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CHAPTER !

INTRODUCTION

The displacement formulation of the finite element method is the most general and

most widely used technique for structural analysis of airplane configurations. Modem

structural synthesis techniques ba_ed on the finite element method have reached a certain

maturity in recent years, and large airplane structures can now be optimized with respect

to sizing type design variables for many load cases subject to a rich variety of constraints

including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3).

These structural synthesis capabilities use gradient based nonlinear programming tech-

niques to search for improved designs. For these techniques to be practical a major

improvement was required in computational cost of finite element analyses (needed

repeatedly in the optimization process). Thus, associated with the progress in structural

optimization, a new perspective of structural analysis has emerged, namely, structural

analysis specialized for design optimization application, or what is known as "design ori-

ented structural analysis" (Ref. 4). This discipline includes approximation concepts and

methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the

optimization of large structural systems (modeled by thousands of degrees of freedom and

thousands of design variables) practical and cost effective.

In the airplane conceptual and preliminary design stages configuration shape optimiza-

tion is essential. Wings should be allowed to change in planform and airfoil shape. Fuse-

lage structures should be allowed to be shaped simultaneously, and the position of wings

and control surfaces should be determined as part of the optimization process. While a

substantial amount of work in the context of structural optimization has been devoted to

structural shape synthesis of solid and machine parts, very little has been done to date in

the area of airplane structures. Moreover, even with the availability of computer graphics



andcomputeraideddesigntools, thepreparationof a new finite element model for a new

configuration is still too time consuming. It is estimated in Ref. 5 that it would take about

12 months to complete a single structural, loads and aeroelastic design cycle for a high

speed civil transport. A major part of this effort is dedicated to the generation and updates

of the finite element model.

This thesis focuses on techniques for modeling airplane wings for the conceptual and

preliminary design stages using finite elements. The emphasis is on shape optimization.

An automatic mesh generator is developed to efficiently handle planform and airfoil shape

variations. Simple bar and triangular membrane elements are used to represent spar / rib

caps as well as skins and internal webs. Analytic deformation, stress and natural frequency

behavior sensitivities are obtained with respect to shape design variables in addition to the

sizing type design variables. Extensive numerical tests of the resulting modeling technique

are conducted to evaluate its accuracy and economy. The new technique combines advan-

tages of equivalent plate wing modeling (Ref. 6) (ease of model generation and shape sen-

sitivity calculations) with those of finite element models which are general and can handle

local effects and structural discontinuities inreal wing structures.

The outline of this work is as follows: in Chapter 2 the two finite element modeling

approaches are discussed. In Chapter 3 wing behavior sensitivities with respect to both

shape and sizing type design variables are derived. Chapter 4 will focus on aspects of

automatic mesh generation while Chapter 5 will deal with issues of finite element model-

ing implementation. In Chapter 6 the three wing models to be analyzed are introduced and

described. Chapter 7 details all results pertaining to wing displacements, stresses and nat-

ural frequencies while Chapter 8 concludes with sensitivity and computational cost

results. Detailed mathematical derivations are given in the appendices.



CHAPTER 2

_IODELING CONSIDERATIONS

2.1 Introduction

Two modeling approaches for built up wing structures are described in this chapter.

Both are based on truss (rod) elements for spar and rib caps. Membrane (plane stress) ele-

ments are used for cover skins and spar/rib webs. The motivation for using these simple

models is not only in their simplicity and speed of computation, but mainly because it is

possible to obtain closed form explicit analytic sensitivity of their stiffness and mass

matrices with respect to shape design variables. In the first approach linear rod elements

and constant strain triangular membranes (CST's) are used. In the second approach linear

rod elements and linear strain triangular membranes (LST's) are used. Discussion of these

two approaches and guidelines to follow are included in this chapter. In both cases there

are no rotational degrees of freedom in the model.

2.2 CST modeling

The simplest of the two techniques is the one employing the three-noded CST mem-

brane element with a linear rod element. The CST is used to represent all wing cover skin

panels and rib and spar shear webs. The rod element is used to model all rib and spar cap

areas. These are low order elements. Stresses in these elements are constant throughout

their interior and for convergence a large number of elements may be needed.

A finite element capability, then, must include grid refinements that are quick and easy

to perform, and a study of modeling accuracy to establish modeling guidelines as to the

degree of grid refinement required. The possibilities to be investigated include refinement
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in thespanwisedirection,refinementin thechordwisedirectionor acombinationof the

two. Forgrid refinementin onedirectiononly,morenodesarecreatedalongthesparsfor

'refiningspanwise,while morenodesareaddedalongtheribsfor chordwiserefining (Fig-

ure2.1).As onecansee,all newlycreatednodesstill lie onarib or spar,andthustheyare

supportedby theinternalstructureof thewing. Fora combinationof thetwo, grid refine-

mentintroducesa"floating node,"or anodethathasnoverticalsupport(Figure2.2).As a

result,thestiffnessmatrix becomessingular,andaspecialproceduremustbeusedtoelim-

inatethissingularity.Onewayof overcomingthis difficulty (Ref.7) is by linking thedis-

placementatafloatingnodevia multi-pointconstraintsto thedisplacementsof it's

neighboringnodes.Sincetheequationsof constraintdependonwing geometry,though,

analyticdifferentiationof stiffnessandmasstermswith respectto shapebecomesquite

complicated.

Oursolutionis to addeither"dummy" rib or "dummy" sparelementswhosethickness

is substantiallylower thantherealribsor spars(say,1%thick) soasto not influencethe

stiffnessormassof the wing but providesupportfor thefloatingnodes.Theadvantage

hereis thatall nodesandelements(whetherrealor dummy)aretreatedin thesameway in

thecourseof analyticdifferentiationandnospecialtreatmenthasto dedevisedfor the

floatingnodes.It mustberemembered,however,that floatingnodescannothaveanyver-

tical loadsappliedto them.Thuswhenaerodynamicloadsaredistributedoverthe wing

theycanonly beappliedto nodessupportedby theactualinternalstructureof thewing.

UsingCSTwebsfor thesparsandribscreatesanotherproblem.Sinceonly onerow of

CST elementsis usedin thedepthdirectionof thewing dueto a wing'ssmalldepth/chord

ratio, this leadsto finite elementmodelsthataretoostiff (Ref.7).This comesasno sur-

prisesincetheconstantstressesin aCSTcannotcapturethelineardistributionof stresses

in atypical beamweb.Tocorrectfor this theCST webmembraneelementsaremodified

to only carryshearstressesby usingjust theshearstiffnessportionof aCST'sstiffness
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matrix. They act as pure shear webs, and vertical rod spacers connecting the upper wing-

skin to the lower wingskin replace the normal stiffness of the web elements in the trans-

verse direction to keep upper and lower skins separated.

2.3 LST modeling

Using LST elements in place of the CST elements leads to better convergence of finite

element results because of the higher order of the LST. The problems with floating nodes,

however, are still present. The LST is a 6-noded element whose three additional nodes are

located along the midpoint of its sides. Because of these midside nodes, floating nodes

now appear not only in the wing skin planes, but also in the rib and spar planes (Figure

2.3).Thus, in the spirit of our approach to CST modeling, a combination of two of the fol-

lowing techniques is necessary to provide support for these nodes and eliminate singular-

ity: dummy ribs, dummy spars, and/or dummy layers. The dummy layers are added to

support the mid-depth.nodes of the spar and rib webs. They are similar to the other dummy

elements in that their thickness is very low (1% of the actual wing skin thicknesses).

Since the LST's lead to better convergence of the finite element solution, the most

basic mesh possible (the one defined by the location of real spars and ribs in the wing) is

usually quite accurate. The stress output for a LST element consists of a pair of normal

stresscs t_xx , (_yy and a shear stress oxy at the comer nodes where each stress varies lin-

early across the element's interior.

Due to the higher order of the LST, shear stresses through the wing thickness are better

represented. Thus, no pure shear LST is necessary when using LST models.
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2.4 Wing lumped mass modeling

For natural frequency calculations, a lumped mass matrix modeling technique is used.

The mass of each finite element is distributed evenly to it's nodes and then merged to the

global lumped mass matrix whose structure is strictly diagonal. Since floating nodes can

not support any load or force, inaccuracies in the calculation of higher natural frequencies

and mode shapes will arise. It will be _en in Chapter 7 that natural frequency accuracy is

a direct function of dummy element thickness and guidelines for the selection of this

thickness will be provided.

2.5 Finite element derivations

For complete details of the finite elements used and their respective stiffness, stress

and mass matrices, consult Appendix A.



CltAPTER 3

BEHAVIOR SENSITIVITIES

3.1 Introduction

Accurate and computationally efficient derivatives of behavior functions (such .as dis-

placements, stresses or natural frequencies) with respect to design variables are important

in the context of gradient based optimization not only for calculation of the gradients

themselves but also as a basis for constructing constraint and objective function approxi-

mations (Refs. 1, 8 and 9). When structural shape optimization is involved, it is difficult to

obtain these sensitivities in a closed, explicit analytic form (without any numerical inte-

gration, as is usually used for evaluating mass and stiffness terms of general elements).

One popular way for obtaining structural behavior sensitivities is by finite differences

(Ref. 1). This technique, however, can be time consuming when the computational cost of

a single analysis is high. In addition, and especially in the case of shape variations, finite

difference derivatives are sensitive to the step size used, and can lead to erroneous results

(Ref. 1).

In the present finite element modeling capability developed, simple finite elements

such as truss rod and plane stress CST's and LST's are used not only because of computa-

tional efficiency in formulating the stiffness and mass matrices, but also because of the

explicit algebraic nature of these matrices (Refs. 10, 11 and Appendix A). This makes it

possible to obtain behavior sensitivities in an analytic, explicit manner, thus avoiding

numerical problems associated with finite differences and significantly reducing comput-

ing time.

The wing structural design variables are divided into two categories: shape and sizing.

The wing planform is divided into trapezoids. The shape of each trapezoid is defined by
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sixshapedesignvariables.ThevariablesYL,YRaretheleft andright spanwisecoordinates

of thetrapezoid,while XFL,XAL,XFR,XARarethelongitudinal locationsof its four verti-

ces(Figure3.I ). The sizing variables include the cross-sectional area A i of any rod ele-

ment 'i" and the thickness tj of any CST or LST membrane element 'j.' Based on the

formulations in Appendix A, analytic expressions for the sensitivity of element stiffness

and mass matrices can be derived with respect to the location of an element's nodes. This

is done here in a manner similar to Ref. 12. The position of each element's nodes can be

linked to the overall shape of an individual wing trapezoid knowing the rules used for gen-

erating the mesh for that trapezoid. Chain rule differentiation is then used for obtaining

stiffness and mass sensitivities of individual elements with respect to overall wing plan-

form shape design variables. Details of then derivations can be found in the appendices.

3.2 Sensitivities with respect to shape variables

3.2.1 Global displacements

The linear static structural equation serving as a basis for static analysis is

[K] {U} = {F} (3-1)

The equation for displacement sensitivity with respect to any design variable in the

case where external loads do not change is (Ref. 1)

= -cEK3- (3-2)

where [K] is the stiffness matrix, { U} is the displacement vector and 13is a typical
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design variable.

Once displacements and displacement sensitivities are known, it is possible to obtain

derivatives of stresses within elementx. The stiffness matrix [K] is nonlinear in the shape

design variables. However, explicit expressions for stiffness terms in rod and plane stress

elements are available (see Appendix A) and can be used for differentiation.

3.2.2 Stress in the i'th rod element

As shown in Section A. 1.2, the stress in a tru_s element depends on the shape design

variables both explicitly (through a location vector {X }) and implicitly (through an elastic

deformation vector {UG}). Therefore

ao i ao i a{x}i ao i a{u_;}i

a--ff = a{x}i al_ +a{uG} i a13 (3-3)

where {X }i and {U G }i are the location and displacement vectors in global coordinates

associated with a rod element, respectively.

3.2.3 Stress in the i'th CST element

Stress sensitivities for the CST with respect to planform shape design variables are

obtained by differentiation of the stress equations in Section A.2.2 giving
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L
_P

/

°,, : [,'-],Ea,E"],T +[,'],E_,_-r-(u,,_,,E,,_,-a--E,"],_u,;_,
O'x_ J i

(3-4)

where { U G }i is the vector containing CST element i's nodal displacements in global coor-

dinates. The material matrix [D]i does not depend on the shape of the element, therefore

it's derivative with respect to planform shape is zero.

3.2.4 Stress in the i'th LST element

The equations of Sections A.3.1 and A.3.2 are now differentiated analytically to obtain

sensitivities of stresses at the three vertices of an LST with respect to shape design vari-

ables. Chain rule differentiation is used to link variations in element node locations to the

global planform shape changes of the wing to give

ap

Oyy

OxY 1

Oxx

Oyy

Oa-y
2

Oyy

OxY ]3

i){u°}; F-l(_[_;: (3-5)
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The matrix I_ is a material constitutive matrix and does not depend on the shape of the

element. {UG} is the vector of element nodal displacements in global coordinates.

3.2.5 Natural frequencies

The governing equation of motion for an undamped structure in free vibration is

[K-o_2M] {_} = {0} (3-6)

where _, = (02 is an eigenvector, {• } is it's respective mode shape and co is a circular nat-

ural frequency (radians/second). Implicit differentiation of _, with respect to any shape

variable ]3 yields

TI-a [K] a [M] ]
(3-7)

for eigenvalue and mode shape T. Since the natural frequency (in Hertz) is given by

(3-8)
f/-

the natural frequency sensitivity after differentiation is

afi 1 axi
(3-9)
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3.3 Sensitivides with respect to sizing variables

In this case the stiffness and mass matrices depend linearly on the design variables. In

the case of truss elements and CST's or LST's, these design variables are cross sectional

area and membrane thickness, respectively.

3.3.1 Global Displacements

With _ as a sizing type design variable, the matrix equations for sensitivities of the

displacement vector in global coordinates are (Ref. 1)

a{U} a[K]
-_ - -([K_ -1) _ { U} (3-10)

Again, it is assumed that external loads do not change with changes in the sizing design

variables.

3.3.2 Stress in the i'th rod element

If the design variable is a rod cross sectional area Aj:

a_ i a_ i a {U G}i

aAj a { U G} i aAj
(3-11)
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If thedesignvariableis a membranethicknesstj:

_°i ig°i _{Uc;}i
n

_tj _ { U¢;} i _tj

(3-12)

where {U G Ji for both stress sensitivities is a 6x I vector containing nodal displacements in

global coordinates for rod element i.

3.3.3 Stress in the i'th CST element

If the design variable is a rod area Aj:

_ { °x } O{Ut}i_ A--_ Oy = ED3i CB3i CA]i OA j

"f'xt i

(3-13)

If the design variable is a membrane thickness tj:

0t
_'xt

_{Ua} i

- C ,EB3,C^-I, (3-14)

where { U G }i for both stress sensitivities is a 9x I vector containing nodal displacements in

global coordinates for CST element 'i.'
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3.3.4 Stress in the i'th LST element

If the design variable is a rod area Aj:

a {UG} i
(3-15)

If the design variable is a membrane thickness tj:

{_.X.

o_

2

%
"g.ry 3

a{Us} i
(3-16)
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where{U G }i for both stress sensitivities is a 18x I vector containing nodal displacements

in global coordinates for LST element i.

