Utilization Model

As discussed in Section 3, determina-
tion of the optimum number of initiators and
DASD devices to make effective use of the

3033 processor is based on (i) the estimated

3033 CPU utilization and (ii) the estimated
average device utilization. This section
gives the development of an analytical model,
called DEVUT, for the estimation of the
average device utilization.

Let Pj-, denote the device utilization
on the 3033. Under the characterization of

the computer system described in Section
h.2, is derived as follows:

95

= (average service time at a device)

• (average SIO rate per second for each
device)

.

Since the average service time at a device is

equal to I/Mjj and the average SIO rate per
second for each device is equal to y^'p^^/D,

where iJ_, v^, p„ and D are defined in Section
k.2, ^ ^

^

•

1
[

1^ - !c
XD

(T)

5 . Summary

3033/PLAN, which consists of both
analytical and empirical models, has been
developed from benchmark performance data.

The analytical models are used to derive CPU
utilization and device utilization as func-
tions of l68-3 or 3033 system performance
measiires.

Empirical models have been fitted to
estimate internal performance ratios and job
step execution times. The internal perform-
ance ratio models can be used to predict
3033 performance measures from l68-3 perform-
ance measures. Two job step execution models,
one for migration planning based on l68-3
job step data and the other for capacity
planning based on 3033 job step data, have
been developed.

The migration planning program is useful
for planning the migration from a l68-3
processor to a 3033 processor without any
benchmarking. This program can also be used
as a capacity planning aid for an existing
3033 processor through the use of projected
3033 system performance and job step data.

References

[l] E. G. Coffman, Jr. and P. J. Denning,
Operating Systems Theory, 1973,
Prentice-Hall, Inc.

[2] B. A. Ketchledge, Unpublished work.

[3] W. W. Everett, Unpublished work.

Table 1. Characteristics of the Benchmark Applications

Workload Program No. of

Application Type Type Language Job Streams

A Batch IMS Real PL/I 1

B Batch Synthetic Fortran 1

C Batch Real Cobol 1

D Batch Real Cobol 1

F Batch Synthetic Cobol 15

96

o ^
•H CO
-p -

as \
PS

J-O o
CO

CO 73

on n
onO Eh
on

&0O

CO cd X
v£3 pq W —

'

o ^
•H

CS ^
P3

L̂Pv

OJ

on c
on 3O EH
on

ft'--

on
I

CO X

O —
•H J-
-P

on

CO
d) .

ro c ft'

on

on 0) •

I M ft-—
CO oJ X on
\£i pq W ^

CM H
J-

on C?s on -d-
CO MD CO

t— CO on H
CM iH

CO
H iH

CM H o\
CM o
CM CM

O

CM
CO
CM
CM

on

o
CO

CMO

CJ\
CO

O

on

CO

CO

H
VO

C3\

CM

OO
o

C3N

CO
on

00 VD CO
00
OJ

o H H
CM

* * *

OJ
OJ H H

OJ

OO OJ O LTN

GO On H H CVJ

VD " ' * "

ON OJ OJ
OO CO H

(H

vo

ON OO CO
OJ o CO rH

t

—

*

OJ On HH
1—

1

o OJ CO LTN

0\ O rH

\0 G\ CO rH
OJ OJ

H

CO

OJ

VO OJ \Do t~ 00 H HH
H OJ CVJ O

r-\ o OJ
rH

CO C\J CO OO
on CO ON

CVJ a\ OO
H

-p

CO

1^
CJN

on
o

u
0)

-p
o
aJ o
U -H
cd +J
,c! to

0)

.a

3 ft
(U tn

>H cd

CO

pL,

o m

H C
cd O
-p o
O <U

EH CO

P c
P o

•H
^3 -P
Ph cdO tSJ

OO

o O J-
on n ft-— J- J-
on X CM LA J- ono EH H H C7\ H

on <L) H \D CM t-
1 CO ft--- LA

CO cd X H O CJ\

M3 W W OO CM CMH

o
a o

O 1=)

pL,

CM

CO

co

p •fe^

o
•H
-p

Ph cd

^3
PL,

CJ

CM

PM fL| O PL, N

CO
OO
CM

M
u 'Ti

O CO c
CO CO o
•H ^ O
> <D

k <D CO
0) -p
ft cd ;zi

p! -P PL,

CO CO u

CM

1^ on on

rH CJ^

CM O
on

•H o hO
H OJ C3

•H '-^ CO •H
-p bO G

0) cd O
-p PL| O

P C cd 0)

pL, O K cn

O tH cd

•P o +^
CO cd H o 0)

CO N CO EH ft

ch !n

O (U

O
• -H
O >

oH
cd Q
-p CO
o <;
EH O

o
• u
O O
s +^

cd

H -H
cd -P
4^ -H
o c
EH H

to
Cm a
o o

•H C
CO -p Ocoo
o ;3 0)

•H CO
rH -P
rH CO

•H C <U

S H PLh

97

o ^
•H CO
-P
CO \
K ^

CO

O EH
cn

« CO

0) .

cS X I

pq W -

•H VO
-p

CO

po q

O EH
on

on
I <D •

00 tn

H pq W —

'

•P

on
I dJ •

GO M
Hi X on

H pq W ^

-P •

cd

pc; •

w
CO

0)

CO on
on

pq o EH
o on
1-3

on
1 0)

CO CO

VD ni

pq

& CM
pq

ft'

vo
CJ\

OJ
CM

oo
H
C\J

C3\
-a-

CO H OJ oo On on H H
a\ on • • VD • • •

-d- -It on on CM NO on
oo t— H o rH

,
1

o CM CO OOo o cy\ on t— O H CM
CO o • • • • •

o\ o\ t~ oo H H NO o CM Ol
o\ OO rH LTN rH

o on
OJ CM CM CO

CM CM OJ OJ

O CM OJ
MD rH rH NO NO O on H H
CJn VO CO oo
t— t— \D VD ITN O on UTN

ON CO H CO m

o CM OO CM
t— H C7\ H t— o on o rH H H
LTN J- o
f— t— oo LTv 1^ CM H r-l CM OJ
H H C3\ H OO H on

On ^^ On
ir\ O ON

H CM rH oj

on OJ CMO on t- on CM O o on H rH
on CM O H
i>- ITN ck H LTN o On

\D LTN H NO
H

CM OJ CO LTN

00 H o H O O O O on H •

t~- QO rH CVJ

rH O CM CO ON CM on CO rH
H H 0\ NO OJ oo

CM ON CVJ

on on OJ o
CM CM OJ on

H OJ CM
on CM on oo CM CJn CO J- H H
-d- on ITN t-
CM CM On H on ITN OJ
H H rH C7N -d-

H CM OO NO
ir\ t^- on CJn J- f- NO NO rH o
a\ CO CM
CO OO 0-. A OJ t- CD CVJ

CM CM C3N CM CJn H

I

J-1

01

•p
o
oi o
^ -H
Oj HJ
^ tn

a
•H
EH

XI
S 1)

S tn

<U ft
;^ cd

-P H
CO pq

o
H
oJ

-P
O

3 HJ
Ph oi

pL, tn

Ph^ C
o

a o
3 0)

Vi CO
W)
o D

Ph
EH CO CJ ISI Cn PM CJ

pL, O

H->

cn

Sh '-^ t3
O CO c
M CO O
•H ^ O
> 0)

>H a; CO
0) +J

CO CO o

4J ^
D C
pu, O
O -H

HJ
CO Oj

CO tsi

O
(U

CO

<u

PS

CO

t>0

G
•rl

bO G
OJ O
Ph o

<U

rH CO
cd

H-> Sh

O 0)

EH Cl,

cd Q
+5 CO
O <
Eh Q

O

O
s

cn

U
OP
cd

rH -H
Cd -P
+J -H
O G
EH l-H

in

U C
D O tJ

•rl G
tn +j oGOO
0 3 0)

H ^ CO

S M PLh

98

Table k. Task Characteristics for Application F

^msf Tot«l No. EXCP/CPU Second

Task Files of EXCP 3033/SE 168-3 3033/SE 168-3

TASKl (CPU) 2 6oo 21.68 50.87 27.67 11.79

TASK? (I/O) 3 1800 6.31 12.37 285.20 1^*5.50

TASK3 (PAGE) 2 6oo 11.75 26.81 51.06 22.37

TASK1+ (BALANCED) 2 600 5.25 11.25 III+.28 53.30

Table 5. Job Stream Composition for Application F

% of TASK
Job

^+ T»OQ m0 ul. ccLUL 1_L 2 7

1 25 25 25 25

2 55 15 15 15

15 55 15 15

u 15 15 55 15

5 15 15 15 55

6 85 5 5 5

T 5 85 5 5

8 5 5 85 5

9 5 5 5 85

10 J^5 i+5 5 5

11 i*5 5 1+5 5

12 h5 5 5 1+5

'

13 5 1+5 1+5 5

Ih 5 1+5 5 1+5

15 5 5 1+5 1+5

99

-P

O

0)

o
•H
+J

OJ

O
•HH
ft

O

>»
u

05

o C
1^ cS CO

OJ <
(in 2 Eh

VD C\J^ o

OJ OOH OO

OO o

OO rH
CM O

O OJ
on

CM ITS

vo o t— OOm H C\J

o o
V£) OO

o cvj o o
iH O o o

LA OO
m on
o H on c— t- C7\

CM CM

O O Lf\ o -d- f-OH CM OO i-i cn CM on
on CJN

H on
O ITN

on CM
o HH CM

^/^ o VO C7\
-:f CJ\

on ir\

OO o o o on voo on
on

CJ\ t-

CM CJ\ H OJ H

-Id- CJ\
if\co

as H

H

on on
rH CM

CM CM
OJ

HH lArH mOVOCM OOCM

t— VD lA O LTNVO
rH O VD CM CO on

\r\ (j\ OH
CM CO H ON on

-3- CM
O CJ\H ON

o
CM

o ^
lA H

CM

O VO

^H ono -:a-oj onH onn -3- H on o OJ on

on OO H OO
t- LA ^ o

OJ t—
-d- CO

on H
0\ LA

LA OH t—
O VO LA
CM LA CKCO

O O
Ch O

HO t— on
t- LA OO

-=f H onAo

0\ CM on H HH CM H

in H OJ CO LA
<U o CO on
bO
ce CD on VD rH od H
Ph H H H H

CO
VO

VO

o
VD

O
on

ctnh coh vor-i ono
H H Ol H

on
on

C3N
C3N

OO
CO

VO
LA

on
OO

OJ
-3-

CJ\
LA

0\ O VO o

H VO
on

LA CM
on H

o

on
OO

VO
o

CM
CM

H VO H on
H

LA LA
onvo

OOH OH t^H OOH OOH CMO CT\OJ COO t— O OO OO OH OOO C— H OOO

VO VO J- ^
CM OJ CO O
H CM H

o cj\ LA on
OJ 0\ C3NVO

H ^ H CM O

o cj\ VO (

t~- VO o\ <

o OO H t— O
VD C7N OJ VO -3- CM

VO H VO od o HH H H CM

OO on on H VD
CO C7N t-- CM CJN

d t— CM ON H vd
C3N LA VO OJ J-

VD

0)

H
-p VO H
d J- on o t—

go •H OO ON LA ON t-
H o\ C7N c:n C3N as

oo
oo CM OO

C3N

o
LA
C3N

VO

OO
On

C3N
lA

On
CJn

C3N

C7\ ON
VD
CO

OO
ON

U
-P
CO LA

H

100

3
a.

Ui
V)
3

101

START N
3033 /PLAN J

CALCULATE 3033/SE CPU TIME
(TOTAL, SS.PP) AND INTERNAL

PERFORMANCE RATIO

I
CALL ANMOD
TO ESTIMATE
3033/SE CPU
UTILIZATION

CALCULATE JOB STREAM ELAPSED TIME,
EXTERNAL PERF. RATIO, PPdSS CPU

UTILIZ AND SIO/SEC. FOR 3033/SE

Fiflura 2. 3033 /Plan Syttam Flow Chart

102

PRINT 3033/SE
SYSTEM PERE

DATA

tALL'SEMOO'
TO ESTIMATE

3037 SUPV. TIME
FROM 3033/SC

SUPV. TIME

MAP ALL 3033/SE'
SYSTEM PERF
DATA TO 3033
SYSTEM PERF,

DATA

I
PRINT 3033

SYSTEM PERF.
DATA

/ CALL \
/'APPLAN168' T0\
\ ESTIMATE JOB >
\ STEP EXEC. /
\ TIMES /

/ CALL
/ 'oevut' to
(estimate av
\ DEVICE

\ UTILIZ.

AOOTWO
INITIATORS

CALL
'ANMOD' TO
ESTIMATE

CPU
UTILIZ.

IF INITIATORS \
OR DEVICES \

ARE ADDED. CALL \
'APPLANieS OR)
APPLAN3033 TO /
ESTIMATE JOB STEf/

EXEC TIMES /

STOP 3

1
ADO TWO 3330 DEVICES

TO THE DASO CONFIG.

Figura 2(Cont'dK 3033/Plan SystMn Flow Chart

103

I-3
a.
»-

E
-I
UJ
o
o

Ul

i
Ul

OL
UJ

0)

OB
o
•

a.

K
Ui

3

i
u.

E

<

o
UJ

u
UJ
-1 z
UJ o
CO

a,

z o
o o
»- z
OP UNI

o 1-

z Kz Ul3 o
z
3
UJ

o
UJ OD
(T <
3O
UJ 1ir

xi 6

104

AN OPTIMAL SAMPLE SIZE ALLOCATION
SCHEME FOR BENCHMARK DESIGN

Satish K. Tripathl
Karen D. Gordon

Ashok K. Agrawala

Department of Computer Science
University of Maryland

College Park, Maryland 20742

A major problem in benchmark design is the selection of the jobs

to compose the benchmark. In this paper, stratified sampling is applied

to the problem. The strata in the job population are identified by

clustering the jobs on the basis of job features. The clusters are then

viewed as strata. Within a stratum, jobs are selected by simple random
sampling. The question of how many jobs to select from each stratum

is addressed in this paper. An extension of Neyman's result on the

optimal allocation of sample points among strata to the multidimensional

case is used. The technique is then applied to a real workload, and the

results are examined.

Key words: benchmarking; clustering; performance evaluation; stratified

sampling.

1. Introduction

Benchmarking is a commonly used tech-
nique for evaluating the performance of

computer systems [Benw 75] . In this ap-
proach, a set of jobs (or job steps) which
can run on the system to be evaluated is

collected or generated. The set of jobs,
which is referred to as a "benchmark," is

submitted to the computer system as a test

workload, and the performance of the system
is measured. If the same benchmark can be
run on several computer systems, their per-
formance can be compared, making this tech-
nique well suited for computer acquisition
problems. However, in order to generalize
the results of a benchmark study to a system
handling its natural workload, the benchmark
has to be "representative" of the natural
workload handled (or to be handled) by the
system.

This research was supported in part by
the NASA, Goddard Space Flight Center, under
Grants NASA#5-24092 and NASA# 5-24407, and
by the General Research Board of the Univer-
sity of Maryland,

105

The natural workload of a computer
system is the composite of all processing
requests submitted by its user community.
Current large-scale computer systems typi-
cally accept a wide variety of requests from
a large number of users. As a result, their
natural workloads are very complex. Each
processing request, or workstep (which is
defined to be the smallest unit of work be-
ing modeled) , can be characterized by the
quantitative demands it makes on certain
system resources: hardware (e.g., CPU,
memory, I/O devices, etc.) or software
(e.g., compilers, editors, file utilities,
etc.). The variability of the worksteps can
be expressed by defining a multivariate pro-
bability distribution of resource usage for
the workstep population [Ferr 72, AMB 76,
SK 74, Arti 76]. This multivariate distri-
bution then characterizes the natural work-
load of the computer system. Clearly there
is no reason to believe that such a distri-

bution will have any nice parametrir form or

that it will be a highly clumped distribu-
tion. Studies [SK 74, AMB 76] have shown
that such a distribution tends to be a multi-
modal distribution.

These multimodal distributions can be
expressed as mixtures of several unimodal
distributions. In order to use the mixture
distribution model, however, we need to be
able to decompose the original multimodal
distribution into its component unimodal
distributions. Far the nonparametric situ-
ation of computer system workloads such a

decomposition can be achieved using cluster-
ing techniques [Ande 73, Hart 75, AMB 76].

Clustering techniques accept the observed
population sample as input and proceed to

divide the sample into groups of "similar"
observations. Each group or cluster should
have a unimodal distribution, a component of

the original multimodal distribution.

The aim of a computer system evaluation
study is to estimate certain system perfor-
mance measures for the system executing its

natural workload. When using the benchmark-
ing methodology, a set of worksteps is exe-
cuted on the actual system. The basic steps
in designing a benchmark are:

1. selecting a' set of worksteps that is

"representative" of the real workload, and
2. determining how the actual running of the
worksteps should be carried out.

At first glance it might seem that the

second step is trivial; i.e., that one should
input all the worksteps at once. This might
have been a reasonable solution for a uni-
programmed batch environment. For today's
systems, however, a careful design of the

sequencing of the worksteps is essential.
It might also be desirable to run some of the

worksteps more than once in order to repro-
duce the job mix of the natural workload.
While the importance of the second step to

the overall evaluation process cannot be
emphasized enough, in this paper we address
ourselves to the problem of selecting the
worksteps to be used in the test workload.

In selecting a set of worksteps which is

representative of the system's natural work-
load one is faced with the problem of obtain-
ing a suitable sample from the workstep pop-
ulation (or distribution, in the case of a

synthetic workload) . The techniques of

statistical sampling can be used for this
purpose [Coch 77] . It should, however, be
noted that most of the sampling techniques
reported in the literature are for univariate
distributions

.

A straightforward approach to sampling
is that of simple random sampling. It can
clearly be used for sampling from a multi-
variate distribution. To obtain desired
levels of confidence, however, a rather
large sample is required. The confidence in
the sample can be improved by going to the
stratified sampling technique [Coch 77]

.

In order to use stratified sampling,
the population is divided into a set of

identified strata. A number of sample
points are then selected from each stratum
to form a global sample. Determining the
sample size for each stratum in a stratified
population is an important problem in using
stratified sampling. Methods based upon
minimizing the cost of the sampling process
[Coch 77] , minimizing the variance of the
population mean [Neym 34] , and satisfying
a set of constraints on the cost function
and the variances of the sample means of

various strata have been proposed [Chat 72]

.

There has been very little work towards
extending these results for stratified sam-
pling from a multivariate distribution.
Some heuristics have been proposed for
specific applications, but no formal theory
has been developed [Coch 77] . The problem
of multidimensional stratified sampling and
optimal allocation of sample points among
strata has been formulated and solved in

[ACT 79] . In this paper we present a scheme
that uses the multidimensional stratified
sampling technique in selecting the work-
steps for a benchmark. Multidimensional
stratified sampling is briefly described in
Section 2. In Section 3 we show how multi-
dimensional stratified sampling can be used
in the design of benchmarks by considering
the workload handled by the UNIVAC 1100/40
system at the University of Maryland.

2. Multidimensional Stratified Sampling

Let us first consider a univariate
stratified p>.~ulation with L strata. Let
xT, x7, . . . , xL be the sample means for the
L strata based upon samples of size nl,

n2, nL respectively. Assume that the
total population size is N with Nl, N2

NL being the sizes of the corresponding
strata. LeL n = E ni.

i
Define

^ Ni xi
xst =

N

Suppose that one is interested in esti-

mating E [X] , the population mean, xst is an

106

unbiased estimate for E[X]. If the objective
is to estimate E [X] as accurately as possi-
ble, xst should have the smallest possible
variance. For a given sample size n, Neyman
obtained the values of the ni's such that
the variance of "xst is minimized [Coch 77]

:

ni = n
Pii V<a^> Mi <a>

I PiV <a"> Mi <a>

where Pi = Ni/N.

(A) ni = n
NiSi

L NiSi
i

where Si is the standard deviation for the
ith stratum. Equation (A) is known as Ney-
man' s optimal allocation.

Following the same notation, let

rxin
Xi2

<Xi>=

L Xik'

and <xi> =

xii n

xi2

L xik-

where Xij is a random variable representing
the value of the jth variable in the ith
stratum, and 3cij is the sample mean of the

jth variable in the ith stratum. We assume
that there are k variables.

Let Mi denote the vairiance-covariance
matrix for the ith stratum.

That is,

v[Xil]

Mi =

cov[Xil,Xi2] ...

Lcov[X.^,X.^]covlX^j^,X.2]

cov[Xil,Xik]"

V [Xik]

In practical situations one wants to

estimate various means (x 2
=

Ni xij

N)

with (possibly) varying degrees of accuracy.
In other words, one might be interested in

getting an estimate for the mean of <a'^> <X>,

a linear combination of x.j's:
a^X-1 + a2X-2 + + a, X-k

k

For a given <a> (weight vector) we want
to obtain the optimal allocation of sample
sizes for each stratum. It has been
proved in [AGT]79 that if Y = <aT><x> and
7st = E (Ni<a^><xi>)/N, then V[yst] ±3 mini-

i

minized for a fixed total sample size of n if

The above result implies that more ob-
servations are needed from a stratum where
the variables are very highly correlated than

from a stratum where the correlation is Ipw.

Also, fewer observations are needed from
a stratum where the variables have very high
negative correlations than from a stratum
where the correlations have very low values.

3. An Example: Design of a Benchmark

As noted in Section 1, the workload of a

computer system can be described by an appro-
priate multivariate distribution. In order
to study the applicability of the multidimen-
sional stratified sampling technique to the
problem of benchmark design, we examine the
workload handled by the Univac 1100/40 compu-
ter system at the Computer Science Center of
the University of Maryland. This system is

one of two systems used by the faculty and
students for educational and research comput-
ing. The system is accessible through batch
and interactive facilities and usually car-
ries a heavy load.

The workloads of several different days
(spec, November 7-10, 1977) are analyzed
using the data available from the system
accounting logs. A job is treated as a work-
step. Each workstep's resource requirements
are quantified in terms of the following
features

:

1 . number of programs executed
2. number of SUP's (Standard Units of

Processing*)
3. mean number of core blocks
4. CPU time
5. ER and CC charges (Executive Requests

and Control Card)

6. number of words transferred to/from disk

7. number of words transferred to/from drum

In general, when each workstep is

described as a 7-dimensional vector, the
workload is characterized by a multi-
variate distribution in those 7 dimensions.
The distribution is typically multimodal
and can be expressed as a mixture distribu-
tion in which each component is a uni-
modal distribution [AMB 76] . For the non-
parametric case of a computer system work-

*For a detailed description of these quanti-

ties see [MAF 76]

.

107

load, such a mixture distribution can be

decomposed into its components using clus-

tering techniques [ANDE 73, Hart 75], We

use the technique of [AMB 76] in this paper.

First, one of the workloads is selected
as a base workload. Second, the feature
values of all the jobs in the base workload
are scaled in the following way: for each
feature, its minimum value is scaled to 0

and its 98th percentile value to 10. For

SUPS, CPU, ERCC, DISK, and DRUM, the values
input to the scaling process are actually
logarithms of the true values. The purpose
of logging and scaling the feature values
of jobs is to make the clustering of jobs

more meaningful [AMB 76]. Third, the jobs

in the base workload are clustered according
to their scaled feature values. Fourth, the

feature values of the jobs in the other
workloads are scaled according to the same

scaling factors used for the base workload.
Finally, the jobs in the other workloads
are clustered according to the clusters
found for the base workload. In particular,
a job is placed into a cluster if it is

within a certain distance of the mean of the

cluster in the base workload and if no other
cluster mean is closer.

Table 1 presents a summary of the

clustering results for November 9, 1977.

The results for the other days are similar.

The table gives the number of jobs in each

cluster. It also gives the means and

variances of the feature values of the jobs

by cluster. It should be noted that the

values in the table are scaled values.

An interesting application of cluster-
ing is to use the clusters as strata for

multidimensional stratified sampling. Since

each cluster has samples which are

"similar," it contains points with small

variances and hence makes a good candidate

for a stratum. The optimal sample size for

samples from each stratum remains to be

chosen.

Tables 2a and 2b compare the propor-

tional and optimal allocations for the work-
loads of four days in November 1977. The

total sample size is 100. For the optimal
allocation cases, equal weighting of fea-
tures is assumed: ie. , <a-'-> =

(1,1,1,1,1,1,1). The tables show that the
two strategies yield significantly different
allocations. However, the allocations for

the different days are very similar. For
the four workloads, the variance of the

estimate of the mean of <a''-> <X> is 8-16%

smaller under optimal allocation than under
proportional allocation. The improvement

of stratified simple random sampling with op-

timal allocation over simple random sampling
is 26-42%.

Table 3 gives the optimal allocations
associated with several different weight
vectors for the November 9 workload. As

expected, different weight vectors yield
different allocations.

Figure 1 gives a graphical comparison

of proportional allocation and two optimal
allocations, one with <a'''> = (1,1,1,1,1,1,1)
and the other with <a'^> = (0,0,0,1,0,0,0)
(i.e., all weight given to CPU time). Con-
sider clusters 1 and 2, which represent
29.4% and 37.4% of the jobs in the workload.

For optimal allocation with <a'^> =

(1,1,1,1,1,1,1), the number of points allo-

cated to cluster 1 is larger than for pro-
portional allocation, and the number allo-
cated to cluster 2 is smaller. An examina-
tion of the variance-covariance matrices for

clusters 1 and 2, given in Tables 4a and 4b,

reveals why this is so. All entries in the

matrix for cluster 1, except some associated
with CPU time (the entries marked with an

asterisk) , are higher than the corresponding
entries in the matrix for cluster 2.

T
For optimal allocation with <a > =

(0,0,0,1,0,0,0), the clusters with a relative-
ly small CPU variance are allocated fewer

points than for proportional allocation,
while those with a larger variance are

allocated more points. The CPU variances
for the clusters of November 9 are as

follows: .09, 1.55, 1.29, 4.77, .95, 5.86,

and 7.71. As a result, clusters 1 and 5 are

allocated fewer points, and clusters 2,4,6,7
are allocated more points. Cluster 3 is

allocated approximately the same number of

points

.

4. Concluding Remarks

In this paper we have presented a

scheme for selecting the worksteps to com-
prise a benchmark. The scheme is based on

multidimensional stratification and thus

takes into account the fact that each work-

step has to be characterized as a multi-
dimensional vector. Recognizing that the

benchmark experiment is to be conducted to

estimate the values of some system perfor-

mance measures, the relative importance of

the components of the vector used to de-

scribe a workstep is taken into account by a

weight vector which is used in deriving the

optimal allocation of sample points to dif-

ferent strata in the workstep population.

The sampling within each group can be done

using simple random sampling.

108

Table 1. Clustering Results for November 9, 1977

Cluster # jobs

Feature values [variance]

progs SUPS CBS CPU ERCC Drum Disk

976 .45

.12

3.05

3.17

2.45

5.04

3.05

3.31

2.29

2.35

2.26

5.03

1242 .83

.06

5.26

.38

4.89

.88

1.96

1 .55

4.41

.39

7.83

.21

3.21

2.52

168 4.15

2.86

7.92

.29

3.02

1.02

2.63

1.29

7.33

3.12

7.63

1.47

454 .30

.03

4.08

1.77

8.93

3.28

1.87

4.77

3.06

1.10

3.38

4.97

5.22

2.15

295 1 .84

.59

6.31

.36

2.86

1.15

1.25

.85

6.38

.45

5.34

2.62

6.31

1 .59

74 1 .83

.96

8.34

.90

4.79

4.13

8.17

5.86

6.70

1.03

7.03

3.39

6.95

3.86

102 1C.35

33.38

9.92

.62

3.87

2.00

6.11 I 9.77
!

7.71 ! .89

9.58

2.54

9.31

2.05

Table 2a. Proportional Allocation of 100 Sample Points

Date Clusterl Cluster2 Cluster3 Cluster4 Cluster5 C1uster6 Cluster/

11/7/77 30.3 38.1 5.4 10.4 10.8 1.3 3.2

11/8/77 29.2 37.2 4.8 11.6 11.5 2.0 3.4

11/9/77 29.4 37.4 5.1 13.7 8.9 2.2 3.1

11/10/77 30.6 38.2 6.1 10.5 8.0 2.2 4.2

Table 2b. Optimal Al location of 100 Sample Points

Date Clusterl CI us ter2 Cluster3 Cluster4 Clusters C1uster6 Cluster/

11/7/77 48.2 23.9 4.4 12.2 5.8 1.3 4.2

11/8/77 41.9 26.1 3.4 15.7 5.9 1.7 5.3

11/9/77 42.4 27.2 3.8 14.1 5.5 2.3 4.7

11/10/77 41.3 28.1 4.6 12.8 5.0 2.5 5.6

109

Table 3. Optimal Allocations of 100 Sample Points for November 9, 1977
Alphas={# progs, SUPS, CBS, CPU, ERCC, Drum, Disk)

Alpha Clusterl CI uster2 Cluster3 Cluster4 Clusters CI uster6 Cluste

mmi 42.4 27.2 3.8 14.1 5 5 2 3 4.7

onmi 43.2 27.9 3.2 14.8 5 4 2 3 3.2

0112211 40.6 29.0 3.3 15.7 5 4 2 4 3.7

1000000 17.8 15.9 15.1 3.9 12 0 3 9 31.4

0100000 49.3 21.8 2.6 17.1 5 0 2 0 2.3

0010000 44.2 23.5 3.4 16.6 6 4 3 0 2.9

0001000 7.8 41.2 5.1 26.4 7 2 4 8 7.5

0000100 50.6 22.1 3.2 13.6 5 6 2 2 2.7

0000010 36.1 13.6 7.2 24.4 11 5 3 3 3.9

0000001 40.6 33.4 3.5 11.3 6 3 2 5 2.5

Table 4a. Variance-Covariance Matrix for Cluster 1 on November 9. 1977

progs SUPS CBS CPU ERCC Drum

It progs .12

SUPS .47 3.17

CBS .13 .72 5.04

CPU .02* .14* .35 .09*

ERCC .49 3.14 .24 .07* 3.31

Drum .34 1.48 2.37 .17 1.39 2.35

Olsk .47 3.21 .98 .29* 2.75 1.23

Table 4b. Variance-Covariance Matrix for Cluster 2 on November 9, 1977

progs SUPS CBS CPU ERCC Drum Disk

It progs .06

SUPS .05 .38

CBS .08 .05 .88

CPU .05* .66* -.08 1.55*

ERCC .05 .28 .03 .27* .39

Drum .03 .12 .22 .14 .05

Disk .10 .57 .62 .57* .58

* Entries marked with an asterisk are the ones whose values
are higher for cluster 2 then for cluster 1.

110

Clearly no implication about the impor-

tance of a group can be made from the size

of a sample taken from that group. For

example, if a group represents 90% of the

population and has worksteps with extremely

small variances, a sample size of one

might be sufficient. That one workstep may,

however, have to be replicated several times

to achieve an appropriate benchmark.

The design of the actual benchmark ex-

periment, we believe, plays a very crucial

role in the success of a study. Much more

work is necessary in that direction.

We gratefully acknowledge the assistance

supplied by the staff of the University of

Maryland Computer Science Center, especially

Ira Gold, in obtaining the data used for this

report. Helpful comments were also received

from Jeff Mohr of the University of Maryland
and Tony Chu of the University of Toronto.

45

40

35

30

25

20

15

10

of total # of points 1n sample

References

[ACT 79] Agrawala, A.K.
, Gordon, K.D., and

Tripathi, S.K., "Multidimensional Stratified
Sampling in Benchmark Design," University of
Maryland, Department of Computer Science,
Technical Report TR-750, March 1979.

[AMB 76] Agrawala, A.K.
, Mohr, J.M. , and

Bryant, R.M. , "An Approach to the Workload
Characterization Problem," Computer, Vol. 9,
No. 6, June 1976, pp. 18-32.

[Ande 73] Anderberg, M.R.
, Clustering Ana-

lysis for Applications, Academic Press, New
York, 1973.

[Arti 76] Artis, H.P., "A Technique for De-
termining the Capacity of a Computer System,"
CPEUG Proc. of the 12th Meeting, November
1976, pp. 150-162.

[Benw 75] Benwell, N. (ed.). Benchmarking:
Computer Evaluation and Measurement, Hemi-
sphere Publishing Corporation, Washington,
D.C., 1975.

[Chat 72] Chatterjee, S., "A Study of Opti-
mum Allocation in Multivariate Stratified
Surveys," Skand. Akt., Vol. 55, 1972, pp.
73-80.

[Coch 77] Cochran, W.G.
, Sampling Techni-'

ques, 3rd ed. , John Wiley & Sons, New York,
1977.

[Ferr 72] Ferrari, D. , "Workload Character-
ization and Selection in Computer Perfor-
mance Measurement," Computer, July/August
1972, pp. 18-24.

[Hart 75] Hartigan, J.

rithms, Wiley, 1975.

Clustering Algo-

Figure 1. Allocations for November 9, 1977 cluster

[MAF 76] Mohr, J.M., Agrawala, A.K,, and
Flanagan, J.F. , "The EXEC-8 Log System, Part
I - Description," University of Maryland,
Department of Computer Science, Technical
Report TR-434, January 1976.

[Neym 34] Neyman, J., "On the Two Different
Aspects of the Representative Method: The
Method of Stratified Sampling and the Method
of Purposive Selection," Journal Royal Stat
Soc, Vol. 97, 1934, pp. 558-606.

[SK 74] Screenivasan, K. And Kleinman, A. J.

,

"On the Construction of a Representative
Synthetic Workload," CACM, Vol. 17, No. 3,

March 1974, pp. 127-133.

Ill

COMPUTER WORKLOAD FORECASTING

James E. Mc Neece

Office of Information Systems Research & Development
Federal Bureau of Investigation

Washington, DC 20535

Experience has shown that the successful initiation of computer
workload forecasting is directly dependent upon the quality of the
data furnished by users to the requesting organization. Inaccurate
data almost inevitably causes delays in the documentation cycle.
The purpose of this paper is to serve as a guide for performing the
analysis required to forecast workload requirements. Application
of the methodology suggested herein should significantly reduce the
risk of inaccurate or misleading projections.

1. Introduction

The approach described has been
developed on the foundation of experience
in performing the analysis required to

support major procurements of data process-
ing resources. This paper is intended as

a guide; only the framework of the total
analysis required is defined. A good
measure of creativity on the part of the
team assembled to perform the analyses is

required in each instance.

Insofar as possible, this guide is

organized in a "how to" fashion, describing
the following steps of the analysis:

a. Defining Data Requirements
b. Developing Workload Projections
c. Sizing Equipment
d. Performing Sensitivity Analysis.

Under the initial section, the types of
data elements required to support the
analysis will be defined and their sources
will be listed. Responsibility for
maintaining and organizing the necessary
data will be defined and fixed organiza-
tionally. The role of the user in the
forecasting effort will be clarified.

In order to project accurately, the
quantitative resource requirements of user

production applications and applications
under development must be estimated and
projected over the life cycle of the
system(s). Additionally, the performance
characteristics which are required for
these applications must be identified.
(For example, response time requirements
must be specified for interactive systems.)
Finally, all functional capabilities
required of the system must be substanti-
ated. (For example, user requirements for a

data base management system or a trans-
action processor must be defined in detail).

2. Defining Data Requirements

The data required to develop user

workload forecasts must be supplied in

part by the computer centers and in part

by the user. Because this data will be

used to develop statistically based
workload forecasts, historical monthly

data for at least two years is desirable.

These information requirements are

specified in detail below. As will be

apparent upon review of these data elements,

not all the information requirements

listed will be obtainable from computer
resource accounting and billing data.

Those that may not be available from these

113

sources are indicated and must be relatable
to the billing data. An example of such an
information requirement that is extremely
important would be the one for transactions
or quantifiable events on a monthly basis.

Information which is not available
through the billing and accounting data
source must be maintained by the user. In
the case of transactions or quantifiable
events data related to "major" application
systems, the user will be asked to meet
with Center personnel on an individual
basis to agree on the nature of the quan-
tifiable events to be recorded on a monthly
basis for each major system. Thus, when
the time comes to produce workload forecast
support documentation, the Center and the
user will have at hand the data required to

validate user information processing
requirements

.

All of the data elements listed below
should be available on a monthly basis
for existing workload.

2.1 Information Requirements to be
Generated on a User Basis

The data elements falling in this
category describe computer resource
utilization of the user. The requirements
of the Center itself must also be isolated
and identified. As mentioned above, this

data will be retained by the Center.,

though user guidance may be necessary to

separate production accounts from develop-
ment and maintenance accounts.

C. Character Storage Data, Tape
Media.

1. Number of tape reels assigned

2. Number of tape reel mounts
performed

D. Resource Requirements for
Production Work.

1. CPU time required

2. Core Requirements (measured
in Kilobyte minutes)

3. EXCP's (or other relevant
measures of I/O activity) by device type

4. Total Monthly Connect Time

5. Second Generation Computer
Workload (wall clock hours)

E. Telecommunications Workload.

1. Number of lines read

2. Number of lines transmitted

3. Average number of characters
read per read activity

4. Average number of characters
transmitted per write activity

2.2 Information Requirements to be
Generated on a "Major Application)

A. Character Storage Data, DASD

1. Space allocated by device
type (measured in tracks, cylinders, blocks,
sectors, characters, etc. — as appropriate
to the Center)

.

2. Space used by device type.

B. Program Development and Main-
tenance Resource Requirements

1. Aggregated CPU time required.
a. Development Work
b. Maintenance Work

2. Number of man-months of
programmer/analyst time required.

a. Development Work
b. Maintenance Work

3. Number of Compile Jobs Run.

a. Development Work
b. Maintenance Work

For purposes of this data collection
requirement, any single application system
which has consumed or is expected to consume
10 percent of the computer resources billed
to the user on an annual basis will be
defined as a "major" application. This
definition breaks down when a user workload
is fragmented in such a fashion that the

"major" applications account for less then

50 percent of total annual resource require-
ments. Therefore, where this condition
occurs, the user should choose its largest
applications for reporting purposes such

that aggregate requirements of these

applications equal or exceed 50 percent of

the total.

As in the case of information to be

maintained on a user basis, these time

series data will be retained by the Centers

on a monthly basis. Users will be required

to identify "major application" accounts
and to police utilization of those accounts.

114

A. "Transactions" or "Quantifiable
Units" Workload.

1. Projected monthly transactions
workload

B. Processing Resources Required
(for each, list by batch and interactive
mode)

.

