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A B S T R A C T   

Cloud cover is a major limiting factor in exploiting time-series data acquired by optical spaceborne remote 
sensing sensors. Multiple methods have been developed to address the problem of cloud detection in satellite 
imagery and a number of cloud masking algorithms have been developed for optical sensors but very few studies 
have carried out quantitative intercomparison of state-of-the-art methods in this domain. This paper summarizes 
results of the first Cloud Masking Intercomparison eXercise (CMIX) conducted within the Committee Earth 
Observation Satellites (CEOS) Working Group on Calibration & Validation (WGCV). CEOS is the forum for space 
agency coordination and cooperation on Earth observations, with activities organized under working groups. 
CMIX, as one such activity, is an international collaborative effort aimed at intercomparing cloud detection 
algorithms for moderate-spatial resolution (10–30 m) spaceborne optical sensors. The focus of CMIX is on open 
and free imagery acquired by the Landsat 8 (NASA/USGS) and Sentinel-2 (ESA) missions. Ten algorithms 
developed by nine teams from fourteen different organizations representing universities, research centers and 
industry, as well as space agencies (CNES, ESA, DLR, and NASA), are evaluated within the CMIX. Those algo
rithms vary in their approach and concepts utilized which were based on various spectral properties, spatial and 
temporal features, as well as machine learning methods. Algorithm outputs are evaluated against existing 
reference cloud mask datasets. Those datasets vary in sampling methods, geographical distribution, sample unit 
(points, polygons, full image labels), and generation approaches (experts, machine learning, sky images). 
Overall, the performance of algorithms varied depending on the reference dataset, which can be attributed to 
differences in how the reference datasets were produced. The algorithms were in good agreement for thick cloud 
detection, which were opaque and had lower uncertainties in their identification, in contrast to thin/semi- 
transparent clouds detection. Not only did CMIX allow identification of strengths and weaknesses of existing 
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algorithms and potential areas of improvements, but also the problems associated with the existing reference 
datasets. The paper concludes with recommendations on generating new reference datasets, metrics, and an 
analysis framework to be further exploited and additional input datasets to be considered by future CMIX 
activities.   

1. Introduction 

Identification of clouds in satellite imagery acquired by passive 
remote sensing sensors in the visible and infrared parts of the electro
magnetic spectrum (EM) is an essential pre-processing step in producing 
high-quality geoinformation products. Omission of clouds can lead to 
errors that propagate to high-level products related to Earth surface 
monitoring, whereas over detection of clouds can lead to a reduced 
number of valid observations and, therefore, decrease the frequency of 
cloud-free data. Development of cloud masking algorithms remains an 
area of active research in the remote sensing community (Foga et al., 
2017; Frantz et al., 2018; Hagolle et al., 2010; Hollingsworth et al., 
1996; Irish et al., 2006; López-Puigdollers et al., 2021; Qiu et al., 2019; 
Scaramuzza et al., 2012; Zhu et al., 2015; Zhu and Woodcock, 2012). A 
range of algorithms utilize satellite image spectral and spatial properties 
along with decision tree rules to distinguish cloud versus non-cloud 
regions (Qiu et al., 2019). These algorithms rely mainly on physical 
properties of cloud reflectance. Utilization of multi-temporal satellite 
images, where clouds are considered “anomalies” with respect to a 
cloud-free reference, can generally improve cloud detection (Frantz 
et al., 2015; Hagolle et al., 2010; Zhu and Woodcock, 2014). With the 
advancement of machine learning (ML) and deep learning (DL) methods 
neural networks models are trained to detect clouds in satellite imagery 
(Chai et al., 2019; Jeppesen et al., 2019; Mateo-García et al., 2020; 
Segal-Rozenhaimer et al., 2020; Wieland et al., 2019; Xie et al., 2017). 

Although a large number of cloud masking algorithms for optical 
satellite imagery is currently available, there is a limited quantity of 
studies aiming at their intercomparison. Three studies should be 
mentioned in this regard. Foga et al. (2017) compared 13 cloud masking 
algorithms and their variants for cloud detection in Landsat 7 and 
Landsat 8 data. Their primary objective was to select an algorithm for 
generating quality assurance (QA) layers when producing operational 
Landsat data products. They found that CFMask, a C code version of the 
Fmask algorithm (Qiu et al., 2019; Zhu et al., 2015), gave the best 
performance, and this algorithm is currently used within the U.S. 
Geological Survey (USGS) operational processing chain to generate 
Landsat Level-1 products (Wulder et al., 2019). Baetens et al. (2019) 
compared three methods applied to Sentinel-2 data by analyzing 30 
images and found large differences in quality, specifically when taking 
into account the necessary dilation (buffer) of cloud masks. Tarrio et al. 
(2020) carried out a study comparing five cloud masking algorithms for 

Sentinel-2 imagery. By analyzing 28 images over six Sentinel-2 tiles 
using a sample-based approach and analyst-interpreted reference data 
they found that none of the algorithms yielded the best performance in 
terms of identifying both cloud and shadow. They also explored 
ensemble models to integrate outputs from multiple algorithms and 
found that on average a + 2.7% gain can be achieved over the best- 
performing model, although at the expense of computational 
performance. 

The main objective of this paper is to summarize results of the first 
Cloud Masking Intercomparison eXercise (CMIX) conducted within the 
Committee of Earth Observation Satellites (CEOS) Working Group on 
Calibration & Validation (WGCV). CMIX is an international collabora
tive effort co-led by National Aeronautics and Space Administration 
(NASA) and European Space Agency (ESA) aimed at intercomparing 
state-of-the-art cloud masking algorithms for moderate-spatial resolu
tion (10–30 m) spaceborne optical sensors. CMIX was recommended 
following the first Atmospheric Correction Inter-comparison eXercise 
(ACIX) (Doxani et al., 2018), and was conducted in conjunction with 
ACIX-II-Land and ACIX-II-Aqua (Pahlevan et al., 2021). The focus of this 
effort is on open and free imagery acquired by Landsat 8 Operational 
Land Imager (OLI) and Thermal Infrared Sensor (TIRS), and Sentinel-2 
MultiSpectral Instrument (MSI) sensors, with corresponding cloud 
masking algorithms applied. Five existing cloud reference datasets for 
Landsat 8 and Sentinel-2 are utilized to compare ten cloud masking al
gorithms. Within CMIX, a qualitative definition of “cloud” is adopted, 
which provides an absolute (spectrally independent) indication of 
cloudiness in the satellite image. Although rules defining clouds vary 
across algorithms and reference data, ultimately all data are converted 
to “cloud” and “non-cloud” classes to perform a consistent intercom
parison. Algorithms are compared using the same set of reference data 
and metrics under identical conditions. Cloud shadows are not consid
ered in this study, since it is typically a cloud-derived product, and its 
performance heavily depends on accuracy of cloud detection. Conse
quently, efforts are primarily directed to cloud mask evaluation. 

The rest of the paper is organized as follows: a brief description of 
cloud reference data, cloud masking algorithms, and performance 
metrics is provided in Section 2. Detailed description of results and their 
implications are respectively presented in Section 3 and Section 4. 
Section 5 offers recommendations on further activities regarding gen
eration of cloud reference data and intercomparison of algorithms. 

Table 1 
Summary of cloud reference data (L8: Landsat 8, S2: Sentinel-2). Input and labeled data are availbale at CMIX portal https://calvalportal.ceos.org/cmix-sites.  

Dataset Spatial domain Level of automatization Purpose Thematic 
depth 

Satellites Spatial 
resolution 

# 
scenes 

Data Availability 

CESBIO Fully classified 
Sentinel-2 
scenes 

Classification using an iterative and 
supervised active learning method 

Validation 6 classes S2 60 m S2: 30 https://zenodo.org/recor 
d/1460961 

GSFC Sample 
polygons 

Manually selected and classified by 
an expert assisted by ground-based 
images of the sky 

Validation 4 classes L8, S2 Polygons (in 
vector format) 

L8: 6 
S2: 28 

https://doi.org/10.17632/r7t 
nvx7d9g.1 

Hollstein Sample 
polygons 

Manually selected and classified by 
an expert 

Training and 
validation 

6 classes S2 Polygons (at 
20 m) 

S2: 59 https://git.gfz-potsdam. 
de/EnMAP/sentinel2_manual 
_classification_clouds 

L8Biome Fully classified 
Landsat 8 scenes 

Manually classified by an expert Training and 
validation 

4 classes L8 30 m L8: 96 https://doi.org/10.5066 
/F7251GDH 

PixBox Sample pixels Manually selected and classified by 
an expert 

Validation 10 classes S2, L8 S2: 10 m 
L8: 30 m 

S2: 29 
L8: 11 

https://zenodo.org/recor 
d/5036991 
https://zenodo.org/recor 
d/5040271  
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2. Methods 

2.1. Cloud reference datasets 

Intercomparison of algorithms within CMIX is performed using 
existing Sentinel-2 and Landsat 8 cloud reference datasets (Table 1), 
which include Hollstein (Hollstein et al., 2016), PixBox (Paperin et al., 
2021a, 2021b), L8Biome (Foga et al., 2017), CESBIO (Baetens et al., 
2019) and GSFC (Skakun et al., 2021). These datasets were collected/ 
generated for different purposes using different methodologies and 
cloud class nomenclatures. Some of the datasets are single-pixel col
lections (where a minimum mapping unit is a pixel), while others are the 
collections of connected pixel areas (polygons) or correspond to whole 
images. For the majority of datasets, pixels were classified manually 
through photointerpretation by an expert or a group of experts; in 

others, the labelling process was semi-automatic with extensive manual 
checking during classification and post-processing. Geographical dis
tribution of Landsat 8 and Sentinel-2 scenes in the reference datasets is 
shown in Fig. 1. 

2.1.1. CESBIO dataset (Sentinel-2) 
The CESBIO dataset was generated using an active learning method 

(Baetens et al., 2019) section 2.1.3. The classification method was 
iterative, the operator constituted a first set of training samples, and 
iteratively added other samples, where the classification results were 
wrong or uncertain. It provides fully classified Sentinel-2 scenes into one 
of the following classes (Fig. 2): low-altitude clouds, high-altitude 
clouds, cloud shadows, land, water, and snow. In addition to the clas
sification map, a QA layer is provided showing the confidence of clas
sification. Overall, 30 Sentinel-2 scenes were utilized in CMIX with the 

Fig. 1. Geographical distribution of the Landsat 8 and Sentinel-2 scenes in the reference datasets used in CMIX.  
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total number of labeled pixels 85,782,723 (at 60 m spatial resolution). 
The scenes were acquired from ten sites around the world, five mainly 
vegetated and five arid sites. The detailed description of the CESBIO 
dataset is given in Baetens et al. (2019). 