3.3.5 Natural frequencies

With _c again as a sizing type variable Aj or tj. the eigenvalue sensitivity is

rr0[K] [g]l i0_. i _ _i L o_ _'ioo_: (3-17)

and the natural frequency sensitivity is

Of/ 1 0_'i
D

_-_ 4 _:.j_i "_'_
(3-18)

L_._

Derivatives of nodal displacements with respect to shape type design variables are

obtained from Section 3.2.1 while derivatives of nodal displacements with respect to siz-

ing type design variables are obtained from Section 3.3.1. Sizing derivatives of the stiff-

ness and mass terms are straight forward because of the linear dependency (see Appendix

A). Thus, stress sensitivities with respect to sizing type design variables require sensitivi-

ties of deformations only. Additionally, all other matrix and vector transformations used to

move from local to global coordinates and from deformation (displacement) to stresses are

fixed in this case.



CHAPTER 4

AUTOMATIC MESIt GENERATION

4.1 Introduction

The desire to circumvent the creati_m of finite element input files by hand and tc_ autt_-

mate model generation for wing shape synthesis makes it necessary to combine a mesh

generation capability with the finite element analysis and _nsitivity techniques (Ref. 13).

At this stage of the present work this capability is limited to wings with ribs parallel to the

root rib, spars beginning at the root rib and terminating at the wing tip and a thickness dis-

tribution symmetric about the wing's mid-plane (Figure 4.1 ). This modeling is sufficient

for the studies conducted in this work. The limitations are minor and can be removed by

making the mesh generator more general for other wing layouts and also for fuselage

structures. For the structural wing model the elements used include constant stress rods (to

model cap areas) and either CST membranes or LST membranes (to model wing skins and

webs). The mesh generator and finite element capabilities are linked together so that when

combined with an optimization package, the shape of the wing (in addition to cap areas

and skin thicknesses) can be optimized.

4.2 Wing design variables and design rules

Figure 4.2 shows a sample mesh created by the mesh generator, and will be used to

define key parameters needed. The structure shown is a single wing trapezoid containing

five structural spars and six ribs including a root rib. In order to refine the mesh it is possi-

ble to add "dummy" ribs and spars between structural ribs and spars, as shown. The

parameters "adrib" and "adspar" define the number of added dummy ribs or dummy spars
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between adjacent structural ribs or spars. These dummy ribs and spars, whose stiffness is

negligibly low compared with the actual structure, are needed to support the added "float-

ing" nodes on cover skin surfaces modeled by triangular membrane elements. This is nec-

essary since there are only displacements and no rotations a.,;sociated with each node, and

since the skin cover elementx have no bending stiffness.

The x-y coordinates of the vertices of the wing trapezoid and spanwise and chc_rdwise

locations of ribs and spars serve as shape design variables for the planform. All dummy

spars or ribs are assumed to be evenly spaced between real spars or ribs. Wing depth defi-

nition is also used based on associated shape design variables. Finally, all spar and rib cap

areas and all wing skin, spar web and rib web membrane thicknesses are used as sizing

type design variables. It should be mentioned again that at this stage of the present work

rib generation is limited to ribs that are parallel to the root rib. and spars have all to origi-

nate at the root chord and end on the tip chord of a trapezoidal section.

4.3 Pianform expansion to three dimensions

With wing depth specified by the proper shape (depth) design variables, an explicit

equation for depth distribution as a function of x and y is established over the wingspan.

The planar mesh described in the previous section is now projected upward and down-

wards to generate the meshes for the upper and lower cover skins. Realistic thickness and

camber distributions can be modeled by proper selection of depth shape functions and

construction of a series in those functions whose coefficients serve as shape design vari-

ables.
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4.4 Shape variable coordinate linking matrix

With the 3-D grid complete, the linking of each node's x-. y- and z- ct_ordinates to the

six planfi_rm shape design variables of a wing trapezoidal section XFL, XAL, XFR. XAR. YL

and YR (Fig. 3.1) and its depth design variables is straightforward, as detailed in Appendix

B. Derivatives of each nodal location with respect to each shape design variable can easily

be obtained. These derivatives, used in the finite element program for shape sensitivity

analysis, are the same as the coefficients that link each node to the shape variables since

the linking equations are linear.

4.5 Finite element placement

Individual finite elements are placed and connected to the proper nodes according to

the following rules: spar and rib caps (for the real structural spars and ribs only) are repre-

sented by rod elements connecting nodes on the upper skin or lower skin along the spar or

rib lines. Intersections of spar lines and rib lines (including dummy spars and ribs) define

quadrilateral cells on the upper and lower skins. Each of these cells is divided into two tri-

angular elements. For the webs of all ribs and spars, each quadrilateral cell (defined by the

end nodes of the upper and lower rod elements associated with the cell) is divided into two

triangular elements.

As di_ussed earlier, mesh refinement involves the need for dummy ribs or dummy

spars if a floating node is present. For CST models, dummy ribs are sufficient. For LST

models, dummy ribs and dummy layers are necessary to support both vertical and horizon-

tal floating degrees of freedom. The dummy layer (of negligibly thin material) connecting

the mid-side nodes of LST used in spar and rib webs is covered by triangular elements in a

manner similar to the cover skins.
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Followingtherulesdescribedabove,it is possibleto generateexplicit relations

betweeneachelement,its endnodesandtheglobalshapedesignvariablesdefiningthe

shapeof thewholewing. Theserelationsarethenusedfor obtaininganalyticsensitivities

of stiffnessandmasssensitivitiesusingchainrule differentiation(asdescribedin the

appendices).



CHAPTER 5

FINITE ELEMENT IMPLEMENTATION ISSUES

5.1 Introduction

Implementation issues c_mcerning the finite element modeling technique described in

Chapters 2-4 are discussed in this chapter. A standard displacement approach is followed

(Refs. 14, 15). The finite element code of Ref. 14 for three dimensional trusses serves as a

basis upon which the new capability is developed. Constant strain triangular elements

(CST's) and linear strain triangular elements (LST's) are added to the library of elements.

A banded matrix solution solver (Ref. 16) is used for static analysis. A QR eigenvalue

solution technique is used for the natural modes analysis. Analytic sensitivities of stiffness

and mass matrices are generated and used to obtain sensitivities of displacements, stresses

and natural frequencies.

5.2 Global displacement solution

The governing equation for a static structural system is given by

[K] {v} = {F}

where K is the banded global stiffness matrix, U is the vector of global displacements to

be solved for and F is the vector of nodal loads. The decomposition technique of Ref. 16 is

used for solution.



27

5.3 Natural frequency solution

The governing equation for a dynamic structural system undergoing undamped free

vibration is given by

[K-to2Ml 1_} = {0} (5-2)

where K is the global stiffness matrix, co is a natural frequency in radians/second, M is the

lumped global mass matrix and _ is a mode shape. For a non-trivial solution of natural

frequencies and mode shapes to exist, the determinant of [K - _2M] must equal zero.

The method of solution will be to use a QR decomposition algorithm (Ref. 18) that solves

the standard eigenvalue problem

.[A-k/] {_} = {0} (5-3)

where A is a square symmetric matrix, _. is an eigenvalue, I is the identity matrix and _t

is the corresponding eigenvector. The original equation is converted into the standard form

by using the fact that since M is diagonal and positive definite, it's square root is easily

calculated. Thus, pre- and post-multiplying eqn. 5-2 by (4r-M)-t gives

[ (_f-M)-'K(ff-M)-'- _2 (ffM)-'M(ff-M) -1] {_t} = {0} (5-4)

or

[A-_/] {_} = {0} (5-5)
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where A = (4r-M)-IK(,_/'M) -I is square symmetric and _. = co2.

Since _ solves the standard eigenvalue problem (eqn. 5-3), to find _ which solves the

original eigenvalue problem (eqn. 5-2) it is necessary to use the formula

= _, (5-6)

5.4 Element stress solution

All individual finite element stresses are calculated using the previously found global

displacements. Equations for axial stresses in rod elements are given in Appendix A. 1.2.

Similarly, for CST elements, stress equations are given in Appendix A.2.2. For LST ele-

ments stress equations are given in Appendix A.3.2.

5.4.1 Stress smoothing

Since stresses throughout a CST element are constant, stress differences can be found

between neighboring CST's and an averaging process (Ref. 17) is needed in order to

obtain a smooth stress distribution over the skin in areas where no discontinuities are

expected.

As an option in the present capability, a least squares fitting procedure is used to fit an

N th order polynomial for each skin stress ((_xx, (_yy, (_xy) over each wing skin trapezoid.

Thus if S(x,y) is any component of the plane stress in the skin, then

S(x,y) = q!+q2 x+q3y +''' +qky N (5-7)
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or in matrix form:

S(x,y) = { I xy ... }

ql

q2

q3

(5-8)

where polynomial terms are picked based on Pascal's triangle in Table 5.1. In the present

capability polynomial order can range from 2 to 5.

For lea.st squares fitting, stresses in each CST are taken at the centroid of the element.

Thus, for each CST element 'i', 'x i' and 'Yi' refer to the element's centroid position. Writ-

ing polynomial equations for the stress c_ in 'k' elements leads to 'k" equations of the form

[As] {q } = {b s } where

[As] =

o

1 x I Yl ...Y_I

1 x 2 Y2 ...YN2

1 x 3 Y3 "" yN

,oo °°. °°° °°° ,o°

y_V1 x k Yk ... k

(5-9)

and
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Table 5.1 - Choice of stress smoothing polynomial

x y N=I

x 2 xy y2 N=2

x 3 x2y xy2 y3 N=3

x4 x3y x2y2 xy3 y4 N=4

x 5 x4y x3y2 x2y3 xy4 y5 N= 5
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{bs}

G I

(I 2

G 3

°,°

G K

(5-10)

To solve for {q}, the normal equations approach is used (Ref. 18) to yield

[As]T[As] {q} = [As]T{bs} (5-11)

OF

[Anew] {q} = {bnew} (5-12)

which can be directly solved using Ref. 16.

5.4.2 Stress smoothing sensitivities

Differentiating the previous equations for smoothed stresses with respect to a shape

design variable [3 leads to

OS(x,y) TO{q} Ox Oy T

21] . - {1, x, y, ... } ---_+ {0,_-_,_)--_,...} {q}
(5-13)

where the vector { (0q) / (Jgl_) } is obtained from
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a{h"ew } -_ {q}[Anew] =

(5-14)

Now

_[A S] Tr q [A q To[AS]
(5-t5)

and

bIAs IT ,_ nTO[bS]

w
(5-16)

where

C)Xl c)Yl

0 __.--
*--

°**

_Q, ooo

0

**Q oe*

°°°
Iol o°°

...... N--_

/

(5-t7)

and
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alh s}

ap i

"'° ]

O_ k

V

(5- i 8)

For shape sensitivities, the expressions above take care of the motion of the (xi,Yi) points

used for least squares fitting as well as the motion of the point where the stress is calcu-

lated. For sizing sensitivities, all points used for least squares fitting and stress output cal-

culations are fixed and their derivatives are zero. Therefore, all derivatives of [As] with

respect to any size variable _: are zero, resulting in

a{q} a{bn_w}
[Anew] .-_ - _ (5-19)

where

0 [b._ w] _ - ra [b s]
- (5-20)a_: L_sJ a_:

and

a{bs}
...

b_ k

(5-21)



CHAPTER 6

WING MODEL TEST CASES

6.1 Introduction

Three wing models are described here for later use as test cases. For each. a brief phys-

ical description is given along with all load cases to be examined.

6.2 Gallagher wing

The Gallagher model 1 wing (Ref. 19) is an unswept, untapered cantilever wing as

shown in Figure 6.1. The aspect ratio is 4 and the depth-to-chord ratio is 0.075. All inter-

hal members, being formed channels, are modeled as shear webs using membrane ele-

ments. The channel flanges are modeled as rod elements whose cross-sectional area

matches that of the flange area. Additionally, the skins are modeled with membrane ele-

ments only. The material used is 606 I-T6 aluminum and its properties are:

E= 10.0 x 10 6 psi v = 0.3 p = 0.000259 Ibm/in 3

The load case analyzed is a 100 lbf. point load at each rib / spar intersection, first applied

one at a time to derive the wings influence coefficients and then applied simultaneously

(representing a continuous load over the wing) to examine its deformed shape. All wing

skin thicknesses are 0.063", web thicknesses are 0.040" and cap areas are modelled as

being 0.02 square inches. Numerical tests include evaluation of the difference between

modeling the spar / rib webs as plane stress elements carrying normal and shear stresses

and spar / rib webs modeled by shear webs only. The effect of mesh refinement is exam-
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ined. The results from finite element models based on CST membranes are compared to

those with LST membranes.

6.3 Denke wing

Tile Denke wing (Ref. 21)) is a 45 degree swept back wing with :m aspect ratiL_ _f I_L a

depth-to-chord ratio of 0.35 and can be seen in Figure 6.2. Only four internal ribs are

present along with the front and rear spars. Two load cases are considered. Load case 1

involves a 1 lbf. point load applied vertically at the tip trailing edge, while load case 2

involves a 1 lbf. point load applied vertically at the leading edge at 60% span. The mate-

rial properties u_d are:

E= I0.0 x 10 6 psi v = 0.3 p = 0.000259 Ibm/in 3

All wing skin thicknesses are 0.032", web thicknesses are 0.051" and stringer areas are

0.371 square inches for the leading and trailing edge elements, and 0.061 square inches for

all remaining stringers.

Again, effects of using plane stress and pure shear elements for spar and rib webs are

studied as well as comparisons between the performance of CST's and LST's. This wing is

an example of a thick, high aspect ratio wing typical in transonic transport airplane con-

struction. Displacements and experimentally measured stresses in spar caps are used to

a.s_ss accuracy of the present capability.

6.4 Turner/Martin/Weikel wing

The Turner wing (Ref. 21 ), originally studied by Eggwertz and Noton, can be seen
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in Figure 6.3. It hm_ a 30 degree sweep, _spect ratio of 5 and a depth-to-chord ratio of 0.21.

Five spars and three ribs are assumed to be perfectly attached to the upper and lower wing-

skins and to each other. Cover skins are mt_deled as planestress elements and a compari-

son is made between modeling the spar and rib webs as plane stress or pure shear

elements. The material used is aluminum with the following properties:

E= 10.0 x 10 6 psi v = 0.3 p = 0.000259 lbm/in 3

All wing skin thicknesses are 0.118", web thicknesses are 0.059" and cap areas are

0.0619 square inches.

Measured displacements and skin stresses in the root area are used for evaluation. It

should be mentioned (Ref. 21) that while measured skin stresses O" along the span (in
YY

the direction of the spars) are quite accurate, there is a reason to believe that normal

stresses perpendicular to the spars Oxx and skin shear stresses Oxy are inaccurate. Since

they are very small compared to Oyy, there would be no significant effect on failure esti-

mation for the wing.

For the Turner wing, in addition to the experimental data, finite element results, in par-

ticular wing skin stresses and model natural frequencies, from a commercially available

code (ELFIN'I, Ref. 22), were generated and used to compare to results from the present

capability.
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CHAPTER 7

NUMERICAL RESULTS

7.1 Introduction

Three wing mc_dels are used to assess the present capability. First, accuracy of the

finite element results needs to be evaluated, since the present capability is based on very

basic, low order elements (in an effort to gain computational speed and obtain analytic

sensitivities). This is done by comparing results obtained by the present capability t_

results by commercially available codes and to experimental resultx wherever possible.

7.2 Gallagher wing

Figure 7.1 shows both the original wing skin mesh (based on existing ribs and spars)

and a refined wing skin mesh employing four dummy ribs between each primary rib.

