National Aeronautics and Space Administration

Enhanced Feasibility Assessment of Payload Adapters for NASA's Space Launch System

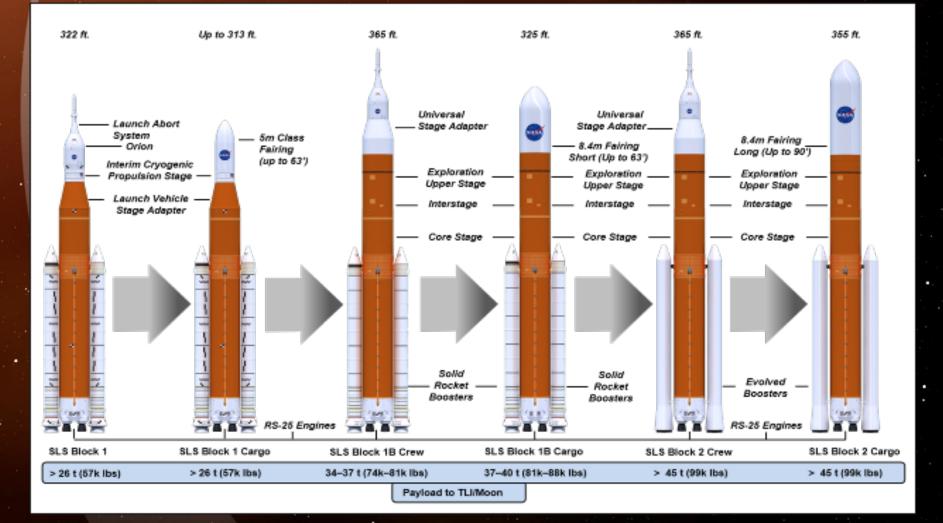
> Jon B. Holladay Terry Sanders David Alan Smith

www.nasa.gov/

Introduction

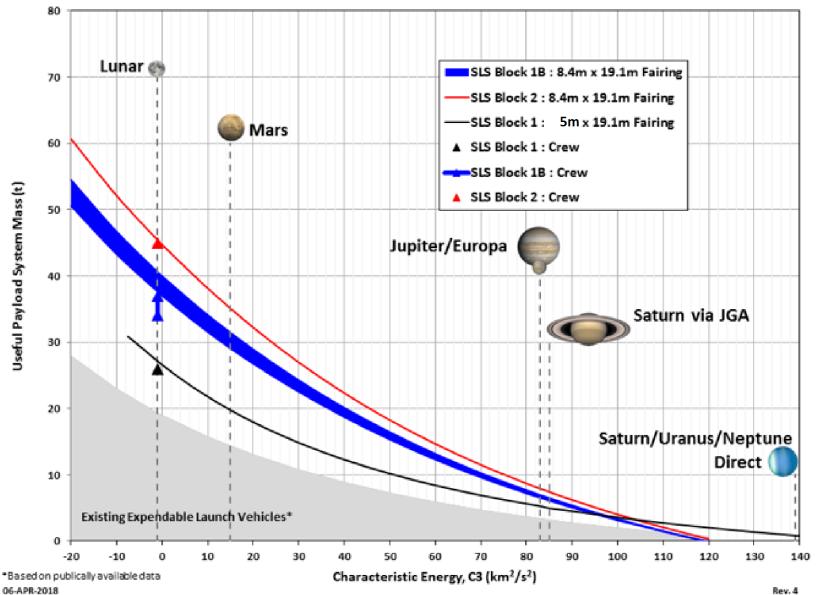
 SLS as Cornerstone of NASA's space exploration system

SLS Mission Opportunities


SLS Payload Accommodations

MBSE Pathfinder: SLS Payload
 Adapter Design Definition

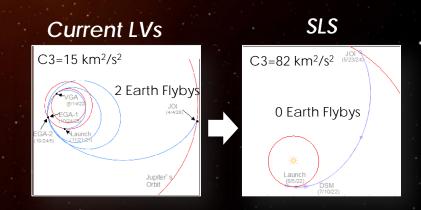
Next Steps



SLS Block Configurations

SLS Payload Mission Capture

SLS


Rev. 4

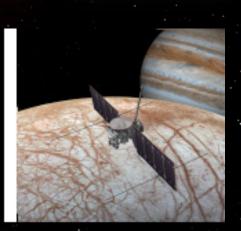
SLS Time to Destination

Shorter Transit Times to Destination

Europa Clipper

- Desired launch date of June 2022
- Jovian system transit time reduced by 65% over existing launch vehicles
- Reduced mission operations cost over time

