
Critical Software for Human Spaceflight
The equipment software for Orion Propulsion

Antonio Preden (1), Jens Kaschner (2), Felix Rettig (3), Michael Rodriggs (4)

(1) Orion ESM Avionics and Software Lead, European Space Agency, Noordwijk, The Netherlands.
(2) Orion ESM PDE Software Technical Authority, Airbus Defense and Space, Bremen, Germany.
(3) Orion ESM PDE Lead Engineer, Airbus Defense and Space, Bremen, Germany.
(4) Orion Service Module Software Technical Lead, NASA Johnson Space Center, Houston, US.

ABSTRACT
The NASA Orion vehicle that will fly to the moon in the
next years is propelled along its mission by the European
Service Module (ESM), developed by ESA and its prime
contractor Airbus Defense and Space.
This paper describes the development of the Propulsion
Drive Electronics (PDE) Software that provides the
interface between the propulsion hardware of the
European Service Module with the Orion flight
computers, and highlights the challenges that have been
faced during the development. Particularly, the specific
aspects relevant to Human Spaceflight in an international
cooperation are presented, as the compliance to both
European and US standards and the software criticality
classification to the highest category A.
An innovative aspect of the PDE SW is its Time-
Triggered Ethernet interface with the Orion Flight
Computers, which has never been flown so far on any
European spacecraft.
Finally the verification aspects are presented, applying the
most exigent quality requirements defined in the European
Cooperation for Space Standardization (ECSS) standards
such as the structural coverage analysis of the object code
and the recourse to an independent software verification
and validation activity carried on in parallel by a different
team.

1 THE ORION ESM ARCHITECTURE

ESA and its prime contractor Airbus Defense and Space
are developing the European Service Module (ESM) for
the NASA Orion vehicle for human space exploration
mission [2]. The ESM provides to Orion the generation of
power through 4 deployable solar arrays, the power
distribution to the ESM and Crew Module (CM) users, the
passive and active thermal control system for ESM and
CM using thermistors and fluid loops, the storage and
delivery of water and gas to the CM, and the propulsion

system. Fig. 1 shows the modules of the Orion Vehicle, in
particular the service module and the crew module.

Fig. 1. Modules of Orion Vehicle

The hardware in the ESM is controlled by a set of
electronic units, developed by Airbus Defense and Space
and its subcontractors:
- Propulsion Drive Electronics (PDE), controlling the

propulsion hardware
- Pressure Regulation Unit (PRU) controlling the

electrical regulation of the pressure in the ESM
propulsion tanks

- Power Control and Distribution Unit (PCDU),
providing the users in the ESM and the CM with two
different types of power at 28V and 120V, and
controlling the power provided to the CM battery or
supplied by the CM batteries depending if the ESM
solar panels are on sun or in eclipse phase.

- Solar Array Driving Electronics (SADE), controlling
the rotation of ESM solar arrays on two axes via the
four driving mechanisms

- Thermal Control Unit (TCU), managing the active and
passive thermal control systems and the storage and
delivery of consumables such as water and gas to the
CM

- Fluid Control Assembly (FCA), including the
electronics for the control of the pumps for the active
cooling system.

The overall mission and vehicle management is executed
by the Orion flight computers, located in the CM and
developed by NASA and its subcontractors. The ESM
electronic units communicate with the Orion flight
computers via a 1GBit Time-Triggered Ethernet network,
called Orion Onboard Data Network (ODN).
Fig. 2 depicts the overall avionics subsystem architecture
and interfaces. The interface to the SLS launcher is
depicted on the left side of the drawing, and the CM and
CMA (labeled as SM-CM I/F Adapter) are on the right
side.