2.1.2. GSFC dataset (Landsat 8, Sentinel-2) 
GSFC cloud reference data were collected over the NASA Goddard 

Space Flight Center (GSFC) (Skakun et al., 2021). The area is quite 
heterogeneous with major land cover classes being forest (~52%) and 
impervious surfaces (31%) with patches of natural vegetation and 
cultivated areas (totaling 17%) (Fig. 3). NASA GSFC also has an AER
ONET station (Holben et al., 1998), which provides aerosol optical 
thickness (AOT) and water vapor. Ground-based images of the sky were 
collected from 2017 through 2019 using a smartphone camera with a 
fisheye lens. These data were collected manually during the Landsat 8 
and Sentinel-2 overpasses. Reference data were collected for 6 Landsat 8 
and 28 Sentinel-2 scenes. The objective was to capture various cloud 
conditions and seasonal variability. Labeling of satellite imagery was 
performed into cloud, thin cloud (semi-transparent), shadows, and clear 
classes (Fig. 3). Regions within cloud boundaries were excluded from the 
reference data due to large uncertainties regarding the exact boundaries 
of clouds, especially on Sentinel-2 imagery (Skakun et al., 2021). In 
order to facilitate the labelling process, Sentinel-2 and Landsat 8 images 
were presented in various spectral combinations including true color 

(red-green-blue) and false color (NIR-red-green, SWIR1-NIR-red), and 
using a cirrus band (at 1.38 μm). The detailed description of the GSFC 
dataset is given in Skakun et al. (2021). 

2.1.3. Hollstein dataset (Sentinel-2) 
The “S2 Hollstein dataset” is a database of manually labeled Sentinel- 

2A spectra of clouds (Hollstein et al., 2016). By means of different 
spectral tools, pixels were selected and classified into one of the 
following six classes (Fig. 4): cloud (opaque clouds), cirrus (cirrus, semi- 
transparent clouds and vapor trails), snow (snow and ice), shadow 
(shadows from clouds, cirrus, mountains, buildings, etc.), water (lakes, 
rivers, seas), and clear-sky (other remaining areas). Spectral tools 
include false-color composites of Sentinel-2 images, image enhance
ments and graphical visualization of spectra. The aim was to create 
highly heterogeneous classes with a balanced number of pixels. There 
were 59 total Sentinel-2 scenes and 1,593,911 reference (labeled) pixels. 

2.1.4. L8Biome dataset (Landsat 8) 
The “L8 Biome” cloud validation dataset consisted of 96 Landsat 8 

scenes, which were selected using a semi-random sampling by biome 
(Foga et al., 2017). These biomes included barren, forest, grass/crops, 
shrubland, snow/ice, urban, water, and wetlands. For each biome 12 
Landsat 8 scenes were selected, and each scene was manually classified 
by an expert into the following classes (Fig. 5): clear, thin cloud, cloud, 
and cloud shadow. It should be noted that no specific threshold was used 
to detect thin (semi-transparent) clouds, which were primarily deter
mined by the analyst. Also, the cloud shadow class in the validation 
dataset was not provided for all the Landsat 8 scenes. The detailed 
description of the L8Biome dataset is provided in Foga et al. (2017). 

2.1.5. PixBox dataset (Landsat 8, Sentinel-2) 
The overarching goal of the so called “PixBox” is to enable a quan

titative assessment of the quality of a pixel classification produced by an 
automated algorithm/procedure. Pixel classification is defined as 
assigning a certain number of attributes to an image pixel, such as cloud, 
clear sky, water, land, inland water, flooded, snow etc. These pixel 
classification attributes are typically used to further guide higher level 
processing. PixBox is not only a dataset but also includes a method 
comprising a procedure to define the best thematic, spatial and temporal 
distribution for each collection purpose, a dedicated software for col
lecting pixels, the analysis, comparing the collected reference against an 
automatic classification, as well as the generation of a report. 

For the PixBox Reference Dataset, a trained expert(s) manually labels 
pixels of an image sensor into a detailed set of pre-defined classes. These 
are typically different cloud transparencies, cloud shadow, and condi
tion of the underlying surface (“semi-transparent clouds over snow”, 

Fig. 2. Distribution of labeled pixels in the CESBIO dataset.  

Fig. 3. Distribution of labeled pixels in the GSFC S2 dataset (left) and land cover classes (right).  
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“clouds over bright scattering water”). The collected dataset includes 
10’s of thousands of pixels because it necessitates representation for all 
classes, and for various observation and environmental conditions such 
as climate zones, solar illumination, viewing angles, etc. Prior to the 
collection process the expert is provided with a detailed list of distri
bution of categories and classes that needs to be fulfilled. During the 
collection process the growing database is constantly checked against 
this reference. Quality control of the collected pixels is important in 
order to detect misclassifications and systematic errors. 

PixBox is a commercially sold product/service of Brockmann Consult 
GmbH. The following two PixBox datasets have been made freely 
available to be used for CMIX (Paperin et al., 2021a; Paperin et al., 
2021b). The Sentinel-2 PixBox dataset contained 17,351 pixels (at 10 m) 
manually collected from 29 Sentinel-2A/B Level 1C products (top-of- 
atmosphere reflectance—TOA reflectance). The Landsat 8 PixBox 
dataset contained 20,500 pixels (at 30 m) manually collected from 11 
Landsat-8 Level 1 products (TOA reflectance). The Sentinel-2 PixBox 

dataset is spatially, temporally, and thematically evenly distributed, 
while the Landsat 8 dataset has a strong spatial focus on the Northern 
European coastal areas. Distribution of labeled pixels and corresponding 
land clover classes for the PixBox datasets are shown in Fig. 6. 

2.1.6. Summary of strengths and limitations of cloud reference datasets 
Table 2 summarizes the strengths and limitations of cloud reference 

datasets used in this study. Reference data incorporating global coverage 
and a wide range of image conditions (L8Biome, PixBox, Hollstein) are 
based on the photointerpretation of images by an expert or a group of 
experts. This can introduce some subjectivity in labelling clouds, espe
cially for thin/semi-transparent clouds that can be wavelength- 
dependent and fog (Scaramuzza et al., 2012) (Fig. 7), and it is usually 
difficult to draw the exact boundary between this type of clouds and 
clear pixels. Another approach is to use high-quality pixels (with no 
uncertainties in cloud detection) and subsequently apply machine 
learning algorithms to extrapolate classification for the whole scene 
through an iterative process until the classification results assessed by an 
expert are deemed to be satisfactory (CESBIO) (Fig. 8). The quality of the 
resulting map, however, can still depend on the training data and clas
sification method used. A third approach (GSFC dataset) is to utilize 
ground-based imagery of the sky to produce a training/validation cloud 
dataset, either through manual or automatic labelling (Fig. 8). While 
such an approach would potentially decrease subjectivity in identifying 
clouds, a network of such sites with sky cameras would be required 
(similar to the Aeronet network) in order to capture various geograph
ical conditions. 

Table A1 (Appendix A) provides a list of classes from the reference 
datasets that were used to define cloud and non-cloud pixels in the 
CMIX. Most of the datasets were balanced in terms of cloud and non- 
cloud pixels, except of CESBIO, which had 24% of cloud pixels 
(Fig. 2). CESBIO, GSFC and Hollstein datasets were primarily over the 
land surface, while the majority of PixBox datasets was over the water 
surface: 32% for S2 and 60% for L8. 

2.2. Cloud masking algorithms 

This subsection briefly describes the main concepts utilized in each 
of the cloud masking algorithms with a summary presented in Table 3. 

2.2.1. ATCOR 
ATCOR is a generic atmospheric correction algorithm for mono- 

temporal multi− /hyper-spectral satellite imagery in the solar reflec
tive region (400–2500 nm) and thermal region (8–13 μm) (Richter and 
Schläpfer, 2019b). The code uses MODTRAN5 look-up tables for the 
radiative transfer functions. Separate codes exist for the processing of 
flat and rugged terrain imagery. A preprocessing step calculates 
different masks (water cloud, cirrus cloud, shadow, water) based on 
spectral tests. The cloud masking uses a buffer of 100 m. For Landsat-8 
and Sentinel-2 data the TOA reflectance threshold of the cirrus band is 
set to 0.01 (reflectance units). The lower threshold for thin cirrus 
detection was used to prevent scenes with very thin cirrus being clas
sified as (thin) cirrus because other classes (e.g., water, shadow) are 
generally of more interest than very thin cirrus. Cloud detection in 
ATCOR was aimed to have a balance between commission and omission 
errors. In CMIX, ATCOR version 9.3.0 (2019) was used. CMIX processing 
of ATCOR did not use a Digital Elevation Model (DEM) or any other 
auxiliary data. Some scenes from reference datasets were not processed 
by ATCOR, since they were acquired with Sun elevation angle values less 
than 20◦. 

2.2.2. CD-FCNN 
The cloud detection approach based on deep learning, proposed by 

the Image and Signal Processing (ISP) group of the University of 
Valencia, is applicable to multispectral images from moderate spatial 
resolution satellites, including Landsat 8 and Sentinel-2. Training 

Fig. 4. Distribution of labeled pixels in the Hollstein dataset.  

Fig. 5. Distribution of labeled pixels in the L8Biome dataset.  
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accurate global cloud detection models based on deep learning requires 
large datasets of annotated images, which must reflect the high vari
ability of clouds, surface, and atmospheric conditions. This is a major 
difficulty since high-quality labeled datasets usually do not exist or are 
not publicly available for most satellite sensors. For Landsat 8, the 
L8Biome dataset matches these requirements (Jeppesen et al., 2019). 
However, similar global datasets do not exist for Sentinel-2 yet. 
(Sentinel-2 Cloud Mask Catalog (Francis et al., 2020) was made avail
able after CMIX was initiated). Therefore, Landsat 8 datasets (L8Biome, 
80%, and L8SPARCS, 20%) were used to train fully convolutional neural 
networks (FCNN) that may be transferred to perform cloud detection in 
Sentinel-2 images. L8SPARCS (Spatial Procedures for Automated 
Removal of Cloud and Shadow) (U.S. Geological Survey, 2016) was 
created for the validation of the cloud detection approach proposed by 
Hughes and Hayes (2014). It consists of 80 Landsat-8 sub-scenes 
manually labeled in five different classes: cloud, cloud-shadow, snow/ 
ice, water, flooded, and clear-sky. The size of each sub-scene is 1000 ×
1000 pixels. 

After a minimum adaptation of Sentinel-2 data, in terms of band 
selection and spatial resolution, the models trained on Landsat 8 data are 
directly applied to Sentinel-2 images. The proposed neural network ar
chitecture is based on a modified U-Net with significantly less training 
parameters and lower computational cost (Mateo-García et al., 2020). It 
seeks to provide both faster inference time and accurate detection 
through a lightweight architecture with a moderate number of param
eters, i.e., approximately 96,000 parameters, which is around 1% of 
original U-Net parameters. Moreover, this modified version of U-Net 
works seamlessly with Landsat-8 and Sentinel-2 images thanks to a 
transfer learning strategy over both sensors. In this way, all input bands, 

Fig. 6. Distribution of labeled pixels and land cover classes in the PixBox dataset.  