1. Billable CPU time required

2. Core requirements

3. EXCP's (or other relevant
measures of I/O activity) by device type

4. Total monthly connect time
(interactive/transactions processing type
activities)

C. Telecommunications Workload.

1. Nimber of lines read

2. Number of lines transmitted

3. Average number of characters
read per read activity

4. Average number of characters
transmitted per write activity

D. Data File Requirements (list by
each separate file which supports the
major application).

1. File Media

2. Average number of records
contained in the file

characters
3. Average record length in

4. Data Set Organization

5. Number of data set accesses

2. Projected monthly CPU time
required:

Interactive/Batch

3. Projected character storage
requirements, by file

a. File media
b. Average record length in

characters
c. Number of records to be

contained in the file
d. Data set organization
e. Data set accesses by month

4. Projected telecommunications
Workload

a. Monthly connect time (for
interactive jobs)

b. Number of lines read monthly
c. Number of lines transmitted

monthly
d. Average number of characters

read per read activity
e. Average number of characters

transmitted per write activity

2.4 Information Requirements to be
Generated on a "Center" Basis

Finally, a monthly time series of

center performance indicators must be

maintained by the Center in order that the
capacity of the existing computer system
may be estimated and users' expectations
on system performance characteristics
established. These data requirements are
as follows:

1. Average turnaround time for batch
jobs.

6. Identification of all files
which require personal and corporate data.

2.3 Information Requirements to be
Generated on a "Planned Application"

All of the data listed above must be
maintained on a monthly basis to describe
the resource requirements of existing
systems. At the time of documenting the
workload forecast, users will additionally
be required to forecast resource require-
ments of planned applications. The
required data elements for each major new
application to be developed and implemented
during the system life will be as follows:

2. Average guaranteed turnaround
time for batch jobs.

3. Average response time for inter-

active applications (where applicable)

.

4. Measure of CPU active time by

shift (derived by an established sampling
technique)

.

3. Developing Workload Forecasts

In order to predict quantitiative user
workloads, three projection techniques are
applied and the results are cross-checked:

115

a. Trend regressions are
developed for all resource utilization time
series

.

b. Transactions-based forecasts
of user resource requirements are developed
using linear regression techniques.

c. User forecasts of new applica
tions' resource requirements are aggregated
through time over the complete period of the
system life.

Each of these techniques is described below:

3.1 Trend Regression for Resource Utiliza-
tion Time Series

The first forecasting technique
involves a gross projection on Center
resource requirements. Figure 1 represents
the framework of this analysis. Time is the
independent variable; computer resource
utilization is the dependent variable. Such
an analysis is performed for each computer
resource identified in the time series data
collected (e.g., billable CPU time, DASD
character storage requirements, monthly
connect time requirements).

3.2 Transactions-Based Forecasts of User
Resource Requirements

In order to accomplish the "Transaction
based" forecasts of user resource require-
ments a three step analysis is performed.
The forecasts should be developed for each
"major" application described.

Computer Resource Utilization

Figure 1. Trend Regression Technique

1. In the first step a regression
analysis is performed using tinte as the
independent variable and transactions
volume as the dependent variable.

User Transactions Volume

time

Figure 2 Transactions Based Technique

Figure 2 represents this analytical step; a
least squares regression technique is
applied. If necessary or desirable, the
long run secular trend can be isolated from
seasonal fluctuations by using a moving
average time series.

2. The second step of the analysis
requires a set of linear regression fits.

In this case, however, the independent
variable is user transaction volume; the
dependent variable is computer resource
utilization. A separate regression should
be performed for each of the following
dependent variables. Figure 3 represents
one such regression, with transaction
volume represented as the independent
variable and computer resources required as

the dependent variable.

a. Data Set Accesses

b. Aggregated Character Storage
Requirements (measured as "tracks used" by
the computer centers and as as "characters
stored" by the user)

c. Aggregated telecommunications
workload. Separate analyses could be
performed for remote batch, interactive/
conversational, etc. , workloads if aggreg-
ated totals appear to justify such consid-
eration

116

d. Monthly Connect Time

e. Core requirements, measured
in kilobyte minutes

f. Tape reel mounts

Figure 3 represents one of these regression
results, with data set accesses shown to be
related directly to the monthly trans-
actions volume.

User Transactions Volume

Computer Resource Requirements
(data set accesses)

Figure 3 Transactions Based Techniques

3. The final step of the analysis
is to translate the projected growth rate
of transactions, derived in the step one

trend analysis, into a projection of

resource requirements over the system life

cycle. Figure 4 demonstrates this process
graphically. As can be seen, the historical
transactions data is used to forecast the

growth of user workload. The projected
transaction volumes by year are then related
to a forecasted computer resource require-

ment using the regression result derived in

step 2 of the analysis.

Aggregating related resource
requirements for all "major" applications

results in a projection for each measure of

production workload. To this sum must be

added the workload generated by all minor
and ad hoc production applications as well
as the projected applications development

and maintenance workload. The minor and

ad hoc production workload may be estimated
using the Trend Regression technique
described above. (Figure 1). Development
and maintenance workload may be estimated
as follows:

1. A linear regression is performed
which relates computer resources utiliza-
tion for application system development and
maintenance work (dependent variable) to the
number of man-months devoted by user person-
nel to programmer/analyst efforts (indepen-
dent variable) . Experience has shown this
relationship to be direct, as indicated
in Figure 5.

2. As a check on this projection
technique, a two-step regression method-
ology is applied. First, the time series
of "man-months of programmer/analyst effort"
is regressed against the time series of
monthly total compile jobs run. This latter
time series is then regressed against the
time series of computer resource utilization.
The analysis is depicted in Figure 6:

Having projected production and develop-
mental computer resource requirements of

the users, the analysis proceeds by aggre-
gating these projected requirements, adding
in the overhead resource requirements
identified for the computer center itself.

3.3 Aggregated User Forecasts of Applica-
tions Resource Requirements

The third technique which is applied
to estimate workload growth over the system
life period is non-statistical. Users are

asked to describe all new production
applications which are expected to be

developed and implemented during the period.

Resource requirements estimates are then
provided for each application, both for its

development and for running it in produc-

tion mode. Next the users are asked to

describe the stability of the existing base
workload. In other words, any existing
applications which are expected to be

expanded or phased down or out during the
system life are identified and their
resource requirements specified. Having a

schedule of both increments and decrements
to the base through time, the analyst can
then develop the user's forecasted growth
path. This forecast would then be compared
with those derived in the first two tech-
niques. If serious discrepances exist,
these must be resolved within the group
performing the analysis.

4. Equipment sizing

In this step of the analysis, a number
of alternative computer configurations
capable of processing the projected work-
load must be specified. Generally, the

117

User Transactions Volume User Transactions Volxame

tg t^ t2 ^2 Resource
Requirements

Figure 4 Derivation of Computer Resource Requirement Projections

Programmer/Analyst
Man Months

Computer Resource Requirements

Figure 5 Estimated Relationship Between Programmer Man Months and Computer Resource

Requirements

118

// Man-Months
Progrannner/

Analyst Time

Cost
Resource
Utilization

Figure 6 Derivation of Development Time Workload Forecast

sizing analysis will place emphasis on CPU-

memory requirements and DASD character

storage requirements since the system
components which perform those functions
generally account for 80 percent or more of

equipment costs.

Sizing DASD configurations to required

on-line character storage volumes is a

straightforward process. Variables which

may be considered in developing actual

equipment include recording density, data

transfer rate, and physical size specifica-

tions .

Sizing processor-memory configura-

tions may be somewhat more difficult. The

approach which is generally most fruitful

for this purpose requires some benchmark-

ing to compare the relative processing

power of existing equipment with the

capabilities of some mainframes which are

judged to be in the approximate size

range necessary to process the workload.

This operation may be constrained by

inserting the requirement that at no time

during the system life will an excess

demand situation be tolerated. If such

a constraint is not imposed, the cost

analysis must quantify the impact of

capacity saturation on users as a cost

item.

Figure 7 indicates only one system

capacity projection (a case in which one

augmentation of equipment is expected to

occur early in the systems life). The
analysis should actually develop several
capacity alternatives, which are then
compared in a costing model.

For the one system capacity projection
depicted in Figure 7, the costs of excess
capacity and excess demand are represented.
Excess capacity costs are implicit in the
equipment costs and will not be treated
explicity in an economic analysis. Excess
demand costs, on the other hand, must be
treated explicity. These costs are
estimated in the economic analysis by
attempting to forecast the cost of procur-
ing necessary computer resources in a

commercial service bureau environment. If
excess demand is planned, this estimation
method will probably yield quite accurate
results. However, if workload exceeds the
forecasted volumes and unplanned excess
demand occurs, this estimation method will
probably seriously underestimate excess
demand costs.

5. Sensitivity Analysis

In the sensitivity analysis section of

the documentation, all critical assumptions
made in the body of the analyses must be
"tested." The objective is to determine
the limits within which quantitative
alterations can be made.

The assumption which must be examined
in this section is that the workload fore-
casts are accurate.

119

Computer Resource Requirements

time

Figure 7 Fitting Capacity to Projected Workload Requirements

5.1 Sensitivity to Variance in Future

Workload

This assumption may be tested by

observing the impact of increasing or

decreasing the projected workload volumes

by given proportions. Additionally, the

possibility that each workload measure was

initially overestimated by as much as 50

percent should be considered. If the

ordering of alternatives is not changed at

either of these limits of the range, the

conclusion may be drawn that the recommenda-
tion of the analysis is not sensitive to

changed workload volume expectations.

5.2 Sensitivity to Variance in Actual
Resource Requirements

The analyst must consider the pos-

sibility that the estimate of resources
required to process the predicted work-
loads is either high or low. Again, any

resource which comprises ten percent or

more of the total system cost should be

examined. (Generally, this will require
focus on the area of personnel, computer
equipment and perhaps telecommunications
services .

)

In testing the sensitivity of the

analystical results to over or under
estimation of resource requirements, the
approach should parallel that taken in

testing resource cost sensitivity. The

magnitude of the percentage change in
resource requirements needed to change the
ordering of altertives should be reported
to management

.

5.3 Sensitivity to Variance in Ad hoc
Assumptions

Finally, the sensitivity analysis
should investigate the possible impact of
changing any ad hoc assumptions made in the
analysis which could effect cost.

Formatting the sensitivity analyses
is of critical importance to supporting
management evaluation of the forecast. In
the case of each assumption tested, the
original assumption should be stated clearly.
Following this, the degree to which the
quantitative aspect of the assumption must
be changed before the ordering of alterna-
tives is also changed must be reported.

6. Conclusion

This paper has summarized the method-
ology required to produce computer workload
forecasts. Clearly, the circumstances
surrounding each individual effort are
unique and as such require alternations to

the basic approach. However, if the data
collection program described in the first
section of the paper has been successfully
maintained, the analyst should have minimal
difficulties in adapting to the unique
aspects of his particular problem.

120

121

A SIMULATION MODEL OF JES OUTPUT PROCESSING

H. Pat Artis

Bell Laboratories
Piscataway, New Jersey 08854

The design and implementation of a discrete simula-
tion model of the IBM Job Entry Subsystem (JES2 and JESS)
output processing is presented. This model was developed
for sizing printers at remote stations and at the central
site.

1 . Introduction

The sizing of printers for IBM Job
Entry Subsystem (JES2 and JES3)
remote work stations is currently a

problem of particular interest. The
proliferation of remote work sta-
tions has increased the complexity
of the sizing problem and mandated
the need for a sizing model. This
paper presents a model that was
developed to size printers for
remote work stations. The paper
discusses

:

- model selection,

- data collection,

- model design,

- sample problem.

Each of these topics will be dis-
cussed in detail in the following
sections.

1. A technique for identifying and
measuring the effects of poorly
sized remote stations has been
presented in a paper previously
published by the author. [1]

2. NQdei ?elefi<;lQa

The first step in the modeling pro-
cess was the selection of a queuing
or a simulation model of the prob-
lem. This selection was influenced
by the nature of a remote work sta-
tion. The following list of attri-
butes will provide the reader a

general understanding of the
environment

,

- A remote work station may have
one or more printers (servers).
In the event that there are
multiple servers, t.hey need not
be all of the same speed.

- The load applied to a remote
station Is often transient in

behavior. Moreover, the
servers may be totally
saturated during periods of
peak load.

- At all but trivial load levels,
it has been the author's
experience that the arrivals
demonstrate exponential
behavior. However, the service
times are generally distributed
for all load levels.

123

- A multi class (limited delay
dependent priority) queuing
discipline is used by the
operating system to schedule
work for the servers. The
queuing discipline is also non
pre-emptive

.

The well known [2] difficulties
associated with M/G/m models, tran-
sient and saturated behavior, and
multi class priority schemes led the
author to select a trace driven
simulation model. Although the
aforementioned problems can be
solved [3], the simulation model was
most attractive because of the ease
of implementation and limited number
of events to be simulated.

3. Data CoXAoc^iftii

The data for the modeling effort was
collected fron the Systems Manage-
ment Facility (SMF) [4] log file
normally produced by the MVS operat-
ing system. In particular, the JES

Job Purge (Type 26) and the JES Out-
put Writer (Type 6) record types
were used as sources of data for the
model. The JES Job Purge record
contains the following items used by
the data collection program that
generates input for the simulation
mode 1

:

- JES Job Number,

- Job Name

,

- Account Code,

- Job Class,

- Execution End Time and Date,

Since a job may spool multiple out-
put files, there may be more than
one J£.S Output Writer record f^p
each job. The record for the i

output file for a job contains:

- JES Job Number,

- JES Output Device,

- Number of Logical Records
Printed,

- Output Class,

- Output Forms,

- Write Start Time and Date,
T
(2,i) '

- Write End Time and Date,
T
(3,i) '

The Type 26 and all of the Type 6

SMF records for a Job may be assem-
bled using the JES job number as a
key

.

The data collection program produces
a report with the following statis-
tics for each printer collected dur-
ing the study period specified by
the user. The statistics for each
printer are:

- average lines per minute (LPM),

- a list of the output classes
served

,

- a list of the form types used,

- the total lines printed,

- number of jobs printed,

- utilization during the study
period

.

An output file is produced contain-
ing one record for each print file
that arrived for output processing
(i.e., the job that created the
print file ended execution) during
the study interval. Each of these
records contain the following items:

- Output Device,

- Job Name,

- Job Class,

- Output Class,

- Account Code,

- Output Form,

- Arrival Time, T^,

- Actual Output Queue Time,

The Job Name and Account Code
entries are provided to allow the
user to track jobs of particular
interest or to select portions oi

the current print load to use in
sizing a new remote.

124

4. Model Pesign

The discrete simulation model was
implemented in PL/1. A flowchart of
the model is shown in Figure 1. The
principal modules in the model are:

INITIALIZATION

LOAD ARRIVALS The, module reads the
trace file produced
by the data collec-
tion program. An
exit is provided to
the user to allow
subsets of the print
load to be selected
as a load for a

simulated remote.

This module loads
the user input con-
trol data that
specifies the number
of printers at the
remote and their
respective speeds.
Information on the
output classes
served and form
types available for
each printer. It
also sets the clock
and statistics col-
lection arrays to

their initial
values

,

Q START J

LOAD ARRIVALS
QUEUE

INITIALIZATION OF
CONTROLS AND CLOCK

1
PUT ARRIVALS
ON QUEUE

PRIORITY
AGING

END ANY
FINISHED PRINTS

SELECT NEXT PRINT

FOR ANY FREE DEVICE

COLLECT
STATISITCS

UPDATE CLOCK

9
REPORT
GENERATOR

Q FINISH ^
REPORTS

Figure 1. Simulation Flow Chart

125

ARRIVALS

PRlOfilTX AGING

SELECTION

STATISTICS

UPDATE CLOCK

REPORTS

This module simu-
lates arrivals by
taking all "prin-
touts" that arrive
at the current clock
value and placing
them on queues that
are maintained by
output class, form
type and priority.
A user exit is pro-
vided to allow the
user to select the
initial priority for
the printout,

This module provides
a user exit to
inspect the contents
of the output queues
and age the priori-
ties of the waiting
printouts

,

This module attempts
to schedule a prin-
tout on each free
printer. It selects
the highest priority
printout in the
current class- forms
queue being served
by the printer.
When a printout is
selected , an end
event for the
printer is scheduled
based on the
printer's speed and
the number of lines
in the printout. An
exit is provided to
allow the user to
implement form
changing strategies,

This module collects
statistics on
printer utilization,
queue lengths and
wait to print times.

This module updates
the simulation
clock. A one second
clock step is used
for this simulation.

This module summar-
izes and reports on
the statistics col-
lected by the pro-
gram .

Typical run times for the simulation
are from five to thirty CPU seconds
on a 370/168 for an eight hour study
period. To date, the longest run-
ning time has been fifty seconds for
a heavily loaded remote with six
printers.

5 . ?aapig Prolgieia.

The model discussed in the previous
section was used to evaluate the
potential upgrade of a small remote
work station with a 300 LPM printer
serving a group of programmers.
This study was also used to validate
the model.

The data collection program provided
the statistics shown in the follow-
ing table about the printer's actual
use during a four hour period. This
study period was carefully selected
such that the printer was idle with
a queue length of zero at both the
beginning and of the interval. This
selection was made to avoid end
effects in the validation of the
mode 1

.

Actual Printer Statistics

Avg Utilization (%)
Avg Wait Time (sec)
Standard Deviation (sec)
Maximum Wait (sec)
Lines Printed
Files Printed
Device Effective LPM

As shown in the previous table, the
printer's effective print rate was
246 LPM although it was rated at 300
LPM. The differences between a
printers rated and effective LPM
values is caused by variations in
the number of characters per print
line, use of non-preferred print
characters and vertical spacing of
the printer. It has been the
author's experience that a printer's
effective print rate rarely exceeds
90 percent of its rated value.

To validate the model, a single 246
LPM printer (server) was specified
for the simulation model. The
results of the simulation are shown
in the following table.

126

1 Simulation Statistics (246 LPM) !

[Avg Utilization (%) 79.5!
lAvg Wait Time (sec) 265

[

[Standard Deviation (sec) 408
[

iMaximum Wait (sec) 3168
[

iLines Printed 46,742 !

[Files Printed
1

94
:

L .- i.

As can be seen, the results of the
simulation and the actual measured
data compare favorably. The model
was then used to evaluate the
upgrade of printer to a device rated
at 1100 LPM. The effective rate of
the device, 900 LPM, was estimated
by multiplying the device's rated
speed by the ratio of the effective
and rated speeds of the 300 LPM
printer. The results of the simula-
tion are shown in the following
table .

I Simulated Statistics (900 LPM) i

[Avg Utilization {%) 21.6!
[Avg Wait Time (sec) 14

!

[standard Deviation (sec) 32 [

[Maximum Wait (sec) 358 !

[Lines Printed 4 6,742
!

[Files Printed 94 [

1 ^
1 L

PEFEPEMCES

[1]

[2]

[3]

Artis
nique
terns"
Conference
48, 1979.

H.P. "Workflow, A Tech-
for Analyzing JES Sys-
published in the AFIPS

Proceeding, vol.

Kleinrock

,

terns. Vol.
Sons, 1976.

L. "Queuing Sys-
II", John Wiley &

Roode, J.. D., "The Operational
Analysis Approach to Computer
System Modeling", Symposium on
Computer Resource Performance
Management, Pretoria, South
Africa, April 1979-

[4] "Systems Management Facility",
IBM, July 1977, EC28-0706.

[5] Allen, A.O., Probability,
Statistics and Queuing Theory,
Academic Press, 1978.

As shown in the table, the utiliza-
tion of the device decreased by the
ratio of the old and new printers
effective rates. However, the high
speed provided a significant reduc-
tion in the average and maximua
queuing delay since the faster
server was not subject to long
periods of saturation.

6 . CQnneji.^«.a

The simulation model presented in
this paper provides a useful tool
for sizing printers for remote work
stations. One issue not addressed
by this paper Is the capacity of the
host processor and transmission line
to support higher speed output dev-
ices. The problems of buffer size
and line capacity are best
approached by queuing models. The
reader may wish to consult some of
these models already available in
the literature [2,5].

127

DESIGN FOR PERFORMANCE

Michael J. Kirrene

AVCO Financial Services
620 Newport Drive

Newport Beach, CA 92660
and

Mitchell G. Spiegel**

Directorate of System Evaluation
Federal Computer Performance Evaluation and Simulation Center

Washington, DC 20330

Expensive on-line systems are difficult to justify to top management —
unless your competitors or contemporaries are using them to advantage.

In 1971, AVCO Financial Ser/ices (AFS) , a subsidary of the AVCO
Corporation, set out to construct an on-line system for its consumer
credit operation. Funding was approved in 1972 and the design project
formally began in January 1973. The first pilot branch office was con-
verted in November 1975, and the conversion of the last branch occurred in
May 197 7. This is a history of how major strategic, performance decisions
were successfully made for AVCO's on-line system. AVCO's process of

strategic performance decision-making, "design for performance," encom-
passes present ideas about capacity planning and performance evaluation.

AFS employed a variation of the conventional approach to the system
design methodology — a process of prototyping the system and its inter-
face with the organization in every design phase to focus on the perform-
ance issues.

Key words: On-line system design, prototyping, performance management,
management control, capacity planning, long-range planning, financial
applications, performance evaluation, audit, measurement, modeling,
remote terminal emulation, system testing.

The views and conclusions contained in
this paper/presentation are the authors, and
should not be interpreted as representing
the official opinions or policies of the
Federal Computer Performance Evaluation and
Simulation Center, the US Air Force, or of

any other person(s) or agency associated with
the Federal Government.

**Mr Spiegel acted as a consultant to AVCO
for a previous employer.

1. Introduction

Technological advances cause continual
changes to today's complex information
systems. Performance management of infor-
mation systems has evolved from an
operational discipline to a tactical manage-
ment tool — capacity planning. But the
emphasis of capacity planning performance
tools is directed at multiprogramming of

primarily production batch systems. On-line
applications are a secondary objective. The
view of performance is inward, concentrating

129

on efficiency and the management and alloca-
tion of scarce computer resources among
users. Performance, or its lack, is dis-
covered after implementation. However, the
on-line user has a different perspective:
'If it doesn't perform, it doesn't work!'
Performance issues permeate the system life
cycle in an on-line environment.

Performance characteristics of on-
line systems are indigenous to and are
decided in the design phases. Once strate-
gic performance decisions are made, it is

usually difficult, if not impossible, to

obtain improvement. A system methodology
is required that will support strategic
performance decision-making. Conventional
system design consists of a linear sequence
of phases that usually stand alone. To
work effectively, it must be possible for
the design team (with or without the user)
to establish firm system requirements and
specifications (e.g., consider the procure-
ment of a system, using a benchmark).
Seldom are the results of a benchmark
demonstration used to advantage in prior
or subsequent phases of the conventional
system design process. If a performance
problem is discovered, the design team
must loop back to an earlier design phase
and repeat all steps to bring performance
back to specification. Excessive loopiness
caused by frequent changes in requirements
or by design inadequacies is disasterous
to the on-line system design process.

Good on-line system designs benefit
from prototyping to make strategic perform-
ance decisions. Prototyping is a compromise
strategy between the pure linear .approach
and the loopy linear approach. Phases
are interdependent, each generating suffi-
cient depth of performance information to

accommodate inevitable changes in specifica-
tion without complete redesign. The user
is part of the design team. Users have
prototypes of system features built for
evaluation and also participate in design
decisions. Results of vendor demonstra-
tions are. used to develop prediction
standards for subsequent phases (e.g.,
test, acceptance, and operation).

The AVCO case study demonstrates the
many facets of on-line system performance
and the prototype system methodology used
to obtain that performance. A brief
overview of consumer finance orients the
reader to the application. Each major
step taken by AVCO in the design phase is

described with emphasis on performance
implications, strategic performance design.

and design methodology. Observations
taken from the operational system are
contrasted with design expectations.

2. Case Study Background

2.1 The Nature of the Business

Consumer finance is one of the
oldest retail trades in the United States,
having begun in the middle of the nine-
teenth century. Today there are over
18,000 licensed consumer finance offices
regulated and supervised by state law.

AVCO Financial Services (AFS) is a division
of the AVCO Corporation and is the third
largest consumer finance company in the
United States. AFS operates over 1,100
consumer finance offices nationwide.

Finance office procedures follow a

daily pattern. Mail payments are posted in
the morning to account ledgers. Across-
the-counter collections build to a mid-day
peak, while delinquent accounts are followed
up by letter and phone. Customers in need
of a loan or other services arrive sporad-
ically through the entire day. At closing
time, branch office statistics and summaries
are produced for individual branch managers,
supervisors, and auditors.

Application for credit is initiated
when a customer arrives at a branch
office. Following a successful credit
check, an appropriate type of note is

consummated. The whole transaction
requires about 45 minutes. Once a loan
is consummated, most types of transactions
take place by mail and phone. Successful
loan-making is measured by the accuracy of
and speed in consummating a loan contract,
and maintaining up-to-date status on the
customers' account. Home office control
of the branch office operation is accom-
plished by periodic checks and grading by
supervisors and review of accounts by
internal auditors.

2.2 Development, of an Information Service

AFS's major business objective was to

change the orientation of branch operations
from accounting to financial consulting
and marketing of various financial services
by implementing an information system.
Branch profit margins were tight under the
manual operation. Growth could be achieved
only by streamlining clerical operations
and enhancing the ability of branches to

handle additional lines of business and
volume increases without adding personnel.

130

The information system was to provide
better control over assets and revenues
and improved customer service (accuracy
and speed of consummating a loan and
maintenance of up-to-date records). All
information system management functions
were physically co-located with the head-
quarters manual organization operations.

3. Concept of Operation

3.1 Design Strategy

AFS management concluded that early
1970's on-line system technology required
a highly centralized systems approach.
Such future directions as distributed
processing and data bases could be inte-
grated into the operation when they became
proven technologies. Automation of the

most important business services took
place first. After the management and
staff gained experience with the initial
service capability, more sophisicated and
complex service automation was attempted.

Because personnel salaries were rapidly
overtaking equipment costs, the system was
developed in a high level language — COBOL
was selected. It was assumed that this
would reduce both development and ongoing
maintenance costs.

Software needs determined host system
requirements. Because of the long-range
plan for a complex automation service and
the state of the art of control system
software, 0S/VS2 was selected as the
operating system and CICS was selected as

the monitor. It was predicted that future
changes in computer technology would
improve hardware cost effectiveness.
Therefore, it was decided to avoid modi-
fications to system programs. Any special
requirements would be satisifed via
vendor defined user exits.

3.2 System Architecture

The automated system is called the

Branch Operating System (BOS). Simply
put, the Branch Operating System (BOS) is
a communications network composed of a

terminal at each branch office connected
to a central computer at AFS Headquarters.
At Headquarters, the system maintains up-
to-date files from which reports are
prepared for management's use in supervi-
sing branch operations. The system auto-
mates routine business transactions
performed by the branch offices.

The system supports over 1,000 on-
line terminals and requires an IBM S/370
Model 3033 with 6 million bytes of memory.
The daily transaction rate varies between
100,000 and 170,000 transactions per day.
BOS consists of approximately 600 programs
and 600,000 source statements. Over 90%
of the programs are written in COBOL. The
data base has over two billion bytes
stored on IBM 3330 's. A COMTEN 476 commu-
nications processor controls the network,
and performs message switching.

Cost justification of BOS was based
upon cost avoidance, primarily through
reduced personnel costs. No attempt was
made to quantify the intangible benefits
of faster, more detailed, and more relia-
ble information. The break-even point to
recover the estimated development cost of
$18.3 million was initially projected to
occur about three years after conversion.
The ultimate cost of the system was $24.4
million.

To ensure orderly development, the
system was planned in four design phases.
The first design phase took ten months and
cost approximately $1.5 million. It

included the system design and specifica-
tions of the software needed to operate
the system. Additional phases were under-
taken only after the first design design
phase was successfully completed. A
feasibility study preceeded the four
design phases.

4. Assembling the Design Team

4.1 Management Participation

The project was given maximum visibil-
ity by having the project director report
to the Vice President of the Financial
Services Division. A technical administra-
tor reported directly to the project
director, to be responsible for project
planning, technical design monitoring and
system integration activities. A position
of techncial documentation supervisor was
created to centralize the definition of

documentation requirements and implement,
establish, and maintain the BOS document
library. Once the system became operational,
an information systems division was formed,
reporting directly to the President of the
Financial Services Division. The system
division consists of over 250 staff members.

131

4,2 User Participation

Success in meeting user needs de-
pended heavily upon the accuracy of the
information and the thoroughness of the
cooperation provided by users who were
called upon to assist in the system develop-
ment. Dedicated user participation was
achieved in most cases by transferring
people from their existing duties to the

project payroll and physically locating
them within the project team.

The nature of user responsibilities
varied from one user group to another, as

well as from one phase of the project to

another. In general, however, the users
participating in the project were required
to (1) define their requirements clearly
and in detail; (2) furnish information to

project personnel on request; (3) modify
and develop branch and home office staff
and procedures as required to support BOS

development and operation; (4) assist in

the development of BOS manuals, forms, and
documents; (5) review and physically sign-
off on all system specifications at

various points throughout the project's
life; (6) notify BOS project personnel of

all changes in laws, regulations, policies,
or Company plans that add, delete, or
modify BOS requirements; (7) assist in

developing branch conversion and installa-
tion plans; and (8) physically execute
acceptance tests.

Several problems emerged from this

approach. Several of the user representa-
tives turned out to have been marginal
performers in their home organizations.
This resulted in some painful culling.
The technical degree of complexity of the

system became more extensive than normal
because of the lessened ability to control
technical vs. functional trade-offs. The
user representatives were new to data
processing and found difficulty in under-
standing the language and documentation of

the technical staff, making specification
sign-off a dubious exercise in some cases.
Finally, there was a tendency by some line
organizations to disown aspects of the

system because "their" people were not
directly involved in the decision and
trade-off processes.

Another element of user participation
instituted was a weekly meeting during the
project design stages to review the progress
of the project with the company division
heads. These meetings were invaluable to

securing those major decisions that
typically bog down a major project during

its early stages.

Because of extensive user participa-
tion, the final system is a much better
functional system than typical and is truly
user oriented.

4.3 Consultant and Vendor Participation

Consultants and vendor technical
personnel were employed as technical
support personnel during the design phases
since in-house skills in that area were in

short supply. Management consultants inter-
viewed user and management groups to

obtain an unbiased statement of requirements.
Another consultant developed models that
produced predictions of quantitative
standards for system performance.

The hardware vendor's technical
personnel provided system architectural
alternatives for evaluation by AFS project
personnel, supplied results of benchmarks
for similar finance industry requirements,
and demonstrated the performance of selected
alternatives according to specifications
supplied by AFS.

A software vendor either designed
those parts of the system software which
were either unavailable off-the-shelf or
modified those parts of the software that
were considered to be performance liabili-
ties. In addition, the software vendor
designed and coded all of the application
software to interface with custom code.

4.4 Systems Development Methodology

Because of the involvement of several
outside hardware vendors, several con-
sultants, a contract programming company,
and the magnitude of the project, the

procedures for controlling the project were
formal and structured. The project was
phased; work plans for all activities were
detailed; an automated budget tracking
system was installed; performance and
product quality standards were established
prior to development; and organization
components such as quality control, perform-
ance control and project control were
created. During the course of the project,
clear visibility of the current status was
maintained at all times. This visibility,
however, did not prevent overruns.

In spite of stringent controls, the

time required for the design phases over-
ran by 50%, and the program design and
coding phase overran by 100%. Pilot

132

testing on the other hand was accomplished
in 60% of the originally estimated time, and
conversion was completed in 13 months in

contrast to an original schedule of 15

months. The accuracy of schedule estimates
tend to become the measure of productivity
rather than such objective criteria as user

acceptance.

Highly proceduralized methodologies
for developing systems can be expensive,
time-consuming and irritating to users and
vendors alike. The key is good judgement
in the use of formality and structure. A
project like BOS requires a high degree of

control, while retaining flexibility to

make changes.

The project design team followed a

"prototype" strategy rather than a tradi-
tional "linear" strategy to minimize
conflict and encourage communication among
groups. The "linear" strategy requires
each successive activity to follow logi-
cally from its predecessor. When detailed
analysis reveals problems, a loop back to

an earlier phase is required. Decisions
must be made at each phase. The tendency
is for specifications to be frozen without
test at successively lower levels of

detail. Changes in design are discouraged
at all levels once such decisions are
made.

The "prototype" strategy followed the

same sequence. However, an initial,
highly simplified version of the system
was designed, implemented, tested, and
brought into operation. Users, management,
and designers reviewed the prototype.
Prototype cycles were repeated in greater
detail until the actual system was in full
operation. Prototypes were constructed from
benchmarks,- models, hardware and software
components, and documentation drafts.

Management felt that this approach
would enable it to better handle frequent
changes in user requirements or design
inadequacies. The trade-off involved was
accepting a higher initial project cost to

develop and cycle through prototype versions
of the system rather than attempt to define
and freeze requirements and design early-on,
thereby risking expensive loop-back periods
to accomodate changes.

5. Feasibility Studies

5.1 Strategic Performance Issues

One of the first tasks of the design
team was to define the performance attributes

and measures in detail. Definitions of the
performance attributes were essential to

the plan for producing predictions according
to the indicated measure. Performance
predictions were subsequently used to make
strategic decisions and establish performance
standards for every successive phase of the
project from concept of operation to full
operating capability.

A recap of AFS's major business objec-
tives, derived system performance attributes,
and measures established for those attributes
is given in Table 5-1.

5.2 Make or Buy Decision

AFS management established a task force
to evaluate for purchase the most appropriate
on-line system then installed at a competing
finance company. Management intended AFS to

become operational with an on-line system in

the shortest possible time—even if it

required complete acceptance by AFS of the
operating procedures of the selling company.
The task force recommended that AFS build
its own on-line system. The task force had
evaluated five existing competitive systems
and concluded that none would meet AFS'
needs.

5.3 Requirements Specification

A management consultant was tasked to

perform a study of Headquarters and branch
office operations. Business level processes,
performance, and workload requirements were
defined. (See Section 3, Concept of Opera-
tion.) A study of manual office operations
was conducted for a full one-month period
(January 1972) at 85 branch offices in 45

states. Generally, two offices (one large
and one small office) were selected from
each state. The concept of operation was
discussed with branch office personnel,
division representatives, and Headquarters
management. A functional process descrip-
tion of the BOS operation was developed.
Major features were to (1) automatically
value-rate loan and sales applications; (2)

prepare contract documents, checks, re-
ceipts, insurance claim forms, etc., on the

terminal; (3) monitor the receipt and
disbursement of all branch funds; (4)

prepare customer statements, and management
summaries and transmit them at night to the
applicable unattended branch terminal; (5)

provide inter-terminal communication
capability between the branch and any
other branch office, area executive
office, or Headquarters; (6) permit
branch personnel to interrograte any
customer account or dealer record in the

133

Table 5.1 Recap of Performance Issues

BUSINESS OBJECTIVE SYSTEM PERFORMANCE ATTRIBUTE MEASURE

DESIGN AND DEVELOP
SERVICES

FLEXIBILITY RELATIVE COST TO DEVELOP
AND MODIFY SYSTEM

ARCHITECTURE

COST CONTROL SYSTEM AND STAFF COSTS RELATIVE LIFE CYCLE
COST PER TRANSACTION

RELIABLE CUSTOMER
SERVICE

AVAILABILITY TIME TO FAILURE AND TIME
TO REPAIR OF SYSTEM

ACCURACY AUDITABILITY AND
INTERNAL CONTROLS

VERIFICATION OF ACCURACY
AND VALIDITY OF DATA

RECOVERY FROM INCORRECT OR
UNAUTHORIZED OPERATIONS

IMPROVED STAFF
PRODUCTIVITY AND SERVICE

RESPONSIVENESS
AND EASE OF USE

TIME REQUIRED TO COMPLETE
A SERVICE, TRAIN AN

OPERATOR

MANAGEMENT CONTROL OF

SERVICE DISTRIBUTION
CONTROLLABILITY PREDICTABLE PERFORMANCE

STANDARDS

system; (7) generate, on a daily, weekly,
and/or monthly basis, exception reports
to support collection, solicitation, and
regional management activities; (8)

support branch personnel training activi-
ties by providing a training mode at the

terminal; (9) provide a comprehensive
auditability and control package for all
in-house software and vendor packages;
and (10) produce documentation in accord-
ance with standards developed by users apd-i

those responsible for audit and control.

Summary statistical data were obtained
for branch office operations. The average
number of transactions per account per month
was calculated. An analysis of daily trans-
action activity indicated that the single
significant peak for systems design consid-
eration was the Monday morning condition
occuring at the beginning of a month. Thus,
the period studied included this condition.

Assumptions about the occurrence of

transactions during the eight-hour period
in each time zone were made based on the
typical business day (See Section 2, Case
Study Background.) A profile of "peak
Monday" traffic volume by hour was developed
from these assumptions.

The project team employed the first
of a series of prototypes to derive system
performance requirements. Acceptable
system delay times were developed by
examining the operator and manager activity
workloads for major transaction types at a

prototype of the BOS terminal. Extreme
and average elapsed arrival time distribu-
tions of major transaction types were also
constructed from scenarios acted out by
users at the prototype terminal. Subsequent
projects in industry and GovernmgnJ ihave
automated the system prototype. .6J

Operators and user management specified
the following performance measures: (1) a

15-second delay for 90% of the transactions
and a maximum delay of 60 seconds (based on
the number of people in an office, the
office workload, and goals for the amount of

work to be accomplished during average and
peak business periods); (2) the system
configuration was required to sustain a

combined throughput of 19 BOS transactions
per second and 0.4 administrative messages
per second offered via the communications
network in a peak period; (3) a central site
(host and front end) availability of 95% up

time per month, network (high-speed line)

availability of 99% and local net (low-

speed line) and terminal availability of

134

95%; (4) a count of the number of attempts
per month to concurrently access the same
data and Headquarters control over account
number (key) assignment to minimize colli-
sions (concurrent access); (5) detection of

failure in system (host or network) , amount
of time inoperative, type of error and
recovery to correct state of data, and
detection of failure in a process with
deletion of results and all intermediate
states prior to update.

6. Acquisition and Design

6.1 Vendor Evaluation and Selection

Specifications were furnished to

interested vendors in April 1972, and three
proposals were received. IBM proposed the

PARS/Financial System. "PARS/Financial"
is a derviative of the Airline Industry
Package for financial institutions.
PARS/Financial is based on ACP (Airline
Control Program) software. ACP has proven
itself as a large on-line communications
system, capable of handling high-volume
message and/or transaction throughput with
rapid response. At the time of request,
ACP Model 5 was just being phased into
production availability. Two IBM Systems
360/Model 165 's were required to support
all AFS performance requirements on the
ACP Model 6, which was slated for produc-
tion within the necessary time frames.
AFS management rejected the IBM proposal for
several reasons—OS software subsystems
could not co-habitate with ACP; the 3705
communications controller could not be

attached; terminals could be locked-out on
multi-dropped lines; lack of special terminal
features; and high configuration costs
relative to the two other proposals.

IBM also proposed a second hardware/
software configuration. The features of the

second configuration ~ OS/370, CICS, TSO,
Programmable front-end 3705 's, better line
control under BTAM, new financial terminals —
and lower cost (by using two 370/155 's in
place of the 370/165 's) made this proposal
more attractive. AFS requested IBM to pro-
vide a benchmark demonstration of a proto-
type version of the system. AFS furnished a

team of six people for one month to describe
the functional, performance, and workload
requirements to IBM personnel

.

In May 1972, a prototype demonstration
was constructed. The equipment configura-
tion is shown in Figure 6.2. The 360/50
using a forerunner of the teleprocessing
network simulator (TPNS) acted as a driver
system (RTE-Remote Terminal Emulation) to

the system under test (370/155). ^
'

^

Transmission of transactions over actual
lines to and from simulated concentrators
was initiated by exercizing the normal host
BTAM polling function. Transactions were
described by type, frequency of occurrence,
data access requirements and message
content. In the host, synthetic applica-
tions were developed by linking CICS
macros to other programs that accessed
files and executed an average number and
mixture of instructions equivalent to

estimates of application activity. Seven
files were formatted to replicate a

minature version of the data base. Files
contained 10% of the actual record volumes
estimated for the real system.