Fig. 2. ESM Avionics architecture

1.1 The ESM propulsion subsystem and the PDE
mission

One of the main subsystems in the ESM is the
Propulsion [3], that includes three different types of
engines: the 27.7 kN Main Engine, reused from NASA’s
Space Shuttle program, gimbaled on two axes by a Thrust
Vector Control system and providing the boost for the
main orbital manoeuvers; the eight auxiliary engines,
providing a thrust of 490 N each, used together with the
Main Engine for the orbital manoeuvers; and 24 Reaction
Control System (RCS) thrusters to ensure attitude control
of the vehicle.
The ESM propulsion is equipped with an innovative
electrical pressure regulation system, controlled
autonomously in the ESM on the basis of setpoints fixed
by the Flight Software depending on the phases of the
mission.
The ESM Propulsion Drive Electronics (PDE) is the main
interface between the Orion Flight Computers and the
ESM Propulsion hardware. The PDE receives through the
ODN interface the commands to operate the engines
according to the results of the control algorithms in the
Flight Software, and provides to the Flight Software the
readings from the sensors allowing monitoring and failure
detection of the propulsion hardware. In the fulfillment of
this mission two categories of requirements play a key
role: reliability and time reactivity.

1.2 The ATV experience
The design of the ESM is inherited from the experience of
the Automated Transfer Vehicle (ATV), that serviced the
ISS between 2008 and 2015 with 5 different missions.
The first heritage is represented by the PDE itself: the
overall concept of the ESM PDE comes as an evolution of
the ATV PDE, by expanding its functions to control a
wider range of engines and a gimballing mechanism,
modernizing the Mil-Bus interface to a Time-Triggered
Ethernet one, increasing its reactivity from the 100ms
ATV cycle to the 25ms of Orion, and adapting its
reliability to meet the requirements for a crewed mission.
The second major heritage is the development of critical
software. On ATV, the most critical functions were
centralized in the Monitoring and Safing Unit (MSU),
which was in charge of establishing and maintaining a
safe position of ATV with respect to ISS by executing and
controlling a retrograde manoeuvre, overriding the ATV
Flight Application Software (FAS) and the ATV PDE by
direct commands to the propulsion hardware. The
presence of the MSU allowed for the reduction of the
criticality of the ATV FAS and PDE software, and only
the MSU software had been developed to the highest
criticality A grade [1]. On ESM an independent safing
system such as the MSU is not present, and the reliability
requirements are not only associated with collisions but
also spread over the entire flight; this forced the
development of PDE SW to criticality category A.

As of today, the ATV MSU SW and the ESM PDE SW
are the only two examples of Category A software
developed on ESA projects.

2 PDE ARCHITECTURE

2.1 PDE description
The PDE architecture is designed for high reliability and
fault-tolerance protecting from inadvertent activation of
critical actuators.
The ESM has two identical PDE boxes (Fig. 3) each
comprising two independent channels providing several
actuator controllers and sensor interfaces. At the system
level, a high degree of redundancy is achieved by
connecting nominal and redundant actuators and sensors to
different PDE channels. Each PDE channel communicates
with the Flight computers in the CM via a dedicated Time-
Triggered Ethernet interface.
Within each channel, a hardware/software co-design
architecture combines high fault-tolerance and time
precision while maintaining flexibility. Time-critical low-
level actuator controllers and acquisition of sensor
measurement data are implemented in radiation-hard anti-
fuse FPGAs (Microsemi RTAX) while high-level control,
processing and validation of commands from the Flight
Computers, and telemetry data generation are implemented
in software running on a fault-tolerant LEON2-FT
processor.
All actuator power drivers are designed one-fault tolerant
by implementing two independent safety barriers in series
which are controlled by separate FPGAs. In addition, the
health status of each barrier is monitored by the FPGA not
controlling the barrier itself. The operation of the low-level
FPGA functions is controlled and monitored by the
software, rendering the software the only central single
point of failure.

Fig. 3. ESM PDE box comprising two channels

2.2 Time-Triggered Ethernet interface
The exchange of command and telemetry data with the
Orion Flight computers is realized with Time-Triggered

Ethernet (TTE) with three independent lanes per PDE
channel. TTE provides high reliability and robustness, and
guarantees deterministic data timing according to a well-
defined schedule [5]. Each PDE channel is equipped with a
dedicated Standard Network Interface Card (SNIC)
delivered by NASA subcontractors. The SNIC also
provides a precise synchronization signal defining the
system-wide 25ms operation cycles.