Table 2 
Strengths and limitations of cloud reference datasets.  

Dataset Strengths Limitations 

CESBIO  − All pixels in the scene are 
classified using an iteratively 
supervised machine learning 
approach  

− Based on expert knowledge 
(potential bias). Small number 
of locations (limited spatial 
coverage)  

− Cloud and non-cloud areas 
unbalanced 

GSFC  – Assisted with ground-based 
imagery   

− Over the same territory (can be 
potentially used for temporal 
consistency analysis)  

– Limited field of view and single 
location  

– Surface classes limited to the 
location of sky camera   

− Cloud boundaries excluded 
Hollstein  − Manual classification of 

polygons using spectral 
features  

− Lack of sample quality  
− Low level of detail  
− Based on expert knowledge 

(potential bias)  
− Cloud edges not sampled 

L8Biome  – Global coverage with stratified 
sampling   

− All pixels in the scene are 
classified  

− Based on expert knowledge 
(potential bias) 

PixBox  – High level of detail  
– High level of classification 

precision  
– Global coverage with stratified 

sampling  

– Single pixel, thus a comparably 
small dataset   

− Based on expert knowledge 
(potential bias)  
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regardless of the sensor, are homogenized and resampled to 30 m 
overlapping patches of 32 × 32 pixels, which are used for training the 
networks in a 64-batch size configuration. Models are trained to mini
mize a pixel-wise binary cross-entropy cost function, between ground 
truth and predictions, using the Adam stochastic gradient descent 
optimization algorithm. An initial learning rate of 10− 5, a weight decay 
of 5 × 10− 4 and 120 epochs were used to train the final network. The 
TensorFlow framework was used to implement and train the models on a 
GPU (average of 800 s/epoch in all configurations). Training and testing 
details can be found in López-Puigdollers et al. (2021); in addition, the 
pre-trained model and a Python-implementation of the proposed cloud 
detection algorithm for Landsat-8 and Sentinel-2 is provided in a public 
repository (https://github.com/IPL-UV/DL-L8S2-UV). 

Since we propose to use the same model for Landsat-8 and Sentinel-2, 
we are restricted to bands available in both sensors. In this context, three 
different bands configurations were tested: “RGBI” corresponds to bands 
B2, B3, B4 and B5 of Landsat-8 and B2, B3, B4 and B8 of Sentinel-2; 
“RGBISWIR” to bands B2, B3, B4, B5, B6 and B7 of Landsat-8 and B2, 
B3, B4, B8, B11 and B12 of Sentinel-2; and “ALLNT” includes all 
“RGBISWIR” bands plus the coastal aerosols and cirrus bands (B1 and B9 
in Landsat-8, B1 and B10 in Sentinel-2, respectively). After internal 
testing, the network selected for benchmarking in CMIX was the 
“RGBISWIR” network. Further results about the different band config
urations can be found in López-Puigdollers et al. (2021). 

The CD-FCNN output is given by a sigmoid activation function that 
provides continuous values, which could be interpreted as probabilities, 
between 0 and 1. In order to compare with the rest of the methods, these 
values are binarized into “non-cloud” (0) or “cloud” (1) classes for each 
pixel. We set a default 0.5 threshold to obtain the binary cloud mask 
assuming unbiased data. However, this threshold has a crucial impor
tance in terms of balance between commission and omission and errors. 
In Landsat-8 images both errors are similar, but performance may 
decrease in complex scenarios with presence of ambiguous pixels, e.g. 
over snow, urban areas or coastal lines. Adjusting this threshold for a 
specific dataset may improve the tradeoff between omission and com
mission errors depending on the requirements of the application, i.e. 
cloud or cloud-free conservative applications. The resulting cloud mask 
is spatially resampled from the native Landsat 8 resolution of 30 m to the 
corresponding Sentinel-2 resolutions of 10, 20 and 60 m. Throughout 
the entire process the work is done at a pixel level, and no spatial 
dilation of the cloud mask is considered at any stage. 

2.2.3. Fmask 4.0 CCA 
Function of Mask (Fmask) 4.0 is a cloud assessment algorithm used 

with Landsat and Sentinel-2 imagery (Qiu et al., 2019). An earlier 
version, Fmask 3.3, is applied operationally to create cloud masks for 
USGS Landsat products. The algorithm provisionally identifies cloud 
pixels using spectral tests, then matches those pixels to provisional cloud 
shadow pixels using sensor geometry, the Digital Elevation Model 
(DEM) of the terrain, and an iterative search of altitudes (in Landsat 
imagery). Fmask was designed to provide a balance between cloud 
commission and omission errors. Fmask 4.0 is available under an MIT 
license at https://github.com/GERSL/Fmask. 

2.2.4. FORCE 
FORCE (Framework for Operational Radiometric Correction for 

Environmental monitoring, https://github.com/davidfrantz/force) is 
developed as an ‘all-in-one’ open-source software solution for the mass- 
processing and analysis of Landsat and Sentinel-2 image archives 
(Frantz, 2019). FORCE includes a mono-temporal Level 2 processing 
system for Analysis Ready Data (ARD) generation which includes: 
radiometric correction, cloud masking, and data cube generation (Frantz 
et al., 2016). The cloud masking has branched from Fmask version 1.6.3 
(Zhu and Woodcock, 2012), and since then has been developed in par
allel (Frantz et al., 2015; Frantz et al., 2016; Frantz et al., 2018). Parts of 
the updates in Zhu et al. (2015) were incorporated. A darkness filter was 
implemented to mitigate false positives in bifidly structured dryland 
areas, where the scene-based temperature distribution tests for Landsat 
can result in commission errors of cold image parts (Frantz et al., 2015). 
Cirrus masking is based on an elevation-dependent equation (Baetens 
et al., 2019). The most notable difference to the original Fmask, how
ever, is the complete replacement of the cloud probability module for 
Sentinel-2 with a new algorithm that makes use of the Cloud Displace
ment Index, which is formulated to enhance parallax effects in highly 
correlated NIR bands (Frantz et al., 2018). The FORCE cloud masking 
aims to aggressively detect clouds and cloud shadows to increase cloud 
producer’s accuracy at the deliberate expense of cloud commission for 
its safe operation in time-series applications. Circular buffers are used to 
reduce false negatives (300 m for opaque clouds). FORCE provides 
quality bits whereby 12 quality indicators with respect to atmospheric 
conditions are provided (Frantz, 2019). Multiple indicators can be set 
simultaneously for each pixel, e.g., snow and cloud. This quality product 
is generated at 30 m and 10 m resolution for Landsat and Sentinel-2, 
respectively. FORCE v. 3.0-dev was used in CMIX. 

2.2.5. Idepix 
IdePix (Identification of Pixel properties) is a multi-sensor pixel 

identification tool available as a SNAP (Sentinel Application Platform) 

Fig. 7. Part of the L8Biome scene (LC81570452014213LGN00) with some thin clouds not labeled. Thin clouds are shown in orange, and thick clouds in maroon. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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plugin (Wevers et al., 2021). It provides pixel identification algorithms 
for a wide variety of sensors such as Sentinel-2 MSI, Sentinel-3 OLCI, 
MERIS, Landsat-8, MODIS, VIIRS, Proba-V or SPOT VGT. IdePix clas
sifies pixels into a series of categories (flags) for further processing using 
a mono-temporal approach and background information. Its uniqueness 
consists of a certain set of flags, which are calculated for all instruments 

(common flags), complemented by instrument specific flags (instrument 
flags). The technical design of all IdePix is instrument specific and can 
include decision trees, probabilistic combination of calculated features 
or neural networks. The Sentinel-2 IdePix is mainly based on a decision 
tree technique for cloud calculation as well as geometric calculations for 
cloud and mountain shadows. In contrast to many other pixel 

Fig. 8. Examples of labeled data in the three datasets: CESBIO (fully labeled images); GSFC (polygons avoiding uncertain areas, such cloud boundaries); PixBox 
(sample-based approach). 
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identification tools the final IdePix classification is non-exclusive and 
therefore allows multiple classes to be set for a single pixel. This means a 
single pixel can have multiple properties such as land and cloud (semi- 
transparent cloud over land), land and snow (land covered with snow), 
or land, snow and cloud (semi-transparent cloud over snow covered 
land). This type of implementation allows the most versatile usage of the 
flagging and combinations according to users’ needs compared to a 
standard integer flag allowing a single status per pixel. Sentinel-2 IdePix 
derives water cloud flags and cirrus cloud flags (B10 > 0.01 & elevation 
<2000 m) on multiple confidence levels, as well as cloud shadow, 
mountain shadow, snow/ice and water flags. The pixel identification 
(IdePix) for Sentinel-2 is only working at single resolution (i.e., 10 m, 20 
m, 60 m). Cloud boundary pixels are flagged using a dilation filter. In 
principle, cloud boundaries are regarded as neighbor pixels of a cloud as 
identified before by the processor; therefore, a buffer is set around the 
cloud. The width of this boundary (in number of pixels) can be set by the 
user. Usage of the buffering functionality was not however utilized for 
CMIX to validate the sole performance of the cloud detection algorithm. 

2.2.6. S2cloudless 
The s2cloudless is an automated cloud-detection algorithm for 

Sentinel-2 imagery (Zupanc, 2017) based on a gradient boosting algo
rithm. It was developed by the EO Research team at Sinergise and is 
published under the MIT License on https://github.com/sentinel-hub/ 
sentinel2-cloud-detector. The model was trained on a large training 
dataset with a global coverage. The algorithm is monotemporal, does 
not consider any spatial context, and therefore can be executed at any 
resolution. The s2cloudless algorithm can, unlike many other algo
rithms, be executed also on averaged Sentinel-2 reflectance values over 
arbitrary user-defined geometries and still provide meaningful results. 
The input features are Sentinel-2 Level-1C TOA reflectance values of the 
following ten bands: B01, B02, B04, B05, B08, B8A, B09, B10, B11, B12 
and output of the algorithm is a cloud probability map. Users of the 
algorithm can convert the cloud probability map to a cloud mask by 
thresholding the cloud probability map. The recommended value for the 
threshold is 0.4 to minimize cloud omission errors. Users can optionally 
apply additional morphological operations during the conversion of the 

cloud probability map to the cloud mask. These operations are as fol
lows: convolution of the probability map and dilation of the binary cloud 
mask with a disk. We recommend convolving cloud probability maps at 
10 m (160 m) resolution with a disk with a radius of 22 (2) px and dilate 
cloud masks with a disk with radius 11 (1) px. Sentinel Hub 
(https://www.sentinel-hub.com, details in EO Research Team, 2020) 
and Google Earth Engine (https://developers.google.com/earth-engine/ 
datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY) provide 
precomputed s2cloudless cloud probability maps and masks to their 
users for the entire Sentinel-2 archive. 

The s2cloudless cloud masks for CMIX were provided in a binary 
mode (1 – cloud and 0 – non-cloud) using the latest (v0.1) model and 
default values for threshold and morphological operations. 