When CST's are used for cover skins and fib / spar webs, the effect of increasing the num-

ber of spanwise divisions on the tip displacement using shear webs versus regular CST's

in the vertical webs is shown in Figure 7.2. Natural frequency convergence under mesh

refinement is seen in Figure 7.3. As the number of divisions increase, the finite element

displacement solution approaches that found experimentally (Ref. 19). It is interesting to

note that the effect of modeling the spar and rib webs with shear webs becomes more

important as the mesh is refined. The refined finite element model with shear webs is about

5% stiffer than the experimental model.

A comparison of a refined CST model prediction (adrib = 5) and the LST model is

shown in Figure 7.4. The LST model.uses a mesh based on the existing ribs and spars as in

the coarser CST model. Mid-chord deflections along the entire span for both models are
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compared to experimental data. Both models are in clo_ agreement with only a 5.07%

and a 2.05% wingtip deflection deviation from experiment, respectively (Table 7.1),

Gallagher's experimental influence coefficient matrix (Ref. 19) is reproduced in Table

7.2 along with the resulting approximate influence matrix for the refined CST model

(adrib=5) and the LST mode!. It can be seen that displacement results are good for the

LST model while the CST model is slightly stiffer.

No experimental data is available for stresses on the Gallagher wing. As expected

stresses in skin CST's fluctuate and change discontinuously from element to element. Per-

formance of the stress smoothing technique (Chapter 5) was evaluated by using polynomi-

als of order two through five along with the adrib=4 mesh. The resulting polynomial fits

are presented in Table 7.3, and plots along cuts A and B (Figure 7.1 ) are shown for each

stress in Figures 7.5 through 7.10. It is found that a polynomial of order N=4 captures CST

stress variations well over the wing in this case.

7.3 Denke wing

Figure 7.11 shows both the original wing skin mesh (based on existing spars and ribs)

and a refined wing skin mesh employing two dummy ribs between each pair of primary

ribs. Deflection results for the Denke wing (in the case of CST elements) with an increas-

ing number of spanwise divisions are compared in Figures 7.12 and 7.13. Results of using

shear webs and CST membranes (including normal stresses) for spar and rib webs are

shown for both load cases. Natural frequency convergence results are shown in Figure

7.14.

Excellent correlation between experiment and finite element modeling using CST's is

shown in Figures 7.15 and 7.16 for load cases 1 and 2, respectively. The CST model used

for these and all subsequent results has adrib=2. Comparison of results from the LST



46

Table7.! - Displacementsof theGallaghermodel 1wing

Node

3.0
8.0
13.0

Mid-chorddeflection(in.)

experiment

1.319
0.765
0.258

CST model

1.252
0.691
0.221

error

5.07

9.65

14.17

LST model

1.346

0.740

0.233

error

2.05

3.24

9.51
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Table 7.2 - Gallagher model 1 influence coefficients

I

3

)

4

8

7

8

10

II

12

IJ

14

15

J 2 ) • $

0.1746 0.1621 0.151 0.1415 0,1296

0.16)1 0,15J4 0.1494 0.1428

0,157"2 0.1566 0.1546

0.164.5 0.1664

0Al04

Points ou Model I

it, ? 8 9 10

0.0987 0.0902 0.01.27 0,075 0.066

0.0914 0.0118 0,011,46 0.0802 0.0747

0.01132 0,0436 0.01-54 0.0544 0.0_23

0.0772 0,01104 0.0115,4 0.019'5 0.0914

0.07(36 00766 001147 O,Oq3 0 1014

0.0687 0.0591 0.0502 0.0,4,4,4 0.0379

0.0573 0.0,512 0.0,_ 0,_26

0.054 0.051,5 0,0492

0.051 0.0511:3

0,0714

11 12 15 14 JJ

00312 0.02L5 00252 0.0216 0.0175

0.028 0.0279 0,0'257 0.0238 0.0212

0.0244 0.0257 0.02_ 0.0255 0.0242

0.0216 0.024,8 0.0264 0.0276 0.0254

00154 0.0'2_ 00'262 00'29'2 00318

0.025 0.0'216 0.017"3 0.0136 00106

0.0201, 0.0JTI 0.017"3 00151 0,01)

0.0164 0.0174 0.018 0.0172 0,0165

0.0139 0.0158 0.01711 0,01% 0.0209

0.010S 00142 0.017 0.0205 0.025

0.0174 0,01'24 0.0O71 0,00'441 0,0021

0.0137 0,00112 0.0064 0._052

0.0105 0.0OIl 0.009'3

0.0125 0.0111

0,0169

Experimental

I

]

3

$

Q

?

|

9

10

II

t3

14

15

1 2 3 4 $

0.1745 0.1612 O, i4&i 0.1.376 0.127"2

0.157 0.1-503 0.1431 0.1377

0.1516 0.1504 0.149

0.1572 0.1614

0.174S

Points ou Model 1

6 7 8 9 I0

0.0923 0.01_ 0.M12 O,070& 0.0631

0.011.46 0._19 0.07_ 0.07_ 0.97

0.0771 0.07_ 0.07_ 0.07_ 0.07_

0._ 0.07_ 0.07_ 0._21 0.0&48

0._ 0.97_ 0.07_ 0.0455 0.0925

0.0597 0.0516 0.04,46 0.0303 0.0324

0.0495 0.0455 0.0418 0.03&4

O.O46.5 0.0455 0.044"7

0.0496 0.05 19

0.0599

CST model

II 12 13 14 15

0.0279 00258 0.0231 0.0198 0.0158

0.02_i 0.0243 0.0231 0.0214 0.0188

0.0217 0.0221 0.02_ 0.02_9 0.0219

0.01¢7 0.0213 0.0231 0.0244 0.02-5

0.01S6 0.0198 0.0231 0.02_ 0.0281

0.020_ 0.0176 0.01_ 0.0115 0.008:2

0.01_ 0.0162 0.0148 0.0131 0.01 I1

0.0139 0.0146 0.0149 0.0147 - 0.014

0.011 0.013 0.0148 0.0163 0.017'3

0.0081 0.0115 0.01416 0.0176 0.0206

0.0125 0.0086 0.00_ 0.0037 0.0O 19

0.0084 0.0064 0.00-5 0.0O_

O.O072 0.0O64 0.0051

0.0054 0.0086

0.01_

I

]

$

4

$

1

I

9

tO

II

12

15

14

15

1 l $ 4 $

0.1S63 _17"_ 0.1_1 0.1489 0.15_

0.1_ 0.1_1 _15_ _1488

0.1637 0.1_ 0.1_

0.1_ 0.172_

0.1863

Points ou Model I

4 I 8 51 I0

0.0982 0.0913 0.0(,4 0.0764 0.0583

0.0903 0.08'79 0.08,4.5 0.0_ 0.0"753

0.0827 0.0842 0.0148 0.08,11 0.(K'_

0.97.,¢3 0.0_6 0.0_L5 0._79 0.0903

0.0613 0.9764 0.084 0.0913 0.0982

0,0631 0,0_i8 O,lM_ 0,04) l 0_35

0.0_28 0.0486 0.04.48 0.0411

0.0497 0.0_16 0.0475

O.O_2S O.O_m

0.0631

LST model

I1 t2 I$ 14 15

0.0293 0.027,4 0.024"7 0.0213 0.0169

0.02Q 0.02.59 0.02,4'7 0.0229 O.Olgq

0.02J1 0.0244 0.02411 0.0244 0.023

0.0199 0.0229 0.0247 0.025q 0.02_

0.0169 0.0213 0.02A7 0.0274 0.0293

0.02)5 0.018.5 0.01.53 0.0123 0.0095

0.018 0.0172 0.01_ 0.0139 0.0116

0.0147 0.015-5 0.01,51 0.015-5 0.0146

0.0IX 0.0139 0.01_ 0.0172 0.018

0.0088 0.0123 0.01:$3 0.0)11_ 0.0215

0.0123 O.OO86 0+00._ O.OO311 O.OO2

0.0O41_ 0..00_ 0.0051 0.0031

O.OO34 O.OO65 O.O0-51

0.0011_ 0.0016

0.0123
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Table 7.3 - Gallagher model I stress smoothing polynomials

Sigma X:

N=2

N=3

N---4

N=5

Sigma Y:

N=2

N=3

N--4

N=5

Tau XY:

N=2

N=3

N---4

N=5

S = 4144 + 163.1x- 434.5y- 11.72x 2+ 0.85xy + 9.85y 2

S = 4600 + 523.8x - 870y - 38.9x 2 - 17.7xy + 49. Iy2 + 0.145x 3 + 1.51 x2y -

0.137xy 2 - 0.85y 3

S = 6279 - 116.6x - 1564y + 130.8x 2- 20.62xy + 153.8y 2- 15.35x 3 +

0.382x2y + 0.195xy 2 - 6.255y 3 + 0.447x 4 + 0.139x3y - 0.067x2y 2 +

0.0149xy 3 + 0.088y 4

S = 8613 - 968.9x - 2890y + 229.6x 2 + 168.9xy + 406.5y 2 -5.66x 3 -

34.15x2y - 6.05xy 2 - 27.6y 3 - 1.52x 4 + 2.56x3y + 0.6x2y 2 + 0.116xy 3 +

0.075x 5 - 0.06x4y - 0.025x3y 2 - 0.0024x2y 3 - 0.00 l xy 4 -0.87y 4 +

0.01y 5

S = 25500 + 54.36x -1478y - 2.72x 2 - 0.43xy + 21.2y 2

S = 24890 + 396.3x - 1467y - 44.6x 2 - 10.4xy + 22.5y 2 + 1.45x 3 + 0,61x2y +

0.028xy 2 - 0,034y 3

S = 24460 + 323.4x - 1245y + 18.06x 2 - 51,6xy + 2.16y 2 - 6.38x 3 +

0.33x2y + 1.53xy 2 + 0.789y 3 + 0.27 lx 4 -0.02x3y - 0.076x2y 2 -

0.008xy 3 - 0.013y 4

S = 24160 + 998.5x - 1334y - 389.7x 2 + 37xy + 4.16y 2 + 81.75x 3 -

20.4x2y + 1.92xy 2 + 0.387y 3 - 7.39x 4 + 2.13x3y + 0.065x2y 2 .

0.072xy 3 + 0.012y 4 + 0.23x 5 - 0.066x4y - 0.0062x3y 2 - 0.0x2y3+

0.0011 xy 4 - 0.00044y 5

S = -1149 + 144.2x + 86.33y - 0.0584x 2 - 10.45xy - 0.19y 2

S = -2435 + 36.5x + 446y + 54.9x 2 - 56.4xy - 13y 2 - 2.4x 3 + 0x2y +

1.53xy 2 - 0.03y 3

S = -3819 + 78.6x + 1085y + 94.8x 2 - 134.2xy - 69.7y 2 - 6.3x 3 - 0.186x2y +

8.13xy 2 + 1.5y 3 + 0.128x 4 + 0.0026x3y + 0.0043x2y 2 - 0.148xy 3 -

O.O06y 4

S = -6531 + 1865x + 2029y - 473.4x 2 - 309.5xy - 207y 2 + 84.1x 3 + 9.8x2y +

26.1xy 2 + 9.27) ,3 - 6.66x 4 - 0.0013x3y - 0.577x2y 2 - 0.9xy 3 - 0.18y 4 +

0.19x 5 + 0.028x4y + 0.028x3y 2 - 0.0012x2y 3 + 0.013xy 4 + 0.001y 5
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model (basic mesh) with experimental result.,_ are shown in Figures 7. i 7 and 7.18. The

correlation is good. It is slightly stiffer than the best case CST model results along the

leading edge in load case 2 (Figure 7. 161. Numerical results are listed in Table 7.4 and are

seen to be reasonably close to experiment.

Stress behavior is first analyzed in the spar caps along the wing root. Figure 7.19

shows the compariscm fi_r each mt_del with respect t¢_publi.shed values (Ref. 20/. As can

be seen, finite element stress magnitudes are lower than experiment towards the root trail-

ing edge, and a rather large discrepancy exists in the CST model at 80% of the chord. One

reason for this is that the Ref. 20 results were taken at the wing root while the finite ele-

ment results were taken from the mid-point of the root rod element (the axial stress is

assumed constant throughout its length). In addition, the well known root trailing edge

stress singularity in swept back wings appears, and accuracy of all calculated results dete-

riorates in that region.

A comparison of cap stresses along the leading and trailing edge spar caps for each

model (CST and LST) for load case 2 is seen in Figures 7.20 and 7.21. Good correlation

with experiment exists. The stress values plotted for each spar cap element were taken at

its geometric midpoint as mentioned previously.

No experimental wing skin stress data is available for the Denke wing. Skin stress

curve fits were again attempted for each stress along both a chordwise and a spanwise cut

(Fig. 7.11) in the CST model. Numerical details of the various curve fitting polynomials

are given in Table 7.5. Figures 7.22 through 7.27 show the resulting plots. As with the

Gallagher wing, a polynomial of order N--4 gives the best representation for the fluctuat-

ing CST element stresses with tYyy showing the best behavior.
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Table 7.4 - Displacements of the Denke wing

Load case 1

Node

i

2

3

4

7

8

9

10

experiment

0.007

0.033

Deflection (x 10-3 in.)

CST model % error LSTmodel

0.007 0.00 0.007

0.035 6.06 0.035

0.040

0.096

0.100

0.185

0.170

0.290

0.260

0.400

0.040 0.00

0.102 6.25

0.097 3.00

0.189 2.16

0.174 2.35

0.291 0.34

0.263 1.15

0.403 0.75

0.039

0.099

0.094

0.183

0.168

0.281

0.255

0.389

% error

0.00

6.06

2.50

3.13

6.00

1.08

1.18

3.10

1.92

2.75

.

Load case 2

Node

1

2

3
4

5

6

7

8

9

10

experiment

0.014

0.011

0.038

0.032

0.070

0.056

0.089

0.076

0.108

0.096

Deflection (x10-3 in.)