2.3 PDE On-board computer
Each PDE channel comprises a controller board (MPCC)
comprising an Atmel AT697F implementation of ESA's
fault-tolerant LEON2-FT processor based on a SPARC V8
32-bit RISC architecture running at 100 MHz. The Atmel
ATC18RHA CMOS process is radiation-hardened and
utilizes several single event effect mitigation techniques:
the architecture provides full triple module redundancy,
transient filtering, error detection and correction (EDAC)
for registers and external memories, and parity protection
of the caches. The AT697F also provides a 33 MHz PCI
interface, a memory controller, and several peripherals
including UARTs, general purpose I/Os, as well as an
embedded Debug Support Unit (DSU) with trace buffers.
Via the processor bus, an external 2 MByte (+EDAC)
SRAM, Flash memories containing four independent
4 MByte software images, as well as three high-reliability
anti-fuse FPGAs are attached. Access to and content of the
SRAM and the Flash memory are protected by LEON-
internal error correction and detection (32 data + 7 EDAC
bits). FPGA-internal registers and memory blocks are
mapped into the processor's I/O space. Accesses to these
resources are protected by application-level mechanisms
comprising multiple bus transactions. In addition to using a
highly reliable radiation-hard processor device, a processor
watchdog is implemented in a dedicated Supervisor FPGA.
Permanent comprehensive self-monitoring of the system
firmly embedded in the 50ms command/measurement
period (bus accesses, integrity of FPGA registers and state
machines, health status of driver barriers) and deterministic
cache refreshing further improves reliability and protection
from inadvertent activation of critical functions.

2.4 Interface with Pressure Regulation Unit
Since the Pressure Regulation Unit of the ESM does not
provide a direct ODN interface, the PDE channels act as
bridges for the communication between the CM flight
computers and several Pressure Regulator Unit channels.
An Orion-specific implementation of the High-Level Data
Link Control (HDLC) protocol is used for point-to-point
serial data links between individual PDE and PRU
channels. Data integrity across the entire data chain is
ensured on several levels: the HDLC interfaces provide
CRC protection at the link level; the PDE-internal data
buffers implement error detection and correction; the
actual data frames exchanged between CM flight
computers and PRU are transported transparently by the
PDE to provide dedicated end-to-end CRC protection.

3 PDE SOFTWARE DEVELOPMENT

3.1 Software standards
Development of software for space application in Europe
is carried on according to ECSS standards, in particular:
• ECSS-E-ST-40C “Space engineering: Software”
• ECSS-Q-ST-80C “Software product assurance”
• ECSS-Q-ST-40C “Safety”
As the Orion Flight Software is developed by NASA and
its subcontractors, a different standard is applied:
• NPR 7150.2A “NASA Software Engineering

Requirements”
The NASA Procedural Requirements (NPR) impose
requirements on software development, whether created
by NASA or developed for NASA programs and in the
case of the ESM, provides a common set of requirements,
that has been used to map to European industry standards.
Due to the integrated nature of the ESM and the CM
within the Orion spacecraft, the NASA requirements
imposed on the ESM lead to the need to harmonize the
software standards applied on the different components,
so that the vehicle level analyses could rely on activities
and documentation from PDE SW.
An option to harmonize the standards could have been to
make NPR 7150.2A formally applicable to all the ESM
SW, and develop it according to US standards. However,
the learning curve of using a different standard that the
one usually applied in Europe would have had
unacceptable cost and schedule impacts, so this option had
to be modified.
A joint ESA/NASA activity took place in order to map the
requirements of NPR 7150.2A to the ECSS clauses, in
order to show how the NPR Software Engineering
Requirements would be met. Rather than a generic “meet
or exceed” exercise between the two standards, the
mapping has been oriented to identify the actual activities
and artefacts developed for PDE SW, either because it
was required by ECSS or because it was generated by
other plans that are applicable at the project level. The
results have been captured in the bilateral document
MPCV 72547 “Agreement on applicability of NASA
software engineering requirements to ESM”, and it has
been agreed to between ESA and NASA that by applying
the ECSS standards as defined in the MPCV 72547, ESA
will show compliance to the requirements in NPR 7150.
As a support, the – still partial – results of the working
group on “Mutual recognition of S&MA standard NASA,
ESA and JAXA” have been used as a reference [4].
The results of the mapping of the 132 requirements of
NPR 7150.2A have been:
• 42 requirements are of programmatic nature, or