Measures of work accomplished, system
behavior, and utilization of resources
were obtained from the benchmark demonstra-
tion. Each unique message rate was measured
for a period of six minutes following a

six-minute period to allow the system to

stablize. The length of the interval was
empirically determined by IBM benchmark
team members. Typical measurement periods
require lO-to-15 minute intervals for
startup and statistics gathering. The
interval length was reduced because the
workload was homogenous (only one mode

—

transaction processing) and a small number
of transaction types accounted for 95% of
all activity (payments alone were nearly
70% of the total)

.

The results indicated that further
alternatives be explored because the IBM
System 370/155-11 CPU resource was heavily
loaded, primarily with network and data
base I/O control activity. It was too

early in the system life to have little
or no resource safety factor. Furthermore,
features desired for audit, control and
error handling were limited with this
approach. AVCO requested proposals for
"intelligent" front-end computers capable
of handling numerous functions and off-
loading the host and a special purpose
data base management system to reduce file
I/O activity. An independent software
house proposed a tandem front-end that

would require only a single host system.
The proposal appeared to have desirable
performance features similar to ACP (effi-
cient host performance) coupled with the

advantage of transaction inventory, control
and auditability in the front-end and

superior data base access, data recovery,
and process recovery in the host. The
hardware availability of the system was

about the same as that of IBM's configura-
tion, while system cost and flexibility

135

SYSTEM/360
MODEL 501

TEST/360

2400 BPS

SYSTEM/370
MODEL 155J-II

VS RELEASE 1.7

CICS

500 K REGION

BLK

MPX
1

BLK
MPX
2

BLK
MPX
3

BLK
MPX
4

Figure 6.2 IBM Benchmark Configuration

were improved. The principal disadvantage
was the risk, of designing and implementing
special software in both front-end and
host systems. The proposal was accepted
in July 1972.

6.2 Detailed Design

In September 1972, board approval was
sought and granted for Phase I (the Detail
Requirements and System Design phase) of a

four phased system development project.
Phase I was estimated to take 10 months
and cost $1.5 million. Board approval for

funding to undertake later phases was to

be requested only upon successful completion
of Phase I. Total costs were estimated at

$16.7 million.

In January 1973, the Branch Operating
System (BOS) Project was formally begun.
The four project phases were originally
defined and scheduled as follows:

Phase I - January 1973 - October 1973
Detail User Requirements
and System Design.

Phase II - November 197 3 - September 1974

Program Design, coding
and all levels of test-
ing (i.e., unit, subsystem,
system and pilot testing
activities)

.

Phase III - October 1974 - April 1975
Live Pilot (i.e., parallel
operation in five selected
branches in the state of

California)

.

Phase IV - May 1975 - August 1976
Conversion of branches
to the BOS System

The second prototype cycle sought to

minimize the risks inherent with the
independent contractors' approach in Phase
I, the detailed user requirements and
system design phase. A consultant was
retained for the purpose of developing
models of end-to-end performance. A peak-
hour model was constructed using a package
simulator. The data obtained from the
requirements study were used to develop
descriptions of the applications process.
Network characteristics were obtained from
a discrete FORTRAN line simulator model of

the communications network. A simple
central server queuing model of the front-
end processor was also developed.

The results of the package simulator
were calibrated to the benchmark data
collected with the RTE. A "performance
budget" was created, allocating a maximum
value for each component of end-to-end
response time. The "performance budget"
allowed trade-offs to be made between
process, workload, and response time compo-
nents. Analytical models for each on-line
hour of the peak-day were developed.
Results indicated that the software house
proposal would meet performance require-
ments with a slim reserve of CPU cycles on
an IBM Ssytem 370 Model 158 host. The
front-end resources appeared sufficient to

do the job.

By mid-1973 BOS system design began.
Model data were provided to the design
teams. Application programming received
reports enumerating estimates of applica-
tion core, CPU time, and working set size
requirements and I/O operations performed.
Data base designers were provided estimates
of access patterns and access times for
various transaction types, based on account
number key mapping schemes, load factors.

136

file block, size, empty space management
strategies, and overheads for data and
process recovery schemes. Operating
system programmers were given estimates of
CPU time and space requirements for special
software. Throughput and turnaround time
reports were studied by management. The
off-line functions (unattended terminal)
at each branch were examined to see if

work could be completed before the next
business day. Prototype models of various
software and configuration options were
used by most of the staff.

The third cycle of the prototype
methodology began with the selection of
equipment for installation. Management
opted for an early prototype system to study
design concepts in detail and permit BOS
programs to be compiled and tested in a VS
environment. An IBM System 370 Model 145

was acquired. The system was instrumented
with hardware and software monitors.
Measurements of software path lengths and
I/O counts y^ys made, and compared with
model data. Models were updated and new
forecasts made.

Another study conducted with the
prototype 370/145 system examined the long-
range feasibility of using the in-house
system for time-sharing (program develop-
ment) resources. The amount of special
software required a sizeable number of
maintenance programmers. Results of

measuring TSO software and its interaction
with the on-line and batch products systems
indicated the need for more processing
power than has beeOj^gcheduled to support in-
house programming. Because a multi-
processor version of the IBM System 370/Model
158 was announced, it was decided to stay
with the system on order and obtain a second
processor if and when necessary. In February
1974, the IBM System 370/Model 158 was
installed to service increasing BOS develop-
ment requirements. This system operated
under 0S/VS2.

Phase I system design was formally
concluded in November 1974. Two AFS
business processes; namely. Thrift and Floor-
ing were removed from the project's scope
in order to alleviate schedule delays.
Front-end computer measurement data indicated
that the front-end system would not be

able to achieve anything approaching its

forecast response time budget. AFS
obtained the services of an independent
consultant to study the problems observed
in the front-end software and hardware.
The consultant concluded that the front-
end would not satisfy BOS long-term require-
ments. Performance requirements and speci-

fications previously established by proto-
typing and modeling were advertised in a
request for proposal for off-the-shelf
front-end systems. After the bid solicita-
tion, AFS decided to replace the front-end
with a COMTEN 476 front-end system which
would handle up to 1,500 terminals. A
larger COMTEN configuration was also defined
which would service up to 3,000 terminals to
satisfy the long-range growth of the network.

In a presentation to the AFS Board of
Directors in April 1975, it was reported
that BOS development had been delayed
thirteen months beyond the original schedule,
that a second 370/158 processor was now
required, that a replacement front-end
communications system was needed and had
been identified, and that additional
funding was required to complete BOS
development

.

6.3 Test and Implementation

AFS assumed full responsibility for
BOS testing and implementation. Testing
requirements had been grossly underestimated
by the application software vendor and a
comprehensive test plan was non-existent.
AFS was consequently required to develop a
test plan and to re-test much of the
system. At this point, AFS defined the

following plan incorporating a fourth pro-
totype cycle to ensure that the BOS system
would be ready for mass conversion of the
branches

:

Regression Subsystem Testing - A re-
test of all BOS Subsystems. This
activity was scheduled to be complete
by August 1975.

System/Pilot Testing - The entire BOS

System would be tested using a con-
trolled test script of historical data
taken from selected branch offices.
AFS expected to complete this activity
in early September 1975.

Shakedown Test - A series of tests
using all facilities of the BOS
System to prove that the system
functions accurately according to

state laws where AFS operates.

Parallel Pilot Test - Operation under
BOS in selected branches is parallel
with existing systems. AFS expected
to complete this test by the end of

December 1975.

Live Pilot Test - Starting with two
California branches and growing to

137

six, BOS would process data in a

completely live mode. Branch per-
sonnel would operate the terminals
and use the results for normal
business activities. Any network
problems would be confined to one

geographic area. If no abnormal
conditions arose during this activity,
mass conversion would commence in

May 1976.

Mass Conversion - Branches would
convert to BOS in groups ranging from
25 to 100 branches per month. This
process was scheduled to start in May

1976 and be completed in June 1977.

As AFS progressed into mass conversion,

it was recognized that the on-line system
would require more CPU resources than
originally anticipated. A performance task

force was established during mid-1976.

This task force was chartered with identify-
ing performance enchancements that could be

implemented in the system so that AFS could
complete mass conversion on the installed
IBM System 370 Model 158 MP. In order to

gain the greatest benefits, they focused on

the system software, such as CICS and data

base input/output subsystem. Through their

efforts, mass conversion was completed on

schedule, without additional CPU upgrades.

To emphasize the improvement obtained from

this performance activity, measurement
statistics are presented in Table 6.1.

The statistics below demonstrated the

significant improvement in transaction
throughout rate and a reduction in trans-
action path length. The data indicate
the dramatic growth in path length from
conventional CICS to a highly modified
CICS with a special recovery data design
(to meet audit and accuracy requirements),
and the effect of moving to MVS and to a

later version of MVS with improvement in

path length.

At the present time, the Branch
Operating System is maintaining 1.1 million
loan and sales finance account receivable
records. During the first month of opera-
tion after mass conversion was completed
(June 1977) , the business was conducted in

956 branches with a terminal base of over
1,000. The average number of transactions
per day during June 1977 was 115,000. The
front—end communications system offered
message switching capabilities to these
branch offices with an average of 11,000
messages per day observed during June 1977.

Highlights of activity and performance
figures supplied to management for October
3, 1978 are shown in Table 6.2.

During the later stages of mass con-
version, performance did emerge as a major
problem and the system plus all other AFS
processing ultimately approached the CPU
capacity of the IBM System 370 Model 158

MP. Sizable tuning efforts were required to

avoid additional upgrades. The ultimate
solution became the implementation of an

unsupported IBM access method called Start
I/O (SIO) within the data base management
system. At the present time, the BOS system
has no performance problems.

Approximately seven people are required
to perform non-discretionary maintenance of

the system. An additional twenty people are
making functional changes to the system.
Compared to other systems of this size,

these appear to be acceptable numbers.

7. Feedback from the Operational
System

7.1 Study Successes and Failures

Calendar year 1978 marked the attain-
ment of the terminal and transaction volume
estimates made five years earlier. The
system is meeting its performance objectives

as originally specified. Management feels

BENCHMARK
TEST

May 1972

Nov 1976

Jun 1977

TRANSACTIONS
PER SECOND

8.0
5.9
9.1

NUMBER OF
CPU's

(1)

(2)

(2)

CPU %

65

126

137

TRANSACTION
PATH LENGTH

52,000
393,000
111,200

Table 6.1 Host Measurement Statistics

138

Table 6.2 AFS BOS Daily Operations Report DATE: 10/03/78

START-UP: 06:00 SHUTDOWN: 20:00 SCHED. OPERATING TIME: 14:00 TERMINAL PDP. 1,195

PEAK PERIOD 9:00-11:00 P.S.T. Month
CENTRAL SITE AVAILABILITY: 96.42% to Date: 97.97%OUTAGES NO. TIME(MIN)

Host

FCS 1 0:30

Both

Total 1 0:30

Total Branches On-line: 1,086

Total Terminals On-line: 1,143

Surging Overload: 110/1242

Occurrances /Seconds of Host
Polling Lost

Host Response AVG 0.63
Time: (SEC) MAX 41.8

TRANSACTIONS: 131,156

MSGS SWITCHED: 14,778

OVERNIGHT RPTS: 5,954

Add 15 seconds for maximum worst case network delay time.

that the effort was worthwhile to consider
performance a strategic issue and a general
and continuing concern. The strategic
design criteria were sound and their valid-
ity is improving with time. The only
recent hardware configuration change was a
replacement of the '158 MP' by a single IBM
3033 processor as a cost saving measure, and
to provide access to the latest version of

the system control program (MVS/SE).

In retrospect, some improvements could
be made to the prototype strategy. The
requirements study was an expensive, time-
consuming effort. With such a homogeneous
user population, a much smaller sample could
have sufficed. Recent advances in sampling
techniques serve to reduce the number of

interview hours and concomitant costs of

workload characterization.

Of all the models employed, the least
successful was that of the front-end comput-
er. The front-end was modeled as an I/O
bound system. Efforts were concentrated on
accessing problems and queue delays in the
I/O subsystem. The models failed to take
into account such processing activities as

polling, buffer management, traffic account-
ing, journaling, and serial use of resources.
The path lengths to perform transaction
activities and control I/O, created a pro-
cessor bound front-end system with the same
observable surging characteristics prevalent
in the host RTE demonstration.

At the time of the implementation
phase, the vendor's RTE (TP Driver) was
still experimental. Problems discovered
only after exposure to an initial group of

users could have been located by, stress-
testing the system with the RTE.^ ^

How did it all turn out? People costs
did, in fact, outrun hardware costs. Thirty
one percent of total project costs were
people oriented versus 20% for computer
hardware. It further turned out that COBOL
was much less of a performance problem than
anticipated. Less than 15% of all cycles
are consumed by COBOL-generated code.

AFS found it necessary to develop its
own data base management system, however,
because available packages were either
overly sophisticated or could not provide
adequate performance. While this was counter
to the basic design strategy, it allowed
complete control over one of the most
performance sensitive aspects of the system.

7.2 Conclusions and Recommendations

We are convinced that prototyping
enhances a system methodology to "design for
performance." Based on the success of this

project, we conclude: Ex Opere Operatur
(The act validates itself.)

By acknowledging that system perform-
ance is a problem from the outset, and that

most performance issues are settled during
the strategic decision-making periods, a

company or agency can remain in control of

the situation. Capacity planning after the

fact, without knowing what the strategic
performance factors are, will not be as

effective, and will likely increase the risk

of loops back to earlier phases, or failure
to meet performance objectives. Instead,

139

management must obtain performance data from
prototypes and models to make the best
decisions under risk about on-line systems.
The source of good performance data for on-
line systems are prototypes and predictive
models, whose estimators can be used to

manage a "performance budget." Measures of

on-line systems on an ad^ hoc or post hoc
basis reveals little of the problem. Re-
sources must be allocated far in advance of

on-going operations. Once in place, these
resources and their users are not easily
recast

.

[1] Kirrene, M. J., Design of Operations-
Oriented Decision Support Systems,
Workshop At Ninth Annual SMIS Confer-
ence on MIS Productivity , Los
Angeles, September, 1977.

[2] Bally, L. , Brittan, J., and Wagner, K.

H. , A Prototype Approach to Information
System Design and Development, Journal
of Information and Management , Volume
I, 1977, pp. 21-26.

[3] Giles, H. , Successful Network Manage-
ment Hinges on Control, Data Communi-
cations , August 1978, pp. 33-41.

[4] Statement on Auditing Standards:
Number 3 (SAS-3), American Institute
of Certified Public Accountants , 1974,

pp. 1-12.

[5] Nielsen, N. R. , Brandin, D. H., and
Placko, M. A., Design and Simulation of

the Man-Machine Interface Using Micro-
processor Systems, SRI International ,

October 1977 (Unpublished).

[6] Spiegel, M. G. , Marshall, T. , and
Kodak, M. , Prototype Integrated Finan-
cial Management System, Teleprocessing
Specifications for Navy Regional Data
Automation Command (NARDAC) , Contract
N00600-72R-112, January 1974.

[7] Remote Terminal Emulation Specifica-
tions for Federal ADP System Procure-
ments, Automated Data and Telecommu-
nciations Service , General Services
Administration, October 1978.

[8] Use of Remote Terminal Emulation in
Federal ADP System Procurements,
Automated Data and Telecommunications
Service , General Services Administra-
tion, March 1979.

[9] Chambers, J. F., Findings on Hardware
Monitor Measurements of 0S/VS2 Release

1.6 Nucleus, SHARE Computer Measure-
ment and Evaluation Newsletter , Number
28, November 1974, pp. 27-51.

[10] Chambers, J. F., The FCB HASP Marco Can
Reduce System Performance, SHARE Com-
puter Measurement and Evaluation News-
letter , Number 30, March 1975, pp. 78-

79.

[11] Chambers, J. F., Communication Line
Monitoring with a Hardware Monitor,
SHARE Computer Measurement and Evalua-
tion Newsletter , Number 35, January
1976, pp. 24-28.

[12] McQuillan, J. M. , and Falk, G. , A Com-
prehensive Approach to Network Testing,
Data Communications , August 1977, pp.
63-66.

140

141

QUANTITATIVE METHODS IN COMPUTER PERFORMANCE EVALUATION

Aridaman K. Jain
Bell Laboratories
Holmdel, NJ 07733

1. Introduction

Computer Performance Evaluation (CPE) is
concerned with measiirement

, analysis and
evaluation of computer systems. Most of the
CPE studies in the literatiore concentrate on
the collection of data, and they place in-
adequate emphasis on the analysis of data and
interpretation of results, CPE studies are
conducted "by using one or more of the follow-
ing approaches: (i) analytical, (ii) discrete
simulation, and (iii) empirical. The empiri-
cal CPE studies in the literature generally
lack the proper use of quantitative techni-
ques. These studies can be improved by the
use of statistical techniques, such as design
of experiments and data analysis.

This session attempts to encourage CPE
analysts to use quantitative methods for
modeling computer system performance. The
topics covered in this session include appli-
cation of clustering techniques [l] and
development of performance measures [2].

Statistical steps in a CPE study and
some useful statistical background for CPE
analysts have been described by the author in

a recent article in Performance Evaluation
Review [3]. The next two sections of this
paper, based on [3], present a brief review
of past empirical studies and suggestions for
future work, respectively.

2. Review of Past Empirical Studies

A review of past empirical CPE studies
is useful for an examination of the strengths
and weaknesses of these studies. The review
is divided into three parts: (i) studies
deficient in the use of statistical techni-
ques, (ii) studies which made good use of
statistical techniques, and (iii) studies
both proficient and deficient in the use of
statistical techniques. One CPE study is
reviewed in each of the three parts.

2.1 Example of a Study Deficient in the Use
of Statistical Techniques

A majority of the empirical CPE studies
emphasize the collection of data, with very
little emphasis on their analysis and inter-
pretation. One such study is reviewed below.

"Honeywell Time Sharing Experiments on

a CPU Bound System" [U] reported on the
effects of (i) increased workload and (ii)

certain parameter changes. The results con-
sisted of average response times without any
considerations of inherent random variability.
By comparing the average response times, it

is claimed that the lengthening of the time
slice (given by TSS to its subsystems)
improves the response.

Had a proper statistical analysis been
done by fitting a regression model, and the
question asked "whether the fitted regression
coefficient associated with the length of
time slice might be merely' an estimate of
zero," the answer would probably have been
"yes" . Why? Even though the raw data are

not available for such regression modeling,

an examination of the following averages
(read off a figure from the reviewed paper)

supports the above inference regarding the
regression coefficient associated with the

length of time slice:

Average
Response

Time Slice Time
Experiment No. (Milliseconds

)

(Seconds)

15 15 20.8

12 25 20.2

Ik 25 19.2

20 35 18.

U

143

Experiments 12 and ih are identical.
The average response times frr these two
experiments differ only because of random
variability. This random variability can
account for the observed differences between
the 25 milliseconds time slice experiments
and the other two experiments with time slices

15 and 35 milliseconds, respectively. This
result indicates that the length of time slice
has no effect on response time. Thus, it is

not sufficient to consider just the averages
without their associated variabilities.

2.2. Example of a Study Which Made Good Use
of Statistical Techniques

There are several studies in the litera-
ture which have made good use of statistical
techniques. One such study is reviewed below.

Tsao and Margolin [5] present the sta-
tistical methodology applied in their analy-
sis of a multifactor paging experiment. They
statistically designed an experiment to study
the effect of four factors (main memory size,
problem program, deck arrangement and re-
placement algorithm) upon the paging process.

All 81 possible combinations (3 levels of
each factor) of the four factors were
observed.

A preliminary step in the analysis of
data was the computation and plotting of
summary statistics. For the response varia-
ble, number of page swaps (PS), the range of

81 responses was about eight times the
average. This prompted the rescaling to
logarithms. Regression models were fitted
and the technique of analysis of variance
was employed to decompose the variability of

the response into components attributable to

various factors. This decomposition permit-
ted an examination of the relative importance
of the effects of the various factors in the
modeling of the response.

The paper by Tsao and Margolin [5I is

quite exhaustive in coverage of the statis-
tical methodology for their multifactor
paging experiments. It is recommended for

your study.

2.3 Example of a Study Both Proficient and
Deficient in the Use of Statistical
Techniques

Many CPE studies belong to this
category. They are proficient in the use
of some statistical techniques, but deficient
in the use of others. One such study is

described here. "A Model of Virtual Storage
Personal Computing (VSPC) Based on QNETit"

[6] was concerned with the development of a
model to aid the process of locating and

relieving potential bottlenecks. The authors
select a subset of 23 commands to represent
transaction types. No information is given
on the criteria used to determine their
representativeness. The 23 commands are
grouped into 6 classes based on path length
of command (average number of instructions
executed) . No discussion of system service
routine path lengths is given. A potential
user has no idea of what the effect on
potential bottlenecks will be if system
software performance parameters are altered.

The authors state that an empircal study
of the region of convergence bias showed that
this region corresponds well within known
points of stability of the VSPC system as

measiired mder VSl. It would have been use-
ful to provide data to enable a comparison
of the change in the effect predicted with
an estimate of the inherent variability.
The value of a CPE study is enhanced by pro-
viding quantitative data so that readers can
make their own judgments about the study.

Data collection and analysis in this
paper are lucid. The use of randomization
to avoid bias and sampling to reduce time
and cost are clearly explained. The solu-
tion methodology is presented carefully, in

a well-structured fashion. The use of a

graphic illustration of the flow of control
among software elements is a particularly
effective technique that allows the reader
to "see" the behavior of the major software
modiiles

.

The validation of the results is limited
to a discussion of how the model was cali-
brated. Confidence exists between endpoints
of the calibrated model, but no attempt is

made to verify the predictability and
appropriateness of assumptions and con-
straints by performing experiments outside
the calibrated range.

3. Suggestions for Future Work

In order to help make CPE studies more
useful, three areas of future work are
suggested: (i) quantification of manage-
ment's objectives, (ii) workload representa-
tion, and (iii) forecasting of load. In

the first area, it is necessary to do further
work on the translation of management's
objectives into an objective function of

measiarable variables. This objective func-

tion can then be used to evaluate the per-
formance of a computer system.

In the second area, we need to answer
questions such as "what is a representative
workload for a given computer system" and
"how is workload characterization affected

144

ty assumptions." In the third area, it would
be useful to develop models for forecasting
future load which are valid for the following
factors: (a) growth in loads, (b) change in

the nature of load, and (c) change in con-
figuration.

The final suggestion is that more use
should be made of the techniques of design
of experiments and statistical data analysis
for the planning and analysis phases of CPE
studies. Review of CPE studies revealed that
the conclusions of some of these studies
would/could have been different, if statis-
tical techniques had been used properly.

References

[l] Hartrum, T. C. and Thompson, J. W.

,

"The Application of Clustering Techni-
ques to Computer Performance Modeling,"
Proceedings of the 15th CPEUG Meeting,
1979.

[2] Dzelzgalvis, I., "Performance Comparison
Measures for Computer Systems," Proceed-
ings of the 15th CPEUG Meeting, 1979-

[3] Jain, A. K. , "A Guideline to Statistical
Approaches in Computer Performance
Evaluation Studies," Performance
Evaluation Review, Vol. 7, No. 1-2, 1978,

Proceedings of the 12th CPEUG Meeting,
1976.

[5] Tsao, R. F. and Margolin, B. H. , "A
Multifactor Paging Experiment: II.

Statistical Methodology", Proceedings
of a Conference on Statistical Computer
Performance Evaluation, edited by
W. Freiberger, 1971.

[6] Downs, R. X. and Tweeden, H. E. , "A

Model of Virtual Storage Personal
Computing (VSPC) Based on QNET1+,"

Proceedings of the 1977 Sigmetrics, 1977-

145

THE APPLICATION OF CLUSTERING TECHNIQUES TO
COMPUTER PERFORMANCE MODELING

Thomas C. Hartrum
Jimmy W. Thompson

Electrical Engineering Department
Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio 45433

The performance of a given computer system is to a large extent
dependent upon its workload. A fairly standard approach to workload
modeling is to define the workload by the amount of computer resources
each job consumes. If each resource is considered to be one element
in an ordered set, then a job's workload requirement can be represented
as an n-dimensional vector X = (x^,X2 , • . .

,x^) where, for example,

= CPU time, X2 = central memory used, and so forth. By applying

vector distance measurements the workload can be partitioned into
clusters of "similar" jobs based on their nearness in n-space. This
approach has been applied to describe workloads more accurately than
by the aggregate resource usage of all jobs taken together. This paper
investigates the possibility of extending the clustering technique to

modeling and predicting computer performance. If one hypothesizes
that performance is a function of resource consumption, then one should
be able to determine a predictable range of performance for each
cluster. This paper presents the results of the application of this
technique to the workload characterization of a Cyber 74 computer and
the subsequent investigation of the relationship between a job's turn-
around time and its workload cluster.

Key words: Cluster analysis; computer modeling; computer performance;
empirical models; modeling; performance modeling; workload characteri-
zation.

1. Introduction

An important aspect of computer
performance evaluation is the development of

models for predicting performance of given
jobs or to measure the change in performance
due to a modification of the system. One
approach is the use of empirical modeling,
where a relationship is determined between
output performance variables and input work-
load parameters, based on observed data.
One of the more popular empirical techniques,
regression analysis, has limited use due to

the nonlinearity of the relationships and
the interaction and lack of independence

among the workload parameters. In an
effort to solve these problems, this paper
explores the possibility of an empirical
model based on a clustering analysis of the
workload. Cluster analysis is a technique
which attempts to find natural groupings of

jobs based on similar resource requirements.
Usually cluster analysis is used to model a

system's workload for the development of
benchmarks and simulation inputs . This paper
considers modeling the relation between
performance and workload on a cluster basis,
resulting in a number of possibly disjoint
empirical performance models, one for each
cluster.

147

Some of the concepts developed in this
paper were applied to an analysis of the
workload and performance of a Cyber 74

computer. The results are discussed in

this paper. The workload was successfully
modeled using cluster analysis, and an
improvement in turnaround time due to a

policy modification was verified using a

cluster - by - cluster approach. Some
problems were encountered in the develop-
ment of a cluster based performance model,
and possible reasons for these problems are
discussed

.

2. Concepts of Clustering
as Applied to Modeling

2.1 Clustering Techniques

Clustering is a technique usually
applied to^the area of workload characteri-
zation [2] , largely as an attempt to more
accurately model the interdependencies of

the workload parameters. Workload is

traditionally defined in terms of a set of

job parameters representing resource demands

[3] [4] such as CPU time, I/O time, and
central memory. In many studies, these
parameters are then treated as independent
random variables, so that the workload is

characterized as a set of probability
distribution functions, one for each para-
meter. In order to account for inter-
dependencies between parameters (such as

most jobs with large memory requirements
also require large processing times), a

more accurate workload representation is

needed. These interdependencies can be

modeled by defining a job vector X (where

the ~ denotes a vector) which is an ordered
set of the job parameters. The workload is

then characterized as a vector distribution
instead of independent parameter distri-
butions. Thus X = (xt , x„, X),1' 2' n

where, for example, x^ might be CPU time,

X2 might be core memory required, and so

forth. The proper description of the work-
load then becomes a joint probability
density function over the set of job para-
meters. Such a probabilistic description may
be extremely difficult to manage. Cluster
analysis attempts to simplify this

description in the following way. If the
workload can be broken up into m classes
or clusters of jobs, where a given cluster
contains jobs that have similar resource
requests, the joint p.d.f. p(X) can be given
by,

_ in _
p(x) =

I p(x|c.)p(C.) (1)

i=l
^

where p(x|c_j^) is the conditional p.d.f. of

the jobs in class C^, which hopefully can be

represented by a simple, unimodal function,
and p(C.) is the p.d.f. of the classes C,
A simplifying assumption at this point
would be to reduce the conditional p.d.f. to

a point estimate if the jobs within each
cluster were nearly enough alike.

The effect of this approach is to break
the large, complex distribution into a

number of simpler distributions. There are
three tasks needed to characterize a partic-
ular workload in this manner.

1. The m clusters C^ must be deter-
mined .

2. p(C^), the distribution of the

clusters, must be determined.

3. The m conditional distributions
p(x|c_j^) must be determined.

One approach to the implementation of tasks
1 and 2 is to represent each job of a

measured workload as a point in n-space, and

then to apply a clustering algorithm (well

established in the field of pattern
recognition) to find the clusters based on
the distance between the job points in n

space, [1], [2], [5]. If the cluster
centers are already defined, then a new
job can easily be assigned to one of these
clusters by finding the minimum of the

distances between that job (X) and each of

the defined cluster centers (C.). The

basic concept is clearly illustrated for a

two-dimensional case in figure 1. The
vectors themselves are

X = (x^,X2) - the job vector (2)

C.=
(^j^i> ^12^ - the cluster center (3)

vector for cluster
C.
X

hence Mx-C^H = /(x^-C^^)" +
(^2~^i2^^

Thus the distance measure being used is the

standard Euclidean distance. The more
sophisticated clustering algorithms which
are usually applied utilize a weighted
distance, where the weighting is usually

based on the variance of each parameter

^ Figures in brackets indicate the literature

references at the end of this paper.

148

x,{CPU Time)

Figure 1. Euclidean Distance in 2-Dimensions

along its axis, or on the variances within
each cluster. Since the principal axes
in this n-space are based on parameters with
uncompatible units (e.g. words of memory vs
CPU time), each parameter has to be mapped
into an appropriate dimensionless quantity.
Such a mapping may involve such techniques
as simple scaling, or logarithmic trans-
formation [2], [5], In characterizing an
unknown workload, however, the cluster
centers are not usually known a priori. An
iterative technique is used, starting with a

set of "seed" cluster centers, and on each
pass, the following steps are performed:

1. Determine, for each job, the
nearest cluster center.

2. If the job falls within a pre-
defined minimum distance from
that cluster, it is assigned to

the cluster. If the job falls
outside this minimum distance, it

is established as a new cluster
center.

3. At the end of the pass, all

clusters with less than some
minimum number of jobs assigned
are dropped from the set of

cluster centers.

This process continues until the set of

clusters doesn't change from one pass to the
next, at which point the m clusters C. are
defined. By counting the number of jobs
assigned to each cluster, the distribution
p(C,) can then be determined. Finally, the
conditional distributions p(x|c^) are
determined by examining the jobs within each
cluster C^. This brief discussion of

clustering provides the necessary background
for the remainder of this paper. The

interested reader is directed to references

[1], [2] and [5] for a more rigorous dis-
cussion of this technique.

2.2 Clustering as a Performance
Modeling Technique

Clustering as defined in Section 2.1 is

represented as a way of characterizing, or

modeling, a system's workload. This may be
an end in itself if the intent of a study is

to analyze the workload for its own sake

.

More often, though, the modeling of the

workload is only a preliminary step in the
study in order to provide a workload model
to drive a model of the system. Thus if

analytical distributions can be found for

149

the conditional distributions p(xlc.) and

for the cluster distribution p(C.), the
resulting workload model can be used in

conjunction with analytical models of the
system. If only empirical distributions can
be defined, they can be used to generate
synthetic workloads to drive a Monte Carlo
simulation, or they can guide the selection
of a benchmark workload to run on the actual
system [2], [6]. These approaches all
require a separate system model based on

some knowledge of the system. Another
approach to modeling system performance,
sometimes referred to as empirical perfor-
mance modeling [3], is based on finding a

model relationship between performance and
workload from empirical data alone. This
"black box" approach assumes no knowledge
of the actual functioning of the system,
but seeks only to relate the dependent
variables (performance) to the independent
variables (workload) based on observed
occurrences of these variables. Clearly
such models have little value in analyzing
causes of system performance or in tuning
the system. However, they do satisfy the

requirements for a predictive model. Thus,
once the model has been developed, it can be
used to predict the performance of a given
workload without considering the "why" or

"how" of the performance.

Multilinear regression is one of the

more popular empirical modeling techniques.
The model is of the form

n
y. = a. + y b, .X. (5)

where y. represents a given performance
measure-' (e.g . turnaround time), the x. are
the workload parameters as defined in
Section 2.1, and a. and the b..'s are the
model parameters derived from ^ihe empirical
data. One use of such a model is to predict
the performance yl for a particular workload

{x^}. Note that since we are dealing with

a statistical model, a point estimate of y'^

may not be sufficient. Rather a confidence
interval (or prediction interval) can be
calculated about the predicted value y' .

.

Another use of this model would be to

verify the effect of a system change. By
comparing the system's performance after a

modification with that predicted for the
unmodified system with the same workload, a

statistical hypothesis test can determine
whether the modification had a significant
effect on performance.

One of the major drawbacks to multi-
linear regression is the assumption that the
dependent variable is linearly related to
the independent variables. Although a
linear approximation is a useful tool in
many cases, it may introduce unacceptable
errors in some models. Although many multi-
linear regression programs are available,
nonlinear techniques are much more difficult
to come by. A common approach is to try to
find some transformation of the data which
makes it linear, and to apply linear
techniques to the transformed variables. An
example would be transforming y = a x^ to

y^^
= ln(y) = In (a) + bln(x) = a^+bx^^. Such

transforms are often difficult to find in
the case of multivar iable data. Another
problem with regression is the assumption of

no interaction between the independent
variables (not to be confused with actual
independence of the independent variables)

.

This assumption indicates, for example, that
the effect of CPU time on performance is the
same regardless of memory requirements.
That is, the regression coefficient b^^^ is

independent of the values of the variables
x^. If the model is to be used primarily

for predictive purposes, this problem can be
compensated for by including in the model a
term containing the product of the inter-
acting variables. Finally, the independent
variables are assumed to be truly independ-
ent. As indicated in Section 2.1 this is

often not the case for multiple workload
parameters. While a non-zero correlation
between some of the independent variables
may have negligible impact on the predictive
capability of the model, variables which
actually contribute to performance can be
dropped from the final equation.

These problems with multilinear regres-
sion will occur over the entire range of the
independent variables. Once the jobs have
been sorted into clusters, however, within
the range of a given cluster the data may
be well behaved, that is, it may meet all of

the multilinear regression assumptions.
This effect is illustrated in Figure 2 for

the violation of linearity in the case of a

single independent variable. Figure 2a

portrays the case where a linear relation-
ship does exist and ' illustrates the concept
of performance modeling by clusters. The
independent variable x (workload) is

partitioned into clusters C^^, C^, C^, and

the remaining range of x into which few jobs

fall. Associated with each cluster C. is a

distribution of performance, p(y|c.). In

this case, clearly the linear regression
model could have been used to predict the

150

f-i-^— . 1

^1 ^2 ^3 Workload

a. Linear Relationship, where x and x. represent
a D

workloads whose performance is to be predicted

using the model .

Performance
y

p(yIC2)

p(y|CT)

C2 X Workload

b. Nonlinear Relationship

Figure 2. Use of Clustering to Eliminate Nonlinearity

151

performance distribution p(y|x') for a given
x' , where in regression models this distri-
bution is assumed normal and can be estimated
from the data.

In figure 2b, however, it is not possi-
ble to accurately model the data linearly
(although one can find a least-squared-error
straight line for any given data) , and
finding an appropriate nonlinear function
does not appear to be easily accomplished.
Note, moreover, that it is completely un-
necessary to define a nonlinear function
over the range of x because the relationship
of y to X is irrelevant over those intervals
of X in which no jobs are expected to be
found. Since the intervals of x between
cluster boundaries contain no jobs of inter-
est, then performance can be modeled by

finding the distribution of performance
p(y|c_j^) for each cluster C^. If the range

of X for each cluster is much smaller than
the total range of x, then the effect of the
nonlinear ity disappears, as shown in figure
2b. Similarly, one can argue that if the

range of a given cluster is small, the
effects of interaction and dependencies
between independent variables can be
ignored

.

Clearly it may be the case that the

range of a cluster may .^ot be small compared
to the total range of the independent
variable, and that the function may not be
well behaved within the cluster. However,
by removing the effect of the other clusters
and modeling only p(y|c.) for that cluster,
one may still gain in modeling ability over
attempting to fit a nonlinear model over the
whole range. This is illustrated by cluster
C2 in figure 3. Its range is relatively
large, and clearly the data in that cluster
is nonlinear. However, elininating clusters

and allows a reasonable nonlinear
model to be fit to C2 alone (e.g. perhaps
an exponential or quadratic function) where-
as finding a function to fit all the data
together appears to be a bit more difficult.

Figure 3 illustrates another possible
situation. Notice that although the work-
load nicely clustered into distinct clusters

and C^, the performance distributions
associated with these two clusters fall
right on top of each other. This corresponds
to the case in linear regression where the

data fits a straight line nicely, but the

resulting line is horizontal. The latter
example indicates that y is functionally
independent of x. The cluster case similarly
indicates that performance is independent of
whether jobs fall into cluster C, or C..

Stated differently, jobs in clusters and
would be predicted to have the same per-

formance. Thus for the purposes of perfor-
mance prediction modeling, clusters and

could be combined into a single cluster.
In linear regression, this situation can be
detected by performing a statistical test
of the hypothesis that the regression
coefficient b.. =0. In the clustering case

ii
one can perform a similar statistical test
on whether the performance distributions
p(y|c^) and p(y|C2) are the same.

One other problem arises in using the
clustering approach to performance modeling.
The same problem occurs in regression
modeling, but can be more easily assumed
away there. An empirical model is by
definition based on observed data. The
model is, in effect, defined only over the
range of this observed data. The problem
occurs when one wants to predict the effect
of a value of the independent variable which
falls outside this range. Usually one
assumes that the model is still valid out-
side the range over which it was defined.
If, for example, one wishes to predict the

performance of a job with workload parameter
X using the model of figure 2a, one must
assume the model can be extrapolated that
far. This may be a risky assumption since
the true curve might suddenly turn upward
past C^, but the assumption is usually
made for lack of any other approach. Less
risky is the assumption of interpolation,
as illustrated by point x^ in figure 2a.

This is often not a problem since the ob-
served data is well distributed over its

entire range. Thus in either case one can
predict outside the range of the model by
assuming the model stays valid and by
recognizing the attendent risk.

In the cluster model, however, the

problem arises that the model is completely
undefined between clusters. Thus one cannot

predict the performance of a job which does

not fall into one of the defined clusters
without in effect defining a hypothetical
model between clusters. For example, in the

one dimensional case illustrated in figure

2b, one could connect the centroids of the

clusters with straight lines. However, this

is very presumptuous to say the least since,
had cluster not been in the original
data set, this approach would have predicted
it to lie on a line connecting clusters

and . A more serious problem than that

of predicting the performance of a single

"nonstandard" job, is the problem of pre-
dicting the performance of a major change

in workload which would create new clusters.

152

Performance
y

p(ylC2)

—

^

workload^1 ^2

Figure 3. Complex Cluster Relationships

Although these problems place some
limits on the applicability of this approach,
the cluster approach does provide a predic-
tive model which can overcome many of the
limitations of multilinear regression.