2.2.7. InterSSIM 
The InterSSIM cloud detection algorithm is a multi-temporal exten

sion of the s2cloudless algorithm (Section 2.2.6), but unlike s2cloudless, 
the InterSSIM algorithm takes temporal and spatial contexts into ac
count. The algorithm was developed by the EO Research Team at 
Sinergise (Puc and Žust, 2019) and integrated into the eo-learn Python 
library published under the MIT License on https://github.com/sentine 
l-hub/eo-learn. The input data and parameters for the InterSSIM are the 
same as in s2cloudless (see Section 2.2.6) with the addition of prior 
satellite observations. The algorithm works on the ten Sentinel-2 TOA 
bands, and in addition to cloud probabilities from the s2cloudless model 
incorporates additional features: spatially averaged reflectance values, 
minimum and mean reflectance values over all prior observations, and 
maximum, mean, and standard deviation of structural similarity indices 
computed between the observation for which cloud mask is being pre
dicted and every other prior observations. The output of the algorithm is 
a cloud probability map for the target timeframe, which can be con
verted into a cloud mask with the same procedure as in the case of the 
s2cloudless algorithm. 

The InterSSIM cloud masks for CMIX were provided in a binary mode 
(1 – cloud and 0 – non-cloud) using the latest (v0.1) s2cloudless model 
with default parameter values. 

Table 3 
Summary of cloud masking algorithms (L8: Landsat 8, S2: Sentinel-2). The “Objective” column shows the intended performance of algorithm in terms of cloud 
omission/commission errors. “Balanced” means the algorithms aims at balancing omission/commission errors. “Cloud-free conservative” means the algorithm aimed 
at minimizing cloud omission errors.  

Processor Organization Methodology Objective Spatial 
resolution, m 

Temporality Buffer for 
clouds 

Shadow 
detection 

References 

ATCOR DLR Spectral tests Balanced 
L8: 30 
S2: 20 Mono 100 m Yes Richter and Schläpfer (2019a) 

CD-FCNN University of 
Valencia 

Machine learning Balanced L8: 30 
S2: 10/20/60 

Mono No No Mateo-García et al. (2020),  
López-Puigdollers et al. (2021) 

Fmask 4.0 
CCA 

USGS Spectral tests Balanced L8: 30 
S2: 20 

Mono L8: 90 m 
S2: 60 m 

Yes Foga et al. (2017), Qiu et al. 
(2019), Zhu et al. (2015) 

FORCE 
Humboldt- 
Universität zu Berlin 
/ Trier University 

Spectral test +
parallax (S2 only) 

Cloud-free 
conservative 

L8: 30 
S2: 10 Mono 300 m Yes 

Frantz (2019), Frantz et al. 
(2018), Frantz et al. (2016),  
Zhu et al. (2015), Zhu and 
Woodcock (2012) 

IdePix Brockmann Consult Spectral tests Balanced S2: 20 Mono 
Not used 
(user- 
defined) 

Yes Wevers et al. (2021) 

InterSSIM Sinergise 
Machine learning +
spatio-temporal 
context 

Cloud-free 
conservative 

S2: 10 Multi 160 m No Puc and Žust (2019) 

LaSRC NASA / University of 
Maryland 

Spectral tests Cloud-free 
conservative 

L8: 30 
S2: 10 

Mono L8: 150 m 
S2: 50 m 

Yes 
Skakun et al. (2019), Skakun 
et al. (2021), Vermote et al. 
(2016) 

MAJA CNES / CESBIO Multi-temporal and 
spectral tests 

Cloud-free 
conservative 

S2: 240 Multi 240 m Yes Hagolle et al. (2010), 
Hagolle et al. (2017) 

s2cloudless Sinergise Machine learning 
Cloud-free 
conservative S2: 10 Mono 160 m No Zupanc (2017) 

Sen2Cor 
ESA / Telespazio 
France 

Spectral test +
auxiliary data Balanced S2: 20 Mono No Yes 

Louis et al. (2016), Louis 
(2021)  
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2.2.8. LaSRC 
The Land Surface Reflectance Code (LaSRC) is a generic atmospheric 

correction algorithm aimed at removing atmospheric effects associated 
with optical satellite imagery acquisitions (Doxani et al., 2018; Vermote 
et al., 2016). The code is based on the inversion of the 6SV radiative 
transfer code (Kotchenova et al., 2006; Vermote et al., 1997). Within the 
atmospheric correction process, LaSRC generates several quality assur
ance (QA) layers, including a cloud mask. The main metric for deriving a 
cloud mask is a per-pixel inversion residual error (Skakun et al., 2019; 
Skakun et al., 2021; Vermote et al., 2016), which shows the goodness of 
aerosol optical thickness (AOT) estimation process. For both Landsat 8 
and Sentinel-2, we used a threshold of 0.05 for the residual to identify 
cloudy pixels and to minimize cloud omission errors, so only high- 
quality pixels will be used for further processing. Pixels adjacent to 
clouds within 5 pixels are separately masked as “adjacent to clouds”. For 
Sentinel-2, a conservative threshold of 0.003 (reflectance units) was 
used for the cirrus band. Therefore, for LaSRC pixels identified as cloud 
or adjacent were used as “cloud”, whereas all others were used as “non- 
cloud”. In CMIX, LaSRC version 3.5.5 was used. 

2.2.9. MAJA 
MAJA is applicable to satellites which perform repetitive observa

tions at similar viewing angles, such as Sentinel-2. It was developed by 
CNES with methods designed by CESBIO with a few modules provided 
by DLR. MAJA is an open-source software and available at https://gitla 
b.orfeo-toolbox.org/maja/maja. 

MAJA’s cloud and shadow detection methods include several tests, 
which use the multi-spectral and multi-temporal properties of surfaces, 
clouds, and shadows to classify different types of pixels. The methods are 
described in Hagolle et al. (2010) and Hagolle et al. (2017). The main 
cloud test detects the pixels for which the surface reflectance in the blue 
band increases sharply. The cloud masks obtained with MAJA are 
dilated by 240 m, firstly to account for the parallax effects due to dif
ferences in observation angles between spectral bands, and secondly for 
the adjacency effects of clouds and for their ‘fuzzy’ borders. MAJA aims 
at a sensible reliability for surface reflectance monitoring, its tests and 
thresholds are therefore optimized to minimize cloud or cloud shadow 
omission (aiming at maximizing producer’s accuracy for clouds, but 
balanced for cirrus clouds), without excessively degrading the com
mission error. Cirrus band is used to detect high clouds using the 
following equation: Cirrus >0.007 + 0.007 × h2, where h is the pixel 
altitude in km above sea level. 

In CMIX, the cloud masks for Sentinel-2 were computed at 240 m 
resolution to optimize the computation time, but this can prevent MAJA 
from detecting very small clouds. In the more recent MAJA versions, the 
clouds and shadows masks are computed at 120 m, which should further 
improve MAJA’s performance. MAJA has been intensively validated and 
some of its validation data sets (Baetens et al., 2019) were used in the 
CMIX experiment. Due to the necessity to process times series of data 
with a processed data volume 10 times greater than the other algo
rithms, the MAJA team was not able to process all the data sets sub
mitted to CMIX, and it was decided to only produce the datasets 
acquired when both Sentinel-2A and -2B satellites were operational. 

2.2.10. Sen2Cor 
Sen2Cor is a processor for Sentinel-2 Level 2A product generation; it 

performs the atmospheric correction of the TOA Level 1C input data. It is 
composed of two main modules: an atmospheric correction module and 
a scene classification module that provides a “Scene Classification Map” 
(SCL), which is used internally in the atmospheric correction module to 
distinguish between cloudy, clear and water pixels. The Sen2Cor pro
cessor is used by the European Space Agency to generate Sentinel-2 
Level-2A products within the Sentinel-2 ground segment. Sen2Cor 
software is available for download at https://step.esa.int/main/th 
ird-party-plugins-2/sen2cor/. The cloud screening and classification 
part of Sen2Cor is available as source code within the distributed 

packages. 
The Sen2Cor version 2.8 cloud screening algorithm (Louis et al., 

2016; Louis, 2021) uses the reflective properties of scene features (TOA 
reflectance). Potential cloudy pixels undergo a sequence of filtering 
based on spectral bands thresholds, ratios, and indexes computations 
(Normalized Difference Snow Index – NDSI, Normalized Difference 
Vegetation Index – NDVI). Sen2Cor was designed to provide a balance 
between cloud omission and commission errors. In addition, it includes a 
cirrus and cloud shadow detection algorithm. A series of additional steps 
to improve the quality of the classification are automatically triggered 
using a priori information: digital elevation model (DEM) information, 
ESA CCI Water Bodies Map v4.0 (Lamarche et al., 2017), ESA CCI Land 
Cover Map v.2.0.7 (2015) and a snow climatology. 

In CMIX, Sen2Cor version 2.8 was used. SCL classes 8, 9 and 10 were 
used for cloud and the remaining SCL classes for non-cloud. 

2.3. Performance metrics 

A standard set of classification metrics derived from confusion 
matrices (Table 4) was used to compare cloud masking algorithms and 
included (Table 5) overall accuracy (OA) and balanced OA (BOA), 
producer’s (PA) and user’s accuracies (UA). BOA (Brodersen et al., 
2010) was used in addition to OA since some of the reference datasets 
were imbalanced in terms of cloud/clear pixels and therefore BOA 
would be a better indicator of algorithms performance. 

Performance metrics were estimated from confusion matrices that 
incorporated all valid pixels over all scenes available in the dataset. PA is 
complementary to the omission error, which shows a fraction of missed 
clouds; UA is complementary to the commission error, which shows a 
fraction of over detected clouds. High PA (cloud-free, non-cloud or clear 
conservative) means that after elimination of clouds, the users results 
will be minimally affected by remaining clouds, while high UA (cloud 
conservative) means that the cloud masks will not discard supernu
merary valid pixels. 

3. Results 

3.1. Performance of cloud masking algorithms for Sentinel-2 

3.1.1. CESBIO reference dataset 
Table 6 and Fig. 9 show performance metrics when applying cloud 

masking algorithms on the Sentinel-2 CESBIO dataset. Several obser
vations can be made when analyzing these results. The number of 

Table 4 
Confusion matrix for cloud validation.    

Reference   

Cloud Non-cloud 

Map 
Cloud ncloud_as_cloud nncloud_as_cloud 

Non-cloud ncloud_as_ncloud nncloud_as_ncloud  

Table 5 
Main performance metrics.  