otherwise organization related. These were determined
to be not applicable to ESA and no mapping to ECSS
has been done.

• 90 requirements are of technical nature, and are
applicable to ESA. A mapping to ECSS has been
identified for each of those.

The single requirement applicable to ESA for which no
compliance could be shown is the Software Engineering
requirement 32 (SWE-032), which requires that all human
rated space software systems are certified to Capability
Maturity Model Integration (CMMI) Maturity Level 3.
The ECSS Q80 requests the supplier to monitor and
control the effectiveness of the development processes
(§5.7.2), and in particular §5.7.7.2 requests that
assessments shall be in conformance with ISO/IEC 15504,
Software Process Improvement and Capability
Determination (SPICE) [7]: however, no specific model
(such as CMMI) is imposed. This was incompatible with
NASA requirement, which explicitly calls for CMMI
level 3, while Airbus was at the time only certified to
level 2. As this requirement is applicable at NASA’s
Agency level, the Orion project had no authority to waive
it; a dedicated waiver on requirement SWE-032 was then
requested to NASA’s Chief Engineer and eventually
obtained. The waiver was based on the use of other
standards and project plans that showed how the CMMI
ML3 technical process area requirements would be met,
and was supported by the proven experience of Airbus on
previous projects such as Columbus and ATV.

3.2 Software criticality
A main step to prepare the PDE SW development has been
the determination of its criticality. The concept of software
criticality category is introduced in ECSS-Q-ST-80C
“Software Product Assurance”, and is based on the
consequences that the loss or degradation of a software
function can have at system level, on a scale going from
the lowest Category D (minor or negligible consequences)
to Category A (catastrophic consequences, such the loss of
life). An implication of this approach is that a system level
safety analysis is necessary to determine the effects of the
loss of a software function, and this can be only performed
once a preliminary design of the system is defined.

TABLE I. ECSS SOFTWARE CRITICALITY CATEGORIES

Software
Category Definition of Software Category

A

Software that if not executed, or if not
correctly executed, or whose anomalous
behaviour can cause or contribute to a system
failure resulting in:
→ Catastrophic consequences

B

Software that if not executed, or if not
correctly executed, or whose anomalous
behaviour can cause or contribute to a system
failure resulting in:
→ Critical (On Ground) / Mission (In
Flight) consequences

C

Software that if not executed, or if not
correctly executed, or whose anomalous
behaviour can cause or contribute to a system
failure resulting in:
→ Major consequences

D Software that if not executed, or if not
correctly executed, or whose anomalous

Software
Category Definition of Software Category

 behaviour can cause or contribute to a system
failure resulting in:
→ Minor or Negligible consequences

Alternatively, the approach defined by NASA in the NPR
7150.2A is a classification of the safety-criticality of the
software based on 8 Classes, from A-Human Rated Space
Software Systems down to E-Small Light Weight Design
Concept and Research and Technology Software (Classes
F through H cover business and information technology
related software in decreasing order of applicability) . The
designation of the software in a criticality class is based on
criteria such as the domain of use of the software, the
extent to which humans depend upon the system, and the
criticality of its use. According to NPR 7150.2A criteria,
all the software needed to perform primary function on a
human rated system belongs to Class A, independently of
any analysis on the consequences of failures.