3. A Case Study

3.1 Description of a Modeled System

A study was made of the workload and
turnaround time for batch jobs on a Control
Data Corporation CDC Cyber 74 Computer at
the Aerospace Systems Division (ASD)

Computer center, a component of the Air
Force Systems Command, located at Wright-
Patterson AFB, Ohio. When the study began,
the Cyber was processing a combination of
batch and intercom jobs. During the study
a policy change was made, and all but a few
intercom jobs were moved to a companion
computer (a CDC 6600) and all of its batch
jobs were moved to the Cyber in an attempt
to improve batch turnaround time. The
objectives of the study were (1) to deter-
mine whether clustering techniques could be

applied to the diverse ASD workload; (2) to

apply the concept of performance modeling on
a cluster basis; and (3) to verify the
improvement in turnaround time resulting from
the policy change.

The Cyber 74 was designed to overlap as
many processes as possible. The system
provides for multiprogramming by using small
independent computers, peripheral processing
units (FPUs) , to accomplish input-output while
the main CPU executes the computation instruc-
tions. There are 20 identical peripheral
control processors associated with the Cyber
at ASD. Each is independent of the other
and has its own 4K of memory for programs
constructed from a 6A instruction repertoire.
All peripheral processing units have access
to 131K 60-bit words of central storage, and
to the peripheral channels. With this
capability, the FPUs act as system control
processors as well as I/O processors. This
permits the central processor to continue
high speed computations while the PPUs do
the slower I/O and supervisory operations.
Not only do the PPUs perform all I/O required

153

by central storage programs, they also

contain the major portion of the operating
system, called the monitor. PPU number 0 is

designated as the unit to hold the monitor,
which is discussed further in the next
paragraph. A second PPU is assigned to

control the operators console.

The Network Operating System/Batch
Environment (NOS/BE) controls the operation
of the Cyber 74. NOS/BE supports batch,
interactive and graphics processing. An
NOS/BE program JANUS, which is located in

PPU 0, monitors the total operation of the

system, including directing the CPU and other
PPU actions. To provide a multiprogramming
capability, JANUS stores up to 15 jobs in

central memory. These jobs reside in 15

variable length areas of memory called
control points; the size of a control
point is called its memory field length.
Additionally, JANUS is responsible for call-
ing the scheduler program into execution to

initiate job execution for new or swapped-
out jobs. The job flow of the Cyber NOS/BE
operating system is diagrammed in figure 4.

A job, which is a sequence of task and

program steps, is read in and stored on disk.
Those jobs inititated by control cards are
stored in the input queue. Jobs spawned via
intercom terminals are entered directly into

the central memory (CM) queue. Also stored
in the central memory queue are those jobs

that have been swapped out (removed from a

control point due to an expiration of their

time slice). These jobs are all in com-
petition for an active control point when it

becomes available.

The decision of whether the next job

will come from the input queue or the central
memory (CM) queue is dependent upon the

circumstances that required the calling of

the scheduler (reference figure 5) . If a

job has used its base quantum and a higher
priority job is in the CM queue, a swap-out
and swap-in will be done. Secondly, if a

job has terminated, thereby giving up its

control point memory, the scheduler will
check the input queue for a job to initiate.

The highest priority job in the input queue
will then be brought into memory. The

priority of jobs in the input queue is

dependent upon three factors. Jobs with the

smallest I-O and CPU time and central memory
requested will be given a priority higher
than normal batch. The aging rate priority
is added on an hourly basis. Within the

input queue are batch jobs for all user
organizations. Therefore, the ASD computer
center has imposed a software Organizational
Scheduler between the input queue and the
NOS/BE scheduler.

Each user organization of the Cyber is
authorized a percentage share of the Cyber
resources . This resource use is calculated
in computer resource units (CRUs) for each
organization's batch and interactive jobs.
CRUs are calculated for each job as a
percentage of CPU plus 1-0 time plus central
memory used. To be selected for job
activation, a job in the input queue must
have the highest priority and the CRUs used
by its organization must be within the CRUs
authorized for this hour. The Organizational
Scheduler exhibits control only over the
input queue (batch jobs), even though CRU's
used are a measure of batch and interactive
jobs. An organization using intercom exten-
sively can therefore penalize batch users.
These controls, such as priority job classes
and aging, are used in analyzing performance.
Additional controls placed on the Cyber
system dictate that during the 0800-1600
hours time frame, all interactive jobs, and
only those batch jobs requesting less than
170K octal words of memory, 400 seconds of
CPU time and 1,000 seconds of I/O time, will
be processed.

3.2 Data Collection

The data collection for workload and
performance measures was made available by
the Boeing Computer Service program, CLARA.
The CLARA program accepts data from the
NOS/BE operating system Dayfile tapes, which
contain all event messages generated by the

operating system during normal processing.
A new Dayfile tape is started every 24 hours
(0001-2400). Each Dayfile message begins
with the computer clock time of day followed
by messages of the following three types

- Identification data, such as
job name, receipt data, job
origin (batch, interactive)

,

and account number.
- Initiation and termination

times, such as the time a job
entered the queue, and the

times that a job entered and
left a control point.

- Computer resources used, such
as CPU, PPU, and 1-0 time and
central memory, tape drives,
and disk sectors used.

The CLARA program is then used to process
each day's Dayfile tape to reduce its large
volume down to a more manageable size

.

These data are stored on magnetic tapes,

titled Permanent Data Tapes (PDT)
, by CLARA.

154

BATCH
PRI0RITY=100

INTERCOM
PRIORITY=
300

Figure 4. Cyber Job Flow (Reference [1])

155

c START 3

MONITOR OF CM

JOBS BY

JANUS PRIORITY DEPENDENT ON
1. JOB CLASS
2. TIME IN QUEUE

QUANTUM
PRIORITY

JOB
TERMINATION

TIME QUANTUM EXHAUSTED

PRIORITY DEPENDENT (

1. RESOURCES REQ
2. TIME IN QUEUE

SELECT HIGHEST
PRIORITY JOB IN
INPUT QUEUE

SELECT HIGHEST
PRIORITY JOB
FROM THE CM

OUEUE

available
ACTIVATE JOB

IN

MEMORY

Figure 5. Job Scheduling Logic (Reference [1])

156

For each day, the following files are pro-
duced on the PDT:

- The Summary file which is a

general description of the
day's activities for the system
as a whole.

- The Tape-Reel file for mag-
netic tape activities.

- The Queue file for the times
a job entered and departed
the job queues.

- The Execution file which
contains the job identification
and computer resource usage
fields.

The files of interest in this study were the
Queue and Execution files. In attempting to
access information for each of these for a
reduced data file, several problems were
encountered

.

The initial problem with the CLARA PDT
was discovered during an attempt to read the
Queue and Execution files. Attempts to

access the files revealed that the PDT
Execution file was missing for each day due
to an error in the job control cards used
in executing the CLARA program. This data
source was therefore invalidated.

Compounding this problem was a previous
decision by the computer center to quit
producing PDT tapes based on the assumption
that the historical PDT tapes were valid and
would be sufficient for workload analysis.
Because the historical PDTs were invalid,
the computer center agreed to resume pro-
duction of PDTs until sufficient data was
gathered. Due to the time delay caused by
this problem only two weeks' data were
available for modeling. Furthermore, many
of the parameter values that were supposed
to be stored in the CLARA files were missing
or invalid. Table 1 defines the parameters
that were finally extracted from the CLARA
tapes

.

In order to define a minimum set of job
parameters from those listed, an attempt was
made to eliminate non-independent variables
based on correlation and known relationships
Finally, four parameters were chosen to

characterize jobs: CPU, I-O, CM, and Disk.

3.3 Results

The workload was processed by a

clustering algorithm in the space of these

four parameters. An existing algorithm
called WISH, a version of Wishart's
variant on the K-means method [7], was

chosen based on availability and minimal
memory requirements. Once clusters were de-
fined, each job was tagged with its cluster
identification for further processing. This
allowed turnaround time, input queue time,
and control point time to be analyzed as a
function of cluster number.

The first matter of interest was
whether natural clusters could even be found
in the ASD workload, consisting of jobs from
a dozen different research organizations.
Table 2 shows the clusters that were found
for the week preceeding the change to mostly
batch and table 3 shows clusters for the
week following the change. As can be seen
in both cases, eight or nine clusters were
defined. These tables define the clusters
based on an entire week's workload. In
both cases, when the data analysis was done
on a day by day basis, the percentage of

jobs falling into each cluster was nearly
the same. That is, the p(C^) distributions
were stationary on a day to day basis over
the week's data. It can also be seen that
many of the clusters changed between the
two intervals. This is to be expected,
since the policy change was a change in the
workload submitted to the Cyber and not a
change to the system itself

.

This fact that the workload itself

changed becomes important in trying to

ascertain the effect on performance of the
change in policy. In using the cluster
approach to verify the effect of a system
change, one would compare the before and
after performance on a cluster-by-cluster
basis, thereby determining not only the

overall improvement in performance, but also
the relative performance change for each
class of jobs. To do this, however,
requires that the workload clusters them-
selves be the same before and after the

change. In examining tables 2 and 3, it

appears that some of the clusters did
remain, some disappeared, and some new ones
entered. Thus the pairs (Al, Bl)

,
(A4, B3)

,

(A5, B4), and (A7, B5) each represent the

same cluster before and after the change.
These pairs were determined by comparing
the coordinates of the cluster centers, and
requiring all four coordinates to suffi-
ciently close in both clusters. In this

case, "sufficiently close" was determined
by graphical techniques rather than

statistical tests. Considering only those
clusters, the improvement in mean batch
turnaround time was significant at the

0.001 level. The changes in mean turnaround

time were 35% for A4 , 39% for A5 , 42% for
A7, and 49% for Al. The changes for the

other clusters cannot be determined, since

157

Table 1. Reduced Job Parameters

NAME DESCRIPTION

Job Name Uniquely identifies each job.

Receipt Date The date the job entered the input queue.

Job Or Iff In Tilpn f" 1 f "f p <; wbpt'bpr t*bp inb uaq "itTf 1"'fflf"pd aIQ bflf"f*Vi TPmot"^

batch or intercom.

Chr cypnT on J.UCil U XI. XCO ULIC \JL K.CLLL^£iCL LmJ-KJ LL WllXLii O Li L/LUX U CCU UiiC \\JU%

Identifier

In-Queue Time in seconds the job entered the input queue.

In-CP Time in seconds the job left the input queue and entered
a control point.

Out-CP Time in seconds the job left a control point and entered
the output queue.

CPU Central Processing time in seconds used by a job.

I-O Input-Output time in seconds used by a job.

CM Maximum central memory in kilo-words that a job occupied.
same as CMR for batch jobs.

CMR Maximum central memory requested by a batch job.

CRUs The number of computer resource units used by a job.

PPUs The PPU time in seconds used by a job, includes 1-0

channel plus 1-0 overhead time.

Tape-Drives Maximum number of tape drives used at one time by a

program.

Disk Maximum number of disk sectors used at one time by a

program.

158

Table 2. Cluster Parameters Before Change

It J O DS /o Or L.r U i—

U

CM DISK '„ Batch Mean Turnaround
Total (Sec) (Sec) (K words) (Sectors) in Cluster Time (min)

Al 1358 29.0 2 5 3 40 21 51

A2 485 10.4 11 15 5 200 8 34

A3 184 3.9 27 31 6 300 7 87

A4 1078 23.1 3 9 15 300 94 46

A5 264 5.7 8 28 17 550 72 72

A6 340 7.3 16 25 25 1000 97 81

A7 311 6.7 76 20 11 450 29 76

A8 330 7.1 14 125 17 1000 49 63

A9 319 6.8 82 170 16 2500 34 124

Table 3. Cluster Parameters After Change

u±uster If Jobs /o or I-O CM DISK 0 Batch Mean Turnaround
Total (Sec) (Sec) (K words) (Sectors) in Cluster Time (min)

Bl 753 16.7 0.5 5 2 90 85 26

B2 1361 30.2 3 9 12 300 99 33

B3 702 15.6 6 14 20 400 100 30

B4 459 10.2 12 30 19 900 99 44

B5 292 6.5 84 25 16 900 89 44

B6 310 6.9 19 80 19 3500 97 58

B7 238 5.3 62 48 35 2000 100 48

B8 386 8.6 55 238 20 3000 98 58

159

those clusters themselves changed. This

is equivalent to trying to use the model to

predict in the "gaps" between clusters, as

shown in figure 2b. The cluster model is

only defined in the neighborhood of the
clusters. The improvement in batch turn-
around was also tested over the whole work-
load in the aggregate. Here the improvement
was 30% and significant at the 0.001 level
also.

The final item of concern is the

ability to use an empirical clustering
model, as defined in Section 2.2, to

predict performance on a cluster-by-
cluster basis. Preliminary results indicate
that this technique cannot be evaluated in
general on the Cyber data. As can be seen
from the final column of tables 2 & 3, the

mean turnaround times are very close for

many of the clusters. Using a test on means,

a few of the mean turnaround times are
significantly different from each other
but most are not. This indicates that turn-
around time is largely independent of

cluster for the data under analysis. This
at first seems intuitively wrong, since the

clusters are based on resource usage and one
would expect (since the Cyber input scheduler
favors jobs with small I-O, CPU, and memory)
that turnaround time should also be a

function of resource usage.

However, the ASD Computer center has
added the Organizational Scheduler, as

described in Section 3.1, which attempts to

give priority to those organizations which
have used less than their allocated per-
centage of resources. Thus one could
expect turnaround time to also be dependent
on the user organization and its total
accumulated usage at the time the job entered
the system. This leads to the suspicion that
the organizational status has more effect
on turnaround time than resource usage.
Further studies are underway to verify this

hypothesis. Hopefully this effect can be
eliminated by including an organizational
parameter in the clustering algorithm, or by
modeling control point time, after the

organizational scheduler has been passed.
In addition, data from other computer
systems will also be analyzed by this
technique.

' 4 . Summary

In this paper the concept was advanced
of using workload clusters not only to define
a system's workload, but also to develop an
empirical model of the system's performance.
The result is effectively a set of models,
one for each cluster. One could then

predict performance based on the cluster to

which a job belongs. Since the clusters
define a limited subset of the entire job
space, and the system is modeled only in the
domain of the clusters, the performance of
a previously undefined cluster cannot be
predicted since the system is not modeled in
that workload region. If several clusters
predict the same performance, then the
performance is independent of membership in
those clusters. Modeling on a cluster basis
can be an aid in overcoming the difficulties
of applying regression analysis to data
which is nonlinear or contains interaction
between variables.

The approach was applied in an attempt
to empirically model the batch turnaround
time of a Cyber 74 computer. The workload
was successfully partitioned into clusters.
The improvement in turnaround time due to a

system change was verified using a cluster-
by-cluster analysis for those clusters that
existed both before and after the change.
Finally, an attempt was made to demonstrate
the use of clusters to model turnaround
time. It was found that most clusters
tended to result in similar ranges of turn-
around time. This lack of variation in

turnaround times is probably due to the
locally added Organizational Scheduler.
Current efforts are underway to account for
this scheduler behavior and to demonstrate
the applicability of the cluster modeling
approach on data from this and other
systems

.

References

[1] Thompson, Jimmy W., Computer Performance
Evaluation of Individual Workloads on
the ASD CDC Cyber Systems , Masters
Thesis, Air Force Institute of Technol-
ogy, Wright-Patterson Air Force Base,
Ohio: December 1978.

[2] Agrawala, A. K., Mohr, J. M. , and
Bryant, R. M., "An Approach to the

Workload Characterization Problem,"
Computer , Vol 9, No. 6, June, 1976,

pp 18-31.

[3] Svobodova, Liba, Computer Performance
Measurement and Evaluation Methods ;

Analysis and Applications , American
Elsevier, NY, 1976.

[4] Ferrari, Domenico, Computer Systems
Performance Evaluation

,
Prentice-Hall,

Englewood Cliffs, NJ, 1978.

160

[5] Agrawala, A. K., and Mohr, J. M.,

"Some Results on the Clustering Approach
to Workload Modelling," Proceedings of
the 13th CPEUG , New Orleans, LA, Sep,

1977, pp 23-38.

[6] Frazier, Larry R., "A Simulation Model
for Capacity Analysis," H6000 Computer
Performance Evaluation Users Group
Meeting Minutes , Maxwell AFB, AL, 6-8

March, 1978, pp. 236-244.

[7] Anderberg, M. R., Cluster Analysis for

Applications , Academic Press, New York,

1973, pp 169-170.

161

PERFORMANCE COMPARISON MEASURES FOR COMPUTER SYSTEMS

Ints Dzelzgalvis

International Business Machines Corporation
P.O.Box 390

Poughkeepsie , New York 12602

The need for performance ratings of computer sys-
tems is as fundamental as the measures of horsepower,
calories, watts, etc. Yet the computer system perform-
ance measures that are of sufficient quality to quantify
and evaluate reasonably the differences of systems of
differing architectures, design, and operating systems
are hard to find. That does not mean that comparisons
are not made. In fact, comparisons are made quite fre-
quently; however, the quality and value of the results
is at best questionable. It will be shown that the
classical performance measures of cycle time and MIPS
never were accurate measures and with today's added com-
plexity and clever system design tradeoffs, these mea-
sures can be downright distortions and/or inversions of
the facts. The measures of thruput and response time/
turn around time are the real candidates for computer
system performance measurement; however, their proper
evaluation can be a tedious and costly undertaking. In
addition, due to, the complexity of the evaluation pro-
cess, these measures are prone to error and biases which
can quickly destroy their quality as proper measures to
be used in a comparison. This paper focuses on the
evaluation process of the response time and thruput mea-
sures, identifies the potential pitfalls, suggests some
useful approaches to their proper evaluation, and ident-
ifies key problems yet to be resolved.

1 . Introduction

The need for performance rat-
ings of computer systems is great.
The customer needs them to select
the system that will satisfy his
requirements at the minimum cost.
The vendors, planners and designers
need them to establish design
points. The computer system manager
needs them to evaluate the efficiency
with which his system is running to-
day and determine the potential that
remains to be had.

Any discussion of performance
must also include a discussion on
price. Price is generally deter-
mined by the configuration which is
a byproduct of the performance analy-
sis. Pricing of a configuration is
generally a fairly straightforward
exercise and, thus, will not be
discussed in great detail.

Performance rating implies a
measure. Traditionally, the per-
formance measures used by the in-
dustry have been either cycle times

163

or instruction-execution rates (in
millions of instructions per second
MIPS) of the main processor in the
system, the instructions here being
machine level instructions. These
measures today are not only mislead-
ing, but downright irrelevant as the
measures of the performance power of
today's data processing systems.
One of the key reasons for this is
that the user's units of work to-
day are transactions, jobs, sessions
and not instructions. In fact, the
user has little knowledge of the
number of instructions that his work
requires because often the applica-
tion code that processes his trans-
action was written by someone else,
usually, in a higher level language.
In addition, the software services
provided to the user by the operat-
ing system require a substantial
number of instructions themselves
and in many real time systems tend
to dominate the overall instruction
count (path length)

.

Figure 1 provides an example of
comparing several systems on the
basis of the internal processor mea-
sures, KIPS, (thousands of instruc-
tions per second) and a comparison
using the user workload measure thru-
put. The reader will quickly note
that the internal comparison leads
one to believe that the processor
from the System A family is a sub-
stantially worse price/performer
relative to the other systems. On
the other hand, when viewed from the
thruput point of view. System A pro-
cessor is a substantially better buy
than any of the others. The numbers
in the chart reflect real system
families that were studied in depth
by the author. The inferences and
conclusions stated in this paper are
the results of the study. Because
thruput is very workload dependent,
the comparisons based in Figure 1 are
valid only for the environment which
is represented by the workload used
in the study. It is for this reason

K$

lOi-
9 -

8
7

6

5

4

3

~ System

System C

System B'

KIPS

System C

System B' System A
X

Thruput

I I I I M 1 I

3 4 5678910 3 4 5 6 78910

Figure 1. Dollars Vs. Performance

164

that anonymity will be maintained of
the actual systems that were studied.

The paper describes a method for
developing the necessary figures of
merit that will allow one to perform
reasonable cross-system comparisons.
The method is depicted as a process
whose major elements are identified
in Figure 2. This process was tested
out in a study of three systems with
radically different architectures and
design. The results of this study
will be used to illustrate the key
elements in the process.

2. Units of Work

The precise definition of the
unit of work depends on the work
type. The three most common work
types include: batch processing where
the unit of work is a job; inter-
active processing where the work unit
is a transaction which in turn might
be made up of a number of messages;
and session-oriented processing, such
as program development on an inter-
active time sharing system (for ex-
ample, TSO) .

2.1 Batch, Turnaround Time
and Thruput

Workload Selection

The number of jobs that the sys-
stem can process over a given period
of time is referred to as thruput.
Turnaround time is time that elapses
from the job's entry into the system
to the time that the job is completed
and the output is available to the
user.

Workload Mapping

Systenns Analysis

n u u

System Ratings

and Comparisons

Figure 2. The Performance Evaluation Process

2.2 Interactive Environments,
Response Time and Thruput

Response time is generally de-
fined as the time from entering the
last character of the input message
to the receipt of the first character
of the output message. Note that a
transaction can consist of several
messages. Generally the transaction
response time is defined as the over-
all average message response time.
The trivial message response times
are excluded. Trivial messages are
messages that involve little or no
work. Examples are notifications of
system or transaction status. Thru-
put, of course, is measured in the
number of transactions that the sys-
tem can handle over a period of time
at a prescribed level of response
time.

2.3 Session Environments,
Response Time and Thruput

The response time is defined
similarly to the interactive environ-
ment. However, thruput is defined in
terms of the number of users that the
system can support and still provide
a given response time.

The definitions have purpose-
fully been left with some flexibil-
ity which, as will be seen later, is
needed to match the work unit re-

165

quirements. The exclusion of termi-
nal delays, implementation time,
etc. , has been done for practical
reasons. Factors, such as terminal
characteristics, implementation
tradeoffs, availability, etc., are
treated as separate variables from
systems performance.

3. Workload

The process for evaluating the
performance measures must begin with
a proper selection of a workload.
This step is often one of the more
difficult ones to resolve, because
little if any attention is given to
defining a rationale for choosing an
appropriate set of workloads for sys-
tem rating prior to the study itself.
It will be seen that the workload
selection is crucial in the ultimate
positioning of a given system against
other systems. Thus, as the study
proceeds and the positioning is re-
vealed to the participants, changes
in workload become the only means for
changing the positioning of a given
system; hence, the pressure for
change by advocates of the various
systems involved.

The term "workload" as used in
this paper includes the jobs, trans-
actions, sessions, etc. that a given
system is required to execute at a
given time. The workload differs
from a classical benchmark in that it
should utilize during its measurement
period all of the resources of the
system in roughly the same ratio as
one would expect in the real environ-
ment. This is in contrast to a typi-
cal benchmark which consists princi-
pally of computer instructions for
exercising the system's processor and
a small data base to exercise its I/O
handling capability. A workload also
exercises the system's capacity and,
thus, requires a full configuration.
It allows the analysts to study rea-
sonable price tradeoffs as well as
performance

.

4. Workload Definition

If the workload is to be used to
study two or more systems of differ-
ing architectures and design, its
form of definition should be systems-
independent or generic. The defini-
tion should include:

• Scenarios of user work units
• Frequencies of work occurrence
• Data base definitions
• Geographical dispersion

requirements
• Capacity requirements

There have been several attempts
at formalizing and standardizing the
semantics for such a workload; how-
ever, none has received a wide accep-
tance.

It cannot be emphasized strongly
enough that selection of the proper
workload is absolutely essential.
The often questionable credibility of
the whole systems analysis profes-
sion, because of some of its monumen-
tal errors in projecting a reasonable
systems performance capability, can
be traced to the selection of the
wrong workload. We must recognize
that this tendency for erroneous
workloads is helped along by three
forces

:

• The lack of an analyst's appre-
ciation for the influence of
workload on the final results.
The analyst, because of his
training, generally pays much
more attention to the modeling
and measurement aspects of the
analysis

.

• Because of deadlines, lack of
resources, etc., the analyst as
well as the analysis requestor,
is generally looking for short-
cuts. This often results in the
use of a benchmark and at times
even a kernel, under the guise
of a workload.

• The selection process is often
helped along by a vendor who
naturally would like to insure
that the workload will frequent-
ly exercise the functions that
his system does well and mini-
mize the frequency of the func-
tions that it does not do so
well

.

How often have we seen a system
being selected on the basis of its
ability to execute optimized float-
ing point operations, while the cus-
tomer's work that is targeted will
only be running COBOL!

166

For a given customer, workload
selection is usually a fairly
straightforward, if tedious, process
because most of the work is either
running or well defined. Workload
selection for a planner/designer on
the other hand is a more difficult
task because the workload must repre-
sent many customers. Because study
of each customer is impractical,
statistical methods need to be em-
ployed in selecting a practical
sample and then projecting the re-
sults for the whole. The selection
is further complicated by the usual
planning objectives. These are that
the workload be representative of
system usage in the marketplace, that
the workload stress key system re-
sources and major functions, that the
workload relate to history, and that
it be complete and well defined.

Establishment of a criterion for
representativeness requires current
and planned usage studies of the cus-
tomer base for each of the systems
being studied. The study will also
have to collect data on application
characteristics, transaction loads,
data base characteristics, etc. The
resultant statistical data then
should serve as a base for establish-
ing the workload environments , where-
in all of the systems of interest are
competing. A common problem in work-
load definition is that the ultimate
choice is too loosely defined and in-
complete. This allows the various
users of the workload to make assump-
tions that substantially affect the
system performance which, unless
carefully managed, can distort the
final results.

Applications

Order Entry

Shipping

Key Data Entry

Invoicing

Spooling

Figure 3A. LATS Workload

Operations Mode

Interactive

Batch

pare shipping instructions in real
time, but perform its invoicing in-
structions in batch mode. The in-
voicing job is performed in two
steps. First, the invoices are as-
sembled from the master files and
previously generated order files.
The finished invoices are then as-
sembled in an invoice data set.
Finished invoice data sets are then
passed on to the spooling job which
prints them out on a 300-lpm printer.
To insure that the invoices will be
available when needed, it has been
established that the system must be
able to create a minimum of 280 in-
voices per hour. The peak hour
transaction rates for the LATS appli-
cation are summarized in Figure 3C.
Figure 3D illustrates the application
message flow. Note that all applica-
tions except for order entry consist
of a single message pair. The han-
dling of each invoice in the batch
job is analogous to the message con-
cept in the interactive applications.
Figure 3E depicts the data refer-
encing flows between the files.

In the case of our study, the
workload finally selected includes
the five applications described in
Figure 3A. Furthermore, the LATS
Company for which the workload is
named is a small company all housed
in one building. Hence, there is no
need for a communications network.
The interactive terminals are all
locally attached. Furthermore, the
workload in LATS is such that each
application has terminals dedicated
to it, that is, a given terminal will
interact with only one application
(Figure 3B)

.

The LATS Company intends to use
its computer system to take orders
interactively for its products, pre-

5. Workload Mapping

The next step in the evaluation
process is the mapping of the work-
load onto each of the target systems.
This requires an interface which, for
our purposes, will consist of a pro-
gramming language, data base lan-
guage, communication access method,
operating system, etc. In addition,
we need a good understanding of each
of the systems so that the mapping
can take full advantage of the sys-
tem features. For proper comparison
one must make sure that the inter-
face levels are "equal" in function.
It would not be very meaningful to
compare System A with IMS-type of
data support vs System B with a BDAM

167

level of support. Insurance of the
interface consistency is not a triv-
ial exercise. To illustrate the kind
of problems one faces here, let us
return to our sample. The LATS Com-
pany has identified three systems
that it feels are worthy candidates.

System A is well established and
functionally mature. This system is
based on an architecture that is exis-
tent and well understood. It pro-
vides COBOL as well as other rich
system functions. However, the sys-
tem is relatively expensive and, due
to its age, the interfaces do not
provide all of the new design fea-

tures which enhance ease of use and
system integrity. It is reasonable
to assume that the system is very
reliable.

System B is an up-to-date system
which provides all of the function
required, including COBOL. Incorpo-
rated into its interface are many in-
tegrity and usability features. The
system, because of its advanced tech-
nology, is very attractive in price.
The system is believed to be re-
liable. The COBOL offering has all
the function needed for LATS and is a
direct follow-on from a previously
existent offering.

Console

Order Entry

Figure 3B. LATS Workload Base Configuration

168

Order Entry

(Orders/Hr)

Shipments

(Orders/Hr)

Key Data Entry

(Entries/Hrs)

Invoicing

(Invoices/Hr)

Spooling

(Lines/Hr)

Number of Terminals

6 12 18 24

94.5 189 283 378

624.0 1,248 1,872 2,496

54.5 109 164 218

240.0 280 280 280

18,000.0 18,000 18,000 18,000

Figure 3C. LATS Rates Workload Peak Hour
Transaction Rates

System C is a relatively low-
priced system that has been well
established in some environments for
several years. The system offers a
broad range of software support in-
cluding transaction processors,
COBOL, and data management support
that would be useful for the LATS
workload. However, the COBOL and
data base package available for mea-
surement were brand new offerings
with potential exposures of coding
and design defects.

The first problem in the inter-
face selection is on System C. There
actually are two choices of source
language: COBOL, which is preferred
and FORTRAN. However, COBOL is risky
on System C because the functional
limitations and potential defects in
the first release could negate other
advantages. The study alternative on
this system is to implement the ap-
plications in FORTRAN which, as far
as LATS is concerned, suffers in us-
ability value. The required func-
tions lacking in FORTRAN would be
hand coded in Assembler. An experi-
ment of this situation was per-
formed. It confirmed that the use of
the first release software available
at the time would definitely have
made System C unattractive, while the
use of FORTRAN with some RYO function
satisfied function and reliability
requirements. Furthermore, a more
detailed study revealed that the
FORTRAN implementation closely ap-
proximated the intended COBOL imple-

Key Data Order
Entry Shipping Entry Invoicing Spooling

Figure 3D. LATS Workload Transactions

mentation when all of the early re-
lease limitations in the Vendor's
COBOL were removed. This result then
indicated that LATS Company should
use a FORTRAN implementation for the
comparison, but, if Vendor C is se-
lected, careful study would have to
be made on the plans for use of its
COBOL.

A second problem in the selec-
tion process occurs on System B mem-
ory management alternatives. This
company's system provides two alter-
native forms of memory management in
its transaction manager. On the one
hand, the user could select a memory
management option which utilizes the
minimum memory by freeing most com-
mitted memory whenever the transac-
tion is in a major wait state (for
example, waiting for a message from
the terminal). This, of course, re-
quires additional processor instruc-
tions to STORE and RESTORE the status
as well as to transfer and assemble
the resources. With expensive mem-
ory, and lightly loaded processor,
this alternative would be a good
choice. The other memory choice ig-
nores the memory savings potential
and, thus, saves the processor an ad-

169

Figure 3E. Data Referencing Flows for LATS Workload

ditional processing load. Let us
call this memory management scheme
as "fast." The selection here should
be preceded with an evaluation of
both alternatives and a projection
of future memory prices. The fact
that the memory prices in the in-
dustry have fallen dramatically with-
in the last year would indicate that
"fast" might be the right choice.

6. Systems Analysis

After workload mapping, the ana-
lyst is ready to proceed to the eval-
uation phase. In the ideal but im-
probable case, the analyst could code
and measure the workload on each sys-
tem. More likely he will have to de-
pend on modeling. The choice of
modeling techniques and aids is great
and generally each analyst already
has a favorite. The author has yet
to find a technology that seriously
inhibited the accuracy of his re-
sults. Much more important than the
identification of a specific modeling

technology, are the depth of the
model, skill and cleverness of the
modeler, and the accuracy of the pa-
rameters and algorithms being em-
ployed. The latter fall into two
categories, hardware characteristics
and software characteristics. A sam-
ple list of each is provided in
Figure 4. The hardware characteris-
tics are generally available from
vendor literature. Software charac-
teristics are more difficult to de-
termine; however, we have found most
of what is needed in software support
manuals or through guesses resulting
from system design implications. The
one exception is path length. Our
solution to the path length was:

• To identify frequently used
functions, contract for time at
service bureaus which had the
machines installed, and then
measure the path length using
simple programs that repeatedly
called on these functions.

170

Software Characteristics

Path Length By System Function

Including

Data Access Path

Message Access Path

Transaction Mgr. Path, etc.

Memory Management Algorithms

Other Resource Mgr. Algorithms

Hardware Characteristics

MIPS (million of instructions

per sec)

Cache Size

I/O Structure

Service Times

DASD Access Characteristics

(seek time, rot. delay,

xfer time etc.)

Etc.

Figure 4. Key Model Input Requirements

For the less frequently used
functions we estimated the path
length by sketching out a primi-
tive program that would perform
that function.

For a sample of the path length
for the three systems studied, see
Figure 5. The description of how
the measurements were constructed and
carried out is a subject for a whole
paper and will not be dwelled upon
here, other than to say that the mea-
surements required about one man-
month per system of which about 5-10
hours were actually spent on the sys-
tem itself.

Modeling each of the systems re-
quired considerably more effort. Un-
fortunately modeling is still an art
and, hence, very dependent upon the
skill and ingenuity of the modeler.
A good modeler can make a difficult
job look easy, while a lesser skilled
modeler makes a trivial job appear
very complex. However, even the best
are limited to the information that
they are provided. To illustrate the
problems of the latter, let us return

Receive Message from Terminal

Language

System Function Assembly Fortran Cobol Basic

0 Per msg.

Per char.

4,000

462

11,000

N/A
N/A
N/A

21,000

727

P-X (2)

V
Per msg.

Per char.

1,700

155

4,500

182

N/A
N/A

N/A
N/A

P-Y

V
Per msg.

Per char.

4,891

2,309

P-X (3)

V
Per msg.

Per char.

6,680

291

4,000

277

P-X (3)

U
Per msg.

Per char.

6,380

218

Q Per msg.

Per char.

19,300

0

17,400

0

Total RECEIVE MSG. pathlength = "Per msg.' + No. of char, in msg.

"Per char."

Legend:

System designation code includes system name (e.g. P), name of

operating system (e.g. X), which release (e.g. (2)), and the terminal

type (e.g. V).

Figure 5. Intrinsic Function Pathlengths (Native Instructions)

171

to one of the systems in our study.
In reviewing the hardware and soft-
ware descriptions, nothing unusual
was noticed. When the model was be-
ing calibrated, a serious bottleneck
was observed at the DASD controller
by the measurements , but not the mod-
el. Detailed analysis revealed that
the DASD controller, operating within
the systems setup that was being mea-
sured, did not properly overlap SEEKS
between the two devices that were at-
tached to it. It turned out that the
cause was the lack of some software
support within the operating system
that we were using. This example
also points out the value of calibra-
tion .

7. System Comparisons

Having a model , we can now de-
velop our desired results. Using the
sample LATS workload and models of
the three hypothetical systems, we
can derive a service time vs thruput
relationship for each of the systems.

7 . 1 System Parameters

Before interpreting the results,
let us discuss some essential charac-
teristics of the three systems.

System A. 32-bit architecture.
Stand-alone channels, two levels of
interrupts. The system utilizes a

type of virtual memory space managed
by software with hardware assists.
The processor executes about 200
thousand instructions per second
(KIPS) on the type of work studied.

System B. 16-bit architecture. Bus
with native adapter type of I/O arch-
itecture. Several levels of inter-
rupt. All operations performed via
registers. The architecture defines
a virtual memory space which is man-
aged by software with some hardware
assists. The processor is rated at
300-400 KIPS on the work studied.

System C. 16-bit architecture. Bus
structure for I/O. Several levels of
interrupt. The operating system pro-
vides for fixed partitions and swap-
out. The processor is rated at 600-
800 native KIPS.

7.2 Configurations

The configurations required to
perform the LATS workload were very

similar. They consisted of:

• A processor
• 512 bytes of memory
• 2 Winchester type DASD spindles
• A 3 00 1pm printer
• Enough CRT terminals to support

the required thruput
• DB/DC software (when available)
• COBOL/FORTRAN
• VSAM-like access method

The one difference is that Sys-
tem C terminals have only enough cap-
ability to allow data changes to oc-
cur on one line at a time, while the
other systems have terminals that
have a large enough buffer to allow
full screen operations. The signifi-
cance of this is that System C termi-
nals will require more interactions
with the processor, thus requiring
additional path length per unit of
work. Another more subtle differ-
ence between the systems involves the
user's interfaces. System C software
provided the least function for
transaction management and conse-
quently required additional program-
ming on the part of the user in the
application portion of his system.
System B provided all the function
required, but it was less modular
than System A. This resulted in
System B having to invoke some un-
needed modules which generated addi-
tional path lengths. Another factor
contributing to System B path
lengths was the constraint of 51 2K
bytes of memory which forced it to
use a systems software provided mem-
ory management scheme , which by sav-
ing the need for additional memory,
requires additional path length. To
understand System B's full capabili-
ties, two different sets of its im-
plementations are shown. The RYO
version uses the minimum system-pro-
vided functions and consequently
avoids some of the overhead identi-
fied above. Of course, the disad-
vantage of this is that the LATS
Company programmers would have to
provide significantly more program-
ming support than with the other im-
plementations. The other System B
implementation is designated as full
DB/DC.

7.3 Results

Figure 6 gives a plot of the
number of terminals on the system
against average non-trivial message

172

response time. As expected, the re-
sponse time increases with increasing
system load. Generally there is a
threshold of response time beyond
which the response time is unaccept-
able to the user. In the case of the
LATS Company this threshold turns out
to be 1.1 seconds on the average.
Thus, a way to estimate a given sys-
tem's performance capability is to
look at the thruput capability of the
system at the threshold of the user's
response time. In our case this
would be:

System A - 54 Terminals
System B RYO - 36 Terminals
System B - 18 Terminals
System C - 42 Terminals

Although the response time threshold
for our workload was given, our ap-
proach of looking at the performance
capability has caused at times some
heated debates. There is a school of
thought that believes that there is a
universal constant that represents
the response time threshold for all
users in all circumstances. Those
who believe in this then quickly en-
gage in an argument on whether 1.1 is
appropriate. Our response to the ar-
gument is that irrespective of what
that constant might be, the 1.1 sec-
ond response time on this workload
appears to represent a time when the
system is becoming saturated, and the
response time is beginning to climb

quite fast. Thus, as luck would have
it, the response time threshold point
and the system saturation points co-
incided for all of the systems under
study. The saturation point equiva-
lence will become more apparent when
we look at processor utilizations.
Another school of thought appears to
want the performance ranking to be
done on a response time scale at
fixed thruput. Our problem with this
philosophy is that we do not know
how to measure the value of faster
response times, especially when they
are under the threshold, and the dif-
ferences are within 1/10 seconds.

The most startling aspect of the
thruput results in Figure 6 is that
the thruput (number of terminals)
capability of the systems has no cor-
relation with the processor (KIPS)
ratings that are within the systems.
The 200 KIP processor in System A
has more thruput capability (54 term-
inals) than either the 300-400 KIP
processor in System B or even the
600-800 KIP processor in System C.
(Note Figure 1 .)

.

In Figure 7 we are plotting the
processor utilizations against the
number of terminals for each of the
systems. Note that each of the sys-
tems, except for System C, at their
previously developed thruput capabil-
ity points, are about 70% utilized.
Of all the resources at this point

173

the processors, except that of Sys-
tem C, were the most utilized. Sys-
tem C has a bottleneck at the DASD
devices

.