CST model % error

0.013 7.14

0.013 18.18

0.037 2.63

0.033 3.13

0.067 4.29

0.056 0.00

0.087 2.25

0.076 0.00

0.107 0.93

0.097 1.04

LST model % error

0.012 14.29

0.012 9.09

0.036 5.26

0.033 3.13

0.066 5.71

0.054 3.57

0.084 5.62
0.074 2.63

O.104 3.70

0.094 2.08
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SigmaX:
N=2

N=3

N=4

N=5

SigmaY:
N=2

N=3

N--4

N=5

TauXY:
N=2

N=3

N=4

N=5

Table7.5- Denkestresssmoothingpolynomials

S =-0.5732 + 0.133x- 0.2246y- 0.0005606x 2- 0.0009817xy + 0.004109y 2

S = 0.9131-0.05502x-0.2869y + 0.007494x2-0.00063xy + 0.005896y 2-

0.0001728x 3 + 0.000346x2y - 0.0004927xy 2 + 0.0002019y 3

S = 1.616-0.2591x-0.2163y + 0.02552x 2- 0.00929xy + 0.002164y 2-

0.0009427x 3 + 0.001616x2y - 0.0018xy 2 + 0.000973y3+ 0.0000117x 4 -

0.00002935x3y + 0.0000317x2y 2- 0.000009087xy 3- 0.000005911y 4

S = 2.127-0.98x + 0.5835y + 0.251x2-0.467xy + 0.228y 2- 0.028x 3 +

0.07816x2y- 0.07174xy 2 + 0.0213y 3 + 0.0014x 4- 0.005123x3y +

0.00692x2y 2- 0.004126xy 3 + 0.000937y 4- 0.0000258x 5 + 0.000115x4y -

0.0002024x3y 2 + 0.000175x2y 3- 0.000074xy 4 + 0.00001185y 5

S = 4.56-0.0895x- 0.08107y- 0.0004309x 2 + 0.001836xy + 0.0001947y 2

S = 2.713 + 0.117Ix + 0.0265y- 0.008532x 2- 0.003825xy + 0.002099y 2 +

0.0003573x 3- 0.001119x2y + 0.0017xy 2- 0.0008231y 3

S = 1.683 + 0.1255x + 0.3875y + 0.00897x 2- 0.06642xy + 0.02704y 2-

0.00097x3+0.002349x2y+0.0007279xy2- 0.001396y3+0.00004581x 4 -

0.000194x3y + 0.0003256x2y 2 - 0.0002886xy 3 + 0.0001078y 4

S = 2.161- 0.098x + 0.539y- 0.0287x2+ 0.077xy- 0.0864y2+ 0.01676x 3-

0.06263x2y + 0.07636xy 2- 0.02968y 3- 0.001712x 4 + 0.00766x3y -

0.01253x2y 2 + 0.008884xy 3- 0.002301y 4 + 0.0000539x 5- 0.0002943x4y +

0.0006389x3y 2 - 0.0006924x2y3+0.0003766xy4-0.00008273y 5

S = -1.191 + 0.00433x + 0.05274y - _0002078x 2 + 0.000339xy - 0.000801y 2

S = -1.368 + 0.1041x - 0.07157y - 0.004549x 2 + 0.002929xy + 0.00359y 2 -

0.0000683x 3 + 0.0004915x2y - 0.0007492xy 2 + 0.0002806y 3

S =-1.556 + 0.1912x- 0.1758y- 0.002212x 2- 0.02199xy + 0.03325y 2-

0.0006887x3+0.003224x2y- 0.003743xy2+0.0008293y 3 +0.00001036x 4 -

0.00002879x3y-0.000003943x2y2+ 0.00005072xy3-0.00002422y 4

S = -1.63 + 0.086x + 0.03225y + 0.0284x 2- 0.08423xy + 0.05124y 2-

0.0043x 3 + 0.0126x2y -0.01077xy2+ 0.002693y3+ 0.0002488x 4 -

0.00095x3y + 0.00137x2y 2 - 0.0009256xy3+ 0.00025y 4- 0.0000067x5+

O.O000356x4y - O.O00078x3y2+ O.O0009x2y 3 - O.O0005xy 4 + O.O00011y 5
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7.4 Turner/Martin/Weikel wing

Figure 7.28 sh<_ws both the basic wing skin mesh and the refined wing skin me.,_h f_r

the Turner wing using CST elements. In this case the mesh includes both spanwise and

chordwise refinements, introducing the presence of floating nodes. Chordwise mesh

refinement c_msists of _ne dummy spar per spar interval, and is employed t_ all_w ttw

more CST element.,; across the chord. One dummy rib per rib interval is then added within

the root region. Figure 7.29 shows the LST element model used for comparison.

The effect on wing deflection of modeling the Turner wing with a refined mesh and

pure CST shear webs as compared to the LST model is seen in Figures 7.30 and 7.31.

Mesh refinement has only a small effect on the spanwise vertical deflection. Tables 7.6 and

7.7, though, show that refining the mesh in this case leads to greater in-plane deflections

(x- and y- axes) for the CST model.

With respect to stresses, nodal stress averaging following the results of Turner (Ref.

21) was performed for each CST wing model. Tables 7.8 and 7.9 contain the nodal aver-

ages for each of the three stresses within the wing root area as compared to published

results. Close agreement is found for _3xx and _3yy. In the case of the shear stress _3xy the

correlation is not as good.

Natural frequency results for both finite element models as compared with those avail-

able from a commercial finite element package (ELFINI, Ref. 22) can be seen in Table

7.10. Excellent agreement using the original mesh is evident. Natural frequency results

using the refined mesh decrease in accuracy as the frequency increases due to localized

vibration of lumped masses at floating nodes. An attempt to solve this problem involved

studying the choice of dummy element thicknesses (1% of a real element's thickness was

the choice in all studies up to this point). The effect of varying the dummy element thick-

ness from 1% to 10% on displacements and natural frequencies is shown in Table 7.11.
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Table7.6- Displacementsof theTurner wing (original mesh)

Node

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Turner (x 10-6)

U v W

0.008 -4,491 -15.910

-0.443 -4.333 - 16.690

-0.850 -4.251 - 16.939

- 1,225 -4,142 - 16,069

-1.585 -4.060 -13.669

-0.030 -2.666 -5.695

-0.660 -2.840 -7.797

- 1.014 -3.043 -8.947

- 1.327 -3,069 -8.933

CST model (x10-6)

U V W

0.009

-0.422

-0.820

-1,180

-1.532

0.009

-0.616

-0.983

-1.299

-4,874

-4.747

-4.650

-4,530

-4.473

-2.878

- 3.104

-3.329

-3.368

-17.444

- 18.447

-18.818

- 18,053

-15.740

-6.302

-8.534

-9.882

-10.022

45

46

47

48

49

50

51

52

53

54

55

- 1.682 -2.991 -7.463

0 0 0

-0.480 - 1,252 -2.004

-0.858 - !.801 -3.42 !

- 1.184 -2.029 -3.923

- 1.511 -2.098 -3.232

0 0 0

-0.513 -0.940 -1.091

-0.904 - 1.341 - 1.689

-1.226 -1.548 -1.333

0 0 0

-0.483 -0.679 -0.384

-0.836 - l.O16 -0.178

0 0 0

-0.383 -0.506 0,260

0 0 0

-1.662

0

-0.393

-0,798

-1.141

- 1.478

0

-0.440

-0.850

-1.191

0

-0.429

-0.788

0

-0.338

0

-3.311

0

-1.315

-1.960

-2.231

-2.328

0

-0.981

-1.455

-1.688

0

-0.708

- 1.076

0

-0.504

0

-8.586

0

-2.103

-3.669

-4.319

-3,660

0

-1,154

-1,831

-1.486

0

-0.398

-0.175

0

0.299

0
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Table 7.7 - Displacements of the Turner wing (refined mesh)

Node

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Turner (x 10-6)

U V w

0.008 -4.491 -15.910

-0.443 -4.333 - 16.690

-0.850 -4.251 -16.939

-1.225 -4.142 -16.069

- 1.585 -4.060 - 13.669

-0.030 -2.666 -5.695

-0.660 -2.840 -7.797

- 1.014 -3.043 -8.947

- 1.327 -3.069 -8.933

- 1.682 -2.991 -7.463

0 0 0

-0.480 - 1.252 -2.004

-0.858 - 1.801 -3.421

- !. 184 -2.029 -3.923

- 1.511 -2.098 -3.232

0 0 0

-0.513 -0.940 - 1.091

-0.904 - 1.341 - 1.689

-1.226 -1.548 -!.333

0 0 0

-0.483 -0.679 -0.384

-0.836 -1.016 -0.178

0 0 0

-0.383 -0.506 0.260

0 0 0

CST model (x 10-6)

U V w

0.103 -5.074 -18.053

-0.425 -4.857 - 19.000

-0.828 -4.744 -19.312

-I.198 -4.616 -18.458

- 1.562 -4.562 - !6.005

0.048 -3.066 -6.520

-0.629 -3.227 -9.634

-0.993 -3.410 -10.190

- 1.304 -3.429 - 10.259

- 1.658 -3.363 -8.665

0 0 0

-0.444 - 1.426 -2.133

-0.821 -2.054 -3.772

- 1.1 44 -2.300 -4.400

- 1.476 -2.379 -3.588

0 0 0

-0.485 -1.039 -1.196

-0.874 - 1.502 - 1.877

-1.208 -1.713 -1.398

0 0 0

-0.467 -0.733 -0.406

-0.822 - 1.089 -0.089

0 0 0

-0.377 -0.503 0.349

0 0 0
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Table 7.8 - Summary of Turner computed nodal stress averages (original mesh)

Turner stress averages (psi) CST stress averages (psi)

Node SigmaX Sigma Y SigmaXY SigmaX Sigma Y Sigma XY

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

0.36 8.93 0.45

0.61 6.68 -0.38

0.60 5.41 -0.17

0.34 4.60 0.04

0.20 4.28 0.12

0.98 9.55 -0.87

0.91 7.43 -0.41

0.59 5.56 0.00

0.29 4.42 0.25

0.15 3.80 0.38

0.52 7.13 -0.15

0.29 5.60 0.17

0.15 4.27 0.41

0.08 3.55 0.52

-0.07 5.18 0.24

-0.08 4.10 0.44

-0.05 3.43 0.53

-0.26 3.71 0.37

-0.22 3.25 0.41

0.49 8.85 -0.28

0.61 7.57 -0.51

0.51 5.73 -0.19

0.30 4.85 -0.01

0.13 4.42 0.12

1.05 9.11 -0.88

0.90 7.42 -0.58

0.51 5.94 -0.07

0.21 4.71 0.23

0.09 4.11 0.34

0.66 6.92 -0.39

0.29 5.64 -0.03

0.10 4.59 0.33

0.00 3.91 0.47

0.06 5.03 0.04

-0.09 4.11 0.28

-0.09 3.67 0.43

-0.16 3.61 0.25

-0.24 3.02 O.19
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Table 7.9 - Summary of Turner computed nodal stress averages (refined mesh)

Node

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Turner stress averages (psi)

SigmaX Sigma Y Sigma XY

0.36 8.93 0.45

0.61 6.68 -0.38

0.60 5.41 -0.17

0.34 4.60 0.04

0.20 4.28 0.12

0.98 9.55 -0.87

0.91 7.43 -0.41

0.59 5.56 0.00

0.29 4.42 0.25

0.15 3.80 0.38

0.52 7.13 -0.15

0.29 5.60 O.17

0.15 4.27 0.41

0.08 3.55 0.52

-0.07 5.18 0.24

-0.08 4.10 0.44

-0.05 3.43 0.53

-0.26 3.71 0.37

-0.22 3.25 0.41

CST stress averages (psi)

Sigma X Sigma Y SigmaXY

0.25 9.34 -0.29

0.67 7.22 -0.45

0.55 5.61 -0.29

0.32 4.77 -0.15

0.07 4.37 -0.06

1.08 10.22 -0.95

0.91 7.89 -0.04

0.62 5.89 -0.03

0.32 4.64 0.29

0.10 4.07 0.31

0.66 7.78 -0.28

0.34 6.08 0.09

0.20 4.67 0.35

0.04 3.88 0.56

0.02 5.58 0.11

-0.06 4.42 0.33

-0.03 3.65 0.40

-0.28 3.87 0.31

-0.13 3.33 0.23
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Table 7.10 - Natural frequencies of the Turner wing

Natural Frequency (Hz)

Mode

Original Refined

CST model CST model ELFINI

419 411 418

602 540 577

1107 687 1086

337 327 318

120 119 116
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Table7.11 - Dummy thickness effect on Turner displacements and

natural frequencies

Natural Frequencies (Hz)

Mode

3

4

Load point

displacement

( I0"3in.)

Original

CST model

120

337

419

602

1107

0.216

Refined CST models

(1%) (5%) (10%)

119 119 119

327 327 326

411 426 429

540 593 599

687 1074 1130

0.219 0.218 0.217

ELFI2ql

116

318

418

577

1076

N/A



1_6

Increasedthicknessesresultin increasednaturalfrequencyaccuracywith an insignificant

decrease in tip displacement. The study's effect on element stresses can be seen in Figures

7.32 and 7.33. Figure 7.32 detail.,_ the change in leading and trailing edge cap stresses for

an increase in dummy membrane thickness while Figure 7.33 shows the change in CST

element stresses Oxx and (_yy along line B 2. Again, increased dummy element thicknesses

have a minimal effect on b_th cap and membrane stresses. Subsequently. a good rule of

thumb is to use dUmmy elements with a thickness of between 5% and 10% of what the

actual structure requires only if accurate natural frequency / mode shape information is

desired.

Stress smoothing was again employed for each CST wing model, with finite element

stress results available from ELFINI. For each stress, a polynomial was found at each cut

A and B 1/132 (Figures 7.28 and 7.29) for both the basic CST model and the LST model

while being compared to ELFINI results and the CST model's smoothed stresses. Numer-

ical details of the various curve fitting polynomials for each wing mesh are in Tables 7.12

and 7.13, but with a polynomial order of N--4 having been previously established, this

degree will be used for all subsequent stress comparisons. Plots are shown in Figures 7.34

through 7.39. Note the linear, piecewise continuous nature of the LST model's stresses

along each cut. Additionally, the ELFiNI stress results can be seen in Figures 7.40 through

7.42 for each stress.

Good agreement with ELFINI for all models can easily be seen for _yy along with

excellent curve fits at each cut. Along cut A, reasonable accuracy in both the element

stresses and the N--4 stress polynomial is obtained for _xx while poor accuracy between

ELFINI and stress smoothing results exist for (Sxy. It is also worth noting the decrease in

accuracy as one nears the trailing edge root location (100% chord). Along spanwise cuts

B 1/]32, the N=4 curve fit and element stresses are better for Gxy but this time Gxx ELFINI

results and stress results are quite different. In general, good agreement exists between the
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Sigma X:

N=2

N=3

N=4

N-5

Sigma Y:

N=2

N=3

N=4

N=5

Tau XY:

N=2

N=3

N=4

N=5

Table 7.12 - Turner stress smoothing polynomials (original CST mesh)

S = 0.04528 + 0.04588x - 0.003832y - 0.0019x 2 - 0.003465xy + 0.0009846y 2

S = 0.6845 - 0.03744x - 0.151 ly + 0.00983x 2 + 0.004395xy + 0.008456y 2 -

0.001147x 3 + 0.0006225x2y - 0.0004522xy 2 - 0.00008472y 3

S = 0.908 - 0.4852x - 0.07524y + 0.1462x 2 + 0.01168xy - 0.000891y 2 -

0.01702x 3- 0.001019x2y - 0.0001546xy 2 + 0.0002379y 3 + 0.0006553x 4 +

0.0x3y + 0.00005336x2y 2 - 0.0000195xy 3 - 0.000002632y 4

S = 1.534 - i.709x - 0.08587y + 0.9185x 2 - 0. 1164xy + 0.02993y 2 - 0.1907x 3 +

0.01492x2y + 0.007555xy 2 - 0.002937y 3 + 0.01719x 4 - 0.000755x3y -

0.000653x2y 2 - 0.0001503xy 3 + 0.000107y 4 - 0.0005716x 5 + 0.000033x4y -

0.000004953x3y 2 + 0.00001668x2y 3 - 0.000001182xy 4 - 0.000001176y 5

S = -1.1 + 0.0166x + 0.4174y + 0.01546x 2 - 0.0238xy - 0.002058y 2

S = 0.6766 - 0.1821x - 0.02451y + 0.06061x 2- 0.007962xy + 0.02102y 2 -

0.004979x 3 + 0.002886x2y - 0.001505xy 2 - 0.0002467y 3

S = 0.9147 - 0.979x + 0.207 ly + 0.3286x 2 + 0.01566xy - 0.01273y 2 -

0.044x 3 + 0.004483x2y - 0.002706xy 2 + 0.001263) ,3 + 0.001983x 4 -

0.0005238x3y + 0.0002468x2y 2- 0.00003682xy 3 - 0.0000182y 4

S = 1.854 - 3.575x + 0.5373y + 1.824x 2 - 0.1196xy -0.03281y 2 - 0.388x 3 +

0.02312x2y + 0.00878xy 2 + 0.0005012y 3 + 0.0372 lx 4 - 0.004233x3y +

0.000665x2y 2 - 0.0005914xy 3 + 0.00006662y 4 - 0.00132x 5 + 0.000253x4y -

0.00007632x3y 2 + 0.00001977x2y3+ 0.000004684xy 4 - 0.000001425y 5

S = - 1.592 + 0.07176x + 0.0341y + 0.006499x 2 - 0.00861 lxy + 0.001713y 2

S = -0.9605 + 0.0574x - 0.1024y - 0.01467x2 + 0.009038xy + 0.006647y 2 +

0.001343x 3- 0.00002344x2y - 0.0005146xy 2- 0.00002641y3

S = -1.064 - 0.04879x + 0.03493y - 0.0378 Ix 2 + 0.03417xy - 0.01263y 2 +

0.009817x 3 - 0.005126x2y - 0.0002034xy 2 + 0.0007198y 3 - 0.0004908x 4 +

0.0001609x3y + 0.00007006x2y 2 - 0.00002309xy 3 - 0.00000845y 4

S = -2.28 + 0.944x + 0.37 ly - 0.423x 2 - 0.06124xy - 0.0476y 2 + 0.08784x 3 -

0.00114x2y + 0.008833xy 2 + 0.001904y 3 - 0.007789x 4 + 0.0003322x3y -

0.000295x2y 2 - 0.0003157xy 3 - 0.0000147y 4 + 0.00025x 5 - 0.00000504x4y -

0.000003095x3y 2 + 0.000008086x2y 3 + 0.000002909xy 4 - 0.0000001938y 5
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SigmaX:
N=2