TABLE II. NASA SOFTWARE CRITICALITY CATEGORIES

The profound difference in the two approaches makes it
impossible to map the ECSS “categories” to the NPR
“classes”. By NASA’s definition of Class rating, NASA
rates the PDE SW is as Class A. In agreement with
NASA, the ECSS approach has been applied to determine
the criticality of PDE Software, with a Software Criticality
Analysis that has been prepared at Subsystem level and
assessed at System level, resulting in the determination of
the Category A for the PDE SW.
The classification to Category A has a major impact on
the development cycle of the software. In particular, two
requirements that are specific to category A software are
the verification with 100% modified decision condition
coverage of source and object code (E40 §5.8.3.5), and the
execution of Independent Software Verification and
Validation (ISVV) by a 3rd party organization (Q80
§6.3.5.28). The impacts of these requirements on the PDE
SW are detailed in the next sections.

3.3 Coding rules
ESA coding rules BSSC(2000)1 vs. industry standards
like e.g. the Motor Industry Software Reliability
Association (MISRA) coding rules represent different
aims of the rule set with some consequences: the MISRA
coding rules concentrate mainly on practical rules which
seem to have the goal of enforcing the production of
'good' source code even by un-experienced programmers.
The resulting rigid rule set may jeopardize the overall
quality of the designed software, but on the other hand
allows a high degree of automated verification by
commercially available tools (e.g. PolySpace). The ESA
coding rules instead are of more 'philosophical' nature and
have a clear aim towards a higher overall quality of the
produced source code with the consequence that the
resulting rules are -in general- not verifiable by tools.
With a certain amount of goodwill, some ESA coding
rules can be mapped onto MISRA coding rules allowing
automated verification, but for the majority of the ESA
coding standard such a mapping is not feasible. As a
consequence, the application of ESA coding rules requires
skilled/experienced and self-disciplined programmers in
conjunction with skilled/experienced reviewers necessary
for the peer-reviews and code walk-throughs foreseen
during the software development cycle. No tool can do
this job for You!

3.4 Software architectural design
The software architectural design resulting from the given
requirements baseline as well as from the system analysis,

Software
Class Definition of Software Category

 system or to-be built Class A, B, or C system,
or software used to perform minor desktop
analysis of science or experimental data.

F - H Business and IT software.

Software
Class Definition of Software Category

A

Human Rated Space Software Systems.
→ Any SW developed and/or operated by or
for NASA that are needed to perform a
primary mission objective of human space
flight and directly interacts with human space
flight systems.

B

Non-Human Space Rated Software Systems
or Large Scale Aeronautics Vehicles
→ Flight and ground software that must
perform reliably to accomplish primary
mission objectives, or major function(s) in
Non-Human Space Rated Systems.

C

Mission Support Software or Aeronautic
Vehicles, or Major Engineering/Research
Facility Software
→ Flight or ground software that is necessary
for the science return from a single (non-
primary) instrument, or that is used to
analyze or process mission data, or other
software for which a defect could adversely
impact attainment of some secondary mission
objectives or cause operational problems.

D

Basic Science/Engineering Design and
Research and Technology Software
→ Ground software that performs secondary
science data analysis, or supports engineering
development, or is used in testing other Class
D software systems.

E

Small Light Weight Design Concept and
Research and Technology Software
→ Software developed to explore a design
concept or hypothesis, but not used to make
decisions for an operational Class A, B, or C

lead to the development of a 'bare-bone' software for the
LEON-based PDE MPCC:
• no operating system, no synchronous interrupts
• no 3rd party libraries
• no board support packages or automatic start-up code
• reuse of a well-proven boot loader for basic processor

set-up and PDE software loading during start-up
• a control main loop as simple as possible,

synchronized by events derived from the Time-
Triggered Ethernet, with a strict processing schedule
and a clearly predictable timing behavior

The result of the software architectural design is a simple
main loop with two 25 ms sub-cycles (one 'command', one
'measurement' sub-cycle) and an overall cycle time of 50
ms, visualized in Fig. 4.