The System C bottleneck is
caused by its memory manager. The
real memory requirements are illus-

trated in Figure 8. As can be seen
from the chart, the 30 terminal case
for the system exceeds the available
memory and consequently swapping of
partitions must commence. Swapping
generates additional work within the
CPU (note the change in the CPU uti-
lization curve for System C) and ad-

D
ô
->

C
u
0)

100

90

80

70

60

50

40

30

20 I-

10

0

,

System B'

System A

J L

6 10

± J L

20 30 40
Number of Terminals

50 54 60

Figure 7. LATS CPU Utilization

18 24

Terminals

Figure 8. Memory Requirements for System C Based on

LATS Workload

174

ditional load on the DASD subsystem,
from which the data are swapped.
This additional I/O activity is re-
sponsible for saturating the I/O sub-
system on System C. This bottleneck
can be alleviated by adding another
I/O device. Had that been done, it
is most probable that System C thru-
put capability would be greater than
shown. System B avoided the I/O
problem through use of its in-line
memory management scheme. System A
avoided the problem by providing a
demand paging mechanism.

The above study has provided
us with two important pieces of in-
formation: the performance capability
of the system, as well as a knowledge
of the configuration required to
achieve the different levels of per-
formance. By pricing out the latter,
we have price or cost which we can
use to plot performance against
price (Figure 9) . For a given
user, (whose workload requirements
are known) the chart can provide a

quick reference of the best choice.
For a vendor, the chart identifies
its competitiveness (or lack thereof)
over a range of performance capabil-
ity. For a planner of future systems
(assuming for the moment that the
four sets of results represent four
different system offerings) , the
chart can provide insight as to
proper granularity of offering spac-
ing .

As is generally the case, most
successful studies generate new and
additional questions. The more in-
triguing one in this study is the
reason for almost a negative corre-
lation between systems thruput and
processor capability. The reason, of
course, is that the faster processors
require more instructions to do a
similar function than the slower pro-
cessor in System A. This shows up
quite clearly in the path length com-
parisons of the LATS workload (Figure
10). It is interesting to note that
none of the more obvious explana-
tions, such as the 16 vs 32 bit arch-
itecture, differences in instruction
sets, or the other architecture fea-
tures, were the major contributors.
Instead, the channel and memory man-
agement strategies and assists made
the largest difference. The channel
difference shows up most clearly in
the spooling job (System A had one
while the others did not) . System A
had dynamic paging with hardware as-
sists to handle memory overflow prob-
lems. System B used the previously
discussed scheme, which resulted in
a very substantial path length in-
crease, while System C uses a SWAP
technique, which puts most of the
burden on the I/O paths in the sys-
tem. The one other significant fac-
tor which did not appear to affect
System C performance too badly was
its use of a less than full function
CRT.

System A

II II I I 1—I 1

0 6 10 1820 30 40 50 54 60

Number of Terminals

Figure 9. System Price Vs Number of Terminals

175

Order Entry

(Per Order)

Shipping

(Per Order)

System A

424.2

31.3

System B
RYO System B

Key Date Entry 22.3

(Per Labor Card)

Invoicing 31.8

(Per Order)

Spooling .8

(Per Line)

Legend:

Native Instructions (K)

Includes PIO

969.7

60.0

41.8

61.3

12.1

1807

127.1

119.3

61.3

12.1

System C

554.4

73.1

118.4

83.7

16.7

Figure 10. Pathlength Comparisons

The study also has suggested
that the performance differences of a
given system are very sensitive to
the workload which is being used to
evaluate the systems. Had we had a
scientific workload that consisted of
a lot of small computation-intensive
programs which were not affected by
some of the system factors discussed
earlier, then we would have seen rad-
ically different sets of comparison
results. Had we used a 1200 1pm
printer. System A would have stood
out even more. This sensitivity to
workload implies that prudence should
be used when comparing systems. It
also illustrates that raw native MIPS
cannot be used as a figure of merit
for system power

.

176

177

EVENT DRIVEN CAPACITY PLANNING

Springer W. Cox

Digital Equipment Corporation
Maynard, Ma. 01754

Accurate performance prediction for capacity planning has historically been
hindered by inadequate workload descriptions. Present techniques often rely on
accounting information without considering its sufficiency as a basis for perform-

ance prediction. Further, the performance reports generated for capacity plan-

ning often force the analyst to take sizable intuitive steps in reaching his conclu-

sions. As a result, planning decisions must be based on predictions of unknown
accuracy and sensitivity to error.

A performance prediction system for capacity planning is under develop-

ment. The important events of system/workload interaction are recorded and
used to drive an efficient hardware/software simulation model. After each

workload has been traced, the model can predict performance under a wide
variety of loads, mixes, and configurations. For a small but diverse domain of

demand paging environments, accurate response time predictions have been

achieved.

Keywords: Capacity planning; hardware monitors; modeling; performance

evaluation; performance prediction; simulation; validation; workload charac-

terization; workload management.

1. Preface

The objective of this paper is to describe the
development and validation of a performance
prediction system intended for use in several ca-

pacity planning situations.

The structure of this paper reflects the struc-

ture of the development/validation project. First, I

consider the need for a quantitative model of

known accuracy. I proceed to a choice of methodol-
ogy based to some extent on intuitive considera-
tions. Next, I briefly discuss the evolution of de-

pendencies from a project management point of

view. Then I explore the structure of the model
and its validation, in some detail. In the conclu-

sion of the paper, I condense the results and relate

them to the overall context.

The resulting modeling system, called the

System Performance Predictor (SPP), has several

distinguishing features. I believe the workload

characterization represents some new applications

of techniques. The level-of-detail falls between in-

struction traces and accounting data. The virtual

memory demands are characterized by lists of dis-

tinct page identifications. These page references

are revealed by artificially induced page faults.

During simulations, pages are treated separately

and are not grouped into "mean working sets" or

some other aggregate. Even so, the processing re-

quirements of the SPP are not excessive.

The design of the tracing program followed

from the needs of the simulator, not the reverse. In

order to attack the workload-dependent CPU
power problem, I implemented a workload instruc-

tion sampler within the tracing program. The
method used to quantify workload demands at-

tempts to separate effects which are intrinsic to

the workload from environment dependent effects.

The latter are more easily handled by the simula-

tor.

179

Perhaps the most important distinction is the

scope of the vaUdation. Many synthetic environ-

ments of gradually increasing complexity were

simulated first. The final validations are to be per-

formed on unfriendly (never seen before) work-

loads. The resulting accuracy estimates will be as-

sociated with routine use of the SPP. The overall

accuracy is a measure of the sufficiency of our

workload characterization as a basis for perform-

ance predictions in a demand paging environment.

The objectives of the project and expected use

of the model led to the development of a workload

trace program, a trace-reading interface, and a

trace-driven simulator. These subgoals led to a

large number of measurement objectives for which

a hardware monitor was adapted. Finally, the out-

put of the model was compared to validation runs

on the real system driven by a remote terminal

emulator (RTE).

2. Introduction

2.1 Motivation

There are many decisions a computer installa-

tion manager must make which affect the quality

of service received by the users of the system. Of-

ten, workloads tend to change and performance

tends to become degraded as users find new ways
to make themselves more productive. In order to

control these effects, the installation manager
must make judgements about how the data proc-

essing budget should be spent. Also, the effects

that changes in budget will have on the users of the

system must be anticipated.

One step in this complex decison-making

process is to predict changes in the performance of

the data processing system that occur when cer-

tain options open to the installation manager are

exercised. For example, if the paging activity of a

virtual memory system seems high, is it better to

buy more memory, buy a faster swapping device,

use a slower processor (to save money), use a faster

processor, or do nothing? An accurate performance

prediction methodology has great value in such

situations. The System Performance Predictor

(SPP) was intended to provide a solution to these

and other problems which must be faced by man-
agers ofDECSYSTEM-20 installations.

An important deficiency in present methods is

that when a prediction is made, there is no quanti-

fication of the error. Thus, sizable resources can be

gambled on predictions of unknown accuracy ob-

scured by an unknown amount of statistical noise.

Further, the sensitivity of these decisions to small

errors in assumptions is generally not known. For
these reasons, the accuracy of the System Per-
formance Predictor is being vigorously tested. The
environments where the accuracy of the SPP is to

be measured attempt to span the environments
and workloads used on real systems. The model is

to accurately predict the following changes to the
execution environment:

1 . Change in direct access storage device (DASD)
performance characteristics.

2. Change in number ofDASD devices.

3. Change to new DASD attachment
configurations.

4. Change in real main storage.

5. Change to different power CPU.
6. Change in terminal and batch load (number of

terminals, think time distribution, etc.).

7. Change in workload mix.

Other capabilities may be added later.

2.2 Choice ofMethodology

The decade of the 1970's has seen a great im-
provement in the diversity of tools available to

computer performance analysts. Although many
techniques seem to have their essential features

rediscovered periodically, many genuine advances
in modeling techniques have occurred recently.

Unfortunately, truly objective studies of applica-

bility and accuracy are difficult to find. The result

is that performance analysts are faced with a

bewildering array of performance prediction tech-

niques and claims of accuracy which are occasion-

ally quite misleading.

Many models for performance prediction have
been validated only in a very undemanding sense.

Strict validation means that both accuracy and
statistical noise associated with the predictions

have been evaluated for similar workloads and ex-

ecution conditions. The current lack of stan-

dardization in modeling methodology has unfortu-

nate effects. One of them is that validation reports

must be examined in extreme detail if any results

are to be applied elsewhere. It is not always clear

which of the model's predictive powers have been
tested by the validation.

Table 1 is a list of modeling techniques con-

sidered in the present project. It is roughly ordered
from top to bottom in increasing accuracy,

increasing input requirements, increasing develop-
ment costs, increasing lateness of availability and
increasing cost of operation. This list is not com-
plete and reflects the prejudices of the author.

180

Table 1 Performance Models

1. Linear Constraint

2. Stochastic

A. Simple Queuing

B. General Markovian

I. Queuing Networks (Product Form)

n. Approximate Solutions

Iterative

Decomposition
Diffusion

Ad Hoc
3. Simulation

A. Queuing Network

B. Hierarchical/Hybrid Approximations

C. Detailed Simulation
Distribution Driven
Trace Driven

4. Prototype/Synthetic Workload

5. Empirical

A. Linear Statistical

B. System Profiles

C. Analysis of Response

D. Resource Consumption

Linear constraint models are easy to under-

stand and have relatively simple input require-

ments. They form rather loose bounds on the

performance of multiple resource systems and are

most useful in feasibility studies. During empirical

studies, linear constraints, including conservation

of space-time products, are useful consistency

checks. Since their assumptions are quite credible,

they forcefully state that many conditions are im-

possible. In essence, the maximum utilization of

each resource puts a constraint on the throughputs

(and therefore responses)of each workload type.

Operational analysis is a variation based on ma-
thematical identities between carefully defined

performance variables. Many of its relationships

were presented in [12] ^ It did not offer new advan-

tages as a predictive model because, although its

mathematical identities are useful for checking in-

ternal consistency, additional assumptions, such

as homogeneity [14], are necessary for predictive

purposes. The accuracy of these predictions can be

expected to fall in the class of queuing networks

with product form solutions [2] . In practical appli-

cations, stochastic assumptions cannot be tested

satisfactorily and homogeneity can usually be

ruled out. Therefore, we must rely on empirical

determinations of their applicability.

Simple queuing models with external arrivals

should be well understood for the insights they
provide. However, they should be applied to real

modeling situations only with extreme care. For a

small user population or high resource utilizations,

they can be quite misleading [6] [32]. The accura-

cy of commonly used closed queuing networks and
the diffusion approximation using product form
must also be questioned. Although these models
are appealing in many ways, when applied to real

operating systems they commonly force one to

gloss over important details that can affect per-

formance. Under some modeling objectives (such

as high level design) queuing networks have lent

direction. However, recent work [23] demonstrates
that in the general case, more than two moments
of the service time distributions are necessary to

specify the behavior of closed queuing networks.

Further, important effects such as storage alloca-

tion must often be ignored. Both accuracy and pre-

cision of this class of models needs to be quantified

when used in real evaluation situations. As this

body of information grows, it may then become
possible to study generalities, but the current liter-

ature is still shallow.

An analytic queuing network model may best

be used in conjunction with a queuing network
simulator. The analytic model is used to validate

the simulator at many important points. The sim-

ulator checks for mistakes and tests the sensitivity

of analytic results to deviations from the ideal con-

ditions assumed. The analytic model generally

yields results at less processing cost and allows

families of designs to be studied parametrically.

Also, there are several mathematical constructs

available in analytic modeling which cannot be

simulated without difficulty. One example is the

processor-sharing queuing discipline. When ap-

proached in a simulation by decreasing the round-

robin scheduling quantum, the simulation run

time becomes excessive. On the other hand, the

queuing network simulator can be used to study

service time distributions with irrational Laplace

transforms, storage allocation, blocking, and other

effects which are mathematically intractable. Al-

so, the internal statistics potentially available

from simulations are far superior.

Ad hoc stochastic models have not yet made
their mark on practical CPE applications. One
possible reason is the scarcity of highly trained

personnel. Another possible reason is that the ac-

curacy properties of these models when applied to

non-ideal situations, do not justify attention to

much-abstracted detail.

1 Figures in brackets indicate the literature references at the end of this

paper.

181

Prototypes and detailed empirical studies [13]

require that well-developed hardware and software

be available and operational. Both are ruled out

from the current project because our objective is to

provide a vehicle that can predict system or net-

work performance under unavailable loads, mixes,

and configurations.

The requirements detailed in Section 2.1 and
the present considerations led to the choice of a

trace-driven simulator as the prediction vehicle.

The sensitivity to differences in workload implies

that trace measurements would have to be taken.

These data could be reduced or could drive a simu-

lator directly. A distribution-driven simulator

would require more trace processing and would
discard much measured detail. The requirement

to accurately model demand paging discouraged

me from using product form queuing networks. In-

tuitively, I felt that the use of mean working sets in

an ad hoc analytic model would not satisfy the

accuracy criterion. I ruled out SIMNET, an in-

house queuing network simulator, for the same
reason. Therefore, the method of choice was a

trace-driven simulator. If such a model could

satisfy the accuracy criterion, it could then be stu-

died with the intent of short-cutting part of the

simulation overhead with analytic and distribu-

tion-driven techniques.

Objections to simulation based on high proc-

essing cost are losing their validity as hardware

costs continue to drop. As we shall see, the actual

simulator overhead turned out to be quite reason-

able, when a trace optimization procedure was
applied. The operating characteristics of the SPP
during the validation are summarized in the ap-

pendix (section 5.2).

2.3 Operational Design

Figure 1 displays an overview of the SPP sys-

tem. The heart of the system Is an event-driven

simulator. Inputs to the simulator are illustrated

as being divided into three distinct categories.

First is the configuration parameters. These in-

clude such information as the number of disks

and terminals attached to the computer. The sec-

ond set of inputs is the actual characterizations of

the user jobstreams, such as CPU demand and
virtual memory requirements. This information is

derived from traces of the jobstream. The raw
trace data is abstracted, which results in a

reduction of the resolution in the timing of some
jobstream events. Some of the details of this ab-

straction are presented in the appendix. Finally,

the third set of inputs is the system parameters.
These quantify the timing of system functions and
hardware characteristics. They primarily consist

CPU USAGE

THINK, TIMES

MONITOR CALLS

CONFIGURATION

TERMINALS

WORKLOAD ^

OVERHEAD TIMINGS

SOFTWARE PARAMETERS

DEVICE CHAflACT ERISTICS

SIMULATOR

2 RESPONSE

DETAtLS

Figure 1 SPP Input/Output

of time elements for various operating system
overheads which have been measured previous-
ly. The simulator consumes resources for system
overhead at rates dependent on these elements
and on the state of the simulation.

To operate the SPP, the user supplies a re-

presentation of his workload and a description of
how it is to be "executed" (e.g., number of termi-
nals, etc.) to the simulator. The workload repre-
sentation is automatically generated by a special
trace program which has been run prior to the
simulation. Optionally, the resulting trace can be
condensed by an optimizing program. The
simulator then uses one or more traces to esti-

mate the new performance timings under a hy-
pothetical environment. The validation of the sim-
ulator, as discussed below, will allow the user to
estimate the accuracy of the performance predic-
tions. Finally, the performance analyst can look
for small variations in inputs and assumptions
which cause wide swings in the performance
predictions. If found, they may warrant more
measurement expense, or less confidence in the
predictions.

2.4 Simulator Design Consideration

The starting point for the design of the simu-
lator was a consideration of resource demands. It

was important to identify which demands deter-
mined the throughput and mean response time of

the workload execution. In making this choice, I

considered existing computer system models

182

and the intuition of analysts familiar with the sys-

tem. I chose CPU bursts, page references and
modifications, monitor calls, I/O actvity, and ter-

minal input to be elementary events. I anticipated

that this level of detail might be simulated with a
satisfactory simulation run time.

By far, the most important force acting on the
design of the simulator was the logic of the oper-
ating system. Many of the high level scheduling
decisions of the operating system have analogs
in the simulator. Models of many software par-

ameters available in the real system are included.

And lastly, the performance characteristics of I/O

devices, CPU and real memory have led to

related parameters in the simulator. A first level

of detail describing the implementation of the

SPP is presented in the appendix.

2.5 Project Activities

The design choices made for the model and
the goals of the project imposed many require-

ments on the more detailed activities of the pro-

ject. The simulator itself was implemented in

SIMULA running under TOPS-20. The design of

the simulator required that a tracing program be
developed which could deliver a description of

any desired workload. It soon became clear that

it would be convenient to develop an assembler
language interface for reading the trace files by
direct access. Later, additional function was re-

quired of this interface such as abstraction of the

trace to a coarser level of detail and removal of

undesirable distortions.

In addition to these development activities,

several major measurement and evaluation activ-

ities were required. The most straightforward of

these was an experiment to measure the valida-

tion statistics. These measurements were taken

on a system driven by a remote terminal emula-
tor. However, there were several other major
measurement requirements. To deliver these da-

ta, we adapted a hardware monitor for attach-

ment to the initial target CPU.

A validate-and-repair cycle was placed in the

original project plan in anticipation of the initial

failure of the simulator to satisfy the accuracy cri-

terion. If and when these discrepancies appeared
between the simulations and the RTE-driven real

system measurements, both simulator and sys-

tem would be instrumented, measured, and
analyzed for the failure. This cycle had to be min-

imized because of time limitations. The last step

was to establish the accuracy of the model and to

measure meaningful confidence bounds about
the predictions of the SPP.

3. Measurement and Validation

3.1 IVlodei Parameterization

Many system parameters integrated into the

simulator were related to frequently used func-

tions of the monitor. We associated these param-

eters with well-defined system operations, so that

the simulator could invoke them at the appropri-

ate times. We sought small variances in the actu-

al run times of these functions, so that

implementing the simulator to charge a constant

overhead for each of these functions would not

cause significant error in its predictions. In those

cases where this was not possible, the durations

were divided into more elemental components
which were selected by the state of the simula-

tion. Short, but frequently executed operations

must be included, if they have significant impacts

on system operation. The CPU overheads select-

ed for representation as simulator parameters

were those associated with:

1. Scheduling processes

2. Page faults

3. Memory garbage collections

4. Periodic system operations

5. I/O initiation

6. I/O interrupts

Other parameters include hardware characteris-

tics such as the mean disk seek time.

To measure the parameter values, we adapt-

ed a fairly sophisticated hardware monitor. This

hardware unit was able to monitor the virtual ad-
dresses associated with instruction fetches. By
programming the hardware monitor to determine
the elapsed time between various instruction

fetch events, we generated run-time histograms
for individual routines in the operating system.

Examination of these time distributions provided

the mean run time and its variance for each rou-

tine of interest. The hardware monitor also could

detect the execution of specific microinstructions

and map time distributions of I/O events. We
used it to measure data for parameterization of

the simulator, performance enhancement, de-
bugging the trace programs, and correction of

artifact in the traces.

3.2 Trace Artifact Correction

I began the artifact removal analysis by qual-

itatively laying out CPU time and other events

represented in the trace beside the desired simu-

183

lated time. The objective was to use traces from
the distorted trace environment as a source for

timing values which drive the simulator. An addi-

tional goal was that the algorithm chosen to cor-

rect the trace should be able to withstand minor
changes to the trace program. The requirement
of robustness to trace program development im-

plied that the artifact removal algorithm had to

have self-correction aspects. Three available

approaches toward this end are:

1 . To timestamp entry and exit from the trace

routines.

2. To use sampling techniques.

3. To do empirical regression studies of over-

head on trace subroutine execution rates [13].

Load-dependent system overhead imposes
an additional complication. Measurements com-
monly show that system overhead CPU con-
sumption increases with load. A trace under a
single environment could not be expected to

quantify these effects. Another form of load de-

pendency appears as time-driven system proc-

essing. The simulator can be driven by multiple

traces, but system processing that occurs at a

rate linear with time must be simulated exactly

once. Therefore, we chose to remove such activi-

ty from the traces. A motivation for removing
monitor traces is that the sampling is known to be
synchronized with the system's scheduling activi-

ty. This could have been fixed by "randomly"
generating exponentially distributed intersample

times. Instead, samples of scheduler and inter-

rupt processing were removed and the sampler
was presumed to be uncorrelated to the remain-
ing user program processing.

In view of these considerations, the artifact

correction algorithm removes all samples except
those representing user processing and user-ini-

tiated monitor call processing. An empirically de-
termined factor was derived from time

distributions measured by the hardware monitor.

This constant factor quantifies the CPU time rep-

resented by each sample. Load-dependent ef-

fects, interrupt processing, and scheduling are

therefore not represented in the derived traces.

All of these last effects are initiated by the simula-

tor based on the values of previously measured
parameters.

3.3 Validation Strategy

Before we executed the formal validation

plan, we entered into an initial calibration phase.
By this time we had measured all the parameters

of the model, and were ready to investigate the

predictons of the SPP. Two points from the vali-

dation experiment were used to make fine-tuning

adjustments. This calibration is described in the

next section. We then executed the validation

plan using new traces and seeds for the random
number generations.

The System Performance Predictor was too

complex for us to leap immediately into a com-
plete validation. To minimize complicated effects,

I chose to increase the complexity of the valida-

tions gradually. In order to begin with an environ-

ment of minimal activity, the simulation of CPU
activity with no users active was used as the first

validation point. Then we increased the com-
plexity to vacuous transactions with minimal
processor demands. Neither of these points,

however, appear in the formal validation plan. We
then proceeded to the case where a single re-

source is fully utilized by a known synthetic work-
load. This last environment is simpler than one
can expect in a live situation, but offers great ad-
vantage for studying the ability of the model to

capture the essential behavior of the system. It

was then necessary to proceed to more complex
situations after examining the behavior of the

model in conditions of one-at-a-time resource
saturation.

In a different dimension from the saturation

of resources are the complexities introduced by
increasing the level of multiprogramming. In ad-
dition to complex interprocess effects, increasing

load tends to expose new system effects. There-
fore, in accord with the strategy of starting the

validation in simple environments, we examined
single terminal runs first. These initial single user
validations were restricted to a synthetic transac-

tion (CPUJOB) composed of 5.1 seconds of user
CPU time. I then proceeded to examine the ability

of the SPP to predict the behavior of many inter-

active users of the CPUJOB transaction. This

introduced the complexities of unpredicted
transaction arrivals and process scheduling. In

addition to modeling system effects, I had to gen-
erate a think time distribution (uniform from 0 to

20 seconds) to match that of the RTE. This Intro- /

duced an extra source of variance over and
above the use of the SPP with traced think time.

The demand paging aspects of the SPP were
tested using a more complex synthetic job

(MEMJOB). It repeatedly touched 106 user pages
every 1 00 msec of user CPU time for a total of 1 .5

seconds. We felt that this job was somewhat
more active than most real workloads with re-

spect to its virtual memory demand. As I did with
j

the CPU intensive workload (CPUJOB), I tested

the ability of the SPP to predict the performance I

of a variety of loads running MEMJOB transac-
j

!

184

tions interactively. To continue tlie progression to

more realistic workloads, I included a real disk-

to-tape utility program (DMPRJOB) in the valida-

tion plan.

I measured the effects of loading on the

MEMJOB workload (across three different real

memory sizes) by designing and executing a 3 X
4 full factorial experiment. The RTE-driven

(REAL) runs had three replications and allowed

the generated think time distributions to be ran-

domized across all runs. The SPP runs (SIMU-
LATED) were blocked in order to remove the

variances caused by tracing and think time gen-

eration from each of the three blocks. These vari-

ances were randomized across blocks.

In both REAL runs and SIMULATED runs,

measurements were not collected until the choice

of the starting state appeared to have no effect.

The RTE data were collected from 5 minutes until

25 minutes after the start of the run. The simula-

tion data were collected from 2 until 7 simulated

minutes after the beginning. Within each run a

mean response time is derived from a least 25
individual responses of the same transaction

type. Each mean response time is then consid-

ered to be an independent observation.

Before I began the formal validation test, I

calibrated the SPP by making a few fine-tuning

adjustments.

3.4 Calibration Procedure

I found that additional calibration adjust-

ments had to be made over and above the mea-

surement of parameters. I adjusted two unmea-

sured parameters at each of two validation envi-

ronments in order to correct the simulations.

Both elapsed time and CPU time were

corrected for the real disk-to-tape utility job

(DMPRJOB). Elapsed time was corrected by ad-

justing a multiplicative factor for estimating over-

lapped I/O time. This factor is multiplied by a

sample count derived from the trace and removed

from the estimate of user I/O time. The CPU time

of the utility program was then corrected by add-

ing a CPU demand for each I/O request. These last

two adjustments were then iterated until both cor-

rect elapsed time and correct CPU demand were

simulated. This method was not straightforward,

but I used it beause it did not affect SPP accuracy

elsewhere.

Two additional calibration adjustments were

made for the simulation of overcommitted

memory. When the job which caused high page

fault activity (MEMJOB) was traced and simulat-

ed, the simulated CPU demand was too high. As a

first order correction, I subtracted that amount of

CPU time per traced page fault which corrected

the CPU demand. Presumably, the method of ar-

tifically inducing page faults in order to identify

referenced pages (see the appendix) was causing

extra CPU samples to appear in the trace.

The last calibration knob that I adjusted, pri-

or to the formal validation, affected the number of

dynamic simulated page frames. I found that I

could bring the simulated response times closer

into line with the RTE runs by removing 80 simu-

lated page frames. Further investigation revealed

that approximately 80 pages were actually needed
by the real system for I/O buffers and system ta-

bles. Thus, a previously ignored system parameter

was serendipitously estimated by adjusting a cali-

bration variable. This discovery lent additional

credibility to the SPP.

3.5 Validation Results

The results of the validation are presented in

Table 2 and graphed in Figures 2 and 3.

Table 2 Validation Results

,
512K
512K
512K

VIEAN HESPONSE ± 95% C I

The results are presented as the

mean response time (in seconds) plus or minus a

95% confidence interval (also in seconds) for

both real executions and simulations. For the

CPU intensive workload (CPUJOB) a factorial ex-

periment measured the SPP's ability to predict

load effects. For the high paging workload (MEM-
JOB), a factorial experiment measured the SPP's
validity in predicting load effects, main storage

effects, and their interactions. For simplicity, only

the interval estimates are presented here. The
data include a validation point running a real

disk-to-tape utility job (DMPRJOB).

185

MEAN
RESPONSE
TIME
(±95%

CONFIDENCE
INTERVAL)

REAL

SIMULATED

40 -

SEC.

30 -

20

10 —

il

The results show that the predictions of the

SPP were generally good.

The mean overall accuracy was that the

SPP's predictions were high by 10%. As shown in

Table 2, a few errors in uncalibrated environ-

ments were larger, but most predictions were not

significantly different from REAL mean response
times. In general, the SPP captured the quantita-

tive effects of each of the dependent variables in

that saturation conditions seem to be simulated
adequately. Examination of Table 2 under
midrange load conditions (3 and 6 terminals),

however, reveals that the SPP predictably deliv-

ered slightly high response time estimates under
conditions of sufficient main storage. This

"midrange bulge" reflects the fact that, as of this

writing, fine-tuning adjustments to simulations in

the medium load environments have not been
applied. I began to investigate possible correc-

tions to this in the sensitivity analysis.

0 1 3 6-8
TERMINALS

Figure 2 CPUJOB Validation

30 —

MEAN
RESPONSE 20-
TIME

(±95%
CONFIDENCE
INTERVAL)

10 —

REAL
^

SIMULATED £
OB
1 \ T-

0 13 6

TERMINALS

Figure 3A 512K

5*

0 1 3 6

TERMINALS

90 —
SEC.

60 —

Figure SB 384K

Figures MEMJOB Validation

1 1 1 r
0 13 6 8

TERMINALS

Figure 3C 256K

186

3.6 Sensitivity Anaiysis

In order to determine which adjustments of

the SPP were critical, I designed and executed a
screening test for sensitivity. Its objective was to

identify parameter groups which have strong ef-

fects on the predictions of the SPP. Also, I hope
to use the analysis to direct future measurement
and fine tuning efforts.

I began by separating the parameters into

three groups:

1. Trace factors

2. Page frame calibration

3. System overhead parameters

I chose an execution environment of six users of

the MEMJOB workload in 51 2K words of memo-
ry. This is an environment wich expresses the
"midrange bulge" described above, which is one
of the SPP's current weaknesses.

The design of the experiment is a 2X2X2
factorial with three blocks. Each of the three pa-
rameter groups has two levels: unchanged from
the validation experiment, and modified by
changing all group members (in unison) 10% in

the direction of increasing resource demand. The
variance across traces and think time genera-
tions was blocked out. Within each block, I ran

simulations using all combinations of parameter
group settings.

Table 3 Sensitivity Test Data

1. TRACE
FACTORS

2. PAGE FRAME
CALIBRATION

3 OVERHEAD
FACTORS

MEAN RESPONSE TIMES
(SECONDS)

0 0 0 6 4 5.4 5.8

0 0 1 5 8 5,5 5 1

0 1 0 6 4 5-4 5.8

0 1 1 5.8 5.5 5.1

1 0 0 7 8 7 3 6.2

1 0 1 7 2 6.8 5.9

1 1 0 7.8 7.3 5 2

1 1 1
7.2 6.8 5 9

0 = SAME AS VALIDATION RUN

1 = ALL GROUP MEMBERS

CHANGED 10%

The results are tabulated in Table 3. An Ana-
lysis of Variance is presented in Table 4. The data
indicate that both trace factors and system over-
head parameters exhibited strong main effects

Tabie 4 Sensitivity Test ANOVA

SUM OF
SQUARES

DEGREES OF
FREEDOM

MEAN
SQUARE

1. TRACE FACTORS 8 640 1 8 640 78 209

2. PAGE FRAME CALIBRATION 0 1 0 0

3. SYSTEM OVERHEADS 1 127 1 1127 10 198

4. INTERACTION (1-2) 0 1 0 0

6. INTERACTION (1-3) 0007 1 0 007 060

6. INTERACTION (2-3) 0 1 0 0

7. INTERACTION (1-2-3) 0 0 0

8. BLOCKS 4 41 3 2 2.207 19 975

9. ERROR 1 547 14 0.1 10

10. TOTAL 15.733 23

but that the 1 0% page frame calibration adjust-

ment had no effect. This is consistent with the

shape of the response time curves in Figure 3.

The simulated effects of constricting main
storage tended to take hold later but more sud-
denly than in the REAL runs. The simulator did

not feel significant main storage effects with six

users of 51 2K words.

The sensitivity test did not reveal any signifi-

cant interactions among parameter groups. A
strong effect, however, was felt across blocks of

the experiment. Most of this variance arises from
workload tracing. Had the experiment not been
blocked, the effects of the system overhead para-

meters would have been obscured by this vari-

ance.

The direction for future fine-tuning efforts

begins to take shape from the sensitivity test. The
strongest effects were due to the trace fac-

tors—which describe the workload to the simula-

tor and had effects at all load levels. The system
overhead parameters had a smaller overall effect

but are strongly implicated in the midrange bulge
because, intuitively, they should be most strongly

expressed when simulated workloads interact.

From the sensitivity test we see the need to re-

move variance from tracing and from changes in

group 1 parameters when studying the effects of

individual system overhead parameters. Interac-

tions, however, do not yet appear to be a problem
under these conditions.

The large number of control variables in the

SPP provides both opportunity and challenge.

There is a great potential for fine-tuning the SPP
in new environments. However, some of the cabi-

brations will interact with and/or invalidate previ-

ous fine-tuning efforts. If further validation mea-
surements uncover inaccuracies in the SPP, it

may become desirable to initiate a more sys-

tematic calibration procedure [17]. However, I am
hopeful that few additional adjustments will be
necessary.

187

4.0 Conclusions And Remarks
5. Appendix

At points where I fine-tuned the SPP, the per-

formance predictions of mean response time were

not significantly different from benchmark mea-
surements. When all mean response times used in

the validation are included, the mean SPP predic-

tion error was about 10%.

Several calibration adjustments were made
prior to the formal validation. The last one was an

adjustment to the amount of dynamic memory
which turned out to have an analog in the real

system. Before these calibrations, the SPP mean
response time predictons had been accurate to

within roughly 30% (80% worst-case).

In view of this experience I cannot yet claim

general validity of the SPP. I hope to expand the

domain of validity by testing with unfriendly

(never seen before) workloads and environments. I

hope to develop the op-code sampling technique

(see appendix) in cross-CPU projections and to in-

vestigate the effect of mixed workloads and new
DASD configurations.

The use of the SPP in capacity planning situ-

ations is still experimental. Considering its present

state of validity, it appears to have the potential of

satisfying the original project objectives. With ad-

ditional development and validation, I am sure

that the range of environments which enjoy accu-

rate performance predictions can be enlarged. But
for some applications which require less accuracy

or only relative results, the SPP may be useful in

its present state. This would have to be confirmed

by experience.

Workload characterization is an important

area in the general capacity management problem.

The tracing function of the SPP can automatically

generate and optimize libraries of workloads which
may even be modified artifically. It therefore may
provide a vehicle for future studies in various as-

pects of the workload characterization problem.

Perhaps the most significant result of the present

work is that the workload description used was
sufficient to predict performance in a fairly diverse

set of demand paging environments. Within this

domain of validity, the mean response time varied

by nearly two orders of magnitude.

Capacity management presents a need for a

sufficient workload characterization feature to be

thoroughly integrated into the design of the oper-

ating system. Since nearly all performance prob-

lems are confounded by the workload charac-

terization problem, we cannot expect to

systematize CPE methodologies until such funda-

mental descriptors are easily available.

5. 1 SPP Implementation Details

This section begins to explore a first level of

detail of the implementation of the SPP. It is an
attempt to present a description of those mecha-
nisms which account for the behaviour of the SPP.

5.1.1 Workload Characterization

The initial workload characterization was
chosen by considering successful models in exis-

tence and by estimating which aspects of the work-
loads must strongly influence the performance
predictions. For example, performance is sensitive

to CPU demands, paging activity and I/O delays.

Therefore, the demands of workloads on these

(and other) resources must be quantified by the

workload characterization.

It is useful to understand the overall operation

of the trace program in order to fully appreciate

the workload characterization. The trace program
inserts breakpoints into the system in order to rec-

ord the important events as the workload interacts

with the system. The program was designed to pro-

duce the following time-stamped records:

1. User CPU time.

2. Entry to and exit from monitor calls.

3. Page faults.

4. Lists of modified pages.

5. Satisfaction of terminal input wait.

These records contain much additional detail.

The traces deliver several alternate sources of

the CPU time demanded by the workload. A sam-
ple taken every eight milliseconds of real time also

contains an elapsed timestamp and a process

(virtual) CPU timestamp. The CPU demand could

be calculated from either timestamp or by using

sampling techniques. Several methods were tried

during the validation runs in order to maximize
accuracy of the simulator. The method chosen was
to count samples of user or monitor call time and
to apply an empirically determined CPU time fac-

tor to associate an average run time with each
sample.

The objectives of the project required further

characterization of the CPU demand. Measure-
ments taken at DIGITAL had demonstrated the

sensitivity of relative CPU speed (in this family of

CPUs) to the instruction mix of the user workload.

This variation could be as large as a factor of 3 or

more and was clearly unacceptable when predict-

188

ing the workload's performance under a new CPU.
Therefore, op-code information is sampled by the

trace routines to permit an accurate estimate of

processor demands when executed on different

CPUs. Unfortunately, the timer interrupt sam-
pling routine does not yield an unbiased random
sample over time. Since timer interrupts occur af-

ter instructions are completed, PC samples of long

(important) instructions will point to the following

instruction. To approximate a random sample
more closely, the saved PC is backed up to the

previous instruction, whose op-code is traced. This
tends to sample those important instructions of

long duration (floating point, decimal) but also in-

correctly samples unexecuted jumped instruc-

tions. Similarly, those instructions emulated by
software must also be detected and weighted. Al-

though op-code samples are traced, presently they
are not used by the simulator.

Paging behavior is highly dependent on the

execution environment. The descriptor of virtual

memory demand must allow the simulator to gen-

erate increasing CPU consumption and I/O

activity per work unit as simulated real memory
becomes overcommitted. This might be possible

by measuring the resource consumption due to

paging activity under the trace environment and
then using the simulator to map these effects to

the simulated environment. But this would put
extremely heavy requirements on the simulator,

because then it would have to select its actions in a

manner dependent on the environment in which
the workload was traced. The problem would be
reduced by performing traces in a strictly con-

trolled environment. But even here, one could ex-

pect two workloads yielding identical paging char-

acteristics in a simple environment to behave very

differently in a loaded environment. For these rea-

sons a more intrinsic descriptor of virtual memory
demand was sought.

The characterization chosen was to identify

those pages actually referenced in small time

windows. The period was chosen experimentally to

trade-off predictive accuracy with trace overhead
and artifact. At end of each interval, the trace pro-

gram nullifies all the user virtual address transla-

tions by manipulating system tables. Then, each

virtual page referenced in the following interval

will reveal itself by a page fault, which is traced. In

addition, modified pages are identified because

they generate pageout activity during simulations.

In this manner, artificially induced page fault

events are used to drive simulated virtual memory
references.

Monitor paging is part of the workload char-

acterization. The detection of monitor call paging

became a function of the simulator via a bitmap

lookup. A list of monitor calls is built during the

workload trace and associated with a block of CPU
time. The simulator performs a simulated virtual

memory reference for each monitor call whose bit

is set in the bitmap. The virtual addresses to be
referenced are kept in a table in the simulator. In

this way, the indirect system virtual memory de-

mand due to the execution of the workload is part

of the workload characterization.

Several other events are used to describe the

workload. User I/O activities other than paging are

detected and quantified by the duration of the ap-

propriate system call from start and end times-

tamps available in the trace. Finally, user think

times are detected and quantified by terminal

input timestamps.

5.1.2 Simulation Overview

The simulation separates the non-load-depen-

dent factors that represented the individual job-

streams from the load-dependent operations asso-

ciated with the conditions of execution. The for-

mer are recorded in the traces, the latter are

applied actively by the simulator. In addition, the

simulator must model the interactions of the work-

load and load-dependent system operations. This,

in turn, results in the requirement for parame-
terization of the simulator to quantify these load-

dependent operations.