<u>Earliest Launch</u>


*Period: 6/4/22 – 6/24/22 (SLS) *Period: 6/18/22 – 7/8/22 (Atlas)

Cruise: 2.5 Years (SLS) 7.4 Years (Atlas)

<u>Jupiter Orbit Insertion</u> 12/24/24 or 5/1/25 (SLS) 11/26/29 (Atlas)

Jovian System Operations

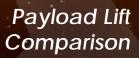
Prime Europa Flyby Campaign: 36 months

www.nasa.gov/sls

Page 5

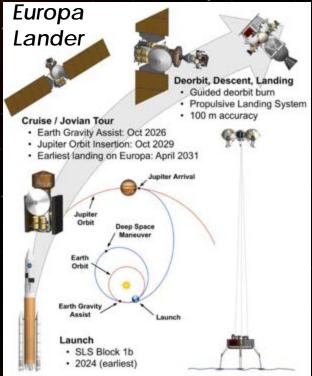
SLS Mass to Destination

Up to 5 times greater mass to orbit capability than current launch systems


- Increases payload mass margins
- Offers range of injection propulsion options

New Horizons

SLS would have doubled delivered payload mass to Pluto

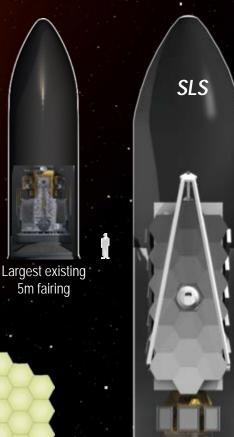

Europa Lander

16 mT delivery to outer planets (with margin)

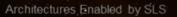
SLS Volume to Destination

16 n

(segmented)


Up to 6 times greater volume available

Multiple payload combinations
Dual manifesting within fairing
Payload Constellations
More powerful injection stages


Telescopes

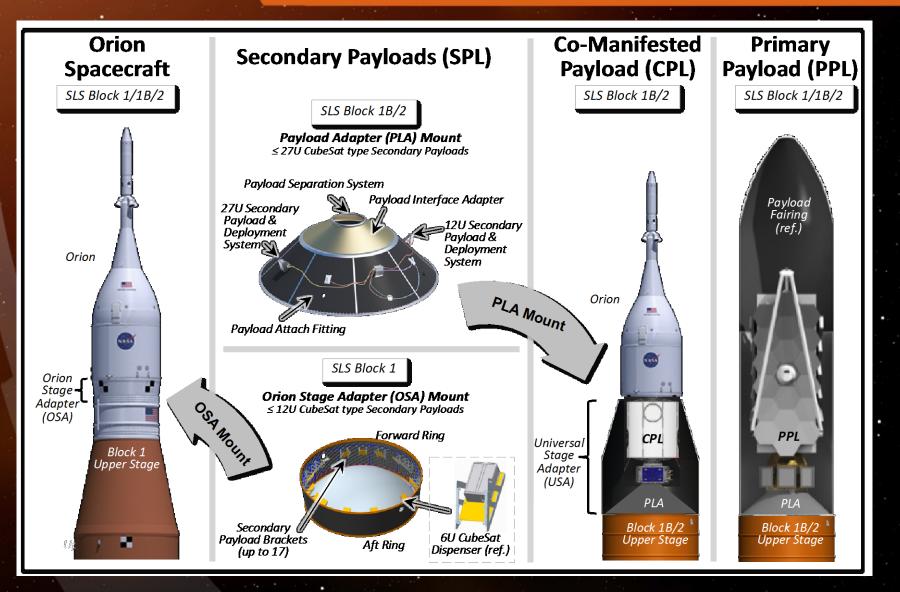
Larger payloads translate into simpler orbital operations (fewer deployments)

(seamented)