Fig. 4. PDE software main loop

No real surprise was that the usage of the Time-Triggered
Ethernet as the one and only communication channel with
the PDE software had no major effects on the software
design: it behaves in principle like the well-known MIL-
Bus with a well-defined time framing while providing
higher band width with triple-redundancy not visible to
the user.
Except for the re-used bootloader written in assembler all
other parts of the PDE software are designed for coding in
the high-level programming language 'C' based on the gnu
tool chain.

3.5 Development principles
Some of the used principles in developing the PDE
software in order to minimize the risk for failures are
listed hereafter:
• Usage of a well-known and often used tool chain,

adopted already in various other projects
• Adherence to the goal of simplicity for the detailed

software design as well as for coding in order to
achieve simple, fully tested and thus highly reliable
software

• Usage of object-oriented principles in the S/W design
to achieve module separation

• Disciplined source code development using version-
controlled template files reflecting the corresponding

ESA Board for Software Standardization and Control
(BSSC) rule set

• Exclusive usage of 'atomic' logical decisions to ease
the target of modified condition and decision
coverage (MCDC) thus allowing for 100% unit
testing with 100% source code and object code
coverage

• Source code development cycle with several peer
reviews and internal (development group) and
external (ISVV, ESA) audits resulting in 'early
finding reports' in order to obtain readable, coding
rule-conformant and understandable source code

• Usage of tools for static code analysis (e.g.
PolySpace) to catch well-hidden bugs as well as un-
necessary source code statements

• Development and unit testing on a dedicated H/W-
platform as similar as possible to the PDE target H/W
in order to detect early any possible problems in the
object code interaction with the target H/W

• Close collaboration with product assurance already
early in the development phase (that is the point
where software quality and reliability comes into the
developed code) and adherence to the implemented
software production tool chain (compilers / linker /
version control / target deployment / testing and
reporting)

The following paragraphs will pin-point only some of the
various concepts, techniques and tools used to develop the
Category A software for PDE.
Using object-oriented principles in the S/W design allows
early proto-typing while still providing flexibility to react
to changes induced by the environment (H/W and/or
system). The encapsulation of 'effector groups' (i.e.
actuator groups) and 'basic services' (e.g. CRC32-
calculations or FPGA-access or access to the Time-
Triggered Ethernet) into dedicated modules allows for the
creation of a set of 'library modules' with high-level
functionality available for call by the main loop of the
PDE software. The benefits of this design approach have
been proved several times during the development cycle,
in particular for what concerns the encapsulation of effects
caused by required changes or additional functionality
decided late in the project cycle.
The C-pre-processor is the developers friend - this often
under-estimated tool helps to catch design and coding
errors early by using assertions (i.e. specific conditional
debug test code) and by allowing creation of (mostly) non-
intrusive unit tests to achieve -in conjunction with the
coverage tool gcov- 100% source code testing by a
dedicated unit test suite allowing 100% regression testing
after each source code modification. Conscious use of the
pre-processor provides a mighty tool and makes the C-
language the preferred programming language even for
critical software tasks at a moderate level of effort.
The essential requirement of source code coverage
analysis for Category A software was covered by the gcc-
compiler built-in tool gcov. This tool not only provides
source code coverage measuring during development by

means of unit tests, but also provides vital information
about S/W and H/W-interaction during integration testing
too. It allows, for example, even over long periods of time
to show whether the error-handling branches of the H/W-
accessing routines are accessed or not.

3.6 The test platform
Usage of similar H/W (SPAICE processor board which
served as basis for the PDE MPCC development) in
conjunction with a hosted OS (VxWorks) which runs the
PDE software modules/subroutines as one dedicated task,
allows software development and unit testing independent
of target system. It has fast turn-around times and greatly
shortens development times without interfering with H/W
development and sub-system testing.
There has been no S/W testing by means of simulators: the
production software running on real target hardware
provides early results with a high level of confidence in the
source code and the resulting object code without the
necessity to keep a simulator in sync with the 'as-built'
configuration of the target hardware.