5.1.2.1 Simulator Logic

The simulation model of the system was writ-

ten in SIMULA-67. The following functions of the

TOPS-20 operating system were incorporated into

the model. The operating system is a demand pag-

ing system designed primarily for timesharing. A
set of transactions called the balance set is

maintained in real memory. Transactions circu-

late through four prioritized run queues, starting

at the bottom of the highest priority queue. When
a transaction on the three highest priority run

queues has received a fixed amount of simulated

CPU time the transaction is demoted to the bot-

tom of the next lower priority run queue. The bal-

ance set is identified on the next entry into the

scheduler following an event which potentially can

cause a task switch. These include a page fault, a

user specified I/O request, the expiration of a run

queue CPU time quantum, or the completion of an

lyo event. The scheduler is entered periodically

and when a process blocks. The transactions on

the run queues are selected for the balance set in

order of deceasing priority as long as the combined
"pages needed" count does not exceed the number
of available page frames. Workload execution then

189

proceeds by round robin scheduling of transactions

in the balance set. Some scheduling control algo-

rithms in the operating system were not modeled
in the simulation.

The simulated paging activity is initiated

from a list of referenced pages and a list of modi-
fied pages kept with each user CPU request. All

pages required for a simulated CPU request must
be in simulated real memory before the simulated

CPU request is granted. There is a separate, glo-

bally sharable address space for the system's com-
mand processor. All referenced pages must be

paged in if they do not already exist in simulated
real memory. When a demanded page is not pre-

sent, a page fault is simulated and a real frame is

allocated by taking it from a free frame queue. The
page frame is then moved to the in-use page frame
queue. The process which generated the page fault

is then blocked until the page-in is complete. If the

free page frame queue has become depleted be-

yond some threshold count (a model parameter), a

global garbage collection (GGC) is scheduled. This

GGC routine steals all page frames belonging to

transactions out of the balance set. GGC moves
unchanged pages directly to the free page frame
queue and moves changed pages to the page-out

queue where they remain until each page out I/O is

posted complete. At those times the page frames
are moved to the free queue. Periodically, a local

garbage collection routine is invoked for a single

transaction in order to clear out old pages even
though their parent process is still active. A par-

ameter is set to specify the age of the oldest page
frames to survive the purge. The age of each page
frame to be examined by the local garbage collec-

tor is stamped at completion of the most recent

page-in. When its page frame is stolen, a modified

page is written to a slot on a paging device. The
simulator pre-allocates these page slots

contiguously in the center of each simulated disk.

Each terminal is assigned a distinct disk cylinder

for page I/O.

Disk I/O requests are chosen from a queue as-

sociated with each controller. The seek requests

are chosen so that the simulated disk arm sweeps
the disk from low address to high. There is a fair-

ness count which limits the number of data trans-

fers at a cylinder before the sweep continues.

These algorithms are patterned after those in the

operating system. As is true in the real I/O subsys-

tem, data transfers are serialized by each controll-

er. The simulated seek times are calculated as a

slanted step function of cylinders traversed.

User I/O to non-DASD devices is detected
from monitor call elapsed time derived from the
trace. The portion of this time which is overlapped
by effective user processing is estimated and re-

moved from the total elapsed time. The remainder

is passed to the simulator as a single-user I/O re-

quest with no contention. The simulator, in addi-
tion, consumes an amount of simulated CPU time
(a parameter) for each 1/0 request.

There are many ways to control the simulated
environment. The user of the simulator specifies

how many terminals or batch streams each trace
file will supply. This determines the simulated
workload mix. Additional simulation run control

variables set the durations of the run pre-measure-
ment start-up period. The user of the simulator
may also specify the memory size, the I/O configu-
ration, changes to the operating system parame-
ters, and CPU power information. The execution
of the workload may be further controlled by using
the think times measured in the traces, or by forc-

ing them to be sampled from one of several

distributions.

The simulator is quite measurable. One great
advantage in studying simulations is that the mea-
surement artifact can be negligible for software-
oriented statistics. At present, there are several

traces which deliver data describing the internal

workings of SPP simulations. The state of real

memory, disk I/O, disk I/O queues, and run queues
can all be observed by turning on the appropriate
trace(s). SIMULA provides additional variable

tracing facilities. And finally, a detailed internal

performance report is generated by the simulator
along with the external performance predictions.

These internal data are not intended to be exact
analogs of system data. They are intended to be
used for diagnostic purposes.

5.1.3 Trace Program

The tracing program is based on the use of a
special monitor call. This system function allows

the program to insert breakpoints into the moni-
tor. These breakpoint routines construct trace rec-

ords in a buffer which is written to a disk or tape
file by code operating in a user address space.

One breakpoint gets control on entry to a peri-

odic timer routine and is used to sample several

data items. In addition to collecting information
regarding process status, the timer breakpoint
samples both the program counter and the op-code
of the interrupted process. If the process has been
interrupted while in a user address space, the
breakpoint traces down the paging data structure

and makes a real memory access to retrieve the op-
code. The present version of the trace backs up one
memory call before retrieving the instruction.

In order to dissociate the virtual memory re-

quirements from system activity, paging statistics

taken by the operating system are not used. The
monitor maintains an entry for each frame of real

190

memory in the Core Status Table (CST). Entries

£ire invalidated periodically by the trace program.
In addition to the CST, a hardware table of valid

translations is invalidated so that future virtual

memory references must execute full address
translations. The invalid entries inserted into the

CST cause the first reference to each virtual page
to reveal itself by a page fault. This event is then
recorded by another breakpoint routine. A third

breakpoint corrects the table entry. When the CST
is modified by the trace routine, a trace record is

generated which identifies each modified page be-

longing to the traced job. The consequence of mon-
itoring memory page references in this manner is

that it is possible to ascertain which pages are

referenced during intervals between hardware
page table invalidations. This technique consider-

ably reduces the trace overhead and volume of in-

put to the simulator, while still providing enough
information to evaluate the paging behavior of the

system under various loads. It may introduce inac-

curacies because closely spaced references to the

same virtual page are not detected or recorded.

However, closely spaced references to the same
page should not strongly influence actual paging
behavior.

Three other breakpoints provide timestamped
traces on the microscopic level. A pair of break-

points detects entry to and exit from any user-

called monitor routine. The third breakpoint de-

tects terminal input and thus demarcates the be-

ginning of interactive transactions.

5.1.4 Trace Abstraction

Microscopic traces may be abstracted prior to

or during a simulation. During this process, the

CPU demands occuring within a page detection

time interval are grouped together. If a think time

has occured recently, its duration is inserted into

the record. Then the IDs of pages referenced in the

interval are associated with the CPU burst in two
lists (user and command processor) . Similarly, a

list of monitor calls is built and attached to the

abstracted trace record. Non-DASD I/O requests

are detected from the durations of these monitor

calls. The condensed trace record is completed by
adding a list of IDs of modified pages. Peforming

this abstraction step prior to the simulation great-

ly reduces simulation overhead. This

"optimization" is quantified in the next section.

5.2 Operating Characteristics

The run times of the various components of

the SPP are important because in the past many
simulations have suffered intolerably high process-

ing requirements. As you might expect, these char-

acteristics of the SPP turned out to be very work-
load-dependent. The act of tracing generally

caused the trace workload to take one to two times
longer than normal in a single jobstream environ-

ment. When such a trace is used to drive the simu-
lator directly, the CPU time used by the simula-
tion was up to 10 times the simulated time (8 ter-

minals, MEMJOB). However, if the trace is

abstracted by the "optimizing" program before

the simulation, this ratio dropped from 10:1 to 5:1.

These were the worst-case numbers encountered in

the validation.

The optimizing program had an even stronger

effect on the CPU intensive workload. Some simu-
lations of CPUJOB actually ran faster than real-

time and were never worse than 2:1 (8 terminals)

when the traces were optimized.

The cost of running the optimizing program
was roughly 1-2 seconds elapsed time per 1 second
of traced time. All the numbers given above refer

to traces, optimizations, and simulations run on a

fairly low cost machine, the DECSYSTEM-2020.
Some additional improvement can be expected be-

cause only a few performance optimization tech-

niques available have been applied to the SPP it-

self.

I would like to thank Joel Emer, also at

DIGITAL, for his contribution to this project.

Thanks also to Rollins Turner, Richard Glantz,

Jim Hughes, Dan Murphy, Dennis Phillips, Terry
Potter, Andy Vesper, and Alice Cox.

References and Bibliography

1. Bard Y., An analytic model of the VM/370 Sys-

tem, IBM Journal ofResearch and Develop-
ment., 22, 1978.

2. Baskett, F., Chandy, K., Muntz, R. and Pala-

cios, F., "Open, Closed, and Mixed Networks
with Different Classes of Customers, Journal
of the ACM, 22, April 1975, pp 248-60.

3. Boyse, J.W. and Warn, A straight-forward Mo-
del for Computer Performance Prediction,

ACM Computing Surveys, 7, 2, 1975.

4. Browne, J., Chandy, K.M., Brown, R.M., Kell-

er, T.W., Towsley, D.F. and Dissly C.W., Hier-

archical Techniques For The Development of

Realistic Model of Complex Computer Sys-

tems, Proc IEEE, 63, 6, 1975, pp 966-975.

5. Brown, R.M., Browne, J.C. and Chandy,
K.M., Memory Management and Response
Time, Communications of the ACM, 20, 3,

March 1977, pp 153-165.

191

6. Buzen J.P., Guidelines for the Use of Infinite

Source Queuing Models in the Analysis of

Computer System Performance, Proc NCC,
1974, pp 371-4.

7. Buzen, J.P., Fundamental Operational laws of

Computer System Performance, Acta Inf., 7,

2, 1976, pp 167-182.

8. Chandy, K.M., and Sauer, C.H., "Approxi-
mate Methods for Analyzing Queueing Net-
work Models of Computer Systems". ACM
Computer Surveys, 10, 3, September 1978, pp
281-317.

9. Chandy, K.M., Herzog, U., and Woo, L., "Par-

ametric Analysis of Queueing Networks," IBM
Journal ofResearch and Development 19, 1,

January, 1975.

10. Chandy, K.M., Herzog, U., and Woo, L., "Ap-
proximate Analysis of General Queuing Net-
work," IBM Journal ofResearch and Devel-
opment, 19, 1, January, 1975.

11. Chiu, W.W., and Chow, W., "A Performance
Model of MVS," IBM Systems Journal, 17, 4,

1978, pp 144-62.

12. Cox, S.W., "Interpretive Analysis of Computer
System Performance," Performance
Evaluation Review (Proc Sigmetrics), 3, No.

4, 1974, pp 140-155.

13. Cox, S.W., "Experimental Methods in Com-
puter Performance Evaluation," Proc. Euro-
comp Confon Computer Performance Evalu-
ation, London, 1976, pp 255-275.

14. Denning, P., and Buzen, J., "The Operational

Analysis of Queuing Networks Models," ACM
Computing Surveys, 10, 3, 1978, pp.225-261.

15. Dunlavey, R., "Workload Management," EDP
Performance Review, Vol 6, No. 5, 1978.

16. Ferrari, D., Computer Systems Peformance
Evaluation, Prentiss-Hall, 1978.

17. Gomaa, H., "The Calibration and Validation

of a Hybrid Simulation/Regression Model of a

Batch Computer System, " Software Practice
and Experience, Vol. 8, 11-28, 1978.

18. Gomaa, H., "Regression Models for the Evalu-
ation of Computer System Performance,"
Proc. Eurcomp. Conf. on Computer Per-
formance Evaluation, London, 1976, pp. 69-

99.

19. Kleinrock, L., Queuing Systems I, John Wiley,

New York, 1975.

20. Kleinrock, L., Queuing Systems II, John Wi-
ley, New York, 1976.

21. Kobayashi, H., "Application of the Diffusion

Approximation to Queuing Networks, I Equi-
librium Queue Distributions," J.A.C.M., 21,

2, 1974, pp. 316-38.

22. Kraemer, W., "Performance Investigations

with DOSA^S Based Operating System Mo-
del," IBM Systems Journal, 17, 4, 1978, pp.
409-443.

23. Lazowska, E.D., "Characterizing Service Time
and Response Time Distribution in Queuing
Network Models of Computer Systems," U. of

Toronto Technical Report CSRG-85, Octo-

ber, 1977.

24. Lipsky, L., Church, J.D., "Applications of a

Queuing Network Model for a Computer Sys-

tem," ACM Computing Surveys, 9, 3, 1977.

25. Mead, R.T., and Schwetman, H.D., "Job
Scripts—A Workload Description Based on
System Event Data," Proc. NCC, Vol. 47, pp.
457-464.

26. Mendenhall, W., Introduction to Linear Mo-
dels and the Design and Analysis of Experi-

ments, Duxbury Press, 1968.

27. Muntz, R., "Queuing Networks: A Critique of

the State of the Art and Directions for the Fu-

ture," Computing Surveys, 10, 3, 1978, pp.
353-9.

28. Reiser, M., "Interactive Modeling of Computer
System," IBM Systems Journal, 15, 4,

29. Schatzoff, M., and Tillman, C, "Design of Ex-
periments in Simulator Validation", IBM
Journal ofResearch and Development, 19,

No. 3, 1975, pp. 252-62.

30. Saur, C, "Simultaneous Resource Possession

in Queuing Models of Computers," Perform-
ance Evaluation Review, Vol. 7, 1 & 2, pp. 41-

52.

31. Teorey, T.J., "General Equations for Idealized

CPU—I/O Overlap Comparisons," Commun-
ciations of the ACM 21, 6, June 1978, pp. 500-

509.

32. Turner, R., "An Investigation of Several Ma-
thematical Models of Queuing Systems," Proc
1978 CPEUG Meeting, pp. 103-12.

192

A FORTRAN Synthetic Program for Benchmarking

Patricia M. Fleming
Andrew C. Rucks

US Army Concepts Analysis Agency
Bethesda, Maryland 20014

Benchmarking is a generally accepted and essential element in the
competitive procurement of conputer systems. A benchmark workload con-
sists of a set of application programs, S37nthetic programs, or a com-
bination of these designed to be representative of expected system
workload. A benchmark workload developed fron application programs is

unacceptable becaiise it (1) is potentially biased in favor of the
incumbent vendor, (2) may not be truly representative, and (3) may
contain data that is siijject to privacy and secijrity restrictions. A
benchmark workload constructed from synthetic programs does not suffer
from these limitations. The basis for emplojdng synthetic benchmarks
is well established; however, previous synthetic programs have failed
to provide a means to test system capacity through the execution of a
reasonable variety of prograimiing functions. The FORTRAN Synthetic
overcomes this disadvantage of previous synthetics by providing a set
of progranming functions \^ich test a wide range of system capabili-
ties. The Synthetic is modular in structure to provide representa-
tiveness and control of instruction mixes; parameter driven to provide
control of processing time; and provides a means of controlling memory
losage. The structure of the PORTEIAN Synthetic and the process of work-
load mapping is presented.

Keywords: Benchmarking; sjnithetic program; workload mapping; per-
formance evaluation.

1. Introduction

Benchmarking is an essential tool in the
competitive computer procurement environment.

It is essential in the sense that benchmark-
ing is the only means for comparing the work-
load processing capacity of competing sys-

tems. Wnile benchmarking is not a system se-

lection and evaluation panacea, the results
of a benchmark test are regarded by both the

computer industry and procuring activities as

requisite input to any selection decision.

A major problem in benchmarking is that
of coalescing a set of programs that ade-
quately and accurately portray the expected

workload that the the system to be selected
will process. Developing a microcosm of the

subject system's workload is the objective of

benchmark preparation. This objective is ac-

complished through the processes of workload
analysis and workload mapping. Workload

analysis is a two step process of defining

the composition of future data processing
work. In step one, historical workload data

(e.g., CPU and I/O resource consumption, num-

bers of jobs, language processor usage, pages

printed, etc.) are examined for trends. In

the second phase, endogenous and exogenous

variables (e.g., organizational objectives,

customer requirements, technology, etc.) are

studied to determine their impact on workload

trends. With the future as firmly in hand as

possible, the task of benchmark preparation

(i.e., workload mapping) can commence. Ide-

ally, a benchmark workload (program mix) is a

linear transformation of the expected work-

193

load. This linear relationship is stated in

the following equations.

W = f(A), where W is a work-
load and A is the set of
applications comprising
this workload.

W - bf(A) where W is the
benchmark workload, b is

the transformation fac-
tor, and A is defined
above.

It should not be inferred from these equa-
tions that the development of a Benchmark
workload (W) is simplistic and objective.
On the contrary, the development of a W is

complex and subjective. A W' may be composed
of application programs, synthetic programs
or a combination of these two types. The

last alternative is often selected because
designers of a W recognize the limitations
of application benchmarks, but are uncomfort-
able with the process of mapping synthetic
program parameters with workload analysis re-
sults.

2. Limitations of Application
Benchmark Programs

The construction of a benchmark workload
mix from application programs presents a co-
nundrum. Application programs tend to be

machine or system dependent in that they are
most likely written in language dialects
which are peculiar to currently installed
systems (e.g., UNIVAC 1100 Series FORTRAN V,
IBM FORTRAN IV (Level G), Control Data Corpo-
ration FORTRAN Extended Version 4, etc.).
This dependence is natural because language
dialects are constructed to take advantage of
particular operating systems and architec-
tures. Thus, a benchmark constructed from
application programs would tend to be biased
in favor of the incumbent vendor not only in
terms of workload performance but also by
causing nonincumbent vendors to incur dispro-
portionate conversion costs. In addition to

An application program directly contri-
butes to the processing of end work as op-
posed to computer systems programs, language
processors, and other utility programs. A
synthetic benchmark program is a parameter-
ized, functional computer program designed to
represent a particular class or function of
application programs for benchmarking pur-
poses only; and serves no other useful func-
tion [2].

the language dialect problem, the variety of
application programs in a system workload
makes the task of selecting a set of applica-
tion programs to form a benchmark workload
a difficult one. Because of this program se-
lection difficulty, it is doubtful that a
truly representative set of application pro-
grams can be selected. A third limitation of
application benchmarks is that the data re-
quired by applications in the benchmark may
be subject to privacy and security restric-
tions. The "sanitizing" of these data is a
time consuming activity which diverts re-
sources from the much larger problem of
achieving representativeness.

3. Advantages of Synthetic
Benchmark Programs

A synthetic benchmark program does not

suffer from the several limitations of an ap-

plication benchmark program. A good syn-

thetic benchmark program possesses the fol-

lowing qualities which overcome the

limitations discussed in the previous para-
graph: (1) it consists solely of the con-

structs of a generally used standard high

level language (e.g., ANSI FORTRAN or ANSI

COBOL); (2) it exercises a typical set of

programing language functions (e.g., integer
arithmetic, decision making, direct access
input/output, etc.); (3) it provides a set of

user controllable parameters for synthesis of

an application workload into a synthetic
workload; and (4) it produces repeatable,

predictable, and verifiable results.

The literature of benchmarking estab-

lishes the basis for employing synthetic pro-

grams and discusses several applications of

synthetic benchmarks [3] [4] [5]. These ap-

plications are resource oriented since they

are based on the synthetic program developed
by Bucholz [1]. The Bucholz synthetic and

its derivatives are designed to exercise the

CPU and I/O resources but do not address the

testing of a system's capacity to execute a

reasonable variety of programing functions.

Without doubt, the objective of benchmarking
is to insure delivery of a system with ade-

quate resource delivery capacity. However,

the test of this ability should take place
within an environment where the target system
resource delivery capacity is demonstrated
through the performance of a variety of pro-

graming functions. This paper proposes a

FORTRAN Synthetic program for benchmarking
which enables representation of almost any

workload by providing the means to control

three critical variables in a benchmark work-
load -- (1) CPU and I/O processing time, (2)

main memory requirements and (3) instruction

mix.

194

4. The FORTRAN Synthetic and Its

Operation

The FORTRAN Synthetic is modular in

structure to provide representativeness and

control of instruction mixes; parameter

driven to provide control of CPU and I/O pro-

cessing time; and provides control of memory

space through local arrays contained in each

module.

Processes

Loop until number
of Iterations -

driver cycle
parameter

Call

functional
modules

Figure 1. DRIVER Functions

The concept of the FORTRAN Synthetic was
developed by the authors. Program develop-
ment was by Messrs. Donley Hoffman, James
Phelan, and Howard de St. Germain of the US

Army Training and Doctrine Command Systems
Analysis Activity (TRASANA), White Sands Mis-

sile Range, New Mexico. Revisions to the in-

itial coding and implementation of the Syn-

thetic into benchmark workload mixes were co-

operative efforts.

DRIVER, Figure 1, is the managing module
or main program for the FORTRAN Synthetic.
Each of the other modules of the Synthetic is

independent and dedicated to performing a

specific data processing function. DRIVER
accepts and interprets control cards, trans-
fers program control to the appropriate mod-

ules and initiates output operations. DRIVER
and module control parameters are required
inputs. DRIVER parameters specify the number

of times the selected set of functional mod-
ules will be executed, the print option se-
lected (see Table 2 for an explanation of the
print options), and the seed value for the
pseudo random number generator. Module con-
trol parameters identify the set of modules
to be used in a particular application and
specify the module major and minor loop con-
trol values which are passed from DRIVER to a

module for functional control. The modular-
ity and functional independence of the FOR-
TRAN Synthetic are depicted in Figure 2.

Table 1 presents a list of the modules of the

FORTRAN Synthetic by name and numeric identi-
fier (used as an input parameter) and briefly
describes the programing function performed

by each module. (The FORTRAN Synthetic cur-

rently contains 13 functional modules. The

structure of the Synthetic does not preclude

the creation and insertion of additional

functional modules.)

Table 1. Functional Module Descriptions

Module Module
name identifier* Description

FINPT** 1 Formatted input

FOUTPT 2 Formatted output

NFINPT 3 Nonformatted input

NFOTPT 4 Nonformatted output

MDIM 5 Multiple dimension array
manipulation

DECIS 6 Deci si on maki ng***

lARITH 7 Integer arithemetic

RARITH 8 Real arithmetic

MATH 9 Mathematics functions****

DAIO 10 Direct access I/O

CALLS 11 Subroutine calling

SORT 12 Sort

FOTPTU 13 Unprinted formatted output

*This identifier appears on the module control card.

**Requires duminy input in card form. If this module is used in

a run, the input should be appended to the control card deck (see

Figure 5).

***Logical IF, arithmetic IF, and bO TO.

****Sine, cosine, square root, and exponential.

4.1 Module Structure

Even though the functional modules are

independent, they have a common structure. A

flow diagram describing the general process-
ing characteristics of the functional modules
is presented in Figure 3, a listing of the

I

I'

195

source code for the integer arithmetic module
lARITH is presented in Figure 4 and Table 2

describes each of its variables and parame-
ters.

Figure 2. Moduler Structure of the FORTRAN Synthetic

I

I SUBROUTINE I»BITHINRtP.IPIin.GtLOOP|
I CONNON /GLOBtL/ NOLOB t lOLOBI t

I

3 DIflCNSION LOOLIll
« DDTt LOOL /l«a/
S D«Ti lOIK /I/
E DtTt INCR/l/
T 0>Tt NDEF/t/
a D»T« tNTl.INT2/TT>-f 3/
9 C

10 C THIS MODULE PEHEORMS roRTR«M INTE6ER 4RITHHETIC.
11 C RESULTS tRtTHHETIC OPERtTIOMS tRC RINDOHLT STOREO IN THE
12 C 'LOCJL' «RH»Y UNO PRINTED «T THE END OF THE RUN
13 C UHEN CtLLED WITH PlRtNETER ntREP* SET TO ZERO.
ll C THE NUMBER OF REPtTITIONS OF THE MODULE MINOR LOOP
15 C IS SPECIFIED BT THE PiR«METER 'LOOP*. IF LOOP : 0
16 C THE OEF»ULT V«LUE NDEF IS USED.
IT C

18 C RULES FOR SETTING KEY VlRItBLES:
19 C NDEF SHOULD BE SET IF DEFtULT VALUES IRE TO BE
20 C USED II.E.I LOOP - 01
21 C DIMENSION OF IGLOB .CO. DIMENSION OF IGLOB IN DRIVER
22 C DIMENSION OF LOCtL .EO. DESIRED SIZE tNO E tCH
23 C CELL OF LOOL INITIU.I2C0 TO IIRO I SEE LINE «l
21 C IDIM .EG. DIMENSION OF LOCtL
25 C INCH .LT. IDIM
26 C INTl .EO. «NY POSITIVE INTEOER ISEE LINE tl
2T C INT2 .EG. tNT NESITIVE INTEGER tSEE LINE a I

za C

29 C

30 IF INREP.ES.DI eo TO 1000
31 IFILOOP .EG. 01 LOOP = NDEF
32 OLL IRtNDIIOIMiINOXI
33 IND:INDX.
3* IF IIND.OT.IOIM/21 INO:-INO
35 00 200 I^ltNREP
36 00 100 J-tiLOOP
37 INT1=IINT1-1ND1/IJ»5

I

38 INT2:IINT1«INT11-I rj-91«II
39 100 CONTINUE
«0 LaCtL<IND«ULCC>L(INDX)«INT2
«1 IND>=IN0I.INCR
"12 IF IIN0X.0T.I0IM> IN0X:INDI-I0IH
«3 200 CONTINUE
4< C«L'. IRtNDINGLOa.INDXI
US IGLOBIINDXIzINTl
<S RETURN
• 7 C

•a C PRINT RESULTS
19 C

50 1000 WRITE 16.110001
51 C»LL PfillHTILOCAL.IOIMilPBFLGI
52 RETURN
53 11000 FORMtT IZtMlOUTPUT FROM MODULE I«RITH|
5« END

Figure 4. Integer Arithmetic Module

4.2 Module Control

Loop until the number
of Iterations = module
major loop parameter

Loop until the number
of iterations = module
minor loop parameter

Change randomly selected
local array eel 1

I Change randomly

I
selected global

I
array cell

Figure 3. Generalized Functional Module

In order to correctly use a module,
critical variables must be set prior to com-
pilation. These critical variables are iden-
tified by the symbol # in Table 2 and rules
for setting these variables are described in

Figure 4. (Each module of the Synthetic con-
tains internal documentation describing the

purpose of the module, the meaning of argu-
ments passed to the module by DRIVER and
rules for setting key local variables.) Moa-

ule control parameters are transfered to the
module as arguments in the call from the
DRIVER. Three control parameters are re-

quired by each module: (1) the number of ma-
jor loop iterations; (2) the number of minor
loop iterations; and (3) the desired print

option. The module minor loop control need
not be specified, if the use of the default
value (NDEF) is desired. In this case, NDEF

should be set to tune the module to consume a

specific quantity of resource (CPU and I/O
time); then only the module major loop and

the DRIVER loop parameters are required to

tune the Synthetic for each application.

196

Table 2. Variable Usage in the Integer Arithmetic Module (lARITH)

Name Type Usage

r Integer Major loop control

.

lOIM* Integer Upper bound for local array subscript.

Must be set equal to the dimension of LOCAL.

IGLO# Integer Common array snared by all modules.

INCR* Integer The interval for "stepping through" LOCAL.

IND Integer Pseudo random number used for arithmetic.

INDX Integer Pseudo random number initially returned

by I RAND and incremented by INCR. Used for

LOCAL and I(jLOB referencing.

INTl* Integer Result of arithmetic operation.

INT2* Integer Result of arithmetic operation.

IPRFLG Integer Calling argument to control the amount of

printed output to be produced.**

J Integer Minor loop control

.

LOCAL* Integer Array local to the module. Used for memory

sizing.

LOOP Integer Calling argument specifying the number of

iterations of the module minor loop.

NDEF Integer Default value for number of minor loop

iterations. Used when the argument LOOP = 0

NGLOB Integer Upper bound of global array IBLOB subscript.

NREP Integer Calling argument specifying the number of

major loop iterations.

*IRAND is a pseudo random number generator provided as a support mod-

ule for the FORTRAN Synthetic. This module produces a uniform distribu-

tion of positive integers. The inclusion of this module enhances trans-

portability and reproducaoility of the Synthetic.

**Four print options are available: (1) no print; (2) pr.nt all ar-

rays; (3) print those array values that have been changed during pro-

cessing; and (4) print every n^" changed array value.

4.3 Module Logic

All modules have similar logic. (In the

following discussion all line number refer-

ences refer to Figure 4.) If the value of

the major loop parameter NREP is zero, (indi-

cates final call to a module) the major and

minor loop sections of the module are by-

passed (line 30) and the module initiates a

call (line 51) to the support module PRTINT

to cause the appropriate printed output to be

generated. The module major loop (lines 35

through 43) causes the value of a selected

cell in the local array to be changed to the

value resulting from a minor loop (lines 36

through 39) operation. For example, in lA-

RITH, the value of INT2 is stored in the se-

lected local array cell (line 40). The se-

lection of the local array cell is random for

the first iteration of the major loop and a

function of the initially selected cell and

the variable INCR for all subsequent itera-

tions of the major loop. The module minor
loop performs a language function, e.g., in-

teger arithmetic. Upon completion of the

prescribed number of minor and major loops,

the module stores the result of a minor loop
operation in a randomly selected cell of the
common array IGLOB (line 45) and returns con-
trol to DRIVER (line 46).

4.4 Module Table

DRIVER directs the processing of all mod-
ules, based on the module control deck. Mod-
ule control parameters are stored by DRIVER
in a array which is referred to as the Module
Table. As it is currently written, DRIVER
will accept up to loO entries in the Module
Table. The Module Table permits considerable
flexibility in the design of a particular ap-

plication of the synthetic. For example, as-
sume that it has been determined that in

order to simulate a particular application
program the following number and se-

quence of operations needs to be repeated 10

times: four nonformatted input, three in-

teger arithmetic, four subroutine calls, a

sort of 100 records, two integer arithmetic,
and two formatted output. The Module Table

would contain six entries--one for each func-
tion in the sequence. In order to simulate
the workload described in the example, DRIVER

causes the set of functions specified in the

Module Table to be executed ten times, i.e.,

there would be ten iterations of the DRIVER

loop (see Figure 1). After completing the

appropriate number of DRIVER loop iterations,
DRIVER initiates one additional call to each

module identified in the Module Table to gen-

erate printed output, i.e., in this last
call, the value of the argument NREP (the

number of module major loop iterations) is

zero.

A control card set. Figure 5, consists of

one DRIVER control card, several module con-
trol cards, and, if required, input data

cards. The latter are required only for the
formatted input module (FINPT). Each module
control card becomes an entry in the Module
Table. Figure 6 presents the control card
images required for the FORTRAN Synthetic to

simulate the example application program de-

scribed in the preceding paragraph.

^ Data

for
FINPT

module ,

1 Driver
1 control

1 card

Figure 5. Control Card Deck for the FORTRAN Synthetic

197

Card
number

Card column*

1-10 11-20 21-30

IP 1513

' Pseudo random number seed.

•Print nag.

•Number of iterations of the
DRIVER loop.

Module minor loop Iterations.

Module major loop Iterations.

•Module identifier for NFINPT

(see Table 1)

.

3 7 3 5

4 11 4 0

5 12 100 100

6 7 2 10

7 2 2 1

8 0 0 0 Designates end of module
control deck.

*Values should be right-justified.

Figure 6. Example Control Card Set

5. Workload Mapping for the
FORTRAN Synthetic

The process of mapping an application
program to the synthetic is depicted in Fi-

gure 7. The first step in the mapping pro-
cess is to determine the programing functions

within an application program or seT>rf ap-
plication programs that are to be repre-
sented. This process generally involves some

subjective evaluation by a programer familiar
with the application, since few utility pro-
grams exist for the purpose of generating
language function usage statistics. For a

given application, the analyst must identify
memory requirements and the frequency of use

and sequence of execution of programing func-
tions. Having identified the relevant cha-
racteristics of the application program, the
analyst selects the appropriate functional
modules, sets the size of local arrays to
achieve the memory usage desired, sets local

variables in each module, and compiles these
modules into an object program. Initial set-
tings of parameters are made, and the appli-
cation synthetic is executed. The run time
statistics of the synthetic are compared to
those of the application to determine the de-

gree of agreement. This process of setting
parameters and executing the synthetic is re-
peated until the variance in run time statis-

tics between the synthetic and the applica-
tion program is acceptable.

Evaluate
appl Icatlon

Set parameters
for application

synthetic

Execute application
synthetic

Figure 7. Workload Mapping Process

Significant flexibility in "tuning" the

synthetic is provided by giving the user pa-

rameterized control at every level of pro-

cessing, i.e., DRIVER, module major and minor

looping. The FORTRAN Synthetic provides the

means whereby almost any workload mix (i.e.,

one consisting of applications exhibiting

different mixes of language constructs) can

be represented through concurrent processing

of several versions of the Synthetic with

different sets of parameter values and local

array and variable settings for each version.

For example, assume that an actual workload,

W, consists of three classes of application

programs A, B, and C. Therefore, W = A + B +

C. The objective is to design a benchmark

workload mix, W, such that W W. Through

an iterative process of workload mapping, a

set of three synthetic programs are confi-

gured such that A' ^ A, B' = B, and C ^ C,

where A', B', and C are versions of the FOR-

TRAN Synthetic. Thus, W is represented by W

in that W = A' + B' + C = W.

6. Conclusion

The FORTRAN Synthetic, consisting of ap-

proximately 1,150 lines of code (including
comments), provides a flexible tool for con-

structing the components of a benchmark test.

198

Coupled with workload analysis, the Synthetic
can be configured to represent the salient
characteristics of a variety of workloads.
The Synthetic offers the advantages of being
machine independent, easy to use, highly
flexiole, and capable of producing experi-
ments which are repeatable.

References

[1] Bucholz, W. A synthetic job for measur-
ing system performance, IBM Sys J . 8, 4

(1969), 309-318.

[2] Conte, Dennis M. Findings of the Stan -

dard Benchmark Library Study Group . In-

stitute for Computer Science and Tech-
nology, Mational Bureau of Standards,
Washington, 1979, Appendix A.

[3] Ferrarri
, Domenico, Workload character-

ization and selection in computer per-

formance measurement, Computer (July/Au-
gust 1972), 18-24.

[4] Sreenivason, K. and Klieman, A. J., On
construction of a representative syn-
thetic workload, Comm ACM 17, 3 (March

1974), 127-133.

[5] Wood, David C. and Forman, Ernest H.,

Thoughput measurement using a synthetic
job strem, AFIPS Conference Proceedings
39 (1971), 51-55.

199

Tne NB3 Network Msasuremsnt Instrument

Marshall D. Abraras

Institute for Computer Sciences and Teclinoiogy
National Bureau of Standards

Washington, DC 20234

Dorothy C. Neiman

Commtex Inc.

2411 Crofton Lane
Crofton, MD 21114

The NBS Metwork Measurement Instrument (NMI) represents the third
generation implementation of an approach to the measurement of
interactive computer networks, teleprocessing systems, and network
services which focuses on tne service delivered to users ratner
than on the internal operating efficiency of the system. Tne
information obtained aids users in the quantitative evaluation of
such systems and services. The performance measures and
measurement conditions are described. Tne applicability of the
stimulus - acknowledgment - response model to interactive
asynchronous, character synchronous (e.g., bi-sync), and bit

synchronous (e.g., SDLC and ADCCP) communication is discussed. The
NMI is presented in terms of its functions, statistical
capabilities, architecture, and communications protocol state
transitions.

Key words: Computer; computer communications; computer
performance measurement; data measurement; measurement;
performance measurement.

201

1.0 INTRODUCTION

The NB3 Network Measurement Instrument (NMI)

is the third generation system employed by
NBS to measure the quality of service
delivered through a computer network. The
NMI has been developed under contract to NBS
by Commtex Inc. , and is implemented around a

novel multiple microprocessor system
architecture to achieve minimal costs and
portability while carefully adhering to the
measurement conditions and stimulus
acknowledgment - response model which
characterized previous NBS measurement
systems.

The NMI embodies a methodology for tne

measurement of computer performance in terms
of the service provided to the interactive
terminal user. The orientation, or
philosophy, supported by the NMI is that

performance measurement techniques which
indicate internal measures of performance
are essentially meaningless to a remote user
(or user population). Tne user is more
concerned with tne visible amount of work
performed and the cost of the interactive
service. Examining performance from a

user's viewpoint leads to external measures
of performance.

Individual users are concerned with the
service they receive, not the throughput of
the entire system. In contrast to the
evaluation of system efficiency, which is
concerned with the time and cost to run a

group of jobs, service evaluation is
concerned with the time and cost to run each
individual job. Actually, the times of
concern are of different types. Efficiency
is concerned with the CPU time charged to

the job(s), while service evaluation is

concerned with total elapsed time of a job.
(In most multiprogramming systems, the
elapsed time for a job is considerably
greater than the CPU time cnarged to the
job.) The evaluation of efficiency is thus
based on the measurement of the internal
functioning of a computer system taken as a

whole, ratner than of its external
manifestations, taken individually.

The goals of improved efficiency and
improved service may well be at odds with
one another. An improvement in internal
performance does not necessarily imply an
improvement in service. Indeed, the

opposite may actually be true- Frequently,
it is only possible to improve service at

the expense of efficiency.

2.0 PERFORMANCE MEASURES

Computer service requirements snould be
stated in system-independent functional
terms. For interactive use, three key

measures are response time, turnaround time,
and througnput. Wnile there are many
definitions of response time, a preferred
definition is the elapsed time from the last
user keystroke until the first meaningful
system character is displayed at tne user's
terminal [3]- Turnaround time is measured
from beginning to end of a specified
sequence of operations, usually called a

"job." The beginning and end may be

specified points in the interactive dialogue
such as the first character of logon to last
output following logout. In transaction
processing, where there may be neither logon
nor logoff, a job is equivalent to a series
of transaction steps all of which are
concerned with a single subject. Throughput
is calculated by dividing the number of jobs
completed in a period of time by the
duration of tha-o period. Tne validity of
throughput measurements is increased by
employing a long time period, such as a day
or a week, thereby averaging differences
among jobs.

For procurement purposes, a combination of
response time, turnaround time, and
throughput may best describe organizational
requirements. Specification of requirements
by a combination of performance measures
makes it possible to include different
levels of concern.

3.0 THE NBS METWORK MEASUREMENT SYSTEM

In 1975 the NBS Institute for Computer
Sciences and Technology developed a Network
Measurement System (NMS) [2] for measuring
the performance of computer networks in

terms of u.ie services they render. Although
there were many additional factors [1], the
quality of service was evaluated in terms of
those parameters which were most
straightforward to quantify, namely response
time, throughput, and turnaround time, all
of which are defined in context below. The
NMS consists of a data acquisition device
called the Network Measurement Machine (NMM)

and a Data Analysis Package (DAP) for

generating reports about the quality of
network service delivered to interactive
terminal users as well as a characterization
of user demands and network utilization.

202

Tna i^Ietwork Maasurement Machine (NMM), shown
in the photograph behind the NMI, was
implemented on a POP 11/20* and employs
regular and special purpose hardware
controlled by a specially written software
system. The regular hardware included the
processor, an operator's console, disk and
magnetic tape storage, two programable
clocks, and data communications interfaces-
Special purpose nardware was employed to
connect the am to the network tnat was to
be measured. This hardware included an
automatic calling unit and line selector
(ACO/LS) for computer-controlled origination
and answering of data calls, and a specially
designed communications line
interconnections device called a "data
probe".