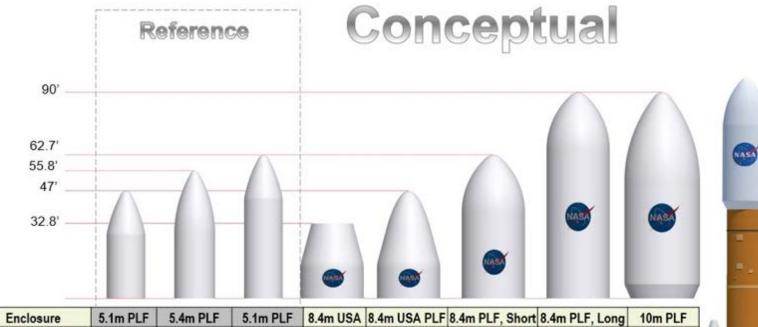
8.4m fairing with large aperture telescope

12.5 m

(seamented)


nonolithi

James Webb


8 m

(monolithic)

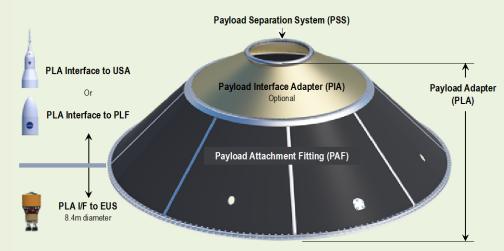
Range of SLS Spacecraft/Payload Types

Range of Payload Encapsulation

Enclosure	5.1m PLF	5.4m PLF	5.1m PLF	8.4m USA	8.4m USA PLF	8.4m PLF, Short	8.4m PLF, Long	10m PLF
Туре	5m PPL	5m PPL	5m PPL	8.4m CPL	8.4m PPL	8.4m PPL	8.4m PPL	10m PPL
I words	47.0 ft	55.8 ft	62.7 ft	32.8 ft	47.2 ft	62.7 ft	90 <u>ft</u>	90 ft
Length	14.3 m	17.0 m	19.1 m	10.0 m	14.4 m	19.1 m	27.4 m	27.4 m
Discustor	16.7 ft	17.7 ft	16.7 ft	27.6 ft	27.6 ft	27.6 ft	27.6 <u>ft</u>	32.8 ft
Diameter	5.1 m	5.4 m	5.1 m	8.4 m	8.4 m	8.4 m	8.4 m	10.0 m
Internal Discustors	15.1 ft	15.1 ft	15.1 ft	24.6 ft	24.6 ft	24.6 ft	24.6 ft	29.9 ft
Internal Diameter	4.6 m	4.6 m	4.6 m	7.5 m	7.5 m	7.5 m	7.5 m	9.1 m
Anglishis Values	6,274 ft ³	7,740 ft ³	9,030 ft3	10,100 ft3	11,260 ft3	21,930 ft3	34,910 ft3	46,610 ft3
Available Volume	177.6 m ³	219.2 m ³	255.7 m ³	286.0 m ³	319 m ³	621 m ³	988 m ³	1,320 m ³
Potential Availability (No Earlier Than)	COTS	COTS	COTS	2022	2023	2023	2024	2028