3.7 Object code coverage
"What you code is what you get - always?" Or in other
words: does the executable object code really reflect only
the intentions specified by the source code or is there more
inside the executable object code? That's why ECSS
requests for Category A software verification of source
code with 100% Modified Condition and Decision
Coverage (MCDC), and the coverage of 100% of object
code. The tracing of object code coverage on the target or
on a SW emulator of the PDE computer would have
required a big investment on the platform, so an alternative
approach has been used to verify the complete traceability
between source code and object code, thus ensuring the
object code coverage by the MCDC coverage of source.
As no commercial tool for this task was available, a script-
driven LEON-specific analysis method based on the gnu-
tool set has been developed in order to trace all executable
object code statements to the corresponding source code
files and to automatically identify those object code
statements not directly traceable to a specific source code
line in a dedicated source code file. This task is
accomplished by the developed tool chain to an
unexpected high level of successful matches (>95%),
reducing the necessary 'manual' analysis for the object
code coverage analysis to a manageable amount. A first
analysis on the current object code stumbled across some
generated object code not exactly 4 byte-aligned thus
'fooling' the quite simple analysing tool chain. Object code
not traceable to source code has not been found so far.

4 ISVV
One of the implication of the Category A classification is
the need to execute Independent Software Verification and
Validation, ISVV [6]. The category A classification has
been established for the PDE software after the PDR,
when the design of the PDE equipment was consolidated

enough to allow completion of the RAMS analyses. As a
consequence, the ISVV process was not established early
enough to cover the activities of Technical Specification
Analysis, that have then been covered only by the nominal
team, and integrated by a deep review activity carried on
by Airbus, ESA, NASA and Lockheed Martin.
The main drivers for the selection of the organization that
would have executed the ISVV have been the
competences and background, the level of independence,
the accessibility to the test platform, and the accessibility
of the relevant project documentation without restrictions.
Considering these drivers, and considering that the risks
were relatively reduced due to the low complexity of the
PDE SW, it was decided to assign the ISVV activity to an
independent team in the same organization.
The PDE SW ISVV has been concentrated on three tasks:
Design Analysis, Code Analysis and Validation.
Due to the nature of PDE SW and the simple design, the
Design Analysis has been limited to the verification of
timing & sizing budget, based on the delivered results by
the software supplier. In the same phase the Code
Analysis has been executed, both by code inspection and
via static code analysis using the commercial tool
Polyspace Bug Finder. The static code analysis identified
178 potential defects, and raised a number of
recommendations for improvement to the PDE
development team. After joint review between Airbus and
ESA, a few recommendations have been accepted and
implemented to improve the code or the comments. It is
considered that the ISVV Code Analysis has been
effective in allowing the improvement of the code quality;
however, using the same approach on a much larger code
would be more challenging, due to the relatively high
number of false positive raised by the static code analysis
tool.
The final ISVV task has been the independent Validation,
executed on the final environment with the software
integrated on a PDE EM. The objectives for the
independent testing have been defined by the ISVV team
in coordination with ESA. As the PDE SW has a relatively
reduced number of operational scenarios, it has been
decided to focus the independent testing on the non
nominal functions, including stress tests, robustness tests,
tests at the boundaries, tests with invalid inputs, test
extending beyond the domain defined by the
requirements. The test are executed independently by the
ISVV team on the PDE Engineering Model, and are still
ongoing at the time of writing.

5 THE NEAR FUTURE: QUALIFICATION AND
FLIGHT

The current status of PDE Software development is the
preparation of the PDE Integration Readiness Review.
This is the milestone marking the completion of SW
development and the delivery to its next step customer -
the equivalent of a Software Qualification Review as per
ECSS E40. The PDE SW will then be integrated in the

PDE Qualification Model and used for the PDE formal
Qualification Campaign, to be completed in the summer
2017 with the PDE Qualification Review.
In parallel, the PDE SW is deployed on the PDE
Engineering Models on the avionics test platforms, both in
Europe to test the integrated functions at ESM level, and
in the US to test the end-to-end chain with the ESM and
the CM including the Orion Flight Software. The PDE
with its PDE SW will be submitted to a thorough testing
that will include verification of external interfaces, data
formats, reactivity, functional behaviour in nominal and
non nominal cases.
Upon completion of the qualification phase, the first
launch of Orion will take place, with a mission around the
moon with no crew on board; the first mission with crew
is scheduled 2 years later.