The special software system was a real-time
interrupt-driven scheduler incorporating
various drivers and handlers for the
standard and special purpose peripherals
attached to the Ni"4M. A command interpreter
serving the operator's console made it
possible to view tne status of the NMM and
to view the status of selected ongoing
communication.

Data was not structured nor analyzed during
acquisition- Rather, ail characters were
time-tagged and written onto magnetic tape
for subsequent analysis. Conversations from
up to eight terminals operating in

asynchronous mode could simultaneously be

acquired-

Once recorded, the data are processed by the
DAP. The processing may be briefly
described as follows: The multiple
conversations on the tape are first

separated into individual conversations.
Each conversation is tnen processed to

remove character echoes (if appropriate),
and scanned to build a structure file which
contains pointers to the user and network
messages. Different stratifications of the

data (e.g., grouping by software processor
employed by tne user) can be noted in the

structure file. Conversations may then be

analyzed individually or in aggregate,
reports generated, and a file written for

additional data processing by independent
statistical packages.

Tne basic function of the NMM was to receive
characters from both computer and user and
to record these characters as well as
information concerning the source of the

Commercial products are

identification purposes only,

should be inferred.

named for

No evaluation

203

Gharaoter, the time at which the character
oGcurrsd, and the state of the comniunication

line at the time the character existed-
Aside from this basic function, the most
important feature of the siiM was that it did
not perturb the network being measured-

4.0 STWULU3 ACKNOWLfiDGMENr RESPONSE MODEL

Complex pnenomena are often best understood
in terms of models. In order to investigate
the service delivered by interactive
systems, a set of computer programs has been
written to implement several models. These
programs accept as input the measured data
from the NMt^ and calculate various items of
derived data required by that model.
Statistical analysis of this measured and

derived data is also performed, as is report
generation. An understanding of these
models is fundamental to an understanding of

our approach to network measurement and
evaluation. The model employed for
interactive computer utilization is called
the "Stimulus-Acknowledgment-Response"
model.

Tne "stimulus" is the input from the user;
the "response" is the output from the

computer caused by the stimulus. As will be

further explained below, the
"acknowledgment" is the output from the

computer, or the network, which occurs after
the stimulus but before the response. The
acknowledgment may convey some information
to the user (e.g., that the stimulus was
received and is being processed) which is

not germane to the content of the stimulus.

4.1 Asyncnronous Communication

Character asynchronous computer
communication often employs the convention
that a line constitutes a unit of input and
that a line is terminated by a carriage
return (CR). Since the CR (only) returns
the print position to the first column of
the current line, the computer issues a line
feed (L?) following receipt of a CR to move
the print position to the following line-
Other control characters may accompany the
LF, but their presence will not be
recognized by the user since they have no
visible effect. Non-printing characters are
included in the acknowledgment as an
expedient.

At first one might think that these
non-printing characters constitute the
beginning of the response; upon careful
consideration one concludes that they do

not. The Lf is important, however, in that
it provides feedback which reassures the

user that the computer is still functioning.
Nevertheless, this LF does not constitute a

meaningful response to the stimulus. In

psychological terms, the LF provides partial

closure, but the user is still waiting for

complete closure to be provided by the

response-

4.2 Synchronous Communication

The acknowledgment identified in

asynchronous interactive computer
utilization may also be present in

synchronous interactive utilization. It is

important to differentiate between this
user-level acknowledgment and the

communications protocol acknowledgment. The

communications protocol acknowledgment is at

much too low a level of detail to be of

interest when evaluating service. In

synchronous communication, as in

asynchronous, the user-level acknowledgment
must be recognized by semantic analysis- To

account for this receipt of system
characters which do not convey information

to the user, a state was introduced called

the "acknowledgment-"

5-0 INTERACTIVE TERMINAL COMMUNICATIONS

An interactive communications environment
consists of a source device (usually a

terminal) connected to a destination device

(usually a computer) by an electrical data

path- The total data path is usually

complex, incorporating such communications

facilities as local hardwired digital
transmission lines, modems for digital to

analog signal conversion, and common carrier

public or leased telephone lines of varying
quality and speed- This data path supports

binary, bit serial, and full or half duplex

data transmission. The NMM measured only
character asynchronous transmission. The

NMI measures character asynchronous,

character synchronous, and bit-oriented
synchronous communication.

204

5.1 Asynchronous Bit-serial ASCII

Coimnunication
6.0 NMI fUNCriONS

The NMI measures one channel of asynchronous
bit-serial communication in ASCII which
connects to the Data Terminal Equipment
(DTE) through an RS-232-C interface.
Communication conforms to FIPS 17-1 (ANSI

X3. 16-1976). Terminals supported include,

but are not limited to, Teletype model MO,

Xerox 1620, and Tektronix HOOO-series. For

such terminals, the NMI is able to
automatically measure a newly connected
terminal. Transmission rates of 110, 150,

and 300 bps are detected through recognition
of a predetermined character entered by the

terminal operator. The NMI is capable of

accepting a command to identify this
character. The NMI provides a command to

identify the communications rate when it

exceeds 300 bps. The rates supported

include, buc are not limited to, 600, 1200,

1800, 2400, 4300, 7200, and 9600 bps-

5.2 Character-oriented Synchronous
Communication

The NMI measures one channel of
character-oriented synchronous communication
employing IBM 3270 Information Display
System protocol as specified in [4] and [5].

5-3 Bit-Oriented Synchronous Communication

The NMI measures bit-oriented synchronous

communication employing the Advanced Data
Communication Control Procedures (ADCCP) as

specified in the most recent version of ANSI

B3R X3.66 and the IBM Synchronous Data Link

Control (SDLC) Procedures as specified in

the most recent version of an IBM

publication [4].

5.4 New Interface Standards

The NMI is able to measure three new

standard interfaces. The first two are

electrical interfaces and the third is a

logical interface. The logical interface is

RS-449, wnich specifies the transition from

R3-232-C to RS-422 or RS-423)- The

electrical interfaces are RS-422 for

balanced circuits and RS-423 for unbalanced

circuits. Generally, equipment would

utilize the logical interface (R3449) with

either of tne electrical interfaces (RS422

or R3423).

6. 1 Processing Of Echo-plex Communication

When the DTE operates in echo-plex, the NMI
is capable of identifying and eliminating
from statistical analysis all characters
which are echoed exactly as transmitted.
The algorithm employed is derived from the
one employed in the DAP [6]. Tne echo
removal algorithm produces a half-dupiax
approximation of an echo-plex conversation.

Any number of user characters may be

interposed between a user character and its
echo. The problem is to identify when a

character transmitted from the network is an

ecno and when it is tne beginning of a

network output sequence. The algoritnm
requires that the beginning of the user
stimulus be identified. This is

accomplished by defining any character from
the user as terminating a network
transmission- Likewise, any character from
the network which is not an echo terminates
the user transmission. The procedure
involves placing user characters into a

buffer and maintaining pointers to the end
of tne buffer as well as to the current user
character. Each character from the network
received is an echo candidate and has to be

compared with the current user character.
As long as a match exists, the pointer is

advanced and the process repeated. When tne
end of the buffer is reached, the user
transmission is terminated. If tnere is a

nonmatch before the end of the buffer, the

remaining user characters end the network
transmission and begin the next user

transmission. By this definition, endings
and beginnings are strictly determined by

time sequence-

The NMI provides a command wnich will cause
it to accept lower and upper case alphabetic
characters as equivalent for the purposes of

echo removal-

The NMI provides a command to identify a

known transformation which occurs in

echo-plex operation. A known transformation
is identified by the character transmitted
by the terminal and the character string
received by the terminal, for example, the

character transmitted by the terminal could

205

be c^ii and the transformed echo could oe the
two-character sequence "'C" (the " is not
part of the transformed echo). When a knovm
transformation has been identified to the
NMI through the use of this command, that
known transformation is treated as if a

single character exact echo had been
detected.

6.2 Recognition Of Acknowledgment

The NMI separates the data transmission to
the terminal from the network into two
components for the purposes of the analysis
described below. The first (in time
sequence), the acknowledgment, may consist
only of non-printing characters (also known
as control characters). The second
component, called the response, begins with
the first meaningful printing character and
extends to the end of the message group
(also known as a transaction).

The NMI provides a command to identify a

fixed header which occurs at the beginning
of the data transmission to the terminal.

This fixed header is a known string of

characters which may be preceded and/or
followed by non-printing control characters.

When a fixed header has been identified to

the NMI tnrough the use of this command, the

fixed header is included in the

acknowledgment- for example, printing of

the time of day and the cost of processing
the stimulus would not be considered a

meaningful response and would be treated as

part of the acknowledgment. Thus the
response begins with the first printing
character following tne end of the fixed
header.

* Stimulus transmit time: The elapsed
time from the transmission of the first
user character until the transmission
of the last user character in a message
group.

* Stimulus character count: The number
of characters comprising the stimulus.

* Acknowledgment delay time: The elapsed
time from the receipt of the last user
character in the stimulus until the
transmission of the first character
from the network in the acknowledgment.

* Acknowledgment transmit time: The
elapsed time from the transmission of
the first character from the network
until the transmission of the first
meaningful character in a message
group.

* Acknowledgment character count: The
number of characters comprising the
acknowledgment

.

* Response delay time: The elapsed time
from the receipt of the last character
from the network in the acknowledgment
until the transmission of the first
meaningful character from the network
in the response.

» Response transmit time: The elapsed
time from the transmission of the first
meaningful character from the network
until the transmission of the last
character in a message group.

* Response character count: The number
of characters comprising the response.

6.3 Measures. Statistics, And Reports

The NMI provides the following measures,

statistics, and reports- Measures of time

are demonstrably accurate to within 0.01

second.

5.3.1 Fundamental Measures

The NMI collects data sufficient to describe
the following measures.

* Stimulus delay time: The elapsed time
from the receipt of the last character
from the network in one message group
until the transmission of the first
user character in the next message
group

.

20

6.3.2 Derived Measures

The NMI calculates the following measures by
performing simple arithmetic operations on
the preceding measures.

* Stimulus transmission rate: The
stimulus character count divided by the
stimulus transmit time.

* Acknowledgment transmission rate: The
acknowledgment character count divided
by the acknowledgment transmit time.

* Response transmission rate: The
response character count divided by the
response transmit time.

* Response time: The elapsed time from

the transmission of the last character
of the stimulus until the receipt of
the first meaningful character of the

response.

* Response completion time: The elapsed
time from the transmission of the last
character of the stimulus until the
receipt of the last character of the

response.

* Transaction time: Elapsed time from
the transmission of the first character
of the stimulus until the receipt of
the last character of the response.

6.3.3 Statistical Treatment

The large number of observations which might
be obtained by the NMI require statistical
treatment before reports can be produced.
The statistical treatment of the measures
specified above is described in this
section.

* Standard Sampling Interval: The NMI
accepts a command from its operator to

establish the upper and lower limits
for each of the measures specified
above. These limits constitute the

specification of the standard sampling
interval for each measure.

* Frequency Count Distribution: The NMI
accepts a command to divide the
sampling interval into a specified
number of equal class intervals, which
it employs to summarize the

observations which occurred. A counter
is associated with each class interval
to record the number of observations of

the measure which occurred during a

measurement activity. Two additional

counters are provided, one for all
observations less than the specified
minimum and one for all observations
greater than the specified maximum.
These equal class interval counts are

directly utilized for the production of

histograms.

* Percentile statistics: The NMI

calculates 50% level (median), 90%
level and 95% level statistics from the

class interval counts. A given
percentage statistic is defined as the

number of observations which occurred
at or below the stated percentage
level

.

The NMI accepts a command to produce a

report of the statistics and histograms
calculated. The command specifies
which report is required. For each
measure the report contains an
identification of the measure, the
percentile statistics, and a histogram
of the class interval frequency counts.

Histogram content: The histogram
presents combined class intervals in
order to fit on the output page. The
histogram is scaled to occupy at least
50 per cent of the area of the output
page unless every occupied class
interval is presented, in which case at
least one dimension of the histogram
occupies 70 per cent of the available
space in that direction on the page.
The histogram identifies the range of
each class interval reported, the
number of observations occurring in
that class interval, the cumulative
percentage of observations for eacn
class interval, and a bar chart which
displays the proportional number of
observations in that class interval.

Hard Copy: The report may be generated
on hard copy. The NMI provides an
RS-232-C port for connection of an
external asynchronous terminal which
may be employed to print the report.
The terminal connection supports ASCII
communication at 110 to 9600 bps and a
page width of 80 columns.

Soft Copy: The NMI provides a direct
view display on which. is presented all
statistics, reports, and histograms
specified herein.

7.0 NMI ARCHITECTURE

The NMI architecture is based on a three
bus, three Z-80 microprocessor system
organization to effect the total set of
capabilities the instrument is intended to

provide. As shown in Figure 1, the
processors themselves are augmented by
general and special purpose subsystems which
further tailor the multi-processor
configuration to the application. The most
significant of these subsystems include the:

1. Dual Channel Serial Data
Acquisition Subsystem — which
satisfies the unique requirement
for a serial interface capable of
monitoring both transmit and
receive data paths of, optionally,
either start/stop, synchronous or

207

o
C50

2:

o
</5

Q
IT ce
CQ LU
>- _l
:^ _l
•\ o
O CK
UJ t-a z« o> o

<
X
o

I-

csi o

o
s-

to

00

o
s
t->

208

bit oriented links (protocols)
which may further require either
RS-232-C, RS-422, RS-423 or current
loop electrical interfaces.

This subsystem also provides the
operator with the ability to
"qualify" the instrument's
execution in terms of any four
"control" or "handshaking" signals
contained in the electrical
interface of the circuit under
test.

2. Mass Storage Subsystem — which,
while taking advantage of the
economics and portability of
flexible disk technology, employs
voice coil positioned drives.
Access speeds are therefore several
times faster than typical floppy
disk systems. A random access seek
can require as little as 33ms, as

fast as many large disk systems.

Fast bulk memory is therefore
available to support the large
storage requirements of a traffic
analysis system as compared to a

diagnostic tool.

Tne nardware formation, therefore, yields a

closely coupled distributed processing
system architecture wnich affords a

partitioning of functions among the three
processors described below.

7- 1 The Communications Processor

The Communications Processor is responsible
for directing the Serial Data Acquisition
Controller to monitor data transfers on the
circuit under test, to correlate those
transfers to a real time clock, and
generally to perform the measurement tasks
which facilitate subsequent data reduction
and statistical description of the traffic
observed during the measurement period.
This processor forwards measurement data to
the numeric processors for additional
analysis prior to storage by the File System
Processor.

7.2 The Numeric Processor

i'he Numeric Processor, as the name implies,

executes the data reduction programs which

produce tne measures, statistical summai^^is,
and reports describing the nature of the
data transmission on circuits monitored by
the Communications Processor.

The Numeric Processor also handles operator
communications from the system console and
drives the hard copy printer onto which
paper copies of measurement results are

written.

7.3 The File System Processor

The File System Processor manages the files
of measurement data as well as the

measurement and data reduction programs.
The measurement data is contained in three
files which are produced at successive
stages of data reduction. The Conversation
File is a recording of the conversation
being monitored and consists of time tagged,

sequenced character count representations of
user and network messages. The Measurement
File is a sequential representation of the

fundamental measures, described in paragraph
7.3-1, for each transaction observed during
a conversation. The Summary File is a

summary of the statistical treatment of a

single measure over one or more

conversations; it contains the counters
associated with the equal class intervals
composing the standard sampling interval.

The composition of measurement and data
reduction programs responsible for measuring
a conversation is a function of the

communications mode: asynchronous,
cnaracter-oriented synchronous, or

bit-oriented synchronous. The File System

Processor provides for the linkage to tne

necessary programs.

7.4 Data Measurement Logic

The data measurement logic is table driven,
making it relatively easy to add the

capability to measure other data
communications protocols. These tables are
derived from state diagrams, such as the one
for asynchronous communication shown in
Figure 2. The state diagrams for other
communications protocols differ in detail
only. It is, therefore, instructive to

examine this state .diagram:

209

SOS
SDT(F)

STT(I)
RECORD STIMULUS

SDT (F)

JTT (IL

SOS

1

STT(F)

sec

ADT(I)

RDT (I)

SOA /ADT(F)
ATT (I)

CC

3

RTT(F)

SDT (I)

RECORD
ACK & RESPONSE SOS SDT(F)

STT(I)
2

ATT(F)

ACC
RDT(I)

SDT (I)

RDT(F)

SOR RTT (1)

CSOR 0

Fig. 2. Asynchronous SAR Model

The inputs represented in this
diagram, which generate state
transitions, are the beginning and
endings of user and network
messages composing a transaction:
SOS, start of stimulus; SOA, start
of acknowledgment; and SOR, start
of response. An asynchronous
communications transaction consists
of stimulus, acknowledgment, and
response messages only. The
program logic which identifies
these message boundaries is a
combination of echo removal and
fixed header recognition for
asynchronous communications.

Tne non-transitional inputs are the
message character counts and their
associated times.

3- The outputs represented in this
diagram are the variables
associated with the fundamental
measures: SDT (I) & SDT (F),

stimulus deiay time, initial and
final; STT (I) & STT (F), stimulus
transmit time, initial and final;
sec, stimulus character count; ADT
(I) & ADT (F) acknowledgment delay
time, initiai and final; ATT (1) &
ATT (F), acknowledgment transmit
time, initial and final; ACC,

acknowledgment character count;
RDT (I) 4 RDT (?), response delay
time, initial and final; RTT (I) &

RPT (F), response transmit time,

initial and final; and RCC,

response character count. The
variables updated by the

transitional inputs are designated
in the state transition diagram as

follows: Transitional
Input/Variable Updated. Tne

variables updated by the

non-transitionai inputs are listed
in the state bubble.

210

4. Stimulus measures are finalized by

the beginning of network
transmission; therefore, the
transition from state 1 to state 2

causes the calculation and
recording of the transaction
stimulus measures. Likewise, the

beginning of user transmission, a

transition from state 2 or 3 to

state 1 , finalizes the

acknowledgement and response
measures.

7. 5 Conclusions

The NMI implements the measures, data
analysis, and data presentation
recommendations from Guidelines for the
Measurement of Interactive Computer Service
Response Time and Turnaround Time [3], in a

portable instrument. As such, it makes
possible the determination of computer
service rendered which was previously very
difficult to accomplish- The ability to
measure asynchronous, character-oriented,
and bit-oriented data communications is a

very useful extension on the prio"
state-of-the-art.

message group
The stimulus input from the user and the
following acknowledgment and response output
from the network constitute one message
group. Also known as transaction.

network
The combination of data communications
circuits and data switching components to
which terminals and computers are connected.
From the viewpoint of a terminal connected
to the network, it is impossible to
determine whether a character originates
within a network processor or a remote host
computer.

response
Output from the network. When there is an
acknowledgment . the response begins with the
first meaningful character .

stimulus
Input from the human to the network.

turnaround time
The time interval between the initiation of
a job or function and the availability of
the results.

8.0 GLOSSARY

acknowledgment
All the initial non-printing characters
which are output by the network following a

stimulus . A fixed heading on all output may
be considered as part of the acknowledgment
rather than as part of the response.

echo-plex
The mode of terminal and network operation
wherein the printer or display and the

keyboard on the terminal are not connected
so that every character transmitted by the

terminal to the network must be transmitted

by the network to the terminal in order to

be visible to the operator.

first meaningful character
The first character in the output from the

network which transfers information to the

user. A printing character. When there is

a fixed heading on all output which is

defined as part of the acknowledgment, the

first printing character following the fixed

header.

9-0 BIBLIOGRAPHY

1. Abrams, M- D- and Treu, S- , "A

Methodology for Interactive Computer
Service Measurement," Communications of
the ACM. December 1977, pp- 936-944.

2. Abrams, M. D.
, Cotton, I. W. , Watkins,

S- W. , Rosenthal, R- , and Rippy, D-

E- , "The NB3 Network Measurement
System," IEEE Transactions on
Communications . October 1977, pp. 1189
- 1198.

3- Guidelines for the Measurement of
Interactive Computer Service Response
Time and Turnaround Time . Federal
Information Processing Standards
Publication 57, August 1978.

4- General Information — Binarv
Svnchronous Communication. IBM Systems
Development Division, GA27-3004-2,
October 1970.

5. IBM 32 10 Information Displav System
Component Description ^ IBM Corporation,
GA27-2749-6, September 1977-

6. Watkins, S.W. , and Abrams, M.D.

,

Interpretation of Data in the Network
Measurement Svstem . NBS Technical Note

897, February 19^6.

211

213

PERFORMANCE ANALYSIS
OF A

SATURATED SYSTEM

A Case Study

Nancy Lennon and Walter P. Bond, Jr.

Coirq)uter Sciences Corporation
Kennedy Space Center, FL 32952

This paper describes some recent experiences that the authors have
had in attempting to gather decision-making data from an on-line system
which was totally saturated, and for which minimal performance measure-
ment tools were provided. The case study presented illustrates the
limited use of data resulting from post facto measurement techniques.
An attempt has been made to illustrate the type and quality of results
which can be expected under these circumstances.

Key words: Inventory management; on-line; performance; response time;

saturated system; transaction processor.

1. Introduction

The Shuttle Inventory Management
System (SIMS) provides total on-line com-
puter support for both the NASA Space
Shuttle Program and the Kennedy Space Center
base operation.

The initial design of SIMS assumed no
hardware or software constraints; conse-
quently SIMS was implemented on hardware
which was unable to support the actual work-
load. Projections of workloads Indicated
that SIMS soon would experience an even
greater backlog of transactions.

Response time was unacceptable; certain
transactions required up to 30 minutes to
complete. Queue lengths continued to in-

crease throughout the operational day. Sub-
stantial down-time due to hardware failure

further conq)ounded the throughput problem.

The users of SIMS lacked confidence in

the systems ability "to do what it said it

would do" and often checked their work sev-
eral times to make sure the transaction
"took." This behavior factored greatly in

the SIMS workload.

This conbination of unreliable hardware,
slow response time, inadequate throughput,
and lack of user confidence led to an offi-
cial post implementation system review.

2. Definitions

SIMS - The Shuttle Inventory Manage-
ment System is a series of integrated on-
line logistics support programs providing
total supply support for Kennedy Space
Center. SIMS was implemented on an H6 33 com-
puter using the Transaction Processing
Executive (TPE) and Integrated Data Store
(IDS) software operating under GCOS.

TPE - The Honeywell Transaction Pro-
cessing Executive.

TPAPS - The Transaction Processing
Application Programs.

GCOS - General Comprehensive Operating
Supervisor: The Honeywell 6 35 Operating
System.

IDS Integrated Data Store: Honey-
well database management system.

215

Response Tine - The time between ini-

tiation of a transaction and conpletion of

processing for that transaction.

Queue Time - The time a transaction
spends in TPE before being passed to a TPAP.

3. Background

The functional description of the

Shuttle Inventory Management System (SIMS)

was released by NASA in October, 19 74, At

that time the decision was made to utilize
the existing hardware configuration con-
sisting of an H635 computer and associated
peripheral equipment including a Honeywell
DATANET 355 as the te le connuni cation front-
end processor. The system software to be
used included a version of GCOS operating
system, with the Honeywell Transaction
Processing Executive (TPE) as the only
available software package to interface
the applications control program with the

DATANET 355. The application software
development took place over a three year
period and resulted in an operational on-

line system in February, 19 78. In Sep tenter,
19 78, a post implementation system review
was conducted to determine the steps needed
to improve SIMS performance,

3.1 SIMS

The Shuttle Inventory Management System
is a supply support system comprised of
three sub-systems;

1, Supply system - items, people,
warehouses, stock, issues

2, Data system - records, reports,
cataloging, purchase orders, stock,
level

3, Computer complex - H635 and peri-
pherals, automation of data system

3,2 Hardware Description

The SIMS Computer Conplex to be investi-
gated consisted of a dedicated Honeywell 635
computer (256K) , with the following peri-
pheral equipment:

16 IBM 2314 disk drives
2 180 disk drives
1 DATANET 355

73 Remote terminals

3.3 Software

The SIMS software occupied 250K words
of memory (out of 256K) allocated as follows:

General Coiq>rehensive

Operating Supervisor 36K
Transaction Processing

Executive 70K
Transaction Processor

Application Programs
Inventory 72K
Cataloging 41K
Output Procedure 22K
Recoveries 9K

Total 250K

The SIMS database and software required
80M words of on-line storage,

3.4 Workload Summary

The actual workload was averaging 5,000
transactions per day with a backlog of 2,000
to 3,000 per day. The projected workload for
the next five years ranged from 9000 trans-
actions per day to a maximum of 14,000 trans-
actions per day.

3.5 Performance Considerations

Intuition established the framework for
analyzing SIMS:

A. Response time appeared excessiye
(No comparison to similar systems
was available)

B. System would not be able to process
projected workload (Was workload
realistic?)

C. No performance data were available
(No requirement, lack of resources)

D. SIMS was assumed to be I/O bound
(Response time problem infers too

many terminals)

E. TPE was a known problem area
(Inappropriate tool for high volume
transaction processing)

F. Immediate improvement needed (With

no impact on resources)

216

4. The Performance Analysis by TPAP, and by location.

The purpose of the SIMS study was to

identify the problems and to suggest alter-
natives which could inprove system response
time and increase system throughput.

A. 1 Quick Fixes

Quick, fixes were suggested based on the

following assumptions:

o SIMS was I/O bound (too many ter-

minals)

o SIMS would not be able to process
projected workload within required
time frame (on-line load too heavy)

In order to address the I/O problem,
the terminal operators were put on a

schedule by which each terminal was on-line
only during a specified portion of the day.

To solve the throu^put problem, a

batch collection facility was installed
which routed lower priority transactions to

a batch collection file for overnight pro-
cessing.

Some inprovement was recognized by

these quick fixes.

4.2 Performance Data

The lack of system performance data
prevented early identification of the SIMS

problems. To install software probes and

operating system measurement code would
have degraded the already unacceptable re-

sponse times even further. Additionally,

the available core was limited due to TPE

buffers.

The initial sources of data to measure

SIMS were as follows:

END-OF-JOB statistics
Memory Dumps
Terminal Operator Logs

Stopwatch Studies
H633 Console Logs

In order to gain insight into the

response time and queue time problems, a

software patch was added to the transaction

processing journal tape to record time into

TPE, tine into TPAP, time out of TPAP, and

time out of TPE for each on-line transaction.

These data were categorized by transaction.

Based on these limited data and an
analysis of SIMS processor utilization, some
tentative conclusions resulted:

o SIMS system is not I/O bound (see
Figure 1)

o SIMS system is CPU bound

o TPE is "hogging" CPU

o Need more than two paths through the

system (more TPAPS)

635 Processor & Input/Output Utilization
(November 20, 19 78)

Processor Hour

Other & Idle

(1 Min.)

Input /Output Hour

Other

(.2 Min.)

Figure 1

217

A. 3 Interim Solutions

The CPU problem could be addressed in

two ways

:

o Faster CPU (Replacement of H635)

o New transaction processor (Replace-
ment of TPE)

Due to the excessive down- time exper-
ienced by the H635, the decision was made

to obtain a faster CPU. Subsequently a

Honeywell 66/60 with a memory size of 512K
was procured by NASA for the SIMS system.
The SIMS system was converted with few en-

hancements to the H66/60. The response

time improvement was approximately 40%.

Enhancements to the Honeywell File

Management System permitted the two SIMS
TPAPs to be segmented functionally into
eight independent TPAPs. This change con-
tributed to the total throughput improve-
ment of approximately 60%.

4. A Long Range Solutions

Software conversion to the H66/60
provided an opportunity to enhance SIMS
without total redesign; however, several
major system improvements remain possible.

E. Performance Data - In order to
provide an adequate base-line for
future system decisions, daily
performance data are to be gathered,
analyzed and archived.

5. Conclusion

Post implementation system performance
measurements have often been the rule. As
illustrated by this case study, such limited
measurements can be gathered and, further,
can ultimately lead to correct decisions.
However, techniques for the collection and
analysis of such data in a saturated opera-
tional environment must necessarily be cursory;
results will be marginal and may lead to er^
roneous conclusions. Provision for the

systematic collection of performance data
is an essential component of the initial
system specification.

The authors wish to recognize the contribu-
tions of both the NASA SIMS Study Teams and
of Roy Kilpatrick and Dale Hurtig of Com-
puter Sciences Corporation. However, the
authors assume total responsibility for any

inaccuracies or omissions in this report.

A. TPE - TPE was designed for low

volume systems; studies are under-

way to investigate conversion to

another of Honeywell's transaction
processors.

B. Fragmented File - A final step in

the SIMS improvement plan is to ex-

amine the database. A number of
redundancies were incorporated into
the database design as "work-
arounds" for initial hardware
ine f fi cien cies

.

C. Overlay Activity - In order to

compensate for lack of memory,
heavy overlay activity was designed
into the initial system. This in-

efficiency remains a source of
possible system degradation.

D. Optimize Application Programs -

The Honeywell Extended Instruction
Set (EIS) was not available on the
H635. SIMS TPAPs can be recompiled
under EIS on the H66/60.

218

TELEPROCESSING TRANSACTION THRUPUT PERFORMANCE

Bob Irwin

Programmer/Analyst: Computer Performance/Capacity Unit
The Hartford Insurance Group

Financial industries are dependent on Teleprocessing systems to

execute their daily transactions. Unacceptable Teleprocessing performance
can, and does, impede the expected flow of line of business transactions,
thus degrading the anticipated level of work units for that line of

business. This paper is an analysis of TCAM's tuning parameter: BUFFER
DELAY VALUE. The analysis develops a mathematical characterization of

TCAM's BUFFER DELAY VALUE which describes the race conditions inherent
in TCAM logic. Such race conditions potentially degrade Teleprocessing
transaction throughput. The analysis resulted in a TCAM modification to

search a table of BUFFER DELAY VALUES, where each value corresponds to a

number of stations currently active on the line. The instantaneous
optimal DELAY VALUE generated by this table acts to optimize line utili-
zation and prevents station input transaction line lockouts.

Key words: Input lockout; mathematical modeling; queuing models; race
conditions; TCAM data flow; teleprocessing.

1. Introduction

The objective of this paper is the
development of a mechanism to optimize TCAM
half duplex line utilization to avoid
conditions of line input lockout resulting
from dominating line output processing.

Such a mechanism takes the form of a

mathematical characterization of TCAM's
global tuning parameter, BUFFER DELAY
VALUE (BDV) . This mechanism is currently
being coded at The Hartford Insurance
Group to promote the balancing and
optimizing of telecommunication half
duplex line utilization for particular
lines of business.

Sections 1 and 2 describe a model of

TCAM message flow, TCAM's EQUAL PRIORITY
SCHEDULING ALOGRITHM and the interactions
between the model and the algorithm which
result in line input lockouts. Section 3

describes the mechanism developed to

mitigate conditions of telecommunication
line input lockout. Lastly, Section 4

describes the algorithm added to TCAM

which dynamically chooses a BUFFER DELAY
VALUE for a particular station on a

teleprocessing line.

1.1 Definition of Symbols

MSG: Message
STA,S: Station
DQ: Destination Queue
APGM: Application Program
Q : Queue
MH/LI: Message Handler/Line In
MH/AO: Message Handler/Application Out
MH/AI: Message Handler/Application In

MH/LO: Message Handler/Line Out
STCB: Station Control Block
LCB: Line Control Block
BDV: Buffer Delay Value
L : Line

2. TCAM Message Flow

The Hartford Insurance Group imple-
ments a large scale teleprocessing system
to process daily insurance transactions
spread over a national network of lines
and branch offices. The teleprocessing

219

2. TCAM Message Flow (continued)

system executes on an AMDAHL V6 computer
using SVS and TCAM. The message processing
program interfacing with TCAM is named TELLY
and processes insurance transactions or
message types such as:

o NEW BUSINESS
o INQUIRY
o POLICY CHANGE
o RENEWAL
o CLAIM
o CANCELLATION

The messages constitute the online
transaction flow of the business. As such,
improvements or degradation in the perform-
ance of these messages/transactions have a

direct impact on the throughput potential
of various lines of business within the
corporation.

The following model (see Figure 1.) and
narrative description is a generalized "walk
through" of TCAM message flow.

2.1 NARRATIVE DESCRIPTION, refer to figure 1.

MH/LI

o Message (MSG) stored in CPU buffer asso-
ciated with line

o MSG prefix is filled and other validation
checks are performed

o MSG is placed on destination queue (DQ)

associated with application program
(APGM) or accepting station (STA)

.

MR/AO

o "Reads" MSG from an APGM DQ and stores it

in buffer
o MSG is placed on a READ-AHEAD-Q and is

"read" into MSG WORK AREA for that APGM,
PREFIX is removed at this time

o APGM processes message. APGM may return
a processed response MSG to a STA or
another APGM.

MH/AI

o Processed MSG "WRITTEN" to buffer, MSG
PREFIX & HEADER created

o MSG Is:

- Place on DES-Q associated with a

STA. or
- Place on DES-Q associated with an-

other APGM.

MH/LO

o STA SELECTION

- MH/LO searches station Control Blocks
(STCB) of the Line Control Block (LCB)
node until there is no work to be done,
i.e., the STCB subchain is searched
while

:

+ Output is queued for STA
+ STA is eligible

- STA not in buffer delay
- STA not being held

o MSG read from a STA's DQ into buffer
o MSG prepared for output transmition
o MSG transmitted
o Only when there is no output for a line,

are input MSG processed by autopolling
that line.

MH/LO Diagram (see Figure 2.)

The MH/LO diagram is a specific in-
stance of the TCAM message flow diagram.
It isolates the conditions of line input/
output utilization and ignores APGM queuing,
MH/AO, MH/AI and APGM message processing.

The flow of messages to and within
MH/LO is as follows:

A message is transmitted to the Termi-
nal Control Unit (TCU) from a terminal (in

TCAM terminology a terminal is a station)

,

the MH/LI logic of TCAM interfaces with the
TCU hardware and queues the input message.
After input message processing the result-
ant output message is placed on an output
STA DQ associated with same line. Then
MH/LO logic of TCAM, scans each line for

STAs on that line which have output queued
and are eligible to print. Output processing
continues until there is no work (queued

output messages) for eligible stations on
that line.

Under these conditions the line out-
put utilization can be such that no input

messages are acknowledged, resulting in a

line input lockout or unacceptable service
for input terminal processing.

2.2 Control of Line Utilization

TCAM's BUFFER DELAY VALUE (BDV)

The parameter available to "tune" half
duplex line utilization is the BUFFER DELAY
VALUE.

BDV is that period of time a station
on some line is not eligible to receive

output. In effect, it is a time switch
which controls the input/output selection
algorithms of TCAM.

220

TCAM

DQ

A
P
G
M
1

f

MH
Ao

MH
Ai

APGl11

DQ

S

T
A
1

1
DQ

A
P

G
M
2

MH
Ao

MH
Ai

APG]^2

DQ

S

T
A
2

. 1 f

DQ DQ

A A
P

• • * P

G G
M M
3 j

. 1

MH
Ao

MH
Ai

APC;m3

DQ

S

T
A
3

MH
Ao

MH
Ai

APGMj

DQ

S

T
A
m

Figure 1. TCAM Message Flow

MH/LI1 ^ J/ _ lb

DQ
STAj^

DQ
STA2 • • •

DQ
STAj

TCAM

MH/LO V.

Figure 2. MH/LO Diagram

2.2 Control of Line Utilization (continued) negative capacity or underutilized printers

Therefore, BDV is a value which may be
used to detain line output message proc-
essing in favor of line input processing.
It can be viewed as that time required for

a station to print a message and thus, the

interval of time in which no attempt by
TCAM is made to transmit the succeeding
message to that station.

BDV Specification

BDV specification is not immediately
obvious. The variables, print time, trans-
mit time, CPU time (includes modem turn-
around time) number of stations on a line

and TCAM's Equal Priority Scheduling
algorithm are all required elements factored
into the decision of an appropriate BDV.

Default BDVs or mis-specified BDVs in

the positive or negative direction can
exacerbate existing conditions of line input

lockouts or what the author designates as

negative capacity (CPU capacity absorbtion
with no correspondent effective work being
performed) . Such conditions have a degrad-
ing effect on the transaction flow of a

business dependent on the effectiveness of

its telecommunications system.

TCAM EQUAL PRIORITY SCHEDULING ALGORITHM
AND BDV

Given an LCB and associated STCB Link
List, the EQUAL PRIORITY SCHEDULING
ALGORITHM will continuously search that list

while output is queued for some station on

the line and that station is eligible, see

figure 3. A station is eligible if it's

not observing its buffer delay or is not

being held. Only after all output queued
for that line is satisfied does TCAM honor
input for that line. For the purposes of

the following discussion, we will assume

the station is never in a HOLD STATE.

The "EQUAL" in TCAM's EQUAL PRIORITY
SCHEDULING ALGORITHM can be construed to

mean: Accept input for a line and perform
output for a line then go to the next line
and do, until all lines are satisfied.
Thus, lines are equally "flip-flopped"
between input and output; however, the
internals of the algorithm allows a dis-
proportinate percentage of time expended
in servicing the output component while
input must wait. TCAM;s BDV can be imple-
mented to bring the above condition back
into an "equal" state.

The OBJECTIVE

Given the above problem description,
we are now prepared to state our objective
in controlling half duplex line Utilization

The objective is to choose a BDV such
that TCAM performs only one pass of an
LCB chain for output.

The objective makes the following implica-
tion:

a. No spinning within an LCB chain occurs.

b. After one pass on an LCB chain do an

autopoll of that line, (i.e., honor
input for that line)

.

c. a. and b. above are performed as an

ordered pair for each line in the
telecommunications system.

The conditions under which half duplex

input line lockout exists have been des-

cribed; an objective which mitigates this

condition has been found; and lastly, a

mechanism is now required to meet our

obj ectives

.

3. A mechanism to control line utilization

LCBl-)jSTCB]l-^STCB2[-jjSTCB3i_,, ^STCB
Definition of Variables

Let

Figure 3. LCB Link List

Given the EQUAL PRIORITY SCHEDULING
ALGORITHM and peak loading conditions line

control block chain could loop on itself
until all output queued for stations on

that line is transmitted. Unless a judi-
cious value for buffer delay is selected
real time input requests from the field

branch offices will be denied, moreover,
invalid buffer delay values can result in

And

PBUF = BYTE width of station hard-

ware buffer
Po = Station print speed in

bytes per second
MSZE = Maximum message size

Lo = Line transmission speed in

bytes per second.

Pm = Message print time

Tm = Message transmit time

222

3. A mechanism to control line utilization
(continued)

Cm = Message CPU preparation
time

N = Number of stations eligible
for output and having out-
put queued

k = The ratio of PM and (TM +
CM)

D = BDV

Then

Development of the Buffer Delay Value

Let us make the initial observation
that the period of time a buffered sta-
tion is ineligible to receive the next out-
put message is that period of time the sta-
tion is busy printing the currently trans-
mitted output message. Then

D = Pm = PBUF
Po

Pm = PBUF
Po

Tm = MSZE
Lo

k =

For

Pm
(Tm+Cm)

Po = 40 CPS (characters or

bytes per second)
Lo = 133 CPS
PBUF = MSZE = 500 characters or

bytes
Cm =0.5 sec. (mean value de-

rived from measurement)

We have

Pm =12.50 char /sec
Tm = 3.76 char/sec
k = 2.93
D, is to be derived.