Metric Equation 

Overall 
accuracy 
(OA) 

ncloud_as_cloud + nncloud_as_ncloud

ncloud_as_cloud + nncloud_as_ncloud + nncloud_as_cloud + ncloud_as_ncloud 
(1) 

Balanced OA 
(BOA) 0.5

(
ncloud_as_cloud

ncloud_as_cloud + ncloud_as_ncloud
+

nncloud_as_ncloud

nncloud_as_cloud + nncloud_as_ncloud

)

(2) 
PA (for 

clouds) 
ncloud_as_cloud

ncloud_as_cloud + ncloud_as_ncloud 
(3) 

UA (for 
clouds) 

ncloud_as_cloud

ncloud_as_cloud + nncloud_as_cloud 
(4)  
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reference pixels varied, since the CESBIO dataset was generated at 60 m 
spatial resolution, and processors produced masks at various spatial 
resolution: 10 m (FORCE, InterSSIM, LaSRC and S2cloudless), 20 m 
(ATCOR, Idepix, Fmask 4.0 CCA, Sen2Cor), 60 m (CD-FCNN, interpo
lated from 30 m), and 240 m (MAJA). Cloud and non-cloud classes were 
imbalanced in the reference dataset (of all labeled pixels 24.3% were 
clouds), therefore it results in the OA to be biased towards the non-cloud 
(dominant) class. Therefore, the balanced OA (BOA) is a more appro
priate metric. Overall, BOA varied from 79.5% to 90.5%, an average of 
85.9 ± 3.7%. When not considering MAJA (whose developers generated 
the CESBIO dataset), the highest cloud PA was 85.6%, with the average 
being 75.9 ± 8.7%, meaning that most algorithms missed almost 24% of 
clouds identified in the CESBIO dataset. Average cloud UA without 
MAJA was 85.1 ± 10.6%, meaning an average of 15% over detection of 
clouds, which may lie in the dilated parts of the cloud masks (FORCE, 
MAJA), or be associated with a stricter detection of cirrus clouds 
(LaSRC). Overall, the performance of cloud masking algorithms varied 
for this dataset by an average 11–12% of PA and UA, as measured by the 
coefficient of variation (CV), which is a ratio between standard devia
tion and average. 

3.1.2. GSFC S2 reference dataset 
Table 7 and Fig. 10 show the results of comparing algorithm 

outcomes against the Sentinel-2 GSFC dataset. MAJA provided only 10 
images out of 28 images. In the S2 GSFC dataset, cloud and non-cloud 
are almost balanced (approx. 61% of reference pixels are identified as 
clouds), therefore there is minimal difference between OA and BOA. 
BOA varied from 80.7% to 96.8% with LaSRC being the outlier (de
velopers of LaSRC produced the GSFC data), with average being 85.7 ±
2.8% (not considering LaSRC). Average values of cloud PA and UA not 
considering LaSRC were 73.7 ± 5.6% and 98.2 ± 2.7%, respectively, 
meaning large omission errors. It is worth noting that FORCE and MAJA, 
whose PA was better than the UA for the other reference datasets, have 
the opposite result for the GSFC reference, due to the strict classification 
of very thin clouds as clouds in the GSFC reference data set. The reason 
for all algorithms producing lower accuracies compared to LaSRC is that 
they did not identify thin (semi-transparent and cirrus) clouds, which, in 
turn, LaSRC was masking out using a rather conservative threshold 
(0.003 in reflectance units; for LaSRCv3.5.5) applied for the cirrus band 
(B10). As the cirrus cloud masking method is very simple, all methods 
could obtain similar performances, at the expense of masking an 
important part of usable pixels. Those clouds were labeled as thin, since 
they were clearly visible in the ground-based images. If thin clouds are 
removed from the analysis (Table 7), all algorithms showed much better 
performance: average BOA was 94.4 ± 2.9% (an average gain +7.4 ±
2.6%) and cloud PA was 90.8 ± 5.9% (an average gain +14.8 ± 5.2%), 
while cloud-UA remained essentially the same 98.1 ± 2.7%. These re
sults show the differences between algorithms in defining and identi
fying thin (semi-transparent) cirrus clouds, at the same time mostly 
agreeing on thick clouds. Variation in algorithms performance was 8% 
for cloud PA (6% without thin clouds) and 3% for cloud UA. 

3.1.3. Hollstein reference dataset 
Table 8 and Fig. 11 show algorithms performance for the Hollstein 

data depending on the opaque and semi-transparent/cirrus clouds. BOA 
varied from 84.2% to 92.3% (average 89.4 ± 2.4%) for all cloud types 
and 86.2% to 97.8% (93.4 ± 3.8%) for opaque clouds only. Not 
considering semi-transparent/cirrus clouds improved algorithms per
formance, especially for cloud PA: an average gain +8.0 ± 8.1%. Vari
ation of performance was comparable to the GSFC results with 8% (5% 
for opaque only) for PA and 4% (7%) for UA. Note that the Hollstein 
dataset was used to set radii of disks with which the cloud probability 
mask and binary cloud mask are convoluted and dilated, respectively, by 
the s2cloudless algorithm. MAJA was not evaluated against the Hollstein 
data set, as the images were acquired before Sentinel-2B launch. 

Table 6 
Performance metrics of Sentinel-2 cloud masking algorithms for the CESBIO 
dataset. All algorithms, except MAJA, processed all 30 reference scenes (with 
24.3% of clouds in the reference dataset), while MAJA processed 28 references 
scenes (25.6%). Here, and in Table 7 through Table 14: in bold are the numbers 
with the highest value for the particular metric (column-wise); * denotes algo
rithms which did not process the whole dataset; algorithms that are underscored 
were produced by the same team as the reference dataset.     

Cloud 

Processor OA BOA PA UA 

ATCOR 88.6 80.4 64.4 84.9 
CD-FCNN 89.5 79.5 60.3 94.1 
Fmask 4.0 CCA 93.3 88.9 80.4 90.8 
FORCE 91.1 88.9 84.7 79.9 
Idepix 91.7 86.9 77.5 86.9 
InterSSIM 93.2 88.0 77.8 93.1 
LaSRC 81.2 82.7 85.6 57.6 
MAJA* (28/30) 89.2 90.5 92.9 72.7 
S2cloudless 93.1 88.8 80.4 90.2 
Sen2Cor 91 84.7 72.3 88.7 
Average 90.2 85.9 77.6 83.9 
Standard deviation 3.4 3.7 9.3 10.7  

Fig. 9. Comparison of BOA values and distribution of PA/UA for the CESBIO reference dataset.  
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3.1.4. PixBox S2 reference dataset 
Not all algorithms processed all 29 products of the PixBox S2 dataset; 

the reasons for this were limitations of allowed geometries (ATCOR, 27 
processed) or too sparse time-series around the acquisition (MAJA, 14 
processed). In order to account for the difference of available products 
for validation, two different comparisons were made: one using all 
available products for each algorithm and a second using only the 
products that all algorithms have been applied to (14 out of 29 reference 
scenes). We call the second dataset the least common denominator 
(LCD) subset, while the first is referred to as the “complete dataset”. The 
whole comparison could have been made only on the LCD subset, but 
this reduces the complete dataset by half, which reduces its utility. 
Therefore, the complete dataset also was used for comparison. In this 
comparison using the complete dataset, results for MAJA must be 
assessed with caution, as they are only based on 14 out of 29 products. 

Algorithm performance for the complete PixBox dataset is provided 
in Table 9 and Fig. 12. For all types of clouds, BOA varied from 67.5% to 
85.9% (average 80.0 ± 5.3%). The top two algorithms (S2cloudless and 
MAJA) showed a similar performance in terms of BOA; however, the 
tradeoff between PA and UA varied substantially for those algorithms: 
S2cloudless yielded PA = 80.2% and UA = 89.5% (more cloud omissions 
than commissions) and MAJA yielded PA = 88.6% and UA = 80.2% (less 
cloud omissions and more commissions, in part due to the dilation). 
When thin/semi-transparent clouds were not considered, all algorithms 
showed a better performance with an average gain in BOA of +5.1 ±
1.6%. Some algorithms (FORCE, Idepix and LaSRC) showed high 

Table 7 
Performance metrics of Sentinel-2 cloud masking algorithms for the GSFC S2 
dataset. All algorithms, with exception of MAJA, processed all 28 reference 
scenes (with 60.6% and 55.5% of clouds in reference data for all clouds and 
without thin clouds, respectively), while MAJA processed 10 images (49.2% and 
40.8%).   

All types of clouds Without thin clouds    

Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 
ATCOR 77.9 81.7 63.5 100 86.9 88.2 76.4 100 
CD-FCNN 82.4 85.4 71 99.9 92.9 93.6 87.3 99.9 
Fmask 4.0 CCA 86 88.4 77.1 99.7 96.1 96.5 93.3 99.7 
FORCE 86.1 88.2 78.2 98.6 95.9 96.1 94 98.5 
Idepix 84.8 86.1 80.1 93.9 92.5 92.5 92.9 93.6 
InterSSIM 85 87.6 75.4 99.7 95.6 96 92.4 99.7 
LaSRC 96.7 96.8 96.3 98.2 98 97.9 98.5 97.8 
MAJA* (10/28) 80.9 80.7 66.2 93 92.7 92.2 89.1 92.7 
S2cloudless 85.2 87.7 76.1 99.3 95.7 96.1 93 99.3 
Sen2Cor 85.2 87.8 75.8 99.7 95 95.4 91.2 99.7 
Average 85.0 87.0 76.0 98.2 94.1 94.5 90.8 98.1 
Standard 

deviation 
4.6 4.1 8.4 2.4 2.9 2.7 5.6 2.6 

In bold are the numbers with the highest value for the particular metric (column- 
wise). 

Fig. 10. Comparison of BOA values and distribution of PA/UA (for all clouds) for the GSFC S2 reference dataset.  

Table 8 
Performance metrics of cloud masking algorithms for the Hollstein dataset. All algorithms processed all 59 reference scenes (with 61.8% and 44.4% of clouds in 
reference data for all clouds and without thin clouds, respectively).   

Opaque clouds and semi-transparent clouds/cirrus Opaque clouds only    

Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 
ATCOR 88.6 89.9 84.6 96.5 89.1 88.5 81.8 93.2 
CD-FCNN 81 84.2 71.1 97.7 97.8 97.8 98.3 96.7 
Fmask 4.0 CCA 91.2 91.1 91.3 94.2 94.9 95.4 99.9 89.8 
FORCE 89.1 89.4 88.2 93.8 93.6 94 97.4 89.1 
Idepix 91.3 90.5 94.1 92.1 91.9 92.6 98.2 85.7 
InterSSIM 90.4 91.9 85.7 98.6 97.5 97.4 96.8 97.5 
LaSRC 89.3 86.7 97.7 86.7 85 86.2 96.7 76 
S2cloudless 91.5 92.3 89.2 96.8 96.3 96.5 97.6 94.3 
Sen2Cor 87.9 88.6 85.6 94.3 92.2 92.3 93 89.8 
Average 88.9 89.4 87.5 94.5 93.1 93.4 95.5 90.2 
Standard deviation 3.1 2.4 7.1 3.4 3.9 3.8 5.2 6.2 

In bold are the numbers with the highest value for the particular metric (column-wise). 
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commission errors (low UA), which were related to identifying snow as 
clouds. 