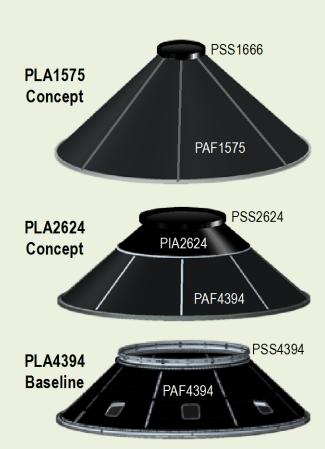
Block 1B

SLS

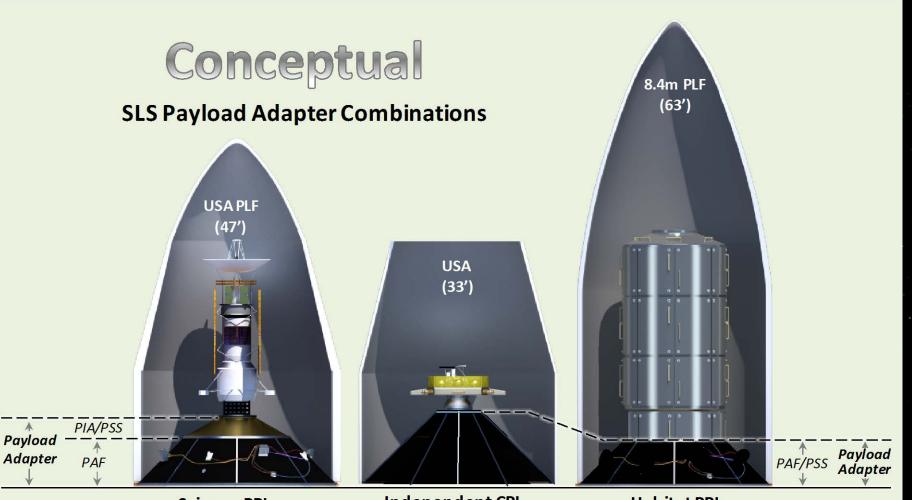


COTS: Commercial Off-the-Shelf CPL: Co-manifested Payload PPL: Primary Payload PLF: Payload Fairing

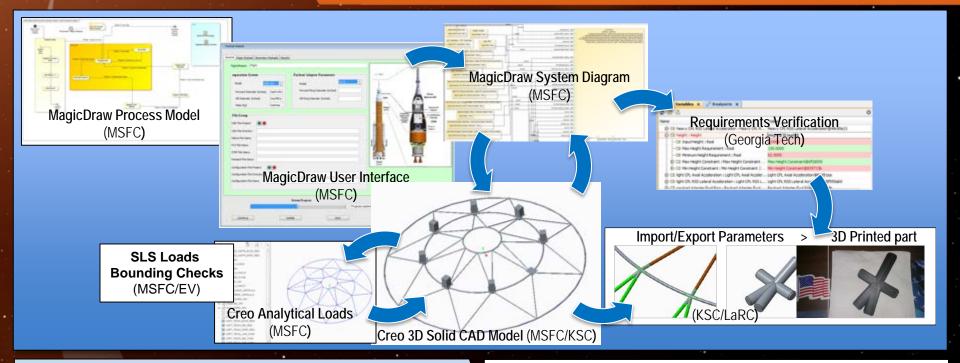
Block 2


SLS Payload Adapter Concepts

SLS 8.4m Payload Adapters


	PLA Interface									
	PLA Concept	Diameter To PIA		Diameter To PSS		Diameter To Payload		Height to PSS (1)		Payload Lift
		in	mm	in	mm	in	mm	in	mm	
PL	A1575	NA	NA	62.0	1,575	65.6	1,666	130.0	3,302	(2)
PL	A2624	173.0	4,394	103.3	2,624	103.3	2,624	115.8	2,940	(2)
PL	A4394	NA	NA	173.0	4,394	173.0	4,394	82.3	2,089	(2)

Notes: (1) Total PLA height varies based on PSS type chosen (2) Max 19,842 lb (9.0 t) payload capability on Block 1B PLA (crew configuration)


SLS Payload Adapter Accommodation Examples

Science PPL

MBSE Pathfinder: SLS Payload Adapter Design Definition Integrating Rgmts/CAD/FEM/Verification to reduce changes/time to Production

Technical Challenge

SLS engineering resources insufficient to evaluate 10's-100's of optimized PL adapter options for SLS users over life of program

MBSE Challenge

Develop User Interface to feed MagicDraw parameters into CAD/analytical model and verify requirements were met by PL adapter concept

Pathfinder Findings

- Benefits:
 - Outward facing GUI for capture of SLS payloads
 - Automated concept design of PL integrated to SLS
 - Demonstrated MBSE to MBE for design and mfg.
 - Minimizes error from manual steps in integration
 - Matures design to higher fidelity quickly
- Next Step: develop front end SLS user interface within existing <u>SLS Mission Planners Guide</u>

.

Next Steps

SLS is a MBSE example from concept to manufacturing performed by the largest launch vehicle in history

- NASA is moving toward more digitally integrated solutions that span life-cycle from concept to manufacturing
 - Opportunities arise to more efficiently tailor implementations to better balance performance, cost and schedule
 - Also working to improve NASA's smallest class of launch vehicles, by applying similar MBSE approaches

Looking toward how the capability best aligns with the NASA workforce at large as well as other Government Agencies and commercial providers

- Focus is on a 10-20 year time frame, where digital twins (digital replica of physical assets and processes) are expected to be achieved
- Where those twins integrate engineering with programmatics, the question of "standard" engineering designs and the cost of associated change, is no longer a major consideration.