N=3

N--4

N=5

SigmaY:
N=2

N=3

N=4

N=5

TauXY:

N=2

N=3

N--4

N=5

Table7.13- Turnerstresssmoothingpolynomials(refinedCST mesh)

S= -0.039+ 0.06141x+ 0.002043y- 0.002725x2- 0.003556xy+ 0.0008221y2

S = 0.5111+ 0.1366x- 0.1681y-0.02271x2+0.003742xy+ 0.00983y2 +

0.0006101x3+ 0.0005858x2y- 0.0004033xy2- 0.0001182y3

S = 0.501- 0.02049x- 0.07597y-0.001607x2+ 0.01968xy- 0.00351y2+

0.000373x3-0.001673x2y- 0.0005401xy2 + 0.0004465y3- 0.00003432x4+

0.00003975x3y+ 0.00004602x2y2- 0.000007925xy3- 0.00000725ly4
S= 0.1862+ 0.1011x - 0.06611y + 0.1174x2- 0.1133xy+ 0.02747y2-

0.03218x3+ 0.008646x2y+ 0.009438xy2- 0.003ly3+ 0.002985x4+

0.000123x3y- 0.0006824x2y2- 0.000238xy3+ 0.0001248y4- 0.0000922x5-

0.0000079x4y+ 0.0x3y2+ 0.0000145x2y3 + 0.00000079xy4- 0.00000159y5

S= -1.239+ 0.04716x+ 0.4226y+ 0.01422x2 - 0.02482xy- 0.00193y2

S= 0.4089+ 0.1094x- 0.03197y- 0.005225x2- 0.001642xy+ 0.01977y2-

0.001089x3+ 0.002496x2y- 0.001543xy2- 0.0002065y3

S = 0.3438- 0.1477x+ 0.1505y+ 0.03614x2 + 0.03247xy- 0.007506y2-

0.005673x3- 0.00005743x2y- 0.002126xy2+ 0.0009176y3+ 0.0003089x4-

0.0002046x3y+ 0.0001907x2y2- 0.00003542xy3 - 0.00001229y4

S= 0.02015- 0.626x+ 0.4174y+ 0.395x2- 0.04725xy- 0.0265y2- 0.088x3+

0.0000423lx2y + 0.008073xy2 + 0.000368y3 + 0.0086x4 - 0.0006335x3y+

O.000297x2y2- 0.00049xy3 + 0.00005806y4- 0.000307x5+ 0.0000548x4y-
0.00002804x3y 2 + 0.000007519x2y 3+ 0.000005508xy 4- 0.000001306y 5

S = -1.782 + 0.122x + 0.0442y + 0.003449x 2 - 0.009177xy + 0.0014413 '2

S = -1.092 + O. 1442x - O. 108y - 0.02863x 2 + 0.009283xy + 0.007144y 2 +

0.002026x 3 - O.O0008864x2y - 0.0004913xy '2 - 0.00004331y 3

S = -1.237 + 0.02735x - 0.02508y - O.1311x 2 + 0.03314xy - 0.005875y 2 +

0.01912x 3 - O.O03733x2y - 0.000557xy 2 + 0.0004753y 3 - 0.0007873x 4 +

O.O0007442x3y + O.O0006826x2y 2 - 0.00001512xy 3 - 0.000005812y 4

S = -2.327 + 0.8856x + 0.4347y - 0.422x 2 - O.042xy - 0.062313, 2 + 0.0937x 3 -

O.O09295x2y + 0.009168xy 2 + 0.003004y 3 - 0.008746x 4 + O.O0123x3y -

0.0002126x2y 2 - 0.0003394xy 3 - 0.0000504y 4 + 0.00029x 5 - O.0000345x4y -

O.O0001082x3y 2 + O.O00008993x2y 3 + 0.000003068xy 4 + 0.0000002293y 5
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point stresses of the CST elements and the linear stresses of the LST elements.

It should be remembered, however, that both Oxx and O'xy are significantly small as

c_mpared with _yy. Thus, failure predictic_ns fur the Turner wing by the current CST/LST

modeling technique and ELFINI a._ well as test data will all be in good agreement. Alst_.

there is a doubt as to the accuracy of measured _xx and _xy values, and large stress gradi-

ents at the root trailing edge are certainly affecting accuracy of these small stresses.



CHAPTER 8

ANALYTIC SENSITIVITY RESULTS

8.1 Introduction

Analytic sensitivity calculations are checked by corresponding finite difference deriv-

atives. In addition, computational efficiency issues of employing analytic sensitivities ver-

sus finite difference sensitivities is evaluated. The wing models of choice for all future

discussions are the Gallagher model 1 wing (adrib = 4) and the Denke wing (adrib=2) both

having shear web CSTs.

8.2 Analytic sensitivities vs. finite difference sensitivities

With respect to finite difference methods, the expression

t)X L_X X 2 -- X 1
- (8-1)

_v -=Av v2 - v I

i

describes the derivative of any behavior function "x' with respect to a change in any vari-

able 'v.' For large perturbations in 'v,' truncation error results in inaccurate derivatives

due to it being a first order approximation, while theoretically as Av approaches zero, the

approximation becomes exact. Realistically, this process introduces round-off errors due

to computer finite length representation of numbers (Ref. I).

As an example of shape design variable sensitivity, the Gallagher model under a uni-

form load and it's perturbed version with respect to both xFR and YR are compared. The

analytic sensitivities of the vertical displacement at the trailing edge tip, the first natural

frequency, the leading edge root cap stress and the spanwise plane stress ffyy in the CST
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leading edge wing skin root element are calculated. In using finite differences, perturba-

tions of 0.001% to 0.1% of the characteristic dimension (chord length for XFR and span

length for yR ) are used. The results are found in Tables 8. I and 8.2. The Denke wing

model under a 100 lb. trailing edge tip load is tested in the exact same fashion as above.

Results are shown in Tables 8.3 and 8.4. Since the program is written in double precision,

round-off errors in the finite difference scheme tbr small perturbations do not show for the

range analyzed. For larger perturbations, truncation error explains any discrepancies. The

analytic sensitivities are seen to be in complete agreement.

As an example of sizing design variable sensitivity, the Gallagher model is used and

the same sensitivities are sought, this time with respect to the cross-sectional area of the

leading edge spar cap element. Table 8.5 shows the results. Again, the same performance

as detailed for the shape sensitivities is achieved.

To further exhibit the accuracy of the Gallagher model's analytic sensitivities, a com-

parison between those found from the best CST model (adrib = 5) and those from the LST

model is shown in Table 8.6. Since the maximum deflections differ by 6.7%, it can be

assumed that all sensitivities would yield closer results if each wing model's deflection

behavior were more similar.

A parametric study to assess the usefulness of analytic sensitivities for future optimi-

zation usage is performed using the Gallagher model 1 wing under a 100 lb. trailing edge

tip load. Shape variable XFR is incrementally perturbed to alter the wing planform. The

trailing edge tip vertical displacement, the second natural frequency, the trailing edge root

cap stress and the spanwise plane stress (Yyy for a centrally located CST wing skin element

are plotted versus XFR in Figure 8.1. First order Taylor series representations for each out-

put are obtained from

Q.
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Table 8. I - Analytic vs. finite difference XFR sensitivities - Gallagher CST model I

Shape design variable: leading edge wing tip x-location (XFR)

Output

Parameter

trailing edge tip

displacement

(in. / in.)

I st natural

frequency

(Hz. / in.)

leading edge

root cap stress

(psi / in.)

leading edge root

wingskin sigma Y

(psi / in.)

Analytic

Sensitivity

0.0206

0.991

-269.69

Finite Difference Sensitivity

design variable perturbation

.001 chord .01 chord . Ichord

-269.33 -269.87 -271.61

-697.33 -697.13 -696.03-697.16

0.991 0.994 1.023

0.0206 0.0207 0.0213
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Table 8.2 - Analytic vs. finite difference YR sensitivities - Gallagher CST model I

Shape design variable: wing tip y-location (YR)

Output

Parameter

trailing edge tip

displacement

(in. / in.)

Ist natural

frequency

(Hz. / in.)

leading edge

root cap stress

(psi / in.)

leading edge root

wingskin sigma Y

(psi / in.)

Analytic

Sensitivity

0.1082

-3.68

537.16

590.29

Finite Difference Sensitivity

design variable perturbation

.00 Ispan .0 lspan . lspan

537.12 535.49 520.00

589.99 588.44 571.43

-3.68 -3.63 -3.21

0.1083 0.1091 0.1173
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Table 8.3 - Analytic vs. finite difference XFR sensitivities - Denke CST model

Shape design variable: leading edge wing tip x-location (XFR)

Output

Parameter

trailing edge tip

displacement

(in./in.)

I st natural

frequency

(Hz. / in.)

leading edge

root cap stress

(psi / in.)

leading edge root

wingskin sigma Y

(psi / in.)

Analytic

Sensitivity

7.798x10 "6

1.617x10 "3

0.180

.001 chord

Finite Difference Sensitivity

design variable perturbation

.01 chord . I chord

0.180 0.176 0.139

0.667 0.660 0.6160.667

1.567x10 "3 1.129x10 "3 0.253x10 "3

7.830x10 "6 8.250x10 _ 9.081x10 "6
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Table8.4- Analytic vs. finitedifferenceYRsensitivities- DenkeCSTmodel

Shapedesignvariable:wing tip y-location(YR)

Output
Parameter

trailing edgetip
displacement

(in. / in.)

I st natural

frequency

(Hz. / in.)

leading edge

root cap stress

(psi / in.)

leading edge root

wingskin sigma Y

(psi / in.)

Analytic

Sensitivity

1.082x10 "3

-1.61

8.32

.001 span

Finite Difference Sensitivity

1.083x10 "3 1.089x10 "3 1.155x10 "3

-1.61 -1.60 -1.53

8.32 8.33 8.40

5.64 5.65 5.855.63

design variable perturbation

.01 span . I span
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Table8.5- Analytic vs. finitedifferenceA1_nsitivities - GallagherCSTmodel I

Shapedesignvariable:leadingedgerootcaparea(A1)

Output
Parameter

trailingedgetip
displacement

(in. / in. 2)

I st natural

frequency,
(Hz./in.')

leading edge

root cap stress

(psi / in. 2)

leading edge root

wingskin sigma Y

(psi / in. 2)

Analytic

Sensitivity

-0.0716

2.65

19152.7

.001A!

Finite Difference Sensitivity

2.65 2.65 2.63

19150.7 19134.2 18970.2

-0.0716 -0.0716 -0.0709

21046.9 21044.8 21026.6 20846.4

design variable perturbation

.OIA 1 .IA l
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Table 8.6 - CST vs. LST analytic shape sensitivities - Gallagher CST model !

Output parameter: trailing edge wing tip z-displacement

CST nodal displacement = 1.253 in.

LST nodal displacement = 1.343 in. (6.7 % difference)

Design variable

XFL

XAL

XFR

XAR

CST

model

0.044846

Analytic Sensitivity

LST

model

0.049825

-0.057923

0.022222

-0.009145

-0.064331

0.025040

-0.010533

Percent

difference

9.99

9.96

11.25

13.18

YR

YR

-0.115513

0.115513

0.392320

-.127102

0.127102

0.399118

9.12

9.12

1.70
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bf(XFR) If(XFR) =f(XFR[ o) + _XFR (XFR - XFR[o)
0

(8-2)

and also plotted. Here, XFRIo is the original value of XFR and f(XFRIo) is the value of

any parameter. Additionally, reciprocal first order Taylor series approximations (Ref. I)

are calculated from

2_f(XFR) o( l 1)f(XFR ) --f(XFR[o ) - (XFR[o + a) _XFR XF;+ a XFR[o + a

(8-3)

Here, 'a' is an offset variable to allow for our XFR[o "-- 0 case. Figure 8.1 shows the

reciprocal approximation when a=-30. As can be seen, first order approximations to the

non-linear data yield good accuracy for relatively large perturbations in XFR.

8.3 Computation time assessment

The Gallagher model 1 wing is used for evaluation of CPU time required for analytic

sensitivity calculation. A CPU breakdown of each section of the finite element program is

shown in Table 8.7 with an explanation as follows. Smile solution time includes solving

for every degree of freedom's displacements and all finite element stresses. Dynamic solu-

tion time includes computing all natural frequencies and mode shapes (equal to the num-

ber of degrees of freedom). Design variable sensitivity time includes calculating all

displacement, element stress and natural frequency sensitivities with respect to any single

shape or size type variable.

In looking at the model with four divisions per section, it can be seen that the total

CPU time to compute the model's displacements, stresses, natural frequencies and mode

shapes is 271.811 seconds, with either an additional 14.503 seconds to calculate one set of
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Table 8.7 - Finite element code CPU breakdown - Gallagher CST model I

CPU seconds / module

Program

module

degrees of freedom

finite elements

program initialization

form global stiffness

and mass matrices

static solution:

* displacements

* StlBSSes

dynamic solution:

* natural frequencies

and mode shapes

shape variable sensitivity:

* w.r.t, one variable

* w.r.t, all shape variables

sizing variable sensitivity:

* w.r.t, one variable

* w.r.t, all size variables

solution time:

*no sensitivities

solution time:

* all sensitivities

Number of dummy ribs per section

90 180 270 360 450

156 264 420 552 684

0.100 0.152 0.227 0.316 0.363

0.098 0.176 0.316 0.426 0.496

0.113 0.855 2.656 6.020 11.402

0.016 0.031 0.051 0.062 0.074

3.527 20.065 60.336 138.784 259.476

2.695 4.883 8.277 11.292 14.503

18.865 34.181 57.939 79.044 101.521

0.046 0.098 0.177 0.263 0.361

7.222 25.846 74.144 145.385 246.719

3.854 21.279 63.586 145.608 271.811

29.941 81.306 195.669 370.037 620.051

0 1 2 3 4
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analyticshapesensitivitiesor anadditional0.361secondsto calculateonesetof analytic

sizesensitivities,for aworsecaserun time of 286.314seconds.Usingfinite differences.

thissamemodelwouldhaveto beanalyzedtwice (543.622secondstotal) before even pro-

ceeding with the differencing calculations, thus showi,lg the huge computation',fl advan-

tage of computing the sensitivities analytically within the program.