Table 10 shows BOA values when comparing complete and LCD 

PixBox dataset. When restricting to the LCD, s2cloudless yielded the 
highest BOA in all cases Overall, the differences in BOA between com
plete and LCD sets were below 2%. Also, algorithms performance 

Fig. 11. Comparison of BOA values and distribution of PA/UA (for all clouds) for the Hollstein reference dataset.  

Table 9 
Performance metrics of cloud masking algorithms for the complete PixBox S2 dataset. ATCOR and MAJA processed 27 and 14 reference scenes, respectively, while 
other algorithms processed all 29 reference scenes. Fraction of cloud pixels was 47.2% and 36.8% for all cloud types and without thin clouds, respectively.   

All types of clouds Without thin clouds    

Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 
ATCOR* (27/29) 76.6 76.2 62.5 85.3 82.5 80.4 70.8 81.4 
CD-FCNN 80.5 79.7 66 89.9 89.5 88.1 82.7 87.9 
Fmask 4.0 CCA 84.5 84.2 79.4 86.5 89.6 89.9 90.8 82.7 
FORCE 80.2 80.1 79 78.9 84.6 85.8 90.4 73.6 
Idepix 75.7 76.3 85.9 69.7 77.2 81 95.3 62.4 
InterSSIM 84.6 84 72.7 93.2 91.9 90.7 86.2 91.3 
LaSRC 66.4 67.5 86.8 59.9 65 71 93.8 51.3 
MAJA* (14/29) 85.1 85.5 88.6 80.2 86.5 88.3 94.3 74.3 
S2cloudless 86.3 85.9 80.2 89.5 91.6 91.6 91.6 86.4 
Sen2Cor 81.2 80.8 74.7 83.6 85.4 84.8 82.7 78.6 
Average 80.1 80.0 77.6 81.7 84.4 85.2 87.9 77.0 
Standard deviation 5.7 5.3 8.3 9.6 7.7 6.0 7.1 11.7 

In bold are the numbers with the highest value for the particular metric (column-wise). 

Fig. 12. Comparison of BOA values and distribution of PA/UA (for all clouds) for the PixBox S2 reference dataset.  
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improved when thin clouds and snow were excluded from the analysis. 
Fig. 13 shows an example of cloud detection over the Sentinel-2 

scene from the PixBox dataset. The scene features opaque clouds as 
well as semi-transparent clouds over the water. All algorithms were 
successful in identifying opaque clouds, while majority struggled to 
identify semi-transparent over the water. 

Fig. 14 shows performance of algorithms on clear pixels depending 
on the major land cover classes (proportion > 4%) from the PixBox S2 
data. LaSRC, IdePix and FORCE showed the worst performance for the 
clear snow pixels, which was expected given limitations of these algo
rithms. Excluding snow, overall performance of algorithms was uniform 
throughout the land clover classes. All algorithms showed worst per
formance for the urban area given the presence of bright targets. Even 
approaches utilizing the Sentinel-2 multi-band parallax (e.g., FORCE, 
Frantz et al., 2018) over-detected clouds in the urban areas. 

3.2. Performance of cloud masking algorithms for Landsat 8 

3.2.1. GSFC L8 reference dataset 
This dataset included six Landsat 8 scenes and all algorithms showed 

high performance (Table 11). Fmask showed the highest values of per
formance metrics. Two algorithms achieved 100% cloud UA, meaning 
no cloud overdetection in this dataset. 

3.2.2. L8Biome reference dataset 
Table 12 provides a summary of performance metrics for the 

L8Biome dataset. Results in this table should not be used directly for 
intercomparing algorithms for the following reasons: (i) ATCOR pro
cessed only 86 images out of 96 images, since images in polar regions 
were removed due to Sun elevation lower than 20◦; (ii) LaSRC processed 
80 images, since snow/ice scenes were not considered; (iii) all algo
rithms, except ATCOR, had on average 2.4% pixels not classified—those 
pixels are on the boundary of the Landsat 8 scene, and do not have valid 
values for all spectral bands. In addition, since CD-FCNN was trained on 
the L8Biome and the L8SPARCS datasets (80% and 20%, respectively), 
the CD-FCNN results on this dataset are omitted in order to avoid 
overoptimistic (overfitted) detection results. Fmask partially used 
L8Biome data to find optimal thresholds for some of the rules, namely 
weight of cirrus cloud probability, spectral-contextual snow index, and 
morphology-based post-processing (Qiu et al., 2019; personal commu
nication, Zhe Zhu and Shi Qiu, University of Connecticut, November 
2021). Since the foundation of the Fmask algorithm was developed well 
before the L8Biome dataset release, we still included Fmask 4.0 for the 
inter-comparison, though with caveats. 

Table 13 provides a correct intercomparison between algorithms 
since the amount of reference scenes and pixels used was the same. The 
average BOA was 90.0 ± 1.4% and 91.5 ± 1.8% for all types of clouds 
and without thin clouds, respectively. Removing thin clouds from the 
reference increases BOA and Cloud-PA accuracies by +1.5 ± 0.7% and 
+ 3.0 ± 1.4%, respectively. 

Analysis of algorithms performance by biomes showed little vari
ability (Fig. 15). Exceptions are ATCOR which showed lower cloud PA 
values over forest and grass/cropland biomes, and Fmask which lower 
cloud PA values over shrubland. It is worth noting though that those are 
generic land cover classes and don’t enable analysis of the dynamic state 

Table 10 
Performance metrics of cloud masking algorithms for the complete and LCD 
PixBox dataset for various scenarios.   

All types of clouds All types of clouds 
(excluding snow) 

Without thin clouds 

Processor BOA 
complete 

BOA 
LCD 

BOA 
complete 

BOA 
LCD 

BOA 
complete 

BOA 
LCD 

ATCOR 76.2 78.3 77.2 79.3 80.4 81.6 
CD-FCNN 79.7 78.6 80.4 79.5 88.1 86.0 
Fmask 4.0 

CCA 84.2 85.1 86.3 86.9 89.9 89.7 

FORCE 80.1 83.0 82.1 85.2 85.8 88.2 
Idepix 76.3 73.8 84.0 83.0 81.0 78.8 
InterSSIM 84.0 84.2 84.9 85.2 90.7 91.1 
LaSRC 67.5 70.7 74.2 78.0 71.0 73.4 
MAJA 85.5 85.5 86.1 86.1 88.3 88.3 
S2cloudless 85.9 87.3 86.7 87.8 91.6 93.1 
Sen2Cor 80.8 82.3 82.1 85.4 84.8 85.3 
Average 80.0 80.9 82.4 83.6 85.2 85.5 
Standard 

deviation 
5.3 5.1 3.9 3.3 6.0 5.7 

In bold are the numbers with the highest value for the particular metric (column- 
wise). 

Fig. 13. Examples of cloud masking by various algorithms over the Sentinel-2 scene S2A_MSIL1C_20170629T103021_N0205_R108_T31TFJ_20170629T103020.  
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of the land cover class during the scene overpass. For example, a crop
land can be characterized by multiple physical stages during the year, 
such as bare land (e.g., fallow or after ploughing), sparse vegetation 
(during crop emergence), dense vegetation (during peak), snow (during 
the winter period). Therefore, per-land cover performance of algorithms 
should be taken cautiously. 

3.2.3. PixBox L8 reference dataset 
Table 14 shows the algorithm performance for the PixBox dataset. 

Fmask and ATCOR yielded the best performance in terms of BOA (87.9% 
and 86.3%, respectively), however PA/UA values exhibited a different 
behavior: for Fmask, PA and UA were mostly balanced (82.5% and 
81.8%), while for ATCOR omission error (26.7%) was much higher than 
commission error (2.8%). Overall, performance over the PixBox dataset 
was lower than for L8Biome and GSFC, as the case with PixBox S2. 
Performance metrics substantially improved when semi-transparent 
clouds were removed from the analysis. For all algorithms cloud PA 
increased on average by 28.1 ± 13.9% reaching 95.9 ± 3.6%. While 
there was an overall agreement between algorithms on detecting opaque 
clouds from the PixBox L8 dataset (with average PA 95.9 ± 3.6%) all 
algorithms failed to detect semi-transparent clouds (average PA was 
40.6 ± 27.4%) (Fig. 16). It’s worth noting that all algorithms showed 
equally good performance for clear land and water classes. ATCOR and 
CD-FCNN were also successful in discriminating clouds from snow, 
while Fmask and FORCE showed intermediate results. LaSRC failed to 
identify clouds over snow, as expected from the algorithm’s design. 

4. Discussion 

4.1. Algorithm intercomparison 

Fig. 17 shows the distribution of cloud PA and UA values for Sentinel- 
2 cloud masking algorithms. Overall, cloud PA/UA values are located in 

Fig. 14. Performance of algorithms in terms of clear producer’s accuracy over the non-cloudy regions depending on the land cover types in the PixBox S2 dataset.  

Table 11 
Performance metrics of cloud masking algorithms for the GSFC L8 dataset. All 
algorithms processed six reference scenes (with 49.4% fraction of cloud in 
reference data).     

Cloud 

Processor OA BOA PA UA 
ATCOR 97.3 97.3 94.8 99.8 
CD-FCNN 97.3 97.3 94.6 100.0 
Fmask 4.0 CCA 98.7 98.7 97.3 100.0 
FORCE 98.2 98.1 96.5 99.7 
LaSRC 96.5 96.5 94.8 98.0 
Average 97.6 97.6 95.6 99.5 
Standard deviation 0.8 0.8 1.1 0.7 

In bold are the numbers with the highest value for the particular metric (column- 
wise). 

Table 12 
Performance metrics of cloud masking algorithms for the L8Biome dataset. 
ATCOR and LaSRC processed 86 (48.3% of clouds in reference data) and 80 
(49.4%) scenes, respectively, while Fmask and FORCE processed all 96 scenes 
(47.9%).     

Cloud 

Processor OA BOA PA UA 
ATCOR* (86/96) 86.8 86.7 83.2 88.8 
Fmask 4.0 CCA 90.0 90.2 93.6 86.6 
FORCE 84.9 85.3 96.0 77.7 
LaSRC* (80/96) 90.9 90.9 92.7 89.2 
Average 88.1 88.3 91.4 85.6 
Standard deviation 2.4 2.3 4.9 4.7 

In bold are the numbers with the highest value for the particular metric (column- 
wise). 

Table 13 
Performance metrics of cloud masking algorithms for the L8Biome dataset using 
the same set of 80 Landsat 8 scenes. Fraction of cloud reference pixels for all 
types of clouds and without thin clouds was 49.4% and 42.6%, respectively.   