6 CONCLUSIONS
This article presents some of the challenges encountered
in the development of the PDE Software for the European
Service Module, both in the technical field and in the
organization and management of the development.
Some aspects presented contains important lesson learned,
to be considered in future international cooperation and
more generally for development of human spaceflight
software.
A first aspect is the harmonization of software standards
between the different cooperating organization. So far,
different ESA Human Spaceflight projects such as
Columbus, ATV and Orion ESM have each followed a
different approach. The work for mutual recognition of
software standards between ESA, NASA and Jaxa should
be completed, and a framework should be made available
to ESA projects.
Another lesson learned comes from the process to
determine the SW criticality. First, as part of the standard
harmonization and mutual recognition a compatibility
between US standards and ECSS approaches is needed.
Second, the ECSS approach relies strongly on the system
level safety analysis, and this delays the categorization in
cases where there is some parallelism between system,
hardware and software development cycles. The aspect of
software criticality should be addressed from the early
phases of system development, and set-up both technically
and contractually. Changes introduced in ongoing
revisions of ECSS can allow to determine earlier the SW
criticality category, and to design from a system
perspective additional mitigating means such that the
overall safety requirements are meet.
Finally, no reference toolchain, let alone a qualified one,
is available for development of Category A software
compliant to ECSS requirement. The solutions that have
been found for the PDE SW are in some cases specific and
cannot be applied generically, so the need remains for the
definition of a set of tools that can be safely used for
development of critical software.

The Category A software is a necessity for Human
Spaceflight, as proven by ATV and Orion ESM, and
Category A software will be again present on future ESA
developments for human exploration systems, that will
most probably be carried out in cooperation with other
space agencies. The lesson learned from the ATV Project
and from the ESM PDE SW development can be
considered as a reference to prepare for this future.

ACKNOWLEDGMENTS
Development of critical software in such a complex
system as the Orion European Service Module can only be
accomplished by working as a team, open to cross-
organization contribution, and in interface with all the
relevant disciplines at system and subsystem levels. This
includes the redaction of the present article, for which
precious contribution came from our Airbus and ESA
colleagues from different disciplines. The authors thank in
particular Florian Bittner, and Jens
Hartmann (Airbus Defence and Space); David Johnston
(CIMS); Lars Oliefka and Jordi Duatis (ESA).
Fig. 1 is courtesy of NASA, Fig. 2 Fig. 3 and Fig. 4 are
courtesy of Airbus Defence and Space.

REFERENCES
[1] O. Boudillet, D. Berthelier and D. Dalemagne, “Category A

software development for the ATV”, DASIA 2006.
[2] M. Bottacini, J. Grantier, M. Gronowski and Bill Johns,

“The European Service Module Contribution to the Orion
Program”, IAC 2015

[3] Jan-Hendrik Meiss, Markus Jaeger, Matthias Gronowski,
Thierry Kachler, and Kevin Dickens. “Evolution and Status
of the Orion-ESM Propulsion Subsystem“, AIAA SPACE
2016, AIAA SPACE Forum, (AIAA 2016-5622)

[4] Mutual Recognition of S&MA Standards Software
Assurance Task Force Report - NASA/ESA/JAXA
Trilateral Meeting September 2012

[5] Jens Hartmann, Bernd Wolff, “Deterministic High Speed
Data Communication in Space - MPCV ESM Overview and
related development“, ADCSS 2013

[6] ESA Guide for Independent Software Verification &
Validation, Issue 2, 29.12.2008

[7] ECSS-Q-HB-80-02 SW Process Assessment Handbook