Assumptions and Initial Conditions

a. Message size approaches or

equals TC-241 hardware sta-
tion buffer size of 500 char-

acters

b. Station print speed is 40

CPS. This ignores a poten-
tial speed increase with the
inclusion of TAB CONTROL
CHARACTERS in the output
message.

c. We are interested in peak
loading conditions where out-

put is queued and N is large.

This observation is clear, the suc-
ceeding output message for a station should
not be transmitted during the interval of
time in which that station is busy printing
the current message. If, in fact, the suc-
ceeding message is transmitted before its
print time has expired then the station
will reject the message (respond NAK) and
TCAM "throws away" the candidate output
message which is waiting transmission in an
incore buffer.

Thus, the first approximation of BDV
is PM. Given that BDV=PM does this value
meet the constraints of the objective? For
one station on a line the value clearly
meets the objective (see Figure 4), this is

also the case for two stations on a line.

However, when N23 the message transmit time
(Tm) plus the CPU message preparation time
(Cm) to service N.i3 stations exceeds Pm and
the first station on the chain now becomes
eligible for output. TCAM's EQUAL Priority
Queuing Algorithm senses the eligible sta-
tion and upon completion of servicing all

output requests for that line loops back on
the same chain again for output service.
Under these conditions, no input will be
honored until all output is services or
Ni2.

Then the limiting time value for the

first approximation is, See figure 4.

L = £(Tm+Cm) < Pm.

Furthermore, it is now evident that
BDV is not a constant value but must dynam-
ically change as a function of N.

For lines have N52 and the above capac-

ity characteristics we have the following
special form of BDV

Pm is 12.50 char/sec, Tm is

3.76 char/sec and k = 2.93 D = Pm

223

HEAD TIME

LCBi

(STCB CHAIN^

STCBg ELIGIBLE FOR OUTPUT^

^0—^ HONOR INPUT, RETURN TO LCB^^^

<YES—> OBTAIN POINTER TO LCBm AND L00p\
BACK ON STCB CHAIN /

LCB,

STCBi

?^ = 12.5 sec.

STCB2

3. 76 4- 0. 5 = 4.26 sec.

(3.76 + 0.5) + 4.26
= 8.52 sec.

STCB3 <

(3.76 + 0.5) + 8.52
= 12.78 >P^

STCB4 .

•

STCB]^—^OUTPUT

STCB5
^

i
•
•
•

\

STCBn
1

Figure 4. STCB Chain Processing

224

3. A mechanism to control line utilization
(continued)

This special case equation may be gen-
eralized for varying capacity lines and
stations and CPUs as follows

D = Pm, where N : Pm = k
(Tm+Cm)

Notice, given the above line, station
capacities the ratio of Pm and (TmfCm) is
approximately 2.93, rounded down to integral
stations is 2. This is the value we derived
empirically and has an important function
in deriving a dynamic BDV for instantaneous
values of N.

Let k = Pm where k is the boundary
(Tm+Cm) where looping occurs

And the number of integral station N>k be

(N-k)

Then for each integral station increment>k
the time summed into the first approximation
of BDV must be

(N-k) -it (Tm+Cm)

Therefore, the instantaneous buffer delay
value for some value of N is

D = Pm + (N-k) * (Tm+Cm)

D = Pm + N>Tm + N*Cm - k*Tm - k*Cm

D = Pm + N* (Tm+Cm) - k* (Tm+Cm)

Substituting k = Pm
(Tm+Cm)

D = Pm + N«(Tm+Cm) - Pm » (Jja+tim)

(T;»K;m)

D =^ + Ni;.(Tm+Cm) - J»fn

D = N+(Tm+Cm).

Notice that in the simplification of

the equation describing BDV that BDV is no
way dependent on our intuitive first approx-
imation; the speed of the print device, Pm.

Print time vanishes from the equation and

the somewhat unexpected results above falls

out of the algebra.

4. TCAM DYNAMIC BUFFER DELAY ALGORITHM

A modification to add the DYNAMIC
BUFFER DELAY ALGORITHM to TCAM is currently

underway at The Hartford Insurance Group.
Subsequent to the addition, a hardware line
monitor measuring interpolling time will be
used to measure the performance impacts of
the addition.

This addition to TCAM will be an algor-
ithm which dynamically assesses N for each
line and assigns the BDV corresponding to
N, to a station requesting output service.
The algorithm is driven from the following
table, see table 1. On this particular
line, there is a maximum of N<.17 stations
eligible for output service.

A statistical refinement could be coded
into the algorithm whereby a mean message
length could be obtained from sampling
intervals. This would closely approximate
Tm rather than assuming a worse case Tm
where the message size approximates the
maximum message length of 500 characters.
The effects of this, however, requires
further analysis.

Table 1. BUFF DELAY for N<17

N N<Tm+Cm)

1 4.26
2 8.52
3 11.78
4 17.04

5 21.30
6 25.56
7 29.82
8 34.08
9 38.34

10 42.60
11 46.86
12 51.12
13 53.38
14 59.64
15 63.90
16 68.16
17 72.42

I am grateful to Charles Sarra and
Terence Berinato of Aetna Life & Casualty
for their patience and thorough descrip-
tions, both verbal and handwritten of the
inner workings of TCAM. In particular to
Charles Sarra for his senior knowledge of

Telecommunications Systems and Terence
Berinato for his descriptions of the queuing
delays inherent in TCAM/MCP message proc-
essing.

Thanks are also in order for Michael
Hufman who built the logic for the dynamic
BUFFER DELAY ALGORITHM, tested and imple-

225

merited it in The Hartford's teleprocessing
environment. Mr, Hufman is currently per-
forming line monitoring experiments with
BUFFER DELAY turned on and off for compara-
tive analysis.

Lastly, I wish to thank Tom Quick of

The Hartford's Performance Unit and Ken
Klein of The Hartford's Teleprocessing Unit
for their critiquing and suggestions in the

development of these ideas.

226

METHODOLOGY FOR PERFORMMCE EVALUATION
AND CAPACITY PLANNING

Dr. Arnold 0. Allen

IBM Systems Science Institute
3550 Wilshire Boulevard

Los Angeles, California 9OOIO

In this tutorial we summarize a methodology taught at the Los Angeles
IBM Systems Science Institute in a class called Performance Evaluation and
Capacity Planning-

Key words: Analytic queueing theory models, capacity planning, performance
evaluation.

1. Introduction

We are in agreement with John Spragins
[1] that some of the literature in the per-
formance evaluation area consists of durable
nonsense in the sense of the three principles
of durable nonsense, which are:

"First Principle . For every durable item of
nonsense, there exists an irrelevant frame of
reference in which the item is sensible."
"Second Principle . Rigorous arguments from
inapplicable assumptions produce the world's
most durable nonsense."
"Third Principle . The roots of most nonsense
are found in the fact that people are more
specialized than problems."

2. Overview

explain these basic steps and show how
analytic queueing system models help us
perform them. We will illustrate the
process with several examples from Allen
[2].

References

[1] Spragins, J., "Computer System Perfor-
mance Modeling and Durable Nonsense,

"

Proceedings of the Hawaiian Inter-

national Conference on Systems Sciences ,

Honolulu, Hawaii, Jan.' 1979'

[2] Allen, A. 0., Probability, Statistics
and (Queueing Theory With Computer
Science Applications , Academic Press,
New York, 197 8.

We have developed a practical method-
ology that can be applied in such a way as to
avoid the perils of durable nonsense. The
methodology has been successfully applied to
real-world performance problems by people who
are not technical giants. In this tutorial
we will describle the methodology we call
UMPV for (i) understand, (ii) model,

(iii) predict, and (iv) validate. This is,

of course, an iterative process. We will

Figures in brackets indicate the
literature references at the end of this

paper.

227

BENCHMARKING WITH REMOTE TERMINAL EMULATION

Thomas F. Wyrick
Directorate of System Evaluation

Federal Computer Performance Evaluation
and Simulation Center
Washington, DC 20330

and

Raymond E. Youstra
International Business Machines Corporation

Rockville, MD 20850

Remote terminal emulation is a benchmarking technique that uses
an external, driver computer system to imitate the teleprocessing
devices and device operators to be supported by, and to impose con-
trolled workload demands on, the computer system being tested. Many
operator and remote device characteristics and actions are represented
precisely by the driver system. The driver system exchanges control
and application data transmissions with the system being tested through
operational data communication hardware and software. Remote terminal
emulation also uses a monitor, external to the system being tested, to
record on a log file certain aspects of the interaction between the
driver system and the systan being tested. Data reduction software
produces various performance measures (e.g., turnaround time, response
time) from the log file during and/or after the benchmark test.

Practical experience has shown that remote terminal emulation can be

used to satisfy many performance evaluation objectives, such as regression
testing, stress load analysis, system integration, migration planning,
acquisition evaluation, etc. Though originally developed for testing
large host systems, this benchmarking technique has been used successfully
by both vendors and users to test large and small hosts, front-end
communications processors, packet switches, intelligent terminal

systems, etc. Remote terminal emulation hardware and software are
available from several sources.

This tutorial will introduce the concepts, terminology, and
capabilities of remote terminal emulation, and will summarize the

availability of remote terminal emulation facilities. The most widely
used remote terminal emulator, IBM's Teleprocessing Network Simulator
(TPNS) , will be discussed in detail. The tutorial will describe the

circumstances when remote terminal emulation is a cost-effective tool

for managing existing teleprocessing systems. Recent Federal procure-
ment regulations and guidance concerning when and how Government

agencies should employ this benchmarking technique during ADP acquisi-
tions will also be summarized. Copies of a Government handbook on
emulation and an extensive bibliography will be distributed to attendees
of the tutorial.

229

TUTORIAL OUTLINE

I. INTRODUCTION (Thomas Wyrick)

A. Objectives of Tutorial
B. Overview of Benchmarking
C. Overview of Remote Terminal Emulation
D. Availability of Emulation Facilities

II. TELEPROCESSING NEIWORK SIMULATOR (Raymond Youstra)

A. Architecture
B. Capabilities
C. Resource Requirements
D. Script Language
E. Installation/Execution
F. Associated Tools

III. USE OF REMOTE TERMINAL EMULATION TO SATISFY NON-
ACQUISITION OBJECTIVES (Raymond Youstra)

A. Objectives
B. Costs
C. Benefits
D. Example Use of TPNS

IV. USE OF REMOTE TERMINAL EMULATION DURING ADP ACQUISITIONS
(Thomas Wyrick)

A. Federal Procurement Regulations
B. Remote Terminal Emulation Handbook
C. Benchmarking Goals During Acquisition
D. Procedural Guidance
E. Standardized Specifications for Remote Terminal

Emulation
F. Example Use of Specifications During Acquisition

V. CONCLUSION (Thomas Wyrick)

230

PLANNING AND IMPLEMENTING REMOTE TELEPROCESSING
SERVICES: MANAGEMENT PERSPECTIVES OF THE TSP

Robert L. DeMichiell, CAPT, USCG
Director, Computing Activities

United States Coast Guard Academy
New London, Connecticut 06320

and

Gerald L. Underwood, LCDR, USCG
Project Manager

USCG Research and Development Center
Avery Point, Groton, Connecticut 06340

This tutorial addresses a competitive negotiated procurement of
remote timeshare services ut.der the Teleprocessing Services Program
(TSP). The guidelines provided by the Department of Transportation and
the General Services Administration governing the U.S. Coast Guard have
resulted in the implementation of timeshare services for the U.S. Coast
Guard Academy. A final comprehensive report culminated a rather exten-
sive effort.

It is the intention here to discuss many aspects of the procure-
ment from the perspective of the personnel involved in the various pha-
ses of the process. The relevant issues will be examined and some ref-

erence literature on the general subject will complement the two main
thrusts of the presenation: (1) to identify and clarify the procedures
and options, and (2) to provide practical, locally-derived guidelines
for future implementation of the program.

Although the guidelines are general in nature, they were derived
from a detailed analysis of the events which recently were experienced

by the authors. The completion of the negotiation for a five-year
systems life procurement under TSP resulted in a savings in excess of

half a mi 1 1 i on dol 1 ars

.

Key Words: Teleprocessing services program; timesharing; competitive

negotiated procurement; statement of work; remote teleprocessing;

computer management.

1. INTRODUCTION

Most of the reference texts and the

journal literature relating to computer

system procurement focus on hardware and

software acquisition. Other references
deal with the analysis and design of user

requirements. Some of the few guidelines
available for procurement of commercial
time-share services are provided by the
federal government. However, these exten-
sive procedures also provide several
options for the user. These options are
discussed from philosophical, procedural
and political vantage points.

231

2. THE REQUIREMENTS

2.1 User Wants, Needs or
Requirements

Sometimes an attempt to clarify
this issue has either raised more questions
than answers, or even more obscured the
initial issues. In an age of justifica-
tion, accountability, and quantification,
some commentary is necessary to promote the
sharing of solutions. The ongoing opera-
tional commitments must be met concurrently
with time also devoted to the development
and updating of new requirements. Dif-
ferent types of reqirements, in addition to

a brief treatment of those developed for
the specific environment here, are
presented with regard to the implied time
constraint.

2.2 The U.S. Coast Guard
Academy - A Profile

In order to place in perspective
the following more definitive presentation
of procedures, people and problems, an

overview of the Academy mission, faculty,
students and total program is presented.
Other settings probably contrast consider-
ably, but the same questions of definitions
of adequacy of computing and computer
science probably prevail.

2.3 The Federal Computing
Complex, Consultants, and Options"

The federal government is a big
user of computer resources, both inhouse
and commercial services. Service institu-
tions have increased significantly in

recent years, and even suggest location of

the equipment at the user site (facilities
management). Therefore, updating, conver-
sion techniques and decision-making become
more complex. This dilemma is discussed
and with relevance to the use of, and

importance of (as appropriate) outside
consulting services.

The general nature of the avail-
able options can best be described by some
illustrative questions. Basic Agreement or

Multiple Awards Schedule? SOW Require-

ments? Schedule? Definition of Respon-

siveness to RPF? Mandatory and Desirable
Requirements "Mix"? Evaluation Criteria?

2.4 Protest Concerns and
Commitments

The vendors are the experts in
the procurement business. They complete
several negotiations a year. How many have
you been involved in lately? Fair treat-
ment practices are discussed here, in
addition to the confidentiality issues
throughout the procurement action.

Someone has to develop the unique
selection plan for your organization. A
committee can't do it unless specific tasks
are delineated and, hopefully, agree with
the guidelines. This can be assured if the
organization plans, staffs, and directs
from the outset. A procurement team of
individuals with quite diverse talents,
expertise, and responsibilities are brought
together by top-level management.

3. FROM RFP TO AWARD

General procedural comments on the
statements of work, the TSP decision, the
delegation of procurement authority, and a

report of findings are summarized. This
will cover the advertisement for bids and
specific suggestions on work definition and
vendor clarification and interpretations
(the management of the negotiation ses-
sions). Some mention is made of the admin-
istrative matters involved in establishing
the capability demonstrations and benchmark
val i dati ons

.

4. CONCLUSIONS AND RECOMMEN-
DATIONS

Some practical guidelines are sum-
marized regarding all of the previous
topics, and in addition, special attention
is directed to two' items: (1) writing
styles and ambiguities, particularly in the
definition of objectives and requirements,
and (2) the final report to top management
and the multitude of reviewing authori-
ties. The presentation concludes with a

response to a somewhat academic question
(since TSP is a mandatory program) "Is it

really worth it?" Our experience indicates
that the answer is an unqualified" YES."

232

SELECTION AND EVALUATION OF INSTRUCTIONAL
TIME-SHARING SERVICES
(A TUTORIAL OUTLINE)

Richard T. Close
and

Raymond A. Kambeitz

U. S. Coast Guard Academy
New London, Connecticut 06320

The U. S. Coast Guard Academy has completed a multi-
year procurement of instructional time-sharing services
using the General Services Administration Teleprocessing
Services Program (TSP). This fully competitive procure-
ment included extensive technical and cost evaluations
and adhered to Department of Transportation and Coast
Guard directives for data processing contracts. The
technical evaluation included an on-site operational
capability demonstration with benchmarking. The final
ranking of vendors used a point scoring system which
included both the technial and cost analyses.

Key words: TSP; time-sharing; procurement; evaluation;
technical analysis; benchmarking; cost analysis.

1. Background and Environment

1.1 Nature of Services

The U. S. Coast Guard Academy
is an undergraduate institution
which prepares young men and women
for duties as officers in the Coast
Guard. The curricula are tech-
nically-based and demand extensive
computer support. In particular,
software for graphics and engineer-
ing applications are crucial.

1.2 Procedures

The procurement was carried
out using the Basic Agreement (BA)
provisions of the Teleprocessing
Services Program (TSP) of the
General Services Administration.
Additional regulations of the Coast
Guard and the Department of Trans-
portation also had to be considered.

2. Preliminary Assessment of
User Needs

2 . 1 System Study

In-house and contractual studies
had developed a reasonably complete
picture of desired services. Hard-
ware, software and systems support
capabilities were identified.

2.2 User Profiles and Interviews

Current users had established a

history of usage which was taken as
a baseline for future activity.
Potential users were interviewed to
project utilization as services
become available.

3. Development of the Solicitation
Document (RFP)

233

3 . 1 Process

An iterative process was used
to establish mandatory and desir-
able features. Rough drafts were
circulated and comments returned.
New drafts were made and recir-
culated. Novice users were aided
by the GSA professional staff and
the local user services group.

3.2 The Evaluation Plan

A point system was developed
that provided a discrimination
scale for both cost and technical
evaluation. Since many technical
features were included as mandatory
items, the cost evaluation was
given a higher overall weight in
the evaluative process (a 75/25
ratio)

.

calculated a systems-life cost.
Present value discounts were used to
establish an evaluated cost over the
expected length of the contract.
Cost points were awarded to potential
vendors according to their relative
evaluated costs.

5.3 Vendor Selection and Award

Cost points and technical points
were weighted and combined to give
a total point score for each po-
tential vendor. The vendor with the
most points was identified as the
successful bidder and after various
levels of approval had been obtained,
a contract was awarded.

6. Conclusions and Recommendations

6 . 1 Results

4. Operational Capability
Demonstration and Benchmark

4 . 1 On-site Visit

An Operational Capability
Demonstration (OCD) was specified
in the solicitation document. A
proposed agenda was submitted to
each potential vendor. Members
of a Technical Evaluation Team
conducted the OCD.

4.2 Benchmark

A representative group of pro-
grams was developed and submitted to
each vendor. These programs had to
be run as a part of the OCD and also
had to be demonstrated from the
Academy

.

5. Evaluation of Proposals
and Award

5.1 Technical Evaluation

The technical evaluation in-
cluded the OCD, benchmark and the
assignment of technical points for
desirable features. The benchmark
was used to establish a relation-
ship between the projected usage
figures and the proposed services
for each offeror.

The prospect of a long-term con-
tract for instructional support
should provide an element of contin-
uity that was missing in the past.
Users are more likely to commit time
and effort to develop meaningful
computer applications. The quality
of service should also improve as
the vendor is also more willing to
devote resources for the longer term.
In addition, from a financial stand
point , the program was extremely
successful. The competitive bid
process, though long and involved,
resulted in substantial savings.

6.2 Program and Future

The Teleprocessing Service
Program is an effective vehicle for
the procurement of time-sharing
services. Although some of the
detailed requirements were burden-
some, there have been significant
improvements in the program and
with continued attention, TSP
should become even better.

5.2 Cost Evaluation

With the aid of the benchmark
results, the Cost Evaluation Team

234

TUTORIAL ON BENCHMARK CONSTRUCTION

Helen Letmanyi

Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D.C. 20234

This tutorial will provide participants with a detailed overview of
the benchmark construction process--the steps involved and the tools
that can be employed to construct a benchmark. This tutorial is

recommended for those who have an interest in constructing bench-
marks for use in the competitive evaluation of vendor systems.

A brief review of the ADP system evaluation and selection process
within the Federal Government will first be given to identify how

the benchmark construction process fits into the total selection
process. Next, the tutorial will discuss in a step-by-step fashion
those tools and techniques which can be used to analyze existing
workloads, project future workloads, and represent workload require-
ments via benchmarks. The importance of having definite objectives
and goals prior to constructing a benchmark, as well as the need

for benchmark validation and documentation will also be discussed.
An outline of the topics to be covered in the tutorial follows.

235

TUTORIAL: BENCHMARK CONSTRUCTION

I. BRIEF SUMMARY OF BENCHMARK (B/M) CONSTRUCTION

THE B/M CONSTRUCTION PROCESS

STEP NO. DESCRIPTION
1 Decide which workloads are to be represented.
2 Partition workload by distinct categories.
3 Quantify existing workload to be represented.
4 Quantify future workloads (for each workload category).
5 Determine which portions to represent.
6 Choose B/M programs.
7 Represent selected workload via B/M programs.
8 Fine tune B/M on present system.
9 Validate B/M and document LTD.

II. STEP 1. DECIDE WHICH WORKLOADS ARE TO BE REPRESENTED

A. Define objectives and system life.

B. What workload to represent: present, future, both.
Define time-frame to be represented (e.g., peak functions,

peak resources, min-max peak, average workload, period
of day)

.

Review scheduling practices, deadlines
Production vs. user-oriented.
Selected categories should reflect future objectives.
Decide on workload categories and sub-categories:

Batch: Initiated at the central site
Remote batch
On-line initiated

On-line: Interactive program development
Text processing
Transaction processing
Data base query/update
Data entry
Interactive graphics
Production jobs

Real-time: Data collection
Command and control
Hybrid processing

Decide on performance criteria:
e.g., response time, turnaround time, throughput rate,

elapsed time.

236

III. STEP 2. PARTITION WORKLOAD BY DISTINCT CATEGORIES

Importance of system independent categorization.
Workload levels:

Level 1: Prime vs. non-prime
Level 2: Processing mode (batch, on-line, real-time)
Level 3: Functional grouping

ADP operations
Resource usage

Recommended approach.
Pros and cons.

IV. STEP 3. QUANTIFY EXISTING WORKLOAD TO BE REPRESENTED

A. Quantifying processing requirements.
1. Determine sources of data.

WORKLOAD CATEGORIES

LEVEL 3 LEVEL 2

SOURCES By Resource By ADP By Functional

OF DATA Usage Operations Groupings
Batch On-line

2. Determine what data is available vs. what data should

be collected.
Short term collection effort (cost, benefit).

3. Analyze Data.

a. Accounting Log Data:

CPU usage
Memory used

I/O activity (I/O count)

ADP activity (compile, execute, etc.)

Unit device activity, volume

Analysis Techniques:
Clustering
Joint probability density function

Analytical methods

b. Software Monitor Data:

CPU usage
Problem state
Channel activity
CPU/Channel overlap

Analysis Techniques: Data reduction packages

237

c. Hardware Monitor Data:
CPU usage
Problem state
Channel activity
CPU/Channel overlap

Analysis Techniques: Data reduction packages
d. User Survey: User satisfaction, user requirements

Analysis Techniques: Workload Mapping (USDA)
e. Terminal Script
f. Hard copy output:

CPU usage
Memory used
Elapsed time
ADP operation (compile, execute, etc.)
Unit device activity volume
Functional grouping

4. Within each category, determine relative contribution of
each sub-group.

5. Identify applications with special processing requirements
Large programs
Time constraints, job dependencies
Security restrictions

B. Quantify Service Requirements.
1. Determine service measures; e.g., response time,

turnaround time, throughput.
2. Determine sources of data.

a. Accounting Log:

Connect time
Elapsed time of the session
Turnaround time

b. Hardware Monitor: Response time
c. Software Monitor:

Response time
On-line commands usage
Number of concurrent users

d. User Surveys: User defined service requirements
e. Terminal Script: Response time/think time
f. Hard Copy Output: Turnaround time, response time,

elapsed time
3. Determine what data is available vs. what data should

be collected.
4. Analyze Data.

Recommended practices.

STEP 4. QUANTIFY FUTURE WORKLOADS (FOR EACH WORKLOAD CATEGORY)

Workload forecast (up to X years).
Alternative techniques should be used in future workload

quantification for each workload category; e.g..
Trend (regression) analysis
Extrapolation of clustering data
User surveys
New missions

Determine confidence interval on forecast

238

VI. STEP 5. DETERMINE WHICH PORTIONS TO REPRESENT

Having quantified the workloads in Steps' 3 and 4, what to
represent can be determined; e.g., time-frame, categories.

Determine augmentation point{s), or decide if vendor does.
Determine number of distinct benchmarks.

VII. STEP 6. CHOOSE B/M PROGRAMS

Represent portions identified in Step 5 and quantified in

Steps 3 and 4.

Real programs:
Pros and cons

Synthetic programs: Resource-oriented

Function-oriented
Pros and Cons

Combination of real and synthetic programs
On-line scenario development
Data base generation
File structures
Important characteristics of B/M programs:

Simpl icity
Representativeness
Trans portabil ity
System independence
In higher-level standard language

Recommended practices

VIII. STEP 7. REPRESENT SELECTED WORKLOADS VIA B/M PROGRAMS

Formulate B/M mix(es).
The B/M mix must represent all important aspects of the real-
workload

:

The number of jobs, the number and type of terminals
The type and volume of ADP operations
Job dependencies
Variations in ADP operations
Priorities
Security requirements

Decide on live terminals vs. RTF.

IX. STEP 8. FINE TUNE B/M ON PRESENT SYSTEM

Exercise timed B/M test on present system.

Establish proper relationships among selected categories of

B/M programs and on-line activities to the real-workload:

Number of iterations of selected programs and on-line

activities
Volume of data
Define B/M mixes (timing)

Determine B/M duration

239

STEP 9. VALIDATE B/M DOCUMENT LTD

A. Validate B/M.
Run B/M mix(es) on other systems to validate B/M:
Timing
Auditability
Porta bil ity
Repeatabil ity
Modifiabil ity

B. Be sure B/M is well documented and in standard higher-level
language.

Brief description of each program.
Block-diagram, showing I/O file origination/destination.
File descriptions.
Program conversion constraints.

C. Document LTD.

Hardware configuration requirements.
Software configuration requirements.
Functional test.

Performance test (B/M mixes to run).
RTE/1 ive termi nal s

.

Validation data requirements.
Different configurations, optimizing techniques.
Credits

.

240

USING ACCOUNTING LOG DATA
IN PERFORMANCE REPORTING

James P. Bouhana*

Computer Sciences Department
Purdue University

West Lafayette, IN 47906

This tutorial summary outlines several topics pertinent to using a computer
system's accounting log file as a basis for performance reporting. Some major
topics are a log's organization and contents, the types of reports and displays
which can be generated, and the problems encountered in using log data. It is

concluded that although accounting logs have an understandably principal

orientation toward accounting, they can be effectively used for performance
reporting and for operations reporting as well.

Keywords: Accounting logs; performance evaluation; workload charac-
terization.

1. Introduction

Although the accounting logs which exist for

most multiprogrammable computer systems
have been used in the past largly for user billing

purposes, they are increasingly being used for

performance analysis. Three factors contributing

to this phenomenon are:

(a) Accounting logs are already there—they are

maintained by a computer's operating system
and require no software or hardware im-

plementation effort by an installation,

(b) Accounting logs are always "on"—they are

continously maintained and thus do not re-

quire any special action to activate them just

before a performance problem develops,

(c) Accounting logs provide a central repository

for performance data, which in addition to re-

source usages, may also include data from

software samplers, event-driven trace rou-

tines and hardware monitors.

* This work was prepared in part during the summer of 1979 while the

author was employed in the Systems Performance Analysis group of

Digital Equipment Corporation in Maynard, Mass.

A significant additional attribute of account-
ing logs is their usefulness for operations
management as well as for performance report-

ing and for billing. Such tripartite usage of a sin-

gle data base is efficient, and there is no other

readily-available data base having the same mul-
tiple-use characteristics. Although our prncipal

concern is admittedly with performance report-

ing, we contend that any data added to the log to

enhance performance reporting invariably also

enhances an installation's capability for effective

operations management and also for equitable

billing policies.

2. Uses of Data

The set of performance analyses for which
accounting log data are useful is varied. The fact

that accounting logs contain data about individu-

al programs permits specific-program analysis

as well as system-wide analyses. Some examples
of possible analyses are:

(a) User program optimization,

(b) Utility software optimization,

241

(c) Workload characterization,

(d) Operating system parameter adjustment,

(e) Configuration sizing and capacity planning.

Additional uses for log data lie in the realm of

general performance "tools": methods which are
not performance objectives by themselves but

which are used in satisfying an objective. Some
of these tools, which may also be used with data
collected from other sources (such as a software
monitor), are:

(f) Queueing network models,

(g) Time series analysis,

(h) Performance data bases,

(i) Kiviat graphs and other graphical displays of

system-wide performance.

3. Log Organization

Basically logs are chronological records of

significant events, but the manner in which the

record is maintained varies. The two most com-
mon log structures are:

(a) Chronological by event occurrence time {e.g.

program initiation/termination, file

open/close, operator message, etc), with all

events for different programs merged,

(b) Chronological by program termination time,

with all events pertaining to a program or-

dered chronologically within a packet of log

records associated with each completed pro-

gram.

Some systems combine the two structures. For
example, program initiation records may logged
at the time of initiation, but all other records perti-

nent to a program may not be logged until pro-
gram termination time.

4. Log Contents

Accounting logs vary widely in both the data
which they record and the level of detail at which
the recording takes place (e.g. the program level,

the job level, the system level). Some categories
of log data and examples of specific contents
within each category follow:

(a) Program data: initiation and termination time,

total service times for each resource used
(e.g. CPU, tape, disk), memory used, I/O and
paging counts, account and user identifica-

tion,

(b) Job data: same items as for programs, but
they may be specific to only the job itself (ex-

clusive of resources used by its contained
programs) or they may be totals for both the
job and its contained programs (as in the case
where separate process data are not record-
ed),

(c) File data: time of file open or close, device
type, record and block size, access method,
number of buffers, transaction counts, total

device busy time,

(d) System data: system configuration, software
parameters, checkpoint records, device er-

rors, resources used for overhead activities,

(e) Other: log structure data (links and pointers),

software sampler data, hardware monitor da-
ta.

5. Reports

Accounting log data can be used to gen-
erate tables of system-wide summary
information as well as listings of all completed
programs and their resorce usages, arranged
in a variety of useful ways. The contents of the

summary information and some ways of orga-
nizing reports are:

(a) Summary information, stating number of pro-

gram completions, average multiprogram-
ming level (MPL), average CPU utilization,

average per-program CPU time, I/O opera-
tions, page faults, and memory size; number
of system reboots,

(b) Reports sorted by program termination time,

program initiation time, program name, user
name, and account name (or number),

(c) Reports sorted by resources used by pro-

grams, such as CPU time, I/O operations,

memory size, page faults, devices used, CPU
rate, and elapsed time,

(d) A report sorted by the frequency with which
programs are executed,

(e) Subset reports, listing only those programs
contained within a restricted category such as
a specific program name, user name, or ac-

count.

6. Plots

Plots visually display system-wide operating

characterics. The two most common types of

plots are time series and histograms, although
scatter diagrams and other elaborations are also

used. Anomolous behavior (indicated by
"spikes") noted in plots can often be traced to a
specific program or group of programs by cross-

referencing with the reports. For problems noted
in time series, the chronological reports are

242

referenced; whereas problems noted in histo-

grams necessitate referencing a report sorted by

resource usage values. Some categories of plots

follow:

(a) Resource usages: histograms of CPU time,

I/O time, I/O counts, page faults, and memory
usage per program, as well as elapsed time

and CPU rate,

(b) System wide activity: time series of CPU and
I/O channel utilization, as well as system-wide
memory usage,

(c) Mix activity: time series of minimum and max-
imum MPL within each time interval, as well as
number of program initiations and program
completion rate,

(d) MPL-related plots: histograms and graphs of

MPL frequency, MPL elapsed time; CPU, I/O,

and memory utilization by MPL, program
completion rate by MPL, and average pro-

gram elapsed time by MPL.

7. Problems Areas

Since accounting logs historically were not

designed with performance reporting in mind,
they sometimes lack the precision and complete-
ness that a performance analyst would want.

Some areas which either inhibit or prevent accu-
rate reporting are:

(a) Coarse system clock resolution for reporting

CPU time usage.

(b) No separate accounting for time spent servic-

ing interrupts,

(c) Non-visibility of system routines (e.g., pro-
gram loading, file maintenance, spooling),

(d) Reporting peak rather than time-weighted
average memory usage,

(e) Lack of genealogical information for spawned
programs.

8. Conclusions

Even though accounting logs may not be the

most perfect data base to use for performance
reporting, they can and have been used success-
fully in performance contexts. As noted before,

no other data base has the attributes of ready
availability and of applicability to the three areas
of performance, billing, and operations.

In the Executive Summary of the 1973
NBS/ACM Workshop on Computer Performance
Evaluation, it was stated that "Improved account-

ing systems and associated analysis software are

a major national CPE need." Since then, vendors
and users alike have become increasingly aware
of the performance-related users of acounting

data, as evinced by the proliferation of account-

ing log analysis packages. The trend for the fu-

ture seems to be greater accuracy and complete-
ness of accounting log data combined with great-

er usage of such data for performance analyses.

243

An Informational Model for the ADP 'Aanaqer

Wayne Douglas Bennett

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D.C. 23234

The object of this discussion is to suggest a framework
within which a meaningful set of computer performance
measures can be defined. Computer performance management
(CPM) may be viewed as a set of optimizations that can be
derived from an analysis of the planning and control
problems typically facing ADP Managers. Tlis discussion
focuses on these problems, generating some of the more
important optimizations. Determination of the parameters
required to perform these optimizations results in a

preliminary list and categorization of desirable CP''!

measures. Emphasis is placed on long range planning and
maximization of organizational benefit from the ADP
r eso ur ces

.

The parameters of the long range optimization problem
include resource cost, derived income (or cost reduction)
from a proposed workload, and queue costs. Selection of an
appropriate configuration, an appropriate portfolio, and
reasonable performance thresholds are thus expressed in

fiscal terms and yield a determination of net benefit to the
organization. The four resulting categories of measures:
workload, resources, performance, and budget provide the
starting point for a proposed list of performance metrics to
be discussed in a follow-up CPEUG workshop.

245

NBS-114A (REV. 0-78)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS SP 500-52

:2»Gov*t A«6«ssIot No. 3. R-U'ptF-nt s Accession Mo,

4. TITLE AND SUBTITLE

Proceedings of the Fifteenth Meeting of the Computer
Performance Evaluation Users Group (CPEUG)

5. PuDiication Date

October 1979
$. PerforaringOrganizatJon Code

7. AUTHOR(S)

James E. Weatherbee, Editor

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

1«. Project/Task/Wor(< Unit No.

11. Contract/Grant No.

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS fStreef, City, state, ZIP)

Same as No. 9.

13. Type of Report & Period Covered

Final
M. sponsoring Ag«Ky Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 79-600123

I I

Document describes a computer program; SF-185, PIPS Software Summary, is attached.

16. ABSTRACT (A 200-word or less /actual s

literature survey, mention it here.)

ry 0/ most significant information. It document includes a significant bibliography or

The Proceedings record the papers that were presented at the Fifteenth Meeting of
the Computer Performance Evaluation Users Group (CPEUG 79) held October 15-18, 1979,
in San Diego, California. With the theme "The Expanding Scope of CPE," CPEUG 79

focused on changes in CPE techniques that will occur in an era of increased use of
distributed processing techniques. The program was divided into two parallel sessions
with one session devoted to the presentation of technical papers on previously
unpublished work and the other devoted to tutorials and case studies. The technical
papers fall into one of two general categories, (1) application of CPE in installation
management and (2) methods and tools of CPE as a technical discipline, and are
presented in the Proceedings in their entirety. Summaries of several of the tutorials
and case studies are also presented in the Proceedings.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name;

separated by semicolons) Computer performance evaluation; computer performance measurement;

computer performance prediction; computer system acquisition; conference proceedings;

CPEUG; CPE in auditing; installation management; hardware monitoring; on-line system

evaluation; prediction methods; queuing models; simulation; software monitoring; work-
18. AVAILABILITY [xDUniimited load definition.

1 1
For Official Distribution. Do Not Release to NTIS

[3 Order From Sup. of Doc, U.S. Government Printing Office, Washington, DC
20402, SD Stock No. SN003-003-02118-1

Order From National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF
PRINTED PAGES

240

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

$5.50

USCOMM-DC

•tr U.S. GOVERNMENT PRINTING OmCE : 1979 O—300-303

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

Cily State Zip Code

(Notification key N-503)

I

)

I

'

j

1

a

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research

of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and

engineering sciences in which the Bureau is active. These

include physics, chemistry, engineering, mathematics, and

computer sciences. Papers cover a broad range of subjects,

with major emphasis on measurement methodology, and

the basic technology underlying standardization. Also in-

cluded from time to time are survey articles on topics closely

related to the Bureau's technical and scientific programs. As
a special service to subscribers each issue contains complete

citations to all recent NBS publications in NBS and non-

NBS media. Issued six times a year. Annual subscription:

domestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

$3.75 foreign.

Note: The Journal was formerly published in two sections:

Section A "Physics and Chemistry" and Section B "Mathe-

matical Sciences."

DIMENSIONS/NBS
This monthly magazine is published to inform scientists,

engineers, businessmen, industry, teachers, students, and

consumers of the latest advances in science and technology,

with primary emphasis on the work at NBS. The magazine

highlights and reviews such issues as energy research, fire

protection, building technology, metric conversion, pollution

abatement, health and safety, and consumer product per-

formance. In addition, it reports the results of Bureau pro-

grams in measurement standards and techniques, properties

of matter and materials, engineering standards and services,

instrumentation, and automatic data processing.

Annual subscription: Domestic, $11.00; Foreign $13.73

NONPERIODICALS
Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scientific

and technical activities.

Handbooks—Recommended codes of engineering and indus-

trial practice (including safety codes) developed in coopera-

tion with interested industries, professional organizations,

and regulatory bodies.

Special Publications—^Include proceedings of conferences

sponsored by NBS, NBS annual reports, and other special

publications appropriate to this grouping such as wall charts,

pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engineers,

chemists, biologists, mathematicians, computer progranuners,

and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quanti-

tative data on the physical and chemical properties of

materials, compiled from the world's literature and critically

evaluated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National

Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference

Data (JPCRD) published quarterly for NBS by the Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements
available from ACS, 1155 Sixteenth St. N.W., Wash., D.C.
20056.

Building Science Series—Disseminates technical information
developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—^Studies or reports which are complete in

themselves but restrictive in their treatment of a subject

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often
serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consxmier. Easily understandable language and
illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications from: Superintendent of

Documents, Government Printing Office, Washington, D.C.
20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended. Public Law 89-306 (79 StaL

1127), and as implemented by Executive Order 11717

(38 FR 12315, dated May 11, 1973) and Part 6 of Tide 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-government).

In general, initial distribution is handled by the sponsor,

public distribution is by the National Technical Information

Services (Springfield, Va. .12161) in paper copy or microfiche

form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-

tic. $25.00; Foreign, $30.00.

Liquefled Natural Gas.A literature survey issued quarterly.

Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (736.00) Boulder, Colorado 80303.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CL^SS RATE
BOOK