Notice the disprc_portionate amt_unt of time required t_ calculate the complete set of

model natural frequencies and mode shapes. In the future a new eigenproblem solver will

be added that will solve for only a user specified number of frequencies which will drasti-

cally cut down the run time.



CHAPTER 9

CONCLUSION

A flesh examination of wing finite element modeling practices shows that accurate

displacements and natural frequencies can be obtained using simple triangular elements

(such as the CST and LST) together with rod elements. Smoothing and averaging _f

resulting stresses lead to gh_bally reliable stress predictors. With automatic mesh genera-

tion and dummy elements, finite element models of wings, including their skins, ribs and

spars, can be generated efficiently. The elements used make it possible to obtain deriva-

tives of behavior functions such as displacement, stress and natural frequency analytically

with respect to shape and sizing design variables.

Extensive numerical tests comparing predictors of the current capability developed

with experiments and commercial finite element codes are described. Analytic sensitivity

calculations are compared to finite difference results and optimization package usage of

these sensitivities is explained. Thus, the optimization of wing structural systems during

conceptual or preliminary design phases can be made practical and computationally cost

effective.

Future extensions of this work include:

a) composite material capability,

b) efficient computation of low frequency modes,

c) skin buckling predictions,

d) integration with aerodynamic loads,

e) reliable weight estimation for as-built wings.

The work can also be extended to the modeling of whole airplanes.
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APPENDIX A

ELEMENT STIFFNESS, STRESS AND MASS MATRICES

A.I Rod element

A.I.1 Stiffness matrix

The stiffness matrix for a linear, three dimensional rod in its local coordinates (Ref.

14) is given by

(A-l)

where A is the cross-sectional area, E is the Modulus of Elasticity, L is the element length

and the two degrees of freedom are the axial displacemenLs Ul and u 2 only. To transform

this to the global system, the equation [kglobal] = [T]Tx [klocal] x IT] is used with

- oo,,I
cx cy c

(A-2)

where cx = (x2"x I)/L, cy = (Y2"yI )/L, cz = (z2"z I )/L (directional cosines) and

L = _/(x2-xl)2+ (y2-Yl)2+ (Z2--Zl) 2 (A-3)

to arrive at the symmetric 6x6 global stiffness matrix



!19

2
CX

cxcy

CXCZ

2
-cx

-cxcy

-cxcz -oyez

2
cxcy cxc2. -cx -cxcy -cxc:

2 2
cy cycz -cxcy -cy -cyc:

2 2
cycz CZ --CXCZ --oyez -CZ

2
--CXt'y -t'.l'C Z CX CXCV CXCZ

2 2
-cv -oyez cxcy cy cycz

2 2
-cz cxcz cycz cz

A.I.2 Stress matrix

The axial stress is a scalar and is found through Hooke's stress/strain law o = Ee .

To find the local strain in the rod, this is simply the change in length divided by the origi-

nal length in matrix form as

1 1
eloca I = _(u2-ul) = _-1 1] {UL} (A-4)

with {U L }T = {Ul, u2 }" Global strain is found using the previous transformation

IT] {U G } in place of {U L }:

1 [-1 1] [T] { Uo} (A-5)Egloba I = -_

where {UG} T = {u 1, V1, W 1, U2, V2, W2}. Ill matrix form the stress can now be given as a

scalar using known global displacements as
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(A-6)

or in explicit form as

E_(x2-xl) (u2-ul) + (Y2-Yl) (v2-"l) + (z2-:'l)(w2-wl) 1
G=

2 (A-7)
(x2-x 1) + (y2-Yl)2+ (z2-zl)"

A.I.3 Mass matrix

The mass of a rod element is equal to pAL where p is the mass density with A and L

defined previously. To form the 6x6 lumped mass matrix in the global system, the mass is

allocated evenly to each degree of freedom by dividing by the number of nodes. Thus

pAL
mr°d -- 2

- oooo6
010000

001000

000100

000010

000001

(A-8)

A.2 CST element

A.2.1 Stiffness matrix

The derivation of a constant strain or constant stress triangular element is taken
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directlyfrom Ref. 23andFigureA.1.Its basicassumptionsare:

1.isotropicmaterial

2. uniform thickness't'

3. planestressstate

4. constantstrainin field

Basedonelementgeomeu'y,thedisplacementstatein h_calcoordinatesis

Iff(x,y)] = I(-(b-s)x-hy)ffp+ (-s(x-s) +h (y-s) )ffQ+ XbffRl

[__(x,y).J L(-(b-s)x-hy)_e+ (-s(x s) +h(y s))_,o+xb_,RJ

(A-9)

where b, s, h and a are local geometric variables (b is the major base, s is the minor base, h

is the element height and a is the total area). The strain-displacement relation obtained by

differentiating the above with respect to x, y and z is then

t'i, ° "!'ilooo
% -h -(b-s) h- 0

"ffp

_p

_Q

_Q
_R

v R

= _B_ { Uz,} (A-lO)

and the displacement transformation law from global coordinates is
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_p

Vp

uQ =

v¢2

u R

v R

Up

Vp

Wp

_ u O

EO] t'(2

we
u R

v R

w R

= [A] { U. } (A-I !)

where

(A-12)

and

(A-13)

The I, m and n terms are direction cosines of the local axes with respect to the global

axes with

l I = -_ (xR- (xo. - x v) - xe) (A-14)



123

] $

ml = -_ (YR-(_) (Y(d-Yp) -YP) (A-15)

1 S

nj = -_ (ZR-(_) (ZQ-Z e) -zp) (A-16)

I

12 = -_ C._'c_- x e) (A-17)

1

m2 = -_ (Y(d- YP) (A-18)

1

n 2 = -_ (zQ-z e) (A-19)

Due to the plane stress assumption, Hooke's Law gives

%
x'y

Iv ]{1 -- v 2 Eyy Eyy

0 e_, exy

(A-20)

where E is the Modulus of Elasticity and _ is poisson's ratio. To find the stiffness matrix

in local coordinates, integrating over the area via

[k L] = f [B] T [D] [B] d V = t f [B_ T [D] [B] d S = Ikn] + [ks_
V S

(A-21)

assuming a constant thickness 't' results in

L
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_ Et

[k'n] 4a(l- v2)

(b-s) 2 v(b-s)h

v(b-s)h h 2

(b -s) s vhs

-v(b-s)h -h 2

-(b-s) b -vbh

() ()

(b-s)s -v(b-s)h -(b-s)b 0

vhs -h 2 -vbh 0

s 2 -vhs -bs 0

-vhs h 2 vhb 0

-bs vhb b 2 0

() () (} 0

(A-22)

and

E_cs1 E t8a(l +v)

h 2 (b-s)h

Ib-s)h (b-s) 2

-h 2 - (b - s) h

hs (b-s)s

0 0

-bh -(b-s) b

-h 2 hs 0 -bh

-(b-s) h (b-s)sO-(b-s)

h 2 -hs 0 bh

-hs s 2 0 -bs

0 0 0 0

bh -bs 0 b 2

The 9x9 global stiffness matrix for the CST is then

(A-23)

(A-24)

A.2.2 Stress matrix

Using Hooke's Law again, the 3x I CST stress vector is given by

tox }
xy xy

(A-25)



A.2.3 Mass matrix
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The mass ofa CSTelement is equal to pAt where p is the mass density with A and t

defined previously. To form the 9x9 lumped mass matrix in the global system, the mass is

allocated evenly to each degree of freedom by dividing by the number of nodes. Thus

pAt

mcsT- 3

-100000

010000

001000

000100

000010

00000

(A-26)

A.3 LST element

A.3.1 Stiffness matrix

The derivation of a linear strain triangular element is taken directly from Ref. 17 and

Figure A. 1. It's basic assumptions are:

1. isotropic material

2. uniform thickness

3. plane stress state

4. linear strain in field

The local 12x12 stiffness matrix is given by

IkL] = [M_r[-/_[M_ (A-27)
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with

I

"3bI 0 -b 2 0 -b 3 0 4h 2 0 0 0 4h 3 0

-b I 0 3b 2 0 -b3 0 4b i 0 4b 3 0 0 0

-b I 0 -b 2 0 3b 3 0 0 0 4b 2 0 4b I 0

0 3aj 0 -a 2 0 -a 3 0 4a 2 0 0 0 4a

0 -a t 0 3a 2 (1 -a_ 0 4a I 0 4a 3 0 0

0 -a I 0 -a 2 0 3a 3 0 0 0 4a 2 0 4a

3a I 3b I -a 2-b 2-a 3-b 34a 24b 2 0 0 4a 34b 3

-a I -b] 3a 23b 2 -a 3 -b 34a t 4b i 4a 3 4b 3 0 0

-a l-b l-a 2-b 23a 3 3b 3 0 0 4a 24b 24a I 4b I

(A-28)

and

at
[u] =

2Cll Cll ell 2c12 c!2 c12 0

Cll 2Cll Cll c12 2c12 el2 0

Cll Cll 2Cll c12 c12 2c12 0

2c12 Cl2 Cl2 2c 2 c22 c22 0

c12 2c12 c12 c22 2c22 c22 0

Cl2 cl2 c12 c22 c22 2c22 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 2c33 c33 c33

0 0 0 0 c33 2c33 c33

0 0 0 0 c33 c33 2c33

(A-29)

where Cll = c22 = E/(I. v2), c12 = vE/(l_ v2) and c33 = E(1 - v)/2(!, v2 ) = E/2(I + v)- The

global geometry variables {B} = {a I , a2, a3, b 1, b2, b 3 } are linked to the local geometry

variables {G } = {b, s, h, a } by
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a i = -h a2 = h a 3 = 0

b I = s- b b 2 =-s b 3 = b

To find the 18x !8 global stiffness matrix, transfomlation is the same as for the CST in

.section A.2. I using

Ek,_= L[O] [kOL[O] [AIJ
(A-30)

A.3.2 Stress matrix

Using Hooke's Law, the 9x I stress vector consisting of t_xx. Oyy and _xy for each of

the three end nodes P, Q and R is

t_xy

t_xy
t2

(_.g.X

t_xy R

[cl [o] [o]]= [o] [c] [o]|
L[O] [o] [c]j

_.r.x

Exy P

{'-}
xy Q

Exy R

= [G'] {_} (A-31)
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where

[c] _E2 I

I-v 0 __vl

(A-32)

and

1_:} = [M] {UL} = [M] [/kl {U(.;} (A-33)

Therefore,

I_X.l:

Oxy P

{-
% Q

%
ff

xy R

(A-34)
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l

b,13

b = YQ" YP
Ylocal

I, _.h _ s:VT" _v_

Q_._ h-XR" ^T

-_'_-'_"- _1 a = 112 bh

P CST element [P Q R]

Ylocal b = YQ" YP

bl _ 1 g a2 =0

b b-, _ Xtocat

P

LST clement [P Q R T U V']

Ftgure A. 1 - Triangular membrane elements used



APPENDIX B

ELEMENT COORDINATE SHAPE VARIABLE DERIVATIVES

B.I d{X}/d(XFL, XAL, XFR, XAR, YL, YR)

Based on the geometry in Figure 3.1. it can be seen that every "y" value at point

'i' is a linear combination of YL and YR such that

Yi = YL +Ps(YR-YL) = (l--ps)YL+psYe (B-l)

where Ps = percent span ratio in the y-direction and is given by

Yi - YL
Ps --

YR - YL

Now, differentiating Yi with respect to the six shape variables yields

(B-2)

dyi/dxFL = 0

dYi/dXAL = 0

dY-r/dXFR = 0

dYi/dXAR = 0

dYi/dY L = 1 - Ps

dyi/dYR = Ps

For the 'x' values at point 'i,' if "i" is along either the wing root or wing tip, the situa-

tion is the same as for the 'y' values above. Along the root, 'x' is given by
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x i = XFL+Prc(XAL--XFL ) = (1--Prc)XrL+PrcXaL (B-3)

while along the tip, 'x' is given by

);i = XFR + Ptc (XAR -- XFR) = ( [ -- Pt, ") "rFR + Pt,'XAR (B-4)

where Prc = percent chord ratio along the root and Ptc = percent chord ratio along the tip

and are given by

X i -- XFL

Pro -- (B-5)
XA L -- XFL

and

X i - XFR
Pie - (B-6)

XAR . XFR

Therefore, differentiating x i along the root with respect to each shape variable gives

dxi/dXFL = 1 -Prc

dxi/dXAL = Pr¢

dx/dxFR = 0

dxi/dXAR = 0

dxi/dY L = 0

dxi/dY R = 0

while doing the same along the wing tip yields
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dxi/dXFL= 0

dxi/dXAL= (I

dxi/dXFR= 1- Ptc

dxi/dXAR= Ptc

dxi/dYL = (I

dxi/dYR= 0

For all remainingnodes,the 'x' valuesarealinearcombinationof all four 'x' -valued

shapevariables.Fortunately,dueto thenatureof thewing geometry,sinceweknow the

'x' derivativesalongboththeroot andtip, it is astraightforwardprocessto interpolate

what theyshouldbefor anypoint 'i' acrossthespan.In otherwords

Xi -- (Xi) root q'Ps [ (Xi)tip -- (Xi) root] (B-7)

or

x i = [ (1 --Prc)XFL+PrcXAL] (1 --Ps) + [ (1 --p,c)XpR+PtcXAR]ps (B-8)

where Ps has been defined above (eqn. B-2). Differentiating with respect to each shape

variable then yields the more general and final form of

dxi/dXFL = (1 - Prc)(l - Ps)

dx_dXAL =Prc( 1 - Ps)

dxi/dXFR = (1 - Ptc)Ps

dx_dXAR = PtcPs
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dxi/dy L = 0

dxi/dy R = 0

As one can see, this reduces to the simplified forms along the root and tip above when

Ps equ',ds 0 and 1. respectively. When the depth distribution is given in gh_bal co,ordinates,

then all 'z' values at point 'i' are independent of these shape variables so that their deriva-

tives are equal to zero. If the depth distribution is dependant on the wing trapezoid shape,

sensitivities with respect to shape variables must be included.

In summary,

OXFL Yi = 0

z i 0

(B-9)

 txi//rrc 'tOXaL Yi = 0
Zi 0

(B-10)

_/xi_XFR Yi

7.i

( 1 - Ptc) Ps ]

0

0

(B-li)

_t xi_XAR Yi
Zi

0

03-12)
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o{x}ay L Y;
zi

1 - Ps

0

(B-13)

ay R Yi = Ps
Zi 0

(B-14)

B.2 d{X}/d(o0

Based on the geometry in Figure 3.1, it can also be seen that for any nodal point 'i',

if given a 'y' value, then the corresponding 'x' value is given by

x i = yitanot+C (B-15)

where C is any constant. If all 'y" and 'z' coordinates are assumed to be independent of the

sweep angle, differentiating with respect to the design variable Ot gives

__ Yi =

Zi 0

(B-16)



APPENDIX C

SHAPE VARIABLE SENS|TIVITIES

C.1 Global displacement sensitivity with respect to any shape variable

Fn_m the basic static equation [K]{U} = {F]. _,ne can differentiate with respect to

any shape design variable 13to get

EK]O {u} _9[K] _){F} (C-I)a--U + _----U{u} = a[3

where [K] is the global stiffness matrix, {U} is the global displacement vector and {F} is

the global load vector.