All types of clouds Without thin clouds    

Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 
ATCOR 88.2 88.2 84.6 90.9 89.6 89.2 86.8 88.6 
Fmask 4.0 CCA 91.3 91.4 96.2 87.4 92.1 93.1 99.7 84.6 
FORCE 89.4 89.5 96.8 84.2 89.0 90.2 98.1 80.4 
LaSRC 90.9 90.9 92.7 89.2 92.8 93.5 97.8 86.9 
Average 89.9 90.0 92.6 87.9 90.9 91.5 95.6 85.1 
Standard 

deviation 
1.2 1.3 4.9 2.5 1.6 1.8 5.1 3.1 

In bold are the numbers with the highest value for the particular metric (column- 
wise). 
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the areas defined by lines PA > 80% or UA > 80%. While individual 
values are located in the area of PA > 90% and UA > 90% (Fig. 17, left), 
suggesting a very good balance of commission and omission errors, 

however that is not the case for averaged values across all reference 
datasets (Fig. 17, right). No algorithm yielded the PA > 90% and UA >
90% performance when averaging over reference datasets. Five algo
rithms (Fmask, FORCE, Idepix, MAJA and S2cloudless) yielded the 
average performance of cloud PA > 80% and UA > 80%, providing some 
balance (within ~10%) between commission and omission errors. Four 
algorithms (ATCOR, CD-FCNN, InterSSIM and Sen2Cor) yielded per
formance with cloud UA > 90% (cloud conservative), meaning these 
algorithms committed less clouds over clear regions, however at the 
expense of missing clouds. LaSRC yielded the cloud PA > 90% perfor
mance (non-cloud conservative), detecting most of the clouds, however, 
at the expense of masking out also valid non-cloudy observations, and 
with a large standard deviation in UA across the datasets (potentially, 
owing to various rules defining the cloud and the use of conservative 
threshold for the cirrus band). 

Since only three datasets were used for Landsat 8, we did not perform 
the averaging (Fig. 18). Three distinct clusters corresponding to the 
three reference datasets were evident with varying performance. The 
highest performance was for the GSFC dataset with only six Landsat 8 
scenes over the same area, which probably is not fully representative of 
the performance of the algorithms. GSFC L8 had mostly thick and well- 
identifiable clouds that algorithms were able to classify successfully. 

Fig. 15. Performance of the Landsat 8 cloud detection algorithms for the L8Biome dataset depending on the biomes. The same set of 80 Landsat 8 scenes was used to 
calculate PA and UA accuracy values. 

Table 14 
Performance metrics of cloud masking algorithms for the PixBox dataset. All 
algorithms processed all 11 Landsat 8 reference scenes. Fraction of cloud 
reference pixels was 27.4% for all types of clouds and 15.8%, when removing 
semi-transparent clouds.   

All types of clouds Without semi-transparent clouds    

Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 
ATCOR 92.1 86.3 73.3 97.2 98.4 96.7 94.1 95.6 
CD-FCNN 87.2 78.2 59 89.4 97.8 98.7 99.9 87.4 
Fmask 4.0 CCA 90.4 87.9 82.5 81.8 94.3 96.6 99.8 72.6 
FORCE 80.3 79.1 76.5 61.3 83.5 87.2 92.8 48.7 
LaSRC 76.8 67.8 47.8 59.5 88.5 90.4 93.1 58.6 
Average 83.7 78.2 66.5 73.0 92.5 93.9 95.9 72.6 
Standard 

deviation 5.4 7.1 13.8 12.9 6.4 4.8 3.6 19.5 

In bold are the numbers with the highest value for the particular metric (column- 
wise). 

Fig. 16. PA values for various types of classes in the PixBox L8 dataset.  
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L8Biome yielded the second highest performance with PA/UA values 
distributed over PA > 90% (Fmask, FORCE and LaSRC) and UA > 90% 
(ATCOR). Performance for the PixBox dataset was the lowest with al
gorithms scattered in the cloud PA/UA space. Fmask yielded PA > 80% 
and UA > 80% for PixBox; ATCOR and CD-FCNN yielded UA > 90%; 
while FORCE and LaSRC yielded both cloud PA and UA less than 80%. 

A summary of strengths and weaknesses of cloud algorithms known 
at the design stage and further identified/elaborated during the CMIX 
are presented in Table 15. 

4.2. Dependence of the performance on the reference datasets 

Performance of cloud masking algorithms for Sentinel-2 varied 
depending on the reference dataset (Fig. 19): average BOA was 80.0 ±
5.3% (PixBox) to 89.4 ± 2.4% (Hollstein). Performance of algorithms 
was the worst for the PixBox dataset compared to datasets. This can be 
explained by the following. PixBox dataset was sampled in such a way, 
so non-challenging (e.g., opaque thick clouds) and challenging (e.g., 
semi-transparent clouds, cloud boundaries) cases are equally present in 
the dataset. At the same time, other datasets were aimed at labelling the 
full images (L8Biome, CESBIO) or provide homogeneous polygons 
(Hollstein, GSFC), where the weight of challenging cases would be lower 

than for PixBox. In this regard, the question is about whether to weight 
samples according to the area or not. Both characteristics (based on 
equal allocation and area proportions) can be valuable to describe 
separability of classes by a given algorithm (model accuracy) and to 
estimate probability of a pixel being mapped correctly (map accuracy) 
(Blickensdörfer et al., 2022; Congalton, 1991). 

Across the four reference datasets algorithms showed better perfor
mance in terms of cloud UA, which was consistently higher than cloud 
PA. Removing thin/semi-transparent clouds from the reference datasets 
improves performance of algorithms (Fig. 20), though at the expense of 
cloud UA. This happens because thin clouds have higher uncertainties 
and therefore are more challenging to the algorithms in contrast to thick 
clouds. When thin clouds removed from reference datasets the propor
tion of correctly detected classes increases and therefore cloud PA in
creases. At the same time, cloud UA can experience both increase or 
decrease depending on the proportion of thin clouds and algorithm’s 
performance on thin clouds. 

The issue of thin/semi-transparent cloud detection has a significant 
impact on the subsequent shadow detection. Fig. 21 shows an example 
of a cloud with different levels of transparency depending on wave
length used and its shadow. While the cloud is semi-transparent in the 
false color composite (SWIR-NIR-red), its shadow is clearly visible and 
impacts the reflectance. 

Fig. 22 shows averaged BOA values across multiple Landsat 8 algo
rithms. As with Sentinel-2, the performance varied across datasets 
yielding BOA of 97.6 ± 0.8%, 90.0 ± 1.3% and 79.8 ± 7.1% for GSFC, 
L8Biome and PixBox, respectively. As with Sentinel-2, cloud PA was 
higher than cloud UA for GSFC and PixBox datasets, but not for 
L8Biome. 

In terms of various land cover classes, it is difficult to draw conclu
sions since only generic “static” information on land cover was available 
for some of the datasets. We did not observe any substantial differences 
in algorithm’s performance over various land cover classes, except for 
urban areas in the PixBox S2 data, which is expected. Sentinel-2 does not 
have a thermal band and, therefore, detection of clouds over bright 
targets in urban areas remains a challenging task. The use of multi- 
spectral parallax (Gascon et al., 2017; Skakun et al., 2017) only 
partially addresses this problem (Frantz et al., 2018). 

5. Recommendations 

Results and lessons learned from CMIX-I provide a good foundation 
for future activities for improving practices related to the development 
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Fig. 17. Distribution of cloud PA and UA over all Sentinel-2 cloud masking algorithms and reference datasets (left) and algorithms’ average values along with the 
standard deviation over four reference datasets (right). Averaging was performed using PA and UA values from Table 6, Table 7, Table 8 and Table 9 for all 
cloud types. 

Fig. 18. Distribution of cloud PA and UA over all Landsat 8 clouds masking 
algorithms and reference datasets. 
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Table 15 
Summary of algorithms parameters to control cloud commission/omission errors along with strengths and weaknesses.  

Processor Parameter Strengths Weaknesses 

ATCOR Cloud buffer size (default size is 7 px). Increase will lead to 
higher cloud PA. 

– Water vapor map (S2) is used to reduce cloud 
pixel commission error 
– Elevation-dependent cirrus masking 

– Conservative cloud mask 
– Cloud buffer too small 
– Thin cirrus threshold of ρ(TOA) = 0.01 
underestimates thin cirrus 

CD-FCNN 
A posteriori cloud probability (default value is 0.5). Decrease 
will lead to higher cloud PA (cloud-free conservative). 
Increase will lead to higher cloud UA (cloud conservative). 

– Single architecture to provide global cloud 
masks for both Landsat-8 and Sentinel-2 images 
– No ancillary data required 
– Mitigation of training data requirements: 
transfer learning from Landsat-8 to Sentinel-2 
– General approach directly learnt from 
available data 

– Model can underperform compared to 
customized algorithms for Sentinel-2 
– Model performance is fully constrained by the 
quality of training data 
– Presence of errors in thin clouds, cloud 
borders, urban areas, and snow. 
– It does not provide shadow detection. 
– It does not provide cloud type classes (e.g. 
cirrus, thin or thick clouds). 

Fmask 4.0 
CCA 

Cloud dilation (default is 3 px), cloud probability threshold 
(CPT), and potential false positive cloud (PFPC) extension and 
erosion. The CPT default value is 17.5% for Landsat 8, and 
20% for Sentinel 2. Increase will reduce the number of 
potential cloud pixels. The PFPC parameters affect how the 
potential cloud mask is reduced to the final cloud mask. 
Changing its values will affect the algorithm’s performance 
over bright targets. 

– Generic algorithm 
– Applicable over land and water 
– Good performance over bright targets (urban, 
ice/snow) 

– Performance decreases when thermal band is 
not used 

FORCE 

Cloud probability (default 22.5%). Increase will reduce the 
number of potential cloud pixels. Clouds were buffered by 300 
m. Higher values will increase cloud commission but reduce 
commission. 

– Rigorous cloud mask with emphasis on 
reducing cloud commission for safe usage in 
time series applications 
– Parallax effect is used to reduce bright false 
positives in Sentinel-2 imagery 
– Multiple flags can be set, e.g. snow and cloud 

– Rigorous cloud mask with emphasis on 
reducing cloud commission with potential 
drawbacks for single-scene analysis 
– Parallax effect may occasionally introduce 
false positives in bright areas due to micro- 
vibrations on sensor 
– Snow and cloud often not mutually 
exclusively 

IdePix 

The CLOUD_AMBIGUOUS flag is currently quite probe to clear 
commission of urban and other very bright surfaces. Cloud 
buffer was not used, as it would increase cloud commission 
error. 

– Mono-temporal approach 
– Detects thin clouds quite well 
– Allows user defined cloud dilation 

– Snow detection could be better (bug in code 
during CMIX) 
– Commission error of bright (mostly urban) 
surfaces 

s2cloudless 

Cloud probability (default is 0.4). Lower values will lead to 
higher cloud PA (cloud-free conservative). Post-processing: 
convolution (22 px) and dilation (11 px). The convolution 
smoothens the masks, reducing the amount of salt-and-pepper 
effect, while the dilation of masks closes small openings and 
increases the cloud masks on the outside. 

– Fast single-observation cloud masking 
– Works on any resolution and even on 
aggregated values (objects) 
– Provides pseudo-probability that user can 
tweak to get better cloud masks for her use-case 

– Prone to errors on very bright areas 
– No spatial context is taken into account 
– No cloud shadow detection 

InterSSIM 

Similar to s2cloudless. Number of prior satellite observations. 
Increase will lead to better performance, especially bright 
targets, but increase the usage of computational and storage 
resources. 

– Using spatio-temporal context results in lower 
rate of false positive detections (particularly 
over consistently bright areas) 
– Provides pseudo-probability that user can 
tweak to get better cloud masks for her use-case 

– Resource intensive calculation 
– Higher rate of cirrus misclassifications 
– Higher rate of misclassifications over large 
waterbodies 
– No cloud shadow detection 

LaSRC 
Threshold for residuals from aerosol retrievals (default is 
0.05). Increase will lead to higher cloud UA (cloud 
conservative). 

– Simple, interpretable criteria 
Easily transferable 
– Conservative and tune to keep best high- 
quality data rather than questionable (low- 
quality) 

– Might confuse bad retrievals of aerosol with 
clouds (high aerosol, urban area) 
– Not suitable over snow cover region 

MAJA 

Four major parameters: 
– Multi-temporal: threshold on increase of surface reflectance 
in the blue. 
– Correlation: each neighborhood of a cloud is correlated with 
previous observations. If the correlation is high, it is not a 
cloud. 
– High clouds: threshold for the reflectance of the cirrus band, 
that depends on the squared altitude of the pixel to account for 
the fact that mountains may peak above the water vapor layer. 
– Buffer: all pixels close to a cloud within a buffer of 240 m are 
classified as clouds, which is rather conservative, and avoids 
omissions due to the parallax between spectral bands or to 
fuzzy limits of the cloud. 

– Multi-temporal criterion to better detect low 
clouds that brings a much better separation 
between cloud / non clouds 
– Moderate threshold for the cirrus bands, as the 
multi-temporal threshold already detects clouds 
which have a significant impact on reflectances 
– Large buffer (240 m), possible thanks to the 
very low level of cloud commission errors 
before dilation 

– Some very rapid changes of vegetation could 
be interpreted as clouds 
– Multi-temporal algorithm is less efficient in 
places where the cloudiness is extremely high 
– Working at 120 m resolution (240 m 
resolution during CMIX, but it has been 
upgraded since), may cause omissions of very 
small clouds 
– The buffer will include some cloud free pixels 
(but they are in fact are affected by large 
adjacency effects) 

Sen2Cor 

The parameters used to run Sen2Cor version 2.8 for CMIX 
were the default parameters used in Sentinel-2 operational 
ground segment and available in L2A_CAL_SC_GIPP.xml. No 
cloud mask dilation is applied and cloud boundaries can be 
omitted. 

– Cloud mask at “moderate” resolution (20 m) 
– Robustness. Used operationally in all types of 
meteorological conditions and solar geometries 
– Processing time (<5 min for a full Sentinel-2 
tile) 

– Potential cloud omissions on cloud edges/ 
boundaries 
– Potential cloud omissions for cloud over water 
– Potential cloud commissions for bright 
buildings in urban area or bright surfaces  
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and validation of cloud masking algorithms for passive optical satellite 
imagery. 

The first area for improvement should aim at initially providing an 
agreed upon definition of “cloud” (Mejia et al., 2016; Stubenrauch et al., 
2013) that is passed beforehand to intercomparison participants and 
validation dataset originators. Ideally this would be an objective 
(quantitative) definition of clouds, which would include a numerical 
metric. As results from CMIX-I showed, existing validation datasets 
varied in how a cloud was defined through mostly photointerpretation, 
and it influenced the performance of the algorithms. For example, one 
potential metric to define the cloud would be the cloud optical thickness. 
However, this poses the questions at which wavelength the thickness 
should be defined, what threshold to apply, and how it could be esti
mated for sizeable quantity of images. For example, Mejia et al. (2016) 
use a radiative transfer model to estimate cloud optical depth (τc) from 
ground-based sky images and define thick clouds with τc > 30, thin 
clouds with τc ~ 1, and clear sky with τc ~ 0 (all in the visible spectrum). 
While there was a consensus between algorithms and developers in 
defining thick non-transparent clouds, there was a disagreement 
(sometimes by design and depending on the intended applications) in 
transparent (semi-transparent) clouds, such as cirrus, stratus and cloud 
edges. Also, the effect of those clouds can vary with wavelengths, which 
adds complexity to the analysis. 

Based on the cloud definition, the second area for improvement 
would include generation of new reference/validation datasets. The 
strengths and weaknesses of existing cloud reference datasets were 
thoroughly analyzed and discussed within this study, and new datasets 
should substantially address those weaknesses. A special attention 
should be paid to ensure a balanced statistical distribution of surface and 
cloud types, as well as the need to cover a wide range of environmental 
conditions, in order to thoroughly test the performance of the algorithms 
at global scale. Some of the recommendations include:  

• Consistently implementing the cloud definition, and adding cloud 
shadows to the analysis. Recommended practices for labelling clouds 
should be developed and implemented for new datasets, whether 
through visual interpretation or ground measurements or ancillary 
data (e.g. geostationary satellites). Cloud shadows should be also 
part of the analysis, since an inaccurate cloud shadow mask can lead 
to substantial artifacts in the downstream products.  

• Defining a proper dilation of cloud masks to be applied, taking into 
account the effect of parallax between spectral bands, smooth vari
ation of clouds at their borders, and adjacency effects. The dilation 
could then be applied to the reference datasets and to the algorithm 
results.  

• Increasing the number of sites collecting ground-based imagery of 
the sky and use them in coordination with Aeronet measurements. 
Some limitations of the use of ground-based sky imagery include 
radiance contrast which could yield better detection of thin clouds; 
furthermore, the geometrical matching between sky-camera and 
satellite pixel may introduce some errors, which are related to the 
cloud height.  

• Acquire multiple datasets (time-series) over the same area to analyze 
consistent errors in cloud detection. This would enable temporal 
metrics to be exploited when assessing the efficiency of cloud masks. 

The third set of activities should focus on expanding the analysis 
framework, which would include:  

• A sample-based approach versus an area-based approach, when 
comparing reference cloud mask with a predicted one. The problem 
with an area-based approach is that more weight would be given to 
large clouds (which cover the larger area), whereas smaller clouds 
might have a small impact on the performance metrics. At the same 
time, sampled-based approaches can also miss some specific land 
cover features (unless a stratification scheme can be constructed with 
strata describing those features), and often do not address the 
boundaries of the clouds or more broadly segmentation aspects. 
Area-based approaches are likewise necessary to study the effects of 
cloud dilation. Therefore, both approaches should be considered.  

• Temporal analysis of cloud masks over the same area. Originally 
planned for CMIX-I, the idea of using temporal metrics was aban
doned, since no reference data (except GSFC, which were assisted 
with sky imagery and Aeronet measurements) was available for these 
purposes. As undetected clouds add noise on time-series, it is possible 
to evaluate the noise on time-series and compute the contribution of 
different cloud masks to this noise.  

• Application-based approach to cloud validation. One way to analyze 
efficiency of the cloud/shadow masks is to “validate” them indirectly 
within the downstream products. An example could include a generic 
land cover mapping workflow, when the same set of satellite data 
will be processed by various cloud detection algorithms and used as 
input to the classification algorithm. The derived land cover maps 
will be validated using the same validation data and intercompared. 

And finally, CMIX-I was limited to Landsat 8 and Sentinel-2 data. 
Future activities could include adding hyper-spectral data (such as 
PRISMA or DESIS), coarse resolution data (such as MODIS, VIIRS, 
Sentinel-3), and commercial very high spatial resolution satellites, such 
as Planet or hyperspectral sensors. 

6. Conclusion 

The Cloud Mask Intercomparison eXercise (CMIX) was a community- 
wide effort to intercompare the state-of-the-art and commonly-used 
cloud masking algorithms, with a focus on moderate spatial resolution 
data acquired by Landsat 8 and Sentinel-2 missions. Ten algorithms 
developed by nine teams from fourteen organizations representing 
universities, industry and space agencies were evaluated within CMIX 
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Fig. 19. Average performance of algorithms for Sentinel-2 for four cloud 
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Fig. 20. Change in performance of Sentinel-2 cloud masking algorithms, when 
thin/semi-transparent clouds removed from the reference datasets. 
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using existing cloud reference data. Overall, the performance of algo
rithms varied depending on the reference dataset, which can be attrib
uted to differences in which reference datasets were generated. Average 
overall accuracy (across algorithms) varied 80.0 ± 5.3% to 89.4 ± 2.4% 

for Sentinel-2, and 79.8 ± 7.1% to 97.6 ± 0.8% for Landsat 8, depending 
on the reference dataset. An overall accuracy of 90% yields twice less 
errors than an overall accuracy of 80%. The study highlighted algo
rithms that provided a balance between commission and omission er
rors, as well as algorithms which are cloud conservative (high UA) and 
non-cloud (clear) conservative (high PA). With repetitive observations 
like those of Sentinel-2, it seems reasonable to favor cloud conservative 
approaches, with maybe the exception of very cloudy regions where 
every cloud free observation is critical. When thin/semi-transparent 
clouds were not considered in the reference datasets algorithms’ per
formance generally improved: overall accuracy values increased from 
+1.5% to 7.4%. It should be noted though that these clouds are 
commonly occurring and are often present in optical imagery. We 
concluded the paper with recommendations for further activities, which 
include provision of a quantitative definition for clouds (targeting 
moderate spatial resolution imagery by Landsat 8 and Sentinel-2), 
generation of new reference datasets, and expansion of the analysis 
framework (for example, multi-temporal analysis and application- 
driven validation). Such intercomparison studies will hopefully help 
the community to improve the algorithms and move towards stan
dardization of cloud masking. Given the importance of cloud masking in 
optical imagery we encourage CEOS to continue the CMIX activities. 

Fig. 21. Example of thin/semi-transparent cloud in various band combinations (true color and false color in top-of-atmosphere reflectance) along with the shadow 
from that cloud (Sentinel-2 scene, L1C_T18SUJ_A011777_20170923T160124). 
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Fig. 22. Average performance of algorithms for Landsat 8 for three cloud 
reference datasets. 
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Appendix A  

Table A1 
Cloud and non-cloud classes that were used from the original reference datasets.  

Dataset Cloud Non-cloud 

CESBIO Low clouds, high clouds Shadow, land, water, snow 
GSFC Cloud, thin cloud Clear, cloud shadow 
Hollstein Cloud, cirrus Clear, water, shadow, snow 
L8Biome Thin cloud, thick cloud Shadow, clear 
PixBox S2 Opaque, thick semi-transparent cloud, average density semi-transparent cloud, semi-transparent cloud, thin semi- 

transparent cloud, fog, haze 
Clear 

PixBox 
L8 

Cloud, semi-transparent cloud Clear land, clear snow/ice, clear water, mixed 
snow_ice/water  
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López-Puigdollers, D., Mateo-García, G., Gómez-Chova, L., 2021. Benchmarking deep 
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