For any loading case in which the applied loads are independent of model geometry,

a{u} _[K]
- [xq-_ {u} (c-2)

vp,

With [K] and { U} having already been computed, and the partial derivative of

displacement with respect to any shape design variable desired, it is only necessary to

compute the global stiffness matrix derivative. This is done on an element by element

basis and the individual results are then merged as done when forming [K] previously.

C.I.I Rod element stiffness sensitivity

Using chain rule differentiation, the derivative of a rod element stiffness matrix with

respect to any shape design variable is
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(C-3)

where {X} = {x 1, Yl. Zl, x2, Y2, z2}- The partial differentiation of {X} with respect to any

design variable has previously been calculated in Appendix B. To find the partial deriva-

tive of [kG] with respect to the ,'od element's nodal coordinates {X }. straight-forwaJd

chain rule differentiation is carried out (with the following simplifications: Ax = x2 - x 1,

Ay = Y2 "Yi, Az = z2 - Zl) with 'i' ranging from 1 to 6:

_9[k_ _ I [AA]i _[AA] t

,gXi L-[aa]i [aa]iJ

(C-4)

where

[AA] j

3AEI (ax)3 (Ax) 2Ay (Ax) 2Az]

/(Ax)2Ay (Ay) 2Ax ixAyAz[-

L( )2AzAxAyAz (Az) 2AxJ

-ZT Ay 0
Az 0

(C-5)

[AA] 2
Ax) 3 (Ax) 2Ay (Ax) 2Az]

3AEI(Ax)2Ay (Ay)2Ax A.xAyAz[

L5 [.(&x) 2Az AxAyAz (Az) 2AxJ + "-'L'f[Ay 0Az 0

(C-6)

[AA] 3
r(Ax)2Ay (Ay)2Ax AxAyAz] AEIO

3AE[(Ay)2Ax (Ay) 3 (Ay)2Ax]-"_'lAx

Ls LAxAyAz (Ay) 2Ax (Az) 2AyJ L L0

2Ay

Az

(C-7)
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IAAl_=-T/(a,.}-_a_ _a:,) -_ (Ay) 2AxJ+_- T A.r2Ay (C-X)

Laxa:,az (a:,) 2ax (az) 2ayj o a:

[AAI5- -_ |axayaz (ay)2az (az)2ay[ -AE o ay (C-9)

L(Az)2A.x (Az)2Ay (Az) 3 J _LAxAy 2A

[AA] 6
[(Ax) 2Az AxAyAz (Az)2Ax]

=-3A--e|Axa,az (a: )=az (Az)2AyI+AEL_O0L5 " xL(az)2ax (az):ay (az) 3 d

0 Ay

Ay 2A
(C-10)

Then, the 6x6 rod element global stiffness matrix sensitivity with respect to shape design

variable 13is

_1_ = OX 1 _13 + _X 2 _13 "4-...+ _X 6 _

(C-11)

C.1.2 CST element stiffness sensitivity

Chain-rule differentiation of 9x9 CST stiffness matrix [kG] with respect to any shape

design variable gives

(C- 12)



138

so that only the partial derivative of IkG! with respect to {X } needs to be found. To calcu-

late this, differentiation of the matrix expression for [kG] yields

aixt

where {X} = {x !, Yl, Zl, x2, Y2, z2, x3, Y3, z3}. All undifferentiated matrices are known so

that the only unknowns are the transformation matrix derivatives and the local stiffness

matrix derivatives each with respect to nodal coordinates.

Before proceeding, all geometric variables will be linked to each other through

Figure A. I and the following equations:

{L} = {11, 12, 13} = function of IX] only where

11 = [(x3 " x2) 2 + (Y3 - Y2)2 + (z3 "z2)2] 1/2

12 = [(x3 - Xl) 2 + (Y3" Yl) 2 + (z3 - Zl)2] 1/2

13 = [(x2" Xl) 2 + (Y2" Yl) 2 + (z2" Zl)2] 1/2

{G } = {b, s, h, a } = function of {L } only where

b=l 3

s = (122 + 132 - 112)/(213)

h = [122 - (122 + 132- 112)2/(4132)] I/2

a = (1/2) 131122 - (122 + 132 - 112)/(4132)] 1/2

[kL] = function of Young's Modulus, thickness and {G} only

[A] = function of {G } and I X } only

L
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C.I.2.1 d[kL]/d{X}:

Chain rule differentiation of the 6x6 [klocal] with respect to vector { X } gives

03{X} 03{G} c3{t} O{X}
(C- 14)

where

{G} - 03{G} + 03{G-----]-
(C- 15)

and the following derivatives are used:

m

03G1 4a ( 1 - v2)

"2(b's) vh s -vhs-2b

vh 0 0 0 -vh 0

s 0 0 0 -s 0

-vh 0 0 0 vh 0

s- 2b -vh -s vh 2b 0

0 0 0 0 0 0

(C-16)

03G2 4a ( 1 - v 2)

"2(s-b) -vh s -vh s-2b

vh 0 0 0 -vh 0

s 0 0 0 -s 0

-vh 0 0 0 vh 0

s- 2b -vh -s vh 2b 0

0 0 0 0 0 0

(C-17)
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_G3- 4a (I - v 2)

0 (b-s) v 0 -(b-s) v 0 6
(b-s) v 2h sv -2h -by 0

0 sv 0 -sv 0 0

-(b-s) v -2h -sv 2h by 0

0 -by 0 by 0 0

0 [) 0 0 0 0

(C-18)

Et
bG4 4a 2 ( 1 - v 2)

(b - s) 2 _ (b - s) vh - (b - s) s (b - s) vh

- (b - s) vh -h 2 sv h 2

- (b - s) s sv -s 2 vsh

(b - s) vh h 2 vsh -h 2

(b - s) b vbh bs -vbh

0 0 0 0

(b-s) h

vbh 0

bs 0

-vbh 0

-b 2 0

0 0

(C-19)

0G l 8a ( 1 + v)

h 0 00 -h

h 2(b-s)-h s 0s-2t

0 -h 0 00 h

0 s 0 00 -s

0 0 0 00 0

-h s-2b h -s0 2b

(C-20)

_ksl Et

_9G2 8a ( 1 + v)

-0 -h 0 h 00"

-h-2(b-s) h b-2s0 b

0 h 0 -h 00

h b-2s -h 2s 0-b

0 0 0 0 00

0 b 0 -b 00

(c-2D
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_G 3 8a (I + v)

2h (b-s) -2h s 0-/)

b-s) 0 -(b-s) 000

-2h -(b-s) 2h -sO b

s 0 -s O0 0

0 0 0 O0 0

-h () h 0 0 0

(C-22)

_G 4 8a ( 1 + v)

-h 2 -(b-s) h

-(b-s)h -(b-s) 2

-2h (b - s) h

-sh - (b - s) s

0 0

bh (b -s)b

-2h -sh 0

(b-s) h -(b-s)s 0

-h 2 sh 0

sh -s 2 0

0 0 0

-bh bs 0

bh

(b -s)

-bh

bs

0

_b 2

1)(a

(C-23)

along with

_{G}

_{L}

0

Ii

- l l(l_+132-1_)

2hl_

l I (l_+l]-l_)

8a

0

12

12 ( l_ + 1_ - l_)

2hl_

12 (l_ + 123- l_)

8a

1

121+ 123- l_

( l_ + l] - l_) ( l_ - l_ - l])

4hl]

13 (121+ l_ - l_)

8a

(C-24)

and
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0 0 0 lz /i /i

O{L} _ x l-x 3 Yl-Y3 zl-z3 0 0 0

{X} 12 l 2 12

Xi'--X 2 X I --X 2 Zl--Z2 X2--XI Y2--Yl Z2--Zl

13 13 13 13 13 13

x2 - x3 Y2 - Y3 Z2 -- Z3 X3--X2 )'3--Y2 Z3--Z2

/ I /l 11

X3-Xl Y3-Yl Z3--Zl

12 / 2 12

(C-25)

Thus, to find the derivative of [k L] with respect to any X i, chain rule summation yields

aX i - i)G l i) {L} aX i + "'" + c)G 4 () {L} OX i (C-26)

where aG.i 'J' a {G } a {L }
O{L} isthelx3row of a{L} and OX i

is the 3x I column 'i' of

a{L}

a {.x}

d [h]/d[X]:

Chain rule differentiation of the 6x9 transformation matrix [ A] with respect to {X }

gives

oC^ a{o} a[^3
D{X} - a{G} a{L} a{x} +a{x}

(C-27)
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where
D{X} is the total derivative since there is explicit dependance of [A] on IX}.

The following new derivatives are used:

-[AA] i (0] [Oil
[Ol [AA] i [0]

[0] [01 [AA]

(i = I to 4) (C-28)

with

[AA] t

sCx2-xj)

= b2h

(x2-x 1)

b 2

s(yz-y 1) s(z2-zl)

b2h b2h

(Y2 -Yl) (z 2 -zj)

b 2 b 2

(C-29)

f (X2bhXJ)
[AA]2 = -..

(Y2 -Yj) (z2 -zj) l
bh bh

0 0

(c-3o)

[AA]3
= --b(x2-xl ) -x I

h 2

0

$

Y3--_ (Y2-Yl) -Yl

h 2

0

Z3--_(Z2--Z 1) --Z

0

(C-31)

[AA ] 4 (C-32)
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and

_[-A3 -[BB]i
- [0]

_gXi
[o]

[Ol

[BBI
[0]

[o1

[o1

[BBI
(i = 1 to 9): (C-33)

with

[BB] I I'l(b- z) o

1 o
b

(C-34)

[BB] 2
l( s -l) 1

= h b

_!
b

(C-35)

[BB] 3 I"lo_(b-_
1

0 -b

(C-36)

[BB] 4 (C-37)

[BB]s I'l= -b-h

I

b

(C-38)

4-
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[BBI6 (C-39)

(C-40)

[BB] 8 = (C-41 )

fit[BB]9 =

0
(C-42)

C.1.3 LST element stiffness sensitivity

Chain-rule differentiation of [k G] with respect any shape design variable gives

-- a x}
(C-43)

so that only the partial derivative of [k G] with respect to {X } needs to be found. To calcu-

late this, differentiation of the LST matrix expression for [kG] yields
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a{X) [kL] a{X-----} on{X-"----} [X] + a{X-----( IkLl [_,l
(C-44)

where {X} = {x I, Yl, Zl, x2, Y2, z2, x3. Y3} even though the LST has twice the number of

nodes of the CST element. The reasoning is that since the side nodes are assumed to be

placed at the mid-point c_f each side. their h_cadon depends tm the corner nodes. All undif-

ferentiated matrices are known so that the only unknowns are the transformation matrix

derivatives and the local stiffness matrix derivatives with respect to nodal coordinates.

Like the CST element, all geometric variables will be linked to each other through

Figure A. 1 and the following equations and vectors:

{L } = {1i 12 13} = function of {X } only where

11 = [(x3" x2) 2 + (Y3" Y2)2 + (z3 "z2 )211/2

12= [(x3" Xl) 2 + (Y3- Yl) 2 + (z3" Zl )2]1/2

13 = [(x2 - Xl) 2 + (Y2 - Yl) 2 + (z2 - Zl )2]1/2

IG} = Ib s h a} = function of {L} only where

b=l 3

s = (122 + 132 - 112)/(213)

h = [122 - (122 + 132 - 112)2/(4132)] 1/2

a = (l/2) 131122 ' (122 + 132 - 112)/(4132)] 1/2

(B} = {al a2 a3 bl b2 b3} = function of {G} only where

al =-h

a2=h

a3=0

bl =s-b

b2 = -s
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b3=b

[k L] = function of Young's Modulus, thickness, {G} and {B} only

[A1 = function of {G} and {X} only

d[kL]/d{X}:

Chain rule differentiation of 12x12 [kL] with respect to IX} gives

- +
a{x} a{B}a{c}a{x} o_{6}a{x}

(C-45)

From the CST element in Appendix C. 1.2 we have the 4x9 derivative matrix d{G}/d{X}

already. Differentiating each component of {B } with respect to each component of {G }

gives the 6x4 matrix

a{B}
a{G}

"0

0

_ 0

-1

0

1

0 -1 d
0 I0

0 O0

1 O0

-lO0

0 O0

(C-46)

All that remains is the single derivative of [k L] with respect to both {B} and {G}

where [kL] = [M]T[N][M] from Appendix A.3.1. Differentiation of the 12x12 local stiff-

ness matrix against the six components of vector {B } yields

_-- - [M]r[N]--+_ [N] [M]
a{B} a{B} o_{B}

(C-47)

with all undifferentiated matrices previously known ([N] is not a function of {B}).
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Straightforwarddifferentiationof 9x12[M] with respectto {B} yields

_Bl 2a

-0 0 00000()0(100
0 0 0000000000
0 0 0000000000
0 3 0000000000
0 -I 000(1()4()()00
0-10000000004
3 0 0000000000

-100000400000
-100000000040

(C-48)

O0
O0
O0

1 O0
- 2aO0

O0
O0
O0
O0

o o oooooood
0 0 00000000

0 0 00000000

0-100040000

0 3 00000000

0-100000400

-1000400000

3 0 00000000

-1000004000

(C-49)

00

00

00

_[MJ 1 00

_B 3 - 2a 00
00

00

00

00

oo o 0000006
O0 0 0 000000

O0 0 0 000000

O0 0-1000004

O0 0-1000400

O0 0 3 000000

00-1 0 000040

00-1 0 004000

O0 3 0 000000

(C-50)
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- '.-- __

_B 4 2a

3 0 0000000001_

-I () 00004 00 000

-1 0 0000000040

0 0 0000000000

0 0 0000000000

{) {) 0 00{)0 O0 0 O0

{) 3 000()0()1)000

0 -1 0000040000

0 -I 0000000004

(C-51 )

1

2a

"00-1 0 0040000()

oo 3 o oooooooo
00-1 0 00004000

00 0 0 00000000

00 0 0 00000000

00 0 0 00000000

00 0 -100040000

00 0 3 00000000

00 0 -100000400

(C-52)

cgB6 2a

-O000-1 0 00004()

0000-1 0 004000

0000 3 0 000000

0000 0 0 000000

0000 0 0 000000

0000 0 0 000000

0000 0 -1 000004

0000 0 -1000000

0000 0 3 000400

(c-53)



150

Differentiation of the 12x 12 local stiffness matrix against the four components of

vector {G} gives

aE*J + oEq'
o_{G} - [M]rINlalG-----T 3{G------T IN] [M]

(C-54)

with all undifferentiated roan'ices previ_Jusly km_wn t[N] is not a function of {G}).

Straightforward differentiation of 9x 12 [M] with respect to {G } is simplified since

[M] is not a function of G 1, G 2 or G 3. Therefore,

m

oqG l o3G2 c3G3
=0 (C-55)

and

1
3G 4 2a 2

-3bj 0 -b 2 0 -b 3 0 4b 2 0 0 0 4b 3 0

-b I 0 3b 2 0 -b 3 0 4b i 0 4b 3 0 0 0

-b t 0 -b 2 0 3b 3 0 0 0 4b 2 0 4b t 0

0 3a I 0 -a 2 0 -a 3 0 4a 2 0 0 0 4a

0 -a I 0 3a 2 0 -a 3 0 4a I 0 4a 3 0 0

0 -a I 0 -a 2 0 3a 3 0 0 0 4a 2 0 4a l

3a I 3b l-a 2-b 2-a 3-b 34a 24b 2 0 0 4a 34b 3

0 0

0 0 4a 2 4b 2 4a I 4b

-a I -b I 3a z 3b 2 -a 3 -b 3 4a I 4b I 4a 3 4b 3

-a I -b t -a 2 -b z 3a 3 3b 3

(C-56)

Thus, all necessary derivative matrices are known and d[kL]/d{X} can be calculated.
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d IA]/d[X]:

Since the 12x18 LST transformation matrix is formed from two 6x9 CST ts'ansforma-

tion matrices, the derivative with respect to {X} is simply the CST's transformation deriv-

ative with respect to {X} (Appendix C. 1.2) used twice ax

9-'1

3{X}

[0]

[o1

g{x}

(C-57)

C.2 Global stress sensitivity with respect to any shape variable

Unlike displacement sensitivities, stress sensitivities can be calculated on an element

by element basis.

C.2.1 Rod element stress sensitivity

The derivative of the rod element's scalar axial stress is

'3a ga b{X} 3a _{Ua}
1_ = _ {x} 3-if- + _ {v a} _fs (c-58)

where (X} = Ix 1, Yl, Zl, x2, Y2, z2} and U G = {u 1, v 1, w 1, u 2, v2, w2}.With the design

variable displacement and coordinate derivatives having been previously calculated, all

that is necessary is the derivative of the stress equation with respect to {X } and {U G }. For

completeness, this results in
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_o _ E [L2(u2_ul ) 21 t) + CY', (v2 + (z2-z j) I (x. I
OXI L4 - (x2-xl)(u2-u -Yl ) -vI) (w2-w I) -x I)

3o _ EIL2(v._ -21 ul) + (.v, y_) + (z,-z I) I (.v- I
3y I L a - vl) (x2-x I) (u 2- - (v2-v t) . (w2-wl) .-Yl)

(C-59)

(C-60)

30 E

3z I L a
[L2(w.,-wt)-21(x2-x l)(u2-u l) +(Yz-Yl)(v2-vl) + (Z,-Zl)(w2-wl)l(z'.-zl)l (C-61 )

_x 2 _x I

3Y2 3Yi

_Z 2 _Z 1

and

(C-62)

(C-63)

(C-64)

Ot_ _ E

_U 1 L 2 (X2--X 1)

(C-65)

_90 _ E

_V 1 L2 (Y2- Yl)

i90 _ E

Ow i L 2 (Z2- Zl)

/9o Oo

/gu2 _u I

/)o _o

OV 2 _V l

i9o 3g

3w 2 19w!

(C-66)

(C-67)

(C-68)

(C-69)

(C-70)
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C.2.2 CST element stress sensitivity

Using chain-rule differentiation on the CST stress equation yields

O s

Oxy

T

a { u_;t
=E,,-IB,]E,,]_-

,-tIAI a[81
---,-Ec_ E_]-_-rIu_l-,-l-v]-_- t-^]_'-'_I (C-71)

where {UG} = {u 1, v 1, w I, u2, v2, w 2, u 3, v 3, w 3 } and all undifferentiated matrices are

previously known. The displacement sensitivity vector is also known as it was calculated

above. Therefore, to find the CST stress sensitivities with respect to shape, only the trans-

formation matrix derivative and [B] matrix derivative are needed. Fortunately, the trans-

formation derivative has already been found to be

a_A_ I_j} a {G} a {L} a[A]= a{L} a{X} + a{x----}-

a{x}
-a--13 (c-72)

Thus, to find d[B]/d(_),use the chain rule to get

a[B] a[B] a{G}a{L} a{x}

= a{G} a{L} a{x}
(C-73)

Here, the only unknown is d[B]/d{G) which can be explicitly found as
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r.)[BI

s 0 s-2-- O 00
b2h b2h

o k o -L oo
b 2 b2

1 s 1 s
O0

h 2 t,2h b 2 b2h

(C-74)

a [B]
_G 2

b__ 1 0 O0o -b-fi

0 0 0 0 O0

o o _ oo
(C-75)

a [81

_G 3

-(b -s)

bh 2

- 0

0

s 1
0 _ 0 --- 0

bh 2 h 2

0 0 0 0 0

(b-s) s
0 _ 0 --

bh 2 bh 2 h

(C-76)

o [B]
c_G4  oooo - 0000

0000

(C-77)

C.2.3 LST element stress sensitivity

Using chain-rule differentiation on the LST stress equation yields the 9x I stress

derivative vector with respect to any shape design variable [3 as
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(_7..g

(_yy

(Ix v

a,u

(_x,v

(Yxv

I_t x

{_y y

(Jxy

(C-78)

where all undifferentiated matrices are previously known. The displacement sensitivity

vector is also known as it was calculated in Appendix C. 1. Therefore, to find the LST

stress sensitivities with respect to shape, only the transformation matrix derivative and

[M] matrix derivative are needed. Fortunately, the transformation derivative matrix has

already been found above to be

[0]

[o] a {x}

(X} (C-79)
-gg-

Thus, to find d[M]/d(_), use the chain rule as before to get

3[M] c3{G} o_{L} _}{X}
/}[M] /)[M] _){B} _){G} _){L} +-

= (_){B} o-){G} _){L} o_{X} c3{G} c3{L} _}{X})_-_
(C-80)

All of these derivative matrices have been previously calculated in Appendix C.
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C.3 Natural frequency sensitivity with respect to any shape variable

Differentiating the eigenvalue equation

[K-to2M] {_} = {0} (C-81)

with respect to any shape design variable 13yields

rr_ [K] 20 [M] 7,h

(C-82)

which is actually the sensitivity of the eigenvalue k = co2. The global mass sensitivity

matrix /) [M] is the only new entry. To calculate this, individual element mass sensitiv-

ity matrices are calculated and then merged similar to what is done for the global stiffness

matrix.

C.3.1 Rod element mass matrix sensilivity

Differentiating the 6x6 global rod mass matrix (Appendix A. 1.3) yields

[1t4,o d] _ [ Mro d] _ {X}
- (C-83)

a{x}
where _ has been derived previously and {X} = {x 1, Yl, Zl, x2, Y2, z2}- Explicit dif-

ferentiation of Mrod with respect to {X} yields (since it's length L is a function of {X })
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IMroaJ oA
--_Xj = -2-L (x2 -xj) il]

(C-_4)

0 [Mr.a] oA

-OX2 - 2L (Y2-Y_) [I1
(C-85)

0 [Mroa] 9A

OX3 - 2L (z2- zl) [1]
(C-86)

[Mroa] 9A

- _3X4 = 2---L(x2 - xl) [I]
(C-87)

[M,oa] Oa
- OX5 - = 2_ (Y2-Yl) [1]

(C-88)

[Mrou] pa
OX6 = 2"-Z(z_- z,) [0

(C-89)

where 9 is the density, A is the cross_sectional area, L is the length and I is a 6x6 identity
matrix.

C.3.2 CST element mass matrix sensitivity

Differentiating the 9x9 global CST mass matrix (Appendix A.2.3) yields
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[Mcs T] _ [Mcsrl 0 {X}
- (C-90)

alx}
where o-T has been derived previously and {X} = {x 1, Yl, Zl, x2, Y2, z2, ×3.3'3, z3 }.

Chain rule differentiation of MCS T with respect to {X } yields (since it's area 'a" is entry

#4 in the geometry vector {G } = {b. s, h. a } )

3 [Mcs T] O [Mcs T] 3 {G} O {L}
m

O{X} O{G} O{L} O{X}
(C-91 )

where {G} = {b,s, h,a} and {L} = {! 1, 12, 13}. Since MCS Tis not a function ofb. s or h, a

more exact form gives

O [M cs r] O [ M csT] Oa O { L }

O {X} Oa 0 {L} O {X}

a{L}

with 3x9 matrix _ {X} already having been calculated. Thus

(C-92)

O[Mcs T] pt OG4 0{L}

_X i 3_{L} _X i
[I] (C-93)

where p is the density, t is the cross-sectional thickness and I is a 9x9 identity matrix.



APPENDIX D

SIZE VARL-kBLE SENSITIVITIES

D.I Global displacement sensitivity with respect to any size variable

Frum the basic static equation [K]{U} = {F}. one call differentiate with respect to

m_y size design variable _ to get

r.._oa{U} o_[K] o3{F} (D-I)
LKJ,9-----_-+ oq_ {u} = ,3K:

where [K] is the global stiffness matrix, {U} is the global displacement vector and {F} is

the global load vector.

For any conservative loading case in which the applied loads are independent of

model geometry,

_9{u} ___)[K]
-_ic - [K] _ {U} (D-2)

Again, [K] and {U} are known and the stiffness matrix derivative must be formed via

merging element by element. But, since a sizing variable exists for each finite element,

the derivative of the global stiffness matrix of the system with respect to any one size

variable reduces d[K]/d(_) to a matrix whose only entries are that of the element's stiffness

matrix derivative with respect to it's own size variable. When this extremely sparse matrix

is multiplied by the corresponding entries in {U }, the global displacement derivative is

easily calculated.
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D.I.I Rod element stiffness matrix derivative with respect to it's area

Since [kG] for rod element 'i' is a linear function of it's area,

[kc;]i E

bA i L

cx 2 cxcy cxcz -cx" -cxcv -cxc

cxcy cy 2 cycz -cxcy -cy 2 -cyc

cxcz cycz cz 2 -cxcz -cycz -cz 2

-cx 2 -cxcy -cxcz cx 2 cxcv cXCZ

--cxcy -cy 2 --cycz cxcy cy 2 cycz

--CXCZ --cycz --CZ2 CXCZ cycz CZ2

(D-3)

where E is the Modulus of Elasticity, L is the element length and cx, cy and cz are the

direction cosines given in Appendix A. 1.1.

D.1.2 CST element stiffness matrix derivative with respect to it's thickness

Since [kG] for CST element 'i' is a linear function of its thickness,

[ kG] i

J_t i

rO [kL]

- [^], :[A]= [A]_i3[kN+ ks];
_)ti [A]i

(D-4)

where
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_ti 4a ( 1 - v 2)

and

(b-s) 2 v(b-s) h

v(b-s) h h 2

(b-s)s vhs

-v (b - s) h -h 2

- (b- s) b -vbh

0 0

(b-s)s -v(b-s)h -(b-s) b 0

vhs -h 2 -vbh 0

s 2 -vhs -bs 0

-vhs h 2 vhb 0

-bs vhb b 2 0

0 0 0 0

(D-5)

_t i 8a ( I + v)

h 2 (b-s)h -h 2 hs 0 -bh

(b-s)h (b-s) 2 -(b-s)h (b-s)sO-(b-s)

-h 2 - (b - s) h h 2 -hs 0 bh

hs (b - s) s -hs s 2 0 -bs

0 0 0 0 0 0

-bh - (b - s) b bh -bs 0 b 2

_:jv and ks are the normal and shear stiffness matrices.

(D-6)

D.I.3 LST element stiffness matrix derivative with respect to it's thickness

Since [k G] for LST element 'i' is a linear function of its thickness,

0 [kc] i
Oti _ r-TL_r_

[kz] Ix7
i _t i L-_i

(D-7)

where

OIkL_i _ T_[N] i

[M], (D-8)
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and

0 [N] i a

_t i 12

2c_j c_j ctt 2c12 Cl2 el2 0 0 0

clj 2cll ell el2 2Cl2 Cl2 0 0 0

Ull ¢11 26"11 6"12 ('12 2ct2 0 0 0

2Cl2 el2 cI2 2C2 6"22 c22 0 0 0

cj2 2Cl2 c12 c22 2c22 c22 (} () 0

Cl2 el2 Cl2 ¢22 ¢22 2c22 0 0 0

0 0 0 0 0 0 2C33 C33 C33

0 0 0 0 0 0 t733 2C33 C33

0 0 0 0 0 0 C33 C33 2C33

(D-9)

D.2 Global stress sensitivity with respect to any size variable

As with the stress shape variable sensitivities, the stress sizing variable sensitivities

are done on an element by element basis as follows:

D.2.1 Rod 'i' stress sensitivity with respect to rod 'j' area

Differentiating the rod element stress equation with respect to any rod element area

gives

i O{ UG}

OAj 0 { UG} OAj
(D-10)

where the displacement derivative with respect to area 'j' has been found previously. To

find the stress derivative with respect to its nodal coordinates, employ straightforward dif-

ferentiation. This result has been calculated in Appendix C.2.1.
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D.2.2 Rod 'i' stress sensitivity with respect to CST or LST 'j' thickness

Differentiating the rod element stress equation with respect to any CST or LST ele-

ment thickness gives

_9oi i9oi i_{U,;}

aej a {uc,} atj
(D-II)

where the displacement derivative with respect to thickness 'j' has been found previously.

The stress derivative with respect to its. nodal coordinates, has been calculated in Appen-

dix C.2.1.

D.2.3 CST 'i' stress sensitivity with respect to rod 'j' area

Differentiating the CST element stress equation with respect to any rod element area

gives

/9 { °xx } a{U_;}%r = [_[B][A] aaj
xy

(D-12)

where the displacement derivative with respect to area 'j' has been found previously.

Since [D], [B] and [A] are known, the derivative is easily found.

D.2.4 CST 'i' stress sensitivity with respect to CST 'j' thickness

Differentiating the CST element stress equation with respect to any CST or LST ele-
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ment thickness gives

_{o'} {Ua}_yy =ED]EB3EA__--_j

xy i

(D-13)

where the displacement derivative with respect to thickness 'j' has been found previously.

Since [D], [B] and [A] are previously known, the derivative is easily found.

D.2.5 LST 'i' stress sensitivity with respect to rod 'j' area

Differentiating the LST element stress equation with respect to any rod element area

gives

ffyy

(;
xy p

ff
xy Q

(_XX

ffxy R

{ vc}
= [C]_M][._,] igAj

(D-14)
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where the displacement derivative with respect to area 'j' has been found previously.

Since [C.], [M] and [A] are previously known, the derivative is easily found.

D.2.6 LST 'i' stress sensitivity with respect to LST 'j' thickness

Differentiating the LST element stress equation with respect to any CST or LST ele-

ment thickness gives

i9

E

(_xxCIyy }

Gxy P

%,
ff

_ Q

%,
Gxy

R

at,.
(D-15)

where the displacement derivative with respect to thickness 'j' has been found previously.

Since ICY], [M] and [h,] are previously known, the derivative is easily found.

D.3 Natural frequency sensitivity with respect to any size variable

Differentiating the eigenvalue equation
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[K-o2M] lot = {0} (D-16)

with respect to any size design variable t¢ yields

rF_IKI co2_lM1]2032 q_i h _- ' _'--'_ _i
' - (D-17)

ertm] ¢/

which is actually the sensitivity of the eigenvalue X = (o2. The global mass sensitivity

matrix _ [M] is the only new entry. The global stiffness _nsitivity matrix hax been

detailed in Appendix D. l and the global mass sensitivity matrix has the same properties in

that it's derivative with respect to any i'th size variable is just the i'th individual mass

matrix derivative with all other entries equal to zero.

D.3.1 Rod element mass matrix sensitivity with respect to it's area

Since Mro d for rod element 'i' is a linear function of it's area, differentiating the 6x6

global rod mass matrix (Appendix A. 1.3) yields

[ Mro d] pL

_A i 2
[/] (D-18)

where p is the density, L is the length and I is a 6x6 identity matrix.
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D.3.2 CST element mass matrix sensitivity with respect to it's thickness

Since MCS T for CST element 'i' is a linear functitm of it's thickness, differentiatinn

the 9x9 global CST mass matrix (Appendix A.2.3) yields

3 [McsTI _ pA [ll (D-It))
_t i 3

where p is the density, A is the area and I is a 9x9 identity matrix


